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Introduction 
  

High frequency (HF) and nonlinear phenomena in thin active ferromagnetic planar structures 

gained a lot of interest in the past 20 years mainly from their perspectives of practical applications in the 

microwave technology. These applications can serve as a component base of wave division 

multiplexing (WDM) filters, micro electro mechanical systems (MEMS), micro magneto mechanical 

systems (MMMS), actuators, etc. These phenomena are also relevant to the fundamental investigations 

of the interaction of the electromagnetic field with magneto-ordered materials [1]-[6].  

One of the most promising objects for the nonlinear magnetic dynamics observation is thin 

planar structures that already became the basic element for integrated-circuit technologies [7]. In the 

recent years with the technological progress the new types of ferromagnetic planar structures become 

available for the experiment and production. These structures are regarded to be the main object of the 

present study. 

The uniaxial magnetostrictive films with an artificial spin reorientation transition (SRT) induced 

by external magnetic field are of great practical interest for their applications to MEMS devices [19]-

[22]. Rare earth intermetallic compositions like TbCo2/FeCo, which are usually under consideration in 

this matter, provide giant magnetostriction and large values of the electromechanical coupling factor 

[23], [24]. The magnetoelastic sensitivity of MMMS can increase about two order of value near SRT in 

magnetostrictive multilayer nanostructures [19], [20], [25]. The area in the vicinity of SRT in magnets 

has a number of dynamic and nonlinear features [26]-[29]. In particular high efficiency of subharmonic 

excitation of elastic vibrations was observed in MMMS near SRT [30]. Magnetoelastic demodulation of 

electromagnetic waves can also become efficient in giant magnetostriction nanostructures near SRT. 

For microwave demodulation one can expect the most preferable conditions when SRT is combined 

with ferromagnetic resonance (FMR) in a magnetostrictive film. 

Moreover, the magnetoelectric effect can also be considerably more efficient in a composite 

magnetostrictive-piezoelectric structure than in materials with intrinsic magnetoelectric properties [45], 

[46], [28]. The efficiency of magnetoelectrical energy conversion in stress-mediated structures is mostly 

defined by two factors: the value of electromechanical coupling factor in the piezoelectric component 

and magnetostriction value in the magnetic one. It was shown that magnetoelectric effect can be 

appreciably enhanced in a composite structure near SRT [29], [30]. Nevertheless, HF properties of these 

structures were not investigated. They can be of interest to the distance control of MEMS/MMMS and 

the practical applications on the base of them. Piezoelectric thin aluminium-nitride films, which were 

regarded here, gained a lot of interest in the applied physics because of available technology and 

significant value of electromechanical coupling factor due to comparatively small magnitude of 

dielectric constant [47], [48]. The resonant magneto-electric coefficient in thin film composite 
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multiferroic structures achieved more than 700 V/(cm*Oe). Various manifestations of magnetoelectric 

interaction in microwave frequency band were demonstrated in laminated or microparticle imbedded 

multiferroics [51]-[53]. The use of ferromagnetic resonance (FMR) in addition to acoustic resonance 

(AR) in composite structures appeared efficient to provide effective magnetoelectric energy conversion 

[54]. It was also clearly demonstrated the efficiency of reverse effect, when FMR is driven elastically 

[55]. HF electromagnetic excitation of low frequency (LF) alternating electrical polarization can be 

achieved using nonlinear magnetoelastic interaction in multiferroic structures.  One can expect that the 

usage of FMR, SRT, AR, giant magnetostriction and a significant value of piezoelectric coefficient 

jointly enhance nonlinear magnetoelectric conversion in thin film structures.  

In recent years, investigations of photonic crystals [62] have stimulated an interest in similar 

structures for other types of waves in solids. In particular, the investigations have been performed for 

acoustic structures similar to photonic crystals, in which the properties of acoustic microwaves are 

similar to those of electromagnetic waves in photonic crystals. Such media are called phonon crystals  

[63], [64]. In magnetic media (films and multilayer structures), the properties of spin 

(magnetostatic) waves have been investigated by analogy with photonic and phonon structures. These 

structures are called magnon crystals [65], [66]. Introduction of a periodic inhomogeneity brings about 

the occurrence of forbidden frequency bands, which is manifested in the existence of transmission and 

non-transmission bands for an optical signal in photonic crystals. A periodic variation of the properties 

of a magnetic medium leads to the same effects in the microwave range [68]-[70]. It should be noted 

that similar magnetic structures were considered earlier only in the case when the waveguiding carrier 

thickness was constant. 

As the media for investigation of the properties of MSSWs propagating, ferromagnetic films and 

plates homogeneous in their parameters are used. However, as shown in [71]-[74], the introduction of a 

non-uniform magnetic bias field substantially changes the properties of surface magnetostatic waves, 

changing the wave number, the phase and group velocities, and also cardinally changes the trajectory 

configuration of surface magnetostatic wave beams. On the other hand, inhomogeneities in the 

geometric parameters of films, e.g., a change in the thickness, must cause similar effects as well. 

Ferromagnetic films with periodic structures are of specific interest owing to a possibility to control 

their dispersion characteristics by a magnetic field [75], [76]. 

It is believed that a combination of a periodic inhomogeneity and a variable thickness of the 

structure will lead to the manifestation of new properties of the waveguiding medium and will open new 

areas of magnon crystals application. The formulation of this problem [17] was caused by the intensive 

work in this domain that was provided in the last few years in the Kotel’nikov Institute of Radio-

engineering and Electronics of RAS and by Pr. Sergey Nikitov particularly. In fact there were some 

important reasons to carry out the work in this direction as it has good perspectives in the HF 
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applications. The problem seemed to be the promising one from a perspective to provide us with the 

information on the new types of WDM filters. The methods that were used to estimate the influence of 

the varying thickness (WKB approximation) and the periodical structure (Kronig-Penny model) are 

quite simple and valid in the approximation of the small angles of a thickness variation. On the other 

hand, it gives us the basic advantages of these structures for practical applications. 

Ferrite-dielectric-metal (FDM) planar structures also have some unique features to observe when 

magnetostatic surface waves (MSSWs) propagate in such media as the condition of a negative dynamic 

magnetic susceptibility can be complied. Typically, the media with negative values of magnetic 

susceptibility and permittivity exhibit a number of specific dynamic properties [12]. In particular, it is 

shown in [85] that an anomalous Doppler effect may be observed in these media. This effect shows 

itself as a decrease in the frequency of the received signal as the source moves toward the receiver and 

as an increase as the source moves away from the receiver. 

A number of recent studies is devoted to the observation of the anomalous Doppler effect in 

transmission lines for backward electromagnetic waves [86]-[88]. Also studied is the anomalous 

Doppler effect observed in photonic and phononic crystals [89], [90], in which this effect is caused by 

the interaction of acoustic and electromagnetic wave with the crystal lattice characterized by a set of 

forbidden frequency bands. 

Thin active ferromagnetic planar structures are also promising for observing the anomalous 

Doppler effect. In these materials, special oscillations - spin magnetostatic waves (MSWs) - can be 

excited. Depending on the mutual orientation of the radiating antenna and the external magnetic field, 

various types of MSWs can be observed: magnetostatic surface waves (MSSWs), magnetostatic 

backward volume waves (MSBVWs), and magnetostatic forward volume waves (MSFVWs). 

Propagation of MSSWs and MSBVWs in a free ferromagnetic film as well as the laws of reflection and 

refraction of MSSWs and MSBVWs at the interface between different media are studies in detail in 

[91], [92]. 

In study [93], an experimental observation of an anomalous Doppler effect during MSBVW 

propagation in a free ferromagnetic film is reported. In the experiment, the input MSW-exciting antenna 

was moved relative to the ferromagnetic film. The MSW-emitting source was moved toward the 

receiving antenna (wave receiver). Both types of MSWs were studied: forward MSSW and MSBVW. In 

this case, the Doppler effect was normal for the MSSW and anomalous for the MSBVW (for the 

MSBVW, the frequency of the received signal (MSW) decreased as the source was moved toward the 

receiver). 

Generally the main goal of the work was the development of a theoretical description for the 

high frequency and non-linear waves propagation in thin planar ferromagnetic structures. Thus, for the 

achievement of the formulated goal following research tasks were assigned: 
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• Develop the theoretical description for second order non-linear and magnetostatic waves in thin 

ferromagnetic planar structures with different compositions such as multiferroics based on 

TbCox/FeCo intermetallic nanolayers, magnon crystals and ferrite-dielectric metal structures. 

• Study the increase of magnetoelastic demodulation with LF vibrations of the cantilever when 

FMR is excited by HF electromagnetic field near SRT. 

• Study the nonlinear magnetoelectric effect observation with the magnetoelastic demodulation 

and ferromagnetic resonance occurrence in thin planar magnetostrictive uniaxial nanostructures 

supplemented with a piezoelectric layer. 

• Calculate the dispersion of a surface magnetostatic wave propagating in a film, whose thickness 

varies linearly, with a periodic structure in the form of parallel etched strips, and show the 

possible practical applications of these structures. 

• Predict the occurrence of the anomalous Doppler effect during propagation of MSWs in a FDM 

structure in a certain range of system parameters. 

 

General scientific content of the work consists of five partitions: 

 

Chapter 1 represents main theoretical models and calculations that were used in the further 

chapters. The Landau-Lifshitz-Gilbert model for ferromagnets underlies in the base of theoretical study 

of the phenomena. It was supplemented by magnetostatic approximation with corresponding 

computations for the study of MSWs propagating in the media. The second order approximation of the 

model was used to describe the nonlinear behavior of magnetization in cases of magnetoelastic 

demodulation and nonlinear magnetoelectric effect in multiferroic nanostructures. 

 

Chapter 2. Ferromagnetic resonance and magnetoelastic demodulation in thin active 

ferromagnetic films. This work was a part of the research activity on micro electro mechanical systems 

(MEMS) that can be used in a hypothetical system ―Smartdust‖. It was assumed to cover the question 

with the distance control of such systems and their efficiency. On the other hand, this work was also 

used in the further related studies, where the problems of inducing a SRT in giant magnetostrictive thin 

planar nanostructures for applications in MEMS and NEMS were regarded [11].  

This chapter contains main experimental and theoretical results on the considered phenomenon. 

In particular, the magnetic field dependences of the HF reflection coefficient and the amplitude of 

sample vibrations at different FMR frequencies for La0.7Sr0.3MnO3 film and for TbCo2/FeCo 

nanostructure are presented here. The experiments and theoretical calculations have been provided at 

high frequencies from below 1 to above 4 GHz. The ancillary measurements of easy axis direction were 



 

14 

carried out as well. The results were discussed in details with respect to all previous works provided in 

this direction. 

The experimental and theoretical data on FMR and magnetoelastic demodulation in the 

TbCo2/FeCo nanostructure and La0.7Sr0.3MnO3 thin film, deposited on Si and NdGaO3 cantilevers, 

respectively, show that LF vibrations of the cantilever can be amplified when FMR is excited by HF 

electromagnetic field near SRT. Rare earth manganitestrontium perovskites demonstrated clear 

resonance properties in the majority of the high frequency range. The results of the calculations are in 

good agreement with the experimental data of measurements of the FMR line and with the data of the 

optical detection of elastic vibrations of the magnetostrictive cantilever under HF electromagnetic field. 

The phenomenon under consideration can find various applications in the field of MMMS controlled by 

a HF electromagnetic field. 

 

Chapter 3. Nonlinear magnetoelectric effect in multiferroic nanostructure TbCo/FeCo-AlN 

in high frequency electromagnetic field. In this chapter the same magnetoelastic system TbCo/FeCo 

on Si substrate was supplemented with the piezoelectric aluminium-nitride layer to demonstrate the 

demodulation effect in the voltage oscillations. It contains experimental and theoretical data on the 

magnetic field dependence of the HF reflection coefficient and the magnetoelectric voltage at different 

FMR frequencies in 500MHz – 2GHz spectral range. The results were discussed in details with respect 

to all previous works provided in this direction. 

The effect is studied in conditions of spin reorientation transition in magnetostrictive 

nanostructure. The results of calculations are in good agreement with the experimental data on magnetic 

field dependence of LF magnetoelectric voltage and on HF power absorption. It is shown that 

conductivity contribution to FMR line width is relatively weak in magnetostrictive nanostructure.  

  

Chapter 4. Propagation of the surface magnetostatic waves in an one dimensional magnon 

crystal with variable thickness.  

This chapter mainly contains basic results on the dispersion numerical calculation of a MSSW 

propagating in the structures represented by the ferromagnetic film and the one-dimensional magnon 

crystal made of a periodic structure in the form of parallel etched strips with variable thicknesses. In 

general, the linear dependence of the structure thickness variation was basically regarded. The questions 

of the calculations error was also under consideration.  

Possible applications of the effects investigated for designing narrowband and comb microwave 

filters were considered. Varying the geometric parameters of the film, the period and the width of 

etched strips, a required transmission characteristic of a ferromagnetic film with such structures can be 

obtained.  
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For a more precise physical model one can see the further study that improved this work and was 

provided by Prof. Sergey Nikitov and Sergey Platonov [16]. 

 

Chapter 5. Anomalous Doppler effect observed during propagation of magnetostatic waves 

in ferromagnetic films and ferrite–dielectric–metal (FDM) structures. This chapter contains the 

theoretical study on the anomalous Doppler effect occurrence for the MSSWs in FDM structures and 

MSBVWs in a free ferromagnetic plate. It was considered a thin ferromagnetic film placed in a constant 

magnetic field and magnetized to saturation.  

In this chapter the phenomenon of the anomalous Doppler effect observed during the MSBVW 

propagation in a free ferromagnetic film is theoretically substantiated. Plots of the Doppler shift are 

constructed for specified parameters. In addition, the possibility of the occurrence of the anomalous 

Doppler effect during propagation of MSSWs in a FDM structure in a certain range of system 

parameters is substantiated. It is found that the anomalous Doppler effect may be observed in these 

structures in a certain range of frequencies and dielectric interlayer thicknesses. A demonstration model 

that illustrates this effect with the use of equifrequency curves is constructed. 

Thesis conclusion presented at the end of the manuscript summarizes the results obtained in the 

conducted studies of high frequency and nonlinear phenomena in thin active ferromagnetic planar 

structures and compares them with initially set goals and tasks of the work. 

 

Thus, the main results of the thesis are: 

  

 Theoretical description for high frequency and nonlinear phenomena in thin active 

ferromagnetic planar structures (multiferroics based on TbCox/FeCo intermetallic nanolayers, 

magnon crystals and ferrite-dielectric metal structures) is developed. 

 The increase of efficiency of the magnetoelastic demodulation induced by HF electromagnetic 

field in the vicinity of SRT and combined with ferromagnetic resonance is theoretically and 

experimentally clearly demonstrated. 

 Nonlinear resonance magnetoelectric effect induced by HF electromagnetic field in thin film 

composite multiferroic structure is observed experimentally and explained theoretically. 

 The dispersion of a surface magnetostatic wave propagating in a film, whose thickness varies 

linearly, with a periodic structure in the form of parallel etched strips was calculated. Varying 

the geometric parameters of the film, the period and the width of etched strips, as well as the 

magnetic field strength a required transmission characteristic of a ferromagnetic film with such 

structures can be obtained. 
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 The prediction of the anomalous Doppler effect during propagation of MSSWs in a FDM 

structure in a certain range of system parameters is substantiated. 

