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Abstract (EN):

In this thesis, we study several features of Hawking radiation in the presence of ultraviolet
Lorentz violations. These violations are implemented by a modified dispersion relation
that becomes nonlinear at short wavelengths. The motivations of this work arise on the
one hand from the developing field of analog gravity, where we aim at measuring the
Hawking effect in fluid flows that mimic black hole space-times, and on the other hand
from the possibility that quantum gravity effects might be approximately modeled by a
modified dispersion relation. We develop several studies on various aspects of the prob-
lem. First we obtain precise characterizations about the deviations from the Hawking
result of black hole radiation, which are induced by dispersion. Second, we study the
emergence, both in white hole flows or for massive fields, of a macroscopic standing wave,
spontaneously produced from the Hawking effect, and known as ‘undulation’. Third, we
describe in detail an instability named black hole laser, which arises in the presence of two
horizons, where Hawking radiation is self-amplified and induces an exponentially growing
in time emitted flux.

Tags: Hawking radiation, Analog gravity, Lorentz violation, Instabilities, Undulations

Résumé (FR):

Dans cette these, nous étudions plusieurs aspects de la radiation de Hawking en présence
de violations de l'invariance locale de Lorentz. Ces violations sont introduites par une
modification de la relation de dispersion, devenant non-linéaire aux courtes longueurs
d’onde. Les principales motivations de ces travaux ont une double origine. Il y a d'une
part le développement en matiere condensée de trous noirs analogues, ou I’écoulement
d’un fluide est pergu comme une métrique d’espace-temps pour les ondes de perturba-
tions et ou la radiation de Hawking pourrait étre détectée expérimentalement. D’autre
part, il se pourrait que des effets de gravité quantique puissent étre modélisés par une
modification de la relation de dispersion. En premier lieu, nous avons obtenu des car-
actérisations précises des conditions nécessaires au maintien de I'effet Hawking en présence
de violation de 'invariance de Lorentz. De plus, nous avons étudié 'apparition d'une onde
macroscopique de fréquence nulle, dans des écoulements de type trous blancs et également
pour des champs massifs. Une autre partie de ce travail a consisté a analyser une insta-
bilité engendrée par les effets dispersifs, ou la radiation de Hawking est auto-amplifiée,
générant ainsi un flux sortant exponentiellement croissant dans le temps.

Mots-clés: Radiation de Hawking, Gravité analogue, Violation de Lorentz, Instabilités,
Undulations
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Introduction

The problem of quantum gravity

Modern physics relies in its fundamentals on two extremely well tested theories. The
first one is Quantum Mechanics, which rules the microscopic world of atoms and elemen-
tary particles. At its antipodes, one finds General Relativity, the theory of gravitation
describing the physics at large scales. Unfortunately, these two theories are intrinsically
incompatible.

The logical inconsistency between both theories is in fact a consequence of a more
general statement. For the axioms of quantum mechanics to be internally consistent,
one needs to assume that all physical degrees of freedom are quantum in nature. To
understand this, we propose to go back to the beginning of the construction of the mod-
ern version of quantum mechanics. In 1926, Born published a remarkable paper, which
was ultimately rewarded by a Nobel prize [I]. In his paper, Born showed that the wave
equation proposed by Schrodinger was equally efficient to describe scattering processes
as stationary states. More importantly, he underlined that the correct way to interpret
the wave function was to see it as a probability density. This was the birth of the statis-
tical interpretation of quantum mechanics. Shortly after, Heisenberg complemented this
understanding by showing that there is an intrinsic uncertainty when trying to measure
simultaneously the position and the momentum of a physical system [2], i.e.,

AzxAp > g (1)
However, if one tries to couple a quantum system with classical degrees of freedom, the
Heisenberg inequalities can be violated. This was pointed out in 1927 by Einstein. He
proposed to Bohr a gedanken experiment to measure the position and the momentum of a
system with an arbitrary precision. Bohr understood that the paradox could be resolved
only if one assumed that the measuring device is also ruled by the quantum laws, and
hence subjected to an uncertainty relation [3]]

In General Relativity, space-time itself is a dynamical system, giving rise to the grav-
itational field. Therefore, it does not escape the preceding argument. These degrees of
freedom must be quantized as well. A modern version of the Einstein-Bohr debates were

! An english translation of the founding fathers papers have been published in a book by Wheeler and
Zurek, which reviews the debates about measurements in quantum mechanics [4].
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presented by Unruh [5] in a book in honor of Bryce DeWitt [6]. In particular, he consid-
ered a set up consisting of a Schrodinger’s cat type of experiment, where the state of the
cat is probed by a Cavendish balance, see Fig[I] The quantum nature of the gravitational
interaction would then be manifest at a macroscopic scale.

>

rd
n

I/

’ T~

Figure 1: In a box, we put two massive spheres, attached by a spring. A ra-
dioactive nucleus is connected to a mechanism that releases the spring. When
the nucleus decays, the spheres are pulled together and the Cavendish balance
switches position. If gravity is quantum, the balance will undergo a quantum
jump when the nucleus decays. On the other hand, if the gravitational field is
only sensitive to the ‘mean position’ of the masses, the balance will move slowly
following the law of radioactive decay. (Figure from [5].)

The necessity of building a quantum theory of gravity is thus established. The next
question would be why did we succeed in quantizing all physical systems but gravity ?
This is probably a much more delicate issue. We can at least compare it to the other
interactions, namely the electroweak and strong forces. At the quantum level, these are
described by bosonic particles. When considering particles in interactions, there is a
huge number of virtual processes contributing to the transition amplitude. To compute
physical observables, one must sum over these processes, but because arbitrary highly en-
ergetic ones are involved, we generically obtain diverging quantities. Properly removing
these infinities leads to the theory of renormalization, which is at the heart of modern
high energy physics. Unfortunately, when one tries this to deal with the gravitational
interaction, quantum general relativity is found to be non renormalizable [7, 8, [@]. This
means that infinities can be removed, but they generate an infinite number of counter
terms associated with an infinite number of new coupling constants. This does not mean
that no predictions can be made [I0] [T1], but the theory can certainly not be trusted
in the ultraviolet regime and therefore, is necessarily incomplete. Another proposition
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was made, to write down a wave equation for the gravitational field, that does not rely
on a perturbative expansion. This is the well-known Wheeler-DeWitt equation [12] and
its path integral approach [I3], [14]. Unfortunately, this equation is only formal and not
mathematically well defined.

To tackle the puzzle of quantum gravity, several approaches can be followed. The first
would be to address the problem frontally, that is to provide a new theory, reconciling
gravity and quantum mechanics. Nowadays, there are two main candidates for such a the-
ory. The first one is string theory [I5], which relies on the assumption that the concept of
point particle is only approximately valid, and fundamental objects are in fact extended.
The second one is loop quantum gravity. This approach intends to quantize the gravita-
tional field in a fully ‘background independent’ manner [16, 17, [18]. As a second approach,
one can decide to stick to the theories we understand, and push them to their extreme
limit, where quantum gravity presumably becomes a necessity. The main examples in
that direction are most probably primordial cosmology and black hole evaporation. Their
deeper understanding could provide us with crucial hints and guidelines about what the
full quantum theory of gravity could or should be. The work presented in this thesis has
been fundamentally motivated by this second line of thought. It has been devoted to the
study of certain aspects of black hole radiation.

The background field approximation

In 1974 Hawking showed that black holes are not completely black but rather radiate
as thermal objects [19]. To do so, he considered a relativistic quantum field, typically
photons, in a black hole (classical) background. As we will discuss in Chapter , this
phenomenon has many crucial implications. However, it is legitimate to ask what is
the validity of the approach. Can it be consistent to consider gravitation as a classical
background, while matter fields are quantized ? As pointed out by Duff [20], when space-
time geometry gives rise to quantum effects, such as particle creation, gravitons should
be emitted as well, and hence gravity cannot be considered as classical. Following these
lines, quantum field theory in curved background would be doomed to be either trivial or
inconsistent. However, DeWitt answered to that worry by pointing out that gravitons can
be included in the matter sector, and thus perfectly well described within the background
field approximation [21]. It is only when including gravitational interactions that standard
quantum field theory methods fail. Therefore, quantum field theory in curved space-time
seems to be a perfectly respectable physical theory, but whose range of validity is unclear.

In quantum electrodynamics, the same question can be answered precisely. For ex-
ample, to describe an electron orbiting around a nucleus, it is unnecessary to appeal for
the full theory of quantum electrodynamics (QED), because the electron feels essentially
a classical background electric field, given by the Coulomb potential of the nucleus. More
generally, as explained in the thirteenth chapter of [22], a quantum particle will behave
as if coupled to a classical external field if its sources are heavy enough compared to
the test particle. Unfortunately, for gravity, the answer most probably deeply entails the
knowledge of the full quantum gravity theory. However, very interesting results have been
obtained in a simplified context, known as ‘minisuperspace’. Indeed, in quantum cosmol-
ogy, precise conditions concerning the validity of the background field approximation have
been obtained [23, 24], which essentially matches those derived in QED.

In the present work, we have reversed the philosophy. Namely, we assume that quan-
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tum field theory in curved space is a valid theory, and study the quantum effects in black
hole physics. In chapter [3| we will model the (potential) residual effects of quantum grav-
ity at large scales by a modification of the dispersion relation. The spirit is really to make
speculative assumptions about corrections to the semi-classical approach and to study
their consequences.

What can we learn from black holes ?

Why should one study Hawking radiation ? Has black hole physics something to tell about
quantum gravity ? There are probably no definite answers to these questions. However,
we see several points in black hole physics that might be related to or even lead to the
full theory of quantum gravity.

In parallel to the discovery of Hawking, and in fact shortly before, Bekenstein made the
following proposition. According to what we know about the dynamics of black holes in
General Relativity, combined with arguments from information theory, black holes must
possess a proper entropy, proportional to their surface area [25]. The microscopic origin
of this entropy is still an enigma. It is widely believed that its understanding will pass
through a better knowledge of quantum gravity. The subject of black hole entropy, and
more generally, black hole thermodynamics, is a rich domain of gravitational physics. In
Sec[L.5] we shall say a few words about it. However, in our work, we have mainly focused
on the process of Hawking radiation.

This radiation, leading to the evaporation of black holes, raises another deep question.
What can happen at the end of the evaporation ? For large black holes, the background
field approximation has chance to be valid, but when the black hole reaches a Planck size
this is no longer true. This problem is also closely related to the so-called ‘information
paradox’. Certainly this question appeals for quantum gravity to be answered. But even
before reaching such a microscopic regime, the Hawking scenario of black hole radiation
must be questioned.

Even for large black holes, the Hawking process seems to appeal to the full quantum
gravity theory for a complete understanding. Indeed, in Chapter |3, we will see that the
semi-classical derivation involves arbitrary high frequencies. In that sense, black holes
act as ‘microscopes’, since the ultraviolet features of the theory are naturally probed.
In addition, these very high energetic fluctuations could lead to a complete invalidation
of Hawking radiation. Following a proposition of Jacobson [26], we assume that the re-
sulting low energy effects are well modeled by a modification of the dispersion relation,
i.e., breaking local Lorentz invariance in the utlraviolet. The concern of Chapter (3] will
thus be the study of the modifications of Hawking radiation induced by dispersive effects.
Moreover, the introduction of Lorentz violation is not free of consequences. In fact, the
whole stability analysis must be reconsidered. Indeed, in Chapters [d] and [5], we will see
and analyze various unstable processes, induced by these violations.

In addition, our work is also motivated by an analogy discovered by Unruh [27], be-
tween perturbations in a fluid flow and fields on a black hole geometry. This analogy will
also be presented in Chapter [3] Because dispersive effects always exist in condensed mat-
ter, our results are of particular relevance in this analog context, where actual experiments
can be performed, in contrast to the astrophysical case.

Before presenting the content of our work, we have devoted the first two chapters to

4
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a review of known material concerning black holes. In Chapter (1} we present classical
features such as geometry, space-time in general relativity, and black hole properties. In
Chapter [2] we analyze quantum phenomena. After reviewing the canonical quantization
of a field, we present the Unruh effect, followed by Hawking radiation.



Preliminaries

Preliminary remarks and conventions

In this thesis, each chapter can be conceived as almost independent. In particular, a few
notations may vary from one chapter to another, even though we tried to keep a general
coherence. A consequent part of the manuscript consists in reviewing known materials
relevant for our work. The new results are presented as an exposition of the studies real-
ized in the following list of papers.

* [28] A. Coutant and R. Parentani, “Black hole lasers, a mode analysis,” Phys. Rev.
D 81 (2010) 084042 [arXiv:0912.2755 [hep-th]].

* [29] A. Coutant, R. Parentani and S. Finazzi, “Black hole radiation with short
distance dispersion, an analytical S-matrix approach,” Phys. Rev. D 85 (2012)
024021 [arXiv:1108.1821 [hep-thl]]|.

* [30] A. Coutant, S. Finazzi, S. Liberati and R. Parentani, “Impossibility of su-
perluminal travel in Lorentz violating theories,” Phys. Rev. D 85 (2012) 064020
larXiv:1111.4356 [gr-qc]].

* [31] A. Coutant, A. Fabbri, R. Parentani, R. Balbinot and P. Anderson, “Hawking
radiation of massive modes and undulations,” Phys. Rev. D 86 (2012) 064022
arXiv:1206.2658 [gr-qc].

All along the thesis, we work with the following conventions:

e We work in units where ¢ =1, h =1 and kg = 1. On the other hand, the Newton’s
constant G will stay a dimensionfull quantity in order to keep track of the role of
gravitation.

o My ~2,0.10%%g is the solar mass.

e In d + 1 dimensions, the signature of the metric is +—... —.
——
xd

e We use [uv] to symmetrize sums over indices

1 1
Tlpr o) = rl Z To(u)...our) but Ty lps. i) = ) (Tu1u2~--ur + Turuz--~u1)-
’ UEST

e We use the Einstein convention of repeated indices (exposed in Sec1.2.3)).

e The identity operator is noted I.


http://arxiv.org/abs/0912.2755
http://arxiv.org/abs/1108.1821
http://arxiv.org/abs/1111.4356
http://arxiv.org/abs/1206.2658

Chapter

Geometry of space-time and black holes

Contents
1.1 Fundamental principles of relativity . .. ... ......... [@
1.2 Elementsof geometry . . . . ... ... ... .. 0000 Ol
1.2.1  Smooth manifolds . . . .. .. ... ... ... ... .. 9
1.2.2 Tangent bundle . . . . . . ... ... ... ... ... ... ... 11
1.2.3 Cotangent bundle and tensor fields . . . . . .. ... ... ... [16]
1.2.4 Space-time as a Lorentzian manifold . . . . . ... .. .. ... [19]
1.3 General relativity . . . . .. .. ... 00 e 23l
1.3.1 Einstein’s equations . . . . . . ... ... ... L. 23]
1.3.2 Black hole space-times . . . . . .. ... ... ... L. 24
1.4 Spherically symmetric Black holes . . ... ... ........ 26
1.4.1 Geodesicflow . . . . . . . ... 26]
1.4.2 Near horizon region . . . . . . .. ... ... ... ... 29
1.4.3 Field propagation around a black hole . . . . . . .. ... ... 31
1.5 Hints of black hole thermodynamics . .. ... ......... 32

1.1 Fundamental principles of relativity

In 1905, Albert Einstein published a revolutionary paper, which was the starting point of
the theory of special relativity [32]. At that time, there was a well-known conflict between
Maxwell theory of electrodynamics and the Newtonian laws of mechanics. This was due
to the non invariance of Maxwell equation under Galilean transformations. The naive
answer to that paradox was that Maxwell’s equations are only valid in one, preferred
frame, named the ‘luminiferous aether’. To resolve this conflict, Albert Einstein proposed
a radically different solution. When passing from one Galilean frame to another, the speed
of light is a universal quantity. Instead, time itself is relative. This implied modifying
the old laws of Galilean transformations, and adopting new transformation laws, which
would preserve the ‘interval’ given by

As? = A — Ax? — Ay? — A2 (1.1)

7



Chapter 1 : Geometry of space-time and black holes

In fact, Einstein was already proven right by the experiments of Michelson and Morley,
who measured the speed of light in different reference frames, and couldn’t find any sen-
sible difference. This led to the laws of Lorentz transformations, relating time and space
coordinates between two Galilean frames. As Lorentz himself had already proven, this
transformation group is a symmetry of Maxwell’s equations. The success of Einstein’s
special theory of relativity ended the discussion about the existence of the aether.

Soon after 1905, Einstein realized that his new theory was incompatible with Newton
universal theory of gravitation. It took him another 10 years to come up with a new theory,
which was equally revolutionary in terms of new physical concepts. The starting point
was the well known fact that the inertial mass m;, appearing in Newton’s law, is exactly
equal to the gravitational mass mg, relating the gravitational field to the gravitational
force, i.e.

m; = my. (1.2)

Because of that, the gravitational field is indistinguishable from an acceleration. This
was clearly illustrated by the famous gedanken experiment of Einstein where a man in an
elevator cannot tell whether he feels a force due to a gravitational attraction, or because
the elevator is accelerating. Einstein proposed to promote this simple observation to a
fundamental postulate of gravitation theory. The second main point was the idea to
extend what FEinstein considered as the main lesson of special relativity. From special
relativity, we know that not only no reference frame plays a privileged role in physics,
but no clocks as well. Pushing that forward, Einstein postulated that no coordinate set,
of any kind, should be preferred to another. These two observations led him to formulate
the ‘equivalence principle’, first physical postulate at the origin of the theory of general
relativity.

Principle 1.1.1 (Equivalence principle). We consider a point particle in an arbitrary
gravitational field. At any space-time point p, there exist a set of coordinates &" such that
in these coordinates, the laws of mechanics are Newton’s inertial principle, i.e.

e
dTQ |p

The idea is then to build the theory of general relativity by formulating a coordinate
independent theory, which looks like special relativity for infinitesimal space-time regions.
The mathematical tool necessary to formulate such theory is differential geometry of
Lorentzian manifolds. The next section is devoted to an introduction to these objects. Of
course, this presentation has no ambition of being exhaustive. We shall instead focus on
the notion of manifold and geometry. We provide definitions of tensors and some features
of vector fields. This will turn out to be very useful to analyze the physical content of a
specific geometry. However, we will be very brief, if not silent, concerning notions such
as curvatures, tetrad or affine connection. The reason is that in our work, the geometry
is mainly considered as a non dynamical background. Therefore it is crucial to properly
interpret a geometry. Eluded notions are on the other hand more relevant to study the
dynamics of space-time, something we shall barely speak about.

The following section is inspired mainly by references [33] 34], 35], cited in order from
the most mathematical to the most physical one. All along the presentation, we will
try to present the various concepts using both abstract definitions and components in an
arbitrary coordinate set. The first one presents the interest of being manifestly coordinate
invariant, while the second one is often more handy to perform brut computations.

= 0. (1.3)



1.2 Elements of geometry

1.2 Elements of geometry

1.2.1 Smooth manifolds

Definition 1.2.1 (differentiable manifold). A C*°-differentiable or smooth manifold M
of dimension n is a set of points, which is locally diffeomorphic to R"™. More precisely, M
is a separated topological set, such that there exist an open cover (U;)jer and homeomor-
phisms (@;)jer, which send the open sets U; to R™ (or an open subset of R™) and obey the
compatibility condition

! is a smooth function (C> compatibility).

e V(i,j), the transition map @; o ¢;
The set of all couples (Uj; ;) jer is called an atlas of M.

A couple (Uj; ;) of the atlas is called a chart. In a physicist language, it is a coordinate
patch. Indeed, one can parametrize the set U; using the mapping ¢;. For a point m € U;

pi(m) = (¢, 2%, .. 2"), (1.4)

the (z',2?%, ...2") are hence coordinates for the point m. On Fig we have drawn 2
charts and a transition map.

IR?I

Figure 1.1: Graphic representation of a smooth manifold.

The differentiable structure of M is given by its atlas (Uj; ¢;);er. Roughly speaking,
it allows to define the notion of derivatives on M, by transporting the usual notion in R"
to M, via ¢j, i.e., deriving on M means deriving with respect to some coordinates. The

9



Chapter 1 : Geometry of space-time and black holes

C> compatibility is necessary to ensure that the notions of smoothness or differential are
coordinate independent, ¢.e. independent of the map ¢, we used. As a first example, we
define the set of smooth and real or complex valued functions on M.

Definition 1.2.2. A continuous map f : M — R (or C) is smooth if for any map ¢,
of the atlas, f o gpj’l :R" — R (or C) is smooth. The algebra of all smooth and real
(complez) valued functions on M is noted C*(M) (or CF(M)).

One verifies that this definition is independent of the choice of ¢;, precisely because
the transition maps are smooth.

A manifold possesses many global properties, like its topological structure. But locally,
it looks like R™. For our purpose, we will be poorly interested into global properties.
Therefore, we will often work in an open set U;, with a set of coordinates ;. However,
we will be very careful that the notions we define are independent of the coordinate choice.

To build differential calculus on a manifold, we need to define the notion of infinitesimal
displacements. Figuratively, a point p in an infinitesimal neighborhood of m is

(1.5)

prR m +_¢€ v,
—~ =~ =~
EM <1 €TuM
where € is an infinitesimal quantity, and v is a vector tangent to the manifold M at the
point m. However, because a manifold is not naturally embedded into R™, the notion of
‘being tangent to’ is ill defined. Therefore, we need to use an intrinsic definition for the
tangent space.

Definition 1.2.3 (tangent space). Consider a point m on a smooth manifold M. A
derivative at m is a linear map § : C*°(M) — R, which verifies the Leibniz rule

0(fg) = f(m)é(g) + g(m)s(f), (1.6)

and localized around m. This means that for any open set U containing m,

0(fiv) = 6(f)- (1.7)
The set of all derivatives is called the tangent space and is noted T, M.

This definition can be shown to be equivalent to a more geometric one, i.e. to the
set of derivatives of curves passing on m, where two curves are identified if they have the
same derivative at m, when expressed in a certain set of coordinates. However, definition
1.2.3| presents the interest of being manifestly coordinate invariant, since it does not refer
to any ¢; to be well defined.

From the definition, it is immediate to see that T,,M is naturally a vector space.
Moreover, if m € Uj, using the coordinate patch ¢;, we can demonstrate that that 7, M
is isomorphic to R™ [33]. More precisely

8(fiy) = D v Bu(f o e, (1.8)

or simply

0= v'd,, (1.9)
pn=1

10



1.2 Elements of geometry

where (v*),-1., € R" and 0, is the partial derivative with respect to the coordinate x*.
In particular, using a coordinate patch, we obtain an explicit basis of derivation, given by
partial derivatives. In this construction, tangent vectors are identified with the directional
derivatives of function. This definition of tangent vectors turns out to be more suitable
for a generalization to vector fields.

Having defined the tangent space, we can now build the differential of a function
between two manifolds f : M — N. With a definition similar to we first define
f as being smooth if it is continuous and differentiable with respect to any coordinate
system.

Definition 1.2.4. Let f : M — N be a smooth function. Its differential at a point m is
a linear map between tangent spaces defined as

dfpm - TnM — Ty N

v dfy, v

(1.10)

dfm - v is a derivation at f(m) defined by

dfim - v(g) = v(g o f). (1.11)

Figuratively, in the language of Eq. (1.5]), the differential of f is the linear map such
that

fm+ev) = f(m)+ € dfy, - v. (1.12)
Using a coordinate patches around m and f(m), the function f becomes
fro=(@hat. ") e (@), ), @), (1.13)
and we can express the latter definition in components
n a v
[dfpn - v]" = 8;:0“/0#' (1.14)

A particular and fundamental class of smooth function is the set of diffeomorphisms.

Definition 1.2.5 (diffeomorphism). Consider two manifolds M and N, f: M — N is
a diffeomorphism if it is a one-to-one mapping such that f and f~! are smooth.

This implies that at each point m € M, df,, is a linear isomorphism between the vector
spaces Tr,M and TyimyN .

The set of all diffeomorphisms of a manifold M into itself is noted Diff(M).

In particular, changes of coordinates, i.e. ¢; o goj_l, are diffeomorphisms of R™. This
notion is crucial since general relativity is a diffeomorphism invariant theory. In other
words, observables never depend upon a choice of coordinate set.

1.2.2 Tangent bundle
Construction

In this section, we would like to generalize the notion of tangent vector to that of vector
field. This means a function X which associates to each point p of M a vector X, € T,,, M.
The subtlety appear when we require it to be a smooth function, since every vector X,
belongs to a different space. This is why we have to introduce the notion of tangent

bundle.

11



Chapter 1 : Geometry of space-time and black holes

Definition 1.2.6 (tangent bundle). The tangent bundle of a smooth manifold M is the
disjoint union of all the tangent spaces, 1i.e.

TM= 1 T,M. (1.15)
meM

It possesses a canonical differential structure inherited from M.

To build the differential structure of 7'M, we use an atlas (U;; ;)jer of M. In the
open set Uj;, using the map ¢;, we show that

TM~U; x R". (1.16)

The points of T'M are the couples (g, ¢) where ¢ € M and ¢ € T, M. In particular, if M
is of dimension n, T'M is of dimension 2n. In classical mechanics, this is the configuration
space over which the Lagrangian formalism is defined [36].

Vector fields
It is now quite natural to define the notion of vector field.

Definition 1.2.7. A wvector field X of a manifold M is a smooth map M — TM such
that at each point m, X,, € T,, M.

The set of all vector field is noted I'(T'M). Of course, it is a vector space, since linear
combinations of vector fields can naturally be defined pointwise.

A vector field also has a natural way to act on smooth functions f € C'*°(M). Indeed,
to the function f, it associate the smooth function Ly f defined as

Lxf:mw—dfy,  Xn. (1.17)
The mapping Ly : C*®°(M) — C*°(M) is the generalization of and is called a global

derivation.

Definition 1.2.8. A global derivation § of a manifold M is a linear map of C*°(M) into
itself that obeys the Leibniz rule

0(fg) = fo(g) + gé(f). (1.18)

What is remarkable, is that the correspondence between vector fields and global deriva-
tions, i.e. X < Lyx is one-to-one. As we saw, to a vector field X we associate the deriva-
tion Ly. Reciprocally, to a derivation 9§, we can always build a vector field X such that
0 = Lx. To see this, we use a local coordinate patch, and show that

5(f)(m) =Y X*(m)df, (1.19)

where the X* are smooth functions. These are the components of X in the local basis
associated with the coordinates, as in Eq. ([1.9). Therefore, using a coordinate patch, we
often denote a vector field as

X => X", (1.20)
pn=1

The representation of a vector field by a derivation turns out to be much more conve-
nient to manipulate. As a first example, we define the transport of a vector field by a
diffeomorphism.

12



1.2 Elements of geometry

Definition 1.2.9. Let X be a vector field on a manifold M, and ¢ a diffeomorphism
from M to N'. We define a derivation on N as

§:fr Lx(fop)op™ (1.21)
The corresponding vector field Y on N is the image of X by ¢ and is noted
Y = p.X. (1.22)
Using the differential of the map ¢, one can show

(QO*X)y = d(p@—l(y) . wal(y)‘ (1.23)

A particular and crucial example is given when we use (U, ¢) a chart of the manifold M.
Indeed, the decomposition of X in local coordinates in Eq. is an abuse of notation
for ¢, X. Moreover, if one would like to make a change of coordinate one should use the
preceding formula for the diffeomorphism

Vo (ot 2?2 — (33,3, (1.24)
Using the corresponding local basis, we obtain

n ~vU
o0x i

OoxH
p=1

(6. X)" = (1.25)

Commutator

If X and Y are vector fields on M, since Lx and Ly are maps of C*°(M) in itself, it is
natural to ask wether the composition is also a derivation. Since it is obviously linear,
the only point to check is the Leibniz rule. Considering f, g € C*°(M), a straightforward
computation shows that

LxoLy(fg) = fLxoLy(g) + Lx(f)Ly(g9) + gLx o Ly(f) + Lx(g)Ly(f).  (1.26)
Therefore, the composition is not a derivation, however, the commutator
[LX,Ly] :LXoLY—LYOLX (127)

is. Hence, using the correspondence between derivations and vector fields, we define
the commutator of two vector fields [X,Y]. This object shares the usual properties of
commutators, since it is bilinear, antisymmetryc and satisfies the Jacobi identity

X, [V, Z)) + [V, [, X]] + 2, [X, Y]] = 0. (1.28)
Moreover, if ¢ is a diffeomorphism, using definition [1.22 we show
0« X, Y] = [0 X, @Y. (1.29)

This means that the commutator can be computed in any coordinate system. Using such
a chart, with

X =Y X", (1.30)
pn=1

13



Chapter 1 : Geometry of space-time and black holes

and .
Y =) Y, (1.31)
p=1
we obtain .
(X Y] =) (X"0,Y" —Y"0,X")0,. (1.32)
pu=1

Physically, the commutator [X, Y] is the directional derivative of X in the direction of
Y. This statement will be made clearer in a following section. For now, we can at least
say that if [X,Y] =0, X is independent of the direction pointed by Y. This is perfectly
illustrated by the following theorem in the more general case of p commuting vector fields.

Theorem 1.2.1. Let (X;)j=1., be p < n vector fields on a n dimensional manifold M.
We suppose that they commute among themselves, i.e.

We suppose them to be non zero on a point m € M. Then, there exist a coordinate set 1)
i a neighborhood of m such that

. X; = 0;. (1.34)

This theorem shows the power of the concept of commutator. In fact, much more
general results can be obtained with commuting conditions, which are not only useful in
integrable system, but also in general relativity when one wants to implement symmetries
on a space-time [37, 3§].

Flow of a vector field

If X is a vector field on M, a way to represent it geometrically is to build family of curves
on M that are tangent to X at each point. Those are the integral curves of X. As we

shall see, this notion is crucial since it allows to build family of diffeomorphism on M
induced by X.

Definition 1.2.10. Let’s consider a vector field X € T'(TM) and a point v € M. Let J
be an open interval of R containing 0. A smooth curve v, : J — M 1is called an integral
curve of X starting at x if it satisfies the Cauchy problem

Ye(A) = X0,
7:(0) = z.
Using a local set of coordinates, the differential equation to solve reads
dat 1 2 n
N = XH*(x (N),z°(N),...2"(N)). (1.36)

From the well-known result of nonlinear differential equations, and in particular the
Cauchy-Lipschitz theorem, we know that ~, is uniquely defined on a maximal open inter-
val J, C R for every x € M. Moreover, the set D = {(\,z)|z € M, \ € J,} is an open
set of M. This allows us to define the flow of X

14



1.2 Elements of geometry

Definition 1.2.11. The mapping

¢ D — M

() = () (137)

1s smooth and is called the flow of X.

The term ‘flow’ comes naturally from fluid mechanics, where X is a velocity profile.
In this context, the flow ¢ allows to go from the Eulerian description to the Lagrangian
one. There, the parameter \ is denoted ¢ and represent the Newtonian time. Note that
definition is not the most general, since the velocity profile can be time dependent.
This leads to the notion of time dependent vector field [33].

However, in General Relativity, the time is a coordinate, and the parameter \ has a
priori no physical meaning. In particular, in this case X never depends explicitly on A,
and the differential equation defining the flow is autonomous. The most interesting way
to manipulate the flow is to look at fixed A, and introduce a family of diffeomorphism.
Indeed, one can show that Dy = {x € M|\ € J,} is an open set of M. Then,

gzﬁf\(:D,\—M\/l

e 65O\ 2) (1.38)

is a diffeomorphism from D, to its image. Moreover, we have the fundamental identity

O3 0 by = Pryo (1.39)
We point out that this is an abuse of notation, which means
o (05 () = o340 (@), (1.40)

which makes sense only if 0 € J, and A € Jyx(;). Because of this identity, we call A — N
a local one parameter group. The word ‘local’ is here to recall that it is not a group,
because of the restriction concerning the domains of definition. Sometimes, there is no
such restriction, i.e. Dy = M for all X\. In that case, X is said to be complete.

Lemma 1.2.1. Let X be a vector field on a manifold M. If M is compact, or if X
vanishes outside a compact subset of M, then X is complete.

Unfortunately, in general, many vector fields do not have this property as one can see
from the following example.

Example 1.2.1. Let M = {(t,z) € R*|z > 0}. We consider the vector field
X =8, — v0,, (1.41)

with v > 0. A trajectory starting at (to,zo) will reach x = 0 in a finite \ interval. The
diffeomorphism ¢ is fairly simple to compute

oy (t,x) = (t+ X\, 2 — V). (1.42)

Hence it is defined on
Dy ={(t,z) € M|z > vA}, (1.43)

as one can see in Fig[1.7
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Chapter 1 : Geometry of space-time and black holes

Figure 1.2: Graphic representation of the domain D), for a fixed value of .
After a time A, points that were at a distance v\ of z = 0 (on the right of the
dashed line) have reached the singularity.

Of course, the latter example is completely artificial. However, it is representative of
a generic feature that occurs in space-times containing a singularity.
Going back to the local group ¢, we notice that by definition,
dox
—= =X. 1.44
Hence, X is often called the ‘infinitesimal generator’ of the local group ¢ . In particular,

it allows us to define the ‘Lie derivative’ with respect to X of every object that can be
transported by a diffeomorphism. As first examples, we have the results

Lemma 1.2.2. If f € C*(M), then

d

a(f © Gbi() = Lxf. (1'45)
Lemma 1.2.3. IfY € I'(T'M), then

d

ﬁ( YY) =[X,Y]. (1.46)

In particular, we recover the interpretation of the commutator of the derivative of Y
in the direction X.

In the following, this method will generalize the definition of the Lie derivative Lx on
any tensor field.

1.2.3 Cotangent bundle and tensor fields
The cotangent bundle

When studying the vector space T, M, it is interesting not to look solely at the vectors,
but also the linear form on this space, i.e. the dual Ty M. Furthermore, to also consider
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1.2 Elements of geometry

the dependence on m, we follow the construction of the tangent bundle to build the
cotangent bundle.

Definition 1.2.12 (cotangent bundle). The cotangent bundle of a smooth manifold M
18 the disjoint union of all the dual tangent spaces, i.e.

T"M= I T5M. (1.47)
meM

Just like T'M, it possesses a canonical differential structure inherited from M. The
notion dual to vector fields is the 1-form field, or simply 1-form.

Definition 1.2.13. A I-form w of a manifold M is a smooth map M — T* M such that
at each point m, w,, € T M.

When using a chart (Uj, ¢;), a 1-form decomposes
w= Zwudx“, (1.48)
pn=1

where dx* is the basis dual to partial derivatives

dz"(9,) = o*,. (1.49)
One can also notice that dx* is the differential of the coordinate function (z!, 22, ... 2") —
. When one disposes of a 1-form w and a vector field X, one can cannocially build the
smooth function

w(X) :m = wn(Xn). (1.50)
In components, this reads
w(X) = w,X" (1.51)
pn=1

w(X) is called the contraction of w and X.
There is a fundamental class of 1-forms, which are given by the differential of functions.
Indeed, if f € C*°(M),
w:m— dfy, (1.52)

is a 1-form. However, one can show that conversely, not all 1-form is the differential of a
function. In fact, w can be locally written as a differential if and only if

Oyw, — Oyw,, = 0. (1.53)

The globalization of this property, and its generalization to p-forms lead to the theory of
de Rham Cohomology [33].

We want now to transport w using a diffeomorphism, which in particular will give
us coordinate change formulae. The definition is quite intuitive to build, indeed, if f €
C>°(M) and 9 is a diffeomorphism, f is changed into f o). Hence, it is natural to define
the image of its differential by v through

Yrdf = d(f o). (1.54)

This leads to the following definition of the image of w by 1, or the pull back of w by .
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Definition 1.2.14. Let w be a 1-form on M, and ¢ : N — M a diffeomorphism. We
define the pull back V*w as a 1-form on N by

(V" W) (V) = Wy(m) (dt, - V), (1.55)
for allv e T,,N.

When one wants to make a coordinate change

w=Y wdi' — Pw=) @,di" (1.56)
pn=1 pn=1
one should use the map ¢ : (z',22,...2") — (z',2%,...2"). The components of w in the
local basis become .
)y = S0 1.57)
=3 G 1

We notice that in this formula, the role of x# and " are exchanged with respect to
Eq. (1.20). This is why X is said to be contravariant, while w is covariant. We keep trace
of this property by noting the components of X with upper indices and those of w with
lower indices.

Tensor fields

After having defined vector fields and 1-forms, the natural generalization is to build
smooth fields of tensors of rank (7, s) on 7, M.

Definition 1.2.15. A tensor field T of rank (r,s) is a smooth map from M to the set

TM);=TM®.. @ TMIT"M®...0T"M

)
' vV
r times s times

(1.58)

such that for each point m € M, T, is a tensor of rank (r,s) on the vector space T,, M.
More explicitly, T,, is a v+ s linear map that takes as arguments r elements of 1,7 M and
s elements of T,, M

Ly :TaiM®. .. TTMIT,M@ ... T, M —R. (1.59)
T;:nes st;;mes

The set of all tensor field of rank (r,s) is noted T](M). To consider arbitrary ranks, we
define
T(M) =P T/ (M). (1.60)

When using a coordinate patch, we already know a basis for TM and T* M. Hence,
using basic properties of tensor product, we decompose a tensor field 7" into a local basis

T= > > 1M, 0,080, 0d" ®... ®de". (1.61)
I

1ye-pbr=11v1,...vs=1

We see here that when decomposing a tensor on a local basis, there is many indices to sum
over. Hence, to enlight the writing, we shall adopt the convention of repeated indices.
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1.2 Elements of geometry

Convention 1.2.1 (Einstein’s convention). When writing a tensor in components, it is
assumed that any indices appearing twice is summed over.

The next step is to extend the definition of a pull back by a diffeomorphism ¢ for any
tensor field 7. When the tensor field is completely covariant, it is straightforward, by
imposing that for any tensor fields 7" and S, we have

W(S®T) =S @ T, (1.62)

However, as we saw in Sec|1.2.3] the transformation of a contravariant tensor is the inverse
of a covariant one. Hence, the pull back is extended to all tensor field, by making the
convention that a vector field X, i.e. a (1,0) tensor field, is pulled back through

VX = ()X (1.63)

Definition 1.2.16. Let T be a tensor field of rank (r,s) on M, and v : N — M a
diffeomorphism. We define the pull back of T by v by

(VT )i = Typimy (W (dt), o (dYt ) Aty - V1, o dy, - vs). (1.64)

The latter definition is quite abrupt, however, it presents the interests of being man-
ifestly coordinate independent. In practice, the main properties given by Eq. (1.62) and

(1.63) are much more useful.

When 1 is the coordinate change (z',72,...2") — (2',2%,...2"), using a local basis
we derive the transformation law
0T ITHr Ja ox"s
= Tk R (1.65)
Y1V P Qxm Qxkr 9z Oxvs

When we know how to transport tensor fields with diffeomorphisms, we can apply it to
a family of diffeomorphism, and in particular when it is the flow of some vector field X.
The infinitesimal version of the pull back of a tensor field T' by the flow ¢5 gives the Lie
derivative of T with respect to X.

Definition 1.2.17. Let’s consider a tensor field T, a vector field X and its flow ¢35 . The
Lie derwative of T with respect to X is given by
d X

LxT = ﬁ(ﬁbi{ T)jr=o0- (1.66)

Note that this definition is slightly abusive, since ¢, is not a diffeomorphism on the
full manifold, but only on the open set D). However, for any point x € M, one can
consider \’s small enough so that x € D, and the latter definition is fine at fixed x.

Probably the most useful property of the Lie derivative Lx is that it defines a deriva-
tion on 7 (M), i.e., for T and S tensor fields

Lx(T®S)=(LxT)® S +T ® (LxS). (1.67)

1.2.4 Space-time as a Lorentzian manifold
Metric structure

Definition 1.2.18. A pseudo-Riemannian manifold (M,g) is a n dimensional smooth
manifold endowed with a tensor g € T,)(M), such that at each point m, g, is a symmetric
and non-degenerated bilinear form.
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Chapter 1 : Geometry of space-time and black holes

e When its signature is (+,—,...—), it is a Lorentzian manifold.

o When its signature is (+,...+), it is a Riemannian manifold.

As usual, one can use a coordinate set to write the metric tensor in a basis
g = gudatdz”, (1.68)

where dztdz” is the symmetric product of the 1-forms dz* and dz”. If 6; and 6, are
1-forms on M, we define their symmetric product by

1
%%Z%J%Z?&®%+%®%) (1.69)

This tool turns out to be quite convenient to decompose the metric g in a simple way.
Note that a (0,2) tensor can be equivalently seen as a (non degenerated) bilinear form or
a quadratic form . In order to make the distinction, we shall call g the bilinear form and
ds? the associated quadratic form.

Principle 1.2.1. In general relativity, space-time is a 3+ 1 Lorentzian manifold (M, g).
At each point m, T,, M 1is the Minkowski space-time of special relativity.

This definition is the local version of Eq. , it translates the equivalence principle
in geometrical terms. A point in the manifold is an event, with definite time and
position. A smooth curve on M represents a world line, that is a trajectory in space-time.

Because the metric can take any sign, we divide the tangent space T, M into 3. Let

veTl, M
e if g(v,v) >0, v is time-like,
e if g(v,v) =0, v is null or light-like,

e if g(v,v) <0, v is space-like.

When v is either time-like or null, it is said causal. We extend this definition to any
curve v : A — (A) if all its tangent vectors () are of the same type.

Principle 1.2.2. A massive observer in a space-time (M,g) has to follow a time-like
tragectory. If the observer goes from an event Ey to an event Eo through the world line 7,
then

ar= [Va = 7 fen GO a0m, (1.70)

s the time elapsed as measured by the observer. A massless object will instead follow a
null world line.

This principle is simply the translation into curved space that a physical object cannot
travel faster than light.
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Raising and lowering indices

If (M, g) is a pseudo-Riemannian manifold, the metric tensor induces an isomorphism
between the tangent bundle and the cotangent bundle. Indeed, the morphism

O:TM —T*M (1.71)
(x,'u) ng(va') .

is smooth and induces for each x an isomorphism between the vector spaces T, M and
TxM. To enlighten the notations, we introduce

Op: v, (1.72a)
0,': araf (1.72Db)

We now use a local basis and work with components

v =0"0,. (1.73)
By definition,
(Ub)u = gm,v“. (174)
Conversely, if o = o, dz*,
(") = g" oy, (1.75)

where ¢g"” is the inverse matrix of g,,. In the following, when working in components,
we omit the b and f#, since the presence of the index up or down indicates whether we
consider an element of T M or T* M. This mechanism can be extended to tensor fields
without pain. Indeed, to T' € 77 (M), we associate T € T/ 5" by

T(wh, .. W o, o) =T, W™ (n), . 0%, (1.76)
In components, this reads

H1---por—1 . 1.y
T Vi..Vsy1l ngHrT

(1.77)

V2..Vg41"

Therefore, in tensor calculus, g, is used to lower indices, and conversely, g*” raises indices.
Note also that g defined as the inverse of g, is the same as defined by raising the two
indices of g,,,, making our notations consistent.

This isomorphism has many other consequences. For example, it allows us to define
the gradient of a function.

Definition 1.2.19. Consider a smooth function f € C*(M), we define its gradient as
the vector field

grad(f) = (df)*. (1.78)

family of trajectories

Let’s consider a vector field u on a space-time. As we saw in Sec[1.2.2] it generates a family
of curve through its flow ¢. To an initial event z, we associate a world line A — ¢,(x)
which starts at x and follows u. If the vector field is time-like, that is g(u,u) > 0
everywhere, it represent a field of 4-velocities. This is what is needed to describe a fluid
in space-time for example. Moreover, the norm of the field relates the parameter A to the

21



Chapter 1 : Geometry of space-time and black holes

proper time of an observer following the flow u, as we see from Eq. (1.70)). In particular,
if the vector field is unitary, 7 = A.
One can make the last discussion using components of «

u = utd,. (1.79)
Then the flow 2#(\) is such that
, dzt dx”
dr?* = ds*(i") = I 3" d\? = (u'u,)dN?. (1.80)

If wu, = 1, then d7 = d\. Moreover, using Leibniz rule, one derive the identity

dzt

oy

— 1 _
u=u"d, =

O = Oh. (1.81)
This last equality is in fact abusive since A is not a coordinate (so far). However, this
identity can be made rigorous when one looks at the action of u on a smooth function f

d

Luf:(?,\fza(fogb,\). (1.82)

In particular, when w is unitary, its Lie derivative represent the time derivative as mea-
sured by observers following the flow of w.
Geodesics

Among all the allowed trajectories, there is a special class, the one which minimizes the
proper time needed to go from an event E; to an event Ey. Such trajectory is called a
geodesic.

Principle 1.2.3. A point particle, undergoing no external force follows a geodesic curve.

By the definition we gave, a geodesic trajectory can be obtained from the Euler-
Lagrange equations, starting with the action proportional to the proper time. Hence,

Sl = [ Va0 (1.83)

This action is manifestly reparametrization invariant. However, if in addition we impose
the parameter to be the proper time, the equation of motion are equally derived from

1

Sla(r) = — [ da(r)ar, (1.54)

where the prefactor is chosen in order to find back the Newtonian action for low velocities.
For practical purposes, the expression (|1.84]) for the action is often more convenient.

Killing field

Definition 1.2.20. Let (M,g) be a pseudo-Riemannian manifold, and ¢ a diffeomor-
phism of M.

o [fp'g =g, then p is an isometry of the metric g.
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1.3 General relativity

o Ifp*g = O2g, with Q a non vanishing smooth function on M, then ¢ is a conformal
transformation.

In that definition, only the first line corresponds to a real symmetry of the space-time.
However, the second one is very useful because it preserves the causal structure of space-
time. Indeed, a null curve or geodesic stays a null curve or geodesic after a conformal
transformation. Using this, we can embed many space-times into compact ones, without
altering the causal structure and bringing infinity at a finite distance. This is at the heart
of the Penrose-Carter diagrams [35].

Definition 1.2.21. Consider a manifold M endowed with a metric g. The vector field
K is called a Killing field if and only if

Lkg = 0. (1.85)
If ¢ is the flow of K, it is equivalent to say that for all A small enough,

Mg =g (1.86)

This means that the local one parameter group is an isometry of g. In other words, when
one follows the integral curves of K, one sees always the same metric. Killing fields are
thus the infinitesimal expression of a symmetry of the metric.

1.3 (General relativity

1.3.1 Einstein’s equations

In general relativity, the geometry is not a static background. It is dynamical. Matter
moves along curves in space-time, and space-time geometry is modified by the presence
of matter. In fact, the absence of background structure is one of the main features of
general relativity. To describe the dynamics of gravity, Einstein built a set of equation
under a tensorial form. This ensure the coordinate independence of the dynamics. The

idea is to couple the geometry to the energy of matter, given by the stress energy tensor
T,

pv-

As we said in the introduction, we shall not provide a precise definition of curvature
tensors. Instead, we will rapidly present the main ideas that lead to Einstein’s equation.
Developing further the mathematics of Lorentzian geometry, one can show that there
exists a tensor of rank (1,3) that characterizes the geometry, in the sense that it vanishes
if and only if the geometry is flat (at least locally, see [34] for a precise proof). This tensor
is called the Riemann tensor R*, , , and is obtained as a nonlinear combination of g, and
its first two derivatives. With its help, one builds the Einstein tensor as

1
G;u/ = R/u/ - §Rg/u/; (187)

where R, = RPWV is the Ricci tensor and R = R”ﬂ the scalar curvature. The G, tensor
is of rank (0,2). It allows us to define the Einstein equation as

G = 87GT,,. (1.88)

This contains the fundamental idea of general relativity, that matter is coupled to geom-
etry via this equation. It is characterized by several key properties. Firstly it is tensorial
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Chapter 1 : Geometry of space-time and black holes

and is a second order differential equation for the metric g,,. Secondly, because the spe-
cific combination ([1.87)) satisfies the identity V#G,, = 0 (contracted Bianchi identity),
Einstein’s equation implies the energy conservation

VAT, = 0. (1.89)

Finally, the proportionality factor between the geometric tensor and the stress-energy one,
87, is chosen in order to recover Newton’s theory of gravitation in the limit of static
and weak gravitational fields.

1.3.2 Black hole space-times
Event horizon

A black hole is a region of space-time where the gravitational field is so strong, that no
physical object can escape from it. In order to formulate this mathematically, one needs
to define an ‘outside region’, where observers can probe whether or not some region of
space-time can emit a signal. Asymptotic infinity will play such a role. Roughly speaking,
we define asymptotic infinity by looking at the locus of all causal curves when time goes
to infinity. However, this notion is meaningful if space-time is asymptotically flat, that
is, it looks like Minkowski at infinity, i.e.,

8 — 1 (1.90)

More precisely, infinity is decomposed into

e Time-like future (resp. past) infinity, noted +* (resp. +7), is the future (resp. past)
infinity of all time-like curves,

e Null future (resp. past) infinity, noted Z (resp. Z7), is the future (resp. past)
infinity of all null curves,

e Space infinity, noted :°, is the infinity of all space-like curves.

