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1 Introduction

It is a widespread opinion that topology first appeared with the famous problem of the seven
bridges of Königsberg:

The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of
the Pregel River, and included two large islands which were connected to each other and the
mainland by seven bridges. The problem was to find a walk through the city that would cross
each bridge once and only once. The islands could not be reached by any route other than the
bridges, and every bridge must have been crossed completely every time; one could not walk
halfway onto the bridge and then turn around and later cross the other half from the other side.
The walk need not start and end at the same spot.

Although it is Leonhard Euler in 1736 who showed that the problem has no solution, one
can nonetheless consider Carl Friedrich Gauss (1777-1855) as the true father of topology, with a
special mention of the integral which determines the induction coefficient of two electric current
loops and which now bears his name. In fact some recent researches suggest that it is from
astronomical considerations, rather than electromagnetic, that Gauss discovered his integral
formula for linking numbers. The excellent article [1] provides more details on this story.
Gauss integral computing linking numbers (which are integers) is invariant under continuous
deformations of the ambient manifold into which the links are immersed: it is an ambient
isotopic invariant. This is where topology intervenes in this context.

Since then, topology has been largely developed and has become an independent part of
mathematics. Topology has recently made a remarkable comeback in physics in the context of
Quantum Field Theory1. This might be a little surprising at first sight, since a Quantum Field
Theory (QFT) is fundamentally based on locality while topology is more concerned about global
aspects of manifolds. We shall return later to the interplay between local and global aspects of
QFT’s.

In this review we are going to present two examples where QFT provides information about
the topological nature of the space on which they are defined. The common thread in these
two examples is that they are both based on cohomology. Let us point out that the QFT’s we
will deal with are all Euclidean.

The fact that cohomology plays a role in topology should not be too surprising deal with
objects which are invariant under continuous deformations of the manifold on which they are
defined. It is perhaps more surprising that cohomology can be used in physics (and more
specifically in quantum theories). For instance, Deligne-Beilinson cohomology that will appear
at length in this report is a basic element of Geometric Quantization. This sounds as an echo
to our previous questioning about locality.

We will start by recalling some basic facts concerning cohomology. Then, we will show
how equivariant cohomology, combined with QFT, gives rise to a large number of topological
invariants, such as those of Donaldson and Mumford. Our second example will be part of

1Actually an extension of the Gauss integral, coined as ”helicity” by H. Mofatt in 1969 [44], has been intro-
duced in 1958 by L. Woltjer [43] in his study of magnetic fields of the Crab Nebula, thus referring to Gauss initial
point of view in a sort of epistemological loop. Since then helicity has played an important role in astrophysics,
solar physics and plasma physics
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the epistemological loop mentioned in the previous footnote: we will show how Chern-Simons
abelian theories allow to compute link invariants, actually those expressed in terms of the Gauss
integral, and how the construction can be generalised when the manifold has torsion and/or
has a dimension larger than three. The last part of this report will be devoted to proposal for
future works.
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2 A fly over Equivariant and Deligne-Beilinson cohomologies

In this section we will give a quick presentation of the two cohomologies we will use in the
sequel. There will be almost no proof, but mostly references to specialized text books such as
[4, 2]. We will first consider equivariant cohomology and then Deligne-Beilinson cohomology.
We will assume that the reader is relatively familiar with the standard cohomologies such as de
Rham or Čech, as well as the singular cohomology. Similar knowledge will be assumed for the
corresponding homologies as well as Poincaré duality.

2.1 Equivariant Cohomology: Weil, Kalkman and Cartan schemes

Equivariant cohomology is based on the quite natural following idea: if one considers a principal
bundle with total space P , base space B and typical fibre a Lie group G, is it possible to
determine the cohomology of B from that of P? One knows that B ∼= P/G, where the quotient
is made for the right action on G on P . The interest of the construction that answers the
previous question is that if M is a manifold on which a Lie group G is acting, then, even if the
quotient M/G is not a manifold, one can define a cohomology for the action of G on M from that
of M . We will show that there are different ways to present Equivariant Cohomology. These
ways will be referred to as different schemes. The first scheme we will introduce is the one of
Weil which is from our point of view the most natural. Cartan scheme is a bit more subtle, and
will be introduced at the end. As to Kalkman scheme, besides the fact it provides an elegant
way to relate Weil and Cartan schemes, it also proves a very powerful tool in applications of
Equivariant Cohomology within the framework we will present later.

Let us consider à principal fibre bundle ξ = (P,B,G, π) with total space a smooth manifold
P , base space a smooth manifold B, typical fibre a Lie group G acting (transitively) to the
right on P and with projection π : P → B. We will denote by mB the dimension of B and
by mP the dimension of P . One introduces the exterior derivative dP on P which acts on
Ω∗(P ) =

⊕
Ωk(P ), the space of smooth differential forms on P : dP |k : Ωk(P ) → Ωk+1(P ).

This provides Ω∗(P ) with the structure of a differential complex on which closed forms are
defined as dPω = 0 and exact forms as ω = dP η. De Rham cohomology groups are then defined
on P according to:

Hk
dR =

Ker(dP |k)
Im(dP |k−1)

. (2.1)

Associated with the right action of G on P , one introduces two more differential operators:
the interior derivative (or contraction) and the Lie derivative. Since the typical fibre of our
principal bundle ξ is a Lie group, then the fibres of P , i.e. the sub-sets π−1({x}), where x ∈ B,
can be identified with the orbits of G in P . One then defines the vertical direction in the
tangent space at p ∈ P as the set of tangent vectors at p which are sent to zero by (dπ)p, the
tangent mapping at p associated with π:

VpP = {Υp ∈ TpP/(dπ)p(Υp) = 0} = Ker((dπ)p) . (2.2)
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Since the typical fiber of ξ is the Lie group G, the vertical space VpP can be canonically identified
with the tangent space of G at g ∈ G: VpP ' TpG. Thanks to the adjoint action of G, TgG can
be canonically sent to TeG, the tangent space of G at the identity of G, which is nothing but
the Lie algebra G of G. Hence, one gets: VpP ∼ G. For any ω ∈ Ω1(P ) and λ ∈ G, on defines
the interior derivative of ω along λ at p by:

∀p ∈ P, ip(λ)ω = ω(λ̃p) , (2.3)

where λ̃p ∈ VpP is the tangent vector canonically associated with λ, via the previously men-
tioned isomorphism VpP ∼ G.

Let us recall that differential forms are dualizing vector fields, which gives a meaning to the
RHS of (2.3), thus providing a 0-form (i.e. a function) on P . The definition of the interior
derivative straightforwardly extends to Ωk(P ):

ip : G × Ωk(P )→ Ωk−1(P ) . (2.4)

This mapping is bilinear and is also called the contraction on Ω(P ). For antisymmetry reasons,
the interior derivative satisfies:

∀p ∈ P,∀λ ∈ G, ip(λ)ip(λ) = 0 . (2.5)

Whereas dP increases by one the degree of forms, ip decreases it by one.
The last derivative to be introduced reads:

lp = ip ◦ dP + dP ◦ ip = {ip, dP } . (2.6)

This derivative retains the degree of forms on which it acts and is called the Lie derivative.
It corresponds to the idea of an infinitesimal action of G (and so of an action of G) on Ω(P ).
Thus, one obtains a bilinear mapping:

lp : G × Ωk(P )→ Ωk(P ) . (2.7)

that commutes in an obvious way with dP . One also has:

∀λ1, λ2 ∈ G, [lp(λ1), lp(λ2)] = lp([λ1, λ2]) , (2.8)

as well as:

∀λ1, λ2 ∈ G, [lp(λ1), ip(λ2)] = ip([λ1, λ2]) . (2.9)

A k-form ω ∈ Ωk(P ) is said to be horizontal if:

∀λ ∈ G, ip(λ)ω = 0 . (2.10)

and invariant if:

∀λ ∈ G, lp(λ)ω = 0 . (2.11)
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A form which is both horizontal and invariant will be called basic. The spaces of basic k-forms
on the total space P is denoted Ωk

G(P ). One can show the following important result:

Ωk
G(P ) ∼= Ωk(B) , (2.12)

which means that basic forms on the total space P of the principal bundle χ can be canonically
identified with forms on the base space B of χ. This is where the terminology ”basic” comes
from. More precisely, for any ω ∈ Ωk

G(P ) the canonically associated form ω̃ ∈ Ωk(B) is such
that: π∗ω̃ = ω. Proving the existence of ω̃ is the difficult part in the demonstration of (2.12).
Uniqueness is more obvious: if π∗ω̃1 = π∗ω̃2 = ω, then π∗(ω̃1−ω̃2) = 0. But the only form whose
pull-back via π∗ is the zero form is the zero form itself. Conversely, to any form ω̃ ∈ Ωk(B) is
canonically associated the k-form π∗ω̃ ∈ Ωk(P ) such that:

∀λ ∈ G, ip(λ)(π∗ω̃) = ω̃(π∗λ̃p) = ω̃(0) = 0 , (2.13)

and:

∀λ ∈ G, lp(λ)(π∗ω̃) = ip(λ)(π∗(dP ω̃)) = (dBω̃))(π∗λ̃p) = 0 , (2.14)

where dB denotes the exterior derivative on B. These last two equations prove that π∗ω̃ is
basic. Let us remark that if ω̃ ∈ Ωk(B) is closed, then so is π∗ω̃ since dP ◦ π∗ = π∗ ◦ dB.
Conversely, if ω ∈ Ωk

G(P ) is closed, then so is the canonically associated form ω̃ ∈ Ωk(B).
Indeed, if ω ∈ Ωk

G(P ) was defining a form ω̃ on B which is not closed, since π∗ω̃ = ω, then
one would necessarily infer that ω also is not closed, hence a contradiction. Consequently, if
one denotes Hk

dR,G(P ) the space of cohomology classes build from Ωk
G(P ) and Ωk−1

G (P ), one
deduces that:

Hk
dR,G(P ) ∼= Hk

dR(B) . (2.15)

More generally, if P is a smooth manifold and G a Lie group acting to the right on P , then
the spaces Hk

dR,G(P ), build from basic elements of P , as just exposed, are called the basic
cohomology groups of P for the right action of G. From (2.15), this cohomology coincides
with the cohomology of P/G when this quotient is a manifold.

The next ingredient is provided byW(G), the Weil algebra of G. It is the differential graded
algebra generated by two G-valued objects: the ”connection” θ, of degree 1, and its ”curvature”
Θ, of degree 2, such that:

dWθ = Θ− 1

2
[θ, θ] , (2.16)

where dW is the exterior derivative of W(G). One has the Bianchi identity:

dWΘ = −[θ,Θ] . (2.17)

This differential graded algebra is a way to describe connections (and their curvatures) on
principal bundles without the need of specifying either a base space nor the total space of the
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bundle. Only the group is taken into consideration. It plays a fundamental role in the theory
of classifying spaces. The Weil algebra can be endowed with an interior derivative, iW , and a
Lie derivatives, lW , for which one has, for any λ ∈ G:

iW(λ)θ = λ , lW(λ)θ = −[λ, θ] . (2.18)

and

iW(λ)Θ = 0 , lW(λ)Θ = −[λ,Θ] . (2.19)

It can be shown, for instance using a homotopy operator, that the cohomology of W(G) is
trivial [3]. This is mainely due to the algebraic nature of this space. In fact, in the action of
iW and lW all references to points of a base space have disappeared.

Let us now consider a manifoldM on which a Lie group G acts to the right. The Lie algebra
of G is denoted G. As explained before, one can then construct the basic cohomology of M,
HdR,G(M). Let the graded algebra Ω(M) ⊗ W(G) be provided with the natural operations
dM + dW , iM + iW and lM + lW , which turns it into a graded differential algebra. The
elements of Ω(M) ⊗ W(G) annihilated by (iM + iW)(λ) and (lM + lW)(λ) for any λ ∈ G,
are called equivariant cochains. Equivariant cochains annihilated by dM + dW are called
equivariant cocycles, and equivariant cochains which can be written as the dM+dW of some
other equivariant cochains are called equivariant coboundaries. This generates a cohomology
called Weil scheme of Equivariant Cohomology. The mapping:

ζ 7→ exp{−iM(θ)}ζ . (2.20)

is an isomorphism of the differential algebra Ω(M)⊗W(G) for which:

dM + dW → DK ≡ dM + dW + lM(θ)− iM(Θ)

iM + iW → IK ≡ iW (2.21)

lM + lW → LK ≡ lM + lW .

It can easily be checked that DK , IK and LK are respectively exterior, interior and Lie deriva-
tives, and that the equivariant cohomology these derivatives define is isomorphic to the one of
Weil scheme. The isomorphism is provided by a canonical extension of (2.20) to appropriate
spaces. The version of Equivariant Cohomology thus obtained will be called Kalkman scheme
of Equivariant Cohomology.

Finally, from Kalkman scheme, if one sets θ ≡ 0, then D2
K |θ=0 reduces to zero on invariant

cochains and not on the whole differential algebra. This gives rise to the so-called Cartan
scheme of Equivariant Cohomology. It is in this scheme that E. Witten adopted in [5]
when he showed the interest of Equivariant Cohomology for the computation of observables in
some topological models. We will come back to this later.

Although popular, Cartan’s scheme is not well adapted to explicit computations. Hence,
we will prefer to use Weil or even Kalkman schemes, the relevance of which will appear in the
examples of the next section.
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Let us now have a look at the second type of cohomology we will use in the topological
models we want to present here.

2.2 Deligne-Beilinson Cohomology

Once again, there exist several, but equivalent, ways to present Deligne-Beilinson Cohomology
[16, 17, 18, 19]. For instance, it can be defined as the cohomology of a cone. This seems to
be more appropriate when dealing within algebraic geometry and in particular the theory of
regulators [17, 18]. For smooth manifolds it can be constructed more explicitly introducing
cochains, a differential and then cocycles on some Čech-de Rham bi-complex [18]. This smooth
Deligne-Beilinson Cohomology can also be seen as a realization of Cheeger-Simons Differential
Characters [20, 21], Harvey-Lawson ”Sparks” [22] or Singer-Hopkins Differential Cohomology
[23]. The advantage of the Čech-de Rham explicit method is that it provides expressions
which are quite convenient for physicists [24]. On the other hand, using Differential Characters
or Sparks turns out to be particularly well-adapted when dealing with abelian Chern-Simons
theories as it will appear later. In the sequel DB will stand for ”Deligne-Beilinson”, and we will
only consider smooth, closed (i.e. compact and without boundary) manifolds.

If one chooses to use the Čech-de Rham bi-complex, DB Cohomology on a manifold M can
be constructed as follow. Let U = (Ui)i∈I⊂N be a good cover of M , i.e. a cover such that any
non empty intersection of elements of U is contractible. This is equivalent to say that all non
empty intersections have no homology, nor cohomology (except in degree zero of course). A
DB cochain is defined as a collection

ω[p] = (ω(0,p), ω(1,p−1), ..., ω(p,0), n(p+1,−1)) , (2.22)

where the ω(k,p−k)’s are Ωp−k(Ui)-valued Čech k-cochains (with Ωp−k(Ui) the space of (p− k)-
forms on (Ui) ∈ U), whereas the last term, n(p+1,−1), is an integral Čech (p+ 1)-cochain.

One provides the set of DB cochains with a differential, denoted D and defined by:

D = δ + d̃ , (2.23)

where δ is the Čech differential, d̃ = ±dM depending on whether the exterior derivative dM is
taken on objects having even or odd Čech degree 2, and d̃ ≡ 0 on p-forms. When acting on
”pure” Čech cochains (denoted ω(p,−1)), d̃ has to be understood (up to sign) as the injection of
numbers into (constant) functions. More explicitly:

Dω[p] = (0, δω(0,p) + d̃ω(1,p−1), ..., δω(p,0) + d̃n(p+1,−1), δn(p+1,−1)) . (2.24)

The differential D is a truncation on p-forms of the Čech-de Rham differential used to prove
that real Čech cohomology and de Rham cohomology are isomorphic. We can check without

2This alternation of sign ensures that D2 = 0
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any difficulty that (2.24) leads to D2 = 0. One will say that a DB cochain ω[p] is a DB cocycle
if:

Dω[p] = 0 , (2.25)

which locally (i.e. with respect of the ω(k,p−k)’s) reads:

δω(0,p) + d̃ω(1,p−1) = 0

δω(1,p−1) + d̃ω(2,p−2) = 0
...

δω(p−1,1) + d̃ω(p,0) = 0

δω(p,0) + d̃n(p+1,−1) = 0

δn(p+1,−1) = 0 .

(2.26)

These equations are often referred to as the ”descent” equations of the DB cocycle ω[p]. Not
surprisingly, one says that a DB cocycle is a DB coboundary whenever:

∃η[p−1] / ω[p] = Dη[p−1] , (2.27)

which locally reads:

ω(0,p) = d̃η(0,p−1)

ω(1,p−1) = δη(0,p−1) + d̃η(1,p−2)

...

ω(p−1,1) = δη(p−2,1) + d̃η(p−1,0)

ω(p,0) = δη(p−1,0) + d̃n(p,−1)

n(p+1,−1) = δm(p,−1) .

(2.28)

One finally defines the pth DB Cohomology space as the quotient of the space of DB p-cocycles
by the space of DB p-coboundaries, as usual in cohomology theory. One denotes [ω[p]], or simply
[ω], a DB class of degree p, and one says that the DB cocycles associated with this class are its
representative for the good cover U , whereas equations (2.28) identify the ambiguities on the
representatives of a given DB class. The resulting cohomology spaces are independent of the
good cover and are only depending on the manifold M . This is actually also true within Čech
cohomology when one uses good covers. They are denoted:

Hp
D(M,Z) . (2.29)

To be a more precise, one should define Hp
D(M,Z) as the inductive limit over refined good

covers of M of the previously build DB cohomology spaces.
Let us point out that our choice of degree for the DB classes is the one coming from Sparks
and Differential Characters, whereas in DB theory one uses a degree shifted by minus one.

One of the first results that which shows the interest of Deligne-Beilinson Cohomology
is the following: H1

D(M,Z) canonically identifies with the space of equivalence classes of
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U(1)-principal bundles with connections, the classification being made with respect to U(1)-
isomorphisms.

Let us first show that a DB class [ω] of degree p defines in a natural way a closed (p + 1)-
form with integral periods on M , i.e. a curvature when p = 1. Indeed, (2.26) implies that
δdMω

(0,p) = 0 and therefore that there exists a form ω(−1,p+1) on M whose restrictions in the
opens of the good cover U coincide with the local expressions of dMω

(0,p). Thus, the descent
equations (2.26) can be seen as standard Čech-de Rham descent equations for the (global)
form ω(−1,p+1). These descent equations end (by construction) with an integral Čech cocycle
n(p+1,−1). Therefore, ω(−1,p+1) turns out to be a closed form with integral periods on M . Let us
remark that ω(−1,p+1) is closed simply because its restrictions are exact. Note that the Čech-de
Rham descents of a closed form with integral periods generically end with a real Čech cocycles.
However this cocycle can always be turned into an integer cocycle. The Čech cohomology class
associated with this integer cocycle can only determine a free cohomology class but not a torsion
class. The interpretation of Hp

D(M,Z) as a classifying space can be made in terms of abelian
(bundle) Gerbes together with their connections. This gives a ”geometric” meaning to the DB
construction [25].

Let us now try to give a more precise description of the spaces Hp
D(M,Z). To begin with,

let us note that from the descent equations (2.26), and the ”ambiguity” equations (2.28), any
DB class [ω] defines an integral Čech cohomology class [n], thus generating a map:

δ2 : Hp
D(M,Z)→ Ȟp+1(M,Z) , (2.30)

where Ȟp+1(M,Z) denotes the p-th Čech cohomology group of M . This map is surjective as
the descent equations easily show. One can equivalently say that the following sequence:

Hp
D(M,Z)

δ2→ Ȟp+1(M,Z)→ 0 . (2.31)

is exact.
Equations (2.28) which organize the ambiguities of (2.26) for a given DB class [ω] imply

that DB classes with the same image under δ2 may differ by an element of Ωp(M)/Ωp
Z(M), the

quotient of the space of p-forms on M by the subspace of closed p-forms with integral periods.
This provides an extension to the left of (2.31) into the following exact sequence:

0→ Ωp
Z(M)

i→ Ωp(M)→ Hp
D(M,Z)

δ2→ Ȟp+1(M,Z)→ 0 . (2.32)

From this last exact sequence we infer that Hp
D(M,Z) is an affine bundle with (discrete)

base space Ȟp+1(M,Z), and translation group Ωp(M)/Ωp
Z(M). This structure plays a crucial

role when Deligne-Beilinson Cohomology is used within the abelian Chern-Simons framework
in order to compute link invariants.

If on the other hand one rather starts from the other edge of the descent equations defining
the DB class [ω], that is to say if one first consider the generalised curvature ω(−1,p+1) canonically
defined by [ω], then another surjective mapping naturally emerges:

δ1 : Hp
D(M,Z)→ Ωp+1

Z (M) . (2.33)
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There follows another exact sequence:

Hp
D(M,Z)

δ1→ Ωp+1
Z (M)→ 0 , (2.34)

which can be completed into the following exact sequence:

0→ Ȟp(M,R/Z)→ Hp
D(M,Z)

δ1→ Ωp+1
Z (M)→ 0 . (2.35)

where Ȟp(M,R/Z) denotes the p-th R/Z-valued Čech cohomology group of M . This last exact
sequence shows that Hp

D(M,Z) is also an affine bundle over Ωp+1
Z (M) whose translation group

is now Ȟp(M,R/Z). Let us point out that whereas it has a discrete basis with respect to (2.32),
Hp
D(M,Z) has a continuous (although potentially disconnected) basis with respect to (2.35).
In the particular case where p = m = dimM the exact sequence (2.32) becomes:

0→
Ωm
Z (M)

Ωm(M)
→ Hm

D (M,Z)
δ2→ Ȟm+1(M,Z) = 0 . (2.36)

A choice of a normalized volume form on M allows to prove that Ωm
Z (M)/Ωm(M) ' R/Z, thus

leading to:

Hm
D (M,Z) ' R/Z . (2.37)

One can chose the zero class of Hm
D (M,Z) as origin on the unique fiber of Hm

D (M,Z), which
makes the isomorphism (2.37) canonical.

Čech-de Rham descents of closed forms with integral periods on M cannot by themselves
generate alone Deligne-Beilinson spaces. For instance, as we already mentioned, such descents
can only generate the free part of the Čech cohomology groups. This is due to the fact that
Čech-de Rham deals with forms and then only provide an isomorphism for real cohomologies
thus eliminating torsion. In fact its the truncation (d̃ ≡ 0 on p-formes) which gives access via
ambiguities to torsion. One then finds torsion either in the Čech cohomology group at the end
of the exact sequence (2.32), or in the R/Z-valued Čech cohomology at the start of the exact
sequence (2.35). In other words, torsion is either contained in the base space of Hp

D(M,Z) when
one deals with (2.32)), or in the translation group of Hp

D(M,Z) when one deals with (2.35).
Beside their affine bundle structure, DB spaces enjoys a natural Z-module structure: the

sum of two DB classes of degree p is a DB class of degree p, and so is any integral combination
of DB classes of degree p. There is also a natural pairing on Deligne-Beilinson Cohomology
spaces:

∗D : Hp
D(M,Z)×Hp

D(M,Z)→ Hp+q+1
D (M,Z) . (2.38)

This pairing, called the DB product, is graded commutative:

[ω[p]] ∗D [ω[q]] = (−1)(p+1)(q+1)[ω[q]] ∗D [ω[p]] . (2.39)

Let us give an example by considering two DB classes of degree 1, hence defining two inequivalent
classes of U(1)-bundles with connections. Let (A(0,1),Λ(1,0), n(2,−1)) and (Ã(0,1), Λ̃(1,0), ñ(2,−1))
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be a representative for each of these classes, with respect to a good cover U of M . The DB
class resulting from the DB product of the two classes of these DB cocycles can be represented
by the following DB 3-cocycle:

(A(0,1)∧̌dÃ(0,1),Λ(1,0)∧̌dÃ(0,1), n(2,−1)∧̌Ã(0,1), n(2,−1)∧̌Λ̃(1,0), n(2,−1) ∪ ñ(2,−1)) , (2.40)

where ∧̌ denotes the combination of the exterior product ∧ with the cup product ∪. This
combination is the one used in the standard Čech-de Rham machinery. When p+ q+ 1 = m =
dimM , using (2.37), one gets:

∗D : Hp
D(M,Z)×Hq

D(M,Z)→ Hm
D (M,Z) ' R/Z . (2.41)

We will see later on that (2.41) defines an R/Z-duality between Hp
D(M,Z) and H

(m−p−1)
D (M,Z).

Remembering the link between DB classes of degree 1 and U(1)-connections, one is naturally
led to wonder whether integration of a DB class over a cycle on M is well defined. This would
be something which generalizes U(1) holonomies. It is well-known that the integral

∮
z A, of an

abelian gauge field (i.e. a U(1)-connection) A over a 1-cycle z of M , does not define a real (or
complex) number but rather an element of R/Z. From a physical point of view this is nothing
but the Aharonov-Bohm3 effect [8]. This can be seen for instance when the cycle is trivial
(z = bc) since then one can locally write:∮

z
A =

∮
bc
A =

∫
c
dA =

∫
c
F (A) , (2.42)

with F (A) = dA the curvature of A. Yet, the chain c, whose boundary is z, is not unique, and
if c̃ is another such chain then there exists a 2-cycle Σ on M such that c̃ = c+ Σ. Accordingly:∮

z
A =

∫
c̃
F (A) =

∫
c+Σ

F (A) =

∫
c
F (A) +

∫
Σ
F (A) . (2.43)

Since, up to a normalization factor 2π, F (A) has integral periods, one concludes that
∮
z A is

defined modulo integers. There would remain to show that
∮
z A can be extended to any 1-cycles

on M . This will be achieved by defining the integral of a general DB classes of degree p on
p-cycles of M . We have already mentioned that the Čech-de Rham description of DB classes
(in term of their representatives) provide explicit formulas. Therefore, finding an expression
for
∮
zp

[ω[p]] might be easier using this explicit description. Fortunately, there is a descent for

(singular) p-cycles of M into Čech p-cycles associated with good covers of M . Here is the
essence of this construction details of which can be found in the classic article from A. Weil
([7]).

Let U be a good cover of M and zp be a (singular) p-cycle on M . One says that zp is a
U-cycle if there exist a family c(0,p) of (singular) p-chains indexed by I, such that:

zp = ∂c(0,p) ≡
∑
i∈I

ci(0,p) . (2.44)

3In fact, first discovered by W. Ehrenberg and R. E. Siday in 1949 [6]
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For a given good cover, a generic singular p-cycle zp of M is not necessarily a U-cycle. However,
it is always possible to refine U into a good cover V in such a way that zp turns out to be a
V-cycle. It will only remain to show that the whole construction is independent of the good
cover. For a p-cycle zp, one show that there exists a collection:

z[p] = (c(0,p), c(1,p−1), ..., c(p,0), ζ(p,−1)) , (2.45)

where the c(k,p−k)’s are Čech chains taking their values in the set of singular chains of M , and

ζ(p,−1) is an integral Čech cycle. Furthermore, this collection verifies the following homological
descent:

bc(0,p) = ∂c(1,p−1)

bc(1,p−1) = ∂c(2,p−2)
...

bc(p−1,1) = ∂c(p,0)

b0c(p,0) = ζ(p,−1) .

(2.46)

In these equations, b denotes the boundary operation on singular chains and ∂ the boundary
operation on Čech chains. This extends definition (2.44). These two operations can be seen as
dualizing de Rham4 d for b, and Čech δ for ∂. As for b0, it is the operation which associates
to any singular 0-cycle its integer coefficients obtained by decomposing it over a base of points
(which are 0-cycles). Let us note that the descent equations (2.46) imply that ζ(p,−1) is an

integral Čech cycle, and ∂c(0,p) = zp an integral singular cycle. This construction allows in

particular to show that singular and Čech homologies are isomorphic.
Let us consider an example: z is a 1-cycle on M such that the good cover of M induces a
good cover of z made of three open sets. We write U|z = (V1, V2, V3), with Vi = Ui ∩ z and
V123 = V1 ∩ V2 ∩ V3 = ∅. Not every cycle and good cover are such. But for a given cycle it
is always possible to find a good cover that meets our requirements. We could say that U|z is
an ”excellent” cover of z. One decomposes z with respect to U|z by considering three integer
1-chains, let say c1, c2 and c3, such that: c1 + c2 + c3 = z, and whose boundaries are contained
into the intersections of U|z, that is to say: bc1 = x12−x31, bc2 = x23−x12 and bc3 = x31−x23,
with xij ∈ Uij = Ui ∩ Uj . The Čech 1-chain so generated is given by: ζ12 = 1 = −ζ21 in U12,
ζ23 = 1 = −ζ32 in U23, and ζ31 = 1 = −ζ13 in U31. These integers are nothing but the weights
of the points x12, x23 and x31 seen as basic 0-cycles in the various Uij of U|z. Although by
construction U123 = U1 ∩ U2 ∩ U3 = ∅ on z, in M one might have U123 = U1 ∩ U2 ∩ U3 6= ∅. If
this happens this means that the cycle z was actually a boundary, and this implies that there
exists a Čech 2-chain τijk such that ζij =

∑
k τijk. Conversely if U123 = U1 ∩ U2 ∩ U3 6= ∅ also

holds in M , then the cycle is not a boundary and the same applies to ζij . As a final point, let
us noticed that from the point of view of z provided with the excellent cover U|z the cycle ζij is
not trivial because there is no possibility to construct τijk since U123 = U1 ∩ U2 ∩ U3 = ∅ on z.
This amounts to compute the first homology group of S1 which is well-known to be non trivial.

4Actually b is dualizing the singular coboundary operation so that one needs to first send forms into singular
cochains, which is done by integration, in order to see a duality between d and b
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One immediately notices that beside their last term, all the terms of (2.22) and (2.45) have
degrees that allow integration. Therefore, it seems natural to set, for any cycle zp∮

zp

[ω[p]] =

p∑
k=0

∫
c(k,p−k)

ω(k,p−k) modZ , (2.47)

where integrals have to be understood with also a summation over all the Čech indices appearing
there, in such a way that the final result has no Čech indices. Equality (2.47) is defined modulo
integers, that is to say, the integral is an element of R/Z, as expected. When the cycle zp is a
boundary, i.e. zp = bcp+1, one immediately sees that (2.47) yields:∮

zp

[ω[p]] =

∫
cp+1

F p+1 = modZ , (2.48)

where F p+1 is the closed form with integral period associated with (i.e. the curvature of) [ω[p]].
When zp is a torsion cycle, that is to say zp is not a boundary but that there an integer

m and an integral chain cp+1 such that m.zp = bcp+1, if one denotes ζ(p,−1) an integral Čech

cycle associated (by the Weil descent) with zp and θ(p+1,−1) an integral Čech chain such that
m.ζ(p,−1) = ∂θ(p+1,−1) (and so associated with cp+1), then it is easy to show that (2.47) gives:

∮
zp

[ω[p]] =
1

m

[∫
cp+1

F p+1 − 〈ω(p+1,−1), θ(p+1,−1)〉

]
modZ , (2.49)

where 〈 , 〉 denotes the duality operation between integral Čech chains and cochains. Hence, the
couple (F p+1, [ω(p−1,−1)]), associated with a DB class [ω[p]], completely determines this DB class
on the torsion group of degree p of M [21]. Finally, one can check that the expression defining
the integration of the DB [ω[p]] over the cycle zp is independent of the chosen representative
of [ω[p]] as well as of the descent of zp, and of the good cover. In fact, by checking all these
independencies one also proves that integration is actually performed in R/Z rather than in R.

We have now just established an R/Z-duality between cycles on M and DB spaces. This
is exactly how Cheeger and Simons have introduced Differential Characters [20] which are a
different but equivalent way to see Deligne-Beilinson Cohomology.

Denoting Hp
D(M,Z)? ≡ Hom(Hp

D(M,Z),R/Z), the Pontrjagin dual of Hp
D(M,Z) and Zp(M)

the space of singular p-cycles on M , one has:

Zp(M) ⊂ Hom(Hp
D(M,Z),R/Z) . (2.50)

This reminds us of another inclusion: singular chains seen as de Rham currents on M , the latter
being dual to forms on M .

By combining the DB product ∗D, integration and result (2.37), one deduces that there is
another inclusion (or rather an injection):

Hm−p−1
D (M,Z) ⊂ Hom(Hp

D(M,Z),R/Z) , (2.51)
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which is analogous to the inclusion of Ωp(M) into the space of de Rham (m−p)-currents on M .
From this point of view, the elements of Hp

D(M,Z)? can be seen as distributional DB classes.
Eventually, one can show that any singular p-cycle z on M defines a canonical distributional

DB (m− p− 1)-class such that:∮
zp

[ω[p]] =

∫
M

Ω[p+1] ∗D [ηz] modZ , (2.52)

for any [ω[p]] ∈ Hp
D(M,Z) (see [24] for details). To compute the RHS of (2.52) using the

integration formula (2.48), one has to decompose M itself according to Weil method thus
obtaining something equivalent to (2.45). This decomposition, that we call a ”polyhedral”
decomposition of M , is quite standard. It can be used for instance to define the integration of
a top form on M via the corresponding Čech objects.

One can also rewrite formula (2.48) using a partition of unity with compact support and
subordinated to the good cover U of M . This avoids the use of a Weil decomposition of M (and
of any cycle z in M). It also avoids problems occurring when dealing with distributional classes
and products of such objects which might appear in (2.52). Once more we refer the reader to
[24] for details. This is also very similar to the usual case where one can either use partition of
unity or chains to define integration of forms.

Let us have a look at the dual spaces Hom(Hp
D(M,Z),R/Z). If one applies Pontrjagin

duality to the exact sequences (2.32) and (2.35), one deduces that these spaces are themselves
terms of exact sequences. More specifically one finds that:

0→ Hom(Ωp+1
Z (M),R/Z)→ Hp

D(M,Z)? → Ȟm−p(M,Z)→ 0 , (2.53)

and:

0→ Ȟm−p−1(M,R/Z)→ Hp
D(M,Z)? → Hom(Ωp(M)/Ωp

Z(M),R/Z)→ 0 . (2.54)

To establish these two exact sequences one uses:

Hom(Ȟp(M,R/Z),R/Z) ∼= Ȟm−p(M,Z) . (2.55)

Let us have a closer look at the case m = 3 and p = 1 since it will be met later on. The
exact sequences into which H1

D(M,Z) and H1
D(M,Z)? are embedded read:

0→
Ω1
Z(M)

Ω1(M)
→ H1

D(M,Z)→ Ȟ2(M,Z)→ 0 , (2.56)

0→ Ȟ1(M,R/Z) → H1
D(M,Z)→ Ω2

Z(M)→ 0 , (2.57)

and:

0→ Hom(Ω2
Z(M),R/Z) → H1

D(M,Z)? → Ȟ2(M,Z)→ 0 , (2.58)

0→ Ȟ1(M,R/Z) → H1
D(M,Z)? → Hom(

Ω1(M)

Ω1
Z(M)

,R/Z)→ 0 , (2.59)
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and the canonical injection (2.51) gives:

H1
D(M,Z) ⊂ H1

D(M,Z)? . (2.60)

This sheds some new light on the previous exact sequences since we have the following injections:

Ω2
Z(M) ⊂ Hom(

Ω1(M)

Ω1
Z(M)

,R/Z) ,
Ω1
Z(M)

Ω1(M)
⊂ Hom(Ω2

Z(M),R/Z) , (2.61)

which confirms the inclusion (2.60), using the ”5 lemma”.
We will see the full interest of inclusion (2.60) in the study and computation of link invariants

within the framework of abelian Chern-Simons theories.
In order to conclude, and as announced at the beginning of this mathematical section, let

us point out that there exists another way to introduce Deligne-Beilinson Cohomology. More
precisely, S-S. Chern and J. Simons have shown that for any (compact) Lie group G there
exist natural objects which trivialise (either locally on M or globally on a G-bundle over M)
symmetric invariant polynomials in curvature forms [45]. The objects thus obtained are not
forms on M , but Cheeger-Simons Differential Characters [20, 21, 19]. Note that this is done in
a non abelian context, although at the end everything is abelian. More recently Harvey and
Lawson have proposed an alternative description in terms of Sparks [22]. In this approach a
closed form with integral periods is connected with a rectifiable current (one representing a
cycle) on M . The class of the closed form would then be a Poincaré dual of the class of the
cycle (or the current representing it). All these points of view are equivalent at the level of
smooth manifolds and they all provide the same set of exact sequences as well as the same
Pontrjagin dual spaces. The same holds true with Hopkins-Singer Differential Cohomology as
shown by J. Simons and D. Sullivan [46].
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3 Topological models

We are going to present two families of topological models strongly based on the two coho-
mologies previously introduced. We will only expose the main results obtained in the original
articles. These articles can be found at the end of this review.

First, topological Yang-Mills in 3 dimensions, topological gravity in 2 and then 4 dimensions
will be dealt with. For these models Equivariant Cohomology will be used, thus allowing
to identify some observables of the corresponding theories which will appear as topological
invariants: those of Donaldson in the case of Yang-Mills and of Mumford in the case of 2D
gravity.

In a second step we will focus on the theory of links in a three dimensional space and more
specifically on the role played by the abelian Chern-Simons field theory in the determination
of link invariants. This is where Deligne-Beilinson Cohomology will appear as a very powerful
tool, allowing to get links invariants in a purely geometrical way, without the use of any surgery
technique, to which it provides an alternative.

Let us amusingly note that the use of Equivariant Cohomology will concern even-dimensional
manifolds whereas the use of Beilinson-Deligne Cohomology will concern odd-dimensional ones.

3.1 Equivariant Observables

As in section 2.1 but with slightly different notations let us consider a manifold M on which
a Lie group G is acting to the right. Let ξ = (P,M, H, π) be a principal bundle over M with
structure group a compact Lie group H. In general, H has nothing to do with G. The Lie
algebra of H is denoted H, and G denotes the one of G . By construction H acts to the right
on the total space P in such a way that M ∼= P/H. As done before, all derivatives will be
indexed by the space on which they are defined.

Let Γ be a G-invariant H-connection on ξ:

∀λ ∈ G, lP (λ)Γ = 0 . (3.62)

The pull-back Γ̂ of Γ on Ω∗(P )⊗W(G) is a 1-form on P and a 0-form in W(G). Consequently:

∀λ ∈ G, iW(λ)Γ̂ = 0 . (3.63)

In Ω∗(P )⊗W(G), the equivariant curvature of Γ̂ is defined by (denoting ω and Ω the generators
of W(G))

ReqK (Γ̂, ω,Ω) = DK Γ̂ +
1

2
[Γ̂, Γ̂] . (3.64)

Therefore, if IH is an H-invariant symmetric polynomial on H one can consider the H-
characteristic class IeqH,K(Γ̂, ω,Ω) ≡ IH(ReqK (Γ̂, ω,Ω)). It is well-defined on M and satisfies:

DKIeqH,K(Γ̂, ω,Ω) = 0

IK(λ)IeqH,K(Γ̂, ω,Ω) = 0 (3.65)

LK(λ)IeqH,K(Γ̂, ω,Ω) = 0 ,
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where all derivatives appearing here were defined by (2.21). We are in Kalkman scheme of
the Equivariant Cohomology, as recalled by the index K. This shows why this scheme is so
interesting: it allows to construct cohomology classes in a very simple way, only relying on
constraint (3.63) whereas in Weil scheme one should have to consider a quantity Γ̃ such that
(iP + iW)(λ)Γ̃ = 0. Of course, once an Equivariant Cohomology class has been identified in
Kalkman scheme, one can switch to Weil scheme by the use of (2.20), thus getting:

IeqH,K(Γ̂, ω,Ω)→ IeqH,W (Γ̂, ω,Ω) = IH(ReqW (Γ̂, ω,Ω)) . (3.66)

with

ReqW (Γ̂, ω,Ω) = exp{−iP (ω)}ReqK (Γ̂, ω,Ω) (3.67)

= (dP + dW)(Γ̂ + iP (ω)Γ̂) +
1

2
[Γ̂ + iP (ω)Γ̂, Γ̂ + iP (ω)Γ̂] .

When M can be endowed with a G-connection θ, with curvature Θ, one can respectively
replace ω and Ω by θ and Θ in IeqH,K(Γ̂, ω,Ω) in such a way that equations (3.65) become:

dMIeqH,W (Γ̂, θ,Θ) = 0

iM(λ)IeqH,W (Γ̂, θ,Θ) = 0 (3.68)

lM(λ)IeqH,W (Γ̂, θ,Θ) = 0 ,

for any λ ∈ G. The cohomology classes thus obtained are remarkably independent of Γ̂ and θ.
Once the basic forms IeqH,W (Γ̂, θ,Θ) have been obtained, one knows that they uniquely define
forms on M/G which can be integrated over cycles on this space, thus obtaining G-invariant
quantities. We will now take some example to make all this clearer. But before this let us make
some remarks. We do no need any action (or lagrangian) in order to determine equivariant
observables. We only need the structure equations of the topological model. In fact, it is
through these structure equations that the topological model will be identified as such. They
typically read:

stopφ = ψ + Ltop(ω)φ (3.69)

stopψ = −Ltop(Ω)φ+ Ltop(ω)ψ

stopω = Ω− 1

2
[ω, ω]

stopΩ = [Ω, ω] ,

where φ is the fundamental field of the theory (a connection, a metric, etc.). The expression
of the BRST operator stop will depend on the chosen scheme (Kalkman or Weil) in which the
topological model is described.

3.1.1 Topological Yang-Mills in 3 dimensions and Donaldson invariants

In this topological model one considers a four dimensional manifold B4 seen as a euclidian
version of a space-time manifold. Then let ξ = (P,B4, H, π) be a principal bundle over B4
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where H is a compact Lie group (most of the time H = SU(N) or SO(N)). The manifold M
of the previous paragraph is now taken as A, the affine space of H-connections on ξ, while G
is the group of vertical automorphisms of P . Therefore, and unlike the general case, there is a
link between H and G since this last group appears as the gauge group of the structure group
H of ξ. As before, H and G will denote the Lie algebras of H and G, respectively. Furthermore,
and also unlike the general case, there is a natural action (or lagrangian) associated with this
topological model, which is:

SYM4
top

=

∫
B4

Tr[F ∧ F ] , (3.70)

where F is the curvature of a H-connection on B4 (or equivalently on ξ). Up to some normali-
sation factor, the topological lagrangian Tr[F ∧F ] identifies with the second Chern class of the
bundle ξ. Accordingly, the action takes its values in Z.

The Weil algebraW(G) can be nicely realised with the use of a copy Ã of A endowed with a
connection ω̃ and its curvature Ω̃ both playing the role of generators ofW(G). The fundamental
fields of this model are therefore: a ∈ A, dAa , ω̃ and Ω̃. The structure equations read:

stopa = ψ + lA(ω̃)a = ψ + Ltop(ω̃)a = ψ −∇aω̃ (3.71)

stopψ = −Ltop(Ω̃)a+ Ltop(ω̃)ψ = −∇aΩ̃ + [ψ, ω̃]

stopω̃ = Ω̃− 1

2
[ω̃, ω̃]

stopΩ̃ = [Ω̃, ω̃] ,

where:

stop = dÃ + dA + lA(ω̃)− iA(Ω̃) (3.72)

ψ = dAa = ψK ,

in Kalkman scheme, and:

stop = dÃ + dA (3.73)

ψ = dAa− lA(ω̃)a = ψW ,

in Weil scheme. In both schemes Ltop = lÃ+lA. In (3.72) (resp. (3.73)) one recognizes Kalkman
(resp. Weil) differential. To go from one scheme to the other we naturally use the equivalent
of (2.20):

ψK = exp{−iA(ω̃)}ψW . (3.74)

For any λ ∈ G

Itop (λ)φ =

∣∣∣∣ λ if φ = ω̃
0 otherwise ,

(3.75)

where Itop = iÃ (resp. Itop = iÃ + iA) in Kalkman (resp. Weil) scheme. Note that equations
in (3.71) are of BRST type and that their ”form” is independent of the chosen scheme.
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In order to obtain observables, we now consider M = A × B4, together with the principal
bundle over M whose total space is Q = A × P and structure group H, the same as P . Let
us recall that on the other hand G acts to the right on A and to the left on P . Therefore,
G acts accordingly on Q. We construct a G-invariant H-connection Γ̂ on Q in the following
way: for any a ∈ A one considers the H-bundle with total space P over B4 endowed with the
H-connection a. This gives rise to a collection â of H-connections such that:

∀(a, p) ∈ Q , â(a, p) = a(p) . (3.76)

The H-connection thus generated Q can be extended to Ã × Q. We refer the reader to [33]
for details. The fundamental vector field associated with the action of λ ∈ G takes the following
form:

λ̃ = lP (λ̃P )aµ
δ

δaµ
− λ̃αP eα , (3.77)

where λ̃P is the fundamental vector field associated with the action of λ on P , and eα is the
fundamental vector field associated with a basis (Tα)α of H. Since â does not depend on Ã, we
have:

∀λ ∈ G , (iÃ + iQ)(λ)â = −iP (λ)â = −λ , (3.78)

where the sign in front of λ comes from the change of the right action to a left action of G on
P . the H-valued function λ on Q is defined by:

∀(a, p) ∈ Q , λ(a, p) = λ(p) . (3.79)

Let us recall that for λ ∈ G: λ(p) ∈ H for any p ∈ P .
In the same way we have:

∀λ ∈ G , (lÃ + lQ)(λ)â = lÃ

(
lP (λ̃P )aµ

δ

δaµ

)
â− lP (λ̃P )â

= lP (λ̃P )â− lP (λ̃P )â (3.80)

= 0 .

The connection â is clearly G-invariant, so one can apply the general construction of section
3.1. The equivariant curvature thus obtained reads:

F eqK (â, ω̃, Ω̃) = DK â+
1

2
[â, â]H , (3.81)

where

DK = dÃ + (dA + dP ) + (lA + lP )(ω̃)− (iA + iP )(Ω̃) . (3.82)
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Finally, taking into account the G-invariance of â, one concludes that the equivariant curvature
in Kalkman scheme can be written:

F eqK (â, ω̃, Ω̃) = F̂ (â) + dAâ+ iP (Ω̃)â = F̂ (â) + ψ̃K +
̂̃
Ω , (3.83)

with F̂ (â) = dP â+ 1/2[â, â]H .
Let us leave aside computational details needed to go to Weil scheme, and let us directly con-

sider an H-invariant symmetric polynomial IH which generates the (automatically) equivariant
form: IeqH,W (â, ω̃, Ω̃) = IH(F eqK (â, ω̃, Ω̃)). One can eventually substitute to ω̃ and Ω̃ a connec-

tion ω and its curvature Ω, defined on A, in such a way that any reference to Ã disappears.
Equivariant constraints reduce to:

(dA + dB4)IeqH,W (â, ω,Ω) = 0

(iA + iB4)(λ)IeqH,W (â, ω,Ω) = 0 (3.84)

(lA + lB4)(λ)IeqH,W (â, ω,Ω) = 0 ,

for any λ ∈ G. The fact that P has been replaced by B4 in (3.84) is due to the nature of IH .
Indeed, IeqH,W (â, ω,Ω) satisfies even stronger constraints than those of the Weil scheme. Indeed,
we have:

∀ε ∈ G , iA(ε)IeqH,W (â, ω,Ω) = 0 = iP (ε)IeqH,W (â, ω,Ω) = iB4(ε)IeqH,W (â, ω,Ω) , (3.85)

which implies that IeqH,W (â, ω,Ω) is a well-defined form on M = A × B4. We can decompose
this form according to:

IeqH,W (â, ω,Ω) =
2n∑
k=0

I(k,2n−k) , (3.86)

where each term I(k,2n−k) is a k-form on A and a (2n− k)-form on B4, such that the following
recursive relations (∀λ) :

dAI(k−1,2n−k+1) + dB4I(k,2n−k) = 0

iA(λ)I(k+1,2n−k−1) − iB4(λ)I(k,2n−k) = 0 (3.87)

lA(λ)I(k,2n−k) − lB4(λ)I(k,2n−k) = 0 ,

are fulfilled. Finally, one ”eliminates” B4 by integrating I(k,2n−k) over a (2n − k)-cycle γ2n−k
in B4, thus providing:

Ok =

∫
γ2n−k

I(k,2n−k) . (3.88)

From (3.87), these quantities verify:

dAOk = 0 , iAOk = 0 , lAOk = 0 . (3.89)
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Thus, we have obtained basic cohomology classes. It can be shown that these classes coincide
with the 4-dimensional Donaldson invariants.

We have presented here a somewhat detailed construction so that the reader could become
more familiar with notations and techniques used. In the forthcoming examples we will only
give the broad lines, referring the reader to the original articles for details.

3.1.2 Topological Gravity in 2 dimensions and Mumford invariants

In this second example, we replace the previous manifold B4 by a closed (i.e. compact and
without boundary) Riemann surface Σ0

g of genus g > 1. To avoid confusion we will denote Σg

the smooth 2-dimensional manifold on which this Riemann surface Σ0
g is build. With respect

to C∞ structures, closed surfaces are classified by their genus. However for a given genus there
are many inequivalent (with respect to conformal equivalence) Riemann surfaces. The space of
admissible conformal structures on Σg identifies with B(Σ0

g), the space of Beltrami differentials
on Σ0

g, this Riemann surface being seen as an origin. Thus, this identification is not canonical
since it depends on the origin Σ0

g. Nevertheless, changing Σ0
g gives an isomorphic representation

of the space of admissible conformal structures on Σg. Let us remind quickly how B(Σ0
g) is built.

If {Uα, (zα, zα)}α∈I is a complex atlas that defines the conformal structure of B(Σ0
g), then any

other admissible conformal structure on Σg is given by some complex coordinates (Z
(µ)
α , Z

(µ)
α )α∈I

satisfying the Beltrami equation:(
∂zα − µzαzα∂zα

)
Z(µ)
α = 0 . (3.90)

The collection made of the µzαzα ’s appearing in this equation defines a vector field valued 1-form
on Σ0

g: µ = µzαzαdzα⊗∂zα , named a Beltrami differential on Σ0
g. The set of Beltrami differentials

on Σ0
g will be denoted by B(Σ0

g). It can be seen as the space of generators of admissible conformal
structures on Σg starting from the one of Σ0

g. However, B(Σ0
g) does not provide a one-to-one

identification of admissible conformal structures on Σg.

Let µ1 and µ2 be two Beltrami differentials on Σ0
g. If (Z

(µ1)
α , Z

(µ1)
α )α∈I and (Z

(µ2)
α , Z

(µ2)
α )α∈I

are the two conformal structures they define via (3.90), let us denote Σµ1
g and Σµ2

g the Riemann
surfaces thus generated. Note that there exists diffeomorphisms φµ1 : Σ0

g → Σµ1
g and φµ2 :

Σ0
g → Σµ2

g since these surfaces have the same genus (they all ”come from” Σg). Now, if there
exist ϕ ∈ Diff0(Σ0

g) (the connected component to the identity of the group of diffeomorphisms
of Σ0

g) and a conformal map Φµ1µ2 : Σµ1
g → Σµ2

g , one says that µ1 and µ2 are conformally
equivalent. The space generated by this equivalence relation between Beltrami differentials is
called the Teichmüller space of Σ0

g. Formally:

T (Σ0
g) =

B(Σ0
g)

Diff0(Σ0
g)
. (3.91)

As for B(Σ0
g), for a fixed genus all Teichmüller spaces are isomorphic, even if they depend

on Σ0
g. The quotient defining Teichmüller spaces is built from the natural action of the infinite
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dimensional Lie group Diff0(Σ0
g) on B(Σ0

g). This quite obviously suggests what to do in order
to construct equivariant observables. Let us simply say that to obtain them, one will have to
follow the same reasoning as in the previous example: one introduces a copy of B(Σ0

g), provided

with a connection ω̃ and its curvature Ω̃, the fundamental fields for this model being µ, ω̃ and
Ω̃. The action of Diff0(Σ0

g) on these fields is then given by the following structure equations:

stopµ = ν + Ltop(ω̃)µ = ν − lB(ω̃)µ = ν − ∂µ − {µ, ω̃µ} = ν −Dµω̃µ (3.92)

stopν = −Ltop(Ω̃)µ+ Ltop(ω̃)ν = DµΩ̃µ − {ν, ω̃µ}

stopω̃µ = Ω̃µ1
1

2
{ω̃µ, ω̃µ}

stopΩ̃µ = −{Ω̃µ, ω̃µ} ,

where ω̃µ =
(
ω̃z + µzzω̃

z
)

and Ω̃µ =
(
ω̃z + µzzΩ̃

z + νzz ω̃
z
)

. We can already remark the similarity

between (3.92) and (3.71). Of course, stop and ν have an expression which depends on the
chosen scheme.

