

tre :

Institut National Polytechnique de Toulouse (INP Toulouse)

EDSYS : Automatique 4200046

Duong Dang

mardi 30 octobre 2012

Humanoid manipulation and locomotion

with real-time footstep optimization

LAAS-CNRS

Dr. Jean-Paul LAUMOND

Prof. Phillipe FRAISSE

Dr. Pierre-Yves OUDEYER

Dr. Florent LAMIRAUX

Acknowledgment

First and foremost, I would like to thank Dr. Jean-Paul Laumond for his

guidance over the years. I could not have asked for a better Ph.D. advisor,

inspirational, supportive and patient. I would also like to thank Dr. Florent

Lamiraux for his advice and help both in scientific and technical issues. My

experiments on the robot HRP-2 would not have been possible without support

from Dr. Oliver Stasse and Dr. Nicolas Mansard. I also thank Dr. Michel Taïx

and Dr. Phillipe Soueres who have been always ready to answer my questions

about research, administrations or any other issues.

I am lucky to have a great research team at GEPETTO with a very nice

ambiance among Ph.D. students. I appreciate the help from the veterans:

Alireza, Anh, David, Francisco, Manish, Minh, Oussama, Sebastian when I

first arrived in Toulouse, especially in finding the best restaurants in town. I

also thanks Andreas, Antonio, Layale, Oscar, Olivier, Sovan, Thomard for both

scientific collaborations and the enjoyable hours spending together outside lab.

Thanks to Wassim and Wassima who also converted secretly to Gepettistes.

I will never be able to thank enough my family. Their unconditional love,

confidence, and support are the reasons behind all the success. Special thanks

to Ha for being in my life.

i

Contents

Contents iii

1 Introduction 1

1.1 A brief history of robotics . 1
1.2 Whole-body manipulation . 6
1.3 Humanoid locomotion . 8
1.4 Adaptive locomotion . 9
1.5 Bio-inspired locomotion . 10
1.6 Approach and contribution . 11

2 Framework 15

2.1 Global architecture . 15
2.2 Forward kinematic . 16
2.3 Prioritized hierarchy of tasks 19
2.4 Locomotion . 24
2.5 Motion generation . 37
2.6 Integration on the HRP-2 robot 43

3 Reactive locomotion by deformable footsteps 49

3.1 Reactive walking . 49
3.2 Floor representation . 50
3.3 Environment adapted local footstep deformation 53
3.4 Task-driven deformation . 55

4 Perception with stereo cameras 59

4.1 Overview of modules and middleware 59
4.2 Perception module . 60
4.3 Automated extrinsic calibration for humanoid robots 64

5 Stepping over 67

5.1 Problem statement . 67
5.2 Computation of initial stepping sequence 68
5.3 Online deformation . 72
5.4 Experiment . 72

iii

iv CONTENTS

6 Object grasping 77

6.1 Reactive online footstep replanning 77
6.2 Online footstep replanning . 78
6.3 Motion blending by prioritized stack of task 81
6.4 Experiments . 84

7 Conclusions 91

7.1 Manipulation-locomotion fusion with closed-loop vision 91
7.2 Application scope . 92
7.3 Limitations . 93
7.4 Perspectives . 94

A Joint description 97

Bibliography 99

List of Figures 109

List of Tables 113

Abstract 114

Chapter 1

Introduction

1.1 A brief history of robotics

1.1.1 Terminology and early concepts

Robotics as the field of design, construction and use of machines (robots) to
perform tasks done traditionally by human beings1 has only been around for a
short period of time. In fact, the term robot appeared for the first time only in
1920 in the play "R.U.R (Rossum’s Universal Robots) by Karel Capek [Cap20].
The word robota in Czech means tedious labor. Real autonomous robots only
became widely available since the 60s starting with the manufacturing industry.

(a) Da Vinci’s Knight
Robot

(b) Jaquet-Doz’s automata at Musée d’Art et
d’Histoire of Neuchâtel, in Switzerland

Figure 1.1: Early automata

The field of robotics as we define and know is relatively young. The

1Definition from Encyclopædia Britannica

1

2 CHAPTER 1. INTRODUCTION

concept of automated machines, however, can be traced back to the ancient
times. Archytas of Tarentum is usually reputed to have built mechanical
steam-operated birds called "The Pigeon". Several texts in ancient China also
accounted for automated machines. More recently, among other inventions,
Leonardo da Vinci designed a Knight shaped machine (Figure 1.1a) around
1495, referred to as a humanoid automation [Ros06]. Later on, several types of
automata were developed in Italy, Germany, Switzerland and Japan, notably
the three automata The Writer, The Draughtsman and The Musician created
by Pierre Jaquet-Doz (Figure 1.1b). Clearly, the idea of automated systems
capable of performing human tasks existed long before the creation of the
terminology robot itself.

Thanks to the brothers Capek, the (then purely futuristic) field of robotics
gained gradually general public interest. This is particular pronounced after
the publication of the works by Russian author Isaac Asimov, whose novels are
still subject to numerous cinematographic adaptations. Asimov was perhaps
most famous for the creation of the three laws of robotics

1. A robot may not injure a human being or, through inaction, allow a
human being to come to harm.

2. A robot must obey the orders given to it by human beings, except where
such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does
not conflict with the First or Second Laws.

Whether or not Asimov’s Laws will one day go past the boundaries of
science fiction and be incorporated into our common laws is still an open
question. The enthusiasm they brought to the robotics field clearly made a
positive impact.

1.1.2 Industrial and mobile robots

Ever since robotics caught general public interest, curiosity and enthusiasm,
robots have been widely depicted in movies, most frequently in humanoid
forms. Science fiction became, in part, a reality at the end of the 50s of
the last century when General Motors introduced the Unimate robot in their
factories. The incomparable to an ordinary worker, the repeatability of these
machines made them more and more popular. Japan followed closely during
the 60s with Kawasaki who licensed hydraulic robot design from Unimation.
During the 70s, more robots were released, notably the PUMA arm, that later
on went out the factories’ perimeters to become a popular arm in research
laboratories around the world. The 80s witnessed a rapid growth of industrial
robotics. A number of new companies and robots entered the market: Kuka,
ABB, Adept, CRS, etc. to name a few.

1.1. A BRIEF HISTORY OF ROBOTICS 3

(a) Shakey the robot (b) The Stanford cart

Figure 1.2: Early mobile robots

During the same period, various mobile platforms were born in research
laboratories, such as Shakey the robot (SRI, Figure 1.2a), the Stanford Cart
(Stanford, Figure 1.2b), and the NASA’s Viking program robots. These
robots with embedded vision systems opened new perspectives in term of
applications. However computing power limitation at the time made any
real-time manipulation virtually impossible (The Stanford Cart took around
15 minutes to analyze a view point and 1m every 10 to 15 minutes [Mor83]).
Thanks to the increase in computational power as predicted by Moore’s Law,
computers became faster and faster and allowed the develop of a number of
mobile robots: PR2 [WBdLJ08], Justin [BWS+09] etc. .

1.1.3 Humanoid robots

If human-like machines are the first images of robots both in the earlier con-
cepts, automata and in Asimov’s science fiction, in reality, humanoids are the
last kind of robots that came into existence. The pioneers in humanoid robots
are the WABOT (Figure 1.3) developed by Ichiro Kato et al. [Kat74,KOS+87].

WABOT-1 was essentially built from 2 arms mounted atop of a WL-5
(Waseda Leg 5) which was a continuous effort from the same group since
1967. WABOT-1 inherited all the advances in locomotion of WL-5 including
balancing and walking. The first walking robot was still at the primary
development with only quasi-static stepping which results in a 45-second long
footstep. The robot also featured vision sensor, tactile sensors and a speech
synthesizing system and was reported to have "the mental faculty of a one-
and-haft-year-old child”. WABOT-2 introduced in 1984 was even more capable
manipulation-wise and really impressed the public by playing a piano during
the Tsukuba Science Expo in 1985. In parallel, the WL series which serve as

4 CHAPTER 1. INTRODUCTION

(a) WABOT-1 (1973) (b) WABOT-2 (1984)

Figure 1.3: First humanoid robots developed at the Waseda University

legs for WABOTs continued to developed. The concept of the mathematical
tool introduced by Yugoslavian scientist Vukobratovic was also Incorporated
into the system to achieve a dynamic walking with WL-12R in 1991 [LTK91].

It was Honda that captured a great deal of interest from the general
public with the demonstration of P2 in 1996 [HHHT98]. With all components
mounted on the robot (batteries, computers), P2 was arguably the first really
autonomous humanoid that can walk stably. Honda followed through with P3
in 1997 and ASIMO in 2000.

Figure 1.4: Evolution of HONDA humanoid robots

The latest version of Asimo (5th generation, introduced in 2011) measured

1.1. A BRIEF HISTORY OF ROBOTICS 5

130 cm and 48 kg with 57 degrees of freedom and can run up to 9km/h.
After Honda, other new humanoids have been released, notably the joint

effort between Kawada and the National Institute of Advanced Industrial
Science and Technology in Tsukuba (AIST) : the HRP series. With the active
participation of AIST, there was a tighter link between the research community
and the industry. More industrial quality and robust machines have been made
available to universities and laboratories. HRPs robots have dimension and
weight close to human’s (Table 1.1).

HRP-1 HRP-2P HRP-2 HRP-3P HRP-3 HRP-4C HRP-4

Weight 130 kg 58 kg 58 kg 65 kg 68 kg 43 kg 39 kg
Height 160 cm 160 cm 154 cm 154 cm 160cm 158cm 151 cm
Dof 28 30 30 36 42 42 34

Table 1.1: Size of the HRP series

HRP-3P has the capability of functioning under high humidity condition
and is still a rare water-proof humanoid to date. HRP-4C has been introduced
as a robot for the entertainment industry and features numerous music and
fashion shows in recent years.

Other notable humanoids robots made by the industry include the Sony’s
QRIO, the Toyota Partner Robots which were capable of playing musical
instruments, the Aldebaran’s NAO, the Kokoro’s actroid etc.

Along side with industrial made robot, research laboratories around the
world continue to develop and build humanoid prototypes. The availability
of these humanoids, coming from different sources, provides more opportunity
humanoid robotics research development.

Figure 1.5: Some of the HRP family, from left to right: HRP-4, HRP-2, HRP-
3P and HRP-4c

6 CHAPTER 1. INTRODUCTION

Other robots There exists some other robots worth mentioning that do not
share all the properties of previously presented humanoids. In the long run, this
group of robot provides the same set of service: helping human in day-to-day
tasks. They are modern mobile robot. The German Space Laboratory (DLR)
is known for the development of the Justin robot which can perform cooking
tasks with its two hands. The PAL Robotics’ REEM is a robot with the same
features: two arms, a body, a head with cameras are mounted on a mobile base
instead of legs. The Willow Garage’s PR2 gains in popularity recently due to
its highly integrated ROS ecosystem which allows a relatively easy integration
of multiple complex components ranging from planning, vision, SLAM to robot
control.

Without legged locomotion, mobile robot presents a clearly advantage in
term of robustness (no humanoid security system required [i.e. the lifter], since
the robot cannot easily "fall”), in term development time since the controller
has no longer to deal with the combination of feet commands and manipulation
commands. The drawback is that theoretically mobile robot cannot reach every
where the people go, i.e. climbing a stair or a ladder would be impossible.
However, one might argue that people who need assistant from robots might
have the accessibility to all area. A well adapted human environnement which
accomodates wheeled chairs for example is also fit for mobile robots.

1.2 Whole-body manipulation

Many reserch work has been done in the theme of whole-body manipulation.
Humanoids’ high degree of redundancy creates a real challenge both in term
of planning and control.

Planning tasks involving complicated situation which requires some time
to plan and the result is to be executed in open-loop. Kuffner et al. used
an RRT-Connect approach to plan grasping movement on the H6 humanoid
robot [KKN+02b]. The robot had to grasp an object underneath a table
while avoiding all collisions. This approach tried to search in the space of
statically-stable configurations for a solution that also lied on the collision-free
configuration space. The resulting sequence of collision-free, statically-stable
configurations was then smoothed and and filtered and fed to the robot.

[YPL+10] used a pivoting method to manipulate a bulky object without
having to lift it. This movement featured nice specialties of humanoid robots
such as the coordination of the upperbody and the feet.

Escande et al. [EKM06] presented a manipulation task with a contact-
support. This planner had the originality of allowing any possible contact
between a robot link and the environment. Nakhaei and Lamiraux [NL08]
used the computer vision system on HRP-2 to continuously update the envi-

1.2. WHOLE-BODY MANIPULATION 7

ronment and modified the road-map accordingly while planning for a object
manipulation task.

Other authors presented interesting results on whole-body coorerative mo-
tions on a humanoid robot for heavy works such as pushing a wall and twisting
a valve (in simulation) [HKU03], pushing a heavy table on HRP-2 [TIS+04,
HKK+07], carrying a heavy objects [HKS+05].

Grasping Tasks involving grasping and manipulating small objects have
been studied under different angles. From the motion planning perspective,
this problematic consists in finding a collision free path from the starting point
to the predefined grasp pose. This leads directly to posture-based approaches
[RMVJ01, KAAT03]. From the machine learning perspective, the grasping
problem lies in finding the "best” grasp pose for a given object, namely an
approriate posture that a human operator would choose. This can be done by
modeling the target as a set of primitives and use a set of rules to choose, test,
and evaluate the grasp candidates [MKCA03,GALP07]. Ranking techniques
such as defining a score on the grasp according to the environnement around
the object and the robot kinematics [BDN+07] also proved its effectiveness on
humanoid robots. Other authors use vision or human demonstration to grasp
novel objects [EK04, KFE96, SWN08]. If a lot of research efforts have been
carried out at the low level, both in planning and learning aspects, little has
been done in the context of legged robots where the manipulation cannot be
seperated from the locomotion. This is one motivation of the work described
later on in this thesis. If we can formulate a fusion framework that is flexible
enough, all the techniques described above will become compatible and make
the grasping with locomotion more robust.

Control There exists tasks in which the difficulty lies in the adaptation of the
controller to the environment and/or involves aspects that cannot be addressed
by traditional motion planning techniques. Task-space has long been a favorite
pick when it comes to building a controller for a robotic manipulation. Since
the early work by Khatib [Kha87] twenty-five years ago on operational space
control, numerous other controllers follows.Sentis et al. expanded Khatib’s
original framework to humanoid robots [SK06,KBC+04] with prioritized tasks.
Concurrently, Mansard et al. [MC07a,MC07b] proposed a different approach to
resolve efficiently a stack prioritized tasks in position control and torque control
[SRM+11] robots. These powerful controllers produced impressive experiments
on humanoid robots. There lacks however a full integration with a higher level
planner, such as footstep planning. In this thesis, task-based control will be
heavily employed in a close connection with the planning modules.

8 CHAPTER 1. INTRODUCTION

1.3 Humanoid locomotion

Studies on biped locomotion can be traced back to the 70s, well before the
introduction of the first humanoid robots. [VFJ70] presented the stability study
on a simple biped with 2 masses supported by two legs which are position
controlled. The robot was supposed to make point contact with the floor.
Three kinds of stability were consider: Body stability, Body path stability and
Gait stability, where the last item is specific to bipedal robot which corresponds
roughly to the repeatability of the system in the leg coordinates . From this
model and analysis, the author obtained a criteria for the dynamic equilibrium
of the biped locomotion problem in question.

The same authors introduced later on [VS72] the concept of the Zero-
Momentum-Point (ZMP). This time, not point contact but flat foot contact
was considered. The ZMP provided with a simple necessary condition for all
dynamic walking condition: its position must lie inside the support polygon.
Since the ZMP is computable from state variables of the robot, either through
a full 3D model or a simplified one such as the inverted pendulum or the
cart-table, a stable walking sequence can be relatively easily computed.

[Wie02] developed a mathematical model to address the stability con-
ditions of any walking system. The concept of viability was introduced to
illustrate the set of possible robot states that allow the robot to perform a
given movement without getting inside the unrecoverable zone. The union
of all states satisfying such condition is the viability kernel. This analysis
was very interesting in the sens that it describes mathematically the stability
conditions of legged locomotion on arbitrary ground (as opposed to the ZMP
condition which only valid for flat grounds). However, the drawbacks is that
this method was more complicated and less computation-friendly that previous
method relying on the ZMP.

Using the ZMP concept and a simplified model, [KKK+01] developed one
of the first pattern generators for the HRP robots. This pattern generator
used preview control to compute an optimal movement given a reference ZMP
trajectory. [MHK+06] presented a method that computes ZMP and the center
of mass’s trajectories using polynomial function. Thanks to the effectiveness
of polynomial computations, Morisawa et al. achieved real-time generation of
walking movements as well as the possibility of modifying the next footstep
during walking.

A number of more pattern generators have been developed and tested on
the HRP-2 robot. [HDW+10] utilized linear and angular velocity of the robot
as inputs for the pattern generator, hence remove the usual layer from the
scope of the user interaction. Indeed, in the user perspective, the footsteps
became completely transparent, velocities sufficed to get the robot going.

Concurrent to the work done on the HRP-2, Nishiwaki et al. [NKK+02]
also proposed fast pattern generation method on humanoid robots. Again, the
ZMP concept was used together with the simplified inverted pendulum model

1.4. ADAPTIVE LOCOMOTION 9

of the robot.
Conditions on the ZMP contributes largely to the stability of a walking

movement. Once we obtain and follow closely a reference ZMP trajectory,
other parts of the body can be used to achieved other tasks. [VSYV06] demon-
strated this principal with experiments where the robot had to step over large
objects. A second pass, however, of the ZMP calculation (multi-body model)
was necessary to enhance the stability of the movement since the cart-table
model is no longer valid for a large amplitude movements of the feet.

Throughout the 40 year history of the ZMP, numerous studies on humanoid
locomotion have been carried out using this concept. Recently, a new concept
has been introduced to the community: The capture point. [PCDG06] defined
the capture point as the point on the ground where the robot can step to in
order to bring itself to a complete stop. The walking strategies were defined by
the intersestion between the capture region and the base of support. Further
simulations and experiments on the DLR-biped robot [EOR+11] showed that
the capture point is a reliable alternative to the ZMP method

1.4 Adaptive locomotion

Adaptive methods to deal with a changing environment were common for
numerous problems. [QK93, KJCL97] proposed using elastic bands for non-
holonomic car-like robot. The gap between planning and control was closed
by considering an elastic deformable collision-free path. During experiments,
changes in the environment were detected by sensors and act as changes in
external virtual forces on the elastic band. The connectivity between the
robot and the goal was preserved and the found solution is locally optimized.

[LL98] used an iterative method to effectively adapt the trajectories for the
Hilare robot with a trailer. The changes in the environment were recorded and
corrected gradually at each control loop. This strategy resulted in a stable and
smooth control scheme on the given robot. [GPFZ06] presented a decentralized
approach to adapt trajectories of a group of mobile robots.

On humanoid robots, [UNN+11] proposed the singular LQ preview reg-
ulation for the problem of online foot placement. As before, the inverted
pendulum model was used. The regulator problem resulted in the conditions
of the target ZMP trajectory that will not make the CoM trajecotry diverge
and a fast generation method of the CoM.

[KKN+03] used a A⋆ search strategy to plan footsteps. These quantities
are computed independently from the rest of the robot. The cost function
on the possible footstep candidates were defined from its amplitudes, whether
or not it involves turning or stepping backwards. This principal were then
applied to the HRP-2 robot [CNKK07] and ASIMO robot [CLC+05] with the
robot position tracked by a motion capture system and 2D obstacles observed
by external fixed cameras.

10 CHAPTER 1. INTRODUCTION

Perrin et al. [PSLY11,PSB+12] developed a pattern generator using half-
steps and swept-volume approximations. Half-steps reduced the dimension
and allowed doing offline approximation of the stepping domains in reasonable
time. The swept-volume approximations provided an efficient method to check
collision for a given footstep. This combination allowed a fast replanning
algorithm that can effectively work on a changing environment.

