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Résumé

Cette thèse s’intéresse aux simulations dépendantes du temps impliquant des géometries fixes
ou mobiles. Ce type de simulations est l’objet d’attentes grandissantes de la part des industriels,
qui souhaiteraient voir réaliser ce type de calculs de façon systématique au sein de leurs centres
de recherche, ce qui n’est clairement pas le cas à l’heure actuelle. Ce travail tente de satisfaire en
partie cette demande et vise notamment à améliorer la précision ainsi que l’efficacité en termes
de temps de calcul des algorithmes actuellement utilisés dans ce contexte.
Les méthodes d’adaptation de maillage anisotrope par prescription d’un champ de métriques, qui
ont aujourd’hui atteint une certaine maturité, notamment dans leur application aux simulations
stationnaires, constituent une piste très prometteuse pour l’amélioration des calculs évoluant en
temps, mais leur extension dans ce contexte est loin d’être triviale. Quant à leur utilisation sur
les simulations en géométries mobiles, seules quelques tentatives peuvent être répertoriées, et
très peu portent sur des problèmes réalistes en trois dimensions.
Cette étude présente plusieurs nouveautés sur ces questions, notamment l’extension de
l’adaptation de maillage multi-échelles par champ de métriques aux problèmes instationnaires
en géométries fixes et mobiles. Par ailleurs, essentiellement dans une optique de réduction des
temps de calculs, une stratégie originale à été adoptée pour réaliser des calculs impliquant des
maillages mobiles. Notamment, il est démontré par la pratique dans cette thèse qu’il possible
de déplacer des objets en trois dimensions sur de grandes distances en maintenant le nombre de
sommets du maillage constant, c’est-à-dire en limitant les types d’opérations de modification de
maillage autorisés. Il en résulte un gain conséquent en terme de temps de calcul aussi bien au
niveau du déplacement de maillage qu’au niveau de la résolution numérique. Par ailleurs, un
nouveau schéma est proposé qui permet de gérer les changements de connectivité du maillage de
manière cohérente avec la description Arbitrary-Lagrangian-Eulerian des équations physiques.
La plupart de ces nouvelles méthodes ont été appliquées à la simulation d’écoulements fluides
compressibles autour de géometries complexes en deux et trois dimensions d’espace.





Conventions

Simplicial mesh

Let n be the dimension of the physical space and let Ω ⊂ Rn be the non-discretized physical
domain. Ω is an affine space. The canonical basis of its vectorial space is noted (e1, e2, . . . , en)

in general, but notations (ex, ey) and (ex, ey, ez) can also be used in two and three dimensions,
respectively.
Elements of vectorial space Rn are noted in bold font. The coordinates vector of a point of Ω is
generally noted x= (x1, . . . , xn).

The boundary of Ω, noted ∂Ω, is discretized using simplicial elements the vertices of which
are located on ∂Ω. In two dimensions, ∂Ω is discretized with segments while in three dimensions,
boundary surfaces ∂Ω are represented by triangles. The discretized boundary is noted ∂Ωh and
Ωh denotes the sub-domain of Rn having ∂Ωh as boundary.

Building a mesh of Ωh consists in finding a set of simplicial elements - triangles in two
dimensions, tetrahedra in three dimensions - noted H, satisfying the following properties:

• Non-degenerescence: Each simplicial element K of H is non-degenerated (no flat triangle in
two dimensions, no flat tetrahedron in three dimensions),

• Covering : Ωh =
⋃

K ∈H
K ,

• Non-overlapping : The intersection of the interior of two different elements of H is empty:

K̊i ∩ K̊j = ∅, ∀Ki, Kj ∈ H, i 6= j .

• Conformity : The intersection of two elements is either a vertex, and edge or a face (in three
dimensions) or is empty.

The conformity hypothesis, which is not always required (notably for Discontinuous Galerkin
methods), is nevertheless adopted here for two main reasons. On the one hand, the meshes will
be used in relation with a Finite Volume solver which needs the enforcement of this constraint.
On the other hand, this effort on the meshing side facilitates the handling of data structures
on the solver side and also enables to save a consequent amount of CPU time, notably when
computing the neighbors of a given element, the ball of elements around a vertex or the shell of
an edge.
Besides, the use of structured meshes for boundary layers which is often recommended for the
accuracy of turbulent flow computations, is not required here as only non-viscous compressible
Computational Fluid Dynamics simulations are considered.
Finally, a mesh is said to be uniform if all its elements are almost regular (equilateral) and have
the same typical size h.
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Notations and orientation conventions

The following notations will be used in this thesis: K is a mesh element, Pi is the vertex of H
having i as global index, eij is the edge linking Pi to Pj . The number of elements, vertices and
edges are noted Nt, Nv and Ne, respectively.

The vertices and the edges of an element K are also numbered locally. Vertex numbering
inside each element is done in a counter-clockwise (or trigonometric) manner, which enables
to compute edges/faces outward normals in a systematic way. This numbering, as long as
unit outward normals n and edges/faces orientations are shown for triangles and tetrahedra in
Figure 1. Non-normalized normals will be noted η. Inward normals will noted n if normalized

P0 P1

P2

P3

e0

e1

e2

e3

e4

e5

P0 P1

P2

P3

n0

n1

n2

n3

P0 P1

P2

P3

P0

P1

P2

P0

P1

P2

P0

P1

P2

e0

e1

e2

n0

n1

n2

Figure 1: Conventions in a simplicial element K in two (top) and three (bottom) dimensions.
Conventions for vertex numbering, edge numbering and orientation (left), unit normal numbering
and orientation (middle) and face(s) orientation (right).

and η if not.

Topological structures

Neighbors of an element. The set of the neighbors of element K, noted Neigh(K), is defined
as the set of elements having an edge in two dimensions or a face in three dimensions in common
with element K. An element always has 3 neighbors in two dimensions and 4 neighbors in three
dimensions, see Figure 2.
Ball of a vertex. The ball of vertex Pi, noted Ball(Pi), is defined as the set of all the elements
having Pi as a vertex. The number of elements in the ball of a vertex can be arbitrary large and
generally varies for each vertex. An example is given in Figure 3. Besides, the connectivity of
vertex Pi is defined as the number of vertices connected to Pi by an edge. In two dimensions,
the average connectivity is 6 whereas it is 17 in three dimensions.
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Figure 2: Neighbors of an element in two (left) and three (right) dimensions.

Figure 3: Ball of a vertex in two (left) and three dimensions (middle and right).

Shell of an edge. The shell of edge e, noted Shell(e), is the set of all elements having e as
edge. In two dimensions, the shell of an edge always contains 2 triangles, except for boundary
edges, whereas in three dimensions, this number varies for each edge and equals on average 5.7.

Figure 4: Shell of an edge in two (left) and three (right) dimensions.





INTRODUCTION

This thesis deals with Computational Fluid Dynamics (CFD) computations and more specifi-
cally with the challenging issue of unsteady simulations involving either fixed or time-evolving
computational domains.
This type of simulations gets an ever-increasing interest from the industrial world, mainly be-
cause, for most of the problems addressed by industrials, unsteady features cannot be neglected
as they have a strong influence on the quantities of interest (impulse, pressure, lift, drag...).
Turbo-machinery, blast prediction, aeronautics, biomechanics are some of these fields which are
very much in demand for new effective and trustworthy tools to handle unsteady numerical
simulations.

Problematics

Unsteady simulations raises several problematics. On the one end, the certification of numerical
computations in terms of solution accuracy is harder than for pseudo-simulations. This is
a serious problem as trustworthy computations constitute an absolute necessity if industrial
integration is expected. The efficiency of the computations in terms of CPU time also represents
a great challenge, because unsteady simulations are generally much slower than pseudo-steady
one. The main reason to this is that the stability and accuracy of the numerical schemes requires
the enforcement of additional constraints regarding the time step size. Finally, when time-
evolving domain computations are considered, new moving mesh issues appear. These issues
are especially visible in the case of three-dimensional simulations involving complex geometries,
i.e. geometries with complex and sharp boundaries.

State of the art

In the past twenty years, mesh adaptation has demonstrated its ability to improve the ac-
curacy of numerical simulations while mastering the computational effort (CPU time). The
idea of mesh adaptation has been applied under various form (refinement/coarsening, isotropic
or anisotropic adaptation...) on many different problems ranging from aerodynamics to biome-
chanics and magnetodynamics. Among all these methods, metric-based mesh adaptation, thanks
to its flexibility and automaticity, has enabled considerable gain in both accuracy and CPU time
for various pseudo-steady problems [Hecht 1997, Bottasso 2004, Gruau 2005, Loseille 2010c,
Guégan 2010].
A promising attempt to extend these methods to unsteady, fixed-mesh problems has been pro-
posed in [Alauzet 2003a]. However, this strategy considers only the case where the global inter-
polation error is controlled in L∞-norm. Moreover, it relies on several hypothesis regarding the
local space-time error. Eventually, and to our knowledge, the problem of metric-based adapta-
tion in the context of moving geometries has never been addressed in the details.
Regarding the success encountered by metric-based mesh adaptation methods for pseudo-steady
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problems, it seems sensible to pursue the efforts towards the extension of these methods to
unsteady problems, potentially involving moving computational domains.

Objective

This thesis therefore aims at coupling anisotropic metric-based mesh adaptation and
unsteady, possibly moving mesh simulations. The objective is twofolds.
First, the unsteady strategy introduced in [Alauzet 2003a], which has already given promising
results, is taken as a starting point. The goal is to enhance this method, notably to refine the
error analysis and then to extend this method on the one hand to the multi-scale framework
and on the other hand to moving mesh simulations.
Second, we intend to develop an efficient and accuracy-preserving solver to handle time-evolving
domain computations. This means that an efficient strategy has to be designed to move the
mesh, which is also compliant with highly anisotropic metric-based mesh adaptation. Efficient
and accurate numerical schemes to solve these equations in this new moving mesh framework
are also expected.

Context and numerical choices

In this work, only simplicial unstructured meshes are considered, i.e. triangular or tetrahe-
dral meshes. The choice is justified by several facts. First, the existence of several fully-automatic
unstructured three-dimensional meshing softwares, see Introduction I, is clearly advantageous.
Next, it is much easier to mesh complex geometries using simplicial elements than with any other
types of elements. Additionally, the use of simplicial elements brings the flexibility required for
the introduction of the anisotropic mesh adaptation. And last, the existence of a mesh suited
to a given boundary discretization can be proved when unstructured meshes are considered,
whereas this existence is not guaranteed with structured meshes.

Only metric-based mesh adaptation techniques have been studied. It presents several advan-
tages over other adaptation techniques, such as local refinement/coarsening approaches. First,
metric-based mesh adaptation is appropriate to handle anisotropicmeshes. This is a good asset
as anisotropic mesh adaptation enables to optimize the mesh not only by improving node reparti-
tion, but also by optimizing the orientation of the elements according to the physical phenomena
of the flow. Second, the underlying theory is now mature, in particular due to the recent devel-
opment of the "continuous mesh" framework [Loseille 2010a, Loseille 2010b]. This framework
enables to manipulate quantities related to meshes (vertices, number of vertices, orientation of
elements, interpolation error) using a well-defined object (a Riemannian metric space). Meshes
can then be treated like any other analytical quantities. Optimality problems involving meshes
then become tractable. One of the main theoretical breakthrough regards. Third, the ability of
metric-based mesh adaptation to handle complex three-dimensional pseudo-steady simulations
has already been demonstrated by several research teams. These arguments justify the choice
of anisotropic metric-based adaptation in this thesis.
Time-evolving computational domains are treated with a body-fitted approach, which means
that the computational mesh follows time-evolving geometries in their movement. This ap-
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proach has been preferred to Immersed Boundaries and Chimera methods. Immersed/Embedded
Boundaries techniques consist in "embedding" the moving geometries inside a fixed-mesh using,
for instance, level-set methods. They generally result in a loss of accuracy and have therefore
not be retained for this work. The Chimera method associates to each moving geometry a dedi-
cated sub-grid which follows its associated moving body in a fully rigid manner. These sub-grids
overlap and specific projection methods are used to recover the solution at sub-grids interfaces.
However, this projection phase spoils the computation accuracy, especially if sub-grids are of
different precision, which is actually the typical situation that will be encountered if anisotropic
mesh adaptation is envisaged. Therefore, the body-fitted approach, which clearly privileges ac-
curacy, has been chosen. On the solver side, moving mesh computations are handled using an
ALE formulation of the Euler equations.
Most application examples have been chosen in the field of Computational Fluid Dynamics, and
only inviscid compressible mono-fluid problems described by the Euler equations are considered.

Outline

This work is made of two parts.

Part I focuses on metric-based multi-scale mesh adaptation issues. This metric-based adap-
tation approach enables the control of the global interpolation error in different Lp-norms, and
hence gives the user the opportunity to choose the features of the solution he wants to capture.
After recalling the basics of metric-based mesh adaptation, the extension of mesh adaptation al-
gorithms in the context of unsteady simulations is addressed and new unsteady error estimators
driving the adaptation process are introduced. Part I ends with the generalization of metric-
based mesh adaptation to moving mesh Arbitrary-Lagrangian-Eulerian (ALE) simulations.

Part II concentrates on moving mesh computations issues, but still with the final aim of
coupling them with mesh adaptation. It first addresses dynamic mesh issues and explains in the
details the techniques employed to move the mesh. An original framework has been retained in
the perspective of mesh adaptation. By limiting the type of authorized meshing operations, the
strategy is at the balance between local and global re-meshing methods. This study ends with
the description of the Arbitrary-Lagrangian-Eulerian resolution of the equations which enables
to take the movement of the mesh into account in the fluid dynamics equations. In particular,
a new changing-topology ALE scheme is presented, which allows to relax the fixed-topology
constraint imposed in classical ALE formulations while remaining fully ALE in the philosophy.
Thanks to these efforts both on the meshing and on the solver side, simulations coupling metric-
based multi-scale mesh adaptation have been successfully computed and are presented at the
end of this work.





Part I

Anisotropic metric-based mesh
adaptation for unsteady simulations





Introduction

The prevalence of unsteady problems in the industrial world, but also in nature in general, is an
obvious fact. On the contrary, stationary problems must be seen as scarce exceptions, especially
in CFD as the stationary feature of a flow most of the time results from several simplifications.

However, despite numerous studies on the subject, notably regarding turbulence and blast
issues, unsteady flow problems still represent a great challenge. A basic but fundamental calcu-
lus accounts for this difficulty to address unsteady CFD problems, especially when convergence
studies are considered. In three dimensions, dividing the spatial scale h by 2 multiplies the
number of tetrahedra by 8. Moreover, due to the CFL condition, the time step is also approxi-
mately divided by 2, which means that the number of iterations is multiplied by 2. Therefore,
a rough calculus shows that the CPU time is multiplied by 8× 2 = 16, assuming the resolution
algorithm speed is linear in the number of tetrahedra and in the number of iterations. In the
same manner, if h is divided by 4, the number of tetrahedra is multiplied by 64 and the number
of iterations by 4, meaning that the CPU time is multiplied by 256. For example, if the simu-
lations of accuracies h and h/4 respectively are launched simultaneously on January 1st and if
the simulation of accuracy h lasts one day, then the simulation with accuracy h/4 is not likely
to end before September 13th!

This trivial observation shows that, without the help of new efficient tools, industrials will-
ing to simulate unsteady phenomena will be forced to choose between accuracy and efficiency,
which is certainly not a satisfactory alternative. Besides, if uniformly refined meshes are used,
convergence studies, which represent a real problematic as they constitute a first step toward
the certification of numerical simulations, will remain beyond reach for many decades.

Since the pioneering work of [Vallet 1992, Castro-Díaz 1997, Leservoisier 2001] and of
[Frey 2005] for three-dimensional problems, metric-based mesh adaptation has proved its ability
to improve at the same time the accuracy and the efficiency of steady numerical simulations.
More recently, the continuous mesh theory and its application to multi-scale mesh adaptation
[Loseille 2010c, Loseille 2010a] has enabled new breakthroughs. Indeed, by clarifying the the-
oretical framework which underlies multi-scale metric-based mesh adaptation, it has allowed
the prescription of bigger element altitudes in shocks by controlling the error in Lp norm, thus
preventing the generation of too flat elements. This well-defined framework has also been used
to design new metrics which simultaneously take into account phenomena of different orders of
magnitude, hence the name "multi-scale" mesh adaptation.

Thanks to these technical and theoretical advances, simulations involving decades of millions
of tetrahedra are now attainable at a relatively low cost and in a reasonable amount of time. As
way of an example, at INRIA-GAMMA, steady adaptive CFD simulations around supersonic
aircrafts on a mesh having about 60 millions of tetrahedra are common practice [Alauzet 2010b].
This kind of simulations currently takes 3-4 days on a 8-Core Apple Xserve with two Intel Xeon
quad cores at 2,26 GHz supplied with 24 Go of RAM memory. Considering these great successes,
the extension of multi-scale metric-based mesh adaptation strategies to unsteady simulations
appears of the utmost importance to cope with the dramatic increase in CPU time required for
unsteady problems.
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Several attempts to perform unsteady mesh adaptations have been made so far, with various
success and theoretical backgrounds. This part of the thesis aims at improving the theoretical
understanding of unsteady mesh adaptation and at giving numerical proofs of its efficiency,
notably thanks to convergence studies on complex geometries. The main objective here is
to demonstrate that multi-scale metric-based mesh adaptation enables accurate and efficient
unsteady simulations, along with full convergence studies, which, according to the above sketchy
estimation, seems utterly unreachable if uniform meshes are considered.

This part is made of three chapters. The first one sums up the main concepts and results
related to steady metric-based mesh adaptation, including the basics of Riemannian geometry
and metric-based mesh adaptation, the continuous mesh and multi-scale theories and some
details about the algorithmics.
Chapter 2 deals with unsteady metric-based mesh adaptation. The original fixed-point approach
initiated in [Alauzet 2003a] is used as a starting point to introduce a new theory and a new
algorithm which generalize the continuous mesh theory and multi-scale mesh adaptation to
space-time problems. Some perspectives and way of improvements are also described.
Eventually, the case of metric-based mesh adaptation for moving geometry problems is addressed
in Chapter 3. Two- and three-dimensional analytical examples illustrate the impact of the
movement of the mesh on the metric and the modifications that must be done in the adaptation
algorithm to take the mesh movement into account.



Chapter 1

Multi-scale metric-based mesh
adaptation for steady problems: theory

and practice
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1.1 State of the art of metric-based mesh adaptation

1.1.1 A short history

The idea of adapting the mesh associated with a numerical solution dates back to the early
development of numerical simulation. Since the 1960’s, a rather large number of papers have
been published on the subject. For instance, the query "Mesh Adaptation" on Google Scholar
exhibits 395 000 results! In most of these works, the adaptation is isotropic and done by
successive refinements of the elements according to predefined patterns: a square is split into
four squares, a triangle is split into four triangles...

The powerful idea of anisotropic mesh adaptation has emerged later at the end of the 80’s
due to error estimate and mesh generation concerns. In 1987, Peraire et al. [Peraire 1987]
proposed a first attempt in two dimensions by providing error measures involving directions.
They pointed out the directional properties of the interpolation error and initiated the idea of
generating elements with aspect ratios. They considered a local mapping procedure to generate
elongated elements. They coupled this with an advancing front technique to generate slightly
anisotropic meshes, i.e. elements having a 1:5 ratio. Similar approaches have been considered
in [Löhner 1989] and [Selmin 1992]. The first attempts in three dimensions were proposed in
the early 1990’s in [Löhner 1990] and [Peraire 1992], but numerical results were almost isotropic
and the mesh anisotropy was not clearly visible. In 1994, Zienkiewicz [Zienkiewicz 1994] gave
a qualified status on the subject. Despite some great successes with this new approach, they
emphasized that: "Unfortunately the amount of elongation which can be used in a typical mesh
generation by such mapping is small..." . Almost at the same time on the meshing side, Mavriplis
[Mavriplis 1990] suggested to generate stretched elements using a Delaunay approach in two
dimensions in order to obtain high-aspect ratio triangles in boundary layers and wake regions
required by aeronautic numerical simulations. According to him, the Delaunay triangulation
had to be performed in a locally stretched space: the idea of metric was almost there. The year
after, George, Hecht and Vallet [George 1991] introduced the use of metrics in a Delaunay mesh
generator. They noticed that the absolute value of the Hessian of a given scalar solution could
be viewed as a metric and proposed a Delaunay-based mesh generator where edge lengths would
be computed in the Riemannian metric space associated with this metric. This work enabled to
encompass all the previous attempts.

The fruitful idea of metric was widely exploited for two-dimensional anisotropic mesh adap-
tation in the 90’s and even more today (see, among many others, [Fortin 1996, Castro-Díaz 1997,
Hecht 1997, Dompierre 1997, Buscaglia 1997]). In 1997, Baker [Baker 1997] gave a state-of-art
and wrote: "Mesh generation in three dimensions is a difficult enough task in the absence of
mesh adaptation and it is only recently that satisfactory three-dimensional mesh generators have
become available [...]. Mesh alteration in three dimensions is therefore a rather perilous procedure
that should be undertaken with care". Indeed, three-dimensional meshing is much more compli-
cated as new pathologies occur. The existence of a three-dimensional mesh enforcing a given
discretized surface is not even guaranteed. Doing three-dimensional anisotropic mesh adapta-
tion is even more complicated. These bottlenecks have been partly solved by the development
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of local re-meshing techniques, which try to adapt the mesh by performing local modifications
(insertion/deletion of vertices, vertices displacements, connectivity changes). One great asset
of these techniques is to intrinsically get rid of the previous existence problem. At the be-
ginning of the 2000’s, the first three-dimensional results showing "truly" anisotropic adapted
meshes were published [Tam 2000, Pain 2001, Bottasso 2004, Belhamadia 2004, Frey 2005,
Gruau 2005, Li 2005]. In the meantime, new more accurate anisotropic error estimates have
been proposed: a posteriori estimates [Picasso 2003, Formaggia 2004a], a priori estimates
[Formaggia 2001, Alauzet 2006, Huang 2005] and goal-oriented estimates for functional outputs
[Venditti 2003, Jones 2006, Loseille 2010c].

1.1.2 Current impact in scientific computing.

Thanks to its generality and modularity, metric-based mesh adaptation has been used vari-
ous research fields: as way of an example, it has been applied successfully in three-dimensions
to the sonic boom simulation [Alauzet 2010b], multi-fluid flows [Compère 2007, Guégan 2010],
blast problems [Alauzet 2007], Stefan problems [Belhamadia 2004] and metal forming processes
[Bruchon 2009]. It has also been used with various numerical methods, among which the Finite
Volume [Alauzet 2010b], Finite Element [Allain 2009], Stabilized Finite Element [Bruchon 2009]
and Discontinuous Galerkin Finite Element [Remacle 2005] methods. In all these cases, large
improvements in terms of accuracy and CPU performances have been established. There are
currently many adaptive softwares using Riemannian metrics. Let us cite BAMG [Hecht 1998]
and BL2D [Laug 2003] in two dimensions, YAMS [Frey 2001] for discrete surface mesh adap-
tation and Feflo.a [Loseille 2009], Forge3d [Coupez 2000], FUN3D [Jones 2006], GAMMANIC3D
[George 2003], MadLib [Compere 2010], MeshAdap [Li 2005], MMG3D [Dobrzynski 2008], MOM3D
[Tam 2000], TANGO [Bottasso 2004] and LibAdaptivity [Pain 2001] in three-dimensions. It is
worth mentioning that all these softwares have arisen from different mesh generation meth-
ods. The method used in [George 2003, Hecht 1998] is based on a global constrained Delau-
nay kernel. In [Laug 2003], the Delaunay method and the frontal approaches are coupled.
[Frey 2001, Loseille 2009, Compere 2010, Dobrzynski 2008] are based on local mesh modifica-
tions. [Coupez 2000] is based on the minimal volume principle. Nowadays, metric-based mesh
adaptation has become a mature field of research which has now proved its relevance for steady
industrial problems. For instance in [Alauzet 2010b], the authors report a mean anisotropic
ratio of 1:400 and a mean anisotropic quotient of 50 000 for adapted meshes containing
more than 50 millions tetrahedra. Computations involving several millions of tetrahedra
can now be considered on a daily basis, with moderate investments.

1.2 Basics of metric-based mesh adaptation

This section recalls the basics of metric-based mesh adaptation for steady simulations, as they
are now commonly used by many research teams. First, some essential notions of Riemannian
geometry are recalled, along with the central concept of unit mesh. Then, the main problem-
atics linked to the error estimate are detailed. This being done, it is possible to give a global
description of the adaptation process in the case of steady simulations. The three remaining
subsections are devoted to more technical aspects.
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1.2.1 Riemannian geometry and unit mesh

Riemannian geometry, by explaining how to locally modify geometrical measures, is the keystone
of metric-based mesh adaptation. The notion of metric space is introduced in a first time, and
is then generalized thanks to the concept of Riemannian space.

1.2.1.1 Euclidian affine space

Definition. Let Ω be the physical domain of the simulation. In affine space (Ω,Rn), lengths
of vectors and angles between vectors are usually measured by means of a scalar product, i.e
a Symmetric Positive Definite (SPD) form. Generally, the canonical Euclidian dot product is
preferred1:

( · , · )In : Rn × Rn −→ R+

(u,v) 7−→ (u, v)In = uT In v =
n∑

i=1

uivi ,

where In is the identity matrix of Rn×n. However, it is possible to use another scalar product
which will then be represented by a SPD matrixM = (mij)1≤i,j≤n, called metric:

( · , · )M : Rn × Rn −→ R+

(u,v) 7−→ (u, v)M = uTMv =
n∑

i=1

mijuivi .

In any case, affine space (Ω, Rn), when provided with a SPD real matrixM, is named Euclidian
affine space. M induces on Rn:

• a metric space structure, i.e. a way of computing distances between points; the distance
application is defined by:

dM : Ω× Ω −→ R+

(P, Q) 7−→ dM (P, Q) =

√−−→
PQTM−−→PQ ,

• a normed space structure, the norm application being defined by:

|| · ||M : Rn −→ R+

u 7−→ ||u||M =
√

uTMu .

All the geometrical quantities classically needed for mesh generation can then be computed using
this new structure:

• the length of an edge e is given by:

`M (e) =
√

eTM e ,

1superscript ·T is used for the transposition operation on a vector, and −T holds for
(
( · )−1)T
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• the angle between two vectors v1 and v2 is the unique real number θ ∈ [0, π] such that:

cos θ =
(v1, v2)M
||v1||M ||v2||M

• the volume of element K is:
|K|M =

√
detM|K|In .

Spectral decomposition. According to the Spectral Theorem, as M is a symmetric positive
definite matrix (SPD), it is diagonalizable in an orthonormal basis:

M = RΛRT ,

where





Λ = diag (λ1, . . . , λn) is the diagonal matrix made of the eigenvalues ofM ,

R = ( r1 | r2 | . . . |rn )T is the unitary matrix ( i.e. RT R = In)

made of the eigenvectors ofM .

(1.1)

Unit ball.M can be represented by its unit ball, noted EM, which is the set of all vectors the
length of which is lower or equal to 1 with respect toM:

EM =
{
x ∈ Rn such that xTMx ≤ 1

}
.

Consider an ellipsoid of main axis ri and of associated sizes hi = λ
− 1

2
i . The unit balls associated

withM is the set of all points contained in an ellipsoid. The unit ball ofM in two and three
dimensions are given in Figure 1.1.

h
2
=

1√
λ

2

r2

r1

r3

h
1 = 1√

λ
1

h2 =
1
√
λ2

h 3
=

1
√ λ 3

h1
=

1
√ λ1

r1

r2

Figure 1.1: Unit balls associated with metricM = RΛRT in two and three dimensions.

Mapping. Another relevant information can be extracted from metric tensorM: the expression
of the linear transformation that maps the unit ball associated with In onto the one associated
withM. The matrix of this transformation in canonical basis (e1, e2, . . . , en) is:

M− 1
2 = RΛ−

1
2 RT , where Λ−

1
2 = diag

(
h1 = λ

− 1
2

1 , . . . , hn = λ
− 1

2
n

)
.
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This transformation is depicted in Figure 1.2.

M

M− 1
2

I2

h1

h2

h2

h1
r1

r2
r1

r2

Figure 1.2: Natural mappingM− 1
2 associated with metricM in two dimensions. It sends the

unit ball of I2 onto the unit ball ofM.

1.2.1.2 Riemannian metric space

Definition. In the case of an Euclidian affine space (Ω,M) of , Rn, the dot product induced by
M is the same whatever the considered point P ∈ Ω, i.e. M is independent of P . However, it
is possible (and salutary) to change the definition of the dot product depending on the current
localization in Ω. A collection of SPD tensors M = (M(P ))P∈Ω - also named tensor field - is
then needed and must be defined on the whole domain. Locally at point P ∈ Ω,M(P ) induces
a scalar product defined on Rn × Rn. Space Ω, provided with this new structure, is named
Riemannian metric space and is noted (Ω,Rn,M). In this thesis, we will use the same notation
M to speak of the metric field and of the metric tensor at a given point. Notation M will be
used only if this distinction needs to be made for pedagogical purposes.

Computation of geometrical quantities. In the case of a Riemannian metric space, the
spatial variations of the metric must be taken into account while computing geometric quantities.

• the length of edge e =
−−→
PQ parametrized by γ : t ∈ [0, 1] 7−→ P + t

−−→
PQ is computed with the

following formula:

`M (e) =

1∫

0

||γ′(t)||M(γ(t)) dt =

1∫

0

√−−→
PQTM(P + t

−−→
PQ)

−−→
PQdt ,

• the angle between two vectors v1 =
−−→
PQ1 and v2 =

−−→
PQ2 is the unique real θ ∈ [0, π] such

that:

cos θ =
(v1, v2)M(P )

||v1||M(P ) ||v2||M(P )
,

• the volume of element K with respect to M is more difficult to apprehend. Indeed, due to
metric variations, element K, as seen with respect to metric field M is generally curved: it
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is not a simplex anymore and normally, its volume should be computed with an integration
formula:

|K|M =

∫

K

√
detM(x) dx . (1.2)

However, this volume can be approximated at first order:

|K|M ≈ |K|In
√

detM(GK), where GK is the barycenter of K.

Interpretation in terms of space curvature. Even if the above formal definitions are enough
in practice, it is sometimes useful to interpret the introduction of a Riemannian structure as a
way to curve space. To this aim, we address here the very specific case of graph surfaces in two
dimensions.

Definition 1 (Graph surface). Let Ω ⊂ R2. A surface S of R3 is called a graph surface if
there exists a C1 function f : Ω −→ R such that:

S = { (x, y, f(x, y)) | (x, y) ∈ Ω } .

Thanks to the smoothness hypothesis on f , there exists at each point P ∈ Ω a tangent plane
to S.

Definition 2 (Tangent plane). The tangent plane ΓPS to surface S at point P is the vectorial
sub-space of R3 of dimension 2 which contains all the vectors tangent to surface S at P .

The normal to tangent plane ΓPS reads:

n(P ) = −∂f
∂x

(P ) ex −
∂f

∂y
(P ) ey + ez .

We also define two vectors tangent to S at P :

t1(P ) = ex +
∂f

∂x
(P ) ez, t2(P ) = ey +

∂f

∂y
(P ) ez .

As t1(P ) · n(P ) = 0 and t2(P ) · n(P ) = 0, both t1(P ) and t2(P ) belong to ΓPS. Note
that a priori, there is no reason for t1(P ) and t2(P ) to be orthogonal. The triple BP =

(t1(P ), t2(P ), n(P )) forms a basis of R3. We can then define the linear application which sends
BP onto B = (ex, ey, ez), the canonical basis of R3:

φ−1(P ) : R3 −→ R3

r(P ) = α t1(P ) + β t2(P ) + γ n(P ) 7−→ α ex + β ey + γ ez .

By construction, φ−1
P is an isomorphism as it is an endomorphism of R3 that sends a basis onto



22 Chapter 1. Multi-scale metric-based mesh adaptation

another basis. Its inverse, φP , has a matrix in canonical basis (ex, ey, ez) which writes:

FP =




1 0 −∂f
∂x

(P )

0 1 −∂f
∂y

(P )

∂f

∂x
(P )

∂f

∂y
(P ) 1




ex

ey

ez

t1(P ) t2(P ) n(P )

The matrix of φ−1
P in the canonical basis can be calculated:

F−1
P =

1

1 +

[
∂f

∂x
(P )

]2

+

[
∂f

∂y
(P )

]2




1 +

[
∂f

∂y
(P )

]2

−∂f
∂x

(P )
∂f

∂y
(P )

∂f

∂x
(P )

−∂f
∂x

(P )
∂f

∂y
(P ) 1 +

[
∂f

∂x
(P )

]2
∂f

∂y
(P )

−∂f
∂x

(P ) −∂f
∂y

(P ) 1




.

It can be checked that F−1
P t1(P ) = ex and F−1

P t2(P ) = ey , which confirms that the image of
subspace ΓPS by φ−1

P is exactly R2. ΓPS and R2 are diffeomorphic.
Now, let γ be a straight path drawn in Ω:

γ : [0, 1] −→ Ω

t 7−→ γ(t) = (γx(t), γy(t)) = P + t
−−→
PQ .

It can be associated with another path c drawn on graph surface S and generally curved, see
Figure 1.3:

c : [0, 1] −→ S

t 7−→ c(t) = ( γx(t), γy(t), f (γ(t)) ) .

By definition, the length of curved path c is given by:

`(c) =

∫ 1

0
||c′(t)||dt =

∫ 1

0
||φγ(t)[γ

′(t)]||dt =

∫ 1

0

√
Fγ(t) [γ ′(t)]T Fγ(t) [γ ′(t)] dt

=

∫ 1

0

√−−→
PQT FT

P+t
−−→
PQ
· F

P+t
−−→
PQ

−−→
PQdt

=

∫ 1

0

√−−→
PQT S(P + t

−−→
PQ)

−−→
PQdt =

∫ 1

0

√−−→
PQTM(P + t

−−→
PQ)

−−→
PQdt .
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Figure 1.3: Left: A straight path drawn in Ω and its curved image path on S. Right: a patch
of Ω and its image on cartesian surface S.

We have used the fact that
−−→
PQ ez = 0 and we have noted:

S = FTF =




M 0

0 1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2



,

andM is the first fundamental form of S, which is of course a SPD tensor field:

M =




1 +

(
∂f

∂x

)2
∂f

∂x

∂f

∂y

∂f

∂x

∂f

∂y
1 +

(
∂f

∂y

)2



. (1.3)

Therefore, computing the length of edge
−−→
PQ in a Riemannian space comes to calculate the length

of image path c associated with edge
−−→
PQ on curved surface S. In other words, the introduction

of a Riemannian structure can be seen as a curvature of space. The volume evaluation given by
Formula 1.2 can also be interpreted in this framework. Let σ be a flat patch drawn in Ω:

σ : [0, 1]× [0, 1] −→ R2

(u, v) 7−→ σ(u, v) = (σx(u, v), σy(u, v)) .
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Its image on S is a curved patch s, see Figure 1.3:

s : [0, 1]× [0, 1] −→ S

(u, v) 7−→ s(u, v) = (σx(u, v), σy(u, v), f(σ(u, v))) .

By definition, the area of curved patch s is:

A(s) =

∫ 1

0

∫ 1

0
|| ∂s
∂u

(u, v) ∧ ∂s

∂v
(u, v)||dudv

Besides, the derivatives involved in the above formula can be detailed:

∂s

∂u
= s,u =

(
σ,u, dfσ(u,v) [σ,u]

)T
,

∂s

∂v
= s,v =

(
σ,v, dfσ(u,v) [σ,v]

)T

Their vectorial product gives:

∂s

∂u
∧ ∂s

∂v
=




σx,u
σy,u
df [σ,u]


 ∧




σx,v
σy,v
df [σ,v]


 =




σy,udf [σ,v]− σy,vdf [σ,u]

σx,vdf [σ,u]− σx,udf [σ,v]

‖σ,u ∧ σ,v‖




=




df

[
σy,uσx,v − σy,vσx,u
σy,uσy,v − σy,vσy,u

]

df

[
σx,vσx,u − σx,uσx,v
σx,vσy,u − σx,uσy,v

]

‖σ,u ∧ σ,v‖




=




df

[ ‖σ,u ∧ σ,v‖
0

]

df

[
0

‖σ,u ∧ σ,v‖

]

‖σ,u ∧ σ,v‖




= ‖σ,u ∧ σ,v‖




∂f

∂x

∂f

∂y

1




And finally, we get:

‖ ∂s
∂u

(u, v) ∧ ∂s

∂v
(u, v)‖2 = ‖σ,u(u, v) ∧ σ,v(u, v)‖2

(
1 +

[
∂f

∂x
(σ(u, v))

]2

+

[
∂f

∂y
(σ(u, v))

]2
)

= ‖σ,u ∧ σ,v‖2
([

1 +

(
∂f

∂x

)2
][

1 +

(
∂f

∂y

)2
]
−
(
∂f

∂x

)2(∂f
∂x

)2
)

= ‖σ,u(u, v) ∧ σ,v(u, v)‖2 detM(σ(u, v)) .

Therefore, the total area of patch s is:

A (s) =

1∫

0

1∫

0

√
detM(σ(u, v)) ‖σ,u(u, v) ∧ σ,v(u, v)‖dv du =

∫

σ

√
detM(σ) dσ .

Remark 1. Expression (1.3) justifies why Euclidian metric spaces are often described as "flat"
spaces. If graph surface S is a plane of R3, i.e. ∃ (a, b, c) ∈ R3 such that f(x, y) = ax + by +

c , ∀ (x, y) ∈ R2, then its metric is constant on Ω and, according to Expression (1.3), is given
by:

M(P ) =M =

(
1 + a2 ab

ab 1 + b2

)
, ∀P ∈ Ω .
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The natural Riemmanian space structure associated with S is therefore an Euclidian space struc-
ture.

As a conclusion of this small study, the particular case of graph surfaces shows how the
computation of geometric quantities in a Riemannian metric space is tightly linked to differential
geometry and to the notion of parametrized curves and surfaces.
However, this simple study does not enable to conclude that a graph surface can be associated
with any metric field M, and there is absolutely no reason for it to be true. The only conclusion
that can be deduced from this analysis is that, if there exist a graph surface S havingM as first
fundamental form, it is not unique. Indeed, if S is associated with function f , the graph surface
associated with function −f also has the same metric.

1.2.2 Metric-based mesh adaptation

The notion of metric field has been introduced in the previous section mainly through its ability
of changing locally the way of computing geometrical quantities such as length, distances, angles
and volumes. Now, we illustrate how metric fields can be used in the context of mesh adaptation
and we give an overview of the steady metric-based mesh adaptation process.

