
HAL Id: tel-00744508
https://theses.hal.science/tel-00744508

Submitted on 23 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implémentation rigoureuse des systèmes temps-réels
Tesnim Abdellatif

To cite this version:
Tesnim Abdellatif. Implémentation rigoureuse des systèmes temps-réels. Autre [cs.OH]. Université de
Grenoble, 2012. Français. �NNT : 2012GRENM037�. �tel-00744508�

https://theses.hal.science/tel-00744508
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 7 août 2006

Présentée par

Tesnim Abdellatif

Thèse dirigée par Prof. Joseph Sifakis
et codirigée par Dr. Jacques Combaz

préparée au sein du laboratoire VERIMAG
et de l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique.

Rigorous Implementation of Real-
time Systems

Thèse soutenue publiquement le Juin 2012 ,
devant le jury composé de :

Mr. Roland Groz
Professor, INPG, Président

Mr. Sanjoy Baruah
Professor, University of North Carolina, Rapporteur

Mr. Eugene Asarin
Professor, Université Paris Diderot–Paris 7, Rapporteur

Mr. Félix Ingrand
Doctor, LAAS/CNRS, Examinateur

Mr. Wang Yi
Professor, Uppsala University, Examinateur

Mr. Joseph Sifakis
Professor, CNRS, Directeur de thèse

Mr. Jacques Combaz
Doctor, CNRS, Co-Directeur de thèse

2

ABSTRACT

Abstract

Real-time systems are systems that are subject to "real-time constraints"— e.g. operational
deadlines from event to system response. Often real-time response times are understood to
be in the order of milliseconds and sometimes microseconds. Building real-time systems
requires the use of design and implementation methodologies that ensure the property of
meeting timing constraints e.g. a system has to react within user-defined bounds such as
deadlines and periodicity. A missed deadline in hard real-time systems is catastrophic, like
for example in automotive systems, for example if an airbag is triggered too late in a car
accident, even one ms too late leads to serious repercussions. In soft real-time systems it can
lead to a significant loss of performance and QoS like for example in networked multimedia
systems.

We provide a rigorous design and implementation method for the implementation of real-
time systems. The implementation is generated from a given real-time application software
and a target platform by using two models:

• An abstract model representing the behavior of real-time software as a timed automa-
ton. The latter describes user-defined platform-independent timing constraints. Its
transitions are timeless and correspond to the execution of statements of the real-time
software.

• A physical model representing the behavior of the real-time software running on a
given platform. It is obtained by assigning execution times to the transitions of the
abstract model.

A necessary condition for implementability is time-safety, that is, any (timed) execution
sequence of the physical model is also an execution sequence of the abstract model. Time-
safety means that the platform is fast enough to meet the timing requirements. As execution
times of actions are not known exactly, time-safety is checked for worst-case execution times
of actions by making an assumption of time-robustness: time-safety is preserved when speed
of the execution platform increases. For given real-time software and execution platform
corresponding to a time-robust model, we define an execution engine that coordinates the
execution of the application software so as to meet its timing constraints. Furthermore, in
case of non-robustness, the execution engine can detect violations of time-safety and stop
execution. We have implemented the execution Engine for BIP programs with real-time
constraints. We have validated the method for the design and implementation of the Dala
rover robot. We show the benefits obtained in terms of CPU utilization and amelioration
in the latency of reaction.

3

ABSTRACT

4

ACKNOWLEDGEMENTS

Acknowledgements

I would like to thank the jury members, especially Prof Sanjoy Baruah and Prof Eugene
Asarin for evaluating my dissertation and for their feedbacks. I also thank Prof Wang Yi
and Dr Felix Ingrand for examining my work. I thank Prof Rolang Groz for accepting to
chair the defense session.

I express all my gratitude to my advisor Prof Joseph Sifakis, who has given me the chance
to do my PhD in his team. I learnt a lot from his knowledge and his feedbacks, and I thank
him for his support and advices. I am thankful to Dr Jacques Combaz with his precious
help. He has given me a great support to accomplish the work, in implementation and
writing. I thank him for the time he spend to give me helpful explanations and discussions.

In addition, I thank Prof Saddek Ben Salem from Verimag for giving me the opportunity
to work with him on the autonomous systems design project. I thank him for his encour-
agements and the trust he gave me to fulfill my ideas. I also thank Dr Marc Poulhies for his
help in technical aspects, and Prof Marius Bozga and Dr Ananda Basu for their help with
the BIP framework. I also thank again Dr Felix Ingrand and Lavindra De Silva from the
LAAS laboratory for the interactions we had. I am thankful to the Magillem team, espe-
cially Dr. Guillaume Godet Bar for his support. I am also thankful for the implementation
effort carried out by the intern Melek Charfi. Furthermore, It was a real pleasure to work
in the Verimag laboratory in the DCS team, a very special "thank you" goes to my friends
Jean, Emmanuel, Paris, Vasso and Borzoo for their support and for the special times we
were talking, taking coffee breaks and even the share of everyday life moments. I also thank
Ahlem, Ayoub, Wiem and Wajdi for the moments we spend together talking in the caffet.

I am happy to have great friends that motivated and encouraged me all these wonderful
years. I thank the Salsa Team for their joy of living, Audrey, Sarah, Remi, Karen, Dushi,
Alex, Olivier and Marion. I also thank Mona, Dali, Jihene, Maro, Marwen, Safe, Imene
and all the other members of the nice group for their support and their presence in my
life. I thank Lydia for her friendship during all the years I spent in Grenoble. A special
thank to Greg for his support and his friendship since the beginning of our studiest It is
also a pleasure to thank my friend of always Charbel through all our university studies.
Thank you for being here for me, for the great and even the difficult moments. I also thank
my wonderful friend Karima, that shared with me the joys of childhood, for her help and
her presence in my life. I would like to thank some special friends who contributed in my
happiness, Imene, Amani, Layla, Meriem, and many other friends behind the sea.

5

ACKNOWLEDGEMENTS

Finally, I express my gratitude to my family for all what they gave to me. My dear
parents for their prayers, the education they gave me and their encouragements to fulfill my
ambitions. I thank my brother, Nadir, for making me happy every holidays and my sisters
for their help and encouragements. A special thank to takoua, who encouraged me to do a
PhD, and Tahia with Antoine for their support, comfort and advise.

i

ACKNOWLEDGEMENTS

ii

CONTENTS

Contents

Abstract 3

Acknowledgements 5

Contents iii

I Context 1

1 Introduction 3
1 Challenges for the Design and Implementation of Real-Time Systems 4

1.1 Modeling . 4
1.2 Implementation . 4
1.3 Challenge : from Modeling to Implementation 5

2 Our Contribution . 5
3 Organization of the Thesis . 7

2 Implementation of Real-Time Systems 9
1 Synchronous Systems . 9

1.1 Presentation . 9
1.2 The Lustre Approach . 10

2 Asynchronous Systems . 13
3 Time Triggered Architecture . 14

3.1 Presentation . 14
3.2 The Oasis Approach . 15

4 Component Based Design . 18
4.1 Presentation . 18
4.2 Examples . 18

5 Discussion . 19

3 The BIP Framework 23
1 Presentation . 23
2 The BIP Model-based Framework . 24

2.1 Modeling Behavior . 24
2.2 Modeling Interactions . 24
2.3 Modeling Priorities . 25
2.4 Composition of Abstract models . 25

3 The BIP Component-based framework . 26

iii

CONTENTS

3.1 Atomic Components . 26
3.2 Connectors . 27
3.3 Priority Rule . 30
3.4 Composition of Components . 30

4 The BIP Tool-Chain . 32
4.1 General Overview . 32
4.2 The BIP Execution Engines . 34

5 Modeling Time using BIP . 39
6 Conclusion . 41

II Contribution 43

4 Time-Safety and Time-Robustness 45
1 Abstract Models . 46

1.1 Preliminary Definitions . 46
1.2 Definition of Abstract Models . 47

2 Physical Models . 50
2.1 Time Tracking . 50
2.2 Definition of Physical Models . 53

3 Time-Safety and Time-Robustness . 55
3.1 Definitions . 55
3.2 Enforcing Time-Robustness . 57

4 Conclusion . 60

5 Correct Implementation of Real-Time Systems 63
1 Abstract Models Execution Engine . 64

1.1 Composition of Abstract Models . 64
1.2 Execution Algorithm of Abstract Models 66

2 Physical Models Execution Engine . 69
2.1 Composition of Physical Models . 69
2.2 Execution Algorithm of Physical Models 70

3 Real-Time BIP Component based Framework 71
3.1 Real-Time Extensions in the BIP framework 73
3.2 Experimental Results: Adaptive Video Encoder 77

4 Conclusion . 80

6 Open Real-Time Systems 83
1 Introduction . 85
2 Open Abstract and Physical Models . 86

2.1 Open Abstract Models . 86
2.2 Open Physical Models . 88
2.3 Time-Safety and Time-Robustness 90

3 Open Real-time Execution Engine . 94
3.1 Composition of Models . 95
3.2 Execution Algorithm . 97

4 Implementation Method for the Real-Time BIP Framework 101
4.1 The BIP Language Extensions . 101

iv

CONTENTS

4.2 Mapping Inputs and Outputs with Physical Events 103
4.3 Use Case . 103

5 Conclusion . 107

III Use Cases : Autonomous Systems Design and Implementation 109

7 Building Robot Software Modules 111
1 Building Robot Software using Formal Methods 112
2 Presentation of the DALA Rover . 113

2.1 The Robot Architecture . 113
2.2 The BIP/GenoM Modules . 114
2.3 The Antenna Module Example . 116

3 The Antenna Module Experimental Results 117
3.1 Introducing Clocks and Timing Constraints 117
3.2 Introducing Input and Output Ports 119

4 Conclusion . 120

8 The Allen Temporal Logic for Planning 123
1 Building Plans Using Formal Methods . 124

1.1 State of the art . 124
1.2 Allen Temporal Logic . 124

2 Translating Allen Temporal Logic into BIP Models 127
2.1 Translating Allen intervals into BIP atomic components 128
2.2 Translating Allen constraints into BIP connectors 129

3 Plans Modeling Using BIP . 131
3.1 Modeling Plans: First Method . 131
3.2 New language for Modeling Plan . 134

4 The Dala Rover Planning Example . 137
4.1 Opportunistic Science . 141
4.2 The Temporal plan execution controller 143

5 Conclusion . 143

IV Conclusions and Perspectives 145

9 Conclusion 147
1 Achievements . 147
2 Perspectives . 149

List of Figures 151

Bibliography 155

v

CONTENTS

vi

Part I

Context

1

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Computer systems are evolving in all aspects of human life and have become ubiquitous.
We can find them in different types of applications from automotive to aeronautic, mil-
itary, telecommunication, medical and even home automation systems that may include
centralized control of lighting, HVAC (heating, ventilation and air conditioning) to provide
improved convenience, comfort, energy efficiency and security. We also call these systems
embedded systems. An embedded system is some combination of computer hardware and
software, either fixed in capability or programmable, that is specifically designed for a par-
ticular function. It also continuously interacts with other systems and the physical world.
Embedded systems constitute a domain where there is a special need for rigorous design
methods, since a failure in a part of the system may have catastrophic consequences on
systems performance, security, safety, availability etc. Moreover, systems become more and
more complex and their development is increasing exponentially. Although different tech-
niques in software engineering exist for ensuring correctness such as formal verification,
simulation, and testing, building correct and reliable systems is still a time-consuming and
hardly predictive task. Such methods require formal frameworks to model the system at
different design stages, from specification to implementation, and formal techniques to as-
sess its correctness and performance.

Real-time systems are systems that are subject to a "real-time constraint"— e.g. op-
erational deadlines from event to system response. Often real-time response times are un-
derstood to be in the order of milliseconds and sometimes microseconds. Building real-time
systems requires the use of design and implementation methodologies that ensure the prop-
erty of meeting timing constraints e.g. a system has to react within user-defined bounds
such as deadlines and periodicity. A missed deadline in hard real-time systems is catas-
trophic, like for example in air traffic control systems or automotive systems. Imagine a
car accident and what happens when the airbag is triggered too late, even one ms too late
leads to serious repercussions. In soft real-time systems it can lead to a significant loss of
performance and QoS like for example in networked multimedia systems. The satisfaction
of timing constraints depends on features of the execution platform, in particular its speed
and the occurence of stimuli from the external environment.

The component-based design has been also established as an important paradigm for the
development of embedded systems. The main principle is that complex systems can be ob-
tained by assembling components (building blocks). Components are systems characterized

3

CHAPTER 1. INTRODUCTION

by their interface, an abstraction that is adequate for composition and reuse. Composition
is used to build complex components by “gluing” together simpler ones. “Gluing” can be
seen as an operation that takes in components and their integration constraints, and from
these, it provides the description of a new, more complex component.

In this thesis, we provide a rigorous design and implementation methodology, applicable
to component-based design, in order to build real-time systems.

1 Challenges for the Design and Implementation of Real-Time

Systems

The building process of real-time systems includes in general two essential steps, design and
implementation. Rigorous design methodologies are model-based, that is, they explicitly or
implicitly associate with a real-time application software an abstract model.

1.1 Modeling

Modeling plays a central role in systems engineering. Usually, modeling techniques are ap-
plied at early phases of the system development and at high abstraction layer. Modeling
provides advantages such as the ease of construction, the possibility of integrating models
of heterogeneous components, generality by using abstraction and behavior nondetermin-
ism, the avoidance of probe effect or disturbances due to experimentation and finally, the
possibility of analysis by application of formal methods. Nevertheless, building models that
faithfully represent real-time systems is not a trivial task.

The model of a given real-time system is a platform-independent abstraction of the real-
time system, expressing timing constraints to be met by the implementation. The model is
based on an abstract notion of time. In particular, it assumes that actions, corresponding
to the application software computational steps of the system, are atomic and have zero
execution times.

An application software is usually written in some high-level programming language.
To cope with the complexity of applications, the software is decomposed into components.
Conceptually, the programmer reasons in terms of model of computation while developing
the software. This model is either explicit in languages with formal semantics or implicitly
assumed. This high-level model is based on abstractions about the behavior and interaction
of components. Such abstractions include concurrent execution, instantaneous computation,
zero delay, and perfect communication between components and/or between components
and the external environment, atomicity of actions, and so on. Building faithful models
requires a clear understanding of the implementation process and the possibility of relating
the application software with its run-time behavior. It is a key issue to discuss the problem
of establishing a connection between the application software and its implementation.

1.2 Implementation

Application software must be implemented on a particular platform. Therfore, implementa-
tion involves resolving a number of issues not always resolved at application software level,
such as ressource allocation (e.g. distribution of tasks, scheduling policies) or task commu-
nication and synchronization (e.g. shared memory, semaphores, queues). Implementation
compromises the abstractions of the high-level programming model, especially computation

4

CHAPTER 1. INTRODUCTION

and communication take time. Implementation theory allows deciding if a given applica-
tion software, i.e. its associated model, can be implemented on a given platform, that is,
for particular execution times of actions. Usually, implementability is checked for worst-
case execution times by making the assumption that timing constraints will also be met
for smaller execution times. This robustness assumption that increasing the speed of the
execution platform preserves satisfaction of timing constraints does not always hold as it
will be explained in Chapter 4.

1.3 Challenge : from Modeling to Implementation

The gap between application software model and implementation resides in the fact that
high-level model of computation is, in general, different from the low-level model of com-
putation. Software is immaterial and, ideally, platform independent; therefore, the high
level model often uses a logical time axis. The implementation runs on a platform and
interacts with its environment in real-time; thus, the low-level model uses a physical time
axis. Since abstractions may collapse during implementation, it is not insured that a real-
time system preserves the timing properties of its application software. For example, we
may have verified abscence of deadlocks using a high-level model of the application software
which assumes actions take zero-time. Nevertheless, the real-time system may have dead-
lock due to the presence of non zero execution time. Therefore, the challenge is to check
that a real-time system implementation is correct with respect to its application software
model [83, 84]. This is the correctness problem. To check correctness formally, there are
several methods. In general, we first build models of both the application software and
the real-time system. Since these models have different time axis (logical versus physical),
a correct mapping method should be used to ensure their implementability. A framework
must also be developed that relates the two and encompasses a notion of correctness.

2 Our Contribution

We provide a rigorous design and implementation methodology in order to build real-time
systems "correct-by-construction". For a given application and a target platform, the prin-
ciple is as follows.

• We consider that the application software is represented by an abstract model based
on timed automata [7]. The model takes into account only platform-independent
timing constraints expressing user-dependent requirements. The actions of the model
represent statements of the application software and are assumed to be timeless. Using
timed automata allows more general timing constraints than logical execution time
(LET) (e.g. lower bounds, upper bounds, time non-determinism). The abstract model
describes the dynamic behavior of the application software as a set of interacting tasks
without restriction on their type (i.e. periodic, sporadic, etc.).

• We introduce a notion of physical model. This model describes the behavior of the
abstract model (and thus of the application software) when it is executed on a target
platform. It is obtained from the abstract model by assigning to its actions execution
times which are upper bounds of the actual execution times for the target platform.

• We provide a rigorous implementation method which from a given physical model
(abstract model and given worst case exection times (WCET) for the target platform)

5

CHAPTER 1. INTRODUCTION

leads under some robustness assumption, to a correct implementation. The method
is implemented by a real-time execution engine which respects the semantics of the
abstract model (see Figure 1.1). Furthermore, if robustness of models cannot be
guaranteed, it checks online if the execution is correct, that is, if timing constraints
of the model are met. In addition, it checks violation of essential properties of the
abstract model such as deadlock-freedom and consistency of the timing constraints.

More formally, a physical model Mϕ is an abstract model M equipped with a function
ϕ assigning execution times to its actions. It represents the behavior of the application
software running on a platform. The physical model Mϕ is time-safe if all its timed traces
are also timed traces of the abstract model. We show that a time-safe physical model may
not be time-robust: reducing execution times does not preserve time-safety. A physical
model Mϕ is called time-robust if any physical model Mϕ′ is time-safe for all ϕ′ such that
ϕ′ ≤ ϕ. We show that non-deterministic models are not time-robust, in general. The
implementation of an application software on an execution platform is correct and safe, if
the WCET for its actions define a time-robust physical model.

The method also considers open real-time systems, where the behavior of the system
depends not only on its internal computations but also on the behavior of the environment.
Interactions with the environment are modeled using Input/Output automata, in which
actions correspond either to internal computations, or to communications with the envi-
ronment. Thus, an implementation of an application software depends also on the actual
arrival of inputs from the external environment. The application software consists of a set
of components modeled as timed input/output automata interacting by rendezvous. An
interaction is a set of actions belonging to distinct components that must be synchronized.
It can be executed from a given state only if all the involved actions are enabled. We
define a real-time execution engine which ensures components coordination by executing
interactions. The real-time execution engine proceeds by steps. Each step is the sequential
composition of three functions:

• Computing time intervals in which each interaction is enabled, by applying semantics
of the abstract model. Time intervals are specified by using a global abstract time
variable t.

• Updating the abstract time t by the real time tr provided by the execution platform,
if tr does not exceed the earliest deadline of the enabled interactions. Otherwise, a
time-safety violation is detected and execution stops.

• Scheduling amongst the possible interactions by executing one amongst the most ur-
gent.

We show that our implementation method is correct for time-robust execution time
assignments. That is, for time-robust execution time assignments ϕ, the set of the timed
traces computed by the Real-Time Execution engine is contained in the set of the timed
traces of M if the execution times of the actions are less than or equal to the execution
times defined by ϕ. If time-safety cannot be guaranteed for some ϕ, then the Real-Time
Execution engine will stop, that is, a deadline is violated by the physical system.

To encompass heterogeneity of execution we need to rely on a component-based frame-
work which provides rigorous semantics. BIP (Behavior, Interaction, Priority) is such a for-
malism for modeling heterogeneous component-based systems [12], developed at Verimag.
It describes systems as the composition of generic atomic components characterized by their

6

CHAPTER 1. INTRODUCTION

time-safety

Platform Model

(e.g. WCET)

Application

Static Analysis

Real-Time Engine

Model (Timed Automata)

Application Software

Compiler

Platform

time-robustness?
deadlock?

violation?

Figure 1.1: Toolset overview.

behavior and their interfaces. It supports a system construction methodology based on the
use of two families of composition operators: interactions and priorities. Interactions are
used to specify multiparty synchronization between components as the combination of two
protocols: rendezvous (strong symmetric synchronization) and broadcast (weak asymmet-
ric synchronizations). Priorities between interactions are used to restrict non determinism
inherent to parallel systems. They are particularly useful to model scheduling polices. In
contrast to existing formal frameworks, BIP is expressive enough to directly model any
coordination mechanism between components [23]. It has been successfully used to model
complex systems including mixed hardware/software systems and complex software appli-
cations. BIP can be used as a unifying semantic model for structural representation of
different, domain specific languages and programming models.

3 Organization of the Thesis

This document is composed of four parts, the first presenting the context of the work
(Chapters 2 and 3), the second describing the contribution of the thesis (Chapters 4, 5 and
6), the third presenting autonomous systems design and implementation (Chapters 7 and
8) applying the methodology presented in the contribution, and the last part (Chapter 9)
drawing the conclusion and future work. The details of all chapters are as follows:

• Chapter 2 presents the state of the art for building real-time systems. It includes
design methodologies for timed systems.

• Chapter 3 presents the basic ideas about component-based methodology, the basic
notions about components, their composition using glue operators, and the necessary
properties for component-based construction of systems. It introduces the BIP com-
ponent framework, describing its model-based semantics and architecture. The BIP
framework has the property to build correct-by-construction systems.

• Chapter 4 introduces the concepts of time-safety and time-robustness to build correct
real-time systems. We present a model-based implementation method that relies on
implementation theories that allow deciding if a given application software, i.e. its
associated model, can be implemented on a given platform. The method is based

7

CHAPTER 1. INTRODUCTION

on the use of an abstract model representing the abstract behavior of the real-time
application with user-defined platform-independent timing constraints, and a physical
model representing the execution of the abstract model on a specific platform. We
show that a physical model is time-safe if its execution sequences are contained in the
set of the execution sequences of the corresponding abstract model. A physical model
is time-robust if its execution on a faster machine preserves the time-safety property.

• Chapter 5 proposes a concrete implementation method using a real-time execution en-
gine which faithfully implements physical models. That is, if a physical model defined
from an abstract model and a target platform is time-robust, then the execution en-
gine coordinates the execution of the application software so as to meet the real-time
constraints. We also present some extension in the BIP framework to build real-time
component-based systems.

• Chapter 6 extends the concepts presented in Chapters 4 and 5 by not only consid-
ering closed systems but also taking into account communications with an external
environment.

• Chapters 7 and 8 present interesting results on the design and implementation of the
autonomous robot, Dala. We improved the functional and decisional levels design and
implementation and we show the benefits obtained in terms of CPU utilization and
design simplifications.

• We conclude the thesis in Chapter 9, with an overview of the work and its future
perspectives.

8

CHAPTER 2. IMPLEMENTATION OF REAL-TIME SYSTEMS

Chapter 2

Implementation of Real-Time

Systems

In this chapter we summarize a brief description of the current state-of-the-art in real-time
systems design and implementation. When developing real-time systems, it is important to
make a clear distinction between physical and logical time. The notion of time serves two
purposes. Firstly, it is used to specify the order of execution of individual actions of systems
applications. Secondly, it can be used to specify durations. On one hand, the logical time
can be used in both cases, especially in the design phase. On the other hand specifying the
order of execution based on the physical time leads to the non-determinism of execution,
since physical time is not known at the design stage. Existing rigorous implementation
techniques use specific programming models. Current practice in real-time systems design
follows two well-established paradigms, namely synchronous and asynchronous. The time
triggered architecture considers more general programming models, relying on a notion
of logical execution time (LET). It somehow combines the synchronous and asynchronous
paradigm. Finally component-based design is also an important paradigm. Component-
based design techniques are used to cope with the complexity of the systems. The idea is
that complex systems can be obtained by assembling components. This is essential for the
development of large-scale, evolvable systems in a timely and affordable manner.

In Section 1, we present synchronous systems design and a brief description of the Lustre
approach. In Section 2, we present the asynchronous approach. In Section 3, we present
the time triggered architecture and the OASIS approach. In Section 4, we give a brief
presentation of the component-based approach. Finally, in Section 5 we discuss the different
approaches for the implementation of real-time systems.

1 Synchronous Systems

Synchronous programming is a design method for modeling, specifying, validating and im-
plementing safety critical applications [22,54,56,57].

1.1 Presentation

The synchronous paradigm provides a set of primitives which allows a program to be con-
sidered as instantaneously reacting to external events. It assures that a system interacts

9

CHAPTER 2. IMPLEMENTATION OF REAL-TIME SYSTEMS

with its environment by performing global computation steps. In a step, the system reacts
to environment stimuli by propagating their effects through its components in a well-defined
order (causality order). The synchrony assumption states that the system’s reaction is fast
enough with respect to the environment. Responsiveness and precision are limited by step
duration. Synchronous programs can be considered as a network of strongly synchronized
components. Their execution is a sequence of non-interruptible steps that define a logical
notion of time. In a step each component performs a quantum of computation.

One of the fundamental characteristics of synchronous languages resides in the use of
clocks for the specification of the synchronization points between components. A clock is an
infinite subset of the natural numbers. The simplest example of a synchronous system con-
sists of a number of components all referring to the same periodic clock, defined by its initial
date and its period. The operational semantics of such a system is defined as a sequence
of cycles executed at each tick of the clock. A cycle consists of three phases: acquisition
of inputs, computation and publication of outputs. The physical duration of computations
is then irrelevant. In the synchronous hypothesis: computations are assumed to have no
duration or, in other words, the computation duration is negligible compared to that of
communication among components. This leads to computation being divisible in steps and
execution being well-behaved. Real-time performance is then evaluated by first computing
the bounds or estimates of worst-case execution time (WCET) of individual computations,
then performing an end-to-end delay analysis of the entire system. An implementation
is correct if the worst-case execution times (WCET) for steps are less than the requested
response time for the system.

Hardware description languages such as Esterel [23], Lustre [54] and Signal [22], adopt
the synchronous paradigm. These languages are used, among others, in signal processing
and automatic control applications.

1.2 The Lustre Approach

In this subsection we present the Lustre Approach [80]. Lustre is a data-flow synchronous
language for programming reactive systems. Lustre programs operate on flows of values,
that are infinite sequences (x0, x1, .. , xn) of values at logical time instants. An abstract
syntax for Lustre programs is shown Figure 2.1. A Lustre program is structured as a set of
nodes. Each node computes output flows from input flows. In (resp. Out) denotes the set
of inputs (resp. outputs) of a node. Symbol N represents the node names, x represent the
flows of the program where E represent expressions. Expressions can be constant values v
or boolean values b.

Each flow (and expression) is associated with a logical clock. Implicitly, there always
exists a unique, fastest, basic clock which defines the step (or basic clock cycle) of the
program. Depending on this clock, other slower clocks can be defined as the sequences of
time instants where boolean flow values take the value true. Luste has only few elementary
basic types: boolean, integer and one type constructor: tuple. Complex types can be
imported from a host language. Usual operators over basic types are available such as
arithmetic, boolean, relational and conditional. Functions can be imported from the host
language. These are combinatorial operators (op) and the unit delay pre operator known as
single-clock operators. They operate on operands that share the same clock. Besides these
operators, Lustre has operators which operate on multiple clocks. These are the when and
the current operator known as multi-clock operators.

10

CHAPTER 2. IMPLEMENTATION OF REAL-TIME SYSTEMS

program ::= node+

node ::= node N (In) (Out) equation+

equation ::= x = E |
x, · · · , x = N(E, · · · , E)

E ::= x | v | op(E, · · · , E) | pre(E,v) |
E when b | current E

Figure 2.1: Abstract syntax for Lustre programs.

Clock Operators

In this subsection, we illustrate the Lustre concepts described above. Single-clock operators
contain constants, basic combinatorial operators and the unit delay operator. Flows of values
that correspond to constants are constant sequences of values. Combinatorial operators
include usual boolean, arithmetic and relational operators. The unit delay pre operator
gives access to the value of its argument at the previous time instant. For example, the
expression E = pre(E, v) means that for an inital value E0 = v of E, the value of E at
instant i is Ei = Ei+1 for all i > 0,.

o

pre

+

i
node Integrator(i: int)

returns o: int;
let o = i + pre(o,0); tel;

Figure 2.2: An integrator described in LUSTRE

Example 1 Figure 2.2 shows a discrete integrator written in Lustre (rignt). It uses the
single-clock operator "+" and pre. The integrator has an input flow i and an output flow
o. The expression pre(o, 0) gives access to the value of o at the previous time instant and
is initialized to zero. The output flow o is obtained by adding to its previous value pre(o, 0)
the input flow i. The equation of the integrator is the arithmetic operation "+" between a
flow and the expression pre. The instants of a possible execution are shown in figure 2.3.

basic clock 1 2 3 4 5 6 7 · · ·

i 2 5 -7 0 3 9 1 · · ·
pre 0 2 7 0 0 3 12 · · ·

o 2 7 0 0 3 12 13 · · ·

Figure 2.3: Execution instants for the Integrator node.

In order to define and manipulate flows operating on slower clocks, Lustre provides two
additional operators. The sampling operator when, samples a flow depending on a boolean
flow. The expression E′ = E when b, is the sequence of values E when the boolean flow b

11

CHAPTER 2. IMPLEMENTATION OF REAL-TIME SYSTEMS

is true. The expression E and the boolean flow b have the same clock, while the expression
E′ operates on a slower clock defined by the instants at which b is true. The interpolation
operator current, interpolates an expression on the clock which is faster than its own clock.
The expression E′ = current E, takes the value of E at the last instant when b was true,
where b is the boolean flow defining the slower clock of E.

Example 2 An example of using sampling and interpolating operators is shown in Figure
2.4. The basic clock defines six clock cycles. The flows b and x operate on the basic clock.
Flow b defines a slower clock, operating at the cycles 3,5 and 6 of the basic clock where
the value of b is true. The sampling operator when defines the flow y that operates on the
slower clock b. Flow y is evaluated when b is defined. The interpolation operator current
produces the flow zon the basic clock. Flow z has the same clock with b. For the first two
instances the value of z is undefined because yis evaluated for the first time at the clock cycle
3. For any other instant, if b is true, the value of z is evaluated to y. Otherwise, it takes
the value of y at the last instant when b was true.

basic clock 1 2 3 4 5 6 · · ·

b false false true false true true · · ·
x x1 x2 x3 x4 x5 x6 · · ·

y = x when b x3 x5 x6 · · ·
z = current y nil nil x3 x3 x5 x6 · · ·

Figure 2.4: Example of use of when and current multi-clock operators

A Lustre program can be composed of multiple nodes using multi-clock operators. Figure
2.5 shows a multiplier (mux) Lustre node. It reads a variable m at each clock cycle and
produces three outputs. Outputs y and c are produced at each cycle of the basic clock and
x when c is true. If the boolean variable c is false, y decreases its value by one. When y is
evaluated to zero, the value of c becomes true and x produces the current value m.

when

if else

current

x

c

y

-

1

pre

0

=

m

node mux(m: int)

returns (c: bool;
x: int when c; y: int);

let

y = if c then current x else pre y-1;
c = true - > pre y=0;
x = m when c;

tel.

Figure 2.5: A mux LUSTRE node

12

CHAPTER 2. IMPLEMENTATION OF REAL-TIME SYSTEMS

Execution of Programs

The Lustre compiler guarantees that the system under design is deterministic and conforms
to the properties defined by the synchronous hypothesis. It accomplishes this task thanks
to static verification which is summarized in the following steps:

• Definition checking: every local and output variable should have one and only one
definition;

• Clock consistency: every operator is applied to operands on suitable clocks;

• Absence of cycles: any cycle should use at least one pre operator.

Lustre is a synchronous language with formal semantics developed at the VERIMAG
laboratory for the past 25 years. On the top of the language, there are a number of tools,
like code generator, model checker, tool for simulation of the system on design, etc., that
constitute the Lustre platform. Lustre has been industrialized by Esterel Technologies in the
SCADE tool. SCADE has been used from several companies in the area of aeronautics and
automotive. It has been recently used for the development of the latest project of Airbus,
the A380 carrier airplane. For the mono-processor and mono-thread implementation, the
compiler generates monolithic endless single loop C code. The body of this code implements
the inputs to outputs transformations at one clock cycle. The generation of C code is done
in two steps. First, introducing variables for implementing the memory needed by the pre
operators and then sorting the equations in order to respect data-dependencies.

2 Asynchronous Systems

The asynchronous paradigm does not impose any notion of global execution step. The com-
ponents (threads, tasks or processes) proceed each at their own pace and usually commu-
nicate by message passing. Therefore, this paradigm is particularly suitable for distributed
systems. For asynchronous real-time programs e.g. ADA programs [39],C and Java, there
is no notion of execution step, and concurrency operators are provided by thread libraries
when they are not explicit. Implementation for asynchronous languages relies on an op-
erating system. The latter is responsible for scheduling and tasks are driven by events.
Scheduling policies are used for sharing resources between tasks. Scheduling theory also
allows to estimate system response times for tasks with known period and time budget. It
tries to guarantee satisfaction of simple time constraints, such as deadlines.

One of a known asynchronous programming language is SDL [15,40]. The SDL(Specification
and Description Language) language is a CCITT standard specification language. It is based
on an extended finite-state machine (EFSM) model. SDL specification can be written in
two different syntaxes: graphical (SDL/GR) and textual (SDL/PR); one-to-one mapping is
available for the two forms. It has the following concepts:

• The system is described hierarchically by elements called systems, blocks, channels,
processes, services, signal routes and signals.

• Behavior is described using the EFSM concepts.

• Data is described using abstract data types (program variables and data structures).

13

CHAPTER 2. IMPLEMENTATION OF REAL-TIME SYSTEMS

• Communication is asynchronous via channels that can have infinite queues.

An SDL system consists of functional blocks and each block can be decomposed into
sub-blocks and so on. The lower block level consists of one or more processes that are
described as state machines (see Figure 2.6).

Msg
System

Block

Block

Process

Process State

State State

Msg

Figure 2.6: Example of an SDL program architecture.

Timing is associated to the occurrence of signals (like interrupts). In the following
example, in Figure 2.7, we give an example for using timers by considering a connection
protocol mechanism. We declare the variable Connection, which is the only local variable
in the process. The first transition is the transition start that initializes the local variable.
A message is sent for connection request with signal conReq. A timer of 5 seconds is started
with the command SET (5, ConReqT imer), and the process goes in state Connecting (a).
When the process is at state Connecting, when the timer signal is available, the process
sends 10 times a request for connection (b). When it receives a confirmation of connection
with signal ConConf , the process goes in state Connected (c). This is a typical scenario
in telecommunication protocols.

3 Time Triggered Architecture

For real-time applications, it is desirable to combine the synchronous and asynchronous
paradigm for both application software and implementation. We need programming and
specification languages combining the two description styles. Recent implementation tech-
niques consider more general programming models.

3.1 Presentation

The proposed approaches rely on a notion of logical execution time (LET) [8, 51, 58] which
corresponds to the difference between the release time and the due time of an action, defined
in the program using an abstract notion of time. To cope with uncertainty of the underlying
platform, a program behaves as if its actions consume exactly their LET: even if they start
after their release time and complete before their due time, their effect is visible exactly at
these times. This is achieved by reading for each action its input exactly at its release time
and its output exactly at its due time. Time-safety is violated if an action takes more than
its LET to execute.

The time-triggered approach consists in assigning to each action its desired execution
time guaranteeing by construction the end-to-end constraints. The system is then imple-
mented over an execution kernel running on a platform and ensuring that:

14

CHAPTER 2. IMPLEMENTATION OF REAL-TIME SYSTEMS

(c)

connection := 0

ConReq

SET(5, ConReqTimer)

Start

Connecting

Connecting

ConConf

connectedconnection := connection+1

connection < 10

ConReqTimer

ConReq

SET(5, ConReqTimer)

Connecting

True False

(a)

(b)

Figure 2.7: Example of an SDL program using Timers.

1. the action currently being executed does not exceed the duration it is allocated, and

2. the execution of the following action is triggered at the appropriate real-time.

Various approaches can be taken in the case when an action violates a deadline: execution
can be aborted, a recovery mechanism or a degraded mode can be initialized. Alternatively,
WCET analysis can be performed in order to verify whether execution time requirements
are respected and select an appropriate target architecture.

3.2 The Oasis Approach

Oasis is a framework for safety-critical real-time systems, based on a time-triggered archi-
tecture [41, 44, 68, 69] . The main objective of Oasis is a framework encompassing models,
methodologies, and tools for the development of embedded critical software exhibiting com-
pletely deterministic temporal behavior. In the Oasis approach, an application is viewed as
a set of communicating tasks (or agents) that interact to achieve their functionality and real
time is managed by a time-trigged architecture. The processing of each task is synchronous
at a particular time. At the end of the logical execution time, variables are made visible to
other tasks. The decomposition of tasks corresponds exactly to the processing that should
be executed in parallel. In a time triggered approach, a system observes the environment
and initiates its processing at recurring predetermined instants. With each task T in the
system, a real-time clock HT represents the set of physical instants where the input and
output data are or can be observed. The joining of al clocks HT for each task of the system
S, is the definition of the system real-time clock HS . The HS clock includes all the ob-
servable instants of the system and is global and regular. It represents the smallest regular

15

CHAPTER 2. IMPLEMENTATION OF REAL-TIME SYSTEMS

clock from which all tasks clocks are deductible, i.e. HS exhibits a factor KT and an offset
δT such as HT = Kt ∗HS + δT .

Example 3 Figure 2.8 represents a global clock HGlobal and two clocks H1 and H2 de-
riving from HGlobal as follows: H1 = 2 ∗HGlobal and H2 = 3 ∗HGlobal + 1.

1 2 3 4 4 5 6 8 9 107

1 2 3 4

1 2 3 54

H1

HGlobal

H2

Figure 2.8: Clocks definition in OASIS.

Expressing time constraints

Time can be manipulated through the advance instruction (Advance). The instruction Ad-
vance(k) sets a deadline for the processing operation. It indicates that the next activation
instant will be its current instant plus k ∗HT . The semantics of Advance(k) is completely
defined, independently of the physical time of its execution. The instruction can simultane-
ously express a deadline and an activation time, thus encouraging developers to incorporate
a complete description of the timing behavior at the design stage. An Advance instruction
splits the task code into two parts: the part of code (a processing) before and the part of
code after the Advance instruction. A task is viewed as series of processing steps that have
precedence relationships. Thus, we can declare the task’s future instants (i.e. activation
instants) and both earliest start date (sta) and latest end date (end) of each processing (see
figure 2.10).

actual duration of execution

k time units

H1

sta end
processing2processing1

clock HGlobal = gtc1 (0, 500)

clock H1 = HGlobal

agent process (startime=sta) with H1

body start {
processing1

Advance(x) /* sta = x + .. */

processing2

Advance(K) /* end = sta + k */

}

Figure 2.9: Elementary processing and associated time interval in OASIS.

