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The theory of economics does not furnish a body of settled conclu-
sions immediately applicable to policy. It is a method rather than
a doctrine, an apparatus of the mind, a technique of thinking which
helps its possessor to draw correct conclusions.

John Maynard Keynes
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Chapter 1

Introduction

1.1 The cooperative approach of oligopoly situa-
tions

A central question in oligopoly theory is the existence of collusive behaviors
between firms. The main reason for which economists try to understand this
phenomenon is that the formation of cartels impacts on both consumers’ and
producers’ surplus, and so affects total welfare. In economic welfare analysis,
it is a well-established and old idea that monopoly power can negatively affect
social welfare. In his classic, The Wealth of Nations, Smith (1776) writes on
both collusion between rival firms and on the exercise of monopoly power:

People of the same trade seldom meet together, even for merriment
or diversion, but the conversation ends in a conspiracy against the
public, or in some contrivance to raise prices. The monopolists, by
keeping the market constantly understocked, by never fully supplying
the effectual demand, sell their commodities much above the natural
price.

At the end of the 19th century, as a reaction to the formation of trusts in the
United States, a consensus emerged on the necessity to maintain competition in
industries. This led to the establishment of the first anti-trust law in the United
States, the 1890 Sherman Act. While Section 1 of the act prohibited contracts,
combinations and conspiracies “in restraint of trade”, Section 2 of the act made
illegal monopolization or any attempt to monopolize. This legislation permit-
ted the United States government to sue and dismantle two famous trusts, the
Standard Oil Company and American Tobacco. Afterwards, other anti-trust
laws were established in the United States as the Clayton and Federal Trade
Commission Acts in 1914.

1
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In European Union, modern competition policy is principally established by the
Treaty of the European Communities. It pays attention to both horizontal and
vertical agreements (Article 81), abuse of dominant position (Article 82) and
the regulation of mergers. A horizontal (vertical) agreement is an agreement
among competitors on the same level (different levels) of production or distribu-
tion. Abuse of dominant position occurs when a firm uses a dominant position
in the market to impede the maintenance of effective competition. Motta (2004)
defines competition policy as: “the set of policies and laws which ensure that
competition in the marketplace is not restricted in such a way as to reduce eco-
nomic welfare.” In this definition two elements should be underlined. The first is
that firms may restrict competition in a way which is not necessarily detrimen-
tal. This is the case for some horizontal agreements where firms collaborate in
research and development activities. By means of cross-licensing or patent pool-
ing, firms can share research and development costs/results in order to reduce
sales prices. This is in line with D’Aspremont and Jacquemin (1988) who show
that cooperative behavior in research and development activities can positively
affect economic welfare by generating spillover effects in industries having a few
firms. This is also the case for many vertical restraints (vertical agreements)
between a manufacturer and a retailer such as non-linear pricing (the price is
composed of two parts: a lump-sum fee as well as a per-unit charge), quantity
fixing (the retailer cannot buy less or more than a certain number of units fixed
by the manufacturer) and exclusivity clauses (for instance, an exclusive terri-
tory clause specifies that there is only one retailer who sell a brand in a certain
geographical area). The second is that economic welfare is the objective that
competition policy pursues. Economic welfare is the standard concept which
measures how well an industry performs. Economic welfare is given by the total
surplus, i.e. the sum of consumer surplus and producer surplus. The surplus of
a consumer is defined as the difference between the consumer’s valuation for the
good and the effective price for which he has to pay for it. Consumer surplus
is the sum of the surplus of all consumers. The surplus of a producer is the
profit it makes by selling the good. Producer surplus is the sum of profits of all
producers in the industry.
Although cooperation on research and development activities may have benefi-
cial welfare effects, both in the United States and European Union, many other
horizontal agreements such as agreements on sales prices and division of the
market shares are considered as negative for welfare. By keeping in mind these
considerations, the study of cooperative oligopoly games is relevant insofar as
it permits to establish the conditions under which a horizontal agreement on
sales prices is likely to be stable, i.e. not contested by any firm, in an oligopolis-
tic market, which is one of the main preoccupations of competition authorities.
Precisely, this thesis tries to answer the question on the existence of stable hor-
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izontal agreements on sales prices from two angles: quantity competition (Part
I) and price competition (Part II). While Part I deals with quantity competi-
tion where firms can indirectly control sales prices by engaging on the quantity
produced, Part II analyzes price competition where firms can directly manipu-
late sales prices by agreeing on the prices charged. In both competition types,
competitors form a cartel (coalition) in which they cooperate and agree on sales
prices. Thus, the existence of horizontal agreements on sales prices is related to
the problem of the formation of coalitions.

Aumann (1959) proposes to analyze the formation of coalitions, and so the
horizontal agreements, by converting a strategic game into a cooperative game.
An appropriate solution (for instance, the core) permits to deal with the stability
of coalition structures resulting from the formation of coalitions (for instance,
the whole set of players also called the grand coalition). We consider such a
cooperative approach of oligopoly situations. The main difference with the non-
cooperative approach is that firms are allowed to sign binding agreements in
order to cooperate. This assumption allows to define a cooperative oligopoly
game in which any cartel (coalition) can occur. It is commonly assumed that
profit transfers between firms belonging to the same cartel are possible so that
any cartel profit can be freely distributed among its members. The cooperative
games consistent with this assumption are games with transferable utility or
TU-games. Generally speaking, a TU-game is summarized by a set of players
N = {1, 2, . . . , n} and a characteristic function v : 2N −→ R, with the con-
vention that v(∅) = 0, which assigns to every coalition S ∈ 2N\{∅}, a worth
v(S) ∈ R. The number v(S) is the total utility that is available for free divi-
sion among the members of S. For example, consider an oligopolistic market in
which there exist only three firms named 1, 2 and 3 respectively. The oligopoly
TU-game is then summarized by the set of firms N = {1, 2, 3}, and the worths
v({1}), v({2}) and v({3}) for the one-member cartels, v({1, 2}), v({1, 3}) and
v({2, 3}) for the two-member cartels, and v({1, 2, 3}) for the three-member car-
tel (the grand coalition).
A main characteristic of oligopolistic markets is that each firm’s decision impacts
on its rivals’ profits, and so any cartel profit crucially depends on the strategies
taken by the other firms competing on the market. Hence, the determination of
the worth that a coalition can obtain requires to specify how firms outside the
cartel, called outsiders, behave. In order to do that, we assume that outsiders
facing a cartel behave according to some rules, called blocking rules, in the strate-
gic oligopoly games. For instance, while some blocking rules specify that firms
outside the cartel act so as to minimize the cartel profit, other blocking rules
stipulate that each outsider maximizes its individual profit given the strategies
taken by the cartel. By applying an appropriate solution concept to the strate-
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gic oligopoly game allowing binding agreements among the cartel members and
specifying outsiders’ behavior, the resulting cooperating firms’ profits determines
the worth of the coalition, and so enables to define the induced oligopoly TU-
game. In order to derive oligopoly TU-games from strategic oligopoly games,
we follow three different approaches suggested by Aumann (1959) and Chander
and Tulkens (1997).
Aumann (1959) proposes the first two approaches: according to the first, any
cartel computes the total profit which it can guarantee itself regardless of what
outsiders do; the second approach consists in computing the minimal profit for
which outsiders can prevent the firms in the cartel from getting more. The
characteristic functions obtained from these two assumptions are called the α
and β-characteristic functions respectively. In the above example, assume that
firms 1, 2 and 3 sell differentiated products, compete in price by choosing a price
pi ∈ R+, i ∈ N , operate at a constant and identical marginal cost equal to one
and that the demand system is Shubik’s (1980) so that the quantity demanded
of firm i’s brand, i ∈ N , is defined as:

Di(p1, p2, p3) = 5− pi − 2

(
pi −

1

3

3∑
j=1

pj

)
.

The quantity demanded of firm i’s brand depends on its own price pi and on
the difference between pi and the average price in the industry

∑3
j=1 pj/3. This

quantity is decreasing with respect to pi and increasing with respect to any pj
such that j 6= i.
According to the α-approach, for any coalition S ∈ 2N\{∅}, while the coali-
tion members maximize the sum of their profits at a first period, the out-
siders minimize the sum of coalition members’ profits at a second period given
coalition members’ strategies. According to the β-approach, for any coalition
S ∈ 2N\{∅}, while outsiders minimize the sum of coalition members’ profits
at a first period, the coalition members maximize the sum of their profits at
a second period given outsiders’ strategies. In the above oligopolistic market,
the α and β-characteristic functions are equal and given by: for any i ∈ N ,
vα({i}) = vβ({i}) = 0.76, for any i ∈ N and any j ∈ N such that j 6= i,
vα({i, j}) = vβ({i, j}) = 3.33, and vα({1, 2, 3}) = vβ({1, 2, 3}) = 12. This
equality between the α and β-characteristic functions holds in many oligopolis-
tic markets.
However, the α and β-approaches can be questioned since outsiders probably
cause substantial damages upon themselves by minimizing the profit of the car-
tel. A similar argument is developed by Rosenthal (1971). In the above example,
it can be verified that outsiders charge prices equal to zero in order to minimize
the cartel profit, and so obtain a negative profit.
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This is why Chander and Tulkens (1997) introduce a third approach by con-
sidering a more credible blocking rule where firms outside the coalition choose
their strategy individually as a best reply to the coalitional action. The char-
acteristic function obtained from this assumption is called the γ-characteristic
function. According to the γ-approach, for any coalition S ∈ 2N\{∅}, while the
coalition members maximize the sum of their profits, every outsider maximizes
its individual profit. In other words, coalition S and every outsider play a Nash
equilibrium. In the above oligopolistic market, the γ-characteristic function is
given by: for any i ∈ N , vγ({i}) = 3.36, for any i ∈ N and any j ∈ N such
that j 6= i, vγ({i, j}) = 7.05, and vγ({1, 2, 3}) = 12. Unsurprisingly, observe
that while the worth of the grand coalition N is unchanged, the worth of any
coalition S ∈ 2N\{∅, N} is greater under the γ-approach than under the α and
β-approaches.
For more general oligopoly situations studied in the next chapters, we will have
to make sure that the α, β and γ-characteristic functions are well-defined in
strategic oligopoly games in order to define the associated oligopoly TU-games.

An appropriate set-valued solution for TU-games which deals with the sta-
bility of the grand coalition is the core. A payoff vector is in the core if no
coalition can deviate from the grand coalition and obtain a better payoff for all
its members. The stability of the grand coalition is then related to the non-
emptiness of the core. For TU-games, the core is the set of all payoff vectors
σ ∈ Rn such that

∑
i∈N σi = v(N) and for any S ∈ 2N ,

∑
i∈S σi ≥ v(S). The

first condition requires that the worth of the grand coalition is fully distributed
among all the players. The second condition means that no subgroup of players
can contest this sharing by breaking off from the grand coalition. In the above
oligopolistic market, these two conditions imply that the core associated with
the α and β-characteristic functions is:

C(N, vβ) =

{
σ ∈ R3 :

3∑
i=1

σi = 12 and ∀i ∈ N , 0.76 ≤ σi ≤ 8.67

}
,

while the core associated with the γ-characteristic function is:

C(N, vγ) =

{
σ ∈ R3 :

3∑
i=1

σi = 12 and ∀i ∈ N , 3.36 ≤ σi ≤ 4.95

}
.

The 2-simplex below represents these two core configurations:
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σ2 = 0.76

σ2 = 8.67

σ1 = 0.76

σ1 = 8.67

σ3 = 0.76

σ3 = 8.67

σ2 = 3.36σ2 = 4.95

σ1 = 3.36

σ1 = 4.95

σ3 = 3.36

σ3 = 4.95

•

(4, 4, 4)

Firm 1

Firm 2 Firm 3

(12, 0, 0)

(0, 12, 0) (0, 0, 12)

C(N, vβ)

C(N, vγ)

Note that the core shrinks when we switch from the α and β-approaches to the
γ-approach. This is not surprising since we observed that while the worth of the
grand coalition N is unchanged, the worth of any coalition S ∈ 2N\{∅, N} is
greater under the γ-approach than under the α and β-approaches so that there
are more incentives for coalitions to deviate from the grand coalition under the
γ-approach. Hence, the core structure crucially depends on outsiders’ behav-
ior facing the deviating coalition. In the above oligopolistic market, the non-
emptiness of the core implies that there exists some payoff distribution among
all the firms (for instance, σ = (4, 4, 4)) which ensures the stability of the grand
coalition. Thereafter, we will sustain that under basic assumptions, cooperative
oligopoly games can be used to study the stability of any coalition structure and
not only the stability of the grand coalition.

The study of cooperative oligopoly games is relevant to analyze the stability
of coalition structures and explain cooperation mechanisms in many industries
in which cooperation constitutes a strategic choice for firms such as the raw ma-
terials and telecommunications industries. Since the creation of GATT (General
Agreement on Tariffs and Trade) in 1947 and WTO (World Trade Organization)
in 1994, import and export barriers to trade and services have considerably re-
duced. The increasing of international flows of goods and services leads firms to
make national and/or international strategic alliances. As a consequence, coop-
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eration between firms in oligopolistic markets has become a strategic choice in
order to reduce their costs, diversify their activities and increase their market
shares.
The raw materials industries are characterized by important costs of extracting
and transport. In such industries, exporting firms are likely to cooperate in order
to reduce their transport cost. Massol and Tchung-Ming (2009) study the pos-
sibility of a profitable logistic coordination between twelve countries exporting
liquefied natural gas. They provide the following example: in 2007, Trinidad and
Tobago sent nearly 2.7 bcm (billion cubic metres) to Europe, while Algeria sent
2.1 bcm to the United States. In view of their geographical positions, these two
exporting countries would have an opportunity for logistic cooperation in order
to reduce their transport costs. By assuming that such agreements would not
have any effect on market prices, Massol and Tchung-Ming define an oligopoly
TU-game (calibrated on the year 2007) in which any coalition minimizes its
members’ transport costs. They conclude that the core of this game is empty
even for a low amount of coordination costs, and so the credibility of a logistic
cooperation scenario without any price manipulation is unlikely.
Another example are industries subject to frequent changes in technology. In
such industries, firms often seek cooperation in order to extend their activities
and develop their market shares. An industry in which technological changes
and upturn and downturn are an inherent part is the telecommunications indus-
try (Noam 2006). Since national operators are often restricted to their national
boundaries, cooperation with other network operators is the only way to ex-
port their services as multinational companies. One example of cooperation is
Unisource, a pan-European telecommunications company. We refer to Graack
(1996) for an overview of the telecommunications industry in European Union.
In such an industry, the question arises whether the market structure induced by
the strategic alliances is stable or not. The study of cooperative oligopoly games
provides an original approach in order to deal with the stability of the market
structure. To this end, we assume that any coalition embedded in a coalition
structure cannot communicate with the others so that only subsets of the ex-
isting coalitions can break up from the collusive agreements (Ray and Vohra
(1997) make a similar assumption). For any cartel we can define an oligopoly
TU-game in which the cartel in question is viewed as the grand coalition and the
actions taken by the other cartels are considered as fixed, and so can be omitted.
Hence, the stability of any cartel in the market structure is then related to the
non-emptiness of the core of its associated oligopoly TU-game. For the market
structure comprising four cartels {N1, N2, N3, N4}, this argument is illustrated
in the figure below:
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N1 N2 N3 N4

{N1, N2, N3, N4}

(N1, v1) (N2, v2) (N3, v3) (N4, v4)

Many environmental problems can also be analyzed by means of cooperative
oligopoly games also permits to deal with many environmental problems. For
instance, the “tragedy of the commons” (Hardin 1968) is a famous dilemma in
which a common pool resource is overused because of selfish behaviors. Notable
examples include decreases of fish stocks and the deforestation in tropical coun-
tries. (Moulin 1997) shows that an oligopoly situation also describes a common
pool situation. Consequently, the study of cooperative oligopoly games is rele-
vant in order to deal with natural resource problems (Pham Do 2003). Funaki
and Yamato (1999) study an economy with a common pool resource of fish by
means of TU-games. They show that if any coalition has pessimistic expecta-
tions on the coalition formation of the outsiders, i.e. outsiders form singletons
and act non-cooperatively, then the core is non-empty and so the tragedy of the
commons can be avoided. Otherwise, if any coalition has optimistic expectations
on the coalition formation of the outsiders, i.e. outsiders form the complemen-
tary coalition and play cooperatively, then the core is empty and so the tragedy
of the commons cannot be avoided.

1.2 A review of game theory approaches on co-
operation in oligopoly situations

Oligopoly theory deals with competition models which can be divided into two
parts, i.e. the quantity competition (Cournot 1838) and the price competition
(Bertrand 1883). For the quantity competition, Stackelberg (1934) incorporates
the idea of commitment by proposing a leader-follower model. For each of these
three oligopoly situations, some early works have already investigated coopera-
tion between firms by means of both non-cooperative and cooperative oligopoly
games.

As regards Cournot oligopoly situations, Salant et al. (1983) analyze the
equilibrium distribution of outputs among the cartels and show that mergers
may reduce cartel members’ profits.
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Norde et al. (2002) distinguish two different types of oligopoly situations, namely
those with transferable technologies and those without transferable technologies.
In the first type, a group of firms produces according to the cheapest technol-
ogy used by the cartel members, whereas such a transfer of technologies is not
possible for the second type. For Cournot oligopoly situations with or without
transferable technologies, Zhao (1999a,b) shows that the α and β-characteristic
functions are equal, and so the same set of Cournot oligopoly TU-games is as-
sociated with these two characteristic functions.
When technologies are transferable, Zhao (1999a) provides a necessary and suf-
ficient condition in order to establish the convexity property in case the inverse
demand and cost functions are linear. This property means that there are strong
incentives to form the grand coalition insofar as the marginal contribution of a
firm to some coalition increases if the coalition which it joins becomes larger.
Although these games may fail to be convex in general, Norde et al. (2002) show
they are nevertheless totally balanced which ensures the non-emptiness of the
core.
When technologies are not transferable, Zhao (1999b) proves that the core is
non-empty if any individual strategy set is compact and convex and any in-
dividual profit function is continuous and concave. More generally, by using
a technical proof inspired from Scarf (1971), Zhao shows that the core is non-
empty for general TU-games in which any individual strategy set is compact and
convex, any individual utility function is continuous and concave, and the strong
separability condition is satisfied. This latter condition requires that the utility
function of a coalition and any of its members’ individual utility functions have
the same minimizers. Zhao proves that Cournot oligopoly TU-games satisfy this
latter condition. Furthermore, Norde et al. (2002) show that these games are
convex in case the inverse demand and cost functions are linear, and Driessen
and Meinhardt (2005) provide economically meaningful sufficient conditions in
order to guarantee the convexity property in a more general case.

Concerning Stackelberg oligopoly situations, in case there are a single leader
and multiple followers in a quantity competition, Sherali et al. (1983) study
strategic Stackelberg oligopoly games and prove the existence and uniqueness of
the Nash equilibrium in case the inverse demand function is twice differentiable,
strictly decreasing and satisfies for any output X ∈ R+, p′(X) + Xp′′(X) ≤ 0
(Sherali et al. provide an economic interpretation of this condition), and the
individual cost functions are twice differentiable and convex. In particular, they
show that the convexity of followers’ reaction functions with respect to leader’s
output is crucial for the uniqueness of the Nash equilibrium.
For general TU-games, Marini and Currarini (2003) associate a two-stage struc-
ture with the γ-characteristic function. In this temporal sequence, any deviating
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coalition possesses a first-mover advantage by acting as a leader while outsiders
play their individual best reply strategies as followers. By assuming that any
player’s individual utility function is twice differentiable and strictly concave on
its individual strategy set, they prove that if the players and externalities are
symmetric (the players have identical individual utility functions and strategy
sets, and externalities are either positive or negative) and the game has strategic
complementarities, then the equal division solution belongs to the core. They
apply their result to three economic models. First, they consider a quantity com-
petition in which strategies are substitutes and show that the core associated
with the two-stage game is non-empty. Then, they deal with a price competition
and prove that for lower degrees of product differentiation, the core associated
with the two-stage game becomes increasingly smaller than the core associated
with the simultaneous game. Finally, they study an economy with two com-
modities, a public good and a private good, and show that the core associated
with the two-stage game is empty.

Regarding Bertrand oligopoly situations, Kaneko (1978) considers a finite
set of firms selling a homogeneous product to a continuum of consumers. He
assumes that a subset of firms and consumers can cooperate by trading the
good among themselves. The main result establishes that the core is empty
when there are more than two firms. Deneckere and Davidson (1985) consider a
Bertrand oligopoly situation with differentiated products in which the demand
system is Shubik’s (1980) and firms operate at a constant and identical marginal
cost. They study the equilibrium distribution of prices and profits among the
cartels and show that a merger of two cartels implies that all the firms charge
higher prices, and so benefits all the industry. They also prove that these games
have a superadditivity property in the sense that a merger of two disjoint cartels
results in a joint after-merger profit for them which is greater than the sum of
their pre-merger profits. For the same Bertrand oligopoly situation, Huang and
Sjöström (2003) define a Bertrand oligopoly TU-game in which the worth of
any coalition is defined by a recursive procedure applying the core solution to a
reduced game in order to predict outsiders’ behavior. They provide a necessary
and sufficient condition for the non-emptiness of the core which requires that
the substitutability parameter must be greater than or equal to some number
that depends on the size of the industry. They conclude that the core is empty
when there are more than ten firms.
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1.3 Outline of the thesis

Up to now, we saw that few works have studied cooperative oligopoly games.
As a counterpart to this lack of interest in the study of cooperative oligopoly
games, this thesis studies cooperative oligopoly games in Cournot (Chapters 3
and 4), Stackelberg (Chapter 5) and Bertrand (Chapters 6 and 7) competitions.
As regards Cournot oligopoly situations, we study Cournot oligopoly TU-games
in γ-characteristic function form and Cournot oligopoly interval games in γ-set
function form. We extend the previous analyses focusing on Cournot oligopoly
TU-games in α and β-characteristic function forms (Zhao 1999a,b, Norde et al.
2002, Driessen and Meinhardt 2005) by providing sufficient condition on any
individual profit function and any individual cost function under which the core
is non-empty.
Concerning Stackelberg oligopoly situations, we deal with Stackelberg oligopoly
TU-games in γ-characteristic function form. We relax Marini and Currarini’s
symmetric players assumption (2003) and extend their core allocation result by
characterizing the core and providing a necessary and sufficient condition under
which the core is non-empty.
Regarding Bertrand oligopoly situations, we study Bertrand oligopoly TU-games
in α, β and γ-characteristic function forms. We show that the convexity property
holds for Bertrand oligopoly TU-games in α and β-characteristic function forms.
Moreover, we generalize the superadditivity result of Deneckere and Davidson
(1985) by providing a sufficient condition under which Bertrand oligopoly TU-
games in γ-characteristic function form are convex.
These contributions are detailed below.

Chapter 2 gives an overview of some notions in game theory which are fre-
quently used in the next chapters. First, it briefly recalls some basic definitions
of non-cooperative game theory such as strategic games, Nash equilibrium and
partial agreement equilibrium. Then, it introduces some definitions of cooper-
ative game theory such as TU-games, interval games and solutions such as the
core, the Shapley value and the nucleolus. Finally, it proposes three approaches
for converting a non-cooperative game into a cooperative game, i.e. the α and
β-approaches (Aumann 1959) and the γ-approach (Chander and Tulkens 1997).

Chapter 3, which is based on Lardon (2009), focuses on Cournot oligopoly
TU-games without transferable technologies. The main objective is to deal with
the problem of the non-emptiness of the core for the set of Cournot oligopoly TU-
games in γ-characteristic function form. We assume that the inverse demand
function is differentiable, strictly decreasing and concave, and any individual
cost function is continuous, strictly increasing and convex. We first show that
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Cournot oligopoly TU-games in γ-characteristic function form are well-defined
and study some of their properties concerning the equilibrium outputs. We go
step further by adopting a more general approach in which we assume that any
coalition structure can occur. In particular, the coalition structures in which any
coalition faces outsiders acting individually can form. For any coalition struc-
ture, we construct an aggregated strategic Cournot oligopoly game for which a
Nash equilibrium represents the aggregated equilibrium outputs of the embed-
ded coalitions. Our first result proves that there exists a unique Nash equilib-
rium for any coalition structure. Therefore, it turns out that Cournot oligopoly
TU-games in γ-characteristic function form are well-defined. Our second result
shows that the equilibrium total output is decreasing with the coarseness of the
coalition structure. This feature follows from two phenomena. Firstly, when
some coalitions merge, the production of the new entity decreases, and secondly,
the other coalitions respond by increasing their outputs. Thus, this equilibrium
distribution of outputs differs from the equilibrium distribution of prices studied
by Deneckere and Davidson (1985).
Then, we use these preliminaries results in order to study the non-emptiness
of the core. We consider two approaches. The first shows that if the inverse
demand function is differentiable and any individual profit function is contin-
uous and concave on the set of strategy profiles, the corresponding Cournot
oligopoly TU-game in γ-characteristic function form is balanced, and therefore
has a non-empty core. This result extends Zhao’s core non-emptiness result
(1999b) to the set of Cournot oligopoly TU-games since the core associated
with the γ-characteristic function is included in the core associated with the
β-characteristic function. A drawback with this approach is that it does not
point out any solution belonging to the core. The second approach provides
a new single-valued solution in the core, called NP(Nash Pro rata) value, on
the set of Cournot oligopoly TU-games in γ-characteristic function form with
linear individual cost functions and asymmetric capacity constraints. The NP
value distributes to every firm the worth of the grand coalition in proportion to
his Nash individual output. This result generalizes Funaki and Yamato’s core
allocation result (1999) from no capacity constraint to asymmetric capacity con-
straints insofar as a Cournot oligopoly situation also describes a common pool
situation (Moulin 1997). We characterize the NP value by means of four proper-
ties: efficiency, null firm, monotonicity and non-cooperative fairness. Efficiency
requires that a solution distributes the worth of the grand coalition among the
players. The null firm property stipulates that a firm with no production capac-
ity obtains a zero payoff. Monotonicity specifies that if a firm has a production
capacity greater than or equal to the production capacity of another firm, then
former’s payoff will be greater than or equal to latter’s payoff. Non-cooperative
fairness requires that a solution distributes to every player a payoff proportion-
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ally to his profit in the finest coalition structure. As far as we know, this is the
first result that characterizes a solution belonging to the core for a set of Cournot
oligopoly TU-games. Furthermore, we provide a Cournot oligopoly TU-game in
γ-characteristic function form, where the inverse demand and individual cost
functions are linear, which fails to be superadditive, and so convex. This proves
that Norde et al.’s result (2002) cannot be extended to Cournot oligopoly TU-
games in γ-characteristic function form.

In Chapter 4, which is based on Lardon (2010b), we relax the assumption
on the differentiability of the inverse demand function in Chapter 3 which en-
sures that the γ-characteristic function is well-defined. Indeed, in many Cournot
oligopoly situations the inverse demand function may not be differentiable. For
instance, Katzner (1968) shows that demand functions derived from quite nice
consumers’ individual utility functions, even twice continuously differentiable,
may not be differentiable everywhere. In order to guarantee that demand func-
tions are at least continuously differentiable, many necessary and sufficient con-
ditions are provided by Katzner (1968), Debreu (1972, 1976), Rader (1973, 1979)
and Monteiro et al. (1996). This is why Chapter 4 focuses on Cournot oligopoly
situations where the inverse demand function is continuous but not necessarily
differentiable. As mentioned above, with such an assumption we cannot always
define a Cournot oligopoly TU-game in γ-characteristic function form since the
worth of every coalition is not necessarily unique. However, we show that we
can always specify a Cournot oligopoly interval game in γ-set function form. An
interval game assigns to every coalition a closed and bounded real interval that
represents all its potential worths. Interval games are introduced by Branzei
et al. (2003) to handle bankruptcy situations. We refer to Alparslan-Gok et al.
(2009a) for an overview of recent developments in the theory of interval games.
Regarding core solutions of these game types, we consider two extensions of the
core: the interval core and the standard core. We use the term "standard core"
instead of the term "core" in order to distinguish this core solution for interval
games with the core for TU-games. The interval core is specified in a similar way
to the core for TU-games by using the methods of interval arithmetic (Moore
1979). The standard core is defined as the union of the cores of all TU-games
for which the worth of every coalition belongs to its worth interval. We consider
the problem of the non-emptiness of the interval core and of the standard core
for the set of Cournot interval games in γ-set function form. To this end, we use
a decision theory criterion, the Hurwicz criterion (Hurwicz 1951), that consists
in combining, for any coalition, the worst and the best worths that it can obtain
in its worth interval. The first result states that the interval core is non-empty
if and only if the Cournot oligopoly TU-game associated with the best worth
of every coalition in its worth interval admits a non-empty core. However, we
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show that even for a very simple Cournot oligopoly situation, this condition fails
to be satisfied. The second result states that the standard core is non-empty if
and only if the Cournot oligopoly TU-game associated with the worst worth of
every coalition in its worth interval admits a non-empty core. Moreover, we give
some properties on individual profit functions and cost functions under which
this condition always holds, which substantially extends the core non-emptiness
results in Chapter 3.

For TU-games associated with a two-stage structure, Marini and Currarini’s
core allocation result (2003) raises two questions to which we answer in Chap-
ter 5. The first concerns the core structure of such TU-games since they only
provide a single-valued solution (the equal division solution) in the core. The
second question turns on the role of the symmetric players assumption on the
non-emptiness of the core. Chapter 5, which is based on Driessen, Hou, and
Lardon (2011), answers both questions by considering the two-stage structure
associated with the γ-characteristic function in a quantity competition. The set
of cooperative oligopoly games associated with this temporal sequence is the set
of Stackelberg oligopoly TU-games in γ-characteristic function form. Thus, con-
trary to Cournot oligopoly TU-games in γ-characteristic function form in which
all the firms simultaneously choose their strategies, any deviating coalition pro-
duces an output at a first period and outsiders simultaneously and independently
play a quantity at a second period. We assume that the inverse demand function
is linear and firms operate at constant but possibly distinct marginal costs. Thus,
contrary to Marini and Currarini (2003), the individual utility (profit) functions
are not necessarily identical. First, we characterize the core by proving that it
is equal to the set of imputations which answers the first question on the core
structure of this game type. The reason is that the first-mover advantage gives
too much power to singletons so that the worth of any deviating coalition is
less than or equal to the sum of its members’ individual worths except for the
grand coalition. Then, we provide a necessary and sufficient condition under
which the core is non-empty. Finally, we prove that this condition depends on
the heterogeneity of firms’ marginal costs, i.e. for a fixed number of firms the
core is non-empty if and only if firms’ marginal costs are not too heterogeneous.
The more the number of firms is, the less the heterogeneity of firms’ marginal
costs must be in order to ensure the non-emptiness of the core which answers the
second question on the role of the symmetric players assumption. Surprisingly,
in case the inverse demand function is strictly concave, we provide an example
in which the opposite result holds, i.e. when the heterogeneity of firms’ marginal
costs increases the core becomes larger.

Chapter 6, which is based on Lardon (2010a), studies cooperative oligopoly
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games in a price competition. We consider the same Bertrand oligopoly situa-
tion as Deneckere and Davidson (1985) and substantially extends their super-
additivity result. In order to define Bertrand oligopoly TU-games, we consider
successively the α, β and γ-characteristic functions. As for the set of Cournot
oligopoly TU-games, we show that the same set of Bertrand oligopoly TU-games
is associated with the α and β-characteristic functions and we prove that the
convexity property holds for this set of TU-games. Then, following Chander
and Tulkens (1997) we consider the γ-characteristic function where firms react
to a deviating coalition by choosing their individual best reply strategies. For
this set of TU-games, we show that the equal division solution belongs to the
core and we provide a sufficient condition under which such games are convex.
This finding generalizes the superadditivity result of Deneckere and Davidson
(1985) and contrasts sharply with the negative core non-emptiness results of
Kaneko (1978) and Huang and Sjöström (2003). Note that these properties are
also satisfied for Cournot oligopoly TU-games in γ-characteristic function form.
In non-cooperative game theory, an important distinction between a strategic
Cournot oligopoly game and a strategic Bertrand oligopoly game is that the
former has strategic substitutabilities and the latter has strategic complemen-
tarities. Thus, although Cournot and Bertrand oligopoly games are basically
different in their non-cooperative forms, it appears that their cooperative forms
have the same core structure.

Chapter 7, which is based on Driessen, Hou, and Lardon (2010), goes fur-
ther than Chapter 6 on the study of Bertrand oligopoly TU-games in α and
β-characteristic function forms by assuming that the marginal costs are possibly
distinct. First, we show that the same set of Bertrand oligopoly TU-games is
associated with the α and β-characteristic functions. On the one hand, we show
that if the intercept of demand is sufficiently small then Bertrand oligopoly TU-
games in β-characteristic function form have clear similarities with a well-known
notion in statistics called variance with respect to the marginal costs. Although
such games fail to be convex unless all the firms operate at an identical marginal
cost, we prove that they are nevertheless totally balanced. On the other hand,
we prove that if the intercept of demand is sufficiently large then Bertrand
oligopoly TU-games in β-characteristic function form are convex, which extends
the convexity result in Chapter 6. Finally, we give an appealing expression of the
Shapley value for this second game type. We show that the Shapley value is de-
termined by decomposing any Bertrand oligopoly TU-game in β-characteristic
function form into the difference between two convex TU-games, besides two
additive TU-games. Moreover, we provide an axiomatic characterization of the
Shapley value by means of two properties: efficiency and individual monotonic-
ity. Recall that efficiency requires that a solution distributes the worth of the
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grand coalition among the players. Individual monotonicity stipulates that the
difference between the payoffs of two firms is equal to the difference between
their individual worth weighted by some real number which depends on their
average cost.

1.4 Alternative non-cooperative approaches

Many non-cooperative models have already dealt with the stability of coalition
structures in oligopoly situations. It is known that standard strategic oligopoly
games fail to explain the formation of cartels in oligopolistic markets. The main
reason is that any cartel member has an individual interest in defecting from
the collusive agreement. However, non-cooperative game theory has succeeded
in providing the theoretical bases that justify the existence of collusive behaviors
by means of repeated, strategic and extensive games.

As emphasized by Chamberlin (1929) and Stigler (1964), the maintenance
of collusive behaviors, explicit or tacit, requires repeated interaction that allows
firms to punish the deviants from the agreement. In the framework of repeated
games, if the firms do not discount the future too much, each one do not have
any interest in defecting from the collusive agreement because it rationally antic-
ipates future punishments in the periods following its defection. On the basis of
the paradigm called the “Folk theorem”, Friedman (1971) shows that any profit
vector that gives every firm strictly more than the static Nash equilibrium prof-
its can be implemented by a strategy profile which is a subgame perfect Nash
equilibrium of an infinitely repeated oligopoly game. This strategy profile spec-
ifies that, for any firm’s defection, all the firms play the static Nash equilibrium
at each of the next periods. For symmetric games, Abreu (1986, 1988) extends
Friedman’s result by showing that any profit vector which can be enforced by
a subgame perfect Nash equilibrium can be implemented by a strategy profile
comprising specific punishments with a two-phase structure which is also a sub-
game perfect Nash equilibrium of an infinitely repeated oligopoly game. Such
punishment strategies have a simple two-phase stick-and-carrot structure and
specify that, for any firm’s defection, there is a one-period punishment (stick)
corresponding to the worst possible symmetric subgame perfect Nash equilib-
rium, and for each of the next periods, firms revert to the best collusive sus-
tainable output (carrot) corresponding to the best symmetric subgame perfect
Nash equilibrium. In case another deviation from the best sustainable output
(carrot) occurs, firms again revert to the one-period punishment (stick), and so
on.
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Although repeated oligopoly games provide a possible mechanism for the emer-
gence of a tacit cooperation between firms, this approach does not deal with the
stability of coalition structures in oligopoly situations.

D’Aspremont et al. (1983) are the first to analyze the stability of cartels
embedded in coalition structures. They define the notions of internal and exter-
nal stability. A cartel is internally stable if no member has an interest to leave
it. A cartel is externally stable if there is no incentive for a new firm to join
it. A cartel is stable if it is both internally and externally stable. They prove
that there always exists a stable cartel in coalition structures with at most one
cartel. In continuation of this work, Donsimoni et al. (1986) consider a model of
“price leadership” with linear demand and individual cost functions. They show
that there exists a unique stable cartel as long as firms are not too cost-efficient
relative to market demand. Otherwise, there exist industry sizes for which two
cartels are stable, among which the cartel comprising all the firms. Thoron
(1998) shows that D’Aspremont et al.’s approach can be modeled as a strategic
game in which firms’ strategies have a binary form, i.e. cooperate or not. She
proves the existence of a one-to-one correspondence between stable cartels and
the Nash equilibria of this strategic game.
Hart and Kurz (1983) propose an original strategic approach incorporating co-
operative concepts in order to deal with the stability of coalition structures. In
their model, a player’s strategy is his choice of the coalition to which he wants
to belong. They consider two assumptions on the formation of coalitions: either
a coalition forms if and only if all its members have chosen it, or a coalition
forms if and only if all its members have chosen the same coalition. These
two assumptions endogenize the formation of coalition structures which are the
result of players’ strategic choices. This induces a cooperative game in parti-
tion function form in which players’ utilities are evaluated by using a “coalition
structure” value, i.e. the Owen value (Owen 1977). Hart and Kurz define a
strategic game in which player’s strategy is his choice of the coalition to which
he wants to belong, and player’s utilities are given by the Owen value applied to
the game in partition function form described above. They consider two notions
of stability, i.e. δ and γ-stabilities, based on the strong Nash equilibrium, each
one associated with the two above assumptions on the formation of coalitions.
The notion of δ-stability corresponds to the strong Nash equilibrium related to
the idea that for any deviation, the members of the coalitions concerned by this
deviation remain together, and all the other coalitions remain unchanged. The
notion of γ-stability corresponds to the strong Nash equilibrium based on the
idea that for any deviation, the coalitions which are left by some members break
up into singletons, while the other coalitions remain the same. Hart and Kurz
show that there exist strategic games for which any coalition structure is neither
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δ-stable nor γ-stable.
In this thesis, by contrast with Hart and Kurz’s approach, we adopt a reverse
approach in which we use non-cooperative concepts in order to define coopera-
tive oligopoly games.

In the framework of extensive games, Bloch (1996) analyzes a sequential
game of coalition formation where the rule of utility division is fixed and utili-
ties depend on the whole coalition structure. In such a game, players are ranked
according to an exogenous order. The first player starts the game by proposing
the formation of a coalition. If all the potential members accept the proposal,
the coalition is formed. Otherwise, the player who rejects the proposal has to
propose the formation of a new coalition. Once a coalition is formed, the game is
only played among the remaining players. Moreover, the coalitions which have
been already formed cannot attract new members nor break apart. A coalition
structure is core stable if there does not exist a coalition embedded into another
coalition structure whose members receive strictly higher utilities. Bloch shows
that any core stable coalition structure can be obtained as the outcome of a
stationary perfect equilibrium, provided that the set of stationary perfect equi-
libria is non-empty. In the same spirit, Bloch (1995) studies the formation of
cartels in an oligopoly with linear demand as a two-stage non-cooperative game.
While in the first stage firms form cartels in order to decrease their costs, they
compete on the market in the second stage. For such oligopoly games, Bloch
shows that equilibrium coalition structures, i.e. coalition structures generated
by a Markov-perfect equilibrium, are asymmetric and inefficient.
Ray and Vohra (1997) propose another approach in order to deal with the sta-
bility of coalition structures in which players are assumed to be farsighted, i.e.
players compare their current situation to the ultimate situation induced by
their actions and thus disregard the immediate profitability of their choices.
As a consequence, when a coalition breaks away from a coalition structure, it
takes into consideration that further deviations may occur after its own de-
fection and that other deviating coalitions also apply a similar reasoning. A
strategy profile is an equilibrium binding agreement for a coalition structure if
no coalition can profitably deviate anticipating the ultimate consequence of its
deviation. Hence, stable coalition structures are those supporting an equilib-
rium binding agreement. Ray and Vohra show that if any individual strategy
set is non-empty, compact and convex, and any individual utility function is
continuous and quasi-concave, then for any coalition structure there exists an
equilibrium binding agreement. Diamantoudi (2003) extends Ray and Vohra’s
work by allowing a deviating coalition to be fearful of or hopeful about the ul-
timate consequences of its defection from a coalition structure. She introduces
three solution concepts, each one associated with an optimistic, a pessimistic
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and a strategic approach, and discusses the relation between them.
We refer to Hart and Mas-Colell (1997) and Ray (2007) for more details on the
study of the formation of coalitions by means of non-cooperative games.
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Chapter 2

Preliminaries

2.1 Introduction

Game theory studies problems of conflict among decision makers (players) in sit-
uations where a player’s decision affects the other players. The basic assumption
is that players are rational in the sense that they pursue well-defined objectives.
It consists of a modeling part and a solution part. As regards the modeling part,
the mathematical models can describe both strategic interaction and coopera-
tion. As regards the solution part, the resulting utilities (payoffs) distributed to
the players are determined according to certain solution concepts. Traditionally,
game theoretical approaches are classified into two branches: non-cooperative
and cooperative game theory.
Non-cooperative game theory models strategic interaction situations where play-
ers take into account only their own strategic objectives and thus binding agree-
ments among the players are not possible. The emphasis is on players’ strategies
and the consequences of the strategic interaction on players’ utilities. The main
purpose of this approach is to make predictions on the “internal” stable outcome,
i.e. a situation in which no player or no group of players has an incentive to
deviate. The commonly used models are those of strategic and extensive games.
The most well-known solution concept in non-cooperative game theory is the
so-called Nash equilibrium (Nash 1950b).
While non-cooperative game theory describes the strategic interaction among
the players, cooperative game theory ignores this strategic stage and assumes
that players can sign binding agreements in order to cooperate. The emphasis
is on the possibilities of cooperation among the players and/or the division of
coalitional benefits in order to secure a sustainable agreement. In particular, this
approach deals with the division of the worth of the grand coalition (all play-
ers together as a whole) among the players. The commonly used model in this
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approach is that of games with transferable utility. The two most well-known
solution are the core (Gillies 1953) and the Shapley value (Shapley 1953).
Although different in their mathematical modeling, both non-cooperative and
cooperative approaches can be considered as two complementary ways of deal-
ing with some conflict problems as cooperation (Hart and Mas-Colell 1997), and
so there is a close relation between them. Nash (1951) proposes that cooper-
ation among the players can be studied by means of bargaining models (Nash
1950a, Rubinstein 1982) in which the cooperative actions are the result of some
bargaining process defined in terms of a similar solution concept to the Nash
equilibrium. In this bargaining process, any player behaves according to some
bargaining strategy that satisfies the same personal utility maximization crite-
rion as in any other non-cooperative game. Therefore, non-cooperative game
theory can be viewed as an instrument in order to obtain the cooperative results
analyzed by cooperative game theory.
In the spirit of considering non-cooperative game theory prior to cooperative
game theory in order to deal with cooperation, another approach consists in
converting a strategic game into a game in characteristic function form (Au-
mann 1959, Chander and Tulkens 1997) and studying the cooperative game so
induced. In order to do such a conversion, it is assumed that some players can
sign binding agreements in order to cooperate in the strategic game. Then, by
applying an appropriate solution concept allowing partial cooperation to the
strategic game, the resulting cooperating players’ utilities permit to define the
induced cooperative game. The main purpose of this chapter is to introduce
such a technical approach in order to apply it in the more specific framework of
oligopoly theory.
In order to do that, the remainder of this chapter is structured as follows. In
Section 2.2 we define strategic games and some of their solution concepts. Sec-
tions 2.3 and 2.4 introduce the theory of TU(Transferable Utility)-games and
interval games respectively. Finally, Section 2.5 presents the technical approach
which consists in associating cooperative games (TU-games and interval games)
with strategic games.

