

Etude des variations épigénétiques liées aux séquences répétées comme source de changements phénotypiques héritables chez Arabidopsis thaliana

Sandra Cortijo

▶ To cite this version:

Sandra Cortijo. Etude des variations épigénétiques liées aux séquences répétées comme source de changements phénotypiques héritables chez Arabidopsis thaliana. Sciences agricoles. Université Paris Sud - Paris XI, 2012. Français. NNT: 2012PA112151. tel-00742834

HAL Id: tel-00742834 https://theses.hal.science/tel-00742834

Submitted on 17 Oct 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

UNIVERSITE DE PARIS-SUD FACULTE DES SCIENCES D'ORSAY

Ecole doctorale : 426- Gènes, Génomes, Cellules Laboratoire d'épigénétique et d'épigénomique chez Arabidopsis

THESE DE DOCTORAT

Présentée pour obtenir le grade de DOCTEUR EN SCIENCES DE L'UNIVERSITE PARIS XI, ORSAY Soutenue le 10/09/2012

> Présentée par Sandra Cortijo

Etude des variations épigénétiques liées aux séquences répétées comme source de changements phénotypiques héritables chez *Arabidopsis thaliana*

Directeur de thèse : Vincent Colot Co-directeur de thèse : François Roudier

JURY

Olivier LOUDET Olivier MATHIEU Catherine FEUILLET Pierre CAPY Vincent COLOT François ROUDIER Rapporteur Rapporteur Examinatrice Examinateur Directeur de thèse Co-directeur de thèse

Remerciements

Après quatre années, voici que cette thèse touche à sa fin. Ce fut une grande aventure avec, comme il se doit, des rebondissements et surtout de nombreuses personnes qui m'ont soutenue, encouragée et permis d'en sortir grandie. C'est à présent avec grand plaisir que je vais pouvoir toutes les remercier.

Tout d'abord ces années n'auraient pas été les mêmes sans Vincent et François qui m'ont donné l'occasion de venir à Paris me lancer dans un sujet de recherche pour lequel je n'avais finalement que des connaissances basiques. Merci aussi de m'avoir aidé à réorienter ce projet, ce qui ne fut pas chose facile au début mais, comme je lai compris pourra m'arriver plus d'une fois. Je voudrais vous remercier pour m'avoir mis toutes les clés en main puis de m'avoir laissé l'indépendance suffisante pour les exploiter. Je voudrais exprimer toute ma gratitude à François qui m'a formée et aidée au jour le jour lors de ma première année et chaque fois que j'en avais besoin.

Ces travaux de thèse n'auraient pu aller aussi loin sans toutes les personnes avec qui j'ai collaboré et qui ont apporté leurs compétences très diverses. J'ai ainsi appris que savoir demander de l'aide aux personnes compétentes est une qualité. Un grand merci à Frank, Maria et René avec qui j'ai eu plaisir à travailler et discuter très régulièrement et grâce à qui j'ai pu, entre autre, visiter Groningen. Cette collaboration aura été très fructueuse tant pour les résultats qui en découlent que pour les connaissances acquises. Merci aussi à Marina Ferrand, Olivier Loudet et Donna Bond qui ont apporté leurs outils, expertises et conseils sur divers projets toujours en cours qui furent essentiels à ce projet.

Je veux bien sûr remercier tous les membres du laboratoire mais aussi ceux du quatrième étage pour tous les moments de bonheur, les discussions, les conseils... Je voudrais dire toute ma reconnaissance aux personnes, et elles sont nombreuses, à s'être impliquées à un moment ou à un autre dans ce travail de thèse. Mathilde, Barbara et Agnès pour la multitude de MeDIP-chip que vous avez contribuée à générer. Evelyne et Alexis pour m'avoir initiée à la bioinformatique et vous être impliqués dans nombre d'analyses. Erwann et François pour votre aide régulière, notamment pour les clonages et transformations. Je voudrais aussi vous remercier d'avance pour le temps et l'énergie que demandera la poursuite d'expériences que je n'ai pas eu le temps de terminer. Merci à tous ceux que je n'ai pas cités ici mais que je n'oublie pas pour tous les petits moments où vous avez été là quand j'en avais besoin. Vous allez tous me manquer

Je voudrais encore remercier les membres de mon comité de thèse (Patrick Laufs, Olivier Loudet, Frédéric Bantignies et Michaël Weber) qui se sont réunis à deux reprises pour évaluer mes travaux et m'apporter leurs conseils. Bien sûr merci à Patrick Laufs qui a accepté d'être mon tuteur. La soutenance fut un moment très agréable et j'en remercie tous les membres du jury : Olivier Loudet et Olivier Mathieu qui ont accepté d'être mes rapporteurs et pour leurs commentaires et suggestions ; Catherine Feuillet et Pierre Capy qui s'y sont joints pour évaluer mes travaux. Merci à vous tous pour m'avoir permis de participer à une discussion très stimulante et enrichissante.

Pour finir je voudrais remercier ma famille qui m'a encouragée à faire les études qui me plaisaient et m'a donnée les moyens d'aller jusqu'au bout. Un grand merci enfin à Loïc qui m'a apporté l'équilibre nécessaire pour entretenir ma fameuse humeur égale.

Abbréviations

ADN : Acide désoxyribonucléique ET : Elément transposable A^{vy}: agouti viable yellow **CNR : COLORLESS NON-RIPENING** FWA : FLOWERING WAGENINGEN **SUP: SUPERMAN** AG: AGAMOUS **BNS: BONSAI** DMR : Differentially Methylated Region **GWAS : Genome Wide Association Studies** siRNA : short interfering RNA RdDM : RNA-directed DNA methylation ARN : Acide ribonucléique RDR2 : RNA-DEPENDENT RNA POLYMERASE 2 DCL3 : DICER-LIKE3 AGO4 : ARGONAUTE 4 DRM2 : DOMAIN REARRANGED METHYLTRANSFERASE 2 **DNMT3 : DNA METHYLTRANSFERASE 3** AGO6 : ARGONAUTE 6 AGO9: ARGONAUTE 9 DNMT1 : DNA METHYLTRANSFERASE 1 MET1: METHYLTRANSFERASE 1 **VIM1 : VARIANT IN METHYLATION 1** CMT3 : CHROMOMETHYLASE 3 SUVH4 : SU(VAR)3-9 HOMOLOG DDM1 : DECREASE IN DNA METHYLATION 1 **DME : DEMETER** NIL : Near-isogenic lines (Lignées quasi-isogéniques) lignées MA : lignée d'accumulation de mutations DMP : differentially methylated position SMP : single methylation polymorphism épiRIL : Epigenetic recombinant inbred line **RIL** : recombinant inbred line QTL : Quatitative trait locus LOD : logarithm of the odds

wt : wild type

MeDIP-chip : Immunoprécipitation de l'ADN méthylé suivit d'une hybridation sur une puce à ADN

HMM : Hidden Markov Model

- ROS1 : REPRESSOR OF SILENCING1
- IBM1 : INCREASE IN BONSAI METHYLATION 1
- H²: Héritabilité eu sens large
- CO : Crossing over
- cM : centiMorgan
- IP : fraction immunoprécipitée
- INPUT : ADN génomique
- eQTL : QTL d'expression
- phQTL^{epi} : QTL d'origine épigénétique avec un effet phénotypique
- eQTL^{epi}: QTL d'origine épigénétique avec un effet sur l'expression d'un gène

T-DNA : ADN de transfert

HIF : Heterogeneous inbred family

BS : Bisulfite

- MS :milieu de Murashige et Skoog
- PCR : polymerase chain reaction
- RT : Reverse transcription

Table des matières

I.Intro	oduction	.2
I.1.	Epimutation et variation phénotypique héritable chez les eucaryotes	2
I.1	1.1. Epimutations naturelles	. 2
1.1	L.2. Epimutations induites	. 3
I.1	L.3. Composante environnementale des variations phénotypiques héritables	. 4
I.1	1.4. Relation entre variation de méthylation de l'ADN et génotype	. 5
I.2.	Distribution de la méthylation de l'ADN chez les eucaryotes	6
1.2	2.1. Distribution la méthylation de l'ADN chez les mammifères et les espèces non-végétales	. 7
1.2	2.2. Distribution de la méthylation de l'ADN chez les plantes	. 8
1.2	2.3. Impact de la méthylation des éléments transposables sur les gènes	. 8
I.3. Aral	Mécanismes d'établissement et de maintien de la méthylation de l'ADN chez <i>bidopsis thaliana</i> pour les séquences répétées1	10
1.3	3.1. Etablissement de la méthylation de l'ADN au niveau des séquences répétées	10
1.3	3.2. Maintien de la méthylation de l'ADN au niveau des séquences répétées	11
1.3	3.3. Déméthylation active et passive	12
I.4. S	Stabilité des profils de méthylation de l'ADN chez les plantes	L3
1.4	1.1. Transmission des profils de méthylation au travers des générations	13
1.4	1.2. Stabilité des profils de méthylation de l'ADN chez les plantes	14
1.5.	Stabilité de perturbations de la méthylation de l'ADN et impact phénotypique	٤4
1.5	5.1. Principes de la détection de QTL	15
l.5 m	5.2. Les épiRIL, un système expérimental pour évaluer la stabilité des perturbations de la éthylation de l'ADN et de leurs conséquences phénotypiques	16
1.5	5.3. Objectifs de la thèse	17
II. C	hapitre 1 : Analyse de la stabilité des variations de méthylation induite	
par la	n mutation <i>ddm1</i> 1	19
II.1-	Introduction 1	19
II.2.	Résultats 1	19
П.	2.1. Analyse des changements de méthylation induits par la mutation <i>ddm1</i>	19
П.	2.2. Analyse de la stabilité de l'hypométhylation induite par <i>ddm1</i>	20
II. M	2.3. Définition d'intervalles d'origine parentale à partir des sondes stablement hypométhylée U et MI	es 23

11.2.	.4. Analyse de la réversion sporadique de l'hypométhylation
11.2.	.5. Analyse des variations non parentales de la méthylation de l'ADN
11.2.	.6. Analyse du taux d'épimutation dans les épiRIL
II.2.	.7. Prédiction de l'état de méthylation dans les lignées parentales à partir des épiRIL 27
II.3-Co	onclusion et discussion 29
II.3. séqu	.1. La mutation <i>ddm1</i> induit principalement une perte de méthylation de l'ADN au niveau des uences répétées
II.3.	.2. Un tiers des pertes de méthylation induites par <i>ddm1</i> sont héritées dans les épiRIL 29
II.3. ddn	.3. Un continuum de situations est observé pour la stabilité de l'hypométhylation induite par n1 dans les épiRIL
II.3. d'or	.4. Un taux d'épimutation plus important dans les intervalles d'origine <i>ddm1</i> que ceux rigine wt
III. Ch l'activi	napitre2 : Impact des variations héritables de méthylation de l'ADN sur ité du génome
.1-	Introduction
III.2.R	Résultats
III.2 épiF	2.1. Une importante héritabilité est mesurée pour la longueur de la racine primaire dans les RIL
III.2 vari	2.2. Génération d'une carte génétique pour l'identification d'éventuels épiallèles associés aux iations phénotypique héritables mesurées dans les épiRIL
111.2	2.3. Cartographie de QTL pour le temps de floraison et la longueur de la racine primaire 74
III.3. C	Conclusion et discussion
III.3 abse	8.1. Les profils de recombinaison ne sont pas perturbés par une perte de méthylation et une ence de variation de la séquence
III.3 rech	8.2. Détection de variations épialléliques associées à des changements phénotypiques via la herche de QTL dans la population d'épiRIL
IV. Ch longue	hapitre 3 : Recherche des variations causales associées aux QTL pour la eur de la racine primaire79
IV.1. I	Résultats
IV.1 prin	I.1. Recherche et analyse de loci candidats dans les QTL associés à la longueur de la racine naire
IV.1	1.1.1. Recherche de loci candidats
IV.1	1.1.2. Analyse moléculaire du locus candidat
IV.1 phé	1.1.3. Validation de l'impact de la méthylation de l'ET sur l'expression du gène et sur le énotype racinaire

/	V.1.1.4. Systématisation de la recherche de loci candidats pour tous les o	QTL associés à la
lo	ongueur de la racine primaire	
I	V.1.2- Etude du méthylome racinaire	
IV.2	2. Conclusion et discussion	85
V. Di	scussion générale	87
VI. N	latériels et méthodes	91
VII. A	Annexe	

méthylation au niveau de ces loci et les phénotypes associés sont représentés.

I.Introduction

I.1. Epimutation et variation phénotypique héritable chez les eucaryotes

I.1.1. Epimutations naturelles

Si l'ADN est le support de l'hérédité il apparait de plus en plus qu'une part encore indéterminée de la variation phénotypique héritable est causée non pas par des mutations, c'est-à-dire des changements de la séquence nucléotidique, mais plutôt par des épimutations, à savoir, des modifications autres touchant le plus souvent l'état de la chromatine. A ce jour, une dizaine d'épimutants naturels avérés ou potentiels ont été décrits chez les eucaryotes et leurs caractéristiques sont détaillées table 1.1. Ils présentent des phénotypes marqués et sont principalement détectés chez les plantes. Une caractéristique commune est la variation héritable d'expression du gène concerné, en lien avec un gain ou perte de méthylation de l'ADN, généralement au niveau de séquences répétées ou d'éléments transposables (ET) situés à proximité du gène ou dans celui-ci. Une autre propriété partagée par nombre d'épimutations est leur instabilité plus ou moins prononcée et des réversions graduelles (Table 1.1). Ce point est parfaitement illustré par les épimutants *agouti viable yellow* (A^{vy}) chez la souris et *Colorless non-ripening* (*Cnr*) chez la tomate (Figure 1.1).

L'allèle A^{vy} du gène Agouti est caractérisé par une variation inter- et intra-individu de son expression liée à une méthylation variable d'un rétroélément IAP (intra-cisternal A particule) situé en amont du gène Agouti (Morgan et al., 1999). Lorsque l'élément IAP est méthylé, le gène est exprimé spécifiquement dans les poils situés en position ventrale qui sont alors jaunes, le reste du pelage étant de couleur agouti. L'hypométhylation de ce rétroélément est associé à une expression ectopique d'Agouti entrainant en sus d'une

Espèce	Nom de	Type de changement de	Gène affecté	Phénotype	Variation de méthylation	Instabilité	Références
	l'épimutant	méthylation de l'ADN			de l'ADN associée à une		
					séquence répétée		
Mus musculus	agouti viable	hypométhylation	AGOUTI	Fourrure jaune, obésité,	Oui	Oui	Morgan et al.,
	yellow (A ^{vy})			diabète et susceptibilité à			1999
				des cancers augmentée			
Mus musculus	Axin ^{Fu}	hypométhylation	Axin ^{Fu}	Queue vrillée	Oui	Oui	Rakyan et al., 2003
Linaria vulgaris	Peloric	Gain de méthylation dans	CYCLOIDEA	Changement de la symétrie	ND	Oui	Cubas et al., 1999
5		la région promotrice		florale			,
Solanum	Cnr	gain de méthylation de la	LeSPL-CNR	Perte de maturation du fruit	Oui	Oui	Manning et al.,
lycopersicum		région promotrice					2006
Oryza sativa	epi-d1	Gain de méthylation dans	DWARF1	Petite stature de la plante	Oui	Oui	Miura et al., 2009
		la région promotrice					
Cucumis melo		Gain de méthylation dans	CmWIP1	Transition des fleurs de	Oui	Oui	Martin et al.,
		la région promotrice		mâle à femelle			2009
Arabidopsis		Gain de méthylation pour	PAI	Déficience pour le	Oui	Oui	Bender and Fink,
thaliana		les quatre gènes de cette		tryptophane			1995; Melquist et
		famille					al., 1999
Arabidopsis		Gain de méthylation des	ATFOLT1	Incompatibilité allélique	Oui	Oui	Durand et al.,
thaliana		parties 5' des gènes		entre Col-0 et Sha			2012
		ATFOLT					

Table I.1. Liste des épimutations naturelles avérées (en bleu) et potentielles (en noir) décrites chez les plantes et les mammifères. Les épimutations naturelles potentielles sont celle pour lesquelles les variations structurales inductrices co-ségrègent dans les populations naturelles.

ND : Non déterminé

coloration jaune constitutive (Figure I.1.), une obésité, du diabète et une susceptibilité augmentée à des tumeurs. Ces phénotypes sont transmis maternellement à la génération suivante à des fréquences variables. L'allèle A^{vy} est néanmoins instable puisqu'il existe une gradation du phénotype entre les souris entièrement jaunes et celles *agouti*. Par ailleur, le degré de méthylation de cet allèle peut être influencé par l'environnement. En effet un régime alimentaire supplémenté en donneurs de groupes méthyls chez des souris femelles induit systématiquement une hyperméthylation de A^{vy} , et un pelage plus foncé chez leurs descendants F2. Cependant, ces effets ne sont pas transmis en F3 (Wolff et al., 1998 ; Waterland et al., 2003 ; Cropley et al., 2006).

Chez la tomate, l'épimutant *Cnr* se caractérise par une absence de coloration des fruits et une perte d'adhésion cellulaire. Ce phénotype est causé par une hyperméthylation de la région promotrice du gène *LeSPL-CNR* qui est associée à une perte d'expression de celui-ci (Figure I.1., Manning et al., 2006). Un élément transposable de type COPIA se trouve en amont du gène et pourrait influencer l'état de méthylation de cette région, bien que cela reste à démontrer. Des secteurs révertants où le fruit est coloré sont observés, indiquant une instabilité de cette épimutation (Figure I.1.). Il est probable que cette réversion phénotypique soit associée à une perte de l'hyperméthylation de la région promotrice de *LeSPL-CNR*. Cette réversion n'a été détectée que pour trois fruits de différentes plantes sur plus de 3000 étudiées. Ceci indique que l'état de méthylation en amont du gène *LeSPL-CNR* est particulièrement stable (Manning et al., 2006).

I.1.2. Epimutations induites

La recherche de la base moléculaire de plusieurs phénotypes observés dans des mutants présentant une perte globale de méthylation de l'ADN a conduit à l'identification de plusieurs épimutations (table I.2.). Ainsi, une hypométhylation a été observée pour le gène *FWA (FLOWERING WAGENINGEN)* et, de façon inattendue, des hyperméthylations pour les gènes *SUP (SUPERMAN)*, *AG (AGAMOUS)* et *BNS (BONSAI)*, conduisant respectivement à une floraison tardive, des étamines en excès, l'absence d'étamines et carpelles et enfin des plantes naines (Jacobsen et al., 1997 ; 2000 ; Kakutani et al., 1996 ; 1997 ; Ronemus et al.,

Espèce	Type de changement de	Gène affecté et	Phénotype	Instabilité	Variation de méthylation	Références
	méthylation de l'ADN	phénotype	développemental		de l'ADN associée à une	
		moléculaire			séquence répétée	
Arabidopsis	Hypométhylation des	FWA,	Floraison tardive	Oui	Oui	Kakutani et al., 1996 ;
thaliana	séquences SINE dégénérées	expression				Kakutani et al., 1997 ;
	en amont du gène FWA	ectopique				Lippman et al., 2004 ;
						Ronemus et al., 1996 ;
						Soppe et al., 2000
Arabidopsis	Hyperméthylation du gène	SUP, perte	Augmentation du	Oui	ND	Jacobsen et al., 1997 ;
thaliana		d'expression	nombre d'étamines			Jacobsen et al., 2000
			dans la fleur au			
			détriment des			
			carpelles			
Arabidopsis	Hyperméthylation du 1er	AG, perte	Perte des carpelles et	Oui	ND	Jacobsen et al., 2000
thaliana	intron du gène	d'expression	des étamines dans les			
			fleurs			
Arabidopsis	Hyperméthylation du gène	BNS, perte	Inflorescence courte et	Oui	Oui	Saze and Kakutani,
thaliana		d'expression	compactée			2007

Table I.2. Liste des épimutants obtenus après mutation d'un gène impliqué dans la méthylation de l'ADN dont le changement de méthylation est maintenu après restauration de la fonction de ce gène.

ND : Non déterminé

1996 ; Saze et al., 2007 ; Soppe et al., 2000). Les caractéristiques de ces épimutations induites sont très semblables à celles naturelles : une variation de méthylation de l'ADN généralement associée à des séquences répétées ainsi qu'une instabilité des épiallèles.

Le gène FWA n'est exprimé que dans la graine, plus spécifiquement dans l'albumen, où il est soumis à l'empreinte parentale puisque seul l'allèle d'origine maternelle y est transcrit (Kinoshita et al., 2004). Aucune expression de ce gène n'a été détectée dans le reste de la plante et la présence de méthylation de l'ADN au niveau de répétitions en tandem dérivées d'un élément SINE et situées en 5' du gène est nécessaire et suffisante à la répression de celui-ci (Chan et al., 2006). L'épimutation fwa est caractérisée par une perte de cette méthylation dans les parties végétatives de la plante et une expression ectopique de FWA responsable de la floraison tardive. Ce phénotype est observé uniquement de manière sporadique dans les premières générations des mutants conduisant à une perte globale de méthylation. Un gain de pénétrance du phénotype associé à une perte de méthylation de plus en plus importante est observé au cours des générations (Kakutani et al., 1996; Kakutani et al., 1997). Cette importante hypométhylation obtenue dans des générations avancées est maintenue même après restauration de la fonction des gènes mutés (Kakutani et al., 1997; Ronemus et al., 1996). A l'inverse, dans le cas d'une faible hypométhylation, comme dans les premières générations des mutants, une méthylation de type sauvage est restaurée après élimination de la mutation. Cependant quelques exceptions à cette réversion sont observées et sont caractérisées par une perte encore plus importante de la méthylation (Johannes et al., 2009). Bien que l'épimutation fwa soit observée de façon récurente dans différents mutants affectant la méthylation de l'ADN, elle n'a été détectée dans aucune des 96 accessions naturelles analysées (Vaughn et al., 2007). L'absence d'hypométhylation de ce locus en contexte naturel peut suggérer une contre sélection de l'épiallèle hypométhylé, le phénotype associé ayant directement un impact sur la reproduction.

Les épimutations du gène *SUP* sont caractérisées par une hyperméthylation de la région 5' du gène, à priori non répétée, et par une perte d'expression (Jacobsen et al., 1997 ;

3

2000). L'hyperméthylation est maintenue au cours des générations même après élimination de la mutation. Cependant des réversions phénotypiques ont été observées et sont associées à une perte de méthylation et à une restauration de l'expression de *SUP* (Jacobsen et al., 1997).

Pour le gène *AG*, l'hyperméthylation du premier intron est associée à une perte d'expression (Jacobsen et al., 2000). Une même plante peut présenter des fleurs sauvages qui sont méthylées normalement au niveau du gène *AG* et d'autres avec un phénotype *ag* qui sont hyperméthylées pour *AG*.

L'épimutation au niveau du gène *BNS* est caractérisée par une hyperméthylation de la région 5' du gène et par une perte d'expression (Saze and Kakutani, 2007). Cette hyperméthylation n'est observée que dans des générations avancées de mutants présentant une perte globale de méthylation de l'ADN. Cet épimutant, associé à un rétrotransposon LINE en aval du gène, est stable après élimination de la mutation inductrice (Saze and Kakutani, 2007).

I.1.3. Composante environnementale des variations phénotypiques héritables

L'exemple de l'allèle A^{*vv*} dont l'état de méthylation peut être influencé par le régime alimentaire indique que les épiallèles peuvent être affectés par l'environnement (Wolff et al., 1998 ; Waterland et al., 2003 ; Cropley et al 2006). D'autres études suggèrent également que des stress environnementaux peuvent conduire à des variations de la méthylation de l'ADN (Boyko et al., 2011). Cependant le caractère héritable de ces changements n'est pas encore clairement établi (Boyko et al., 2011). A l'inverse, l'héritabilité de variations phénotypiques en réponse à un stress thermique a été montré chez *Arabidopsis thaliana* (Whittle et al., 2009). Ainsi, des lignées génétiquement identiques ont été soumises pendant deux générations (F0 et F1) à des températures élevées (30 °C) ou basses (16 °C), puis à température normale (23 °C) en troisième génération avant d'être enfin soumises à nouveaux en F3 à ces deux mêmes températures extrêmes. Une amélioration de la production de graines par individu en réponse à une température élevée a été mesurée uniquement pour les plantes F3 issues des individus F0 et F1 exposés au même stress. Cette réponse

Figure I.2. Classification des épiallèles en fonction de leur relation au génotype. Les épiallèles obligatoires (haut) ont une dépendance stricte à la séquence nucléotidique. Ceux de la classe facilitée (milieu) ne sont observés que dans certains génotypes. Les épiallèles dits purs (bas) sont au contraire complètement indépendant du génotype. Les traits rouges et noirs représentent deux génotypes différents tandis que les carrés blancs et bleus sont deux états épialléliques.

adaptative est d'intensité variable mais concerne tous les descendants de ces lignées ce qui suggère une cause épigénétique à celle-ci. L'implication de changements héritables de méthylation de l'ADN reste à démontrer. Néanmoins quoi qu'il en soit, ces résultats suggèrent que des variations épialléliques héritables induites par un stress environnemental permettent une adaptation plus rapide que par mutation (Whittle et al., 2009). La réponse décrite ici est en effet rapide puisqu'elle ne nécessite que deux générations.

I.1.4. Relation entre variation de méthylation de l'ADN et génotype

Conceptuellement, les épiallèles peuvent être groupés en trois classes selon leur dépendance au génotype (Richards 2006, Figure I.2.). La première classe, appelée obligatoire, correspond aux épiallèles strictement dépendants de la séquence nucléotidique. Ceux de la classe facilitée n'ont pas cette dépendance mais ne sont observés que dans certains génotypes. La majorité des épimutations naturelles ou induites connues à ce jour (Table I.1.) peuvent être considérées comme étant de ce type. C'est le cas notamment d' $A^{\nu\nu}$ et Cnr décrits précédemment (Figure I.1.). La troisième classe est composée d'épiallèles dits purs, indépendants du génotype. L'épimutation peloric de la linaire vulgaire (Cubas et al., 1999) pourrait être de ce type, puisqu'elle semble se produire spontanément dans plusieurs populations naturelles de cette plante (Jablonka and Raz 2009). Cette classification permet d'appréhender toute la gradation possible dans la dépendance des épiallèles au génotype. Cependant, en pratique, il est difficile de distinguer les variations épigénétiques appartenant à chacune de ces classes par manque d'information sur la (ou les) cause(s) de la formation de ces épiallèles. De plus la séquence du génome entier de l'épimutant n'est généralement pas connue et ne permet donc pas d'exclure une influence à distance (en trans) du génotype dans la genèse ou la stabilisation des épimutations.

L'analyse à l'échelle du génome des relations entre variation nucléotidique et de méthylation de l'ADN a récemment fait l'objet de plusieurs études. Chez le maïs, 13 régions différentiellement méthylées (DMR pour Differentially Methylated Region) entre les lignées B73 et M017 ont été analysées afin de déterminer leur degré de dépendance au génotype (Eichten et al., 2011). Des lignées quasi-isogéniques ont été construites dans lesquelles les

DMR héritées du parent B73 ou M017 sont placées dans le fond génétique de l'autre parent. Pour une DMR influencée en *cis* et hyperméthylée dans le parent B73, un maintien de cette hyperméthylation après introgression dans le parent M017 est attendu. A l'inverse, en cas d'influence en *trans*, l'hyperméthylation sera perdue dans ce nouveau fond génétique. Parmi les 13 DMR étudiées, trois sont influencées en *trans* et dix en *cis*. Parmi ces dernières, quatre sont localisées dans des régions ne présentant aucune variation de séquence entre les deux parents B73 et M017 (Eichten et al., 2011). Elles semblent donc indépendantes de toute variation nucléotidique.

Chez les mammifères, plusieurs études d'association à l'échelle du génome (GWAS pour Genome Wide Association Studies) ont été menées afin d'identifier les liens entre génotype et méthylation de l'ADN (Gibbs et al., 2010 ; Hellman et al .,2010 ; Zhang et al., 2010). De nombreux mQTL ont ainsi été détectés, c'est-à-dire des régions du génome pour lesquelles des changements de la séquence nucléotidique sont liés à des variations de la méthylation. La majorité des relations entre la séquence et la méthylation de l'ADN sont en *cis* et impliquent plusieurs cytosines. Une fraction des mQTL chevauchent des eQTL, c'est-à-dire des régions du génome pour lesquelles les polymorphismes nucléotidiques sont liés également en *cis* à des variations d'expression des gènes. Des mQTL en *trans* ont aussi été détectés, moins nombreux que ceux en *cis*. Dans tous ces cas, ces épiallèles appartiennent aux deux classes obligatoire ou facilitée.

Ces résultats indiquent que la variation de méthylation d'un locus peut être associée à des changements nucléotidiques à différents niveaux, localement ou à distance. Dans des populations naturelles ou dans des RIL des épiallèles avec divers degrés de relation au génotype sont en ségrégation. Il est donc difficile d'y différencier l'impact des variations de la séquence nucléotidique et de la méthylation de l'ADN sur le phénotype (Johannes et al., 2008).

I.2. Distribution de la méthylation de l'ADN chez les eucaryotes

La méthylation de l'ADN n'est pas universelle chez les eucaryotes puisqu'elle est notamment absente chez la drosophile, le nématode et la levure. Néanmoins, plusieurs travaux récents suggèrent l'existence d'épimutations chez au moins certaines de ces espèces liées à d'autres modifications de la chromatine (Seong et al., 2011 ; Greer et al., 2011). Nous observons cependant que les épiallèles caractérisés à ce jour sont causés par des variations de méthylation de l'ADN. Afin de mieux pouvoir appréhender la génèse de ces épiallèles et leur transmission il est important de connaitre la distribution de la méthylation de l'ADN ainsi que les mécanismes associés à son dépôt et à son maintien dans un contexte sauvage.

I.2.1. Distribution la méthylation de l'ADN chez les mammifères et les espèces nonvégétales

La méthylation de l'ADN chez les mammifères est principalement observée au niveau des cytosines des sites CG. Dans les cellules souches embryonnaires la méthylation en contextes CHG et CHH (ou H peut être A, T ou C) a aussi été détectée (Lister et al., 2009). Les dinucléotides CG sont sous-représentés dans le génome des mammifères, sauf au niveau de certaines séquences appelées « îlots CpG », qui sont le plus souvent situés dans les régions promotrices des gènes (Figure I.2. Suzuki and Bird 2008). Les CG isolés sont méthylés de façon constitutive, notamment dans la lignée germinale, ce qui pourrait expliquer leur sous-représentation du fait de la plus grande mutabilité des cytosines méthylées par rapport aux cytosines. A l'inverse les ilôts CpG ne sont méthylés que de manière spécifique au cours du développement. C'est le cas des îlots CpG associés aux gènes de pluripotence qui sont généralement hypométhylés dans les cellules souches et gagnent de la méthylation au cours de la différenciation cellulaire (He et al., 2011 ; Suzuki and Bird, 2008) ou encore aux gènes soumis à l'empreinte parentale ou l'inactivation du chromosome X.

La méthylation de l'ADN a été étudiée chez d'autres espèces animales et deux types de distribution semblent émerger. Le poisson zèbre et le poisson globe présentent un profil de méthylation de l'ADN similaire à celui des mammifères. La cione, l'abeille européenne, le vers à soie ou l'anémone étoilée présentent une méthylation des cytosines en contextes CG uniquement avec un niveau plus faible que chez les mammifères. Le corps des gènes est la cible principale de cette méthylation (Feng et al., 2010 ; Zemach et al., 2010).

I.2.2. Distribution de la méthylation de l'ADN chez les plantes

Chez les plantes, la méthylation de l'ADN n'est pas restreinte aux sites CG mais est aussi largement observée en contextes CHG et CHH (Figure I.3.). De plus, la majorité de la méthylation de l'ADN se retrouve au niveau des éléments transposables et séquences répétées qui sont méthylés dans les trois contextes. Cette méthylation dense est fortement corrélée à la diméthylation de la lysine 9 de l'histone H3 (H3K9me2), une marque classique de l'hétérochromatine (Feng et al., 2010, Roudier et al., 2009, 2011, Zemach et al., 2010). Ces séquences sont ciblées par la machinerie de RdDM (RNA directed DNA methylation, décrite ci-après). La méthylation détectée sur les gènes (20-30% chez *Arabidopsis thaliana*) concerne quasi-exclusivement les sites CG (Feng et al., 2010, Zemach et al., 2010) et semble être associée à l'expression plutôt qu'à la répression (Cokus et al., 2008; Lister et al., 2008; Zhang et al., 2006; Zilberman et al., 2007, Zemach et al., 2010). Ainsi donc, selon la proportion de séquences répétées, les génomes des plantes apparaissent soit globalement méthylés (cas du maïs), soit comme des mosaïques de régions méthylées et non méthylées (cas d'*Arabidopsis*, Figure I.3., He et al., 2011 ; Suzuki et al., 2008).

Contrairement aux mammifères, les plantes ne possèdent pas à proprement parler d'îlots CpG et les rares gènes, comme *FWA*, dont l'expression semble être régulée par la méthylation de l'ADN sont ceux pour lesquelles des séquences répétées sont impliquées. Cette dernière observation est en accord avec le fait qu'une perte de méthylation de l'ADN au niveau des séquences répétées entraine des aberrations phénotypiques moins nombreuses chez *Arabidopsis* que chez le maïs dont le génome est majoritairement composé de telles séquences (He et al., 2011).

I.2.3. Impact de la méthylation des éléments transposables sur les gènes

Nous avons vu précédemment que les variations d'expression des gènes dans le cas d'épimutants naturels ou induits sont le plus souvent associées à des changements de méthylation de l'ADN au niveau de séquences répétées. En théorie, la variation de

méthylation de l'ADN au niveau de séquences répétées peut avoir un impact sur l'expression d'un gène selon différents modes (Figure I.4.). i) Lorsqu'un élément transposable est à proximité d'un gène, la variation de son niveau de méthylation peut modifier l'état chromatinien local et l'accessibilité de facteurs de transcription. ii) Un effet similaire peut éventuellement être observé à distance. iii) L'hypométhylation d'un élément transposable peut aussi induire sa mobilisation (Mirouze et al., 2009 ; Miura et al., 2001 ; Singer et al., 2001 ; Tsukahara et al., 2009). Celui-ci peut alors s'insérer dans ou à proximité d'un gène et donc affecter son expression voire l'invalider complètement.

Il a été montré chez *Arabidopsis thaliana* que l'expression des gènes était négativement corrélée avec la densité d'éléments transposables à proximité lorsque ceux-ci sont méthylés (Hollister and Gaut 2009). De plus une étude comparative entre *Arabidopsis thaliana* et *Arabidopsis lyrata* a mis en évidence une corrélation négative entre l'expression des gènes et le fait que le ou les éléments transposables situés à proximité sont ciblés par des petits ARN (Hollister et al., 2011). Enfin, l'analyse de la méthylation de l'ADN des éléments transposables associés à des siRNA dans les régions euchromatiques a montré un débordement de cette méthylation sur une distance de 200 pb environ, ce qui pourrait expliquer une partie des effets des éléments transposables sur l'expression des gènes à proximité (Ahmed et al., 2011).

L'impact de la variation de la méthylation au niveau de séquences répétées sur l'expression de gènes est aussi observé dans le cadre de la paramutation et l'empreinte parentale. En général, la paramutation implique une interaction en *trans* entre séquences homologues et conduit à une répression transcriptionnelle de l'allèle paramutable (sensible à la paramutation) qui est alors paramuté. La paramutation est stablement maintenue au cours des mitoses et des méioses et devient elle-même paramutagénique, c'est-à-dire qu'elle est capable d'induire la répression d'un allèle paramutable (Erhard et al., 2011). Pour tous ces *loci*, la capacité à paramutation semble être liée à une structure répétée du locus (Panavas et al., 1999) ou d'une séquence régulatrice (Sidorenko and Peterson 2001, Stam et al., 2002) ou encore à la présence d'un élément transposable fortement réarrangé (Walker 1998). Une association entre variation de la méthylation et expression du gène a été montrée pour plusieurs de ces *loci* (Walker 1998; Haring et al., 2010; Sidorenko and Peterson 2001).

Les gènes soumis à l'empreinte parentale chez *Arabidopsis thaliana* ont un seul des deux allèles parentaux exprimé dans l'albumen lors du développement de la graine, aucune expression n'étant détecté dans le reste de la plante. Pour le moment douze gènes soumis à l'empreinte parentale ont été identifiés dans cette espèce (Tarukani and Takayama 2011 ; Bauer et al., 2011 ; Köhler et al., 2012). Une implication de la méthylation de l'ADN au niveau de séquences répétées ou dérivées d'ET à été observée pour certains de ces gènes (Makarevich et al., 2008 ; Gehring et al., 2006 ; Soppe et al., 2000 ; Kinoshita et al., 2004 ; 2007). L'analyse de la méthylation de l'ADN et des transcriptomes de l'albumen et de l'embryon semble indiquer que l'empreinte parentale chez les plantes a évoluée à partir d'ET insérés à proximité de gènes et ciblés par la méthylation de l'ADN qui ont été sélectionnés positivement quand le changement d'expression a été avantageux.

I.3. Mécanismes d'établissement et de maintien de la méthylation de l'ADN chez *Arabidopsis thaliana* pour les séquences répétées

I.3.1. Etablissement de la méthylation de l'ADN au niveau des séquences répétées

Des études génétiques et moléculaires chez *Arabidopsis thaliana* ont permis d'établir la présence d'une voie de méthylation de l'ADN *de novo* des séquences répétées dépendante des siRNA (pour short interfering RNA, Teixeira and Colot 2010). Dans le modèle actuel du RdDM (RNA-directed DNA methylation), illustré dans la figure I.5., la séquence répétée est tout d'abord transcrite par l'ARN polymérase IV (PolIV), une des deux polymérases spécifiques aux plantes, apparentées à Pol II (Lahmy et al., 2010). Les ARN simple brin sont alors convertis en double brin par la polymérase ARN dépendante de l'ARN RDR2 (RNA-DEPENDENT RNA POLYMERASE 2) et sont ensuite transformés en petits ARN interférents (siRNA) de 24nt par l'enzyme RNase III, DICER-LIKE3. Ces siRNA sont ensuite chargés dans un complexe de silencing contenant ARGONAUTE 4 (AGO4) qui interagit, selon les versions du modèle, avec l'ARN produit par PolV, apparenté à PolIV, ou directement avec

l'ADN, PolV servant alors de plateforme d'ancrage (Wierzbicki et al., 2008). La méthyltransférase DRM2 (DOMAIN REARRANGED METHYLTRANSFERASE 2), homologue des *dnmt3*, méthyltransférases *de novo* des mammifères, est recrutée par le complexe PolV-AGO4-siRNA pour établir la méthylation de manière séquence spécifique au niveau des sites CG, CHG et CHH (Cao et al., 2000; Goll and Bestor, 2005). La plupart des étapes de ce modèle sont basées sur des arguments génétiques et nécessitent une validation biochimique. De plus, comme montré pour AGO4, AGO6 et AGO9, plusieurs membres d'une famille de protéines donnée peuvent participer au RdDM à la suite de diversifications fonctionnelles (Zheng et al., 2007; Havecker et al., 2010).

I.3.2. Maintien de la méthylation de l'ADN au niveau des séquences répétées

Lors de la réplication de l'ADN, le maintien des profils de méthylation nécessite la méthylation du brin néo-synthétisé en tenant compte du profil du brin d'ADN parental. La forte similarité des profils de méthylation entre individus témoigne de l'implication de mécanismes robustes de maintien de la méthylation. Plusieurs homologues de Dnmt1, la méthyltransférase de maintien de la méthylation CG chez les mammifères, sont présents chez Arabidopsis thaliana. Parmi ceux-ci, MET1 (METHYLTRANSFERASE 1) est responsable du maintien de la plupart de la méthylation CG (Figure I.5. Teixeira and Colot 2010), aidé par VIM1 (VARIANT IN METHYLATION 1), qui recrute MET1 au niveau des sites CG hémiméthylés (Bostick et al., 2007; Sharif et al., 2007; Woo et al., 2007; 2008). Le maintien de la méthylation CHG est majoritairement effectuée par CMT3 (CHROMOMETHYLASE 3), une méthyltransférase de l'ADN spécifique des plantes contenant un « chromodomain » (Henikoff and Comai, 1998; Lindroth et al., 2001; Cokus et al., 2008). L'histone méthyltransférase principale pour la diméthylation de la lysine 9 de l'histone H3 (H3K9me2), SUVH4 (KYP) est aussi requise (Jackson et al., 2002; Malagnac et al., 2002). L'existence d'une boucle de renforcement entre ces deux modifications est indiquée par le fait que le chromodomaine de CMT3 et le domaine SRA de SUVH4 se lient à H3K9me2 et à la méthylation CHG respectivement (Lindroth et al., 2004; Johnson et al., 2007). La perpétuation de la méthylation CHH est principalement effectuée par le RdDM. Il est aussi suggéré qu'une part de la méthylation CHH soit déposée par MET1 ou CMT3,

vraisemblablement d'une manière indépendante des siRNA (Henderson et al., 2006; Cokus et al., 2008; Lister et al., 2008; Teixeira et al., 2009). De plus, la protéine DECREASE IN DNA METHYLATION (DDM1) qui est apparentée aux facteurs de remodelage de la chromatine dépendant de l'ATP de la famille SWI2/SNF2 est essentielle au maintien de la méthylation CG, CHG et CHH des séquences répétées (Vongs et al., 1993; Jeddeloh et al., 1999; Lippman et al., 2004; Teixeira et al., 2009). Le mécanisme d'action de cette protéine n'est cependant pas connu pour le moment.

I.3.3. Déméthylation active et passive

La déméthylation de l'ADN peut être passive, par dilution de la méthylation au cours des cycles successifs de réplication en absence d'activité de maintien. Au contraire, la déméthylation active implique des mécanismes enzymatiques conduisant au remplacement de cytosines méthylées en cytosines (Zhu et al., 2009). La première des déméthylases identifiée chez les eucaryotes l'a été chez *Arabidopsis thaliana* (Choi et al., 2002). Il s'agit d'une ADN glycosylase, DEMETER (DME) qui excise les cytosines méthylées. Le génome d'*Arabidopsis* code trois autres déméthylases, toutes apparentées à DME (REPRESSOR OF SILENCING, DEMETER LIKE 2 et 3, Zhu et al., 2009 ; Gehring et al., 2009). Le mécanisme permettant l'adressage de ces protéines aux régions de l'ADN à déméthyler n'est pas connu mais des analyses génétiques indiquent l'implication de siRNA comme pour la méthylation *de novo* (Mosher et al., 2008; Zheng et al., 2008; Hsieh et al., 2009). De plus une relation entre déméthylation de l'ADN et le RdDM est aussi suggérée, ce qui implique que les profils de méthylation à certains *loci* résultent de l'action antagoniste du RdDM et de la déméthylation de l'ADN (Teixeira and Colot 2010).

I.4. Stabilité des profils de méthylation de l'ADN chez les plantes

I.4.1. Transmission des profils de méthylation au travers des générations

Contrairement à ce qui se passe chez les mammifères, il n'y a pas chez les plantes de remise à zéro globale de la méthylation de l'ADN dans les cellules germinales ou les embryons. De fait, des mutants déficients pour la méthylation *de novo* ont un profil de méthylation CG normal et ce même après plusieurs générations (Tran et al., 2005; Zhang et al., 2006; Cokus et al., 2008; Lister et al., 2008). De plus l'analyse de la méthylation de l'ADN chez plusieurs espèces de plantes a montré une grande fidélité de transmission des profils de méthylation parentaux au cours des générations. Ainsi, les hybrides F1 chez *Arabidopsis thaliana* et *Oryza sativa* présentent des profils essentiellement additifs (Greaves et al., 2012; Grozsmann et al., 2011; He et al., 2010, Shen et al., 2012). De même, l'analyse de deux lignées de maïs (B73 et Mo17) et de NIL descendant de ces deux lignées a montré qu'une part importante des régions différentiellement méthylées (DMR) entre les parents étaient stablement transmises dans les NIL (Eichten et al., 2011). Enfin, il a été montré chez *Brassica napus* que des DMR stables peuvent être utilisées afin d'augmenter le nombre de marqueurs disponibles pour la cartographie de QTL (Long et al., 2011).

Il a également été montré que l'hypométhylation induite dans les mutants *met1* ou *ddm1* peut être transmise à de nombreux loci sur au moins huit générations après restauration de la fonction de ces deux gènes (Johannes et al., 2009; Reinders et al., 2009). Cependant, pour une partie des régions hypométhylées, une réversion progressive sur plusieurs générations, jusqu'à un profil de méthylation sauvage est observée et implique la machinerie des siRNA (Figure I.5. Johannes et al., 2009; Teixeira et al., 2009). Cette restauration d'un niveau de méthylation sauvage semble avoir principalement lieu lors de la reproduction. Ceci est en accord avec les observations indiquant un rôle du RdDM dans le renforcement du silencing des éléments transposables dans les cellules germinales et l'embryon ainsi qu'avec le niveau élevé d'expression des composants du RdDM observé dans les graines en cours de développement (Mosher and Melnyk 2010; Teixeira and Colot 2010).

I.4.2. Stabilité des profils de méthylation de l'ADN chez les plantes

La stabilité de la méthylation de l'ADN a été analysée, pour l'ensemble du génome, des lignées d'accumulation de mutation (« MA » lines pour Mutation dans Accumulationlines) développées chez Arabidopsis thaliana et propagées par filiation monograine sur 30 générations (Shaw et al., 2000). De très nombreuses cytosines différentiellement méthylées (DMP pour differentially methylated position ou SMP pour single methylation polymorphism) ont été détectées indiquant que la fréquence de changement d'état de méthylation au niveau d'une seule cytosine est très largement supérieure au taux de mutation nucléotidique (Becker et al., 2011, Schmitz et al., 2011). Cependant, lorsque les DMP ou SMP sont regroupées en DMR (differentially methylated region), le taux d'épimutation est alors similaire à celui des mutations (Becker et al., 2011, Schmitz et al., 2011). Sachant qu'il n'existe à ce jour aucune indication que prises individuellement, les DMP/SMP puissent affecter l'expression des gènes, ces résultats suggèrent donc que les épimutations spontanées surviennent à une fréquence similaire à celle des mutations.

I.5. Stabilité de perturbations de la méthylation de l'ADN et impact phénotypique

Mes travaux de thèse ont pour but d'évaluer la stabilité à l'échelle du génome des changements de méthylation induits expérimentalement et leurs conséquences phénotypiques sur des caractères quantitatifs au moyen d'une population expérimentale de lignées recombinantes consanguines obtenues à partir de deux parents isogéniques mais aux profils de méthylation contrastés. La majorité des travaux visant à étudier la transmission de variations de méthylation de l'ADN dans des espèces modèles concerne des variations n'ayant aucun impact phénotypique démontré (Greaves et al., 2012; Grozsmann et al., 2011; He et al., 2010; Shen et al., 2012; Eichten et al., 2011; Riddle and Richards 2002; Vaughn et al. 2007). A l'inverse, les épimutants naturels ou induits décrits jusqu'ici présentent des phénotypiques discrets (Jablonka, 2009). Ces épiallèles ont possiblement une importance moindre pour l'évolution ou l'adaptation que s'ils affectaient des caractères

présentant des variations quantitatives (Bossdorf et al. 2008; Richards 2008). Nous avons donc décidé de rechercher des changements de méthylations héritables ayant un impact sur des caractères quantitatifs, clairement implisués dans l'adaptation, en utilisant pour cela une approche de génétique quantitative (détection de QTL).

I.5.1. Principes de la détection de QTL

Un QTL est une région du génome responsable d'une partie de la variation héritable d'un caractère quantitatif. La détection de QTL nécessite de disposer d'une population en ségrégation pour le caractère et d'un carte génétique ainsi que des données phénotypique pour cette même population. Cette population de plusieurs centaine d'individus plein frêre est obtenu à partir d'un premier croisement entre des parents si possible éloignés phénotypiquement pour le caractère d'intérêt afin d'avoir une ségrégation importante de celui-ci. L'obtention de la carte génétique de la population nécessite un génotypage des parents et de l'ensemble des descendants pour les marqueurs utilisés. De plus les valeurs phénotypiques du caractère doivent être mesurées pour chacune des lignées de cette population.

La cartographie de QTL consiste à mettre en évidence un lien entre le polymorphisme de marqueurs de la carte et la variation du phénotype (Mackay et al., 2001). La détection de ce lien dépend de la présence d'un déséquilibre de liaison entre les allèles d'un marqueur et les allèles du QTL. Plusieurs méthodes statistiques permettent de détecter les QTL. Les premières consistent à étudier l'association, marqueur par marqueur, entre le QTL et les marqueurs de la carte par analyse de variance. Si les valeurs phénotypiques moyennes des différents génotypes d'un marqueur sont différentes, le marqueur et le QTL sont considérés liés. Cependant ces méthodes de donnent pas d'information sur la distance entre QTL et marqueurs et ne permettent donc pas de déterminer la position des différents QTL sur la carte. D'autres méthodes, dites de cartographie d'intervalle, testent l'hypothèse de la présence de QTL entre deux marqueurs par un rapport de vraisemblance. Le logarithme de ce rapport de vraisemblance donne le LOD score, ce qui correspond à la probabilité

d'observer un QTL. Le QTL va alors être localisé dans un intervalle de confiance pour un LOD score supérieur à un seuil calculé par permutation des marqueurs.

Plusieurs facteurs influencent la puissance de détection de QTL, en particulier la taille de la population et l'héritabilité du caractère étudié. Un effectif trop faible entraine une augmentation de la taille des intervalles de confiance et une surestimation de l'effet desQTL détectés. De plus, une faible héritabilité diminue la puissance de détection d'un QTL et doit être compensée par une augmentation de l'effectif. Afin d'éviter les effets négatifs d'une taille de population faible, la méthode de génotypage sélectif peut être utilisée (Darvasi et al., 1992). Elle consiste à rechercher des QTL en utilisant le génotype des individus avec des valeurs phénotypiques extrêmes. Le nombre d'individus nécessaires pour une détection efficace de QTL est ainsi réduit.

I.5.2. Les épiRIL, un système expérimental pour évaluer la stabilité des perturbations de la méthylation de l'ADN et de leurs conséquences phénotypiques

Deux populations d'épiRIL ont été générées à partir des mutants *met1* (Reinders et al., 2009) et *ddm1* (Figure I.7. Johannes et al., 2009) en parallèle. Le principe est de maximiser la variabilité épigénétique en minimisant les changements nucléotidiques. Des différences notables existent entre ces deux populations.

Dans le cas des épiRIL dérivées du mutant *met1-3*, suite au croisement d'un parent sauvage et du mutant, les individus sauvages pour le gène *MET1* sont sélectionnés dans la F2et propagés par autofécondation pour plusieurs générations (Reinders et al., 2009). Par ce schéma de croisement, le génome de chaque lignée provient en moyenne à 50% du parent wt et à 50% de *met1-3*. Une forte mortalité (29%) a été observée au cours de la génération de cette population. Cette observation avait déjà été faite pour le mutant *met1-3* pour lequel seul 2% d'homozygotes mutants sont obtenus dans la descendance d'un hétérozygote (Saze et al., 2003). L'analyse du méthylome de trois de ces épiRILs a montré une fréquence importante de polymorphismes non parentaux de méthylation de l'ADN. Ceci est à mettre en relation avec le fait que des variants de méthylation de l'ADN sont aussi observés de

manière stochastique dans le mutant *met1-3* (Mathieu et al., 2007). Cette population présente par ailleurs des variations phénotypiques dont certaines ont pu être attribuées à des mobilisations d'éléments transposables (Mirouze et al., 2009). Cependant la petite taille de cette population (68 lignées) et la présence de nombreuses variations non parentales de méthylation de l'ADN rendent difficile une étude de génétique quantitative.

Les épiRIL dérivées du mutant ddm1-2 ont été obtenues à partir d'un croisement entre un parent sauvage et le mutant suivi d'un rétrocroisement avec le parent sauvage à la suite duquel seuls les individus homozygotes pour l'allèle sauvage du gène DDM1 ont été sélectionnés et autofécondés sur 7 générations (Figure I.7.). Compte tenu du schéma de croisement, le génome de chaque lignée provient en moyenne à 75% du parent wt et à 25% de ddm1-2. Une très faible mortalité (0.8%) a été observée au cours de la génération de cette population constituée de 505 lignées. L'analyse de quelques loci a montré une transmission stable de l'hypométhylation induite par *ddm1* pour la moitié d'entre eux environ, on peut donc penser que de multiples épiallèles ségrégent dans cette population (Teixeira et al., 2009). Une variation phénotypique continue, spécifique d'un caractère quantitatif contrôlé par de multiples loci et l'environnement, a été observée dans ces épiRIL pour le temps de floraison et la hauteur de la plante (Johannes et al., 2009). La taille de la population, l'absence de biais de sélection, les phénotypes mesurés ainsi que l'observation de la transmission d'une partie des épiallèles induits permettent d'envisager une approche de cartographie de QTL afin d'identifier les variations de méthylation de l'ADN potentiellement responsables de ces changements phénotypiques.

I.5.3. Objectifs de la thèse

I.5.3.1. Evaluation à l'échelle du génome de la stabilité des variations de méthylation de l'ADN induites par la mutation ddm1

Dans le cadre de mon travail de thèse, nous avons cherché à caractériser les variations de méthylation de l'ADN induites par la mutation *ddm1* par une analyse systématique et à l'échelle du génome du méthylome des parents sauvage et mutant. Nous
avons ensuite étudié la stabilité transgénérationnelle de ces variations de méthylation au sein de la population d'épiRIL ainsi que son lien avec l'abondance en siRNA de 24nt.

I.5.3.2. Evaluation de l'impact phénotypique de variations héritables de méthylation de l'ADN

En se basant sur le méthylome de plus de 100 épiRIL et sur l'analyse de plusieurs caractères quantitatifs dans cette même population nous avons déterminé l'impact phénotypique des variations héritables de la méthylation de l'ADN. Nous avons ainsi identifié les régions du génome pour lesquelles une variation de méthylation est associée à un changement phénotypique par une approche d'épigénétique quantitative. Il s'agit de la première cartographie de QTL utilisant uniquement des différences stables de méthylation de l'ADN comme marqueurs génétiques. Nous avons en dernier lieu recherché par plusieurs approches les variations causales de ces QTL afin de vérifier qu'elles sont bien liées à des changements d'état de la méthylation de l'ADN et non de la séquence des nucléotides.

Figure II.1. Analyse de la méthylation de l'ADN chez wt et *ddm1*.

(A) Analyse HMM des données de MeDIP-chip obtenues pour les lignées parentales wt et ddm1. Les sondes classées U (Unmethylated), I (Intermediate) et M (Methylated) sont indiquées en gris, violet et rouge respectivement.

- (B) Proportion des différentes transitions possibles de méthylation entre wt et *ddm1*.
- (C) Distribution des annotations pour chaque transition de méthylation entre wt et *ddm1*.
- (D) Exemple de changements de méthylation entre wt et *ddm1*.

II. Chapitre 1 : Analyse de la stabilité des variations de méthylation induite par la mutation *ddm1*

II.1-Introduction

Dans cette partie, nous avons recherché les variations de méthylation de l'ADN induites par la mutation *ddm1* ainsi que leur stabilité par l'étude des méthylomes des lignées parentales wt et *ddm1* et de plus de 100 épiRIL. Nous avons aussi étudié le lien entre les différents niveaux de stabilité et l'abondance en siRNA de 24nt. Nous avons enfin recherché l'apparition de nouveaux variants de méthylation de l'ADN dans les épiRILs par rapport aux parents.

II.2. Résultats

II.2.1. Analyse des changements de méthylation induits par la mutation ddm1

Afin d'identifier les changements de méthylation induits dans le mutant *ddm1*, J'ai analysé avec l'aide de plusieurs membres de l'équipe et en collaboration avec Frank Johannes (Université de Groningen) le méthylome des lignées sauvage et mutante par MeDIP-chip (Matériels et Méthodes). La fraction immunoprécipitée et l'ADN total ont été marqués différentiellement et hybridés sur une puce Nimblegen tiling array contenant 711320 sondes choisies dans des fenêtres consécutives de 165 nt tout le long du génome d'*Arabidopsis thaliana*. L'approche HMM (Cortijo et al. *in press*) a été utilisée pour classer les sondes selon trois états : non méthylé (U), intermédiaire (I) ou méthylé (M, Figure II.1.A.). L'analyse de ces méthylomes a été effectuée sur 637985 sondes après élimination de celles ayant un score de conservation supérieur à 95% avec d'autres séquences du génome, et cela afin d'éviter les effets confondants associés à de l'hybridation croisée. Le méthylome

Figure II.3. Analyse de la méthylation de l'ADN chez wt et *ddm1* pour toutes les sondes et celles avec un score de conservation supérieur à 95.

Proportion des différentes transitions possibles de méthylation entre wt et *ddm1* pour toutes les sondes (A) et celles avec un score de conservation supérieur à 95 (B).

Proportion des annotations pour chaque transition de méthylation entre wt et *ddm1* pour toutes les sondes (A) et celles avec un score de conservation supérieur à 95 (B).

sauvage est majoritairement non méthylé avec seulement 11% des sondes ayant un état M et 11.4% un état I.

La comparaison des méthylomes des lignées parentales wt et *ddm1* montre que la majorité des sondes sont non méthylées aussi bien dans wt que *ddm1* (sondes UU, 73.9%) et et que seul 18.2% des sondes présentent une méthylation différentielle (Figure II.1.B). Ces changements de méthylation sont principalement des hypométhylations (86.6% des changements) en accord avec des données précédentes obtenues sur le bras court du chromosome 4 (Lippman et al., 2004). Les hyperméthylations (UI) sont très rares (2.4%) et quasi exclusivement de type UI. Elles sont de plus est observée pour des sondes dont le signal d'hybridation dans wt et *ddm1* se situe entre les groupes U et I (Figure II.2.), dans la zone de plus forte incertitude quand à l'appartenance au groupe U ou I. Ces hyperméthylations sont donc vraisemblablement fausses dans la plupart des cas.

L'hypométhylation dans la lignées *ddm1* par rapport au sauvage (transitions MI, MU ou IU) est détectée pour 66.7% des sondes avec un état M ou I chez wt, ce qui est cohérent avec la perte globale de 70% de la méthylation qui a été mesurée par HPLC dans ce mutant (Kakutani et al., 1999). Cette perte de méthylation est majoritairement observée au niveau des éléments transposables (65%, 67% et 76% pour les transitions IU, MI et MU respectivement). Des résultats similaires sont obtenus en incluant dans l'analyse les sondes dont le score de conservation est supérieur à 95 (Figure II.3.). Ceci confirme le rôle de DDM1 dans le maintien de la méthylation de l'ADN spécifiquement au niveau des séquences répétées.

II.2.2. Analyse de la stabilité de l'hypométhylation induite par ddm1

Afin d'établir la stabilité des changements de méthylation induits par la mutation *ddm1*, nous avons généré le méthylome de 101 épiRIL par MeDIP-chip. Comme pour les lignées parentales wt et *ddm1*, les sondes ont été classées selon les 3 états U, I ou M par analyse HMM (Cortijo et al., *in press*, Matériels et Méthodes). Le résultat de cette classification ainsi que la distribution des log2 (IP/INPUT) ont été inspectés visuellement, pour chaque épiRIL, afin de vérifier la qualité des immunoprécipidations, hybridations et analyses HMM (Figure II.4. en annexe). Compte tenu du schéma de croisement (Figure I.7.),

(A) Distribution des sondes MU ou MI en fonction du pourcentage d'épiRIL avec un état M. La séparation entre les sondes pour lesquelles l'hypométhylation est considérée comme stable (1), réversible complètement (3) ou non (2) est indiquée.