To obtain a detailed construction of these notions, we refer the reader to [39, 35]. For the
present purpose, the above intuitive definition shall be enough.

Definition 1.3.1. Let (M, g) be a Lorentzian manifold. An event p; is in the past (resp.
future) of an event py is there exist a causal curve, future (resp. past) oriented that goes
from py to po.

We call chronological past of a region S C M the set of all points that are in the past
of a point in S, we note it I~(S). Similarly, we define the chronological future IT(S).

The black hole region of a space-time M is then defined as
B=M/I(T"). (1.91)

By definition, the region inside a black hole is not in causal contact with infinity, this
means that asymptotically, one receives no signal from the black hole region. The event
horizon is then the boundary of the black hole

H = 0B. (1.92)

Beyond the event horizon, no one can ever escape or send a signal to the outside.

It is important to notice that the entire future history of the space-time must be known
to define the event horizon. This means that the event horizon is not defined as a local
concept [40].
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1.3 General relativity

Killing horizon

When considering a black hole space-time, we say that it is stationary, or ‘at equilibrium’
if the metric is invariant under ‘time translation’. More precisely, if it possesses a Killing
field K which is time-like asymptotically. The Killing field can be used to define another
notion of horizon. Indeed, if it is not time-like on the whole space-time, then its norm
K?=ds*(K) must vanish somewhere. We define a hypersurface 3, such that

Kf = K,Kf;, =0. (1.93)

Beyond this surface, K becomes space-like. This means that a physical object cannot
stay ‘at rest’, because the orbits of K are no longer causal. However, it does not mean
that it cannot escape from this region. Around a rotating black hole, there is a region
where all observers are dragged and must corotate with the hole. This region is called an
ergoregion. Such phenomenon occurs for example around a Kerr black hole [41].

For the sake of simplicity, we shall consider only non rotating black holes. Equivalently,
we require that the space-time is not only stationary, but also static. For this, the Killing
field must also satisfy (everywhere) the so called ‘Frobenius condition’

K’ NdK" = K,0,K, = 0, (1.94)

where d is the exterior derivative and A is the wedge product of differential forms [33] [34]
35]. In case of spherical symmetry, this condition is automatically fulfilled.

We now assume that this surface > coincide with the event horizon H. By construction,
H is a null surface. This means that the induced metric g3 is degenerated. Since K is
orthogonal to this surface, and K* K, is constant on it, its gradient must be proportional
to K. The coefficient of proportionality defines what we call k, the ‘surface gravity’ of

the horizon
grad(K?) = —2kK, (1.95)

or in local coordinates
8”([(“[(#) = —2kK". (1.96)

A priori, k depends on the point on H. One can show, under general asumptions [35],
that it is in fact constant. This constitutes the ‘zeroth law of black hole thermodynamics’.
The surface gravity is a geometric invariant that characterizes a horizon.

Up to this point, the notion of Killing horizon and surface gravity seems fully local.
However, if K is a time-like Killing field, so is AK for any real A. This introduces an am-
biguity to the definition that cannot be solved locally. If the space-time is asymptotically
flat, then the normalization is fixed by requiring that

K — 0, (1.97)

where 0, is the asymptotic (Killing) Minkowski time derivative. When this identification
is not possible, the Killing field is ambiguously defined. An instructive counter example
is found in Minkowski space. One can consider the boost Killing field, which defines a
horizon. But its surface gravity cannot be defined universally (with the dimension of a
frequency). However, if one considers an accelerated trajectory, and normalizes the boost
Killing on it, then the surface gravity will coincide with Unruh temperature, see Sec|2.2.3]

We mention that there exists another definition of horizon as ‘apparent horizon’. This
last definition is local, and does not need stationarity of space-time. However, it depends
on which ‘time slicing’ is used.

25



Chapter 1 : Geometry of space-time and black holes

Unfortunately, in general, these three notions of horizon do not coincide. In [40], it
is discussed the precise relation between a Killing horizon and an event horizon. Let’s
also mention the result of Hawking that establishes the equivalence between event and
Killing horizons for all stationary black holes in the vacuum or electrovacuum in general
relativity [42]. Moreover, as discussed in [43], the apparent horizon and event horizon
coincide also when space-time is stationary. When non stationary effects are included,
these definitions differ. This is the case in particular when a black hole evaporates (see
Chapter , in Sec, which makes the geometry slightly non stationary. We refer
to [44] for a very interesting discussion about this effect during the evaporation process.

1.4 Spherically symmetric Black holes

1.4.1 Geodesic flow

Geodesic equation

In general relativity, there are a few black hole solutions. In fact, when looking for
spherically symmetric black holes, the unique solution is the well-known Schwarzschild
metric. This result is the Birkhoff theorem. More generally, in 3 + 1 dimensions, when
solving Einstein’s equation coupled to Maxwell, the general stationary black hole solution
is fully characterized by its mass M, its charge ) and its angular momentum J. It is given
by the Kerr-Newman metric. Of course, one can obtain much more complicated black
hole solutions when considering modified theories of gravity [45], or exotic matter [46]. In
this work, for the sake of simplicity, we shall mainly work with non rotating black holes.
However, the physics of Hawking radiation (chapter [2|) easily generalizes to the general
case. We also notice that rotating bodies display interesting physics, and in particular
concerning instabilities, as briefly discussed in chapter [5]
In the following, we consider space-times described by the metric

dr?
f(r)

Even though it is not the general spherically symmetric case, it covers a large enough
class of metric for our purpose. Among others, it includes the Schwarzschild, Reissner-
Nordstrom metrics and their de Sitter or Anti de Sitter extensions. A full description of
that class of metrics can be found e.g. in [47]. In the case of a Schwarzschild black hole,
the function f is given by

ds® = f(r)dt? —

— r2dQ%,. (1.98)

fr)=1- 26 (1.99)

r

However, to keep the discussion general, we let f arbitrary. We only assume that the
geometry is asymptotically flat, i.e., f(r) — 1, and contains a horizon at some location
o

r = ry, where f(ry) = 0.

We now want to determine the geodesics of this geometry. From spherical symmetry,
we deduce that the motion is planar, in the sense that one can parametrize the sphere S?
by angles (6, ) such that the trajectory stays at colatitude § = 7. Moreover, we have a
constant of motion /¢

(=7rp. (1.100)
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1.4 Spherically symmetric Black holes

This is nothing but Kepler’s second law. In addition to the spherical symmetry, the
geometry ((1.98) is stationary. Indeed, there is a time-like Killing field given by

K = 0,,. (1.101)
This generates another conserved quantity
E=g(K,i") = g, K!'i". (1.102)
We are now left with a 1 + 1 dimensional problem with the equation of motion
fr)ts=E,

2

i+ f(r) (1+%> = F2. (1.103)
This is the geodesic equation of a massive particle in the geometry , with F the
energy per unit of mass and ¢ the angular momentum per unit of mass. When used in the
Schwarzschild metric, these equations are essential for the solar system tests of general
relativity.

Painlevé-Gullstrand coordinate set

We are interested here in the study of a black hole horizon, that is across f(r) = 0,
where the coordinates are singular. To build a new set of coordinates, we follow radially
in-falling geodesics to use their clocks as a new time variable. Therefore, we consider
¢ =0 and r < 0. Moreover we replace the parameter F using the asymptotic value of

the velocity v, = llm dt , that is

1

E?* = .
1 —vZ

(1.104)

In particular, we assume E > 1, which means that we consider only trajectories that
were at spatial infinity at ¢ — —oo. Following [48], we build the corresponding family of
geodesic, solutions of Eq. ((1.103)), as the flow of the vector field

_ —@s V1= (1 =2)f0,. (1.105)

Because the norm of u,_ is constant, the relation between the parameter and the proper

time is simple
=/1—0v2dr. (1.106)

The idea of the Painlevé-Gullstrand coordinate set is to use the proper time of one of
this families of geodesic as a new time coordinate. To obtain the simplest expression, we
choose a vanishing asymptotic velocity, v,, = 0, and define u = ug. Its proper time is

easily obtained by
V=7
dr.
S

dtpe =’ = dt, + (1.107)

Using this new time coordinate, the metric reads

2
ds® = di2g — <dr /T f(r)dtpg> — r2d02,. (1.108)
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This metric is cast under the canonical Painlevé-Gullstrand form when we introduce

v(r) = —+/1— f(r), (1.109)

leaving the metric
ds? = dtte — (dr — v(r)dtpg)” — r2dQ2.. (1.110)

In the sequel, we shall often forget the subscript PG, and work with ¢ being the Painlevé-
Gullstrand time. We point out that this metric is still stationary, as K = 9;, = 0, is still a
Killing field, but it is not reversible. Indeed, it is not invariant under ¢ — —¢. This comes
from the fact that Eq. describes a black hole, which dynamics is irreversible since
objects can fall in but not come out. In the language of the full analytical extension of
Schwarzschild [35] [34], it only describes the two quadrant of the black hole, i.e., only the
future horizon, not the past one.

We underline that even though this construction gives the most compact expressions,
there is nothing special about the choice of u. As explained in [48], one could have chosen
any of the u,_ to build a new time coordinate. In Painlevé-Gullstrand coordinates, this
family reads

Cl4oy/1—(1—02)(1—0?
e 1 — 2

)at— V1= (1—-2v2)(1—v2)0,. (1.111)

The fact that none of the u,_ plays a privileged role is the translation of the local Lorentz
invariance of general relativity, and especially the boost symmetry. In particular, at spatial
infinity, we pass from u to u,. by applying the usual Minkowski boost of parameter v.,.

Moreover, when taking the limit v,, — 1, one obtains a null family of falling in
geodesics. The corresponding parameter is no longer a proper time, but is still affine. Us-
ing it as a new coordinate, one obtains the well-known Eddington-Finkelstein coordinate
set [4§].

Null geodesics

To understand the causal structure of the geometry, we focus now on null geodesics.
Forgetting about the non radial part of Eq. (1.110)), the metric can be written

ds? = (1 — v?) (dt— dr )(dt+ dr ) (1.112)

14w 1—w

We now define a pair of null coordinates

du = dt — 1dr ,
tv (1.113)
dr
dv = dt + )
1—w

In order not to confuse these coordinates with the profile v and the freely falling frame
u, we note the advanced (resp. retarded) v (resp. w) with an underline. Using them, the
metric becomes

ds® = (1 — v*)dudv. (1.114)

Under this form, it is straightforward to see that the null geodesics are simply u = cste
and v = cste. Moreover, because of the form of the metric above, the function 1 — v? will
often be referred as the conformal factor.

28



1.4 Spherically symmetric Black holes

1.4.2 Near horizon region
Surface gravity

The stationary Killing field K has the same expression in Painlevé-Gullstrand coordinate,
1.€e.,

K =9, (1.115)

Its norm is easily obtained
K?=1-2v%r). (1.116)

Therefore, when v = +1, there is a Killing horizon. In the case of Schwarzschild (see
Eq. (1.99)), we see that there is only one horizon located at 13y = 2GM. Moreover, we
can compute its surface gravity in full generality. We note v’ = 0,v, and obtain

grad(l — v?) = —20%/0; + 20V (1 — v?)0,. (1.117)
This is equal to —2xK on the horizon (1 — v* = 0) and gives for the surface gravity
K= Uy (1.118)

For Schwarzschild, we recover the well known result

1

In particular, x > 0. More generally, unless specified otherwise, we assume x > 0. As we
will see in Secl4.3.2] the case k < 0 corresponds to a white hole horizon, the time reverse
of a black hole.

Light cones

To focus on the near horizon region, we introduce the coordinate x = r — ry, so that
the horizon is located at x = 0, where v = —1. In its close vicinity, the profile v is
approximately linear and reads

v=—1+4kx+ O(z?). (1.120)

Integrating Eq. (1.113]), we obtain the trajectories of © and v null geodesics

. 1

t" = —In|z| + cste,
K (1.121)

v T /

" = —- + cste.

These trajectories are represented in a space-time diagram in Fig[l.3] We see explicitly
that at z = 0 there is a change of regime. Indeed, on the right, the u is right moving and
the v left moving. But in the left region, both trajectories are left moving. Any physical,
1.e. causal, trajectory must lie inside the light cone, and therefore, on the left region,
all trajectories are dragged toward the left. This means in particular that once x = 0 is
crossed, one cannot go back to the region of positive x. This is the characteristic behavior
near a horizon.

If one imagines a photon, following a null trajectory, one would like to characterize it
not only by its motion, but also by its frequency. In relativity, the frequency is an observer
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Figure 1.3: Space-time diagram of null geodesics around a horizon. If a family
of observers fall in with almost the speed of light, they essentially follow v =
cste trajectories. When they cross an outgoing geodesic, in A, B and C, they

can measure the freely falling frequency. Comparing their results at regular time
interval will give the redshift law of Eq. ((1.124]).

dependent quantity. It is obtained as the time component of the 4-momentum vector, with
respect to some observer. We first recall how to build the 4-momentum vector. We start
with the Lagrangian of a single particle in an arbitrary geometry obtained from Eq. ((1.84)),

1
L=~ guiti’. (1.122)

The conjugate momentum is then obtained by Legendre transformﬂ.

P = —Gu”. (1.123)

Using p,, we define several notions of frequency, depending on which time is used. The
first that could come to mind is by using the Killing field K. This gives the Killing
frequency w = —K*p,, which is the one measured by static observers, i.e., such that
r = cste. Because K is a Killing, this frequency is conserved along geodesics. Moreover,
asymptotically, it coincides with the usual Minkowski notion of frequency. The main
drawback of this frequency, is that it is not a frequency everywhere. Indeed, inside the
black hole, K is space-like, and thus w is a momentum.

On the other hand, we can also consider frequencies as measured by freely falling
observers. For example, following the integral curves of u, we define €2 = —u*p,. Unlike
w, €2 is not a conserved quantity. When one follows an outgoing geodesic, the freely falling
frequency is redshifted. In the near horizon region, it follows the law

Qt) = Qoe™". (1.124)

!Note that the sign conventions are such that spatial momentum shares the same direction as the
spatial velocity.
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This exponential redshift, and the fact that it is governed by the surface gravity &, is a
characteristic of Killing horizons. The slightly tricky point is that a single freely falling
observer cannot test this law by itself. To obtain it, one should compare the frequencies
measured by several freely falling observers, when crossing the same light-like geodesic.
On Fig[l.3] we represented three crossing points A, B and C. The 2 measured on each
of these by freely falling observers must follow the law (1.124)).

We conclude this section by noting that the discrepancy between the two inequiva-
lent notions of frequency we looked at, w and €2, is a key point to understand Hawking
radiation. This last statement will be made clearer in Sec[2.3.2

1.4.3 Field propagation around a black hole
General metric

We consider here a scalar field ¢ propagating freely in a curved space-time (M, g).

S[é] = % / (9" OudDsp — m*¢* — ER’] V/—gd'a", (1.125)
where g = detg. By comparing this action to the one in Minkowski space ([2.1)), we see
that the first term corresponds to the kinetic term, and the second one to the mass term.
However, the last one has no equivalent in flat space. It is the only extra term that is
diffeomorphism invariant, and of the same dimension as the kinetic term, i.e. such that
¢ is dimensionless. In 3 + 1 dimensions, one distinguishes 2 peculiar values of £

e For £ = é, the coupling of the scalar field is conformal. This means that any
conformal transformation is a symmetry of the equation of motion.

e For £ =0, the coupling is called minimal.

In the sequel, we shall focus on the minimal coupling case. Note however that in 1+1 di-
mensions, then & = 0 both correspond to minimal and conformal coupling. This property
will turn out to be very useful, since we shall often consider 141 problems, either to start
with, or by symmetry reduction of a 341 problem.

Sticking to the 341 dimensional and minimally coupled problem, we derive the equa-

tion of motion )

V=g
Spherically symmetric black hole
We apply this to the Painlevé-Gullstrand metric of Eq. . The action reads
(990)*  (9,0)*

O (9" =90,0) + m*¢ = 0. (1.126)

— m?¢*| 2 sin Odtdrdfde.

(6] = 5 [ 10+ w002 — 0,07 -

2 2 r2sinf
(1.127)
This gives the equation of motion
(8, + 0,0)r2(9, + v0,)p — 0, (r?0,0) — L*¢ + m>¢ = 0, (1.128)
where L2 is the Laplacian of the sphere S?
. 1 1
L? = ——0,sin 60 2. 1.129
sing 0> 9+sin29 v ( )
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This operator not only appears naturally in Eq. (1.128]), it also commutes with the differ-
ential operator defining Eq. (1.128)). This is the manifestation of the spherical symmetry
of the problem. Hence, one can decompose the field into a sum of spherical harmonics as

1

4rr

¢ = Z Qsﬁ,n(rv t)}/f,n(ea 90) (1130)
4n

Exceptionally, we call n the vertical angular momentum instead of the standard m [49],
so as not to confuse it with the mass of the field m. The reduced equation of motion then
reads

e+1) 200
() + 8,0) (D, + v0,) b — Ppn + ( ( ; ) _ ff’ + m2) bpn = 0. (1.131)

The full equation of motion is quite hard to solve. However, one needs not to solve the
general case in order to understand the physics of Hawking radiation. We can neglect
the last term, called the ‘gravitational potential’. To do so, we should first consider
modes for which it is minimal. For this reason, we now consider massless s-waves, i.e.
¢ =0 and m = 0. As explained in [50, [51], s-waves contribution is about 90% of the
Hawking radiation flux. Moreover, for solar mass black holes and above, massive fields
barely radiate [52]. For such fields, neglecting the residual potential —2?/, the equation
of motion reduces to

(0 + 0,0)(0; + v0,) poo — 0o = 0. (1.132)

In that case, we drop the indices (¢,n) and simply name the mode ¢. We see that this
corresponds to the propagation of a field in the 1+ 1 reduction of the Painlevé-Gullstrand
metric. In Sec[2.3.3] we shall further discuss the effect of the gravitational potential, and
in Secld.4] the effect of a mass is studied with care.

1.5 Hints of black hole thermodynamics

In general relativity, black holes are perfect absorbers, since nothing can come out from
them. However, it is still possible to extract energy from a black hole. A classical example
is given by the well-known Penrose process [34, [35, 43]. Also, when two or more black holes
collide and coalesce to form a bigger black hole, a lot of energy is radiated away through
gravitational waves. The dynamics of black holes, dictated by Einstein’s equation is rather
complicated. However, in 1973, Bardeen, Carter and Hawking developed an astonishing
result [53]. The mechanics of black holes are governed by four elementary laws, closely
analogous to the laws of thermodynamics. Among them, the first two are of primary
importance

e First law : for any physical process involving a change on a black hole state, its
mass M, angular momentum J and area .4 must follow the law

SM — Q8T = 254 (1.133)
—— 81

Internal energy
heat flow

In that formula, € is the angular velocity of the horizon, and « is the surface gravity,

as defined by Eq. (1.95]).
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e Second law : during any black hole transformation, we have
0A > 0. (1.134)

Historically, Hawking showed this inequality by studying black hole collisions (see
Fig|l.4), but without interpreting it as a second principle [54].

Az > A + As

A Ay

Figure 1.4: Schematic representation of the coalescence of two black holes into a
bigger one. A lot of energy is lost by gravitational radiation. But the losses are
limited by the second law, which states that the final area A3 must be bigger
than the initial area A; + A,.

If the mass M clearly constitutes the rest energy of the black hole, the identification
of its area with an entropy is much less trivial. In fact, in [53], the authors refused
to see in these laws more than a formal analogy. On the contrary, Bekenstein, who was
working in parallel on that matter, claimed that this is more than a naive analogy [25] [55].
He proposed to attribute to all black holes, an entropy Sy proportional to the area,
motivated both by Hawking area law and arguments from information theory. Pushing
this idea forward, he conjectured a ‘generalized second law’, unifying the thermodynamic
and black hole one. When coupling an ordinary physical system to a black hole, the total
entropy of the system can only grow, i.e.,

A(SBH + Sordinary) > 0. (1135)

In this context, the phenomenon of Hawking radiation is a great leap toward the Beken-

stein interpretation of black hole entropy. Indeed, if the entropy is proportional to the

area, then from Eq. , the temperature of the black hole must be proportional to its

surface gravity. In 74, Hawking [19] showed, by including quantum effects, that a black

hole spontaneously emits a flux of particles, exactly as a black body does at temperature
K

Ty = —.
a 2T

(1.136)
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This computation supports the idea that a black hole is indeed a thermodynamical object.
In fact, not only does it support it, it is necessary that a black hole radiates in order not
to violate the generalized second law [56] [57]. This also fixes the proportionality factor
between the entropy and the area of the black hole

A

Sen = 15 (1.137)

Chapter [2|is devoted to a detailed description of this phenomenon.

Black hole entropy is also one of the main achievements to expect from a quantum
theory of gravity. Indeed, one would hope to obtain the entropy expression from
a counting of microscopic states. Up to now, there has been interesting results in string
theory [58] or in loop quantum gravity [59]. We also point out interesting attempts using
general relativity in 2+1 dimensions [60] [61], or in the 't Hooft S-matrix approach [62].
More recently, there has been an even more ambitious proposal, which generalizes the
notion of black hole entropy to entropy of any local causal horizons. Gravitation dy-
namics would then be the thermodynamics equilibrium condition of underlying degrees
of freedom [63]. Despite all these approaches, it is fair to say that a complete microscopic
understanding of black hole entropy has not been obtained so far.

34



Chapter

Quantum field theory in curved space-time

Contents
2.1 Quantum field in flat space . ... ... .............
2.1.1 Field quantization . . . . . .. ... ... oL R{§
2.1.2 Green functions . . . . . .. ..o 39
2.2 The Unruh-DeWitt particle detector . . . . . ... .. ... .. 4]
2.2.1 Particle detector model . . . . ... ... .. (41
2.2.2 Inertial detector . . . . . . ... ... L 43
2.23 Unruheffect . .. ... ..o 44
2.3 Hawking radiation . . . . . ... ... ... 00000 47
2.3.1 Acollapsingmodel . . . . . ... Lo oL 4
2.3.2 Radiation of eternal black holes . . . . . . .. ... ... ... .. 50l
2.3.3 Observables . . . . . . . . ... 601

2.1 Quantum field in flat space

Quantum field theory was the main achievement of high energy physics during the second
half of the twentieth century. It arises from the reconciliation between quantum mechanics
and special relativity. One can basically divide this field in two main parts. The first one
is the theory of fundamental interactions, where particles collide in an empty Minkowski
background. The second one would be the effects of quantum fields coupled with a classical
background field. What interests us in the following is the theory of quantum fields in
curved space-time background, which obviously fits in the second approach. However, we
shall first present the main features of quantum field theory in Minkowski space, which
is essential to understand the general case. As we shall see with the Unruh effect, the
physics of non inertial systems in Minkowski is already non trivial and highly valuable for
the black hole problem.
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Chapter 2 : Quantum field theory in curved space-time

2.1.1 Field quantization
Classical phase space

In this section, we review the canonical quantization of a field in Minkowski space. For
the sake of simplicity, we only consider a real scalar field in 141 dimensions. The gen-
eralization of this to higher dimensions is straightforward. But the 2 dimensional case is
not only the simplest, it is also an approximation that arises naturally when considering a
highly symmetric problem, as the spherically symmetric black hole of Sec[T.4] For higher
spins the discussion is similar, but it displays several technicalities that are irrelevant for
our purpose. Hence, the dynamics of the field we consider is obtained by the action

S[¢] = /dedt = %/[(8@)2 — (0,0)* — m*¢?|dxdt. (2.1)
Minimizing S[¢], we derive the equation of motion
(0} — 02 +m?*)p = 0. (2.2)

The aim is now to describe this equation in the Hamiltonian formalism. The advantages
are multiple. Firstly, it reveals the canonical structure, which dictates the quantization
procedure. Secondly, it recasts the wave equation as a first order in time equation, adapted
to the study of the Cauchy problem. Moreover, since we shall mainly consider linear wave
equations, we will be able to solve it by exploiting results from spectral theory.

We build the conjugate momentum

L
80,0

7T = 0,¢. (2.3)
The phase space consists in the set of pair of fields (¢:(x), m(z)). In this section, following
the notations of [64], we write ¢,(z) instead of ¢(¢,z) to underline the fact that we are
propagating a field in x space through time. The phase space is naturally structured with
a symplectic 2-form. However, in the context of field equations, we prefer to view it as a
pseudo scalar product

“+o00

(¢1, P2)ka = Z/ (¢ima — mi2)d. (2.4)

— 00

This scalar product is non positive definite, and hence phase space possesses only the
structure of a Krein space. This structure is equivalently characterized by the equal-time
Poisson brackets

{o(2), 0 (")} = {m(z),m(z")} =0, (2.5a)
{pe(x), m (2"} = o(x —2). (2.5b)

Moreover, the dynamics is encoded into the Hamiltonian. Its density is obtained by a
Legendre transform of the Lagrangian density

H =m0 — L, (2.6)
giving the Hamiltonian functional
1 [T
Hlp,m) = 3 / (72 + (8,0)2 + m2¢%)dz. (2.7)
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2.1 Quantum field in flat space

The evolution equation on phase space now reads

0(2) =2 (2) = (a2 o) (2) 23

Because the Klein-Gordon scalar product of Eq. is conserved, the operator ¢B is
self-adjoint in phase space. Moreover, the Hamiltonian of Eq. is also conserved.
Usually, like in Minkowski space, this Hamiltonian is positive definite. This allows to
endow the phase space with a Hilbert structure, and leads to the usual spectral theorems
that guarantee the existence of an eigenbasis of normal modes. In the case of Eq. ,
such a decomposition is quite easy to obtain, using Fourier transform. Indeed, solutions
of Eq. are superpositions of plane waves

o) = e ke, (2.9)
with
k, = Vw? —m2. (2.10)
Computing the group velocity
vy = (0,k)7, (2.11)

we distinguish left moving modes, denoted with a v and right moving modes, denoted
with a u. Imposing that the field is real, we obtain its decomposition

w w

+oo
(b(t: 33) _ / [agefi(wtfkwx) + az)efi(wt+kwx) + (au)*ei(wtfkwx) + (av>*ei(wt+sz)] dw,

" (2.12)
Using this decomposition together with Eq. (2.7)), we express the Hamiltonian as
® 4rw?
H = / O] (Jal]* + |al|?) dw. (2.13)

It is also interesting to notice that the Hamiltonian is simply expressed in term of the

scalar product ([2.4])
L.

This relation rely on the fact that the Hamiltonian is quadratic in the field ¢ and its
conjugate momentum 7.
Canonical quantization

The quantization of a field is obtained by promoting ¢ and 7 as operators acting on some
Hilbert space F, which is the set of quantum states of the theory. Their action is specified
by the equal-time commutation relations, obtained from the Poisson brackets

In the following, we adopt the convention that A = 1. For the real scalar field, this reads

O(t,2),6(t, )| = [7(t,2), 7 (t, )] =0,

X (2.16)
[o(t, z), m(t,2")] = 6(x — 2")I.



Chapter 2 : Quantum field theory in curved space-time

In the Heisenberg representation, states in F do not evolve, but the field operator does,

following Eq. (2.2)). Hence, it admits the same decomposition as the classical field, since

it obeys the same equation ([2.2). Moreover, the real character of the field imposes that ¢

be self-adjoint

+oo
¢(t, I) — / [dge—z(wt—kwx) + CNLZB_Z(Wt+kwx) + (ELZ)TGZ(Wt_kwI) + (dz)’[ez(wt—&-kwa:)] dw.

(2.17)

The only difference with respect to Eq. (2.12) is that the coefficients are now operators.

What remains to be determined is their action on the space F. For this, we express them

in terms of the field operator

Lo (gmitwEhan) Gy, (2.18)

where we choose the + if j = v and - for j = u. This equation gives an explicit expression
of a in terms of ¢ and 7

) o k| . ) ) S
al, = uz l(wttkna) <7T — zwgb) dzx. (2.19)
drw
We deduce the commutation relation between the a operators
s Al 47Tu)
[ai,afd,q = |8wk]6(w —wdjjr, (2.20)

while the other commutators vanish. Because w > 0, a plays the role of a creation
operator, while @' the role of a destruction operator. To properly interpret them, it is
convenient to normalize their commutation relation. For this, we define the normalized
operators @/, by decomposing the field operator as

A oo N9k ) ) ) )
¢(t, ZE) _ / |47‘~:w‘ [dze—z(u}t—kwx) + CALZG_Z(Wt+kwx) + (dg)Tez(wt—kwm) + (dz)Tez(wt-l—kwx)} dw.

(2.21)
The new commutation relations now read
i, al] = 0w — )y (2.22)

To construct the full space F, we first define the vacuum state, as the normalized state
annihilated by all @/ , i.e., _
al -0y =0, (2.23)
and
(00) = 1. (2.24)
States containing particles are now built by acting with creation operators on the vacuum.
The one particle vector space is thus defined as

A= { [0+ [ g -0y / .9 € L2} | (2.25)

Because we consider bosonic fields, the many particle vector spaces are obtained by sym-
metric productsﬂ of the one particle space [22]. Therefore, the full Hilbert Spaceﬂ is

F =vect{|0)} & F & (F)2 & (F1)®5... (2.26)

'For fermionic fields, it would be an antisymmetric product [22].
2The bar stands for Cauchy completion [64].
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2.1 Quantum field in flat space

This decomposition is the Fock representation of the Hilbert space. In terms of a and af
operators, the Hamiltonian has a quite simple expression

ﬁ:/LMW@+w@MM (2.27)

This shows that @/ creates a quanta of energy w. There are several interesting points
to underline concerning the Hamiltonian. The first one is that there is an ambiguity
when one defines it as an operator, starting from its classical expression . Indeed,
since @ and a' do not commute, there is a choice of ordering to make. Here, we used
the convention of normal ordering. This is the unique choice that ensure a vanishing
expectation value in the vacuum (0|H|0) = 0. Normal ordering is specified by putting
the expression between double dots, e.g.,

+00
H= %/ 72 4 (0,0)2 + m2? : d. (2.28)
Moreover, using the commutation relation of Eq. , we see that any other choice of
ordering shifts the Hamiltonian of a multiple of the identity. The normal order procedure
equally applies to all observables that are non linear in the field operators, but whose
expectation value is supposed to vanish in the vacuum, such as the momentum current.
The second fundamental point about the Hamiltonian is that it is bounded from
below, and thus has a ground state. Moreover, this ground state is unique and hence
unambiguously defines the vacuum state of the theory.

2.1.2 Green functions

In quantum field theory, it is possible to describe the field and the quantum state using
only complex valued functions. These functions are called Green functions. There exist
many different Green functions, and the study of their discrepancies and relations is an
interesting but long topic. However, this discussion is crucial for quantum field in curved
spaces. Indeed, in arbitrary space-times, we no longer have the Fock decomposition of
Eq. (2.26)). Therefore, we will appeal much more to the Green functions in order to analyze
the physics taking place. In particular, in Sec2.2] we show that the two point function
encodes the response of a particle detector to a quantum field. This will allow us to analyze
the Unruh effect (Sec2.2.3) and Hawking radiation (Sec[2.3.1)) with the help of Green
functions. In this section, we focus on the main ingredients characterizing the various
Green functions. For a detailed discussion, we send the reader to the literature [64], [65],
and especially [66], where this points are treated with care.

Classical Green functions

We start by computing the commutator of fields at arbitrary times. Using the equation
of motion for the field operator, we show

@+m%$@@@w¢ﬂ:ﬁm+ﬁw@@ﬁmy):o (2.29)

Moreover, at equal time ¢ = t/, this operator is proportional to the identity. Hence, we
can propagate it from ¢t = t’ to t # ¢’ using the equation of motion, and show that it
stays proportional to the identity at all time. Another way to see this is to compute
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Chapter 2 : Quantum field theory in curved space-time

it explicitly using the decomposition (2.21]) and the commutation relation (2.22)). This
defines the Green function G, as

~

[¢(t,$),d3(t’,x’)] — Gtz t )], (2.30)

Note that calling GG, a Green function is slightly abusive since it satisfies the homogeneous
equation of motion, rather than sourced by a Dirac distribution. Using the equal time
commutation relations (2.16) we characterized G. as the solution of a Cauchy problem

(02 — 02+ m*)G.(t,z;t',2") =0,
G.(t=1t;z,2") =0,
0Ge(t =t x,2") =d(x — 2.

(2.31)

Quantum Green functions

The commutator Green function, defined in the preceding paragraph, is also obtained as
a vacuum expectation value

iG(t, z;t,2') = (0 [gzg(t,x),é(t’,x’) 10). (2.32)

We now follow the opposite path, and define a function as a vacuum expectation value of
product of fields. We construct this way the Wightman function

Gt a5t 2') = (010(t, 2)d(t', 2")[0). (2.33)

It is straightforward to see that this Green function is also a solution of the equation of mo-
tion (2.2)). However, unlike G,, the full Cauchy problem is not easy to formulate. On the
other hand, by explicitly computing the expectation value, using the field decomposition
(2.21), we show that

o 8wk . ’ ; / : /
G+(t,$;t/, ZL’I) _ / | ‘ [ezkw(m—x ) + e—zkw(x—x) e—zw(t—t )dw (234)
Vo dnw

(G, is not characterized by initial conditions, but by its Fourier content. In particular,
it contains only positive frequencies. More precisely, it is the same function as G,, but
where we kept only the positive frequencies, 1i.e.,

if G, = / Goe ™t dy  then G, = / O(w)G e ™ duw. (2.35)

G, and G, are members of two fundamentally different classes of Green functions. Indeed,
(. is defined as the vacuum expectation value of an operator that is proportional to the
identity. Therefore, it does not depend on the choice of the state in which the expectation
value is computed. Moreover, it is a real function, as one can see from the self-adjointness
of the field operator. On the other hand, G, is a complex-valued function, and its
definition does depend on the choice of a state. Hence, GG. encodes only the dynamics,
while G, also specifies the nature of the quantum state. For this reason, the first is
referred as a classical Green function, while the second as a quantum Green function.

A characteristic feature of linear field theory, is that any state initially gaussian stays
gaussian at all times. This means that the knowledge of GG, is enough to compute all
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2.2 The Unruh-DeWitt particle detector

possible observables. For example, all the n point functions are obtained as products of
the two-point function GG, through the identity

(01 (21)d(a%)...o(a5,)|0) = > HG+ AR (2.36)

(p]7(Ij) Jj=1

where the sum is over all partitions of [1,2n] into an unordered set of ordered pairs
(pj»q;), p; > g; [66]. In particular, the ground state of the Hamiltonian (2.7), the vacuum
state, is a gaussian state. But it is not the only one, e.g., any squeezed vacuum will also
be gaussian [67]. This property is specially relevant for our derivation of the Hawking
effect, because we start in a vacuum state and propagate it on a collapsing geometry,
which forms a black hole. Therefore, the late time state, even though it is no longer
the vacuum, is still gaussian. In table [2.1] we present the usual zoology of classical and
quantum Green functions, and their relation to G.

Green function | Vacuum expectation value | Equation of motion Relation to G,
Classical
Gelt,a;t,a!) | =if0] [8(t,2),6(¢,2")| [0) | (O+m?)Gaay =0 2Im(G.)
Gret(t, Tt 2) _ - _ (O +m?)Grep = 6@ | 20(t — t')Im(G)
Gaav(t, o3t 2") - (O +m?)Gage = 6W | —20(t' — t)Im(G,)
G(t,z;t',2") - (O +m?)Gagy = 0W 2(Gaay + Ghret)
Quantum
G_(t,;t,2') (0lo(t', 2")o(t, )|0) (O+m?)G- =0 G*
GO(t,a;t, ) | (O{S(t,x), ot ') }[0) (B +m?*)Gr =0 2Re(G)
Gr(t, ;1 2) (0|Td(t, z)p(t, 2')|0) (O + m?)Gp = 6@ G+iGWY

Table 2.1: Two point functions of a free field in flat space.

2.2 The Unruh-DeWitt particle detector

2.2.1 Particle detector model

To describe the physical content of a quantum field in more physical terms, we propose
here to study a model of particle detector. This one consists in a system with several
internal energy levels, coupled to the field ¢. The idea is that whenever it encounters
an excitation of the field, a particle, it will click, i.e., pass from one energy level to
another, exactly like a Geiger counter does when it detects an a-particle. The particle
detector model not only deepens our understanding of a field in Minkowski, but it is also
a convenient tool in curved space, where the Fock decomposition of the Hilbert space and
the particle interpretation become fuzzy. This kind of model was first discussed in the
context of quantum field theory in curved space-time by Unruh and DeWitt.

The proposed model is inspired from many references [68, [65, [69] and has been ex-
tensively studied for many purposes, including Unruh effect and Hawking radiation [68],
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Chapter 2 : Quantum field theory in curved space-time

but also decoherence and thermalization dynamics [70] (see [71] and references therein).
It consists in a point-like detector, probing the field only along its trajectory a# (7). This
idealization is convenient but by no means necessary [68] [72]. The detector interacts with
the field through the interaction Hamiltonian

~

Hi(1) = g m(T)o(a" (7)), (2.37)

where 7 is the proper time of the detector. We work here in the interaction picture, that
is, operators evolve as if the coupling were not there (¢ = 0), but states do according to
the interacting Hamiltonian [49]. The Hilbert space of this bipartite system is simply the
tensor product

H = Hacteet @ de (238)

When the interaction is absent, the eigenstates of energy E of the detector are noted |E).
The aim is now to compute the transition probabilities for the detector to go from an
initial eigenstate |E;) to a final one |Ey), i.e., the transition

|Ei) ®10) — |Ef) © |thn). (2.39)

The field is assumed to be initially in the vacuum, and (1, ),en denotes any basis of out
coming states for the field. The probability of this transition is given by the well-known
Fermi golden rule [49]. We propose here to review its derivation, and in particular to make
an explicit link with the preceding discussion about Green functions. In the interaction
picture, we define U;(7), the evolution operator which brings states from 7 = 0 to 7. This
one is related to the interaction Hamiltonian through

Ur(1) = Texp (z/ H[(T/)dTI> : (2.40)
0
At first order in perturbation theory, i.e. for ¢ — 0, this becomes
Up(r) ~ T +i / Hy(+)dr (2.41)
0

Therefore, the probability amplitude of the transition (2.39)) reads
An(7) = (Ef| © (¥n|Ur(7)| Ei) ® 10),

=g /0T<Ef|fn(7')|EZ-><1pn|¢§(xu(7)>|o>d7' (2.42)

By definition, m(7) is the free evolution of m, and |E) are eigenstates of the free Hamil-
tonian, hence '
(Bylin(r)| i) = e BT (Eylin(0)| ;). (2.43)

The probability to make a transition is the square modulus of A,

[An(rI = 5" // BN ) | B i 0)| B PAO1(2 (1)) ) (] S (72)) |0} dry iy

(2.44)
Because we only care about the detector transitions, we trace over all the possible out
coming states of the field to obtain the transition probabilities of the detector only

Pies(r) = Y |Aa(T) . (2.45)

42



2.2 The Unruh-DeWitt particle detector

Using the identity S, [1,) (0] = I, we get

Pooy(r) =" [ [ BB i 0) B PO} () ()0 (246)

We see that transition probabilities are governed by the two-point function G, of the
field. The matrix elements of m(0) simply tell how strongly the two levels are coupled to
the field. To cast this last formula into a more elegant form, we introduce the interval
of time AT = 77 — 75 and the mean time 7" = (7 + 72)/2. We estimate the transition
probability at late time, 7 > |E; — E;|™!

T —+o00
Pis(7) = P E;|m(0)|E;) |2 /0 / S PENAT G (2t (1) 2 (10))dATAT.  (2.47)

In several configurations, the trajectory and the state of the field are stationary, i.e. G4
only depends on the interval of time A7. In that case, it is more relevant to consider the
transition rate, which corresponds to the probability per unit of proper time, i.e.

dr

Py = : (2.48)

This suppresses the integral fOT in Eq. (2.47) and gives a constant transition rate.

2.2.2 Inertial detector

We suppose here that the detector is inertial. Without loss of generality, we assume it at
rest with respect to the (¢, ) frame. The trajectory is therefore simply

{ Hr) = ; (2.49)

Therefore, the transition probability is the inverse Fourier transform of G, evaluated at
E; — Ey. But, by definition of the vacuum state, GG contains only positive frequencies,
therefore

+oo
/ e EEDAT G (2 (1y); 2 (12))dAT o O(F; — Ey), (2.50)

[e.e]

and thus

Pis x O(E; — Ey). (2.51)
This means that if the detector is initially in its ground state, it undergoes no transition,
since by definition Ey — Ef < 0. On the other hand, if it is initially excited, it will
end up transiting to a lower energy state, by emitting a ¢-particle. The transition rate
hence gives the life-time of the excited state. This is exactly what one would expect in
the vacuum state of the field, and is what occurs for any atomic system coupled with
the electromagnetic field. In 141 dimension, the Wightman function of a massless scalar
field admits a rather simple expression. Hence, we perform the discussed computation
explicitly. We use

Gi(t,x;t' 2" = —4i In ((At —ie)* — Az?) | (2.52)

7
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with At =t —t' and Ax = x — 2’. Along a trajectory at rest, this gives

1
Gy(zt(m);at(m)) = 5 In(A7 — ie), (2.53)
7r
giving a transition rate
Py = — LB n(0)| ) P / FEEDAT 1 (AT — ie)dAr. (2.54)

We integrate this expression by part, with the usual prescription to set to zero infinitely
oscillating functiond’]

2 400
: _ g . 2 (Ei—EpAr L
i = —i—————|(F 0)|E; 2T ———dAT. 2.55
Py = i (EROIEE [ e AT (259)
And by residue theorem, we conclude
2

: g 5 2

i = ————|(F 0)|E)|"O(FE; — Ef). 2.56

Pt = gy B OB O(E ~ ) (256)

The essential ingredient to retain from this computation is the consequence of the analytic
properties of Gy. Indeed, this Green function is a distribution defined as the boundary
value of an analytic function, 7.e. this is why the ie prescription is essential. We see that
the stability of the detector’s ground state, and hence the vacuum character of the field
state, is one to one related to the analytic behavior of G in the half plane Im(At) < 0.
This characterization of the vacuum state through analytic properties of the Wightman
function is a very general feature in quantum field theory. This is at the origin of the
Damour-Ruffini derivation of the Hawking effect in black holes [73], a point that will be
detailed in Sec2.3.2] In the next section, we will see that for the Unruh effect, the thermal
behavior is encoded by the KMS condition, which is a periodicity in imaginary time.

2.2.3 Unruh effect
Thermalization of the detector

We now consider a detector moving along a uniformly accelerated trajectory. By a proper
choice of time and space origin, this motion reads [74]

t(r) = ésinh(ar),
. (2.57)
x(1) = . cosh(ar).

In Figl2.1] we have represented this trajectory.
From what precedes, and in particular from (2.52)) the expression of G, we see that
all we need is the proper interval of time along the trajectory.
(At —ie)” — Az = — sinh® (a(AT —i€)/2) . (2.58)

a?

3In fact, their contributions give Dirac distributions and derivatives, which have a support on E;—FEf =
0. Since we consider transitions for E; # Ey, these contributions are irrelevant.
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2.2 The Unruh-DeWitt particle detector

Figure 2.1: Space-time diagram of a uniformly accelerated body. On this trajec-
tory, it is causally disconnected from the region L, and cannot send signals to
region P or receive from region F'.

We observe that this interval does not depend on 7 and 75 separately, but only through
the difference A7. This means that a uniformly accelerated detector perceives the vacuum
as a stationary state, as we discussed before Eq. . As pointed out in [69], the origin
of this miracle comes from the fact that this trajectory is the orbit of an element of the
Lorentz group, in this case a boost. Inserting this result into the formula for the transition
rate, and by performing an integration by part as for Eq. , we show

2

. +m .
Pif = T (E;1m(0)|E;)|? P EAT Iy (sinh? (a(AT — i€)/2)) dAT,
47 o

ga . , [T e BmEDAT  cosh (a(AT)/2)

B _2E|<Ef|m(0)|Ei>| /_OO E; — E; sinh (a(AT — ie)/Z)dAT'
This integral can be evaluated using a residue theorem. The integrand possesses an infinite
sequence of poles for At = 2inm/a (n € Z). Since they lie both on the upper and lower
half plane, the result will be non zero for both signs of F; — Ey. In particular, the ground
state will have a probability to be spontaneously excited. To understand the physics, the
full evaluation of is not necessary. What matters is the ratio between excitation
and desexcitation transition rates, since they will determine the equilibrium state of the
detector. Let’s consider the ground state of energy Ej, and an excited state of energy
E. > Ey. The rate of excitation is given by

(2.59)

2 o0
. . g ~ 2 _ 2m(Ee—Eq)n
Prme = S EAROIB)P S e (2:60)
while the desexcitation rate reads
2 x
> g . 9 _2n(Be—Eg)n
Pe—sg = b _E [(Elm(0)|E) ;e a . (2.61)

The only difference being that only the second one picks up the pole at A7 = ie. Hence,
the ratio is exactly a Boltzmann factor

Pye
Peg

_ 27 (Ee—Eq)
a

(2.62)
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As understood by Einstein in the context of interaction between light and matter [75]E|, this
means that after a short time, the detector will be in a thermal state at the temperature

a

kT = 5 (2.63)
This is what is called the Unruh effect: a uniformly accelerating detector perceives the
Minkowski vacuum as a thermal bath. By reading carefully the proof we just gave,
we see that the main ingredient is the fact that G (z#(m);2#(72)) is periodic in the
imaginary time A7. This is the essence of the KMS condition. Moreover, this periodicity
is already visible at the level of the trajectory, i.e., in Eq. . Therefore, sufficient
ingredients are the Lorentz invariance of the field, which implies that GG, will be a function
of (At —i€)? — Az? and the structure of the trajectory of the detector, i.e., the orbit of
a boost. Hence, Poincaré invariance is at the heart of this effect.

The Rindler horizon

As we saw on Figl2.1] a uniformly accelerated detector sees both a past and a future
horizon. We focus here on the future horizon, but the discussion is the same for the past
one. The future horizon shares many features with that of a black hole, as described
in Sec[1.3.2] This horizon can be define almost as an event horizon, as the boundary of
the causal past of the trajectory of the detector. Let’s call 7 the trajectory given by
Eq. , the future horizon is then

Hp =0l (T), (2.64)

where the index F' stands for ‘future’. More interestingly, this horizon is also a Killing
horizon. For this, we consider the Killing field associated with a boost symmetry of
Minkowski space, namely

B = 20, + t0,. (2.65)

The trajectory of Eq. (2.57)) is an orbit of that vector field. Moreover, we compute its
norm

B? =% -, (2.66)

which vanishes exactly on the horizon (both past and future in fact). As discussed in
Sec[I.3.2] in order to compute the surface gravity, we must first normalize the Killing
field B. However, unlike in a black hole geometry, there is no universal choice for its
normalization, since no equivalent of Z* is available. What one should do instead, is
normalize B on the trajectory of the detector. This gives

B = a(zd, + 1), (2.67)

meaning that B = 0,, the derivative with respect to the proper time of the detector. In
that case, the surface gravity of the Rindler horizon is kK = a. Therefore, we see that the
Unruh temperature follows the Hawking temperature announced in Eq. (1.136)),

K a

T = — = . 2.68
v 2T 2 ( )

40n the subject, we also point out reference [76], where an english translation of Einstein’s papers
about quantum theory can be found.
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2.3 Hawking radiation

This shows that the phenomenon of Unruh effect can be attributed to the Rindler horizon.
In fact, this statement can be made more explicit. Indeed, the field operator admits a
decomposition gf) = ngL + (bR, where gbL contains the degrees of freedom hvmg on the
Left quadrant, and ¢; those living on the Right quadrant [68] (see Flg Thus, we
can express the Minkowski vacuum as an entangled state between two Rlndler wedges.
Because an accelerating observer only has access to one, the perceived state is the trace
over the second wedge, which turns out to be exactly a thermal state [77]. However, we
insist on the fact that the Rindler horizon, and its surface gravity, are observer dependent.
An inertial detector in Minkowski space sees no horizon, as it is well-known. This is
consistent with the fact that Unruh effect is locally identical to the Hawking effect, as we
shall explain in Sec[2.3.1] Only when considering the global geometry, and in particular
the asymptotic regions as Z1, one can tell whether the horizon is a Rindler one or a black
hole one.

2.3 Hawking radiation

Classically, as we explained in Sec[1.3.2] no signal can come out from a black hole. There-
fore, it was a huge surprise when Hawking, including quantum effects, predicted that
black holes should emit a thermal flux of particles, just like a black body [19, [78]. In
this section, we shall derive the Hawking result in details. Understanding the features
and implications of Hawking radiation is essential to motivate our work presented in the
next chapters. Following the historical discovery, we shall first present the computation
from the formation of the black hole in Sec[2.3.1] In Sec[2.3.2] we will show that the
dynamics of the formation is in fact irrelevant, and the Hawking effect can be obtained
by considering only the stationary geometry of a black hole. In Sec2.3.3] we discuss a
few important features of the manifestation of Hawking radiation. The dlscusswns along
this chapter are mainly based on references |68} 69 [79] [80].