2.2 Strategic games and solution concepts

2.2.1 Basic definitions

A situation in which every agent has to choose a strategy under complete infor-
mation and obtains an utility depending on other agents’ strategies can be de-
scribed by a strategic game. A strategic game is a triplet Γ = (N, (Xi, ui)i∈N)
defined as:
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1. a finite set of players N = {1, 2, . . . , n} where 2N is the power set of
N ;

2. for every i ∈ N , an individual strategy set Xi where xi is a representa-
tive element of Xi;

3. for every i ∈ N , an individual utility function ui :
∏

i∈N Xi −→ R
where

∏
i∈N Xi is the set of strategy profiles denoted by XN .

We denote by G the set of strategic games.

Let G∗ ⊆ G be a subset of strategic games. A solution concept on G∗ is a
function ϕ which associates with every strategic game Γ = (N, (Xi, ui)i∈N) ∈ G∗
the (possibly empty) subset of strategy profiles ϕ(Γ) ⊆ XN .

2.2.2 Nash equilibrium and partial agreement equilibrium

Given a set of players N , we call a subset S ∈ 2N\{∅}, a coalition. The
size s = |S| of coalition S is the number of players in S. For any coalition
S ∈ 2N\{∅}, we denote by XS =

∏
i∈S Xi the set of strategy profiles of players

in S where xS = (xi)i∈S is a representative element of XS.
The most well-known solution concept in non-cooperative game theory is the
Nash equilibrium (Nash 1950a). Given a strategic game Γ = (N, (Xi, ui)i∈N) ∈
G, a strategy profile x∗ ∈ XN is a Nash equilibrium if:

∀i ∈ N, ∀xi ∈ Xi, ui(x
∗) ≥ ui(xi, x

∗
N\{i}).

The function ϕN is the solution concept which associates with every strategic
game Γ = (N, (Xi, ui)i∈N) ∈ G the (possibly empty) set of Nash equilibria
ϕN(Γ). The existence of a Nash equilibrium in strategic games is the object of a
wide literature. We refer to Urai (2010) for an overview of recent developments
in this area.

In the next chapters, it is assumed that players can sign binding agreements
in order to form coalitions. An appropriate solution concept which permits some
players to sign binding agreements in order to form a coalition while the other
players pursue their own strategic objectives is the partial agreement equilib-
rium. The underlying assumption is that coalition members’ utilities are trans-
ferable inside any coalition so that when a coalition forms, in the spirit of the
Nash equilibrium it maximizes the sum of its members’ individual utility func-
tions while the other players choose their individual best reply strategies. For
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any coalition S ∈ 2N\{∅}, the coalition utility function uS : XS×XN\S −→ R
is defined as:

uS(xS, xN\S) =
∑
i∈S

ui(x).

Given a coalition S ∈ 2N\{∅} and a strategic game Γ = (N, (Xi, ui)i∈N) ∈ G, a
strategy profile (x∗S, x̃N\S) ∈ XS ×XN\S is a partial agreement equilibrium
under S if:

∀xS ∈ XS, uS(x∗S, x̃N\S) ≥ uS(xS, x̃N\S),

and

∀j ∈ N\S,∀xj ∈ Xj, uj(x
∗
S, x̃N\S) ≥ uj(x

∗
S, x̃N\(S∪{j}), xj).

We denote by ϕPA(Γ, S) the set of partial agreement equilibria under S. The
function ϕPA is the solution concept which associates with every strategic game
Γ = (N, (Xi, ui)i∈N) ∈ G the (possibly empty) set of partial agreement
equilibria ϕPA(Γ) =

⋃
S∈2N\{∅} ϕ

PA(Γ, S). Clearly, it holds that ϕPA(Γ) ⊇
ϕN(Γ). The existence of a partial agreement equilibrium and its characterization
in strategic games are studied in Béal et al. (2010).

2.3 TU-games and solutions

2.3.1 Basic definitions

A situation in which a group of agents obtains certain benefits by cooperation
can be described by a cooperative game with transferable utility, or simply a
TU-game. A TU-game is a pair (N, v) defined as:

1. a finite set of players N = {1, 2, . . . , n};

2. a characteristic function v : 2N −→ R with the convention that v(∅) =
0, which assigns a worth v(S) ∈ R to every coalition S ∈ 2N\{∅}.

We denote by G the set of TU-games. A TU-game (N, v) ∈ G is non-
negative if:

∀S ∈ 2N , v(S) ≥ 0.

A TU-game (N, v) ∈ G is monotone if:

∀S ∈ 2N ,∀T ∈ 2N : S ⊆ T , v(S) ≤ v(T ).
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Clearly, a monotonic TU-game is non-negative. A TU-game (N, v) ∈ G is
essential if:

v(N) >
∑
i∈N

v({i}).

Otherwise, (N, v) ∈ G is non-essential.
A TU-game (N, v) ∈ G is symmetric if there exists a mapping f : N −→ R
such that:

∀S ∈ 2N , v(S) = f(s).

Two TU-games (N, v1) ∈ G and (N, v2) ∈ G are strategically equivalent if
there exist a ∈ R++ and b ∈ Rn such that:

∀S ∈ 2N , v1(S) = av2(S) +
∑
i∈S

bi.

A TU-game (N, v) ∈ G is additive if:

∀S ∈ 2N , v(S) =
∑
i∈S

v({i}).

A TU-game (N, v) ∈ G is superadditive if:

∀S ∈ 2N ,∀T ∈ 2N : S ∩ T = ∅, v(S) + v(T ) ≤ v(S ∪ T ).

A TU-game (N, v) ∈ G is convex (or supermodular) if:

∀S ∈ 2N ,∀T ∈ 2N , v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ),

or equivalently (Shapley 1971, Topkis 1998):

∀i ∈ N, ∀j ∈ N,∀S ∈ 2N\{i,j}, v(S ∪ {i})− v(S) ≤ v(S ∪ {i, j})− v(S ∪ {j}).

A symmetric TU-game (N, v) ∈ G is convex if:

∀S ∈ 2N : s ≤ n− 2, f(s+ 1)− f(s) ≤ f(s+ 2)− f(s+ 1).

In a convex TU-game the marginal contribution of a player to some coalition
increases if the coalition which he joins becomes larger. A characterization of
convex TU-games can be found in Csóka, Herings, and Kóczy (2011). It is
straightforward that a convex TU-game is superadditive.

A TU-game (N, v) ∈ G is average convex if:
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∀S ∈ 2N ,∀T ∈ 2N : S ⊆ T ,
∑
i∈S

(
v(S)− v(S\{i})

)
≤
∑
i∈S

(
v(T )− v(T\{i})

)
.

Given a TU-game (N, v) ∈ G, the marginal contributions to the grand coali-
tion are defined as:

∀i ∈ N, mi(N, v) = v(N)− v(N\{i}).

Given a TU-game (N, v) ∈ G, the gap function g(N,v) : 2N −→ R, with the
convention that g(N,v)(∅) = 0, is defined as:

∀S ∈ 2N\{∅}, g(N,v)(S) =
∑
i∈S

mi(N, v)− v(S).

A TU-game (N, v) ∈ G is 1-concave if:

∀S ∈ 2N\{∅}, g(N,v)(S) ≤ g(N,v)(N) ≤ 0.

Given a TU-game (N, v) ∈ G, the dual game (N, v∗) ∈ G of (N, v) is defined
as:

∀S ∈ 2N , v∗(S) = v(N)− v(N\S).

Given a TU-game (N, v) ∈ G and a coalition S ∈ 2N\{∅}, the subgame of
(N, v) induced by S is a pair (S, vS) ∈ G such that:

∀T ∈ 2S, vS(T ) = v(T ).

In a TU-game (N, v) ∈ G, every player i ∈ N may receive a payoff σi ∈ R.
A vector σ = (σ1, . . . , σn) ∈ Rn is a payoff vector. A payoff vector σ ∈ Rn

is individually rational if for any i ∈ N , σi ≥ v({i}), i.e. the payoff vector
provides a payoff to every player that is at least as great as its individual worth.
A payoff vector σ ∈ Rn is acceptable if for any coalition S ∈ 2N\{∅},

∑
i∈S σi ≥

v(S), i.e. the payoff vector provides a total payoff to the members of coalition
S that is at least as great as its worth. A payoff vector σ ∈ Rn is efficient if∑

i∈N σi = v(N), i.e. the payoff vector provides a total payoff to all the players
that is equal to the worth of the grand coalition. The set of imputations
I(N, v) of a TU-game (N, v) ∈ G is the set of payoff vectors that are both
individually rational and efficient:

I(N, v) =

{
σ ∈ Rn : ∀i ∈ N, σi ≥ v({i}) and

∑
i∈N

σi = v(N)

}
.
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2.3.2 Basic properties of solutions

Let G∗ ⊆ G be a subset of TU-games. A set-valued solution on G∗ is a
function F which associates with every TU-game (N, v) ∈ G∗ the set of payoff
vectors F (N, v) ⊆ Rn. A solution F on G∗ is single-valued if it assigns to
every TU-game (N, v) ∈ G∗ a unique payoff vector.
Given a TU-game (N, v) ∈ G, two players i ∈ N and j ∈ N are symmetric in
(N, v) if:

∀S ∈ 2N\{i,j}, v(S ∪ {i}) = v(S ∪ {j}).
Clearly, in a symmetric TU-game all the players are symmetric. A player i ∈ N
is a null player in (N, v) if:

∀S ∈ 2N\{i}, v(S ∪ {i}) = v(S).

A player i ∈ N is a nullifying player in (N, v) if:

∀S ∈ 2N : i ∈ S, v(S) = 0.

For any pair of TU-games (N, v1) ∈ G, (N, v2) ∈ G and any α ∈ R, the TU-game
(N,αv1 + v2) ∈ G is defined as:

∀S ∈ 2N , (αv1 + v2)(S) = αv1(S) + v2(S).

We recall some well-known properties of solutions. A set-valued solution F on
G∗ ⊆ G satisfies:

- non-emptiness if for any (N, v) ∈ G∗, F (N, v) 6= ∅;

- efficiency if for any (N, v) ∈ G∗ and for any σ ∈ F (N, v),
∑

i∈N σi =
v(N);

- symmetry if for any (N, v) ∈ G∗, for any σ ∈ F (N, v) and any pair of
symmetric players i and j in (N, v), σi = σj;

- the null player property if for any (N, v) ∈ G∗, for any σ ∈ F (N, v) and
any null player i in (N, v), σi = 0;

- the nullifying player property if for any (N, v) ∈ G∗, for any σ ∈
F (N, v) and any nullifying player i in (N, v), σi = 0.

A single-valued solution F on G∗ ⊆ G satisfies:

- additivity if for any pair of TU-games (N, v1) ∈ G∗ and (N, v2) ∈ G∗

such that (N, v1 + v2) ∈ G∗, F (N, v1 + v2) = F (N, v1) + F (N, v2);
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- linearity if for any pair of TU-games (N, v1) ∈ G∗ and (N, v2) ∈ G∗ and
any α ∈ R such that (N,αv1 + v2) ∈ G∗, F (N,αv1 + v2) = αF (N, v1) +
F (N, v2);

- collusion neutrality if for any TU-game (N, v) ∈ G∗, for any i ∈ N and
any j ∈ N , Fi(N, vij) + Fj(N, vij) = Fi(N, v) + Fj(N, v) where for any
coalition S ∈ 2N\{∅}, it holds that:

vij(S) =

{
v(S\{j}) if i ∈ N\S,
v(S ∪ {j}) if i ∈ S.

For a general introduction to the theory of TU-games and their solutions we
refer to Peleg and Sudhölter (2003).

2.3.3 The core

The most well-known set-valued solution on G is the core (Gillies 1953). The
core C(N, v) of a TU-game (N, v) ∈ G is the set of payoff vectors that are both
acceptable and efficient:

C(N, v) =

{
σ ∈ Rn : ∀S ∈ 2N ,

∑
i∈S

σi ≥ v(S) and
∑
i∈N

σi = v(N)

}
.

A payoff vector in the core is stable in the sense that no coalition can do better
and contest this sharing by breaking off from the grand coalition.

The balancedness property is a necessary and sufficient condition which guar-
antees the non-emptiness of the core (Bondareva 1963, Shapley 1967). This con-
dition can be formulated in two equivalent ways (Owen 1995).
Firstly, given a TU-game (N, v) ∈ G, for any coalition S ∈ 2N\{∅}, eS ∈ Rn is
the vector with coordinates equal to 1 in S and equal to 0 outside S. A map
λ : 2N\{∅} −→ R+ is a balanced map if

∑
S∈2N\{∅} λ(S)eS = eN . A TU-game

(N, v) ∈ G is balanced if for every balanced map λ it holds that:∑
S∈2N\{∅}

λ(S)v(S) ≤ v(N).

Secondly, given a TU-game (N, v) ∈ G, let B ⊆ 2N\{∅} be a family of coali-
tions and denote by Bi = {S ∈ B : i ∈ S} the subset of those coalitions of which
player i is a member. Then B is a balanced family if for any S ∈ B there exists
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a balancing weight δS ∈ R+ such that for any i ∈ N ,
∑

S∈Bi δS = 1. A TU-game
(N, v) ∈ G is balanced if for every balanced family B ⊆ 2N\{∅} it holds that:∑

S∈B

δSv(S) ≤ v(N).

Theorem 2.3.1 (Bondareva 1963, Shapley 1967) A TU-game (N, v) ∈ G
has a non-empty core if and only if it is balanced.

A TU-game (N, v) ∈ G is totally balanced if for any coalition S ∈ 2N\{∅}, the
subgame (S, vS) is balanced. It is well-known that any convex game is totally
balanced, and so balanced (Shapley 1971, Ichiishi 1981).

2.3.4 The Shapley value

The most well-known single-valued solution on G is the Shapley value defined
and characterized by Shapley (1953). In order to introduce the Shapley value, we
need to define the following notions. Given the set of players N , a permutation
of N is a bijective function τ : N −→ N such that for any i ∈ N , τ(i) ∈ N
is the player indexed by number i in τ . A permutation of N is a listing of the
n players in some specified order. The number of permutations of n players is
equal to n!. We denote by ΠN the set of permutations of N . For any τ ∈ ΠN

and any i ∈ N , the coalition Sτ,i ∈ 2N\{∅} is the set of players with a smaller
index than i in τ :

Sτ,i =
{
j ∈ N : τ−1(j) ≤ τ−1(i)

}
.

Given a TU-game (N, v) ∈ G and a permutation τ ∈ ΠN , the marginal vector
mτ (N, v) ∈ Rn is defined as:

∀i ∈ N, mτ
i (N, v) = v(Sτ,i)− v(Sτ,i\{i}).

Imagine that the players enter a room one by one in the ordering specified by per-
mutation τ . The marginal vector mτ (N, v) gives every player his marginal con-
tribution to the coalition formed by his entrance. The Shapley value Sh(N, v)
of a TU-game (N, v) ∈ G is the average of all marginal vectors:

∀i ∈ N, Shi(N, v) =
1

n!

∑
τ∈ΠN

mτ
i (N, v).

An alternative definition of the Shapley value is the following. The Shapley
value assigns to any TU-game (N, v) ∈ G, the payoff vector Sh(N, v) defined as:
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∀i ∈ N, Shi(N, v) =
∑

S∈2N :i∈S

(n− s)!(s− 1)!

n!

(
v(S)− v(S\{i})

)
.

The Shapley value can be interpreted as the expected marginal contribution
of the players. Consider that the n players enter a room in some order and
that all these n! orderings are equally likely. Then, for any coalition S ∈ 2N\{∅}
containing player i, the probability that player i enters the room to find precisely
the players in S\{i} is equal to ((n− s)!(s− 1)!)/n!.

Theorem 2.3.2 (Shapley 1953, Shubik 1962) The unique single-valued so-
lution satisfying efficiency, additivity, symmetry and the null player property is
the Shapley value.

There are various other characterizations of the Shapley value that can be found
in Young (1985), Hart and Mas-Colell (1988), Feltkamp (1995), van den Brink
(2001), Hamiache (2001) and Casajus (2009). We refer to Ghintran (2011) for
an overview of these characterizations.
The Shapley value is also known as the center of gravity of the Weber set.
The Weber set is a set-valued solution on G which assigns to any TU-game
(N, v) ∈ G the convex hull of all marginal vectors:

W (N, v) = co
{
mτ (N, v) : τ ∈ ΠN

}
.

It is known that the core is included in the Weber set. Shapley (1971) and
Ichiishi (1981) show that a TU-game is convex if and only if the core is equal to
the Weber set. Hence, for such games the Shapley value is the center of gravity
of the core (Shapley 1971).
Another well-known single-valued solution on G is the equal division solution.
The equal division solution ED(N, v) of a TU-game (N, v) ∈ G divides the
worth of the grand coalition equally among the players:

∀i ∈ N, EDi(N, v) =
v(N)

n
.

For the set of symmetric TU-games, the Shapley value and the equal division
solution coincide. van den Brink (2007) shows that by replacing the null player
property with the nullifying player property in the characterization of the Shap-
ley value yields the characterization of the equal division solution.
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2.3.5 The nucleolus

Another single-valued solution on G is the nucleolus. In order to introduce the
nucleolus, we need to define the following notions. Given a TU-game (N, v) ∈ G
and a payoff vector σ ∈ Rn, the excess of any coalition S ∈ 2N\{∅} is defined
as:

e(S, σ) = v(S)−
∑
i∈S

σi.

We define the excess function E : Rn −→ R(2n−2) which associates to any
payoff vector σ ∈ Rn the (2n − 2)-component vector E(σ) composed of the
excesses of all coalitions S ∈ 2N\{∅, N} in a non-increasing order, i.e. E1(σ) ≥
E2(σ) ≥ . . . ≥ E(2n−2)(σ). Moreover, we denote by�L the lexicographic order
of vectors. The nucleolus Nuc(N, v) of a TU-game (N, v) ∈ G is the unique
imputation which lexicographically minimizes the excess function E over the set
of imputations, i.e. Nuc(N, v) = σ such that:

σ ∈ I(N, v) and for any σ′ ∈ I(N, v), E(σ) �L E(σ′).

The real number e(S, σ) is a measure of the dissatisfaction of coalition S at the
payoff vector σ. Hence, the vector E(σ) orders the complaints of the coalitions
according to their magnitude, i.e. the highest complaint first, the second-highest
second, and so on. Thus, the nucleolus minimizes the dissatisfactions of the
various coalitions according to the lexicographical order �L.
On the set of balanced TU-games, it is known that the nucleolus always belongs
to the core. Moreover, Driessen et al. (2010) show that on the set of 1-concave
TU-games, the nucleolus coincides with the center of gravity of the core.

2.4 Interval games

In some economic situations, the utilities obtained by a group of agents who
cooperate are not known with certainty, and so we cannot use the theory of
TU-games which assigns a unique worth to every coalition in order to study
cooperative issues. This is why we consider the more general approach of interval
games introduced by Branzei et al. (2003). This approach takes into account
the uncertainty on the utilities of any group of players by associating with every
coalition a closed and bounded real interval which represents all the potential
utilities obtained by cooperation.
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2.4.1 Basic definitions

A situation in which a group of agents knows with certainty only the lower
and upper bounds of all the potential utilities obtained by cooperation can be
described by an interval game. We denote by I(R) the set of all closed and
bounded real intervals [a, b] such that a ∈ R and b ∈ R. An interval game
is a pair (N,w) defined as:

1. a finite set of players N = {1, 2, . . . , n};

2. a set function w : 2N −→ I(R), with the convention that w(∅) = [0, 0],
which assigns a worth interval w(S) ∈ I(R) to every coalition S ∈
2N\{∅}.

The worth interval w(S) is denoted by [w(S), w(S)] where w(S) and w(S) are
the lower and the upper bounds of w(S) respectively. We denote by IG the set
of interval games. If any worth interval of an interval game (N,w) ∈ IG is de-
generate then (N,w) corresponds to the TU-game (N, v) ∈ G where v = w = w.
In this sense, the set of TU-games G is included in the set of interval games IG.
The properties and solutions defined in Section 2.3 for the set of TU-games can
be extended to the set of interval games by using the methods of interval arith-
metic (Moore 1979). Let J,K ∈ I(R) where J = [j, j] and K = [k, k]. Then, we
have J +K = [j + k, j + k] and we say that J is weakly better than K, which
we denote J < K, if j ≥ k and j ≥ k. For example, we have [2, 3] < [1, 2].

We denote by I(R)n the set of n-dimensional interval vectors where I
is a representative element of I(R)n. In an interval game (N,w) ∈ IG, every
player i ∈ N may receive a payoff interval Ii ∈ I(R). An interval vector
I = (I1, . . . , In) is a payoff interval vector. An interval vector I ∈ I(R)n is
individually rational if for any i ∈ N , Ii < w({i}), i.e. the payoff interval
vector provides a payoff interval to every player that is weakly better than its
individual worth interval. A payoff interval vector I ∈ I(R)n is acceptable if
for any coalition S ∈ 2N\{∅},

∑
i∈S Ii < w(S), i.e. the payoff interval vector

provides a total payoff interval to the members of coalition S that is weakly
better than its worth interval. A payoff interval vector I ∈ I(R)n is efficient if∑

i∈N Ii = w(N), i.e. the payoff interval vector provides a total payoff interval to
all the players that is equal to the worth interval of the grand coalition. The set
of imputations I(N,w) of an interval game (N,w) ∈ IG is the set of interval
vectors that are both individually rational and efficient:

I(N,w) =

{
I ∈ I(R)n : ∀i ∈ N, Ii < w({i}) and

∑
i∈N

Ii = w(N)

}
.
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2.4.2 The cores

There are two main ways of generalizing the definition of a set-valued solution
for the set of interval games. Let IG∗ ⊆ IG be a subset of interval games. A
set-valued solution on IG∗ is a function F which associates with every interval
game (N,w) ∈ IG∗ either the set of payoff interval vectors F (N,w) ⊆ I(R)n or
the set of payoff vectors F (N,w) ⊆ Rn. We use each of these two generalizations
in order to define the cores on the set of interval games.
The first extension of the core is due to Alparslan-Gok et al. (2008a). The
interval core C(N,w) of an interval game (N,w) ∈ IG is the set of all payoff
interval vectors that are both acceptable and efficient:

C(N,w) =

{
I ∈ I(R)n : ∀S ∈ 2N ,

∑
i∈S

Ii < w(S) and
∑
i∈N

Ii = w(N)

}
.

A payoff interval vector in the interval core is stable in the sense that no coalition
can do better and contest this sharing by breaking off from the grand coalition.

While the strong-balancedness property is a sufficient condition in order to
guarantee the non-emptiness of the interval core, the I-balancedness property is
a necessary and sufficient condition (Alparslan-Gok et al. 2008b). An interval
game (N,w) ∈ IG is strongly balanced if for every balanced map λ it holds
that: ∑

S∈2N\{∅}

λ(S)w(S) ≤ w(N).

An interval game (N,w) ∈ IG is I-balanced if for every balanced map λ it
holds that: ∑

S∈2N\{∅}

λ(S)w(S) 4 w(N).

If all the worth intervals are degenerate both properties coincide with the bal-
ancedness property on the set of TU-games. Clearly, the strong-balancedness
property is easier to verify than the I-balancedness property.

Theorem 2.4.1 (Alparslan-Gok et al. 2008b)

(i) If an interval game (N,w) ∈ IG is strongly balanced then it is I-balanced;

(ii) An interval game (N,w) ∈ IG has a non-empty interval core if and only
if it is I-balanced.
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The second extension of the core is due to Alparslan-Gok et al. (2009b). Given
an interval game (N,w) ∈ IG, a TU-game (N, v) ∈ G is called a selection of
(N,w) if for any coalition S ∈ 2N\{∅}, v(S) ∈ w(S). We denote by Sel(N,w)
the set of all selections of (N,w) ∈ IG. The standard core C(N,w) of an
interval game (N,w) ∈ IG is defined as the union of the cores of all its selections
(N, v) ∈ G:

C(N,w) =
⋃

(N,v)∈Sel(N,w)

C(N, v).

We use the term “standard core” instead of the term “core” in order to distinguish
this core solution for interval games with the core solution for TU-games. The
standard core C(N,w) is non-empty if and only if there exists a balanced TU-
game (N, v) ∈ Sel(N,w).
We refer to Alparslan-Gok et al. (2009a) for an overview of recent developments
in the theory of interval games.

2.5 Construction of cooperative games
When externalities are present such as in oligopoly situations, in order to calcu-
late the worth of a coalition we have to specify the strategies taken by the non-
members according to some rules, called blocking rules. These blocking rules are
implemented by applying appropriate solution concepts to the strategic games
allowing binding agreements among the coalition members and specifying out-
siders’ behavior. The resulting cooperating players’ utilities will determine the
worth of the coalition, and so permits to define the induced cooperative game.
In this section, we associate two cooperative game types, i.e. TU-games and
interval games, with strategic games by following three approaches. While the
functions obtained from the first two approaches (Aumann 1959) are called the
α and β-characteristic functions respectively, the functions obtained from the
third approach (Chander and Tulkens 1997) are called the γ-characteristic and
γ-set functions.

2.5.1 The α and β-characteristic functions

Aumann (1959) proposes two approaches of converting a non-cooperative game
into a cooperative game. According to the first, called the α-approach, every
coalition computes the total utility which it can guarantee itself regardless of
what outsiders do. The second approach, called the β-approach, consists in
computing the minimal utility for which outsiders can prevent the coalition
members from getting more. Given a strategic game Γ = (N, (Xi, ui)i∈N) ∈
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G, the associated TU-games in α and β-characteristic function forms,
denoted by (N, vα) and (N, vβ), are defined for any coalition S ∈ 2N\{∅} as:

vα(S) = max
xS∈XS

min
xN\S∈XN\S

uS(xS, xN\S),

and

vβ(S) = min
xN\S∈XN\S

max
xS∈XS

uS(xS, xN\S).

It is known that for any coalition S ∈ 2N\{∅}, vα(S) ≤ vβ(S) so that C(N, vβ) ⊆
C(N, vα). In Chapters 6 and 7, for any strategic Bertrand oligopoly game we
assume that the demand and individual cost functions are linear in order to
guarantee that the characteristic functions vα and vβ are well-defined and lead
to the same set of Bertrand oligopoly TU-games.

2.5.2 The γ-characteristic and γ-set functions

Chander and Tulkens (1997) question the resorting to the α and β-characteristic
functions in order to derive cooperative games from non-cooperative games. For
many economic situations, they sustain that outsiders may cause substantial
damages upon themselves by minimizing the utility of a coalition. For instance,
this is the case in the oligopolistic market with three firms described in the
introduction. A similar argument is developed by Rosenthal (1971). They pro-
pose a more credible blocking rule, called the γ-approach, where players outside
the coalition choose their strategy individually as a best reply to the coalitional
action, which corresponds to the definition of a partial agreement equilibrium.
Given a strategic game Γ = (N, (Xi, ui)i∈N) ∈ G, the associated TU-game in γ-
characteristic function form, denoted by (N, vγ), is defined for any coalition
S ∈ 2N\{∅} as:

vγ(S) = uS(x∗S, x̃N\S),

where (x∗S, x̃N\S) ∈ ϕPA(Γ, S). It can be easily proved that for any coalition
S ∈ 2N\{∅}, vβ(S) ≤ vγ(S) so that C(N, vγ) ⊆ C(N, vβ). In Chapter 3, for any
strategic Cournot oligopoly game we assume that the inverse demand function
is differentiable, strictly decreasing and concave, and any individual cost func-
tion is continuous, strictly increasing and convex, in order to guarantee that the
characteristic function vγ is well-defined. In Chapter 5, for any strategic Stack-
elberg oligopoly game we assume that the inverse demand and individual cost
functions are linear and firms have no capacity constraint, in order to ensure
that the characteristic function vγ is well-defined.
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In some economic situations, for some coalition the set of partial agreement
equilibria does not support an unique worth, and so the characteristic function vγ
is not well-defined. For instance, for some Cournot oligopoly situations in which
the inverse demand function is continuous but not necessarily differentiable, the
worth of any coalition is not unique, and so we cannot define a Cournot oligopoly
TU-game in γ-characteristic function form (Example 3.3.4). A more general
approach consists in associating a closed and bounded real interval with the set
of partial agreement equilibria. Given a strategic game Γ = (N, (Xi, ui)i∈N) ∈ G,
the associated interval game in γ-set function form, denoted by (N,wγ), is
defined for any coalition S ∈ 2N\{∅} as:

wγ(S) = uS(ϕPA(Γ, S)).

Recall that wγ(S) = [wγ(S), wγ(S)] where wγ(S) and wγ(S) are the minimal
and the maximal utilities of coalition S enforced by ϕPA(Γ, S) respectively. It is
straightforward that for any TU-game (N, vγ) ∈ Sel(N,wγ) and for any coalition
S ∈ 2N\{∅}, vβ(S) ≤ vγ(S). In Chapter 4, for any strategic Cournot oligopoly
game we assume that the inverse demand function is continuous (but not nec-
essarily differentiable), strictly decreasing and concave, and any individual cost
function is continuous, strictly increasing and convex, in order to guarantee that
the set function wγ is well-defined.
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Chapter 3

The core in Cournot oligopoly
TU-games with capacity
constraints

3.1 Introduction

A Cournot oligopoly TU-game describes a quantity competition in which a
group of firms obtains certain profits by cooperation. In this chapter, which
is based on Lardon (2009), we study the core of Cournot oligopoly TU-games
in γ-characteristic function form. We assume that the inverse demand function
is differentiable, strictly decreasing and concave, and any individual cost func-
tion is continuous, strictly increasing and convex, in order to guarantee that
the γ-characteristic function is well-defined and study some properties on the
equilibrium outputs. To this end, we adopt a more general approach where
any coalition structure can occur, in particular those supporting the partial
agreement equilibria. Given a coalition structure, we construct an aggregated
strategic Cournot oligopoly game in which a Nash equilibrium represents the
aggregated equilibrium outputs of the embedded coalitions. We prove that such
games admit a unique Nash equilibrium and conclude that the γ-characteristic
function is well-defined. When some coalitions merge, we show that the total
production of the new entities decreases while the other coalitions respond by
increasing their outputs so that the equilibrium total production decreases.
We use these preliminaries results in order to obtain two core non-emptiness
results. The first result shows that if the inverse demand function is differen-
tiable and if any individual profit function is continuous and concave on the
set of strategy profiles then the corresponding Cournot oligopoly TU-game in
γ-characteristic function form is balanced. This result extends Zhao’s core non-
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emptiness result (1999b) since the core associated with the γ-characteristic func-
tion is included in the one associated with the β-characteristic function. How-
ever, a drawback with this approach is that it does not point out any payoff
vector in the core. The second result provides a new single-valued solution in
the core, called the NP(Nash pro rata) value, on the subset of Cournot oligopoly
TU-games in γ-characteristic function form with linear individual cost functions
and possibly distinct capacity constraints. The NP value distributes to every
firm the worth of the grand coalition in proportion to its Nash individual output.
Since the capacity constraints are possibly distinct, this result generalizes Fu-
naki and Yamato’s core non-emptiness result (1999) established with no capacity
constraint insofar as a Cournot oligopoly situation also describes a common pool
situation (Moulin 1997). We characterize the NP value by means of four prop-
erties: efficiency, null firm, monotonicity and non-cooperative fairness. Recall
that efficiency requires that a solution distributes the worth of the grand coali-
tion among the firms. The null firm property stipulates that a firm with no
production capacity obtains a zero payoff. Monotonicity specifies that if a firm
has a production capacity greater than or equal to the production capacity of
another firm, then former’s payoff will be greater than or equal to latter’s pay-
off. Non-cooperative fairness requires that a single-valued solution distributes
to every firm a payoff proportionally to its individual profit in the finest coali-
tion structure. As far as we know, in oligopoly theory, this is the first result
that characterizes a single-valued solution belonging to the core by means of
appealing properties. Furthermore, we provide a linear Cournot oligopoly situa-
tion for which the corresponding Cournot oligopoly TU-game in γ-characteristic
function form fails to be superadditive, and so convex. This proves that Norde
et al.’s result (2002) establishing the convexity property for Cournot oligopoly
TU-games in α and β-characteristic function forms cannot be extended to this
set of games.

The remainder of this chapter is structured as follows. In section 3.2 we
introduce the model and some notations. Section 3.3 presents some properties
of the equilibrium outputs. Section 3.4 establishes our first core non-emptiness
result by means of balancedness property. Section 3.5 shows that the NP value
belongs to the core and provides an axiomatic characterization of this solution.
Section 3.6 gives some concluding remarks.

3.2 The model

A Cournot oligopoly situation is a quadruplet (N, (qi, Ci)i∈N , p) defined as:

1. a finite set of firms N = {1, 2, . . . , n};
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2. for every i ∈ N , a capacity constraint qi ∈ R+;

3. for every i ∈ N , an individual cost function Ci : R+ −→ R+;

4. an inverse demand function p : R+ −→ R+ which assigns to any ag-
gregate quantity X ∈ R+ the unit price p(X).

Throughout this chapter, we assume that:

(a) the inverse demand function p is differentiable, strictly decreasing and
concave;

(b) every individual cost function Ci is continuous, strictly increasing and
convex.

The strategic Cournot oligopoly game associated with the Cournot oligopoly
situation (N, (qi, Ci)i∈N , p) is a triplet Γco = (N, (Xi, πi)i∈N) defined as:

1. a finite set of firms N = {1, 2, . . . , n};

2. for every i ∈ N , an individual strategy set Xi = [0, qi] ⊂ R+ where
xi ∈ Xi represents the quantity produced by firm i;

3. for every i ∈ N , an individual profit function πi : XN −→ R+ defined
as:

πi(x) = p(X)xi − Ci(xi),

where X =
∑

i∈N xi is the total production.

Note that firm i’s profit depends on its individual output xi and on the total
output of its opponents

∑
j∈N\{i} xj. We denote by Gco ⊆ G the set of strategic

Cournot oligopoly games.

Now, we associate Cournot oligopoly TU-games in γ-characteristic function
form with strategic Cournot oligopoly games. For any coalition S ∈ 2N\{∅},
the coalition profit function πS : XS ×XN\S −→ R is defined as:

πS(xS, xN\S) =
∑
i∈S

πi(x).

As discussed in the introduction, the α and β-approaches (Aumann 1959) used
to define Cournot oligopoly TU-games can be questioned insofar as the reaction
of external firms to minimize the worth of a deviating coalition by increasing
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their output at full capacity probably implies substantial damages upon them-
selves. This is why, in this chapter, we consider the γ-approach (Chander and
Tulkens 1997) where outsiders choose their strategy individually as a best re-
ply facing the deviating coalition. Given a strategic Cournot oligopoly game
Γco = (N, (Xi, πi)i∈N) ∈ Gco, the associated Cournot oligopoly TU-game
in γ-characteristic function form, denoted by (N, vγ), is defined for any
coalition S ∈ 2N\{∅} as:

vγ(S) = πS(x∗S, x̃N\S),

where (x∗S, x̃N\S) ∈ ϕPA(Γco, S). We denote by Gγ
co ⊆ G the set of Cournot

oligopoly TU-games in γ-characteristic function form. In the following
section, we show that under assumptions (a) and (b), it is possible to define a
Cournot oligopoly TU-game in γ-characteristic function form.

3.3 Properties of the equilibrium outputs

In this section, we study the existence of partial agreement equilibria in strate-
gic Cournot oligopoly games. This will permit us to make sure that the γ-
characteristic function is well-defined. Moreover, we analyze the variations of
the equilibrium outputs enforced by the partial agreement equilibria. To this
end, we adopt a more general approach in which any coalition structure can
occur. Given a strategic Cournot oligopoly game and a coalition structure, we
define an aggregated strategic Cournot oligopoly game in which a Nash equilib-
rium represents the aggregated equilibrium outputs of the embedded coalitions.

Given a set of firmsN = {1, 2, . . . , n}, a coalition structure P is a partition
of N , i.e. P = {S1, . . . , Sk}, k ∈ {1, . . . , n}. An element of a coalition structure,
S ∈ P , is called an admissible coalition in P . We denote by PN the set of
coalition structures with player set N .
Given a strategic Cournot oligopoly game Γco = (N, (Xi, πi)i∈N) ∈ Gco and a
coalition structure P ∈ PN, we say that a strategy profile (x̂S)S∈P ∈

∏
S∈P XS

is an equilibrium under P if:

∀S ∈ P ,∀xS ∈ XS, πS(x̂S, x̂N\S) ≥ πS(xS, x̂N\S).

We denote by ϕE(Γco,P) the set of equilibria under P . The function ϕE is
the solution concept which associates with every strategic Cournot oligopoly
game Γco = (N, (Xi, πi)i∈N) ∈ Gco the (possibly empty) set of equilibria
ϕE(Γco) =

⋃
P∈PN

ϕE(Γco,P). For any coalition S ∈ 2N\{∅}, we denote by
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PS = {S} ∪ {{i} : i ∈ N\S}. Clearly, it holds that ϕE(Γco,PS) = ϕPA(Γco, S).

Now, we deal with the problem of the existence of an equilibrium under
any coalition structure. To this end, we define an aggregated strategic Cournot
oligopoly game. The aggregated strategic Cournot oligopoly game asso-
ciated with a strategic Cournot oligopoly game Γco = (N, (Xi, πi)i∈N) ∈ Gco and
a coalition structure P ∈ PN is a triplet ΓPco = (P , (XS, πS)S∈P) ∈ Gco defined
as:

1. a set of cartels (or admissible coalitions) P = {S1, . . . , Sk};

2. for every S ∈ P , an aggregated coalition strategy setXS = [0,
∑

i∈S qi]
where xS =

∑
i∈S xi ∈ XS represents the aggregated quantity produced

by coalition S;

3. for every S ∈ P , an aggregated coalition cost function CS : XS −→
R+ defined as:

CS(xS) = min
xS∈I(xS)

∑
i∈S

Ci(xi),

where I(xS) = {xS ∈ XS :
∑

i∈S xi = xS} is the set of strategies of coali-
tion S that permit it to produce the quantity xS; for every S ∈ P , an
aggregated coalition profit function πS :

∏
S∈P X

S −→ R defined as:

πS(xP) = p(X)xS − CS(xS).

We denote by XP =
∏

S∈P X
S the set of strategy profiles and for any admis-

sible coalition S ∈ P , we denote by XN\S =
∏

T∈P\{S}X
T the set of outsiders’

strategy profiles where xP and xN\S are the representative elements of XP
and XN\S respectively.

The following proposition establishes the existence of an equilibrium under any
coalition structure.

Proposition 3.3.1 Let Γco = (N, (Xi, πi)i∈N) ∈ Gco be a strategic Cournot
oligopoly game. Then, for any coalition structure P ∈ PN , there exists an
equilibrium under P.