 

In total this work was conducted with the help of the numerical simulations methods, HF 

spectroscopy methods, analytical calculations, theoretical models, signal differential amplifying, 

longitudinal magneto-optical Kerr effect (MOKE), Landau-Lifshitz equation, magnetostatic 

approximation, WKB approximation, Kronig-Penny model. 
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1. High-Frequency and nonlinear dynamics of magnetic moment 
 

In the first chapter we present general theoretical model and calculations on the second-order 

nonlinear dynamics and magnetostatic waves in thin ferromagnetic films that was used in the further 

research presented in the following chapters and could be also used as the base platform for other works 

in the area. The main results of the chapter are: the basic equations for HF and LF dynamics of 

magnetic system with a strong collinear magnetic order with an uniaxial anisotropy and magnetic 

relaxation in the substance in the approximation of a thin planar structure; the dispersion and main 

parameters of a magnetostatic wave propagating in a thin ferromagnetic plate. 

1.1. General approach 
 

General approach is useful as it introduces main concepts, system geometry and provides with 

several crucial theoretical results. 

1.1.1. System geometry 
 

The theory on low frequency (LF) elastic vibrations of the structure excited by LF 

electromagnetic field near SRT was already developed in ref. [28], [29]. Here this approach is extended 

for LF elastic vibrations excited by modulated HF electromagnetic field. The mechanism of such a 

process is explained by the combined contributions of two nonlinearities: the nonlinearity of 

magnetostriction and the nonlinearity of magnetic subsystem susceptibility. 

The system geometry is presented in Fig. 1. We suppose that the thin film with magnetization 

M  and thickness dm is placed on a thick nonmagnetic substrate with thickness d. The easy axis of the 

film is along the length of the sample corresponding to the x-axis and perpendicular to the external 

magnetic field H applied along the y-axis. The magnetization M  has the direction defined by the 

competition between the external magnetic field and the anisotropy. 
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Fig. 1. Geometry of the system: e.a. – Easy axis, M – magnetization of the magnetic film, dm and d – thicknesses of 

the magnetic film and substrate respectively, β - parameter defining the position of the neutral line, H – external 

magnetic field. 

 

Positions of the neutral lines defined by β are different for the static and dynamic resonance 

cases [40]. In the static case, the neutral line defined by the parameter β has the position minimizing the 

sum of elastic and magnetoelastic energies: β  = 2/3. For the dynamic case, the vibration modes have an 

antisymmetrical distribution of deformations relatively to the mean section of the cantilever and 

therefore: β  = 1/2.   

 

1.1.2.Free energy of the system 
 

Following the classical approach [41], [42] one can derive the nonlinear equations of motion for 

magnetization and elastic strains by retaining high-order terms in the free energy. Overall energy of the 

sample consists of three parts: elastic Fe, magnetoelastic Fme and magnetic  Fm ones. 

               (1) 

 

We assume that the structure is elastically isotropic. Thus the elastic part of energy volume 

density can be written in the following form [40]: 

 

  
  

 

 
       

     
     

                                          
     

  

   
     (2) 

 

where uij are components of the strain tensor; C11 and C12 - the two elastic stiffness constants. In 

this expression, the difference between elastic modules of the substrate and the film was neglected. 
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{
 

     
        

               
 

    
   

               
 

 

 

Here E and   are the integrated Young’s modulus and Poisson's ratio of the material 

correspondingly. The magnetic part of energy volume density consists of the Zeeman energy, the 

anisotropy energy and the energy of demagnetization field.  

 

     ( ⃗⃗  ⃗⃗ )  
   

   
|[ ⃗⃗   ⃗ ]|

 
 

 

 
 ⃗⃗  ̂ ⃗⃗    

 (3)   

 

with: n  - the unit vector that is collinear to the easy axis of the sample (Fig. 1); HA0 – the 

effective value of anisotropy field; M  - the magnetic moment. N̂  is the demagnetizating tensor which 

is assumed to be the same as for an infinite plate. Thus it has just only one non-zero element Nzz=4π. 

The magnetoelastic energy volume density is defined by the magnetostrictive term in isotropic 

model: 

 

    
 

 
                             

  
 

 
        

  
 

 
        

  
 

 
  

                              (4) 

  

 

Here following designations have been introduced:    
  

  
,    

  

  
,    

  

  
, b

γ,2 
= b is the 

magnetoelastic constant. 

Finally we can write: 

  

        ⃗⃗  ⃗⃗   
  

   
   

    
               

                  
          

        
              

                               
 

 
 ⃗⃗  ̂ ⃗⃗   

  (5) 

The free energy of the system contains the magnetoelastic term that provides with the second 

order non-linearity of mechanical vibrations amplitude dependence on the magnetization. This causes 

the part of magnetoelastic demodulation phenomenon depending on high frequency magnetization 

precession amplitude.   
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1.1.3.HF-dynamics of magnetic moment  
 

High-frequency magnetization precession of the ferromagnetic film is the system reaction to the 

influence of an external high-frequency electromagnetic field. 

Calculations of the components of magnetization are carried out using the Landau-Lifshits 

equation [81]: 

  

 
  ⃗⃗⃗ 

  
        ⃗⃗      

→   
   (6) 

Where     
→   

  
  

  ⃗⃗ 
 is the effective value of an internal magnetic field in the substance and 

      
→ 

  
→

  ̂  is generally non-linear on  
→ 

.  

In our problem we deal with sums of static and small alternating parameters:  

 ⃗⃗   →       ⃗⃗    ⃗⃗       
→   

  ⃗⃗    ̂   ̂      ̂    

One can represent the energy of magnetic system in Taylor series for the first order of 

magnetization:  

    ⃗⃗        
→    

   
→ 

      
→   

  ̂   ̂          ⃗⃗     
→ 

  ̂   
  

   
         

  

   
         

  

    
        

     

Thus the expression for the intensity of an effective magnetic field:  

       
  

   
      

  
     

 

   
       

     
 

   
       

     
 

    
         

Linearization of the Landau-Lifshits equation gives us:  

  ⃗⃗⃗ 

  
        ⃗⃗      

 
→   

        ⃗⃗  
     

 

  ⃗⃗ 
 ⃗⃗     

     
 

  ⃗⃗ 
      

     
 

  ⃗⃗ 
 ⃗       (7) 

High-frequency magnetization precession is caused by the linear part of Landau-Lifshitz 

equation and can be theoretically represented by the susceptibility tensor χ connecting the amplitudes of 

alternating HF magnetization and HF external magnetic field components. 

 

1.1.4.LF-dynamics of magnetic moment  
 

Let us represent the system energy in the second-order dependency on the magnetization in the 

Taylor series:   
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  ( ⃗⃗       
→    
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  ̂   ̂   )    ( ⃗⃗       
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Averaging the final second-order non-linear Landau-Lifshits equation by time-parameter, we 

obtain the equation of LF magnetization precession:  

   

  
              

 
→   

        ⃗⃗  
     

 

  ⃗⃗ 
       

     
 

  ⃗ 
       

     
 

  ⃗⃗ 
 ⃗              

→    
      

→   
 

 

         
→    

  
     

 

  ⃗⃗ 
 ⃗⃗      

      
 

      
           

 

 

 (8) 

Where:             .  

Low-frequency magnetization precession is caused by the non-linearity of Landau-Lifshitz 

equation and can be theoretically presented by the susceptibility tensor κ connecting the amplitudes of 

alternating LF magnetization and HF external magnetic field components. 

 

 

1.2. Magnetostatic approximation 
 

This part of work is mostly based on the fundamental article of Damon and Eshbach [77]. It was 

carried out with the same geometry and assumptions. On the other hand, it provides with theoretical 

results derived in a quite different manner. It can be useful as an introduction to the calculations 

provided in the Chapter 4 and the Chapter 5. Moreover, here one can find the simplified expression for 

the MSSW dispersion equation that were not presented in the mentioned article. 

 

1.2.1.Basics.  
 

The general magnetostatics equations obtained from the corresponding Maxwell equations in the 

approximation of a quasi-static mode  [81]:  

 ;0Hrot


 (9) 

 0Bdiv


 (10) 
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Here: MHB


4 .                                                                  

 

Let us suppose that the field and magnetization can be presented in the following form:  

 ti

zi ehnHH 


; (11) 

 ti

z emnMM 


0 . (12) 

Here: iH - an interior constant field; 0~~ MHmh i .  

Substituting (11), (12) in (9), (10), and considering that  

   0 zi nHrot


,  

   00  znMdiv


  

 (As constH i  , constM 0 ),  

we have:  

 ;0hrot


 (13) 

   04  mhdiv


 . (14) 

 

From the equation (13) one can assume the introduction of potential   of an alternating 

magnetic field such that:  

 









zyx

gradh











 ;;


. (15) 

 

Thus the equation (14) becomes:  

   04  mgraddiv


 , (16) 

Thus one can obtain the basic equation for a potential in the medium with the magnetization:  

 

 04  mdiv


 . (17) 

 

It includes an alternating magnetization m


 that could be expressed from the Landau-Lifshits 

equation of magnetization vector motion through an alternating magnetic field h


and a susceptibility 

tensor 


. The alternating field components can be expressed through potential  according to (15). In 

this way the components of m


 could be derived by the potential  and then substituted directly to the 

obtained expressions (16). Thus we have the equation only for the potential  . It is the Walker's 

equation, which is defined by the susceptibility tensor 


.  
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Fig. 2. Problem geometry. 

 

One can consider the problem geometry. The structure represents an unfinit ferrite plate 2 with 

the thickness d  and limited by semispaces 1 and 3. The coordinate system Oxyz is chosen as its plane 

Oyz is parallel to the planes of ferrite plate, and the axis Ox  is perpendicular to them. Thus the axis Oz  

is oriented along an external field direction. The center of coordinate system O is in the middle between 

the surface planes of ferrite plate, which coordinates are equal to 2d .    

 

The boundary conditions on plate surfaces is the continuity of normal components of the 

magnetic displacement B


 and tangential components of the magnetic strength H


:  
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d
x

e

xd
x

i

x BB


 , 

2

,

2

, d
x

e

zyd
x

i

zy HH


 . 

Calculating components of B


 and H


, boundary conditions become (there are only 4 boundary 

conditions):  
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d
x

e

d
x

ii

xy
i

x















 ; (18) 
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d
x

e
d

x

i


 . (19) 
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The second pair of boundary conditions are obtained from the equality of derivatives that is 

carried out with the assumption of an arbitrary constant, which is added to the potential (as a result of 

integration). In the Damon-Eshbah work [77] this constant is supposed to be equal to zero as all fields 

are calculated through the derivatives of potential, and the derivative of a constant equals to zero.   

Thus, the full problem formulation is:  

 

Space 1 (out of ferrite):  

 0
2

1

2

2

1

2

2

1

2


zyx 










. (20) 

  

Space 2 (in ferrite): 

 0
2

2

2

2

2

2

2

2

2











zyx 










 . (21) 

 

 

Space 3 (out of ferrite):  

0
2

3

2

2

3

2

2

3

2


zyx 










. 

 

Boundary conditions for the low 









2

d
x  and top 










2

d
x  surfaces:   

 

2

1

2
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d
x

d
x

xy
i

x















 ; (22) 

 

2

3

2
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d
x

d
x

xy
i

x















 ; (23) 

 

 
2

1
2

2 d
x

d
x 

 ; (24) 

 

 

 
2

3
2

2 d
x

d
x 

 . (25) 

Here:   
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1





H

H ;                                                                   

 

 
22 




H

 ;                                                                          

 

 
04 MM 






 ;                                                                             

 

 
04 M

Hi

M

H
H




 .                                                                            

 

1.2.2.Frequency ranges for backward volume and surface 

magnetostatic waves 
  

Let us find frequency ranges for backward volume and surface magnetostatic waves. For this 

purpose we will regard the dependency   , which is:  

 
22

1





H

H ,                                                                   

 

 

Following cases are possible:  

 

1) 0 , then: 
11  H ;  

 

2) H0 , then:   11 H ;  

 

3)  1 HHH , then: 0  ;  

   

4)  1 HH , then: 0 ;  

 

5)    1HH , then: 10   .  
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The dependency    is presented on Fig. 3.  

 

 

Fig. 3. The dependency   . 

 

There is a range:  1 HHH , where 0  and the wave number inside the film 
i

xk  

can be the real. It is the range of volume waves, for which the dependence of potential 2  on the 

coordinate x oscillates periodically.  

In the 2
nd

 space: H0  where 0 , waves do not propagate, as in this case their frequency 

would be below the frequency of homogeneous ferromagnetic resonance.  

In the 5th space:    1HH , where 0 , the quantity of 
i

xk  is always imaginary. It 

is the range of surface waves, for which the dependence of potential 2  on the coordinate x decreases 

expnonentially from a plate surface.  

 

The final dispersion equation follows from the determinant of the system (22)-(25). In general it 

includes four wave numbers: 
e

xk , 
i

xk , yk , zk . Two of them, 
e

xk  and 
i

xk , can be excluded by the Walker’s 

equation. Thus the dispersion relation can contain only yk  and zk . It means that if yk is defined then the 

dispersion relation allows to derive zk through yk . As the problem has a cylindrical symmetry one can 

introduce the polar coordinate system:  

 coskky ; (26) 

 sinkkz . (27) 

 

In this coordinate system the wave numbers become:  
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 kkkk zy

e

x  22
;                                                                  

 






kiki

k
kik z

y

i

x 
2

2
2

2 sin
cos ,         

 Where the following designation is made:  

 

 





2
2 sin

cos  .                                                             

     222 cos . (28) 

 

Finally the basic dispersion relation for the isotropic ferrite plate magnetised in the plane with 

free surfaces is:  

 

 




 21

21
ln

2

1






d
k . (29) 

This equation is mainly used in the Chapter 4 and the Chapter 5.   

   

 

1.3. Conclusion 

The magnetic susceptibility tensors for high frequency and low frequency magnetization 

dynamics cases were obtained for the specificity of the system geometry. It is of interest for the further 

theoretical research on the magnetoelastic energy conversion. Low frequency magnetization dynamics 

was considered as a consequence of the second-order non-linearity of the Landau-Lifshitz equation. The 

HF magnetic damping influence was proposed to be considered in the form offered by Gilbert. The 

magnetoelastic coupling was taken under consideration in the internal magnetic field strength 

calculation. It was found to have a neglectibly small contribution to the final result and was taken out of 

the further calculations. In fact its contribution can be significant in the vicinity of the spin reorientation 

transition as it forms the gap for the resonant frequency. In the present work this gap was near 23 MHz 

and was much lower than the lowest frequency limit of FMR observation (500 MHz). 