2.3.1 A collapsing model

In the universe, a black hole arises as the final state of a heavy star, which collapses on
itself due to strong gravitational interactions. When nuclear reactions terminate inside
a star, the gravitational force makes the star contract. If the residual pressure is high
enough, the star reaches an equilibrium as a white dwarf or a neutron star. On the other
hand, if the pressure is lower that the gravitational forces, as it is for heavy stars, the
collapse continues until the star fully disappears inside a black hole [34]. The dynamic of
a collapsing star is a very complicated phenomenon, but as far as Hawking radiation is
concerned, we don’t need to consider sophisticated models. Hence, we shall mainly focus
on a very simple toy model, where the computations can be carried out without much dif-
ficulties. In the end of this section, we consider a more general model of collapsing star,
and establish that the conclusions drawn in the toy model stay valid. This toy model
was first considered by Unruh [68], in a long paper were it was presented together with
the Unruh effect and the understanding of Hawking radiation for eternal black holes (see

Sec..

The collapsing star is modeled by a spherical shell of matter, falling in very quickly, at
almost the speed of light. Inside the star, space-time is empty and flat, outside, its metric
is the Schwarzschild one. In addition, we consider the geometry to be reduced to a 141
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Chapter 2 : Quantum field theory in curved space-time

dimensional one. As explained in Sec[I.4.3] even though it is not the most realistic case,
it is enough to capture the essential physics for Hawking radiation. The only difference
with a pure 1+1 dimensional case is that, in order to mimic the potential barrier of a 3+1
model, we shall impose a boundary condition for the radiating field, ¢(r = 0) = 0. This
ensures that the 341 field of Eq. is regular at » = 0. In this model, the collapsing
metric reads

dr® —dr*, r < R.(7),

ds® = 2G M dr? 2.69
N (1— Cjﬁ )dtQ_]__;QG_M’ T>R*(T). ( )

R, stands for the radius of the shell. Its equation of motion is assumed to be

R,(r) = { fo, T <7 (2.70)

Ry—v. 1 7>

We assume that v, ~ 1, so that after 7,, the surface of the star follows a time-like
trajectory, which is almost light-like. Moreover, we assume that the star is not too
compact, i.e., Ry > 2G M, thus before 7,, space-time is essentially flat. In Fig|2.2] we
show the Penrose diagram of our model. The coordinate r is the same both inside and
outside. This can be made unambiguously because our model represent the reduction
of a 3+1 spherically symmetric. 7 is thus defined so that 47r? is the area of SO(3)
orbits |34, 69]. This intrinsic and covariant definition for r ensures that we can use the
same inside and outside the star. On the other hand, the time coordinate is a priori
different in both regions. To relate them, we assume that the induced metric on the
surface of the star is the same on both sides. In other words, we assume that the proper
time measured on the surface of the star is the same when computed inside or outside.

In the language of Sec|1.2.3| this means

Rids® = Rids?. (2.71)
In our case, it gives
dt 1
—=———4+0(1 —v,). (2.72)
d =
T (1 - 2GM> 2
Ry(7)

Eq. is called the first junction condition. It ensures that the geometry is regular
across the star’s surface [43]. The second junction condition would give the stress tensor
of the shell as the discontinuity of the derivatives of the metric. However, in the present
case, we are not interested in the properties of the matter constituting the collapsing
shell, we only need to assume that it follows a quasi light-like trajectory. On top of this
collapsing geometry, we consider a scalar field initially in the vacuum state. The aim is
to compute the late time state of this field, after the star has collapsed into a black hole.
Because we work in 141 dimension, the scalar field equation of motion is straightforward
to solve. Indeed, since it is conformally invariant, and all geometries are conformally flat,
the wave equation always reduces to

0u0p® = 0, (2.73)

where u, v are light-cone coordinates, i.e., such that ds? = Q?dudv. In the present case,
we write the geometry under the following form

dUduv, (inside),

ds® = 2GM 2.74
i (1— ¢ )dgdy, (outside). (2.74)

r
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2.3 Hawking radiation

Figure 2.2: Penrose diagram of a collapsing star.

These new coordinates are related to the old ones by
U=71—-r+4GM — 2Ry,
u=t—r—2GMIn(r —2GM),

=747 — Ry, (inside),

t+r+2GMIn(r —2GM), (outside).

The various origins are chosen such that the star surface is at v = 0, and the horizon at

U = 0. The continuity equation across the star’s surface, or Eq. (2.72)), gives the link
between U and u. Before the collapse, for 7 < 7, we have

U= (1 — 26;M) u~u, (2.76)

0

(2.75)

v
v

while for 7 > 7,, we obtain

w=f(U)=U—-4GMIn (—%) (2.77)

The coefficient in front of the logarithm is nothing else than the surface gravity x =
1/4GM. This is not a coincidence. It comes from the redshift factor near the horizon of a
black hole, which is universally given by e, as explained in Sec[1.4.2] The appearance
of k will be made even more explicit in the end of the section, when studying general
black holes. Using the functional inverse f~! of f, we obtain the general solution for ¢

| FU) + G(v), (inside),

lu) = { F(f'(u) +G(v), (outside). (2.78)
Imposing the boundary condition ¢(r = 0) = 0, it reduces to
| FU) - F(v), (inside),

ou,v) = {F( Fl(w) — Fu), (outside). (2:79)

49



Chapter 2 : Quantum field theory in curved space-time

In second quantization, the field operator obeys the same equation. Thus the general
solution is equally valid, except that now F' is an operatorial function F. In order to
compare it to the well understood Minkowski case, we develop F' in Fourier modes, and
use the real character of q5 to relate positive and negative frequencies. This gives

~ +oo . . —1 . . -1 dw
b(u, v) = / [&w (e—wy _ gmiwf @) +at <6wg _ ! @ﬂ _ (2.80)
0

4w

At early times, that is for ¢ — —oo , space-time looks very much like Minkowski space.
From Egs. (2.75) and (2.76]), we see that in this limit, u — —oo, and U ~ u. Hence, the
preceding equation reduces to its flat space expression of Eq. and a,, and a have
the usual particle interpretation. Because they describe the in-going state, we refer to
them as a® and ™. They are the creation and annihilation operators in the Fock state
of quanta defined on Z~, i.e., for t — —oo (see Fig. To impose that the field state is
initially the vacuum, we define

a;'|0m) = 0, (2.81)

meaning that |0y,), the in-vacuum, contains no particle at early time. In particular, before
the collapse and the formation of the black hole the field is in its ground state. We now
look at the late time state of the field. When ¢t — 400, we have

fHw) ~ —2e7" (2.82)

Because this relation is non linear, the decomposition of QAS is not the canonical one for
the asymptotic region ¢ — o0, in other words a* # a°"*. To understand the nature of
this late time state, we shall use different methods. In the next paragraph, we compute
the two-point function, and see the response of an Unruh detector to it. This presents
the interest of introducing no extra formalism, but also to analyze what an actual, local
observer would see. In a second time, we will decompose the field in terms of late time,
asymptotic Minkowski particles.

Using Eqs. and , the two-point function is fairly simple to calculate. For

all u,v, v, v, one finds

Gi(u,v;u,v) = —% In(v — v —ie) + ﬁ In (f~'(w) — f~' () —ie) . (2.83)

At late times, this becomes

1 1
Gilwvw,v) =——Info—v —iel+ ~In

1 5 /
| ( —§(y+y)> )
s + 47 te

(2.84)
Using the results of Sec[2.2] this function is simple to interpret. We first notice that the
last term will play no role. Indeed, as we discussed before Eq. , it contributes to the
two point function as a polynomial, which has no impact on the transition amplitudes of
the detector. The first term indicates that v-modes, i.e., those falling toward the black
hole, are in their vacuum state. On the other hand, the second term is periodic in (u—u')¢
of imaginary period 2i7/k. This means that an (intertial) particle detector will perceive
the state of u-modes as a thermal state at temperature

sinh (g(g —u') — ie)

K
Ty = —. 2.85
a 2T ( )
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2.3 Hawking radiation

This is the well-known result established by Hawking in 74 [19]: a black hole spontaneously
emits a thermal flux of outgoing particles at the Hawking temperature Ty. More precisely,
one could imagine coupling the detector only to u-modes, e.g., by using the Hamiltonian

Hi(7) = g i(7)0u0(x" (7). (2.86)

In that case, the detector will thermalize with u-modes and end up at equilibrium at
temperature Ty. Of course, such a coupling is somehow artificial, since it is not Lorentz
invariant, but it sheds some light on the discrepency between u and v-modes. On the other
hand, if it couples to all modes, it will not reach the temperature, since the probability
of desexcitation is increased (with respect to the thermal case) by the chance of emitting
a v-mode.

One can also imagine sending a detector into the black hole. What happens if it falls
freely across the horizon ? To see this, we deduce from Eq. that the detector crosses
the horizon for u — +o00, and v > 0. In a small neighborhood of the horizon, v ~ v,
barely varies, and the metric felt by the detector is approximately

ds® ~ 2ke™ e " dudy,

2.87
~ e™odUdv. (2.87)

Therefore, v and U = f~!(u) are the cartesian light-cone coordinates of the local Minkowski
patch, which means that the detector sees a two point function G looking like

G, 0, 0) = ——— (v — o —i€) + —In (U — U — ie) (2.88)

(u, vy 0, 0") = . n(v — v Z€>+47r n ( i€) . )

In particular, the state of the field, as seen by the detector is the vacuum. Indeed, by
applying the computation of Sec[2.2] we show that it will not click while crossing the
horizon. To be exact, this is only true for high enough energies, i.e., in the ultraviolet
sector. Indeed, the internal energy AFE = E, — E, of the detector must be large enough so
that during the time necessary to click A7 ~ AE~!, the detector stays in a close vicinity
of the horizon, i.e., the metric is well approximated by Eq. . Explicitly, this requires
AFE > k.

As a last gedanken experiment, we consider the detector in the near horizon region,
but accelerated such that it doesn’t fall into the black hole, but stays at constant r.
Such a detector will perceive the same metric as Eq. , but its proper time will be
proportional to u rather than U. More precisely, the interval of proper time reads

AT = /2r(r — 2GM)Au. (2.89)

Therefore, for the same reason as the asymptotic one, the detector will see a thermal
bath, but at a different temperature

T(r) = — 1

V26(r —2G M)

This is not surprising, when noticing that the ratio 7'/Ty is nothing else than the grav-
itational redshift (y/goo) '. However, it becomes more interesting when we compute the
proper acceleration a needed for the detector to stay on a trajectory r = cste. Indeed, in
the near horizon region, one obtains

a=./—ata, ~ i =27T(r). (2.91)

2k(r — 2G M)

(2.90)
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Chapter 2 : Quantum field theory in curved space-time

This means that a detector accelerating close to the horizon sees a thermal state at exactly
its Unruh temperature.

With the preceding analysis, we have shown that the late time state of the field
is the local vacuum on the (future) horizon. It is the state that resembles the most
of Minkowski vacuum in the near horizon region. In particular, locally, the Hawking
effect is indistinguishable from the Unruh effect, as mentioned in Secf2.2.3] This is a
manifestation of the equivalence principle. Near the horizon, one cannot say if one sees
a Rindler horizon, or that of a black hole. It is only asymptotically, that the emitted
particles become on shell, and are detected as in a thermal bath by all inertial observers.
This was first understood by Unruh [68], and hence, this particular state of the field,
described by Eq. (2.83)), is called the Unruh vacuum. It is the final state reached by the
field after a black hole has formed. In Table 2.2 we summarize how various detectors
perceive the Unruh vacuum, depending on their trajectories.

location | acceleration | Temperature
Z+ 0 TH
H 0 0
H K//Goo T/ /900

Table 2.2: Detector’s response when coupled to a field in the Unruh vacuum.

There exists another stationary state, where both u-modes and v-modes are seen as
being in a thermal bath by an asymptotic detector. This state is the Hartle-Hawking
vacuum [81]. Tt is easily obtained by coupling v and v modes, initially in the Unruh
vacuum, so that the v-modes thermalize and end up at the same temperature. The easiest
way to do that would be to put the black hole in a box surrounded by perfect mirrors [65].
In such a state, a detector will this time exactly thermalize at the Hawking temperature
Ty. This state is particularly relevant when considering the analytic extension of the
Schwarzschild black hole. It is the only state which is regular everywhere, in particular
on both the past and future horizons. On the contrary, the Unruh vacuum is regular on
the future horizon, but singular on the past one. However, in astrophysics, the Unruh
vacuum is the most natural, because a past horizon is never formed after a collapse, and
as we saw, the field’s state relaxes toward the Unruh vacuum.

in and out basis

There is an alternative way to analyze the final state of the field. One can try to decompose
the field operator in order to recognize out-modes, that is a decomposition analogous
to Eq. but where modes are plane waves with respect to asymptotic late time
observers. Asymptotically, u and v are cartesian Minkowski coordinates, therefore such a
decomposition would read

d\
vVAar A .

All we need to know is thus the relation between in and out modes. For w, A > 0, this
relation is written

+o00o
é(@, Q) _ / |:dc>>\ut (e—i/\y - e—i/\g) + &iut’[ (ei/\g o ei/\g)] (292)
0

efiwf_l(g) +oo e iU @ el " 203
—_— = Ay ——— + Dro—F— . .
VAarw 0 [ A Var A A \/47r)\} ( )
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2.3 Hawking radiation

This together with the complex conjugated relation gives us the link between in and out
creation and annihilation operators. This is obtained by uniqueness of the field operator,
i.e., by identifying decompositions (2.80)) and (2.92)).

“+oo
~out ~in * AlnT
a," = / [om% + 5 }
0

+o0
ag"t = / |Bundly + alyait] x.
0

(2.94)

Such a transformation is called a Bogoliubov transformation. Note that the matrix rela-
tion between modes is the transposed of the one between operators. Only the second one
coincide with the S-matrix of scattering theory [49, 22]. The Bogoliubov transformation
is a crucial tool for quantum field theory in non trivial backgrounds. Indeed, it allows
us to analyze the content of the in vacuum (or any in Fock state) in terms of out-going
quanta. In particular, the number of quanta present in the in vacuum is

ngt = (Omlad ™ ag" | 05), (2.95)
which gives
+oo
nf}”z/ |Bor2dA. (2.96)
0

To obtain an explicit expression, one can write o and 3 as overlaps of in and out modes [69].
In the present case, a simple Fourier transform is enough to obtain Eq. explicitly.
Moreover, we shall write the Bogoliubov only at late time, which is the regime we are
interested in, hence the function f~!is given by Eq. . Therefore, for A\,w > 0,

+0o0
A\ = \/E/ 621‘)\67&26&02@’
27
+0o0
f/ e2inx y—iw 94X (2.97)
2k X
w w
)5 5T (i)
27m( ) A Zli
I" is the Euler function, whose properties are recalled in App[A] Similarly
+oo
_ g 2ide” "L fiwgd_g
ﬁw)\ - \/:/_oo € € 271_7
e 2 e W W (2.98)
- 2\ u,/—r(—),
21K (23) A ZFL

_mw

= € naa))\

When computing the mean number of quanta at fixed frequency w, using Eq. , one
finds an infinite result. This comes from the stationary character of Hawking radiation.
The total number of emitted particle is infinite, but the rate, i.e., the number of emitted
quanta per unit of time, remains finite and constant through time. From now on, we shall
refer to the flux as n,, but keeping in mind that it does not corresponds to a mean particle
number. To evaluate it properly, we compute the number of quanta emitted during the
interval u; < u < u; + Au. The range of (ingoing) frequencies A that contributes to the

(outgoing) flux satisfies
wet <\ < werlmtau), (2.99)
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Chapter 2 : Quantum field theory in curved space-time

This statement follows from the redshift factor that in modes undergo when leaving the
horizon, see Sec|l.4.2| Eq. (1.124]). From this, the flux emitted during the above interval
reads

1

ng}ut — A_u<CALS)ut1‘dS)ut>7
wer(u1+Au)
S |Bual*dA 2.100
Au o WA ’ ( . )
Y e B\
VXTI s e 127k
which finally gives
1 1
= (2.101)
2m et — 1

this result is exactly the thermal flux emitted by a black body at the Hawking temperature
Ty = k/2m.

Collapse of arbitrary black hole

In what follows, we study a more general model of collapsing star forming a black hole.
The aim is to understand that the details of the collapse are irrelevant for what concerns
the late time state of the quantum field. For the sake of simplicity, we shall keep the
assumption of spherical symmetry, and thus work within the 141 reduced geometry.
However, we will make no assumptions concerning the matter content of the star, or the
exact motion of its surface during the collapse.

A dr* — dr? < R,.(71),
gst = { Alnmldr —dr), v < Rulr) (2.102)
dt® — (dr —v(r)dt)®, 1> R.(T).
Just like for the preceding case, we go straight to light cone coordinates.
AdUdV, < R (1),
ds? = V. r<Rd7) (2.103)
(1 —ov%)dudv, 1> Ry(T).

Since the star’s surface does not a prior: follow a light-like trajectory, we can hardly
impose the advanced coordinate v to be the same on both sides. However, we can assume
without loss of generality that U depends only on u and V' on v. Doing so, what we need
to do is to impose the continuity of the metric across the star’s surface, which gives

du dv
dudv
Moreover, since the star motion is expressed through the coordinate r, we shall also impose

its continuity. The relation between r, u,v and U,V are still given by Egs. (2.75). In
addition, we have at the star’s surface

(1—o?) (2.104)

av . U .
Therefore, the continuity condition on r reads
) .od - dU
OR, = (1 —v?)(1+ R) o= — (1 —v3)(1 - R,) (2.106)

av

o4
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2.3 Hawking radiation

Solving these equations, we extract the derivatives of u and v

du (R3+A(1—02)(1—Ri))5 ~ R,
= = T : (2.107a)
w  (Brac-w0-m) k.
av (1 —v2)(1+R,) (2:107b)

As in the preceding case, to obtain the late time state of the field, all one needs to do is
evaluate v and v as functions of U and V when t — +00. As we saw for Eq. and
is reviewed in Fig[2.3] this is done when the function R, approaches 2G M, i.e., when the
horizon is formed. Let’s say this happens at a time 7,. When 7 — 73, the surface of the
star falls in, following a time-like trajectory, thus

R, ~2GM — v, (T — 13,), (2.108)

with 0 < v, < 1. In this regime, the derivative of the u coordinate is given by

du 1
e —— 2.109
dU k(U —Up)’ ( )

where Uy is a constant that can be removed by a proper choice of origin for U. We deduce
the relation U(u)

U=Uy—ae ™. (2.110)
——
<0
To obtain the above equation, we exploited the fact that v}, = &, as we derived in

Eq. . This relation (2.110) is crucial, and contains the main physical information.
First, the relation is exponential. Exactly as Eq. , this is the key point which leads
to a thermal state for u-modes at late times. Moreover, we see here that the coefficient in
the exponential is exactly the surface gravity x, which therefore governs the temperature
through Eq. . This is a major point of black hole radiation. The only information
that the field retains at late time, is the value of the surface gravity, and no other detail
of the geometry, since the function v(r) can be arbitrary without altering our conclusion.
Furthermore, following the path of Sec[2.3.1] we compute the Bogoliubov coefficient, and
obtain

TW

E e [ (i
fur = 5 (a) AF(z%). (2.111)

We first notice that the coefficient a > 0 that appears in Eq. (2.110)) only contributes to
[ as a phase. This phase is free of physical consequences, since it can always be gauged
away by a proper change of origin for u. Moreover, the condition

B

075N

TW

—e %, (2.112)

holds, which is the characteristic of a thermal state at late times. Concerning v-modes,
the computation is equally simple. Near the horizon, one gets

Ao(1 + v,
v= %V + cste, (2.113)
Vs
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Chapter 2 : Quantum field theory in curved space-time

where Ay = A(v = vy) > 0 is approximately constant. Indeed, as we see on Fig, only
a finite and small interval of v describes rays reaching asymptotic infinity. The above
equation means that a positive frequency v-mode stays a positive frequency v-mode, and
hence the late time state of v-modes is the vacuum. This confirms that the field qg ends
up in the Unruh vacuum, long enough after the black hole has formed.

Figure 2.3: Penrose diagram of a general collapse.

2.3.2 Radiation of eternal black holes

Shortly after the discovery of black hole radiation, an alternative derivation was proposed
by Unruh [68]. As we noticed in the preceding section, the late time state of the field is
independent of the detail of the collapse dynamics. Therefore, it should be possible to
characterize this state by considering only the stationary black hole geometry obtained
after the black hole has formed. Unruh showed that this is possible if one looks for a
vacuum state which is regular across the (future) horizon. More precisely, the criterion is
that any observer freely falling into the hole would not detect any quanta while crossing
the horizon, at least at high energies, see the discussion after Eq. . To understand
this, we study again the dynamics of the field on the reduced 1+1 geometry obtained from
Eq. . Before going to the details of the computation, we focus first on the main
points of the canonical analysis, as performed in flat space in Sec2.1.1] The dynamics of
a massless scalar field in this geometry is derived from the action

5l6) = 5 / (0 + 00,0)° — (D,0)?)ddt. (2.114)

Hence, the canonical momentum reads m = 0,¢ + v0,¢, which allows us to build the
conserved scalar product

(P1lgo) =i / (07 (0i002 + v0,002) — P2(Osp1 + VD1 )*] da. (2.115)
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2.3 Hawking radiation

This scalar product is crucial, because it determines whether a mode is associated with
an annihilation or creation operator, as in Sec[2.1.1} Because of conformal invariance, the
u and v sectors exactly decouple, and the mode equation is easy to solve. However, it is
of pedagogical value here not to solve it completely, but to present the separate dynamics
of both sectors. Indeed, any solution of can be written as a sum ¢ = ¢" + ¢°.
Each term obeys an independent equation of motion

9 0y)9" = 00",
(014 (06" = 0u6", o6,
(O + v(x)0,) 0" = =00,

Because v(x) = —1 on the horizon, the first equation is regular, while the second is

singular. This is the origin of the dissymmetrical character of the Unruh vacuum regarding
u and v sectors, as described in the preceding section. For the sake of simplicity of the
discussion, we focus on the non trivial sector, i.e., we consider only u-modes. We first
decompose them in a superposition of single Killing frequency modes. Hence

" (t, ) :/RcﬁZj(:U)ede. (2.117)

Because K = 0, is a Killing field, it commutes with the wave operator, and thus the
dynamics can be studied at a fixed frequency w. Moreover, asymptotically, K is the
Minkowskian time derivatives, and thus the corresponding eigen-modes are associated
with the usual particle interpretation developed in Sec[2.1.1 The mode equation obeyed
by ¢! reads

(w + (1 +)3,)" = 0. (2.118)

To characterize the frequency as seen by a freely falling observer, we use the vector field u
of Sec[I.4] The freely falling frequency 2 is thus defined as the eigen-value of the operator
iutd,. Moreover, on the u-sector, we have the convenient property that

u'0, = 0y + v0, = —0y, (2.119)

as we see from Eq. (2.116). This means that for these modes, the freely falling frequency
coincides with the spatial momentum. Not only this correspondence is convenient, but
as noticed in [82] it will turn out to be equally valid when introducing dispersion, in
Sec[3.2.4. Moreover, diagonalizing the operator —id, is straightforward using Fourier
transform. The key point of the present derivation of Hawking radiation, is to characterize
the Unruh vacuum using modes containing only positive freely falling frequencies in the
near horizon region. Hence, by construction, a detector crossing the horizon geodesically
would detect no quanta. Such modes have the form of

u,in _ e zﬂxﬂ
¢w (l‘) - 0 f(Q)e \/%

As we see, they are characterized by being analytic on the upper complex z-plane. In
addition, we build the corresponding, i.e., with the same w, negative norm modes, which
contain only negative freely falling frequency €. These are analytic on the lower half

plane. Combining Eqs. (2.118)) and (2.120)), we see that they are easily expressed as
(¢™71)*. We underline that this construction puts no restrictions on the Killing frequency

(2.120)
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Chapter 2 : Quantum field theory in curved space-time

w, therefore, the in-modes exist for both signs of frequency w, and the field operator,
restricted to u-sector, reads

~

b= [ ([aosmw + @ty e

(2.121)
+ a0t 0 (@) + (@) (9 ()" € ) d

We emphasize that the in modes we have constructed here do not correspond with single
particle modes in the local Minkowski patch around the horizon. However, because they
contain only positive frequencies, they characterize univocally the local vacuum. In other
words, the prescription a”|0) = 0 picks up the state that contains no quanta in the sense
of local Minkowski, or freely falling, observers. This state is, as we already understood,
the Unruh vacuum. Hence, because of that characterization, the modes ¢%™™ are often
referred as ‘Unruh modes’.

At this level, it is already possible to obtain the thermal character of black hole
radiation. Indeed, the general u-solution of the mode equation reads

¢"(z) = (AO(z) + BO(—z))e'/ T ™, (2.122)

The appearance of the Heaviside © function comes from the singular character of the
mode equation (2.118)) at z = 0. In the near horizon region, one has v(z) = —1 + Kz,
with s the surface gravity. Thus the modes look like

ol (z) = (AO(x) + BO(—x))|z|'x. (2.123)

To be analytic for Im(x) > 0, this mode must be proportional to (x + ie)’s. Therefore

ou () = AO(z)|z|'x + Ae™® O(—z)|z|' . (2.124)
Hawkingfluantum pa;trner

By extending this for all values of x using Eq. , we see that the first terms represent
an outgoing particle escaping toward asymptotic infinity, while the second, of opposite
norm, accounts for its partner, falling in the black hole toward the central singularity.
Because in modes contain both values of the frequency w, there is a mixing between
creation and annihilation operators, and hence, the in vacuum contains outgoing particles.
Moreover, we see that the outgoing modes are always accompanied by a partner, living
inside the horizon. This is in fact necessary by conservation of the Killing energy. It shows
that the process of Hawking radiation really consists in pair creation [69]. In addition,
the relative weight of outgoing modes gives us

wT

1B,/ = e =, (2.125)

which is characteristic of a thermal spectrum. To confirm the above analysis, and obtain
the full Bogoliubov transformation, we solve Eq. (2.118]) in Fourier space, so that —id, —

p. Eq. (2.118]) becomes

(w— ik — ikpd,)du(p) = 0, (2.126)

whose general solution is
bu(p) = AO(p)|p| "~ + BO(—p)|p| 5" (2.127)
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2.3 Hawking radiation

To normalize the in and out modes, we use the canonical scalar product (2.115]). Exploiting
again the wave equation restricted to the u-sector ([2.116), a straightforward computation
leads to a much simpler expression for the scalar product

@xlon) = i [ loz0.0% - n0.0%)do 2.128)
In p-space, this simply reads
(Glds) =2 / POl OLidp. (2.129)
Therefore, the normalized in mode of positive norm reads
~ piiffl
“(p) =0 : 2.130
¢ (p) = O(p) i (2.130)
Going back to z-space, we obtain
. 1 too w_q dp
uin oy TV TPt 2.131
o) = o= [ e (2.131)
This integral is easily computed using the Euler I' function, and we derive
i W wr W |x|zf wm ’x|’%
() = e (—z—) X | O(x +e v O(—x . 2.132
S @) = |5 2) x [ow)r= ”\/m] (2.132
—_—— —_———
o (¢21)"

The out modes appearing in this formula were normalized using Eq. (2.128]). A similar
computation leads to the decomposition of (¢%“)* into out modes. Transposing these
relations, we obtain the Bogoliubov transform relating in and out creation and annihilation

operators
Qg o B\ ( a
() = (& 2) () (2183)

W

@ Bu\ _ [ w e T(=if) r(zg)eﬁ>
(ﬂw dw>_ 27k (F(—ig)e—“ﬁf r(ie) ) (2.134)

K

with

This equation shows one of the main advantages of working with Unruh modes. Indeed,
in that case, the Bogoliubov transformation is diagonal in w, compare Eq. and
(2.134). We conclude this derivation by showing that we obtain once more a Planckian
spectrum for the flux of emitted quanta in the Unruh vacuum, since

(5@ a2 050) = |8 20(w — w'). (2.135)

Asin Egs. (2.99) and (2.100]), the ¢ function is here to encode a stationary flux of particles,
which reads

11
n —— (2.136)

w 27w

:%GT—l.

For convenience, we shall often forget the 27, and work with the shortcut definition

ny = |Bul*.
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Chapter 2 : Quantum field theory in curved space-time

2.3.3 Observables
Asymptotic energy flux

To compute the mean energy flux emitted by the hole, we simply need to compute
<01H\Tuy!01n>~ Unfortunately, computing naively this expression leads to an infinite re-
sult. This is because TW is a quadratic expression of the field operators, as discussed
after Eq. . The renormalization of the stress-energy tensor in quantum field theory
in curved space-time is a central but technical topic. The procedure to follow is to subtract
the (infinite) contribution of the local Minkowski divergence. More precisely, in a small
vicinity around each x € M, we define a local vacuum |I(z)) with the help of modes that
resemble the most Minkowski plane waves. This can be done because the divergence is in
the ultraviolet regime, which appeal for very short distances around z, in a neighborhood
that is essentially Minkowski. The renormalized stress tensor is obtained by subtracting
this (infinite) mean value

Tren =T, — (I(@)| T | 1(2)) . (2.137)

Of course, the latter equation is only formal since both terms on the right side are in-
finite. One needs first to regularize it. the most powerful method is the point splitting
approach, which is essentially base on the structure of Green function, where we subtract
the Minkowski divergence before taking the coincident point limit. All this procedure
can be shown to be perfectly consistent and leads to a finite result for a wide class of
space-times. For a more detailed discussion we refer to [66, 65]. Here, it is unnecessary
to develop the full technology. Instead, we shall exploit the fact that the geometry is
asymptotically flat. Let’s consider as an example the momentum flux. Asymptotically
we are in flat space, hence [64],

J =T, = 8,0 0,0. (2.138)

Therefore, it is tempting to prescribe a normal order procedure. However, this is not
as easy as in flat space, since we dispose of several inequivalent notions of creation and
annihilation operators. To overcome this ambiguity, we prescribe the out-normal order,
which means that we put all annihilation operators on the right when using a decompo-
sition with out-operators. This is physically reasonable, because if the state of the field
was the out vacuum, we would expect, by definition, to detect no energy. Moreover, in
asymptotically flat spaces, it can be shown that it is equivalent to the point splitting
procedure.

i = T tout - (2.139)

Because the state of the field is the in rather than the out vacuum, the mean energy flux

will be non trivial. Using Eqgs. (2.121)) and (2.81)),

N +o0 d
(On]J101m) = / B, (2.140)
0 2
which gives exactly a Planckian thermal flux in 141 dimensions
A T
= =T 2.141
()= =13 (2141)

To obtain the full 3+1 result, we just recall that the field ¢ used below is related to the
3+1 field by Eq. ((1.130)). Transposed to the stress-energy tensor, it gives

A 1 A
(TAD) = —(T20), (2142
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2.3 Hawking radiation

where the equality holds for u,v = t,r and the other 4D components vanish. This
integrated on a sphere gives again the result (2.141)). Note that this equation is exact
only because we neglected the gravitational potential in Eq. (1.131). We now discuss its
effects.

Greybody factors

In fact, the expression overestimates the flux. Indeed, for a real 3 + 1 black
hole, not all the radiation emitted by the horizon reaches the asymptotic region. There
is a loss due to the potential barrier appearing in Eq. . However, this effect has
no conceptual consequences on the Hawking radiation, since it affects only the infrared.
Indeed, the scattering matrix relating in and out modes admits the exact factorization

S = Sxur - Set. (2.143)

This factorization of the S-matrix will be explained in more details in Sec[4.4.1} For now,
we just expose its signification. Sypgr is the Hawking S-matrix found in Eq. . It
relates in and out creation and annihilation operators. The in vacuum, or Unruh vacuum
is defined by a prescription which concerns the ultraviolet regime. Indeed, from equation
(2.120)), we see that we can add many low negative frequency modes without altering the
analytic characterization of Unruh vacuum. On the other hand, Sy concerns only the
infrared, and becomes trivial when w — oo. It is obtained by solving an usual scattering

problem, which is Eq. (1.131]) written in tortoise coordinates
atz¢ - 63*¢ + VGraV(T)¢ = 0. (2144)

We emphasize that this extra scattering is purely elastic, 1.e., it does not mix annihilation
and creation operators. Hence, Sy € U(2) while Sxur € U(1, 1)E| In particular, the
temperature is unaffected by the greybody factors, and is still defined by Sxgr. This
can be seen when the field is in the Hartle-Hawking vacuum. In that case, the black
hole is in equilibrium with the walls, and the only parameter describing the state is the
temperature, i.e., greybody factors disappear. On the other hand, the outgoing flux in
the Unruh vacuum is reduced. In Eq. , the 7/12 will be replaced by a numerical
factor £ depending on the nature of the field and the full propagation from the horizon to
infinity. As far as the flux is concerned, this numerical factor can be pretty large, reducing
the flux up to ~ 99% [0, 511, 52].

Unfortunately, even in the optimistic estimate, without greybody factors, the flux
emitted by a black hole is very small. Indeed, the temperature takes the value

M,
Ty ~ <W®> 6.107% pkK, (2.145)

In particular, for a solar mass black hole, the temperature is 7 order of magnitude smaller
than the cosmic microwave background ~ 2, 7K, erasing all hopes of observing Hawking
radiation in any near future. This is why this phenomenon is mainly a playground for
theoretical work, and speculations about the quantum theory of gravity.

5In fact, it is slightly more complicated, since they must be 3 x 3, see Sec
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Figure 2.4: Space-time diagram of the scattering of Hawking quanta near a black
hole. The near horizon behavior, where the redshift is depicted, is independent
of the elastic exterior scattering, which is responsible for the grey body factors
corrections.

The back reaction

To conclude the chapter, we shall say of few words concerning the back reaction of Hawking
radiation on the black hole. When quantum fluctuations of gravity can be neglected, the
black hole is perturbed by the T}, of its own radiation. Hence, its dynamics is given by
the Einstein equation sourced by the (renormalized) stress energy tensor of the radiation

G = STG(TM). (2.146)

This equation can also be obtained from energy conservation. The energy flux emitted to
infinity reduces the mass of the black hole so that the total energy black hole + radiation
is conserved. Such equation follows from ([2.146)) evaluated asymptotically and integrated

on a sphere. It gives
dM

dt
Therefore, the black hole slowly evaporates as M — M, o< —t'/3. Of course, to obtain
the life-time one should precisely incorporate the effects of greybody factors, that is com-

pute £, as discussed in the preceding paragraph and in [50]. However, this does not affect
the conclusion that a black hole evaporates, by losing its mass through Hawking radiation.

= —£T2(M). (2.147)

Despite the intensive work on the matter during the last 30 years, the scenario of black
hole evaporation still raises many open questions. One of these concerns the final stage
of the evaporation of a black hole, where the semi-classical equation can certainly not
be trusted (see Fig. Another one is the validity of the semi-classical approximation,
a point that we shall discuss in the beginning of chapter 3] In both cases, our lack of
answers is deeply entailed to the full problem of quantum gravity.
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LLLI JJJ\J Hawking radiation

/ \ Collapse

Figure 2.5: Space-time diagram of an evaporating black hole. The black hole
slowly loses its mass through Hawking radiation, until it reaches a final state,
unknown from the semi-classical theory.
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Breaking Lorentz invariance
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3.1 Dispersive field theories

3.1.1 The transplanckian question

Hawking radiation, as described in Chapter [2], is one of the main predictions of quantum
field theory in curved backgrounds. As we discussed in Sec. it plays a crucial role in
black hole thermodynamics and in the attempts to construct theories of quantum gravity.
Unfortunately, such theories are up to now still incomplete, and no complete microscopic
or quantum description of Hawking radiation has been provided. The semi-classical treat-
ment stays the most relevant model. Therefore, it is crucial to determine under which
conditions this treatment is valid, and how its properties depend or not on hypotheses

65



Chapter 3 : Breaking Lorentz invariance

concerning the ultra-violet behavior of the theory.

One of the most puzzling features of Hawking radiation concerns the role of ultra
high frequencies in its derivation. This can be seen as follows. Imagine that a Hawking
quantum is detected at infinity, with some frequency wy. What happens if one traces
back in time this particle ? It goes back closer and closer to the horizon. Its Killing
frequency is unchanged, but its freely falling frequency €2, which is the one as defined in
some small Minkowski patch, gets blueshifted. Since null geodesics undergo an infinite
focusing (see Sec., this blueshift never stops. Therefore, we can question the validity
of the semi-classical approach in Hawking’s derivation [26]. Can we trust a theory where
gravity is treated classically ? Because of this infinite blueshift, outgoing quanta could
interact gravitationally very strongly, and hence invalidate the approximation [83][62]. Of
course this blueshift is in fact never infinite. One can only trace back to the time the hori-
zon was formed, from the collapse of some star. To put some numbers in the discussion,
we consider a solar mass black hole, M = M. 1s after the black hole has formed, the
blueshift factor is of the order of !, As Unruh often says, ‘this number is so huge, that
you can put any units [for the frequency], it will only make a trivial change in the expo-
nent’. In particular, when one detects a particle at a typical frequency of the order of the
Hawking temperature Ty, it emerges from quanta with freely falling frequency way above
the Planck scale, where the semi-classical treatment can certainly not be trusted. This
puzzle is often referred as the ‘transplanckian problem’. However, following Jacobson, we
shall rather refer to it as a ‘transplanckian question’. Indeed, at late time, no observable
explicitly shows these transplanckian frequencies, neither the fluxes, nor the mean value
of the (renormalized) stress energy tensor (Tliﬁ“) Hence, it is only by knowing the full
quantum dynamics that we would be able to see whether this redshift invalidates or not
the Hawking scenario.

As mentioned in [69], the infinite redshift on the horizon is probably not relevant
as far as standard model particle interactions are concerned, since these are presumably
asymptotically free. However, this transplanckian question can certainly not be washed
out when it comes to gravitational interactions, because they tend to increase for higher
energies. There have been several attempts to take into account gravitational interactions
in the process of Hawking radiation, mainly by 't Hooft [83] [62], but we also mention [84],
where a potential spontaneous Lorentz symmetry breaking is considered. The main con-
clusion is probably that transplanckian frequencies always induce strong interactions near
the horizon. For example, when considering an ingoing spherical shell of matter inter-
acting with an outgoing one, of respective frequency wi, and Ay, the interaction matrix
elements essentially go like

A WAT
<win’Sint’)\out> ~ 4G7” — ,:l . (31)
H

Since this blows up on the horizon, it could drastically alter the semi-classical picture.
However, up to now, no fully satisfactory computations have been obtained. This is mainly
due to the fact that every perturbative treatment seems to break down due to the presence
of this transplanckian frequencies. In the work presented in this chapter, the philosophy
is thus to determine under which conditions Hawking radiation is a robust scenario, and
how deeply it relies on the ultraviolet behavior of the full theory. To address this question,
Jacobson first proposed to introduce a modification of the dispersion relation [26] that
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3.1 Dispersive field theories

would emerge from the microscopic structure of the theory. This idea was inspired by a
very nice analogy found by Unruh [27], between sound propagation on moving flows, and
light on a black hole geometry. We shall first present this analogy and then introduce the
Jacobson-Unruh dispersive model.

3.1.2 Analog models
The Unruh analogy

In 1981, while preparing a lecture on fluid mechanics, Unruh noticed that sound waves
in a moving fluid obey a wave equation which is exactly the one on a space-time geom-
etry [27]. Indeed, in the hydrodynamic regime, i.e. for long wavelength, sound waves
see an effective metric characterized by the background flow. More precisely, the velocity
profile is decomposed into a background flow and fluctuations around it

V=TV +00. (3.2)

Whenever the background flow becomes faster that the speed of sound ¢, i.e., propagation
speed of the fluctuations, there is a horizon. Indeed, let’s assume for simplicity that o’ is
unidimensional in the x direction and that v < 0, so that the current is flowing to the left.
In addition, suppose that v = —c at x = . On the right of this point, sound waves can
be emitted toward both sides. However, as soon as we get on the left side of x;, all sound
waves are dragged by the current, and propagate to the left (in the lab frame). Anyone
located in this region (z < xj,) wouldn’t be able to communicate to the right region. The
interior region effectively behaves as a ‘dumb holeﬂ, the sonic analogue of a black hole
(see Figi3.1]).

int
no rggam

Figure 3.1: Artist view of an analogue black hole in a flow. Fishes that have
passed the point of no return can no longer communicate with those upstream.
[Credit: Yan Nascimbene]

In [27], Unruh made the precise computation of the sound equation in an ideal, inviscid
(no dissipation) and irrotational flow. Here, we just present the result without any proof.

!Note that in this context, ‘dumb’ stands for ‘mute’, not ‘stupid’. Because of this amusing quiproquo,
Unruh was forced to change the name of its first paper [27], since the editor found it too offensive.
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For detailed computations, we refer to [85] 86, [87]. We first define the velocity potential
¢ such that

N —_—

v = grad(¢). (3.3)
Using Navier-Stokes and the continuity equation, we show that ¢ obeys the massless wave
equation of Sec in the geometry

ds? = '(—; [Pdt? — (dz — v,dt)? — (dy — vydt)* — (dz — v.dt)?] . (3.4)

Here, p is the density of the fluid. ¥, p and ¢ are not independent, but related through
the continuity equation. Most of the time, we assume a unidimensional flow, and the
wave equation then reads

1 1
(00 0r0) 00+ 002) = - 0updi| Gul) = 0. (35)

Later, this analogy was extended to many condensed matter systems, among which surface
waves [88], light in optical fibers [67], liquid helium [89] or Bose-Einstein condensates
(BEC) [90P] We shall provide more details about this last analogue in Chapter 4 All
this cases share the same equation, , for the propagation of their perturbations. As
a consequence, exactly as was derived in Secf2.3.2] analogue black holes should radiate
a thermal flux of phonons, the quanta of sound waves, at the Hawking temperature
Ty = r/2m. The surface gravity is given by the same formula as Eq. ,

K = 00, (3.6)

but now, this has a new interpretation, as the gradient of the flow velocity.

This analogy is very rich in potential research directions. Not only it gives an oppor-
tunity to perform experiments on the subject, it also sheds new light on potential answers
to the ‘transplanckian question’ [01]. Of course, an analogy is never a proof, but their
study is both stimulating from the astrophysics point of view, or the hydrodynamical
one. On the experimental side, an analogue black hole has been produced in BEC [92],
but the detection of Hawking radiation is currently under investigations. In a water tank
experiment, the classical pendant of Hawking radiation was successfully measured, and
the thermal law verified [93]. There has also been progressing results in optical fibers [94],
but the precise interpretation of the data is still under debate [95].

We end this section by a small remark concerning the so-called white hole flows. A
white hole geometry corresponds to the time reverse of a black hole. It is obtained when
the gradient of the velocity profile v is of opposite sign, ¢.e., d,vj; < 0. This means that a
white hole possesses a negative surface gravity. As we shall see in Chapter [d], the behavior
of a white hole is very similar to that of a black hole. From an astrophysical point of view,
a white hole geometry is an irrelevant concept. Unlike a black hole, such a solution can
never be obtained dynamically, as the final state of a star, or another stellar object. There
might still be some speculative conjecture about their possible existence, but up to now,
it is very unlikely that these have any physical significance for astrophysics. On the other
hand in analog gravity, white holes are easily obtained and provide a very interesting
playground for both experimental and theoretical probes of the Hawking effect. As a first
example, the well-known ‘hydraulic jump’ [96] is an analog white hole.

2The suggestion of references here is far from being exhaustive. The interested reader is highly
encouraged to consult reference [85] where a historical survey of the work in analog gravity is provided,
together with a well-furnished bibliography.
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Transplanckian question revisited

Since the free wave equation is exactly the same in a fluid flow as in a black hole, the
same questions concerning the infinite redshift on the horizon might be asked. Already
in his first paper on the matter [27], Unruh wrote ‘The low-energy fluid equations which
have led to quantum thermal sonic emission by a transonic background flow break down
at high frequencies because of the atomic nature of the fluid. At distances of 1078 cm,
the assumptions which I use of a smooth background flow are no longer valid just as in
gravity one expects the concept of a smooth space-time on which the various relativistic
fields propagate to breakdown at scales of 10733 ¢cm. Furthermore, the phonons emitted are
quantum fluctuations of the fluid flow and thus affect their own propagation in exactly the
same way that graviton emission affects the space-time on which the various relativistic
fields propagate.” However, unlike in gravity, when considering atoms we basically know
the microscopic quantum theory. It is simply given by a N-body Schrodinger equation.
Therefore, the transplackian question can now be addressed and possesses a definite an-
swer. Either some mechanism protects the appearance of Hawking radiation, or it is
simply cancelled by microscopic effect. As understood by Jacobson, to obtain the answer,
it is unnecessary to solve the full N-body problem. Indeed, the first deviations due to the
atomic structure of matter will manifest themselves as a modification of the dispersion
relation for short wavelengths [26, [97].

Taking dispersive effects into account

We consider the frequency of the wave in the frame of the atoms, i.e., the co-moving
frequency

Q=w—uvp. (3.7)

In the hydrodynamical regime, this frequency is related to the wavelength by the rela-
tivistic relation

0?2 = p?. (3.8)

The combination of the last two equations is simply the eikonal approximation of the wave
equation (3.5). When considering shorter length, or higher p’s, this dispersion relation
will be smoothly modified, and becomes

O = AF(p).

4 3.9
5 o). .

=c*p’ £+
We see that this introduces a new length scale A~!, which is in analog context, essentially
the interatomic scale. Therefore, the question of the robustness of Hawking radiation in
analog models, can be addressed by solving a linear equation, but containing higher order
spatial derivatives terms. Note also that dispersive effects can be divided into two classes,
depending on the choice of sign in Eq. . A + sign leads to a superluminal dispersion,
where the group velocity exceeds the seep of light for increasing p’s. The - sign gives
the opposite result, i.e. a subluminal dispersion. Before addressing the robustness of
Hawking radiation in Sec[3.2] we will present how one can implement this ideas in general
relativity.
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3.1.3 General relativity with ultraviolet Lorentz violations
How would Lorentz invariance be broken ?

There are basically two lines of thought concerning the possibility of having an ultra-
violet violation of local Lorentz invariance. On one hand, one can consider that there
are, microscopically, extra degrees of freedom, which specify a preferred frame. In other
words, Lorentz invariance is not exact in the very high energy regime, but rather emerges
as an infrared symmetry. This would be the spirit of theories like Einstein-Aether [98]
or Horava-Lifshitz gravity [99]. On the other hand, one can still assume that Lorentz
invariance is a fundamental symmetry, but which would be broken near the horizon of
a black hole, due to strong interaction effects [84]. As we discussed in the preceding
section, the infinite redshift might seem to generate strong gravitational interactions. It
is a possibility, that interactions could be effectively described for intermediate energies
by a modified dispersion relation. In fact, there is quite a few known mechanisms that
lead to a dynamical Lorentz violation, see e.g. [I00]. The novelty here would be that such
violation occurs in the ultraviolet regime.

We point out that in the first philosophy, the extra degrees of freedom, which break
Lorentz invariance, can either be fundamental or collective degrees of freedom, i.e. ‘phonon
like’. An interesting example can be found in the concept of ‘emergent gravity’ [101].
Keeping the idea at a naive level, it consists in pushing a step forward the Unruh con-
densed matter analogy. In this picture, space-time is not a fundamental degree of freedom.
Rather it emerges from collective behavior of microscopic degrees of freedom, ‘atoms of
space-time’. In that case, the metric emerges when considering a large number of atoms,
as in the preceding section. However, a preferred frame then also emerges, as the frame
co-moving with the atoms. Therefore, even though the preferred frame is not necessarily
present microscopically, the emergent structure in that is always twofold: a metric to-
gether with a preferred frame. Only phonons of long wavelength lose track of that second
structure. Moreover, if several types of excitations are present, they will generically feel
a different ‘speed of light’, meaning that the preferred frame is still tractable in the long
wavelength regime. We refer to [102] for a discussion on this kind of difficulties in the
emergent approachP} Therefore, in this emergent gravity picture, a preferred frame will
emerge for any geometric background. This is in contrast with the second philosophy,
were the preferred frame emerges only in some space-times, such as black holes. This
would allow to keep Lorentz invariance as an exact symmetry in Minkowski, while being
violated around a black hole horizon.

In our work though, we shall not address such delicate questions. On the contrary,
we will assume that Lorentz invariance is broken at short distances, and we study the
consequences for black hole physics. Of course, in astrophysics perspectives, this is quite
speculative. However, for analog gravity purpose, our work has direct implications, since
there, Lorentz invariance is never exact. In the following, we describe the main ingredients
needed to model a broken Lorentz invariance.