1.5 Bio-inspired locomotion

Up to this point, we have been talking about methods that were designed for
a specific humanoid robot with its advantages and drawbacks. On the one
hand, with robots with precise manufacturing and a available CAD model ,
the kinematics, dynamics of the robot are known (almost) exactly. On the
other, these fixed designs impose limits. The mentioned methods have to take
into account the constraints of the mechanical design, e.g. the shape (usually
flat) of the feet, the lack of a passive heel. In this section, we will look into the
robots that are closer to human beings and have the potential of being stable,
a inherent property coming from its structure. Boston Dynamics’ BigDog
[RBN+08] and PETMAN can adapt to the terrain and external perturbation.
Design-wise, the BigDog has a spring in each of its feet which helps absorbing
impacts. The BigDog also uses hydraulic actuators and is equipped with
numerous sensors. The PETMAN, whose detailed design is not yet published,
features passive heels which allow the robot to land on the back of its feet.
This way of walking is much similar to how human walks (as opposed to flat
foot landing in previous section).

In the research community, bio-inspired locomotion has also become an in-
teresting topic. If the body of the better known robots consists of conventional
joints and links, other scientists inspire from the animals’ vertebral column to
build their robot. Ijspeert et al. proposed a Salamander robot [ICRC07] which
took advantage of the vertebral column to perform both swimming and walking
locomotion. In this robot, a central pattern generator (CPG) was implemented
to mimic biological systems. By choosing the right parameters for the CPG,
the relatively complicated system in the conventional point of view (lots of
degrees of freedom in the vertebral column) can be controlled effectively to
achieve a desired locomotion.

An other trend in bio-inspired locomotion research consists in reducing to
the maximum the number of actuators. To the extreme case, [McG90,CWR01,
Kuo99] presented dynamically walking robots which did not use any energy at
all. Such robots could walk down a slope with the gait properties similar to
human’s. The 3 passive robots developed at Cornell, Delft and MIT [CRTW05]
could even walk on level ground by using an actuator to feed energy to the
system hence play the role of gravity in previous design. Typically, the design
of the feet in those robots were completely different for those in fully actuated

1.6. APPROACH AND CONTRIBUTION 11

robot (HRP-2, ASIMO, etc.). Instead of being flat, they took a curved shape
which allowed landing on the heel and minimizing the impact energy.

[LLO11] proposed using the vertebral column principle and passive walk-
ing on a humanoid robot: Acroban. Indeed, the vertebral column increased
greatly the stability of the robot as it acts as a semi-passive inverse pendulum.
Compliance was also a key feature of Acroban, both at control level where
the maximal torque can be ajusted in realtime as well as design level with the
robot’s soles covered with compliant materials. These considerations made
the robot robust to external perturbations. Dynamic walking was triggered
by a CPG which did not involve realtime computed dynamics or ZMP-based
concept as seen earlier but followed a scheme of self-stabilizing passive robots.
The system was therefore stable and adaptable for changes in the environment
by definition as it made no or little assumption about the external world but
adapt itself accordingly.

Inspiring from biological systems also means inheritting from the nature
is complexity. The dynamics of the robots such as the ETH’s salamander or
the Acroban are most likely more difficult to modelized than HRP2’s. The
control algorithms have to therefore adapt with these unknowns. Atkeson et
al. [AMS97a,AMS97b] provided a throughout survey on lazy learning methods
in autonomous adaptive control and their applications in robotics. [Tay04]
proposed aaptive iterative learning control techniques to track trajectories on
robot arms without knowing the parameters.

Both the bio-inspired design and adaptive control techniques are very
interesting. The future of humanoid robots are probably more flexible, more
human-like generations of domestic robots. For this generations, the assump-
tion of robots as a chain of rigid body with fixed, perfectly measurable dy-
namics will be no longer valid. This is where the research axe described in
this section will play a crucial role, in making the robots controllable, useful,
reliable and safe.

Although the techniques described further in this thesis are designed for
the "first” generation of robots with rigid bodies and known dynamics. In the
future, techniques in adaptive control, learning should also be combined to
enhence furthermore the performance of achieved tasks.

1.6 Approach and contribution

This thesis deals directly with theory and experiments on humanoid platforms
whose dynamical properties are particularly well modelised. The rigid struc-
ture of these robots, while provide a high degree of precision in control, hardly
allows exploring paths such as machine learning, bio-inspired locomotion. The
control, adaptation strategy relies uniquely on algorithms. The framework
here is developped on and existing techniques to provide a adaptive strategy
for manipulation with locomotion in a changing environment. It merges the

12 CHAPTER 1. INTRODUCTION

Figure 1.6: Experiments on HRP-2 using the real-time footstep optimization

traditionally slow process (motion generation) and a reactive process (sensor-
based control) with perception.

If numerous works have been carried out in both manipulation and locomo-
tion, the two aspects are usually treated as independent problems. Whole-body
tasks are often considered completely separate from the footsteps. In this
thesis, we tackle the problem of complex locomotion and manipulation by
considering footsteps parts of the robot’s kinematic chain. The optimizer is
written with complete abstraction of the locomotion and works as if it only
deals with a conventional robot. Designed to work on the current generation
of humanoid robots which are yet to be equiped with more adaptive features
found in biological systems, our framework inherits its adaption capability from
its optimization scheme. Indeed, footstep optimization is put into a closed loop
with the perception modules to create a framework that allows the robot to
adapt reactively to changes in the environment. The goals of this framework
are:

• Seamlessly integrate locomotion with whole body movement. Footsteps
are considered as part of the robot and are dictated by the task applied
to the augmented robot.

• Build a reactive scheme that helps the robot achieve the task even if the

1.6. APPROACH AND CONTRIBUTION 13

environment is changed during execution.

• Resolve the foot placement by optimization so that it preserves the
optimality, hence, the feasibility of the movement.

• Integrate with on-robot stereo vision to make the movement the most
robust and portable possible.

Moreover, combined with a prior motion planning step, this method is
less subject to local minima than classical numerical optimization approaches.
The laid out framework is demonstrated in a number of different experimental
situations (Figure 1.6).

Contribution

The contributions of this thesis are on the following aspects

• Design of the framework (chapter 2.1, chapter 4) [DLL11].

• Implementation of a state-of-the-art stereo vision module on HRP-2
robot, with an automated calibration procedures for cameras.

• Generic deformations of footsteps (chapter 3). The representation of
footsteps as the robot’s extra degrees of freedom can be used to calculate
the initial footsteps as well as to adapt these footsteps on the fly during
the experiment. The framework is flexible enough to take as input any
initial footsteps sequence and adapt them in real-time.

• Evaluation of the framework on the HRP-2 robot with two classes of
experiments [DLL12]. The first class of experiments consists in grasping
an object at various height level (chapter 6). This highly redundant
manipulation is carried out in harmony with an appropriate locomotion
sequence. The second class of experiments illustrates the real-time foot-
step adjustment scheme in a typical context of humanoid robotics, i.e.
stepping over objects (chapter 5).

Associated papers with the work presented in this thesis:

• D. Dang, F. Lamiraux et J-P. Laumond. Experiments on whole-body
manipulation and locomotion with footstep real-time optimization. In
EEE-RAS International Conference on Humanoid Robots (HUMANOIDS
2012), Osaka, Japan, november 2012.

• D. Dang, F. Lamiraux et J-P. Laumond. A framework for manipulation
and locomotion with realtime footstep replanning. In IEEE-RAS Inter-
national Conference on Humanoid Robots (HUMANOIDS 2011), Bled,
Slovenia, october 2011.

14 CHAPTER 1. INTRODUCTION

• D. Dang. Réalisation de tâches avec locomotion sur un robot humanoïde.
In Journées Nationales de la Robotique Humanoïde, Toulouse, France,
april 2011.

Chapter 2

Framework

2.1 Global architecture

Controller Robot Perception

Visual
servoing

Preview
controller

Motion
planner

image

q

Localisation
Footsteps

Localisation

Posture task

COM: Center of Mass

Upper body tasks

CoM task

Feet tasks
Footsteps

Figure 2.1: Global architecture

Figure 2.1 depicts the global architecture of the framework. The planner
plays the role of a “visual servo” for footsteps. It optimizes the stepping
sequence in real-time and in closed-loop with the vision system. The con-
troller takes as inputs the information from the visual servo and resolves
the prioritized hierarchy of the corresponding primary tasks. It then sends
command to the robot in real-time at required frequency. The perception
system includes an automatic calibration process which improves precision
and allows the framework to perform precise tasks such as grasping. This

15

16 CHAPTER 2. FRAMEWORK

process is performed offline before the experiments.

2.2 Forward kinematic

2.2.1 Robot description

A robot consists of a chain of links (possibly a tree-like chain) starting from a
base. Typically the base can be fixed for a manipulator (e.g. WAM [SELT91],
Kuka [HBOS05]...), or can be mobile (e.g. PR2 [WBdLJ08], Justin [BWS+09],
PAL’s REEM [TFG+08]...) or the waist link for humanoid robots (e.g. HRP
series, ASIMO, Romeo ...).

Figure 2.2: Revolute first joint Figure 2.3: Prismatic first joint

The links are connected by joints which are usually divided into two groups:
revolute et prismatic joints (Figure 2.2, Figure 2.3). Most robots are built
exclusively with revolute joints (except for a very few cases, for example, the
Stanford arm [DS73] and the elevator joint for mobile robots such as PR2 and
cie.). Figure 2.4 and Figure 2.5 depict a simple humanoid robot with 30
revolute joints and its corresponding kinematic tree.

2.2.2 Forward kinematics formulation

Now that the transformations between subsequent joints can be established
from the description of the joint and the state of the robot (see Appendix A)
we can work our way from the base to any given frame:

0
NT = 0

1T
1
2T...

N−1
N T (2.1)

As depicted in Figure 2.6, the forward kinematics can be thought of as a
injective mapping from joint space to the operational space. As detailed further
in subsection 2.3.3, most of useful tasks can be expressed as the position and
orientation of a frame, e.g. position of the center of mass (CoM), of an end
effector. A large set of tasks can be used form these primitives.

2.2. FORWARD KINEMATIC 17

Example For 6 degrees of freedom the branch between from the base to the
end-effector is written as

0
6T =

0
6R

0
6p

0 0 0 1

 (2.2)

where

0
6R =

c1c23(c4c5c6 − s4s6)

−c1s23s5c6

c1c23(−c4c5s6 − s4c6)

+c1s23s5s6

c1c23c4s5

+c1s23c5
s1c23(c4c5c6 − s4s6)

−s1s23s5c6

+c1s4c5c6

s1c23(−c4c5s6 − s4c6)

−s1s23s5s6

−c1(s4s5c6 + c4c6)

s1c23c4s5

+s1s23c5

+c1s4s5
−s23(c4c5c6 − s4s6)

−c23s5c6

s23(c4c5s6 + s4c6)

+c23s5s6
−s23c4s5 + c23c5

(2.3)

0
6p =

L6c1c23c4s5 − L3c1s23 + L2c1c2 + L1s1
L6s1c23c4s5 + L3s1s23 + L6c1s4s5 + L2c1c2 + L1s1

−L6s23c4s5 − L3c23 + L6c1s4s5 + L2c1c2

 (2.4)

(a) HRP-2 robot (b) HRP-2 joints

Figure 2.4: The HRP-2 robot and its joints

18 CHAPTER 2. FRAMEWORK

WAIST

LLEG_J0

LLEG_J1

LLEG_J2

LLEG_J3

LLEG_J4

LLEG_J5

CHEST_J0

CHEST_J1

LARM_J0

LARM_J1

LARM_J2

LARM_J3

LARM_J4

LARM_J5

LARM_J6

HEAD_J0

HEAD_J1

RARM_J0

RARM_J1

RARM_J2

RARM_J3

RARM_J4

RARM_J5

RARM_J6

RLEG_J0

RLEG_J1

RLEG_J2

RLEG_J3

RLEG_J4

RLEG_J5

Figure 2.5: Kinematic tree of the HRP-2 robot

q1

q2

x1

x2

Joint space Operational space

f

Figure 2.6: Mapping from joint space to operational space

2.3. PRIORITIZED HIERARCHY OF TASKS 19

where s and c are shorts for sin and cosin, the index indicates the θ to be
apply to, e.g. s1 = sin θ1, quadc23 = cos(θ2 + θ3)

2.3 Prioritized hierarchy of tasks

2.3.1 Joint space control

As described in the previous section, a robot can be thought as a sequence of
actuators connected by bodies, in the most common situations, rigid bodies.
The role of the controller is to, at the lowest level, given a task/set of tasks,
produce a command to these actuators, i.e.

• current for electrical motors.

• air pressure for pneumatic actuator.

• hydraulic pressure for hydraulic actuators.

The next stage in the control stack is using directly torques as input, by
mean of a transform function which translates torques into primitive control
signals. Now, the torques can be written in the dynamic equation of the cor-
responding joints and allow us to design the most straight forward controller:
a joint-space controller. As suggested by its name, this controller operates on
the configuration vector q. The goal of the process is given a desired vector
qd, produce torques that allows the robot to achieve as close as possible to
the desired position. This controller can involve PD control, PID control,
Pyapunov-base control [SHV06] with the feedback coming directly from joint
state measurements.

Tasks, however, are difficult to model in the joint space. The most com-
mon tasks involve operational points (end effector, center of mass (CoM),
etc.), hence the kinematics of the robot. The process of computing a desired
qd corresponding to a desired position xd in the operational space is called
the inverse kinematics. A new box has to be added to the control schema.
(Figure 2.7) The inverse kinematics box raises two difficulties. On the one

xd
Inverse

kinematics
Controller Robot q

qd

+

τ

-

Figure 2.7: Joint space controller

hand, the analytical solution is hard to find. The forward kinematics is usually
non-linear function of q consisting of trigonometric functions. Even for non
redundant 6 degree of freedom robot such as the PUMA 560 arm [Bee79], a
complicated results are found after a lengthy resolution involving specific tricks

20 CHAPTER 2. FRAMEWORK

that cannot be generalized.On the other hand, for redundant robots (greater
than 6 degrees of freedom), there are always, for non singular case, a infinite
number of solutions.

Machine learning provides an interesting tool to enhance the calculation
of the the inverse kinematics when the exact model of the robot is not known
[DVS01]. However, the drawback is that data are to be collected and the
precision of this method depends on data quality.

2.3.2 Task representation

In addition to the difficulty of the inverse kinematics problem, the physical
sense of the movement is lost when reasoning in joint space. A simple straight
line might end up in a very complicated curve in joint space. This becomes
more even problematic when one wants to combine two distinct task in task
space in a certain order of priority. This issue is addressed by considering tasks
in operational space.

In this representation, a task T is a characterized by a vector x ∈ Rm.
This vector is often related to the Cartesian position and orientation of an
end-effector. x can also be any mathematical quantity that can be expressed
as a smooth function (C1 for the control purpose) of the configuration vector
q ∈ Rn . For instance, if the robot is to clap its hands, x will be the euclidean
distance between the too hands. For a gazing task, x is the distance in the
image space between the target and the center of the image.

Let us define the Jacobian matrix J(q) ∈ Rm×n the matrix that transforms
the joint velocity (q ∈ R.) to the operational space velocity (x ∈ Rm):

ẋ = J(q)q̇ (2.5)

which leads to:

J =

∂x1
∂q1

. . .
∂x1
∂qn

...
. . .

...
∂xm
∂q1

. . .
∂xm
∂qn

(2.6)

The error function e = x − xd measures the different between the current
state and the desired state of the task. We have

ė =
∂e

∂x
q̇ = J q̇ (2.7)

Suppose that the robot is not in singular state, J is full rank. The resolution
of q̇ can then be obtain by the pseudo-inverse matrix of J [BIC63].

q̇ = J+ė∗ + Pz (2.8)

2.3. PRIORITIZED HIERARCHY OF TASKS 21

Where ė∗ is the desired motion in the operation space. P is the projector
into the null space of J (P = I − J+J). P represent the redundancy of the
robot with respect to a given task. With an arbitrary vector z we always have
JPz = 0 which guaranties that the Pz part won’t disturb the given task. This
redundancy provide some flexibility for the robot to perform additional tasks
which is the basis of the prioritized hierarchy of tasks.

2.3.3 Task hierarchy

Mansard and Chaumette [MC07a] proposed a stack of tasks to resolve cases
where the robot has to perform a ordered set of tasks. First, the solution for
the first task T1 is simply

q̇1 = J+ė∗1 + P1z1 (2.9)

As discussed earlier, the term z1 provides us with some flexibility to
perform additional task at lower priority than T1. Indeed, when a task T2
is added, one can choose z = J+

2 ė∗2+P2z2. The new command input becomes

q̇12 = J+
1 ė∗1 + P1(J

+
2 ė∗2 + P2z2) (2.10)

Due to the definition of the projection operator P1, the effects of q̇12 on
the first task T1 is

ė12 = J1q̇12

= J1J
+
1 ė∗1 + J1P1(J

+
2 ė∗2 + P2z2)

= ė∗1

(2.11)

which means that the priority is preserved. The new control input q̇12 produces
on T1 exactly the same effect as if only task 1 has been treated. Recursively,
subsequent task Ti added to the stack result in the choice of the “free” term
zi−1. At last, a stack of tasks with decreasing priority T1, T2, . . . Tn, produce
the following command input

q̇ = J+
1 ė∗1 + P1J

+
2 ė∗2 + P1P2J

+
3 ė∗3 + · · ·+

(
n−1∏

i=1

Pi

)
J+
n ė∗n (2.12)

This formulation however does not guarantee the priority property of the
stack. Indeed, since matrix multiplication is not per mutable we cannot assure
that P1P2J

+
3 ė∗3 respect the task T2, i.e.

J2(P1P2J
+
3 ė∗3) 6= J2P2(P1J3

+ė∗3) = 0 (2.13)

To preserve the priority specification, the projector Pi has to project zi
into the null space of all previous tasks. In other words, Pi = I −N1···, where

22 CHAPTER 2. FRAMEWORK

N1··· is the intersection of all the individual null spaces, or the null space of the
following subspace

JA
i =

J1
...
Ji

 (2.14)

PA
i = I − JA+

i JA
i (2.15)

Replace this new projector into the previous formula we obtain

q̇ = J+
1 ė∗1 + PA

1 J+
2 ė∗2 + PA

2 J+
3 ė∗3 + · · ·+ PA

n−1J
+
n ė∗n (2.16)

In equation (2.10), z1 was chosen only as if the term J+
1 ė∗1 does not effect

task T2. To take this into account ė∗2 should be replaced by ė∗2−J2J
+
1 ė∗1 where

the second term compensate the effect of the previous stage into the current
task.

Finally, the formulation for n tasks T1, T2, . . . Tn, with the desired behavior
ė∗1, ė

∗
2, . . . , ė

∗
n is written in the following recursive form [SS91]

q̇0 = 0 (2.17)

q̇i = q̇i−1 + JiP
A
i−1
˜̇e∗i ∀i = 1 . . . n (2.18)

˜̇e∗i = ė∗i − Jiq̇i−1 (2.19)

2.3.4 Control law

In subsection 2.3.2, a task is defined as a mapping from joint space q to
operational space x. In many cases, this representation involves a desired task
space configuration xd. In subsection 2.3.3, the control input q̇ is computed
from the desired derivatives of the error vectors ėi. The missing part is a
control law that produces ėi from qid and the current state.

First order differential equation This control law is expressed in the form

ė∗ = −λe (2.20)

where λ is a positive gain.
This leads to a control law for any given task and its Jacobian J

q̇ = −λJ+ė (2.21)

With a decent low level control, we can expect that the real derivative of
the task error is close to the desired value ė = ė∗. We then obtain

2.3. PRIORITIZED HIERARCHY OF TASKS 23

∂e

∂t
= −ė = λe (2.22)

∂x

∂t
= −λ(x− xd) (2.23)

x = xd + (x0 − xd)e
−λt (2.24)

The robot converges exponentially to the desired position xd However, it
is usually desired to control the characteristic time of the exponential function
which define λ. (2.20) provides no control over the initial velocity ẋ0. Discon-
tinuity in the movement will appear at the beginning of each task. Moreover,
(2.20) does not guarantee any boundary for ė which may lead to a infeasible
control law q̇ (a required movement too fast that the robot is not capable of).