Magnetostatic approximation regarded here is mostly based on the work of Damon and Eshbach 

[77]. The dispersion equation and the other results obtained here are mainly used in the chapters 4 and 

5, where the related problems of magnetostatic surface wave propagation in a magnon crystal with a 

variable thickness and the anomalous Doppler effect occurrence during the magnetostatic surface waves 

propagation in the ferrite-dielectric-metal structures are under consideration.  
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2. Ferromagnetic resonance and magnetoelastic demodulation in 

thin active films with an uniaxial anisotropy 
 

Here we study FMR and magnetoelastic demodulation in the uniaxial TbCo2/FeCo nanostructure 

deposited on Si cantilever. The results are compared with the ones obtained on La0.7Sr0.3MnO3 thin film 

grown on NdGaO3 substrate. The latter rare earth manganitestrontium perovskite thin film was chosen 

for its low high frequency (HF) absorption and its significant magnetostriction coefficient at room 

temperature [34], [37]. In both cases the technology provides uniaxial in plane magnetic anisotropy and 

clearly expressed SRT [38], [39]. Creation of SRT in giant magnetostriction TbCo2/FeCo exchange 

coupled nanostructures was achieved technologically by means of RF deposition under a steady state 

external magnetic field, while creation of SRT in the La0.7Sr0.3MnO3 perovskite films was achieved 

technologically by means of lattice mismatch of the film and the substrate. 

The results of measurements of FMR lines and magnetic field dependencies of amplitudes of 

low frequency (LF) magnetoelastic vibrations in the samples are compared with calculations. 

 

2.1. Looking to the theory of phase transitions 
 

 

Fig. 4. Change of equilibrium orientation of static magnetization of the sample       
  

  
 under the 

influence of an external magnetic field. 

  

Let us consider behavior of the system directly in the vicinity of the spin reorientation transition.  

External magnetic field can be introduced to change an equilibrium phase of the system, and the 

direction of magnetization (Fig. 4). As the order parameter (here, the magnetization) changes 

continuously according to the external influence from one equilibrium state to another, it is obvious that 

we have a phase transition of the second order.  
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For the convenience we will introduce a small parameter         . Then        . 

Thus the energy of the system can be written as:  

                
 

  
   

           
 

  
     

  
  

   
           (30) 

One can see that factor   critically depends on the external field and especially in the vicinity of 

the spin reorientation transition      , where it is equal to zero.  

We introduce a small external magnetic field changing in time much more slowly than the 

characteristic time of spin precession. Thus the change of system energy can be written as     

      . Then the change of order parameter caused by this influence is: 

     
 
  

  

   
 

(        
 

  
   

 )       
 

  
     

  
  
  

   
                

Thus, the susceptibility of the sample for quasistatic influence by a small external magnetic field 

has been calculated. One can see that in the vicinity of SRT it has a singularity, which disappears with 

taking into account of the magnetoelastic coupling factor:   →     →      →  
 

    
 

  
     

 
. 

One can calculate the resonant frequency    corresponding to the maximum of mechanical 

response of the system. Neglecting the magnetoelastic coupling contribution, one can obtain:  

  
  

 
                            

  

  
   (31) 

In the vicinity of spin reorientation transition in this assumption the resonant frequency 

decreases to zero. This phenomenon is a so-called ―soft mode‖ [44]:   →     →       →  . 

One can be easily shown that the high-frequency susceptibility diverges in this case.  

 

 

2.2. Flexural bulk vibrations 
 

The magnetization can be subdivided into three parts: static, HF and LF:  

 

 )()()( 0 ttmMtM iiii  . (32) 

Elastic deformations contain static and LF dynamic parts. 

  

 0
ˆˆ ˆ( ) ( )u t u t 

 (33) 

HF part of elastic strains is assumed to be negligibly small because of relatively thick substrate 

and the high value of HF mechanical absorption in the sample.  

To obtain the energetic form of the flexural vibrations we can introduce the vertical 

displacement zU u
. In this case the dynamic part of the deformations is defined by the second 
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derivatives of the displacement:

 ji

ij
xx

U
zz






2

0 )( , where i,j are equal to 1 or 2, and

 
yyxxzz

C

C
 

11

12 . Here z0 is the position of the neutral section. 

It can be shown [40] that Lagrangian of the system after integration by z may be expressed via 

kinetic and potential components of the surface energy density: 

 

 

2 ˆ ˆ[1 2 ( ) ( ( , , )) ( ( ))]S S

S e me
S

L dS x y t F U x y t F M U x y tU          (34) 

 

Taking into account presentation (32) one can obtain the following expressions for elastic and 

magnetoelastic potential energy parts related to the LF excitations: 
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     (35) 
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
  
   (36) 

The averaging in  (36) is made over the time period η which is much higher than the period 

of HF oscillations of magnetization but much smaller than the period of LF vibrations. 

One can expand overall elastic deformation into normal vibration modes:  
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Substituting these expansion in (34), (35), (36) one can write Lagrangian of mode n: 
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 (38) 

 

where the following notations are used: 
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Equation of motion for An(t) can be derived from Lagrange’s differential equation: 
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Here we used Rayleigh dissipation function in the form [43]: 2

nn AD  . 

Hence we can obtain the equation of motion for amplitude An(t) of a mode ―n‖ in the form of an 

oscillator equation: 
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Here Ωn  is the resonance frequency of the mode .)/( 2/1

nnn M
 

Following (39) and (41) one can obtain the Fourier amplitude of elastic vibrations that is 

proportional to the LF and to the averaged value of the square of the HF magnetization components.  
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  (42) 

Here  


 dS

x

U n

n 2

2

 , nT  /2 , and Ω is a frequency divisible by Ωn. The explicit form of 

the function Un (x) is presented in Appendix C. 

It could be derived from (42) that the amplitude of elastic vibrations of the fundamental flexural 

mode at resonance frequency is equal to: 
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Here Γ is a parameter which is composed of the geometric and acoustic properties of the sample: 

nsSm cd / , where cS is the longitudinal sound velocity in the sample and ρS is the surface density 

of the structure. The equation (43) together with the results of calculations of mx(t) and μx(t) are used to 

obtain the magnetic field dependence of the vibration amplitudes presented in Fig. 10. 

Calculations of the components of magnetization are carried out using the Landau-Lifshitz-

Gilbert equation: 
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Where α is the coefficient of magnetic relaxation and effH
is the effective magnetic field.  
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The effective magnetic field is divided in static, LF and HF components: 
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where superscripts Ω and ω correspond to LF and HF parts respectively. The equilibrium ground 

state of the magnetic system is given by the static equation: 
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According to the system energy one can obtain the components of the static effective field: 
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In the definition of HA we took into account the contribution of the static magnetostrictive 

strains. Generally the static strain contains two parts. One of them is created during the preparation of 

the films and corresponds to the direction of magnetization parallel to the easy axis in the non-stressed 

structure. This part contributes to the anisotropy field with value )(/)(2 12110

22, CCMbHme   . It is 

included in definition of HA in equation (48): HA = HA0 + Hme.. The second component of the static 

strain follows variations of the equilibrium direction of 0M
. These deformations are proportional to the 

ratio of the film and the substrate thicknesses 
  

 
             and introduce a negligibly small 

contribution in H
0

eff.  

      The HF component of the effective magnetic field can be presented as: 
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where: i
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One can describe HF magnetization dynamics in a linear approximation of the Landau-Lifshitz 

equation: 
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The solution of equation (50) is expressed via the magnetic susceptibility tensor: 

)()(ˆ)( thtm


 . The explicit form of 
ˆ ( )   is presented in the Appendix E. 

Low-frequency dynamics of magnetization is described by the second-order nonlinear part of the 

Landau-Lifshitz equation:  
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where αΩ is LF magnetic relaxation coefficient. The low frequency part of the effective field is 

equal to:  
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As it was mentioned above the nonlinear alternative terms are averaged for the time period η: 

         . In the expression (52) we neglected by elasto-magnetic feedback effect caused by the 

LF deformations and proportional to the ratio dm/d. 

   Following (51) and (52) one can obtain the LF part of the magnetization: 
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where:   
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Here: εijk is the Levi-Civita symbol; vl 
 and vl 

 are real and imaginary components of the HF 

magnetic susceptibility, respectively; 
ˆˆ ( )A    is the operator of the linear Landau-Lifshitz equation 

for low-frequency vibrations which differs from the high-frequency operator by the low frequency Ω 

instead of HF ω (see Appendices B and D). 

 

2.3. Experimental setup. 
 

Experimentally observed excitation of low frequency elastic vibrations of the cantilevers due to 

magnetoelastic demodulation of microwave electromagnetic field at FMR frequency is presented in this 

part. The scheme of the experimental setup is shown in Fig. 5. A high-frequency sinusoidal signal 

modulated by low-frequency square signal was used to feed the sample by means of the microstrip line 

ML. The first sample was made of 25 bilayers of (TbCo2/FeCo) composition, and thickness 10 nm,  

deposited by RF sputtering on Si substrate of 20mm4mm60 µm dimensions. The second 

La0.7Sr0.3MnO3 film, of thickness 200 nm, was deposited by laser ablation on a (110) NdGaO3 substrate 

of 5mm5mm500 µm size. The samples parameters are presented in Table 1. 
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Film material  Substrate 

material 

  , 

Oe  

  , 

G  

 , s
-1

  Length, 

cm  

Width, 

cm  

    , 

MPa  

TbCo2/FeCo        25-

50  

1400  0.1  2  0.5   6   

                       110  350  0.25  0.5  0.5   0.1   

Table 1. Parameters of samples. 

 

 According to [39] at this crystal orientation of substrate the perovskite film has an uni-axial 

anisotropy with [001] hard axis. The hard axis was perpendicular to the long side of the samples. Both 

samples were successively installed in the static bias field H of an electromagnet. Mechanical vibrations 

of the samples were observed optically by measurement of the deflection of a laser beam (λ = 650 nm) 

using a position sensitive photo detector PSD. Simultaneously, a part of the HF signal was split via the 

circulator C to the detector D, amplified by the lock-in amplifier and registered by the DAQ block. 

 

 

 

A. 

 

 

 

B. 

Fig. 5. Description of the experimental setup: A) HF excitation and measurement system : RF – radio frequency 

generator, C – circulator, EM – electromagnet, ML – microstrip line,  E. A. – easy axis, S – sample, D – detector, A – 

amplifier, DAQ – data acquisition hardware ; B) Optical system for the measurement of mechanical deflections: L – 

laser λ = 650 nm, PSD – position sensitive detector). 
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2.3.1.Methods for hard axis setting 
 

We used the longitudinal magneto-optical Kerr effect (MOKE) to define the hard axis direction. 

The experimental setup is presented in Fig. 6. The change of polarization of the light beam from the 

semi-conductor laser L (  = 630 nm, P = 5 mW) passing through the polarizer P and beam splitter and 

then reflected from a film was measured by the system of analyzers A1 and A2 and semi-conductor 

photodetectors D1 and D2. The signal from both channels was fed to the differential amplifier and then 

to the DAQ block. Such scheme of optical measurements allowed to reduce the influence of laser noises 

and to increase the amplitude of resulting signal.  

 

 

 

Fig. 6. Experimental setup for longitudinal the  MOKE measurements: L - the semi-conductor laser, P - a polarizer, 

BS – beam splitter, А1 and А2 - analyzers of reference and main channels, S - the sample, EM - electromagnet, D1 

and D2 - photodetectors. 
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Fig. 7. Results of measurements of the hysteresis loop for manganite lanthanum:  

1 - exact adjustment for hard axis; 2 - rectangular loop of a hysteresis, exact adjustment for easy axis;  

3 - polar dependence of the saturation field on the rotation angle of the sample in an external magnetic field. 

 

 

Fig. 8. The screen of the working virtual device.  

1 - the image of a rectangular loop of a hysteresis of thin film TbCo2/FeCo, it is received by averaging of the saved up 

signal;  

2 - time sweep of a signal from the Hall cell;   

3 - time sweep of the signal supplied to the DAQ block;  
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4 - noise signal from the microwave detector that is not involved in the experiment;  

5 - tools for the formatting of graphic representation. 

  

According to longitudinal MOKE theory [99], the Kerr angle rotation for s-polarized incident 

light is defined by first order of the film surface magnetization: 

 

 )(
1)cos(

tancos
)(

2
hM

n

inQ
hxy







   

 

Here n is the relative refractive index of the air and the film material, M(h) – the film 

magnetization in the longitudinal direction, φ and ψ – the angles of reflection and refraction, Q is the 

magnetooptical imaginary constant. This equation shows that polarization of the reflected wave is 

linearly dependent on the film magnetization. 

The results of optical measurements for the film of manganite lanthanum are presented in Fig. 7. 

Fig. 8 represents the virtual device graphic interface. 

The description of the method can also be found in the Ref. [39]. 

 

 

2.4. Microwave measurements 
 

The value of the bias field which induced SRT was equal to the value of the effective anisotropy 

field HA = 25 Oe for the TbCo2/FeCo nanostructure and HA = 105 Oe for the La0.7Sr0.3MnO3 perovskite 

film. Measured FMR curves are presented in Fig. 9 (solid lines). One can see that FMR amplitude is 

twice higher, when FMR conditions verge towards SRT (compare Fig. 9(a) and Fig. 9(b); Fig. 9(d) and 

Fig. 9(e)) and decreases sharply when FMR is far from SRT (Fig. 9(c) and Fig. 9(f)). This phenomenon 

is caused by the increase of the magnetic susceptibility imaginary part.  
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Fig. 9. Magnetic field dependence of the HF reflection coefficient R expressed in arbitrary units at different FMR 

frequencies  for La0.7Sr0.3MnO3 film (A – 814 MHz, B – 1183 MHz, C – 1760 MHz) and for TbCo2/FeCo 

nanostructure (D – 1172 MHz, E – 2174 MHz, F – 4918 MHz): solid line-experiment, dashed line-theory.  

 

2.5. Optical measurements 
  

The results of the optical detection of the flexural vibrations of the cantilever are presented in 

Fig. 10. One can see that the amplitude of the vibrations increases when FMR is excited near SRT. All 

results were observed at room temperature when La0.7Sr0.3MnO3 still has ferromagnetic order and a 

significant magnetoelastic coupling factor [34], [37]. 
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Fig. 10. Magnetic field dependence of the amplitude of sample vibrations at different FMR frequencies for 

La0.7Sr0.3MnO3 film (A – 814 MHz, B – 1183 MHz, C – 1760 MHz) and  for TbCo2/FeCo nanostructure (E – 1172 

MHz, F – 2174 MHz, G – 4918 MHz): solid line-experiment, dashed line-theory.  

 

The attenuation coefficients of the mechanical vibrations of both samples were also measured. 

They were defined by the measurements of relaxation time for the fundamental flexural mode assuming 

that the vibration amplitude was decaying exponentially. The obtained attenuation coefficients were δ = 

0.1 s
-1

 for the TbCo2/FeCo nanostructure, and δ = 0.25 s
-1

 for the perovskite film. 