Proof: Let ΓPco = (P , (XS, πS)S∈P) ∈ Gco be the aggregated strategic Cournot
oligopoly game associated with the strategic Cournot oligopoly game Γco =
(N, (Xi, πi)i∈N) ∈ Gco and the coalition structure P ∈ PN. We proceed in two
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parts.
First, we show that there exists a strategy profile x̂P ∈ ϕN(ΓPco) if and only if
there exists a strategy profile (x̂S)S∈P ∈ ϕE(Γco,P) such that for any S ∈ P ,
x̂S ∈ I(x̂S).
[=⇒]: let x̂P ∈ ϕN(ΓPco). By the definition of ΓPco, for any S ∈ P there exists
x̂S ∈ XS such that: ∑

i∈S

x̂i = x̂S and
∑
i∈S

Ci(x̂i) = CS(x̂S) (3.1)

For the sake of contradiction suppose that (x̂S)S∈P 6∈ ϕE(Γco,P). It follows that
for some S ∈ P , there exists x̌S ∈ XS such that:

πS(x̂S, x̂N\S) < πS(x̌S, x̂N\S) (3.2)

We denote by x̌S ∈ XS the corresponding strategy of coalition S such that
x̌S =

∑
i∈S x̌i. By (3.1) and (3.2), it holds that:

πS(x̂P) = p(X̂)x̂S − CS(x̂S)

= p(X̂)
∑
i∈S

x̂i −
∑
i∈S

Ci(x̂i)

= πS(x̂S, x̂N\S)

< πS(x̌S, x̂N\S)

= p

(∑
i∈S

x̌i +
∑
i∈N\S

x̂i

)∑
i∈S

x̌i −
∑
i∈S

Ci(x̌i)

≤ p(x̌S + X̂ − x̂S)x̌S − CS(x̌S)

= πS(x̌S, x̂N\S),

a contradiction with x̂P ∈ ϕN(ΓPco).
[⇐=]: let (x̂S)S∈P ∈ ϕE(Γco,P). We denote by x̂P ∈ XP the strategy profile
such that:

∀S ∈ P , x̂S =
∑
i∈S

x̂i (3.3)

For any S ∈ P , it follows from x̂S ∈ I(x̂S) and (x̂S)S∈P ∈ ϕE(Γco,P) that∑
i∈S Ci(x̂i) = CS(x̂S). For the sake of contradiction suppose that x̂P 6∈ ϕN(ΓPco).

It follows that for some S ∈ P , there exists x̌S ∈ XS such that:

πS(x̂S, x̂N\S) < πS(x̌S, x̂N\S) (3.4)
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By the definition of ΓPco, there exists x̌S ∈ XS such that:∑
i∈S

x̌i = x̌S and
∑
i∈S

Ci(x̌i) = CS(x̌S) (3.5)

By (3.3), (3.4) and (3.5), it holds that:

πS(x̂S, x̂N\S) = p(X̂)
∑
i∈S

x̂i −
∑
i∈S

Ci(x̂i)

= p(X̂)x̂S − CS(x̂S)

= πS(x̂S, x̂N\S)

< πS(x̌S, x̂N\S)

= p(x̌S + X̂ − x̂S)x̌S − CS(x̌S)

= p

(∑
i∈S

x̌i +
∑
i∈N\S

x̂i

)∑
i∈S

x̌i −
∑
i∈S

Ci(x̌i)

= πS(x̌S, x̂N\S),

a contradiction with (x̂S)S∈P ∈ ϕE(Γco,P).
Then, we show that the aggregated strategic Cournot oligopoly game ΓPco admits
a unique Nash equilibrium. For any admissible coalition S ∈ P , the aggregated
coalition strategy set XS is compact and convex and the aggregated coalition
cost function CS is continuous, strictly increasing and convex. The properties of
the aggregated coalition cost function CS follow from the continuity, the strict
monotonicity and the convexity of any individual cost function Ci. Moreover,
the inverse demand function p is differentiable, strictly decreasing and concave.
It follows from Theorem 3.3.3 (page 30) in Okuguchi and Szidarovszky (1990)
that the game ΓPco ∈ Gco admits a unique Nash equilibrium. From the first part of
the proof, we conclude that the game Γco ∈ Gco admits an equilibrium under P .�

We deduce from Proposition 3.3.1 the following corollary.

Corollary 3.3.2 Let Γco = (N, (Xi, πi)i∈N) ∈ Gco be a strategic Cournot oligopoly
game. Then, for any coalition S ∈ 2N\{∅} it holds that:

(i) there exists a partial agreement equilibrium under S.

(ii) for any (x∗S, x̃N\S) ∈ ϕPA(Γco, S) and any (y∗S, x̃N\S) ∈ ϕPA(Γco, S), it
holds that: ∑

i∈S

x∗i =
∑
i∈S

y∗i and
∑
i∈S

Ci(x
∗
i ) =

∑
i∈S

Ci(y
∗
i ).
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Point (i) is a direct consequence of the equality ϕPA(Γco, S) = ϕE(Γco,PS).
Point (ii) follows from the uniqueness of the Nash equilibrium in the game
ΓP

S

co ∈ Gco. This stems from the fact that the members of coalition S can
reallocate the total production among themselves. Moreover, point (ii) remains
valid for any coalition structure P ∈ PN, i.e. for any (x̂S)S∈P ∈ ϕE(Γco,P) and
any (x̌S)S∈P ∈ ϕE(Γco,P), it holds that:

∀S ∈ P , x̂S = x̌S and
∑
i∈S

Ci(x̂i) =
∑
i∈S

Ci(x̌i).

Hence, we deduce from Corollary 3.3.2 the following corollary.

Corollary 3.3.3 Let Γco = (N, (Xi, πi)i∈N) ∈ Gco be a strategic Cournot
oligopoly game. Then, for any coalition S ∈ 2N\{∅} the worth vγ(S) is unique
so that the γ-characteristic function is well-defined.

The following example shows that the continuity of the inverse demand func-
tion does not guarantee that the γ-characteristic function is well-defined. This
explains why we have assumed the differentiability of the inverse demand func-
tion.

Example 3.3.4

Consider the Cournot oligopoly TU-game (N, vγ) ∈ Gγ
co associated with the

Cournot oligopoly situation (N, (qi, Ci)i∈N , p) taken from Norde et al. (2002)
where N = {1, 2, 3}, q1 = 2, q2 = 1, q3 = 2, C1(x1) = 97x1, C2(x2) = 98x2,
C3(x3) = 98x3, and the inverse demand function is defined as:

p(X) =

{
103−X if 0 ≤ X ≤ 3,
50(5−X) if 3 < X ≤ 5.

Clearly, p is continuous, piecewise linear and concave but it is not differentiable.
Assume that coalition {2, 3} forms. We show that any strategy profile x ∈ XN

such that (i) X = 3 and (ii) x2+x3 ∈ [1/25, 2] is a partial agreement equilibrium
under {2, 3}. Let x ∈ XN satisfying (i) and (ii). By (i) it holds that:

π1(x) = 3x1,

and

π{2,3}(x) = 2(x2 + x3).

If firm 1 increases its output by ε ∈ ]0, 2− x1], its new profit will be:
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π1(x1 + ε, x2, x3) = (3− 50ε)(x1 + ε).

Conversely, if it decides to decrease its output by δ ∈ ]0, x1], it will obtain:

π1(x1 − δ, x2, x3) = (3 + δ)(x1 − δ).

Similarly, if coalition {2, 3} increases its output by ε+ε′ ∈ ]0, 3− x2 − x3] where
ε ∈ [0, 1− x2] and ε′ ∈ [0, 2− x3], its new coalition profit will be:

π{2,3}(x1, x2 + ε, x3 + ε′) =
(
2− 50(ε+ ε′)

)
(x2 + x3 + ε+ ε′).

On the contrary, if it decreases its output by δ+δ′ ∈ ]0, x2 + x3] where δ ∈ [0, x2]
and δ′ ∈ [0, x3], it will obtain:

π{2,3}(x1, x2 − δ, x3 − δ′) = (2 + δ + δ′)(x2 + x3 − δ − δ′).

In all cases, given (ii) neither firm 1 nor coalition {2, 3} can improve their profit.
We conclude that any strategy profile x ∈ XN satisfying (i) and (ii) is a partial
agreement equilibrium under {2, 3}. It follows that the worth of coalition {2, 3}
belongs to [2/25, 4], and so the γ-characteristic function is not well-defined. �

Now, we study the variations of the equilibrium outputs of any coalition
according to the coarseness of the coalition structure in which it is embedded.
To this end, given a set of players N we introduce a binary relation ≤F on PN

defined as follows: we say that a coalition structure P ∈ PN is finer than a
coalition structure P ′ ∈ PN (or P ′ is coarser than P) which we write P ′ ≤F P
if for any admissible coalition S ∈ P there exists an admissible coalition T ∈ P ′
such that T ⊇ S. Note that (PN,≤F ) is a complete lattice.
Moreover, we introduce the notions of forward and backward divided differences.
Given a function f : R+ −→ R and any positive number ε > 0, the forward and
backward divided differences f+ : R+×R++ −→ R and f− : R+×R++ −→
R are defined as:

f+(a, ε) =
1

ε

(
f(a+ ε)− f(a)

)
,

and

f−(a, ε) =
1

ε

(
f(a)− f(a− ε)

)
.

Given the aggregated strategic Cournot oligopoly game ΓPco = (P , (XS, πS)S∈P) ∈
Gco and an admissible coalition S in P , the functions φ+

S : XS×XN\S×R++ −→
R and φ−S : XS ×XN\S × R++ −→ R are defined as:
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φ+
S (xS, xN\S, ε) = p(X + ε) + xSp+(X, ε)− C+

S (xS, ε),

and

φ−S (xS, xN\S, ε) = p(X − ε) + xSp−(X, ε)− C−S (xS, ε).

We see that an admissible coalition S ∈ P cannot benefit from increasing its
output xS by ε if and only if φ+

S (xS, xN\S, ε) ≤ 0; it cannot benefit from decreas-
ing its output xS by ε if and only if φ−S (xS, xN\S, ε) ≥ 0. Formally, the three
following properties hold:

- 0 ∈ arg maxxS∈XS πS(xS, xN\S)⇐⇒ ∀ε > 0, φ+
S (0, xN\S, ε) ≤ 0;

-
∑

i∈S qi ∈ arg maxxS∈XS πS(xS, xN\S) ⇐⇒ ∀ε > 0, φ−S (
∑

i∈S qi, x
N\S, ε) ≥

0;

- x̄S ∈ arg maxxS∈XS πS(xS, xN\S) such that x̄S ∈]0,
∑

i∈S qi[⇐⇒ ∀ε, ε′ > 0,
φ−S (x̄S, xN\S, ε) ≥ 0 ≥ φ+

S (x̄S, xN\S, ε′).

The following proposition compares equilibria under P ∈ PN and P ′ ∈ PN such
that P ′ ≤F P .

Proposition 3.3.5 Let P ∈ PN and P ′ ∈ PN be two coalition structures such
that P ′ ≤F P. Let ΓPco = (P , (XS, πS)S∈P) ∈ Gco and ΓP

′
co = (P ′, (XS, πS)S∈P ′) ∈

Gco be the aggregated strategic Cournot oligopoly games such that x̂P ∈ ϕN(ΓPco)
and x̌P ′ ∈ ϕN(ΓP

′
co ) respectively. Then, it holds that:

(i)
∑

S∈P ′ x̌S = X̌ ≤ X̂ =
∑

S∈P x̂
S;

(ii) ∀(S, T ) ∈ P × P ′ such that S ⊆ T , x̂S ≤ x̌T ;

(iii)
∑

T∈P ′\P x̌
T ≤

∑
S∈P\P ′ x̂S.

When some coalitions merge, Proposition 3.3.5 states that the total production
of the new entities decreases (point (iii)) while the other coalitions respond by
increasing their outputs (point (ii)) so that the equilibrium total production
decreases (point (i)). In order to establish the proof of Proposition 3.3.5, we
need the following lemmas.

Lemma 3.3.6 Let P ∈ PN and P ′ ∈ PN be two coalition structures for which
there exist T ∈ P ′ and Sl ∈ P, l ∈ {1, . . . , p}, p ∈ {1, . . . , n}, such that T =⋃p
l=1 Sl. Let ΓPco = (P , (XS, πS)S∈P) ∈ Gco and ΓP

′
co = (P ′, (XS, πS)S∈P ′) ∈ Gco

be the aggregated strategic Cournot oligopoly games such that x̂P ∈ ϕN(ΓPco) and
x̌P

′ ∈ ϕN(ΓP
′

co ) respectively. If X̂ ≤ X̌ then it holds that x̌T ≤
∑p

l=1 x̂
Sl.
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Proof: Let P ∈ PN and P ′ ∈ PN be two coalition structures satisfying the
conditions of Lemma 3.3.6. For any l ∈ {1, . . . , p} denote by x̌Sl the output
of subset Sl in coalition T so that

∑p
l=1 x̌

Sl = x̌T . By the definition of a Nash
equilibrium, for any ε > 0, any ε′ > 0 and any l ∈ {1, . . . , p}, it holds that:

φ+
Sl

(x̂Sl , x̂N\Sl , ε) ≤ 0,
and

p(X̌ − ε′) + x̌Tp−(X̌, ε′)− C−Sl(x̌
Sl , ε′)︸ ︷︷ ︸

Aε
′

l

≥ 0,

where the second inequality means that under x̌P ′ ∈ ϕN(ΓP
′

co ), neither coalition
T nor any of its subset Sl, l ∈ {1, . . . , p}, can benefit from decreasing their
output. For any ε > 0, any ε′ > 0 and any l ∈ {1, . . . , p}, define Ql

ε,ε′ =

φ+
Sl

(x̂Sl , x̂N\Sl , ε) − Aε
′

l ≤ 0. For the sake of contradiction suppose that there
exists l ∈ {1, . . . , p} such that x̌Sl > x̂Sl . It holds that:

Ql
ε,ε′ = p(X̂ + ε)− p(X̌ − ε′)

+ x̂Slp+(X̂, ε)− x̌Tp−(X̌, ε′)

+ C−Sl(x̌
Sl , ε′)− C+

Sl
(x̂Sl , ε).

In order to obtain a contradiction, it is sufficient to show that Ql
ε,ε′ is positive for

small enough ε and ε′ = ε. First, take ε = ε′ and ε < x̌Sl − x̂Sl . By the convexity
of individual cost functions and the definitions of C+

Sl
and C−Sl , it holds that:

C+
Sl

(x̂Sl , ε) ≤ C+
Sl

(x̌Sl − ε, ε)
= C−Sl(x̌

Sl , ε′).

By the above inequality and the differentiability of the inverse demand function
p it follows that:

lim
ε−→0

Ql
ε,ε ≥ p(X̂)− p(X̌) + x̂Sl

dp

dX
(X̂)− x̌T dp

dX
(X̌)

> 0,

where the strict inequality follows from the fact that the inverse demand function
p is strictly decreasing and concave and from the assumption x̂Sl < x̌Sl ≤ x̌T .
Hence, we obtain a contradiction with for any ε > 0 and any ε′ > 0, Ql

ε,ε′ =

φ+
Sl

(x̂Sl , x̂N\Sl , ε) − Aε′l ≤ 0. So, for any l ∈ {1, . . . , p} we have x̌Sl ≤ x̂Sl which
implies x̌T =

∑p
l=1 x̌

Sl ≤
∑p

l=1 x̂
Sl . �
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Lemma 3.3.7 Let P ∈ PN and P ′ ∈ PN be two coalition structures for which
there exist T ∈ P ′ and Sl ∈ P, l ∈ {1, . . . , p}, p ∈ {1, . . . , n}, such that T =⋃p
l=1 Sl. Let ΓPco = (P , (XS, πS)S∈P) ∈ Gco and ΓP

′
co = (P ′, (XS, πS)S∈P ′) ∈ Gco

be the aggregated strategic Cournot oligopoly games such that x̂P ∈ ϕN(ΓPco) and
x̌P

′ ∈ ϕN(ΓP
′

co ) respectively. If X̌ ≤ X̂ then it holds that for any l ∈ {1, . . . , p},
x̌T ≥ x̂Sl.

Proof: Let P ∈ PN and P ′ ∈ PN be two coalition structures satisfying the
conditions of Lemma 3.3.7. By the definition of a Nash equilibrium, for any
ε > 0, any ε′ > 0 and any l ∈ {1, . . . , p}, it holds that φ+

T (x̌T , x̌N\T , ε) ≤ 0 and
φ−Sl(x̂

Sl , x̂N\Sl , ε′) ≥ 0. For any ε > 0, any ε′ > 0 and any l ∈ {1, . . . , p}, define
Ql
ε,ε′ = φ+

T (x̌T , x̌N\T , ε) − φ−Sl(x̂
Sl , x̂N\Sl , ε′) ≤ 0. For the sake of contradiction

suppose that there exists l ∈ {1, . . . , p} such that x̂Sl > x̌T . Then, it holds that:

Ql
ε,ε′ = p(X̌ + ε)− p(X̂ − ε′)

+ x̌Tp+(X̌, ε)− x̂Slp−(X̂, ε′)

+ C−Sl(x̂
Sl , ε′)− C+

T (x̌T , ε).

As in the proof of Lemma 3.3.6, it is sufficient to show that Ql
ε,ε′ is positive for

small enough ε and ε′ = ε. First, take ε = ε′ and ε < x̂Sl − x̌T . By the convexity
of individual cost functions, the definitions of C+

T , C
+
Sl

and C−Sl , and from the
fact that it is less costly for coalition T to redistribute an extra cost than for
any of its subsets Sl, l ∈ {1, . . . , p}, it holds that:

C+
T (x̌T , ε) ≤ C+

T (x̂Sl − ε, ε)
≤ C+

Sl
(x̂Sl − ε, ε)

= C−Sl(x̂
Sl , ε′).

By the above inequality and the differentiability of the inverse demand function
p it follows that:

lim
ε−→0

Ql
ε,ε ≥ p(X̌)− p(X̂) + x̌T

dp

dX
(X̌)− x̂Sl dp

dX
(X̂)

> 0,

where the strict inequality follows from the fact that the inverse demand func-
tion p is strictly decreasing and concave and from the assumption x̂Sl > x̌T .
Hence, we obtain a contradiction with for any ε > 0 and any ε′ > 0, Ql

ε,ε′ =
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φ+
T (x̌T , x̌N\T , ε) − φ−Sl(x̂

Sl , x̂N\Sl , ε′) ≤ 0. So, for any l ∈ {1, . . . , p} we have
x̌T ≥ x̂Sl . �

Now, we are ready to establish the proof of Proposition 3.3.5.

Proof: First, in order to prove (i), for the sake of contradiction suppose that
X̂ < X̌. Since P ′ ≤F P , for any T ∈ P ′ there exists Sl ∈ P , l ∈ {1, . . . , p},
p ∈ {1, . . . , n}, such that T =

⋃p
l=1 Sl. It follows from Lemma 3.3.6 that for any

T ∈ P ′ and any Sl ∈ P , l ∈ {1, . . . , p}, we have x̌T ≤
∑p

l=1 x̂
Sl , and so X̌ ≤ X̂,

a contradiction.
Then, point (ii) follows directly from (i) and Lemma 3.3.7.
Finally, point (iii) is a consequence of points (i) and (ii). Indeed, by (i) it holds
that:

X̌ ≤ X̂ ⇐⇒
∑
T∈P ′

x̌T ≤
∑
S∈P

x̂S

⇐⇒
∑

T∈P ′\P

x̌T +
∑

T∈P ′∩P

x̌T ≤
∑

S∈P\P ′

x̂S +
∑

S∈P∩P ′

x̂S

⇐⇒
∑

T∈P ′∩P

x̌T −
∑

S∈P∩P ′

x̂S ≤
∑

S∈P\P ′

x̂S −
∑

T∈P ′\P

x̌T (3.6)

Moreover, by (ii) it follows that:∑
T∈P ′∩P

x̌T −
∑

S∈P∩P ′

x̂S ≥ 0 (3.7)

Using (3.6) and (3.7) we obtain
∑

T∈P ′\P x̌
T ≤

∑
S∈P\P ′ x̂S. �

Point (iii) of Proposition 3.3.5 cannot be improved in the sense that it does
not always hold that for any T ∈ P ′ and any Sl ∈ P , l ∈ {1, . . . , p}, such
that T =

⋃p
l=1 Sl, we have x̌T ≤

∑p
l=1 x̂

Sl . This is illustrated in the following
example.

Example 3.3.8

Consider the Cournot oligopoly situation (N, (qi, Ci)i∈N , p) whereN = {1, . . . , 8},
for any i ∈ N , qi = 3/2 and Ci(xi) = xi, and the inverse demand func-
tion is defined as p(X) = 12 − X. Let P = {{i} : i ∈ N} ∈ PN and P ′ =
{{1, 2}, {3, 4, 5}, {6, 7, 8}} ∈ PN be two coalition structures such that P ′ ≤F P .
For the aggregated strategic Cournot oligopoly games ΓPco = (P , (XS, πS)S∈P) ∈
Gco and ΓP

′
co = (P ′, (XS, πS)S∈P ′) ∈ Gco, the Nash equilibria of ΓPco and ΓP

′
co are
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given by, for any i ∈ N , x̂{i} = 11/9 and x̌P ′
= (11/4, 11/4, 11/4) respectively.

So, it holds that x̌{1,2} = 11/4 > 22/9 = x̂{1} + x̂{2}. �

We saw that the Nash equilibrium outputs of the aggregated strategic Cournot
oligopoly game ΓPco = (P , (XS, πS)S∈P) ∈ Gco are equal to the aggregated
equilibrium outputs under P of the strategic Cournot oligopoly game Γco =
(N, (Xi, πi)i∈N) ∈ Gco. For notational convenience, given a strategic Cournot
oligopoly game Γco = (N, (Xi, πi)i∈N) ∈ Gco and any coalition S ∈ 2N\{∅} where
(x∗S, x̃N\S) ∈ ϕPA(Γco, S), we denote by XP,S the total production enforced
by the partial agreement equilibrium under S:

XP,S =
∑
i∈S

x∗i +
∑
i∈N\S

x̃i.

For any partial agreement equilibrium, we deduce from Proposition 3.3.5 the
following corollary.

Corollary 3.3.9 Let Γco = (N, (Xi, πi)i∈N) ∈ Gco be a strategic Cournot
oligopoly game. Let S ∈ 2N\{∅} and T ∈ 2N\{∅} such that S ⊆ T where
(x∗S, x̃N\S) ∈ ϕPA(Γco, S) and (y∗T , ỹN\T ) ∈ ϕPA(Γco, T ). Then it holds that:

(i) XP,S ≥ XP,T ;

(ii) ∀i ∈ N\T , x̃i ≤ ỹi;

(iii)
∑

i∈S x
∗
i ≤

∑
i∈T y

∗
i ;

(iv)
∑

i∈T y
∗
i ≤

∑
i∈S x

∗
i +

∑
i∈T\S x̃i.

Points (ii) and (iii) follow from (ii) of Proposition 3.3.5. Point (i) says that
the total production decreases from the partial agreement equilibrium under S
to the partial agreement equilibrium under T . Point (ii) stipulates that firms
outside T increase their output from the partial agreement equilibrium under
S to the partial agreement equilibrium under T . According to points (iii) and
(iv), the equilibrium output of coalition S is less than or equal to the one of
coalition T but becomes greater if we add the equilibrium outputs of firms in T
outside S. Corollary 3.3.9 is illustrated in the figure below:

N = S ∪ {j0, j1, . . . , jq}, q ∈ {0, . . . , n− 2}, k ∈ {0, . . . , q − 1}

XP,TT = S ∪ {j0, . . . , jk} {jk+1} . . . {jq}

XP,SS {j0} . . . . . . {jk} {jk+1} . . . {jq}

                                                  ≤ ≥ ≥ ≥ ≤
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3.4 Concavity and balancedness property

In this section, we analyze the non-emptiness of the core of Cournot oligopoly
TU-games in γ-characteristic function form. The main result states that if any
individual profit function is continuous and concave on the set of strategy pro-
files, the corresponding Cournot oligopoly TU-game in γ-characteristic function
form is balanced.

Theorem 3.4.1 Let Γco = (N, (Xi, πi)i∈N) ∈ Gco be a strategic Cournot oligopoly
game such that for any i ∈ N , πi is concave on XN . Then the corresponding
Cournot oligopoly TU-game (N, vγ) ∈ Gγ

co is balanced.

In order to establish the proof of Theorem 3.4.1, we need the following lemma.
Given a strategic Cournot oligopoly game Γco = (N, (Xi, πi)i∈N) ∈ Gco, a bal-
anced family of coalitions B ⊆ 2N\{∅} where for any S ∈ B, (x∗S, x̃N\S) ∈
ϕPA(Γco, S), we define the strategy profile y ∈ XN as:

∀i ∈ N, yi =
∑
S∈Bi

δSx
∗
i (3.8)

Lemma 3.4.2 Let Γco = (N, (Xi, πi)i∈N) ∈ Gco be a strategic Cournot oligopoly
game such that z∗ ∈ ϕN(Γco). Let y ∈ XN be a strategy profile as defined in
(3.8). Then it holds that:

∀j ∈ N,
∑
S∈Bj

δSX
P,S ≥ Y ,

where Y =
∑

i∈N yi.

Proof: Pick any j ∈ N . First, for any S ∈ Bj where Bj = {S ∈ B : j ∈ S}, we
show that:

∑
S∈Bj

δS
∑
i∈N\S

x̃i ≥
∑

S∈B\Bj

δS
∑
i∈S

x∗i (3.9)

By (ii) and (iv) of Corollary 3.3.9, it follows that:
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∑
S∈Bj

δS
∑
i∈N\S

x̃i ≥
∑
S∈Bj

δS
∑
i∈N\S

z∗i

=
∑
S∈Bj

δS

(∑
i∈N

z∗i −
∑
i∈S

z∗i

)
=
∑
i∈N

z∗i −
∑
S∈Bj

δS
∑
i∈S

z∗i

=
∑
S∈B

δS
∑
i∈S

z∗i −
∑
S∈Bj

δS
∑
i∈S

z∗i

=
∑

S∈B\Bj

δS
∑
i∈S

z∗i

≥
∑

S∈B\Bj

δS
∑
i∈S

x∗i .

Thus, by (3.9) it holds that:

∑
S∈Bj

δSX
P,S =

∑
S∈Bj

δS
∑
i∈S

x∗i +
∑
S∈Bj

δS
∑
i∈N\S

x̃i

≥
∑
S∈Bj

δS
∑
i∈S

x∗i +
∑

S∈B\Bj

δS
∑
i∈S

x∗i

=
∑
S∈B

δS
∑
i∈S

x∗i

=
∑
i∈N

∑
S∈Bi

δSx
∗
i

= Y ,

which completes the proof. �

Helm (2001) obtains a similar result for pollution games. Now, we are ready to
establish the proof of Theorem 3.4.1.

Proof (of Theorem 3.4.1): Let B ⊆ 2N\{∅} be a balanced family of coalitions
and y ∈ XN be a strategy profile as defined in (3.8). By the concavity of any
individual profit function πi on XN , Lemma 3.4.2 and the strict monotonicity of
the inverse demand function, and the Pareto efficiency of the worth of the grand
coalition it holds that:
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∑
S∈B

δSvγ(S) =
∑
S∈B

δSπS(x∗S, x̃N\S)

=
∑
S∈B

δS
∑
i∈S

πi(x
∗
S, x̃N\S)

=
∑
i∈N

∑
S∈Bi

δSπi(x
∗
S, x̃N\S)

≤
∑
i∈N

πi

(∑
S∈Bi

δS(x∗S, x̃N\S)

)

=
∑
i∈N

[
p

(∑
S∈Bi

δSX
P,S

)
yi − Ci(yi)

]
≤ p(Y )Y −

∑
i∈N

Ci(yi)

≤ vγ(N),

which completes the proof. �

The concave condition in Theorem 3.4.1 is a sufficient condition for the non-
emptiness of the core but it is not a necessary one. This is illustrated in the
following example.

Example 3.4.3

Consider the Cournot oligopoly TU-game (N, vγ) ∈ Gγ
co associated with the

Cournot oligopoly situation (N, (qi, Ci)i∈N , p) where N = {1, 2, 3}, q1 = 5, q2 =
1, q3 = 2, C1(x1) = x1, C2(x2) = 2x2, C3(x3) = 2x3 and the inverse demand
function is defined as p(X) = 10 − X. Clearly, any individual profit function
is not concave on XN . The worth of any coalition S ∈ 2N\{∅} is given in the
following table:

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
vγ(S) 9 2 4 12.25 16 5.44 20.25

We can easily check that σ = (13.25, 3, 4) is in the core. �

3.5 The Nash pro rata value
Although the concave condition seems to be a natural requirement in order
to guarantee the non-emptiness of the core, many strategic Cournot oligopoly
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games fail to satisfy it. For instance, given a linear Cournot oligopoly situation
where p(X) = a −X, a ∈ R++, and for any i ∈ N , Ci(xi) = cixi, ci ∈ R+, any
individual profit function is quadratic but it is not concave on XN as in Example
3.4.3.
In this section, we adopt an alternative approach that consists in providing a
single-valued solution, the Nash pro rata value, in the core without the con-
cavity requirement. We succeed in doing that by assuming that individual cost
functions are linear and that firms have identical marginal costs:

∃c ∈ R+ : ∀i ∈ N, Ci(xi) = cxi (3.10)

We do not impose any other condition on the capacity constraints and the in-
verse demand function. We denote by Gγ∗

co ⊆ Gγ
co the set of Cournot oligopoly

TU-games in γ-characteristic function form derived from Cournot
oligopoly situations satisfying (3.10).
For notational convenience, given the strategic Cournot oligopoly game Γco =
(N, (Xi, πi)i∈N) ∈ Gco and z∗ ∈ ϕN(Γco) we denote by XP,∅ =

∑
i∈N z

∗
i the to-

tal output under the Nash equilibrium. Given a Cournot oligopoly TU-game
(N, vγ) ∈ Gγ∗

co , the NP(Nash pro rata) value is a single-valued solution de-
fined as:

∀i ∈ N,NPi(N, vγ) =

{
z∗i
XP,∅vγ(N) if XP,∅ > 0,

0 otherwise.
The NP value distributes to every firm the worth of the grand coalition in
proportion to its Nash individual output.

Theorem 3.5.1 Let (N, vγ) ∈ Gγ∗
co be a Cournot oligopoly TU-game associated

with the strategic Cournot oligopoly game Γco = (N, (Xi, πi)i∈N) ∈ Gco. Then, it
holds that NP(N, vγ) ∈ C(N, vγ).

Proof: First, let z∗ ∈ ϕN(Γco) and assume that XP,∅ = 0. By (i) of Corollary
3.3.9, for any coalition S ∈ 2N\{∅} we have XP,S = 0, and so vγ(S) = 0. In this
case, it is obvious that NP(N, vγ) ∈ C(N, vγ).
Then, let z∗ ∈ ϕN(Γco) and assume that XP,∅ > 0. For the sake of contradiction
suppose that NP(N, vγ) 6∈ C(N, vγ), i.e. there exists a deviating coalition S ∈
2N\{∅} such that vγ(S) >

∑
i∈S NPi(N, vγ). It follows that vγ(S) > 0 and so

XP,S > 0. Given (x∗S, x̃N\S) ∈ ϕPA(Γco, S), we define the payoff vector σS ∈ Rn

as:

∀i ∈ N, σS,i =
vγ(N)

XP,S
αi,
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where

αi =

{
x∗i if i ∈ S,
x̃i if i ∈ N\S.

From (i) and (ii) of Corollary 3.3.9, we know that XP,S ≤ XP,∅ and for any i ∈
N\S, z∗i ≤ x̃i respectively. This implies that for any i ∈ N\S, σS,i ≥ NPi(N, vγ).
Moreover, by the Pareto efficiency of the worth of the grand coalition and the
contradicting assumption it holds that:

∑
i∈S

σS,i =
vγ(N)

XP,S

∑
i∈S

x∗i

≥ 1

XP,S

(
p(XP,S)XP,S − cXP,S

)∑
i∈S

x∗i

= p(XP,S)
∑
i∈S

x∗i − c
∑
i∈S

x∗i

= vγ(S)

>
∑
i∈S

NPi(N, vγ).

Thus, we obtain
∑

i∈N σS,i >
∑

i∈N NPi(N, vγ) and
∑

i∈N σS,i = vγ(N) =∑
i∈N NPi(N, vγ), a contradiction. �

Note that for large capacity constraints the NP value is equal to the equal divi-
sion solution that distributes vγ(N) equally among the firms since in this case
for any i ∈ N and any j ∈ N , z∗i = z∗j . Funaki and Yamato (1999) show that
the equal division solution belongs to the core under pessimistic expectations of
a common pool game without any capacity constraint. Since this game belongs
to the set Gγ∗

co , Theorem 3.5.1 generalizes their result to the case of asymmetric
capacity constraints. Thus, the NP value is a single-valued solution that always
belongs to the core and takes into account firms’ capacity constraints.

From the regulator point of view it is interesting to know which properties are
satisfied by the NP value. On the set Gγ∗

co , the NP value can be characterized by
means of four properties: efficiency, null firm, monotonicity and non-cooperative
fairness. A single-valued solution F on Gγ∗

co ⊆ G satisfies:

- efficiency: if for any (N, vγ) ∈ Gγ∗
co ,
∑

i∈N Fi(N, vγ) = vγ(N); (EFF)

- null firm: if for any (N, vγ) ∈ Gγ∗
co , for any i ∈ N such that qi = 0,

Fi(N, vγ) = 0; (NF)
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- monotonicity: if for any (N, vγ) ∈ Gγ∗
co , for any i ∈ N and any j ∈ N

such that qi ≥ qj, Fi(N, vγ) ≥ Fj(N, vγ); (M)

- non-cooperative fairness: if for any (N, vγ) ∈ Gγ∗
co , for any i ∈ N and

any j ∈ N , vγ({j})Fi(N, vγ) = vγ({i})Fj(N, vγ). (NCF)

Theorem 3.5.2 A single-valued solution F on Gγ∗
co satisfies (EFF), (NF), (M)

and (NCF) if and only if F = NP.

Proof: Pick any Cournot oligopoly TU-game (N, vγ) ∈ Gγ∗
co associated with

a strategic Cournot oligopoly game Γco = (N, (Xi, πi)i∈N) ∈ Gco and let z∗ ∈
ϕN(Γco).
Firstly, we show that the NP value satisfies (EFF). Assume that XP,∅ = 0.
It follows that for any i ∈ N , NPi(N, vγ) = 0. Moreover, by (i) of Corollary
3.3.9 we have XP,N = 0, and so

∑
i∈N NPi(N, vγ) = vγ(N) = 0. Then, as-

sume that XP,∅ > 0. By the definition of the NP value we see directly that∑
i∈N NPi(N, vγ) = vγ(N).

Secondly, we show that the NP value satisfies (NF). Pick any i ∈ N such that
qi = 0. Assume that XP,∅ = 0. By the definition of the NP value we have
NPi(N, vγ) = 0. Then, assume that XP,∅ > 0. Since qi = 0 it follows that
z∗i = 0, and so by the definition of the NP value we have NPi(N, vγ) = 0.
Thirdly, we show that the NP value satisfies (M). Pick any i ∈ N and any j ∈ N
such that qj ≥ qi. Assume that XP,∅ = 0. By the definition of the NP value we
have NPj(N, vγ) = NPi(N, vγ) = 0. Then, assume that XP,∅ > 0. From qj ≥ qi
and (N, vγ) ∈ Gγ∗

co it follows that z∗j ≥ z∗i , and so by the definition of the NP
value we have NPj(N, vγ) ≥ NPi(N, vγ).
Fourthly, we show that the NP value satisfies (NCF). Assume that XP,∅ = 0. It
follows that for any i ∈ N , NPi(N, vγ) = 0, and so for any i ∈ N and any j ∈ N ,
vγ({j})NPi(N, vγ) = vγ({i})NPj(N, vγ) = 0. Then, assume that XP,∅ > 0. For
any i ∈ N and any j ∈ N it holds that:

vγ({j})NPi(N, vγ) =
(
p(XP,∅)− c

)
z∗j

z∗i
XP,∅vγ(N)

=
(
p(XP,∅)− c

)
z∗i

z∗j

XP,∅vγ(N)

= vγ({i})NPj(N, vγ).

It remains to show that the NP value is the unique single-valued solution on
the set Gγ∗

co that satisfies (EFF), (NF), (M) and (NCF). Pick any single-valued
solution F on Gγ∗

co satisfying (EFF), (NF), (M) and (NCF) and prove that it
is equal to the NP value. By (EFF), we know that

∑
i∈N Fi(N, vγ) = vγ(N).
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Moreover, (NF) and (M) ensures that for any i ∈ N , Fi(N, vγ) ≥ 0. Thus, there
exists a mapping β : Gγ∗

co −→ Rn
+ such that:

∀i ∈ N, Fi(N, vγ) =
βi(N, vγ)∑

j∈N

βj(N, vγ)
vγ(N) (3.11)

Assume that XP,∅ = 0. By (i) of Corollary 3.3.9 we have XP,N = 0, and so
vγ(N) = 0. It follows that for any i ∈ N , Fi(N, vγ) = NPi(N, vγ) = 0. Then, as-
sume that XP,∅ > 0. Without loss of generality, suppose that

∑
i∈N βi(N, vγ) =

XP,∅. By (3.11) and (NCF) it holds that:

∀i ∈ N,∀j ∈ N, vγ({j})βi(N, vγ) = vγ({i})βj(N, vγ).
For any i ∈ N , by summing the equations above over all j ∈ N it holds that:∑

j∈N

vγ({j})βi(N, vγ) = vγ({i})
∑
j∈N

βj(N, vγ),

which is equivalent to(
p(XP,∅)− c

)
XP,∅βi(N, vγ) =

(
p(XP,∅)− c

)
z∗iX

P,∅,

and so

βi(N, vγ) = z∗i .

Thus, we conclude that for any i ∈ N , Fi(N, vγ) = NPi(N, vγ). �

One can ask whether Cournot oligopoly TU-games in γ-characteristic function
form are superadditive or convex. Norde et al. (2002) establish that Cournot
oligopoly TU-games in β-characteristic function form are convex in case the
inverse demand function and individual cost functions are linear. The following
example shows that this result cannot be extended on the set Gγ∗

co ⊆ Gγ
co.

Example 3.5.3

Let (N, vγ) ∈ Gγ∗
co be a Cournot oligopoly TU-game derived from the Cournot

oligopoly situation (N, (qi, Ci)i∈N , p) where N = {1, 2, 3}, q1 = 3/2, q2 = 3,
q3 = 5/2, for any i ∈ N , Ci(xi) = 2xi, and the inverse demand function is
defined as p(X) = 10 −X. The worth of any coalition S ∈ 2N\{∅} is given in
the following table:

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
vγ(S) 3.25 4.69 4.69 7.56 7.56 10.56 16



60 Chapter 3

Thus, vγ({1, 2}) < vγ({1}) + vγ({2}). We conclude that (N, vγ) ∈ Gγ∗
co is neither

superadditive nor convex. �

3.6 Concluding remarks

In this chapter, we have focused on the set of Cournot oligopoly TU-games in
γ-characteristic function form. When a coalition forms, the underlying assump-
tion is that external firms choose their action individually as a best reply to the
coalitional action (Chander and Tulkens 1997). This assumption seems more
appropriate than the maximin and minimax arguments suggested by Aumann
(1959) which lead to the concepts of α and β-characteristic functions respec-
tively.
In order to verify that the γ-characteristic function is well-defined, we have
proved that an equilibrium under any coalition structure exists. We have studied
the variations of equilibrium outputs of any coalition according to the coarseness
of the coalition structure in which it is embedded. We have showed that total
production equilibrium is decreasing with the coarseness of the coalition struc-
ture. This result is explained by the mergers between coalitions that occurred.
Conversely, the other coalitions which do not merge increase their output.
Concerning the non-emptiness of the core, we have first established that Cournot
oligopoly TU-games in γ-characteristic function form are balanced if the inverse
demand function is differentiable and any individual profit function is continuous
and concave on the set of strategy profiles. This result is a step forward beyond
Zhao’s theorem (1999b) for the set of Cournot oligopoly TU-games. However,
many strategic Cournot oligopoly games fail to satisfy the concavity condition.
In particular, this is the case when the inverse demand function and individual
cost functions are linear. Thus, in case of the individual cost functions are linear
and firms have identical marginal costs, we have introduced a new single-valued
solution, the NP value, that distributes to every firm the worth of the grand
coalition in proportion to its Nash individual output. We have showed that this
solution belongs to the core. Insofar as our Cournot oligopoly situation also
describes a common pool situation, this result generalizes Funaki and Yamato’s
core allocation result (1999) to the case of asymmetric capacity constraints.
Moreover, we have provided an axiomatic characterization of the NP value by
means of four appealing properties in oligopoly theory.
van den Brink (2008) proposes an axiomatic characterization of a set of single-
valued proportional solutions with exogenous weights. We denote by ∆n =
{δ ∈ Rn

+ :
∑

i∈N δi = 1} the (n−1)-dimensional unit simplex. Given a TU-game
(N, v) ∈ G and δ ∈ ∆n, the single-valued proportional solution F δ(N, v) is
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defined as:

∀i ∈ N, F δ
i (N, v) =

δi∑
j∈N δj

v(N).

van den Brink (2008) characterizes this set of single-valued proportional solu-
tions by means of three axioms: efficiency, collusion neutrality and linearity. We
know that the NP value is efficient on Gγ∗

co . However, it fails to satisfy collusion
neutrality and linearity. We have characterized a single-valued proportional so-
lution with endogenous weights (Nash individual outputs) on the set Gγ∗

co . An
axiomatic characterization of a single-valued proportional solution with endoge-
nous weights on the set G would be of the greatest interest.
Other alternative blocking rules can be considered. For instance, firms in N\S
can choose coalitional (rather than individual) best reply strategies. In this case,
in order to determine the worth of any coalition S ∈ 2N\{∅}, the equilibrium un-
der the coalition structure P = {S,N\S} must be considered. However, Funaki
and Yamato (1999) show that the associated core under optimistic expectations
of a common pool game is always empty for n ≥ 4 in case of the individual cost
functions are identical and linear. This result remains valid for our model.
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Chapter 4

The core in Cournot oligopoly
interval games

4.1 Introduction

In this chapter, which is based on Lardon (2010b), we relax the assumption
on the differentiability of the inverse demand function in Chapter 3 which en-
sures that the γ-characteristic function is well-defined. Indeed, in many Cournot
oligopoly situations the inverse demand function may not be differentiable. For
instance, Katzner (1968) shows that demand functions derived from quite nice
consumers’ individual utility functions, even twice continuously differentiable,
may not be differentiable everywhere.
So, we assume that the inverse demand function is continuous but not necessarily
differentiable. With such an assumption, Example 3.3.4 shows that we cannot
always define a Cournot oligopoly TU-game in γ-characteristic function form
since the worth of any coalition is not necessarily unique. However, we prove
that we can always specify a Cournot oligopoly interval game in γ-set function
form, i.e. we can assign to any coalition a closed and bounded real interval
that represents all its potential worths enforced by the set of partial agreement
equilibria. We deal with the problem of the non-emptiness of two extensions of
the core on the set of interval games: the interval core and the standard core.
To this end, we use a decision theory criterion, the Hurwicz criterion (Hurwicz
1951), that consists in combining for any coalition the worst and the best worths
that it can obtain in its worth interval. The first result states that the interval
core is non-empty if and only if the Cournot oligopoly TU-game associated with
the best worth of every coalition in its worth interval admits a non-empty core.
However, we show that even for a very simple Cournot oligopoly situation, this
condition fails to be satisfied. The second result states that the standard core

63
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is non-empty if and only if the Cournot oligopoly TU-game associated with the
worst worth of every coalition in its worth interval admits a non-empty core.
Moreover, we provide sufficient conditions on any individual profit function and
any individual cost function under which this condition always holds. This re-
sult substantially extends the results in Theorems 3.4.1 and 3.5.1.