3Note that there exist other approaches to quantum gravity inspired by the ideas of emergent gravity,
where the emergence of a preferred frame could be generically avoided. This is the case for e.g. Group
Field Theory [103], 104].
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3.1 Dispersive field theories

Einstein-Aether theory

In order to break local Lorentz invariance, we must necessarily choose a ‘preferred frame’,
in which the dispersion relation is imposed. Indeed, in order to mimic what happens
in analog gravity, we must define what plays the role of the ‘co-moving frequency’ 2.
As exposed in [105], this can be done by disposing of a vector field u*, which is time-like
everywhere. Without lack of generality, we can assume it as being of unit norm, v*u, = 1.
The preferred frequency is then defined as

Q= —pu’. (3.10)

This new field v must be considered as an extra background structure, on equal footing
with the metric tensor g. However, in general relativity, such a vector field breaks general
covariance, i.e., diffeomorphism invariance. This has dramatic consequences, e.g., the
stress-energy tensor of matter is no longer conserved. This would make Einstein’s equation
as it stands inconsistent, since the Einstein tensor G, of Eq. is divergenceless
by construction. To restore general covariance, the preferred frame must be dynamical.
In [98], such a theory, with both a metric and a preferred frame, was developed. Of
course, studying Lorentz violation, or the consequences of a preferred frame is much older
(see various references in [98]). However, the main new ingredient is that the field u is
constrained to stay time-like of unit norm. This implies that Lorentz invariance is always
broken by the presence of this preferred frame. To consider the most general dynamics,
the action is obtained by adding all possible terms that respect the symmetry (here,
diffeomorphism invariance) and that contains at most two derivatives [106]. This action
reads

Slg,u] = [R + VAV, + cg(Vuu“)2 +csVHu"Vyu,

+ es(u'V, ) (WY ) + A(utuy, — 1)]v/=gd's.

The last term is the constraint that u is a unit time-like vector field, and X is the corre-
sponding Lagrange multiplier. This action can be viewed from two angles. It can either
be considered as a modified theory of gravity, where u is an extra fundamental field, or, it
can correspond to an effective theory. In that case, would be the long wavelength
approximation of an underlying theory, which is the motivation for considering only two
derivatives in the action. Non zero values of ¢y, ¢, c3, and ¢4 account for possibly dif-
ferent ‘speeds of light’ [106], as residual large scale effects from the fundamental theory.
Dispersion would be a next-to-leading order effect. This will be implemented in the next
paragraph.

We also point out that an alternative way to describe a preferred frame is to use a
scalar field whose gradient is everywhere time-like. This field then plays the role of a
time function. This line of thought was used for example in Horava-Lifshitz gravity [99)].
However the scalar field approach is less general than the unit time-like vector field one.
Indeed, the vector field can be viewed as proportional to a gradient if and only if it is
hypersurface orthogonal, while a scalar field always produces a vector field through its
gradient. For this reason we will prefer the Einstein-Aether approach. Of course, this
discussion concerns only the way of parametrizing the preferred frame. If the action differs
from Eq. (3.11]), the theory can become drastically different.

167G (3.11)

In analog gravity, the effective action of Eq. (3.11)) is always imposed by the microscopic
physics. However, we point out that the extra ingredient present in analog context, which
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Chapter 3 : Breaking Lorentz invariance

we do not have in pure general relativity is not the static laboratory frame. Indeed, in
astrophysics, such frame would be given by the Killing field K. In both cases, it consists
of the class of observers that see a stationary background (the geometry or the fluid flow).
In condensed matter, we have an extra privileged class of observers, which is the one co-
moving with the atoms. In other words, u* is always given by microscopic structure of the
fluid. In general relativity, one does not have such field. Rather one has several families of
preferred observers, those freely falling (see Eq. (1.111])). Breaking local Lorentz invariance
exactly means that we pick up one special member of that family. Then, a physical system
experience the violation depending on how it couples to the preferred frame. As we shall
see, in our case, the test field couples through higher order derivatives, which alter the
dispersion relation in the ultraviolet.

Radiation field in Einstein-Aether background

To study the propagation of a dispersive field on a space-time geometry, basically two
lines of thought can be followed. On on hand, one can study a particular fluid or theory
and derive the equations for linearized perturbations from the known microscopic theory,
e.g., of a Bose condensate [90], or perturbations around an Einstein-Aether black hole
solution. On the second hand, more abstractly, one can identify the ingredients that must
be adopted in order to obtain a well-defined mode equation. We adopt here this second
attitude [107, 82, [105] as it is more general, and as it reveals what are exactly the choices
that should be made.

To this aim, we first need to choose the two background fields, namely g and u. In a
black hole space-time, the geometry is stationary, i.e., there is a Killing field K. For the
preferred frame, the natural choice is that it is also stationary, that is it commutes with
K,

[u, K] =0. (3.12)

This hypothesis is crucial. It means that the preferred frame has reached an equilibrium
with the black hole. Moreover, we choose the preferred frame as being freely falling. This
is realized if it obeys the geodesic equation

UtV u” = 0, (3.13)

This second assumption is merely an idealization. If one chooses to derive the background
configuration from, e.g., the Einstein-Aether action (3.11]), the u field most probably
possesses pressure-like terms that give it a non zero acceleration. For the present purpose,
what really matters is that this acceleration stays ﬁniteE]. In particular, the preferred frame
must fall regularly across the black hole horizon. For the sake of simplicity, we additionally
assume the problem to be 141 dimensional, the studied geometry being described by a
Painlevé-Gullstrand metric

ds® = dt* — (dx — v(x)dt)?. (3.14)

In this background geometry, with both (3.12]) and (3.13)), one is left with a one parameter
family of time-like vector fields. This family is the u,, described in Sec[I.4.1 At this
point, there is no preferred choice among the wu,_. As we discussed above, this is remi-
niscent of the local Lorentz symmetry. To simplify the expressions, we make the choice

4In particular, this would not be the case if one chooses the preferred frame given by the Killing field
K [26], @7].
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3.1 Dispersive field theories

to use
u = 0 + v(x)0,. (3.15)

We see that in these coordinates, the function v(x) fully characterizes both the geometry
(3.14) and the preferred frame (3.15). Secondly, we must choose a dispersion relation,

which we impose in the preferred frame, i.e., by using the frequency Q2 = —ufp,,

4
p

QO = F2(p) = p* + ot O(p®). (3.16)

In 141 dimension, we define the space direction with the space-like vector s*, which is

orthogonal to u*. s* is of unit norm (s*s, = —1) and satisfies u*s, = 0. It defines the

spatial momentum p = s#p,. In Painlevé-Gullstrand coordinates, it simply reads s = 0,.

Together with the (conserved) Killing frequency, we rewrite the full dispersion relation as

(w = op)? = F*(p). (3.17)

The dynamics of the field is then obtained by building an action that reduces to Eq. (3.16]
in the eikonal (or WKB) approximation. If we focus on the quartic term, and consider
the dispersion relation in (3.17)), the equation of motion is derived from the action

1 hV YV, 6)?
S. = 5/ {g““(?#(b(?,,gé + (A+¢) + higher derivative terms | v/—gd'z, (3.18)
where hy,, = u,u, — g, = —5,5, is the spatial metric induced on the preferred foliation.

The corresponding equation of motion reads, using an arbitrary F' function,
[(8; + 0,v) (0r + v0,) + F*(i0,)] ¢ = 0, (3.19)
When applied to a stationary mode ¢ = e~™“'y,,, this becomes
[(w+ i0,v) (w + d,) — F?(i0,)] . = 0. (3.20)

The associated conserved scalar product is

(@1162) =i [ 61000+ 00,)0n ~ 02(01 + 00,)05) (321)
The stationary (positive norm and real frequency) modes ¢,, are then normalized by

(Gurlu) = 0(w" — w). (3.22)

In conformity with Sec., negative norm modes are named (¢_,)*, so that ¢_,, are
positive norm modes of negative frequency —w.

When we take the limit A — oo, the equation (3.19)) reduces to that of the D’Alembert
equation described in Sec[I.4.3] We stress that this choice for the action is not unique,
even when requiring the correct A — oo. Indeed, different choices of ordering between 9,’s
and v(z) will lead to the same dispersion relation, but with inequivalent field dynamics.
As examples, we refer to [82, [108] in which left and right moving modes remain exactly
decoupled even when F'(p) is non linear. Moreover, in analog models, the theory of the
corresponding medium imposes one choice. For example, Eq. differs in several
respects from the (two dimensional) Bogoliubov-de Gennes equation [90]. It first differs
in the hydrodynamical regime, i.e., in the limit A — oo, in that the latter equation is
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not conformally invariant. As a result, left and right moving modes remain coupled in
that case. Moreover, it also differs from Eq. when taking into account the quartic
dispersive effects. The differences arise from different orderings of 9,’s and v(z). For
water waves, the Unruh analogy is valid only in the hydrodynamical regime (A — o0).
The fully dispersive equation is most often unknown, despite efforts in that direction [109].
Nevertheless, these wave equations share the same characteristics since these are de-
termined by (3.16). What we will show in Sec[3.2] which is less obvious, is that these
models also share, at leading order, the same deviations of the spectrum which are due
to dispersion. This follows from the fact that these deviations are based on asymptotic
expansions that are governed by Hamilton-Jacobi actions associated with .

3.2 Hawking radiation in the presence of dispersion

The question we address now concerns the robustness of the Hawking scenario when one
introduces dispersive effects through Eq. . If we assume that ultraviolet Lorentz
violations are induced by quantum gravity effects, it is sensible to suppose that the cut-
off energy A is of the order of Planck mass My} If we study a black hole of one solar
mass, then

% ~ 3.107%. (3.23)

This very small number legitimates a perturbative approach in 1/A. The modifications
induced by A on Hawking radiation have been the subject of many studies. The first
quantitative one goes back to 95, when Unruh wrote a dispersive wave equation in an
acoustic black hole metric [107]. He then numerically observed that the thermal proper-
ties of the flux are robust, 7.e., not significantly affected when A > k. In a subsequent
numerical analysis [I11], it was observed that ‘the radiation is astonishingly close to a
perfect thermal spectrum’. This was confirmed to a higher accuracy in [112], and partially
explained by analytical treatments [97, 82) [1T3], [1T4), 115, 86]. In spite of these works,
the origin of this astonishing robustness is not completely understood. This is due to our
ignorance of the parameters governing the first deviations with respect to the standard
thermal spectrum. Indeed, as we shall see in Sec[3.2.7] it is not governed solely by the
ratio x/A.

This section contains a detailed presentation of the work [29]. In this study, we showed
that when A > k the most relevant parameter is the extension of the near horizon region in
which second order gradients can be neglected, as in Eq. . We obtained these results
by studying the validity limits of the connection formula [82] [113| 114, [IT5] encoding the
scattering across the horizon. While the core of the calculation is based on the mode
properties near the horizon (which are universal as they rely on a first order expansion
around the horizon) the validity limits are essentially governed by the extension of the
region where this expansion is valid. As a result, on the one hand, the leading order
expressions are universal and agree with the standard relativistic ones, and on the other
hand, the first deviations depend on this extension. Their evaluation is carried out using
a superluminal dispersion relation. Interestingly, these results also apply to subluminal
dispersion, as we show in establishing a correspondence between these two cases.

SIn fact, this is not a trivial assumption, see discussion in [110].
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3.2 Hawking radiation in the presence of dispersion

3.2.1 Modifications at the eikonal approximation
Hamilton-Jacobi actions and turning point

To study the modification introduced by dispersive effects, we shall first focus on the
modifications of the geodesics, i.e., the characteristics of Eq. . This section consists
in reviewing Sec in the presence of ultraviolet dispersion. For this, we interpret
as the Hamilton-Jacobi equation of a point particle. It suffices to consider the solution
for p as a function of z at fixed w, which we call p,(x), as p,(x) = 0,5, where the action
is decomposed as S = —wt + S, (x). One thus works with the standard expression

Su(z) = / (). (3.24)

In these classical terms, left and right moving solutions with respect to the fluid, 7.e. the
roots of w — vp = +F, decouple and can be studied separately. Restricting attention to
the right moving ones, the relevant ones for Hawking radiation (see Sec, one deals
with

w = v(@)pul) = F(pu(a)). (3.25)

In the sequel, it will be useful to work in the p-representation with

Wo(p) = —pr + Su(7) = — / ' Xo,(p))dp'. (3.26)

In this representation, at fixed w, the position x is viewed as a function of p. It is given
by X, = 0,WW,, and obeys

w—v(Xu(p)) p= F(p). (3.27)
The usefulness of the p-representation can be appreciated when considering the trajecto-
ries in near the horizon region, where v ~ —1 + kz. In this region, irrespectively of F(p),

one finds )
dp 0X,\

which gives the exponential redshift of (1.124)), as in the relativistic settings of Sec|l.4.2]
Then the trajectory is algebraically given by

mwzmwmzﬁ—ﬂ%ﬁ. (3.29)

Unlike what is found for p(t), using Eq. (3.16|), xr completely differs from (1.121]) of
Sec{l.4.2| for |p| > A. To adopt a language appropriate to the study of the modes, we

shall work with w > 0 only. Then negative frequency roots p_,, > 0 of are replaced
by the negative roots p, < 0 associated with w > 0, as explained in [I05]. Hence,
defines two trajectories, one with p > 0, and one with p < 0. At early times, i.e., for large
|p| > w and for superluminal dispersion, |F/p| > 1, both are coming from the supersonic
region x < 0. Then, for p > 0 the trajectory crosses the horizon and reaches x = +o0,
whereas for p < 0, it is reflected back to x = —oco. On the contrary, for subluminal
dispersion, |F/p| < 1, both incoming trajectories come from the right region before one is
reflected, and the other falls inside the hole. Both types of trajectories are represented on
Fig[3.2l What is important is that all trajectories stay in the near horizon region a finite
time At. The integrated red-shift effect pgnal/Dinitial = e "4t is thus finite, unlike what is
found for relativistic propagation where applies to arbitrary early times.
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p<0 p>0 p<0 p>0

Ttp Ttp

(a) Trajectories for superluminal dispersion. (b) Trajectories for subluminal dispersion.

Figure 3.2: Trajectories of massless particles near the horizon, in the presence
of dispersion. The behavior depends on the sign of the momentum p, or equiva-
lently, the freely falling frequency 2 [105].

From now on, we focus on a specific dispersion relation. To obtain the simplest
expression, we shall work with

3 4 6

2
2\ _ p _.2.,. P p
F(p) = (p + —2A2) P+t (3.30)

For p < 0, the location of the turning point xy, is obtained by solving dz/dt = (0,p.,) " =

0. Using Eq. (3.30), (3.25) gives

w=(14+v)p, + % (3.31)
Hence, the momentum and the velocity at the turning point are (exactly)
—pp = (wA?)* (3.32)
and ; )
vlay) +1=—3 (%) ’ (3.33)

(IS

If w is sufficiently small, i.e., w < A (DlLin)
horizon region, and it is given by

, the turning point is located in the near

3 /w3
Ky = =3 (K) . (3.34)

In classical terms, the main consequence of dispersion is the introduction of this turn-
ing point. It introduces a non trivial multiplicity of the real roots p,(x), solutions of
Eq. (3.31). This multiplicity will play a crucial role when solving the mode equation ([3.20)).
From (@ and , we see that there is no turning point for w above

9 3
Wmax = A <§Das> . (335)
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This threshold frequency corresponds to the limiting case where the turning point z, is
sent to —oo. For w > wya only the positive root of and the positive norm mode
¢, remain. In Sec[3.2.3] wyax will determine the dimensionality of the set of modes.

While these results have been obtained with a superluminal dispersion relation, how-
ever, they hold when the dispersion is subluminal. Indeed is invariant under the
three replacements:

1+v — —(1+v), (3.36a)
w - —w, (3.36b)
1 1

The first replacement exchanges the subsonic region and the supersonic one (for v < 0).
As a result, a black hole horizon is replaced by a white one and vice versa. The second one
amounts to a time reverse symmetry, t — —t. At the classical level, it exchanges the roles
of positive and negative roots of . At the mode level, it changes the sign of their
norm, as discussed in Sec. [3.2.3] The third replaces a superluminal quartic dispersion
by a subluminal one. This exchange applies to all dispersion relations when expressed as
F(p)—p — —(F(p)—p). It replaces any dispersion that exhibits a superluminal character
when p approaches A by the corresponding subluminal one. This correspondence thus
applies to dispersion relations that pass from super to sub, as it is the case for gravity
waves in water when taking into account capillary waves [116].

Under , the trajectories are mapped into each other, as the function X, (p) of
is unchanged. Hence Egs. , are also unaffected. Because we changed
the sign of w, for subluminal dispersion, it is the trajectory of positive frequency that has
a turning point.

The action S, in the near horizon region

In preparation for the mode analysis we study the behavior of S,, in the near horizon region
where v is linear in z. Because of this linear character, it was appropriate to first solve
the equations of motion in the p-representation and then go in the z-representation. This
is also true for the action itself. Moreover, when solving (3.20), @, (x) will be obtained
by inverse Fourier transforming the mode in p-space qgw (p). Thus we express the action
as S, = xp — W, (p). Imposing 9,5 = 0, we get

Pu ()
Su(,po) = xpy(T) — / X (p)dp, (3.37)

Po

where p,, is a solution of (3.31)) and p, fixes the integration constant. Using (13.29)) and
(3.30), one gets

_ w (Po(2))?
Su(T,po) = wpu(T) — - In (p, (7)) + 6%k + 0o, (3.38)
where 6, is ,
_ v Do
90 = o In (po) 6A2/§;' (339)

To consider all solutions of (3.20]), we shall compute the action for all roots of (3.31)),
including the complex ones. To this end, we need to define the integral | ;: dp'/p =

In(p/po), that arises from the first term of (3.29)), for p complex. We shall work with the
argument of cut equal to m — ¢, so that In(—1) = —ir.
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3.2.2 Hawking radiation as a scattering problem
The relevant properties of the profile v

To be able to compute these leading deviations it is necessary to further discuss the
properties of the profile v(z). When using relativistic fields, the temperature of HR is
completely fixed by k = 0,v, the gradient of v evaluated at the horizon, even though the
asymptotic flux generally depends on other properties of v(z) which fix the grey body
factors of Sec.m. However these describe an elastic scattering between ¢ and ¢,,, and
therefore do not affect the temperature, as can be verified by considering the equilibrium
state described by the Hartle-Hawking vacuum [65] [69]. When dealing with dispersive
fields, x is no longer the only relevant quantity. Indeed, as we shall show in the sequel,
several properties of v(x) now become relevant. Moreover they govern different types of
deviations with respect to the standard flux. For smooth profiles, there are basically two
important properties, near horizon ones, and asymptotic ones.

If there is a regular horizon at x = 0, v can be expanded as

v(r) = =1+ Kk + O(2?). (3.40)

This near horizon behavior is only valid in a certain interval, not necessarily symmetric
about 0. Hence we define D, and D such that for

— DE < kr < DE (3.41)

lin ~o lin>»

v is linear, to a good approximation (see region 1 in Fig. . As we shall later establish,

D and DE control the leading deviations of the spectrum. It is worth noticing that
in the limit D , D — oo, one effectively works in de Sitter space endowed with an

homogeneous preferred frameﬁ. In that limiting case, as we shall explain, the relativistic
result of is found with a higher accuracy.

The other relevant parameter is related to the asymptotic values of v, that we assume
to be finite. For superluminal dispersion, what matters is

v(x=—00) =—1— Dy < —1. (3.42)

For subluminal instead, it is v(z = +o0) that matters. As discussed in Sec[3.2.1] D,
determines the critical frequency wyay (computed below in (3.35))) above which the flux
vanishes [

For finite values of x, v can have a complicated behavior. As we said, we only suppose
that the interpolation between the asymptotic regions and around the horizon is smooth
enough, so we can neglect non-adiabatic effects. Indeed, a sharpness in v(z) induces non-
adiabatic effects [I11], 1T2), 119] not related to the Hawking effect that both destroy the
thermality of the spectrum and induce higher couplings between left and right moving
modes, see Figs. 12 and 16 in [112]. These effects are due to the breakdown of the WKB
approximation studied in Sec[3.2.3|

6Tn that case, the field u respects a subgroup of the de Sitter isometry group. Compared to the general
case of arbitrary v, there is thus an extra Killing field for g and w, corresponding to the homogeneity of
de Sitter. This was noticed in [I10], and further developed with Jean Macher during his PhD [80]. It
was exploited in [I17], and further developed in [IT§].

"In that work [90], the profile was v = —1 + D tanh(xx/D). Hence, when looking at the deviations
of the spectrum upon changing D, the deviations associated with Dy, and D,s were confused since both
scaled in the same way. In fact, one of the main novelties of the present analysis, and the companion
numerical works [I19} [120], is to remove this confusion by analyzing the deviations due to D{ and D,
only.
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Figure 3.3: Shape of the typical velocity profile v, together with the extension
of the relevant regions. For a given value of w, the near horizon region 1 where
v ~ —1 + Kk splits into two: a region close to the turning point of (1.(a))
where the WKB approximation fails, and two intermediate regions (1.(b)) where
this approximation becomes reliable, and whose sizes are fixed by D& and DE.
In the asymptotically flat regions 3, the solutions are superpositions of plane
waves. The intermediate regions 2 play no significant role when v is sufficiently
smooth, because the propagation is accurately WKB, 7.e. there is no mode
mixing. As we shall see, mode mixing essentially occurs at the scale of the

turning point, i.e. in region 1.(a).

Because of the hypothesis |v(—00)| < 00, it seems that our framework is irrelevant
for astrophysical black holes. Indeed, if this condition is natural in any analog model,
in general relativity, black holes hide a singularity inside where the function v blows up
(see Egs. and ) However, for subluminal dispersion, relaxing the hypothesis
|v(—00)| < oo does not affect the results of this chapter, since everything happens on the
right side and in the near horizon region. On the other hand, the superluminal case is
more subtle to consider. Indeed, since modes can travel faster than light, the singularity
is no longer ‘future time-like’, and information can come out from it. Therefore, new
boundary conditions must be imposed, either on physical grounds, or by some deduction
of the full theory. This complex discussion will no longer be addressed in the present
work.

in and out mode basis, connection formulae, and Hawking radiation

In this section, the properties of HR are approximately determined by making use of
connection formulae that relate asymptotic solutions of Eq. . Before describing
this procedure in precise terms, let us briefly explain it. For the stationary profiles we
consider, i.e., with v defined on the entire real axis and asymptotically constant, because of
dispersion, the Bogoliubov transformation encoding the Hawking effect has the standard
form of a scattering matrix. It should be stressed that this is not the case for the relativistic
fields. In that case indeed, as we saw in Sec[l.4.2] and [2.3) wave packets propagated

backwards in time hug onto the horizon for arbitrary long time, and thus never transform
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into waves incoming from an asymptotic region. Instead, when there is dispersion,
is followed only for a finite time, and wave packets (propagated backwards in time) leave
the near horizon region and reach, for superluminal dispersion, = —oo, see Fig.[3.4] For
this reason, the question of the robustness of Hawking radiation against dispersion is non
trivial. Indeed, the specification of the in-vacuum is much different, since in one case it
is defined as the local vacuum in a close vicinity of the horizon (see Sec, and in the
other one, it is defined asymptotically.

When wave packets reach the asymptotic regions where v is constant, they can be
decomposed in terms of stationary plane waves e~ “!e?<* Hence, the definition of the in
and out modes is the standard one, see e.g., the scattering in a constant electric field [69].
The in-modes ¢ are solutions of such that the group velocity vg, = (Oup,) " of
their asymptotic branches is oriented toward the horizon for one of them only. Hence
when forming a wave packet of such modes, it initially describes a single packet traveling
toward the horizon, whereas at later times it describes several packets moving away from
the horizon. Similarly, the out modes ¢°* contain only one asymptotic branch with a
group velocity oriented away from the horizon.

ﬁw t y aw 660.) ‘t /6(4)

1 1
—_— - 5
+w —Ww

(a) Trajectories associated with ¢ (b) Trajectories of the partner mode (¢ )*.

Figure 3.4: Space-time representation of the near horizon trajectories followed
by wave packets made with right moving (with respect to the fluid) in modes
in the presence of superluminal dispersion, e.g., that given in (3.30]), and in
the coordinate system (¢, z) of ([3.14). We have also indicated their asymptotic
amplitudes as given in Eq. @ .

At this point it should be noticed that the dimensionality of these two sets depends
on the asymptotic values of v. When v(z) contains one horizon, i.e., crosses —1 once, the
dimensionality is 3 below the threshold frequency wp.x of Eq. : for wmax > w > 0,
there is one positive norm left moving mode (with respect to the fluid, but not the lab)

left "and a pair of right moving ones of opposite norm that we shall call ¢, and (¢_,)*
according to the sign of their norm. Hence the scattering matrix is 3 x 3. However, when
v is smooth enough, @' essentially decouples. This has been numerically shown in [112],
and will be mathematically justified in Sec[3.2.3] Hence to a very good approximation,
one recovers a 2 X 2 matrix characterizing right moving modes only. From now on we

shall work within this approximation.
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3.2 Hawking radiation in the presence of dispersion

Introducing the in and out sets of modes, they are related by

((ﬁ;)) - (g: i:) | ((&5)) - (3.43)

Because starred modes have a negative norm, the matrix is an element of U(1,1). That
is, the coefficients obey:

o ? =87 =1, (3.44a)
B — Byd, =0, (3.44b)

and |3,]? = |3.[2. Hence, when working in the in vacuum, the mean number of emitted
pairs of quanta of opposite frequency is

Ny = |8 (3.45)
In the relativistic limit, 7.e. A — oo, one gets the standard result

_— 1
T—Lrelatlwstlc — (346)

w e2rw/k _ 1’
which was obtained in Sec[2.3] We point out that because of dispersion, this is only true for
0 < w < Whpax- When w > wpay, only one mode subsists, the Bogoliubov transformation
(13.43]) no longer exists, and the flux (3.45|) identically vanishes.

Our aim is to compute the coefficients of using a connection formula. To this
end, we first identify the various asymptotic solutions, and then we evaluate the globally
defined solutions which we match to the asymptotic ones. These techniques have already
been used in [82] 113, 114, 1T5]. The novelty of our treatment concerns a careful control
of the various approximations involved in this procedure. This will enable us to control
the leading deviations from (3.46)) which are due to dispersion, given v(x).

3.2.3 Mode analysis
The 2-WKB approximation

Since the WKB approximation fails near a turning point, we cannot compute the coef-
ficients of using this approximation. In fact, under this approximation one would
get a trivial result, namely 3, = 3, = 0, la,| = |aw| = 1. To get a non-trivial result, we
shall compute these coefficients by inverse Fourier transforming the modes in p-space and
identifying the various terms sufficiently far away from the turning point, in a calculation
that generalizes that of the Airy function [121], 122].

In this section, we present the calculation of the WKB modes of which gener-
alizes the usual treatment since is not second order. For this, we write the mode
as

¢, (z) = et hulahda (3.47)

Injecting this into ([3.20]), we obtain

(w—v(2)k,)? — F? (k) = —i0, |wv(z) — vk, + %(‘%Iﬂ (k)

3.48
Ak, Ok. + 3(9,k.)% — iOPK, (3.48)

A2
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Chapter 3 : Breaking Lorentz invariance

For definiteness and simplicity, the last term is given for F'(k) = k% + k*/A? but can be
generalized to any polynomial dispersion relation. So far, this equation is exact. It is
known as a Riccati equation [I121] and was already used in the present context in [I13].
It is adapted to a perturbative resolution where the different terms are sorted in order of
derivatives [65], 49], here spatial gradients. Hence we write k,, as

by = O 4 kD) k@ 4 (3.49)

where the superscript gives the number of derivatives (one way to sort the terms of (3.48))
is to make the scale change © — Az. The superscript then stands for the power of 1/)).
It is easy to show that k&o)(x) = p.(z), the classical momentum, solution of the Hamilton-
Jacobi equation (3.17]). The second equation is not less remarkable: it is a total derivative
and it has the universal form

. 1 .

KD = %ax In |wo(z) — v2py + §8pF2(pw)} - %ax I [F(po) ver(p0)] | (3.50)
where vy, = 1/0,p,, is the group velocity. Since kS s purely imaginary, it governs the
mode amplitude. (3.47) constructed with k, = p, + I gives the generalized z-WKB
expression

Dpa i " )
o () = (3.51)

-V ow \axF(p,)

Its Fourier transform evaluated at the saddle point gives the p-WKB mode

~ 0X,, eWu(p)
P B (p) = (») (3.52)

v -V Ow \AxF(p)

(3.50) guarantees that the scalar product of (3.22) evaluated with (3.51)) is ezactly
conserved. (3.48) also guarantees that the development of k is alternated: even terms are

real, while odd ones are imaginary.
All over the study of this chapter, we will compute every error term, in order to explicit
the domain of validity of the relativistic result (3.46]). For this, we define the parameter

A
Ale) = |21+ ()2, (3.53)
As we shall see, all errors will be characterized by this single parameter.

The six roots p, far away from the turning point

Since we work in a weak dispersive regime, i.e. A > k, and since HR is related to
frequencies w ~ K, we have w < A for relevant frequencies. Moreover, since we impose
that D, is not too small, we also have w < wWpax, see . Hence wyax only concerns
the high frequency properties of HR, which we no longer study. We focus instead on
frequencies w ~ k. Even for such frequencies, the expressions of p,(x), solutions of
Eq. , are complicated. However, their exact expression is not needed. It is sufficient
to estimate them far away from the turning point, in order to build the mode basis.

The denomination of the roots we use is based on that of the corresponding mode,
which is itself based on the sign of the group velocity, as explained in Sec[3.2.2] Moreover,
we exploit the fact that for right moving modes the sign of the norm is that of the
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3.2 Hawking radiation in the presence of dispersion

(a) Resolution for 1+ v < 0. (b) Resolution for 1+ v > 0.

Figure 3.5: Graphical resolution of restricted to right moving modes. The
dispersion relation F' = p+ p?/2A? and the straight lines Q = w — vp are plotted
for a common value of w and two different values of v. When 1 +v < 0 and we
have 3 real roots given by Eqs. (3.54a} [3.54b}, [3.54c|), and when 14+ v > 0 and
we have the single real root of (3.56|). The two complex roots of Egs. (3.57al

3.57b)), are not represented.

corresponding root p,, (see e.g. [IT1]). Therefore, for w > 0, positive roots shall be called
P, Whereas negative roots shall be called p_,, in accord with the fact that negative norm
modes are called (¢_,,)", see Fig. [3.5]

Using this terminology, on the left of the turning point, one finds

. w
o= Ay —2(1 —— 1 .54
o= AV 2(1+0) - 2 (1+0(y)), (3.54b)
2(1+v)
out w 2
= — 1 .54
s Al (3.54¢)
where the small parameter y is related to A of (3.53) by
w/k
= ) (3.55)

Far away from the turning point of (3.34)), ¥ < 1 and our expressions are reliable approx-
imations. In the right (subsonic) region, one has only one real root

w
out —

pw 1 + v
On this side there are also two complex solutions which do not correspond to any classical
trajectory. However, when looking at the solutions of (3.20)), they govern the growing
mode ¢! and the decaying mode ¢! exactly as real roots govern WKB modes. These
roots are

(14 O0(y?)). (3.56)

pl = —iAV2(1+ o) — ﬁ(l +0(y)), (3.57a)
pLo= iA2(1+ o) - ﬁu +0(y)). (3.57b)
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Chapter 3 : Breaking Lorentz invariance

On this side of the horizon, the corrections are again governed by y of Eq. . Hence,
for w ~ K, the corrections to the roots are on both sides controlled by A of . It
should be also noticed that the errors for the two out roots are subdominant with respect
to the other ones.

The six WKB modes far away from the turning point

In order to distinguish globally defined modes from their WKB approximations, the former
shall be noted ¢,,, and the latter ¢ . Since we consider only w > 0, negative frequency
modes (of negative norm) shall be written as (¢_,,)" or (¢_u)".

Sufficiently far away from the turning point, i.e. for A > 1, the WKB modes offer
reliable solutions of . They can thus be used as a basis to decompose globally
defined solutions. We also assume that Dl}ff of are large enough so that one can
be at the same time be far away from the turning point and still in the region where v
is linear. Using the expressions for the six roots in this region, , and neglecting the
common phase depending on 6, of , on the left side of the horizon one obtains

efi% In(AvV2k)

in ~ QA T —% T _iie_Z%A(x)’ 3.58a
Pu 2A()] 47T/€(1+I<|$D| | (3.5%)
o —i In(AvV2r) .
(P")" ~ 2A@)]F— |5 3R, (3.58b)
k(1 + klz])
out L g9 |:£| -~ ' 3.98¢
(90 w) \/% ( )
On the right one gets,
owt grmigme) 2 3.59
P Varw ( )
wx —i¥ In(AV/2r) ,
oL~ e . ¢ || i3k 5A@), (3.59Db)
[2A(2)]2 \/4TR(1 — K|z|)
—ym —i% In(AV/2k) ,w
ol o~ € B as (3.59¢)

2A(2)]2 \/A7r(1 — K|z|)

We now comment these expressions. Firstly, whereas the normalization of the four oscil-
lating modes is standard and based on the conserved scalar product of , those of
the decaying ¢} and growing ¢! modes follow from @ and the fact that S, of
is complex since the roots of Egs. and @ are.

Secondly, since these two modes do not appear in the ‘on-shell” Bogoliubov transforma-
tion of , we should explain why we are still considering them. First, the forthcoming
connection formula will be a transfer matrix relating the general solution on each side of
the horizon. Thirdly, when considering problems with several horizons, these modes could
contribute to the ‘on-shell” S-matrix if they live in a finite (supersonic) size region between
two horizons, see Chapter [4] and [30].

Finally, the relative errors of the two out modes are

0 (%) , (3.60)
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3.2 Hawking radiation in the presence of dispersion

whereas those of the four other modes are
l+w/k
O———— . 3.61
(567) 200
To get these expressions, we must take into account two sources of errors: those coming

from the approximate roots, see Eq. (3.55)), and those from the x-WKB approximation.
As we shall now see, they all depend only on the parameter A.

WKB deviations due to dispersion

In the preceding paragraph, we obtained a mode basis in the limit of weak dispersion,
that is, for A large enough. The aim of this section is to precise the meaning of ‘A large
enough’ by computing the scaling of the errors made when building the WKB basis.

To proceed, we estimate the next order term of in the limit of weak dispersion
(WD), i.e. by dropping terms of order 2 in 1/A. In this regime, £ is solution of

— 2[F(po) vy (p0)] Kl () = [0, + kP - [k 8(Fugy)] - (3.62)

Because we master the modes near the horizon in the p-representation (see Sec. and
, we are only interested in the error accumulated from infinity, where the x-WKB
approximation becomes exact, to a certain Zpasting at the edge of the near horizon region.
Its precise characterization will be obtained in . This error is estimated by evaluating

the integral of kr‘(,[Q,)D from Zpasting till co. Indeed the exact mode ¢, can be approximated
by
b = WIBET R o GWKD (1 4 ¢(z)). (3.63)

To evaluate VKB we use ([3.51) and the approximate roots of Eqs. (3.54)),(3.56), and
(3.57). This introduces extra errors governed by y of (3.55)). Hence, near zp,sting the total

error is

€r =~ / kl(/?/)D(x/)dx/ + O(y(mpasting»- (364)

o0

This error term behaves quite differently for «n and out modes, hence we shall study it
separately.

e For the in modes, solving (3.62), we get

(2) 9,0/2 3,UII

= - . 3.65
YPUUI6AIL 403 AL+ )3 (3:65)

Since this is not a total derivative, the integral depends on what happens all along
the way from 00 tO Zpasting. However, when the profile v is smooth enough, the
accumulated error is essentially

. v 1 w/k
e | —— +O0(y,) = — + =L~ 3.66

T=ZTpasting

e For the out modes, the leading order correction arises from k(). Indeed, in the
limit A — oo, the out modes are WKB exact because of conformal invariance and
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Chapter 3 : Breaking Lorentz invariance

D = . Therefore, for finite A, k) will be the dominant contribution to the

A—oo

error term of (3.63)). One finds

6w’

kyp = — - .
WD A2(1 n U)4 (3 67)
This means that ) 2/ )
out w _ Wik
€p <—A2|1 n U|3)xmpasmg —A% . (3.68)

Here the pasting happens on both sides, hence in the latter expression, one should
understand AZ’;J for (gp‘f}ﬁ)* and Af for @', As expected, the corrections to red-

shifted out modes are subdominant with respect to those of in modes.

It is interesting to notice that the validity of the x-WKB approximation in a given
flow and for a given dispersion relation depends on the exact form of the mode equation
associated with . Indeed, when the mode equation is not conformally invariant in
the limit A — oo there is an extra validity condition:

,U/

< 1 (3.69)

It is due to the fact that for low frequencies, the left and right moving modes mix even in
the absence of dispersion. This mixing was studied in [90], and it was numerically shown
that these effects stay (in general) subdominant.

The lesson to retain from this analysis, is that errors to WKB modes are bounded by
the inverse of the dimensionless parameter A of Eq. . Far away from the horizon
A is large and the WKB approximation is accurate. More precisely A becomes of order
1 near x = x4, of evaluated for w ~ k. Hence for these frequencies, which are the
relevant ones for HR, A > 1 is reached for z/xy, > 1. One also sees that at fixed z, A
grows like A/k — o0, hence A also governs the dispersion-less limit. Moreover, we saw
that the errors on the out modes, of low momentum p, are subdominant with respect to
those of in modes which have a high momentum. As a result, D% of will be more

lin
relevant than D to characterize deviations with respect to the relativistic case.

3.2.4 Globally defined modes in the near horizon region
The p-representation

To accurately describe the behavior of the modes across the horizon one cannot use the
2-WKB modes of the former section. Rather, one should work in p-space, and look for
solutions of the form:

_ x im‘ﬂ
bul) = /C G (3.70)

where C is a contour in the complex p-plane. If it is well chosen, i.e. such that the integral
converges and integrations by part can be performed, then it is sufficient that the dual
mode ¢, satisfies 3 R

(—w + p0) (~w + 0p) b = F*(p) S, (3.71)
where 0 = v(Z) = v(id,). We should notice that is a standard Fourier transform
only if C is on the real line, something we shall not impose. The main interest of con-
sidering generalized contours is that it will enable us to compute all solutions of ,
including the growing ones.
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3.2 Hawking radiation in the presence of dispersion

Because we only need the behavior of the modes near the horizon, the operator v in
can be replaced by © = —1+4ix0,. Hence one gets a second order ODE, irrespectively
of F(p). The advantages to work in p-space are then clear [82] 86]. Firstly, the solutions
of can be (exactly) written as a product

i@ _q
~ _p p "
w(p) = e 'k X , 3.72
¢ (p) = x(p) N (3.72)
where x obeys the w-independent equation:
KpPOox = F*(p)x(p), (3.73)

and where p~“%~! is independent of F. Hence, the deviations due to the dispersion F

are entirely encoded in y. The origin of this factorization comes from the underlying
structure of de Sitter space, as discussed after Eq. . In addition, when considering
the limit A — oo in , p~'= ! is exactly the relativistic (conformaly invariant) mode
in p space.

Secondly, unlike the original equation in z, (3.73)) is perfectly regular. Moreover, when
dispersion effects are weak, i.e., A/k > 1, the p-WKB approximation, so called not to
confuse it with that used in the former Section, is very good. It generalizes what is done
for the Airy function [122, 121] where the mode equation in p-space is WKB exact. At
this point, it is worth comparing the expression of the p-WKB modes in general and near

the horizon. Using (13.52)) and (3.26)), one finds

S w Foh-p'
(=2 m)+f FEI )

Bu(p) = = (1+0 (%)) . (3.74)

As we saw in Eq. , P, is universally governed by W, and X, irrespectively of
F(p) and v(z). This equation (3.74) now shows how exactly F'(p) enters in @, in the
near horizon region. In this region, since the mode equation is second order in 9,, the
corrections are uniformly bounded by x/A [121]. We also notice that using x* instead of
X in would describe a left moving mode of negative norm [86]. This shows that
the corrections to the p-WKB approximation describe creation of pairs of left and right
moving modes, as in cosmology [123]. It is also of interest to notice that in models where
left and right movers stays completely decoupled [82, T08], the p-WKB modes of
are ezxact solutions in the near horizon region.

We finally notice that , as the relativistic mode p=% !, is well defined only when
having chosen the branch cut of Inp [82 1T3], 114, 115]. As explained below, different
possibilities, and different contours C, lead to different modes.

3.2.5 The various modes in the near horizon region

Using F'(p) of and ( one gets

3
z(prﬁln +6§2N) dp

(T )
Pu() \/47m/ 1+2A2)% PV 2T

The forthcoming analysis generalizes former treatments for several reasons:

(3.75)
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Chapter 3 : Breaking Lorentz invariance

1. Unlike [IT3] 114} 115], we shall consider contours that are not homotopic to the real
line. This will allow us to obtain the general connection formula which includes the
growing mode.

2. We will make use of mathematical theorems of asymptotics [121] under their ex-

act form. This will lead to the proper identification of the validity conditions in
Secl3.2.7.

3. We will compute the phases of the Bogoliubov coefficients. These are essential to
compute the correlation pattern (see (3.95))) and in the presence of several horizons,
see Chapter

To evaluate , the first thing to take care of is the convergence of the integral.
Indeed, for large p, the dominant term is of the form e, hence, we should impose that
our contour C goes to infinity in regions where Im(p?) > 0. The second step is to perform
the integration with a saddle point approximation. For this, we make a change of variable
such that the p and p? terms are of the same order for all values of A/k. We thus write

p = A\/2k|z|t and get:

e 1% In(Ay/2xa) / e~tn In® A (sign(+ 1) At (3.76)
¢ (1+ 2k|z))2 tv2r ‘
Hence we see that the large parameter A(x) defined in can be used to perform a
saddle point approximation (see z in . Therefore A will govern the deviations due
to this approximation.
For completeness we recall the saddle point theorem. If z is some large parameter:

[awen =S am) St (1o (BUA)) e

2 4 —if"(p;

wlT) =
Pu(T) T

where the p; are saddle points of f, i.e. f'(p;) = 0 of smallest imaginary part, and
where the square root takes its principal value. This formula is valid if and only if one
can deform C such that Im (f(p) — f(p;)) is always positive [12I]. The first correction
E;(f, A) involves higher derivatives of f and A evaluated at p;

. o _,A_” 'f/// Al B .5(f///)2A i Sf//// f”A)
EJ (f7 A) - ( 7 f// + ? (f//>2 ? 12(f//)3 . (378)

The decaying mode

We saw in Sec[3.2.1] that for negative frequency, the particle is reflected near the horizon,
at the turning point of . Hence we expect that the corresponding mode will decay
on the other side, for x > 0. This behavior is implemented by imposing that the branch
cut is —:R, and that the contour is homotopic to the real line, as we now show.

To evaluate for z > 0, we use (3.76) and perform a saddle point calculation.
The saddle points obey 1 + ¢ = 0. Just like in the Airy case [122, [121], only ¢t = i is
relevant and its contribution is

6% e—i% In(AvV2k)

2| e 3A@) 1+ ‘;’—;
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3.2 Hawking radiation in the presence of dispersion

As required, the mode decays on this side of the horizon. The error term has been
estimated using . (More precisely, when computing E;, we found a bounded function
of w/k and x times (1 + w?/k?)/A. This justifies our expression.) We notice that this
expression coincides with ! of up to a factor. Therefore, this factor defines the
scattering coefficient and its z-dependent correction:

o= ob x () x (1 0 (15(;)) | (3.0

We underline that this identification introduces no new errors because those due to the
saddle point are of the same order as those already present in . Since the general
method is now understood, we proceed with the same mode on the other side of the
horizon, and then apply the same method for two other modes so as to get the general
connexion formula.

For x < 0, the saddle points are now solutions of 1 — ¢ = 0. However, because of the
branch cut, one must cut the contour into three separate branches, as shown in Fig3.6] C;
and Cy go from 00+ € and dive toward —ioo on each side of the branch cut. Cs encircles
the branch cut, and is necessary for the union of the 3 new contours to be homotopic to
the original one. Separating the three contributions, ¢, = ¢ + ¢ + %, 1 and
are evaluated by the saddle point method and, after identification with the WKB modes

of (3.58a)) and (3.58b)), respectively give,
. * w37 1 —'I— 00_2
o= (PM) X (eFeT) x <1 +0 ( A(;; )) : (3.81a)

o, 1+
Co in i K2
p? = plxerx (1 +0 ( Alx) )) . (3.81Db)

To properly evaluate ¢, one cannot use the saddle point method. However, because the
factor e* decays along Cs, one can use a ‘dominated convergence theorem’, i.e. take the
limit A — oo in the integrand of (3.75). Using the Euler function, and ¢°" of (3.58c]) we
get

* 2 wT Sw o rw w
o = (‘Pcfg) X (—sinh (ﬂ> ) (—zg) e%e_’erZKln(“)) (3.82a)

X (1 +0 (’ﬂx’(lAJ(;‘)";/’f”S))) . (3.82D)

The correction term has been calculated by expanding the integrand in (3.75) to first
order in k/A and computing the integral again with the use of the I' function.

The transmitted mode

To get another mode, we keep the same contour but the branch cut is now taken to be
iR,. As we shall see it corresponds to a transmitted mode. For x < 0 the saddle points
still obey 1 — t? = 0, but we can now use the saddle point approximation because the
branch cut is no longer in the way. Taking into account that on the negative real t-axis
Int =1In|t| — im, we get:

in iz in \* —en 43¢ 1"’%3
%Z[%Xe + () x e e }X<1+O<A(x)>>' (3.83)
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(a) x negative (b) z positive

/

Figure 3.6: Representation of the contours in the complex p-plane determining
the decaying mode, for both signs of x. The hatched regions are the asymptoti-
cally forbidden ones, and the dots indicate the saddle points that contribute to
the integral.

On the other side, for > 0, the saddle points obey 1 +t? = 0, as previously. Because of
the branch cut one cannot pick the contribution of the decaying saddle point. We must
instead deform the contour to a region where the ‘dominated convergence theorem’ can
be used and then stick it to the branch cut. With a computation similar to what was

done for (3.82b)), we find

2 w
o = @ot X (smh( > wF(—if)e etk ln(n)) (3.84a)
K

TR K

X (1 +0 <“|x|(1A(+x;3/“3))> . (3.84b)

The growing mode

To get a third linearly independent solution of (3.20)), we must construct the growing
mode. To get it, we re-use the above defined contours C; and Cy, and we choose the
branch cut to be iR,. For z < 0, the relevant saddle points are —1 for C; and +1 for

Co, and respectively give (3.81a)) and (3.81b). For z > 0 instead, for both contours, the
relevant saddle point is t = —¢, and this gives

2w 1 + W2
Co _ 2 C1 __ K2
O = —e7 T 8 =l x (1 +0 ( @ >> : (3.85)

Since all combinations of ¢C! and ¢ behave as ] when A — oo, there is an ambiguity
in choosing the third mode we shall use. We appeal to the conserved Wronskian to fix the
choice. For a forth order differential equation, the Wronskian is a 4 x 4 determinant, but
because we neglected the v-modes, it becomes 3 x 3. Once we have chosen 2 propagating
modes, there is a unique choice of growing mode such that the basis has a unit Wronskian.
The connection matrix is then an element of the group SL3(C), i.e. of unit determinant
(up to an overall gauge phase).
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3.2 Hawking radiation in the presence of dispersion

Therefore, our third mode is @9 = & — e‘QwTﬁwgl. On the right and on the left we
respectively get:

1+
9 = 2! 1 i .
o 2 (10 (5)). s

1T in —¢r 4T in \* ]'+:j_§
= [6 1ol +e re'd (go_w) } X <1+O ( NG )) (3.86b)

3.2.6 Connection matrix and on-shell Bogoliubov transforma-
tion

The connection formula

The results of the former subsection can be synthesized by the following 3 x 3 ‘off-shell
transfer matrix’ that connects the WKB modes defined on either side of the horizon

o o
ol | = (Usn)" - (SOTW)* : (3.87)
ol (p2u)

We define Ugy through its transpose so that it relates the three amplitudes of any mode
decomposed on the left and right side basis of Sec|3.2.3] Ignoring for the moment the
correction terms, the matrix is

f‘ ﬂ)_l ei% el
K 2
Usn = | %63l (2)7  —efe¥® ¥ |- (3.88)
0 e e i (2) 0

To simplify the above, we defined the ‘normalized’ ' function:

. 2 o N
['(z) =T (—iz) \/—Z sinh(mz)e™ 2 e —ize=i% (3.89)
™
which obeys for large z (see App[A)
_ 2
P(2)]
- 1 1

Arg (r(z)) — 0+—+0(=). (3.90b)

122 22

= 1—e (3.90a)

As expected from our choice of modes, the determinant is a pure phase:
det(Upy) = ¢'2. (3.91)

Robustness of black hole radiation

Using ([3.88)) we can now easily extract the Bogoliubov coefficients of (3.43]). Let us start
with ¢*. Being a physical mode, it is asymptotically bounded, and therefore the amplitude
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multiplying the growing mode should vanish. Moreover, on the left it asymptotes to ™"
of (3.58a)). Hence its six amplitudes obey

1 oy,
0 Uy | d, | (3.92)
ﬁ"” <0 0 >0

where d,, is the amplitude of the decaying mode. From these equations, and the cor-
responding ones for the negative frequency mode (qﬁifw)*, the coefficients of (3.43)) are

I(« .
o = ) g (3.93a)
1—e v
Po _ e _ P (3.93b)
% R

The amplitudes of the decaying modes in ¢» and (qﬁifw)* are also fixed and given by

_wr

s [ K

d, = et——, .94
“ 2sinh () (3.94a)
3 1

d_, = (. — 3.94b
°’ 2sinh(“7) ( )

For w < wpax of , and when ignoring the z-dependent corrections of the former
subsection (i.e. to leading order in k/A), the mean occupation number is exactly the
relativistic result of . This is in agreement with what was found in [82), 113, 114} [115],
although the conditions are now stated more precisely. This result implies that the spectral
deviations due to dispersion are to be found by examining the various approximations that
have been used.