The main idea of metric-based mesh adaptation, initially introduced in [George 1991], is to
generate a unit mesh in the prescribed Riemannian metric space, e.g. a mesh H of Ωh ⊂ Rn
such that each edge has a unit length and each element is regular with respect to (M(x))x∈Ω:

∀e, `M(e) = 1 and ∀K ∈ H, |K|M =





√
3

4
in 2D ,

√
2

12
in 3D .

The resulting mesh in the canonical Euclidean space will be anisotropic and adapted. The
mesh generator actually computes all the geometric quantities using the Riemannian structure
induced by M instead of the canonical Euclidian one. In other words, it works mostly as it used
to, except that all the geometric quantities are now computed with respect to metric field M.

In practice, as it is not possible to tesselate R3 with the regular tetrahedron and due to
boundary discretization enforcement, we look for a mesh such that all its edges have a length
close to unity in Riemannian space (Ω, M) and such that all the elements are almost regular in
the considered Riemannian metric space. Such a mesh is said to be quasi-unit with respect to
M.
In practice, two quantities are controlled by the meshing software:

Edges length : the following bounds are enforced:

∀ i ∈ J0, n− 1K, `M(ei) ∈ [
1√
2
,
√

2] .
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Elements volume : the volume of the elements is controlled via the notion of quality with
respect to M. The local quality of element K with respect toM is given by:

QM(K) =
36

3
1
3

5∑
i=0

`2M (ei)

|K|
2
3
M

∈ [1, +∞[ in 3D , QM(K) =
12

3
1
2

2∑
i=0

`2M (ei)

|K|M
∈ [1, +∞[ in 2D .

(1.4)
QM(K) = 1 corresponds to an element almost regular with respect toM while QM(K) =

+∞ indicates a degenerated element. The mesh adaptation software hence tends to create
elements with a quality near from 1.

The continuous adapted mesh M is built from the estimation of the numerical errors made on
sensor u. It therefore depends on whether the error is controlled locally or globally, on the norm
used to control the error, whether the error estimation is directional or not...The estimates used
in this Thesis are detailed in Section 1.3 for steady mesh adaptation and in Section 2.2 for
unsteady mesh adaptation.

1.2.2.1 The non-linear steady adaptation loop.

The last thing concerns the intrinsic non-linearity of any adaptive process. Indeed, if the mesh
is adapted on an initial solution and if a new solution is computed on the adapted mesh, this
new solution will normally be more accurate than the initial one. More detailed information
about the physical features of the solution are therefore available after this second computation,
which again can enrich the information contained in the metric field and lead to a more optimal
mesh. Consequently, we see that the goal is to algorithmically converge towards the stationary
solution of the problem and in the same time to converge towards an adapted mesh thanks to
an iterative algorithm on a sequence of consecutively adapted meshes. This iterative scheme is
illustrated in Figure 1.4. The algorithm starts with a given initial, generally uniform, mesh H0

and initial solution W 0
0 on this mesh. A first solution W1 is computed, from a which a metric

fieldM1 is deduced, see Formula (1.22). M1 is used as input by the mesh generator which will
build a new mesh H1 respecting the sizes and orientations prescribed by the metric field. Then,
solution W1 is interpolated on new mesh H1, see Section 1.2.3 and is used as initial guess for the
computation of a new solution on H1. This process is repeated until the couple mesh/solution
has converged. For most problems, convergence is reached in less than 10 iterations.

1.2.3 Interpolation issues

After each mesh adaptation, the solution needs to be transferred from the previous mesh to the
new one in order to pursue the computation. This is the solution interpolation stage. As we
will see in the next chapters, this stage becomes crucial in the context of unsteady problems
and even more if a large number of interpolations are performed, as the error introduced by
the interpolation can spoil the solution accuracy. This subsection gives some technical details
on the interpolation algorithm. The following notations are used: Hback and W back are the
background mesh and solution, respectively, while Hnew and Wnew represent the new mesh and
the interpolated solution to be computed, respectively.
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Mi

Hi+1

Compute Solution

Compute Metric

Interpolate Solution

Generate Mesh
Wi

(Hi, Wi)

(Hi+1, Wi, Hi)

(Hi, Mi)

W 0
i+1

(
Hi, W 0

i

)

(
H0, W 0

0

)

i← i + 1

Figure 1.4: The non-linear steady adaptation loop. i is the adaptive loop iteration index,
Hi, W i, W i

0 and Mi denote the mesh, the solution, the initial solution and the metric field at
iteration i, respectively.

1.2.3.1 Localization

First, new vertices are located in the background mesh by identifying the elements containing
them. Let P be a point of Ω. The barycentric coordinates of a point P with respect to a given
element K = (P0, P1, . . . , Pn), noted (βj(P ))j ∈ J1, n+1K, are given by:

βj(P ) =
|Kj(P )|
|K| ,

where Kj(P ) is the element formed by vertices (P0, . . . , Pj−1, P, Pj+1, . . . , Pn), see Figure 1.5,
left. In two dimensions, the sign of the three barycentric coordinates (or barycentrics) defines
explicitly seven regions of the plane where point P can be located with respect to element K.
The possible combinations are given in Figure 1.5, right. The localization phase is based on the
study of the sign of the barycentrics of each vertex Pnew of Hnew relative to all the elements
of Hback. The knowledge of these signs enables to determine to which element Pnew belong.
Of course, this simple explanation hides many tricky aspects used in the localization process.
Notably, the handling of degenerated cases, for example when Pnew belongs to an edge, a face
or a vertex of Hback, and non-identical domains requires a lot of rigor. Exhaustive computations
of the barycentrics relative to all the background element must also be banished, otherwise the
algorithm may become very slow (actually quadratic). More clever strategy consist in traversing
the background mesh using its topology, i.e. the neighboring elements of each element, thanks
to a barycentric coordinates-based algorithm [Alauzet 2010c, Frey 2008, Löhner 2001].



28 Chapter 1. Multi-scale metric-based mesh adaptation

P0
P1

P2

K

− + +P

K0

Figure 1.5: Left, definition of volume Vj(P ). Right, sign of the three barycentric coordinates
depending on the position of P relative to triangle K.

1.2.3.2 Desirable properties for the interpolation stage

Once the localization problem has been solved, an interpolation scheme is used to extract the
information from the solution field. This thesis is interested in the resolution of systems of
Partial Differential Equation resulting from the writing of physical conservation laws, notably
the compressible Euler system. If the numerical scheme reaches a second-order accuracy, it is
mandatory for the interpolation operator Π to satisfy the following properties in order to obtain
a mesh adaptation scheme which remains consistent with the solver:

• Mass conservation. At the continuous level, the conservativity property writes, for a conser-
vative state W : ∫

Ω
W (x) dx = Constant .

Now, let Wnew
h be the interpolated conservative solution state obtained on Hnew and W back

h

the background solution state on Hback. Assuming Hnew and Hback cover exactly the same
domain, the interpolation is said to be conservative if:

∫

Hnew

Wnew
h (x) dx =

∫

Hback

W back
h (x) dx .
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If W back
h and Wnew

h are P1 by element, this writes:
∑

Knew ∈Hnew
|Knew|Wnew

h |Knew =
∑

Kback ∈Hback
|Kback|W back

h |
Kback

.

• P1-exactness. An interpolation operator Π is said to be P1-exact if:

Πq = q, ∀ q ∈ P1 .

• Maximum principle enforcement. The maximum principle, which is linked to the physics
of the equation, states that no new local or global extremum can be created during the
interpolation stage.

1.2.3.3 Interpolation schemes

Lagrangian interpolation. The most classical way to interpolate a solution on a new mesh is
to perform a Lagrangian interpolation:

Linear: the solution is assumed P1 by element, the value of solution u at a given point P of Ω

is:

u(P ) =
n∑

j=0

u(Pj)ϕj(P ) ,

and (ϕj)j ∈J1, nK are the P1 shape functions, which are exactly the barycentric coordinates (βj).
The linear Lagrangian interpolation is P1-exact and respects the maximum principle, but it is

not conservative.
Quadratic: P2 Lagrangian shape functions in triangle K are used to build a quadratic repre-
sentation of the solution on K.
The P2 Lagrangian interpolation Π2

h requires the solution nodal values at triangle vertices P0,
P1 and P2, and the solution at the triangle mid-edges. We denote by P3, P4 and P5 the middle
of edges e2, e0 and e1, respectively. Thus, Pj+3 is the middle of edge

−−−−→
PjPj+1, for j ∈ J0, 2K.

The quadratic scheme is given by:

Π2
hu(P ) =

nnodes−1∑

j=0

u(Pj)ψj(P ) , with nnodes = 6 in 2D and nnodes = 10 in 3D .

with

{
ψj(P ) = βj(P ) (2βj(P )− 1) for j ∈ J0, nK ,
ψj+n(P ) = 4 βj(P )βj+1(P ) for j ∈ Jn+ 1, nnodes − 1K , .

If the mid-edge values are known, then this interpolation is of order 3. However, in our case
the solution representation is continuous and piecewise linear by element. Therefore, we have to
specify how the mid-edge solution values are obtained. From the solution nodal values, gradients
at vertices can be reconstructed, see Section 1.2.4.1. Let ∇u(Pi) be the recovered gradient at
vertex Pi. In this case, we have an over-determined system for the quadratic reconstruction.
Consequently, we choose to perform a cubic reconstruction on each edge to get the mid-edge
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values using the solution and the gradient at each extremity. After some algebra, mid-edge
values are given by:

u(Pj+3) =
u(Pj) + u(Pj+1)

2
+
∇u(Pj)−∇u(Pj+1)

8
.
−−−−→
PjPj+1 , for j ∈ J0, 2K .

The quadratic interpolation has an accuracy which depends on the quality of the gradient
reconstruction. For the proposed approach, an order comprised between 2 and 3 is obtained.
The reconstruction is C1 except in the direction normal to the edges of the elements. However,
the quadratic interpolation is not conservative and does not verify the maximum principle. This
latter insufficiency can be repaired by limiting the reconstructed values and thus avoiding the
creation of new extrema.

Conservative interpolation. To remedy the disadvantages of the Lagrangian interpolation
operators, conservative interpolation methods have been proposed, see for instance [Farrell 2009,
Alauzet 2011].
In this method, the mass conservation property of the interpolation operator is achieved by
local mesh intersections, i.e. intersections are performed at the element level. The use of mesh
intersection for conservative interpolation seems natural for unconnected meshes. The locality
is primordial for efficiency and robustness. The idea is, for each element of the new mesh, to
compute its geometric intersection with all the elements of the previous mesh that it overlaps and
to mesh with simplexes this geometric intersection. We are then able to use Gauss quadrature
formula to exactly compute the transferred mass.
The high-order accuracy is obtained by a solution gradient reconstruction from the discrete data
and the use of Taylor formulae. This conservative interpolation can however generate a loss of
monotonicity. If such situation occurs, the maximum principle is then enforced by correcting
conservatively the interpolated solution. Finally, vertex valued solutions are reconstructed from
this piecewise linear by element, discontinuous representation.
The algorithm can be summarized as follows:

1. A piecewise linear (continuous or discontinuous) representation of the solution on background
mesh Hback is known,

2. ∀Kback ∈ Hback, compute the solution mass mKback and the solution (constant) gradient
∇Kbacku,

3. ∀Knew ∈ Hnew, recover the solution mass mKnew and the solution gradient ∇Knewu :

(a) Compute the intersection of Knew with all the elements Kback
i ∈ Hback its overlaps,

(b) Mesh the intersection polygon of each couple (Knew, Kback
i ) of elements,

(c) Compute mKnew and ∇Knewu using Gauss quadrature formula .

=⇒ a piecewise linear discontinuous representation of the mass on Hnew is obtained,

4. Correction to verify the maximum principle (application of a conservative slope limiter),

5. Displace the solution values at vertices by averaging .

It can be demonstrated that this interpolation process exhibits all the desirable properties de-
scribed above.



1.2. Basics of metric-based mesh adaptation 31

1.2.4 Gradient and Hessian recovery techniques

The numerical approximation uh computed on H is generally not smooth. However, P2 or
conservative interpolation require the computation of the gradient of the solution. In Section 1.4,
we will also see that a reconstruction of the Hessian of the solution is also mandatory to build
the optimal metric field. Therefore, a smooth reconstruction of the solution, at least C2 must be
achieved to be able to define gradients and Hessians. This subsection presents the most classical
recovery techniques.

1.2.4.1 Continuous element-wise linear gradient recovery (nodal gradients)

Let K be an element and P0, P1, . . . , Pn its vertices. The P1 approximation of u is:

uh(x) =
n∑

j=0

uh(Pj)ϕj(x) ,

where (ϕj)j are the P1 shape function given in two dimensions by:

∇xϕ0(x) =
1

2|K|η0 , ∇xϕ1(x) =
1

2|K|η1 , ∇xϕ2(x) =
1

2|K|η2 ,

and in three dimensions by:

∇xϕ0(x) =
1

6|K|η0, ∇xϕ1(x) =
1

6|K|η1, ∇xϕ2(x) =
1

6|K|η2, ∇xϕ3(x) =
1

6|K|η3 .

By derivation, a piecewise constant gradient is obtained:

∇uh|K =

n∑

j=0

uh(Pj)∇xϕj(x) . (1.5)

The
As ∇uh is not defined at mesh vertices, the nodal gradients are recovered from the piecewise
constant representation of ∇uh, using a L2-projection method. The local L2-projection operator
is based on the Clément interpolation operator [Clément 1975].
Let Pi be a vertex of mesh H. The stencil of shape function ϕi is the topological ball of Pi,
Ball(Pi). The following approximation spaces are introduced:

V 0
h = {v ∈ L2(Ω)

∣∣ v|K ∈ P0 ∀K ∈ H}
V 1
h = {v ∈ C0(Ω)

∣∣ v|K ∈ P1 ∀K ∈ H} .

where P0 and P1 are the set of constant and linear polynomials. The aim is to find, in a L2-norm
sense, the best constant gradient ∇Ruh approximating piecewise constant field ∇uh on Ball(Pi).
More precisely, for v ∈ L2(Ω), we define ΠL2v ∈ V 0

h by:

∀Ball(Pi) ⊂ H ,





(ΠL2v)|Ball(Pi) ∈ P0
∫

Ball(Pi)

(ΠL2v − v) w = 0 , ∀w ∈ P0 .
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We then define the Clément interpolation operator Πc : V 0
h −→ V 1

h :

Πcv :=
n∑

i=0

ΠL2v(Pi)ϕi .

Using Clément interpolation operator, we now describe how we recover nodal gradients from
∇uh ∈ P0. For each Ball(Pi) ⊂ H we have for the particular choice v = 1 ∈ P0 for the test
function:
∫

Ball(Pi)
(ΠL2(∇uh)−∇uh) = 0 ⇐⇒

∫

Ball(Pi)

ΠL2(∇uh) =

∫

Ball(Pi)

∇uh

⇐⇒ |Ball(Pi)|ΠL2(∇uh)|Ball(Pi) =
∑

Kj∈Ball(Pi)

∫

Kj

∇uh

⇐⇒ ΠL2(∇uh)|Ball(Pi) =

∑
Kj∈Ball(Pi)

|Kj | ∇uh|Kj
∑

Kj∈Ball(Pi)
|Kj |

where |K| and |Ball(Pi)| denote the volume of element K and of topological ball Ball(Pi),
respectively. For each vertex Pi, we thus have the following gradient reconstruction:

∇R uh(Pi) =

∑
Kj∈Ball(Pi)

|Kj | ∇uh|Kj
∑

Kj∈Ball(Pi)
|Kj |

(1.6)

In fact, this procedure is equivalent to a reconstruction by means of a volume-weighted averaging.
The recovery procedure provides us with gradient nodal values and thus we get a piecewise linear
representation of the gradient thanks to the Clément interpolation operator.

1.2.4.2 Hessian recovery based on a double L2-projection method

We can use the L2-projection method described in Section 1.2.4.1 to recover the Hessian of a
smooth representation Rhuh of uh, see Section 1.4.2. To this end, the recovery described above
is simply applied to each component of recovered gradient ∇Ruh.

1.2.4.3 Hessian recovery based on the Green formula

A continuous representation of the Hessian of the solution can be recovered using a weak for-
mulation based on the Green formula. We consider the same notations as previously. In three
dimensions, for each vertex Pk of H, we have for 1 ≤ i, j ≤ 3:
∫

H

∂2uh
∂xi∂xj

ϕk =

∫

Ball(Pk)

∂2uh
∂xi∂xj

ϕk = −
∫

Ball(Pk)

∂uh
∂xj

∂ϕk
∂xi

+

∫

∂Ball(Pk)

∇x∂uh|∂Ball(Pk) · nϕk dσ

= −
∑

K ∈Ball(Pk)

∫

K

∂uh
∂xj

∂ϕk
∂xi

,
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as the shape function is zero on the boundary of Ball(Pk). A specific treatment is done close to
the boundary. Each component of the Hessian is then recovered with relation:

∂2Rhuh
∂xi∂xj

(Pk) :=

−
∫

Ball(Pk)

∂uh
∂xj

∂ϕk
∂xi

∫

Ball(Pk)

ϕk

= −

∑

K ∈Ball(Pk)

(
∂uh
∂xj

)∣∣K
∫

K

∂ϕk
∂xi

|Ball(Pk)|
4

.

which is equivalent to lumping the mass matrix of the left-hand side of the above relation.

1.2.4.4 A least-square approach

In the sequel, Rh denotes a recovery operator, at least two-times differentiable. Rh enables to
build, from the piecewise linear numerical approximation uh, a two-times differentiable represen-
tation of the solution, noted Rhuh. Rh is defined so that Rhuh(Pi) = uh(Pi), for any vertex Pi
of H. Moreover, its gradients is ∇xRhuh = ∇Ruh, where ∇Ruh is the piecewise linear gradient
defined by Formula 1.6.

The objective is to find the value of HRhuh at each vertex. Let P be a vertex and Pi a vertex
of its ball, i.e. Pi ∈ Ball(P ). A Taylor expansion of Rhuh between vertices P and Pileads to:

Rhuh(Pi) = Rhuh(P ) +
−−→
PPi .∇xRhuh(P ) +

1

2
〈−−→PPiT , HRhuh(P )

−−→
PPi〉+O(||−−→PPi||3) .

By truncating this development at second order and using the properties of operator Rh, we get:

uh(Pi) = uh(P ) +
−−→
PPi .∇Ruh(P ) +

1

2
〈−−→PPiT , HRhuh(P )

−−→
PPi〉

⇔ 1

2
〈−−→PPiT , HRhuh(P )

−−→
PPi〉 = uh(Pi)− uh(P )−−−→PPi .∇Ruh(P ) .

This relation can be developed using the notations:

−−→
PPi = (xi yi zi)

T , ∇Ruh(P ) = (α β γ)T , HRhuh(P ) =




a b c

b d e

c e f


 ,

which leads to:

1

2
(ax2

i + 2bxiyi + 2cxizi + dy2
i + 2eyizi + fz2

i ) = uh(Pi)− uh(P )− (αxi + βyi + γzi) . (1.7)

This resulting system is usually over-determined2 of the form:

AX = B , with XT =
(
a b c d e f

)

where A is a nball × 6 matrix, nball = Card(Ball(P ))) function of (xi yi, zi) and B is a
vector of dimension nball given by the right-hand side of Relation (1.7), and function of

2The system is overdetermined as 6 coefficients must be computed and the vertex P is usually connected to
more than 6 vertices Pi in three dimensions.
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(α, β, γ, xi, yi, zi, u, ui). This system is solved using a least-square approximation, i.e., it consists
in minimizing the distance between the vectors AX and B of R6 by minimizing the square of
the Euclidean norm of their difference. The problem is then to:

Find X ∈ R6 such that ‖AX −B‖2 = inf
Y ∈R6

(
‖AY −B‖2

)
.

It can be shown that the solution of this problem is the solution of the linear 6 × 6 system of
normal equations:

ATAX = ATB .

which is solved using a standard Gauss elimination method.

Remark 2. In the case where the system is under-determined, i.e. nball < 6, additional vertices
connected to the vertices of Ball(P ) can be taken into account.

1.2.5 Operations on metrics

The main advantage when working with metric spaces is the well-posedness of operations on
metric tensors, among which the metric intersection and the metric interpolation. These opera-
tions have a straightforward geometric interpretation when considering the ellipsoid associated
with a metric.

1.2.6 Metrics intersection

When several metrics are specified at a point of the domain, all these metric tensors must be
reduced to a single one due to mesh generation concerns. The metric intersection consists in
keeping the most restrictive size constraint in all directions imposed by this set of metrics.

Formally speaking, letM1 andM2 be two metric tensors given at a point. The metric tensor
M1∩2 corresponding to the intersection ofM1 andM2 is the one prescribing the largest possible
size under the constraint that the size in each direction is always smaller than the sizes prescribed
by M1 and M2. Let us give a geometric interpretation of this operator. Metric tensors are
geometrically represented by an ellipse in 2D and an ellipsoid in 3D. But the intersection between
two metrics is not directly the intersection between two ellipsoids as their geometric intersection
is not an ellipsoid. Therefore, we seek for the largest ellipsoid representingM1∩2 included in the
geometric intersection of the ellipsoids associated with M1 and M2, cf. Figure 1.6, left. The
ellipsoid (metric) verifying this property is obtained by using the simultaneous reduction of two
metrics.

Simultaneous reduction. The simultaneous reduction enables to find a common basis
(e1, e2, e3) such that M1 and M2 are congruent to a diagonal matrix in this basis, and then
to deduce the intersected metric. To do so, the matrix N = M−1

1 M2 is introduced. N is
diagonalizable with real-eigenvalues. The normalized eigenvectors of N denoted by e1, e2 and
e3 constitute a common diagonalization basis for M1 and M2. The entries of the diagonal
matrices, that are associated with the metricsM1 andM2 in this basis, are obtained with the
Rayleigh formula3:

λi = eTiM1ei and µi = eTiM2ei , for i = 1 . . . 3 .

3λi and µi are not the eigenvalues ofM1 andM2. They are spectral values associated with basis (e1, e2, e3).
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Let P = (e1 e2 e3) be the matrix the columns of which are the eigenvectors {ei}i=1, ..., 3 of N . P
is invertible as (e1, e2, e3) is a basis of R3. We have:

M1 = P−T



λ1 0 0

0 λ2 0

0 0 λ3


P−1 and M2 = P−T




µ1 0 0

0 µ2 0

0 0 µ3


P−1 .

Computing the metric intersection. The resulting intersected metricM1∩2 is then analyt-
ically given by:

M1∩2 =M1 ∩M2 = P−T



max(λ1, µ1) 0 0

0 max(λ2, µ2) 0

0 0 max(λ3, µ3)


P−1 . (1.8)

The ellipsoid associated withM1∩2 is the largest ellipsoid included in the geometric intersection
region of the ellipsoids associated withM1 andM2, the proof is given in [Alauzet 2003b].

Numerically, to computeM1∩2, the real-eigenvalues of N are first evaluated with a Newton
algorithm. Then, the eigenvectors of N , which define P, are computed using the algebra notions
of image and kernel spaces.

Remark 3. The intersection operation is not commutative. Consequently, when more than
two metrics are intersected, the result depends on the order of intersection. In this case, the
resulting intersected metric is not anymore optimal. If, we seek for the largest ellipsoid included
in the geometric intersection region of several (> 2) metrics, the John ellipsoid has to be found
thanks to an optimization problem [Loseille 2008].

1.2.7 Metric interpolation

In practice, the metric field is only known discretely at mesh vertices. The definition of an
interpolation procedure on metrics is therefore mandatory to be able to compute the metric
at any point of the domain. For instance, the computation of the volume of an element using

Figure 1.6: Left, view illustrating the metric intersection procedure with the simultaneous reduc-
tion in three dimensions. In red, the resulting metric of the intersection of the blue and green
metrics. Right, metric interpolation along a segment where the endpoints metrics are the blue
and violet ones.
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quadrature formula with Relation (1.2) requires the computation of some interpolated metrics
inside the considered element.

Several interpolation schemes have been proposed in [Alauzet 2003b] which are based on
the simultaneous reduction. The main drawback of these approaches is that the interpolation
operation is not commutative. Hence, the result depends on the order in which the operations
are performed when more than two metrics are involved. Moreover, such interpolation schemes
do not satisfy useful properties such as the maximum principle. Consequently, to design an
interpolation scheme on these objects, one needs a consistent operational framework. We suggest
to consider the log-Euclidean framework introduced in [Arsigny 2006].

Log-Euclidean framework. We first define the notion of metric logarithm and matrix exponential.
The metric logarithm is defined on the set of metric tensors. For metric tensorM = RΛRT ,
it is given by:

ln(M) := R ln(Λ)RT ,
where ln(Λ) = diag(ln(λi)). The matrix exponential is defined on the set of symmetric
matrices. For any symmetric matrix S = QΞT Q, it is given by:

exp(S) := Q exp(Ξ)T Q ,

where exp(Ξ) = diag(exp(ξi)). We can now define the logarithmic addition ⊕ and the
logarithmic scalar multiplication �:

M1 ⊕M2 := exp (ln(M1) + ln(M2))

α�M := exp (α. ln(M)) =Mα .

The logarithmic addition is commutative and coincides with matrix multiplication whenever the
two tensors M1 and M2 commute in the matrix sense. The space of metric tensors, supplied
with the logarithmic addition ⊕ and the logarithmic scalar multiplication � is a vector space.

Remark 4. This framework allows more general computations to be carried out on metric
tensors, such as statistical studying or the resolution of PDE’s on metric tensors.

Metric interpolation in the log-Euclidean framework. We propose to use the linear interpolation
operator derived from the log-Euclidean framework. Let (xi)i=1...k be a set of vertices and
(M(xi))i=1...k their associated metrics. Then, for a point x of the domain such that:

x =
k∑

i=1

αixi with
k∑

i=1

αi = 1 ,

the interpolated metric is defined by:

M(x) =

k⊕

i=1

αi �M(xi) = exp

(
k∑

i=1

αi ln(M(xi))

)
. (1.9)

This interpolation is commutative, but its bottleneck is to perform k diagonalizations and to
request the use of the logarithm and the exponential functions which are CPU consuming.
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However, this procedure is essential to define continuously the metric map on the entire do-
main. Moreover, it has been demonstrated in [Arsigny 2006] that this interpolation preserves
the maximum principle, i.e., for an edge

−−→
PQ with endpoints metrics M(P ) and M(Q) such

that det(M(P )) < det(M(Q)) then we have det(M(P )) < det(M(P + t
−−→
PQ)) < det(M(Q))

for all t ∈ [0, 1].

Accordingly, this metric interpolation enables a continuous metric field to be defined through-
out the entire discretized domain. When a metric is required at a point, we determine to which
element the point belongs. Then, we apply Relation (1.9), where αi are the barycentric coordi-
nates of the point with respect to the element. Figure 1.6 illustrates metric interpolation along
a segment, for which the initial data are the endpoints metrics.

Remark 5. The interpolation formulation (1.9) reduces to

M(x) =

k∏

i=1

M(xi)
αi ,

if all the metrics commute. Therefore, an arithmetic mean in the log-Euclidean framework could
be interpreted as a geometric mean in the space of metric tensors.

1.3 The continuous mesh theory

Over the past few years, a brand new framework has been developed which enables to handle
discrete object like meshes, elements or interpolation operators as if they were continuous entities.
The development of this new theory has allowed the resolution of problems involving new type of
unknowns such as meshes, problems which were previously intractable due to their complexity.
This section is devoted to the description of this new continuous mesh theory. It aims at
explaining how most of the entities usually manipulated by numericians, which most of the time
can be considered as discrete, can nevertheless be fully described from a continuous point of
view.

1.3.1 The continuous element model

1.3.1.1 Equivalence class of elements

The first step to build this new framework consists in finding a continuous object able to sum-
marize the discrete information contained in a single element of a given mesh. The notion of
unit element with respect to a metric field plays a central role in this perspective. Indeed, the
following result, proved in [Loseille 2010a], shows that the set of all the elements which are unit
with respect to a given metric tensor forms an equivalence class of elements.

Indeed, let M be a metric tensor. M is first assumed equal to identity tensor In. Then,
K0, the regular element of Rn is a unit element with respect toM. The set of all the other unit
elements, denoted K, is obtained by rotating K0.
Now, ifM 6= In, a unit element with respect toM is the image of K0 by applicationM− 1

2 , see
Section 1.2.1.1. Similarly, all the other elements which are unit with respect toM are obtained
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by taking the images of the elements of K throughM− 1
2 .

Conversely, any arbitrary element K can be put in an equivalence class and can therefore be
associated with a unique metric. The sought metricM is the one for which K is unit and can
be explicitly determined by solving a linear system having as unknowns the coefficient of tensor
M.

As a consequence, any discrete element can be viewed as a discrete representative of some
equivalence class formed by all the unit elements of some metric M. Using a minor abuse of
notation, this equivalence class will be itself noted M. Figure 1.7 depicts some unit elements
with respect to a metric tensor, which is geometrically represented by its unit-ball. M denotes
the class of equivalence of all the elements which are unit with respect toM and is
called "continuous element".

Figure 1.7: Several unit elements with respect to a continuous element in 2D and 3D.

1.3.1.2 Geometric invariants

All the discrete representatives of a given equivalence classM share some common properties,
which can be described using only metric tensor M. These properties actually connect the
geometric properties of the elements which are unit with respect to M to the linear algebra
properties ofM.

Proposition 1 (Geometric invariants). Let M be a metric tensor and K be a unit element
with respect to M. We denote by (ei)1≤i≤n its edges list and |K| its Euclidean volume. Then,
the following invariants hold:

• standard invariants:

∀ (ei, ej),

{
eTi M ei = 1,

2 eTi M ej + 1 = 0 if i 6= j.
(1.10)

• invariant related to the Euclidean volume |K|:

|K| =
√

3

4
det(M− 1

2 ) in 2D and |K| =
√

2

12
det(M− 1

2 ) in 3D. (1.11)
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• invariant related to the square length of the edges for any symmetric matrix H:
3∑

i=1

eTi Hei =
3

2
trace(M− 1

2HM− 1
2 ) in 2D,

6∑

i=1

eTi Hei = 2 trace(M− 1
2HM− 1

2 ) in 3D.
(1.12)

1.3.2 The continuous mesh model

Definition. In this subsection, M = (M(x))x∈Ω represents a given metric tensor field. As
for the local duality, we would like to define equivalence classes of meshes, each class being
represented by a single continuous object. To this aim, the notion of unit mesh with respect
to metric field M = (M(x))x∈Ω is used. M denotes the class of equivalence of all the
meshes which are quasi-unit with respect to M and is called "continuous mesh".

Another decomposition of M(x). We have already seen that at each point P ∈ Ω of coor-
dinates vector x, M(x) admits a spectral decomposition given by Relation (1.1). In practice,
another decomposition can be used that points out the local characteristics of M. This decom-
position is given by the following proposition.

Proposition 2. M = (M(x))x∈Ω locally writes:

M(x) = d
2
n (x)R(x)diag

(
r
− 2
n

1 (x), . . . , r
− 2
n

n (x)

)
R(x)T , (1.13)

where4

• the continuous mesh local density d is equal to: d = (h1 . . . hn)−1 = (λ1, . . . , λn)
1
2 ,

• the continuous mesh local anisotropic quotients κi are equal to: κi =
hni
n∏
i=1

hi

.

Complexity. The complexity C of a continuous mesh M is the continuous equivalent of the
number of vertices Nv of a discrete mesh and is defined by:

C(M) =

∫

Ω
d(x) dx =

∫

Ω

√
det(M(x)) dx. (1.14)

This real-value parameter is useful to quantify the global level of accuracy of (M(x))x∈Ω.

Embedded continuous meshes. Two continuous meshes, saying (M(x))x∈Ω and (N (x))x∈Ω,
are embedded if a constant c exists such that:

∀x ∈ Ω, N (x) = cM(x) . (1.15)

Conversely, from M = (M(x))x∈Ω, we can deduce N = (N (x))x∈Ω of complexity N having the
same anisotropic properties (anisotropic orientations and ratios) by considering:

N (x) =

(
N

C(M)

) 2
n

M(x).

4Note that in two dimensions, we find back the usual definition κ1 = h1
h2

= 1
κ2
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In the context of error estimation, this notion enables to perform convergence order studies with
respect to an increasing complexity N .

Uniform continuous refinement. In the continuous framework, uniform refinement consists
in dividing by a constant factor c the length of each edge of a uniform continuous meshM(x).
This writes:

Mi = 4i diag(
1

h2
1

, . . . ,
1

h2
n

)

where i is the level of refinement. (Mi)i=1...k defines a sequence of embedded continuous meshes
(or embedded Riemannian spaces).

h1

h2

h3

Figure 1.8: Left, from left to right: different unit elements with increasing density. Right, the
geometric interpretation of anisotropic quotients as quotients of parallelepipeds volumes.

1.3.3 The continuous linear interpolate model

In the previous section, a continuous framework has been introduced to model elements and
meshes. Now, we aim at applying this framework in the context of error estimation. However,
as our intent is to propose a fully discrete-continuous duality, it is not enough to derive only the
optimal mesh arising from an interpolation error bound as in classical studies on interpolation
error [Castro-Díaz 1997, Frey 2005, Huang 2005]. Instead, we want to evaluate the interpolation
error for any functions on any continuous meshes without imposing some optimality conditions
as alignment, equi-distribution, . . .

Let (M(x))x∈Ω be a continuous mesh of a domain Ω and let u be a non-linear scalar or vecto-
rial function which is assumed to be only twice continuously differentiable. We seek a well-posed
definition of the continuous linear interpolation error ‖u − πMu‖L1(Ω) related to a continuous
mesh (M(x))x∈Ω which implies a well-posed definition of a linear continuous interpolate πMu.
More precisely, we would like the continuous linear interpolation error to be a reliable mathemat-
ical model of ‖u−Πhu‖L1(Ωh) where Πh is defined by a mesh H of a discretized domain Ωh which
is a unit mesh with respect to (M(x))x∈Ω. In fine, this means that considering ‖u−πMu‖L1(Ω)

is equivalent to considering ‖u−Πhu‖L1(Ωh).
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1.3.3.1 Linear interpolation on a continuous element

LetM be a continuous element and u be a quadratic positive function. We study the interpo-
lation error for the class of all unit discrete elements with respect to M. The main result is:

Theorem 1. For all unit elements K with respect to M, the interpolation error of u in L1

norm does not depend on the element shape and is only a function of the Hessian Hu of u and
of continuous elementM.

• In 3D, for all unit elements K forM, the following equality holds:

‖u−Πhu‖L1(K) =

√
2

240
det(M− 1

2 ) trace(M− 1
2 HuM−

1
2 ). (1.16)

• In 2D, for all unit elements K forM, the following equality holds:

‖u−Πhu‖L1(K) =

√
3

64
det(M− 1

2 ) trace(M− 1
2 HuM−

1
2 ).

We note the strong analogy with classical interpolation error estimate for Lagrange interpo-
lation [Ciarlet 1978]:

• The term detM− 1
2 stands for the Jacobian of the affine transformation from the reference

element K̂ onto the current element K. In our continuous framework, it is the Jacobian of
the affine mapping between the reference continuous element unit ball BI3 onto the current
continuous element unit ball BM.

• The term trace
(
M− 1

2 HuM−
1
2

)
stands for the semi-norm involved in classical error esti-

mates. Generally, this semi-norm contains the anisotropic behavior of the estimate. In the
continuous framework, the trace-term gives the alignment correlation between the principal
directions of Hessian Hu and the principal directions of metricM.

Relation (1.16) shows that the infinite set of discrete elements that are unit for a given
continuous element M achieves the same interpolation error, and moreover, shows that this
interpolation error is only expressed with continuous quantities: the continuous elementM and
the Hessian of function u. Consequently, Theorem 1 points out that the metric alone contains
enough information to describe completely the linear interpolation error in L1 norm. In other
words, this theorem confirms that the use of metric-based mesh adaptation is particularly well
suited to control anisotropically the interpolation error.

1.3.3.2 Continuous linear interpolate πM

The main difficulty in defining the continuous linear interpolate is to connect a discrete error
computed on an element to a local continuous error that is defined point-wise. Indeed, the
discrete interpolation error in norm L1 is integrated on the element K. On the contrary, a
continuous mesh is a function x 7→ M(x) defined at each point x of Ω. In [Loseille 2010a], such
a continuous linear interpolate is defined exhibiting very interesting properties.
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Theorem 2 (Discrete-continuous equivalence). Let u be a twice continuously differentiable
function of domain Ω and (M(x))x∈Ω be a continuous mesh of Ω. We denote by uQ(a; ·) the
quadratic approximation of u at point a which is defined in the vicinity of a as the truncated
second order Taylor expansion of u:

∀x ∈ V(a) , uQ(a; x) = u(a) +∇u(a)(x− a) +
1

2
〈(x− a), H(a)(x− a)〉.

When no confusion is possible, notation uQ(a; x) is replaced by uQ(x). Then, there exists a
unique continuous linear interpolate function πM such that:

∀a ∈ Ω , |u− πMu|(a) = 2
‖uQ −ΠhuQ‖L1(K)

|K| ,

for every K unit element with respect toM(a).
Moreover, the following piecewise continuous linear interpolation estimate holds in 3D:

∀a ∈ Ω , |u− πMu|(a) =
1

10
trace

(
M(a)−

1
2 |Hu(a)|M(a)−

1
2
)

=
1

10

(
d(a)−

2
3

3∑

i=1

ri(a)
2
3 vi

T (a) |Hu(a)|vi(a)
)
.

(1.17)

In 2D, the estimate is:

∀a ∈ Ω , |u− πMu|(a) =
1

8
trace

(
M(a)−

1
2 |Hu(a)|M(a)−

1
2
)

=
1

8

(
d(a)−1

2∑

i=1

ri(a) vi
T (a) |Hu(a)|vi(a)

)
.

(1.18)

This result shows that the continuous point-wise linear interpolation can be decomposed into
the product of two terms:

• a first term that control the accuracy, this density term is directly connected to the size of
the continuous element,

• a second term that measures alignment deviation between the continuous element orientation
and the anisotropy features of the function u.