The remainder of this chapter is structured as follows. In Section 4.2, we
introduce the model and prove that the γ-set function is well-defined. In Section
4.3, we introduce the Hurwicz criterion and provide a necessary and sufficient
condition for the non-emptiness of each of the core solutions: the interval core
and the standard core. Section 4.4 gives some concluding remarks.

4.2 The model

For the sake of clarity, we briefly recall some definitions established in Chapter
3. A Cournot oligopoly situation is a quadruplet (N, (qi, Ci)i∈N , p) defined
as:

1. a finite set of firms N = {1, 2, . . . , n};

2. for every i ∈ N , a capacity constraint qi ∈ R+;

3. for every i ∈ N , an individual cost function Ci : R+ −→ R+;

4. an inverse demand function p : R+ −→ R+ which assigns to any ag-
gregate quantity X ∈ R+ the unit price p(X).

Throughout this chapter, we assume that:

(c) the inverse demand function p is continuous, strictly decreasing and con-
cave;

(d) every individual cost function Ci is continuous, strictly increasing and
convex.

The strategic Cournot oligopoly game associated with the Cournot oligopoly
situation (N, (qi, Ci)i∈N , p) is a triplet Γco = (N, (Xi, πi)i∈N) defined as:

1. a finite set of firms N = {1, 2, . . . , n};

2. for every i ∈ N , an individual strategy set Xi = [0, qi] ⊂ R+ where
xi ∈ Xi represents the quantity produced by firm i;
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3. for every i ∈ N , an individual profit function πi : XN −→ R+ defined
as:

πi(x) = p(X)xi − Ci(xi),

where X =
∑

i∈N xi is the total production.

We denote by Gco ⊆ G the set of strategic Cournot oligopoly games. For
any coalition S ∈ 2N\{∅}, the coalition profit function πS : XS×XN\S −→ R
is defined as:

πS(xS, xN\S) =
∑
i∈S

πi(x).

Given a set of firms N = {1, 2, . . . , n}, a coalition structure P is a partition
of N , i.e. P = {S1, . . . , Sk}, k ∈ {1, . . . , n}. An element of a coalition structure,
S ∈ P , is called an admissible coalition in P . We denote by PN the set of
coalition structures with player set N .

The aggregated strategic Cournot oligopoly game associated with a strate-
gic Cournot oligopoly game Γco = (N, (Xi, πi)i∈N) ∈ Gco and a coalition structure
P ∈ PN is a triplet ΓPco = (P , (XS, πS)S∈P) ∈ Gco defined as:

1. a set of cartels (or admissible coalitions) P = {S1, . . . , Sk};

2. for every S ∈ P , an aggregated coalition strategy setXS = [0,
∑

i∈S qi]
where xS =

∑
i∈S xi ∈ XS represents the aggregated quantity produced

by coalition S;

3. for every S ∈ P , an aggregated coalition cost function CS : XS −→
R+ defined as:

CS(xS) = min
xS∈I(xS)

∑
i∈S

Ci(xi),

where I(xS) = {xS ∈ XS :
∑

i∈S xi = xS} is the set of strategies of coali-
tion S that permit it to produce the quantity xS; for every S ∈ P , an
aggregated coalition profit function πS :

∏
S∈P X

S −→ R defined as:

πS(xP) = p(X)xS − CS(xS).
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We denote by XP =
∏

S∈P X
S the set of strategy profiles and for any admis-

sible coalition S ∈ P , we denote by XN\S =
∏

T∈P\{S}X
T the set of outsiders’

strategy profiles where xP and xN\S are the representative elements of XP
and XN\S respectively.

Now, given a strategic Cournot oligopoly game Γco = (N, (Xi, πi)i∈N) ∈
Gco, we want to associate a cooperative Cournot oligopoly game following the
blocking rule according to which outsiders choose their action individually as
a best reply to the coalitional action (Chander and Tulkens 1997). As showed
in Example 3.3.4, under assumptions (c) and (d) we cannot always define a
Cournot oligopoly TU-game in γ-characteristic function form. Recall that given
a strategic Cournot oligopoly game Γco = (N, (Xi, πi)i∈N) ∈ Gco, the associated
Cournot oligopoly TU-game in γ-characteristic function form, denoted
by (N, vγ), is defined for any coalition S ∈ 2N\{∅} as:

vγ(S) = πS(x∗S, x̃N\S),

where (x∗S, x̃N\S) ∈ ϕPA(Γco, S). We denote by Gγ
co ⊆ G the set of Cournot

oligopoly TU-games in γ-characteristic function form.

In this section, under assumptions (c) and (d) we show that it is possible to define
a Cournot oligopoly interval game in γ-set function form. Given a strategic
Cournot oligopoly game Γco = (N, (Xi, πi)i∈N) ∈ Gco, the associated Cournot
oligopoly interval game in γ-set function form, denoted by (N,wγ), is
defined for any coalition S ∈ 2N\{∅} as:

wγ(S) = πS(ϕPA(Γco, S)).

We will show that the set function wγ is well-defined, i.e. for any coalition
S ∈ 2N\{∅}, the worth interval wγ(S) is closed and bounded. The worth inter-
val wγ(S) of any coalition S ∈ 2N\{∅} is denoted by [wγ(S), wγ(S)] where wγ(S)
and wγ(S) are the minimal and the maximal profits of S enforced by ϕPA(Γco, S)
respectively. Note that by the compacity of any individual strategy set and the
continuity of any individual profit function, there exists a unique partial agree-
ment equilibrium under N . Hence, the worth of the grand coalition N is unique,
and so its worth interval wγ(N) is always degenerate, i.e. wγ(N) = wγ(N). We
denote by IGγ

co ⊆ IG the set of Cournot oligopoly interval games in γ-set
function form.

In the remainder of this section we want to show that the γ-set function is
well-defined. In order to do that, we adopt a more general approach in which any
coalition structure can occur. First, we need to express the Nash equilibrium
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of any aggregated strategic Cournot oligopoly game as the fixed point of a one-
dimensional correspondence. To this end, we define the following notions. Given
the aggregated strategic Cournot oligopoly game ΓPco = (P , (XS, πS)S∈P) ∈ Gco,
for any admissible coalition S ∈ P the aggregated coalition profit function*
ψS : XS ×XS ×XN −→ R is defined as:

∀xS ≤ X, ψS(yS, xS, X) = p(X − xS + yS)yS − CS(yS),

and represents the profit of coalition S after changing its strategy from xS to yS
when the total production was X. For any S ∈ P , the best reply correspon-
dence RS : XN � XS is defined as:

RS(X) =

{
xS ∈ XS : xS ∈ arg max

yS∈XS
ψS(yS, xS, X)

}
.

The one-dimensional correspondence RP : XN � XN is defined as:

RP(X) =

{
Y ∈ XN : Y =

∑
S∈P

xS and ∀S ∈ P , xS ∈ RS(X)

}
.

Given an aggregated strategic Cournot oligopoly game, the following proposi-
tion expresses any Nash equilibrium as the fixed point of the one-dimensional
correspondence defined above.

Proposition 4.2.1 Let ΓPco = (P , (XS, πS)S∈P) ∈ Gco be an aggregated strategic
Cournot oligopoly game. Then, it holds that x̂P ∈ ϕN(ΓPco) if and only if X̂ ∈
RP(X̂) such that X̂ =

∑
S∈P x̂

S.

Proof: [=⇒]: Let x̂P ∈ ϕN(ΓPco) and X̂ =
∑

S∈P x̂
S. By the definition of the

Nash equilibrium, for any S ∈ P it holds that:

πS(x̂S, x̂N\S) = max
xS∈XS

πS(xS, x̂N\S)

⇐⇒ p(X̂ − x̂S + x̂S)x̂S − CS(x̂S) = max
xS∈XS

p(X̂ − x̂S + xS)xS − CS(xS)

⇐⇒ ψS(x̂S, x̂S, X̂) = max
xS∈XS

ψS(xS, x̂S, X̂)

⇐⇒ x̂S ∈ RS(X̂).

Hence, we conclude that X̂ ∈ RP(X̂).
[⇐=]: Let X̂ ∈ RP(X̂). By the definition of RP , it holds that X̂ =

∑
S∈P x̂

S and
for any S ∈ P , x̂S ∈ RS(X̂). By a similar argument to the one in the first part
of the proof, it follows that for any S ∈ P , x̂S ∈ arg maxxS∈XS πS(xS, x̂N\S), and
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therefore x̂P ∈ ϕN(ΓPco). �

Given an aggregated strategic Cournot oligopoly game, the following proposition
establishes some properties on the set of Nash equilibria.

Proposition 4.2.2 Let ΓPco = (P , (XS, πS)S∈P) ∈ Gco be an aggregated strategic
Cournot oligopoly game. Then, it holds that:

(i) the set of Nash equilibria ϕN(ΓPco) is a polyhedron;

(ii) the equilibrium total output is the same for any Nash equilibrium:

∃X̄ ∈ XN : ∀x̂P ∈ ϕN(ΓPco),
∑
S∈P

x̂S = X̄;

(iii) for any S ∈ P, the set πS(ϕN(ΓPco)) is a compact (closed and bounded) real
interval.

Proof: First, we show points (i) and (ii). For any S ∈ P , XS is compact
and convex and the aggregated coalition cost function CS is continuous, strictly
increasing and convex. The properties of the aggregated coalition cost function
CS follow from the continuity, the strict monotonicity and the convexity of any
individual cost function Ci. Moreover, the inverse demand function p is contin-
uous, strictly decreasing and concave. It follows from Theorem 3.3.3 (page 30)
in Okuguchi and Szidarovszky (1990) that ϕN(ΓPco) is a polyhedron and that the
equilibrium total output X̄ is the same for any Nash equilibrium which proves
points (i) and (ii).
Then, we prove point (iii). From Lemma 3.3.1 (page 27) in Okuguchi and Szi-
darovszky (1990) we deduce for any S ∈ P and any X ∈ XN that RS(X) is a
(possibly degenerate) closed interval which we denote by [αS(X), βS(X)]. For
any S ∈ P , RS(X) is also bounded as the subset of the bounded aggregated
coalition strategy set XS. By point (ii), we know that there exists a unique
equilibrium total output X̄. It follows that the polyhedron ϕN(ΓPco) can be rep-
resented as the intersection of the orthotope (hyperrectangle)

∏
S∈P RS(X̄) =∏

S∈P [αS(X̄), βS(X̄)] and the hyperplane
{
xP ∈ XP :

∑
S∈P x

S = X̄
}
:

ϕN(ΓPco) =

{
xP ∈ XP : ∀S ∈ P , xS ∈ [αS(X̄), βS(X̄)] and

∑
S∈P

xS = X̄

}
.

The polyhedron ϕN(ΓPco) is compact and convex as the intersection of two com-
pact and convex sets. Since a convex set is always connected, we deduce that
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the polyhedron ϕN(ΓPco) is compact and connected. Moreover, the continuity of
the inverse demand function p and any aggregated coalition cost function CS
implies that the aggregated coalition profit function πS is continuous. It follows
that the set πS(ϕN(ΓPco)) is compact and connected as the image of a compact
and connected set by a continuous function. Since a subset of R is connected
if and only if it is an interval, we conclude that πS(ϕN(ΓPco)) is a compact real
interval, which proves point (iii). �

Point (ii) of Proposition 4.2.2 implies that X̄ is the unique fixed point of the one-
dimensional correspondence RP . Moreover, we deduce from (iii) of Proposition
4.2.2 the following corollary.

Corollary 4.2.3 Let Γco = (N, (Xi, πi)i∈N) ∈ Gco be a strategic Cournot
oligopoly game. Then for any coalition S ∈ 2N\{∅}, the set of profits of S
enforced by the set of partial agreement equilibria under S, πS(ϕPA(Γco, S)), is
a compact (closed and bounded) real interval.

Proof: Take any coalition S ∈ 2N\{∅}. Consider the coalition structure PS =
{S} ∪ {{i} : i ∈ N\S} ∈ PN and the aggregated strategic Cournot oligopoly
game ΓP

S

co = (PS, (XT , πT )T∈PS) ∈ Gco. It follows from the first part of the
proof of Proposition 3.3.1 that the set of profits of S enforced by ϕPA(Γco, S)
and the set of profits of S enforced by ϕN(ΓP

S

co ) are equal:

πS(ϕPA(Γco, S)) = πS(ϕN(ΓP
S

co )).

Hence, from point (iii) of Proposition 4.2.2 we conclude that πS(ϕPA(Γco, S)) is
a compact real interval. �

Under assumptions (c) and (d), it follows from Corollary 4.2.3 that the γ-set
function is well-defined, and so we can always specify a Cournot oligopoly inter-
val game in γ-set function form.

4.3 The non-emptiness of the cores
In this section we deal with the problem of the non-emptiness of the interval
core and the standard core on the set of Cournot oligopoly interval games in
γ-set function form. First, we introduce a decision theory criterion, the Hurwicz
criterion (Hurwicz 1951), which permits to choose, for every (N,wγ) ∈ IGγ

co, any
of its selection (N, vγ) ∈ Sel(N,wγ). Then, we provide a necessary and sufficient
condition for the non-emptiness of each of the core solutions: the interval core
and the standard core. The first result states that the interval core is non-empty
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if and only if the Cournot oligopoly TU-game associated with the best worth of
every coalition in its worth interval admits a non-empty core. However, we show
that even for a very simple Cournot oligopoly situation, this condition fails to
be satisfied. The second result states that the standard core is non-empty if and
only if the Cournot oligopoly TU-game associated with the worst worth of every
coalition in its worth interval admits a non-empty core. Moreover, we give some
properties on any individual profit function and any individual cost function
under which this condition always holds. This result substantially extends the
results in Theorems 3.4.1 and 3.5.1.

4.3.1 The Hurwicz criterion

A Cournot oligopoly interval game in γ-set function form (N,wγ) ∈ IGγ
co fits all

the situations where any coalition S ∈ 2N\{∅} knows with certainty only the
lower and upper bounds wγ(S) and wγ(S) of all its potential worths. Conse-
quently, the expectations of any coalition S ∈ 2N\{∅} on its potential worths
are necessarily focused on its worth interval wγ(S). In order to define the expec-
tations of any coalition S ∈ 2N\{∅}, we use a decision theory criterion, the Hur-
wicz criterion (Hurwicz 1951), that consists in doing a convex combination of the
lower and upper bounds of all its potential worths, i.e. µSwγ(S)+(1−µS)wγ(S)
where µS ∈ [0, 1]. The real number µS ∈ [0, 1] can be regarded as the degree
of pessimism of coalition S. A vector µ = (µS)S∈2N is an expectation vec-
tor. Given an expectation vector µ ∈ [0, 1]2

N , the associated Cournot oligopoly
TU-game, denoted by (N, vµγ ) ∈ Gγ

co, is defined for any coalition S ∈ 2N\{∅} as:

vµγ (S) = µSwγ(S) + (1− µS)wγ(S),

where (N, vµγ ) ∈ Sel(N,wγ). Each of the two necessary and sufficient conditions
provided below is derived from a particular selection of (N,wγ), i.e. (N, v0

γ) =
(N,wγ) and (N, v1

γ) = (N,wγ) respectively.

4.3.2 The non-emptiness of the interval core

Given a Cournot oligopoly interval game in γ-set function form, the following
theorem states that the interval core is non-empty if and only if the Cournot
oligopoly TU-game associated with the minimum degree of pessimism of every
coalition admits a non-empty core.

Theorem 4.3.1 The Cournot oligopoly interval game (N,wγ) ∈ IGγ
co has a

non-empty interval core if and only if the Cournot oligopoly TU-game (N, v0
γ) ∈

Sel(N,wγ) has a non-empty core.
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Proof: [=⇒]: Assume that C(N,wγ) 6= ∅ and take any payoff interval vector
I ∈ C(N,wγ). Then, by the definition of the interval core it holds that

∑
i∈N Ii =

wγ(N) implying that
∑

i∈N I i = wγ(N), and for any S ∈ 2N it holds that∑
i∈S Ii < wγ(S) implying that

∑
i∈S I i ≥ wγ(S). Let σ ∈ Rn be a payoff vector

such that for any i ∈ N , σi = I i . It follows from wγ = v0
γ that

∑
i∈N σi = v0

γ(N)
and for any S ∈ 2N ,

∑
i∈S σi ≥ v0

γ(S). Hence, we conclude that σ ∈ C(N, v0
γ).

[⇐=]: Assume that C(N, v0
γ) 6= ∅. By the balancedness property, it holds for

every balanced map λ that:∑
S∈2N\{∅}

λ(S)v0
γ(S) ≤ v0

γ(N) (4.1)

Since the worth interval of the grand coalition is always degenerate, we have
v0
γ(N) = wγ(N) = wγ(N). Hence, from v0

γ = wγ and (4.1) we deduce that the
Cournot oligopoly interval game (N,wγ) ∈ IGγ

co is strongly balanced, i.e. for
every balanced map λ it holds that:∑

S∈2N\{∅}

λ(S)wγ(S) ≤ wγ(N).

By (i) and (ii) of Theorem 2.4.1, we conclude that (N,wγ) ∈ IGγ
co is I-balanced,

and therefore has a non-empty interval core. �

One can ask which properties on any individual profit function or any individual
cost function guarantee the non-emptiness of the core C(N, v0

γ). The following
example shows that even for a very simple Cournot oligopoly situation, this
condition fails to be satisfied.

Example 4.3.2

Consider the Cournot oligopoly interval game (N,wγ) ∈ IGγ
co associated with

the strategic Cournot oligopoly game Γco = (N, (Xi, πi)i∈N) ∈ Gco derived from
the Cournot oligopoly situation (N, (qi, Ci)i∈N , p) where N = {1, 2, 3}, for any
i ∈ N , qi = 5/3 and Ci(xi) = 97xi, and the inverse demand function is defined
as:

p(X) =

{
103−X if 0 ≤ X ≤ 3;

50(5−X) if 3 < X ≤ 5.

Clearly, the inverse demand function p is continuous, piecewise linear and con-
cave but it is not differentiable at point X̄ = 3. Assume that coalition {2, 3}
forms. We show that a strategy profile x ∈ ϕPA(Γco, {2, 3}) if and only if it
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satisfies (i) X = X̄ and (ii) x2 + x3 ∈ [4/3, 147/50].
[⇐=]: Take any x ∈ XN satisfying (i) and (ii). By (i) it holds that:

π1(x) = 3x1,

and

π2(x) + π3(x) = 3(x2 + x3).

If firm 1 increases its output by ε ∈]0, 5/3− x1], its new profit will be:

π1(x1 + ε, x2, x3) = (3− 50ε)(x1 + ε).

Conversely, if it decides to decrease its output by δ ∈]0, x1], it will obtain:

π1(x1 − δ, x2, x3) = (3 + δ)(x1 − δ).

Similarly, if coalition {2, 3} increases its output by ε + ε′ ∈ ]0, 10/3− x2 − x3]
where ε ∈ [0, 5/3− x2] and ε′ ∈ [0, 5/3− x3], its new coalition profit will be:

π{2,3}(x1, x2 + ε, x3 + ε′) =
(
3− 50(ε+ ε′)

)
(x2 + x3 + ε+ ε′).

On the contrary, if it decreases its output by δ+δ′ ∈ ]0, x2 + x3] where δ ∈ [0, x2]
and δ′ ∈ [0, x3], it will obtain:

π{2,3}(x1, x2 − δ, x3 − δ′) = (3 + δ + δ′)(x2 + x3 − δ − δ′).

In all cases, given (ii), neither firm 1 nor coalition {2, 3} can improve their
profits. We conclude that any strategy profile x ∈ XN satisfying (i) and (ii) is
a partial agreement equilibrium under {2, 3}.
[=⇒]: Take any x ∈ ϕPA(Γco, {2, 3}). By the first part of the proof and by point
(ii) of Proposition 4.2.2 it holds that X̄ = 3 is the unique equilibrium total
output. It follows that x ∈ ϕPA(Γco, {2, 3}) is such thatX = X̄. Moreover, given
(i) and by the above four equalities we deduce that any x ∈ ϕPA(Γco, {2, 3}) is
such that x2 + x3 ∈ [4/3, 147/50].
Hence, by (i) and (ii) we conclude that the worth interval of coalition {2, 3} is
wγ({2, 3}) = [4, 8.82].
In a similar way, we can compute the worth intervals of the other coalitions
S ∈ 2N\{∅} summarized in the following table:

S {i} {i, j} N
wγ(S) [0.18, 5] [4, 8.82] [9, 9]
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We can check that
∑

i∈N v
0
γ({i}) = 15 > 9 = v0

γ(N), and so the Cournot
oligopoly TU-game (N, v0

γ) ∈ Sel(N,wγ) is non-essential which implies that
C(N, v0

γ) = ∅. It follows from Theorem 4.3.1 that the Cournot oligopoly interval
game (N,wγ) admits an empty interval core. This result is a consequence of the
non-differentiability of the inverse demand function p at point X̄ = 3. Indeed,
at this point it is possible for some deviating coalition to obtain a large coalition
profit on a partial agreement equilibrium since there is no incentive for other
firms to change their outputs on any neighborhood at point X̄ = 3. �

4.3.3 The non-emptiness of the standard core

Given a Cournot oligopoly interval game in γ-set function form, the follow-
ing theorem states that the standard core is equal to the core of the Cournot
oligopoly TU-game associated with the maximum degree of pessimism of every
coalition.

Theorem 4.3.3 Let (N,wγ) ∈ IGγ
co be a Cournot oligopoly interval game such

that (N, v1
γ) ∈ Sel(N,wγ). Then C(N,wγ) = C(N, v1

γ).

Proof: First, it follows from (N, v1
γ) ∈ Sel(N,wγ) that:

C(N, v1
γ) ⊆

⋃
(N,vµγ )∈Sel(N,wγ)

C(N, vµγ ) = C(N,wγ).

Then, it remains to show that C(N,wγ) ⊆ C(N, v1
γ). If C(N,wγ) = ∅ we have

obviously C(N,wγ) ⊆ C(N, v1
γ). So, assume that C(N,wγ) 6= ∅ and take any

payoff vector σ ∈ C(N,wγ). Thus, there exists an expectation vector µ̄ ∈ [0, 12N ]
such that σ ∈ C(N, vµ̄γ ):

∀S ∈ 2N ,
∑
i∈S

σi ≥ vµ̄γ (S) and
∑
i∈N

σi = vµ̄γ (N) (4.2)

Since the worth interval of the grand coalition N is degenerate we have vµ̄γ (N) =
v1
γ(N), and therefore by (4.2),

∑
i∈N σi = v1

γ(N). Moreover, by the definition
of the Hurwicz criterion it holds that vµ̄γ ≥ v1

γ implying by (4.2) that for any
S ∈ 2N ,

∑
i∈S σi ≥ v1

γ(S). Hence, we conclude that σ ∈ C(N, v1
γ) which proves

that C(N,wγ) ⊆ C(N, v1
γ). �

It follows from Theorem 4.3.3 that a Cournot oligopoly interval game (N,wγ) ∈
IGγ

co has a non-empty standard core if and only if the Cournot oligopoly TU-
game (N, v1

γ) ∈ Sel(N,wγ) has a non-empty core. By defining the standard
core* of an interval game (N,w) ∈ IG as the intersection of the cores of all its
selections (N, v) ∈ G:
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C∗(N,w) =
⋂

(N,v)∈Sel(N,w)

C(N, v),

we obtain the opposite result to Theorem 4.3.3, i.e. C∗(N,wγ) = C(N, v0
γ).

Once again, one can ask which properties on any individual profit function or any
individual cost function guarantee the non-emptiness of the core C(N, v1

γ), and
so by Theorem 4.3.3 the non-emptiness of the standard core C(N,wγ). In the re-
mainder of this section, given a Cournot oligopoly interval game (N,wγ) ∈ IGγ

co,
we show that under conditions in Theorems 3.4.1 and 3.5.1, the core of the
Cournot oligopoly TU-game (N, v1

γ) ∈ Sel(N,wγ) is non-empty which general-
izes the results on the non-emptiness of the core in Theorems 3.4.1 and 3.5.1.
First, we denote by X the denumerable set of points where the inverse
demand function p is non-differentiable. The concavity of the inverse
demand function p ensures that X is at most denumerable. The Weierstrass ap-
proximation theorem states that any continuous function defined on a compact
real interval can be uniformly approximated as closely as desired by a sequence
of polynomial functions. Proposition 4.5.1 in the appendix states that there al-
ways exists a sequence of differentiable, strictly decreasing and concave
inverse demand functions, denoted by (pε)ε>0, that uniformly converges to
the inverse demand function p0 = p, i.e. for any ζ > 0, there exists ε′ > 0 such
that for any ε < ε′, it holds that:

∀X ∈ XN , |pε(X)− p(X)| < ζ.

Then, we generalize some above definitions. First, given a sequence (pε)ε>0,
for any ε > 0, we denote by Γεco = (N, (Xi, π

ε
i )i∈N) ∈ Gco the strategic Cournot

oligopoly game where for any i ∈ N , the individual profit function πεi : XN −→ R
is defined as:

πεi (x) = pε(X)xi − Ci(xi).

Given a strategic Cournot oligopoly game Γεco = (N, (Xi, π
ε
i )i∈N) ∈ Gco the as-

sociated Cournot oligopoly TU-game in γ-characteristic function form, denoted
by (N, vεγ) ∈ Gγ

co, is defined for any coalition S ∈ 2N\{∅} as:

vεγ(S) = πεS(x∗S, x̃N\S),

where (x∗S, x̃N\S) ∈ ϕPA(Γεco, S). Since pε is differentiable, Corollary 3.3.2 ensures
that the γ-characteristic function vεγ is well-defined.
Then, given a strategic Cournot oligopoly game Γεco = (N, (Xi, π

ε
i )i∈N) ∈ Gco,

and a coalition structure P ∈ PN, we denote by ΓP,εco = (P , (XS, πSε )S∈P) ∈ Gco
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the aggregated strategic Cournot oligopoly game where for any S ∈ P , the
aggregated coalition profit function πSε : XP −→ R is defined as:

πSε (xP) = pε(X)xS − CS(xS).

Finally, given any aggregated strategic Cournot oligopoly game ΓP,εco =
(P , (XS, πSε )S∈P) ∈ Gco, for any S ∈ P the aggregated coalition profit function*
ψεS : XS ×XS ×XN −→ R is defined as:

∀xS ≤ X, ψεS(yS, xS, X) = pε(X − xS + yS)yS − CS(yS).

For any S ∈ P , the best reply correspondence Rε
S : XN � XS is defined as:

Rε
S(X) =

{
xS ∈ XS : xS ∈ arg max

yS∈XS
ψεS(yS, xS, X)

}
.

The one-dimensional correspondence Rε
P : XN � XN is defined as:

Rε
P(X) =

{
Y ∈ XN : Y =

∑
S∈P

xS and ∀S ∈ P , xS ∈ Rε
S(X)

}
.

Given a Cournot oligopoly interval game, the following result states that if any
Cournot oligopoly TU-game (N, vεγ) ∈ Gγ

co associated with the sequence (pε)ε>0

admits a non-empty core, then the standard is non-empty.

Theorem 4.3.4 Let (N,wγ) ∈ IGγ
co be a Cournot oligopoly interval game and

(pε)ε>0 a sequence that uniformly converges to p. If for any ε > 0, the Cournot
oligopoly TU-game (N, vεγ) ∈ Gγ

co admits a non-empty core, then by the definition
of the Hurwicz criterion there exists an expectation vector µ̄ ∈ [0, 1]2

N such that
C(N, vµ̄γ ) 6= ∅, and so C(N,wγ) 6= ∅.

In order to establish the proof of Theorem 4.3.4, we first need the following
two lemmas. In these lemmas, for any ε > 0, we denote by x̂Pε ∈ ϕN(ΓP,εco ) the
unique Nash equilibrium of the aggregated strategic Cournot oligopoly game
ΓP,εco = (P , (XS, πSε )S∈P) ∈ Gco. This uniqueness result is established in the
proof of Proposition 3.3.1. Moreover, from (ii) of Proposition 4.2.2 we denote
by X̄ the unique equilibrium total output of the aggregated strategic Cournot
oligopoly game ΓPco = (P , (XS, πS)S∈P) ∈ Gco.

Lemma 4.3.5 Let P ∈ PN be a coalition structure, (pε)ε>0 a sequence that
uniformly converges to p and (x̂Pε )ε>0 the associated sequence of strategy profiles
such that for any ε > 0, x̂Pε ∈ ϕN(ΓP,εco ). If the sequence (x̂Pε )ε>0 converges to a
strategy profile x̂P0 ∈ XP then it holds that:
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(i)
∑

S∈P x̂
S
0 = X̄;

(ii) ∀S ∈ P, x̂S0 ∈ RS(X̄);

(iii) x̂P0 ∈ ϕN(ΓPco).

Proof: From Proposition 4.2.1, for any ε > 0 we have
∑

S∈P x̂
S
ε = X̂ε ∈ Rε

P(X̂ε).
By the definitions of Rε

S and Rε
P , for any ε > 0 it holds that:

∀S ∈ P , ψεS(x̂Sε , x̂
S
ε , X̂ε) = max

xS∈XS
ψεS(xS, x̂Sε , X̂ε) (4.3)

For any S ∈ P , the uniform convergence of the sequence (pε)ε>0 to p implies
that the sequence (ψεS)ε>0 uniformly converges to ψS. This result, the continuity
of any aggregated coalition profit function* ψεS and (4.3) imply for any S ∈ P
that:

lim
ε−→0

ψεS(x̂Sε , x̂
S
ε , X̂ε) = lim

ε−→0
max
xS∈XS

ψεS(xS, x̂Sε , X̂ε)

⇐⇒ lim
ε−→0

ψεS

(
x̂Sε , x̂

S
ε ,
∑
T∈P

x̂Tε

)
= max

xS∈XS
lim
ε−→0

ψεS

(
xS, x̂Sε ,

∑
T∈P

x̂Tε

)
⇐⇒ ψS

(
x̂S0 , x̂

S
0 ,
∑
T∈P

x̂T0

)
= max

xS∈XS
ψS

(
xS, x̂S0 ,

∑
T∈P

x̂T0

)
⇐⇒ x̂S0 ∈ RS

(∑
T∈P

x̂T0

)
(4.4)

It follows from (4.4) that
∑

S∈P x̂
S
0 ∈ RP(

∑
S∈P x̂

S
0 ). From (ii) of Proposition

4.2.2, X̄ is the unique fixed point of RP . Hence, we deduce that
∑

S∈P x̂
S
0 = X̄,

and therefore by (4.4) for any S ∈ P , x̂S0 ∈ RS(X̄) which proves points (i) and
(ii).
Finally, point (iii) is a consequence of points (i) and (ii) by Proposition 4.2.1.�

Lemma 4.3.6 Let S ∈ 2N\{∅} be a coalition, (pε)ε>0 a sequence that uniformly
converges to p and (x̂P

S

ε )ε>0 the associated sequence of strategy profiles such that
for any ε > 0, x̂PSε ∈ ϕN(ΓP

S ,ε
co ). If the sequence (x̂P

S

ε )ε>0 converges to a strategy
profile x̂PS0 ∈ XPS then it holds that limε−→0 v

ε
γ(S) ∈ wγ(S).

Proof: Take any ε > 0. By the first part of the proof of Proposition 3.3.1 we
know that the set of profits of S enforced by ϕPA(Γεco, S) and the set of profits
of S enforced by ϕN(ΓP

S ,ε
co ) are equal, i.e. πεS(ϕPA(Γεco, S)) = πSε (ϕN(ΓP

S ,ε
co )).

Hence, for any ε > 0 it holds that:
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vεγ(S) = πεS(x∗S, x̃N\S)

= πSε (x̂P
S

ε ),

where x̂PSε ∈ ϕN(ΓP
Sε

co ) is the unique Nash equilibrium of the aggregated strategic
Cournot oligopoly game ΓP

S ,ε
co . The uniform convergence of the sequence (pε)ε>0

to p implies that the sequence (πSε )ε>0 uniformly converges to πS. It follows from
this result and the continuity of πS that:

lim
ε−→0

vεγ(S) = lim
ε−→0

πSε (x̂P
S

ε )

= πS(x̂P
S

0 ).

From (iii) of Lemma 4.3.5 it holds that x̂PS0 ∈ ϕN(ΓP
S

co ). Hence, from the above
equality we deduce that limε−→0 v

ε
γ(S) ∈ πS(ϕN(ΓP

S

co )). By the first part of the
proof of Proposition 3.3.1, we know that the set of profits of S enforced by
ϕPA(Γco, S) and the set of profits of S enforced by ϕN(ΓP

S

co ) are equal. Thus, by
the definition of the γ-set function it holds that:

πS(ϕN(ΓP
S

co )) = πS(ϕPA(Γco, S))

= wγ(S).

Hence, we conclude that limε−→0 v
ε
γ(S) ∈ wγ(S). �

Now, we are ready to establish the proof of Theorem 4.3.4.

Proof (of Theorem 4.3.4): By the definition of the core, for any ε > 0 there
exists a payoff vector σε ∈ Rn such that:

∀S ∈ 2N ,
∑
i∈S

σεi ≥ vεγ(S) and
∑
i∈N

σεi = vεγ(N) (4.5)

By (4.5), the sequence (σε)ε>0 is bounded in Rn. Thus, there exists a subsequence
of (σε)ε>0 that converges to a point σ0 ∈ Rn. Without loss of generality we denote
by (σε)ε>0 such a subsequence.
First, take any coalition S ∈ 2N\{∅} and consider the coalition structure PS =
{S} ∪ {{i} : i 6∈ S}. By the compacity of any aggregated coalition strategy set
XT , T ∈ PS, there exists a subsequence of (x̂P

S

ε )ε>0, denoted by (x̂P
S

εk
)εk>0,

k ∈ N, that converges to a strategy profile x̂PS0 ∈ ϕN(ΓP
S

co ) by point (iii) of
Lemma 4.3.5. Thus, by (4.5) it holds that:
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lim
εk−→0

∑
i∈S

σεki ≥ lim
εk−→0

vεkγ (S)⇐⇒
∑
i∈S

σ0
i ≥ lim

εk−→0
vεkγ (S).

It follows from Lemma 4.3.6 that for any S ∈ 2N , limεk−→0 v
εk
γ (S) ∈ wγ(S). From

this result, we deduce that there exists an expectation vector µ̄ such that:

∀S ∈ 2N ,
∑
i∈S

σ0
i ≥ vµ̄γ (S) (4.6)

Then, consider the grand coalition N ∈ 2N\{∅}. By a similar argument to the
one in the first part of the proof and (4.5) it holds that:

lim
εk−→0

∑
i∈N

σεki = lim
εk−→0

vεkγ (N)⇐⇒
∑
i∈N

σ0
i = lim

εk−→0
vεkγ (N).

It follows from Lemma 4.3.6 that limεk−→0 v
εk
γ (N) ∈ wγ(N). As the worth inter-

val of the grand coalition is degenerate, it holds that:∑
i∈N

σ0
i = vµ̄γ (N) (4.7)

By (4.6) and (4.7) we conclude that σ0 ∈ C(N, vµ̄γ ) ⊆ C(N,wγ) since (N, vµ̄γ ) ∈
Sel(N,wγ). �

We deduce from Theorems 3.4.1, 3.5.1 and 4.3.4 the following theorem.

Theorem 4.3.7 Let (N,wγ) ∈ IGγ
co be a Cournot oligopoly interval game and

(pε)ε>0 a sequence that uniformly converges to p where for any ε > 0, the strategic
Cournot oligopoly game Γεco = (N, (Xi, π

ε
i )i∈N) ∈ Gco is such that: either any

individual profit function πεi is concave on XN , or any individual cost function
Ci satisfies:

∃c ∈ R+ : ∀i ∈ N, Ci(xi) = cxi.

Then, it holds that C(N,wγ) 6= ∅.

Theorem 4.3.7 generalizes Theorems 3.4.1 and 3.5.1. Indeed, if the inverse de-
mand function p is differentiable, all the worth intervals of (N,wγ) ∈ IGγ

co are
degenerate, i.e. wγ = {vγ} where (N, vγ) ∈ Gγ

co. Thus, the standard core of
(N,wγ) is equal to the core of (N, vγ). It remains to take the constant sequence
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(p̄ε)ε>0 such that for any ε > 0, p̄ε = p in order to obtain an equivalent formula-
tion of Theorems 3.4.1 and 3.5.1.

The following theorem provides another equivalent generalization of Theorem
3.4.1.

Theorem 4.3.8 Let Γco = (N, (Xi, πi)i∈N) ∈ Gco be a strategic Cournot
oligopoly game such that for any i ∈ N , πi is concave on XN . Then the corre-
sponding Cournot oligopoly interval game (N,wγ) ∈ IGγ

co admits a non-empty
standard core.

Proof: First, by a similar proof to the one in Proposition 4.5.1, for any concave
individual profit function πi on XN (not necessarily differentiable), by using
Bézier curves it is possible to construct a sequence of differentiable and concave
individual profit functions (πεi )ε>0 which uniformly converges to π0

i = πi. Hence,
it follows from Theorem 3.4.1 that for any ε > 0, the associated oligopoly TU-
game (N, vεγ) ∈ Gγ

co admits a non-empty core. Finally, by applying Theorem
4.3.4 we conclude from the definition of the Hurwicz criterion that there exists an
expectation vector µ̄ ∈ [0, 1]2

N such that C(N, vµ̄γ ) 6= ∅, and so C(N,wγ) 6= ∅.�

4.4 Concluding remarks

In this chapter, we have focused on Cournot oligopoly interval games in γ-set
function form. Although Example 3.3.4 shows that the continuity of the inverse
demand function is not sufficient in order to guarantee that the γ-characteristic
function is well-defined, we have showed that we can always specify a Cournot
oligopoly interval game. As far as we know, this is the first time that this set
of games is modeled in oligopoly theory. We have dealt with two extensions of
the core: the interval core and the standard core. We have provided a necessary
and sufficient condition for the non-emptiness of each of these core solutions.
The first result states that the interval core is non-empty if and only if the
Cournot oligopoly TU-game associated with the best worth of every coalition in
its worth interval admits a non-empty core. However, we have showed that even
for a very simple Cournot oligopoly situation, this condition fails to be satisfied.
The second result states that the standard core is non-empty if and only if the
Cournot oligopoly TU-game associated with the worst worth of every coalition
in its worth interval admits a non-empty core. Moreover, we have provided some
properties on any individual profit function and any individual cost function un-
der which this condition always holds which substantially extends the results in
Theorems 3.4.1 and 3.5.1.



80 Chapter 4

Many economic situations such that an economy with environmental external-
ities (Helm 2001) where any individual utility function is continuous but not
necessarily differentiable can be described by means of interval games. In such
models, we expect that similar conditions on players’ individual utility functions
will be sufficient in order to guarantee the non-emptiness of the interval core and
the standard core.

4.5 Appendix

Given a continuous, strictly decreasing and concave inverse demand function p,
we construct a sequence of differentiable, strictly decreasing and concave inverse
demand functions denoted by (pε)ε>0 that uniformly converges to p by using
Bézier curves (Bézier 1976). Bézier curves are still the object of a wide litera-
ture in Mathematics and are used in industrial car design.

A Bézier curve is a parametric curve defined through specific points called
control points. A particular set of Bézier curves are quadratic Bézier curves
defined with three control points X0, X1 and X2 as illustrated by the following
figure:

X0

X1

X2

Formally, this quadratic Bézier curve is the path traced by the mapping B :
[0, 1] −→ R2 defined as:

B(t) = (1− t)2X0 + 2(1− t)tX1 + t2X2 (4.8)

Proposition 4.5.1 Let p be a continuous, strictly decreasing and concave in-
verse demand function. Then, there exists a sequence of differentiable, strictly
decreasing and concave inverse demand functions (pε)ε>0 that uniformly con-
verges to p.
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Proof: First, for any X ∈ X (the set of points where p is non-differentiable)
and any ε > 0, we define a quadratic Bézier curve. The steps of this construction
are illustrated by the following figure:

X0

X2

X1

Gε
X

Y

p(Y )

X − ε X X + ε

p(X)

f εX(X)

︸ ︷︷ ︸
Nε(X)

For any X ∈ X , the neighborhood of X with radius ε > 0 is defined as:

Nε(X) = {Y ∈ R+ : |Y −X| < ε}.