(B) Analyse du signal bisulfite pour l'hypométhylation stable et réversible en fonction de l'origine parentale de la région considérée dans les épiRIL.

(C) Exemple de régions réversibles et stables. Un fond vert indique que cet intervalle est d'origine wt tandis qu'un fond rouge indique un intervalle d'origine *ddm1* dans l'épiRIL en question.

(D) Analyse des siRNA de 24nt dans wt et *ddm1* pour l'hypométhylation stable et réversible.

	Pourcentage des sondes MU	Pourcentage des sondes MI
Hypométhylation stable	10575 (46.8%)	8895 (22.3%)
Hypométhylation en cours de réversion	4470 (19.8%) + 4175 (18.5%)	9785 (24.5%)
Hypométhylation réversible	1629 (7.2%)	15708 (39.4%)
Pourcentage d'épiRIL avec un état M <62	1752 (7.7%)	5497 (13.8%)

Table II.1. Nombre et pourcentage des sondes pour les différentes catégories de stabilité de l'hypométhylation induite par *ddm1*.

la ségrégation mendélienne d'une différence parentale de méthylation au niveau d'une sonde donnée doit produire 75 % de lignées avec une méthylation de type sauvage et 25 % de lignées avec une méthylation de type *ddm1*. Une réversion vers l'état sauvage se traduira par un excès statistiquement significatif de lignées avec une méthylation de type sauvage au delà des 75 % attendus. Dans cette analyse nous n'avons considéré que les sondes M dans wt et U ou I dans ddm1 qui forment des domaines (regroupement d'au moins 3 sondes consécutives montrant une hypométhylation : 22601 sondes MU et 39885 sondes MI ; un même domaine pouvant contenir des sondes MU et MI). En fonction de l'état de méthylation des sondes dans les 101 épiRIL, l'hypométhylation est définie comme stable ou réversible (Figure II.5.A, Matériels et Méthodes). Une hypométhylation stable est mesurée pour 46.8 % des sondes MU et 22.3 % des sondes MI (Table II.1.). La réversion, complète ou non, est plus observée pour les sondes MI (39.4 % et 24.5 %) que pour les sondes MU (7.2 % et 19.8 %, Table II.1.). Ce résultat indique que l'hypométhylation de type MU est plus stable que celle de type MI. Cette différence de stabilité est en accord avec les observations précédentes indiquant que la perte de méthylation partielle dans *ddm1* (sondes MI) résulte d'un ciblage spécifique de ce type de séquence par le RdDM, responsable de la réversion (Teixeira et al., 2009, voir p.24). L'analyse de la réversion associée aux sondes MU montre que lorsqu'elle est incomplète (pourcentage d'épiRIL avec un état M compris entre 83 % et 95 %) la majorité des épiRIL avec un état non M présentent un état I et non pas U (Figure II.6). Ce résultat indique qu'au moins pour les sondes MU, la réversion de l'hypométhylation quand elle est observée est pleinement pénétrante mais d'expressivité variable (réversion vers I ou M). Il est vraisemblable que cela soit également le cas pour la réversion de l'hypométhylation de type MI.

Afin de valider la qualification de la stabilité de l'hypométhylation effectuée sur la base des méthylomes de 101 épiRIL, le séquençage du génome traité au bisulfite de 6 épiRIL a été réalisé en collaboration avec les groupes de Steve E Jacobsen (Université de Californie) et de Patrick Wincker (Génoscope, Matériel et Méthodes). J'ai analysé ces données avec l'aide de plusieurs membres de l'équipe et en collaboration avec Frank Johannes (Université de Groningen). Parmi ces 6 épiRIL, la lignée 60 n'appartient pas au groupe des 101 analysées en MeDIP-chip et utilisées pour cette classification. Ceci nous permet donc de valider les

indiqué par un rond gris et la région péricentromérique par un rectangle orange.

prédictions de stabilité de l'hypométhylation dans une épiRIL indépendante. Nous avons dans un premier temps étudié le signal bisulfite des régions hypométhylées définies comme stables et réversibles en combinant tous les contextes de cytosines (nombre de reads méthylés/nombre de reads totaux pour la fenêtre correspondant à la sonde étudiée, Matériels et Méthodes). Le signal bisulfite a été analysé en prenant en compte pour chaque épiRIL l'origine parentale wt ou *ddm1* des régions considérées, origine dont la détermination est décrite dans le paragraphe suivant et dans le chapitre 2 (III.2.2.). Cette analyse indique que le signal bisulfite est de même intensité pour les régions présentant une hypométhylation réversible, que ces régions dérivent des parents wt ou *ddm1* (Figure II.2.B). A l'inverse, les régions à hypométhylation stable présentent un signal bisulfite plus élevé quand elles sont d'origine wt que quand elles sont d'origine ddm1. Enfin les régions pour lesquelles la réversion de l'hypométhylation est incomplète montrent une situation intermédiaire entre les deux précédentes (Figure II.2.B). Ces résultats confirment dont ceux obtenus par MeDIP-chip. L'analyse de loci individuels indique par ailleurs que les épiallèles révertants présentent un profil de méthylation en tout point semblable à celui de l'épiallèle de la lignée parentale wt et ce pour les trois contextes CG, CHG et CHH (Figure II.2.C.).

Une analyse précédente portant sur quelque *loci* a montré que la réversion de l'hypométhylation induite par *ddm1* était corrélée à l'abondance en siRNA de 24nt (Teixeira et al., 2009). Afin d'étudier à l'échelle du génome cette relation, les siRNA pour les lignées parentales wt et *ddm1* ont été séquencés et analysés avec d'autres membres du laboratoire. Le nombre de reads de siRNA de 24nt a été mesuré dans les fenêtres correspondantes aux sondes de la puce Nimblegen (Matériels et Méthodes). Nous mesurons globalement une perte de siRNA de 24 nt dans la lignée *ddm1* par rapport au wt. Nous observons, aussi bien pour les lignées parentales wt que *ddm1*, un nombre de reads de 24nt moins élevée pour les sondes présentant une hypométhylation stable que réversible et moins élevée également lorsque la réversion est incomplète plutôt que complète (Figure II.2.). Ce résultat confirme donc l'association entre le caractère réversible de l'hypométhylation et la capacité de la région concernée de produire des siRNA de 24 nt. De plus, cette association est plus forte lorsque l'on considère les siRNA correspondant à des séquences présentes en plusieurs

Figure II.9. Analyse des régions stablement hypométhylées.

(A) Détection de la réversion sporadique

(B) Exemple d'une réversion sporadique

(C) Analyse du signal bisulfite dans les épiRIL pour les sondes MU montrant une

hypométhylation stable et présentant ou non une réversion sporadique.

(D) Analyse des siRNA de 24nt dans wt, ddm1 et les épiRIL assocés aux sondes présentant une réversion ou aux sondes MU montrant une hypométhylation stable et présentant ou non une réversion sporadique.

copies dans le génome (Figure II.7.). Ce résultat suggère soit que la réversion est facilitée par des siRNA produits en *trans* en plus de ceux produits en *cis*, soit que les *loci* concernés, qui sont tous ou presque des éléments répétés, sont moins dégénérés et plus facilement ciblés en *cis* par le RdDM.

II.2.3. Définition d'intervalles d'origine parentale à partir des sondes stablement hypométhylées MU et MI

L'origine parentale le long du génome des épiRIL a été définie par nos collaborateurs de l'Université de Groningen à l'aide de 126 marqueurs, sélectionnés à partir des sondes MU dont l'état U est considéré stable. Le choix de ces marqueurs est décrit dans le chapitre suivant (Colomé-Tatché et al., soumis). Afin de déterminer si l'origine parentale le long du génome peut également être déterminée à partir des sondes MI, j'ai comparé les résultats obtenus pour ces sondes à ceux obtenus avec les 126 marqueurs initiaux (Figure II.8.). Un enrichissement en sondes U et I au niveau des régions péricentromériques du chromosome 1 de l'épiRIL 202 est observée, aussi bien avec les sondes MU que MI, ce qui est en accord avec l'origine *ddm1* de cet intervalle selon la carte génétique (Figure II.8.). Ceci indique que les sondes MI tout comme celles MU sont suffisamment robustes pour définir l'origine parentale le long du génome.

Il est théoriquement possible de détecter de l'hétérozygotie dans les épiRIL à l'aide des sondes stablement hypométhylées MU. La présence de nombreuses sondes consécutives MU correspondant à une hypométhylation stable avec un état I dans une épiRIL pourrait indiquer une région hétérozygote. Seule l'épiRIL 147 a ainsi été identifiée comme étant hétérozygote au niveau du chromosome 1 (entre 11,5 et 18 M).

II.2.4. Analyse de la réversion sporadique de l'hypométhylation

Afin d'identifier d'éventuelles réversions sporadiques des états hypométhylés stables, les sondes MU correspondantes et présentent dans des intervalles d'origine *ddm1* ont été analysées. Si ces sondes sont bien à l'état U dans la très grande majorité des épiRIL concernées, 30 % d'entre elles sont à l'état M dans une épiRIL au moins (Figure II.9.A, B). Ce

Figure II.10. Analyse des siRNA de 24nt séparemment pour les matchs uniques et multiples

(A) Analyse des siRNA de 24nt correspondant à une seule ou plusieurs séquences du génome dans les lignées parentales wt, ddm1 séparément pour les MU sondes montrant une hypométhylation stable et présentant ou non une réversion sporadique

(B) Analyse des siRNA de 24nt dans les lignées parentales wt et ddm1 et les épiRIL assocés aux sondes MU montrant une hypométhylation stable et présentant ou non une réversion sporadique. L'analyse est effectuée séparément pour les siRNA de 24nt correspondant à une seule ou plusieurs séquences du génome.

Figure II.11. Analyse du signal d'hybridation dans wt et *ddm1* des différents groupes de sondes en fonction de leur comportement dans les épiRIL.

(A) Signal pour toutes les sondes M, I et U dans les lignées parentales wt et ddm1.

(B) et (C) Signal dans wt et *ddm1* des sondes MU (B) et MI (C) dont le pourcentage d'épiRIL avec un état M est inférieur à 62 (gauche), entre 62 et 83 (centre), ou supérieur à 83 (droite). On observe que la différence entre wt et ddm1 est moins importante pour le premier groupe.

résultat, confirmé par les données de séquençage bisulfite pour 6 épiRIL (Figure II.9.C.) indique donc que l'hypométhylation dite stable peut néanmoins réverser de façon sporadique. Si l'on considère que la réversion est généralement complète en 3 à 5 générations (Teixeira et al., 2009), nous pouvons estimer le taux de réversion sporadique compris entre 1.36^{E-6} et 5.85^{E-7} évènements de réversion sporadique par lignée et par génération.

Afin d'analyser le lien éventuel entre réversion sporadique et présence de siRNA de 24 nt, nous avons calculé pour les régions concernées le nombre de reads de siRNA de 24nt dans les fenêtres correspondant aux sondes de la puce Nimblegen chez les lignées wt et ddm1 (Matériels et Méthodes). Nous observons une abondance en siRNA de 24 nt moins élevée pour les sondes ne montrant pas de réversion sporadique que pour celles présentant une réversion sporadique (Figure II.9.A.). La réversion sporadique semble donc être associée à une abondance plus élevée de siRNA de 24 nt dans la lignée parentale wt. Ce résultat est en accord avec la relation entre la réversion de l'hypométhylation et la capacité de production de siRNA de 24 nt que nous avons décrit dans le paragraphe précédent. Afin de rechercher un lien éventuel entre réversion sporadique et présence de siRNA de 24nt dans les épiRIL, les siRNA pour quatre épiRIL ont été séquencés et analysés avec d'autres membres du laboratoire. Nous avons calculé pour les régions montrant une réversion sporadique le nombre de reads de siRNA de 24nt dans les fenêtres correspondant aux sondes de la puce Nimblegen chez 4 épiRIL (Matériels et Méthodes). Une abondance plus élevée en siRNA de 24 nt est observée dans les épiRIL présentant une réversion sporadique que dans dans les épiRIL dans lesquelles ces régions restent hypométhylées (Figure II.10.D.). Cette association entre abondance en siRNA de 24nt et réversion sporadique est quasi exclusivement due à des siRNA correspondant à des séquences uniques indiquant que les régions pour laquelle une réversion sporadique est observée produisent elle-mêmes ces siRNA (Figure II.9.A.).

Figure II.12. Analyse des variations de la méthylation de l'ADN non parentales.

(A) Validation par séquençage après traitement au bisulfite des gains et pertes de méthylation.

(B) Proportion des sondes situées dans des bras chromosomiques et montrant un gain ou une perte de méthylation. Les proportions pour les sondes UU et MM sont indiquées pour comparaison.

(C) Proportion des sondes situées dans un intervalle d'origine wt ou ddm1 et montrant un gain ou une perte de méthylation.

(D) Evaluation au cours des générations du taux de méthylation pour 7 sondes présentant une perte de méthylation dans l'épiRIL 344.

(E) Analyse des siRNA de 24nt dans wt, *ddm1* et les épiRIL assocés aux sondes présentant un gain ou une perte de méthylation dans les épiRIL.

II.2.5. Analyse des variations non parentales de la méthylation de l'ADN

Nous avons cherché à déterminer s'il existait des variations non parentales de la méthylation dans les épiRIL. Lors de l'analyse de l'hypométhylation induite par ddm1 dans les épiRIL nous observons que 7.7 % des sondes MU et 13.8 % des sondes MI présentent un état M dans moins de 62% des épiRIL, ce qui est moins qu'attendu lors d'une ségrégation mendélienne (Figure II.5.). La différence d'intensité du signal d'hybridation en MeDIP-chip dans les lignées parentalles wt et *ddm1* pour ces sondes est moins importante que pour les sondes montrant une hypométhyation stable ou réversible. Le signal d'hybridation de ces sondes dans la lignée wt se situe entre les groupes M et I (Figure II.11), dans la zone de plus forte incertitude quand à l'appartenance au groupe I ou M. Ce résultat indique que dans les cas où le pourcentage d'épiRIL avec un état M est inférieur à 62%, l'hypométhylation détectée dans *ddm1* est vraisemblablement fausse dans la plupart des cas. Ceci suggère des changements de méthylation de l'ADN dans les épiRIL en plus de celles parentales. Afin d'analyser de manière plus robuste les variations non parentale de la méthylation de l'ADN dans les épiRIL, nous considérons un gain de méthylation quand, pour une sonde donnée, les deux parents ont un état U et qu'une épiRIL au moins présente un état M. Une perte de méthylation pour une sonde donnée est définie quand les deux parents ont un état M et une épiRIL au moins a un état U. Nous observons que ces variations sont rares dans la population par rapport à l'hypométhylation en ségrégation. En effet, seuls 0.3% des sondes présentent un gain de méthylation et 0.02% des sondes une perte de méthylation dans les épiRIL alors que 3% des sondes montrent une hypométhylation stable induite par ddm1. Les gains et pertes de méthylation détectées dans les épiRIL par MeDIP-chip sont confirmés par les données de séquençage bisulfite pour 6 épiRIL. En effet, un signal BS plus important est mesuré dans les épiRIL où un gain de méthylation est détecté et inversement, un signal BS plus faible est observé dans les cas de perte de méthylation (Figure II.12.A.). Toutes les épiRIL présentent des variations non parentales.

L'analyse de la distribution de ces variations non parentales le long du génome montre un enrichissement dans les régions péricentromériques pour le gain et dans les bras chromosomiques pour la perte de méthylation (Figure II.12.B.). Ce résultat laisse penser que

25

Figure II.13. Analyse des siRNA de 24nt correspondant aux sondes présentant une variation de la méthylation de l'ADN non parentale.

(A) Analyse des siRNA de 24nt correspondant aux sondes présentant un gain de méthylation dans les épiRIL.

(B) Analyse des siRNA de 24nt correspondant aux sondes présentant une perte de méthylation dans les épiRIL.

le gain de méthylation de l'ADN est facilité par un environnement fortement méthylé et riche en siRNA et inversement la perte de la méthylation est facilitée dans des régions peu méthylées et peu ciblées par des siRNA. L'association pour ces deux types de variations non parentales avec l'origine wt ou ddm1 des locus concernés a aussi été analysée. Une proportion plus importante qu'attendue de gains de méthylation est observée dans les intervalles d'origine wt (Figure II.12.C.). A l'inverse, un fort enrichissement dans les intervalles d'origine ddm1 est mesuré pour la perte de méthylation. Ce résultat suggère soit que ces régions sont déjà hypométhylées dans *ddm1* mais à des niveaux non détectables par MeDIP-chip, soit que l'état chromatinien de ces régions est modifié dans ddm1 de telle manière qu'il favorise des pertes ultérieures de méthylation lors de la propagation des épiRIL. L'analyse du méthylome qui a été faite au travers des générations pour l'épRIL 147 soutient cette deuxième hypothèse (Figure II.12.D.). Enfin, les gains de méthylation de l'ADN sont associés à un gain de siRNA de 24 nt par rapport aux lignées parentales wt et *ddm1* ou aux épiRIL ne présentant pas ce gain. De la même façon, la perte de méthylation est associée à une perte de siRNA de 24 nt (Figure II.12.E). De plus, il est à noter que les pertes concernent des séquences associées initialement quasi-exclusivement à des siRNA de 24 nt à positionnement unique (Figure II.13.).

II.2.6. Analyse du taux d'épimutation dans les épiRIL

Deux études ont montré que le taux d'apparition de DMR dans les lignées d'accumulation de mutation (MA) est semblable au taux de mutations nucléotidiques (Becker et al., 2011, Schmitz et al., 2011). Il a été proposé que l'apparition d'une partie de ces DMR pourrait résulter d'un renforcement incomplet des états de méthylation, probablement par une perte transitoire de la fonction d'un des acteurs des voies permettant le maintien de la méthylation de l'ADN (Schmitz et al., 2012). Afin de déterminer si le taux d'épimutations dans les épiRIL est comparable à celui mesuré dans les lignées MA, nous avons recherché les DMR en utilisant les données de séquençage bisulfite générées pour 6 épiRIL. La recherche de DMR a été effectuée comme décrit dans Becker et al., 2011 en comparant deux à deux les épiRIL (Matériels et Méthodes). Seuls les intervalles de même origine parentale sont utilisés afin de s'affranchir de multiples DMR d'origine parentale.

Condition dans les épiRIL	attendu (wt/ddm1)	Etat observé pour wt	Etat observé pour <i>ddm1</i>
% epiRILs U>=98% (397929 sondes)	U/U	397925 sondes U (99.9%)	397705 sondes U (99.9%)
% epiRILs I>=98% (1973 sondes)	/ ou / U	1934 sondes I (98%)	908 sondes I (46%) 1065 sondes U (54%)
% epiRIL M>=98% (16158 sondes)	M / M ou M / I ou M / U	16149 sondes M (99.9%)	2329 sondes M (14.4%) 12913 sondes I (79.9%) 916 sondes U (5.7%)
62<%epiRILM<83 Et % des épiRIL restantes U>=52% (12553 sondes)	M / U	12460 sondes M (99%)	10493 sondes U (83.6%) 2041 sondes I (16.2%)
62<%epiRILM<83 Et % des épiRIL restantes I>=52% (16222 sondes)	M / I	12369 sondes M (76.2%) 3846 sondes I (23.7%)	14839 sondes I (91.5%) 1163 sondes U (7.2%)

Table II.2. Résultat de la reconstruction des méthylomes wt et *ddm1* à l'aide des épiRIL. La deuxième colonne indique l'état attendu dans wt et *ddm1* lorsque les critères indiqués dans la colonne 1 sont observés dans les épiRIL. Les colonnes 3 et 4 sont les observations faites, pour ces sondes dans les méthylomes wt et *ddm1* respectivement. Sont indiqués en rouge les cas où l'état attendu et celui observé sont différents.

table II.2.) pour les états attendus MU (gauche) et MI (droite).

Nous mesurons 0.007 DMR par kb pour les intervalles d'origine wt et 0.025 DMR par kb pour les intervalles d'origine *ddm1*. Le taux d'épimutation dans les intervalles d'origine *ddm1* est donc plus important. Ce résultat pourrait être expliqué par la présence de réversion avec une pénétrance non totale et de réversion sporadique de l'hypométhylation induite par *ddm1*.

En considérant uniquement les DMR détectés dans des intervalles dérivés du parent wt, 58 DMR sont attendus par génération par épiRIL en moyenne sur l'ensemble du génome d'*Arabidopsis thaliana*. Ce résultat est supérieur à ce qui a été mesuré dans les lignées MA avec un peu moins de une DMR par génération et par lignée (Becker et al., 2011). Cette différence pourrait être expliquée soit par un taux d'épimutation plus important dans les intervalles dérivés du parent wt dans les épiRIL causé par la présence d'intervalles dérivés du parent *ddm1* (effets trans), soit par le fait que le nombre de générations est plus faible dans notre cas et que les épiRIL ont été comparées entre elle et non à une référence pour la recherche de DMR. La méthylation de l'ADN de certaines régions peut en effet fluctuer d'une génération à l'autre ce qui fait que le taux d'épimutation diminue quand le nombre de générations augmente. La comparaison directe des taux d'épimutation mesurés dans les épiRIL et les lignées MA est donc difficile.

II.2.7. Prédiction de l'état de méthylation dans les lignées parentales à partir des épiRIL.

Notre étude à jusqu'ici porté sur l'étude des méthylomes des épiRIL en comparaison de ceux des lignées parentales wt et ddm1. Par une approche inverse, nous avons utilisé les méthylomes des épiRIL pour reconstruire ceux des lignées wt et *ddm1* afin de déterminer si les méthylomes des épiRIL reflètent bien ceux des lignées parentales (Table II.2, Matériels et Méthodes). Cette reconstruction a été effectuée sur 444835 sondes pour lesquelles l'état de méthylation dans les 101 épiRIL permet d'inférer celui des lignées wt et *ddm1* (Matériels et Méthodes). L'état prédit selon les épiRIL est le même que celui obervé dans les lignées parentales pour 99.1% des sondes pour wt et pour 99.2 % pour *ddm1* (Table II.2.). Les taux les plus élevés d'erreur sont observés pour les sondes attendues MU pour lesquelles 16.2% sont observées I et non U dans *ddm1* ainsi que pour celles attendues MI pour lesquelles

23.7% sont observées I et non M dans wt (en rouge dans la Table II.2). L'analyse du signal d'hybridation pour ces sondes discordantes montre que le signal pour les sondes attendues U et observées I dans le mutant *ddm1* est plus faible que l'ensemble des sondes de la classe I (Figure SII.14.) et sont dans la zone de plus forte incertitude quand à l'appartenance au groupe U ou I. Les sondes attendues M et observées I chez wt ont un signal plus important que l'ensemble des sondes de la classe I et sont dans la zone de plus forte eplus forte incertitude quand à l'appartenance au groupe M ou I. (Figure SII.14.). La forte efficacité de reconstruction des méthylomes des lignées parentales wt et *ddm1* à l'aide des épiRIL indique que la majorité des variations ségrégeant dans les épiRIL sont d'origine parentale.

II.3-Conclusion et discussion

II.3.1. La mutation *ddm1* induit principalement une perte de méthylation de l'ADN au niveau des séquences répétées

Nous avons montré que la majorité des changements de méthylation de l'ADN induits par la mutation *ddm1* sont des hypométhylations, situées principalement au niveau des séquences répétées. Cette conclusion confirme et étend à l'ensemble du génome celle résultat d'une étude précédente portant sur une région de 5 Mb du bras court du chromosome 4 d'Arabidopsis thaliana (Lippman et al., 2004). Cependant nous savons que ddm1 peut induire sporadiquement des gains localisés de méthylation de l'ADN comme aux locus SUP et BNS (Jacobsen et al., 1997, Jacobsen et al., 2000, Saze et al., 2007). Or nous n'avons observé aucun tel gain dans la lignée parentale *ddm1* utilisée dans notre étude, mais seulement dans les épiRIL et aucun ne concerne SUP ou BNS. Ce résultat pourrait s'expliquer par le fait que le mutant que nous avons utilisé est homozygote depuis seulement quatre générations et que les épimutations SUP et BNS n'apparaissent que dans des générations plus avancées (Jacobsen et al., 1997, Jacobsen et al., 2000, Saze et al., 2007). Ainsi donc, il est vraisemblable que des méthylomes légèrement différents auraient été obtenus si les épiRIL avaient été générées à partir d'un individu *ddm1* de génération plus avancée. Neanmoins, nous ne pouvons pas exclure que de réelles hyperméthylations stables existent dans notre lignée parentale *ddm1* de quatrième génération. Leur recherche pourrait se faire en sélectionnant les sondes UI présentant une différence importante du ratio (IP/INPUT) entre wt et ddm1, 75% des épiRIL seraient alors attendues avec un état U et 25% avec un état I pour les sondes correspondantes.

II.3.2. Un tiers des pertes de méthylation induites par ddm1 sont héritées dans les épiRIL

Nous observons que 31.2% de l'hypométhylation induite par *ddm1* est stablement transmise dans les épiRIL et 57.2% réversible avec divers degrés de pénétrance et d'expressivité. Ce résultat confirme et étend à l'échelle du génome celui rapporté précédemment pour une petite région du chromosome 4 (Teixeira et al., 2009). Les 11.6%

restants correspondent à des sondes dont la probabilité chez le parent wt d'appartenir aux classes M et I est similaire. Nous montrons aussi que l'apparition de nouveaux variants de méthylation est très rare dans cette population. Cette observation est différente de celle qui a été faite dans une population d'épiRIL générée à partir du mutant *met1-3*, où une fréquence élevée de variations non parentales a été mesurée (Reinders et al., 2009). Ces différences sont en accord avec le fait qu'une méthylation stochastique et intempestive a également été observée dans des générations avancées du mutant *met1-3* (Mathieu et al., 2007) mais pas du mutant *ddm1-2* qui montre à l'inverse un renforcement de la démethylation (Kakutani et al., 1996). Ces comportements opposés résultent sans doute de ce que les déméthylases *DME* et *ROS1* et l'histone déméthylase spécifique des marques H3K9me2 et H3K9me *IBM1* sont tous trois sous-exprimés dans le mutant *ddm1-2*.

II.3.3. Un continuum de situations est observé pour la stabilité de l'hypométhylation induite par *ddm1* dans les épiRIL

Nous avons montré que la stabilité de l'hypométhylation induite par la mutation *ddm1* était plus complexe que la classification en deux groupes stable et réversible puisque la réversion vers l'état méthylé présente divers degrés de pénétrance et d'expressivité. De fait, tous les cas de figure sont observés. La capacité de réversion d'une région hypométhylée est associée à la présence de siRNA. Plus la réversion est complète (méthylation sauvage dans toutes les lignées ou presque) plus l'abondance en siRNA de 24nt est importante et vice versa, relation déjà établie précédemment à partrir d'une étude plus limitée (Teixeira et al., 2009). Cependant nos résultat permettent d'identifier de nombreuses execpetion à cette règle qu'il serait intéressant d'explorer. Nous avons aussi montré la présence de réversions sporadiques pour des régions dont l'hypométhylation est stablement transmise. L'abondance en siRNA de 24nt corrèle aussi avec la réversion sporadique comme avec les évènements de gain de méthylation dans les épiRIL, indiquant un rôle clé du RdDM dans tous les cas.

II.3.4. Un taux d'épimutation plus important dans les intervalles d'origine *ddm1* que ceux d'origine wt.

Nous avons mesuré que le taux d'épimutation dans les intervalles dérivés du parent ddm1 est supérieur à ceux dérivés du parent wt. Ce résultat peut être attendu compte tenu de la présence de réversion non totale et de réversion sporadique dans les intervalles dérivés du parent *ddm1* qui augmentent le nombre de DMR détectés entre les épiRIL. Cependant on peut aussi penser que l'état chromatinien différent dans les intervalles dérivés des parents wt et *ddm1* a un impact sur le taux de d'épimutation. Les intervalles dérivés du parent *ddm1* avec un état chromatinien plus ouvert et une transcription plus importante pourraient présenter une variation plus importante de la méthylation de l'ADN.

III. Chapitre2 : Impact des variations héritables de méthylation de l'ADN sur l'activité du génome

III.1-Introduction

Il a montré dans une étude précédente que le temps de floraison et la hauteur des plantes présentent une variation continue et une héritabilité importante dans les épiRIL (Johannes et al., 2009). Nous avons étendu l'analyse phénotypique des épiRIL à celle de la longueur de la racinaire. Sur la base des résultats obtenus et du méthylome de 123 des 505 épiRIL, nous avons recherché par une approche de génétique quantitative d'éventuels épiallèles associés à la composante héritable des variations du temps de floraison et de la longueur de la racine primaire.

III.2.Résultats

III.2.1. Une importante héritabilité est mesurée pour la longueur de la racine primaire dans les épiRIL.

Deux campagnes successives de phénotypage de la longueur de la racine primaire ont été effectuées. Une première sur la population entière et une deuxième sur un sousensemble dont la composition sera détaillée ci-après.

III.2.1.1. Première mesure de la longueur de la racine primaire dans les épiRIL

Les conditions de mesure de la longueur de la racine primaire ont été mises en place à l'aide de plusieurs tests conduits sur les lignées parentales wt et *ddm1*. Une première mesure a été effectuée pour les 505 lignées épiRIL (ainsi que pour 24 lignées contrôles Colwt) et pour les lignées parentales Col-wt et Col-*ddm1*. Ces lignées contrôles ont été générées à partir de parents Col-0 wt en parallèle des épiRIL et selon le même schéma de croisement 32

Figure III.1. Dispositif expérimental pour la mesure de la longueur de la racine primaire. La position de chaque boite est définie par le rang et le quart auquel elle appartient.

Figure III.2. Composante environnementale (décomposé en effets rang et quart) et génétique (effet lignées) sur la longueur de la racine primaire avant (gauche) et après (droite) correction de l'effet du périmètre extérieur (rang1). La majorité de la composante environnemental avant correction des données est lié à l'effet rang et plus précisémment du rang1. La distribution de la longueur de la racine est représentée séparément pour le rang 1.

(Johannes et al., 2009). Plus de 3000 racines ont ainsi été mesurées pour un total de 437 lignées épiRIL et 14 lignées contrôle (soit sept racines en moyenne par lignée). Les 68 lignées pour lesquelles des contaminations ont été observées (par des champignons principalement) n'ont pas été étudiées. Près de 70 racines ont aussi été mesurées pour les parents wt et *ddm1*.

L'analyse des données indique une variabilité intra-lignée non significative et des différences inter-lignées très significatives (test de kruskal, p-value<2.2^{e-16}). Un effet environnemental significatif a été détecté, celui-ci est majoritairement associé au rang auquel appartiennent les lignées (p-value de 1.19^{e-18} pour l'environnement et de 1.12^{e-18} pour le rang, Figures III.1. et III.2.) En effet, la moyenne de la longueur de la racine pour le rang 1 est inférieure à celle mesurée pour le reste de la chambre de culture (Figure III.2.). Ce phénomène peut probablement être expliqué par l'effet négatif de la lumière sur la croissance racinaire, le rang 1 étant plus éclairé du fait de la réflexion sur les parois de la chambre de culture. Les données des boites situées sur le périmètre extérieur ont donc été corrigées pour éliminer cet effet environnemental en ajoutant la différence entre la moyenne du rang 1 avec celle du reste de la chambre de culture (Figure III.1). Après correction, les variations de longueur de la racine primaire montrent une importante héritabilité (H²=0.51) avec une moyenne plus proche du parent sauvage que du mutant ddm1 (Figure III.3.). Ce résultat est cohérent avec le fait que pour chaque épiRIL 75% du génome est attendu d'origine wt et 25% d'origine *ddm1*. Une variation phénotypique plus importante est observée dans les épiRIL par rapport à celle mesurée pour les lignées parentales wt et *ddm1* et les lignées contrôles Col-wt (Figure III.2.) avec cependant peu de transgression. Seules 21 plantes dont la longueur de la racine est extrême (≥ 3 écart types) ont été éliminées pour le reste des analyses. Aucune corrélation significative n'a été mesurée entre la longueur de la racine primaire et le temps de floraison (test de pearson, cor=-0.05, pvalue=0.3) ou la hauteur de la plante (test de pearson, cor= 0.06, pvalue=0.2). Ce résultat suggère une architecture génétique basée sur des épiallèles différents pour ces trois caractères quantitatifs.

III.2.1.2. Deuxième mesure de la longueur de la racine primaire dans les épiRIL

Afin de confirmer ces résultats, une deuxième mesure de la longueur de la racine primaire a été effectuée sur les lignées épiRIL extrêmes pour la longueur de la racine primaure sélectionnées pour l'épigénotypage sélectif. Cette approche permet d'avoir une puissance statistique supérieure pour la détection des QTL par rapport à un génotypage aléatoire pour une taille de population égale (Sen et al., 2009). Ainsi cent lignées extrêmes pour la longueur de la racine primaire et cent autres pour le temps de floraison ont été mesurées une deuxième fois afin de vérifier la stabilité de la longueur racinaire entre répliques. Pour mesurer les effets environnementaux, des lignées contrôles Col-wt et le mutant *ddm1* ont été placées de manière aléatoire dans la chambre de culture. Au total, 1294 racines ont été mesurées pour 179 épiRIL, et 276 mesurées pour 22 lignées contrôle. Comme pour la première mesure, la longueur de la racine primaire présente une héritabilité élevée (H²=0.51) ainsi qu'une variation plus importante pour les épiRIL que pour les lignées Col-wt contrôles ou *ddm1* (Figure III.3.).

III.2.1.3. Une variation phénotypique similaire dans les épiRIL et les RIL pour la longueur de la racine primaire

La variation pour la longueur de la racine primaire dans les épiRIL est très proche de celle observée dans des RIL obtenues par un croisement entre Bay-0 et Shahdara. Ainsi l'écart entre le maximum et le minimum pour la longueur de la racine primaire est de 45 mm dans les épiRIL et de 46 mm en moyenne dans les RIL (Loudet et al., 2005, Reymond et al., 2006). De plus une héritabilité comparable à celle mesurée dans les épiRIL (H²=0.51) est observée pour la variation de la longueur de la racine dans ces RIL (H²=0.63, Loudet et al., 2005). Cette similarité indique que la variation phénotypique induite par les épiallèles dans les épiRIL est du même ordre de grandeur que la variabilité naturelle entre accessions.

III.2.1.4-Sélection des lignées à épigénotyper pour la cartographie de QTL

Les deux mesures de la longueur de la racine primaire sont hautement corrélées (test de pearson, cor=0.38, p-value= 3.821e⁻⁰⁷). Cependant 16 lignées présentent un phénotype opposé dans les deux séries de mesures. En effet 10 lignées extrêmes « petite racine » lors de la première mesure se retrouvent dans le groupe extrême « grande racine » dans la deuxième mesure et l'inverse est observé pour 6 lignées. Au total, 71 lignées ayant un comportement cohérent ont été sélectionnées, qui appartiennent au même groupe d'extrêmes dans les deux mesures ou sont extrême dans une mesure et au milieu de la distribution dans l'autre.

III.2.2. Génération d'une carte génétique pour l'identification d'éventuels épiallèles associés aux variations phénotypique héritables mesurées dans les épiRIL

Un total de 101 méthylomes d'épiRIL ont été générés pour l'étude de la stabilité des perturbations de méthylation induits par ddm1 (Chapitre 1). A ceux-ci, 22 autres ont été ajoutées afin d'obtenir un panel représentatif des épiRIL extrêmes soit pour le temps de floraison soit pour la longueur de la racine primaire. Au total ce sont donc 123 lignées épiRIL qui ont été épigénotypées : 93 sont extrêmes pour le temps de floraison (47 précoces et 46 tardives), 34 pour la longueur de la racine primaire (14 petites et 20 longues racines), dont 5 sont communes aux deux caractères, plus une lignée extrême pour le temps de floraison. Sur les 2611 DMR parentales identifiées, 867 ségrègent 3:1 dans les épiRIL et peuvent donc servir de marqueurs génétiques au même titre que des polymorphismes nucléotidiques classiques. Après élimination des marqueurs redondants, 126 DMR ont été retenues pour construire une carte génétique génétique à partir de la population d'épiRIL. Le manuscrit qui suit décrit cette carte ainsi que sa similitude avec celles obtenues à partir de croisement classiques chez Arabidopsis thaliana. Ma contribution principale à ce manuscrit est l'obtention des méthylomes des 123 épiRIL et des deux lignées parentales. Les autres données moléculaires ont été obtenues dans l'équipe et en collaboration avec les groupes de Steve E Jacobsen (Université de Californie) et de Patrick Wincker (Génoscope) pour le séquençage bisulfite. La carte génétique et sa comparaison avec les cartes existantes ont été réalisées par l'équipe de Frank Johannes (Université de Groningen).

Features of the *Arabidopsis* recombination landscape resulting from the combined loss of sequence variation and repeat-associated DNA methylation

Maria Colomé-Tatché *, Sandra Cortijo †, René Wardenaar * . Benoit Lahouze † , Mathilde Etcheverry † , Antoine Martin † , Suhua Feng ‡, Evelyne Duvernois-Berthet † , Karine Labadie §, Patrick Wincker § , Steve E Jacobsen ‡ , Ritsert C. Jansen * , Vincent Colot † , and Frank Johannes *

* Groningen Bioinformatics Centre, University of Groningen, Linnaeusborg 7, 9747 AG, Groningen, The Netherlands,†Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Paris, F-75005 France; CNRS UMR 8197, Paris, F-75005 France; Inserm U1024, Paris, F-75005 France,‡Howard Hughes Medical Institute, Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095-1606, USA, and §Genoscope, Institut de Génomique, CEA, 2 rue Gaston Crémieux , Evry, F-91057, France Submitted to Proceedings of the National Academy of Sciences of the United States of America

The rate of meiotic crossing overs (COs) varies considerably along chromosomes, leading to marked distortions between physical and genetic distances. The causes underlying this variation are being progressively unraveled, and DNA sequence as well as chromatin states have emerged as key factors. However, it is still unknown to which extent the suppression of COs within the repeat-rich pericentromeric regions of plant and mammalian chromosomes results from their high level of DNA polymorphisms and from their heterochromatic state, notably their dense DNA methylation. Here, we test the combined effect of removing sequence polymorphisms and repeat-associated DNA methylation on the meiotic recombination landscape of an Arabidopsis mapping population. To achieve this, we use genome-wide DNA methylation data from a large panel of isogenic epigenetic recombinant inbred lines (epiRILs) to derive a core recombination map based on 867 meiotically stable differentially methylated regions (DMRs) covering 81.9% of the genome. We find that the suppression of COs observed within pericentromeric regions of chromosomes persists in this experimental setting. Moreover, we demonstrate that suppression is slightly reinforced within narrow 3Mb regions flanking pericentromeric boundaries, and that this effect is compensated by increased recombination activity in chromsome arms. However, a comparative analysis reveals that these changes are minor, and do not transgress the range of variation seen in crosses between 18 diverse natural accessions. Our findings therefore highlight a remarkably robust recombination landscape in *Arabidopsis* that is largely insensitive to natural DNA sequence variation or the chromatin state of repeats. This level of robustness places important constraints on genome evolution.

epigenetic | epigenetic recombinant inbred lines | ddm1 | recombination

Meiotic recombination is a fundamental process in genetics, whereby maternallyand paternally-inherited homologous chromosomes exchange material, either nonreciprocally (gene conversion) or reciprocally (COs). COs are not uniformly distributed along the genome but occur more often in chromosomes arms and are strongly suppressed in pericentromeric regions [1, 2, 3], partly as a result of sequence and chromatin determinants [1, 4, 5, 6, 7, 8]. It is a common belief that in plants and mammals, high levels of DNA sequence polymorphisms as well as heterochromatic features associated with repeats, notably dense DNA methylation and transcriptional silencing, play a central role in this suppression [1, 4].

Suppression of COs by dense DNA methylation has been demonstrated experimentally in the fungus Ascobolus [7]. Specifically, COs were reduced when the recombination interval was methylated on one homolog and almost completely abolished when methylated on both homologs. In *Arabidopsis*, two recent mapping studies analyzed F2 progeny derived from crosses between Columbia *ddm1* and *met1* (Col(*ddm1*),Col(*met1*)) methylation mutants and wild-type Landsberg (Ler(wt)) accessions, and showed that loss of methylation could not alleviate the suppression of COs in pericentromeric regions of chromosomes [9, 10]. However, as pointed out by the authors, this experimental design could not rule out an inhibitory effect of sequence divergence between Col and Ler on COs.

An ideal design would use crosses between isogenic individuals, with one of the crossing partners having decreased methylation levels throughout the genome [9]. Melamed-Bessudo and Levy [9] implemented such an approach by crossing Col(*ddm1*)

mutant to Col(wt). Using two fluorescent markers spanning a 16 centiMorgan (cM) interval on the arm of chromosome 3, they detected increased cross-over rates in F2 plants derived from these parents relative to plants derived from a Col(wt)×Col(wt) control cross, and concluded that COs in euchromatic regions can be upregulated by loss of DNA methylation. Implementing a similar approach at a genome-wide scale and with high mapping resolution, particularly in pericentromeric regions, has not been attempted due to a lack of appropriate molecular and genetic tools. Hence, the combined effect of DNA methylation and sequence variation on COs has never been tested comprehensively in *Arabidopsis*, nor in any other higher eukaryote.

We previously reported the construction of a large population of epigenetic Recombinant Inbred Lines (epiRILs) in Arabidopsis [11, 12], which provides a powerful experimental system to conduct such a test. These epiRILs were obtained by first crossing a plant homozygous for the recessive ddm1-2 mutation with a near-isogenic wild type individual. The ddm1-2 mutation mostly affects transposable elements (TEs) and other repeats, which lose DNA methylation and become transcriptionally reactivated in a transmissible manner in many instances [11, 12, 13, 14]. However, transposition events are relatively rare [15] (Fig. S1). Thus, F1 individuals can be considered homozygous throughout the genome, except at the DDM1 locus and at the few loci affected by TE mobilization, but have chromosome pairs that differ markedly by their DNA methylation levels and transcriptional activity over TEs and other repeats [11, 16]. A single F1 DDM1/ddm1 individual was backcrossed to the wild type parental line and after selection of the progeny homozygous for the wt DDM1 allele, the epiRILs were propagated through seven rounds of selfing. In this design, over 85% of all informative recombination events occur in the first two inbreeding generations (F1 and backcross), with fewer informative events being contributed by each subsequent generations [19].

Previous targeted analysis indicated that many of the parental differences in DNA methylation and transcriptional activity of repeats are stably inherited in the epiRILs [11, 12]. Regions with segregating methylation states can therefore serve as physical markers to detect the frequency and distribution of recombination events along chromosomes despite both homologs having near identical DNA sequences.

In this study we report the construction of a recombination map using genome-wide methylation data from 123 epiRILs. This map was derived from 867 meiotically stable differentially methylated regions (DMRs) covering 81.9% of the total genome. Estimates of the genetic length for each chromosome revealed that global recombination rates are similar in the epiRILs compared with classic *Arabidopsis* crosses. On a local scale, we demonstrate that suppressed recombination activity within repeat-rich, pericentromeric regions of chromosomes is robustly maintained even after the removal of sequence polymorphisms and repeat-associated DNA methylation. Furthermore, we were able to identify narrow 3Mb regions flanking pericentromeric boundaries that appear to be subject to additional suppression, and show that this effect is comparative analysis we demonstrate that these recombinational changes are minor, and do not transgress the range of variation seen in crosses between 18 diverse natural accessions. Our results therefore highlight a robust recombination landscape in Arabidopsis that is largely insensitive to natural DNA sequence variation and the chromatin state of repeats.

Results

Recombination map construction using transgenerationally stable DMRs. To demonstrate that transgenerationally stable DMRs can be used for the construction of a recombination map in an isogenic population, we carried out MeDIP-chip on 123 epiRILs as well as on the two parental lines (125 × 2 replicates = 250 array experiments). We employed a three-state Hidden Markov Model (HMM) to classify tiling array signals into three underlying DNA methylation states [17]: un-methylated (U), intermediate methylation (I) or methylated (M). Benchmarking of these HMM calls against whole-genome bisulphite sequencing data (30×) for 6 epiRILs confirmed that both the MeDIP protocol and the analysis method performed well (Fig. S2, Table S1). Comparison of the two parental DNA methylomes revealed 2611 Differentially Methylated Regions (DMRs), representing clear instances of methylation loss in *ddm1* (transitions from M to U). These DMRs (median length: 1211 bps, range: 318-24624 bps) were distributed throughout the genome but, as expected, were more abundant in pericentromeric regions [24] (Fig. 1A, Table S2).

Fig. 1. Recombination map construction: (A) Genome-wide distribution of the 2611 parental DMRs and the 126 DMRs (i.e. markers) retained for recombination map construction (purple) for each of the five Arabidopsis chromosomes. The mapping between physical and genetic positions of markers is shown. (B) Inference of inherited wt (green) and ddm1 (red) haplotypes along the genome (x-axis) as inferred from the recombination map for each of the 123 epiRILs (y-axis) (Table S5). Chromosome extremities not covered by the genetic map are indicated in grey. The genome of epiRIL 344 is indicated by an arrow. A schematic representation of each chromosome is plotted on top with the physical location of the DDM1 gene shown at the end of chromosome 5. (C) Transgenerational methylation data for epiRIL 344. Shown are the average methylation signals for regions that are predicted to become fixed for the ddm1 haplotypes (thin red lines) and the wt haplotypes (thin green lines) after seven selfing generations. The average signals (red and green thick solid lines) are in agreement with Mendelian inbreeding theory (black solid lines).

We examined the methylation state at all parental DMRs in each of the 123 epiRILs and inferred their parent of origin (i.e. epigenotypes). In total, 867 (33.2%) of the parental DMRs segregated in the expected 3 : 1 Mendelian ratio (±99% CI), and provided indirect evidence for the fixation of parental epialleles (Fig. S3, Table S3). A majority of these stable DMRs (666, 76.8%) mapped to pericentromeric sequences of chromosomes. As a consequence, total levels of DNA methylation in *ddm1*-inherited pericentromeric regions were significiantly reduced compared to that of the wt parent. This divergence was maintained through eight rounds of meiosis (Fig. S4), and was accompanied by stable *ddm1*induced transcriptional changes over repeats in these regions (Fig. S5). We used all of the 867 stable DMRs as physical markers in an extension to the Lander-Green algorithm [18] to derive a robust genetic map consisting of 126 non-redundant markers (Fig. 1A-B, Figs. S3, Table S4). Pair-wise recombination fractions between markers indicated a well-behaved map, reminiscent of those typically seen in classical crosses involving DNA sequence markers, with high correlation among linked loci and virtually no correlations among loci in different chromosomes (Fig. S6).

In order to provide additional evidence for the transgenerational stability of these 126 DMRs, we performed genome-wide methylation analysis for one selected line (epiRIL 344) for each of its seven selfing generations (7×2 replicates = 14 array experiments). As expected, fixation occurred for the predicted parental epigenotype in each case, and the rate of approach toward fixation was consistent with Mendelian inbreeding theory for a backcross-derived RILs [19] (Fig. 1C).

Global recombination rates are preserved in the epiRILs. The 126 markers retained in the final map cover ~ 81.9% of the total genome (74.7, 77.0, 98.4, 91.1 and 73.0% of chromosomes 1, 2, 3, 4 and 5, respectively). Estimates of genetic length for each of five chromosomes were 106.3, 61.4, 101.4, 82.7, and 65.9 cM and correlated positively with physical length (Fig. S7). Hence, the total length of the genetic map is 417.7 cM, yielding an average spacing of ~ 0.804Mb (3.45 cM). This map length is similar to that previously reported for genetic maps based on classical *Arabidopsis* crosses [22, 21, 20, 23]. To assess the similarity between our inferred map and those derived from classical *Arabidopsis* crosses

Fig. 2. Estimated genetic lengths: Shown are the estimated genetic lengths ± 95% Cls for the epiRILs (EPI, purple) and each of the 17 F2 populations (P2-P169, green). Significant differences between a F2 population and the epiRILs are indicated by an astrik. The 17 F2s were derived from the following pairs of accessions: P2:Lov- 5×Sha, P3:Bur-0×Bay-0, P6:Van-0×Bor-4, P7:NFA-8×Van-0, P8:Est-1×RRS7, P9:Tsu-1×RRS10, P10:Bur-0×Cvi-0, P12:Est-1×Br-0, P15:Br-0×C24, P17:Cvi-0×RRS7, P19:Bay-0×Lov-5, P20:Bor-4×NFA-8, P35:Tamm-2×Col-0, P66: Fei-0×Col-0, P129:C24×RRS10, P145:Sha×Fei-0, P169:Ts-1×Tsu-1.

more directly, we re-analyzed recombination data obtained for 17 F2 populations [23] that were derived from pairs of 18 distinct natural accessions. In total, these populations consisted of 7045 plants (~ 410 plants per cross, range: 235 – 462), which were genotyped at 235 markers on average (range: 215 – 257) [23]. In order to facilitate a meaningful comparison between all populations, we constructed a consensus map using 83 markers that were shared across populations (Figs. S8, Table S6). Thorough testing showed that the reduction from 126 to 83 markers in the epiRIL and F2 maps led to no significant loss of information in capturing the linkage structure of parental haplotypes along chromosomes (Figs. S9-S10), and the 83 markers were therefore deemed appropriate for this comparative analysis. Estimates of the genetic length for each of the five chromosomes revealed substantial natural variation among the F2 populations (Fig. 2, Fig. 3B). Importantly, the genetic length of the epiRIL chromosomes did not significantly diverge from the natural range (Fig. 2, Fig. 3B), with the exception of chromosome 1 where we observed a slight increase in genetic length relative to five of the F2 crosses. Overall this observation suggests that global recombination features in the epiRIL are remarkably robust.

Robust maintenance of recombination suppression in core pericentromeric regions. To explore whether these similarities at a local scale, we examined in more detail the distribution of recombination intensities, expressed as cM/Mb, for each marker interval along chromosomes (Fig. 3C). All populations, including the epiRILs, had clearly suppressed recombination activity in the most central part of pericentromeric regions relative to the chromosome average (Fig. 3C, Fig. 4A). The exception to this trend was chromosome 4, for which the epiRILs showed a relative increase of recombination intensity (Fig. 4A). However, the presence of the heterochromatic knob in chromosome 4 in the Columbia accession, but not in other accessions, makes this result difficult to interpret [10].

In the epiRILs, recombination intensity in pericentromeric regions of chromosomes 1, 2, 3, and 5 were, respectively, 1.4, 3.8, 1.4, and 1.6 times lower than the F2 average (Fig. 4A). This level of suppression is consistent with the result of Melamed-Bessudo and Levy [9] who showed COs suppression on chromosomes 1 and 5 in a cross between Col(*ddm1*) and Ler(wt), and Mirouze et al [10] who analyzed progeny derived from a cross between

Fig. 3. Map comparison of global and local recombination patterns: Comparison of global and local recombination patterns between the epiRILs and the 17 F2 populations. (A) Chromosome-wide gene (grey line) and transposon (dark line) density distribution. The 3Mb windows bracketing the inflection points between transposon- and gene-dense regions are indicated in orange. (B) Cumulative cM lengths (±95% CI, light purple funnel) for the epiRILs (thick purple line), and each of the F2 populations (thin green lines) using the consensus map. The thick green line denotes the average F2 cumulative cM length. The dotted vertical lines mark off the pericentromeric regions of each chromosome. (C) The distribution of normalized recombination intensities (cM/Mb of a given marker interval divided by the cM/Mb chromosome average) shows suppression of recombination within pericentromeric regions and elevation at its boundaries. Colors are given as in (B) above.

Col(*met1*) and Ler(wt). However, strong DNA sequence divergence between Col and Ler, particularly in pericentromeric sequences, could not be ruled out as a cause of COs suppression in these experiments. By contrast, pericentromeric sequences in the epiRILs are by design virtually isogenic, as indicated by CGH analysis (Fig. S1) and ongoing re-sequencing efforts (data not shown). This allows us to conclude that neither extensive DNA methylation nor sequence variation are responsible for CO suppression typically observed in pericentromeric regions of *Arabidopsis* chromosomes.

Recombination suppression spreads to pericentromeric boundaries and is compensated by increased recombination in chromosome arms. In contrast to core pericentromeric regions discussed above, recombination intensities rapidly increase at pericentromeric boundaries with chromosome arms (Fig. 3C, Fig. 4B). An important property of these regions is that they correspond to major transitions in genome content from TE-rich to gene-rich sequences (Fig. 3A), and have also recently been described as hotspots of historical recombination activity at the species level [25] (Fig. S11). We found that nearly 40% of all detected recombination breakpoints in the F2 populations mapped within a 3Mb window bracketing the inflection point in these transition zones (henceforth refered to as Annotation Transition zones (AT-zones)), and yielded a local recombination intensity that was 1.57 times above the genome average (Fig. 4B, Fig. S12). In the epiRILs, the same trend was observed but less pronounced (Fig. 4B) and accounted for 25.31% of all detected recombinants (1.05 times above genome average). Thanks to the high density of DMRs in these regions, breakpoints could be fine-mapped to as low as 4kb (Fig. S13, Table S7). Notably, about 20% of these recombinants had breakpoints in common with at least two other independent epiRILs (Fig. S14, Table S8).

The reduction in recombination intensity in the epiRILs within AT-zones indicates that loss of sequence variation and DNA methylation leads to a reinforcement and outward extension of the suppression seen in pericentromeric cores. This effect is most apparent on chromosomes 1, 2 and 5. A similar trend was documented by Mirouze et al [10] in Col(*met1*)× Ler(wt) compared to a Col(wt)×Ler(wt) control cross, with increased recombination suppression on chromosomes 1, 2, 3 and 5 (chromosome 4 was not included

Fig. 4. Comparison between recombination intensity detected in the pericentromeric regions of chromosomes (A), the 3 Mb windows bracketing the inflection point between transposon- and gene-dense regions at pericentromeric boundaries (B), and the chromosome arms (C). The intensity values (±95% Cl) detected for the epiRILs (EPI) fall within the observed natural range of the different F2 populations (P2-P169). The vertical grey lines represent the median chromosome cM/Mb average, and the vertical orange lines represent the median chromosome region under consideration, for the F2 populations.

in the analysis). The authors attributed this effect to be a property of the entire pericentromeric region, most likely as a result of the sparsity of their genetic markers (2 to 3 markers per pericentromeric region). Here we show that this suppression effect is actually driven by a more localized reduction in recombination intensity within AT-zones, which cover (on average) only 63.1% of the pericentromeric region on either side of the centromere (Fig. 3A). Interestingly, this localized loss of recombination activity appears to be compensated by an upregulation of recombination in chromosome arms (Fig. 4C). Not suprsingly we find that this effect is most pronounced on chromosomes 1, 2 and 5, with recombination intensities being 1.6, 1.8, and 1.5 times higher, respectively, compared to the F2 average (Fig. 4C). This compensatory effect also explains why the total estimated genetic length of the epiRIL map is not significantly affected (Fig. 2).

However, overall, we find that the magnitude of the recombinational changes at ATzones and along chromosome arms do not significantly transgress the observed natural range (Fig. 4B and C). Indeed, in many cases, several of the F2 populations displayed even more extreme divergence from the F2 average than the epiRILs, indicating that the loss of sequence variation and DNA methylation lead to alterations that are relatively minor. By contrast, our data highlights a deep preservation of broader recombinational attributes, such as the clear compartmentalization between pericentromeric regions and chromosome arms as well as the near invariant total genetic length. These broader features were remarkably persistent in all tested populations.

Discussion

In this study we documented genome-wide recombination patterns in a near isogenic population of epiRILs using stable DNA methylation differences as physical markers. Our finding that recombination suppression is robustly maintained in core pericentromeric regions in the epiRIL population, despite the loss of DNA sequence variation and heterochromatic features over repeats, indicates that these factors play only a minor role in this suppression mechanism. On the other hand, we provide compelling evidence that loss of DNA methylation and transcriptional silencing of repeats can lead to a local reinforcement of recombination suppression at pericentromeric boundaries and to an increase of recombination activity along chromosome arms. Similar results were reported by Melamed-Bessudo and Levy [9] and Mirouze et al. [10] using genetically divergent populations. This leads us to conclude that loss of DNA methylation is sufficient to drive these recombinational changes. Moreover, Melamed-Bessudo and Levy [9] demonstrated that *ddm1*-induced demethylation of only one homolog produces the same recombination changes as when both homologs are demethylated. Our results and conclusions should therefore be generalizable to the two-homolog situation. This is at odds with the observation in Ascobolus that DNA methylation inhibits COs more severely when both homologs are methylated. However, in Ascobolus the effect of DNA methylation was tested at the location of a known recombination hotspot and similar localized dosage effects may still be present in *Arabidopis*.

Our study and those of Melamed-Bessudo and Levy [9] and Mirouze et al. [10] have used well-characterized *ddm1* and *met1* DNA methylation mutants as a tool to experimentally perturb genome-wide methylation levels. Both *ddm1* and *met1* experience a nearly 70% reduction in DNA methylation levels genome-wide. This drastic loss probably sets an upper limit to the amount of demethylation that can be incurred in nature. Indeed, it is difficult to conceive of mechanisms that would elicit similar or more severe changes under natural settings, unless they involve spontenous mutations in genes important for DNA methylation control, such as *ddm1* or *met1*. Interestingly, a recent analysis of *Arabidopsis* mutation accumulation lines showed that drastic alterations in the methylome of one outlier line were likely due to a spontaneous mutation in a methyl-transferase gene [30], which must have arisen during just 30 generations of selfing. This suggests that similar events are certainly plausible under natural conditions.

However, an assessment as to whether strong methylation loss can elicit recombination changes at magnitudes that are sufficient to drive genome evolution in this species has been lacking. Our study has taken the first step to provide such an assessment. Our analysis of the 17 F2 population derived from 18 natural accessions [23] allowed us to quantify the magnitude of the recombination changes observed in the epiRILs in the context

of natural variation. Overall, we find that these effects are minor and do not significantly transgress the observed natural range of the species. Indeed, in many cases, several of the F2 populations displayed even more extreme divergence from the F2 population average compared to the epiRILs. These findings lead us to conclude that severe losses of DNA methylation along *Arabidopsis* chromosomes have no drastic implications for recombination-mediated genome evolution. This high level of robustness raises novel questions concerning the precise mechanisms that have shaped the recombination landscape in this species in the first place.

Of course, severe depletion of DNA methylation can drive other important events such as large scale structural rearrangements and polyploidization which may impact the course of genome evolution. In addition, natural epigenetic variation, such as that associated with differential DNA methylation, can act on complex traits that are under natural selection [33], thereby changing linkage disequilibrium relations within and across chromosomes. However, understanding and documenting the impact of epigenetic variants on complex traits is challenging, mainly due to technical difficulties in ruling out the confounding effect of DNA sequence polymorphisms [36]. Because of this limitation, it has been argued that the epiRILs constitute an ideal system for the study of epigenetic inheritance in *Arabidopsis* [29, 35, 31, 19]. We and others have recently shown that many adaptive phenotypes, such as plant height, flowering time or growth rate, are highly heritable in this population [12, 32, 34]. The linkage map reported here (see Fig. 1B) can be used in conjunction with classical quantitative trait locus (QTL) mapping methods to delineate the epigenetic basis of complex traits in this population. Ultimately, such efforts should significantly contribute to our understanding of epigenetics in adaptive evolution.

Materials and Methods

MeDIP protocol and methylome analysis. MeDIP was carried out as previously described [17] followed by hybridization to a custom NimbleGen tiling array [27]. Arrays contained 711320 isothermal probes (50–75 bps lengths) covering chromosomes 1-5, with an inter-probe spacing of ~ 110bp on average. Including dye-swaps, we performed a total of 256 array experiments (SI). For each array, probe signals were classified into three underlying methylation states (methylated (M),

intermediate (I) or unmethylated (U)) using the HMM model presented previously [17] (SI). These inferred methylation states were cross-validated against whole genome bisulphite sequencing (BS-seq) data of 6 epiRILs (Fig. S2, Table S1, SI).