1.3.3.3 Global interpolation error in L1-norm

The above results demonstrate that both the local interpolation error ||u− Πhu||L1(K) and the
linear interpolate Πh have continuous counterparts. It remains to define the global interpolation
error in L1 norm. From a practical point of view, the following analogy is used:

Definition 3. Given a unit mesh H of a domain Ωh with respect to a continuous mesh
(M(x))x∈Ω, the global interpolation error is:

‖u−Πhu‖L1(Ωh) =
∑

K∈H
‖u−Πhu‖L1(K). (1.19)
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In the continuous case, the discrete summation becomes an integral:

‖u− πMu‖L1(Ω) =

∫

Ω
|u− πMu|(x) dx. (1.20)

Note that there is no global guarantee on the continuous interpolation error reliability given
by Relation (1.20). For instance, there is no a priori relationship between (1.19) and (1.20).
The only guarantee is the local equivalence given by Theorem 2. However, the local guarantee
becomes global when the mesh is unit with respect to a constant metric tensor (this does not
necessary implied that the mesh is uniform) and when the function is quadratic. In this specific
case, by neglecting error due to the boundary discretization, we have the equality:

2 ‖u−Πhu‖L1(Ωh) = ‖u− πMu‖L1(Ω),

for all unit meshes H with respect to (M(x))x∈Ω. Several analytical and numerical examples in
two and three dimensions are given in [Loseille 2010b] which shows that:

• this model is accurate and the equivalence (1.19)≈(1.20) is observed even for non quadratic
functions and non-constant continuous meshes,

• the error due to the fact that the mesh generator generates edges with length not strictly
equal to one is negligible. In particular, the range for the lengths of the edges given in
Section 1.2.2 ensures reliable numerical results.

These examples reveal that the interpolation error can be computed continuously without any
discrete support. Discrepancies between continuous and discrete interpolation errors depends
on the mesh generator used and the difficulty to generate the desired unit mesh.

1.3.3.4 Synthetic array

To conclude this section, a synthetic array showing the equivalence between discrete entities and
their continuous representation is given:
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DISCRETE CONTINUOUS

Element K Metric tensorM

Element volume |K| d−1 =
√

det(M−1)

Element perimeter |K| trace
(
M(x)−1

)

Mesh H of Ωh Riemannian metric space M(x) = (M(x))x∈Ω

Number of vertices Nv Complexity C(M) =

∫

Ω
d(x) dx

P1 interpolate Πh P1-continuous interpolate πM

Local element-wise interpolation error Local point-wise interpolation error
||u−Πhu||K e(x) = (u− πMu) (x)

Global interpolation error
∑

K∈H
||u−Πhu||K Global interpolation error

∫

x∈Ω
e(x) dx

1.4 Multi-scale mesh adaptation

The main advance enabled by the continuous mesh formalism is to provide us with new contin-
uous representations of discrete objects such as meshes, elements and interpolation operators.
A large variety of mathematical tools then become available for these continuous representation
while they were not when directly dealing with discrete entities. Notably, it enables to work
with metric fields instead of working with meshes, which is far more convenient insofar as
new operations like integration, derivation, calculus of variations are available for metric fields
and are ill-defined when dealing directly with discrete meshes.
This section illustrates the powerfulness of this new framework when attempting to solve the
complex problem of finding the optimal mesh minimizing the interpolation error in Lp-norm.

1.4.1 Global optimization problem

The problem of finding the optimal mesh minimizing the interpolation error of a known function
u in Lp-norm a priori writes:

Find Hopt having Nv vertices such that Hopt = argmin
H

||u−Πhu||H,Lp(Ωh)
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Stated like this, this problem is purely and simply intractable. Indeed, as the unknown of the
problem is a mesh, i.e. a set of vertices associated with a topology. UnknownH hides a very high
number of degrees of freedom, which makes the resolution impossible. Moreover, the problem is
ill-posed as several optimal meshes can be found for a single function u
On the contrary, if one accepts to reformulate the problem using the new continuous mesh
theory, it is then possible to set the well-posed global optimization problem of finding the
optimal continuous mesh minimizing the continuous interpolation error in Lp norm:

Find MLp = argmin
M

Ep(M) =

(∫

Ω
(u− πMu)p

) 1
p

, (1.21)

under constraint

C(M) =

∫

Ω
d = N.

The constraint on the complexity is added to avoid the trivial solution where all (hi)i=1,3 are
zero which provides a null error.

This minimization problem is solved analytically using standard calculus of variations tech-
niques which are now available as we have chosen to work with continuous mesh M. Formula-
tion (1.13) of metric tensorM is also of great help for the resolution of this problem.

Theorem 3. Let u be a twice continuously differentiable function defined on Ω ⊂ Rn, Hu its
Hessian, the optimal continuous mesh MLp(u) minimizing Problem (1.21) reads locally:

MLp = DLp det(|Hu|)
−1

2p+n |Hu| , with DLp = N
2
n

(∫

Ω
det(|Hu|)

p
2p+n

)− 2
n

. (1.22)

It verifies the following properties:

• MLp(u) is unique

• MLp(u) is locally aligned with the eigenvectors basis of Hu and has the same anisotropic
quotients as Hu

• MLp(u) provides an optimal explicit bound of the interpolation error in Lp norm:

‖u− πMLp
u‖Lp(Ω) = nN−

2
n

(∫

Ω
det (|Hu|)

p
2p+n

) 2p+n
np

. (1.23)

The outstanding character of this theorem as compared to existing results lies on the one
hand in the unicity of the optimal continuous mesh and on the other hand on the global nature
of this optimum.

Remark 6 (L∞-norm). Passing to the limit for p → ∞ leads to the classical metric that
controls the interpolation error in L∞ as used in [Castro-Díaz 1997, Frey 2005].



46 Chapter 1. Multi-scale metric-based mesh adaptation

1.4.2 Optimal metric for a numerical approximation uh

According to Theorem 3, optimal Metric (1.22) is valid only for u ∈ C2. In this section,
we describe how the interpolation theory is applied when only uh, represented by a piecewise
linear function, is known. In this particular case, the interpolation error estimate is not applied
directly to u nor uh, but to a smooth representation of uh obtained thanks to operator Rh, see
Section 1.2.4.

Let V̄ k
h be the space of piecewise polynomials of degree k and V k

h be the space of continuous
piecewise polynomials of degree k associated with a given mesh H of domain Ωh. Rh is a
reconstruction operator applied to numerical approximation uh. This reconstruction operator
can be either a recovery process, a hierarchical basis, or an operator connected to an a posteriori
estimate. We assume that the reconstruction Rhuh is better than uh for a given norm ‖.‖ in the
sense that:

‖u−Rhuh‖ ≤ α‖u− uh‖ where 0 ≤ α < 1 .

From the triangular inequality, we deduce:

‖u− uh‖ ≤
1

1− α‖Rhuh − uh‖ .

If the reconstruction operator Rh satisifies:

ΠhRhφh = φh , ∀φh ∈ V 1
h ,

the approximation error of the solution can be bounded by the interpolation error of the recon-
structed function Rhuh:

‖u− uh‖ ≤
1

1− α‖Rhuh −ΠhRhuh‖ . (1.24)

From Theorem 3, we can exhibit the following upper bound of the approximation error:

‖u− uh‖ ≤
6N−

2
3

1− α

(∫

Ω
det (|HRhuh |)

p
2p+3

) 2p+3
3p

,

and HRhuh is computed with one of the three techniques described in Section 1.2.4 (L2-
projection, Green formula or least square).

Remark 7. It is important to note thatMLp defined by Relation (1.22) applied to Rhuh does
not allow to generate an optimal adapted mesh to control the approximation error ‖u− uh‖. If
all the above assumptions are verified, this analysis states that such generated adapted meshes
controls the approximation error. But only an upper bound is obtained and no lower bound. As
this analysis is likely to be applied to the compressible Euler or Navier-Stokes systems, for which
no anisotropic error estimate is available so far, this is results can however be considered as
satisfactory.

1.4.3 Adaptive strategy using the optimal Lp metric

Let us choose p ∈ [1,+∞[. Theorem 3 provides an analytical expression of the optimal contin-
uous mesh controlling the linear interpolation error in Lp-norm for a fixed complexity. In this
subsection, the advantages induced by using the optimal continuous mesh MLp in the adaptation
strategy, described in Figure 1.4, are enumerated.
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1.4.3.1 The "hmin" parameter

One obvious asset of this new adaptive strategy is that it automatically handles the "hmin"
parameter setting. Indeed, for adaptation strategies that only enable a control of the local
interpolation error, the resulting metric can prescribe the construction of edges of very small
length, notably in shocks. This phenomenon can lead to the generation of meshes containing
an excessive number of vertices. Some elements can also have a very small altitude5, which can
drastically diminish the efficiency of the numerical solver, especially when an explicit temporal
scheme is used.
To prevent this kind of pathological behavior, a usual technique consists in artificially enforcing
a minimal edge size criterion. Practically, the metric eigenvalues which are too high are replaced
a posteriori by λmax = 1/h2

min.
The problem is that the choice of hmin is left to the user, which is in conflict with our automaticity
objective. Moreover, this a posteriori truncation does not enable to guarantee the control of the
interpolation error anymore.
Thanks to the resolution of a global optimization problem, this hmin-parameter is implicitly
prescribed through the prescription of the desired complexity N or desired error E. The optimal
metric guarantees that hmin in never zero. However, in practice, a value for hmin can be
prescribed to avoid too small elements (especially for unsteady adaptation).

1.4.3.2 Recovering second-order accuracy

It is shown in [Loseille 2010b] that the optimal Lp metric enables to recover the expected second
order accuracy when performing a convergence study on smooth analytical functions. Indeed,

Theorem 4 (Asymptotic convergence). Let (MN
Lp(u))N=1...∞ be a family of optimal contin-

uous meshes parametrized by increasing complexity N and having the same orientation and
anisotropic quotients (i.e. embedded continuous meshes in the sense of Definition 1.15). Let u
be a twice continuously differentiable function. Then, the asymptotic order of convergence of the
interpolation error on u in Lp-norm satisfies:

‖u− πMN
Lp
u‖Lp(Ω) ≤

Cst
N2/n

. (1.25)

This theorem states that, in the case of an adaptation to a smooth analytical function,
a second-order of convergence is obtained for the error, which is the least we could demand.
Indeed, a second-order convergence is also reached when simply using a uniform refinement
strategy6.

Lower error. The convergence curve obtained when plotting log
∑

K∈H ||u−Πhu||Lp(Ωh) v.s
Nv is expected to be a straight line of slope 2, at least asymptotically. This is also the case
when the sequence of embedded meshes is built by successive uniform refinements. However,
one big difference is that in our case, as the successive adapted meshes obtained for increased
values of the complexity N are all optimal. Consequently, the convergence curve obtained with

5The altitude of an element is the smallest of its n+ 1 altitudes.
6 A uniform refinement strategy consists in recursively splitting the edges in two new edges of equal lengths



48 Chapter 1. Multi-scale metric-based mesh adaptation

this approach will be lower than other second-order methods. In other words, constant Cst is
optimal, which is not the case for example with a uniform refinement strategy.

Better behavior on numerical solutions involving singularities. As explained in the
introduction, our main objective is to perform CFD simulations involving flow singularities in
the most accurate possible manner. To reach this goal, specific methods such as MUSCL type
methods are used to locally increase the accuracy of the numerical solution. However, when
shocks are present, these techniques generate oscillations of the numerical solution which are
incompatible with the expected physical features. In these regions, the order of accuracy is thus
intentionally decreased back to one thanks to slope limiters, see Section 5.2. This numerical
barrier leads to a global order of convergence of the interpolation error which is strictly lower
than two when a uniform refinement strategy is applied.
However, although an accuracy limit has been reached by the resolution scheme, it is still possible
to act at the mesh level to recover the desired order of accuracy. Indeed, in [Coudière 2002], it
has been pointed out that the convergence rate of the approximation of an analytical shock, i.e. a
discontinuous analytical function, can be increased by applying an adaptive refinement strategy,
to be opposed with a uniform refinement strategy. However, this study has also emphasized
that if only isotropic strategies are considered, the attainable order of convergence for the global
interpolation error in Lp norm is intrinsically limited:

Lemma 1 (Isotropic adaptation barrier). Let u a scalar function involving discontinuities, which
is smooth outside the discontinuity area. If a P1 interpolation method is applied to u, then the
convergence order α of the interpolation error in Lp-norm when the mesh is refined with an
adaptive isotropic strategy7 cannot exceed:

α ≤ 1

p

n

n− 1
.

For instance, in three dimensions and for p = 1, the maximal order that can be legitimately
expected using a purely isotropic strategy equals 1.5 < 2. Consequently, anisotropy appears as
a necessary condition to build a mesh adaptation strategy which is consistent with an expected
order of accuracy of 2.
However, anisotropy is not a sufficient condition to recover the second-order convergence, which
means that some anisotropic adaptive methods are more efficient than others as regards their
ability to take advantage from the anisotropic features of the solution and to collect the infor-
mation from the adaptation variable when dealing with numerical solutions. Incidentally and
to our knowledge, very few convergence studies have been done in a mesh adaptation frame-
work, which makes the comparison of metric-based multi-scale anisotropic mesh adaptation with
other methodologies very difficult. However, second-order accuracy has been numerically ob-
served on analytical examples as well as on complex CFD computations. Moreover, the method
presented here has already exhibited other interesting behaviors on two- and three-dimensional
computations, see [Loseille 2007, Loseille 2010b, Alauzet 2010b]:

• Early convergence. The asymptotic order of convergence is reached very soon.
7an adaptive isotropic strategy can generate elements of very different sizes, which is not the case when using

a uniform refinement strategy
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• Super-convergence. Some anisotropic adaptive strategies are more efficient than others to
extract the relevant information from the numerical solution [Coudière 2002]. As a result,
the convergence plots obtained with such methods will be able to reach in certain cases a
convergence rate higher than 2. For instance, it can be the case when the numerical solution
is almost constant in one direction. This phenomenon is called super-convergence.

1.4.3.3 Catching different scales of the solution

Another interest of the optimal metric in Lp-norm lies in its ability to catch physical phenomena
of the solution which are of different scales. To illustrate this, we copy here the analytical
example given in [Loseille 2010b]. We consider a function f1 which is a smooth function involving
variations of small and large amplitudes. The function is defined as follows:

f1(x, y) =





0.01 sin(50xy) if xy ≤ π

50
,

sin(50xy) else if xy ≤ 2
π

50
,

0.01 sin(50xy) elsewhere.

This function is composed of variations having a unit amplitude along with small variations
having an amplitude of 0.01. This feature is illustrated in Figure 1.9 (top left) where a cut
through the line y = 0 is depicted.

The mesh adaptation process based on the control of the interpolation error is analyzed for
the L1, L2 and L4 norms. Figure 1.9 shows adapted meshes composed of almost 7 000 vertices for
each norm. We observe that the small amplitude waves regions are better captured when using
a Lp norm with a lower p (L1 is the best) whereas the L4 norm ignores small amplitudes regions
and clearly more refined large amplitudes areas. This behavior is due to the term det |Hu|

−1
2p+n

in Relation (1.22) which gives more sensitivity to lower p norm. It illustrates that controlling
the interpolation error in Lp norm with a small value of p enable to capture all the scales of the
solution.

1.4.4 Handling degenerated cases

In Section 1.4.3.1, we have seen that degenerated case (λ→ +∞⇐⇒ h→ 0 ) was automatically
handled thanks to a global optimization strategy enforcing a prescribed complexity constraint
C = N . Unfortunately, this equality constraint does not enable to get rid of the other
degenerated case (λ→ 0⇐⇒ h→ +∞ ). An a posteriori correction is therefore performed on
the metric to eliminate this pathological feature.

Notations. In this section, eigenvalues notations are temporarily changed to better distinguish
between the different sets of eigenvalues at stake:

• (γ1, . . . , γn) are the eigenvalues of the pure Hessian metric |Hu|, i.e.

γl = rTl |Hu| rl ,
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Figure 1.9: Top left, representation of function f1 along the cut line y = 0. Optimal adapted
meshes for norms L1 (top right), L2 (bottom left) and L4 (bottom right). Each mesh is composed
of about 7 000 vertices.

• (λ1, . . . , λn) are the eigenvalues of the locally normalized Hessian metric :

M̃ = det (|Hu|)−
1

2p+n |Hu| ,

• (m1, . . . ,mn) are the eigenvalues of the complete metric M, i.e. the locally normalized
Hessian plus the global normalization term:

M =




N∫

Ω

√
detM̃dx




2
n

M̃ ,

• hl =
1√
ml

is the mesh size prescribed by complete metricM in direction rl

• hmax is the maximal size for the edges of the mesh prescribed by the user,

• mthres =
1

h2
max

is the threshold for complete metric eigenvalues.
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1.4.4.1 Rough truncation

The first solution consists in replacing all the eigenvalues falling below a prescribed minimal
threshold mthres = 1/h2

max by the value of this threshold. Nevertheless, such a brutal cut yields
some damages on the metric and on the control of the error. These outcomes are detailed below.

Violation of the complexity constraint. Suppose that before truncation, the global normal-
ization constant has been adjusted so that prescribed complexity N is reached. If the truncation
algorithm settles for bringing every size exceeding hmax back to hmax, it is quiet clear according
to Formula (1.14) that this will increase the complexity of the metric. Thus, the complexity
constraint will not be satisfied anymore after the truncation algorithm.

Loss of local and global optimality. Imagine that at one vertex, one of the Hessian eigenvalues
γi, with i ∈ J1, nK, is very small, close to 0. Actually, this situation is frequent, it happens as
soon as the function is almost linear in one direction. Because of the local normalization term
det(|Hu|)

−1
2p+n appearing in Formula (1.22), the eigenvalues of the optimal metric (mj)j ∈J1,nK, j 6=i

associated with the other directions become really big as compared to the one associated with
direction i. Indeed, if γi is the only eigenvalue close to 0:

mi =

(
n∏
l=1

γl

)− 1
2p+n

γi =

(
n∏

l=1,l 6=i
γl

)− 1
2p+n

γ
2p+n−1

2p+n

i ≈ 0 ,

mj =

(
n∏

l=1,l 6=j,l 6=i
γl

)− 1
2p+n

γ
− 1

2p+n

i γ
2p+n−1

2p+n

j ≈ +∞ .

Therefore, prescribed sizes hj , with j 6= i, will be very small as compared to prescribed size in
direction i, hi. In this case, this is precisely the very small Hessian eigenvalue for direction i

that has imposed the choice of very small sizes in the other directions for MLp . However, if
we finally increase γi so that the size prescribed in direction ri is reduced to hmax, there is no
reason anymore for the sizes in the other directions to be so small. Actually, what we would
like to do is to relax the constraint on the other directions while increasing the constraint in
direction i. In other words, this comes to squeeze the unit ball in direction i while swelling it in
the other directions, see Figure 1.10. Eventually, this approach is typically a local one which is
not consistent with the choice previously made of a global optimization strategy. The objective
of this section is to present a slightly more sophisticated truncation algorithm enabling to get
rid of the above mentioned drawbacks.

Some essential remarks.

Truncation must be performed on the eigenvalues of the Hessian. As illustrated in Figure
1.10, we would like the enforcement of the maximal size criterium in one direction to be associated
with a relaxation of small size constraints imposed by the metric in the other directions. To better
understand the coupling between the sizes prescribed in the different directions, it is important
to understand here that the two directions of the Hessian are not correlated (a change of one
of its eigenvalue γk,i does not affect the other eigenvalues) whereas it is not the case for the
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truncation

hmax

h1

h2

h�
1 > h1

h�
2 = hmax

Figure 1.10: Squeeze and swell mechanism in two dimensions: the unit ball is squeezed to reach
hmax in direction r1 and swollen in the other directions.

complete metric. Indeed, due to the local normalization term
∏n
k=1 γk,i

− 1
2p+n , a change of one

of the eigenvalues λk,i results in a change in all the others eigenvalues. For example, let x ∈ Ω

and let us imagine that γ1(x) increases while γ2(x) and γ3(x) keep the same value. As γ1(x) is
associated with a positive power, h1(x) increases :

h1(x) = DLp [γ2(x)γ3(x)]
− 1

2p+n γ1(x)
2p+n−1

2p+n .

On the contrary, the sizes in the other directions diminish because γ1(x) is associated with a
negative power:

h2 = DLp γ1(x)
− 1

2p+nγ3(x)
− 1

2p+nγ2(x)
2p+n−1

2p+n ,

h3 = DLp γ1(x)
− 1

2p+nγ2(x)
− 1

2p+nγ3(x)
2p+n−1

2p+n .

This simple example emphasizes the crucial role played by the local normalization term
det (|Hu(x)|)−

1
2p+n regarding the coupling between the sizes prescribed in the different eigen-

directions. Notably, this shows that to observe the desired "squeeze and swell" effect, the
truncation has to be performed on the Hessian eigenvalues rather than on the locally normalized
or complete metric eigenvalues.

The non-linear coupling requires a global iterative strategy. As explained in the previous
paragraph, enforcing a maximal size criterium by truncating the Hessian eigenvalues results
in an increase in the complexity of the metric. On the other hand, modifying the complexity
changes the expression of the maximal size criterium. This means that the sizes prescribed by
the metric and the complexity of the metric are tightly related to each other. Moreover, the
coupling involving DLp and the eigenvalues of the Hessian γi is highly non-linear :

DLp =
N∫

Ω
[γ1(x)γ2(x)γ3(x)]

p
2p+n dx
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For example, if γ1 is modified, the normalization constant DLp changes. Moreover, the three
maximal size criteria DLp [γ1γ2γ3]

− 1
2p+n γi ≥ mthres , ∀ i ∈ J1, 3K are also different due to

changes in γ1 and DLp , which may lead us to correct one or two of the other eigenvalues, de-
pending on whether the associated sizes violate threshold mthres. If corrections are performed,
the complexity will again be changed...etc. All this shows that a global iterative strategy is
needed if one wants to respect the maximal size criterium while enforcing the complexity con-
straint.

1.4.4.2 Our approach

Initial correction of the eigenvalues of the Hessian. The very first problem to be solved is
due to the possible presence of null Hessian eigenvalues, notably due to the local normalization
term det(|Hu|)

−1
2p+n appearing in Formula (1.22). Indeed, if one of the γi’s is zero at one vertex

of the computational domain, this term is not defined. Here again, one solution would consist
in setting any γi to a very small arbitrary value as soon as it falls below a pre-defined threshold
ε.
However, the definition of this threshold is problematic, all the more as no clear interpretation
can be found for values γi(x). Indeed, the Hessians are not directly linked to any kind of
"maximal prescribed size". They are actually dimensioned objects, i.e. their eigenvalues have a
dimension: [U ] · [L]−2, [U ] being the dimension of the field on which the adaptation is performed.

The solution adopted here to sidestep this difficult question of dimensioned ε consists in pre-
scribing a maximal anisotropic ratio8 instead of enforcing a minimal value for the eigenvalues of
the Hessian. From our point of view, it has much more sense than directly prescribing a γmin
threshold and the physical meaning is much more clear for the user. Indeed, the anisotropic
ratio of |Hu(x)| is the same as the one of complete metricM(x), which means that by providing
a maximal anisotropic ratio, we solve the null Hessian eigenvalues problem and at the same time
guarantee that the final metric will also enforce this maximal anisotropic ratio criterium.

Let us now explain how the prescription of a maximal anisotropic ratio rmax implicitly defines
a minimum eigenvalue γmin. Let rmax > 1 be the maximal anisotropic ratio given by the user.
Let x ∈ Ω and let us assume that the sizes prescribed by the optimal metric at x are classified
by increasing order:

h1(x) ≤ h2(x) ≤ h3(x) for n = 3⇐⇒ 1√
m1(x)

≤ 1√
m2(x)

≤ 1√
m3(x)

⇐⇒ m1(x) ≥ m2(x) ≥ m3(x)⇐⇒ γ1(x) ≥ γ2(x) ≥ γ3(x) .

If r(x) designates the anisotropic ratio of the continuous element given by the optimal metric

8 the anisotropic ratio of an element is defined as the ratio between the length of its biggest edge and the
length of its smallest edge.
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at x, we would like to enforce:

r(x) < rmax ⇐⇒
h3(x)

h1(x)
< rmax ⇐⇒

γ3(x)

γ1(x)
> Rmin

√
m1(x)

m3(x)
< rmax ⇐⇒

m3(x)

m1(x)
>

1

r2
max

⇐⇒ ⇐⇒ γ3(x) > γ1(x)Rmin , and Rmin =
1

r2
max

< 1 .

To ensure r(x) < rmax, we must therefore correct the Hessian eigenvalues in the following way:

γ2(x) ← max γ2(x), γ1(x)Rmin

γ3(x) ← max γ3(x), γ1(x)Rmin
(1.26)

If eigenvalue γ1(x) of |Hu(x)| is non-zero, we obtain after Correction (1.26):

γj(x) ≥ γ1(x)Rmin = γmin, ∀ j > 1 .

In the case where ∀ i, γi(x) = 0, the only solution is to directly prescribe an arbitrary
minimum value γmin, for instance γmin = 10−40 · Uref · L−2

ref , where Uref and Lref are some
reference quantities associated with the adaptation variable and the length units, respectively.
They can be provided by the user or may be inferred from known quantities (domain box size,
value of the solution at one point...).

Coupling management. As explained in the preliminary remarks, an iterative strategy is
mandatory due to the non-linear coupling. Each iteration is made of two stages:

1. a local cutting phase of the metric, during which all the sizes exceeding hmax are truncated,

2. a global growing phase of then metric, during which the metric unit balls are uniformly
enlarged to try to make up for the complexity induced by Stage 1.

One can therefore legitimately speak about explicit coupling regarding our approach insofar as
the global normalization term and the Hessian eigenvalues are not simultaneously corrected but
rather one after the other. Figure 1.12 shows the evolution of a given metric field during the
iterative non-linear loop. The progressive enlargement of the metric is easily observed. Note that
for visualization issues, the metric has been voluntarily multiplied by 40 to avoid the intersection
and superposition of many metrics on the images. The global truncation algorithm is detailed
in Figure 1.11.

Convergence issues. To demonstrate the termination and the exactness of the algorithm, we
will proceed in two steps:

1. We first demonstrate that sequence
(
Dj

Lp

)
j
is decreasing while the number of iterations j

increases, hence the denomination "growing phase",

2. Then, the convergence of
(
Dj

Lp

)
j
is shown,

3. Finally, it is proved that the metric obtained when passing to the limit respects the complexity
constraint and the maximal size criterium.
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Proof of 1. First, according to Relation (1.27), the numerical complexity Cj+1 of the metric
computed at iteration j of the truncation algorithm satisfies:

Cj+1 = C
(
Mj+1

)
=

Nv∑

i=1

[
n∏

l=1

λj+1
l (xi)

] 1
2

× |Ci| ≥ |Ω|
(
mthres

Dj
Lp

)n
2

,

where we have noted |Ci| the volume of the dual-cell associated with vertex Pi = (xi) (see
Section 5.2) andDj

Lp the global normalization constant computed at iteration j of the truncation
algorithm. Therefore, the global normalization constant computed at the next iteration verifies:

Dj+1
Lp = N

2
n
(
Cj+1

)− 2
n ≤

(
N

Cthres

) 2
n

Dj
Lp ,

and we have noted:

Cthres =

∫

Ω

√
detMthres dx =

∫

Ω
m

n
2
thres dx = |Ω|m

n
2
thres .

Mthres is the isotropic continuous mesh prescribing size hmax everywhere in all directions. Sup-
pose that parameters N and hmax are prescribed in such a way that the following relation is
satisfied:

N

Cthres
< 1 . (1.28)

In this case, sequence (Dj
Lp)j is decreasing, which justify the name "growing phase" for the

metric. Note that Condition (1.28) is totally justified and can be interpreted as a consistency
criterium to be satisfied by the parameters of the truncation algorithm. Indeed, if a maximal
size criterium is enforced, the prescribed complexity cannot be arbitrary low: there must be
enough vertices just to mesh the domain without exceeding hmax. The coarsest continuous
mesh that respects both criteria is defined by metricMthres. It is therefore inconsistent to ask
for a complexity lower than Cthres, Cthres being the lowest possible complexity compatible with
prescribed parameter hmax.

Proof of 2. (Dj
Lp)j is decreasing, but it is also a positive sequence by definition. Therefore, this

sequence converges towards a limit DLp .

Proof of 3. Finally, we must show that the metric obtained at the end of the algorithm indeed
satisfies both criteria. Corrected Hessian eigenvalues (γj,corl )l∈ J1, nK are indeed calculated so that
the resulting corrected metric sizes enforce the maximal size constraint. As they are used at the
end to compute the final metric, this metric also enforces the maximal size prescription. �

As a conclusion, this new algorithm solves most of the problematics encountered with the
rough truncation strategy. By relaxing the very small size constraints induced by very
big sizes prescription along shocks, it enables in many cases to enlarge the small-
est altitudes of the mesh while preserving the desired mesh accuracy. The mesh
obtained after truncation is closer to the true optimal mesh associated with the
complexity constraint.
Due to the CFL condition, which links the smallest altitude of the mesh to the maximal time



56 Chapter 1. Multi-scale metric-based mesh adaptation

step of the solver, this algorithm impacts favorably on the CPU time of CFD simulations for
a given accuracy, and notably those involving strong shock waves. A gain of a factor 2 in
terms of CPU time has been observed in most of our simulations.
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Initialization.

• For each vertex of coordinates x:

– Perform the initial correction on the eigenvalues (γl)l of the pure Hessian, see For-
mula (1.26). These corrected eigenvalues, named (γ0)l, are stored. They will always
be used as a starting point for the non-linear loop.

– Add the contribution of this vertex to the new global complexity C0.

• Compute global normalization term D0
Lp =

(
N

C0

) 2
n

, j ←− 0

Non-linear loop. Do:

• For each vertex Pi of coordinates vector xi :

– Recalculate the eigenvalues of the complete metric
(
mj
l (xi)

)
l∈ J1,nK

using the initial cor-

rected Hessian eigenvalues
(
γ0
l (xi)

)
l∈ J1,nK,

– Cutting stage: If the metric field locally prescribes a size
hl(xi) > hmax in direction rl, compute corrected Hessian eigenvalues γcor,j+1

l (xi) as a
function of Dj

Lp , hmax and γ0
l (xi) and such that the new corresponding size hl(xi) is

truncated to hmax.
This comes to ensure that:

λj+1
l (xi) ≥

mthres

Dj
Lp

, ∀ l ∈ J1, nK . (1.27)

– Add the contribution of this vertex to the new global complexity:

Cj+1 ←− Cj+1 +

(
n∏

l=1

λj+1
l (xi)

) 1
2

|Ci| ,

and |Ci| is the control volume associated with vertex Pi.

• If the new complexity is close enough to the desired one, break.

• Growing stage: Otherwise, update the global normalization term

Dj+1
Lp ←−

(
N

Cj+1

) 2
n

.

This comes to make the unit balls of the metric field become larger.

• j ←− j + 1

Continue until desired complexity N is not reached, i.e.
|Dj−1

Lp Cj −N |
N

≥ ε.

Ending. Compute the final metric at each vertex using
(
γj,corl (xi)

)
l
and Dj

Lp :

M(xi)←− Dj
Lp

[
det
(
|Hj,cor

u |(xi)
)]− 1

2p+n |Hj,cor
u |(xi) ,

where Hj,cor
u is the Hessian matrix obtained with the same directions as the initial Hessian

but with the last corrected eigenvalues
(
γj,corl

)
l
.

Figure 1.11: The truncation algorithm for steady adaptation.
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Figure 1.12: Metric field obtained at iterations 1, 3, 5 and 7 of the truncation algorithm process
on a given functional in two dimensions. The global growth of the metrics is clearly visible.
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In the previous chapter, the usefulness of metric-based mesh adaptation in the context of
pseudo-steady solutions of unsteady numerical simulations has been investigated. Notably, sub-
stantial gains both in terms of CPU time and automatization have been emphasized.
This chapter deals with metric-based mesh adaptation applied to unsteady simulations. Sec-
tion 2.1 recalls the main problematics linked to unsteadiness in the context of mesh adapta-
tion and gives an overview of existing methodologies. Section 2.2 is interested in the study of
space-time errors. Notably, the continuous interpolation error analysis is extended to unsteady
problems and clarifies the role played by the CFL condition in such simulations. Section 2.3
is devoted to the practical implementation of the fixed-point algorithm extended to multi-scale
simulations. Finally, Section 2.4 presents several three-dimensional unsteady adaptive numerical
results.
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2.1 The challenges of unsteady simulations

2.1.1 Motivations

2.1.1.1 Motivation: real-life is unsteady

To begin with, it is important to insist on the fact that most of the realistic problems ema-
nating from the industrial world are intrinsically unsteady. The accuracy control of unsteady
simulations, notably in three dimensions, therefore appears as a major stake for the years to
come. This can sound as a triteness but, seeing the number of papers dealing with this subject,
it seems that the problematic has still not grabbed the attention it would really deserve.
Here are some unsteady simulation examples in fluid mechanics, among many others:

• Blast simulations. For safety purpose, the simulation of shock waves induced by explosions
and their impact on complex-shaped buildings get increasing interest. Examples of such sim-
ulations can be found in [Baum 1993b, Baum 1995a, Baum 2003, Alauzet 2007, Stück 2009].

• Turbulence and instabilities. Every turbulent flow is intrinsically unsteady even if it can
sometimes be considered as statistically stationary. In aeronautics, simulating the turbulent
wake behind aircrafts or the turbulent boundary layer is of major interest. The accurate
capture of instabilities is also crucial, see [Woodward 1984, Langseth 2000].

• Multi-fluid flows. Multi-fluid flows computations, which require an accurate capture
of time-dependent complex interfaces between different fluids [Guégan 2010, Allain 2009,
Compère 2007, Lesage 2007, Mesri 2008].

• Simulations involving moving geometries. Aeroelasticity [Farhat 2003], seat ejection
[Baum 1997a], biomedical applications [Astorino 2009], turbo-machinery [Shyam 2010].

2.1.2 Problematics linked to unsteadiness.

2.1.2.1 The Courant-Friedrichs-Lewy condition

As already said, this work is interested in the simulation of flows governed by hyperbolic PDE.
Due to the presence of convective terms (linear or not), these computations are submitted to a
Courant-Friedrichs-Lewy (CFL) condition. This condition and some of its possible interpreta-
tions are recalled below.

The one-dimensional linear advection equation. The following problem is considered:

(P)





∂u

∂t
(x, t) + a

∂u

∂x
(x, t) = 0 , ∀ (x, t) ∈ R× R+ a > 0 ,

u(x, t = 0) = u0(x), ∀x ∈ R .

This Cauchy system has an analytical solution given by: u(x, t) = u0(x − a t).1 On a (x, t)-
diagram, the characteristics2 of (P) form a family of parallel straight lines of slope 1/a, see

1This expression shows that a can be seen as a phase speed, or celerity.
2The characteristics are the lines of the (x, t)-diagram along which u remains constant.
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Figure 2.1.
Let xj for j = 1, . . . , Nv be a uniform spatial discretization of the one-dimensional domain and
let tk for k = 0, ..., Nite be a uniform time discretization. Nite is the number of solver time steps.
We note h = xj−xj−1 and τ = tk− tk−1, which are assumed to be constant. An upwind scheme
is chosen to discretize (P):

uk+1
j = ukj + a

τ

h

(
ukj − ukj−1

)
, j ∈ J1, NvK , k ∈ J0, NiteK . (2.1)

For this scheme, the L2 and L∞ Von Neumann stability analysis both reveal a necessary condition
of stability, named Courant-Friedrichs-Lewy condition, involving the ratio h/τ , and that reads:

a
τ

h
≤ 1⇐⇒ τ ≤ h

a
, ∀ j ∈ J1, NvK.

This inequality states that time step τ must be lower than the time taken by the wave to
cross one element of the spatial mesh. In other words, the propagation speed of the numerical
information must be lower than the one of the physical information.

t = tk +
x− xj+1

a
t = tk +

x− xj−1

a

tk + ∆t

xj−1 xj xj+1

tk

x2x1

characteristics

CFL condition: τ ≤ hj

a

hj

a
τ

x1 = xj−1 + aτ
x2 = xj+1 + aτ

Figure 2.1: The CFL condition in one spatial dimension. The parallel characteristics passing
through (xj−1, t

k) and (xj+1, t
k) are drawn in red.

The CFL condition for the Euler equations. As opposed to the previous linear advection
problem, the Euler equations form a system of multi-dimensional non-linear coupled equations.
They are generally solved on unstructured meshes to handle complex geometries. Therefore, the
Von Neumann method cannot be used for the stability analysis of the numerical schemes used
to discretize these equations. However, the stability of the linearized system around a given
solution is a necessary condition for stability. The idea is therefore to perform a local analysis
of the linearized Euler equations.
Now, let us consider the Euler system of equations and an arbitrary direction of propagation r,
with ||r|| = 1. Locally, the Euler system of equations can be linearized into:

∂W ′

∂t
+A(W )

∂W ′

∂x
= 0 ,

where W is supposed to be a fixed solution state, W ′ is close to W and A is the Jacobian tensor
of the Euler fluxes. A simple Fourier analysis shows that this system has wave-like solutions of
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the form W (x, t) = W0 exp (at− r · x), a being the phase speed, i.e a is an eigenvalue of matrix
A(W ) r = rxAx + ryAy + rzAz. The study of the eigenvalues of A(W ) r reveals three waves of
phase speed u · r, u · r + c and u · r− c respectively, where c is the local sound speed of the flow
and u the Eulerian velocity of the flow. The biggest phase velocity is obtained for a direction
r collinear to u and equals ||u|| + c. Besides, we are interested in the resolution of the Euler
system on an unstructured mesh by a Finite Volume (FV) method. Therefore, the spatial size
parameter h which represented the distance between two adjacent cells is not constant anymore.
It has to be define locally. In our case, the size parameter is defined numerically at each vertex as:

pi

hmin,i = hK
1

K0

1

2

hmin,i = min
K ∈Ball(Pi)

min
q ∈ J0, 2K

hKq ,

and





Ball(Pi) the ball of vertex Pi ,

hKq the altitude of K w.r.t local vertex q .

3

According to the previous paragraph, a necessary condition to enforce the CFL condition locally
around Pi in all directions of propagation and for all waves is:

τ ≤ hmin,i
||ui||+ ci

= τmin,i .

As this has to be satisfied for each vertex, we get:

τ ≤ min
i∈ J1, NvK

τmin,i = τmin .

In general, for robustness issues, τ is scarcely taken equal to τmin but rather to:

τ = CFL × τmin , where 0 < CFL ≤ 1 .

and CFL is the Courant number (or CFL number). Note that the use of an unconditionally
stable implicit scheme for the time integration would theoretically enable to get rid of the
constraint imposed by the CFL condition, but at the price of an increased numerical dissipation,
see Section 2.2.2. Therefore, if high accuracy is desired, the time step must remain of the order
of magnitude of the one prescribed by the CFL condition.

2.1.2.2 Consequences of the CFL condition

CPU time and convergence studies. As a corollary of the CFL condition, when the minimal
altitude hmin is reduced, the upper limit for the time step also decreases and the number of solver
time-advancing steps increases.
Convergence studies for unsteady simulations are therefore very time-consuming. For instance,
let us a consider a simulation on a uniform mesh of typical size h. Then, in three dimensions,

3w.r.t is used for "with respect to"
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the number of vertices Nv varies like h−3. If the steady solver has a linear complexity in Nv

and the unsteady solver a linear complexity in Nv ×Nite, Nite being the number of iterations,
Table (2.1) is obtained.