Since X is at most denumerable, there exists ε̄ > 0 such that for any ε < ε̄ it
holds that:

∀X ∈ X ,∀X ′ ∈ X , Nε(X) ∩Nε(X
′) = ∅.

In the remainder of the proof, we assume everywhere that ε < ε̄. Take any
X ∈ X . For any ε > 0, in order to construct the quadratic Bézier curve, we
consider three control points given by X0 = (inf Nε(X), p(inf Nε(X))), X2 =
(supNε(X), p(supNε(X))) and X1 defined as the intersection point between the
tangent lines to the curve of p at points X0 and X2 respectively. Given these
three control points, the quadratic Bézier curve is the path traced by the function
Bε
X : [0, 1] −→ R2 defined as in (4.8). It is well-known that the quadratic Bézier

curve Bε
X can be parametrized by a polynomial function which we denote by

f εX : Nε(X) −→ R+ where Nε(X) is the closure of Nε(X).
Then, for any ε > 0 the inverse demand function pε : R+ −→ R+ is defined as:
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pε(Y ) =

{
f εX(Y ) if for some X ∈ X , Y ∈ Nε(X)
p(Y ) otherwise (4.9)

By the construction of control points X0, X1 and X2, it follows from the prop-
erties of the inverse demand function p and the quadratic Bézier curves defined
above that pε as defined in (4.9) is differentiable, strictly decreasing and concave.
It remains to show that the sequence (pε)ε>0 uniformly converges to p. Take any
ζ > 0 and assume that Y 6∈ X . It follows that there exists ε1 > 0 such that
for any ε < ε1 and any X ∈ X , we have Y 6∈ Nε(X). Hence, by (4.9) for any
ε < ε1 we have pε(Y ) = p(Y ), and so |pε(Y )− p(Y )| = 0 < ζ. Then, assume
that Y ∈ X . For any ε > 0 we denote by Gε

Y the convex hull of the set of control
points {X0, X1, X2}:

Gε
Y = co{X0, X1, X2}.

By the construction of control points X0, X1 and X2 it holds that:

lim
ε−→0

Gε
Y = {(Y, p(Y ))} (4.10)

Moreover, recall that Bε
Y is defined as a convex combination of control points X0,

X1 and X2. Hence, for any ε > 0 we have Bε
Y ⊆ Gε

Y , and therefore (Y, f εY (Y )) ∈
Gε
Y . By (4.10) we deduce that there exists ε2 > 0 such that for any ε < ε2, it

holds that:

|pε(Y )− p(Y )| = |f εY (Y )− p(Y )| < ζ.

Finally, take ε3 = min{ε1, ε2}. For any ε < ε3 it holds that:

∀Y ∈ R+, |pε(Y )− p(Y )| < ζ,

which proves that the sequence (pε)ε>0 uniformly converges to p. �



Chapter 5

A necessary and sufficient condition
for the non-emptiness of the core in
Stackelberg oligopoly TU-games

5.1 Introduction

In Chapters 3 and 4, in order to define cooperative Cournot oligopoly games
we assumed that all the firms simultaneously choose their outputs. However,
as discussed in the introduction some firms may gain a strategic advantage by
restricting in a credible way their choices. In order to endogenize this leadership
role, a two-stage structure is introduced in strategic games. In oligopoly theory,
such games are called strategic Stackelberg oligopoly games in which some firms
called leaders produce an output at a first period while the other firms called
followers play a quantity at a second period.
In this chapter, which is based on Driessen, Hou, and Lardon (2011), we asso-
ciate such a two-stage structure with the γ-characteristic function in a quantity
competition. The set of cooperative oligopoly games associated with this tem-
poral sequence is the set of Stackelberg oligopoly TU-games in γ-characteristic
function form. Thus, contrary to cooperative Cournot oligopoly games defined
in Chapters 3 and 4 in which all the firms simultaneously play their quantities,
any deviating coalition produces an output at a first period and outsiders simul-
taneously and independently play a quantity at a second period. We assume
that the inverse demand function is linear and firms operate at constant but
possibly distinct marginal costs. Thus, contrary to Marini and Currarini (2003),
the individual utility (profit) functions are not necessarily identical. First, we
provide an expression of the worth of any deviating coalition and prove that it
is increasing with respect to outsiders’ marginal costs and decreasing with re-
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spect to the smallest marginal cost among its members. Then, we characterize
the core by proving that it is equal to the set of imputations. The reason is
that the first-mover advantage gives too much power to singletons so that the
worth of any deviating coalition is less than or equal to the sum of its members’
individual worths except for the grand coalition. This result goes further than
Marini and Currarini (2003) who only provide a single-valued solution, the equal
division solution, in the core when players are symmetric. Finally, we provide
a necessary and sufficient condition under which the core is non-empty in case
the players are symmetric. We prove that this condition depends on the het-
erogeneity of firms’ marginal costs, i.e. for a fixed number of firms the core is
non-empty if and only if firms’ marginal costs are not too heterogeneous. The
more the number of firms is, the less the heterogeneity of firms’ marginal costs
must be in order to ensure the non-emptiness of the core which turns on the
role of the symmetric players assumption in Marini and Currarini (2003) for the
non-emptiness of the core. Surprisingly, in case the inverse demand function
is strictly concave, we provide an example in which the opposite result holds,
i.e. when the heterogeneity of firms’ marginal costs increases the core becomes
larger.

The remainder of this chapter is structured as follows. In Section 5.2 we
introduce the model and some notations and provide an expression of the worth
of any deviating coalition. In Section 5.3, we show that the core is equal to the
set of imputations and provide a necessary and sufficient condition under which
the core is non-empty. Section 5.4 gives some concluding remarks.

5.2 The model

A Stackelberg oligopoly situation is a quintuplet (L, F, (qi, Ci)i∈N , p) defined
as:

1. the disjoint finite sets of leaders and followers L and F respectively
where L ∪ F = {1, 2, . . . , n} is the set of firms denoted by N ;

2. for every i ∈ N , a capacity constraint qi ∈ R+;

3. for every i ∈ N , an individual cost function Ci : R+ −→ R+;

4. an inverse demand function p : R+ −→ R which assigns to any aggre-
gate quantity X ∈ R+ the unit price p(X).

Throughout this chapter, we assume that:



5.2 The model 85

(e) firms have no capacity constraint:

∀i ∈ N , qi = +∞;

(f) firms operate at constant but possibly distinct marginal costs:

∀i ∈ N , ∃ci ∈ R+ : Ci(yi) = ciyi,

where ci is firm i’s marginal cost, and yi ∈ R+ is the quantity produced
by firm i;

(g) firms face the linear inverse demand function:

p(X) = a−X,

where X ∈ R+ is the total production of the industry and a ∈ R+ is the
prohibitive price (the intercept) of the inverse demand function p such that
a ≥ 2n×max{ci : i ∈ N}.

Given assumptions (e), (f) and (g), a Stackelberg oligopoly situation is summa-
rized by the 4-tuple (L, F, (ci)i∈N , a). Without loss of generality we assume that
the firms are ranked according to their marginal costs, i.e. c1 ≤ . . . ≤ cn. For
notational convenience, for any coalition S ∈ 2N\{∅} we denote the minimal
coalitional cost by cS = min{ci : i ∈ S} and by iS ∈ S the firm in S with the
smallest index that operates at marginal cost cS.

The strategic Stackelberg oligopoly game associated with the Stackelberg
oligopoly situation (L, F, (ci)i∈N , a) is a quadruplet Γso = (L, F, (Xi, πi)i∈N) de-
fined as:

1. the disjoint finite sets of leaders and followers L and F respectively
where N = L ∪ F is the set of firms;

2. for every k ∈ N , an individual strategy set Xk such that:

- for every i ∈ L, Xi = R+ where xi ∈ Xi represents the quantity
produced by leader i;

- for every j ∈ F , Xj is the set of mappings xj : XL −→ R+ where
xj(xL) represents the quantity produced by follower j given leaders’
strategy profile xL ∈ XL;
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3. for every k ∈ N , an individual profit function πk : XL × XF −→ R+

such that:

- for every i ∈ L, πi : XL ×XF −→ R+ is defined as:

πi(xL, xF (xL)) = p(X)xi − cixi;

- for every j ∈ F , πj : XL ×XF −→ R+ is defined as:

πj(xL, xF (xL)) = p(X)xj(xL)− cjxj(xL),

where X =
∑

i∈L xi +
∑

j∈F xj(xL) is the total production.

Given a strategic Stackelberg oligopoly game Γso = (L, F, (Xi, πi)i∈N), every
leader i ∈ L simultaneously and independently produces an output xi ∈ Xi at a
first period while every follower j ∈ F simultaneously and independently plays a
quantity xj(xL) ∈ Xj at a second period given leaders’ strategy profile xL ∈ XL.
We denote by Gso ⊆ G the set of strategic Stackelberg oligopoly games.
In case there is a single leader and multiple followers, Sherali et al. (1983) prove
the existence and uniqueness of the Nash equilibrium in strategic Stackelberg
oligopoly games under standard assumptions on the inverse demand function
and the individual cost functions, i.e. the inverse demand function is twice
differentiable, strictly decreasing and satisfies:

∀X ∈ R+,
dp

dX
(X) +X

d2p

dX2
(X) ≤ 0,

and the individual cost functions are twice differentiable and convex. In partic-
ular, they show that the convexity of followers’ reaction functions with respect
to leader’s output is crucial for the uniqueness of the Nash equilibrium. As-
sumptions (e), (f) and (g) ensure that Sherali et al.’s result (1983) holds on Gso
so that any strategic Stackelberg oligopoly game Γso = (L, F, (Xi, πi)i∈N) ∈ Gso
such that |L| = 1 admits a unique Nash equilibrium.

Now, given a strategic Stackelberg oligopoly game Γso = (L, F, (Xi, πi)i∈N) ∈
Gso, we want to associate a Stackelberg oligopoly TU-game in γ-characteristic
function form (Chander and Tulkens 1997). In a dynamic oligopoly “à la Stack-
elberg” this assumption implies that the coalition members produce an output
at a first period, thus anticipating outsiders’ reaction who simultaneously and
independently play a quantity at a second period. For any coalition S ∈ 2N\{∅}
where S = L and N\S = F , the coalition profit function πS : XS×XN\S −→
R is defined as:



5.2 The model 87

πS(xS, xN\S(xS)) =
∑
i∈S

πi(xS, xN\S(xS)).

Moreover, followers’ individual best reply strategies x̃N\S : XS −→ XN\S
are defined as:

∀j ∈ N\S,∀xS ∈ XS, x̃j(xS) ∈ arg max
xj(xS)∈Xj

πj(xS, x̃N\(S∪{j})(xS), xj(xS)).

For any coalition S ∈ 2N\{∅} and the induced strategic Stackelberg oligopoly
game Γso = (S,N\S, (Xi, πi)i∈N) ∈ Gso, the associated Stackelberg oligopoly
TU-game in γ-characteristic function form, denoted by (N, vγ), is defined
for any coalition S ∈ 2N\{∅} as:

vγ(S) = πS(x∗S, x̃N\S(x∗S)),

where (x∗S, x̃N\S(x∗S)) ∈ ϕPA(Γso, S). We denote by Gγ
so ⊆ G the set of Stack-

elberg oligopoly TU-games in γ-characteristic function form.

Given a strategic Stackelberg oligopoly game Γso = (S,N\S, (Xi, πi)i∈N) ∈
Gso, by assumptions (e), (f) and (g), and by the definition of the partial agree-
ment equilibrium, any deviating coalition S ∈ 2N\{∅} can be represented by
firm iS ∈ S acting as a single leader while the other firms in coalition S play
a zero output. It follows from Sherali et al.’s result (1983) that the induced
strategic Stackelberg oligopoly game Γso = ({iS}, N\S, (Xi, πi)i∈{iS}∪N\S) ∈ Gso
has a unique Nash equilibrium, and so the strategic Stackelberg oligopoly game
Γso admits a partial agreement equilibrium under S. Indeed, in case there are
at least two firms operate at the minimal marginal cost cS, the most efficient
firms in coalition S can coordinate their output decision and reallocate the Nash
equilibrium output of firm iS among themselves. We conclude that there can
exist several partial agreement equilibria under S which support the unique
worth vγ(S). Hence, the γ-characteristic function is well-defined. The following
proposition goes further by expressing the worth of any deviating coalition.

Proposition 5.2.1 For any coalition S ∈ 2N\{∅} and the associated strategic
Stackelberg oligopoly game Γso = (S,N\S, (Xi, πi)i∈N) ∈ Gso, it holds that:

vγ(S) =
1

4(n− s+ 1)

(
a+

∑
j∈N\S

cj − cS(n− s+ 1)

)2

.
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Proof: Take any coalition S ∈ 2N\{∅} and consider the associated strategic
Stackelberg oligopoly game Γso = (S,N\S, (Xi, πi)i∈N) ∈ Gso. In order to com-
pute the worth vγ(S) of coalition S, we have to successively solve the maximiza-
tion problems derived from the definition of the partial agreement equilibrium.
First, consider the profit maximization program of any follower j ∈ N\S at the
second period:

∀xS ∈ XS,∀xN\(S∪{j})(xS) ∈ XN\(S∪{j}), max
xj(xS)∈Xj

πj(xS, xN\(S∪{j})(xS), xj(xS)).

The first-order conditions for a maximum are:

∀j ∈ N\S,∀xN\{j} ∈ XN\{j},
∂πj
∂xj

(xj, xN\{j}) = 0,

and imply that the unique maximizers x̃j(xS), j ∈ N\S, satisfy:

∀j ∈ N\S,∀xS ∈ XS, x̃j(xS) =
1

2

(
a−

∑
i∈S

xi −
∑

k∈N\(S∪{j})

x̃k(xS)− cj

)
.

By solving the above system of equations, we deduce that followers’ individual
best reply strategies at the second period are given by:

∀j ∈ N\S,∀xS ∈ XS, x̃j(xS) =
1

(n− s+ 1)

(
a−

∑
i∈S

xi +
∑
k∈N\S

ck

)
− cj (5.1)

Then, given x̃N\S(xS) ∈ XN\S consider the profit maximization program of
coalition S at the first period:

max
xS∈XS

πS(xS, x̃N\S(xS)).

Since the firms have no capacity constraint, it follows that the above profit
maximization program of coalition S is equivalent to the profit maximization
program of firm iS ∈ S given that the other members in S play a zero output:

max
xiS∈XiS

πiS(xiS , 0S\{iS}, x̃N\S(xiS , 0S\{iS})).

The first-order condition for a maximum is:

∂πiS
∂xiS

(xiS , 0S\{iS}, x̃N\S(xiS , 0S\{iS})) = 0,
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and implies that the unique maximizer x∗iS ∈ XiS is given by:

x∗iS =
1

2

(
a+

∑
j∈N\S

cj − cS(n− s+ 1)

)
(5.2)

By (5.1) and (5.2), for any j ∈ N\S it holds that:

x̃j(x
∗
S) = x̃j(x

∗
iS
, 0S\{iS})

=
1

2(n− s+ 1)

(
a+

∑
k∈N\S

ck + cS(n− s+ 1)

)
− cj (5.3)

By (5.2) and (5.3), we deduce that:

vγ(S) = πS(x∗S, x̃N\S(x∗S))

= πiS((x∗iS , 0S\{iS}), x̃N\S(x∗iS , 0S\{iS}))

=
1

4(n− s+ 1)

(
a+

∑
j∈N\S

cj − cS(n− s+ 1)

)2

,

which completes the proof. �

Thus, the worth of any deviating coalition is increasing with respect to outsiders’
marginal costs and decreasing with respect to the smallest marginal cost among
its members. Note that the condition a ≥ 2n × max{ci : i ∈ N} (assumption
(g)) ensures that the equilibrium outputs in (5.2) and (5.3) are positive.

5.3 The non-emptiness of the core
In this section, we study the core of Stackelberg oligopoly TU-games in γ-
characteristic function form. First, we characterize the core by showing that
it is equal to the set of imputations. Then, we provide a necessary and sufficient
condition under which the core is non-empty. Finally, we prove that this condi-
tion depends on the heterogeneity of firms’ marginal costs.

The following proposition provides a characterization of the core.

Proposition 5.3.1 Let (N, vγ) ∈ Gγ
so be a Stackelberg oligopoly TU-game.

Then, it holds that:
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C(N, vγ) = I(N, vγ).

In order to establish the proof of Proposition 5.3.1 we first need the following
lemma. Given a family of marginal costs {ci}i∈N and any coalition S ∈ 2N\{∅}
let α(S) =

∑
j∈S\{iS}(cS − cj)

2 and denote by:

A1(S) =
1

2

∑
j∈S\{iS}

∑
k∈S\{iS}

(cj − ck)2; B1(S) = (s− 1)
(
α(S)− A1(S)

)
;

C1(S) = −(s− 1)
(
sα(S) + A1(S)

)
; D1(S) = −(s− 1)

(
α(S) + A1(S)

)
.

We define the functions f1 : N× 2N\{∅} −→ R and f2 : N× 2N\{∅} −→ R as:

f1(n, S) = 3A1(S)n2 +
(
3A1(S) + 2B1(S)

)
n+ A1(S) +B1(S) + C1(S);

f2(n, S) = A1(S)n3 +B1(S)n2 + C1(S)n+D1(S).

Lemma 5.3.2 Let {ci}i∈N be a family of marginal costs. Then, for any n ≥ 3
and any coalition S ∈ 2N\{∅} such that s ∈ {2, . . . , n− 1} it holds that (i)
f1(n, S) ≥ 0, and (ii) f2(n, S) ≥ 0.

Proof: First we show point (i). For any n ≥ 3 and any coalition S ∈ 2N\{∅}
such that s = n− 1 it holds that:

f1(n, S) = (n2 − 4)α(S) + (n2 + 5n+ 5)A1(S)

≥ 0 (5.4)

Then, we show that for any n ≥ 3 and any coalition S ∈ 2N\{∅} such that
s ∈ {2, . . . , n− 1}, f1(n, S) ≥ 0. We proceed by a double induction on the
number of firms n ≥ 3 and the size s ∈ {2, . . . , n− 1} of coalition S respectively.
Initialisation: assume that n = 3 and take any coalition S ∈ 2N\{∅} such that
s = 2. By (5.4) it holds that f1(3, S) ≥ 0.
Induction hypothesis: assume that for any n ≤ k and for any coalition
S ∈ 2N\{∅} such that s ∈ {2, . . . , n− 1}, f1(n, S) ≥ 0.
Induction step: we want to show that for n = k + 1 and for any coalition
S ∈ 2N\{∅} such that s ∈ {2, . . . , k}, f1(k + 1, S) ≥ 0. It follows from (5.4)
that for any coalition S ∈ 2N\{∅} such that s = k, f1(k + 1, S) ≥ 0. It
remains to show that for any coalition S ∈ 2N\{∅} such that s ∈ {2, . . . , k − 1},
f1(k + 1, S) ≥ 0. Take any coalition S ∈ 2N\{∅} such that s ∈ {2, . . . , k − 1}.
Then it follows from the definition of f1 and the induction hypothesis that:
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f1(k + 1, S) = f1(k, S) + 6A1(S)k + 6A1(S) + 2B1(S)

= f1(k, S) + A1(S)(6k − 2s+ 8) + 2(s− 1)α(S)

≥ 0,

which concludes the proof of point (i).
Then, we show point (ii). For any n ≥ 3 and any coalition S ∈ 2N\{∅} such
that s = n− 1 it holds that:

f2(n, S) = (n2 − 3n+ 2)α(S) + (n2 + n+ 2)A1(S)

≥ 0 (5.5)

Then, we show that for any n ≥ 3 and any coalition S ∈ 2N\{∅} such that
s ∈ {2, . . . , n− 1}, f2(n, S) ≥ 0. We proceed by a double induction on the
number of firms n ≥ 3 and the size s ∈ {2, . . . , n− 1} of coalition S respectively.
Initialisation: assume that n = 3 and take any coalition S ∈ 2N\{∅} such that
s = 2. By (5.5) it holds that f2(3, S) ≥ 0.
Induction hypothesis: assume that for any n ≤ k and for any coalition
S ∈ 2N\{∅} such that s ∈ {2, . . . , n− 1}, f2(n, S) ≥ 0.
Induction step: we want to show that for n = k + 1 and for any coalition
S ∈ 2N\{∅} such that s ∈ {2, . . . , k}, f2(k + 1, S) ≥ 0. It follows from (5.5)
that for any coalition S ∈ 2N\{∅} such that s = k, f2(k + 1, S) ≥ 0. It
remains to show that for any coalition S ∈ 2N\{∅} such that s ∈ {2, . . . , k − 1},
f2(k + 1, S) ≥ 0. Take any coalition S ∈ 2N\{∅} such that s ∈ {2, . . . , k − 1}.
Then it follows from the definitions of f1 and f2, the induction hypothesis and
point (i) of Lemma 5.3.2 that:

f2(k + 1, S) = f2(k, S) + f1(k, S)

≥ 0,

which concludes the proof of point (ii). �

Now, we are ready to establish the proof of Proposition 5.3.1 which consists in
showing that the first-mover advantage gives too much power to singletons so
that the worth of any deviating coalition is less than or equal to the sum of its
members’ individual worths except for the grand coalition. Given a family of
marginal costs {ci}i∈N and any coalition S ∈ 2N\{∅} we denote by:

A2(S) =
(n− s)(s− 1)

4n(n− s+ 1)
(note that for s ∈ {2, . . . , n− 1}, A2(S) > 0);
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B2(S) =
1

2n

∑
i∈S

( ∑
j∈N\{i}

cj − nci

)
− 1

2(n− s+ 1)

( ∑
j∈N\S

cj − cS(n− s+ 1)

)
;

C2(S) =
1

4n

∑
i∈S

( ∑
j∈N\{i}

cj − nci

)2

− 1

4(n− s+ 1)

( ∑
j∈N\S

cj − cS(n− s+ 1)

)2

.

These quantities will be used in the following proof.

Proof (of Proposition 5.3.1): First, assume that n = 2. By the definitions
of the core and the set of imputations it holds that C(N, vγ) = I(N, vγ).
Then, assume that n ≥ 3. The core is equal to the set of imputations if and
only if:

∀S ∈ 2N\{∅} : s ∈ {2, . . . , n− 1}, vγ(S) ≤
∑
i∈S

vγ({i}).

In order to prove the above condition, take any coalition S ∈ 2N\{∅} such that
s ∈ {2, . . . , n− 1}. By Proposition 5.2.1 we deduce that:∑

i∈S

vγ({i})− vγ(S) = A2(S)a2 +B2(S)a+ C2(S).

Now, we define the mapping PS : R −→ R as:

PS(y) = A2(S)y2 +B2(S)y + C2(S),

so that PS(a) =
∑

i∈S vγ({i}) − vγ(S). We want to show that for any y ∈ R,
PS(y) ≥ 0. It follows from A2(S) > 0 that the minimum of PS is obtained at
point y∗ ∈ R such that:

y∗ = − B2(S)

2A2(S)
.

After some calculation steps, we obtain that the minimum of PS is equal to:

PS(y∗) =
1

4n(n− s)(s− 1)
f2(n, S),

where f2 is defined as in Lemma 5.3.2. Hence, it follows from point (ii) of Lemma
5.3.2 that PS(y∗) ≥ 0, which implies that for any y ∈ R, PS(y) ≥ 0. In particu-
lar, we conclude that PS(a) ≥ 0, and so

∑
i∈S vγ({i})− vγ(S) ≥ 0. �
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Now, we provide a necessary and sufficient condition for the non-emptiness
of the core of Stackelberg oligopoly TU-games in γ-characteristic function form
as enunciated in the following proposition.

Proposition 5.3.3 Let (N, vγ) ∈ Gγ
so be a Stackelberg oligopoly TU-game. Then,

the core is non-empty if and only if:

2a

(∑
i∈N

ci − ncN

)
≥
∑
i∈N

( ∑
j∈N\{i}

cj − nci

)2

− nc2
N (5.6)

or equivalently

2a(cN − cN) ≥ (n+ 1)2

n

∑
j∈N

c2
j −

(n+ 2)

n

(∑
j∈N

cj

)2

− c2
N (5.7)

where cN =
∑

i∈N ci/n is the average cost of the grand coalition.

Proof: It follows from Proposition 5.3.1 that the core is non-empty if and only
if
∑

i∈N vγ({i}) ≤ vγ(N). By Proposition 5.2.1 it holds that:

∑
i∈N

vγ({i}) =
1

4n

∑
i∈N

(
a+

∑
j∈N\{i}

cj − nci

)2

=
1

4n

∑
i∈N

(
a+

∑
j∈N\{i}

cj − nci − cN + cN

)2

=
1

4n

∑
i∈N

[(
a− cN

)2
+ 2(a− cN)

( ∑
j∈N\{i}

cj − nci + cN

)

+

( ∑
j∈N\{i}

cj − nci + cN

)2]

= vγ(N) +
1

4n

[
2a

(
ncN −

∑
i∈N

ci

)
+
∑
i∈N

( ∑
j∈N\{i}

cj − nci

)2

− nc2
N

]

= vγ(N) +
1

4n

[
2a

(
ncN − ncN

)
+ (n+ 1)2

∑
j∈N

c2
j

− (n+ 2)

(∑
j∈N

cj

)2

− nc2
N

]
,
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which permits to conclude that
∑

i∈N vγ({i}) ≤ vγ(N) if and only if inequalities
(5.6) or (5.7) holds. �

In case all the firms have the same marginal cost, the both sides of inequal-
ity (5.6) are equal to zero which implies that

∑
i∈N vγ({i}) = vγ(N), and so

(vγ({i}))i∈N = (vγ(N)/n)i∈N is the unique core element which coincides with
Marini and Currarini’s core allocation result (2003).

Driessen, Hou, and Lardon (2011) show that for any TU-game, the core is
non-empty and equal to the set of imputations if and only if its dual game
is 1-concave. Moreover, Driessen et al. (2010) show that the nucleolus of any
1-concave TU-game coincides with the center of gravity of the core. Hence,
for any Stackelberg oligopoly TU-game (N, vγ) ∈ Gγ

so, the dual game (N, v∗γ)
is 1-concave if and only if inequality (5.6) holds, implying that the nucleolus
Nuc(N, v∗γ) is the center of gravity of the core C(N, v∗γ).

The following theorem gives a more relevant expression of inequality (5.6).
When the difference between any two successive marginal costs is constant, it
provides an upper bound on the heterogeneity of firms’ marginal costs below
which inequality (5.6) holds.

Theorem 5.3.4 Let (N, vγ) ∈ Gγ
so be a Stackelberg oligopoly TU-game such

that:

∃δ ∈ R+ : ∀i ∈ {1, . . . , n− 1}, ci+1 = ci + δ (5.8)

Then, inequality (5.6) holds if and only if:

δ ≤ δ∗(n) =
12(a− cN)(n− 1)

n4 + 2n3 + 3n2 − 8n+ 2
(5.9)

Proof: It follows from (5.8) that inequality (5.6) can be expressed as:

∑
i∈N

(
δ

(n2 − 2ni+ n)

2
− ci

)2

− nc2
N ≤ an(n− 1)δ.

By noting that:∑
i∈N

c2
i − nc2

N = δcNn(n− 1) + δ2n(n− 1)(2n− 1)

6
,

we deduce that the above inequality is equivalent to:
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δ

[∑
i∈N

(
n2 − 2ni+ n

2

)2

+
n(n− 1)(2n− 1)

6

]
≤ (a− cN)n(n− 1)

+
∑
i∈N

(n2 − 2ni+ n)ci (5.10)

It remains to compute the two sums in inequality (5.10). First, it holds that:

∑
i∈N

(
n2 − 2ni+ n

2

)2

=
n3(n+ 1)2

4
− n2(n+ 1)

∑
i∈N

i+ n2
∑
i∈N

i2

=
1

12

(
2n4(n+ 1)− n3(n+ 1)2

)
(5.11)

Then, it holds that:

∑
i∈N

ci = ncN + δ
n−1∑
i=1

i

= n

(
cN + δ

(n− 1)

2

)
,

and

∑
i∈N

ici = cN

n∑
i=1

i+ δ
n∑
i=1

i(i− 1)

= cN
n(n+ 1)

2
+ δ

n(n+ 1)(2n− 2)

6
.

Hence, we deduce that:

∑
i∈N

(n2 − 2ni+ n)ci = (n2 + n)
∑
i∈N

ci − 2n
∑
i∈N

ici

=
1

6

(
δn2(n+ 1)(1− n)

)
(5.12)

By (5.11) and (5.12), we conclude that inequality (5.10) is equivalent to (5.9).�

By noting that:
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dδ∗

dn
(n) = −36(a− cN)(n2 + 2n+ 2)

(n3 + 3n2 + 6n− 2)2

< 0,

and

d2δ∗

dn2
(n) =

72(a− cN)(2n4 + 8n3 + 15n2 + 20n+ 14)

(n3 + 3n2 + 6n− 2)3

> 0,

we deduce that the bound δ∗(n) is strictly decreasing and strictly convex with
respect to the number of firms n. Moreover, when n tends to infinity its limit
is equal to 0. So, the more the number of firms is, the less the heterogeneity
of firms’ marginal costs must be in order to ensure the non-emptiness of the
core. This result extends Marini and Currarini’s core allocation result (2003)
and shows that their result crucially depends on the symmetric players assump-
tion.

We saw that when the heterogeneity of firms’ marginal costs increases the
core becomes smaller. Surprisingly, in case the inverse demand function is
strictly concave, the following example shows that the opposite result may holds,
i.e. when the heterogeneity of firms’ marginal costs increases the core becomes
larger.

Example 5.3.5

Consider the three Stackelberg oligopoly TU-games (N, v1
γ) ∈ Gγ

so, (N, v2
γ) ∈

Gγ
so and (N, v3

γ) ∈ Gγ
so associated with the Stackelberg oligopoly situations

(L, F, (c1, c
1
2), p), (L, F, (c1, c

2
2), p) and (L, F, (c1, c

3
2), p) respectively where N =

{1, 2}, c1 = c1
2 = 2, c2

2 = 4, c3
2 = 5 and p = 10−X2. The worths of any coalition

S ∈ 2N\{∅} are given in the following table:

S {1} {2} {1, 2}
v1
γ(S) 4.70 4.70 8.71

v2
γ(S) 6.19 2.02 8.71

v3
γ(S) 7.05 1.05 8.71

Thus, it holds that ∅ = C(N, v1
γ) ⊂ C(N, v2

γ) ⊂ C(N, v3
γ), and so when the

heterogeneity of firms’ marginal costs increases the core becomes larger. �
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5.4 Concluding remarks
In this chapter we have studied the set of Stackelberg oligopoly TU-games in
γ-characteristic function form (Chander and Tulkens 1997) in which any deviat-
ing coalition produces an output at a first period and outsiders simultaneously
and independently play a quantity at a second period. We have assumed that
the inverse demand function is linear and that firms operate at constant but
possibly distinct marginal costs. Thus, contrary to Marini and Currarini (2003),
the individual utility (profit) functions are not necessarily identical. First, we
have characterized the core by showing that it is equal to the set of imputations.
Indeed, the first-mover advantage gives too much power to singletons so that the
worth of any deviating coalition is less than or equal to the sum of its members’
individual worths except for the grand coalition. Then, we have provided a nec-
essary and sufficient condition under which the core is non-empty. Finally, we
have proved that this condition depends on the heterogeneity of firms’ marginal
costs, i.e. the core is non-empty if and only if firms’ marginal costs are not too
heterogeneous. The more the number of firms is, the less the heterogeneity of
firms’ marginal costs must be in order to ensure the non-emptiness of the core.
This last result extends Marini and Currarini’s core allocation result (2003) and
shows that their result crucially depends on the symmetric players assumption.
Surprisingly, in case the inverse demand function is strictly concave, we have
provided an example in which the opposite result holds, i.e. when the hetero-
geneity of firms’ marginal costs increases the core becomes larger.
Instead of quantity competition, we can associate a two-stage structure with
the γ-characteristic function in a price competition. Marini and Currarini’s core
allocation result (2003) applies to this framework and they provide examples
in which the core of the sequential Bertrand oligopoly TU-games is included in
the core of the static Bertrand oligopoly TU-games. A question concerns the
effect of the heterogeneity of firms’ marginal costs on the non-emptiness of the
core. In the second part of this thesis, we study oligopoly TU-games in price
competition.
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Chapter 6

Convexity in Bertrand oligopoly
TU-games with differentiated
products

6.1 Introduction

In the first part of the thesis, we have dealt with the non-emptiness of the core of
cooperative oligopoly games in quantity competition. However, in many other
oligopoly situations, firms compete in price rather than in quantity.
In this chapter, which is based on Lardon (2010a), we study the core of Bertrand
oligopoly TU-games in α, β and γ-characteristic function forms when firms op-
erate at a constant and identical marginal cost. The case with distinct marginal
costs will be studied in Chapter 7. First, as for the set of Cournot oligopoly
TU-games, we show that the same set of Bertrand oligopoly TU-games is asso-
ciated with the α and β-characteristic functions and we prove that the convexity
property holds for this set of games, i.e. when any coalition has pessimistic ex-
pectations on its future coalition profits there exists a strong incentive to form
the grand coalition. Then, we consider the set of Bertrand oligopoly TU-games
in γ-characteristic function form. For this set of games, we show that the equal
division solution belongs to the core and we provide a sufficient condition under
which such games are convex. This finding generalizes the superadditivity result
of Deneckere and Davidson (1985) and contrasts sharply with the negative core
non-emptiness results of Kaneko (1978) and Huang and Sjöström (2003). In non-
cooperative game theory, an important distinction between a strategic Cournot
oligopoly game and a strategic Bertrand oligopoly game is that the former has
strategic substitutabilities and the latter has strategic complementarities. Thus,
although Cournot and Bertrand oligopoly games are basically different in their

101



102 Chapter 6

non-cooperative forms, it appears that their cooperative forms have the same
core structure.

The remainder of this chapter is structured as follows. In Section 6.2 we
introduce the model and some notations. Section 6.3 establishes that the same
set of Bertrand oligopoly TU-games is associated with the α and β-characteristic
functions and shows that the convexity property holds for this set of games. Sec-
tion 6.4 proves that the equal division solution belongs to the core of Bertrand
oligopoly TU-games in γ-characteristic function form and provides a sufficient
condition under which such games are convex. Section 6.5 gives some concluding
remarks.

6.2 The model
A Bertrand oligopoly situation is a triplet (N, (Di, Ci)i∈N) defined as:

1. a finite set of firms N = {1, 2, . . . , n};

2. for every i ∈ N , a demand function Di : Rn
+ −→ R which assigns to any

price vector p ∈ Rn
+ the quantity demanded of firm i’s brand Di(p);

3. for every i ∈ N , an individual cost function Ci : R+ −→ R+.

Throughout this chapter, we assume that:

(h) the demand system is Shubik’s (1980):

∀i ∈ N, Di(p1, . . . , pn) = V − pi − r
(
pi −

1

n

∑
j∈N

pj

)
,

where pj is the price charged by firm j, V ∈ R+ is the intercept of de-
mand and r ∈ R++ is the substitutability parameter. When r approaches
zero, products become unrelated, and when r approaches infinity, products
become perfect substitutes. The quantity demanded of firm i’s brand de-
pends on its own price pi and on the difference between pi and the average
price in the industry

∑
j∈N pj/n. This quantity is decreasing with respect

to pi and increasing with respect to any pj such that j 6= i;

(i) firms operate at a constant and identical marginal cost:

∃c ∈ R+ : ∀i ∈ N , Ci(xi) = cxi,

where c ∈ R+ is firm i’s marginal cost, and xi = Di(p1, . . . , pn) ∈ R+ is
the quantity demanded of firm i’s brand.



6.3 Pessimistic expectations 103

Given assumptions (h) and (i), a Bertrand oligopoly situation is summarized by
the 4-tuple (N, V, r, c).

The strategic Bertrand oligopoly game associated with the Bertrand
oligopoly situation (N, V, r, c) is a triplet Γbo = (N, (Xi, πi)i∈N) defined as:

1. a finite set of firms N = {1, 2, . . . , n};

2. for every i ∈ N , an individual strategy set Xi = R+ where pi ∈ Xi

represents the price charged by firm i;

3. for every i ∈ N , an individual profit function πi : XN −→ R defined
as:

πi(p) = Di(p)(pi − c).

Note that firm i’s profit depends on its own price pi and on the average price in
the industry

∑
j∈N pj/n. We denote by Gbo ⊆ G the set of strategic Bertrand

oligopoly games.

6.3 Pessimistic expectations

In this section, we want to associate Bertrand oligopoly TU-games in α and
β-characteristic function forms with strategic Bertrand oligopoly games. First,
we show that the α and β-characteristic functions are well-defined and we prove
that the same set of Bertrand oligopoly TU-games is associated with these char-
acteristic functions. This equality between the α and β-characteristic functions
is a useful property, as it relieves us of the burden of choosing between the α
and β-characteristic functions when describing coalition profits. Then, we prove
that the convexity property holds for this set of games, i.e. when any coalition
has pessimistic expectations on its future coalition profit there exists a strong
incentive to form the grand coalition.

For any coalition S ∈ 2N\{∅}, the coalition profit function πS : XS ×
XN\S −→ R is defined as:

πS(pS, pN\S) =
∑
i∈S

πi(p).

Given a strategic Bertrand oligopoly game Γbo = (N, (Xi, πi)i∈N) ∈ Gbo, the asso-
ciated Bertrand oligopoly TU-games in α and β-characteristic function
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forms, denoted by (N, vα) and (N, vβ), are defined for any coalition S ∈ 2N\{∅}
as:

vα(S) = max
pS∈XS

min
pN\S∈XN\S

πS(pS, pN\S),

and

vβ(S) = min
pN\S∈XN\S

max
pS∈XS

πS(pS, pN\S).

We denote by Gα
bo ⊆ G and Gβ

bo ⊆ G the set of Bertrand oligopoly TU-
games in α and β-characteristic function forms respectively.

The following proposition states that the β-characteristic function is well-
defined.

Proposition 6.3.1 Let Γbo = (N, (Xi, πi)i∈N) ∈ Gbo be a strategic Bertrand
oligopoly game and (N, vβ) ∈ Gβ

bo be the associated Bertrand oligopoly TU-game.
Then, for any coalition S ∈ 2N\{∅} it holds that:

vβ(S) = πS(pS, pN\S),

where (pS, pN\S) ∈ XS ×XN\S is given by:

∀i ∈ S, pi = max

{
c,

V

2
(
1 + r(n− s)/n

) +
c

2

}
(6.1)

and

∑
j∈N\S

pj = max

{
0,
n

r

(
c

(
1 + r

(n− s)
n

)
− V

)}
(6.2)

Proof: Take any coalition S ∈ 2N\{∅}. In order to compute the worth vβ(S) of
coalition S, we have to successively solve the maximization and the minimization
problems derived from the definition of the β-characteristic function. In order
to do that, we define the coalition best reply function bS : XN\S −→ XS as:

∀pN\S ∈ XN\S, {bS(pN\S)} = arg max
pS∈XS

πS(pS, pN\S).

By the definition of bS it holds that:

vβ(S) = min
pN\S∈XN\S

πS(bS(pN\S), pN\S).
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In order to compute the worth vβ(S), we have to verify that the function bS is
well-defined. Given pN\S ∈ XN\S consider the profit maximization program of
coalition S:

∀pN\S ∈ XN\S, max
pS∈XS

πS(pS, pN\S).

The first-order conditions for a maximum are:

∀pN\S ∈ XN\S,∀i ∈ S,
∂πS
∂pi

(pS, pN\S) = 0,

and imply that the unique maximizer bS(pN\S) is given by:

∀pN\S ∈ XN\S,∀i ∈ S, bi(pN\S) =
V + (r/n)

∑
j∈N\S pj

2
(
1 + r(n− s)/n

) +
c

2
(6.3)

so that bS is well-defined.
Then, given bS(pN\S) ∈ XS consider the profit minimization program of the
complementary coalition N\S:

min
pN\S∈XN\S

πS(bS(pN\S), pN\S).

The first-order conditions for a minimum are:

∀j ∈ N\S, ∂πS
∂pj

(bS(pN\S), pN\S) = 0,

which are equivalent, for any j ∈ N\S, to the following equality:

∑
j∈N\S

pj =
n

r

(
c

(
1 + r

(n− s)
n

)
− V

)
.

Since for any i ∈ N , Xi = R+, it follows that any minimizer pN\S ∈ XN\S
satisfies:

∑
j∈N\S

pj = max

{
0,
n

r

(
c

(
1 + r

(n− s)
n

)
− V

)}
,

which proves (6.2). By substituting (6.2) into (6.3), we deduce that:

∀i ∈ S, pi = bi(pN\S) = max

{
c,

V

2
(
1 + r(n− s)/n

) +
c

2

}
,

which proves (6.1) and completes the proof. �
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Proposition 6.3.1 calls for some comments which will be useful for the sequel.

Remark 6.3.2

For any coalition S ∈ 2N\{∅}, it holds that:

1. If V ≤ c
(
1 + r(n− s)/n

)
, then by (6.1) any member i ∈ S charges prices

equal to their marginal cost, pi = c, and by (6.2) the outsiders charge a
non-negative average price,

∑
j∈N\S pj/(n− s) ≥ 0. In this case, coalition

S obtains a zero coalition profit, and so vβ(S) = 0.

2. If V > c
(
1 + r(n− s)/n

)
, then by (6.1) any member i ∈ S charges prices

strictly greater than their marginal cost, pi > c, and by (6.2) the outsiders
charge a zero average price,

∑
j∈N\S pj/(n− s) = 0. In this case, coalition

S obtains a positive coalition profit, and so vβ(S) > 0.