Second order differential equation [SCD02] proposed the following evo-
lution of the error vector

q̈ + αė+ βe = 0 (2.25)

This control law allows more flexibility in the initial condition 0 and
ė which were not possible with the simple first order differential equation.
However, tuning α and β is a tedious task.

Non homogeneous first order differential equation This control law,
proposed by [MC07a], is govern by the following equation

ė∗i = −λe+ ρ(t) (2.26)

where
ρ(t) = e−µt(ėA(0) + λeB(0)) (2.27)

This scheme is most widely used in the multi-task controller since it has
enough flexibility on initial condition and is easier to tune the parameters.
Two characteristic times appear here. The first one τ1 = 1/λ corresponds to
the exponential convergence in the first control law. The second τ2 = 1/µ
corresponds to the transient period at the beginning. At t≫ τ2 the controller
exactly like the original control law. Moreover

ė∗
∣∣
t=0

= λe
∣∣
t=0

+ e−µ.0(ėA(0) + λeB(0))

= −λeB(0) + (ėA(0) + λeB(0))

= ėA(0)

(2.28)

The transition from task A to task B preserve the continuity of the move-
ment. Apply this principal into the task hierarchy in subsection 2.3.3, i.e.

24 CHAPTER 2. FRAMEWORK

q̇ =
[
J1
1 PA

1 J+
2 . . . PA

n−1J
+
n

]

ė∗1
ė∗2
...
ė∗n

 (2.29)

we have, τ being the last instant where the stack of tasks is modified:

q̇ = J+
1 ė∗1 + PA

1 J+
2 ė∗2 + PA

2 J+
3 ė∗3 + · · ·+ PA

n−1J
+
n ė∗n + e−µ(t−τ)(ė(τ)) + Λe(τ))

(2.30)
The recursive form will then becomes:

q̇0 = 0 (2.31)

q̇i = q̇i−1 + JiP
A
i−1
˜̇e∗i i = 1 . . . n (2.32)

˜̇e∗i = ė∗i − Jiq̇i−1 (2.33)

q̇ = q̇n + e−µ(t−τ)(ė(τ)) + Λe(τ)) (2.34)

2.4 Locomotion

2.4.1 Dynamic equations

Let us now consider the locomotion of humanoid robots. Humanoids are
usually represented as a kinematic tree starting from a free flyer, commonly
called the waist. Mobile robots also have this degree of freedoms that are
directly actuated by the base wheels. For a humanoid robot however, there is
no physical joints that control the free flyer. The robot moves around thanks
to the movement of its feet. For this reason, it is important to distinguish two
phases during a movement

• Single support phase: only one foot of the robot touch the ground
(support foot). The other foot (flying foot) is in the air moving to the
new position.

• Double support phase: both feet of the robot are on the ground. During
this phase, the center of mass of the robot is shifted foot to prepare for
the next step.

The third possible phase is when both feet leave the ground (jumping) and
out of the scope of this framework. When the robot is standing straight and
stable, its center of mass lies inside its support polygon. In fact, if the motion
is slow enough so that we can neglect the accelerations, we can prove that
the robot is stable if its center of mass lies inside the support polygon. How

2.4. LOCOMOTION 25

about walking? We can of course generate a sequence of poses that is statically
stable. By moving from one pose to one another at a sufficiently slow pace we
can displace the robot from one corner of the room to another.

Figure 2.8: Quasi-static walking. The robot moves between stable poses during
the experiment [EK09]

.

Figure 2.8 depicts a quasi-static walking sequence which looks very different
from the way we walk. The reason behind that is the fact that our walk is not
static. During the single support phase, the center of mass can jump outside
of the support polygon. We do not fall because in the next phase, the flying
foot hit the ground and ’recover’ the center of mass inside its support polygon.
In fact, during a dynamic walk, the projection of the center of mass bounces
back and forth between the two feet.

Let us consider a humanoid robot modeled in Figure 2.9. We denote the
following quantities on the body j:

• xj the position of center of mass

• mj the mass

• Ik the inertia matrix

• Rk the rotation matrix

• ωk the angular velocity

By definition the total mass and the position of the center of mass are

26 CHAPTER 2. FRAMEWORK

Figure 2.9: Humanoid robot model

M =

N∑

j=1

mj , (2.35)

c =
N∑

j=1

mjxj/M (2.36)

The dynamic wrench of the system can be written as

[
Ṗ

L̇

]
=

[∑N
i=0 ẍi∑N

i=0

[
mixi ×miẍi +RiIiω̇i −Ri

(
(Ii × ωi)× ωi

)]
]

(2.37)

P and L are respectively linear and angular momentum of the system.
External generalized forces acted on the system are

[
f

τ

]
=

[∑N
i=0mig +

∑M
i=0 fi∑N

i=0mixk × g +
∑M

i=0 pi × fi

]
(2.38)

where f1,f2, . . .fM are contact forces and pi there position.
The Newton’s laws dictate that

[
Ṗ

L̇

]
=

[
f

τ

]
(2.39)

2.4. LOCOMOTION 27

2.4.2 Zero Moment Point

‘

RZMP

Figure 2.10: Zero-moment point

The Zero Moment Point (ZMP) (Figure 2.10), introduced by Vukobratovic
and Stepanenko [VS72], is defined as the point on the surface of the foot where
the resultant force R. Let f1,f2, . . . ,fM , be the contact forces from the floor.
The position of the ZMP can be calculate as

p =

∑M
i=1 pifiz∑M
i=1 fiz

(2.40)

By definition, the position of the ZMP is the barycenter of all the contact
points, weighted by the component z of the contact forces. It lies therefore
in the convex hull of these contacts point, hence, inside the support polygon.
The total torque applied by all f i around the ZMP can be written as

τZMP =
M∑

i=1

(pi − p)× f i (2.41)

τZMP
x =

M∑

i=1

((piy − py)fiz − (piz − pz)fiy) (2.42)

τZMP
y =

M∑

i=1

((piz − pz)fix − (pix − px)fiz) (2.43)

τZMP
z =

M∑

i=1

((pix − px)fiy − (piy − py)fix) (2.44)

When the floor is flat piz = pz for ∀i = 1 . . . N . We have

(piz − pz)fiy = (piz − pz)fix = 0 , ∀i = 1 . . . N (2.45)

Replace (2.40) into (2.42) and (2.43) we obtain

τZMP
x = τZMP

y = 0 (2.46)

28 CHAPTER 2. FRAMEWORK

which explains why this point is calleddcontrol frame the zero-moment
point. We going to use this property to find the position of the ZMP as a
function of dynamic parameters. The moment created by the external forces
on the ZMP is

Now, using the definition (2.41) and results obtained in (2.37), (2.38) and
(2.39) we have

τZMP =
M∑

i=0

pi × f i − p×
M∑

i=0

f i

= (L̇−
N∑

i=0

mixk × g
)
− p× f

= L̇−Mc× g − p× f

= L̇−Mc× g − p× (Ṗ −Mg)

(2.47)

Project τZMP on the x and y axis and using the fact that these components
are null we finally obtain the position for the ZMP

px =
Mgx+ pzṖ x − Ṗ y

Mg + Ṗ z

(2.48)

py =
Mgy + pzṖ y + Ṗ x

Mg + Ṗ z

(2.49)

2.4.3 Cart-table model

Kajita et al. propose a simplified model of a walking humanoid robot as shown
in Figure 2.11. This simplified model proves extremely effective in the context
of walking pattern generation. The robot is represented by a 2-D cart-table
of the same mass and at the height of the center of mass zc. The equation of
motion is written as

τ = −Mg(x− p) +Mẍzc (2.50)

With the result obtain in (2.46) we can write

p = x−
zc
g
ẍ (2.51)

When the cart-table is static (or as per Newton’s relativity, moving uni-
formly) ẍ is simply 0. We then deduce p = x which means that the ZMP is
at the same position as the center of mass. In this case, the static equilibrium
is achieved when the center of mass, hence the ZMP lies inside the support
polygon.

As ẍ increases, the ZMP moves further away from the center of mass.

2.4. LOCOMOTION 29

Figure 2.11: Cart table model

Above a certain level, the ZMP in equation (2.51) will lie outside of the
support polygon. Since the physical ZMP by definition al way falls inside
the support polygon. This condition means that the robot, or the cart-table
for that matters, cannot hold a plan contact with the floor. The system is
unstable.

2.4.4 Walking pattern generation

ZMPref
Pattern

Generator
Controller Robot

CoMref q̇

Figure 2.12: Pattern Generator

A ZMP-based walking pattern generation consists in finding feasible q(t)
that satisfies a reference ZMP trajectory pdx(t), p

d
y(t). This desired ZMP tra-

jectory, in turn, is defined by the desired characteristic of the motion, e.g.
footstep placements [MHK+06], walking velocity [HDW+10] etc. . In light of
the control framework in subsection 2.3.3, trajectories of operational points
xd can be fed to the controller. Modern pattern generator typically produces
theses intermediate operational point trajectories, notably the center of mass.

Early works such as Takanishi et al. [ToLTK90] used a Fast Fourier Trans-
formation to obtain and resolve the ZMP desired in the frequency domain.
Kagami et al. tackled this problem by writing the the dynamic equations in

30 CHAPTER 2. FRAMEWORK

the discrete time domain [KKN+02a]. The desired ZMP can then be resolved
in linear time with respect to the size of data.

In this section, two other methods that are most frequently used in the
framework are presented.

Pattern generation with preview control

Kajita et al. propose, for this pattern generation method, considering the jerk
of the center of mass

d

dt
ẍ = ux (2.52)

With the introduction of this new quantity, the equation of movement
becomes (only the resulting equations for x direction is written, the analogy
for y direction is completely straight forward.)

d

dt

x

ẋ

ẍ

 =

0 1 0
0 0 1
0 0 0

x

ẋ

ẍ

+

0
0
1

ux (2.53)

px = [1 0 − zc/g]

x

ẋ

ẍ

 (2.54)

The second equation is obtained from previous results in the cart-table
model of the ZMP . This is a classic dynamical system with px as known
constant (predefined desired ZMP).

Discretize this equation for a time period T we obtain

x(k + 1) = Ax(k) +Bu(k)

p(k) = Cx(k)

where

x(k) ≡
[
x(kT) ẋ(kT) ẍ(kT)

]T

u(k) ≡ uk(kT)

p(k) ≡ px(kT)

A ≡

1 T T 2/2
0 1 T
0 0 1

B ≡

T 3/6
T 2/2
T

C ≡ [1 0 − zc/g]

2.4. LOCOMOTION 31

The cost function is defined as

J =

∞∑

i=k

(
Qee(i)

2 +∆xT (i)Qx∆x(i) +R∆u2(i)
)

(2.55)

where e(i) denote the tracking error e(i) = p(i) − pref (i), Qe, R > 0,
Qx is a 3 × 3 symmetric non-negative definite matrix. ∆x(k),∆u(k) are the
incremental state error and input.

∆u(k) = ux(k)− ux(k − 1)

∆x(k) = xx(k)− xx(k − 1)

∆e(k) = px(k)− prefx (k = 1)

The cost function penalizes the accumulated sum of the tracking error and
the derivatives of system states. In other words, it optimizes over a long run
a sum of the tracking error and system’s efforts.

Figure 2.13: Preview control gain Gp for T = 5ms, zc = 0.814m,Qe = 1.0, R =
1.0e− 6

In practice, the cost function (2.55) cannot use the infinite sum. With a
previewed window be NL, the solution for (2.55) is

u(k) = −Gi

k∑

i=1

(e(k))−Gxx(k)−

NL∑

i=1

Gp(j)p
ref (k + j) (2.56)

where Gi, Gx and Gp(j) are gains calculated from Qe, Qx, R and system’s
parameters. Note that as u(k) depends on the reference after instant k. The
evolution of Gp indicates how the predicted future affect the present control
signal. Figure 2.13 depicts this evolution. With the tested setup, the resulting
signal depends on the foreseeable future up to 2s.

32 CHAPTER 2. FRAMEWORK

Figure 2.14: Tracking performance for preview windows 1.6s

Figure 2.15: Tracking performance for preview windows 0.8s

2.4. LOCOMOTION 33

Figure 2.14 and Figure 2.15 depict the tracking performance with two
different values of preview windows. This method performs well when we
take into account the future within the next 2 steps (stepping period is 0.8s).
However if this window is too short, the resulting ZMP starts to leave the
reference curve. Depends on the amplitude of this error, this may lead to
failure when the ZMP falls outside or close too the edge of the support polygon.
Figure 2.14 and Figure 2.15 also show the stair-like shape of the ZMP which
"jumps" from the one single support to another while the center of mass moves
continually. Figure 2.16 shows clearly that the walk is dynamic. For a large
part of the walking period, the center of mass lies outside the support polygon.

Figure 2.16: The ZMP (green zone) and the CoM (red line) during a walk

Pattern generation with polynomials

Morisawa et. al. [MHK+06] proposes a method to generate walking pattern
using polynomials. In this method, the reference trajectories of ZMP and
the CoM are computed simultaneously from the desired characteristic of the
walk, in particular, foot placements. Let us recall the two phases of a walking
movement (subsection 2.4.1). A complete walk is then divided into intervals
of single support and double support.

Let x
(j)
G = [x(j) y(j) z(j)]T and p(j) = [p

(j)
x p

(j)
y p

(j)
z]T the position of

the center of mass and the ZMP in the interval (j).
As with (2.51) but with slightly different notation (zc was the height of the

center mass with respect to the ZMP) we have

x(j) = p(j)x + ẍ(j)
z(j) − p

(j)
z

g
(2.57)

This is where the polynomials come in. Suppose that the ZMP is piece-wise
polynomial function of time, namely

p(j)x (t) =

Nj∑

i=0

a
(j)
i (∆tj)

i (2.58)

∆tj = t− Tj−1 (2.59)

34 CHAPTER 2. FRAMEWORK

∆tj being the elapsed time since the beginning of the segment Tj−1. Re-
place into (2.57) we obtain

x(j) = V (j)cj +W (j)sj +

Nj∑

i=0

A
(j)
i (∆tj)

i

A
(j)
i =

{
a
(j)
i +

∑(Nj−i)/2
k=1 b

(j)
i+2ka

(j)
i+2k , i = 0, . . . , Nj − 2

a
(j)
i , i = Nj − 1, Nj

}

b
(j)
i+2k =

k∏

l−1

(i+ 2l)(i+ 2l − 1)

ω2
j

cj ≡ cosh(ωj∆tj)

sj ≡ sinh(ωj∆tj)

ωj ≡

√
g/(z(j) − p

(j)
z)

(2.60)

where V (j) and W (j) are scalar constants. The missing coefficients, namely

V (j) ’s, W (j) ’s and A
(j)
k ’s, have to satisfy all the boundary conditions:

(a) Initial position and velocity of the center of mass:

x(1)(T0) = V (1) +A
(1)
0 (2.61)

ẋ(1)(T0) = W (1) +A
(1)
1 (2.62)

(b) Position and velocity of the center of mass between neighbor segments:

V (j) cosh(wj∆Tj) +W (j) sinh(wj∆Tj) +

Nj∑

i=0

A
(j)
i (∆Tj)

i = V (j+1) +A
(j+1)
0

(2.63)

V (j)ωj sinh(wj∆Tj) +W (j)ωj cosh(wj∆Tj) +

Nj∑

i=0

iA
(j)
i (∆Tj)

i = V (j+1)ωj +A
(j+1)
1

(2.64)

∀j = 1, . . . ,m− 1

(c) Terminal position and velocity of the center of mass:

2.4. LOCOMOTION 35

V (m) cosh(wj∆Tj) +W (m) sinh(wj∆Tj) +

Nj∑

i=0

A
(m)
i (∆Tj)

i = x(m)(Tm)

(2.65)

V (m)ωj sinh(wj∆Tj) +W (m)ωj cosh(wj∆Tj) +

Nj∑

i=0

iA
(m)
i (∆Tj)

i = ẋ(m)(Tm)

(2.66)

(d) Initial position and velocity of the ZMP at each section:

p(j)(Tj−1) = A
(j)
0 −

1

ω2
j

A
(j)
2 (2.67)

ṗ(j)(Tj−1) = A
(j)
1 −

6

ω2
j

A
(j)
3 (2.68)

∀j = 1, . . . ,m

(e) Terminal position and velocity of the ZMP at each section:

p(j)(Tj) =

Nj∑

i=0

{(
A

(j)
i −

(i+ 1)(i+ 2)

ω2
j

iAi+2

)
(∆Tj)

i

}
(2.69)

ṗ(j)(Tj) =

Nj∑

i=0

{
i

(
A

(j)
i −

(i+ 1)(i+ 2)

ω2
j

ßAi+2

)
(∆Tj)

i−1

}
(2.70)

∀j = 1, . . . ,m

∆Tj is the duration of segment j/

Let us define the following quantities

y =
[
V (1) W (1) A

(1)
0 . . . A

(1)
N1

. . .

V (m) W (m) A
(m)
0 . . . A

(m)
Nm

]T

ω =
[
x(1)(To) ẋ(1)(To) p(1)(To) ṗ(1)(To)

p(1)(Tq) ṗ(1)(T1) 0 0 p(2)(T1) ṗ(2)(T1) . . .

x(m)(To) ẋ(m)(To) p(m)(To) ṗ(m)(To)
]T

(2.71)

36 CHAPTER 2. FRAMEWORK

Z =

z1,1 0 . . . 0 . . . 0

Z2,1 Z1,2 0
...

0
. . .

. . .
. . . 0

... 0 Z2,j Z1,j+1
... 0

0
. . .

. . .
. . . 0

... 0 Z2,m−1 Z1,m

0 . . . 0 . . . 0 z2,m

(2.72)

and

Z1,j =

[
02×Nj

z1,j

]
,Z12j =

[
−z2,j

02×Nj

]

z1,j =

1 0 1 0 2
ω2

j

0 0 . . . 0

0 ωj 0 1 0 6
ω2

j

0 . . . 0

0 0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0

z2,j =

1 0 1 ∆Tj (∆Tj)
2 . . . (∆Tj)

i . . . (∆Tj)
Nj

0 0 0 1 ∆Tj . . . i(∆Tj)
i−1 . . . Nj(∆Tj)

Nj−1

cj sj f
(j)
0 f

(j)
1 f

(j)
2 . . . f

(j)
i . . . f

(j)
Nj

wjsj wjcj 0 g
(j)
1 g

(j)
2 . . . g

(j)
i . . . g

(j)
Nj

f (j) =

1 (i = 0)
∆Tj (i = 1)

(∆Tj)
i −

i(i− 1)

ω2
j

(∆Tj)
i−2 (i = 2, . . . , Nj − 2)

(∆Tj)
i (i = Nj − 1, Nj)

jg =

1 (i = 1)
2∆Tj (i = 2)

i(∆Tj)
i−1 −

i(i− 1)(i− 2)

ω2
j

(∆Tj)
i−3 (i = 3, . . . , Nj − 2)

i(∆Tj)
i−1 (i = Nj − 1, Nj)

(2.73)
Under matrix form these boundary conditions

w = Zy (2.74)

which leads to the classic solution

y = Z+w (2.75)

The matrix Z has to be full rank to assure a solution. The necessary

2.5. MOTION GENERATION 37

condition on the Nj is

2m+

m∑

j=1

(Nj + 1) ≥ 6m+ 2 (2.76)

Figure 2.17: Step scheduling with analytical CoM strategy

In practice, the above analytical solution is fast enough to plan two steps
within one control cycle of 5ms. During the first control cycle, the first
two steps is planned (lower part of Figure 2.17). ZMP and CoM trajectory
are computed in the piece-wise polynomial form with the boundary being
To, . . . , T5 At the end of the first step, (T2) the robot plans the next two steps.
This process goes on continuously to achieve a real-time pattern generation.
It is also shown that by adjusting the duration of the current executing phase,
this method is capable of changing even the next footstep in the stack. This
capability proves handy to the adaptive walking scheme presented in the next
chapter.