Nv Nite CPU Unsteady

h/2 ×8 ×2 ×16

h/4 ×64 ×4 ×256 !

Table 2.1: CPU time increase induced by successive divisions of mesh size h for unsteady simu-
lations enforcing a CFL condition.

More generally, imagine a uniform complexity refinement of factor c is used to perform a
convergence study, i.e. the simulation is performed for Nv(0) = N0, Nv(1) = cN0, . . . , Nv(k) =

ckN0. For unsteady simulations enforcing a CFL constraint, the following equivalence occurs:

CPU time(k) = O(Nite(k)×Nv(k)) = O(h−1
min(k)×Nv(k)) = O(N

1
3
v (k)×Nv(k))

= O(N
4
3
v (k)) = O(c

4k
3 ) .

For instance, if c = 2, the 5th computation will take 2
4×5

3 ≈ 102 times more CPU time than the
first simulation. If the first simulation has taken 20 minutes, the 5th one will take 34 hours.

This qualitative approach hence shows that CPU time can be considered as a quality
criterium to distinguish between different unsteady adaptive methods, especially when
convergence studies are considered. Moreover, it is clear that convergence studies cannot be
considered unless mesh adaptive strategies are adopted.

The hmin bottleneck: a meshing challenge. Due to the CFL condition, a single small-
altitude element in the whole mesh is sufficient to considerably reduce the time step and
hence increase the CPU time of the simulation. This phenomenon is not specific to unsteady
simulations as the CFL condition must also be enforced in the case of pseudo-steady solutions
of unsteady simulations for stability purposes. However, for stationary problems, this issue can
be sidestepped thanks to a local time stepping technique. For unsteady problems, this trick
cannot be used anymore and a global time-stepping strategy is unfortunately mandatory. This
is a serious problem, especially in the context of highly anisotropic mesh adaptation, which
involves highly stretched elements and hence very small values of hmin.

One method to remedy this problem is to use several different time steps for different regions
of the flow, as suggested in [Esnault 2011]. The idea is to partition the domain into several
sub-domains. Flow equations are simultaneously advanced on each sub-mesh associated with
each subdomain, each sub-mesh having its own local time step adapted to satisfy the local CFL
condition. This strategy seems quiet promising but is not addressed in this Thesis.

Due to the impossibility to use local time stepping schemes, the only remedy is to reduce
this constraint as far as possible by generating anisotropic meshes controlling the error with the
highest hmin value. This implies a substantial effort on the anisotropic mesh generator, notably
in three dimensions, as the quality of the mesh must be perfect. As way of an example, if the
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mesh generator fails to generate the minimal altitude element for which a size of htarget had
been prescribed, and instead build an element of altitude hmin = 0.01 × htarget, the number
of iterations of the solver is multiplied by 100! Consequently, not a single meshing mistake is
allowed on millions of generated tetrahedra!

2.1.3 Problematics linked to unsteady anisotropic mesh adaptation.

Four-dimensional space-time meshes. The general problem of "true" space-time adapta-
tion, which would consist in finding the best space-time unstructured mesh controlling the
space-time error, currently remains intractable. Indeed,

• its application to three-dimensional CFD computations would certainly be tricky as it implies
the generation of four-dimensional anisotropic unstructured meshes of complex space-time
domains,

• A problem appears when Fluid-Structure Interaction is considered. Indeed, in this case the
position in time of moving objects, i.e. the definition of the fourth-dimensional space-time
computational domain, is part of the unknowns of the equations because they are computed
depending on the forces applied on the moving bodies by the surrounding fluid. This means
that an adapted mesh for a space-time domain must be built while this space-time domain
is not even known in advance,

• it would require the implementation of new numerical schemes, such as space-time Discon-
tinuous Galerkin methods. Indeed, for a general space-time discretization, the method of
lines, which consists in computing the solution time after time, would not be valid anymore
and most of the schemes currently implemented could not be used.

For the moment, we are therefore forced to restrict ourselves to "time-advancing" schemes: the
space-time computations are carried out for one space-time "slab" at a time, where the "slab"
is the slice of the space-time domain between time tn and tn+1. This spares a three-dimensional
problem from becoming a four-dimensional problem including time dimension. In other words, a
strong constraint is imposed on the allowed space-time meshes: space time elements must be right
prisms the basis of which is a triangle in two dimensions and a tetrahedra in three dimensions.
In the sequel, such kind of space-time meshes will be referred to as "time-advancing" meshes.

Adaptation lateness. The adaptation loop presented in Chapter 1 is intrinsically not suited to
unsteady simulations, because in such simulations, the temporal evolution of the physical phe-
nomena inside the physical domain is totally unpredictable. Indeed, for pseudo-steady solutions
of unsteady simulations, the adaptation algorithm consists in finding a fixed-point for the couple
mesh/solution. If this algorithm is applied as it to unsteady simulations, the adapted mesh will
always be late, behind the solution. In other words, the mesh is adapted for the solution at
time tn−1 while we are calculating the solution at tn. Notably, physical phenomena can evolve
outside the adapted area between tn−1 and tn, which can spoil the solution accuracy.
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2.1.4 State of the art

If steady metric-based mesh adaptation has been the subject of many papers for the last 20 years,
one cannot tell as much about unsteady metric-based mesh adaptation. Three main types of
methods can be listed: adaptation by mesh movement, re-meshing methods and the fixed-point
method.

2.1.4.1 Moving mesh methods

These methods are sometimes called "r-methods" or "dynamical adaptive methods". In these
techniques, the mesh nodes are typically moved or reallocated continuously, via a mesh equa-
tion, to adapt to the evolutionary features of the solution. The mesh keeps the same topology
and number of vertices, but vertices are allowed to move toward the regions of main inter-
est. However, in this case, the movement of the inner vertices has to be taken into account in
the equations while they follow the unsteady features of the solution. Generally, moving mesh
methods differ by:

• the considered adaptation criterium,

• the way the adaptation criterium governs the mesh movement,

• the way the influence of the vertices movement on the governing equations is taken into
account (quasi-Lagrangian approaches v.s. conservative rezoning/interpolation approaches).

The attractiveness of these methods lies in their ability to get rid of spoiling interpolation
stages by formulating the problem in a global, fully consistent framework. Indeed, the equation
governing the movement of the mesh and the one governing the fluid dynamics are solved
simultaneously, the fluid equation being rewritten in a moving mesh framework. One usually
distinguish two main families of methods: velocity-based and location-based.

Velocity-based methods. For velocity-based methods, the movement of each vertex is found
through its velocity, which is then integrated in time to find the new location of the considered
vertex. These methods are classified in three categories:

• Lagrangian methods,

• Moving Finite Elements,

• and GCL methods.

Lagrangian methods: In this case, the velocity of the vertices is exactly the Lagrangian velocity
of the fluid. Actually, mesh vertices are assimilated to fluid particles and follow the dynamics
of the fluid:

w = ufluid .

w is the instantaneous velocity of the mesh, see Section 5.1 for more details. The mesh therefore
tends to adapt to the streamlines of the flow. Of course, for this method, the equations governing
the fluid dynamics are solved in their Lagrangian formulation [Loubère 2010].
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Moving Finite Elements: The Moving Finite Element introduced by [Miller 1981] computes the
solution and the mesh velocity at the same time by minimizing the residual of the considered
PDE rewritten in a moving mesh framework. More precisely, suppose that the PDE reads:

∂u

∂t
= Lu ,

with u the unknown solution and L a spatial differential operator. Then, the following mini-
mization problem is solved:

min
w(·, t), Du

Dt
(·, t)

∫

Ω

(
Du

Dt
(x, t)−w(x, t) · ∇xu(x, t)− Lu(x, t)

)
φ(x, t) dx ,

where φ is a weight function to be determined and D
Dt holds for the Lagrangian derivative.

Penalty terms are generally added to avoid the apparition of singularities in the mesh movement
equations [Carlson 1998a, Carlson 1998b, Baines 1995].

GCL method : This method, based on the Geometric Conservation Law, has been introduced
in [Cao 2002]. According to the Eulerian framework, for any transformation x = x(ξ, t) of a
continuous medium, with x(ξ, t = 0) = ξ, the instantaneous relative variation of an elementary
volume V is:

− 1

dV

DV

Dt
(ξ, t) = divξw .

By analogy, the prescribed density of vertices d =
√

detM is assumed to satisfy:

−1

d

Dd

Dt
= divξw =⇒ ∂d

∂t
+ divξ(dw) = 0 .

However, this equation alone is not sufficient. Indeed, according to the Helmholtz Decomposition
theorem, which states that a vector field is uniquely determined by its divergence and its curl, we
should also get information about the curl of w to be able to reconstruct w and integrate it to
get the new vertices locations. Different approaches can be chosen, depending on the adaptation
criterium. Cao and his coworkers [Cao 2002] think that the adaptive mesh should follow the
flow of some given vector field a(x, t) and suggest the use of the following equation:

rotξ(φ(a−w)) = 0 ,

and φ is a scalar weight function to be chosen. Practically, it is often taken equal to 1 or to
fluid pressure p. Then, combining the equation on the divergence and on the curl of w, and
reformulating it into a minimization problem, he gets the following problem:

min
w

∫

Ωξ

|∂d
∂t

+ divξ(dw)|2 +

(
d

φ

)
| rotξ (φ(a−w)) |2 dξ .

Note that the so-called deformation map method of Moser [Moser 1965] actually comes to take
a = 0 and φ = ρ. Both methods provide the same divergence for w, which means that the local
density of the mesh will be identical. The difference lies in the local orientation of the resulting
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mesh. GCL methods provide locally non-singular mappings but generate skewed meshes. More-
over, the link between the curl of w and the local anisotropy and orientation of the mesh is still
not clear.

Generally, the main problem with these methods lies in their tendency to quickly generate
tangling meshes.

Location-based methods. The other class of moving mesh adaptive methods is referred to as
location-based methods as they directly provide the new location of the vertices without com-
puting the mesh velocity. These techniques typically employ a variational approach. Adaptive
meshes are seen as images of a computational, regular mesh by a coordinate transformation
x = x(ξ). This transformation is obtained by minimizing an adaptation functional expected to
measure the difficulty in the numerical approximation of the physical solution. This functional
generally involves a metric (also called monitor function), which is obtained either heuristically
or by an estimation of some numerical error. Most of these methods find their origin in the
Laplace-equation-based mesh generator introduced in [Winslow 1963]. The following methods
are briefly explained here:

• Poisson type methods,

• Harmonic maps,

• Moving Mesh Partial Differential Equation (MMPDE).

Poisson type methods: Godunov and Prokopov [Godunov 1967] were the first to suggest the use
of a Poisson-type equation instead of a Laplace equation. The left hand side, as for Winslow’s
method, is a Laplacian written in curvilinear coordinates while the right-hand side plays the
role of a variable gravity term used to control locally the attraction/repulsion between vertices:

∆xξ
i = P i ,

in which the "control functions" P i can be fashioned to control the spacing and orientation of
constant coordinate lines4. Thompson and Warsi [Thompson 1983] then enhanced this method
by further explaining how to enrich source terms P i with the information contained in a target
metric. The equi-distribution approach of Anderson [Anderson 1982] aims at relocating mesh
vertices in such a way that some mesh property Q is equi-distributed over the domain. This
is generally done by minimizing a weighted integral measure of this property written under the
form: ∫

Ω

Q(x)
√

detM(x) dx .

The Euler-Lagrange equation corresponding to this minimization problem then constitutes the
mesh adaptation PDE. This method was originally used to generate meshes enforcing some de-
sired properties such as smoothness or orthogonality near the boundary [Brackbill 1982]. How-
ever, it turned out that this variational framework was much more suited to mesh adaptation

4 Coordinates lines are the parametrized curves/surfaces defined by
{x(ξ1 = 0, . . . , ξi−1 = 0, ξi, ξi+1 = 0, . . . , ξn = 0), ∀ ξi ∈ R}
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problematics than to direct mesh generation, which led to the development of the theory of
harmonic mappings.

Harmonic maps: The theory of harmonic mappings has been formalized by [Dvinsky 1991]
and can be considered as an extension of equi-distribution methods that enables to take into
account the alignment of the mesh through the prescription of a metric tensor field. This theory
relies on the Hamilton-Schoen-Yau theorem, which gives a method to get a mapping, called
harmonic mapping, between two Riemannian spaces through a variational problem. Harmonic
maps are defined as critical points of an energy functional which is defined in terms intrinsic
to the geometry of the domain, the target manifold and the map between them. In a certain
sense, it represents the deformation energy to transform a flat space into a target manifold. This
energy is defined as:

E(ξ(x)) =

∫

Ω

1

2

(
n∑

i=1

∇xξi(x)T · M−1(x) · ∇xξi(x)

)
√

detM(x) dx .

The associated Euler-Lagrange equations form a system of size n:

div
(√

detM(x)M−1(x) · ∇xξi(x)
)

= 0, i ∈ J1, nK .

This work has been applied to different kind of metrics: [Brackbill 1993, Ceniceros 2001,
Chacón 2006, Di 2007]. Huang [Huang 2001] proposed the following variant for the adaptation
functional, which is deduced from a rigorous analysis of the interpolation error:

E(ξ(x)) = θ

∫

Ω

(
n∑

i=1

∇xξi(x)T · M−1(x) · ∇xξi(x)

)
√

detM(x) dx

+ (1− 2θ)n
nγ
2

∫

Ω

√
detM(x)(√

detM(x) det∇ξx
)γ dx .

The first term corresponds to an alignment requirement while the second term represents and
equi-distribution requirement, the combination between these two being controlled by a weight-
ing parameter θ. γ > 1 is a real parameter. Another kind of functional based on manifold first
and last invariants has been proposed in [Azarenok 2008].

MMPDE: In [Huang 1999], the time parameter is introduced in the moving mesh equation by
rewriting the variational formulation under the form of a gradient flow equation of the adaptation
functional:

∂ξ

∂t
= − 1

trefα(x, t)

δE

δξ
,

where α is a balancing factor and tref is the parameter specified to adjust the time scale of the
movement. Once again, a variable change is performed to get an equation in function x = x(ξ)

instead of ξ = ξ(x).
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2.1.4.2 Frequent remeshing methods

To be able to write a global consistent system of equations governing at the same time the fluid
dynamics and the movement of the mesh, moving mesh methods assume that the topology of
the mesh as well as the number of vertices remain constant during the adaptation process. This
assumption turns out to be very constraining when attempting to generate highly anisotropic
meshes. Actually, it is not even clear that these methods are able to adapt the mesh with
respect to any arbitrary smooth metric M. For this reason, more pragmatic methods have been
designed using existing steady adaptation techniques.

Frequent re-meshings. [Löhner 1992] and [Rausch 1992] suggested to perform adaptive re-
meshing very frequently, but only involving refinement/coarsening and no vertex displacement
to avoid interpolation errors. They also mentioned the usefulness of spreading the adaptation
around critical regions. Thus, a safety zone is built that prevents the solution from going out of
the adapted region between two adaptations. Such approaches have many drawbacks. First, they
say nothing about the control of the temporal error. Moreover, refinement/coarsening methods
do not enable the generation of optimal meshes in terms of vertices number and distribution,
and forbid the generation of truly anisotropic meshes. Eventually, the "safety area" method
intrinsically leads to the generation of non-optimal meshes.

Indicator based re-meshing. Unsteady adaptation algorithms attempting to generate optimal
meshes in terms of vertices number and location have been first proposed in [de Sampaio 1993,
Wu 1990]. The error is estimated every n1 iterations with an indicator η =

(∑
K η

2
K

) 1
2 and

a re-meshing procedure is performed to readapt the mesh as soon as the indicator exceeds a
prescribed threshold. In any case, the mesh is re-adapted every n2 time steps.
A similar strategy is used in [Picasso 2003, Lozinski 2009, Micheletti 2008, Picasso 2009]. For
instance, in [Picasso 2003], a global error indicator η controls mesh adaptation: if η < 0.75ε or
if η > 1.25ε, the domain is re-meshed, where ε is a prescribed threshold. For each re-meshing,
the metric used to adapt the mesh is found using local directional error indicators. If one of the
directional indicator associated with an element falls below αε′, with α ∈ [0, 1] a prescribed
parameter and ε′ another threshold, the eigenvalues of the metric in the considered direction are
reduced; if it exceeds (1− α)ε′, then the eigenvalues of the metric are increased of a prescribed
scaling factor. By dichotomy, a nearly optimal metric is found. This method enables to increase
or decrease the complexity of the mesh depending on the complexity of the solution and gives
an answer to the problem of controlling space-time error in unsteady simulations. It also relies
on a strong theoretical background. However, in practice, the mesh is re-adapted only when the
error exceeds 1.25ε, which means that a degradation of mesh accuracy is allowed between two
re-meshing stages. The influence of this degradation is not known and may affect the accuracy
of the computation.

In practice, these methods still require frequent re-meshing stages, which leads to:

• Increased CPU time: First, as already mentioned, the re-meshing itself is not CPU-time free.
Second, if static data structures are used in the solver, each re-meshing imposes to quit the
solver, to restart it, to rebuild and initialize all the data structures, notably topological ones,
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before the simulation is resumed. Obviously, when re-meshings are frequent, these restarting
operations can be prohibitive in terms of CPU time. As a consequence, a solver based on
dynamical data structures is generally preferred as in [Compere 2010]. But dynamical data
structures do not allow fast search operations and tends to generate cache-misses, which may
also negatively impact computational time.

• Interpolation spoiling: These frequent re-meshings go with very frequent interpolations of
the solution from the old mesh to the new one. This may spoil the solution accuracy and
convergence and may compromise the gain of accuracy brought by mesh adaptation. This
effect is scarcely taken into account in the error analysis.

In our opinion, controlling the number of re-meshings seems to be a credible alternative.

2.1.4.3 Adaptive time-stepping for implicit simulations

Implicit computations, by relaxing the strong time step size constraint required for the stability
of explicit time schemes, naturally raises the question of the optimal size for the solver time steps.
The idea of adapting the time step for implicit schemes is not new and has been addressed for
example by Gear [Gear 1971] in the early 70’s. The idea is to choose the solver time step
according to an estimation of the local error, notably the time error. For explicit schemes,
this problematic does not appear as the largest time step satisfying the stability condition is
generally chosen for efficiency purpose. The error estimates used in these methods are mostly
heuristic. The truncation error is often used as a starting point. For instance, in [Kavetski 2002,
Korhonen 2008], as the time integration scheme is of order one, the following error estimates
based on a Taylor development is used :

et(Pi, t
k) =

1

2
τ
||∇W (Pi, t

k + τk)−∇W (x, tk)||
W (Pi, tk + τk)

.

The local time step is reduced if this value is locally large and increased otherwise. In [Mani 2009,
Mani 2010], the following local time error estimate is considered:

et(Pi, t
k) = |

(
d (|Ci|Wi)

dt

)

|BDF3

−
(

d (|Ci|Wi)

dt

)

|BDF2

| ,

where
(

d(|Ci|Wi)
dt

)
|BDF2

(resp.
(

d(|Ci|Wi)
dt

)
|BDF3

) is the numerical approximation of |Ci|Wi ob-

tained at current time step tk using a BDF2 (resp. BDF3) implicit scheme.
The link with our approach is explained at the end of Section 2.2.3.

2.1.4.4 The L∞ − L∞ fixed-point (or transient fixed-point) algorithm

To control the number of adaptations, an innovative strategy based on a fixed-point algorithm
has been initiated in [Alauzet 2003a] and fully developed in [Alauzet 2007]. It has been success-
fully applied to a three-dimensional dam break problem [Guégan 2010] and to a blast simulation
in a three-dimensional city [Alauzet 2003a, Alauzet 2007] with isotropic adaptation. This new
strategy starts with the observation that direct extension of steady adaptation algorithms to
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unsteady problems is not appropriate: specific algorithms must be developed, which truly take
into account the transient nature of the solution. The fixed-point algorithm aims at avoiding
the generation of a new mesh at each time-advancing step which would imply that a re-mesher
is coded inside the solver. It is also an answer to the lag problem occurring when computing
the solution at tn and accordingly adapt the mesh at each time step. Indeed, by doing this, the
mesh is always late as compared to the solution as it is not adapted for the displacement of the
solution between tn and tn+1.

The basic idea consists in splitting the simulation time frame [0, T ] into nadap adaptation
sub-intervals:

[0, T ] = [0 = t0, t1] ∪ . . . ∪ [ti, ti+1] ∪ . . . ∪ [tnadap−1, tnadap ] ,

and to keep the same adapted mesh for each whole sub-interval. Thus, a mesh must be built
which controls the interpolation error for several solver time steps in a given adaptation sub-
interval [ti, ti+1]. To this aim, a L∞(ti, ti+1; L∞(Ω)) space-time adaptation strategy has been
retained in [Alauzet 2007], which consists in requiring that the adapted mesh fulfills a specified
ε-error criterion for the whole sub-interval [ti, ti+1]. The denomination L∞ − L∞ must be
understood as follows:

1. the first L∞ means that the spatial interpolation error is controlled in L∞ norm at each time
of the adaptation sub-interval, i.e. the maximal value of the local spatial interpolation error
es(x, t) on Ω is mastered:

∀ t ∈ [ti, ti+1] , max
x∈Ω

es(x, t) = max
x∈Ω
|u(x, t)−Πhu(x, t)| ≤ ε ,

2. the second L∞ refers to the way a single adapted mesh will control the spatial interpolation
error during a whole sub-interval [ti, ti+1]. If a so-called "L∞" strategy is chosen, this means
that we choose to control the worst esmax(t), t ∈ [ti, ti+1]:

max
t∈ [ti, ti+1]

es(t) = max
t∈ [ti, ti+1]

es(t) ≤ ε .

Practice. The solution is regularly sampled between ti and ti+1. The collected samples are
noted {Si,k}k=1,nk with Si,1 = u(·, ti) and Si,nk = u(·, ti+1). The optimal metric controlling
the global spatial interpolation error EsL∞(t) in L∞ norm is exactly the Hessian matrix of the
solution:

Mi,k = |Hu(·, tk)| = |Hi,k| , k ∈ J1, nkK .

Therefore, the Hessian of the solution is computed from each sample Si,k. Thus, each metric
|Hi,k| enables to control the local spatial interpol error esL∞(tk), as explained in 1.
To guarantee the L∞ control of the spatial interpolation error during the whole sub-interval
[ti, ti+1] with a single mesh in the sense of Point 2 above, these metrics/Hessians are intersected
as described in Section 1.2.6 and the resulting metric/Hessian is noted:

|Hi,max| =
nk⋂

k=1

|Hi,k| =
nk⋂

k=1

|Mi,k| .
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For the sake of clarity, the number of samples nk is assumed to be identical for each sub-interval.
The time interval between two samples is also considered as constant equal to δt. Then, the
time at which the kth sampling of the solution between ti and ti+1 is performed is:

ti,k = ti + (k − 1)δt .

Eventually, a global normalization procedure is applied to enforce the spatial complexity
constraint C(Mi) = Nptfx for each of the nadap fixed point meshes. The L∞ − L∞ continuous
mesh for the whole sub-interval [ti, ti+1] then reads:

Mi,L∞−L∞ = DL∞L∞ |Hi,max| (2.2)

with DL∞L∞ =
(
Nptfx

) 2
n

(∫

Ω

√
det |Hi,max(x)|dx

)− 2
n

(2.3)

and |Hi,max(x)| = max
t∈[ti, ti+1]

|Hu(x, t)| .

Fixed-point loop: converge jointly the mesh and the solution.

For i=1,. . . , nadap

For j=1,. . . , nptfx

• Sji,1 = InterpolateSolution(Hji−1, S
j−1
i−1,nk

, Hji )
• {Sji,k}k=1,nk = SolveState(Hj , Sji,1)

• Mj
i = ComputeUnsteadyL∞ − L∞Metric({Sji,k}k=1,nk)

• Hj+1
i = GenerateAdaptedMesh(Hji ,M

j
i )

End for
End for

Figure 2.2: The L∞ − L∞ fixed-point algorithm.

The fixed-point algorithm is represented in Figures 2.2 and 2.3. The solution is computed
on the first adaptation sub-interval [t0, t1] and the variable of interest is sampled at regular time
intervals of length δt. We have therefore gathered nk samples of the solution between t0 and
t1. The Hessian associated with each of these samples is computed and we now have nk Hessian
fields. These Hessian fields {|H0,k|}k=1,nk

are intersected to get the maximal Hessian |H0,max |
for interval [t0 , t1] and a single resulting metric is computed according to Formula (2.2). This
metric will prescribe to each vertex the maximal acceptable size guaranteeing the control of
the spatial error in L∞ norm during the first time sub-interval. A new mesh adapted to this
sub-interval is then generated as described in Section 1.2.2 and we start again the sampling
procedure on the same period. We loop until convergence of the mesh-solution couple for this
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ti,k

t

ti ti+1 T = tnadap0

j

nadap = 5

nk = 11

δt

∆ti

Figure 2.3: Sampling of the solution during each adaptation sub-interval and fixed-point loop.

period is reached, hence the name "fixed-point" algorithm. Generally, the system is assumed to
have converged after nptfx number of fixed-point iterations. Once the solution has converged on
[t0, t1], we switch to the next sub-interval [t1, t2] and repeat the process. Each of the nadap sub-
intervals is treated the same way. Note that in this algorithm, all the adaptation sub-intervals
can be treated in a completely decoupled manner.

2.1.5 Our approach

In this thesis, the fixed-point strategy described in Section 2.1.4.4 has been chosen as starting
point because of its:

• Reduced CPU time consumption, as compared to frequent re-meshing methods,

• Theoretical foundations, even incomplete, notably its attempt to guarantee a control of both
spatial and temporal interpolation errors,

• Generic nature, i.e. its principle is general and the algorithm can be applied with any
interpolation or meshing softwares and any type of solvers.

However, two main improvements have been brought to this algorithm:

• Multi-scale: The algorithm has been extended to perform multi-scale [Loseille 2010b] un-
steady mesh adaptation,

• Three-dimensional anisotropy : Substantial efforts have been made regarding meshing soft-
wares to handle anisotropy, especially in three space dimensions. Indeed, from now on, only
isotropic adaptation had been shown in 3D for unsteady simulations. This thesis presents
three-dimensional anisotropic unsteady adaptation results, performed with the re-
meshing tool [Loseille 2010d].
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This work has raised many new questions:

1. How to guarantee the control of space-time interpolation errors?

2. How can the continuous mesh framework be extended to space-time meshes? Notably, how
to take into account the specific role played by the time dimension in numerical schemes?

3. How is this control performed in practice?

4. How to preserve mesh consistency, i.e. how to guarantee that the same phenomenon, for
example a stationary shock, will be meshed in the same manner during the whole simulation?

Questions 1 and 2 have been answered thanks to a detailed analysis of the local and global
space-time errors, carried out in Section 2.2. Questions 3 and 4 have led to a new fixed point
algorithm, described in Section 2.3, in which the nadap adaptation sub-intervals are not treated
separately anymore but rather handled in a global, coupled way.

2.2 Space-time error analysis and CFL condition

In the case of pseudo-steady solutions, a meticulous analysis of the interpolation error and of the
global optimization problem have been carried out in [Loseille 2010b, Loseille 2010c] to find the
optimal metric controlling the interpolation error in Lp norm. This result has been obtained in a
purely theoretical manner, which has been made possible thanks to the powerful continuous mesh
formalism, see Chapter I. On the contrary, the efficiency of the fixed-point algorithm described
in [Alauzet 2007] in terms of control of the space-time interpolation error relies on a simple
truncation analysis performed on a one-dimensional, linear transport problem, see Section 2.2.1.
This section attempts to remedy this lack of theoretical background and notably extends the
notion of continuous interpolation error to time-advancing, unsteady simulations.

2.2.1 Truncation error analysis in 1D

We first recall here the space-time truncation error analysis detailed in [Alauzet 2007]. The
linear scalar transport equation in one dimension is considered:

∂u

∂t
+ a

∂u

∂x
= 0, with a > 0 . (2.4)

Let xj for j = 1, . . . , Nv be a uniform spatial discretization of the one-dimensional domain
and let tk for k = 0, . . . , Nite be a uniform time discretization. We note h = xj − xj−1 and
τ = tk − tk−1. The numerical solution obtained at vertex xj and time tk is noted ukj and is
expected to be a good approximation of u(xj , t

k).

Euler-explicit upwind scheme. A time-explicit first-order upwind Finite-Difference scheme
is chosen to discretize Equation (2.4):

uk+1
j − ukj
τ

+ a
ukj − ukj−1

h
= 0 .
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Using a Taylor expansion, the local truncation error reads:

εh,τ (xj , t
k) = a

h

2

∂2u

∂x2
(xj , t

k)− τ

2

∂2u

∂t2
(xj , t

k) +O(h2, τ2) .

The truncation error can then be split in a spatial and temporal truncation error:

εh,τ (xj , t
k) = εsh(xj , t

k) + εtτ (xj , t
k) ,

with εsh(xj , t
k) = a h

2
∂2u
∂x2 (xj , t

k) and εtτ (xj , t
k) = − τ

2
∂2u
∂t2

(xj , t
k) .

Besides, deriving Equation (2.4) in time, using Schwarz theorem to exchange space and time
derivatives of the second term and finally replacing ∂u

∂t by −a ∂u
∂x in the second term of the

resulting expression, we get:

∂2u

∂t2
− a2 ∂

2u

∂x2
= 0, ∀ (x, t) .

The temporal truncation error can then be rewritten as:

εtτ (xj , t
k) = − τ

2

∂2u

∂t2
(xj , t

k) = − aτ

h

a h

2

∂2u

∂x2
(xj , t

k) = − aτ

h
εs(h) = −CFLεsh(xj , t

k) .

Therefore, the time error is bounded by the spatial error if a CFL condition is enforced.

RKSSP(3,3) and one-dimensional upwind Finite Volume scheme. For the Finite Vol-
ume approach in 1D, a cell Cj is defined as the interval [xj− 1

2
, xj+ 1

2
], where xj− 1

2
=

xj+xj−1

2 and

xj+ 1
2

=
xj+xj+1

2 . The numerical fluxes on each side of cell Cj are given by:

Φj− 1
2

= Φ(u−
j− 1

2

, u+
j− 1

2

) , Φj+ 1
2

= Φ(u−
j+ 1

2

, u+
j+ 1

2

) ,

where u−
j± 1

2

denotes the extrapolated value of the numerical solution on the left side of interface

j ± 1
2 , and u

+
j± 1

2

its extrapolated value on the right side.

Moreover, numerical flux Φ is upwind in the sense of [Harten 1983] if it writes:

Φ(u, v) =
1

2

[
f(u) + f(v)− d(u, v)

]
, with d(u, v) = |f ′(u+ v

2
)|(v − u) + o(|u− v|) .

To control this numerical dissipation, a parameter δ is introduced:

Φδ(u, v) =
1

2

[
f(u) + f(v)− δ d(u, v)

]
.

In our specific case, the flux writes f(u) = au with a > 0 and Φδ reduces to:

Φδ(u, v) =
a

2

[
(1 + δ)u+ (1− δ)v

]
.

Then, the spatial numerical operator writes:

Φj+ 1
2
− Φj− 1

2

h
=

a

2h

[
(1 + δ)u−

j+ 1
2

+ (1− δ)u+
j+ 1

2

− (1 + δ)u−
j− 1

2

− (1− δ)u+
j− 1

2

]
. (2.5)
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The values of the solution at cells interfaces are extrapolated as follows:

u−
j+ 1

2

= uj +
1

2

[
(1− β)(uj+1 − uj) + β(uj − uj−1)

]
,

u+
j+ 1

2

= uj+1 −
1

2

[
(1− β)(uj+1 − uj) + β(uj+2 − uj+1)

]
,

u−
j− 1

2

= uj−1 +
1

2

[
(1− β)(uj − uj−1) + β(uj−1 − uj−2)

]
,

u+
j− 1

2

= uj −
1

2

[
(1− β)(uj − uj−1) + β(uj+1 − uj)

]
,

and β is an upwinding parameter used to lower dissipation, see [Debiez 2000]. Substituting u±
j± 1

2

by their values in Relation (2.5), we get:

Φj+ 1
2
− Φj− 1

2

h
=

a

4h

[
(1+δ)βuj−2−2(1+β+2δβ)uj−1+6δβuj+2(1+β−2δβ)uj+1−(1−δ)βuj+2

]
.

A Taylor expansion around point (xj , t
n) leads to:

Φj+ 1
2
− Φj− 1

2

h
= a

[
∂u

∂x
(xj , t

k) + (1− 3β)
h2

6

∂3u

∂x3
(xj , t

k) + δβ
h3

4

∂4u

∂x4
(xj , t

k)

]
+ O(h4) .

We note this spatial differential operator:

L(t)(u) = −a
[∂u
∂x

(·, t) + (1− 3β)
h2

6

∂3u

∂x3
(·, tn) + δβ

h3

4

∂4u

∂x4
(·, tn)

]
+ O(h4) . (2.6)

If (λl(t))l are the eigenvalues of L(t) and (vl(·, t))l their associated eigenvectors, u can be de-
composed on this eigen-basis as:

u(x, t) =
∑

l

ul(t) vl(x, t) .

Reinserting this decomposition into the initial equation, we get:

∑

l

(
dul

dt
+ λl ul

)
vl = 0 .

As (vl)l forms an independent family of functions, this implies that:

dul

dt
+ λl(t)ul = 0, ∀ l .

The exact solution of this equation is:

ul(t) = ul(tk) exp
[
λl(t)(t− tk)

]
.
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As RKSSP(3,3) is a third-order scheme, this solution is approximated at order 3 then, according
to the series development of the exponential, the exact solution ul of the above linear ODE
writes:

ul(·, tk+1) = ul(·, tk)
(

1 + λl(t)τ +

(
λl(t)τ

)2

2
+

(
λl(t)τ

)3

6

)
+O(τ4) .

ul(·, tk+1)− ul(·, tk)
τ

= λl(t) +
τ

2

(
λl(t)

)2
+
τ2

6

(
λl(t)

)3

=
∂ul

∂t
(·, tk) +

τ

2

∂2ul

∂t2
(·, tk) +

τ2

6

∂3ul

∂t3
(·, tk) +

τ3

24

∂4ul

∂t4
(·, tk) +O(τ4) .

Besides, the (λl)2 and (λl)3 are exactly the eigenvalues of operators L2(t) and L3(t), respectively,
thus, reconstructing the solution, we get:

L(tk)+
τ

2
L2(tk) +

τ2

6
L3(tk) =

∂u

∂t
(·, tk) +

τ

2

∂2u

∂t2
(·, tk) +

τ2

6

∂3u

∂t3
(·, tk) +

τ3

24

∂4u

∂t4
(·, tk) +O(τ4) .

(2.7)
Operators L2(t) and L3(t) can be computed using Expression (2.6):

L2(tk) = a2

[
∂2

∂x2
+ (1− 3β)

h2

3

∂4

∂x4
+ c2δβ

h3

2

∂5

∂x5

]
+ O(h4) ,

L3(tk) = − a3

[
∂3

∂x3
+ (1− 3β)

h2

2

∂5

∂x5
+

δβh3

4

∂6

∂x6

]
+ O(h4) .

Substituting L2(t) and L3(t) in (2.7) and removing terms of order strictly higher than 3, we get:

−a
[∂u
∂x

(·, tk) + (1− 3β)
h2

6

∂3u

∂x3
(·, tk) + δβ

h3

4

∂4u

∂x4
(·, tk)

]
+ a2 τ

2

[∂2u

∂x2
(·, tk) + (1− 3β)

h2

3

∂4u

∂x4
(·, tk)

]

−a3 τ
2

6

∂3u

∂x3
+ O(h4) =

∂u

∂t
(·, tk) +

τ

2

∂2u

∂t2
(·, tk) +

τ2

6

∂3u

∂t3
(·, tk) +

τ3

24

∂4u

∂t4
(·, tk) + O(τ4) .

If a low dissipation scheme is used, β is taken equal to 1/3 and:
(
∂u

∂t
(·, tk) + a

∂u

∂x
(·, tk)

)
+

τ

2

(
∂2u

∂t2
(·, tk) − a2∂

2u

∂x2
(·, tk)

)
+

τ2

6

(
∂3u

∂t3
(·, tk) + a3∂

3u

∂x3
(·, tk)

)

+ aδ
h3

12

∂4u

∂x4
(·, tk) +

τ3

24

∂4u

∂t4
(·, tk) + O(τ4) + O(h4) = 0

From Equation (2.4), we deduce:

∂2u

∂t2
(·, tk) = a2∂

2u

∂x2
(·, tk) , ∂3u

∂t3
(·, tk) = − a3∂

3u

∂x3
(·, tk) ,

which leads to:

εh,τ (·, tk) = a δ
h3

12

∂4u

∂x4
(·, tk) +

τ3

24

∂4u

∂t4
(·, tk) + O(τ4) + O(h4) .
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As we also have:
∂4u

∂t4
(·, tk) = a4∂

4u

∂x4
(·, tk) ,

the following truncation errors are obtained:

εtτ (·, tk) = CFL3

2δ εsh(·, tk)

εh,τ (·, tk) =
(

1 + 1
2δ

(
aτ
h

)3)
εsh(·, tk) + O(τ4, h4) .

Finally, we deduce that again, the temporal truncation error is bounded by the spatial truncation
error under CFL condition a τ

h ≤ 1.

Actually, this result can be shown for Problem (2.4) with any spatial and temporal discretiza-
tions forming a stable scheme under CFL condition using the Equivalent Differential Equation
method (see [Hirsch 1988a] for further details on this method). Incidentally, according to the
Equivalence Theorem of Lax, a proof of which can be found in [Richtmyer 1967], for a linear,
consistent and stable numerical scheme, controlling the truncation error comes to controlling
the approximation error. Thus, the control of the spatial truncation error enables to control
the approximation error, at least for this simple problem.