The correlation pattern

In addition, it should be noticed that sufficiently far away from the horizon, i.e. in a
region where A(x) of is much larger than 1, the space-time correlation pattern of
the Hawking particles of positive frequency and their inside partners of negative frequency
are also unaffected by dispersion. This second aspect of the robustness of HR can be
established by either forming wave packets of in-modes [82], i.e. considering non-vacuum
states described by coherent states, see App.C. in [90], or by computing the 2-point
correlation function G(t,z; t'z’") = (¢(t,z) ¢(t', 2")) [124] 125] 126]. For a comparison of
the two approaches, see [I17]. In the in-vacuum, at equal time, the w contribution of G
for x > 0 and 2’ < 0 is given by

Gu(x,2) = 0Bl o2 (2)p2h (7)) + Budl (02" (2)) " (¢225(2))", (3.95)

see the B, term in Sec.IV.F. in [00]. Using the expressions of Sec|3.2.3| together with
(13.93), far away from the turning point of (3.34) but still in the near horizon region, we

get
N 1 Relz/z'|'* 1+ w?/K?
Gu(z,2") = SR dmw x|1+0 20 /) (3.96)
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3.2 Hawking radiation in the presence of dispersion

At leading order in /A, this is exactly the relativistic result. Hence, the long distance
correlations are also robust when introducing short distance dispersion. This follows from
the fact that the phase of 8, /., (and not just its norm) is not modified by dispersion. At
this point we should say that this phase actually depends on those of the in and out modes
that can be arbitrarily chosen. Thus, as such it is not an observable quantity. However,
the phase of a,,35¢2™ " is an observable, independent of these choices. We have chosen
to work with in and out bases where all modes have a common phase at a given p, see
Sec[3.2.1] as this ensures that arg(f,/a.,) is unaffected by this arbitrary phase.

Using these bases, the phases of «, and &, of also have a clear meaning as
can be seen by considering the scattering of classical waves. They characterize the phase
shifts which are not taken into account by the WKB modes of Sec. [3.2.3] In fact, using
one verifies that in the limit w/k — oo one recovers the standard WKB results,

i.e. arg(ay,) = arg(l'(w/k)) — 0 for the transmitted mode, and arg(a,) — m/2 for the
reflected one. For smaller values of w/k, arg(I'(w/k)) thus accounts for the non-trivial
phase shift. In Chapter [5| we show that in the presence of two horizons, this shift affects

the spectrum of trapped modes.

3.2.7 Validity of the connection formula

Our computation is based on two approximations. The first one is the p-WKB approxi-
mation introduced when solving (3.73)) in the near horizon region. Its validity requires

A
—>1 (3.97)

This condition is the expected one. It involves neither w nor the parameters Dy, of .
For this reason, as we shall see below, it will not be the most relevant one in the general
case. This is a non-trivial result. In addition, the corrections to this approximation
encode a mixing between left and right moving modes [86]. Therefore, at leading order,
the spectral deviations we shall describe below will be the same in our model as well
as in models where the decoupling between these modes is exact [82] [10§]. It would be
interesting to validate this prediction by numerical analysis.

The second approximations are controlled by A of . This quantity governs both
the validity of the saddle point approximation, as in , and that of the WKB modes
of Eq. (3.58a43.59¢)). Since these corrections decrease when A increases, the pasting of
the near horizon modes on the WKB ones should be done at the edges of the near horizon
region. One could imagine pasting the modes further away, but this would require to
control ggw(p) outside the region where v is linear in z, 7.e. to deal with ODE in 9, of
order higher than 2. This is perhaps possible but it requires other techniques than those
we used, see [127] for recent developments. In any case, what we do is sufficient to control
the error terms in the relativistic limit, and more precisely to find an upper bound.

Being confined to stay within the near horizon region, the validity of the pasting
procedure requires that

3
2

Ap = A(«Tpasting> - E(prasting)

~J

x| =

3
(Din)2 > 1, (3.98)
where Dy, characterizes the extension of this region on either side of the horizon. As we

see in Figl3.7] at fixed A/k, the spectrum is very close to the relativistic one of (3.46])
if Dy, is large enough. Instead, below a certain threshold, the deviations become non
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Chapter 3 : Breaking Lorentz invariance

negligible. Our criterion in (3.98) indicates that this will happen when A, is of order 1.
Hence the threshold value for Dy, should scale as (x/A)?3. This prediction is confirmed
by the numerical analysis of [119].
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04
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D,

Figure 3.7: Deviation of the temperature found using the code of [119] for various
flows v(z) which all have the same surface gravity k. Ty = k/27 is the usual
Hawking temperature. Ty is the actual temperature given quartic superluminal
dispersion computed for w < k. The parameter k, (see [119] for its precise
definition) characterizes the slope of v(z) outside the near horizon region, i.e. in
regions 2 of Fig[3.3l At fixed A/x = 15, the critical value of Df, ~ 0.2 below
which T deviates from T does not depend on &, in agreement with .
Moreover, an analysis for various values of A/k in [I19] has shown that the

scaling law for Dy is consistent with Eq. (3.98).

We can be more precise. Indeed, as discussed after , the near horizon region is
not necessarily symmetric. Hence, the values of Zpasting On the right and on the left will
be different. This is important because error terms coming from in modes are dominant
compared to those from out modes, see Sec3.2.3] Since the former lives on the left side,
the validity condition is

A (Dle)% > 1, (3.99)

~ —
R

L

A

The higher sensitivity of the spectrum to perturbations of v localized on the left hand side
was clearly observed in [119], see Fig. 8 right panel. This sensitivity has been recently

exploited in [128] to produce resonant effects. We can now estimate the deviations on the
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3.2 Hawking radiation in the presence of dispersion

spectrum. Considering Eqgs. (3.60l3.61}[3.79||3.82bl}3.99)), we obtain
—0 (PW*””)) , (3.100)

Ay

’f_lw _ T—li)elatlwstlc

rrelativistic
n,

where P is a polynomial function of degree 2. Therefore, at fixed w < k, i.e. in the relevant
regime for Hawking radiation, the leading deviations are bounded by a quantity scaling
as 1/ Ag . In particular, demonstrates that the spectrum is thermal for arbitrary
small frequencies, contrary to what has been suspected in [97, 113}, [129]. Moreover, our
analysis indicates that the deviations should grow with w. This is compatible with the
fact that 7 vanishes for w > wpy. defined in , irrespectively of the value of the ratio
A/k. However, we have not yet been able to confirm this precisely with the code of [I19].
One of the reasons is that the spectrum is radically modified when w approaches wyax.
So far the p-WKB approximation has been a subdominant effect. However, if one takes
the de Sitter limit, i.e. Dy, — 00, the correction term in (3.98) vanishes and p-WKB
becomes the only source of deviations.

To conclude, we recall that the deviations have been computed using . In other
mode equations, like that for phonons in a BEC, the corrections to the z-WKB approxi-
mation will be in general larger. However these corrections are not due to dispersion but
rather to the fact that the conformal invariance of in the dispersionless limit will
be lost. These corrections can thus be studied without introducing dispersion. This is
also true when introducing an infrared modification of associated with a mass or
with a non-vanishing perpendicular momentum. In Chapter [d] we show that the spectral
properties are still robust in that is sufficient to guarantee that to leading order
the Bogoliubov coefficients are unaffected by short distance dispersion.

3.2.8 General superluminal dispersion
Instead of (3.30]), we now consider

) p2n+1 2
F=(p) = (p+ A2") : (3.101)

taken again, for simplicity, to be a perfect square. In Sec[3.2.4] we computed p-WKB
modes for any dispersion in (3.74]), hence the globally defined modes for F' satisfying

(3.101)) are, see Sec{3.2.5]

) " on+1
i(pe—3 In(p)+ G,y ay) dp

1 /e
)= Vark Je (1+ %)% p\/27r‘

There now exist 2n + 1 linearly independent modes. Hence in terms of contours, there
are 2n + 1 sectors (Stokes lines) toward oo in the complex p plane. By using a contour
homotopic to the real line, and the same two possible branch cuts of Inp on iR,
we can compute the 2 ‘on-shell’ modes that are asymptotically bounded. Even though,
there exist n pairs of growing and decaying modes on the subsonic side, and n — 1 pairs
on the other side, only one pair in the subsonic sector will be relevant in the ‘off-shell’
connection formula of . Indeed, all the other pairs do not mix with propagating
modes. Therefore, the different contours giving rise to the relevant modes will be quite

similar to those of Sec[3.2.5

Pu(z (3.102)
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To perform a saddle point approximation, we introduce ¢ = p/ A|/<;a:]ﬁ and get:

2n+1

1+ 12nk|z])2 tv/2m

(3.103)

1
=i In(Alkz|2n) —iZ In(t) A () (sign(@)ps 27 dt
i) = [ oo )
C

Ak

By a computation similar to that of Sec|3.2.5, at leading order in x/A, we recover the
Bogoliubov coefficients of ([3.93)), thereby establishing their robustness for arbitrary integer
values of n. Moreover, the deviations from this result are now governed by

A prys (3.104)

L _
Ap,n -

K

Hence, the error on the mean number of emitted quanta satisfies

K
(A(%M) 3109

3.2.9 Relating subluminal dispersion relations to superluminal
ones

= —relativistic
ny — Ny,

mrelativistic
Ty

So far we analyzed only superluminal dispersion relations. We should thus inquire how
subluminal dispersions would affect the spectrum. At the classical level, as noticed in
Sec. [3.2.1] there is an exact correspondence between these two cases. At the level of
the modes does not leave invariant as it does not apply to the left moving
solutions governed by w—wvp = —F. However, it becomes a symmetry when neglecting the
mode mixing between left and right movers. Therefore, in models where the decoupling
between these is exact [82] [T08], is an exact symmetry. Moreover, since the mode
mixing between left and right movers is subdominant for general mode equations, the
discrepancy of the spectral deviations between superluminal and subluminal dispersion
will not show up at leading order. This is precisely what has been observed in Sec.VI.2
of [112].

At the level of the connection formula of , the three exchanges of still
are an exact symmetry since the Ugg-matrix is based on the right moving mode of
which is determined by the action W, (p). Therefore, at leading order in /A, without any
further calculation, this symmetry implies that the spectrum of HR is equally robust for
subluminal dispersion. Moreover, the leading order deviations from the thermal spectrum
will be governed by the same expression as . It should be noticed that when
applying , DL characterizes the extension on the sub-sonic region.

The above symmetry should not be confused with the one that relates black and
white hole geometries without changing the dispersion relation, see in Sec..
Indeed, the symmetry @ presented here exchanges the role of left and right moving
modes, while that of Eq. (]4__]—7[) applies only to the right moving sector. Instead, these two
symmetries can be composed with each other. This allows to compare black hole spectra
for both types of dispersion without referring to white holes.

To conclude the discussion, we mention that this approximate symmetry not only
allows to predict several effects, but also to predict how the observables will quantitatively
behave. In this discussion, we anticipate the analysis of Chapters [4 and [5] concerning the
undulation [30] B1] and black hole laser [2§].
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e A laser effect will be found for subluminal dispersion in a flow possessing two hori-
zons that passes from super to sub and then back to a supersonic flow, and this
exactly for the same reasons that the laser effect was found in the ‘reversed’ flow in
the case of superluminal dispersion. This laser effect will be the subject of Chapter
Bl The frequencies and the growth rates of this subsonic laser effect will be governed
by the same expressions as those of Chapter |5 (when neglecting the coupling to the
left moving modes).

e Subsonic phonon propagation in a non-homogeneous flow that remains everywhere
subsonic, i.e., without a sonic horizon, will be governed by a 4 x 4 S-matrix that
encodes new pair creation channels with respect to those found in the presence
of a sonic horizon [127] exactly for the same reasons that a supersonic phonon
propagation in a non-homogeneous flow that remains everywhere supersonic does
so, as mentioned in [120].

e The behavior of the Bogoliubov coefficients in the two cases will behave quantita-
tively in the same way.

e The undulation observed in white hole flow for subluminal gravity waves in the
experiment of [93] is generated for the same reasons as that found in white holes for
Bose condensates using the Bogoliubov-de Gennes equation [130]. As we discussed

in Chapter [4] this is obtained by composing the symmetries of (4.17) and (3.36]).

e When the dispersion relations and the profiles v(x) + ¢(z) (where ¢(x) is the speed
of sound as in Eq. (3.5))) obey (3.36]) up to a possible rescaling of A, the momentum
p, and distances, these undulations should have the same spatial profile.

3.3 Main conclusions of this study

In this chapter (and in [2§]), we studied the modification of the Hawking flux when Lorentz
invariance is no longer exact, but only emergent in the infrared. We confirmed that the
dispersionless limit is regular, in that both the spectrum (Eq. (3.93)) and the correlation
pattern (Eq. ) becomes exactly relativistic in the limit A — oco. Moreover, we
identified the role of the size of the near horizon region, the parameter Dy, in this limit,
as explained by Egs. and . It is important to note that a small Dy, can
invalidate the relativistic result even though /A is quite small. This might be the case
e.g. in optical fibers.

As can be understood by combining our results with the numerical ones of [119],
dispersive effects introduce a ‘resolution length’ ~ x~Y/3A~2/3. If the gradient of the
geometry varies too much on this distance, the field cannot identify the surface gravity
of the horizon, and the flux starts deviating from Hawking’s result. Moreover, unlike
what could be suspected [97, [113] [129], dispersion generates no deviations in the infrared,
see Eq. . New infrared effects can appear, but they are essentially insensitive to
dispersion, we refer to Chapter [4] for more details, and in particular Sec[4.6.1] In addition,
thanks to Eq. , we established that our results do not depend on the nature of the
dispersion relation, .e. sub- or superluminal.

This work not only obtained interesting results concerning the robustness of Hawking
radiation, it also presents a whole formalism to compute the Bogoliubov transformation
in the weak dispersive regime. This has many interesting applications.In the following
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Chapter 3 : Breaking Lorentz invariance

chapters, we shall see some a few examples. In particular, it will be used to deal with
configurations with several horizons. By computing properly the phases of the coefficients,
we can characterize precisely interference effects arising in the black hole laser effect (see
Chapter . Moreover, because our transfer matrix of Eq. is valid ‘off-shell’; we are
also able to incorporate effects due to the growing and decaying modes. As we show in
Chapter [4, they contribute when they live in a finite size region.

This work seems to indicate that adding ultraviolet dispersion barely affects Hawking
radiation, if the cut-off scale A is high enough. This is true when restricting our attention
to the emitted flux of a black hole. However, as we shall see, new stability issues must be
addressed. In fact, in some configurations, dispersion might strongly alter the relativistic
picture (see e.g. the discussion in Sec)5.4.2)).
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4.1 Infrared divergences in Hawking radiation

In the preceeding chapter, we saw that the Hawking effect is robust against the intro-
duction of ultraviolet dispersion, when x/(AD]/?) < 1, sce Eq. (3-98). In the following
(Chapters [4f and , we analyze more general geometries than the simple black hole case.
In contrast with Chapter |3, we will observe new features, which appear through disper-
sive effects and that were absent in the relativistic theory. To start with, we analyze the
nature of the infrared divergence of Hawking radiation. Indeed, the Bogoliubov coefficient
or equivalently, the occupation number of Hawking quanta (see e.g., Eq. ) diverges

in the infrared regime, i.e.

T
Ny~ =2 for w—0. (4.1)
w
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Chapter 4 : Infrared instabilities

It is well known though that there are no physical infrared divergences in Hawking radi-
ation [69], exactly as there is no infrared divergence for any object radiating as a black
body. This is simply because when computing observables, as the energy density, n,, is
multiplied by powers of w which regulate the divergence . However, when introducing
dispersion, this statement is no longer clear. Indeed, as we saw in Fig[3.5] for dispersive
theories, there might exist non-zero values of the momentum at zero frequency, which
could spoil the preceding argument. In fact, the infrared divergence of Eq. becomes
physically relevant if three conditions are met.

1. The Bogoliubov coefficient (3, must diverge, or at least be much larger than 1 for

w — 0 (see e.g., Eq. (3.93)).

2. There must exist a zero frequency root py = p,—g # 0 of the Hamilton-Jacobi

equation (see e.g., Figs. and .

3. The group velocity of the corresponding mode must be oriented away from the sonic
horizon.

In that case, we will observe a contribution from the zero mode to the physical observables.
Such phenomenon will be called ‘undulation’. Indeed, it corresponds to some well known
solutions in hydrodynamics [131]E| produced by hydraulic jumps. Moreover, they also
share some features with ‘bow waves’ in that both phenomena concerns the excitation of
the zero-frequency mode associated with py. However, the important difference is that
for bow waves, the excitation is due to a source term coming from a defect in the medium
(e.g., a boat in water) [I33], while in our case, the undulation is produced by the large
amplification of infrared modes due to the horizon. As we shall see, this effect should be
conceived as an important prediction of the linearized treatment, and could be validated
for a BEC using numerical techniques similar to those of [I30], and perhaps also in future
experiments.

To begin with, we shall assume that the three conditions are met, and we derive very
general features of the undulation, and how it can affect observables. To this aim, we
consider the two-point correlation function evaluated in the in-vacuum

Gt 'z, 2') = (Ow|d(t, 2)d(t', )| 0). (4.2)
Using the decomposition of the field in Fourier modes (2.21)) we find for equal times that

G(t,t;az,x’):/ Go(z,2')dw. (4.3)
0

In the infrared sector, for low enough frequencies, the relevant term in the integrand is

*

Gulz,a') = ¢ (x) (¢5(2)" + o2, (x) (¢2,(=))". (4.4)
In general, ¢'" and ¢ are two different functions of z, and G,, is complex and cannot

be factorized. To see that, under some conditions, it factorizes, we use Eq. (3.43]) to work
with the out-modes. Then the first term in Eq. (4.4]) becomes

ou () (05 (2)" = law? 60" () (62" (2")" + |81 (675(x))" ¢%h(2")  (4.5a)
+2Re {awﬁz¢gm(x)¢‘fﬁ(x’)} : (4.5b)

!Even though these are well known, they are not completely understood. In the Introduction of
Ref. [132], one finds the statement: ‘Still, the characteristics and the formation of an undular hydraulic
jump are not fully understood’.
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4.1 Infrared divergences in Hawking radiation

In the limit w — 0, two effects are combined. Firstly ¢2* and ¢°"* become the same
function of x, ¢g"(x). This is true in general, but not in the particular case of the two
dimensional massless field in a black hole metric because in that case ¢°™ and ¢°“* vanish
on the L and R quadrant respectively (see [29]).

Secondly, when assuming that |3,|> > 1 for w — 0, since the S-matrix of Eq.

is an element of U(1,1), one has

law” ~ Gl ~ 1B~ 1B, (4.6a)
a3t~ anB, ~ |6, (4.6b)
where €?? is a phase. These two facts guarantee that G,, becomes real and factorizes as
Go(x,2') ~ 8|B,|* x ®y(x) Py(a’), (4.7)

where the real wave .
Dy(x) = Re {63 (x)} (43)

gives the profile of the undulation. It should first be noticed that its phase is locked.
Indeed, if one modifies the arbitrary phase of the out-mode ¢, the modified phase
would exactly compensate this change so that &y would remain unchanged. This can be
understood from the fact that ®y oscillates on one side of the horizon and decays on the
other. One should point out that this factorization means that the undulation contributes
to observables in the same way that a coherent state does, see App[B] or the appendix
of reference [90]. It thus behaves as a classical wave in that its profile and its phase are
not random. However, in the present linearized treatment, its amplitude is still a random
variable, i.e., its mean value is identically zero, and |3,|? gives the (w-contribution of its)
standard deviation.

So far we have worked at fixed w. We now consider the integral over low frequencies
in Eq. (4.3). As was understood in [I30, 29], the divergence of |3,|? for w — 0 accounts
for a growth in time of the root mean square (r.m.s.) amplitude of the undulation. When
considering an observable evaluated at a finite time ¢ after the formation of the horizon,
the stationary setting of Eq. with a dense set of frequencies should be used with
care. Indeed, after such a lapse, one cannot resolve frequencies separated by less than
27/t, as in the Golden Rule. This effectively introduces an infrared cut-off in the integral
over w. Taking this into account gives the growing rate that depends on the power of the
divergence of |3,|?>. For example, when the Bogoliubov coefficients take their values of
Eq. , in the in-vacuum, the infrared contribution of G' grows as

Gr(t;z,2") ~ 8/2 ; |B.2dw x ®y(x) Py(z)), (4.9a)
~ 8f(t) x Py(x) Py(z), (4.9b)

where f is a growing in time function. More precisely, f grows in t as fast as |3,|?
diverges in 1/w. Therefore, the infrared divergence manifests itself as a growing in time
zero-mode. Note also that in a black hole, ®y(z) is a constant, therefore its contribution
is an artifact and disappears from all observables. Indeed, they all consists of derivatives
of the 2-point function G' (7),, in gravity, density fluctuations in BEC, height variations
for surface waves [108], etc.). This argument is equivalent to the first one we provided
after Eq. .

In the next section, we first discuss the relevance of the undulation for Bose-Einstein
condensates and then present the structure of the present chapter.
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4.2 The Bose-Einstein condensate context

As we discussed in the preceding section, the analogue Hawking radiation of white hole
flows emit a standing zero-frequency wave, i.e. an undulation [I30}, 29]. This wave pos-
sesses a macroscopic amplitude and a short wavelength fixed by the dispersive properties
of the medium. As we saw in Sec[d.1] in hydrodynamic, this wave corresponds to an
undular hydraulic jump. They also seem closely related to the appearance of ‘layered
structures’ in “He [134], or in BEC [I35]. In addition, undulations have been recently
observed in water tank experiments [1306], 03] aiming at detecting the analogue Hawking
radiation, but their relation with the Hawking effect was not pointed out. This relation
was understood in the context of atomic Bose-Einstein condensates (BEC), where the
emission of an undulation was explained in terms of the infrared divergence of the mean
occupation number, as in Eq. . More precisely, the undulation arises from the com-
bination of the three conditions mentioned earlier. Firstly, n,,, the spectrum of massless
phonons spontaneously produced d la Hawking from the sonic horizon diverges like 1/w
for w — 0, as in the Planck distribution. Secondly, py = p,—o, the wave number of
the undulation is a non-trivial solution of the dispersion relation, and thirdly, its group
velocity is oriented away from the horizon.

To see this in more detail, we first note that the Bogoliubov dispersion relation in a
one dimensional stationary flow, and for a longitudinal wave vector p, is

Q=w—uvp==+/c2p*(1 + &2p?), (4.10)

where w is the conserved frequency, v is the flow velocity, ¢ is the speed of sound, and
& = h/2myyc is the healing length, given in terms of the mass of the atoms m,;. The + sign
refers to positive and negative norm branches, see e.g. [130] for details. The flow profiles
giving rise to a black hole (BH) and a white hole (WH) sonic horizon are represented in
Fig. (this is an alternative way of solving equivalent to Fig. The dispersion
relation of Eq. evaluated in the asymptotic supersonic region is plotted in Fig. [£.2]
The zero-frequency roots are 4p#, where p3 is

Py = Ay/Jv2 — 3. (4.11)

In this equation, vy, and ¢y, are the asymptotic values of the velocity and speed of sound
in the supersonic region L, and A = 1/cp &y = 2my,/h characterizes the short distance
dispersion. This root only exists in a supersonic flow, and its associated group velocity
vy = 1/0,p is directed against the flow. Hence in a BH flow, it is oriented toward the
horizon, whereas for a WH one it is oriented away from it. This explains why the zero-
frequency mode only appears in WH flows, where it is generated at the sonic horizon. At
this point it should be mentioned that these solutions are not restricted to superluminal
dispersion. A completely similar phenomenon exists in fluids characterized by a sublu-
minal dispersion relation, such as that obtained by replacing ¢ — —¢? in Eq. (4.10).
This time however, the zero frequency root, and the corresponding undulation, live in
the subsonic R region of the WH flow. This can be understood because of the (approx-
imate) symmetry of the mode equation expose in Sec and [29], which replaces a
superluminal dispersion by a subluminal one.

When considering elongated quasi one dimensional systems, but relaxing the assump-
tion that the phonon excitations are purely longitudinal, the phonon modes are now
characterized by their transverse wave number p,, which takes discrete values 27n/L |,
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4.2 The Bose-Finstein condensate context

Figure 4.1: Examples of one dimensional black hole flow (solid line) and white
hole flow (dashed line) with regular asymptotic properties. They are related to
each other by reversing the sign of the velocity v(x) — —v(z). In both cases, the
subsonic R region |v| < ¢ =1 is on the right of the horizon, while the supersonic
L region is on the left. The near horizon region (NHR), where v ~ —1 + kz is
a good approximation, has a width in units of x of Dy, on the left and of Dy on
the right.

where n is an integer and L, is the characteristic size of the perpendicular dimensions.
When p% # 0, the modified dispersion relation replacing Eq. (4.10)]) is

Q=w—uvp=£/F +p2) (L +E(2 +12)). (4.12)

It is represented in Fig. . When p? €% < 1, ¢*p? acts as a mass squared. In this regime,
there are two new zero-frequency roots £p;7. They live in the hydrodynamical regime,
characterized by a relativistic linear dispersion relation. Indeed, in the limit £%p? — 0,
and if v /c2 is not too close to 1, pf? is independent of £ and given by

CLpL
VUL — €L
In addition we note that the group velocity of this new solution has a sign opposite to

that of Eq. (4.11). Hence, this new solution will be emitted in BH flows but not in WH

ones.

(4.13)

In the following, we shall first present the analysis of the massless undulation in white
holes (Sec{4.3). Then, we study and solve the scattering problem of massive modes in
a BH geometry (Sec. and we exposed the properties of massive undulations in both
BH (Sec and WH flows (Sec. Finally, we apply our framework in a geometry
containing both a BH and a WH horizon (Sec[4.7).
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Figure 4.2: The solid line represents the positive branch of the comoving fre-
quency ), while the dashed line represents the negative branch. One clearly
sees that the superluminal Bogoliubov dispersion is responsible for the two zero-
frequency roots 4pf. The sign of the group velocity can be seen from the slope
of the solid line at the corresponding root.

)
|
?; <
V4
Sy

Figure 4.3: As in Fig. , the solid line represents the positive branch of the
comoving frequency €2, while the dashed line represents the negative branch. One
sees that p?, which acts as a mass, is responsible for new zero-frequency roots
+p{7 which occur in the phonon part of the dispersion relation.

104



4.3 White hole undulations

4.3 White hole undulations

In this section, we study in more detail the white hole geometry. As mentioned in Sec|3.1.2]
a white hole corresponds to the time reverse of a black hole. Its surface gravity is thus of
opposite sign, i.e.,

aﬂ)“-{ < 0. (414)

For more transparency, we will define the surface gravity as —k, so that the parameter s
stays positive. When considering the wave equation Eq. (1.131f), or its 141 reduction,

(0, + D,0)(8y + v0,)p — D2 = 0, (4.15)

a simple way to pass from the black hole to the white hole case is to make the change
v — —v. As we see from the above equation , this is equivalent to the change
t — —t.

However, inverting the flow of time is not free of consequences. In particular, the
infinite redshift is now an infinite blue shift. Modes come in and focus on the white hole
horizon, with an increasing co-moving frequency Q = Qpe™ (see Fig. This raises new
concerns about the stability of the white hole. Indeed, every noise in the infrared sector
will be blueshifted and become highly energetic, with possible dramatic consequences.
The question of stability of white holes is quite old [I37]. In general relativity (i.e., no
dispersion), not only white holes cannot be formed by a physical process, but their horizons
are also unstable because of the infinite blueshift and focusing on the horizon, which is
now future directed (see Fig. Indeed, this makes the renormalized stress-energy tensor
infinite on the horizon. In analog gravity or when Lorentz invariance is broken at short
distances, this question must be readdressed. In [I3§], it was first believed that these are
drastically unstable, because exponentially growing modes are present in the spectrum. In
fact, these modes are not included in the spectrum, because they do not satisfy the ABM
requirement (see Sec[5.3| in Chapter [5)). However, (sonic) white holes do display a mild
instability, due to the divergence of the Bogoliubov coefficients for w — 0, as explained
in Secd.1l

We conclude by a very small semantic remark. It is not clear whether an undulation
should be called ‘instability’ or not. Indeed, it is non standard in the sense that the grow-
ing rate is not exponential, but rather logarithmic of polynomial (unlike what we shall
study in Chapter . However, it does produce an ever growing contribution, that will
ultimately backreact and modify the background structure (irrespectively of the under-
lying theory, Navier-Stokes, Gross-Pitaevskii or General Relativity). We compromise by
calling it ‘mild instability’. In practice, e.g. in [93], it was observed that the undulation
does not completely destroys the set up, but rather deforms it, because non linearities
saturate it quite rapidly.

4.3.1 The black hole-white hole correspondence

As far as the stationary mode equation is concerned, a white hole geometry is very
similar to that of a black hole. Indeed, all the formalism developed in Chapter |3 equally
applies. In fact, there is a simple correspondence between the two cases, when solving the
stationary problem, i.e., Eq. . In terms of stationary modes, the correspondence is
made by exchanging in and out and performing a complex conjugation:

qbin,VVH _ (¢gut,BH)* ] (416)

w
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H — H —

(a) Relativistic case. (b) Superluminal dispersion.

Figure 4.4: Geodesics around a white hole horizon, for relativistic or disper-
sive fields. v-modes focus and are being blueshifted, while u-modes come out

regularly. This has to be compared to Sec and Sec{3.2.1}

For more details, we refer to the App.D of [90]. This mapping follows from a symmetry
of the mode equation (3.20). Indeed, the latter is invariant under

w— —w and v — —v. (4.17)
In the language of the transfer matrix of Sec)3.2.6| it implies
Uwn = (Usn)”, (4.18)

where Uy is defined through the same equation as . As a corollary, the Bogoliubov
coefficients of a white hole posses the same norm as those in the corresponding black hole
setup. We define the Bogoliubov coefficients of a white hole by the same relation as
and distinguish them with the superscript W. We get

[ (2 i
al = %:elfdfjv , (4.19a)
1—e =
. L (2)e 5 .
= 1()—=ﬁw (4.10b)
e

where the function T is defined in Eq. (3.89).

4.3.2 Undulation in a white hole

We now consider the existence of undulation in a white hole geometry with dispersion. Be-
ing motivated mainly by BEC, we assume a superluminal dispersion, however, as pointed
out in Secfd.2] the results are the same for subluminal, except the fact that the undulation
will live on the other side of the horizon. The Hamilton-Jacobi equation is

(w—vpy)? =p2 + 2. (4.20)
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4.3 White hole undulations

See Figs[3.5] and [4.2] for their resolution. Moreover, we take the profile v positive, as in
Figlf.d On the left side, v > 1, and on the right 1 > v > 0. We anticipate the notations
of Secd.4] and define the asymptotic value of v by

Dy = lim (v —1), (4.21)
as on Fig. If we work in a regime ADi/ > > Kk, we can apply the results of Chapter .
We now look at the necessary conditions. First, in the limit w — 0, (4.19) gives

‘T
t3

ol ~ B ~ 5 and —alf, ~ e (4.22)

2mw

Moreover, when w — 0, there is 2 non zero roots of Eq. (4.20). They are opposite to each
other (which is necessary to have ¢"* = ¢, see discussion after (4.5))). The positive one
is given by

2mw

ph =AD" (4.23)

In addition, the corresponding group velocity is, in a white hole, out-going. In fact, this
last condition is what makes the difference between black and white holes. Therefore, all
the conditions are met for an undulation to be spontaneously produced. In the 2-point
function, using Eq. , we obtain

dw kK
; N~ — —x® Oy (2 4.24
Cin(t: 2,2 séwaWwa>aw, (4.240)
4
~ in(t/2m) x Dy(z) dy(a). (4.24D)
T

This logarithmic growth was already observed in [130]. Of course, in a medium, this
growth would saturate because of the non linearities, as was also observed in [130]. In the
experiments of [136], 03], only a constant (saturated) amplitude was observed. The satu-
rated value of the amplitude could be obtained by using a treatment similar to [134, [135].
Moreover, it would be very interesting to understand under which conditions the random-
ness of the amplitude in the linearized treatment is replaced by a deterministic nonlinear
behavior, or if there is some residual randomness when non linearities are included.

Moreover, using Sec., one can compute the profile of the undulation (in the WKB
approximation) in the near horizon region (more precisely, region 1.(b) of Fig[3.3). On
the right side, it decays according to the zero frequency limit of , whereas on the
left side, one has ,

Re {e_ig @Bn(x)} ~ Lo <§A($) i Z) ’

V8 \/A(x)(1 + k|z|)
where A was defined in Eq. . The left side profile is represented on Fig On the
right it behaves very much like the decaying Airy function Ad [121], [122], and on the left it
oscillates in a similar manner but, quite surprisingly, the phase shift 7/4 has the opposite
sign. The origin of this flip is to be found in the extra factor of 1/p in the integrand
of that is associated with the relativistic (non-positive) norm of (3.21)). It would
be very interesting to observe the profile of and its unusual phase shift in future
experiments. Further away from the horizon, the undulation profile can be obtained from
the zero frequency limit of . Explicitly, we find

(4.25)

- .

A Dy s
Re{e—zz QOBH(I)} ~ COoS (pU('I_’_ 6n>+ 4).

\/4rA D3/

(4.26)
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Oy

/\A/\/\A x

MY

Figure 4.5: Shape of the undulation profile obtained in Eq. (4.25]), on the left of
the horizon. This expression is valid in the near horizon, i.e. |kz| < Dy and not
too close to the horizon (z = 0), i.e., |kz| > (k/A)?3. On this plot, A/k ~ 10.
On the right side, the profile decays exponentially, as the Ai function.

In brief, this analysis predicts that white hole flows should emit a zero frequency wave
which has a large amplitude and which behaves classically. Moreover, given the fact that
the low frequency Bogoliubov coefficient (3, contributes to the undulation amplitude, we
think that studying and observing these waves should be conceived as part of the enter-
prise to observe the analogue Hawking radiation. As a last remark, we wish to stress
that the linearized treatment predicts that, when starting from the vacuum the undu-
lation amplitude is described by a Gaussian stochastic ensemble with a vanishing mean
amplitude. However, the same result will also hold if the field is in a thermal state. In-
deed, the undulation acts as an amplifier, which generates a random noise by amplifying
fluctuations [139, 67], exactly as for primordial density fluctuations in the inflationary
scenario [140]. But these fluctuations need not be quantum, and therefore, in a thermal
state the same phenomenon will also produce an undulation. As was discussed in [130],
in that case, the only modification with respect to the previous discussion, is the growing
rate, which is linear in time instead of logarithmic. Moreover, the outcome can also be
a deterministic signal if the initial state is a large enough classical wave packet like a
coherent state [141].

It is also interesting to compare the expression (4.24) with the corresponding one
obtained in a black hole geometry. In that case, when working with the black hole in
vacuum, the w contribution of the two-point function is, see (4.4)),

GE" = ¢l () (¢l (2"))" + o™ (z) (&7, ()) . (4.27)
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Hence in the limit w — 0 it gives (see Eq. 32 in [120])

*

Gy =207 (x) (6'(2))", (4.28)

which behaves very differently from Gr of . It does not diverge as 1/w and it is
not the product of two real waves. To get an expression that might correspond to that
of (4.24]) one should express the in modes in terms of the out black hole modes given in
and , as done in . Doing so, the prefactor of is recovered but
the spatial behavior of GPH is completely different because the out modes of and
are defined on opposite sides of the horizon, and become constant in their domain.
Hence, unlike G, G cannot be written in the limit w — 0 as a product of twice the
same real wave.

4.4 Massive fields

In Sec[d.2] we saw that the introduction of a perpendicular momentum opens the possi-
bility of finding ‘massive’ undulations in BH flows, which are well-described in the hydro-
dynamical approximation of the underlying condensed matter system. To verify if this is
the case, one should see how the mass affects the spectrum, and in particular if it acts as
an infrared regulator that saturates the growth of the undulation amplitude found in the
massless case in Secd.3.2] In this section, these issues will be investigated in a simpli-
fied context where the phonon modes obey a second order differential equation, i.e. for
A — oo in Eq. . Our results should work not only for BEC but for other condensed
matters systems where the quasi-particle dispersion relation is linear at low frequency.

As in preceding chapters, we study the propagation in a 1+1 Painlevé-Gullstrand
metric

ds® = dt* — (dx — v(x)dt)*. (4.29)

In a condensed matter context, it means that we assume a constant sound velocity (put to
1) and density, see Sec for details. The work presented in the following was obtained
in [3I]. Even though the main motivation concerns the appearance of undulations in
analog models and especially BEC, it also provides a complete understanding of the
emission of massive modes by black holes. In particular, analytical results are obtained
for the scattering in the so-called CGHS black hole [142, [143]. In Sec[4.4.1] we study the
solutions of the Klein-Gordon equation in a stationary BH metric. We explain how the
in/out scattering matrix can be decomposed into three blocks that each encodes some
aspect of mode mixing of massive fields. In Secld.4.2 we study three preparatory cases
which are then combined so as to obtain the S-matrix in a black hole flow similar to that
represented in Fig. 4.1} In Sec[4.5and [4.6] we study the properties of massive undulations
in black and white holes.

4.4.1 Settings, mode mixing, structure of the S-matrix

In the considered geometry, the definition of the surface gravity of the horizon we shall
use is

K= %axa —v%)o. (4.30)

We adopt this local definition, which no longer refers to the norm of K at infinity, because
it allows us to compare various geometries starting from the near horizon region (NHR).
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Unless specified otherwise, we shall only consider black holes, i.e. £ > 0. Notice also that
we shall work with flow velocities that are either asymptotically bounded or unbounded;
in the latter case, there will be a singularity.

The field will be studied at fixed Killing frequency w = —K*p,,, using a decomposition
into stationary modes

¢ = /qbw(x)e_i“’tdw, (4.31)

exactly as in preceding chapters. At fixed w, the Klein-Gordon equation ([1.126) in (4.29)
gives

[(w+i0,v)(w + 0d,) + 07 — m*|¢,(z) = 0. (4.32)

Similar equations are obtained when studying acoustic perturbations on a fluid flow with
a velocity profile v(x), see Seci3.1.2| or [107, [86]. In these cases, a non zero transverse
momentum p; plays the role of the mass m. Moreover, Eq. is also relevant for
standard Hawking radiation, when considering either massive quanta, but also those with
high angular momentum. Indeed, from Eq. , we see that in the near horizon region,

there is an effective mass
00+ 1 2K
mZs = m? + ( 5 ) + —. (4.33)
T'H TH

However, this effective mass correctly models the full potential only if all the relevant
physics, i.e. the scattering, occurs in the near horizon region. As we shall see in Sec[4.4.2]
this is the case when meg is large compared to . In what follows, we consider only
Eq. , for profiles v(x) that give rise to analytically soluble equations. Yet, we aim
to extract generic features. When studying numerically the phonon mode equation in a
Bose condensate and with a varying sound speed [144], we recovered the features found

for solutions to Eq. (4.32).

Classical trajectories

To understand the consequences of the mass on black hole radiation, it is useful to first
consider the corresponding classical problem where p = (9,)"p,, is the momentum of the
massive particle at fixed w. In that case, the Hamilton-Jacobi equation associated with

Eq. (4.32) is
0? = (w—v(z)p)? = p* +m?, (4.34)

where ) = w — vp is the comoving frequency. Eq. (4.34) admits two roots

—wv £ y/w? —m2(1 — v?)
1—0? ’

P+ = (4.35)

The classical trajectories obey Hamilton’s equations dx/dt = 1/0,p and dp/dt = —1/0,,x.
We summarize here their main features with w > 0, see [145], 140, [147] for more details.

e Close to the horizon, at first order in 1 — v? ~ 2kz < 1, one has

w
P+ =— (436)
KX
m2 — w?
= —_— 4.37
p 5 (4.37)
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We see that p, diverges for x+ — 0 whereas p_ hardly varies. The corresponding
geodesics follow

ry(t) = 2% e, (4.38)
(4.39)

The second trajectory is regularly falling across the horizon, while the first undergoes
an infinite focusing in the past, in a mass independent manner.

e Far away from the horizon, in the left region (L) for 1 — v? < 0, both solutions are
moving to the left (since v < 0) even though p; < 0 and p_ > 0.

e For 1—v? > 0, in the right region (R), as long as (1 —v?)m? < w?, there are two real
roots. At some point zy, we reach (1 — v*)m? = w? where they become complex.
This means that the trajectory is reflected and falls back across the horizon. Hence,
the asymptotic value of 1 — v? > 0 determines the threshold frequency

wr =my/1 — 02 (4.40)

as?

above which the trajectory is not reflected. When w < wg, there is a single trajectory
with p, > 0 that starts from the horizon to the right and bounces back across the
horizon, see Figll.6] For w > wy instead, there are 2 disconnected trajectories, one
is moving outwards from the horizon, while the other falls in from x = co. As we
shall see, the dimensionality of asymptotic modes will be different above and below
WR-

Mode mixing

As in chapter [2] we decompose the field operator in a basis of stationary modes
+o0 ) )
o(t,x) = / > @l el (z) + all (¢, (x))*] e dw + hec., (4.41)
0 .
j

where the discrete index j takes into account the dimensionality of mode basis at fixed
w. The basis is orthonormal in the sense of the Klein-Gordon scalar product

(€Al = [ [o2 (! + iv0n)ol + ¢l = iv0.)o% ] do.

= :I:é(w — w’)éjj/. (442)

As before, we name the negative norm modes (¢_,)* so that e*'¢_, is a positive norm
mode with negative frequency.

To obtain the dimensionality of the mode basis, one must identify the solutions of
Eq. that are asymptotically bounded modes (ABM). This requirement univocally
picks out a complete basis over which the canonical field quﬁ must be decomposed. Asymp-
totically, solving the mode equation (4.32)) is equivalent to solving the Hamilton-Jacobi
equation (4.34). Hence, the dimensionality of the ABM can be found by considering the
real roots of Eq. . Moreover, the sign of the norm of an asymptotic mode is given
by the sign of the corresponding comoving frequency Q(p;) = w — vp;, as can be directly

seen from Eq. (4.42)).
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Q>0

Q<0

Figure 4.6: In this figure, trajectories of massive particles for a fixed frequency
w > 0 below the threshold of Eq. are shown. The positive momentum
trajectory is reflected in the outside region at the turning point x,(w) whereas
the negative momentum one (or equivalently the positive momentum one with
negative w [105]) propagates in the inside region where the Killing field is space-
like. The negative momentum particle has a negative comoving frequency 2 =
w — vp, and corresponds to a negative norm mode, as explained in Sec.

In addition, because the situation is non-homogeneous, modes mix and the basis is not
unique. As usual, we introduce in modes ¢ and out modes ¢°"* by examining the mode
behavior at early and late times. The S-matrix then relates the in and out bases. When
there is an horizon, these two basis are inequivalent because positive and negative norm
modes coexist and mix. To further study the mixing, one should consider separately the
frequencies below and above wg in Eq. .

For 0 < w < wg, there are two ABM. One has a negative norm and propagates behind
the horizon. The other has a positive norm, comes out from the horizon, and bounces
back across the horizon, see Fig. [4.6] The S-matrix thus has the form

((ﬁf)*) -5 ((f)) - (4.43)

To follow the standard definition of the S-matrix [22 [49], we use its transpose here.

For w > wg, there are three ABM. The negative norm one still propagates behind the
horizon. The second one has a positive norm, comes out from the horizon, and reaches
infinity. The third one comes from infinity and falls into the hole. We denote the first
two with the superscript v and the last one with v, because at high momentum, when
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4.4 Massive fields

the mass is negligible, they follow retarded (u) and advanced (v) null geodesics. We then
define S by

¢Li$1,u out,u
CONEERICONE &0
gbgw QSZUt’V

In this regime, when starting from vacuum, the three out occupation numbers n, n), and
n", obey n +n) = n"_ because of the stationarity of the settings. The first two are
given by the square of the overlaps

nd = (@2 e2 P,y = (). (4.45)
As we shall see, in both cases, it is useful to decompose the total S-matrix as
S = Star * Sext * SNHR, (4.46)

where each S-matrix describes one step of the in/out scatteringﬂ The first one, Syur,
describes the mode mixing which arises for high momenta p > m, near the horizon where
the modes are effectively massless. The second matrix Sey; encodes the elastic scattering
which occurs in the external region R. Below the threshold, it describes the total reflection,
while above it governs the grey body factors encoding the partial transmission. The last
matrix Sp,, describes the mixing occurring in the left region between the two modes that
are propagating toward r = —oo.

It should be mentioned that this decomposition is not unique, as only the in/out S-
matrix is univocally defined. However, in the absence of dispersion, each S-matrix is
solution of a well defined and independent scattering problem. Therefore, this decompo-
sition is very useful as it allows us to compute S, and to understand its properties.

Near horizon scattering

We start with Syugr because its properties are valid for all metrics possessing an horizon
and because they are determined for momenta much higher than the mass and in the
immediate vicinity of the horizon. To simplify the mode equation (4.32]), we introduce
the auxiliary mode ¢,

i TG g
e iw [ e L

VIl =2

Eq. (4.32) is then cast in a canonical form, without the term linear in 0,,

[—8§+»<8§V|1_2ﬂ|+ m_ @ )]q%@ﬂzzo. (4.48)

11— 22| 1—0v2  (1—10?)2

¢w<x) =

Pu(). (4.47)

We notice that the norm of ¢, is, up to a sign, given by the Wronskian
W(p) = 2im (05,000 — Pu0spy) - (4.49)

Using Eq. (4.47)), one verifies that unit Wronskian ¢, modes, give rise to ¢, modes that
have a unit norm with respect to the scalar product of Eq. (4.42). The relative sign is
given by that of the comoving frequency €2 of Eq. (4.34)).

ZNote that this decomposition is very similar to that of [62], but our is ezact, since we do not consider
interactions or dispersive effects.
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In the close vicinity of the horizon, the mass term becomes negligible in Eq. (4.48)).
More precisely, in the near horizon region where 1 — v? ~ 2kx, keeping only the leading
term for kx < 1, one obtains

[—&3 - G + %) H wo(x) = 0. (4.50)

Therefore the leading behavior of ¢, is

o~ O(—) Al2ka|'5 "2 + O(z) A'|2ka] 52
x—0 ~— , N y
focusing on the left focusing on the right
+O(—x) B|2kz| 1512 + O(x) B|26a| 150

~
regularly falling in

(4.51)

When re-expressing this in terms of the original mode ¢,, using Eq. (4.47)), we see that
the B weighted terms are regular, and are in fact constant. Therefore, they account for
the regularity of the left moving mode as it crosses the horizon. Hence, we impose

B=B8. (4.52)

On the other hand, the A parts in Eq. oscillate infinitely around z = 0 and account
for high momentum modes living on either side of the horizon, which are singular on it.
As understood by Unruh [68], it is appropriate to combine them in superpositions that are
analytic either in the upper, or lower half complex z-plane, as was exposed in details in
Sec.. This characterization applies to the ¢, modes which are solutions to Eq. .
Hence, the modes ¢, of Eq. are products of a non analytic function and an analytic
one, which is an Unruh mode:

dn o~ (i) ot x (w4 i) (4.53a)
K 812k

. * w 6% - W 1 ;W

m) o~ T (2—) |7 x (2 — de)'E . 4.53h
(¢.) ?) el x @ 0 (4.530)
We have used Eq. (4.49)) to normalize these modes, and their phases have been chosen
in order to obtain simple expressions. When there are turning points, as is the case for
dispersive fields [29] and for massive fields, one should pay attention to these phases.