Let us recall that when g > 1, the Gauss curvature of the corresponding surfaces can always
be normalized to −1. One considers the trivial bundle M = B(Σ0

g) × Σg endowed with the

complex structure defined by µ et Zµ, where Zµ shortly denotes the coordinates (Z
(µ)
α , Z

(µ)
α )α∈I

previously met. Thus, over µ ∈ B(Σ0
g) one finds the Riemann surface Σµ

g and over µ = 0 the
”original” Riemann surface Σ0

g. For any µ ∈ B(Σ0
g) one considers the holomorphic tangent

bundle of Σµ
g , thus obtaining a family T

(1,0)
µ (Σg). One then goes to the associated GL(1,C)-

principal bundle, PT (1,0)
µ (Σg), which plays the role of the space Q met in Topological Yang-

Mills. A set of holomorphic coordinates on PT (1,0)
µ (Σg) is then locally given by µ, Zµ and

EZ
µ ∈ GL(1,C).
For any µ ∈ B(Σ0

g) one provides Σµ
g with the metric ds2

µ = ρZµZµdZ
µdZ

µ
where ρZµZµ

satisfies:

∂Zµ∂Zµ ln(ρZµZµ) = ρZµZµ . (3.93)

This is nothing but saying that the Gauss curvature ofe Σg is −1, as already mentioned. A
Diff0(Σ0

g)-invariant GL(1,C)-connection quite naturally shows off:

Γ̂ = D ln(ρZµZµ) +D ln(EZ
µ
) , (3.94)

with D the type (1, 0) of the total differentialacting on PT (1,0)
µ (Σg), D = D+D, and D ln(EZ

µ
)

is the Maurer-Cartan form on GL(1,C). Once more we refer the reader to the original articles
for all the details.

Once the connection Γ̂ has been identified, one can apply in extenso the general method.
This leads to the introduction of the Kalkman equivariant curvature of Γ̂, before switching to
Weil scheme. After having eliminated the copy of B(Σ0

g), replacing ω̃ and Ω̃ by a connection θ
with curvature Θ on B(Σ0

g), the Weil equivariant curvature decomposes according to:

ReqW (Γ̂, θ,Θ) = R(2,0) +R(1,1) +R(0,2) , (3.95)
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where the first index denotes a form degree on B(Σ0
g) and the second a form degree on Σ0

g. One
then generates equivariant observables of the topological model by taking powers of R ≡ ReqW ,
that is to say:

Rn = (R(2,0))n + n(R(2,0))n−1R(1,1) +

(
n(R(2,0))n−1R(0,2) +

n(n− 1)

2
(R(2,0))n−1(R(1,1))2

)
= O(2n,0) +O(2n−1,1) +O(2n−2,2) . (3.96)

It is the dimension of Σ0
g that produces the truncation in degree. There is a fundamental

difference with Topological Yang-Mills: here the gauge group is Diff0(Σ0
g), and it does act

on Σ0
g, whereas the gauge group G = Aut(P ) reduces to the identity on B4, the base space

of P . Accordingly, if one integrates the different terms occurring in (3.96) on cycles of Σ0
g

with the hope to get Diff0(Σ0
g)-invariants, one is immediately face with the non invariance

of 0-cycles and 1-cycles under the action of Diff0(Σ0
g). Only Σ0

g itself (and its multiples) is
Diff0(Σ0

g)-invariant. This reduces the topological invariants of 2D Gravity to:

O2n−2 =

∫
Σ0
g

O(2n−2,2) . (3.97)

These observables coincide with Mumford invariants.

3.1.3 Topological Gravity in 4 dimensions

In the previous example we have chosen to use Beltrami differentials as fundamental fields of the
topological 2D Gravity. This was natural because we were dealing with Riemann surfaces. Yet,
we also use metrics on these Riemann surfaces during the procedure leading to the equivariant
observables. This suggest another way to treat 2D Gravity, based on metrics from the beginning.
In fact there is a description of Teichmüller spaces in term of metrics given by:

T (Σg) =
Met(Σg)

Diff0(Σg) nWeyl(Σg)
. (3.98)

In (3.98), Met(Σg) denotes the space of metrics on Σg, Weyl(Σg) the group of Weyl transfor-
mations on Met(Σg), and n the semi-direct product corresponding to the obvious action of
Diff0(Σg) on Weyl(Σg). Instead of presenting the construction and the computations leading
to the equivariant observables in this metric approach, we will rather show how metrics can be
used to provide topological invariants in the framework of (euclidian) 4D Gravity.

Let B4 be closed four dimensional manifold. The topological model is now defined by the
following structure equations:

stopg = ψ + Ltop(ω̃)g (3.99)

stopψ = −Ltop(Ω̃)g + Ltop(ω̃)ψ

stopω̃ = Ω̃− 1

2
[ω̃, ω̃]

stopΩ̃ = [Ω̃, ω̃] ,
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where g ∈ Met(B4), ω̃ is a connection on a copy of Weyl(Σg) with curvature Ω̃. As already
done, one considers the fiber bundle Q = Met((B4)×R((B4), R((B4) being the canonical frame
bundle of B4. This last bundle is well-known to be a principal bundle over B4 with structure
group GL(4,R). The required Diff0(B4)-invariant GL(4,R)-connection for the construction is
the equivalent of 3.94), that is to say:

Γ̂ = ΓLCg +
1

2
g−1δg , (3.100)

with ΓLCg the Levi-Civita connection associated with g, and δ the exterior derivative on Met(B4).

With Γ̂ one gets the equivariant curvature within Kalkman scheme, then switch to Weil
scheme thus obtaining the equivariant curvature ReqW (Γ̂, ω̃, Ω̃).

The last step consists in identifying GL(4,R)-invariant symmetric polynomials which turn
out to define Euler and Pontrjagin class of B4. Actually, the Pontrjagin class is sufficient.
Finally one eliminates the copy of Met(B4) by replacing ω̃ and Ω̃ by θ and Θ, a connection and
its curvature on Met(B4). Eventually, one gets:

EeqW = Q(4,0) +Q(3,1) +Q(2,2) +Q(1,3) +Q(0,4) (3.101)

P eqW = G(4,0) +G(3,1) +G(2,2) +G(1,3) +G(0,4) ,

where the first index is a form degree on Met(B4) and the second on B4. The relevant observ-
ables are obtained from (EeqW )m(P eqW )n once one truncates by the dimension of B4, that is to
say:

(EeqW )m(P eqW )n = V (4m+4n,0) + V (4m+4n−1,1) + V (4m+4n−2,2) + V (4m+4n−3,3) + V (4m+4n−4,4) .

(3.102)

Detailed expressions for V (4m+4n−k,k) can be found in the original article [34]. As in the two
dimensional case, the gauge group Diff0(B4) acts non trivially on B4, which implies that the
only invariant cycle is B4 itself (and multiples of it). This gives for equivariant observables of
this topological model:

V2n−2 =

∫
B4

V (4m−4n−4,4) . (3.103)

The techniques presented below can be applied to any even dimensional closed manifold.
In the 2-dimensional case one can wonder whether the equivariant observables obtained using
Beltrami differentials are the same as those obtained from metrics. To our knowledge, there is
no answer to that last question.

3.1.4 Representatives of the Thom Class of a vector bundle

As a last example of the use of Equivariant Cohomology, let us show how it provides other
interesting mathematical quantities.
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An important role is played by the so-called Thom class a of vector bundle. One can see such
a class as the Poincaré dual of the zero section of some vector bundle. A famous representative
of the Thom class is provided by the Mathäı-Quillen form. However, the construction we have
previously used to get manifold invariants, based on Equivariant Cohomology, can be applied
in the context of vector bundles thus generating a large family of new representatives of the
Thom class of vector bundles. We will give a feeling of this without going into details, which
can be found in the original article [4], as usual.

Let ζ(E,M, V, π) be a vector bundle over a smooth closed m-dimensional manifold M , with
total space E, typical fiber a linear space V of dimension n = 2k, and of projection π. One
usually says that ζ is a rank n vector bundle over M . We denote by Ωn

rdv the space of n-forms
on E with fast decrease along the fibers of ζ. Working with these forms prevents divergencies
at infinity when integrating along the fibers. The associated (de Rham) cohomology space is
denoted Hn

rdv. The Thom class of ζ (or equivalently of E) is the cohomology class T (E) ∈ Hn
rdv

for which any of its representative τnE satisfies:∫
V
τnE = 1 . (3.104)

This means that the integral of τnE along the fibers of ζ gives rise to the constant function 1 on
M . Note that in (3.104) the integration is done over V whereas τnE lives on E, so it has to be
understood as a simple notation standing for ”integration along the fibers”.

Our aim is then to generate representative of T (E) with the use of Equivariant Cohomology.
To achieve this purpose, let us first provide V with a hermitian product ( , )V from which one
selects an orthogonal basis of V , B = {~ep}p=1,...,n:

(~ep, ~eq) = δpq . (3.105)

One decomposes any vector of V according to:

~v =
n∑
p=1

vp~ep =
n∑
p=1

(~ep, ~v)~ep . (3.106)

Such a decomposition provides a coordinates system (vp)p=1,...,n on V , subordinated to B,
turning V into a smooth manifold. Let V ∗ be the (algebraic) dual of V . We provide V ∗ with
the dual basis B∗ = {~e∗p}p=1,...,n as well as with the hermitian product ( , )V ∗ that dualises
( , )V in such a way that: ~e∗p(~eq) = (~ep, ~eq)V = (~e∗p, ~e

∗
q)V ∗ = δpq. Finally, one introduces the

”coordinates” ($p)p=1,...,n for the Grassmann algebra ΛV ∗, together with the derivatives δ, I
and L, dual to those of V

We already mentioned that the Thom class of a vector bundle ζ(E,M, V, π) can be seen as
the Poincaré dual of s0(E), the image of M in E by the zero section s0 of ζ. With our notations,
an obvious representative of this Poincaré dual is provided by the Dirac distribution according
to:

δ(~v)dv1 ∧ dv2 ∧ ... ∧ dvn . (3.107)
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One can write this current as a Fourier transform and then use the topological BRST operator
stop, whose expression depends on the scheme one wants to work in. One obtains:

U =
1

(2π)n

∫
dbd$ exp{istop($.~v) + i($, b)V ∗} , (3.108)

which is an equivariant cohomology class.
In order to get new representatives, one considers the tangent bundle TV and then the

associated frame bundle R(V ). This last one is canonically a GL(n,R)-principal bundle over
V . One endows R(V ) with local coordinates coming from those of V and some of GL(n,R).
The last ingredient of the construction is provided by the isometry group of ( , )V : SO(n), and
by ξ(P,M, SO(n), π), a SO(n)-principal bundle over M . The total bundle used to generate
equivariant observables is then Q = ξ×R(V ) (or P ×R(V )). Let us note that, as in the case of
the topological Yang-Mills model, there is a relation between the various Lie groups appearing
in the construction since SO(n) ⊂ GL(n,R). One must not confuse them.

In a now standard way, one endows Q with the SO(n)-invariant GL(n,R)-connection defined
by:

Γ̂ = b−1(ΓLCg )b+ b−1dRb , (3.109)

where ΓLCg is the Levi-Civita connection defined by the metric g, itself defined by:

ds2(~v) = eϕ((dvp)2 + σ(vpdvp)2) , (3.110)

where ϕ and σ are functions only depending on (~v,~v)V . The metric g is the canonical SO(n)-
invariant metric on V , therefore ΓLCg and Γ̂ are SO(n)-invariant, the latter being the lift on Q
of the former. Eventually, one constructs equivariant curvatures first in Kalkman scheme (the
most ”natural”), then switch it to Weil scheme to get ReqW . This is injected into a symmetric
GL(n,R)-invariant polynomial, which, as in the gravitational case, generates the Euler class:

EeqW =
εµ1ρ1...µdρd
√
g

gρ1ν1 ...gρdνd(R
eq
W )ν1µ1 ∧ ... ∧ (ReqW )νdµd . (3.111)

Of course (3.111) depends on g that itself depends on ϕ and σ. Accordingly these two functions
appear as parameters for a whole family of representatives of the Thom class T (E). In the
original article where all this is detailed ([4]), it was shown that for n = 2 (i.e. d = 1) the
Mathäı-Quillen representative belongs to the equivariant family.

This example concludes our presentation of the use of Equivariant Cohomology in some
topological models. Of course this use is not systematic what ever the topological model is.
Also, although the procedure used provides topological observables, we do not know if one can
obtain them all this way. We send the reader to the end of this review for open questions.

3.2 Chern-Simons and links invariants

The link between Chern-Simons theories and invariants polynomials of knots started with a set
of remarks made by E. Witten in [13].
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Explicit perturbative computations for SU(N) were originally performed by E. Guadagnini,
M. Martellini and M. Mintchev in a Euclidean Quantum Field Theory framework ([28]). Beside
the fact it is, by essence, perturbative, this approach uses a Euclidean metric in R3 all over the
computations, although at the end one obtains isotopic invariants. To our knowledge, all com-
putations already done are in agreement with the expansion of the corresponding polynomial.
However all these computations are perturbative. Despite some attempts to define Quantum
Field Theory over closed manifolds (see for instance [47]), nothing conclusive seems to have
been achieved in the case of a Chern-Simons theory. As we will see, the true mathematical
nature of this theory might be one of the reasons for this.

We will present an alternative point of view based on Deligne-Beilinson Cohomology. His-
torically, we studied the use of this Cohomology Theory within Quantum Field Theory in a
totally independent way in [24]. It is only after the general considerations presented in this
earlier work that it appeared that Chern-Simons could be a very good playground to apply DB
Cohomology techniques. It was rather a surprise to see how this idea has proven so successful.
Unfortunately the price to pay is to be in the abelian framework of the Chern-Simons theory.
But we still think that there are many more benefits than drawbacks in using Deligne-Beilinson
cohomology: non-perturbative treatment, all (4l+3)-dimensional closed manifolds treated, tor-
sion taken into account, quantisation of all charges (k for the space or q for the loops), and
some more not yet investigated similar properties usually obtained from surgery.

In this introductory section M will denote a smooth closed manifold of dimension 3. The
general case of a closed smooth manifold of dimension 4l+3 will be discussed in the last section.
Also the reader is referred to the original articles [9, 35, 32] for details.

Let us consider [ω] ∈ H1
D(M,Z), and write:

cs1([ω]) = [ω] ∗D [ω] ∈ H3
D(M,Z) ∼= R/Z , (3.112)

the DB square of this class. If one uses the Čech-de Rham technique to get representatives of
DB classes, cs1([ω]) is made of 5 ”components” the first of which is ω(0,1)∧dω(0,1), where ω(0,1)

is the highest component of some representative of [ω]. One immediately identifies this highest
component of [ω]∗D [ω] with the abelian Chern-Simons lagrangian. Actually, and as we already
mentioned in the mathematical introduction, any Chern-Simons lagrangian can be seen as a
local representative of a DB class which is canonically associated with a second Chern class,
even in the non-abelian case.

From now on, cs1([ω]) will be considered as the fundamental lagrangian of the abelian
Chern-Simons theory. The level k Chern-Simons theory is described by the lagrangian:

csk([ω]) = kcs1([ω]) = k[ω] ∗D [ω] . (3.113)

From a field theoretic point of view, k should rather be named the coupling constant of the
theory.
If we want to interpret csk([ω]) as a DB cohomology class, then:

csk([ω]) ∈ H3
D(M,Z) ∼= R/Z⇔ k ∈ Z , (3.114)
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thus implying a quantisation of the coupling constant k. This perfectly agrees with the fact
that the Chern class associated with csk([ω]) is integral if and only if k ∈ Z.

The action of the abelian Chern-Simons theory is just defined as the integral of the la-
grangian, that is to say:

CSk([ω]) =

∫
M
csk([ω]) = k

∫
M

[ω] ∗D [ω] . (3.115)

One has CSk([ω]) ∈ R/Z ⇔ k ∈ Z, which coincides with the previous quantization constraint
(3.114).

If one considers the (formal) Chern-Simons functional measure:

dµk([ω]) ≡ D[ω] exp{2iπCSk([ω])} , (3.116)

then due to the exponential one deduces that quantisation of k is a necessary and sufficient
condition for this exponential to be well-defined. From now on we will assume that:

k ∈ Z . (3.117)

The functional measure (3.116) enjoys the following important property:

dµk([ω] + α) = dµk([ω])× exp

{
2iπk

∫
M

(2[ω] ∗D α+ α ∗D α)

}
, (3.118)

called the Cameron-Martin like (or simply Cameron-Martin) property. This property is typical
of gaussian measures and of their functional generalizations. In fact, due to the presence of i in
the exponential, the functional measure (3.116) is not a gaussian measure but rather quadratic,
which is actually enough to ensure (3.118). The Cameron-Martin property will be a keystone of
our construction. As a final remark, let us recall that the Lebesgue measure D used in (3.116)
is formal since there is no infinite-dimensional analogue of Lebesgue measure.

Condition (3.118) is unfortunately not sufficient to define a functional measure since such
a measure depends on the space on which we try to define it. In a first step, let us assume
that this space is H1

D(M,Z), the space of classes of U(1)-connections on M . From section
2.2 we know that this space is an affine bundle over Ȟ2(M,Z). It is generically made of two
parts: a free part and a torsion part, both being discrete. The translation group of the fibers
of H1

D(M,Z) is Ω1(M)/Ω1
Z(M). Integration over an affine space can be defined via integration

over the underlying linear space. Therefore, our functional measure will have to be defined as
some extension of a functional measure on Ω1(M)/Ω1

Z(M). More precisely, for each base point
κ ∈ Ȟ2(M,Z) one fixes an origin [η]κ on the fiber over κ, what amounts to define a global
(discrete) section of H1

D(M,Z). Then, one decomposes any element of H1
D(M,Z) according to

this section, let us say:

[ω] = [ηκ] + α , (3.119)
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where κ = δ2([ω]) (cf. (2.31)) and α ∈ Ω1(M)/Ω1
Z(M). The functional measure (3.116) takes

the more precise form:

dµk([ω]) ≡
∑
κ

Dα exp

{
2iπk

∫
M

([ηκ] + α) ∗D ([ηκ] + α)

}
, (3.120)

On the fiber over κ = 0 there exists a canonical origin which is the zero connection (i.e.
the connection defined by the exterior derivative dM and associated with the trivial bundle
M × U(1)). However, such a canonical choice does not exist on the other fibers5 of H1

D(M,Z).
On the other hand, if one wants the loops (i.e. cycles) to be among the fields of the theory
one is lead to extend our functional measure to a distributional version of H1

D(M,Z), which
corresponds to the usual setting of a Quantum Field Theory into which fields are (tempered)
distributions. But we have seen that the Pontrjagin dual of H1

D(M,Z) is such a distribu-
tional extension. Consequently, we also want to extend the Chern-Simons functional measure
to H1

D(M,Z)∗ (or a sub space of it which would correspond to the configuration space of the
quantum theory). Fortunately, H1

D(M,Z)∗ is also an affine bundle over Ȟ2(M,Z) which con-
tains H1

D(M,Z) and Z1(M) (see (2.51)). Similarly, the translation group of this affine bundle,
Hom(Ω2

Z(M),R/Z), contains Ω1(M)/Ω1
Z(M) (see 2.61). Therefore an extension of dµk([ω]) cor-

responds to an extension of the measure on Ω1(M)/Ω1
Z(M) to a measure on Hom(Ω2

Z(M),R/Z).
On the other hand, we have already noticed that H1

D(M,Z)∗ also contains Z1(M). Hence, cy-
cles can be used as ”natural” origins on the fibers of H1

D(M,Z)∗. However, there is an infinite
number of such cycles and no canonical way to pick one, unlike for the zero cycle which lies on
the fiber over the zero class in Ȟ2(M,Z).

Let us write [γ] the DB class canonically defined by a cycle γ ∈ Z1(M). For each κ ∈
Ȟ2(M,Z) one picks up, once and for all, a fundamental cycle (or loop) γκ. This is possible
thanks to Poincaré duality: Ȟ2(M,Z) ' Ȟ1(M,Z). One then chooses as origin over κ the DB
class [γκ] associated with γκ.

We can be more precise: the space Ȟ2(M,Z) can be decomposed into its free part and its
torsion part. The free part of Ȟ2(M,Z) is of the form ZN for some positive integer N . If
{~κ(j)}j=1,...,N denotes the canonical basis of ZN , the previous construction associates to each
basis vector ~κ(j) a fundamental cycle γ~κ(j) , as well as its DB class [γ~κ(j) ]. The same holds true

for the torsion part of Ȟ2(M,Z) except that there exist some integers ma (a = 1, ..., Ñ) such
that ma~κa = 0, with ~κa forming a basis of the torsion sector. Let us denote γ~κa the fundamental
(torsion) cycles chosen as origins over κa, and [γ~κa ] its DB class.

Thanks to this, the Chern-Simons functional measure over H1
D(M,Z)∗ can be itself decom-

posed according to:

dµk([ω]) ≡
N∑
j=1

∑
~κ(j)∈Z

Dα exp

{
2iπk

∫
M

(
[γ~κ(j) ] + α

)
∗D
(

[γ~κ(j) ] + α
)}

+ (3.121)

Ñ∑
a=1

ma−1∑
~κa=1

Dα exp

{
2iπk

∫
M

([γ ~κa ] + α) ∗D ([γ ~κa ] + α)

}
.

5In fact, there also exists such a canonical choice on torsion fibers [30].
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Of course the problem of finding a functional measure on the α’s remains, and will not be
investigated further. From now on we assume that such a measure satisfying the Cameron-
Martin property can be found, either on the full space Hom(Ω2

Z(M),R/Z) or on a convenient
subspace.

A first problem that is faced when dealing with (3.121) is the presence of products [γ~κ]∗D [γ~κ].
If one assumes the previous decomposition for [γ~κ] only the following fundamental products
will actually occur: [γ~κ(i) ] ∗D [γ~κ(j) ], and [γ~κa ] ∗D [γ~κb ]. When including the Wilson lines we
will also meet mixed products like [γ~κ(i) ] ∗D [γ~κa ]. Such products can be ill-defined as are
generally products of distributions, and some regularisation may be necessary for (3.121) to
become meaningful. If one has chosen the fundamental cycles defining the γ~κ(i) ’s and γ~κa ’s in
such a way that they have no self-intersection and no intersection with each anothers, then
the regularisation of all the previous fundamental products can be done in the zero DB class.
Beside the fundamental cycles generating the homology (and hence by Poincaré duality the
cohomology) of M , one can also encounter DB products of DB classes of homologically trivial
cycles. For products between cycles with no intersection, the result is actually free of ambiguities
and divergencies and it coincide with the linking number. When the product is the DB square
of a trivial cycle, the standard regularisation by framing can be applied. Note that in both cases
this regularisation is finer than the previous one but in term of DB classes it still correspond
to a zero regularisation. In the case of a mixed product (containing a trivial cycle and a non
trivial one) zero regularisation still holds since the linking is defined up to an integer in such
cases, i.e. it is zero in R/Z. What is remarkable is that only these fundamental regularisation
are necessary to compute link invariants. Of course other products of distributions appear in
the theory (think about the Chern-Simons action itself), but what ever regularisation is chosen
for them, as long as we apply the zero one for fundamental cycles, the result does not depending
on these regularizations.

Let γ be a loop on M , and [γ] its DB representative class. As already noticed, for any
[ω] ∈ H1

D(M,Z) one has:∮
γ
[ω] =

∫
M

[ω] ∗D [γ] modZ . (3.122)

Let us assume that [γ] = q[γI ], where [γI ] is one of the [γ~κ(j) ] or of the [γ~κa ], and q a real
number. We can write:∮

γ
[ω] = q

∫
M

[ω] ∗D [γI ] modZ . (3.123)

In Chern-Simons theory q is called the charge (or colour) of the loop γ. From the point of
view of Deligne-Beilinson Cohomology, this charge has to be quantised for q[γI ] to be a DB
class. This quantisation ensure that:

exp{
∮
γ
[ω]} = exp{q

∫
M

[ω] ∗D [γI ]} , (3.124)
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is well-defined for any DB class [ω]. This quantity is usually called the holonomy of γ along
[ω]. Thus we have established that:

q ∈ Z . (3.125)

For a loop decomposed as:

[γ] = q[γI ] + βc , (3.126)

with βc ∈ Hom(Ω2
Z(M),R/Z), if we also decompose [ω] according to [ω] = [γJ ] + α, we obtain:

exp

{
2iπ

∮
γ
[ω]

}
= exp

{
2iπ

∫
M

([γJ ] + α) ∗D (q[γI ] + βc)

}
. (3.127)

Zero regularisation gives a meaning to products like [γJ ] ∗D [γI ]. Therefore, zero regularisation
also applies to Wilson loops.

We eventually introduce the expectation value of a Wilson loop:

〈W (γ)〉k =
∑
~κ

∫
Dα exp

{
2iπk

∫
M

([γ~κ] + α) ∗D ([γ~κ] + α)

}
× (3.128)

× exp

{
2iπ

∫
M

([γ~κ] + α) ∗D (q[γI ] + βc)

}
,

where ~κ stands for a basis vector of Ȟ2(M,Z) (either free or torsion). A more precise decom-
position can be obtained from (3.121).

We are now going to explain how to obtain links invariants using (3.128). We will start
with the case of closed manifolds without torsion such as S3 and S1 ×Σg where Σg is a closed
surface of genus g. Then we will present a quite simple (but non trivial) case with torsion:
SO(3) ' RP 3. Lastly, we will show how this approach naturally extends to higher-dimensional
closed manifolds.

3.2.1 Links invariants on torsionless 3-dimensional closed manifolds

Let us start with the simplest case of S3. Here Ȟ2(S3,Z) = 0 and therefore H1
D(S3,Z)∗ '

Hom(Ω2
Z(S3),R/Z). This non-canonical isomorphism is made ”canonical” by choosing the zero

connection as origin. The affine bundle H1
D(S3,Z)∗ is made of only one fiber. The Chern-Simons

functional measure reduces to:

dµk(α) = Dα exp

{
2iπk

∫
M
α ∗D α

}
. (3.129)

with α ∈ Hom(Ω2
Z(S3),R/Z). On the other hand, Poincaré duality implies that Ȟ1(S3,Z) = 0,

which means that any 1-cycle (or loop) in S3 is trivial (i.e. contractible). Consequently, the
canonical DB representative of a cycle γ = bc is simply generated by βc, the de Rham current
of the 2-chain c. This reads:

[γ] = [0] + βc = βc . (3.130)
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For a given cycle γ, the chain c is not unique but two such chains differ by a 2-cycle. The
collection of chains bounding γ define an element of Hom(Ω2

Z(S3),R/Z) since the integral of an
element Ω2

Z(S3) over any 2-cycle is by definition an integer. The Wilson line of a loop γ = bc
thus simplifies to:

W (γ) = exp

{
2iπ

∮
γ
α

}
= exp

{
2iπ

∫
M
α ∗D βc

}
,

and its expectation value reads:

〈W (γ)〉k =

∫
Dα exp

{
2iπk

∫
M
α ∗D α

}
× exp

{
2iπ

∫
M
α ∗D βc

}
. (3.131)

Let us assume that the loop γ holds charge q ∈ Z, that is to say γ = qγ0 for some fundamental
loop (i.e. an embedding of S1 in S3). Since γ0 = bc0, then:

〈W (γ)〉k =

∫
Dα exp

{
2iπk

∫
M
α ∗D α

}
× exp

{
2iπq

∫
M
α ∗D βc0

}
. (3.132)

One shows that by setting:

α 7→ χ = α+ q
βc0
2k

, (3.133)

then (3.132) turns into:

〈W (γ)〉k = exp

{
−2iπkq2

∫
M

βc0
2k
∗D

βc0
2k

}
×
∫
Dχ exp

{
2iπk

∫
M
χ ∗D χ

}
. (3.134)

Assuming that the functional has been normalised, one finally gets:

〈W (γ)〉k = exp

{
−2iπkq2

∫
M

βc0
2k
∗D

βc0
2k

}
. (3.135)

But βc0 is the de Rham current of the 2-chain c0. Therefore, the DB square in the exponential
gives:∫

M

βc0
2k
∗D

βc0
2k

=

∫
M

βc0 ∧ dβc0
4k2

modZ , (3.136)

in such a way that:

〈W (γ)〉k = exp

{
−2iπ

q2

4k
c0 t γ0

}
. (3.137)

This expression is obviously ill-defined since there appears the self-linking of γ0: Lγ0 = c0 t γ0.
Nevertheless, using regularisation by ”framing”, one deduces that:

〈W (γ)〉k = exp

{
−2iπ

q2

4k
c0 t γf0

}
. (3.138)
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where γf0 is a chosen framing of γ0. Now, if L is a generic link that decomposes as:

L =
∑
i

qiγ
i
0 , (3.139)

with γi0 = bci0 some fundamental framed loops and qi some (integral) charges, one has:

〈W (L)〉k = exp

−2iπ
1

4k

n∑
i,j=1

qiL
ij
(L)qj

 . (3.140)

where the linking matrix (Lij(γ)) of the link L has been introduced. It is defined by:

Lij(L) = ci0 t γj0 , (3.141)

with the framing convention when i = j. Expression (3.140) is the one of abelian link invariants
on S3.

One could have noticed that the expectation value of the Wilson line W (γ) satisfies a 2k-
nilpotency property (also named 2k-periodicity). For details on this property see [9].

Let us now consider the less trivial case M = S1 × Σg. In this example the use of Deligne-
Beilinson will appear more acutely than in the case of S3.

The first step is to try to write the Chern-Simons measure (3.121) in an explicit way, taking
into account the precise homology (or cohomology) of M = S1 × Σg. It is well-known, if not
obvious, that:

Ȟ2(M,Z) = Ȟ2(S1 × Σg,Z) = Ȟ1(S1 × Σg,Z) ' Z2g+1 . (3.142)

Hence as done in the general section, one introduces the canonical basis {~n(i)}i=0,...,2g, in such
a way that any ~n ∈ Z2g+1 decomposes according to:

~n =

2g∑
i=0

ni~n(i) . (3.143)

One then chooses a representative for each ~n(i) ∈ Z2g+1, let say the fundamental loops γi, to
which correspond DB classes [γi]. A very convenient choice of section s of H1

D(M,Z)∗ is then
given by:

s : Z2g+1 → H1
D(M,Z)∗ (3.144)

~n 7→ s(~n) =

2g∑
j=0

nj [γj ] ≡ [γ~n] .

According to this section, any DB class [ω] ∈ H1
D(M,Z)∗ decomposes as:

[ω] = [γ~n] + α , (3.145)
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where ~n = δ2([ω]) (see 2.30) and α ∈ Hom(Ω2
Z(M),R/Z) ⊃ Ω1(M)/Ω1

Z(M).
Our functional measure takes the form:

dµk([ω]) ≡
∑

~n∈Z2g+1

Dα exp

{
2iπk

∫
M

([γ~n] + α) ∗D ([γ~n] + α)

}
. (3.146)

Once more, products of de Rham currents occur implying regularisations in particular in the
DB squares [γ~n] ∗ [γ~n], .

When i 6= j, products [γi] ∗ [γj ] are regularised by [0]. For homologically trivial cycles this
is exactly as obvious as in the M = S3 case since the corresponding DB product are given by
the linking of γi with γj . This is related to a general property of linking on manifolds (see for
instance [36]). When the loops [γi] and [γj ] are not trivial, as already mentioned their linking
is not a uniquely-defined integer. Yet, setting [γ~n] ∗ [γ~n] = [0] remains a consistent choice of
regularisation for this product.

Thus, our choice of taking fundamental cycles as origins on fibers of H1
D(M,Z)∗ leads to a

somewhat natural regularisation of products [γi]∗ [γi]. For DB squares, one uses ”framing” and

set [γi] ∗ [γfi ] = [0]. Let us point out that we do NOT say that ”framing” defines self-linking
of non trivial loops. We just say that it provides a regularisation into the zero DB class for
products like [γi] ∗ [γfi ]. And it is the only one required. In other words, we do not need a
definite expression for the self-linking but we only need to know it is an (undefined) integer
which ensures the consistency of the zero regularisation (i.e. regularisation into the zero DB
class). We could also obtain the same result by (homotopically) ”smoothing” the various cycles
and then taking the limit when the smoothed forms go to the initial currents.

Let γ be a fundamental loop in M . Then, for any [ω] ∈ H1
D(M,Z)∗ we have:∮

γ
[ω] =

∫
M

[ω] ∗D [γ] modZ . (3.147)

Using the discrete section (3.144), one gets:∮
γ
[ω] =

∫
M

([γ~n] + α) ∗D ([γ~q] + βc) modZ . (3.148)

where ~n = δ2[ω], ~q = δ2[γ], and βc is generated by the de Rham current of a 2-chain c such
that: γ =

∑
i qiγi (these have been previously defined). One finally obtains for the expectation

value of the Wilson loop of γ:

〈W (γ)〉k =
∑

~n∈Z2g+1

∫
Dα exp

{
2iπk

∫
M

([γ~n] + α) ∗D ([γ~n] + α)

}
× (3.149)

× exp

{
2iπ

∫
M

([γ~n] + α) ∗D ([γ~q] + βc)

}
.

Unlike the trivial case M = S3, in (3.149) we cannot get rid of [γ~n] and [γ~q], nor can we
perform the shift (3.133) on [γ~q] + βc. Indeed, we cannot divide [γ~q] by 2k. However, the shift:

α 7→ χ = α+ q
βc0
2k

, (3.150)
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made on Hom(Ω2
Z(M),R/Z) remains possible. In fact, one can notice that the functional

measure (3.146) has the quite hidden following invariance [9, 32]:

dµk

(
[ω] +

(
mβσ
2k

))
= dµk([ω]) , (3.151)

for any current βσ corresponding to a 2-cycle (like a closed a surface) σ on M . Thus, if (σj)J
denotes a set of generators Ȟ2(S1 ×Σg,Z), and if βj are the associated 1-currents, one sets for
any loop γ:

Nj(γ) ≡
∮
γ
βj ≡ γ t σj ∈ Z . (3.152)

Note that thanks to Poincaré and Hom dualities, there are as many σj than generators of
Ȟ2(S1 × Σg,Z).

Under a shift by (mβj/2k) the expectation value of the Wilson loop of γ changes according
to:

〈W (γ)〉k = 〈W (γ)〉k ·
1

2k

2k−1∑
m=0

exp

{
2iπ

m

2k

∮
γ
βj

}
(3.153)

= 〈W (γ)〉k ·
1

2k

2k−1∑
m=0

exp
{

2iπ
m

2k
Nj(γ)

}
.

But:

1

2k

2k−1∑
m=0

exp
{

2iπ
m

2k
Nj(γ)

}
=

{
1 if Nj (γ) ≡ 0 mod 2k
0 otherwise.

. (3.154)

Consequently:

(Nj(γ) 6= 0 mod 2k)⇒ (〈W (γ)〉k = 0) . (3.155)

On the other hand:

(∀j, Nj(γ) = 0 mod 2k)⇒ (γ ∈ [0] ∈ Ȟ1(S1 × Σg,Z)) . (3.156)

This shows that only homologically trivial links give rise to a non trivial expectation value of
their Wilson line, and in this case:

〈W (γ)〉k = exp

−2iπ
1

4k

n∑
i,j=1

qiL
ij
(γ)qj

 , (3.157)

just as in the M = S3 case.

35



Let us point out that the infinite sum in (3.149) has been truncated into a sum from 0 to
(2k − 1) (see equations (3.153)). This was achieved thanks to 2k-nilpotency. This truncation
explains why one also speaks about a 2k-periodicity. Since the nilpotency property induces an
obvious degeneracy of the infinite sum, the truncation appears as a simple (re)normalisation
of the measure. We would like to recall that there is NO way to obtain all these results from
the field theoretic point of view, simply because we do not have a version of QFT on a generic
closed manifold. What is usually done is to compute perturbatively (or not) the links invariants
of a given Chern-Simons theory over R3, then use an argument stating that links invariants on
S3 are those of R3, and finally use surgery to deduce invariants on any closed 3-manifold.

We can now have a look at a case with torsion, namely RP 3. Let us note that its a purely
torsion case because there is no free 1-cycle on RP 3, except the trivial ones of course.

3.2.2 A case with torsion: RP 3

The simplest closed 3-manifold with torsion is without any contest RP 3 ' SO(3) ' SU(2)/Z2.
Its first homology group is Ȟ1(RP 3,Z) = Z2 ≡ {0, 1} (with 2× 1 = 0), and by Poincaré duality
one has:

Ȟ2(RP 3,Z) ' Ȟ1(RP 3,Z) = Z2 . (3.158)

Consequently, H1
D(RP 3,Z)∗ ⊃ H1

D(RP 3,Z) is an affine bundle over Z2 = {0, 1}. As usual, the
fiber over the class 0 contains the zero DB class (i.e. the zero connection), and over 1 one picks
up a torsion cycle τ as origin. Its DB class is denoted [τ ]. By construction one has:

2× [τ ] = [0] + βc = βc , (3.159)

which corresponds to the homological identify 2× τ = bc.
The Chern-Simons functional measure is now made of two terms :

dµk([ω]) = Dα exp

{
2iπk

∫
M
α ∗D α

}
+Dα exp

{
2iπk

∫
M

([τ ] + α) ∗D ([τ ] + α)

}
. (3.160)

for the same reasons as in the torsionless case, the level k (or coupling constant or space charge)
is quantised:

k ∈ Z . (3.161)

Yet, due to the presence of [τ ] ∗D [τ ] in (3.160), if one tries to regularise this DB square in the
zero class as we did in the torsionless case, one is faced with the definition of linking of torsion
cycles. For torsion cycles of order 2, like τ , their linking is in general a half-integer (see [35]).
This prevents from regularising [τ ] ∗D [τ ] into the zero DB class, and makes the Chern-Simons
measure ill-defined except if one assumes that k = 2l since in this case the linking will always
be an integer and so [τ ] ∗D [τ ] can rightfully be regularised into [0]. Hence from now on we will
assume that:

k = 2l , l ∈ Z , (3.162)
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in such a way that:

k[τ ] ∗D [τ ] = 2l[τ ] ∗D [τ ] = l(2[τ ] ∗D [τ ]) , (3.163)

For Wilson lines there are two different cases to consider. Either the cycle is trivial, γ = bc,
or it is of order two: 2γ = bc′.

First, let us assume that γ = bc, and therefore that [γ] = βc ∈ Hom(Ω2
Z(RP 3),R/Z), βc

being the de Rham 1-current of the 2-chain c. One can straightforwardly apply the computation
made in the M = S3 case, and mainely based on the shift:

α 7→ χ = α+
βc
2k

, (3.164)

or:

α 7→ χ = α+ q
βc
2k

, (3.165)

when γ holds charge q. As usual, details can be found in the original article [35]. Thus, for a
trivial link we get, without any surprise:

〈W (L)〉k = exp

−2iπ
1

4k

n∑
i,j=1

qiL
ij
(γ)qj

 . (3.166)

Now, let us assume that γ has torsion: 2γ = bc whereas γ 6= bc′. We have denoted by τ the
fundamental torsion cycle whose DB class [τ ] plays the role of origin of the fiber of H1

D(RP 3,Z)∗

over 1 (the torsion fiber). Accordingly, there exists a 2-chain y such that γ = τ + by, and the
expectation value of the Wilson line of γ = τ + by holding charge q reads:

〈W (γ)〉k =

∫
Dα exp

{
2iπk

∫
M
α ∗D α

}
· exp

{
2iπq

∫
M
α ∗D

(
[τ ] + βy

)}
+ (3.167)

+ exp

{
2iπ

∫
M

([τ ] + α) ∗D ([τ ] + βc)

}
· exp

{
2iπq

∫
M

([τ ] + α) ∗D
(
[τ ] + βy

)}
.

Once again, the consistency of the usual regularisation by ”framing” for the product [τ ] ∗D [τ ]
is questioned, and once more one must add an hypothesis for this regularisation to work. One
can ask the charge to satisfy:

q = 2m ,m ∈ Z . (3.168)

The factor 2 occurring in this charge constraint allows the zero regularisation of the term
[τ ] ∗D [τ ] in (3.167) to be consistent. Furthermore, performing the standard shift:

α 7→ χ = α+
βu+2y

2k
, (3.169)
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where u is a 2-chain such that 2τ = bu, one obtains:

〈W (γ)〉k = exp

{
−2iπ

m2

4k
(u+ 2y) t γf

}
, (3.170)

with γf a framing of γ. The intersection appearing in (3.170) is a well-defined integer and if
one put back the charge into this expression one gets the usual result:

〈W (γ)〉k = exp

{
−2iπ

q2

4k

c t γf

2

}
, (3.171)

where c is a 2-chain such that 2γ = bc.
This terminates our treatment of link invariants from the abelian Chern-Simons theory on

closed 3-manifolds. We can now see how to generalise this construction to higher-dimensional
closed manifolds. This is done in the last section that follows.

3.2.3 Higher-dimensional cases

Let M be a smooth m-dimensional closed manifold. Let us try to find a Chern-Simons la-
grangian for this manifold. From the physical point of view one would be tempted to consider
a p-form A, generalising the idea of U(1)-connections, and to naively write:

L = A ∧ dA (3.172)

But we know from the start that this is not the right direction to take if we want to deal
with connections rather than forms. Accordingly, it seems better to consider DB classes [ω]
whose DB square [ω] ∗D [ω] will define our Chern-Simons lagrangian. If [ω] ∈ Hp

D(M,Z) then

[ω] ∗D [ω] ∈ H2p+1
D (M,Z). Consequently, one must have:

m = 2p+ 1 , (3.173)

for the integral over M of [ω] ∗D [ω] to be well-defined. This constrains M to be odd-
dimensional.

Since the DB product is a graded product (see (2.39)), one also has:

[ω] ∗D [ω] = (−1)(p+1)(p+1)[ω] ∗D [ω] . (3.174)

Thus a necessary condition for our Chern-Simons lagrangian not to be trivial is that:

(p+ 1)(p+ 1) = 2l , l ∈ Z , (3.175)

Constraints (3.173) and (3.175) combine to give:

m = 4n+ 3 , (3.176)
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The case of 3-dimensional manifold is a special case.
Actually (3.176) also agrees with the linking theory. Indeed, on a manifold of dimension

4n + 1 the intersection of a trivial (2n)-cycle with any transversal (2n + 1)-chain is zero. But
this intersection is a way to define the linking between two trivial (2n)-cycles in a 4n + 1-
dimensional closed manifold (see [36]).

Eventually, the level k Chern-Simons action in dimension m = 4n+ 3 is chosen as:

CSk([ω]) =

∫
M
csk([ω]) = k

∫
M

[ω] ∗D [ω] , (3.177)

with [ω] ∈ H2n+1
D (M,Z). For the same reason than in the three-dimensional case, the coupling

constant has to be quantised:

k ∈ Z , (3.178)

and one introduces the Pontrjagin dual H2p+1
D (M,Z)∗ ⊃ Z2n+1(M) as the quantum configura-

tion space. From (2.32) it is an affine bundle over Ȟ2n+2(M,Z) whose translation group on the
fibers is Hom(Ω2n+2(M),R/Z) ⊃ Ω2n+1

Z (M)/Ω2n+1(M). The functional measure associated
with the generalised Chern-Simons action reads:

dµk([ω]) = D[ω] exp

{
2iπk

∫
M

[ω] ∗D [ω]

}
, (3.179)

Here again a more precise meaning has to be given to this measure by relying on the affine
bundle structure of H2p+1

D (M,Z)∗. Since Poincaré duality still holds true, one will use it to
fix as origins on fibers of this bundle a family of chosen (2l + 1)-cycles (seen as elements of
H2p+1
D (M,Z)∗ by the now familiar inclusion (2.50). The zero cycle will be a special origin on

the fiber over 0 ∈ Ȟ2n+2(M,Z). We will obtain a decomposition totally similar to (3.121),
except that all objects are of degree p, not 1.

As for Wilson loops, they are generated by fundamental loops (cycles) γ of dimension 2n+1,
according to:

Wn(γ) = exp

{
2iπ

∫
γ
[ω]

}
= exp

{
2iπ

∫
M

[ω] ∗D [γ]

}
. (3.180)

Let us notice that the degrees of the objects [ω] and [γ] play an important role ensuring that
[ω] ∗D [γ] = [γ] ∗D [ω]. The fundamental difference with the m = 3 case is that fundamental
loops appearing in (3.180) are NOT necessarily diffeomorphic to spheres S2n+1. For instance,
one can have γ ∼= S1×S2n, or γ ∼= S1× (S1)2n, or many different types of geometrical objects.
Nevertheless, it is quite obvious that the methodology we have exposed in the previous three-
dimensional examples will apply straightforwardly here. In particular, the zero regularisation
and the finer framing regularisation will allow to deal with DB squares of fundamental loops.
Also, we will define the charge of a loop as the number of times a fundamental loop is covered
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and a (2l+ 1)-link will denotes a formal combination of charged loops. At the end one will get
for the expectation value of the Wilson line of a homologically trivial link:

〈Wn(L)〉k = exp

−2iπ
1

4k

n∑
i,j=1

qiL
ij
(γ)qj

 , (3.181)

whereas such a expectation value will prove to be zero for non-trivial links.
As for torsion one can expect to treat it the same way as in the 3-dimensional case.
Let us note that m = 1 is a trivial case since the Chern-Simons action is then an integer (zero

in R/Z). The same holds for m = 5 and therefore the first non-trivial new case will be m = 7.
But the topological sphere S7 has many different and inequivalent differential structures. One
can then wonder whether these structures plays a role in the computation of links invariants.

To end this chapter, let us note that a quantum field theory approach to these higher-
dimension Chern-Simons theory can be used ([32]), but only in the case of R4l+3. To be able to
go further, one would need Euclidean Quantum Field Theory to be defined on closed manifold
which is far from being achieved. However, Chern-Simons theories provide a very interesting
playground to try and test some possible extension of the usual QFT to theories on closed
manifold. The reasons are that we know the fields exactly (I mean their representative for a
given good cover are known), we know how to define Chern-Simons action in terms of these
fields, and everything is local in this way. Furthermore, it is only topology, not physics. This
either gives hope or despair.
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4 Conclusion: what to do now?

In this last section I would like to present a list of possible developments in the framework of
Topological models of cohomological type.

4.1 Equivariant Cohomology

- First, let us return to the problem of determining Mumford invariants using Equivariant Co-
homology. We have seen that beside applying this cohomology theory on the space of Beltrami
differential of a Riemann surface one can also obtain a collection of invariants by using metrics
instead of Beltrami fields. Up to our knowledge, there is no clear demonstration showing that
the two sets of invariants are identical. It should be so but it is not easy to show. This could
appear as an exercise, but we have the feeling it might also provide new light in the field of
topological models: how to decide if a set of equivariant observables are equivalent or not?

- What we have done only dealt with closed smooth manifolds: compact smooth manifolds
without boundary. How could we extend this to smooth manifold with boundary? One could
have in mind ADS/CFT which relates two models one on a manifold and the other on its
boundary. This could be related to the supersymmetric version of Equivariant models like the
one done in [37]. This is however more a guess (and so very speculative) than an evidence.

- One knows that Equivariant Cohomology admits a supersymmetric interpretation (see
[38]). For instance one can easily show that a twisted supersymmetric conformal algebra can
be seen, via its fundamental OPE, as the structure of an equivariant model. One can wonder
what could be done in higher dimensions.

4.2 Deligne-Beilinson Cohomology

This is manifestly where most of our open questions can be asked.

- Chern-Simons theories are based on a quadratic functional measure, itself based on the
DB square of (generalised) p-connections: A ∗D A. But we have already noticed that the
DB product is more general (see (2.38)) than the simple square. One could then imagine
products of p-connections with q-connections: A ∗D B, thus providing new quantum actions.
With a closer look one can check that this would correspond to consider so-called abelian ”BF”
systems (or models). This is known in physics but as always from a purely QFT point of view.
Using from the start DB Cohomology could be a new way to deal with these BF models. In
particular, one sees that when B = A one recovers the Chern-Simons lagrangian. So having a
good mathematical ”control” on the basic objects might also give a better understanding of the
physical quantities these BF theories provide and also put some light on the link with Chern-
Simons theories. Note that from DB point of view, the name BF is totally ambiguous. One
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should speak of an AB theory considering the lagrangian to be A ∗DB rather than A∧dB. We
have learnt that a curvature is not enough to define a connection. Of course one can expect the
Wilson lines of a BF models to be made of cycles (loops) of degree p and q and the invariants to
just be intersections, as in the Chern-Simons case. Then a new challenge appears: what about
trying to study non quadratic theories: A ∗D B ∗D C, and even more general ones. Of course
all the tricks we have used in the quite simple quadratic case might failed to apply. However,
they should give access, if not to all the observables, at least to some of them. Are there other
observables providing computable ”physical” quantities, and does DB Cohomology shed any
light on this? These are interesting questions.

In the abelian Chern-Simons theory treated from the DB Cohomology point of view there are
many open questions left (if not all) concerning the relation between this approach and surgery.
Many theorems can be established using surgery and one can wonder how these theorems could
be demonstrate within the DB framework. We are actually investigating these question with
E. Guadagnini starting with the Reshetikhin-Turaev theorem relating expectation values of a
Wilson line on a closed manifold to Wilson lines on the sphere. At first sight it should be
possible to establish this via Chern-Simons and DB cohomology, but it has to be worked out.

- Of course, the Grail stands in the possible understanding of the non-abelian case. First,
one knows that the non abelian Chern-Simons lagrangian, the one written Tr(A ∧ dA + 2

3A
3)

by physicists, is actually a DB class (or a translation from a DB class to another depending on
the point of view) of degree 3. This is actually why the level of these theories is also quantised,
even if physicists like to say that it is due to gauge invariance. In fact gauge transformations
provide terms that belongs to the (large) gauge group Ω3

Z(M) defining H3
D(M,Z) within the

exact sequence (2.36). This means that unlike the abelian case, one could quantised the level k
of the non-abelian theory by only considering Tr(A∧ dA+ 2

3A
3) as the lagrangian. Anyway, in

QFT one uses this former lagrangian arguing about the quantisation of k from the point of view
of M = S3 which is not totally satisfactory. However, non abelian QFT gives a perturbative
answer to the computation of the expectation value of non abelian Wilson lines (non abelian
holonomies) (for given representations of the underlying lie group, usually SU(N)). Of course
it is shown that these perturbative results coincide with the equivalent development of some
link polynomials, at least up to some fixed order (maybe three at the moment). A large family
of polynomials are then perturbatively ”generated”: HOMFLY polynomials. Then one can use
surgery to get polynomials for any three-dimensional closed manifold. On the other hand, it
seems hard to find a relation between Wilson lines (or their trace within a representation of the
Lie group considered) and a DB class, unlike in the abelian case. Nevertheless there exists a non
abelian Stokes theorem. It provides in a quite complicated way a relation between a non abelian
connection and an abelian one. However, it is not totally clear yet if the abelian gauge field
thus obtained is really a DB class. And if it is so, what is its relation with the Chern-Simons
lagrangian itself? Mathematically there are higher-order invariants named Massey products
which allow to distinguished the borromean link from a totally trivial one, whereas we know
that the linking number fails to do so. Furthermore, there are extensions of Massey products to
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DB classes. Therefore, one can wonder whether these Massey products are related to the non-
abelian Chern-Simons theory and the invariants it (still perturbatively) generates. Also there
is a classification (up to link homotopy) of three-component links in S3 [48] using generalised
Gauss maps and integrals. One can wonder wether this could be understand from the point of
view of a Deligne-Beilinson Quantum Field Theory.

There has been attempts to define a non abelian version of Deligne-Beilinson cohomology
(see for instance [39]): as in the abelian case it is supposed to classify non-abelian principal
bundles with connections, as well as generalisations of such geometrical data. However, there
doesn’t seem to be more specific descriptions of these cohomology spaces, including for instance
the knowledge of their embedding into some simple exact sequences, as the abelian DB spaces
are. It has to be noticed that we were more interested in the structure of their Pontrjagin
dual than on the DB spaces themselves. This was so because we wanted cycles to lie in the
Quantum configuration space of the model. Accordingly, one could naively expect that the
relevant structure is the one of a dual of the space of classes of non abelian principal bundles
with connections, that is to say something like distributional connections. Ashtekar names such
objects ”generalized non abelian connections”. It is from these spaces of generalized connections
that Loop Gravity is built (see for instance ([40]). However we would like to point out a subtle
difference between such an approach and what we have done in the abelian case: in Loop
Gravity (and actually in all known case of QFT dealing with a non abelian group) one fixes a
principal bundle on which gauge fields (i.e. connections) are supposed to live. In our abelian
Chern-Simons models based on Deligne-Beilinson Cohomology we have considered the whole
set of classes of bundle with connections. In other words, in the functional integration we
also integrate over (classes of) principal bundles, not just on connections over a fixed bundle6.
In the best case the non-abelian Deligne hypercohomology will allow to identify a canonical
dual in which quantum fields stand. Then one would have to understand how these fields (or
classes of fields) are related to the abelian DB theory and more precisely how they are related
to the DB class represented by Tr(A ∧ dA + 2

3A
3). There should also be a relation with the

non abelian Stokes theorem since this last one provides a link between non abelian and abelian
holonomies (except for the fact it is a functional relation [41]). Actually, it is already possible to
formally see the abelian DB theory on the self-linking part of the non abelian invariants, which
is not surprising since it is mainly related to the quadratic part of the Lagrangian, formally
of the same kind as the abelian lagrangian: A ∧ dA. Of course the possible light shaded by
DB on non abelian Chern-Simons theory could have consequences in other theories like BF,
Loop Gravity or even ”more physical” Yang-Mills theories. As a final remark concerning these
non abelian theories, let us point out that it is not possible to define straightforwardly a non
abelian Chern-Simons lagrangian the way we did it in the abelian case (as a DB square). This
is mainly due to the presence of the non quadratic part in the Lagrangian, which itself follows

6In fact, the space of generalized non-abelian connections which play the role of fundamental fields in Loop
Gravity is obtained via some completion of the space of G-connections on a fixed principal G-bundle P over
M . This completion naturally extends (generalized) G-connections on P to (generalized) connections on all
G-bundles over M . Accordingly, our CS theory appears as an example of this completion in the abelian case.
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from the quadratic part (A ∧ A) appearing in the non abelian curvature. This must not be
confused with the fact that there are higher-dimensional DB classes built from a non-abelian
connection and its curvature and which are associated with higher-dimensional Chern classes.
However one could consider objects such as FA(B) = dB + A ∧ B and wonder what are the
largest ambiguities on A and B for FA(B) to be still a p-form taking its values in some Lie
algebra. Note that by construction A would have to be of degree 1, and B of degree (p−1).The
theory of non-abelian Gerbes could be involved.