 

2.6. Theory and experiment comparison 
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Analysis of the matrix χ(ω) shows that the FMR line for uni-axial magnetic film has two 

maxima near SRT: one for saturation (H>HA) and another for angular phases (H<HA) which are caused 

by    and κikl maximas. In the case of the TbCo2/FeCo nanostructure only one resonance peak was 

observed in all the involved frequency range. That is explained by the strong attenuation of HF spin 

excitations in rare earth compounds. On contrary, the curves for the perovskite film have two resonant 

peaks in most part of frequency range except the area near SRT where the HF relaxation increases. The 

best fitting of calculations with the experimental data in the case of the perovskite film was obtained for 

relative HF magnetic attenuation factors equal to αA = 0.605 for 1172 MHz, αB,C = 0.355 for 1172 MHz 

and for 2174 MHz, which are almost twice lower than for the TbCo2/FeCo nanostructure: αA = 0.925 

for 1172 MHz, αB = 0.575 for 2174 MHz and αC = 0.275 for 4918 MHz. In the area which is sufficiently 

far from SRT the relative HF magnetic attenuation factors decrease slowly. This fact is probably caused 

by the domain structure that appears in the vicinity of SRT. 

According to the calculations using (43), the increase of amplitude of the LF vibrations excited 

by the HF electromagnetic field in FMR conditions near SRT is clearly seen. The behaviour of the 

curves for the vibration amplitude presented in Fig. 10 is similar to the behaviour of FMR curves 

presented in Fig. 9. One can see that the mechanical response for the TbCo2/FeCo nanostructure is by 

order of magnitude greater than for the perovskite film. The comparison of the multipliers Γ gives the 

ratio: 2 /

1.126LSMO

TbCo FeCo





. This data, together with the magnetostriction coefficient ratio 

2

,2

,2

/

0.1LSMO

TbCo FeCo

b

b



 

 , explain the favourable mechanical response of the TbCo2/FeCo structure in 

spite of the higher HF attenuation relatively to the one in the La0.7Sr0.3MnO4 sample. 

 

2.7. Conclusion  
  

The experimental and theoretical data on FMR and magnetoelastic demodulation in the 

TbCo2/FeCo nanostructure and La0.7Sr0.3MnO3 thin film deposited on Si and NdGaO3 cantilevers 

respectively, show that low-frequency vibrations of the cantilever can be amplified when FMR is 

excited by HF electromagnetic field near SRT. The experiments have been carried out at high 

frequencies from below 1 GHz to above 4 GHz. Rare-earth manganitestrontium perovskites 

demonstrated clear resonance properties in the majority of the high-frequency range. At the same time it 

is shown that the TbCo2/FeCo nanostructure has one order higher mechanical response in spite of the 

higher HF attenuation. This is caused by the fact that the TbCo2/FeCo nanostructure has a high value of 
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magnetoelastic coupling factor (approximately one order higher than for the La0.7Sr0.3MnO3 thin film). 

The results of calculations are in good agreement with the experimental data of measurements of FMR 

line and with the data of the optical detection of elastic vibrations of the magnetostrictive cantilever 

under HF electromagnetic field. The phenomenon under consideration can find applications in the area 

of MMMSs distantly controlled by a HF external electromagnetic field. 
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3. Nonlinear magnetoelectric effect in multiferroic nanostructure 

TbCo/FeCo-AlN in high frequency electromagnetic field 
 

In the present chapter we report the results of observation of the low frequency electric voltage 

induced by a HF electromagnetic field in the nanostructured thin film multiferroic TbCo/FeCo-AlN in 

the vicinity of SRT. Observed magnetoelectric effect is described in the framework of nonlinear model 

of spin dynamics and magnetoelastic interaction taking into account intrinsic absorption in magnetic 

subsystem and electric conductivity of magnetic component of the structure. 

  

3.1. Experimental technique and results 
 

In this part experimentally observed excitation of LF electric voltage generated by 

magnetoelectric demodulation of microwave electromagnetic field in nanostructured thin film 

multiferroic is presented. The experimental setup is shown in Fig. 11. A high frequency sinusoidal 

signal modulated by low frequency harmonic excitation was used to feed the sample via the microstrip 

line ML. The sample represented the multiferroic structure deposited on <100>  silicon substrate of 50 

μm thick and 18   3 mm
2
 surface. The platinum electrode coated the surface of the substrate. The 

aluminum nitride (AlN) thin film layer of 5.5 μm thick was deposited above the electrode.  

Magnetostrictive nanostructure of 25 TbCo/FeCo bilayers was deposited on AlN surface by rf 

sputtering in a static magnetic field. The thickness of each bilayer was equal to 10 nm. The 

methodology of sample production is presented in detail in [29]. The magnetoelastic coupling constant, 

measured via the bending cantilever method [56] on a test sample, was found to be b
γ,2

 ~ −7 MPa. The 

magnetostricive layer possessed a significant conductivity and served as the top electrode. The easy axis 

induced during deposition process was directed at an angle of φ0 = 70° to the long side of the sample. 

The sample was installed in the static bias field H that was perpendicular to the easy axis direction and 

the microstrip line was parallel to the short side of the sample. Simultaneously, a part of the HF signal 

was split via the circulator C to the detector D, amplified by the lock-in amplifier and registered by the 

DAQ block. The modulation frequency of HF signal was chosen equal to the resonance frequency Ω/2π 

= 843 Hz of the fundamental flexural mode of the sample vibrations.  The vibrations occurred for the 

flexural mode with vertical displacement U(ξ)  were ξ direction is parallel to the long side of the 

sample. The voltage oscillations caused by elastic strains were observed by the oscilloscope with pre-

amplifying system.  
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Fig. 11. Experimental setup. RF – radio frequency generator, C – circulator, ML – microstrip line,  E. A. – easy axis, 

D – detector, A – amplifier, DAQ – data acquisition hardware, H – external magnetic field produced by 

electromagnet coils. 

 

The value of the bias field, which induced SRT, was equal to the value of the effective 

anisotropy field HA = 95 Oe, which was defined by vibrating sample magnetometer (VSM) 

measurements.  

The attenuation coefficients of the mechanical vibrations of the sample were also measured. 

They were obtained by measurement of the relaxation time for the fundamental flexural mode assuming 

that the vibration amplitude was decaying exponentially. The attenuation coefficient was found equal to 

δ =  0.1 s
-1

 for the resonant mode (Ω/2π = 843 Hz). 

The Fig. 12 represents the results of measurements of HF reflection coefficient versus 

magnetizing field strength H in the frequency range 500- 2000 MHz. In the inset of Fig. 12A the 

measured FMR frequencies versus magnetic field are presented by dots. The minima of reflection 

coefficient correspond to ferromagnetic resonance (FMR) in magnetostrictive nanostructure. The 

resonant value of the magnetizing field strength is always smaller than anisotropy field of the sample. It 

means that FMR is observed in angular phase of magnetic system corresponding to spin reorientation 

from magnetizing field direction. This feature of spin system excitation by HF electromagnetic field is 

explained below by specificity of relative orientation of micro-stripe line and easy axis of anisotropy in 

our experimental setup.  

The Fig. 13 shows the results of measurement of magnetic field dependence of electric voltage 

induced in the structure at modulation frequency by HF electromagnetic field. Contribution of FMR to 
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the nonlinear magnetoelectric conversion (NMEC) is more clearly expressed on Fig. 13B. The peak 

value of conversion coefficient defined as voltage- to- absorbed energy ratio is found as ΚNMEC= 100 

µV/mW.  

 

 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

Fig. 12. Magnetic field dependence of the HF reflection coefficient R expressed in arbitrary units for TbCo/FeCo 

nanostructure at different FMR frequencies (A – 500 MHz, B – 660 MHz, C – 1100 MHz, D – 1800 MHz). The inset 

shows the FMR frequency vs magnetizing field. Solid lines –theory, dots – experiment. 
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(A) 

 

 

(B) 

 

(C) 

 

(D)

 

Fig. 13. Magnetic field dependence of the magnetoelectric voltage for TbCo/FeCo nanostructure at different HF 

frequencies (A – 500 MHz, B – 660 MHz, C – 1100 MHz, D – 1800 MHz). Solid line –theory, dots – experiment. 

 

 

3.2. Theory of nonlinear magnetoelectric conversion 
 

The theoretical description of LF elastic vibrations of such structure excited by modulated HF 

electromagnetic field near SRT was already developed in [13]. In the present paper, this approach is 

extended for piezoelectric layer introduction. As it can be shown the mechanism of the process is 

described by the joint contributions of two nonlinearities: the nonlinearity of magnetostriction and the 

nonlinearity of magnetization dependence on the alternating external magnetic field value.  
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Fig. 14. The structure (dm – the thickness of the magnetostrictive film; dPE – the thickness of the piezoelectric film; ds 

– the thickness of the substrate; Pt – platinum bottom electrode; d is the sample total thickness). 

 

According to the experimental conditions we suppose that the thin film with magnetization M 

and thickness dm is placed on a thick piezoelectric layer with thickness dPE. The Oz axis on Fig. 14 

corresponds to the equilibrium magnetization direction and Ox axis labels direction perpendicular to the 

sample surface. The magnetic film is assumed to be conductive and serves as a top electrode. The 

piezoelectric layer is deposited on the ultrathin conductive layer that is followed by nonmagnetic 

substrate with thickness dS and serves as a low electrode for the piezoelectric system. The magnetization 

M has the direction defined by the competition between the external magnetic field and the anisotropy. 

The initial direction of magnetization is along the easy axis. With the biasing field H value increase it 

simultaneously changes the direction clockwise with the angle 
A

A
H

H
sin  to the Oz up to the 

moment, when H ≥ HA and it fixes along Oy while the magnetization is directed along the bias field 

direction [81]. Following the classical approach [41], [42] one can derive the nonlinear equations of 

motion for magnetization, voltage and elastic strains by retaining high-order terms in the free energy. 

Overall free energy of the sample consists of four parts: elastic Fe, magnetoelastic Fme, magnetic Fm, 

and piezoelectric FPE ones: 
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 PEmeme FFFFF 
 (55) 

We assume isotropic model for elastic and magnetoelastic properties of magnetic film thus: 
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Here, M is magnetization of the film, uij are components of the strain tensor; C11 and C12  are the 

elastic stiffness constants, b
γ,2

 is the magnetoelastic constant.  We neglect by the difference between 

elastic moduli of the substrate and the films. 

The magnetic part of energy volume density consists of the Zeeman energy, the anisotropy 

energy and the energy of demagnetization field. 
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 (58)                                                                   

where n  is the unit vector collinear to the easy axis of the film; HA0  is the value of anisotropy 

field, N̂ is the demagnetizing tensor, which is assumed to be the same as for an infinite plate: Nij=0 

excepting Nzz=4π.  

    In piezoelectric energy density we will take into account only one component of deformation 

uξξ along ξ direction related to the flexural deformation of the structure: 

    
)(tuEF x

V
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  (59) 

where: 
12

1131 33( )
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C
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  and  eij are piezoelectric constants.  

The LF piezoelectric polarization is defined by deformation: 
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The deformation uξξ  is expressed via flexural displacement U(ξ) by the equation: 
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where x0 is the position of the neutral section of the structure. For dynamic resonant 

deformations the neutral section is defined in the middle of the sample section x0=0.  

The equations (60) and (61) reduce the problem of magnetoelectric polarization to the problem 

of electromagnetic excitation of LF flexural elastic vibrations.  
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   Taking into account the relationship   (60) one can derive the Lagrangian functional of the 

system related to the elastic displacement U(ξ,t) [40]: 
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  (62) 

Where ρ is the mass density assumed equal for substrate and piezo- and magnetic  components,  

V  is the total volume of the structure. 

The elastic displacement can be represented as a superposition of the normal vibration modes: 
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  (63)  

Expansion (63) allows presentation of the equation (62) in the form of Lagrangian of the 

assembly of oscillators driven by effective magnetostrictive f me and piezoelectric fPE forces: 
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where  


V
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  and Ωn are the effective mass and the eigen frequency of the mode, 
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  (65) 
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  (66) 

here Vm and Vp are the volumes of magnetic and piezoelectric films respectively.  

The vibration amplitude for given resonant mode one can calculate using the Lagrangian 

equation of motion:   
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Here we introduced Rayleigh dissipation function in the form [43]: 2

nnn AMD  , where δn  is 

the attenuation coefficient of the mode. Piezoelectric force linearly dependent on electric field strength 
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does not contribute to the demodulation effect. Thus the problem of vibrations generated by 

magnetostrictive force is reduced to the simple oscillator problem: 
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  (68) 

where line means averaging by the period of HF oscillations.   

In order to describe demodulation effect the magnetisation in equation (65) has to be defined up 

to the second order approximation relatively to HF magnetic field:   
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where the first, second and third components are static, HF and LF components respectively. 

The last one appears under HF electromagnetic excitation due to proper nonlinearity of magnetic 

subsystem. We assume internal HF magnetic field modulated harmonically with modulation frequency 

Ω and modulation depth η:  )cos(1)cos()( tthth ii   . Correspondingly the dynamic 

components of magnetisation can be expressed via linear χij  and nonlinear χijk magnetic susceptibilities 

calculated using equation (4)  in the Appendix A and the Appendix D: 
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  (71) 

Taking into account conductivity of the magnetic film the internal HF magnetic field is 

proportional to the external field h0 with an inhomogeneous factor βij(x) calculated in the Appendix B: 

jiji hxh 0)(
. 

Using equations (65), (70), (71) one can find the magnetostrictive force: 
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where 
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Using the equations (68) and (72) one can find the amplitude of elastic vibrations:
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According to the equations (60) and (61), contribution of LF piezoelectric polarization to the 

normal component of electrical displacement is equal to: 
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  (75) 

The open electrical circuit condition requires the LF alternating charge 
S

xdSDq  equal to 

zero, it means: 
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  (76) 

where Sx  is the inside piezoelectric surface parallel to the electrodes. The amplitude of 

magnetoelectric voltage induced by HF electromagnetic field at resonance frequency Ω=Ωn is equal to: 
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  (77) 

where Qn=Ωn/2δn  is the quality factor of the elastic mode, S is the surface of electrodes. 

Calculation of integrals in equation  (77) is given in the Appendix C. 

 

 

 

3.3. Discussion 
 

The results of calculation of magnetoelectric voltage as function of magnetizing field using 

equation (77) are presented in Fig. 13 in comparison with the experimental data. The HF parameters of 

magnetic film involved in susceptibility matrixes (73) were determined by fitting the theoretical field 
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dependence of HF absorption with the results of measurements presented in Fig. 12. Calculations of HF 

absorption taking into account conductivity of the film and intrinsic attenuation in magnetic subsystem 

are given in Apendix C. Gilbert attenuation coefficient and saturation magnetisation were found as α = 

0.2, 4πM0= 14.5 kGs. The conductivity value was assumed to be close to the one for Fe films σ= 2*10
7 

Mho [57].  Calculations show that conductivity contribution to the HF absorption does not exceed 10% 

of the total loss.  

We considered AlN as a piezoelectric material. One can show that with the symmetry of this 

material piezoelectric coefficient  may be derived through the piezoelectric modulus d33 as  = 3C12d33 

[40], [58]. According to the common data [59], we used the following piezoelectric coefficient and 

dielectric permeability for AlN: d33 = 5*10
-12

 C/N,  = 8.42.  