2.5 Motion generation

Let us go back to the hierarchy of tasks presented in subsection 2.3.3. This
time, rather than control the robot following task-space desired derivatives ed,
we try to find the pose satisfying this task hierarchy. In other words, we will
be interested in particular in the robot position at the end of a (set of) task(s).
In addition, inequalities will also be considered to be members in out stack of
tasks. In the second part of this section, this “pose” will be used as a high level
plan to be used in the controller.

38 CHAPTER 2. FRAMEWORK

2.5.1 Prioritized linear and inequality systems

Let x ∈ Rn be an vector lying inside a convex set Ω. With b ∈ Rm, d ∈ Rk, A ∈
Rm×n, C ∈ Rk×n Let us consider a system of linear equalities/inequalities:

Ax = b (2.77)

or Cx ≤ d (2.78)

Under the optimization form, the solution of (2.77) can be written as

argmin
x∈Ω
||Ax− b||2 (2.79)

The resolution of (2.78) is a bit trickier. We have to introduce a slack
variable w and add the corresponding constraint on it.

argmin
x∈Ω
||w||2

subject to w ≥ Cx− d
(2.80)

The equivalence of (2.77) and (2.78) can be found in your favorite convex
optimization book.

Now, if we are to solve (2.77) and (2.78) together, the solution is then
written in the combined problem

%labeleq : 5
arg min

x∈Ω,w∈ℜn
||Ax− b||2 + ||w||2

subject to w ≥ Cx− d
(2.81)

Now that the resolution can be written by the same form, let us consider
a prioritized system where each stage is either (2.77) or (2.78). Kanoun et
al. [KLW+09,KLY10] proposed to resolve this system stage by stage. Indeed,
in each step, the convex set Ω is the solution found in the previous stage. The
solutions Si at stage i are written under the recursive form:

S0 = ℜ
n

Si = arg

{
min

x∈Si−1

||Aix− bi||
2

}
for equality tasks

Si = arg

{
min

x∈Si−1

||w||2 s.t. Cix− d ≤ w

}

for inequality tasks

In robotic manipulation, tasks are typically written in equality form, such
as reaching task, gaze task, or any operational point task for that matter.

2.5. MOTION GENERATION 39

Figure 2.18: An example of inequality task at lower priority than an equality
task [KLW+09]

Constraints such as collision avoidance, joint limits are in general in inequality
form. Other than that, a task can also exist in inequality form as demonstrated
in [KLW+09].

In the example presented in Figure 2.18, the robot has to reach to a goal
and at a lower priority keep the hand outside of the vision field of the camera.
The constraints and tasks, both in equality (eq) and inequality (in) form,
applied on the robot in descending order of priority are:

• (in) Joint limits

• (in) Self collision avoidance

• (in) CoM constraints (must lie inside the polygon support)

• (eq) Hand reaching task

• (in) Vision task

• (eq) Reference posture task

We notice that the the robot keep the hand outside the vision field as long
as possible. The vision task is violated at the end of the movement when it
becomes necessary for the hand to reach the goal.

2.5.2 Application to footstep planning

In the previous section, a hierarchy of tasks have been resolved by writing a
prioritized system of optimization problems. In this section, the same approach

40 CHAPTER 2. FRAMEWORK

x

y

x

y

x

y

∆(x, y)

∆θ

Figure 2.19: Representation of one step

is applied for locomotion by expanding the kinematic chains with virtual parts
corresponding to the footsteps. Let us consider a single footstep in Figure 2.19
represented by the displacements in x and y axes ∆x,∆y and the rotation angle
∆θ. For now we are only dealing with a flat surface, z is constant everywhere
the robot places its feet. Providing that the walk is stable and depending
on the physical characteristic of the robot and the the pattern generator in
service, there are boundaries on the step variable ∆x,∆y,∆θ

∆xmin ≤ ∆x ≤ ∆xmax

∆ymin ≤ ∆y ≤ ∆ymax

∆θmin ≤ ∆θ ≤ ∆θmax

(2.82)

If the robot is to step one step and stay in equilibrium at the new position,
the CoM must stay in the new support polygon. Suppose that in this new
position, the robot has to perform an addition step, say a reaching step, we
can now build a new prioritized system of equality and inequality task. The
additional constraints compare to to the example in Figure 2.18 are

• (in) Step limit as in (2.82)

• (in) Self collision constraints of the two step.

• (in) CoM constraint (must lies inside the new support polygon)

The new variable of this optimization problem is

q̄ = [q1 q2 . . . qn ∆x ∆y ∆θ]T (2.83)

General case of a movement involving k steps Building the an op-
timization problem with the new variables as in (2.83) was presented in of
[KLY10]. The main idea of this approach is to add a virtual joint (Figure 2.20)
with three degree of freedoms for each step. ∆x,∆y,∆θ now become the
configuration of the new virtual joints on the augmented robot. Suppose that

2.5. MOTION GENERATION 41

Figure 2.20: Virtual kinematic chain

the robot has n degrees of freedom and is to execute k steps, the resulting
virtual kinematic chain adds 3k degrees of freedom to the real robot to form
a n+ 3k d.o.f. kinematic chain.

Constraints on how far the robot can physically step (2.82) or turn become
joint limits for theses new joints. The constraints that the robot should not
step one foot on one another becomes auto-collision avoidance. On this new
robot with this set of constraints in addition, a set of appropriate tasks can
then be applied, namely:

• inequality constraints, in order, joint limits, projection of the center of
mass, self-collision avoidance of robot, self-collision avoidance for the
virtual manipulator, position and orientation of the supporting foot

• object manipulation task. e.g. grasp, reach for an object with 2 hands,
etc.

• parallel task for the upper body during walking,

• gaze task (keep objects of interest in the vision field).

Figure 2.21 depicts how the upper body task "attracts" the augmented
robot hence initiate footsteps. The last n degrees of freedoms in the result
represents the final posture, and the final position of the virtual kinematic
chain represents footsteps. The complete motion in configuration space can
then be found by passing the footsteps to a preview controller which output
trajectories for left foot, right foot and the center of mass. These trajectories
in turn, in addition with the upper body task at the final step can be given as
equality tasks to the prioritized stack. The resulting motion is therefore never
computed before-hand. It is instead the result of the control architecture.

Determine the number of steps

In the previous section, it was assumed that the number of steps k was known
before hand. However, the target detected by the vision system can be found
in a wide range of distance. Therefore, it is difficult to guess in advance how

42 CHAPTER 2. FRAMEWORK

Figure 2.21: Deployment of virtual kinematic chain

many steps the robot should make. One important point in this section and
also the first modification made on this paper to the original method is the fact
this parameter k can be found automatically by the optimizer. The algorithm
is summarized as follows:

Algorithm 1 Footsteps planning with variable number of steps

Require: initial position.
Require: manipulation task.
Require: obstacle positions.
Ensure: footprints and final posture Initialize solver with 0 virtual link.

repeat

Solve the optimization problem.
if Reach local minimum then

Add new virtual link
end if

Check manipulation task error
until goal reached

2.6. INTEGRATION ON THE HRP-2 ROBOT 43

Figure 2.22: Find the number of steps automatically by the optimizer

Figure 2.22. depicts the exploration of the virtual kinematic chain in space.

2.6 Integration on the HRP-2 robot

Previous sections in this chapter detailed a global view of different components
in the framework. This section provides more details on how these components
are deployed on a real platform, such as the HRP-2 robot.

2.6.1 Controller

The choice of the controler described in section 2.3 is motivated by current
design of humanoid robots. Such robots, including the HRP series, are precise
machines which provide high-quality measurements, e.g. the errors for joint
encoders are negligable. As a result, the robot state, and therefore the Ja-
cobians can be calculated with almost perfect precision. In practice, a good
calibration on our HRP-2 robot can be achieved with less then 10−3rad of
error for the joint encoders. This allows, for example, a precise reaching task
only by position feedback (position-based servoing).

The formalism of control described here can be extensible to the cases
where the robot’s kinematics and dynamics are not or cannot be modeled

44 CHAPTER 2. FRAMEWORK

precisely. Some enhancements, however, are needed to those cases. First, the
robot has to learn [Atk89,AMS97a] its kinematics and dynamics to correct the
errors in the model and improve the analytically calculated task Jacobians.
Second, closed-loop manipulation with perception has to be more intensively
used. A representation of tasks in the image space is a possible remedy to
imprecision in the dynamical model of the robot. Both image-based servoing
and position-based have their avantanges and disadvantages [Cha98]. The
perfect knowledge of the robot kinematics and dynamics here motivates the
design of the perception system detailed in chapter 4.

2.6.2 The Stack Of Tasks

The graph of entities

Mansard et. al. [MSEK09] put forwards the pricinples presented in section 2.3
the StackOfTasks software architechture. The flow of information is designed
as signals being transfered in a graph of entities, similar to a SimuLink graph.
Mathematical forumulations, such as the calculation of Jacobian, are repre-
sented by entities, requires input signals (input information), and provides
output signals (results). For example, the Jacobian J of a given task is the
output signal of the entity dynamic which needs robot states q as the input
signal. It is worth noting that at this point, no middleware is involved, all the
entities are created within a same process. Each type of entities is organized
into a C++ class that can be loaded using a dynamic library. This architecture
of plugins allows growing the graph rapidly.

q̇

ed

J

some task
Task

functionxd

Dynamicrobot q

x

Control
law

q̇ = J+ed

robot

Figure 2.23: Computation of motor commands from system states in the Stack
O fTasks

Figure 2.23 shows a minimal graph in which the control law q̇ is computed
for a given task xd. At each control loop, the robot requests for q̇ which
triggers the calculation of all signals that q̇ which, in turn, depends on: J ,
ed, x etc. A real-life graph is similar to Figure 2.24. The graph now is much
more complicated due to the size of the stack of tasks and their computation.
The fundamental stays unchanged, at each control loop, the requested control
input triggers all the depending computation, hence triggers the information
flow in the whole graph.

2.6. INTEGRATION ON THE HRP-2 ROBOT 45

TeleOperationGraph

Tasks

so t

w s o t

legs

task

gain

e r r o r

e r r o r

t a skChes t

taskCom

gainCom
e r r o r

e r r o r

taskComPD taskTwofeet

taskForce taskForceLH

taskGrip

taskHead

gainHead
e r r o r

e r r o r

taskHeadWB

gainHeadWB

e r r o r

e r r o r

t askHeadWPG

taskJl

taskLegs

taskTwofeetPD

tasklh

wais tRh

0 w t R
in1

o u t

hRwais t
in

o u t

invVwin
o u t

dyn

in

0

Aactin

ine r t i aRea l

pg

c o m

c o m

jointlimit
j o in t

pos i t ion

PGselec

s c o m r e f 0

c o m

RefFeetRelselec
F o o t 0

r leg

F o o t 1

l l e g

JFoot0

Jrleg

JFoot1

Jlleg

JRefFoot0

Jlleg

JRefFoot1

Jrleg

RefFoot0

l l e g

RefFoot1

r leg

dynL0

in

lh

dynR0
in

0

fea tureComerrorIN

c o m

jacobianIN

Jcom

griperPosin1

pos i t ion

in2

pos i t ion

fea tureHeadWPG
Jq

JHeadWPG

pos i t ion

HeadWPG

featureJl
j o in t

pos i t ion

lowerJl

lowerJl

upperJ l

upperJ l

forceContactPoint

j acobianIN

J0

forceContactPointLH
j acobianIN

Jlh

sljl
in

lowerJl

sujl
in

upperJ l

lowerJl
in1

lowerJl

upperJl
in1

upperJ l

waistLh
in

lh

p6
Jq

J0

pos i t ion

0

p6lh
Jq

Jlh

pos i t ion

lh

phead
Jq

Jhead

pos i t ion

h e a d

wrtPoseIni t

in2

0

wrtPoseInitLH
in2

lh

massRH

i ne r t i a

o u t

massLHi ne r t i a

o u t

p3

JLHact
in

j a c o b i a n

JRHactin

j a c o b i a n

j a c o b i a n

o u t

j a c o b i a n
o u t

Rdes_head

Mdes_headin1

o u t

pheaddpos i t ion
o u t

OpenHRPa t t i t ude IN

w a i s t a t t i t u d e

s e l e c

i n p r o c e s s

pg_comrefin1

c o m r e f

pg_rightfootref
in1

r ightfootref

s e l e c

S u p p o r t F o o t

pg_leftfootref
in1

lef t footref

SupportFootSelecpg_H_sf0

r ightfootref

pg_H_sf1

lef t footref

s e l e c

S u p p o r t F o o t

featureTwofeetDes
do tpos i t i on

dot r igh t foo t re f

do tpos i t ionRef

dot le f t foot ref

footselec
s e l e c

S u p p o r t F o o t

lfo_H_zmp
in1

z m p r e f

m o t o r c o n t r o l

m o t o r c o n t r o l

pos i t ion

s t a t e

z m p p r e v i o u s c o n t r o l l e r

z m p p r e v i o u s c o n t r o l l e r

possmall
in

s t a t e

gripdes

torqueFul l IN

p t o r q u e

posHead
in

s t a t e

flexsensorWorldRota t ion

a t t i t u d e

forceCompLH
torsorIN

forceLARM

forceCompRHtorsorIN
forceRARM

posKFa t t i t ude IN

a t t i t u d ec o n t r o l

c o n t r o l

lfo_H_wa

posi t ionIN

o u t

ffpos_from_pg
in

o u t

wa_H_lfoin
o u t

wa_H_zmp

z m p

o u t

fea tureComDes
errorIN

s c o m r e f

s c o m r e f 1

o u t
D e s F o o t 0

o u t

DesRefFoot1

o u t

featureTwofeet
Jq

JFoot

JqRef
JRefFoot

pos i t ion
F o o t

pos i t ionRef
RefFoot

pos i t ion

D e s F o o t

pos i t ionRef

DesRefFootD e s F o o t 1

o u t

DesRefFoot0

o u t

R w t 0in1
o u t

Vw
in

o u t

lhRwaist

Rwtlh
in1

o u t

Vwlh

in

o u t

pg_H_wain1

pg_H_sf

sf_H_wa
in

wa_H_sf

d y n 2

wa_H_sf0

r leg

wa_H_sf1

l l e g

c o n t a c t E m b e d d e d P o s i t i o n

l l e g

s e n s o r E m b e d d e d P o s i t i o n

c h e s t

J c o n t a c t 0

Jrleg

J c o n t a c t 1

Jlleg

c o n t a c t

l l e g

pos i t ion

c h e s t

s t epper
pos i t ion

0

fgermany
in2

o u t

fgermanyLHin2
o u t

dq_q
WRHin1

o u t
w r hin

o u t

wrtPoseInit inShoulder absRrhin
o u t

wrtPoseIni tQuat
in

o u t

qrhin
o u t

addForce
in1

o u t

addForceLHin1
o u t

e y e 3 compin1
o u t

p6d
pos i t ion

o u t

t

in2

o u t

eye3 lh

complhin1

o u t

p6dlhpos i t ion
o u t

t lh
in2

o u t

contactPointRotat ion

contactPoint
in1

o u t

contactPointPosition

in2

o u t

dqrh in1
o u t

invqrh

in2

o u t

in

o u t

ino u t

xrh
dxrhin

o u t

vrh
in1

o u t

ze ro

a c c e l e r a t i o n

o u t

ve loc i ty

o u t

a c c e l e r a t i o n

o u t

ve loc i ty

o u t

ffposi t ion

o u t

pos i t ion

o u t

pos i t ion
o u t

worldRhand

o u t

worldRhand

o u t

featureGrip
errorIN

o u t

featureGripDeserrorIN
r e f e r e n c e

lowerLimitlowerLimitReducedOUTupperLimi t
upperLimitReducedOUT

griptorq
in1

to rqueReducedOUT

fea tu reHead
errorIN

o u t

fea tureHeadDes
necklimit

errorIN

join tLimi ted

fea tureHeadWPGDes

vectorLegs

featureLegs

errorIN

o u t

jacobianLegs j acobianIN
o u t

flexVin
a n g l e s

torsorNullifiedINt o r s o r

forceIntLH

f o r c e

torsorNull i f ied

torsorNullifiedINt o r s o r

forceInt

f o r c e

torsorNull i f ied

fsensor

in1

torsorNull i f ied

jacobianIN
j a c o b i a n

p3LH

j acobianIN

j a c o b i a n

errorIN

ve loc i ty

friction

fr ict ion

o u t

fr ict ion

o u t

m a s s I n v e r s em a s s I n v e r s e

ine r t i a Inver seiner t iaInverseOUT

errorIN

ve loc i tym a s s I n v e r s e

m a s s I n v e r s e

ine r t i a Inver seiner t iaInverseOUT

in2

o u t

lowerLimitFullIN

o u t

t o r q u e

o u t

upperLimitFullIN

o u t

controlsmall

cont ro l IN

o u t

lowerJl
o u t

upperJ l

o u t

lfo_H_pg

in1

o u t

in2

o u t

in2
o u t

in2

o u t

in2

o u t

in2
o u t

in1

o u t

in

o u t

protectJl
in2

o u t

in2

o u t

in2

o u t

a c c e l e r a t i o na c c e l e r a t i o n 2 H a n dve loc i tyve loc i ty2Hand

fea tu reChes t

in2

o u t

poseInit

w R h 0in

in

in1
o u t

in2
o u t

poseInitLH

wRh0LHin

in

in1o u t

wrtPoseInitinShoulderLH
in2o u t

in2

o u t

in1

o u t

in1

o u t

in

o u t

wrtPoseInitQuatLHin
o u t

cluster_sot in1
c o n t r o l

Figure 2.24: A graph of entities in action [MSEK09]

46 CHAPTER 2. FRAMEWORK

Walking control using the StackOfTasks

ZMP traj.

Feet traj.

CoM traj.

HRP2’s
Stabilizer

ZMP ref

Pattern
Generator

High level
controller

step instructions

Feet

CoM

Constraints
(joint limits, col.
avoidance etc.)

Vertical

Gaze

Figure 2.25: Integration of the pattern generator inside the StackOfTasks

As presented earlier, the pattern generator can output CoM and ZMP
trajectories. These trajectories satisfy the stability condition imposed by
the cart-model model. The controller presented in subsection 2.3.3 can now
perform the tracking task on the desired CoM trajectory. The last piece of the
puzzle is now assuring that the feet take off and land at the desired positions.
Again, a polynomial function can be used to calculate desired foot trajectories.
These trajectories are fed to the controller to obtain the full walking movement.

The two pattern generators presented in the previous section and other al-
gorithms are integrated into the StackOfTasks [MSEK09] thanks to a modular
architecture [SVW+08] which allows the quick and efficient implementation of
different type of pattern generators. Figure 2.25 details the information flows
during a walking experiment. A high-level controller send "commands" such
as foot placements, walking speed to a pattern generator. This entity produces
CoM and foo trajectories to feed into the StackOfTasks as position task in the
Cartesian space. Figure 2.26 depicts these trajectories during an experiment.
The desired ZMP is fed to the stabilizer which uses this position and the force
sensors to assure the stability of the planned movement.

2.6.3 Footstep planner - controller connection

The previous section described the design of the Stack Of Tasks, how the
internal entities were created and interacted with each other. This section
details the connection between the Stack Of Tasks and the outside world.
These outside modules usually involve ’slow’ components vision which talk to
the controller in a asynchronous manner. In practice with the robot HRP-2,

2.6. INTEGRATION ON THE HRP-2 ROBOT 47

Figure 2.26: CoM (red line) and Foot trajectories (blue lines) tracking during
a walking experiment

planning, optimization and vision run on a standard Linux distribution while
the controller runs on a RT-Linux kernel.

Figure 2.27 depicts the additional items that has been added to the ex-
isting Stack Of Tasks to connect it to an external footstep planner/optimizer
(commonly called planner in the figure). All request and response between
the two PC use CORBA [Pop98], The Corba Server entity plays the role of
the bridge between normal entity of the Stack Of Tasks and external modules.
The the role of footstep manager is to stock the stepping plan given by the
planner and update that to the pattern generator in a timely manner.

PC1: Realtime linuxPC2: standard linux

Vision

Step
planner

CorbaServer

Dynamic

Footstep
manager

Other entities

replan request

replan request

robotstate

new plan

new plan

robot state

...