2.2.2 Illustration of the influence of the CFL number on the space-time
approximation error

For problems more complex that the one-dimensional transport equation, the influence of the
CFL condition on the approximation error can be shown numerically. A three-dimensional Sod
shock tube problem, modeled by the Euler equations, is considered.
The computational domain is Ω = [0, 1] × [−0.025, 0.025] × [−0.025, 0.025]. At initial time,
the solution is discontinuous and the equation of the surface of discontinuity is x = 0.5. The
following initial conditions are considered on both sides of the interface, with heat capacity ratio
γ = 1.4:

Wleft = (ρ = 1, u = 0, p = 1) , Wright = (ρ = 0.125, u = 0, p = 0.1) ,

where p is the pressure of the fluid and ρ is the volume mass or density of the fluid. A Harten-
Lax-van Leer Contact wave (HLLC) approximate Riemann solver has been chosen, coupled with
the V6 low-dissipation MUSCL reconstruction introduced in [Debiez 2000] and the Dervieux
limiter described in [Cournède 2006b], see Chapter 5. A first order Backward Differentiation
Formula implicit scheme is used for both CFL > 1 and CFL < 1, see Appendix C. Thanks to
these choices, the global error is assumed to give a better understanding of the influence of the
CFL number on space-time errors.
The numerical solution is analyzed at dimensionless time t = 1 for different values of the CFL
number and compared to the analytical solution, which is computed using the Method of Char-
acteristics, see [Hirsch 1988b] for more details. These results are presented in Figure 2.4. The
solution is computed using a three-dimensional solver. However, using the axis symmetry around
axis ex, it is sufficient to the solution as a function of x only. On the one hand, in the case
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Figure 2.4: Solution of a Sod Shock tube problem at time t = 1 for different CFL numbers. The
value of the solution density is represented on vertical axis as a function of spatial coordinate
x. For CFL ≤ 1, curves are almost identical while temporal dissipation is clearly visible for
CFL > 1.

CFL > 1, the higher the CFL number, the bigger the approximation error. For CFL = 50 (blue
curve), accuracy has been lost especially in shock waves areas. Increasing the CFL number ac-
tually comes to increase the artificial temporal dissipation of the numerical scheme. Therefore,
even if implicit schemes exhibit good stability properties, which theoretically allows the use of
arbitrary large CFL numbers, increasing the resolution time step is always done at the price of
accuracy.
On the other hand, in the case CFL ≤ 1, decreasing the CFL number has almost no influence on
the accuracy of the solution: curves for CFL = 0.01 to CFL = 0.9 are almost superposed and
very near from the exact solution. It can hence be inferred that the result of the previous trun-
cation error analysis is still true for the approximation error obtained on this multi-dimensional
non-linear problem: for CFL ≤ 1, the temporal approximation error is dominated by the spa-
tial one. The approximation error due to spatial discretization remaining the same for all the
simulations, the time error is controlled by the same quantity in all these simulations, leading
to almost superposed curves. Incidentally, Figure 2.5 shows that the influence of the scheme,
implicit or explicit, is almost negligible when CFL < 1.
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Figure 2.5: Comparison between the numerical solution obtained using an explicit or an implicit
scheme using same CFL numbers 0.01, 0.1 and 0.9. A slight numerical dissipation introduced
due to the implicit scheme is visible for the expansion fan, whereas the contact discontinuity
and the shock wave are captured with the same accuracy in both cases.

To conclude, this numerical analysis tends to show that the optimal CFL number, i.e. the one
realizing the best trade-off between accuracy and the time discretization complexity (number of
time steps), is reached at CFL = 1.

2.2.3 Multi-dimensional theoretical analysis of the interpolation error

As explained in Section 2.1.3, only time-advancing schemes are considered, which restricts the
set of authorized space-time meshes to "time-advancing" meshes. This strong constraint has
to be enforced in the adaptation strategy, which precludes a direct extension of our steady
adaptation algorithm to space-time computations. Figure 2.6 shows the difference between a
"true" space-time adaptation and the restricted adaptation process we are forced to consider.

We now explain how this constraint is taken into account in the error estimate. If a true space-
time adaptation is considered, the extension of the continuous mesh theory described in Chapter
I is straightforward. Indeed, time is just an additional dimension which works exactly like any
other spatial dimension. Therefore, all the formalism, which has been set for any arbitrary
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Figure 2.6: General space-time adaptation v.s "time-advancing" adaptation. Bottom left, a one
dimensional solution u = u(x, t) of a non-linear hyperbolic problem. Top left, its characteristic
diagram in (x, t). Bottom right, representation of a "true" space-time anisotropic adaptation
for this solution. Top right, representation of a time-advancing adaptation strategy for which
the mesh is adapted at each time step.

dimension, is still valid. Notably, the space-time continuous interpolation error for any given two-
times-differentiable function u and any given space-time continuous mesh M = (M(x, t))Ω×[0,T ]

is:

estM(x, t) = (u− πMu)(x, t) = cn+1 trace
(
M− 1

2 (x, t) |Hu(x, t)|M− 1
2 (x, t)

)

= cn+1

n+1∑

i=1

λ−1
i (x, t)tvi(x, t) |Hu(x, t)|vi(x, t)

where Hu is the space-time Hessian of function u and (λi)i=1,n+1 are the eigenvalues ofM(x, t).
However, as only time-advancing meshes must be considered, the continuous mesh must be such
that en+1 = et, i.e. the direction corresponding to time is an eigen-direction ofM(x, t), for all
(x, t). This means that the space-time metric writes:

Mst = RΛRT ,

where Λ = diag (λ1, . . . , λn, λt) and R = ( r1 | r2 | . . . | rn | et )T ,

and we have noted λt the eigenvalue associated with et. hi(x, t) = λi(x, t)
− 1

2 , i ∈ J1, nK and
τ(x, t) = λt(x, t)

− 1
2 are the spatial and the time sizes associated withM(x, t), respectively. As
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et = (0, . . . , 0, 1) ∈ Rn+1, the space-time metric associated with a continuous time-advancing
mesh writes:

Mst(x, t) =

[ Ms(x, t) 0

0 τ−2(x, t)

]
,

and we have notedMs the spatial part of the space-time metric:

Ms(x, t) = Rs(x, t) Λs(x, t) (Rs(x, t))T ,

where Λs = diag (λ1, . . . , λn) and Rs = ( r1 | r2 | . . . | rn )T .

The continuous space-time interpolation error model then reads:

estM(x, t) = cn+1 trace

([
(Ms)−

1
2 0

0 τ

] [ |Hs
u| V

V T utt

] [
(Ms)−

1
2 0

0 τ

])
,

where

Hs
u = Hs

u(x, t) =




∂2u

∂x2
1

(x, t) . . .
∂2u

∂x1∂xn
(x, t)

...
...

...
∂2u

∂xn∂x1
(x, t) . . .

∂2u

∂x2
n

(x, t)




and V = V (x, t) =

(
∂2u

∂x1∂t
(x, t), . . . ,

∂2u

∂xn∂t
(x, t)

)T
.

estM(x, t) = cn+1 trace

([
(Ms)−

1
2 |Hs

u| (Ms)−
1
2 τ (Ms)−

1
2 V

τV T (Ms)−
1
2 τ2utt

])

= trace
(

(Ms)−
1
2 (x, t) |Hs

u|(x, t) (Ms)−
1
2 (x, t)

)
+ τ2(x, t)utt(x, t)

=
n∑

i=1

h2
i (x, t) ri

T (x, t) |Hs
u|(x, t) ri(x, t) + τ2(x, t)utt(x, t) .

From now on, we consider n = 3 for clarity purpose. Still following the continuous mesh analysis

[Loseille 2010b], the continuous mesh density d = (h1h2h3τ)−1 and the first three anisotropic
quotients κi =

h4
i

h1h2h3τ
, i ∈ J1, 3K are considered instead of (h1, h2, h3, τ). The one-to-one

mapping is then given by:

hi = d−
1
4κ

1
4
i , ∀ i ∈ J1, 3K and τ = (κ1 κ2 κ3 d)−

1
4 .

Finally, the local continuous space-time interpolation error reads:

estM = d−
1
2

(
κ

1
2
1 γ1 + κ

1
2
2 γ2 + κ

1
2
3 γ3 + (κ1 κ2 κ3)−

1
2 utt

)
,
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and (γl)l∈ J1, 3K are the eigenvalues of |Hs
u|.

The mesh adaptation problem consists in finding the optimal continuous mesh minimizing the
previous space-time error model in Lp norm. Therefore, the following global optimization prob-
lem must be solved:

Find Mst
Lp such that Mst

Lp = argmin
Mst

EstLp(M
st) with EstLp(M

st) =




T∫

0

∫

Ω

(
estMst(x, t)

)p
dx dt




1
p

,

(2.8)
under the following constraint on the space-time complexity:

C(Mst) =

T∫

0

∫

Ω

d(x, t) dx dt =

T∫

0

∫

Ω

(
3∏

i=1

h−1
i (x, t)

)
τ−1(x, t) dx dt = N st. (2.9)

The variational analysis detailed in [Loseille 2010a] remains entirely valid in our case and the
resolution of Problem (2.8-2.9) leads to the following optimal solution:

Mst
Lp =

[ Ms
Lp 0

0 λt,Lp

]
,

withMs
Lp = DLp (det |Hs

u| |utt|)−
1

2p+4 |Hs
u| , λt,Lp = DLp (det |Hs

u| |utt|)−
1

2p+4 |utt|

and DLp =
(
N st

) 1
2




T∫

0

∫

Ω

(det |Hs
u| |utt|)

p
2p+4 dx dt



− 1

2

.

(2.10)
The optimal sizes in space and time for a three-dimensional spatial domain are then given by:

hopti = D
− 1

2
Lp

[
|utt|

3∏
l=1

γl

] 1
2(2p+4)

γ
− 1

2
i = D

− 1
2

Lp [|utt| det ||Hs
u]

1
2(2p+4) γ

− 1
2

i ,

τ opt = D
− 1

2
Lp

[
|utt|

3∏
l=1

γl

] 1
2(2p+4)

|utt|−
1
2 = D

− 1
2

Lp [|utt| det ||Hs
u]

1
2(2p+4) |utt|−

1
2 .

(2.11)

and γl still denotes the eigenvalue of the "pure" spatial Hessian associated with eigen-direction
rl.

It can finally be demonstrated that the global Lp interpolation errors in space and in time
on continuous space-time meshMst

Lp are given by:

EsLp(Mst
Lp) =




T∫

0

∫

Ω

[es(x, t)]p dx dt




1
p

= 3(N st)−
1
2




T∫

0

∫

Ω

(|utt| det |Hs
u|)

p
2p+4 dx dt




p+2
2p

,

(2.12)
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EtLp(Mst
Lp) =




T∫

0

∫

Ω

[
et(x, t)

]p
dx dt




1
p

= (N st)−
1
2




T∫

0

∫

Ω

(|utt| det |Hs
u|)

p
2p+4 dx dt




p+2
2p

,

(2.13)

EstLp(Mst
Lp) =




T∫

0

∫

Ω

[
est(x, t)

]p
dx dt




1
p

= 4 (N st)−
1
2




T∫

0

∫

Ω

(det |Hs
u| |utt|)

p
2p+4 dx dt




p+2
2p

= EsLp(Mst
Lp) + EtLp(M

st, opt
Lp ) .

(2.14)
This shows that, once again, the adaptation process tends to equi-distribute and to decouple
the error in the different directions.

Link with the CFL condition. Let us consider the following n-dimensional linear advection
problem, with a independent of t and x:

∂u

∂t
+ a · ∇xu = 0 , with a = (a1, . . . , an) .

Then, the following equation holds:
∂2u

∂t2
− aT Hs

u a = 0 . Indeed,

∂u

∂t
+

n∑

i=1

ai
∂u

∂xi
= 0 =⇒︸︷︷︸

a1
∂
∂x1

a1
∂2u

∂x1∂t
+

n∑

i=1

a1ai
∂2u

∂x1∂xi
= 0

=⇒ ∂

∂t

(
−∂u
∂t
−

n∑

i=2

ai
∂u

∂xi

)
+

n∑

i=1

a1ai
∂2u

∂x1∂xi
= 0

=⇒ −∂
2u

∂t2
+ a2

1

∂2u

∂x2
1

+
n∑

i=2

ai
∂

∂xi

(
−∂u
∂t

+ a1
∂u

∂x1

)
= 0

=⇒ −∂
2u

∂t2
+ a2

1

∂2u

∂x2
1

+
n∑

i=2

ai
∂

∂xi




n∑

j=1

aj
∂u

∂xj
+ a1

∂u

∂x1


 = 0

=⇒ −∂
2u

∂t2
+ a2

1

∂2u

∂x2
1

+
n∑

i,j=2

aiaj
∂2u

∂xi∂xj
+

n∑

i=2

a1ai
∂2u

∂x1∂xi
= 0

=⇒ −∂
2u

∂t2
+

n∑

i,j=1

aiaj
∂2u

∂xi∂xj
= 0 =⇒ ∂2u

∂t2
− aT Hs

u a = 0 .

a can be decomposed on orthonormal basis (r1, . . . , rn): a =

n∑

i=1

(a · ri) ri . Thus,

utt −
n∑

i=1

(a · ri)
2 γi = 0 .

Besides, from Relation (2.11), we have:

hopti

τ opt
=

(
γi
utt

)− 1
2

. (2.15)



2.2. Space-time error analysis and CFL condition 85

Therefore:
n∑

i=1

(a · ri)
2 γi
utt

= 1 ⇐⇒
n∑

i=1

[
(a · ri)

τ opt

hopti

]2

= 1 ,

which can be considered as an extension of the CFL condition on unstructured multi-dimensional
continuous meshes. Indeed,

n∑

i=1

[
(a · ri)

τ opt

hopti

]2

= 1 ⇐⇒
(
||a|| τ opt

)2 || (Ms)
1
2

a

||a|| ||
2 = 1 . (2.16)

To interpret the term ||M 1
2

a
||a|| ||, let us compute the spatial size h(a) prescribed by the metric

a
x

Ms(P )

P

direction of propagation

x =
a

|| (Ms)
1
2 a||

, ||x|| = h(a)

Figure 2.7: Geometrical interpretation of h(a) as the size prescribed by metric Ms in the
advection direction a.

in direction a. We must find x collinear to a and which is unit with respect toMs:

Find x = α a such that xTMx = 1

=⇒ α2aTMs a = 1 =⇒ x =
a

|| (Ms)
1
2 a||

.

and consequently,

h(a) = ||x|| = ||a||
|| (Ms)

1
2 a||

.

A geometrical description of h(a) is given in Figure 2.7. Therefore, Relation (2.16) leads to:

||a|| τ opt
h(a)

= 1 ,

which means that the optimal local continuous time step and spatial sizes are such that CFL = 1

in the propagation direction. This is in accordance with the analysis developed in Sections 2.2.1
and 2.2.2.

Remark 8. As for the truncation error and the numerical approximation error, we see that for
a linear advection problem under CFL condition, if the continuous representation of the mesh
is the optimal space-time metric, the local temporal interpolation error is dominated by the local
spatial interpolation error. Indeed, Relation (2.15) implies that:

τ2

h2
i

=
γi
utt
⇐⇒ et(x, t) = τ2(x, t)utt(x, t) = h2

i (x, t)γi(x, t) , ∀ i ∈ J1, nK ∀x, t .
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The temporal part of the local space-time interpolation error can therefore be rewritten as:

et(x, t) =
1

n

n∑

i=1

τ2(x, t)utt(x, t) =
1

n

n∑

i=1

h2
i (x, t)γi(x, t) =

1

n
es(x, t) .

The local interpolation error then reads:

eM(x, t) = es(x, t) + et(x, t) =
n+ 1

n
es(x, t) .

Actually, this remark is even stronger: the local space-time interpolation error is not just domi-
nated, it is proportional to the spatial interpolation error. This results validates the fixed-point
strategy, which consists in controlling the spatial interpolation error for [ti, ti+1] to guarantee
the control of the whole space-time interpolation error during this time interval.

Remark 9. As explained in Section 2.1.4.3, adapting the time step in the case of implicit
time-advancing schemes appears as a good strategy to reduce computational cost while preserving
time accuracy. The above result, i.e. the fact that the optimal local continuous time step and
spatial sizes are such that CFL = 1 in the propagation direction, suggests that even for implicit
computations, the local time step provided by the CFL condition is the optimal one. If this may
be true for linear problems, this result remains to be proved for non-linear problems.
Moreover, in the case of multi-physics simulation, the time step provided by the CFL condition is
obviously not always the good one. For instance, let us consider the case of a combustion problem
for which the Flame speed is about 30m.s−1 and the fluid acoustic velocity is about 300m.s−1.
The "good" time step the one associated with the flame speed and not the one dictated by the
acoustics. In this case, the CFL condition associated with the acoustics limits the time step size
although the capture of the acoustical details is absolutely unnecessary. A larger time step could
have been taken while preserving the accuracy of quantities linked to deflagration. This simple
example shows that the time step proposed by the CFL condition for unsteady simulations is not
always the good one.

2.3 Extension of multi-scale mesh adaptation to unsteady simu-
lations.

This section is dedicated to the extension of multi-scale strategies, described in Section 1.4 for
pseudo-steady simulations, to unsteady simulations.
In the previous section, a detailed analysis of the local error for unsteady problems, notably the
local time errors, has been performed. It remains to explain how to locally equidistribute this
error in all directions and how to control the integrated (in space and time) global error under
a given complexity constraint.
In the transient fixed-point algorithm (see Section 2.1.4.4), the global spatial interpolation error
is control in L∞ norm both in space and time, i.e the following error is considered:

Es = max
t∈ [0, T ]

max
x∈Ωh

es(x, t) .
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This section first proposes an extension of the transient fixed-point algorithm which enables to
introduce other Lp norms, with p ∈ [1, +∞[, at least for the spatial integration. In other words,
the approach developed in this Thesis allows to control global interpolation errors as:

Es = max
t∈ [0, T ]

||es(·, t)||Lp . .

Next, we attempt to use the results demonstrated in Section 2.2.3 to locally equidistribute not
only the local spatial error es(x, t) but the complete local spatiotemporal error est(x, t).

2.3.1 Controlling the error during a whole adaptation sub-interval with a
single adapted mesh in a multi-scale framework.

In the L∞−L∞ fixed-point algorithm, continuous meshMi,L∞−L∞ associated with sub-interval
[ti, ti+1] ensures the control of the spatial interpolation error during this whole sub-interval
thanks to the intersection procedure. This technique enables to always minimize the mesh size
prescription according to the information gathered in the solution samples.

Of course, the same algorithm can be used for multi-scale unsteady adaptation, but a new
problematic appears. The spatial Hessian associated with sample Si,k is noted |Hs

i,k|. We
assume that metric associated with sample Si,k in the absence of any intersection procedure can
be written under the form:

M∗i,k = DLp det |H∗i,k|−
1

2p+n |H∗i,k| , (2.17)

where H∗i,k is a matrix built with |utt(x, ti,k)| and |Hs
i,k| = |Hs(x, ti,k)|. Then, three possibilities

exist for the intersection stage:

1. intersect pure Hessians |H∗i,max| =
nk⋂

k=1

|H∗i,k| and use the eigenvalues of the resulting Hessian
(
γ∗i,max

)
i∈ J1, nK

inside optimal metric Formula (2.10) to getMi,max.

2. intersect locally normalized Hessians:

˜|H|∗i,max =

nk⋂

k=1

˜|H|∗i,k =

nk⋂

k=1

[
det |H∗i,k|

]− 1
2p+n |H∗i,k| ,

and normalize to enforce the complexity constraint and to obtainMi,max.

3. directly intersect complete metrics:

M∗i,max =

nk⋂

k=1

M∗i,k =

nk⋂

k=1

DLp det |H∗i,k|−
1

2p+n |H∗i,k| ,

and renormalize to enforce the complexity constraint.
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To answer this issue, let us first introduce two properties satisfied by the intersection proce-
dure (1.8):

∀ (Ak)k∈J1, nkK with Ak Symmetric Positive Definite :

(i) detAi ≤ det

(
nk⋂
k=1

Ak
)
, ∀ i ∈ J1, nkK ,

(ii)
nk⋂
k=1

αAk = α
nk⋂
k=1

Ak , ∀α ∈ R .

We immediately see that Strategies (2) and (3) are totally equivalent. Indeed, according to
Property (ii), ˜|H|i,max andMi,max are identical modulo a scaling factor DLp :

Mi,max =

nk⋂

k=1

DLp det |H∗i,k|−
1

2p+n |H∗i,k| =︸︷︷︸
(ii)

DLp

nk⋂

k=1

det |H∗i,k|−
1

2p+n |H∗i,k| .

But the normalization procedure will remove this scaling factor: the resulting metrics are equal.

Note that in the case of the L∞−L∞ transient fixed-point, Alternative (1)-(2) did not even
exist as pure maximal Hessian and the locally normalized maximal Hessian were identical - the
local normalization term tends to 1 when p −→ ∞.

If Strategy (1) is used, according to the demonstration of Theorem 3 given in [Loseille 2010b],
the local spatial interpolation error is equi-distributed in all directions and we obtain:

esMi,max
(x, ti,k) = cn

n∑
l=1

(
λ∗l,i,max

)−1
(x, t)γl(x, t) = n cn

(
n∏
l=1

λ∗l,i,max

)− 1
n
(

n∏
l=1

γl,i,k

) 1
n

= n cn

(
det |Hs

i,k|
detM∗i,max

) 1
n

=
n cn

DLpL∞

[
det |H∗i,max|

]− 2p
n(2p+n)

[
det |Hs

i,k|
] 1
n
,

(2.18)
where

(
λ∗l,i,max

)
l∈ [1, n]

are the eigenvalues of:

M∗i,max = DLpL∞
(
det |H∗i,max|

)− 1
2p+n |H∗i,max| , with H∗i,max =

nk⋂

k=1

|H∗i,k| ,

and (γl,i,k(x))l,i,k are the eigenvalues of Hs
i,k = |H∗(x, ti,k)|.

Due to Property (i) of the intersection operator, det |H∗i,max| ≥ det |H∗i,k| and the following
inequality holds:

esMi,max
(x, ti,k) ≤

n cn
DLpL∞

[
det |H∗i,k|

]− 2p
n(2p+n)

[
det |Hs

i,k|
] 1
n
.
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The previous inequality can be rewritten as:

esMi,max
(x, ti,k) ≤ n cn

DLp

DLpL∞

[
detM∗i,k

]− 1
n
[
det |Hs

i,k|
] 1
n

=
DLp

DLpL∞
esM∗i,k

(x, ti,k) , ∀ k ∈ J1, nkK ,

with
M∗i,k = DLp

(
det |H∗i,k|

)− 1
2p+n |H∗i,k| .

If there are enough solution samples, the above inequality can be assumed to be valid ∀ t ∈
[ti, ti+1], and not only for t ∈ {ti,0, . . . , ti,nk−1, ti+1}. Finally, raising the previous inequality
to power p and integrating in space and time, the following inequality on the global spatial
interpolation error holds:

EsLp(Ω)(M
s,∗
i,max) ≤ DLp

DLpL∞
EsLp(Ω)(M

s,∗
i,k ) , ∀ k ∈ J1, nkK and ∀ p ∈ [1, +∞] .

This means that the global spatial interpolation error obtained when continuous "intersected"
meshM∗i,max is used is always smaller than the one observed with any of the continuous optimal
meshesM∗i,k corresponding to sampling times (ti,k)k∈J0, nkK. Therefore, Strategy (1) guarantees
that the spatial local and global interpolation errors are controlled for all samples. No such
interpretation can be made for Strategy (2), which justifies the choice of Strategy (1) in our new
multi-scale fixed-point algorithm.

2.3.2 Local space-time mesh complexity and global fixed-point strategy.

Problematics. The L∞−L∞ fixed-point strategy presented in [Alauzet 2007], which decouples
completely the treatment of each adaptation sub-interval, cannot be transposed as it for multi-
scale unsteady adaptation using Lp norms. Indeed, direct application of the transient fixed-
point formula to the multi-scale unsteady adaptation case would consist in computing the non-
dimensioned continuous mesh complexity as:

C(MLpL∞) =

∫

Ω

[
det |Hi,max(x)|

] p
2p+n

dx . (2.19)

As this quantities varies between each time adaptation sub-interval [ti, ti+1], i.e., the global
normalization constant,

DLpL∞ = N
2
n



∫

Ω

[
det |Hi,max(x)|

] 1
2

dx



− 2
n

= Di,L∞−L∞ ,

is also different from one adaptation sub-interval to the other. Consequently, if new physical
phenomena develop in the flow during the simulation, this integral grows and hence the global
normalization constant diminishes. This means that a physical phenomenon which does not
vary in time, such as a stationary shock defined by a step function, will be more or less refined
depending on the physics of the whole flow. These meshing inconsistencies are illustrated in
Figure 2.8 on a simple bump test case. This shows that the global normalization procedure has
to be thought over to fit the multi-scale framework.
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Figure 2.8: Illustration of meshing inconsistencies on a simple two-dimensional bump test case.
This phenomenon appears when the local fixed-point algorithm 2.2 is used as it is for multi-scale
unsteady adaptation, the evaluation of the complexity being local and given by Expression 2.19.
Left, with local normalization. Right, with global optimization. Top, before shock wave inter-
action with the bump. Bottom, final solution.

Moreover, one of the main reproaches made to "frequent-re-meshings" methods in Sec-
tion 2.1.4.2 was that the number of re-meshings performed during the adaptation process was
totally unpredictable. This means that the computational effort for the whole simulation, i.e.
the sum of the spatial complexities of all generated meshes, was left totally unmastered. Even if
the fixed-point algorithm responds partially to this issue with the prescription of a target spatial
complexity Nptfx common to each mesh Hi, the total computational effort, i.e. both in space
and time, is not taken into account to get the optimal metric.

These weaknesses have motivated the extension of the notion of complexity to space-time
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meshes and have led to the development of a global fixed-point strategy in which adaptation
sub-intervals are treated in a coupled manner.

Space-time complexity. Meshing inconsistencies highlighted in Figure 2.8 suggest to change
the complexity evaluation in the fixed-point algorithm. By analogy with spatial complexity Def-
inition (1.14), the space-time complexity associated with a continuous space-time mesh Mst

LpL∞

is defined as:

C(Mst
LpL∞) =

T∫

0

∫

Ω

√
detMst

LpL∞(x, t) dx dt =

nadap∑

i=1

ti+1∫

ti

∫

Ω

[
n∏

l=1

hl,i,max(x)

]−1

τ−1(x, t) dx dt .

(2.20)
This space-time complexity takes into account all the phenomena developing in the fluid during
the whole simulation. Thus, the normalization constant is global and common to the nadap
intersected metrics, which enables to avoid meshing inconsistencies. This new global evaluation
of the complexity forces us to restructure the fixed-point algorithm. The global normalization
constant becomes:

DL∞ Lp = N
2

n+1



nadap∑

i=1

ti+1∫

ti

∫

Ω

[
n∏

l=1

hl,i,max(x)

]−1

τ−1(x, t) dx dt



− 2
n+1

. (2.21)

Global fixed-point strategy. The price to pay is that a global fixed-point strategy is now
mandatory. Indeed, the decoupling of the adaptation sub-intervals described in [Alauzet 2007]
cannot be applied anymore as the evaluation of normalization Constant (2.21) requires the
completion of the whole simulation (from 0 to T ). Consequently, a new global fixed-point
strategy, described in Figures 2.9 and 2.10, has been adopted.

Remark 10. Actually, this global fixed-point strategy also naturally appears when adjoint-
based unsteady mesh adaptation is considered, see [Belme 2010]. This tends to confirm that such
strategy is intrinsically the good one when performing metric-based mesh adaptation for unsteady
simulations.

Algorithmic issues. First, the new fixed-point algorithm requires a lot more storage. Indeed,
with the former methodology, once the intersected spatial Hessian |Hi,max| was computed for one
sub-interval, the complete metricMi,L∞L∞ for the current sub-interval was computed on the fly.
This was possible because only the spatial complexity of this non-dimensioned metric was needed
to calculate the global normalization constant. In the new algorithm, the complete metric cannot
be computed on the fly as the whole space-time complexity is needed to compute the global
normalization constant. It is therefore mandatory to store the { |Hi,max| }i∈ J1, nadapK and wait for
the simulation completion to compute the list of complete optimal metrics {Mi,LpL∞}i∈ J1, nadapK.

Secondly, an important asset of this method lies in the possibility to parallelize the generation
of the nadap meshes in a straightforward manner, see Figure 2.10. The whole adaptation loop is
actually run in parallel:
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For j = 1, . . . , nptfx (SEQUENTENTIAL)

For i = 1, . . . , nadap (SEQUENTENTIAL)

Sji,0 = InterpolateSolution(Hji−1,S
j
i−1, H

j
i )

{ Sji,k }k∈ J0, nkK = SolveState(Sji,1, H
j
i )

For k = 1, . . . , nk (DISTRIBUTED PARALLELIZATION)
|Hj

i,k| = ComputeSamplesHessians(Hji , S
j
i,k)

End for

|Hj
i,max| = ComputeMaxHessianMetric({ |Hj

i,k| }k∈ J1, nkK)

End for

Cj = ComputeSpaceTimeComplexity({|Hj
i,max|}i∈ J1, nadapK)

For i = 1, . . . , nadap (DISTRIBUTED PARALLELIZATION)

Mj
i = ComputeUnsteadyLpMetrics(Cj , |Hj

i,max|)

Hj+1
i = GenerateAdaptedMeshes(Hji ,M

j
i )

End for

End for

Figure 2.9: The global space-time mesh adaptation fixed-point algorithm. Quantities in red are
associated with one solution sample, quantities in green to one adaptation sub-interval and those
in blue to one fixed point loop. Two loops are split using distributed parallelization and inside the
loop which cannot be parallelized, procedures in bold font are multi-threaded (shared-memory
parallelization).

• The solution computation and the interpolations are performed in parallel via multi-threading
using shared memory between cores,

• A distributed parallelization strategy has been retained for the computation of the samples
Hessians and of multi-scale metrics computations as well as for meshes generation. Notably,
if nadap meshes must be generated and if nproc ≤ nadap processors are available, the work
distribution is done in such a way that a processor is never inactive. As soon as one of them
has achieved its task, it is entrusted with a new workload. This strategy requires that all
the maximal Hessians {|Hj

i,max|}i∈ J1, nadapK and all the continuous meshes {Mj
i}i∈ J1, nadapK
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Figure 2.10: New global fixed-point algorithm: computation of the total space-time complexity
Cj at each loop and global normalization. Greens stages can be performed in parallel.

are stored simultaneously.

In the next section, the practical use of the optimal space-time Metric (2.11) inside this new
global algorithm is discussed, and several difficulties are also highlighted.

2.3.3 Practical use of the optimal space-time metric inside the fixed-point
algorithm.

In Section 2.2.3, the temporal dimension has been treated exactly like spatial ones, except for
the constraint imposed on the temporal eigen-direction. Of course, in practice, time is scarcely
treated as a mere additional dimension. Indeed, as explained in Section 2.1.3, most Euler
solvers use the method of lines to handle time dependency in order to avoid the generation of
four dimensional meshes. The consequence is that the time discretization, i.e. time steps, are
imposed by the solver and cannot be prescribed externally by a "time" metric.
Therefore, additional treatments must be performed on space-time Metric (2.10) to get a metric
only prescribing spatial sizes but which controls at best the global space-time interpolation error.

2.3.3.1 Strategy without temporal Hessians

In a first time, we have voluntarily ignored the utt in Expression (2.10) ofMst to focus on the
evaluation of the space-time complexity and the set up of the new global fixed-point strategy.
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As this strategy does not control the whole space-time error but only the instantaneous spatial
error, it will be referred to as "partially space-time" unsteady mesh adaptation.

The following metric is used to adapt the mesh between ti and ti+1:

Mpart. st
LpL∞,i(x) = Dpart,st

LpL∞

[
det |Hs

i,max(x)|
]− 1

2p+n |Hs
i,max(x)| ,

with Hs
i,max(x) =

nk⋂
k=1

Hs
i,k =

nk⋂
k=1

Hs
u(x, ti,k) .

The non-dimensioned complexity associated with continuous space-time mesh Mpart. st
LpL∞ then

reads:

C(Mpart. st
LpL∞ ) =

nadap∑

i=1

ti+1∫

ti

∫

Ω

√
detMpart. st

LpL∞,i(x) dx dt =

nadap∑

i=1

∆ti

∫

Ω

n∏

l=1

h−1
l,i,max(x) dx ,

and the global normalization is given by:

Dpart,st
LpL∞ = N

2
n



nadap∑

i=1

∆ti

∫

Ω

[
det |Hs

i,max(x)|
] p

2p+n dx



− 2
n

.

Actually, this strategy considers that there is no time error during the simulation, and that
consequently, the space-time mesh size in the time direction can be constant and arbitrarily
large. In other words, there is no mesh adaptation in the temporal direction. The unsteadiness
is taken into account only through the integration of the spatial error in the normalization
constant Dpart,st

LpL∞ .
This strategy is the one used for all the three-dimensional examples presented in Section 2.4.

2.3.3.2 Strategies with temporal Hessians

A time-advancing space-time metric. Our first idea was to transform Mst into a "time
advancing" metricMst. Indeed, once Problem (2.8-2.9) has been solved, each vertex has been
attributed an optimal size both in space and time. If we were able to generate and to handle
four-dimensional space-time meshes, this metric could be used directly under this form and,
according to Section 2.2.3, the resulting space-time mesh would be such that each vertex has a
local CFL number equal to 1.
However, only time-advancing schemes can be considered so far and local time stepping proce-
dures cannot be considered for unsteady simulations. Therefore, we attempted to perform some
additional a posteriori treatment on space-time optimal metric Mst

Lp so that each vertex gets
the same temporal size prescription.

A first idea is to take:
τ(t) = τmin(t) = min

x∈Ω
τ (x, t) ,

without modifying spatial sizes. However, this a posteriori rough truncation does not at all
ensure that the resulting mesh is optimal. For instance, the prescription of a big temporal size
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at one vertex may be responsible for the prescription of small associated spatial sizes, due to the
local normalization term. It is possible that if we had known in advance that the final temporal
size of the considered vertex would finally be reduced to τmin, a greater spatial size could have
been prescribed while still enforcing the complexity constraint.

One way to remedy this problem is to perform an iterative truncation/correction procedure just
like in the case of a locally degenerated Hessian for steady adaptation, see Section 1.4.4.
In the algorithm described in Section 2.1.4.4, the adapted mesh for sub-interval [ti, ti+1] is built
from the intersection of the nk spatial Hessians. This ensures that the worst, i.e. the smallest
size is prescribed at each vertex, which guarantees the control of the spatial error for the whole
sub-interval. In the case of fully space-time mesh adaptation, the prescribed temporal size must
be the same for all the vertices as global time-stepping is mandatory. Therefore, for each sample
k, all temporal sizes must be truncated to the minimal temporal size:

τi,k = min
x∈Ω

τi,k(x) .

The temporal Hessian of the solution utt is computed for each sample inside the fluid solver as
described in Appendix A.1. Thus, nk temporal sizes (τi,k)k∈J1,nkK are obtained.

However, as the spatial mesh must remain the same during the whole sub-interval [ti, ti+1], a
single time step value must be used in the truncation algorithm to correct spatial sizes. Indeed,
if different time steps are used depending on t, nk different corrected spatial meshes will be
generated: this is in contradiction with the main objective of the fixed-point algorithm which is
to limit the number of re-meshings. So, we must find a way to get only one time step τi from
the (τi,k)k∈ J1, nkK. Due to the local normalization term, the biggest the prescribed temporal
size, the smallest the associated spatial sizes. Therefore, the most constraining temporal size,
i.e. the biggest one, is chosen among the nk temporal size associated with the nk samples. The
truncated time step for [ti, ti+1] therefore reads:

τi = max
k∈J1,nkK

min
x∈Ω

τi,k(x) .

In terms of metric temporal eigenvalue, this writes mt,i ≥ (mt)i,thres., i ∈ J1, nadapK, with:

(mt)i,thres. = (τi)
−2 = min

k∈J1,nkK
max
x∈Ω

(mt)i,k(x, t)

= DLpL∞ min
k∈J1,nkK

max
x∈Ω

( [
n∏

l=1

γl,i,max(x)

]
(utt)i,k(x)

)− 1
2p+n+1

(utt)i,k(x) ,

(2.22)

and ( γl,i,max )l∈ J1, nK are the eigenvalues of |Hi,max|.
The algorithm to compute the time-advancing space-time metric Mi,LpL∞ is based on the

one described in Section 1.4.4 for the truncation of steady multi-scale metrics. However, the
additional time dimension must now be taken into account and is always truncated to τi.
The main difference as compared to the steady truncation algorithm is that the metric threshold
for the temporal size depends on the current value of the space-time Hessian, which changes at
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each non-linear loop iteration. Consequently, this truncation threshold must be updated at each
new loop of the truncation procedure. The algorithm is therefore highly non-linear and the
convergence generally slower than in the steady case.

At the moment, we have encountered several difficulties with this algorithm. The main prob-
lem comes from the computation of temporal threshold mt,i,thres.. Indeed, the max operator in
Expression (2.22) makes the value of mt,i,thres. very dependent of the computation of temporal
Hessians utt. If the numerical approximation fails only at one vertex and generates a very high
value, it will spoil the whole spatial mesh.
In the steady case, this problem does not occur as the spatial Hessian computed at one vertex
impacts the mesh generation only in the neighborhood of this vertex. Moreover, the anoma-
lies of the numerical spatial Hessian are attenuated thanks to the metric gradation process
[Alauzet 2010a]. On the contrary, in the case of the space-time metric, a single anomaly on utt
can have a negative influence on the whole mesh, notably if the maximal value of utt on Ω is
overestimated.
Figure 2.11 illustrate the numerical behavior of max

x∈Ω
|utt(x, t)| on a two-dimensional adaptive

city blast simulation.
These curves show that numerically, the time evolution of max

x∈Ω
utt(x, t) exhibits strong oscilla-

tions which prevent the use of such numerical quantity as a global truncation parameter for the
spatial metric.

Figure 2.11: Time evolution of max
x∈Ω

utt(x, t), the maximal value of utt on Ω.

A fully space-time strategy. For this new strategy, the influence of temporal Hessian on the
optimal continuous space-time mesh is taken into account. To this aim, the spatial partMs of
the optimal space-time metric Mst is first rewritten under Form (2.17). This is primordial to
guarantee that the maximal value of the spatial error is controlled on the considered adaptation
sub-interval, see Section 2.3.1.
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We thus look for H∗ such that:

Ms = DLp

[
|utt| det |Hs

u|
]− 1

2p+n+1

|Hs
u| = DLp det |H∗|−

1
2p+n |H∗| .

The following |H∗| fits:

H∗ =
[
|utt|−(2p+n) det |Hs

u|
] 1

2p (2p+n+1) |Hs
u| .