Definition of parental DMRs. We conducted a probe-level comparison of the HMM calls between the *ddm1* and wt parents (SI). Probe-level methylation calls were denoted as "polymorphic" when the parents differed (e.g. I in *ddm1* and M in wt), and as "non- polymorphic" when they were identical (e.g. U in *ddm1* and U in wt). Neighboring probes reporting the same polymorphic state were collapsed into single regions. Hence, parental DMRs were defined as regions of 3 consecutive probes that reported the same extreme polymorphic state (i.e. transitions from M in wt to U in *ddm1* or vice versa). We found 2611 DMRs, all of which were U in the *ddm1*. Detailed summary statistics are given in Table S2.

Calling of parental origin of DMRs in the epiRILs. For DMR i we quantified whether epiRIL j was more *ddm1*-like or more wt- like (SI). To achieve this, we calculated the average HMM posterior probabilities pij (M), pij (U), and pij (I) over all the probes in i. A region was called wt-like or *ddm1*-like if the state that maximized pij was M or U, respectively. In the case where state I maximized pij we did not assign a parental origin.

Mendelian segregation criterion. Under the assumption that DMRs were stable for eight generations of breeding, both wt- and *ddm1*-like parental states should appear according to Mendelian segregation ratios in the epiRILs. The sampling variation around these ratios was calculated from a binomial distribution taking into account the sample size (N= 123), the cross design, and the 8% F2 contamination previously reported [12]. DMRs in the epiRILs showing a percentage of wt-like states between 62.7% and 83.3% (the expected value being 73%) were taken as putative transgenerationally stable markers. In total 867 parental DMRs fulfilled this criterion and were subsequently used as a starting point for map construction (Fig. S3, Table S3, SI).

Extension of Lander-Green algorithm. To determine the number of recombinants R between each pair of markers, we implemented a novel extension of the Lander-Green algorithm [18] which was designed to accommodate marker and individual specific error rates (SI). In this HMM-based algorithm the observations were the parental callings of the markers (i.e. wt-like, *ddm1*-like or I), and the hidden states were the real (unobserved) parental origins (wt-like or *ddm1*-like). The sources of error that could lead to an incorrect call are the measurement uncertainty at marker i and epiRIL j, which we quantified through pij , and an unknown level of stochastic changes in DNA-methylation states during inbreeding, s. We assumed s to be constant throughout genome and across epiRILs.

Estimates for R and s were obtained by running the Lander- Green algorithm over a series of fixed values for s and selecting the value that maximized the profile likelihood. With the final estimates for R and s we computed the most likely marker states along each chromosome (wt-like or *ddm1*-like) using their maximum posterior probabilities. Following this, we once again screened for Mendelian segregation ratios and removed genetically redundant markers. This procedure was iterated several times. After five iterations the procedure converged and we obtained a robust map with 184 markers. In a last cleaning step we removed problematic markers showing strong correlation across chromosomes. The final map contained 126 robust markers (Fig. S3, Table S4) for which we re-estimate R using the Lander-Green algorithm. Finally, we converted R (the proportions of recombinants in a RIL genome) to r (the recombination fraction at meiosis) using r = 2R/(3 - 4R) [19] (SI). We re-expressed this in terms of genetic distance d using Haldane's map function, d = $-50 \ln(1 - 2r)$.

Transgenerational analysis of DMRs. MeDIP was carried out for epiRIL 344 for seven generations of selfing after the backcross, following the same protocol as described in Materials and methods. At each generation, DNA from five siblings was pooled for MeDIP. Probe signals were classified as unmethylated, intermediate or methylated [28] at each generation. The expected signal behavior was derived using a Markov Chain strategy, considering the Mendelian inheritance of the marker probes (SI).

Transcriptome analysis of epiRILs and *ddm1* **seedlings.** Whole-genome expression profiling was performed using NimbleGen 3x720K tiling arrays. For experimental details, see SI.

Construction of consensus map. To facilitate a meaningful comparison of the epiRILs map with those of the different 17 F2 populations, we constructed a consensus map (Fig. S8, SI). This was achieved by using the epiRILs map as a reference and selecting from each of the F2 maps the SNPs closest to the reference allowing for a ±1.39Mb maximum distance. The average distance from reference was ±0.17Mb which led to little loss of information in capturing the recombination structure along the genome (Fig. S9-10). Markers for which this could not be achieved were not included in the consensus map. This resulted in 83 markers (Table S6).

Recombination intensities at major annotation transitions. Fig. 3A and C show that the recombination intensity increases rapidly at the pericentromeric boundaries which also coincide with major transitions in genome content from genes to transposons. In order to find the area where the recombination intensity is maximal we implemented a sliding window approach (Fig. S12, SI).

ACKNOWLEDGMENTS. This work was funded by grants from the Ministère de la Recherche et de l'Enseignement Supérieur (to SC,BL & ME), Agence Nationale de La Recherche (TAG & MEIOMETH projects to VC; EPIMOBILE project to VC and PW), EU EpiGeneSys FP7 Network of Excellence no. 257082 (to VC), NWO (to FJ and MC-T), CIPY (MC-T), NBIC (to RW), EURATRANS (RCJ). Work in the S.E.J. laboratory is supported by National Institutes of Health (NIH) Grant GM60398. S.F. is a Special Fellow of the Leukemia & Lymphoma Society. S.E.J. is an investigator of the Howard Hughes Medical Institute.

1. Lichten M, de Massy B (2011) The impressionistic landscape of meiotic recombination. Cell 147, 267-270.

2. C. Mézard, J. Vignard, J. Drouaud, R. Mercier (2007) The road to crossovers: plants have their say, Trends Genet. 23, 91-99.

3. A. D. Muyt, R. Mercier, C. Mézard, M. Grelon (2009) Meiotic recombination and crossovers in plants, Genome Dyn 5, 14-25.

4. B. Edlinger, P. Schlgelhofer (2011) Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants, J. Exp. Bot. 62, 1545-1563.

5. W. Chen, S. Jinks-Robertson (1999), The role of the mismatch repair machinery in reg- ulating mitotic and meiotic recombination between diverged sequences in yeast, Genetics 151, 1299-1313.

6. E. Emmanuel, E. Yehuda, C. Melamed-Bessudo, N. Avivi-Ragolsky, A. A. Levy (2006) The role of AtMSH2 in homologous recombination in Arabidopsis thaliana, EMBO Rep. 7, 100-105.

7. L. Maloisel, J. L. Rossignol (1998) Suppression of crossing-over by DNA methylation in Ascobolus, Genes Dev.12, 1381-1389.

8. J. Shi et al. (2010) Widespread gene conversion in centromere cores, PLoS Biol. 8, e1000327.

9. C. Melamed-Bessudo, A. A. Levy (2012) Deficiency in DNA methylation increases mei- otic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A., doi:10.1073/pnas.1120742109.

10. M. Mirouze et al. (2012) Loss of DNA methylation affects the recombination landscape in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A. 109, 5880-5885.

11. F. K. Teixeira et al. (2009) A role for RNAi in the selective correction of DNA methy- lation defects, Science 323, 1600-1604.

12. F. Johannes et al. (2009) Assessing the impact of transgenerational epigenetic varia- tion on complex traits, PLoS Genet. 5, e1000530.

13. A. Vongs, T. Kakutani, R. A. Martienssen, E. J. Richards (1993) Arabidopsis thaliana DNA methylation mutants, Science 260, 1926-1928.

14. T. Kakutani, K. Munakata, E. J. Richards, H. Hirochika (1999) Meiotically and mi- totically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Ara- bidopsis thaliana, Genetics 151, 831-838.

15. S. Tsukahara et al. (2009) Bursts of retrotransposition reproduced in Arabidopsis, Nature 461, 423-426.

16. Z. Lippman et al. (2004) Role of transposable elements in heterochromatin and epi- genetic control, Nature

430, 471-476.

17. S. Cortijo, R. Wardenaar, M. Colomé-Tatché, F. Johannes, V. Colot (in press) Analysis of genome-wide DNA methylation by MeDIP-chip in Arabidopsis., Methods Mol. Biol.

18. E. S. Lander, P. Green (1987) Construction of multilocus genetic linkage maps in humans, Proceedings of the National Academy of Sciences 84, 2363 -2367.

19. F. Johannes, M. Colomé-Tatché (2011) Quantitative epigenetics through epigenomic perturbation of isogenic lines, Genetics 188, 215-227.

20. L. Giraut et al. (2011) Genome-Wide Crossover Distribution in Arabidopsis thaliana Meiosis Reveals Sex-Specific Patterns along Chromosomes, PLoS Genet 7, e1002354.

21. J. Drouaud et al., Sex-specific crossover distributions and variations in interference level along Arabidopsis thaliana chromosome 4, PLoS Genet. 3, e106.

22. J. Drouaud et al. (2006) Variation in crossing-over rates across chromosome 4 of Ara- bidopsis thaliana reveals the presence of meiotic recombination "hot spots," Genome Res. 16, 106-114.

23. P. A. Salomé et al. (2011) The recombination landscape in Arabidopsis thaliana F(2) populations, Heredity (Edinb) 108, 447-455.

24. Y. V. Bernatavichute, X. Zhang, S. Cokus, M. Pellegrini, S. E. Jacobsen (2008) Genome-wide association of histone H3 lysine nine methylation with CHG DNA methy- lation in Arabidopsis thaliana, PLoS ONE 3, e3156.

25. M. W. Horton et al. (2012) Genome-wide patterns of genetic variation in world- wide Arabidopsis thaliana accessions from the RegMap panel, Nature Genetics, doi:10.1038/ng.1042.

26. F. Baudat et al. (2010) PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice, Science 327, 836-840.

27. F. Roudier, I. Ahmed, C. Bérard, A. Sarazin, T. Mary-Huard, S. Cortijo, D. Bouyer, E. Caillieux, E. Duvernois-Berthet, L. Al-Shikhley, L. Giraut, B. Després, S. Drevensek, F. Barneche, S. Dèrozier, V. Brunaud, S. Aubourg, A. Schnittger, C. Bowler, M.L. Martin- Magniette, S. Robin, M. Caboche and V. Colot (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis, EMBO Journal 30, 1928–1938.

28. R. Lister, R.C. O'Malley, J. Tonti-Filippini, B.D. Gregory, C.C. Berry, et al. (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis, Cell 133(3), 523–536.

29. Schmitz R.J., Ecker J.R. (2012) Epigenetic and epigenomic variation in Arabidopsis thaliana Trends Plant Sci. 17(3):149-54.

30. Schmitz RJ, Schultz MD, Lewsey MG, O'Malley RC, Urich MA, Libiger O, Schork NJ, Ecker JR. (2011) Transgenerational epigenetic instability is a source of novel methylation variants Science 21;334(6054):369-73.

31. Richards EJ. (2009) Quantitative epigenetics: DNA sequence variation need not apply Genes Dev. 15;23(14):1601-5.

32. Roux F, Colom-Tatch M, Edelist C, Wardenaar R, Guerche P, Hospital F, Colot V, Jansen RC, Johannes F (2011) Genome-wide epigenetic perturbation jump-starts pat- terns of heritable variation found in nature Genetics 188(4):1015-7.

33. Richards EJ. (2008) Population epigenetics Curr Opin Genet Dev. 18(2):221-6.

34. Latzel V, Zhang Y, Karlsson Moritz K, Fischer M, Bossdorf O. (2012) Epigenetic variation in plant responses to defence hormones Ann Bot. doi: 10.1093/aob/mcs088.

35. Weigel D. (2011) Natural variation in Arabidopsis thaliana: from molecular genetics to ecological genomics Plant Physiol doi: http://dx.doi.org/10.1104/pp.111.189845.

36. Johannes F, Colot V, Jansen RC. (2008) Epigenome dynamics: a quantitative genetics perspective Nat Rev Genet. 9(11):883-90.

Supplementary figures and text

Figure S1. CGH analysis: A comparison of input signals of all wt and *ddm1* replicates used for the detection of DMRs (W1/W2: plants grown on a liquid medium; S1: plants grown on soil). For each gene and transposable element the average input signal was calculated. Quantile normalization was applied to make the data comparable. Pericentromeric transposon signals and pericentromeric gene signals are indicated with blue and green respectively. Results show no major differences in signal indicating that none or only a few transposable element sequences have been accumulating due to the loss of methylation.

Figure S2. Proportion of recombinants: Shown are the proportion of recombinant chromosomes after two generations of inbreeding (F1 and BC) divided by the proportion of recombinant chromosomes after seven generations of inbreeding (S7), for different values of the recombination fraction r. These calculations follow directly from Mendelian inbreeding theory in recombinant inbred lines.

Figure S3: Comparison BS-seq and MeDIP-chip (HMM classification): The distribution of the BS probe signals for the three methylation categories of the HMM classification. White, gray and dark gray box: unmethylated, intermediate and methylated probes respectively. Numbers at the top of the figure are line numbers of the epiRILs that were sequenced.

Figure S4: Segregation ratios: Segregation ratios for the 867 Mendelian DMRs (left) and the 126 Mendelian DMRs used for map construction. The green and red horizontal bars indicate the expected Mendelian ratios (73% for the wt inheritance and 27% for the *ddm1* inheritance), and the green and red areas show the \pm 99% CI (62.7% - 83.3% for the wt, and 16.7% - 37.3% for the *ddm1*). At the position of each DMR (x-axes) the green cross represents the percentage of wt inherited epiRILs and the red dot represents the percentage of *ddm1* inherited epiRILs.

Figure S5: Recombination fractions: Recombination fractions for each pair of markers along the genome. Red corresponds to small recombination fraction, blue corresponds to a large recombination fraction. This image was generated using the R-qtl package implemented in R.

Figure S7: Correlation between physical length and genetic length: The physical length of each of the five Arabidopsis chromosomes in Mb and their genetic length in cM are positively correlated. In the inset, the table shows the numerical values for the physical and genetic lengths for each chromosome.

Figure S6: Transcriptome analysis: Shown is the expression difference between wild type and epiRIL 98, epiRIL 202 and *ddm1* across the genome for probes that are hypo methylated between the parents (M in wt and U in *ddm1*). The top part of the figure shows the location of the centromere (the dot), the pericentromere (dark grey surrounding the centromere) and the chromosomal arms (gray). The part that is not covered by the genetic map is indicated with light gray. The inference of inherited wt and *ddm1* haplotypes along the genome is indicated with green and red respectively. Results show that expression is higher compared to wt in *ddm1* inherited regions and comparable to wt in wt inherited

Figure S8: Consensus map: For each chromosome, the markers for the epiRIL (top) and the 17 different accession crosses are represented in light gray circles. The markers selected for the consensus map are represented with solid colored dots, and the light colored vertical lines show the position of the reference marker. If one cross between accessions had no marker closer enough to the reference marker, one extra marker was added (colored cross). The color code is a guide to the eye.

Figure S9: Change in genetic length: The genetic length (cM) versus the marker position (Mb) for the 17 accession crosses (top) and the epiRIL (bottom) is shown, both for the consensus map (in red) and the original map for each accession cross and the epiRIL (black). No major deviations from the original map are observed when the consensus map is utilized.

Figure S10: Correlation between D(bp) and D(cM/Mb): Correlation plot between the difference in inter-marker length for the epiRIL map compared to the accession crosses map $(\Delta(bp)=\Delta(bp)_{accession} cross$ $\Delta(bp)_{epiRIL}),$ and the difference in recombination activity at that marker interval $(\Delta(cM/Mb)=$ $\Delta(cM/Mb)$ accession cross Δ (cM/Mb) _{epiRIL}). The fraction of variance explained by the model is R2=0.000274.

Figure S11: Location of historical recombination hotspots: Shown are the locations of hotspots detected by Horton et al. (26). Top: gene (gray line) and transposon (black line) density along the chromosomes. Middle: location of the centromere (dot), the pericentromere (dark grey) and the chromosomal arms (light gray). Bottom: location of the hotspots. The hotspot density of all detected hotspots is indicated in gray. This hotspot density is determined with the use of a sliding window approach (window size: 1 Mb; step size: 200 kb). The blue lines indicate hotspots that were identified in at least eight of the nine regional samples (26).

Figure S12: Recombination intensity around major annotation transitions: Shown is the recombination intensity of 3 Mb windows at different distances from the major annotation transitions. The recombination intensity is calculated across all sliding windows at the same distance from the transitions. The maximum recombination intensity of the F2 populations was found at a distance of + 100 kb (in the direction of the arms).

Figure S13: Gene density and Recombination rates along pericentromeric regions: Gene density is shown along the pericentromeric regions of all five chromosomes in successive 105kb windows (red dots; the heterochromatic knob on chr4 is also shown) and for the 67 breakpoint point intervals that have been narrowed down to less than 500 kb (blue crosses). The proportion of COs contributed by each interval to the total number of COs for that chromosome is indicated by vertical purple bars.

Figure S14: Fine mapping shared recombination breakpoints in the epiRILs: Shown are three examples of shared recombination breakpoints that map within 3 Mb of the inflection points between transposon and gene density at pericentromeric boundaries (grey rectangle). For each example, we plot all the tiling array probes that were M in wt and U in *ddm1* and which showed Mendelian segregation patterns in the epiRILs. Shared breakpoints are shown by an arrow and could be fine-mapped within 158 kb, 93 kb and 68 kb on chromosomes 2, 3 and 4 respectively.

Supplementary text

2.1 MeDIP protocol

MeDIP-chip was carried out as previously described [1]. Briefly, DNA was extracted using the Qiagen MaxiPrep kit and sonicated using a Diagenode Bioruptor. Sonicated DNA (1.5µg) was denaturated at 95_C for 10 minutes in 600µl of buffer 1 (10mMTris HCl pH 7.5, 500mMNaCl, 1 mM EDTA). Immunoprecipitation was performed by adding 5µg of anti-5mC monoclonal antibody (Diagenode, cat n°MAb-006-500) to the DNA solution and by incubating the resulting mix overnight at 4°C with gentle agitation. Forty µl of washed M280 Dynabeads (Invitrogen) were then added and the suspension was incubated at 4°C for 4 hr with gentle agitation. The supernatant was then discarded, 300µl of buffer 1 were added to the IP pellet and the suspension was incubated 10 min at room temperature with gentle agitation. Three more washes were carried out at room temperature, using 600µl of buffer 1. The IP fraction was eluted by incubating it 1 hour at 42°C with 300µl of buffer 2 (30mM Tris HCl pH: 8.0) and 7 μ l of Proteinase K (NEB, 20 μ g/ μ l). DNA from the IP fraction was recovered by phenol-chloroform extraction and ethanol precipitation. IP and INPUT (150ng) DNA were amplified using the Sigma GenomePlex Complete Whole Genome Amplification (WGA) Kit following the manufacturer's instructions. Cy3 and Cy5 labeling was performed using the Nimblegen Dual color DNA labeling kit (Roche NimbleGen) and co-hybridizations in dye-swap were performed using a custom design NimbleGen 3x720K array, as previoulsy described [2].

2.2 Hidden Markov Model for methylation state classification

We analyze the ln(*IP/INPUT*) signal using a HiddenMarkovModel (HMM), as described in detail elsewhere [1]. Briefly, we view the signal as a mixture of three underlying components: the unmethylated component (U) for low signal, the intermediately methylated component (I) for middle intensity signal, and the methylated component (M) for high signal. The HMM relies on the following properties of the MeDIP-chip data: i) the probe signals are noisy proxies of an unobserved (hidden) methylated, intermediate or unmethylated state, and ii) the probe signals are spatially correlated along the genome so that neighboring probes provide similar information. We use the In(*IP/INPUT*) signal distribution of probes corresponding to introns as emission probability for the U component, in order to incorporate the biological knowledge of introns being mostly unmethylated into the estimation procedure. We approximate this distribution to an arbitrary degree using a mixture of 30 normal distributions using the EM algorithm [7]. The signal distribution for intronic sequences is not noticeably affected in *ddm1*, as expected. As emission probability for the M component we consider a normal distribution with a fixed mean at the 99th percentile of the intron distribution and unknown variance. Finally, as emission probability for the I component we also consider a normal distribution with mean fixed at the mid-point between the other two means, and variance equal to the one of the M emission probability. For the analysis of the *ddm1* parent, we use instead the M and I emission probabilities of the wt-parent.

We implement the Baum-Welch algorithm [8, 9] using the above distributional constraints to find the estimates for the variances, the probe-to-probe transition probabilities, and the initial probabilities. Once these parameters are estimated we proceed to calculate the most likely chain of hidden states (U, I or M). We calculate the individually most likely single hidden probe state at each position, given the observed probe signals and the parameters of the HMM. The result of this procedure is the methylome.

2.3 BS-seq protocol and comparison to MeDIP

Whole genome bisulfite sequencing was carried out as previously described [10], using Illumina sequencing and read lengths of 76nt or 100nt. Reads were mapped using BS Seeker [11]. Average genome coverage was 29X for the 6 epiRILs. Conversion rates were well over 99% in each case (mean conversion rate = 99.28%), based on data obtained for unmethylated chloroplast DNA.

After the production of files with read sequences (fastq files) the read sequences were subjected to several rounds of treatment before alignment to the genome. Parts of the adapter sequence were for example also sequenced when the read length was longer than the molecule that was sequenced. These parts were removed in the first step. The adapter part was found by sliding the adapter sequence over the read sequence starting from the end of the read sequence. We allowed one mismatch for every five bases (sequencing errors). The minimum overlap was set to four bases and the last three bases were removed when the adapter sequence was not found. In the second step we removed read sequences with more than one copy (we kept one copy). These copies were likely produced during the PCR step and were thus deemed not informative. At the end before mapping we also removed read sequences that were shorter than 30bp. The reads were after these treatments aligned to the genome using BS Seeker [11]. Only reads which could be assigned to a single locus with a maximum of three mismatches were used to quantify the methylation status of individual cytosines (settings: -t N -e 73 or 98 -m 3).

In order to make the BS-seq data comparable to theMeDIP-chip data we calculated so called "BS probe signals". These were calculated by dividing the number of methylated cytosine calls by the total number of cytosine calls in each of the windows for which the probes were designed (window length: 165 bp; signal range: 0–1). By cytosine calls we mean the individual cytosine call of each read sequence. For the comparison with the MeDIP data (comparison with HMM classification) we only selected probe windows with 35 or more cytosines, and probes with a conservation score of 95 or less. Also at least half of the cytosines should be covered by one or more reads. We applied these criteria in order to exclude misbehaving probes. The conservation score of a probe indicates the uniqueness of the probe sequence. These scores were obtained by performing a blast search. Scores are percentage of identity with the second best hit (score range: 45 – 100). The best hit is with the genomic location for which the probe was designed. Probes with a high conservation score are more likely to misbehave. Figure S3 shows the distribution of BS probe signals for the different HMM classifications. This figure shows that both the MeDIP protocol and the analysis method performed well. For a direct comparison of the HMM classification we needed to classify the BS probe signals into unmethylated, intermediate and methylated. The BS probe signals were classified by applying different sets of signal cutoffs, one cutoff for the transition from U to I and one for transition I to M. The most optimal combination of cutoffs will give the highest percentage of overlapping probe classifications. Table S1 shows the total percentage of overlapping probe classifications, and the percentages for each methylation class separately, for the most optimal cutoffs (% of HMM classification with overlap classification BS probes). This table shows that the overlap with the unmethylated and fully methylated classification is substantial (~ 97% and ~ 81%) but that there is a smaller 62 overlap with the intermediate class (~ 16%). For the DMR analysis however, we only focus on probes that make a complete switch from methylated in wt to unmethylated in *ddm1*. For that reason the miscalls in the intermediate class are less relevant.

2.4 Parental DMRs and epiRILs parent of origin

We conduct a probe-level comparison of the inferred methylation states between the wt and the *ddm1* parent. Probes are classified as non-polymorphic if the methylation state is the same between parents, or as polymorphic if the methylation state between parents is different. We collapse into regions the clusters of consecutive probes (minimum of three) which are extreme polymorphisms (M-U) between the parents. There are 2611 of these regions, which we call parental DMRs. They are all hypomethylated in the *ddm1* parent (M in wt, U in *ddm1*), which is expected from the *ddm1*-induced loss of methylation reported previously [12].

For each epiRIL *j* we consider the collection of probes corresponding to a parental DMR I and calculate the average posterior probability from the HMM (Section 2.2) over these probes for the U, I and M states ($\bar{p}_{ij}(M)$, $\bar{p}_{ij}(I)$, $\bar{p}_{ij}(U)$). A region of the epiRIL is called wt-like or *ddm1*-like if the state that maximizes \bar{p}_{ij} is *M* or *U*, respectively. In the case where I maximizes p_j^i we do not assign a parent of origin. Using the above, we define the measurement error associated with the parent of origin call for each DMR *i* and epiRIL *j* as

$$\epsilon_{ij} = 1 - \max(\bar{p}_{ij}). \tag{1}$$

2.5 Mendelian ratios

Under the assumption that DMRs were stable for eight generations of breeding, both wt- and *ddm1*-like parental states should appear according to Mendelian segregation ratios in the epiRILs. The sampling variation around these ratios was calculated from a binomial distribution taking into account the sample size (N = 123), the cross design (backcross) and the 8% F2 contamination previously reported [3]. This yields a confidence interval for the wt mendelian ratios of (62.7%, 83.3%) and for the *ddm1* Mendelian ratios of (16.7%, 37.3%).

We determine at each parental DMR the percentage of epiRILs from wt origin (%wt), the percentage of epiRILs from *ddm1* origin (%ddm1) and the percentage of epiRILs with intermediate methylation (%I). Of course, for each DMR, %wt + %ddm1 + %I = 100%. We select a region as being stably inherited if the percentage of wt-like epiRILs, *ddm1*-like epiRILs and intermediate epiRILs fulfill all the following inequalities:

- %wt + %l > 62.7%
- %wt < 83.3%
- %l < %wt
- %I < %ddm1

In this way, we select the DMRs with a low percentage of intermediate epiRILs (smaller proportion than any of the other two categories) and for which the amount of wtlike epiRILs combined with any amount of intermediate epiRILs fulfills the Mendelian criterion of inheritance. Using this definition, we find 871 regions segregating in a Mendelian fashion.

2.6 Lander-Green algorithm, inference of parental states and genetic length

These selected regions mentioned above are viewed as markers in a genetic map, and their observed marker states (e.g. wt or *ddm1*-like) are analogously defined as epigenotypes. Since the genomic positions of all markers are known, we need only calculate the map distance between markers, taking into account all sources of error in the parental calls. To achieve this, we develop a generalized version of the Lander-Green algorithm [4] which considers individual and marker dependent epigenotype errors. In this HMM-based algorithm the observations are the parental calls of the markers (i.e. wt-like, *ddm1*-like or I), and the hidden states are the real (unobserved) parental origins (wt-like or *ddm1*-like).

We define the probability $\Pr(c_j^i|h_j^i) = q_j^i(c_j^i,h_j^i)$ that the epigenotype c_j^i (c_j^i = wt-like, *ddm1* – like, *l*}) is observed at marker j in epiRIL i, given that the true epigenotype is h_j^i at that marker (h_j^i = {wt – like, *ddm1* – like}). The set of probabilities q is called emission

probabilities. We relate these emission probabilities to the measurement error ϵ_{ij} (Eq. 1) and to some amount of stochastic epigenetic changes, *s*, that could have occurred during inbreeding. These two sources of error thus quantify the quality of the parent of origin call at each DMR:

$$q_j^i(c_j^i, h_j^i) = \begin{cases} 1 - \epsilon_{ij} + s, & \text{if } c_j^i = h_j^i, \\ \epsilon_{ij} + s, & \text{if } c_j^i \neq h_j^i. \end{cases}$$

$$(2)$$

The variable q is a matrix of real numbers with dimension (2 ×*M*), where *M* is the number of markers for each epiRIL.

We also define the probability that the true epigenotype at a marker j in epiRIL i is h_j^i ($h_j^i = \{wt - like, ddm1 - like\}$) given that the observed epigenotype at that marker is c_j^i ($c_j^i = \{wt - like, ddm1 - like, I\}$). This probability can be calculated from q_j^i using the Bayes theorem:

$$p_j^i(h_j^i, c_j^i) = \Pr(h_j^i | c_j^i) = \frac{\Pr(c_j^i | h_j^i) \Pr(h_j^i)}{\Pr(c_j^i)},$$

where $\Pr(c_j^i|h_j^i) = q_j^i(c_j^i, h_j^i)$, $\Pr(c_j^i) = \sum_{y \in \{(wt, ddml) \in \mathbb{N}\}} \Pr(c_j^i|h_j^i = y)$, and the initial probabilities $\Pr(h_j^i) = cte$ are given by the Mendelian ratios. The variable p is a matrix of real numbers with dimension (2 ×*M*) for each epiRIL.

Denote by Rj the probability of a recombinant type between locus j and j + 1. Therefore the transition probabilities between two loci are

$$\mathbf{Pr}(h_{j+1}^i = y | h_j^i = z) = \begin{cases} 1 - R_j, & \text{if } y = z, \\ R_j, & \text{if } y \neq z, \end{cases}$$

where $y = z = \{$ wt-like,ddm1-like $\}$. The matrix of transition probabilities is:

$$T_{j,j+1} = \begin{pmatrix} t_{j,j+1}^{\text{wt-like},\text{wt-like}} & t_{j,j+1}^{\text{wt-like},ddml\text{-like}} \\ t_{j,j+1}^{ddml\text{-like},\text{wt-like}} & t_{j,j+1}^{ddml\text{-like},ddml\text{-like}} \end{pmatrix} = \begin{pmatrix} 1 - R_j & R_j \\ R_j & 1 - R_j \end{pmatrix}.$$

For each epiRIL *i*, we calculate the forward variable $\alpha_i^i(h)$ as

$$\begin{split} &\alpha_1^i(h) = p_1^i(h, c_1^i), \\ &\alpha_{j+1}^i(h) = \left[\sum_{z = \{(\text{wt}, \textit{ddml}) \text{-like}\}} \alpha_j^i(z) \ t_{j,j+1}^{z,h}\right] \ q_{j+1}^i(c_{j+1}^i, h), \end{split}$$

where $h = \{\text{wt-like}, ddm1\text{-like}\}$ and $1 \le j \le M_C - 1$, where M_C is the number of markers per chromosome. We also define the backward variable $\beta_i^i(h)$ as:

$$\begin{split} \beta^{i}_{M_{C}}(h) &= 1, \\ \beta^{i}_{j-1}(h) &= \sum_{z = \{(\text{wt}, \textit{ddmI}) \text{-like}\}} t^{h,z}_{j-1,j} \, q^{i}_{j}(c^{i}_{j},z) \, \beta^{i}_{j}(z), \end{split}$$

where $h = \{ wt\text{-like}, ddm1\text{-like} \}$ and $M_C \ge j \ge 2$.

. .

 R_j is estimated iteratively using:

$$R_{j} = \frac{1}{N} \sum_{i=1}^{N} \frac{\left(\alpha_{j}^{i}(y), \ \alpha_{j}^{i}(z)\right) \cdot T_{j,j+1}^{*} \cdot \left(\beta_{j+1}^{i}(y) \ q_{j+1}^{i}(c_{j+1}^{i}, y), \ \beta_{j+1}^{i}(z) \ q_{j+1}^{i}(c_{j+1}^{i}, z)\right)^{tr}}{\left(\alpha_{j}^{i}(y), \ \alpha_{j}^{i}(z)\right) \cdot T_{j,j+1} \cdot \left(\beta_{j+1}^{i}(y) \ q_{j+1}(c_{j+1}^{i}, y), \ \beta_{j+1}^{i}(z) \ q_{j+1}(c_{j+1}^{i}, z)\right)^{tr}},$$

where $1 \le j \le M_C - 1$, $y = z = \{$ wt-like,ddml-like $\}$, and $T^*_{j,j+1} = ((0, R_j), (R_j, 0))$ is a 2×2 matrix. The amount of stochastic changes, s, is fixed at some value.

We use the final estimates \hat{R}_j (for j = 1, ..., M) to calculate the likelihood of the data as

$$\log(L(\hat{R})) = \sum_{i=1}^{N} \sum_{j=1}^{M} \log\left(\left(\alpha_{j}^{i}(y), \ \alpha_{j}^{i}(z)\right) \cdot T_{j,j+1} \cdot \left(\beta_{j+1}(y), \ \beta_{j+1}(z)\right)^{tr}\right), \quad (3)$$

where again $y = z = \{wt-like, ddm1-like\}$, and N is the total number of epiRILs. The whole procedure is repeated for a series of fixed values for s and the value that maximizes the profile likelihood is taken as an estimate for the biological rate of stochasticity.

Finally, we infer parental haplotypes along the genome by selecting at each DMR the parental call that maximizes the probability of the observations given the model:

$$w_j^i = \operatorname{argmax}(\Pr(h_j^i | c_j^i, \operatorname{model})), \tag{4}$$

where argmax stands for the argument of the maximum. We refer to this latter inference as the epigenotype reconstruction step. The epigenotype reconstruction step assigns unlikely epigenotypes (e.g. DMRs with initial intermediate methylation calls or DMRs with high measurement error) to the most likely wt-like or *ddm1*-like epigenotype. This process can change the Mendelian segregation ratios. We therefore reevaluate Mendelian inheritance at each DMR, such that the wt-like epigenotype percentage falls within (%wt < 83.3%) and (%wt > 62.7%). From the initial 871 markers, after epigenotype reconstruction 867 are selected according to this criterion. We find that among these 867 markers, only 262 map to unique genetic locations, the rest being redundant and uninformative. We remove redundant markers and iterate through the following steps: i) Remove markers at the same map position (distance< 0.0001cM). ii) Recalculate Rj using the Lander-Green algorithm (with constant epigenotyping error). iii) Obtain the most likely haplotype map. After 5 iterations the procedure converges to a robust map containing 184 markers. Finally, we remove problematic markers showing strong correlations across chromosomes. This final cleaning step is performed in R/qtl [13] and follows closely the relevant section on map cleaning described in Broman [14]. Our final map contains 126 robust markers. Finally, we convert the recombination at fixation R for the epiRIL to the value of r at meiosis. We can use the result at fixation (because generation = 8 here) [5]:

$$r = \frac{2R}{3 - 4R}.$$
(5)

This estimator is biased [15], the modified estimator for r is given by

$$r = \frac{2R}{N(3-4R)^3} \left(9N - 24NR + 16R^2N - 12R + 12\right),\tag{6}$$

where N = 123 is the number of lines. This new estimator has a bias which is proportional to $1/N^2$.

2.7 Transgenerational data

In order to observe further evidence of the stable inheritance of methylation states, we performed measurements of the methylome of one epiRIL (line 344) for seven generations following the backcross. At each generation, the DNA of five siblings was pooled together to perform a MeDIP chip analysis, as described in Section 2.1. The data was normalized as described in Section 2.1.

For each of the 126 stable markers, we calculate the mean signal of all probes corresponding to that marker at every generation. We classified the markers in two different categories: wtinherited or *ddm1*-inherited, based on the genetic map information at the last generation (Section 2.6).

In order to obtain a theoretical model to describe the expected behavior of the signal over generation time we calculate the expected proportions of wt/wt epigenotype, *ddm1/ddm1* epigenotype and wt/*ddm1* epigenotype at every generation of inbreeding following the backcross. For the wt-inherited markers, we implemented a Markov Chain with selection against the *ddm1* homozygotes at every generation. For the markers inherited from the *ddm1* parent, we implemented a Markov Chain with selection against wt/wt epigenotypes. We obtained the following results for the proportions of each of the three epigenotypes at any generation *t*:

$$p_{ddm1}(t) = \left\{ \frac{1}{2^t + 2}, \frac{2}{2^t + 2}, 1 - \frac{3}{2^t + 2} \right\};$$

$$p_{wt}(t) = \left\{ 1 - \frac{3}{3 \times 2^t + 2}, \frac{2}{3 \times 2^t + 2}, \frac{1}{3 \times 2^t + 2} \right\},$$
(7)

where $p_{ddm1} = \{\Pr(wt/wt), \Pr(wt/ddm1), \Pr(ddm1/ddm1)\}$ are the proportions of wt/wt, wt/ddm1 and ddm1/ddm1 epigenotypes at every generation t for the probes getting fixed in a ddm1 haplotype at generation S7, and $p_{wt} = \{\Pr(wt/wt), \Pr(wt/ddm1), \Pr(ddm1/ddm1)\}$ are the proportions of wt/wt, wt/ddm1, and ddm1/ddm1 epigenotypes at every generation t for the probes getting fixed in a wt haplotype at generation S7. Since five plants were used at each generation to provide the DNA material for the MeDIP protocol, we needed to approximate the signal at each generation by a weighted sum over the three different epigenotypes multiplied by the mean of their signal at each generation:

$$s_{ddm1}(t) = p_{ddm1}^{(1)}(t) * \mu_{wt/wt}(t) + p_{ddm1}^{(2)}(t) * \mu_{wt/ddm1}(t) + p_{ddm1}^{(3)}(t) * \mu_{ddm1/ddm1}(t);$$

$$s_{wt}(t) = p_{wt}^{(1)}(t) * \mu_{wt/wt}(t) + p_{wt}^{(2)}(t) * \mu_{wt/ddm1}(t) + p_{wt}^{(3)}(t) * \mu_{ddm1/ddm1}(t),$$
(8)

where $p^{(i)}$ is the component *i* of vector *p*. At every generation t we use as mean value for the signal of the *ddm1/ddm1* epigenotype ($\mu_{ddm1/ddm1}$ (t)) the ln(*IP/INPUT*) signal distribution of probes corresponding to introns, and we calculate its mean by approximating this distribution to an arbitrary degree using a mixture of 30 normal distributions using the EM algorithm [7]. For the signal of the wt/wt epigenotype ($\mu_{wt/wt}(t)$), we consider the 99th percentile of the intron distribution at every generation t, and for the signal of the wt/*ddm1* epigenotype ($\mu_{wt/ddm1}(t)$) we consider the middle point between $\mu_{ddm1/ddm1}(t)$ and $\mu_{wt/wt}(t)$. We can associate the methylated component with the epigenotype wt/wt and the unmethylated component with the epigenotype *ddm1/ddm1* because all the parental DMRs are methylated in the wt parent and unmethylated in the *ddm1* one.

2.8 Transcriptome analysis of epiRILs and *ddm1* seedlings

Whole-genome expression profiling was performed using tiling microarrays on 10 day-old seedlings grown in liquid 1/2MS media, 16 hours of light at 22°C and 8 hours of night at 19°C. Total RNA was extracted using Rneasy Plant Minikit (Qiagen) according to the supplier's instructions. One ug of total RNA was amplified with one round of in vitro transcription 10h at 37°C using the MessageAmp II aRNA Amplification Kit (Ambion). Double stranded cDNA synthesis was then performed on 2 ug of aRNA using the SuperScript Double-Stranded cDNA Synthesis Kit (Invitrogen). Cy3 and Cy5 labeling was performed using the Nimblegen Dual color DNA labeling kit (Roche NimbleGen) according to manufacturer's instructions. Co-hybridization in dye-swap experiment was performed using the NimbleGen 3x720K array design and following manufacturer's instructions. Data acquisition was

performed according to Roche Nimblegen instructions. Hybridization data was normalized using an ANOVA model, and data were averaged on the dye-swap to remove tile-specific dye biases.

2.9 Consensus map

We evaluated the inferred epiRILs map by comparing it to genetic maps of classical Arabidopsis experimental crosses. To this end, we re-analyzed 17 recently published F2 populations that were derived from pairs of 18 different *Arabidopsis* natural accessions [16]. In total, 7045 plants had been genotyped (an average of 410 plants per cross, range=(235 – 462)) at an average of 235 genome positions (range=(215 – 257)) [16].

In order to perform a meaningful comparison of the genetic and epigenetic maps, we needed them to have similar coverage. We selected a subset of markers for each cross such that the number of markers and the bp position of those markers is the same across maps. In particular, we chose a reference genome with markers at the position of the epigenetic markers. For each reference marker, we selected from the 17 natural accessions crosses the marker which is closest to it. For these selected markers we used the R-qtl package [13] implemented in R (http://www.r-project.org) to re-estimate the genetic map (function est.map using map.function=haldane). In the cases where there was no marker close enough to the reference position, we artificially added a marker at the reference position and we used R-qtl to re-estimate the map (function *est.map* using map.function=haldane) and to simulate the most likely genotype at that position (function *fill.geno* with method=argmax).

In fig. S8 we can see the representation of the consensus map in base pair positions. The mean distance from the consensus map markers is 0.17Mb and the furthest marker is at 1.39Mb from the reference marker. The main map characteristics are not affected by the use of this common map, as can be seen in fig. S9. At the same time, the difference in recombination intensity between the accession crosses and the epiRIL at each reference marker interval $\left(\left(\frac{cM}{Mb}\right)_{acc\ cross} - \left(\frac{cM}{Mb}\right)_{epiRIL}\right)$ is not correlated with the difference in the size of the marker interval (Δ Mbacc\ cross - Δ Mbreference), which is due to the slight mismatch of the marker

positions between the reference map (i.e. the epiRIL marker positions) and the position of the accessions markers (fig. S10). This allows us to do a meaningful comparison of the features of the maps for each cross.

2.10 Recombination intensities at major annotation transitions

Figure 2A and C show how the recombination intensity increases rapidly at the pericentromeric boundaries, which also coincide with major transitions in genome content from genes to transposons. In order to find the area where the recombination intensity is maximal we implemented a sliding window approach (window size: 3 Mb, step size: 100 kb). We used the transition in genome content as a reference point. The recombination intensity of each window was calculated by dividing the percentage of recombination events within each window (% of all recombination events) by the percentage of bp covered by the same overlapping marker intervals (% of all marker intervals). This calculation was done across all sliding windows. Marker intervals with a small overlap with the window were excluded when the non-overlapping part was bigger than 1Mb. The maximum recombination intensity of the F2 populations was found at a distance of +100 kb (middle position window; in the direction of the arms; fig. S12).

The windows with the maximum recombination intensity (located +100 kb from the transition towards the arms) were further examined for the presence of shared breakpoints. In an effort to fine-map shared breakpoints within these windows, we resorted to probelevel tiling array data of specific epiRILs that were recombinant in these windows. For this analysis we only considered differentially methylated probes (M in wt and U in *ddm1*) that showed Mendelian segregation patterns in the epiRILs. To avoid misclassified probes due to cross-hybridization issues we also considered probes with a conservation score of 85 or less (high quality probes). We selected differentially methylated probes as being stably inherited if the percentage of wt-like epiRILs (%wt), *ddm1*-like epiRILs (%ddm1) and intermediate epiRILs (%I) fulfill all the following inequalities:

- %wt > 62.7
- %wt < 83.3
- %ddm1 > %l

Shared breakpoints were fine-mapped by visual inspection of the probe classification (probes that fulfill the above criteria) of the recombinant epiRILs. For this purpose we only plotted probes that were M (green; wt-like) or U (red; *ddm1*-like). We considered a breakpoint as being shared if at least three epiRILs were having an overlapping breakpoint interval. The shared breakpoint interval length was calculated by taking the difference of the minimum start position and the maximum stop position of all intervals. Using the above criteria we found 12 shared breakpoints (table S8).

References

[1] Cortijo S, Wardenaar R, Colomé-Tatché M, Johannes F, Colot V (2012) Genome-wide analysis of dna methylation in arabidopsis using medip-chip. Methods in Molecular Biology (in press).

[2] Roudier F, Ahmed I, B'erard C, Sarazin A, Mary-Huard T, et al. (2011) Integrative epigenomic mapping defines four main chromatin states in arabidopsis. EMBO Journal 30: 1928–1938.

[3] Johannes F, Porcher E, Teixeira F, Saliba-Colombani V, Simon M, et al. (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genetics 5: e1000530.

[4] Lander E, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proceedings of the National Academy of Sciences 84: 2363–2367.

[5] Johannes F, Colom'e-Tatch'e M (2011) Quantitative epigenetics through epigenomic pertubation of isogenic lines. Genetics 188: 215-227.

[6] Lister R, O'Malley R, Tonti-Filippini J, Gregory B, Berry C, et al. (2008) Highly integrated single-base resolution maps of the epigenome in *Arabidopsis*. Cell 133(3): 523–536.

[7] McLachlan G, Peel D (2000) Finite Mixture Models. John Wiley and Sons, Inc.

[8] Baum L, Petrie T, Soules G, , Weiss N (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains. Ann Math Stat 41: 164–171.

[9] Rabiner L (1989) A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77: 257–286.

[10] Cokus S, Feng S, Zhang X, Chen Z, Merriman B, et al. (2010) Shotgun bisulphite sequencing of the arabidopsis genome reveals dna methylation patterning. Nature 452: 215–219.

[11] Chen P, Cokus S, PellegriniM (2010) Bs seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics 11:203, doi 10.1186/1471-2105-11-203.

[12] Vongs A, Kakutani T, Martienssen R, Richards E (1993) *Arabidopsis thaliana* dna methylation mutants. Science 260: 1926-1928.

[13] Broman K, Wu H, Sen S, Churchill G (2003) R/qtl: Qtl mapping in experimental crosses. Bioinformatics 19: 889–890.

[14] Broman K (2010) Genetic map construction with r/qtl. Technical report 214.

[15] Martin O, Hospital F (2006) Two- and three-locus tests for linkage analysis using recombinant inbred lines. Genetics 173: 451–459.

[16] Salomé P, Bomblies K, Fitz J, Laitinen RAE, Warthmann N, et al. (2011) The recombination landscape in arabidopsis thaliana f2 populations. Heredity 108: 447-455.

(B) Pourcentage de la variation phénotypique expliqué par les QTL
III.2.3. Cartographie de QTL pour le temps de floraison et la longueur de la racine primaire

Afin d'identifier les régions du génome dont les variations de l'état de méthylation sont associées à celles du temps de floraison ou de la longueur de la racine primaire nous avons recherché des QTL pour ces caractères en nous basant sur la carte génétique des 123 épiRIL décrite ci-dessus.

III.2.3.1. Les QTL détectés pour le temps de floraison et la longueur de la racine primaire expliquent une part importante de l'héritabilité de ces caractères

Afin de détecter des QTL pour le temps de floraison et la longueur de la racine primaire, une cartographie d'intervalle classique a été utilisée par nos collaborateurs (groupe de Frank Johannes, Groningen) avec une taille de pas de 2 cM (Broman et al., 2003, Matériels et Méthodes). Le score LOD (logarithm of the odds), qui correspond au log de base 10 du rapport de la vraisemblance de la présence d'un QTL sur la vraisemblance de l'absence d'un QTL, est établi tout le long de la carte génétique. Un seuil de significativité pour le génome a été déterminé en réalisant 1000 permutations des marqueurs.

Trois QTL ont été détectés pour chacun des deux caractères étudiés. Les QTL associés au temps de floraison sont observés pour les chromosomes 1, 4 et 5 (Figure III.4.). Ceux pour la longueur de la racine primaire sont situés au niveau des chromosomes 1, 2 et 4 (Figure III.4.). L'effet de ces QTL sur les phénotypes correspondants a ensuite été mesuré par des modèles de régression linéaire simples ou multiples (Matériels et Méthodes). Chacun de ces QTL explique au minimum 4% de la variation phénotypique observée. De plus, la combinaison de l'ensemble des QTL permet d'expliquer une grande part de l'héritabilité calculée pour ces caractères (Figure III.3). Pour tous les QTL identifiés, l'allèle *ddm1* a en moyenne un effet négatif sur le phénotype associé (une racine plus courte et un temps de floraison plus précoce).

Figure III.6. Analyse de la méthylation au niveau de deux marqueurs pour chacun des QTL associés à la longueur de la racine primaire dans wt, *ddm1* et les pools « racine petite » et « racine longue » dans la F3.

III.2.3.2. Analyse des QTL associés à la longueur de la racine primaire

Nous avons étudié plus avant les 3 QTL associés à la longueur de la racine primaire. Nous avons en particulier voulu nous affranchir du risque que les variations causales soient non pas épigénétiques mais nucléotidiques liées à la mobilisation d'un ou plusieurs éléments transposables depuis la lignée parentale *ddm1*. Pour cela un croisement a été effectué entre un mutant *ddm1* et un individu sauvage différents mais néanmoins parents de ceux utilisés pour la construction des épiRIL. La F1 obtenue a été autofécondée et seules les F2 sauvages pour le gène DDM1 ont été conservées. Parmi ces F2, une plante hétérozygote pour la méthylation au niveau de 4 marqueurs pour chaque QTL a été sélectionnée (Figure III.5. Matériels et Méthodes). La méthylation de l'ADN a été analysée sur 82 descendants de cette F2 qui présentant les longueurs de racine primaire les plus extrêmes. La longueur de la racine a été mesurée au total pour 380 individus F3 ainsi que pour 56 wt et 17 ddm1. La distribution de la longueur de la racine primaire dans cette population F3 est continue et suit une loi normale. Au final, 82 individus présentant une longueur de racine extrême ont été transférées en terre pour analyser leur méthylation de l'ADN : 41 avec une petite racine (pool « petite racine ») et 41 avec une racine longue (« racine longue »). La méthylation de l'ADN a été analysée pour des pools équimolaires d'ADN de chacun de ces groupes par McrBC-qPCR avec 2 marqueurs dans chacun des 3 QTL associés à la longueur de la racine (Matériels et Méthodes).

Une différence du niveau de méthylation de l'ADN est observée entre les pools « racine petite» et « racine longue » pour tous les marqueurs testés et cette différence va dans le sens attendu (racine petite : méthylation faible de type *ddm1*; racine longue : méthylation forte de type sauvage) sauf pour l'un des marqueurs du QTL sur le chromosome 4 (Figure III.6.). Le fait que la relation attendue entre méthylation de l'ADN et phénotype racinaire soit retrouvée dans une population indépendante au moins pour les QTL des chromosomes 1 et 2 indique que les variations causales sont très probablement épigénétiques. En parallèle de l'épigénotypage de 123 épiRIL, le génome de ces mêmes lignées est en cours de séquençage en collaboration avec le groupe de Patrick Wincker au Genoscope (Evry) dans le cadre du projet ANR EPIMOBILE. Un des aspects de ce projet

75

développé par d'autres membres de l'équipe est d'étudier les principes liés à la mobilisation et à l'insertion d'éléments transposables. Pour le moment, 53 épiRIL ont été analysées. Aucune variation structurale n'a été associée au QTL du chromosome 2 confirmant donc quasi définitivement l'origine épigénétique de la variation causale de ce QTL (Figure III.7.).

III.3. Conclusion et discussion

III.3.1. Les profils de recombinaison ne sont pas perturbés par une perte de méthylation et une absence de variation de la séquence

Nos collaborateurs ont générés une carte génétique robuste à partir des 123 épiRIL épigénotypées à l'aide de 126 marqueurs non redondants sélectionnés parmi les 867 DMR présentant une hypométhylation stable. La comparaison de cette carte avec les celles obtenues pour 17 populations F2 dérivant de croisements entre 18 accessions naturelles montre des profils de recombinaison similaires avec notamment une suppression au moins aussi forte des crossing-over péricentromériques dans les épiRIL. Ce résultat est inattendu puisqu'il invalide l'idée communément admise que le haut degré de polymorphisme nucléotidique et la forte méthylation de l'ADN qui caractérisent les régions péricentromériques sont, au moins en partie, responsables de la suppression des crossingover dans ces régions.

III.3.2. Détection de variations épialléliques associées à des changements phénotypiques via la recherche de QTL dans la population d'épiRIL

Nous avons mesuré une héritabilité importante pour le temps de floraison et la longueur de la racine primaire dans les épiRIL. Les QTL détectés pour ces caractères expliquent une grande partie de cette héritabilité. L'héritabilité restante pourrait être expliquée par la présence de QTL avec des effets trop faibles pour être détectables dans notre étude ou par l'apparition de variations de méthylation ou de séquence au cours de la formation des épiRIL. Nous avons ensuite cherché à identifier les sources de variation responsables de ces QTL. Nous avons aussi pu valider un des QTL, pour la longueur de la racine primaire, dans une population indépendante. Nos résultats sont en accord avec l'existence d'épiallèles parentaux stables affectant la longueur de la racine primaire. Plusieurs nouvelles insertions d'éléments transposables ont aussi été détectées dans, ou à proximité, de certains QTL, suggérant la possibilité de variations nucléotidiques causales également. Des approches locus candidat ou de cartographie fine permettront de

déterminer l'origine épigénétique et/ou nucléotidique dans chaque cas. Ce travail sera facilité par le fait que le nombre de polymorphismes de méthylation de l'ADN reste relativement faible (\approx 201 DMR par Mb) et celui du nombre de SNP et autres variants de séquence aussi (inférieur sans doute à une centaine pour tout le génome contre \approx 4900 SNP par Mb entre deux accessions, Schneeberger et al., 2011). L'intégration de QTL d'expression et de QTL pour un caractère donné devrait également faciliter l'identification des gènes candidats (Cubillos et al., 2012). Par exemple, la co-localisation d'un eQTL *cis* et d'un phQTL^{epi} dans les épiRIL indiquerait la régulation de l'expression d'un gène par une ou des variations de méthylation de l'ADN à proximité avec un effet sur le caractère étudié. La recherche d'eQTL^{epi} pourrait être effectuée dans les épiRIL en générant le transcriptome des lignées épiRIL déjà épigénotypées.

IV. Chapitre 3 : Recherche des variations causales associées aux QTL pour la longueur de la racine primaire.

Les travaux décrits dans ce chapitre ont eu pour but d'initier par une approche locus candidat la recherche et la caractérisation d'épiallèles potentiellement impliqués dans la variation héritable de la longueur de la racine primaire dans la population d'épiRIL.

IV.1. Résultats

IV.1.1. Recherche et analyse de loci candidats dans les QTL associés à la longueur de la racine primaire.

La recherche de loci candidats a été réalisée à partir d'une première version de la carte génétique dérivée de l'analyse des 105 premiers méthylomes d'épiRIL. Nous avons choisi de nous concentrer sur le QTL majeur pour la longueur de la racine primaire, situé au niveau du chromosome 1 entre les positions 16.3 et 20 Mb et qui englobe la région péricentromérique.

IV.1.1.1. Recherche de loci candidats

Le principe de la recherche de régions candidates est détaillé dans la figure IV.1 et repose uniquement sur les données de méthylation de l'ADN dans les épiRIL. Afin de détecter les sondes ayant un profil de méthylation corrélé avec le phénotype racinaire nous avons déterminé le nombre d'épiRIL U, I et M dans les deux groupes d'épiRIL montrant un phénotype extrême pour la longueur de la racine primaire (court ou long). Ainsi 1224 sondes ont été sélectionnées car elles rapportent un signal de méthylation différentiel entre ces deux groupes (p-value < 0.05 pour un test de chi2 d'homogénéité). Un total de 278

d'expression différentielle entre wt et *ddm1* (rouge = surexpression, vert=sous-expression) à ce locus sont représentées (gauche). Le profil d'expression préferentielle de AT1g48670 dans la racine est indiqué (droite)

domaines a été obtenu à partir de 854 sondes, par regroupement d'au moins 2 sondes au voisinage l'une de l'autre et dont le profil de méthylation dans les épiRIL est proche. Les sondes isolées qui ne sont pas attendues compte tenu de la taille des fragments obtenus par sonication avant le MeDIP (≈300pb, deux à trois sondes) sont donc éliminées de l'analyse. Parmi les 278 domaines, 212 sont situés dans des gènes ou à proximité immédiate (≤ 1,5 kb) et seuls ceux-ci ont été considérés pour la suite.

Afin d'affiner le nombre de loci candidats, nous avons dans un deuxième temps pris en compte les données d'expression différentielle dans des plantules entre le mutant *ddm1* et le parent sauvage. Ainsi, seuls 9 des 212 gènes considérés initialement montrent une perte ou un gain d'expression d'un facteur deux au moins. Parmi ces 9 candidats, le gène At1g48670 semble être le plus pertinent car il présente la différence de méthylation de l'ADN la plus significative entre les deux groupes extrêmes pour le phénotype racinaire et un niveau d'expression dans *ddm1* très inférieur (6 fois) à celui dans la lignée parentale sauvage. La région différentiellement méthylée se situe à environ 1 kb en amont du gène et correspond à un rétrotransposon à LTR, ATCOPIA49 (Figure IV.2.). La méthylation de cet ET est significativement corrélée au phénotype racinaire puisque toutes les épiRIL extrême « racine longue » ont un état l (20/20) alors que celles « racine petite » ont des états l (3/15), M (6/14) et U (5/14). De plus, le gène At1g48670 est préferentiellement exprimé dans la racine (http://jsp. weigelworld.org/expviz/expviz.jsp et http://bar.utoronto.ca/efp/cgibin/efpWeb.cgi, Figure IV.2.), et code une protéine de la famille des GH3 sensibles à l'auxine, une phytohormone importante pour le développement racinaire.

IV.1.1.2. Analyse moléculaire du locus candidat

Afin d'étudier un lien éventuel entre variation de la méthylation de l'ADN au niveau d'ATCOPIA49 et variation de l'expression d'At1g48670, dix épiRIL extrêmes ont été analysées. Six sont hypométhylées pour ATCOPIA49 et présentent des petites racines tandis que quatre autres qui ont un niveau de méthylation intermédiaire et présentent soit une racine longue (3/4) soit une racine petite (1/4). Nous avons également déterminé dans les épiRIL l'expression d'ATCOPIA19 car cet élément est exprimé dans *ddm1*. Dans les épiRIL hypométhylées au locus, le gène et l'élément transposable se comportent comme dans

Figure IV.3. Analyse du locus candidat pour le QTL du chromosome 1 dans wt et *ddm1* en fond Col-0 et L*er* ainsi que dans les épiRIL

(A) Analyse de la présence ATCOPIA49 chez Col-0 et Ler par PCR sur ADN génomique

(B) Analyse de l'expression du gène At1g48670 et de l'élément transposable en amont de celui-ci (ATCOPIA49) chez Col-0 wt, Col-0 *ddm1* (gauche), des épiRIL méthylées ou non méthylées pour ATCOPIA49 (centre) et pour L*er* wt et L*er ddm1* (droite). Le résultat présenté est la moyenne de chaque groupe pour deux répliques.

ddm1, à savoir une perte d'expression pour le premier et un gain d'expression pour le second. A l'inverse ils ont un profil d'expression similaire à celui de la lignée parentale sauvage dans les épiRIL méthylées au locus (Figure IV.3.). L'une des quatre épiRIL méthylées au locus appartient au groupe d'extrêmes « racine petite » ce qui suggère que la perte d'expression de ce gène n'est pas causée par une petite longueur de la racine primaire.

Afin d'analyser l'importance de l'élément transposable ATCOPIA49 dans la régulation du gène At1g48670, nous avons étudié l'expression de ce dernier dans l'accession *Landsberg* erecta (*L*er) qui ne possède pas l'insertion. Le niveau d'expression du gène est similaire dans les plantes sauvage des deux accessions. Cependant aucune perte d'expression n'est détectée chez le mutant *ddm1 L*er (Figure IV.3.). Ce résultat indique que la dérégulation d'At1g48670 dans le mutant *ddm1* de l'accession Col-0 est très vraisemblablement causée par ATCOPIA49.

Parmi plus de 600 accessions testées, 54 présentent l'insertion ATCOPIA49 dans la même orientation en amont d'At1g48670 (travail effectué par Marina Ferrand dans le laboratoire d'Olivier Loudet, IJPB, Versailles). Nos resultats, qui restent à confirmer, indiquent une possible hypométhylation de l'élément transposable dans l'une de ces 54 accession. L'analyse de l'expression du gène et d'ATCOPIA49 reste à faire. Un croisement avec Col-0 a par ailleurs été effectué afin de tester dans la F2 l'implication de la méthylation au niveau de cet élément transposable dans la régulation de l'expression du gène et sur le phénotype racinaire.