...

Figure 2.27: Controller-planner connection. Dashed arrows represent CORBA
connection

Chapter 3

Reactive locomotion by

deformable footsteps

3.1 Reactive walking

In the previous approach, Kanoun et al. used the resolution of the inequal-
ity/equality systems twice to obtain a complete movement. The footsteps
obtained by the sliding robot in section 2.4 were fed to a pattern generator to
obtain a feasible CoM reference trajectory. This trajectory, in turn, was fed
to a second solver along with appropriate upper body tasks (e.g. well timed
hand and gaze tasks). The whole process took around one minute on a single
core CPU clocked at 3GHz. Since a complete movement was needed before
any movement on the robot, all the computation was performed offline.

Other than the computation time, the strategy of evaluating everything
once offline (top and middle part of Figure 3.1) has an additional drawback.
That is, it is virtually impossible to apply on the real robot. The first reason
is that the sensors are usually not good enough to observe the target just once,
compute, then execute the full motion successfully; especially in the case of
using the robot’s camera as the unique perception sensors. The error with a
stereo system is typically high when the target is far away and small when the
target is close. Without observing the target as the robot approaches it, the
robot cannot successfully grasp the object.

What if another kind of sensor is used in lieu of the cameras, e.g. a motion
capture system ? Even if this new sensor system has negligible errors, say a few
millimeters for grasping purpose, there are still other factors that complicate
our movement. Indeed, since the free flyer (the waist in the case of HRP-2)
is not actively controlled but moves in space via the feet, a humanoid robot
typically drifts while working. On the HRP-2 robots, this is particularly true
for long movements and/or when the robot has to turn sharply. Without any
correction, even with perfect sensors, a sequence involving walking and precise
manipulation is doomed to fail.

49

50
CHAPTER 3. REACTIVE LOCOMOTION BY DEFORMABLE

FOOTSTEPS

To remedy this problem, a reactive approach should be used. We will
observe the environment continuously to correct both the perception errors and
the drift of the robot. Only the first stage of the resolution of the inequality
and equality system is carried out. We take the intermediate results (i.e. the
sliding robot) and put it in a closed loop with the perception system (the last
group in Figure 3.1).

Previous approach

Reactive approach

Starting
problem

Inequality
equality

system (I)

Preview
control

Inequality
equality

system (II)
Robot

Pattern
generator

Controller Robot

PerceptionStep deformer

steps

CoM traj Full motion q(t)

upper body tasks

steps

posture

CoM traj qd

sensor signalsupper body tasks

updated env

step deformation

Figure 3.1: Reactive walking vs. offline computed walking

3.2 Floor representation

In section 2.5 of the last chapter we talked about how to represent footsteps
as parts of the robot kinematic chain. What about the interaction between

3.2. FLOOR REPRESENTATION 51

these footsteps with the environment?
Let us consider a configuration of the floor as in Figure 3.2, where the robot

has to navigate around circle obstacles.

Goal

Figure 3.2: A simple configuration of the floor

3.2.1 Continuous potential field

3 2 1 0 1 2 33

2

1

0

1

2

3

(a) Contour lines (b) Potential values

Figure 3.3: Potential Field

To prevent the robot from stepping into obstacles, a potential field f(x) can
be created around obstacles. Figure 3.3a and Figure 3.3b depict the contour

52
CHAPTER 3. REACTIVE LOCOMOTION BY DEFORMABLE

FOOTSTEPS

and the shape of such potential field of the form

f(xi) =
∑

j

Ci

dij
(3.1)

where Cj are a constants, and dij is the distance from the footstep i to the
obstacle j. for illustration purpose, the infinity values of the potential around
obstacles are maxed-out at a displayable value.

The optimization problem is written on the footsteps with this potential
added to the objective function. At stage k which corresponds to the equality
task Ax = b, i.eṫhe final footstep has to reach a predefined goal, we solve the
following optimization problem

argmin
x
||Ax− b||+

∑

i

f(xi)

subject to x ∈ Sk−1

(3.2)

If we go ahead and solve (3.2), the resulting footsteps can appear "unnatu-
ral” with portions in which the robot seems to on a line. The reason behind this
is the fact that the optimizer converges with the footsteps at lowest potential
possible. They therefore fall when possible to the “valleys” in the potential field
in Figure 3.3b. To fix this issue, we can either add to the cost function the
terms relating a footstep configuration to the "preferred” configuration (the
robot standing straight, two feet parallel at a predefined distance [0.19m for
HRP-2], co-linear with the walking direction, at equal distance to the waist).

3.2.2 Obstacle representation by inequalities

Using previous representation, we will have to choose the potential function
and tune

• the shape of the potential function (order),

• the constants for the potential function,

• the cost function for the step configuration.

Furthermore, any slight modification in the obstacle’s position results in a
modification of the potential field hence the results. This modification might
happen on an obstacle far away and has physically little effect on our stepping
sequence.

Instead of the potential field, we can again use the inequality representation
to exclude the regions around obstacles. Obstacle avoidance for footsteps
become an inequality constraint on the augmented robot. Figure 3.4 depicts
such a representation. The prohibited regions are obstacles plus a buffer zone
to assure some security.

3.3. ENVIRONMENT ADAPTED LOCAL FOOTSTEP DEFORMATION53

Goal

prohibited zones

Figure 3.4: Constraints on foot placements

Back to our previous previous optimization problem in chapter 2, the
system of equalities (eq) and inequalities (in) written on the augmented robot
(robot + footsteps) become:

• (in) Joint limits

• (in) Self-collision avoidance

• (in) (new) Collision avoidance between footsteps and obstacles

• (in) CoM constraints (whose projection must lie inside the polygon sup-
port)

• (eq) Upper body manipulation task

• (eq) Reference posture task

For the rest of this chapter, this representation by inequalities is chosen
over potential field approach since it represents more rigorously obstacles and
requires less parameter tuning.

3.3 Environment adapted local footstep

deformation

For step adaptation purposes, we can omit the degree of freedom corresponding
to the robot and write directly our problem on the vector q ∈ R3k with k being

54
CHAPTER 3. REACTIVE LOCOMOTION BY DEFORMABLE

FOOTSTEPS

Goal

Obstacles

(a) Initial position, obstacles and goal (b) Initial footstep sequence

(c) Convergence of the sliding robot to
goal

(d) Deformation of footsteps due to
change in goal location

(e) Change in position of one obstacle
(f) Deformation of footsteps due to
change in obstacle location

Figure 3.5: Step deformation by local action on footsteps

3.4. TASK-DRIVEN DEFORMATION 55

the number of steps.

q =

∆x1
∆x2
∆θ1

...
∆xk
∆xk
∆θk

(3.3)

The set of equality and inequality tasks on the footsteps contains

• (in) 3k footstep limit constraints on ∆x,∆y,∆θ.

• (in) k − 1 self-collision constraints for successive footsteps.

• (in) kn constraints with each step and each n prohibited zone (obstacles)

• (eq) position task for designated step (last step for Figure 3.5)

By construction, a modification in the goal results in a deformation , so
does the displacement of one of the obstacles. Figure 3.5a to Figure 3.5f depict
this sort of step deformation. We change the movement by acting directly on
the footsteps. The upper body of the humanoid robot becomes completely
transparent to the solver.

3.4 Task-driven deformation

In previous section the upper body is transparent to the footstep deformation
calculation. In this section, at the outermost layer, footsteps ,in turn,become
transparent. Using the concept presented in section 2.5, a footstep is just
another joint on a robot. Instead of working on a robot of n degrees of freedom,
the solver now deals with n+3k degrees of freedom altogether. The deployment
of the sliding robot is the direct consequence of the task applied on an operation
point of the augmented robot. In other words, footsteps are not computed
explicitly, but are rather a side effect of the manipulation task.

In the same spirit, the step deformation is a direct consequence of the
modification in the task. Algorithm 2 shows a pseudo code of the adaptation
scheme by task. The optimization is written on the states qa of the augmented
robot. Whenever the scene changes and affect the manipulation task, a new
optimization is written. Note that if the changes are local (see chapter 6, the
new optimization problem is done in little time, hence allow the robot to react
quickly with those changes. Each time the solution on the augmented robot
states qa is modified, the stepping sequence in the controller (the footstep
manager in subsection 2.6.3) hence adapt the footsteps.

56
CHAPTER 3. REACTIVE LOCOMOTION BY DEFORMABLE

FOOTSTEPS

Algorithm 2 Task-driven footstep adaptation

Require: Initial conditions q0 ∈ R
n

Require: Number of steps to make k
Require: Task T
Ensure: Achieve task T
1: Build the augmented robot
2: Build the optimization problem on the e augmented robot
3: Find the initial sequence qa0 ∈ R

n+3k

4: Update the desired footstep to the controller
5: current step number = 0
6: while current step number < k (there are pending steps) do

7: check position of target
8: check current step number k1
9: if Goal position change then

10: Build the new optimization problem on the augmented robot
11: Freeze the first 3(k1 + 1) dof in qa

12: Find the new sequence qa0 ∈ R
n+3k

13: Update the desired footstep to the controller
14: end if

15: end while

16: Stop locomotion and execute manipulation task

Figure 3.6 depicts a situation where the goal is moved during the movement
and the corresponding footstep deformation

Figure 3.7 depict locomotion generated by a gaze task and step modification
when this gaze task is modified.

3.4. TASK-DRIVEN DEFORMATION 57

(a) Initial configuration and goal (b) Footsteps found by optimizer

(c) Change in goal position (d) Deformation due to task change

Figure 3.6: Step deformation by task modification

58
CHAPTER 3. REACTIVE LOCOMOTION BY DEFORMABLE

FOOTSTEPS

(a) Initial position and the gaze goal
position

(b) The robot make two steps to look
at the goal

(c) Change in goal position
(d) The two steps deform accordingly
to the new goal

Figure 3.7: Step deformation by gaze task modification

Chapter 4

Perception with stereo cameras

4.1 Overview of modules and middleware

In this section we are interested in the sensor-based manipulation infrastruc-
ture. We will visit different modules and talk about their roles in the system
and the connections between them.

TF

hueblob

demo SoT

localstepper

Robot

Robot state
publisher

ud

joint states

T cam_target

T world_target joint states

plan request

images

steps

final posture

joint statesT base_cam

T world_base

Figure 4.1: Communication between modules
Color code: black connection for ROS, blue connection for CORBA

Interactive demontrations on the HRP-2 robot such as those presented in
chapter 5 and chapter 6 typically consist of the following components:

• The controller (the StackOfTasks or Sot): the most critical part, sends

59

60 CHAPTER 4. PERCEPTION WITH STEREO CAMERAS

low-level commands, runs at high frequency (200Hz for HRP2).

• The perception module (hueblob): uses stereo cameras mounted on the
robot’s head, provides tracked objects’ positions.

• Planning module (localstepper): usually most expensive computations,
responsible for the generation of either full joint-space movements or high
level action plan, such as the case of localstepper.

• The supervisor (Demo): The finite state machine which is responsible to
ensure the logic of the demonstrations.

4.2 Perception module

Along with the adaptation aspects presented in chapter 3, this framework has
a pronounced vision components. This section focuses on the details of the
perception module (hueblob).

robot

image
pro-

cessors

2D
tracker

GUI
3D

projector

Filter
Post

processor

images raws

camera infos

image rect color

model images 2D tracked region

raw cloud

disparity map

filtered cloud

density

T cam_target

Figure 4.2: 3D Object tracking using CAMShift algorithm

Figure 4.2 depicts the detailed message flows through hueblob. At first, the
target object is tracked using the CAMSHIFT algorithm [Bra98] on a single
rectified image (HSV scale). Red Green Blue (RGB) color system is very
sensitive to lightning condition. A dark scene reduces all three components
of an object which makes the tracking difficult in RGB space. On the other
hand, the Hue Saturation Value (HSV) color work much better. The hue value
(color) of the object is separated from the saturation (color concentration) and
brightness. This component is therefore less affected by light conditions and
can faithfully represent out objects.

4.2. PERCEPTION MODULE 61

(a) Model (b) Sample image

(c) Back projection to model histogram

Figure 4.3: Back projection on model’s hue histogram

At first, the histogram is calculated from the model(s) (Figure 4.3a. The
rectified image from the robot (in HSV) is then back projected into the model’s
histogram. In clear, for each pixel in the test image, the hue value is looked up
in the corresponding bin of the histogram and written to the back projected
image. This value can be thought as how close the pixel in question matches
the model, it represents the probability that a pixel in a test Image belongs to
an object area. Figure 4.3c depicts such a back projection where the lightest
area corresponds to the most probable ob jet area.

Next, the tracking algorithm consists in finding a window

• whose center coincides with the center of the probability value (back
projected value) inside the window

62 CHAPTER 4. PERCEPTION WITH STEREO CAMERAS

• whose size adapts to the total of the probabilities in the window.

More concisely, let I(x, y) be the back projection value at (x, y), in each
search window, let us define the zeroth moment:

M00 =
∑

x

∑

y

I(x, y) (4.1)

the mean location (centroid of the probabilities)

xc =
M10

Moo
=

∑
x

∑
y xI(x, y)∑

x

∑
y I(x, y)

yc =
M01

Moo
=

∑
x

∑
y yI(x, y)∑

x

∑
y I(x, y)

(4.2)

The pseudo-code for the CAMShift algorithm which derives from the makeshift
algorithm [Che95] is:

1. Choose a location for the search window

2. Makeshift

• Choose window search size

• Compute the mean location for the search window ((4.2))

• Center the window the the mean location

3. Adapt the search window size to the zeroth momentum M00

4. Repeat step 2,3 until convergence

Modify model on the fly

Generally speaking, the CAMShift method is robust with respect to light
condition, as long as the hue of the object does not vary significantly. This
means that the scene can be lighter or dimmer but if the main color of the
light source is unchanged, then the initial model works without any problem.
In practice, these are cases where this assumption is not true. In hueblob,
the monitor user interface (Figure 4.4) allows a modification of the model
during experiments. This possibility proves extremely helpful for example
when the experiment setup is moved from one scene to another. In 2012, the
robustness of the software has been tested when the whole framework is tested
in a different place then the usual location in our laboratory. Despite the fact
that the light color is completely different, hueblob tracks the object robustly
thanks to the new model added on the fly.

Once the object is tracked in the 2D-image, hueblob utilizes the disparity
image to extract the 3D points. After filtering out outliers, one obtains a point
cloud of the tracked object. The final outputs are

4.2. PERCEPTION MODULE 63

Figure 4.4: Hueblob interface

Figure 4.5: 3D points on the tracked object

64 CHAPTER 4. PERCEPTION WITH STEREO CAMERAS

• the position of this point cloud (Figure 4.5)

• and this density of object, i.e. the ratio of the number of points in the
tracking window that has a valid disparity and window size.

4.3 Automated extrinsic calibration for humanoid

robots

As shown in Figure 4.1, hueblob only computes the transformation from the
camera to the target. To obtain the target position in the world coordinates,
the position Tbc of the cameras (c) with respect to the robot base b is needed.

Tbc = TbhThc (4.3)

The transformation Tbh from the base to the last head joint h can be
computed precisely given that the joint encoders are precise. The missing
piece here is the position of the camera in the head of the robot Thc. In the
first attempts, Thc was deduced from the CAD model of the HRP-2 robot and
did not produce a satisfactory precision for tasks such as grasping.

To deal with this imprecision, a ROS package has been created to automati-
cally calibrate these extrinsic parameters for a humanoid robot. A chessboard
is fixed to a robot hand (Figure 4.6). This chessboard is moved around in
the vision field of the camera so that a set of chessboard position - robot
configuration is recorded.

Let us place ourselves in the chessboard frame, which now becomes a fixed
chessboard. We find the familiar “eye-on-hand” setup and the standard hand-
eye calibration (Figure 4.7, the head joint has been renamed to G).

Denote:

• Gi: the frame attached to the head at time i

• Ci: the frame attached to the camera at time i

• CW : the frame attached to the chessboard (fixed, at all time)

• HGi: transformation from Gi to CW

• HCi: transformation from CW to Ci

• Hcg: transformation from the camera to the head (constant at all time)

The data acquisition process is given in Figure 4.8. At each pose i, the
transformation from the chessboard to the camera and to the head is computed
by a chessboard detector and the forward kinematics of the robot.

For each pair (i, j), the transformations from Ci to Cj and from Gi to Gi

are

4.3. AUTOMATED EXTRINSIC CALIBRATION FOR HUMANOID

ROBOTS 65

Figure 4.6: Hand-eye calibration process

FIXED CHESSBOARD
CW

C1

G1

C2

G2

C3

G3

Figure 4.7: Movement of the camera in the chessboard perspective

66 CHAPTER 4. PERCEPTION WITH STEREO CAMERAS

Robot

Chessboard
detector

Robot state
publisher

Calibrator

imagesi

qi

HCi

HGi

Figure 4.8: Data acquisition for extrinsic parameter calibration

HCij = HCiCWHCWCj = H−1
Ci HCj (4.4)

HGij = HGiCWHCWGj = HCiH
−1
Cj (4.5)

On the other hand, we also have

HCij = HCiGiHGiGj = HcgHGij (4.6)

In (4.6), HCij and HGij are measured quantities (or more precisely com-
puted directly from measure quantities). The role of the calibrator is to run an
optimization method on thease measurements. [TL89] is chosen for this task
for its efficiency and robustness.

Table 4.1 shows the calibrated extrinsic parameters for all the cameras on
HRP-2.

camera No
poses

x y z rx ry rz

narrow left 111 0.074 1 0.026 6 0.141 8 0.046 2 0.273 0 0.034 2
narrow right 111 0.072 4 −0.033 3 0.135 4 −0.008 0 0.220 1 0.005 9
wide left 121 0.081 2 0.070 0 0.057 0 −0.008 0 0.220 1 0.005 9
wide right 121 0.076 6 −0.075 9 0.055 3 0.011 0 0.221 9 −0.009 5

Table 4.1: Extrinsic parameter calibration on HRP-2. Lengths are in (m)

Chapter 5

Stepping over

5.1 Problem statement

In this chapter, the method presented in the following chapter is applied on
the humanoid robot HRP-2 to step over an object. The assigned task is to
overcome a long cylindrical bar. The bar is long enough and its unknown
characteristics make it impossible for the robot to step on. This example
illustrates one of the key specialty of legged locomotion as opposed to wheeled
robot.

The problem by itself has been studied in the past under different angles.
Chestnutt et. al. [CLC+05] presented A∗ search as a method to plan footsteps
on the ASIMO robot. This method used external cameras to track 2D obstacles
and planned in real time to avoid these regions on the ground.

Guan et al. [GYT05] used optimization techniques to overcome 3D ob-
stacles in a quasi-static fashion. Stasse et. al. [VSYV06] proposed different
strategy to dynamically step over objects. Perrin et. al. [PSB+12,BPM+11]
used planning technique to achieve this same task with a changing environ-
ment, perceived by a motion capture system.

In this chapter the robot steps over the obstacle using a different approach.
Footsteps are optimized by the system of task and constraints which includes
in particular inequality constraints presented in chapter 2. The obstacle’s
position is estimated by the stereo vision system mounted on the robot. As
any other vision system, the precision of the estimated position gets better
when the robot gets closer to the tracked object (bar). Moreover, the bar is
also intentionally moved by a human during the experiment. As a result, either
to take into account the updated perceived position or a real displacement of
the object, there is a need of reactive footstep adjustment.

The particularity of the task presented in this chapter is that it uses
local optimization techniques to perform footstep deformations. The resulting
deformed footsteps preserve the optimality characteristic which allows the
robot to easily perform the task. Integrated with the stereo cameras mounted

67

68 CHAPTER 5. STEPPING OVER

(a) create step sequence (b) identify infeasible steps

(c) remove infeasible steps (d) optimize with localstepper

Figure 5.1: Initial stepping over step sequence with localstepper

on the robot, this method is more portable compared to external perception
system. Finally, the framework is flexible enough be able to adapt any initial
walking strategy to deal with the changing environment.