3. The computation of the worth vβ(S) is consistent with the fact that the
quantity demanded of any firm i’s brand, i ∈ S, is positive since for any
i ∈ S, Di(p) ≥ 0.

By solving successively the minimization and the maximization problems
derived from the definition of the α-characteristic function, we can show that
the α-characteristic function is well-defined. The proof is similar to the one for
Proposition 6.3.1, and so it is not detailed. A useful property is that the same
set of Bertrand oligopoly TU-games is associated with the α and β-characteristic
functions as enunciated in the following proposition.

Proposition 6.3.3 Let Γbo = (N, (Xi, πi)i∈N) ∈ Gbo be a strategic Bertrand
oligopoly game, and (N, vα) ∈ Gα

bo and (N, vβ) ∈ Gβ
bo be the associated Bertrand

oligopoly TU-games. Then, for any coalition S ∈ 2N\{∅} it holds that:

vα(S) = vβ(S).

Proof: First, for any coalition S ∈ 2N\{∅} it holds that:

vα(S) = max
pS∈XS

min
pN\S∈XN\S

πS(pS, pN\S)

≤ min
pN\S∈XN\S

max
pS∈XS

πS(pS, pN\S)

= vβ(S).
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Then, it remains to show that for any coalition S ∈ 2N\{∅}, vβ(S) ≤ vα(S). We
distinguish two cases:
- assume that V ≤ c

(
1+r(n−s)/n

)
. It follows from point 1 of Remark 6.3.2 that

for any i ∈ S, pi = c. Hence, for any pN\S ∈ XN\S it holds that πS(pS, pN\S) = 0.
- assume that V > c

(
1 + r(n − s)/n

)
. It follows from point 2 of Remark 6.3.2

that for any i ∈ S, pi > c, and pN\S = 0N\S. Since for any i ∈ S, Di is increasing
on XN\S we deduce that for any pN\S ∈ XN\S, πS(pS, pN\S) ≥ πS(pS, 0N\S).
In both cases, it holds that:

pN\S ∈ arg min
pN\S∈XN\S

πS(pS, pN\S).

Hence, we deduce for any coalition S ∈ 2N\{∅} that:

vβ(S) = πS(pS, pN\S)

= min
pN\S∈XN\S

πS(pS, pN\S)

≤ max
pS∈XS

min
pN\S∈XN\S

πS(pS, pN\S)

= vα(S),

which completes the proof. �

Proposition 6.3.3 implies that outsiders’ strategy profile pN\S that best punishes
coalition S as a first mover (α-characteristic function) also best punishes S
as a second mover (β-characteristic function). Zhao (1999b) obtains a similar
result for general TU-games in which any individual strategy set is compact, any
individual utility function is continuous, and the strong separability condition
is satisfied. This latter condition requires that the utility function of a coalition
and any of its members’ individual utility functions have the same minimizers.
We could have used Zhao’s result (1999b) in order to prove Proposition 6.3.3.
First, we compactify the individual strategy sets by assuming that for any i ∈ N ,
Xi = [0,p] where p is sufficiently large so that the maximization/minimization
problems derived from the definitions of the α and β-characteristic functions
have interior solutions. Then, it is clear that any individual profit function πi is
continuous. Finally, since the demand system is symmetric and firms operate at
a constant and identical marginal cost, we can verify that the strong separability
condition is satisfied. In order to be shorter and perfectly rigorous we prefer
to give a constructive proof of Proposition 6.3.3 without using Zhao’s result
(1999b). We deduce from Proposition 6.3.3 the following corollary.

Corollary 6.3.4 Let (N, vα) ∈ Gα
bo and (N, vβ) ∈ Gβ

bo be the Bertrand oligopoly
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TU-games associated with the same strategic Bertrand oligopoly game Γbo =
(N, (Xi, πi)i∈N) ∈ Gbo. Then, it holds that:

C(N, vα) = C(N, vβ).

Now, we want to prove that the set of Bertrand oligopoly TU-games in α or
β-characteristic function form satisfies the convexity property. Proposition 6.3.1
implies that Bertrand oligopoly TU-games in β-characteristic function form are
symmetric. It follows from (6.1) that the members of any coalition S ∈ 2N\{∅}
charge identical prices, i.e. there exists ps ∈ R+ such that for any i ∈ S, pi = ps.
It follows from (6.2) that outsiders charge an average price p[n−s]/(n− s) where
p[n−s] =

∑
j∈N\S pj. Hence, the worth vβ(S) depends only on the size s of

coalition S, i.e. there exists a function fβ : N −→ R such that for any coalition
S ∈ 2N\{∅}, it holds that:

vβ(S) = fβ(s) = s(ps − c)

(
V − ps

(
1 + r

(n− s)
n

)
+
r

n
p[n−s]

)
.

The following theorem states that the convexity property holds for the set of
Bertrand oligopoly TU-games in β-characteristic function form. This result
implies that the core of such games is equal to the Weber set, i.e. the convex
hull of all marginal vectors.

Theorem 6.3.5 Any Bertrand oligopoly TU-game (N, vβ) ∈ Gβ
bo is convex.

Proof: We want to prove the convexity property for the set of symmetric TU-
games, i.e. for any s ≤ n − 2, fβ(s + 1) − fβ(s) ≤ fβ(s + 2) − fβ(s + 1). Take
any coalition S ∈ 2N\{∅} of size s such that s ≤ n − 2. First, we distinguish
two cases:
- assume that V ≤ c

(
1 + r(n − s − 1)/n

)
. It follows from point 1 of Remark

6.3.2 that ps+1 = c.
- assume that V > c

(
1 + r(n− s− 1)/n

)
. This implies that V > c

(
1 + r(n− s−

2)/n
)
, and it follows from point 2 of Remark 6.3.2 that p[n−s−1] = p[n−s−2] = 0.

In both cases, it holds that:

(ps+1 − c)p[n−s−2] = (ps+1 − c)p[n−s−1] (6.4)

Since ps+2 is the unique maximizer for any coalition of size s+ 2 and from (6.4),
it holds that:
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fβ(s+ 2) = (s+ 2)(ps+2 − c)

(
V − ps+2

(
1 + r

(n− s− 2)

n

)
+
r

n
p[n−s−2]

)

≥ (s+ 2)(ps+1 − c)

(
V − ps+1

(
1 + r

(n− s− 2)

n

)
+
r

n
p[n−s−2]

)

= (s+ 2)(ps+1 − c)

(
V − ps+1

(
1 + r

(n− s− 2)

n

)
+
r

n
p[n−s−1]

)

= fβ(s+ 1) + (ps+1 − c)

(
V − ps+1

(
1 + r

(n− 2s− 3)

n

)

+
r

n
p[n−s−1]

)
(6.5)

Moreover, since ps is the unique maximizer for any coalition of size s and p[n−s] ≥
p[n−s−1], we deduce that:

fβ(s) = s(ps − c)

(
V − ps

(
1 + r

(n− s)
n

)
+
r

n
p[n−s]

)

≥ s(ps+1 − c)

(
V − ps+1

(
1 + r

(n− s)
n

)
+
r

n
p[n−s]

)

≥ s(ps+1 − c)

(
V − ps+1

(
1 + r

(n− s)
n

)
+
r

n
p[n−s−1]

)
(6.6)

It follows from the expression of fβ(s+ 1) and (6.6) that:

fβ(s+1)−fβ(s) ≤ (ps+1−c)

(
V −ps+1

(
1+r

(n− 2s− 1)

n

)
+
r

n
p[n−s−1]

)
(6.7)

We conclude from (6.5) and (6.7) that:

fβ(s+ 1)− fβ(s) ≤ (ps+1 − c)

(
V − ps+1

(
1 + r

(n− 2s− 1)

n

)
+
r

n
p[n−s−1]

)

≤ (ps+1 − c)

(
V − ps+1

(
1 + r

(n− 2s− 3)

n

)
+
r

n
p[n−s−1]

)
≤ fβ(s+ 2)− fβ(s+ 1),
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which completes the proof. �

The convexity property does not always hold in Bertrand oligopoly TU-games in
β-characteristic function form when the firms operate at distinct marginal costs
as illustrated in the following example.

Example 6.3.6

Consider the Bertrand oligopoly situation (N, V, r, (ci)i∈N) where N = {1, 2, 3},
V = 2, r = 5, c1 = 1, c2 = 3 and c3 = 5. The Bertrand oligopoly TU-game
(N, vβ) ∈ Gβ

bo is summarized in the following table:

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
vβ(S) 0 0 0 3 12 3 12

Note that vβ({1, 2}) + vβ({1, 3}) = 15 > 12 = vβ({1, 2, 3}) + vβ({1}), and so
(N, vβ) is not convex. �

In Chapter 7, we provide a sufficient condition under which the convexity prop-
erty holds for the set of Bertrand oligopoly TU-games in β-characteristic function
form with distinct marginal costs.

6.4 Rational expectations
In this section, we associate Bertrand oligopoly TU-games in γ-characteristic
function form with strategic Bertrand oligopoly games. First, we show that the
γ-characteristic function is well-defined. Then, we prove that the core is non-
empty by showing that the equal division solution belongs to the core. Finally,
we provide a sufficient condition under which Bertrand oligopoly TU-games in
γ-characteristic function form are convex, i.e. when any coalition has rational
expectations on its future coalition profit there exists a strong incentive to form
the grand coalition.

Given a strategic Bertrand oligopoly game Γbo = (N, (Xi, πi)i∈N) ∈ Gbo, the as-
sociated Bertrand oligopoly TU-game in γ-characteristic function form,
denoted by (N, vγ), is defined for any coalition S ∈ 2N\{∅} as:

vγ(S) = πS(p∗S, p̃N\S),

where (p∗S, p̃N\S) ∈ ϕPA(Γbo, S). We denote by Gγ
bo ⊆ G the set of Bertrand

oligopoly TU-games in γ-characteristic function form.

Throughout this section, in addition to assumptions (h) and (i) we assume that:
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(j) the intercept of demand V ∈ R+ is strictly greater than the marginal cost
c ∈ R+.

For any partial agreement equilibrium, assumption (j) ensures that the quantity
demanded of any firm’s brand is non-negative as discussed below.

Deneckere and Davidson (1985) study strategic Bertrand oligopoly games
with general coalition structures. Given a set of firms N = {1, 2, . . . , n}, a coali-
tion structure P is a partition of N , i.e. P = {S1, . . . , Sk}, k ∈ {1, . . . , n}.
An element of a coalition structure, S ∈ P , is called an admissible coalition
in P . The set of coalition structures with player set N is denoted by PN. The
binary relation ≤F on PN is defined as follows: we say that a coalition structure
P ′ ∈ PN is finer than a coalition structure P ∈ PN (or P is coarser than P ′)
which we write P ≤F P ′ if for any admissible coalition S in P ′ there exists an
admissible coalition T in P such that T ⊇ S. Note that (PN,≤F ) is a complete
lattice.

The strategic Bertrand oligopoly game associated with the strategic
Bertrand oligopoly game Γbo = (N, (Xi, πi)i∈N) ∈ Gbo and the coalition structure
P ∈ PN is a triplet ΓPbo = (P , (XS, πS)S∈P) ∈ Gbo defined as:

1. a set of cartels (or admissible coalitions) P = {S1, . . . , Sk};

2. for every S ∈ P , a coalition strategy set XS =
∏

i∈S Xi;

3. for every S ∈ P , a coalition profit function πS :
∏

S∈P XS −→ R defined
as:

πS(pS, pN\S) =
∑
i∈S

πi(p).

The following proposition is a compilation of different results in Deneckere and
Davidson (1985).

Proposition 6.4.1 (Deneckere and Davidson 1985)

- Let ΓPbo = (P , (XS, πS)S∈P) ∈ Gbo be a strategic Bertrand oligopoly game. Then:

1. there exists a unique Nash equilibrium p∗ ∈ ϕN(ΓPbo) such that:

∀S ∈ P,∃p∗S ∈ R+ : ∀i ∈ S, p∗i = p∗S.



112 Chapter 6

2. it holds that:

∀S ∈ P ,∀T ∈ P : s ≤ t, p∗S ≤ p∗T ,

with strict inequality if s < t.

- Let ΓPbo = (P , (XS, πS)S∈P) ∈ Gbo and ΓP
′

bo = (P ′, (XS, πS)S∈P ′) ∈ Gbo be two
strategic Bertrand oligopoly games such that P ≤F P ′ where p∗ ∈ ϕN(ΓPbo) and
p∗∗ ∈ ϕN(ΓP

′

bo ). Then:

3. for any i ∈ N , p∗i ≥ p∗∗i .

Point 1 of Proposition 6.4.1 establishes the existence of a unique Nash equilib-
rium for any strategic Bertrand oligopoly game ΓPbo = (P , (XS, πS)S∈P) ∈ Gbo
and stipulates that the members of any admissible coalition S ∈ P charge iden-
tical prices. Point 2 of Proposition 6.4.1 characterizes the distribution of prices
within a coalition structure and states that if the size t of an admissible coali-
tion T ∈ P is greater than or equal to the size s of an admissible coalition
S ∈ P , then the firms in T charge higher prices than the firms in S. Point 3 of
Proposition 6.4.1 analyses the variations of equilibrium prices according to the
coarseness of the coalition structure and specifies that any firm charges higher
prices when the coalition structure becomes coarser.

The following proposition states that the γ-characteristic function is well-
defined.

Proposition 6.4.2 Let Γbo = (N, (Xi, πi)i∈N) ∈ Gbo be a strategic Bertrand
oligopoly game. Then, for any coalition S ∈ 2N\{∅} there exists a unique partial
agreement equilibrium under S.

Proof: Take any coalition S ∈ 2N\{∅} and consider the coalition structure
PS = {S} ∪ {{i} : i ∈ N\S}. It follows from the definition of the partial agree-
ment equilibrium that a strategy profile (p∗S, p̃N\S) ∈ ϕPA(Γbo, S) if and only if
(p∗S, p̃N\S) ∈ ϕN(ΓP

S

bo ). By point 1 of Proposition 6.4.1 we conclude that there
exists a unique partial agreement equilibrium under S. �

By solving the maximization problems derived from the definition of the partial
agreement equilibrium, it follows that any (p∗S, p̃N\S) ∈ ϕPA(Γbo, S) is given by:

∀i ∈ S, p∗i =
(V − c)

(
2n(1 + r)− r

)
n

2
(
2n+ r(n+ s− 1)

)(
n+ r(n− s)

)
− r2s(n− s)

+ c (6.8)
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and

∀j ∈ N\S, p̃j =
(V − c)

(
2n(1 + r)− rs

)
n

2
(
2n+ r(n+ s− 1)

)(
n+ r(n− s)

)
− r2s(n− s)

+ c (6.9)

When c = 0, Deneckere and Davidson (1985) provide equivalent expressions of
the above equilibrium prices. We deduce from these equalities that Bertrand
oligopoly TU-games in γ-characteristic function form are symmetric. Indeed, it
follows from (6.8) that the members of any coalition S ∈ 2N\{∅} charge identical
prices, i.e. there exists p∗s ∈ R+ such that for any i ∈ S, p∗i = p∗s. It follows
from (6.9) that outsiders charge identical prices, i.e. there exists p̃s ∈ R+ such
that for any j ∈ N\S, p̃j = p̃s. Hence, the worth vγ(S) depends only on the
size s of coalition S, i.e. there exists a mapping fγ : N −→ R such that for any
coalition S ∈ 2N\{∅}, it holds that:

vγ(S) = fγ(s) = s(p∗s − c)
(
V − p∗s + r

(n− s)
n

(p̃s − p∗s)
)
.

With these notations in mind, Proposition 6.4.1 calls for some comments which
will be useful for the sequel.

Remark 6.4.3

1. For any coalition S ∈ 2N\{∅}, we deduce from point 2 of Proposition 6.4.1
that p∗s ≥ p̃s, i.e. the members of coalition S charge higher prices than
the outsiders.

2. For any coalition S ∈ 2N\{∅} and any coalition T ∈ 2N\{∅} such that
S ⊆ T , it follows from point 3 of Proposition 6.4.1 that p∗s ≤ p∗t and
p̃s ≤ p̃t.

3. For any coalition S ∈ 2N\{∅}, let (p∗S, p̃N\S) ∈ ϕPA(Γbo, S). If p∗s > c and
p̃s > c then for any i ∈ N , Di(p

∗
S, p̃N\S) ≥ 0. In order to prove this result,

for the sake of contradiction, assume that there exists i ∈ N such that
Di(p

∗
S, p̃N\S) < 0, and p∗s > c and p̃s > c. We distinguish two cases:

- if i ∈ S then we deduce from point 1 of Proposition 6.4.1 that for any
j ∈ S, Dj(p

∗
S, p̃N\S) = Di(p

∗
S, p̃N\S) < 0. Hence, it follows from p∗s > c

that coalition S obtains a negative profit.
- if i ∈ N\S then it follows from p̃s > c that outsider i obtains a negative
profit.
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In both cases, since coalition S or any outsider can guarantee a non-
negative profit by charging p∗s = c or p̃s = c respectively, we conclude
that (p∗S, p̃N\S) 6∈ ϕPA(Γbo, S), a contradiction.
Note that p∗s > c and p̃s > c is satisfied if and only if V > c, which corre-
sponds to assumption (j). Thus, assumption (j) ensures that the quantity
demanded of any firm’s brand is non-negative.

As discussed in the introduction, the core associated with the γ-characteristic
function is included in the core associated with the β-characteristic function as
illustrated in the following example.

Example 6.4.4

Consider the Bertrand oligopoly situation (N, V, r, c) where N = {1, 2, 3}, V =
5, r = 2 and c = 1. The Bertrand oligopoly TU-games (N, vβ) ∈ Gβ

bo and
(N, vγ) ∈ Gγ

bo are summarized in the following table:

s 1 2 3
fβ(s) 0.76 3.33 12
fγ(s) 3.36 7.05 12

It follows that the cores C(N, vβ) and C(N, vγ) are given by:

C(N, vβ) =

{
σ ∈ R3 :

∑
i∈N

σi = 12 and ∀i ∈ {1, 2, 3}, 0.76 ≤ σi ≤ 8.67

}
,

and

C(N, vγ) =

{
σ ∈ R3 :

∑
i∈N

σi = 12 and ∀i ∈ {1, 2, 3}, 3.36 ≤ σi ≤ 4.95

}
.

The 2-simplex below represents these two core configurations:
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σ2 = 0.76

σ2 = 8.67

σ1 = 0.76

σ1 = 8.67

σ3 = 0.76

σ3 = 8.67

σ2 = 3.36σ2 = 4.95

σ1 = 3.36

σ1 = 4.95

σ3 = 3.36

σ3 = 4.95

•

(4, 4, 4)

Firm 1

Firm 2 Firm 3

(12, 0, 0)

(0, 12, 0) (0, 0, 12)

C(N, vβ)

C(N, vγ)

Thus, from the Bertrand oligopoly TU-game (N, vβ) to the Bertrand oligopoly
TU-game (N, vγ), we see that the core is substantially reduced. Two features
must be noticed. The first is that the equal division solution (4, 4, 4) ∈ R3 is
the center of gravity of both cores. The second is that the Bertrand oligopoly
TU-game (N, vγ) is convex. In the remainder of this section, we show that
these properties still hold for some subset of Bertrand oligopoly TU-games in
γ-characteristic function form.

Now, we show that the equal division solution belongs to the core of Bertrand
oligopoly TU-games in γ-characteristic function form as enunciated in the fol-
lowing theorem.

Theorem 6.4.5 For any Bertrand oligopoly TU-game (N, vγ) ∈ Gγ
bo, it holds

that ED(N, vγ) ∈ C(N, vγ).

Proof: In order to prove that ED(N, vγ) ∈ C(N, vγ), we have to show that for
any coalition S ∈ 2N\{∅}, vγ(N)/n ≥ vγ(S)/s. First, it follows from (6.8) that
p∗n = (V + c)/2. Then, take any coalition S ∈ 2N\{∅}. We deduce from points
1 and 2 of Remark 6.4.3 that:
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vγ(N)

n
− vγ(S)

s
= (p∗n − c)(V − p∗n)− (p∗s − c)

(
V − p∗s + r

(n− s)
n

(p̃s − p∗s)
)

≥ (p∗n − c)(V − p∗n)− (p∗s − c)(V − p∗s)
= (p∗n − p∗s)(V + c− p∗n − p∗s)
≥ (p∗n − p∗s)(V + c− 2p∗n)

= (p∗n − p∗s)(V + c− V − c)
= 0,

which completes the proof. �

Then, we provide a sufficient condition under which Bertrand oligopoly TU-
games in γ-characteristic function form are convex. For any Bertrand oligopoly
TU-game (N, vγ) ∈ Gγ

bo, this condition is defined as:

∀s ≤ n− 2,
(s+ 2)(n− s− 2)p̃s+2 + s(n− s)p̃s + 2p∗s+1

2(s+ 1)(n− s− 1)
≥ p̃s+1 (6.10)

By noting that (s+ 2)(n− s− 2) + s(n− s) + 2 = 2(s+ 1)(n− s− 1), condition
(6.10) means that the convex combination of p̃s+2, p̃s and p∗s+1 must be greater
than or equal to p̃s+1. It follows from point 1 of Remark 6.4.3 that p∗s+1 ≥ p̃s+1.
It follows from point 2 of Remark 6.4.3 that p̃s+2 ≥ p̃s+1 ≥ p̃s. Hence, if the
difference between p̃s+1 and p̃s is sufficiently small, then condition (6.10) holds.
For instance, condition (6.10) is satisfied in Example 6.4.4.

Theorem 6.4.6 Let (N, vγ) ∈ Gγ
bo be a Bertrand oligopoly TU-game such that

condition (6.10) is satisfied. Then (N, vγ) is convex.

Proof: We want to prove the convexity property for the set of symmetric TU-
games, i.e. for any s ≤ n− 2, fγ(s+ 2) + fγ(s) ≥ 2fγ(s+ 1). Take any coalition
S ∈ 2N\{∅} of size s such that s ≤ n − 2. Since p∗s+2 is the unique maximizer
for any coalition of size s+ 2, it holds that:

fγ(s+ 2) = (s+ 2)(p∗s+2 − c)
(
V − p∗s+2 + r

(n− s− 2)

n
(p̃s+2 − p∗s+2)

)
≥ (s+ 2)(p∗s+1 − c)

(
V − p∗s+1 + r

(n− s− 2)

n
(p̃s+2 − p∗s+1)

)
.

Similarly, since p∗s is the unique maximizer for any coalition of size s, it holds
that:



6.4 Rational expectations 117

fγ(s) = s(p∗s − c)
(
V − p∗s + r

(n− s)
n

(p̃s − p∗s)
)

≥ s(p∗s+1 − c)
(
V − p∗s+1 + r

(n− s)
n

(p̃s − p∗s+1)

)
.

For notational convenience, for any s ≤ n− 2, we denote by A(s) = (s+ 2)(n−
s− 2)p̃s+2 + s(n− s)p̃s + 2p∗s+1 so that condition (6.10) becomes:

∀s ≤ n− 2, A(s) ≥ 2(s+ 1)(n− s− 1)p̃s+1 (6.11)

By the above two inequalities and (6.11) it holds that:

fγ(s+ 2) + fγ(s) ≥ (p∗s+1 − c)
(

2(s+ 1)(V − p∗s+1)

+
r

n

(
A(s)− 2(s+ 1)(n− s− 1)p∗s+1

))
≥ (p∗s+1 − c)

(
2(s+ 1)(V − p∗s+1)

+
r

n

(
2(s+ 1)(n− s− 1)(p̃s+1 − p∗s+1)

))
= 2(s+ 1)(p∗s+1 − c)

(
V − p∗s+1

+ r
(n− s− 1)

n
(p̃s+1 − p∗s+1)

)
= 2fγ(s+ 1),

which completes the proof. �

Note that condition (6.10) is not necessary for the convexity property as illus-
trated in the following example.

Example 6.4.7

Consider the Bertrand oligopoly situation (N, V, r, c) where N = {1, 2, 3, 4},
V = 5, r = 6 and c = 0. The Bertrand oligopoly TU-game (N, vγ) ∈ Gγ

bo is
summarized in the following table:

s 1 2 3 4
fγ(s) 3.25 6.96 12.58 25
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Although (N, vγ) is convex, condition (6.10) does not hold for s = 2 since A(2)−
2(2+1)(n−2−1)p̃2+1 = −0.03 where A(s) is defined as in the proof of Theorem
6.4.6. �

6.5 Concluding remarks

In this chapter, we have considered Bertrand oligopoly TU-games in α, β and
γ-characteristic function forms. We have assumed that the demand system is
Shubik’s (1980) and firms operate at a constant and identical marginal cost.
First, we have showed that the same set of Bertrand oligopoly TU-games is as-
sociated with the α and β-characteristic functions. Moreover, we have proved
that the convexity property holds for this set of games. Then, for the set of
Bertrand oligopoly TU-games in γ-characteristic function form, we have showed
that the equal division solution belongs to the core and we have provided a suf-
ficient condition under which such games are convex. This result substantially
extends the superadditivity result of Deneckere and Davidson (1985) and con-
trasts sharply with the negative core non-emptiness results of Kaneko (1978) and
Huang and Sjöström (2003). Thus, although Cournot and Bertrand oligopoly
games are basically different in their non-cooperative forms, it appears that their
cooperative forms have the same core structure. Hence, it follows from the con-
vexity property that there exists a strong incentive for large scale cooperation
in such games.
We have directly assumed that products are differentiated. Two other cases can
be considered: when products are unrelated (r = 0) and when products are
perfect substitutes (r = +∞).
In the first case, the quantity demanded of any firm i’s brand only depends on
its own price. Hence, any coalition profit does not depend on outsiders’ behav-
ior, and so the α, β and γ-characteristic functions are equal. Moreover, for any
coalition S ∈ 2N\{∅}, the coalition profit function πS is separable:

∀xS ∈ XS, πS(xS) =
∑
i∈S

πi(xi).

Thus, given the strategic Bertrand oligopoly game Γbo = (N, (Xi, πi)i∈N) ∈ Gbo,
for any coalition S ∈ 2N\{∅} the unique Nash equilibrium p∗ ∈ ϕN(Γbo) is also
the unique partial agreement equilibrium under S, i.e. {p∗} = ϕPA(Γbo, S).
Hence, Bertrand oligopoly TU-games are additive, and so (v({i}))i∈N ∈ Rn is
the unique core element.
In the second case, firms sell a homogeneous product. It follows that firm i’s
quantity demanded is positive if and only if it charges the smallest price. Since
firms operate at a constant and identical marginal cost, for any coalition S ∈
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2N\{∅, N}, outsiders charge prices equal to their marginal cost (this outsiders’
behavior is consistent with the α, β and γ-approaches), and so coalition S obtains
a zero profit. By charging the monopoly price, the grand coalition obtains a non-
negative profit, and we conclude that the core is equal to the set of imputations.

Other alternative blocking rules can be considered. For instance, firms in
N\S can choose coalitional rather than individual best reply strategies. In this
case, the worth of coalition S is given by the unique Nash equilibrium of the
strategic Bertrand duopoly game Γ

{S,N\S}
bo = ({S,N\S}, (XT , πT )T∈{S,N\S}) ∈

Gbo. However, the following example shows that the non-emptiness of the core
crucially depends on the substitutability parameter.

Example 6.5.1

We consider the two Bertrand oligopoly situations (N, V, r1, c) and (N, V, r2, c)
where N = {1, 2, 3, 4}, V = 1, r1 = 1, r2 = 3 and c = 0. The two Bertrand
oligopoly TU-games derived from the Bertrand oligopoly situations (N, V, r1, c)
and (N, V, r2, c) are symmetric, and so the worths of any coalition S ∈ 2N\{∅}
are summarized by the functions f r1 : N −→ R and f r2 : N −→ R respectively.
The worths of any coalition S ∈ 2N\{∅} are given in the following table:

s 1 2 3 4
f r1(s) 0.252 0.480 0.719 1
f r2(s) 0.242 0.408 0.622 1

For the Bertrand oligopoly TU-game derived from the Bertrand oligopoly situa-
tion (N, V, r1, c), we have 4f r1(1) = 1.008 > 1 = f r1(4), and so the core is empty.
For the Bertrand oligopoly TU-game derived from the Bertrand oligopoly situa-
tion (N, V, r2, c), the payoff vector (0.25, 0.25, 0.25, 0.25) ∈ R4 is a core element,
and so the core is non-empty. �

According to Example 6.5.1, we observe that the core becomes non-empty when
the substitutability parameter increases. A similar argument is used by Huang
and Sjöström (2003) in order to guarantee the non-emptiness of the “recursive
core”. They prove that the “recursive core” is non-empty if and only if the sub-
stitutability parameter is greater than or equal to some number that depends on
the number of firms. When firms in N\S choose coalitional best reply strategies,
it is likely that a similar condition would ensure the non-emptiness of the core.
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Chapter 7

Convexity and the Shapley value in
Bertrand oligopoly TU-games with
distinct marginal costs

7.1 Introduction

In Chapter 6, we have dealt with Bertrand oligopoly TU-games where all the
firms operate at a constant and identical marginal cost and we have focused on
the convexity property of such games.
In this chapter, which is based on Driessen, Hou, and Lardon (2010), we go fur-
ther by studying Bertrand oligopoly TU-games in α and β-characteristic function
forms in which firms’ marginal costs are possibly distinct. First, we show that
the same set of Bertrand oligopoly TU-games is associated with the α and β-
characteristic functions, which extends the result in Proposition 6.3.3. Then,
on the one hand, we show that if the intercept of demand is sufficiently small,
then Bertrand oligopoly TU-games in β-characteristic function form have clear
similarities with a well-known notion in statistics called variance with respect to
the marginal costs. Although such games fail to be convex unless all the firms
operate at an identical marginal cost, we prove that they are nevertheless totally
balanced. On the other hand, we prove that if the intercept of demand is suf-
ficiently large, then Bertrand oligopoly TU-games in β-characteristic function
form are convex which extends the result in Theorem 6.3.5. Finally, we give
an appealing expression of the Shapley value for this second game type. We
show that the Shapley value is fully determined by decomposing any Bertrand
oligopoly TU-game in β-characteristic function form into the difference between
two convex TU-games, besides two additive TU-games. Moreover, for this sec-
ond game type we provide an axiomatic characterization of the Shapley value

121
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by means of two properties: efficiency and individual monotonicity. Recall that
efficiency requires that a solution distributes the worth of the grand coalition
among the firms. Individual monotonicity stipulates that the difference between
the payoffs of two firms is equal to the difference between their individual worth
weighted by some real number which depends on their average cost.

The remainder of this chapter is structured as follows. In Section 7.2, we in-
troduce the model and show that the same set of Bertrand oligopoly TU-games
is associated with the α and β-characteristic functions. In Section 7.3, we show
that if the intercept of demand is sufficiently small then Bertrand oligopoly TU-
games in β-characteristic function form fail to be convex but are nevertheless
totally balanced. Conversely, if the intercept of demand is sufficiently large we
prove that Bertrand oligopoly TU-games in β-characteristic function form are
convex. In Section 7.4, for the second game type we give an appealing expression
of the Shapley value and provide an axiomatic characterization. Section 5 gives
some concluding remarks.

7.2 The model
A Bertrand oligopoly situation is a triplet (N, (Di, Ci)i∈N) defined as:

1. a finite set of firms N = {1, 2, . . . , n};

2. for every i ∈ N , a demand function Di : Rn
+ −→ R which assigns to any

price vector p ∈ Rn
+ the quantity demanded of firm i’s brand Di(p);

3. for every i ∈ N , an individual cost function Ci : R+ −→ R+.

Throughout this chapter, we assume that:

(k) the demand system is Shubik’s (1980):

∀i ∈ N, Di(p1, . . . , pn) = V − pi − r
(
pi −

1

n

∑
j∈N

pj

)
,

where pj is the price charged by firm j, V ∈ R+ is the intercept of de-
mand and r ∈ R++ is the substitutability parameter. When r approaches
zero, products become unrelated, and when r approaches infinity, products
become perfect substitutes. The quantity demanded of firm i’s brand de-
pends on its own price pi and on the difference between pi and the average
price in the industry

∑
j∈N pj/n. This quantity is decreasing with respect

to pi and increasing with respect to any pj such that j 6= i;
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(l) firms operate at possibly distinct marginal costs:

∀i ∈ N , ∃ci ∈ R+ : Ci(xi) = cixi,

where ci ∈ R+ is firm i’s marginal cost, and xi = Di(p1, . . . , pn) ∈ R+ is
the quantity demanded of firm i’s brand.

Given assumptions (k) and (l), a Bertrand oligopoly situation is summarized
by the 4-tuple (N, V, r, (ci)i∈N). For notational convenience, for any coalition
S ∈ 2N\{∅} we denote its average coalitional cost by cS = (1/s)

∑
i∈S ci.

The strategic Bertrand oligopoly game associated with the Bertrand
oligopoly situation (N, V, r, (ci)i∈N) is a triplet Γbo = (N, (Xi, πi)i∈N) defined
as:

1. a finite set of firms N = {1, 2, . . . , n};

2. for every i ∈ N , an individual strategy set Xi = R+ where pi ∈ Xi

represents the price charged by firm i;

3. for every i ∈ N , an individual profit function πi : XN −→ R defined
as:

πi(p) = Di(p)(pi − ci).

Note that firm i’s profit depends on its own price pi and on the average price in
the industry

∑
j∈N pj/n. We denote by Gbo ⊆ G the set of strategic Bertrand

oligopoly games.

For any coalition S ∈ 2N\{∅}, recall that the coalition profit function
πS : XS ×XN\S −→ R is defined as:

πS(pS, pN\S) =
∑
i∈S

πi(p).

Given a strategic Bertrand oligopoly game Γbo = (N, (Xi, πi)i∈N) ∈ Gbo, the asso-
ciated Bertrand oligopoly TU-games in α and β-characteristic function
forms, denoted by (N, vα) and (N, vβ), are defined for any coalition S ∈ 2N\{∅}
as:

vα(S) = max
pS∈XS

min
pN\S∈XN\S

πS(pS, pN\S),

and
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vβ(S) = min
pN\S∈XN\S

max
pS∈XS

πS(pS, pN\S).

We denote by Gα
bo ⊆ G and Gβ

bo ⊆ G the set of Bertrand oligopoly TU-
games in α and β-characteristic function forms respectively.

The following proposition states that the β-characteristic function is well-
defined, and so it generalizes Proposition 6.3.1.

Proposition 7.2.1 Let Γbo = (N, (Xi, πi)i∈N) ∈ Gbo be a strategic Bertrand
oligopoly game and (N, vβ) ∈ Gβ

bo be the associated Bertrand oligopoly TU-game.
Then, for any coalition S ∈ 2N\{∅} it holds that:

vβ(S) = πS(pS, pN\S),

where (pS, pN\S) ∈ XS ×XN\S is given by:

∀i ∈ S, pi = max

{
cS + ci

2
,
1

2

(
nV

n+ r(n− s)
+ ci

)}
(7.1)

and

∑
j∈N\S

pj = max

{
0,
n

r

(
cS

(
1 + r

(n− s)
n

)
− V

)}
(7.2)

Proof: Take any coalition S ∈ 2N\{∅}. In order to compute the worth vβ(S) of
coalition S, we have to successively solve the maximization and the minimization
problems derived from the definition of the β-characteristic function. In order
to do that, we define the coalition best reply function bS : XN\S −→ XS as:

∀pN\S ∈ XN\S, {bS(pN\S)} = arg max
pS∈XS

πS(pS, pN\S).

By the definition of bS it holds that:

vβ(S) = min
pN\S∈XN\S

πS(bS(pN\S), pN\S).

In order to compute the worth vβ(S), we have to verify that the function bS is
well-defined. Given pN\S ∈ XN\S consider the profit maximization program of
coalition S:

∀pN\S ∈ XN\S, max
pS∈XS

πS(pS, pN\S).
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The first-order conditions for a maximum are:

∀pN\S ∈ XN\S,∀i ∈ S,
∂πS
∂pi

(pS, pN\S) = 0,

and imply that the unique possible maximizer bS(pN\S) is given by:

∀pN\S ∈ XN\S,∀i ∈ S, bi(pN\S) =
1

2(1 + r)

(
V +

r

n

( ∑
j∈N\S

pj

+
∑
j∈S

(
2bj(pN\S)− cj

)))
+
ci
2
.

We conclude that for any solution of the above maximization program there ex-
ists bS ∈ R+ such that for any i ∈ S, bi(pN\S)− ci/2 = bS. Through substitution
in the above system of equations we deduce that:

2(1 + r)bS = V +
r

n

( ∑
j∈N\S

pj + 2sbS

)
,

which is equivalent to:

bS =
nV + r

∑
j∈N\S pj

2
(
n+ r(n− s)

) .

Hence, it holds that:

∀pN\S ∈ XN\S,∀i ∈ S, bi(pN\S) =
nV + r

∑
j∈N\S pj

2
(
n+ r(n− s)

) +
ci
2

(7.3)

so that bS is well-defined.
Then, given bS(pN\S) ∈ XS consider the profit minimization program of the
complementary coalition N\S:

min
pN\S∈XN\S

πS(bS(pN\S), pN\S).

The first-order conditions for a minimum are:

∀j ∈ N\S, ∂πS
∂pj

(bS(pN\S), pN\S) = 0,

which are equivalent, for any j ∈ N\S, to the following equality:
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∑
j∈N\S

pj =
n

r

(
cS

(
1 + r

(n− s)
n

)
− V

)
.

Since for any i ∈ N , Xi = R+, it follows that any minimizer pN\S ∈ XN\S
satisfies:

∑
j∈N\S

pj = max

{
0,
n

r

(
cS

(
1 + r

(n− s)
n

)
− V

)}
,

which proves (7.2). By substituting (7.2) into (7.3), we deduce that:

∀i ∈ S, pi = bi(pN\S) = max

{
cS + ci

2
,
1

2

(
nV

n+ r(n− s)
+ ci

)}
,

which proves (7.1) and completes the proof. �

Proposition 7.2.1 generalizes the result in Proposition 6.3.1. Indeed, if there
exists c ∈ R+ such that for any i ∈ S, ci = c, then (7.1) and (7.2) coincide
with (6.1) and (6.2) respectively. Moreover, Proposition 7.2.1 calls for some
comments which will be useful for the sequel.

Remark 7.2.2

For any coalition S ∈ 2N\{∅}, it holds that:

1. If V ≤ cS
(
1 + r(n − s)/n

)
, then by (7.1) any member i ∈ S charges

prices equal to the average between the average coalitional cost and its
own marginal cost, pi = (cS + ci)/2, and by (7.2) the outsiders charge a
non-negative average price,

∑
j∈N\S pj/(n− s) ≥ 0. In this case, coalition

S obtains:

vβ(S) =
(1 + r)

4

∑
i∈S

(ci − cS)2 (7.4)

2. If V > cS
(
1 + r(n− s)/n

)
, then by (7.1) any member i ∈ S charges prices

strictly greater than the average between the average coalitional cost and
its own marginal cost, pi > (cS + ci)/2, and by (7.2) the outsiders charge
a zero average price,

∑
j∈N\S pj/(n − s) = 0. In this case, coalition S

obtains:
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vβ(S) =
s
(
nV − (n+ r(n− s))cS

)2

4n
(
n+ r(n− s)

) +
(1 + r)

4

∑
i∈S

(ci − cS)2 (7.5)

or equivalently

vβ(S) = −V
2

∑
i∈S

ci −
r

4n

(∑
i∈S

ci

)2

+
(1 + r)

4

∑
i∈S

c2
i +

s(nV )2

4n
(
n+ r(n− s)

)
(7.6)

3. Contrary to point 3 of Remark 6.3.2, the computation of the worth vβ(S)
may not be consistent with the fact that the quantity demanded of firm
i’s brand, i ∈ S, is positive. Note that the condition V >

(
1 + r(n −

1)/n
)

maxi∈N ci guarantees that for any i ∈ S, Di(p) ≥ 0.

By point 1 of Remark 7.2.2, Bertrand oligopoly TU-games in β-characteristic
function form given by (7.4) have clear similiraties with the well-known notion
in statistics called variance. Given a family of marginal costs denoted by C =
{ci}i∈N , the associated variance TU-game (N, V ARC) ∈ G is defined for any
coalition S ∈ 2N\{∅} as:

V ARC(S) =
∑
i∈S

(cj − cS)2.

The notion of variance is well-known in the field of statistics and it refers to the
sum of the squares of the differences between any coalition member’s marginal
cost and the average coalitional cost. By (7.4), any Bertrand oligopoly TU-game
(N, vβ) ∈ Gβ

bo is strategically equivalent to the corresponding variance TU-game.
For instance, for any family C = {c1, c2, c3} for which there exists c ∈ R+ such
that c1 = c2 = c and c3 = c + 1 the associated variance TU-game is given by
V ARC(S) = 0 if 3 ∈ N\S and V ARC(S) = (s − 1)/s if 3 ∈ S. Note that firms
1 and 2 are substitutes in this variance TU-game.
Generally speaking, for any coalition S ∈ 2N\{∅} for which there exists i ∈
S such that ci = cS, it holds that ci = cS\{i} and in turn, V ARC(S\{i}) =
V ARC(S). Particularly, if ci = cN then we have V ARC(N)−V ARC(N\{i}) = 0.
Because the latter expression represents an upper bound for the core of the
variance TU-game, any core allocation for player i degenerates to zero, provided
that firm i’s marginal cost coincides with the average coalitional cost of the
grand coalition.
By point 2 of Remark 7.2.2, when all the firms operate at an identical marginal
cost, the per-capita worth of any Bertrand oligopoly TU-game in β-characteristic
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function form given by (7.5) is strategically equivalent to the square of a specific
bankruptcy game. Indeed, given a Bertrand oligopoly situation (N, V, r, (ci)i∈N)
for which there exists c ∈ R++ such that for any i ∈ N , ci = c, and for any
coalition S ∈ 2N\{∅}, V > c

(
1 + r(n − s)/n

)
, the proportional aggregate

netto demand E is defined as:

E =
n(V − c)

rc
.