Communication mechanisms

There are two modes of communication between tasks. The first mode uses the exported
variables, also called temporal data flow, the second is the sending of messages from a

16

CHAPTER 2. IMPLEMENTATION OF REAL-TIME SYSTEMS

sender task to a recipient task. The new values of a temporal variable are made visible at
every synchronization point of the producer task, while messages require explicit definition
of visibility dates.

In the temporal data flow mechanism, each temporal variable defines a real-time data
flow: its values, available to any task that consults them, are stored and updated by a single
write at a predetermined temporal cadence. Thiscadence is expressed in the source code
as a regular time period parameter and allows computation of a periodic updating date.
Based on the previous example, between the two dates sta and end, that is, when the task
is executing, it is logically at sta date. Consequently, assuming that the task has a temporal
variable x, regardless of the values between dates sta and end (i.e. however the value of x
is modified by processing2), and if another task "observes" the value of x at date t0 (see
Figure 2.10 (a)), the x value "observed" is always its past value x(sta). In the sending
message mechanism, a message has a visilibility date (date beyond which a message can
be seen and extracted by the recipient agent) that is specified by the sender. For example,
from [41], if message M is sent by the second task with a visibility date t1, it cannot be
viewed (or consumed) before the end date, since t1 > sta (see Figure 2.10 (b)). A recipient
task has queues for receiving purposes. To achieve determinism, the sequence of messages
sorted by visibility is made to be total.

(a) Value of a temporal variable

M

(b) Sending a message

end
processing2processing1

H1

sta end
processing2processing1

H2

processing3

x(t0) = x(sta)

processing3

t1t0

H1

H2

sta

Figure 2.10: Communication mechanisms in OASIS.

Temporal correctness

Temporal correctness is verified if and only if all the critical tasks processing are always
executed in a timely manner. This property, always verified in the design phase, has to be
ensured while the application is executing (some tasks could miss their processing deadlines).
In the Oasis approach, all timing constraints, such as deadlines, are clearly expressed in
the design level. All these constraints are calculated on the same global real-time-clock.
Processing upper bounds (i.e WCET) are known for each real-time task. To schedule and
execute these tasks on the target platform, they use the results of the deadline-driven
scheduling techniques. It is necessary to calculate processor load and to make an off-line
analytic verification of linear inequalities. It allows us to calculate necessary and sufficient

17

CHAPTER 2. IMPLEMENTATION OF REAL-TIME SYSTEMS

conditions to guarantee that task on-line scheduling still ensures timing properties. The
approach is based on an off-line analysis of all interactions between all the tasks, to guarantee
that the deadline-driven online scheduling ensures the temporal correctness.

For Oasis-based applications, execution involves two layers: the microkernel and the
system layer. The microkernel manages real-time and processor sharing. Its execution
cannot be interrupted. A timer is necessary and sufficient to afford real time. The system
layer is generic, safety-oriented and size-limited. It manages the data exchanges required
for communication and ensures their logical and temporal consistency. By using the state-
transition diagram extracted at the compilation stage, the system layer controls the logical
and temporal behavior of each task.

4 Component Based Design

In this section we present a set of component-based approaches [62]. This set is not exhaus-
tive but illustrates the existing landscape for embedded systems design and implementation.
We can find either methods that are focused on the abstraction level point of view with very
little to do with the implementation, or very close to the implementation level. As discussed
later in the thesis, our work can be seen as a bridge between the two.

4.1 Presentation

Component-based design techniques are used to cope with the complexity of the systems.
A model is obtained by assembling components (see Figure 2.11). The interfaces of the
components are bound together by connections to form an architecture. The idea is that
complex systems can be obtained by assembling components. This is essential for the de-
velopment of large-scale, evolvable systems in a timely and affordable manner. It offers
flexibility in the construction phase of systems by supporting the addition, removal or mod-
ification of components without any or very little impact on other components. Components
are usually characterized by abstractions that ignore implementation details and describe
relevant properties to their composition, e.g. transfer functions and interfaces. The main
feature of component-based design frameworks is allowing composition. This composition is
used to build complex components from simpler ones. It can be formalized as an operation
that takes, as input, a set of components and their integration constraints and provides, as
output, the description of a new more complex component. This approach allows to cope
with the complexity of systems by offering incrementality in the construction phase. There
exists a large body of literature dealing with component-based design.

4.2 Examples

PtolemyII [46, 67] is a software framework, developed at Electrical Engineering and Com-
puter Sciences (EECS) University of California Berkeley University. PtolemyII focuses on
component-based heterogeneous modeling. The basic building block of a system is called
an actor. A model of the system is obtained by an hierarchical interconnection of actors.
Actors are software components that run concurrently and communicate through interfaces
called ports. An actor can be atomic or composite. An atomic component must be at
the bottom of the hierarchy, whereas a composite component contains other actors. The
semantics of a model is not determined by the framework, but rather than by a software

18

CHAPTER 2. IMPLEMENTATION OF REAL-TIME SYSTEMS

Contenent

Composite component

Atomic component

Connections

Interfaces

Figure 2.11: Example of components composition

component in the model called director, which implements a model of computation. Ptole-
myII allows the simulation of models. However, the verification of models is, currently, not
possible. Work is underway to add this possibility. It allows the generation of code, to do
this, each component must be accompanied by a model (”template”) of C code which will be
completed by the code generator. Moreover, PtolemyII has no intrinsic notion of mapping
between actors or of using declarative specification in the design.

Fractal [24,37] is a component model, developed at France Telecom and INRIA France.
Fractal is a general component model for implementing, deploying and managing complex
software systems. It can be understood generally as being composed of a membrane which
consists of a set of components (called subcomponents) and one or more interfaces (similar
to port in other component models). Interfaces can be of two kinds: server interfaces for
incoming operation invocations, and client interfaces for outgoing operations invocations.
Think [76] is one of the Fractal implementation. However Fractal and Think do not provide
tools or analysis techniques, whether for simulation or verification.

5 Discussion

There are different requirements for building efficient and correct implementation for real-
time systems.

• We need component-based frameworks. The concept of component and associated
composition operators are used for incremental description and correctness by con-
struction. Those frameworks should be expressive enough to directly encompass all
types of coordination with well-founded and organized concepts instead of using dis-
persed coordination mechanisms such as semaphores, monitors, message passing, re-
mote call, protocols etc. It also needs to be abstract enough by providing high-level
primitives for modeling behaviors and communications. However, abstraction reduces
expressiveness. Thus, the first challenge is to find the best compromise between a high
level of abstraction and high expressiveness. The design of complex systems shoud be
done in an easy and rigorous manner. Nonetheless, on top of abstraction and expres-
siveness, etc., other challenges appear, mainly how to automatically derive a correct
and efficient implementation.

19

CHAPTER 2. IMPLEMENTATION OF REAL-TIME SYSTEMS

• Frameworks have to provide a rigorous but not complex semantics, because complex-
ity limits abstraction. When having a rigorous semantics, we can derive a correct and
efficient low-level implementation from the high-level models. Moreover, a strong the-
oretical backing can be defined at the high-level models that allows formal verification
of design properties.

• A key issue for design methodologies is meeting timing constraints e.g. a system
reacts within user-defined bounds such as deadlines and periodicity. The satisfaction
of timing constraints depends on features of the execution platform, in particular its
speed. We should be able to express timing constraints in the design level and detect
time-safety violations of the implementation.

We have presented existing implementation techniques that use specific programming
models. Synchronous programs can be considered as a network of strongly synchronized
components. Their execution is a sequence of non-interruptible steps that define a logical
notion of time. In a step each component performs a quantum of computation. An imple-
mentation is correct if the worst-case execution times (WCET) for steps are less than the
requested response time for the system. For asynchronous real-time programs e.g. ADA
programs, there is no notion of execution step. Components are driven by events. Fixed
priority scheduling policies are used for sharing resources between components. Schedul-
ing theory allows to estimate system response times for components with known period
and time budget. Recent implementation techniques consider more general programming
models. The proposed approaches rely on a notion of logical execution time (LET) which
corresponds to the difference between the release time and the due time of an action, defined
in the program using an abstract notion of time. Time-safety is violated if an action takes
more than its LET to execute. One of the difficulties in the synchronous paradigm is that
the synchrony assumption is not easy to meet, in particular when high responsiveness to the
environment is required. Another drawback is that modularity cannot be easily handled;
for instance, it is hard to compile synchronous systems separately and then link them to-
gether or with non-synchronous implementations. Our work generalizes existing techniques
in particular those based on LET. These techniques consider fixed LET for actions, that is,
time-deterministic abstract models. In addition, their models are action-deterministic, that
is, only one action is enabled at a given state. In our work, we extend the existing timed trig-
gered approaches by considering more general timing constraints leading to undeterminitic
systems.

There also exist many component frameworks without rigorous semantics. They use
ad-hoc mechanisms for building systems from components and offer syntax level concepts
only. In this case, using ad-hoc transformations, may easily lead to inconsistencies e.g.
transformations may not be correct. On exploring the current state of the art we have
not seen a component framework that meets the requirements above. Generally speaking,
we can divide them into two categories. The first category provides high-level design and
modeling, however it is still unclear how to derive correct and efficient implementation from
the high-level models. In contrast, the second category provides efficient implementation,
however the design process is either based on low-level primitives, or not expressive enough.

In the next chapter, we present the BIP framework for which we added timing features.
It enables describing all software and systems according to a single semantic model, guar-
anteeing that the physical model meets essential properties of the description at the design
level. It is a also a component-based framework, since it provides operators for building

20

CHAPTER 2. IMPLEMENTATION OF REAL-TIME SYSTEMS

composite components from simpler components. Moreover, it guarantees correctness by
construction and thereby avoids monolithic a posteriori verification as much as possible.

21

CHAPTER 2. IMPLEMENTATION OF REAL-TIME SYSTEMS

22

CHAPTER 3. THE BIP FRAMEWORK

Chapter 3

The BIP Framework

1 Presentation

In this chapter, we present the BIP (Behavior Interaction Priorities) framework [11,14,82].
BIP is a framework for building real-time systems consisting of heterogeneous components.
A component has only local data, and its interface is given by a set of communication
ports. The behavior of a component is given by an automaton whose transitions are la-
belled by ports and can execute C++ code (i.e. local data transformations). Connectors
between communication ports of components define a set of enabled interactions which are
synchronizations between components. Interactions are obtained by combining two types
of synchronization: rendez-vous and broadcast. The execution of interactions may involve
transfer of data between the synchronizing components. Priority is a mechanism for conflict
resolution that allows direct expression of scheduling policies between interactions.

BIP models can be compiled to C++ code. The generated code is intended to be
executed by a dedicated Engine implementing the semantics of BIP.

The BIP framework is :

• Model-based. Describing all software and systems according to a single semantic
model. This maintains the flow’s overall coherency by guaranteeing that a description
at step n+1 meets essential properties of a description at step n.

• Component-based. Providing a family of operators for building composite compo-
nents from simpler components. This overcomes the poor expressiveness of theoretical
frameworks based on a single operator, such as the product of automata or a function
call.

• Correct-by-construction. Guaranteeing correctness by construction and thereby
avoiding monolithic a posteriori verification as much as possible.

This chapter is structured as follows. The BIP model-based framework is described in
section 2. It gives an abstract formalization for the concepts of Behavior, Interactions and
Priorities. Section 3 describes the BIP component-based framework, the concrete model of
BIP with data extensions. It introduces the concepts of Components and Connectors to
build systems models. The BIP tool-chain is described in section 4. Finally, in section 5, we
present a timing model of BIP. It shows how timing features are modeled using the current
version of BIP in terms of global synchronizations.

23

CHAPTER 3. THE BIP FRAMEWORK

R

Priorities

Interactions

B HE IVA O

Figure 3.1: Structure of a BIP Model.

2 The BIP Model-based Framework

We provide a formalization of the BIP component model focusing on the individual layers
of behavior, interaction and priority glue (see Figure 3.1). In this section, we provide for
each layer its abstract model.

2.1 Modeling Behavior

An atomic component is the most basic BIP component which represents behavior. A formal
definition for the behavior of an atomic BIP component is given below:

Definition 1 (Behavior) A behavior B is a labeled transition system represented by a
triple (Q, P,−→), where:

• Q is a finite set of control states,
• P is a set of communication ports,
• −→⊆ (Q× P× Q) is a set of transitions, each labeled by a port.

For a pair of states q, q′ ∈ Q and a port p ∈ P, we write q
p
−→ q′, iff (q, p, q′) ∈−→ and

we say that p is enabled at q. If such q′ does not exist, we say that p is disabled at q.

2.2 Modeling Interactions

We compose a set of n atomic component behaviors {Bi = (Qi, Pi,−→i)}
n
i=1, by using

interactions. We assume that their respective sets of ports and sets of states are pairwise
disjoint, i.e., for all i 6= j, we have Pi ∩ Pj = ∅ and Qi ∩ Qj = ∅. We define the set
P =

⋃n
i=1 Pi of all ports in the system.

Definition 2 (Interaction) An interaction a is a non-empty subset a ⊆ P of ports.
When we write a = {pi}i∈I′ , I ′ ⊆ [1, n]. For each i ∈ I ′, pi ∈ Pi.

The interaction model is specified by a set of interactions γ ⊆ 2P . Interactions of γ can
be enabled or disabled. An interaction a is enabled iff, for all i ∈ [1, n], the port a ∩ Pi

is enabled in Bi. That is, an interaction is enabled if each port that is involved in this
interaction is enabled. An interaction is disabled if there exist i ∈ [1, n] for which the port
a ∩ Pi is disabled in Bi. That is, an interaction is disabled if there exists at least a port,
involved in this interaction, that is disabled.

24

CHAPTER 3. THE BIP FRAMEWORK

2.3 Modeling Priorities

In a behavior, more than one interaction can be enabled at the same time, introducing a
degree of non-determinism. This can be restricted with priorities by filtering the possible
interactions based on the current global state of the system.

We compose a set of n atomic components behaviors {Bi = (Qi, Pi,−→i)}
n
i=1.

Definition 3 (Priority) A priority is a relation ≺⊆ γ × Q× γ, where:

• γ is the set of interactions,
• Q = Q1 × ...×Qn is the global set of states.

For a ∈ γ, q ∈ Q and a′ ∈ γ, the priority (a, q, a′) ∈≺ is denoted as a ≺q a′. That is,
interaction a has less priority than a′ in state q.

2.4 Composition of Abstract models

For a set of components {Bi = (Qi, Pi,−→i)}
n
i=1, an interaction model γ and a priority

model π, the compound component is obtained by application of a glue GL.
The glue GL is composed of the two previous models γ and π and defined as GL = πγ,

where the interaction model γ is a set of interactions and the priority model π is a set of
priorities.

Definition 4 (Composition for Interactions Model) The composition of a set of atomic
components {Bi}

n
i=1, parameterized by a set of interactions γ ⊆ 2P , is a transition system

B = (Q, γ,−→γ), where:

• Q =
⊗n

i=1 Qi,
• γ is the set of interactions γ ⊆ 2P where P =

⋃n
i=1 Pi ,

• For a = {pi}i∈I ∈ γ, we have (q1, ..., qn)
a
−→γ (q′1, ..., q

′
n) in B if and only if, qi

pi−→i q′i
in Bi for all i ∈ I, and q′i = qi for all i 6∈ I.

The obtained behavior B can execute a transition a = {pi}i∈I ∈ γ, if and only if, for
each i ∈ I, port pi is enabled in Bi.

Definition 5 (Composition restricted from the Priority Model) Given a behav-
ior B = (Q, γ,−→γ), its restriction by the priority model π is the behavior B′ = (Q, γ,−→π),

where for a ∈ γ, we have q
a
−→π q′ in B′ if and only if, q

a
−→γ q′ in B and for all a′ ∈ γ

and a ≺q a′, a′ is disabled at q.

The obtained behavior B′ can execute a transition a ∈ γ if and only if, each transition
a′ ∈ γ, with higher priority than a is state q, is disabled.

25

CHAPTER 3. THE BIP FRAMEWORK

3 The BIP Component-based framework

For each abstract model of the BIP layer, we provide its concrete model. The behavior Layer
is modeled with atomic components. The interaction layer is modeled with connectors and
finally Priorities is a mechanism for scheduling interactions.

3.1 Atomic Components

An atomic component is a unit of behavior with an interface consisting of ports, and behavior
encapsulated as set of transitions. Ports are particular names defining communication points
for components. As we shall see later, they are used to establish interactions between
components by using connectors. We assume that every port has an associated distinct
data variable x. This variable is used to exchange data with other components, when
interactions take place.

Here is a definition of a port :

Definition 6 (Port) A port p[x] ∈ P is defined by:

• p the port identifier,
• x the data variable associated with the port.

The formal definition of a BIP atomic component is given below:

Definition 7 (Atomic component) An atomic component represents behavior B as
a transition system, extended with variables and functions, represented by (V, P, Q,−→),
where:

• Q is a set of control states Q = {Q1...Qn}, Control States denote places at which the
components wait for synchronization.

• P is a set of communication ports P = {p1...pn},
• V is a set of variables used to store (local) data. Variables may be associated to ports.
• −→ is a set of transitions modeling computation steps of components. Each transition

is a tuple of the form (q1, p, gp, fp, q2), representing a step from control state q1 to q2,

denoted as q1
p,gp,fp
−→ q2.

gp is a pre-condition for interaction through p, also known as the guard of the transition,
it is a boolean condition on V. fp is a computation step consisting of data transformations.
The transition can be executed if the guard is true.

Example 4 Figure 3.2 shows an example of a Basic atomic component representation
(a) and its corresponding BIP code declaration (b). It has two ports p1 and p2, a variable x,
and two control states empty and full. The automaton is initialized to control state empty,
from which it can move to full by transition labeled by p1. When this transition is executed,
a value is assigned for variable x with function assign-value(). The value of x is exported
by port p2. From state empty to full, the transition labeled by out can occur if the guard x
> 0 is true.

Note that the omission of a guard or a function from a transition means that the asso-
ciated guard is true and the internal computation step is empty. We have declared in the

26

CHAPTER 3. THE BIP FRAMEWORK

code two types of ports. A pure event port ePort that does not have any associated vari-
ables, and provides the mechanism for event synchronization only. The port out is of type
IntPort, which associates an integer variable with a port. A port in an atomic component
is not visible to its environment unless it is exported explicitly. In the above example, both
port p1 and p2 are exported. It is necessary to export a port if it has to be used in some
connector for synchronization purposes.

Basic

x = assign−value ()

[x > 0]

p1 p2(x)

empty full

p2

p1

(a) An atomic component.

port type IntPort (int x)

port type ePort ()

atomic type Basic

data int x = 0

export port ePort p1() is p1

export port intPort p2(x) is p2

place empty

place full

initial to empty

on p1 from empty to full

do { x = assign-value();}
on p2 provided [x > 0]
from full to empty

end

(b) BIP code of the atomic component.

Figure 3.2: An example of an open atomic component in BIP.

3.2 Connectors

Composition of components allows to build a system as a set of components that interact
by respecting constraints of an interaction model. Connectors are used to specify possible
interaction patterns between the ports of components.

Definition 8 (Connector) A connector γ defines sets of ports of atomic components
Bi wich can be involved in an interaction. It is formalized by γ = (Pγ , Aγ , p[x]) where:

• Pγ is the support set of γ, that is the set of ports that γ may synchronize.
• Aγ ⊆ 2Pγ is a set of interactions a each labeled by the triple (Pa, Ga, Fa) where:

– Pa is the set of ports pii∈I , I ⊆ [1, n] that take part of an interaction a,

– Ga is the guard of a, a predicate defined on variables
⋃

pi∈a Vpi
,

– Fa is the data transfer function of a, defined on variables
⋃

pi∈a Vpi
.

• p is the exported port of the connector γ.

27

CHAPTER 3. THE BIP FRAMEWORK

A connector is macro notation for representing sets of related interactions in a compact
manner. Two types of ports are defined, in order to specify the feasible interactions of a
connector:

• A trigger (represented by a triangle) is an active port. It can initiate an interaction
without synchronizing with other ports. It is represented graphically by a triangle.

• A synchron (represented by a circle) is a passive port. It needs synchronization with
other ports. It is represented graphically by a circle.

A feasible interaction of a connector is a subset of its ports such that either it contains
some trigger, or it is maximal, i.e., consisting of all the ports. Example of sets of feasible
interactions are show Figure 3.3. In (a), the connector consists of the ports s, r1 and r2

that are all of type synchron. In this connector, the only feasible interaction is s.r1.r2.
It represents a strong synchronization, meaning that all the actions are necessary for the
synchronization. In (b), the connector consists of the ports s of type trigger, r1 and r2 of
type synchron. In this connector, s can occur alone or synchronize with either or both r1

and r2. It represents a Broadcast, meaning a weak synchronization between ports
In general, it is possible to represent any arbitrary interaction throught a connector by

structured combination of the following two basic synchronization protocols :

• Strong synchronization, where the only feasible interaction of γ is the maximal one,
i.e., it contains all the ports of γ. All the involved ports are of type synchron. We
note Aγ = Pγ .

• Weak synchronization or broadcast, where all feasible interactions are those containing
a trigger port ptrig wich initiates the broadcast. We note Aγ = {a ∈ γ | a ∩ ptrig}.

(b) Broadcast(a) RendezVous

γ = {s, s.r1, s.r2, s.r1.r2}

s r1 r2s r1 r2

γ = {s.r1.r2}

Figure 3.3: Connectors and their interactions in BIP.

For every interaction, the data transfer function Fa of an interaction a is specified by
an up and a down action. The action up is supposed to update the local variables of the
connector, from the values of variables associated with the ports. Conversely, the action
down is supposed to update the variables associated with the ports, from the values of the
connector variables. A guard Ga of the interaction a is a C expression and the up and down
actions consist of C statements. Additionnally, a connector type definition may contain C
type parameters.

Example 5 Figure 3.4 shows a connector representation (a) and code definition (b). The
connector named Max involves two ports p1 and p2 and exporting a port p3 (allows to define
hierarchical connectors) of type Intport, associating to each port an integer variable. There
is only one feasible interaction {p1.p2} that occurs if its guard (p1.x > 0) && (p2.y > 0) is

28

CHAPTER 3. THE BIP FRAMEWORK

Sender2Sender1

p3(z)

p1(x) p2(y)

G : (p1.x > 0)&&(p2.y > 0)

Fup : z = Max(p1.x, p2.y)

Fdown : p1.x = p2.y = z

(a) Connector.

connector type Max (intPort p1, intPort p2)

data int z

define [p1p2]

on p1p2 provided (p1.x > 0) && (p2.y > 0)

up { z = Max (p1.x , p2.y);}
down { p1.x = p2.y = z ;}

export port intPort p3(z)

end

(b) Connector type definition code in BIP.

Figure 3.4: An example of a connector between two components in BIP

true. In the up function, the Max of the variables associated with the ports is calculated and
stored in the connector variable z. As a result of the data transfer, the variables associated
with the ports are set to the maximum of their values, through the action down.

Hierarchical connectors

We have seen that a connector has an option to define a port and export it. This allows
a connector to be used as a port in other connectors, and create structured connectors. The
representation of structured connectors require connectors to be treated as expressions with
typing and other operations on groups of connectors. This led to a formalization of the
algebra of connectors defined in [25, 26]. The Algebra of Connectors is a compact notation
for algebric representation and manipulation of connectors and formalizes the concept of
connectors supported by the BIP component model.

Figure 3.5 shows two hierarchical connectors :

• The AtomicBroadcast (a) involves four ports s, r1, r2, r3. It represents a communica-
tion schema between a sender s and multiple reveivers ri, where either a message is
received by all the ri, or by none. Ports ri are strongly synchronized and the synchro-
nization with the trigger port s is done via an exported port. This means that either
s or interaction s.r1.r2.r3 is possible.

• The CausalChain (b) involves the same ports with a different structure. It represents
a communication schema in which if a message is received by ri, it has also to be
received by rj , for j < i.

29

CHAPTER 3. THE BIP FRAMEWORK

(b) Causal chain
(a) Atomic broadcast

s r1 r2r1 r2 r3

γ = {s, s.r1, s.r1.r2, s.r1.r2.r3}

s

γ = {s, s.r1.r2.r3}

r3

Figure 3.5: Hierachical connectors and their interactions in BIP.

3.3 Priority Rule

Given a system of interacting components, priorities are used to filter the enabled interac-
tions. They are given by a set of rules, each consisting of an ordered pair of interactions or
connectors.

Definition 9 (Priority Rule) A priority is a tuple (C,≺), where C is a state predi-
cate (boolean condition) characterizing the states where the priority applies and ≺ gives the
priority order on a set of interactions A =

⋃

Aγ.

For a1 ∈ A and a2 ∈ A, a priority rule is textually expressed as C → a1 ≺ a2. When
the state predicate C is true and both interactions a1 and a2 specified in the priority rule
are enabled, the higher priority interaction, i.e., a2 is selected for execution.

Example 6 In this example, we show a priority rule between two connectors Max1 and
Max2 (see Figure 3.6). Connector Max1 synchronizes ports s1 and r with interaction s1.r
and connector Max2 synchronizes ports s2 and r with interaction s2.r. We give a higher
priority to Max1 if s1.x value of port s1 is greater that value s2.x of port s2.

3.4 Composition of Components

In BIP the execution of interactions may involve transfer of data between the synchronizing
components. Considering an interaction γ of a connector, Gγ will be its guard (boolean
condition over the variables of the interacting components) and Fα its transfer function
(data transfer). An enabled interaction is executable if its guard is true. The interaction
leads to the execution of the data transfer function Fγ associated to it. As a result, the
variables of the synchronizing components are updated.

Here is the formalization of the concept:

Definition 10 (Compound Component) Consider the composition of n components
{Bi}

n
i=1 parameterized by a connector γ. The composed component is a component B =

(V, P, Q,−→γ) where :

• V is a set of variables, which is the the union of the sets of variables of the composed
components V =

⋃n
i Vi.

30

CHAPTER 3. THE BIP FRAMEWORK

Max1 Max2

Max2 : < Max1 : s1.r

r s2s1

γ = {s1.r, s2.r}

s2.r

(a) An Example of a priority
relation.

connector Max1 (s1, r)
connector Max2 (s2, r)

priority maximal if (s1.x > s2.x)
Max2 < Max1

(b) BIP code of the priority relation.

Figure 3.6: An example of priorities in BIP.

• Q is a set of states, which is the cartesian product of the sets of control states of the
composed components S =

⊗n
i=1 Si.

• −→γ is a set of transitions of the form (q, α, g, f, q′), where :

– q = (q1, ..., qn), qi being a control state of the ith component.

– α is a feasible interaction in γ associated with a guarded command (Gα, Fα),
such that there exists a subset J ⊆ {1, ..., n} of components with transitions
{(qj , pj , gj , fj , q

′
j)}j∈J and α = {pj}j∈J .

– g =
∧

j∈J gj ∧Gα.

– f = Fα; [fj]j∈J . That is, the computation starts with the execution of Fα followed
by by the execution of all the functions fj in some arbitrary order. The result is
independent of this order as components have disjoint sets of variables.

• P is a set of exported ports. Indeed, a connector can be associated with exported ports.
This allows a connector to be used as a port in other connectors, and create structured
connectors. Those ports allow also to build compound components.

Example 7 Figure 3.7(a) shows a compound component Sender consisting of three com-
ponents, Send1, Send2 and Send3 of type Basic (described in Figure 3.2). They interact
by using connectors of type Max described in Figure 3.4 to compute the maximal value pro-
duced by the components. It exports two ports p′2 and p′1. Port p′2 results from the components
synchronizations through their p2 ports. Port p′1 is the exported port p1 of the Send3 com-
ponent. Ports p1 of Send1, Send2 are wrapped into singleton connectors since they are
neither exported by the compound component nor involved in any interaction. Figure 3.7(b)
presents the corresponding BIP code.

31

CHAPTER 3. THE BIP FRAMEWORK

Sender

Send1 Send2 Send3

Max1

Max2

Sing1 Sing2

p′

1

p2(x) p2(x)

p3(z)

p2(x)

p3(z)

p′

2
(z)

p1 p1 p1

(a) Composite component representation.

compound type Sender

component Basic Send1

component Basic Send2

component Basic Send3

connector Max Max1(Sender1.p2,Send2.p2)

connector Max Max2(Max1.p3,Send3.p2)

connector Singleton Sing1 (Send1.p1)

connector Singleton Sing2 (Send2.p1)

export port Intport p′2 is Max2.p3

export port Intport p′1 is Send3.p1

end

(b) BIP code of the compound component.

Figure 3.7: An example of compound component in BIP.

4 The BIP Tool-Chain

This section presents the implementation of the BIP framework, formally described in the
previous sections, in the form of a tool-chain called the BIP tool-chain. The BIP Tool-chain
provides a complete implementation, with a rich set of tools for the modeling, the execution
and the verification (both static and on-the-fly) of BIP models.

4.1 General Overview

The overview of the BIP tool-chain is shown in figure 3.8. It includes the following tools:

• The BIP language. It is used to build models using components, connectors and
priorities and describes components architecture. It is used for the BIP description
source.

• Source-to-source transformation tools. They are used to transform various program-
ming models, using different languages, into BIP models. The translation of a pro-
gramming model into a BIP model allows its representation, in a rigorous semantic
framework. There exist several translations, including LUSTRE, MATLAB/Simulink,
AADL, GenoM applications, NesC/TinyOS applications, C software and DOL sys-
tems.

32

CHAPTER 3. THE BIP FRAMEWORK

• The compiler. It generates a BIP model from the BIP description source. It uses The
BIP meta-model as the intermediate representation of BIP models and to implement
model transformations. It includes :

– The BIP meta-model. It represents a template of the structure of the interme-
diate model to be generated from a BIP program, using EMF. All the modeling
elements, presented in the BIP language, have a representation in the BIP model
in the form of the data-structure. Class diagrams are used to define the relations
between the different modeling elements, through inheritence and containment.

– The parser. It analyses a BIP description source and generates an intermediate
model conforming to the BIP meta-model. It performs syntactic analysis of the
input program conforming to the BIP grammar and reports the programming
errors.

– Model-to-model transformation tools. They are used in order to perform use-
ful static transformations for systems optimizations including run-time. The
transformations use a set of correct-by-construction models and preserve func-
tional properties. Moreover, they can take into account extra functional con-
straints. There exist three types of transformations, architecture optimizations,
such as flattening the hierarchy and transforming structured connectors to flat
connectors [34], distributed implementation [27, 61], such as the replacement of
atomic multiparty interactions by protocols using asychronous message passing
(send/receive primitives) and memory management.

– The code generator. It generates C++ code from the model produced by the
parser. The code generator has options for generating application code for the
single-threaded BIP Engine, the multi-threaded BIP Engine and the distributed
BIP implementation.

• D-Finder. It is a compositional verification tool for deadlock detection and generation
of invariants [16, 20]. Verification is applied only to high level models for checking
safety properties such as invariants and deadlock-freedom.

• The BIP Execution engines. They are middleware responsible for the coordination
of atomic components, that is, they apply the semantics of the interaction and pri-
ority layers of BIP. Execution engines are used for execution, simulation, run-time
verifications, debug or state-space exploration(i.e. all traces) of BIP models. There
are currently two engines available, the single-threaded engine and the multi-threaded
engine, and a distributed implementation of BIP.

33

CHAPTER 3. THE BIP FRAMEWORK

Communication Primitives

BIP ExecutableBIP ExecutableBIP Executable

BIP

BIP Meta-Model

Code Generator

Centralized Engine

BIP Language

Code Generator

Distributed Engine

Runtime

Execution Engine

Platform

C++

BIP Executable

C++

C

C++

Source-to-Source Transformers

nesC DOL

C++

Simulink Lustre

Validation

Parser

BIP Model

S/R BIP Model

Compiler

BIP

Model-to-Model

Transformers

Distributed Platform

DFinder

Figure 3.8: The BIP Tool-Chain.

4.2 The BIP Execution Engines

The BIP execution engines and the distributed BIP implementations directly implement
the BIP operational semantics. They play the role of the co-coordinator in selecting and
executing interactions between the components, taking into account the glue specified in
the input component model. It monitors the state of the components and considering the
interaction model, finds all the enabled interactions. It then applies the priority rules to
eliminate the interactions with low priority, and selects one amongst the maximal enabled,
for execution.

Here is the presentation of the current Engines.

34

CHAPTER 3. THE BIP FRAMEWORK

The Single-Threaded BIP Engine

From a BIP model, a compiler is used to generate C++ code for atomic components and
glue. The code is orchestrated by a sequential engine that interprets the BIP operational
semantic rules. The architecture of the sequential implementation is shown in Figure 3.9.

M2 M3

Component
Mn

enabled interactions γs

compute

Abstract Model Execution Engine

Abstract Model

component transitions (ai, gi)

chosen interaction a

execute

at state (qi)

stop if

(deadlock)
model inconsistency

scheduling policy

apply

Scheduler

Interaction Model γ

. . .

Application Software Model

Component
M1

Component Component

Figure 3.9: BIP model Execution Engine.

The engine computes from the set of ports for each atomic components and defined by
connectors, the set of enabled interactions. It chooses an interaction a = { ai | i ∈ I } ∈ γs

enabled at state s. The choice of a depends on the considered scheduling policy. For instance,
EDF (Earliest Deadline First) scheduling policy can be used. It executes a that corresponds
to the execution of all atomic components involved in the interaction ai, i ∈ I, followed by
the execution of the data transfer function Fa and the update of control locations.

Algorithm 1 gives an implementation of the Execution Engine for the composition of
BIP models. It basically consists of an infinite loop that first computes enabled interactions
at current state s of the composition (line 3). It stops if no interaction is possible from s
(i.e. deadlock) at line 5. Otherwise, it chooses an interaction a (line 7), executes the data
transfer function Fa associated to it (line 8) and executes a (line 12). Finally, the state s is
updated in order to take into account the execution of a (line 14).

35

CHAPTER 3. THE BIP FRAMEWORK

Algorithm 1 Single-Threaded Execution Engine

Require: Model M i = (Qi,−→i), 1 ≤ i ≤ n, initial control location (q1
0, . . . , q

n
0), set of

interactions γ
1: s = (q1, . . . , qn) ← (q1

0, . . . , q
n
0) // init.

2: loop
3: γs = EnabledInteractions(s)
4:

5: if ∃a ∈ γs then
6: a = { ai | i ∈ I } ← EDFScheduler(γs)
7: ExecuteDataTransfer(Fa) // execute transfer function
8:

9: for all i ∈ I do
10: Execute(ai) // execute involved component
11: qi ← q′i // update control location
12: end for
13: else
14: exit(DEADLOCK)
15: end if
16: end loop

The Multi-Threaded BIP Engine

The implementation of the multi-threaded implementation whith centralized engine is based
on the notion of partial state semantics where interactions are allowed to fire as soon as only
the involved components are stable [12]. Each atomic component is assigned to a different
thread (process), the engine being assigned to a thread as well. Algorithm 2 describes the
execution of an atomic component. Each atomic component performs its computations
locally and then, when it reaches a stable state, it notifies the engine about the ports Pi

on wich it is willing to interact (line 3). It waits for the engine to select the port pi to be
executed upon the chosen interaction (line 4).

Algorithm 2 Atomic component Execution
1: Pi = initialize() // init.
2: loop
3: notify(Pi) // notifies the engine
4: wait(pi) // waits for execution
5:

6: Pi = execute(pi)
7: end loop

The engine is parametrized by an oracle. Iteratively, the engine computes feasible interac-
tions available on state components. Then, if such interactions exist and the oracle allows
them, the engine selects one for execution and notifies the involved components.

Iteratively, the Engine receives the sets of ports and the local states of components

36

CHAPTER 3. THE BIP FRAMEWORK

ready to interact (line 2). Depending on this information, the engine computes the feasible
interactions (line 3). It chooses a feasible interaction, which is allowed by the oracle O (line
4) . If such an interaction exists, the engine executes it by notifying sequentially, in some
arbitrary order, all the involved components (line 12). Otherwise, it’s a deadlock (line 15).

Algorithm 3 Multi-Threaded Execution Engine

Require: Model M i = (Qi,−→i), 1 ≤ i ≤ n, initial control location (q1
0, . . . , q

n
0), set of

interactions γ, Oracle O.
1: loop
2: wait(Pi) // waits for components ready to interact
3: γs = EnabledInteractions(Pi)
4: γo = restriction(γs, O) // feasible interactions
5:

6: if ∃a ∈ γo then
7: a = { ai | i ∈ I } ← Scheduler(γs)
8: ExecuteDataTransfer(Fa) // execute transfer function
9:

10: for all i ∈ I do
11: notify(Mi, ai) // notifies involved component
12: qi ← q′i // update control location
13: end for
14: else
15: exit(DEADLOCK)
16: end if
17: end loop

The Distributed BIP Implementation

Currently, powerful hardware platforms are needed for executing applications on multi-
core or many-core platforms. The application code should be optimally distributed over
the platforms to take advantage of its computing power. Although distributed systems are
widely used nowadays, their implementation is still time-consuming and an error-prone task.
Coordination in BIP is achieved through multi-party interactions (i.e., those across multiple
components), and scheduling by using dynamic priorities. Transforming the semantics of
BIP—which is based on an atomic interaction execution and is defined on a global state
model—into a distributed implementation is clearly a nontrivial task.