5.2 Computation of initial stepping sequence

5.2.1 Initial sequence with localstepper

Let Figure 5.1a be an an arbitrary and feasible stepping sequence. This
sequence allows the robot to get from the initial position to the designated zone.
The initial footsteps can be computed by, among other methods, localstepper
itself by adding a position task to the last footprints of the centipede presented
in chapter 3.

Now, obviously, with the bar added to scene, the initial stepping sequence
is not feasible anymore as stepping on the bar is not allowed (Figure 5.1b).
These infeasible steps can now be removed (Figure 5.1c). (If the number of
removed steps is odd, one additional step is removed from the sequence to
preserve the left-right sequence.

The newly created stepping sequence will likely be infeasible due to the
large distance of the footprints at either side of the bar. This infeasible
sequence is then (re)fed to localstepper which optimizes these footsteps with

5.2. COMPUTATION OF INITIAL STEPPING SEQUENCE 69

constraints described in chapter 3 (including maximum distance constraint
between subsequent steps) plus the collision constraints between the bar and
all footsteps. By solving the optimization problem, we obtain a feasible step
sequence in Figure 5.1c.

3d obstacles

Until now, we assume that the obstacles are flat. With this assumption, the
resulting footstep placement obtained in Figure 5.3 guarantees us a collision
free movement. To take into account possible collisions, one has to consider not
only the foot placements at either side of the obstacles but also the transition
phases around these steps.

Suppose that the operation point to control each feet is located at d1 from
the heel and d2 from the toe (Figure 5.2). The obstacle is a blue half-cylinder
of diameter 2R (Figure 5.3). In most of the walking schemes on humanoids
that include flat feet like the HRP-2 robot, the feet are always parallel to the
ground. We can reasonably assume that while the foot is parallel, the only
possible collision is between the sole and the obstacle.

d1 d2

Opt point

Figure 5.2: Robot foot

×
pc

d2 2R d1

Figure 5.3: Stepping over a cylindrical bar

Let Po(t) be the trajectory of the operational point O. Let us extend the
left half of the blue cylinder by d2 and the right half by d1, and call the resulting

70 CHAPTER 5. STEPPING OVER

region C The necessary and sufficient condition of a collision free path is:

. Po(t) is collision-free ⇔ Po(t) /∈ C , ∀t

With the obstacle in Figure 5.3 located at pc = [xc yc]
T , this condition

becomes:

∀t :

(y(t)− yc)
2 + (x(t) + d2 − xc)

2 ≥ R2 , x(t) ≤ xc −R− d2
y(t)− yc ≥ R , xc −R− d2 < x(t) < xc +R+ d1
(y(t)− yc)

2 + (x(t)− d1 − xc)
2 ≥ R2 , x(t) ≥ xc +R+ d1

(5.1)
We can now resolve this condition with 2D step conditions in previous

section and obtain a feasible trajectory to overcome a cylinder

Figure 5.4: General shape obstacles for which testing collision for the robot
sole suffices

Arbitrary shaped obstacles Previously, we claimed that the foot can only
come into contact with the cylinder in Figure 5.3 with its sole. This is true for
a class of objects O (Figure 5.4) that satisfy:

∀(x, y, z) ∈ O, z′ < z : (x, y, z′) ∈ O, z′ < z (5.2)

These objects can be thought of as “mountain shape” objects where the
higher cross sections always fall inside the lower (support) cross sections.
Primitives of this class includes: semi-spheres, semi-cylinders with the flat
section on the ground, cubes, boxes. For even more complicated shapes, we
can create a set of bounding object that belong to O.

5.2.2 Adapt externally planned initial sequence

The computation of crossing trajectory did not take into account the possible
collision between the knee and the obstacles. (Figure 5.5).

5.2. COMPUTATION OF INITIAL STEPPING SEQUENCE 71

Figure 5.5: Collision avoidance for the knee

To deal with these situation, an external stepping strategy proposed by
Stasse et. al can be used as the initial stepping sequence [VSYV06]. In addition
to the consideration of knee position at double support phase, this method also
proposed doing a second pass of ZMP calculation, this time with the multibody
model. The effect of this second pass is more visible when the obstacles become
too large that the cart-table model is no longer suitable.

Localstepper, as indicated by its name, is a local method and not immune
to local minima. For instance, this method will not work if a wall is built
between the initial position and the bar. In this case, a real motion planning
method should be used to obtain the initial sequence.

Planner

Pattern
generator

Controller Robot

Object
tracker

Localstepper

q

Initial conf

steps

+

Images

Updated conf

Trajectories

u

Step adjustment

Figure 5.6: Step deformation loop

72 CHAPTER 5. STEPPING OVER

5.3 Online deformation

As the perceived position of the obstacle is continuously updated, and as the
fact that the obstacle might be moved during the experiment, the footsteps
have to be recomputed as fast as possible.

Provided that the shape of the obstacle is unchanged (long cylindrical
bar with known diameter), the robot only needs to make sure that the two
subsequent steps that cross the bar stay unchanged with respect to the bar. We
then recover the same situation as described in section 3.3: stepping towards
a moving target.

The footstep adjustment scheme for the stepping-over experiment can be
written as algorithm 3, when x0, y0, x are three-dimensional vectors in the
footprint coordinate (x, y, θ).

Algorithm 3 Footstep adjustment for stepping over experiment

Require: current plan.
Ensure: new plan
1: x0 ← initial target step
2: y0 ← initial bar position
3: loop

4: y ← current bar position
5: new target x← x0 + y − y0
6: recompute footsteps
7: end loop

5.4 Experiment

In the experiment depicted in Figure 5.7, the bar is marked by an orange band
and detected by the module detailed in chapter 4.

Thanks to the online optimization scheme, the robot has no problem cross-
ing both a fixed and a mobile bar. Figure 5.8 describes how the bar is tracked
during the movement, Figure 5.9 depicts the estimated position of the bar.

5.4. EXPERIMENT 73

Figure 5.7: Stepping over a bar on HRP-2

74 CHAPTER 5. STEPPING OVER

Figure 5.8: Tracked bar by the robot

time (s)

position (m)

0 5 10 15 20 25
-0.5

0

0.5

1.0

1.5

bar_posx

bar_posy

Figure 5.9: Perceived position of the bar (x and y components) which is moved
while the robot is walking (around second 12).

5.4. EXPERIMENT 75

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10: Replanning for a moving bar

Chapter 6

Object grasping

In this chapter we are interested in manipulation tasks which involve both
locomotion and manipulation. The task given to the robot is to locate a ball
in front of it, plan appropriate steps and the grasping pose. The robot then
executes the step sequence, tracks the target in real-time, replans and updates
its steps. The end of the locomotion part is blended into the grasping part.

6.1 Reactive online footstep replanning

6.1.1 Planning process

As presented in chapter 2, for planning purpose, footsteps are consider as parts
of the humanoid robot.

The planning process is the following

• Build constraints on humanoid robot (notably joint limits and self-collision
avoidance).

• Build the augmented robot (or centipede as coined by Kanoun et. al.
[KLY10]).

• Build constraints for newly added degrees of freedom. For augmented
joints (footsteps), these constraints correspond to the limits imposed
by the pattern generator (max length of a step, max orientation), and
self-collision avoidance: the robot should not step one foot on another.

• Build constraints for obstacles avoidance in case the robot has to avoid
regions on the floor (i.e. the bar in previous chapter).

• Add equilibrium condition for the standing robot at the end of the
stepping process. (the CoM has to stay inside the support polygon at
the end of the movement)

• Build tasks which include

77

78 CHAPTER 6. OBJECT GRASPING

– Hand task for grasping

– Gaze task to keep the target inside the vision field

– Reference posture task

All the constraints are inequalities and have higher priority than tasks.
All tasks are listed in descending order of priority. Starting from the given
requirement the localstepper returns a final configuration q ∈ Rn+3k of the
augmented robot (Figure 6.1) (Suppose the robot has n degree of freedoms
executing k steps).

Figure 6.1: Output of localstepper

posture desire

From this resulting vector q, we can extract the k steps and the final
posture. The steps and the desired posture are expressed (xi, yi, θi) in local
coordinates are:

xi = q3(i−1)+1 i = 1 . . . k

yi = q3(i−1)+2 i = 1 . . . k

θi = q3(i−2)+3 i = 1 . . . k

postured = [q3k+1 . . . q3k+n]
T

(6.1)

6.2 Online footstep replanning

One big challenge in our context is the use of stereo-vision to detect and localize
objects. Localization errors grow dramatically with the distance between
the object and the sensor. Usually, this distance is maximal in the initial
configuration of the robot, when motion planning is performed.

The resolution of a complete motion in joint space described in previous
section typically takes up to one minute for a long motion. Yet, to be reactive,

6.2. ONLINE FOOTSTEP REPLANNING 79

replanning should finish at least once every stepping interval of the robot
(typically under a second). It is clear that replanning the motion up to
configuration space motion is not feasible in practice.

6.2.1 Footsteps and final posture replanning

As explained earlier intermediate results, i.e. final posture and footsteps, of
the planning stage are sufficient for the controller. This is where replanning
becomes feasible since the computation of footsteps and posture is typically
from 3 to 10s, a replanning could be well below 1s and hence guarantee
reactivity. The augmented robot then starts at the previous state and updates
its tasks according to new sensory information about landmarks. Algorithm 4
describes the stages of planning, the results are shown in Figure 6.2. The solver
converges faster than planning footsteps and posture from initial position since
the current configuration is already close to the goal configuration. Table 6.1
shows replanning time for a grasping task with goal as a ball on the ground at
a distance around 2 meters. The modification is taken randomly in arbitrary
directions.

Algorithm 4 Footprint replanning

Require: current plan.
Ensure: new plan
1: loop

2: replan_needed← false
3: check position of target in camera
4: check current step number
5: if Goal position changes then

6: Update gaze and hand task
7: replan_needed← true
8: end if

9: if current step number changes then

10: Update virtual manipulator in solver
11: replan_needed← true
12: end if

13: if replan_needed then

14: Replan to new solution
15: end if

16: end loop

The replanning process for the whole-body and footsteps depends greatly
on configuration and it is not guaranteed that the computation time will be less
than the stepping time (0.8s). Without modification, small corrections (e.g.
due to drifting) can be dealt with. Otherwise, an execution strategy must be

80 CHAPTER 6. OBJECT GRASPING

Figure 6.2: Footsteps replanning

Goal modification (m) Max (ms) Min(ms) Average (ms)

0.01 2615 251 595.1
0.02 2159 275 673.2
0.05 2343 488 920.7
0.1 2498 593 1299.8
0.2 4166 608 1977.0
0.5 7123 610 3685.3

Table 6.1: CPU time for replanning of final posture and footsteps (millisec-
onds) for a locomotion-grasp task

applied at the planning-control bridge to deal with large errors, such as the
case of stereo vision system.

Stop and go One obvious approach to address the real time issue is to stop
the robot or let it step in place if the planner takes too long to response.

Interactive optimization As shown in section 2.5, the complex robot tends
towards the goal during the optimization process. At early stages, i.e. when
the robot starts, having the full solution with all footsteps and final pose is not
necessary. In fact, even if a full solution is found, it is highly likely that this
solution will change during walking motion to compensate sensory errors. The
planner can keep up with the controller by only replanning at each correction
to an intermediate state. Namely, line 14 in Algorithm 4 will be modified to:
"replan to new solution or timeout", where the timeout chosen is one stepping
period.

While stop and go strategy guarantees an optimized trajectory at each
replanning stage, it produces unnatural movements on the robot. Using the
interactive approach, the robot does not have to stop while correcting its paths
towards the new goal. However, this method relies on the assumption that the
intermediate stage found at each timeout is safe for the robot.

As it turns out, there exists a third strategy which consists in reducing the
dimension of the optimization problem in replanning stage by blocking some or
all joints belonging to the upper body. At each replanning step, optimized foot

6.3. MOTION BLENDING BY PRIORITIZED STACK OF TASK 81

Goal modification (m) Max (ms) Min(ms) Average (ms)

0.01 16 8 10.7
0.02 38 7 11.4
0.05 12 9 11.0
0.1 48 9 15.5
0.2 23 11 20.0
0.5 117 15 33.6

Table 6.2: CPU time for replanning footsteps (milliseconds) for a locomotion-
grasp task

placements and posture are found without compromising the time constraint.
Without having to interrupt the optimization process at each timeout as the
second approach, this method is also simpler to implement on the robot. This
third strategy is chosen for experiment and is detailed in the following section.

6.2.2 Real-time footstep replanning

While footsteps have to be changed to correct execution drift or perception
error, the posture does not. In fact, unless new obstacles are found near the
goal the previous posture stays valid. For example, if the robot is to approach
and open a door, even the position of the door on its reference has change, the
previous posture still guarantees dynamic equilibrium. This scenario covers
most cases in experiment. The most part of the last n degrees of freedom
of the augmented robot can be ’frozen’ while other joints are free to move.
Suppose l degrees of freedom are locked. This translates into reducing the
dimension of the Jacobean, hence the complexity of the problem.

Table 6.2 shows replanning time in a grasping scenario similar to the one
described in previous section with the posture of the standing robot "frozen".
This is the other extreme case compared to Table 6.1 where every joint in the
standing robot is free to move. In the first replanning scheme, the robot can
barely correct small errors, so the robot has to make many small corrections
at a time, hence a large amounts of additional steps have to be added to the
locomotion stage. In the second replanning schema however, the replanning
time is much lower than the time necessary for the robot to make a step. This
guarantees a real-time replanning running behind the scene and updating robot
footprints continuously.

6.3 Motion blending by prioritized stack of task

Let us recall how the robot adapts its movement to face changes in the envi-
ronment.

The visual servo in Figure 6.3 has in fact two parts

• localstepper which regenerates posture and footsteps.

82 CHAPTER 6. OBJECT GRASPING

Controller Robot Perception

Visual
servoing

Preview
controller

Motion
planner

image

q

Localisation
Footsteps

Localisation

Posture task

COM: Center of Mass

Upper body tasks

CoM task

Feet tasks
Footsteps

Figure 6.3: Information flow in a grasping task

• a servo which feeds directly the target into the grasping task.

The perception module returns a 3D goal position. The planner only
outputs the final posture and desired footsteps. How do we use these three
pieces of information in the controller? Obviously, by the use of tasks. The
robot must approach the goal first, thanks to the trajectories supplied by the
pattern generator. Then, at some point, it has to grasp the object with a
position task on its hand. The desired posture will be used at lower priority
as a hint. The feasibility of this posture, as calculated by the planner, is the
necessary condition for a successful grasp.

The question is more about the chronology of those tasks. If we start
the grasping task and the posture task too early, the robot has to walk with
the grasping posture too early which is obviously not suitable. Moreover, with
most of the pattern generators, a humanoid robot needs a more or less straight
posture during walking so that it follows well the cart-table simplification.
Start the posture task at step 0 is therefore unfeasible. If on the other extreme,
we start the posture task too late, the robot which is not guided by the posture
might end up in Figure 6.4 with the hand stuck behind the body.

One more point worth noting is that a successful grasp requires that the
hand pass by the pregrasp point in the configuration described in Figure 6.5.
To achieve this, piece-wise polynomial curves are used. [PT97] The conditions
imposed to this curve are:

• start out from the hand’s current velocity

6.3. MOTION BLENDING BY PRIORITIZED STACK OF TASK 83

Figure 6.4: Hand stuck as the posture task was activated too late.

• pass by initial point, passage points and final goal position

• stop at zero velocity

First, the curve is presented by a pth-degree curve (Figure 6.6) Where
0 ≤ u ≤ 1 = t/to is the current time normalized by the total time on the curve
to. P i, ūi, Ni,p are the control points, knots and the basis functions. Qi are
the passage points. Note Do,Dn initial and final velocity. The control points
are found by solving the following system of n+ 2 linear equations.

C(ūk) =

n+2∑

i=0

Ni,p(ūk)P i = Qk , i = 1 . . . n+ 1

−P 0 + P 1 =
up+1

p
D0

−P n+1 + P n+2 =
1− um−p−1

p
Dn

(6.2)

84 CHAPTER 6. OBJECT GRASPING

starting position

passage point

goal position

Figure 6.5: Mandatory passage point for grasping

Figure 6.6: Cubic spline

6.4 Experiments

This section present a series of experiments validating our proposed framework.
(Figure 6.7, 6.8, 6.9, 6.10, 6.11, 6.12) In these experiments, the goal is to grasp
an object outside of the reach of the robot so that stepping will be involved.

Goals are also intentionally moved during the movement to illustrate the
adaptation scheme applied on the footsteps. Keep in mind though that the
perceived position of the goal changes, so this adaptation happens all the way
till the end. For the robot, the goal always moves, only its amplitude become
smaller when the goal is near as the vosion become more precise.

6.4. EXPERIMENTS 85

Figure 6.7: Grasping an object at close distance. This first experiment is
intended to test the grasping accuracy and the stereo vision system. Since
the target is at such close range. The steps that the robot made are only to
prepare the feet position to well support the planned posture.

86 CHAPTER 6. OBJECT GRASPING

Figure 6.8: Grasping an fixed object at distance, at table level. The robot
searches, locates the target, plans the first stepping sequence and the grasp
postures. The target continues to be tracked during the whole experiments
(43s). 97 footstep re-computations has been carried out during the walking
sequence (lasted 14s).

6.4. EXPERIMENTS 87

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.9: Grasping object on the table which is moved during the movement.
This experiment has been presented in public at the College de France on April
2, 2012 with a very short preparation time. The light on the stage changed
subsequently the hue of the learned target. The perception module was capable
of taking a new model thanks to the design in chapter 4 and adapt to the new
light condition. The table was intentionally moved during the movement to
illustrate the fact that the robot replanned its footsteps as it received updated
information about the environnement.

88 CHAPTER 6. OBJECT GRASPING

Figure 6.10: Grasping object at ground level. The foam was placed to protect
the hand in case of emmergency

6.4. EXPERIMENTS 89

Figure 6.11: Foot step adaptation during a grasping movement This experi-
ment illustrates how the robot adapt its footsteps (right figures). The target
is pushed while the robot walks.

90 CHAPTER 6. OBJECT GRASPING

Figure 6.12: Grasping without stopping. This experiment is the only one
that has not been tested on the robot. Since the whole grasping process
hapends while the robot is walking, the swinging movement of the chest brings
it dangerously close to the grasping arm in simulation. More safety measures
are to be designed before applying this movement on the robot.

Chapter 7

Conclusions

7.1 Manipulation-locomotion fusion with

closed-loop vision

The framework detailed in this thesis tackles some interesting problems in
humanoid robotics.

First, it considers the dual-properties of redundancy and underactuation.
On the one hand, with a large number of actuated joints (30 for the HRP-2),
the robot can easily achieve a given task (which usually “costs” a few degrees
of freedom) while preserving a certain flexibility. In fact, the construction of
a prioritized take hierarchy based on null-space projection has been studied
for years in robotic manipulation, including the StackOfTasks framework used
in this thesis. On the other hand, the 6 degrees of freedom in the robot
representation corresponding to the position and orientation of the base (the
waist for humanoid robots) are not directly controlled. The robot relies on its
feet and their interaction with the ground to propel itself forwards. This aspect
is the source of numerous works on locomotion which were partly presented
in this thesis. Up to now, research in humanoid robotics either had focused
on one of these two aspects; locomotion and manipulation of humanoid robots
had been usually considered as separate problems.

The work presented in this thesis attempts to fuse the two aspects. With
footsteps represented as parts of the humanoid robots, locomotion and ma-
nipulation are considered in the same problem. Furthermore, with the use
of a virtual link attached to each footstep, the robot can make a complete
abstraction of stepping. The choice of foot placements is transparent to the
optimizer which consider them the same as the real and actuated joints on
the robot. Locomotion becomes an effect induced and guided by manipulation
tasks.