IV.1.1.3. Validation de l'impact de la méthylation de l'ET sur l'expression du gène et sur le phénotype racinaire

Le phénotype associé à la perte de fonction du gène AT1g48670 a été analysé à l'aide de 2 lignées d'insertions T-DNA indépendantes, dans le premier exon du gène, pour l'accession Ws (FLAG_430H09 et FLAG_136C01). Ces deux lignées d'insertion présentent une racine primaire plus courte que l'accession de départ. Cependant les analyses de ségrégation

(A) Position des régions ciblées dans le locus candidat pour induire la méthylation (*)

(B) Schéma de la méthode utilisée pour induire la méthylation *de novo* de la séquence cible. Le transgène est représenté à gauche tandis que la séquence cible endogène est à droite.

du T-DNA indiquent une absence de corrélation entre la variation de la longueur de la racine primaire et l'insertion T-DNA pour les deux lignées. Cette analyse ne permet pas de conclure pour le moment sur l'effet du gène At1g48670 sur la longueur de la racine primaire.

Une autre approche afin de déterminer si le gène At1g48670 est impliqué ou non dans le développement racinaire serait l'exprimer sous promoteur constitutif dans le mutant *ddm1* et les épiRIL à petite racine.

En parallèle du travail précédent, nous avons cherché à rétablir la méthylation d'ATCOPIA49 dans deux épiRIL « racine petite » au moyen d'un trangène producteur de petits ARN. Ce travail est effectué en collaboration avec Donna Bond (laboratoire de David Baulcombe, Université de Cambridge) Le principe est de générer un ARN double brin, reconnu par DCL3 et donc capable de guider la machinerie du RdDM vers la ou les séquences génomiques correspondantes (Mette et al, 2000, Figure IV.4.). Les épiRIL 18 et 361 ont été choisies pour cette approche car elles présentent un phénotype « racine petite » et sont déméthylées pour ATCOPIA49. Leurs méthylomes sont néanmoins contrastés. La lignée 570, qui présente un phénotype « racine longue », un ATCOPIA49 méthylé et un méthylome proche de celui de l'épiRIL 361 a servi de contrôle. Trois régions différentes ont été ciblées pour la méthylation : la première est à cheval entre le 5' UTR du gène et la région intergénique, la deuxième chevauche la région intergénique et ATCOPIA49 et la troisième est dans l'élément transposable (Figure IV.4). Si la variation de méthylation de l'ADN est responsable du phénotype racinaire, une racine plus longue est attendue dans les transformants pour les deuxièmes et troisièmes séquences ciblées dans les épiRIL hypométhylées pour ATCOPIA49. Lorsque la séquence ciblée est située au niveau du gène, aucune variation de la longueur de la racine n'est attendue quelles que soient les plantes transformées. Si la méthylation est bien induite uniquement au niveau de séquences ciblées, aucun changement du phénotype racinaire n'est attendu pour les transformants générés à partir de l'épiRIL 570 et du wt, quelle que soit la séquence ciblée. Les plantes transformées T1 et T2 ont été sélectionnées (Matériels et Méthodes) et les analyses du niveau de méthylation des séquences ciblées ainsi que de la longueur de la racine seront effectuées sur la T3.

Figure IV.5. Régions candidates, basées sur la méthylation de l'ADN uniquement, pour les trois QTL pour la longueur de la racine (LRP). Cette analyse a été effectuée avec l'outil statistique développé par Frank Johannes, permettant une recherche systématisée de locus candidats.

IV.1.1.4. Systématisation de la recherche de loci candidats pour tous les QTL associés à la longueur de la racine primaire.

Une seconde cartographie de QTL a été effectuée suite à l'amélioration de la carte génétique par la prise en compte d'un nombre plus élevé d'épiRIL (123 au lieu de 105) et en incluant les deux mesures de longueur de la racine primaire. La position des QTL a ainsi été affinée. Selon cette nouvelle cartographie, le gène At1g48670 sélectionné précédemment se situe en bordure de l'intervalle de confiance du QTL sur le chromosome 1 (13.6 à 17.5 Mb). Cependant, il reste le candidat le plus sérieux compte tenu des résultats d'analyse d'expression et de méthylation dans les épiRIL décrites ci-dessus.

Afin de systématiser la sélection de loci candidats, un algorithme sous R a été développé par nos collaborateurs (Frank Johannes, Université de Groningen) qui permet une recherche plus rapide et utilisable pour tous les QTL détectés jusqu'ici. Les sondes candidates dans l'intervalle de confiance du QTL sont celles qui rapportent un polymorphisme de méthylation entre les parents et qui montrent une corrélation supérieure à 0.8 avec l'épigénotype du marqueur situé au niveau du LOD maximum du QTL. Au total, 819 sondes ont ainsi été sélectionnées pour le QTL sur le chromosome 1. Pour la région du QTL commune aux deux recherches de loci candidats, 481 sondes ont été sélectionnées selon la première (manuelle) et 337 selon la deuxième (automatique) analyse, dont 69 seulement sont partagées. Ce relativement faible chevauchement peut s'expliquer par le fait qu'un polymorphisme parental est requis par la méthode automatique et non dans la manuelle et que les tests statistiques utilisés sont différents (corrélation et Chi2). En utilisant cette approche systématisée, 69 domaines sont obtenus pour le QTL du chromosome 1 qui se situent dans ou à proximité de 17 gènes. Pour le QTL du chromosome 2, 231 domaines dans ou a proximité de 71 gènes sont détectés et pour le QTL du chromosome 4, quatre domaines dans ou a proximité de deux gènes sont sélectionnés (Figure IV.5.). Ces gènes seront prochainement analysés puis testés comme cela a été fait pour At1g48670.

IV.1.2- Etude du méthylome racinaire

En parallèle de l'étude des QTL détectés pour la longueur de la racine primaire nous avons utilisé une autre approche afin d'appréhender le rôle de la méthylation de l'ADN dans le développement racinaire en générant le méthylome racinaire et en le comparant à celui des parties aériennes. Un chevauchement très important est observé aussi bien pour les gènes (85%) que pour les éléments transposables (90%) méthylées dans ces tissus. Les gènes méthylés uniquement dans la racine ou la partie aérienne ne sont pas enrichis en une ontologie ou pour un profil d'expression particulier. L'analyse de la méthylation différentielle à proximité des gènes combinée aux transcriptomes des racines et parties aériennes pourrait permettre la détection de gènes régulés différemment dans ces deux parties de la plantes en lien avec des variations de la méthylation de l'ADN.

IV.2. Conclusion et discussion

Par une approche locus candidat nous avons identifié le gène At1g48670, qui présente une forte association entre variations de méthylation de l'ADN, d'expression et de longueur de la racine primaire. Les variations à ce locus expliquent au maximum 4% de la variation phénotypique observée pour la longueur de la racine primaire. L'identification de tels locus candidats est rendue aisée par le fait que les épiRIL présentent un polymorphisme de méthylation de l'ADN très faible en regard des variations nucléotidiques attendues lors de l'analyse de RIL. Afin de valider que la variation de la méthylation de l'ADN est responsable de la dérégulation d'At1g48670 nous avons mis en place une méthodologie permettant de forcer la méthylation à ce locus dans des épiRIL hypométhylées. Cette approche permettra de prouver que la variation de méthylation de l'ADN au niveau d'At1g48670 est bien la cause d'une partie au moins du phénotype racinaire.

Les méthodes de recherche et de validation de candidats établies au cours de la thèse seront utilisées par la suite pour identifier d'autres épiallèles affectant la longueur de la racine primaire ou d'autres caractères. Cette étude permettra d'augmenter le nombre d'épiallèles identifiés chez *Arabidopsis thaliana*. La découverte de nouveaux épiallèles affectant des phénotypes quantitatifs pourra permettre leur caractérisation afin de déterminer s'ils ont les mêmes propriétés que les épiallèles décrits jusqu'ici (lien avec des séquences répétées, instabilité, position génomique). Ces épiallèles devront ensuite être recherchés dans la nature.

En parallèle des approches décrites ici, il est possible d'envisager de réduire les intervalles des QTL par une cartographie fine. Cette diminution de la taille des intervalles des QTL peut être effectuée en utilisant une population HIF (Heterogeneous inbred family, Tuinstra et al., 1997). Le principe est d'augmenter le nombre de recombinaisons ayant lieu dans le QTL en étudiant la descendance d'individus hétérozygotes uniquement pour ce QTL afin de réduire son intervalle de confiance. Ce type de population peut être généré à partir d'une épiRIL hétérozygote pour une partie du QTL analysé. L'épiRIL 147 est précisemment hétérozygote pour le QTL pour la longueur de la racine primaire situé sur le chromosome 1.

Une autre possibilité serait d'effectuer un croisement entre les épiRIL 570 et 361 qui ont une origine parentale différente pour l'intervalle du QTL mais le même épigénotype hors de celui-ci. Ces croisements sont en cours et la F2 pour être utilisée pour la cartographie fine.

V. Discussion générale

Nous avons montré, au cours de ce travail de thèse que la mutation *ddm1* induit à l'échelle du génome principalement des hypométhylations de séquences répétées et que ces hypométhylations présentent un continuum de stabilité après restauration de la fonction du gène *DDM1*. Nos données ont également contribué à confirmer l'association entre la capacité de réversion et l'abondance en siRNA de 24nt. Nous avons de plus mis en évidence la rareté d'apparition de variations non parentales de méthylation dans les épiRIL dérivées de *ddm1*.

Nous montrons que les profils de recombinaison mesurés dans les épiRIL à l'aide d'une carte génétique générée à partir de marqueurs épigénétiques sont très semblables à ceux obtenus pour 17 populations F2. Des QTL ont été détectés pour la longueur de la racine et le temps de floraison dont deux ont pu être validés dans une population indépendante ce qui suggère fortement la présence d'épiallèles ayant un impact significatif sur la longueur de la racine primaire.

Nous avons identifié un épiallèle potentiel par une approche locus candidat. La caractérisation de ce gène ainsi que l'importance de la méthylation de l'ADN dans sa régulation sont en cours.

L'hypométhylation induite par la mutation *ddm1* présente un continuum de situations entre stabilité et réversion complète. Les réversions incomplètes traduisent soit une pénétrance incomplète, soit des différences d'expressivité, soit les deux. Il a été montré que la réversion est associé à une abondance en siRNA de 24 nt (Teixeira et al., 2009). Nous confirmons ces résultats à l'échelle du génome. L'abondance en siRNA de 24 nt est plus élevée lorsque la réversion est complète que quand elle est incomplète. Nous avons aussi détecté une réversion sporadique pour des régions dont l'hypométhylation est stablement transmise dans les épiRIL et avons montré qu'elle est elle-même associée à une abondance plus importante en siRNA dans les épiRIL concernées. Contrairement à la réversion complète ou incomplète, la réversion sporadique est spécifiquement associée à des siRNA de 24nt à

séquences uniques. Ces résultats suggèrent donc que les régions répétées naturellement méthylées mais présentant peu de petits ARN chez wt et les perdant chez *ddm1*, qui sont relativement dégénérées, possèdent néanmoins la capacité de produire de manière sporadique des petits ARN quand elles sont déméthylées. Lorsqu'une région présente une réversion sporadique, certaines épiRIL ne révertent que pour une partie seulement de la région. On peut se demander si l'étendue de la réversion n'est pas elle-même progressive. L'analyse de générations plus avancées des épiRIL permettrait de tester cette hypothèse.

Nous avons montré que comme pour le temps de floraison, la longueur de la racine primaire varie dans les épiRIL et qu'une part importante de cette variation est héritable. De plus nos travaux ont permis l'identification de quelques QTL majeurs pour ces deux caractères. Les QTL sur les chromosomes 1 et 2 associés à la longueur de la racine primaire ont été validés dans une population F3 indépendante. Ceci suggère au moins pour ces deux QTL une variation causale épigénétique plutôt que nucléotidique. Leur recherche est en cours et pourra être étendue à des QTL affectant d'autres caractères quantitatifs.

Un chevauchement entre les intervalles des QTL détectés dans les épiRIL et dans des RIL pour la longueur de la racine primaire n'a été observé que pour le QTL sur le chromosome 4. Ceci pourrait indiquer que le ou les mêmes gènes sont affectés dans ces QTL, soit par le même type de polymorphisme, soit par des polymorphismes de natures différentes. Il est en effet tout à fait possible que la ou les variations causales de ce QTL détecté dans les RIL soit épigénétique et inversement qu'elle soit nucléotidique dans les épiRIL. Ces QTL ont cependant des intervalles de confiance de plusieurs mégabases, rendant difficile toute conclusion sur la possibilité d'un impact sur les mêmes gènes sans une analyse plus approfondie. Il est à noter que dans ce QTL seuls deux gènes sont à proximité de variations de méthylation de l'ADN associées au QTL et trois autres au niveau de nouvelles insertions d'éléments transposables. Une complémentation pourrait être effectuée pour ces 5 gènes dans les épiRIL afin de valider si l'une de ces variations épigénétique ou nucléotidique est causale du QTL. Une complémentation dans les RIL avec ces mêmes gènes dans des RIL permettrait de déterminer si les mêmes locus sont affectés dans les épiRIL et

les RIL. Un croisement entre des épiRIL et des RIL apporterait aussi une réponse à cette question.

Plusieurs études indiquent que des variations subtiles d'expression des gènes ont une contribution majeure dans l'évolution des phénotypes (Cubillos et al., 2012). Des variations naturelles quantitatives de l'expression de gènes en réponse à des stimuli internes ou externes ont été aussi observées (Cubillos et al., 2012). Des variations phénotypiques héritables peuvent être causées par des variations d'expression quantitatives qui peuvent elles-mêmes être influencées par des changements de la séquence nucléotidique et/ou de la méthylation de l'ADN. Les variations épialléliques qui ont un caractère continu et peuvent amener à une variation subtile de l'expression de gène pourraient alors jouer un rôle dans l'évolution. L'implication de variations de méthylation de l'ADN dans l'adaptation à l'environnement local pour des hybrides chez le peuplier a été suggérée dans une étude récente (Raj et al., 2011). Des clones ayant poussés dans des environnements différents présentent des profils d'expression distincts en réponse à un stress sécheresse qui sont potentiellement causés par des épigénome divergents. Il est à noter que tous les QTL, sauf celui sur le chromosome 4, sont observés au niveau de régions péricentromériques. Ce fait pourrait être expliqué par l'abondance plus importante en marqueur dans ces régions. Cependant ce résultat pourrait aussi refléter un impact plus fréquent des variations de méthylation sur l'expression des gènes dans ces régions riches en éléments transposables dans les épiRIL. La mutation ddm1 affecte en effet principalement les séquences répétées, ce qui pourrait expliquer que des gènes dans les régions péricentromériques qui sont donc à proximité de séquences répétées ont plus de chance d'être influencés directement par des variations de méthylation de l'ADN dans les épiRIL. Des DMR au niveau de séquences répétées pourraient avoir un impact direct sur l'expression de gènes à proximité ou à distance via la mobilisation des éléments transposables (Ahmed et al., 2011, Hollister and Gaut, 2009, Hollister et al., 2011, Mirouze et al., 2009, Miura et al., 2001 ; Tsukahara et al., 2009). En contexte naturel, une variation importante de la méthylation de l'ADN au niveau des séquences répétées n'est pas attendue (Greaves et al., 2012 ; Vaughn et al., 2007 ; Zhang et al., 2008) sauf peut être lors de stress environnementaux ou d'accidents provoquant la perte de fonction de gènes impliqués dans la méthylation de l'ADN (Becker et al., 2011 ; Boyko et al., 2011). Les épiRIL sont alors une source idéale pour détecter des épiallèles ayant un impact sur la réponse phénotypique à différents stress ennvironnementaux. Par contre afin de déterminer si des épiallèles transmissibles peuvent être induits par des stress, l'analyse de la méthylation de l'ADN dans des accessions d'*Arabidopsis thaliana* ayant subit des variations environnementales devra être effectuée. Les épiallèles pourraient ainsi avoir une implication dans le cadre de l'adaptation à l'environnement et de l'évolution par leur possible induction par des stress, leur caractère continu ainsi que l'instabilité de leur niveau de méthylation (Rapp 2005 ; Richards 2006 ; Richards 2008).

VI. Matériels et méthodes

VI.1. Matériel biologique

La population d'épiRIL utilisée à été décrite précedemment ainsi que dans l'introduction (Johannes et al., 2009, paragraphe I.4.1.). La mesure de la longueur de la racine primaire, les analyses des méthylomes ainsi que la caractérisation de gène candidat ont été effectués sur des plantes de la génération BC1-S7. Les lignées d'insertion T-DNA dans le gène candidat ont été commandées sur le site http://dbsgap.versailles.inra.fr/publiclines.

VI.2. Analyse de la méthylation de l'ADN

VI.2.1. Description du MeDIP-chip et de son analyse par HMM

Les méthylomes de wt, *ddm1* et des épiRIL ont été générés par MeDIP-chip. Dans cette méthode, l'ADN simple brin méthylé est immunoprécipité à l'aide d'un anticorps spécifique puis hybridé, en comparaison avec l'ADN total, sur une puce à ADN de Nimblegen. Cette puce contient 711320 sondes homothermales définies dans des fenêtres de 165 nt tout le long de l'ensemble du génome d'*Arabidopsis thaliana*. Nous avons décidé, en collaboration avec Frank Johannes, de développer un outil d'analyse de MeDIP-chip permettant de déterminer 3 états : non méthylé (U), intermédiaire (I) et méthylé (M). La méthode de MeDIP-chip ainsi que l'outil HMM permettant son analyse sont décrits en détail dans un chapitre du livre « Plant Epigenome: Understanding and Analysis » présenté ciaprès.

Genome-wide analysis of DNA methylation in Arabidopsis using MeDIP-chip

S. Cortijo¹*, R. Wardenaar²*, M. Colomé-Tatché², F. Johannes^{2#}, V. Colot^{1#}

¹ Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR8197-Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, 46 rue d'Ulm, 75230 Paris cedex 05, France

 ² Groningen Bioinformatics Centre, University of Groningen Faculty of Mathematics and Natural Sciences
 Nijenborgh 7, 9747 AG Groningen, The Netherlands

* Equal contributions

[#]Correspondence to: FJ (<u>f.johannes@rug.nl</u>) or VC (<u>colot@biologie.ens.fr</u>)

Abstract

DNA methylation is an epigenetic mark that is essential for preserving genome integrity and normal development in plants and mammals. Although this modification may serve a variety of purposes, it is best known for its role in stable transcriptional silencing of transposable elements and epigenetic regulation of some genes. In addition, it is increasingly recognized that alterations in DNA methylation patterns can sometimes be inherited across multiple generations and thus are a source of heritable phenotypic variation that is independent of any DNA sequence changes. With the advent of genomics, it is now possible to analyze DNA methylation genome-wide with high precision, which is a prerequisite for understanding fully the various functions and phenotypic impact of this modification. Indeed, several socalled epigenomic mapping methods have been developed for the analysis of DNA methylation. Among these, immunoprecipitation of methylated DNA followed by hybridization to genome tiling arrays (MeDIP-chip) arguably offers the best compromise between cost, ease of implementation and sensitivity to date. Here we describe the application of this method, from DNA extraction to data analysis, to the study of DNA methylation genome-wide in Arabidopsis. **Key-Words:** DNA methylation, 5-methylcytosine (5mC), MeDIP, tiling array, epigenetic variation

1. Introduction

In eukaryotes, DNA methylation almost exclusively affects cytosines (5-methylcytosines). Once established, this modification can be maintained over numerous cell divisions and even across generations in some instances. However, it remains unclear to which extent differences in DNA methylation can be stably inherited and this question is the subject of intense studies. This is especially true in Arabidopsis, where epigenetic recombinant inbred lines (epiRILs) have been derived from parents with few differences in DNA sequence but contrasted DNA methylation profiles (Johannes et al. 2009, Reinders et al. 2009). One such population of epiRILs is currently being epigenotyped in order to assess the stability of parental DNA methylation differences and their impact on several complex traits. Here, we describe the MeDIP-chip protocol used to reconstruct the DNA methylome maps, starting from the extraction of DNA to analysis of the hybridization data using Hidden Markov Models (HMM, see flow chart). Section 2 lists the materials needed for the "wet" part as well as the software and data used for analysis. Section 3 describes step by step the MeDIPchip experiment (3.1. and 3.2.) and the analysis of hybridization data, starting from data preparation (3.3), then quality assessment and control (3.4), implementation of a HMM for reconstructing DNA methylome maps (3.5) and graphical and biological assessment of HMM results (3.6).

2. Materials

2.1. DNA extraction and MeDIP (Methyl DNA Immunoprecipitation)

- 1. DNA extraction with DNeasy plant Maxi kit (Qiagen, cat. N° 68163).
- 1.5 mL Siliconized tubes: Clear-view[™] Snap-Cap microtubes, siliconized (Sigma, cat. N° T4816-250EA)
- 3. Sonicator: Bioruptor (Diagenode, cat. N° UCD-200)

- 4. Buffer1: 13.3 mM Tris HCl pH 7.5, 667 mM NaCl, 1.3 mM EDTA
- 5. Monoclonal antibody against 5mC (Diagenode, cat. N° MAb-006-500)
- 6. Rotating wheel
- 7. Magnetic beads: M280 Dynabeads (Invitrogen, cat. N° 112-01D)
- 8. Buffer 2: 10 mM Tris HCl pH 7.5, 500 mM NaCl, 1 mM EDTA
- 9. Buffer3: 30mM Tris HCl pH: 8.0
- 10. Proteinase K: 20ug/ul (NEB, cat. N° P8102S)
- 11. Phenol/chloroform/IAA (25/24/1, pH 8) and Chloroform/IAA: (24/1)
- 12. Glycogen azure: 20ug/ul, resuspended in water (Sigma, cat. N° G5510-1G)
- 13. NaAC: 3M pH 5.2
- 14. Minelute Reaction Cleanup Kit (Qiagen, cat. N° 28204)
- Picogreen: Quant-it PicoGreen dsDNA reagent (Invitrogen, cat. N° P7581) diluted to
 0.5% in TE pH8.

2.2. DNA amplification, labeling and hybridization on tiling array

- 1. WGA2 kit (Sigma, cat. WGA2-50RXN)
- 2. QIAquick PCR Purification Kit (Qiagen , cat. N° 28104)
- 3. Dual Color DNA labeling kit (Nimblegen, cat. N° 06370250001)
- Hybridization and wash buffer kits (Nimblegen, cat. N° 05583683001 & cat. N° 05584507001)
- 5. Scanner: High-Resolution (2µm) Microarray Scanner (Agilent, cat. N° G2565CA)
- 6. NimbleScan software (Nimblegen)

2.3. Software

This protocol requires R for the analysis of the MeDIP-chip data. R is a command line-based software environment for statistical computing and graphics. It can be freely downloaded at http://www.r-project.org and installed on all three main operating systems (Windows,Unix/Linux and Mac). Instructions about installation and tutorials can be obtained from the same website. R is extensively used among biostaticians due to the availability of statistical packages for the analysis of a broad spectrum of biological data. In addition to R,

we also recommend downloading a text editor with syntax highlighting (e.g. Notepad++). Programming mistakes are more easily detected when using a text editor. All the code lines and functions are highlighted throughout the chapter in courier font. The Hidden Markov Model (HMM) is implemented in C++. An electronic version of the R code presented in this chapter and the HMM software are freely available at the following URL:

<u>http://gbic.biol.rug.nl/supplementary/2011/ReconstructionMethylomeMaps.</u> This chapter does not show the code for generating the figures. This code can, however, be downloaded from the same URL.

2.4. Dataset

The protocol was implemented for the efficient and cost-effective genome-wide study of DNA methylation of large number of Arabidopsis lines. The data set used to illustrate this protocol can be downloaded from the above URL, and consists of six files that contain the measured signal intensities (IP and INPUT) for one wild type line (Columbia accession), probe annotation, conservation scores for probes and an example of an array with a hybridization artefact.

2.4.1. Methylation data

The methylation data should be tab-delimited and have the following format:

PROBE_ID	REP1_INPUT_RED	REP2_INPUT_RED	REP3_INPUT_RED
CHR01FS00000061	778.53	2534.67	1033.31
CHR01FS000000212	2366.51	2756.02	1333.69
CHR01FS000000382	4028.27	7776.75	3201.88
CHR01FS000000507	13685.61	15014.29	8556.37
CHR01FS00000707	1565.45	2626.51	1187.04

The first column of the file should contain the probe identifier and the remaining column (or columns when replicates are available) should contain the measured probe intensities. The IP and INPUT files should have the same tab delimited format.

2.4.2. Hybridization artefact data

For illustrative purposes we also show an example of a hybridization artefact **(Fig. 2A)**. This file should also be tab delimited and have the following format:

PROBE_ID	Х	Y	PM
CHR01FS00000061	327	1335	3219.96
CHR01FS000000212	191	1257	4840.31
CHR01FS000000382	826	34	8668.02
CHR01FS000000507	731	529	19781.76
CHR01FS000000707	624	562	1195.29

The first column should again contain the probe identifier, the second and third column should contain the location of the probe on the array (x and y position on the array) and the fourth column (PM) should contain the measured probe intensity (IP or INPUT signal).

2.4.3. Conservation score data

The conservation score of a probe indicates the uniqueness of the probe sequence (not all probe sequences are unique). This score was obtained by performing a blast search. Scores are percentage of identity with the second best hit (the first hit is the location in the genome for which the probe was designed). Probes can be visualized at http://epigara.biologie.ens.fr/index.html. The conservation score data should have the following tab delimited format:

PROBE_ID	SCORE
CHR01FS00000061	73
CHR01FS000000212	56
CHR01FS000000382	64
CHR01FS000000507	62
CHR01FS00000707	74

2.4.4. Annotation data

The annotation files contain the probe identifiers of probes that are located within introns of protein coding genes or transposons. The annotation data should only contain one column with probe identifiers:

PROBE_ID

CHR01FS000004351 CHR01FS000005311 CHR01FS000007129 CHR01FS000007479 CHR01FS000007814

3. Methods

3.1. DNA extraction and MeDIP (Methyl DNA Immunoprecipitation)

- Extract DNA from plant material (1-2g fresh weight, we use aerial parts of three week old plants grown under long day conditions) with Qiagen DNeasy plant Maxi kit. 1.8µg of DNA is needed for this protocol (including sonication test and INPUT and IP fractions).
- Quantify DNA and put 1.8µg of DNA in 180µl (complete volume with water) in 1.5ml siliconized Eppendorf tubes. Set aside 2µl (20ng) for sonication control. Sonicate the remaining 178ul using 7 cycles of 30 sec ON/30 sec OFF. Note that all 6 positions within

the sonicator need to be filled, with an equal volume of water (178ul) put in each tube. Place all 6 tubes in ice bucket and add ice to the sonicator bath to cool it off. Repeat sonication once (14 cycles in total). Keep 13µl to test sonication (sonicated fraction).

- Run non-sonicated and sonicated samples side by side on a 1.5% TAE 1X gel (2μl on nonsonicated and 13 μl of sonicated). You should get a smear between 100 and 600pb (with maximum intensity around 300bp) after sonication.
- 4. Keep 15 μl to serve as INPUT (150ng). Use the remaining 150ul of sonicated DNA (1.5ug) for IP.
- 5. Add 450µl of buffer 1 to IP fraction (total volume of 600 µl). Incubate 10 minutes at 95°C to denature DNA (this is critical as the antibody only recognizes 5mC on single stranded DNA!) and let sit on ice for 2 min. Add 5µl of 1µg/µl anti- 5mC antibody to denatured IP fraction. Close tubes, wrap with parafilm (siliconized tubes tend to leak) and incubate overnight at 4°C with gentle agitation (we use a rotating wheel, with a 45° inclination, 8 rpm).
- 6. Use 40µl magnetic beads per MeDIP. Prepare a tube with the total amount of beads required for the number of MeDIP performed. Wash the beads 3 times with 1ml of Buffer 2 (see note1) and resuspend one last time with buffer 2 in the starting volume.

- Put 40 μl of washed beads (make sure that they are well resuspended by pipetting up and down the slurry several times) into each MeDIP tube. Put on rotating wheel for 4 hours at 4°C with gentle agitation (45° inclination, 8 rpm).
- 7. Put IP samples on the Dynabeads rack (magnetic rack). Collect supernatant in a new 2ml Eppendorf tube (Supernatant fraction). Add 300 µl of buffer 2 to IP tube. Agitate briefly by hand, and place for 10 minutes at room temperature on the rotating wheel with gentle agitation (45° inclination, 8 rpm). Put back on the Dynabeads rack and add first wash to supernatant fraction. Do three more washes, each time with 600µl of buffer 2. Discard washes.
- Add 300μl of buffer 3 to the IP pellet after last wash and transfer to classical 1.5ml and 2ml eppendorf tubes IP and supernatant fractions respectively (see note2). Add 7μl of Proteinase K to elute. Incubate 1 hour at 42°C, with occasional shaking.
- 9. Add one volume of phenol/chloroform/IAA to the IP and Supernatant fractions (300µl and 900µl, respectively). Vortex and centrifuge five minutes at 14000rpm at RT. Place aqueous phase (top phase) in a new tube. Add one volume of chloroforme/IAA to aqueous phase. Vortex and centrifuge 5 minutes at 14000rpm at RT. Place aqueous phase in a new tube.
- 10. To precipitate DNA add 1µl of glycogen azure, 1/10 volume of NaAC and one volume of isopropanol to the IP and Supernatant fraction (30µl and 90µl for NaAC and 300 and 900µl for isopropanol in IP and Supernatant fraction respectively). Vortex between addition of each component. Keep 1 hour to overnight at -20°C. Centrifuge 30 minutes at RT at max speed (>13000rpm). Discard supernatant and add 500µl of ethanol 70%. Mix. Centrifuge 20 minutes at RT at max speed (>13000rpm). Discard supernatant and add 500µl of ethanol 70%. Mix. Centrifuge 20 minutes at RT at max speed (>13000rpm). Discard the supernatant and dry DNA pellets by leaving the tubes open on the bench for ~30 minutes. Resuspend all DNA pellets in 40µl of TE pH8 and add 25µl to INPUT fraction.
- 11. Perform quantitative PCR on the three fractions (IP, Supernatant and INPUT) with known positive and negative controls before proceeding with purification, labeling and hybridization to tiling array. Note that for wild type *Arabidopsis* (Columbia accession), approximately 10-20% of the genome should be immunoprecipitated with the anti-5mC antibody for DNA extracted from aerial or root parts.

- 12. DNA should be cleaned one last time using the Minelute kit (see note 3). Expect 30% loss of DNA.
- DNA concentration is check with Nanodrop 3300. Add 2μl of diluted picogrenn at 0.5% to 2μl of DNA and quantify this mix using function "dsDNA PicoGreen[®] dye" in "Nucleic Acid Quantitation" (see note 4).

3.2. DNA amplification, labeling and hybridization on tiling array

- Use 10ng of IP and 50ng of INPUT fractions for amplification with the WGA2 kit . Start from the "Library preparation" step of the protocol, as there is no need for the DNA fragmentation step.
- Purification of the amplification products is carried out using QIAquick PCR Purification Kit. Quantify and run on 1.5% agarose TAE 1X gel. You should get a smear corresponding to the sonication smear (between 100 and 600pb.) Final yield fluctuates between 3ug and 6ug.
- 3. DNA labeling is carried out using the Dual Color DNA labeling kit, using 1ug of amplified IP and INPUT DNA. Resuspend labeled DNA in 20µl of water and quantify it, together with Cy3 and Cy5 using the "microarray function" of the Nanodrop 2000. One should expect 10-20ug of DNA after labeling and 200-400pmoles of incorporated dye. Redo labeling if DNA yield or incorporation levels are less than 5ug or 100pmole, respectively (see note 5).
- 4. Differential hybridization is carried out using a Nimblegen 3x720K tiling array design (3 identical chambers, design available on request) and following the manufacturer's instructions). Use 4µg of each of the two labeled DNA samples (IP and INPUT) per chamber. Hybridization is in dye-swap (IP in red and INPUT in green for first chamber and vice versa in second chamber).
- After washing, the Nimblegen 3x720K tiling array is scanned using a High-Resolution (2μm) Microarray Scanner (Agilent). It is preferable to scan independently each chamber.
- 6. Grid alignment and pair files extraction are made using the Nimblescan software and following the manufacturer's instructions.

3.3 Data preparation

Following the "wet lab" part one is confronted with a substantial amount of data ready to be analyzed. Before we show how this can be achieved, we detail several data preparation steps. The following commands are used to import the data in the R workspace. The command setwd() sets the working directory, such that there is no need to define the complete pathname of your files. The command head() shows the first lines of the file.

> setwd("D:\\reconstruction_methylome_maps")

```
> input_wt <- read.table(file="input_wild_type.txt",
```

+ header=TRUE,sep="\t")

> ip_wt <- read.table(file="ip_wild_type.txt",

+ header=TRUE,sep="\t")

>

> head(input_wt)

	PROBE_ID	REP1_INPUT_RED	REP2_INPUT_RED	REP3_INPUT_RED
1 CH	R01FS000000061	778.53	2534.67	1033.31
2 CH	R01FS000000212	2366.51	2756.02	1333.69
3 CH	R01FS000000382	4028.27	7776.75	3201.88
4 CH	R01FS000000507	13685.61	15014.29	8556.37
5 CH	R01FS000000707	1565.45	2626.51	1187.04
6 CH	R01FS00000827	5939.94	7285.02	3212.73
REI	P1_INPUT_GREEN	REP2_INPUT_GREE	EN REP3_INPU	T_GREEN
1	408.61	2038.57	818.98	
2	712.76	2019.65	649.84	
3	1350.67	5406.18	2090.43	
4	2980.53	9570.41	5614.20	
5	611.33	2405.53	460.63	
6	1162.24	4555.31	2311.96	

The IP and INPUT data have the same format, hence, there is no need to show the first lines of both files. We convert the data to a logarithmic scale using the following commands:

> log2_ip_wt <- log2(ip_wt[,2:7]) > log2_ip_wt <- data.frame(ip_wt[,1],log2_ip_wt)

```
> names(log2_ip_wt)[1] <- "PROBE_ID"
>
> log2_input_wt <- log2(input_wt[,2:7])
> log2_input_wt <- data.frame(input_wt[,1],log2_input_wt)
> names(log2_input_wt)[1] <- "PROBE_ID"</pre>
```

After log transformation the datasets will have the same format only the signal intensities will be log transformed. In order to determine enrichment for DNA methylation one has to calculate the intensity ratio of the IP and INPUT signal (\log_2 ratios). The following commands are used to calculate the intensity ratios. The dye swapped replicates have been treated separately in this case (i.e. IP_{green} and $INPUT_{red}$ and vice versa). The IP and INPUT signals have also been averaged.

```
> wt_ip_green <- (log2_ip_wt[,5]+log2_ip_wt[,6]+log2_ip_wt[,7])/3
> wt_input_red <- (log2_input_wt[,2]+log2_input_wt[,3]+
+ log2_input_wt[,4])/3
> wt_green_red <- wt_ip_green-wt_input_red
> wt_green_red <- data.frame(log2_ip_wt[,1],wt_green_red)
> names(wt_green_red) <- c("PROBE_ID","GREEN_RED")
>
> wt_ip_red <- (log2_ip_wt[,2]+log2_ip_wt[,3]+log2_ip_wt[,4])/3
> wt_input_green <- (log2_input_wt[,5]+log2_input_wt[,6]+
+ log2_input_wt[,7])/3
> wt_red_green <- wt_ip_red-wt_input_green
> wt_red_green <- data.frame(log2_ip_wt[,1],wt_red_green)</pre>
```

```
> names(wt_red_green) <- c("PROBE_ID","RED_GREEN")
```

After the calculation of the intensity ratios the dye swap signals can be calculated using the following code:

```
> wt_dye_swap <- (wt_green_red[,2]+wt_red_green[,2])/2
> wt_dye_swap <- data.frame(wt_green_red[,1],wt_dye_swap)
> names(wt_dye_swap) <- c("PROBE_ID","DYE_SWAP")</pre>
```
The dye swap should account for possible dye bias in experiments. The data is now ready for subsequent analysis steps.

3.4. Quality assessment and control

Prior to array data analysis, we conduct detailed quality checks of each tiling array experiment. This quality assessment is necessary to ensure biologically meaningful results later on. If the data contains systematic hybridization artefacts or technical variation beyond a certain acceptable level it is advisable to remove or to repeat the bad sample. We distinguish between two levels of quality assessment. The first level relates to the quality of the overall hybridization experiment and the second level to the quality of the individual probes.

3.4.1. Quality of the overall hybridization experiment

We start by evaluating the distribution (or spreading) of the DNA fragments over the tiling array. This can be achieved by visual inspection of the array image within each separate channel (**Fig. 2A**).

By design, the signals should be randomly distributed and show no systematic spatial patterns. Artefacts such as scratches and bright spots can be easily detected in this way. The following commands are used to import the data in the R workspace:

```
> hybr_artefact <- read.table(file="hybridization_artefact.txt",
```

```
+ header=TRUE,sep="\t")
```

```
> head(hybr_artefact)
```

PROBE_ID X Y PM

1 CHR01FS00000061 327 1335 3219.96

2 CHR01FS000000212 191 1257 4840.31

3 CHR01FS000000382 826 34 8668.02

4 CHR01FS000000507 731 529 19781.76

5 CHR01FS000000707 624 562 1195.29

6 CHR01FS000000827 927 485 7460.27

Plotting the reconstructed array image involves log transformation of the measured signals (PM) and rescaling of the log transformed signal between 0 and 1 in order to convert the signal into RGB colors. The code for plotting the array image (**Fig. 2A**) can be found at the above URL (see end of section 2.3).

We also evaluate whether a sufficient amount of DNA was hybridized to the array. This can be done by plotting the density of the signal of each separate channel (**Fig. 2B**). The detection range of the signal has a lower and upper bound. In the case of insufficient DNA, there will be a rapid increase of probe signals in the lower detection range. Conversely, in the case of too much DNA the signal distribution will become saturated in the upper detection range. Both scenarios can seriously compromise the sensitivity of the technology to capture biologically meaningful variation. To illustrate this, we plot the density of the input signal of two different arrays (**Fig. 2B**) using the plotting code that is provided as a text file (see end of section 2.3).

Fig. 2: (A) The arrow points to an unwanted spatial artefact on the tiling array. One could consider excluding the relevant probes or discarding the tiling array entirely. **(B)** Shown is the signal density distribution of the Cy3 INPUT channel for two replicates. One of the individuals (solid line) shows a steep increase in the lower signal range suggesting that an insufficient amount of DNA was hybridized to the tiling array. The signal distribution of the other replicate (dashed line) is normal. The bulk of the data is located in the center of the detection range indicating that the right amount of DNA was hybridized to the tiling array.

3.4.2. Quality of individual probes

The second quality assessment level is the quality of the probes. NimbleGen arrays are designed to minimize cross-hybridization as much as possible. However, given the large

number of probes and near full genome coverage, it is difficult to exclude possible crosshybridization events. Such events occur when non-target sequences hybridize with probes on the array, leading to exaggerated signal intensities. It may therefore be desirable to identify probes, *a priori*, that have multiple similar or exact matches in the genome. We assess this by calculating a so-called conservation score. This score is obtained by performing a blast search. Scores are percentage of identity with the second best hit (first hit is location on genome for which the probe was designed). We decided to flag probes that have a conservation score higher than 85 (**Fig 3A**). For simplicity we here provide a complete datasets with conservation scores already assigned to each probe. This data can be inputted as follows:

- > cons_score_probes <- read.table(file="conservation_score.txt",</pre>
- + header=TRUE,sep="\t")
- > head(cons_score_probes)

PROBE_ID SCORE

- 1 CHR01FS00000061 73
- 2 CHR01FS00000212 56
- 3 CHR01FS00000382 64
- 4 CHR01FS00000507 62
- 5 CHR01FS00000707 74
- 6 CHR01FS00000827 66

One can use the plotting code which is provided as a text file to plot the density histogram of the conservation scores of the probes as shown in Figure 3A.

In addition to the above *a priori* screening of potential cross-hybridizing probes we utilize another quality criterion, which involves assessing the consistency of probe signals for the INPUT across biological or technical replicates (provided they are available). To do this, we identify a probe's signal rank in the overall array signal distribution of one replicate array and compare it to its rank in the distribution of the other arrays. Inconsistent probe signals will show large variation in ranks, and should be treated with caution. If we consider the three dye-swapped biological replicates (3 x 2 arrays) of the Columbia accessions, there are six rank values for each probe, and we can calculate its rank variance. Doing this for each probe on the array yields a rank variance distribution, which can be used to spot outlying probes (**Fig. 3B**). For example, we may want to consider excluding or flagging probes with a rank variance of more than 3 standard deviations from the mean (**Fig. 3B**).

Fig. 3: (A) Density histogram of the conservation score of the probes. Probes with a conservation score higher than 85 have a high probability to cross hybridize and are flagged (probes on the right of the dashed line). **(B)** The rank variance distribution of the probes. The rank variance is expressed as a standard deviation. Probes with an abnormal high rank variance are flagged (probes on the right of the dashed line). **(C)** Density histogram of the conservation score of the rank variance probes that were flagged (gray) on top of the conservation score of all probes (transparent). This picture indicates that the probes with a high rank variance also tend to have a high conservation score. The Venn diagram shows however that there is a poor overlap between probes that are flagged with the two methods.

We use the following code to determine the rank and the rank variance of the probes as well as the three standard deviation cutoff:

```
> probe_rank <- apply(log2_input_wt[,2:7],MARGIN=2,rank)</pre>
```

```
> determine_rank_var <- function(x){</pre>
```

+ mean_val <- mean(x)

```
+ mean_dif <- abs(x-mean_val)
```

```
+ extreme <- which(mean_dif == max(mean_dif))
```

```
+ sd_ext <- sd(x[-extreme])
```

```
+ return(sd_ext)
```

```
+ }
```

```
> rank_var <- apply(probe_rank,MARGIN=1,determine_rank_var)</pre>
```

```
> rank_var <- data.frame(log2_input_wt[,1],rank_var)</pre>
```

```
> names(rank_var) <- c("PROBE_ID","SD")</pre>
```

```
> mean_var <- mean(rank_var[,2])</pre>
```

```
> sd_var <- sd(rank_var[,2])</pre>
```

> sd_cutoff <- mean_var+(3*sd_var)</pre>

The plot of the rank variances (**Fig. 3B**) can be generated using the plotting code that is provided as a text file (see end of section 2.3).

We find that the use of conservation scores and probe rank variance provides a fairly comprehensive assessment of probe quality. That these two criteria are not redundant is reflected in the limited overlap of identified low quality probes (**Fig. 3C**). We determine this overlap using the following code:

- > lowq_pr_rank <- rank_var[which(rank_var[,2] > sd_cutoff),1]
- > lowq_pr_cons <- cons_score_probes[which(cons_score_probes[,2] > 85),1]
- >lowq_probes <- union(lowq_pr_rank,lowq_pr_cons)</pre>
- > num_rank <- length(setdiff(lowq_pr_rank,lowq_pr_cons)) #Only rank</pre>
- > num_cons <- length(setdiff(lowq_pr_cons,lowq_pr_rank)) #Only cons</pre>
- > num_overlap <- length(intersect(lowq_pr_rank,lowq_pr_cons))</pre>
- >lowq_rows <- which(wt_green_red[,1] %in% lowq_probes)</pre>

Finally, we plot the overlap between the two methods (Fig. 3C) using the plotting code.

3.4.3. The effect of removing low quality probes

The removal of low quality probes has a visible impact on the overall signal distribution. To see this we plot the relative (or ratio) signal of the IP and the INPUT channel in **Figure 4** on a log₂ scale (see file with plotting code). High signals are typically an indication of increased IP hybridization events relative to the total (INPUT) DNA, thus indexing methylated DNA sequences. We find that most low quality scores fall in the upper signal range, suggesting that true binding events are partially confounded with cross-hybridization events. This is consistent with the observation, in *Arabidopsis*, that DNA methylation primarily occurs in CG-rich repeat elements (Cokus et al. 2009, Lister et al. 2009), which have a high cross-hybridization potential. For all subsequent analysis we decided to keep (but flag) low quality probes in the dataset. However, one may also choose to exclude them at this stage.

3.5. Implementation of a Hidden Markov Model for reconstructing DNA methylome

The abovementioned log₂ transformed IP/INPUT signal ratio is the typical starting point for data analysis. If data from several replicates is available, as in our case, the probe signals can simply be averaged across replicates. We view this distribution (see **Fig. 4**) as a mixture of three partially overlapping components (Johannes et al. 2010). The right component corresponds to enriched probes (i.e. indexing methylated sequences), the left component to non-enriched probes (i.e. indexing unmethylated sequences), and the middle component to intermediately enriched probes (i.e. indexing intermediately methylated sequences). To illustrate that this mixture view is consistent with the underlying biology, we highlight the probe signals corresponding to annotated transposable elements, which are usually methylated in Arabidopsis (**Fig. 5A**, solid line; Cokus et al. 2009, Lister et al. 2009). Similarly, as an example of usually unmethylated sequences, we highlight the signal of annotated introns of protein coding genes (**Fig. 5A**, dashed line; Cokus et al., 2009, Lister et al. 2009). The following commands are used to import the probe annotation data. These files simply contain the probe identifiers of probes that match with introns or transposons.

> p_id_intron <- read.table(file="intron_probes.txt",

+ header=TRUE,sep="\t")

- > p_id_transp <- read.table(file="transposon_probes.txt",
- + header=TRUE,sep="\t")
- > head(p_id_intron)

PROBE_ID 1 CHR01FS000004351 2 CHR01FS000005311 3 CHR01FS000007129 4 CHR01FS000007479 5 CHR01FS000007814 6 CHR01FS000008139

- For plotting purposes and further analysis steps it is also necessary to know the rows of the probes that correspond to transposons or introns. The following commands determine those rows:
- > rows_intron <- which(wt_green_red[,1] %in% p_id_intron[,1])</pre>
- > rows_transp <- which(wt_green_red[,1] %in% p_id_transp[,1])</pre>
- > rows_intron_highq <- setdiff(rows_intron,lowq_rows) #Without flagged</pre>
- > rows_transp_highq <- setdiff(rows_transp,lowq_rows) #probes</pre>

The file with plotting code contains the code for plotting Figure 5.

Fig. 5: (A) Shown is the $\log_2(IP/INPUT)$ signal distribution of one dye combination (IP: green, INPUT: red) of the wt Columbia plant with transposons (solid) and introns (dashed) highlighted. (B) Same as in (A) but shown for a *ddm1* mutant plant which has lost 70% DNA methylation. The intron distribution is not much affected by this loss. (C) Same as in (A) but with low quality probe signals removed. As can be seen the intron distribution is robust to low quality probe signals.

As can be seen in this figure, even within these two extreme annotation sets (i.e. transposons and introns) there is substantial signal variation. This is probably due to some level of biological variation (i.e. not all transposable element sequences are methylated and not all introns are unmethylated), but it certainly also reflects the limitations of the measurement technology itself (Laird, 2010). In addition, many probe signals belong to annotation sets that cannot be easily assigned to these extreme mixture components, and their classification as either methylated, unmethylated or intermediate is inherently probablistic.

Our principle analytical approach for performing this probabilistic classification relies on the use of a Hidden Markov Model (HMM). A Markov chain is a list of random values $\{H_1, H_2, ..., H_n\}$ that satisfy the so-called Markov property: the value at position *i* (*H_i*) is related solely to the values at positions *i*-1 and *i*+1 (*H_{i-1}* and *H_{i+1}*), with given transition probabilities. In the case of a Hidden Markov chain, an output $\{O_1, O_2, ..., O_n\}$ is observed that depends on the unobserved (hidden) states of the chain, $\{H_1, H_2, ..., H_n\}$ (Rabiner, 1989). In the case under consideration, the output or observed chain is the log₂ transformed IP/INPUT signal ratio, while the hidden chain is the methylation state of the DNA sequence indexed by the array probe (**Fig. 6**).

Hence, the HMM approach capitalizes on two key properties of MeDIP tiling array data: 1) probe signals are noisy proxies of an unobserved (hidden) methylated, intermediate or unmethylated state, and 2) the probe signals are spatially correlated along the genome, so that neighboring probes provide similar information (**Fig. 6**). HHMs account for these two properties and provide a powerful statistical framework for classifying individual probe signals given the overall data structure. Our implementation goal is to provide a robust and fast model estimation procedure. We achieve this by implementing software code in C++ and by incorporating several useful biological constraints. In what follows we outline our version of a HMM that is customize for Arabidopsis NimbleGen MeDIP data. We start by detailing key data preparation steps before we move on to discuss the actual implementation strategy.

3.5.1. Data rescaling using intron probes

In the context of a single MeDIP experiment within-array normalization is not required in our experience. Nonetheless, we find that rescaling the overall signal distribution is generally a good idea to permit more meaningful comparisons across different individuals (i.e. experimental conditions), should such additional data become available. To achieve this, we make use of the intron probe signal distribution (**Fig. 7A**). We standardize this distribution and express the overall signal distribution in terms of their standard deviation values. This has the effect of placing the mean of the intron probe signal at zero and rescaling the values as standard deviation values. This rescaling can be implemented with the following code:

```
> intron_mean <- mean(wt_dye_swap[rows_intron,2])</pre>
```

```
> intron_sd <- sd(wt_dye_swap[rows_intron,2])</pre>
```

```
> wt_dye_swap_rs <- (wt_dye_swap[,2]-intron_mean)/intron_sd
```

```
> wt_dye_swap_rs <- data.frame(wt_dye_swap[,1],wt_dye_swap_rs)</pre>
```

```
> names(wt_dye_swap_rs) <- c("PROBE_ID","DYE_SWAP_RS")</pre>
```

One can use the plotting code that is provided as a text file to plot the density of the rescaled data (**Fig. 7A**).

We find that the intron signal distribution can be safely used for this rescaling process, insofar that it is relatively invariant to high levels of experimental variation. To illustrate this in the context of an extreme case, we compare the signal distribution for wild type to that for the *ddm1* mutant, in which DNA methylation is reduced approximately 70%. The MeDIP experiment reflects this methylation loss nicely (**Fig. 5B**), with the signal distribution being clearly reduced in height over the enriched component. Clearly, the signal distribution for intronic sequences is not noticeably affected in *ddm1*, as expected.

Fig. 7: (A) Original signal distribution with intron density highlighted (dashed line). (B) We approximate the density of the signal distribution for introns using a mixture of a large number of Gaussian with distributions fixed variance and equally spaced means.

3.5.2. Implementation of the Hidden Markov Model

We apply our HMM to the rescaled data following a two-step process. First, we use the Baum-Welch algorithm (Baum et al. 1970, Rabiner 1989) to estimate the best model parameters given the observed probe signals (**Fig. 6**). Second, we find the most likely hidden sequence of probe states given these estimated parameters. A copy of the C++ code implemented can be found at (**website**).

A characteristic feature of our HMM implementation is the use of biologically meaningful constraints on the emission probability density functions, $e(O_i | H_i)$, during the Baum-Welch estimation procedure (**Fig. 6**). In the following we outline these assumptions. A summary of them can be found in **Table 1**. Alternatively, all the parameters of the emission probabilities

could be freely estimated by means of the Baum-Welch algorithm, but we find that a more biologically meaningful approach is preferable.

Emission probability of unmethylated hidden state: We employ the signal distribution for introns to obtain an approximation of the emission probability of the unmethylated hidden state (**Fig. 7A**). In this way we incorporate biological knowledge of introns being mostly unmethylated directly into the estimation procedure. This bypasses the need to explicitly assume an emission density function, and also speeds up computation. We approximate the signal distribution for introns to an arbitrary degree using mixtures of a large number of Gaussian random variables (**Fig. 7B**). Estimation is carried with the EM algorithm (McLachlan and Peel, 2000), which can be implemented using the following code.

> density_approx <- function(data,mu,var,lambda,eps,num_norm){</pre>

```
+ mu_diff <- mu[2]-mu[1]
```

- + min_val <- mu[1]-5*mu_diff
- + max_val <- mu[num_norm]+5*mu_diff
- + rows_extr <- which(data < min_val | data > max_val)
- + $if(length(rows_extr) > 0)$ { # Remove extreme
- + data <- data[-rows_extr] # data points
- + }

```
+ loglik_diff <- 100000 # Initial loglik diff
```

+ counter <-0 # Iteration counter

```
+ dnorm_tot <- rep(0,length(data))
```

```
+ for(A in 1:num_norm){
```

+ dnorm_tot <-

```
+ dnorm_tot + lambda[A]*dnorm(data,mean=mu[A],sd=sqrt(var))
```

```
+ }
```

```
+ loglik_pre <- sum(log(dnorm_tot)) # Initial loglik
```

```
+ counter <- counter+1
```

```
+ post <- # Posterior prob
```

```
+ lambda[A]*dnorm(data,mean=mu[A],sd=sqrt(var))/dnorm_tot
```

```
+ lambda_new <- sum(post)/length(data)
```

```
+ lambda[A] <- lambda_new
```

```
}
+
    dnorm_tot <- rep(0,length(data))
+
    for(A in 1:num_norm){
+
     dnorm_tot <-
+
     dnorm_tot + lambda[A]*dnorm(data,mean=mu[A],sd=sqrt(var))
+
    }
+
+
    loglik_new <- sum(log(dnorm_tot))
                                                # New loglik
    loglik_diff <- abs(loglik_new - loglik_pre) # New loglik diff
+
    loglik_pre <- loglik_new
+
    cat("Iteration = ",counter," Log-lik diff = ",loglik_diff,"\n")
+
   }
+
   output
               <- list(mu,var,lambda)
                                            # Return results
+
   names(output) <- c("mu","var","lambda")</pre>
+
   return(output)
+
+ }
>
> mus <- round(seq(-2.75,4.5,0.25),2)
> intron_data <- wt_dye_swap_rs[rows_intron,2]</pre>
> den_appr <- density_approx(data=intron_data,mu=mus,var=0.03,
+ lambda = rep((1/30), 30), eps = 0.1, num_norm = 30)
Iteration = 1 Log-lik diff = 64314.34
Iteration = 2 \text{ Log-lik diff} = 510.154
Iteration = 3 \text{ Log-lik diff} = 41.84451
Iteration = 4 \text{ Log-lik diff} = 6.50513
Iteration = 5 Log-lik diff = 1.766472
Iteration = 6 Log-lik diff = 0.7541914
Iteration = 7 Log-lik diff = 0.421424
Iteration = 8 Log-lik diff = 0.2723324
Iteration = 9 Log-lik diff = 0.1922282
Iteration = 10 Log-lik diff = 0.1442565
Iteration = 11 Log-lik diff = 0.1132907
Iteration = 12 Log-lik diff = 0.09209521
```

The code for plotting the result (Fig. 7B) is provided as a text file.

We generally find that a fit with 30 gaussians with fixed variance provides a sufficient approximation (**Fig. 7B**). Parameters estimates are outputed to be used as input in the Baum-Welch algorithm.

Emission probability of methylated hidden state: The second constraint relates to the emission probability for the methylated hidden state. We assume this distribution to be Gaussian, with mean fixed to the 99th quantile of the emission probability of the unmethylated state (i.e. the signal distribution for introns). The variance of the distribution is estimated freely by the Baum-Welch algorithm.

Emission probability of intermediate hidden state: The last constraint relates to the emission probability for the intermediate hidden state. We assume again this distribution to be Gaussian, with a mean that is fixed between the mean of the emission probability of the unmethylated hidden state (i.e. the intron distribution) and the mean of the emission probability of the methylated hidden state. We take the variance of this distribution to be equal to the variance of the emission probability of the methylated.

Hidden state	Distribution	Parameters
Unmethylated states	intron signal	estimated as a mixture of 30 normals
	distribution	(EM algorithm) with fixed variance.
Methylated states	Gaussian	Mean: fixed at the 99 th quantile of the
		intron signal distribution.
		Variance: freely estimated.
Intermediate states	Gaussian	Mean: fixed at ½(mean of the
		methylated distribution).
		Variance: equal to the variance of the
		methylated distribution.

Table 1: Summary of the constraints for the emission probability density functions used in the Baum-Welch algorithm.

The following code generates files that are used as input for the estimation program written in C++:

```
> values <- c(den_appr$mu,den_appr$var,den_appr$lambda)</pre>
```

> parameters <- c(paste("mu",1:30,sep=""),"var_all",

```
+ paste("lambda",1:30,sep=""))
```

```
> para_est <- data.frame(parameters,values)</pre>
```

```
> names(para_est) <- c("PARAMETER","VALUE")</pre>
```

```
> write.table(para_est,"para_wild_type.txt",quote=FALSE,sep="\t",
```

```
+ row.names=FALSE,col.names=TRUE)
```

```
> write.table(wt_dye_swap_rs,"dye_swap_signal_wild_type.txt",
```

```
+ quote=FALSE,sep="\t",row.names=FALSE,col.names=TRUE)
```

Once all the free parameters of the HMM have been estimated, we proceed to infer the most likely hidden sequence of probe states given the parameters of the HMM and the observed probe signals. There are several possible strategies, depending on our optimality criterion. We consider two cases: 1. finding the single best hidden sequence of probe states, given the observed probe signals and the parameters of the HMM (the so-called Viterbi algorithm) (Viterbi 1967, Rabiner 1989), or 2. finding the single hidden probe state which is individually most likely at each position, given the observed probe signals and the parameters of the C++ code implemented for the identification of the optimal sequence according to these two definitions can be found at **(website)**.

3.6. Graphical and biological assessment of HMM results

The above algorithms probabilistically classify the original $\log_2(IP/INPUT)$ signals to the three underlying methylation states (unmethylated, intermediate, or methylated) (Fig. 8). This "hidden chain" of methylation states constitutes the inferred methylome (**Fig. 9**). Annotation analysis of the probe classification (**Fig. 10**) shows that most gene probes are unmethylated and the majority of the transposable element probes are methylated, as expected.

Fig. 9: (**A**) Shown is the probe signal (top) and the corresponding (hidden) DNA methylation state (bottom) of chromosome 4 in wild type accession Columbia plotted against position (base pairs, *x*-axis); the colors correspond to methylated (black), unmethylated (white) and intermediately methylated (grey). As expected, we find substantial methylation in the pericentromeric regions as well as in the heterochromatic knob present on the short arm of the chromosome. (**B**) Magnification of a small region on chromosome 4 illustrating how the $log_2(IP/INPUT)$ signal of each probe (top) is assigned to a methylated (black), intermediate (grey) or unmethylated (white) state, depending on its signal and on the signal of its surrounding probes. (**C**) color code for the probe signal density plot, with the corresponding probe density distribution.

Conclusions

We have described a comprehensive protocol for the analysis of DNA methylomes in *Arabidopsis* using MeDIP tiling arrays. Our protocol uniquely combines all necessary steps from "wet-lab" to "dry-lab" to begin to characterize the epigenetic landscape in this species. Owing to the relatively favorable cost of tiling array technology over more recent deep sequencing approaches, our protocol can be easily scaled up to population-level studies. Such large epigenetically-informative approaches will soon become an indispensable tool in the context of intra- or inter-generational functional studies (Johannes et al., 2008). We are currently applying the protocol outlined here to a large panel of epigenetic Recombinant

Inbred Lines (epiRILs) in order to characterize the role of DNA methylation in complex trait inheritance.