     The data presented in Fig. 12 and Fig. 13 demonstrates good agreement between theoretical 

and experimental results. The relative orientation of HF magnetic field and anisotropy axis defined by 

the angle φ0=70° allows observation of only one brunch of FMR (see inset of Fig. 12A) corresponding 

to declination of magnetic moment from magnetizing field in the SRT process.  The nonlinear 

magnetoelectric convertion coefficient ΚNMEC increases in FMR conditions (see Fig. 13B).  Decrease of 

FMR frequency corresponding to approach the SRT point leads to increase of ΚNMEC (compare Fig. 13B 

and Fig. 13D). However in the close vicinity of the SRT point the conversion efficiency decreases 

because of widening of FMR line width twice. 

 

 

 



  

  

 

3.4. Conclusion  
  

Nonlinear resonance magnetoelectric effect induced by HF electromagnetic field in thin film 

composite multiferroic structure TbCo/FeCo-AlN is observed experimentally and described 

theoretically. The effect is studied in conditions of spin reorientation transition in magnetostrictive 

nanostructure. The results of calculations are in good agreement with the experimental data on magnetic 

field dependence of LF magnetoelectric voltage and on HF power absorption. It is shown that 

conductivity contribution to FMR line width is relatively weak in magnetostrictive nanostructure. The 

unusual disappearing of the FMR line in the saturation phase, where magnetisation is collinear to 

magnetizing field, is explained by specific geometry of the experiment and strong HF absorption. 

Obtained value of nonlinear magnetoelectric conversion coefficient amounts to 100 µV/mW. 

Calculations show for optimal orientation of anisotropy axis φ0 = 0 increase the conversion coefficient 

one order of value. 
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4. Propagation of surface magnetostatic waves in an one dimensional 

magnon crystal of variable thickness 
 

Here a theoretical model of propagating surface magnetostatic wave in a ferromagnetic film 

with a variable thickness and a planar periodic structure in the form of etched parallel strips (one-

dimensional magnon crystal) is developed. The results are analyzed for their possible practical 

applications. 

The work consists of three parts. In the first part, the features of propagating surface 

magnetostatic waves in a variable-thickness film are considered in a dipole—dipole approximation. 

Based on the solution of the equation of propagating surface magnetostatic waves in a medium with 

geometric inhomogeneity in the Wentzel—Kramers—Brillouin approximation, we derived a dispersion 

relationship. In the second part, the effect of the coordinate dependence of the film thickness on the 

dispersion of surface magnetostatic waves propagating in a planar periodic structure in the form of 

etched parallel strips is considered. In the third part, we discuss possible applications of investigated 

phenomena in the designing of microwave devices. 

4.1. Propagation of surface magnetostatic waves in a ferromagnetic film 

with variable thickness 
 

Consider the propagation of surface magnetostatic waves in a film the thickness of which is 

linearly dependent on the coordinate. 

 

Fig. 15. Film with a linearly varying thickness. 

 

Fig. 15 depicts a ferromagnetic film with a variable thickness, which is linearly dependent on the 

coordinate x and the related rectangular coordinate system. The coordinate plane yz is parallel to the 

upper surface of the film, and axis x is perpendicular to it. The origin of coordinates is in the point 

where the segment connecting the upper surface of the film with the bottom surface at a right angle is 

d0. In what follows, such a segment length is called the film thickness. The magnetic field is directed 
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along the tangent to the film along the z axis. A wave propagates along the upper film surface at an 

angle θ to axis y. The film is not limited in the yz plane and is magnetized to saturation. 

In the geometry of the problem set, the film thickness is varied by the law 

 )(1=)( 0 ydyd  .  

  (78) 

where d0 is the film thickness at the origin of coordinates and ξ is an angular coefficient 

characterizing the value of varying the film thickness. 

The dispersion relationship was derived for the propagation of surface magnetostatic waves in a 

plane-parallel film with allowance for the dipole- dipole interaction (29): 
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Here, Η is the external magnetic field strength, Μ is the static magnetization of the film, γ is the 

magneto- mechanical ratio, and ω is the frequency of the surface magnetostatic wave. 

In a zero approximation, the dispersion relation of surface magnetostatic waves in a film whose 

thickness varies linearly (78) can be written in the form similar to relationship (29) 

 



 21

21
ln

)(2

1
=)(





yd
yk

.  

  (80) 

With allowance for the coordinate dependence of the wave number, the equation for the y 

component of the vector-potential of surface magnetostatic waves [77] is transformed to the differential 

equation with a variable coefficient 
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 Y’’ + k
2
(y)sin

2
θY = 0.  

  (81) 

The Wentzel—Kramers—Brillouin method [79], [80] allows, to some accuracy (the limiting 

condition is ||k’(y)sinθ| << k
2
(y)sin

2
θ), the solution of the equation. In this case, an approximate 

solution of the Eq.  (81) is 

 Y(y) =  exp(iu(y)).  

  (82) 

After substituting Eq.  (82) into Eq.  (81) and rearranging, Eq.  (81) takes the form 

 -(u’(y))
2
 + iu’’(y) + k

2
(y)sin

2
θ = 0.  

  (83) 

Putting |u"(y)| small, we obtain 

 u’(y) = ± k(y)sinθ.  

  (84) 

Hence, 

 u(y) = ±  k(y)sinθdy.  

  (85) 

The condition of validity (smallness of |u"(y)| in relationship  (83)) takes the 

form 

 |u’’(y)| ≈  |k’(y)sinθ| << k
2
(y)sin

2
θ.  

  (86) 

Substituting relationship  (85) into relationship  (82) gives 

 Y(y) =  Y1exp(i  k(y)sinθdy) + Y2exp(-i  k(y)sinθdy).  

  (87) 

where k(y) is determined using relationship (80). 

In the case of the linear coordinate dependence (78), the solution of Eq. (81) is 
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  (88) 

Repeating the line of arguments proposed in [77], we write the general solution of the problem 

of propagation of surface magnetostatic waves in a ferromagnetic film for the ψ potential 
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 Ψ(x,y,z) = X(x)Y(y)Z(z).  

  (89) 

The functions X(x) and Z(z) are the solutions of the wave equation with the parameters that are 

constant in x and z and are determined by the medium parameters, the wave frequency, and the 

coordinate y, 
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Beyond the ferromagnetic film, α = 1. 

Substituting the obtained values of the ψ potential into the boundary continuity conditions of the 

normal induction component and the tangent components of the magnetic field strength gives 
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  (91) 

In relationships (91) the notations are introduced as follows: ψ2 is the value of the magnetostatic 

potential inside the ferromagnetic film; ψχ and ψ3 are the magnetostatic potentials in the space above 

and under the film, respectively. 

From the compatibility condition of relationships (91) with allowance for relationships (80) and 

(88)— (90), we obtain the dispersion relationship for the first Wentzel—Kramers—Brillouin 

approximation 
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The distinction of relationship (92) from the initial form of the dispersion relation for surface 

magneto - static waves in a film with a constant thickness is determined by the correction functions 

under logarithm 
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Other notations are given in relationship (79). It is easily seen that, at ξ = 0, θ(ξ, y) = 0, ψ(ξ, y) = 

0, k(y) = k0. 

Estimate the correction of the first Wentzel— Kramers—Brillouin approximation for the 

parameters characteristic of ferrite-garnets [81]. Assume that ξ = 0.1, H = 550 Oe, M = 139 G, and d0 = 

10 μm. At these conditions, the first approximation correction gives very small relative contribution to 

the real value of the wave number ~10
-11

. Additional calculation shows that the corrections of 

successive approximations are negligible as compared to the first correction. In this case, the wave 

number becomes complex. The imaginary part magnitude is ~ 10
-4

—10
-3

 of the real part value. 

The solution taking into account the first approximation corrections contains the dependence on 

z (relationship (92)). Thus, the dispersion relation obtained is an equation of the four-dimensional sur-

face in the (ω, k, y, z) space. In the case when a wave propagates perpendicularly to the direction of an 

external magnetic field (sin θ = 0), the four-dimensional surface degenerates into a three-dimensional 

surface that can be constructed using only three coordinates (ω, k, y). The cross sections of this surface 

by planes y = 0, 3, 6, and 9 for the system parameters ξ = 0.1, H = 550Oe, M = 139G, and d0 = 10μm are 

shown in Fig. 16. 
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Fig. 16. Cross sections of the dispersion surface (16) by planes perpendicular to the y axis. 

 

As the wave propagates along the positive direction of axis y, the ω(k) curve becomes smoother 

as the coordinate increases, and k increases. 

In the region where the film thickness approaches zero, the solutions of the zero and first 

approximations tend to infinity. Following [79], let us estimate the method error which determines how 

much the system parameters satisfy the condition (86). The error magnitude is 
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  (95) 

where δ is the component of the phase factor that does not influence the absolute error value. 

It is seen from relationship (95) that, as ξ = 0 (plane-parallel film), the error becomes zero. As y 

→ 


1
 the error tends to infinity. The error diverges as the film thickness decreases (y → 10 relative 

units of length). The value y ~ 7—8 corresponds to the error of 10%. 

Note that the solution of Eq. (81) by the Wentzel— Kramers—Brillouin method leads to the 

appearance of the imaginary component of the wave number 
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  (96) 

Upon propagation of the surface magnetostatic wave along axis y (φ = 0), as the angular 

parameter ξ is changed, only the imaginary part of the wave number is changed. The real part changes 

as well at an arbitrary angle θ. 

 

A. 
 

B. 

 Fig. 17. Dispersion curves for the (A) real and (B) imaginary components of the wave number k || y. 

  

Fig. 17 depicts the plots of the dispersion curves of the real and imaginary components of the 

wave number for the film thickness d0 = 10 μm and the angular coefficient ξ = 0.1. The curve of the 

imaginary component of the wave number on the angular coefficient is symmetric with respect to the 

origin of the coordinates. 

According to [77], the solution for the wave propagating along the film surface along axis y is 

   ))exp()exp(()exp()exp( 2211 ikyBikyAkxBkxA    

  (97) 

In this case, A1 << B1 for the wave propagating along the upper film boundary and - A1 >> B1 

for the wave propagating along the lower boundary. This fact brings about a number of results. 

Because of asymmetry of the geometric parameters of the film, the wave amplitude propagating 

in the negative direction along axis y decreases, and the wave amplitude propagating in the positive 

direction increases. 

As a complex component of the wave number appears, the wave ceases to be surface wave, it 

takes a volume component, i.e., the traveling wave along axis x. 

The nonreciprocity of the Damon—Eshbach solution [77] leads to the fact that the wave volume 

component is mainly radiated deep to a ferromagnet. The wave propagating in positive direction 

(clockwise when looking in the direction of the external magnetic field) has significantly larger 
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amplitude than the wave propagating in the negative direction, and the wave traveling along axis x 

radiated deep to the ferromagnetic film corresponds to the latter wave. 

Now, we consider the case of an arbitrary coordinate dependence of the film thickness. The 

solution of the problem when d(y) is given by an arbitrary functional dependence has the form identical 

to relationship (92); however, the correction functions appear differently. 

We introduce the denotation 
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Then, 
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With ξ(y) = 1 – ξ y, the solution (99) is changed to relationship  (92). 

Fig. 18 shows the dispersion surface for the film thickness that varies by the law d(y) = d0(1 — 

y
2
 + y

4
). The dispersion surface for such a functional dependence is strongly different from the linear 

case. 
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Fig. 18. Dispersion surface. The first Wentzel–Kramers–Brillouin approximation.  

d(y) = d0(1 – y
2
 + y

4
). 

 

As noted in [70], the dipole—dipole approximation using here agrees well with the experiment 

at large wavelengths (small values of k). In the case when k exceeds a threshold value, it is necessary to 

take into account the exchange interaction. 

4.2. Propagation of the surface magnetostatic wave in a ferromagnetic 

film with variable thickness and periodic magnetic inhomogeneity 
 

In [65], [68], the method of calculating the characteristics of propagation of a surface 

magnetostatic wave in a magnetically ordered periodic structure based on the Kronig—Penney model 

[82] was described. 

We calculate the manner in which a surface magnetostatic wave propagates along the surface of 

a film whose thickness varies linearly and in which a periodic plane-parallel strip structure is etched. 

We use the model of scanted film and the denotation taken in the preceding Section. We 

introduce a periodic structure of a magnetic inhomogeneity consisting of ferromagnetic material strips 

alternating with unfilled strips: a is the structure period; b is the unfilled area width (Fig. 19). 
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Fig. 19. Film with a linearly varying thickness and an etched periodic structure. 

 

Consider a wave propagating along axis y perpendicularly to the external magnetic field. The 

origin of coordinates is at the boundary of an etched cavity where the film thickness is equal to d0. 

For the sake of convenience of further consideration, we denote the wave number of the surface 

magnetostatic wave in the ferroelectric film by α1. According to relationship  (92), 
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  (101) 

The potential of the surface magnetostatic wave takes the form 
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  (102) 

In the free space of the etched cavities, the dispersion relation has the form 
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where c is the velocity of light in free space. 

The potential is 
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  (104) 

The Kronig—Penney method gives the general solution as a function which is continuous and 

differentiable in given range of values of y. In this case, the conditions of continuity and 

differentiability of the potential are fulfilled at the ferromagnet—air boundary near the etched cell edge 
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  (105) 

From the solvability condition of this system and also using the Bloch condition of the potential 

periodicity, we can obtain the dispersion relation 
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  (106) 

The appearance of the periodic structure brings about the formation of band gaps in the surface 

magnetostatic wave spectrum. The appearance of writing of expression (106) is similar to the dispersion 

relation of electromagnetic waves in layer optical structures [67]. However, the initial surface 

magnetostatic wave spectrum (101) is more complex. Fig. 20 shows, in particular, the surface 

magnetostatic wave spectra in the structure with the parameters as follows: H = 550 Oe, M = 139 G (it 

corresponds to iron-yttrium garnet at room temperature), a = 1 mm, b = 10 μm, the film thickness d = 6 

μm. 

 

Fig. 20. Surface magnetostatic wave spectra at the film thickness d = 6 μm. 

 

The dependence of the dispersion characteristics of the film with a periodic magnetic 

inhomogeneity on the parameters of the periodic structure was discussed earlier in [70]. Of our interest 

is the effect of a variable thickness on the structure spectrum. It turns out that, as the film thickness 

increases, the energy gap width increases and the density of energy levels decreases. 

Thus, it is believed that, for a variable-thickness film, the three-dimensional plot of the (ω, k, y) 

dispersion surface of a surface magnetostatic wave is a periodic sequence of surfaces which converges 

as the film thickness decreases. 
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Because of variation of the thickness, the energy band pattern is different in different portions of 

the film, which lead to their partial mutual overlapping; i.e., the summary pattern of the energy bands is 

very complex. Some features of this phenomenon are demonstrated in Fig. 21. 

 

A. 

 

B. 

Fig. 21. Dependences of the changes in (a) the first band gap and (b) the density of energy states on the coordinate. ξ = 

0.99 cm
–1

. 

 

  

Fig. 21a depicts the dependence of the first energy gap width on the coordinate along the surface 

of a film whose thickness varies linearly. It is seen that the dependence is easily approximated by a 

linear dependence with a negative angular coefficient.  

Fig. 21b shows similar dependence for the number of the energy levels lying in the frequency 

range under consideration. At the initial segment, the dependence is practically linear; its slope 

increases sharply at small film thicknesses. 