Second, the proposed framework deals with another interesting question
which is the combination of optimization and closed-loop control. Indeed, in
robotic manipulation, it is often necessary to trade capability for reactivity and

91

92 CHAPTER 7. CONCLUSIONS

vice versa. On the one hand, the robot is capable of executing a complicated
task if enough computation time is given to it. In this case, the whole motion is
computed offline first, then executed in open-loop on the robot. For example,
one can use optimization techniques to generate a complete motion when the
robot needs to make a few steps before grasping an object. The costly process
takes up to several minutes to provide a complete motion. On the other hand,
the robot can be reactive and responsive to the changes in environment if
it uses sensors to detect the changes and feed them to the controller in a
closed-loop framework. A complete visual servoing for example needs the task
to be “simple”. Stepping with grasping in the example mentioned earlier, which
traditionally takes minutes to compute, is not suitable. The method used in
this thesis combines an optimizer, which is slow, a task-based controller and a
perception system. The trick here is to separate the two stages in the optimiza-
tion process and take only the intermediate results, i.e. the necessary footprints
and the final posture, as the inputs of the controller. With this approach, the
robot is able to accomplish complicated tasks involving both locomotion and
manipulation while adapting itself reactively to the environment.

In summary, this framework can be thought of as the fusion of locomotion
and manipulation. The perception-decision-action loop integrates one stage of
the optimization process, i.e. footstep optimization, which allows an adaptation
of the whole movement to the changes in the environment. The validity of this
framework is demonstrated in two types of experiments on the robot: stepping
over an object and grasping with walking. This is, to our knowledge, the
first time such fusion of locomotion and manipulation in a reactive manner is
demonstrated on a humanoid robot.

7.2 Application scope

The perception-decision-action loop proposed in this thesis makes use of the
following components.

• Footstep and posture optimizer.

• Stereo vision with color object tracking.

• Task-based controller.

This loop starts out from an initial sequence composed of a feasible, collision-
free footprints sequence and a final posture. As explained in chapter 5, an
external method can be used to step over a large object.

Similarly, any initial sequence, such as those obtained by motion planning
technique as in Figure 7.1, can be used as input in the presented loop. With
this input, the robot observes the environment and adjusts its footsteps locally
to deal with changes in the environment, such as, the initial error in perceived

7.3. LIMITATIONS 93

Figure 7.1: A possible initial sequence found by motion planning techniques.
[EKTL+11]

position of the door, positions of the furniture. The current version of the
object tracking model relies on color objects. It suffices that the landmarks be
easily recognizable by their color as in Figure 7.1.

7.3 Limitations

If the validation of the proposed framework has been shown with experiments
on a real robot and that extensions to other scenarios are possible, there is
still room for improvement. The three main limitations of the approach are
the local optimality of the formalism, its dependency on the perfect knowledge
of the model and a limited perception module.

7.3.1 A local approach

The adaptation scheme works by resolving an optimization problem on foot-
steps and postures. It assumes that the changes in the environment happen
incrementally. This is true for changes in the perceived position of a fixed
object or, for example, an object moved by human. When the target is tracked
continuously, these changes are small and the optimizer always works in the
neighborhood of the previous solution, therefore it converges in little time.
Another assumption is that the structure of the environment stays unchanged.
This condition also ensures that the local optimization converges in reasonable
time.

Two possible pitfalls directly related to the local approach are

• lost of tracking of a landmark. When this landmark reappears, the
change is no longer local. The optimizer fails to converge in small time.

94 CHAPTER 7. CONCLUSIONS

• the structure of the scene changes, e.g. the robot has to grasp an object
on the floor. During its movement, the object is pushed under a table,
the change is no longer local and real-time adaptation is not possible.

7.3.2 Platform limitation

The presented framework is designed to work on HRP-2 and robots of similar
properties, such as NAO, Asimo, etc. It relies on a perfect knowledge of the
robot kinematics and dynamics. This condition allows us to build a precise
and capable controller, e.g. , to grasp an object based only on its position.
More specifically, in HRP-2 whose mobility is in parts limited by its flat foot
design, the pattern generator employed in the framework works best on solid
and level ground. The robot won’t be able, for example, to walk reliably on a
deformable foam or on ice.

7.3.3 Perception limitation

The perception module has been designed following criteria on robustness,
simplicity and maintainability. It relies uniquely on color blobs to detect and
track objects. The complexity of the scene in which landmarks and targets
can be tracked is limited. The framework does not work, for example, on a
unordered scene with a target containing no dominant colors or which is not
distinguishable from neighbor objects.

Object detection is also out of the scope of this study. For example, the
perception module is not designed to recognize a mug and detects similar object
in a new scene. Such capability, however, is to be added to the perception
module in the future using state-of-the-art algorithms such as [VJ01, LM02]
etc.

7.4 Perspectives

Extension New scenarios can be developed using exactly the same princi-
pals, such as Figure 7.1. The robot takes a sequence of footsteps and a task
posture from any planning or optimization method as input then adapts it
to the real environment. It can be imagined that a dynamic task requiring
precise foot placements can be enhanced by the adaptation scheme presented
here. For instance, if the robot was to make steps before kicking a football, the
last step before the shoot should be well positioned with respect to the ball.
Using this framework, the robot can continuously track the ball and adapt its
footsteps depending on what it sees.

Robustness Our experiments are carried out in controlled environment.
The target is well known and easily recognizable by color. The grasping
strategy is predetermined by perfect knowledge of the target.

7.4. PERSPECTIVES 95

More robust vision components can be incorporated into the system with
another state-of-the-art object detection. Machine learning can also be used
to determine the optimal grasping point. This, on one hand, improves the
robustness, and on the other, allows grasping unknown objects that had never
been seen before but share features with trained objects.

With the existing design of the HRP-2 robot, the locomotion on non-flat
floor is a challenging problem. Walking on a slope experiment has been carried
out and provided promising results. Other research efforts are being made in
using control to make walking on unknown and uneven ground possible. New
generations of humanoid robots will all hopefully include passive heels. With
new robot design and new walking strategy, a new definition of a feasible step
will have to be made and fed to the footstep optimizer as constraints.

Future robots In the future, chances are that the humanoid robots will
resemble more and more to humans and/or other living organism. For example,
one can imagine that the robot will have soft hands with haptic sensors.
The control paradigm might also be different [PB06]. A future robot with
McKibben pneumatic actuators will have to be controlled differently. The
controller, as a well defined mathematical formulation with Jacobians, task
space also have to be rethought. Again, machine learning can play an impor-
tant role when the precise dynamical properties is not known or too difficult
to model [Oud10]. However, if the underling controller evolves and the top
level interface stays the same, the adaptation scheme presented here will still
be applicable as is.

In this work, the conditions imposed on the robot are designed based
only on its limits. In the future, to make the robot able to work in human
environment, with people around it, safety conditions will have to applied to
the robot. These conditions will have to be incorporated in the optimization
process, at a higher priority than existing constraints: step feasibility, robot
self-collision, obstacle avoidance. The framework based on the perception-
decision-action loop presented here will be complementary to the intrinsic
adaptation capability of future robots.

Appendix A

Joint description

A joint is characterized by its type (prismatic or revolute) and its relative posi-
tion and orientation with respect to the parent joint. A complete description of
a robot can therefore be obtained by combining the hierarchy tree depicted in
Figure 2.5 and the description of each joint. Two popular joint representations
are

Direct frame relation between joints For each joint, we record:

• x, y, z: position of the new frame in its parent frame

• rx, ry, rz (raw-pitch-yaw representation), or
x, y, z, w (quaternion): rotation with respect to parent frame

• type: prismatic or revolute

• axis: (x, y or z)

translation and orientation, usually in quaternion or roll-pitch-yaw form
are stored along with the the joint’s type and local axis. This representation
is used, for example in the URDF format of the PR2 robot or the HRP2’s
VRML.

Devanit-Haternberg parameters This is a minimal representation pro-
posed by [HD64] describes the relative position of consecutive joint frames in
Devanit and Haternberg do that by defining 4 quantities (Figure A.1):

• d: offset along previous z to the common normal

• θ: angle about previous z, from old x to new x

• r: length of the common normal

• α: angle about common normal, from old z axis to new z axis

97

98 APPENDIX A. JOINT DESCRIPTION

Figure A.1: DH parameter assignments

For all joints (revolute and prismatic), 3 out of 4 quantities are fixed, the
fourth term corresponds to the degree of freedom of the joint. This variable is
θ for revolute joint and d for prismatic joints. The convention states that all
joints revolute or translate around its z axis.

With either representation one should be able to write the transformation
matrix between joint i− 1 and its child (joint i), e.g.

For revolute joint around z axis with direct representation and raw-pitch-
yaw representation, with cx, sx, cy ... are abbreviations of sin rx,cos rx,cos ry
...

i−1
i T =

czcx −czsxcy + szsy czsxsy + szcy x
sx cxcy −cxsy y
−szcx szsxcy + czsy −szsxsy + czcy z

0 0 0 1

×

cθ sθ 0 0
−sθ cθ 0 0
0 0 1 0
0 0 0 1

(A.1)

And for DH parameters, cθ, sθ ... is the abbreviation for cos θ, sin θ ...

i−1
i T =

cθi −sθi 0 ai−1

sθicαi−1 cθi.cαi−1 −sαi−1 −sαi−1.di
sθisαi−1 cθi.sαi−1 cαi−1 cαi−1.di

0 0 0 1

 (A.2)

Bibliography

[AMS97a] Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal.
Locally weighted learning. Artificial Intelligence Review, 11:11–
73, 1997. 10.1023/A:1006559212014.

[AMS97b] Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal.
Locally weighted learning for control. Artificial Intelligence
Review, 11:75–113, 1997. 10.1023/A:1006511328852.

[Atk89] C.G. Atkeson. Learning arm kinematics and dynamics. Annual
review of neuroscience, 12(1):157–183, 1989.

[BDN+07] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and
J. Kuffner. Grasp planning in complex scenes. In Humanoid
Robots, 2007 7th IEEE-RAS International Conference on, pages
42 –48, 29 2007-dec. 1 2007.

[Bee79] RC Beecher. Puma: Programmable universal machine for
assembly. Computer vision and sensor-based robots, pages 64–66,
1979.

[BIC63] A. Ben-Israel and A. Charnes. Contributions to the theory of
generalized inverses. Journal of the Society for Industrial and
Applied Mathematics, 11(3):667–699, 1963.

[BPM+11] L. Baudouin, N. Perrin, T. Moulard, F. Lamiraux, O. Stasse,
and E. Yoshida. Real-time replanning using 3d environment for
humanoid robot. In Humanoid Robots (Humanoids), 2011 11th
IEEE-RAS International Conference on, pages 584 –589, oct.
2011.

[Bra98] G. R. Bradski. Conputer vision face tracking for use in a
perceptual user interface. Proc. of Intel Technology Journal, 1998,
1998.

[BWS+09] Christoph Borst, Thomas Wimbock, Florian Schmidt, Matthias
Fuchs, Bernhard Brunner, Franziska Zacharias, Paolo Robuffo
Giordano, Rainer Konietschke, Wolfgang Sepp, Stefan Fuchs,

99

100 BIBLIOGRAPHY

Christian Rink, Alin Albu-Schaffer, and Gerd Hirzinger. Rollin’
justin - mobile platform with variable base. In Robotics and
Automation, 2009. ICRA ’09. IEEE International Conference on,
pages 1597 –1598, may 2009.

[Cap20] K. Capek. Rossum’s universal robots. Prague, CZ, 1920.

[Cha98] F. Chaumette. Potential problems of stability and convergence in
image-based and position-based visual servoing. The confluence
of vision and control, pages 66–78, 1998.

[Che95] Yizong Cheng. Mean shift, mode seeking, and clustering.
Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 17(8):790 –799, aug 1995.

[CLC+05] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and
T. Kanade. Footstep planning for the honda asimo humanoid. In
Robotics and Automation, 2005. ICRA 2005. Proceedings of the
2005 IEEE International Conference on, pages 629 – 634, April
2005.

[CNKK07] J. Chestnutt, K. Nishiwaki, J. Kuffner, and S. Kagami. An adap-
tive action model for legged navigation planning. In Humanoid
Robots, 2007 7th IEEE-RAS International Conference on, pages
196 –202, 29 2007-dec. 1 2007.

[CRTW05] Steve Collins, Andy Ruina, Russ Tedrake, and Martijn Wisse. Ef-
ficient bipedal robots based on passive-dynamic walkers. Science,
307(5712):1082–1085, 2005.

[CWR01] S.H. Collins, M. Wisse, and A. Ruina. A three-dimensional
passive-dynamic walking robot with two legs and knees. The
International Journal of Robotics Research, 20(7):607–615, 2001.

[DLL11] D. Dang, F. Lamiraux, and J.-P. Laumond. A framework for
manipulation and locomotion with realtime footstep replanning.
In Humanoid Robots (Humanoids), 2011 11th IEEE-RAS Inter-
national Conference on, pages 676 –681, oct. 2011.

[DLL12] D. Dang, J.P. Laumond, and F. Lamiraux. Experiments on
whole-body manipulation and locomotion with footstep real-time
optimization. In Humanoid Robots (Humanoids), 2012 11th
IEEE-RAS International Conference on. IEEE, 2012.

[DS73] Boris M. Dobrotin and Victor D. Scheinman. Design of a com-
puter controlled manipulator for robot research. In Proceedings
of the 3rd international joint conference on Artificial intelligence,

BIBLIOGRAPHY 101

IJCAI’73, pages 291–297, San Francisco, CA, USA, 1973. Morgan
Kaufmann Publishers Inc.

[DVS01] A. D’Souza, S. Vijayakumar, and S. Schaal. Learning inverse
kinematics. In Intelligent Robots and Systems, 2001. Proceedings.
2001 IEEE/RSJ International Conference on, volume 1, pages
298 –303 vol.1, 2001.

[EK04] S. Ekvall and D. Kragic. Interactive grasp learning based
on human demonstration. In Robotics and Automation, 2004.
Proceedings. ICRA ’04. 2004 IEEE International Conference on,
volume 4, pages 3519 – 3524 Vol.4, 26-may 1, 2004.

[EK09] A. Escande and A. Kheddar. Contact planning for acyclic motion
with tasks constraints. In Intelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on, pages 435–
440. IEEE, 2009.

[EKM06] A. Escande, A. Kheddar, and S. Miossec. Planning support
contact-points for humanoid robots and experiments on hrp-2.
In Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on, pages 2974 –2979, oct. 2006.

[EKTL+11] A. El Khoury, M. Taix, F. Lamiraux, et al. Path optimization for
humanoid walk planning: an efficient approach. In Proceedings
of the 8th International Conference on Informatics in Control,
Automation and Robotics, pages 179–184, 2011.

[EOR+11] J. Englsberger, C. Ott, M.A. Roa, A. AlbuSchaffer, and
G. Hirzinger. Bipedal walking control based on capture point
dynamics. In Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on, pages 4420–4427. IEEE,
2011.

[GALP07] C. Goldfeder, P.K. Allen, C. Lackner, and R. Pelossof. Grasp
planning via decomposition trees. In Robotics and Automation,
2007 IEEE International Conference on, pages 4679 –4684, april
2007.

[GPFZ06] A. Gil-Pinto, P. Fraisse, and R. Zapata. A decentralized algorithm
to adaptive trajectory planning for a group of nonholonomic
mobile robots. In Intelligent Robots and Systems, 2006 IEEE/RSJ
International Conference on, pages 404 –417, oct. 2006.

[GYT05] Yisheng Guan, K. Yokoi, and K. Tanie. Feasibility: Can
humanoid robots overcome given obstacles? In Robotics and
Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on, pages 1054 – 1059, apr 2005.

102 BIBLIOGRAPHY

[HBOS05] G. Hirzinger, J. Bals, M. Otter, and J. Stelter. The dlr-kuka suc-
cess story: robotics research improves industrial robots. Robotics
Automation Magazine, IEEE, 12(3):16 – 23, sept. 2005.

[HD64] R.S. Hartenberg and J. Denavit. Kinematic synthesis of linkages.
McGraw-Hill New York, 1964.

[HDW+10] A. Herdt, H. Diedam, P.B. Wieber, D. Dimitrov, K. Mombaur,
and M. Diehl. Online walking motion generation with automatic
footstep placement. Advanced Robotics, 24, 5(6):719–737, 2010.

[HHHT98] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka. The
development of honda humanoid robot. In Robotics and Automa-
tion, 1998. Proceedings. 1998 IEEE International Conference on,
volume 2, pages 1321–1326. Ieee, 1998.

[HKK+07] Kensuke Harada, Shuuji Kajita, Fumio Kanehiro, Kiyoshi Fu-
jiwara, Kenji Kaneko, Kazuhito Yokoi, and Hirohisa Hirukawa.
Real-time planning of humanoid robot’s gait for force-controlled
manipulation. Mechatronics, IEEE/ASME Transactions on,
12(1):53 –62, feb. 2007.

[HKS+05] K. Harada, S. Kajita, H. Saito, M. Morisawa, F. Kanehiro,
K. Fujiwara, K. Kaneko, and H. Hirukawa. A humanoid robot
carrying a heavy object. In Robotics and Automation, 2005. ICRA
2005. Proceedings of the 2005 IEEE International Conference on,
pages 1712 – 1717, april 2005.

[HKU03] Yoonkwon Hwang, A. Konno, and M. Uchiyama. Whole body
cooperative tasks and static stability evaluations for a humanoid
robot. In Intelligent Robots and Systems, 2003. (IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference on, vol-
ume 2, pages 1901 – 1906 vol.2, oct. 2003.

[ICRC07] A.J. Ijspeert, A. Crespi, D. Ryczko, and J.M. Cabelguen. From
swimming to walking with a salamander robot driven by a spinal
cord model. Science, 315(5817):1416–1420, 2007.

[KAAT03] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann. Planning
collision-free reaching motions for interactive object manipulation
and grasping. In Computer Graphics Forum, volume 22, pages
313–322. Wiley Online Library, 2003.

[Kat74] I. Kato. Information-power machine with senses and limbs (wabot
1). In First CISM-IFToMM Symp. on Theory and Practice of
Robots and Manipulators, volume 1, pages 11–24. Springer-Verlag,
1974.

BIBLIOGRAPHY 103

[KBC+04] Oussama Khatib, Oliver Brock, Kyong-Sok Chang, Diego Rus-
pini, Luis Sentis, and Sriram Viji. Human-centered robotics
and interactive haptic simulation. The International Journal of
Robotics Research, 23(2):167–178, 2004.

[KFE96] I. Kamon, T. Flash, and S. Edelman. Learning to grasp
using visual information. In Robotics and Automation, 1996.
Proceedings., 1996 IEEE International Conference on, volume 3,
pages 2470 –2476 vol.3, apr 1996.

[Kha87] O. Khatib. A unified approach for motion and force control of
robot manipulators: The operational space formulation. Robotics
and Automation, IEEE Journal of, 3(1):43 –53, February 1987.

[KJCL97] M. Khatib, H. Jaouni, R. Chatila, and J.P. Laumond. Dynamic
path modification for car-like nonholonomic mobile robots. In
Robotics and Automation, 1997. Proceedings., 1997 IEEE Inter-
national Conference on, volume 4, pages 2920 –2925 vol.4, apr
1997.

[KKK+01] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa.
The 3d linear inverted pendulum mode: a simple modeling
for a biped walking pattern generation. In Intelligent Robots
and Systems, 2001. Proceedings. 2001 IEEE/RSJ International
Conference on, volume 1, pages 239 –246 vol.1, 2001.

[KKN+02a] Satoshi Kagami, Tomonobu Kitagawa, Koichi Nishiwaki, To-
momichi Sugihara, Masayuki Inaba, and Hirochika Inoue. A fast
dynamically equilibrated walking trajectory generation method
of humanoid robot. Autonomous Robots, 12:71–82, 2002.
10.1023/A:1013210909840.

[KKN+02b] J.J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue.
Dynamically-stable motion planning for humanoid robots. Au-
tonomous Robots, 12(1):105–118, 2002.

[KKN+03] J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue.
Online footstep planning for humanoid robots. In Robotics and
Automation, 2003. Proceedings. ICRA ’03. IEEE International
Conference on, volume 1, pages 932 – 937 vol.1, September 2003.

[KLW+09] Oussama Kanoun, Florent Lamiraux, Pierre-Brice Wieber, Fumio
Kanehiro, Eiichi Yoshida, and Jean-Paul Laumond. Prioritizing
linear equality and inequality systems: application to local motion
planning for redundant robots. In Proceedings of the 2009 IEEE
international conference on Robotics and Automation, ICRA’09,
pages 724–729, Piscataway, NJ, USA, 2009. IEEE Press.