A generic framework allowing the transformation of high-level BIP models into dis-
tributed implementations has been recently developed [27, 61]. The method involves BIP
to BIP transformations preserving observational equivalence. It transforms multi-party in-
teractions into asynchronous message passing, that is, send/receive primitives. The target
Send/Receive BIP model is structured in three layers (see Figure 3.10): (i) the component
layer corresponds to a modified behavior of the components of the original model; (ii) the
interaction protocol consists of a set of components such that each component detects en-
abledness of a subset of interactions of the original model using partial-state knowledge,
and executes them after resolving conflicts (e.g., regarding which interaction to execute
when there is more than one involving the same port) either locally or with the help of

37

CHAPTER 3. THE BIP FRAMEWORK

I
N
T
E
R
A
C
T
I
O
N

R
E
S
E
R
V
A
T
I
O
N

C
O
M
P
O
N
E
N
T

B2 B3 B4 B5

IP2: interaction γ

Conflict resolution between IP1 and IP2

(i.e. conflict between β and γ)

B1

γ: B4, B5

IP1: interactions α and β
α: B1, B2, B3

β: B3, B4

1

Figure 3.10: Send/Receive BIP model obtained from BIP to BIPtransformations.

the third layer; (iii) the reservation protocol resolves conflicts between components of the
interaction protocol layer using committee coordination algorithms such as the token-ring
distributed algorithm or the distributed dining philosophers algorithm. Notice that the
obtained Send/Receive BIP model depends on a user-defined partition of the interactions
of the original model, associating subsets of interactions to components of the interaction
protocol layer.

A C++ code generator has been developped. It performs, given a user-defined mapping
of the components of a Send/Receive BIP model, the generation of distributed implemen-
tations using communication mechanisms offered by the platform. We have the following
backends: Unix processes communicating through TCP sockets, MPI, and threads using
semaphores and shared memory. Efficient monolithic code can be produced by merging
components using another BIP to BIP transformation, according to the mapping of the
components.

The method has been fully implemented in a toolset allowing the automatic generation
of distributed implementations from BIP models. It is parameterized by the partition-
ing of interactions, a committee coordination algorithm, and the mapping of components.
The performance of the resulting implementation strongly depends on the choice of these
parameters [61].

38

CHAPTER 3. THE BIP FRAMEWORK

5 Modeling Time using BIP

In BIP, component behaviors are automata extended with data. There is no explicit notion
of time, that is, conditions (guards) for enabledness of interactions between components
may only depend on the values of components variables. One possible solution is to en-
force timing constraints directly in the components by calling primitives of the platform
on transitions. Another solution is to introduce Clocks that are represented by integer
variables. Components are then strongly synchronized by a connector Tick for increment-
ing synchronously all the clocks. Urgency of transitions can be expressed by giving more
priority to urgent transitions than to the connector Tick. We now explain timed systems
modeling in BIP through the following scheduling tasks example.

Example 8 The example models two tasks T1 and T2 processing events that are produced
by an event generators G1. Both tasks are executing on a shared CPU. The event generator
G1 activates task T1 by sending an event. It can either process the event alone or ask the
task T2 to make some additional computation before completion. The block diagramm of the
system is shown in Figure 3.11. We design a model to measure the total delay of an event,
starting from its creation from the event generator till it is processed by T1.

Task Task
Event

Generator

CPU

T1 T2G1

Figure 3.11: Scheduling of timed tasks.

The basic components for the model are Task and EventGenerator. A generic timed
model of Task is shown in Figure 3.12, which can be used either as a simple task, or as
a collaborative task. It has 5 ports, start to start the execution when receiving an event,
finish to end the execution, ask and resume to ask another task to make additional
computation when necessary, and tick to measure time progress. It has a time variable x
representing a clock to keep track of the execution time. Variable x is set to zero at the
beginning of the execution, in the transition labelled by port start. Transition labelled by
port finish has a guard over the timed variable x such as [x < WCET]. It means that the
task has to finish before its worst case execution time WCET. Time progress is measured
in terms of ticks. From each state, either an enabled transition can be executed or time can
progress by one time unit.

The model of an EventGenerator is shown in Figure 3.13. It has one state Run and
two ports tick and go. It has a timer variable y representing a clock in order to generate
periodically an event. From state Run, time can progress until y reaches the deadline
y == D.

The model of the system is represented in Figure 3.14. The system is a serial connection
of G1 instance of the event generator component, and two instances T1 and T2 of the task

39

CHAPTER 3. THE BIP FRAMEWORK

Exec

Rdy

tick

tick
x + +;

x + +;

[x < WCET]
finish

x = 0;
start

resume

ask

get

begin

finish

ask

tick
x + +;

resume

tick

Susp

Figure 3.12: Task component.

period

Run

tick
y + +;

y = 0;
[y == D]
go

go
tick

Figure 3.13: Event Generator component.

component. The transmission of an event, i.e. synchronization between G1 and T1 is
modeled by the connector involving ports G1.go and T1.start. The synchronization between
T1 and T2 is modeled by the connector involving ports T1.ask and T2.start when asking for
additional computation, and the connector involving ports T1.resume and T2.finish when
T2 finishes the computation. The three components are strongly synchronized by a Tick
connector, that is, all ports of type tick are synchronized.

To inforce the urgency criteria of the transitions, we have to use priorities. For example,
to enforce the urgency for the periodic transition of G1, we have the rule :

Tick : G1.tick, T1.tick, T2.tick < G1.go

We also have the following rules to enforce the completition of Tasks T1 and T2:

Tick : G1.tick, T1.tick, T2.tick < T1.finish

T ick : G1.tick, T1.tick, T2.tick < T2.finish

40

CHAPTER 3. THE BIP FRAMEWORK

Tick

tick

finish resume

ask start

finish resume

askgo

tick

start

tick

T1G1
T2

Figure 3.14: Modelization of the scheduling of timed tasks example.

6 Conclusion

We have presented the BIP framework, a component-based framework for modeling het-
erogeneous systems. The BIP model is the superposition of three layers: the lower layer
describes the behavior of a component as a transition system; the intermediate layer consists
of the interactions between transitions of the layer underneath; the upper layer describes
the priorities characterizing a set of scheduling policies for interactions. Such a layering
offers a clear separation between components behaviors and the structure of the system
(interactions and priorities).

Component-based approach is aimed to deal with the complexity of systems. It is based
on the idea of building a complex system by assembling basic components (blocks). BIP
modeling framework allows dealing with complexity of systems by providing incremental
composition of heterogeneous components. It also considers correctness-by-construction for
a class of essential properties such as deadlock-freedom [53]. The BIP tool-chain has been
developed providing automated support for component integration and generation of glue
code meeting given requirements. Efficient model transformations and verification methods
have also been studied and implemented in the BIP toolchain.

We have seen that global tick synchronizations between the components are used to
model time progress, that is, time progresses synchronously. Each component counts the
time progress in terms of tick in order to execute periodic tasks. This modeling method is
not sufficiently effective and should even be avoided. One of the reasons is that the timing
behavior of the model will be untrackable and doesn’t allow the use of verification techniques
on timing features. Moreover, using such tick synchronizations is even less effective due to
the periodic execution of ticks. The engine loses in CPU utilization when it executes tick
interactions to count time. The method is also inefficient when the period of the execution
of the Tick connector is small compared to the actual period of activation of the components,
because the engine wakes up to count time even if there are no interactions to execute. This
approach requires also for execution times of interactions to be bounded by this period,
which is a very strong assumption. It is also difficult to verify if the task completes before
its WCET or if an event occurs at its periodic time when executing the model on a real
platform. Finally, since Tick strongly synchronizes all components in all states, such models
can easily deadlock.

In the following chapters, we extend the BIP framework with timing features according

41

CHAPTER 3. THE BIP FRAMEWORK

to a rigorous model-based design. It directly expresses timing constraints in components
using clocks that are mapped to the platform clock for implementation, which avoids ticks
synchronizations.

42

Part II

Contribution

43

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

Chapter 4

Time-Safety and Time-Robustness

Correct and efficient implementation of general real-time applications remains by far an open
problem. A key issue for building real-time systems is meeting timing constraints, that is, a
system reacts within user-defined bounds such as deadlines and periodicity. The satisfaction
of timing constraints depends on features of the execution platform, in particular its speed.

Rigorous design methodologies are model-based, that is, they explicitly or implicitly
associate with a real-time application software an abstract model– a platform-idependent
abstraction of the real-time systems– expressing timing constraints to be met by the im-
plementation. We have seen in Chapter 2 , existing rigorous implementation techniques
that are only applicable to specific classes of systems. In this chapter, we generalize these
approaches by introducing a general model-based implementation method for real-time sys-
tems. It relies on implementation theories that allow deciding if a given application software,
i.e. its associated model, can be implemented on a given platform, that is, for particular
execution times of actions. Our method is based on the use of two models:

• The abstract model represents the behavior of a real-time software as a timed au-
tomaton. The later describes user-defined platform-independent timing constraints
requirements.

• The physical model is introduced to represent the behavior of the real-time soft-
ware running on a given platform. It is obtained by assigning execution times to the
transitions of the abstract model.

We also propose the notion of implementability, that is, the notion of correctness of the
implementation of real-time systems models. It relies on the properties of time-safety and
time-robustness. Time-safety is a necessary condition for the implementability of physical
models. It means that the platform is fast enough to meet the timing constraints described
in the abstract model. Time-robustness is a powerful property of a system correctness. It
ensures that the time-safety property of a given system is steel achieved when speed of the
execution platform increases.

In the first section, we describe the notion of abstract models. In Section 2, we first
discuss the correctness issue in the implementation of such abstract models, e.g. how to
ensure a correct tracking of physical time by avoiding the drift phenomena between abstract
time and physical time. In the second, we give the definition of physical models. Finally,
in Section 3, we introduce the notions of time-safety and time-robustness and we show that
time-determinism is a sufficient condition for time-robustness.

45

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

1 Abstract Models

1.1 Preliminary Definitions

In this chapter, we use timed automata [6,7,75] to model the behavior of real-time systems
requirements over time. Timed automata provide a simple and powerful way to annotate
state-transitions automata with timing constraints using clocks.

Clocks

Clocks are used in order to measure time progress. They are variables increasing syn-
chronously. They can be valued either as integer or as real. A clock can be set to 0
(independly of other clocks) with a transition of the automaton. It keeps track of the time
elapsed since its last reset.

We denote by T the set of clock values. T can be the set of non-negative integers N or
the set of non-negative reals R

+.

Definition 11 (Clock Valuation) Given a set of clocks X, a valuation of the clocks
v : X → T is a function associating with each clock x its value v(x). Given a subset of clocks
X′ ⊆ X and a clock value l ∈ T, we denote by v[X′ 7→ l] the valuation defined by:

v[X′ 7→ l](x) =

{

l if x ∈ X′

v(x) otherwise.

Timing Constraints

The transitions of the automaton have certain constraints on the clock values. Indeed,
a transition may be taken only if the current values of the clocks satisfy the associated
constraint. Those constraints are also called guards.

Definition 12 (Timing Constraints) Given a set of clocks X, guards over X are finite
conjunctions of typed intervals. They are expressions used to specify when actions of a
system are enabled. They are of the form [l ≤ x ≤ u]τ where :

• x is a clock,
• l ∈ T and u ∈ T ∪ {+∞},
• τ is an urgency type, that is, τ ∈ { l, d, e }, where :

– l is used for lazy actions (i.e. non-urgent),
– d is used for delayable actions (i.e. urgent just before they become disabled),
– e is used for eager actions (i.e. urgent whenever they are enabled).

We write [x = l]τ for u = l.

Simplification rule

Considering that urgency types are ordered as follows: l < d < e, we consider the following
simplification rule [31]:

[l1 ≤ x1 ≤ u1]
τ1 ∧ [l2 ≤ x2 ≤ u2]

τ2

≡ [(l1 ≤ x1 ≤ u1) ∧ (l2 ≤ x2 ≤ u2)]
max τ1,τ2

46

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

By application of this rule, any guard g can be put into the following form:

g =
[

n
∧

i=1

li ≤ xi ≤ ui

]τ

.

• The predicate of g characterizes the valuations of the clocks for which g is enabled.

This predicate is the expression:
n
∧

i=1

li ≤ v(xi) ≤ ui.

• The predicate urg[g] that characterizes the valuations of clocks for which g is urgent
is also defined by:

urg[g] ⇐⇒

false if g is lazy (i.e. τ = l)
g ∧ ¬(g>) if g is delayable (i.e. τ = d)
g if g is eager (i.e. τ = e),

where g> is a notation for the predicate defined by :

g>(v) ⇐⇒ ∃ε > 0 . ∀δ ∈ [0, ε] . g(v + δ).

We denote by G(X) the set of guards over a set of clocks X.

1.2 Definition of Abstract Models

An abstract model describes the abstract behavior of the system based on timed automata.
The model takes into account only platform-independent timing constraints expressing user-
dependent requirements (e.g. deadlines, periodicity, etc.). The actions of the model rep-
resent statements of the application software. Timing constraints are guards of transitions
that take into account these requirements. Using timed automata allows more general timing
constraints that LET.

We are able to express lower bounds, upper bounds, time non-determinism etc.. We also
give the semantics of abstract models that assumes timeless execution of actions.

Definition 13 (abstract model) An abstract model is a timed automaton M = (A, Q, X,−→
) such that:

• A is a finite set of actions,
• Q is a finite set of control locations,
• X is a finite set of clocks,
• and −→⊆ Q× (A× G(X)× 2X)× Q is a finite set of labeled transitions. A transition

is a tuple (q, a, g, r, q′) where :

– a is an action executed by the transition.
– g is a guard over X.
– r is a subset of clocks that are reset by the transition.

We write q
a,g,r
−→ q′ for (q, a, g, r, q′) ∈−→.

The semantics of an abstract model is a Timed Transition System(TTS), that consists
of two types of transitions: actions and time steps. An execution sequence of the abstract
model is a sequence of such transitions with an alternance between actions and time steps.
The definition of an abstract model semantics is as follows:

47

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

Definition 14 (abstract model semantics) An abstract model M = (A, Q, X,−→) de-
fines a transition system TS. States of TS are of the form (q, v), where q is a control location
of M and v is a valuation of the clocks X.

It has two types of transitions:

• Actions. It corresponds to the beginning of the execution of the action a. It is
triggered by guard g and it resets the set of clocks r.
We have:
(q, v)

a
−→ (q′, v[r 7→ 0]) if q

a,g,r
−→ q′ is a transition of the abstract model and g(v) is

true.
We assume that the execution of action a takes zero time.

• Time steps. It corresponds to a waiting time δ ∈ T, δ > 0 transition.
We have:
(q, v)

δ
−→ (q, v+δ) if for all transitions q

a,g,r
−→ q′ of M and for all δ′ ∈ [0, δ[, ¬urg[g](v+

δ′).
This means that it is not possible to wait δ time if there is an urgency at time δ′ < δ.

In contrast to other models of timed automata [5], for abstract models it is always
possible to execute a transition from a state [31]. If no action is possible only time can
progress. We call this situation a deadlock. Henceforth, we consider abstract models M =
(A, Q, X,−→) such that any circuit in the graph −→ has at least a clock that is reset and
tested against a positive lower bound, that is, M is structurally non-zeno [30]. This class of
abstract models does not have time-locks, that is, time always eventually progresses.

The definition of an execution sequence of an abstract model is as follows:

Definition 15 (execution sequence) A finite (resp. an infinite) execution sequence
of M from an initial state (q0, v0) is a sequence that alterns actions and time-steps:

(qi, vi)
σi−→ (qi+1, vi+1) of M , σi ∈ A ∪ T and i ∈ { 0, 1, 2, . . . , n } (resp. i ∈ N).

Waiting Time

Following the abstract model semantics in Definition 14, it is not possible for a waiting time
transition to wait δ time if there is an urgency at time δ′ < δ. Indeed, given a state, there
should be restrictions on the waiting time allowed by the semantics because they influence
the date on wich actions are triggered. If the waiting time is too long, the deadlines over
actions might be missed. We define a function that gives the maximal waiting time allowed
for a waiting transition from a state as follows.

Given an abstract model M = (A, Q, X,−→), we denote by wait(q, v) the maximal waiting
time allowed at state (q, v), defined by:

wait(q, v) = min
({

δ ≥ 0
∣

∣

∣

∨

q
ai,gi,ri−→ qi

urg[gi](v + δ)
}

∪ { +∞ }
)

.

The maximal waiting time in a state (q, v) is then the minimum waiting time of actions
of all the transitions from state (q, v).

Notice that we have wait(q, v+δ) = wait(q, v)−δ for all δ ∈ [0, wait(q, v)]. A waiting time

δ > 0 is allowed in M at state (q, v), that is, (q, v)
δ
−→ (q, v+δ), if and only if δ ≤ wait(q, v).

48

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

Example 9 Consider an abstract model M = (A, {q0, q1, q2}, {x},−→) with a set of ac-
tions A = {a, b, c, i}, a single clock x and the following set of transitions (see Figure 4.1):
−→ = { (q0, a, [0 ≤ x ≤ +∞]e, ∅, q1),

(q1, b, [51 ≤ x ≤ 60]d, ∅, q2),

(q1, c, [0 ≤ x ≤ 50]l, ∅, q2),

(q2, i, [100 ≤ x ≤ 120]d, {x}, q0) }.

{x}

q0

q1

q2

a

[0 ≤ x ≤ +∞]e

∅

[50 ≤ x ≤ 60]d
b

∅ ∅
[0 ≤ x ≤ 50]l
c

i

[100 ≤ x ≤ 120]d

Figure 4.1: Example of abstract model.

Consider execution sequences of M from the initial state (q0, 0).

• From initial control location q0, we have: (q0, 0)
a
−→ (q1, 0). Since the only transition

issued from initial control location q0 of M is eager and its guard is always true, only
action a is possible from the initial state (q0, 0).

• At state (q1, 0), the system cannot wait for more than wait(q1, 0) = 60 time units due
to the delayable guard of b, which is urgent when x reaches 60.

– If b is executed, the waiting time δ1 at (q1, 0) must satisfy 50 ≤ δ1 ≤ 60.

– If c is executed, the waiting time δ1 at (q1, 0) must satisfy 0 ≤ δ1 ≤ 50

The execution of b or c leads to state (q2, δ1).

• At state (q2, δ1), the system cannot wait for more than wait(q2, δ1) = 120 time units due
to the delayable guard of i, which is urgent when x reaches 120. Time must progress
by δ2 time units before executing i, such that 100− δ1 ≤ δ2 ≤ wait(q2, δ1) = 120− δ1,
that is, 100 ≤ δ1 + δ2 ≤ 120. Then, action i is executed leading back to the initial
state (q0, 0).

This demonstrates that execution sequences of M are infinite repetitions of sequences
of two following forms:

49

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

1. (q0, 0)
a
−→ (q1, 0)

δ1−→ (q1, δ1)
b
−→ (q2, δ1)

δ2−→ (q2, δ1 + δ2)
i
−→ (q0, 0) where 50 ≤ δ1 ≤

60 and 100− δ1 ≤ δ2 ≤ 120− δ1

2. (q0, 0)
a
−→ (q1, 0)

δ1−→ (q1, δ1)
c
−→ (q2, δ1)

δ2−→ (q2, δ1 + δ2)
i
−→ (q0, 0) where 0 ≤ δ1 ≤

50 and 100− δ1 ≤ δ2 ≤ 120− δ1.

2 Physical Models

In the previous section, we presented the notion of abstract models, based on timed au-
tomata. It allows the representation of real-time systems requirements independently of
any execution platform. However, we can ask the question of the relevance of the use of
these mathematical objects when it comes to real systems implementation. The semantics
of these models is indeed very precise and assumes in particular, immediate transitions and
clocks infinitely precise. None of the existing execution platforms allows the implementa-
tion of such precise automaton, and nothing assumes that the properties verified on the
theoretical model will be preserved by the implementation.

In this section, we expose the problem by reasoning on a simple example of a periodic
task. We will also present the notion of physical models that allows to take into account the
differences between the theoretical and the real behavior of the system. Finally, we introduce
the notions of time-safety and time-robustness that allows us to verify if a physical model
is a correct implementation of its abstract model.

2.1 Time Tracking

Time and timing features are an important aspect of modeling real-time systems. In the
abstract model, time has a logical nature (rather than physical), what we also call the
abstract time. The abstract time is controllable and doesn’t depend on any execution plat-
form features. A key issue for a correct implementation from an abstract model is the
correspondence between abstract time and physical time. The implementation of heterege-
neous applications onto architecture platforms amounts to adjust the former abstract time
demands onto the latter physical time abilities. The physical time is the actual time, i.e. it
is the time that actually flows and that cannot be controlled by the system. The abstract
time is the time perceived by the program, it should represent the track of the physical time
by the abstract model. It is recognized that it may be differences between physical time and
abstract time since there will never be a perfect way to measure the real time. However,
the divergence between the two should remain under control.

There are different manners for establishing such correspondence as discussed as follows
through a simple example, modeling a periodic task.

Periodic Task Example

Consider an abstract model M of a periodic task (see Figure 4.2 (left)) with period P . It
consists of two control locations q0 and q1, a single clock x, and two transitions. Its behavior
involves a cyclic execution of actions execute and period.

• Action execute corresponds to the execution of the task. It is guarded by the timing
constraint x ≤ P to enforce this execution before the next activation of the task.

50

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

∅

M

q0

q1

{x}
[x = P]d

period execute
[x ≤ P]d

void main() {

Timer x();

while(true) {

f();

x.setTimeout(P);

x.waitTimeout();

x.reset();

}

}

Figure 4.2: Simple periodic task model (left) and its naive implementation (right).

• Action period corresponds to the activation of the task, that is, it is executed as x
reaches P . Its effect is to reset the clock x so that x measures the time elapsed since
the last activation of the task.

We consider a naive implementation of M (see Figure 4.2 (right)) as an infinite loop
that first executes sequentially the bloc of code f(). It then sets a timeout at P for a timer
X. It waits until the timer X reaches this timeout, and it resets the timer to start counting
another period.

At initialization, the value of the clock x is 0 and the control location is q0. In real
word technical systems, clocks are specific devices that are used to measure the progress
of physical time. We assume that the task is executed with an Operating System (OS)
that provides timers and mechanisms for resetting timers and waiting for timeouts. We also
assume that timers give an exact value of the physical time. Let’s consider the execution of
a "wait for a timeout" action. It is classically implemented as follows (see Figure 4.3):

1. After the execution of the task, the CPU is released to the OS by performing a context
switch.

2. The OS executes as long as the task is "asleep".

3. When the timer x equals the period P, an interruption is triggered.

4. The interruption is handled such as to notify the OS that a timeout occurred.

5. Then, the OS switches the context in order to let the task execute.

Drift Between Physical and Abstract Time

We can see that there is a difference between the abstract time and the physical time
whenever executing the transition period. Indeed, the execution sequences of the ideal
execution of the model is an iteration of the following sequence:

(q0, 0)
δ1−→ (q0, δ1)

execute
−→ (q1, δ1)

δ2−→ (q1, P)
period
−→ (q0, 0)

51

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

f()

x.reset()

x.waitTimeout()

x.setTimeout(P)

f()

P P PP

time
actual

4PP 2P0 3P

ε ε

task:
OS:

interrupt:

ε

f()

4ε

ε

f() f() f()

Figure 4.3: Simple periodic task execution.

The abstract time does not take into account any execution times on the target platform.
The effect of the reset on the timer x is done exactly at P . With the physical execution,
although the OS is interrupted exactly when the timer timeouts, i.e after a period of P,
operations 3, 4 and 5 take time, at least several CPU cycles. In addition, resetting the
timer can also take time. This means that the effect of the reset on the timer x is delayed
by ε > 0 time units. Typically ε is at least few CPU cycles. Assuming that this delay is
constant, the execution period of the periodic task considered here becomes P +ε instead of
P (see Figure 4.3). The physical time includes then a drift comparing to the abstract time
due to the actual execution times of the operations presented above. Indeed, this drift is
given by t ε

P+ε
, where t denotes the global physical time elapsed. This drift can be arbitrarily

large as t tends to +∞ (see Figure 4.4).

drift

1 2 3 4 5 6

ε
2ε
3ε
4ε

0

5ε

instant of the

of T

ith activation

of x

Figure 4.4: Drift Diagramm

Correct Tracking of Time

Let’s consider the tracking of the time for the transition labeled by action period of the
periodic task example presented above (see Figure 4.2). The transition resets the clock x
when x reaches P time units. We consider that action period resets a clock x at the global
abstract time t. We assume that the reset of x takes ε > 0 time units in the physical model,
meaning that the reset of x starts at t and completes at t + ε.

A naive approach is to continuously map the abstract time on the value of the clock x.

52

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

Since x is reset at the actual time t + ε (see Figure 4.5 (left)), using this approach leads to
a drift of ε between the abstract model and the physical model. There exist approaches for
analyzing how clock drifts may disable properties of an abstract model [4, 45,91].

period

abstract
time

g

t

t + ε

t t + ε

{x}

physical

time

period

abstract
time

g

t t + ε

t

t + ε

ε

{x}

physical

time

Figure 4.5: Execution based on continuous mapping of the physical time (left) vs frozen
clocks (right).

An alternative approach is to ensure a correct tracking of physical time and completely
avoid this kind of drift between abstract time and physical time. The proposed semantics
for physical models considers that the clock x is reset exactly at model time t. This is
implemented by freezing the values of the clocks during the execution of an action, and by
updating the clocks after that in order to take into account action execution time.

The clock x is considered to be reset at the model time t even if x is reset at the actual
time t + ε. Then abstract time is updated with respect to actual time at t + ε, that is, the
current value of x at the actual time t + ε is ε which complies with the abstract model (see
Figure 4.5 (right)).

In Chapter (Implementation), we will see that this method allows us detecting violations
of timing constraints.

2.2 Definition of Physical Models

Physical models are abstract models modified so as to take into account non-null execution
times. They represent the behavior of the application software running on a platform.

Since actions are timeless in abstract models, timing constraints are applied to the
instants they occur. In physical model, the start and completion times of an action may
not coincide. We consider that timing constraints in physical models apply to start times of
the actions. As explained above, we also consider that clock resets associated to each action
behave exactly as if they were done at action start time. This allows considering timing
constraints that are equalities for non-instantaneous actions. Such constraints are useful for
modeling exact synchronization with time, e.g. for describing a periodic execution.

A physical model Mϕ corresponds to the abstract model M transformation. by adding
actions executions times, that are given by function ϕ (see Figure 4.6). The physical model
definition is formalized as follows.

53

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

a

q

q′

r

g ϕ(a)
−→

[xa = ϕ(a)]d

q

q′

∅

waita

r ∪ {xa}

a

g

enda

Transition in
M .

Corresponding transitions in
Mϕ.

Figure 4.6: From abstract model to physical model.

Definition 16 (physical model) Let M = (A, Q, X,−→) be an abstract model and ϕ :
A → T be an execution time function that gives for each action a its execution time ϕ(a).

The physical model Mϕ = (A, Q, X,−→, ϕ) corresponds to the abstract model M modified
so that each transition (q, a, g, r, q′) of M is decomposed into two consecutive transitions:

1. The first transition (q, a, g, r ∪ {xa}, waita) corresponds to the beginning of the execu-
tion of the action a. It is triggered by guard g and it resets the set of clocks r, exactly
as (q, a, g, r, q′) in M . It also resets an additional clock xa used for measuring the
execution time of a.

2. The second transition (waita, enda, gϕ(a), ∅, q
′) corresponds to the completion of a. It is

constrained by gϕ(a) ≡ [xa = ϕ(a)]d that enforces waiting time ϕ(a) at control location
waita, which is the time elapsed during the execution of the action a.

Notice that if (q, v) is a state of the abstract model then (q, v, v′) is a state of the physical
model such that v′ is a valuation of clocks { xa | a ∈ A }. We compare the behavior of Mϕ

from initial states of the form (q0, v0, 0) with the behavior of M from corresponding initial
states (q0, v0). In the above definition, an abstract model M and its corresponding physical
model Mϕ coincide if actions are timeless, that is, if ϕ = 0. In a physical model Mϕ, every
execution of an action a is followed by a wait for ϕ(a) time units as follows:

(q, v)
a
−→ (waita, v[r 7→ 0])

ϕ(a)
−→ (waita, v + ϕ(a))

aend−→ (q′, v + ϕ(a)) (1),

which can be abbreviated as

(q, v)
a,ϕ(a)
−→ (q′, v[r 7→ 0] + ϕ(a)) (2).

We consider that the execution sequence (1) of Mϕ is equivalent to the following execution
of the corresponding abstract model M :

(q, v)
a
−→ (q′, v[r 7→ 0])

ϕ(a)
−→ (q′, v[r 7→ 0] + ϕ(a)),

We note ≡ this type of equivalence relation between the execution sequence of Mϕ and M .

Notice that a time step (q′, v[r 7→ 0])
ϕ(a)
−→ (q′, v[r 7→ 0]+ϕ(a)) of Mϕ may not be a time step

54

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

of M if there exists a transition q′
a′,g′,r′

−→ q′′ such that urg[g′](v[r 7→ 0] + δ) and δ ∈ [0, ϕ(a)[,
that is, the execution time ϕ(a) of a is greater than the maximal waiting time allowed at
state (q′, v[r 7→ 0]): ϕ(a) ≥ wait(q′, v[r 7→ 0]). In this case the physical model violates
timing constraints defined in the corresponding abstract model.

time
waiting

0
a2

a3a1

guard of a2 guard of a3guard of a1

Figure 4.7: Minimal waiting time for action execution.

We consider only execution sequences of physical models Mϕ such that the waiting times

for the actions are minimal, that is, (q, v)
δ
−→ (q, v + δ)

a,ϕ(a)
−→ (q′, (v + δ)[r 7→ 0] + ϕ(a)) is

an execution sequence of Mϕ if δ = min { δ′ ≥ 0 | g(v + δ′)} where g is the guard of the
action a at control location q (see Figure 4.7).

3 Time-Safety and Time-Robustness

In the previous sections, we presented the notion of abstract models representing real-time
systems requirements independly of any execution platform. Then, we presented the notion
of physical models, representing the application software running on a platform. In this
section, we present the notions of time-safety and time-robustness that allows to determinate
if a physical model is faithful to its abstract model. We consider that a physical model is
time-safe if its execution sequences are execution sequences of the corresponding abstract
model, that is, execution times are compatible with timing constraints. Furthermore, a
physical model is time-robust if reducing the execution times preserves this time-safety
property. Execution times reduction may result from the execution of the model on a faster
platform.

3.1 Definitions

Definition 17 (time-safety) A physical model Mϕ = (A, Q, X,−→, ϕ) is time-safe if
for any initial state (q0, v0) the set of the execution sequences of Mϕ is contained in the
set of the execution sequences of M , by considering the equivalence relation ≡ between the
execution sequences (see subsection 2.2).

Definition 18 (time-robustness) A physical model Mϕ is time-robust if Mϕ′ is time-
safe for all execution time functions ϕ′ ≤ ϕ. An abstract model is time-robust if all its
time-safe physical models are time-robust.

Most of the techniques for analyzing the schedulability of real-time systems are based
on worst-case estimates of execution times. They rely on the fact that the global worst-case
behavior of the system is achieved by assuming local worst-case behavior. Unfortunately,
this assumption is not valid for systems that are prone to timing anomalies, that is, a faster
local execution may lead to a slower global execution [78]. A time-robust abstract model is

55

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

Mϕ

Mϕ′

M

Mϕ

Mϕ′

M

Mϕ is
time-robust.

Mϕ is only time-safe.

Figure 4.8: Illustration for robustness (ϕ′ < ϕ).

a system without such timing anomalies, that is, if it is time-safe for execution time function
ϕ, then it is time-safe for execution time functions less than or equal to ϕ.

Example 10 We consider the abstract model M given in Example 9 and a family of execu-
tion time functions ϕ such that ϕ(a) = ϕ(b) = K, ϕ(c) = 2K and ϕ(i) = 0. The behavior of
the corresponding physical models Mϕ from initial state (q0, 0) is summarized in Figure 4.9.

• Execution sequences of Mϕ for K ≤ 40.

For K ≤ 40, Mϕ has execution sequences that are infinite repetitions of the following
execution sequences:

1. (q0, 0)
a,K
−→ (q1, K)

c,2K
−→ (q2, 3K)

i,0
−→ (q0, 0), and

2. (q0, 0)
a,K
−→ (q1, K)

50−K
−→ (q1, 50)

b,K
−→ (q2, 50 + K)

50−K
−→ (q2, 100)

i,0
−→ (q0, 0).

These are execution sequences of M (see Example 9) that is, Mϕ is time-safe for
K ≤ 40.

• Execution sequences of Mϕ for K ∈ [41, 50].

For K ∈ [41, 50], Mϕ has execution sequences that are repetitions of the following
execution sequences:

1. (q0, 0)
a,K
−→ (q1, K)

c,2K
−→ (q2, 3K) leading to a deadlock, and

2. (q0, 0)
a,K
−→ (q1, K)

50−K
−→ (q1, 50)

b,K
−→ (q2, 50 + K)

50−K
−→ (q2, 100)

i,0
−→ (q0, 0).

Infinite repetitions of the sequence 2 is also execution sequence of M . Other execution
sequences of Mϕ for K ∈ [41, 50] are finite and lead to a deadlock. They are not
execution sequences of M since M is deadlock-free, that is, Mϕ is not time-safe K ∈
[41, 50].

56

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

• Execution sequences of Mϕ for K ∈ [51, 60].

For K ∈ [51, 60], Mϕ has a single execution sequence that is an infinite repetition of
the following execution sequence:

(q0, 0)
a,K
−→ (q1, K)

b,K
−→ (q2, 2K)

i,0
−→ (q0, 0).

This is an execution sequence of M that is, Mϕ is time-safe M for K ∈ [50, 60].
However, Mϕ is not time-robust since Mϕ is not time-safe for K ∈ [41, 50].

• Execution sequences of Mϕ for K > 60.

For K > 60, Mϕ has a single execution sequence (q0, 0)
a,K
−→ (q1, K) leading to a

deadlock. This is not an execution sequence of M since M is deadlock-free, that is,
Mϕ is not time-safe K > 60.

We have shown that the abstract model M is not time-robust since it has physical models
Mϕ, K ∈ [51, 60], that are time-safe but not time-robust. However, the physical models Mϕ

for K ≤ 40 are time-robust (see Figure 4.9).

α ϕ(α)

a K
b K
c 2K
i 0

Mϕ is time-safe (and time-robust)

0 10 20 30 40 50 60

K

Mϕ is time-safe (only)

Figure 4.9: Time-safe physical models Mϕ.

3.2 Enforcing Time-Robustness

Definition 19 (time-determinism) An abstract model is time-deterministic if all its
guards are eager (or delayable) equalities.

Time-deterministic abstract models are such that if two execution sequences have the
same corresponding sequences of actions, then they are identical. That is, time instants for
the execution of the actions are the same. Time-deterministic abstract models are time-
robust, as shown below.

Proposition 1 Time-deterministic abstract models are time-robust.

To prove that time-deterministic abstract models are time-robust we need the following
lemma.

Lemma 1 Given a time-deterministic abstract model M = (A, Q, X,−→) and a state (q, v)
of M , the only waiting time allowed at (q, v) is the maximal waiting time wait(q, v), that is,
for all δ ∈ [0, wait(q, v)[no action is enabled at (q, v + δ).

57

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

Proof 1 of lemma Let (q, v) be a state of a time-deterministic abstract model M =
(A, Q, X,−→). Since M contains only guards that are eager (or delayable) equalities, tran-

sitions q
ai,gi,ri−→ qi, 1 ≤ i ≤ n, issued from q are such that the guard gi is of the form

gi ≡ [xi = li]
e. We have:

∨

1≤i≤n

gi(v + δ) ⇐⇒
∨

1≤i≤n

urg[gi](v + δ)

⇐⇒ δ ∈ ∆ = { δi ≥ 0 | 1 ≤ i ≤ n },

where δi = li− v(xi). By application of the definition of wait(q, v) (see Section 1.2) we have
wait(q, v) = min ∆, and for all δ ∈ [0, wait(q, v)[and actions ai are not enabled at (q, v + δ)
since δ /∈ ∆.

Notice Lemma 1 also holds for abstract models that contains only eager guards, that is,
such that its actions are urgent as they are enabled.

Proof 2 of proposition 1 Let M = (A, Q, X,−→) be a time-deterministic abstract model
that is time-safe for an execution time function ϕ. Consider an execution time function ϕ′

such that ϕ′ ≤ ϕ. We show by induction that each execution sequence of Mϕ′ is also an
execution sequence of Mϕ. By induction hypothesis, we consider a state (q, v) of both Mϕ′

and Mϕ, and a transition q
a,g,r
−→ q′ executed at (q, v) in Mϕ′ , that is:

Mϕ′ : (q, v)
a,ϕ′(a)
−→ (q′, v′ + ϕ′(a))

δ′
−→ (q′, v′ + ϕ′(a) + δ′).

where v′ = v[r 7→ 0] and δ′ is the waiting time for the execution of the next action in Mϕ′ .
Since g(v) is true, action a is also enabled in Mϕ at (q, v):

Mϕ : (q, v)
a,ϕ(a)
−→ (q′, v′ + ϕ(a))

δ
−→ (q′, v′ + ϕ(a) + δ),

where δ is the waiting time for the execution of the next action in Mϕ. As Mϕ is time-
safe and ϕ′(a) ≤ ϕ(a), we have ϕ′(a) ≤ ϕ(a) ≤ wait(q′, v′). Using properties of wait (see
Section 1.2), we have wait(q′, v′ + ϕ(a)) = wait(q′, v′) − ϕ(a) and wait(q′, v′ + ϕ′(a)) =
wait(q′, v′) − ϕ′(a). By application of Lemma 1 we obtain δ = wait(q′, v′) − ϕ(a) and δ′ =
wait(q′, v′)−ϕ′(a), that is, ϕ(a) + δ = ϕ′(a) + δ′. This demonstrates that the execution of a
at state (q, v) leads to the same state (q′, v′ +ϕ′(a)+ δ′) = (q′, v′ +ϕ(a)+ δ) in Mϕ and Mϕ′

before executing the next action. By induction, execution sequences of Mϕ′ are execution
sequences of Mϕ.

In [8, 51, 58] execution times of actions have fixed values called logical execution times
(LET) specified in the program. LET define the difference between the release time and
the due time of the actions. A program behaves as if its actions consume exactly their
LET: even if they start after their release time and complete before their due time, their
effect is visible exactly at these times. This is achieved by reading for each action its input
exactly at its release time and its output exactly at its due time. A program based on LET
defines a time-deterministic abstract model which is a timed automaton for which actions
occur at fixed times. This ensures time-determinism: if two execution sequences execute
the same sequence of actions, then corresponding actions occur at the same time instants.
When execution times are less than LET, the abstract model and its corresponding physical
model define exactly the same execution sequences, that is, the behavior of the program is
independent of the platform.