Indeed, with this expression of H∗, we get:

DLp det |H∗|−
1

2p+n |H∗|

= DLp

[
det det

[
|utt|−(2p+n) det |Hs

u|
] 1

2p (2p+n+1) |Hs
u|
]− 1

2p+n
[
|utt|−(2p+n) det |Hs

u|
] 1

2p (2p+n+1)

|Hs
u|

= DLp

[
|utt|−

n(2p+n)
2p (2p+n+1) det |Hs

u|
n

2p (2p+n+1) det |Hs
u|
]− 1

2p+n
[
|utt|−

2p+n
2p (2p+n+1) det |Hs

u|
1

2p (2p+n+1)

]
|Hs

u|

= DLp

[
|utt|

] n
2p (2p+n+1)

− 2p+n
2p (2p+n+1)

[
det |Hs

u|
]− n

2p (2p+n+1)(2p+n)
+ 1

2p (2p+n+1)
− 1

2p+n

|Hs
u|

= DLp

[
|utt|

]− 2p
2p (2p+n+1)

[
det |Hs

u|
]−n+2p+n−2p(2p+n+1)

2p (2p+n+1)(2p+n)

|Hs
u|

= DLp

[
|utt| det |Hs

u|
]− 1

2p+n+1

|Hs
u| = Ms .

Then, the mesh is adapted for adaptation sub-interval [ti, ti+1] using:

Mfull. st
LpL∞,i(x, t) = DLpL∞

(
det |H∗max,i(x, t)|

)− 1
2p+n |H∗max,i(x, t)|

with H∗max,i =
nk⋂
k=1

H∗i,k =
nk⋂
k=1

H∗(x, ti,k) ,

(2.23)

and the normalization constant is computed as:

DLpL∞ = (N st)
2

n+1

[ nk∑

i=1

ti+1∫

ti

∫

Ω

(
|utt| det |Hs

max,i|
) p

2p+n+1
dx dt

]− 2
n+1

.

Note that this quantity is not equal to:

DLpL∞ 6= (N st)
2

n+1

[ nk∑

i=1

ti+1∫

ti

∫

Ω

(
det |H∗max,i|

) p
2p+n (

τ opt
)−1

dx dt

]− 2
n+1

,
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except if mesh adaptation is performed at each solver time step, i.e. no Hessian intersection is
done.
In the following, we demonstrate that this metric enables to control the global space-time error
in Lp(Ω× [0, T ]) norm. Two important assumptions are made:

• (H1): The local temporal interpolation error et is proportional to the local spatial one un-
der CFL condition. This has been proved for the case of the linear advection equation in
Remark 8,

• (H2): The adaptation is performed at each solver time step, which enables to get rid of the
intersection operator.

According to Hypothesis (H1), if a CFL type condition is enforced, the following inequality
holds:

et(x, t) = C es(x, t) .

Therefore, the global temporal error in Lp norm writes:

EtLp(Ω×[0, T ]) =




T∫

0

∫

Ω

[
et(x, t)

]p
dx dt




1
p

= C EsLp(Ω×[0, T ]) .

So, if EsLp(Ω×[0, T ]) is controlled, the whole global space-time error is controlled in Lp(Ω× [0, T ])

norm.

Now, let us assume Metric (2.23) is used to adapt the mesh. According to Hypothesis (H2),
the adaptation is performed at each solver time-advancing step and intersected Hessian H∗max,i
reduces to H∗i . The prescribed spatial sizes are then locally given by:

hi = D
− 1

2
Lp

[
|utt| det |Hs

u|
] 1

2(2p+n+1) γ
− 1

2
i . (2.24)

Substituting hi by Expression (2.24) in the local spatial error, we get:

es(x, t) =

n∑

i=1

h2
i (x, t)γi(x, t) = nD−1

Lp

(
|utt| det |Hs

u|
) 1

2p+n+1

= n
(
N st

)− 2
n+1




T∫

0

∫

Ω

(
|utt| det |Hs

u|
) p

2p+n+1
dx dt




2
n+1 (

|utt| det |Hs
u|
) 1

2p+n+1
.

The global space-time spatial error in Lp(Ω× [0, T ]) norm for this continuous space-time mesh
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then writes:

EsLp(Ω×[0, T ]) =




T∫

0

∫

Ω

[es(x, t)]p dx dt




1
p

= n
(
N st

)− 2
n+1




T∫

0

∫

Ω

(
|utt| det |Hs

u|
) p

2p+n+1
dx dt




2
n+1




T∫

0

∫

Ω

(
|utt| det |Hs

u|
) p

2p+n+1
dx dt




1
p

= n
(
N st

)− 2
n+1




T∫

0

∫

Ω

(
|utt| det |Hs

u|
) p

2p+n+1
dx dt




2p+n+1
p(n+1)

.

Thanks to Minkowski inequality, the following result holds:

EstLp(Ω×[0, T ]) = ||es + et||Lp(Ω×[0, T ]) ≤ ||es||Lp(Ω×[0, T ]) + ||et||Lp(Ω×[0, T ]) = EsLp + EtLp ,

and finally, we obtain:

EstLp(Ω×[0, T ]) ≤ C
n+ 1

n
EsLp(Ω×[0, T ]) = (n+1)

(
N st

)− 2
n+1




T∫

0

∫

Ω

(
|utt| det |Hs

u|
) p

2p+n+1
dx dt




2p+n+1
p(n+1)

.

This shows that under Hypothesis (H1) and (H2), the global space-time error in Lp(Ω× [0, T ])

norm is asymptotically converged at order 2. Indeed, the space-time mesh is of dimension 4, so
the order is the real α such that:

EstLp(Ω×[0, T ]) ≤ C
(
N st

)− α
n+1 .

In practice, the mesh is not adapted at each iteration. However, due to the properties of the
intersection operator detailed in Section 2.3.1, metric Mfull.st

LpL∞,i leads to a space-time mesh for
sub-interval [ti, ti+1] which is sub-optimal, but which still guarantees the control of the global
space-time interpolation error at order 2.

2.4 Numerical illustrations and comparison with the former al-
gorithm

In all the examples, the flow is modeled by the compressible Euler equations. The Euler system is
solved by means of a Finite Volume technique on unstructured tetrahedral meshes. The proposed
scheme is vertex-centered and uses a particular edge-based formulation with upwind elements,
see Section 5.2. Appropriate β-schemes are adopted for the variable extrapolation which gives
us a low diffusion second-order space-accurate scheme in the non-linear case. The MUSCL type
method is combined with a generalization of the Superbee limiter with three entries to guarantee
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the TVD property of the scheme. An explicit time stepping algorithm is used by means of a
4-stages, 3-order strong-stability-preserving (SSP) Runge-Kutta scheme which allows us to use
a CFL coefficient up to 2.

All simulations have been run on a 8-processors 64-bits MacPro r with an IntelCore2r

chipset with a clock speed of 2.8 GHz with 32 Gb of RAM.

Quantifying mesh anisotropy. In three dimensions, mesh anisotropy can be quantified by
two different indicators: the anisotropic ratios and the anisotropic quotients. Deriving these
quantities for an element relies on the fact that there always exists a unique metric tensor for
which this element is unit. IfMK denotes the metric tensor associated with element K, solving
the following linear system providesMK :

(S)





`2MK
(e1) = 1

...
`2MK

(e6) = 1 ,

where (ei)i=1,6 is the list of edges of element K and `2MK
(ei) = eTi MK ei. (S) admits a unique

solution as soon as the volume of K is not null. OnceMK is computed, the anisotropic ratios
and the quotients associated with element K are simply given by

r =

√√√√√
min

l∈ J1, 3K
λl

max
l∈ J1, 3K

λl
=

max
l∈ J1, 3K

hl

min
l∈ J1, 3K

hl
, and κ =

max
l∈ J1, 3K

h3
l

h1h2h3
,

where (λl)l∈ J1, 3K are the eigenvalues of MK and (hl)l∈ J1, 3K are the corresponding sizes. The
anisotropic ratio stands for the maximum elongation of a tetrahedron by comparing two main
directions. The anisotropic quotient represents the overall anisotropic ratio of a tetrahedron
taking into account all the possible directions. This quotient can be considered as a measure of
the overall gain in three dimensions of an anisotropic adapted mesh as compared to an isotropic
one. This gain is of course even greater when compared to a uniform mesh.

2.4.1 Three-dimensional Double-Mach reflection simulation

The first 3D simulation to illustrate the efficiency of the proposed approach is the double Mach
reflection test case proposed in [Woodward 1984]. In this problem, a planar shock wave collides
with a straight compressive wedge and reflects over it as a Mach reflection. When the shock hits
the sloping wall, a complicated shock reflection occurs. A triple point at which four discontinu-
ities meet typifies the Mach reflection. The four discontinuities are the incident, the reflected
and the Mach stem shock waves and the slipstream. Experiments indicate that the Mach stem
(the front shock wave) appears to be straight or to develop either a concave or convex shape.
A curved Mach stem occurs when the front of the curled slipstream catches up with the Mach
stem, which, as a consequence, is pushed forward and exhibits a convex shape.

Numerically, the critical component of the result which differentiates between methods is
the appearance of the dense jet along the wall, which is sensitive to numerical diffusion, and the
prediction of a straight or curved Mach stem.
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Iteration nv nt nf hmin ratio quotient
Initial Unif. 8 346 35 978 9 012 5.e−2 1.8 (4) 2.6 (10)

10 256 351 1 448 810 49 554 7.5e−4 11 (78) 66 (2272)

20 248 687 1 398 138 53 228 7.5e−4 11 (82) 67 (3095)

30 235 095 1 310 082 57 864 7.5e−4 11 (78) 68 (4943)

Table 2.2: Mesh statistics for the 3D double mach reflection problem.

Here, the problem is initialized by sending a Mach 10 shock wave into a reflecting wall that is
inclined by an angle of 30◦. In the region behind the shock wave the following initial conditions
are considered:

ρ = 8, v = (8.25, 0, 0), p = 116.5 ,

whereas the ambient air conditions are:

ρ = 1.4, v = (0, 0, 0), p = 1 .

Following the study of [Li 1999], these initial conditions lead to a convex Mach stem.
As regards mesh adaptation for this example, we split the simulation time frame into 30

adaptation sub-intervals. For each sub-interval, we consider 21 samples of the solution to build
the metric. Five fixed-point iterations have been done to converge the non-linear problem of mesh
adaptation. The space-time interpolation error on the local sound speed variable is controlled
in L∞ − L2 norm. We start from an initial uniform very coarse mesh containing 8 346 vertices
and 35 978 tetrahedra. At the end of the simulation, the final adapted mesh for the last sub-
interval contains 235 095 vertices and 1 310 082 tetrahedra, see Figure 2.12. The final solution
in Figure 2.12 shows that the dense jet along the wall has been accurately captured and, as
expected, a Mach stem convex shape is obtained with only 235 095 vertices in three dimensions.

The mesh adaptation for the whole sub-interval is clearly illustrated. Indeed, the mesh refine-
ment along band-shaped regions, which is typical of the fixed-point algorithm, is clearly visible.
These band-shaped areas correspond to the evolution zone of the physical phenomena during an
adaptation sub-interval and account for the control of the space-time interpolation error during
the whole simulation. In Table 2.2, statistics of three meshes, corresponding to adaptation sub-
intervals 10, 20 and 30, are given. We notice that the mesh accuracy is almost 100 times better
than with the initial mesh allowing us to accurately capture the shocks and the slipstream. As
regards the amount of anisotropy for this simulation, an average anisotropic ratio of 11 and a
mean anisotropic quotient of almost 70 are obtained. This quotient measures the overall gain
as compared to an isotropic mesh adaptation.

The simulation total CPU time is 8h55m. It took 1min30s to compute the first solution on the
initial mesh and 1h56min to compute the last solution (at fixed point iteration 5) on the last
series of adapted meshes. For the whole simulation, 7h of the CPU time has been spent in the
triple - Solver / Metric Computation / Solution Interpolation - and 1h55min for the couple -
Metric Gradation / Mesh Adaptation.



102 Chapter 2. Unsteady mesh adaptation: theory and practice

2.4.2 Three-dimensional blast in a city

In the second example, we consider a purely three-dimensional blast problem in a complex
geometry representing a city. The city size is 85m × 70m × 70m. In this simulation, shock
waves interact with each other and are reflected by the buildings. The city geometry is the same
as in [Alauzet 2007]. Initially, the ambient air is at rest:

ρ = 1, v = (0, 0, 0), e = 2.5 .

A "blast-like" initialization is considered inside a half-sphere of radius r = 2.5m around x =

(42, 53, 0):
ρ = 10, v = (0, 0, 0), e = 25 ,

The density of the flow is chosen as sensor variable for our mesh adaptation process. The space-
time interpolation error on the sensor is controlled in L∞ −L2 norm. The time frame was split
into 40 adaptation sub-intervals and 5 fixed-point iterations were used to converge the non-linear
mesh adaptation problem. For each sub-interval, we consider 21 samples of the solution to build
the metric. The desired accuracy was set to reach a space-time complexity equal to 4 millions.
We start from an initial uniform mesh containing 99 255 vertices and 549 128 tetrahedra with
an accuracy of 35 cm.

Figure 2.13 shows the iso-surfaces and the iso-values of the final density at sub-interval 20, 30
and 40. It points out the complexity and the unpredictable behavior of the physical phenomena
with a large number of shock waves interacting with the geometry. Thanks to multi-scale mesh
adaptation, all shock waves are automatically captured by the adaptation process and properly
refined. Again, the mesh adaptation for the whole sub-interval is clearly illustrated. Indeed, the
mesh refinement along band-shaped regions, which corresponds to the zone in which physical
phenomena evolves during an adaptation sub-interval, are visible. At the end of the simula-
tion, the final adapted mesh for the last sub-intervals contains 185 148 vertices and 1 027 537

tetrahedra, see Figure 2.14. Its accuracy is about 10 cm whereas the accuracy required at the
beginning of the simulation, when the energy of the blast is maximal, is close to 1 cm. In
Table 2.3, statistics of four meshes, at sub-intervals 10, 20, 30 and 40, are given. We notice
that the mesh accuracy is almost 10 to 30 times better than with the initial mesh allowing us,
to precisely capture the solution. As regards the amount of anisotropy for this simulation, an
average anisotropic ratio between 8 and 15 and a mean anisotropic quotient between 50 and 160

are obtained. The anisotropic quotient measures the overall gain as compared an isotropic mesh
adaptation, here almost 100. The gain is of course even greater when compared to a uniform
mesh.

The simulation total CPU time is 4h32min. It took 9min to compute the first solution on the
initial mesh and 40min to compute the last solution (at fixed point iteration 5) on the last series
of adapted meshes. For the whole simulation, 2h52min of the total CPU time has been devoted
to the triple - Solver / Metric Computation / Solution Interpolation - and 1h40min to the couple
- Metric Gradation / Mesh Adaptation.
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Iteration nv nt nf hmin ratio quotient
Initial Unif. 99 255 549 128 35 420 35cm 2 (32) 4 (540)

10 305 027 1 746 040 42 486 4cm 15 (105) 164 (6804)

20 225 829 1 275 931 45 000 6cm 12 (72) 122 (3380)

30 189 858 1 057 022 48 594 9cm 9 (76) 77 (2890)

40 185 148 1 027 537 50 250 11cm 8 (71) 56 (2813)

Table 2.3: Mesh statistics for the 3D city blast problem.
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Figure 2.12: Three dimensional double Mach reflection simulation. Left, final solution isovalues
and, right, last adapted mesh. From top to bottom, on the surface, in the volume and a close
up view when the front of the curled slipstream catches up with the Mach stem.
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Figure 2.13: Three dimensional blast in a city simulation. Left, density iso-surfaces and, right,
density iso-values on the surface. From top to bottom, solutions at sub-intervals 20, 30 and 40,
respectively.
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Figure 2.14: Three dimensional blast in a city simulation. Left, adapted surface meshes and,
right, cut in the adapted volume meshes. From top to bottom, adapted meshes corresponding
to sub-intervals 20, 30 and 40.
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This chapter deals with metric-based anisotropic mesh adaptation in the context of simulations
involving moving geometries.
The problem is that direct extension of the fixed-point algorithm described in Section 2.3 to
moving mesh simulations does not take into account the movement of the mesh. Indeed, the
local error estimate from which the optimal metric is deduced does not take into account the
local deformation of the mesh which necessarily impacts the local errors.
The final objective of this chapter is to extend the fixed-point adaptation algorithm to moving
mesh simulations and to guarantee, just like in the fixed-mesh case, a control of the interpolation
error during a whole adaptation sub-interval in a moving mesh context.

Now, let us mathematically describe the framework of this study. Computational domain Ωh =

Ωh(t) is time-dependent and generally, Ωh(tk) 6= Ωh(tk+1) between two instants tk and tk+1

in [0, T ]. As we want to adapt the mesh to a solution defined on a deforming domain, the
deformation of the mesh must be taken into account into the metric.

To this aim, we first concentrate on a problem involving only two instants tk and tk+1. The
question to be answered is the following:

How to build a mesh of the domain at tk which, once deformed
from tk to tk+1, is adapted to the solution uk+1 at tk+1?
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The resolution of this problem led us to introduce a new optimal Arbitrary-Lagrangian-Eulerian
(ALE) metric, which involves the gradient of the mesh transformation between tk and tk+1.
The efficiency of the ALE metric is illustrated on several two and three-dimensional analytical
examples. Next, the extension of the fixed-point algorithm to moving mesh simulations using
this new metric is explained.

Notations. The following notations will be used in the sequel:

• Ωk and Ωk+1 denote the spatial domain at tk and tk+1, respectively,

• ∇k denotes the gradient operator1 performed on domain Ωk,

• Hk+1 [·] denotes the Hessian operator performed on domain Ωk+1,

• Mk+1
Lp [·] denotes the Lp optimal metric operator calculated on Ωk+1.

We also note: C
(
Mk+1

Lp

[
uk+1

])
= Nk+1. As operatorsMk+1

Lp [·] and Hk+1 [·] are always applied
to solution uk+1 at tk+1, the following abusive notations will be used: Mk+1

Lp will hold for
Mk+1

Lp

[
uk+1

]
and Hk+1 for Hk+1

[
uk+1

]
.

3.1 The ALE metric

Optimal ALE metric. Even if Ωk 6= Ωk+1 in general, we assume that these two spatial
domains can be mapped one onto the other, which means there exists a mapping φ such that:

φ : Ωk −→ Ωk+1

xk 7−→ xk+1 = φ
(
xk
)

and, as φ is a diffeomorphism, we have, for any infinitesimal vector dxk ∈ Ωk:

dxk+1 =
[
∇kφ(xk)

]T
dxk . (3.1)

Mapping φ and mesh displacement field d are linked by the following relation:

xk+1 = φ(xk) = xk + d(xk) =⇒ ∇k
φ(xk) = In + ∇kd(xk), ∀ xk ∈ Ωk

For the purpose of simplicity, sensor function u is assumed to be scalar, the extension to vectorial
functions being straightforward.
Finally, we note Ĥk+1 the Hessian of uk+1 computed on Ωk+1 and transported on domain Ωk.
This mathematically writes:

Ĥk+1 : Ωk −→ R
xk 7−→ Hk+1

[
uk+1

]
(φ
(
xk
)
) = Ĥk+1(xk) .

Figure 3.1 illustrates the meaning of operator ·̂ in one dimension.
1Here, the gradient is not the Jacobian, i.e. for an arbitrary vector field f = (f1, . . . , fn), its gradient matrix

is ∇f =
(
∂fj
∂xi

)
ij
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xk+1

xk

xk

xk

|Hk+1
u |

|Hk
u | |Hk

u |

|�Hk+1
u |

Pi(t
k)

Pi(t
k+1)

Figure 3.1: Effect of operator ·̂ on a one dimensional scalar Hessian function |Hu|.

For our moving mesh simulations, topology changes can occur but no vertex addition or sup-
pression is allowed, see Part II. Consequently, the mesh complexity remains constant in time,
i.e. the complexity of the metric field defined on Ωk must be the same as the one of the metric
field defined on Ωk+1.

In the sequel, the following result is demonstrated:

Theorem 5 (Optimal ALE Lp metric). Let metricMALE
Lp be defined on Ωk by:

MALE
Lp (xk) = DALE

Lp

[
det
(
Ĥk+1(xk)

)]− 1
2p+n

(
∇kφ(xk) · Ĥk+1(xk) · ∇kφT (xk)

)

=




Nk+1

∫

Ωk

[
detH∗

] p
2p+n

dxk




2
n

{
det
(
H∗
)}− 1

2p+n
H∗

(3.2)

with

H∗ =
[
det∇kφ(xk)

] 1
p
(
∇kφ(xk) · Ĥk+1(xk) · ∇kφT (xk)

)

DALE
Lp =

(
Nk+1

) 2
n

(∫

Ωk+1

[
det
(
Hk+1(xk+1)

)] p
2p+n

dxk+1

)− 2
n

=
(
Nk+1

) 2
n

(∫

Ωk

[
det
(
Ĥk+1(xk)

)] p
2p+n |det∇kφ| dxk

)− 2
n

(3.3)

The following properties hold:
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i) Let us assume metric Mk,ALE
Lp is used to generate a unit mesh Hk of Ωk and let us denote

by Hk+1 the mesh of Ωk+1 which is the image of mesh Hk by mapping φ. Then, mesh Hk+1

is optimal to control the interpolation error in Lp norm of sensor uk+1 on Ωk+1.

ii) MetricMk,ALE
Lp has the same complexity Nk+1 as metricMk+1

Lp .

iii) Except for very specific case ∇kφ = In, the mesh is a priori not adapted to uk.

Proof of i). According to the metric-based mesh adaptation theory for steady problems, the
optimal metric in Lp norm for uk+1 is Mk+1

Lp as defined in (1.22). Thus, an optimal mesh of
Ωk+1 adapted to uk+1 can be built by generating a unit mesh Hk+1 with respect toMk+1

Lp :

1 = (ek+1)TMk+1
Lp en+1, for each ek+1 of mesh Hk+1 . (3.4)

For any arbitrary edge ek of Hk having ek+1 as image by φ in Hk+1, we write:

êk+1(xk) = ek+1
(
φ(xk)

)
=
[
∇kφ(xk)

]T
ek(xk) . (3.5)

As we are only interested in controlling the prevailing term of the interpolation error, we can
use the above relation, which is true at first order, in the demonstration.
The idea of this proof is to unravel how Condition (3.4) writes when transposed onto mesh Hk.
For any arbitrary edge ek of Hk having ek+1 as image in Hk+1, we write, using the definition of
operatorMk+1

Lp deduced from Relation (1.22):

1 =
[
ek+1

(
φ(xk)

)]T
· Mk+1

Lp

(
φ(xk)

)
· ek+1

(
φ(xk)

)

=
[
êk+1(xk)

]T
· Mk+1

Lp

(
φ(xk)

)
· êk+1(xk)

=

([
∇kφ(xk)

]T
· ek(xk)

)T
· Mk+1

Lp

(
φ(xk)

)
·
([
∇kφ(xk)

]T
· ek(xk)

)

=
[
ek(xk)

]T
·
{
(
Nk+1

) 2
n

( ∫

Ωk+1

{
detHk+1(xk+1)

} p
2p+n

dxk+1

)− 2
n

×
{

det Ĥk+1(xk)
}− 1

2p+n ∇kφ(xk) · Ĥk+1(xk) · ∇kφT (xk)

}
· ek(xk) .

If we create a unit mesh of Ωk with respect to metricMALE
Lp , the mesh generator will enforce:

[
ek(xk)

]T
· MALE

Lp (xk) · ek(xk) = 1, for all edge ek of Hk .

Rewriting the above calculus upside down, we get the following implication:
[
ek(xk)

]T
· MALE

Lp (xk) · ek(xk) = 1 =⇒
[
êk+1

]T
· Mk+1

Lp (φ(xk) ) · êk+1 = 1 .

Therefore, the deformed mesh is unit for the optimal metric associated with sensor uk+1, meaning
that it is optimal to control the interpolation error in Lp norm of the sensor at tk+1. �
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Proof of ii). Using det (αA) = αn detA, which is true for any scalar α and any matrix A, we
get:

C
(
MALE

Lp

)
=

∫

Ωk

[
det
(
MALE

Lp (xk)
)] 1

2
dxk

=
(
DALE

Lp

)n
2

(∫

Ωk

[
det
(
∇kφ(xk)

)] [
det
(
Ĥk+1(xk)

)]− n
2(2p+n)

[
det Ĥk+1(xk)

] 1
2

dxk

)

= Nk+1

(∫

Ωk

[
det
(
∇kφ

)] [
det
(
Ĥk+1(xk)

)] p
2p+n

dxk

)−1

×
(∫

Ωk

[
det
(
∇kφ(xk)

)] n
2p+n

[
det
(
Ĥk+1(xk)

)] p
2p+n

dxk

)

= Nk+1

= C
(
Mk+1

Lp

[
uk+1

])
. �

3.2 Analytical examples

Theorem 5 has been validated on several two- and three-dimensional analytical test cases. A
detailed analysis of these examples in terms of mesh quality is provided to assess the practical
efficiency of this theorem.

3.2.1 Tests cases description

Two-dimensional examples. The considered domain is Ω = [−1, 1]× [−1, 1]. We define the
following four analytical functions, the graphs of which are depicted in Figure 3.2.

uk+1
0 (x, y) = x2 + y2

uk+1
1 (x, y) =





0.01 sin (50xy) if |xy| ≤ π

50

sin (50xy) if |xy| ≤ 2π

50

uk+1
2 (x, y) = 0.1 sin (50x) + arctan

(
0.1

sin (5y)− 2x

)

uk+1
3 (x, y) = arctan

(
0.1

sin (5y)− 2x

)
+ arctan

(
0.5

sin (3y)− 7x

)
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Figure 3.2: Representation of analytical functions uk+1
0 (top left), uk+1

1 (top right), uk+1
2 (bottom

left) and uk+1
3 (bottom right).

Two analytical displacements are also introduced:

d1(x, y) =




{ −0.3 (x+ 1)
(
y2 − 1

)
exp

(
−5x2

)
, if x ≥ 0

0.3 (x− 1)
(
y2 − 1

)
exp

(
−5x2

)
, if x < 0

{ −0.3
(
x2 − 1

)
(y + 1) exp

(
−5y2

)
, if y ≥ 0

0.3
(
x2 − 1

)
(y − 1) exp

(
−5y2

)
, if y < 0




d2(x, y) =

[
0.5
(
x2 − 1

) (
y2 − 1

)

0

]
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Note that these displacements are such that the mesh remains fixed on the domain boundaries.
This is mandatory as moving mesh vertices on the boundary is a hard task. Actually, in this
specific case, the boundary is piecewise straight so we could move boundary vertices without
damaging the geometry description. But in the standard case, boundaries are curved and moving
vertices on the discrete boundaries requires either the knowledge of the CAD patches used
to design the geometry or the ability to rebuilt an accurate continuous surface model of the
boundary from its discretization. In any case, this represents a lot of work. We therefore limit
ourselves to mesh displacements satisfying a Dirichlet condition on the domain boundaries:
d|∂Ω = 0.

Figure 3.3: Initial mesh (left), moved mesh after displacement d1 (middle) and d2 (right).

Three dimensional examples. For the three-dimensional analytical examples, the domain is
Ω = [−1, 1]3. The following analytical sensor function at tn+1 are considered:

uk+1
4 (x, y, z) = x2 + y2 + z2

uk+1
5 (x, y, z) =





0.01 sin (50xy) if |xy| ≤ π

50

sin (50xy) if |xy| ≤ 2π

50
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along with these two analytical displacements:

d3(x, y) =




0{ −0.3 (y + 1)
(
z2 − 1

)
exp

(
−5y2

)
, if x ≥ 0

0.3 (y − 1)
(
z2 − 1

)
exp

(
−5y2

)
, if x < 0

{ −0.3
(
y2 − 1

)
(z + 1) exp

(
−5z2

)
, if y ≥ 0

0.3
(
y2 − 1

)
(z − 1) exp

(
−5z2

)
, if y < 0




d4(x, y) =
0.8√

2
(x2 − 1)(y2 − 1)(z2 − 1)



−1

−1

1




Functions uk+1
4 and uk+1

5 are depicted in Figure 3.4. Note that function uk+1
5 exhibits features of

Figure 3.4: Iso-surfaces of three-dimensional quadratic analytical function uk+1
4 (left) and iso-

values of uk+1
5 (right).

different scales, small oscillations of amplitude 0.01 and large oscillations of amplitude 1, which
makes it especially suitable for the validation of the multi-scale mesh adaptation process.

Protocol. All these computations start with a uniform mesh H0. The target complexity is
set to Nk+1 = 7000 for two-dimensional examples and to Nk+1 = 70000 for three-dimensional
examples. We want to control the interpolation error on uk+1 in L1 norm. The loop described
in Figure 3.5 is performed for each target functional/prescribed displacement combination.

The gradient ∇kd = (∇kd1, ∇kd2, ∇kd3) of displacement d = (d1, d2, d3) is computed as
follows:

∇kd(Pi) =

∑
K ∈Ball(Pi)

|K| ∇kd|K
∑

K ∈Ball(Pi)
|K| ,
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For m = 1, . . . , nadap

dki = ComputeDisplacement(Hki )

∇kφi = ComputeTransformationGradient(Hki ,dki )
Hk+1
i = MoveMesh(Hni ,dki )

uk+1
i = ComputeTargetSensor(Hk+1

i )

Mk,ALE
Lp,i = ComputeALEMetric(Hk+1

i , uk+1
i ,∇kφi)

Hki+1 = AdaptMesh(Hki ,Mk,ALE
Lp,i )

End for.

Figure 3.5: Procedure applied on two and three dimensional analytical test cases.

with

(∇kdj)|K =
1

2|K|
2∑

l=0

dj(Pl)ηl in 2D , (∇kdj)|K =
1

6|K|
3∑

l=0

dj(Pl)ηl in 3D ,

and we have noted Ball(Pi) the ball of vertex Pi, and ηl the non-normalized inward normal of
face l of element K.

3.2.2 Results analysis.

The adapted mesh of Ωk
h obtained for each functional uk+1 = uj when mesh displacement is di

is noted Hki (uj). These meshes are unit with respect to metricMALE
L1 defined by Formula (3.2).

According to the above developments, we expect the image mesh Hk+1
i (uj) of Hki (uj) obtained

when the vertices of Hki (uj) are moved according to di to be optimal for the control of the
interpolation error of uk+1 in L1 norm. To check this, the resulting image mesh Hk+1

i (uj)

obtained by applying our new methodology when Hki (uj) is moved according to di, is compared
to the optimal adapted mesh HL1(uj) obtained with direct steady multi-scale adaptation, see
Chapter 1.

For each function uk+1 = uj and each displacement di, the progressive transformation of the
mesh while its vertices are moved along displacement field di is shown. For two-dimensional
analytical functions, the adapted deformed mesh is described by a sequence of 6 images at 6 dif-
ferent times tk+α

(
tk+1 − tk

)
, with α ∈ {0, 13/60, 25/60, 37/60, 43/60, 1}, see Figures 3.8, 3.9

for u0, see Figures 3.11, 3.12 for u1, see Figures 3.14 and 3.15 for u2 and finally, see Figures 3.17
and 3.18. For three-dimensional test cases, the adapted deformed mesh is described by a se-
quence of 6 images at times tk + α

(
tk+1 − tk

)
, with α ∈ {0, 3/20, 7/20, 11/20, 15/20, 1}. As

can be seen on all these examples, meshes Hki (uj) are indeed transformed into a nearly optimal
mesh for sensor uk+1 at tk+1, in two dimensions as well as in three dimensions, see Figure.

The quality of final meshes obtained by moving mesh adaptation is compared to the one obtained
when directly performing a standard steady mesh adaptation on uj . A detailed comparison
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between the mesh obtained by direct adaptation and the final meshes obtained after Hki (uj) is
moved of di is given for each test case associated with each displacement. This has been done
by computing the quality of all the elements of these two meshes with respect to optimal L1

metricML1 . ML1 that has been used to generate HL1 . The quality criterium is the following,
where (el)l denote the edges of the considered element K:

QM(K) =

√
3

216

(∑6
l=1 `

2
M (ei)

) 3
2

|K |M
.

If QM(K) is near from 1, then element K is almost regular with respect to ML1 . On the
contrary, the biggest QM(K), the worst the quality. For each analytical sensor uk+1, the qual-
ity comparison between classically adapted mesh HL1 and the images of ALE-adapted meshes
Hk+1
i (uj) for each di are provided, along with detailed quality histograms.

All these results are gathered at the end of this chapter.

First, it can be observed that the qualities of the meshes HL1(uj) obtained by direct adap-
tation are excellent. This is even more striking for 3D dimensional examples: for functional
u5, the average quality of directly adapted mesh HL1(u5) is 1.22 and the worst quality is 8.31.
This demonstrated the efficiency of the 3D anisotropic adaptive re-mesher, even on strongly
anisotropic functions like u5.

Two-dimensional test cases are very convincing. The moving mesh applied on quadratic sensor
u0 shows the consistency of the method as we manage to a get a uniform mesh at tk+1, as
expected. The mesh movement is indeed taken into account: the moving mesh metric tends to
reduce mesh sizes in some areas, anticipating the future stretching of these regions thanks to the
gradient of di. The study of the meshes qualities shows that meshes that has been generated
at tk thanks to the ALE metric are almost perfectly adapted to the corresponding analytical
sensor uk+1 = uj once they have been moved.
For analytical functions u2 and u3 some bad elements are generated. These bad element are
located near the domain boundary in regions of high anisotropy. This is due to the constraint
imposed by the "no vertex displacement on the boundary" condition, which locally hinders the
generation of the optimal anisotropic mesh near the boundary.

Three-dimensional examples are also very demonstrative. First, when applied to quadratic 3D
sensor u4 the expected uniform final mesh is obtained after ALE-adapted mesh Hki (u4) at tk as
been moved of di. This is observed for "pseudo-2D" displacement d3 but also for more generic
displacement d4. Regarding u5, the quality of ALE-adapted meshes Hk+1

3 (u5) and Hk+1
4 (u5)

are also very good with an average quality of 1.24 and 1.76, respectively.
However, some bad elements for metric Hk+1

i (u5) appear: 25 and 180 elements have a quality
greater than 10 for Hk+1

3 (u5) and Hn+1
4 (u5), respectively. One of the reason to explain these

meshes degradation may be that Relation (3.5) is only true at first order and higher order terms
might be necessary when the transformation is complex, which is the case here. Another reason
can be the lack of regularity of the ALE metric, which makes it really hard for the re-mesher to
build a unit mesh with respect to this metric. To facilitate the task of the mesh generator, we
have applied a gradation process on the metric [Alauzet 2010a] to reduce size shocks: this can
have a non negligible impact on the image mesh. Nevertheless, the amplitude of displacement
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d2 is large, much more than what is encountered in the moving mesh fixed-point algorithm, thus
obtaining such quality results at the end of the mesh displacement is really satisfactory.

3.3 Extension of the fixed-point algorithm to moving mesh sim-
ulations

Only few things need to be modified to extend the fixed-point algorithm of Section 2.3 to
moving mesh simulations. First, it is important to understand that in the case of moving mesh
simulations, physical quantities are not computed at fixed locations (x, y, z) in space, but are
associated to moving vertices. Thus, during the sampling stage, each vertex P is followed along
its trajectory γP (t) between ti and ti+1. At each sampling time t = ti,k, the solution associated
with this moving vertex ui,k(P ) is saved, along with the mesh displacement di,k(P ) between
P (ti) and P (ti,k), see Figure 3.6. All this is gathered to compute an ALE Hessian |H∗i,max| on

t = ti ti + 2δtti + δt ti + 3δt ti + 4δt

γP (t)

P (ti,2)

ui,0, di,0

ui,1, di,1

ui,2, di,2

ui,3, di,3

ui,4, di,4

|H∗
i,k|

|H∗
i,max|

Figure 3.6: Moving vertex trajectory, solution and displacement sampling and sub-interval ALE
metric computation.

mesh H(ti). Note here that writing the ALE metric under Form 2.17 enable to apply the results
of Section 2.3.1, i.e guarantees the control of the worst spatial global interpolation error Lp norm
on each adaptation sub-interval. Of course, this requires that the number of vertices of
the mesh remains the same between ti and ti+1, which is the case for the ALE method
we chose, see Part II.
We are now sure that the mesh, even if it is not optimal, will be adapted to the solution
during its whole movement between ti and ti+1. Except for the computation of the gradient of
the transformation and the expression of the metric, the structure of the fixed-point algorithm
remains the same as in the fixed-mesh case and is described in Figure 3.7.
Applications of this algorithm to moving mesh CFD computations will be presented in Part II,
in two and three dimensions.
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ti,k

t

∆ti
ti ti+1 T = tnadap

0

Hj
i

⇓

δt

nadap = 5

nk = 11

Hj
0

. . . . . . Hj
nadap

Sj
i,k, dj

i,k

⇓

j ←− j + 1

Mesh generation

Solution and mesh displacement sampling

Fixed-point loop

= Cj

Cj
i

⇓

Cj
0 Cj

nadap
. . . . . .

|H∗,j
i,k |

� �� �

|H∗,j
i,max| =

nk�

k=1

|H∗,j
i,k ||H∗,j

0,max| |H∗,j
nadap,max|. . . . . .