104 BIBLIOGRAPHY

[KLY10] Oussama Kanoun, Jean-Paul Laumond, and Eiichi Yoshida.
Planning foot placements for a humanoid robot: A problem
of inverse kinematics. The International Journal of Robotics
Research, 2010.

[KOS+87] I. Kato, S. Ohteru, K. Shirai, T. Matsushima, S. Narita, S. Sug-
ano, T. Kobayashi, and E. Fujisawa. The robot musician wabot2
(waseda robot2). Robotics, 3(2):143–155, 1987.

[Kuo99] A.D. Kuo. Stabilization of lateral motion in passive dynamic walk-
ing. The International Journal of Robotics Research, 18(9):917–
930, 1999.

[LL98] F. Lamiraux and J.P. Laumond. A practical approach to
feedback control for a mobile robot with trailer. In Robotics
and Automation, 1998. Proceedings. 1998 IEEE International
Conference on, volume 4, pages 3291 –3296 vol.4, may 1998.

[LLO11] Olivier Ly, Matthieu Lapeyre, and Pierre-Yves Oudeyer. Bio-
inspired vertebral column, compliance and semi-passive dynamics
in a lightweight robot. In IEEE IROS, San Francisco, United
States, 2011.

[LM02] R. Lienhart and J. Maydt. An extended set of haar-like
features for rapid object detection. In Image Processing. 2002.
Proceedings. 2002 International Conference on, volume 1, pages
I–900 – I–903 vol.1, 2002.

[LTK91] Q. Li, A. Takanishi, and I. Kato. A biped walking robot having a
zmp measurement system using universal force-moment sensors.
In Intelligent Robots and Systems’ 91.’Intelligence for Mechanical
Systems, Proceedings IROS’91. IEEE/RSJ International Work-
shop on, pages 1568–1573. IEEE, 1991.

[MC07a] N. Mansard and F. Chaumette. Task sequencing for high-level
sensor-based control. Robotics, IEEE Transactions on, 23(1):60
–72, February 2007.

[MC07b] N. Mansard and F. Chaumette. Task sequencing for high-level
sensor-based control. Robotics, IEEE Transactions on, 23(1):60
–72, feb. 2007.

[McG90] T. McGeer. Passive dynamic walking. The International Journal
of Robotics Research, 9(2):62–82, 1990.

[MHK+06] M. Morisawa, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro,
K. Fujiwara, S. Nakaoka, and H. Hirukawa. A biped pattern

BIBLIOGRAPHY 105

generation allowing immediate modification of foot placement in
real-time. In Humanoid Robots, 2006 6th IEEE-RAS Interna-
tional Conference on, pages 581 –586, dec. 2006.

[MKCA03] A.T. Miller, S. Knoop, H.I. Christensen, and P.K. Allen. Au-
tomatic grasp planning using shape primitives. In Robotics and
Automation, 2003. Proceedings. ICRA ’03. IEEE International
Conference on, volume 2, pages 1824 – 1829 vol.2, sept. 2003.

[Mor83] H.P. Moravec. The stanford cart and the cmu rover. Proceedings
of the IEEE, 71(7):872 – 884, july 1983.

[MSEK09] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar. A versatile
generalized inverted kinematics implementation for collaborative
working humanoid robots: The stack of tasks. In Advanced
Robotics, 2009. ICAR 2009. International Conference on, pages
1 –6, June 2009.

[NKK+02] K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, and H. Inoue.
Online generation of humanoid walking motion based on a fast
generation method of motion pattern that follows desired zmp.
In Intelligent Robots and Systems, 2002. IEEE/RSJ International
Conference on, volume 3, pages 2684 – 2689 vol.3, 2002.

[NL08] A. Nakhaei and F. Lamiraux. Motion planning for humanoid
robots in environments modeled by vision. In Humanoid Robots,
2008. Humanoids 2008. 8th IEEE-RAS International Conference
on, pages 197–204. IEEE, 2008.

[Oud10] P.Y. Oudeyer. On the impact of robotics in behavioral and
cognitive sciences: from insect navigation to human cognitive
development. Autonomous Mental Development, IEEE Transac-
tions on, 2(1):2–16, 2010.

[PB06] R. Pfeifer and J.C. Bongard. How the body shapes the way we
think: a new view of intelligence. MIT press, 2006.

[PCDG06] J. Pratt, J. Carff, S. Drakunov, and A. Goswami. Capture point:
A step toward humanoid push recovery. In Humanoid Robots,
2006 6th IEEE-RAS International Conference on, pages 200 –207,
dec. 2006.

[Pop98] A.L.M. Pope. The CORBA reference guide: understanding
the common object request broker architecture. Addison-Wesley
Longman Publishing Co., Inc., 1998.

106 BIBLIOGRAPHY

[PSB+12] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida.
Fast humanoid robot collisionfree footstep planning using swept
volume approximations. Robotics, IEEE Transactions on,
28(2):427 –439, apr 2012.

[PSLY11] N. Perrin, O. Stasse, F. Lamiraux, and E. Yoshida. A biped
walking pattern generator based on half-steps , for dimensionality
reduction. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 1270 –1275, may 2011.

[PT97] L.A. Piegl and W. Tiller. The NURBS book. Springer Verlag,
1997.

[QK93] S. Quinlan and O. Khatib. Elastic bands: connecting path plan-
ning and control. In Robotics and Automation, 1993. Proceedings.,
1993 IEEE International Conference on, pages 802 –807 vol.2,
May 1993.

[RBN+08] M. Raibert, K. Blankespoor, G. Nelson, R. Playter, et al. Bigdog,
the rough-terrain quadruped robot. In Proceedings of the 17th
World Congress, pages 10823–10825, 2008.

[RMVJ01] D.A. Rosenbaum, R.J. Meulenbroek, J. Vaughan, and C. Jansen.
Posture-based motion planning: Applications to grasping. Psy-
chological Review, 108(4):709, 2001.

[Ros06] M.E. Rosheim. Leonardo’s lost robots. Springer Verlag, 2006.

[SCD02] P. Soueres, V. Cadenat, and M. Djeddou. Dynamical sequence
of multi-sensor based tasks for mobile robots navigation. In 7th
Symp. on Robot Control (SYROCO’03), volume 2, pages 423–428,
2002.

[SELT91] K. Salisbury, B. Eberman, M. Levin, and W. Townsend. The
design and control of an experimental whole-arm manipulator.
In The fifth international symposium on Robotics research, pages
233–241. MIT Press, 1991.

[SHV06] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling
and control. John Wiley & Sons New York, NY, USA:, 2006.

[SK06] L. Sentis and O. Khatib. A whole-body control framework
for humanoids operating in human environments. In Robotics
and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, pages 2641 –2648, May 2006.

BIBLIOGRAPHY 107

[SRM+11] L. Saab, O. Ramos, N. Mansard, P. Soueres, and JY Fourquet.
Generic dynamic motion generation with multiple unilateral
constraints. In Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on, pages 4127–4133. IEEE,
2011.

[SS91] B. Siciliano and J.-J.E. Slotine. A general framework for
managing multiple tasks in highly redundant robotic systems. In
Advanced Robotics, 1991. ’Robots in Unstructured Environments’,
91 ICAR., Fifth International Conference on, pages 1211 –1216
vol.2, June 1991.

[SVW+08] O. Stasse, B. Verrelst, P.B. Wieber, B. Vanderborght, P. Evrard,
A. Kheddar, and K. Yokoi. Modular architecture for humanoid
walking pattern prototyping and experiments. Advanced Robotics,
22, 6(7):589–611, 2008.

[SWN08] A. Saxena, L. Wong, and A.Y. Ng. Learning grasp strategies with
partial shape information. AAAI, 2008.

[Tay04] Abdelhamid Tayebi. Adaptive iterative learning control for robot
manipulators. Automatica, 40(7):1195 – 1203, 2004.

[TFG+08] R. Tellez, F. Ferro, S. Garcia, E. Gomez, E. Jorge, D. Mora,
D. Pinyol, J. Oliver, O. Torres, J. Velazquez, and D. Faconti.
Reem-b: An autonomous lightweight human-size humanoid robot.
In Humanoid Robots, 2008. Humanoids 2008. 8th IEEE-RAS
International Conference on, pages 462 –468, dec. 2008.

[TIS+04] T. Takubo, K. Inoue, K. Sakata, Y. Mae, and T. Arai. Mobile
manipulation of humanoid robots - control method for com
position with external force. In Intelligent Robots and Systems,
2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International
Conference on, volume 2, pages 1180 – 1185 vol.2, sept.-2 oct.
2004.

[TL89] R.Y. Tsai and R.K. Lenz. A new technique for fully autonomous
and efficient 3d robotics hand/eye calibration. Robotics and
Automation, IEEE Transactions on, 5(3):345 –358, jun 1989.

[ToLTK90] A. Takanishi, Hun ok Lim, M. Tsuda, and I. Kato. Realization of
dynamic biped walking stabilized by trunk motion on a sagittally
uneven surface. In Intelligent Robots and Systems ’90. ’Towards
a New Frontier of Applications’, Proceedings. IROS ’90. IEEE
International Workshop on, pages 323 –330 vol.1, jul 1990.

108 BIBLIOGRAPHY

[UNN+11] J. Urata, K. Nshiwaki, Y. Nakanishi, K. Okada, S. Kagami, and
M. Inaba. Online decision of foot placement using singular lq
preview regulation. In Humanoid Robots (Humanoids), 2011 11th
IEEE-RAS International Conference on, pages 13 –18, oct. 2011.

[VFJ70] M. Vukobratovic, A. A. Frank, and D. Juricic. On the stability
of biped locomotion. Biomedical Engineering, IEEE Transactions
on, BME-17(1):25 –36, jan. 1970.

[VJ01] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Computer Vision and Pattern
Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on, volume 1, pages I–511 – I–518
vol.1, 2001.

[VS72] M. Vukobratovic and J. Stepanenko. On the stability of anthropo-
morphic systems. Mathematical Biosciences, 15(1-2):1–37, 1972.

[VSYV06] B. Verrelst, O. Stasse, K. Yokoi, and B. Vanderborght. Dynam-
ically stepping over obstacles by the humanoid robot hrp-2. In
Humanoid Robots, 2006 6th IEEE-RAS International Conference
on, pages 117 –123, dec. 2006.

[WBdLJ08] Keenan Wyrobek, Eric Berger, H.F. Machiel Van der Loos,
and J. Kenneth Salisbury Jr. Towards a personal robotics
development platform: Rationale and design of an intrinsically
safe personal robot. In Proc. International Conference on Robotics
and Automation (ICRA), 2008.

[Wie02] Pierre-Brice Wieber. On the stability of walking systems. In
Proceedings of the International Workshop on Humanoid and
Human Friendly Robotics, Tsukuba Japon, 2002.

[YPL+10] Eiichi Yoshida, Mathieu Poirier, Jean-Paul Laumond, Oussama
Kanoun, Florent Lamiraux, Rachid Alami, and Kazuhito Yokoi.
Pivoting based manipulation by humanoid robot. Autonomous
Robots, 28:77–88, 2010. 10.1007/s10514-009-9143-x.

List of Figures

1.1 Early automata . 1

1.2 Early mobile robots . 3

1.3 First humanoid robots developed at the Waseda University 4

1.4 Evolution of HONDA humanoid robots 4

1.5 Some of the HRP family, from left to right: HRP-4, HRP-2, HRP-
3P and HRP-4c . 5

1.6 Experiments on HRP-2 using the real-time footstep optimization . 12

2.1 Global architecture . 15

2.2 Revolute first joint . 16

2.3 Prismatic first joint . 16

2.4 The HRP-2 robot and its joints . 17

2.5 Kinematic tree of the HRP-2 robot 18

2.6 Mapping from joint space to operational space 18

2.7 Joint space controller . 19

2.8 Quasi-static walking. The robot moves between stable poses during
the experiment [EK09] . 25

2.9 Humanoid robot model . 26

2.10 Zero-moment point . 27

2.11 Cart table model . 29

2.12 Pattern Generator . 29

2.13 Preview control gain Gp for T = 5ms, zc = 0.814m,Qe = 1.0, R =
1.0e− 6 . 31

2.14 Tracking performance for preview windows 1.6s 32

2.15 Tracking performance for preview windows 0.8s 32

2.16 The ZMP (green zone) and the CoM (red line) during a walk . . . 33

2.17 Step scheduling with analytical CoM strategy 37

2.18 An example of inequality task at lower priority than an equality
task [KLW+09] . 39

2.19 Representation of one step . 40

2.20 Virtual kinematic chain . 41

2.21 Deployment of virtual kinematic chain 42

2.22 Find the number of steps automatically by the optimizer 43

109

110 List of Figures

2.23 Computation of motor commands from system states in the Stack
O fTasks . 44

2.24 A graph of entities in action [MSEK09] 45

2.25 Integration of the pattern generator inside the StackOfTasks 46

2.26 CoM (red line) and Foot trajectories (blue lines) tracking during a
walking experiment . 47

2.27 Controller-planner connection. Dashed arrows represent CORBA
connection . 47

3.1 Reactive walking vs. offline computed walking 50

3.2 A simple configuration of the floor 51

3.3 Potential Field . 51

3.4 Constraints on foot placements . 53

3.5 Step deformation by local action on footsteps 54

3.6 Step deformation by task modification 57

3.7 Step deformation by gaze task modification 58

4.3 Back projection on model’s hue histogram 61

4.4 Hueblob interface . 63

4.5 3D points on the tracked object . 63

4.6 Hand-eye calibration process . 65

5.1 Initial stepping over step sequence with localstepper 68

5.2 Robot foot . 69

5.3 Stepping over a cylindrical bar . 69

5.4 General shape obstacles for which testing collision for the robot sole
suffices . 70

5.5 Collision avoidance for the knee . 71

5.6 Step deformation loop . 71

5.7 Stepping over a bar on HRP-2 . 73

5.8 Tracked bar by the robot . 74

5.9 Perceived position of the bar (x and y components) which is moved
while the robot is walking (around second 12). 74

5.10 Replanning for a moving bar . 75

6.1 Output of localstepper . 78

6.2 Footsteps replanning . 80

6.3 Information flow in a grasping task 82

6.4 Hand stuck as the posture task was activated too late. 83

6.5 Mandatory passage point for grasping 84

6.6 Cubic spline . 84

List of Figures 111

6.7 Grasping an object at close distance. This first experiment is
intended to test the grasping accuracy and the stereo vision system.
Since the target is at such close range. The steps that the robot
made are only to prepare the feet position to well support the
planned posture. 85

6.8 Grasping an fixed object at distance, at table level. The robot
searches, locates the target, plans the first stepping sequence and
the grasp postures. The target continues to be tracked during the
whole experiments (43s). 97 footstep re-computations has been
carried out during the walking sequence (lasted 14s). 86

6.9 Grasping object on the table which is moved during the movement.
This experiment has been presented in public at the College de
France on April 2, 2012 with a very short preparation time. The
light on the stage changed subsequently the hue of the learned
target. The perception module was capable of taking a new model
thanks to the design in chapter 4 and adapt to the new light
condition. The table was intentionally moved during the movement
to illustrate the fact that the robot replanned its footsteps as it
received updated information about the environnement. 87

6.10 Grasping object at ground level. The foam was placed to protect
the hand in case of emmergency . 88

6.11 Foot step adaptation during a grasping movement This experiment
illustrates how the robot adapt its footsteps (right figures). The
target is pushed while the robot walks. 89

6.12 Grasping without stopping. This experiment is the only one that
has not been tested on the robot. Since the whole grasping process
hapends while the robot is walking, the swinging movement of the
chest brings it dangerously close to the grasping arm in simula-
tion. More safety measures are to be designed before applying this
movement on the robot. 90

7.1 A possible initial sequence found by motion planning techniques.
[EKTL+11] . 93

A.1 DH parameter assignments . 98

List of Tables

1.1 Size of the HRP series . 5

4.1 Extrinsic parameter calibration on HRP-2. Lengths are in (m) . . 66

6.1 CPU time for replanning of final posture and footsteps (millisec-
onds) for a locomotion-grasp task 80

6.2 CPU time for replanning footsteps (milliseconds) for a locomotion-
grasp task . 81

113

Abstract

This thesis focuses on realization of tasks with locomotion on hu-
manoid robots. Thanks to their numerous degrees of freedom, humanoid
robots possess a very high level of redundancy. On the other hand,
humanoids are underactuated in the sense that the position and ori-
entation of the base are not directly controlled by any motor. These
two aspects, usually studied separately in manipulation and locomotion
research, are unified in a same framework in this thesis and are resolved
as one unique problem. Moreover, the generation of a complex movement
involving both tasks and footsteps is also improved becomes reactive. By
dividing the optimization process into appropriate stages and by feeding
directly the intermediate result to a task-based controller, footsteps can
be calculated and adapted in real-time to deal with changes in the
environment. A perception module is also developed to build a closed
perception-decision-action loop. This architecture combining planning
and reactivity validated on the HRP-2 robot. Two classes of experiments
are carried out. In one case the robot has to grasp an object far away
at different height level. In the other, the robot has to step over an
object on the floor. In both cases, the execution conditions are updated
in real-time to deal with the dynamics of the environment: changes in
position of the target to be caught or of the obstacle to be stepped over.

Keywords: manipulation, locomotion, footstep optimization, real-
time, adaptation, computer vision, visual servoing, reactivity

Résumé

Cette thèse porte sur la réalisation des tâches avec la locomotion
sur des robots humanoïdes. Grâce à leurs nombreux degrés de lib-
erté, ces robots possèdent un très haut niveau de redondance. D’autre
part, les humanoïdes sont sous-actionnés dans le sens où la position et
l’orientation ne sont pas directement contrôlées par un moteur. Ces
deux aspects, le plus souvent étudiés séparément dans la littérature,
sont envisagés ici dans un même cadre. En outre, la génération d’un
mouvement complexe impliquant à la fois des tâches de manipulation et
de locomotion, étudiée habituellement sous l’angle de la planification de
mouvement, est abordée ici dans sa composante réactivité temps réel.
En divisant le processus d’optimisation en deux étapes, un contrôleur
basé sur la notion de pile de tâches permet l’adaptation temps réel
des empreintes de pas planifiées dans la première étape. Un module
de perception est également conçu pour créer une boucle fermée de
perception-décision-action. Cette architecture combinant planification
et réactivité est validée sur le robot HRP-2. Deux classes d’expériences
sont menées. Dans un cas, le robot doit saisir un objet éloigné, posé sur
une table ou sur le sol. Dans l’autre, le robot doit franchir un obstacle.
Dans les deux cas, les condition d’exécution sont mises à jour en temps
réel pour faire face à la dynamique de l’environnement : changement de
position de l’objet à saisir ou de l’obstacle à franchir.

Mots-clés: manipulation, locomotion, optimisation de pas, temps
réel, adaptation, vision par ordinateur, asservissement visuel, réactivité

	Contents
	Introduction
	A brief history of robotics
	Whole-body manipulation
	Humanoid locomotion
	Adaptive locomotion
	Bio-inspired locomotion
	Approach and contribution

	Framework
	Global architecture
	Forward kinematic
	Prioritized hierarchy of tasks
	Locomotion
	Motion generation
	Integration on the HRP-2 robot

	Reactive locomotion by deformable footsteps
	Reactive walking
	Floor representation
	Environment adapted local footstep deformation
	Task-driven deformation

	Perception with stereo cameras
	Overview of modules and middleware
	Perception module
	Automated extrinsic calibration for humanoid robots

	Stepping over
	Problem statement
	Computation of initial stepping sequence
	Online deformation
	Experiment

	Object grasping
	Reactive online footstep replanning
	Online footstep replanning
	Motion blending by prioritized stack of task
	Experiments

	Conclusions
	Manipulation-locomotion fusion with closed-loop vision
	Application scope
	Limitations
	Perspectives

	Joint description
	Bibliography
	List of Figures
	List of Tables
	Abstract