The normalized modes that propagate on either side of the horizon and vanish on the
other side are

|2k |tz te

P~ O(x) T (4.54a)
* kx|isets
(") ~ @(—:1:)L (4.54b)

Varw

They correspond to the massless out modes of Sec)2.3.2 but here they are not the massive
out modes, since they undergo extra scatterings. The near horizon S-matrix Sypg is then

defined by
in NHR A2NHR Right
((Q%J )*) = (gul\}IHR g“ﬂfHR) . ((21}&)*) : (4.55)
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Using the analytic properties of the in modes of Eqs. (4.53al), (4.53bf), we immediately
obtain

(s

2K 2K
Sxir = ;;—Kr (%) (:_2;: ‘o ) . (4.56)
Unlike the other matrices in Eq. , SNHR 18 universal in that it only depends on
in Eq. . It is independent of the other properties of the profile v(z), and also of
the mass m. In fact, when considering a two dimensional massless field, which obeys
Eq. with m = 0, the left moving v-modes decouple, n, in Eq. vanishes, and
the total S-matrix reduces to the above Sygr (when the asymptotic flow velocity v is such
that out modes are well defined). In that case, on both sides of the horizon, the flux of
u-quanta is Planckian, and at the standard Hawking temperature Ty of Eq. , since
nt =n", and

u _
w =
2

= g 2m/k, (4.57)

u

n__|E

no+1

NHR
aw

Exterior and interior scatterings

As mentioned above, Sey and Sg, both depend on other properties of the profile v(x)
than k. However their structure can be analyzed in general terms, and the meaning of
their coefficients can be identified. Before computing these coefficients in specific flows,
it is of value to present their general features.

Below wg of Eq. , the positive norm mode is totally reflected while the negative
norm mode propagates inside the horizon. The exterior scattering matrix Sey is thus fully
characterized by the phase accumulated by the positive norm mode in the right region

PRisht B el () ¢5€ﬁ
<(¢Lift)*> - ( 0 1) ' ((&eﬁ)*) : (4.58)

Since this mode is totally reflected, it is the unique ABM of Eq. (4.48)) in R. For small
r — 0% using Eq. (4.544), its behavior will be

V() ~ C [|2/@:)j|ii+% + e x |2/<:17]_’%+%} : (4.59)
0

which will allow us in the next sections to extract the phase e?«.
In the interior region, there is some extra mode mixing which is described by Sgar.

Because the norms of the two modes are of opposite sign, this mixing introduces new

Bogoliubov coefficients:
¢¢Lueft aijxr quar* gbg}ut
( (¢Left) * | = ﬂfar afar* ’ (¢out) * - (460)

This scattering is entirely governed by Eq. in the interior region L. When working
in an appropriate basis, namely when positive and negative frequency modes are complex
conjugated, the real character of Eq. guarantees that the matrix St is an element
of SU(1,1).

We see that the regularity condition of Eq. for the mode crossing the horizon
plus the ABM requirement reduces the dimensionality of the four unknown coefficients of

Eq. (4.51)) to two. The S-matrix in Eq. (4.46) is then

OéuT)bt ﬁg‘ot afj,r 6£ar eiéw 0 OZSHR ﬂ}jHR
S = (BTot dTot) = (ﬁfar* afar*) : ( 0 1) . (BNHR &NHR> . (461)

w w
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This decomposition is depicted in Fig[d.7 Notice that it is the transposed version of

the intermediate S matrices of Eqgs. (4.55), (4.58]), (4.60) that appear in Eq. (4.61)), as
explained after Eq. (4.43)).

Tot t
O
aw
Far away mixing accumulated phase %~
ﬁTot
w
x

<> <—— NHR massless mixing
011

Figure 4.7: In this figure a schematic representation of the S-matrix decomposi-
tion in Eq. (4.61]) is shown. The asymptotic in and out amplitudes of the positive
frequency mode ¢ are indicated.

For frequencies larger than wg, the u mode and the v mode, both of positive norm,
mix in the exterior region R. The matrix Sey now is 3 x 3 and reads

¢5ight Tw 0 Rw ¢2}ut,u
ey ) = (6 1 0] (@), s
o ) \nmooox) \ae

The 2 x 2 non trivial sector of this matrix is an element of U(2), and it describes an elastic
scattering. The interior scattering shares the same properties that occur for frequencies
below wg, namely the positive and negative norm modes propagating in the region L mix.
The outgoing u mode is not affected by this scattering, and is thus left unchanged by St,,.
Therefore, the structure of the total S-matrix is

1 0 0 T, 0 R,)\ [aYHR pgNHR
S=10 afjxr* 6£)ar* . p 1 9 6EHR &LIZTHR ol. (463)
0 plar qfer R, 0 T, 0 0 1
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4.4.2 Exactly solvable models

We shall first compute the above S matrices in three preparatory cases in order to under-
stand various aspects regarding the scattering of massive modes on a stationary horizon.
The results of these three cases will then be put together so as to obtain the S-matrix in
a background flow relevant for analogue gravity models, and similar to that presented in
Fig. [A.1]

In what follows, the various geometries will be characterized by a single function, given

by the conformal factor of Eq. (4.29))
C(z) =1—v*(2). (4.64)

The reason to refer only to this function is double. First, as we see from Eq. ,
the mode equation for ¢, only depends on C(x). Secondly, it will allow us to consider
ranges of x where C(z) > 1. In such regions, the function v(x) of Eq. is complex.
However, neither the geometry nor the wave equation are ill defined, as can be seen
by making the change of time coordinate ts =t + [wvdz/(1 — v?), which gives

dz?

—. 4.65

ds® = (1 —v?)dts —

Note that this change is nothing else than the return to a Schwarzschild time, as in
Sec.. This line element obviously depends only on C'(x), and thus can be extended
to C' > 1. In fact, the reason why the mode equation for ¢, depends only on C'is simply
that the prefactor in Eq. accounts for the change t — tg. This gives a physical
interpretation of the auxiliary field .. It is simply the stationary mode as expressed
Schwarzschild-like coordinates. Moreover, near an horizon, since C' =~ 0, v is always well
defined in its vicinity. Therefore, we will always be able to use ¢, around an horizon, and
¢, in any other regions. The latter obeys an equation that is simpler to solve, while the
former allows us to impose regularity conditions across the horizon.

Rindler horizon

It is instructive to first study a Rindler (future) horizon in the above formalism. To do
so, we use the profile defined by
C(z) = 2kx. (4.66)

It is straightforward to check that this metric has a vanishing scalar curvature, since
R=-0°0/2, (4.67)

and thus Eq. (4.66]) describes flat space. In Eq. (4.66|) x is the ‘surface gravity’ as defined
by Eq. (4.30)). The fact that it depends on the arbitrary normalization of the Killing field
K is free of physical consequence, because the S-matrix depends only on the ratio w/k,

see e.g., Eq. (4.56]).
In this geometry, Eq. (4.48]) reads

2 2
ey M (L) L _
[ 0, + oy (4 + 4/{2) xQ} o(z) = 0. (4.68)

The interesting aspect of Rindler space is that we know the result in advance. Indeed, since
there is no pair creation in flat space, the total Bogoliubov transformation of Eq. (4.46))
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must be trivial, i.e., 31°° = 0. However, from Eq. we see that close to the horizon
the modes behave as in Eq. , and thus are subjected to the near horizon region
mixing described in Sec[d.4.1] Therefore, the extra scattering described by S, and Se
exactly compensates the near horizon one, so that the total S-matrix is trivial. To show
that this is the case, we solve Eq. following the steps of Sec.

Eq. should thus be solved separately for x > 0 and x < 0. On both sides, its
solutions can be expressed in terms of Bessel functions. We start by studying the exterior
R region. For z > 0, the only ABM is

2K

21 2
where K, (z) is the Mac-Donald function [121] and C' a constant. At large values of

pu(x) ~ 2iC ( ~ )ie‘z\/’@? : (4.70)

400 m2m?

This exponential decrease is expected since wg of Eq. (4.40)) is infinite. Near the horizon,
for x — 0%, the ABM behaves as

o m i0Rindler X |2/{1’|_Zi+% —|— |2[{/l’|zi+%
() ~ —CeismE) [ & 4.71
() o ¢ I'(1 4+ iw/k) sinh (<) 7 (4.7)
where )
oiORindler — ['(iw/k) o212 In(3) (4.72)

['(—iw/kK)
This is the phase shift that enters in Eq. (4.58]). It will play a crucial role in what follows.
In the interior region L, the general solution reads

2 2
0u() = AV=2T i) (m/-%) + BV =i (2 —%) . (4.73)

Interestingly, these solutions have been considered before, but in a different context, since
the interior of the Rindler horizon corresponds to the so-called ‘Milne universe’ [65]. Near
the horizon, for x — 07, one finds

(1) o Ag T e g,
w(x) ~ A, kx| '2"2 + B,
4 0 V2kT(1 —iw/kK) V2kI'(1 +iw/k)

In order to build the normalized positive frequency left mode ¢L®* appearing in Eq. (4.60)),
we choose

2ka[3te. (4.74)

w

A, = —i T(—; igx () 4.75
0o (—iw/kK)e , (4.75)
and B, = 0, so as to get
Left ‘2’€x‘7ii+%
M) v ———— 4.76
Ate) o (4.76)
For x — —o0, the asymptotic behavior of this mode is [121], [122],
—i —2m2g¢ i —2m2z
Left W wr e p(my ;T € § —wr @ﬁ
O~ [(—iw/k) e~ ' Maw) 70 x —+e re'2 X -
—oo\ 27K (87r2m2)1 (87r2m2)1
(4.77)
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4.4 Massive fields

In the parenthesis, the first term is the asymptotic positive norm out mode, whereas the
last factor of the second term gives the negative norm one. Therefore, the coefficients of
Eq. (4.60) are

o =[P e et T (4.78a)
2Tk

Bl = ol o7 62 (4.78b)
Making a similar computation for the negative left mode (¢%%)*  we obtain o/** and 3
and verify that S, is an element of SU(1,1). From Eq. (4.78)) we see that |3 /af2r|? =
e~2™/% which is exactly the ratio of the near horizon coefficients of Eq. (4.56]). This is
a necessary condition for having 37" = 0. However it is not sufficient, as one also needs
the phases to match each other, since

55‘0(; — doleRﬁiar + af;a,rﬂi\)IHReww ) (479)

From this equation, one clearly sees the crucial role played by e®~ of Eq. (#.72). An
explicit calculation shows that the total S-matrix of Eq. (4.61)) is

D(iw/Kk)  _jemy (€75 0
e S S — ZH n 2K T . 4
S i) 0 e (480)

!

We see that the two in/out coefficients 31°* vanish for all values of w and m. Hence
the scattering away from the horizon ezactly compensates the near horizon mixing and
there is no pair creation. Of course, this exact cancellation was expected in the present
case. However, in more general space-times, as we shall see below, a partial cancellation
between S, and Sygr will be obtained for similar reasons.

Totally reflecting model

Our second example generalizes the former Rindler case in that there is still a total
reflection, but the profile v(z) now possesses an asymptotically flat interior region. As a
result, the asymptotic flux of left going particles is well defined, since the emitted quanta
are asymptotically described by plane waves. The profile which generalizes Eq. is

2Kz

O(z) = D(—1 + ). (4.81)

The parameter D characterizes the transition from the Near Horizon Region to the asymp-
totic one. In the limit D — oo, C(z) of Eq. ({.81)) becomes that of Eq. (4.66), which
describes Rindler space. In the above metric, Eq. (]@ is analytically solvable in terms
of hypergeometric functions [121, 122]. The full expression of the general solution is given
in App.[A:2] To compute the total S-matrix, we follow exactly the same procedure as in
Secfd.4.2] On Figl.8, we have drawn the Penrose diagrams of the three models we will
solve.

The first important quantity is the phase shift of Eq. (4.58). To simplify its expression,
we introduce the dimensionless quantities

w _ V/m2D + w2

2K

(4.82)
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(a) Totally reflecting model. (b) CGHS model. (¢) Analog model.

Figure 4.8: In this figure, we show the Penrose-Carter diagrams of the geometries
we shall use. The totally reflecting model of Eq. is singular in the exterior
region. The CGHS model of Eq. has its singularity in the interior. The
analog model of Eq. is everywhere regular, and can be obtained by pasting
the L quadrant of the first model with the R quadrant of the second. These
diagrams do not represent the full analytic extension of each space-time, but
only the quadrants that are relevant for our S-matrix, namely, the left (L) and
Right (R) regions on either side of the (future) horizon H. Precise definitions
of the various types of infinities along with more details about the last diagram,
are given in Ref. [148].

The (exact) phase shift then reads
['(2iw) T(1 —iw + Q) T(1 —iw — i) iy

i0Ren _ _ _ 4.83
['(—2iw) (1 4 i — Q) T'(1 + iw + i) (483)
In the interior L region, the scattering coefficients in Sg,, are
— 1 _
02\ 1 (1 — 2iw)I" (—2iQ :
o — (B) DU ZRN (M) w45
w?) T (=iQy —iw) (1 —iw —iQy)
Bl = ol x e @) (4.84b)
The total beta coefficient is then given by
BEOt — &EHRﬁfjar + OéffrﬁngRewR“. (485)

Its full expression is rather complicated, and not very transparent. It is more interesting
to study its behavior in different regimes of the parameter space (w/k, m/k, D).

Low frequency regime - An interesting phenomenon happens in the deep infrared
regime, w — 0. In this regime, we find

eOrRel o, ]
m
w
r
—1

(4.86a)
r(-ime)

mD% ~mD% ’
2K )F<1_Z 2K )

D3
w (—z'
NHR NHR Kk
~ ~ - 4.86
A A ) Ve (4.86¢)
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4.4 Massive fields

This equations show that, even though both SNT® and % diverge as 1/w'/?, the total
coefficient in Eq. (4.85)) stays finite. Moreover, since the I' functions are analytic, it is not
difficult to see that the next order is w°, and thus

G~ f(s/mD'), (487)

which is finite for all m > 0. This completely differs from the massless case where gt
diverges since 3%t ~ gNHR ~ 1/,1/2. Moreover, when we take the massless limit of
Eq. (4.85) at fixed w, we obtain the massless result,

B~ B, (4.88)

for all w, and thus in particular we recover the diverging behavior for w — 0%. Before
addressing the apparent contradiction between Eq. (4.87)) and Eq. , it is of value
to make a pause and to discuss the lesson from Eq. (4.88)). This equation shows that
when a massless conformally coupled field is scattered on a Killing horizon of a stationary
metric which is asymptotically singular in the external region, since the curvature R =
—0%2C/2 — oo for & — oo (see Fig. the particle flux is nevertheless well defined in the
interior region because it is asymptotically flat, so that the out modes of negative Killing
frequency are unambiguously defined. In this case, using Eq. , one gets a Planck
spectrum emitted toward asymptotic left infinity. This is rather unusual since the Killing
frequency is negative and has in that L region the physical meaning of a momentum since
the Killing field is space-like.

The compatibility between Eq. and Eq. is understood when realizing that
the saturated value 33° of Eq. diverges when m — 0. To see this more precisely,
we focus on the regime of small mass m < x and small frequencies w < k&, for arbitrary
ratios w/m. In this regime, we get

Tot : "4’2 :
B~ =i D)) (4.89)

This expression reveals that there is a change of regime near
w, = mD?. (4.90)

When k£ > w > wp, S is growing as in the massless case, whereas for w < wy, it
saturates at a high but finite value, as can be seen Fig. [£.9. As in the case of ultraviolet
dispersion [112, 29], we observe that the effective frequency that governs the spectrum
depends, as expected, on the dispersive frequency, here the mass m, there the ultraviolet
scale A, but also depends in a non-trivial manner on the parameter D that governs the
extension of the near horizon region, see discussions in Sec[3.2.7. In the present case,

the power of D is 1/2, whereas for ultraviolet dispersion, the power is (n + 1)/n when
the dispersion relation that replaces Eq. (4.34]) is Q% = p? + p"™2/A", as we showed in
Sec3.2.8

Large mass regime - When the mass is large, .e., m > k,w, we find that the coefficients
of Sxur and Sp, go to their Rindler values in a well controlled manner, e.g.,

ei(SReﬂ ~ eiéRindler <1 + O(K;/mD%)> . (491)

m—00
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Figure 4.9: In this figure |31°%|* is plotted as a function of w in the regime of
low mass and frequencies, i.e., w,m < k. For frequencies above the threshold
of Eq. (£.90), |8X")? behaves as for a massless field, and grows as r/w. For
frequencies w < wy, |12 saturates at ~ k/wy ~ k/mD'Y?. In the opposite
regime, where the mass is larger than /27, the suppression arises at a frequency
larger than the temperature, and |31°!|? remains smaller than 1.

This implies that 31°° — 0 for m — oo as
BTt = O(k/mD?) = O(k Jwy). (4.92)

This can be understood by considering the Bessel functions of Sec[4.4.2] Their behavior
reveals that the scattering away from the horizon in region L, which compensates the near
horizon mixing, occurs on a distance from the horizon ~ x/m?. Hence, for large masses,
the entire scattering occurs in a close vicinity of the horizon. Therefore, in the large mass
limit, the scattering in the present geometry is indistinguishable from that occurring in
Rindler space. Using WKB techniques [29] similar to those of Chapter [3] which furnish
reliable approximations in the large mass limit, one can demonstrate that the residual
scattering outside the near horizon region is negligible. This means that for m > k,w,
irrespectively of the properties of the (smooth) profile v(x), the net in/out Bogoliubov
coefficient 31°" is suppressed by the mass. This behavior radically differs from that of the
massless case given in Eq. , even though both cases share the same Syyr.

CGHS model

We now study another exactly soluble example, which is given by the CGHS black
hole [142] [143], except for the definition of the surface gravity s which is here given
by Eq. (4.30). In Painlevé-Gullstrand coordinates, the conformal factor reads

2KT

C(z) = D(1 — e~ 7). (4.93)
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4.4 Massive fields

Even though this geometry is very different from that of Eq. as it is singular in
the interior region, see Fig. [£.8], at the level of the mode equation, it gives something very
close since the discrete interchange ' — —C' and * — —x maps one problem into the
other. For this reason, the solutions of Eq. will also be hypergeometric functions,
see App. As in Sec[4.4.2] « is the surface gravity and D characterizes the transition
from the near horizon region to the asymptotic one. However, here D also controls the
value of the threshold frequency wg in Eq. since

wp = mDz. (4.94)

When w < wg, the positive mode is totally reflected, and the accumulated phase shift
characterizes Seyxs. As in the preceding section, to obtain simpler expressions, we introduce

- 7 2

Q. = % (4.952)
K

~ 2 _ 2

0. = % (4.95b)
K

which are modified versions of Eq. (4.82). The exterior phase shift is then

iscens _ L) (1- i + Q)T (—z:w +9) i), (4.96)
I'(—2iw)l (1 +iw + Q) T (i + Q)

From this, conclusions similar to that of Secl{4.4.2] can be drawn. For instance, when
w — 0, we recover

eldcans 1 (4.97)

w—0

which is the main ingredient needed to obtain a canceling effect as in Eq. ( -, and
to have 31°'; be regular in the limit w — 0. If the mass is large then the behavior is
essentially that found for Rindler spacetime in Eq. (4.91] , as can be seen by an explicit
calculation.

When w > wg, we are in the configuration where there exist three ABM, as in
Eq. . The greybody factors in the external region R are analytically obtained from
the hypergeometric functions. The transmission and reflection coefficients are

T,=T, = (ZQ) TL (i - @) r- 217_” —#) e~iw (D), (4.98a)
02 I'(1 - 2iw)l (—2i€Q)
_F(l + 22@) (_ZQ> _ Zw) I (1 — 1w = ZQ>) e—2iwln(D) (4 98b)
I'(1 - 2iw)l (—iQs +iw) [ (1 + iw — iQ5) ’ '
r (22’Q>) r ( iQs — zw) (1 — i — iQ>)

B = (20T (19 —im) T (1= i+ i) (4.98¢)

Using Eq. (4.63)), the asymptotic out-going flux of Eq. (4.45)) is
ng = (Ol (aQ™") a2 |05) = |B2TL[ (4.99)

w

R,

At w = wg, T}, vanishes, and below wg, it is trivially 0. Note that the coefficients in (4.98)
are greybody factors as we discussed in Sec)2.3.3] In the next section, the transition shall
be analyzed in more detail.
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Analog model

We now consider a profile that combines the regular interior region of Sec[4.4.2] with the
regular exterior region of the above CGHS model so as to get a flow similar to that of
Fig. [4.1] The resulting geometry is relevant for analog models where the velocity profile
is everywhere bounded. We thus consider

Ole) = 1 — v*(x) = {DL(—l +ePr) for (x < 0), (4.100)

2Kz

Dgr(1—e Pr) for (x > 0).

This profile is C*, i.e., it is continuous and its first derivative is continuous. This ensures
that the global geometry obtained is regular, in the sense that the curvature does not
contain a distributional contribution [43]. Since the scattering matrices Sex; and S, have
been already studied, both in the exterior and interior regions, all we need to do here is
combine them to get the total S-matrix

S = St * Sext * SNHR - (4.101)
~ O =
Secl4] SecH4D SecH4T]
The two threshold frequencies of Eq. (4.94)) and Eq. (4.90)) are now

1 1
wr =mDp, and wp=mD}. (4.102)
Having different values for Dr and Dy, will allow us to distinguish their roles.

We first consider the totally reflecting regime, w < wg. Interestingly, we recover the

transition seen in Sec[d.4.2) and in Fig. [4.9) Indeed, for w < wp

ei5CGHs

~—1. (4.103)

Together with the coefficients of St,;, this ensures that 31°' has a finite value in the limit
w — 0. More precisely, in the high k regime, for m,w < k, we have

Ii(DL + DR)

21 Dp \/w? + Wi’

To observe a divergent regime |31°|? o< k/w, one needs to assume that w; < w < wg,
where the last inequality is required in order to be below the threshold wg. This implies
Dy < Dg, hence

1857 ~ (4.104)

| 2

1

This expression shows the transition between the diverging regime at the standard tem-
perature, which is independent of Dg and Dy, and a saturating regime governed by wy,.
For large masses m > k,w, the results are the same as for the totally reflecting and CGHS
models, namely the various scattering coefficients asymptote to their Rindler values. In
numerical simulations [144] all of these results have been recovered using rather different
settings where the sound speed ¢ varies with z and the velocity v is a constant. This
demonstrates that the low frequency behavior of Eq. applies to a much wider
class of situations than the one considered here.

18T~ 2 (4.105)
2
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4.4 Massive fields

We now have all the ingredients necessary to study the effects of a massive field on
the outgoing fluxes when starting from vacuum. On the right side, the outgoing particle
flux is that of Sec[f.4.2} as expected, it vanishes below wr and above it is given by

n® = |BNHR T2 (4.106)
To observe the transition, we work in the high s regime, i.e., w,m < k, and obtain

2 _ 2
4/ w W

ny o~ i@(w — Wg)

) 4.107
2 (Vw? — W% +w)? ( )

The flux is thus continuous when crossing wg.

On the left side, the particle fluxes are more complicated since two contributions are
present, see Eq. ; n,, is composed of positive frequency particles and n , = n® +n}
is composed of the negative frequency partners. We first notice that both of these are
well defined since the profile of Eq. is asymptotically flat in L. Using Eq. ,
in full generality, n) reads

n, =0(w — wg) |Rw afﬁ“ﬁgHR + @SHRﬁiarF

+ O(wpg — w) |e¥ccns afjfﬁEHR + dgHRﬁfj‘r\z. (4.108)
The first term in the first line, which is proportional to R, describes the stimulated
production in the L region due to the reflected Hawking quanta. The other terms describe
the interference between the mixing in the near horizon region and the scattering in the
L region away from the horizon. Just as for e?ccus below the threshold, the phase of R,
is crucial since there is interference between these two terms. The behavior of n}, near the
threshold frequency wg is particularly interesting. In the regime of large surface gravity,
k> w,m, for w > wr > wy, one finds

2
N K 1 (w/uﬂ—l—w%—\/w?—w%) (4.100)

o et at

n ~
w? —wh 4w

whereas for w < wg
. 5 (DD

n,=~
2 Jw? + w2

These two equations describe the effects on the spectrum in the L region which are due
to a small mass. We first notice that n), is continuous across wg, but with a cusp, see

Fig.[4.10, From Eq. (4.107), we see that this is also true for n} and hence for n" , as well.

(4.110)

We also see that the spectrum depends on the mass m only through the two critical
frequencies of Eq. . It is thus through them that the profile properties, namely
Dpr and Dy, which govern the extension of the near horizon region on the right and on
the left, see Fig. 4.1} affect the spectrum. The lesson here is that when dealing with a
conformally invariant massless field, the surface gravity is the only background quantity
that affects the spectrum. When breaking conformal invariance, by a mass, or a non
conformal coupling as in 341 dimensions, or by adding some ultraviolet dispersion, other
properties of the background flow affect the spectrum. From the above analysis, and that
of [29, 112, 119, 149], the most important ones are the extensions of the near horizon
region, on both sides.
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Figure 4.10: Particle flux of positive frequency quanta spontaneously emitted
from the horizon toward z — —oo in the high k regime. Above wg, one finds a
small contribution which is due to the reflection (the backscattering) of Hawking
quanta emitted toward z = oo. Below the threshold, the entire thermal flux
is reflected and grows like r/w for decreasing values of w, until one reaches wy,

where it saturates, as explained in Sec..

4.5 Massive undulations in black holes

We now study the undulation in the analog black hole metric of Eq. (4.100)). In preceding
sections, we saw that the low frequency massive modes end up in the inside L region for
both signs of w, see Fig. . Moreover, in the limit w — 0, their momentum (solution of

Eq. (4.34), see also Figi.3), is finite and given by

(1+O (;—U)) (4.111)

This means that the zero frequency mode ¢ () is a non trivial function of x, opening the
possibility of finding a behavior similar to that of Eq. . When w; < K, an explicit
calculation of Re {e”¢3"*(x)}, similar to that made in [29], tells us that the asymptotic
profile of &} is

N

pT[}L = Pw—0 = mDZ

1
Jios cos (pff x) .

The next important aspect concerns the calculation of the net contribution of low
frequency modes to GG. In this respect, two aspects should be discussed. The first one
concerns the fact that |31°|? no longer diverges for w — 0. However, the criterion for the
factorization of G is only that [31°"|? > 1. When w;, < &, as shown in Eq. (4.105), this
is the case for frequencies w < r/2m. The second aspect concerns the frequency interval
0 € w < wy such that the momenta p,, are close enough to the undulation momentum
pu so that the out modes ¢°"* contribute coherently to ¢g"*. Using Eq. in the
asymptotic interior region, we get

7 (z) = (4.112)

wr

T D,
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4.6 Massive dispersive undulations in white holes

Therefore, at time t after the formation of the horizon, the contribution of the low fre-
quency modes to the two-point function is

Grr(t;z,2') = 8/ B2 Pdw x @ (z) O (2). (4.114)

2w/t

When assuming wy < k, which is the case for a small enough mass, using Eq. (4.105)) we

get
wy 2
[ £ e (2) S (2)].
2w/t n WL th

Hence, for short times, the amplitude grows as n(t), as in the massless case. However,
when ¢ > 27 /wy, the amplitude saturates and stays constant afterwards. This is an
important prediction of this analysis. It shows how the transition in w near wj; with
respect to the massless spectrum (see Fig. produces here a change in time of the
growth rate.

To conclude this section, we wish to provide a qualitative evaluation of the importance
of this infrared contribution to G. To do so, we need to consider some observables, such
as the stress energy tensor. In particular, its trace accounts for the mass density of the
field

Tr(T) = (T*") = m*(¢*()). (4.116)
At late times, i.e., t > 27 /wy, the contribution of the undulation to the trace is
Tr(Tig) = — sinh~? (“—U) x cos? (pi z) . (4.117)
2D} wr
<1
Since we work with k > w; = mDé/ 2, this contribution to the trace is much smaller

than 2, the typical energy density contained in the Hawking flux for a light field. Hence
we expect that the undulation will not be easily visible in this case. Moreover, when
Dy — oo, which is the Rindler limit, the amplitude goes to 0 as 1/Dy, confirming the
stability of Minkowski space. It is also interesting to notice that the parameter Dg plays
no role (as long as w < wg, so that Eq. stands), confirming that the undulation
is controlled by the interior geometry.

4.6 Massive dispersive undulations in white holes

For white holes, undulations can be found when the dispersion relation is non-relativistic
in the ultraviolet sector, as discussed in Sec[4.3.2] In this section, we first provide an
argument of why the introduction of a dispersive cut-off A does not alter the massive
propagation described in Sec[4.4] when m < A. To this aim, we generalize the treatment
of Chapter [3|in the presence of a mass.

For simplicity purposes, we consider here the superluminal relation

W? = F(p) =m* +p* + p' /A (4.118)
which is obtained from Eq. (4.12) in the limit {p; — 0. As we said in Sec[d.2] both

superluminal and subluminal dispersion relations give rise to undulations in white hole
flows, in virtue of the symmetry which relates them when interchanging at the same time
the R and L regions, see Sec. IILE in [29].
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4.6.1 The scattering

Because of dispersion, the factorization of the S-matrix in Eq. is no longer exact.
However, as we shall see, when the two scales are well separated, i.e. m < A, this
factorization is recovered at first order. The reason is very similar to that of Sec[3.2] and
therefore our computation will be performed using the same formalism. In the regime
m < A, one has

p4

202/ +

Moreover, since the last term becomes non negligible only when p ~ A > m, we get

F(p) =+/m?+p?+ (4.119)

Y e S

F(p) = vm? +p* + 55 (4.120)
Hence, to first order in m/A, F,, is a sum of the relativistic massive dispersion plus a
dispersive term. We shall work in the near horizon region, and therefore, our aim is to
compute the scattering coefficients between in-modes, which are now given by Eqs. (3.58a]),
(3.58b)) rather than Eqgs. , , and near horizon outgoing modes of Eq. (4.54).
In particular, we shall establish that Sypg is still given by Eq. (in fact Eq. (3.93)),
since the in-modes are now dispersive) when the mass is low compared to the dispersive
scale. Following Sec[3.2.5] in the near horizon region, the mode in p-space is still given
by Eq. , and the various modes in z-space are given by contour integrals

1
V 1 / < P )2 e o3y dp
C _ i(pz—% In(p)+G(p)+25-)
wm L) = € ® 6%k X 4.121
m(®) Ak Je \ F(p) PV 2T ( )

where

S8 m2 +p/2 _ p/
Glp) = — / Ly, (4.122)
) P

encodes the modification of the phase due to the mass. As before, the choice of the
contour C dictates which mode one is considering.

In the following, we construct the generalization of the decaying mode of Sec[3.2.5
because this is enough to demonstrate our claim. To this end, we must choose a branch
cut to define both the In(p) and /m? + p? appearing in G. These functions introduce
three branching points, p = 0, and p = +im. Here, we take the line —iR™ extended until
tm to be the branch cut, as shown on Fig. Hence in the limit m — 0 we recover
what we did in Sec, see Fig. (3.6 To compute Eq. , we proceed as in Sec..

When z > 0, the introduction of a mass does not alter the discussion of Sec[3.2.5]since
the saddle at p, = iAv/2kx is well above the singularity at im for = sufficiently far away
from the horizon. Hence

T

Com =€) gl o x (e772), (4.123)

w,m

where ¢! . is the massless dispersive decaying mode of Eq. (3.59b)°l Moreover, we have
P yig q

w,as

G(ps) =~ 0 because ps > m in the region of interest. For z > 0, the mode is thus rapidly

3In the notations of Chapter |3} this mode should be referred with a ¢ instead of a ¢. Here, in order
not to confuse it with the auxiliary mode (4.47)), we add the subscript as, to specify that it corresponds
to an asymptotic WKB mode. These modes generalize the mode basis of Sec[3.2.3]in the presence of a
mass.
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4.6 Massive dispersive undulations in white holes

=,

Ni&Z

(a) z <0. (b) = < 0.

Figure 4.11: Representation of the contours in the p-plane to get (¢°)*, the out
mode of negative norm. The hatched regions are the asymptotically forbidden
ones. The wavy line is the branch cut of In(p), and the bold line is what must
be added because of the mass.

decaying, on a scale kz ~ (rk/A)3, and in the relativistic limit (i.e. A — 00) it vanishes.
Therefore, as in the massless case, this mode is proportional to (¢™*)* the negative norm
out-going mode in the near horizon region. Indeed, if it were containing a small amount of
the positive norm out-going mode ¢ it would oscillate on the right side of the horizon
until kz ~ (w/m)? > (k/A)5 which gives the location of the turning point where the
mode is reflected due to its mass, as we saw in Sec[4.4.1]

For x < 0, using the analytic properties of bo (p), we deform the contour C into the
union of Cy, Cy and C3 shown in Fig [£.11, On C; and Cy, there are two saddle points at
p = £A\/k|z| that describe the high momentum incoming modes, as in Sec.. Their
contribution is

wT 37r

O = (e e T) x (¢, 00) " + €T x ¢w (4.124)

where ¢F, . are the massless dispersive in modes of Eq. and Eq. (3.58D). More-
over, the saddle point approximation is controlled by the parameter A(x) of Eq. -
irrespectively of the mass m < A. Hence, as expected, the high momentum contribu-
tions of the out mode are mass independent. Along Cs instead, we perform a strong limit

A — oo as in Eq. (3.82b]), and we get

piztgreae) [P\ dp_ (4.125)
\/m Cs V p2 + m? 2m

which is a massive relativistic mode of negative norm. Up to a complex amplitude A,
it gives (¢“°*)* the low momentum out branch of the globally defined mode (¢**)*. In
brief, the mode obtained with the contour C is A, (ng‘jft)* For all w, it decays for z > 0,
and on the left side, it contains three WKB branches

INE

. oNHRx _ .
A, X ((bEeth) - <6;}IHR*61 > % ( lilw,as) —|—6 i X ¢w ,as + Au ¥ ( Eeu-f:as) ’ (4126)

Since ((ﬁlfw)* and ¢ are normalized and have opposite norms, their relative coefficient fur-
nishes the ratio of the near horizon Bogoliubov coefficients | 3N /oNHR | From Eq. (4.124)
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Chapter 4 : Infrared instabilities

and Eq. (.126)), we obtain |NHR /QNHR| — ¢=mw/% Tt is independent of m and has the
standard relativistic value.

By studying only the mode (qbljejt)*, we have demonstrated that the introduction of
dispersion does not affect the near horizon Bogoliubov coefficients of Sxpr. However,
as we understood in Sec[4d.4.1] what matters is the total S-matrix. However, the extra
scattering, governed by Sg, and Sey concerns effects in the infrared, where the modes
hardly feel dispersion. This shows that we can directly apply the results of Sec[4.4] for the
dispersive white hole, as it will be correct up to subleading terms in O(m/A).

4.6.2 The undulation

For superluminal quartic dispersion, the outgoing momentum at zero frequency is found
in the supersonic region and is given by

P = puo = AD}? (1 +0 (%)) , (4.127)

wy
and the asymptotic behavior of the undulation is [29]

A
o () = Pr 2+ Ou) (4.128)

\/47Tp/(>DL

The phase 6y cannot be obtained from the preceeding equations, because it is mainly
determined by the dispersive properties of the modes. In Chapter , or [29], when m = 0,
it was established that 6y = (ADi/Q)/(GK) + /4, see Eq. (4.26).

In the presence of ultraviolet dispersion, the width of frequencies that contribute
coherently to G is

Wt = AD? (4.129)
U L. .

Since A can be much larger than x, wd can be either smaller or larger than the Hawk-
ing temperature x/27. In what follows, we work with w$ > x where the Bogoliubov
coefficients are well approximated [29] by their relativistic values computed in preceding
sections. Therefore, the contribution of the low frequency dispersive modes is given by

wh

Gr(t;z,2") = 8/ ’ 18T 2dw x dY () Y (2), (4.130)

2/t

which is Eq. (4.114) with ® and wy replaced by ®f and wd. The exact expression of
BT in Eq. (4.85)) is quite complicated. To get an undulation, we assume wy, < k < wi.
In that regime, 3! is large for w < Ty, but for w > Ty it becomes exponentially small.
Thus

wf Tot12 K/2m ot
/ |8, *dw 2/ 18, P dw. (4.131)
2 2

7/t 7/t

In that range of frequencies, 32°! is well approximated by Eq. (4.105]), therefore

4
Gr(t;z,2') = - [sinh_1 (

™

) — sinh™* (2—W)} O () DY (). (4.132)

Wy, wrt
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4.7 Double horizon undulation

Hence, at late times and for wi} > r, we obtain

4
Gr(t;z,2') = o <L

™

) O () (). (4.133)

Wi,

When considering a BEC, the relationship between the scalar field ¢ and the density
fluctuation dp is dp o 9,¢ [I50], 125]. Hence the mean value of the equal-time density-
density two-point function is

A
/ Kkp K . . /
(0,0(x) Opd(2")) = WQISJL In (m%> x sin (pja + 0y) sin (ppa’ + 0v) - (4.134)

This generalizes what was found in [I30] in that, in the supersonic region, one still finds
a short distance checker board pattern in the z, 2’ plane, and the undulation amplitude
still grows initially as In(¢). However, when there is a mass term, it grows only for a
finite amount of time ~ 27 /wy, after which it saturates. The mass therefore provides a
saturation mechanism that can occur before nonlinearities take place. Moreover, because
pd oc A > k, the r.m.s. amplitude of the undulation is large.

So far, we have considered only the case where the initial state is the vacuum. As
discussed in Sec[4.3] and [130], when dealing with a thermal state the initial growth rate
is no longer logarithmic but linear in time. However, the mass term acts again as an
infrared regulator because the initial distribution of phonons is expressed in terms of
2 > m, and not in terms of the constant frequency w [90]. Hence no divergence is found
when integrating over w when computing the two-point function. In addition, the random
character of the undulation amplitude is fully preserved when taking into account some
initial thermal noise. What is modified is the undulation r.m.s. amplitude. When the
initial temperature T3, is much larger than Ty = k/27, the above two-point function is,
roughly speaking, multiplied by T}, /Ty.

4.7 Double horizon undulation

In this section we study a flow configuration that contains two horizons.

4.7.1 Warp-drive analogy

Warp-drives [I51] allow, at least theoretically, to travel at arbitrary high superluminal
speeds and consequently to travel in time [I52]. However, besides the fact that they require
matter distributions violating positive energy conditions [153, 154 155, 156], they are
quantum mechanically unstable because they possess a white hole horizon and a Cauchy
horizon on which the renormalized stress-energy tensor blows up exponentially [157]. In
this section, we re-examine the question of their stability when postulating that Lorenz
invariance is broken at ultra-high energy. One of our motivations comes from the fact that
nonlinear dispersion relations remove Cauchy horizons and regulate the fluxes emitted by
white holes [112].

A superluminal warp-drive metric describes a bubble containing an almost flat region,
moving at some constant speed vy > 1 within an asymptotically flat spacetime:

ds? = dt? — [dX — V(r)dt]” — dY? — dZ?, (4.135)
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Chapter 4 : Infrared instabilities

where r = /(X —vpt)2 + Y2+ Z2 is the distance from the center of the bubble. Here
V = wvof(r), with f a smooth function satisfying f(0) = 1 and f(r) — 0 for r —
oo. Along the direction of motion, the backward and forward locii where V(r) = 1
behave respectively as a future (black) and past (white) event horizon [158]. In fact,
the Hawking flux emitted by the black horizon accumulates on the white horizon while
being unboundlessly blueshifted. However, since the whole analysis rests on relativistic
quantum field theory, one should examine whether the warp drives instability is peculiar
to the local Lorentz symmetry. Although current observations constrain to ultra high
energy a possible breaking of that symmetry [159], one cannot exclude this possibility
which has been suggested by theoretical investigations [160} 98], 99].

For the sake of simplicity we work in 1 + 1 dimensions and ignore the transverse
directions Y and Z. Defining a new spatial coordinate x = X — vgt, the metric becomes

the Painlevé-Gullstrand of Eq. (4.29)) with the profile
v(z) = vo(f(z) — 1), (4.136)

which is negative. In this space-time, 0, is a globally defined Killing vector field whose
norm is given by 1 — v?: it is time-like within the bubble, its norm vanishes on the
two horizons, and it is space-like outside. One thus gets three regions L, C, and R (see
Fig. , separated by two horizons zpy < 0 < xwy which are respectively the black
and the white one.

0

>~ -1

Figure 4.12: Velocity profile for a right-going warp drive in the Painlevé-
Gullstrand [85] coordinates of Eq.. Two superluminal asymptotic regions
L and R are separated by a black and a white horizon from a compact internal
subluminal region C'. The Killing field 0; is space-like in L and R, light-like on
both horizons, and time-like in C.

4.7.2 Propagation on a double horizon metric
Settings

We now consider a massless scalar field with a quartic dispersion relation. In covariant
terms, its action reads

(h*8,0,$)*

Sj: = %/ [g“”@uqbﬁygb + T VvV —ngQS', (4137)

which is the action described in Sec without any higher derivative term. We recall
the expression of the preferred frame u in Painlevé-Gullstrand coordinates

u = 0 + v0;. (4.138)
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4.7 Double horizon undulation

Then the aether flow is geodesic and it is asymptotically at rest in the ¢, X frame of
Eq. . The sign + in Eq. holds for superluminal and subluminal dispersion,
respectively. In these settings, the wave equation has the usual form of Eq. . Again,
thanks to stationarity, the field can be decomposed in stationary modes ¢ = [ e=“!¢,dw,
where w is the conserved (Killing) frequency. We also recall the Hamilton-Jacobi equation

ko
(w—vk,)* =k £ 1 (4.139)
where the solutions are graphically given in Fig. [4.13
Q Q
/
/
/
/
/
- k
/
k /
/
/
/
(a) Superluminal dispersion (b) Subluminal dispersion

Figure 4.13: Graphical solution of Eq. (4.139) for super (left panel), and sublu-
minal dispersion (right panel). In both panels, the straight lines represent w — vk
for [v] < 1 (solid) and |v| > 1 (dashed). The curved lines represents Q*(k).

The mode analysis is very similar to that of Sec)3.2.3| and we expose here the results
for our configuration. For superluminal dispersion and |v| < 1, there are two real roots
(k¥, k%) describing left- and right-going waves (¢, ¢*), and two complex ones (k[ k')
describing a spatially growing and decaying mode (¢!, ¢!). For |v| > 1, there is a cut-off
frequency wpax below which the complex roots turn into real ones (lﬁ(}), k&z)) with nega-
tive w. Correspondingly there exist two additional propagating waves (qﬁ(_lu),)*, (qﬁ(_zz,)* with
negative norm. When the dispersion relation is subluminal, the negative norm modes are
trapped in the region with |v| < 1.

In the following, we assume a superluminal dispersion relation. As we shall analyze,
in that case, undulation types of effect are present, as those studied in preceding sections.
Note that the case of subluminal dispersion, up to the symmetry Eq. , will be studied
in detail in Chapter[5 In that case, the instability of the warp-drive is maintained because
exponentially growing mode are present in the spectrum of the field.

The scattering

We underline that, up to the symmetry of Sec[3.36], this configuration is exactly the one
realized in the experiment of [93]. In a geometry with two infinite asymptotic ‘super-
luminal’ regions, for each w < wpax, 4 asymptotically bounded modes can be defined.
Moreover, by examining their asymptotic behavior, an in and an out bases can be defined
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by the standard procedure: each in mode ¢{™" (out mode ol Out)

possesses a single
asymptotic branch gbff,)é;sL/ R carrying unit current and with group velocity directed toward

region C (from C to oo). This is exemplified in Fig. using the in mode ¢(,12jin.

v,L w.R

BH WH

Figure 4.14: Asymptotic decomposmon in plane waves aﬁff VLR of the in mode

(qb(_) ")*. Note that only ¢ L s L has group velocity directed toward the horizons,
with wavevector k)

When the dispersive scale and the horizon surface gravity « are well separated, i.e.,
Kk <K ADE as in Sec | the left-going mode does not significantly mix with the other
three modes, all deﬁned on the right-going branch of Eq. (4.139 m 29]. Thus, the in-out
scattering matrix is effectively a 3 x 3 matrix

P R O C) oo
<¢(1),in>* & (*f)’ —w <¢(1),out>*

)| = Go’ iy, A, )| (4.140)
<¢£2l7in> 5}2) A—w 04(,22, <¢£2i,0ut>

Given that the two (gb( )" have negative norms, the matrix coefficients satisfy normaliza-
tions conditions such as

ol — 18P = 182 = (4.141)
When working in the in-vacuum, the state without incoming particle, the mean occupa-
tion numbers of outgoing particles with negatlve here frequency are n( ) |ﬁ w|2 whereas

that with positive frequency is n! = = +n w, by energy conservation. That is, pair pro-
duction occurs here through a two- Channel Hawking-like mechanism. To approximatively
compute the coefficients of Eq. in the regime xk < A we use connection formula
techniques developed in Chapter 3l We first decompose ¢, in both asymptotic regions L
and R as a sum of plane waves:

o = Liolm + LD (050 + LD (05", (4.142a)
du = RLoUE+ RIS+ RO ()" (4.142D)
The coefficients are connected by
R L
RV = Uwy Uny - Uzt - [ 2D ] (4.143)
2) L@
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4.7 Double horizon undulation

where Ugy and Uwy respectively describe the off-shell scattering on the two horizons [29]
and Uyjy describes the WKB propagation from one horizon to the other, 7.e. it is diagonal
and contains the exponential of iS% = i [ k%(x)dz, where k2 is k*, k, or k}. The gauge
fixing of the phases are obtained by the same conventions as in Sec[3.2.1] In Chapter [3]
we derived off-shell transfer matrices. By this we mean that these three matrices are not
restricted to the two modes that govern the asymptotic scattering on each horizon consid-
ered separately, that is the growing mode is here kept in the mode mixing. In fact, since
k' has negative imaginary part, €St is exponentially large. Simple WKB algebra shows
that it grows as e*® where A is the distance between the two horizons. Concomitantly,
since k! = kT*, €55 i exponentially small. This is very useful in the present case, because
growing and decaying modes live in a finite size region. Therefore, they cannot be dis-
carded from the propagation, they will contribute to the scattering coefficients. In usual
quantum mechanical problems, the decaying mode leads to exponentially small transmis-
sion coefficient across classically forbidden zones, i.e. tunnel effects. The growing mode it
always absent, in the sense that there is no exponentially large coefficients, proportional
to e*®. This is guaranteed by the current conservation |R|?> + |T'|? = 1. However, in
our case, the current conservation leads to Eq. , and hence, coefficients are not in
principle bounded. Hence, there is no guarantee that the growing mode will not amplify
some scattering. As we shall see, this is in fact never the case.

We now pick an example to show how to determine the coefficients of Eq. .
The globally defined qb(_lt)u’in is constructed by imposing that the asymptotic amplitudes of

the two incoming branches ¢k, (_22,’755 both vanish, see Fig. 4.14. Therefore the three
outgoing amplitudes are given by the second row of the matrix of Eq. (4.140). Moreover,
using Eq. (4.143)), these coefficients correspond to (RZ,RS),RL(UQ)) = (@f ,agl,O) and

(LY, LY, Lg)) = (0,1, A_,). Solving the resulting system, we obtain

B = GBI x ¢S5 x alVH 4 OS2, (4.144a)
all) = BB x e x gV 4 O(eiSh), (4.144D)
A, = att, (4.144c¢)

where the a’s and ’s in the above are the standard Bogoliubov coefficients for black
and white holes that encode the thermal Hawking radiation [69]. By a similar analysis of
other modes, all coefficients of Eq. @D can be computed. Although the non-positive
definite conservation law of Eq. @D does not bind these coefficients, the exponentially
large factor in e*® cancels out from all of them. As a consequence, as can be seen in
Eq. , the leading term is, up to some phase coming from the WKB propagation in
region C, given by the Bogoliubov coefficients of Sgy and Swy. In the first two lines, one
finds a product of two coefficients because the associated semi-classical trajectory passes
through both horizons. Instead, in the third line only one coefficient is found because
there is only a reflection on the black horizon.

(2),in

We also analyze the scattering of the mode ((b_w ) exposed in Figid.15, Using the

same technics, we derive the scattering coefficients

A, = —awn, (4.145a)
B2 = By, (4.145b)
Oég) = —G_iSI’BWHﬁBH. (41450)
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* 2 u,R
) x (6215) | | B2 x 1t
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E : ~ ~ X <¢ w%)
BH WH S
Figure 4.15: Asymptotic decomposition in plane waves qbw aSL/ B of the in mode

(62,

The first two lines are easily interpreted, since they are the Bogoliubov coefficients of
the white hole horizon. The last one is more interesting. Indeed, in the central region C,
no modes are propagating toward the left side. Therefore, 1t is only through a decaying

or growing mode that the coefficient a(i can be turned o . We see that our transfer

matrix technic predicts a precise value for this effect. Moreover, if the presence of e‘iSJJ,
it is the usual tunnel amplitude at the WKB approximation, the contributions of fGwn
and (Ogg could not have been guest from usual methods. Therefore, Eq. is an
nontrivial prediction of the formalism developed in Chapter [3] It would be interesting if
this expression could be validated in future experiments.