58

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

Example 11 Consider the time-deterministic abstract model M given in Figure 4.10 ob-
tained from the abstract model of Example 9. Execution sequences of M are infinite repe-

titions of sequences of the following form: (q0, 0)
a
−→ (q1, 0)

50
−→ (q1, 50)

c
−→ (q2, 50)

70
−→

(q2, 120)
i
−→ (q0, 0). The physical models Mϕ corresponding to M are time-safe if and only

if ϕ(a) ≤ 50, ϕ(c) ≤ 70 and ϕ(i) = 0. Notice that for 51 ≤ ϕ(a) ≤ 60, ϕ(b) ≤ 60 and
ϕ(i) = 0, Mϕ remains deadlock-free but it is not time-safe.

{x}

q0

q1

q2

a

[x = 0]d

∅

[x = 60]d
b

∅ ∅
[x = 50]d
c

i

[x = 120]d

Figure 4.10: Time-deterministic abstract model M .

Definition 20 (action-determinism) An abstract model is action-deterministic if there
is at most one transition issued from each control location.

If a time-deterministic abstract model is also action-deterministic, it has a single exe-
cution sequence from a given initial state (q0, v0), that is, it is totally deterministic. Such
models have been considered in [8,51,58]. Their time-robustness allows checking time-safety
only for worst-case execution times. In addition, for these systems checking time-safety boils
down to checking deadlock-freedom, as shown below.

Proposition 2 If M is an abstract model which is action-deterministic, deadlock-free and
contains only delayable guards, then a physical model Mϕ is time-safe if and only if it is
deadlock-free.

Proof 3 of proposition Let M = (A, Q, X,−→) be a deadlock-free action-deterministic
abstract model containing only delayable guards. We demonstrate that Mϕ is time-safe if
and only if Mϕ is deadlock-free.
Mϕ is time-safe ⇒ Mϕ is deadlock-free. If the physical model Mϕ is time-safe, then its
execution sequences are execution sequences of the deadlock-free abstract model M , that is,
they are deadlock-free.
Mϕ is deadlock-free ⇒ Mϕ is time-safe. We prove by contradiction that Mϕ is time-safe
if Mϕ is deadlock-free. Assume that time-safety is violated for an action a at a state (q, v)
of an execution sequence of Mϕ, that is:

(q, v)
a,ϕ(a)
−→ (q′, v[r 7→ 0] + ϕ(a))

59

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

such that a transition q′
a′,g′,r′

−→ q′′ satisfy urg[g′](v[r 7→ 0] + δ), δ ∈ [0, ϕ(a)[(i.e. ϕ(a) >

wait(q′, v[r 7→ 0])). Since M is action-deterministic, q′
a′,g′,r′

−→ q′′ is the only transition issued
from q′, and its guard g′ is a delayable conjunction of intervals, that is, g′ is of the form:

g′ ≡
[

∧

1≤i≤n

[li ≤ xi ≤ ui]
]d

.

As a consequence, urg[g′](v[r 7→ 0] + δ) ⇒ ∀δ′ > δ . ¬g′(v[r 7→ 0] + δ′), that is, no action
can be executed from (q′, v[r 7→ 0] + ϕ(a)). This establishes that Mϕ has a deadlock at state
(q′, v[r 7→ 0] + ϕ(a)).

Example 12 We modify the time-deterministic abstract model given in Example 11 in
order to make it also action-deterministic (see Figure 4.11). Its execution sequences re-
main the same, that is, infinite repetitions of sequences of the following form: (q0, 0)

a
−→

(q1, 0)
50
−→ (q1, 50)

c
−→ (q2, 50)

70
−→ (q2, 120)

i
−→ (q0, 0). The corresponding physical model

Mϕ is time-safe if and only if ϕ(a) ≤ 50, ϕ(c) ≤ 70 and ϕ(i) = 0, and deadlocks otherwise.

c

q0

q1

q2

a

[x = 0]d

∅
i

[x = 120]d

{x}

∅
[x = 50]d

Figure 4.11: Deterministic abstract model M .

4 Conclusion

In this chapter we have presented essential notions for correct implementation of real-time
applications. The method is new and innovates in several aspects:

• It does not suffer limitations of existing methods regarding the behavior of systems or
the type of timing constraints. Considered real-time applications include not only pe-
riodic tasks with deadlines but also tasks with non-deterministic behavior and actions
subject to interval timing constraints.

• It is based on a formally defined relation between application software written in high
level languages with atomic and timeless actions and its execution on a given platform.
The relation if formalized by using two models: 1) abstract models which describe the
behavior of the application software as well as timing constraints on its actions; 2)

60

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

physical models which are abstract models equipped with an execution time function
specifying WCET for the actions of the abstract model running on a given platform.
Time-safety is the property of physical models guaranteeing that they respect timing
constraints. Time-robust physical models have the property to remain time-safe for
decreasing execution times of their actions. Non-robustness is a timing anomaly that
appears in time non-deterministic systems.

The method generalizes existing techniques in particular those based on LET. These
techniques consider fixed LET for actions, that is, time-deterministic abstract models. In
addition, their models are action-deterministic, that is, only one action is enabled at a
given state. For these models time-robustness boils down to deadlock-freedom for WCET
as shown in Proposition 2.

To the best of our knowledge, the concept of time-robustness is new. It can be used to
characterize timing anomalies due to time non-determinism. These timing anomalies have
in principle different causes from timing anomalies observed for WCET.

Results on time-safety and time-robustness allow a deeper understanding of causes of
anomalies. They advocate for time-determinism as a mean for achieving time-robustness.

In the next chapter, we propose a concrete implementation method using a Real-time
Execution Engine which faithfully implements physical models. That is, if a physical model
defined from an abstract model and a target platform is time-robust then the Engine co-
ordinates the execution of the application software so as to meet the real-time constraints.
The Real-time Execution Engine is correct-by-construction. It executes an algorithm which
directly implements the operational semantics of the physical model.

61

CHAPTER 4. TIME-SAFETY AND TIME-ROBUSTNESS

62

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

Chapter 5

Correct Implementation of Real-Time

Systems

In the previous chapter, we defined the concepts and gave definitions for the design of real-
time systems. In this chapter, we give an implementation method that guarantees a correct
implementation of those systems. A correct implementation is an implementation that
satisfies the time-safety property, that is, the timing constraints requirements are met by
the execution on a target platform. We also guarantee that if the model is robust for WCET
then the implementation is time-safe. Otherwise, the method detects violations of time-
safety and stops execution. We consider that the application software is a set of interacting
components where each component is represented by an abstract model. Thus the abstract
model corresponding to the application is the parallel composition of the timed automata
representing the components. Given a physical model corresponding to the abstract model,
the implementation method defines a real-time execution engine that takes into account
their timing constraints.

We prove that the method is correct in two steps. We first define an execution engine
for the abstract model and show that it correctly implements its semantics. Then we
define a real-time execution engine and show that it correctly implements the semantics
of the physical model. Our implementation method is based on a correct tracking of the
physical time, as we have seen in the previous chapter, which allows the detection of timing
constraints violations.

The chapter is structured as follows. In Section 1, we present the execution engine for ab-
stract models. We first give a definition of the composition of abstract models, then, we give
the execution algorithm that satisfies its semantics. In Section 2, we present the real-time
execution engine for physical models. We also give a definition of the composition of physical
models, then, we give the execution algorithm that detects time-safety violations. Finally,
in Section 3, we present the implementation method for the component-based framework
BIP and we present a use case to study time-safety and time-robustness for an adaptative
MPEG video encoder.

63

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

1 Abstract Models Execution Engine

An abstract model is the representation of an application software based on timed automata.
The model takes into account only platform-independent timing constraints expressing user-
dependent requirements. The actions of the model represent statements of the application
software and are assumed to be timeless. We consider that the application software is a set
of interacting components where each component is represented by an abstract model. We
explain how the abstract model corresponding to the application is the parallel composition
of the timed automata representing the components. We also present the execution engine
for the resulting abstract model.

1.1 Composition of Abstract Models

The composition of a set of behaviors gives a restricted behavior, contained in the product
of their behavior. The composition M = (A, Q, X,−→γ) of abstract models M i, 1 ≤ i ≤ n,
corresponds to a general notion of product for the timed automata M i. Here is a formal
definition for the composition of abstract models.

Let M i = (Ai, Qi, Xi,−→i), 1 ≤ i ≤ n, be a set of abstract models with disjoint sets of
actions and clocks, that is, for all i 6= j we have Ai ∩ Aj = ∅ and Xi ∩ Xj = ∅.

Definition 21 (composition of abstract models) A set of interactions γ is a subset

of 2A, where A =
⋃n

i=1 Ai, such that any interaction a ∈ γ contains at most one action of
each component M i, that is, a = { ai | i ∈ I } where ai ∈ Ai and I ⊆ { 1, 2, . . . , n }. We
define the composition of the abstract models M i as the abstract model M = (A, Q, X,−→γ)
over the set of actions γ as follows:

• Q = Q1 × Q2 × . . .× Qn

• X = X1 ∪ X2 ∪ . . . ∪ Xn

• For a = { ai | i ∈ I } ∈ γ we have (q1, q2, . . . , qn)
a,g,r
−→γ (q′1, q

′
2, . . . , q

′
n) in M if and

only if g =
∧

i∈I gi, r =
⋃

i∈I ri, qi
ai,gi,ri−→ q′i in M i for all i ∈ I, and q′i = qi for all

i /∈ I.

Example 13 Figure 6.10 shows two abstract models modeling the behavior of a video en-
coder and its controller. The abstract model E is the behavior of the encoder encapsulated in
component Encoder and the abstract model C is the behavior of the controller encapsulated
in component Controller.

The abstract model E = (A, {q0, q1, q2}, {x},−→) is composed of a set of actions A =
{get, enc, next}, action get for receiving a frame, enc for encoding it and end to indicate
the end of encoding, a single clock x and the following set of transitions:

−→ = { (q0, get, [0 ≤ x ≤ +∞]e, ∅, q1),

(q1, enc, [0 ≤ x ≤ +∞]d, ∅, q2),

(q2, next, [100 ≤ x ≤ 120]d, {x}, q0) }.
The abstract model C = (A, {q′0, q

′
1}, {y},−→) is composed of a set of actions A =

{enca, encb, next}, action enca to set the encoding quality a, action encb to set the encoding
quality b and action next to move to the next frame encoding, a single clock x and the
following set of transitions:

64

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

−→ = { (q′0, enca, [51 ≤ y ≤ 60]d, ∅, q′1),

(q′0, encb, [0 ≤ y ≤ 50]l, ∅, q′1),

(q′1, next, [0 ≤ y ≤ +∞]d, {y}, q′0) }.

ControllerEncoder

γ = get ; enc.enca ; enc.encb ; end.next

get

[0 ≤ x ≤ +∞]e

∅

enc

[0 ≤ x ≤ +∞]d

∅

end

[100 ≤ x ≤ 120]d

{x}

q′

0

q′

1

[0 ≤ y ≤ 50]d
encb

∅∅

enca

[50 ≤ y ≤ 60]d

next
[0 ≤ x ≤ +∞]d

{y}

q0

q1

q2

Figure 5.1: Interacting abstract models of an encoder (left) and its controller (right).

The two models interact following this interaction model:
γ = {get ; enc.enca ; enc.encb ; end.next}.
Interactions enc

′

a = enc.enca and enc
′

b = enc.encb synchronize the action enc of the
encoder with the action enca and encb of the controller. Indeed, the encoder can either
encode the frame with a quality a or b depending on the duration of action get. Interaction
next

′

= end.next synchoronizes the end of encoding of a frame and the enabless to move to
the next frame through actions end and next.

Controlled−Encoder

[50 ≤ y ≤ 60]d

get′

[0 ≤ x ≤ +∞]e

∅

enc′
benc′a

q2q′
1

q1q′
0

q0

next′

[100 ≤ x ≤ 120]d

{x, y}

∧[0 ≤ x ≤ +∞]d
[0 ≤ y ≤ 50]d

∅∅
∧[0 ≤ x ≤ +∞]d

Figure 5.2: Abstract model composition of the encoder and its controller.

The composition of the two models is then EC = (A, {q0, q1, q2}, {x},−→) (see Figure
6.11) , composed of a set of actions A = {get, enc

′

a, enc
′

b, next
′

}, a single clock x and the
following set of transitions:

65

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

−→ = { (q0, get, [0 ≤ x ≤ +∞]e, ∅, q2),

(q1, enc
′

a, [51 ≤ x ≤ 60]d, ∅, q2),

(q1, enc
′

b, [0 ≤ x ≤ 50]d, ∅, q2),

(q2, next
′

, [100 ≤ x ≤ 120]d, {x}, q1) }.

Controlled−Encoder

enc′a

get

[0 ≤ x ≤ +∞]e

∅
next′

[100 ≤ x ≤ 120]d

{x}

q0

[0 ≤ x ≤ 50]d[50 ≤ x ≤ 60]d

q1

q2

enc′b

∅∅

Figure 5.3: Simplification of the abstract model composition of the encoder and its con-
troller.

We notice that the composition of the two models described in the example correspond
to the abstract model presented in the previous chapter in example 9.

1.2 Execution Algorithm of Abstract Models

We consider that the application software is a set of interacting components where each
component is represented by an abstract model. We have presented the methodology for
building the composition of such components. We now define an execution Engine that
computes, at run-time, sequences of interactions between components M i = (Ai, Qi, Xi,−→i

), by applying the above operational semantics rule.
Figure 5.4 is a representation of the abstract models execution Engine. For given states

(qi, vi) of the components M i with their corresponding lists of transitions { qi
aj ,gj ,rj
−→ q′j }

issued from qi and an interaction model γ, the execution engine computes the set of en-
abled interactions γs and stops the execution if the model is inconsistent, that is, when a
deadlock is detected. If the model is consistent, the execution Engine chooses one (enabled)
interaction using a real-time scheduling policy and executes it. We will first explain how we
manage to handle timing features involving components local clocks and timing constraints,
then we give the execution algorithm.

Timing Constraints Translation

Every component representing an abstract model can define local clocks. They can be
reset at any time and are involved in timing constraints labelling transitions. According to
Definition 21, the timing constraint g of an interaction a = {ai, i ∈ I} of a composition of
abstract models M i is the conjunction of the real-time guards gi, labelling transitions of
the ports ai involved in the interaction. Since the components clocks are local, in order to
compute interactions between components and schedule them correctly, we need to express
real-time constraints of interactions in terms of a single scale time, that is, a single global

66

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

Component
Mn

component transitions (aj , gj , rj)

stop if

(deadlock)

execute chosen interaction a

compute
Abstract Model

Abstract Model Execution Engine

model inconsistency

at state (qi)

enabled interactions γs scheduling policy
apply

Scheduler

Interaction Model γ

. . .

Application Software Model

Component
M1

Component
M2

Component
M3

Figure 5.4: Abstract Models Execution Engine.

clock. We have chosen to express all timing constraints according to the global clock t,
measuring the absolute time elapsed, i.e. global clock t is never reset.

We first express the timing constraints involving local clocks of components in terms of
the single global clock t. Here are the different steps the execution Engine makes to do the
timing translation:

1. It first stores the absolute time w(x) of the last reset of each clock x with respect to
the clock t. Indeed, since the global clock t is never reset, by storing the time on wich
the reset has been done, we are able to compute the time elapsed since the last reset.
It represents clock x value in terms of global clock t. For this, we use a valuation
w : X → T. The valuation v of the clocks X can be computed from the current value
of global time t and the last reset value w by using the equality v = t− w.

2. Thus, the Execution Engine considers states of the form s = (q, w, t) where q =
(q1, q2, . . . , qn) ∈ Q is a control location of M , w : X → T is valuation for clocks
representing their reset times, and t ∈ T is the value of the current (absolute) time.

3. We rewrite each atomic expression l ≤ x ≤ u involved in a timing constraint, with a
local clock x, by using the global clock t and reset times w. In that purpose, we have
to add to the initial lower and upper bounds the last resest value w(x) of x as follows:

l ≤ x ≤ u ≡ l + w(x) ≤ t ≤ u + w(x).

This allows reducing the conjunction of guards from synchronizing components into
a sinple timing constraint such as its lower and upper bounds are respectively the
maximal value of the components upper and lower bounds and its urgency is also
the maximal urgency of the components. The computation of this conjunction is as
follows:

∧

j

[lj ≤ t ≤ uj]
τj =

[

(maxj lj) ≤ t ≤ (minj uj)
]max τj

.

67

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

4. Thus, the guard g associated to an interaction a at a given state s = (q, w, t) can be
put in the form g = [l ≤ t ≤ u]τ .

We associate to an interaction a, such that its timing constraint g = [l ≤ t ≤ u]τ

statisfies l ≤ u, its next activation time nexts(a). It corresponds to the next value of the
global time (i.e. maximal value) for which the interaction a is enabled.

We also associate to an interaction a its next deadline deadlines(a). It corresponds to
the next value of the global time for which interaction a is urgent, so it also depends on the
urgency of the timing constraint. If the urgency is delayable and global time t is smaller
than the upper bound u then the deadline is u. If the urgency is eager, the deadline is the
lower bound l if t < l and the deadline is t if t ∈ [l, u].

Values nexts(a) and deadlines(a) from guard g = [l ≤ t ≤ u]τ can be resumed as follows:

nexts(a) =

{

max { t, l } if t ≤ u
+∞ otherwise,

deadlines(a) =

u if t ≤ u ∧ τ = d
l if t < l ∧ τ = e
t if t ∈ [l, u] ∧ τ = e
+∞ otherwise.

Notice that we have nexts(a) ≤ deadlines(a).

Execution Algorithm

Given a state s = (q, w, t), q = (q1, . . . , qn), the abstract model execution Engine computes
the next interaction to be executed as follows.

1. It first computes the set of enabled interactions γs ⊆ γ at state s = (q, w, t), from given
sets of transitions issued from qi for each component M i. According to Definition 21,
an interaction a = { ai | i ∈ I } ∈ γ is enabled from state s if (q1, . . . , qn)

a,g,r
−→γ

(q′1, . . . , q
′
n) and g = [l ≤ t ≤ u]τ statisfy l ≤ u and t ≤ u, i.e. next(a) ≤ +∞. The

timing constraint g of a is the conjunction of the guards gi of actions ai and r is the
union of the resets ri of actions ai, that is, g =

∧

i∈I gi, r =
⋃

i∈I ri, for all i ∈ I we

have qi
ai,gi,ri−→ q′i in M i and for all i /∈ I we have q′i = qi.

2. It chooses an interaction a = { ai | i ∈ I } ∈ γs enabled from state s = (q, w, t),
that is, such that there exists a time instant t′ ≥ t at which the guard a holds
(i.e. nexts(a) < +∞), and no timing constraint is violated (i.e. nexts(a) ≤ D =
mina∈γs deadlines(a)). The choice of a depends on the considered real-time scheduling
policy. For instance, EDF (Earliest Deadline First) scheduling policy can be used, that
is, the chosen interaction a satisfies deadlines(a) = D.

3. It executes a with minimal waiting time, that is, at time instant nexts(a). The ex-
ecution of a corresponds to the execution of all actions ai, i ∈ I, followed by the
computation of a new valuation w and the update of control locations.

Algorithm 4 gives an implementation of the Execution Engine for the composition of
abstract models. It basically consists of an infinite loop that first computes enabled inter-
actions at current state s of the composition (line 3). It stops if no interaction is possible
from s (i.e. deadlock) at line 5. Otherwise, it chooses an interaction a (line 7) and executes
a (line 12) with minimal waiting time (line 9) by updating the logical time t. Finally, the
state s is updated in order to take into account the execution of a (lines 13 and 14).

68

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

Algorithm 4 Abstract Model Execution Engine

Require: abstract models M i = (Qi, Xi,−→i), 1 ≤ i ≤ n, initial control location
(q1

0, . . . , q
n
0), set of interactions γ

1: s = (q1, . . . , qn, w, t) ← (q1
0, . . . , q

n
0 , 0, 0) // init.

2: loop
3: γs = EnabledInteractions(s)
4:

5: if ∃a ∈ γs . nexts(a) < +∞ then
6: D ← mina∈γs deadlines(a) // next deadline
7: a = { ai | i ∈ I } ← RealT imeScheduler(γs)
8:

9: t ← nexts(a) // consider minimal waiting time
10:

11: for all i ∈ I do
12: Execute(ai) // execute involved component
13: w ← w[ri 7→ t] // reset clocks
14: qi ← q′i // update control location
15: end for
16: else
17: exit(DEADLOCK)
18: end if
19: end loop

2 Physical Models Execution Engine

A physical model is a representation of an application software running on a given platform.
It is obtained by assigning execution times to the transitions of an abstract model. We con-
sider that the application software is a set of interacting components where each component
is represented by an abstract model and ϕ is the execution time function that gives for each
action labelling the transitions of the abstract model its execution time ϕ(a). We will first
explain how we build the composition of physical models corresponding to the application.
We then present the real-time execution engine that ensures the execution of the application
on a target platform. With a correct traking of time, it stops execution when time-safety
violations occur.

2.1 Composition of Physical Models

We consider abstract models M i, 1 ≤ i ≤ n, and corresponding physical models M i
ϕi

=
(Ai, Qi, Xi,−→i, ϕi), with disjoint sets of actions and clocks.

Definition 22 (composition of physical models) Given a set of interactions γ, and
an associative and commutative operator ⊕ : T×T → T, the composition of physical models
M i

ϕi
is the physical model Mϕ corresponding to the abstract model M which is the composition

of M i, 1 ≤ i ≤ n, with the execution time function ϕ : γ → T such that ϕ(a) =
⊕

i∈I ϕi(ai)
for interactions a = { ai | i ∈ I } ∈ γ, ai ∈ Ai.

The definition is parameterized by an operator ⊕ used to compute the execution time
ϕ(a) of an interaction a from execution times ϕ(ai) of the actions ai involved in a. The

69

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

Component

check time-safety violation

stop if
time-safety violation

Platform

actual time tr

(missed deadline)

model inconsistency

component transitions (ai, gi, ri) at state (q, w, t)

update abstract time w.r.t. physical time (t := tr)
Update

hardware
clock

stop if

scheduling policy
apply

Scheduler

(deadlock)

execute chosen interaction a

enabled interactions γq

compute
Abstract Model

Real-Time Execution Engine

Interaction Model γ

. . .

Application Software Model

Component
M1

Component
M2

Component
M3 Mn

Figure 5.5: Real-time Execution Engine.

choice of this operator depends on the considered execution platform and in particular how
components (abstract models) are parallelized. For instance, for a single processor platform
(i.e. sequential execution of actions), ⊕ is addition. If all components can be executed in
parallel, ⊕ is max.

As a rule, it is difficult to obtain execution times for the actions (i.e. block of code) of an
application software. Execution times vary a lot from an execution to another, depending on
the contents of the input data, the dynamic state of the hardware platform (pipeline, caches,
etc.). There exists techniques for computing upper bounds of the execution time of a block
of code, that is, estimates of the worst-case execution times [88]. Given abstract models
M i, and functions ϕi specifying WCET for the actions of M i, the abstract composition M
can be safely implemented if the physical composition Mϕ (defined above) is time-robust.

2.2 Execution Algorithm of Physical Models

We define a real-time execution Engine that does not need an a priori knowledge of execution
time functions ϕi. It ensures the real-time execution of a component-based application on
the target platform, and stops if the implementation is not time-safe, that is, a deadline is
missed during the execution (see Figure 5.5). The real-time execution Engine differs from
the abstract model execution engine (see Figure 5.4) on the update section that updates
the model time t upon the physical time tr of the platfom’s clock. It actually adds to the
abstract time t the execution time of the previous interaction, which is the composition of
execution times of the actions involved in the interaction and is computed using the operator
⊕ (see Definition 30). The implementation method preserves the abstract model semantics
and ensures a correct correspondance between the abstract time and the physical time.

70

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

Given a state s = (q, w, t), q = (q1, . . . , qn), the real-time execution Engine computes
the next interaction to be executed as follows.

1. It first computes the set of enabled interactions γs ⊆ γ at state s = (q, w, t), from
given sets of transitions issued from qi for each component M i (similary to the abstract
model execution Engine).

2. It updates the abstract time of the Engine with the physical time of the platform.
Before the update, the abstract time t represents the instant of execution of the
previous interaction a′. We update the abstract time by adding the execution time of
the interaction a′. If timing constraints are not violated, that is no deadline is missed
(i.e. nexts(a) ≤ D = mina∈γs deadlines(a)), it exists an execution sequence in the
abstract model that corresponds to one of the physical model.

3. It chooses an interaction a = { ai | i ∈ I } ∈ γs enabled at state s = (q, w, t), such that
there exists a time instant t′ ≥ t at which the guard a holds (i.e. nexts(a) < +∞) and
such that no other enabled interaction a′ ∈ γs is more urgent (i.e. nexts(a) < +∞),
and no timing constraint is violated (i.e. nexts(a) ≤ mina′∈γs

deadlines(a
′)). When

more than one enabled interaction is possible, the choice of a depends on the considered
real-time scheduling policy.

4. It executes a as soon as a is enabled, that is, at time instant nexts(a). The execution
of a = {ai, i ∈ I} corresponds to the execution of all actions ai, i ∈ I, followed by the
computation of a new valuation w that happens at exactly abstract time t even if the
reset is at the actual time tr = t + ǫ, wich avoids the accumulation of drifts. Finally,
control locations are also updated.

Algorithm 6 gives an implementation of the Real-Time Execution Engine for a single
processor platform. It differs from Algorithm 4 at lines 7, 8 and 13. It updates the current
value of abstract time t with respect to the current value of physical time tr (line 7) in order
to take into account execution time of interactions for the considered execution platform.
It stops if time-safety is violated, that is, if t is greater than the next deadline D (line 8).
It also waits for the physical time to reach the next activation time (nexts(a)) of the chosen
interactions a (line 13).

3 Real-Time BIP Component based Framework

We implemented the proposed method for the component-based framework BIP [14]. BIP
(Behavior Interaction Priority) is a framework for building systems consisting of heteroge-
neous components. We extended the initial BIP framework presented in Chapter 2, so as to
handle real-time features in a rigorous manner. The implementation consists of two main
extensions, the extension of the BIP language to allow the expression of real-time systems
and the extension of the single-threaded Engine to achieve real-time execution. The real-
time Engine performs the computation of schedules meeting the timing constraints of the
application, depending on the physical time provided by the real-time clock of the platform,
as explained in the previous section. Finally, we studied time-safety and time-robustness
for a multimedia application—an adaptive MPEG video encoder modeled in BIP. We show
that the application is not time-robust and we also explain how its time-robustness can be
enforced using two different methods.

71

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

Algorithm 5 Real-Time Execution Engine

Require: abstract models M i = (Qi, Xi,−→i), 1 ≤ i ≤ n, initial control location
(q1

0, . . . , q
n
0), interactions γ

1: s = (q1, . . . , qn, w, t) ← (q1
0, . . . , q

n
0 , 0, 0) // init.

2: loop
3: γs = EnabledInteractions(s)
4:

5: if ∃a ∈ γs . nexts(a) < +∞ then
6: D ← mina∈γs deadlines(a) // next deadline
7: t ← tr // update Engine clock w.r.t. actual time
8: if t ≤ D then
9: if ∃a ∈ γs . nexts(a) < +∞ then

10: a = { ai | i ∈ I } ← RealT imeScheduler(γs)
11:

12: t ← nexts(a) // update Engine clock
13: wait tr ≥ t // real-time wait
14:

15: for all i ∈ I do
16: Execute(ai) // execute involved component
17: w ← w[ri 7→ t] // reset clocks
18: qi ← q′i // update control location
19: end for
20: else
21: exit(DEADLOCK)
22: end if
23: else
24: exit(DEADLINE_MISS)
25: end if
26: else
27: exit(DEADLOCK)
28: end if
29: end loop

72

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

3.1 Real-Time Extensions in the BIP framework

In BIP, a component describes a behavior that is given by an automaton whose transitions
are labelled by ports and can execute C++ code (i.e. local data transformations). Connec-
tors between communication ports of components define a set of enabled interactions which
are synchronizations between components. The execution of interactions may involve trans-
fer of data between the synchronizing components, Priorities is a mechanism for conflict
resolution that allows direct expression of scheduling policies between interactions. Compo-
nents, connectors and priorities are used for building hierarchically new components, namely
compound components. BIP models can be compiled to C++ code and the generated code
is intended to be executed by the dedicated Engine implementing the semantics of BIP. We
extended the BIP language and compiler to provide the new Real-Time Engine the timing
features.

Atomic Components

An atomic component has only local data, and its interface is given by a set of communica-
tion ports. Without using the proposed real-time extensions of BIP, time can be handled by
synchronizing all components in order to update local integer variables representing clocks
with a global Tick connector. Thus, we introduce in atomic components the notion of real-
time clock. A real-time clock is used to measure the actual advance of the physical time
and can be reset when executing a transition. We can express timing constraints over the
values of the clocks. They are used for expressing and enforcing real-time properties in the
model.

We declare real-time clocks in atomic components, like local data variables. In the
previous version of BIP, a transition in a component behavior can be guarded by a boolean
condition depending on the local variables. We extend the property by considering that
transitions can also be guarded by timing constraints. An atomic component is now defined
as follows:

Definition 23 (Atomic component) An atomic component represents behavior B as
a transition system, extended with variables and functions, represented by (V, P, X, Q,−→),
where:

• Q is a set of control states Q = {Q1...Qn}, Control States denote places at wich the
components await for synchronization.

• P is a set of communication ports P = {p1...pn},
• V is a set of variables used to store (local) data. Variables may be associated to ports.
• X is a finite set of clocks,
• −→ is a set of transitions modeling computation steps of components. Each transition

is a tuple of the form (q1, p, gp, gtp, fp, q2), representing a step from control state q1 to

control state q2, denoted as q1
p,gp,gtp,fp
−→ q2, where gp is a boolean condition on V, fp is

a computation step consisting of data transformations and gtp is a timing constraint
over X.

A timing constraint gt is a real-time constraint defined by gt = (τ, c, it), where

• τ is an urgency type, that is τ ∈ {lazy, delayable, eager},
• c is a name of a real time clock which is declared in the considered component, and

73

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

• it is defined as an interval I = [l, u], representing a subset of integer values of c for
which the transition is enabled by the real-time constraint.

An abstract syntax of clocks declaration is given in Figure 5.6. We introduce the keyword
clock to create instances of clocks. Clocks are then referenced by a name and a time unit
given by the user. The time unit corresponds to seconds or milliseconds or microseconds,
otherwise the unit is by default the millisecond.

clock-definition ::=
clock clock-name { , clock-name }∗ [time-unit]

time-unit ::= second | millisecond | microsecond

Figure 5.6: Clock declaration syntax in BIP

In the following (See Figure 5.7), we consider that a timing constraint declared in a
component are of the form (τ, c, [l, u]), where l is an integer, and u is an integer or ∞ such
that l ≤ u. Finally, an abstract syntax of an atomic component including the proposed
real-time extensions is given in Figure 5.8.

timed-guard ::=
timed-constraint { , timed-constraint }∗

timed-constraint ::=
urgency clock-name in (integer , x-integer)
urgency ::= lazy | delayable | eager
x-integer ::= interger | infinity

Figure 5.7: Timed guard declaration syntax in BIP

Figure 5.9 gives the abstract model representation (left) and declaration (right) of the
encoder example using the new BIP language.

Connectors

Connectors allow the composition of atomic components that interact by meeting con-
straints of an interaction model. Connectors are used to specify interactions between ports
of components. Since we introduced timing constraints in atomic components, connectors
should take them into account. Clock synchronizations between components are not made
explicitly by the user, but are left to the real-time BIP execution Engine. Indeed, in order
to compute the interactions at a given state, the real-time execution Engine synthesizes
dynamically the timing constraints associated to interactions These are computed by com-
bining real-time constraints associated to components ports involved in an interaction. As
explained in Section 1, timing constraints associated to ports are expressed using the same

74

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

transition-definition ::=
on port-name
from place-name to place-name
provided untimed-guard when timed-guard do action

atomic-type-definition ::=
atomic type atomic-type-name
[(c-type-name fpar-name { , c-type-name fpar-name }∗)]
{ data-definition }∗

{ port-definition }∗

{ clock-definition }∗

{ place-definition }∗

{ transition-definition }∗

{ export port-type-name port-name = port-reference }∗

end

Figure 5.8: An atomic component syntax in BIP

global clock t. The result of the conjunction of these timing constraints from synchronizing
components is a simple timing constraint belonging to the interaction. We can now assume
that interactions are guarded by both boolean functions and timing constraints. Timing
constraints are computed at run-time by the real-time BIP execution Engine. Thus, they
are not expressed by the BIP language.

Let {Bi}1≤i≤n be a set of components and a = {pj}j∈J , J ⊆ {1, .., n} be an interaction
defined in a connector γ, such that for all j ∈ J , pj is a port of Bj . Given a state of the
compound system, we denote by TGa the timed guard corresponding to an interaction a
defined in the connector γ and gt(pi) the timed guard labelling each transition issued from
Bi and involving port pi in the interaction a. We note that we consider translated timed
guards gt(pi) in terms of the single global clock t.

We give a formal definition of a connector as follows.

Definition 24 (Connector) A connector γ defines sets of ports of atomic components
Bi which can be involved in an interaction. It is formalized by γ = (Pγ , Aγ , p[x]) where:

• Pγ is the support set of γ, that is the set of ports that γ may synchronize.
• Aγ ⊆ 2Pγ is a set of interactions each labelled by the triple (Pa, Ga, TGa, Fa) where:

– Pa is the set of ports pi, i ∈ I and I ⊆ [1, n], that take part of an interaction a,

– Ga is the guard of a, a predicate defined on variables
⋃

pi∈a Vpi
,

– TGa is the timing constraint of a over t, which corresponds to the conjuction of
the timing constraints of ports pi, i ∈ I involved in a: TGa =

∧

pi∈a gt(pi),

– Fa is the data transfer function of a, defined defined on variables
⋃

pi∈a Vpi
.

• p is the exported port of the connector γ. We also associate to this port a timed guard
gt corresponding to the union of the timed guards of the interactions of connector γ,
that is gt =

⋃

a∈Aγ
TGa

75

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

Encoder

get

[0 ≤ x ≤ +∞]e

∅
next

[100 ≤ x ≤ 120]d

{x}

q0

[0 ≤ x ≤ 50]d[50 ≤ x ≤ 60]d

q1

q2

encb

∅∅

enca

get next

atomic type Encoder

export port intPort get

export port intPort intPort next

port intPort enca compute

port intPort encb

clock x unit millisecond

place q0

place q1

place q2

initial to q0

on get from q0 to q1

when x in [0,-] eager
on enca from q1 to q2

when x in [50,60] delayable
on encb from q1 to q2

when x in [0,50] delayable
on next from q2 to q0

when x in [100,120] delayable
reset x

end

Figure 5.9: The encoder component declaration in BIP.

Priorities

Priorities are used for inhibiting an interaction, called the low interaction, whenever another
interaction, called the high interaction, is enabled. Priorities can be guarded by boolean
conditions, which depend on the value of variables. We can extend priorities with the notion
of time, by adding delays for the application of priority rules. A priority with a delay of d
means that its lower interaction is inhibited by its high interaction whenever the latter is
possible in d units of time.

Definition 25 (Priority Rule) A priority is a tuple (C,≺d), where C is a state pred-
icate (boolean condition) characterizing the states where the priority applies and ≺d is a
partial order that gives the priority order on a set of interactions A =

⋃

Aγ and d is the
delay of application of the priority.

For a1 ∈ A and a2 ∈ A, a priority rule is textually expressed as C → a1 ≺d a2. When
the state predicate C is true and both interactions a1 and a2 specified in the priority rule
are enabled, the higher priority interaction, i.e., a2 is selected for execution with a delay of
d time units.

76

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

3.2 Experimental Results: Adaptive Video Encoder

We consider an adaptive MPEG video encoder componentized in BIP [35] (15000 lines
of code) and running on a STm8010 board from STMicroelectronics. It takes streams of
frames of 320×144 pixels as an input, and computes the corresponding encoded frames (see
Figure 5.10). Since input frames are produced by a camera at a rate of 10 frames/s (i.e.
every 100 ms), encoding each frame must be done within D = 100 ms.

Description of the application

EncodeMB OutputFrame

Adaptive-Encoder

Encoder

Controller

Enc(q)

Enc(q)

In Out InOut

GrabFrame

Figure 5.10: Adaptive video encoder architecture.

The adaptive MPEG video encoder consists of two main components.

Encoder corresponds to the functional part of the video encoder, that is, it involves no time
constraint. Input frames are treated by GrabFrame. Each frame is split into N = 180
macroblocks of 16× 16 pixels which are individually encoded by EncodeMB for given
quality levels qi ∈ Q = { 0, 1, . . . , 8 }. The higher the quality levels are, the better
the video quality is. A bitstream corresponding to the encoded frames is produced by
OutputFrame.

Controller is a controller for Encoder. It chooses quality levels qi for encoding macroblocks
so as not to exceed the time budget of D = 100 ms for encoding a frame. To keep low
the overhead due to the computation of Controller, quality levels are only computed
every 20 macroblocks, that is, there are 9 control points in a frame.

Components Encoder and Controller interact as follows. At each control point i ∈
{ 0, . . . , 8 } Controller triggers Encoder for encoding the next 20 macroblocks at a qual-
ity level qi. The computation of qi is based on the time t elapsed since the beginning of the
encoding of the current frame, and estimates of the average execution times Cq for encoding
20 macroblocks at quality level q. Execution times have been obtained by profiling tech-
niques using different input streams of frames (see Table 5.1). Cq is increasing with quality
level q. A quality level q is enabled at control point i only if t+(9−i)Cq ≤ D, where (9−i)Cq

is an estimate of the average execution time for encoding the remaining macroblocks of the
current frame. This condition is equivalent to the guard gq(i) ≡ [t ≤ D − (9 − i)Cq]

d. In
order to maximize video quality, we give higher priority for higher quality levels, that is, for
all q ∈ {0, . . . , 7} we have Enc(q + 1) > Enc(q) (see Figure 5.11). The chosen quality level
qi is transmitted by Controller to Encoder through the port Enc. After encoding the last 20
macroblocks (i.e. i = 9), Controller waits for the next frame, that is, for t = D.