Falling into the frequency range of the energy gap, the wave is weakened. The dispersion 

relation (106) is solved in complex numbers. Thus, in this case, the wave vector is the sum k = k + ik", 

where the k" component determines the amplitude of the surface magnetostatic wave. The value of the 

imaginary component of the wave number can be obtained from the dispersion relation 
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Mathematically, the case when the right part of relationship (106) exceeds unity corresponds to 

the condition of appearance of the imaginary component of the wave number and damping of the Bloch 

wave. 
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Our theoretical conclusions on the existence of a new type of dispersion of a surface 

magnetostatic wave in a medium with a periodic magnetic inhomogeneity are valid at the condition that 

the mean free path of magnon excitations significantly exceeds the structure period. 

 

4.3. Coarse WDM filters based on the phenomenon of MSW propagation 

in an one dimensional magnon crystal of variable thickness  
 

Consider possible practical applications of the obtained results of investigation of the properties 

of surface magnetostatic waves in ferromagnetic variable-thickness films with periodic structures for 

processing of microwave signals. The idea of applying photonic crystals as filters of electromagnetic 

signals has just been considered in a number of reports [62], [83]. A variable-thickness film with 

periodic magnetic inhomogeneity manifests a number of peculiarities. 

As indicated above, as the film thickness decreases, the energy gaps in the surface magnetostatic 

wave spectrum can overlap allowed bands, thus decreasing the frequency range of the waves which can 

propagate in the film without losses. Thus, choosing a corresponding thickness and the angular 

coefficient of a film, we can select a narrow band of allowed frequencies, which is of interest for the 

frequency filtration of the signals. Estimate the spectral characteristic of similar filter. 

Assume that a wave number has an imaginary component k”(ω, y). We follow the reasonings 

identical to those used upon the deduction of the Bouguer-Lambert-Beer law in the optics [84]. In a 

small interval dy where the imaginary component of the wave number can be taken constant, the 

relative change in the wave amplitude is 
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Integrating relationship (32), we obtain 
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where y1 and y2 are the coordinates of the radiator and the detector, respectively.  

The relative change in the traveling wave amplitude at a certain detector coordinate is 
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The energy transmission coefficient (ratio of the energy fluxes of the transmitted and incident 

waves) is equal to the squared amplitude ratio 
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Fig. 22 depicts the spectral characteristic of the 10µ-thick ferromagnetic film as the distance 

from the exciting antenna to the receiving antenna is 1 cm with the magnetic system parameters taken in 

this work. In this case, transmission spectrum is completely determined by the imaginary component of 

the wave number. 

 

Fig. 22. Transmission spectrum of the ferromagnetic film with the periodic structure from parallel strips. 

 

Varying the angular coefficient of the film, we can obtain different spectral characteristics, the 

examples of which are shown in Fig. 23. Depending on the angular coefficient, the spectrum at the filter 

output can be comb (Fig. 22, Fig. 23a, and Fig. 23c) or narrow-band (Fig. 23b and the inset to Fig. 23c) 

spectra. 

 



 

 

 

 

 

 

 
69 

 

    

A. 

 

 

B.

 

 

 

C. 

 

Fig. 23. Spectral characteristics of the filter of surface magnetostatic waves on the basis of the ferromagnetic variable 

thickness film with the periodic structure of parallel strips. ξ = (a) 0.25, (b) 0.75, and (c) 0.17 cm
–1

. 

 

It is seen that the transmission spectra of microwave filters based on a variable-thickness 

ferromagnetic film with a periodic magnetic inhomogeneity shown in Fig. 22 have the transmission 

bands 2—10 MHz. Filters with such bands can be applied, e.g., in devices intended for detection and 

transmission of TV signals and also in other areas of engineering where the communication channel 

width is assumed to be fairly large.  
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4.4. Conclusion  
 

Thus, in this work, the Wentzel—Kramers—Brillouin method was used to calculate the 

properties of a surface magnetostatic wave propagating in a ferromagnetic variable-thickness film 

magnetized along the tangent (one-dimensional magnon crystal). We derived the dispersion relation for 

the wave propagating perpendicularly to the field and estimated the intrinsic error of the method. 

Calculations were provided for the system with the following parameters: H = 550 Oe, M = 139 G, the 

film thickness, which was mainly supposed to decrease from d0 = 10 μm with the factor ξ = 0.1. 

On the assumption that the wave propagates at a constant frequency, the wave number must 

increase with decreasing the film thickness. The allowance for the correction calculated using the 

Wentzel—Kramers—Brillouin method shows that, as a surface magnetostatic wave propagates in a film 

whose thickness varies linearly, the wave ceases to be surface wave; it takes a volume component 

radiated deep to the ferromagnetic film. The surface magnetostatic wave amplitude increases as the film 

thickness decreases and decreases as its thickness increases. This term is in agreement with the law of 

energy conservation. 

Using the Kronig—Penney method, we calculated the dispersion of a surface magnetostatic 

wave propagating in a film, whose thickness varies linearly, with a periodic structure in the form of 

parallel strips of width b = 10 μm etched with the space period a = 1 mm. It is shown that, as a surface 

magnetostatic wave propagates in such a medium, the spectrum of its energy states becomes more 

saturated as the film thickness decreases.  

Possible applications of the effects investigated for designing narrow-band and comb microwave 

filters were considered. Varying the geometric parameters of the film, the period and the width of 

etched cavities, a required transmission characteristic of a ferromagnetic film with such structures can 

be obtained. In particular, it was shown that varying the parameters of system one can obtain the 

transmission bands of order of one MHz at the carrier frequency of 3-4 GHz.  
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5. Anomalous Doppler effect observed during propagation of 

magnetostatic waves in ferromagnetic films and ferrite–dielectric–

metal (FDM) structures 
 

In the fourth chapter the Doppler shift is calculated for both MSW types: the MSBVW and the 

MSSW propagating in a free ferromagnetic film in the case of the exciting antenna moving toward the 

receiving antenna. In addition, the assumption of the existence of the anomalous Doppler effect for 

MSSWs propagating in ferrite—dielectric-metal (FDM) structures is theoretically substantiated. Despite 

the fact that, in this case, the dynamic magnetic susceptibility and permittivity can simultaneously be 

greater than zero, it is assumed that, under certain conditions, the anomalous Doppler effect can also be 

observed. 

 

5.1. Doppler effect observed during propagation of MSBVWs and 

MSSWs in a free ferromagnetic film 
 

Let us consider a thin ferromagnetic film placed in a constant magnetic field and magnetized to 

saturation. Magnetostatic waves are excited in the film. Depending on the orientation of the radiating 

antenna with respect to the direction of the magnetic field and on the frequency of the exciting signal, 

either MSBVWs or MSSWs are observed (Fig. 24). It is assumed that the radiating antenna is moved 

toward the receiving antenna. 

 

A. 
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B. 

Fig. 24. Conditions for observing (a) MSBVW and (b) MSSW. 

 

As is known [95], in a nonrelativistic case, the value of the Doppler frequency shift is 

determined as 
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  (112) 

where k is the wave number, u is the velocity of the source with respect to the receiver, α is the 

angle between the vectors of the source velocity and the phase velocity of the radiated wave, ω0 is the 

frequency of the radiated wave, and c is the speed of light. 

Let the direction at which the group velocity of the wave emitted by the source moving toward 

the receiver be positive. At u > 0 and at angles α such that cosα < 0, Δω< 0. 

In this case the received frequency is smaller than the radiated frequency, a circumstance that 

may cause an anomalous Doppler effect. At u > 0 and such angles α that cos α > 0, Δω > 0, and the 

Doppler effect is a normal one. 

Both cases can be implemented in a magnetically ordered structure in the form of a free 

ferromagnetic film. As noted above, in such a structure, spin wave modes can be excited, the MSSW 

and MSBVW being special cases of these modes. In the case of the MSSW, the wave is a forward one, 

its phase and group velocities have the same directions (when the wave propagates completely 

perpendicular to the magnetic field). In the case of the MSBVW, the wave is a backward one and its 

phase and group velocities are oppositely directed (the direction of the wave propagation being strictly 

parallel to the direction of the magnetic field). 

For the MSBVW propagating along the direction of the magnetic field in a free ferromagnetic 

film of thickness d (Fig. 24a), the dispersion law has the form: 
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where 

  (114) 

  

Η is the external magnetic field, M is the static magnetization of the film, γ is the 

magnetomechanical ratio, and ω is the MSW frequency. 

The dispersion curves for the first four MSBVW modes are shown in Fig. 25. Here and below, 

in the calculating and graphical plotting, the parameters that are typical of the magnetic films are used. 

For example, for the yttrium iron garnet, H = 367 Oe, 4πΜ = 1870 Gs, and d = 82 μm. In addition to the 

fact that the MSBVW dispersion has a multimode composition, it also has a number of other specific 

features. It can be seen that all dots marked on the plot correspond to negative values of the projection 

of wave vector k, but the projection of the group velocity Ugr = δω/dk on the 0y axis corresponding to 

these dots is everywhere positive. Thus, the phase and group velocities of the wave are collinear and are 

oppositely directed, i.e., the direction of propagation of the electromagnetic energy is opposite to that of 

the phase. Therefore, the received signal, coming from the approaching source, will have a phase 

velocity whose direction is opposite to the direction of the source velocity, i.e., α = π and cosα = -1 in 

expression (112). Therefore, we can assume that, in this case, an anomalous Doppler effect is observed. 
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Fig. 25. Dispersion curves for the first four MSBVW modes (n = 0−3) and for an MSSW in a free ferromagnetic plate. 

 

In a free ferromagnetic film, the MSSWs obeys a dispersion law of the form (29) or also it can 

be written as: 
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θ is the angle between the direction of the MSSW phase velocity and the perpendicular to the 

direction of the external magnetic field. The dispersion curve for an MSSW propagating in the direction 

perpendicular to the direction of the external magnetic field (see Fig. 24b) is also shown in Fig. 25. It 

can be seen that here the vectors of the phase and group velocities are collinear and directed in the same 

direction. Therefore, a normal Doppler effect occurs. 

The curves of the Doppler shift constructed as a function of frequency for the first four MSBVW 

modes and for an MSSW propagating in a free ferromagnetic film in accordance with expression 
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(112) are shown in Fig. 26. Here and below, the velocity of the source with respect to the receiver is 

assumed to be the same: u = 8 mm/s.  

 

Fig. 26. Doppler frequency shift for an MSSW and the first four MSBVW modes (n = 0−3) at the source speed u = 8 

mm/s. 

 

 

5.2. Doppler effect observed during propagation of MSSWs in a FDM 

structure 
 

Of greater interest for studying the MSSW propagation in a ferromagnetic film proved to be an 

FDM structure. The dispersion law for a MSSW propagating in this structure perpendicularly to the 

magnetic field has the form [96] 

 .0)1)(()()1)(()( 22   ktthkdcthktthktth   

  (115) 

where t is the thickness of the dielectric interlayer in the FDM structure. 
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Fig. 27. MSSW dispersion in an FDM structure with t = 0.5d. 

The curve of the MSSW dispersion in the FDM structure corresponding to the dielectric 

thickness t = 0.5d is shown in Fig. 27. It can be seen that the presence of a metal plate near the surface 

of the ferromagnetic film adds certain specific features to the MSSW dispersion. It is known that, 

beginning from a certain thickness of the dielectric interlayer, the dispersion curve ceases to be single-

valued in k [96], [97]. In addition, curve segments with both positive and negative slopes are formed. 

This fact indicates that, for these segments, the projections of the group velocity 
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on the 0y axis differ in sign. 

It can be shown that, at a certain wave-number value, the sign of the group-velocity projection 

changes to the opposite one. The directions of the phase and group velocities become opposite in 

direction. This circumstance suggests that, at the given parameters, the conditions for the anomalous 

Doppler effect are formed in the system. 

By using expression (112), we can calculate the Doppler shift for each frequency in the MSSW-

observation interval (Fig. 28). 
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Fig. 28. Doppler shift for an MSSW propagating in an FDM structure. 

Let us derive a dispersion relation for an arbitrary direction of the MSSW propagation in the 

FDM structure. We will use the line of reasoning similar to that of [96], [97].  

The behavior of an MSW in a medium is described by Maxwell’s equations: 
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The form of the coupling equations is determined by the Landau—Lifshits equation: 
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The simultaneous solution of equations (116)—(118) results in a system of equations for 

potential ψ: 
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where ψ,· is the value of potential ψ inside the ferromagnetic film and ψβ is the value of potential 

ψ in the dielectric; potential ψ inside and on the surface of the metal film is zero (up to an arbitrary 

constant, which is assumed to be zero in the solutions of Damon and Eshbach [77]). 

 

Fig. 29. Geometry of the MSSW propagation in an FDM structure. 

 

This system should be supplemented with boundary conditions for continuity of the normal 

component of the induction and of the tangential components of the magnetic field for each interface in 

the FDM structure (Fig. 29): 
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  (119) 

From the necessary condition for consistency of the obtained system (equality of its determinant 

to zero), we obtain the desired dispersion relation 
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At θ = 0, this expression can be reduced to form (115) or, on imposing the additional condition t 

→ ∞, to form (29). 

Let us rewrite law of the MSSW dispersion in an FDM structure (120) in designations of the 

wave-vector projections: 
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  (121) 

Based on (121), we can introduce a function that allows the dispersion relation to be written in a 

more compact form: 

 0),( zy kkF .  

  (122) 

The expression for the dependence of the direction of the group velocity on the direction of the 

phase front has the form [93] 
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It can be shown that, in accordance with (123) and (124), the direction of the group velocity is a 

function of angle φ: ψ=ψ(φ). 
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The direction of the group velocity plotted as a function of the direction of the phase front of the 

MSSW with a frequency of 4.2 GHz propagating in the FDM structure with t = 0.5d at n = 0 is shown 

in Fig. 30. The angles are measured counterclockwise with respect to the 0y axis. 

 

Fig. 30. Direction of the group velocity against the direction of the phase velocity for an MSSW propagating in an 

FDM structure. 

 

In the frequency range in which the dispersion curve (see Fig. 27) intersects the straight line ω = 

ω0 at only one point, one would expect to see a clear, one-to-one dependence in Fig. 30. This 

dependence is presented in studies [92], [93]. In the frequency range in which ambiguity in k occurs, 

which is the case under consideration, a second branch appears in Fig. 30, which corresponds to the 

points of intersection of the segment with a negative slope of the dispersion curve and of the straight 

line ω = ω0. This branch is located higher and changes more rapidly than the first branch. The cosine of 

angle α, which determines the behavior of the Doppler frequency shift in expression  (112), is equal, 

according to the selected measurement procedure, to cosα = cos(ψ-φ). As one would expect, the cosine 

is everywhere negative for the upper branch in Fig. 30 and everywhere positive for the lower branch. 

The branches converge at the point where cos(ψ-φ)=0, i.e., ψ - φ = π/2. This point corresponds to the 

case where the straight line ω = ω0 intersects the dispersion curve (see Fig. 27) at the point of 

maximum. In this case, the vectors of the phase and group velocities are mutually orthogonal. 
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5.3. Anomalous Doppler effect on the equifrequency curves 
 

Let us see how all these phenomena can be described with the use of equifrequency curves, 

which are constructed on the basis of expression (121) and correspond to MSSWs with various 

frequencies propagating in the FDM structure (Fig. 31). It is seen that, as the frequency increases, the 

curve takes a ―roundish‖ shape. This phenomenon can be explained by the formation of a segment of 

the dispersion curve with a negative angular coefficient (see Fig. 27). 