ALE Hessian computation
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Figure 3.7: Spatial error-driven space-time fixed-point algorithm extended to moving mesh
simulations.
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Figure 3.8: Moving-mesh metric-based mesh adaptation in L1 norm applied to analytical func-
tion uk+1 = u0 for prescribed mesh displacement d1. Deformation of the ALE-adapted mesh
from tk to tk+1. Final mesh is adapted to u0
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Figure 3.9: Moving-mesh metric-based mesh adaptation in L1 norm applied to analytical func-
tion uk+1 = u0 for prescribed mesh displacement d2. Deformation of the ALE-adapted mesh
from tk to tk+1. Final mesh is adapted to u0
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HL1(u0) Hk+1
1 (u0) (with d1) Hk+1

2 (u0) (with d2)

Number of vertices 7652 8633 8860
Number of triangles 14939 16898 17360
Average quality 1.071505 1.064457 1.070742
Best quality 1.000001 1.000002 1.000005
Worst quality 1.789929 1.614584 2.163519

1.00 < Q < 2.00 14939 100.00 % 16898 100.00 % 17358 99.99 %
2.00 < Q < 3.00 0 0.00 % 0 0.00 % 2 0.01 %

Figure 3.10: Results obtained on u0 with true adaptation (left), using moving mesh adaptation
with d1 (middle) and d2 (right). Top: final meshes. Bottom: elements quality in the target
metric at tk+1.
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Figure 3.11: Moving-mesh metric-based mesh adaptation in L1 norm applied to analytical
function uk+1 = u1 for prescribed mesh displacement d1. Deformation of the ALE-adapted
mesh from tk to tk+1. Final mesh is adapted to u1.
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Figure 3.12: Moving-mesh metric-based mesh adaptation in L1 norm applied to analytical
function uk+1 = u1 for prescribed mesh displacement d2. Deformation of the ALE-adapted
mesh from tk to tk+1. Final mesh is adapted to u1.
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HL1(u1) Hk+1
1 (u1) (with d1) Hk+1

2 (u1) (with d2)

Number of vertices 11035 11498 11612
Number of triangles 21168 22075 22306
Average quality 1.135740 1.173252 1.152363
Best quality 1.000013 1.000007 1.000001
Worst quality 7.415330 18.712967 16.252627

1.00 < Q < 2.00 21129 99.82 % 21835 98.91 % 21997 98.61 %
2.00 < Q < 3.00 34 0.16 % 207 0.94 % 249 1.12 %
3.00 < Q < 4.00 4 0.02 % 25 0.11 % 45 0.20 %
4.00 < Q < 5.00 1 0.00 % 3 0.01 % 5 0.02 %
5.00 < Q < 10.00 0 0.00 % 4 0.02 % 9 0.04 %
10.00 < Q < 100.00 0 0.00 % 1 0.00 % 1 0.00 %

Figure 3.13: Results obtained on u1 with true adaptation (left) and using moving-mesh adap-
tation with prescribed displacement d1 (middle) and d2 (right). Top: final meshes. Bottom:
elements quality in the target metric at tk+1. Worse elements are located near the boundary
and in strongly anisotropic areas, as in classical adaptation.
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Figure 3.14: Moving-mesh metric-based mesh adaptation in L1 norm applied to analytical
function uk+1 = u2 for prescribed mesh displacement d1. Deformation of the ALE-adapted
mesh from tk to tk+1. Final mesh is adapted to u2.
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Figure 3.15: Moving-mesh metric-based mesh adaptation in L1 norm applied to analytical
function uk+1 = u2 for prescribed mesh displacement d2. Deformation of the ALE-adapted
mesh from tk to tk+1. Final mesh is adapted to u2.
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HL1(u2) Hk+1
1 (u2) (with d1) Hk+1

2 (u2) (with d2)

Number of vertices 10279 10386 10628
Number of triangles 20125 20342 20819

Average quality 1.084487 1.088273 1.097077
Best quality 1.000003 1.000003 1.000005
Worst quality 2.192020 2.501825 3.301007

1.00 < Q < 2.00 20122 99.99 % 20334 99.96 % 20779 99.81 %
2.00 < Q < 3.00 3 0.01 % 8 0.04 % 39 0.19 %
3.00 < Q < 4.00 0 0.00 % 0 0.00 % 1 0.00 %

Figure 3.16: Results obtained on u2 with true adaptation (left), using moving-mesh adaptation
with prescribed displacement d1 (middle) and d2 (right). Top: Final meshes. Bottom: Elements
quality in the target metric at tk+1.
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Figure 3.17: Moving-mesh metric-based mesh adaptation in L1 norm applied to analytical
function uk+1 = u3 for prescribed mesh displacement d1. Deformation of the ALE-adapted
mesh from tk to tk+1. Final mesh is adapted to u3.



3.3. Extension of the fixed-point algorithm to moving mesh simulations 129

Figure 3.18: Moving-mesh metric-based mesh adaptation in L1 norm applied to analytical
function uk+1 = u3 for prescribed mesh displacement d2. Deformation of the ALE-adapted
mesh from tk to tk+1. Final mesh is adapted to u3.
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HL1(u3) Hk+1
1 (u3) (with d1) Hk+1

2 (u3) (with d2)

Number of vertices 10444 10484 10377
Number of triangles 20568 20654 20437

Average quality 1.098263 1.106087 1.102665
Best quality 1.000004 1.000002 1.000002
Worst quality 3.260156 2.994176 4.123858

1.00 < Q < 2.00 20543 99.88 % 20611 99.79 % 20389 99.77 %
2.00 < Q < 3.00 24 0.12 % 43 0.21 % 44 0.22 %
3.00 < Q < 4.00 1 0.00 % 0 0.00 % 3 0.01 %
4.00 < Q < 5.00 0 0.00 % 0 0.00 % 1 0.00 %

Figure 3.19: Results obtained on u3 with true adaptation (left), using moving-mesh adaptation
with prescribed displacement d1 (middle) and d2 (right). Top: Final meshes. Bottom: Elements
quality in the target metric at tk+1 and quality histograms. Worse elements are located near
the boundary and in strongly anisotropic areas, as in classical adaptation.
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Figure 3.20: Snapshots of the deformation of the 3D moving-mesh adapted anisotropic meshes
obtained for sensor function u4 and for displacement d3. The resulting deformed mesh at tk+1

is optimal for uk+1.
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Figure 3.21: Snapshots of the deformation of the 3D moving-mesh adapted anisotropic meshes
obtained for sensor function u4 and for displacement d4. The resulting deformed mesh at tk+1

is optimal for uk+1.
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Figure 3.22: Snapshots of the deformation of the 3D moving-mesh adapted anisotropic meshes
obtained for sensor function u5 and for displacement d3. The resulting deformed mesh at tk+1

is optimal for uk+1 = u5.
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Figure 3.23: Snapshots of the deformation of the 3D moving-mesh adapted anisotropic meshes
obtained for sensor function u5 and for displacement d4. The resulting deformed mesh at tk+1

is optimal for uk+1 = u5.
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HL1(u4) Hk+1
3 (u4) (with d3) Hk+1

4 (u4) (with d4)

Number of vertices 39459 73732 94213
Number of tetrahedra 212509 406066 523538

Average quality 1.316004 1.281694 1.255889
Best quality 1.001474 1.000355 1.000518
Worst quality 3.405595 3.860160 9.312094

1.00 < Q < 2.00 211473 99.51% 404990 99.74% 521826 99.67%
2.00 < Q < 3.00 1029 0.48% 1060 0.26% 1584 0.30%
3.00 < Q < 4.00 7 0.00% 16 0.00% 102 0.02%
4.00 < Q < 5.00 17 0.00%
5.00 < Q < 10.00 9 0.00%

Figure 3.24: Quality statistics of the mesh HL1(u4) obtained by direct adaptation on sensor
u4 (left), of the images at tk+1 of the ALE-adapted meshes Hk+1

3 (u4) (middle) and Hk+1
4 (u4)

(right) obtained for displacements d3 and d4, respectively.
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HL1(u5) Hk+1
3 (u5) (with d3) Hk+1

4 (u5) (with d4)

Number of vertices 144961 149160 279748
Number of tetrahedra 765520 788653 1566807

Average quality 1.222534 1.244649 1.759577
Best quality 1.000899 1.000526 1.001712
Worst quality 8.308210 448.0803 201.5625

1.00 < Q < 2.00 763980 99.80 % 784041 99.42 % 1175914 75.05 %
2.00 < Q < 3.00 1256 0.16 % 4033 0.51 % 302909 19.33 %
3.00 < Q < 4.00 153 0.02 % 279 0.04 % 66066 4.22 %
4.00 < Q < 5.00 83 0.01 % 141 0.02 % 15699 1.00 %
5.00 < Q < 10.00 48 0.01 % 134 0.02 % 6039 0.39 %
10.00 < Q < 100.00 0 0.00 % 24 0.00 % 173 0.01 %
100.00 < Q < 1000.00 0 0.00 % 1 0.00 % 7 0.00 %

Figure 3.25: Quality statistics of the mesh HL1(u5) obtained by direct adaptation on sensor
u5 (left), of the images at tk+1 of the ALE-adapted meshes Hk+1

3 (u5) (middle) and Hk+1
4 (u5)

(right) obtained for displacements d3 and d4, respectively.



Conclusion

In this first part, several novelties have been shown:

• the truncation algorithm for the steady multi-scale optimal metric,

• the extension of multi-scale metric based mesh adaptation to unsteady simulations, from a
theoretical (error analysis) and a practical (global fixed-point algorithm) point of view,

• the computation of three-dimensional CFD flows on highly anisotropic three-dimensional
meshes,

• the extension of multi-scale metric-based mesh adaptation to moving-mesh simulations with
two and three dimensional illustrations.

This thesis has therefore permitted some interesting advances, which are really promising for
industrial computations, especially those involving moving geometries.

Future work will certainly focus on the following aspects:

• validation of the fully space-time optimal metric on three-dimensional complex geometries,

• three-dimensional convergence studies for unsteady simulations both for fixed and moving
mesh simulations.
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Introduction

The growing expectations of the industrial world for simulations involving moving geometries
have been given a boost to this research field for about ten years. Methods to handle this kind
of problems are not new as articles dating back to the 60’s can be found on the subject in two
dimensions [Trulio 1961]. However, the lack of efficient computing resources as well as the lack
of three-dimensional visualization tools have curbed the advances in this field.

In the 90’s, work on these issues has resumed thanks to the arrival of computers with good
performances and affordable even for small structures. As it is often the case in numerics,
(static/dynamic) aerodynamics has taken the lead by proposing feasible real-life problems in-
volving moving geometries, notably with aeroelastic computations [Tijdeman 1980, Batina 1990,
Lesoinne 1993]. Moving mesh simulations are now used in many research fields:

Ballistics : missile release [Hassan 2007], missile deflection [Murman 2003],

Biomedical : aortic valves [Astorino 2009], cardiovascular system [Formaggia 2009],

Aeronautics : rotorcrafts [Dindar 2000], [Baum 1993a], store ejection [Baum 1995b], aircraft
canopy trajectory [Baum 1997a], fuel-tank separation from an F-16 [Baum 1997b]

Blast studies : on a battle-field tank [Baum 1991], inside a Boeing-747 [Baum 1993b], in the
World Trade Center [Baum 1995a], on a truck [Baum 1996],

Turbo-machinery : high-pressure turbine [Shyam 2010], mixed-flow pump [Zhu 1998], stirred
reactors [Bakker 1997], simple turbine [Saksono 2007],

Transports : TGV tunnel-entry [Mestreau 1993], ship propeller [Compere 2010], 2D airbag
deployment and balloon inflation [Saksono 2007], and even insect flights [Pivkin 2005].

Two main alternatives exist to handle moving geometries:

Body-fitted methods : The computational mesh respects all the boundaries of the geometries
and follows bodies in their movement. There are two alternatives:

Chimera approach [Esnault 1985]: In this approach, each moving geometry is associated
with a dedicated sub-grid, and these sub-grids can overlap each other. Each sub-grid
moves in a rigid manner to follow its associated moving geometry. Interpolation techniques
enable to compute the solution in overlapping regions.
Pros: flexible, only rigid mesh movement (no mesh deformation and thus no quality
degradation),
Contras: not automatic, solution interpolation spoils accuracy and CPU time, cannot
handle all cases.
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Single-mesh methods : A single mesh is used which follows all the geometries evolving
in the computational domain. As opposed to Chimera approaches, the mesh undergoes
deformations and mesh quality generally degrades. To preserve mesh quality either local
or global re-meshing steps are steadily performed.
Pros: accuracy, automaticity,
Cons: require efficient mesh movement techniques, frequent re-meshings required thus
CPU time consuming.

Embedded/immersed methods [Löhner 2008]: An alternative is to use grids that are not
body-conforming, and simply "embed" the objects in them. Various methods such as level-
set methods enable to track the time evolution of the objects boundaries. Techniques of this
kind are also known as immersed, fictitious domain, mortar element or Cartesian methods.
The treatment of points and elements in the vicinity of the embedded triangulations or
bodies is modified in such a way that the required kinetic or kinematic boundary conditions
are properly imposed, for example using Lagrange multipliers.
Pros: automaticity, handle very complex geometries, no mesh movement issues,
Cons: less accuracy, boundary conditions, boundary layers, can be CPU time consuming for
moving surface and Fluid-Structure Interaction computations.

Embedded methods enable to get rid of moving mesh constraints but at the price of a lower
accuracy, especially for compressible flow simulations, see [Löhner 2007]. Therefore, a body-
fitted methodology has been retained in this Thesis.

On the solver side, a common framework for such computations is the Arbitrary-Lagrangian-
Eulerian (ALE) framework. It enables to rewrite the physical equations at stake taking into
account the displacement of the mesh, which follows moving geometries. This is also the one
adopted here.

This second part is built as follows.
First, moving mesh issues are addressed, and notably, it is demonstrated that moving three-
dimensional complex geometries with large displacements is feasible using only vertex displace-
ments and connectivity changes. This is new and presents several advantages over usual tech-
niques for which the number of vertices varies in time. Notably, it facilitates the handling of data
structures on the solver part, thus favorably impacting CPU time. It also answers the scarcely
addressed question of spoiling interpolation errors in moving mesh simulations. Eventually, it is
consistent with the moving mesh adaptation framework developed in Chapter 3, which requires
that the complexity of the mesh remains constant between two adaptations.
The last chapter deals with numerical resolution issues when dynamic meshes are considered.
Specific problematics linked to ALE simulations are detailed, notably DGCL time integration
schemes. One of the novelties of this chapter lies in the description of a new methodology
extending well-known ALE schemes to changing-connectivity meshes.
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In our case of body-fitted simulations, moving mesh issues represent one of the main chal-
lenges for simulations involving large displacements of the geometries, especially when non-
uniform or adapted meshes are used. Indeed, the moving mesh algorithm must fulfill the follow-
ing requirements:

• it must be very efficient as it is called at each solver time step,

• it must preserve the validity of the mesh (i.e it should not create reversed elements). Re-
meshing must indeed remain occasional because this operation, if constantly repeated, be-
comes costly and spoils the solution accuracy due to the interpolation stage it requires. It
might even happen that generating a new mesh is not possible, especially in three dimensions,

• it must preserve elements quality to maintain the solution accuracy and acceptable time
steps,

• the moving algorithm must handle small mesh size regions, shears and large movements,

• the movement must preserve the (anisotropic) adaptation, if any.
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So far, for body-fitted simulations using a single mesh, two different methods are usually adopted
to handle large displacements moving mesh simulations.
The first one consists in moving the mesh as much as possible keeping the topology fixed. Mesh
is moved and the equations are solved in a fully ALE manner until the quality of the mesh
becomes too bad. The domain is then globally re-meshed with the current geometry configu-
ration, data structures are rebuilt, the current solution is interpolated on the newly generated
mesh and the ALE computation resumes. One asset of this method is that meshing and solver
aspects are entirely decoupled. Another advantage is that, between two re-meshings, the com-
putation is "fully ALE", i.e. free from any interpolation error. However, the number of global
re-meshings can become very large, especially when elements undergo shearing, which is un-
fortunately often the case in real life simulations. For example, in [Saksono 2007], one of the
turbo-machinery simulations is done by globally re-meshing at every solver iteration!1 These
very frequent re-meshings can lead to prohibitive CPU times and can even sometimes fail in
three-dimensions, during the tricky boundary recovery phase performed by the mesh generator.
The last drawback - but not the least - is that pushing mesh movement at fixed-topology to
its limit results in very badly shaped elements, which can negatively impact the accuracy of
the solution and also slows down the computation as the solver time step is controlled by the
mesh minimal altitude through a CFL condition, see Section 2.1.2. For instance, this strategy is
the one retained in [Murman 2003] on structured hexahedral meshes and in [Saksono 2007] on
two-dimensional simplicial meshes.
The second approach aims at maintaining the best possible mesh quality while moving using sev-
eral local re-meshing operations such as vertex addition, vertex collapsing, connectivity change
and vertex displacements. This strategy enables to maintain an acceptable mesh quality and
avoids the data structures frequent global reconstructions needed with the previous method.
However, it induces a great number of interpolation steps. This is even worse if the solution
interpolation is performed on the fly after each re-meshing operation. Besides, even if global
data structures reconstruction is avoided, local re-meshing using various meshing operations
requires fully dynamical data structures inside the solver, which can be costly to update and
which can generate memory "holes" and cache-misses. Illustrations of this method can be found
in [Compere 2010, Bruchon 2009, Dobrzynski 2008].

In this thesis, we have adopted a completely new philosophy for moving mesh ALE simulations as
compared to existing methodologies. Our opinion is thatmoving three-dimensional complex
geometries with large displacements is possible using only vertex displacements
and connectivity changes. Vertex addition or collapsing is not mandatory and can remain
occasional. For us, this perspective seems very promising for two main reasons:

CPU time: Limiting the number of authorized meshing operations comes to limit the number
of interactions between meshing and numerical aspects. Notably, it enables to save a consid-
erable amount of CPU time, on the meshing side of course, but also on the solver side as it
limits changes in data structures,

1"The severity of the mesh deformation at the tip of the blades and at the corner of the base of the blade
allows only a single ALE step after each re-meshing step".
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Accuracy: It gives new perspectives to get rid of most of the spoiling interpolation errors due
to excessive re-meshing. Indeed, limiting the number of meshing operations and keeping the
same number of vertices during the simulation would allow to stay "fully ALE" throughout
the simulation, provided that an ALE formulation is found to handle connectivity changes,
see Section 5.4,

Moving mesh adaptation: The extension of the fixed-point algorithm to moving mesh sim-
ulations (see Section 3.3), which guarantees the control of the global interpolation error on
each sub-interval in L∞−Lp norm, is valid only if the number of vertices - the complexity of
the mesh - remains constant between two mesh adaptations. Therefore, and at least between
two re-meshings in the fixed-point algorithm, the number of vertices must remain constant,
which precludes the use of vertices addition/collapse while moving.

This conviction has led us to focus on moving mesh techniques to numerically demonstrate the
feasibility of this approach. These techniques are detailed in this chapter. The efficiency and
the gain in terms of CPU time are clearly demonstrated on various three dimensional geometry
movements.

4.1 Inner vertices movement prescription

4.1.1 Internal movement equation

In moving domain simulations, the whole mesh must move in order to follow the geometry
movement while keeping a valid mesh (i.e mesh movement should not create reversed elements).
The problem is the following: knowing the displacement of the vertices located on the moving
boundaries, find a displacement of the inner vertices respecting the above criterium.
Two alternatives are generally considered: the spring-analogy methods [Batina 1990] and the
elasticity methods [Lynch 1980, Baker 1999]. As stated in [Yang 2007], and despite various
attempts to improve them (truss analogy [Farhat 1998], torsional spring methods, ...), spring-
analogy techniques have shown less robust than elasticity-based methods, and also tend to dete-
riorate the quality of the mesh at a faster rate especially when considering large-displacements.
Besides, elasticity-based techniques enable vertices to go round moving bodies instead of bump-
ing into them, thus playing in favor of quality.

Consequently, the second approach has been retained and the inner vertices movement is ob-
tained by solving an elasticity-like equation with a P1 Finite Element method, as suggested in
[Lynch 1980]:

div (S(E)) = 0 , with E =
∇d +∇dT

2
, (4.1)

where S and E are respectively the constraint and the deformation tensors and dels =

(d1, d2, d3)T is the Lagrangian elasticity displacement field. The constraint tensor follows the
linear elasticity behavior law, where ν is the Poisson ratio, E the Young modulus of the material
and λ, µ are the Lamé coefficients:

S(E) = λ trace (E) In + 2µ E , or E(S) =
1 + ν

E
S − ν

E
trace (S) In .
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Dirichlet boundary conditions are used and the displacement of vertices located on the domain
boundary is strongly enforced in the linear system. Note that the vertices located on the domain
boundaries cannot slip on these boundary surfaces. Indeed, moving mesh vertices on the bound-
ary is a hard task: boundaries are generally curved and moving vertices on discrete boundaries
requires either the knowledge of the CAD patches used to design the geometry or the ability
to rebuilt an accurate continuous surface model of the boundary from its discretization. In any
case, this represents a lot of work. We therefore limit ourselves to mesh displacements satisfying
a Dirichlet condition on the domain boundaries (non-slipping condition).

In our context, ν is typically chosen of the order of 0.48. This leads to a very soft, nearly
incompressible material. Actually, this value for ν corresponds to a nearly "ill-posed" problem.
Note that the closer ν is to 0.5, the harder it is to converge the Finite Element linear system,
especially in three-dimensions. ν = 0.48 appears as a good trade-off between material softness
and the preservation of the iterative linear system resolution algorithm efficiency.
The assembly of the Finite Element matrix, along with other technical aspects, is detailed in
Appendix B. The Finite Element system is solved by a GMRES algorithm coupled with an ILU
pre-conditioner. This resolution strategy is clearly not optimal as it does not take into account
the symmetry of the linear elasticity matrix, but improvements in the resolution is currently
underway ( new resolution algorithm and p-thread parallelization of this algorithm).

4.1.2 Elasticity-dedicated mesh strategy

The resolution is performed on an elasticity-dedicated mesh, which is generally chosen uniform
and much coarser than the one used to solve the Euler equations. The displacement computed
on the elasticity-dedicated mesh is then interpolated on the finer adapted Euler mesh using a
P2-Lagrangian scheme (see Section 1.2.3.3), which seems sufficiently accurate considering the
intrinsic smoothness of the solution of the above elasticity problem. This strategy is illustrated
in Figure 4.1. This elasticity-dedicated mesh strategy enables a significant reduction of CPU
time:

• It reduces the size of the elasticity linear system to be solved, thus reducing CPU time and
storage (the extra-storage of the elasticity mesh and of its resolution is negligible compared
to the reduction of the elasticity matrix size).

• It avoids restructuring the Finite Element elasticity matrix each time a connectivity change
is performed in the mesh used for the fluid resolution.

• As already said, we intend to couple moving mesh simulations and anisotropic mesh adap-
tation. But it would be very hard to solve the FE elasticity system on an anisotropic mesh
adapted on the compressible flow due to the creation of an artificial extra-stiffness hindering
the convergence of the linear system. With this strategy, the property of the elasticity mesh
can be chosen independently of the physics of the flow. Actually, this strategy is manda-
tory if highly-anisotropic metric-based mesh adaptation is introduced in these moving mesh
simulations.

Even if the elasticity mesh must be moved and sometimes optimized along with the computa-
tional mesh, the additional cost is negligible as compared to the gain in terms of CPU for the
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h!

Figure 4.1: Left, solution of the elasticity system on the elasticity dedicated, coarse mesh. Right,
interpolation of the solution from the back, coarse mesh to the computational, fine one. Note
that the elasticity mesh is uniform, which prevents the resolution of the linear elasticity system
on the highly anisotropic computational mesh.

linear elasticity resolution.

Indeed, on the one hand, the size of the elasticity linear system is reduced as the elasticity
mesh is generally coarser. On the other hand, the efficiency of the GMRES algorithm is known
to be considerably damaged when the regularity of the mesh is insufficient.

4.1.3 Local material properties

Another advantage of elasticity-like methods is that they offer the opportunity to adapt the local
material properties of the mesh, especially its softness, according to the distortion and efforts
born by each element and to the quality of the element. In our case, for efficiency purpose,
only basic tools are used such as rigidifying certain regions, which actually reduces the general
problem of moving arbitrary geometries in a mesh to the much simpler problem of moving
simpler objects (spheres, boxes, convex objects) encompassing them.

Jacobian-based stiffening. Following [Stein 2003], the way the Jacobian of the transformation
from the reference element to the current element is accounted for in the Finite Element matrix
assembly is modified. Classically, the P1 Finite Element formulation of the linear elasticity
matrix leads to the evaluation of quantities of the form:

∫

K
s
∂ϕJ
∂xk

∂ϕI
∂xl

dx = |K| s ∂ϕJ
∂xk

∂ϕI
∂yl

= |K| s 1

6|K|(ηJ)k
1

6|K|(ηI)l =
s

36|K| (ηJ)k (ηI)l ,
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where s is either λ, µ or λ + 2µ and ηI = ((ηI)x, (ηI)y, (ηI)z) is the inward non-normalized
normal opposite to vertex I in tetrahedron K. In [Stein 2003], the above quantity is replaced
by:

∫

K
s
∂ϕJ
∂xl

∂ϕI
∂xn

(
|K̂|
|K|

)χ
dx ,

where χ > 0 is the stiffening power and K̂ is the reference element. With a P1 approximation,
this quantity equals:

|K| s 1

6|K|(ηJ)k
1

6|K|(ηI)l
(
|K̂|
|K|

)χ
= s

(
|K̂|
|K|

)χ
1

36|K| (ηJ)k (ηI)l .

This technique therefore comes to locally multiply λ and µ by a factor proportional to |K|−χ.
With χ = 0, the method reduces back to an elasticity model with no Jacobian-based stiffening.
χ determines the degree by which the smaller elements are rendered stiffer than the larger ones.

Finally, in some situations - geometries involving sharp corners, mesh movement with shearing
- we have found it useful to rigidify a certain number of elements layers around moving objects.
The number of layers to be rigidified for each object is provided by user, and elements belonging
to these layers are automatically found using a topological algorithm. Elements belonging to
a rigid layer are moved in a completely rigid manner using the angular and the translation
displacement of the object the considered boundary layer is associated with.

4.2 Mesh optimization

Mesh quality tends to decrease while the mesh is moving. Therefore, regular optimization
phases must be performed to maintain a quality compatible with the solution desired accuracy
and maintain a solver time step which is reasonably large2. The quality of the mesh in three
dimensions is measured in terms of element shape by the following quality function:

Q(K) =

√
3

216

(
5∑
i=0
||ei||2

) 3
2

|K| ∈ [1, +∞] .

Q(K) = 1 corresponds to a perfectly regular element while a high value of Q(K) indicates a
nearly degenerated element. Only Laplacian smoothing and swaps are used to optimize the mesh,
which means that the number of vertices remains constant throughout the simulation. These
optimizations are performed very often to preserve the best possible quality of the mesh and
avoid global re-meshings. A quality threshold Qtarget is prescribed by user and only tetrahedra
with a quality exceeding this threshold are considered during the optimization phase. Tetrahedra
are sorted by decreasing quality, which enables to deal in priority with the worst of them.

2The solver time step is linked to the mesh smallest altitude through a CFL type condition.
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4.2.1 Laplacian smoothing

Laplacian smoothing consists in relocating each vertex inside its ball. For each tetrahedron Kj

of the ball of Pi, the face of Kj opposite to vertex Pi is noted Fj . An optimal position P optj for
Pi is proposed by each face Fj of the ball:

P optj = Gj +

√
2

3
Lmoyj

nj

||nj||
, with Lmoyj =

1

3

[
`0(Fj) + `1(Fj) + `2(Fj)

]
,

where Gj is the gravity center of face Fj and nj is the inward normal to face Fj relative to
element Kj , see Figure 4.2. The final optimal position is computed as a weighted average of

Initial configuration
Each edge of the ball propose
an optimal new position for P

New configuration

P
P’

Figure 4.2: Laplacian smoothing in two dimensions. Each element of the ball of considered
vertex Pi suggests an optimal position for Pi. The resulting new optimal position for Pi is
computed as a weighted average of all these proposed locations.

these optimal positions, the weight coefficient associated with Fj depending on the quality of
Kj :

P opti =

∑
Kj ∈Ball(Pi)

max (Q(Kj), Qmax) P optj

∑
Kj ∈Ball(Pi)

max (Q(Kj), Qmax)
,

and Qmax is a parameter to be defined. In this way, an element of the ball is all the more influent
as its quality in the original mesh is bad. Finally, the new position is analyzed: if it improves the
worst quality of the ball, the vertex is directly moved to its new position. Otherwise, successive

relaxed positions Pnewi = Pi + α
−−−−→
PiP

opt
i , with progressively decreasing values of α are tested.

4.2.2 Edge/face swapping

In two dimensions, edge swapping - or swap - is a rather simple topological operation which
consists in flipping an edge shared by two triangles, see Figure 4.3 (top left). In two dimensions,
this operation changes neither the number of triangles nor the number of edges of the mesh,
guaranteeing a constant number of entities throughout the computation. The generalization of
this operation in three dimensions is a little bit more complicated. Let e be an internal edge.
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Its shell (see Conventions, page 3 for the definition) is represented in black in Figure 4.3 (right).
From the shell, a non-planar pseudo-polygon - shown in blue on Figure 4.3 - can be defined.

3→ 2

3← 2
(face swapping)

5→ 6

5 possible triangulations

e e

e

Figure 4.3: Top left, the swap operation in two dimensions. Top right, edge swap of type 3→ 2

and face swap 2 → 3. Bottom left, the five possible triangulations of the pseudo-polygon for a
shell having five elements. Bottom right, an example of 5→ 6 edge swap. For all these figures,
shells are in black, old edges are in red, new edges in green and the pseudo-polygon is in blue.

Performing a three-dimensional swap of edge e comes to define a triangulation of this pseudo-
polygon. The number of possible topological triangulations depends on the cardinal of the shell
nshell and is given by a combinatorial argument:

ncombi =
(2nshell − 4)!

(nshell − 1)! (nshell − 2)!
.

The maximal number of triangulations in function of nshell is given in Table 4.1. The five

nshell 3 4 5 6 7 8 9 10 11 12 13
ncombi 1 2 5 14 42 132 429 1430 4862 16796 58786
ntri 1 4 10 20 35 56 84 120 165 220 . . .

Table 4.1: Number of topologically different triangulations ncombi that are valid as a function
of the number of vertices nshell in the pseudo-polygon related to one edge. Number of different
triangles ntri in each possible triangulation. The validity of the triangulations is not considered
(only the topological aspect is taken into account)

possible triangulations for pseudo-polygon with nshell = 5 vertices are shown on Figure 4.3,
bottom left. Swapping edge e consists in suppressing this edge from the mesh and in creating
all the tetrahedra having one of the extremities of e as vertex and one triangle of the pseudo-
polygon triangulation as face, see [Frey 2008]. The different kinds of swaps are designated by
noldshell → nnew, nnew being the number of new tetrahedra created by the swap. Figure 4.3



4.3. Moving mesh time steps 151

depicts an edge swap of type 3 → 2 (top right) and one of type 5 → 6 (bottom right). Face
swapping consists in suppressing face F of a tetrahedron K and to create an edge linking the
two vertices opposite to F in K and in the neighboring tetrahedra to K through F , respectively.
Face swapping can be viewed as a reversed 3→ 2 swap and results in the creation of three new
tetrahedra, see Figure 4.3, top right.

Three-dimensional swaps are coded using swap and rejection tables, which avoids a considerable
amount of useless tests and allows to test most plausible swaps first. Face swapping 2→ 3 has
been implemented, along with edge swaps of type 3 → 2, 4 → 4, 5 → 6, 6 → 8 and 7 → 10.
Swaps are first simulated and, for each edge/face to be swapped, only the best swap is retained.
Except for the 4→ 4, all the other three dimensional swaps change the number of tetrahedra of
the mesh: this number decreases for the 3→ 2 and increases for all the other combinations. The
number of edges varies the same way during the simulation.New tetrahedra/edges are added at
the end of the table and old ones are just marked as deleted. A packing procedure is regularly
applied on these tables to re-fill holes created by "phantom" tetrahedra/edges and restore the
contiguity of elements in memory.
Another key to perform efficient swaps in the moving mesh context is to authorize a slight
quality degradation. Of course, when mesh adaptation is used, the optimization routines must
be adapted because all the geometric quantities involved must be computed in the metric field,
see Section 1.2.1.1.

4.3 Moving mesh time steps

4.3.1 Elasticity time step

The elasticity system is not solved at each solver iteration to reduce CPU time. It is rather
solved at specific times, the trajectory of each inner vertex being considered as piecewise linear
along its associated elasticity displacement vector between two elasticity resolutions. Note that
vertices located on moving objects are always moved exactly, i.e. according to the FSI solution
or the analytical prescription of the angular and translation displacement of the moving object
they are associated with at the current time.

Several criteria can be used to determine when the elasticity problem must be solved.
The simplest choice is to solve the elasticity system only every m ≥ 1 iterations but this can
be problematic if a sharp change occurs in the trajectory of some inner vertex. Besides, Yang
and Mavriplis [Yang 2005] advise against this kind of artifices, arguing that a loss of temporal
accuracy can stem from the lack of regularity of the vertices numerical trajectories: "For prob-
lems where the mesh motion is governed by a set of partial differential equations, achieving high
temporal accuracy requires a smooth x(t) variation, which implies the specification of a smooth
boundary motion in time, and convergence of the mesh motion equations at each time step to
a suitable tolerance, which can be assumed to be of the same order as the convergence tolerance
used for the implicit flow solver. The common practice of only partially converging the mesh
motion equation in order to reduce computational costs, under the assumption that a valid mesh
with positive cell volumes is all that is required at each time step may thus result in the loss of
higher-order temporal accuracy".
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A clever way to proceed would consist in adapting the elasticity time step according to the
smoothness of the vertices trajectories, the most winding trajectory driving the adaptation: if
all the points have a linear trajectory, the elasticity time step can be taken very large whereas
the elasticity must be solved at each iteration when one of the trajectories exhibits abrupt
direction changes. With this technique, the number of elasticity resolutions could be reduced
while maintaining the regularity of the trajectories. This adaptive elasticity time step has not
yet been implemented but this will be done very soon.
Eventually, the interval between two elasticity resolutions can be reduced when bad qualities
are anticipated.

4.3.2 Geometric time step

A good restriction to be imposed to the mesh movement is that vertices cannot cross too many
elements on a single move. Therefore, a geometric parameter CFLgeom is introduced to control
the number of stages used to perform the mesh displacement between t and t + dtsolver. If
CFLgeom is greater than one, vertices are allowed to cross more than an element of the back-
ward mesh in a single move. The smallest this number, the highest the number of moving steps
performed to reach final destination. As each moving step is preceded by an optimization pro-
cedure, cutting a large displacement in several smaller displacements by reducing the geometric
CFL enables to ease mesh movement.
Practically, if the time interval between two elasticity resolutions is dtels, and if, for this elas-
ticity time step, a displacement dels has been computed at vertex, an artificial elasticity speed
can be computed for vertex Pi:

velsi =
||delsi ||
dtels

.

Let hmin,i denote the smallest altitude among all the elements belonging to the ball of Pi. The
minimal number of stages necessary to perform mesh movement is given by:

Nmov = max
(

1, dCFLgeom min
i∈J1, NvK

hmin,i

velsi
e−1

)

and the maximal geometric time step is:

dtgeom =
dtels

Nmov
.

Finally, the effective time step for the mesh movement is:

dtmov = min
(

dtgeom, dtsolver
)
.

4.4 Numerical illustrations

4.4.1 Two dimensional tests cases

4.4.1.1 Rotating blades

This academic example is very illustrative of the powerfulness of the swap operation as soon as
the mesh undergoes shearing movements. A pump made of six blades rotates. Here, we are only
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interested in the mesh deformation. The pump is put into a rigid circular area (in green) to ease
mesh movement, as described in Section 4.1.3. Figure 4.4 shows the progressive deterioration of
the mesh during the rotation movement in the case where swapping is not allowed. For this case,
elements inside the green area are moved in a rigid manner and external elements are moved using
the elasticity equation. After only a quarter of turn, elements located at the boundary between
the two areas are highly stretched and the movement finally ends as the volume of these elements
tends to 0. The repartition of the shearing on the several layers of elements by the elasticity
is not sufficient to avoid re-meshing. On the contrary, Figure 4.5 shows the same test case
when swapping is allowed. In this case, it is possible to impose a null displacement to external
(pink) elements. None of the vertices actually moves. Only swaps are performed and there are
done only in the layer at the junction between the static (pink) and the rigid (green) areas.
This enables to keep the initial, presumably excellent, quality of the initial mesh throughout
the simulation. An infinite number of turns can be performed without deteriorating at all the
quality of the mesh. Note that this phenomenon had already been observed in [Zhu 1998].

4.4.1.2 Falling wedge

This test case is inspired by the simulation of the impact of a falling wedge on water surface,
described in [Xu 1998, Oger 2006, Allain 2009]. It demonstrates in two dimensions that edge
swapping allows large mesh displacements, without adding or suppressing vertices. Here again,
we are only interested in mesh movement issues. The wedge is put inside a disk of rigid elements
to avoid mesh deterioration near sharp angles. Figure 4.6 shows the mesh deformation while
the wedge is falling. Only swaps and vertices displacements have been used, no vertex is added
or suppressed. As can be seen on Figure 4.6, we are able to move the wedge throughout the
computational domain without any global re-meshing. Moreover, we have been able to move
until only one element layer remains between the disk containing the wedge and the bottom
wall, which demonstrates the robustness of the swapping algorithm. Figure 4.7 is a close-up
view of the mesh near the falling wedge. It illustrates how the swap enables to open the way to
the falling geometry.

4.4.1.3 Shocks between moving disks

This test case illustrates the usefulness of the swap operation when moving objects are getting
close to each other. Four disks are falling following piecewise linear "zigzag" trajectories. The
directions of their trajectories change each time they collide with another of the falling disks
or with side walls. Figure 4.8 shows the movement of the mesh for this test case. Again, only
swaps and vertex displacements is permitted. No global re-meshing has been performed for
this simulation. If swap is forbidden, 62 re-meshings are necessary to perform the complete
simulation, which gives an idea of the gain that can be expected with edge swapping, in terms
of both CPU time and interpolation errors. Moreover, edge swapping is crucial in contacts areas
between disks, as it enables to handle a distance between geometry of one mesh edge.
Of course, the mesh quality is not as good as it is when global re-meshings are performed, mainly
because with our strategy, vertex movements on the domain boundaries are forbidden, and the
initial boundary discretization is not adapted anymore to the position of the geometries once
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Figure 4.4: Mesh movement around rotating blades when swapping is not allowed. Mesh keeps
on deteriorating during the movement due to the strong shearing undergone by elements located
at the boundary between green (rigid) and pink areas. Mesh movement finally stops as the
quality of the elements degrades to +∞.

they have moved. However, the interest of this test case is to demonstrate the feasibility of using
only edge swapping to handle contacts. Three or four re-meshings, by repositioning the vertices
on the boundaries, would certainly be enough to maintain a good mesh quality.
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Figure 4.5: Mesh movement around a rotating blade when swap is allowed. No vertex is actually
moving. Only swaps are performed in the layer at the junction between static (pink) and rigid
(green) areas. An infinite number of turns can be performed while maintaining the excellent
quality of the initial mesh.

4.4.2 Three dimensional tests cases

Several analytical examples on academic geometries have been addressed to demonstrate the
feasibility of performing three-dimensional moving mesh simulation while keeping the number
of vertices constant. This means that large displacements can be handled without any re-
meshing using only vertices displacements and edges/faces swaps. Here, four examples of
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Case Average Qend 1 < Qend < 2 Worst Qend Worst Qall # of swaps CPU
Cube 1.4452 98.37% 3.99 6.14 386 702 4m43s
Plate 1.4502 97.70% 5.19 5.60 269 533 2m29s

Cylinder 1.5053 93.71% 4.29 6.68 1 049 348 5m45s
Two cylinders 1.5000 95.58% 5.57 198.81 861 228 11m05

Table 4.2: Mesh statistics and CPU time for the four test cases.

three-dimensional moving geometries are detailed: a moving rotating cube, a moving rolling
plate, a swirling cylinder and two cylinders interpenetrating. All these examples have been run
in serial on a 64-bits MacPro with an IntelCore2 chipsets and a clock speed of 2.8 GHz with 32
Gb of RAM.