77

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

Controller

i++
g3(i)

Enc(4)

i++
g4(i)

Enc(5)

i++
g5(i)

Enc(6)

i++
g6(i)

Enc(7)

i++
g7(i)

Enc(8)

i++
g8(i)

Enc(0)

i++
g0(i)

{t}
[t = D]d

i=0

i==9

NextFrame
Enc(1)

i++
g1(i)

Enc(2)

i++
g2(i)

Enc(q)

LOOP

ENCODE

data int i = 0

Enc(8) > Enc(7)

. . .
Enc(7) > Enc(6)

Enc(2) > Enc(1)
Enc(1) > Enc(0)

Next20MBs
i<9

g0(i)

g0(i) ≡
h

t ≤ D − (9 − i) ∗ C0

id

g1(i) ≡
h

t ≤ D − (9 − i) ∗ C1

id
. . .

g7(i) ≡
h

t ≤ D − (9 − i) ∗ C7

id

g8(i) ≡
h

t ≤ D − (9 − i) ∗ C8

id

Enc(3)

Figure 5.11: Controller component.

q 0 1 2 3 4 5 6 7 8
Cq 4 4.6 5.4 6 8.2 10 12 14.4 16

Table 5.1: Estimates of average execution times (ms).

Time-Safety

As execution times of the video encoder may vary a lot from a frame to another [60], we
studied time-safety for a family of execution time functions Kϕ, where the parameter K
ranges in [0.001, 2], and where ϕ denotes an execution time function corresponding to the
actual execution of the video encoder on the target platform for a particular frame.

 1

 2

 3

 4

 5

 6

 7

 8

0.25 0.5 0.75 1.0 1.25 1.5 1.75

av
er

ag
e

q
u

al
it

y
 l

ev
el

2
 0

time-deterministic video encoder (g′q(i))

WCET-based video encoder (g′′q (i))

value for the parameter K

initial video encoder (gq(i))

Figure 5.12: Video encoder execution for execution time functions Kϕ.

Figure 5.12 shows average quality levels chosen for different values of the parameter K.
They are increasing as K is decreasing. Time-safety is violated for K = 1.7 and K = 1.4,
even if time-safety is guaranteed for K ∈ [0.9, 1.3] (i.e. lower execution times). That is,
the application is not time-robust. This is due to the fact that the controller uses estimates
of execution times which can be different from the actual execution times. This difference
depends on the chosen quality levels, that is, on the value of K. Therefore, increasing the
platform speed (i.e. reducing K) does not guarantee time-safety: time-safety violations

78

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

occur for K = 0.7 and K = 0.8 (see Figure 5.12).
When time-safety is violated by the video encoder, the current frame is skipped which

is equivalent to encoding all its macroblocks at quality level 0. This leads to a drastic
degradation of the video quality.

Time-robustness is a desirable property of an application since it allows better pre-
dictability of its behavior, that is, a time-robust application is time-safe for any execution
times provided that it is time-safe for worst-case execution times. We consider two methods
for enforcing time-robustness of the adaptive video encoder.

Enforcing Time-Robustness by Time-Determinism

As explained by Proposition 1 of Section 2.2, time-robustness can be guaranteed by enforcing
time-determinism. This can be achieved by modifying all inequalities involved in guards
gq(i) of Controller into delayable equalities g′q(i) ≡ [t = D − (9 − i)Cq]

d. Using equalities
g′q(i) instead of inequalities gq(i) for Controller leads to the following execution. At intial
state (ENCODE, 0), Controller waits for the enabledness of a transition issued from ENCODE.
As D − (9 − i)Cq is minimal for q = 8, Controller executes action Enc(8) after waiting for
D − 9C8. Actions Enc(0), Enc(1), . . . , Enc(7) cannot be chosen from the initial state since
Enc(8) is urgent at D− 9C8, that is, the chosen quality level at the first iteration is q0 = 8.
This leads to the control location LOOP at which only Next20MBs is enabled when t reaches
D − (9− 1)C0, leading back to control location ENCODE with t = D − (9− 1)C0. That is,
only the quality level 0 can be chosen (i.e. q1 = 0). Similarly, chosen quality levels qi, i > 0,
for the remaining iterations are also 0.

The time-deterministic video encoder chooses the same quality levels (i.e. q0 = 8, qi = 0
for i > 0) for all considered values of K, that is, there is no adaptation of the quality levels
with respect to actual execution times Kϕ. Time-robustness incurs a severe reduction of
the quality of the video as shown in Figure 5.12).

Enforcing Time-Robustness using WCET

Time-robustness can also be achieved by enforcing time-safety for the component Controller
when execution times of actions are equals to worst-case execution times (WCET) Cwc

q , as
explained in [42]. Notice that these values satisfy Cq ≤ Cwc

q . The principle is to strengthen
guards gq(i) for transitions, based on a WCET analysis of the controlled system. Given
a quality level q chosen for an iteration i, an estimate of the worst-case execution time of
the controlled video encoder for encoding the remaining macroblocks of the current frame
is given Cwc

q + (8 − 1)Cwc
0 , that is, we consider the worst-case estimates at quality level

q for the next iteration, and the worst-case estimates at minimal quality level q0 for the
remaining iterations. Following [42] we consider a controller based on guards g′′q (i) ≡ t ≤
D − (max (9 − i)Cq , (Cwc

q + (8 − 1)Cwc
0)) that combined both estimates of the worst-

case execution times and the average execution times. They ensure that there always exist
a strategy for completing before the deadline—at worst-case the minimal quality level is
chosen, even if actual execution times are equal to estimates of the worst-case execution
times.

As shown in Figure 5.12, this conservative approach guarantees time-robustness by a
slight reduction of the chosen quality levels with respect to the ones chosen by the ini-
tial video encoder. This is due to the use of the strengthen guards g′′q (i) that are more

79

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

conservative. It appears to be a better approach for enforcing time-robustness than using
time-determinism.

4 Conclusion

In this chapter, we provided a rigourous implementation method using a real-time execution
Engine that faithfully implements physical models, which are abstract models with given
execution times on the target platfom. We consider that the application software is a set
of interacting components such as each component is represented by an abstract model.
The real-time execution Engine coordinates the execution of the application software by
applying a sequential composition of three micro-steps:

1. Computes the timing constraints of enabled interactions intervals by applying the
semantics of the abstract model. Timing constraints are specifed by using a global
abstract time clock t.

2. Updates the abstract time t by the physical time tr provided by the execution platform.
If tr exceeds the earliest deadline of the enabled interactions, time-safety is violated
and the execution stops.

3. Schedules amongst the enabled interactions the next interaction to be executed.

The real-time execution Engine detects time-safety violations when the implementation
does not correspond to the abstract model specification. It is correct-by-construction be-
cause it executes an algorithm that directly implements the operational semantics of the
physical model. The method leads, under some robustness assumptions for WCET times,
to a correct implementation. If robustness cannot be guaranted for a model, the real-time
execution Engine checks online if the execution is correct, that is, deadlock-freedom and
time-safety violation.

We implemented the method for the component-based framework BIP presented in chap-
ter 2. We extended the BIP language for expressing real-time features in the BIP models,
that is, clocks and timing constraints for transitions in atomic components. The resulting
real-time BIP models can be compiled to C++ code then executed by the real-time BIP
execution Engine. We then extended the initial single-threaded BIP Engine to correctly
execute the models by producing correct schedules of interactions, meeting to timing con-
straints and by detecting time-safety violations. In the initial BIP framework, variables are
used to model local clocks. In the BIP model, executing transitions takes zero time, as a re-
sult, time (i.e. clocks) can only advance on states. Time advance is achieved synchronously
by an implicit tick connector. At each tick, every variable representing a clock is increased
by one unit of time and in order to model urgency, time advance can be disabled under
some conditions. We have seen that, although this model can be interesting for modeling
and simulating systems, it cannot be used in practice for implementation purposes. Using
global tick synchronizations often leads to inefficient implementations, especially when the
considered system is asynchronous. For thoses systems, unnecessary clock synchronizations
are introduced which consumes a lot of CPU time. Moreover, a global tick requires the
same level of granularity for every clock (timed data) in the model. This means that the
execution time of each block of C code has to be lower than one unit of time, which is very
restrictive and requires rewriting some parts of the application code.

80

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

We also studied time-safety and time-robustness for an adaptative MPEG video encoder
modeled and executed using the real-time BIP framework. We show that time-safety vio-
lation leads to a drastic degradation of the video quality, due to incorrect estimates of the
average execution times for encoding the macroblocks. Indeed, the choice of quality for
encoding a macroblock dependends on the time elapsed since the beginning of the encoding
of the frame and the time budget left before the deadline. Enforcing time-robustness, that
is a desirable property of an application allowing better predictability of its behavior, entails
some performance penalty. We have tested two methods to enforce time-robustness. The
first method consists of enforcing time-determinism but looses adaptation of the quality
levels. The second method is based on WCET analysis and leads only to a slight reduction
of the chosen quality levels with respect to the ones chosen by the initial video encoder,
thus, it seems to be a better solution.

In chapter 5, we will study the real-time properties for open real-time systems, that is,
systems that interact with their execution environment while meeting timing constraints.
Indeed, the behavior of an open system depends not only on its current state (like for a
closed system), but also on the behavior of its environment. We extended the real-time BIP
framework so as to take into account the communication with the environment.

81

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

82

CHAPTER 6. OPEN REAL-TIME SYSTEMS

Chapter 6

Open Real-Time Systems

In the previous chapters, we presented a rigorous model-based design and implementation
method for building real-time systems. We gave formal definitions on which we rely for
the implementation of real-time systems correct-by-construction. We also presented an
implementation method based on a component-based approach using the BIP framework.
Nevertheless, we only considered closed systems without taking into account the interactions
of the application with its external environment. In this chapter, we extend the previous
formal definitions and implementation method for open real-time systems. An open real-
time system interacts with its external environment while meeting timing constraints. The
behavior of an open system depends not only on its current state (like for closed systems),
but also on the behavior of its environment.

Providing methodologies encompassing open systems design is too often a neglected
issue. Nowadays, component-based approaches are privileged instead of monolithic ap-
proaches since they favor flexible development and reusability. They rely on the principle of
encapsulation allowing building applications by composition of existing components. Many
of the implementations involve ad-hoc mechanisms for the communication with the environ-
ment, as it is not explicitely modeled (e.g. shared memory), which violates this encapsula-
tion principle and makes the analysis of the system intractable. We present a model-based
method for building open real-time systems based on the use of two models:

• The open abstract model represents the timing behavior of the application without
considering any execution platform. Interactions with the environment are modeled
using Input/Output automata [70], in which actions correspond either to internal
computations, or to communications with the environment, i.e. inputs and outputs.
Internal actions and outputs are triggered by the application, whereas inputs are trig-
gered by the environment. Timing constraints correspond only to user-requirements
(deadlines, periodicity, occurence of inputs ..), based on an abstract notion of time
(i.e. timeless execution of actions).

• The open physical model represents the behavior of the abstract model running
on a given platform, that is, it takes into account execution times. It is obtained
from the abstract model by assigning execution times to actions. It is necessary for
checking the adequacy of the open abstract model to an execution platform and a
given environment behavior.

83

CHAPTER 6. OPEN REAL-TIME SYSTEMS

The provided implementation method for component-based applications defines an open
real-time Engine that performs the online computation of schedules meeting the semantics
of the physical model depending on the actual execution times and the occurrence of inputs
provided by the environment. In contrast to standard even-driven programming techniques,
our method allows static analysis and online checking of essential properties such as time-
safety and time-robustness.

The chapter is organized as follows. Section 1 introduces the notion of open real-time
systems. Section 2 presents the definitions of open abstract and open physical models,
and the properties of time-safety and time-robustness under the environment constraints.
This section is an extension of the abstract and physical models definitions and properties
presented in Chapter 4. In Section 3, we present our implementation method which is also
an extension of the implementation method presented in Chapter 5. In Section 4, we present
the experiments that has been conducted using the real-time BIP framework.

84

CHAPTER 6. OPEN REAL-TIME SYSTEMS

1 Introduction

Embedded Systems (ES) are in general open real-time systems since they have to commu-
nicate with a physical environment under real-time constraints. Such applications include
communication systems, aircraft control systems, automotive systems, games and toys, etc.
In general, the associated software is encapsulated in a box with no outside connectivity
that can alter the behavior. So most such embedded systems are closed “boxes“ that do not
expose the computing capability to the outside. In a networked environment, it becomes
impossible to test the software under all possible conditions. Moreover, when it comes
to network a set of communicating ES devices, it becomes difficult to achieve predictable
timing in the face of such openness.

Event-driven [49,50,74] design of real-time systems usually considers components (tasks)
that can be triggered by events captured by interruptions. Scheduling theory guarantees
only estimates of system response time for periodic execution of the components when pe-
riods and worst-case execution times (WCETs) are known. The resulting system behavior
is strongly related to the chosen execution platform. In contrast, synchronous programs
consider synchronized components whose execution is a sequence of non-interruptible steps
that define a logical notion of time. In a step each component performs a quantum of com-
putation. Time-triggered approaches generalize the notion of logical time. They consider
different computation steps for the components. Each component defines a sequence of
actions with specified logical execution times (LET) defining the difference between their
release time and their due time. The system behaves as if actions consume exactly their
LET: even if they start after their release time and complete before their due time, their
effect is visible exactly at these times. This is achieved by reading for each action its input
exactly at its release time and its output exactly at its due time. LET guarantee the system
behavior predictability since it is independent from the platform, as long as actions complete
before their due time. Components may describe arbitrary sequences of LET [8], or may be
restricted to periodic execution (i.e. uniform LET) for each component with possible global
mode switches as in [58].

Mixing event-driven programming and time-triggered behavior is a promising approach
introduced in [51]. They consider time-triggered actions whose instantiation may depend
on external (asynchronous) events. In the previous chapters, we extended this principle by
considering more general timing constraints than (fixed) LET, such as lower bounds, upper
bounds, time non-determinism. The contribution of this thesis is the improvement of the
approach by considering not only internal actions but also input and output communications
with the environment.

Open real-time systems must also react to multiple real-time streams of sensor stimuli
and control multiple actuators concurrently. Regrettably, the mechanisms of interaction
with sensor and actuator hardware, built for example on the concept of interrupts, are
not well represented in programming languages. They have been left to be the domain of
operating systems, not of software design and the interactions with hardware are exposed
to programmers through the abstraction of threads. The purpose of our method is to
ascend the possibility to deal with mechanisms of interaction between the application and
its environment in the design level.

We focus on a general schema of communication between the application software and its
environment via sensors and actuators. Sensors and actuators offer to the application some
interfaces in order to observe and modify the state of the environment (see Figure 6.1). Those

85

CHAPTER 6. OPEN REAL-TIME SYSTEMS

Active mode

Application

Actuators

Interface

Modify Observe

Passive mode

Sensors

Environment

Figure 6.1: Communication modes between an application and its environment.

known interfaces implement different modes of communications between the application and
the environment. We consider two modes:

• An active mode in which the environment is always ready for interacting, that is, the
application can communicate at any time. It is referred in the paper as output following
[70], and is often used for implementing the interactions between the application and
the actuators of the platform.

• A passive mode in which the application is waiting for the environment to be ready for
interacting. It is referred as input following [70], and is often used for implementing
the interactions between the application and the sensors of the platform, that is, the
application waits for events and associated data produced by the environment.

2 Open Abstract and Physical Models

2.1 Open Abstract Models

In order to represent the behavior of an open real-time application, we use Input/Output
(I/O) timed automata [43, 70]. An I/O timed automaton is a timed automaton such that
actions labeling transitions are partitioned into inputs, outputs and internal actions. The
distinction between inputs and other actions is a fundamental property, based on who de-
termines when the action is performed. The actions whose performance is under the control
of the environment are inputs and actions whose performance is under the control of the
application are outputs and internal actions.

The open abstract model formal definition is now given as follows.

Definition 26 (open abstract model) An open abstract model is an I/O timed au-
tomaton M = (A, Q, X,−→) such that:

• A = Ain ⋃

Aout ⋃

Aint is a finite set of actions partitioned into inputs Ain, outputs

Aout and internal actions Aint,

• Q is a finite set of control locations,

• X is a finite set of clocks,

86

CHAPTER 6. OPEN REAL-TIME SYSTEMS

• and −→⊆ Q× (A× G(X)× 2X)× Q is a finite set of labeled transitions. A transition
is a tuple (q, a, g, r, q′) where a is an action, g is a timing constraint, that is aguard
over X and r is a subset of clocks that are reset by the transition. We write q

a,g,r
−→ q′

for (q, a, g, r, q′) ∈−→.

An open abstract model is different from an abstract model (Definition 27) in the fact
that actions are partionned into internal, input and output actions. In open abstract mod-
els, transitions labeled by an input are triggered by the environment, and correspond to
reception of this input by the application. We make the assumption that timing constraints
associated to transitions labelled by inputs correspond to the expected timing behavior of
the environment. That is, inputs arrive within the time interval of the timing constraint.
Timing constraints associated to transitions labelled by internal and output actions take into
account only requirements (e.g. deadlines, periodicity, etc.). The semantics of open abstract
models, like for abstract models, assume timeless execution of actions. This corresponds to
the ideal and platform independent behavior of a real-time application.

The semantics of an open abstract model is the same as an absract model. Given an
open abstract model M = (A, Q, X,−→) a finite (resp. an infinite) execution sequence of M

from an initial state (q0, v0) is a sequence of actions and time-steps (qi, vi)
σi−→ (qi+1, vi+1)

of M , σi ∈ A∪T and i ∈ { 0, 1, 2, . . . , n } (resp. i ∈ N). From any state of an open abstract
model it is always possible to execute either an action or a time-step, or both. A state from
which only time can progress, i.e. from which all execution sequences are only composed
of time-steps, is a deadlock. We also consider abstract models that are structurally non-
zeno [30]. This class of abstract models does not have time-locks, that is, time can always
eventually progress.

Example 14 Consider an open abstract model M = ({in, out, compute}, Q, {x},−→) with
an input in, an output out, and an internal action compute. It has also a set of control
locations Q = {init, get, exec}, and the following set of transitions (Figure 6.2):

−→ = { (init, in, [x ≥ D]l, {x}, get),

(get, compute, [x ≤ D]d, ∅, exec),

(exec, out, [x ≤ D]d, ∅, init). }.

The model represents a cyclic execution of a system that receives an input in from the
environment (transition from init to get), performs an internal computation (transition from
get to exec), and sends an output out to the environment (transition from exec to init). A
clock x is used to measure the time elapsed since the last occurrence of in (i.e. x is reset by
in). Both compute and out must be done before x reaches D. Notice that in is not enabled
at control locations exec and get, and at control location init when x < D.

It can easily be shown that M admits execution sequences from the initial state (init, D)

of the following form: (init, D)
δ1−→ (init, D+δ1)

in
−→ (get, 0)

δ2−→ (get, δ2)
compute
−→ (exec, δ2)

δ3−→

(exec, δ2 + δ3)
out
−→ (init, δ2 + δ3)

δ4−→ (init, δ2 + δ3 + δ4)
in
−→ (get, 0).

Due to the guards of compute, out, and in, waiting times δi must satisfy δ2 + δ3 ≤ D
and δ2 + δ3 + δ4 ≥ D, meaning that there is a delay of at least D time units between two
consecutive occurrences of in.

87

CHAPTER 6. OPEN REAL-TIME SYSTEMS

{x}

getinit

exec

computeout
[x ≤ D]d[x ≤ D]d

in
[x ≥ D]l

Figure 6.2: Open abstract model example

2.2 Open Physical Models

Open physical models are open abstract models modified so as to take into account non-
null execution times. They represent the behavior of an application software running on
an execution platform and interacting with its environment. We consider that an open
physical model is time-safe if its execution sequences are also execution sequences of the
corresponding open abstract model, that is, the execution times are compatible with the
timing constraints and the expected behavior of the environment is compatible with the
actual arrival of inputs from the environment.

Definition 27 (open physical model) Let M = (A, Q, X,−→) be an open abstract
model and ϕ : A → T be an execution time function that gives for each action a its ex-
ecution time ϕ(a).

The open physical model Mϕ = (A, Q, X,−→, ϕ) corresponds to the abstract model M
modified so that each transition (q, a, g, r, q′) of M is decomposed into two consecutive tran-
sitions:

1. The first transition (q, a, g, r ∪ {xa}, waita) corresponds to the beginning of the execu-
tion of the action a. It is triggered by guard g and it resets the set of clocks r, exactly
as (q, a, g, r, q′) in M . It also resets an additional clock xa used for measuring the
execution time of a.

2. The second transition (waita, enda, gϕ(a), ∅, q
′) is labeled by internal action enda and

corresponds to the completion of a. It is constrained by gϕ(a) ≡ [xa = ϕ(a)]d that
enforces waiting time ϕ(a) at control location waita, which is the time elapsed during
the execution of the action a.

The above definition of physical models corresponds to a purely sequential execution of
actions. In particular, inputs cannot occur when an action is executing. In practice most of
the platforms offer hardware mechanisms such as interruptions that can be used to react to
inputs while the application is running. Exploiting these mechanisms for safely taking into
account occurrences of inputs during actions execution is discussed in Section 3.

Input-Enablness

In open abstract models, timing constraints, that is, guards of transitions, take into account
only requirements (e.g. deadlines, periodicity, etc.). Transitions labeled by an input are
triggered by the environment, and correspond to reception of this input by the application.

88

CHAPTER 6. OPEN REAL-TIME SYSTEMS

(a) initial abstract model

(c) input−enabledness using location loops(b) input−enabledness using an error state

out

getinit

exec

out
[x ≤ D]d

{x}

in
[x ≥ D]l

getinit

exec

out
[x ≤ D]d [x ≤ D]d

compute

{x}

in
[x ≥ D]l

in

in

in
[x < D]l

error

inin
[x ≥ D]l

in

getinit

exec

[x ≤ D]d
compute

{x}

in
[x < D]l

compute
[x ≤ D]d [x ≤ D]d

Figure 6.3: Enforcing input-enabledness.

Since an application cannot block its environment, inputs may occur even if they are not
enabled by the model, as explained in [43]. An open abstract model that enables all its
inputs from all its states is said to be input-enabled. When this property does not hold,
that is, the environment does not behave as expected, there are two ways for interpreting
the occurrence of an input at a state for which it is disabled.

Error. It can be interpreted as an error. In this case, the timing constraints of the
open abstract model provide assumptions on the behavior of the environment. If the actual
behavior of the environment violates one of these assumptions, an error is reported.

Ignore. It can be ignored. In this case the timing constraints of the abstract model are
used for masking or filtering the behavior of the environment.

These two interpretations can be modeled by introducing a default behavior in case of
absence of an input transition from a state of an open abstract model. Figure 6.3 shows an
example of abstract model (a) and its corresponding abstract models that are obtained for
the first interpretation (error) (b), and for the second interpretation (ignore) (c).

In the first interpretation, the error policy is modeled using transitions, labelled by the
input in, leading to an error state. The transition issued from state init leads to the error
state whenever an input occurs such as x < D. The transitions issued from state get and
state exec lead to the error state whenever an input occurs because only the execution of
compute (resp. out) action is possible at state get (resp. exec).

In the second interpretation, the ignore policy is modeled using transitions corresponding
to location loops in every state. Indeed, they correspond to the same added transitions as
the error policy, except that they don’t lead to an error state. Instead, they allow to stay
in the same state until an enabled transition in the initial open abstract model is possible.

89

CHAPTER 6. OPEN REAL-TIME SYSTEMS

2.3 Time-Safety and Time-Robustness

A crucial question is the divergence of the implementation from its abstract specification,
that is, the difference between the behavior of an open physical model and the behavior of
its corresponding open abstract model. In an open physical model Mϕ, every execution of
an action a is immediately followed by waiting for ϕ(a) time units enforced at an interme-
diate state. This waiting in Mϕ may not correspond to a behavior specified by the open
abstract model M if there exists in M either an urgent transition or an enabled input, which
corresponds to a deadline miss or input miss.

Let’s consider the execution in an open physical model Mϕ of an action a at state (q, v).
We have the following execution sequence of Mϕ:

(q, v)
a
−→ (waita, v

′)
ϕ(a)
−→ (waita, v

′′))
enda−→ (q′, v′′), where v′′ = v′ + ϕ(a).

Deadline Miss

We consider the case where no input occurs during the execution of a in Mϕ, i.e. no input
occurs at states (waita, v

′ + δ), 0 ≤ δ ≤ ϕ(a). This is equivalent, if it exists, to the following
execution of the corresponding open abstract model M :

(q, v|X)
a
−→ (q′, v′

|X)
ϕ(a)
−→ (q′, v′

|X + ϕ(a)), (6.1)

where v′
|X denotes the restriction of v′ to clocks X, that is, v′

|X is a valuation of clocks X

such that v′
|X(x) = v(x) for all x ∈ X. In the following, we write (q, v)

a,ϕ(a)
−→ (q′, v′ + ϕ(a))

for execution sequence (6.1) in M and its corresponding execution sequence in Mϕ. Notice

that (6.1) may not be an execution sequence of M if there exists a transition q′
a′,g′,r′

−→ q′′

such that urg[g′](v′
|X + δ) and δ ∈ [0, ϕ(a)[, meaning that the physical model violates timing

constraints defined in the corresponding abstract model. In this case we say that the action
a′ misses its deadline (see Figure 6.4).

time

a

v v + ϕ(a)v + δ

action a′

urgent at v + δ
Mϕ

M

Figure 6.4: Action a′ miss its deadline in Mϕ.

Input Miss

We consider the case where an input occurs during the execution of a in Mϕ, i.e. an input
occurs at states (waita, v

′ + δ), 0 ≤ δ ≤ ϕ(a). The behavior of M is not equivalent to
the one of Mϕ if it exists a transition labeled by i enabled at state (q′, v′X + δ) in M , i.e.

q′
i,g′,r′

−→ q′′ such that g′(v′
|X + δ). In this case we say that the input i is missed in Mϕ (see

Figure 6.5).

If an input i ∈ Ain occurs during the execution of a, i.e. at a state (waita, v
′ + δ),

0 ≤ δ ≤ ϕ(a), it will be either interpreted as an error or ignored as explained in Section 2.2.
Since outputs and internal actions are triggered by the application, their execution can

be controlled by scheduling policies. We consider minimally waiting schedulers, that is,

90

CHAPTER 6. OPEN REAL-TIME SYSTEMS

time

a

v v + ϕ(a)v + δ

input a′

enabled at v + δ
Mϕ

M

Figure 6.5: Input a′ missed in Mϕ.

Case : 1 2 3 4
ϕ(in) 10 20 10 10

ϕ(compute) 40 50 40 30
ϕ(out) 10 10 30 10

Table 6.1: Execution times for the open abstract model example (ms) for different cases.

execution sequences of physical models such that waiting times for outputs and internal

actions are minimal. More formally, if (q, v)
δ
−→ (q, v + δ)

a
−→ (q′, v′) is an execution

sequence of Mϕ such that a ∈ Aout ∪ Aint, then δ = min { δ′ ≥ 0 | g(v + δ′) } where g
is the guard of the action a at control location q. This assumption cannot apply to inputs
as they are controlled by the environment, that is, we consider they can occur at any time
instant meeting the timing constraints.

Example 15 We consider the open abstract model presented in Example 14 (see Figure
6.2). We study the safety execution of its corresponding open physical model for differ-
ent cases corresponding to different execution times of actions (see Table 6.1). We fix the
deadline D = 60ms and the initial state is (init, D).

Case 1: Safe Execution.
This case study corresponds to a safe execution of the open physical model. The exe-

cution time function ϕ is such that ϕ(in) = 10, ϕ(compute) = 40 and ϕ(out) = 20 and its
corresponding execution sequence is (see Figure 6.6) :

(init, D)
in
−→ (get, 10)

compute
−→ (exec, 50)

out
−→ (init, 60)

This execution sequence is correct since the execution times of actions do not violate the
timing constraints of the open abstract model. After the execution of input in, the value
of the clock is x = 10ms. The execution of action compute is possible since the deadline
D = 60ms is not reached. After the execution action compute, the value of the clock is
x = 10 + ϕ(compute) = 50ms. The execution of the output out is also possible since clock
x did not reach the deadline D = 60ms. After the execution of out, the value of the clock
is x = 50 + ϕ(compute) = 60ms, the application is ready to receive another input.

10

D = 60

computein

D

time

out

50

Figure 6.6: Safe Execution of Mϕ.

91

CHAPTER 6. OPEN REAL-TIME SYSTEMS

Case 2: Deadline Miss.
In this case study, the execution of the physical model is not safe is not compatible with

the timing constraints of actions, that is , a dealine miss is detected. The execution time
function ϕ is such that ϕ(in) = 20, ϕ(compute) = 50 and ϕ(out) = 10 and the corresponding
execution sequence is as follows (see Figure 6.7):

(init, D)
in
−→ (get, 20)

compute
−→ (exec, 70)

out
−→ (init, 80)

This execution sequence is not correct because the deadline D = 60ms of the transition
labelled by the output out is missed. After the execution of action compute, the value of
the clock is x = 70m. The transition labelled by out should have been executed before
the value of clock x becomes greater than D = 60ms. Thus, the system detectes a timing
constraint violation.

action
enabled at 60ms

time

computein

D 20 80

out

D = 60

out
Mϕ

M

70

Figure 6.7: Deadline Miss in Mϕ.

Case 3: Input Miss.
In this case study, the execution of the physical model is not compatible with the arrival

of inputs from the environment, that is, an input miss is detected. The execution time
function ϕ is such that ϕ(in) = 10, ϕ(compute) = 40 and ϕ(out) = 30 and the corresponding
execution sequence should be as follows (see Figure 6.8) :

(init, D)
in
−→ (get, 10)

compute
−→ (exec, 50)

out
−→ (init, 80)

This execution sequence is correct only if an input doesn’t occur during the execution of an
internal or output action. If an input in occurs while the execution of output out, that is
such as 60 ≤ x ≤ 80, the new input in is missed because it is enabled in the open abstract
model. Indeed, a new input in may occur at any time such as x ≥ D = 60ms.

input
enabled at

time

computein

D 80

D = 60

Mϕ

M

10

out

in
x ≥ 60ms

Figure 6.8: Deadline Miss in Mϕ.

Case 4: Input-Enablness.
In this case study, the arrival of inputs is not compatible with the abstract model spec-

ifications. The execution time function ϕ is such that ϕ(in) = 10, ϕ(compute) = 30 and
ϕ(out) = 10 and the corresponding execution sequence should be as follows (see Figure 6.9):

(init, D)
in
−→ (get, 10)

compute
−→ (exec, 40)

out
−→ (init, 50)

92

CHAPTER 6. OPEN REAL-TIME SYSTEMS

This execution sequence is correct since all the deadlines are met. Nevertheless, if we con-
sider that a new input in occurs after the execution of output out, such as 50 ≤ x < 60,
the new input in is not enabled in the open abstract model. Only inputs that occur such
as x ≤ D = 60ms are enabeled. We can apply the input-enablness policies for the corre-
sponding open abstract model. We can either choose to ignore the new input in or to rise
an error.

This case study may occur in the other cases whenever an input occurs while the exe-
cution of an action.

not enabled at
input

time

in

D 80

D = 60

Mϕ

10

compute out in

in

50 ≤ x < 60ms

Figure 6.9: Deadline Miss in Mϕ.

Definition 28 (time-safety and time-robustness) A physical model Mϕ = (A, Q, X,−→
, ϕ) is time-safe for an initial state (q0, v0) if the set of execution sequences of Mϕ from
(q0, v0) is contained in the set of execution sequences of M .

A physical model Mϕ is time-robust if Mϕ′ is time-safe for all execution times ϕ′ ≤ ϕ.
An abstract model is time-robust if all its time-safe physical models are time-robust.

Time-safety for an open physical model expresses that its execution times are compatible
with the timing constraints and the possible occurrences of inputs defined in the correspond-
ing open abstract model. Another important property for an open physical model is time-
robustness, that is, time-safety is preserved when reducing the execution times. Worst-case
analysis of the behavior of a system usually requires time-robustness since it is often based
on upper bounds of the execution times (WCETs).

Consider the abstract model M given in Example 14, the execution time function ϕ such
that ϕ(in) = α, ϕ(compute) = β and ϕ(out) = γ, and the initial state (init, D). Time-safe
physical models satisfy α + β + γ ≤ D. They admit execution sequences of the form:

(init, D)
δ1−→ (init, D+δ1)

in,α
−→ (get, α)

compute,β
−→ (exec, α+β)

out,γ
−→ (init, α+β+γ)

δ2−→ (init, D),

where δ2 = D − (α + β + γ).

Notice that for Example 14 time-safety implies time-robustness, but this is not the case
in general. An example of non time-robust abstract model is provided in Chapter 4.

We extend results for time-deterministic abstract models given in Chapter 4 . A time-
deterministic model is such that each action has a logical execution time (LET) which is
a fixed time budget for its execution. It guarantees that for a given sequence of inputs, it
always executes outputs at the same time instants.

Proposition 3 A time-deterministic open abstract model, that is, such that its outputs
and internal actions are guarded by delayable or eager equalities, is time-robust

93

CHAPTER 6. OPEN REAL-TIME SYSTEMS

Proof 4 of proposition Let M be an open abstract model such that its internal actions
and outputs are guarded by delayable or eager equalities, and let ϕ′ ≤ ϕ be execution time
functions such that Mϕ is time-safe. We have to show that Mϕ′ is also time-safe, i.e. all its
execution sequences are also execution sequence of M .

We prove by induction that execution sequences of Mϕ′ are also execution sequences of
Mϕ. Consider the following execution sequence of Mϕ′ :

(q, v)
a,ϕ′(a)
−→ (q′, v′ + ϕ′(a))

δ
−→ (q′, v′ + ϕ′(a) + δ)

b,ϕ′(b)
−→ ,

and assume that (q, v) is a reachable state of both Mϕ and Mϕ′. We will show that there
exists a corresponding execution sequence in Mϕ. Notice that by definition of open physical

models, (q′, v′ + ϕ′(a))
δ
−→ (q′, v′ + ϕ′(a) + δ) is a transition of M . Moreover, as Mϕ is

time-safe, (q, v)
a,ϕ(a)
−→ (q′, v′ +ϕ(a)) is also a transition of M . By definition of open abstract

models and as ϕ′ ≤ ϕ, transition (q, v)
a,ϕ′(a)
−→ (q′, v′ + ϕ′(a)) is also a transition of M . As a

result, no transition is urgent at states (q′, v + ε), ε ∈ [0, ϕ′(a) + δ[, and no input is enabled
at states (q′, v + ε), ε ∈ [0, ϕ(a)[.

Case #1: b is an internal action or an output.

As the guard of b is a delayable or eager equality, b is urgent at state (q′, v′+ϕ′(a)+δ), and
is only enabled at this state. Time-safety of Mϕ implies that ϕ(a) ≤ ϕ′(a)+δ. Since no other
transition is urgent before, we conclude that b can be executed in Mϕ at this state without
violating the minimally waiting principle, according to the following execution sequence of
Mϕ:

(q, v)
a,ϕ(a)
−→ (q′, v′ + ϕ(a))

γ
−→ (q′, v′ + ϕ′(a) + δ)

b,ϕ(b)
−→ ,

where γ = ϕ′(a) + δ − ϕ(a).

Case #2: b is an input.

Since b is an input enabled at (q′, v′ + ϕ′(a) + δ) and no transition is urgent at states
(q′, v + ε), ε ∈ [0, ϕ′(a) + δ[, we have the following execution is Mϕ:

(q, v)
a,ϕ(a)
−→ (q′, v′ + ϕ(a))

γ
−→ (q′, v′ + ϕ′(a) + δ)

b,ϕ(b)
−→ ,

where γ = ϕ′(a) + δ − ϕ(a).

3 Open Real-time Execution Engine

Based on the results of the previous section , we propose an implementation method for a
given open physical model. We extended the capabilities of the real-time Engine presented in
Chapter 5 which already guarantees a correct implementation of closed real-time systems,
that is, it checks that the timing constraints requirements are met by the execution on
a target platform. We focus in this section on the correct implementation of real-time
systems interacting with their environment. If the corresponding open abstract model is
time-robust, then time-safety for the worst-case execution times ensures time-safety of the
implementation. Otherwise, time-safety is checked online and the execution is stopped if it
is violated.

94

CHAPTER 6. OPEN REAL-TIME SYSTEMS

3.1 Composition of Models

We consider that the application software is a set of interacting components. Each compo-
nent is represented by an open abstract model. Thus the open abstract model M correspond-
ing to the application is the parallel composition of the I/O timed automata representing
the components. This composition is parameterized by a set of interactions defining syn-
chronizations between internal actions of the components and, inputs and outputs defining
the interactions with the environment.

Let M i = (Ai, Qi, Xi,−→i), 1 ≤ i ≤ n, be a set of open abstract models with disjoint

sets of actions Ai = Ain
i ∪ Aout ∪ Aint

i and clocks, that is, for all i 6= j we have Ai ∩ Aj = ∅
and Xi ∩ Xj = ∅. We compose the open abstract models M i using interactions. A set of
interactions γ is a subset of ports such that any interaction a ∈ γ contains at most one
(internal) action of each component M i, that is, a = { ai | i ∈ I } where ai ∈ Aint

i and
I ⊆ { 1, 2, . . . , n }.

Definition 29 (composition of open abstract models) For a set of open abstract
models M i = (Ai, Qi, Xi,−→i), 1 ≤ i ≤ n and its set of interactions γ, we define the
composition of the open abstract models M i as the open abstract model M = (A, Q, X,−→γ)

over the set of actions A = Ain ∪ Aout ∪ γ as follows:

• A is partitioned into inputs Ain, outputs Aout, and internal actions which are inter-
actions γ,

• Q = Q1 × Q2 × . . .× Qn,
• X = X1 ∪ X2 ∪ . . . ∪ Xn,
• for an interaction a = { ai | i ∈ I } ∈ γ we have q

a,g,r
−→γ q′ in M with q =

(q1, q2, . . . , qn) and q′ = (q′1, q
′
2, . . . , q

′
n) if and only if g =

∧

i∈I gi, r =
⋃

i∈I ri,

qi
ai,gi,ri−→ q′i in M i for all i ∈ I, and q′i = qi for all i /∈ I,

• for an input or an output a ∈ Ain∪Aout we have q
a,g,r
−→ q′ in M with q = (q1, q2, . . . , qn)

and q′ = (q′1, q
′
2, . . . , q

′
n) if and only if qi

a,g,r
−→ q′i in M i and q′j = qj for all j 6= i.

The composition M = (A, Q, X,−→γ) of open abstract models M i, 1 ≤ i ≤ n, corre-
sponds to a general notion of product for the timed automata M i. It can execute two types
of actions: interactions a ∈ γ which are user-defined synchronizations (i.e. rendez-vous)

between internal actions, and inputs/outputs a ∈ Ain
i ∪ Aout

i of M i.