- Recently with E. Guadagnini we wonder about doing a modes decomposition of the gauge
fields in order to do a canonical quantisation. Of course, in order for these modes to be easily
handled the manifold on which we have to consider our theory has to be simple, e.g. a product
of two circles: S1 × S1. It is possible to represent such a space by Rn divided by some discrete
group: S1×S1 ∼= R2/Z2. In this representation a connection can be describe as an object made
of two parts: one is corresponding to a well-defined 1-form on S1 × S1 and it is represented
by a periodic 1-form on Rn compatible with the action of the discrete group, while the other
part is made of a 1-form term not compatible with the action of the discrete group (we call
it a periodicity breaking term for obvious reasons). It is quite remarkable that one can have
a complete description of the DB Cohomology classes using these modes (i.e. we recover the
standard exact sequences). Of course one think immediately about adapting this to the non-
abelian case. If this approach were successful it would provide something equivalent to DB
classes what would be of course very interesting in order to understand the non-abelian Chern-
Simons theory. It would then be remarkable to know the answer on S1×S1×S1 but not on S3

(there the modes decomposition turns out to be much more difficult to handle because of the
use of spherical harmonics). Nevertheless, it wouldn’t be a total surprise since there are clues
which lead to think that on a 3-manifold made of at least one non trivial circle, this circle can
be used to gauge fixe non-abelian connections (see for instance [42]).

- With E. Pilon and L. Gallot we have studied recently the dimensional extension of abelian
Chern-Simons theories. Our main results were produced as a last example of this kind in this
review (see section 3.2.3). We would like to explain a bit more what one could have in mind
concerning the use of this work in order to try to define a QFT (at least a topological one)
on a closed manifold: first of all there will be no way to perturbatively compute expectation
values since by essence a perturbative development is local. However, it turns out that the
computation in abelian QFT can be done non perturbatively. So the whole point is about the
use of DB classes instead of naive differential forms. We have noticed in this review that not
only the DB classes admit nice representatives within the Čech-de Rham framework, but so
do their DB products. In other words, we know the correct expression to use in action. The
problem is that it is made of collections of fields defined in the open sets of a good cover of the
manifold and in their intersections. This finally gives four terms to write the lagrangian in a
correct way. Each of these terms has to be considered as a lagrangian on its own, each of which
corresponds to some field theory in some open set (made of intersections of the elements of the
good cover). It would be a first direction along which we may start the study. One could also
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use the expression of the DB product in another way: first make a polyhedral decomposition
of the manifold according to the Weil techniques mentioned in section 2.2. This gives now a
set of lagrangians one for each polyhedra of the decomposition, but also one for each faces of
these polyhedra and another one for the edges of these faces and finally one set for the ends
of the edges. This give four family like before, but now each family is define on a space of
lower and lower dimension. the next step would be to define propagators and see how the
gluing conditions for the various lagrangians (necessary to say that they actually build the
Chern-Simons lagrangian) translate on these propagators. Then one could hope to make some
computations using all these ingredients. If this can be achieved the computation will be non
perturbative for the same reason as in the case of R4l+3. the simplest case to be treated should
be of course S3 and later S4l+3.

- There is another domain where DB Cohomology could be very useful. It is well known that
this cohomology is at the base of Geometric (pre)Quantisation. In this approach of Quantum
Mechanics, one has to turn the symplectic form of the classical model into a closed 2-form (which
it is already) with integral periods (which is a new requirement). This turns the symplectic
form into a curvature suggesting the existence of some U(1) bundle over configuration space.
The lagrangian then turns into a DB class (a connection actually) the most famous example of
which is provided by the Aharonov-Bohm effect. The interesting question is: if we start with
a 3-curvature, or more precisely with an abelian 2-connection (on some abelian gerbe), what is
the classical structure associated with the quantised curvature. It should be a generalisation of
the Poisson brackets. Some authors, like J. Baez, have already investigated this, but directly
from the point of view of generalized Poisson brackets, and not starting from a quantum version
and trying to go back to its classical version. Note that if such a classical structure based on
generalised Poisson brackets can be found (and it should be), it implies that it will be a trilinear
object, suggesting that the new ”configuration space” should be made of three independent
coordinates. What would they be? And how could they be interpreted physically? Are there
still positions and momenta? Is the new coordinate related to a derivative of the momentum,
that is to say forces? Or on the contrary are positions related to this new coordinate? This
game seems quite interesting and could have amusing consequences.
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1. Introduction 

In a recent paper [STW94] it has been shown how equivariant cohomology is related to the 
so-called (cohomological) topological models [B192,BS88,BS91 ,OSB89.W88,WBSSS]. In 
the same work, a way to compute some representatives of equivariant cohomology classes 
(i.e. observables of the corresponding topological model) was exhibited. 

Here, we shall use this method in order to generate a family of representatives of the 
Thorn class of a vector bundle depending on two arbitrary functions. As we shall see, these 
representatives are quite different from the MathaK-Quillen representative. They offer a 
good deal of flexibility at the price of being slightly complicated. Special choices allow to 
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find a very special representative with remarkable symmetry properties. However, its slow 
decrease at infinity makes it necessary to consider a cohomology theory with coefficients 
with sufficiently fast decrease (instead of compact). Some of these representatives (in par- 
ticular the most symmetric one) already appeared in a quite different framework in the work 
of Harvey and Lawson [HL93] on singular connections, a fact we learned after this work 
was completed. 

This work is divided into three parts. In Section 2 we recall basic facts about equivariant 
cohomology as well as the way to compute representatives of equivariant cohomology 
classes. This section parallels the explanations given in [STW94]. Section 3 is devoted to 
the MathaY-Quillen representative of the Thorn class. Finally, Section 4 exhibits a large 
family of representatives of the Thorn class. 

2. Equivariant cohomology 

Let us consider the following setting: M is a smooth manifold and g a connected Lie 
group acting smoothly on M. We would like to define a cohomology of the quotient space 
M/G which coincides with the De Rham cohomology when this quotient is a smooth 
manifold but which also exists when it is not, i.e. when 6 acts with fixed points. Equivariant 
cohomology solves this problem. 

Let M be a smooth manifold and a*(M) the exterior algebra of differential forms 
on M endowed with the differential dM. A Lie group G is assumed to be acting on M 
as well as its Lie algebra, denoted Lie G. For any h E Lie G there is a vector field h,&j 
representing the infinitesimal action of h on M. This vector field hM is usually called 
the fundamental vector field associated with h. We shall denote by iM (h) = i,+t (I.M) and 
1~ (A) = /M (h&t) = [dM, iM (A)]+ the contraction (or inner derivative) and Lie derivative 
acting on fi* (M). Let us recall that iM (J.) takes n-forms into (n - I)-forms while /M(h) 
acts on forms without changing the degree. Elements of Q*(M) which are annihilated by 
both i&t(h) and lM((h), for any k E Lie G, are the so-called basic elements of L?*(M) for 
the action of 9. As dM maps basic elements into basic elements, this leads to the definition 
of the basic cohomology of M for the action of G [(IO]. 

We now consider the Weil algebra W(G) of Lie G. * It is a graded differential algebra 
generated by two Lie G-valued indeterminates, the “connection” w, of degree 1, and its 
“curvature” a, of degree 2, such that 

a =dwo+ ;[w,w], (1) 

where dw is the differential of W(G). Of course, one has the Bianchi identity 

dwR + [w, L’] = 0. (2) 

There is an action iw(h), lw(h) for k E Lie 4: 

‘This is a harmless abuse of notation, but it is to be remembered that equivariant cohomology deals only 
with the local structure of 8. 
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iM;(h)w = h, I)Q(A)w = -[A, WI. (3) 

ipv(h)L? = 0, l,(A)Q = -[A, Q]. (4) 

For instance, w may be a connection on a principal G-bundle f7 and Q its curvature. In that 
case iw(h) and /w(k) are generated by the action of G on I7. and in this case WCC;) will 
be referred to as M;n. 

We now consider the graded differential algebra (Q*(,w) @ W(G). (1,~ +.dw). on which 
the operations (in +iw)(h) and (pi + pw)(h) for any h E Lies are well-defined. There 
common kernel is a graded differential subalgebra of fi*(,M) @ W(G). By definition, 
the so-called equivariant cochains are the elements of this subalgebra annihilated by the 
differential d,~ + dw, leading to the equivariant cohomology of Jb't for the action of G: this 
is the so-called Weil model for equivariant cohomology. 

Equivariant cohomology can be alternatively described in the so-called intermcdiote 
model. which was introduced in [K93] and which will be repeatedly used in the sequel. It 
is obtained from the Weil model via the following algebra isomorphism: ’ 

.r w exp{ -i,q (h)]x (5) 

for any x E Q*(M) @ W(G). This isomorphism changes the original differential and 
operations on G’*(M) ~3 W(G) by conjugation: 

dM+dW--fDint=dM+dW+I.M(W)-i,M(n), 

(in + iw)(h) - iw(k) = eCi.M(‘)(i,w + iw)(h)ei-u(h’. 

(/M +/w)(h) ---+ (1,~ +/w)(h) = e-i.h,(‘)(lJu + 1w)(k)e’,‘“‘(‘). 

(6) 

(7) 

(8) 

Finally, the so-called Cur-tan model is obtained from the intermediate model by putting 
w = 0 so that Dfnt Iw=o vanishes when restricted to invariant cochains. This is the most 
popular model, although many calculations are better automatized in the intermediate model. 

Another item which will be repeatedly used is “Cartan’s Theorem 3” [C50]: let us as- 
sume that (R*(M), d,u, in, 1~) admits a S-connection H ‘, with curvature (5). Then any 
equivariant cohomology class of 0*(M) @ W(G) with representative P(w, 52) gives rise 
canonically to a basic cohomology class of Q(M) with representative P(H, (_). There is a 
simple proof using the homotopy that expresses the triviality of the cohomology of the Weil 
algebra [MSZSS]. It follows from the construction that the cohomology class of P (0. C-J) 
does not depend on 0. 

One convenient way to produce equivariant cohomology classes is as follows [BGVC) I 1: 
we consider a H-bundle P(M, H) over M on which there exists an action of S which 
lifts the action of 6 on M. In general, the Lie group H has nothing to do with the Lie 
group 4. As before, P(M, H) is endowed with a differential dp. a contraction i,p and a 
Lie derivative 1~. 

3 See 1 DV93 I for a more general theorem. 
‘that is to say a LieG-valued I-form on M such that i,u(A)H = I and /,wO;)H = - IA. fil for any 

A E LieG. 
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Next, let f be a G-invariant H-connection on P(M, H): 

Ip(h)r = 0, foranyh E LieG. (9) 

The pull-back f of r on O*(M) @ W(G) is a l-form on P(M, H) and a O-form in 
W(G). It follows that 

iw(k)P = 0 (10) 

for any h E LieG. 
In Q*(M) 8 W(G), the equivariant curvature of F is defined by 

Rrz(Z+, 0, 0) = DiniF + $[f, P], (11) 

where Dint = dw + dp + lp(w) - ip (~2). Then, if ZH is a symmetric invariant polynomial 
on Lie H, we consider the H-characteristic class Z~~i,(~, w, Sz) = ZH(R~,,,,(?‘, w, G)). 
It is defined on M and fulfills 

(dw + diz/l f/M(W) - iM(a)) J~int(~’ W, fi) = 0, (12) 

iw(h) Zzint(f, w, Q) = 0, (13) 

(‘W + ‘I) Z~int(~’ w, 52) = O (14) 

for any h E LieG. 
In the Weil model, the equivariant curvature is defined by 

Rz(f, 0, Q) = (dw + dp)f + $[f + ip(lJ)?, f + ip(Q)f]. (15) 

We may similarly consider 
A 

Z;;w(ZY w, 52) = Zff(Rz,w(i., w, 52)) = e-‘“(h)Z~int(j., w, 52), 

which fulfills 

(16) 

^ 
(dw + dM> ZzW(f, w, 52) = 0, 

^ 
(17) 

(18) 

(19) 

for any h E LieG. 
Finally, if M admits a !&connection 8 with curvature 0, we can apply “Cartan’s Theorem 

3”, and substitute 0 and 0 instead of o and L2 in ZLyw(f, o, a), so that 

dM Zz,(F, 8, 0) = 0, 

iM(h) ZHyw(p.’ 6, 0) = 0, 

Zm(h) Z~,(Z+, 0,O) =o 

for any h E Lie G. 

(20) 

(21) 

(22) 

By standard arguments, these cohomology classes do not depend either on p or on 0. 
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3. Thorn class of a vector bundles: The Matha’i-Quillen strategy [MQ86] 

33 

Let V be a real oriented Euclidean vector space of dimension II = 2d with scalar product 
( , ) v . On V. we choose a canonical basis (ek ) orthonormal with respect to ( , ) v : 

(e;. ej)v = 6ij. 

Any vector on V can be decomposed as 

(23) 

V = Ukek. (24) 

Such a decomposition gives a coordinates system (vk) on V, turning V into a manifold. Due 
to the linear space structure of V, only G L (n, R) transformations define allowed coordinate 
changes. The group of isometries of V, with respect to ( , )v, is SO(n) c GL(n, R), with 
Lie algebra so(n) and Weil algebra W(SO(n)). Finally, we endow V and W(SO(n)) with 
the standard differential operations dv , iv , IV, dw, iw and 1~. 

Now, let E(M, V) be a vector bundle over a smooth manifold M with typical fiber V, 
equipped with differential operations: dE, iE and lE,. We denote Q:,,(E) the space of 
n-forms on E whose restriction to each fiber of E is rapidly decreasing. The corresponding 
cohomology space is written IY,“~,(E). The Thorn Class of E is the element T(E) of 
H:du (E) such that 

s 
T(E) = 1. (25) 

V 

which means that integration of T(E) along the fiber produces the constant function 1 on 
M. 

Actually, following Mathai’and Quillen [MQ86], we would like to exhibit a representative 
of T(E) in the form of an integral representation. Then, we consider V*, the dual space of 
V, equipped with the scalar product ( , ) v*, dual to ( , ) v on V. Moreover, we introduce 
coordinates (mk) for the Grassmann algebra AV* of V* together with the differential 
operations 6, I and L, dual to those on V. 

We take as structure equations: 

.PPuk = qk + Ltoqw)uk. 

.PWk = -LtyR)d + L’y,)Pk. 

s “‘mk = bk + L”‘(W)mk. 

.StoPbk = -L’“‘(fi)mk + LtoP(w)bk, 

stopf3 = n - gw, w], 

sfOPfl = -[w, Q], 

with 

(26) 

stop = dw + (dv + S> + (Iv + L)(o) - (iv + I)(Q), (27) 

Pk = dVuk E ‘Pi”,, (28) 
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in the intermediate model, and 

stop = dw + dv + 6, 

lyk = (dv - L?P(,))t? = k$/ 

in the Weil model, while 

Ltop = Iv + L 

(29) 

(30) 

(31) 

in any model. 
The null section so of E(M, V) that sends any point of M into the null vector, diffeo- 

morphically maps M into so(M) c E. Then, the Thorn Class T(E) of E is nothing but 
the Poincare dual of so(M) in E [BT82], and the Dirac form on E: 

6(v) dv’ A . . . A dun (32) 

represents the Poincare dual of so(M) in E. This form can be written as a Fourier transform: 

1 

(2x)” s 
dbdtirexpi(b.v+m.p} 

1 
=- 

(2x)” s 
db dm exp i{bkvk + mkp’}. (33) 

From the structure equations (26), we deduce 

b. v + m . P = stop(tir . v). (34) 

However, we can consider a smoother representative, with a gaussian behavior for instance. 
That means that we must insert a term of the form: 

i(b, b)v* (35) 

into (34). Now, we can try to write the new argument as an stop-exact term: 

stop(m v + i(m, b)v,) = b . v + m . W + i(b, b)v* - i(L’“p(.n)ru, ZP)~* (36) 

so that we are led to define 

1 

lJ = (2X)” s 
dbdrir expi(stoP(mv + i(m, b)v,)}. (37) 

Note that U is an element of W(S0 (n)) @ Q*(V). 
In order to prove that U maps into a representative of T(E), let us proceed in the inter- 

mediate model where we write Uint instead of U. Then, since in (37) w E VV(SO(n)) does 
not appear, we immediately conclude that Uint does not explicitly depend on w, that is to 
say: 

VA E so(n), iW(i_)Uint = 03 (38) 

which express the basicity condition within the intermediate model. Now, there remains to 
show that Ui”t is closed with respect to Dint = dw + dv + Iv(o) - iv(Q). Indeed 
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1 
Dint Uint = - (2X)n Di”t s 

dbdm exp(i stoP(m.v + i(m. b)v*)} 

1 
=- 

(275Y s 
db drrr (stop - Dv*)exp(i stoP(u v + i(m, b)v,)], 

where Dv* = S + L(w) - I(a). Hence 

1 
Dint Uint = -- 

(2n)” s 
dbdzrr[Dv* exp(i . ,stoP(m . v + i(m. b)v,)}]. 

Now, from the structure equations (26), we get 

Dv* = (b/q + L’“p(w)mk)& + (-Lt”p(i2)mk + L’“P(w)b+& 
k k 

= ~t”p(CO)ZVk& 
( k 

+ /t,‘“P(w)bk; 
‘ > k 

Ltop(ti)~k& . 
> 

3.5 

(39) 

(40) 

(41) 

(42) 

(43) 

The first term in Dv* corresponds to an so(n)-transformation. Due to the so(n)-invariance 
of the measure db dm, it does not contribute to (41). The last term in (43) vanishes upon 
integration by parts. Then 

DintUint = 0. 

Finally, combining Eqs. (38) and (44), we deduce that 

Vi E So(n), (lw + IV)(h)Ui”t = 0. (45) 

and conclude that Dint is a representative in VV(SO(n)) @ L’*(V) of the Thorn Class of 
E(M, V). The corresponding representative in the Weil model is obtained by setting 

.stop = dw + dv + S, 

‘&I/” = (dv - Lt”p(~))vk E Iy; 

within Eq. (37). 

(46) 

(47) 

Actually, it can be easily shown that Fourier transform (denoted fl commutes with 
equivariant differential operations. More precisely 

F‘[(dw+S+L(w)-I(R))@l=(dvv+dv+Iv(w)--v(Q))F[@l. (48) 

.F [iw(h)@] = iw(h)F [@I ) (49) 

.T[(lw + L)(h)@1 = (LV + Iv)(h)FT[@l (50) 

in the intermediate model. The same holds in the Weil model with suitable differentials. Let 
us point out that this mainly relies on the identity b . v + u . 9 = ?“P(u . v). 

Then, since 4 = (b, b)p + (L’“P(f2)m, m)v* is equivariant, it is straightforward to 
find that its Fourier transform is also equivariant. This simple remark allows to construct 
representatives of equivariant cohomology classes using Fourier transform of functions of 

d. 
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Finally, we can consider a principal SO(n)-bundle P over M. It is well known that 
P x SO(~) V is a vector bundle isomorphic to E, and P x V is called the principal SO(n)- 
bundle associated with E(M, V). Hence, as an n-form on E, any representative of the 
Thorn Class T(E) of E comes from a closed SO(n)-basic n-form on the associated bundle 
P x V of E. In order to produce such a representative of T(E), we use Cartan’s Theorem 
3, that is to say we replace (w, 52) (in the representative U) by (0, O), a connection and its 
curvature on P(M, SO(n)). 

4. Construction of representatives of Thorn class of vector bundles: The 
Berline-Getzler-Vergne strategy [BGV91] 

In this section, we shall use the strategy explained in Section 2 in order to produce 
representatives of T(E). 

To begin with, we are going to turn V into a Riemannian manifold, i.e. a manifold V 
with a metric. The tangent bundle of V, denoted by TV, is obviously isomorphic to V x V. 
The only SO (n)-invariants formed with v and dv are the three scalar products, so that the 
general SO @)-invariant metric on V is: 

ds*(v) = eq(( dv’)* + a(~’ dv’)*), (51) 

where cp and 0 are smooth functions oft = (v, v)” only. The above expression is positive 
definite if and only if 1 + 0 (t)r > 0 for t 2 0. One can assume if convenient that the metric 
is asymptotically flat (i.e. that the curvature vanishes at infinity). 

We can consider the principal GL (n, lR)-bundle associated with TV, i.e. the frame bundle 
R(V) of V. It is made of the points (v, b,) where b, is a frame (i.e. a basis) at v. Coordinates 
for b, are defined as follows. We denoted by (&) the natural basis of T,V defined by 
the canonical coordinates (uk) of V: & = a/auk. Then, the coordinates of 6, are the 
components bh of the decomposition of b, with respect to the natural basis (a& 

bvk = bLi$ (52) 

with bvk the kth frame vector of the frame 6,. The isometry group of (V, ( , )v), namely 
SO(n), acts both on elements of V and on frames, that is to say on R(V). This goes as 
follows. For any 0 E SO(n), 

@k(v) = 4$? (53) 

At the infinitesimal level, if we write @k = 6: + &, we get 

4+(V) = (Sk + q$Ju” = uk + &um = uk + .& (54) 

where ck = q&v” d fi e nes a vector field on V, the so-called fundamental vector field 
associated with the action of cp E so(n): 



M. Bauq E Thuillier/Joumal of Geometp and Phyict 25 (15’98) 29-45 31 

The natural action of @ E SO(n) on T,V is given by the so-called differential of @ at v, 
d,@ : T,V + T@(,,V: 

VX, E T,V, Vf E C”(V) d&)X, (.f) = X,(.f o 0). (56) 

Applying this definition to the frame vectors hvk, one gets 

bj = b:‘@,,@‘(v)) = by@;, (57) 

where &j are the coordinates of the transformed frame at Cp tv). At the infinitesimal level, 
for cp fz so(n), 

tj=b,m(S:,+cp~)=b)+hl’cp:,=b;;+b:”~~=hj+8i. (58) 

Combining Eqs. (54) and (58), we deduce that the fundamental vector held associated with 
the action of cp E so(n) on R(V) reads 

+ $‘d$i. 
4 

(59) 

Now, let P(M, SO(n)) be some principal SO(n)-bundle over a smooth manifold M. 
It is well known that there is a vector bundle over M associated with P for the action of 
SO(n) on V. The group SO(n) acts on the right on P and on the left on V. We first define 
a right-action of SO(n) on P x V by setting 

(p, v)@ = (P. @,4+(v)) (60) 

so that, the fundamental vector field representing the action of cp E so(n) on P x V reads 

where hp is the fundamental vector field representing the action of cp on P. 
Finally, the action of any 40 E so(n) on the GL(n. KY)-principal bundle P x R(V) is given 

by following fundamental vector field: 

h = hp - hR (62) 

with hR defined in Eq. (59). 
In the following, V, R(V) and P are equipped with the following differential operations: 

dv, dR, dp. iv. iR, ip, IV, /R and lp, respectively, exterior differentials, inner products and 
Lie derivatives. 

Now, since we are looking for representatives of equivariant cohomology classes. we can 
mimic the construction made in [STW94] in the case of two-dimensional Gravity. We first 
look for a GL(n, R&connection on P(P x V, GL(n, R)) = P x R(V) invariant under the 
action of SO(n). If we notice that, by construction, the metric g on V is SO(n)-invariant, 
we can consider the Levi-Cevita connection Lcl- associated with g. Due to the SO(n)- 
invariance of g, Lc f is an SO (n)-invariant connection. More precisely, the lift of Lc r into 
a connection 1 -form f on R(V) according to 

r = b-’ (LCr)b + b-‘dRb (63) 
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is invariant under the action of SO(n). The fundamental vector field for the action of so(n) 
was given before, so that 

(iP(h)T); = (b-I);(- %/J”)b~, (64 

where ip(L.) = (ip + iR)(h), and 

Ip(h)T = 0 (65) 

with /p(h) = (lp + /R)(h). 
The next step is to consider the Weil algebra kV(SO(n)) of so(n). The relevant formulae 

were given in Section 2. We recall that the equivariant curvature of r in the intermediate 
model is 

RZt(f, w, 0) = (dw + dp + Ip(w) - iP(Q), r + $ [r, r1 

while the corresponding curvature in the Weil model is obtained as 

Rz(T, 0, L?) = eipCW)Rz(f, w, Sz), 

(66) 

(67) 

which gives 

RZ(T, w, a) = R(T) + ip(w)R(f) + ;ip(W)ip(W)R(r) - ip(L?)C 

The Weil equivariant Euler class is defined by 

(f-33) 

(69) 

which after normalization gives rise to a representative of T(E) in P(M, SO(n)) x V. 
It is now time to use the explicit form of the metric to get a formula for the Thorn 

class. Surprisingly, we shall see there is no choice of metric that allows to recover the 
MathaI-Quillen representative of T(E). From now on, the computations, if painful, are 
straightforward. We use the intermediate model so that dv ui = Pi. As (63) looks formally 
like a change of coordinates in the fiber, we know that its effect on curvature will be a 
simple conjugation which disappears completely on the Thorn class. So we can forget it in 
the computation. From (5 1) we find that the metric is: 

gij = @C&j + OUiUj). (70) 

Our notations need some comment: we start with global coordinates ui on V, so the 
exponent i is not a tensor component but just a label. The metric is expressed with respect 
to this particular coordinate system. However, it is convenient to deal consistently with 
formal lower and upper indices in the Einstein summation convention. So we define ui = 
vi and 6ij = S’j = 8; = 8, = 1 if i = j and 0 else. For instance we use the notation ui 

and 6ij in gij and we write t = vi d. This becomes slightly less formal if we restrict the 
diffeomorphism group of V to linear orthogonal transformations. 
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A simple computation shows that the inverse metric is 

Kij = e-V($J + aJui), (71) 

where 6 is defined by (1 + tS)( 1 + ra) = I. 
First. we need a formula for the connection and curvature. The fact that cp and 0 depend 

only on I leads to many simplifications in the computation. We use dots for derivatives with 
respect to t. 

With the expression of g, we get for the connection: 5 

c$ = (1 + ta)Uk](D - +)Sij + (Cr - D$)U,U,j] + $(?Jis:’ + tJj8f) 

so that the connection matrix is 

(72) 

$! E @“qi, = AI.ljL’iUk’Pk + Bub; + C(V;@ + 6;Uk@k). 

where we have set 

(7.3) 

A = (1 + t6)(ir - Co), B = (1 + t6)(a - C). c =@. (74) 

The curvature matrix is given by 

R; G d+ + rkj A qk. (75) 

A tedious computation leads to 

R’j = gQ; 

where 

Ml1 =&+2c-0, Ml2 = 2c - c2 - cr + (1 + t6)(a - C)tir. (77) 

To get the full equivariant curvature, we need the part involving R. In accordance with our 
convention on indices, we define 52’j G 0,. By definition s2’.j is antisymmetric. According 
to formulae (64) and (66), the part of the equivariant curvature containing R is the covariant 
derivative of L$ uk, the so(n) vector field associated to Q. Consequently 

(--i&-&r); = L?kJ + nf,vmf,J=a. (78) 

The antisymmetry of R leads to further simplifications. The outcome is: 

g’“(R; + 521,vV$ 

=e -‘(l + k?)[Mz,@ + kf22(uin&k’ - uiukfiki)], (79) 

where 

M2i = I + ta, IV22 = c - ff. (80) 

‘Remember that r/j E igk’(i$gI, + ajgi, - alR,,), 
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We note the striking similarity between the two contributions. If we define a 2 x 2 matrix 
N’j by 

(81) 

the equivariant curvature can be written as a trace 

(Rrz)‘j = eO’(l + t6)Tr A4N’j. 

The equivariant Euler class is 

(82) 

ErJ = 2”/*& Pfaff ( Rl”nq)ij (83) 

with the usual definition of the Pfaffian. Note that Jg = e’q/*( 1 + to)“*. 

This is the explicit formula for the universal Thorn class that we were after. It involves 
two arbitrary functions oft, cp and o (with the mild restriction 1 + tu > 0) which may be 
localized at will thus so leaving a fair amount of flexibility. 

The first comment to make is that apparently the above representative, which is of course 
so(n) invariant when so(n) acts on V, 52 and ly at the same time, is not invariant when 
so(n) acts only on V. To state it more simply, the V dependence of the Thorn class is not 
only through t. This is to be contrasted with the Mathai-Quillen representative. 

Let us deal with a special case first. When n = 2, it is easy to see that 

EijNij = 2 
P’ly2 i-2’* 
tP’P2 ti2’* ’ > 

(84) 

so we have some hope to recover the MathaGQuillen formula as a special case. After some 
manipulations one finds 

E,e, = 4F’&‘p2 + 2FS2’*, (85) 

where 

FS 
1 +tc 

(1 + tay/* (86) 

So the Thorn class depends only on one arbitrary function of t, namely F, which can 
easily be adjusted to recover the Matha’i-Quillen representative. The correct choice is F = 

-(1/(4n)) ew(-t/4). 
When n > 2 the situation is more complicated. We shall use a trick to see how much the 

symmetry of the so(n) action on V is broken. 
The first observation is that under a similarity, the Pfaffian has a simple behavior: if A 

is a square antisymmetric matrix and S an arbitrary square matrix of the same size with 
transpose S’, S’ AS is again antisymmetric and Pfaff S’ AS = Det S Pfaff A. The square of 
this equation just follows from the multiplicative property of the determinant, and the sign 
is fixed by the case when S is the identity matrix. So if we can find a matrix S’j (independent 
of w and 1;2) such that St RzyS simplifies, we shall end with a simpler formula for the Thorn 
class. 
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Define a symmetric matrix S(D) of parameter D by 

S(D); = 6; + Dv’I+. (87) 

This matrix is easily diagonalized: the vectors orthogonal to ui are left invariant and 11’ is 
multiplied by 1 + t D. So 

DetS(D)=l+tD (88) 

and 

S(D)S(E) = S(D + E + tDE). (89) 

Moreover, if A’.j is any antisymmetric matrix, 

(S(D)AS(D))jJ = A’j + D(v’ukAk~j - vJvkAki). (90) 

We apply this identity to the four antisymmetric objects building the 2 x 2 matrix N” to 

get 

S(D)NS(D) = S(D)N, (91) 

where s(D) is the 2 x 2 matrix 

(:, 1 :tD)’ 
(92) 

In Eq. (91), the left-hand side involves a product of II x n matrices, and the 2 x 2 indices 
are spectators whereas on the right-hand side the opposite occurs. 

So we can write 

S(D)RrzqS(D) = eCV(l + r6)Tr M(D)N 

with M(D) = MS(D), and the Thorn class is 

(93) 

Eeq = (1 +IC)(‘-~)‘~(~ +rD)-‘Pfaff(TrM(D)N). 1nt 

We can choose D to simplify the expression of Ez. 
First we take 

(94) 

D= DI. where M(D1) = 

This makes it easy to compute the term in Ek: that does not involve Q. The outcome is 

E;; = n!(l + ta) (I-n)/2 (* +r!&> M;j2 ly ’ .9” + terms involving Q. (95) 

One can check that this is compatible with (85) for n = 2 
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Second, we take 

D = D2, 

This makes it easy to compute the term in EFi that does not involve p. The outcome is 

Eeq = 2”“( 1 + ra) 1nt 
(l-n)/+ +&=)M;{2 Pfaff 52 + terms involving p, (96) 

a result which is again compatible with (85) for n = 2. 
Those two terms in ErJ automatically depend only on t. On the other hand, the other 

terms are not scalars for the so(n) action on V. To see this we keep D = D2, set A’j = 

M1,‘&‘bJ’J + M2,Q’j and B’j = u’(u~@~)G~ - uj(~kp~)ly~. Using the fact that xkpk 
squares to 0 we get 

E;; = (1 + to)-/2 

x (2n/2(i+t$)PfaffA-n/2~ Ei,j ,_,, i,,j,,B’ljlA’Ki2 . ..A’“& . 

(97) 

As R and r& are independent families of indeterminates, the matrix elements of A’j are 
independent of each other (except for antisymmetry) and of the matrix elements of B’j. So 
in the expansion of 

E. ___. B’l.il A’2.k . . A’“&? 
‘IJI ‘,iJ,z (98) 

no compensation can occur between A-factors and B-factors or between different B-factors. 
Moreover, B-factors contain the full non-so(n) invariant part of the V dependence of the 
Thorn class. So we have the following three possibilities. Either Det M is 0, or B’j is invariant 
for the action of so(n) on V, or the representative of the Thorn class is not invariant for the 
action of so(n) on V. The first term of the alternative depends on our choice of cp and D. 
The second is easily checked to occur if and only if n = 2, a case we have already treated. 

So finally, we have shown that if n > 2 the representative of the Thorn class is invariant 
for the sn(n) action on V if and only if Det M = 0. 

We shall now see that despite the fact that apparently our representative of the Thorn class 
depends on two arbitrary functions, the single condition Det M = 0 fixes it completely. This 
can be seen as a manifestation of the topological character of the Thorn class. We shall also 
see that the representative we end up with is not the MathaY-Quillen representative. 

From now on, we set Det M = 0. Explicit computation shows that this equation has a 
first integral. Namely Det M = 0 is equivalent to 

(1 +tcj3$ (1 +crc)’ + ( 1 1 
-- 

t(1 +tC)2 > 
= 0. 

t 

The term in parenthesis can be written as 

C2t+2C-a (1 +ta) - (1 +t@ 

(1 + tC)’ 
or 

t(1 +r@ . 
(100) 
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Now, we distinguish two cases. 

43 

Suppose first that for some value oft the function 1 + tC vanishes together with its first 
derivative. Then 

( 101) 

As a byproduct, Mzt +tM22 vanishes, and the equivariant Euler class vanishes. So clearly. 
the function 1 + tC cannot vanish everywhere if we are to find a non-trivial class. Anyway. 
the vanishing of 1 + rC would mean that e p = to/t for some constant to leading to a metric 
singular at the origin. It is likely that in this case. a careful computation with distributions 
would give a curvature concentrated at the origin, but we are not interested in this anyway. 

On the open intervals where 1 + tC # 0 the second factor of (99) has to vanish. We get 

D 1 1 I 

(I +tC)? 
+p--=- 

t(1 + tC)’ t to 
(102) 

for some constant to. Using (100). one obtains 

I +tc 
,$fp 

-Cl + to (I + (to + t)C)(to + t)Y’ 
(1 + tC)(to + t) -(l + (to + rK1 > 

(10.3) 
t0 

leading to a remarkable simplification of (97): 

(104) 

Now, as M~I = 1 + to. which has to remain strictly positive. I + tC cannot vanish at the 
boundary of an open interval where it is non-zero. This means that 1 + Cr vanishes nowhere. 
and that formula (104) is valid everywhere. This is our final formula for the equivariant 
Euler class if we decide to trade flexibility (arbitrary choice of cp and 0) for simplicity 
(so(n) invariance on V, leading to a simple Pfaffian). The Matha’i-Quillen representative 
never shows up for n > 2. 

Some comments are in order. Usually the Thorn class is defined by using function with 
compact support (differential topology) or rapid decrease at infinity (quantum field theory) 
on V. The MathaGQuillen representative belongs to this second category. With the general 
formula, the freedom on cp and 0 allows us to impose any behavior at infinity. 6 On the other 
hand our rigid proposal for the Thorn class does not decrease fast at infinity. Despite the fact 
that this may be inconvenient in certain applications, we would like to point that it makes 
sense nevertheless. To define the Thorn class, the crucial point is that the cohomology of 
V with coefficients having compact support or rapid decrease at infinity is concentrated in 
the dimension of V and one dimensional there. It seems clear that a cohomology of V can 
be build such as to retain this property and accept our rigid representative as a well-defined 
cohomology class. For instance k-forms on V such that for any non-negative integer I the 
partial derivatives of order 1 of the coefficients exist and are 0(t-(k+‘+‘)/2) at infinity. 
endowed with the usual exterior derivative, should work. 

’ In fact to localize the Thorn class on arbitrary spherical shells if this proves useful. 
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In particular, we can normalize things in such a way that the integral on V of the term 
independent of 0 is 1, as is usual for the Thorn class. A simple calculation gives for the 
normalized Thorn class 

Tv = & ($)“‘Pfaff(&ui*j _ fiij)_ (105) 

Playing with the value of to allows to localize around the zero section. This formula already 
appears in [HL93] as a specialization of another formula for the Thorn class. 

5. Conclusion 

In these notes, we have obtained formulae for the universal Thorn class of a vector bundle. 
A special choice leads to a rigid representative involving Cauchy-type kernels. It would be 
very interesting to know whether the MathaY-Quillen representative, with its Gaussian-type 
kernel, is also a rigid member of some natural family of representatives. 
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Abstract 

We show that the method of Wu [J. Geom. Phys. 12 (1993) 2051 to study topological 4D-gravity 
can be understood within a standard method now designed to produce equivariant cohomology 
classes. Next, this general framework is applied to produce some observables of the topological 
4Dgravity. 0 1998 Elsevier Science B.V. 

Subj. Class.: Quantum gravity 
1991 MSC: 83C45 
Keywords: 4D-gravity; Cohomology classes; Observables 

1. Introduction 

Since their appearance in 1988 in a famous article of Witten [ 131, topological field theories 
have played an important role in theoretical physics as well as in mathematics. Actually, the 
1988 article gave a prototype of topological field theories of cohomological type. Witten has 
recognized that these cohomological field theories are related to equivariant cohomology 
and more precisely to the so-called Cartan model of equivariant cohomology. 

Although cohomological field theories can be described independently of the models used 
for equivariant cohomology, the construction by Kalkman [9] of the so-called intermediate 
model [ 121 is of considerable technical help. In [ 121, topological Yang-Mills [ 1,3,13] and 
topological 2D gravity [4,5] were studied from this point of view. In [2], new representatives 
of the Thorn class of a vector bundle were produced using this general framework. 

Wu [ 141 explained the role of the universal bundle in 4D gravity, * and exhibited some 
observables of the corresponding topological model. We shall explain here how his method 
can be deduced from the general approach of [ 121 and which observables are obtained. 

1 URA 14-36 du CNRS, associke B 1’Ekole Normale Supkieure de Lyon et 2 l’Universit6 de Savoie. 
* 4D topological gravity was first proposed by Witten [13]. 

0393~0440/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved 
PII SO393-0440(97)00076-4 
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2. From the intermediate to the Weil model of equivariant cohomology 

In [ 121 it was explained how one can generate representatives of equivariant cohomology 
classes using an idea of [6] which benefits from Kalkman’s construction [9] as follows: let 
us assume that M is a smooth manifold with a smooth G-action for some connected Lie 
group G (with Lie algebra Lie 6). Let d ,+I, i&f, 1~ be the standard exterior derivative, inner 
product and Lie derivative on M. The action of 6 induces an action of Lie 6, and to any 
h E Lie 6, there corresponds a so-called fundamental vector field hM on M. The space 
of forms on M is denoted by Q(M), and its basic elements are those annihilated both by 
iM(h) and [M(h), for any h E Lie G. We recall that Zm = [dM, iM]+. 

The Weil algebra (W(G), dw , iw , ZW) of G is the graded differential algebra generated 
by the “connection w” and its “curvature 0” 

dww = f2 - ;[co, w], 

dwi2 = -[w, S’2], 

iw(h)w = h, 

iw(h)Q = 0, 

lw@)o = -[A, WI, 
Iw@W = -0, m 

for any h E Lie G. 

(1) 

(2) 

(3) 

(4) 

(5) 
(6) 

Then the equivariant cohomology for the action of 6 on M is the basic cohomology of the 
graded differential algebra (W(G) @ Q(M), dw + dM, iw + iM, ZW + ZM). It generates 
the so-called Weil model of equivariant cohomology. 

Now let us consider another Lie group H such that M is the base space of some principal 
H-bundle P(M, H) on which the action of 6 can be lifted. This bundle is also equipped with 
standard differential operations: dp, ip, Zp. Then some equivariant cohomology classes 
can be represented as follows: consider a &invariant H-connection r on P. Extend r to 
W(G) @ Q(M), still denoting it r. Since r does not depend on w, it fulfills 

iw(h)r = 0, (7) 

(lw + lF)(A)r = 0, (8) 

for any h E Lie 6. This expresses the basicity of r in the so-called intermediate model of 
equivariant cohomology. In this model, the exterior derivative reads 

Dint = dw + dp + UP - ip(Q) (9) 

so that 

Dintr = dpr - .+(f2)r 

and the equivariant curvature of r in the intermediate model reads 

R,z(r, W, Q) = Di,tr + $[r, rl. 

(10) 

(11) 
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ktR;t = [Rr$, rlt (12) 
ipjJ(h)R;; = 0, (13) 

(Ew + l+R;; = 0. (14) 

The H-fibration is eliminated by considering symmetric H-invariant polynomials I:: = 

Z(R;;). 
To go to the more usual Weil model, we use the Kalkman differential algebra isomorphism 

exp(ip(w)), thus obtaining 

(dw + dp)ZZ = 0, (15) 

(iw + ip)(A)z; = 0, (16) 

(lw + zp)(a)Z~ = 0, (17) 

where Z? = exp(ip (w))ZLy . Now since the H-fibration has disappeared, 1; lies in W(G) 8 
52(M). Under the assumption that M is a principal G-bundle over M/Q, we can replace 
w and Q by a G-connection 8 and its curvature 0 on M. Cartan’s Theorem 3 guarantees 
that our new representative gives a representative of the same equivariant cohomology class 
[7,12]. Still denoting this representative by Zz, we verify that 

dmZz = 0, (18) 

iM(h)z; = 0, (19) 

z&)1; = 0. (20) 

Now, we are ready to use this method in topological 4D-gravity. 

3. Wu’s construction [14] in topological 4D-gravity 

Let E be a 4D smooth manifold. The fundamental objects in Ge are the metrics of 
.E and the generators of the Weil algebra of Diffo(E), the connected component of the 
diffeomorphism group of E . The structure equations then read 

s’OPg = &V + L@P (w)g, 

stop* = -PP(fi)g + L’“P(w)P, 

Stop@ = R - +, w], 

stops2 = -[w, a]. 

(21) 

(22) 

(23) 

(24) 

Let us note that the form of these structure equations is universal (i.e. independent of the 
model we choose). Now, let us apply the precepts of the previous section. The group of dif- 
feomorphisms of .E plays the role of the gauge group 6 over Met(E). The H-fibration 
is obtained by considering the frame bundle over E, F(E), 3 and our final principal 

3 Note that F(Z) is the principal bundle associated to the tangent vector bundle TC of E. 
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GL(4,1W)-bundle P is just Met(Z) x F(Z). The Diff(Z)-invariant GL(4, IF!)-connection 
r on Met(C) x F(X) is given by 

rlLk = rLC(gQ + ;gh”Gg”,, (25) 

where f Lc (g) is the Levi-Civita connection of g E Met(Z), and 6 is the exterior derivative 
on Met(X) [4,8]. 

This GL(4, IW)-connection is used in the intermediate model. Before going any further, 
let us notice that in the Weil model, this connection reads 

which is comparable with (2.5) in [ 141. Now, the intermediate curvature 

Rlenq(r, W, Q) = Di,rr - $[r, r] (27) 

gives the corresponding Weil curvature 

(28) 

which is of the form (2.6) of Wu [ 141. 
Now, let us construct some observables. 

4. Some observables for topological 4D-gravity 

In order to generate observables of the theory, we first eliminate the GL(4, IW)-fibration. 
As explained in Section 2 this is achieved by considering symmetric GL(4, IW)-invariant 
polynomials. The Euler class and the Pontrjagin classes generated by Rz are such poly- 
nomials [lo]. Actually, only the first Pontrjagin class is relevant. 4 Up to normalization 
factors, those two cohomology classes are given by 

(29) 

and decompose into five terms 

@=Q~+L~:+Q;+Q:+& (31) 

P:=G;+G;+G;+G;+G,O, (32) 

4 The zeroth class is trivially 1 while the second (and the highest) class is the square of the Euler class. 
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where the upper index refers to the form degree on Met(E) while the lower one refers to the 
form degree on Z. These expressions are to be compared with (2.9) of [ 141. 5 Observables 
extracted from monomials (Ez)m (P?)” . 

(p&“(p$ = Qm+n) + “p(m+n)-l _ v$(m+n)-2 

+qm++3 + V44(m+n)-4, 
(33) 

with 

4(m+n) 
“0 = (Q;>‘YG;Y, (34) 

4(m+n)-1 
“I = ~z(Q$‘YG;)~-‘G; + m(Q;)“-l Q;(G$)“, (35) 

4(m+n)-2 
“2 = n(Q;)m(G;)“-lG; + 

n(n - 1) 
-<Q$YG;)n-2(G:)2 2 

+mn(Q;)m-lQ;(G;>“-‘G; + m(Q;)“-‘Q;(G;t)” 

+ 
m(m - 1) 

2 
<Q”,>m-2Q;Q:<G;>“, (36) 

4(m+n)-3 
“3 = ~z(Q;)~(G;)“-‘G; + 

n(n - 1) 
,-(Q;)m(G;)“-2G;G; 

+n(n - l)@ - 2, 
6 

(Q;>m(Gf,)n-3(G:)3 

+mn(Q$“-‘Q:(Q$“-‘Gi 

+m ~(Q~)m-lQ:(G~)~-2(G~)2 

+mn(Qi)m-l Qi(G$“-‘G: 

+n 
m(m - 1) 

2 
(Q~)“-2(Q:)2(G~>“-1G: 

+m(Q$m-’ Q: (Gi)” + m(m2A ‘) ( Q$m-2 Qz Q:(G$)” 

+ 
m(m - l)(m - 2) 

6 
(Q:>“-3(Q:)3K$)“, (37) 

“,4(m+n)-4 =n(Q;)“(&)“-‘G4, 

n(n - 1) 
+p 

4 m 
2 <Q,> (G;)“-2W;>2 + G:G:) 

+ 
n(n - l)(n - 2) 

6 
<Q:>m(G:Y-3V$)2G; 

+n(n - l)(n - 2)(n - 3) 

24 
(Q;>m(G:Y-4(G3)4 1 

+mn( Q$m-’ QT (G$“-‘Gi 

5 In earlier references [ 1 l] devoted to algebraic studies of topological gravity, one can find similar formulae 
whose geometrical meaning is given here. 
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i-m ??$ (Q;)+’ Q;(,‘+-2G$G; 

+m 
n(n - l)(n - 2) 

6 
<Q:Y-’ Q:(G;>“-3(G:)3 

+mn( QiY-’ Q~(G$“-‘G~ 

i-m T(Q;)--l Q$(G;)“-2(G;)2 

+n m(m2- ‘) (Q~)“-2(Q:)2(G~)“-‘G: 

+ 

mn(m - l)(n - 1) 

4 
(Q~)“-2(Q:>2(G~)“-2(G:)2 

+mn(Q~)m-lQ~(G~)n-lG~ 

+n m(m2- l’cQ5”1-‘Q~Q:(G~)“-‘G: 

+n 
m(m - l)(m - 2) 

6 
(Q;)“‘-“Q;(G;)“-‘G; 

+m(Q~)“-‘Q~(@J” 
m(m - 1) 

+ 2 
(Q:>“-2((Q:>2 + Q:Q:W$” 

+ 
m(m - l)(m - 2) 

6 
<Q:>‘+‘(Q:,‘Q;<@ 

+ 
m(m - l)(m - 2)(m - 3) 

24 (Q$‘+4(Q:)4(G:Y. (38) 

Next, we replace w and 0 by a Diff (_?Z)-connection 8 and its curvature 0 on Met(Z). The 
corresponding forms fulfill the “descent” equations 

cSV~*-~ + dc V;:;p+l = 0, P (39) 

2(A) vpp + iz. (A) v;y- = 0, (40) 

L(qy + z&+a>v,4”-p = 0, (41) 

where Z and L are the inner product and Lie derivative on Met(Z). Finally, we integrate 
over cycles on JC to obtain forrns on Met(Z) only 

v4n-p _ - 
i 

v4n-P 
P . (42) 

YP 

Exactly as in the 2D-gravity, only 

v4n-4 = 

i 

v4n-4 
4 

c 

(43) 
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defines an equivariant form on Met(Z). This gives observables of Gr?, which are the 

analogues of the Mumford invariants appearing in Gr:‘. 
An explicit expression of the Q’s and the G’s is given in Appendix A, 

5. Conclusion 

All the work done above can be applied to higher-dimensional gravity theory. Of course 
this also applies to Yang-Mills topological theory. Nevertheless, in this last case things are 
much simpler since the gauge group does not act on the space-time manifold _E, while in 
gravity theory the diffeomorphism group does. 
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Appendix A 

It was already shown in [ 121 that the Weil curvature takes the form 

(Rz); = (P - i&$RLC + $c(o)i&O)RLC + $DLC A ; 

- $ix(w)DLc A ; - bl?l_$ + iDLc A 6);, 

where 

3, = @g,, - lZ(@)&,) d_@ = Y/J@ tip, 

4; = P”(@,, - ~c(w)g,,) = &?“(&L) = (g-‘F);, 

(DLc A 5); = gp”(DpLcf, - DpLcFp). 

Then, after a “straightforward’ algebraic juggle, one finally obtains 

Q: = 

,+VPU 

-gvao, CR”‘); A (RLc); = Ec, 
& 

Q&25 g,,hg,, (RLc)h, A 
( 

-iz(co)RLC + i DLc A p 
> 

x 
, 

P 

(A-1) 

(A.3 

(A.3) 

(A.4) 

(A.3 

(-4.6) 

- 2(ic(w)RLc)i A (DLc A 5): 

+ (DLc A ;); A (DLc A 3); 
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+ (P$ A (i&+)i&o)R=c - i&)(DLC A ;) 

- $4 - DLc A ii);], 

Q: = 

.+“PO 

-gvAg,,(ic(w)i~(w)RLC - ic(w)(DLc A ;) 
z/g 

A(-~&J)R=~ + ;DLc A ;),x, 

Qi= 

@"PO 

-gvAg,,(ic(w)i~(w)RLC - Cd4(DLc A 3) 
4%/E 

A(iz(o)(i&)RLC - i&o)(DLc A ;) 

64.7) 

(A.W 

b-4.9) 

Finally, the G’s are obtained by replacing (e~“~“/&)g,~g,x in the Q’s by (SrSi - 6FSf). 
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F-91191, Gif-sur-Yvette, France

E-mail: bauer@amoco.saclay.cea.fr

Georges Girardi, Ramond Stora and Frank Thuillier

LAPTH

Chemin de Bellevue, BP 110, F-74941 Annecy-le-Vieux cedex, France

E-mail: girardi@lapp.in2p3.fr, thuillie@lapp.in2p3.fr

Abstract: We review definitions of generalized parallel transports in terms of Cheeger-

Simons differential characters. Integration formulae are given in terms of Deligne-Beilinson

cohomology classes. These representations of parallel transport can be extended to situa-

tions involving distributions as is appropriate in the context of quantized fields.

Keywords: Topological Field Theories.

c© SISSA 2005 http://jhep.sissa.it/archive/papers/jhep082005027.pdf/jhep082005027.pdf

mailto:bauer@amoco.saclay.cea.fr
mailto:girardi@lapp.in2p3.fr
mailto:thuillie@lapp.in2p3.fr
http://jhep.sissa.it/stdsearch?keywords=Topological_Field_Theories


J
H
E
P
0
8
(
2
0
0
5
)
0
2
7

Contents

1. Introduction 2

2. Maxwell Semi-Classical theory (à la Feynman) 2
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1. Introduction

Parallel transports and generalizations thereof have been repeatedly met both in mathe-

matics [1 – 7] and in global aspects of gauge theories [8 – 10], which played a major role in

elementary particle physics.

It has taken some time for the existing mathematics [11 – 15, 7] to become known to

physicists [9, 10, 16 – 19].

At the semi-classical level one is lead to integrate objects more general than differen-

tial forms over cycles with a result defined modulo integers; Cheeger-Simons differential

characters [2] are privileged candidates. Their integral representations in terms of Deligne-

Beilinson smooth cohomology classes are particularly well adapted to field theory for two

reasons : first of all, they involve locally defined fields subject to some gluing properties.

Besides, they allow for natural generalizations well adapted to, at least, semi-classical quan-

tization. Indeed the latter already requires regularizing (thickening) the integration cycles,

an operation which can be performed easily within the Deligne-Beilinson cohomology frame-

work. This operation is less naive than one might think; indeed the corresponding currents

are not any longer differential forms (de Rahm currents) but Deligne-Beilinson classes. In

view of this phenomenon we shall proceed in detail from the semi-classical situation for

which the use of Cheeger-Simons characters is well adapted. In this case there exist canon-

ical integral representations in terms of differential forms with discontinuous coefficients

and therefore inappropriate for applications to quantum fields, even in the semi-classical

approximation. Fortunately, these integral representations can be replaced by others with

smooth coefficients. The latter are easily generalizable to situations involving distributions

and therefore well adapted to quantum fields. There is however a price to pay: the dif-

ferential forms involved in the classical formulae have to be replaced (non canonically) by

Deligne-Beilinson smooth classes.

We start in section 2 with the prototype example of Maxwell’s electromagnetism in

which a functional integral is defined under “reasonable” hypotheses concerning the in-

teraction with an external current. The rest of the paper is devoted to a sequence of

constructions which give a mathematical foundation of the above hypotheses.

Section 3 proposes three equivalent ways to describe Cheeger-Simons differential char-

acters in terms of the integration of Deligne-Beilinson cohomology classes.

Section 4 presents the natural generalizations required upon quantization: the integra-

tion of Deligne-Beilinson classes with distributional coefficients.

Section 5 contains our concluding remarks.

A number of technical details are collected in three appendices.