The stress-energy tensor

To identify the physical consequences of the pair creation encoded in Eqs. (4.140) and
(4.145)), we compute the expectation value of the stress energy tensor

2 054
V=909
) ;

where T,E,, is the standard relativistic expression and T,EV arises from the Lorentz violating

term of Eq. (4.137):

1 « 1 a 2
T;szz\) - F |:h s <¢,aﬁ¢,;w + ¢,uu¢,aﬁ) - 5 (h ﬂ¢,aﬁ) guy:| . (4147)

=%

T,

=T + T, (4.146)

In the asymptotic region on the right of the white horizon, the field can be expanded as
the superposition of the two right-going modes ¢*°" and qﬁ(_lzjom, see Fig. ,

¢ = / ¢u out 5 u, out ¢(1) OUt (1) out] dw + h.c. (4148)

4This is true because coupling to v-modes are negligible, see Sec A complete characterization
(2)

of o/, would require to take the u-v mixing into account.
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4.7 Double horizon undulation

In this region, the geometry is stationary and homogeneous. Hence the renormalized ten-
sor T}, is obtained by normal ordering the above creation and destruction out operators.
The fact that there exist negative frequency asymptotic particles causes no problem in
this respect. In fact all asymptotic excitations have a positive comoving frequency w of
Eq. . Imposing that the initial state is vacuum, using Eq. , it is straight-
forward to compute (0in|7};"|0in). The final expression contains an integral over w of a

sum of terms, each being the product of two modes ¢, 1" and two coefficients of

Eq. . We do not need the exact expression because we only consider possible diver-
gences. When w > wy.x there are no negative frequency modes. Hence the ( coefficients
of Eq. vanish for w > wpay, and the stress-energy tensor cannot have ultraviolet
divergences. Therefore the only possible divergence can be found for w — 0.

In each term of T,Sg), there are two derivatives with respect to ¢t or x, leading to

two powers of w, Y or kY. Analogously in T,SI,,\), there are 4 powers of these. Now,
from Fig. we sce that the wavenumbers k0, kY do not vanish for w — 0 in L.
Rather they go to constant opposite values, that we call ky and —kq respectively. These
modes contribute to an undulation, exactly as explained in Sec{4.3.2] Finally, the terms
contammg) only spatial derivatives will not be suppressed for w — 0 The leading terms
in Om\TM "*"10;,) are thus proportional to

k2
0 / [ﬁgﬁ + ﬁ(f},] dw. (4.149)

4w (ko ) Vg0

The above integral gives the integrated mean occupation number of the two out species,
and v, is their asymptotic group velocity in the ¢, X frame. The leading terms of

(0| T ™ |04,) are proportional to Eq. @.149) up to an extra factor of k2/A2. Since
ko = A\/vZ — 1, one finds that the (0) and (A) components of the stress energy yield
typically the same contribution.

The key result comes from the fact that | ﬁ£1)|2 diverges as 1/w? for w — 0, being the
product of |BBH|? ~ 1/w and |3WH|? ~ 1/w. This infrared behavior has been validated by
numerical analysis. Moreover, as explained in detail in Sec[4.1] this divergence accounts
for a growing in time behavior. Because it diverges as 1/w instead of 1/w'/?, the growth
is linear in time, unlike in a single white hole, where it was logarithmic, see Sec}4.3.2|
Thus, the energy density scales as

E x A/ [ﬁ&“) + ﬁ(_lz,} dw o< AK?t. (4.150)
/T

That is, there in an infrared divergence that leads to a linear growth of the energy density.
This result can be understood from the findings of [I30] and the discussion at the end
of Secl4.6.2l The BH radiation emitted toward the WH horizon stimulates the latter as
if a thermal distribution was initially present. In that case, it was also found that the
observable (the density correlation function) increased linearly in .

Warp-drive stability

In the case of a warp-drive metric, this undulation is very large, and thus truly destabilizes
the system. Indeed, using quantum inequalities [161], it was argued [I57] that £ must be
of the order of the Planck scale, which implies that the growth rate is also of that order
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(unless A is very different from that scale). In the presence of superluminal dispersion,
warp drives are therefore unstable on a short time scale. To conclude, we note that
in [152] it was shown that close timelike curves can be obtained by combining several
warp drives. Our results, together with those of [157], weaken that possibility because
isolated warp drives are unstable irrespectively of the features of the dispersion relation
in the ultraviolet regime. As a consequence, whereas former attempts to tackle the issue
of chronology protection deeply relied on local Lorentz invariance [162], the present result
suggests that this conjecture may be valid also for quantum field theories violating Lorentz
invariance in the ultraviolet sector.

4.8 Conclusions about undulations

In this chapter, we have detailed how the infrared growth of the beta coefficient of Hawking
radiation can lead to a dynamical process, namely, the growth in time of a zero frequency
mode. This mode consists of a classical real wave with a definite profile, see Eq. .
On the contrary, the amplitude of this wave is a fluctuating variable, of vanishing mean
value but large spread, which is governed by the two-point function, see Eq. . The
appearance of this undulation is due to the amplification of initial fluctuations, that can
be from quantum vacuum or a thermal state.

This phenomenon has first been studied in the case of dispersive white hole (Sec..
There, a field initially in its vacuum state develops an undulation growing logarithmically
with time. We then considered massive fields. In that case, the near horizon mode
mixing is not altered, as can be seen in Eq. . However, the mass does regularize
the infrared behavior of the net in/out Bogoliubov transformation in Eq. (4.101)). The
reason for this is the extra mode mixing, described by S, of Eq. , which occurs in
the supersonic inside region, and which interferes with the near horizon scattering so as
to cancel out the divergence in 1/w of the |3,]? coefficient. Indeed, the squared norm of
the total Bogoliubov coefficient saturates as |31°°|> ~ k/27wy, for w — 0, where wy, is the
threshold frequency of Eq. . As a consequence, the undulation r.m.s. amplitudes
now saturate after a lapse of time ~ 27 /w; and then stay constant. This has to be
contrasted with the massless case where the saturation of the amplitude can only occur
because of non linearities, or dissipation, in the system.

The presence of a mass induces a new type of undulation in the supersonic region
that exists in black hole flows. Unlike the undulations occurring in white hole flows
which are due to some ultraviolet dispersion, this new type occurs in the hydrodynamical
regime if the mass term is small enough. It will thus appear both in superluminal and
subluminal media. However, as shown by Eq. , the typical energy density carried
by an undulation is small, and thus this new type should be difficult to detect.

Although the S-matrix coefficients governing black hole and white hole flows are the
same, the frequency ranges that contribute to the massive and the dispersive undulations
are very different as can be seen by comparing Eq. with Eq. ([.129)). As a result,
the white hole undulations possesses larger amplitudes. In addition, since the wave length
of the undulation is smaller in the white hole case, it gives rise to even larger amplitudes
for a BEC, as can be seen from Eq. . These results might also be relevant for
surface waves where ‘transversal instabilities’ have been observed [163].

In addition, the properties of the spectrum and the undulations depend on the mass m
essentially through the effective frequencies wy, and wg of Eq. . These frequencies
are both proportional to m but also depend in a non trivial way on D; and Dy which
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determine the spatial extension of the near horizon region, on the inside and on the outside
respectively. Therefore, as in the case of ultraviolet dispersion, these two quantities should
be conceived of as the most relevant geometrical properties, after the surface gravity x.

Finally, we analyzed the propagation of a field on a flow containing two horizons.
The scattering coefficients are obtained with help of the connection formula developed in
Chapter [3{ and [29]. As illustrated by Eq. , some features are new predictions of
our formalism, that cannot be obtain only by knowing the Bogoliubov transformation of
a black and a white hole. Moreover, in this configuration, undulation type of phenom-
ena are obtained. Since there are several channels, several diverging terms are present.
The dominant one corresponds to an undulation growing linearly in time. This can be
interpreted as a white hole undulation like in Eq. , but where the state is thermal
instead of being the vacuum. Indeed, by Hawking radiating, the black hole horizon feed
the white hole with a thermal flux.
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Chapter 5 : Dynamical instability

5.1 Presentation of the black hole laser effect

In the preceding chapters, we have established that in the presence of dispersion, even
though the emitted spectrum of black holes is very close to the Hawking one, the dy-
namical properties of certain configurations can be strongly affected. In particular, the
stability properties of horizons must be readressed. In this chapter, we study an exam-
ple of configuration that becomes highly unstable because of dispersion. Indeed, in 98,
Corley and Jacobson noticed that the propagation of a superluminal dispersive field in
a stationary geometry containing two horizons, leads to a self amplified Hawking radia-
tion of bosonic fields [I64]. The origin of this laser effect can be attributed to the closed
trajectories followed by the negative Killing frequency partners of Hawking quanta. This
closed trajectory exists because dispersion opens new scattering channels (see Fig..
Moreover, the superluminal character of the dispersion makes Hawking partners bounce
from one horizon to the other.

The original analysis [164] and that of [I65] were both carried out using wave packets.
In [28], we showed that there exists a more fundamental description based on frequency
eigenmodes which are spatially bounded. This chapter is devoted to a detailed description
of that work. When v(x) is constant and subsonic (i.e., |v| < 1) for both  — £o0, there
is a discrete set of complex frequency modes and a continuous family of real frequency
mode{]. In our case, the real frequency modes are asymptotically oscillating and normal-
ized by a delta of Dirac. Moreover, they are all of positive norm (for positive frequency),
unlike what is found in the case of Hawking radiation. Therefore, they are not subject to
any Bogoliubov transformation. The scattering matrix at fixed w only contains reflection
and transmission coefficients mixing right and left moving (positive norm) modes. This
was not a priori expected since the matrix associated with a single BH (or a WH) is 3 x 3
and mixes positive and negative norm modes in a nontrivial way, as we saw in chapters

and M.

The discrete set is composed of modes that vanish for x — +o0o. They form two modes
subsets of complex conjugated frequencies, each containing a growing and a decaying
mode. The time dependence of the coefficients in each subset corresponds to that of a
complex upside down and rotating harmonic oscillator. Both the real and the imaginary
part of the frequency play important roles in determining the asymptotic properties of
the fluxes. We notice such modes were encountered in several other situations [66, [168|
169, 170, 171, 172]. We also mention that a stability analysis of BH-WH flows in Bose
Einstein condensates was presented in [I73]. We reach different conclusions because we
use different boundary conditions.

In Sec. 5.2 we present our settings. In Sec. 5.3 we demonstrate that the set of
spatially bounded modes contains a continuous part and a discrete part composed of
complex frequency modes. In Sec. and Sec. 5.5 we study the properties of the modes,
and show how the complex frequency modes determine the fluxes. We also relate our
approach to that based on wave packets [164] [165], and explain why the predictions differ
in general, and in particular when the number of discrete modes is small. In Sec. we
give the conditions to get complex frequency modes in general terms.

!If instead the subsonic region is finite and periodic conditions imposed, the situation is more compli-
cated [166, [167] and will not be considered here.
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5.2 The settings

Figure 5.1: Velocity profile v(z) as a function of z, for kg = k. The horizons
are located at x = £L, where v(z) +1 = 0.

5.2 The settings

As in the previous chapters, we work in the 2 dimensional stationary Painlevé-Gullstrand
metric of Eq. . In addition, we assume that this geometry contains both a black hole
and a white hole horizon. We restrict ourselves to flows that are asymptotically constant,
i.e., we consider velocity profiles such as

v(x) = =1+ Dtanh [w] tanh [M} , (5.1)
D D

see Fig. [5.1] The BH (WH) horizon is situated at x = L (z = —L). We suppose that the
inequality kL/D > 1 is satisfied for both values of x, where D €10, 1]. In this case, the
two near horizon regions of width Az ~ D/k are well separated, and the surface gravities
of the BH and the WH are, respectively, given by kp = 0,0|,=1 and ky = —0,0|,=_1, as
explained in Sec[1.4.2] The minimal speed |v_| < 1 is reached for x — oo, whereas the
maximal speed |vy| > 1 is found at © = 0 between the two horizons. When xkL/D > 1,

their values are
vy =—1FD. (5.2)

As explained in Sec[3.2.1 when using nonlinear dispersion relations, D fixes the critical
frequency wmax above which no radiation is emitted by a single black hole, or white hole.
Similarly here, there will be no unstable mode above wpay,. As we discussed in Sec3.2.2]
the above assumptions concerning the flow v are very convenient, but not necessary. Our
analysis of the unstable modes equally applies to e.g., a Reissner-Nordstrom geometry,
which is described by the profile

or) = - 2H L (5.3)

As in [164] we work with a real field ¢ obeying a quartic superluminal dispersion
relation

02 = k2 + kA2, (5.4)
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Chapter 5 : Dynamical instability

where Q = —utp, is the freely falling frequency and k = s*p, the spatial momentum,
exactly as in Chapter [3] Most of the results we shall derive also apply to higher order
superluminal dispersion relations, but also to subluminal dispersion when the locus of
BH and WH horizons are exchanged, see the discussion in Sec[3.2.9) They also apply to
the Bogoliubov theory of phonons in Bose condensates. We recall the action of ¢ in the
metric (3.14))

5= [ |@0-+ 0.0 - @07 - {0202 | atas (55)
and the wave equation is
1
{(@ + 0,0) (0, +v0,) — 0% + P@ﬁ] ¢ =0. (5.6)

When the flow is stationary, one can look for solutions with a fixed frequency \ = i0,.
Inserting ¢ = e~ ¢y (z) in Eq. (5.6) yields

[(—M + 0,0) (=i +v8,) — 02 + %aﬁ] ¢r = 0. (5.7)
Because of the quartic dispersion, the number of linearly independent solutions is four.
It would have been n if the dispersion relation weas Q? = k? + k"/A""? rather than
Eq. . However, when imposing that the modes ¢, be asymptotically bounded for
r — =+oo, the dimensionality is reduced to 2 or 1 depending on whether A is real or
complex, but irrespectively of the value of the power n. (To avoid confusion about the
real or complex character of A we shall write it as A = w+4I", with w and I" both real and
positive. The other cases can be reached by complex conjugation and by multiplication
by —1.)

The necessity of considering only asymptotically bounded modes (ABM) comes from
the requirement that the observables, such as the energy of Eq. (5.16)), be well defined.
Returning to Eq. , the conjugate momentum is

T = O+ 00,0, (5.8)
the scalar product is
(@1l =i [ [gim — dumi) da, (59)
and the Hamiltonian is given by
1 1
H= g [de|@02 + (1= P00 + g0 (5.10)

In the subspace of ABM, the Hamiltonian is hermitian, i.e., (¢1|Hpo) = (Hd1|d2).

We conclude with some remarks. First, when written in the form Eq. ((5.9)), the scalar
product is conserved in virtue of Hamilton’s equations, and the hermiticity of H. Second,
from Eq. , one sees that the Hamiltonian density is negative where the flow is
supersonic: v? > 1. We shall later see that the supersonic region should be ‘deep’ enough
so that it can sustain at least a bound mode, thereby engendering a laser effect. Third,
when considering ABM, eigenmodes characterized by different frequencies are orthogonal
in virtue of the identity [66, [170]

(A" =A%) (daléw) =0, (5.11)
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5.8 The set of asymptotically bounded modes

which follows from the hermiticity of H. Finally, we notice that complex frequency ABM
can exist in the present case because neither the scalar product , nor the Hamiltonian
(5.10]) are positive definite, see [66] page 228. On the contrary, since fermionic fields are
endowed with a positive scalar product [174], no complex frequency ABM could possibly
be found in their spectrum [I75] 176].

5.3 The set of asymptotically bounded modes

5.3.1 Main results

In the BH-WH flows of Eq. , the set of ABM contains a continuous spectrum of
dimensionality 2 labeled by a positive real frequency w, and a discrete spectrum of N < oo
pairs of complex frequencies eigenmodes. Moreover, this set is complete. That is, any
solution of Eq. , with finite Hilbert normﬂ can be decomposed as

o(t,z) = /000 (67" [aw, o B () + aw, o ¢4 (x)] + hec.) dw (5.13a)

+ (efi)\at ba gaa(x) + efiAZt Caiﬂa(l’) + hC) . (513b)

a=1,N

For flows that are asymptotically constant on both sides of the BH-WH pair, we shall
show that the real frequency modes can be normalized according to

(@l]dl) =67 0w —w'),  (d1¢) =0, (5.14)

where the discrete index 7 takes two values u,v, and where w,w’ > 0. The index u,v
characterizes modes which are asymptotically left (v) or right moving modes (u) with
respect to stationary frame.

When A is complex, the situation is unusual. Yet, it closely corresponds to that
described in the Appendix of [66]. In fact whenever a hermitian Hamiltonian possesses
complex frequency ABM, one obtains a discrete set of two-modes (g, %,) of complex
conjugated frequency A,, A:. Their ‘normalization’ can be chosen to be

(90(1'“0&) = 07 (¢a’|§0a> — iéa,a’a (515)

with all the other (independent) products vanishing in virtue of Eq. (5.11). Since the
overlap between modes belonging to the continuous and discrete sectors, such as (¢,|¢.),

2Tn our problem, the precise definition of a Hilbert norm is delicate because no positive scalar product
is conserved. Here, we shall use

o1 = [ o) + et . (.12

This norm is not conserved by the dynamics, but it guarantees that is well defined. This definition
is close to the positive frequency part (¢|¢™) in [77], but it avoids using the sign of the frequency,
since complex ones are present here. Unfortunately, our choice is not the unique one, and it is a subtle
problem to define a Hilbert norm on a Krein space (defined by ) that in addition makes the dynamics
self-adjoint [I77), 178]. Even though the spectral theory in Krein space is still a developing domain, in
our case, the completeness of the basis can be shown rigorously, because the Hamiltonian ([5.10)) posses
the property of being ‘Pontryagin’, see [I77] for details and [I79] where the black hole laser problem is
explicitly mentioned.
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Chapter 5 : Dynamical instability

also vanish, eigenmodes of different frequency never mix. Moreover, since the positive
norm modes ¢!, all have w > 0, one cannot obtain Bogoliubov transformations as those
characterizing the Hawking radiation associated with a single BH (or WH). This implies
that the (late time) radiation emitted by BH-WH pairs entirely comes from the discrete
set of modes.

Using the above equations, the energy carried by ¢ of Eq. is given by

E = (¢|Ho) = /Ooow (|aw, of? + |aw,u]?) dw + Z (=i boC + hec.) . (5.16)

a=1,N

This resembles very much Eq. , with the additional contribution of the complex
frequency modes. Because of them, the energy is unbounded from below. Notice also
that the absence of terms such as |b,|? is necessary to have at the same time complex
frequency eigenmodes and real energies.

5.3.2 Asymptotic behavior and roots k)

The material presented below closely follows that of [I12]. In fact the lengthy presentation
of that work was written having in mind its applicability to the present case. The novelties
are related to the fact that, for the metrics of Eq. , the supersonic region is compact
(from —L to L), and the velocity is subsonic for x — +oc.

Since the velocity v is asymptotically constant for |z/L| > 1, in both asymptotic
regions, the solutions of Eq. are superpositions of four exponentials e?*** weighted
by constant amplitudes. To characterize a solution, one thus needs to know (on one side,
say on the left) the four amplitudes A associated to the corresponding asymptotic wave
vectors k(). These are the roots of

k?4

A —v(z)k)? = k* + i O*(k), (5.17)
evaluated for v(z — —o0) = v_. We shall not assume a priori that \ is real. Rather we
shall look for all ABM. Notice that when considering complex frequencies A = w + il,
the roots of Eq. are continuous functions of I'. In addition, when the scales are
well separated, i.e., when x/A < 1, the relevant values of I" will obey I'/A < 1. It is
therefore appropriate to start the analysis with A = w real, and then to study how the
roots migrate when I' increases.

When w > 0, since the flow is subsonic for x+ — oo, there exist two real asymptotic
roots: k% > 0 and k!, < 0 which correspond to a right and a left mover respectively. There
also exists a pair of complex conjugated roots, since Eq. is real. Thus, on each side
of the BH-WH pair there is a growing and a decaying mode. As in [I12] we define them
according to the behavior of the mode when moving away from the BH-WH horizons.

In preparation for what follows, we study the roots in the supersonic region between
the horizons. For w smaller than the critical frequency wp,.x discussed in Sec.??, the four
roots are real. For flows to the left, v < 0, the two new real roots correspond to two right
movers (with respect to the fluid). Indeed, they live on the u branch of the dispersion
relation Eq. (5.17)), that with 9,Q > 0, see Fig[5.2 When w increases at fixed |v] > 1,
these roots approach to each other. Thus for flows characterized by a maximal velocity
vy, there is a frequency wpa.x above which they no longer exist as real roots. It is given by
the value of w where they merge for v = v,.. When the two horizons are well separated,
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5.8 The set of asymptotically bounded modes

vy is given in Eq. , up to exponentially small terms. As shown in Sec{3.2.1], wipax
is of the form wy.e = Af(D), where D is defined in Eq. . For D < 1, one finds
f(D) oc D32, Thus, for a given dispersion scale A, Wy can be arbitrarily small. This
will be important when considering the appearance of the laser effect in parameter space.

k(2

(a) Resolution between the horizons (v4 < —1). (b) Resolution outside the horizons.

Figure 5.2: Graphical resolution of Eq. (5.17)). This figure is the same as Fig,
with names for the roots adapted to this chapter.

5.3.3 The continuous spectrum

We now have all the elements to show that the continuous part of the spectrum of ABM is
labeled by positive real frequencies w, and that, for a fixed w, its dimensionality is 2. The
general solution of Eq. with w real can be characterized by the 4 amplitudes, which
multiply the four exponentials evaluated in the asymptotic left region. When imposing
that the growing mode is absent on that side, only three independent solutions remain.
However, when propagating these solutions in the asymptotic region on the right side of
the BH-WH pair, the growing mode will be generally present on that side. Thus when
requiring that it also be absent imposes to take particular combinations, and this reduces
the dimensionality of ABM to two.

Omne can then take appropriate linear combinations to construct the in (out) modes
describing the left and right movers propagating toward (escaping from) the BH-WH pair.
The in right moving solution ¢%“" is the combination which on the left is asymptotically
proportional to e where k% is the asymptotic real positive root of Eq. . Similarly
one can identify the in left moving mode ¢%™", and the two out modes ¢“°"* and @°U.

More precisely, because of the infinite and flat character of the space on either side of
the BH-WH pair, the two ¢n and the two out modes can be normalized as in a constant ve-
locity flow (by considering a series of broad wave packets localized in one asymptotic region
and whose spread in frequency progressively vanishes). Considering ¢“™™ for r — —o0,
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Eq. (5.14) and Eq. (5.9) imply that it asymptotes to

dk®  expiklx
dw /A Q(kx)

A similar expression valid for z — oo gives ¢’™. These two in modes are orthogonal to
each other, establishing the Kronecker 6 in Eq. . For w > 0, these modes have
a positive KG norm. For w < 0, they have a negative norm. Therefore negative norm
modes can all be described as superpositions of complex conjugated positive norm modes.

When propagated across the BH-WH geometry, the ¢n modes are scattered by the
gradients of v(z). When the variation of v is slow, i.e., d,Inv < 0,Ink,, the exact
solutions are globally well approximated by the WKB solutions of Eq. . This was
obtained in details in Sec[3.2.3] For the u-mode, one finds

wr oy JOk(z) exp (i [T da'kY(2"))
pul@) =\ =5 e R (5.19)

We use the symbol ¢¥ (resp. V) to differentiate the WKB solution from the exact one ¢
(resp. ¢"). At high frequency, w/k > 1, the inequality 0, Inv < 9, Ink,, is satisfied, and
u and v modes do not mix, as we obtained in Sec[3.2.3]and [29]. At lower frequency, they
do. Nevertheless, far away from the BH-WH pair, since v(z) is asymptotically constant,
exact solutions decompose into superpositions of ¢! and ¢! with constant amplitudes.
This applies for both the real and the complex frequency modes of Eq. . We shall
use this fact several times to characterize the properties of the exact solutions.
Introducing the out modes as in Eq. , this scattering is described by

o (@) — (5.18)

(bz,in — Tw ¢Z,out 4 Rw ¢Z,out’

¢v,in _ Tw ¢v,aut + Rw ¢u,out (520)
v v out,
Unitarity imposes |T,,|2 + |R,|> = 1 = |T, > + |R.|?, and R, T + T,R: = 0. For all
values of w, one thus has an elastic scattering, without spontaneous pair creation. For
frequencies w > wayx, Eq. coincides with what is found in single horizon scatterings.
Instead, for frequencies 0 < w < wpax, this radically differs from the scattering on a single
because, in that case, the matrix was 3 x 3 and mixed ¢?, ¢, with the negative frequency
u-mode (¢*,)*. The presence of the second horizon therefore ‘removes’ these modes. As
we shall later see, they shall be ‘replaced’ by a finite and discrete set of complex frequency
modes. This is not so surprising since the classical trajectories associated with the negative
frequency modes are closed (hence the discretization), and since these trapped modes mix
with the continuous spectrum through each horizon (hence the imaginary part of the
frequency). In fact this is reminiscent, but not identical, to quasinormal modes [137, [180]
or resonances. The main difference is that quasinormal modes are not asymptotically
bounded. Thus, they should not be used in the mode expansion of Eq. .

It should be also mentioned that both in and out modes contain a trapped component
in the supersonic regionﬂ which plays no role as far as their normalization is concerned
since the modes are everywhere regular and the supersonic domain is finite. The case

3Because of this trapped wave, the in (and out) modes are not asymptotic modes in a strong sense
since a wave packet made with ¢% ™ will have a double spatial support for + — —oo: the standard
incoming packet coming from x = —oo, and the unusual trapped piece. This additional component, see
Eq. , ensures that ¢% ™ is orthogonal to the complex frequency modes of Eq. .
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where the subsonic domain is also finite should be analyzed separately. If periodic con-
ditions are imposed at the edges of the condensate, one obtains discrete frequencies and
resonances effects [167, [166]. If instead absorptive conditions are used, the frequencies
are continuous and the situation is closer to the case we are studying.

5.3.4 The discrete spectrum

On general grounds we explain why, when considering Eq. in BH-WH flows of
Eq. , there exists a discrete and finite set of complex frequency modes. To this end,
we first show that for a generic complex frequency A = w + il, there exists no ABM.
When I' < A, the four roots have not crossed each other with respect to the case where
' = 0 since the imaginary part of the two complex roots k= with w real is proportional to
A. Thus, in this regime, one can still meaningfully talk about the two 'propagating’ roots

%, kY, and the growing and decaying roots k:/j\E Then, as in the former subsection, when
imposing that the growing mode be asymptotically absent on both sides of the BH-WH
pair, the space of solutions is still two. However, when A leaves the real axis, developing
a small imaginary part I' > 0, we have

ke ~ kO il Juy, (5.21)

with £ is the real solution in the I' — 0 limit, and vg_l = 0k/Ow the group velocity
of the corresponding mode. In particular, when I" > 0 the u-root k" acquires a positive
imaginary contribution, which means that the u-mode of Eq. diverges for x — —o0.
To get a bounded mode, its amplitude should be set to 0. For similar reasons, on the
right, the incoming v mode diverges for x — oo. Hence, for a general value of A, the
set of ABM is empty. The above reasoning applies to flat backgrounds with v constant,
and establishes that in that case, complex frequency modes should not be considered in
Eq. (5.13)).

We should now explain why, when v is supersonic in a finite region, some complex
frequency ABM exist. The basic reason is the same as that which gives rise to a discrete
set of bound modes when considering the Schréedinger equation in a potential well (or
the propagation of light through a cavity). In the supersonic region, (in the well), there
exist two additional real roots k, when A = w real. The classical trajectories associated
with them are closed, and, as in a Bohr-Sommerfeld treatment, the discrete set of modes
is related to the requirement that the mode be single valued and bounded. The complex
character of the frequency A is due to the finite tunneling amplitude across the horizons.
Indeed, as we shall later see, the imaginary part of )\, is proportional to some quadratic
expression in the 3 Bogoliubov coefficients characterizing the scattering through the hori-
zons. Were these coefficients equal to zero, A\, would have been real. When ‘turning on’
these coefficients, the frequency A\, migrates in the complex plane, and the bound modes
are continuously deformed.

These ABM appear in pairs with complex conjugated frequencies. This stems from
the hermiticity of H which guarantees that there exists an ABM of frequency A} whenever
there is one of frequency \,. At this point it should be re-emphasized that the existence
of these complex frequency ABM is due to the fact that the scalar product is not definite
positive. Indeed, these modes all have a vanishing norm in virtue of Eq. . We can
also conclude that the discrete set of complex frequencies ABM is finite. In fact there are
no closed orbits for w < —wpay, since the extra real roots k, no longer exist and since
there is a gap between the eigenfrequencies.
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5.3.5 The quantization

The canonical quantization of the field ¢ is straightforward since each eigenfrequency
sector evolves independently from the others. Indeed when decomposing the field as in
Eq. , with the coefficients a, b, ¢ promoted operators, the equal time commutation
given in Eq. and the orthonormality conditions Eq. and Eq. entirely
fix their commutation relations. The procedure is very close to that of Sec2.1.1] but the
role of the operators must be reconsidered due to the presence of complex frequencies.
More precisely, for real frequency modes, the operators a,, ; = (¢.,|¢) obey the standard
commutation relations

=4;;0(w — ). (5.22)

[aw,i7 ai},j]

Instead, for complex frequency modes, one gets

by, €] = 100 a. (5.23)
All the other commutators vanish.

Because of this disconnection, the ground state of the real frequency modes is stable
and in fact subject to no evolution. Hence the number of quanta of these modes is
constant. The evolution of the states associated with the complex frequency modes is
also rather simple and described in App[Bl However, asymptotically, an observer cannot
distinguish a flux coming from real frequency quanta or from the unstable mode sector,
as we shall detail in Sec[5.5.2l What remains to be done is to determine the properties of
the asymptotic fluxes. To this end we need a better understanding of the modes.

5.4 The properties of the modes

From Eq. , it is not easy to determine the complex frequencies A\, and the properties
of the modes. Several routes can be considered. One can adopt numerical techniques.
This was done in [I81], in parallel to our work [28], and in Sec[5.4.3] we briefly compare
our results with the numerical ones. One can also bypass the calculation of the eigenmodes
and directly compute the propagation of coherent states, or the density-density correlation
function [125], using the techniques of [I124]. One can also envisage to use analytical
methods by choosing the flow v(z) as in [I73] [182]. This method is also currently under
study.

In what follows, we use an approximative treatment which is valid when the two
horizons are well separated. Doing so, we make contact with the original treatment [164,
165] based on wave packets. More importantly, we determine algebraic relations which do
not rely on the validity of our approximations. In particular, we establish that the real
frequency modes ¢! are intimately related to the complex frequency modes even though
their overlap vanishes.

5.4.1 The limit of thin near horizon regions

To simplify the mode propagation, we assume that the near horizon regions are thin and
well separated, i.e., Lk > D in Eq. . In this case, the propagation through the BH-
WH geometry resembles very much to that through a cavity. Indeed, the following applies.
First, the nontrivial propagation across the two thin horizon regions can be described by
matrices that connect a solution evaluated on one side to that on the other side. Second,
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the modes can be analyzed separately in three regions: in L, the external left region, for
—(x+L) > D/kw; in R, the external right region, for (x — L) > D/kp; and in the inside
region I, for L — || > D/k. Within each region, the gradient of v is small. Hence, any
solution is well approximated by a superposition of WKB waves Eq. with constant
amplitudes.

To further simplify the analysis, we use the fact that the u-v mode mixing coefficients
are generally much smaller than those mixing the negative frequency modes to the positive
u ones, as exposed in Sec. Hence, it is a reliable (and consistent) approximation to
assume that the v modes completely decouple. After having analyzed this case, we shall
briefly present the modifications introduced by relaxing this hypothesis. Adopting the
hypothesis that the u — v mixing can be neglected, for each w real, one has the following
situation. In the left region L, one only has the WKB mode ¢! of Eq. (5.19). Thus, the
only solution is ¢*™ (up to an overall irrelevant phase we take to be 1). In the inside
region [, one has three modes:

o™ = Ay el + B (00L) + BY (O (5.24)

since in supersonic flows, there exist two extra real roots in Eq. . The superscripts
u, (1), (2) characterize the coefficients and the WKB modes associated with the three roots
shown in Fig. . Since we are considering a solution with i0; = w > 0, the (positive
norm) negative frequency modes cp(_zl appear complex conjugated in Eq. .

In the external R region the solution must be again proportional to the WKB mode ¢?.
By unitarity, the solution must be of the form ¢*“* = e ", Thus, a full characterization
of ¢ requires to compute the phase 6, and the above three coefficients. At this point,
it should be noticed that A\ = w is a priori real. However, the S matrix, and therefore
the three coefficients, are holomorphic functions in A. Hence nothing prevents to leave
the real axis. In fact we shall show that the complex frequencies correspond to poles
associated with a coefficient of the S matrix.

5.4.2 An S matrix approach
The S matrix

The simplest way we found to compute the above coefficients is to follow the approach
of [I65], up to a certain point. In this treatment, a solution of frequency w > 0 is
represented by a two component vector (¢, ¢* ). The time evolution of a wave packet of
such solutions is then considered in the thin horizon limit. Since the frequency content of
the wave packet plays no role, we do not need to introduce a new notation to differentiate
it from an eigenmode. In this language, the S-matrix characterizing a bounce of the
trapped mode ¢* | can be decomposed as

S =5, Spi-Ss - Swi. (5.25)

The first matrix describes the scattering across the WH horizon. In full generality we
parameterize it by

Swi = ( Qo = Qu Z“’). (5.26)

0 25 Oy
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Unitarity imposes that |a,|? = |d,|? and |a,,|* (1—|2,|?) = 1. The second matrix describes
the free propagation (i.e., without backscattering) from the WH to the BH horizon

1Sy 0
Sy = (6 _‘sm) . (5.27)
0 e "™

In a WKB approximation, the two phases are respectively given by the actions

s = / K () da, (5.282)
sU = / [~k ()] da. (5.28b)

In S5, S(,lz, is multiplied by —¢ since it governs the evolution of ¢* . Its momentum is
k., = —kfdl) > 0, where ku(}) is the most negative root of Eq. found in supersonic
flows. The end points of these integrals are unfortunately hard to determine. Of course,
there is a gauge choice to make here. But any choice for these phases will affect the
phases in Sy and Swy so that this choice always disappear from physical observables.
To fix this choice, we define these actions through their construction in momentum space,
as was done in Sec, see Eq. . In fact, for the negative frequency mode, a
canonical choice is to end the integrals at the turning points z;)”, x5, see Eq.
for a definition. For the positive frequency mode, there is no clever choice. In fact, as
we shall see, it will be more appropriate to stay in momentum space. Unlike for Sgy and
Swa, unitarity brings no conditions on these phases.

The third matrix describes the scattering across the BH horizon and we write it as

Ve Yo Wy
Sgu=1|.", = ) 5.29

i (’yw ww 7w ) ( )
Unitarity imposes that |7, |> = [7,|* and |y,|* (1—|w,|?) = 1. The fourth matrix describes
the return of the negative frequency partner toward the WH horizon, whereas the positive

frequency mode propagates away in the R region. This is described by

10
Sy = (0 eis(ii)' (5.30)

In the WKB approximation, this backwards movement (hence the +i in the front of S(2))
is governed by

5% = / k@ (2)]d, (5.31)

where the momentum kf) is the least negative u-root of Eq. . Since the positive
frequency mode further propagates to the right, there is no meaning to attribute it a
phase in Sy. In any case this phase would drop from all physical quantities.

The matrix S of Eq. is unitary since its 4 constituents are. Hence |Sy|* =
|S11]> = 1 4 |S12/>. The components Sy and Sy; we shall later use are given by

w

Sy = Auli, e SZaS5D) <1 e e“sﬁs(—ll)) , (5.32a)

(g _ (2 W i(gusg®
Sop = Al e 505 (z;; e (swsb))_ (5.32b)

w
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Hitherto we followed the method of [I65]. Henceforth, we proceed differently by adding a
key element. We require that the mode propagated by S be single valued. For real w, this
unequivocally defines ¢ of Eq. . Moreover, when looking for complex frequency
bounded modes, this will give us the modes ¢,, 1, we are seeking.

The real frequency modes

Imposing that the trapped mode of negative frequency is single valued translates into

< e;iw ) - S ( bi ) . (5.33)

The phase 0, is that mentioned after Eq. (5.24)). It should not be constrained since the
positive frequency component keeps propagating to the right. The matricial equation
gives

521
bw = )
1 — Sy
, S 1— 5%
i, 11 22
e = —— . 5.34a

These equations constitute the first important result of this section. They do not rest
on the WKB approximation. Of course, this approximation can be used to estimate the
4 elements of S. But once these are known, e.g., using a numerical treatment, these
equations apply. What is needed to get these equations is the neglect of the u — v mixing,
and no significant frequency mixing in the inside region in order to obtain well-defined
amplitudes in Eq. .

Using ST = S, one verifies that the norm of the right hand side of the second equation
is unity. This is as it must be, since in the absence of v — v mixing, the u-component
only acquires a phase, here measured with respect to the WKB wave. Up to an overall
irrelevant phase, the coefficients of Eq. are

Aw = aw(1+zwbw)7
BY = a,(z5+b,), BP=p,. (5.35a)

w w

These amplitudes are governed by b,,, which can a prior: be larger or smaller than unity.
In particular it diverges if Sy; — 1 for some w, thereby approaching a resonance, see
Fig[5.3] We now show that the complex frequency modes correspond to these resonances.

The pairs of complex frequency modes

Following the discussion of Sec)5.3.4) we impose that the amplitude of the incoming u
branch be zero, and, as above, that the trapped mode of negative frequency is single

valued. This gives
Ba '\ _ 0
(1>—S<1), (5.36)

Ba = S12, 1= Sa. (5.37)

Two important lessons are obtained. First, to get the complex frequencies A\, with a
positive imaginary part, it suffices to solve the roots of Sys = 1. Second, as mentioned,
these correspond to the poles characterizing the propagating modes, see Eq. (5.34)).

which implies
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20 T T T T T T T T T T

W/Wmax

Figure 5.3: By making use of numerical results borrowed from [I81], we have

represented the square norm of Bff), the amplitude of the negative frequency
trapped mode of Eq. , as a function of w real. Near a complex frequency
Ao = wy—il, which solves Sop = 1, see Eq. (5.37), |BL(L,2) | behaves as a Lorentzian:
~w—w, — Z'Fa|_2, see Eqgs. (]&Ll, w The dots are the numerical values,
whereas the continuous line is a fitted sum of Lorentzians. The remarkable
agreement establishes that the complex frequencies A, can be deduced from the
analysis of the real frequency modes. The frequency w has been expressed in the
units of wyay, see Fig. 2, so that there is no resonance above w/wp.x = 1. In
the present case there are 13 resonances. The narrow peaks, I', ~ 0, are due to
the fact that the surface gravities are equal, kg = Ky, which leads to 2z, = w,,

in Eq. (5.43).
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5.4 The properties of the modes

Before computing these frequencies, we explain how to get the decaying modes ,, the
‘partners’ of the ¢, in Eq. (5.13). Since these bound modes have a negative imaginary
frequency, the amplitude of the escaping mode must be zero, i.e.,

(1)-(%)

Using the hermitian conjugated ST, and the unitarity relation STS = 1, this condition

sives (1) -s1-(9). 5

from which we get 3, = (ST)15 and 1 = (ST)ss. These can be reexpressed in terms of
the elements of S. By imposing the ABM requirement for I' < 0, in particular through

Eq. (5.21]), we obtain

B, = —[Sa1(AM)]*, 1 = [Sa(A")]". (5.40)
Thus the solutions of 1 = S5, are the complex conjugated of those that solve Eq. (5.37)),
thereby establishing the partnership between ¢, and 1,. In addition, one has (3, =
—(det S)*f,.

5.4.3 The set of complex frequencies )\,
Analytic expressions

To compute the roots of Eq. we need to know Sa, as a function of A = w+iI'. In what
follows we shall relate them to the quantities which enter in Eq. . To this end, we
suppose that the ‘tunneling’ across the horizons is small, i.e., the -Bogoliubov coefficients
associated with each horizon are small. This is true for w/x sufficiently large, see [112]
where it was shown that z, and w,,, which are related to the Bogoliubov coefficients by
2z = Bu/a,, behave as ~ e™™/% (1 — w/wyay)* Where Wy is defined in Sec.. To
proceed we suppose that the norms of z2, w? and z,w, are much smaller than 1. In
this case, one can expand Eq. in these three products, and in I', since the roots of
Eq. are real when z, = w,, = 0.

To zeroth order in these quantities, a7, is a pure phase, since the norm is trivially
constrained by unitarity. However, when computing it in the weak dispersive regime
A > k (or better, under the condition ), one does not find the usual phase shift =
that accounts for the two reflections when dealing with Schrodinger type problems, where
the modes near the turning point can be well approximated by Airy functions. Instead,
using the results of Chapter [3, we find

arg(G,yn) = —7+€(w), (5.41a)

= arg(I'(w/kw)) + arg(l'(w/kg)), (5.41D)

where the function T’ was defined in Eq. (3.89). Taking this into account, Ssy = 1 gives
SW 5% _arg(@.g.) = / kW (z) + kD (2)de + 7 — e(w) = 2rn,  (5.42)

with n € N. This is a Bohr-Sommerfeld like condition applied to the negative frequency
mode ¢_,,. (In fact, subtracting from both k) and k® the value of k at the turning
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points, kP, the differences kD kP, - kP have opposite sign. Hence, Eq.
contains a sum of two positive contributions, as in the Bohr-Sommerfeld condition.) Note
however that one recovers the standard Bohr-Sommerfeld condition, i.e., € = 0, only in
the limit w/k — oo. For smaller values of w, € accounts for the non trivial phase shift
due to the reflections on the two horizons. This corrections come from the fact that the
reflected modes cannot be well approximated by Airy functions, something not discussed
in [I83]. We call w,, a = 1,2,..., N the discrete set of frequencies solutions of Eq. ,
which is finite because no solution exists above wyax.

To first order in z, and w,,, for each w,, one gets a complex phase shift 0\, = dw,+il,.
The imaginary shift is

20,10 = |Sw(wl)]® — 1, (5.43a)
thus QFaTﬁa = |S12(wa)|2 = |Zwa|2 + |wwa|2 + 2|z,, Wy, | cos(V,). (5.43b)

The phase in the cosine is
U, =S5 + S(_lia + arg (2w, W), A, /G, ) (5.44)

and T ija > () is the time for the negative frequency partner to make a bounce. It is given
by
Tb = 9 (S(ji — sy arg(&w%)) , (5.45)
ow
evaluated for w = w,. The first two terms give the classical (Hamilton-Jacobi) time,
whereas the last one gives the contribution from the scattering coefficients. The phase
shift ¥ can be precisely computed using the results of Chapter [3] However, we postpone
its expression to the next paragraph (see Eq. ), and first discuss some qualitative
features of our expression of I',. Eq. tells us that I', is linearly related to the norm
of the effective 3-Bogoliubov coefficient of the pair, which obeys |Sy|? = 1 + |S12|?. Tt is
also worth noticing that Sp, fixes the amplitude /3, of the leaking mode in Eq. ((5.37)).
As seen from Eq. , I', is positive, thereby implying that ¢,, the solution of
Eq. (5.36)), is a growing mode in time, and an ABM in space. What distinguishes the
present case from usual resonances characterized by a decay rate (I' < 0) is the fact that
the norm of the trapped mode ¢*  is opposite to that of the leaking wave ¢". Even
though unitarity in both cases implies a decrease of the norm of the trapped mode, in
the present case it becomes more negative whereas in the standard case it tends to zero
since it has the same sign as that of ¢". As a corollary of this, the fact that resonances
have an opposite sign of I' while satisfying an outgoing condition as in Eq. implies
that they are not ABM, and therefore not included in the set of modes of Eq. .
This remark applies to fermionic fields and implies that the set of ABM for the fermionic
dispersive field considered in [164] and propagating in the BH-WH metric of Eq. (5.1)), is
restricted to the continuous set of Eq. , i.e., positive real frequency modes elastically
scattered as given in Eq. . Indeed, for fermions, Eq. still applies, but using
|S92|* = 1—]S12)? (coming from the conservation of the Dirac scalar product), a minus sign
appears for the expression of I',. To complete these remarks, one should notice that 1,
our decaying modes, are also ABM because they obey the incoming condition Eq. (5.39).
Our treatment is similar to the interesting analysis presented in [168]. In that work, the
general solution is constructed in terms of WKB waves. Then the Bohr-Sommerfeld and
the outgoing conditions are separately imposed in the small tunneling approximation,
thereby fixing both the real part of the frequency w, and its imaginary part I',. We
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followed another logic which leads to the same result, namely, the requirement that the
mode be an ABM gives Eq. , which in turn gives the complex equation Sy = 1
that encodes both conditions. We note that Sss = 1 does not require that the tunneling
amplitudes be small to be well defined. We also note that our quantization scheme applies
to the cases studied in [I68],[169] and allows to remove the ‘formal trick’ used in the second
paper.

As a last remark, it is instructive to look how fast the laser instability disappears in
the relativistic limit. As we discussed in Sec when A — oo, the growing rates I', of
the complex frequencies should vanish. In Eq. , one sees that the right hand side
is basically independent of A (at least when it is large enough), therefore, I', vanishes
only through the bouncing time T°. A more precise computation leads to the asymptotic
behavior

r " )|512|2. (5.46)

@A 2In(A/w

Because of the log function, the vanishing of the growing rate in the limit A — oo is
very slow. In other words, as long as Lorentz invariance is broken, I', is of the order of
k, even though A is at the Planck scale or above. In that sense, the relativistic limit is
almost singular, and as long as Lorentz invariance is lost, the laser instability is turned
on. Moreover, we also notice that this log appears in 7% only as the time a negative
frequency mode spends in the near horizon region. Hence, the transplanckian redshift is
regulated by dispersion (see Sec for exactly the same reason that the laser instability
appears, i.e., the time spent in the near horizon region is finite. Note also that when A
is not infinite, the bouncing time T? is essentially governed by the inter-horizon distance
L. Hence, a better way to suppress the laser instability is to take L. — oo, in which case

I'=0(1/Lf}]

The ¥ phase

As obtained in Eq. , [', is governed by the 3 coefficients of the S-matrix. But
there is also an interference term between contributions from both WH and BH horizons,
which is determined by the phase W. Interestingly, this W is best expressed in momentum
space, using the Hamilton-Jacobi function X, of Eq. . However, because the flow
profile v is not monotonic in the black hole laser setup, X, is no longer unique. In the
chosen profile of Eq. , v has a single minimum at x = 0 between the two horizons, we
define X% (p) (resp. XZ(p)) as the solution of Eq. of negative values describing the
propagation toward the white hole (resp. positive values associated with the black hole).
Both of these semi-classical trajectories run from a positive maximum value pp.c = p2(0)
to a minimum negative value ppi, = p™ (0). Therefore, the ¥ phase reads

v=re{ [ 0) - X pldp 45 (5.47)

Pmin

In this equation, we took the real part of the integral in order to remove the imaginary
contributions (= inw/ky and imw/kp) that arise when p flips sign, see the discussion
after Eq. (3.39). The contribution for p > 0 accounts for the propagation of the positive
norm mode, whereas that with p < 0 for that of the trapped mode. What is remarkable
is that when they are combined, the net result for S + S(_lla takes the form of the first

4For example, in the numerical work of [184], only the L dependence of I was obtained. The logarith-
mic dependence was not seen, which is explained by the fact that I" is almost insensitive to A.
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term of Eq. (5.47). Notice again that this simple form is found only when using mode
basis such that

arg (2w, wh, A, /G, ) = T (5.48)
Interestingly, Eq. (5.47)) has the same structure as Bohr-Sommerfeld condition of Eq. (5.42))
with the role of z and p interchanged, i.e. Eq. (5.47)) is a closed loop in p-space of some
X, (p). What is unusual is that the action receives imaginary contributions when p changes
sign. In fact when removing the restriction to the real part of the action, one gets

. [Pmax B _vWw Z w* [0 .
¢ o (XE@)=XE @))dptr _ _ 2w Wy W ow (5.49)
,

In other words the Bogoliubov coefficients can be blamed on, and therefore computed
from, the imaginary contributions of the action S, of Eq. that arise when p flips
sign. An early version of this relation was used for relativistic modes in [73], and it is
at the core of the Unruh modes [68], exposed in Sec. It was adapted to dispersive
waves in [82] and implicitly used above when computing the connection coefficients in
Sec[3.2.5 It was also recently exploited in [127] in a similar context.

Numerical results

Using the numerical work done in [I81], we have compared the simulations with our
theoretical predictions of Egs. and . In particular, we were able to clearly
confirm the contribution of the extra phase shift € appearing in Eq. . This is a non
trivial result, since it validates the treatment performed in Chapter [3, and especially the
phases of the Bogoliubov coefficients.