Example 16 Figure 6.10 describes the interaction model of three open abstract models
encapsulated in components Sensor, Actuator and Computing. The Sensor waits for
the occurrence of the input in from the environment such as x ≥ D. The Actuator executes
an output out such as y ≤ D. The two models interact with the computing unit Computing
following this interaction model:

γ = { inform1.compute ; inform2.send ; end.finish.ready }.

First, the sensor informs the computing unit about the arrival of the input (inter-
action {inform1.compute}), then the computing unit performs an internal computation
such as z ≤ D. When it finishes the computation, it informs the actuator (interaction
{inform2.send}). finally, after the execution of the output, the actuator informs the com-
puting unit and the sensor that it has finished (interaction {end.finish.ready}).

95

CHAPTER 6. OPEN REAL-TIME SYSTEMS

Computing

ActuatorSensor

γ = inform1.compute ; inform2.send ; end.finish.ready

cominit

exec

inform2finish

compute

[z ≤ D]d

{z}

inform1

getinit

inf

ready

in
[x ≥ D]l

{x}

startinit

done

end
[y ≤ D]d

send

out

{y}

Figure 6.10: Interacting sensor and actuator open abstract models.

The resulting composition of the three open abstract models is given as follows (see
Figure 6.11) :

SA = (Asa, {init′, get′, com′, start′, end′}, {x, y, z},−→), composed of the set of actions

Asa = Ain ∪ Aout ∪ γ, where :

• Ain is the set of input actions Ain = { in }.

• Ain is the set of output actions Ain = { out }.
• γ is the set of interactions γ = { γ1 , γ2, γ3 }, where γ1 = inform1.compute, γ2 =

inform2.send and γ3 = end.finish.ready.

Sensor−Actuator

get’init’

end’

com’

start’

{z}

γ2

[z ≤ D]d

γ3

{y}

γ1

out

[y ≤ D]d

{x}

[x ≥ D]l
in

Figure 6.11: Composition of models from the sensor and actuator example.

96

CHAPTER 6. OPEN REAL-TIME SYSTEMS

Platform

Real-Time
Execution Engine

Application Software

component1 component2 componentn. . .

violation

time-safety

stop if

model

stop if

inconsistency

Event Handler
writeread

Scheduler
real-time

scheduling policy

Ideal Model
compute

enabled interactions

Update
global time events

execute

chosen interaction

current

state

actuate

sensors

actuatorsclock

hardware

Figure 6.12: Architecture of the open real-time Engine.

Definition 30 (composition of open physical models) Consider open abstract mod-
els M i, 1 ≤ i ≤ n, and corresponding open physical models M i

ϕi
= (Ai, Qi, Xi,−→i, ϕi), with

disjoint sets of actions and clocks.

Given a set of interactions γ, and an associative and commutative operator ⊕ : T×T →
T, the composition of open physical models M i

ϕi
is the open physical model Mϕ corresponding

to the abstract model M which is the composition of M i, 1 ≤ i ≤ n, with the execution time
function ϕ : A → T such that ϕ(a) =

⊕

i∈I ϕi(ai) for interactions a = { ai | i ∈ I } ∈ γ,

ai ∈ Aint
i , and ϕ(a) = ϕi(a) for a ∈ Ain

i ∪ Aout
i .

The definition is parameterized by an operator ⊕ used to compute the execution time
ϕ(a) of an interaction a from execution times ϕ(ai) of the actions ai involved in a. The
choice of this operator depends on the considered execution platform and in particular how
executions of components (open abstract models) are parallelized. For instance, for a single
processor platform (i.e. sequential execution of actions), ⊕ is addition. If all components
can be executed in parallel, ⊕ is max.

3.2 Execution Algorithm

Our method relies on an open real-time Engine implementing the semantics of open physical
models. It executes actions by taking into account their timing constraints. The proposed
open real-time Engine does not need an a priori knowledge of execution times and the
occurrence time of the inputs (see Figure 6.12). It ensures the real-time execution of an
application by taking into account actual execution times on the target platform and the

97

CHAPTER 6. OPEN REAL-TIME SYSTEMS

actual occurrence of the inputs. It stops the application when time-safety is violated, that is,
when a deadline or an input is missed as explained in Section 2.2. It also implements one of
the policies (error or ignore) for enforcing input-enabledness, also presented in Section 2.2.

Interactions with the environment are not directly performed by the application but are
managed by the Event Handler which is the part of the open real-time Engine that realizes
the interface between inputs/outputs of the application and the environment. We assume
that the Event Handler can detect and store all inputs and their actual occurrence time in
a FIFO. There are different ways for implementing this mechanism: interruptions, signals,
threads executing in parallel with the application, etc.

Timing Features

To check enabledness of actions (i.e. internal actions, inputs or outputs), the open real-time
Engine expresses the timing constraints in terms of a single clock t measuring the absolute
time elapsed (See Chapter 5 Section 1). Thus, the open real-time Engine considers states
of the form (q, w, t) where q is a control location of M , w : X → T is the reset time of
the clocks with the respect to clock t, and t ∈ T is the (absolute) current time. We have
explained that we rewrite each atomic expression l ≤ x ≤ u involved in a timing constraint
by using the global clock t and reset times w, that is, l ≤ x ≤ u ≡ l+w(x) ≤ t ≤ u+w(x).
For a given state (s, t) = (q, w, t) of M , we also associate to the action a its next activation
time nextt(a) and its next deadline deadlinet(a). We now also associate to the interaction
a, its last activation time lastt(a). Values nextt(a), lastt(a) and deadlinet(a) are computed
from the timing constraint g of a, g = [l ≤ t ≤ u]τ , as follows:

nextt(a) =

{

max { t, l } if l ≤ u and t ≤ u
+∞ otherwise,

lastt(a) =

{

max { u } if l ≤ u and t ≤ u
−∞ otherwise,

deadlinet(a) =

u if l ≤ u ∧ t ≤ u ∧ τ = d

l if l ≤ u ∧ t < l ∧ τ = e

t if l ≤ u ∧ t ∈ [l, u] ∧ τ = e

+∞ otherwise.

We extend these definitions to non-empty subsets of actionsA ⊆ A: nextt(A) = mina∈A nextt(a),
lastt(A) = maxa∈A lastt(a) and deadlinet(A) = mina∈A deadlinet(a). We also define defaults
values nextt(∅) = deadlinet(∅) = +∞ and lastt(∅) = −∞.

We assume that the actual time tr is provided by the real-time clock of the platform. It
is used to update the absolute time t used by the Real-Time Engine.

Algorithm

The proposed Engine (Algorithm 6) corresponds to the ignore policy presented in Section 2.1,
we have also an implementation for the error policy. It also checks for time-safety violations
which correspond to inputs or deadlines missed. Notice that the proposed algorithm directly
implements the semantics of physical models, that is, it corresponds to a sequential execution
in which inputs can only occur during waiting periods. It can be slightly modified to
safely handle inputs occurring during actions execution as explained below. Moreover, the
Real-Time Engine can be modified to allow parallel execution of the components and the
interactions as explained in [13].

98

CHAPTER 6. OPEN REAL-TIME SYSTEMS

Algorithm 6 Real-Time Engine
Require:
1: (s, t) = (q, w, t) ← (q0, 0, 0) // initialize system state
2: loop
3: (Is,Os, γs) ← Enabled(s) // enabled actions
4: if nextt(Is ∪ Os ∪ γs) = +∞ then
5: exit(DEADLOCK) // nothing enabled from (s, t)
6: end if
7: D ← deadlinet(Is ∪ Os ∪ γs) // next deadline
8: t ← tr // update model time w.r.t. actual time
9: if t > D then

10: exit(DEADLINE_MISSED) // missed deadline
11: end if
12: if Inputs(Is) 6= ∅ then
13: exit(INPUT_MISSED) // missed input
14: else
15: if nextt(Os ∪ γs) < +∞ then
16: a ← RealTimeScheduler(Os ∪ γs) // plan a
17: t ← nextt(a) // at absolute time t
18: else
19: a ← ∅ // no enabled output or internal action
20: t ← min { lastt(Is), D } // after t, deadlock
21: end if
22: wait Inputs(Is) 6= ∅ or tr ≥ t
23: if Inputs(Is) 6= ∅ then
24: (a, t) ← PurgeFirst(Is) // retrieved input
25: end if
26: end if
27: if a 6= ∅ then
28: Execute(a) // execute a at global time t
29: else
30: exit(DEADLOCK) // nothing enabled from (s, t)
31: end if
32: end loop

99

CHAPTER 6. OPEN REAL-TIME SYSTEMS

Given a state (s, t), the Real-Time Engine computes the next action to execute using
the followings steps.

Compute enabled actions. It first computes enabled actions from s = (q, w) (line 2 of
Algorithm 6). It correspond to the state of the system after components execution. We
distinguish between enabled inputs Is, enabled outputs Os and enabled internal actions γs

using the primitive Enabled(s): (Is,Os, γs) ← Enabled(s).

Update of Time. It computes the next deadline D with respect to the current state (s, t)
(line 7). The absolute time t is then updated with respect to the actual time tr in order to
take into account the previous action execution time (line 8).

Check for time-safety. It stops the execution if the deadline D is missed (line 10). It
also stops the execution if an enabled input occurred during the previous action execution
(line 13). We use the primitive Inputs() of the Event Handler which returns the list of
inputs (and their corresponding timing constraints given as parameter), resulting from the
filtering of the current content of its FIFO by the enabled inputs Is.

An other policy would be to safely handle these inputs a posteriori by replacing line 13
by:

(a, t) ← PurgeFirst(Is).

The primitive PurgeFirst() of the Event Handler returns the oldest occurrence of an enabled
input and removes it from the FIFO (first enabled input in the FIFO) . This input is treated
even after its occurrence time but its behavior could be treated exactly at this time if there
are enough spare time.

Schedule an output or an internal action. It chooses, if it exists, an output or an
internal action a according to a real-time scheduling policy and plan to execute a at its next
activation time nextt(a) (lines 16 and 17). Otherwise a = ∅ (line 19). The system can only
progress if an input is received before the next deadline D and before the last instant of
activation of the inputs nextt(Is) (line 20).

Wait. If a 6= ∅, it waits for the instant of execution of a, otherwise it waits for an input until
there is a deadlock (line 22). If an enabled input occurs while waiting, the Event Handler
notifies the Engine to purchase the execution. The input is then immediately selected and
executed instead of the planed action (line 24).

Execute. It executes the chosen action a which corresponds to either an output or an
internal action planed by the real-time scheduler, or an enabled input (line 28). The ex-
ecution of an output also includes a notification to the Event Handler which executes the
corresponding actuate actions as shown in Figure 6.12. Notice that inputs occurring during
the execution of a are treated at the next iteration according to the semantics of Mϕ.

100

CHAPTER 6. OPEN REAL-TIME SYSTEMS

4 Implementation Method for the Real-Time BIP Framework

We implemented the proposed method for the component-based framework BIP used for
building systems consisting of heterogeneous components. We extended the real-time BIP
framework, presented in Chapter 5, in order to handle both real-time features and the
communications between the application model and its environment. We make extensions
in the BIP language to allow the expression of inputs and outputs in the model which
corresponds to the interface of communication with the environment. Thus, we changed
the compilation process in order to make a mapping between the inputs and outputs of the
application model and the physical events from sensors and actuators. An Event Handler
is added in the real-time BIP Engine to manage the arrival of inputs from the environment
and the execution of actuate actions assigned to outputs.

4.1 The BIP Language Extensions

We introduce in the real-time BIP language special tags on ports declaration in atomic com-
ponents. These tags enable the openness of components to their physical environment. An
atomic component has only local data, and its interface is given by a set of communication
ports. In addition to ports which correspond to internal actions, we introduce input and
output actions using tags. An "input" tag on a port turns it as an input port and an "out-
put" tag on a port turns it as an output port. Input and Output ports are used to specify
direct interaction with the environment, they cannot be involved in interactions. Output
ports are denoted by empty triangles are freely triggered by the system. In contrast, input
ports are denoted by empty circles and are triggered by the environment.

Figure 6.13 gives the input and output ports representation and its equivalent BIP model
without the utilization of input and output tags. In case (a) the application model defines
an input port in for which the application is waiting for an input from the environment.
This is equivalent to the passive mode of communication where the sensor triggers the
execution of the application when an input is enabled. In case (b) the application model
defines an output port out for which the application sends an output to the environment.
This is equivalent to the active mode of communication where the application triggers the
execution of the actuator when an output is enabled.

output

Application

in

Application

out

Application Sensor

in

Application Actuator

out

input

(a)

(b)

Figure 6.13: Input and Output ports representation.

101

CHAPTER 6. OPEN REAL-TIME SYSTEMS

An atomic component definition is given as follows:

Definition 31 (Atomic component) An atomic component represents behavior B as
a transition system, extended with variables and functions, represented by (V, P, X, Q,−→),
where:

• Q is a set of control states Q = {Q1...Qn}, which are places at which the components
await for synchronization.

• P is a set of communication ports P = {p1...pn}, partitioned into normal ports Pint

(i.e. communicating with other components) and environment ports of type input Pin

and output Pout (i.e. communicating with the environment).
• V is a set of variables used to store (local) data. Variables may be associated to ports.
• X is a finite set of clocks,
• −→ is a set of transitions modeling computation steps of components. Each transition

is a tuple of the form (q1, p, gp, gtp, fp, q2), representing a step from control state q1 to

control state q2, denoted as q1
p,gp,gtp,fp
−→ q2, where gp is a boolean condition on V, fp is

a computation step consisting of data transformations and gtp is a timing constraint
over X.

We notice that variables may be associated to input and output ports to enable the
exchange of data between the application and its environment.

An abstract syntax of port declarations is given in Figure 6.14. We introduce the key-
words input and output to create instances of input and output ports. They are also
referenced by their port type and a port name. The port name must be unique and specific
to the input or output port. Indeed, input and output ports are mapped to their associated
physical events according to their names, or (and) to the components they belong. Figure
6.13 gives the open abstract model representation (left) and declaration (right) of Example
6.2) using the new BIP language (see Figure 6.15).

port-definition ::= normal-port | environment-port

normal-port ::= [export] port port-type-reference port-name [variables]
port-type-reference ::= [library-name .]port-type-name

environment-port ::= [export] envport-type port
envport-type-reference port-name [variables]

envport-type ::= input | output

envport-type-reference ::= port-type-name

Figure 6.14: Ports declaration syntax

102

CHAPTER 6. OPEN REAL-TIME SYSTEMS

o
u
t

getinit

exec

computeout
[x ≤ D]d[x ≤ D]d

in
[x ≥ D]l

{x}

in

atomic type Open-Atom

input port intPort in

output port intPort out

port intPort intPort compute

clock x unit millisecond

place init

place get

place com

place exec

initial to init

on in from init to get

when x in [D,-] lazy
reset x

on compute from get to exec

when x in [-,D] delayable
on out from exec to init

when x in [-,D] delayable
end

Figure 6.15: An example of an open atomic component declaration.

4.2 Mapping Inputs and Outputs with Physical Events

The BIP language is completed by a compiler that generates C++ code from BIP models.
The generated code is intended to be combined with a dedicated Engine implementing the
semantics of BIP. We introduced in the language environment ports (inputs and outputs).
The Event Handler is the part of the open real-time Engine that is responsible for the
communication with the environment. It receives events from the environment and notifies
the model of the occurrence of the corresponding inputs. It also receives outputs from the
model and executes their corresponding actuate actions. A mapping between input and
output ports specified in the model and their corresponding events managed by the Event
handler is necessary. In this purpose, we introduce the notion of Event representing an input
or an output. It is the concrete representation of the port for which we can associate an
action. We introduce an event handler that manages a list of Drivers. Each Driver handles
the communication with the environment (actuators, sensors, software code). A driver
manages a list of events. An event is a structure associated to an input or output. It is used
to store data produced by the environment. the event handler makes the mapping between
the events handled by Drivers and ports involved in the computation of interactions.

4.3 Use Case

We conducted experiments on the marXbot [28], a miniature mobile robot embedding a
multitude of sensors and actuators. The hardware architecture of the robot is composed

103

CHAPTER 6. OPEN REAL-TIME SYSTEMS

(b) Distributed Control

microcontroller
sensors

actuators

microcontroller
sensors

actuators

microcontroller
sensors

actuators

central

embedded

computer

(a) Centralized Control

microcontroller
sensors

actuators

microcontroller
sensors

actuators

microcontroller
sensors

actuators

central

embedded

computer

Figure 6.16: Two hardware and control architecture paradigms.

of a centralized CPU running a Linux platform and several distributed microcontrollers
managing the sensors and actuators (See Figure 6.16). Compared to a centralized control
approach (a), the management of sensors and actuators via the network of distributed
microcontrollers (b) limits the overloading and the latency concerning the response time to
basic external stimuli. It also reduces the robot’s limitations in terms of speed of operation,
compared to centralized approach, since each microcontroller manages its nearest device.
The control architecture would be still partially centralized for complex applications that
need more CPU utilization and memory allocations. This is possible thanks to the event-
based communication at the microcontroller level with the centrilized CPU(b) instead of
polling hardware devices in(a).

Description of the robot architecture

The marXbot robot is composed of the following modules (See Figure 6.17):

• A base module provides rough-terrain mobility thanks to wheels . It also contains the
basic bricks for obstacle avoidance and odometry, as it embeds proximity sensors, a
3-axis gyroscope, and a 3D accelerometer.

• An attachment module provides self-assembling capabilities with peer marXbots. This
module allows the docking of the other robots and can feel the force they apply.

• A range and bearing module allows the robot to compute a rough estimate of the
direction and the distance of the neighboring robots.

• A distance scanner module allows the robot to build a 2D map of its environment.
• Finally a computer module provides a complete Linux-based operating system to the

robot. This module thus enables advanced cognitive capabilities. The main computer
also drives two cameras, one looking front and one oriented towards an omnidirectional
hyperbolic mirror.

104

CHAPTER 6. OPEN REAL-TIME SYSTEMS

Figure 6.17: The marXbot robot.

A controller running in the central computer reads sensors, processes the data, and sets
actuators at regular intervals, and these must transit through a communication bus. A
intermediate solution would be to make the centralized computer communicate with the
network of microcontrollers that manage the complexity of communication with the sensors
and devices. A modular event-based distributed architecture, called ASEBA [71], has been
developped in order to program the network of microcontrollers. All the microcontrollers
send events and react to incoming events through a CAN bus in which communication is
asynchronous. Indeed, the information in the sensors is dispatched by their microcontrollers
to the rest of the robot only if and when the information is relevant to the application. In
ASEBA, the description of the robot behavior and the events emission and reception policy
is described in a scripting language. The language is a simple imperative programming
language with arrays of 16-bits signed integers as the only data type. ASEBA provides also
an IDE that provides each microcontroller a tab with the list of variables for the real-time
edition of the values of the sensors, the actuators and the user-defined variables, a script
editor and debug controls. The IDE compiles scripts into bytecodes and loads them to the
microcontrollers, through the communication bus, to be executed in a lightweight Virtual

105

CHAPTER 6. OPEN REAL-TIME SYSTEMS

Machine.
Nevertheless, ASEBA does not enable the writing of complex applications and memory

allocations are limited in the microcontrollers. The ASEBA scripting language cannot
provide the use of 32-bits integers for example or the definition of complex computations.
The central computer that has a Linux-based operating system, communicates with the
microcontrollers via a software switch, that extends the communication bus to local TCP/IP
connexions. For those reasons, we use the open Real-time BIP framework in order to build
applications running in the centralized computer. In one hand, the BIP language provides
the high-level language for the description of inputs and outputs and, in an other hand,
the Event-Handler uses event-driven mechanisms compatible with the ASEBA approach.
The Mapping between the model’s inputs and outputs to the events provided by ASEBA
becomes staightforward.

Modelling applications using BIP

We consider a simple experiment setup for an obstacle avoidance scenario. The robot is
initially moving straight with an initial speed and stops when the front proximity sensor
detects an obstacle at a distance less or equal to some value. Stopping the robot is equivalent
to setting the speed of the robot’s left and right wheels to zero. In our experiments, we
use only two modules. In the first module, we use the wheels and obstacle avoidance
microcontrollers. The second module contains the computer module running on unix that
executes the application scenario. We notice that the scenario is very simple and could
have been implemented only in the microcontrollers. This wouldn’t be the case for more
complex applications, such as building a map of the robot’s trajectory or computing the best
path to arrive in a target place and avoiding obstacles. The considered obstacle avoidance
application is composed of three main components (see Figure 6.18).

• LeftWheel sets the speed of the robot’s left wheel. It is initially in state move until
an obstacle is detected, port obstacle is then triggered by the Sensor component.
It computes the speed to stop the left wheel and sends an output Lmove to the
microcontroller responsible for the corresponding actuator.

• RightWeel sets the speed of the robot’s right wheel. It behaves exactly as the
LeftWheel and sends an output Rmove to the microcontroller responsible for setting
the speed of the robot’s right wheel.

• Sensor detects obstacles. It is initially at state clear and waits for the enabledness of
port input detectObst by the microcontroller that detects the obstacles. It is the com-
ponent responsible for triggering the other components when an obstacle is detected.

The second step consists of mapping the input and output ports to the events produced
by ASEBA. We have three ports to be mapped, the input port detectObst and the two
output ports Lmove and Rmove.

106

CHAPTER 6. OPEN REAL-TIME SYSTEMS

clear

Sensor

Obstacle Avoidance

inform

detectObst

LeftWheel

detectObst

detectObst

Lmove Rmove

Lmove

obstacle

Rmove

inform

obstacle

move
obstacle

Obst

Out

compute

Lmove

move

Rmove

obstacle

Obst

Out
compute

RightWheel

Obst

Figure 6.18: The obstacle avoidance model.

5 Conclusion

This chapter provides a rigorous design and implementation method for open real-time
systems. The method extends the concepts presented in the previous chapters by not only
considering closed systems but also taking into account communications with an external
environment. An open real-time system interacts with a physical environment while meeting
timing constraints. Its behavior depends not only on its current state, like for closed systems,
but also on the behavior of its environment.

We present a model-based method that, based on an initial open abstract model, builds
its corresponding physical open abstract model and verifies its properties. Open abstract
models represent the timing behavior of the application without considering any execu-
tion platform. They model the interactions with the environment using input and output
actions, that is, open abstract models are modeled using Input/Output automata. Inter-
nal actions correspond to internal computations, outputs are triggered by the application,
whereas inputs are triggered by the environment. The open physical model represents the
implementation of the open abstract model on a execution environment. It represents the
behavior of the open abstract model running on a given platform, that is, it takes into
account execution times. It is obtained from the open abstract model by assigning exe-
cution times to actions and by taking into account the actual arrival times of inputs. An
open physical model is correct if all its execution traces are execution traces of the open
abstract model. Otherwise, it is either a deadline-miss or an input-miss problem and the
open physical model is thus not time-safe. We also define an execution Engine that faithfully
implements physical models on a target platform. We consider that the application software
is a set of interacting components such that each component is represented by an open ab-
stract model. The execution Engine detects time-safety violations when the implementation
does not correspond to the open abstract model specification.

The method is correct-by-construction since the proposed engine directly implements
the operational semantics of the open physical model. It leads, under some robustness as-

107

CHAPTER 6. OPEN REAL-TIME SYSTEMS

sumptions for WCET times, to a correct implementation. We implemented the method
for the component-based BIP framework. We first extended the BIP language by adding
input or output tags on ports and we added an Event handler to take into account the
communications with the physical environment. We provided an example of an application
model for the marXbot, a miniature mobile robot embedding a multitude of sensors and
actuators, using the framework BIP. We show a possible connexion between the robot’s cen-
tralized computer and the modular event-based distributed IDE, called ASEBA, that has
been developed in order to program the network of sensors and actuators microcontrollers.
This work is still in construction.

In Chapter 7, we present results on the design and implementation of more complex
autonomous systems. The current BIP framework has been successfully used for the design
and implementation of the rover Dala for both the functional and decisional levels. We
show the benefits obtained in terms of CPU utilization and amelioration in the latency of
reaction.

108

Part III

Use Cases : Autonomous Systems

Design and Implementation

109

CHAPTER 7. BUILDING ROBOT SOFTWARE MODULES

Chapter 7

Building Robot Software Modules

For the large scale deployment of robots in places such as homes, shopping centers and
hospitals, where there is close and regular interaction with humans, robot software integra-
tors and developers may soon need to provide guarantees and formal proofs to certification
bodies that their robots are safe, dependable, and behave correctly. This also applies to
robots such as extraterrestrial rovers, used in expensive and distant missions, which need
to avoid equipment damage and mission failure. Such guarantees may involve proofs that
a rover will not move while it is communicating or even worse, while it is drilling, that the
navigation software has no fatal deadlock, or that a service robot will not extend its arm
dangerously while navigating or will not open its gripper while holding a breakable object.

In this purpose, a first work has been done to combine a state of the art tool (GenoM) [19],
developped in the LAAS laboratory, to build functional modules of robotic systems with
the component based framework BIP for implementing embedded real-time systems. The
functional modules are in the fuctional level, which is the robot lowest level that includes all
the basic built-in action and perception capabilities of the robot. Little attention has been
drawn in the past, to the development of these modules whose robustness is paramount to
the robustness of the overall platform. Using formal methods for developing modules of the
functional level of robots is then a fundamental issue. To this end, a successfull tool has
been developed based on the BIP/GenoM component based design approach [17,18] and has
been applied on the functional level of a complex exploration rover, the Dala rover. The
gains were (i) the production of a very fine grained formal computational model of the robot
functional level; (ii) running the BIP engine on the real robot, which executes and enforces
the model at runtime; and (iii) checking the model offline for deadlock freedom, as well as
other safety properties.

Nevertheless, the timing properties haven’t been taken into account in the formalisms. We
extend and improve the approach in various directions: (i) Modeling timing features with
the real-time BIP model and (ii) Execution of the functional level with the real-time BIP
engine.

This chapter is structured as follows. In Section 1, we discuss about the existing tools
to build robots functional level using formal methods. In Section 2, we present the Dala
rover architecture and the design method of its modules, using the previous BIP/GenoM
component based design approach. In Section 3, we give the experimental results conducted

111

CHAPTER 7. BUILDING ROBOT SOFTWARE MODULES

on the Antenna module of the robot. We present the method to handle more efficiently the
timing features of the module and its communications with the environment. Finally, in
Section 4, we conclude the chapter.

1 Building Robot Software using Formal Methods

Despite a growing concern to develop safe, robust, and verifiable robotic systems, robot
software development remains quite disconnected from the use of formal methods. The
most common method to ensure the correctness of a system is testing (see [36] for a survey).
Testing techniques have been effective for finding bugs in many industrial applications.
Unfortunately, there is, in general, no way for a finite set of test cases to cover all possible
scenarios, and therefore, bugs may remain undetected. Hence, in general, testing does not
give any guarantees on the correctness of the entire system. Consequently, these approaches
are impractical with complex autonomous and embedded systems for even a small fraction
of the total operating space.

On the functional side of robotic systems, there are many popular software tools available
(e.g., OROCOS [38], CARMEN [72], Player Stage [87], Microsoft Robotics Studio [63], and
ROS [77]). In [65, 81], those methods are even compared. Yet, none of these architectural
tools and frameworks propose any extension or link with formal methods, and validation or
verification tools.

Recently, the LAAS laboratory has proposed the R2C [59], a tool used between the
functional and decisional levels. The main component of RIIC is the state checker. This
component encodes the constraints of the system, specified in a language named EXOGEN .
At run-time it continuously checks if new requests are consistent with the current execu-
tion state and the model of properties to enforce. Another interesting early approach to
prove various formal properties of the functional level of robotic systems is the ORCCAD
system [47]. This development environment, based on the Esterel [33] language, provides
extensions to specify robot “tasks” and “procedures.” However, this approach remains con-
strained by the synchronous systems paradigm.

More generally, as advocated in [21], an important trend in modern systems engineering
is model-based design, which relies on the use of explicit models to describe development
activities and their products. It aims at bridging the gap between application software
and its implementation by allowing predictability and guidance through analysis of global
models of the system under development. The first model-based approaches, such as those
based on ADA, synchronous languages [55] and Matlab/Simulink, support very specific no-
tions of components and composition. More recently, modeling languages, such as UML [64]
and AADL [48], attempt to be more generic. They support notions of components that are
independent from a particular programming language, and put emphasis on system architec-
ture as a means to organize computation, communication, and implementation constraints.
Software and system component-based techniques have not yet achieved a satisfactory level
of maturity. Systems built by assembling together independently developed and delivered
components, often exhibit pathological behavior. Part of the problem is that developers
of these systems do not have a precise way of expressing the behavior of components at
their interfaces, where inconsistencies may occur. Components may be developed at differ-
ent times and by different developers with, possibly, different uses in mind. Their different
internal assumptions, when exposed to concurrent execution, can give rise to unexpected
behavior, e.g., race conditions, and deadlocks.

112

CHAPTER 7. BUILDING ROBOT SOFTWARE MODULES

All these difficulties and weaknesses are amplified in embedded robotic systems design
in general. They cannot be overcome, unless we solve the hard fundamental problems
concerning the definition of rigorous frameworks for component-based design.

2 Presentation of the DALA Rover

Most complex robotic systems are build following the same architecture, composed of two
main levels, a functional level and a decisional level. The functional level is the robot lowest
level, which includes all the basic built-in action and perception capabilities of the robot.
These processing functions and control loops (e.g. image processing, obstacle avoidance,
motion control) are encapsulated into controllable communicating modules. In this section,
we first present the overall architecture of the Dala rover, that is, the different modules it
contains. Then, we present the initial BIP/GenoM modules functional organization.

2.1 The Robot Architecture

At LAAS, the GenoM tool (part of the LAAS architecture toolbox) is used to develop the
different modules consituing the robot. Each module in the functional level of the LAAS
architecture is responsible for a particular functionality of the robot. For example, the
functional level of our Dala rover is shown in Figure 7.1. This functional level includes two
navigation modes.

The first navigation mode, for mostly flat terrain, is laser based and contains the follow-
ing modules:

• the LaserRF module acquires the laser scan;

• the Aspect module builds a 2D obstacles map,

• the NDD module navigates by producing a speed reference, and

• the RFLEX module is the robot wheel controller that uses the speed reference.

The second navigation mode, for rough terrain, is vision based.

• the VIAM module takes stereo images,

• the Stereo module correlates them and

• passes them onto the DTM module to build 3D map,

• which used by the trajectory planner of the P3D module.

Other modules are deployed to implement opportunistic science (Hueblob), and to emu-
late communication (Antenna) and power and energy management (Battery). Each module
provides a set of services which can be invoked by the decisional level according to tasks
that need to be achieved. The open real-time BIP framework has been successfully used
for implementing the Antenna module of the functional level of Dala, The method can be
generalized with an automatic translation of the GenoM modules into equivalent real-time
BIP components.

113

CHAPTER 7. BUILDING ROBOT SOFTWARE MODULES

Functional level with
integrated BIP controller

Battery

SpeedP3D

PosPOM

HueblobIm.

St.Stereo

VIAM Im. Pos RFLEX
PTU

(Pan-Tilt

Unit)

DTM Env

Aspect Obs

Laser
RF

Scan

NDD Speed

Antenna Heating

Aspect ObsObs

Laser
RF

ScanScan

NDD SpeedSpee

Flat terrain
navigation

SpeedSpeeP3D

Im. Im.

St.St.Stereo

VIAM Im.Im.

DTM EnvEnv

Rough terrain
navigation

Figure 7.1: The functional modules of the Dala rover.

2.2 The BIP/GenoM Modules

The autonomous rover Dala uses an initial BIP/GenoM component-based design approach
[19] for specifying and implementing the functional level of the robot. This initial BIP/GenoM
version is based on a multi-threaded BIP execution Engine that doesn’t offer rigorous tim-
ing features for the design level. In general, each module instance (see Figure 7.2) provides
specific services, which can be invoked by requests sent by the higher (decisional) level ac-
cording to tasks that need to be achieved. Services can either be execution tasks or control
tasks.

114

CHAPTER 7. BUILDING ROBOT SOFTWARE MODULES

Control &
Functional

IDS

Requests Reports

Control Task

Timer
Message Box

Execution Task

Poster

IDS Lock

Control Service

Execution Service

Service
Controller

Activity

Task
Controller

Scheduler

Timer

Permanent

Control Service
Control Service

Control Service

Control Service
Control

Control
Control

Message Box

Execution Service

Service
Controller

Activity

Execution Service

Service
Controller

Activity

Execution

Execution

Execution ServiceExecution Execution

Poster
Poster

Poster
Poster

Execution Task

Execution Service

Service
Controller

Activity

Task
Controller

Scheduler

Timer

Permanent

Execution Service

Service
Controller

Activity

Execution Service

Service
Controller

Activity

Execution

Execution

Execution ServiceExecution Execution

.....

.....

.....

.....

Timer

Figure 7.2: A GenoM module functional organization.

• An execution task has different scheduling periods and priorities in charge of executing
particular user defined services. It triggers periodically services for launching and
executing associated activities and upon completion the services return a report to
the caller. In most implementations, an execution task is a POSIX thread and each
execution task is executed one after another (they are in the same thread).

• A control task, which among other things, handles requests and reports, is responsible
for setting and returning variable values. These services are implemented through the
transitions of an automaton that are linked to particular elementary (C/C++) code,
called codels, which are executed during the transitions.

• A module may also export posters containing “shared” data for others (modules or the
decisional level) to use.

In the previous version, each active service is given a slice of the CPU in sequence
and executes one codel. Time is taken into account with logical ticks provided by the
BIP engine. Thus, real-time properties are modeled using timers and BIP automata with
transitions executing C "sleep“ actions. In general, a global timer component is responsible
for executing the C "sleep” actions and synchronizes all the timer components of the modules
that are used to trigger the execution of periodic tasks. In the following subsection, we give
as an example, the Antenna module general structure.

115

CHAPTER 7. BUILDING ROBOT SOFTWARE MODULES

init

init
init idle write

tick

PosterAge + +

write
PosterAge := 0

endwrite

tick

MasterTimer

init
init idle

tick
sleep(10)

trigInit trigCom trigStop

Antenna Module

trigger

tick

tickAge

init
init idle

trigger

Counter < 5

Counter := 0

Counter == 5

Counter + +

tick
Timer

trigger

tick

init
init idle

tick

trigger

Counter < 60
Counter + +

Counter := 0

Counter == 60

Scheduler trigger

Execution Task

chck

Timer

trigger

init
init idle

tick

trigger

Counter < 10
Counter + +

Counter := 0

Counter == 10

tick

init
init idle

chck

give

trigInit

end

chck

trigStop

trigComnoMsg

MessageBox

Control Task

trigInit trigCom contComcontInit

contComcontInit

Permanent taskStopCom serviceCommunicate ServiceInit Service

triggertrigStop

Timer

Poster

idle

contCom

contInit

trigger

Figure 7.3: Antenna module implementing timing constraints using a Timer.

2.3 The Antenna Module Example

The Antenna module is responsible for the communication with an orbiter, and provides
the following services (see Figure 7.3):

Init service initializes the communication with the orbiter. It fixes the time window for
the communication between the application and the orbiter, given as parameter.

Communication service starts the communication with the orbiter. It has a parameter
defining the duration of the communication.

StopCom service terminates the on-going communication between the application and
the orbiter.

In the initial BIP/GenoM approach, time is measured in terms of ticks. Timer com-
ponents implementing periodic activations are strongly synchronized with a MasterTimer
component through tick ports. MasterTimer ensures that there are at least 10 ms between
two consecutive synchronizations of the components Timer. This is achieved by calling sleep
primitives of the platform in MasterTimer when executing action tick. Timer components

116

CHAPTER 7. BUILDING ROBOT SOFTWARE MODULES

trigger other components at fixed periods given as parameters in terms of ticks. Periodic ex-
ecution of Timer is enforced by a guard involving an integer variable Counter incremented
at each tick execution.

• Component Age measures the freshness of the poster at a period of 5 ticks (50 ms).
When the period counter == 5 is reached in the timer component, the Age component
is triggered in order to increment variable PosterAge corresponding to the poster age.

• Component MessageBox checks the presence of requests using a period of 10 ticks
(100 ms). When the period counter == 10 is reached in the timer component, the
MessageBox component is triggered in order to read in the memory whether a request
is present.

• Component Scheduler executes activities based on a period of 60 ticks (600 ms). When
the period counter == 60 is reached in the timer component, the Scheduler component
is triggered in order to launch the execution of the permanent task.

Implementing timing features with tick connectors is clearly not enough when it comes
to providing and controlling a real-time model of a complex system. It can eather introduce
a deadlock or block the time advance in a part of the system as explained below.

Deadlocks have been found when verifying the consistency of the model with D-Finder[?].
The first deadlock was due to the strong synchronization of timer components in the NDD
module, wich uses the same structure as the antenna module. Indeed, timer components are
also synchronized with other components to trigger the execution of a task, thus, the strong
synchronization of all timer components can be blocked if one of the execution tasks cannot
perform a tick transition. This is due to the fact that its triggering port never becoming
available after the Timer’s period is reached. A solution has been adopted, which is not to
strongly synchronize all the timer components. The one that is responsible of the blocking
will not be involved.

This solution is not very rigorous because time is not progressing in one of the timer
components. Even after correcting individual modules with respect to deadlocks, it’s not
possible to check whether the synchronization between all related modules components are
deadlock-free because of the large state space.

3 The Antenna Module Experimental Results

In this section, we explain how we improve the system by using the real-time BIP framework
through the Antenna module. We present the two transformation steps. In the first step, we
use the real-time BIP framework in order to handle timing constraints more efficiently. We
remove all the timer components and extend the triggered components with timed automata,
that is we introduce clocks and timing constraints. In the second step, we use the open real-
time BIP framework in order to remove the polling mechanism for checking the presence of
requests. We directly introduce an input and output ports in order to communicate with
the decisional level.

3.1 Introducing Clocks and Timing Constraints

The first step is based on the real-time Engine proposed in Chapter 5. It directly expresses
timing constraints in components using clocks, which avoids the use of MasterTimer and

117

CHAPTER 7. BUILDING ROBOT SOFTWARE MODULES

real(s) user(s) sys(s) CPU utilization(%)
1st implementation (ticks) 22.6 0.2 0.1 1.32

2nd implementation (real-time Engine) 22.6 0.05 0.08 0.45

Table 7.1: CPU utilization for Antenna.

Timer components. Figure 7.4 is the resulting representation of the Antenna module. In
this purpose, we introduced:

• Clock Ageclk in Age component measuring the freshness of the poster. That is, when-
ever we write a new data, clock Ageclk is reset to zero. A timing constraint over clock
Ageclk can prevent the reading of a poster if the data is older than or equal to a giving
value. In our case, the poster is read for Ageclk < 100ms.