 

A. 

 

B. 
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C. 

Fig. 31. Equifrequency curves for various MSSW frequencies: (a) 3.2 GHz, (b) 4.2 GHz, and (c) 4.55 GHz. 

 

Thus, in a certain angular range, there exist two points of intersection of the equifrequency curve 

with radius vector k drawn from the origin of coordinates at angle θ. It can be shown that the vector of 

the group velocity is perpendicular to the tangent to the equifrequency curve. Fig. 32 shows the 

equifrequency curve for the MSSW with a frequency of 4.55 GHz. It is clearly seen that, in a certain 

angular range, a second point of intersection of the radius vector with the equifrequency curve appears. 

It can be seen that the group-velocity vector and the radius vector for this point form angle α such that 

cosα<0 and that there exists a boundary angle θ0 at which the radius vector is a tangent to the 

isofrequency curve. At this point, the group-velocity vector is perpendicular to the wave vector, the 

circumstance that corresponds to the case when, at specified angle of the MSSW propagation θ0, the 

dispersion curve is intersected with the straight line ω = ω0 at the point of maximum. The value of angle 

θ0 is determined by the MSSW frequency and by the parameters of the magnetic system. 
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Fig. 32. Equifrequency curve for an MSSW propagating in an FDM structure: initiation of the anomalous Doppler 

effect. 

 

5.4. Conclusion 
 

The phenomenon of the anomalous Doppler effect observed during the MSBVW propagation in 

a free ferromagnetic film is theoretically substantiated. Plots of the Doppler shift are constructed for 

specified parameters. In addition, the possibility of the occurrence of the anomalous Doppler effect 

during propagation of an MSSW in an FDM structure in a certain range of system parameters is 

substantiated. All calculations were provided for the yttrium iron garnet and the following system 

parameters H = 367 Oe, 4πΜ = 1870 G, and d = 82 μm in the ferrite-dielectric-metal structure 

corresponding to the dielectric thickness t = 0.5d. 

It is found that the anomalous Doppler effect may be observed in these structures in the 

frequency range 4.2-5 GHz and k > 120 cm
-1

. A demonstration model is constructed that illustrates this 

effect with the use of equifrequency curves in the frequency range 3-5 GHz. 
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General conclusion 
  

The main obtained results can be concordantly distributed into four parts strictly corresponding 

to four chapters of the present work. And it was already done in the conclusion of each chapter. Here we 

will try to systemize the main points of obtained results. For the deeper consideration one can see the 

described sources or related articles. 

As the work was successfully made and the corresponding articles were published, the assigned 

main check-points declared into the introduction were fulfilled: 

Theoretical description for the high frequency and non-linear waves propagation in thin 

planar ferromagnetic structures with different compositions is derived. The basic theoretical 

research is presented in the 1
st
 Chapter as each further Chapter contains the additional particular study. 

In total the second-order nonlinear Landau-Lifshitz equation, Maxwell equation in magnetostatic 

approximation with different boundary conditions were solved here. Additional questions of 

magnetoelastic and magnetoelectric energy conversion were dicussed in details. 

LF vibrations of the cantilever can be amplified when FMR is excited by HF 

electromagnetic field near SRT. This phenomenon was clearly demonstrated theoretically and 

experimentally. The experiments were provided in 500MHz-4GHz frequency range of the RF generator 

signal modulated by a square wave, whose frequency was resonant for the mechanical system of the 

problem. The experimental and theoretical data on FMR and magnetoelastic demodulation in the 

TbCo2/FeCo nanostructure and La0.7Sr0.3MnO3 thin film deposited on Si and NdGaO3 cantilevers 

respectively, show that low-frequency vibrations of the cantilever can be amplified when FMR is 

excited by HF electromagnetic field near SRT. The experimental data also showed the dispersion of 

magnetic relaxation coefficient in the vicinity of spin reorientation transition. This fact is of interest for 

the research activities on the magnetic relaxation dispersion calculation. The TbCo2/FeCo nanostructure 

has one order higher mechanical response in spite of the higher HF attenuation. This is caused by the 

fact that the TbCo2/FeCo nanostructure has approximately one order higher magnetoelastic coupling 

factor value than the one for the La0.7Sr0.3MnO3 thin film. The results of calculations are in good 

agreement with the experimental data of measurements of FMR line and with the data of the optical 

detection of elastic vibrations of the magnetostrictive cantilever under HF electromagnetic field. The 

phenomenon under consideration can find applications in the area of MMMSs and MEMSs in general 

distantly controlled by a HF external electromagnetic field. 
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The magnetoelastic demodulation effect can be clearly demonstrated by nonlinear 

magnetoelectric effect with a piezoelectric inter-layer supplementation. Nonlinear resonance 

magnetoelectric effect induced by HF electromagnetic field in thin film composite multiferroic structure 

TbCo/FeCo-AlN is observed experimentally and described theoretically. The experiments were carried 

out in the 500 MHz – 2 GHz frequency range. The effect is studied in conditions of spin reorientation 

transition in the magnetostrictive nanostructure. The results of calculations are in good agreement with 

the experimental data on magnetic field dependence of LF magnetoelectric voltage and on HF power 

absorption. The experimental data showed unusual phenomenon of the second ferromagnetic resonance 

branch disappearing. The unusual disappearing of the FMR line in the saturation phase, where 

magnetisation is collinear to magnetizing field, is explained by specific geometry of the experiment and 

strong HF absorption. Nonlinear magnetoelectric effect becomes sufficient in the vicinity of spin 

reorientation transition. It is shown that conductivity contribution to FMR line width is relatively weak 

in the magnetostrictive nanostructure. Obtained value of nonlinear magnetoelectric conversion 

coefficient amounts to 100 µV/mW. Calculations show for optimal orientation of anisotropy axis 

increase of the conversion coefficient by one order of magnitude. 

We calculated the dispersion of a surface magnetostatic wave propagating in a film, whose 

thickness varies linearly, with a periodic structure in the form of parallel etched strips. The 

frequency bands set becomes more intensive with the thickness decrease. This phenomenon is of great 

interesting for new types of HF comb and narrow band filters development. All provided calculations 

showed a good agreement with provided experiments on the structures with a constant thickness. On the 

assumption that the wave propagates at a constant frequency, the wave number must increase with 

decreasing the film thickness. The allowance for the correction calculated using the Wentzel—

Kramers—Brillouin method shows that, as a surface magnetostatic wave propagates in a film whose 

thickness varies linearly, the wave ceases to be surface wave; it takes a volume component radiated 

deep to the ferromagnetic film. The surface magnetostatic wave amplitude increases as the film 

thickness decreases and decreases as its thickness increases. This term is in agreement with the law of 

energy conservation. 

Using the Kronig—Penney method, it is shown that, as a surface magnetostatic wave propa-

gating in a film, whose thickness varies linearly, with a periodic structure in the form of parallel etched 

strips, the spectrum of its energy states becomes more saturated as the film thickness decreases. Possible 

applications of the effects investigated for designing narrow-band and comb microwave filters were 

considered. Varying the geometric parameters of the film, the period and the width of etched cavities, a 
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required transmission characteristic of a ferromagnetic film with such structures can be obtained. In 

particular, it was shown that varying the parameters of system one can obtain the transmission bands of 

order of one MHz at the carrier frequency of 3-4 GHz. 

The possibility of the occurrence of the anomalous Doppler effect during propagation of a 

magnetostatic surface wave in a ferrite-dielectric-metal structure in a certain range of system 

parameters is substantiated. It is found that the anomalous Doppler effect for the yttrium iron garnet and 

the following system parameters H = 367 Oe, 4πΜ = 1870 G, and d = 82 μm in the ferrite-dielectric-

metal structure corresponding to the dielectric thickness t = 0.5d may be observed in these structures in 

the frequency range 4.2-5 GHz and k > 120 cm
-1

. The innovative method of equifrequency curves was 

proposed to demonstrate the conditions of phenomenon observation. A demonstration model is 

constructed that illustrates this effect with the use of equifrequency curves in the frequency range 3-5 

GHz. The calculations on the anomalous Doppler shift during the propagation of BVMSWs in a free 

ferromagnetic plate were also presented. The phenomena are of interest for the new structures 

development in the physical electronics. 

Recently investigated high-frequency and non-linear phenomena in thin active ferromagnetic 

planar structures possessed several unique features that can be promising from perspectives of possible 

practical applications. In fact between all solved problems there is a strong connection provided by the 

system geometry and main theoretical basics. This fact can be interesting from a perspective to use 

considered phenomena under the same technological platform or/and even within the same device. For 

example, this can be actual if it is necessary to provide MMMS based on the magnetoelastic 

demodulation with WDM filters allowing magnetostatic approximation within the device accurancy. 

There are few promising propositions for real practical applications of the anomalous Doppler effect 

occurrence during the MSSW propagation in FDM structures. Generally it is a quite interesting 

phenomenon that can be observed with corresponding conditions and it is reasonable to investigate it at 

least as a part of magnetostatic wave behavior in the considered system geometry. 
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Résumé étendu en Français 
 

Les phénomènes à haute fréquence (HF) et non linéaires dans les films minces ferro-

magnétiques actifs ont gagné beaucoup d'intérêt depuis la 2ème partie du 20ème siècle principalement 

en raison des perspectives d'applications pratiques offertes dans le spectre micro-onde. Ils sont utilisés 

comme composante de base des filtres à multiplexage par répartition en longueur d'onde (WDM), des 

microsystèmes électromécaniques (MEMS), des actionneurs, etc. Ces phénomènes sont également 

utilisés pour la richesse des effets dynamiques survenant sous l'influence d'un champ électromagnétique 

à haute fréquence sur les systèmes ferromagnétiques résonants amortis et pour les recherches 

fondamentales portant sur l'interaction du champ électromagnétique avec un matériau à fort ordre 

magnétique. 

Un des objectifs les plus prometteurs pour la dynamique magnétique non linéaire est 

l'exploitation de ces propriétés originales d’intégrer des structures de film minces qui sont déjà des 

éléments fondamentaux pour les technologies de circuit intégré. Les propriétés principales dues à une 

précession magnétique non linéaire apparaissent surtout dans les structures aimantées de façon 

homogène. Si la valeur de la réponse d'un système à une influence externe est importante et que l'on 

utilise ces effets non linéaires,  c'est la dynamique de précession homogène qui est préférée. Dans le 

présent mémoire, nous nous intéresserons  principalement à la dynamique de précession homogène dans 

les structures de film minces uniformément aimantées et les applications pratiques possibles qui en 

découlent. 

Nous nous focalisons ici sur une sous partie du domaine de la dynamique magnétique HF dans 

les films actifs minces ferro-magnétiques. Nous considérons l'étude des ondes magnetostatiques 

(MSWs) se propageant dans un milieu aimanté ainsi que les applications pratiques basées sur les 

phénomènes apparentés. Les MSWs sont attrayantes grâce à leurs faibles pertes de propagation. Par 

exemple, à 9 GHz en utilisant des films de grenat de fer et d'yttrium (YIG) de la largeur d'une raie 

spectrale ≤ 0.3 Oe, les pertes de propagation sont ≤ 20 dB/µs. En comparaison, les pertes de propagation 

d'autres types d'onde acoustique de surface sur niobate de lithium sont à plus de 100 dB/µs dans la 

même gamme de fréquence. En outre, parce que les dispositifs basés sur les MSW sont planaires, ils 

sont compatibles avec les circuits hybrides actuellement disponibles et les circuits intégrés à micro-

ondes monolithiques (MMICs). De plus, comme les MSWs sont plus lentes que les ondes 

électromagnétiques et se propagent de deux à quatre ordres de grandeur plus lentement, des composants 
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compacts peuvent être obtenus avec une largeur de raie spectrale comprise entre 10-500 µm, ce qui 

permet des techniques simples. Un autre avantage clé de la technologie MSW est une faculté 

d'adaptation. La réponse en fréquence d'appareils MSW, tels que de les lignes à retard, les filtres et les 

résonateurs, peut être adaptée dans une certaine plage, en variant la force du champ magnétique avec 

laquelle on sature le film YIG. Cette particularité est très utile pour les composants de type oscillateur et 

filtre. 

Ces vingt dernières années, il y a eu beaucoup de travaux fait dans ces directions, en particulier 

sur les propriétés des matériaux, le développement de nouveaux composés (multiferroïques, cristaux 

photoniques (magnoniques), etc.), l'amélioration de l'efficacité de conversion d'énergie, etc... Ce travail 

se base sur les résultats obtenus dans ces domaines et s'inscrit dans la direction des thématiques du 

domaine de recherche actuelle. Son contenu scientifique général se compose en quatre parties 

différentes précédées d'un chapitre général : 

Le chapitre 1 présente les modèles théoriques et les calculs principaux utilisés dans les autres 

chapitres. 

• Résonance ferro-magnétique et démodulation magnétoélastique dans les films actifs 

minces ferro-magnétiques (Chapitre 2). Ce travail a un grand intérêt pour les applications MEMS 

(Micro-Electro-Mechanical-Systems) et MMMS (Micro-Magneto-Mechanical-Systems) pour la 

microélectronique et la radiométrie HF parce qu'il tient compte des derniers progrès de la recherche 

dans le domaine des  nouveaux matériaux nanostructurés contrôlés à distance. Il expose l'exploitation 

d'effets résonants couplés (la résonance mécanique et la résonance ferro-magnétique (FMR)) et la 

transition de phase pour gagner en efficacité de conversion d'énergie. 

• Effets magnétoélectriques non-linéaires dans une nanostructure multiferroique 

TbCo/FeCo-AlN soumise à un champ électromagnétique haute fréquence (Chapitre 3). Ce chapitre 

continue logiquement le précédent en utilisant le même système magnetoélastique associé avec une 

couche piézoélectrique pour mesurer directement l'effet de la démodulation sous forme d'une tension. 

• Propagation des ondes de surface magnétostatiques dans un cristal magnonique 

unidimensionnel avec épaisseur variable (Chapitre 4). Ce travail est prometteur pour les applications 

d'un type nouveau telles que le développement de filtres WDM HF basés sur une structure magnonique 

dans un film avec une épaisseur variable. Il est aussi basé sur les travaux théoriques et expérimentaux 

déjà effectués dans les films d'épaisseur constante qui présentent des caractéristiques intéressantes 

susceptibles d'améliorer les paramètres des filtres. 
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• Effet Doppler anomal observé pendant la propagation d’ondes magnétostatiques dans les 

films ferro-magnétiques et les structures ferrite–diélectrique–métal (FDM) (Chapitre 5). Cette 

partie a pour but l’investigation du phénomène connu d'effet Doppler anomal dans de nouvelles 

structures. 

Le travail sur la résonance ferromagnétique et la démodulation magnétoélastique dans les 

films minces ferromagnétiques actifs concerne une partie de l’activité de recherche sur les 

microsystèmes électromécaniques (MEMS) destinés à être utilisés dans les systèmes d'objets 

communicant autonomes ou encore "Smartdust". Il est supposé couvrir les parties de contrôle de 

distance et les efficacités de tels systèmes.  