Notes

- 1. For more than 250µl of beads separate in two tubes for washes.
- 2. Transfer to new tubes decrease noise. This is done in classical tubes because siliconized tubes tend to leak too much with phenol/chloroform and can cause loss of material.
- 3. Minelute cleaning is a critical step as the efficiency of WGA2 drops dramatically without it.
- 4. Picogreen quantification is very sensible. Be careful to homogenize your samples well before quantification. Since picogreen is not stable in light, quantification must be done soon (less than 30 minutes) after addition of picogreen and samples should be maintained in dark before.
- It is important to verify incorporation of dye using the following formula: concentration in DNA (pmol/µl) / concentration in Dye (pmol/µl). Values are usually between 100 and 180.

Acknowledgements

This work was supported in part by grants from the Agence Nationale de la Recherche (Genoplante TAG project, to VC) and by the European Union Network of Excellence "The Epigenome". SC was supported by a PhD studentship from the Ministère de l"Enseignement Supérieur et de la Recherche. RW, M.C.-T. and F.J. were supported by grants from The Netherlands Organisation for Scientific Research.

References

- 1. Baum LE, T. Petrie, G. Soules, and N. Weiss (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains, Ann. Math. Stat., 41, 164–171.
- Cokus, S., S. Feng, X. Zhang, Z. Chen, B. Merriman, and et al. (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452: 215–219.
- 3. Johannes F., V. Colot, and R. Jansen (2008) Epigenome dynamics: a quantitative genetics perspective. Nat Rev Genet 9: 883–890.
- 4. Johannes, F., E. Porcher, F. Teixeira, V. Saliba-Colombani, M. Simon, and et al. (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genetics 5: e1000530.
- 5. Laird PW (2010). Principles and challenges of genome-wide methylation analysis. Nature Reviews Genetics, 11: 191-203.
- 6. Lister, R., R. O'Malley, J. Tonti-Filippini, B. Gregory, C. Berry, and et al. (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133(3): 523–536.
- 7. McLachlan G.J. and Peel D. (2000) *Finite Mixture Models*. JohnWiley and Sons.
- 8. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77, 257-286.
- 9. Reinders, J., B. Wulff-Brande, M. Mirouze, A. Mari-Ordonez, M. Dapp, et al. (2009) Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes & Development 23: 939–950.
- 10. Viterbi AJ (1967) Error bounds for convolutional codes and an asymptotically optimal decoding algorithm, IEEE Trans. Informat. Theory, IT-13, 260-269,
- Weber W and D Schübeler "Methylated DNA Immunoprecipitation, MeDIP" The Epigenome Network of Excellence. Prot33. (<u>http://www.epigenome-noe.net/researchtools/protocol.php</u>? protid=33)
- Weber M. et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics. 37: 853-862.
- 13. Zhang X. et al. (2006) Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis. Cell. 126: 1189-1201

VI.2.2. Définition de la stabilité de l'hypométhylation induite par ddm1 dans les épiRIL

L'hypométhylation d'une région est considérée comme stable quand, pour les sondes MU et MI, 62 à 83% des épiRIL ont un état M. Ces valeurs ont été définies selon un intervalle de confiance de 99%, tenant compte de la taille de la population, autour de 73% (75% attendu suite au rétrocroisement avec 8% de contamination F2, Johannes et al., 2009). De plus, pour les sondes MU, la majorité des épiRIL restantes (celles qui n'ont pas un état M) doivent avoir un état U. Au-delà de 83% d'épiRIL avec un état M, l'hypométhylation n'est plus considérée comme stablement héritée. La réversion est considérée totale quand, pour une sonde MU ou MI, plus de 95% des épiRIL ont un état M. La réversion est incomplète lorsque, pour les sondes MU et MI, entre 83 et 95% des épiRIL ont un état M. Cette classe contient aussi les sondes MU pour lesquelles 62 à 83% des épiRIL ont un état M et dont la majorité des épiRIL restantes (qui n'ont pas un état M) ont un état I.

VI.2.3. Reconstruction des méthylomes wt et ddm1 en utilisant les épiRIL

Afin de reconstruire les méthylomes wt et *ddm1* à partir de ceux des épiRIL, les critères suivant sont utilisés :

- Une sonde est attendue UU (U pour wt et U pour *ddm1*) lorsque 98% ou plus des épiRILs ont un état U.

- Une sondes est attendue II ou IU dans les méthylomes parentaux lorsque 98% ou plus des épiRILs ont un état I.

- Une sondes est attendue MM, MI ou MU dans les méthylomes parentaux lorsque 98% ou plus des épiRILs ont un état M.

- Une sonde est attendue MU lorsque 62 à 83% des épiRIL ont un état M et que 52% ou plus des épiRIL restantes ont un état U.

- Une sonde est attendue MI lorsque 62 à 83% des épiRIL ont un état M et que 52% ou plus des épiRIL restantes ont un état I.

La reconstruction des méthylomes parentaux a ainsi été effectuée pour 444835 sondes.

VI.2.4. Définition de l'origine parentale le long du génome

Afin de définir l'origine parentale de chaque intervalle le long du génome nous avons utilisé 126 marqueurs de méthylation de l'ADN. Ces marqueurs, dont la sélection est détaillée dans le chapitre 2 (Colomé Tatché et al., soumis) correspondent à des régions d'au moins deux sondes MU adjacentes dont l'état dans les épiRIL est le suivant :

- %wt + %l > 62.7%
- %wt < 83.3%
- %I < %wt
- %I < %ddm1

Les régions redondantes (à moins de 0.0001 cM les unes des autres) ont été regroupées et les erreurs d'épigénotypage ont été considérées dans un algorithme de type Lander-Green. Après plusieurs itérations, 184 marqueurs ont été définis. 126 marqueur ont été au conservés final après élimination de ceux présentant des corrélations fortes entre les chromosomes. Un intervalle est considéré comme d'origine wt ou *ddm1* lorsqu'il se situe entre deux marqueurs ayant un niveau de méthylation de type wt ou *ddm1* respectivement. Quand deux marqueurs adjacents ont des origines différentes, la limite entre les intervalles est placée à distance égale des deux marqueurs. L'origine parentale ne peut être définie pour les intervalles entre le début du chromosome et le premier marqueur et entre le dernier marqueur et la fin du chromosome.

VI.2.5. Analyse de la méthylation de l'ADN par séquençage bisulfite.

Le séquençage bisulfite du génome pour 6 épiRIL a été réalisé comme décrit précédemment (Cokus et al., 2010) par séquençage illumina avec des longueur de read de 76 ou 100nt. Lors du traitement de l'ADN par le bisulfite, les cytosines sont converties en uraciles tandis que les cytosines méthylées ne sont pas affectées. La présence d'un misappariement T/G indique que la cytosine à cette position a été convertie en uracile lors du trairement bisulfite et n'est dons pas méthylée. Le détail de l'analyse des données de séquençage bisulfite est décrit dans le matériel supplémentaire en annexe de l'article du chapitre 2 (Colomé Tatché et al., soumis). Les données ont été mappées en utilisant BS seeker (Chen et al., 2010) en permettant un misappariement toutes les 5 bases après avoir éliminé les reads de moins de 30 pb ainsi que la séquence des adaptateurs. L'état de méthylation pour chaque cytosine est alors calculé par le rapport entre le nombre de reads indiquant une méthylation et le nombre total de reads pour cette cytosine. Afin de pouvoir comparer ces données à celles de MeDIP un « signal BS » a été calculé pour les fenêtres de chaque sonde de la puce. Ce « signal BS » a été calculé en divisant le nombre total de reads indiquant une méthylation pour toutes les cytosines de la fenêtre considérée par le nombre total de reads pour ces mêmes cytosines. Le calcul de ce « signal BS» et sa comparaison aux données MeDIP-chip est détaillé dans le matériel supplémentaire de l'article du chapitre 2 (Colomé Tatché et al., soumis).

VI.3. Analyse des données siRNA

L'extraction, la purification sur gel et le clonage des petits ARN a été réalisé comme décrit précédemment (Pfeffer et al., 2005) à partir de 200 µg d'ARN totaux extraits de plantules. Les librairies ont été séquencées en utilisant la technologie Illumina (Solexa) Hiseq 2000. Le nombre de reads obtenus pour chacuns des échantillons est indiqué dans la table VI.1. L'alignement sur le génome d'*Arabidopsis thaliana* a été effectué en utilisant le logiciel MUMmer (Kurtz et al., 2004) et seuls les reads avec un match parfait ont été conservés.

Pour la comparaison de l'abondance en siRNA de 24 nt entre les régions dont l'hypométhylation est stable ou réversible, le nombre de reads de « siRNA de 24 nt » inclus dans les fenêtres de 165nt des sondes de la puce Nimblegen a été calculé pour wt et *ddm1*.

Pour l'analyse de l'association des siRNA de 24 nt avec la réversion sporadique de l'hypométhylation dans les épiRIL, le nombre de reads de « siRNA de 24 nt » inclus dans les fenêtres de 165nt des sondes de la puce Nimblegen a été calculé pour chacune des librairies des épiRIL. Afin de pouvoir les comparer, les données pour chaque épiRIL ont été normalisées par la taille de la librairie correspondante et exprimées en nombre de reads de 24 nt pour 10 millions de reads.

Figure VI.1. Dispositif expérimental pour les mesures de longueur de la racine primaire.(A) Disposition dans la chambre de culture. La position de chaque boite est définie par le rang et le quart auquel elle appartient.

(B) Plantules d'une même lignée épiRIL après 11 jours de croissance (photo utilisée pour la mesure de la longueur de la racine primaire).

VI.4. Détection des DMR dans les épiRIL

La recherche de régions différentiellement méthylées (DMR) a été effectuée comme décrit précédemment (Becker et al., 2011) en comparant les données de séquençage bisulfite des épiRIL deux à deux. Dans un premier temps les données sont corrigées à l'aide d'un set négatif, le chloroplaste qui n'est pas méthylé. Les positions différentiellement méthylées (DMP) entre les épiRIL sont alors détectés par comparaison deux à deux. Des DMR sont alors déterminées en regroupant les DMP et seules les régions de plus de 100pb contenant au moins 10 DMP dont 60% au moins indiquent le même type de changement (gain ou perte) sont conservées. Les DMR sont séparées en deux groupes en fonction de l'origine parentale de l'intervalle dans lequel elles sont dans les épiRIL :

- wt dans les deux épiRIL (wt/wt, groupe 1)

- ddm1 dans les deux épiRIL (ddm1/ddm1, groupe 2)

Les DMR d'un même groupe présentant un chevauchement de 20% au moins sont ensuite regroupées. La fréquence des DMR est calculée en divisant le nombre de DMR du groupe 1 par la taille du génome d'*Arabidopsis* pour lequel deux épiRIL sont d'origine wt.

VI.5. Mesures de la longueur de la racine primaire

Compte tenu du nombre élevé de lignées (505), la désinfection et le dépôt des graines sur boite et dans la chambre de culture ont été effectués sur deux jours consécutifs (groupes 1 et 2). Une dizaine de graines pour chaque ligné épiRIL a été désinfectée pendant 10 minutes dans 1 ml de solution 1 (1 comprimé de bayrachlore dissout dans 40ml d'eau et dilué au $1/10^{e}$ dans de l'éthanol 95% (v/v)) sous agitation constante. Les graines ont ensuite été lavées avec 1 ml d'éthanol 98% et séchées sous hotte. Une stratification de 96 h à 4°C et à l'obscurité a ensuite été effectuée dans 300 µl d'eau. Au jour J0, neuf graines de chaque lignée épiRIL du groupe 1 ont été déposées à un intervalle régulier à 2 cm du haut d'une boite carrée de 12x12cm contenant 60 ml de milieu MS solide (MS 0.5X, MES 0.5g/L, saccarose 1.5 %, agar 0.9 %, pH 5.2, Figure VI.1.). Les boites ont été fermées avec du parafilm et placées verticalement dans une chambre de culture rotative (Figure VI.1.). Les racines

Marqueur	Position (chromosome, position)	Génération où ce
		marqueur est utilisé
QTL_RL_chr1_1	Chromosome 1, 13.8 Mb	F2
QTL_RL_chr1_2	Chromosome1, 15.9 Mb	F2 et F3
QTL_RL_chr1_3	Chromosome1, 16.7 Mb	F2
QTL_RL_chr1_4	Chromosome 1, 18 Mb	F2 et F3
QTL_RL_chr2_1	Chromosome 2, 3.7 Mb	F2
QTL_RL_chr2_2	Chromosome 2, 3.8 Mb	F2 et F3
QTL_RL_chr2_3	Chromosome 2, 5.8 Mb	F2 et F3
QTL_RL_chr2_4	Chromosome 2, 6.9 Mb	F2
QTL_RL_chr4_1	Chromosome 4, 9.4 Mb	F2 et F3
QTL_RL_chr4_2	Chromosome 4, 10.5 Mb	F2 et F3
QTL_RL_chr4_3	Chromosome 4, 11 Mb	F2

Table VI.1. Marqueurs utilisés lors de l'analyse du niveau de méthylation des QTL pour la longueur de la racine primaire dans une population indépendante

croissent ainsi en surface du milieu de culture. Au jour J1, la même opération a été effectuée pour les lignées du groupe 2. Les boites des épiRIL ont été disposées de manière aléatoire dans la chambre de culture et les lignées parentales et contrôles ont été réparties pour estimer les effets micro-environnementaux. La mesure de la longueur des racines primaire a été effectuée après 11 jours de croissance en jours longs (16 h de jour à 22.5°C et 8 h de nuit à 18°C). Aux jours J11 et J12, respectivement pour les lignées des groupes 1 et 2, le couvercle a été retiré et les boites prises en photo. La longueur de la racine primaire a ensuite été mesurée en traçant chaque racine et en extrayant la longueur de chaque segment avec le logiciel Optimas. Les plantes présentant un délai de germination, une contamination par des champignons, des bactéries ou des levures, ou ayant poussé dans le milieu ont été éliminées des analyses. Suite à l'analyse des effets environnementaux montrant un effet fort pour le rang 1, les données ont été corrigées en ajoutant pour chaque racine du cercle extérieur la différence entre la moyenne de longueur de racine primaire du cercle extérieur avec celle du reste de la chambre de culture.

Pour la deuxième mesure le dépôt sur boite a été effectué en une seule fois. Afin d'éviter des effets environnementaux le cercle extérieur est composé de boites vides. Les lignées ainsi que les contrôles et le mutant *ddm1* ont été placés sur les rangs 2 et 3, le quatrième étant aussi composé de boites vides (Figure VI.1.). Les racines ont été mesurées au bout de 10 jours de croissance, lorsque la longueur de racine primaire pour les contrôles était au même niveau que pour la mesure 1 (57 mm pour les deux mesures). Chaque boite a été scannée à 300 dpi sur un scanner Epson. Les racines ont ensuite été mesurées avec le logiciel de mesure semi-automatique du système racinaire EZ-Rhizo (Armengaud et al., 2009).

VI.6. Cartographie de QTL

Afin de détecter des QTL pour le temps de floraison et la longueur de la racine primaire, une cartographie d'intervalle classique a été réalisée par nos collaborateurs (groupe de Frank Johannes, Groningen) en utilisant le package R/qtl avec une taille de pas de 2 cM (Broman et al., 2003). Cette analyse a été effectuée en utilisant la méthode Haley-Knott. Une fonction de Haldane a été utilisée pour convertir les fractions de recombinaison en cM. Un score LOD (logarithm of the odds), qui est le log de base 10 du rapport de la vraisemblance de la présence d'un QTL sur la vraisemblance de l'absence d'un QTL, est mesuré le long du génome. Plus celui-ci est élevé plus la vraisemblance qu'un QTL soit présent pour la position correspondante est importante. Un seuil de signification pour le génome a été déterminé par un bootstrap avec 1000 permutations des données.

VI.7. Mesure du pourcentage de la variation phénotypique expliqué par les QTL

La cartographie de QTL étant effectuée sur un sous-ensemble de la population, les individus ayant été sélectionnés selon leur phénotype extrème, l'héritabilité peut être différente de celle calculée sur toute la population. L'héritabilité au sens large (H²) a donc été recalculée en utilisant une analyse de variance (ANOVA). Cette héritabilité au sens large peut être estimée par :

$$H^2 = \frac{\sigma^2(L)}{\sigma^2(y)} = 1 - \frac{\sigma^2(\epsilon)}{\sigma^2(y)} \tag{1}$$

où $\sigma^2(L)$ est la variance inter-lignées, $\sigma^2(\epsilon)$ la variance poolée intra-lignée et $\sigma^2(y)$ la variance totale.

De plus une héritabilité ajustée (H²adj) est aussi calculée en tenant compte de la taille de la population et du degré de liberté en remplaçant les composants des variances par leurs estimateurs :

$$H^{2}adj = 1 - \frac{n-1}{n-(p+1)} \frac{\sum_{i}^{n} (yi - \hat{\mu}i)^{2}}{\sum_{i}^{n} (yi - \bar{y}i)^{2}}$$
(2)

où yi est la valeur phénotypique normalisée de la plante i.

La mesure des effets des QTL a été effectuée par Frank Johannes en utilisant un modèle de régression simple (pour un QTL) ou de régression multiple (pour deux QTL ou plus). Cette analyse est basée sur un modèle additif de k QTL.

L'effet additif pour le locus k est la moitié de la différence des moyennes phénotypiques des deux classes homozygotes.

La proportion de la variance phénotypique expliquée par la composante (épi)génétique $R^2(G)$ est calculée selon :

$$R^{2}(G) = \frac{\sigma^{2}(G)}{\sigma^{2}(y)} = \frac{\sigma^{2}(y) - \sigma^{2}(\epsilon)}{\sigma^{2}(y)} = 1 - \frac{\sigma^{2}(\epsilon)}{\sigma^{2}(y)}$$

où $\sigma^2(G)$ est la contribution totale de la variance (épi)génétique additive,

La contribution à la variance pour le QTLj peut être estimée en calculant les correlations semi-partialles.

La contribution à la variance de plusieurs QTL n'est pas toujours indépendante les uns des autres. Ceci peut prevenir de déséquilibres de liaison à courte ou à longue distance. L'estimation de la proportion de la variation phénotypique expliquée par la covariance de tous les j QTL dérive des calculs précedents.

VI.8. Validation des QTL associés à la longueur de la racine primaire dans une population F3 indépendante.

Le génotypage de la mutation *ddm1-2* dans la population F2 a été effectuée en amplifiant la région du gène *DDM1* contenant la mutation à l'aide des amorces :

dCAPS-Col-ddm1_F 5'-ACG AAG CAA CCA AGG AAG AA -3'

dCAPS_Col-ddm1_R 5'-GAG CCA TGG GTT TGT GAA ACG TA -3'

Une digestion Rsal (10U, Invitrogen) de 2H à 37°C a ensuite été effectuée et la digestion a été analysée par migration sur un gel TAE à 2,5% d'agarose. L'amorce dCAPS_Col-ddm1_R introduit un mésappariement créant un site de digestion pour l'enzyme Rsal chez l'allèle sauvage uniquement.

L'analyse du niveau de méthylation de l'ADN dans les F2 et les F3 issues d'un croisement entre wt et le mutant *ddm1-2* a été effectuée par amplification qPCR (PCR quantitative) d'une digestion de l'ADN avec l'enzyme McrBC (New Englad Biolabs) qui coupe spécifiquement l'ADN méthylé. La digestion a été effectué comme décrit précédemment (Teixeira et al., 2009). Les amorces ont été dessinées en utilisant le logiciel Primer3

At1g48670 Gènes			
	* TR 3′ *	Atcopia49	
Eléments transposables			
Figure VI.2. Position des régions ciblées	s pour la méthylatior	n au niveau du locus ca	ndidat (*).

Region ciblée	Position	Taille de la région
Région 1	Chr1: 18004781 18005026	288 pb
Région 2	Chr1: 18005760 18006004	289 pb
Région 3	Chr1: 18006668 18006925	299 pb

TableVI.2. Position des régions ciblées pour la méthylation au niveau du locus candidat

dans les épiRIL (pJaw:ACT2pro#8)

(http://frodo.wi.mit.edu/primer3/) avec les paramètres suivants : taille des amorces de 20 nt, pourcentage CG entre 40 et 60 %, température d'appariement à 60 °C et taille du produit PCR entre 100 et 250 nt. La position des marqueurs étudiés pour les 3 QTL est indiquée dans la table VI.2. La réaction de PCR quantitative a été effectuée comme décrit précedemment (Teixeira et al., 2009). Le pourcentage de méthylation est calculé comme suit :

(1-2^{-(Cp digéré-Cp non digéré)})*100

où les Cp sont mesurés par le logiciel LightCycler[®] 480 pour l'ADN digéré et l'ADN non digéré avec l'enzyme McrBC.

La longueur de la racinaire a été mesuré pour la population F3 comme décrit ci-avant (VI.3.2.). L'ensemble des boites contiennent 10 plantes F3 chacune. Les plantes sélectionnées selon leur phénotype extrême pour la longueur de la racine primaire ont été transférées en terre et les parties aériennes de chaque plantes ont été prélevées après 22 jours de croissance en sol. L'ADN de chaque plante a été extrait individuellement avec le kit d'extraction d'ADN en plaque DNeasy 96 Plant Kit Qiagen. L'ADN des 41 plantes « petite racine » a été mélangé de manière équimolaire (pool petite racine) ainsi que celui des 41 plantes de « grande racine » (pool grande racine). De la même manière les pools wt et *ddm1* ont été obtenus à partir de 8 plantes de chaque.

VI.9. Analyse de l'expression par RT-qPCR

L'ARN total a été extrait avec le kit RNeasy (Qiagen) et 1 µg a été utilisé pour la réverse transcription. Cet ARN a été incubé pendant 1 heure à 42 °C avec la reverse transcriptase Superscript II (Promega RG1 DNase) et un primer OligodT (18 nt). L'enzyme est ensuite désactivée par un traitement à 65 °C pendant 15 minutes et les échantillons sont traités à la RNase H. La réaction de PCR quantitative a été effectuée comme décrit précedemment (Teixeira et al., 2009). Les résultats sont exprimés en pourcentage d'expression relatif à la moyenne obtenue pour trois gènes contrôles présentant une expression stable dans 100 expériences de microarray disponibles (*At2g36060; At4g29130; At5g13440*). La séquence des amorces est indiquée en annexe.

VI.10. Ciblage de la méthylation par transformation

L'approche utilisée dans le but de méthyler des séquences ciblées dans le locus candidat est basée sur la formation d'un ARN avec une structure tige-boucle qui va permettre de cibler le RdDM qui a déjà décrite précedemment (Mette et al., 2000). Le vecteur *pJaw:ACT2pro#8* qui permet la transformation et la formation d'un ARN double brin pour la région ciblée contient le promoteur ACT2 (Figure VI.3.). La position des régions ciblées est indiquée dans la table VI.2. et dans la figure IV.4.). L'introduction dans ce vecteur des séquences cibles a été effectuée en utilisant le système Gateway (Invitrogen). L'amplification de la région cible a été effectuée en ajoutant les adaptateurs AttB1 et AttB2 puis introduite dans le vecteur pDONR207 par clonage BP. Les clones contenant la région cible ont été sélectionnés sur milieu LB contenant 25 µg/ml de gentamycine et la présence de l'insert a été vérifiée par PCR. La région cible a ensuite été introduite dans le vecteur *pJaw:ACT2pro#8* par recombinaison LR entre ce vecteur et le pDONR207 contenant la région cible. Les clones transformés ont été sélectionnés sur milieu LB avec 50 µg/ml d'ampicilline et la présence de l'insert vérifiée par PCR (amorces décrites en annexe). La transformation d'Agrobacterium tumefaciens puis des plantes, par « floral dipping », ont été réalisées comme décrit précédemment (Zhang et al., 2006). Les plantes transformées ont été sélectionnées sur milieu MS solide (MS 0.5 X, MES 0.5 g/L, saccharose 1 %, agar 0.8 %, pH 5.2) contenant 10 μg/ml de basta.

VII. Annexe

Figure II.4. Est représenté pour wt, *ddm1* et les 101 épiRIL le résultat de l'analyse HMM, le pourcentage de sondes classées U, I et M ainsi que l'épihaplotype.

Figure II.4 (suite)

Figure II.4 (suite)

Figure II.4 (suite)

Figure II.4 (suite)

Figure II.4 (suite)

epiRIL 326

Figure II.4 (suite)

136

Figure II.4 (suite)

Figure II.4 (suite)

Figure II.4 (suite)

Figure II.4 (suite)

epiRIL 539 *

epiRIL 538

<u>1</u>0

Figure II.4 (suite)

	Groupe d'extrême pour la	Groupe d'extrême pour le	Anglung du		Analyse	Validation	Sáruanaa	Cármanaaa
FniRII	la racine	floraison	Analyse du méthylome	Cartographie	du locus candidat	candidat	Sequençage bisulfite	Sequençage des siRNA
8	-	Précoce	-	X	-	-	-	-
11	-	Tardif	-	X	-	-	-	_
14	-	Tardif	х	х	-	-	-	-
18	Petite	-	Х	х	-	Х	-	-
20	Petite	-	Х	х	-	-	-	-
24	-	Tardif	Х	х	-	-	-	-
36	-	Tardif	Х	Х	-	-	-	-
46	-	Précoce	Х	Х	-	-	-	-
52	-	Tardif	Х	Х	-	-	-	-
53	-	Tardif	Х	Х	-	-	-	-
54	-	Tardif	Х	Х	-	-	-	-
55	-	Précoce	Х	Х	-	-	-	-
60	-	-	-	Х	-	-	Х	Х
62	-	Tardif	-	Х	-	-	-	-
64	-	Précoce	Х	Х	-	-	-	-
69	-	Tardif	-	Х	-	-	-	-
70	-	Précoce	Х	х	-	-	-	-
71	-	Précoce	Х	Х	-	-	-	-
73	Grande	-	Х	Х	Х	-	-	-
92	-	Précoce	Х	Х	Х	-	-	-
93	Petite	-	Х	Х	Х	-	-	-
94	-	Tardif	Х	Х	-	-	-	-
95	Grande	Précoce	Х	х	Х	-	-	-
98	Petite	-	Х	х	-	-	х	Х
99	-	Tardif	Х	Х	-	-	-	-
101	-	Précoce	Х	х	-	-	-	-
108	-	Tardif	Х	Х	-	-	-	-
112	-	Tardif	Х	Х	-	-	-	-
114	-	Tardif	-	Х	-	-	-	-
118	-	Précoce	Х	Х	-	-	-	-
122	-	Tardif	Х	Х	-	-	-	-
137	Petite	Tardif	Х	Х	Х	-	-	-
144	-	Tardif	-	Х	-	-	-	-
147	-	Précoce	Х	Х	-	-	-	-
148	Petite	-	Х	Х	-	-	-	-
150	-	Précoce	-	Х	-	-	-	-
159	-	Tardif	Х	х	-	-	-	-
164	-	Tardif	Х	Х	-	-	-	-
166	-	Tardif	Х	х	-	-	-	-
169	-	Tardif	х	x	-	-	-	-

Table VIII.1. Liste des épiRIL épigénotypées et utilisés pour les différentes analyses présentées

170	-	Tardif	Х	х	-	-	-	-
172	Petite	-	х	Х	-	-	-	-
183	-	Tardif	х	Х	-	-	-	-
193	-	Précoce	х	х	-	-	-	-
195	Grande	-	Х	х	-	-	-	-
202	-	Précoce	Х	х	-	-	Х	х
208	-	Précoce	Х	х	-	-	-	-
215	Petite	-	Х	Х	Х	-	-	-
216	-	Précoce	Х	Х	-	-	-	-
218	-	Précoce	Х	Х	-	-	-	-
222	-	Précoce	Х	Х	-	-	-	-
225	Grande	-	Х	Х	-	-	-	-
229	-	Précoce	Х	Х	-	-	-	-
232	-	Précoce	Х	Х	-	-	-	-
238	-	Tardif	Х	х	-	-	-	-
244	Grande	-	Х	Х	Х	-	-	-
252	-	Tardif	х	х	-	-	-	-
257	Grande	-	Х	х	-	-	-	-
258	-	Précoce	х	х	-	-	-	-
260	-	Tardif	Х	х	-	-	Х	Х
262	-	Tardif	-	х	-	-	-	-
275	Grande	-	Х	Х	-	-	-	-
276	-	Tardif	Х	х	-	-	-	-
277	-	Tardif	Х	Х	-	-	-	-
297	-	Précoce	Х	Х	-	-	-	-
305	Petite	-	Х	Х	Х	-	-	-
315	-	Tardif	Х	Х	-	-	-	-
323	Grande	-	Х	Х	-	-	-	-
326	Grande	-	Х	Х	-	-	-	-
333	Grande	-	Х	Х	-	-	-	-
340	-	Tardif	Х	Х	-	-	-	-
344	Grande	Précoce	Х	Х	-	-	Х	-
350	-	Précoce	Х	Х	-	-	-	-
356	-	Précoce	Х	Х	-	-	-	-
361	Petite	-	Х	Х	-	Х	-	-
362	-	Précoce	-	Х	-	-	-	-
363	-	Précoce	-	Х	-	-	-	-
366	-	Précoce	Х	Х	-	-	-	-
368	-	Tardif	-	Х	-	-	-	-
371	-	Précoce	Х	Х	-	-	-	-
375	-	Précoce	X	X	-	-	-	-
391	-	Précoce	X	Х	-	-	-	-
393	-	Tardif	X	X	-	-	-	-
394	Petite	Tardif	X	X	X	-	-	-
400	Grande	-	X	Х	-	-	-	-
408	-	Tardif	X	X	-	-	-	-
410	Grande	-	Х	Х	-	-	-	-

425	-	Précoce	-	х	-	-	-	-
432	Petite	-	х	Х	-	-	-	-
434	-	Tardif	х	Х	-	-	-	-
437	-	Précoce	-	Х	-	-	-	-
438	-	Précoce	Х	Х	Х	-	-	-
439	-	Tardif	Х	Х	-	-	-	-
454	-	Précoce	х	Х	-	-	-	-
458	-	Précoce	Х	Х	-	-	-	-
466	-	Précoce	Х	Х	-	-	-	-
467	-	Précoce	Х	Х	-	-	-	-
471	-	Précoce	-	Х	-	-	-	-
473	-	Tardif	Х	Х	-	-	-	-
477	-	Tardif	Х	Х	-	-	-	-
480	-	Tardif	Х	Х	-	-	Х	-
488	-	Précoce	-	Х	-	-	-	-
492	-	Précoce	Х	Х	-	-	-	-
493	Grande	-	х	Х	-	-	-	-
494	-	Précoce	-	Х	-	-	-	-
495	Grande	-	Х	Х	-	-	-	-
497	Grande	-	х	Х	-	-	-	-
500	-	Précoce	х	Х	-	-	-	-
503	Petite	-	х	Х	-	-	-	-
506	-	Tardif	Х	х	-	-	-	-
508	-	Précoce	-	Х	-	-	-	-
523	Grande	-	х	Х	-	-	-	-
538	-	Tardif	Х	х	-	-	-	-
539	-	Tardif	х	Х	-	-	-	-
556	-	Précoce	-	Х	-	-	-	-
558	Petite	-	Х	Х	-	-	-	-
559	Grande	Tardif	-	Х	-	-	-	-
561	Grande	-	Х	Х	-	-	-	-
567	-	Précoce	-	Х	-	-	-	-
570	Grande	-	Х	Х	-	Х	-	-
572	-	Tardif	Х	X	-	-	-	-
573	-	Tardif	Х	Х	-	-	-	_
579	Grande	Précoce	-	Х	-	-	-	-

Table VIII.3. Table des primers utilisés

Utilisation du primer	Nom du primer	séquence
Validation des QTL (McrBC-qPCR)	QTL_RL_chr1_1-F	ACACGAGAGGCGTTACCAAC
Validation des QTL (McrBC-qPCR)	QTL_RL_chr1_1-R	CACCCTAACGAAGCCATCAT
Validation des QTL (McrBC-qPCR)	QTL_RL_chr1_2-F	CAACGTTGCTTCCTCAACAA
Validation des QTL (McrBC-qPCR)	QTL_RL_chr1_2-R	CCTATGTCGGGGTGTACCAT
Validation des QTL (McrBC-qPCR)	QTL_RL_chr1_3-F	TCTTTGTTCTTCCGCTCGAT

Validation des QTL (McrBC-qPCR)	QTL_RL_chr1_3-R	GAGCCACCAATGCAGCTAGT
Validation des QTL (McrBC-qPCR)	QTL_RL_chr1_4-F	TTGGTCATGCAACAAAAAGA
Validation des QTL (McrBC-qPCR)	QTL_RL_chr1_4-R	AATAAAACGGCAAGGGTTCC
Validation des QTL (McrBC-qPCR)	QTL_RL_chr2_1-F	GGACGCCAACAAAACATTCT
Validation des QTL (McrBC-qPCR)	QTL_RL_chr2_1-R	CACAACGATCCTTGCTCTGA
Validation des QTL (McrBC-qPCR)	QTL_RL_chr2_2-F	AGCATCACGTCTGCATCTTG
Validation des QTL (McrBC-qPCR)	QTL_RL_chr2_2-R	CAGCAGGAACATCATTCACG
Validation des QTL (McrBC-qPCR)	QTL_RL_chr2_3-F	TCGTCAAGATGGACAAGCTG
Validation des QTL (McrBC-qPCR)	QTL_RL_chr2_3-R	CAAGACCAAGCACGAACTGA
Validation des QTL (McrBC-qPCR)	QTL_RL_chr2_4-F	CCTGCTGCTTTCCAAGTTTC
Validation des QTL (McrBC-qPCR)	QTL_RL_chr2_4-R	TCACCAGCCTTACCTTTTGG
Validation des QTL (McrBC-qPCR)	QTL_RL_chr4_1-F	ACCTTGTTTTGTTCGGGTTG
Validation des QTL (McrBC-qPCR)	QTL_RL_chr4_1-R	ACTCACTCTCCGATGCGTCT
Validation des QTL (McrBC-qPCR)	QTL_RL_chr4_2-F	GGACCTGCAGAGATTCAAGC
Validation des QTL (McrBC-qPCR)	QTL_RL_chr4_2-R	TGTTGCCGATTGCATTATGT
Validation des QTL (McrBC-qPCR)	QTL_RL_chr4_3-F	GGGTGTACCACAGGCCTAGA
Validation des QTL (McrBC-qPCR)	QTL_RL_chr4_3-R	GATGTTGAGCTGTTGCAGGA
RT-qPCR (At1g48670)	At1g48670 cDNA-F	TTGTTGTCTCCGATCTCACG
RT-qPCR (At1g48670)	At1g48670 cDNA-R	CGCCGAACATCTCCTACTTC
RT-qPCR (ATCAPIA49)	ATCOPIA49-cDNA-F	TGTGATTGACCTCCGGTTATC
RT-qPCR (ATCAPIA49)	ATCOPIA49-cDNA-R	TGAGGTACATGAAAGGCACAA
RT-qPCR (référence)	At5g13440-F	ACAAGCCAATTTTTGCTGAGC
RT-qPCR (référence)	At5g13440-R	ACAACAGTCCGAGTGTCATGGT
RT-qPCR (référence)	At2g36060-F	TGAAGTCGTGAGACAGCGTTG
RT-qPCR (référence)	At2g36060-R	GGGCTTCTCCATTGTTGTC
RT-qPCR (référence)	At4g29130-F	GGCGTTTTCTGATAGCGAAAA
RT-qPCR (référence)	At4g29130-R	ATGGATCAGGCATTGGAGCT
Clonage des cibles (cible1)	At1g48670p_AttB1	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAGTGTTGGCATTAAGTGTGA
Clonage des cibles (cible1)	At1g48670p_AttB2	GGGGACCACTTTGTACAAGAAAGCTGGGTAGCACGATTGTCCAAGTTCTG
Clonage des cibles (cible2)	At1g48680-AttB1	GGGGACAAGTTTGTACAAAAAAGCAGGCTGCTGGTATGTCATTTAGTTTGACG
Clonage des cibles (cible2)	At1g48680-AttB2	GGGGACCACTTTGTACAAGAAAGCTGGGTAAGTGGATTTCCGGAGAGGGTT
Clonage des cibles (cible3)	At1g48680-2-AttB1	GGGGACAAGTTTGTACAAAAAAGCAGGCTCACCTCCACACTCTCCTGTG
Clonage des cibles (cible3)	At1g48680-2-AttB2	GGGGACCACTTTGTACAAGAAAGCTGGGTATGAGGTACATGAAAGGCACAA
Clonage des cibles (test de la BP)	DRN5	CTGGCAGTTCCCTACTCTCG
Clonage des cibles (test de la BP)	DRN3	GATGGTCGGAAGAGGCATAA
Clonage des cibles (test de la LR)	DMB227	GAAAGAGGATCCACCTGAGGATCAC
Clonage des cibles (test de la LR)	DMB228	CTTCTAGCCCATGGAACGGAGG

Tables supplémentaires du paragraphe III.2.2. (Colomé Tatché et al. Soumis)

Supplemental table legends

Table S1: Correspondence between HMM and BS-seq: Overlap between HMM and BS-seq (in %) for all probes, and for probes that are classified as U, I or M by HMM for the epiRILs that were sequenced.

Table S2: Parental DMRs: The chromosome and position (start bp and stop bp) for the 2611 parental DMRs are given.

Table S3: DMRs with Mendelian segregation: The chromosome and position (start bp and stop bp) are given for the 867 parental DMRs that show Mendelian segregation

Table S4: Markers: The chromosome, position (start bp and stop bp) and genetic position (cM) are given for the 126 non-redundant markers.

Table S5: epiRIL line numbers: epiRIL numbers in Figure 1B and their corresponding line numbers.

Table S6: Consensus map: For each of the 83 markers of the consensus map, the chromosome and position (bp start and bp stop) corresponding to the epiRIL markers are given, and the position and name of the retained SNPs for each of the 17 natural accession crosses are shown.

Table S7: Fine-mapping individual recombination breakpoints: Name refers to the left DMR that was used initially to identify each breakpoint interval within pericentromeric regions. Intervals were narrowed down first by considering all of the parental DMRs included in these intervals and that fulfill the Mendelian segregation criterion. Some intervals could be further narrowed down by considering individual probes outside of DMRs and for which parental DNA methylation states (M in wild type and U in *ddm1*) segregate in Mendelian fashion. Column F indicates the number of epiRILs with breakpoints in the corresponding interval and column G the proportion of breakpoints contributed by this interval to the total number of recombinants for that chromosome.

Table S8: Fine-mapping of shared recombination breakpoints: Location and length of shared breakpoint intervals, and the number of epiRILs with a shared breakpoint interval.

Table S1

	R60	R98	R202	R260	R344	R480
% Overlap	87.97	87.20	86.56	86.66	86.06	81.00
% U probes	98.23	97.77	97.53	97.79	98.15	95.37
% I probes	9.37	16.34	19.07	12.45	9.91	28.11
% M probes	83.91	78.53	80.83	86.14	81.21	73.30

Table S2

dmr_id	chromosome	start_bp	stop_bp
DMR-1	1	525857	526242
DMR-2	1	4145856	4146121
DMR-3	1	4330606	4332076
DMR-4	1	5098227	5098853
DMR-5	1	5353427	5354443
DMR-6	1	5691687	5695344
DMR-7	1	5893659	5893999
DMR-8	1	5913461	5915811
DMR-9	1	6010663	6013983
DMR-10	1	6156483	6158964
DMR-11	1	6302732	6303012
DMR-12	1	7073762	7074092
DMR-13	1	7254722	7257249
DMR-14	1	7430002	7432267
DMR-15	1	7745823	7748073
DMR-16	1	8159758	8160748
DMR-17	1	8453446	8453821
DMR-18	1	8456761	8459067
DMR-19	1	8461252	8461915
DMR-20	1	8490901	8491751
DMR-21	1	8779330	8780036
DMR-22	1	8801988	8802650
DMR-23	1	8816171	8816837
DMR-24	1	8830699	8831320
DMR-25	1	8931514	8932319
DMR-26	1	9004728	9015770
DMR-27	1	9018095	9018740
DMR-28	1	9370023	9373488
DMR-29	1	9464911	9465256
DMR-30	1	9574179	9575333
DMR-31	1	9585538	9585888
DMR-32	1	9676596	9681110
DMR-33	1	9682045	9691308
DMR-34	1	9928550	9929215
DMR-35	1	10007603	10007973
DMR-36	1	10152819	10153458
DMR-37	1	10154128	10156602
DMR-38	1	10357405	10358870
DMR-39	1	10545345	10545839
DMR-40	1	10591542	10592022
DMR-41	1	10602467	10602964
DMR-42	1	10745827	10746132
DMR-43	1	10930125	10930458

DMR-44	1	11044649	11045616
DMR-45	1	11047114	11051415
DMR-46	1	11089513	11090028
DMR-47	1	11096911	11100708
DMR-48	1	11102419	11102716
DMR-49	1	11148121	11152847
DMR-50	1	11155054	11155344
DMR-51	1	11301045	11301528
DMR-52	1	11302214	11303059
DMR-53	1	11305681	11306466
DMR-54	1	11309661	11310311
DMR-55	1	11322798	11324178
DMR-56	1	11366246	11367244
DMR-57	1	11502846	11503351
DMR-58	1	11511756	11512571
DMR-59	1	11517887	11518652
DMR-60	1	11519343	11519828
DMR-61	1	11752127	11754934
DMR-62	1	11789416	11794100
DMR-63	1	11984511	11984824
DMR-64	1	11992096	11992401
DMR-65	1	12018333	12019768
DMR-66	1	12037760	12038430
DMR-67	1	12176188	12176848
DMR-68	1	12222214	12223049
DMR-69	1	12273252	12276332
DMR-70	1	12315004	12316774
DMR-71	1	12403422	12409842
DMR-72	1	12477035	12477365
DMR-73	1	12568561	12569061
DMR-74	1	12570419	12571041
DMR-75	1	12591046	12591497
DMR-76	1	12627186	12628276
DMR-77	1	12631300	12632109
DMR-78	1	12665781	12666246
DMR-79	1	12667939	12671224
DMR-80	1	12674514	12675189
DMR-81	1	12691357	12691647
DMR-82	1	12698951	12699226
DMR-83	1	12699935	12701714
DMR-84	1	12711641	12722880
DMR-85	1	12724010	12728956
DMR-86	1	12741147	12741472
DMR-87	1	12753406	12760337
DMR-88	1	12856990	12862085
DMR-89	1	12886199	12886839
DMR-90	1	12922989	12923311

DMR-91	1	12953326	12953821
DMR-92	1	12987529	12987854
DMR-93	1	12997426	13001226
DMR-94	1	13003181	13008641
DMR-95	1	13018502	13019187
DMR-96	1	13021477	13023341
DMR-97	1	13098250	13102655
DMR-98	1	13139284	13140168
DMR-99	1	13181421	13183006
DMR-100	1	13183871	13186306
DMR-101	1	13238644	13239154
DMR-102	1	13239811	13242134
DMR-103	1	13243578	13244443
DMR-104	1	13245769	13246224
DMR-105	1	13264736	13265031
DMR-106	1	13292792	13293122
DMR-107	1	13303473	13304498
DMR-108	1	13311395	13313565
DMR-109	1	13329072	13340087
DMR-110	1	13340457	13340972
DMR-111	1	13348682	13349007
DMR-112	1	13354819	13355104
DMR-113	1	13372768	13377246
DMR-114	1	13377891	13380727
DMR-115	1	13382192	13386947
DMR-116	1	13391912	13397522
DMR-117	1	13406151	13407751
DMR-118	1	13410597	13416544
DMR-119	1	13419144	13422650
DMR-120	1	13427752	13429697
DMR-121	1	13433353	13434184
DMR-122	1	13435634	13436504
DMR-123	1	13441785	13444705
DMR-124	1	13447666	13448656
DMR-125	1	13483008	13484797
DMR-126	1	13486951	13488601
DMR-127	1	13491291	13491906
DMR-128	1	13499704	13500341
DMR-129	1	13502344	13502970
DMR-130	1	13505971	13507291
DMR-131	1	13546183	13546503
DMR-132	1	13561188	13566504
DMR-133	1	13574775	13575380
DMR-134	1	13575905	13578212
DMR-135	1	13609050	13611740
DMR-136	1	13614690	13616505
DMR-137	1	13618483	13621742

DMR-138	1	13628014	13629692
DMR-139	1	13680349	13682839
DMR-140	1	13690605	13696354
DMR-141	1	13711542	13711832
DMR-142	1	13715007	13715657
DMR-143	1	13719771	13720576
DMR-144	1	13723276	13726066
DMR-145	1	13730541	13731347
DMR-146	1	13736274	13736584
DMR-147	1	13745340	13746177
DMR-148	1	13752141	13752791
DMR-149	1	13755266	13756219
DMR-150	1	13762371	13762816
DMR-151	1	13767461	13767792
DMR-152	1	13779346	13779696
DMR-153	1	13780371	13780806
DMR-154	1	13814841	13815321
DMR-155	1	13815957	13817799
DMR-156	1	13819638	13820442
DMR-157	1	13826895	13828486
DMR-158	1	13833771	13837234
DMR-159	1	13844188	13848140
DMR-160	1	13849806	13850281
DMR-161	1	13859059	13859839
DMR-162	1	13872096	13873549
DMR-163	1	13874905	13878010
DMR-164	1	13879195	13879640
DMR-165	1	13924397	13925524
DMR-166	1	13927386	13927651
DMR-167	1	13931632	13932637
DMR-168	1	13937767	13938707
DMR-169	1	13949477	13950282
DMR-170	1	13956862	13960687
DMR-171	1	13964788	13965280
DMR-172	1	13969593	13972424
DMR-173	1	13976502	13977367
DMR-174	1	13983607	13984268
DMR-175	1	13984918	13985273
DMR-176	1	13986093	13986393
DMR-177	1	13988207	13989704
DMR-178	1	13990239	13990519
DMR-179	1	13997825	13998275
DMR-180	1	14000766	14001618
DMR-181	1	14021704	14022069
DMR-182	1	14037747	14039365
DMR-183	1	14039913	14040404
DMR-184	1	14041565	14044311

DMR-185	1	14050129	14050964
DMR-186	1	14052579	14054259
DMR-187	1	14055047	14061305
DMR-188	1	14063657	14066620
DMR-189	1	14066965	14070057
DMR-190	1	14077334	14077690
DMR-191	1	14083297	14084617
DMR-192	1	14099117	14099611
DMR-193	1	14103543	14104753
DMR-194	1	14112958	14119383
DMR-195	1	14131943	14137208
DMR-196	1	14139558	14141023
DMR-197	1	14146506	14147761
DMR-198	1	14189208	14189839
DMR-199	1	14190383	14191339
DMR-200	1	14197654	14198638
DMR-201	1	14220243	14222676
DMR-202	1	14302730	14306046
DMR-203	1	14326954	14327284
DMR-204	1	14335079	14335886
DMR-205	1	14347579	14349784
DMR-206	1	14353688	14355518
DMR-207	1	14362323	14362593
DMR-208	1	14372715	14374834
DMR-209	1	14393152	14394827
DMR-210	1	14399266	14401046
DMR-211	1	14407851	14408131
DMR-212	1	14418868	14420507
DMR-213	1	14449277	14449602
DMR-214	1	14460170	14462150
DMR-215	1	14464620	14465570
DMR-216	1	14472698	14473024
DMR-217	1	14513578	14514098
DMR-218	1	14541178	14545088
DMR-219	1	14819493	14820677
DMR-220	1	14842923	14845383
DMR-221	1	14848035	14849200
DMR-222	1	14878434	14879599
DMR-223	1	14882406	14884716
DMR-224	1	14896905	14899681
DMR-225	1	15003185	15009456
DMR-226	1	15142085	15142725
DMR-227	1	15152615	15153335
DMR-228	1	15154819	15157109
DMR-229	1	15164718	15165353
DMR-230	1	15165828	15168298
DMR-231	1	15219602	15223099

DMR-232	1	15243886	15246170
DMR-233	1	15284161	15284806
DMR-234	1	15285451	15288751
DMR-235	1	15290116	15290735
DMR-236	1	15305127	15307087
DMR-237	1	15308042	15308542
DMR-238	1	15309072	15309419
DMR-239	1	15315689	15318775
DMR-240	1	15340915	15343024
DMR-241	1	15382315	15383010
DMR-242	1	15383660	15386750
DMR-243	1	15388250	15388769
DMR-244	1	15403289	15404904
DMR-245	1	15406219	15406584
DMR-246	1	15407209	15407571
DMR-247	1	15440759	15445345
DMR-248	1	15446035	15446975
DMR-249	1	15513196	15513631
DMR-250	1	15522224	15525362
DMR-251	1	15528192	15531620
DMR-252	1	15550286	15550766
DMR-253	1	15551291	15552086
DMR-254	1	15577694	15578529
DMR-255	1	15582994	15587070
DMR-256	1	15593660	15594495
DMR-257	1	15620432	15625706
DMR-258	1	15628145	15632000
DMR-259	1	15635301	15636893
DMR-260	1	15647454	15648484
DMR-261	1	15689530	15690065
DMR-262	1	15748293	15748923
DMR-263	1	15759657	15762012
DMR-264	1	15769894	15772746
DMR-265	1	15779308	15779644
DMR-266	1	15782808	15784123
DMR-267	1	15800451	15800900
DMR-268	1	15815259	15817608
DMR-269	1	15821251	15822576
DMR-270	1	15870396	15872217
DMR-271	1	15874382	15874697
DMR-272	1	15881127	15881601
DMR-273	1	15911298	15911993
DIMR-2/4	1	15946135	15947260
DMR-275	1	15952423	15953198
DIMR-276	1	15955564	15956344
DMR-277	1	15974046	15974863
DMR-278	1	15987243	15987706

DMR-279	1	15994140	15994835
DMR-280	1	15998574	15999264
DMR-281	1	16004875	16005860
DMR-282	1	16011660	16012459
DMR-283	1	16042016	16046253
DMR-284	1	16055053	16055378
DMR-285	1	16056198	16058308
DMR-286	1	16058654	16061269
DMR-287	1	16065722	16066417
DMR-288	1	16073021	16075146
DMR-289	1	16077497	16079431
DMR-290	1	16098889	16101755
DMR-291	1	16109836	16111806
DMR-292	1	16120838	16124817
DMR-293	1	16125493	16125788
DMR-294	1	16174023	16174303
DMR-295	1	16174849	16176279
DMR-296	1	16179459	16183728
DMR-297	1	16188329	16189474
DMR-298	1	16194477	16195744
DMR-299	1	16197618	16198273
DMR-300	1	16209336	16213457
DMR-301	1	16216220	16217715
DMR-302	1	16219891	16221036
DMR-303	1	16223133	16224143
DMR-304	1	16226442	16227752
DMR-305	1	16229783	16230098
DMR-306	1	16241631	16242456
DMR-307	1	16252521	16253186
DMR-308	1	16283898	16285198
DMR-309	1	16288200	16288860
DMR-310	1	16292636	16292986
DMR-311	1	16300039	16301513
DMR-312	1	16321198	16321833
DMR-313	1	16329784	16330219
DMR-314	1	16331866	16337035
DMR-315	1	16338796	16341818
DMR-316	1	1636/839	16368499
DMR-317	1	163/2020	16377961
DMR-318	1	163/8251	163/9910
DMR-319	1	16393296	16393971
DIMR-320	1	16406///	16409124
	Ţ	1042510/	10425602
	1	16451532	10452325
	1	1640244031	16404454
	1	10492119	10494454
DIVIK-325	1	10203303	10510446

DMR-326	1	16532567	16536974
DMR-327	1	16554298	16559608
DMR-328	1	16567689	16568185
DMR-329	1	16571345	16577420
DMR-330	1	16583872	16585347
DMR-331	1	16605662	16606482
DMR-332	1	16610222	16612082
DMR-333	1	16614871	16615176
DMR-334	1	16662920	16665717
DMR-335	1	16676929	16678204
DMR-336	1	16680244	16684809
DMR-337	1	16695209	16700209
DMR-338	1	16713569	16713884
DMR-339	1	16718975	16720795
DMR-340	1	16727043	16732876
DMR-341	1	16733536	16733986
DMR-342	1	16734832	16739267
DMR-343	1	16745085	16745530
DMR-344	1	16748385	16748665
DMR-345	1	16757075	16757410
DMR-346	1	16809934	16810420
DMR-347	1	16844050	16845568
DMR-348	1	16848979	16849677
DMR-349	1	16855805	16857585
DMR-350	1	16858275	16860405
DMR-351	1	16861208	16861524
DMR-352	1	16870325	16870805
DMR-353	1	16883688	16884463
DMR-354	1	16885141	16886116
DMR-355	1	17025691	17031861
DMR-356	1	17037470	17038124
DMR-357	1	17039259	17052316
DMR-358	1	17106923	17107383
DMR-359	1	17184427	17184752
DMR-360	1	17206100	17208560
DMR-361	1	17232970	17234090
DMR-362	1	17242364	17243167
DMR-363	1	17257708	17258178
DMR-364	1	17258838	17264340
DMR-365	1	17265653	17266923
DMR-366	1	17284412	17285075
DMR-367	1	17363118	17368434
DMR-368	1	17450795	17451090
DMR-369	1	17491702	17492657
DMR-370	1	17523013	17526003
DMR-371	1	17536099	17536719
DMR-372	1	17543357	17543652

DMR-373	1	17546641	17547096
DMR-374	1	17549782	17550257
DMR-375	1	17624374	17624644
DMR-376	1	17627467	17629817
DMR-377	1	17671709	17675959
DMR-378	1	17678326	17685879
DMR-379	1	17824180	17824625
DMR-380	1	18005691	18010925
DMR-381	1	18093468	18093752
DMR-382	1	18098191	18099679
DMR-383	1	18166541	18168193
DMR-384	1	18217549	18218148
DMR-385	1	18232348	18232723
DMR-386	1	18275136	18275794
DMR-387	1	18510569	18510863
DMR-388	1	18850321	18850821
DMR-389	1	18910876	18911807
DMR-390	1	18966470	18967584
DMR-391	1	18968104	18968769
DMR-392	1	18969287	18970411
DMR-393	1	18971211	18972691
DMR-394	1	19026209	19026524
DMR-395	1	19027171	19027481
DMR-396	1	19321236	19322201
DMR-397	1	19340045	19343672
DMR-398	1	19344617	19349263
DMR-399	1	19376283	19376622
DMR-400	1	19599419	19600065
DMR-401	1	19602225	19603333
DMR-402	1	19680428	19682370
DMR-403	1	19683515	19684030
DMR-404	1	19709973	19710245
DMR-405	1	19912915	19913197
DMR-406	1	20036792	20037443
DMR-407	1	20088798	20093878
DMR-408	1	20316625	20317155
DMR-409	1	20319443	20320248
DMR-410	1	20323573	20324233
DMR-411	1	20337631	20338751
DMR-412	1	20628519	20629294
DMR-413	1	20687106	20689701
DMR-414	1	20930450	20930960
DMR-415	1	21022509	21022839
DMR-416	1	21247900	21253007
DMR-417	1	21288034	21288524
DMR-418	1	21351066	21352716
DMR-419	1	21354006	21354966

DMR-420	1	21393773	21395395
DMR-421	1	21396092	21396592
DMR-422	1	21457161	21459296
DMR-423	1	21459776	21460452
DMR-424	1	21634333	21634698
DMR-425	1	21695576	21696186
DMR-426	1	21750810	21758234
DMR-427	1	21759069	21761386
DMR-428	1	21779239	21780706
DMR-429	1	21800299	21800659
DMR-430	1	21801669	21802299
DMR-431	1	21815497	21816819
DMR-432	1	21837927	21838792
DMR-433	1	21851635	21853262
DMR-434	1	21961370	21961666
DMR-435	1	22066299	22066950
DMR-436	1	22104456	22106077
DMR-437	1	22106752	22107377
DMR-438	1	22118472	22118807
DMR-439	1	22167103	22168133
DMR-440	1	22234806	22236246
DMR-441	1	22699760	22702905
DMR-442	1	22783409	22783734
DMR-443	1	23121950	23126900
DMR-444	1	23144235	23144720
DMR-445	1	23155970	23156822
DMR-446	1	23333374	23333649
DMR-447	1	23513865	23514160
DMR-448	1	23570478	23572928
DMR-449	1	24045514	24045970
DMR-450	1	24275688	24276121
DMR-451	1	24280311	24280761
DMR-452	1	24354337	24357855
DMR-453	1	24432541	24433101
DMR-454	1	24458485	24458985
DMR-455	1	24459659	24460449
DMR-456	1	24609800	24610085
DMR-457	1	24646941	24647261
DMR-458	1	24670998	24671353
DMR-459	1	25061359	25061734
DMR-460	1	26200063	26200847
DMR-461	1	26760223	26761023
DMR-462	1	27070457	27071391
DMR-463	1	28707900	28708696
DMR-464	1	28969586	28970097
DMR-465	1	28998776	28999419
DMR-466	1	29382087	29382603

DMR-467	1	29385346	29385711
DMR-468	1	29481415	29483540
DMR-469	2	21659	22979
DMR-470	2	25420	26945
DMR-471	2	50017	50512
DMR-472	2	53000	53493
DMR-473	2	65042	66062
DMR-474	2	245700	249332
DMR-475	2	373127	378679
DMR-476	2	531631	537604
DMR-477	2	576205	576535
DMR-478	2	639111	639386
DMR-479	2	678363	678853
DMR-480	2	721561	721884
DMR-481	2	904535	905356
DMR-482	2	925027	929979
DMR-483	2	930664	930979
DMR-484	2	963169	963436
DMR-485	2	1196278	1196748
DMR-486	2	1198126	1198622
DMR-487	2	1199222	1204062
DMR-488	2	1214740	1215580
DMR-489	2	1217765	1220349
DMR-490	2	1221499	1222489
DMR-491	2	1226299	1226634
DMR-492	2	1227799	1231951
DMR-493	2	1246133	1246638
DMR-494	2	1251574	1252848
DMR-495	2	1267915	1268856
DMR-496	2	1295597	1296262
DMR-497	2	1305333	1306837
DMR-498	2	1308157	1308462
DMR-499	2	1312475	1313135
DMR-500	2	1326824	1327598
DMR-501	2	1330073	1330408
DMR-502	2	1342327	1343977
DMR-503	2	1345741	1346236
DMR-504	2	1349600	1350075
DMR-505	2	1352048	1352343
DMR-506	2	1387172	1387692
DMR-507	2	1401845	1402997
DMR-508	2	1420825	1421650
DMR-509	2	1434558	1435223
DMR-510	2	1469377	1469822
DMR-511	2	1485511	1488641
DMR-512	2	1490016	1490456
DMR-513	2	1505637	1506007

DMR-514	2	1508652	1510106
DMR-515	2	1512106	1512456
DMR-516	2	1549565	1551889
DMR-517	2	1601884	1602316
DMR-518	2	1606657	1607947
DMR-519	2	1650532	1651672
DMR-520	2	1665553	1668318
DMR-521	2	1728091	1728591
DMR-522	2	1740813	1741133
DMR-523	2	1758406	1759278
DMR-524	2	1761384	1763397
DMR-525	2	1765892	1766192
DMR-526	2	1772150	1772628
DMR-527	2	1773473	1774760
DMR-528	2	1781534	1782394
DMR-529	2	1783524	1787124
DMR-530	2	1798189	1798685
DMR-531	2	1804778	1805118
DMR-532	2	1810255	1811557
DMR-533	2	1814183	1815673
DMR-534	2	1816373	1817973
DMR-535	2	1828697	1836838
DMR-536	2	1840248	1840943
DMR-537	2	1885678	1886283
DMR-538	2	1906578	1912199
DMR-539	2	1944372	1946238
DMR-540	2	1949643	1953330
DMR-541	2	1956620	1958940
DMR-542	2	1968834	1969119
DMR-543	2	1970651	1974556
DMR-544	2	1989408	1989799
DMR-545	2	1996055	2010863
DMR-546	2	2019170	2019605
DMR-547	2	2021747	2022427
DMR-548	2	2024781	2025091
DMR-549	2	2031037	2031871
DMR-550	2	2036129	2041384
DMR-551	2	2041761	2046373
DMR-552	2	2047493	2054088
DMR-553	2	2075543	2080503
DMR-554	2	2089615	2092240
DMR-555	2	2093085	2094872
DMR-556	2	2098311	2101640
DMR-557	2	2102270	2102605
DMR-558	2	2103304	2104922
DMR-559	2	2107257	2109372
DMR-560	2	2130214	2130978