2. Maxwell Semi-Classical theory (à la Feynman)

While in a classical theory the action (when it exists) is optional (in principle, the equations

of motion are sufficient), it becomes the keystone of the Feynman semi-classical point of

view. Hence, such an action must be carefully defined. In the context of Maxwell’s elec-

tromagnetism, we consider the euclidean action defined on a 4-dimensional, riemmannian,1

– 2 –
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compact manifold M4

SEM =
1

2

∫

M4

F ∧ ∗F + i · “

∫

M4

j ∧ A ” . (2.1)

Quotes emphasize that we have to make precise the meaning of the second integral since A

is not a 1-form on M4, but rather a connection on a U(1)-bundle over M4, with curvature

F . We defer until the next section a mathematically sound definition 2 of ”
∫
M4

j ∧ A ” for

j a 3-form with integral periods.

At this point, we only need to know that ”
∫
M4

j ∧ A ” will be defined modulo 2πZ and

will fulfill the following natural property : if A = A0 + α (with A0 a fixed U(1)-connection

and α a generic 1-form), then

“

∫

M4

j ∧ A ” = “

∫

M4

j ∧ A0 ” +

∫

M4

j ∧ α . (2.2)

Gauge invariance requires
∫
M4

j∧(g−1dg) ∈ 2πZ which is less restrictive than the ”classical”

requirement
∫
M4

j∧ (g−1dg) = 0, commonly assumed [20, 21] to hold at the quantum level.

Once the choice of definition of the action integral with the above property has been

made, we can try to evaluate the state 3 (~ = 1)
〈
e
− i· “

R
M4

j∧A ”
〉

=

∫
DA e

− 1
2

R
M4

F∧∗F − i· “
R

M4
j∧A ”

, (2.3)

where A is a U(1)-connection. First let

A = A0 + α , (2.4)

with A0 a background connection and α a globally defined 1-form. Then, denoting by

F0 = dA0 the background curvature, we obtain
〈
e
− i· “

R
M4

j∧A ”
〉

= e
− 1

2

R
M4

F0∧∗F0 − i· “
R

M4
j∧A0 ”

×

×

∫
Dα e

− 1
2

R
M4

dα∧∗dα−
R

M4
F0∧∗dα− i·

R
M4

j∧α
. (2.5)

The 1-form α is linearly coupled to (j + i d∗F0) and we need to gauge fix the α integration.

Note that
∫

j∧α is an ordinary integral. Gauge transformations connected with the identity

are eliminated by choosing a Green function (ξ, the gauge parameter)

Gξ = [δd + ξdδ]−1 , ξ > 0 , (2.6)

in the subspace orthogonal to harmonic forms (the elimination of large gauge transforma-

tions will come later). So, we are led to
〈
e
− i· “

R
M4

j∧A ”
〉

= e
− 1

2

R
M4

F0∧∗F0 − i· “
R

M4
j∧A0”

×

× e
− 1

2

R
M4

(j+i d∗F0)⊥Gξ ∗(j+i d∗F0)⊥ × Z
(
j‖

)
. (2.7)

The subscript ⊥ (resp. ‖) refers to the decomposition of forms into components orthogonal

to (resp. along) harmonic forms. We shall come to the definition of Z(j‖) later.

1* is the usual Hodge operator.
2It will turn out that more data than just the 3-form j will be needed.
3A linear functional on observables.

– 3 –
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The A0 dependence can be reduced to:
〈
e
− i· “

R
M4

j∧A ”
〉

= e
− 1

2

R
M4

F0‖∧∗F0 − i· “
R

M4
j‖∧A0”

×

× e
− 1

2

R
M4

j⊥Gξ ∗j⊥ · Z
(
j‖

)
. (2.8)

The first term yields an overall normalization factor to be divided out. The third term is

ξ independent by dj = 0. The forms α‖ and j‖ being harmonic are necessarily closed (also

co-closed). Using Poincaré duality and assuming no torsion, we can decompose them along

a dual basis of integral 3-cycles and 1-cycles respectively

α‖ =
∑

k

αk ζk
(3) + d(· · ·) , j‖ =

∑

k

nkζk
(1) + d(· · ·)

with 〈
ζk

(3)ζl
(1)

〉
= δkl , (2.9)

where the αk’s are real numbers since α is real, while the nk’s are integers since j‖ has

integral periods. With this decomposition of α‖ and j‖, we can formally write

Z(j‖) =

∫
Dα‖ e

i·
R

M4
α‖∧j‖ =

∫
d~α e i~n·~α , (2.10)

where ~α = (α1, . . . , αm) and ~n = (n1, . . . , nm).

Now, large gauge transformations are :

αk 7→ αk + pk , pk ∈ 2πZ (2.11)

and can be factored out by transforming αk integration into ϑk integration 0 ≤ ϑk < 2π:

Z(j‖) =

∫
d~ϑ e i~n·~ϑ . (2.12)

These angles ϑk parametrize H1(M4, R)/H1(M4, Z), still assuming no torsion (torsion

yields an extra factor).

Similarly

e
i· “

R
M4

j‖∧A0”
= e i~n·~ϑ0 , (2.13)

where ϑ0k are fixed angles which may be incorporated into ϑk.

To conclude, after normalization, the state 〈 〉 can be decomposed into gauge invariant

states labelled by the angles ~ϑ
〈
e

i· “
R

M4
j∧A ”

〉
=

∫
d~ϑ

〈
e

i· “
R

M4
j∧A ”

〉
~ϑ

, (2.14)

with 〈
e

i· “
R

M4
j∧A ”

〉
~ϑ

= e i~n·~ϑ · e
− 1

2

R
M4

j⊥Gξ ∗j⊥ , (2.15)

a familiar situation which provides an alternative to the commonly accepted choice [20, 21]

which amounts to integrate over ~ϑ’s with the result ∝ δ(j‖); in the latter case j = dm

are the only possible integration currents for A, while for the states defined in (2.15) the

currents j are only required to be closed forms with integral periods. In other words,

homological triviality of Wilson loops or appropriately smeared version thereof are not

consequences of gauge invariance, but rather, of some form of locality.

– 4 –
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3. Integral representations of differential characters

In section 2 we have described the physical consequences of “
∫
M

j ∧ A ” being defined

modulo 2πZ (with j a form with integral periods). We shall now proceed to give some

substance to this assumption and write down explicit formulae.

To start with, let us recall that one can associate to any closed curve4 Γ in a manifold

M a closed current δΓ (i.e. a closed form whose local representatives have distributional

coefficients) such that integration of a form ω along Γ formally reduces to the integration

of δΓ ∧ ω over the whole of M [22].

We shall first try to find a satisfactory definition of the circulation integral of A along

a closed curve Γ by considering various situations. This study will naturally lead us to the

mathematical notion of differential character introduced by Cheeger and Simons [2].

Then, while seeking for a representation of a differential character supported by Čech-

de Rham cohomology theory, there will emerge a defining formula for “
∫
M

j ∧ A ” in

terms of Deligne-Beilinson cohomology [13]. We will see that for j = δΓ, there is a canonical

definition of this integral, whereas for general j there is a whole class of adequate definitions.

From now on, M will be a torsion-free smooth n-dimensional oriented compact man-

ifold without boundary.

3.1 Circulation of U(1) gauge fields as differential characters

Within Maxwell’s theory of electromagnetism on M4, due to the triviality of the homology

and cohomology groups of R
4 (i.e. any closed curve is a boundary, and any closed 3-form

is exact), the circulation of a U(1)-gauge field A along a closed curve Γ is a perfectly well-

defined and gauge invariant integral which measures the magnetic flux through any surface

Σ with boundary Γ = ∂Σ, namely

“

∮

Γ
A ” ≡

∮

Γ= ∂Σ
A =

∫

Σ
F . (3.1)

Of course, such a property fails for a general manifold M with non-trivial (co-)homology

groups. Nevertheless, it may be asked whether (3.1) can be maintained for boundaries

Γ = ∂Σ, assuming that “
∮
Γ A” has a mathematical meaning for any closed curve Γ in M .

Let us then consider a closed curve Γ that splits a closed surface Σ into two components

Σ+ and Σ− : Σ = Σ+ ∪ Σ− and Γ = ∂Σ+ = −∂Σ−, where the minus sign takes care of

orientations. Then, we would have

“

∮

Γ
A ” =

∫

Σ+

F (3.2)

since Γ = ∂Σ+, and

“

∮

Γ
A ” = −

∫

Σ−

F (3.3)

since Γ = ∂Σ−. Since F is a U(1) curvature, we know that
∮

Σ−

F +

∮

Σ+

F =

∮

Σ
F ∈ Z(1) := 2iπZ (3.4)

4By curve we mean a 1-dimensional embedded smooth submanifold of M .

– 5 –
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on any closed surface Σ. This suggests that, if it exists, “
∮
Γ A” is only defined modulo

Z(1) := 2iπZ. Otherwise stated, we can expect, for fixed A, “ 1
2iπ

∮
Γ A” to be some R/Z-

valued linear functional on the space of closed curves (cycles). Let us have a closer look at

such an assumption.

To begin with, a U(1)-gauge transformation, g, changes the connection A into the

connection Ag = A + g−1dg with the same curvature F ; therefore, if (3.1) holds

“

∮

∂Σ
Ag ” = “

∮

∂Σ
A + g−1dg ” =

∫

Σ
F = “

∮

∂Σ
A ”, (3.5)

i.e. “
∮
∂Σ A” is gauge invariant.

In fact, for any closed 1-form α on M , A + α is also a connection with curvature

F = dA, so that we obtain a relation similar to (3.5) with α in place of g−1dg. Con-

sequently, we can infer that connections with the same curvature may define (a priori

different) R/Z-valued linear functionals on cycles which coincide on boundaries. In this

sense, the “integral” of A on boundaries is completely defined by F .

For a general closed curve Γ and any gauge transformation g, we would like to maintain

gauge invariance of “
∮
Γ A ”, which is not immediate since the term

∮
Γ g−1dg may not vanish

(Γ not being necessarily a boundary). However, since g−1dg is the pullback by g of the

standard U(1) (' S1) volume 1-form, z−1dz, we have

∮

Γ
g−1dg ∈ Z(1) .

Accordingly, still assuming that “
∮
Γ A ” is defined modulo Z(1), we obtain the sought after

gauge invariance

“

∮

Γ
Ag ” = “

∮

Γ
A ” , (3.6)

though Γ is not a boundary.

All these requirements can be satisfied if we ask for (3.1) and define “ 1
2iπ

∮
Γ A” to be

an R/Z-valued functional, linear in Γ and affine in A,5, a property which is satisfied if we

set

“

∮

Γ
(A + γ)” = “

∮

Γ
A” +

∮

Γ
γ , (3.7)

where the last integral is the ordinary integral of the 1-form γ -in the same line of thought

recall (2.2)-. Then, for any closed 1-form α we have

“

∮

Γ
(A + α)” = “

∮

Γ
A” (3.8)

if and only if all periods of α take values in Z(1). In fact the 1-forms g−1dg, with g

running through the U(1)-gauge group, generate the space of closed 1-forms with Z(1)-

valued periods. That is, if per(α) ∈ Z(1), we can write

α = g−1dg + dλ

5This is a natural demand since the space of connections is an affine space.

– 6 –
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for some U(1)-gauge transformation g and some function λ on M . Then, as far as “inte-

gration” of A on closed curves is concerned, gauge invariance is equivalent to invariance

under A 7→ A + α, with α a form with Z(1)-valued periods. Therefore, it is expected that

two connections that differ by a form with Z(1)-valued periods define the same R/Z-valued

linear functional on the space of closed curves.

At this point, let us make some remarks. First, if the connection A is a 1-form on M

(for instance when the corresponding U(1)-bundle is flat), we must require that the gen-

eral definition of “
∮
Γ A ” reduces to the usual definition of the integral of a form. Second,

up to now, we have only considered U(1)-connections on M . In a more general situa-

tion we will consider objects A(p), representing antisymmetric tensor “gauge potentials”

which appear in supergravities and string theories [23]. However, the geometric situation

turns out to be more involved than in the case of connections. Indeed, a U(1)-connection,

although it is not a 1-form on M , is lifted as a 1-form on some principal U(1)-bundle

over M . Such A(p)’s will in general not be p-forms on M . It turns out that they can

be considered as connections on new mathematical objects called gerbes [13, 24]. Here

we will not go into such an interpretation: we will consider locally defined differential

forms “A(p)” on M whose differentials, F (p+1), are globally defined (p + 1)-forms with Z-

valued periods on M .6 We will define an R/Z-valued linear functional,“
∮
Sp

A(p)” on the

space of closed p-submanifolds, Sp, of M . Such linear functionals turn out to be differ-

ential characters in the sense of J. Cheeger and J. Simons. Differential characters have

been constructed within the framework of Chern-Simons’ theory of secondary character-

istic classes, an extension of the Chern-Weil theory. They were introduced to describe,

on the base space, secondary characteristic classes of principal bundles initially defined as

differential forms on the whole bundle space (see [3] for a review, and [2] for the original

reference).

Our integrals, “
∮
Sp

A(p)”, are related to Deligne-Beilinson cohomology classes as pre-

sented in [13] and therefore (cf. section A.7) offer a parametrization of differential charac-

ters.

In appendix A the reader will find notations, basic definitions and results concerning

smooth Deligne-Beilinson cohomology groups Hq(Cp, D).

Our basic example deals with a U(1)-connection on the n- dimensional manifold M . In

this case there is a one to one correspondence between the second smooth Deligne cohomol-

ogy group of M , H2(C2, D),7 and the set of equivalence classes of U(1) principal bundles

with connection, (P [U(1)], A) (cf. appendix C). We will show how to integrate an element

of H2(C2, D) over a 1-cycle, z1, and take this “integral” as a definition for “ 1
2iπ

∮
Γ A”. This

generalizes to integrating elements of Hp+1(Cp+1, D) over p-cycles, zp which provides a defi-

nition for “
∮
zp

A(p)”. As we shall see (section 3.2) the classical Weil construction, pertaining

to singular homology, both suggests a natural definition of elements of Hp+1(Cp+1, D) and

of their integration over a p-cycle. In [18] R. Zucchini gives integral representations of

“relative” differential characters, essentially identical with ours, independently of the ex-

6In this framework, A = (2iπ)A(1), and its curvature F = (2iπ)F (2).
7cf. appendix B.
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pression of the integrand in terms of Deligne-Beilinson classes. Later (section 3.3) we will

give another definition of the integral which avoids Weil’s analysis of the cycle and allows

for generalization.

3.2 Integration over a cycle: the appearance of Deligne-Beilinson classes

There is a natural procedure to define integration over integral cycles, based on the classic

work of André Weil [25]. In this paper, for any simple8 covering U of M , ”U-p-chains” are

defined as singular p-chains, Cp, such that

Cp = ∂C(0,p) :=
∑

α

C(0,p), α , (3.9)

where every C(0,p), α is a singular p-chain with carrier Uα (here, ∂ is the boundary operator

on Čech chains). A U-p-cycle zp is a closed U-p-chain (bzp = 0, with b the boundary

operator on singular chains). Then, it is shown that for any U-p-cycle zp of M there exists

a sequence of Čech (smooth) singular U-chains, z(k,p−k)

zW(p) :=
(
z(0,p), . . . , z(k,p−k), . . . , z(p,0)

)
, (3.10)

where each z(k,p−k) has support in some open (k + 1)-fold intersection of U , such that

∂z(0,p) = z(−1,p) := zp

bz(k,p−k) = ∂z(k+1,p−k−1) , k ∈ {1, . . . , p − 1}

b0z(p,0) := z(p,−1) , (3.11)

where b0 is just the “degree” operator on singular chains [25], z(p,−1) is an integral Čech

p-cycle of U and (∂z(k,p−k))α0···αk−1
=

∑
β z(k,p−k),βα0···αk−1

.

The collection zW(p) is called a Weil descent of zp, and the corresponding equations (3.11)

a Weil descent equation of zW(p).

Now, if ZW
(p) is another Weil descent of the same U-p-cycle zp, it differs from zW(p)

according to

Z(0,p) = z(0,p) + ∂t(1,p) + bt(0,p+1),

Z(k,p−k) = z(k,p−k) + bt(k,p−k+1) + ∂t(k+1,p−k) , k = 1, . . . , p − 1

Z(p,0) = z(p,0) + bt(p,1) + ∂t(p+1,0) , (3.12)

where the t(k,p−k+1) are some Čech U-chains. Since zp is fixed, we must have

∂b t(0,p+1) = 0 = b∂ t(0,p+1) , (3.13)

which means that ∂t(0,p+1) is a U-(p + 1)-cycle, z̃p+1 which in turn gives rise to a Weil

descent

z̃W
(p+1) :=

(
z̃(0,p+1) := t(0,p+1), z̃(1,p), . . . , z̃(k,p−k+1), . . . , z̃(p+1,0)

)
,

8Definitions and notations are given in appendix A.
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so that

Z(0,p) = z(0,p) + ∂(t(1,p) + z̃(1,p)) ,

Z(k,p−k) = z(k,p−k) + b(t(k,p−k+1) + z̃(k,p−k+1)) + ∂(t(k+1,p−k) + z̃(k+1,p−k)) ,

Z(p,0) = z(p,0) + b(t(p,1) + z̃(p,1)) + ∂(t(p+1,0) + z̃(p+1,0)) , (3.14)

with k = 1, . . . , p − 1. Accordingly, the general ambiguities on a Weil descent of a given

cycle zp of M take the form

Z(0,p) = z(0,p) + ∂h(1,p) ,

Z(k,p−k) = z(k,p−k) + bh(k,p−k+1) + ∂h(k+1,p−k) ,

Z(p,0) = z(p,0) + bh(p,1) + ∂h(p+1,0) , (3.15)

By identifying Weil descents that differ by ambiguities (3.15), one defines an equivalence

relation between Weil descents whose corresponding equivalence classes canonically rep-

resent U-p-cycles of M . Actually, one could introduce a boundary operator made of the

operators b and ∂, turning what we have just done into a homological game in which Weil

descent classes are homology classes.

Similarly — cf. appendix A —, a sequence

ω
(p)
D :=

(
ω(0,p), ω(1,p−1), . . . , ω(p,0),

Z

ω (p+1,−1)

)
, (3.16)

where ω(k,p−k) ∈ Č
k
(U , Ω(p−k)(M)) and

Z

ω (p+1,−1) ∈ Č
(p+1)

(U) defines a Deligne-Beilinson

cocycle if (
d̃ + δ

)
ω

(p)
D = Dω

(p)
D = 0 ,

i.e.

dp−kω
(k,p−k) = δω(k−1,p−k+1) , k = 1, · · · , p + 1 . (3.17)

In the above equation δ is the Čech coboundary operator, d−1
Z

ω (p+1,−1) is the injection of

numbers into Ω(0)(M) and d̃ the differential of the Deligne complex (it coincides with the

de Rham differential d, up to degree p−1 and is the zero map at degree p). By convention,

cohomology (resp. homology) indices are upper (resp. lower) indices, those referring to Čech

complex coming first.

Note that
Z

ω (p+1,−1) is necessarily a cocycle, and, although d̃ω(0,p) ≡ 0, dω(0,p) is the

restriction of a globally defined closed form ω(−1,p+1) with integral periods [25]. This

ω(−1,p+1) will be called the top form of the cocycle ω
(p)
D .

We can now proceed and build Deligne-Beilinson cohomology classes as equivalence

classes of Deligne-Beilinson cocycles related as follows:

$
(p)
D = ω

(p)
D + D QD ,

i.e.

$(0,p) = ω(0,p) + dq(0,p−1) ,

$(k,p−k) = ω(k,p−k) + dq(k,p−k−1) + δq(k−1,p−k) , k = 1, . . . , p ,

Z

$ (p+1,−1) =
Z

ω (p+1,−1) + δ
Z

q (p,−1) , (3.18)
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where q(k,p−k−1) ∈ Č
k
(U , Ω(p−k−1)(M)) and

Z

q (p,−1) ∈ Č
p
(U). As an immediate conse-

quence, all cocycles belonging to the same Deligne-Beilinson cohomology class have the

same top form.

The integral of a Deligne-Beilinson cocycle ω
(p)
D over a p-cycle zW(p) is naturally defined

as the pairing

∫

zW
(p)

ω
(p)
D :=

〈
ω

(p)
D , zW(p)

〉
:=

p∑

k=0

∫

z(k,p−k)

ω(k,p−k)

:=

p∑

k=0

1

(k + 1)!

∑

α0,···,αk

∫

z(k,p−k),α0···αk

ω
(k,p−k)
α0···αk

. (3.19)

In (3.19) the ambiguities on the representatives zW(p) (resp. ω
(p)
D ) of [zW(p)] (resp. [ω

(p)
D ])

generate terms of the form

∫

h(p+1,0)

d−1

(
Z

ω (p+1,−1) + δ
Z

q (p,−1)

)
+

∫

z(p,0)

d−1
Z

q (p,−1) . (3.20)

These terms are necessarily integers since the chains and the cochains appearing there are

integers. In other words, (3.19) extends to classes as long as we work modulo “integers”.

This also means that the duality so realized is over R/Z, not R, i.e. of Pontrjagin type.

Actually, this is not totally surprising since a Deligne-Beilinson cohomology class defines a

form up to a form with integral periods (cf. appendix A).

Many of the equalities we will encounter only hold true mod Z, accordingly we shall

use the notation “
Z
= ” to mean “ = . . . mod Z”.

With all this information, we finally set

∫

zp

[
ω

(p)
D

]
:=

∫
h
zW
(p)

i
[
ω

(p)
D

]
Z
=

p∑

k=0

∫

z(k,p−k)

ω(k,p−k) , (3.21)

for any representative of [ω
(p)
D ] and [zW(p)] to which we shall refer to (3.21) as the “Defining

Formula”.

Let us note that the linearity of (3.21) with respect to zp is clear since all descents are

linear.

3.2.1 Examples

Let us apply (3.21) to two simple cases. First, consider the situation where the cycle zp

is a boundary: zp = bcp+1. Due to the equivalence of singular and Čech homologies, any

Čech p-cycle, z(p,−1), arising from the descent of zp, is a Čech boundary, i.e.

z(p,−1) = ∂c(p+1,−1) , (3.22)

for some integral Čech chain c(p+1,−1). Then, the corresponding descent has a representative

of the form

zW(p) := (z(0,p) = bc(0,p+1), 0 . . . , 0, . . . , 0) , (3.23)
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with ∂c(0,p+1) = cp+1. Accordingly, the integral of [ω
(p)
D ] over this trivial cycle zp reads

∫

zp

[
ω

(p)
D

]
Z
=

∫

bc(0,p+1)

ω(0,p) Z
=

∫

c(0,p+1)

dω(0,p) Z
=

∫

c(0,p+1)

δ−1ω
(−1,p+1)

Z
=

∫

∂c(0,p+1)

ω(−1,p+1) Z
=

∫

cp+1

ω(−1,p+1) . (3.24)

This property is exactly what we were expecting when we considered the integration of a

U(1)-connection (cf the introduction to this section).

Second, let us assume that the (p + 1)-form associated to [ω
(p)
D ] is exact. Then, it can

be shown that there is a Deligne-Beilinson representative

ω
(p)
D :=

(
ω(0,p) = δ−1q

(−1,p), 0 . . . , 0, . . . , 0
)

(3.25)

of [ω
(p)
D ], where ω(−1,p+1) = dq(−1,p). The integration formula now reads

∫

zp

[
ω

(p)
D

]
Z
=

∫

z(0,p)

ω(0,p) Z
=

∫

z(0,p)

δ−1q
(−1,p)

Z
=

∫

∂z(0,p)

q(−1,p) Z
=

∫

zp

q(−1,p) , (3.26)

as expected. Indeed, on the one hand, as we write ω(−1,p+1) = dq(−1,p), we canonically

associate to ω(−1,p+1) a definite form, on the other hand, we have emphasized the fact

that a Deligne-Beilinson cohomology class [ω
(p)
D ] defines a p-form on M , up to p-forms with

integral periods, q(−1,p). It is then natural to find that the integral of [ω
(p)
D ] over a cycle

coincides -up to integers- with the integral of q(−1,p) over this cycle.

3.3 An equivalent integration over the whole manifold

In the previous approach that led to the Defining Formula, we have only dealt with integrals

defined over cycles. In view of further generalization we shall first express those as integrals

over the whole manifold M . A way to do so is to construct a version of Pontrjagin duality

in the Deligne-Beilinson framework. In other words, we construct a (non smooth) canonical

Deligne-Beilinson cohomology class [η
(n−p−1)
D (z)] associated to any singular p-cycle z on M

and a cup product (∪D) [6, 11, 13] such that
∫

z

[
ω

(p)
D

]
Z
=

∫

M

[
ω

(p)
D

]
∪D

[
η

(n−p−1)
D (z)

]
, (3.27)

for any Deligne-Beilinson cohomology class [ω
(p)
D ]. We refer the reader to appendix B for a

construction of (a representative of) [η
(n−p−1)
D (z)]. Now, let

η
(n−p−1)
D (z) :=

(
η(0,n−p−1), . . . , η(n−p−1,0),

Z

η (n−p,−1)

)
,

be a representative of [η
(n−p−1)
D (z)] and

ω
(p)
D :=

(
ω(0,p), . . . , ω(p,0),

Z

ω (p+1,−1)

)
,
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a representative of a Deligne-Beilinson cohomology class [ω
(p)
D ]. Then a representative of

the cup product [ω
(p)
D ] ∪D [η

(n−p−1)
D (z)] is given by

(
ω(0,p)

∪dη(0,n−p−1), . . . , ω(p,0)
∪dη(0,n−p−1),

Z

ω (p+1,−1)
∪η(0,n−p−1), . . . ,

Z

ω (p+1,−1)
∪η(n−p−1,0),

Z

ω (p+1,−1)
∪

Z

η (n−p,−1)

)
. (3.28)

The cup product ∪ within the Čech-de Rahm complex is defined in [27]. In this Deligne-

Beilinson cohomology class,
Z

ω (p+1,−1)
∪

Z

η (n−p,−1) is an integral Čech (n + 1)-cocycle which

is necessarily trivial since the covering of M is simple. Hence

Z

ω (p+1,−1)
∪

Z

η (n−p,−1) = δ
Z

χ (n,−1) (3.29)

for some integral Čech n-cochain
Z

χ (n,−1). Accordingly, considering M itself as a cycle we

can associate to it a Weil decomposition 9

MW = (m(0,n), . . . , m(k,n−k), . . . , m(n,0)) , (3.30)

so that we obtain
∫

M

[
ω

(p)
D

]
∪D

[
η

(n−p−1)
D (z)

]
Z
=

p∑

k=0

∫

m(k,n−k)

ω(k,p−k)
∪dη(0,n−p−1) +

+

n∑

k=p+1

∫

m(k,n−k)

Z

ω (p+1,−1)
∪η(k−p−1,n−k)

Z
=

p∑

k=0

∫

m(k,n−k)

ω(k,p−k)
∪dη(0,n−p−1) . (3.31)

It has to be noted that not all representatives of [MW ] and of [η
(n−p−1)
D (z)] are suitable.

Indeed, representatives of [η
(n−p−1)
D (z)] are de Rham currents and so cannot always be

integrated on a singular chain. Strictly speaking, the integration is possible only when the

current and the chain are transversal; this is the same problem as encountered in trying to

define the product of distributions. Intersection theory of chains in R
n assures that there

exist representatives of [MW ] and [zW(p)] for which (3.31) is well defined. More precisely the

allowed ambiguities on the representatives of the m’s and the η’s are just those required to

set the chains they represent in “general position”, so that their intersection can be defined

(see for instance [26]). Then we can show that (3.31) gives, up to integers, the same result

as (3.21).

We shall refer to formula (3.31) as the “Long Formula” which obviously allows to

generalize the integration of [ω
(p)
D ] over cycles in the sense that we can now define the

Deligne-Beilinson product of [ω
(p)
D ] with any Deligne-Beilinson cohomology class [η

(n−p−1)
D ]

(not necessarily representing a singular cycle) and integrate over M . As an exercise, one

can check that the two simple cases presented in subsection (3.2.1) lead to the same results

when using the Long Formula, instead of the Defining Formula.

9Which is nothing but a polyhedral decomposition of M , as defined in [22].
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3.4 Smoothing

Instead of using singular chains as in the previous construction we use here de Rham chains

which are equivalence classes of singular chains — for which the integrals of any smooth

form on M are the same ([22, p. 28]) —. Accordingly we introduce de Rham integration

currents

T (z)n−p+k
k

associated with z(k,p−k), elements of which can be seen as (n − p)-forms with compact

supports (and distributional coefficients). In analogy with (3.10) we obtain a sequence of

currents

T
(p)
W (z) = (T (z)n−p

0 , . . . , T (z)n−p+k
k , . . . , T (z)n

p ) , (3.32)

and the descent equations

dT (z)n−p+k
k = ∂T (z)n−p+k+1

k+1 , (3.33)

for k = 1, . . . , p − 1 and

∂T (z)n−p
0 = T (z)n−p

−1 := T (z)

∫

M

T (z)n
p ∈ [z(p,−1)] , (3.34)

where T (z) is the integration current of z and [z(p,−1)] is the Čech homology class of z in

M . In terms of these de Rham currents, the Defining Formula reads

∫

z

[
ω

(p)
D

]
Z
=

p∑

k=0

∫

M

T (z)n−p+k
k ¯ ω(k,p−k) , (3.35)

where we define:

T (z)n−p+k
k ¯ ω(k,p−k) =

1

(k + 1)!

∑

α0,···,αk

T (z)n−p+k
k, α0··· αk

∧ ω(k,p−k)
α0··· αk

. (3.36)

As a special case, the whole cycle M gives rise to a sequence

TW(M) =
(
T (M)00, . . . , T (M)k

k, . . . , T (M)n
n

)
, (3.37)

with

dT (M)k
k = ∂T (M)k+1

k+1 (3.38)

for k = 1, . . . , n − 1 and

∂T (M)00 = T (M) 0
−1 := T (M) = 1;

∫

M

T (M)n
n ∈ [m(n,−1)] , (3.39)

[m(n,−1)] being the Čech homology class of M . Accordingly, the Long Formula now reads

∫

M

[
ω

(p)
D

]
∪D

[
η

(n−p−1)
D (z)

]
Z
=

p∑

k=0

∫

M

T (M)k
k ¯

(
ω(k,p−k)

∪dη(0,n−p−1)
)

+

+
n∑

k=p+1

∫

M

T (M)k
k ¯

(
Z

ω (p+1,−1)
∪η(k−p−1,n−k)

)
. (3.40)
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The allowed ambiguities of de Rham currents representing [TW(M)] are bigger than

those implied by the Weil descent in the decomposition of M , except at the first and the

last steps — cf. (3.39) —. Indeed, in (3.40) an ambiguity may be any de Rham current

and not necessarily the integration current of an integral chain as in the case of (3.30), in

particular it can be any smooth form (but still with compact support). This freedom on

the ambiguities allows us to smooth the T (M)k
k currents occurring in the Long Formula,

replacing them by differential forms induced by a partition of unity on M , as shown below.

Let us seek for sequences of (smooth) forms that satisfy the same descent equations

as TW(M) and such that when substituted into (3.40) they define the same integrals.

Concerning the descent equations, it is well-known (see for instance [25]) that a partition

of unity on M , subordinate to the simple covering U of M , gives rise to a sequence of forms

ΘW(M) := (ϑ0
0, . . . , ϑ

k
k, . . . , ϑ

n
n ) , (3.41)

which satisfy homological descent equations

dϑk
k = ∂ϑk+1

k+1 (3.42)

k = 1, . . . , n − 1, as well as

∂ϑ0
0 = ϑ−1

−1 = 1 . (3.43)

Furthermore, since M is supposed to be compact, the forms ϑk
k can all be chosen with

compact supports in their defining open sets. Due to the smoothness of all the components

of ΘW(M), the second constraint of (3.39) reads
∫

M

ϑn
n := t(n,−1) + ∂r(n+1,−1) , (3.44)

where t(n,−1) is an integral Čech cycle while r(n+1,−1) is a real Čech chain. That is to say,

ϑn
n defines an integral cycle up to a real boundary. Using homological and cohomological

descents, one can show that t(n,−1) ∈ [m(n,−1)]. This is mainly due to the fact that the

integration of any closed n-form on M can be performed by means of a partition of unity

on M .

Let us compare TW(M) with ΘW(M) in order to replace TW(M) by ΘW(M) in (3.40).

To begin with,

∂ϑ0
0 − ∂T 0

0 = 0 ⇒ ϑ0
0 − T 0

0 = ∂R0
1 + d−1R

−1
0 , (3.45)

with ∂d−1R
−1
0 = 0, hence ∂R−1

0 = 0. As M is connected H0(M, R) = 0, R−1
0 = ∂R−1

1 . T 0
0

can be replaced by ϑ0
0 in (3.40) since

∫

M

d−1R
−1
0 ¯

(
ω(0,p−0)

∪dη(0,n−p−1)
)

=

∫

M

d
[
R−1

1 ¯

(
ω(0,p−0)

∪dη(0,n−p−1)
)]

= 0 .

(3.46)

Thus R−1
0 can be ignored in (3.45) and the first step of the descent reads

∂(ϑ1
1 − T 1

1 ) = d(ϑ0
0 − T 0

0 ) = d∂R0
1 = ∂dR0

1 , (3.47)

so that

ϑ1
1 − T 1

1 = dR0
1 + ∂R1

2 . (3.48)
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Similarly

ϑk
k − T k

k = dRk−1
k + ∂Rk

k+1 , k = 1, . . . , n. (3.49)

Finally, the constraints (3.34) and (3.44) give
∫

M

(ϑn
n − Tn

n ) = ∂λ−1
n+1 = ∂

∫

M

Rn
n+1 . (3.50)

Now, if we replace T k
k by ϑk

k and its ambiguities, the Long Formula reads:

∫

M

(. . .)
Z
=

p∑

k=0

∫

M

ϑk
k ¯

(
ω(k,p−k)

∪dη(0,n−p−1)
)

+

+
n∑

k=p+1

∫

M

ϑk
k ¯

(
Z

ω (p+1,−1)
∪η(k−p−1,n−k)

)
+

+

∫

M

∂Rn
n+1 ¯

(
Z

ω (p+1,−1)
∪η(n−p−1,0)

)
. (3.51)

The last term in this equation gives
∫

M

Rn
n+1 ¯ δ (

Z

ω (p+1,−1)
∪η(n−p−1,0)) =

∫

M

Rn
n+1 ¯ δ

Z

χ (n,−1)

=

∫

M

∂Rn
n+1 ¯

Z

χ (n,−1) =

∫

M

(ϑn
n − Tn

n )¯
Z

χ (n,−1) .(3.52)

Since all integrals of Tn
n ’s are integers, we obtain

∫

M

Rn
n+1 ¯ δ

(
Z

ω (p+1,−1)
∪η(n−p−1,0)

)
Z
=

∫

M

ϑn
n ¯

Z

χ (n,−1) ,

so that the (smoothed) Long Formula reads

∫

z

[
ω

(p)
D

]
Z
=

p∑

k=0

∫

M

ϑk
k ¯

(
ω(k,p−k)

∪dη(0,n−p−1)
)

+
n∑

k=p+1

∫

M

ϑk
k ¯

(
Z

ω (p+1,−1)
∪η(k−p−1,n−k)

)
+

∫

M

ϑn
n ¯

Z

χ (n,−1) . (3.53)

Let us make some final remarks. First, if the simple covering U of M is such that all

intersections of order larger than n + 1 are empty — we shall say that U is “excellent” —

we deduce that ∫

M

ϑn
n ¯

Z

χ (n,−1) ∈ Z , (3.54)

which leads to
∫

z

[ω
(p)
D ]

Z
=

p∑

k=0

∫

M

ϑk
k ¯

(
ω(k,p−k)

∪dη(0,n−p−1)
)

+

+
n∑

k=p+1

∫

M

ϑk
k ¯

(
Z

ω (p+1,−1)
∪η(k−p−1,n−k)

)
. (3.55)

In other words, with respect to an excellent covering of M , the ϑk
k’s play the role of

the integration currents T (M)k
k of the Weil descent of M .
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Second, the previous construction, i.e. the smoothing, cannot be applied to the Defin-

ing Formula without care. Indeed, a simple covering of M does not always induce a

simple covering on the p-cycle zp, so that, although a (p + 1)-cocycle on M reduces to a

(p + 1)-cocycle on zp, this cocycle is not necessarily trivial. Therefore we cannot establish

a smoothed Defining Formula in full generality. However, let us assume that zp admits a

tubular neighborhood, Vz, such that U|Vz
- the restriction to Vz of the simple covering U of

M - is also simple. Then, as a tubular neighborhood, Vz has necessarily the same cohomol-

ogy as zp, and since U|Vz
is simple, this cohomology is also the Čech cohomology of U|Vz

.

In particular the Čech (p + 1)-cocycle,
Z

ω (p+1,−1), on M is also a (p + 1)-cocycle on Vz and

is necessarily trivial on it, that is:
Z

ω (p+1,−1) = δ
Z

$(p,−1) for some integral Čech p-cochain
Z

$(p,−1), just as in the case of the Long Formula. With all this, a natural candidate for a

smoothed Defining Formula would be

∫

zp

[
ω

(p)
D

]
Z
=

p−1∑

k=0

∫

zp

ϑk
k ¯ω(k,p−k) +

∫

zp

ϑp
p ¯

(
ω(p,0) −

Z

$(p,−1)

)
,

which compares to the smoothed Long Formula (3.53).

As a third remark, one can wonder what is the relation between the Defining Formu-

las and the decomposition A = A0 + α used in section 2 in the case of U(1)-connections.

Let us consider two Deligne-Beilinson classes, [ωD] and [χD], representing the same Čech

cohomology class, [ξ̌], as detailed in appendix A.6. We know that [ωD] and [χD] dif-

fer by a Deligne-Beilinson class, [(δα)D] coming from a global form α on M . This ex-

actly corresponds to the standard decomposition A = A0 + α for U(1)-connections met

in section 2. This can also be seen at the level of the integrals : choose representatives

(ω(0,p), · · · , ω(p,0),
Z

ω(p+1,−1)) and (χ(0,p), · · · , χ(p,0),
Z

χ(p+1,−1)) of [ωD] and [χD] respectively,

and write the previous decomposition
(

χ(0,p), . . . , χ(p,0),
Z

χ(p+1,−1)

)
=

(
ω(0,p), . . . , ω(p,0),

Z

ω(p+1,−1)

)
+ (0, . . . , 0, δα) +

+ D(q(0,p−1), · · · , q(p−1,0),
Z

q(p,−1)) , (3.56)

for some [qD]. By assumption
Z

χ(p+1,−1) and
Z

ω(p+1,−1) are cohomologous, so
∫

zp

[χD]
Z
=

∫

zp

[ωD] +

∫

zp

α .

This result also means that the standard decomposition A = A0 + α of U(1)-connections,

extends to any generalized p-connection.

A final remark on notations, we could have denoted the integral over zp of the class

[ω
(p)
D ] simply as:

∫

zp

[
ω

(p)
D

]
Z
=

〈[
ω

(p)
D

]
,
[
zW(p)

]〉

Z
=

〈
ω(0,p) + · · ·ω(p,0) +

Z

ω (p+1,−1), z(0,p) + · · · + z(p,0)

〉

Z
=

〈
[ω

(p)
D ] ∪D [η

(n−p−1)
D (z)], M

〉
(3.57)
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which has the advantage to make easier the proof of independence with respect to the

various representatives.

4. Integration of Deligne-Beilinson classes with distributional coefficients

In any quantization procedure, ω will be by nature distributional and integration over a

cycle will, in general, be ill defined so that the integration current of the cycle will have

to be replaced by some regularized form. This is the situation which has been exhibited

in the example of section 2. A canonical way to perform such an operation for [ω
(p)
D ] of

distributional character is to use formula (3.53), (3.57) with zW(p) replaced by a smooth

Deligne-Beilinson class [j
(n−p−1)
D ], the integration formula being

〈
[ω

(p)
D ] ∪D [j

(n−p−1)
D ], M

〉
Z
=

p∑

k=0

∫

M

ϑk
k ¯

(
ω(k,p−k)

∪dj(0,n−p−1)
)

+

+
n∑

k=p+1

∫

M

ϑk
k ¯

(
Z

ω (p+1,−1)
∪ j(k−p−1,n−k)

)

+

∫

M

ϑn
n ¯

Z

χ (n,−1) . (4.1)

Note that (4.1) is — mod Z ! — symmetric in [ω
(p)
D ] and [j

(n−p−1)
D ], as can be easily

verified. Whereas we have shown that to the current of a cycle zp is associated a special

Deligne-Beilinson class [η
(n−p−1)
D (z)], the map zp → [η

(n−p−1)
D (z)] being analogous to the

cycle map in [6], we do not know of such an assignment in the case of a smoothed version.

It is expected that after renormalization some of the characteristics of the regularized class

[j
(n−p−1)
D ] will survive.

5. Conclusions

We have described in some details a class of topological actions which are “topological”

in the sense that they are defined modulo “integers”, a situation repeatedly met in semi

classical treatments of various field theories involving particular geometries (mostly gauge

theories, including gravity). They are described by integral formulae which involve refine-

ments of closed differential forms with integral periods named Deligne-Beilinson cohomol-

ogy classes. The integrals are written as pairings of two such classes in such a way that one

of them may have a distributional character as demanded in most field theory contexts.

A. Deligne-Beilinson cohomology

We have not been able to find an elementary discussion of Deligne-Beilinson cohomology

in the mathematical literature. The purpose of this appendix is to fill in this gap, con-

centrating on the computation of Deligne-Beilinson cohomology and on the proof of its

independence upon the covering. For more algebraic exposés we refer to [11, 13].
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A.1 Definitions and notations

As in the main text, M denotes a compact differentiable manifold of dimension n, and

{Uα}α∈I a simple covering10 of M, M = ∪α∈IUα. A Čech cochain of degree k with values

in an abelian group G is a collection of elements cα0···αk
of G, one for each intersection

Uα0···αk
, which is totally antisymmetric in all its indices and vanishes on empty intersections.

A Čech cochain of degree −1 is a constant map from M to G.

The Čech differential, δ, maps (k− 1)-cochains to k-cochains and squares to 0. Acting

on (−1)-cochains, δ is the restriction : (δc)α0 = c on any non empty Uα0 . For k ≥ 1, if

cα0···αk−1
is a (k − 1)-cochain and Uα0···αk

6= ∅,

(δc)α0···αk
=

k∑

i=0

(−)icα0···bαi···αk
(A.1)

were the ̂ means omission.

The elements in the kernel of δ are Čech cocycles, those in the image of δ are Čech

coboundaries.

In the sequel, we shall have no use of general abelian groups G, but R ( for real Čech

cochains), Z ( for integral Čech cochains) and R/Z will play preferred roles.

One can also consider Čech cochains where each cα0···αk
is a differential l-form defined

on Uα0···αk
; such cochains are often referred to as Čech-de Rham cochains of bidegree (k, l).

In Čech degree −1, we retrieve global differential l-forms defined on M and δ is still defined

by restriction. On these “extended” Čech (k − 1)-cochains, k ≥ 1, the action of δ is still

given by (A.1) except for an overall multiplicative factor (−)l+1 on the right hand side :

each term makes sense with the proviso that it is restricted to the corresponding (k+1)-fold

intersection . This leads to the space11 denoted by Č(k)(U , Ωl(M)) in the main text. To

save space in this appendix, we shall denote it simply by Ω(k,l)(R), because most of the

time M and U will be fixed.

By convention, a “purely Čech ” cochain with constant coefficients (in a subgroup G of

R) receives form degree −1, so it belongs to Ω(k,−1)(G). The de Rham differential d maps

Ω(k,l)(G) into Ω(k,l+1)(G) for k ≥ 0 .12 We extend d to (−1)-forms as the injection which

maps an element of G ⊂ R to the corresponding constant function. This is sometimes

denoted by the symbol d−1. This extension still satisfies d 2 = 0 .

Later in the appendix, we shall need to compare several simple coverings. Suppose that

the simple covering V = {Vσ}σ∈J of M is a refinement of the simple covering U = {Uα}α∈I

: this means that there is the restriction map r : J −→ I such that Vσ ⊂ Ur(σ) for all

indices σ ∈ J . A Čech k-cochain, c, for U can be restricted to V : if the intersection Vσ0···σk

10Such an open covering is alternatively called a good covering in [27]. This means that any finite

intersection of Uα’s, Uα0···αq
= Uα0

∩ · · · ∩ Uαq
, (α0, · · · , αq) ∈ Iq+1, is either empty or diffeomorphic to

R
n.
11A more appropriate language for this setting involves sheaves, but we shall not use the corresponding

terminology.
12The sign factor (−1)l+1 insures that d δ + δ d = 0.
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is nonempty, then so is Ur(σ0)···r(σk), and

r(c)σ0···σk
≡

(
cr(σ0)···r(σk)

)
|Vσ0···σk

.

The Čech and de Rham differentials commute with restriction, i.e. δ ◦ r = r ◦ δ (it being

understood that the Čech differential on the left-hand side is for the covering V and on the

right-hand side for the covering U) and d ◦ r = r ◦ d.

A.2 Deligne-Beilinson cochains

Take an integer 0 ≤ p ≤ n + 1 ( n the dimension of the manifold) and consider the double

complex

Ω(0,−1)(Z)
d−1 //

δ

²²

Ω(0,0)(R)
d //

δ

²²

· · · d // Ω(0,p−1)(R)
0 //

δ

²²

0

Ω(1,−1)(Z)
d−1 //

δ

²²

Ω(1,0)(R)
d //

δ

²²

· · · d // Ω(1,p−1)(R)

δ

²²

0 // 0

Ω(2,−1)(Z)

δ

²²

d−1 // Ω(2,0)(R)

δ

²²

d // · · · d // Ω(2,p−1)(R)
0 //

δ

²²

0

...
...

...

The columns of this diagram form standard Čech complexes. The rows are Deligne com-

plexes of index p, that is de Rham complexes extended to the left by d−1 (the injection of

integral constants into real functions) and truncated on the right at (p − 1)-forms by the

0 map. We denote by d̃ this modified differential, to avoid confusion with the de Rham

differential, d.

We build a new “diagonal complex” from this double complex. The space Cq
p of

Deligne-Beilinson cochains of degree q ≥ 0 (with fixed index p) is defined by

Cq
p =






Ω(q,−1)(Z) +

q∑

k=1

Ω(q−k,k−1)(R) for 0 ≤ q < p

Ω(p,−1)(Z) +

p∑

k=1

Ω(p−k,k−1)(R) for q = p

Ω(q,−1)(Z) +

p∑

k=1

Ω(q−k,k−1)(R) for q > p

.

Elements of these spaces are respectively represented by the following sequences :

c =

(
c(0,q−1), · · · ,

Z

c (q,−1)

)
, c =

(
c(0,p−1), · · · ,

Z

c (p,−1)

)
,

c =

(
c(q−p,p−1), · · · ,

Z

c (q,−1)

)
,

with the last element Z-valued.13

13Our complex contains Ω(q,−1)(Z) while in the literature one usually finds Ω(q,−1)(Z(p)), where Z(p) =

(2iπ)Z. This difference is irrelevant for our purpose.
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We set Cp = C0
p ⊕ C1

p ⊕ · · ·.

The operator D = d̃+δ maps Cq
p to Cq+1

p and, due to the sign convention in the defini-

tion of δ on l-forms, D2 = 0. The complex (Cp, D) is called the Deligne-Beilinson complex,14

and the elements of Cp Deligne-Beilinson cochains. We write Zq
p =

{
KerD : Cq

p → Cq+1
p

}

(resp. Bq
p =

{
Im D : Cq−1

p → Cq
p

}
) for the space of Deligne-Beilinson cocycles (resp.

coboundaries).

We are interested in the cohomology of (Cp, D). A priori, it depends on the covering,

but we shall see later that the cohomologies for simple coverings are canonically isomorphic.

The projection π : Cq
p → Ω(q,−1)(Z) gives a chain map

· · · D // Cq
p

D //

π

²²

Cq+1
p

D //

π

²²

· · ·

· · · δ // Ω(q,−1)(Z)
δ // Ω(q+1,−1)(Z)

δ // · · ·

so that in all cases, there is a canonical map Hq(Cp, D) → Hq

Čech
(M, Z). The computation

of Hq(Cp, D) goes along different lines whether q ≤ p − 1 or q > p − 1.

A.3 Computation of Hq(Cp, D), q < p

In this case, we use the Poincaré lemma for differential forms (ensuring that for forms of

nonnegative degree, the de Rham cohomology is locally trivial) to show that

Hq(Cp, D) ' Hq−1

Čech
(M, R/Z) (I)

(the isomorphism is canonical). In particular, the canonical map

Hq(Cp, D) → Hq

Čech
(M, Z)

maps Hq(Cp, D) onto the subgroup Hq

Čech
(M, Z)torsion of torsion classes.

Proof. Suppose c = (c(0,q−1), c(1,q−2), · · · , c(q−1,0),
Z

c (q,−1)) is a Deligne-Beilinson cocycle.

This implies that d̃c(0,q−1) = 0, and since q ≤ p − 1, the operator d̃ in this equation

is the standard de Rham differential. So, by the Poincaré lemma, there is an element

ρ(0,q−2) ∈ Ω(0,q−2)(R) such that c(0,q−1) + d̃ρ(0,q−2) = 0. Accordingly the cocycle c is

cohomologous to the cocycle

c + Dρ(0,q−2) =

(
0, c(1,q−2), · · · , c(q−1,0),

Z

c (q,−1)

)
,

where c(1,q−2) ≡ c(1,q−2) + δρ(0,q−2).

The cocycle condition for c + Dρ(0,q−2) yields dc(1,q−2) = 0 were d is the standard

exterior derivative. The procedure can be iterated to show that the cohomology class of c

contains a representative of the form
(

0, · · · , 0, c(q−1,0),
Z

c (q,−1)

)

14A better notation would be (Cp(M),U , D).
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with the standard descent equations fulfilled :

dc(q−1,0) = 0 , δc(q−1,0) = d−1
Z

c (q,−1) , δ
Z

c (q,−1) = 0 .

The first equation just tells that c(q−1,0) = d−1ρ
(q−1,−1), where the components ρ(q−1,−1)

are real constants. This, combined with the second equation, implies that the integral Čech

cocycle
Z

c (q,−1) is exact as a real cocycle, so that it represents a torsion class.

Reduction modulo 1 turns ρ(q−1,−1) into an R/Z Čech cocycle and the ambiguity on

c(q−1,0)(mod 1) is a Čech coboundary. So we have proved the announced result, (I), which

is also the content of the following exact sequence [13]

0 //Hq−1(M, Z(p)) //Hq−1(M, R) //Hq(Cp, D) //Hq(M, Z(p))torsion //0.

A.4 The Čech homotopy operator

Here we introduce the Čech homotopy operator that we shall need to compute Hq(Cp, D) in

the special cases q ≥ p. This homotopy15 operator, which depends on a partition of unity

defined on M , is instrumental to establish the generalized Mayer-Vietoris exact sequence,

the Čech-de Rham isomorphism and the Collating Formula [27], a construction we illustrate

below.

A.4.1 The K operator on the enlarged double complex

Consider the following double complex :

Ω(−1,0)(R)
d //

δ

²²

· · · d // Ω(−1,p−1)(R)
0 //

δ

²²

0

Ω(0,−1)(Z)
d−1 //

δ

²²

Ω(0,0)(R)
d //

δ

²²

· · · d // Ω(0,p−1)(R)
0 //

δ

²²

0

Ω(1,−1)(Z)
d−1 //

δ

²²

Ω(1,0)(R)
d //

δ

²²

· · · d // Ω(1,p−1)(R)
0 //

δ

²²

0

Ω(2,−1)(Z)

δ
²²

d−1 // Ω(2,0)(R)

δ
²²

d // · · · d // Ω(2,p−1)(R)

δ
²²

0 // 0

...
...

...

where the de Rham complex of global differential forms truncated at degree (p − 1) has

been added at the top. We extend the definition of D to this enlarged complex.

Let us choose a partition of unity ϑα subordinate to the simple covering {Uα}α∈I of

M : each ϑα is a (smooth) non-negative function on M with compact support in Uα, and∑
α ϑα is the constant function 1 on M . On the enlarged complex, define an operator K

(depending on the chosen partition of unity) as follows.

15Ensuring that the Čech cohomology for forms of nonnegative degree is trivial.
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Take c = {cα0···αk
} ∈ Ω(k,l)(R), k, l ≥ 0. Due to the support properties of the ϑα’s,

cα0···αk
· ϑαk

(extended by 0 outside Uαk
) is a smooth differential form in each nonempty

Uα0···αk−1
. Let Kc ≡ {(−)l+1

∑
αk

cα0···αk
· ϑαk

} ∈ Ω(k−1,l)(R).

For c ∈ Ω(−1,l)(R), l ≥ 0, set Kc ≡ 0, and for c ∈ Ω(k,−1)(Z), k ≥ 0, set Kc ≡ Kd−1c ∈

Ω(k−1,0)(R).

Though we shall not try to compute its homology, note that K2 = 0 so K is a boundary

operator (or equivalently a co-differential).

A.4.2 The homotopy property and the fundamental identity

Algebraic manipulations show that Kδ + δK is the identity operator on Ω(k,l)(R), k ≥

−1, l ≥ 0 and d−1 on Ω(k,−1)(Z), k ≥ 0. In particular, in the enlarged double complex, the

vertical Čech complexes in nonnegative de Rham degree have vanishing Čech cohomology,

since K is a homotopy operator.