0.85 ; ; ; ; ; ; 0.0012
0.8
0.75 0.001
0-7 0.0008
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3 06 £ 0.0006
0.55
05 0.0004
045 0.0002
0.4
0.35 ' ' ' ' ' : 0
105 11 115 12 125 13 135 14 105 11 115 12 125 13 135 14
KL KL
(a) Real part w = Re(\). (b) Imaginary part I' = Im(\).

Figure 5.4: Evolution of a complex frequency A as a function of L, the distance
between the 2 horizons. These curves have been obtained by making used of the
numerical techniques described in [I81]. The parameters used are k, /K, = 0.5,
D = 0.5 and A/k, = 8, and we consider the a = 22 discrete mode.

5.4.4 The density of unstable modes

To further characterize the instability, it is of interest to inquire about the density of
unstable modes, about the end of the set, its beginning, and about the most unstable
mode.
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Figure 5.5: Relative errors between the numerical results and our theoretical
formulae and of the same complex frequency as in Fig. The
continuous lines take into account ¢ of Eq. , while the dotted lines are
based on the standard expression ¢ = 0. The improvement of the estimation
is clear, and therefore the necessity of computing the phases in Eq. is
established.

The number of unstable modes will be either large, or small, depending on the value
of Lwmax. When Lwy,. > 1, the number is large because, for w < wpay, the gap between
two neighboring modes roughly given by D/L. The end of the set is controlled by wax
as explained after Eq. . It does not significantly contribute to the instability when
K/wWmax < 1, since z, and w,, tend to zero as e™™/* (1 — w/wyay)/* for w — wWyay. Thus
the growth rate I'; — 0 as w — Wax.

The beginning of the set is governed by the first Bohr-Sommerfeld modes. Their
frequency is of the order of D/L. A proper evaluation of I, is harder since, generically,
the coefficients a,, and 7, both diverge as ~ w™/2. We thus conjecture that the most
unstable mode is the first mode, or one of the first ones, because the cosine of Eq.
could in some cases lower the value of I'y below that of the next ones. We can also
characterize the migration of the roots as L increases. The (total) variation of Eq.
with respect to L and Eq. tells us that Ow,/JL > 0. From this we conjecture that
new unstable modes (obtained by increasing L) appear with w, = 0. This is corroborated
by the numerical simulations of [I81]. The determination of I', for w, — 0 is difficult,
and further study is needed to establish if I', follows the abrupt behavior present in Fig.1
of [171].

5.4.5 Taking into account the u — v mixing

We now briefly discuss the modifications introduce when considering a nonvanishing v —wv
mixing. By v — v mixing, we mean an extra elastic scattering that mixes left and right
moving modes ¢! and ¢!. In fact, this hardly modifies the above results. However
the algebra becomes more complicated because the two nontrivial matrices describing
the propagation across the WH and the BH horizon (Swy and Sgy) are now the 3 x 3.
Hence we shall only sketch this enlarged case, but the reader can find more details in the
numerical analysis of [I81].

When considering the in mode ¢, in the left region L, one has ¢ = % + R,¢",
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see Eq. (5.20)). In the inside region I, one has
oL = ALl + ALl + B (01)" + BP(91)", (5.50)

and in the external R region, the mode asymptotes to T, ¢!. As before, the coefficients are
determined by the matching conditions at the horizons. Expressing ¢ in terms of three
coefficients associated with the three WKB waves, (&, ¢, ¢* ), using the Bogoliubov
matrices [112] Swy, Spn which give, for the WH and the BH respectively, the coefficients
after the scattering given the incident ones, one has

Av 1
R, | = Swnu AL (5.51)
Bf,l) BL(UQ)
and o o
Tw esz Azj ezSW
A et = Sgu 0 : (5.52)
a2 . ao(1
B&Z) e—zSSl B‘Sl) e—zSSu))

In the second equation, the exponentials arise from the propagation from the WH to
the BH horizon, and from our choice that the phase of WKB waves vanishes at the WH
horizon. The six relations fix the six coefficients. T, and R, characterize the asymptotic
scattering, see Eq. , whereas the four others determine ¢%“™" in the inside region.
To get the complex frequencies ), since the weight of the incoming v mode is already
set to 0, one simply needs to replace the 1 in the right hand side of Eq. by a 0, as

done in Eq. ([5.36]).

5.5 Physical predictions

5.5.1 Classical setting

From an abstract point of view, any (bounded) initial condition, i.e., the data of the field
amplitude and its derivative with respect to time, can be translated into the coefficients
a’,, by, cq of Eq. . This is guaranteed by the completeness of the mode basis. Yet, it is
instructive to study more closely how initial conditions describing a wave packet initially
moving toward the WH-BH pair translate into these coefficients. This will allow us to
relate our mode basis to the wave packet analysis of [164], [165]. Moreover it is a warming
up exercise for the determination of the fluxes in quantum settings. For simplicity, we
work in the regime in which the number of unstable modes is large, i.e., Lwpa, > 1,
and with a wave packet of mean frequency obeying w < wpa.x and Lo > 1, e.g., with
O = \/Wmnax/L-

We consider a unit norm wave packet which is initially in the left region and propa-
gating to the right. At early times, before it approaches the WH horizon, it can thus be
expressed in terms of the WKB modes of Eq. as

PL(t, x) = /000 dw (f@mo(w) e ot () + c.c.) ) (5.53)

As an example, one can consider the following Fourier components

e*(wfﬁ)2/202 iwty ,1S%(x0,—L)
f@7z0(W) = W e’ gPwito . (554)
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The first factor fixes the mean frequency @ and the spread o taken to satisfy o/w < 1
and oL > 1. The last two exponentials ensure that at t = ¢y the incoming wave packet is
centered around some xy < —L. S¥(z,2’) is the classical action of the u-mode evaluated

from x to 2’, see the phase of ¢ in Eq. (5.19).
When decomposing ¢% as in Eq. (5.13)), the coefficients are given by the overlaps

G = (P NEE) = Fama(w) (5.5%)
a, = (po™eg) =0, (5.55b)
ba = (=1) (Yaldl) # 0, (5.55¢)
Ca = (=1)(palog) =0 (5.55d)

Hence, at all times, the wave packet can be expressed as
Pu(t, x) = / dw (fome(w) e ™ ol ™ (x) + c.c.) + Z “alou () +ec) . (5.56)
0

The first two coefficients in Eq. are easily computed and interpreted. They fix the
real frequency contribution of the wave packet. The last two are very interesting and
encode the instability. We first notice that, because of Eq. , they are given by the
overlap with the partner wave. Hence the coefficients ¢, identically vanish. Indeed the
overlap of our wave packet with the growing modes ¢, vanishes since these, by construc-
tion, have no incoming branch. On the contrary b,, the amplitudes of the growing modes,
do not vanish since the decaying modes 1), contains an incoming branch, see Eq. .
It is thus through the nondiagonal character of Eq. that the instability enters in
the game. In this respect, our analysis differs from Ref. [I73]. We do not understand the
rules adopted in that work.

To compute b, we use the fact that at time t,, the wave packet is localized around
r9 < —L. Thus we need the behavior of v, in this region. Using the results of Sec.
and Eq. extended to complex frequencies, for I' an,a < 1, one gets

Yalz) = Ba @Ka(x) = Ba Pisa (z) x exp[—Tq to, (z, —=L)], (5.57a)

where t,,(z,—L) = 9,5"(z,—L) > 0 is the time taken by a u-mode of frequency w, to
travel from z to —L. Inserting this result in (¢, |¢%), using the fact that the wave packet
has a narrow spread in x — z( given by 1/(c0,k"), the overlap is approximately

7 6; —i(@—wa)to ,iSY% (x0,—L) —Tatwgy (xo,—L)
b= R ¢ B L (5.58)

The meaning of this result is clear. The spatial decay of ¢, governed by I', has the role
to delay the growth of the amplitude of the wave packet until it reaches the WH-BH
pair. The phase ensures the spatial coherence of the propagation. That is, the sum of a
in Eq. will give constructive interferences along the classical trajectory emerging
from x( at tg. Let us also mention that, because of Eq. , the normalization of b, is
arbitrary, but the product b,¢, is well defined and physically meaningful.

From this analysis, we see that at early times the wave packet ¢ behaves as described
n [164, [165]. It propagates freely without any growth until it reaches the horizon of the

5Tt is interesting to notice how ¥, and ¢, acquire a vanishing norm. Because the leaking wave has an
amplitude So; o F,ll/ % and decreases in 7 in [ L, its positive contribution to the norm is independent of
I', and cancels out that negative of the trapped mode.
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WH. Then, one piece is reflected and becomes a v mode with amplitude R;. The other
piece enters in the inside region. At later times, a component stays trapped and bounces
back and forth while its amplitude increases as e'*. Every time it bounces there is leakage
of a u wave packet at the BH horizon, and a v one at the WH horizon.

This back and forth semiclassical movement goes on until the most unstable mode,
that with the largest I',, progressively dominates and therefore progressively destroys the
coherence of the successive emissions. In Sec/5.4.4 we saw that the most unstable mode
is likely to be the one characterized by the smallest real frequency, n = 1 in Eq. .
This implies that at late time, our wave packet will be completely governed by the corre-
sponding wave ¢y (z) (unless of course b; = 0)

ng — elilt=to) Re[e_iwlt Bl@l(x)] (559)

In the late time limit, its behavior differs from the above semiclassical one. Indeed, in the
inside region, one essentially has a standing wave whose amplitude exponentially grows
(it would have been one if the tunneling amplitudes were zero). Outside, for = > L, using
¢1(x) ~ Bipy, (x) and the same approximation as in Eq. (5.57), one has a modulated
oscillatory pattern given by

B — eNillt—t0)—tu (L] 5 Refe=i1t by B, 00 ()] (5.60)

It moves with a speed equal to ~ 1 in the dispersionless regime, when w;/A < 1. The
energy flow is now given by a sine squared of period 27 /w; rather than being composed
of localized packets separated by the bounce time 7°.

5.5.2 Quantum setting
The initial state

Because of the instability, there is no clear definition of what the vacuum state should be.
Indeed, as can be seen from Eq. , the energy is unbounded from below. Therefore,
to identify the physically relevant states, one should inquire what would be the state, or
better the subset of states, which would be obtained when the BH-WH pair is formed
at some time to. If this formation is adiabatic, the initial state would be close to a
vacuum state at that time. That is, the expectation values of the square of the various
field amplitudes would be close to their values in minimal uncertainty states, with no
squeezing, i.e., no anisotropy in ¢, — 7, plane, where 7, is the conjugated momentum of
¢.. Because of the orthogonality of the eigenmodes, this adiabatic state would be, and
stay, a tensor product of states associated with each mode separately.

There is no difficulty to apply these considerations to the real (positive) frequency oscil-
lators which are described by standard destruction (creation) operators a®, at, (%, a’").
The adiabaticity guarantees that one obtains a state close to the ground state annihi-
lated by the destruction operators. Because of the elastic character of Eq. , for all
real frequency oscillators, one gets stationary vacuum expectation values with no sign of
instability.

There is no difficulty either for the complex frequency oscillators described by ba and
Cqo- Indeed, as shown in App one can define two destruction operators da+ and da ,
and use them to define the state as that annihilated by them at ¢y. In this state, we get
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the following nonstationary vacuum expectation values:

~ ~ 6{1’ a . Y ’_

b (bl(t)) = 5% e wa(t=1) gLt ~2t0) (5.61a)
6@’ a : / /

(ea(t)El(t)) = —2’ e~ Wa(t=t) o—Ta(t+t'=2t0) (5.61b)
5&’ a i 4

(o (t) L (1)) = iyt PRat=t) (5.61c)

As expected, the expression in bb" (cc') leads to an exponentially growing (decaying)
contribution, whereas the cross term is constant at equal time. This behavior is really
peculiar to unstable systems. Even though the metric is stationary, there is no normaliz-
able state in which the expectation values of the b, ¢ operators are constant. Stationary
states do exist though, but they all have an infinite norm, see App[B|

Using Eq. , and putting tg = 0 for simplicity, the two-point function in this
vacuum state is

Blt,2) B(t'a')) = / T (g () (g () 4 60 () (60 (21))
+ Z Re ( —iXg (t—t") a(lﬁ)l/):;(:t,) B e_M‘i(t_t,)iﬁa(!E)gOZ(I,)) (5.62)
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We notice that the last term, the second contribution of complex frequency modes is real,
as a classical term (a stochastic noise) would be. We shall return to this point below. We
also notice that the second term is purely imaginary and, when evaluated at the same
point x = 2/, it is confined inside the horizons since ¢, vanishes for x < —L whereas ),
does it for x > L. Thus it will give no asymptotic contribution to local observables.

The asymptotic fluxes

Our aim is to characterize the asymptotic particle content encoded in the growing modes
wq- To this end it is useful to introduce a particle detector localized far away from the
BH-WH pair. We take it to be sitting at > L, in the R region on the right of the
BH horizon. We assume that it oscillates with a constant frequency wy > 0, and that its
coupling to ¢ is switched on at t = —oo, and switched off suddenly at t = T > t; in
order to see how the response function is affected by the laser effect a finite time after the
formation of the BH-WH pair at t, = 0.

When the detector is initially in its ground state, applying the result of Sec[2.2], the
probability to find it excited at time 7" is given by

P.T) — / / e~ #00=) (3¢, 2) Bt 2))ddt, (5.63a)
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where
N, (T, x) = |ﬁa|2 eQF“(T_t“a(L"’”))H —exp{—[Iy + i(wo — w)|(T — tu,)} |2. (5.64)

To get the second line of Eq. (5.63)), we used ¢, (x) ~ 8.4 (2), the fact that the BH-WH
pair is formed at ¢t = 0, and that it takes a time ¢, (L, r) for the mode ¢} to reach the
detector at x. To get the third line, we used the inequality Fana < 1 as in Eq. .
The meaning of the various factors appearing in P, is the following. The sum over a
means that all unstable modes contribute, but the Lorentz functions restrict the significant
contributions to frequencies w, near wy, that of the detector. The prefactor |¢% (z)[?
depends on the norm of the corresponding mode evaluated at the detector location, as
in the usual case. The function n,, (7, x) acts as the number of particles of frequency w,
received by the detector at time 7', and at a distance x — L > /@]_31 from the BH horizon. It
depends on the number initially emitted (= |3,|%) multiplied by the exponential governed
by T —t,,, the lapse of time since the onset of the BH-WH pair minus the time needed
to reach the detector at x.

From the response function of a localized detector, it is clear that one cannot distin-
guish between the noise due to quanta of the real frequency modes ¢! and that carried
by the growing modes ¢,, because both modes asymptote to the WKB waves ¢ which
are asymptotically complete. In this respect it is particularly interesting to compute the
de-excitation probability P; which governs the (spontaneous + induced) decay of the de-
tector. It is obtained by replacing wy by —wp in the first line of Eq. (5.63) [69]. In that
case, one finds that the spontaneous decay only comes from the ¢! whereas the induced
part only comes from the ¢,. The induced part equals that of P, since the asymptotic
contribution of the ¢, to Eq. is real. We are not aware of other circumstances where
orthogonal modes with different eigenfrequency (here ¢* and ¢,) are combined in this way
in the spontaneous + induced de-excitation probability P,, or equivalently, contribute in
this way to the commutator and the anticommutator of the field, i.e., with the ¢, only
contributing to the latter. (For damped modes, the commutator and the anticommutator
are related differently, see e.g., Appendices A and B in [110].) The lesson we can draw
is the following: even though the modes ¢! are orthogonal to the growing modes ¢,,
their respective contribution to the asymptotic particle content cannot be distinguished
by external devices coupled to the field.

It is also interesting to compute the asymptotic outgoing energy flux <Tuu (t,z)), where
T = [(0r — 02)8)?. At large distances in the R region, using ¢, ~ %, and Eq. (5.62)),
the renormalized value of the flux is

~

(Tuu(t ) = Z (0 — 0) e_i)\atgoa(x)F (5.65a)

= > BP0 — 0a) el (). (5.65h)

It only depends on the discrete set of complex frequency modes. Yet, because the
imaginary part of A\, defines a width equal to I',, the spectrum of real frequencies w is
continuous, as can be seen in Eq. . In fact the observables can either be written in
terms of a discrete sum over complex frequencies, or as a continuous integral of a sum
of Lorentz functions centered at w, and of width I',. However this second writing is
only approximate and requires that the inequality I',7° < 1 of Sec. be satisfied to
provide a reliable approximation.
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The correlation pattern

As noticed in [164], because of the bounces of the trapped modes, the asymptotic fluxes
possesses non-trivial correlations on the same side of the horizon, and not across the
horizon as in the case of Hawking radiation without dispersion [126], 117, [79} [69], 125], or
in a dispersive medium [82]. These new correlations are easily described in the wave packet
language of that reference, or that of Sec. [5.5.1] When using frequency eigenmodes, they
can be recovered through constructive interferences, as in Sec.IV F. of [90]. Indeed, when
the complex frequency modes form a dense set so that the dispersion of the waves can
be neglected, the sum over a in Eq. constructively interferes at equal time for two
different positions = and 2’ separated by a propagation time

/

0,5"(z,2") = / dx 0 k" (z) = T®, (5.66)

where Tfj is the bounce time of Eq. . This is because the differences w, — wqin
are equal n x 2w /T since the w, are solutions of Eq. . With more precision, the
conditions for having these multimodes interferences are, on one hand, wyax/k > 1 so
that dispersion hardly affects the modes and, on the other hand, kL > 1, so as to have
many modes for w below the Hawking temperature ~ k. (For higher frequencies |3,?,
which governs the intensity of the correlations, is exponentially damped.)

However, since dispersive effects grow and since the most unstable mode progressively
dominates the two-point function of Eq. , at sufficiently large time the above multi-
mode coherence will be destroyed and replaced by the single mode coherence of the most
unstable one. This is unlike what is obtained when dealing with a single BH or WH
horizon because in that case [79] the pattern is stationary, and all frequencies steadily
contribute (significantly for w < k). In the present case, at late time, if ¢; is the most
unstable one, the correlation pattern is given by

(O(L,) Bt a)) = " x Re (1071 oy (2)p1(2))) (5.67)

The asymptotic pattern, for = > L, is obtained using ¢ (z) ~ ﬁle’rlt%@’z)gpzl (). It is
very similar to that of Eq. found by sending a classical wave packet, see Appendix
C of [90] for a discussion of the correspondence between statistical correlations encoded
in the two-point function and deterministic correlations encoded in the mean value when
dealing with a wave packet described by a coherent state.

So far we worked under the assumption that the u—v mixing coefficients are negligible.
When taking them into account, one obtains a richer pattern which is determined by the
complex frequency mode solutions of Sec. [5.4.5

The small supersonic region limit

When L of Eq. (or D = |vy|/c— 1) decreases, the number of solutions of Eq.
diminishes. Therefore, in the narrow supersonic limit k. — 0, there is a threshold value
for kL given D, below which there is no solution. In that case, there are no unstable mode,
and no laser effect. In fact no flux is emitted, and this even though the surface gravity
of the BH (and that of the WH) is not zero. The reason is that there is no room for the
negative frequency modes ¢_, to exist. In agreement with the absence of radiation, the
entanglement entropy of the BH [I85] would vanish, because it accounts for the number
of entangled modes across the horizon and thus of opposite frequency, see [145] for the
effects of dispersion on the entanglement entropy.
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Comparison with former works

It is instructive to compare our expressions to those obtained in [164] and in [165]. Our
expressions differ from theirs because the discrete character of the set of complex frequency
modes was ignored in these works. As a result, a continuous spectrum was obtained. Yet
this spectrum possesses rapid superimposed oscillations stemming from the interferences
that are present in Sy (w) of Eq. (5.32). A priori one might think that they could coincide
with our frequencies w, = Re(),). However, as noticed in [I65], their values are insensitive
to the phase governed by S{?, whereas it plays a crucial role in Eq. (5-42). We found
no regime in which the two sets could approximately agree. Therefore, as far as the fine
properties of the spectrum are concerned, the predictions of [164, [165] are not trustworthy.

Nevertheless, when the density of complex frequency modes is high, and when ignoring
these fine properties, the average properties derived using [164, 165] coincide with ours.
Indeed when considering the mean flux in frequency intervals Aw > 1/L, the rapid
oscillations found in [164], [165] are averaged out. As a result the mean agrees with that
over the contributions of complex frequency modes. This can be explicitly verified by
comparing the norm of our discrete modes ¢,, 1, with the continuous norm of the negative
frequency modes used in [164] [165]. In the limit of Sec. the relevant contribution
to the overlap (¢,|p,) comes from the negative frequency mode ¢_,. Moreover ¢, and

Y, are given by a sum of (normalized) WKB waves go(_lzja and go(_sza times a prefactor

= /27 /1% where Tfja is the bounce time given in Eq. . This is just what is needed
for approximating the discrete sum in Eq. by a continuous integral [dw with a
measure equal to 1.

In conclusion, when the number of bound modes becomes small, the difference between
our description and the continuous one increases. This difference is maximal when there
are no solution of Eq. . In this case, no radiation is emitted, something which cannot
be derived by the continuous approach of [164], [165].

5.6 Conditions for having a laser effect

5.6.1 General considerations

Having understood the black hole laser effect, it is worth identifying in more general
terms the conditions under which a laser effect would develop. We define a ‘laser effect’
by the fact that a free field possesses complex frequency ABM while being governed by a
quadratic hermitian Hamiltonian, as in Eq. , and a conserved scalar product, as in
Eq. . The field thus obeys an equation which is stationary, homogeneous, and second
order in time. Let us note that this type of instability is often referred to as a dynamical
instability [166], 173, I86], a denomination which indicates that quantum mechanics is
not needed to describe or obtain it. Let us also note that we do not consider the case
where the frequency of the ABM is purely imaginary. Such dynamical instability seems
to belong to another class than that we are considering, see the end of this subsection for
more discussion on this.

Using semiclassical concepts, the conditions for obtaining complex frequency ABM are
the following :

1. For a finite range of the real part of frequency w, WKB solutions with both signs
of norm should exist, or equivalently, positive norm WKB solutions should exist for
both sign of w. This is a rather strong condition which requires that the external
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field (gravitational or electric) must be strong enough for this level crossing to take
place, i.e., for the general solution be a superposition as in Eq. (5.24)).

2. These WKB solutions of opposite norm must mix when considering the exact solu-
tions of the mode equation. In other words, they should be connected by a nonzero
tunneling amplitude. This is a very weak condition as different WKB branches are
generally connected to each other. In our case it means that z, and w,, appearing

in Eq. (5.32) should not vanish.

3. One of these WKB solutions must be trapped so that the associated wave packets
will bounce back and forth. This is also a rather strong condition.

4. The deepness of the potential trapping these modes should be deep enough so that
at least one pair of bound modes can exist, see Eq. (5.42)). This condition is rather
mild once the first three are satisfied.

When these conditions are met for a sufficiently wide domain of frequency w, they are
sufficient to get a laser effect, and they apply both when the external region is finite [160]
or infinite. Being based on semiclassical concepts, stricto sensu, they cannot be considered
as necessary. But we are not here after mathematical rigor, rather we wish to identify the
relevant conditions in physically interesting situations.

In this respect, it should also be noticed that when only the first two conditions are
satisfied, one obtains a vacuum instability [69)], also called a superradiance in the context
of rotating bodies [I187, [I86]. Hence, whenever there is a vacuum instability, one can
engender a laser effect by introducing a reflecting condition, as was done in [I70] [I71], or
by modifying the potential, so that the last two conditions are also satisfied. It should be
clear that when the laser effect takes place, it replaces the vacuum instability rather than
occurs together with it. Indeed, as proven in Sec. [5.4.3] the frequency of the trapped
modes are generically complex. The possibility of having a trapped mode (subjected to a
vacuum instability prior introducing the reflecting condition) with a real frequency is of
measure zero, as two conditions must be simultaneously satisfied. To give an example of
the replacement of a vacuum instability by a laser effect, let us consider the archetypal case
of pair production in a static electric field studied by Heisenberg [I88] and Schwinger [189).
In that case, one obtains a laser effect by replacing the Coulomb potential Ay = Ex by
Ap = E|x| which traps particles of charge ¢ for ¢E < 0, for frequencies w < —m where m
is their mass. We hope to return to such pedagogical examples in the near future.

5.6.2 Stability of a single horizon

In this paragraph, we present a hand-waving argument, based on the S-matrix approach
of Sec5.4.2] to show that a laser effect may also appear in the presence of a single hori-
zon. This is due to the fact that dispersion opens new channels through which Hawking
radiation can be self-amplified. We consider a configuration where there is still a black
hole horizon, but no white hole horizon. To simplify the discussion, we shall still assume
that the v-mode decouples from the other ones. However, we now have 3 WKB modes in
the asymptotic interior region (still with superluminal dispersion as on Figl5.2)), namely
o, gog}) and @&2). Because the geometry is non homogeneous between xr — —oo and the
horizon, these WKB modes will generally undergo some mixing. To further simplify the
discussion, we assume that only gpg}) and @5,2) mix. Because both are of negative norm,
this extra scattering is elastic. As we shall argue, this is enough to generate a laser effect.
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elastic scattering BH
zone horizon

Rw dw ﬁw

B

Figure 5.6: Wave packet behavior of an incoming mode gofdl). At each round trip,
neglecting interferences, the outgoing flux is increased by a factor |R,a,|?. If it

is larger than 1, the system is unstable as shown by Eq. (5.69).

Moreover, an instability can arise even though there is no classically closed orbit. It suf-
fices that superradiant effects be large enough with respect to transmission coefficients.
We parametrize the extra scattering by

R, T,
Sel = (T} R/ ) 3 (568)

where S, is the S-matrix of the sector (cpg), o2 ) on the left of the horizon (see Fig..
Because this scattering is elastic, we have |R/|> = 1 — |T'|?. (Note that these coeffi-
cients should not be confused with those of Eq. , because we consider here another
problem.)

To keep the discussion close to that of Sec5.4.2] we assume that this extra scattering
is quite efficient, and hence |R/|*> ~ 1, whereas the tunneling coefficients w, and T,

are small. The growth rate can be obtained as before, using semi-classical methods.
Neglecting interference effects (the cos in Eq. (5.43])), we obtain

T, T8 ~ |w,|> — |T 2. (5.69)

We now see that the sign of I' is thus determined by a competition between the 2 kinds of
scattering. If it is positive, i.e. superradiant effects due to the horizon are dominant, the
mode is ABM and unstable. In the other case, if I', < 0, it accounts for a resonant, or
quasi-normal mode [128]. The conclusion of this little treatment is that dispersive effects
open new possibilities to develop instabilities. This could put observational constraints
on Lorentz violating theories, as was done in [190], where the possible masses of axions
are constrained by the black hole bomb instability. This should be of particular concern
in Lorentz violating theories with superluminal dispersion. Indeed, the dispersive modes
then live inside the black hole, where the curvature is high. This potentially generates
strong back scattering, and make I'" of positive. This might be the case e.g. in
Horava-Lifshitz gravity, where stability of black holes has already been questioned [191].
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5.6.3 Quantum aspects

We should also make several remarks concerning the quantum aspects of the laser effect.
Even though the complex frequency ABM are orthogonal to the real frequency modes,
as is guaranteed by Eq. , the asymptotic quanta associated with these modes are
not of a new type but are, as we saw, superpositions of the standard ones associated
with real frequency modes. If laser instabilities can be studied in classical terms, the
quantum aspects are not washed out. For instance, when considering a charged field, the
charge received as infinity is still quantized, albeit its mean value is described by a complex
frequency ABM. Moreover, in all cases, when the instability ceases, the number of emitted
quanta is a well-defined observable governed by standard destruction/creation operators
as those appearing in Eq. . From this, it appears that dynamical instabilities
governed by an ABM with a purely imaginary frequency, as e.g., the Gregory-Laflamme
instability [192], belong to another class since this asymptotic decomposition in terms of
quanta does not seem available. Whether it could nevertheless make sense to quantize
such instability is a moot point.

5.7 Main lessons of the analysis

The work presented in this chapter provides a complete description, both at the classi-
cal and quantum level, of the black hole laser effect. Solving the wave equation (5.7,
we showed that it should be described in terms of a finite and discrete set of complex
frequency modes which asymptotically vanish [28]. We also showed that these modes
are orthogonal to the continuous set of real frequency modes which are only elastically
scattered, and which therefore play no role in the laser effect. In Sec. using the
simplifying assumption that the near horizon regions are thin, we determined the set of
complex frequencies and the properties of the modes using an approach that combines and
generalizes [165] and [168]. Comparing it with the numerical results of [I81], we obtain
quite good agreements, shown in Fig[5.5]

We described how an initial wave packet is amplified as it propagates in the BH-WH
geometry. When the density of complex frequency modes is high we recovered the picture
of [I64] at early times. Instead, at late time, or when the density is low, the successive
emissions of distinct wave packets associated with the bouncing trajectories are replaced
by an oscillating flux governed by the most unstable mode.

We then computed in quantum setting how the growth of the complex frequency modes
determine the asymptotic fluxes when the initial state at the formation of the BH-WH pair
is vacuum. Because of the width associated with the instability, the spectral properties of
the fluxes are continuous albeit they arise from a discrete set of modes. The properties we
obtained significantly differ from those found in [164] [165]. We also briefly described the
properties of the correlation pattern at early times when the number of complex frequency
modes is large, and at late time when only the most unstable mode contributes. When
the supersonic region between the two horizons is so small that there is no solution to
Eq. (5.42)), we concluded that there is no instability, that no flux is emitted, and that the
entanglement entropy vanishes. Finally, in Sec. [5.6| we gave the general WKB conditions
under which a laser effect would obtain starting from the standard concepts that govern
a vacuum instability in Quantum Field Theory.

It would be interesting to extend the present work to Fermionic fields. As noted after
Eq. , the Hilbert structure of the Dirac equation prevents the appearance of laser
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modes. However, the equation still makes sense, and picks up N pairs of com-
plex frequencies. They are not associated with ABM eigenmodes but with resonances.
They indicate that the naive vacuum will decay in the lowest energy state vacuum plus
N asymptotic quanta by spontaneously emptying the N Dirac holes that are trapped
inside the horizons. A similar phenomenon occurs around a rotating black hole, when the
bosonic field responsible for the black hole bomb effect is replaced by a fermionic one [193].

In a more general context, this instability shows that the consequences of violating
Lorentz invariance can be quite dramatic. Indeed, new instabilities can be triggered, just
as the black hole laser. But as stressed in Sec[5.6] it might be a concern for single horizons
too. Moreover, as we explained after Eq. (5.46|), the rate of that instability is essentially
insensitive to the dispersive scale. Therefore, even if Lorentz invariance were broken at
an energy scale well above the Planck scale, it could have impacts at observable scales. In
conclusion, the possible appearance of dynamical instabilities calls for caution when trying
to build Lorentz violating theories [98] [99] consistent with observational confirmations of
general relativity.
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In this thesis, we studied various implications of short distance dispersion on Hawking
radiation. All along this work, our motivations were twofold. On one hand, in analog
models, dispersive effects always exist. In the aim of detecting the analog of the Hawking
effect, it is crucial to understand what properties are unaffected, but also what are the new
features induced by dispersion. On the other hand, there is the ‘transplanckian question’
of gravitational black holes. This question arises from the role of ultrahigh frequencies in
the derivation of the Hawking effect. It is an open question whether these high frequencies
can be described by the approximation of a free field propagating on a fixed background.
Moreover, there is the possibility that quantum gravity effects might be approximately
modeled by a modified dispersion relation when momenta approach the Planck length
or any other ‘microscopic’ scale. In our work, we assumed such a modified dispersion
relation, to probe the sensitivity of Hawking effect to ultraviolet physics.

Because of this double motivation, we shall draw general conclusions in both contexts.
We do not recall the details of the obtained results, as this was done in the end of each
chapter. In Sec[3.3] we exposed the parameters which govern the deviations from the
Hawking spectrum, and in particular the role of the size of the near horizon region. In
Secld.§| we review the features of undulations, in the case of pure white holes, massive
modes or double horizon configurations. In Sec5.7] the main properties of the black hole
laser effect were presented. Now, we shall discuss the general implications and lessons
that we can draw from these studies.

Analog gravity

The robustness of Hawking radiation against short distance dispersion is obviously a rel-
evant fact for analog gravity. However, even in analog contexts, the Hawking effect is
often very small, and hence quite hard to detect experimentally. Therefore, it is proba-
bly more valuable to understand that Hawking radiation could be detected and studied
through the new effects it generates, such as the laser effect, or the undulation. In fact,
the possibility of having a laser arises in many setups, since it is most of the time easier
to obtain two horizons rather than a single one. Moreover, the laser effect can appear to
be either an instability that destroys the background, but also as an amplification of the
radiation. Depending on what is aimed to be measured, this could be either a limitation
or on the contrary an opportunity to study Hawking effect. In [12§], the proposal was
literally to exploit a ‘pre-laser’ setup, where there is no instability, but Hawking radiation
is amplified by resonant effects. The lesson is similar for the undulation, if not stronger.
Indeed, the undulation is less dangerous for the setup, but it is a clear consequence of
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the Hawking radiation emitted by white holes when using dispersive fields, and by black
holes when using massive fields. In that sense, we believe that studying the undulation
properties is part of the goal to detect analog Hawking effect, as we discussed in Sec[4.3.2

Quantum gravity

As explained in Sec[3.1.1], the role of ultrahigh energy physics in the Hawking process is
still unclear. Indeed, in the semi-classical approximation, ultraviolet frequencies seem to
play a crucial role, even for large black holes. Taking quantum gravity into account could
lead to small modifications of the Hawking effect, which decrease as the black hole be-
comes larger, but it could also generate new effects, that stay observable at low energies.
In fact, the work performed and described in this thesis precisely show that both outcomes
are possible. In our case, ultraviolet physics is modeled by short distance dispersion. On
one hand, when analyzing the Hawking process for a single black hole, we obtain a phe-
nomenology that is very close to the free field result of Hawking, as explained in chapter
Bl This property is sometimes referred as the ‘robustness of Hawking radiation’: effects
due to dispersion are highly suppressed in the flux emitted by large black holes. On the
other hand, in Chapters [ and [f], we analyzed effects that are generated by dispersion, but
which are manifest at low energy scales. Indeed, both the undulation and the laser effect
are phenomena that are induced by dispersion. However, as discussed in particular in
Sec[5.4.3], they are visible at a macroscopic scale. This provides a deep lesson concerning
the physics of black hole radiation. It shows how black holes can act as ‘microscopes’,
in the sense that ultraviolet laws generate visible effects at very low energies. While in
most physical systems, scales stay separated, in this case, the ultraviolet physics has an
observable influence on infrared physics.

This work does not pretend to ‘solve’ the transplanckian question, and it might well
be that the Lorentz breaking hypothesis is never realized in nature. However, the present
work shed some light on the importance of the transplanckian question. As we understood
through these various effects, a complete understanding of Hawking radiation will be
achieved only if one can provide a satisfactory way to incorporate ultraviolet gravitational
physics.

172



Appendix / \

Useful properties of special functions

A.1 Euler function

The Euler I" function is defined by its integral representation

I(z) = /0 " ey, (A1)

When Re(z) > 0, this integral is well-defined and I' is analytic. Moreover, by an integra-
tion by part, we show the fundamental functional relation of the I' function

['(z+1)==2I(z). (A.2)

Using this relation, we analytically extend the function for all complex values of z, except
negative integers. At these latter values, I" possesses a pole. The second most fundamental
identity is the so-called ‘complement formula’

T

D(2)0(1 — 2) = (A.3)

sin(rz)
We refer to [121] for its proof. These relations allow us to obtain several useful identities,
which naturally arise in the study of Hawking radiation and especially in Sec)3.2.6, We
now present a few of them.

Vr € R,
SN2 m
|T(iz)|* = Temh(r7)’ (A.4)

We also have the asymptotic

INC) _ < BE i(rln(x)—z)—i T 1] — — o= A5
(iz) \/xe2e 1 12x+ . , (A.5)
or equivalently

T ; ;T ) ].
T(1 +ix) = V2rze™ @ —a)+ig <1 - 40 (—)) . (A.6)

Around 0, the behavior of I' is much simpler, since for all z € C

1
[(z) ~-. A.
() (A7)
This asymptotics are especially useful in Secf4.4]in order to obtain asymptotic behaviors
of the Bogoliubov coefficients.
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A.2 Hypergeometric functions

A.2.1 Definitions

An hypergeometric function is defined by the convergent series

[(a+n)I'(b+n)l(c) 2"

Fla.bie2) =) —mormrerm

neN

, (A.8)

where a, b and ¢ ¢ Z~ are complex parameters. The hypergeometric function obeys the
second order differential equation

2(1—=2)02F + [c— (a+ b+ 1)z]0.F — abF = 0. (A.9)

The other solution of that equation is, in fact, also an hypergeometric function, but with
other values of the parameters. Many equations can be recasted under that form by a
proper change of variable and therefore make the system completely integrable. More-
over, hypergeometric functions are powerful tools to solve scattering problems. Indeed,
Eq. has 3 regular singular points at 0, 1 and co. The asymptotic behavior of F' at
these points can be fully derived. In scattering problems, this allows us to obtain analytical
expressions for the scattering coefficients in terms of I' functions [49]. For detailed expla-
nations about the theory of hypergeometric functions, we refer to references [121, [122].
We now use these hypergeometric functions to obtain the general solution of the massive

field equation in the geometries of Seci4.4.2

A.2.2 Wave equation of massive modes

In Sec}d.4.2] we exploited hypergeometric functions to solve the mode equation (4.48).
As explained there, this is the mode equation of stationary modes in Schwarzschild-like
coordinates. However, to solve them, it is easier to use another spatial coordinate

. dz

(%

and a rescaled field
Puw
= ——. A1l
T (A.11)
The name of the new coordinate x* has been chosen because it is closely analogous to the
‘tortoise coordinate’ in Schwarzschild geometry. Note that it has to be defined separately
on one side and the other of the horizon. Using it, the mode equation reads

m? w?
—a§*¢+4—/€2(1—02)¢: TPEAR (A.12)
Of course, 1 — v? has to be re-expressed as a function of z*. Under that form, the wave
equation is often easier to solve. In our case, even if it does not exactly correspond to the
hypergeometric equation (A.9)), it is close enough to easily obtain the general solution.
It is important to notice that the z* coordinate is not adapted to impose the regularity
condition on the horizon, unlike z, see the discussion in Sec[4d.4.1]
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A.2.3 General solutions for massive modes

To present the exact solution under a compact form, we shall give them in terms of the
z* coordinate and field 1. However, in Sec[4.4.2] what we need is the mode ¢, (z), and
one must use Eqs. and to obtain it. (Note that in the Appendix of [31], we
gave them directly in x coordinate.)

Interior of the totally reflecting model

We start with the totally reflecting model, described by the profile v of Eq. (4.81]), and
use the notation of Eq. (4.82)). For x > 0, we solve Eq. (A.12) for

*

De”
L= = (A.13)
" €] — 00; 0.
We then obtain the only ABM solution
Y(z)=C(l—e")(e")™F (1 —iw+1iQs,1 —iw — i ;2,1 — ), (A.14)
where C' is an arbitrary constant. To go back to the x coordinate, we use
e =1—eD. (A.15)
Exterior of the totally reflecting model
For x < 0, we have )
- 2(t) =~
1+e” (A.16)

x* €] — oo; +0o0l.
And the general solution is
Y(z) = A(e")TF (iw — iy, iw + iQy; 1 + 2iw; —e” ) | (A.17a)
+B(e”) " F (—iw — i, —iw + iy 1 — 2iw; —e” ), (A.17h)

with A and B arbitrary constants. The relation between x and x* is here given by

* _ 2Kz

e =e D — 1. (A.18)

Exterior of the CGHS model
For the profile of the CGHS black hole, see Eq. (4.93)), and for > 0, the conformal factor

1S

*

~ De”
14’ (A.19)

1 —v*(a")

leading to the general solution
() = A(e")™F (iw — iQ, iw + i 1 + 2iw; —e” ), (A.20a)
+ B(e")™F (—iw — i), —iw +iQ; 1 — 2iw; —e” ) . (A.20b)
Here A and B are arbitrary constants and = Q. for w > w;, and Q = iQ. for w < wy.

The definitions of these dimensionless quantities are given in Sec. To express this
in the x coordinate, one must use

et =eD —1. (A.21)
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Analog model

For the analog model, given by Eq. (4.100) we combine the preceding two results. In the

interior (resp. exterior), the solution is Eq. (A.17)) (resp. Eq. (A.20))) with D — Dy, (resp.
D — DR)
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Appendix

Tools from the quantum harmonic oscillator

B.1 Harmonic oscillator

In this section, we consider the quantum harmonic oscillator of mass m = 1. The aim is to
review some basic features and especially the notion of coherent states. For a more detailed
description of this matter, we refer to |49, 67] At the end, we compare the two-point
function obtained in the vacuum or in a coherent state. The presented result extended
to quantum field theory, as shown e.g. in the appendix of [90]. This computation is used
in Chapter [4] to interpret the role of the contribution of the undulation in the Wightman
function.
The harmonic oscillator is described by the Hamiltonian
Lo, 1 5.,

H—§p —|—§wx. (B.1)
We study the oscillator in the Heisenberg picture. Hence the operators evolve but not the
state, which can represent initial conditions. As usual we define creation and annihilation
operators such that

—twt wt

e e
z(t) = a +af , B.2a
O =t (B:20)
—w W
(t) = a e Wt 4 qf et B.2b
p(t) Now Now (B.2b)
Using the creation and annihilation operators, the Hamiltonian reads
~ A 1
H=wla'a+ 5): (B.3)
and the canonical commutation relations impose
[a,a'] = 1. (B.4)

Note that this transformation is the one of Sec[2.1] applied to a single degree of freedom.
The eigenstates of the Hamiltonian form a complete basis of the Hilbert space, and are
noted {|n)},en. They obey the relation

) = w (n + %) In). (B.5)
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Moreover, the annihilation and creation operators act as

aln) = +/n|n), (B.6a)
a'ln) = v/n+1n). (B.6b)

The vacuum, or ground state is defined as the state of norm 1, annihilated by a, i.e.,
al0) = 0. (B.7)

It is also an eigenstate of the Hamiltonian, associated with the lowest eigenvalue w/2.

B.1.1 Coherent states
We define a coherent state through the relation
la) = ala), (BS)

where a € C. Hence |a) is an eigenvector of the operator a. Those states can be
decomposed in the eigen-basis of H. Combining Eqs.(B.6a)) and (B.8), we get

n
Q o]

o) =) ﬁe_T]n). (B.9)

This shows that the spectrum of a is the whole complex plane, Sp(a) = C. On the
contrary, if one tries to do the same for af, one finds only non normalizable states. In fact,
the spectrum of a' is also C, but it consists of spectral values that are not eigenvalues. We
refer to [175, [I76] for proper distinctions between these notions. Here, we assume definition
(B.8), and study the main features of these states. First, we see that the probability
distribution to find n excitations in a coherent state is a Poissonian distribution of mean
value

n = (ala'dla) = |af? (B.10)
To further describe a coherent state, it is very convenient to define the displacement

operator
o

D(a) = exp(adl — aa) = e 2 e "0, (B.11)
The second expression for D(«) is deduced from the Baker-Campbell-Hausdorff formula.
D is unitary for any value of . Moreover it allows us to obtain any coherent state by
acting on the vacuum state

la) = D(«)|0). (B.12)
We also recall the very useful identity
Di(a)aD(a) = a+ a. (B.13)

Coherent states are often called ‘classical’ because they consist in a gaussian centered on
the classical trajectory noted xq(t). In particular, we have

2 .
(a]Z¢|a) = \/jRe(ae_“"t) = (). (B.14)
w
In fact, the time evolution of |«) is even more remarkable. Indeed, at all time ¢ we have
o) = U(t)|a) = |ae™™"). (B.15)

This means that a coherent state stays coherent at all time and centered on the classical
trajectory. Note also that the vacuum state |0) is a particular coherent state, with a = 0.
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B.1.2 Quantum fluctuations in the presence of a coherent state
Quantum fluctuations can be characterized by the 2-point function

e—iw(t’ —t)

Go(t',t) = (0]2pa4|0) = ———

o (B.16)

This function is the one degree of freedom version of the Wightman function G, defined
in Sec2.1.2l Therefore, it can be seen as characterizing the ‘vacuum fluctuations’. When
the system is in a coherent state, one can analyze the corresponding 2-point function

Go(t' 1) = (a|ipiy|a). (B.17)
Using the preceding section, and in particular Eq. , , we obtain
D(a)#,D(a) = &y + za(t). (B.18)
Moreover, since (0|;]0) = 0, we get
Ga(t',t) = (0]2p24]0) + za(t))za(t). (B.19)

Therefore, we see that the two-point function really consist in the vacuum fluctuations
plus a classical contribution. This classical part is an exact product of the (real) classical
solution (B.14]). The undulation studied in Chapter 4| contributes exactly the same way.

B.2 The unstable quantum harmonic oscillator

B.2.1 Real upside down oscillator

We review the quantization of upside down oscillators in the Heisenberg representation.
To begin with, we start with a single real upside down harmonic oscillator. Its Hamiltonian

1S
1
H = (- T*), (B.20)

when written in terms of position ¢ and conjugated momentum p, obeying the standard
equal time commutator (ETC) [¢,p] = i. Introducing the ‘null’ combinations

b= (p —Tq), (B.21)

1 1
— (p+Tq), c=——
Tr(p q) N

one gets

H= g(bc + cb). (B.22)

One verifies that they obey the ETC [b, ¢] = i. The ordering of b and ¢ in H follows from
that of Eq. (B.20)). The equations of motions are

b= (—i)[b,H]=Tb, ¢é=(—i)[c,H]=—-T¢, (B.23)

thereby establishing that b (resp. c) is the growing (resp. decaying) mode b = by ! (resp.

c=coe ).
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It is now relevant to look for stationary states. In the b-representation (¢ = —id,), the
stationary Schroedinger equation HVp = EVg reads
E i

— bW (b) = (T — 5)¥s(b) (B.24)

Solutions exist for all real values of E, and the general solution is
Up(b) = A O(b)(b)"E/M12 4 Bp O(—b)(—b)"E/T=1/2, (B.25)

Since the spectrum is continuum, one should adopt a Dirac delta normalization (¥ g/ |V ) =
d(E — E'). This gives ,
9T
Imposing that the solution be even in ¢ (p, b, or ¢) imposes A = Bg. The important
lesson one should retain is that there is no square integrable stationary states. Therefore,
in all physically acceptable states (i.e., square integrable) the expectation values of ¢*+ p?
will exponentially grow ~ e?'* at late time.

|Agl? + | Bel|* = (B.26)

B.2.2 Complex oscillators

More relevant for the application of Chapter [5] is the complex upside down harmonic
oscillator. One can start from a 2 dimensional inverted oscillator (g1, ¢2) conjugated with
(p1,p2), whose Hamiltonian is

1
=3 [(p% +p3) — (g + q%)} + w(q1p2 — @2p1). (B.27)

2
This represents an unstable and rotating harmonic oscillator [66]. The associated complex
frequency is A = w + «I". In fact, the real part term can always be gauged away, by
a change of reference frame. However, for our purpose, we shall keep it explicitly in
order to interpret as a standard harmonic oscillator in the interaction picture, see
Eq. . Before that, we rewrite in a language adapted to Chapter . We thus
build the complex variables

¢g=q +igx and p=p +ips. (B.28)

We then introduce the complex b and ¢ variables

b=~ (p+Tq), c=—(p—Tq), (B.29)

VAT

which are normalized so that they obey the ETC

1
VATl

b, c'] =4. (B.30)
We then look for the (hermitian) Hamiltonian which gives the following equations
b= (=i)[b, H] = —i\b, ¢= (—i)[c, H] = —i)*c. (B.31)

It is given by
H = —ixc'b+ i\ ble. (B.32)
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B.2 The unstable quantum harmonic oscillator

It is instructive to reexpress this system in terms of a couple of destruction and creation
operators d_, dT_, dy, di which are given, at a given time %y, by
1 1

= —(d. —id c=——(—i M. .
b_ﬂ(d+ dh), \/5( dy+d") (B.33)

They obey the standard commutation relations [d;, d;r] = 9,5, and Eq. (B.32) reads

H = w(did, —d d)+T(d_d,+d.d"), (B.34a)
= Hy+ H,, (B.34b)

In the first term one recovers the standard form of an Hamiltonian is the presence of
stationary modes with opposite frequencies. The second term induces a squeezing of the
state of the d_, d oscillators which grows linearly with time.

To set initial conditions, and to be able to read the result of the instability in terms of
quanta, it is appropriate to use this decomposition of H and to work in the ‘interacting’
picture where the operators b, c only evolve according to Hy, and where the squeezing
operator acts on the state of the field. Indeed, in this picture the states can be expressed
at any time as a superposition of states with a definite occupation numbers n_ and n, .
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