DMR-561	2	2133346	2134939
DMR-562	2	2158380	2158700
DMR-563	2	2162548	2163707
DMR-564	2	2165972	2167117
DMR-565	2	2168983	2170432
DMR-566	2	2176518	2176853
DMR-567	2	2205113	2206099
DMR-568	2	2221580	2222586
DMR-569	2	2263184	2264626
DMR-570	2	2274197	2282139
DMR-571	2	2293691	2295652
DMR-572	2	2302422	2306737
DMR-573	2	2311820	2312175
DMR-574	2	2365305	2370917
DMR-575	2	2373250	2373893
DMR-576	2	2378013	2380298
DMR-577	2	2382603	2384109
DMR-578	2	2384915	2388386
DMR-579	2	2390901	2395673
DMR-580	2	2396463	2399270
DMR-581	2	2410511	2410881
DMR-582	2	2414809	2417754
DMR-583	2	2419949	2420229
DMR-584	2	2437115	2437760
DMR-585	2	2440051	2441182
DMR-586	2	2444174	2447627
DMR-587	2	2475369	2483949
DMR-588	2	2503921	2504271
DMR-589	2	2512486	2513326
DMR-590	2	2514499	2516255
DMR-591	2	2517275	2518891
DMR-592	2	2522902	2523372
DMR-593	2	2526197	2529458
DMR-594	2	2534900	2535230
DMR-595	2	2536051	2537221
DMR-596	2	2538418	2542172
DMR-597	2	2562315	2562785
DMR-598	2	2568290	2569725
DMR-599	2	2570893	2572250
DMR-600	2	2573865	2574690
DMR-601	2	2594011	2597826
DMR-602	2	2617748	2618258
DMR-603	2	2625665	2627800
DMR-604	2	2631790	2634105
DMR-605	2	2635275	2635750
DMR-606	2	2637571	2638023
DMR-607	2	2638878	2639404

DMR-608	2	2640539	2647445
DMR-609	2	2649242	2651942
DMR-610	2	2660192	2662657
DMR-611	2	2663597	2664147
DMR-612	2	2665751	2667118
DMR-613	2	2667773	2678628
DMR-614	2	2685438	2687867
DMR-615	2	2694995	2695794
DMR-616	2	2701279	2703422
DMR-617	2	2704358	2706366
DMR-618	2	2709500	2711941
DMR-619	2	2720089	2720364
DMR-620	2	2724540	2727810
DMR-621	2	2739723	2742328
DMR-622	2	2747969	2754895
DMR-623	2	2780469	2780914
DMR-624	2	2781904	2785919
DMR-625	2	2790525	2791671
DMR-626	2	2793825	2798924
DMR-627	2	2800772	2804200
DMR-628	2	2810488	2812438
DMR-629	2	2813088	2815069
DMR-630	2	2815734	2818226
DMR-631	2	2821172	2821557
DMR-632	2	2834244	2836894
DMR-633	2	2844963	2849723
DMR-634	2	2873846	2876972
DMR-635	2	2883554	2887211
DMR-636	2	2902365	2906971
DMR-637	2	2908131	2911267
DMR-638	2	2913614	2914734
DMR-639	2	2916439	2917749
DMR-640	2	2932412	2934057
DMR-641	2	2936732	2937882
DMR-642	2	2941839	2942339
DMR-643	2	2943664	2943969
DMR-644	2	2949575	2949910
DMR-645	2	2969042	2973142
DMR-646	2	2995907	2997947
DMR-647	2	3004829	3005335
DMR-648	2	3010774	3012591
DMR-649	2	3025667	3028583
DMR-650	2	3029291	3039973
DMR-651	2	3040627	3041959
DMR-652	2	3044295	3045090
DMR-653	2	3078261	3078746
DMR-654	2	3107993	3109458

DMR-655	2	3111250	3112458
DMR-656	2	3113911	3114603
DMR-657	2	3124002	3126297
DMR-658	2	3136549	3137209
DMR-659	2	3148720	3149420
DMR-660	2	3152664	3155154
DMR-661	2	3158763	3159258
DMR-662	2	3160083	3166217
DMR-663	2	3171525	3173945
DMR-664	2	3175617	3179447
DMR-665	2	3198725	3200570
DMR-666	2	3204341	3206116
DMR-667	2	3213591	3215382
DMR-668	2	3220524	3220809
DMR-669	2	3224299	3225754
DMR-670	2	3231426	3237483
DMR-671	2	3258618	3259576
DMR-672	2	3509906	3511411
DMR-673	2	3511866	3512581
DMR-674	2	3517313	3522464
DMR-675	2	3575941	3577261
DMR-676	2	3585513	3587605
DMR-677	2	3588971	3589608
DMR-678	2	3590616	3591760
DMR-679	2	3593550	3594530
DMR-680	2	3655625	3656786
DMR-681	2	3658771	3659101
DMR-682	2	3662570	3663515
DMR-683	2	3665539	3667151
DMR-684	2	3681026	3681503
DMR-685	2	3694187	3699137
DMR-686	2	3708543	3709532
DMR-687	2	3710862	3712045
DMR-688	2	3715177	3715697
DMR-689	2	3717513	3719475
DMR-690	2	3730709	3734122
DMR-691	2	3751176	3753797
DMR-692	2	3760229	3761179
DMR-693	2	3762179	3763333
DMR-694	2	3792071	3793211
DMR-695	2	3796541	3797346
DMR-696	2	3800181	3802306
DMR-697	2	3806565	3806943
DMR-698	2	3807762	3808546
DIMR-699	2	3809379	3810738
DMR-700	2	3811670	3814515
DMR-701	2	3826246	3826876

DMR-702	2	3896015	3899776
DMR-703	2	3911334	3912049
DMR-704	2	3915511	3915782
DMR-705	2	3930500	3932810
DMR-706	2	3943883	3945538
DMR-707	2	3946163	3949501
DMR-708	2	3950471	3951286
DMR-709	2	3966794	3968787
DMR-710	2	3985597	3986917
DMR-711	2	4019793	4023584
DMR-712	2	4024079	4025709
DMR-713	2	4047681	4047996
DMR-714	2	4050941	4051416
DMR-715	2	4057224	4060549
DMR-716	2	4064959	4066429
DMR-717	2	4068137	4072757
DMR-718	2	4073370	4074222
DMR-719	2	4077151	4077694
DMR-720	2	4096636	4098118
DMR-721	2	4099158	4103448
DMR-722	2	4117083	4127012
DMR-723	2	4157341	4159712
DMR-724	2	4207071	4209481
DMR-725	2	4232776	4233119
DMR-726	2	4233904	4243647
DMR-727	2	4251452	4252084
DMR-728	2	4253414	4253709
DMR-729	2	4255076	4256068
DMR-730	2	4258216	4260323
DMR-731	2	4265789	4268889
DMR-732	2	4274528	4275024
DMR-733	2	4283957	4289392
DMR-734	2	4300231	4301118
DMR-735	2	4302395	4302875
DMR-736	2	4315145	4315625
DMR-737	2	4327684	4329273
DMR-738	2	4330654	4332079
DMR-739	2	4369562	4376666
DMR-740	2	4390545	4393955
DMR-741	2	4395965	4397775
DMR-742	2	4413304	4414579
DMR-743	2	4442801	4444172
DMR-744	2	4447576	4448566
DMR-745	2	4458850	4459959
DMR-746	2	4466119	4467049
DMR-747	2	4467379	4468559
DMR-748	2	4475957	4477492

DMR-749	2	4480603	4481108
DMR-750	2	4493012	4494987
DMR-751	2	4508511	4509821
DMR-752	2	4514581	4516262
DMR-753	2	4557515	4560500
DMR-754	2	4561444	4561983
DMR-755	2	4562281	4563962
DMR-756	2	4573697	4574192
DMR-757	2	4580300	4581770
DMR-758	2	4590359	4592466
DMR-759	2	4630787	4633086
DMR-760	2	4639696	4640135
DMR-761	2	4642276	4643001
DMR-762	2	4648274	4649875
DMR-763	2	4651574	4656324
DMR-764	2	4661457	4662777
DMR-765	2	4667899	4669564
DMR-766	2	4671171	4675645
DMR-767	2	4676466	4678911
DMR-768	2	4679751	4681281
DMR-769	2	4683078	4685013
DMR-770	2	4699863	4700193
DMR-771	2	4707170	4710941
DMR-772	2	4715743	4716393
DMR-773	2	4731391	4733565
DMR-774	2	4740293	4742159
DMR-775	2	4746911	4747216
DMR-776	2	4792295	4794449
DMR-777	2	4798413	4799877
DMR-778	2	4816409	4824622
DMR-779	2	4825317	4828747
DMR-780	2	4829117	4833409
DMR-781	2	4837036	4838525
DMR-782	2	4839164	4839464
DMR-783	2	4840291	4840936
DMR-784	2	4841817	4842447
DMR-785	2	4842797	4844132
DMR-786	2	4847592	4849862
DMR-787	2	4865030	4866025
DMR-788	2	4868225	4868702
DMR-789	2	4869197	4869837
DMR-790	2	4872152	4872809
DMR-791	2	4875636	4876633
DMR-792	2	4877735	4878448
DMR-793	2	4880256	4882045
DMR-794	2	4882870	4893593
DMR-795	2	4894408	4895093

DMR-796	2	4901685	4905985
DMR-797	2	4907777	4908435
DMR-798	2	4911777	4912737
DMR-799	2	4917349	4917889
DMR-800	2	4926280	4927745
DMR-801	2	4930711	4931211
DMR-802	2	4948853	4949180
DMR-803	2	4974484	4977779
DMR-804	2	4978274	4979538
DMR-805	2	4980067	4980867
DMR-806	2	5001007	5001352
DMR-807	2	5009416	5009936
DMR-808	2	5022134	5023985
DMR-809	2	5029060	5029595
DMR-810	2	5031903	5034043
DMR-811	2	5037008	5037822
DMR-812	2	5041137	5044059
DMR-813	2	5069490	5074931
DMR-814	2	5081047	5081402
DMR-815	2	5081732	5082012
DMR-816	2	5082392	5082827
DMR-817	2	5083677	5086973
DMR-818	2	5097551	5099876
DMR-819	2	5113058	5113414
DMR-820	2	5128201	5130079
DMR-821	2	5156299	5158583
DMR-822	2	5178526	5179696
DMR-823	2	5180836	5185459
DMR-824	2	5188488	5188798
DMR-825	2	5190125	5191893
DMR-826	2	5224127	5225413
DMR-827	2	5246735	5252667
DMR-828	2	5287758	5288603
DMR-829	2	5294867	5295382
DMR-830	2	5296067	5298812
DMR-831	2	5299866	5300320
DMR-832	2	5300980	5302445
DMR-833	2	5303949	5304949
DMR-834	2	5305476	5306594
DMR-835	2	5307779	5312901
DMR-836	2	5313356	5313891
DMR-837	2	5314331	5317026
DMR-838	2	5319771	5320292
DMR-839	2	5322108	5323078
DMR-840	2	5324931	5326759
DMR-841	2	5328402	5328687
DMR-842	2	5331180	5333627

DMR-843	2	5335970	5336625
DMR-844	2	5347055	5348028
DMR-845	2	5388300	5392536
DMR-846	2	5393698	5395343
DMR-847	2	5411065	5413051
DMR-848	2	5418788	5423063
DMR-849	2	5448142	5449465
DMR-850	2	5453121	5461071
DMR-851	2	5463152	5463983
DMR-852	2	5467337	5468494
DMR-853	2	5469133	5470783
DMR-854	2	5476711	5477371
DMR-855	2	5477871	5478696
DMR-856	2	5479201	5479856
DMR-857	2	5480321	5480651
DMR-858	2	5482668	5485614
DMR-859	2	5486459	5491875
DMR-860	2	5494371	5497859
DMR-861	2	5503799	5505724
DMR-862	2	5524264	5526363
DMR-863	2	5533166	5534486
DMR-864	2	5544374	5544679
DMR-865	2	5588058	5588943
DMR-866	2	5607898	5608853
DMR-867	2	5609728	5612998
DMR-868	2	5620955	5638234
DMR-869	2	5672931	5675838
DMR-870	2	5717424	5723216
DMR-871	2	5724071	5724695
DMR-872	2	5725548	5726670
DMR-873	2	5730013	5730467
DMR-874	2	5731670	5732105
DMR-875	2	5737238	5738103
DMR-876	2	5781463	5781937
DMR-877	2	5784628	5785619
DMR-878	2	5799639	5804892
DMR-879	2	5822403	5823023
DMR-880	2	5823703	5824399
DMR-881	2	5825509	5826979
DMR-882	2	5828689	5829154
DMR-883	2	5833146	5834416
DMR-884	2	5836440	5837900
DMR-885	2	5853244	5858829
DMR-886	2	5859874	5864604
DMR-887	2	5885224	5886049
DMR-888	2	5887429	5889404
DMR-889	2	5903091	5905071

DMR-890	2	5907512	5908713
DMR-891	2	5952108	5953203
DMR-892	2	5954252	5955362
DMR-893	2	6016231	6020356
DMR-894	2	6036569	6038344
DMR-895	2	6068765	6072694
DMR-896	2	6079939	6082789
DMR-897	2	6084244	6085367
DMR-898	2	6088718	6089886
DMR-899	2	6098739	6099889
DMR-900	2	6101372	6105228
DMR-901	2	6112653	6114906
DMR-902	2	6116421	6119529
DMR-903	2	6123025	6126954
DMR-904	2	6128280	6129447
DMR-905	2	6132727	6134918
DMR-906	2	6141480	6146148
DMR-907	2	6156813	6159798
DMR-908	2	6165904	6169694
DMR-909	2	6201229	6201754
DMR-910	2	6204002	6206334
DMR-911	2	6263910	6268205
DMR-912	2	6336693	6341318
DMR-913	2	6342498	6352006
DMR-914	2	6356024	6356689
DMR-915	2	6358149	6360646
DMR-916	2	6379786	6380400
DMR-917	2	6384215	6384680
DMR-918	2	6386213	6386693
DMR-919	2	6427640	6434345
DMR-920	2	6440446	6447922
DMR-921	2	6454345	6456350
DMR-922	2	6468890	6470820
DMR-923	2	6472662	6473668
DMR-924	2	6481756	6485377
DMR-925	2	6497412	6497752
DMR-926	2	6515230	6515876
DMR-927	2	6531258	6531583
DMR-928	2	6536026	6538326
DMR-929	2	6539511	6540121
DMR-930	2	6557162	6558127
DMR-931	2	6560592	6561729
DMR-932	2	6562407	6565398
DMR-933	2	6566883	6567663
DMR-934	2	6587142	6589792
DMR-935	2	6595097	6598396
DMR-936	2	6631522	6633512

DMR-937	2	6654516	6655011
DMR-938	2	6693942	6694279
DMR-939	2	6707645	6713853
DMR-940	2	6726895	6727440
DMR-941	2	6743447	6743923
DMR-942	2	6774793	6779739
DMR-943	2	6787490	6788605
DMR-944	2	6790136	6793881
DMR-945	2	6849039	6849668
DMR-946	2	6851311	6853826
DMR-947	2	6866817	6867332
DMR-948	2	6918509	6921589
DMR-949	2	6942754	6946037
DMR-950	2	6961080	6965815
DMR-951	2	6969126	6969961
DMR-952	2	6971106	6973066
DMR-953	2	6973906	6974221
DMR-954	2	6974945	6975215
DMR-955	2	6976261	6977253
DMR-956	2	7012361	7016029
DMR-957	2	7018169	7026864
DMR-958	2	7073716	7078043
DMR-959	2	7120145	7121430
DMR-960	2	7122775	7123116
DMR-961	2	7178018	7178714
DMR-962	2	7231001	7231331
DMR-963	2	7232302	7232947
DMR-964	2	7233467	7236245
DMR-965	2	7239770	7245205
DMR-966	2	7296509	7301759
DMR-967	2	7306715	7307045
DMR-968	2	7388394	7388762
DMR-969	2	7455569	7459679
DMR-970	2	7460204	7461136
DMR-971	2	7463815	7464135
DMR-972	2	7534626	7534956
DMR-973	2	7544676	7545673
DMR-974	2	7588396	7591055
DMR-975	2	7784246	7791011
DMR-976	2	7886836	7887560
DMR-977	2	7913071	7913566
DMR-978	2	8023509	8025602
DMR-979	2	8081908	8082197
DMR-980	2	8278256	8281520
DMR-981	2	8420801	8421331
DMR-982	2	8568345	8571152
DMR-983	2	8572927	8574117

DMR-984	2	8597720	8598489
DMR-985	2	8824215	8827670
DMR-986	2	8881486	8882476
DMR-987	2	9129123	9130835
DMR-988	2	9194501	9198421
DMR-989	2	9200785	9202235
DMR-990	2	9335929	9336730
DMR-991	2	9659660	9659972
DMR-992	2	10012063	10013577
DMR-993	2	10016045	10016720
DMR-994	2	10092568	10093879
DMR-995	2	10095423	10097405
DMR-996	2	10100201	10100677
DMR-997	2	10239261	10240293
DMR-998	2	10415627	10417647
DMR-999	2	10540595	10541195
DMR-1000	2	10643868	10644152
DMR-1001	2	10646519	10646834
DMR-1002	2	10647639	10649269
DMR-1003	2	10655591	10656693
DMR-1004	2	10881649	10882279
DMR-1005	2	12456566	12461464
DMR-1006	2	12546664	12548799
DMR-1007	2	12664247	12665092
DMR-1008	2	12743505	12743777
DMR-1009	2	12893657	12894147
DMR-1010	2	13167389	13167885
DMR-1011	2	14414952	14415277
DMR-1012	2	14415602	14417057
DMR-1013	2	14419077	14419557
DMR-1014	2	14560785	14561251
DMR-1015	2	15418592	15418927
DMR-1016	2	16028930	16029320
DMR-1017	2	16098739	16099054
DMR-1018	2	16897371	16897656
DMR-1019	2	17099658	17102643
DMR-1020	2	19381131	19381454
DMR-1021	3	129256	129877
DMR-1022	3	557729	558034
DMR-1023	3	1075371	1075802
DMR-1024	3	1963715	1966177
DMR-1025	3	1968012	1969832
DMR-1026	3	2817878	2818698
DMR-1027	3	3686983	3687458
DMR-1028	3	3812048	3813004
DMR-1029	3	4759787	4760747
DMR-1030	3	4928060	4930563

DMR-1031	3	4931523	4932183
DMR-1032	3	5153492	5156612
DMR-1033	3	5278085	5278731
DMR-1034	3	5279181	5279726
DMR-1035	3	5281545	5284518
DMR-1036	3	5286109	5286663
DMR-1037	3	5651302	5652266
DMR-1038	3	5839552	5840347
DMR-1039	3	7061219	7061849
DMR-1040	3	7343551	7344491
DMR-1041	3	7738889	7739204
DMR-1042	3	7749121	7750426
DMR-1043	3	7813946	7814266
DMR-1044	3	7847738	7848087
DMR-1045	3	7849933	7850213
DMR-1046	3	7857798	7858190
DMR-1047	3	7859655	7860165
DMR-1048	3	8026464	8027289
DMR-1049	3	8371669	8371964
DMR-1050	3	8526380	8527535
DMR-1051	3	8537433	8543374
DMR-1052	3	8789616	8790056
DMR-1053	3	8796545	8796815
DMR-1054	3	8842880	8852635
DMR-1055	3	8853626	8858238
DMR-1056	3	8894885	8895195
DMR-1057	3	8937125	8938547
DMR-1058	3	8956209	8957544
DMR-1059	3	9013953	9017102
DMR-1060	3	9140014	9140899
DMR-1061	3	9228167	9232640
DMR-1062	3	9238084	9242146
DMR-1063	3	9328936	9329446
DMR-1064	3	9436406	9439321
DMR-1065	3	9445436	9447571
DMR-1066	3	9472325	9473025
DMR-1067	3	9577096	9577653
DMR-1068	3	9693424	9699210
DMR-1069	3	9709133	9710285
DMR-1070	3	10107469	10112729
DMR-1071	3	10340943	10341258
DMR-1072	3	10341743	10345018
DMR-1073	3	10462200	10462818
DMR-1074	3	10463668	10466159
DMR-1075	3	10526695	10527338
DMR-1076	3	10531968	10533278
DMR-1077	3	10560373	10561358

DMR-1078	3	10562023	10563840
DMR-1079	3	10606382	10606757
DMR-1080	3	10637256	10639722
DMR-1081	3	10767279	10767580
DMR-1082	3	10811305	10814329
DMR-1083	3	10818257	10820055
DMR-1084	3	10836274	10836707
DMR-1085	3	10886897	10890032
DMR-1086	3	10918937	10922352
DMR-1087	3	10939029	10939339
DMR-1088	3	11017268	11019418
DMR-1089	3	11020413	11022008
DMR-1090	3	11029136	11030146
DMR-1091	3	11066720	11068910
DMR-1092	3	11093130	11093796
DMR-1093	3	11113628	11114288
DMR-1094	3	11117372	11121888
DMR-1095	3	11172354	11176989
DMR-1096	3	11222176	11222476
DMR-1097	3	11224625	11225657
DMR-1098	3	11296782	11297891
DMR-1099	3	11344308	11345918
DMR-1100	3	11347879	11348536
DMR-1101	3	11349913	11355358
DMR-1102	3	11356848	11360254
DMR-1103	3	11362954	11363559
DMR-1104	3	11366256	11367206
DMR-1105	3	11391168	11391633
DMR-1106	3	11393148	11396743
DMR-1107	3	11406460	11407833
DMR-1108	3	11410958	11412437
DMR-1109	3	11415257	11415752
DMR-1110	3	11428955	11430881
DMR-1111	3	11434891	11437489
DMR-1112	3	11445111	11447263
DMR-1113	3	11453671	11454521
DMR-1114	3	11455024	11455831
DMR-1115	3	11464903	11465203
DMR-1116	3	11476443	11478290
DMR-1117	3	11478886	11480219
DMR-1118	3	11486668	11487976
DMR-1119	3	11488827	11489283
DMR-1120	3	11516694	11522953
DMR-1121	3	11523783	11524638
DMR-1122	3	11525478	11526303
DMR-1123	3	11547074	11548744
DMR-1124	3	11551816	11552972
DMR-1125	3	11558589	11562240
----------	---	----------	----------
DMR-1126	3	11566840	11567185
DMR-1127	3	11571997	11572790
DMR-1128	3	11575310	11578712
DMR-1129	3	11579762	11588650
DMR-1130	3	11616558	11617008
DMR-1131	3	11620298	11623484
DMR-1132	3	11625744	11626094
DMR-1133	3	11629738	11631066
DMR-1134	3	11634376	11635026
DMR-1135	3	11652472	11652832
DMR-1136	3	11659589	11663036
DMR-1137	3	11666181	11672933
DMR-1138	3	11681402	11691289
DMR-1139	3	11694094	11696542
DMR-1140	3	11699832	11704447
DMR-1141	3	11735653	11736453
DMR-1142	3	11745751	11746215
DMR-1143	3	11755814	11756479
DMR-1144	3	11768329	11769485
DMR-1145	3	11774615	11779206
DMR-1146	3	11780227	11780517
DMR-1147	3	11783679	11785786
DMR-1148	3	11797070	11799048
DMR-1149	3	11820164	11821817
DMR-1150	3	11825881	11826261
DMR-1151	3	11831658	11832368
DMR-1152	3	11833311	11833966
DMR-1153	3	11835616	11836316
DMR-1154	3	11842264	11848157
DMR-1155	3	11851154	11851519
DMR-1156	3	11857577	11858567
DMR-1157	3	11869983	11870823
DMR-1158	3	11873443	11874619
DMR-1159	3	11877257	11878197
DMR-1160	3	11880032	11880339
DMR-1161	3	11880839	11884014
DMR-1162	3	11893099	11894374
DMR-1163	3	11929690	11930185
DMR-1164	3	11935156	11936166
DMR-1165	3	11942586	11943706
DMR-1166	3	11948002	11950826
DMR-1167	3	11957944	11958214
DMR-1168	3	11966792	11967348
DMR-1169	3	12012015	12014325
DMR-1170	3	12021293	12029659
DMR-1171	3	12047659	12048799

DMR-1172	3	12063861	12064368
DMR-1173	3	12096151	12098525
DMR-1174	3	12102648	12103936
DMR-1175	3	12153801	12154069
DMR-1176	3	12154895	12157705
DMR-1177	3	12162834	12165482
DMR-1178	3	12192374	12193874
DMR-1179	3	12212163	12212498
DMR-1180	3	12272931	12277004
DMR-1181	3	12284809	12287247
DMR-1182	3	12289392	12289707
DMR-1183	3	12294330	12294685
DMR-1184	3	12295346	12296152
DMR-1185	3	12306916	12309857
DMR-1186	3	12313474	12314669
DMR-1187	3	12328338	12329028
DMR-1188	3	12337774	12339254
DMR-1189	3	12347135	12349125
DMR-1190	3	12351416	12351741
DMR-1191	3	12380977	12381767
DMR-1192	3	12388866	12390186
DMR-1193	3	12397484	12399464
DMR-1194	3	12402598	12403238
DMR-1195	3	12420258	12423023
DMR-1196	3	12436762	12437762
DMR-1197	3	12447782	12448817
DMR-1198	3	12460968	12462013
DMR-1199	3	12464661	12464936
DMR-1200	3	12466746	12467272
DMR-1201	3	12505540	12513940
DMR-1202	3	12521215	12523015
DMR-1203	3	12528294	12528949
DMR-1204	3	12553548	12557556
DMR-1205	3	12562815	12564621
DMR-1206	3	12577849	12580766
DMR-1207	3	12581941	12582944
DMR-1208	3	12586049	12591679
DMR-1209	3	12592646	12593189
DMR-1210	3	12628125	12630764
DMR-1211	3	12632793	12633083
DMR-1212	3	12634221	12634772
DMR-1213	3	12637196	12638546
DMR-1214	3	12644153	12645163
DMR-1215	3	12647261	12651758
DMR-1216	3	12652230	12655856
DMR-1217	3	12678334	12683741
DMR-1218	3	12684226	12686532

DMR-1219	3	12688006	12695431
DMR-1220	3	12695949	12697920
DMR-1221	3	12701577	12702907
DMR-1222	3	12710487	12712922
DMR-1223	3	12722545	12724030
DMR-1224	3	12730800	12732557
DMR-1225	3	12733272	12736047
DMR-1226	3	12742016	12745982
DMR-1227	3	12752242	12752687
DMR-1228	3	12758673	12758989
DMR-1229	3	12760341	12761471
DMR-1230	3	12764453	12768208
DMR-1231	3	12772538	12782435
DMR-1232	3	12798944	12799384
DMR-1233	3	12812435	12813122
DMR-1234	3	12818738	12819043
DMR-1235	3	12831618	12835188
DMR-1236	3	12847074	12848885
DMR-1237	3	12853053	12855696
DMR-1238	3	12864886	12866106
DMR-1239	3	12875333	12875625
DMR-1240	3	12877974	12878304
DMR-1241	3	12879306	12879931
DMR-1242	3	12889487	12893308
DMR-1243	3	12893768	12894103
DMR-1244	3	12899268	12900408
DMR-1245	3	12904842	12906692
DMR-1246	3	12911770	12912740
DMR-1247	3	12923506	12927756
DMR-1248	3	12944150	12944810
DMR-1249	3	12945415	12947612
DMR-1250	3	12950360	12950910
DMR-1251	3	12951400	12952380
DMR-1252	3	12953050	12954340
DMR-1253	3	12955511	12956956
DMR-1254	3	12957323	12958478
DMR-1255	3	12973508	12983715
DMR-1256	3	12996786	12999587
DMR-1257	3	13000352	13001532
DMR-1258	3	13002725	13003023
DMR-1259	3	13004863	13005198
DMR-1260	3	13009641	13010476
DMR-1261	3	13014103	13014581
DMR-1262	3	13019530	13020860
DMR-1263	3	13023678	13024443
DMR-1264	3	13028624	13030750
DMR-1265	3	13033413	13036531

DMR-1266	3	13048266	13048556
DMR-1267	3	13057312	13062284
DMR-1268	3	13074938	13076480
DMR-1269	3	13078570	13079773
DMR-1270	3	13081898	13084214
DMR-1271	3	13092474	13093304
DMR-1272	3	13093967	13094572
DMR-1273	3	13108803	13117520
DMR-1274	3	13133190	13140287
DMR-1275	3	13140602	13141271
DMR-1276	3	13147583	13149053
DMR-1277	3	13149892	13152976
DMR-1278	3	13164875	13171153
DMR-1279	3	13174160	13175760
DMR-1280	3	13206614	13208295
DMR-1281	3	13212771	13213226
DMR-1282	3	13213922	13214362
DMR-1283	3	13216067	13216892
DMR-1284	3	13218692	13222827
DMR-1285	3	13226740	13227231
DMR-1286	3	13236826	13237491
DMR-1287	3	13239487	13239805
DMR-1288	3	13241943	13242303
DMR-1289	3	13243067	13243422
DMR-1290	3	13245752	13246087
DMR-1291	3	13246757	13247073
DMR-1292	3	13251167	13252822
DMR-1293	3	13253497	13254017
DMR-1294	3	13258145	13258580
DMR-1295	3	13276753	13279079
DMR-1296	3	13279725	13280586
DMR-1297	3	13286031	13290116
DMR-1298	3	13290796	13291621
DMR-1299	3	13302964	13303844
DMR-1300	3	13304119	13306101
DMR-1301	3	13308121	13310429
DMR-1302	3	13316050	13317670
DMR-1303	3	13322273	13328224
DMR-1304	3	13347892	13372461
DMR-1305	3	13389268	13390792
DMR-1306	3	13391433	13392599
DMR-1307	3	13398554	13399349
DMR-1308	3	13403675	13404312
DMR-1309	3	13417864	13419349
DMR-1310	3	13434172	13441751
DMR-1311	3	13456081	13456476
DMR-1312	3	13475436	13476916

DMR-1313	3	13504814	13505104
DMR-1314	3	13506800	13509261
DMR-1315	3	13512857	13513666
DMR-1316	3	13539122	13540072
DMR-1317	3	13545561	13546686
DMR-1318	3	13547849	13550794
DMR-1319	3	13556120	13557599
DMR-1320	3	13560753	13565495
DMR-1321	3	13567495	13569145
DMR-1322	3	13572433	13577690
DMR-1323	3	13581214	13583854
DMR-1324	3	13613685	13615865
DMR-1325	3	13667971	13671251
DMR-1326	3	13679032	13682822
DMR-1327	3	13744566	13747996
DMR-1328	3	13836582	13837077
DMR-1329	3	13885907	13887267
DMR-1330	3	13895479	13895984
DMR-1331	3	13896504	13897139
DMR-1332	3	13897484	13901747
DMR-1333	3	13908546	13909336
DMR-1334	3	13927500	13928870
DMR-1335	3	13930639	13933790
DMR-1336	3	13945200	13946965
DMR-1337	3	13954907	13955387
DMR-1338	3	13965958	13970883
DMR-1339	3	13971420	13974717
DMR-1340	3	13981162	13981667
DMR-1341	3	13985136	13986401
DMR-1342	3	13987426	13988386
DMR-1343	3	13990908	13991733
DMR-1344	3	13992548	13993538
DMR-1345	3	13993816	13994373
DMR-1346	3	14019275	14024065
DMR-1347	3	14031492	14032817
DMR-1348	3	14038586	14039076
DMR-1349	3	14039731	14045136
DMR-1350	3	14046501	14049949
DMR-1351	3	14054424	14055539
DMR-1352	3	14056710	14057870
DMR-1353	3	14063332	14064107
DMR-1354	3	14066637	14067743
DMR-1355	3	14070896	14073390
DMR-1356	3	14093703	14095645
DMR-1357	3	14112623	14115271
DMR-1358	3	14116594	14117747
DMR-1359	3	14121396	14124831

DMR-1360	3	14131118	14137431
DMR-1361	3	14170531	14171421
DMR-1362	3	14172063	14176145
DMR-1363	3	14178678	14179638
DMR-1364	3	14254714	14256500
DMR-1365	3	14257715	14258035
DMR-1366	3	14265589	14266072
DMR-1367	3	14272725	14276175
DMR-1368	3	14282255	14283290
DMR-1369	3	14284059	14285081
DMR-1370	3	14290169	14296151
DMR-1371	3	14299565	14300230
DMR-1372	3	14301251	14304902
DMR-1373	3	14313483	14313918
DMR-1374	3	14314632	14315072
DMR-1375	3	14325696	14326686
DMR-1376	3	14340532	14341142
DMR-1377	3	14343997	14344772
DMR-1378	3	14356030	14360455
DMR-1379	3	14364284	14365580
DMR-1380	3	14366730	14369690
DMR-1381	3	14371375	14372000
DMR-1382	3	14386390	14387730
DMR-1383	3	14388500	14389159
DMR-1384	3	14392316	14398727
DMR-1385	3	14399257	14399779
DMR-1386	3	14412448	14414103
DMR-1387	3	14440308	14442483
DMR-1388	3	14448905	14449230
DMR-1389	3	14465779	14466915
DMR-1390	3	14471382	14472677
DMR-1391	3	14479261	14479952
DMR-1392	3	14483060	14483395
DMR-1393	3	14486065	14487551
DMR-1394	3	14489682	14491827
DMR-1395	3	14492282	14493957
DMR-1396	3	14501577	14502347
DMR-1397	3	14505531	14507806
DMR-1398	3	14511119	14512109
DMR-1399	3	14514271	14514721
DMR-1400	3	14516601	14525662
DMR-1401	3	14526469	14531394
DMR-1402	3	14533544	14535865
DMR-1403	3	14536531	14541139
DMR-1404	3	14544929	14545745
DMR-1405	3	14548759	14551905
DMR-1406	3	14554846	14555706

DMR-1407	3	14571688	14572650
DMR-1408	3	14593634	14594150
DMR-1409	3	14597088	14597899
DMR-1410	3	14601738	14603024
DMR-1411	3	14608324	14610478
DMR-1412	3	14621999	14623294
DMR-1413	3	14627089	14630079
DMR-1414	3	14631276	14634186
DMR-1415	3	14658980	14659819
DMR-1416	3	14667560	14673640
DMR-1417	3	14676808	14680438
DMR-1418	3	14682423	14686383
DMR-1419	3	14689684	14691110
DMR-1420	3	14692490	14692923
DMR-1421	3	14694958	14695398
DMR-1422	3	14695947	14696922
DMR-1423	3	14701233	14712275
DMR-1424	3	14723675	14725968
DMR-1425	3	14729450	14730555
DMR-1426	3	14731415	14731861
DMR-1427	3	14740336	14746244
DMR-1428	3	14748912	14750513
DMR-1429	3	14751223	14752710
DMR-1430	3	14773836	14774941
DMR-1431	3	14777134	14777949
DMR-1432	3	14783735	14785160
DMR-1433	3	14787961	14791591
DMR-1434	3	14793452	14794078
DMR-1435	3	14795728	14796056
DMR-1436	3	14796551	14798535
DMR-1437	3	14810742	14811892
DMR-1438	3	14818004	14818664
DMR-1439	3	14846901	14847261
DMR-1440	3	14848874	14852534
DMR-1441	3	14855778	14860451
DMR-1442	3	14861386	14866182
DMR-1443	3	14866502	14870809
DMR-1444	3	14871953	14876794
DMR-1445	3	14878239	14881022
DMR-1446	3	14881724	14888146
DMR-1447	3	14896203	14897393
DMR-1448	3	14902309	14909464
DMR-1449	3	14911759	14913589
DMR-1450	3	14933495	14938441
DMR-1451	3	14942954	14950054
DMR-1452	3	14960285	14960555
DMR-1453	3	14973632	14984336

DMR-1454	3	14985177	14988138
DMR-1455	3	15004668	15008930
DMR-1456	3	15011270	15012065
DMR-1457	3	15017495	15018160
DMR-1458	3	15031379	15031721
DMR-1459	3	15035304	15036954
DMR-1460	3	15044103	15044388
DMR-1461	3	15046078	15048496
DMR-1462	3	15050536	15052176
DMR-1463	3	15056632	15058450
DMR-1464	3	15061717	15062566
DMR-1465	3	15073311	15079193
DMR-1466	3	15096195	15096731
DMR-1467	3	15115539	15118954
DMR-1468	3	15121305	15123572
DMR-1469	3	15143566	15145684
DMR-1470	3	15152840	15153615
DMR-1471	3	15155589	15156574
DMR-1472	3	15186655	15188455
DMR-1473	3	15240769	15243372
DMR-1474	3	15277212	15280347
DMR-1475	3	15290068	15293223
DMR-1476	3	15295233	15297204
DMR-1477	3	15302930	15304085
DMR-1478	3	15305616	15305932
DMR-1479	3	15307419	15307774
DMR-1480	3	15309095	15310251
DMR-1481	3	15318785	15325698
DMR-1482	3	15327024	15328679
DMR-1483	3	15330664	15334115
DMR-1484	3	15334825	15342538
DMR-1485	3	15347688	15348148
DMR-1486	3	15356271	15356561
DMR-1487	3	15370474	15372602
DMR-1488	3	15383988	15397165
DMR-1489	3	15398976	15404903
DMR-1490	3	15409187	15412489
DMR-1491	3	15424538	15426518
DMR-1492	3	15430514	15436462
DMR-1493	3	15437081	15438123
DMR-1494	3	15440878	15441378
DMR-1495	3	15451158	15455931
DMR-1496	3	15456900	15458380
DMR-1497	3	15469639	15471730
DMR-1498	3	15490212	15492567
DMR-1499	3	15493398	15493713
DMR-1500	3	15498185	15502945

DMR-1501	3	15506242	15509027
DMR-1502	3	15524751	15525181
DMR-1503	3	15536092	15537447
DMR-1504	3	15537727	15541865
DMR-1505	3	15546634	15549666
DMR-1506	3	15552591	15555731
DMR-1507	3	15558218	15559173
DMR-1508	3	15562535	15563030
DMR-1509	3	15564485	15565780
DMR-1510	3	15581951	15584422
DMR-1511	3	15586908	15587939
DMR-1512	3	15594323	15594818
DMR-1513	3	15596493	15596958
DMR-1514	3	15597453	15597842
DMR-1515	3	15602095	15607554
DMR-1516	3	15619620	15619935
DMR-1517	3	15632482	15638053
DMR-1518	3	15659990	15661143
DMR-1519	3	15698277	15702423
DMR-1520	3	15703910	15707550
DMR-1521	3	15708365	15708663
DMR-1522	3	15709220	15709880
DMR-1523	3	15721036	15721866
DMR-1524	3	15733942	15739352
DMR-1525	3	15740702	15741711
DMR-1526	3	15745979	15746624
DMR-1527	3	15748286	15749596
DMR-1528	3	15814138	15814597
DMR-1529	3	15819730	15821536
DMR-1530	3	15839404	15840499
DMR-1531	3	15858854	15865246
DMR-1532	3	15872239	15873997
DMR-1533	3	15904082	15904384
DMR-1534	3	15931106	15934929
DMR-1535	3	15959029	15959299
DMR-1536	3	15966424	15967234
DMR-1537	3	15970710	15972725
DMR-1538	3	15973325	15974977
DMR-1539	3	16008020	16009675
DMR-1540	3	16082613	16082888
DMR-1541	3	16083738	16084065
DMR-1542	3	16090022	16090333
DMR-1543	3	16165902	16168022
DMR-1544	3	16184523	16191125
DMR-1545	3	16212432	16213102
DMR-1546	3	16256031	16256361
DMR-1547	3	16257166	16260312

DMR-1548	3	16304478	16305033
DMR-1549	3	16332693	16333054
DMR-1550	3	16382872	16383187
DMR-1551	3	16467224	16467995
DMR-1552	3	16508925	16509440
DMR-1553	3	16521956	16523943
DMR-1554	3	16537151	16537961
DMR-1555	3	16538652	16539938
DMR-1556	3	16567011	16567378
DMR-1557	3	16602315	16604798
DMR-1558	3	16605830	16607125
DMR-1559	3	16613420	16615397
DMR-1560	3	16649710	16652158
DMR-1561	3	16653345	16653948
DMR-1562	3	16657628	16658465
DMR-1563	3	16682555	16683010
DMR-1564	3	16693080	16693890
DMR-1565	3	16702155	16709225
DMR-1566	3	16721122	16722919
DMR-1567	3	16730023	16731208
DMR-1568	3	16821132	16825096
DMR-1569	3	16839914	16840444
DMR-1570	3	16841244	16843054
DMR-1571	3	16858218	16860083
DMR-1572	3	16947346	16948145
DMR-1573	3	16950328	16950658
DMR-1574	3	16968323	16971958
DMR-1575	3	16973403	16973908
DMR-1576	3	17066626	17068591
DMR-1577	3	17070254	17070914
DMR-1578	3	17071279	17071619
DMR-1579	3	17122093	17122383
DMR-1580	3	17125577	17125903
DMR-1581	3	17158060	17158394
DMR-1582	3	17175403	17175728
DMR-1583	3	17367780	17368075
DMR-1584	3	17440504	17440845
DMR-1585	3	17443535	17445674
DMR-1586	3	17447489	17448620
DMR-1587	3	17989312	17996417
DMR-1588	3	18080249	18081216
DMR-1589	3	18098071	18098700
DMR-1590	3	18370976	18371431
DMR-1591	3	18802106	18802476
DMR-1592	3	18803786	18805767
DMR-1593	3	18806922	18807222
DMR-1594	3	20611370	20612135

DMR-1595	3	20675059	20675334
DMR-1596	3	20737079	20738412
DMR-1597	3	22081813	22082178
DMR-1598	3	22124026	22124532
DMR-1599	3	22124897	22126675
DMR-1600	3	22243503	22246468
DMR-1601	3	22249821	22250258
DMR-1602	3	22252078	22253265
DMR-1603	3	22393863	22402437
DMR-1604	3	22757461	22757983
DMR-1605	3	23121843	23123599
DMR-1606	3	23215509	23218355
DMR-1607	4	1346	2177
DMR-1608	4	49883	50223
DMR-1609	4	179049	179394
DMR-1610	4	248703	249488
DMR-1611	4	378906	379226
DMR-1612	4	415005	415524
DMR-1613	4	594231	594496
DMR-1614	4	633119	636937
DMR-1615	4	650283	650633
DMR-1616	4	788271	788751
DMR-1617	4	861167	863012
DMR-1618	4	864447	865638
DMR-1619	4	1017393	1018753
DMR-1620	4	1020858	1021533
DMR-1621	4	1027014	1027309
DMR-1622	4	1063645	1064292
DMR-1623	4	1312610	1315610
DMR-1624	4	1395963	1397223
DMR-1625	4	1438535	1439135
DMR-1626	4	1447714	1448102
DMR-1627	4	1449754	1455849
DMR-1628	4	1456849	1460754
DMR-1629	4	1461909	1463440
DMR-1630	4	1485369	1485866
DMR-1631	4	1568529	1568834
DMR-1632	4	1588355	1589015
DMR-1633	4	1592613	1594726
DMR-1634	4	1596067	1597228
DMR-1635	4	1629898	1632573
DMR-1636	4	1635544	1636175
DMR-1637	4	1639315	1641133
DMR-1638	4	1647079	1650360
DMR-1639	4	1666216	1667867
DMR-1640	4	1669202	1669682
DMR-1641	4	1671292	1671842

DMR-1642	4	1673102	1675784
DMR-1643	4	1677259	1677559
DMR-1644	4	1678109	1678774
DMR-1645	4	1744903	1746218
DMR-1646	4	1752482	1753632
DMR-1647	4	1761084	1762922
DMR-1648	4	1789984	1791244
DMR-1649	4	1792739	1794717
DMR-1650	4	1797403	1798008
DMR-1651	4	1799168	1799543
DMR-1652	4	1807419	1807912
DMR-1653	4	1820123	1823150
DMR-1654	4	1823758	1824406
DMR-1655	4	1827542	1830057
DMR-1656	4	1836482	1837117
DMR-1657	4	1846186	1847676
DMR-1658	4	1848556	1850185
DMR-1659	4	1856114	1856584
DMR-1660	4	1857244	1859444
DMR-1661	4	1865176	1866486
DMR-1662	4	1922637	1924607
DMR-1663	4	1961217	1961702
DMR-1664	4	1968459	1973961
DMR-1665	4	1976874	1979234
DMR-1666	4	1982859	1984160
DMR-1667	4	1987439	1993922
DMR-1668	4	1996722	1997328
DMR-1669	4	2003817	2004432
DMR-1670	4	2005917	2008256
DMR-1671	4	2013229	2013881
DMR-1672	4	2036475	2036788
DMR-1673	4	2041112	2044890
DMR-1674	4	2046033	2048209
DMR-1675	4	2056936	2060069
DMR-1676	4	2064710	2069637
DMR-1677	4	2079396	2080506
DMR-1678	4	2090087	2093053
DMR-1679	4	2099145	2105120
DMR-1680	4	2107230	2110519
DMR-1681	4	2136479	2143881
DMR-1682	4	2149316	2150151
DMR-1683	4	2154445	2157229
DMR-1684	4	2158544	2159687
DMR-1685	4	2163337	2164367
DMR-1686	4	2171105	2175733
DMR-1687	4	2176043	2177404
DMR-1688	4	2178034	2179053

DMR-1689	4	2183672	2184272
DMR-1690	4	2184992	2185267
DMR-1691	4	2188113	2203742
DMR-1692	4	2205950	2208691
DMR-1693	4	2210341	2211528
DMR-1694	4	2212028	2214798
DMR-1695	4	2222116	2222551
DMR-1696	4	2225902	2226182
DMR-1697	4	2235154	2237896
DMR-1698	4	2250134	2252125
DMR-1699	4	2254091	2256545
DMR-1700	4	2263009	2264516
DMR-1701	4	2270465	2273400
DMR-1702	4	2279834	2288764
DMR-1703	4	2297653	2298788
DMR-1704	4	2302576	2308022
DMR-1705	4	2309384	2310726
DMR-1706	4	2311384	2311714
DMR-1707	4	2355263	2355598
DMR-1708	4	2356046	2357721
DMR-1709	4	2419396	2419936
DMR-1710	4	2420411	2420945
DMR-1711	4	2425200	2426040
DMR-1712	4	2561855	2562292
DMR-1713	4	2584620	2585240
DMR-1714	4	2596832	2603097
DMR-1715	4	2606212	2607500
DMR-1716	4	2642156	2648752
DMR-1717	4	2695821	2701880
DMR-1718	4	2702710	2707050
DMR-1719	4	2708035	2708372
DMR-1720	4	2710188	2714125
DMR-1721	4	2730103	2731801
DMR-1722	4	2785747	2786907
DMR-1723	4	2787572	2788233
DMR-1724	4	2791473	2793018
DMR-1725	4	2809502	2811120
DMR-1726	4	2840988	2841366
DMR-1727	4	2842312	2842787
DMR-1728	4	2845313	2849759
DMR-1729	4	2850430	2850920
DMR-1730	4	2852195	2855200
DMR-1731	4	2896302	2897572
DMR-1732	4	2899556	2904543
DMR-1733	4	2917906	2918741
DMR-1734	4	2966066	2966551
DMR-1735	4	2982274	2983224

DMR-1736	4	2983754	2985514
DMR-1737	4	2997083	2997943
DMR-1738	4	3002066	3003551
DMR-1739	4	3050359	3052514
DMR-1740	4	3062090	3069212
DMR-1741	4	3069717	3071982
DMR-1742	4	3075992	3078282
DMR-1743	4	3101042	3102172
DMR-1744	4	3116202	3122651
DMR-1745	4	3129448	3130223
DMR-1746	4	3130713	3131238
DMR-1747	4	3134839	3137156
DMR-1748	4	3138800	3145420
DMR-1749	4	3285687	3287652
DMR-1750	4	3292909	3299374
DMR-1751	4	3301512	3308118
DMR-1752	4	3315016	3315346
DMR-1753	4	3317711	3318351
DMR-1754	4	3319036	3321981
DMR-1755	4	3322941	3326071
DMR-1756	4	3330408	3331687
DMR-1757	4	3360614	3361429
DMR-1758	4	3364190	3366030
DMR-1759	4	3367340	3369655
DMR-1760	4	3370683	3371328
DMR-1761	4	3384211	3386508
DMR-1762	4	3393236	3394769
DMR-1763	4	3405807	3408122
DMR-1764	4	3411232	3415179
DMR-1765	4	3417186	3418862
DMR-1766	4	3422432	3423107
DMR-1767	4	3423627	3427223
DMR-1768	4	3429578	3430545
DMR-1769	4	3433360	3436985
DMR-1770	4	3444605	3445257
DMR-1771	4	3448202	3451852
DMR-1772	4	3464211	3465996
DMR-1773	4	3466383	3467355
DMR-1774	4	3472798	3474618
DMR-1775	4	3476097	3480542
DMR-1776	4	3485679	3487789
DMR-1777	4	3501303	3503120
DMR-1778	4	3503945	3505655
DMR-1779	4	3518626	3519791
DMR-1780	4	3520997	3522318
DMR-1781	4	3522800	3524570
DMR-1782	4	3525396	3527433

DMR-1783	4	3533867	3536281
DMR-1784	4	3565525	3565860
DMR-1785	4	3573252	3573757
DMR-1786	4	3574457	3575117
DMR-1787	4	3577092	3582648
DMR-1788	4	3593758	3595857
DMR-1789	4	3597855	3603108
DMR-1790	4	3605808	3610379
DMR-1791	4	3628856	3629381
DMR-1792	4	3640781	3647018
DMR-1793	4	3647858	3649143
DMR-1794	4	3652663	3653605
DMR-1795	4	3655094	3659705
DMR-1796	4	3671974	3672459
DMR-1797	4	3680192	3682839
DMR-1798	4	3683359	3683960
DMR-1799	4	3685475	3689756
DMR-1800	4	3690397	3690782
DMR-1801	4	3707081	3715518
DMR-1802	4	3718168	3718628
DMR-1803	4	3719963	3722449
DMR-1804	4	3723288	3723917
DMR-1805	4	3726063	3726373
DMR-1806	4	3726918	3727888
DMR-1807	4	3734157	3735812
DMR-1808	4	3751328	3753103
DMR-1809	4	3754128	3756927
DMR-1810	4	3758210	3759727
DMR-1811	4	3795890	3797500
DMR-1812	4	3803124	3804119
DMR-1813	4	3824585	3828349
DMR-1814	4	3830505	3831365
DMR-1815	4	3837594	3838294
DMR-1816	4	3852423	3857391
DMR-1817	4	3880354	3883009
DMR-1818	4	3883829	3885754
DMR-1819	4	3888763	3890103
DMR-1820	4	3907067	3910232
DMR-1821	4	3913026	3913536
DMR-1822	4	3920752	3921447
DMR-1823	4	3921727	3922552
DMR-1824	4	3938607	3939053
DMR-1825	4	4077660	4079314
DMR-1826	4	4081670	4086562
DMR-1827	4	4089860	4092547
DMR-1828	4	4111142	4113621
DMR-1829	4	4117931	4118761

DMR-1830	4	4127859	4132778
DMR-1831	4	4136448	4136733
DMR-1832	4	4153901	4155260
DMR-1833	4	4162810	4163285
DMR-1834	4	4164333	4165643
DMR-1835	4	4166313	4167088
DMR-1836	4	4171701	4175036
DMR-1837	4	4250264	4252431
DMR-1838	4	4265805	4266931
DMR-1839	4	4267401	4268226
DMR-1840	4	4272356	4274698
DMR-1841	4	4283587	4286601
DMR-1842	4	4293140	4293805
DMR-1843	4	4319094	4320859
DMR-1844	4	4325662	4326002
DMR-1845	4	4335887	4336713
DMR-1846	4	4339870	4341172
DMR-1847	4	4345663	4346146
DMR-1848	4	4351892	4352732
DMR-1849	4	4353912	4354682
DMR-1850	4	4358332	4359964
DMR-1851	4	4376492	4381632
DMR-1852	4	4389186	4391842
DMR-1853	4	4394491	4400778
DMR-1854	4	4422497	4424477
DMR-1855	4	4445455	4447260
DMR-1856	4	4455850	4462922
DMR-1857	4	4485567	4487067
DMR-1858	4	4489827	4490996
DMR-1859	4	4503523	4503843
DMR-1860	4	4504343	4505843
DMR-1861	4	4506979	4510464
DMR-1862	4	4539542	4540007
DMR-1863	4	4550762	4551422
DMR-1864	4	4568083	4573032
DMR-1865	4	4588715	4589161
DMR-1866	4	4590672	4594634
DMR-1867	4	4604182	4605673
DMR-1868	4	4606661	4608185
DMR-1869	4	4611100	4612759
DMR-1870	4	4613461	4614391
DMR-1871	4	4615116	4615601
DMR-1872	4	4623691	4627766
DMR-1873	4	4628919	4633706
DMR-1874	4	4642441	4642941
DMR-1875	4	4653031	4654051
DMR-1876	4	4665274	4676656

DMR-1877	4	4696457	4703844
DMR-1878	4	4704695	4705510
DMR-1879	4	4711416	4716693
DMR-1880	4	4718724	4720694
DMR-1881	4	4730724	4732878
DMR-1882	4	4733238	4735513
DMR-1883	4	4739506	4740481
DMR-1884	4	4742818	4746454
DMR-1885	4	4749916	4757176
DMR-1886	4	4764441	4765696
DMR-1887	4	4782418	4788161
DMR-1888	4	4861117	4862429
DMR-1889	4	4864243	4866216
DMR-1890	4	4872490	4873115
DMR-1891	4	4878454	4879074
DMR-1892	4	4911914	4915029
DMR-1893	4	4928232	4930716
DMR-1894	4	4932052	4932737
DMR-1895	4	4951544	4954674
DMR-1896	4	4955290	4955670
DMR-1897	4	4973609	4978055
DMR-1898	4	4979870	4980890
DMR-1899	4	4997366	4998241
DMR-1900	4	4999681	5003185
DMR-1901	4	5004468	5007767
DMR-1902	4	5028895	5030065
DMR-1903	4	5039467	5043229
DMR-1904	4	5046218	5048224
DMR-1905	4	5077279	5078214
DMR-1906	4	5079424	5081900
DMR-1907	4	5102191	5104463
DMR-1908	4	5116321	5117666
DMR-1909	4	5124451	5125409
DMR-1910	4	5136640	5138938
DMR-1911	4	5139973	5141611
DMR-1912	4	5141956	5142391
DMR-1913	4	5175435	5176065
DMR-1914	4	5190299	5190738
DMR-1915	4	5207957	5210103
DMR-1916	4	5216666	5218321
DMR-1917	4	5303817	5308932
DMR-1918	4	5342743	5344531
DMR-1919	4	5350812	5351649
DMR-1920	4	5468765	5470776
DMR-1921	4	5477890	5478170
DMR-1922	4	5479496	5480971
DMR-1923	4	5481345	5483015

DMR-1924	4	5484117	5486134
DMR-1925	4	5489221	5490592
DMR-1926	4	5494070	5494833
DMR-1927	4	5505782	5506230
DMR-1928	4	5507085	5512217
DMR-1929	4	5514996	5515296
DMR-1930	4	5544009	5545514
DMR-1931	4	5555107	5556550
DMR-1932	4	5570952	5572062
DMR-1933	4	5574755	5575375
DMR-1934	4	5588246	5589431
DMR-1935	4	5590701	5596682
DMR-1936	4	5602584	5602968
DMR-1937	4	5623225	5625700
DMR-1938	4	5627718	5630511
DMR-1939	4	5646847	5647355
DMR-1940	4	5650154	5650639
DMR-1941	4	5651314	5651754
DMR-1942	4	5655058	5656729
DMR-1943	4	5658407	5658842
DMR-1944	4	5672761	5673058
DMR-1945	4	5673393	5673915
DMR-1946	4	5681660	5682654
DMR-1947	4	5683325	5692501
DMR-1948	4	5693821	5697949
DMR-1949	4	5751470	5752399
DMR-1950	4	5766434	5769097
DMR-1951	4	5822380	5827370
DMR-1952	4	5862018	5864623
DMR-1953	4	5870591	5871031
DMR-1954	4	5879330	5881930
DMR-1955	4	5887919	5888399
DMR-1956	4	5905577	5908182
DMR-1957	4	5913994	5916774
DMR-1958	4	5937095	5938217
DMR-1959	4	5939694	5943984
DMR-1960	4	5946134	5948296
DMR-1961	4	5951286	5952437
DMR-1962	4	5953710	5955181
DMR-1963	4	5956369	5959152
DMR-1964	4	5961152	5961513
DMR-1965	4	5965792	5971022
DMR-1966	4	5987192	5991817
DMR-1967	4	6010995	6011325
DMR-1968	4	6035420	6036060
DMR-1969	4	6059158	6061610
DMR-1970	4	6067388	6072673

DMR-1971	4	6098741	6099061
DMR-1972	4	6112787	6114123
DMR-1973	4	6114918	6115253
DMR-1974	4	6125997	6130122
DMR-1975	4	6156365	6157486
DMR-1976	4	6166918	6167403
DMR-1977	4	6194763	6195446
DMR-1978	4	6197575	6200071
DMR-1979	4	6205838	6206645
DMR-1980	4	6209501	6213591
DMR-1981	4	6214264	6214791
DMR-1982	4	6326440	6326926
DMR-1983	4	6388807	6389672
DMR-1984	4	6467386	6472846
DMR-1985	4	6482028	6482358
DMR-1986	4	6581901	6583501
DMR-1987	4	6597920	6598725
DMR-1988	4	6638965	6639297
DMR-1989	4	6723446	6729234
DMR-1990	4	6787835	6788105
DMR-1991	4	6791904	6792454
DMR-1992	4	6885947	6886327
DMR-1993	4	6916150	6919455
DMR-1994	4	6977248	6977863
DMR-1995	4	7358230	7358840
DMR-1996	4	7592313	7592818
DMR-1997	4	7711114	7711454
DMR-1998	4	7890527	7891464
DMR-1999	4	7908667	7909290
DMR-2000	4	7945137	7945455
DMR-2001	4	7989304	7989666
DMR-2002	4	8109456	8110246
DMR-2003	4	8148075	8150547
DMR-2004	4	8313708	8319324
DMR-2005	4	8327940	8329535
DMR-2006	4	8393120	8393425
DMR-2007	4	8620148	8623068
DMR-2008	4	8866009	8866504
DMR-2009	4	8906581	8907231
DMR-2010	4	8942864	8943189
DMR-2011	4	9005540	9006530
DMR-2012	4	9055207	9057077
DMR-2013	4	9068914	9078668
DMR-2014	4	9483934	9485359
DMR-2015	4	9486574	9490039
DMR-2016	4	9734038	9737673
DMR-2017	4	9800885	9801195