Acting on the enlarged double complex, Kd̃ lowers the Čech degree by one unit, so Kd̃

is locally nilpotent and 1 + Kd̃ is invertible : locally the geometric series for (1 + Kd̃)−1

stops after a finite number of terms. Moreover, as a consequence of
(
1 + Kd̃

) (
d̃ + δ

)
− δ(1 + Kd̃) = d̃ + Kd̃δ − δKd̃ = (1 − Kδ − δK) d̃ = 0 ,

(the first equality uses d̃ 2 = 0, the second d̃δ = −δd̃ and the last one that the image of d̃

lives in de Rham degree ≥ 0 where Kδ + δK = 1) one derives that on the enlarged double

complex, D and δ are conjugate, that is

(1 + Kd̃)D = δ(1 + Kd̃) . (♥)

This fundamental identity (♥) is at the heart of the computation of the Deligne-Beilinson

cohomology when q ≥ p as shown later in A.5 and A.6. It can also be useful in other

contexts as illustrated below.

A.4.3 Relation with the Čech-de Rham isomorphism

Suppose that in the first column of the enlarged complex we replace the coefficient group

Z by R, and that we take p = n + 1, n the dimension of the manifold, so that the lines

are usual de Rham complexes, hence d̃ = d in this enlarged context and the (♥) identity

can be written (1 + Kd)D = δ(1 + Kd). This double complex is a Čech-de Rham complex

with differential D = d + δ and of course q < p = n + 1 . In the sequel this is the complex

we have in mind when we refer to Čech-de Rham cochains, cocycles or coboundaries.

On the one hand if c(q,−1) ∈ Ω(q,−1)(R) is a Čech cocycle, it is a D-cocycle, hence its

top component (−Kd)q+1c(q,−1) is a global closed q-form, i.e. a de Rham q-cocycle.

On the other hand if c(q,−1) is a Čech coboundary, c(q,−1) = δγ(q−1,−1) for some

γ(q−1,−1) ∈ Ω(q−1,−1)(R), then using (♥) (1+Kd)−1c(q,−1) = D(1+Kd)−1γ(q−1,−1) is a D-

coboundary. Identifying top form components, (−Kd)q+1c(q,−1) is a de Rham coboundary

d(−Kd)q γ(q−1,−1).

Finally, if c = (c(−1,q), · · · , c(q−1,0), c(q,−1)) is a D-cocycle, c(q,−1) is a Čech cocycle,

c(−1,q) is a closed global de Rham q-form, and c is D-cohomologous to (1 + Kd)−1c(q,−1).

Indeed, start from D(1+Kd)−1K(c−c(q,−1)) = (1+Kd)−1δK(c−c(q,−1)), a consequence of
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the (♥) identity. As c− c(q,−1) has no component in de Rham degree −1, δK(c− c(q,−1)) =

(1 − Kδ)(c − c(q,−1)) by the homotopy property. By Dc = 0 = δc(q,−1), we obtain finally

that δK(c − c(q,−1)) = (1 + Kd)c − c(q,−1). Multiplication by (1 + Kd)−1 leads to

c = (1 + Kd)−1c(q,−1) + D(1 + Kd)−1K(c − c(q,−1)), (∗)

proving that c is D-cohomologous to (1 + Kd)−1c(q,−1). This implies that c(−1,q) is d-

cohomologous to (−Kd)q+1c(q,−1), explicitly,

c(−1,q) = (−Kd)q+1c(q,−1) + d

(
K

q−1∑

r=0

(−dK)rc(r,q−1−r)

)
,

which is the famous Collating Formula; see e.g. [27], where it is used to prove that c(q,−1) →

(−Kd)q+1c(q,−1) which maps (real) Čech cocycles to de Rham cocycles and (real) Čech

coboundaries to de Rham coboundaries induces an isomorphism in cohomology. With

notations closer to the ones used in the main text, the Collating Formula can be rewritten16

c(−1,q) = d
(
ϑ0

0 · c
(0,q−1) + ϑ1

1 · c
(1,q−2) + · · · + ϑq−1

q−1 · c
(q−1,0)

)
+ ϑq

q · c
(q,−1) .

The Collating Formula is related to the Weil theorem which can be rewritten neatly

using the Deligne-Beilinson machinery.

First, observe that Cp
p+1 = Cp

p but Zp
p+1 ⊂ Zp

p . Indeed on Ω(0,p−1) ⊂ Cp
p+1 the operator

d̃ is the genuine de Rham differential, while on Ω(0,p−1) ⊂ Cp
p it is the 0 map, so the condition

to be D-closed is more stringent in the first case. If c = (c(0,p−1), c(1,p−2), · · · , c(0,p−1),
Z

c(p,−1)) belongs to Zp
p , the standard de Rham differential applied to c(0,p−1) leads to a

global closed p-form. Indeed, δdc(0,p−1) = dδc(0,p−1) = ±d 2 c(1,p−2) = 0, so dc(0,p−1) is

the restriction of a global p-form, which is obviously closed. So there is a canonical map{
KerD : Cp

p → Cp+1
p

}
m
−→

{
Ker d : Ω(−1,p) → Ω(−1,p+1)

}
. The image of this map is not

totally obvious, but this is precisely the content of Weil’s theorem [25]: the sequence of

abelian groups

0 //Zp
p+1

i //Zp
p

m //

{
Closed global p-forms

with integral periods

}
//0

is exact.

A.4.4 Refinements

If the simple covering V = {Vσ}σ∈J of M is a refinement of the simple covering U = {Uα}α∈I

and {ϕσ} is a partition of unity for V, we define a (compatible) partition of unity for U

{ϑα} = {
∑

σ∈J

r(σ)=α

ϕσ}. For compatible partitions of unity, the homotopy operator commutes

with restriction, i.e. K ◦ r = r ◦ K (it being understood that the homotopy operator on

the left-hand side is for the covering V and on the right-hand side for the covering U). To

16Cf. (3.41)–(3.43) in the main text for properties of the θk
k ’s.
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summarize, restriction commutes with δ, d̃, D and K :

δ ◦ r = r ◦ δ , d̃ ◦ r = r ◦ d̃ , K ◦ r = r ◦ K , D ◦ r = r ◦ D . (A.2)

We could say this more pedantically by drawing the Deligne-Beilinson complexes (or

their enlarged versions) for U and V on top of each other (in three dimensions) and stating

that restriction is a (co-)chain map for all differentials or co-differentials defined up to now.

A.5 Computation of Hq(Cp, D), q > p

We show that for q > p ,

Hq(Cp, D) ' Hq

Čech
(M, Z) (II)

(the isomorphism is canonical).

Proof. Start from the simple observation that for q > p one has the inclusion Kd̃(Cq
p) ⊂ Cq

p ,

so that one can freely use (1 + Kd̃)D = δ(1 + Kd̃) to compute Hq(Cp, D).

The middle cohomology in the complex 0 //Cq−1
p

δ //Cq
p

δ //Cq+1
p

//0 is con-

centrated in de Rham degree −1 because δ does not change the de Rham degree and has no

cohomology in nonnegative de Rham degree due to the existence of the homotopy operator.

So this cohomology is simply Hq

Čech
(M, Z). If

Z

c (q,−1) ∈ Ω(q,−1)(Z) ⊂ Cq
p is a Čech cocycle,

(1 + Kd̃)−1 Z

c (q,−1) is a D-cocycle. Conversely if the cochain c = (c(q−p,p−1), · · · ,
Z

c (q,−1)) ∈ Cq
p is a D-cocycle,

Z

c (q,−1) is a Čech cocycle and the relation (∗) is satisfied i.e.

c = (1 + Kd̃)−1 Z

c (q,−1) + D(1 + Kd̃)−1K(c−
Z

c (q,−1)) .

Hence the projection map π : Cq
p → Ω(q,−1)(Z) descends to an isomorphism in cohomology

which proves the announced result (II).

A.6 The case q = p

A full description of Hp(Cp, D) is complicated in general, but it fits in all cases into an
exact sequence of abelian groups17

0 //

(

Closed global (p − 1)-forms

with integral periods

)

//Ωp−1(M, R) //Hp(Cp, D) //Hp

Čech
(M, Z) //0

(III)

Proof. We shall treat separately the cases p = q = 0 and p = q 6= 0, starting with the

latter.

Let c = (c(0,p−1), · · · , c(p−1,0),
Z

c (p,−1)) ∈ Cp
p be a D-cocycle, then

Z

c (p,−1) is a Čech

cocycle and (∗) tells us that

c − (1 + Kd̃)−1 Z

c (p,−1) = D(1 + Kd̃)−1K

(
c−

Z

c (p,−1)

)
.

17For instance, when p = 2, we recover the classification of line bundles with connection modulo gauge

equivalence, as expected. This case is treated in detail in appendix C.

– 24 –



J
H
E
P
0
8
(
2
0
0
5
)
0
2
7

However, we now have Kd̃(Cq
p) ⊂ Cq

p + Ω(−1,q)(R), in contrast with the previous case

for which we had the inclusion Kd̃(Cq
p) ⊂ Cq

p . Accordingly, as an element of Cp−1
p +

Ω(−1,p−1)(R), (1 + Kd̃)−1K(c−
Z

c (p,−1)) has a component, say γ(−1,p−1), in Ω(−1,p−1)(R),

so we cannot conclude that c and (1 + Kd̃)−1 Z

c (p,−1) are D-cohomologous. Nevertheless

d̃γ(−1,p−1) = 0 (not d !), hence c is D-cohomologous to (1 + Kd̃)−1 Z

c (p,−1) + δγ(−1,p−1).

Conversely, the cochain (1 + Kd̃)−1 Z

c (p,−1) + δγ(−1,p−1) is a Deligne-Beilinson cocycle

whenever γ(−1,p−1) is a global de Rham (p − 1)-form and
Z

c (p,−1) ∈ Ω(p,−1)(Z) is a Čech

cocycle.

So we have exhibited a family of “reduced” representatives

(1 + Kd̃)−1 Z

c (p,−1) + δγ(−1,p−1) , (∗∗)

of Deligne-Beilinson cohomology classes.

Decomposition (∗∗) leads us to consider the following maps

π : c =

(
c(0,p−1), · · · , c(p−1,0),

Z

c (p,−1)

)
∈ Cp

p 7→
Z

c (p,−1) ∈ Ω(p,−1)(M, Z),

(already met in subsection A.2), and

φ : γ(−1,p−1) ∈ Ω(−1,p−1)(R) 7→ (δγ(−1,p−1), 0, . . . , 0) ∈ Cp
p .

We provide Ω(−1,p−1) with the trivial differential = 0, so that π and φ are maps between

complexes. It is quite easy to check that these two maps are chain maps, i.e. φ · 0 = D · φ

and π · D = δ · π, hence, passing to cohomology,

Ω(−1,p−1)(R)
φ̂ //Hp(Cp, D)

π̂ //Hp

Čech
(M, Z) .

Let us show that π̂ is surjective. First, by definition and with obvious notations,

π̂([c]) :=

[
Z

c (p,−1)

]
.

For any class ξ ∈ Hp

Čech
(M, Z), let us pick a representative

Z

c (p,−1) of ξ. From (∗∗), we

deduce that

c = (1 + Kd̃)−1 Z

c (p,−1)

is a Deligne-Beilinson cocycle which trivially fulfills π(c) =
Z

c (p,−1), so that

π̂([c]) = [
Z

c (p,−1)] = ξ .

This means that any integral Čech cohomology class is the image under π̂ of a Deligne-

Beilinson cohomology class, thus establishing the surjectivity of π̂.

According to this, we can extend further the previous exact sequence to the right

Ω(−1,p−1)(R)
φ̂ //Hp(Cp, D)

π̂ //Hp

Čech
(M, Z) //0 .

Now, let us show that this sequence is actually exact on the left, that is to say Ker(π̂) =

Im(φ̂).
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If [c] ∈ Ker(π̂) then π̂([c]) = [
Z

c (p,−1)] = 0, meaning that any representative of [
Z

c (p,−1)]

is a Čech coboundary, δ
Z

λ(p−1,−1). Thus, if (1 + Kd̃)−1 Z

c (p,−1) + δγ(−1,p−1) is a “reduced”

representative of [c] ∈ Ker(π̂), we have

c = (1 + Kd̃)−1δ
Z

λ
(p−1,−1) + δγ(−1,p−1) = Dq + δρ(−1,p−1) ,

with ρ(−1,p−1) = γ(−1,p−1) + (−Kd̃)p
Z

λ(p−1,−1). In other words, Ker(π̂) is made of Deligne-

Beilinson classes [c] that admit a representative of the form δρ(−1,p−1) for some global

form ρ(−1,p−1) ∈ Ω(−1,p−1)(R). Conversely, for any global form ρ(−1,p−1) ∈ Ω(−1,p−1)(R)

the Deligne-Beilinson class [δρ(−1,p−1)] trivially belongs to Ker(π̂). This implies Ker(π̂) =

Im(φ̂).

So, the sequence

Ω(−1,p−1)(R)
φ̂ //Hp(Cp, D)

π̂ //Hp

Čech
(M, Z) //0 ,

is exact, and to extend it to the left, we have to compute Ker(φ̂).

If γ(−1,p−1) ∈ Ker(φ̂), then φ̂(γ(−1,p−1)) = [δγ(−1,p−1)] = 0, which means that any

representative of [δγ(−1,p−1)] is a Deligne-Beilinson coboundary. In particular

δγ(−1,p−1) =
(
δγ(−1,p−1), 0, . . . , 0

)
= Dτ ,

for some τ = (τ (0,p−2), · · · , τ (p−2,0),
Z

τ (p−1,−1)) ∈ Cp−1
p . This gives rise to the following

Čech-de Rham cochain
(
−γ(−1,p−1), τ (0,p−2), · · · , τ (p−2,0),

Z

τ (p−1,−1)

)
,

which turns out to be a Čech-de Rham cocycle since δγ(−1,p−1) = Dτ . Now, from

Weil’s theorem (see subsection A.4.3) we conclude that since
Z

τ (p−1,−1) is integral the

global form γ(−1,p−1) has integral periods. Conversely, if γ(−1,p−1) has integral peri-
ods then, still from Weil’s theorem, it gives rise to an integral Čech-de Rham cocycle

(τ (−1,p−1) = −γ(−1,p−1), τ (0,p−2), · · · , τ (p−2,0),
Z

τ (p−1,−1)) such that δγ(−1,p−1) = Dτ . This

shows that Ker(φ̂) is nothing else but the space of (p − 1)-forms with integral periods. So
we can extend our exact sequence to the left using the canonical injection of (p− 1)-forms
with integral periods into (p − 1)-forms

(

Closed global (p − 1)-forms

with integral periods

)

i //Ω(−1,p−1)(R)
φ̂ //Hp(Cp, D)

π̂ //Hp

Čech
(M, Z) //0 .

Finally, it is obvious that Ker(i) = 0. This last point definitively establishes the

exactness of (III) for p = q 6= 0.

In the special case p = q = 0, identity (∗∗) reads

(1 + Kd̃)−1 Z

c (0,−1) + δγ(−1,−1) =
Z

c (0,−1) + δγ(−1,−1),
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where γ(−1,−1) is just a real number. This means that reduced representatives of [c] ∈

H0(C0, D) are integral Čech cohomology classes (canonically imbedded in the real Čech

cohomology). Conversely, any Čech cohomology class ξ ∈ H0
Čech

(M, Z) defines a Deligne-

Beilinson class [(1 + Kd̃)−1 Z

c (0,−1)], i.e. H0(C0, D) ' H0
Čech

(M, Z). As a side note, this

can be combined with (II) to yield the more general result

Hq(C0, D) ' Hq

Čech
(M, Z) .

If Hp

Čech
(M, Z) has no torsion, the sequence (III) is split : choose a basis of Hp

Čech
(M ,

Z), take a representative Čech cocycle in Ωp(M, Z) for each basis element, and multiply it

by (1 + Kd̃)−1 to get a Deligne-Beilinson cocycle, then extend by linearity. This gives an

injection of Hp

Čech
(M, Z) into Hp(Cp, D) which is isomorphic (as an abelian group, but in

a non canonical way) to

Hp

Čech
(M, Z) ⊕ Ωp−1(M, R)/

{
Closed global (p − 1) forms

with integral periods

}
.

If Hp

Čech
(M, Z) has torsion there is no splitting and the above description is not cor-

rect. Finally note the special case p = q = 1 : H1(C1, D) is canonically isomorphic to

C∞(M, R/Z), the multiplicative group of smooth functions from M to the circle group, a

more compact description than the one given by the exact sequence (III).

A.7 The isomorphism between Cheeger-Simons differential characters and De-

ligne-Beilinson classes for q = p

The Deligne-Beilinson cohomology group can be imbedded into another exact sequence

0 //Hp−1

Čech
(M, R/Z) //Hp(Cp, D) //Ωp

Z
(M, R) //0 ,

which fits better with the representation we have chosen for the classes, namely:

ω = (ω(0,p−1), · · · , ω(p−1,0),
Z

ω(p,−1)) .

On the other hand, the Cheeger-Simons differential character group Ĥp(M, R/Z) can also

be imbedded into the same exact sequence [2, 14]

0 //Hp−1

Čech
(M, R/Z) //Ĥp(M, R/Z) //Ωp

Z
(M, R) //0 .

These two sequences can be combined into the following commutative diagram

0 // Hp−1

Čech
(M, R/Z)

²²

// Hp(Cp, D)
∫

²²

// Ωp
Z
(M, R)

²²

// 0

0 // Hp−1

Čech
(M, R/Z)

id

OO

// Ĥp(M, R/Z) // Ωp
Z
(M, R)

id

OO

// 0

in which the descending map in the middle -
∫

- is given by (3.21). Then by the 5-Lemma

this map is an isomorphism.
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A.8 The Deligne-Beilinson cohomology is the same for all good coverings

A proof is needed only when q = p, because in the other cases, we have given canonical

isomorphisms with standard Čech cohomology spaces.

If the simple covering V of M is a refinement of the simple covering U , it is a classical

theorem that for Čech cohomology the restriction chain map induces an isomorphism in

cohomology. This isomorphism is canonical because restriction is canonical.

We use this as a starting point to prove the corresponding result for Deligne-Beilinson

cohomology. To avoid notational ambiguities, we write Cp(U) (resp. Cp(V)) for the Deligne-

Beilinson complex for the covering U (resp. V).

Restriction gives a chain map from the complex (Cp(U), D) to the complex (Cp(V), D).

So there is a canonical homomorphism

Hp(C(U)p, D)
restriction

−→ Hp(C(V)p, D) .

We want to show that this homomorphism is one-to-one onto.18 We start by showing

that the homomorphism is one to one. Suppose that an element of Hp(C(U)p, D), repre-

sented by a certain c = (c(0,p−1), · · · , c(p−1,0),
Z

c (p,−1)) ∈ C(U)p
p, maps to the trivial element

in Hp(C(V)p, D). This implies that the restriction of c(p,−1) to the covering {Vσ}σ∈J is a

trivial Čech cocycle, and by the isomorphism theorem for Čech cohomology, c(p,−1) itself

is trivial. From the previous section, we know then that c is Deligne-Beilinson cohomolo-

gous to some δγ(p−1) where γ(p) is a global de Rham (p − 1) form, so we can assume that

c = δγ(p−1) to start with. The condition of triviality is then the same for both coverings,

i.e. γ(p−1) has to be closed with integral periods. We have proved that in the diagram

0

²²
Hp(C(U)p, D) //

r

²²

Hp

Čech
(M, Z) //

Id
²²

0

Hp(C(V)p, D) // Hp

Čech
(M, Z) // 0

the first column is exact (i.e. restriction is one to one) and the kernels of the top and

bottom rows are canonically isomorphic via restriction.

To prove that the restriction map is onto, we take compatible partitions of unity

{ϑα} and {ϕσ} for U and its refinement V. Take a class in Hp(C(V)p, D), represented

by a cocycle s = (s(0,p−1), · · · , s(p−1,0), s(p,−1)) in C(V)p
p. Then s(p,−1) is a Čech cocycle

for V. If s(p−1,−1) is an integral Čech cochain of degree (p − 1) for V, s + Ds(p−1,−1) =

(· · · , s(p,−1)+δs(p−1,−1)) represents the same Deligne-Beilinson class, so by the isomorphism

theorem for Čech cohomology, we can assume without loss of generality that s(p,−1) is the

restriction of a Čech cocycle c(p,−1) for {Uα}α∈I . We have proved in the previous section

18The general canonical isomorphism theorem for two (arbitrary) simple coverings is an automatic con-

sequence of the fact that on a compact manifold two simple coverings have a common simple refinement.
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that s is Deligne-Beilinson cohomologous to (1 + Kd̃)−1s(p,−1) + δγ(p−1) = (. . . , s(p,−1)) for

some global de Rham (p − 1)-form γ(p−1) (in this formula, K, d̃ and δ are with respect to

the covering V) so we can assume without loss of generality that s is of that form to start

with. Then (1 + Kd̃)−1c(p,−1) + δγ(p−1) (where now K, d̃ and δ are with respect to the

covering U) is a Deligne-Beilinson cocycle, and (as restriction commutes with K, d̃ and δ),

s = r(c). So each element of Hp(C(V)p, D) has a representative which is the restriction of

a Deligne-Beilinson p-cocycle for U : the restriction chain map leads to a surjective map in

Deligne-Beilinson cohomology. Putting things together, the proof that restriction induces

a canonical bijection from Hp(C(U)p, D) to Hp(C(V)p, D) is complete.

B. Deligne-Beilinson dual of a cycle

In this section we present a construction of a “cycle map” which associates a Deligne-

Beilinson cohomology class to a given cycle. The kind of duality that is implied is not of

the “Poincaré” type, but is rather an analog of Pontrjagin duality for Deligne-Beilinson

cohomology.

Let zp be a singular or rather a de Rham (cf. section 3.4) integral p-cycle of M and U

a simple cover. We perform the following descent19 using the singular boundary operator,

b, and the Čech coboundary operator, δ:

(δzp)α0 = zp |α0
= b c0

p+1, α0 in Uα0 . (B.1)

Then

b (c0
p+1, α1 − c0

p+1, α0) = zp |α1
− zp |α0

= 0 in Uα0α1 , (B.2)

so that (
δ c0

p+1

)
α0α1

:= c0
p+1, α1 − c0

p+1, α0 = b c1
p+2, α0α1 in Uα0α1 . (B.3)

This descent goes on at level k (the fact that the covering is simple is crucial):

δ ck
p+k+1 = b ck+1

p+k+2 (B.4)

and stops for k = n − p − 2

δ cn−p−2
n−1 = b cn−p−1

n . (B.5)

As usual ck+1
p+k+2 is defined in Uα0···αk+1

.

Finally,

δ cn−p−1
n = cn−p

n with b cn−p
n = 0 , (B.6)

in each Uα0···αn−p
. Hence every cn−p

n , α0···αn−p
is a integral n-cycle in Uα0···αn−p

, so that we

can write

cn−p
n , α0···αn−p

=
Z

ηz, α0···αn−p
· Uα0···αn−p

, (B.7)

once Uα0···αn−p
has been identified with a singular n-cycle in a natural way. Furthermore,

the
Z

ηz, α0···αn−p
’s define a Čech cocycle in an obvious way. In terms of de Rham currents

ck
p+k+1 −→ ηz

(k,n−p−k−1), (B.8)

19All chains involved below are integral chains.
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the above descent equations read

δ ηz
(k,n−p−k−1) = dηz

(k+1,n−p−k−2) · · · δ ηz
(n−p−2,1) = dηz

(n−p−1,0). (B.9)

Now

δ ηz
(n−p−1,0) = d−1ηz

(n−p,−1),

where one can show, using integration of n-forms with compact supports in Uα0···αn−p
, that

ηz
(n−p,−1)
,α0···αn−p

=
Z

ηz, α0···αn−p
.

Therefore the sequence

η
(n−p−1)
D (z) = (ηz

(0,n−p−1), . . . , ηz
(n−p−1,0),

Z

ηz)

fulfilling the descent (B.9) is nothing but a Deligne-Beilinson cocycle with distribution

coefficients.

The singular homology that was used here (in the intersections of the simple covering)

is not the usual one (i.e. with compact support), but rather the “infinite” one where

chains may have non-compact supports. Accordingly, the corresponding currents do not

necessarily have compact support in the intersections either. Moreover, the Čech cocycle
Z

ηz is a priori non trivial since it is obtained from a Čech-de Rham descent of the a priori

non trivial integration current of z. In fact,
Z

ηz is a Čech representative of the Poincaré

dual of z on M .

Let us have a look at the ambiguities of the descent of the p-cycle z which led to

η
(n−p−1)
D (z). At the level of the currents ηz

(n−p−k,k−1), one can check that ambiguities of

Deligne-Beilinson type (3.18) are obviously present. However, since our starting point is

the integral current of z, we could also have ambiguities on ηz
(0,n−p−1) corresponding to the

restriction of a globally defined closed (n− p− 1)-current, δηz
(−1,n−p−1). But, since all the

currents of our descent must be integration currents of integral chains, δηz
(−1,n−p−1) must

necessarily be the integration current of a (p + 1)-cycle. Hence, it produces a Deligne-

Beilinson ambiguity. The same argument holds at the bottom of the descent, where

our integral chains will only produce integral Čech cochain ambiguities, which are also

of Deligne-Beilinson type. In other words, the fact we use integral chains to produce a

Deligne-Beilinson cocycle provides us with a canonical Deligne-Beilinson class [η
(n−p−1)
D (z)]

associated with z.20

C. U(1) connections as Deligne-Beilinson cohomology classes

Let us briefly recall how connections over U(1)-bundles are related to Deligne-Beilinson

cohomology classes [13]. Let P := P (M, U(1), E, π) be a principal U(1)-bundle with total

space E over M and projection π. For a given simple open covering of M , U , P is described

by transition functions gαβ : Uαβ 7→ U(1) which satisfy the cocycle condition

gα0α1gα1α2gα2α0 = 1 , (C.1)

20This result can be obtained using integrally flat currents defined in [28], see also [14].
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in any intersection Uα0α1α2 , or equivalently

Λα0α1 + Λα1α2 + Λα2α0 := nα0α1α2 ∈ Z , (C.2)

with

gα0α1 = exp(2iπΛα0α1) . (C.3)

Trivially

nα0α1α2 − nα0α1α3 + nα0α2α3 − nα1α2α3 = 0 , (C.4)

in Uα0α1α2α3 , which means that the collection n(2,−1) defined by these integers is an integral

Čech 2-cocycle on M .

Given a collection of local sections, a connection Ã on P induces a collection (A)α of

locally defined 1-forms on M which glue together on every Uα0α1 according to

Aα1 − Aα0 = g−1
α0α1

dgα0α1 = (2iπ) dΛα0α1 . (C.5)

We then obtain a family

(A(0,1), Λ(1,0), n(2,−1)) ∈ Č(0)(U , Ω1(M)) × Č(1)(U , Ω0(M)) × Č(2)(U , Z) , (C.6)

such that

(δA(0,1))α0α1 := Aα1 − Aα0 = (2iπ) dΛα0α1 , (C.7)

(δΛ(1,0))α0α1α2 := Λα0α1 + Λα1α2 + Λα2α0 = d−1nα0α1α2 := nα0α1α2 ,

(δn(2,−1))α0α1α2α3 := nα0α1α2 − nα0α1α3 + nα0α2α3 − nα1α2α3 = 0 ,

in the appropriate intersections. As described in detail above such a sequence makes up a

Deligne-Beilinson cocycle.

The curvature of Ã also admits canonical local representatives on M , Fα := dAα,

which are globally defined since

Fα1 − Fα0 = d(Aα1 − Aα0) = 2iπd(dΛα0α1) = 0 , (C.8)

Obviously, the existence of F on M is a direct consequence of the existence of A(0,1), and

we can formally write “F = dA(0,1)”.

For a given triple (U , P, Ã) the Deligne-Beilinson cocycle (A(0,1), Λ(1,0), n(2,−1)) is not

unique. More precisely, ambiguities on the local representatives of P and Ã (that is al-

lowed changes of transition functions and local sections) induce ambiguities on the Deligne-

Beilinson cocycle (C.6) of the following form

(
dq(0,0), δq(0,0) + d−1m

(1,−1), δm(1−,1)
)

, (C.9)

with (m(1,−1), q(0,0)) ∈ Č(1)(U , Z) × Č(0)(U , Ω0(M)) . Such ambiguities correspond pre-

cisely to Deligne-Beilinson coboundaries and thus represent the ambiguities among the

representatives of the relevant Deligne-Beilinson cohomology classes.21

21See appendix A
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Two triples (U , P, Ã) and (U , P ′, Ã′) are said to be U(1)-equivalent if there is a U(1)

isomorphism Φ : P 7→ P ′, such that Ã′ = Φ∗ Ã. Locally, this means that the transition

functions of P and P ′ are related according to

g′αβ = hα
−1 · gαβ · hβ , (C.10)

or equivalently

Λ′
αβ = Λαβ + qβ − qα , (C.11)

where the hα = exp(2iπqα). In the same way the local representatives of the connections

fulfill

A′
α = Aα + 2iπdqα . (C.12)

Then we clearly see that these relations assume the same form as the ambiguities in (C.9),

showing that two equivalent triples are associated to the same Deligne-Beilinson cohomol-

ogy class in H2
D(M, Z(2)).

This correspondence can be established in the reverse way. Indeed, consider a repre-

sentative (A(0,1), Λ(1,0), n(2,−1)) of a Deligne-Beilinson cohomology class, the U(1)-valued

mappings gαβ := exp 2iπΛαβ are U(1) transition functions over U since they satisfy the

cocycle condition (C.1). With these functions, one can canonically build a principal U(1)-

bundle over M , P (M, U(1), E, π) [29, 30]. Furthermore, there is only one connection Ã

on P whose local representatives on M coincide with those of A(0,1). Hence our Deligne-

Beilinson cocycle defines a couple (P, Ã) in a canonical way.

Now, with another representative, (A(0,1) + dq(0,0), Λ(1,0) + δq(0,0), n(2,−1)), we obtain

another set of transition functions which defines an equivalent principal bundle — cf. (C.10).

In the same way, A(0,1) + dq(0,0) is related to Ã through a U(1)-bundle isomorphism.

Finally, a representative (A(0,1), Λ(1,0) + m(1,−1), n(2,−1) + δm(1,−1)) gives the same

transition functions and the same connection. This establishes that the Deligne-Beilinson

cohomology class of (A(0,1), Λ(1,0), n(2,−1)) can be canonically associated to a whole class of

U(1)-equivalent triples (U , P, Ã).

The independence of this isomorphism upon the chosen covering U of M is a direct

consequence of the results proven in (A.8).

Note added. While completing this paper, we became aware of the recent mathematical

work of R. Harvey, B. Lawson and J. Zweck [14], who discuss in detail the Pontrjagin

duality we use in section 3.3. The authors emphasize the differential character point of

view rather than the Deligne-Beilinson one we have adopted here.
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Abstract. For the Abelian Chern–Simons field theory, we consider the quantum functional
integration over the Deligne–Beilinson cohomology classes and we derive the main properties
of the observables in a generic closed orientable 3-manifold. We present an explicit path-
integral non-perturbative computation of the Chern–Simons link invariants in the case of
the torsion-free 3-manifolds S3, S1 × S2 and S1 × Σg.
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1 Introduction

The topological quantum field theory which is defined by the Chern–Simons action can be
used to compute invariants of links in 3-manifolds [1, 2, 3, 4]. The algebraic structure of these
invariants, which is based on the properties of the characters of simple Lie groups, is rather
general. In fact, these invariants can also be defined by means of skein relations or of quantum
group Hopf algebra methods [5, 6].

In the standard quantum field theory approach, the gauge invariance group of the Abelian
Chern–Simons theory is given by the set of local U(1) gauge transformations and the observables
can directly be computed by means of perturbation theory when the ambient space is R3 (the
result also provides the values of the link invariants in S3). For a nontrivial 3-manifold M3,
the standard gauge theory approach presents some technical difficulties, and one open problem
of the quantum Chern–Simons theory is to produce directly the functional integration in the
case of a generic 3-manifold M3. In this article we will show how this can be done, at least for
a certain class of nontrivial 3-manifolds, by using the Deligne–Beilinson cohomology. We shall
concentrate on the Abelian Chern–Simons invariants; hopefully, the method that we present will
possibly admit an extension to the non-Abelian case.

The Deligne–Beilinson approach presents some remarkable aspects. The space of classical
field configurations which are factorized out by gauge invariance is enlarged with respect to
the standard field theory formalism. Indeed, assuming that the quantum amplitudes given
by the exponential of the holonomies – which are associated with oriented loops — represent
a complete set of observables, the functional integration must locally correspond to a sum over 1-
forms modulo forms with integer periods, i.e. it must correspond to a sum over Deligne–Beilinson
classes. In this new approach, the structure of the functional space admits a natural description
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http://lappweb.in2p3.fr/~thuillie/
http://www.emis.de/journals/SIGMA/2008/078/


2 E. Guadagnini and F. Thuillier

in terms of the homology groups of the 3-manifold M3. This structure will be used to compute
the Chern–Simons observables, without the use of perturbation theory, on a class of torsion-free
manifolds.

The article is organized as follows. Section 2 contains a description of the basic properties
of the Deligne–Beilinson cohomology and of the distributional extension of the space of the
equivalence classes. The framing procedure is introduced in Section 3. The general properties
of the Abelian Chern–Simons theory are discussed in Section 4; in particular, non-perturbative
proofs of the colour periodicity, of the ambient isotopy invariance and of the satellite relations
are given. The solution of the Chern–Simons theory on S3 is presented in Section 5. The
computations of the observables for the manifolds S1×S2 and S1×Σg are produced in Sections 6
and 7. Section 8 contains a brief description of the surgery rules that can be used to derive the
link invariants in a generic 3-manifold, and it is checked that the results obtained by means
of the Deligne–Beilinson cohomology and by means of the surgery method coincide. Finally,
Section 9 contains the conclusions.

2 Deligne–Beilinson cohomology

The applications of the Deligne–Beilinson (DB) cohomolgy [7, 8, 9, 10, 11] – and of its various
equivalent versions such as the Cheeger–Simons Differential Characters [12, 13] or Sparks [14] –
in quantum physics has been discussed by various authors [15, 16, 17, 18, 19, 21, 20, 22, 23]. For
instance, geometric quantization is based on classes of U(1)-bundles with connections, which are
exactly DB classes of degree one (see Section 8.3 of [24]); and the Aharanov–Bohm effect also
admits a natural description in terms of DB cohomology.

In this article, we shall consider the computation of the Abelian link invariants of the Chern–
Simons theory by means of the DB cohomology. Let L be an oriented (framed and coloured)
link in the 3-manifold M3; one is interested in the ambient isotopy invariant which is defined by
the path-integral expectation value

〈
exp

{
2iπ

∫
L
A

}〉
k

≡

∫
DA exp

{
2iπk

∫
M3

A ∧ dA
}

exp
{
2iπ

∫
LA

}
∫
DA exp

{
2iπk

∫
M3

A ∧ dA
} , (2.1)

where the parameter k represents the dimensionless coupling constant of the field theory. In
equation (2.1), the holonomy associated with the link L is defined in terms of a U (1)-connec-
tion A on M3; this holonomy is closely related to the classes of U(1)-bundles with connections
that represent DB cohomology classes. The Chern–Simons lagrangian A∧dA can be understood
as a DB cohomology class from the Cheeger–Simons Differential Characters point of view, and
it can also be interpreted as a DB “square” of A which is defined, as we shall see, by means of
the DB ∗-product.

To sum up, the DB cohomology appears to be the natural framework which should be used in
order to compute the Chern–Simons expectation values (2.1). As we shall see, this will imply the
quantization of the coupling constant k and it will actually provide the integration measure DA
with a nontrivial structure which is related to the homology of the manifold M3. It should be
noted that the gauge invariance of the Chern–Simons action and of the observables is totally
included into the DB setting: working with DB classes means that we have already taken the
quotient by gauge transformations.

Although we won’t describe DB cohomology in full details, we shall now present a few pro-
perties of the DB cohomology that will be useful for the non-perturbative computation of the
observables (2.1).
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2.1 General properties

Let M be a smooth oriented compact manifold without boundary of finite dimension n. The
Deligne cohomology group of M of degree q, Hq

D (M,Z), can be described as the central term
of the following exact sequence

0 −→ Ωq (M)
/
Ωq

Z (M) −→ Hq
D (M,Z) −→ Hq+1 (M,Z) −→ 0, (2.2)

where Ωq (M) is the space of smooth q-forms on M , Ωq
Z (M) the space of smooth closed q-forms

with integral periods on M and Hq+1 (M,Z) is the (q + 1)th integral cohomology group of M .
This last space can be taken as simplicial, singular or Cech. There is another exact sequence
into which Hq

D (M,Z) can be embedded, namely

0 −→ Hq (M,R/Z) −→ Hq
D (M,Z) −→ Ωq+1

Z (M) −→ 0, (2.3)

where Hq (M,R/Z) is the R/Z-cohomology group of M [11, 14, 25].
One can compute Hq

D (M,Z) by using a (hyper) cohomological resolution of a double complex
of Cech–de Rham type, as explained for instance in [9, 25]. In this approach, Hq

D (M,Z) appears
as the set of equivalence classes of DB cocycles which are defined by sequences (ω(0,q), ω(1,q−1),
. . . , ω(q,0), ω(q+1,−1)), where ω(p,q−p) denotes a collection of smooth (q− p)-forms in the intersec-
tions of degree p of some open sets of a good open covering of M , and ω(q+1,−1) is an integer
Cech (p+1)-cocyle for this open good covering of M . These forms satisfy cohomological descent
equations of the type δω(p−1,q−p+1) + dω(p,q−p) = 0, and the equivalence relation is defined via
the δ and d operations, which are respectively the Cech and de Rham differentials. The Cech–
de Rham point of view has the advantage of producing “explicit” expressions for representatives
of DB classes in some good open covering of M .

Definition 2.1. Let ω be a q-form which is globally defined on the manifold M . We shall
denote by [ω] ∈ Hq

D (M,Z) the DB class which, in the Cech–de Rham double complex approach,
is represented by the sequence (ω(0,q) = ω, ω(1,q−1) = 0, . . . , ω(q,0) = 0, ω(q+1,−1) = 0).

From sequence (2.2) it follows that Hq
D (M,Z) can be understood as an affine bundle over

Hq+1 (M,Z), whose fibres have a typical underlying (infinite dimensional) vector space struc-
ture given by Ωq (M)/Ωq

Z (M). Equivalently, Ωq (M)/Ωq
Z (M) canonically acts on the fibres of

the bundle Hq
D (M,Z) by translation. From a geometrical point of view, H1

D (M,Z) is canoni-
cally isomorphic to the space of equivalence classes of U (1)-principal bundles with connections
over M (see for instance [14, 25]). A generalisation of this idea has been proposed by means
of Abelian Gerbes (see for instance [11, 26]) and Abelian Gerbes with connections over M . In
this framework, Hq+1 (M,Z) classifies equivalence classes of some Abelian Gerbes over M , in
the same way as H2 (M,Z) is the space which classifies the U (1)-principal bundles over M ,
and Hq

D (M,Z) appears as the set of equivalence classes of some Abelian Gerbes with connec-
tions. Finally, the space Ωq

Z (M) can be interpreted as the group of generalised Abelian gauge
transformations.

We shall mostly be concerned with the cases q = 1 and q = 3. As for M , we will consider
the three dimensional cases M3 = S3, M3 = S1×S2 and M3 = S1×Σg, where Σg is a Riemann
surface of genus g ≥ 1. In particular, M3 is oriented and torsion free. In all these cases, the
exact sequence (2.2) for q = 3 reads

0 −→ Ω3 (M3)/Ω3
Z (M3) −→ H3

D (M3,Z) −→ H4 (M3,Z) = 0 −→ 0,

where the first non trivial term reduces to

Ω3 (M3)
Ω3

Z (M3)
∼=

R
Z
. (2.4)
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Figure 1. Presentation of the Deligne–Beilinson affine bundle H1
D

(
S1 × S2,Z

)
.

The validity of equation (2.4) can easily be checked by using a volume form onM3. By definition,
for any (ρ, τZ) ∈ Ω3 (M3)× Ω3

Z (M3) one has

[ρ+ τZ] = [ρ] ∈ H3
D (M3,Z) ;

consequently

H3
D (M3,Z) ' Ω3 (M3)

Ω3
Z (M3)

∼=
R
Z
.

These results imply that any Abelian 2-Gerbes on M3 is trivial (H4 (M3,Z) = 0), and the set
of classes of Abelian 2-Gerbes with connections on M3 is isomorphic to R/Z. In the less trivial
case q = 1, sequence (2.2) reads

0 −→ Ω1 (M3)/Ω1
Z (M3) −→ H1

D (M3,Z) −→ H2 (M3,Z) −→ 0. (2.5)

Still by definition, for any (η, ωZ) ∈ Ω1 (M3)× Ω1
Z (M3) one has

[η + ωZ] = [η] ∈ H1
D (M3,Z) .

When H2 (M3,Z) = 0, sequence (2.5) turns into a short exact sequence; this also implies
H1 (M3,Z) = 0 due to Poincaré duality. For the 3-sphere S3, the base space of H1

D

(
S3,Z

)
is trivial. Whereas, the bundle H1

D

(
S1 × S2,Z

)
has base space H2

(
S1 × S2,Z

) ∼= Z and, as de-
picted in Fig. 1, its fibres are (infinite dimensional) affine spaces whose underlying linear space
identifies with the quotient space Ω1

(
S1 × S2

)
/Ω1

Z
(
S1 × S2

)
. In the general case M3 = S1×Σg

with g ≥ 1, the base space H2
(
S1 × Σg,Z

)
is isomorphic to Z2g+1.

Finally, one should note that sequence (2.5) also gives information on Ω1
Z (M3) since its

structure is mainly given by the H1
D (M3,Z). For instance, Ω1

Z
(
S3

)
= dΩ0

(
S3

)
, all other cases

being not so trivial.

2.2 Holonomy and pairing

As we have already mentioned, DB cohomology is the natural framework in which integration (or
holonomy) of a U (1)-connection over 1-cycles of M3 can be defined and generalised to objects
of higher dimension (n-connections and n-cycles). In fact integration of a DB cohomology class
[χ] ∈ Hq

D (M,Z) over a q-cycle of M , denoted by C ∈ Zq (M), appears as a R/Z-valued linear
pairing

〈 , 〉q : Hq
D (M,Z)× Zq (M) −→ R/Z = S1,

([χ] , C) −→ 〈[χ] , C〉q ≡
∫
C

[χ], (2.6)
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which establishes the equivalence between DB cohomology and Cheeger–Simons characters [12,
13, 11, 14, 25]. Accordingly, a quantity such as

exp
{

2iπ
∫

C
[χ]

}
is well defined and corresponds to the fundamental representation of R/Z = S1 ' U (1). Using
the Chech–de Rham description of DB cocycles, one can then produce explicit formulae [25] for
the pairing (2.6).

Alternatively, (2.6) can be seen as a dualising equation. More precisely, any C ∈ Zq (M)
belongs to the Pontriagin dual of Hq

D (M,Z), usually denoted by Hom
(
Hq

D (M,Z) , S1
)
, the

pairing (2.6) providing a canonical injection

Zq (M) ~⊂Hom
(
Hq

D (M,Z) , S1
)
. (2.7)

A universal result [27] about the Hom functor implies the validity of the exact sequences, duali-
sing (2.2) (via (2.3)),

0 −→ Hom
(
Ωq+1

Z (M) , S1
)
−→ Hom

(
Hq

D (M,Z) , S1
)
−→ Hn−q (M,Z) −→ 0, (2.8)

where Hn−q (M,Z) ∼= Hom
(
Hq (M,R/Z) , S1

)
.

The space Hom
(
Hq

D (M,Z) , S1
)

also contains Hn−q−1
D (M,Z), so that Zq (M) (or rather its

canonical injection (2.7)) can be seen as lying on the boundary of Hn−q−1
D (M,Z) (see details

in [14]). Accordingly

Zq (M)⊕Hn−q−1
D (M,Z) ⊂ Hom

(
Hq

D (M,Z) , S1
)
, (2.9)

with the obvious abuse in the notation. Let us point out that, as suggested by equation (2.9),
one could represent integral cycles by currents which are singular (i.e. distributional) forms.
This issue will be discussed in detail in next subsection.

Now, sequence (2.8) shows that Hom
(
Hq

D (M,Z) , S1
)

is also an affine bundle with base space
Hn−q (M,Z). In particular, let us consider the case in which n = 3 and q = 1; on the one hand,
Poincaré duality implies

Hn−q (M,Z) = H2 (M3,Z) ∼= H1 (M3,Z) .

On the other hand, one has

H1
D (M,Z) ⊂ Hom

(
H1

D (M,Z) , S1
)
,

and, because of the Pontriagin duality,

Z1 (M)⊕H1
D (M,Z) ⊂ Hom

(
H1

D (M,Z) , S1
)
.

This is somehow reminiscent of the self-dual situation in the case of four dimensional manifolds
and curvature.

2.3 The product

The pairing (2.6) is actually related to another pairing of DB cohomology groups

Hp
D (M,Z)×Hq

D (M,Z) −→ Hp+q+1
D (M,Z) , (2.10)

whose explicit description can be found for instance in [12, 14, 25]. This pairing is known as
the DB product (or DB ∗-product). It will be denoted by ∗. In the Cech–de Rham approach,
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the DB product of the DB cocyle (ω(0,p), ω(1,p−1), . . . , ω(p,0), ω(p+1,−1)) with the DB cocycle
(η(0,q), η(1,q−1), . . . , η(q,0), η(q+1,−1)) reads(

ω(0,p)∪dη(0,q), . . . , ω(p,0)∪dη(0,q), bω(p+1,−1)∪η(0,q), . . . , ω(p+1,−1)∪η(n−p,−1)
)
, (2.11)

where the product ∪ is precisely defined in [28, 9, 25], for instance.

Definition 2.2. Let us consider the sequence (η(0,q), η(1,q−1), . . . , η(q,0), η(q+1,−1)), in which the
components η(k−q,k) satisfy the same descent equations as the components of a DB cocycle but,
instead of smooth forms, these components are currents (i.e. distributional forms). This allows
to extend the (smooth) cohomology group Hq

D (M,Z) to a larger cohomology group that we will
denote H̃q

D (M,Z).

Obviously, the DB product (2.11) of a smooth DB cocycle with a distributional one is still
well-defined, and thus the pairing (2.10) extends to

Hp
D (M,Z)× H̃q

D (M,Z) −→ H̃p+q+1
D (M,Z) .

Then, it can be checked [25] that any class [η] ∈ H̃n−q−1
D (M,Z) canonically defines a R/Z-valued

linear pairing as in (2.6) so that

H̃n−q−1
D (M,Z) ⊂ Hom

(
Hq

D (M,Z) , S1
)
.

It is important to note that, as it was shown in [25], to any C ∈ Zq(M) there corresponds
a canonical DB class [ηC ] ∈ H̃n−q−1

D (M,Z) such that

exp
{

2iπ
∫

C
[χ]

}
= exp

{
2iπ

∫
M

[χ] ∗ [ηC ]
}
,

for any [χ] ∈ Hq
D (M,Z). This means that we have the following sequence of canonical inclusions

Zq(M) ⊂ H̃n−q−1
D (M,Z) ⊂ Hom

(
Hq

D (M,Z) , S1
)
.

Let us point out the trivial inclusion

Hn−q−1
D (M,Z) ⊂ H̃n−q−1

D (M,Z) .

In the 3 dimensional case, let us consider the DB product

H1
D (M3,Z)×H1

D (M3,Z) −→ H3
D (M3,Z) ∼= R/Z. (2.12)

Starting from equation (2.12) and extending it to

H1
D (M3,Z)× H̃1

D (M3,Z) −→ H̃3
D (M3,Z) ∼= R/Z,

one finds that it is possible to associate with any 1-cycle C ∈ Z1 (M3) a canonical DB class
[ηC ] ∈ H̃1

D (M3,Z) such that

exp
{

2iπ
∫

C
[ω]

}
= exp

{
2iπ

∫
M3

[ω] ∗ [ηC ]
}
, (2.13)

for any [ω] ∈ H1
D (M3,Z). As an an alternative point of view, consider a smoothing homotopy

of C within H1
D (M3,Z), that is, a sequence of smooth DB classes [ηε] ∈ H1

D (M,Z) such that
(see [14] for details)

lim
ε→0

exp
{

2iπ
∫

M
[A] ∗ [ηε]

}
= exp

{
2iπ

∫
C

[A]
}
. (2.14)
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Figure 2. In a open domain with local coordinates (x, y, z), a piece of a homologically trivial loop C

can be identified with the y axis, and the disc that it bounds (Seifert surface) can be identified with
a portion of the half plane (x < 0, y, z = 0).

This implies

lim
ε→0

[ηε] = [ηC ] (2.15)

within the completion H̃1
D (M3,Z) of H1

D (M3,Z); this is why in [14] [ηC ] is said to belong
to the boundary of H1

D (M3,Z). It should be noted that, by definition, the limit (2.14) and
the corresponding limit (2.15) are always well defined. For this reason, in what follows we
shall concentrate directly to the distributional space H̃1

D (M3,Z) and, in the presentation of
the various arguments, the possibility of adopting a limiting procedure of the type shown in
equation (2.14) will be simply understood.

Finally, let us point out that with the aforementioned geometrical interpretation of DB coho-
mology classes, the DB product of smooth classes canonically defines a product within the space
of Abelian Gerbes with connections. For instance, the DB product of two classes of U(1)-bundles
with connections over M turns out to be a class of U(1)-gerbe with connection over M .

2.4 Distributional forms and Seifert surfaces

How to construct the class [ηC ], which enters equation (2.13), is explained in detail for instance
in [25]. Here we outline the main steps of the construction and we consider, for illustrative
purposes, the case M3 ∼ S3. The integral of a one-form ω along an oriented knot C ⊂ S3 can
be written as the integral on the whole S3 of the external product ω∧JC , where the current JC

is a distributional 2-form with support on the knot C; that is,
∫
C ω =

∫
S3 ω ∧ JC . Since JC can

be understood as the boundary of an oriented surface ΣC in S3 (called a Siefert surface), one
has JC = dηC for some 1-form ηC with support on ΣC . One then finds,

∫
C ω =

∫
S3 ω ∧ dηC ,

which corresponds precisely to equation (2.13) with [ηC ] ∈ H̃1
D

(
S3,Z

)
denoting the Deligne

cohomology class which is associated to ηC and with [ω] ∈ H1
D

(
S3,Z

)
denoting the class which

can be represented by ω.
Let us consider, for instance, the unknot C in S3, shown in Fig. 2, with a simple disc as

Seifert surface. Inside the open domain depicted in Fig. 2, the oriented knot is described – in
local coordinates (x, y, z) – by a piece of the y-axis and the corresponding distributional forms JC

and ηC are given by

JC = δ(z)δ(x)dz ∧ dx, ηC = δ(z)θ(−x)dz. (2.16)

For a generic 3-manifold M3 and for each oriented knot C ⊂ M3, the distributional 2-
form JC always exists, whereas a corresponding Seifert surface and the associated 1-form ηC

can in general be (globally) defined only when the second cohomology group of M3 is vanishing.
Nevertheless, the class [ηC ] ∈ H̃1

D (M,Z) is always well defined for arbitrary 3-manifold M3. In
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fact, when a Seifert surface associated with C ⊂M3 does not exist, the Chech–de Rham cocycle
sequence representing [ηC ] ∈ H̃1

D (M,Z) is locally of the form (η(0,1)
C ,Λ(1,0)

C , N
(2,−1)
C ) where,

inside sufficiently small open domains, the expression of η(0,1)
C is trivial or may coincide with

the expression (2.16) for ηC , and Λ(1,0)
C and N

(2,−1)
C are nontrivial components (when a Seifert

surface exists, the components Λ(1,0)
C and N (2,−1)

C are trivial).

3 Linking and self-linking

As we have already mentioned, in the context of equation (2.13) the pairing H1
D (M3,Z) ×

H̃1
D (M3,Z) → H̃3

D (M3,Z) is well defined. However, in what follows we shall also need to con-
sider a pairing induced by the DB product of the type H̃1

D (M3,Z)× H̃1
D (M3,Z) → H̃3

D (M3,Z)
and this presents in general ambiguities that we need to fix by means of some conventional
procedure.

3.1 Linking number

Let us consider first the case M3 ∼ S3. Let C1 and C2 be two non-intersecting oriented knots
in S3 and let η1 and η2 the corresponding distributional 1-forms described in Section 2.4, one
has ∫

S3

η1 ∧ dη2 =
∫

S3

η2 ∧ dη1 = `k(C1, C2), (3.1)

where `k(C1, C2) denotes the linking number of C1 and C2, which is an integer valued ambient
isotopy invariant. In fact, η1 ∧ dη2 represents an intersection form counting how many times C2

intersects the Seifert surface associated with C1 (see also, for instance, [28, 29]). Let [η1] and [η2]
denote the DB classes which are associated with η1 and η2; since the linking number is an integer,
one finds

exp
{

2iπ
∫

S3

[η1] ∗ [η2]
}

= exp
{

2iπ
∫

S3

[η2] ∗ [η1]
}

= exp
{

2iπ
∫

S3

η1 ∧ dη2]
}

= 1. (3.2)

Equations (3.1) and (3.2) show that the product [η1] ∗ [η2] is well defined and just corresponds
to the trivial class

[η1] ∗ [η2] = [0] ∈ H̃3
D

(
S3,Z

)
. (3.3)

In the next sections, we shall encounter the linking number in the DB cohomology context in
the following form. Let x be a real number, since η2 is globally defined in S3, the 1-form xη2 is
also globally defined. Let us denote by [xη2] the DB class which is represented by the form xη2.
One has

exp
{

2iπ
∫

S3

[η1] ∗ [xη2]
}

= exp
{

2iπ
∫

S3

η1 ∧ d(xη2)
}

= exp {2iπx`k(C1, C2)} . (3.4)

3.2 Framing

Let ηC be the distributional 1-form which is associated with the oriented knot C ⊂ S3; for
a single knot, the expression of the self-linking number∫

S3

ηC ∧ dηC (3.5)
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is not well defined because the self-intersection form ηC ∧ dηC has ambiguities. This means
that, similarly to what happens with the product of distributions, at the level of the class
[ηC ] ∈ H̃1

D

(
S3,Z

)
, the product [ηC ] ∗ [ηC ] is not well defined a priori.