En fait les films uniaxiaux magnétostrictifs avec une transition de réorientation de spin (TRS) 

artificielle induite par un champ magnétique externe ont un grand intérêt dans la pratique. La sensibilité 

des microsystèmes magnéto-mécaniques (MMMS) peut augmenter d'environ deux ordres de grandeur 

au voisinage de la TRS dans de telles nanostructures magnétostrictives multicouches. La zone située à 

proximité de la TRS présente également un certain nombre de propriétés dynamiques et fortement non 

linéaires. En particulier, une grande efficacité d'excitation des sous-harmoniques de vibrations 

élastiques peut être observée près de la TRS. Un effet magnétoélectrique fort a également été obtenu 

près de la TRS dans un composite TbCo/FeCo sur PZT ainsi que des structures multicouches 

TbCo/FeCo sur AlN. 

La démodulation magnétoélastique d’ondes électromagnétiques peut également devenir efficace 

dans les nanostructures à magnétostriction géante près de la TRS. Ce phénomène a un intérêt pour le 

contrôle HF des MMMS. Pour la démodulation des micro-ondes,  l'effet de la TRS peut être amplifié en 

se plaçant non loin de la résonance ferromagnétique (FMR). 

Sur la base des phénomènes non-linéaires observés lors de l'investigation de la démodulation 

magnétoélastique, nous avons étudié l’effet magnétoélectrique non linéaire de façon théorique. Pour 

ce faire, une couche piézoélectrique a été associée à une structure magnétostrictive semblable à la 

précédente en vue d’accéder directement au signal démodulé sous forme de tension. 

L'effet magnétoélectrique peut être considérablement plus efficace dans un composite piézo-

électrique/magnétostrictif que dans les matériaux avec des propriétés magnétoélectriques intrinsèques. 

L'efficacité de la conversion d'énergie magnétoélectrique  est essentiellement définie par deux facteurs: 

la valeur du facteur de couplage électromécanique dans le composant piézo-électrique et la valeur de la 

magnétostriction de la partie magnétique. Par ailleurs, les films de nitrure d'aluminium (AlN) suscitent 
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beaucoup d'intérêt dans le domaine de la physique appliquée en raison de la relative simplicité de mise 

en oeuvre technologique et de la valeur importante du coefficient de couplage électromécanique. 

L'effet magnétoélectrique peut être sensiblement amélioré dans une structure composite à 

proximité de la TRS. 

L'efficacité de la conversion d'énergie magnétoélectrique augmente fortement dans les 

conditions de résonance mécanique (RM) d'une structure composite. Il a été montré que le coefficient  

magnétoélectrique à la résonance pour les structures multiferroïques minces peut  atteindre plus de 700 

V / (cm*Oe) pendant la résonance. 

L'utilisation conjointe de la FMR, la TRS, la RM, une magnétostriction géante et une valeur 

importante du coefficient piézo-électrique peut améliorer de façon significative la conversion 

magnétoélectrique non linéaire dans les structures à films minces. La démodulation HF entraînant une 

excitation à la résonance de vibrations élastiques a été observée précédemment à proximité de la TRS 

dans un film magnétostrictif TbCo/FeCo déposé sur un substrat de Silicium. 

La formulation du problème de la propagation des ondes superficielles magnétostatiques 

dans un cristal magnonique unidimensionnel avec une épaisseur variable est le résultat du travail 

intensif dans ce domaine pendant les dernières années à l'Institut Kotel'nikov de Radio-ingénierie et 

d'électronique de Moscou. Le problème semblait le plus prometteur à propos de l’information sur les 

types neufs de filtres WDM. Les méthodes qui ont été utilisées pour estimer l'influence de l'épaisseur 

variable (WKB approximation) et de la structure périodique (le modèle Kronig-Penny) sont assez 

simples et sont valables pour des petites variations d'épaisseur.  

Les films ferromagnétiques présentant des structures périodiques offrent un intérêt particulier en 

raison de la possibilité de contrôle de leurs caractéristiques par l'application d'un champ magnétique. La 

combinaison d'une périodicité homogène et d'une épaisseur variable de la structure pourra engendrer de 

nouvelles propriétés du milieu servant de guide d'ondes et ouvrira de nouveaux domaines d'application 

des cristaux magnoniques. 

Les milieux présentant simultanément des valeurs négatives de la susceptibilité magnétique et de 

la permittivité présentent un certain nombre de propriétés dynamiques spécifiques. En particulier, l'effet 

Doppler anomal peut être observé dans ces milieux. Cet effet se manifeste par la diminution de la 

fréquence du signal reçu alors que sa source se déplace vers le récepteur. 

Un certain nombre d'études récentes ont été consacrées à l'observation de l''effet Doppler anomal 

dans des lignes de transmission d'ondes magnétostatiques volumiques inverses. Il a également été étudié 
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l'effet Doppler anomal observé dans les cristaux photoniques et phononiques, dans lesquels cet effet est 

causé par l'interaction des ondes acoustiques et électromagnétiques avec le réseau cristallin. 

Le but principal de ce travail a été le développement d'une base théorique universelle pour les 

ondes magnétostatiques non-linéaires de second ordre et de l'utiliser pour l'étude de certains problèmes 

théoriques et expérimentalaux. Pour cela les objectifs suivants ont  été fixés: 

• Le développement d'une base universelle théorique pour les ondes magnétostatiques du second 

ordre non-linéaires  dans les films minces ferromagnétiques; 

• Montrer l'augmentation de la conversion de l'énergie dans un film mince soumis à un champ 

électromagnétique à haute fréquence lorsque le point de FMR est à proximité de la TRS. Montrer 

la possibilité de visualiser ce phénomène par un effet magnétoélectrique non linéaire. 

• Calculer la dispersion d'une onde superficielle magnétostatique dans un film, dont l'épaisseur 

varie linéairement, avec une structure périodique sous la forme de bandes parallèles gravées, et 

montrer les applications pratiques possibles de ces structures; 

• Démontrer la possibilité de l'apparition de l'effet Doppler anomal lors de la propagation des 

MSSWs dans une structure de type FDM avec une certaine gamme de paramètres du système; 

Ce travail a été soutenu par l'ambassade française à Moscou qui dépend du ministère français 

des affaires étrangères, la fondation russe de la recherche fondamentale (les subventions n° 09-02-

93107-NCNIL_а et 08-02-00785-а) ainsi que le projet ANR NAMAMIS (08-NAN-035-O 01). 
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APPENDIX A 
   

Linearized Landau-Lifshitz equation (6) following from magnetic energy density is [81]: 
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Thus we obtain the magnetic susceptibility tensor for the mode ―n‖ [60]: 
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Solving the non-linear Landau-Lifshits equation in the second order approximation, we 

correspondingly obtain the tensor of non-linear susceptibility [13]: 
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 is the effective magnetic field,  εijk is the Levi-Civita 

symbol; vl   and vl   are real and imaginary components of the HF magnetic susceptibility respectively; 

)(ˆˆ  A  is the operator of the linear Landau-Lifshitz equation (A.2) for low-frequency vibrations 

which differs from the high-frequency operator by the low frequency Ω instead of HF ω (See Appendix 

D).  
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APPENDIX B 

Internal magnetic field strength ),( txh  inside the conductive film placed to the external HF field 

hex can be obtained from the Maxwell equation solution: 
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Where: 
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here  h0 is the amplitude of the external field, 
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where ζ is the film conductivity, c – light velocity and: 
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The magnetic field component interacting with magnetic subsystem is: 
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Where: 
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The absorption power was calculated as normal projection of the Pointing vector integrated over 

the surface of the film: 
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As the result the absorption power for condition 1 mdk  is: 
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Where: 
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The Rσ(ω) describes magnetic contribution of skin effect [61].  

The relative influence of conductivity on the HF  magnetic damping is described by the ratio: 
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In our experimental conditions the influence of conductivity on the HF magnetic damping is 

quiet small (less than 10%) as the value of α(ω) for TbCo/FeCo films is usually about 0.1-1 [13].  
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APPENDIX C 
 According to the elasticity theory [40] one dimensional displacement  Un(ξ)  in flexural modes is: 
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Here 
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  , l  is the length of sample, P is the sample cross-section, 



E
cS   is the 

longitudinal sound velocity, E is the Young modulus,  ρ is the material density, Iy  is momentum of inertia 

along Oy axis. 

   Thus we have an inhomogeneous distribution of deformations along the ξ-axis of the sample. It 

generates an inhomogeneity in the distribution of the electric field. The integrals that define magneto-

electric voltage are shown below: 
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where a is the width of the structure and: 
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Here:
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APPENDIX D 
   

Here one can find the main theoretical results on the calculation of the second-order non-linear 

LF magnetization dynamics caused by HF signal modulated by a square wave. 

 Low-frequency precession 

 

Thus LF-dynamics of the magnetic moment can be described by the following equation (8):  
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Where:             . For the nonlinear part of Landau-Lifshits equation we will calculate 

in real numbers:  

  ⃗⃗        
 ⃗⃗⃗       ⃗⃗⃗     

 
      ⃗⃗       (D.2) 

Similarly:  
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Let us notice that  
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Where  ̂   ̂    is the operator of the linear Landau–Lifshits equation for LF vibrations, which 

differs from the high frequency operator by the LF   instead of HF  . The LF frequency    

corresponds to the first resonant frequency of the bulk vibrations.  

Then:  
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In the tensor formulation:  
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Where  ⃗⃗      ̂ ⃗          
     .  

Let us calculate:  
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We need to consider only two summands:  
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In the homogeneous case we have:  
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Within the accuracy of a small magnetoelastic term:  
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Further we will conduct the calculations of the generalized force caused by the nonlinearity of 

the Landau-Lifshitz equation:  
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Then the expression for the generalized force takes the following form:  
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Where HF magnetization precession    
     

  

 
 

  

 

    . Then one can be shown that:  
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One can write the expression for the generalized force:  
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Where: {
         
         

  

Then:  
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Considering that:  
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And also that :  
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We have:  
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One can be shown that the second summand decreases to zero with the randomness of indexes s 

and p.  

Then the generalized force can be written as:  
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Or, using the accepted approach,  
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Thus, the Landau-Lifshitz equation is:  
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The expression for the first generalized force can be easily obtained with the assumption:  
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Here we have:  
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And as the result:  

           ̃               
        

 
      

         

       
              

       
      

 

  (D.26)  

 Averaging of high-frequency parameters. 

 

The spectrum of an external high-frequency magnetic field is:  
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Here       .  

Then we have:  
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Let us consider the mode    with the assumption for the possibility for   to accept negative 

values. Thus, following combinations are possible:       and      .   

At the same time one can notice that   

       
                          

             
   only in the following cases:     (    ) or   

  (   ).   

Then it is possible to obtain the following expression for the corresponding mode:  
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And we have:  
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Where  ̂   ̂    is the operator of the linear Landau–Lifshitz equation for LF vibrations, which 

differs from the high frequency operator by the LF   instead of HF  .   

Thus, we obtain the final expression for the dependence of low-frequency magnetization 

precession amplitude on the amplitude of the external alternating high-frequency magnetic field with 

low frequency modulation:  
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Where:       
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susceptibility tensor on low frequency modulation.  

    is the algebraic complement to the corresponding element of the operator  ̂.   

By turn,  
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APPENDIX E 
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Here Aij – an algebraical complement to ij-element of matrix A: 
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The elements of matrix A are: 
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High frequency and nonlinear phenomena in thin active ferromagnetic planar structures 

 

Recently discovered investigations on the high frequency and nonlinear phenomena in thin 

active ferromagnetic planar structures showed a great number of new studies and promising practical 

applications. The magnetoelastic energy conversion can be much more efficient in the vicinity of spin 

reorientation transition (SRT). The thin active ferromagnetic planar structures provide a lot of unique 

high frequency features: for instance, the anomalous Doppler effect conditions can be satisfied. The 

magnon crystals are also an actual area for the further investigation of the domain. 

In the present work we derived the theoretical description for the high frequency and non-linear 

waves propagation in thin planar ferromagnetic structures with different compositions. It was 

demonstrated experimentally and theoretically that LF vibrations of the cantilever can be amplified 

when FMR is excited by HF electromagnetic field near SRT. Moreover the magnetoelastic 

demodulation effect can be supplemented with nonlinear magnetoelectric effect. The possibility of the 

occurrence of the anomalous Doppler effect during propagation of an MSSW in an FDM structure in a 

certain range of system parameters is substantiated. The dispersion of a surface magnetostatic wave 

propagating in a film, whose thickness varies linearly, with a periodic structure in the form of parallel 

etched strips was calculated. As it was clearly demonstrated these works are of great interest for the new 

studies and practical applications. 

 

Keywords: -Magnetoelastic demodulation -Magnon crystals 

 -Ferromagnetic resonance -Magnetostatic waves 

 -Nonlinear magnetoelectric effect -Anomalous Doppler effect 

 -Spin reorientation transition -Ferrite-dielectric-metal structures 

  

Phénomènes hyperfréquences et nonlinéaires dans les structures actives ferromagnétiques 

planaires 

 

Les récentes découvertes sur les phénomènes hyperfréquences et nonlinéaires dans les structures 

minces ferromagnétiques actives planaires ont fait émerger un grand nombre de nouvelles études et 

applications pratiques prometteuses. La conversion de l'énergie magnétoélastique peut être beaucoup 

plus efficace à proximité de la transition de réorientation de spin (TRS). Les structures minces 

ferromagnétiques actives planaires fournissent un grand nombre de caractéristiques haute fréquence 
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uniques : par exemple, les conditions pour l’effet Doppler anomal peuvent être satisfaites. Les cristaux 

magnoniques représentent  également un domaine prometteur pour les futures investigations. 

Dans le présent travail nous avons établi la description théorique de la propagation des ondes 

hyperfréquences et non-linéaires dans les structures minces ferromagnétiques actives planaires de  

compositions différentes. Il a été démontré expérimentalement et théoriquement que les vibrations basse 

fréquence d’un cantilever peuvent être amplifiées quand la résonance ferromagnétique est excitée par un 

champ électromagnétique HF à proximité de la TRS. En outre, l'effet de la démodulation 

magnétoélastique peut être complété par un effet magnétoélectrique nonlinéaire. La possibilité de 

l'apparition de l'effet Doppler anomal lors de la propagation d'une onde de surface magnétostatique dans 

une structure ferrite-diélectrique-métal, dans une certaine plage de paramètres du système, est 

démontrée. La dispersion d'une onde magnétostatique de surface se propageant dans un film dont 

l'épaisseur varie linéairement, et possédant une structure périodique sous la forme de bandes parallèles 

gravées, a été calculée. Comme il a été clairement démontré ces travaux ont un grand intérêt pour de 

nouvelles études et applications pratiques. 

 

Mots – clés: - Démodulation magnétoélastique - Cristaux magnoniques 

 - Résonance ferromagnétique - Ondes magnétostatiques 

 - Effet magnétoélectrique non linéaire - Effet Doppler anormal 

 - Transition de réorientation de spin - Structures ferrite-diélectrique-métal 

 