By (7.5), for any coalition S ∈ 2N\{∅} it holds that:

vβ(S)

s
=

(rc)2

4n
×
(
E − (n− s)

)2

n+ r(n− s)
> 0 (7.7)

The non-zero coalitional worth in the symmetric Bertrand oligopoly TU-game
in β-characteristic function form depends on the validity of the constraint V >
c
(
1 + r(n − s)/n

)
involving the intercept V or the equivalent constraint E >

(n − s) involving the proportional aggregate netto demand E. We interpret
n(V − c) as the aggregate netto demand when prices are equal to zero. Obvi-
ously, if a coalition S of size s meets the constraint E ≤ (n − s), yielding by
point 1 of Remark 6.3.2, the zero worth vβ(S) = 0, then any coalition of the
same size s or less inherits the same constraint yielding zero worth. Similarly,
if a coalition T of size t meets the inverse constraint E > (n − t), yielding by
point 2 of Remark 6.3.2, the positive worth vβ(T ) > 0, then any coalition of the
same size or more inherits the same inverse constraint yielding a positive worth.
By (7.7), the per-capita worth vβ(S)/s is strategically equivalent to the quo-
tient of the square of a bankruptcy game with estate E and unitary claims and
a linearly decreasing symmetric game varying from levels (1+r)n down to level n.

In summary, by points 1 and 2 of Remark 7.2.2, any Bertrand oligopoly TU-
game in β-characteristic function form consists of two types of worths for any
coalition S ∈ 2N\{∅} according to the relevant constraint V > cS

(
1+r(n−s)/n

)
.

By (7.4), if the average coalitional cost is sufficiently large then the worth is fully
determined by the multiple (1 + r)/4 of the corresponding variance TU-game.
Otherwise, by (7.5), if the average coalitional cost is sufficiently small then the
worth counts, besides the corresponding variance TU-game, the positive worth
in the symmetric Bertrand oligopoly TU-game, with the understanding that the
constant marginal cost must be replaced by the average coalitional cost. The
alternative decomposition (7.6) into four types of TU-games will be exploited in
Sections 7.3 and 7.4.

By solving successively the minimization and the maximization problems
derived from the definition of the α-characteristic function, we can show that
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the α-characteristic function is well-defined. The proof is similar to the one for
Proposition 7.2.1, and so it is not detailed. A useful property is that the same
set of Bertrand oligopoly TU-games is associated with the α and β-characteristic
functions as enunciated in the following proposition.

Proposition 7.2.3 Let Γbo = (N, (Xi, πi)i∈N) ∈ Gbo be a strategic Bertrand
oligopoly game, and (N, vα) ∈ Gα

bo and (N, vβ) ∈ Gβ
bo be the associated Bertrand

oligopoly TU-games. Then, for any coalition S ∈ 2N\{∅} it holds that:

vα(S) = vβ(S).

Proof: First, for any coalition S ∈ 2N\{∅}, it holds that:

vα(S) = max
pS∈XS

min
pN\S∈XN\S

πS(pS, pN\S)

≤ min
pN\S∈XN\S

max
pS∈XS

πS(pS, pN\S)

= vβ(S).

Then, it remains to show that for any coalition S ∈ 2N\{∅}, vβ(S) ≤ vα(S). We
distinguish two cases:
First, assume that V ≤ cS

(
1 + r(n − s)/n

)
. It follows from point 1 of Remark

7.2.2 that for any i ∈ S, pi = (cS + ci)/2. Hence, for any pN\S ∈ XN\S it holds
that:

πS(pS, pN\S) =
∑
j∈S

(
c̄S − cj

2

)(
V − (1 + r)

(c̄S + cj)

2
+
rs

n
cS +

r

n

∑
k∈N\S

pk

)
.

For any of the partial derivatives of πS with respect to pk, k ∈ N\S, it holds
that:

∂πS
∂pk

(pS, pN\S) =
r

n

∑
j∈S

(
cS − cj

2

)
=
r

n

(∑
j∈S

cS
2
−
∑
j∈S

cj
2

)
=
r

n

(
scS
2
− scS

2

)
= 0.
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Hence, we deduce that outsiders’ prices don’t affect the profit of coalition S.
Indeed, after some calculations, for any pN\S ∈ XN\S it holds that:

πS(pS, pN\S) =
(1 + r)

4

∑
j∈S

(cj − cS)2.

Then, assume that V > cS
(
1 + r(n− s)/n

)
. It follows from point 2 of Remark

7.2.2 that for any i ∈ S, pi = (1/2)
(
(nV )/(n+ r(n− s)) + ci

)
and pN\S = 0N\S.

Hence it holds that:

πS(pS, pN\S) =
1

2

∑
j∈S

(
nV

n+ r(n− s)
− cj

)(
V − (1 + r)

2

(
nV

n+ r(n− s)
+ cj

)

+
r

2n

∑
j∈S

(
nV

n+ r(n− s)
+ cj

)
+
r

n

∑
k∈N\S

pk

)
.

For any of the partial derivatives of πS with respect to pk, k ∈ N\S, it holds
that:

∂πS
∂pk

(pS, pN\S) =
r

2n

∑
j∈S

(
nV

n+ r(n− s)
− cj

)
=

r

2n

(
snV

n+ r(n− s)
−
∑
j∈S

cj

)
=

r

2n

(
snV

n+ r(n− s)
− scS

)
=
rs

2n

(
nV

n+ r(n− s)
− cS

)
> 0.

We deduce that for any pN\S ∈ XN\S, πS(pS, pN\S) ≥ πS(pS, 0N\S).
Finally, in both cases it holds that:

pN\S ∈ arg min
pN\S∈XN\S

πS(pS, pN\S) (7.8)

For any coalition S ∈ 2N\{∅}, it follows from (7.8) that:
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vβ(S) = πS(pS, pN\S)

= min
pN\S∈XN\S

πS(pS, pN\S)

≤ max
pS∈XS

min
pN\S∈XN\S

πS(pS, pN\S)

= vα(S),

which completes the proof. �

7.3 Totally balancedness and convexity proper-
ties

In this section, we distinguish Bertrand oligopoly TU-games in β-characteristic
function form either given by (7.4) or given by (7.5) and (7.6). First, we show
that any Bertrand oligopoly TU-game in β-characteristic function form of the
first type fails to be convex unless all the firms operate at an identical marginal
cost but is nevertheless totally balanced. Then, we prove that any Bertrand
oligopoly TU-game in β-characteristic function form of the second type is con-
vex.

The following proposition provides a subset of Bertrand oligopoly TU-games
in β-characteristic function form given by (7.4) which fail to be convex unless
all the firms operate at an identical marginal cost.

Proposition 7.3.1 Let (N, vβ) ∈ Gβ
bo be a Bertrand oligopoly TU-game given

by (7.4) for which there exists at least two firms that operate at an identical
marginal cost c ∈ R+. Then (N, vβ) is not convex unless all the firms operate at
the same marginal cost c.

Proof: First, assume that all the firms operate at the same marginal cost c ∈
R+. It follows from point 1 of Remark 6.3.2 that for any coalition S ∈ 2N\{∅},
vβ(S) = 0, and so (N, vβ) is trivially convex. This also follows from Theorem
6.3.5.
Then, assume that at least two firms but not all the firms have the same marginal
cost c ∈ R+. Without loss of generality, we want to show that the associated
variance TU-game (N, V ARC) is not convex. We denote by E the set of firms
that operate at marginal cost c, i.e. E = {i ∈ N : ci = c}. By assumption,
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2 ≤ |E| < n. Obviously, for any coalition S ∈ 2E\{∅}, cS = c and thus,
V ARC(S) = 0. For any coalition S ∈ 2N\{∅} such that S 6⊆ E, it holds that:

cS =
1

s

∑
i∈S

ci

=
1

s

(
|S ∩ E|c+

∑
i∈S\E

ci

)
= c+

1

s

∑
i∈S\E

(ci − c) (7.9)

For notational convenience, we denote by θS = (1/s)
∑

i∈S\E(ci − c). By the
definition of the variance TU-game (N, V ARC) and (7.9), it holds that:

V ARC(S) =
∑
i∈S∩E

(
c− cS

)2
+
∑
i∈S\E

(
ci − cS

)2

=
∑
i∈S∩E

(−θS)2 +
∑
i∈S\E

(ci − c− θS)2

=
∑
i∈S∩E

θ2
S +

∑
i∈S\E

(ci − c)2 −
∑
i∈S\E

2θS(ci − c) +
∑
i∈S\E

θ2
S

= sθ2
S +

∑
i∈S\E

(ci − c)2 − 2sθ2
S

=
∑
i∈S\E

(ci − c)2 − sθ2
S

=
∑
i∈S\E

(ci − c)2 − 1

s

( ∑
i∈S\E

(ci − c)
)2

.

For any i ∈ E and any coalition S ∈ 2N\{i}\{∅} such that S 6⊆ E, it holds that
S ∪ {i} 6⊆ E as well as (S ∪ {i})\E = S\E. Hence, by the latter equality we
deduce on the one hand that:

V ARC(S ∪ {i})− V ARC(S) =
1

s(s+ 1)

( ∑
i∈S\E

(ci − c)
)2

.

Similarly, for any i ∈ E, any j ∈ E and any coalition S ∈ 2N\{i,j}\{∅} such that
S 6⊆ E, it holds that S∪{i, j} 6⊆ E as well as (S∪{i, j})\E = (S∪{j})\E = S\E.
Hence, we deduce on the other hand that:
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V ARC(S ∪ {i, j})− V ARC(S ∪ {j}) =
1

(s+ 1)(s+ 2)

( ∑
i∈S\E

(ci − c)
)2

.

Finally, take any i ∈ E and any j ∈ E such that i 6= j, and choose any l ∈ N\E.
Consider S = {l} so that S 6⊆ E. Then, it follows from the above two equalities
that V ARC(S ∪ {i, j}) − V ARC(S ∪ {j}) < V ARC(S ∪ {i}) − V ARC(S) which
completes the proof. �

The following example illustrates that Bertrand oligopoly TU-games given
by (7.4) may neither be convex nor average convex.

Example 7.3.2

Let (N, V, r, (ci)i∈N) be a Bertrand oligopoly situation where N = {1, 2, 3},
r = 3, c1 = c − 1, c2 = c and c3 = c + 1 where c and V are such that for any
coalition S ∈ 2N\{∅} the constraint V ≤ cS

(
1+r(n−s)/n

)
is satisfied so that the

Bertrand oligopoly TU-game (N, vβ) ∈ Gβ
bo is given by (7.4). Note that (N, vβ)

is equal to the variance TU-game (N, V ARC) ∈ G where C = {c− 1, c, c+ 1}.
By (7.4), it holds that for any i ∈ N , vβ({i}) = 0, v({1, 2}) = v({2, 3}) = 1/2
and v({1, 3}) = v({1, 2, 3}) = 2. We conclude that this game is neither convex
since v(N) − v({1, 3}) = 0 < 1/2 = v({1, 2}) − v({1}), nor average convex
since for S = {1, 3} and T = N the inequality

∑
i∈S
(
v(S) − v(S\{i})

)
≤∑

i∈S
(
v(T )− v(T\{i})

)
fails to hold. �

Although a large subset of Bertrand oligopoly TU-games in β-characteristic
function form given by (7.4) fails to satisfy the convexity property, the following
theorem states that they are nevertheless totally balanced.

Theorem 7.3.3 Any Bertrand oligopoly TU-game (N, vβ) ∈ Gβ
bo given by (7.4)

is totally balanced.

Proof: Take any Bertrand oligopoly TU-game (N, vβ) ∈ Gβ
bo given by (7.4).

By the strategic equivalence property between (N, vβ) and the corresponding
variance TU-game (N, V ARC) ∈ G, it is sufficient to prove that (N, V ARC) is
totally balanced. Let B ⊆ 2N\{∅} be a balanced family of coalitions. By the
definition of the variance TU-game it holds that:
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∑
S∈B

δSV ARC(S) =
∑
S∈B

δS
∑
i∈S

(ci − cS)2

=
∑
i∈N

∑
S∈Bi

δS(ci − cS)2

=
∑
i∈N

∑
S∈Bi

δS
(
(ci − cN) + (cN − cS)

)2

=
∑
i∈N

∑
S∈Bi

δS
(
(ci − cN)2 + (cN − cS)2 + 2(ci − cN)(cN − cS)

)
=
∑
i∈N

(ci − cN)2 +
∑
i∈N

∑
S∈Bi

δS(cN − cS)
(
(cN − cS) + 2(ci − cN)

)
=
∑
i∈N

(ci − cN)2 +
∑
S∈B

δS
∑
i∈S

(cN − cS)(2ci − cN − cS)

= V ARC(N)−
∑
S∈B

δSs(cN − cS)2

≤ V ARC(N).

Hence, we conclude that (N, V ARC) is balanced. Since for any coalition T ∈
2N\{∅}, any subgame (T, V ART

C ) ∈ G of (N, V ARC) is also a variance TU-
game (associated with the same data restricted to the subset T ), a similar argu-
ment permits to conclude that (T, V ART

C ) is balanced, and so we conclude that
(N, V ARC) is totally balanced. �

Now, we want to prove that Bertrand oligopoly TU-games in β-characteristic
function form given by (7.6) are convex. For that purpose, we assume that
V >

(
1 + r(n − 1)/n

)
maxi∈N ci in order to guarantee that for any coalition

S ∈ 2N\{∅} the constraint V > cS
(
1 + r(n − s)/n

)
is satisfied. By (7.6), any

Bertrand oligopoly TU-game (N, vβ) ∈ Gβ
bo can be decomposed into four TU-

games denoted by (N, v1) ∈ G, (N, v2) ∈ G, (N, v3) ∈ G and (N, v4) ∈ G defined
for any coalition S ∈ 2N\{∅} as:

v1(S) =
∑
i∈S

ci; v2(S) = v1(S)2;

v3(S) =
∑
i∈S

c2
i ; v4(S) =

sn(1 + r)

n+ r(n− s)
.

Hence, it holds that:

vβ(S) =
−V
2
v1(S)− r

4n
v2(S) +

(1 + r)

4
v3(S) +

V 2

4(1 + r)
v4(S).
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The above decomposition calls for some comments.
First, both TU-games (N, vk) ∈ G, k ∈ {1, 3}, arising from the distinct marginal
costs and their squares respectively, are additive. It is known that additivity
property is redundant for the convexity property.
Then, concerning the TU-game (N, v2) ∈ G, the square of an additive TU-game
is convex too because the marginal contribution of a fixed player i with respect to
any coalition S ∈ 2N\{i}\{∅} are non-decreasing with respect to the set inclusion:

v2(S ∪ {i})− v2(S) =
(
v1(S ∪ {i})

)2 −
(
v1(S)

)2

=
(
v1(S) + v1({i})

)2 −
(
v1(S)

)2

= 2v1({i})v1(S) + v1({i})2.

Hence, it holds that:

(
v2(S ∪ {i, j})− v2(S ∪ {j})

)
−
(
v2(S ∪ {i})− v2(S)

)
= 2v1({i})v1({j})
≥ 0 (7.10)

Finally, it remains to study the TU-game (N, v4) ∈ G. In order to do that, for
any r > 0 and rn = r/

(
n(1 + r)

)
, we define the function f : [0, 1/rn) −→ R as:

f(x) =
x

(1− rnx)
.

Take any coalition S ∈ 2N\{∅}. By the definition of f it holds that:

f(s) =
s

(1− rns)

=
sn(1 + r)(

n(1 + r)− rs
)

=
sn(1 + r)(

n+ r(n− s)
)

= v4(S) (7.11)

Moreover, by noting that:

V

1 + r
f(s)− scS =

snV

n+ r(n− s)
− scS

= s

(
nV

n+ r(n− s)
− cS

)
,
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we deduce from the definition of the variance TU-game and (7.5) that:

vβ(S) = (1 + r)

(
V

1 + r
f(s)− scS

)2

4f(s)
+

(1 + r)

4
V ARC(S) (7.12)

The first and second derivatives of f are given by:

df

dx
(x) =

1

(1− rnx)2
> 0,

and

d2f

dx2
(x) =

2rn
(1− rnx)3

> 0,

respectively. Hence, we deduce that the function f is strictly increasing and
strictly convex, and so by (7.11) the TU-game (N, v4) ∈ G is strictly convex.
Moreover, note that the marginal returns of function f satisfy:

f(s+ 1)− f(s) =
n2(1 + r)2(

n+ r(n− s)
)(
n+ r(n− s− 1)

) (7.13)

and

f(s+2)−2f(s+1)+f(s) =
2rn2(1 + r)2(

n+ r(n− s)
)(
n+ r(n− s− 1)

)(
n+ r(n− s− 2)

)
(7.14)

In summary, all four TU-games (N, vk) ∈ G, k ∈ {1, 2, 3, 4}, are convex. Since
any Bertrand oligopoly TU-game in β-characteristic function form given by (7.6)
is the difference of two convex games, it is not straightforward that it is convex
too. However, the following theorem states that the convexity property still
holds for this game type.

Theorem 7.3.4 Any Bertrand oligopoly TU-game (N, vβ) ∈ Gβ
bo given by (7.6)

is convex.

Proof: Take any Bertrand oligopoly TU-game (N, vβ) ∈ Gβ
bo given by (7.6). It

follows from the additivity property of the TU-games (N, vk) ∈ G, k ∈ {1, 3},
that (N, vβ) is convex if and only if the TU-game (N, nV 2v4− r(1 + r)v2) ∈ G is
convex. By (7.10) and (7.11) the convexity property of the TU-game (N, nV 2v4−
r(1 + r)v2) ∈ G holds if for any i ∈ N , any j ∈ N such that i 6= j, and any
coalition S ∈ 2N\{∅} such that s ≤ n− 2 it holds that:



7.4 The Shapley value 137

(
f(s+ 2)− f(s+ 1)

)
−
(
f(s+ 1)− f(s)

)
≥ 2r(1 + r)

nV 2
cicj.

By assumption, it holds that for any k ∈ {i, j}, ck ≤ (nV )/
(
n + r(n − 1)

)
.

Hence, the above inequality holds if:

(
f(s+ 2)− f(s+ 1)

)
−
(
f(s+ 1)− f(s)

)
≥ 2nr(1 + r)

(n+ r(n− 1))2
(7.15)

By noting that the right hand of (7.14) is non-decreasing with respect to the
coalition size s and attains its minimum at s = 0, we deduce that:

f(s+ 2)− 2f(s+ 1) + f(s) ≥ 2rn2(1 + r)2

(n+ rn)(n+ r(n− 1))(n+ r(n− 2))

=
2rn(1 + r)

(n+ r(n− 1))(n+ r(n− 2))

≥ 2nr(1 + r)

(n+ r(n− 1))2
,

which completes the proof. �

7.4 The Shapley value
In this section, we give an appealing expression of the Shapley value for any
Bertrand oligopoly TU-game in β-characteristic function form given by (7.6).
Then, we provide an axiomatic characterization of the Shapley value. The de-
composition (7.6) of any Bertrand oligopoly TU-game (N, vβ) ∈ Gβ

bo into four
types of TU-games determines its Shapley value by using linearity, efficiency
and symmetry. For notational convenience, for any coalition S ∈ 2N\{∅} of size
s ≤ n− 1 we denote by:

pn(s) =
1

n

(
n− 1

s

) .

Theorem 7.4.1 Let (N, vβ) ∈ Gβ
bo be a Bertrand oligopoly TU-game given by

(7.6). Then, it holds that:

∀i ∈ N , Shi(N, vβ) =
(V − ci)2

4
+
r

4
ci(ci − cN).



138 Chapter 7

Proof: By (7.6) and the linearity property, it is sufficient to compute the Shap-
ley value of the four TU-games (N, vk) ∈ G, k ∈ {1, 2, 3, 4}. First, due to its
probabilistic interpretation, the Shapley value of any additive game equals the
vector of the individual worths. Hence, it holds that:

∀i ∈ N , Shi(N, v1) = ci and Shi(N, v3) = c2
i (7.16)

Then, by symmetry and efficiency, the Shapley value of any symmetric TU-game
coincides with the equal division solution. Hence, it holds that:

∀i ∈ N , Shi(N, v4) =
v4(N)

n
= 1 + r (7.17)

Finally, it remains to compute the Shapley value of the TU-game (N, v2) ∈ G.
Due to the probabilistic interpretation of the Shapley value, for any i ∈ N it
holds that:

Shi(N, v2) =
∑

S∈2N\{i}

pn(s)

(
c2
i + 2ci

∑
j∈S

cj

)
= c2

i + 2ci
∑

S∈2N\{i}

pn(s)
∑
j∈S

cj

= c2
i + 2ci

∑
j∈N\{i}

cj
∑

S∈2N\{i}:
j∈S

pn(s)

= c2
i + ci

∑
j∈N\{i}

cj

= cincN (7.18)

By (7.16), (7.17) and (7.18), and the linearity of the Shapley value, for any i ∈ N
we deduce that:

Shi(N, vβ) =
−V
2
ci −

r

4n
ncicN +

1 + r

4
c2
i +

V 2

4

=
(V − ci)2

4
+
r

4
ci(ci − cN),

which completes the proof. �

In words, the Shapley value of a Bertrand oligopoly TU-game in β-characteristic
function form given by (7.6) is divided into two parts. Precisely, it involves two
types of payoffs for any firm i ∈ N , namely the square of the netto demand
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intercept V − ci, as well as a proportional part ci of firm’s deviation from the
average coalitional cost of the grand coalition ci − cN . We refer to Driessen,
Hou, and Lardon (2010) for another expression of the Shapley value in Bertrand
oligopoly TU-games in β-characteristic function form given by (7.4).

Now, we provide an axiomatic characterization of the Shapley value by means
of two properties: efficiency and individual monotonicity. Recall that efficiency
requires that a solution distributes the worth of the grand coalition among the
firms. Individual monotonicity stipulates that the difference between the payoffs
of two firms is equal to the difference between their individual worth weighted by
some real number which depends on their average cost. A single-valued solution
F on Gβ

bo satisfies:

- efficiency: if for any (N, vβ) ∈ Gβ
bo,
∑

i∈N Fi(N, vγ) = vβ(N); (EFF)

- individual monotonicity: if for any (N, vβ) ∈ Gβ
bo, for any i ∈ N and

any j ∈ N , Fi(N, vβ) − Fj(N, vβ) = αij
(
vβ({i}) − vβ({j})

)
where αij =

(βij + rcN)/(βij + 2(r/n)c{ij}) and βij = 2
(
V − (1 + r)c{ij}

)
. (IM)

Note that αij > 0. Indeed, by assumption V > (1 + r(n − 1)/n) maxi∈N ci, it
holds that:

βij + 2(r/n)c{ij} > 2

(
(1 + r(n− 1)/n) max

k∈N
ck − (1 + r)c{ij}

)
+ 2(r/n)c{ij}

≥ 2r
(
(n− 1)/n

)
c{ij} − 2rc{ij} + 2(r/n)c{ij}

= 0,

and

βij + rcN > 2

((
1 + r(n− 1)/n

)
max
k∈N

ck − (1 + r)c{ij}

)
+ rcN

≥ 2rc{ij}
(
((n− 1)/n)− 1

)
+ rcN

= (r/n)
∑
k∈N

ck − 2(r/n)c{ij}

= (r/n)

(∑
k∈N

ck − ci − cj
)

≥ 0.

Individual monotonicity requires that the difference between the payoffs of two
firms i and j is equal to the difference between their individual worth weighted
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by some real number αij which depends on their average cost c{ij}. Since αij > 0,
it holds that if vβ({i}) ≥ vβ({j}), then by individual monotonicity, Fi(N, vβ) ≥
Fj(N, vβ). In words, if firm i’s individual worth is greater than or equal to
firm j’s individual worth, then former’s payoff must be greater than or equal to
latter’s payoff.

Theorem 7.4.2 A single-valued solution F on Gβ
bo satisfies (EFF) and (IM)

if and only if F = Sh.

Proof: It is known that the Shapley value satisfies (EFF). In order to prove
that the Shapley value satisfies (IM), note that:

vβ({i})− vβ({j}) =

(
cj − ci

4

)(
2V − (1 + r(n− 1)/n)(ci + cj)

)
,

and

Shi(N, vβ)− Shj(N, vβ) =

(
cj − ci

4

)(
2V − (1 + r)(ci + cj) + rc̄N

)
.

Hence, it holds that:

Shi(N, vβ)− Shj(N, vβ) = αij
(
vβ({i})− vβ({j})

)
.

It remains to show that the Shapley value is the unique single-valued solution
that satisfies (EFF) and (IM). Pick any single-valued solution F on Gβ

bo. By
(IM) it holds that:

∀i ∈ N ,∀j ∈ N , Fi(N, vβ)− Fj(N, vβ) = αij
(
vβ({i})− vβ({j})

)
.

By summing up the above equalities over all i ∈ N and by (EFF), for any j ∈ N
it holds that:

∑
i∈N

Fi(N, vβ)− nFj(N, vβ) =
∑
i∈N

αij
(
vβ({i})− vβ({j})

)
⇐⇒ Fj(N, vβ) =

(
vβ(N)−

∑
i∈N

αij
(
vβ({i})− vβ({j})

))
n−1.

By a similar argument, for any j ∈ N it holds that:
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Shj(N, vβ) =

(
vβ(N)−

∑
i∈N

αij
(
vβ({i})− vβ({j})

))
n−1,

and so,

∀j ∈ N , Fj(N, vβ) = Shj(N, vβ),

which concludes the proof. �

7.5 Concluding Remarks
In Chapter 6, we have dealt with the set of Bertrand oligopoly TU-games in β-
characteristic function form but only with reference to identical marginal costs.
In this chapter, we have studied the more general situation with possibly distinct
marginal costs. Surprisingly, if the intercept of demand is sufficiently small the
Bertrand oligopoly TU-games in β-characteristic function form agrees with the
fundamental notion in statistics called variance with respect to the marginal
costs. We have proved that such games may fail to be convex and average
convex but are nevertheless totally balanced. If the intercept of demand is
sufficiently large, the complexity of the description of the Bertrand oligopoly
TU-games in β-characteristic function form is compensated by its decomposition
into four TU-games, namely two additive TU-games, one symmetric TU-game,
and the square of one of these two additive TU-games. Although it concerns the
difference of two convex TU-games, we have proved that such games are convex
too which extends the result in Theorem 6.3.5. Its current proof technique by
decomposition differs from the proof of convexity for the Bertrand oligopoly TU-
game in β-characteristic function form with identical marginal costs in Chapter
6. Finally, for this game type we give an appealing expression of the Shapley
value and provide an axiomatic characterization by means of two properties:
efficiency and individual monotonicity.
When firms operate at possibly distinct marginal costs, the study of Bertrand
oligopoly TU-games in γ-characteristic function form would be of the greatest
interest. However, the expression of the worth of any coalition appears very
complicated so that it seems difficult to analyze the properties of such games.
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General conclusion and future
research

In this thesis we have developed five essays on cooperative oligopoly games. The
contributions are summarized in the following table:

α = β γ
With transferable technologies: TU-game:

- totally balanced (Norde et al. 2002) - balanced (Theorem 3.4.1)

- convex (Zhao 1999a) - NP value (Theorems 3.5.1, 3.5.2)

Cournot Without transferable technologies: Interval game:

- balanced (Zhao 1999b) - I-balanced (Theorem 4.3.1)

- convex (Norde et al. 2002, - strongly-balanced (Theorems

Driessen and Meinhardt 2005) 4.3.3, 4.3.4, 4.3.7, 4.3.8)

With capacity constraints: Without capacity constraints:

Stackelberg = Cournot - C(N, v) = I(N, v) (Proposition 5.3.1)

- balanced (Theorems 5.3.3, 5.3.4)

With identical costs: With identical costs:

- convex (Theorem 6.3.5) - ED(N, v) ∈ C(N, v) (Theorem 6.4.5)

With distinct costs: - convex (Theorem 6.4.6)

Bertrand - non-convex (Proposition 7.3.1)

- totally balanced (Theorem 7.3.3)

- convex (Theorem 7.3.4 )

- Shapley value (Theorems 7.4.1, 7.4.2)

In summary, we have showed that the core is non-empty for Cournot oligopoly
situations. As regards Stackelberg oligopoly situations, we have proved that
the core is non-empty if and only if firms’ marginal costs are not too hetero-
geneous. Concerning Bertrand oligopoly situations, we have established the
convexity property which means that there are strong incentives to form the
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grand coalition. Thus, we conclude that for most of oligopoly situations a hori-
zontal agreement is likely to be stable except if deviating coalitions have a first-
mover advantage and firms’ marginal cost are too heterogeneous. As discussed
in the introduction, it is considered that horizontal agreements on sales prices
negatively affect welfare. Thus, the results in this thesis suggest and justify an
interventionist policy of competition authorities in most of oligopolistic markets.

The contributions of this thesis establish the bases for further research on
cooperative oligopoly games.
In Example 3.5.3, the Cournot oligopoly TU-game in γ-characteristic function
form fails to be superadditivity or convex. It would be interesting as future
work to study which conditions on any individual profit function would ensure
the convexity in this set of games.
The proof of Theorem 4.3.4 ensures the existence of an expectation vector for
which the standard core is non-empty. It would be of great interest to provide an
expression of such an expectation vector in order to obtain more information on
the degree of pessimism from which each Cournot oligopoly TU-game associated
with a lower degree of pessimism has a non-empty core.
In order to define Stackelberg oligopoly TU-games in γ-characteristic function
form, we have assumed that firms do not have any capacity constraint. Propo-
sition 5.3.1 and Theorem 5.3.3 depend on such an assumption. Thus, future re-
search trajectory may consist in introducing capacity constraints in Stackelberg
oligopoly situations. Moreover, Theorem 5.3.3 states that the core is empty in
case that firms’ marginal costs are too heterogeneous. We conjecture this result
continues to be true for any Stackelberg oligopoly TU-game in γ-characteristic
function form where the inverse demand function is strictly concave and firms
operate at a constant and identical marginal cost.
Theorem 6.4.6 provides a sufficient condition which ensures the convexity of
Bertrand oligopoly TU-games in γ-characteristic function form. Up to now, we
have not succeeded to provide a Bertrand oligopoly TU-game in γ-characteristic
function form which fails to be convex. It would be interesting to establish ei-
ther the proof of the convexity property for any Bertrand oligopoly TU-game in
γ-characteristic function form or the construction of an example in which the
convexity property fails to hold.
When firms have distinct marginal costs, we have dealt with Bertrand oligopoly
TU-games in α and β-characteristic function forms by assuming that technolo-
gies are not transferable. Future research of this work would consist in studying
Bertrand oligopoly TU-games in α, β and γ-characteristic function forms in
which technologies are transferable.



Résumé

Une question inhérente à la théorie de l’oligopole concerne l’existence de com-
portements collusifs dans les marchés oligopolistiques. La raison principale pour
laquelle les économistes s’intéressent à ce phénomène est que la formation de
cartels affecte à la fois le surplus des consommateurs et le surplus des produc-
teurs et donc le surplus total, i.e. le bien-être économique. En économie du
bien-être, l’idée communément admise est que le pouvoir de monopole impacte
négativement le surplus des agents économiques, et plus particulièrement celui
des consommateurs.
À la fin du 19ème siècle, suite à la formation de cartels aux États-Unis, un
consensus a émergé sur la nécessité de maintenir une concurrence effective dans
les industries. Cette prise de conscience a conduit à la mise en place en 1890
de la première loi anti-trusts aux États-Unis, le Sherman Act composé de deux
sections. La première section prohibe les ententes illicites qui restreignent les
échanges et le commerce. La deuxième section sanctionne les monopoles et les
tentatives de monopoliser plus connues sous l’expression d’«abus de position
dominante». Cette législation a permis au gouvernement américain de l’époque
de poursuivre en justice plusieurs cartels célèbres tels que l’American Tobacco et
la Standard Oil Company qui furent démantelés en 1911. Par la suite, d’autres
lois anti-trusts ont été mises en place comme le Clayton Act et le Federal Trade
Commission Act en 1914.
Dans l’Union Européenne, la politique de concurrence moderne est principale-
ment établie par les traités de Rome (1957) et d’Amsterdam (1997). Le droit
européen de la concurrence distingue parmi les firmes les accords dits «horizon-
taux» des accords dits «verticaux» (Article 81), et prohibe les abus de position
dominante. Un accord horizontal est un accord ou une pratique concertée entre
entreprises opérant au même niveau de la chaîne de production ou de distri-
bution. Un accord vertical est un accord ou une pratique concertée entre en-
treprises opérant à différents niveaux de la chaîne de production ou de distribu-
tion, et réglant les conditions sous lesquelles les parties peuvent acheter, vendre
ou revendre certains biens ou services. L’abus de position dominante concerne
une entreprise en situation de domination grâce à son pouvoir de marché, qui
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profite de cette position pour s’émanciper des contraintes que devrait lui imposer
la libre concurrence. Motta (2004) définit la politique de concurrence comme
«l’ensemble des politiques et des lois assurant que la concurrence sur le marché
n’est pas restreinte de manière à réduire le bien-être économique». Dans cette
définition, deux éléments doivent être soulignés. Le premier élément est que les
entreprises peuvent restreindre la concurrence d’une manière qui n’est pas for-
cément préjudiciable pour le bien-être économique. C’est principalement le cas
des accords horizontaux qui concernent les activités de recherche et développe-
ment des firmes (D’Aspremont et Jacquemin 1988). En utilisant les échanges
de licence ou encore la mise en commun de brevets, les entreprises partagent les
coûts et les bénéfices des découvertes et peuvent ainsi réduire leur prix de vente.
C’est aussi le cas de nombreuses restrictions verticales (accords verticaux) en-
tre un producteur et un ou plusieurs détaillants telles que les prix non-linéaires
(le détaillant paie le coût marginal de production plus une somme fixe au pro-
ducteur), l’imposition d’un quota (le détaillant doit acheter au moins ou au plus
une certaine quantité de biens fixée par le producteur) et les clauses d’exclusivité
(un accord d’exclusivité territorial spécifie qu’un détaillant est le seul à pouvoir
vendre un certain bien sur une zone géographique délimitée). Le second élément
est que le bien-être économique est l’objectif poursuivi par les autorités de la
concurrence. Le bien-être économique est défini comme la somme des surplus
des consommateurs et des producteurs. Le surplus d’un consommateur est la
différence entre le prix qu’il est prêt à payer pour acquérir un bien et le montant
qu’il paye effectivement lors de l’achat du bien. Le surplus d’un producteur est
le profit qu’il réalise en vendant le bien en question.
Bien que les accords horizontaux qui concernent dans les activités de recherche
et développement puissent être socialement désirables, à la fois aux États-unis
et en Union européenne, de nombreux autres accords horizontaux concernant le
prix de vente ou la division des parts de marché sont considérés comme préju-
diciables pour le bien-être économique.
En gardant à l’esprit ces considérations, l’étude des jeux d’oligopole coopératifs
est pertinente dans la mesure où elle permet d’établir les conditions inhérentes
au marché sous lesquelles un accord horizontal sur les prix de vente est sus-
ceptible d’apparaître. Comme nous l’avons démontré, la mise en place de tels
accords constitue une des principales préoccupations des autorités de la concur-
rence. Cette thèse est composée de deux parties. La première partie considère
un cadre de concurrence en quantité dans lequel les entreprises peuvent indi-
rectement contrôler le prix de vente en passant des accords horizontaux sur leur
quantités produites. La seconde partie analyse un cadre de concurrence en prix
dans lequel les entreprises peuvent directement manipuler le prix de vente en
passant des accords horizontaux sur leur prix fixés. D’une manière générale, la
coopération entre entreprises passe par formation d’un cartel (coalition) dans
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lequel les entreprises passent des accords horizontaux.

Aumann (1959) propose d’analyser la formation des coalitions, et donc les
accords horizontaux sur le prix de vente, en convertissant un jeu non-coopératif
en un jeu coopératif. Un concept solution approprié (par exemple, le cœur)
permet alors de traiter de la stabilité des structures de coalitions (par exem-
ple, l’ensemble de tous les joueurs, aussi appelé la «grande coalition»). Dans
cette thèse, nous considérons cette approche coopérative dans les situations
d’oligopole. La principale différence avec l’approche non-coopérative est que
les entreprises sont autorisées à signer des accords contraignants dans le but de
coopérer. Cette hypothèse permet de définir un jeu d’oligopole coopératif dans
lequel tout cartel (coalition) est susceptible de se former. Il est communément
admis que les transferts de profits entre les firmes appartenant à un même cartel
sont possibles de telle sorte que le profit retiré par un cartel peut être distribué
librement entre ses membres. Les jeux coopératifs associés à cette hypothèse de
transferts de profits sont les jeux à utilité transférable ou encore jeux sous forme
caractéristique. D’une manière générale, un jeu sous forme caractéristique est
la donnée d’un ensemble de joueurs N = {1, 2, . . . , n} et d’une fonction carac-
téristique v : 2N −→ R qui assigne à chaque coalition S ∈ 2N\{∅} une capacité
v(S). Par convention, on suppose que v(∅) = 0. Le nombre v(S) est l’utilité
totale dont disposent les membres de la coalition S. Par exemple, on considère
un marché oligopolistique comprenant trois entreprises, dénommées 1, 2 et 3
respectivement. Le jeu d’oligopole sous forme caractéristique associé est alors la
donnée d’un ensemble de firmes N = {1, 2, 3}, et des capacités v({1}), v({2})
et v({3}) pour les coalitions à une seule firme, v({1, 2}), v({1, 3}) et v({2, 3})
pour les coalitions à deux firmes, et v({1, 2, 3}) pour la coalition à trois firmes
(la grande coalition).
Une des principales caractéristiques des marchés oligopolistiques est que le profit
de chaque entreprise dépend des quantités produites ou des prix fixés par les
autres firmes. Le profit d’un cartel dépend donc également des stratégies choisies
par les firmes à l’extérieur du cartel. Par conséquent, pour déterminer la capacité
d’une coalition, nous devons spécifier la manière dont les firmes n’appartenant
pas au cartel agissent. Pour ce faire, nous supposons que les entreprises à
l’extérieur du cartel se comportent selon certaines règles, appelées «règles de
blocage», dans un jeu non-coopératif et plus précisément dans un jeu stratégique.
Par exemple, certaines règles de blocage spécifient que les firmes n’appartenant
pas au cartel sélectionnent les stratégies qui minimisent le profit du cartel.
D’autres règles de blocage stipulent que toute firme à l’extérieur du cartel vise à
maximiser son profit individuel étant donné les stratégies choisies par les autres
entreprises. Un concept solution pour le jeu d’oligopole stratégique qui au-
torisent les firmes membres d’un même cartel à signer des accords contraignants
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et qui spécifient les stratégies choisies par les firmes à l’extérieur du cartel.
La capacité d’une coalition est alors égale au profit qu’elle obtient dans le jeu
d’oligopole stratégique, et donc le jeu d’oligopole coopératif associé est entière-
ment spécifié. En particulier, afin de définir un jeu d’oligopole coopératif à
partir d’un jeu d’oligopole stratégique, nous suivons trois approches suggérées
par Aumann (1959), et Chander et Tulkens (1997).
Aumann (1959) propose les deux premières approches. La première approche
stipule que chaque cartel calcule le profit qu’il peut obtenir indépendamment du
choix des firmes à l’extérieur. La seconde approche consiste à calculer le profit
minimum pour lequel les firmes à l’extérieur du cartel peuvent empêcher le cartel
d’obtenir un meilleur profit. Ces deux approches sont associées à deux fonctions
caractéristiques, appelées fonctions caractéristiques α et β respectivement. Dans
l’exemple d’oligopole ci-dessus, supposons que les entreprises vendent des biens
différenciés, se fassent une concurrence en prix en choisissant un prix pi ∈ R+,
i ∈ N , produisent à un coût marginal constant et identique égal à un, et que le
système de demande soit de Shubik (1980), i.e. la quantité demandée à chaque
firme i, i ∈ N , sera définie par:

Di(p1, p2, p3) = 5− pi − 2

(
pi −

1

3

3∑
j=1

pj

)
.

La quantité demandée à la firme i dépend donc de son propre prix pi et de la
différence entre son prix pi et du prix moyen pratiqué dans l’industrie

∑3
i=1 pj/3.