As shown in equations (2.14) and (2.15), [ηC ] can be determined by means of the ε→ 0 limit
of [ηε] ∈ H1

D (M3,Z). One could then try to define the product [ηC ] ∗ [ηC ] by means of the same
limit

lim
ε→0

∫
S3

[ηε] ∗ [ηε] =
∫

S3

[ηC ] ∗ [ηC ]. (3.6)

Unfortunately, the limit (3.6) does not exist, because the value that one obtains for the inte-
gral (3.6) in the ε→ 0 limit nontrivially depends on the way in which [ηε] approaches [ηC ]. This
problem will be solved by the introduction of the framing procedure, which ultimately specifies
how [ηε] approaches [ηC ]. One should note that the ambiguities entering the integral (3.5) and
the limit (3.6) also appear in the Gauss integral

1
4π

∮
C
dxµ

∮
C
dyνεµνρ

(x− y)ρ

|x− y|3
, (3.7)

which corresponds to the self-linking number. A direct computation [30] shows that the value of
the integral (3.7) is a real number which is not invariant under ambient isotopy transformations;
in fact, it can be smoothly modified by means of smooth deformations of the knot C in S3. In
order to remove all ambiguities and define the product [ηC ] ∗ [ηC ], we shall adopt the framing
procedure [29, 31], which is also used for giving a topological meaning to the self-linking number.

Definition 3.1. A solid torus is a space homeomorphic to S1×D2, whereD2 is a two dimensional
disc; in the complex plane, D2 can be represented by the set {z, with |z| ≤ 1}. Consider now an
oriented knot C ⊂ S3; a tubular neighbourhood VC of C is a solid torus embedded in S3 whose
core is C. A given homeomorphism h : S1 ×D2 → VC is called a framing for C. The image of
the standard longitude h(S1×1) represents a knot Cf ⊂ S3, also called the framing of C, which
lies in a neighbourhood of C and whose orientation is fixed to agree with the orientation of C.
Up to isotopy transformations, the homeonorphism h is specified by Cf .

Clearly, the thickness of the tubular neighbourhood VC of C is chosen to be sufficiently
small so that, in the presence of several link components for instance, any knot different from C
belongs to the complement of VC ⊂ S3.

For each framed knot C, with framing Cf , the self-linking number of C is defined to be
`k(C,Cf ),∫

S3

ηC ∧ dηC ≡
∫

S3

ηC ∧ dηCf
= `k(C,Cf ). (3.8)

Definition 3.2. In agreement with equation (3.8), one can consistently define the product
[ηC ] ∗ [ηC ] as

[ηC ] ∗ [ηC ] ≡ [ηC ] ∗ [ηCf
]. (3.9)

Definition (3.9) together with equations (3.8) and (3.3) imply that, for each framed knot C
(in S3), the product [ηC ] ∗ [ηC ] is well defined and corresponds to the trivial class

[ηC ] ∗ [ηC ] = [0] ∈ H̃3
D

(
S3,Z

)
.
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Remark 3.1. The product [ηC ]∗ [ηC ] also admits a definition which differs from equation (3.9)
but, as far as the computation of the Chern–Simons observables is concerned, is equivalent to
equation (3.9). Instead of dealing with a tubular neighbourhood VC with sufficiently small but
finite thickness, one can define a limit in which the transverse size of the neighbourhood VC

vanishes. Let ρ > 0 be the size of the diameter of the tubular neighbourhood VC(ρ) of the
knot C; ρ is defined with respect to some (topology compatible) metric g. The homeomorphism
h(ρ) : S1 ×D2 → VC(ρ) is assumed to depend smoothly on ρ. Then, the corresponding framing
knot Cf (ρ) also smoothly depends on ρ. Consequently, the linking number `k(C,Cf (ρ)) does
not depend on the value of ρ and it will be denoted by `k(C,Cf ). It should be noted that
`k(C,Cf ) does not depend on the choice of the metric g. In the ρ → 0 limit, the solid torus
VC(ρ) shrinks to its core C and the framing Cf (ρ) goes to C. One can then define ηC ∧ dηC

according to∫
S3

ηC ∧ dηC ≡ lim
ρ→0

∫
S3

ηC ∧ dηCf (ρ) = lim
ρ→0

`k(C,Cf (ρ)) = `k(C,Cf ). (3.10)

In agreement with equation (3.10), one can put

[ηC ] ∗ [ηC ] ≡ lim
ρ→0

[ηC ] ∗ [ηCf (ρ)]. (3.11)

Remark 3.2. The definition (3.9) of the DB product [ηC ] ∗ [ηC ] is consistent with equations
(3.2)–(3.4) and is topologically well defined. In fact, in the case of an oriented framed link L
with N components {C1, C2, . . . , CN} the corresponding canonical class [ηL] ∈ H̃1

D

(
S3,Z

)
is

equivalent to the sum of the classes which are associated with the single components, i.e. [ηL] =∑
j [ηj ]. Thus one finds

[ηL] ∗ [ηL] =
∑

j

[ηj ] ∗ [ηj ] + 2
∑
i<j

[ηi] ∗ [ηj ]. (3.12)

The framing procedure which is used to define the DB product [ηL]∗ [ηL] guarantees that, if one
integrates the 3-forms entering expression (3.12), the result does not depend on the particular
choice of the Seifert surface which is used to (locally) define the distributional forms associated
with L. This means that the framing procedure preserves both gauge invariance and ambient
isotopy invariance.

Remark 3.3. In order to define the extension of the DB product to distributional DB classes,
one could try to start from equation (2.11). In this case, the product of the DB representatives
of two cycles (2.11) would only contain local integral chains and the cup product ∪ would just
reduce to the intersection number of such integral chains (once these chains have been placed
into transverse position, which is always possible because of the freedom in the choice of the
DB cocycles representing a given DB class). Accordingly, the extension of the product to the
distributional case would only produce integral chains and eventually integers in the integrals.
Finally, by using smooth approximations of the cycles within (2.11) and then performing the
limits, as described above in equation (3.11), one would obtain the same result. Note that, in
this last approach, the limit would be performed with the linking number `k(C,Cf ) fixed. This
is similar to the definition of the charge density of a charged point particle by taking the limit
r → 0 of a uniformly charged sphere of radius r while keeping the total charge of the sphere
fixed, which leads to the well-known Dirac delta-distribution.

Knots or links can be framed in any oriented 3-manifold M3. In order to preserve the
topological properties of the pairing H̃1

D

(
S3,Z

)
× H̃1

D

(
S3,Z

)
→ H̃3

D

(
S3,Z

)
which is defined

by means of framing in S3, we shall extend the framing procedure to the case of a generic
3-manifold M3 by extending the validity of properties (3.3) and (3.9).



Deligne–Beilinson Cohomology and Abelian Link Invariants 11

Definition 3.3. If [η1] and [η2] are the classes in H̃1
D (M3,Z) which are canonically associated

with the oriented nonintersecting knots C1 and C2 in M3, in agreement with equation (3.3) we
shall eliminate the (possible) ambiguities of the product [η1] ∗ [η2] in such a way that

[η1] ∗ [η2] = [0] ∈ H̃3
D (M3,Z) . (3.13)

Consequently, for each oriented framed knot C ⊂M3 with framing Cf , we shall use the definition

[ηC ] ∗ [ηC ] ≡ [ηC ] ∗ [ηCf
] = [0] ∈ H̃3

D (M3,Z) . (3.14)

Remark 3.4. Definition (3.14) can also be understood by starting from equation (2.11) and
by using the same arguments that have been presented in the case M3 ∼ S3. Let us point out
that, unlike the S3 case, for generic M3 one finds directly equation (3.14) without the validity
of some intermediate relations like equation (3.8), which may not be well defined for M3 6∼ S3.

4 Abelian Chern–Simons field theory

4.1 Action functional

If one uses the Cech–de Rham double complex to describe DB classes, it can easily be shown
that the first component of a DB product of a U (1)-connection A with itself is given by A∧ dA
or, more precisely, it is given by the collection of all these products taken in the open sets of
a good cover of M3. This means that the expression of the Chern–Simons lagrangian of a U (1)-
connection A can be understood as a DB class which coincides with the “DB square” of the
class of A. Let [A] denote the DB class associated to the U (1)-connection A, the Chern–Simons
functional SCS is given by

SCS =
∫

M3

[A] ∗ [A].

By definition of the DB cohomology, the Chern–Simons action SCS is an element of R/Z and
then it is defined modulo integers. Consequently, in the functional measure of the path-integral,
the phase factor which is induced by the action has to be of the type

exp {2iπkSCS} = exp
{

2iπk
∫

M3

[A] ∗ [A]
}
,

where the coupling constant k must be a nonvanishing integer

k ∈ Z, k 6= 0.

A modification of the orientation of M3 is equivalent to the replacement k → −k.

4.2 Observables

The observables that we shall consider are given by the expectation values of the Wilson line
operators W (L) associated with links L in M3. An oriented coloured and framed link L ⊂ M3

with N components is the union of non-intersecting knots {C1, C2, . . . , CN} in M3, where each
knot Cj (with j = 1, 2, . . . , N) is oriented and framed, and its colour is represented by an integer
charge qj ∈ Z. For any given DB class [A], the classical expression of W (L) is given by

W (L) =
N∏

j=1

exp

{
2iπqj

∫
Cj

[A]

}
= exp

2iπ
∑

j

qj

∫
Cj

[A]

 , (4.1)
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which actually corresponds to the pairing (2.6)

W (L) = exp
{

2iπ
∫

L
[A]

}
≡ exp {2iπ 〈[A] , L〉1} .

Once more, each factor

exp

{
2iπqj

∫
Cj

[A]

}
, (4.2)

which appears in expression (4.1), is well defined if and only if qj ∈ Z; that is why the charges
associated with knots must take integer values. A modification of the orientation of the knot Cj

is equivalent to the replacement qj → −qj . Obviously, any link component with colour q = 0
can be eliminated.

Remark 4.1. The classical expression (4.1) does not depend on the framing of the knots {Cj};
however, only for framed links are the Wilson line operators well defined. The point is that, in the
quantum Chern–Simons field theory, the field components correspond to distributional valued
operators, and the Wilson line operators are formally defined by expression (4.1) together with
a set of specified rules which must be used to remove possible ambiguities in the computation of
the expectation values. In the operator formalism, these ambiguities are related to the product
of field operators in the same point [32, 33] and they are eliminated by means of a framing
procedure. In the path-integral approach, we shall see that all the ambiguities are related to the
definition of the pairing H̃1

D (M3,Z) × H̃1
D (M3,Z) → H̃3

D (M3,Z); as it has been discussed in
Section 3, we shall use the framing of the link components to eliminate all ambiguities by means
of the definition (3.14).

Remark 4.2. In equations (4.1) and (4.2), we have used the same symbol to denote knots and
their homological representatives because a canonical correspondence [28] between them always
exists. At the classical level, for any integer q one can identify the 1-cycle qC ∈ Z1(M) with
the q-fold covering of the cycle C or the q-times product of C with itself. At the quantum level,
this equivalence may not be valid when it is applied to the Wilson line operators because of
ambiguities in the definition of composite operators; so, in order to avoid inaccuracies, we will
always refer to Wilson line operators defined for oriented coloured and framed knots or links.

Definition 4.1. For each link component Cj , let [ηj ] ∈ H̃1
D (M3,Z) be the DB class such that

exp

{
2iπqj

∫
Cj

[A]

}
= exp

{
2iπqj

∫
M3

[A] ∗ [ηj ]
}
.

With the definition

[ηL] =
∑

j

qj [ηj ], (4.3)

one has

exp
{

2iπ
∫

M3

[A] ∗ [ηL]
}

= exp

2iπ
∑

j

qj

∫
M3

[A] ∗ [ηj ]

 .

The expectation values of the Wilson line operators can be written in the form

〈W (L)〉k ≡

∫
D [A] exp

{
2iπk

∫
M3

[A] ∗ [A]
}
W (L)∫

D [A] exp
{

2iπk
∫
M3

[A] ∗ [A]
}
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=

∫
D [A] exp

{
2iπk

∫
M3

[A] ∗ [A]
}

exp
{

2iπ
∫
M3

[A] ∗ [ηL]
}

∫
D [A] exp

{
2iπk

∫
M3

[A] ∗ [A]
} , (4.4)

and our main purpose is to show how to compute them for arbitrary link L.

Remark 4.3. In the DB cohomology approach, the functional integration (4.4) locally corre-
sponds to a sum over 1-form modulo forms with integer periods. So, the space of classical field
configurations which are factorized out by gauge invariance is in general larger than the standard
group of local gauge transformations. It should be noted that this enlarged gauge symmetry per-
fectly fits the assumption that the expectation values (4.4) form a complete set of observables.
In the DB cohomology interpretation of the functional integral for the quantum Chern–Simons
field theory, this enlargement of the “symmetry group” represents one of the main conceptual
improvements with respect to the standard formulation of gauge theories and, as we shall show,
allows for a description of the functional space structure in terms of the homology groups of the
manifold M3.

4.3 Properties of the functional measure

The sum over the DB classes
∫
D[A] corresponds to a gauge-fixed functional integral in ordinary

quantum field theory, where one has to sum over the gauge orbits in the space of connections. In
the path-integral, smooth fields configurations or finite-action configurations have zero measure
[34, 35]; so, the functional integral (4.4) has to be understood as the functional integral in
the appropriate extension or closure H1

D (M3,Z) of the space H1
D (M3,Z), with H̃1

D (M3,Z) ⊂
H1

D (M3,Z) and, more generaly, with Hom
(
H1

D (M,Z) , S1
)
⊂ H1

D (M3,Z). In order to guarantee
the consistency of the functional integral and its correspondence with ordinary gauge theories,
we assume that the quantum measure has the following two properties.

(M1) The space H1
D (M3,Z) inherits its structure from H1

D (M3,Z) in agreement with sequen-
ce (2.5).

Equation (2.5) then implies that the sum over DB classes is locally equivalent to a sum over
Ω1 (M3)/Ω1

Z (M3), i.e. a sum over 1-forms modulo generalized gauge transformations.

(M2) The functional measure is translational invariant.

This implies in particular that, for any [ω] ∈ H̃1
D (M3,Z), the quadratic measure

dµk ([A]) ≡ D [A] exp
{

2iπk
∫

M3

[A] ∗ [A]
}

(4.5)

satisfies the equation

dµk ([A] + [ω]) = dµk ([A]) exp
{

4iπk
∫

M3

[A] ∗ [ω] + 2iπk
∫

M3

[ω] ∗ [ω]
}
, (4.6)

which looks like a Cameron–Martin formula (see for instance [36] and references therein).
Equation (4.6) will be used extensively in our computations. The importance of generalized

Wiener measures in the functional integral – which necessarily imply the validity of the Cameron–
Martin property – and of the singular connections was also stressed in the articles [37] and [38]
in which, however, the space of the functional integral is supposed to coincide with the space of
the classes of smooth connections on a fixed U(1)-bundle over M3.

In the computation of the observables (4.4), we shall not use perturbation theory; only
properties (M1) and (M2) of the functional measure will be utilized. We shall now derive the
main properties of the observables of the Abelian Chern–Simons theory which are valid for any
3-manifold M3.
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4.4 Colour periodicity

The colour of each oriented knot or link component C ⊂ M3 is specified by the value of its
associated charge q ∈ Z. For fixed nonvanishing value of the coupling constant k, the expectation
values (4.4) are invariant under the substitution q → q + 2k, where q is the charge of a generic
link component. Consequently, one has

Proposition 4.1. For fixed integer k, the colour space is given by Z2k which coincides with the
space of residue classes of integers mod 2k.

Proof. Let {qj} be the charges which are associated with the components {Cj} (j = 1, 2, . . . , N)
of the link L. With the notation (4.5), the expectation value 〈W (L)〉k shown in equation (4.4)
can be written as

〈W (L)〉k =

∫
dµk([A]) exp

{
2iπ

∑
j qj

∫
M3

[A] ∗ [ηj ]
}

∫
dµk([A])

. (4.7)

Property (M2) implies that, with the substitution [A] → [A] + [η1], the numerator of expres-
sion (4.7) becomes

∫
dµk([A]) exp

2iπ
∑

j

qj

∫
M3

[A] ∗ [ηj ]

 =
∫
dµk([A]) exp

2iπ
∑

j

q′j

∫
M3

[A] ∗ [ηj ]


× exp

{
2iπk

∫
M3

[η1] ∗ [η1]
}

exp

2iπ
∑

j

qj

∫
M3

[η1] ∗ [ηj ]

 ,

where q′j = qj + 2kδj1. In agreement with equation (3.13), for j 6= 1 one has [η1] ∗ [ηj ] ' [0] ∈
H̃3

D (M3,Z), and then

exp
{

2iπqj
∫

M3

[η1] ∗ [ηj ]
}

= 1.

Similarly, in agreement with equation (3.14), by means of the framing procedure one obtains
[η1] ∗ [η1] ' [0] ∈ H̃3

D (M3,Z), and then

exp
{

2iπ(q1 + k)
∫

M3

[η1] ∗ [η1]
}

= 1.

Consequently, the numerator of expression (4.7) can be written as

∫
dµk([A]) exp

2iπ
∑

j

qj

∫
M3

[A] ∗ [ηj ]


=

∫
dµk([A]) exp

2iπ
∑

j

q′j

∫
M3

[A] ∗ [ηj ]

 ,

which proves that, for fixed k, the expectation values (4.4) are invariant under the substitution
q1 → q1 + 2k, where q1 is the charge of the link component C1. �
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4.5 Ambient isotopy invariance

Two oriented framed coloured links L and L′ in M3 are ambient isotopic if L can be smoothly
connected with L′ in M3.

Proposition 4.2. The Chern–Simons expectation values (4.4) are invariants of ambient isotopy
for framed links.

Proof. Suppose that two oriented coloured framed links L and L′ are ambient isotopic in M3.
The link L has components {C1, C2, . . . , CN} with colours {q1, q2, . . . , qN}; whereas the link L′

has components {C ′1, C2, . . . , CN} with colours {q1, q2, . . . , qN}, so that

[ηL] = q1[η1] +
∑
j 6=1

qj [ηj ], [ηL′ ] = q1[η′1] +
∑
j 6=1

qj [ηj ], (4.8)

where the class [η1] refers to the knot C1 ⊂M3 and [η′1] is associated to the knot C ′1 ⊂M3.
Let τ : [0, 1] → C1(τ) ⊂M3 be the isotopy which connects C1 with C ′1 in M3, with C1(0) = C1

and C1(1) = C ′1. We shall denote by Σ ⊂ M3 the 2-dimensional surface which has support on
{C1(τ) ⊂ M3; 0 ≤ τ ≤ 1}; because of the freedom in the choice of τ within the same ambient
isotopy class, it is assumed that Σ is well defined and presents no singularities. Σ belongs
to the complement of the link components {C2, C3, . . . , CN} in M3 and one can introduce an
orientation on Σ in such a way that its oriented boundary is given by ∂Σ = C ′1 ∪ C

−1
1 , where

C−1
1 denotes the knot C1 with reversed orientation.
The distributional 1-form ηΣ, which is associated with Σ, is globally defined in M3 and

satisfies

dηΣ = dη′1 − dη1. (4.9)

where, with a small abuse of notation, dη1 and dη′1 denote the integration currents of C1 and C ′1
respectively. For j 6= 1 one finds∫

M3

ηΣ ∧ dηj = 0, (4.10)

because the link components {C2, C3, . . . , CN} do not intersect the surface Σ. Moreover, ac-
cording to the framing procedure, the orientation of Σ implies∫

M3

ηΣ ∧ (dη′1 + dη1) =
∫

C′
1f

ηΣ +
∫

C1f

ηΣ = 0, (4.11)

where C ′1f denotes the framing of C ′1 and C1f represents the framing of C1. Since ηΣ is globally
defined in M3, the 1-form xηΣ (with x = (q1/2k) ∈ R) is also globally defined. Let [xηΣ] ∈
H̃1

D (M3,Z) be the DB class which can be represented by the 1-form xηΣ; by construction, one
has

exp
{

4iπk
∫

M3

[A] ∗ [(q1/2k)ηΣ]
}

= exp
{

2iπq1
∫

M3

[A] ∗ [η′1]
}

exp
{
−2iπq1

∫
M3

[A] ∗ [η1]
}
. (4.12)

The expectation value 〈W (L)〉k is given by

〈W (L)〉k =

∫
dµk([A]) exp

{
2iπ

∫
M3

[A] ∗ [ηL]
}

∫
dµk([A])

. (4.13)
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Equation (4.12) and property (M2) imply that, with the substitution [A] → [A] + [xηΣ], the
numerator of expression (4.13) can be written as∫

dµk([A]) exp
{

2iπ
∫

M3

[A] ∗ [ηL′ ]
}

× exp
{

2iπk
∫

M3

[xηΣ] ∗ [xηΣ]
}

exp
{

2iπ
∫

M3

[xηΣ] ∗ [ηL]
}
.

By using the relations

exp
{

2iπk
∫

M3

[xηΣ] ∗ [xηΣ]
}

= exp
{

(iπq21/2k)
∫

M3

ηΣ ∧ (dη′1 − dη1)
}
,

exp
{

2iπ
∫

M3

[xηΣ] ∗ [ηL]
}

= exp
{

(iπq21/k)
∫

M3

ηΣ ∧ dη1

}

× exp

(iπq1/k)
∑
j 6=1

qj

∫
M3

ηΣ ∧ dηj

 ,

and equations (4.9)–(4.11), one finds that the numerator of expression (4.13) assumes the form∫
dµk([A]) exp

{
2iπ

∫
M3

[A] ∗ [ηL′ ]
}
.

Consequently, the expectation values of the Wilson line operators associated with the links L
and L′, entering equation (4.8), are equal. The same argument, applied to all the link compo-
nents, implies that, for any two ambient isotopic links L and L′, one has

〈W (L)〉k =
〈
W (L′)

〉
k
.

This concludes the proof. �

4.6 Satellite relations

For the oriented framed knot C ⊂M3, let the homeomorphism h : S1×D2 → VC be the framing
of C, where VC is a a tubular neighbourhood of C. Let us represent the disc D2 by the set
{z, with |z| ≤ 1} of the complex plane. The framing Cf of C is given by h(S1 × 1), whereas
one can always imagine that the knot C just corresponds to h(S1 × 0). Let P be a link in the
solid torus S1 × D2; if one replaces the knot C ⊂ M3 by h(P ) ⊂ M3 one obtains the satellite
of C which is defined by the pattern link P .

Definition 4.2. Let B ⊂ S1 × D2 be the oriented link with two components {B1, B2} given
by B1 = (S1 × 0) ⊂ S1 × D2 and B2 = (S1 × 1/2) ⊂ S1 × D2. For any oriented framed
knot C ⊂ M3, let us denote by C(2) ∈ M3 the satellite of C with is obtained by means of the
pattern link B. The two oriented components {K1,K2} of C(2) are given by K1 = h(B1) and
K2 = h(B2). Let us introduce a framing for the components of the link C(2); the knot K1 has
framing K1f = h(S1 × 1/4) and the knot K2 has framing K2f = h(S1 × 3/4).

By construction, the satellite C(2) of C is an oriented framed link.

Proposition 4.3. Let L and L̃ be two oriented coloured framed links in M3 in which L̃ is
obtained from L = {C1, . . . , CN} by substituting the component C1, which has colour q1 ∈ Z,
with its satellite C

(2)
1 whose components K1 and K2 have colours q̃1 = q1 ± 1 and q̃2 = ∓1

respectively. Then, the corresponding Chern–Simons expectation values satisfy

〈W (L)〉k = 〈W (L̃)〉k. (4.14)
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Proof. Because of the ambient isotopy invariance of 〈W (L̃)〉k, one can consider the limit in
which the component K1 approaches to K2 and coincides with K2. In this limit, for each field
configuration (i.e. for each DB class) the associated holonomies W (C1) and W (C(2)

1 ) coincides.
This means that, at the classical level, equality (4.14) is satisfied. Thus, we only need to
consider possible ambiguities in the expectation value of the composite Wilson line operator
W (C(2)

1 ) = W (K1)W (K2) in the K1 → K2 limit. In agreement with what we shall show in the
following sections, we now assume that all the ambiguities which refer to composite Wilson line
operators are eliminated by means of the framing procedure which is used to define the product
[η

L̃
] ∗ [η

L̃
]. According to the definition (4.3), one has

[ηL] = q1[η1] +
N∑

j=2

qj [ηj ] = q1[η1] + [ηL],

[η
L̃
] = q̃1[ηK1 ] + q̃2[ηK2 ] +

N∑
j=2

qj [ηj ] = q̃1[ηK1 ] + q̃2[ηK2 ] + [ηL],

and then

[ηL] ∗ [ηL] = q21[ηC1 ] ∗ [ηC1 ] + 2q1[ηC1 ] ∗ [ηL] + [ηL] ∗ [ηL],
[η

L̃
] ∗ [η

L̃
] = (q̃1[ηK1 ] + q̃2[ηK2 ]) ∗ (q̃1[ηK1 ] + q̃2[ηK2 ])

+ 2 (q̃1[ηK1 ] + q̃2[ηK2 ]) ∗ [ηL] + [ηL] ∗ [ηL].

As far as the computation of the Chern–Simons observables is concerned, ambient isotopy in-
variance and equality q1 = q̃1 + q̃2 imply

2q1[ηC1 ] ∗ [ηL] = 2 (q̃1[ηK1 ] + q̃2[ηK2 ]) ∗ [ηL],

moreover, by construction of the satellite C(2)
1 and the definition (3.14), one also finds

q21[ηC1 ] ∗ [ηC1 ] = (q̃1[ηK1 ] + q̃2[ηK2 ]) ∗ (q̃1[ηK1 ] + q̃2[ηK2 ]) .

Therefore, as far as the computation of the Chern–Simons observables is concerned, one can
replace [ηL] ∗ [ηL] by [η

L̃
] ∗ [η

L̃
], and then 〈W (L)〉k = 〈W (L̃)〉k. �

Definition 4.3. In agreement with Proposition 4.3, for any oriented coloured framed link L ⊂
M3, one can replace recursively all the link components which have colour given by q 6= ±1 by
their satellites constructed with the pattern link B, in such a way that the resulting link L ⊂M3

has the following property: each oriented framed component of L has colour which is specified
by a charge q = +1 or q = −1. Remember that, for each link component C, the sign of the
associated charge q is defined with respect to the orientation of C. So, with a suitable choice of
the orientation of the link components, all the link components of L have charges +1. For each
link L ⊂ M3, the corresponding link L ⊂ M3 will be called the simplicial satellite of L and, as
a consequence of Proposition 4.3, one has

〈W (L)〉k = 〈W (L)〉k. (4.15)

5 Abelian Chern–Simons theory on S3

When M3 = S3, the DB cohomology group satisfies H1
D

(
S3,Z

)
' Ω1

(
S3

)/
Ω1

Z
(
S3

)
and one

has Ω1
(
S3

)/
Ω1

Z
(
S3

)
= Ω1

(
S3

)/
dΩ0

(
S3

)
. Since in general the path-integral of the Chern–

Simons theory on M3 locally corresponds to a sum over the space of 1-forms modulo forms
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with integer periods, it is convenient to introduce a new notation; with respect to the origin of
Ω1

(
S3

)/
Ω1

Z
(
S3

)
that one can choose to correspond to the vanishing connection, an element of

Ω1
(
S3

)/
Ω1

Z
(
S3

)
will be denoted by [α]. So that, in agreement with property (M1), for any

oriented coloured and framed link L ⊂ S3 the expectation value (4.4) can be written as

〈W (L)〉k =

∫
D [α] exp

{
2iπk

∫
S3 [α] ∗ [α]

}
exp

{
2iπ

∫
S3 [α] ∗ [ηL]

}∫
D [α] exp

{
2iπk

∫
S3 [α] ∗ [α]

}
=

∫
dµk([α]) exp

{
2iπ

∫
S3 [α] ∗ [ηL]

}∫
dµk([α])

, (5.1)

where [α] ∈ Ω1
(
S3

)
/Ω1

Z
(
S3

)
and [ηL] ∈ H̃1

D (M3,Z) denotes the class which is canonically
associated with L. The integral (5.1) actually extends to H1

D

(
S3,Z

)
which has to be understood

as a suitable extension of Ω1
(
S3

)
/Ω1

Z
(
S3

)
. We shall now compute the observable 〈W (L)〉k for

arbitrary link L.

Theorem 5.1. Let the oriented coloured and framed link components {Cj} of the link L, with
j = 1, 2, . . . , N , have charges {qj} and framings {Cjf}. Then

〈W (L)〉k = exp

−(2iπ/4k)
∑
ij

qiLijqj

 , (5.2)

where the linking matrix Lij is defined by

Lij =
∫

S3

ηi ∧ dηj = `k(Ci, Cj), for i 6= j,

Ljj =
∫

S3

ηj ∧ dηj = `k(Cj , Cjf ).

Proof. Since H2
(
S3,Z

)
= 0, Poincaré duality implies that any 1-cycle on S3 is homologically

trivial. Equivalently, for each knot Cj one can find an oriented Seifert surface Σj ⊂ S3 such that
∂Σj = Cj (in fact, there is an infinite number of topologically inequivalent Seifert surfaces) and
one can then define a distributional 1-form ηj (with support on Σj) which is globally defined
in S3. The distributional 1-form ηL associated with the link L,

ηL =
∑

j

qjηj ,

is globally defined in S3 and, in the Chech–de Rham description of DB cocycles, the class [ηL]
can be represented by the sequence (ηL, 0, 0). The distributional 1-form

ηL/2k =
∑

j

(qj/2k)ηj

is also globally defined in S3 and we shall denote by [ηL/2k] ∈ H̃1
D (M3,Z) the DB class which, in

the Chech–de Rham description of DB cocycles, is represented by the sequence (ηL/2k, 0, 0). It
should be noted that the class [ηL/2k] does not depend on the particular choice of the 1-form ηL

which represents [ηL]. (In turn, this implies that [ηL/2k] does not depend on the particular
choice of the Seifert surfaces.) In fact, any representative 1-form of [ηL] can be written as
ηL + dχ for some χ ∈ Ω0(S3); therefore, for the corresponding class [(ηL + dχ)/2k] one finds

[(ηL + dχ)/2k] = [ηL/2k + dχ/2k] = [ηL/2k] + [d(χ/2k)] = [ηL/2k].
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By construction, the class [ηL/2k] satisfies the relation

2k[ηL/2k] = [ηL],

therefore

exp
{

4iπk
∫

S3

[α] ∗ [ηL/2k]
}

= exp
{

2iπ
∫

S3

[α] ∗ [ηL]
}
. (5.3)

In agreement with property (M2), by means of the substitution [α] → [α]−[ηL/2k] the numerator
of expression (5.1) assumes the form∫

dµk([α]) exp
{
−4iπk

∫
S3

[α] ∗ [ηL/2k]
}

exp
{

2iπk
∫

S3

[ηL/2k] ∗ [ηL/2k]
}

× exp
{

2iπk
∫

S3

[α] ∗ [ηL]
}

exp
{
−2iπ

∫
S3

[ηL/2k] ∗ [ηL]
}
. (5.4)

With the help of equation (5.3), expression (5.4) becomes

exp
{
−(2iπ/4k)

∫
S3

ηL ∧ dηL

} ∫
dµk([α]),

and then

〈W (L)〉k = exp
{
−(2iπ/4k)

∫
S3

ηL ∧ dηL

} ∫
dµk([α])∫
dµk([α])

.

Assuming that, for the manifold S3, one has∫
dµk([α]) 6= 0,

one finally obtains

〈W (L)〉k = exp
{
−(2iπ/4k)

∫
S3

ηL ∧ dηL

}

= exp

−(2iπ/4k)
∑
ij

qiqj

∫
S3

ηi ∧ dηj

 , (5.5)

which coincides with expression(5.2); and this concludes the proof. �

Remark 5.1. Expression (5.2) describes an invariant of ambient isotopy (Proposition 4.2) for
oriented coloured framed links. Since the matrix elements Lij are integers, in agreement with
Proposition 4.1 the observable (5.2) is invariant under the substitution qi → qi +2k (for fixed i).
Moreover, one can verify that Proposition 4.3 is indeed satisfied by expression (5.2).

Remark 5.2. The topological properties of knots and links in S3 and in R3 are equal. Therefore,
expression (5.2) also describes the Wilson line expectation values for the quantum Chern–Simons
theory in R3 and, in fact, equation (5.2) is in agreement with the results which can be obtained
by means of standard perturbation theory [33].
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Figure 3. The region of R3 which is delimited by two spheres S2, one into the other, with their face-to-
face points identified, provides a description of S1 ×S2. The oriented fundamental loop G0 ⊂ S1 ×S2 is
also represented.

Figure 4. The trivial knot surrounding the non trivial knot G0 is moved down (via an ambient isotopy).
The intersection number of its associated surface – given by a disc – with G0 goes from unity to 0.

6 Abelian Chern–Simons theory on S1 × S2

One can represent S1 × S2 by the region of R3 which is delimited by two concentric 2-spheres
(of different radii), with the convention that the points on the two surfaces with the same
angular coordinates are identified. The nontrivial knot G0, which can be taken as generator of
H1(S1 × S2,Z) ' Z, is shown in Fig. 3.

Let us recall that, since H2(S1 × S2,Z) is not trivial, the linking number of two knots may
not be well defined in S1 × S2; one example is shown in Fig. 4.

Differently from S3, the manifold S1 × S2 has nontrivial cohomology and homology groups.
While H3

D

(
S1 × S2,Z

)
is still canonically isomorphic to Ω3

(
S1 × S2

)
/Ω3

Z
(
S1 × S2

)
, the group

H1
D

(
S1 × S2,Z

)
has the structure of a non trivial affine bundle over the second integral coho-

mology group H2
(
S1 × S2,Z

)
' Z. As shown in Fig. 1, one can then represent H1

D

(
S1 × S2,Z

)
by means of a collection of fibres over the base space Z, each fibre has a linear space structure
and is isomorphic to Ω1

(
S1 × S2

)
/Ω1

Z
(
S1 × S2

)
. For the fiber over 0 ∈ Z one can choose the

trivial vanishing connection as canonical origin, so that this fibre can actually be identified with
Ω1

(
S1 × S2

)
/Ω1

Z
(
S1 × S2

)
. The fiber over n ∈ Z, with n 6= 0, has not a canonical origin, but

one can fix an origin and each element of this fibre will be written as a sum of this origin with
an element of Ω1

(
S1 × S2

)
/Ω1

Z
(
S1 × S2

)
.

6.1 Structure of the functional measure

The choice of an origin on each fibre of the affine bundle H1
D

(
S1 × S2,Z

)
defines of a section s

of H1
D

(
S1 × S2,Z

)
over the discrete base space Z ∼= H2

(
S1 × S2,Z

)
, with the convention that

s (0) = [0] ∈ H1
D

(
S1 × S2,Z

)
. In agreement with property (M1), the quantum measure space

H1
D(S1 × S2,Z) can also be understood as an affine bundle over Z, and the section s will be

used to make the structure of the functional integral explicit. Therefore, one can actually admit
distributional values for s and, in fact, it is convenient to define the section s with values in
H̃1

D

(
S1 × S2,Z

)
.

Definition 6.1. The simplest choice for s is suggested by the additive structure of the base space.
More precisely, let us pick up a nontrivial 1-cycle (or oriented knot) G0 which is directed along
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the S1 component of S1×S2 and is a generator of H1(S1×S2,Z) ' Z. If [γ0] ∈ H̃1
D

(
S1 × S2,Z

)
denotes the DB class which is canonically associated with G0, we shall consider the section

s : Z → H̃1
D

(
S1 × S2,Z

)
,

n 7→ s (n) ≡ n [γ0] . (6.1)

Each element [A] of H̃1
D

(
S1 × S2,Z

)
(and of H1

D(S1 × S2,Z)) can then be written as

[A] = n [γ0] + [α] ,

for some integer n and [α] ∈ Ω1
(
S1 × S2

)
/Ω1

Z
(
S1 × S2

)
; and the functional measure takes the

form

dµk([A]) =
+∞∑

n=−∞
D[α] exp

{
2iπk

∫
S1×S2

(n[γ0] + [α]) ∗ (n[γ0] + [α])
}
. (6.2)

Remark 6.1. Because of the translational invariance of the quantum measure, the particular
choice (6.1) of the section s will play no role in the computation of the observables. In fact,
a modification of the origin of each fiber of H1

D(S1 × S2,Z) can be achieved by means of an
element of Ω1

(
S1 × S2

)
/Ω1

Z
(
S1 × S2

)
.

Expression (6.2) can be written as

dµk([A]) =
+∞∑

n=−∞
D[α] exp

{
2iπk

∫
S1×S2

[α] ∗ [α]
}

exp
{

4iπkn
∫

S1×S2

[α] ∗ [γ0]
}

× exp
{

2iπkn2

∫
S1×S2

[γ0] ∗ [γ0]
}
. (6.3)

As usual, in order to define [γ0]∗ [γ0] ∈ H̃3
D

(
S1 × S2,Z

)
we shall introduce a framing G0f for the

knot G0 and, in agreement with equations (3.13) and (3.14), we define [γ0] ∗ [γ0] ≡ [γ0] ∗ [γ0f ] =
[0] ∈ H̃3

D(S1×S2,Z). Therefore, with integers k and n, the last factor entering expression (6.3)
is well defined and it is equal to the identity. So, one obtains

dµk([A]) =
+∞∑

n=−∞
D[α] exp

{
2iπk

∫
S1×S2

[α] ∗ [α]
}

exp
{

4iπkn
∫

S1×S2

[α] ∗ [γ0]
}
, (6.4)

with [α] ∈ Ω1
(
S1 × S2

)
/Ω1

Z
(
S1 × S2

)
.

6.2 Zero mode

Definition 6.2. Let S0 be a oriented 2-dimensional sphere which is embedded in S1 × S2 in
such a way that it can represent a generator of H2(S1 × S2,Z).
S0 is isotopic with the component S2 of S1 × S2 and, if one represents S1 × S2 by the

region of R3 which is delimited by two concentric spheres, S0 can just be represented by a third
concentric sphere. We shall denote by β0 the distributional 1-form which is globally defined in
S1 × S2 and has support on S0; the overall sign of β0 is fixed by the orientation of S0 so that∫

G0

β0 = 1. (6.5)

Since the boundary of the closed surface S0 is trivial, one has dβ0 = 0. For any given real
parameter x, the 1-form xβ0 is also globally defined in S1 × S2; let us denote by [xβ0] ∈
Ω1

(
S1 × S2

)
/Ω1

Z
(
S1 × S2

)
the class which is represented by the form xβ0.
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Proposition 6.1. For each value m of the integer residues mod2k, the Chern–Simons mea-
sure (6.4) on S1 × S2, with nontrivial coupling constant k, satisfies the relation

dµk([A]) = dµk([A] + [(m/2k)β0]). (6.6)

Proof. From expression (6.4) one finds

dµk([A] + [(m/2k)β0])

=
+∞∑

n=−∞
D[α] exp

{
2iπk

∫
S1×S2

[α] ∗ [α]
}

exp
{

4iπkn
∫

S1×S2

[α] ∗ [γ0]
}

× exp
{

4iπk
∫

S1×S2

[α] ∗ [(m/2k)β0]
}

exp
{

2iπk
∫

S1×S2

[(m/2k)β0] ∗ [(m/2k)β0]
}

× exp
{

4iπkn
∫

S1×S2

[(m/2k)γ0] ∗ [η0]
}
, (6.7)

where the integer m takes the values m = 0, 1, 2, . . . , 2k−1. From the equality dβ0 = 0 it follows
that

4iπk
∫

S1×S2

[α] ∗ [(m/2k)β0] = 2iπm
∫

S1×S2

α ∧ dβ0 = 0,

where α ∈ Ω1
(
S1 × S2

)
represents the class [α],

2iπk
∫

S1×S2

[(m/2k)β0] ∗ [(m/2k)β0] = iπ(m2/2k)
∫

S1×S2

β0 ∧ dβ0 = 0.

Finally, relation (6.5) implies

exp
{

4iπkn
∫

S1×S2

[(m/2k)β0] ∗ [γ0]
}

= exp
{

2iπnm
∫

G0

β0

}
= 1.

Therefore expressions (6.7) and (6.4) are equal. �

6.3 Values of the observables

Let us consider an oriented coloured and framed link L in S1 × S2; without loss of generality,
one can always assume that L does not intersect the knot G0. In agreement with equation (6.5),
the integral

N0(L) =
∫

L
β0

takes integer values; more precisely, N0(L) is equal to the sum of the intersection numbers
(weighted with the charges of the link components) of the link L with the surface S0.

Theorem 6.1. Given a link L ⊂ S1 × S2,

• when N0(L) 6≡ 0 mod 2k, one finds 〈W (L)〉k = 0;

• whereas for N0(L) ≡ 0 mod 2k, one has

〈W (L)〉k = exp
{
−(2iπ/4k)

∫
S1×S2

ηL ∧ dηL

}
, (6.8)

where ηL ∧ dηL is defined by means of the framing procedure.
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Proof. The expectation value of the Wilson line operator is given by

〈W (L)〉k = Z−1
k

∫
dµk([A]) exp

{
2iπ

∫
S1×S2

[A] ∗ [ηL]
}
, (6.9)

where dµk([A]) is shown in equation (6.4) and

Zk =
∫
dµk([A]).

Equation (6.6) implies that W (L) satisfies the following relation

〈W (L)〉k = Z−1
k

1
2k

2k−1∑
m=0

∫
dµk([A] + [(m/2k)β0])e2iπ

∫
S1×S2 ([A]+[(m/2k)β0])∗[ηL]

= Z−1
k

∫
dµk([A])e2iπ

∫
S1×S2 [A]∗[ηL] 1

2k

2k−1∑
m=0

e2iπ
∫

S1×S2 [(m/2k)β0]∗[ηL]

= 〈W (L)〉k
1
2k

2k−1∑
m=0

exp
{

2iπ(m/2k)
∫

L
β0

}
. (6.10)

One has

1
2k

2k−1∑
m=1

exp {2iπN0 (L)m/2k} =
{

1 if N0 (L) ≡ 0 mod 2k,
0 otherwise.

Therefore equation (6.10) shows that, when N0(L) 6≡ 0 mod 2k, the expectation value 〈W (L)〉k
is vanishing.

Let us now consider the case in which N0(L) ≡ 0 mod 2k. Because of Proposition 4.1, we
only need to discuss the case N0(L) = 0. In fact, if N0(L) = 2kp for some integer p 6= 0, at
least one of the link components C ⊂ L intersects S0; one can then modify the value qC of its
charge according to qC → qC − 2kp so that N0(L) vanishes. According to the decomposition
[A] = n[γ0] + [α], one finds

exp
{

2iπ
∫

S1×S2

[A] ∗ [ηL]
}

= exp
{

2iπn
∫

S1×S2

[γ0] ∗ [ηL]
}

exp
{

2iπ
∫

S1×S2

[α] ∗ [ηL]
}

= exp
{

2iπ
∫

S1×S2

[α] ∗ [ηL]
}
,

where the last equality is a consequence of the identity [γ0]∗ [ηL] = [0] ∈ H̃3
D

(
S1 × S2,Z

)
, which

follows from the framing procedure. Then, from equation (6.9) one gets

〈W (L)〉k = Z−1
k

∫ +∞∑
n=−∞

D[α]e2iπk
∫

S1×S2 [α]∗[α]e4iπkn
∫

S1×S2 [α]∗[γ0]e2iπ
∫

S1×S2 [α]∗[ηL]. (6.11)

When N0(L) = 0, the link L is homological trivial and one can find a Seifert surface for L.
More precisely, in agreement with Proposition 4.3 and equation (4.15), one can substitute L
with its simplicial satellite L, defined in Section 4, whose components have unitary charges.
The oriented framed link L ⊂ S1 × S2 also is homologically trivial and it is the boundary of an
oriented surface that we shall denote by ΣL ⊂ S1×S2. Let ηL be the distributional 1-form with
support on ΣL which is globally defined in S1 × S2; because of Proposition 4.3, in the Chech–
de Rham description of the DB classes, [ηL] can then be represented by the sequence (ηL, 0, 0).
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Figure 5. An example of conservation of the intersection number under ambient isotopy for a globally
trivial 1-cycle.

The 1-form (1/2k)ηL also is globally defined in S1 × S2 and we shall denote by [(1/2k)ηL] the
DB class which is represented by the form (1/2k)ηL. By construction,

exp
{
−4iπk

∫
S1×S2

[α] ∗ [(1/2k)ηL]
}

= exp
{
−2iπ

∫
S1×S2

[α] ∗ [ηL]
}
, (6.12)

and the condition N0(L) = 0 (or N0(L) ≡ 0 mod 2k) implies that, for integer n,

exp
{
−4iπkn

∫
S1×S2

[(1/2k)ηL] ∗ [γ0]
}

= 1. (6.13)

By means of the substitution [α] → [α] − [(1/2k)ηL] and with the help of equations (6.12)
and (6.13), expression (6.11) assumes the form

〈W (L)〉k = exp
{
−(2iπ/4k)

∫
S1×S2

ηL ∧ dηL

}
Z−1

k Zk.

Therefore, assuming Zk 6= 0, when N0(L) ≡ 0 mod 2k one gets

〈W (L)〉k = exp
{
−(2iπ/4k)

∫
S1×S2

ηL ∧ dηL

}
,

and this concludes the proof. �

Remark 6.2. Expression (6.8) formally coincides with the result (5.5) which has been obtained
in the case M3 ∼ S3. It should be noted that the integral (which appears in equation (6.8))∫

S1×S2

ηL ∧ dηL ≡
∫

S1×S2

ηL ∧ dηLf
=

∫
Lf

βL, (6.14)

where Lf denotes the framing of L, is well defined because it does not depend on the choice
of the Seifert surface of L. Indeed suppose that, instead of ΣL, we take Σ′

L
as Seifert surface

for the link L. The difference between the intersection number (6.14) of Lf with Σ′
L

and ΣL is
given by the intersection number of Lf with the closed surface Σ′

L
∪Σ−1

L
. This surface could be

nontrivial in S1 × S2 but, since L is homologically trivial, Lf also is homologically trivial and
then its intersection number with a closed surface vanishes. The example of Fig. 5 illustrates
the ambient isotopy invariance of the intersection number of a homologically trivial link with
the Seifert surface of a trivial knot in S1 × S2.
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7 Abelian Chern–Simons theory on S1 × Σg

Let us now consider the manifold M3 ∼ S1 × Σg where Σg is a closed Riemann surface of
genus g ≥ 1. In this case, the computation of the Chern–Simons observables is rather similar
to the computation when M3 ∼ S1 × S2. So, we shall briefly illustrate the main steps of the
construction.

As it has been mentioned in Section 1, H1
D(S1 × Σg,Z) has the structure of a affine bundle

over H2(S1×Σg,Z) ∼ Z2g+1 with Ω1(S1×Σg)/Ω1
Z(S1×Σg) acting canonically on each fibre by

translation. In agreement with property (M1), the functional space H1
D(S1×Σg,Z) is assumed

to have the same structure of H1
D(S1×Σg,Z) and, in order to fix a origin in each fibre, we need

to introduce a section s : Z2g+1 → H1
D(S1 × Σg,Z).

Definition 7.1. Let the nonintersecting oriented framed knots {G0, G1, . . . , G2g} in S1 × Σg

represent the generators of H1

(
S1 × Σg,Z

)
. For each j = 0, 1, . . . , 2g, we shall denote by

[γj ] ∈ H̃1
D(S1 × Σg,Z) the DB class which is canonically associated with the knot Gj .

Definition 7.2. If the elements of Z2g+1 are represented by vectors

~n ≡ (n0, n1, n2, . . . , n2g) ∈ Z2g+1,

a possible choice for the section s is given by

s : Z2g+1 → H̃1
D

(
S1 × Σg,Z

)
,

~n 7→ s (~n) = [nγ] ≡ ~n · [~γ] =
2g∑

j=0

nj [γj ].

Each class [A] ∈ H̃1
D(S1 × Σg,Z) can then be written as

[A] = [nγ] + [α],

for certain ~n and [α] ∈ Ω1(S1 × Σg)/Ω1
Z(S1 × Σg). Consequently, the Chern–Simons functional

measure takes the form

dµk([A]) =
∑
~n

D[α] exp
{

2iπk
∫

S1×S2

[α] ∗ [α]
}

exp
{

4iπk
∫

S1×S2

[α] ∗ [nγ]
}
, (7.1)

which is the analogue of equation (6.4). The condition [nγ] ∗ [nγ] = 0 ∈ H̃3
D(S1 ×Σg,Z), which

results from the framing procedure, has already been used to simplify the expression of dµk([A]).

Definition 7.3. Let the oriented closed surfaces Sj ⊂ S1 × Σg, with j = 0, 1, . . . , 2g, represent
the generators of H2(S1 × Σg,Z) ∼ Z2g+1. We shall denote by βj ∈ H̃1

D

(
S1 × Σg,Z

)
the

distributional 1-form which is globally defined in S1 × Σg and has support on Sj . One can
choose the generators of H2(S1×Σg,Z) in such a way that the following orthogonality relations
are satisfied∫

Gi

βj = δij , i, j = 0, 1, . . . , 2g.

Since Sj are closed surfaces, one has dβj = 0. For any real parameter x, the 1-form xβj also
is globally defined in S1 × Σg and the corresponding class, which can be represented by xβj ,
will be denoted by [xβj ] ∈ Ω1(S1 ×Σg)/Ω1

Z(S1 ×Σg). The arguments that have been presented
to prove Proposition 6.1 can also be used to prove the following
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Proposition 7.1. The quantum measure (7.1) of the Chern–Simons theory on S1 × Σg, with
nontrivial coupling constant k, satisfies the relation

dµk([A]) = dµk([A] + [(m/2k)βj ]).

for m = 0, 1, 2, . . . , 2k − 1 and for each value of j = 0, 1, . . . , 2g.

Finally, the expectation values of the Wilson line operators are determined by the following

Theorem 7.1. Let L be a oriented coloured framed link in S1 × Σg. For each j = 0, 1, . . . , 2g,
let us introduce the integer

Nj(L) =
∫

L
βj .

Then

• when Nj(L) 6≡ 0 mod 2k for at least one value of j = 0, 1, . . . , 2g, one has 〈W (L)〉k = 0 ;

• whereas when Nj(L) ≡ 0 mod 2k for all values of j = 0, 1, . . . , 2g, one finds

〈W (L)〉k = exp

{
−(2iπ/4k)

∫
S1×Σg

ηL ∧ dηL

}
, (7.2)

where ηL ∧ dηL is defined by means of the framing procedure.

Proof. The proof is similar to the proof of Theorem 6.1. In fact, when Nj(L) 6≡ 0 mod 2k for
at least one value of j = 0, 1, . . . , 2g, Proposition 7.1 implies that the Chern–Simons expectation
value 〈W (L)〉k vanishes. On the other hand, when Nj(L) ≡ 0 mod 2k for all values of j =
0, 1, . . . , 2g, the substitution [α] → [α]− [(1/2k)ηL] in the functional measure (7.1) leads to the
equation (7.2). It should be noted that expression (7.2) is well defined because the link L and
then its framing Lf are homologically trivial. �

8 Surgery rules

For the quantum Abelian Chern–Simons theory on the manifolds S1 × S2 and S1 × Σg (and,
in general, in any nontrivial 3-manifold), the standard gauge theory approach which is based
on the gauge group U(1) is in principle well defined but presents some technical difficulties,
which are related, for instance, to the implementation of the gauge fixing procedure and the
determination of the Feynman propagator. As a matter of facts, by means of the usual methods
of quantum gauge theories, the computation of the Chern–Simons observables in a nontrivial
3-manifold has never been explicitly produced.

In order to determine the Wilson line expectation values in M3 6∼ S3, one can use for instance
the surgery rules of the Reshetikhin–Turaev type [6] as developed by Lickorish [39] and by Morton
and Strickland [40]. In this section, we outline the surgery method which turns out to produce
the Chern–Simons observables for the manifolds S1 × S2 and S1 × Σg in complete agreement
with the results obtained in the DB approach of the path-integral.

Every closed orientable connected 3-manifold M3 can be obtained by Dehn surgery on S3

and admits a surgery presentation [29] which is described by a framed surgery link L ⊂ S3 with
integer surgery coefficients. Each surgery coefficient specifies the framing of the corresponding
component of L because it coincides with the linking number of this component with its framing.
The manifold S1×S2 admits a presentation with surgery link given by the unknot with vanishing
surgery coefficient, whereas S1×S1×S1 for example corresponds to the Borromean rings with
vanishing surgery coefficients. Any oriented coloured framed link L ⊂ M3 can be described by
a link L′ = L ∪ L in S3 in which:
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• the surgery link L describes the surgery instructions corresponding to a presentation of
M3 in terms of Dehn surgery on S3;

• the remaining components of L′ describe how L is placed in M3.