• Clock Mclk in MessageBox component is used to enforce a period 100 ms for checking
the presence of a request. The corresponding timing constraint over clock Mclk is
Mclk = 100.

• Clock Pclk in Scheduler component is used to enforce a period of 600 ms to launch a
task. The corresponding timing constraint over clock Pclk is Pclk = 600.

noMsg

chck

init idle

chck

giveinit

trigInit

trigStop

trigCom

end

{Mclk}
init idle write

write

init {Ageclk}
init

contCom

trigger

{Pclk}

init
{Pclk}

[Pclk = 600]l

contInit

Antenna Module

Poster

MessageBox

Execution Task

triggertrigInit trigCom trigStop
contCom contInit

Scheduler

[Mclk = 100]l

Age

read

[Ageclk < 100]l

Control Task

Figure 7.4: Antenna module using the Real-Time Execution Engine.

We compared the execution of the first implementation of Antenna (i.e. using the multi-
thread Engine), and the second implementation (i.e. using the real-time Engine). CPU
utilization is almost 3 times higher for the multi-thread Engine using ticks compared to the
real-time Engine using clocks (see Table 7.1). The main reason is that the multi-thread
Engine executes tick every 10 ms, even at states for which the application is waiting for
enabledness of a guard or the arrival of a message (see Figure 7.9 (a)), whereas the real-
time Engine is actually sleeping (processor is idle) for the same states (see Figure 7.9 (b)).
The real-time Engine directly schedules the interactions at time instants meeting the timing
constraints, avoiding the need for strong synchronization between the components when
they execute a tick.

Moreover, executing tick at a given period P = 10ms requires the execution times of
interactions to be bounded by P , which is a strong and restrictive assumption that imposes
to decompose the interactions when it does not hold. Second, tick involves strong synchro-
nization of all components. The obtained model may easily deadlock: a local deadlock of a
single component leads to global deadlock of the system as explained earlier. Finally, mixing

118

CHAPTER 7. BUILDING ROBOT SOFTWARE MODULES

(a)

(b)

Period = 10 ms

Period = 50 ms

Period = 100 ms

Period = 600 ms

0 100 600

time

200 300 400 500

0 50 100 600

time

200 300 400 500

Figure 7.5: Execution trace of the antenna module using the first implementation (a) and
the second implementation (b).

{clk}

trigInit

trigCom

trigStop

StopCom service

Communicate Service

Init Service

trigInit

trigStop
init

init idle

chck

give

check
trigCom

trigStop

trigInit

report

MessageBox

trigger

[clk = 100]l

Control Task

Timer

check

noMsg

trigger

trigCom

init idle

init

{clk}

Figure 7.6: The MessageBox component representation using ticks.

timing constraints (expressed in terms of boolean guards involving integer variables) with
data makes the analysis of the model more difficult. Indeed, they should be restricted to
interval constraints and handled separately to exploit existing analysis techniques for timed
automata, as in the proposed method.

3.2 Introducing Input and Output Ports

In the first implementation, the communication with the decisional level (the environment)
and the Antenna module is achieved by using a dedicated shared buffer (see Figure 7.6). The

119

CHAPTER 7. BUILDING ROBOT SOFTWARE MODULES

decisional level directly writes requests in the buffer, and Antenna periodically reads the
buffer using component MessageBox to check their presence. The chosen period is 100 ms.
Antenna also sends reports when executing the internal action report of MessageBox.

trigCom

trigInit

trigCom

trigStop

trigInit

trigStop

Report

Request Report

Request

init
init idle

chck

give

Request
trigCom

trigStop

trigInit

Report

MessageBox

Control Task

StopCom service

Communicate Service

Init Service

Figure 7.7: The Message Box component representation using inputs and outputs.

The extension we now make is based on the open real-time Engine, that is, we introduce
the notion of Input and Output ports to communicate with the decisional level (see Figure
7.7). We introduce the input port Request that replaces the active wait used by the first
implementation. The output port Report is introduced to send reports to the environment
after the treament of a request. Reports were send via the transitions of the MessageBox
component.

The execution of the Antenna module using the multi-thread Engine consumes almost
4 times more CPU compared to executions with the open real-Time Engine. The CPU uti-
lization is thus 2 times higher for using active waits based on timing constraints compared
to the implementation with environment ports. The reason is that the previous implemen-
tations execute actions even at states for which the application is waiting for a request
arrival, whereas the second implementation is actually sleeping (processor is idle) for the
same states.

The response time of Antenna (i.e. delay between sending a request to Antenna and
its treatment) is also drastically improved when using input and output ports instead of
active waits: it ranges from 0 to 100 ms for the first implementation whereas it is about
0.1 ms for the last one (see Figure 7.8). This is due to the fact that the open real-time
Engine is instantaneously woken up in the second implementation when a request arrives
during sleeping periods (see Figure 7.9). We implemented this mechanism in the decisional
level by sending a Unix signal to the Event Handler each time a request is sent. It is even
possible to model the minimal arrival time of requests using timing constraints, and verify if
it is compatible with the other timing constraints (for example, the communication window
bounds) and the execution times. Moreover, the BIP Engine is able to check that the actual
arrivals of the requests meet the model constraints.

4 Conclusion

In this chapter, we presented the accomplished work for building software modules for the
Dala robot. We first presented the existing work that combines a state of the art tool
(GenoM), developped in the LAAS laboratory, with the component based framework BIP,

120

CHAPTER 7. BUILDING ROBOT SOFTWARE MODULES

 0.02

 0.04

 0.06

 0.08

 0 5 10 15 20 25 30 35 40 45 50

 0.1

 0

request number

No Use of environment ports

Use of environment ports

re
sp

o
n
se

ti
m

e
to

a
re

sq
u
es

t
(i
n

s)

Figure 7.8: Response time of Antenna to a request.

in order to use formal methods for developing modules of the functional level of robots.
To this end, a successfull tool has been developed based on the BIP/GenoM component
based design approach. Nevertheless, little attention has been drawn to verify the timing
properties of the considered system.

We extend and improve the approach by modeling the modules timing features with the
real-time BIP models. We tested the execution of the Antenna module with the real-time
BIP engine and we shown an amelioration of the CPU utilization. The main reason is that
the multi-thread Engine (untimed) executes tick every 10 ms, even at states for which the
application is waiting for enabledness of a guard, whereas the real-time Engine is actually
sleeping (processor is idle) for the same states. We also extended the modelling approach
by introducing input and output ports, for specifying interactions with the environment.
The execution of the Antenna module with the open real-time BIP engine has also shown
an amelioration of the CPU utilization. The reason is that the previous implementation
executes actions even at states for which the application is waiting for a request arrival,
whereas the second implementation is actually sleeping (processor is idle) for the same
states. The response time of Antenna is also drastically improved. This is due to the fact
that the open real-time Engine is instantaneously woken up when a request arrives during
sleeping periods instead of periodically checking the presence of a request.

121

CHAPTER 7. BUILDING ROBOT SOFTWARE MODULES

2 3

Occurance of a request

Response time

Polling

1

0 100 200

time

300

Figure 7.9: Occurrence of requests in the Antenna module example.

122

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

Chapter 8

The Allen Temporal Logic for

Planning

The decisional level of an autonomous system usually involves temporal planners [59] that
basically choose variable time instants for the execution of actions of a system, e.g., starting
or terminating a task. The goal of the planner is to find a valid plan, that is, a list of actions
(possibly with parallel execution) meeting user-defined constraints that can be expressed
using various formalisms. Planners can also seek for efficiency by optimizing parameters
such as latency, throughput, energy, and memory.

The robotic systems we deploy rely on a high level temporal planner and a plan execution
controller using a Timeline-based planning technique. Allen’s interval algebra, also called
Allen’s temporal logic (ATL) is one of the best established formalisms for temporal reason-
ing [2,3]. It is a widely used formalism in the temporal planning community for expressing
constraints on plans. The constraints are expressed as boolean formulae over atomic propo-
sitions. Validation and correctness of complex plans for systems with decisional autonomy
is highly desirable, if not crucial in many applications. Since ATL is the logic of planning,
an automated translation from ATL to BIP models enables us to use rigorous design and
implementation techniques and tools in a domain lacking them.

Moreover, the importance of controlling the execution of the plan, that is monitoring,
cannot be overestimated. For example, an autonomous rover whose execution plans have
been rigorously verified may still fail for reasons such as hardware or operating system
failures, unexpected terrain in an unknown environment, violations of timing constraints
etc. Having a controller to check the online execution of plans step by step and to trigger
recovery code in case of violations is of crucial importance.

Our contribution consists of providing a rigorous and simple technique for modeling the
plans. The execution and the controlling mechanisms are also handled by the open real-time
BIP framework. Thus, there is no need to synthezise monitors for the execution. The BIP
engine directly executes the plans actions with the respect to the constraints and monitors
the execution at runtime.

This chapter is structured as follows. In Section 1, we discuss about the existing tools
to build plans using formal methods and present the ATL formalism. In Section 2, we
present the transformation mechanism from ATL formula to BIP models. In Section 3, we
explain how to model plans using BIP models. In Section 4, we give the experimental results
conducted on the Dala robot. Finally, in Section 5, we conclude the chapter.

123

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

1 Building Plans Using Formal Methods

1.1 State of the art

Formal methods have been more widely used together with “decisional components” of
robotic systems. The main reason is perhaps because these decisional components already
use a “model” (for planning, diagnostics, etc.). In [89], the authors propose a model-based
approach where the objective is to abstract the system into a state transitions based lan-
guage. The programmers specify state evolutions with invariants and a controller executes
this maintaining these invariants. To do that, the controller estimates the most likely cur-
rent state—using observation and a probabilistic model of physical components—and finds
the most reliable sequence of commands to reach a specified goal (i.e., with a minimum prob-
ability of failure). In [52], the authors present the CIRCA SSP planner for hard real-time
controllers. This planner synthesizes off-line controllers from a domain description (precon-
ditions, postconditions and deadlines of tasks). CIRCA SSP can then deduce the corre-
sponding timed automaton to control the system on-line, with respect to these constraints.
This automaton can be formally validated with model checking techniques. Similarly, [29]
discusses an approach for model checking the AgentSpeak(L) agent programming language
aimed at reactive planning systems. The work describes a toolkit called CASP (Checking
AgentSpeak Programs) for supporting the use of model checking techniques, in particular,
for automatically translating AgentSpeak(L) programs into a language understood by a
model checker. In [85], the authors present a system which allows the translation from MPL
(Model-based Processing Language) and TDL (Task Description Language)—the executive
language of the CLARAty architecture [73]— to SMV, a symbolic model checker language.

In [66], the authors discuss an approach for automatically generating correct-by-construction
robot controllers from high-level representations of tasks given in Structured English, which
are translated into a subset of Linear Temporal Logic and eventually into automata. In
their work, complex and continuous missions can be specified using the basic prepositions
‘between’, ‘near,’ ‘within,’ ‘inside,’ and ‘outside.’ An example of such a mission is “stay near
A unless the alarm is sounding,” where A is a location. Likewise, [90] also deals with the
synthesis of correct-by-construction controllers based on temporal logic specifications. Here,
finite state automata based controllers are synthesized by a trajectory planner to satisfy a
given temporal specification, which is based on an abstract model of the physical system.
The authors show how the correct behavior of an autonomous vehicle can be maintained
using the robot controller automatically synthesized.

1.2 Allen Temporal Logic

Allen Temporal Logic is specified as a framework to deal with incomplete relative temporal
information such as “Event A is before event B”. Instead of adopting time points, Allen takes
intervals as the primitive temporal quantity. There are 13 basic binary relations between
any two intervals, also called constraints. In planning, ATL is then used to reason about
concurrency and temporal extent, where action instances and states are described in terms
of temporal intervals that are linked by constraints. Attributes whose states change over
time are called state variables. The history of values of a state variable over a period of time
is called a “Timeline”. The interval constraints among all possible values that must occur
among state variables for a plan to be legal are organized in a set of compatibilities. Com-
patibilities are the causal and temporal relationships between attributes. They determine

124

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

the necessary correlation with other procedure invocations in a legal plan.

Example 17 To illustrate the use of ATL, let us consider a PhD-student coffee problem,
used as a running example (see Figure 8.1). A PhD-student is at his office and has a “Low“
mood because he is running out of coffee. If he goes to the caffet and takes a coffee then his
mood will change to ”High”. The available actions are “Going” from a place to another and
“Preparing“ the machine “(M)“ to make coffee or the coffee ”(C)” itself. The coffee is to be
prepared in the caffet and requires the machine beeing prepared for it. To model the problem
we use three Timelines as follows.

(Caffet)AtAt(Office) Going
(O,C)

no−coffee−available coffee−available

HighLow Waiting

equals

before

during

Location
Location−sv

Attitude
Attitude−sv

Coffee

Coffee−sv
Preparing(C)

Preparing
(M)

Figure 8.1: The PhD-student coffee problem.

1. Coffee has one state variable “Coffee-sv” saying if the coffee is available or not. The
coffee goes from state "no-coffee-available" to "coffee-available" after the Coffee prepa-
ration "Preparing(C)".

2. Location has one variable “Location-sv” for the location of the PhD-student. The
PhD-student is from state "At(Office)" to "At(Caffet)" when goes from his office to
the caffet "Going(O,C)".

3. Attitude has one variable “Attitude-sv” for the attitude of the PhD-student. The
mood of the PhD-student changes from "Low" to "High" after preparing the machine
"Preparing(M)" to make coffee and "Waiting" for it to be available.

We can consider the following compatibilities :

• Coffee-available (“Ca”) requires Preparing(C) (“CP”) which requires no-coffee-available
(“NCa”). Preparing(C) is performed while At(Caffet) (“@(Caffet)”) after Prepar-
ing(M)(“MP”).

• At(Caffet) (“@(Caffet)”) requires going from the location Office to the Caffet which
requires At(Office) (“@(office)”). Going(O,C) (“G(O,C)”) is performed while Low.

125

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

• High (“H”) requires Waiting (“W”) which requires Preparing(M) (“MP”) and Low (“L”).
Preparing is performed while At(Caffet) and High as long as coffee-available.

To formally specify these compatibilities we use ATL formula defined as follows.

Definition 32 (Allen Temporal Logic Formula) If P is a set of atomic propositions
and T is a set of intervals, then an Allen temporal logic formula over P and T, or an ATL(P,
T) is any boolean combination of basic formulae of the form:

• Equals(I, J),
• Before(I, J) and After(I, J),
• Overlaps(I, J) and OverlappedBy(I, J),
• Meets(I, J) and MetBy(I, J),
• Contains(I, J) and During(I, J),
• Starts(I, J) and StartedBy(I, J),
• Ends(I, J) and EndedBy(I, J),

where I, J ∈ T.

Figure 8.2 gives a representation of some Allen relations (six of the above have a sym-
metrical one). We consider two time intervals I = [sI , tI] and J = [sJ , tJ] , where sI (resp.
sJ) is the start time of I (resp. J) and tI (resp. tJ) its terminating time (i.e. sI < tI and
sJ < tJ).

(a) Equals(I, J) means intervals I and J coincide (i.e., sI = sJ and tI = tJ).

(b) Before(I, J) or After (J, I) means I terminates before J starts (i.e., tI < sJ).

(c) Overlaps(I, J) or OverlappedBy(J, I) means J starts during I and J finishes after I
(i.e., sI < sJ < tI < tJ).

(d) Meets(I, J) or MetBy(J, I) means J starts when I terminates (i.e., tI = sJ).

(e) During(I, J) or Contains(J, I) means I is included in J (i.e., sJ < si and ti < tJ).

(f) Starts(I, J) or StartedBy(J, I) means I and J start at the same time (i.e., sI = sJ).

(g) Ends(I, J) or EndedBy(J, I) means I and J finish at the same time (i.e., tI = tJ).

The compatibilities extracted from example 1.2 can be formally specified in ATL as
follows:

• Meets(“NCa”, “CP”) ∧ Meets(“CP”, “Ca”) ∧
During(“CP”,“@(Caffet)”) ∧ Before(“MP”,“CP”) ∧

• Meets(“@(office)”,“G(O,C)”) ∧ Meets(“G(O,C)”,“@(Caffet)”)
∧ During(“G(O,C)”,“L”) ∧

• Meets(“L”,“MP”) ∧ Meets(“MP”,“W”) ∧ Meets(“W”,“H”)
∧ During(“MP”,“@(Caffet)”) ∧ Equals(“H”,“Ca”).

126

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

t

t

I

J

I

(b) Before (I, J)

t

t

J

I

J

(d) Meets (I, J)

t

t

J

(c) Overlaps (I, J)

t

t

I

(e) During (I, J)

t

t

I

J

(f) Starts (I, J)

t

t

I

J

t

t

J

(g) Ends (I, J)

I

(a) Equals (I, J)

sI

sJ tJ

tI sI

tJ

tI

sJ

sJ tJ

sI tI

tJ

tIsI

sJ

sI tI

sJ tJ

sI tI

sJ tJ

tJ

tI

sJ

sI

Figure 8.2: Allen Temporal Relations

2 Translating Allen Temporal Logic into BIP Models

It has been shown that Allen interval logic formulae can be translated into timed automata
[79] in order to check its satisfiability. Each interval relation is translated into a little state
machine that has two special states, true when the formulae holds and false otherwise.
For example, if we consider the Meets(I, J) relation (see Figure 8.3), one starts with the
initial state (I, J) (neither I nor J), and there it stays as far as one does not enter any of
the intervals. If while in this state the monitored program enters the interval J , then the
relation Meets(I, J) is obviously violated. Otherwise, if the interval I but not J is entered,
the machine moves to state (I, J) where it waits until either I is left and J is entered in
which case it returns true, or otherwise, until I is left without entering J or I and J overlap,
when it returns false.

We think that the translation of ATL formula into real-time BIP models can lead to
smarter and smaller descriptions. The idea is to use one timed automaton (i.e., one compo-

127

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

(¬ ∈I ∧¬ ∈J)

false¬ ∈I ∧¬ ∈J

trueI, J∈I ∧¬ ∈J

I, J ∈J

∈I ∧¬ ∈J

¬ ∈I ∧ ∈J

(∈I ∧ ∈J)∨

Figure 8.3: Translation of the Meets(I, J) relation into timed automata.

nent) for modeling each interval. Interactions and priorities—a.k.a. the glue—in BIP offers
also an elegant language for expressing constraints between intervals used to describe coin-
cidence of actions. In this section, we explain first how to translate Allen intervals into BIP
atomic components, then how to translate the different Allen constraints into connectors.

2.1 Translating Allen intervals into BIP atomic components

We consider an interval as an executing action, thus it has a starting time and a finishing
time. We model an interval with an atomic component as follows (see Figure 8.4 (b)).

Component Interval = (∅, A, {init, exec, end}, {x, y},−→) is composed of a set of ports
A = {begin, executing,finish,no-executing}, port begin corresponding to the begin-
ning of the execution, port executing corresponding to the execution, port finish corre-
sponding to the end of execution and port no-executing corresponding to the time after
execution of the interval (see Figure 8.4 (a)). Ports begin and finish correspond to partic-
ular time instants of executions that are triggered only once in the BIP component. Ports
executing and no-executing correspond to time intervals that can be triggered as long
as we are in the corresponding times intervals.

The Component has also two clocks x and y involved in the following set of transitions :

−→ = { (init, begin, [slb ≤ x ≤ sub]
d, {y}, exec),

(exec, executing, ∅, ∅, exec),

(exec, finish, [tlb ≤ y ≤ sub]
d, ∅, end),

(end, no− executing, ∅, ∅, end) }.

Interval

begin

{y}

[flb ≥ y ≥ fub]
d

finish

init

exec

end

finishbegin

executing

no-executing

no-executing

[slb ≥ x ≥ sub]
d

executing

Figure 8.4: Translating an interval(a) into a BIP component(b).

128

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

Clock x is reset at intialization. It is used to ensure the beginning of the action within
a starting interval [slb, sub] (where slb is the lower bound and sub is the upper bound),
by using constraint slb < x < sub with a delayable urgency. Clock y is reset when the
action execution begins. It is used to measure the execution time of the action to ensure
its termination within a finishing interval [tlb, tub] (where tlb is the lower bound and tub

is the upper bound), by using constraint tlb < y < tub with a delayable urgency. Each
transition is labeled by an exported port. Exported ports are used as an interface to enable
the synchronization with other components.

Notice 1 If there is no constraint on the beginning of the action, we introduce clock x to
enforce non-null delays between communicating actions by using constraints x > 0.

2.2 Translating Allen constraints into BIP connectors

Boolean conjunctions of atomic propositions can be efficiently derived using existing work
that establishes the correspondence between boolean formulae and the glue of BIP [BS, 2008].
Therefore, coincidence of actions (e.g., tI = sJ) can be modeled as a strong synchronization
between atomic components using interactions. Each Allen constraint between two inter-
vals can be translated into strong synchronizations between transitions of the corresponding
atomic components, through their exported ports. Ordering of actions (e.g., tI < sJ) can
be modeled as a set of priorities.

We have a corresponding connector type for each Allen relation as follows (see Figure
8.5):

(a) Equals(I, J) synchronizes both the beginning of I and J and their finishing. It
corresponds to a strong synchronization between port begin of I and port begin of J (i.e.
interaction {I.begin;J.begin}), and a strong synchronization between port finish of I and
port finish of J (i.e. interaction {I.finish; J.finish}) ;

(b) Before(I, J) or After (J, I) synchronizes the end of execution of I and the beginning
of J . It corresponds to a strong synchronization between port no-executing of I and port
begin of J (i.e. interaction {I.no-executing;J.begin});

(c) Overlaps(I, J) or OverlappedBy(J, I) synchronizes the beginning of J with the exe-
cution of I, and the finishing of J with the execution of I. It corresponds to a strong synchro-
nization between port executing of I and port begin of J (i.e. interaction {I.executing;J.begin}),
and a strong synchronization between port no-executing of I and port finish of J (i.e. inter-
action {I.no-executing;J.finish});

(d) Meets(I, J) or MetBy(J, I) synchronizes the finishing of I and the beginning of J .
It corresponds to a strong synchronization between port finish of I and port begin of J (i.e.
interaction {I.finish;J.begin})

(e) During(I, J) or Contains(J, I) synchronizes the beginning of I with the execution of
J , and also the finishing of I with the execution of J . It corresponds to a strong synchroniza-
tion between port begin of I and port executing of J (i.e. interaction {I.begin;J.executing}),
and a strong synchronization between port finish of I and port executing of J (i.e. interac-

129

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

(b) Before (I, J)

I J

(d) Meets (I, J)

I

I J

J

J

I J

(g) Ends (I, J)

(e) During (I, J)

(a) Equals (I, J)

(c) Overlaps (I, J)

I J

I J

(f) Starts (I, J)

I

finish beginbegin finish

begin finish

executing

no-executing

begin finish

executing

finish finish

begin

no-executing

finish begin

beginbegin

Figure 8.5: Allen Temporal Relations

tion {I.begin;J.executing});

(f) Starts(I, J) or StartedBy(J, I) synchronizes the beginning of I with the beginning of
J . It corresponds to a strong synchronization between port begin of I and port begin of J
(i.e. interaction {I.begin;J.begin}),

(g) Ends(I, J) or EndedBy(J, I) synchronizes the finishing of I with the finishing of J .
It corresponds to a strong synchronization between port finish of I and port finish of J (i.e.
interaction {I.finish;J.finish}),

130

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

Meets

J

executing

no−executing

begin

finish

K

executing

no−executing

begin

finish

I

executing

no−executing

begin

finish

finish begin finish

begin finish

begin

executing

no−executing

executing

executing

no−executing

no−executing

Formulae

D
u
ri

n
g
−

b
eg

in

D
u
rin

g
−

fin
ish

J.finish < {J.executing; K.begin}

J.finish < {J.executing; K.finish}

Figure 8.6: Example of translation: “I meets J and K during J” into BIP.

Example 18 Figure 8.6 gives the translation of a formulae over 3 three intervals I, J
and K into a BIP model, considering “I meets J and K during J”. Actions are modeled as
atomic components and constraints as interactions over those components. The beginning
of the execution of J is strongly synchronized with the end of the execution of I to model “I
meets J“ by using a strong synchronization between port finish of I and port begin of J .

To ensure that K is executed during the execution of J , we use strong synchronizations
between port executing of J and ports begin and finish of K. We also give a higher priority for
the execution of K over the completion of J to enforce the execution of K before the comple-
tion of J . Thus, priorities enforce ordering of actions (e.g., J.finish < {J.executing;K.begin}
and J.finish < {J.executing; K.finish}).

3 Plans Modeling Using BIP

We have seen how ATL formula can be translated into BIP models, we now explain how
to build correct models for plans. We first explain how Timelines are modeled and how
to manage the constraints between the different Timelines using BIP. We also make some
extensions in the BIP framework, especially in the BIP language, in order to easily use the
Allen constraints in BIP models.

3.1 Modeling Plans: First Method

Modeling Timelines

Each Timeline is modeled as a compound component composed of atomic components rep-
resenting the actions. The chronological order between these actions is expressed by the

131

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

constraint "Meets" and modeled by strong synchronizations between the finish port of an
action and the begin port of the next one.

@Office

Coffee

NCa P(Coffee) Ca

meets(NCa,P(C)) meets(P(C),Ca)

C
a

.f
in

is
h

Attitude

Low P(Machine) W High

meets(L,P(M))L.executing meets(W,H)meets(P(M),W) H.finishP(M).no−executing

Location

meets(NCa,P(C)) meets(NCa,P(C))

C
.e

x
ec

u
ti

n
g

(1) The Coffee Timeline representation

(2) The Location Timeline representation

(3) The Attitude Timeline representation

G(O,C) @Caffet

Figure 8.7: Timelines modeling for the PhD-student example.

We can see in Figure 8.7, the Timelines transformation of the PhD-student coffee problem
(Plan in Figure 8.1) as three compound components:

• Coffee (1) is composed of three components (NCa, P(C), Ca) representing each state
variable of the Coffee Timeline. The formulae Meets(“NCa”, “P(C)”) is modeled by
the synchronization of port finish of component NCa with port begin of component
P(C), and the formulae Meets(“P(C)”, “Ca”) is modeled by the synchronization of port
finish of component P(C) with port begin of component Ca.

• Location (2) is composed of three components (@Office, G(O,C), @Caffet) repre-
senting each state variable of the Location Timeline. The formula Meets(“@(of-
fice)”,“@(Caffet)”) and Meets (“G(O,C)”,“@(Caffet)”) are also modeled by Meets syn-
chronizations between the three actions.

• Attitude (3) is composed of four components (Low, P(M), W, High) representing
each state variable of the Attitude Timeline. The formula Meets(“L”,“MP”), Meets
(“MP”,“W”) and Meets(“W”,“H”) are modeled by strong synchronizations between the
four atomic components .

132

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

Modeling composition of Timelines

In order to model constraints over timelines, each compound component representing a
Timeline has to export ports that are involved in synchronizations with other Timelines.
The atomic component P(C) of the Coffee Timeline synchronizes with the atomic component
@(Caffet) of the Location Timeline (for the formulae During(“P(C)”,“@(Caffet)”)) and with
the atomic component P(M) of Attitude Timeline (for the formule Before(“P(M)”,“P(C)”)).
Finally, the atomic component Ca synchronizes with the atomic component High of Attitude
Timeline (for the formulae Equals(“H”,“Ca”)).

The Coffee Timeline has to export the ports begin and finish of P(C), the Location
Timeline has to export the execution port of @(Caffet) and the Timeline Attitude has to
export the port no-executing of P(M). Since ports begin and finish of P(C) and port begin
of Ca are involved in Meets synchronizations inside the Coffee Timeline, we export the
ports of the connector they are involved in. Indeed, a connector has an option to define
a port and export it. This allows a connector to be used as a port in other connectors or
in the compound components they belong to, and create structured connectors. The port
export statement is provided in the connector type definition. The resulting exported ports
for the Coffee Timeline are the following.

• Exported from a synchronization: meets(NCa,P(C)) resulting from the synchro-
nization involving port begin of P(C), and meets(P(C),NCa) resulting from the
synchronization involving port finish of P(C).

• Exported from components: Ca.finish corresponding to port finish of Ca, since it is
not involved in any synchronization.

All the other atomic components ports that are not exported by the timeline are wrapped
into singleton connectors in order to enable their execution whitout any constraint, that is
synchronizations with other components.

P(M).no−executing

Attitude

Location

Coffee

C
a

.f
in

is
h

meets(NCa,P(C))

L.executing

meets(NCa,P(C)) meets(P(C),Ca)

meets(NCa,P(C)) C
.e

x
ec

u
ti

n
g

H.finishmeets(W,H)meets(P(M),W)meets(L,P(M))

Figure 8.8: Model for the phd-student example.

Figure 8.8 is a representation of the model of the whole plan. We can see the synchro-
nizations between the different Timelines through their exported ports. We note that

133

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

some ports are involved in several synchronizations and thus, it is then necessary to merge
the interactions in which they are involved into a single connector. We merged the in-
teraction {meets(P (C), Ca);meets(C.executing)}, part of the modeling of the formulae
During(“P(C)”,“@(Caffet)”), and interaction {meets(P (C), Ca);meets(W, H)} of the mod-
eling of the formulae Before(“P(M)”,“P(C)”). It is due to the fact that the exported port
meets(P(C),Ca) representing port begin of component P(C) is involved in both interactions.
The merging concerns only exported ports of type begin or finish since the ports of kind
executing and no-executing can be triggered several times, and as long as they are involved
in During and After synchronizations types.

3.2 New language for Modeling Plan

We note that the transformation of Allen Temporal Logic into BIP models is tedious and
error prone due to the merging mechanism. In this purpose, we extend the BIP language
in order to express the Allen Temporal Logic between components by introducing the Allen
constraints keywords. From this new language, we automatically generate the corresponding
connectors by a model to model transformation tool.

The BIP Language extensions

We extend the BIP language in order to express allen constraints between components in
an easy way by introducing in the BIP grammar keywords corresponding to Allen Algebra
constraints. Each compound component representing a Timeline (respect. a plan), defines
the components representing its actions (resp. Timelines). We add the possibility to declare
allen formula between the components inside a compound component (see Figure 8.9).
Figure 8.10 describes the new syntax of an Allen definition. Each declaration of an allen
definition is identified by the keyword allen. We can optionnaly associate to it a name
allen-name, which can be used to identify the corresponding interaction execution in the
execution traces. If it is not specified, the tool allocates a special number to the allen
formulae. Then, we define the allen relation between an action1 and action2 with the
appropriate allen-constraint (meets, before, overlaps, starts, ends, during, equals).

compound-type-definition ::=
compound type compound-type-name
[(c-type-name fpar-name { , c-type-name fpar-name }∗)]
{ component-definition }∗

{ allen-definition }∗

end

component-definition ::=
component-type component-name (actual-arg { , actual-arg }∗)

Figure 8.9: Allen definition in a compound component

Notice 2 When the compound component represents the plan, then the actions are of the

134

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

allen-definition ::= allen [allen-name] allen-relation

allen-realtion ::= action1 allen-constraint action2

action1 ::= component-identifier
action2 ::= component-identifier

allen-constraint ::=
meets
|before
|overlaps
|starts
|ends
|during
|equals

component-identifier ::= IDENTIFIER (. IDENTIFIER) ?

Figure 8.10: Allen Forluma declaration syntax

form identifier1. identifier2, where identifier1 is the name of the Timeline and identifier2
is the name of the desired atomic action involved in the synchronization.

Allen to BIP Model Transformation Tool

Given a BIP file describing a plan with the new allen syntax, we build an Allen/BIP model.
The Parser analyses the BIP description source and generates an intermediate model con-
forming to the new BIP meta-model describing the allen syntax. It performs syntactic
analysis of the input program conforming to the new BIP grammar and reports the pro-
gramming errors. The Allen-to-BIP transformation tool generates a correct BIP model by
translating the Allen definitions decribed in the Allen/BIP model into connectors, in order
to generate an executable C++ code (see Figure 8.11).

Given a plan model S, the proposed algorithm (Algorithm 7) corresponds to the following
computation steps in the transformation tool.

Extracting Allen definitions from Timelines. From each Timeline declared in the plan
as a compound component, we extract the Allen definitions (lines 2-5). For each allen decla-
ration, we create a type of internal interaction using the function CreateInternalInteraction
(line 12). Function CreateInternalInteraction takes as parameter the Name of the dec-
laration, actions Act1 and Act2 that are involved in the synchronization, and the type of
constraint Cst. According to the type of constraint, it creates the corresponding interaction

135

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

BIP Model

Allen-to-BIP

Code Generator

Centralized Engine

Transformation

BIP Language

BIP Meta-Model

C++

BIP

Compiler Parser

Allen/BIP Model

BIP

Figure 8.11: The Allen-to-BIP transformation tool.

by connecting actions Act1 and Act2 ports, following the rules presented in Section 2.2.
Each created interaction is saved in a dictionary.

Creating Connectors. When all the interactions of a given Timeline are created, we apply
the merging mechanism when it is necessary (line 15). That is, when two interactions use of
the same instances of ports of kind begin or finish. After the merging, we create a connector
for each interaction (line 16) and we export all the ports issued from the components or
connectors.

Extracting Allen definitions from the Plan.
In the plan compound component, we extract the Allen definitions for Timelines (line 20).

For each declaration, we create a type of interaction using the function CreateInteraction
(line 22). To create the interaction corresponding to the allen definition, we use the exported
ports created in the previous step. When the needed port of one of the actions is involved
in a Timeline internal connector, we use the port issued from the connector, otherwise, we
use the exported port of the component.

Creating Connectors. When all the interactions of the plan are created, we apply the
merging mechanism (line 25). We finally create the connectors for each interaction and
the singleton connectors for all the timelines exported ports that haven’t been used for the

136

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

interactions.

Algorithm 7 Allen to BIP Transformation
Require: S // The Plan model
1: loop
2: Ti ← EnabledTimeline(S) // For each Timeline
3:

4: loop
5: Aj ← AllenConstraint(Ti) // For each Allen declaration
6: if HasName(Aj) then
7: Name ← getAllenName(Ai)
8: end if
9: Act1 ← getAction1(Aj)

10: Act2 ← getAction2(Aj)
11: cst ← getConstraint(Aj)
12: CreateInternalInteraction(Name,Act1,Act2,Cst) // Create interaction
13: end loop
14:

15: I = MergeInternalInteractions(Cj) // First Merge
16: C = CreateConnectors(I) // Create Connectors
17: ExportPorts(C)
18:

19: loop
20: Ai ← AllenConstraint(S) // Constraints over Timelines
21: (Name,Act1,Act2,Cst) ← extraction(Ai)
22: CreateInteraction(Name,Act1,Act2,Cst) // Create interaction
23: end loop
24:

25: I = MergeInteractions(Cj) // Second Merge
26: C = CreateConnectors(I) // Create final Connectors
27: CreateSingletonConnectors(C) // Create single Connectors
28:

29: end loop

4 The Dala Rover Planning Example

We have modeled and executed a Dala plan using the open real-time BIP framework. The
Dala robot mission scenario consists of navigating from an initial position to a target po-
sition, taking a picture of the place, and going back to the initial position. Each step of
the mission requires a strong collaboration between the different modules of the robot. Fig-
ure 8.12 is a graphical representation of the plan. It is composed of six timelines describing
the variable states for each module of the robot.

• In the Heater Timeline, the initial action has to set the heater in a given value with
action Heat. It has a timing constraint on its termination in the interval [1, 10]. When
it finishes, the Heater is at state idle.

137

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

!"#$%"&'
!"#$%"&'(

)*+,-+.(

/01'(+,+(

)+,2.(

*+,-+(

)+,2.()+,+.(
)+,2.(

!"#$%"&'(

()*+),'
3'"&(

/01'(
)4,4+.()+,2.(

+,+

)+,

!-.'
056!(78(

)+,2.()+,2.(

056!(

)+,2.(()4,9.()4,9.(

(:5#'(:5#'(

()4,9.(

(:5#'(

)4,9.(

:5#'(

/012'
/01'(

)+,2.(

/01'(

)+,2.(

1&+)&&*'
/01'(

)+,2.(

/$#$3$4$+5'

6$&7"8'

57&(

);9+,;9+.(

)+,2.(
*+,-+(

)+,2.()+,+.(

!"#$%"&'(

056!(

)+,2.(()4,9.()4,9.()4,

(:5#'(:5#'(:5#'

()4

(:5#

)+,)+,2.(

/01'(

)+,2.()+,2.(

/01'(

)+,2.(

!"#$%"&'(

)*+,-+.(

+,+(

2.(

+,+

)+,2.(

+,++,+

2.(

056

)+,2.(()4,9.(

(:5#'(!(056!(

)4,9.(

:5#'(

/01'(

)+,2.(

<5::7!$<"&'(

=>?$&'>(57&(

/01'(

)+,2.(

);@+,;@+.(

)*+,-+.(

)9+,9+.(

/01'(

)+,2.(

AB5&(AB5&(A"#'(A"#'(

9"&+*$&)7:35'

;)<",)'

'''4)=' >$%B&(

)+,2.()+,2.()+,2.()+,2.(

()+,2.(()+,2.(

Figure 8.12: Example of a Dala plan.

• In the Position Timeline, the robot is first at position (0,0). It can navigate to any
position (x,y) with action navigate in the interval [30, 50].

• In the PTU Timeline, the PTU initial position of the robot is up. It can moves down,
left or right with action move in the interval [1, 4].

• In the VIAM Timeline, the camera is at state idle. It takes a photo with action shot
then saves it.

• In the Antenna Timeline, the antenna is first at sate idle. It communicates with
an orbiter in order to send the picture with the action communicate in the interval
(30, 50).

• In the Visibility Window Timeline the action orbiter is responsible for the communica-
tion window visibility in order to communicate with the orbiter.

Actions are either uncontrollable actions, i.e. actions that can send and receive requests
from the functional level, or state actions that describe the expected state in which the
robot should be. The uncontrollable actions of the plan are heat, navigate, move, shot and
communicate.

Figure 8.13 is a representation of the atomic components corresponding to either a state
action (a) or uncontrollable action (b). The atomic component representing an uncontrol-
lable action is an open component capable of sending requests and receiving reports from
the environment. Thus, its begin port is an input to send the corresponding command of
the action to the robot (see Table 8.1 representing the mapping between actions and the
robot commands). The finish port is an output to receive a notification when the action

138

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

(a) State Action (b) Uncontrollable Action

begin

{y}

finish

init

exec

end

finish

executing

no-executing

executing

no-executing

[flb ≥ y ≥ fub]
d

begin

{y}

[flb ≥ y ≥ fub]
d

finish

init

exec

end

finishbegin

executing

executing

no-executing

no-executing

[x > 0] [x > 0]

begin

Figure 8.13: Modelling the robot basic actions using BIP.