Cette quantité demandée est décroissante en pi et croissante en pj avec j 6= i.
En suivant l’approche α, pour toute coalition S ∈ 2N\{∅}, tandis que le cartel
maximise la somme des profits de ses membres dans un premier temps, les firmes
n’appartenant pas au cartel minimisent le profit du cartel dans un second temps
étant donné les stratégies préalablement choisies par les membres du cartel.
En suivant l’approche β, pour toute coalition S ∈ 2N\{∅}, tandis que les firmes
à l’extérieur du cartel minimisent le profit du cartel dans un premier temps, le
cartel maximise la somme des profits de ses membres dans un second temps.
Dans l’exemple d’oligopole ci-dessus, les fonctions caractéristiques α et β sont
égales et données par: pour tout i ∈ N , vα({i}) = vβ({i}) = 0.76, pour
tout i ∈ N et tout j ∈ N tel que j 6= i, vα({i, j}) = vβ({i, j}) = 3.33, et
vα({1, 2, 3}) = vβ({1, 2, 3}) = 12.
Cependant, les approches α et β semblent peu appropriées pour étudier la for-
mation des coalitions dans les marchés oligopolistiques dans la mesure où en
minimisant le profit d’un cartel, les firmes à l’extérieur du cartel subissent elles-
mêmes des pertes. Un argument similaire est développé par Rosenthal (1971).
Dans l’exemple d’oligopole ci-dessus, on peut vérifier que les firmes à l’extérieur
d’un cartel fixent des prix nuls afin de minimiser le profit du cartel, et donc
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obtiennent des profits négatifs.
C’est la raison pour laquelle Chander et Tulkens (1997) proposent une autre
règle de blocage plus crédible selon laquelle les firmes n’appartenant pas au car-
tel choisissent leur meilleure réponse individuelle face aux stratégies choisies par
les membres du cartel. Cette approche est associée à une fonction caractéris-
tique, appelée fonction caractéristique γ. En suivant l’approche γ, pour toute
coalition S ∈ 2N\{∅}, tandis que le cartel maximise la somme des profits de
ses membres, chaque firme à l’extérieur du cartel maximise simultanément son
profit individuel. Autrement dit, la coalition S et chaque firme à l’extérieur du
cartel jouent un équilibre de Nash. Dans le marché oligopolistique ci-dessus, la
fonction caractéristique γ est donnée par: pour tout i ∈ N , vγ({i}) = 3.36, pour
tout i ∈ N et tout j ∈ N tel que j 6= i, vγ({i, j}) = 7.05, et vγ({1, 2, 3}) = 12.
On observe que la capacité de la grande coalition N est égale pour les trois
approches α, β et γ, et que la capacité de toute autre coalition S ∈ 2N\{∅, N}
est plus grande sous l’approche γ que sous les approches α et β.

Un concept solution approprié pour les jeux sous forme caractéristique qui
permet de traiter de la stabilité de la grande coalition est le cœur. Un vecteur
de paiements appartient au cœur s’il n’existe aucune coalition qui peut faire
scission de la grande coalition et distribuer un paiement strictement supérieur à
l’ensemble de ses membres. La stabilité de la grande coalition est alors associée
à la non-vacuité du cœur. Pour les jeux sous forme caractéristique, le cœur est
l’ensemble des vecteurs de paiements σ ∈ Rn tels que

∑
i∈N σi = v(N) et pour

toute coalition S ∈ 2N\{∅},
∑

i∈S σi ≥ v(S). La première condition stipule
que la capacité de la grande coalition est entièrement distribuée à l’ensemble
des joueurs. La seconde condition signifie qu’il n’existe aucun sous-groupe de
joueurs qui conteste ce partage en faisant scission de la grande coalition. Dans
le marché oligopolistique ci-dessus, ces deux conditions impliquent que le cœur
associé aux fonctions caractéristiques α et β est donné par:

C(N, vβ) =

{
σ ∈ R3 :

3∑
i=1

σi = 12 et ∀i ∈ N , 0.76 ≤ σi ≤ 8.67

}
,

tandis que le cœur associé à la fonction caractéristique γ est donné par:

C(N, vγ) =

{
σ ∈ R3 :

3∑
i=1

σi = 12 et ∀i ∈ N , 3.36 ≤ σi ≤ 4.95

}
.

Le 2-simplexe ci-dessous représente ces deux structures géométriques du cœur:
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σ2 = 0.76

σ2 = 8.67

σ1 = 0.76

σ1 = 8.67

σ3 = 0.76

σ3 = 8.67

σ2 = 3.36σ2 = 4.95

σ1 = 3.36

σ1 = 4.95

σ3 = 3.36

σ3 = 4.95

•

(4, 4, 4)

Firme 1

Firme 2 Firme 3

(12, 0, 0)

(0, 12, 0) (0, 0, 12)

C(N, vβ)

C(N, vγ)

Notons que le cœur se réduit très fortement lors du passage des approches α et
β à l’approche γ. Ceci n’est pas surprenant dans la mesure où nous avons ob-
servé que la capacité de la grande coalition N est égale pour les trois approches
α, β et γ, et que la capacité de toute autre coalition S ∈ 2N\{∅, N} est plus
grande sous l’approche γ que sous les approches α et β de telle sorte qu’il existe
moins d’incitations pour les coalitions à faire scission de la grande coalition sous
l’approche γ.
Par conséquent, la structure géométrique du cœur dépend très fortement de
la règle de blocage utilisée pour définir un jeu d’oligopole coopératif. Dans le
marché oligopolistique ci-dessus, la non-vacuité du cœur signifie qu’il existe un
vecteur de paiements (par exemple, σ = (4, 4, 4)) qui permet à la grande coali-
tion de rester stable. Par la suite, nous montrerons que sous des hypothèses
standard, les jeux d’oligopole coopératifs permettent d’étudier la stabilité de
toute structure de coalitions et pas uniquement de la grande coalition.

L’étude des jeux d’oligopole coopératifs apparaît pertinente pour révéler les
mécanismes de coopération dans de nombreuses industries au sein desquelles les
accords entre entreprises constituent un choix stratégique telles que les industries
de matières premières et de télécommunications. Depuis la création du GATT
(Accord général sur les tarifs douaniers et le commerce) en 1947 et de l’OMC (Or-
ganisation Mondiale du Commerce) en 1994, les barrières à l’import et à l’export
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des biens et des services ont considérablement diminué. L’augmentation des flux
internationaux de biens et services ont poussé les entreprises à faire des alliances
stratégiques nationales et internationales. Dès lors, la coopération entre firmes
est devenue un choix stratégique dans le but de réduire leurs coûts, de diversifier
leurs activités et d’accroître leurs parts de marché.
Les industries de matières premières sont caractérisées par d’importants coûts
d’extraction et de transports. Dans ce type d’industries, les entreprises expor-
tatrices sont susceptibles de coopérer afin de réduire leurs coûts de transports.
Massol et Tchung-Ming (2009) étudient la possibilité d’une coopération logis-
tique profitable entre douze pays exportateurs de gaz naturel liquéfié. Ils four-
nissent l’exemple suivant: en 2007, Trinidad et Tobago ont expédié près de 2.7
Gm3 (giga mètre cube) en Europe, pendant que l’Algérie a exporté 2.1 Gm3

aux États-Unis. Au regard de leur position géographique respective, ces deux
pays exportateurs auraient un intérêt commun à coopérer sur leur logistique
afin de réduire leur coût de transports. En supposant que de tels accords de
coopération n’auraient aucun effet sur les prix du marché, Massol et Tchung-
Ming définissent un jeu d’oligopole sous forme caractéristique (calibré sur l’année
2007) dans lequel chaque coalition minimise les coûts de transports de ses mem-
bres. Ils montrent que le cœur de ce jeu est vide même pour un faible coût de
coordination entre les douze pays exportateurs. Par conséquent, ils concluent
que la crédibilité d’une coopération logistique sans effet sur les prix de marché
est faible.
Un autre exemple concerne les industries dans lesquelles l’innovation occupe
une place prépondérante pour soutenir la compétitivité des entreprises. Dans
de telles industries, les entreprises coopèrent afin d’étendre leurs activités et
d’augmenter leurs parts de marché. C’est dans les industries de télécommuni-
cations que des changements technologiques se produisent fréquemment (Noam
2006). Dans la mesure où les opérateurs sont restreints à leurs territoires na-
tionaux respectifs, la coopération avec d’autres opérateurs constitue l’unique
moyen d’étendre leur services en tant qu’entreprise multinationale. Un exemple
de coopération est Unisource, une entreprise pan-européenne de télécommuni-
cations. Nous renvoyons le lecteur à Graak (1996) pour une étude sur les indus-
tries de télécommunications en Union Européenne. Dans ce type d’industries,
on peut se poser la question de la stabilité de la structure de marché induite
par les alliances stratégiques. L’étude des jeux d’oligopole coopératifs constitue
une approche originale afin de traiter de la stabilité des structures de marché.
Pour ce faire, nous supposons que chaque coalition appartenant à une struc-
ture de coalitions ne peut pas communiquer avec les autres coalitions de telle
sorte que les seules coalitions susceptibles de faire scission de la structure de
marché sont nécessairement des sous-groupes de firmes des coalitions déjà exis-
tantes (Ray et Vohra (2007) formulent une hypothèse similaire). Pour chaque
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cartel, on définit alors un jeu d’oligopole sous forme caractéristique dans lequel
le cartel en question est considéré comme la grande coalition du jeu et où les
choix des autres cartels sont considérés comme fixés et donc, dans une certaine
mesure, peuvent être omis. La stabilité d’un cartel appartenant à une structure
de marché est alors associée à la non-vacuité du cœur du jeu d’oligopole sous
forme caractéristique associé. Pour une structure de marché comprenant quatre
cartels {N1, N2, N3, N4}, cet argument est illustré par la figure ci-dessous:

N1 N2 N3 N4

{N1, N2, N3, N4}

(N1, v1) (N2, v2) (N3, v3) (N4, v4)

Ainsi, l’étude des jeux d’oligopole coopératifs permet de traiter de la stabilité
des structures de coalitions et constitue une approche alternative aux modèles
non-coopératifs de la formation des coalitions (D’Aspremont et al. 1983, Hart
and Kurz 1983, Bloch 1996, Ray et Vohra 1997).

L’étude des jeux d’oligopole coopératifs permet également de traiter de cer-
tains problèmes environnementaux. La «tragédie des communs» est un célèbre
dilemme dans lequel une ressource commune est surexploitée (Hardin 1968),
comme par exemple la diminution des stocks de poissons ou encore la déforesta-
tion des forêts tropicales. Funaki et Yamato (1999) étudient une économie dis-
posant d’une ressource commune de poissons en utilisant les jeux sous forme
caractéristique. Ils montrent que si chacune des coalitions a des anticipations
pessimistes sur la formation des coalitions des pêcheurs extérieurs à la coalition,
i.e. si ces pêcheurs restent isolés et jouent de manière non-coopérative, alors le
cœur est non-vide et la tragédie des communs peut être évitée. Autrement, si
chaque coalition a des anticipations optimistes sur la formation des coalitions
des pêcheurs extérieurs à la coalition, i.e. si ces pêcheurs s’associent et jouent
de manière coopérative face au cartel, alors le cœur est vide et la tragédie des
communs ne peut pas être évitée. Étant donné qu’une situation d’oligopole
décrit aussi une situation de ressource commune (Moulin 1997), l’étude des jeux
d’oligopole coopératifs est pertinente pour traiter des problèmes de partage d’une
ressource naturelle (Pham Do 2003).

La théorie de l’oligopole traite de modèles de concurrence qui peuvent sché-
matiquement être divisés en deux parties, i.e. les modèles de concurrence en
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quantité (Cournot 1838) et les modèles de concurrence en prix (Bertrand 1883).
Pour un cadre de concurrence en quantité, Stackelberg (1934) incorpore l’idée
d’engagement en proposant le modèle de «meneur-suiveur». Pour chacune de ces
trois situations d’oligopole, des travaux précurseurs ont déjà étudié la coopéra-
tion dans les marchés oligopolistiques en modélisant des jeux d’oligopole non-
coopératifs et coopératifs.

En ce qui concerne les situations d’oligopole de Cournot, Salant et al. (1983)
analysent les quantités d’équilibres produites par les cartels et montrent que
certaines fusions entre firmes peuvent réduire leur profits.
Norde et al. (2002) distinguent deux situations d’oligopole différentes, i.e.
celles ayant des technologies transférables et celles ayant des technologies non-
transférables. Dans le premier cas, un groupe de firmes produit en utilisant
la technologie la plus efficace parmi les technologies utilisées par les membres
du cartel. Dans le second cas, un tel transfert de technologies n’est pas possi-
ble. Pour les situations d’oligopole de Cournot avec ou sans technologies trans-
férables, Zhao (1999a, b) montrent que les fonctions caractéristiques α et β sont
égales, et que, par conséquent, le même ensemble de jeux d’oligopole de Cournot
sous forme caractéristique est associé à ces deux fonctions caractéristiques.
Lorsque les technologies sont transférables, Zhao (1999a) donne une condition
nécessaire et suffisante qui garantit la propriété de convexité en supposant que la
fonction de demande inverse et les fonctions de coûts sont linéaires. Cette pro-
priété signifie qu’il existe de très fortes incitations à former la grande coalition.
Bien que dans un cadre plus général de tels jeux ne satisfassent pas toujours à
la propriété de convexité, Norde et al. (2002) montrent que ces jeux satisfont à
la propriété de balancement total qui assure la non-vacuité du cœur.
Lorsque les technologies ne sont pas transférables, Zhao (1999b) prouve que le
cœur est non-vide si les ensembles de stratégies individuelles sont compactes et
convexes et que les fonctions de profit individuel sont continues et concaves sur
l’ensemble des profils de stratégies. En utilisant une technique similaire à celle
de Scarf (1971), Zhao montre que le cœur est non-vide pour les jeux sous forme
caractéristique dans lesquels les ensembles de stratégies individuelles sont com-
pacts et convexes, les fonctions de profit individuel sont continues et concaves
sur l’ensemble des profils de stratégies, et la propriété de séparabilité forte est
vérifiée. Cette dernière condition stipule que la fonction d’utilité d’une coalition
et les fonctions d’utilité individuelle de chacun de ses membres ont les mêmes
arguments qui les minimisent. Zhao montre que les jeux d’oligopole de Cournot
sous forme caractéristique satisfont à cette dernière condition. En outre, Norde
et al. (2002) montrent que ces jeux satisfont à la propriété de convexité dans
le cas où la fonction de demande inverse et les fonctions de coût individuel sont
linéaires. Enfin, Driessen et Meinhardt (2005) donnent des conditions suffisantes
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qui garantissent la propriété de convexité dans un cadre plus général.

Concernant les situations d’oligopole de Stackelberg, dans lesquels il y a un
seul meneur et plusieurs suiveurs qui se font concurrence en quantité, Sherali
et al. (1983) prouvent l’existence d’un unique équilibre de Nash dans les jeux
d’oligopole de Stackelberg stratégique où la fonction de demande inverse est deux
fois dérivable, strictement décroissante et satisfait pour toute quantité X ∈ R+,
(dp/dX)(X) + X(d2p/dX2)(X) ≤ 0, et où les fonctions de coût individuel sont
deux fois dérivables et convexes. En particulier, ils montrent que la convexité
des fonctions de réaction des suiveurs joue un rôle prépondérant pour obtenir
l’unicité de l’équilibre de Nash.
Pour les jeux sous forme caractéristique, Marini et Currarini (2003) associent
une séquence à deux étapes à la fonction caractéristique γ. Dans cette séquence,
une coalition faisant scission de la grande coalition joue à la première période
en tant que meneur tandis que les autres firmes jouent leurs meilleures réponses
individuelles en tant que suiveurs. En supposant que la fonction d’utilité in-
dividuelle d’un joueur est deux fois dérivable et strictement concave sur son
ensemble de stratégies, Marini et Currarini montrent que si les joueurs et les
externalités sont symétriques (les joueurs ont des fonctions d’utilité individuelle
et des ensembles de stratégies individuelles identiques, les externalités sont posi-
tives ou bien négatives) et que le jeu posséde des complémentarités stratégiques,
alors la valeur de partage égalitaire appartient au cœur. Par la suite, Marini et
Currarini appliquent leur résultat à trois modèles économiques. Tout d’abord,
ils considèrent une concurrence en quantité dans laquelle les stratégies sont sub-
stituts et montrent que le cœur des jeux sous forme caractéristique γ associés à
une séquence à deux étapes est non-vide. Ensuite, ils traitent d’une concurrence
en prix et prouvent que pour un faible degré de différentiation des produits, le
cœur associé au jeu à deux étapes se réduit de plus en plus relativement au
cœur associé au jeu simultané. Finalement, ils étudient une économie avec deux
commodités, un bien public et un bien privé, et montrent que le cœur associé
au jeu à deux étapes est toujours vide.

En ce qui concerne les situations d’oligopole de Bertrand, Kaneko (1978)
considère un ensemble fini d’entreprises vendant un bien homogène à un con-
tinuum de consommateurs. Il suppose qu’un sous-ensemble de firmes et de
consommateurs peuvent coopérer en négociant le bien entre eux. Le résultat
principal de Kaneko établit que le cœur est toujours vide lorsqu’il y a plus de
deux firmes. Deneckere et Davidson (1985) considèrent une situation d’oligopole
de Bertrand avec biens différenciés associée à un système de demande de Shu-
bik (1980) où les firmes produisent à un coût marginal constant et identique.
Deneckere et Davidson étudient les prix d’équilibre pratiqués par les cartels et
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montrent qu’une fusion entre deux cartels implique que toutes les firmes dans
l’industrie fixent des prix plus élevés, ce qui accroît donc le profit de toutes les
firmes dans l’industrie. Ils prouvent que ce type de jeu satisfait à la propriété de
superadditivité au sens où la fusion de deux cartels permet d’obtenir un profit
plus élevé que la somme des profits de ces cartels avant la fusion. Pour la même
situation d’oligopole de Bertrand, Huang et Sjöström (2003) définissent un jeu
d’oligopole sous forme caractéristique dans lequel la capacité d’une coalition est
définie par une procédure récursive qui consiste à appliquer le concept solution
du cœur à un jeu réduit afin de prédire le comportement des firmes à l’extérieur
du cartel. Ils donnent une condition nécessaire et suffisante pour la non-vacuité
du cœur qui stipule que le paramètre de substituabilité entre les biens doit
être supérieur ou égal à un certain nombre qui dépend de la taille de l’industrie.
Huang et Sjöström concluent que le cœur est vide lorsqu’il y a plus de dix firmes.

Nous avons constaté qu’un nombre limité de travaux ont étudié les jeux
d’oligopole coopératifs. En contrepartie de ce manque d’intérêt pour ce type
de jeux, cette thèse traite des jeux d’oligopole coopératifs dans lesquels les en-
treprises se livrent à une concurrence «à la Cournot» (Chapitres 3 et 4), «à la
Stackelberg» (Chapitre 5) et «à la Bertrand» (Chapitres 6 et 7).
Pour les situations d’oligopole de Cournot, nous étudions les jeux d’oligopole de
Cournot sous forme caractéristique et sous forme d’intervalle γ. Nous étendons
les cadres d’analyse précédents qui traitent des jeux d’oligopole de Cournot sous
les formes caractéristiques α et β (Zhao 1999a,b, Norde et al. 2002, Driessen
et Meinhardt 2005) en donnant des conditions suffisantes sur les fonctions de
profit individuel et les fonctions de coût individuel qui assurent la non-vacuité
du cœur.
Pour les situations d’oligopole de Stackelberg, nous étudions les jeux d’oligopole
de Stackelberg sous forme caractéristique γ. Nous relâchons l’hypothèse de
joueurs symétriques de Marini et Currarini (2003) et nous généralisons leur ré-
sultat en donnant une caractérisation du cœur et en formulant une condition
nécessaire et suffisante qui assure sa non-vacuité.
Pour les situations d’oligopole de Bertrand, nous étudions les jeux d’oligopole
de Bertrand sous forme caractéristiques α, β et γ. Nous montrons que les jeux
sous les deux premières formes caractéristiques satisfont à la propriété de con-
vexité. De plus, nous généralisons le résultat de superadditivité de Deneckere
et Davidson (1985) en formulant une condition suffisante pour que les jeux sous
forme caractéristique γ satisfassent à la propriété de convexité.
Les contributions de cette thèse sont détaillées ci-dessous.

Le Chapitre 2 introduit les concepts de théorie des jeux que nous utilisons
dans cette thèse. Tout d’abord, nous rappelons quelques définitions de la théorie
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des jeux non-coopératifs tels que les jeux stratégiques, l’équilibre de Nash et
l’équilibre d’accord partiel. Ensuite, nous introduisons quelques concepts de la
théorie des jeux coopératifs tels que les jeux sous forme caractéristique, les jeux
sous forme d’intervalle et les solutions comme le cœur, la valeur de Shapley et
le nucléole. Enfin, nous décrivons trois approches qui permettent de convertir
un jeu non-coopératif en un jeu coopératif, i.e. les approches α et β (Aumann
1959), ainsi que l’approche γ (Chander et Tulkens 1997).

Le Chapitre 3, basé sur l’article de Lardon (2009), traite des jeux d’oligopole
de Cournot sous forme caractéristique γ lorsque les technologies ne sont pas
transférables. Nous traitons du problème de la non-vacuité du cœur pour les
jeux d’oligopole de Cournot sous forme caractéristique γ. Nous supposons que
la fonction de demande inverse est dérivable, strictement décroissante et concave,
et que les fonctions de coût individuel sont continues, strictement décroissantes
et convexes. Tout d’abord, nous montrons que les jeux d’oligopole de Cournot
sous forme caractéristique γ sont bien définis et nous étudions les propriétés des
quantités d’équilibre. Pour ce faire, nous considérons une approche plus générale
dans laquelle nous supposons que toute structure de coalitions est susceptible
de se former. En particulier, peuvent se former les structures de coalitions dans
lesquelles une coalition fait face à des firmes isolées. Pour toute structure de
coalitions, nous construisons un jeu d’oligopole de Cournot stratégique agrégé
dans lequel un équilibre de Nash représente les quantités d’équilibre agrégées des
coalitions appartenant à la structure de coalitions. Nous montrons qu’il existe
un unique équilibre de Nash ce qui permet de conclure que les jeux d’oligopole
de Cournot sous forme caractéristique γ sont bien définis. Nous démontrons
que la quantité totale d’équilibre décroît lorsque la structure de coalitions en
question devient moins concurrentielle. Ce phénomène s’explique d’une part
par le fait que lorsque deux coalitions fusionnent, la production de la nouvelle
entité décroît, et d’autre part par le fait que les autres firmes augmentent leur
quantité. Cette distribution des quantités d’équilibre diffère très fortement de
la distribution des prix d’équilibres étudiée par Deneckere et Davidson (1985).
Ensuite, en utilisant ces résultats préliminaires, nous étudions la non-vacuité
du cœur. Pour cela, nous considérons deux approches. La première approche
montre que si la fonction de demande inverse est dérivable et les fonctions de
profit individuel sont continues et concave sur l’ensemble des profils de straté-
gies, alors le jeu d’oligopole de Cournot sous forme caractéristique γ satisfait à la
propriété de balancement et donc admet un cœur non-vide. Ce résultat prolonge
le résultat de Zhao (1999b) établissant que les jeux d’oligopole de Cournot sous
forme caractéristique β satisfont à la propriété de balancement. L’inconvénient
de cette approche est qu’elle ne fournit aucune règle d’allocation appartenant
au cœur. C’est la raison pour laquelle la seconde approche définit une nou-
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velle règle d’allocation appartenant au cœur, appelée «valeur au prorata de
Nash», sur l’ensemble des jeux d’oligopole de Cournot sous forme caractéris-
tique γ pour lesquels les fonctions de coût individuel sont linéaires. La valeur
au prorata de Nash donne à chaque firme la capacité de la grande coalition au
prorata de sa quantité produite à l’équilibre de Nash dans le jeu d’oligopole
de Cournot stratégique. Ce résultat généralise le résultat de Funaki et Yamato
(1999) d’un cadre sans contraintes de capacité à un cadre avec contraintes de ca-
pacité possiblement asymétriques. De plus, nous caractérisons la valeur au pro-
rata de Nash par quatre propriétés: efficience, firme nulle, monotonie et équité
non-coopérative. La propriété d’efficience stipule qu’une solution distribue en-
tièrement la capacité de la grande coalition aux firmes. Le propriété de firme
nulle spécifie qu’une firme n’ayant aucune capacité de production obtient un
paiement nul. La propriété de monotonie stipule que si une firme a une capacité
de production plus élevée qu’une autre firme alors la première firme obtiendra un
meilleur paiement que la seconde firme. La propriété d’équité non-coopérative
spécifie qu’une solution donne à chaque firme un paiement proportionnel à son
profit individuel obtenu à l’équilibre de Nash dans le jeu d’oligopole de Cournot
stratégique. Ce résultat est le premier qui caractérise une solution appartenant
au cœur sur un ensemble de jeux d’oligopole de Cournot coopératifs. De plus,
nous donnons l’exemple d’un jeu d’oligopole de Cournot sous forme caractéris-
tique γ dans lequel les fonctions de coût individuel sont linéaires, qui ne satisfait
pas à la propriété de superadditivité, et donc de convexité. Ceci montre que le
résultat de convexité de Norde et al. (2002) ne tient pas sur l’ensemble de jeux
d’oligopole de Cournot sous forme caractéristique γ.

Dans le Chapitre 3, nous avons supposé que la fonction de demande inverse
est dérivable afin que la fonction caractéristique γ soit bien définie. Cepen-
dant, dans de nombreuses situations d’oligopole de Cournot, la fonction de de-
mande inverse n’est pas dérivable. En effet, Katzner (1968) montre que certaines
fonctions de demande construites à partir de fonctions d’utilité individuelle de
consommateurs deux fois continument dérivable peuvent ne pas être elle-même
dérivable. Afin de garantir que les fonctions de demande sont au moins une fois
continument dérivable, de nombreuses conditions nécessaires et suffisantes ont
été données par Katzner (1968), Debreu (1972, 1976), Rader (1973, 1979) et
Monteiro et al. (1996).
C’est la raison pour laquelle le Chapitre 4, basé sur l’article de Lardon (2010b),
se focalise sur les situations d’oligopole de Cournot où la fonction de demande in-
verse est continue mais pas nécessairement dérivable. Dans un tel cadre, il n’est
pas toujours possible de définir un jeu d’oligopole de Cournot sous forme carac-
téristique γ puisque la capacité d’une coalition n’est pas nécessairement unique.
Cependant, nous montrons que l’on peut toujours définir un jeu d’oligopole
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de Cournot sous forme d’intervalle γ. Un jeu sous forme d’intervalle associe à
chaque coalition un intervalle de capacités fermé et borné. Ces jeux ont été intro-
duits par Branzei et al. (2003) pour traiter des situations de banqueroutes. Nous
renvoyons le lecteur à l’article de Alparslan-Gok et al. (2009a) pour une présen-
tation générale des récents développements sur les jeux sous forme d’intervalle.
Nous considérons deux extensions du cœur pour ce type de jeux: le cœur inter-
valle et le cœur standard. Nous utilisons le terme «cœur standard» plutôt que
le terme «cœur» pour dissocier le cœur défini sur l’ensemble des jeux sous forme
d’intervalle du cœur défini sur l’ensemble des jeux sous forme caractéristique.
Le cœur intervalle est défini de manière similaire au cœur pour les jeux sous
forme caractéristique en utilisant l’arithmétique propre aux intervalles (Moore
1979). Le cœur standard est défini comme l’union de tous les cœurs des jeux
sous forme caractéristique pour lesquels la capacité de chaque coalition appar-
tient à son intervalle de capacités dans le jeu sous forme d’intervalle. Nous
traitons alors du problème de la non-vacuité du cœur intervalle et du cœur stan-
dard sur l’ensemble des jeux d’oligopole de Cournot d’intervalle γ. Dans ce
but, nous utilisons un critère de la théorie de la décision, le critère d’Hurwicz
(Hurwicz 1951), qui consiste à combiner pour chaque coalition la plus faible
et la meilleure capacité qu’elle peut obtenir dans son intervalle de capacités.
Notre premier résultat montre que le cœur intervalle est non-vide si et seule-
ment si le jeu d’oligopole de Cournot sous forme caractéristique γ associé à la
meilleure capacité qu’obtient chaque coalition dans son intervalle de capacités
admet un cœur non-vide. Cependant, nous montrons que même pour une situ-
ation d’oligopole de Cournot linéaire, cette condition n’est pas satisfaite. Notre
second résultat établit que le cœur standard est non-vide si et seulement si le
jeu d’oligopole de Cournot sous forme caractéristique γ associé à la plus faible
capacité qu’obtient chaque coalition dans son intervalle de capacités admet un
cœur non-vide. De plus, nous formulons des conditions suffisantes sur les fonc-
tions d’utilité individuelle et les fonctions de coût individuel qui garantissent
que cette condition est satisfaite, ce qui généralise les résultats du Chapitre 3.

Pour les jeux sous forme caractéristique associés à une séquence à deux
étapes, le résultat de non-vacuité du cœur de Marini et Currarini (2003) soulève
deux questions. La première concerne la structure géométrique du cœur dans
ce type de jeux puisque ils donnent seulement une règle d’allocation (la valeur
de partage égalitaire) appartenant au cœur. La seconde question concerne le
rôle de l’hypothèse de joueurs symétriques sur la non-vacuité du cœur. Le
Chapitre 5, basé sur l’article de Driessen, Hou et Lardon (2011), répond à ces
deux questions en considérant une séquence à deux étapes associée à la fonc-
tion caractéristique γ dans une concurrence en quantité. L’ensemble des jeux
sous forme caractéristique associé à cette séquence temporelle est l’ensemble des
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jeux d’oligopole de Stackelberg sous forme caractéristique γ. Ainsi, contraire-
ment aux jeux d’oligopole de Cournot sous forme caractéristique γ dans lesquels
toutes les firmes jouent simultanément, chaque coalition faisant scission de la
grande coalition produit une quantité à la première période, et les autres firmes
choisissent simultanément et indépendamment une stratégie à la seconde péri-
ode. Nous supposons que la fonction de demande inverse est linéaire et que les
firmes produisent à des coûts marginaux constants mais possiblement distincts.
Ainsi, contrairement à Marini et Currarini (2003), les fonctions de profit indi-
viduel ne sont pas nécessairement identiques. Premièrement, nous caractérisons
le cœur en montrant qu’il est égal à l’ensemble des imputations ce qui répond à
la première question concernant la caractérisation du cœur. En effet, l’avantage
de meneur donné aux coalitions permet à chaque singleton d’avoir une capacité
suffisamment élevée de telle sorte que la capacité de chaque coalition, hormis
la grande coalition, est inférieure ou égal à la valeur de la somme des capacités
individuelles de ses membres. Ensuite, nous donnons une condition nécessaire
et suffisante qui assure la non-vacuité du cœur. Finalement, nous prouvons que
cette condition dépend de l’hétérogénéité des coûts marginaux des firmes, i.e.
pour un nombre donné de firmes, le cœur est non-vide si et seulement si les coûts
marginaux des firmes ne sont pas trop hétérogènes. Plus le nombre de firmes
est important, moins les coûts marginaux des firmes doivent être hétérogènes
afin de garantir la non-vacuité du cœur ce qui répond à la seconde question
concernant le rôle de l’hypothèse de joueurs symétriques. Cependant, dans le
cas où la fonction de demande inverse est strictement concave, nous donnons un
exemple dans lequel nos obtenons le résultat opposé, i.e. lorsque l’hétérogénéité
des coûts marginaux des firmes augmente, alors le cœur devient plus large.

Le Chapitre 6, basé sur l’article de Lardon (2010a), étudie les jeux d’oligopole
coopératifs dans un cadre de concurrence en prix. Nous considérons la même
situation d’oligopole de Bertrand que Deneckere et Davidson (1985) et prolon-
geons leur résultat. Afin de définir des jeux d’oligopole de Bertrand coopératifs,
nous considérons successivement les fonctions caractéristiques α, β et γ. Tout
d’abord, comme pour les jeux d’oligopole de Cournot coopératifs, nous mon-
trons que les fonctions caractéristiques α et β sont égales. Le résultat principal
montre que les jeux d’oligopole de Bertrand sous les formes caractéristiques α ou
β satisfont à la propriété de convexité. Ensuite, en suivant l’approche suggérée
par Chander et Tulkens (1997), nous considérons la fonction caractéristique γ
pour laquelle les firmes font face à une coalition déviante en choisissant leur
meilleure réponse individuelle. Pour cet ensemble de jeux, nous montrons que
la valeur de partage égalitaire appartient au cœur et nous donnons une con-
dition suffisante qui assure que ces jeux satisfont à la propriété de convexité.
Ce résultat généralise le résultat de superadditivité de Deneckere et Davidson
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(1985) et contraste avec le résultat de vacuité du cœur de Kaneko (1978) et
de Huang et Sjöström (2003). Notons que ces propriétés sont aussi satisfaites
pour les jeux d’oligopole de Cournot sous forme caractéristique γ. En théorie
des jeux non-coopératifs, une distinction importante entre un jeu d’oligopole de
Cournot stratégique et un jeu d’oligopole de Bertrand stratégique est que le pre-
mier possède des complémentarités stratégiques tandis que le deuxième présente
des substituabilités stratégiques. Ainsi, bien que ces deux types de jeux présen-
tent des différences fondamentales dans leur forme non-coopérative, il apparaît
que le cœur de leur forme coopérative respective présente la même structure
géométrique.

Le Chapitre 7, basé sur l’article de Driessen, Hou et Lardon (2010), prolonge
l’analyse du Chapitre 6 en étudiant l’ensemble des jeux d’oligopole de Bertrand
sous les formes caractéristiques α et β dans lequel les firmes produisent à des
coûts marginaux possiblement distincts. Tout d’abord, nous prouvons que les
fonctions caractéristiques α et β sont égales. D’une part, nous montrons que si
la constante de la demande est suffisamment petite, alors le jeu d’oligopole de
Bertrand sous forme caractéristique β a une structure similaire à une notion bien
connue en statistiques, i.e. la variance des coûts marginaux. Bien que de tels
jeux ne satisfont pas à la propriété de convexité hormis si les firmes produisent
à des coûts marginaux identiques, nous prouvons qu’ils satisfont à la propriété
de balancement total. D’autre part, nous montrons que si la constante de la de-
mande est suffisamment grande, alors les jeux d’oligopole de Bertrand sous forme
caractéristique β satisfont à la propriété de convexité ce qui généralise le résultat
de convexité du Chapitre 6. Finalement, nous formulons une expression de la
valeur de Shapley pour ce second type de jeux. Plus précisément, nous montrons
que la valeur de Shapley est déterminée en décomposant le jeu d’oligopole de
Bertrand sous forme caractéristique β comme la différence de deux jeux sous
forme caractéristique convexes, en plus de la somme de deux jeux sous forme
caractéristique additifs. De plus, nous donnons une caractérisation de la valeur
de Shapley en utilisant deux propriétés: efficience et monotonie individuelle. La
propriété d’efficience stipule qu’une solution distribue entièrement la capacité de
la grande coalition aux firmes. La propriété de monotonie individuelle spécifie
que la différence entre les paiements de deux firmes est égale à la différence de
leur capacité individuelle pondérée par un certain nombre qui dépend de leur
coût moyen.

Dans cette thèse nous avons développé cinq modèles de jeux d’oligopole
coopératifs. Les contributions sont résumées dans le tableau ci-dessous:
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α = β γ
Avec technologies transférables : Jeux sous forme caractéristique :

- totalement balancé (Norde et al. 2002) - balancé (Théorème 3.4.1)

- convexe (Zhao 1999a) - NP value (Théorèmes 3.5.1, 3.5.2)

Cournot Sans technologies transférables : Jeux sous forme d’intervalle :

- balancé (Zhao 1999b) - I-balancé (Théorème 4.3.1)

- convexe (Norde et al. 2002, - fortement balancé (Théorèmes

Driessen et Meinhardt 2005) 4.3.3, 4.3.4, 4.3.7, 4.3.8)

Avec contraintes de capacité : Sans contraintes de capacité :

Stackelberg = Cournot - C(N, v) = I(N, v) (Proposition 5.3.1)

- balancé (Théorèmes 5.3.3, 5.3.4)

Avec coûts identiques : Avec coûts identiques :

- convexe (Théorème 6.3.5) - ED(N, v) ∈ C(N, v) (Théorème 6.4.5)

Avec coûts distincts : - convexe (Théorème 6.4.6)

Bertrand - non-convexe (Proposition 7.3.1)

- totalement balancé (Théorème 7.3.3)

- convexe (Théorème 7.3.4 )

- valeur de Shapley (Théorèmes 7.4.1, 7.4.2)

En résumé, nous avons montré que le cœur est non-vide pour les situations
d’oligopole de Cournot. En ce qui concerne les situations d’oligopole de Stack-
elberg, nous avons prouvé que le cœur est non-vide si et seulement si les coûts
marginaux des firmes ne sont pas trop hétérogènes. Concernant les situations
d’oligopole de Bertrand, nous avons établi que de tels jeux satisfont à la propriété
de convexité ce qui signifie qu’il existe de fortes incitations à former la grande
coalition. Ainsi, pour la plupart des situations d’oligopole, un accord horizontal
sur le prix de vente est susceptible d’apparaître hormis si les coalitions faisant
scission de la grande coalition possèdent un avantage de meneurs et les firmes ont
des coûts marginaux suffisamment hétérogènes. Puisque les accords horizontaux
sur le prix de vente diminuent le bien-être économique, les résultats établis dans
cette thèse suggèrent et justifient une politique interventionniste de la part des
autorités de la concurrence dans la plupart des marchés oligopolistiques.

Les contributions de cette thèse établissent les bases pour de futurs travaux
de recherche sur les jeux d’oligopole coopératifs.
Dans l’exemple 3.5.3, le jeu d’oligopole de Cournot sous forme caractéristique γ
ne satisfait pas à la propriété de superadditivité et de convexité. Par la suite,
il serait intéressant d’étudier les conditions sur les fonctions de profit individuel
qui assurent que de tels jeux satisfont à la propriété de convexité.
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La preuve du Théorème 4.3.4 assure l’existence d’un vecteur d’anticipations
«seuil» pour lequel le cœur standard est non-vide. Un futur travail de recherche
consisterait à fournir l’expression de ce vecteur d’anticipations afin d’obtenir
plus d’informations sur le degré de pessimisme à partir duquel le cœur standard
est non-vide.
Pour définir un jeu d’oligopole de Stackelberg sous forme caractéristique γ, nous
avons supposé que les firmes n’avaient aucune contrainte de capacité. Les résul-
tats établis dans la Proposition 5.3.1 et le Théorème 5.3.3 dépendent fortement
de cette hypothèse. Une future trajectoire de recherche consisterait à introduire
des contraintes de capacité dans les situations d’oligopole de Stackelberg. De
plus, le Théorème 5.3.3 établit la vacuité du cœur si les coûts marginaux des
firmes sont suffisamment hétérogènes. Nous conjecturons que ce résultat reste
vrai pour toute situation d’oligopole de Satckelberg dans laquelle la fonction de
demande inverse est strictement concave et les firmes produisent à des coûts
marginaux identiques.
Le résultat du Théorème 6.4.6 donne une condition suffisante qui assure que les
jeux d’oligopole de Bertrand sous forme caractéristique γ satisfont à la propriété
de convexité. Jusqu’à maintenant, nous n’avons pas réussi à donner un exemple
de jeu d’oligopole de Bertrand sous forme caractéristique γ qui ne satisfait pas
à la propriété de convexité. Il serait donc intéressant soit d’établir la preuve que
la propriété de convexité est satisfaite sur cet ensemble de jeux, soit de donner
un contre-exemple.
Lorsque les coûts marginaux des firmes sont possiblement distincts, nous avons
traité des jeux d’oligopole de Bertrand sous les formes caractéristiques α et β en
supposant que les technologies n’étaient pas transférables. Un prolongement de
ce travail consisterait à étudier les jeux d’oligopole de Bertrand sous les formes
caractéristiques α, β et γ, dans le cas où les technologies seraient transférables.
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Abstract: In the first essay, we study Cournot oligopoly TU-games in γ-
characteristic function form. First, we prove that if any individual profit function
is concave, such games are balanced. Then, when the individual cost functions
are linear, we provide a solution in the core, called NP(Nash Pro rata) value.
The second essay considers Cournot oligopoly interval game in γ-set function
form. The first (second) result states that the interval (standard) core is non-
empty if and only if the Cournot oligopoly TU-game associated with the best
(worst) worth of every coalition in its worth interval admits a non-empty core.
In the third essay, we focus on Stackelberg oligopoly TU-games in γ-characteristic
function form. First, we prove that the core is equal to the set of imputations.
Then, we provide a necessary and sufficient condition, depending on the hetero-
geneity of firms’ marginal costs, under which the core is non-empty.
In the fourth essay, we show that Bertrand oligopoly TU-games in α and β-
characteristic function forms are convex. Then, we prove that the equal division
solution is in the core of Bertrand oligopoly TU-games in γ-characteristic func-
tion form and we give a sufficient condition under which such games are convex.
The fifth essay studies the case where the marginal costs are distinct. If the
intercept of demand is sufficiently small then games in β-characteristic function
form are totally balanced. Otherwise, these games are convex.

Résumé : Tout d’abord, nous traitons des jeux d’oligopole de Cournot sous
forme caractéristique γ. Nous montrons que ces jeux sont balancés lorsque les
fonctions de profit individuel sont concave. Ensuite, lorsque les fonctions de coût
individuel sont linéaires, la «valeur au prorata de Nash» appartient au cœur.
Par la suite, nous étudions les jeux d’oligopole de Cournot sous forme d’intervalle
γ. Nous prouvons que le cœur intervalle (standard) est non-vide si et seulement
si le jeu d’oligopole de Cournot sous forme caractéristique γ associé à la meilleure
(plus faible) capacité qu’obtient chaque coalition admet un cœur non-vide.
Ensuite, nous analysons les jeux d’oligopole de Stackelberg sous forme carac-
téristique γ. Nous montrons que le cœur est égal à l’ensemble des imputations.
Ensuite, nous donnons une condition nécessaire et suffisante, qui dépend de
l’hétérogénéité des coûts marginaux, assurant la non-vacuité du cœur.
Enfin, nous considérons les jeux d’oligopole de Bertrand. Nous prouvons que les
jeux sous les formes caractéristiques α ou β satisfont à la propriété de convexité.
Ensuite, nous prouvons que la valeur de partage égalitaire appartient au cœur
des jeux sous forme caractéristique γ et nous donnons une condition suffisante
qui assure que ces jeux satisfont à la propriété de convexité.
Nous prolongeons cette analyse en supposant que les coûts marginaux sont dis-
tincts. Si la constante de la demande est suffisamment petite, alors les jeux sous
forme caractéristique β satisfont à la propriété de balancement total. Autrement,
ces jeux satisfont à la propriété de convexité.
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