Assuming that the expectation values of the Wilson line operators form a complete set of
observables, one can find [33] consistent surgery rules, according to which the expectation value
of the Wilson line operator W (L) in M3 can be written as a ratio

〈W (L)〉k|M3 = 〈W (L)W (L)〉k|S3 / 〈W (L)〉k|S3 , (8.1)

where to each component of the surgery link is associated a particular colour state ψ0. Remember
that, for fixed integer k, the colour space coincides with space of residue classes of integers
mod 2k, which has a canonical ring structure; let χj denote the residue class associated with
the integer j. Then, the colour state ψ0 is given by

ψ0 =
2k−1∑
j=0

χj .

One can verify that the surgery rule (8.1) is well defined and consistent; in fact, expression (8.1)
is invariant under Kirby moves [41]. Finally, one can check that, according to the surgery
formula (8.1), the expectation values of the Wilson line operators in S1×S2 and in S1×Σg are
given precisely by the expressions of Theorems 6.1 and 7.1, which have been obtained by means
of the DB cohomology.

9 Conclusions

In the standard field theory formulation of Abelian gauge theories, the (classical fields) configu-
ration space is taken to be the set of 1-forms modulo closed forms. But when the observables
of the theory are given by the exponential of the holonomies which are associated with oriented
loops, the classical configuration space is actually given by the set of 1-forms modulo forms
of integer periods; that is, the classical configuration space indeed coincides with space of the
Deligne–Beilinson cohomology classes. So, in this article we have considered the Abelian Chern–
Simons gauge theory, in which a complete set of observables is given by the set of exponentials
of the holonomies which are associated with oriented knots or links in a 3-manifold M3. We
have explored the main properties of the quantum theory and of the corresponding quantum
functional integral, which enters the computation of the observables, when the path-integral is
really defined over the Deligne–Beilinson classes. Within this new approach, we have produced
an explicit path-integral computation of the Chern–Simons link invariants in a class of torsion-
free 3-manifolds. In facts, we have not used any standard gauge-fixing and perturbative method,
as it has been done so far in literature. Our results are based on an explicit non-perturbative
path-integral computation and are exact results.

Let us briefly summarize the main issues of our article. In Sections 2 and 3 we have discussed
a few technical points which are important for the computation of the observables. The basic
definitions and properties of the DB cohomology together with a distributional extension of the
space of the equivalence classes have been illustrated. Then we have shown how the framing pro-
cedure, which is used to give a topological meaning to the self-linking number, can be naturally
defined also in the DB context. The general features of the Abelian Chern–Simons theory in a
generic 3-manifold M3 have been derived in Section 4. The main achievements concerning the
observables are the “colour periodicity” property (Proposition 4.1), the “ambient isotopy inva-
riance” (Proposition 4.2) and the validity of appropriate “satellite relations” (Proposition 4.3).
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With respect to the standard field theory approach, our proofs extend the validity of these
properties from R3 to a generic (closed and oriented) manifold M3.

The Abelian Chern–Simons theory formulated in S3 is discussed in Section 5 and its solution
is given by Theorem 5.1; in this case, the outcome is in agreement with the results obtained
by means of standard perturbation theory in R3. The expressions of the observables for the
Chern–Simons theory formulated in S1 × S2 and in a generic 3-manifold of the type S1 × Σg

are contained in Theorems 6.1 and 7.1; in the standard field theory approach, no proof of these
theorems actually exists.

Finally, we have checked the validity our path-integral results by means of an alternative
“combinatorial method”. Indeed, the link invariants defined in the Chern–Simons theory are
related to the link invariants defined by means of the quantum group methods of Reshetikhin and
Turaev. Given a surgery presentation in S3 of a generic 3-manifold M3 and knowing the values
of the link invariants in S3, one can use the surgery method of Lickorish and Morton–Strickland
to determine the values of the link invariants in M3. As far as the Abelian Chern–Simons is
concerned, we have presented the basic aspects of this surgery method in Section 8. We have
verified that the expression of the link invariants for the manifolds S1 × S2 and S1 ×Σg, which
are described by Theorems 6.1 and 7.1, precisely coincide with the results obtained by means of
the surgery method.

Clearly, in the case of a generic 3-manifold, the general features of the Deligne–Beilinson
approach to the Abelian Chern–Simons functional integral remain to be fully explored. Possible
applications of this formalism to the non-Abelian Chern–Simons theory would also give new
hints on the topological meaning of the polynomial link invariants. Finally, we mention that
extensions of Deligne–Beilinson cohomology approach to the topological field theories in lower
dimensions can easily be produced, but the resulting structure of the observables appears to be
quite elementary. Presumably, applications in higher dimensions will produce more interesting
invariants.
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For the Abelian Chern–Simons field theory, we consider the quantum functional
integration over the Deligne–Beilinson cohomology classes and present an explicit
path-integral nonperturbative computation of the Chern–Simons link invariants in
SO�3��RP3, a toy example of a 3-manifold with torsion. © 2009 American Insti-
tute of Physics. �doi:10.1063/1.3266178�

I. INTRODUCTION

In a quite recent paper,9 we have shown how Deligne–Beilinson �DB� cohomology5,2,6,12,3,1

within Chern–Simons �CS� quantum field theory �QFT� framework21,10,18,22,13,19,8,7 can be used to
provide a nonperturbative way to compute Abelian link invariants on some three dimensional
manifolds, such as S3, S2�S1, etc. In particular, quantization of the CS parameter k, as well as the
charges q of the links, was a straightforward consequence of the use of DB cohomology, and the
standard regularization via framing was directly interpreted as the problem of regularizing the
product of two distributional DB cohomology classes.

Actually, this former article only deals with torsion free �oriented� 3-manifold. We are going
to mend this lake of generality by explaining how to extend our approach to �oriented� 3-manifold
with torsion. As a school case, we will consider the oriented 3-manifold SO�3��RP3.

In Sec. II, we will recall some basic facts concerning DB cohomology and how it relates to the
functional measure based on the Abelian CS action. In Sec. III, we will deal with Wilson lines
themselves.

Here are the following three results we will obtain:

�1� the CS level parameter k has to be even;
�2� trivial cycles give the same result than in S3; and
�3� torsion cycles must hold an even charge,

in perfect agreement with surgery methods.
Throughout this paper we will use the notation =

Z

, which stands for equality modulo Z.

II. DB COHOMOLOGY: CONSTRAINTS ON THE LEVEL k OF THE ABELIAN CS THEORY

Let us recall that DB cochains can be seen as generalizations of U�1�-connections on
U�1�-principal bundles over smooth manifolds, their classes classifying the corresponding objects,
i.e., U�1�-gerbes with connections.3,15 Concentrating on the case of an oriented 3-manifold M, its
DB cohomology space HD

1 �M ,Z� is canonically embedded into the following exact sequence:3,11

a�Electronic mail: frank.thuillier@lapp.in2p3.fr.
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0 → �1�M�/�Z
1�M� → HD

1 �M,Z� → Ȟ2�M,Z� → 0, �2.1�

where �1�M� is the space of smooth 1-form on M, �Z
1�M� is the space of smooth closed 1-form

with integral periods on M, and Ȟ2�M ,Z� is the second integral Čech cohomology group of M.
Actually, HD

1 �M ,Z� can also be embedded into11

0 → Ȟ1�M,R/Z� → HD
1 �M,Z� → �Z

2�M� → 0, �2.2�

where Ȟ1�M ,R /Z� is the first R /Z-valued Čech cohomology group of M and �Z
2�M� is the space

of smooth closed 2-form with integral periods on M. Each one of these two exact sequences has
its own interest to describe HD

1 �M ,Z�, but both give this space the structure of an affine bundle,

with �discrete� base Ȟ2�M ,Z� and translation group �1�M� /�Z
1�M� from the former sequence, and

with base �Z
2�M� and translation group Ȟ1�M ,R /Z� from the latter one.

The other important DB space we will need is HD
3 �M ,Z�. However, the exact sequences of the

previous type into which this space is embedded both lead to HD
3 �M ,Z��R /Z.

A �graded� pairing between DB cohomology spaces can be introduced. In our particular case
of interest, it reduces to a commutative product,

�D:HD
1 �M,Z� � HD

1 �M,Z� → HD
3 �M,Z� � R/Z . �2.3�

The “DB square” of a class ����HD
1 �M ,Z�,

cs1����� � ����D��� �2.4�

canonically identifies with the Abelian CS Lagrangian, while the level k CS Lagrangian simply
reads as

csk����� � k · cs1����� = k · ����D��� . �2.5�

Of course, due to the Z-module structure of DB spaces, csk����� belongs to HD
3 �M ,Z� if and only

if k�Z.
In fact, DB classes are another point of view for what is called Cheeger–Simons differential

characters �see, for instance, Refs. 3, 4, 14, 11, and 1�. This implies that any DB cohomology class
can be integrated over any �integral� cycle of M of the corresponding dimension. However, the
result takes values in R /Z and not R like in standard integration. Integral 3-cycles on an oriented
3-manifold are just integer multiples of M. Hence, the Lagrangian csk����� defines the well known
level k CS action as

CSk����� � k�
M

cs1����� = k�
M

����D��� , �2.6�

which takes its values in R /Z if and only if k�Z. We now have all the necessary ingredients to try
to define the functional “CS measure” on HD

1 �M ,Z�, denoted by

�k����� � D���exp�2i�k�
M

����D���	 . �2.7�

Let us point out that �2.7� imposes quantization of the level k, that is to say,

k � Z �2.8�

for the exponential to be well defined. The procedure giving a meaning to �2.7� was detailed in
Ref. 9. To make it, short let us say that if we choose the exact sequence �2.1� as defining

HD
1 �M ,Z�, the measure will be made of a discrete sum indexed by elements of Ȟ2�M ,Z�; then, we

pick up an origin on every �affine� fiber, and for each of these fibers, we consider a �formal�
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measure over the translation group �1�M� /�Z
1�M�. As already noted and extensively used in Ref.

9, the CS measure satisfies

�k����� + �̄�� = �k�����exp�2i�k�
M

�2����D�̄ + �̄�D�̄�	 �2.9�

for all �̄��1�M� /�Z
1�M�, which is similar to the Cameron–Martin property cylindrical functional

measures verified.
In addition to the product �D, integration of elements of HD

1 �M ,Z� over 1-cycle on M also
provides a pairing,


 :HD
1 �M,Z� � Z1�M� → R/Z , �2.10�

where Z1�M� denotes the Abelian group of �integral� 1-cycle on M. This pairing allows us to see
1-cycle on M as elements of HD

1 �M ,Z���Hom�HD
1 �M ,Z� ,R /Z�, the Pontrjagin dual of HD

1 �M ,Z�.
This dual space is itself embedded into dual sequences,11

0 → Ȟ1�M,R/Z� → HD
1 �M,Z�� → Hom��1�M�/�Z

1�M�,R/Z� → 0 �2.11�

and

0 → Hom��Z
2�M�,R/Z� → HD

1 �M,Z�� → Ȟ2�M,Z� → 0, �2.12�

both being very similar to the original sequences �2.1� and �2.2�. On the other hand, the DB
product �2.3� also allows us to canonically identify HD

1 �M ,Z� as a subspace of HD
1 �M ,Z�� via

integration over M, which is also legitimated by the sequences above. However, since
Z1�M��HD

1 �M ,Z��, one is naturally led to consider the possibility to associate with each 1-cycle,
z, on M a �distributional� DB class, ��z�. Details of this association can be found in Ref. 1. These
arguments look totally similar to how smooth functions can be considered as distributions via
standard integration and how chains can be seen as de Rham currents, except that everything is
done with respect to R /Z and not R.

The usefulness of the Pontrjagin dual in our problem is deeply related to the fact that in QFT,
the quantum configuration space is made of distributional objects, and not just smooth ones. The
first consequence will be an attempt to extend the CS measure to HD

1 �M ,Z��. However, while the
DB product �2.3� obviously extends to

�D:HD
1 �M,Z� � HD

1 �M,Z�� → R/Z , �2.13�

it is hopeless to try to extend it straightforwardly to

�D:HD
1 �M,Z�� � HD

1 �M,Z�� → R/Z �2.14�

since we will face the problem of defining product of distributions �or currents�. Actually, we will
not really need to give a meaning to the products of any two elements of HD

1 �M ,Z��. We will only
need to define products such as ��z��D��z�, where ��z� is the DB representative of a 1-cycle, z, on
M. For the rest, we just need to assume that there is a functional measure on the quantum
configuration space ��HD

1 �M ,Z���, which satisfies the Cameron–Martin-like property �2.9� �see
Ref. 9 and references therein concerning this point�.

Let us now deal with Wilson lines. We will explicitly consider M =RP3, although our treat-
ment is quite obviously general.
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III. EXPECTATION VALUE OF WILSON LINES WITH TORSION IN THE ABELIAN CS
THEORY: M=RP3 CASE

The 3-manifold M =RP3 is among the simplest ones involving torsion. Indeed, and due to
Poincaré duality, we have

Ȟ2�M,Z� � Ȟ1�M,Z� = Z2,

Ȟ1�M,Z� � Ȟ2�M,Z� = 0. �3.1�

The first equation, together with �2.1�, implies that HD
1 �M ,Z� is an affine fiber bundle with base

space Z2��0̌ , 1̌�, with 2 · 1̌= 0̌. The fiber over 0̌ clearly contains the zero U�1�-connection, �0�,
which plays the role of a canonical origin in this fiber so that a DB class ��0� over 0̌ satisfies

��0� = �0� + �̄ �3.2�

for some �̄��1�M� /�Z
1�M�. Over 1̌ there is unfortunately no such canonical choice. Neverthe-

less, from the exact sequence �2.12�, we see that HD
1 �M ,Z�� is also an affine bundle with base

space Z2��0̌ , 1̌�. Thus, the choice of �0� for origin on the fiber over 0̌ still holds. Now, as
explained in �GT�, and because of the inclusion Z1�M��HD

1 �M ,Z��, there is a family of “natural”

choices of origin for the fiber over 1̌ provided by 1-cycle, z, on M, or rather by their DB
representatives ��z�. All we have to assume is that such an origin also belongs to the quantum
configuration space of the theory. We can then formally write the functional CS measure on
HD

1 �M ,Z��,

�k����� � D�̄ exp�2i�k�
M

�̄�D�̄	 + D�̄ exp�2i�k�
M

���1� + �̄��D���1� + �̄�	 , �3.3�

where ��1� is the origin on the fiber over 1̌ associated with some given �and so fixed� torsion cycle
�1 on M. In the second term of �3.3�, there appears the quantity ��1��D��1�, which is ill defined as
being a product of distributions �or rather de Rham currents�. This is where regularization is
required. Actually, and as mentioned earlier, regularization is only required later on when com-
puting expectation values of Wilson lines. However, as we will see �check Ref. 9�, the quantities
to regularize are of the type ��1��D��1�. This is why we are going to deal with regularization right
now.

A. Regularization of †�1‡�D†�1‡ via framing: Linking numbers of torsion cycles

When a cycle z is trivial, i.e., z=bc, with b as the usual boundary operator, one can define the
self-linking number of z as the linking number of z with zf, where zf is a framing of z. This reads
as

L�z,z� � L�z,zf� � c � zf , �3.4�

with � denoting the transverse intersection. Of course, the result fully depends on the chosen
framing of z. This also provides a regularization procedure for ��1��D��1�. Indeed, if z and z� are
two trivial cycles in M without any common points, their DB representatives, ��z� and ��z��,
satisfy

��z��D��z�� = �0� + �z ∧ d�z� � HD
3 �M,Z�� � R/Z , �3.5�

where �z ��z�� is the de Rham current of the cycle z �z�� such that z=bc �z�=bc��. However,
�z∧d�z� is the de Rham current representing the intersection c�z�=c��z. Accordingly,

M�z∧d�z��Z so that ��z��D��z��= �0�. Note that we did not use any regularizing at this stage.
We can now apply this to z and zf, leading to ��z��D��zf�= �0�. Thus, the framing procedure can be
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used to regularize ��z��D��z� into �0�. It can even be applied for a non trivial �but torsionless�
cycle �see Refs. 1 and 9 for details�.

For two torsion cycles � and �� on M, we have 2�=b	 and 2��=b	�. Hence, 	��� and 	���
are still well defined integers. The linking number this torsion cycle is then

L��,��� = 1
2	 � �� � 1

2Z . �3.6�

Due to the occurrence of the 1
2 factor in �3.6�, we immediately conclude that there is no chance for

the framing procedure to regularize �����D���� into �0�. Accordingly, the term ��1��D��1� appear-
ing within �3.3� will plague the CS measure since, by construction, it is built from a torsion cycle.
Fortunately, there is the level parameter k also occurring in �3.3�. Now, if k=2l, then
k��1��D��1�= l ·2��1��D��1�, and hence the framing procedure consistently applies to 2��1��D��1�
because the factor 1

2 into �3.6� is now vanishing. Thus, here comes a new constraint on the CS
level parameter for M =RP3,

k = 2l, l � Z . �3.7�

Note that one could decide to regularize by using only an “even” framing, keeping k�Z. How-
ever, obviously, this would be totally equivalent to consider any framing and k=2l. This is this last
point of view we will chose and from now on k will be even.

We are now ready to look at Wilson lines.

B. Expectation value of a Wilson line on M=RP3: Trivial cycles and torsion cycles with
charge q

Let z be a 1-cycle on M =RP3. As previously explained, for any ����HD
1 �M ,Z�

�
z

��� � R/Z . �3.8�

This integral defines parallel transport of the connection ��� along the cycle z, and

exp�2i��
z

���	 �3.9�

is called the U�1�-holonomy of z with respect to the connection �or to the DB class� ���. We also
noticed that it is possible to write

�
z

���=
Z
�

M

����D��z� �3.10�

for ��z��HD
1 �M ,Z��, canonically representing z. As long as ��� is smooth, formula �3.10� is well

defined, but since we need to go to HD
1 �M ,Z��, once more, some regularization will be required.

On the other hand, a fundamental loop is a continuous mapping, f :S1→M, such that f�S1��S1. A
singular decomposition of S1 provides a singular decomposition of f�S1� so that this last quantity
can be considered as a �singular� 1-cycle on M. Then, we can consider linear combinations,

z = �
i

N

qiZi, �3.11�

where the Zi are fundamental loops without any common points.
From now on, we will assume that the functional CS measure is �existing and� normalized so

that
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� �k����� = 1. �3.12�

The expectation values of the Wilson line for a fundamental loop Z with respect to the level k CS
measure formally read as

�W�Z��k ��exp�2i��
Z

���	� �� �k�����exp�2i��
Z

���	 , �3.13�

and for a cycle z=qZ

�W�z = qZ��k =� �k�����exp�2iq��
Z

���	 . �3.14�

From �3.10�, we can equivalently write

�W�z = qZ��k =� �k�����exp�2i�q�
M

����D��Z�	 . �3.15�

Finally, substituting �3.3� into �3.15�, we obtain

�W�z = qZ��k =� D�̄ exp�2i��
M

�̄�D�k�̄ + q��Z��	
+� D�̄ exp�2i��

M

���1� + �̄��D�k��1� + k�̄ + q��Z��	 . �3.16�

There are two different cases to consider: either Z=bC �trivial cycle� or 2Z=bC� but Z�bC
�torsion cycle�.

When Z=bC and with our choice of origin on the trivial fiber of HD
1 �M ,Z��, we can write

��Z�=
C for some 
C�Hom��Z
2�M� ,R /Z�. As explained in Ref. 1, 
C is built from the de Rham

current 
C of the chain C. Unlike DB classes, 
C can be divided by 2k, giving rise to 
C /2k
�Hom��Z

2�M� ,R /Z�. Now, as intensively done in Ref. 9, we perform the shift

�̄ → �̄ = �̄ + q

C

2k
�3.17�

in both terms of �3.16�, thus obtaining

�W�z = qZ��k =� D�̄ exp�2i�k�
M

�̄�D�̄	exp�− 2i�kq2�
M


C

2k
�D


C

2k	
+� D�̄ exp�2i�k�

M

���1� + �̄��D���1� + �̄�	exp�− 2i�kq2�
M


C

2k
�D


C

2k	 ,

�3.18�

where we used 2k
C /2k=
Z


C. Note that the result mainly derives from the Cameron–Martin prop-

erty of the CS measure. Finally, since


C

2k
�D


C

2k
=
Z


C

2k
∧ d


C

2k
=
Z


C ∧ d
C

4k2 , �3.19�

we derive
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exp�− 2i�kq2�
M


C

2k
�D


C

2k	 = exp�−
2i�q2

4k
�

M


C ∧ d
C	 . �3.20�

The product 
C∧d
C has to be regularized for its integral over M to have a meaning. Applying the
framing procedure to Z leads to

�
M


C ∧ d
C � L�Z,Zf� � C � Zf � Z . �3.21�

We then conclude that

�W�z = qZ��k = exp�− 2i�
q2

4k
L�Z,Zf�	 = exp�− 2i�

q2

4k
C � Zf	 , �3.22�

which is, as expected, the same result as for M =S3. Let us prove that the above procedure does not

depend on our choice of 
C. Let C̃ be another chain bounding Z. Then, b�C̃−C�=0 which means

that C̃−C is a 2-cycle on M. Since here M =RP3, from �3.1�, we deduce that C̃−C=b�. Then,
b��Zf =��bZf =0, and �3.22� will still hold. If M has free homology of degree 2, there will also
be free cohomology of degree 2 �see universal coefficient theorem�, and then the base space of
HD

1 �M ,Z� �and HD
1 �M ,Z��� will also have a free part so that we have to adapt our measure.

However, it is almost obvious that �3.20� would then produce a term �C̃−C��Zf = �C̃−C��bCf

=b�C̃−C��Cf =0, since by hypothesis Z, and so Zf, is a trivial cycle.
In the torsion case, since 2Z=bC�, we can obviously write ��2Z�=2��Z�=
C�, with 
C� built

from the de Rham current 
C� of the chain C�. However, since Z�bC, we cannot find any de
Rham current 
C of an integral chain such that ��Z�=
C. This is because DB cohomology is
defined over Z and not Q. On the other hand, ��1�, the DB representative of the fixed torsion cycle

�1, has been chosen as origin of the fiber over 1̌, so we can also write ��Z�= ��1�+
y, where 
y is
made from the de Rham current 
y of the chain y relating Z and �1: Z=�1+by. Substituting that
into �3.16� gives

�W�z = qZ��k =� D�̄ exp�2i��
M

�̄�D�k�̄ + q��1� + q
y�	
+� D�̄ exp�2i��

M

���1� + �̄��D�k��1� + k�̄ + q��1� + q
y�	 . �3.23�

Since k is even, the quantity k��1��D��1� occurring in the second term of this expression is
consistently regularized into �0� using the framing procedure. Unfortunately, in the same term we
also see the quantity q��1��D��1�. It combines with the previous one to give �k+q���1��D��1�.
From the same regularization argument, which led us to impose k to be even, we deduce that
�k+q� has to be even too, and thus

q = 2m, m � Z . �3.24�

In other words, charges inherit the same constraint than the level parameter and for exactly the
same reasons. Note that when q is odd then the framing procedure might produce variations in the
relative sign between the two terms of �3.23�, depending on whether the framing is odd or even,
hence implying that the expectation value would not be properly defined. Let us assume for the
rest of this section that q=2m, and let us rewrite �3.23�, accordingly,

122301-7 Abelian link invariants in the torsion case J. Math. Phys. 50, 122301 �2009�
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�W�z = qZ��k =� D�̄ exp�2i��
M

�̄�D�k�̄ + 2m��1� + 2m
y�	
+� D�̄ exp�2i��

M

���1� + �̄��D�k��1� + k�̄ + 2m��1� + 2m
y�	 . �3.25�

Since ��1� is the DB representative of the torsion cycle �1, there exists a chain C with de Rham
current 
C, such that 2�=bC, that is to say, 2��1�=
C. Hence,

�W�z = qZ��k =� D�̄ exp�2i��
M

�̄�D�k�̄ + m
C + 2m
y�	
+� D�̄ exp�2i��

M

���1� + �̄��D�k��1� + k�̄ + m
C + 2m
y�	
=� D�̄ exp�2i��

M

�̄�D�k�̄ + m�C+2y�	
+� D�̄ exp�2i��

M

���1� + �̄��D�k��1� + k�̄ + m�C+2y�	 . �3.26�

where we have introduce �C+2y =
C+2
y =
C+2
y, with �C+2y being the de Rham current of C
+2y. Now, let us perform the usual shift

�̄ → �̄ = �̄ + q
�C+2y

2k
�3.27�

to obtain

�W�z = qZ��k =� D�̄ exp�2i�k�
M

�̄�D�̄	exp�− 2i�km2�
M

�C+2y

2k
�D

�C+2y

2k 	
+� D�̄ exp�2i�k�

M

���1� + �̄��D���1� + �̄�	exp�− 2i�km2�
M

�C+2y

2k
�D

�C+2y

2k 	 .

�3.28�

We are left with proving that the framing procedure provides a consistent regularization of
�C+2y /2k�D�C+2y /2k, giving a meaning to �3.28�. Actually, if Zf denotes a framing of Z,

km2�
M

�C+2y

2k
�D

�C+2y

2k
=
Z

m2

4k
�

M

�C+2y ∧ d�C+2y =
m2

4k
�C + 2y� � 2Zf , �3.29�

which implies that

�W�z = qZ��k = exp�− 2i�
q2

4k

�C + 2y� � Zf

2
	 . �3.30�

We also introduce the 2-chain C� such that 2Z=bC�. Hence, b�C�−C−2y�=0, which means that
C�−C−2y is a 2-cycle on M. Since the second homology group of RP3 is trivial, in this case
C�−C−2y=b�, which implies that �C+2y��Zf =C��Zf. Once more, if M had a nontrivial
second homology group, then we would have �C+2y��Zf =C��Zf +��Zf for some �possibly
nontrivial� 2-cycle �. Yet, since 2Zf =bCf we would still obtain that �C+2y��Zf =C��Zf. Finally
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�W�z = qZ��k = exp�− 2i�
q2

4k
·

C� � Zf

2
	 , �3.31�

with 2Z=bC�, which is exactly the result coming from surgery.20,7,16 This last series of results also
prove that nothing depends on the choice we made for �C+2y.

Finally, note that �3.31� is actually containing �3.22� since if 2Z=bC� and Z=bC then C�
=2C is a possible choice and then C��Zf /2=C�Zf has expected. And consistently, we do not
need q to be even within �3.22�. One can convince himself that the factor 1/2 appearing in �3.30�
is nothing but the torsion degree of Z, and thus in the case of a 3-manifold with torsion cycle of
degree p, we would see a term such as C��Zf / p=C�Zf. This is also in agreement with the case
of trivial cycles, which can be seen as torsion cycles of degree 1.

IV. CONCLUSIONS

The treatment of Abelian CS to generate link invariants introduced in Ref. 9 straightforwardly
extends to the case of oriented 3-manifold with torsion. Although we only considered RP3, it is
clear that our results apply to any oriented 3-manifold with torsion. In Ref. 17, we will show how
DB cohomology can also be applied to higher dimensional Abelian CS theories and link invari-
ants, thus fulfilling some of the questions left opened in Ref. 9.
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The role played by Deligne-Beilinson cohomology in establishing the relation between
Chern-Simons theory and link invariants in dimensions higher than three is investigated.
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an unconventional field theoretic computation.
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1 Introduction

The role that Deligne-Beilinson cohomology [1, 2, 3, 4, 5, 6, 7] plays in establishing the
relation between Chern-Simons Quantum Field Theory and link invariants [8, 9, 10, 11,
12, 13, 14, 15, 16], in the abelian case, has been stressed out in a series of papers [17, 18].
We will here complete these works by showing how higher dimensional Deligne-Beilinson
(DB) cohomology classes, and their DB-products, provide a natural generalisation of
the Chern-Simons action, and how they can be used to compute invariants for higher
dimensional links [13, 19]. We will produce a novel, geometric computation for closed(4l + 3)-manifolds. We will then compare it to a field theoretic computation made on
R4l+3.

In section 2, we recall some basic facts concerning Deligne-Beilinson cohomology and
how it relates to the functional measure based on the abelian Chern-Simons action. In
section 3, we present a natural candidate for the generalized CS action. In section 4,
we deal with generalized abelian loops and their expectation values for closed (4l + 3)-
manifolds within the DB approach. We further illustrate it with two specific examples.
Section 5 is devoted to a quite unusual field theoretic computation of these expecta-
tion values in the R4l+3 case, and the extension of this type of computation to S4l+3 is
sketched. In Appendix, a geometrical interpretation of the higher dimensional linking
number relating it to the notions of solid angle and zodiacus is presented following the
original ideas of Gauss [20].

Here are the main results elaborated in this article:

1. The abelian Chern-Simons generalised action is non trivial only in dimension 4l+3,
and its level parameter k has to be quantized;

2. The generalised Wilson (2l+1)-loops are observables of the theory and their charges
are quantized.

3. In the geometric DB approach provided by functional integration over the space[H2l+1
D (M,Z)]∗ ⊃ H2l+1

D (M,Z), the 2k-nilpotency property holds and the observ-
ables are given by (self-)linking numbers under the so-called zero-regularization
choice (i.e. framing). Furthermore only homology is involved in abelian Chern-
Simons theories and only homologically trivial links (modulo 2k) give non vanishing
expectation values.

4. A field theoretic computation in R4l+3 can be handled in a non perturbative way,
yet it still misses quantization of the level and charges. Once the latter are imposed
by hand the result reproduces the one from the DB approach.
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2 Basic facts about Deligne-Beilinson cohomology

Without recalling the whole theory let us remind the basic facts about DB-cohomology
useful in this paper.

2.1 Definition via exact sequences

If M is a closed (i.e. compact and without boundary) n-dimensional smooth manifold,
the p-th DB cohomology group of M , denoted Hp

D (M,Z) (p ≤ dimM = n), is canonically
embedded into the following equivalent exact sequences [5, 21]:

0Ð→ Ωp (M)/Ωp
Z
(M)Ð→ H

p
D (M,Z) Ð→ Ȟp+1 (M,Z)Ð→ 0 , (2.1)

0Ð→ Ȟp (M,R/Z)Ð→ H
p
D (M,Z) Ð→ Ωp+1

Z
(M) Ð→ 0 , (2.2)

where Ωp (M) is the space of smooth p-forms onM , Ωp
Z
(M) the space of smooth closed p-

forms with integral periods onM , Ȟp+1 (M,Z) is the (p+1)-th integral Čech cohomology
group of M , and Ȟ1 (M,R/Z) is the p-th R/Z-valued Čech cohomology group of M .
These exact sequences also occur in the context of Cheeger-Simons differential characters
[22, 23] or Harvey-Lawson sparks [21].

Thanks to exact sequences (2.1) one can interpret Hp
D (M,Z) as an affine bundle over

Ȟp+1 (M,Z) (resp. Ωp+1
Z
(M)) with structure group Ωp (M)/Ωp

Z
(M) (resp. Ȟp (M,R/Z)).

Note that in the former case Ωp
Z
(M) plays the role of a gauge group, which is much

bigger (in general) than the usual group of exact forms. An element of Hp
D (M,Z) will

be generically written ω[p].
Let us pick up a normalized volume form on M , i.e. a n-form µ such that ∫M µ = 1.

For dimensional reasons any n-form on M is closed, hence for any n-form ω on M there
exists a (n − 1)-form ν such that ω = τµ + dν, with τ = ∫M ω ∈ R. Furthermore, if ω has
integral periods, then τ ∈ Z, since dν is a closed n-form with zero periods (∫M dν = 0 since
M has no boundary). This proves that any element of Ωn(M)/Ωn

Z
(M) can be written as

θµ, with θ ∈ R/Z. Finally, integrating θµ overM makes the construction independent of µ
and proves that Ωn(M)/Ωn

Z
(M) ≃ R/Z (equivalently one can pick up another normalized

volume form and see that it will give the same θ, and finally pick any volume form and
prove the same). Still for dimensional reasons, Ȟn+1(M,Z) = 0, so we conclude that
Hn
D (M,Z) ≃ R/Z.
For later convenience, let us consider two special cases. First, when M = S4l+3 and

p = 2l + 1, we have Ȟ2l+1 (M,R/Z) = 0 = Ȟ2l+2 (M,R/Z), then sequence (2.1) reduces to:

0Ð→ Ω2l+1(M)/dΩ2l(M)Ð→ H2l+1
D (M,Z) Ð→ 0 . (2.3)
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Hence H2l+1
D (M,Z) is isomorphic to the quotient space Ω2l+1(M)/dΩ2l(M), the gauge

group reducing to the trivial group dΩ2l(M). Although this is a quite trivial case, it is
very close to the one of the field theoretic approach.

The second example is provided by M = S2l+1 × S2l+2, still with p = 2l + 1. Since
Ȟ2l+1 (M,R/Z) = Z = Ȟ2l+2 (M,R/Z), sequence (2.1) reads:

0Ð→ Ω2l+1 (M)/Ω2l+1
Z
(M)Ð→ H2l+1

D (M,Z) Ð→ Ȟ2l+2 (M,Z) = Z Ð→ 0 . (2.4)

The DB Z-module H2l+1
D (M,Z) is then a non trivial affine bundle over Z, the gauge group

Ω2l+1
Z
(M) being also now non trivial.

2.2 Pontrjagin dual of DB-spaces

Due to the form of the exact sequences (2.1), one can consider dual sequences not with
respect to R but to R/Z. This gives rise to the Pontrjagin dual space of Hp

D (M,Z):
Hp
D (M,Z)∗ ≡Hom(Hp

D (M,Z) , S1). In particular, Hp
D (M,Z)∗ belongs itself to an exact

sequence (dualizing (2.2) in R/Z):
0Ð→Hom (Ωp+1

Z
(M) ,R/Z)Ð→ H

p
D (M,Z)∗ Ð→ Ȟn−p−1 (M,Z)Ð→ 0 , (2.5)

This identifies Hp
D (M,Z)∗ as an affine bundle over the same base, Ȟn−p−1 (M,Z), than

H
n−p−1
D (M,Z). Of course there is a second exact sequence we could obtain from dualizing

(2.1).
Thanks to integration over integral cycles onM , the quotient Ωn−p−1 (M)/Ωn−p−1

Z
(M)

can be canonically embedded into Hom (Ωp+1
Z
(M) ,R/Z). We have also noticed that

Hn
D(M,Z) ≃ R/Z. This suggests that Hn−p−1

D (M,Z) might be canonically identified as a
subset of Hp

D (M,Z)∗, just as continuous functions can be seen as (regular) distributions.
The notion of integration of DB-classes over cycles is needed to confirm this.

2.3 Integration of DB-classes over integral cycles

There is a canonical pairing between DB-class and cycles on M provided by integration
of the later over the former:

¿
∶ Hp

D (M,Z) ×Zp (M) Ð→ R/Z , (2.6)

where Zp(M) denotes the space of integral p-cycles on M . Let us stress that these
integrals take their values in R/Z ≃ S1, not R.

Since M itself is a cycle, one can integrate any DB-class ω[n] ∈ Hn
D (M,Z) over M .

This confirms that Hn
D(M,Z) ≃ R/Z and proves that Hn−p−1

D (M,Z) can be canonically
identified as a subset of Hp

D (M,Z)∗.
3



Incidentally, integration also shows that Zp(M) is canonically embedded intoHp
D (M,Z)∗

- which can be expressed [21] by saying that p-cycles live in the topological boundary of
H
p
D (M,Z)∗. Hence:

H
n−p−1
D (M,Z) ×Zp(M) ⊂Hp

D (M,Z)∗ , (2.7)

where ⊂ has to be understood as the above canonical embeddings.

Property 1 As in the three dimensional case, abelian holonomies defined by:

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2iπ

¿

z

ω[p]
⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (2.8)

are observables of the generalized abelian Chern-Simons theories.

2.4 DB-product and cycle map

There is a natural bilinear product, referred here as the DB-product:

∗D ∶Hp
D (M,Z) ×Hq

D (M,Z)Ð→ H
p+q+1
D (M,Z) , (2.9)

which is graded according to:

ω
[p]
1
∗D ω[q]2

= (−1)(p+1)(q+1)ω[p]
2
∗D ω[q]1

. (2.10)

From our previous remarks, one straightforwardly verifies:

∗D ∶Hp
D(M,Z) ×Hn−p−1

D (M,Z) Ð→Hn
D(M,Z) ≃ R/Z (2.11)

The “DB-square” operation satisfies the graded commutation property:

ω[p] ∗D ω[p] = (−1)(p+1)(p+1)ω[p] ∗D ω[p] . (2.12)

which implies in particular:
ω[2l] ∗D ω[2l] = 0 , (2.13)

for any ω[2l] ∈H2l
D(M,Z).

The DB-classes introduced above are smooth ones. They can be extended to distribu-
tional DB-classes. relying on Pontrjagin duality. Setting H−1D (M,Z) ≡ Z, one extends the
previous DB-product to a pairing of Hp

D(M,Z) and Hq
D(M,Z)∗ into H

(q−p−1)
D (M,Z)∗ ⊃

H
(n−q+p+1)
D (M,Z) (q ≥ p). Note thatH−1D (M,Z)∗ = R/Z =Hn

D(M,Z) hence ∗D ∶ Hp
D(M,Z)×

H
p
D(M,Z)∗ → H−1D (M,Z)∗ = R/Z as expected. This is similar to the usual theory of de

Rham currents.
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We end this subsection with the following important result shown in [7]: to any p-
cycle z on M one can associate a canonical distributional DB-class ηz ∈H

p
D(M,Z)∗ such

that: ¿

z

ω[p] =∫
M
ω[p] ∗D ηz , (2.14)

for any ω[p] ∈ Hp
D (M,Z). Such distributional DB-classes thus appear as elements of

H
p
D (M,Z)∗. This is just another way to see the inclusion Zp(M) ⊂ Hp

D (M,Z)∗. In the

particular case where the p-cycle is a boundary, z = bc, the associated DB-class η
[n−p−1]
z

reduces to the de Rham current of the integral (p + 1)-chain c. See [7] for details.

3 Generalized Chern-Simons action, Chern-Simons

functional measure, observables and framing

3.1 Generalized Chern-Simons action

It is standard from a physicist point of view to present the abelian Chern-Simons (CS)
lagrangian on R3 as :

cs1(A) ≡ A ∧ dA , (3.15)

or, using the CS action:

CS1(A) = 2iπ∫
R3

A ∧ dA , (3.16)

where A is a U(1)-connection on some principal U(1)-bundle P over R3. A natural
generalization for R4l+3 would be to replace A in eqn. 3.15 by a (2l + 1)-form. This is
what will be done in section 5 when dealing with the field theoretic formulation.

However U(1)-connections onM are actually not 1-forms for compactclosed 3-manifolds
M . Hence, as explained in [17, 18], we rather have to use DB-classes to write the la-
grangian (3.15), and hence the action (3.16). Let us recall that H1

D (M,Z) canonically
identifies with the set of classes of U(1)-isomorphic principal U(1)-bundles with connec-
tion over M . Hence we must replace eqn. (3.16) by

CS1(A) = 2iπ∫
M
A ∗D A, (3.17)

where A has now to be understood as a DB class.
For a level k CS theory we set:

CSk(A) = 2iπk∫
M
A ∗D A. (3.18)
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We can extend the definition of the action (3.18) to any closed smooth n-dimensional
manifold M as:

CSk(ω[p]) = 2iπk∫
M
ω[p] ∗D ω[p] . (3.19)

This will be our definition of the n-dimensional Chern-Simons theory of level k on M .
Since integrals take values in R/Z this quantity is well defined provided

k ∈ Z , (3.20)

which is the announced quantization of the level parameter.
We now consider the “quantum weight”:

exp {CSk(ω[p])} = exp{2iπk∫
M
ω[p] ∗D ω[p]} . (3.21)

When p = 2l the graded commutation property (2.12) leads to:

exp{CSk(ω[2l])} = exp{2iπk∫
M
ω[2l] ∗D ω[2l]} = 1 . (3.22)

thereby providing a trivial functional measure. Consequently, the non-trivial cases only
occur when p = 2l+1 which implies that n = 2p+1 = 4l+3. In particular, ifM is a sphere,
the only non trivial abelian Chern-Simons theories will occur for

S3 , S7 , S11 ... . (3.23)

Note that this is namely the set of spheres for which Hopf invariants are non-trivial,
hence linking numbers are non trivial as well [24]. Furthermore, this expression for the
CS action holds true for closed manifolds with torsion.

In summary:

Property 2 The non trivial generalized abelian Chern-Simon lagrangian of level k is de-
fined by the DB square product of (2l+1) dimensional DB classes on a (4l+3)-dimensional
closed manifold, with k an integer.

For a (4l + 3)-dimensional manifold and its (2l + 1)-loops, the inclusions stressed out
after (2.5) and in (2.7) give:

H2l+1
D (M,Z) ⊂ H2l+1

D (M,Z)∗ , (3.24)

Ω2l+1 (M)/Ω2l+1
Z
(M) ⊂ Hom (Ω2l+2

Z
(M) ,R/Z) .

We will assume that the space of quantum fields of a generalized abelian Chern-Simons
theory in (4l + 3) dimensions is a subset of H2l+1

D (M,Z)∗ which contains H2l+1
D (M,Z) ×

Z2l+1(M).
6



3.2 Chern-Simons functional measure and zero mode property

The generalized Chern-Simons “gaussian” functional measure for a (4l+3)-manifold takes
the form:

dµk(ω) ≡Dω exp {CSk(ω)} . (3.25)

Since we wish to use this measure to compute observables and identify them with(2l + 1)-links invariants, let us have a closer look at it. First, dµk(ω) is supposed to be
a measure on H2l+1

D (M,Z) or rather on (some subset of) H2l+1
D (M,Z)∗, its “quantum”

version. Of course, and as usual for infinite dimensional spaces, the measure (3.25) is
totally formal on both spaces: as a Lebesgue measure over H2l+1

D (M,Z), Dω is zero, and
so is (3.25); considering globally on dµk(ω) H2l+1

D (M,Z)∗, we should need to regularize
products of distributional DB classes appearing in the gaussian part of the measure -
something common in Quantum Field Theory. In fact, we will only need the fundamental
Cameron-Martin like property for the measure (3.25), that is to say:

dµk(ω + ζ) = dµk(ω) exp{4iπk∫
M
ω ∗D ζ} exp{2iπk∫

M
ζ ∗D ζ} , (3.26)

for any given ζ ∈ H2l+1
D (M,Z). Note that this property is similar to the one of a finite-

dimensional gaussian measure which relies on the translational invariance of the Lebesgue
measure. In other words, we have to assume that the “existing measure” on the functional
space has property (3.26) which holds true for (3.25) seen has a measure on any finite
dimensional subset of H2l+1

D (M,Z).
Let us consider a (2l + 2)-cycle Σ, whose integration (2l + 1)-current in M is denoted

βΣ. While this current canonically represents the zero class in H2l+1
D (M,Z), in general

the current βΣ
2k

does not. From property (3.26), and identically denoting currents and the
DB classes which they represent, we deduce:

dµk(ω + βΣ
2k
) = dµk(ω) exp{4iπk∫

M
ω ∗D βΣ

2k
} exp{2iπk∫

M

βΣ

2k
∗D βΣ

2k
} . (3.27)

In contrast with the identity

exp{2iπk∫
M

βΣ

2k
∗D βΣ

2k
} = exp{2iπ

4k ∫M βΣ ∧ dβΣ} = 1 , (3.28)

trivial since dβΣ = 0, the following one:

exp{4iπk∫
M
ω ∗D βΣ

2k
} = exp{2iπ∫

M
ω ∗D βΣ} = 1 , (3.29)

deserves some justification. The factor 4iπk = 2k ⋅ (2iπ) in eqn. (3.29) is of pivotal
importance. Indeed, ω ∗D βΣ/2k is not the zero class, whereas 2k(ω ∗D βΣ/2k) = ω ∗D βΣ
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is, as βΣ is trivial. Note that βΣ/2k is not an integer current, and that a DB class ω is
not the restriction of a current in general (see for instance [7]). Of course, one should
be careful when dealing with the product of currents βΣ ∧ dβΣ. However one can always
smooth βΣ around Σ (i.e. use a Poincaré representative with support as close to Σ
as necessary) in order to consistently regularize βΣ ∧ dβΣ to the zero DB class. More
generally, for any integer m,

dµk(ω +m βΣ

2k
) = dµk(ω) (3.30)

which provides the generalization of Property 4 of [17]:

Property 3 The functional measure dµk(ω) is invariant under translations by mβΣ
2k
,

where βΣ is the integration current of a (2l + 2)-cycle Σ and m an integer.

When Σ is homologically trivial (Σ = bV) then βΣ = dχV , and therefore βΣ
2k
= d(χV

2k
) .

In this case the DB-class of βΣ
2k

is also zero. This happens for any Σ when the (2l + 2)th
homology group of M is trivial. Conversely, as we shall see in the next section, when M
has a non trivial (2l + 2)-th homology group, Property 3 will provide a treatment of the
so-called ”zero modes”, thus leading to the important result of this paper concerning the
vanishing of links invariants.

3.3 Observables and Framing

Following Property 1, let us consider an observable of our level k generalized CS theory:

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2iπ

¿

z

ω

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= exp{2iπ∫

M
ω ∗D ηz} . (3.31)

Let us remind that a (2l + 1)-loop is meant to be a continuous mapping γ ∶ Σ2l+1 →M ,
where Σ2l+1 is a closed (2l + 1)-dimensional manifold. It is always possible to identify
such a loop with a (2l+1)-cycle inM . Furthermore, if the mapping is an embedding (i.e.
the image γ(Σ2l+1) is isomorphic to Σ2l+1) γ is said to be a fundamental loop. Then,
seen as a cycle, any (2l + 1)-loop in M can be written as: γ = qγ0, for some fundamental
loop γ0 and q ∈ Z. Hence, the abelian Wilson line of the gauge field ω of degree (2l + 1)
along a (2l + 1)-loop γ = qγ0 in M reads:

W (ω,γ) ≡ exp
⎧⎪⎪⎪⎨⎪⎪⎪⎩
2iπ

¿

γ

ω

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= exp{2iπq∫

γ0

ω} , (3.32)
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Conversely, the righthand side of this expression has a meaning if and only if q is an
integer. This leads to:

Property 4 In the generalized CS theories, loops must have integer charges.

The charge (or colour) of a loop γ can be geometrically interpreted as the number
of times the fundamental loop associated with γ has been covered. When γ is not
homologically trivial, its charge canonically identifies with its homology class. The charge
can also be seen has defining a representation for the U(1) holonomy of a fundamental
loop. This is also true for the level k parameter which can be seen as a charge of M , or
as a representation of the U(1) 3-holonomy given by the Chern-Simons action.

If ηγ and η0 are the DB classes (∈H2l+1
D (M,Z)∗) associated with γ and γ0 respectively,

then ηγ = qη0. Hence we can alternatively write:

W (ω,γ) = exp{2iπq∫
M
ω ∗D η0} . (3.33)

The expectation values of the Wilson lines are given by:

<W (ω,γ) >CSk
= Z−1k ∫ dµk(ω) exp{2iπq∫

M
ω ∗D η0} , (3.34)

where Zk is the normalization factor such that <W (ω,γ ≡ 0) >CSk
= 1.

For a generic homological combination γ = ∑ni=1 qiγ0i with qi ∈ Z and γ0i fundamental,
we get:

W (ω,γ) = exp{2iπ n∑
i=1

qi∫
γ0
i

ω} , (3.35)

or in term of the DB representatives η0i of these γ0i :

W (ω,γ) = exp{2iπ n∑
i=1

qi∫
M
ω ∗D η0i } . (3.36)

Let us first exhibit the nilpotency property of the expectation values

<W (ω,γ) >CSk
= Z−1k ∫ dµk(ω) exp{2iπ n∑

i=1

qi∫
M
ω ∗D η0i } , (3.37)

For the loop 2kγ0, where γ0 is fundamental with DB representative η0:

<W (ω,2kγ0) >CSk
= Z−1k ∫ dµk(ω) exp{2iπ(2k)∫

M
ω ∗D η0} . (3.38)
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Performing the shift
ω ↦ ω + η0 , (3.39)

thanks to property (3.26), we obtain:

<W (ω,2kγ0) >CSk
= Z−1k ∫ dµk(ω) exp{−2iπ∫

M
η0 ∗D η0} . (3.40)

Such an expression is ill-defined since η0 is distributional. If we decide to regularize the
quantities η0 ∗D η0 into the zero DB class, which we refer to as the zero-regularization,
then:

<W (ω,2kγ0) >CSk
= 1 =<W (ω,γ ≡ 0) >CSk

. (3.41)

This gives:

Property 5 The generalized CS theories satisfy the 2k-nilpotency property.

Zero-regularization calls for a comparison with framing. If γ0 is a boundary (i.e. is
homologically trivial), then

∫
M
η0 ∗D η0 =

Z
∫
M
χ0 ∧ dχ0 , (3.42)

where χ0 is the current of a chain whose γ0 is the boundary, while dχ0 is the de Rham
current of γ0. The symbol =

Z

in eqn. (3.42) means “equals modulo integers”. The framing

procedure gives a meaning to the right hand side of eqn. (3.42): each framing choice
assigns a well defined i.e. homotopically invariant integer value to the self-linking of γ0.
The difference between two choices of framing is an integer, which coincides with taking
η0 ∗D η0 = 0. However, when γ0 is not a boundary the framing procedure is not a well-
defined regularization as it does not provide a definite homotopically invariant integer
for the self-linking number ∫M χ0 ∧ dχ0. Notwithstanding property (3.41) still holds, the
zero-regularization is thus coarser than framing yet more “general”. Let us point out
that 2k-nilpotency1 is totally equivalent to zero-regularization.

4 Abelian (2l + 1)-links invariants: a geometric com-

putation

In this section we will show:

1This was called colour periodicity in [17]. Yet the name “nilpotency” accounts more accurately of
property (3.41).
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Property 6 In generalized CS theories, the only Wilson loops having non vanishing
expectation values are those of the homologically trivial links (modulo 2k). The expectation
values of these Wilson loops are given by the self-linking of the corresponding link and
the only required regularization is the one provided by framing (i.e. self-linking of the
fundamental loops forming the link).

We will first present the general ideas used to compute expectation values (3.37).
Then we will consider the particular case M = S4l+3, the closest to the field theoretical
computation of section 5. We will next treat the less trivial case M = S2l+1 × S2l+2. In
these two examples, we will present an alternative and more computational way to get
Property 6. SinceM is assumed without torsion, all its homology and cohomology groups
are free and of finite type, i.e of the form ZN , for some integer N . If (e⃗)I=1,...,N denotes
the canonical basis of ZN , then any u⃗ ∈ ZN is written as

u⃗ =
N∑
I=1

uI e⃗I , uI ∈ Z.

4.1 Abelian (2l+1)-links invariants on (4l+3)-dimensional man-

ifolds

As already mentioned, H2l+1
D (M,Z)∗, as well as its smooth versionH2l+1

D (M,Z), are affine
bundles over the discrete space Ȟ2l+2 (M,Z) . Although the Chern-Simons functional
measure on this space is written as in eqn. (3.25), we need to give a more precise meaning
to this expression before we perform any computation. First, since the base space is of
the form ZN , the measure dµk(ω) has to be decomposed into a sum of measures over each
(affine) fiber of H2l+1

D (M,Z)∗. On each of these fibers we choose an origin, say ω0

u⃗, where
u⃗ ∈ ZN denotes the corresponding base point in Ȟ2l+2 (M,Z). Thus, dµk(ω) reduces to a
“vectorial” measure on Hom (Ω2l+2

Z
(M) ,R/Z). This amounts to pick up a global section

for the affine bundle H2l+1
D (M,Z)∗. The CS measure hence reads:

dµk(ω) = ∑
u⃗∈ZN

Dα exp{CSk(ω0

u⃗ + α)} = ∑
u⃗∈ZN

dµk(ω0

u⃗;α) , (4.43)

where α ∈Hom (Ω2l+2
Z
(M) ,R/Z), Dα is a measure on Hom (Ω2l+2

Z
(M) ,R/Z), and each

measure dµk(ω0

u⃗;α) satisfies the Cameron-Martin property (3.25).
On the other hand, inclusion (2.7) together with Poincaré duality imply that on each

fiber of H2l+1
D (M,Z)∗ we can use, as an origin on this fiber, a (2l+1)-cycle or equivalently

its DB representative. In particular, a fundamental loop γ0I can be associated with each
basis vector e⃗I of ZN . Its DB representative η0I then plays the role of origin on the fiber
over e⃗I . If u⃗ = ∑uI e⃗I , then ηu⃗ ≡ ∑uIη0I will be a possible origin for the fiber over u⃗.
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Note that the de Rham current of γ0I would play the role of the “curvature” of η0I , as an
element of Hom (Ω2l+1 (M) /Ω2l+1

Z
(M) ,R/Z).

Once such an origin for each fiber of H2l+1
D (M,Z)∗ has been chosen, any DB class ω

can be decomposed as

ω =
N∑
I=1

uIωη
0

I +α ≡ u⃗ω ⋅ η⃗ 0 +α , (4.44)

with α ∈ Hom (Ω2l+2
Z
(M) ,R/Z), and u⃗ω being the base point over which ω stands. In

particular, the DB representative η of a cycle γ will decompose as

η =
N∑
I=1

uIγη
0

I + α ≡ u⃗γ ⋅ η⃗ 0 + α . (4.45)

For a link L, we can express the expectation value of the corresponding Wilson line
according to our choice of basis (η0I )I=1,...,N :

<W (L) >CSk
= Z−1k ∑⃗

u
∫ dµk(u⃗ ⋅ η⃗ 0;α)W (u⃗, α, v⃗L, β) , (4.46)

where

Zk = ∑⃗
u
∫ dµk(u⃗ ⋅ η⃗ 0;α) , (4.47)

and

W (u⃗, α, v⃗L, β) = exp{2iπ∫
M
(u⃗ ⋅ η⃗ 0 + α) ∗D (v⃗L ⋅ η⃗ 0 + β)} (4.48)

is a rewriting of the Wilson line of L with respect to the basis (η0I)I=1,...,N , and with the
decomposition ηL = v⃗L ⋅ η⃗ 0 + β for the DB representative of L. We recall that L is a link
(a formal combination of charged fundamental loops) hence a cycle.