Uncontrollable Action Robot Command
Initialization InitialiseRobot

Heat (value) HeatRobot value
navigate(x,y) MoveRobot x y

move(x,y) MovePTU x y
shot (image) TakeScienceP ic image

Table 8.1: Mapping Between the uncontrollable actions and the robot commands

has finished. With this method, we are able to detect timing constraints violations if the
actions take more time than expected.

We then use the Allen to BIP model transformation tool in order to transform Allen
constraints into BIP connectors. The chronological order between actions belonging to the
same timeline is expressed by the constraint meets and modeled by strong synchronizations
between terminate and begin ports. We note that ports of type input or output can be
involved in such synchronizations. In that case, the resulting interactions contain also
synchronization with the environment. Each compound component exports ports that are
involved in synchronizations with other components.

Figure 8.14 represents a BIP model for Timelines Heater and Position of the robot.
Port “Heat.no-executing” is exported from port “no-executing” of component “Heat,” and
port “navigate.begin” is exported from the interaction in which port “begin” of component
“navigate” is involved. The constraint “heat before navigate” is modeled by synchronizing
those two ports.

We describe the plan by using the new BIP language. The BIP code of the Heater and
Position Timelines compound components of Figure 8.14 is the following:

Compound type Heater

component uncontrollable-action heater [1,10]

component state-action idle

allen heater meets idle

end

Compound type Position

139

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

!"#$% &'("%

!"#$"%&

)#*+,#$"%

'()*+(,&

-./0%)#*+,#$"% -./1%)#*+,#$"% &'("%

%%%%%%%%%%2.3

"4"567),%

8",+)%

!"#$9).3
"4"567),%

)#*+,#$"98",+)%

Figure 8.14: Modeling Timelines using BIP.

component state-action position0

component uncontrollable-action navigate1 [30,50]

component state-action position1

component uncontrollable-action navigate0-bis [30,50]

component state-action position0-bis

allen position0 meets navigate1

allen navigate1 meets position1

allen position1 meets navigate0-bis

allen navigate0-bis meets position0-bis

end

140

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

The BIP description of the whole plan is:

Compound type Plan

component Heater heater

component Position position

component PTU ptu

component VIAM viam

component Antenna antenna

component Visibility-Window visibility-window

allen heater.heater before position.navigate1

allen heater.heater before ptu.move1

allen heater.heater before viam.shot

allen heater.heater before antenna.communicate

allen position.navigate1 during ptu.down

allen position.navigate0-bis during ptu.down-bis

allen ptu.move1 during position.position1

allen ptu.move2 during position.position1

allen ptu.move3 during position.position1

allen viam.shot1 during ptu.left

allen viam.shot2 during ptu.right

allen antenna.communicate during position.idle

allen antenna.communicate during visibility-window.orbiter

end

4.1 Opportunistic Science

Opportunistic science poses significant challenges for autonomous planning and execution
system. In many ways, the challenges of handling opportunistic science are similar to deal-
ing whith unexpected events and anomalies during plan execution. When an autonomous
system detects an anomaly, such as a traverse taking longer than expected the system must
assess the impact this event will have on its ability to complete the mission objectives. If
necessary, the system will revise the plan in order to complete the remaining mission ob-
jectives as possible, or enter a safe mode and wait for assistance. Depending on the type
of event, the science analysis software may request an additional image or a spectrometer
measurement. We extend our planning method in order to enable the planner to take into
account opportunistic science detection in the plan. We are able to model the detection
of potentially interesting science events and stop the robot in order to eventually retask
the rover to respond appropriately. The scenario demonstrate our current capabilities in
responding to opportunisctic science events.

Figure 8.15 is a graphical representation of the plan that handles opportunistic science
events. We introduce a new timeline Monitor Rock where the initial state is idle. Action
rock is responsible for monitoring the presence of a rock. When an opportunistic science

141

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

!"#$%"&'
!"#$%"&'(

)*+,-+.(

/01'(+,+(

)+,2.(

-,3(

)+,2.()*+,-+.()+,2.(

!"#$%"&'(

()*+),'
4'"&(

/01'(
)5,5+.()+,2.(

+,+

)+,

!-.'
067!(89(

)+,2.()+,2.(

067!(

)+,2.(()5,3.()5,3.(

(:6#'(:6#'(

()5,

(:6#'

()5,3.(

(:6#'(

)5,3.(

:6#'(

)+,2.(

/012'
/01'(

)+,2.(

/01'(

)+,2.(

2"&$+",'

'3"45'

/01'(

)+,2.(

)*+,-+.(

!"#$%"&'(

)*+,-+.(

+,+(

)+,2.(

+,+

2.(

067

()5,3.(

(:6#'(

)5,3.(

:6#'(

/01'(

)+,2.(

;6!$&6<(=6>?(/01'(

)+,2.(

/01'(

)+,2.(

@A6&(@A6&(@"#'(@"#'(

67,$&8'

9):",)'

''';)<' <$%A&(

)+,2.()+,2.()+,2.()+,2.(

()+,2.(()+,2.(

=&6#'

067

)+,2.(

067!(

)*+,-+.(

!(

;6!$&6<(=6>?(

>'

Figure 8.15: Example of a Dala plan with opportunistic science.

occurs, it has to interrupt the navigation action if the robot is moving. Thus, we introduce
the notion of interruptible action.

begin

{y}

finish

init

exec finish

executing

no-executing

executing

[flb ≥ y ≥ fub]
d

[x > 0]

end

begin

interrupt

interrupt

stop

no-executing

finish

Figure 8.16: Representation of an Interruptible action.

Figure 8.16 is a representation of the atomic component corresponding to an interruptible
action. It is an uncontrollable action is an open component capable of sending requests and

142

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

receiving reports from the environment. We extend its capabilities by introducing a new
statestop. This new state is reached from state exec with the transition labelled by a new
port interrupt that is triggered while the action is executing and a request for stopping the
action is sent to the environment. We wait for the finish input to be sure that the action
has been stopped.

The interruption of navigation when an opportunistic science is detected is expressed by
the constraint “monitor before navigate”. Each port “navi.interrupt” is exported from port
“interrupt” of the interruptible component “navi” and port “monitor.finish” is exported from
port “finish” of component “monitor”. The constraint “monitor before navigate” is modeled
by synchronizing port “navi.interrupt“ and port “monitor.finish”.

4.2 The Temporal plan execution controller

The real-time BIP engine is well-suited for executing the decisional level of robotic systems.
Indeed, the real-time BIP engine becomes a temporal plan execution controller by providing
a correct schedule of actions. It communicates with the functional level through the event
handler that sends the request corresponding to each uncontrollable action and waits for
a reply within the time interval corresponding to the termination of the action. It detects
violations of timing constraints and stops the execution or reports the fault to the planner.

5 Conclusion

We have proposed a novel software engineering methodology for developing safe plans for
robotic systems. With our approach, one can provide guarantees that the robot will not
perform actions that may lead to situations deemed unsafe, i.e., those that may eventuate
in undesired or catastrophic consequences and that timing constraints violations can be
detected at execution.

We used the BIP Engine as a temporal-plan execution controller for the decisional level.
The BIP framework takes into account execution time deadlines and communications with
the external environment. Allen Temporal Logic is specified as a framework to deal with
incomplete relative temporal information such as “Event A is before event B”. Instead of
adopting time points, Allen takes intervals as the primitive temporal quantity. We translated
ATL formula into real-time BIP models, which merges the logic of planning with correct-
ness. The idea was to use one timed automaton (i.e., one component) for modeling each
interval. Interactions and priorities—a.k.a. the glue—in BIP offers also an elegant language
for expressing constraints between intervals used to describe coincidence of actions.

We also extended the BIP language in order to express the Allen Temporal Logic between
components by introducing the Allen constraints keywords. From this new language, we
automatically generate the corresponding connectors by a model to model transformation
tool.

We have modeled and executed a Dala plan using the open real-time BIP framework.
The Dala robot mission scenario consists of navigating from an initial position to a target
position, taking a picture of the place, and going back to the initial position. Each step of
the mission requires a strong collaboration between the different modules of the robot.

Using a BIP model combining plans of the decisional level and the functional level is in-
teresting for increasing the performance of the implementations since costly communications
between these two levels can be expressed as BIP interactions in which are directly handled

143

CHAPTER 8. THE ALLEN TEMPORAL LOGIC FOR PLANNING

by the engine in the same process. More importantly, this can also be used for verifying
global properties, using D-Finder, involving both the decisional level and the functional
level.

144

Part IV

Conclusions and Perspectives

145

CHAPTER 9. CONCLUSION

Chapter 9

Conclusion

In this thesis, we provide a rigorous design and implementation methodology for building
real-time systems. In this chapter we conclude about the work that has been achieved and
futur work directions.

1 Achievements

Our method is based on a formally defined relation between application software written in
high level languages with atomic and timeless actions and its execution on a given platform.
The relation if formalized by using two models:

1. abstract models which describe the behavior of the application software as well as
timing constraints on its actions;

2. physical models which are abstract models equipped with an execution time function
specifying WCET for the actions of the abstract model running on a given platform.

Time-safety is the property of physical models guaranteeing that they respect timing
constraints. Time-robust physical models have the property to remain time-safe for de-
creasing execution times of their actions. Non-robustness is a timing anomaly that appears
in time non-deterministic systems.

The method is new and innovates in several aspects.

• Our method doesn’t suffer limitations of existing methods regarding the behavior
of the components or the type of timing constraints. Considered real-time applica-
tions include not only periodic components with deadlines but also components with
non-deterministic behavior and actions subject to interval timing constraints. The
method generalizes existing techniques in particular those based on LET. These tech-
niques consider fixed LET for actions, that is, time-deterministic abstract models. In
addition, their models are action-deterministic, that is, only one action is enabled at
a given state. For these models time-robustness boils down to deadlock-freedom for
WCET.

• It proposes a concrete implementation method using a real-time execution Engine
which faithfully implements physical models. That is, if a physical model defined from
an abstract model and a target platform is time-robust then the Engine coordinates

147

CHAPTER 9. CONCLUSION

the execution of the application software so as to meet the real-time constraints. The
real-time execution Engine is correct-by-construction. It executes an algorithm which
directly implements the operational semantics of the physical model.

• To the best of our knowledge, the concept of time-robustness is new. It can be used
to characterize timing anomalies due to time non-determinism. These timing anoma-
lies have in principle different causes from timing anomalies observed for WCET [78].
Results on time-safety and time-robustness allow a deeper understanding of causes
of anomalies. They advocate for time-determinism as a means for achieving time-
robustness. An interesting question is loss in performance when in a model inter-
val constraints are replaced by equalities on their upper bound. Time-robustness is
then achieved through time-determinization entailing some performance penalty. We
are currently studying performance trade-offs for transformations guaranteeing time-
robustness.

We have also extended the implementation method for open real-time systems.

• This method generalizes existing techniques namely time-triggered approaches. These
techniques rely on the notion of (fixed) logical execution times (LET) imposed to
component actions leading to time-deterministic behaviors. We consider any type
of interval timing constraints for actions, which encompasses time non-deterministic
systems.

• We improve our approach by providing mechanisms that allow the system to react to
external inputs produced by the environment, based on the formally defined notions
of open abstract and physical models.

1. open abstract models which describe the behavior of the application software and
the expected behavior of the environment using Input/Output automata. Inputs
and outputs are used to represent explicitly the communications between the
application and its environment. This leads to models in which components can
only access their local data which is an essential hypothesis of component-based
design.

2. open physical models which are abstract models equipped with takes into ac-
count the actual arrival of inputs from the external environment. The platform
specific code used for implementing the communications with the environment
is thus moved from the model to the real-time Engine that safely handles these
communications, which enables for checking online for misbehavior.

We think that our approach can be useful for implementing adaptive systems, that
is, systems that adapt their behavior in accordance with the actual execution on the
platform (i.e. with execution times, energy consumption, available resources, etc.)
and/or the behavior of the environment.

Experimental results show the enhancements in term of performances obtained by the
use of these mechanisms. We applied the method for the design and implementation of
autonomous systems. We conducted successful experiments on the DALA robot from the
LAAS laboratory. With our approach, one can provide guarantees that the robot will not
perform actions that may lead to unsafe situations, those that may eventuate in undesired

148

CHAPTER 9. CONCLUSION

or catastrophic consequences and that timing constraints violations can be detected at exe-
cution. We used the real-time version of the BIP framework that we have developed, which
takes into account execution time deadlines. We also used BIP as a temporal-plan execution
controller for the decisional level. Using a BIP model combining plans of the decisional level
and the functional level should increase the performance of the implementations since costly
communications between these two levels can be expressed as BIP interactions in which are
directly handled by the engine in the same process. More importantly, this can also be used
for verifying global properties involving both the decisional level and the functional level.

2 Perspectives

For future work, we are considering several research directions.

• We have given results on time-safety and time-robustness that allow a deeper un-
derstanding of causes of anomalies. They advocate for time-determinism as a means
for achieving time-robustness. An interesting question is loss in performance when
in a model interval constraints are replaced by equalities on their upper bound.
Time-robustness is then achieved through time-determinization at some performance
penalty. We are currently studying the loss of performance induced by this transfor-
mation.

• We also want to provide static analysis tools to verify if for a given abstract model
and execution platform specifications, the corresponding physical model is time-safe
and time-robust.

• Currently, powerful hardware platforms needed for executing critical systems are
multi-core or many-core platforms. The application code should be optimally dis-
tributed over the platform to take advantage of its computing power. Although
distributed systems are widely used nowadays, their implementation is still time-
consuming and an error prone process. Coordination in BIP is achieved through multi-
party interactions (i.e. those accross multiple components), and scheduling by using
dynamic priorities. Transforming the semantics of the actual untimed distributed BIP
version into a distributed timed implementation is clearly a non trivial task. Therefore,
it constitutes one of our futur work direction.

• An other work direction, is the issue of mixed critical systems [9,10]. Mixed criticality
is the concept of allowing applications at different levels of criticality to interact and
co-exist on the same computational platform. Unfortunately, certification of such
systems is more difficult, because it requires that even the components of less criticality
be certified at the highest criticality level. It is necessary to provide strong scheduling
theories for real-time and safety-critical system design and implementation.

149

CHAPTER 9. CONCLUSION

150

LIST OF FIGURES

List of Figures

1.1 Toolset overview. 7

2.1 Abstract syntax for Lustre programs. 11
2.2 An integrator described in LUSTRE . 11
2.3 Execution instants for the Integrator node. 11
2.4 Example of use of when and current multi-clock operators 12
2.5 A mux LUSTRE node . 12
2.6 Example of an SDL program architecture. 14
2.7 Example of an SDL program using Timers. 15
2.8 Clocks definition in OASIS. 16
2.9 Elementary processing and associated time interval in OASIS. 16
2.10 Communication mechanisms in OASIS. 17
2.11 Example of components composition . 19

3.1 Structure of a BIP Model. 24
3.2 An example of an open atomic component in BIP. 27
3.3 Connectors and their interactions in BIP. 28
3.4 An example of a connector between two components in BIP 29
3.5 Hierachical connectors and their interactions in BIP. 30
3.6 An example of priorities in BIP. 31
3.7 An example of compound component in BIP. 32
3.8 The BIP Tool-Chain. 34
3.9 BIP model Execution Engine. 35
3.10 Send/Receive BIP model obtained from BIP to BIPtransformations. 38
3.11 Scheduling of timed tasks. 39
3.12 Task component. 40
3.13 Event Generator component. 40
3.14 Modelization of the scheduling of timed tasks example. 41

4.1 Example of abstract model. 49
4.2 Simple periodic task model (left) and its naive implementation (right). . . . 51
4.3 Simple periodic task execution. 52
4.4 Drift Diagramm . 52
4.5 Execution based on continuous mapping of the physical time (left) vs frozen

clocks (right). 53
4.6 From abstract model to physical model. 54
4.7 Minimal waiting time for action execution. 55

151

LIST OF FIGURES

4.8 Illustration for robustness (ϕ′ < ϕ). 56
4.9 Time-safe physical models Mϕ. 57
4.10 Time-deterministic abstract model M . 59
4.11 Deterministic abstract model M . 60

5.1 Interacting abstract models of an encoder (left) and its controller (right). . . 65
5.2 Abstract model composition of the encoder and its controller. 65
5.3 Simplification of the abstract model composition of the encoder and its con-

troller. 66
5.4 Abstract Models Execution Engine. 67
5.5 Real-time Execution Engine. 70
5.6 Clock declaration syntax in BIP . 74
5.7 Timed guard declaration syntax in BIP . 74
5.8 An atomic component syntax in BIP . 75
5.9 The encoder component declaration in BIP. 76
5.10 Adaptive video encoder architecture. 77
5.11 Controller component. 78
5.12 Video encoder execution for execution time functions Kϕ. 78

6.1 Communication modes between an application and its environment. 86
6.2 Open abstract model example . 88
6.3 Enforcing input-enabledness. 89
6.4 Action a′ miss its deadline in Mϕ. 90
6.5 Input a′ missed in Mϕ. 91
6.6 Safe Execution of Mϕ. 91
6.7 Deadline Miss in Mϕ. 92
6.8 Deadline Miss in Mϕ. 92
6.9 Deadline Miss in Mϕ. 93
6.10 Interacting sensor and actuator open abstract models. 96
6.11 Composition of models from the sensor and actuator example. 96
6.12 Architecture of the open real-time Engine. 97
6.13 Input and Output ports representation. 101
6.14 Ports declaration syntax . 102
6.15 An example of an open atomic component declaration. 103
6.16 Two hardware and control architecture paradigms. 104
6.17 The marXbot robot. 105
6.18 The obstacle avoidance model. 107

7.1 The functional modules of the Dala rover. 114
7.2 A GenoM module functional organization. 115
7.3 Antenna module implementing timing constraints using a Timer. 116
7.4 Antenna module using the Real-Time Execution Engine. 118
7.5 Execution trace of the antenna module using the first implementation (a) and

the second implementation (b). 119
7.6 The MessageBox component representation using ticks. 119
7.7 The Message Box component representation using inputs and outputs. . . . 120
7.8 Response time of Antenna to a request. 121
7.9 Occurrence of requests in the Antenna module example. 122

152

LIST OF FIGURES

8.1 The PhD-student coffee problem. 125
8.2 Allen Temporal Relations . 127
8.3 Translation of the Meets(I, J) relation into timed automata. 128
8.4 Translating an interval(a) into a BIP component(b). 128
8.5 Allen Temporal Relations . 130
8.6 Example of translation: “I meets J and K during J” into BIP. 131
8.7 Timelines modeling for the PhD-student example. 132
8.8 Model for the phd-student example. 133
8.9 Allen definition in a compound component 134
8.10 Allen Forluma declaration syntax . 135
8.11 The Allen-to-BIP transformation tool. 136
8.12 Example of a Dala plan. 138
8.13 Modelling the robot basic actions using BIP. 139
8.14 Modeling Timelines using BIP. 140
8.15 Example of a Dala plan with opportunistic science. 142
8.16 Representation of an Interruptible action. 142

153

LIST OF FIGURES

154

BIBLIOGRAPHY

Bibliography

[1] IEEE Fourth International Symposium on Industrial Embedded Systems - SIES 2009,
Ecole Polytechnique Federale de Lausanne, Switzerland, July 8 - 10, 2009. IEEE, 2009.

[2] James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, 1983.

[3] James F. Allen. Towards a general theory of action and time. Artif. Intell., 23(2):123–
154, 1984.

[4] Karine Altisen and Stavros Tripakis. Implementation of timed automata: An issue of
semantics or modeling? In Pettersson and Yi [75], pages 273–288.

[5] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger, Pei-Hsin
Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The algorithmic
analysis of hybrid systems. Theor. Comput. Sci., 138(1):3–34, 1995.

[6] Rajeev Alur and David L. Dill. The theory of timed automata. In J. W. de Bakker, Cor-
nelis Huizing, Willem P. de Roever, and Grzegorz Rozenberg, editors, REX Workshop,
volume 600 of Lecture Notes in Computer Science, pages 45–73. Springer, 1991.

[7] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

[8] Christophe Aussaguès and Vincent David. A method and a technique to model and
ensure timeliness in safety critical real-time systems. In ICECCS, pages 2–12. IEEE
Computer Society, 1998.

[9] Sanjoy K. Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Alberto Marchetti-
Spaccamela, Suzanne van der Ster, and Leen Stougie. Mixed-criticality scheduling
of sporadic task systems. In Camil Demetrescu and Magnús M. Halldórsson, editors,
ESA, volume 6942 of Lecture Notes in Computer Science, pages 555–566. Springer,
2011.

[10] Sanjoy K. Baruah, Haohan Li, and Leen Stougie. Towards the design of certifiable
mixed-criticality systems. In Marco Caccamo, editor, IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 13–22. IEEE Computer Society, 2010.

[11] Ananda Basu. Component-based Modeling of Heterogeneous Real-time Systems in BIP.
PhD thesis, UJF, 2008.

155

BIBLIOGRAPHY

[12] Ananda Basu, Philippe Bidinger, Marius Bozga, and Joseph Sifakis. Distributed seman-
tics and implementation for systems with interaction and priority. In Suzuki et al. [86],
pages 116–133.

[13] Ananda Basu, Philippe Bidinger, Marius Bozga, and Joseph Sifakis. Distributed seman-
tics and implementation for systems with interaction and priority. In Suzuki et al. [86],
pages 116–133.

[14] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time
components in BIP. In SEFM, pages 3–12. IEEE Computer Society, 2006.

[15] Ferenc Belina and Dieter Hogrefe. The ccitt-specification and description language sdl.
Computer Networks, 16:311–341, 1989.

[16] Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and Joseph Sifakis. D-finder: A
tool for compositional deadlock detection and verification. In Bouajjani and Maler [32],
pages 614–619.

[17] Saddek Bensalem, Lavindra de Silva, Félix Ingrand, and Rongjie Yan. Towards a
more dependable software architecture for autonomous robots. IEEE Robotics and
Automation Magazine, 16(1), March 2009.

[18] Saddek Bensalem, Lavindra de Silva, Félix Ingrand, and Rongjie Yan. A verifiable
and correct-by-construction controller for robot functional levels. Journal of Software
Engineering for Robotics, 16(1):123–126, September 2009.

[19] Saddek Bensalem, Matthieu Gallien, Félix Ingrand, Imen Kahloul, and Thanh-Hung
Nguyen. Designing autonomous robots. IEEE Robotics and Automation Magazine,
16(1):66–77, March 2009.

[20] Saddek Bensalem, Andreas Griesmayer, Axel Legay, Thanh-Hung Nguyen, Joseph
Sifakis, and Rongjie Yan. D-finder 2: Towards efficient correctness of incremental
design. In Mihaela Gheorghiu Bobaru, Klaus Havelund, Gerard J. Holzmann, and Ra-
jeev Joshi, editors, NASA Formal Methods, volume 6617 of Lecture Notes in Computer
Science, pages 453–458. Springer, 2011.

[21] Saddek Bensalem, Félix Ingrand, and Joseph Sifakis. Autonomous robot software design
challenge. In IARP/IEEE-RAS Joint Workshop on Technical Challenge for Dependable
Robots in Human Environments, Pasadena, CA, May 2008.

[22] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Synchronous program-
ming with events and relations: the signal language and its semantics. Sci. Comput.
Program., 16(2):103–149, 1991.

[23] Gérard Berry and Georges Gonthier. The esterel synchronous programming language:
Design, semantics, implementation. Sci. Comput. Program., 19(2):87–152, 1992.

[24] Gordon S. Blair, Thierry Coupaye, and Jean-Bernard Stefani. Component-based ar-
chitecture: the fractal initiative. Annales des Télécommunications, 64(1-2):1–4, 2009.

[25] Simon Bliudze and Joseph Sifakis. The algebra of connectors - structuring interaction
in bip. IEEE Trans. Computers, 57(10):1315–1330, 2008.

156

BIBLIOGRAPHY

[26] Simon Bliudze and Joseph Sifakis. A notion of glue expressiveness for component-based
systems. In Franck van Breugel and Marsha Chechik, editors, CONCUR, volume 5201
of Lecture Notes in Computer Science, pages 508–522. Springer, 2008.

[27] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and Joseph
Sifakis. From high-level component-based models to distributed implementations. In
Proceedings of the tenth ACM international conference on Embedded software (EM-
SOFT’10), pages 209–218, 2010.

[28] Michael Bonani, Valentin Longchamp, Stéphane Magnenat, Philippe Rétornaz, Daniel
Burnier, Gilles Roulet, Florian Vaussard, Hannes Bleuler, and Francesco Mondada. The
marxbot, a miniature mobile robot opening new perspectives for the collective-robotic
research. In IROS, pages 4187–4193. IEEE, 2010.

[29] Rafael H. Bordini, Michael Fisher, Carmen Pardavila, Willem Visser, and Michael
Wooldridge. Model checking multi-agent programs with casp. In CAV, pages 110–113,
2003.

[30] Sébastien Bornot, Gregor Gößler, and Joseph Sifakis. On the construction of live timed
systems. In Susanne Graf and Michael I. Schwartzbach, editors, TACAS, volume 1785
of Lecture Notes in Computer Science, pages 109–126. Springer, 2000.

[31] Sébastien Bornot and Joseph Sifakis. An algebraic framework for urgency. Inf. Comput.,
163(1):172–202, 2000.

[32] Ahmed Bouajjani and Oded Maler, editors. Computer Aided Verification, 21st Interna-
tional Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings,
volume 5643 of Lecture Notes in Computer Science. Springer, 2009.

[33] F. Boussinot and R. de Simone. The ESTEREL Language. Proceeding of the IEEE,
pages 1293–1304, September 1991.

[34] Marius Bozga, Mohamad Jaber, and Joseph Sifakis. Source-to-source architecture
transformation for performance optimization in bip. In SIES [1], pages 152–160.

[35] Marius Bozga, Mohamad Jaber, and Joseph Sifakis. Source-to-source architecture
transformation for performance optimization in BIP. In SIES [1], pages 152–160.

[36] M. Broy, B. Jonsson, J.P. Katoen, M. Leucker, and A. Pretschner. Model-based Testing
of Reactive Systems. Lecture Notes in Computer Science, 3472, 2005.

[37] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-Bernard
Stefani. The fractal component model and its support in java. Softw., Pract. Exper.,
36(11-12):1257–1284, 2006.

[38] H Bruyninckx. Open robot control software: the orocos project. In ICRA, Seoul, Korea,
2001.

[39] Alan Burns and Andy J. Wellings. Real-time systems and their programming languages.
Addison-Wesley, 3rd edition, 2001.

157

BIBLIOGRAPHY

[40] Ana R. Cavalli and Amardeo Sarma, editors. SDL ’97 Time for Testing, SDL, MSC
and Trends - 8th International SDL Forum, Evry, France, 23-29 September 1997, Pro-
ceedings. Elsevier, 1997.

[41] Damien Chabrol, Vincent David, Christophe Aussaguès, Stéphane Louise, and Frédéric
Daumas. Deterministic distributed safety-critical real-time systems within the oasis
approach. In S. Q. Zheng, editor, IASTED PDCS, pages 260–268. IASTED/ACTA
Press, 2005.

[42] Jacques Combaz, Jean-Claude Fernandez, Joseph Sifakis, and Loïc Strus. Symbolic
quality control for multimedia applications. Real-Time Systems, 40(1):1–43, 2008.

[43] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski.
Timed i/o automata: a complete specification theory for real-time systems. In
Karl Henrik Johansson and Wang Yi, editors, HSCC, pages 91–100. ACM ACM, 2010.

[44] Vincent David, Jean Delcoigne, Evelyne Leret, Alain Ourghanlian, Philippe Hilsenkopf,
and Philippe Paris. Safety properties ensured by the oasis model for safety critical
real-time systems. In Wolfgang D. Ehrenberger, editor, SAFECOMP, volume 1516 of
Lecture Notes in Computer Science, pages 45–59. Springer, 1998.

[45] Catalin Dima. Dynamical properties of timed automata revisited. In Jean-François
Raskin and P. S. Thiagarajan, editors, FORMATS, volume 4763 of Lecture Notes in
Computer Science, pages 130–146. Springer, 2007.

[46] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,
Stephen Neuendorffer, Sonia R. Sachs, and Yuhong Xiong. Taming heterogeneity - the
ptolemy approach. Proceedings of the IEEE, 91(1):127–144, 2003.

[47] B. Espiau, K. Kapellos, and M. Jourdan. Formal verification in robotics: Why and
how. In The International Foundation for Robotics Research, editor, The Seventh Inter-
national Symposium of Robotics Research, pages 201 – 213, Munich, Germany, October
1995. Cambridge Press.

[48] Peter H. Feiler, Bruce A. Lewis, and Steve Vestal. The SAE architecture analysis
& design language (AADL) a standard for engineering performance critical systems.
In IEEE International Symposium on Computer-Aided Control Systems Design, pages
1206–1211, 2006.

[49] David Gay, Philip Levis, J. Robert von Behren, Matt Welsh, Eric A. Brewer, and
David E. Culler. The nesc language: A holistic approach to networked embedded
systems. In PLDI, pages 1–11. ACM, 2003.

[50] Thomas Genssler, Alexander Christoph, Michael Winter, Oscar Nierstrasz, Stéphane
Ducasse, Roel Wuyts, Gabriela Arévalo, Bastiaan Schönhage, Peter O. Müller, and
Christian Stich. Components for embedded software: the pecos approach. In Shuvra S.
Bhattacharyya, Trevor N. Mudge, Wayne Wolf, and Ahmed Amine Jerraya, editors,
CASES, pages 19–26. ACM, 2002.

[51] Arkadeb Ghosal, Thomas A. Henzinger, Christoph M. Kirsch, and Marco A. A. Sanvido.
Event-driven programming with logical execution times. In Rajeev Alur and George J.

158

BIBLIOGRAPHY

Pappas, editors, HSCC, volume 2993 of Lecture Notes in Computer Science, pages
357–371. Springer, 2004.

[52] Robert P. Goldman, David J. Musliner, and Michael J. Pelican. Using model checking
to plan hard real-time controllers. In Proceedings of the AIPS Workshop on Model-
Theoretic Approaches to Planning, 2000.

[53] Gregor Gössler and Joseph Sifakis. Composition for component-based modeling. Sci.
Comput. Program., 55(1-3):161–183, 2005.

[54] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow
programming language lustre. Proceedings of the IEEE, 79(9):1305 –1320, sep 1991.

[55] Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic
Publishers, Norwell, MA, USA, 1992.

[56] Nicolas Halbwachs. About synchronous programming and abstract interpretation. Sci.
Comput. Program., 31(1):75–89, 1998.

[57] Nicolas Halbwachs. Synchronous programming of reactive systems. In Alan J. Hu and
Moshe Y. Vardi, editors, CAV, volume 1427 of Lecture Notes in Computer Science,
pages 1–16. Springer, 1998.

[58] Thomas A. Henzinger, Benjamin Horowitz, and Christoph M. Kirsch. Giotto: a time-
triggered language for embedded programming. Proceedings of the IEEE, 91(1):84–99,
2003.

[59] F. Ingrand, S. Lacroix, S. Lemai, and F. Py. Decisional autonomy of planetary rovers.
Journal of Field Robotics, 24(7):559–580, 2007.

[60] Damir Isovic, Gerhard Fohler, and Liesbeth Steffens. Timing constraints of MPEG-2
decoding for high quality video: misconceptions and realistic assumptions.

[61] Mohamad Jaber. Centralized and Distributed Implementations of Correct-by-
construction Component-based Systems by using Source-to-source Transformations in
BIP. PhD thesis, Grenoble Universités, 2010.

[62] Mohamad Jaber. Implémentations Centralisés et Réparties de Systèmes Corrects par
construction à base des Composants par Transformations Source-à-source dans BIB.
PhD thesis, Université de Grenoble, 2010.

[63] J Jackson. Microsoft robotics studio: A technical introduction. IEEE RAM, 14(4):82–
87, 2007.

[64] Ivar Jacobson, Grady Booch, and James Rumbaugh. The unified software development
process. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[65] James Kramer and Matthias Scheutz. Development environments for autonomous mo-
bile robots: A survey. Auton Robot, Jan 2007.

[66] H. Kress-Gazit and G.J. Pappas. Automatic synthesis of robot controllers for tasks with
locative prepositions. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 3215 –3220, May 2010.

159

BIBLIOGRAPHY

[67] Xiaojun Liu, Yuhong Xiong, and Edward A. Lee. The ptolemy ii framework for visual
languages. In HCC, pages 50–. IEEE Computer Society, 2001.

[68] Stéphane Louise, Vincent David, Jean Delcoigne, and Christophe Aussaguès. Oasis
project: deterministic real-time for safety critical embedded systems. In EW 10: Pro-
ceedings of the 10th workshop on ACM SIGOPS European workshop, pages 223–226,
New York, NY, USA, 2002. ACM.

[69] Stéphane Louise, Matthieu Lemerre, Christophe Aussaguès, and Vincent David. The
oasis kernel: A framework for high dependability real-time systems. In Taghi M. Khosh-
goftaar, editor, HASE, pages 95–103. IEEE Computer Society, 2011.

[70] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI
Quarterly, 2:219–246, 1989.

[71] Stéphane Magnenat, Basilio Noris, and Francesco Mondada. Aseba-challenge: An open-
source multiplayer introduction to mobile robots programming. In Panos Markopoulos,
Boris E. R. de Ruyter, Wijnand IJsselsteijn, and Duncan Rowland, editors, Fun and
Games, volume 5294 of Lecture Notes in Computer Science, pages 65–74. Springer,
2008.

[72] M Montemerlo, N Roy, and S Thrun. Perspectives on standardization in mobile robot
programming: The carnegie mellon navigation (carmen) toolkit. In Proc. IEEE/RSJ
Int. Conf. Intelligent Robots and Systems, pages 2436–2441, Las Vegas, NV, 2003.

[73] Issa A Nesnas, Anne Wright, Max Bajracharya, Reid Simmons, and Tara Estlin.
Claraty and challenges of developing interoperable robotic software. In IROS, Las
Vegas, NV, Oct 2003. invited paper.

[74] Oscar Nierstrasz, Gabriela Arévalo, Stéphane Ducasse, Roel Wuyts, Andrew P. Black,
Peter O. Müller, Christian Zeidler, Thomas Genssler, and Reinier van den Born. A
component model for field devices. In Judy M. Bishop, editor, Component Deployment,
volume 2370 of Lecture Notes in Computer Science, pages 200–209. Springer, 2002.

[75] Paul Pettersson and Wang Yi, editors. Formal Modeling and Analysis of Timed Sys-
tems, Third International Conference, FORMATS 2005, Uppsala, Sweden, September
26-28, 2005, Proceedings, volume 3829 of Lecture Notes in Computer Science. Springer,
2005.

[76] Juraj Polakovic, Ali Erdem Özcan, and Jean-Bernard Stefani. Building reconfigurable
component-based os with think. In EUROMICRO-SEAA, pages 178–185. IEEE, 2006.

[77] M Quigley, B Gerkey, K Conley, J Faust, T Foote, J Leibs, E Berger, R Wheeler, and
A Ng. Ros: an open-source robot operating system. In International Conference on
Robotics and Automation, Kobe, Japan, 2009.

[78] Jan Reineke, Björn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia Polian, Jochen
Eisinger, and Bernd Becker. A definition and classification of timing anomalies. In
Frank Mueller, editor, WCET, volume 06902 of Dagstuhl Seminar Proceedings. Interna-
tionales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany, 2006.

160

BIBLIOGRAPHY

[79] Grigore Rosu and Saddek Bensalem. Allen linear (interval) temporal logic - translation
to ltl and monitor synthesis. In Thomas Ball and Robert B. Jones, editors, CAV,
volume 4144 of Lecture Notes in Computer Science, pages 263–277. Springer, 2006.

[80] Vassiliki Sfyrla. Modélisation des Systemes Synchrones sur BIP. PhD thesis, University
of Grenoble, 2011.

[81] Azamat Shakhimardanov and Erwin Prassler. Comparative evaluation of robotic soft-
ware integration systems: A case study. In IROS, page 7, San Diego, CA, Sep 2007.

[82] Joseph Sifakis. Component-based construction of real-time systems in bip. In Bouajjani
and Maler [32], pages 33–34.

[83] Joseph Sifakis. Embedded systems design - scientific challenges and work directions.
In DATE, page 2. IEEE, 2009.

[84] Joseph Sifakis. Embedded systems design - scientific challenges and work directions.
In Roderick Bloem and Natasha Sharygina, editors, FMCAD, page 11. IEEE, 2010.

[85] R. Simmons, C. Pecheur, and G. Srinivasan. Towards automatic verification of au-
tonomous systems. In IEEE/RSJ International conference on Intelligent Robots &
Systems, 2000.

[86] Kenji Suzuki, Teruo Higashino, Keiichi Yasumoto, and Khaled El-Fakih, editors. For-
mal Techniques for Networked and Distributed Systems - FORTE 2008, 28th IFIP WG
6.1 International Conference, Tokyo, Japan, June 10-13, 2008, Proceedings, volume
5048 of Lecture Notes in Computer Science. Springer, 2008.

[87] R Vaughan and B Gerkey. Reusable robot software and the player/stage project.
Software Engineering for Experimental Robotics, pages 267–289, 2007.

[88] Reinhard Wilhelm, Sebastian Altmeyer, Claire Burguière, Daniel Grund, Jörg Herter,
Jan Reineke, Björn Wachter, and Stephan Wilhelm. Static timing analysis for hard
real-time systems. In Gilles Barthe and Manuel V. Hermenegildo, editors, VMCAI,
volume 5944 of Lecture Notes in Computer Science, pages 3–22. Springer, 2010.

[89] B. C. Williams, M. D. Ingham, S. Chung, P. Elliott, M. Hofbaur, and G. T. Sullivan.
Model-Based Programming of Fault-Aware Systems. Artificial Intelligence, pages 61–
75, winter 2003.

[90] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray. Receding horizon
control for temporal logic specifications. In Proceedings of the 13th ACM international
conference on Hybrid systems: computation and control, HSCC ’10, pages 101–110,
New York, NY, USA, 2010. ACM.

[91] Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Almost ASAP semantics:
from timed models to timed implementations. Formal Asp. Comput., 17(3):319–341,
2005.

161