DMR-2018	4	9954454	9955339
DMR-2019	4	9955982	9957759
DMR-2020	4	9987956	9988281
DMR-2021	4	10313542	10314172
DMR-2022	4	10527354	10529034
DMR-2023	4	10755078	10756523
DMR-2024	4	10866094	10866444
DMR-2025	4	10915745	10916456
DMR-2026	4	10992797	10997912
DMR-2027	4	11039328	11040489
DMR-2028	4	11045990	11046270
DMR-2029	4	11113441	11114286
DMR-2030	4	11343755	11344145
DMR-2031	4	11363449	11369169
DMR-2032	4	11372791	11373489
DMR-2033	4	11677579	11679259
DMR-2034	4	11680579	11681364
DMR-2035	4	11820310	11824620
DMR-2036	4	11825565	11826547
DMR-2037	4	11834147	11837117
DMR-2038	4	12293680	12294976
DMR-2039	4	13624419	13631859
DMR-2040	4	14272233	14272539
DMR-2041	4	14279991	14280784
DMR-2042	4	14282897	14285059
DMR-2043	4	14287909	14288525
DMR-2044	4	14531237	14532254
DMR-2045	4	14987455	14988333
DMR-2046	4	17712926	17716726
DMR-2047	4	18247864	18248199
DMR-2048	5	28562	29917
DMR-2049	5	250204	250970
DMR-2050	5	1064628	1067755
DMR-2051	5	1229746	1230458
DMR-2052	5	1285043	1285373
DMR-2053	5	1488528	1488798
DMR-2054	5	1686487	1686997
DMR-2055	5	2262159	2262544
DMR-2056	5	2374188	2375393
DMR-2057	5	2688575	2688845
DMR-2058	5	3005869	3007624
DMR-2059	5	3249529	3249844
DMR-2060	5	3904284	3910896
DMR-2061	5	3944883	3945355
DMR-2062	5	3946029	3946484
DMR-2063	5	4320753	4323348
DMR-2064	5	5217184	5218628

DMR-2065	5	5219988	5221275
DMR-2066	5	5630514	5634765
DMR-2067	5	5635294	5635620
DMR-2068	5	5643880	5644829
DMR-2069	5	5739400	5739865
DMR-2070	5	5853103	5853918
DMR-2071	5	6407124	6407784
DMR-2072	5	6433688	6438813
DMR-2073	5	7027577	7028347
DMR-2074	5	7118301	7118816
DMR-2075	5	7823819	7824639
DMR-2076	5	7829151	7829759
DMR-2077	5	8204019	8204359
DMR-2078	5	8255943	8256273
DMR-2079	5	8400162	8401314
DMR-2080	5	8574747	8577717
DMR-2081	5	8622629	8624390
DMR-2082	5	8625600	8627255
DMR-2083	5	8628355	8629565
DMR-2084	5	8666296	8667301
DMR-2085	5	8702770	8703590
DMR-2086	5	8788121	8788791
DMR-2087	5	9020223	9022243
DMR-2088	5	9048612	9049429
DMR-2089	5	9056525	9056851
DMR-2090	5	9061522	9062462
DMR-2091	5	9091022	9092162
DMR-2092	5	9101959	9102392
DMR-2093	5	9203261	9203876
DMR-2094	5	9206569	9207339
DMR-2095	5	9211186	9212626
DMR-2096	5	9215111	9218606
DMR-2097	5	9220262	9220699
DMR-2098	5	9253069	9254079
DMR-2099	5	9272239	9274544
DMR-2100	5	9344652	9345272
DMR-2101	5	9346484	9347109
DMR-2102	5	9347624	9348964
DMR-2103	5	9412161	9414631
DMR-2104	5	9544984	9545468
DMR-2105	5	9561317	9563131
DMR-2106	5	9565936	9567031
DMR-2107	5	9570010	9570720
DMR-2108	5	9593987	9594317
DMR-2109	5	9604056	9604498
DMR-2110	5	9640953	9641611
DMR-2111	5	9642286	9644636

DMR-2112	5	9707999	9708274
DMR-2113	5	9712277	9712777
DMR-2114	5	9739628	9740968
DMR-2115	5	9741646	9741938
DMR-2116	5	9748248	9748548
DMR-2117	5	9750068	9750403
DMR-2118	5	9755471	9757500
DMR-2119	5	9757952	9759462
DMR-2120	5	9760638	9761248
DMR-2121	5	9840810	9843947
DMR-2122	5	9925635	9926240
DMR-2123	5	9929045	9929765
DMR-2124	5	9949501	9953791
DMR-2125	5	9980031	9982666
DMR-2126	5	9991274	9991637
DMR-2127	5	10049721	10056270
DMR-2128	5	10057747	10058758
DMR-2129	5	10059908	10060603
DMR-2130	5	10061223	10063868
DMR-2131	5	10075896	10076261
DMR-2132	5	10081338	10083483
DMR-2133	5	10085196	10085681
DMR-2134	5	10086486	10086846
DMR-2135	5	10100538	10102484
DMR-2136	5	10104439	10106449
DMR-2137	5	10116048	10116333
DMR-2138	5	10120296	10121485
DMR-2139	5	10123751	10124078
DMR-2140	5	10126607	10127712
DMR-2141	5	10147843	10148673
DMR-2142	5	10167992	10173112
DMR-2143	5	10182490	10183203
DMR-2144	5	10195548	10196403
DMR-2145	5	10204612	10204977
DMR-2146	5	10216019	10219279
DMR-2147	5	10223785	10224230
DMR-2148	5	10231347	10233020
DMR-2149	5	10235840	10236459
DMR-2150	5	10237108	10237811
DMR-2151	5	10240292	10241557
DMR-2152	5	10255299	10261710
DMR-2153	5	10265644	10266024
DMR-2154	5	10266689	10267509
DMR-2155	5	10267816	10268316
DMR-2156	5	10290446	10291922
DMR-2157	5	10309736	10313832
DMR-2158	5	10317659	10318290

DMR-2159	5	10330862	10331519
DMR-2160	5	10335115	10335498
DMR-2161	5	10337767	10338272
DMR-2162	5	10351503	10356268
DMR-2163	5	10359252	10361017
DMR-2164	5	10379549	10380204
DMR-2165	5	10381174	10383134
DMR-2166	5	10386095	10389078
DMR-2167	5	10398185	10400340
DMR-2168	5	10406614	10416616
DMR-2169	5	10417277	10419768
DMR-2170	5	10422579	10427035
DMR-2171	5	10431850	10434627
DMR-2172	5	10435472	10445005
DMR-2173	5	10446350	10448004
DMR-2174	5	10457579	10458069
DMR-2175	5	10462047	10464522
DMR-2176	5	10466462	10468945
DMR-2177	5	10470245	10473768
DMR-2178	5	10476219	10477066
DMR-2179	5	10492035	10492375
DMR-2180	5	10497167	10504586
DMR-2181	5	10507265	10508090
DMR-2182	5	10508540	10510202
DMR-2183	5	10510858	10514670
DMR-2184	5	10518265	10520930
DMR-2185	5	10522256	10523229
DMR-2186	5	10534317	10534618
DMR-2187	5	10535263	10535583
DMR-2188	5	10547800	10554452
DMR-2189	5	10557587	10560387
DMR-2190	5	10561025	10561697
DMR-2191	5	10566484	10567461
DMR-2192	5	10574704	10578175
DMR-2193	5	10597148	10598788
DMR-2194	5	10603932	10604942
DMR-2195	5	10607867	10609341
DMR-2196	5	10617971	10619123
DMR-2197	5	10621218	10631119
DMR-2198	5	10644650	10646802
DMR-2199	5	10662528	10662968
DMR-2200	5	10666264	10667270
DMR-2201	5	10669253	10670103
DMR-2202	5	10670917	10671873
DMR-2203	5	10693369	10695140
DMR-2204	5	10696623	10697616
DMR-2205	5	10698626	10699324

DMR-2206	5	10708704	10711524
DMR-2207	5	10733128	10733918
DMR-2208	5	10738430	10740520
DMR-2209	5	10747969	10748984
DMR-2210	5	10750745	10754892
DMR-2211	5	10758395	10759683
DMR-2212	5	10774381	10775334
DMR-2213	5	10789539	10790732
DMR-2214	5	10793374	10795838
DMR-2215	5	10802058	10802926
DMR-2216	5	10805387	10806029
DMR-2217	5	10808554	10813619
DMR-2218	5	10823180	10824037
DMR-2219	5	10829941	10833739
DMR-2220	5	10834761	10836376
DMR-2221	5	10838571	10839853
DMR-2222	5	10846487	10847432
DMR-2223	5	10848777	10851102
DMR-2224	5	10853597	10853922
DMR-2225	5	10869386	10873220
DMR-2226	5	10884071	10887425
DMR-2227	5	10888060	10888390
DMR-2228	5	10889685	10892155
DMR-2229	5	10894129	10895614
DMR-2230	5	10898476	10898756
DMR-2231	5	10901121	10906233
DMR-2232	5	10911801	10912175
DMR-2233	5	10960013	10961651
DMR-2234	5	10963289	10968272
DMR-2235	5	10972860	10985707
DMR-2236	5	10988072	10989024
DMR-2237	5	10990221	10991157
DMR-2238	5	10992007	10993342
DMR-2239	5	11028959	11029929
DMR-2240	5	11034107	11036535
DMR-2241	5	11038835	11040815
DMR-2242	5	11041700	11043330
DMR-2243	5	11043845	11045147
DMR-2244	5	11046447	11050769
DMR-2245	5	11052204	11053074
DMR-2246	5	11055838	11056338
DMR-2247	5	11056873	11063913
DMR-2248	5	11068088	11068878
DMR-2249	5	11069378	11070905
DMR-2250	5	11087382	11090202
DMR-2251	5	11096473	11096925
DMR-2252	5	11097620	11097945

DMR-2253	5	11112264	11116251
DMR-2254	5	11128156	11128591
DMR-2255	5	11129151	11130581
DMR-2256	5	11131066	11132386
DMR-2257	5	11133603	11134093
DMR-2258	5	11143339	11144314
DMR-2259	5	11148119	11148744
DMR-2260	5	11149444	11149894
DMR-2261	5	11150738	11152208
DMR-2262	5	11153718	11155685
DMR-2263	5	11167869	11169709
DMR-2264	5	11173369	11174464
DMR-2265	5	11192664	11194276
DMR-2266	5	11196449	11196934
DMR-2267	5	11198254	11202694
DMR-2268	5	11241164	11241654
DMR-2269	5	11290338	11291448
DMR-2270	5	11296625	11297065
DMR-2271	5	11297931	11299063
DMR-2272	5	11302176	11303538
DMR-2273	5	11304523	11305822
DMR-2274	5	11307617	11309930
DMR-2275	5	11316742	11317407
DMR-2276	5	11324012	11324482
DMR-2277	5	11357173	11363551
DMR-2278	5	11380927	11381712
DMR-2279	5	11387848	11388634
DMR-2280	5	11408293	11412746
DMR-2281	5	11425654	11428787
DMR-2282	5	11446424	11452189
DMR-2283	5	11452669	11453159
DMR-2284	5	11459273	11461448
DMR-2285	5	11462058	11463398
DMR-2286	5	11467885	11469206
DMR-2287	5	11470014	11470472
DMR-2288	5	11481530	11487140
DMR-2289	5	11490157	11495718
DMR-2290	5	11500833	11502316
DMR-2291	5	11512568	11512883
DMR-2292	5	11514222	11515247
DMR-2293	5	11516847	11518490
DMR-2294	5	11521513	11522958
DMR-2295	5	11523473	11525597
DMR-2296	5	11527937	11528397
DMR-2297	5	11532690	11538617
DMR-2298	5	11543238	11543743
DMR-2299	5	11548204	11550169

DMR-2300	5	11552317	11553362
DMR-2301	5	11553857	11554343
DMR-2302	5	11559122	11563081
DMR-2303	5	11567547	11571959
DMR-2304	5	11575804	11576917
DMR-2305	5	11582073	11583358
DMR-2306	5	11592613	11593588
DMR-2307	5	11609462	11612587
DMR-2308	5	11615235	11616065
DMR-2309	5	11623639	11625794
DMR-2310	5	11644098	11646223
DMR-2311	5	11647518	11652328
DMR-2312	5	11658748	11659068
DMR-2313	5	11661225	11663575
DMR-2314	5	11670167	11672138
DMR-2315	5	11673627	11676125
DMR-2316	5	11756469	11757919
DMR-2317	5	12014670	12015035
DMR-2318	5	12018334	12019656
DMR-2319	5	12083324	12085595
DMR-2320	5	12092250	12092565
DMR-2321	5	12114819	12115809
DMR-2322	5	12193349	12194677
DMR-2323	5	12200494	12204410
DMR-2324	5	12205600	12206406
DMR-2325	5	12207061	12208388
DMR-2326	5	12209678	12211177
DMR-2327	5	12213679	12214479
DMR-2328	5	12216624	12216939
DMR-2329	5	12226398	12227198
DMR-2330	5	12233281	12237606
DMR-2331	5	12239264	12240049
DMR-2332	5	12249274	12253409
DMR-2333	5	12264833	12265978
DMR-2334	5	12266293	12266813
DMR-2335	5	12267973	12268453
DMR-2336	5	12269238	12274396
DMR-2337	5	12280514	12282140
DMR-2338	5	12283795	12288581
DMR-2339	5	12290037	12291361
DMR-2340	5	12298113	12301306
DMR-2341	5	12322416	12322863
DMR-2342	5	12325509	12326996
DMR-2343	5	12342058	12342514
DMR-2344	5	12348792	12349097
DMR-2345	5	12349604	12355382
DMR-2346	5	12372248	12372748

DMR-2347	5	12374678	12378188
DMR-2348	5	12389393	12391030
DMR-2349	5	12404259	12404869
DMR-2350	5	12406244	12406904
DMR-2351	5	12409052	12410152
DMR-2352	5	12438366	12438696
DMR-2353	5	12442216	12443476
DMR-2354	5	12455244	12455524
DMR-2355	5	12458552	12459337
DMR-2356	5	12479323	12480328
DMR-2357	5	12482138	12484398
DMR-2358	5	12494821	12496276
DMR-2359	5	12510194	12510499
DMR-2360	5	12516753	12517068
DMR-2361	5	12527671	12529631
DMR-2362	5	12531155	12532310
DMR-2363	5	12558048	12558338
DMR-2364	5	12558703	12559483
DMR-2365	5	12563496	12563936
DMR-2366	5	12590387	12594512
DMR-2367	5	12597134	12598764
DMR-2368	5	12615247	12615747
DMR-2369	5	12624492	12625157
DMR-2370	5	12645119	12647972
DMR-2371	5	12672331	12675961
DMR-2372	5	12678996	12679276
DMR-2373	5	12681765	12685037
DMR-2374	5	12690037	12690322
DMR-2375	5	12691337	12692297
DMR-2376	5	12693478	12695123
DMR-2377	5	12705392	12706325
DMR-2378	5	12707345	12712264
DMR-2379	5	12714601	12715756
DMR-2380	5	12716603	12719203
DMR-2381	5	12722334	12722824
DMR-2382	5	12732064	12735236
DMR-2383	5	12738226	12745781
DMR-2384	5	12747461	12749075
DMR-2385	5	12749944	12752702
DMR-2386	5	12753573	12755493
DMR-2387	5	12759006	12759630
DMR-2388	5	12760006	12762950
DMR-2389	5	12765909	12769572
DMR-2390	5	12786181	12786896
DMR-2391	5	12795152	12797429
DMR-2392	5	12798576	12800044
DMR-2393	5	12801876	12806521

DMR-2394	5	12811110	12813960
DMR-2395	5	12908806	12909156
DMR-2396	5	12910773	12912765
DMR-2397	5	12921376	12922188
DMR-2398	5	12923347	12924468
DMR-2399	5	12931115	12931882
DMR-2400	5	12933409	12934684
DMR-2401	5	12937372	12940954
DMR-2402	5	12944434	12947730
DMR-2403	5	12949700	12951080
DMR-2404	5	12966411	12967206
DMR-2405	5	12974177	12975152
DMR-2406	5	12976465	12977270
DMR-2407	5	12983219	12984218
DMR-2408	5	12992784	12994094
DMR-2409	5	12996743	13006353
DMR-2410	5	13007943	13009787
DMR-2411	5	13021967	13025654
DMR-2412	5	13030599	13032913
DMR-2413	5	13034348	13034838
DMR-2414	5	13044624	13046884
DMR-2415	5	13053380	13056010
DMR-2416	5	13078281	13079386
DMR-2417	5	13082244	13082714
DMR-2418	5	13108608	13108923
DMR-2419	5	13131903	13134333
DMR-2420	5	13143292	13144582
DMR-2421	5	13154526	13155342
DMR-2422	5	13156164	13156644
DMR-2423	5	13158422	13158942
DMR-2424	5	13166523	13183361
DMR-2425	5	13184226	13186507
DMR-2426	5	13198523	13201525
DMR-2427	5	13203325	13204955
DMR-2428	5	13205490	13206140
DMR-2429	5	13206453	13212559
DMR-2430	5	13244056	13244771
DMR-2431	5	13245586	13245936
DMR-2432	5	13246861	13247366
DMR-2433	5	13261718	13264398
DMR-2434	5	13265862	13269640
DMR-2435	5	13271156	13277603
DMR-2436	5	13289978	13301498
DMR-2437	5	13322648	13323773
DMR-2438	5	13332039	13334190
DMR-2439	5	13354624	13354939
DMR-2440	5	13361929	13362914

DMR-2441	5	13364736	13369487
DMR-2442	5	13370620	13370955
DMR-2443	5	13382842	13383212
DMR-2444	5	13386488	13386838
DMR-2445	5	13401994	13403161
DMR-2446	5	13406313	13406955
DMR-2447	5	13407797	13409582
DMR-2448	5	13430385	13431005
DMR-2449	5	13508751	13510039
DMR-2450	5	13510531	13511584
DMR-2451	5	13512857	13515327
DMR-2452	5	13521924	13522791
DMR-2453	5	13524890	13525715
DMR-2454	5	13533199	13533964
DMR-2455	5	13545206	13548491
DMR-2456	5	13549016	13549637
DMR-2457	5	13580388	13582360
DMR-2458	5	13583684	13584970
DMR-2459	5	13592209	13593709
DMR-2460	5	13609582	13610201
DMR-2461	5	13634835	13635281
DMR-2462	5	13656931	13661362
DMR-2463	5	13663014	13664665
DMR-2464	5	13666130	13666998
DMR-2465	5	13706936	13707871
DMR-2466	5	13710204	13711231
DMR-2467	5	13749142	13749967
DMR-2468	5	13753476	13758196
DMR-2469	5	13785628	13785933
DMR-2470	5	13797308	13803111
DMR-2471	5	13805059	13806068
DMR-2472	5	13806603	13806933
DMR-2473	5	13812316	13812826
DMR-2474	5	13813636	13813991
DMR-2475	5	13814680	13817763
DMR-2476	5	13827874	13828498
DMR-2477	5	13837077	13837791
DMR-2478	5	13838944	13840924
DMR-2479	5	13852247	13856729
DMR-2480	5	13857529	13858534
DMR-2481	5	13859509	13868947
DMR-2482	5	13878051	13878481
DMR-2483	5	13901149	13908033
DMR-2484	5	13929365	13930310
DMR-2485	5	13946515	13949105
DMR-2486	5	13981010	13982291
DMR-2487	5	13985794	13986619

DMR-2488	5	13987074	13987941
DMR-2489	5	13997345	13998495
DMR-2490	5	14010533	14017419
DMR-2491	5	14043212	14044013
DMR-2492	5	14059877	14061302
DMR-2493	5	14062133	14062628
DMR-2494	5	14100634	14107050
DMR-2495	5	14115465	14116090
DMR-2496	5	14116945	14117440
DMR-2497	5	14130621	14135451
DMR-2498	5	14221362	14226519
DMR-2499	5	14246983	14247633
DMR-2500	5	14274655	14275347
DMR-2501	5	14297458	14297785
DMR-2502	5	14307003	14307706
DMR-2503	5	14312823	14313978
DMR-2504	5	14332786	14334571
DMR-2505	5	14337556	14337841
DMR-2506	5	14396612	14398232
DMR-2507	5	14427117	14427447
DMR-2508	5	14449927	14450537
DMR-2509	5	14453515	14455049
DMR-2510	5	14460121	14466753
DMR-2511	5	14509444	14509802
DMR-2512	5	14512805	14514284
DMR-2513	5	14519571	14534898
DMR-2514	5	14564932	14566037
DMR-2515	5	14574666	14575466
DMR-2516	5	14592988	14595078
DMR-2517	5	14671685	14671970
DMR-2518	5	14686010	14687327
DMR-2519	5	14719198	14721633
DMR-2520	5	14815041	14815516
DMR-2521	5	14816177	14818655
DMR-2522	5	14819986	14820466
DMR-2523	5	14843134	14843897
DMR-2524	5	14847042	14848575
DMR-2525	5	14850683	14851496
DMR-2526	5	14984349	14984809
DMR-2527	5	15092886	15099318
DMR-2528	5	15101170	15102675
DMR-2529	5	15144415	15144695
DMR-2530	5	15172145	15172802
DMR-2531	5	15250670	15251447
DMR-2532	5	15308244	15309044
DMR-2533	5	15367442	15373756
DMR-2534	5	15376021	15377701

DMR-2535	5	15378228	15379702
DMR-2536	5	15596152	15596502
DMR-2537	5	15610335	15610875
DMR-2538	5	15617462	15618571
DMR-2539	5	15663492	15668447
DMR-2540	5	15670446	15671106
DMR-2541	5	15675047	15675842
DMR-2542	5	15680005	15680800
DMR-2543	5	15682932	15683472
DMR-2544	5	15684303	15685093
DMR-2545	5	15687245	15693500
DMR-2546	5	15696490	15697125
DMR-2547	5	15698105	15698765
DMR-2548	5	15700805	15707179
DMR-2549	5	15709981	15710641
DMR-2550	5	15711466	15712131
DMR-2551	5	15736222	15737247
DMR-2552	5	15739215	15739555
DMR-2553	5	15819093	15819918
DMR-2554	5	15823391	15823866
DMR-2555	5	15937735	15939668
DMR-2556	5	15940993	15941493
DMR-2557	5	15978772	15979977
DMR-2558	5	16066387	16068885
DMR-2559	5	16195309	16195599
DMR-2560	5	16674280	16675285
DMR-2561	5	16699048	16699699
DMR-2562	5	16716647	16721438
DMR-2563	5	16925220	16927520
DMR-2564	5	16939281	16939583
DMR-2565	5	17105759	17113165
DMR-2566	5	17421371	17422066
DMR-2567	5	17459022	17459667
DMR-2568	5	17460152	17462942
DMR-2569	5	17613965	17620413
DMR-2570	5	17621236	17623160
DMR-2571	5	17867526	17869727
DMR-2572	5	17907475	17907800
DMR-2573	5	17910760	17911445
DMR-2574	5	17913619	17915420
DMR-2575	5	17918396	17918736
DMR-2576	5	17993117	17993642
DMR-2577	5	18078620	18078905
DMR-2578	5	18117359	18118329
DMR-2579	5	18121482	18122122
DMR-2580	5	18122622	18123624
DMR-2581	5	18161903	18163873

DMR-2582	5	18210722	18211277
DMR-2583	5	18329226	18329856
DMR-2584	5	18488790	18489135
DMR-2585	5	18507760	18512393
DMR-2586	5	18667661	18667936
DMR-2587	5	18949985	18956210
DMR-2588	5	19375838	19376828
DMR-2589	5	19378317	19379292
DMR-2590	5	19471877	19472486
DMR-2591	5	19510945	19511770
DMR-2592	5	19514719	19515047
DMR-2593	5	19813096	19813551
DMR-2594	5	19982222	19983047
DMR-2595	5	20544046	20544482
DMR-2596	5	20611856	20612171
DMR-2597	5	20645333	20645628
DMR-2598	5	20646829	20647114
DMR-2599	5	20677340	20677995
DMR-2600	5	21391149	21392149
DMR-2601	5	21848807	21854609
DMR-2602	5	21951441	21951806
DMR-2603	5	22020306	22022116
DMR-2604	5	22022901	22024096
DMR-2605	5	22630468	22635399
DMR-2606	5	23152000	23157256
DMR-2607	5	24035420	24035780
DMR-2608	5	24036886	24039514
DMR-2609	5	24363110	24363575
DMR-2610	5	24662933	24663275
DMR-2611	5	26991911	26992558

Table S3

marker_id	chromosome	start_bp	stop_bp
MM1	1	4330606	4332076
MM2	1	6010663	6013983
MM3	1	6302732	6303012
MM4	1	7430002	7432267
MM5	1	8490901	8491751
MM6	1	8779330	8780036
MM7	1	8801988	8802650
MM8	1	8816171	8816837
MM9	1	8830699	8831320
MM10	1	8931514	8932319
MM11	1	9574179	9575333
MM12	1	9928550	9929215
MM13	1	10357405	10358870
MM14	1	10545345	10545839
MM15	1	11044649	11045616
MM16	1	11047114	11051415
MM17	1	11096911	11100708
MM18	1	11102419	11102716
MM19	1	11309661	11310311
MM20	1	11322798	11324178
MM21	1	11502846	11503351
MM22	1	11511756	11512571
MM23	1	11517887	11518652
MM24	1	11519343	11519828
MM25	1	12273252	12276332
MM26	1	12315004	12316774
MM27	1	12403422	12409842
MM28	1	12665781	12666246
MM29	1	12741147	12741472
MM30	1	12856990	12862085
MM31	1	12886199	12886839
MM32	1	12997426	13001226
MM33	1	13003181	13008641
MM34	1	13018502	13019187
MM35	1	13021477	13023341
MM36	1	13098250	13102655
MM37	1	13239811	13242134
MM38	1	13264736	13265031
MM39	1	13329072	13340087
MM40	1	13340457	13340972
MM41	1	13391912	13397522
MM42	1	13410597	13416544
MM43	1	13419144	13422650

MM44	1	13427752	13429697
MM45	1	13433353	13434184
MM46	1	13491291	13491906
MM47	1	13499704	13500341
MM48	1	13502344	13502970
MM49	1	13561188	13566504
MM50	1	13609050	13611740
MM51	1	13614690	13616505
MM52	1	13618483	13621742
MM53	1	13680349	13682839
MM54	1	13690605	13696354
MM55	1	13723276	13726066
MM56	1	13780371	13780806
MM57	1	13826895	13828486
MM58	1	13833771	13837234
MM59	1	13874905	13878010
MM60	1	13949477	13950282
MM61	1	13956862	13960687
MM62	1	13969593	13972424
MM63	1	13983607	13984268
MM64	1	13984918	13985273
MM65	1	14021704	14022069
MM66	1	14037747	14039365
MM67	1	14041565	14044311
MM68	1	14052579	14054259
MM69	1	14055047	14061305
MM70	1	14083297	14084617
MM71	1	14131943	14137208
MM72	1	14146506	14147761
MM73	1	14302730	14306046
MM74	1	14335079	14335886
MM75	1	14541178	14545088
MM76	1	15284161	15284806
MM77	1	15308042	15308542
MM78	1	15309072	15309419
MM79	1	15388250	15388769
MM80	1	15406219	15406584
MM81	1	15528192	15531620
MM82	1	15550286	15550766
MM83	1	15551291	15552086
MM84	1	15582994	15587070
MM85	1	15620432	15625706
MM86	1	15628145	15632000
MM87	1	15689530	15690065
MM88	1	15748293	15748923
MM89	1	15815259	15817608
MM90	1	15881127	15881601

MM91	1	15911298	15911993
MM92	1	15952423	15953198
MM93	1	16042016	16046253
MM94	1	16073021	16075146
MM95	1	16077497	16079431
MM96	1	16109836	16111806
MM97	1	16174849	16176279
MM98	1	16179459	16183728
MM99	1	16241631	16242456
MM100	1	16321198	16321833
MM101	1	16372020	16377961
MM102	1	16378251	16379910
MM103	1	16393296	16393971
MM104	1	16492119	16494454
MM105	1	16503303	16510446
MM106	1	16532567	16536974
MM107	1	16554298	16559608
MM108	1	16567689	16568185
MM109	1	16571345	16577420
MM110	1	16583872	16585347
MM111	1	16662920	16665717
MM112	1	16680244	16684809
MM113	1	16695209	16700209
MM114	1	16718975	16720795
MM115	1	16733536	16733986
MM116	1	16734832	16739267
MM117	1	16848979	16849677
MM118	1	16855805	16857585
MM119	1	16858275	16860405
MM120	1	17025691	17031861
MM121	1	17242364	17243167
MM122	1	17257708	17258178
MM123	1	17258838	17264340
MM124	1	17265653	17266923
MM125	1	17284412	17285075
MM126	1	17363118	17368434
MM127	1	17491702	17492657
MM128	1	17523013	17526003
MM129	1	17536099	17536719
MM130	1	17624374	17624644
MM131	1	17627467	17629817
MM132	1	17671709	17675959
MM133	1	17678326	17685879
MM134	1	18093468	18093752
MM135	1	18217549	18218148
MM136	1	18966470	18967584
MM137	1	18968104	18968769

MM138	1	18969287	18970411
MM139	1	18971211	18972691
MM140	1	19599419	19600065
MM141	1	19602225	19603333
MM142	1	19709973	19710245
MM143	1	20088798	20093878
MM144	1	20319443	20320248
MM145	1	20337631	20338751
MM146	1	21022509	21022839
MM147	1	21457161	21459296
MM148	1	21459776	21460452
MM149	1	21695576	21696186
MM150	1	21750810	21758234
MM151	1	21759069	21761386
MM152	1	21779239	21780706
MM153	1	21801669	21802299
MM154	1	21815497	21816819
MM155	1	21837927	21838792
MM156	1	21851635	21853262
MM157	1	22234806	22236246
MM158	1	23570478	23572928
MM159	1	24432541	24433101
MM160	1	24459659	24460449
MM161	1	24670998	24671353
MM162	1	26200063	26200847
MM163	1	27070457	27071391
MM164	1	28707900	28708696
MM165	1	28998776	28999419
MM166	2	245700	249332
MM167	2	373127	378679
MM168	2	930664	930979
MM169	2	1198126	1198622
MM170	2	1227799	1231951
MM171	2	1251574	1252848
MM172	2	1326824	1327598
MM173	2	1401845	1402997
MM174	2	1469377	1469822
MM175	2	1485511	1488641
MM176	2	1490016	1490456
MM177	2	1665553	1668318
MM178	2	1781534	1782394
MM179	2	1783524	1787124
MM180	2	1828697	1836838
MM181	2	1885678	1886283
MM182	2	1906578	1912199
MM183	2	1944372	1946238
MM184	2	1949643	1953330
MM185	2	1956620	1958940
-------	---	---------	---------
MM186	2	1970651	1974556
MM187	2	2031037	2031871
MM188	2	2036129	2041384
MM189	2	2075543	2080503
MM190	2	2089615	2092240
MM191	2	2093085	2094872
MM192	2	2098311	2101640
MM193	2	2102270	2102605
MM194	2	2107257	2109372
MM195	2	2168983	2170432
MM196	2	2205113	2206099
MM197	2	2263184	2264626
MM198	2	2293691	2295652
MM199	2	2365305	2370917
MM200	2	2373250	2373893
MM201	2	2390901	2395673
MM202	2	2414809	2417754
MM203	2	2475369	2483949
MM204	2	2526197	2529458
MM205	2	2534900	2535230
MM206	2	2594011	2597826
MM207	2	2625665	2627800
MM208	2	2631790	2634105
MM209	2	2649242	2651942
MM210	2	2660192	2662657
MM211	2	2694995	2695794
MM212	2	2704358	2706366
MM213	2	2709500	2711941
MM214	2	2724540	2727810
MM215	2	2739723	2742328
MM216	2	2747969	2754895
MM217	2	2781904	2785919
MM218	2	2834244	2836894
MM219	2	2844963	2849723
MM220	2	2883554	2887211
MM221	2	2908131	2911267
MM222	2	2916439	2917749
MM223	2	2943664	2943969
MM224	2	2969042	2973142
MM225	2	2995907	2997947
MM226	2	3025667	3028583
MM227	2	3044295	3045090
MM228	2	3107993	3109458
MM229	2	3160083	3166217
MM230	2	3171525	3173945
MM231	2	3175617	3179447

MM232	2	3204341	3206116
MM233	2	3231426	3237483
MM234	2	3258618	3259576
MM235	2	3517313	3522464
MM236	2	3575941	3577261
MM237	2	3593550	3594530
MM238	2	3694187	3699137
MM239	2	3708543	3709532
MM240	2	3730709	3734122
MM241	2	3760229	3761179
MM242	2	3796541	3797346
MM243	2	3806565	3806943
MM244	2	3809379	3810738
MM245	2	3930500	3932810
MM246	2	3946163	3949501
MM247	2	3950471	3951286
MM248	2	3966794	3968787
MM249	2	3985597	3986917
MM250	2	4019793	4023584
MM251	2	4024079	4025709
MM252	2	4068137	4072757
MM253	2	4073370	4074222
MM254	2	4096636	4098118
MM255	2	4099158	4103448
MM256	2	4117083	4127012
MM257	2	4233904	4243647
MM258	2	4251452	4252084
MM259	2	4253414	4253709
MM260	2	4255076	4256068
MM261	2	4258216	4260323
MM262	2	4265789	4268889
MM263	2	4283957	4289392
MM264	2	4300231	4301118
MM265	2	4330654	4332079
MM266	2	4395965	4397775
MM267	2	4467379	4468559
MM268	2	4475957	4477492
MM269	2	4493012	4494987
MM270	2	4508511	4509821
MM271	2	4573697	4574192
MM272	2	4590359	4592466
MM273	2	4651574	4656324
MM274	2	4667899	4669564
MM275	2	4671171	4675645
MM276	2	4699863	4700193
MM277	2	4707170	4710941
MM278	2	4715743	4716393

MM279	2	4746911	4747216
MM280	2	4798413	4799877
MM281	2	4816409	4824622
MM282	2	4825317	4828747
MM283	2	4829117	4833409
MM284	2	4837036	4838525
MM285	2	4842797	4844132
MM286	2	4868225	4868702
MM287	2	4901685	4905985
MM288	2	4926280	4927745
MM289	2	4974484	4977779
MM290	2	4978274	4979538
MM291	2	5001007	5001352
MM292	2	5022134	5023985
MM293	2	5031903	5034043
MM294	2	5041137	5044059
MM295	2	5069490	5074931
MM296	2	5081047	5081402
MM297	2	5081732	5082012
MM298	2	5082392	5082827
MM299	2	5083677	5086973
MM300	2	5178526	5179696
MM301	2	5180836	5185459
MM302	2	5224127	5225413
MM303	2	5246735	5252667
MM304	2	5287758	5288603
MM305	2	5294867	5295382
MM306	2	5296067	5298812
MM307	2	5303949	5304949
MM308	2	5305476	5306594
MM309	2	5307779	5312901
MM310	2	5313356	5313891
MM311	2	5331180	5333627
MM312	2	5388300	5392536
MM313	2	5393698	5395343
MM314	2	5411065	5413051
MM315	2	5418788	5423063
MM316	2	5469133	5470783
MM317	2	5477871	5478696
MM318	2	5479201	5479856
MM319	2	5482668	5485614
MM320	2	5503799	5505724
MM321	2	5524264	5526363
MM322	2	5609728	5612998
MM323	2	5620955	5638234
MM324	2	5672931	5675838
MM325	2	5717424	5723216

MM326	2	5725548	5726670
MM327	2	5737238	5738103
MM328	2	5799639	5804892
MM329	2	5836440	5837900
MM330	2	5859874	5864604
MM331	2	5907512	5908713
MM332	2	5952108	5953203
MM333	2	6016231	6020356
MM334	2	6112653	6114906
MM335	2	6116421	6119529
MM336	2	6141480	6146148
MM337	2	6204002	6206334
MM338	2	6263910	6268205
MM339	2	6358149	6360646
MM340	2	6427640	6434345
MM341	2	6440446	6447922
MM342	2	6497412	6497752
MM343	2	6557162	6558127
MM344	2	6560592	6561729
MM345	2	6562407	6565398
MM346	2	6587142	6589792
MM347	2	6595097	6598396
MM348	2	6631522	6633512
MM349	2	6707645	6713853
MM350	2	6726895	6727440
MM351	2	6743447	6743923
MM352	2	6774793	6779739
MM353	2	6790136	6793881
MM354	2	6849039	6849668
MM355	2	6918509	6921589
MM356	2	6942754	6946037
MM357	2	6961080	6965815
MM358	2	6969126	6969961
MM359	2	6971106	6973066
MM360	2	6973906	6974221
MM361	2	6976261	6977253
MM362	2	7012361	7016029
MM363	2	7120145	7121430
MM364	2	7122775	7123116
MM365	2	7231001	7231331
MM366	2	7232302	7232947
MM367	2	7233467	7236245
MM368	2	7239770	7245205
MM369	2	7455569	7459679
MM370	2	7460204	7461136
MM371	2	7544676	7545673
MM372	2	7784246	7791011

MM373	2	8278256	8281520
MM374	2	8568345	8571152
MM375	2	8572927	8574117
MM376	2	8824215	8827670
MM377	2	8881486	8882476
MM378	2	9129123	9130835
MM379	2	9194501	9198421
MM380	2	9659660	9659972
MM381	2	10415627	10417647
MM382	2	10540595	10541195
MM383	2	12456566	12461464
MM384	2	12664247	12665092
MM385	2	12743505	12743777
MM386	2	13167389	13167885
MM387	2	14560785	14561251
MM388	2	15418592	15418927
MM389	2	16028930	16029320
MM390	2	17099658	17102643
MM391	2	19381131	19381454
MM392	3	129256	129877
MM393	3	2817878	2818698
MM394	3	3812048	3813004
MM395	3	5839552	5840347
MM396	3	7061219	7061849
MM397	3	7343551	7344491
MM398	3	7738889	7739204
MM399	3	8937125	8938547
MM400	3	9228167	9232640
MM401	3	9238084	9242146
MM402	3	9436406	9439321
MM403	3	9445436	9447571
MM404	3	9472325	9473025
MM405	3	9693424	9699210
MM406	3	10560373	10561358
MM407	3	10562023	10563840
MM408	3	10886897	10890032
MM409	3	10918937	10922352
MM410	3	11020413	11022008
MM411	3	11029136	11030146
MM412	3	11066720	11068910
MM413	3	11113628	11114288
MM414	3	11117372	11121888
MM415	3	11172354	11176989
MM416	3	11366256	11367206
MM417	3	11391168	11391633
MM418	3	11393148	11396743
MM419	3	11455024	11455831

MM420	3	11525478	11526303
MM421	3	11558589	11562240
MM422	3	11575310	11578712
MM423	3	11579762	11588650
MM424	3	11666181	11672933
MM425	3	11699832	11704447
MM426	3	11745751	11746215
MM427	3	11797070	11799048
MM428	3	11880839	11884014
MM429	3	11935156	11936166
MM430	3	12021293	12029659
MM431	3	12047659	12048799
MM432	3	12096151	12098525
MM433	3	12162834	12165482
MM434	3	12272931	12277004
MM435	3	12294330	12294685
MM436	3	12295346	12296152
MM437	3	12380977	12381767
MM438	3	12388866	12390186
MM439	3	12447782	12448817
MM440	3	12460968	12462013
MM441	3	12577849	12580766
MM442	3	12581941	12582944
MM443	3	12586049	12591679
MM444	3	12647261	12651758
MM445	3	12652230	12655856
MM446	3	12678334	12683741
MM447	3	12688006	12695431
MM448	3	12695949	12697920
MM449	3	12764453	12768208
MM450	3	12847074	12848885
MM451	3	12853053	12855696
MM452	3	12923506	12927756
MM453	3	12944150	12944810
MM454	3	12945415	12947612
MM455	3	12957323	12958478
MM456	3	13057312	13062284
MM457	3	13081898	13084214
MM458	3	13093967	13094572
MM459	3	13108803	13117520
MM460	3	13213922	13214362
MM461	3	13286031	13290116
MM462	3	13290796	13291621
MM463	3	13322273	13328224
MM464	3	13475436	13476916
MM465	3	13506800	13509261
MM466	3	13667971	13671251

MM467	3	13895479	13895984
MM468	3	13896504	13897139
MM469	3	13897484	13901747
MM470	3	13971420	13974717
MM471	3	14070896	14073390
MM472	3	14121396	14124831
MM473	3	14131118	14137431
MM474	3	14284059	14285081
MM475	3	14301251	14304902
MM476	3	14313483	14313918
MM477	3	14343997	14344772
MM478	3	14399257	14399779
MM479	3	14548759	14551905
MM480	3	14667560	14673640
MM481	3	14676808	14680438
MM482	3	14740336	14746244
MM483	3	14777134	14777949
MM484	3	14787961	14791591
MM485	3	14796551	14798535
MM486	3	14818004	14818664
MM487	3	14848874	14852534
MM488	3	14878239	14881022
MM489	3	14881724	14888146
MM490	3	14942954	14950054
MM491	3	15004668	15008930
MM492	3	15035304	15036954
MM493	3	15056632	15058450
MM494	3	15073311	15079193
MM495	3	15186655	15188455
MM496	3	15240769	15243372
MM497	3	15277212	15280347
MM498	3	15295233	15297204
MM499	3	15318785	15325698
MM500	3	15327024	15328679
MM501	3	15356271	15356561
MM502	3	15370474	15372602
MM503	3	15409187	15412489
MM504	3	15456900	15458380
MM505	3	15498185	15502945
MM506	3	15506242	15509027
MM507	3	15536092	15537447
MM508	3	15537727	15541865
MM509	3	15581951	15584422
MM510	3	15586908	15587939
MM511	3	15594323	15594818
MM512	3	15596493	15596958
MM513	3	15597453	15597842

MM514	3	15602095	15607554
MM515	3	15632482	15638053
MM516	3	15698277	15702423
MM517	3	15733942	15739352
MM518	3	15819730	15821536
MM519	3	15839404	15840499
MM520	3	15858854	15865246
MM521	3	15872239	15873997
MM522	3	15931106	15934929
MM523	3	15970710	15972725
MM524	3	15973325	15974977
MM525	3	16008020	16009675
MM526	3	16083738	16084065
MM527	3	16184523	16191125
MM528	3	16256031	16256361
MM529	3	16257166	16260312
MM530	3	16304478	16305033
MM531	3	16508925	16509440
MM532	3	16538652	16539938
MM533	3	16602315	16604798
MM534	3	16605830	16607125
MM535	3	16613420	16615397
MM536	3	16702155	16709225
MM537	3	16821132	16825096
MM538	3	16858218	16860083
MM539	3	16968323	16971958
MM540	3	16973403	16973908
MM541	3	17158060	17158394
MM542	3	17989312	17996417
MM543	3	18080249	18081216
MM544	3	18370976	18371431
MM545	3	22124026	22124532
MM546	3	22243503	22246468
MM547	3	23215509	23218355
MM548	4	248703	249488
MM549	4	633119	636937
MM550	4	788271	788751
MM551	4	1312610	1315610
MM552	4	1447714	1448102
MM553	4	1592613	1594726
MM554	4	1647079	1650360
MM555	4	1789984	1791244
MM556	4	1792739	1794717
MM557	4	1820123	1823150
MM558	4	1836482	1837117
MM559	4	1846186	1847676
MM560	4	1848556	1850185

MM561	4	1856114	1856584
MM562	4	1857244	1859444
MM563	4	1922637	1924607
MM564	4	1961217	1961702
MM565	4	1968459	1973961
MM566	4	1976874	1979234
MM567	4	1987439	1993922
MM568	4	1996722	1997328
MM569	4	2046033	2048209
MM570	4	2064710	2069637
MM571	4	2107230	2110519
MM572	4	2136479	2143881
MM573	4	2171105	2175733
MM574	4	2176043	2177404
MM575	4	2178034	2179053
MM576	4	2188113	2203742
MM577	4	2205950	2208691
MM578	4	2212028	2214798
MM579	4	2250134	2252125
MM580	4	2254091	2256545
MM581	4	2263009	2264516
MM582	4	2279834	2288764
MM583	4	2302576	2308022
MM584	4	2309384	2310726
MM585	4	2355263	2355598
MM586	4	2356046	2357721
MM587	4	2596832	2603097
MM588	4	2899556	2904543
MM589	4	2982274	2983224
MM590	4	2983754	2985514
MM591	4	3129448	3130223
MM592	4	3138800	3145420
MM593	4	3292909	3299374
MM594	4	3301512	3308118
MM595	4	3330408	3331687
MM596	4	3360614	3361429
MM597	4	3364190	3366030
MM598	4	3367340	3369655
MM599	4	3370683	3371328
MM600	4	3405807	3408122
MM601	4	3417186	3418862
MM602	4	3422432	3423107
MM603	4	3423627	3427223
MM604	4	3448202	3451852
MM605	4	3476097	3480542
MM606	4	3503945	3505655
MM607	4	3522800	3524570

MM608	4	3525396	3527433
MM609	4	3533867	3536281
MM610	4	3640781	3647018
MM611	4	3647858	3649143
MM612	4	3652663	3653605
MM613	4	3683359	3683960
MM614	4	3685475	3689756
MM615	4	3707081	3715518
MM616	4	3719963	3722449
MM617	4	3726918	3727888
MM618	4	3754128	3756927
MM619	4	3795890	3797500
MM620	4	3880354	3883009
MM621	4	3883829	3885754
MM622	4	3913026	3913536
MM623	4	3920752	3921447
MM624	4	3921727	3922552
MM625	4	4250264	4252431
MM626	4	4267401	4268226
MM627	4	4319094	4320859
MM628	4	4345663	4346146
MM629	4	4358332	4359964
MM630	4	4394491	4400778
MM631	4	4539542	4540007
MM632	4	4590672	4594634
MM633	4	4606661	4608185
MM634	4	4611100	4612759
MM635	4	4613461	4614391
MM636	4	4623691	4627766
MM637	4	4628919	4633706
MM638	4	4704695	4705510
MM639	4	4711416	4716693
MM640	4	4718724	4720694
MM641	4	4730724	4732878
MM642	4	4733238	4735513
MM643	4	4742818	4746454
MM644	4	4782418	4788161
MM645	4	4861117	4862429
MM646	4	4864243	4866216
MM647	4	4951544	4954674
MM648	4	5004468	5007767
MM649	4	50//2/9	50/8214
MM650	4	5124451	5125409
MM651	4	5141956	5142391
IVIIV1652	4	520/957	5210103
MIM653	4	5303817	5308932
MM654	4	5468765	5470776

MM655	4	5479496	5480971
MM656	4	5481345	5483015
MM657	4	5484117	5486134
MM658	4	5494070	5494833
MM659	4	5507085	5512217
MM660	4	5555107	5556550
MM661	4	5588246	5589431
MM662	4	5590701	5596682
MM663	4	5623225	5625700
MM664	4	5627718	5630511
MM665	4	5751470	5752399
MM666	4	5766434	5769097
MM667	4	5862018	5864623
MM668	4	5879330	5881930
MM669	4	5905577	5908182
MM670	4	5913994	5916774
MM671	4	5937095	5938217
MM672	4	5939694	5943984
MM673	4	5965792	5971022
MM674	4	6035420	6036060
MM675	4	6059158	6061610
MM676	4	6112787	6114123
MM677	4	6125997	6130122
MM678	4	6467386	6472846
MM679	4	6723446	6729234
MM680	4	6916150	6919455
MM681	4	6977248	6977863
MM682	4	7358230	7358840
MM683	4	7890527	7891464
MM684	4	8109456	8110246
MM685	4	8148075	8150547
MM686	4	8313708	8319324
MM687	4	8327940	8329535
MM688	4	8620148	8623068
MM689	4	8906581	8907231
MM690	4	9068914	9078668
MM691	4	9483934	9485359
MM692	4	9486574	9490039
MM693	4	9734038	9737673
MM694	4	10527354	10529034
MM695	4	10992797	10997912
MM696	4	11039328	11040489
MM697	4	11045990	11046270
MM698	4	11363449	11369169
MM699	4	11820310	11824620
MM700	4	11825565	11826547
MM701	4	13624419	13631859

MM702	4	14531237	14532254
MM703	4	14987455	14988333
MM704	4	17712926	17716726
MM705	5	250204	250970
MM706	5	1686487	1686997
MM707	5	2262159	2262544
MM708	5	2374188	2375393
MM709	5	3005869	3007624
MM710	5	3249529	3249844
MM711	5	3944883	3945355
MM712	5	4320753	4323348
MM713	5	5635294	5635620
MM714	5	6407124	6407784
MM715	5	6433688	6438813
MM716	5	7027577	7028347
MM717	5	7118301	7118816
MM718	5	7823819	7824639
MM719	5	8574747	8577717
MM720	5	8622629	8624390
MM721	5	8666296	8667301
MM722	5	8788121	8788791
MM723	5	9203261	9203876
MM724	5	9206569	9207339
MM725	5	9412161	9414631
MM726	5	9561317	9563131
MM727	5	9707999	9708274
MM728	5	9712277	9712777
MM729	5	9840810	9843947
MM730	5	9925635	9926240
MM731	5	9929045	9929765
MM732	5	9949501	9953791
MM733	5	9980031	9982666
MM734	5	10049721	10056270
MM735	5	10059908	10060603
MM736	5	10061223	10063868
MM737	5	10100538	10102484
MM738	5	10104439	10106449
MM739	5	10116048	10116333
MM740	5	10167992	10173112
MM741	5	10182490	10183203
MM742	5	10216019	10219279
MM743	5	10235840	10236459
MM744	5	10351503	10356268
MM745	5	10359252	10361017
MM746	5	10379549	10380204
MM747	5	10381174	10383134
MM748	5	10398185	10400340

MM749	5	10406614	10416616
MM750	5	10446350	10448004
MM751	5	10470245	10473768
MM752	5	10476219	10477066
MM753	5	10497167	10504586
MM754	5	10510858	10514670
MM755	5	10547800	10554452
MM756	5	10574704	10578175
MM757	5	10774381	10775334
MM758	5	10793374	10795838
MM759	5	10802058	10802926
MM760	5	10805387	10806029
MM761	5	10808554	10813619
MM762	5	10838571	10839853
MM763	5	10848777	10851102
MM764	5	10884071	10887425
MM765	5	10888060	10888390
MM766	5	10889685	10892155
MM767	5	10894129	10895614
MM768	5	11038835	11040815
MM769	5	11043845	11045147
MM770	5	11046447	11050769
MM771	5	11055838	11056338
MM772	5	11068088	11068878
MM773	5	11069378	11070905
MM774	5	11198254	11202694
MM775	5	11408293	11412746
MM776	5	11425654	11428787
MM777	5	11452669	11453159
MM778	5	11467885	11469206
MM779	5	11521513	11522958
MM780	5	11523473	11525597
MM781	5	11527937	11528397
MM782	5	11582073	11583358
MM783	5	11592613	11593588
MM784	5	11609462	11612587
MM785	5	11623639	11625794
MM786	5	11647518	11652328
MM787	5	11670167	11672138
MM788	5	11673627	11676125
MM789	5	12114819	12115809
MM790	5	12205600	12206406
MM791	5	12207061	12208388
MM792	5	12209678	12211177
MM793	5	12213679	12214479
MM794	5	12239264	12240049
MM795	5	12267973	12268453

MM796	5	12372248	12372748
MM797	5	12374678	12378188
MM798	5	12455244	12455524
MM799	5	12458552	12459337
MM800	5	12527671	12529631
MM801	5	12531155	12532310
MM802	5	12624492	12625157
MM803	5	12672331	12675961
MM804	5	12693478	12695123
MM805	5	12738226	12745781
MM806	5	12747461	12749075
MM807	5	12753573	12755493
MM808	5	12801876	12806521
MM809	5	12983219	12984218
MM810	5	12996743	13006353
MM811	5	13078281	13079386
MM812	5	13082244	13082714
MM813	5	13131903	13134333
MM814	5	13271156	13277603
MM815	5	13354624	13354939
MM816	5	13364736	13369487
MM817	5	13382842	13383212
MM818	5	13510531	13511584
MM819	5	13545206	13548491
MM820	5	13549016	13549637
MM821	5	13592209	13593709
MM822	5	13609582	13610201
MM823	5	13656931	13661362
MM824	5	13666130	13666998
MM825	5	13753476	13758196
MM826	5	13797308	13803111
MM827	5	13805059	13806068
MM828	5	13806603	13806933
MM829	5	13814680	13817763
MM830	5	13838944	13840924
MM831	5	13878051	13878481
MM832	5	13901149	13908033
MM833	5	13929365	13930310
MM834	5	13946515	13949105
MM835	5	13985794	13986619
MM836	5	14100634	14107050
MM837	5	14130621	14135451
MM838	5	14297458	14297785
MM839	5	14564932	14566037
MM840	5	14574666	14575466
MM841	5	14592988	14595078
MM842	5	15092886	15099318

MM843	5	15101170	15102675
MM844	5	15376021	15377701
MM845	5	15663492	15668447
MM846	5	15670446	15671106
MM847	5	15687245	15693500
MM848	5	15700805	15707179
MM849	5	15736222	15737247
MM850	5	15739215	15739555
MM851	5	15819093	15819918
MM852	5	15823391	15823866
MM853	5	15937735	15939668
MM854	5	16674280	16675285
MM855	5	16925220	16927520
MM856	5	17105759	17113165
MM857	5	17459022	17459667
MM858	5	17460152	17462942
MM859	5	17613965	17620413
MM860	5	17621236	17623160
MM861	5	18161903	18163873
MM862	5	18488790	18489135
MM863	5	18667661	18667936
MM864	5	19375838	19376828
MM865	5	19378317	19379292
MM866	5	19982222	19983047
MM867	5	21391149	21392149

Table S4

marker	chr	start bp	stop bp	сM
MM1	1	4330606	4332076	0
MM2	1	6010663	6013983	1,729195471
MM4	1	7430002	7432267	11,73119575
MM5	1	8490901	8491751	13,46041678
MM7	1	8801988	8802650	16,44647406
MM10	1	8931514	8932319	18,17569552
MM11	1	9574179	9575333	23,22803886
MM12	1	9928550	9929215	23,78509645
MM17	1	11096911	11100708	26,13156496
MM20	1	11322798	11324178	26,68862279
MM25	1	12273252	12276332	29,03509124
MM27	1	12403422	12409842	30,16821303
MM33	1	13003181	13008641	30,72527098
MM39	1	13329072	13340087	33,07173949
MM52	1	13618483	13621742	33,62837936
MM58	1	13833771	13837234	34,76092688
MM87	1	15689530	15690065	36,49000221
MM91	1	15911298	15911993	37,04689724
MM101	1	16372020	16377961	40,03276696
MM114	1	16718975	16720795	40,58982491
MM123	1	17258838	17264340	41,14688279
MM126	1	17363118	17368434	44,7961642
MM128	1	17523013	17526003	45,92928462
MM147	1	21457161	21459296	61,19827022
MM150	1	21750810	21758234	62,33139088
MM157	1	22234806	22236246	63,46451242
MM158	1	23570478	23572928	67,8020507
MM159	1	24432541	24433101	68,35910841
MM160	1	24459659	24460449	70,08832178
MM163	1	27070457	27071391	106,3130768
MM166	2	245700	249332	0
MM167	2	373127	378679	0,557051032
MM168	2	930664	930979	4,206332442
MM171	2	1251574	1252848	5,339454041
MM240	2	3730709	3734122	6,472575946
MM330	2	5859874	5864604	7,029634072
MM335	2	6116421	6119529	7,586692197
MM357	2	6961080	6965815	8,719814102
MM371	2	7544676	7545673	9,852936007
MM372	2	7784246	7791011	10,40999413
MM373	2	8278256	8281520	10,9670522
MM374	2	8568345	8571152	12,69627436
MM378	2	9129123	9130835	13,25333242

MM379	2	9194501	9198421	13,81039055
MM380	2	9659660	9659972	14,94351194
MM382	2	10540595	10541195	21,51183147
MM383	2	12456566	12461464	35,62247261
MM385	2	12743505	12743777	39,27171782
MM388	2	15418592	15418927	61,37189962
MM392	3	129256	129877	0
MM396	3	7061219	7061849	25,45450367
MM398	3	7738889	7739204	26,58762309
MM399	3	8937125	8938547	34,7998638
MM400	3	9228167	9232640	35,93298506
MM402	3	9436406	9439321	36,49004313
MM405	3	9693424	9699210	37,62316466
MM414	3	11117372	11121888	42,67550807
MM415	3	11172354	11176989	43,23256577
MM418	3	11393148	11396743	44,36568761
MM427	3	11797070	11799048	46,09490971
MM432	3	12096151	12098525	46,65196778
MM466	3	13667971	13671251	47,20902596
MM495	3	15186655	15188455	47,76608414
MM499	3	15318785	15325698	48,32314227
MM515	3	15632482	15638053	49,45626417
MM527	3	16184523	16191125	50,58938608
MM529	3	16257166	16260312	51,1464442
MM531	3	16508925	16509440	51,70350239
MM537	3	16821132	16825096	52,26055959
MM544	3	18370976	18371431	64,21989515
MM546	3	22243503	22246468	95,64195903
MM547	3	23215509	23218355	101,4372846
MM550	4	788271	788751	0
MM551	4	1312610	1315610	1,729214934
MM552	4	1447714	1448102	2,286273001
MM553	4	1592613	1594726	2,843331184
MM586	4	2356046	2357721	3,40038931
MM587	4	2596832	2603097	4,533510704
MM654	4	5468765	5470776	11,10178238
MM661	4	5588246	5589431	12,23486366
MM665	4	5751470	5752399	16,57240194
MM666	4	5766434	5769097	17,1294594
MM678	4	6467386	6472846	21,46699775
MM679	4	6723446	6729234	22,02400587
MM686	4	8313708	8319324	32,98211535
MM689	4	8906581	8907231	38,77739831
MM691	4	9483934	9485359	42,42664598
MM693	4	9734038	9737673	42,98370303
MM694	4	10527354	10529034	52,98573323
MM695	4	10992797	10997912	53,54279052

MM698	4	11363449	11369169	54,67591218
MM699	4	11820310	11824620	58,32518253
MM701	4	13624419	13631859	68,32719735
MM703	4	14987455	14988333	72,66473374
MM704	4	17712926	17716726	82,66675312
MM706	5	1686487	1686997	0
MM707	5	2262159	2262544	3,649261727
MM712	5	4320753	4323348	12,73687297
MM713	5	5635294	5635620	22,73888351
MM715	5	6433688	6438813	23,29594081
MM716	5	7027577	7028347	24,4290622
MM718	5	7823819	7824639	30,99738813
MM719	5	8574747	8577717	32,7266097
MM721	5	8666296	8667301	33,28366771
MM722	5	8788121	8788791	34,41678967
MM724	5	9206569	9207339	34,97384774
MM725	5	9412161	9414631	36,1069697
MM726	5	9561317	9563131	36,66402777
MM728	5	9712277	9712777	37,79714973
MM731	5	9929045	9929765	38,3542078
MM734	5	10049721	10056270	39,48732977
MM744	5	10351503	10356268	40,04438789
MM823	5	13656931	13661362	41,17750986
MM825	5	13753476	13758196	41,73456799
MM827	5	13805059	13806068	42,29162611
MM832	5	13901149	13908033	43,42474808
MM837	5	14130621	14135451	43,98180614
MM845	5	15663492	15668447	45,11492811
MM849	5	15736222	15737247	45,67198623
MM853	5	15937735	15939668	46,22904436
MM854	5	16674280	16675285	47,36216554
MM859	5	17613965	17620413	56,44976439
MM862	5	18488790	18489135	57,58285581
MM863	5	18667661	18667936	59,92932394
MM865	5	19378317	19379292	63,57860502
MM867	5	21391149	21392149	65,92506578

10
ID
8
11
14
18
20
24
36
46
52
53
54
55
60
62
64
69
70
71
73
92
93
94
95
98
99

NUMBER	ID
26	101
27	108
28	112
29	114
30	118
31	122
32	137
33	144
34	147
35	148
36	150
37	159
38	164
39	166
40	169
41	170
42	172
43	183
44	193
45	195
46	202
47	208
48	215
49	216
50	218