Instead of evaluating the Wilson line (4.46), we rather use the zero mode property.
Let (ΣI

0
)I=1,...,N be a collection of (2l + 2)-cycles on M which generates H2l+2(M,Z) and

are orthogonal to the fundamental loops γ0I :

∫
γ0
I

βJ0 = δIJ = Σ
J
0 ⊺∩ γ0I , (4.49)

βJ
0
being the currents of the ΣJ

0
, and⊺∩ denoting transversal intersection. Due to Poincaré

and Hom dualities there are as many βJ
0
as γ0I .

Let us consider again:

<W (L) >CSk
= Z−1k ∫ dµk(ω) exp{2iπ∫

L
ω} , (4.50)
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into which we perform the shift

ω → ω +
N∑
I=1

mI

βI
0

2k
, (4.51)

for a collection of integers mI . This gives:

<W (L) >CSk
= Z−1k ∫ dµk(ω + N∑

I=1

mI

βI
0

2k
) exp{2iπ∫

L
(ω + N∑

I=1

mI

βI
0

2k
)} . (4.52)

Using Property 3, we obtain:

<W (L) >CSk
= Z−1k ∫ dµk(ω) exp{2iπ∫

L
ω} exp{2iπ N∑

I=1

mI

2k ∫L βI0} . (4.53)

That is to say:

<W (L) >CSk
=<W (L) >CSk

exp{2iπ N∑
I=1

mI

2k ∫L βI0} . (4.54)

Since this has to hold for any collection of integers (mI)I=1,...,N , we conclude that, for a
non vanishing mean value:

∫
L
βI0 = 0 [2k], (4.55)

∀I ∈ {1, . . . ,N}. Thus, if we forget about [2k], the link L has to be ”orthogonal” to the
generators of H2l+2(M,Z), which means that L must be homologically trivial, for the
mean value of the corresponding Wilson loop to be non vanishing. When L is not trivial,
the mean value of the Wilson loop it defines has to be zero. The modulo 2k appearing
in eqn. (4.55) simply reminds us of the 2k-nilpotency property (3.41).

Finally, let L be an homologically trivial link in M . This amounts to set v⃗L = 0⃗ in
eqn. (4.46), thus reducing it to:

∑⃗
u
∫ Dα exp{CSk(u⃗ ⋅ η⃗ 0 +α)} exp{2iπ∫

M
(u⃗ ⋅ η⃗ 0 +α) ∗D βL} , (4.56)

where βL is the DB class of a current of a (2l + 2)-chain with boundary L. Now let us
perform into eqn. (4.56) the shift:

α → α + βL
2k

, (4.57)

what leads to:

∑⃗
u
∫ Dα exp {CSk(u⃗ ⋅ η⃗ 0 +α)} exp{−2iπk∫

M

βL

2k
∗D βL

2k
} . (4.58)
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Hence, we obtain:

<W (L) >CSk
= exp{−2iπ

4k ∫M βL ∧ dβL} . (4.59)

The integral in this expression is, modulo zero-regularization via framing, exactly the self-
linking number of the link L [25, 26, 27], itself made of self-linking (defined via framing)
and linking of the fundamental loops composing L. We stress out that while the link has
to be homologically trivial, its components do not have to. This completes the proof of
Property 6.

Of course we could have directly used property (3.26) together with the shift (4.57)
to obtain eqn. (4.59). However we have preferred to use the explicit definition (4.43) of
the functional integral rather than the formal one.

Let us have a closer look at a first example where zero modes are not required to be
treated: the spheres. This will provide us with a general property concerning (4l + 3)-
manifolds whose (2l + 1)-th homology group vanishes.

4.2 Abelian links invariants on S4l+3

Since Ȟ2l+2 (S4l+3,Z) = 0 = Ȟ2l+1 (S4l+3,Z), the first of the exact sequences (2.1) reduces
to:

H2l+1
D (S4l+3,Z) ≃ Ω2l+1 (S4l+3)/Ω2l+1

Z
(S4l+3) (4.60)

= Ω2l+1 (S4l+3) /dΩ2l (S4l+3) ,
and the dual sequence (2.5) to:

H2l+1
D (S4l+3,Z)∗ ≃ Hom (Ω2l+2

Z
(S4l+3) ,R/Z) (4.61)

= Hom (dΩ2l+1 (S4l+3) ,R/Z) .
These isomorphisms are somehow canonical if we consider that the choice of the zero class,
0, as origin of these spaces is canonical. More explicitly, for any ω ∈H2l+1

D (S4l+3,Z)∗ there
is a α ∈Hom (Ω2l+2

Z
(S4l+3) ,R/Z) such that:

ω = 0 +α ≡ α , (4.62)

This corresponds to choose the zero cycle z ≡ 0 as origin, the DB representative of this
cycle being 0. Since Ȟ2l+1 (S4l+3,Z) = 0, any (2l + 1)-cycle in S4l+3 is trivial, i.e. a
boundary. Hence, if L denotes a (2l + 1)-link which is the sum of charged fundamental(2l + 1)-loops γ0i on S4l+3:

L =
N∑
i=1

qiγ
0

i , (4.63)
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then there exists some (2l + 2)-chain, ΣL, such that L = bΣL. Geometrically, ΣL can be
seen as a (2l + 2)-surface in S4l+3. This surface is of course not unique, but two of them
only differ by a closed (2l + 2)-surface. As explained in [7], the de Rham current of such
a ΣL, βΣ, completely determines the DB representative, ηL, of L, according to:

ηL = 0 + βΣ , (4.64)

with βΣ ∈ Hom (Ω2l+2
Z
(S4l+3) ,R/Z). The Wilson line of L is then written:

W (α,L) = exp{2iπ∫
S4l+3

α ∗D βΣ} , (4.65)

and its expectation value reads:

<W (L) >CSk
=
∫ Dα exp{2iπk ∫S4l+3 α ∗D α + 2iπ ∫S4l+3 α ∗D βΣ}

∫ Dα exp {2iπk ∫S4l+3 α ∗D α} . (4.66)

Seen as an element of Hom (Ω2l+2
Z
(S4l+3) ,R/Z), βΣ/2k fulfills:

2k(βΣ
2k
) = βΣ . (4.67)

However, the corresponding DB class, 0 + (βΣ/2k), is not the representative of any fun-
damental loop in S4l+3.

Next, we perform the change of variable:

α ↦ α̃ = α + βΣ
2k

, (4.68)

into eqn. (4.66). This turns the expectation value into:

<W (L) >CSk
= exp{−2iπk∫

S4l+3

βΣ

2k
∗D βΣ

2k
} . (4.69)

Making explicit the DB product within this expression, we obtain:

<W (L) >CSk
= exp{−2iπ

4k ∫S4l+3
βΣ ∧ dβΣ} , (4.70)

what is exactly eqn. (4.59).
Finally in terms of the charged fundamental loops, γ0i , building L, we have

<W (L) >CSk
= exp{−2iπ

4k
∑
i,j

qiL(γ0i , γ0j )qj} , (4.71)
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where L(γ0i , γ0j ) is the linking number of γ0i with γ0j , that is to say:

L(γ0i , γ0j ) = ∫
S4l+3

α0

i ∧ dα0

j , (4.72)

with α0

i the de Rham current for which 0+α0

i is the DB representative of the fundamental
loop γ0i . As for “diagonal” terms L(γ0i , γ0i ) we regularize them using the usual framing
procedure (what we have called zero-regularization):

L(γ0i , γ0i ) ≡ L(γ0i , γ0fi ) . (4.73)

As in the three dimensional case extensively detailed in [17], the abelian invariants thus
obtained are nothing but those coming from linking and self-linking numbers, that is
to say intersection theory in S4l+3. Let’s note that this result is what we are supposed
to recover via a quantum field theory approach. There, the gauge fixing procedure is
supposed to provide a choice of representatives for DB classes, and the propagator thus
obtained appears like an inverse of the de Rham differential d, deeply related to the
Poincaré chain homotopy operator. The consistency of the procedure is ensured by the
fact that if γ is a loop (a (2l + 1)-cycle), and if Σ is a (2l + 2)-chain such that bΣ = γ,
which corresponds to dβΣ = ηγ in term of currents, then βΣ (as the current of an integral
chain) is unique up to closed (2l + 1)-currents (of integral (2l + 2)-cycles). However, on
S4l+3 any (2l + 2)-cycle is trivial so βΣ is unique up to dχ, where χ is the 2l-current of
an arbitrary (2l)-chain. This means dβΣ = ηγ has to be inverted on classes βΣ ∼ βΣ + dχ.
This is exactly gauge invariance from the point of view of integral chains (and currents).
This will be detailed in section 5.

What we have done here for S4l+3 can be straightforwardly applied to any (4l + 3)-
manifold M for which Ȟ2l+1 (M,Z) = 0 = Ȟ2l+2 (M,Z), leading to exactly the same final
result.

Property 7 Over a (4l+3)-dimensional closed manifold, without torsion, whose (2l+1)th
homology groups vanishes, the generalized abelian Wilson loop of a link L defines a link
invariant made of the self-linkings, the linkings and the charges of the fundamental loops
composing L.

The second example will present a homologically non trivial case which is the equiv-
alent of the three dimensional pedagogical case S1 × S2 widely discussed in [17].
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4.3 Abelian links invariants on S2l+1 × S2l+2

Let us now consider the less trivial case M ≡ S2l+1 × S2l+2 for which Ȟ2l+2 (M,Z) = Z =
Ȟ2l+1 (M,Z), so that:

H2l+1
D (M,Z) ≃ Z × Ω2l+1 (M)

Ω2l+1
Z
(M) , (4.74)

and:

H2l+1
D (M,Z)∗ ≃ Z ×Hom (Ω2l+2

Z
(M) ,R/Z) , (4.75)

none of these isomorphisms being canonical. However, over the base point 0 ∈ Z we still
have the zero DB class (which is again the representative of the zero cycle in M), so
that this particular fiber of H2l+1

D (M,Z)∗ can be (almost canonically) identified with the
translation group Hom (Ω2l+2

Z
(M) ,R/Z). This is similar to what previously happened in

the case of the sphere S(4l+3). However, we now have Ȟ2l+1 (M,Z) = Z, which means that
there are non trivial (2l+1)-loops in M . Accordingly, we pick up a fundamental (2l+1)-
loop γ0 which generates Ȟ2l+1 (M,Z). Formally γ0 is given by a S2l+1 in M . Its DB
representative, η0 will play the role of the origin on the fiber over 1 ∈ Z in H2l+1

D (M,Z)∗.
If L is a link in M , then its DB representative, ηL, satisfies

ηL = nLη
0 + βΣ , (4.76)

with nL ∈ Z the base point over which ηL stands in H2l+1
D (M,Z)∗, and the translation

term βΣ belongs to Hom (Ω2l+2
Z
(M) ,R/Z). Once more, βΣ alternatively denotes the de

Rham current of a (2l+2)-chain ΣL for which L = nLγ0+bΣL as well as the DB class this
current defines via sequence (2.5). Such a chain is not unique, but two of them differ by a(2l+2)-cycle whose de Rham current belongs to the zero class in Hom (Ω2l+2

Z
(M) ,R/Z),

making βΣ unique from the DB class point of view.
So, up to the normalization factor Z−1k , the expectation value (4.46) reduces to:

∑
m∈Z
∫ Dα exp{2iπ∫

M
(mη0 + α) ∗D (kmη0 + kα + nLη0 + βΣ)} . (4.77)

Instead of using the elegant zero-mode property, as was done to establish Property 6,
we shall present a somehow more computational approach. Although this will be a bit
”heavier”, we make this choice in order to show more explicitly the usefulness of zero
modes as well as of zero-regularization.

Since it provides the final answer, let us first consider the case where nL = 0 ( i.e.
when L is homologically trivial). Then expression (4.77) takes the form:

∑
m∈Z
∫ Dα exp{2iπ∫

M
(mη0 + α) ∗D (kmη0 + kα + βΣ)} . (4.78)

17



For the same reasons than in the previous example, βΣ/2k ∈ Hom (Ω2l+2
Z
(M) ,R/Z). So,

we perform the shift:

α ↦ α̃ = α + βΣ
2k

. (4.79)

The expectation value of the Wilson line of L then simplifies into:

∑
m∈Z
∫ Dα exp{2iπ∫

M
(mη0 + α) ∗D (kmη0 + kα)} (4.80)

× exp {−2iπ∫
M

βΣ

2k
∗D βΣ

2k
} ,

that is to say:

<W (L) >CSk
= exp{−2iπk∫

M

βΣ

2k
∗D βΣ

2k
} , (4.81)

or equivalently:

<W (L) >CSk
= exp{−2iπ

4k ∫M βΣ ∧ dβΣ} , (4.82)

just as in the S4l+3 case. Once more, this is totally similar to what happens in the three
dimensional case S1×S2 detailed in [17]. This turns out to be the same expression as eqn.
(4.70), and of course as eqn. (4.59): the link invariant is made of linking and self-linking
numbers of the fundamental loops forming the link. However let us stress again that
whereas the link L has to be homologically trivial, this is not the case of its components.

Let us now assume that nL is not zero (nor an integral multiple of 2k, although
this can be dealt with straightforwardly). If we expand all the expressions within the
exponentials appearing in eqn. (4.77), and then apply the zero-regularization to η0∗D η0,
we obtain the expression:

kα ∗D α + α ∗D βΣ + (2km + nL)η0 ∗D α +mη0 ∗D βΣ . (4.83)

Once more, we perform the shift (4.79), and get, after some simplifications:

kα ∗D α + (2km + nL)η0 ∗D α − kβΣ
2k
∗D βΣ

2k
− nLη0 ∗D βΣ

2k
. (4.84)

The last two terms are independent of m and α, and then give rise to:

exp{−2iπ∫
M

βΣ

2k
∗D (kβΣ

2k
+ nLη0)} , (4.85)
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out of the integration and sum in eqn. (4.78). In the remaining factor, we can invert the
sum over m with the integration over α, thus obtaining:

∫ Dαe2iπk ∫M α∗Dα ∑
m∈Z

exp{2iπ∫
M
((2km + nL)η0 ∗D α)} . (4.86)

But:

∑
m∈Z

exp{2iπ∫
M
((2k)mη0 ∗D α)} = ∑

m∈Z

exp{2iπ(2km)∫
γ0
α} (4.87)

= ∑
K∈Z

δ (∫
γ0
α −K/2k) .

Putting this back into eqn. (4.86), and performing some algebraic juggling, we obtain:

∑
K∈Z

e2iπnLK/2k ∫ Dα δ (∫
γ0
α −K/2k)e2iπk ∫M α∗Dα . (4.88)

Let us introduce a closed (2l + 2)-surface Σ0, with de Rham (2l + 1)-current ρ0, which
satisfies:

∫
γ0
ρ0 = 1 = Σ0 ⊺∩ γ0 . (4.89)

This surface is a generator of Ȟ2l+1 (M,Z) ≃ Ȟ2l+2 (M,Z) = Z and is formally a sphere
S(2l+2) in M = S(2l+1) × S(2l+2). The (trivial) DB class associated with ρ0 ( also denoted
ρ0) give rises to the DB class ρ0/2k, which is non trivial since:

∫
γ0

ρ0

2k
=
Z

1

2k
. (4.90)

Actually, ρ0/2k ∈ Hom (Ω2l+2
Z
(M) ,R/Z) and the DB class it determines is 0 + ρ0/2k.

Moreover, as seen when establishing the zero-mode property:

∫
M

ρ0

2k
∗D ρ0

2k
=
Z

0 =
Z

2k∫
M

ρ0

2k
∗D α , (4.91)

for any α ∈Hom (Ω2l+2
Z
(M) ,R/Z). Consequently, eqn. (4.88) reads:

∑
K∈Z

e2iπnLK/2k ∫ Dα δ (∫
γ0
(α −K ρ0

2k
)) e2iπk ∫M α∗Dα , (4.92)

and for each value of K, if we perform the shift:

α ↦ α̃ = α −K ρ0

2k
, (4.93)
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and use eqn. (4.91), the expression under the integral in eqn. (4.88) turns out to be
independent of K. Thus:

∑
K∈Z

e2iπnLK/2k , (4.94)

factorizes out of eqn. (4.92). The same procedure has to be applied to the denominator
of expression (4.46) (which is the normalization factor needed to compute expectation
values), producing a term:

∑
K∈Z

1 . (4.95)

None of the expressions (4.94) and (4.95) is well-defined. However, using 2k-nilpotency,
we can reduce each of these infinite sums to a sum over a period, thus obtaining:

2k−1∑
K=0

e2iπnLK/2k = ∣ 2k if nL = 0
0 otherwise

(4.96)

for the former one and

2k−1∑
K=0

1 = 2k . (4.97)

for the latter one. The “regularized” quotient defining the expectation value will then
be taken as:

lim
N↦∞

N ∑2k−1
K=0 e

2iπnLK/2k

N ∑2k−1
K=0 1

=
∑2k−1
K=0 e

2iπnLK/2k

∑2k−1
K=0 1

= ∣ 1 if nL = 0 [2k]
0 otherwise .

(4.98)

Hence, when nL ≠ 0 [2k], the expectation value of the corresponding Wilson line
is zero, while when nL = 0 the expectation value is given by eqn. (4.81). Due to 2k-
nilpotency, when nL = 2kN , with N ∈ Z∗, then the corresponding link invariant is trivial.
These results are a clear generalization of those investigated in [17] for the three dimen-
sional case. Also, it is quite obvious how to deal with a more general case than the quite
simple product S2l+1 × S2l+2, as long as M is torsionless. The case of (4l + 3)-manifolds
with torsion might be treated extending [18].

5 Naive abelian gauge field theory and (2l + 1)-links
invariants

This section provides a formulation of the abelian (4l + 3)-dimensional Chern Simons
theory on R4l+3 with Euclidean metric in terms of a lagrangian density involving a U(1)
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connection i.e. gauge field A, plus gauge fixing. This formulation, coined “naive gauge
field theory” extends eqns. (3.15), (3.16) to the (4l + 3)-dimensional case, and is the
one familiar to field theorists. The presentation is formulated in a somewhat hybrid way
conveniently using notations which keep track of the geometric nature of the fields and
operations, combined with algebraic manipulations familiar in field theory. We aim here
at emphasizing the ambiguities or weaknesses arising in this framework, in order to stress
where the above non perturbative formulation in terms of DB cohomology classes brings
clarification. In particular, the normalization of both the level k and loop charges e are a
priori unspecified in the naive field theory approach: the prescription that they have to
be integers is ad hoc, whereas they are bound to be integers ab-initio in the DB approach.
Furthermore, the naive approach leads to ill-defined self-linking integrals which require
to be given meaning and integer values by some extrinsic regularization procedure, such
as framing, whereas the DB approach was shown above provides a natural regularization
independent normalization prescription for the latter. Last, this study on R4l+3 also
suggests which complications may arise when trying to extend the naive field theoretical
framework to manifolds with non trivial cohomology.

5.1 Formulation and computation on R4l+3

The lagrangian density2 LCS (A(2l+1)) of the abelian (4l + 3)-dimensional Chern-Simons
theory reads:

LCS (A(2l+1)) = 1

2
A(2l+1) ∧ dA(2l+1) . (5.99)

An extra factor 1/2 is introduced in the normalization of LCS with respect to the nor-
malization of cs1(A) in eq. (3.15). This normalization choice is convenient to calculate
the propagator of the A(2l+1) field. This extra factor is subsequently compensated by
defining the Chern Simons action as 4iπ times the integral of LCS indeed matching the
normalization of CS1(A) in eq. (3.16).

The degeneracy coming from the gauge invariance A(2l+1) → A(2l+1) + dΛ(2l) of this la-
grangian density shall be fixed, in order that the functional integral giving the generating
functional, and, in particular, the propagator of the A(2l+1) field be defined.

2Properly speaking the Chern-Simons lagrangian density familiar to field theorists is the Hodge ∗

dual (on R
4l+3 with Euclidean metric) of the lagrangian (4l + 3)-form familiar to geometers introduced

by eq. (3.15). The left hand side of eq. (5.99) should thus be ∗LCS (A(2l+1)), and likewise for the gauge
fixing lagrangian density LGF in the forthcoming subsection 5.1.1. This sloppiness will hopefully not be
confusing.
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5.1.1 Covariant gauge fixing and corresponding propagator

In the three dimensional case, a common procedure consists in imposing the “covariant
gauge fixing” d ∗A(3) = 0 by adding the following Lagrange constraint:

L(3d)GF = B
(0) ∧ d ∗A(3) (5.100)

where ∗ here denotes the Hodge dual operation with respect to the Euclidean metric on
R3 and the Lagrange multiplier B(0) is a scalar field i.e. a zero-form. Let from now
on ∗ denote the Hodge dual operation on flat Euclidean R4l+3, such that for any q-form
B(q), ∗∗B(q) = (−1)q(4l+3−q)B(q) = B(q). The naive straightforward generalization of eqn.
(5.100) by means of a single auxiliary 2l-form B(2l) according to

LnaiveGF = B(2l) ∧ d ∗A(2l+1)

is not effective as LnaiveGF still has the residual gauge invariance B(2l) → B(2l) + dΛ(2l−1).
An appropriate formulation requires a collection of 2l + 1 auxiliary forms of decreasing
degrees (B(2l),B(2l−1),⋯,B(0)), according to:

LGF = B(2l) ∧ d ∗A(2l+1) + B(2l−1) ∧ d ∗B(2l) + ⋯ + B(0) ∧ d ∗B(1) . (5.101)

Regrouping all the fields into

A⃗ = (A1,A2,A3,⋯,A2l+2) ≡ (A(2l+1),B(2l),B(2l−1),⋯,B(0))
we can compactly write the full action given by Ltot = LCS (A(2l+1)) + LGF as a scalar
product:

∫ Ltot = ∫
R4l+3
A⃗ ∧ ∗DA⃗ ≡ 1

2
(A⃗,DA⃗) (5.102)

with:

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗d −d 0 0
δ 0 d 0
0 δ 0 −d
0 0 δ 0

...

0 d 0
δ 0 −d
0 δ 0

...

0 −d
δ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.103)
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where δ ≡∗d∗ is the co-differential associated with the Hodge dual. The Euler-Lagrange
equations of motion of the A⃗ field read:

DA⃗ = 0 (5.104)

The propagator < A⃗(x)⊗A⃗(y) > of the field A⃗ is the inverse of the operatorD conveniently
determined solving

D < A⃗(x)⊗ A⃗(y) >= δ(4l+3)(x − y)1I2l+2 (5.105)

by means of Fourier transformation, taking advantage of translation invariance on Eu-
clidean space R4l+3. It is especially convenient to use a Fourier transformation, defined
by means of Berezin integration, which preserves the degrees of forms, as detailed in
Appendix A. The Fourier transform of Dδ(4l+3)(x − y) reads:

Ð⇀
D = −i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗P −P 0 0
Ξ 0 P 0
0 Ξ 0 −P
0 0 Ξ 0

...

0 P 0
Ξ 0 −P
0 Ξ 0

...

0 −P
Ξ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.106)

The expression for P and Ξ are given in eqns. (6.139) of Appendix A.

The Fourier transforms
Ð⇀
N jk of the < A2l+2−j ⊗A2l+2−k > satisfy:

− i (∗P ∧Ð⇀N 1,j − P ∧Ð⇀N 2,j) = δ1,j Id(2l+1) , j ∈ [1, ...,2l + 2] (5.107)

−i (Ξ ∧Ð⇀N k−1,j + (−)kP ∧Ð⇀N k+1,j) = δk,j Id(2l+2−j) ,

j ∈ [1, ...,2l + 2] , k ∈ [2, ...,2l + 1] (5.108)

−i (Ξ ∧Ð⇀N 2l+1,j) = δ2l+2,j .Id(0) , j ∈ [1, ...,2l + 2] . (5.109)

A particular solution to the inhomogeneous eqns. (5.107)-(5.109) on the diagonal j = k is
suggested by the Hodge decomposition of the Laplacian operator whose Fourier transform
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reads: Ξ ∧ P + P ∧ Ξ = p2 Id, and by the identities P ∧ P = 0, Ξ ∧ Ξ = 0:

Ð⇀
N 1,1 =

i

p2
∗P(2l+1) (5.110)

Ð⇀
N j−1,j =

i

p2
P(2l+1−j), 2 ≤ j ≤ 2l + 2 (5.111)

Ð⇀
N j+1,j = − i

p2
Ξ(2l+1+j), 1 ≤ j ≤ 2l + 1 (5.112)

and all the other
Ð⇀
N i,j vanishing. The particular solution thus found for the Fourier

transform
Ð⇀
N

1 ,1
of the propagator < A(2l+1) ⊗ A(2l+1) > involved in the computation of

Wilson (2l + 1)-loops correlators turns out to be the so-called Moore-Penrose pseudo-
inverse3 of the operator i ∗P which satisfies:

− i ∗P Ð⇀N
1 ,1
= Π (5.113)

where Π is the projector onto the subspace selected by the covariant gauge fixing condi-
tion.

The propagators < A2l+2−j ⊗A2l+2−k > might differ from the particular solution above by
terms corresponding to general solutions of the homogeneous equations associated with
eqns. (5.107) - (5.109) i.e. with all right hand sides vanishing. The general solutions
of these homogeneous equations on the space of tempered currents can be proven to be
forms with harmonic coefficients. Hence in the present case on R4l+3 with Euclidean
metrics the coefficient functions of these harmonic forms are harmonic polynomials of

(x−y). In a first step we shall ignore such potential terms and consider the
Ð⇀
N jk entirely

given by eqns.(5.110) - (5.112). We will comment on them in paragraph 5.1.2 and prove
that they do not contribute insofar as we are only concerned with the computation of
correlators of (2l + 1)-loops.
Performing the inverse Fourier transforms of eqns.(5.110) - (5.112) yields the explicit
expressions of the < Aj(x)Ak(y) >. The only one explicitly needed in the following is:

⟨A(2l+1)µ1,⋯,µ2l+1(x)A(2l+1)ν1,⋯,ν2l+1(y)⟩
=

Γ (4l+3
2
)

2π
4l+3
2

ǫµ1,⋯,µ2l+1,ν1,⋯,ν2l+1,ρ
(x − y)ρ
∣x − y∣4l+3 , (5.114)

3This can be most simply and explicitly checked in the three dimensional case. The projector Π is
then the projector transverse to p, which indeed corresponds to the subspace of Fourier modes Â(p)
such that pµÂµ(p) = 0 i.e. the Fourier dual of the covariant gauge fixing condition d∗A = 0 imposed in
x-space.
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Γ(w) being the Euler Gamma function and ǫ the (4l+3)-dimensional Levi-Civita symbol.
The derivation of identity (5.114) relies on eqn. (6.137) of Appendix A.

The gauge field theory is provided by the generating functional in presence of arbitrary
source currents J⃗ , which may be formally expressed by the following functional integral:

Z(J⃗ ) = N ∫ DA⃗ e2iπk (A⃗,DA⃗)+ i(A⃗,J⃗ ) (5.115)

in which DA⃗ exp{2iπk (A⃗,DA⃗)} is a functional integration measure on some (unspeci-
fied) appropriate functional space. This measure is assumed to have all nice properties
of usual gaussian integrals, and N is a normalization constant such that Z(J⃗ = 0) = 1.
The correlator of two (2l + 1)-loops γ1 and γ2 is provided by the quantity

N ∫ DA⃗ e2iπk (A⃗,DA⃗) e
2iπ e1 ∫γ1 A

(2l+1)

e
2iπ e2 ∫γ2 A

(2l+1)

. (5.116)

Let us represent the (2l + 1)-loop γs by the (2l + 2)-current j(2l+2)s so that

∫
γs

A(2l+1) = ∫
R4l+3

A(2l+1) ∧ j(2l+2)s (5.117)

hence
2π e1 ∫

γ1

A(2l+1) + 2π e2 ∫
γ2

A(2l+1) = (A⃗, J⃗ ) (5.118)

so that the loop correlator (5.116) is given by eqn. (5.115) identifying

J⃗ = 2π (e1 ∗j(2l+2)1
+ e2 ∗j(2l+2)2

,0,0,⋯,0) . (5.119)

The phase in the integrand of eqn. (5.116) involves:

k (A⃗,DA⃗) + e1 ∫
γ1

A(2l+1) + e2 ∫
γ2

A(2l+1) = k (A⃗′,DA⃗′) − 1

16π2k
(J⃗ ,D−1J⃗ ) (5.120)

where

A⃗′ = A⃗ + 1

4πk
D−1J⃗ . (5.121)

The functional space {A⃗} is assumed to be stable4 under the shift (5.121). This shift is
namely the counterpart of the one performed in eqn. (4.68), and the gaussian proper-
ties of the functional measure DA⃗ exp{2iπk (A⃗,DA⃗)} are the mere counterparts of the
Cameron-Martin property (3.26). We thus proceed as in the geometric approach.

4By passing let us notice that any current j(2l+2) representing a (2l + 1)-loop is such that j(2l+2) =
dη(2l+1), the corresponding ∗j(2l+2) thus belongs to the functional subspace of {A(2l+1)} obeying the
covariant gauge fixing condition d∗A(2l+1) = 0. Furthermore this subspace is stable under the action of
the operator [D−1] , cf. eqn. (5.113), so that this subspace is itself stable under the shift (5.121).
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The functional integration leads to:

N ∫ DA⃗ e2iπk (A⃗,DA⃗) e
2iπ e1 ∫γ1 A

(2l+1)

e
2iπ e2 ∫γ2 A

(2l+1)

= e−
i

8πk
(J⃗ ,D−1J⃗ ) . (5.122)

In the integral in the exponential in the r.h.s. of eqn. (5.122), the term of degree (2l+1)
is made of:

(D−1J⃗2l+1)µ1,⋯,µ2l+1(x) = ∫
R4l+3
y

⟨A(2l+1)µ1,⋯,µ2l+1(x)A(2l+1)ν1,⋯,ν2l+1(y)⟩
(J⃗2l+1)ν1,⋯,ν2l+12l+1 d4l+3y (5.123)

and:

(J⃗2l+1,D−1J⃗2l+1) = ∫
R4l+3
x

d4l+3x(J⃗2l+1)µ1,⋯,µ2l+1(x)(D−1J⃗2l+1)µ1,⋯,µ2l+1(x) . (5.124)

This yields two sorts of terms.

1. Those of the form:

L(γ1, γ2) ≡ ∫
R4l+3
x

d4l+3x(∗j(2l+2)
1

)µ1,⋯,µ2l+1(x)(D−1∗j(2l+2)
2

)µ1,⋯,µ2l+1(x)
= ∫

R4l+3
x xR4l+3

y

j
(2l+2)
1

(x) ∧ ⟨A(2l+1)(x)⊗A(2l+1)(y)⟩ ∧ j(2l+2)
2

(y)
=

1

(2l + 1)!2
¿

γ1

(dxµ1 ∧⋯∧ dxµ2l+1) ×
¿

γ2

(dyν1 ∧⋯∧ dyν2l+1) ⟨A(2l+1)µ1,⋯,µ2l+1(x)A(2l+1)ν1,⋯,ν2l+1(y)⟩ . (5.125)

They turn out to be the linking of γ1 and γ2 since after injecting expression (5.114)
in the last line of eqn. (5.125) one recognizes the generalized Gauss formula [19].
The latter is recalled in Appendix B providing a consistency check of all normal-
izations between the geometric and the “naive” approaches. However, at variance
with the virtue of the geometric approach, it is important to notice in this respect
that the values of the level k and of the loop charges ej are not quantized in the
naive approach: their prescribed integer natures here are ad hoc and imposed “by
hand”.

This derivation sheds some light on the relation between the generalized Gauss
formula (5.125) and the geometric approach developed in section 4. With respect to
the variable J⃗ the propagator identifies with [∗d]−1MP , the (Moore-Penrose pseudo-)
inverse of ∗d, whereas it identifies with [d]−1MP the inverse of d with respect to the

26



loops currents j
(2l+2)
1

and j
(2l+2)
2

in the following way. All loops are contractible in

R4l+3, therefore there exists a de Rham current η
(2l+1)
2

such that:

j
(2l+2)
2

= dη
(2l+1)
2

, (5.126)

whose general solution is

η
(2l+1)
2

= [d]−1MP j
(2l+2)
2

+ ζ(2l+1)
2

, (5.127)

where ζ
(2l+1)
2

is an arbitrary closed current. Indeed the current η
(2l+1)
2

is not unique
since:

d(η(2l+1)
2

+ ζ(2l+1)
2

) = j(2l+2)
2

. (5.128)

This reminds us of the definition of the Poincaré Homotopy:

κ ∧ d + d ∧ κ = Id(2l+1) (5.129)

that encodes Poincaré Lemma (for R4l+3). The degeneracy associated with the
inversion of d is exactly the one due to gauge invariance since on R4l+3, and still by
virtue of Poincaré’s lemma, one has:

ζ
(2l+1)
2

∈Ker[d]⇔ ∃ξ(2l+1), ζ(2l+1)
2

= d ξ(2l+1) .

We shall come back to this comment below when addressing the corresponding
issue on topologically non trivial (4l + 3)-dimensional manifolds instead of R4l+3.

2. It also involves the self-linkings of (2l + 1)-loop γ1 and of (2l + 1)-loop γ2 by means
of formulas very similar to eqn. (5.125), yet the integrals involved here are ill-
defined [25, 26, 27]. An extrinsic procedure is required to have them make sense
as quantities defined modulo integers. Framing provides one such procedure in the
present case, a given integer for each self-linking corresponding to a given framing
choice. By contrast the zero regularization implemented in the geometric approach
is less detailed as it does not prescribe any definite integer value to any given
self-linking.

5.1.2 Harmonic terms do not contribute

So far we have ignored the presence of a harmonic contribution H(x−y) to the propagator
< A(2l+3)(x)⊗A(2l+3)(y) >. At first sight one might be tempted to argue that the absence of

27



such terms is implied by the cluster property meaning that < A(2l+3)(x)⊗A(2l+3)(y) >→ 0
when ∣∣x − y∣∣→ +∞. However this is i) beside the point ii) not necessarily true.

i) It is beside the point insofar as we are interested in correlators of (2l + 1)-loops i.e.
closed curves. Assuming that the propagator involves such a harmonic term H(x − y),
let us generalize eqn. (5.125) by

L̃(γ1, γ2)
= ∫

R4l+3
x xR4l+3

y

j
(2l+2)
1

(x) ∧ {⟨A(2l+1)(x)⊗A(2l+1)(y)⟩ +H(x − y)} ∧ j(2l+2)
2

(y)
≡ L(γ1, γ2) +L′H(γ1, γ2) (5.130)

The currents j
(2l+2)
1,2 dualize (2l + 1)-loops so that e.g. j

(2l+2)
1

= dη
(2l+1)
1

so that through
integration by part,

L′H(γ1, γ2) = ∫
R4l+3
x xR4l+3

y

η
(2l+1)
1

(x) ∧ (dyH(x − y)) ∧ j(2l+2)2
(y)

= 0 (5.131)

This suggests that the appropriate functional space on which the propagator has to be
defined is a quotient modulo harmonic parts. Such a functional space has been studied
in ref. [32].

By passing, eqn. (5.131) proves that harmonic contributions vanish even when j
(2l+2)
2

dualizes a non compactly supported loop, such as a (2l + 1)-hyperplane. This property
is expected to be particularly relevant in order to extend the present result to the sphere
S4l+3.

ii) The cluster property may not hold with another gauge fixing choice. See for instance
the 3-dimensional case with axial gauge fixing.

5.1.3 Impact of the gauge fixing choice

Equation (5.125) was noticed to reproduce the generalized Gauss formula when the prop-
agator < A(2l+3) ⊗A(2l+3) > is given by eqn. (5.114). Another condition than the gauge
fixing (5.100) would lead to a different propagator. Equation (5.125) would then provide
an expression of the linking number different from the one obtained using the generalized
Gauss invariant. For example in the three dimensional case, the “axial gauge” choice
leads to a braiding interpretation of the linking number [29], rather than the solid angle
interpretation reminded in Appendix B. Let us stress that all gauge fixing choices are
equivalent ways of computing the generalized linking number. Indeed, the propagator
in the covariant gauge and one with an alternative gauge choice differ by terms involv-
ing the derivative d whose actions on the closed currents dualizing (2l + 1)-loops vanish.
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In a Quantum Electro-Dynamical language, the latter are “conserved currents” which
guarantees the gauge fixing independence of observables associated with these currents.

5.2 Further issues arising on the S4l+3 then on further non trivial

manifolds

As we already mentioned it, Chern-Simons field theory cannot provide a quantization of
the level k nor of the charge q. This is due to the fact such a theory is developed over
the non compact space R4l+3. It’s only when going on a closed manifold such as a sphere
that the quantization naturally appeared in the geometric approach. This suggest that
to get such a quantization of k and q within the field theoretic framework, one should
have to first define a field theory over a closed manifold M , starting with S4l+3. Since
the CS lagrangian is not a globally defined 3-form, we anticipate two possible paths: one
based on a partition of unity subordinated to a good covering of M and a second based
on a polyhedral decomposition of M .

1. We could consider a polyhedral decomposition ∆ ofM and start with field theories
on each of the fundamental i.e. (4l+3)-dimensional polyhedra ∆α of the decompo-
sition. Once this done on fundamental polyhedra we would have to see how things
match on the (4l + 2)-dimensional boundaries ∆αβ of these polyhedra leading to(4l + 2)-dimensional field theories on those boundaries. We would have to keep
proceeding along this line till we reach the polyhedral elements of dimension 0 of
the decomposition. This would be related to the short formula defining the integral
of a DB class, as explained in [7].

2. We could provide M with a partition of unity subordinated to a good covering U in
such a way that each open set Uα supports a field theory in R4l+3. Matching these
theories in the (4l+3)-dimensional intersections Uαβ would lead to considering extra
field theories in these intersections then in the triple intersections Uαβγ etc. The
present point of view in which all supplemented field theories would be on R4l+3 is
a smoothing of the former polyhedral approach. This would be related to the long
formula appearing in [7].

We would like to stress out that our procedure to compute the propagator of the
abelian CS field theory on R4l+3 exhibits a set of descent equations whose resolution is
made simple because R4l+3 has no cohomology (except in dimension 0). Our results might
be extended to S4l+3 since it shares the same cohomology properties for the concerned
degrees. In the case of a general closed manifold, such has S2l+1 × S2l+2, this would
not be true. However, locally that is to say with respect to a good covering and with
an Euclidean metric on each open set, such a descent might still hold. Yet the gluing
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constraints on the whole manifold (e.g. via a partition of unity) would prevent the descent
from being globally trivial. The simplest case to investigate would be S3 and the first
non trivial one S1 × S2.

Concerning the propagator itself, the fact it coincides with the Gauss integral is once
more only due to the fact we are working on R4l+3. One would expect a different ex-
pression for the propagator on a closed manifold. However there exist expressions of the
Gauss integral on spheres [31]. One could also try to mimic Gauss zodiacus idea, at least
in the case of S3 identified with SU(2), replacing the notion of translations acting on
R3 by actions on SU(2). From the point of view of the two possible approaches previ-
ously mentioned, we can expect a collection of propagators, associated with the different
field theory arising from the construction (for instance one for each polyhedra type of
the decomposition of the closed manifold), but also a gluing rule explaining how these
propagators ”communicate”.

It appears as a very interesting problem how this could be properly handled because
it would provide an example of a field theory over a closed manifold. We can have
some hope about how this can be done, because the theory which we are dealing with
is a topological one, and also because the geometric approach provides us with the final
answer concerning Wilson observables.

6 Conclusions and outlook

The treatment of abelian Chern-Simons to generate link invariants introduced in [17]
straightforwardly extends to the case of oriented closed (4l + 3)-dimensional manifolds
without torsion. Actually, we didn’t show that the expectation values of our generalised
Wilson lines are ambient isotopy invariants. This can be easily checked extending what
has been done in [17]. In the same way, it is possible to establish satellite relations for
our generalised invariants. As for torsion, one could follow the approach developed for
RP 3 in [18]. One can wonder whether the DB strategy applies more generally to abelian
BF systems. Using Deligne-Beilinson Cohomology technics might also provide a way to
study higher order systems, that is to say systems whose classical lagrangian involves DB
products of more than two DB classes. In any of these cases one should expect homology
and intersection to play the fundamental role.
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Appendix A: Forms and Fourier Transform

This appendix is devoted to the conventions and properties of Fourier transform applied
to forms and linear operators acting on them. These properties are used in Section 5 in
order to evaluate precisely the propagator of the vector potential in the covariant gauge.

Berezin-Fourier transform preserving forms degrees

The components of a q-form are defined through

B(q) = B(x)ν1...νq ψν1 ∧ ... ∧ ψνq (6.132)

where ψµ = dxµ. This convention partially avoids clutter with factorial numbers.
The Fourier transform of a q-form is then defined as

Ð⇀
B (q) ≡ [∫ dnx eipµx

µ

B(x)ν1...νq] [ 1

l(n−q)
∫ dnψ eiω̄µψ

µ

ψν1 ∧ ... ∧ψνq]
= [∫ dnx eipµx

µ

B(x)ν1...νq]
ǫνq+1...νn...ν1...νq

(n − q)!
ǫτq+1...τn...µ1...µq

q!
δνq+1τq+1 ... δνnτn ω̄µ1 ∧ ... ∧ ω̄µq

=

ÌB(p)ν1...νq
q!(n − q)! ǫνq+1...νn...ν1...νq δνq+1τq+1 ... δνnτn ǫτq+1...τn...µ1...µq ω̄µ1 ∧ ... ∧ ω̄µq

= ÌB(p)ν1...νq δν1µ1 ... δνqµq ω̄µ1 ∧ ... ∧ ω̄µq
= ÌB(p)µ1...µq ω̄µ1 ∧ ... ∧ ω̄µq (6.133)

where l(a) = 1 if a is even and l(a) = i if a is odd, ω̄µ ≡ dpµ, andÌdenotes the usual Fourier
transform on functions. With this definition, the Fourier transform of a q-form is itself a
q-form, that is to say the Fourier transform respects the form degrees.
Inverse Fourier transform is accordingly defined as

↽Ð
B (q) ≡

1

(2π)n [∫ dnp e−ipµx
µ

B(p)ν1...νq] [ 1

l(n−q)
∫ dnω̄ e−iω̄µψ

µ

ω̄ν1 ∧ ... ∧ ω̄νq]
=

qB(x)ν1...νq
q!(n − q)! ǫνq+1...νn...ν1...νq δνq+1τq+1 ... δνnτn ǫτq+1...τn...µ1...µq ψµ1 ∧ ... ∧ ψµq

= qB(x)ν1...νq δν1µ1 ... δνqµq ψµ1 ∧ ... ∧ψµq
= qB(x)µ1...µq ψµ1 ∧ ... ∧ψµq (6.134)

where q is the inverse Fourier transform on functions. An explicit evaluation indeed
confirms that
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↽ÐÐ⇀
B = B . (6.135)

An important property is that the Hodge operation and Berezin-Fourier transform do
commute:

∗[ 1

l(n−q)
∫ dnψ eiω̄µψ

µ

ψν1 ∧ ... ∧ψνq]
=

1

q!
δ
ν1...νq
σ1...σq δ

σ1µ1 ... δσqµq ω̄µ1 ∧ ... ∧ ω̄µq
= [ 1

l(n−q)
∫ dnψ eiω̄µψ

µ
∗(ψν1 ∧ ... ∧ ψνq)] . (6.136)

An useful Fourier transform

The explicit computation of the fundamental propagator (5.114) relies on the following
Fourier transform

↽ÐÐ(pτ
p2
) = 1

(2π)4l+3 ∫ d4l+3p e−ipµx
µ pτ

p2
= −iΓ ( 4l+32 )

2π
4l+3
2

xτ

x4l+3
. (6.137)

Berezin-Fourier transform for linear operators

The Berezin-Fourier transform of a linear operator O acting on forms is defined by

Ð⇀OB ≡ ÐÐ⇀O↽ÐB . (6.138)

Accordingly, the (useful) Fourier transform of the differential, its Hodge dual and the
co-differential read:

Ð⇀
d = −ipµω̄µ ≡ −iP (6.139)ÐÐ⇀(∗d) = ∗(Ð⇀d ) = −i ∗P (6.140)

Ð⇀
δ =

∗(Ð⇀d )∗ = −i ∗P ∗ ≡ −iΞ . (6.141)
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Appendix B: Generalized Gauss linking number

Definition of the linking number

We consider two (2l + 1)-dimensional closed surfaces γ2l+1 and γ′
2l+1 embedded in the

space R4l+3. They are defined as a map from the (2l + 1)-dimensional closed manifold T ,
respectively T ′, to R4l+3. Their linking number is given by [19]

L(γ2l+1, γ′2l+1) = Nl
¿

γ2l+1

dxµ
¿

γ′
2l+1

dyνǫµ,ν,σ δ
στ

Bτ ∣x − y∣−4l−1 (6.142)

where the xs (resp. ys) are the coordinates of points of γ2l+1 (resp. γ′
2l+1) and ǫ is the

(4l+3)-dimensional Levi-Civita symbol. We have used the following shorthand notations

dxµ = dxµ1⋯dxµ2l+1 , dyν = dyν1⋯dyν2l+1 , ǫµ,ν,σ = ǫµ1⋯µ2l+1ν1⋯ν2l+1σ (6.143)

and set Bτ = Byτ . The other choice of the derivative, B = Bx, reverses the sign of the linking
number, e.g. it corresponds to an orientation choice. The normalisation of the linking
number is

Nl = Γ ( 4l+3
2
)

(8l + 2)√π4l+3(2l + 1)!2 . (6.144)

with Γ the Euler Gamma function, satisfying Γ(n + 1) = n! for an integer n.
The linking number can be given a more enlightening form as follows. For two points

x (resp y) on γ2l+1 (resp. γ′
2l+1

), we consider the unitary vector

exy =
x − y
∣x − y∣ . (6.145)

The unitary vector exy thus defines a map from T × T ′ to the sphere S4l+2 whose degree
is the linking number [33]. We now consider the quantity

[exy;dx;dy] = 1

(2l + 1)!2 ǫµ,ν,σ dxµdyνeσxy (6.146)

which has a simple physical interpretation:

[exy;dx;dy]
∣x − y∣4l+2 (6.147)

is the oriented solid angle formed by a simultaneous displacement dx on γ2l+1 and dy on
γ′
2l+1.
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The linking number can thus be given the following equivalent form

L(γ2l+1, γ′2l+1) = 1

S4l+2

¿

γ2l+1

¿

γ′
2l+1

[exy;dx;dy]
∣x − y∣4l+2 (6.148)

and interpretation of a global solid angle. We have used the value of the surface of a unit
sphere Sn is given by

Sn =
2π

n+1
2

Γ(n+1
2
) . (6.149)

This is also the total solid angle in dimension n + 1.

The three dimensional case

In the three dimensional case (l = 0), the linking number (6.148) is the famous Gauss
invariant [20]

L(γ, γ′) = 1

4π

¿

γ

¿

γ′

dx⃗ × dy⃗. x⃗ − y⃗∣x⃗ − y⃗∣3 . (6.150)

The unitary vector

e⃗xy =
x⃗ − y⃗
∣x − y∣ . (6.151)

defines a map e from S1 × S1 to the sphere S2 whose degree is the linking number [33].
The image of the map e is generically a surface called the zodiacus by Gauss who also
obtained a necessary condition for a point to be on its boundary: the tangent vectors to
the two curves at points x and y respectively and the vector e⃗xy are linearly dependent.
In other words, these are points such that

[e⃗xy;dx⃗;dy⃗] = 0 (6.152)

and do not contribute to the Gauss integral. This condition is only necessary and not all
solutions do represent actual boundaries of the zodiacus. Two cases have to be distin-
guished: (1) the two curves are not linked and the zodiacus has at least one boundary,
(2) the two curves are linked and the curve defined by the previous condition cannot be
a boundary of the zodiacus which is in fact the whole sphere.

Some intuition on these matters can be given by the following particular case. We
consider a basic configuration of two circles γ, having radius one and centered at the
origin, and γ′, having radius R greater than one. This configuration has linking number
one when the circle γ′ intersects the disc defined by γ. In the extreme case where the
radius R →∞, the γ′ circle may be deformed to a straight line perpendicular to the plane
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containing the circle γ completed with an half circle at infinity whose contribution to the
Gauss integral vanishes.

The circle γ can be parameterized as

x1 = cos(s) , x2 = sin(s) , x3 = 0 (6.153)

and the straight line γ’ as
y1 = 0 , y2 = y (6.154)

and intersection with the disc bounded by γ occurs when ∣y∣ < 1.
We obtain the linking number by integrating over the straight line

L(γ, γ′) = 1

4π ∫
2π

0

ds∫ +∞

−∞

dy3
1 − y sin(s)

(1 − 2y sin(s) + y2 + y2
3
) 32 (6.155)

The integral over y3 is classical and, for ∣y∣ ≠ 1, one has

L(γ, γ′) = 1

2π ∫
2π

0

ds
1 − y sin(s)

(1 − 2y sin(s) + y2) (6.156)

The evaluation of this integral can be done by expanding the integrand in powers of the
sine, using then the classical values of integral of even powers of the sine function. The
result is then

L(γ, γ′) = 1 for ∣y∣ < 1 , L(γ, γ′) = 0 for ∣y∣ > 1 . (6.157)

The unitary vector e⃗ reads

e⃗ =
cos(s) i⃗ + (sin(s) − y)j⃗ − y3k⃗
(1 − 2y sin(s) + y2 + y2

3
) 12 (6.158)

and the necessary condition for a point to be on the boundary of the zodiacus is

1 − y sin(s) = 0. (6.159)

A moment thought shows that for ∣y∣ < 1, there is no boundary and the vector e⃗ sweeps
the whole sphere once. On the contrary, for ∣y∣ > 1, the zodiacus has two boundaries
at the values s = arcsin(y−1) and s = π − arcsin(y−1) that join at antipodal points for
y3 = ±∞.

Higher dimensional cases

As in the three dimensional case, the unitary vector exy spans on the sphere S4l+2 the
zodiacus associated with the two surfaces γ2l+1 and γ′2l+1. The eventual boundaries of the
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zodiacus necessarily correspond to stationary points of exy upon infinitesimal displace-
ments δx (resp. δy) on the surface γ2l+1 (resp. γ′

2l+1), that is to say δexy = 0 where

δexy =
δ(x − y) − exy(exy.δ(x − y))

∣x − y∣ (6.160)

If the surfaces γ2l+1 and γ′2l+1 are parameterized by (even local) coordinates si, tj respec-
tively (i, j = 1 ...2l + 1), then

δ(x − y) = ai Bx

Bsi
− bj By

Btj
(6.161)

where ai and bj are two families of infinitesimal coefficients. As a consequence of the
stationarity conditions, the vector exy is thus a linear combination of the 4l + 2 tan-
gent vectors Bsix and Btjy. Hence the oriented solid angle formed by two simultaneous
displacements on both curves vanishes at the boundary of the zodiacus:

[exy;Bix;Bjy] = 0. (6.162)

We shall now check the normalisation of the linking number considering a simple
choice of linked surfaces. We choose a (2l + 1)-sphere centered at the origin and an
orthogonal (2l + 1)-hyperplane containing the origin. They are given respectively by

γ2l+1 ∶ x21 +⋯+ x22l+2 = 1, x2l+3 = ⋯ = x4l+3 = 0 (6.163)

and a (2l + 1)-hyperplane
γ′
2l+1 ∶ y1 = ⋯ = y2l+2 = 0 (6.164)

with its completion (an half-sphere) at infinity whose contribution to the Gauss integral
vanishes. The ball defined by the sphere γ2l+1 and the hyperplane γ′

2l+1 intersect at the
origin so we have a configuration with linking number equal to one and a moment thought
shows that the zodiacus is the whole (4l + 2)-sphere.

The linking number (6.148) here reads

L(γ2l+1, γ′2l+1) = 1

S4l+2

¿

γ2l+1

d2l+1x

¿

γ′
2l+1

d2l+1y
1

(1 + ∣y⃗∣2) 4l+32

. (6.165)

The first integral yields the surface of the (2l + 1)-sphere
¿

γ2l+1

d2l+1x = S2l+1 , (6.166)
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while the second integral can be decomposed in a surfacic and a radial ones as

¿

γ′
2l+1

d2l+1y
1

(1 + y⃗2) 4l+32

= S2l ∫ ∞

0

dy
y2l

(1 + y2) 4l+32

(6.167)

The radial integral is a classic one and may be computed after the change of variable
y = tan(θ)

∫ ∞

0

dy
y2l

(1 + y2) 4l+32

= ∫
π
2

0

dθ sin2l(θ)cos2l+1(θ) = Γ(l +
1

2
)Γ(l + 1)

2Γ(2l + 3

2
) . (6.168)

We thus obtain

L(γ2l+1, γ′2l+1) = S2lS2l+1

S4l+2

Γ(l + 1

2
)Γ(l + 1)

2Γ(2l + 3

2
) (6.169)

what drastically simplifies into the expected result

L(γ2l+1, γ′2l+1) = +1 . (6.170)
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