NUMBER	ID		
51	222		
52	225		
53	229		
54	232		
55	238		
56	244		
57	252		
58	257		
59	258		
60	260		
61	262		
62	275		
63	276		
64	277		
65	297		
66	305		
67	315		
68	323		
69	326		
70	333		
71	340		
72	344		
73	350		
74	356		
75	361		

NUMBER	ID
76	362
77	363
78	366
79	368
80	371
81	375
82	391
83	393
84	394
85	400
86	408
87	410
88	425
89	432
90	434
91	437
92	438
93	439
94	454
95	458
96	466
97	467
98	471
99	473
100	477

NUMBER	ID
101	480
102	488
103	492
104	493
105	494
106	495
107	497
108	500
109	503
110	506
111	508
112	523
113	538
114	539
115	556
116	558
117	559
118	561
119	567
120	570
121	572
122	573
123	579

Table S6

Marker_id_epiRIL	chromosome	epiRIL_start_bp	epiRIL_stop_bp	Marker_id_P2	Marker_id_P3
MM1	1	4330606	4332076	1-4359800	1-4359800
MM2	1	6010663	6013983	1-6149751	1-6001538
MM4	1	7430002	7432267	1-7644962	1-7047756
MM5	1	8490901	8491751	1-8439006	1-8439006
MM7	1	8801988	8802650	1-8993233	1-8993233
MM17	1	11096911	11100708	1-11139723	1-11139723
MM25	1	12273252	12276332	1-12179065	1-12179065
MM33	1	13003181	13008641	1-13038240	1-13005911
MM39	1	13329072	13340087	1-13334580	1-13207971
MM52	1	13618483	13621742	1-13859051	1-13859051
MM87	1	15689530	15690065	1-15630635	1-15630635
MM101	1	16372020	16377961	1-16279095	1-16279095
MM114	1	16718975	16720795	1-16645134	1-16645134
MM123	1	17258838	17264340	1-17102334	1-17102334
MM147	1	21457161	21459296	1-21559246	1-21167712
MM157	1	22234806	22236246	1-22743028	1-22200580
MM158	1	23570478	23572928	1-23381914	1-23906908
MM159	1	24432541	24433101	1-24114746	1-24810967
MM163	1	27070457	27071391	1-27230162	1-27230162
MM166	2	245700	249332	2-498807	2-498807
MM171	2	1251574	1252848	2-1447413	2-1172482
MM240	2	3730709	3734122	2-3520754	2-4344527
MM330	2	5859874	5864604	2-5682223	2-5682223
MM335	2	6116421	6119529	2-6117975	2-6044749
MM357	2	6961080	6965815	2-6970449	2-6970449
MM371	2	7544676	7545673	2-7400522	2-7633698
MM373	2	8278256	8281520	2-8225326	2-8279888
MM374	2	8568345	8571152	2-8796903	2-8561080
MM378	2	9129123	9130835	2-9057864	2-9461465
MM380	2	9659660	9659972	2-9461465	2-9792570
MM382	2	10540595	10541195	2-10556376	2-10556376
MM383	2	12456566	12461464	2-12520610	2-12520610
MM385	2	12743505	12743777	2-12717797	2-12717797
MM388	2	15418592	15418927	2-15445245	2-15445245
MM392	3	129256	129877	3-290174	3-290174
MM396	3	7061219	7061849	3-7123630	3-7359421
MM398	3	7738889	7739204	3-7359421	3-7702216
MM399	3	8937125	8938547	3-8633204	3-8633204
MM400	3	9228167	9232640	3-9136628	3-9230404
MM405	3	9693424	9699210	3-9924267	3-9924267
MM414	3	11117372	11121888	3-10847881	3-10847881
MM427	3	11797070	11799048	3-11748521	3-11748521
MM432	3	12096151	12098525	3-12276692	3-12276692

MM466	3	13667971	13671251 3-13495418	3-13495379
MM515	3	15632482	15638053 3-15712057	3-15712057
MM527	3	16184523	16191125 3-15913994	3-15913994
MM531	3	16508925	16509440 3-16509183	3-16629399
MM537	3	16821132	16825096 3-16848354	3-16848354
MM544	3	18370976	18371431 3-18258898	3-18258898
MM546	3	22243503	22246468 3-22221736	3-22221736
MM547	3	23215509	23218355 3-23088778	3-23211977
MM550	4	788271	788751 4-945976	4-945976
MM551	4	1312610	1315610 4-1512987	4-1512987
MM586	4	2356046	2357721 4-2103325	4-2383725
MM654	4	5468765	5470776 4-5643991	4-5643991
MM678	4	6467386	6472846 4-6293204	4-5931550
MM686	4	8313708	8319324 4-8034821	4-8034821
MM689	4	8906581	8907231 4-9167906	4-9167906
MM691	4	9483934	9485359 4-9575956	4-9575956
MM693	4	9734038	9737673 4-10089916	4-10346818
MM694	4	10527354	10529034 4-10346818	4-10607774
MM695	4	10992797	10997912 4-11017270	4-10995355
MM698	4	11363449	11369169 4-11366309	4-11320394
MM701	4	13624419	13631859 4-13788227	4-13788227
MM703	4	14987455	14988333 4-14957828	4-14957828
MM704	4	17712926	17716726 4-17538469	4-17538469
MM706	5	1686487	1686997 5-1603469	5-1603469
MM707	5	2262159	2262544 5-2229415	5-2287470
MM712	5	4320753	4323348 5-4233682	5-4233682
MM713	5	5635294	5635620 5-5535964	5-5535964
MM715	5	6433688	6438813 5-6519202	5-6519202
MM716	5	7027577	7028347 5-7047330	5-7047330
MM718	5	7823819	7824639 5-7813295	5-7824229
MM719	5	8574747	8577717 5-8427379	5-8427379
MM724	5	9206569	9207339 5-9358168	5-9358168
MM744	5	10351503	10356268 5-10782718	5-10488859
MM823	5	13656931	13661362 5-13784419	5-13784419
MM845	5	15663492	15668447 5-15466566	5-15466566
MM854	5	16674280	16675285 5-16583743	5-16816665
MM859	5	17613965	17620413 5-17591339	5-17591339
MM862	5	18488790	18489135 5-18638175	5-18707445
MM865	5	19378317	19379292 5-19320777	5-19697188
MM867	5	21391149	21392149 5-21294493	5-21294493

Marker_id_P6	Marker_id_P7	Marker_id_P8	Marker_id_P9	Marker_id_P10	Marker_id_P12
1-4200550	1-4359800	1-4359800	1-4359800	1-4200550	1-4359800
1-6001538	1-6001538	1-6001538	1-6001538	1-6001538	1-6001538
1-7047756	1-7644962	1-7644962	1-7644962	1-7644962	1-7644962
1-8439006	1-8439006	1-8439006	1-8350582	1-8439006	1-8439006
1-9205325	1-8993233	1-9001217	1-8993233	1-8993233	1-8802319
1-10653718	1-10903254	1-10903254	1-10653718	1-11026901	1-10903254
1-12179065	1-12179065	1-12179065	1-12179065	1-12179065	1-12686038
1-12686038	1-13038240	1-12686038	1-13005911	1-13038240	1-13005911
1-13207971	1-13334580	1-13207971	1-13207971	1-13207971	1-13207971
1-14158183	1-13859051	1-13859051	1-14001934	1-14158183	1-13859051
1-15630635	1-15897174	1-15630635	1-15630635	1-15630635	1-15630635
1-16374991	1-15985718	1-16279095	1-16279095	1-16279095	1-16279095
1-16913975	1-16645134	1-17102334	1-16645134	1-16645134	1-16913975
1-17102334	1-17102334	1-17605952	1-17605952	1-17102334	1-17102334
1-21559246	1-21559246	1-21559246	1-21167712	1-21559246	1-21559246
1-22743028	1-22200580	1-22200580	1-22200580	1-22743028	1-22200580
1-23906908	1-23381914	1-23381914	1-23381914	1-23381914	1-23381914
1-24114746	1-24114746	1-24810967	1-24114746	1-24114746	1-24114746
1-27230162	1-27634939	1-27230162	1-27230162	1-27634939	1-27230162
2-498807	2-176156	2-498807	2-176156	2-247516	2-498807
2-1986922	2-1172482	2-1986922	2-1172482	2-1788467	2-1172482
2-3520754	2-3520754	2-3520754	2-3520754	2-3520754	2-3042043
2-5682223	2-5469974	2-5682223	2-5627965	2-5682223	2-5682223
2-6044749	2-6809099	2-6117975	2-6044749	2-6044749	2-6809099
2-6970449	2-6970449	2-6970449	2-6970449	2-6970449	2-6970449
2-7633698	2-7400522	2-7633698	2-7633698	2-7633698	2-7633698
2-8279888	2-8225326	2-8225326	2-8225326	2-8279888	2-8225326
2-8561080	2-8561080	2-8561080	2-8561080	2-8561080	2-8561080
2-9057864	2-9461465	2-9129979	2-9057864	2-8796903	2-9057864
2-9461465	2-9792570	2-9792570	2-9461465	2-9792570	2-9659816
2-10365194	2-10556376	2-10556376	2-10556376	2-10365194	2-10556376
2-12520610	2-12520610	2-12520610	2-12520610	2-12520610	2-12520610
2-13007536	2-12717797	2-13007536	2-13007536	2-12717797	2-12717797
2-15445245	2-15445245	2-15445245	2-15445245	2-15445245	2-15782230
3-400931	3-400931	3-290174	3-290174	3-290174	3-290174
3-6528008	3-7123630	3-7359421	3-7123630	3-7123630	3-7359421
3-7359421	3-7359421	3-7702216	3-7702216	3-7702216	3-7702216
3-8633204	3-8456601	3-8633204	3-8633204	3-8633204	3-8633204
3-9136628	3-9136628	3-9136628	3-9230404	3-9136628	3-9136628
3-9924267	3-10070201	3-9924267	3-9924267	3-9924267	3-10070201
3-11107344	3-10847881	3-11107344	3-10358588	3-11107344	3-10358588
3-11798059	3-11748521	3-11798059	3-11798059	3-11748521	3-11748521
3-13495379	3-12276692	3-12276692	3-13495418	3-12276692	3-12785230

3-13495418	3-13669611	3-13495418	3-14104253	3-13495418	3-13495418
3-15522173	3-15712057	3-15712057	3-15712057	3-15522173	3-15712057
3-15913994	3-15913994	3-15913994	3-16187824	3-15913994	3-16187824
3-16629399	3-16509183	3-16629399	3-16509183	3-16629399	3-16509183
3-16848354	3-16848354	3-16848354	3-16848354	3-17878794	3-16848354
3-18258898	3-18258898	3-18258898	3-18258898	3-18258898	3-18258898
3-22446488	3-22221736	3-22221736	3-22221736	3-22446488	3-22221736
3-23088778	3-23211977	3-23211977	3-23088778	3-23088778	3-23211977
4-945976	4-434712	4-945976	4-434712	4-945976	4-945976
4-1512987	4-945976	4-1512987	4-1512987	4-1512987	4-1512987
4-2775749	4-2383725	4-2383725	4-2383725	4-2103325	4-2383725
4-5931550	4-5196578	4-5643991	4-5643991	4-5196578	4-5386239
4-6293204	4-6470116	4-6293204	4-6293204	4-6470116	4-6293204
4-8034821	4-8034821	4-8585617	4-7934924	4-8585617	4-8034821
4-9167906	4-8906906	4-8906906	4-8585617	4-9167906	4-8906906
4-9575956	4-9167906	4-9167906	4-9575956	4-9575956	4-9167906
4-10089916	4-10089916	4-10346818	4-10089916	4-10089916	4-10346818
4-10607774	4-10346818	4-10607774	4-10607774	4-10607774	4-10607774
4-10995355	4-11017270	4-10995355	4-11017270	4-10995355	4-11017270
4-11320394	4-11559979	4-11320394	4-11559979	4-11320394	4-11320394
4-13467985	4-13788227	4-13788227	4-13788227	4-13788227	4-13467985
4-14957828	4-15325586	4-14957828	4-14957828	4-15863233	4-14736664
4-18060948	4-17538469	4-18060948	4-18060948	4-17538469	4-17538469
5-1603469	5-1384732	5-1917139	5-1603469	5-1166716	5-1603469
5-2287470	5-2229415	5-2229415	5-2287470	5-2287470	5-2287470
5-4233682	5-4448082	5-4233682	5-4448082	5-4233682	5-4233682
5-5535964	5-5799941	5-5535964	5-5535964	5-5535964	5-5535964
5-6519202	5-6436251	5-6519202	5-6519202	5-5799941	5-6055546
5-7340989	5-6801277	5-7047330	5-7047330	5-6801277	5-7047330
5-7813295	5-7813295	5-7813295	5-7340989	5-7813295	5-7813295
5-8024482	5-8427379	5-8427379	5-8576232	5-8427379	5-8427379
5-9206954	5-9358168	5-9547224	5-9358168	5-9881268	5-9881268
5-10488859	5-10782718	5-10488859	5-10488859	5-10488859	5-10488859
5-13784419	5-13445912	5-13784419	5-13784419	5-13784419	5-13784419
5-15466566	5-15878281	5-15466566	5-15466566	5-15466566	5-15466566
5-16583743	5-16816665	5-16583743	5-16583743	5-17115580	5-16583743
5-17591339	5-17959456	5-17115580	5-17591339	5-17591339	5-17591339
5-18638175	5-18707445	5-18638175	5-18638175	5-18638175	5-18638175
5-19697188	5-19320777	5-19320777	5-19320777	5-19320777	5-19697188
5-21757545	5-21294493	5-21294493	5-21757545	5-21294493	5-21757545

Marker_id_P15	Marker_id_P17	Marker_id_P19	Marker_id_P20	Marker_id_P35	Marker_id_P66
1-4359800	1-4359800	1-4359800	1-4359800	1-4359800	1-4200550
1-6001538	1-6001538	1-6149751	1-6149751	1-6001538	1-6149751
1-7644962	1-7644962	1-7047756	1-7644962	1-7644962	1-7047756
1-8350582	1-8439006	1-8439006	1-8350582	1-8439006	1-8439006
1-8993233	1-8993233	1-8993233	1-8993233	1-8802319	1-8993233
1-10903254	1-11026901	1-11139723	1-10903254	1-11026901	1-10903254
1-12686038	1-12686038	1-12179065	1-12686038	1-12686038	1-12179065
1-13005911	1-13038240	1-13038240	1-13038240	1-13038240	1-13038240
1-13207971	1-13207971	1-13334580	1-13207971	1-13207971	1-13334580
1-13859051	1-14001934	1-13859051	1-13859051	1-14001934	1-13859051
1-15605577	1-15897174	1-15897174	1-15630635	1-15630635	1-15630635
1-16279095	1-16279095	1-15985718	1-15985718	1-16279095	1-15985718
1-16645134	1-16645134	1-16913975	1-16645134	1-16913975	1-16913975
1-17102334	1-17102334	1-17102334	1-17605952	1-17102334	1-17605952
1-21559246	1-21559246	1-21559246	1-21167712	1-21167712	1-21559246
1-22200580	1-22200580	1-22200580	1-22743028	1-22975205	1-23381914
1-23130317	1-23381914	1-23381914	1-23381914	1-23906908	1-23906908
1-24114746	1-24114746	1-24810967	1-24810967	1-24810967	1-24114746
1-27230162	1-27230162	1-26404106	1-27230162	1-27230162	1-27230162
2-176156	2-757335	2-176156	2-247516	2-176156	2-247516
2-1172482	2-1172482	2-1172482	2-1172482	2-1788467	2-1172482
2-4344527	2-3520754	2-3520754	2-4344527	2-4344527	2-4778556
2-5682223	2-5627965	2-5682223	2-5682223	2-5682223	2-5469974
2-6044749	2-6044749	2-6044749	2-6044749	2-6044749	2-6044749
2-6970449	2-7048904	2-7048904	2-6809112	2-6970449	2-6809112
2-7633698	2-7633698	2-7633698	2-7633698	2-7400522	2-7400522
2-8225326	2-8225326	2-8225326	2-8225326	2-8225326	2-8225326
2-8561080	2-8561080	2-8561080	2-8796903	2-8796903	2-8561080
2-9129979	2-9057864	2-9461465	2-9057864	2-9057864	2-9057864
2-9792570	2-9461465	2-9792570	2-9792570	2-9792570	2-9792570
2-10811132	2-10556376	2-10556376	2-10365194	2-10365194	2-10365194
2-12335750	2-12520610	2-12019213	2-12459015	2-12019213	2-12019213
2-13007536	2-12717797	2-12717797	2-12717797	2-12717797	2-12717797
2-15445245	2-15445245	2-15097876	2-15782230	2-15445245	2-15445245
3-290174	3-400931	3-400931	3-290174	3-290174	3-290174
3-7123630	3-7123630	3-7359421	3-7123630	3-7123630	3-7123630
3-7359421	3-7702216	3-7702216	3-7702216	3-7359421	3-7359421
3-8633204	3-8633204	3-8633204	3-8633204	3-8633204	3-8633204
3-9136628	3-9136628	3-9136628	3-9230404	3-9136628	3-9136628
3-10358588	3-9924267	3-9924267	3-9924267	3-9924267	3-10358588
3-10847881	3-10847881	3-10847881	3-11107344	3-11107344	3-11107344
3-11748521	3-11748521	3-11748521	3-11748521	3-11798059	3-11748521
3-12276692	3-12276692	3-12785230	3-12276692	3-12276692	3-12276692

3-13107123	3-13495418	3-13495418	3-13495418	3-13495379	3-13495418
3-15712057	3-15712057	3-15712057	3-15712057	3-15522173	3-15712057
3-16187824	3-15913994	3-16187824	3-16187824	3-16187824	3-15913994
3-16509183	3-16629399	3-16629399	3-16629399	3-16629399	3-16629399
3-16848354	3-16848354	3-16848354	3-17878794	3-16848354	3-17211862
3-18258898	3-18532958	3-18258898	3-18532958	3-18532958	3-18258898
3-22221736	3-22221736	3-22446488	3-22221736	3-22221736	3-22221736
3-23216932	3-23088778	3-23211977	3-23211977	3-23211977	3-23211977
4-945976	4-434712	4-945976	4-208650	4-434712	4-434712
4-1512987	4-1782389	4-1314110	4-1512987	4-945976	4-2103325
4-2383725	4-2383725	4-1512987	4-2383725	4-2383725	4-3002169
4-5196578	4-5643991	4-5196578	4-5196578	4-5643991	4-5643991
4-6293204	4-6293204	4-6293204	4-6293204	4-6293204	4-6293204
4-8585617	4-7934924	4-8034821	4-7934924	4-7724867	4-8034821
4-8906906	4-8585617	4-8585617	4-8906906	4-8585617	4-8585617
4-9167906	4-9575956	4-9575956	4-9575956	4-9575956	4-9484647
4-10089916	4-10346818	4-9735856	4-10346818	4-9735856	4-9735856
4-10607774	4-10607774	4-10528194	4-10607774	4-10346818	4-10346818
4-11017270	4-11017270	4-11017270	4-11017270	4-11017270	4-11017270
4-11320394	4-11320394	4-11320394	4-11320394	4-11559979	4-11559979
4-13788227	4-13960078	4-13788227	4-13788227	4-13788227	4-13788227
4-14957828	4-14736664	4-14736664	4-14957828	4-14957828	4-14736664
4-18060948	4-17538469	4-17538469	4-17538469	4-18262372	4-17538469
5-1603469	5-1384732	5-1603469	5-1603469	5-1603469	5-1917139
5-2229415	5-2287470	5-2287470	5-2287470	5-1917139	5-2287470
5-4448082	5-4233682	5-4233682	5-4233682	5-4233682	5-4233682
5-5799941	5-5535964	5-5799941	5-5535964	5-5535964	5-5799941
5-6519202	5-6519202	5-6519202	5-6519202	5-6519202	5-6519202
5-6801277	5-7047330	5-6801277	5-6801277	5-7047330	5-7047330
5-7813295	5-7340989	5-7813295	5-7340989	5-7813295	5-7340989
5-8427379	5-8427379	5-8576232	5-8427379	5-8427379	5-8427379
5-9358168	5-9358168	5-9358168	5-9358168	5-9358168	5-9358168
5-10488859	5-10782718	5-10782718	5-10488859	5-10488859	5-10782718
5-13848611	5-13784419	5-13784419	5-13784419	5-13784419	5-13848611
5-15466566	5-15466566	5-15878281	5-15466566	5-15466566	5-15878281
5-16583743	5-17115580	5-16816665	5-16583743	5-16583743	5-16583743
5-17591339	5-17591339	5-17591339	5-17591339	5-17591339	5-17591339
5-18638175	5-18638175	5-18638175	5-18638175	5-18638175	5-18638175
5-19320777	5-19320777	5-19697188	5-19320777	5-19320777	5-19320777
5-21294493	5-21294493	5-21294493	5-21294493	5-21294493	5-21294493

Marker_id_P129	Marker_id_P145	Marker_id_P169
1-4200550	1-4359800	1-4359800
1-6001538	1-6001538	1-6001538
1-7644962	1-7644962	1-7644962
1-8439006	1-8350582	1-8439006
1-8993233	1-8993233	1-8802319
1-11026901	1-10903254	1-10653718
1-12179065	1-12179065	1-12179065
1-13038240	1-13038240	1-13038240
1-13207971	1-13334580	1-13334580
1-14001934	1-13859051	1-13859051
1-15630635	1-15630635	1-15897174
1-16279095	1-16374991	1-16279095
1-16645134	1-16645134	1-16913975
1-17605952	1-17102334	1-17102334
1-21559246	1-21559246	1-21167712
1-22200580	1-22200580	1-22200580
1-23381914	1-23632223	1-23632223
1-24114746	1-24114746	1-24114746
1-27230162	1-27230162	1-27634939
2-176156	2-498807	2-176156
2-1447413	2-1172482	2-1172482
2-4344527	2-4344527	2-3520754
2-5682223	2-5682223	2-5682223
2-6044749	2-6044749	2-6809099
2-7048904	2-6970449	2-7048904
2-7633698	2-7400522	2-7400522
2-8225326	2-8279888	2-8279888
2-8561080	2-8561080	2-8796903
2-9057864	2-8796903	2-9057864
2-9461465	2-9461465	2-9792570
2-10365194	2-10556376	2-10556376
2-12520610	2-12520610	2-12520610
2-12717797	2-12717797	2-12717797
2-15445245	2-15445245	2-15097876
3-290174	3-290174	3-290174
3-7123630	3-7123630	3-7123630
3-7702216	3-7359421	3-7359421
3-8633204	3-8633204	3-8633204
3-9136628	3-9136628	3-9136628
3-9924267	3-9924267	3-9924267
3-10847881	3-11107344	3-10358588
3-11798059	3-11798059	3-11748521
3-12785230	3-12276692	3-12276692

3-13495379	3-13495418	3-13495418
3-15712057	3-15522173	3-15712057
3-16187824	3-15913994	3-15913994
3-16629399	3-16509183	3-16629399
3-16848354	3-16848354	3-17878794
3-18532958	3-18258898	3-18258898
3-22221736	3-22221736	3-22221736
3-23211977	3-23211977	3-23211977
4-208650	4-208650	4-434712
4-945976	4-945976	4-1512987
4-2383725	4-2383725	4-2775749
4-5643991	4-5386239	4-5386239
4-6293204	4-6293204	4-5931550
4-8585617	4-8034821	4-8034821
4-8906906	4-8906906	4-9167906
4-9167906	4-9167906	4-9575956
4-10346818	4-10346818	4-9735856
4-10607774	4-10607774	4-10089916
4-11017270	4-11017270	4-10995355
4-11366309	4-11320394	4-11559979
4-13788227	4-13788227	4-13788227
4-14957828	4-14957828	4-14957828
4-17538469	4-18060948	4-18060948
5-1603469	5-1603469	5-1603469
5-2229415	5-2287470	5-2287470
5-4233682	5-4233682	5-4233682
5-5535964	5-5535964	5-5535964
5-5799941	5-6801277	5-6519202
5-6801277	5-7047330	5-7047330
5-7813295	5-7340989	5-7813295
5-8427379	5-8576232	5-8427379
5-9206954	5-9358168	5-9358168
5-9881268	5-9881268	5-10488859
5-13848611	5-13784419	5-13784419
5-15466566	5-15878281	5-15466566
5-16583743	5-16583743	5-16583743
5-17959456	5-17959456	5-17959456
5-18707445	5-18707445	5-18707445
5-19320777	5-19320777	5-19320777
5-21294493	5-21757545	5-21757545

Table S7

Interval Name	Chromosome	Start	Stop	Length	#Recombina	Breakpoints
					nt epikils	Proportions
MM24	Chr1	11519877	11754109	234232	3	0,09375
MM26	Chr1	12315004	12403422	88419	2	0,0625
MM29	Chr1	12741147	12856990	115844	1	0,03125
MM36	Chr1	13098250	13239811	141562	1	0,03125
MM38	Chr1	13264736	13329072	64337	3	0,09375
MM45	Chr1	13433353	13491291	57939	1	0,03125
MM53	Chr1	13680349	13690605	10257	2	0,0625
MM62	Chr1	13969593	14052579	82987	3	0,09375
MM90	Chr1	15881127	15911298	30172	1	0,03125
MM95	Chr1	16077497	16109836	32340	5	0,15625
MM107	Chr1	16554298	16567689	13392	1	0,03125
MM119	Chr1	16858275	17025691	167417	1	0,03125
MM125	Chr1	17284412	17363118	78707	6	0,1875
MM126	Chr1	17363118	17491702	128585	2	0,0625
MM168	Chr2	930664	1198126	267463	3	0,2
MM176	Chr2	1490016	1665553	175538	2	0,13333333
MM198	Chr2	2293691	2365305	71615	1	0,06666667
MM230	Chr2	3171525	3175617	4093	1	0,06666667
MM326	Chr2	5725548	5737238	11691	2	0,13333333
MM333	Chr2	6016231	6112653	96423	1	0,06666667
MM353	Chr2	6790136	6849039	58904	2	0,13333333
MM365	Chr2	7231001	7544676	313676	3	0,2
MM414	Chr3	11117372	11172354	54983	1	0,05882353
MM415	Chr3	11172354	11366256	193903	2	0,11764706
MM426	Chr3	11745751	11797070	51320	3	0,17647059
MM428	Chr3	11880839	11935156	54318	1	0,05882353
MM464	Chr3	13475436	13506800	31365	1	0,05882353
MM490	Chr3	14942954	15004668	61715	1	0,05882353
MM495	Chr3	15186655	15240769	54115	1	0,05882353
MM509	Chr3	15581951	15586908	4958	2	0,11764706
MM524	Chr3	15973325	16008020	34696	2	0,11764706
MM527	Chr3	16184523	16256031	71509	1	0,05882353
MM529	Chr3	16257166	16304478	47313	1	0,05882353
MM536	Chr3	16702155	16821132	118978	1	0,05882353
MM552	Chr4	1447714	1592613	144900	1	0,05263158
MM557	Chr4	1820123	1996722	176600	1	0,05263158
MM586	Chr4	2356046	2596832	240787	2	0,10526316
MM615	Chr4	3707081	3719963	12883	1	0,05263158
MM629	Chr4	4358332	4539542	181211	1	0,05263158
MM644	Chr4	4782418	4861117	78700	1	0,05263158
MM651	Chr4	5141956	5468765	326810	2	0,10526316
MM660	Chr4	5555107	5588246	33140	2	0,10526316

MM664	Chr4	5627718	5751470	123753	7	0,36842105
MM665	Chr4	5751470	5766434	14965	1	0,05263158
MM722	Chr5	8788121	9203261	415141	1	0,02857143
MM724	Chr5	9206569	9412161	205593	2	0,05714286
MM725	Chr5	9412161	9561317	149157	1	0,02857143
MM726	Chr5	9561317	9707999	146683	2	0,05714286
MM728	Chr5	9712277	9840810	128534	1	0,02857143
MM733	Chr5	9980031	10049721	69691	2	0,05714286
MM739	Chr5	10116048	10351503	235456	2	0,05714286
MM748	Chr5	10398185	10497167	98983	1	0,02857143
MM771	Chr5	11055838	11068088	12251	1	0,02857143
MM774	Chr5	11198254	11408293	210040	1	0,02857143
MM804	Chr5	12693478	12738226	44749	1	0,02857143
MM810	Chr5	12996743	13078281	81539	1	0,02857143
MM820	Chr5	13549016	13592209	43194	5	0,14285714
MM822	Chr5	13609582	13656931	47350	3	0,08571429
MM824	Chr5	13666130	13753476	87347	1	0,02857143
MM826	Chr5	13797308	13805059	7752	1	0,02857143
MM831	Chr5	13878051	13901149	23099	4	0,11428571
MM834	Chr5	13946515	13985794	39280	1	0,02857143
MM843	Chr5	15101170	15376021	274852	2	0,05714286
MM848	Chr5	15700805	15736222	35418	1	0,02857143
MM852	Chr5	15823391	15937735	114345	1	0,02857143

Nin	dow* start	marker interval	marker inter	val combinations	ecombinant epific	ALS swith shared reakpoint	s with shared	ed point interval	ed expoint interval
Chr 1 B	11,100,758	13,618,482	13	12	3	25.0	11,518,537	12,273,391	754,855
					3	25.0	13,101,452	13,241,436	139,985
Chr 1 A	15,690,116	17,258,837	6	6	0	0.0	-	-	-
Chr 2 B	249,383	1,251,573	9	9	4	44.4	378,733	536,423	157,691
Chr 2 A	5,864,654	8,568,344	10	10	3	33.3	8,281,415	8,568,344	286,930
Chr 3 B	8,938,604	12,096,150	20	19	5	26.3	9,710,200	10,112,728	402,529
	•				3	15.8	11,704,365	11,797,504	93,140
Chr 3 A	15,638,113	18,370,975	21	21	3	14.3	16,973,828	17,989,636	1,015,809
					4	19.0	17,995,327	18,370,975	375,649
Chr 4 B	788,808	2,356,045	6	6	0	0.0	-	-	-
Chr 4 A	5,470,842	8,313,707	31	26	3	11.5	5,683,645	5,751,920	68,276
					3	11.5	6,919,334	6,977,247	57,914
					4	15.4	6,977,575	8,313,907	1,336,333
Chr 5 B	7,824,697	10,351,502	16	16	3	18.8	8,667,186	9,206,733	539,548
Chr 5 A	13,661,415	16,674279	11	11	0	0.0	-	-	-

* B = window **<u>B</u>**efore centromere

A = window <u>A</u>fter centromere

VIII. Références bibliographiques

Ahmed, I., Sarazin, A., Bowler, C., Colot, V., and Quesneville, H. (2011). Genome-wide evidence for local DNA methylation spreading from small RNA-targeted sequences in Arabidopsis. Nucleic Acids Res *39*, 6919-6931.

Armengaud, P., Zambaux, K., Hills, A., Sulpice, R., Pattison, R.J., Blatt, M.R., and Amtmann, A. (2009). EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture. The Plant Journal *57*, 945-956.

Bauer, M.J., and Fischer, R.L. (2011). Genome demethylation and imprinting in the endosperm. Curr Opin Plant Biol *14*, 162-167.

Becker, C., Hagmann, J., Muller, J., Koenig, D., Stegle, O., Borgwardt, K., and Weigel, D. (2011). Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature *advance online publication*.

Bender, J., and Fink, G.R. (1995). Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of arabidopsis. Cell *83*, 725-734.

Bossdorf, O., Richards, C.L., and Pigliucci, M. (2008). Epigenetics for ecologists. Ecology Letters *11*, 106-115.

Boyko, A., and Kovalchuk, I. (2011). Genome instability and epigenetic modification - heritable responses to environmental stress? Curr Opin Plant Biol *14*, 260-266.

Bostick, M., Kim, J.K., Esteve, P.O., Clark, A., Pradhan, S., and Jacobsen, S.E. (2007). UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science *317*, 1760-1764.

Broman, K.W., Wu, H., Sen, S., and Churchill, G.A. (2003). R/qtl: QTL mapping in experimental crosses. Bioinformatics *19*, 889-890.

Cao, X.F., Springer, N.M., Muszynski, M.G., Phillips, R.L., Kaeppler, S., and Jacobsen, S.E. (2000). Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc Natl Acad Sci U S A *97*, 4979-4984.

Chan, S.W.L., Zhang, X., Bernatavichute, Y.V., and Jacobsen, S.E. (2006). Two-Step Recruitment of RNA-Directed DNA Methylation to Tandem Repeats. PLoS Biol *4*, e363.

Chen, P.Y., Cokus, S.J., and Pellegrini, M. (2010). BS Seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics *11*.

Choi, Y.H., Gehring, M., Johnson, L., Hannon, M., Harada, J.J., Goldberg, R.B., Jacobsen, S.E., and Fischer, R.L. (2002). DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell *110*, 33-42.

Cubillos, F.A., Coustham, V., and Loudet, O. (2012). Lessons from eQTL mapping studies: non-coding regions and their role behind natural phenotypic variation in plants. Curr Opin Plant Biol *15*, 192-198.

Cokus, S.J., Feng, S.H., Zhang, X.Y., Chen, Z.G., Merriman, B., Haudenschild, C.D., Pradhan, S., Nelson, S.F., Pellegrini, M., and Jacobsen, S.E. (2008). Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature *452*, 215-219.

Cortijo S, Wardenaar R, Colome-Tatche M, Johannes F and Colot V (2012) Genome-wide analysis of DNA methylation in Arabidopsis using MeDIP-chip. In: McKeown P and Spillane C (Eds) Plant Epigenome: Understanding and Analysis, Humana Press/Springer: New York.

Cropley, J.E., Suter, C.M., Beckman, K.B., and Martin, D.I.K. (2006). Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation. Proceedings of the National Academy of Sciences *103*, 17308-17312.

Ш

Cubas, P., Vincent, C., and Coen, E. (1999). An epigenetic mutation responsible for natural variation in floral symmetry. Nature *401*, 157-161.

Darvasi, A., and Soller, M. (1992). SELECTIVE GENOTYPING FOR DETERMINATION OF LINKAGE BETWEEN A MARKER LOCUS AND A QUANTITATIVE TRAIT LOCUS. Theor Appl Genet *85*, 353-359.

Durand, S., Bouché, N., Perez Strand, E., Loudet, O., and Camilleri, C. (2012). Rapid Establishment of Genetic Incompatibility through Natural Epigenetic Variation. Current biology : CB *22*, 326-331.

Eichten, S.R., Swanson-Wagner, R.A., Schnable, J.C., Waters, A.J., Hermanson, P.J., Liu, S.Z., Yeh, C.T., Jia, Y., Gendler, K., Freeling, M., *et al.* (2011). Heritable Epigenetic Variation among Maize Inbreds. PLoS Genet *7*.

Erhard Jr, K.F., and Hollick, J.B. (2011). Paramutation: a process for acquiring transgenerational regulatory states. Curr Opin Plant Biol *14*, 210-216.

Feng, S., Jacobsen, S.E., and Reik, W. (2010). Epigenetic Reprogramming in Plant and Animal Development. Science *330*, 622-627.

Gehring, M., Huh, J.H., Hsieh, T.-F., Penterman, J., Choi, Y., Harada, J.J., Goldberg, R.B., and Fischer, R.L. (2006). DEMETER DNA Glycosylase Establishes MEDEA Polycomb Gene Self-Imprinting by Allele-Specific Demethylation. Cell *124*, 495-506.

Gehring, M., Bubb, K.L., and Henikoff, S. (2009). Extensive Demethylation of Repetitive Elements During Seed Development Underlies Gene Imprinting. Science *324*, 1447-1451.

Gibbs, J.R., van der Brug, M.P., Hernandez, D.G., Traynor, B.J., Nalls, M.A., Lai, S.L., Arepalli, S., Dillman, A., Rafferty, I.P., Troncoso, J., *et al.* (2010). Abundant Quantitative Trait Loci Exist for DNA Methylation and Gene Expression in Human Brain. PLoS Genet *6*.

Goll, M.G., and Bestor, T.H. (2005). Eukaryotic cytosine methyltransferases. In Annual Review of Biochemistry (Palo Alto: Annual Reviews), pp. 481-514.

Greaves, I.K., Groszmann, M., Ying, H., Taylor, J.M., Peacock, W.J., and Dennis, E.S. (2012). Trans Chromosomal Methylation in Arabidopsis hybrids. Proceedings of the National Academy of Sciences.

Greer, E.L., Maures, T.J., Ucar, D., Hauswirth, A.G., Mancini, E., Lim, J.P., Benayoun, B.A., Shi, Y., and Brunet, A. (2011). Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature *479*, 365-U204.

Groszmann, M., Greaves, I.K., Albertyn, Z.I., Scofield, G.N., Peacock, W.J., and Dennis, E.S. (2011). Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl Acad Sci U S A *108*, 2617-2622.

Haring, M., Bader, R., Louwers, M., Schwabe, A., van Driel, R., and Stam, M. (2010). The role of DNA methylation, nucleosome occupancy and histone modifications in paramutation. The Plant Journal *63*, 366-378.

Havecker, E.R., Wallbridge, L.M., Hardcastle, T.J., Bush, M.S., Kelly, K.A., Dunn, R.M., Schwach, F., Doonan, J.H., and Baulcombe, D.C. (2010). The Arabidopsis RNA-Directed DNA Methylation Argonautes Functionally Diverge Based on Their Expression and Interaction with Target Loci. Plant Cell *22*, 321-334.

He, G.M., Zhu, X.P., Elling, A.A., Chen, L.B., Wang, X.F., Guo, L., Liang, M.Z., He, H., Zhang, H.Y., Chen, F.F., *et al.* (2010). Global Epigenetic and Transcriptional Trends among Two Rice Subspecies and Their Reciprocal Hybrids. Plant Cell *22*, 17-33.

He, X.J., Chen, T.P., and Zhu, J.K. (2011). Regulation and function of DNA methylation in plants and animals. Cell Res *21*, 442-465.

IV

Hellman, A., and Chess, A. (2010). Extensive sequence-influenced DNA methylation polymorphism in the human genome. Epigenetics Chromatin *3*.

Henderson, I.R., Zhang, X.Y., Lu, C., Johnson, L., Meyers, B.C., Green, P.J., and Jacobsen, S.E. (2006). Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nature Genet *38*, 721-725.

Henikoff, S., and Comai, L. (1998). A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics *149*, 307-318.

Hollister, J.D., and Gaut, B.S. (2009). Epigenetic silencing of transposable elements: A tradeoff between reduced transposition and deleterious effects on neighboring gene expression. Genome Research *19*, 1419-1428.

Hollister, J.D., Smith, L.M., Guo, Y.-L., Ott, F., Weigel, D., and Gaut, B.S. (2011). Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proceedings of the National Academy of Sciences *108*, 2322-2327.

Hsieh, T.F., Ibarra, C.A., Silva, P., Zemach, A., Eshed-Williams, L., Fischer, R.L., and Zilberman,D. (2009). Genome-Wide Demethylation of Arabidopsis Endosperm. Science *324*, 1451-1454.

Inagaki, S., Miura-Kamio, A., Nakamura, Y., Lu, F.L., Cui, X., Cao, X.F., Kimura, H., Saze, H., and Kakutani, T. (2010). Autocatalytic differentiation of epigenetic modifications within the Arabidopsis genome. Embo J *29*, 3496-3506.

Jablonka, E., and Raz, G. (2009). TRANSGENERATIONAL EPIGENETIC INHERITANCE: PREVALENCE, MECHANISMS, AND IMPLICATIONS FOR THE STUDY OF HEREDITY AND EVOLUTION. Q Rev Biol *84*, 131-176. Jackson, J.P., Lindroth, A.M., Cao, X.F., and Jacobsen, S.E. (2002). Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature *416*, 556-560.

Jacobsen, S.E., and Meyerowitz, E.M. (1997). Hypermethylated SUPERMAN Epigenetic Alleles in Arabidopsis. Science *277*, 1100-1103.

Jacobsen, S.E., Sakai, H., Finnegan, E.J., Cao, X., and Meyerowitz, E.M. (2000). Ectopic hypermethylation of flower-specific genes in Arabidopsis. Current Biology *10*, 179-186.

Jeddeloh, J.A., Stokes, T.L., and Richards, E.J. (1999). Maintenance of genomic methylation requires a SW12/SNF2-like protein. Nature Genet *22*, 94-97.

Johannes, F., Colot, V., and Jansen, R.C. (2008). Epigenome dynamics: a quantitative genetics perspective. Nat Rev Genet *9*, 883-890.

Johannes, F., Porcher, E., Teixeira, F.K., Saliba-Colombani, V., Simon, M., Agier, N., Bulski, A.s., Albuisson, J., Heredia, F., Audigier, P., *et al.* (2009). Assessing the Impact of Transgenerational Epigenetic Variation on Complex Traits. PLoS Genet *5*, e1000530.

Johnson, L.M., Bostick, M., Zhang, X.Y., Kraft, E., Henderson, I., Callis, J., and Jacobsen, S.E. (2007). The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr Biol *17*, 379-384.

Kakutani, T., Jeddeloh, J.A., Flowers, S.K., Munakata, K., and Richards, E.J. (1996). Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Acad Sci U S A *93*, 12406-12411.

Kakutani, T. (1997). Genetic characterization of late-flowering traits induced by DNA hypomethylation mutation in Arabidopsis thaliana. The Plant Journal *12*, 1447-1451.
Kakutani, T., Munakata, K., Richards, E.J., and Hirochika, H. (1999). Meiotically and Mitotically Stable Inheritance of DNA Hypomethylation Induced by ddm1 Mutation of Arabidopsis thaliana. Genetics *151*, 831-838.

Kinoshita, T., Miura, A., Choi, Y.H., Kinoshita, Y., Cao, X.F., Jacobsen, S.E., Fischer, R.L., and Kakutani, T. (2004). One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science *303*, 521-523.

Kinoshita, Y., Saze, H., Kinoshita, T., Miura, A., Soppe, W.J.J., Koornneef, M., and Kakutani, T. (2007). Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. The Plant Journal *49*, 38-45.

Köhler, C., Wolff, P., and Spillane, C. (2012). Epigenetic Mechanisms Underlying Genomic Imprinting in Plants. Annual Review of Plant Biology *63*, 331-352.

Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., and Salzberg, S.L. (2004). Versatile and open software for comparing large genomes. Genome Biol *5*.

Lahmy, S., Bies-Etheve, N., and Lagrange, T. (2010). Plant-specific multisubunit RNA polymerase in gene silencing. Epigenetics *5*, 4-8

Lindroth, A.M., Cao, X.F., Jackson, J.P., Zilberman, D., McCallum, C.M., Henikoff, S., and Jacobsen, S.E. (2001). Requirement of

Lindroth, A.M., Shultis, D., Jasencakova, Z., Fuchs, J., Johnson, L., Schubert, D., Patnaik, D., Pradhan, S., Goodrich, J., Schubert, I., *et al.* (2004). Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. Embo J *23*, 4146-4155.

Lippman, Z., Gendrel, A.-V., Black, M., Vaughn, M.W., Dedhia, N., Richard McCombie, W., Lavine, K., Mittal, V., May, B., Kasschau, K.D., *et al.* (2004). Role of transposable elements in heterochromatin and epigenetic control. Nature *430*, 471-476. Lister, R., O'Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, A.H., and Ecker, J.R. (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell *133*, 523-536.

Lister, R., Pelizzola, M., Dowen, R.H., Hawkins, R.D., Hon, G., Tonti-Filippini, J., Nery, J.R., Lee, L., Ye, Z., Ngo, Q.M., *et al.* (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature *462*, 315-322.

Liu, J., He, Y.H., Amasino, R., and Chen, X.M. (2004). siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis. Genes & Development *18*, 2873-2878.

Long, Y., Xia, W., Li, R., Wang, J., Shao, M., Feng, J., King, G.J., and Meng, J. (2011). Epigenetic QTL Mapping in Brassica napus. Genetics *189*, 1093-1102.

Loudet, O., Gaudon, V., Trubuil, A., and Daniel-Vedele, F. (2005). Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family. Theor Appl Genet *110*, 742-753.

Mackay, T.F.C. (2001). The genetic architecture of quantitative traits. Annu Rev Genet *35*, 303-339.

Makarevich, G., Villar, C.B.R., Erilova, A., and Kohler, C. (2008). Mechanism of PHERES1 imprinting in Arabidopsis. J Cell Sci *121*, 906-912.

Malagnac, F., Bartee, L., and Bender, J. (2002). An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. Embo J *21*, 6842-6852.

Manning, K., Tor, M., Poole, M., Hong, Y., Thompson, A.J., King, G.J., Giovannoni, J.J., and Seymour, G.B. (2006). A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genet *38*, 948-952.

Martin, A., Troadec, C., Boualem, A., Rajab, M., Fernandez, R., Morin, H., Pitrat, M., Dogimont, C., and Bendahmane, A. (2009). A transposon-induced epigenetic change leads to sex determination in melon. Nature *461*, 1135-U1237.

Mathieu, O., Reinders, J., Caikovski, M., Smathajitt, C., and Paszkowski, J. (2007). Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell *130*, 851-862.

Melquist, S., Luff, B., and Bender, J. (1999). Arabidopsis PAI Gene Arrangements, Cytosine Methylation and Expression. Genetics *153*, 401-413.

Mette, M.F., Aufsatz, W., van der Winden, J., Matzke, M.A., and Matzke, A.J.M. (2000). Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J *19*, 5194-5201.

Mirouze, M., Reinders, J., Bucher, E., Nishimura, T., Schneeberger, K., Ossowski, S., Cao, J., Weigel, D., Paszkowski, J., and Mathieu, O. (2009). Selective epigenetic control of retrotransposition in Arabidopsis. Nature *461*, 427-430.

Miura, A., Yonebayashi, S., Watanabe, K., Toyama, T., Shimada, H., and Kakutani, T. (2001). Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature *411*, 212-214.

Miura, K., Agetsuma, M., Kitano, H., Yoshimura, A., Matsuoka, M., Jacobsen, S.E., and Ashikari, M. (2009). A metastable DWARF1 epigenetic mutant affecting plant stature in rice. Proc Natl Acad Sci U S A *106*, 11218-11223.

Morgan, H.D., Sutherland, H.G.E., Martin, D.I.K., and Whitelaw, E. (1999). Epigenetic inheritance at the agouti locus in the mouse. Nat Genet *23*, 314-318.

Mosher, R.A., Schwach, F., Studhollme, D., and Baulcombe, D.C. (2008). PolIVb influences RNA-directed DNA-methylation independently of its role in siRNA biogenesis. Proc Natl Acad Sci U S A *105*, 3145-3150.

Mosher, R.A., and Melnyk, C.W. (2010). siRNAs and DNA methylation: seedy epigenetics. Trends Plant Sci 15, 204-210.

Panavas, T., Weir, J., and Walker, E.L. (1999). The Structure and Paramutagenicity of the Rmarbled Haplotype of Zea mays. Genetics *153*, 979-991.

Pfeffer, S., Lagos-Quintana, M., and Tuschl, T. (2001). Cloning of Small RNA Molecules. In Current Protocols in Molecular Biology (John Wiley & Sons, Inc.).

Raj, S., Brautigam, K., Hamanishi, E.T., Wilkins, O., Thomas, B.R., Schroeder, W., Mansfield, S.D., Plant, A.L., and Campbell, M.M. (2011). Clone history shapes Populus drought responses. Proc Natl Acad Sci U S A *108*, 12521-12526.

Rakyan, V.K., Chong, S., Champ, M.E., Cuthbert, P.C., Morgan, H.D., Luu, K.V.K., and Whitelaw, E. (2003). Transgenerational inheritance of epigenetic states at the murine AxinFu allele occurs after maternal and paternal transmission. Proceedings of the National Academy of Sciences *100*, 2538-2543.

Rapp, R.A., and Wendel, J.F. (2005). Epigenetics and plant evolution. New Phytol 168, 81-91.

Reinders, J., Wulff, B.B.H., Mirouze, M., Mari-Ordonez, A., Dapp, M.I., Rozhon, W., Bucher, E., Theiler, G.g., and Paszkowski, J. (2009). Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev *23*, 939-950.

Reymond, M., Svistoonoff, S., Loudet, O., Nussaume, L., and Desnos, T. (2006). Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ *29*, 115-125.

Richards, E.J. (2006). Inherited epigenetic variation [mdash] revisiting soft inheritance. Nat Rev Genet 7, 395-401.

Richards, E.J. (2008). Population epigenetics. Curr Opin Genet Dev 18, 221-226.

Riddle, N.C., and Richards, E.J. (2002). The Control of Natural Variation in Cytosine Methylation in Arabidopsis. Genetics *162*, 355-363.

Rigal, M., Kevei, Z., Pelissier, T., and Mathieu, O. (2012). DNA methylation in an intron of the IBM1 histone demethylase gene stabilizes chromatin modification patterns. EMBO J *advance online publication*.

Ronemus, M.J., Galbiati, M., Ticknor, C., Chen, J., and Dellaporta, S.L. (1996). Demethylation-Induced Developmental Pleiotropy in Arabidopsis. Science *273*, 654-657.

Roudier, F., Teixeira, F.K., and Colot, V. (2009). Chromatin indexing in Arabidopsis: an epigenomic tale of tails and more. Trends in Genetics *25*, 511-517.

Roudier, F., Ahmed, I., Berard, C., Sarazin, A., Mary-Huard, T., Cortijo, S., Bouyer, D., Caillieux, E., Duvernois-Berthet, E., Al-Shikhley, L., *et al.* (2011). Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. Embo J *30*, 1928-1938.

Saze, H., Scheid, O.M., and Paszkowski, J. (2003). Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nature Genet *34*, 65-69.

Saze, H., and Kakutani, T. (2007). Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO J *26*, 3641-3652.

Schmitz, R.J., Schultz, M.D., Lewsey, M.G., O'Malley, R.C., Urich, M.A., Libiger, O., Schork, N.J., and Ecker, J.R. (2011). Transgenerational Epigenetic Instability Is a Source of Novel Methylation Variants. Science.

Schmitz, R.J., and Ecker, J.R. (2012). Epigenetic and epigenomic variation in Arabidopsis thaliana. Trends Plant Sci *17*, 149-154.

Schneeberger, K., Ossowski, S., Ott, F., Klein, J.D., Wang, X., Lanz, C., Smith, L.M., Cao, J., Fitz, J., Warthmann, N., et al. (2011). Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci U S A *108*, 10249-10254.

Sen, S., Johannes, F., and Broman, K.W. (2009). Selective Genotyping and Phenotyping Strategies in a Complex Trait Context. Genetics *181*, 1613-1626.

Seong, K.H., Li, D., Shimizu, H., Nakamura, R., and Ishii, S. (2011). Inheritance of Stress-Induced, ATF-2-Dependent Epigenetic Change. Cell *145*, 1049-1061.

Sharif, J., Muto, M., Takebayashi, S.I., Suetake, I., Iwamatsu, A., Endo, T.A., Shinga, J., Mizutani-Koseki, Y., Toyoda, T., Okamura, K., *et al.* (2007). The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature *450*, 908-U925.

Shaw, R.G., Byers, D.L., and Darmo, E. (2000). Spontaneous Mutational Effects on Reproductive Traits of Arabidopsis thaliana. Genetics *155*, 369-378.

Shen, H.S., He, H., Li, J.G., Chen, W., Wang, X.C., Guo, L., Peng, Z.Y., He, G.M., Zhong, S.W., Qi, Y.J., *et al.* (2012). Genome-Wide Analysis of DNA Methylation and Gene Expression Changes in Two Arabidopsis Ecotypes and Their Reciprocal Hybrids. Plant Cell *24*, 875-892.

Sidorenko, L.V., and Peterson, T. (2001). Transgene-Induced Silencing Identifies Sequences Involved in the Establishment of Paramutation of the Maize p1 Gene. The Plant Cell Online *13*, 319-335. Soppe, W.J.J., Jacobsen, S.E., Alonso-Blanco, C., Jackson, J.P., Kakutani, T., Koornneef, M., and Peeters, A.J.M. (2000). The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell *6*, 791-802.

Stam, M., Belele, C., Dorweiler, J.E., and Chandler, V.L. (2002). Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes & Development *16*, 1906-1918.

Suzuki, M.M., and Bird, A. (2008). DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet *9*, 465-476.

Tarutani, Y., and Takayama, S. (2011). Monoallelic gene expression and its mechanisms. Curr Opin Plant Biol *14*, 608-613.

Teixeira, F.K., Heredia, F., Sarazin, A., Roudier, F., Boccara, M., Ciaudo, C., Cruaud, C., Poulain, J., Berdasco, M., Fraga, M.F., *et al.* (2009). A Role for RNAi in the Selective Correction of DNA Methylation Defects. Science *323*, 1600-1604.

Teixeira, F.K., and Colot, V. (2010). Repeat elements and the Arabidopsis DNA methylation landscape. Heredity *105*, 14-23.

Tran, R.K., Zilberman, D., de Bustos, C., Ditt, R.F., Henikoff, J.G., Lindroth, A.M., Delrow, J., Boyle, T., Kwong, S., Bryson, T.D., *et al.* (2005). Chromatin and siRNA pathways cooperate to maintain DNA methylation of small transposable elements in Arabidopsis. Genome Biol *6*.

Tsukahara, S., Kobayashi, A., Kawabe, A., Mathieu, O., Miura, A., and Kakutani, T. (2009). Bursts of retrotransposition reproduced in Arabidopsis. Nature *461*, 423-426.

Tuinstra, M.R., Ejeta, G., and Goldsbrough, P.B. (1997). Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet *95*, 1005-1011.

Vaughn, M.W., Tanurdzic, M., Lippman, Z., Jiang, H., Carrasquillo, R., Rabinowicz, P.D., Dedhia, N., McCombie, W.R., Agier, N., Bulski, A., *et al.* (2007). Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol *5*, 1617-1629.

Vongs, A., Kakutani, T., Martienssen, R.A., and Richards, E.J. (1993). ARABIDOPSIS-THALIANA DNA METHYLATION MUTANTS. Science *260*, 1926-1928.

Walker, E.L. (1998). Paramutation of the r1 Locus of Maize Is Associated With Increased Cytosine Methylation. Genetics *148*, 1973-1981.

Waterland, R.A., and Jirtle, R.L. (2003). Transposable Elements: Targets for Early Nutritional Effects on Epigenetic Gene Regulation. Molecular and Cellular Biology *23*, 5293-5300.

Whittle, C.A., Otto, S.P., Johnston, M.O., and Krochko, J.E. (2009). Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana. Botany *87*, 650-657.

Wierzbicki, A.T., Haag, J.R., and Pikaard, C.S. (2008). Noncoding Transcription by RNA Polymerase Pol IVb/Pol V Mediates Transcriptional Silencing of Overlapping and Adjacent Genes. Cell *135*, 635-648.

Wolff, G.L., Kodell, R.L., Moore, S.R., and Cooney, C.A. (1998). Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. The FASEB Journal *12*, 949-957.

Woo, H.R., Pontes, O., Pikaard, C.S., and Richards, E.J. (2007). VIM1, a methylcytosinebinding protein required for centromeric heterochromatinization. Genes Dev *21*, 267-277.

Woo, H.R., Dittmer, T.A., and Richards, E.J. (2008). Three SRA-Domain Methylcytosine-Binding Proteins Cooperate to Maintain Global CpG Methylation and Epigenetic Silencing in Arabidopsis. PLoS Genet *4*. Zhang, X.Y., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W.L., Chen, H.M., Henderson, I.R., Shinn, P., Pellegrini, M., Jacobsen, S.E., *et al.* (2006). Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell *126*, 1189-1201

Zhang, X., Shiu, S., Cal, A., and Borevitz, J.O. (2008). Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. PLoS Genet *4*.

Zhang, X.R., Henriques, R., Lin, S.S., Niu, Q.W., and Chua, N.H. (2006). Agrobacteriummediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc *1*, 641-646.

Zhang, D.D., Cheng, L.J., Badner, J.A., Chen, C., Chen, Q., Luo, W., Craig, D.W., Redman, M., Gershon, E.S., and Liu, C.Y. (2010). Genetic Control of Individual Differences in Gene-Specific Methylation in Human Brain. Am J Hum Genet *86*, 411-419.

Zemach, A., McDaniel, I.E., Silva, P., and Zilberman, D. (2010). Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation. Science *328*, 916-919.

Zheng, X.W., Zhu, J.H., Kapoor, A., and Zhu, J.K. (2007). Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. Embo J *26*, 1691-1701.

Zheng, X.W., Pontes, O., Zhu, J.H., Miki, D., Zhang, F., Li, W.X., Iida, K., Kapoor, A., Pikaard, C.S., and Zhu, J.K. (2008). ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature *455*, 1259-U1270.

Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T., and Henikoff, S. (2007). Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genetics *39*, 61-69. Zhu, J.K. (2009). Active DNA Demethylation Mediated by DNA Glycosylases. In Annual Review of Genetics (Palo Alto: Annual Reviews), pp. 143-166.

Résumé :

Des changements de méthylation de l'ADN peuvent affecter l'expression des gènes et pour certains être transmis au travers des générations. De telles « épimutations » qui concernent des groupes de cytosines à proximité ou dans les gènes sont donc une source potentielle de variation phénotypique héritable en absence de changements de la séquence de l'ADN. Chez les plantes la méthylation de l'ADN est cependant principalement observée au niveau des séquences répétées. Il reste à déterminer dans quelle mesure les changements de méthylation au niveau de ce type de séquences peuvent être héritées et affecter les phénotypes. Afin de répondre à ces questions, plus de 500 épiRIL (epigenetic Recombinant Inbred Lines) quasi-isogéniques a été générée chez Arabidopsis thaliana. Cette population a été obtenue par le croisement d'un parent sauvage et d'un parent mutant pour le gène DDM1 présentant une très forte réduction du taux de méthylation de l'ADN. Après un rétrocroisement de la F1 avec une plante sauvage, les individus sauvages pour le gène DDM1 ont été sélectionnés et propagées sur 6 générations par autofécondation. Nous avons montré par l'analyse du méthylome de plus de 100 épiRIL que l'hypométhylation induite par ddm1 présente selon les séquences affectées différents degrés de transmission au travers des générations. La réversion de l'hypométhylation concerne des régions associées à une abondance élevée en sRNA de 24 nt. Nous avons utilisé l'hypométhylation stablement transmise dans les épiRIL induite par *ddm1* afin de détecter des QTL (Quantitative Trait Loci) affectant le temps de floraison et la longueur de la racine primaire, deux caractères pour lesquels les variations observées dans les épiRIL présentent une héritabilité importante. En dernier lieu, nous avons recherché par différentes approches les variations causales de ces QTL.

Abstract :

Loss or gain of DNA methylation can affect gene expression and is sometimes transmitted across generations. Such epigenetic alterations, which concern clusters of cytosines located near or within genes, are thus a source of heritable phenotypic variation in the absence of DNA sequence change. In plants however, DNA methylation targets repeat elements predominantly and it remains unclear to which extent DNA methylation changes over repeat sequences can be inherited and affect phenotypes. To address these issues, a population of near-isogenic, epigenetic Recombinant Inbred Lines (epiRILs) was generated in Arabidopsis thaliana. These were derived from a cross between a wild type and an isogenic ddm1 mutant line, in which DNA methylation is compromised specifically over repeat elements. After backcrossing of the F1 and selection of the progeny homozygous for wildtype DDM1, the epiRILs were propagated through six rounds of selfing. Analysis of the methylomes of more than 100 epiRILs and of the parents, indicates that ddm1-induced hypomethylation exhibit different patterns of inheritance through generations. Reversion of ddm1-induced hypomethylation is observed for regions associated with high level of 24 nt siRNA. Based on these findings, stable *ddm1*-induced hypomethylated regions were used to map quantitative trait loci (QTL) for flowering time and primary root length, two complex traits for which substantial heritable variation is observed in the epiRIL population. We finally analysed these QTL by different approaches to find their causal variations.