4.4.2.1 A moving three-dimensional rotating cube

We translate through the domain a rotating cube in a mesh made of 34 567 vertices and 188 847

tetrahedra. The cube movement is shown in Figure 4.9. Twenty-five elasticity systems have
been solved during the movement and a total of 251 moving steps have been done. In Table 4.2,
we observe that at the end of the move, the quality of the mesh is excellent with an average
quality of 1.4452, 98.37% of the elements with a quality less than 2 while the worst quality is
3.99. The worst element created during the whole movement has a quality of 6.14. The quality is
thus excellent throughout the simulation. A total of 386 702 swaps have been performed, which
represents 1 540 swaps per moving steps. As regards CPU time, it took 4m43s to move the cube,
45% of the CPU time being spent in the elasticity resolution, which will soon be parallelized.

4.4.2.2 An moving three-dimensional rolling plate

In this second example, we translate through the domain a rolling plate in a mesh having 14 376

vertices and 76 049 tetrahedra. The geometry is anisotropic and exhibits sharp angles. Moreover,
its rolling movement tends to create shearing inside the mesh. The plate movement is shown in
Figures 4.10 and 4.11. Twenty-five elasticity systems have been solved during the movement and
a total of 544 moving steps have been done. In Table 4.2, we note that at the end of the move,
the quality of the mesh is excellent with an average quality of 1.4502, 97.70% of the elements
with a quality less than 2 and a worst quality of 5.19. Again, the quality is excellent throughout
the simulation as the worst element generated during the whole movement has a quality of 5.60.
A total of 269 533 swaps have been performed, which represents 495 swaps per moving steps.
As regards CPU time, it took 2m29s to move the plate, 35% of the CPU time being spent in
the elasticity resolution.

4.4.2.3 Swirling cylinder

In this example, a cylinder is swirling inside a domain performing two turns. This displacement
mainly involves shears inside the mesh. This test case is thus very appropriate to illustrate
the efficiency of the topological swap operation. The initial mesh is made of 25 135 vertices
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and 139 540 tetrahedra. The cylinder rotation is depicted in Figure 4.12. Thirty-six elasticity
systems have been solved during the movement and a total of 299 moving steps have been done.
In Table 4.2, we note that at the end of the move, the quality of the mesh is excellent with an
average quality of 1.5053, 93.71% of the elements having a quality less than 2 and the worst
quality being 4.29. The quality remains excellent throughout the simulation as the worst created
element during the whole movement has a quality of 6.68. A total of 1 049 348 swaps have been
performed which represents 3 509 swaps per moving steps. The number of swaps per move is
quite large due to the shear movement impacting a large part of the domain. As regards CPU
time, it took 5m45s to rotate the cylinder, 27% of the CPU time being spent in the elasticity
resolution.

4.4.2.4 Interpenetrating cylinders

The last example is more challenging. Two cylinders are interpenetrating each other and, during
this movement, there is only one layer of elements between both cylinders, i.e. the two cylinders
boundaries are connected by an internal edge. The layer of elements separating the two cylinders
hence undergoes strong shearing, see Figure 4.14. This movement is shown in Figure 4.13. The
initial mesh is made of 34 567 vertices and 188 847 tetrahedra. One hundred elasticity systems
have been solved during the movement and a total of 614 moving steps have been done. In
Table 4.2, we note that at the end of the move the quality of the mesh is excellent with an
average quality of 1.5, 95.58% of the elements with a quality less than 2 and a worst quality
of 5.57. But, during the movement badly-shaped elements appear, the worst of them having a
quality equal to 198.81. However, the optimization process is able to get rid of these elements
to finally achieve an excellent quality. A total of 861 228 swaps have been performed, which
represents 1 402 swaps per moving steps. As regards CPU time, it took 11m05s to perform the
displacement, 57% of the CPU time being spent in the elasticity resolution.

Conclusion

In this chapter, the feasibility of moving various two- and three-dimensional objects with large
displacements has been demonstrated numerically. Our strategy, with consists in limiting the
number of meshing operations allowed, leads to very satisfying results that are definitely compa-
rable to other strategies [Compere 2010, Dobrzynski 2008] in terms of mesh quality, and which
seems more efficient in terms of CPU time. For example, in [Compere 2010], the authors precise
the CPU times they observed on a propeller test case. The simulation lasts T = 1 s and the
moving time step is dtmov = 0.001T s. The number of nodes is averagely Nv = 55 000. For this
number of nodes, the global procedure takes about 50 s per time step, thus 50000 s are needed
to complete the whole simulation, which leads to approximately 139 hours (5.79 days) of CPU
time for 1000 moves. These results must be compared with CPU time 11m05s obtained with
Nv = 34 567 nodes and 614 moving steps on the interpenetrating cylinders.
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Figure 4.6: Movement of the mesh around a falling wedge enclosed inside a rigid-elements disk. It
is possible to cross the whole computational domain using only swaps and vertex displacements.
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Figure 4.7: Close-up view near the falling wedge. Edge swapping enable to open the way to the
falling geometry.
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Figure 4.8: Four falling disks colliding with each other.
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Figure 4.9: Snapshots of a moving rotating cube in three dimensions.
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Figure 4.10: Snapshots of a moving rolling plate (1).
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Figure 4.11: Snapshots of a moving rolling plate (2).
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Figure 4.12: Snapshots of a swirling cylinder. From left to right and from top to bottom, the
cylinder after a rotation of 0, 0.4π, 0.8π, 1.2π, 1.6π and 2π.
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Figure 4.13: Snapshots of two cylinders interpenetrating.
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Figure 4.14: Snapshots of two cylinders interpenetrating. Only one layer of elements separates
the two geometries and undergoes strong shearing.
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This chapter introduces the Arbitrary-Lagrangian-Eulerian solver. Section 5.1 recalls the ba-
sics of the ALE formulation and provides the expression of the Euler system of equations in
this context. Section 5.2 details the spatial schemes used for our computations. In Section 5.3,
ALE specific issues regarding time discretization are explained and several Runge-Kutta Strong-
Stability-Preserving schemes enforcing their associated Discrete Geometric Conservation Law
(DGCL) are detailed. Then, Section 5.4 introduces a new variable-topology ALE scheme en-
abling the use of swapping operations during the optimization phase, see Chapter 4, in a fully
ALE manner. This scheme enables to relax the strong fixed-topology constraint imposed by
the classical ALE formulation. Finally, Section 5.5 describes the resolution of the rigid body
dynamics.

5.1 Modelization of the physical problem

5.1.1 The Arbitrary-Lagrangian-Eulerian framework

In this section, we detail how the Euler equations read in the ALE framework.

Lagrangian description. The Lagrangian method follows the particles of the continuum
medium in their movement. This is done by permanently keeping a track of the particles: each of
them can be mapped at each time onto a constant initial reference configuration RX = (ΩX,X).
When this framework is used to solve the equations of fluid or solid mechanics, each vertex
is constantly attached to a particle and moves with the same velocity as the one of the fluid
u = ∂x

∂t |X. This formulation is especially suited for solid mechanics computations and has some
great assets. Notably, because of the perfect coincidence between particles and vertices through-
out the simulation, there is no convective term in Lagrangian computations. Moreover, these
methods deal with interfaces problems in a natural manner. However, especially for fluid sim-
ulations involving vorticity and shears, large mesh displacements occur, which often results in
bad vertices repartition and distorted meshes. This can lead to a loss of accuracy and even the
end of the computation.

Eulerian description. The Eulerian viewpoint is classically used to perform fluid dynamics
computations. The basic idea is to look at the time evolution of the physical quantities at
stake passing through a fixed point of space. In this description, the mesh remains fixed and
the fluid particles move with respect to this fixed mesh. The velocity u(x, t) computed at
some position x thus corresponds to the instantaneous velocity of the point-wise particle which
is located at coordinates x at t. Therefore, the Eulerian description only involves variables
having an instantaneous significance in a fixed region of space. In this case, the reference
configuration is updated at each time to the current configuration Rx = (Ωx,x). Contrary
to the Lagrangian description case, this framework enables the computation of complex fluid
flows, involving high vorticity areas and shears. However, it is done at the price of an additional
complexity in the equations: as particles move with respect to the mesh, non-linear convective
terms appear. Another drawback is the difficulty arising when one wants to follow mobile
interfaces or boundaries.
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ALE description. ALE descriptions were first proposed for the generalization of Finite Differ-
ence or Finite Volume schemes to moving meshes. Trulio [Trulio 1961], Noh [Noh 1964], Franck
and Lazarus [Franck 1964] and Hirt [Hirt 1974] were pioneers in this field. The description was
transposed in the Finite Element context by Donea [Donea 1977], Belytschko [Belytschko 1978]
and Hugues [Hugues 1978].
The basic idea of ALE is that there is a priori no reason for which the movement of the nodes
should remain either fix (Eulerian description) or should follow exactly the fluid particles (La-
grangian formulation). On the contrary, the vertices movement and the particles movement can
be totally de-correlated. To do this, an intermediate reference configuration Ωξ = Ωξ(t) is intro-
duced. The important thing is that the new reference configuration can evolve with time, but
not necessarily by following the particles like in the purely Eulerian case. If φt : Ωξ(t)→ Ωx(t) is
the mapping between the ALE reference configuration and the current domain at t, the velocity
of the mesh is defined by :

w(ξ, t) :=
∂φt
∂t
|ξ(ξ, t) ,

which represents the instantaneous velocity of the points of the domain.
For an arbitrary function g = g(x, t), we can write two times Reynolds transport theorem
[Belytschko 2000], first taking RX and second taking Rξ as reference configurations:

∂

∂t
|X
(∫

C(t)
g(x, t) dx

)
=

∫

Cco≡C(t)

∂g (x, t)

∂t
|x dx +

∫

∂Cco≡∂C(t)
g(x, t) (u · n) ds

∂

∂t
|ξ
(∫

C(t)
g(x, t) dx

)
=

∫

Cco≡C(t)

∂g (x, t)

∂t
|x dx +

∫

∂Cco≡∂C(t)
g(x, t) (w · n) ds

By subtraction, we get:

∂

∂t
|X
(∫

C(t)
g(x, t) dx

)
=

∂

∂t
|ξ
(∫

C(t)
g(x, t) dx

)
+

∫

∂Cco≡∂C(t)
g(x, t) ((u−w) · n) ds

and the notation Cco ≡ C(t) denotes the region in the physical space that coincides with C(t)

at instant t.

5.1.2 The Euler equations in the Arbitrary-Lagrangian-Eulerian formulation

The Euler equations are a classical model for inviscid compressible fluids. In the continuous
medium representation, they are obtained by writing the conservation of mass, momentum
and energy of a moving particle occupying a closed moving volume C(t) and using Reynolds
theorem. Assuming that the gas is perfect, inviscid and that there is no thermal diffusion, the
Euler equations in the ALE framework read, for any arbitrary closed volume C(t) of boundary
∂C(t):

∂

∂t
|ξ
(∫

C(t)
W dx

)
+

∫

∂C(t)
(F(W )−W ⊗ w) ·n ds =

∫

C(t)
Fext dx

⇐⇒ ∂

∂t
|ξ
(∫

C(t)
W dx

)
+

∫

∂C(t)
(F−W (w · n)) ds =

∫

C(t)
Fext dx ,
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Reference configuration Spatial domain

Another reference configuration

Particule trajectory: X constant

Mesh vertex trajectory: ξ constant

Rx
RX

Rξ w =
∂x

∂t
|ξ

u =
∂x

∂t
|X

Figure 5.1: Reference configurations and physical domain.

where





W = (ρ, ρu, ρe)T is the conservative variables vector

F(W ) = (ρu, ρuxu + pex, ρuyu + pey, ρuzu + pez, ρuh) is the flux tensor

F (W ) = F(W ) ·n = (ρunor, ρuxu
nor + pnx, ρuyu

nor + pny, ρuzu
nor + pnz, ρeη + punor)T

Fext = (0, ρ fext, ρu · fext)
T is the external forces vector ,

and we have noted ρ the volume mass of the fluid, p its local pressure, u = (ux, uy, uz) its
Eulerian velocity, unor = u · n, q = ‖u‖, ε the internal energy per unit mass, e = 0.5 q2 + ε the
total energy per unit mass, h = e+p/ρ the enthalpy per unit mass of the flow, fext the resultant
of the volume external forces applied on the particle and n the outward normalized normal to
the interface ∂C(t) of C(t).
Note that we have only considered Newtonian fluids the behavior law of which writes C =

−p In+2µΞ = −p In if the fluid is inviscid, with µ the kinematic viscosity and Ξ the deformation
tensor of the fluid. It is important to understand that all the above physical quantities are ALE
variables, i.e. they are functions of t and of ξ, the considered particle coordinates vector with
respect to the current ALE reference configuration.

5.2 Spatial discretization of the ALE Euler equations

In this section, we first describe the chosen spatial scheme when the topology of the mesh remains
fixed.
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5.2.1 Finite-Volume edge-based formulation

Domain Ω is discretized by a tetrahedral unstructured mesh Ωh. The vertex-centered Finite
Volume formulation consists in associating with each vertex Pi of the mesh and at each time
t a control volume or Finite Volume cell, denoted Ci(t). The dual Finite Volume cell mesh is
built by the rule of medians, see Figure 5.2. The common boundary ∂Cij(t) = ∂Ci(t) ∩ ∂Cj(t)
between two neighboring cells Ci(t) and Cj(t) is decomposed into several triangular interface
facets (bi-segments in two dimensions). The normal flux Fij(t) along each cell interface is taken
constant (not in time but in space), just like the approximation of the solution Wij on the
interface.
Rewriting System (5.1) for C(t) = Ci(t) and using the above assumptions, we get the following
semi-discretization at Pi:

∂ (|Ci(t) |Wi(t))

∂t
|ξ +

∑

Pj ∈Ball(Pi)

| ∂Cij(t) |Φij

(
Wi(t), Wj(t), ηij(t), σij(t)||ηij(t)||

)
= 0 , (5.1)

• Wi(t) is the mean value of state W in cell Ci at t,

• Ball(Pi) is the set of all neighboring vertices of Pi,

• ηij is the outward non-normalized normal (with respect to cell Ci) of cell interface ∂Cij ,

• Fij(t) = F(Wij(t)) · nij(t) is an approximation of the physical flux through ∂Cij(t)1

• σij(t) is an approximation of the normal velocity of cell interface ∂Cij(t),

• Φij (Wi(t),Wj(t),nij(t), σij(t)) ≈ Fij(t) − Wij(t)σij(t) is the numerical flux function used
to approximate the flux at cell interface ∂Cij(t).

The computation of the convective fluxes is performed mono-dimensionally in the direction
normal to each Finite Volume cell interface. Consequently, the numerical calculation of flux
function Φij at interface ∂Cij can be achieved by the resolution at each time step of a one-
dimensional Riemann problem in direction nij = n (from left to right) with initial values WL =

Wi on the left of the interface and WR = Wj on the right. The normal speed to the interface is
temporarily noted σ for clarity reasons.
Different kinds of approximate Riemann solvers can be used.

Roe solver. In the Roe approach, the upwinding term is defined through the Jacobian matrix
of F:

A(W ) =
∂ (F(W ) ·n)

∂W
=

∂F(W )

∂W
.

The eigenvalues of A are real and given by unor, unor + c and unor − c, where unor = u · n
and c is the celerity or local sound speed of the fluid. In the context of the Euler equations, the
hyperbolic flux is homogeneous of order one, leading to:

F(W ) ·n = F(W ) = A (W ) ·W ,

1Our convention is that the flux is positive if it goes in the same direction as the normal. Thus, Fij > 0 means
that the flux goes from cell Ci to Cj . If σij > 0, geometrical flux −Wij(t)σij is negative and therefore oriented
from Cj to Ci, which means that cell Ci steals mass from Cj ,
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Pj
Pi

Ci(t) Cj(t)

nij(t)

Pi

Pj

Pk

Pl

Figure 5.2: Left, Finite-Volume median cells in two dimensions. Right, Finite-Volume median
cells in three dimensions inside two neighboring tetrahedra. Note that median cells lead to
coplanar quadrangular facets.

that enables non-oscillatory conservative schemes to be built. If we note Fi = F(Wi) ·n and
Fj = F(Wj) ·n, the Roe flux function ΦRoe is given by:

ΦRoe(Wi, Wj , σij ||ηij ||, ηij) =
Fi + Fj

2
− σij

Wi +Wj

2
+ |Ã(Wi, Wj)− σijIn|

Wi −Wj

2

where Ã is the Jacobian of F evaluated for the Roe average variables. For diagonalizable tensor
Ã = PDP−1, we have noted | Ã | = P|D |P−1 where | D | = diag

(
|λ̃1|, . . . , |λ̃n+2|

)
. The Roe

averages are given by:

ρ̃ =
√
ρiρj , ũ =

√
ρi ui +

√
ρj uj√

ρi +
√
ρj

and h̃ =

√
ρi hi +

√
ρj hj√

ρi +
√
ρj

from which we get the Roe average sound speed: c̃2 = (γ − 1) (h̃− 1

2
q̃2)

However, the Roe scheme is not positive, which means that negative sound speeds, densities or
energies can appear. It is neither entropic. Indeed, as this scheme is based on a linearization
procedure, an expansion may be replaced by a non-entropic shock wave, notably at possible
sonic points q = c in expansion fans. At these points, the numerical viscosity becomes zero and
the scheme might be unstable. Therefore, much attention should be paid while using the Roe
scheme.

Harten-Lax-van Leer Contact wave (HLLC) solver. The methodology provided in
[Harten 1983, Batten 1997] can be extended to the Euler equations in their ALE formulation.
We still want to find an approximate value of the flux passing through moving interface ∂Cij
during a time τ . Let us first recall that the solution of this local Riemann problem is made of
two acoustic waves of phase speeds Si = SL, Sj = SR which can be either shocks or expansion
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fans and of a contact wave of phase speed SM 2. This is a classical result of the one-dimensional
Euler equations theory. Normally, we should distinguish between four to six different regions
depending on whether SL (resp. SR) is a shock wave or an expansion fan, see Figure 5.3 (left).
The idea of the HLLC scheme is to simplify the complete Riemann problem by considering only
four constant states Wi = WL, W ∗i = W ∗L, W

∗
j = W ∗R, Wj = WR, see Figure 5.3 (right). In the

case of moving meshes, four different situations can occur depending on the movement of the
interface. The HLLC flux is described by three waves phase velocities:

SRSL SM

t

WL = Wi WR = Wj

W∗
L W∗

R

σij
shock or expansion fan contact discontinuity

4 to 6 different regions

ηij(t)

t

1

3 4

6

2
5

characteristics

Figure 5.3: Left, characteristic lines of the exact solution for the Riemannian problem in direction
nij . Right, approximation of the solution with HLLC scheme, using only four approximate states.

Si = SL = minunorL − cL, ũnor − c̃ and Sj = SR = maxunorR + cR, ũ
nor + c̃

SM =
ρRu

nor
R (cR − unorR )− ρLunorL (cL − unorL ) + pL − pR

ρR(cR − unorR )− ρL(cL − unorL )

and two approximate states:

W ∗i =





ρ∗i = ρi
Si − unori

Si − SM

p∗i = p∗ = ρi (unori − Si) (unori − SM ) + pL

(ρu)
∗
i =

(Si − unori ) ρui + (p∗ − pi) n

Si − SM

(ρ e)
∗
i =

(Si − ηi) ρ ei − piunori + p∗SM
Si − SM

W ∗j =





ρ∗j = ρj
Sj − unorj

Sj − SM

p∗j = p∗ = ρj
(
unorj − Sj

) (
unorj − SM

)
+ pj

(ρu)
∗
j =

(
Sj − unorj

)
ρuj + (p∗ − pj) n

Sj − SM

(ρ e)
∗
j =

(Sj − ηj) ρ ej − pRunorj + p∗SM
Sj − SM

.

If we note σ = σij , the HLLC flux through moving interface ∂Cij is finally given by:

ΦHllc(Wi,Wj ,ηij , σ||ηij ||) =





Fi − σWL if Si − σ > 0

F∗i − σW ∗i if Si − σ ≤ 0 < SM − σ
F∗j − σW ∗j if SM − σ ≤ 0 ≤ Sj − σ
Fj − σWj if Sj − σ < 0

The HLLC approximate Riemann solver has the following properties. It automatically:
2
L for left, R for right and M for middle
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i) satisfies the entropy inequality,

ii) resolves isolated contacts exactly,

iii) resolves isolated shocks exactly,

iv) and preserves positivity.

5.2.2 High-order schemes

The previous formulation reaches at best first-order spatial accuracy. Fortunately, higher-order
extensions are possible using a MUSCL type technique. The MUSCL type reconstruction method
has been designed to increase the order of accuracy of the scheme. This method was introduced
by Van Leer in a series of papers, see for instance [Van Leer 1972]. The idea is to use extrapolated
values Wij and Wji of W at interface ∂Cij to evaluate the flux, see Figure 5.4.
The following approximation is performed:

Φij = Φ(Wij , Wji, ηij , σij ||ηij ||) ,

where Wij and Wji are linearly interpolated state values on each side of the interface:

Wij = Wi +
1

2
(∇W )ij ·

−−→
PiPj , and Wji = Wj +

1

2
(∇W )ji ·

−−→
PiPj . (5.2)

Contrary to the original MUSCL approach, the approximate "slopes" (∇W )ij and (∇W )ji are
defined for each edge using a combination of centered, upwind and nodal gradients.

Centered gradients. The centered gradient, which is related to edge eij , is defined as:

(∇W )Cij ·
−−→
PiPj = Wj −Wi .

Upwind/Downwind gradients. Upwind and downwind gradients related to edge eij are computed
using the upstream and downstream tetrahedra associated with edge eij . These tetrahedra are
respectively denoted Kij and Kji and are described in Figure 5.4. Kij (resp. Kji) is the unique
tetrahedron of the ball of Pi (resp. Pj) the opposite face of which is crossed by the straight
line prolongating edge eij . Upwind and downwind gradients are then defined respectively for
vertices Pi and Pj as:

(∇W )Uij = (∇W )|Kij and (∇W )Dij = (∇W )|Kji .

where ∇W |K =
∑

P ∈K
(∇φP ⊗ WP ) is the P1-Galerkin gradient on element K.

Parametrized nodal gradients are built by introducing the β-scheme:

(∇W )ij = (1− β) (∇W )Cij + β (∇W )Uij

(∇W )ji = (1− β) (∇W )Cij + β (∇W )Dij ,

where β ∈ [0, 1] is a parameter controlling the amount of upwinding. For instance, the scheme
is centered for β = 0 and fully upwind for β = 1.
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Pj

Pi

η1
ij

ηij(t)

η2
ij

Pi

Pj

Wij Wji

Mi

Mj

Kij

Kji

Pi

Mi

Kji

Pj

Mj

Kij

Figure 5.4: Top left, upwind/downwind triangles Kij and Kji and upwind/downwind points Mi

and Mj associated with edge eij, in two dimensions. Bottom left, upwind/downwind tetrahedra
Kij and Kji and upwind/downwind points Mi and Mj associated with edge eij, in three dimen-
sions. Right, extrapolated values Wij and Wji used at cells interfaces (in green) in the MUSCL
approach.

Numerical dissipation of fourth-order: V4-scheme. The most accurate β-scheme is ob-
tained for β = 1/3. Indeed, it can be demonstrated that this scheme is third-order for the
two-dimensional linear advection problem on structured triangular meshes. In our case, for the
non-linear Euler equations on unstructured meshes, a second-order scheme with a fourth-order
numerical dissipation is obtained. These high-order gradients are given by:

(∇W )V 4
ij =

2

3
(∇W )Cij +

1

3
(∇W )Uij and (∇W )V 4

ji =
2

3
(∇W )Cij +

1

3
(∇W )Dij .

Numerical dissipation of sixth-order: V6-scheme. An even less dissipative scheme has
been proposed in [Debiez 2000]. It is a more complex linear combination of gradients using
centered, upwind and nodal P1-Galerkin gradients. The nodal P1-Galerkin gradient of Pi is
related to cell Ci and is computed by averaging the gradients of all the tetrahedra having Pi as
a vertex:

(∇W )Ni = ∇W |Pi =
1

4 |Ball(Pi)|
∑

K ∈Ball(Pi)

(
|K|∇W |K

)
.

Upwind/downwind nodal gradients. The upwind (resp. downwind) nodal gradients (∇W )UNi =

∇W |Mi (resp. (∇W )DNj = ∇W |Mj ) are computed by linear interpolation of the nodal gradients
attached to the three vertices of the face containingMi (resp. Mj), whereMi andMj have been
defined above in Figure 5.4.
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A sixth-order dissipation scheme on structured meshes for the linear advection equation can be
obtained by considering the following high-order gradient:

(∇W )V 6
ij = (∇W )V 4

ij − 1

30

(
(∇W )Uij − 2 (∇W )Cij + (∇W )Dij

)

− 2

15

(
(∇W )HOi − 2 (∇W )Ni + (∇W )Nj

)
,

(∇W )V 6
ji = (∇W )V 4

ij − 1

30

(
(∇W )Dij − 2 (∇W )Cij + (∇W )Uij

)

− 2

15

(
(∇W )HOj − 2 (∇W )Nj + (∇W )Ni

)
.

On general meshes and non-linear equations, this scheme is of order two in space but with a
sixth-order numerical dissipation.

Gradient limiter. The previous MUSCL schemes are not monotone. Therefore, limiting func-
tions must be coupled with the previous high-order gradient evaluations to guarantee the TVD
property of the scheme. To this aim, the gradient of Relation (5.2) is replaced by a limited
gradient denoted

(
∇W lim

)
ij
. Here, we will always consider a three entries limiter introduced in

[Cournède 2006b], which is a generalization of the SuperBee limiter:
(
∇W lim

)
ij

= Lim
((
∇WD

)
ij
,
(
∇WC

)
ij
,
(
∇W V 4/V 6

)
ij

)

with : Lim (a, b, c) =





= 0 if ab ≤ 0 ,

= sign (a)min 2 | a |, 2 | b |, | c | otherwise .

5.2.3 Mirror state boundary conditions

Mirror state boundary conditions consist in imposing slipping boundary conditions in a weak
manner by prescribing a flux rather than directly enforcing a specific value for the variables
on the boundary. As we are interested in the Euler equations, the fluid is inviscid and the
physically consistent boundary condition on the moving bodies is a slipping boundary condition,
i.e. (u · n)|∂B = σ|∂B . Mirror state W associated with boundary state W is an imaginary state,
virtually defined on the other side of the boundary and such that the extrapolated value of W
on the boundary satisfies (u · n)|∂B = σ|∂B . This extrapolated value is defined as:

W|∂B =
1

2

(
W +W

)
.

Let us consider a Finite Volume cell Ci touching object B. We note nif the outward normalized
normal to boundary facet f and σif its normal speed, see Figure 5.5. The ALE mirror state
W if of state Wi on the other side of boundary interface f of cell Ci is:

W
if

= (ρi = ρi, ui = ui − 2 (ui · nif − σif ) nif , εi = εi)
T .
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Figure 5.5: Mirror state W if across boundary interface f of cell Ci.

Note that with this definition, we indeed have uif · nif = σif .
In the sequel, we will note unorif = ui · nif .

Roe mirror state. For a Roe approximate Riemann solver, the boundary flux for the numerical
fluxes between a boundary state and its mirror state across boundary interface f of cell Ci can
be compute by hand and is given by:

ΦRoe (Wi, ηif , σif ||ηif ||
)

= ||ηif ||




0[
pi + ρi

(
unorif − σif

)2
+ ρic̃i

(
unorif − σif

)]
nif

piσif + ρiσif
(
unorif − σif

) (
unorif − σif + c̃i

)




with c̃i = (γ − 1)


hi − σifunorif −

(
utanif

)2

2
+

(σif )2

2




and utanif = ||u− unorif nif || the norm of the component of u tangent to the boundary.

HLLC mirror state. Regarding the HLLC scheme, we obtain:

ΦHllc (Wi, ηif , σif ||ηif ||
)

= ||ηif ||




0

p∗inif
p∗iσif




where
p∗i = ρi

(
unorif − σif

)
max ci, c̃i + unorif − σif + pi .

Details about the computation of these boundary fluxes are given in Appendix D.
Other boundary conditions (inflow, outflow, reactors, symmetry, transmitting) are applied on
fixed boundaries and are therefore not specific to moving mesh computations. The reader is
referred to [Godlewski 1996, Hirsch 1988b] for more details on this subject.
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5.3 ALE specific issues regarding time discretization

In this section, we first recall an important issue which is specific to ALE computations: the
numerical enforcement of the so-called Geometric Conservation Law (GCL) by the chosen tem-
poral scheme. We next detail the genuine approach developed by Mavriplis and Yang on this
subject. Finally, we detail how to build RKSSP schemes that are DGCL while preserving the
order of accuracy of the fixed-mesh scheme they come from.

5.3.1 The GCL law

As already explained, ALE formulations have been designed to decouple the movement of the
mesh from any physical description of the fluid. However, doing this imposes to check that the
movement of the mesh is not responsible for any artificial alteration of the physical phenomena
at stake. Or at least, to make our best from a numerical point of view for the mesh movement
to introduce an error of the same order as the one introduced by the numerical scheme.

If System (5.1) is written for a constant state, assuming that there is no external force, i.e.
Fext = 0, we get, for any arbitrary closed volume C = C(t) of boundary ∂C(t):

∂ (|C(t)|)
∂t |ξ

−
∫

∂C(t)

(w · n) ds = 0 . (5.3)

Note that the physical flux vanishes thanks to the closed nature of C(t), which enables to write:
∫

∂C(t)

n ds = 0 .

As the constant state is a solution of the Euler equations, if boundaries transmit the flux towards
the outside as it comes, we find a purely geometrical relation inherent to the continuous problem.
This relation is trivially integrated into:

|C(t+ τ) | − |C(t) | =

∫ t+τ

t

∫

∂C(t)
(w · n) ds dt, with t and t+ dt ∈ [0, T ] , (5.4)

for any arbitrary closed volume C = C(t) of boundary ∂C(t). From a geometrical viewpoint,
this relation simply states that the algebraic variation of the volume of C between two instants
equals the algebraic area swept by its boundary during the same time.

5.3.2 Accuracy preserving and DGCL temporal schemes

A DGCL property for each temporal scheme. The continuous GCL relation raises several
important questions: should Relation (5.3) be satisfied at the discrete level? What are the
effects of respecting this law at a discrete level on the consistency, stability or accuracy of the
scheme? How can the continuous GCL be enforced at a discrete level? In the following, we will
restrict ourselves to Finite Volume schemes but the GCL and its importance in moving mesh
Finite Element and Discontinuous Galerkin simulations is also a very active field of research



5.3. ALE specific issues regarding time discretization 179

space-time interface

nij

area swept by the bi-segment

P ′
j

PjPi

Pj

Ci(t)

Ci(t)

Ci(t + dt)

Ci(t + dt)

Ci(t)

Pi

Ci(t + dt)

Cj(t + dt)

Cj(t)

P ′
i

t + dt

t

{∂Cij(t)}[t,t+dt]

Figure 5.6: Areas swept by the interfaces of a two-dimensional Finite Volume cell during τ .

[Formaggia 1999, Boffi 2004, Etienne 2009]. Thomas and Lombard [Thomas 1979] were the first
to emphasize the importance of this law for moving mesh simulations at the end of the 70’s
in a Finite Difference context. Since then, the subject has often proved controversial. Some
people considered it as completely useless whereas others thought it had a strong influence on
the quality of the scheme. It took a long time before a consensual line started to take shape.
The reader is referred to [Etienne 2009] for a very clear and detailed state of the art on the
subject.
However, there are currently two things almost everybody agrees about:

i) The GCL serves as an additional constraint controlling the way the computation of the
geometrical parameters is performed. Indeed, we a priori ignore how to compute geometrical
parameters σ and n appearing in Relation (5.1). For instance, should one take n at tn? at
tn+1? Or take a kind of averaged normal? The GCL can help answer this question.

ii) Enforcing the GCL at the discrete level is mandatory for:

Accuracy : satisfying an appropriate DGCL is a sufficient condition for a numerical scheme
to be at least first-order time-accurate on moving meshes [Guillard 2000]. However, it is
not a necessary condition to preserve the accuracy order of the numerical scheme observed
on fixed-mesh.

Non-linear stability : satisfying the corresponding DGCL is a necessary and sufficient
condition for a numerical scheme to preserve the non-linear stability of its fixed grid
counterpart. This has been proved for different implicit and explicit schemes and for
various spatial discretization methods [Formaggia 1999, Farhat 2001, Formaggia 2004b,
Boffi 2004, Cournède 2006a],

Energy conservation : using a DGCL numerical scheme ensures that the work of forces
on fluid particles is accurately transformed into total fluid energy variation at the discrete
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Figure 5.7: Exact swept area v.s estimated swept area.

level, including at domain boundaries [Dervieux 2010]. This point is crucial notably for
computations involving moving pistons.

An exception can be made if sufficiently small time steps are used but, in practice, it is very
time consuming and it is hard to know what "sufficiently small" means.

In the sequel, we detail Mavriplis-Yang approach to extend well-known temporal schemes to
ALE simulations while enforcing the GCL. This method is illustrated on several optimal RKSSP
schemes.

Mavriplis-Yang approach: σ as unique degree of freedom. Since 2005, Mavriplis and
Yang [Yang 2005, Mavriplis 2006, Yang 2007] have renewed the way of thinking the GCL. The
objective was initially to further clarify the link between the DGCL nature of a temporal scheme
and the preservation of its order of accuracy. The originality of Mavriplis-Yang approach consists
in defining precisely which ALE geometrical parameters are true degrees of freedom and which
are not, which had not been done to our knowledge until then. In contrast with the other
approaches [Lesoinne 1996, Koobus 1999, Nkonga 2000], they consider that the times and the
configurations at which fluxes are evaluated do not constitute a new degree of freedom to be set
thanks to the ALE scheme, and neither distinguish between different frameworks. To maintain
the design accuracy of the fixed-mesh temporal integration, the moment at which the geometrical
parameters (upwind/downwind elements, normals,...) must be computed, is entirely determined
by the intermediate configurations involved in the chosen temporal scheme. The only degree of
freedom to be set by enforcing the GCL at the discrete level is normal mesh speed σ. Incidentally,
Mavriplis and Yang implicitly underline that w is never involved alone but only hidden in the
term σ||η||, which represents the instantaneous algebraic area swept.
Actually, this method comes to evaluate the areas swept by cells interfaces in a way which is
consistent with the time discretization of the vertices trajectories. Indeed, the definition of
the vertices trajectories, which are a priori curved, increases while the accuracy of the time
integration increases. To maintain the order of accuracy, the computation of swept areas must
take into account this better representation of vertices trajectories, see Figure 5.7. Practically
speaking, the interfaces normal speeds are found by simply rewriting the scheme for a constant
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discrete solution, which leads to a small linear system easily invertible by hand. This procedure is
detailed in the next section for several RKSSP schemes. Any fixed-mesh scheme can be extended
to moving mesh simulations thanks to this methodology, and the resulting scheme is naturally
DGCL. Even if this has not been proven theoretically, the expected order of convergence has
also been observed numerically for several schemes designed with this method [Yang 2005].

5.3.3 Runge-Kutta Strong-Stability-Preserving schemes

Runge-Kutta methods are famous multi-stages methods to integrate ODEs. In the following,
ns is the number of stages of the considered scheme and p its accuracy order. For a Runge-
Kutta scheme to be of order p, its coefficients must satisfy several relations which can be found
either by the study of the truncation error of the scheme or using the much more elegant theory
of Butcher graphs [Butcher 1987, Lambert 1991]. The order of these schemes is always lower
than the number of stages p ≤ ns. Besides, it has been proved that there exists no explicit
Runge-Kutta scheme of order greater than 5.

Definition. When people got interested in the numerical resolution of hyperbolic partial dif-
ferential equations, notably the Euler equations, they started to seek among the huge family
of Runge-Kutta schemes for the schemes satisfying an additional property called the Strong-
Stability-Preserving (SSP) property.
A Runge-Kutta scheme is said to be Strong-Stability-Preserving (SSP) [Shu 1988, Gottlieb 1998,
Spiteri 2003, Kraaijevanger 1991, Ferracina 2005] if the following relation holds:

|Wn+1 | ≤ |Wn | ,

| · | being here a chosen semi-norm. This semi-norm is classically the Total Variation Diminishing
(TVD) semi-norm:

|Wn+1 −Wn |TV D =
N∑

i=1

|Wn
i+1 −Wn

i | .

Indeed, under certain hypothesis, the solution of the Euler equations is TVD, i.e. the solution
cannot exhibit new local extrema or minima during its time evolution. Maintaining this feature
for the discrete solution is also of crucial importance. More details about RKSSP schemes can
be found in Appendix C.

Notations. In the sequel, we note RKSSP(ns, p) the ns-stages RKSSP scheme of order p. The
following notations are also adopted:

Fs
i =

nball,i−1∑
f=0

Φ(W s
i , η

s
if , σ

s
if ||ηsif ||) ,

with





nball,i the number of elements in the ball of vertex Pi ,
ηsif the outward non-normalized normal to facet (or bi-segment) f of cell Csi ,
σsif the normal speed of facet f of cell Csi .

Superscript notation Xs indicates that the considered quantity is the resulting quantity X

obtained at stage s of the Runge-Kutta process. For instance, Csi is the cell associated with
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vertex Pi when the mesh has been moved to its sth Runge-Kutta configuration, see Figure 5.8
(left). Coefficients (cs)0≤s≤ns indicate the relative position in time of the current Runge-Kutta
configuration. In other words, cs is such that the time of the current Runge-Kutta configuration
is:

ts = tn + cs τ , with τ = tn+1 − tn .

Finally, we note Asif the area swept by facet f of cell Ci between the initial Runge-Kutta
configuration at t = t0 = tn and the sth one at t = ts.

Pj

tn

tn+1

ts

sth Runge-Kutta
configuration

Wn
i

Wn+1
i

W s
i

ηs
i,f

σs
i,f

Figure 5.8: Left, sth Runge-Kutta configuration and the geometrical parameters for bi-segment
f of cell Ci at stage s. Right, estimation of the area swept by the bi-segment between the initial
and the current Runge-Kutta configurations.

5.3.4 DGCL RKSSP schemes for moving mesh simulations.

For each RKSSP scheme, its Butcher representation (left) and its Shu-Osher [Shu 1988] formu-
lation (right) are provided. Mavriplis-Yang method is first detailed for the RKSSP(4, 3) scheme,
and the results obtained for the other optimal schemes are then listed.
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5.3.4.1 An example of Mavriplis-Yang method: RKSSP(4, 3)

Butcher representation Shu-Osher representation ts = tn + cs τ
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2
F3
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For this scheme to be DGCL, it must preserve a constant solution Wi = W0. In this specific
case, our conservative variable is Yi = |Ci|W0 and the purely physical fluxes vanish, leading to:

Fs
i = −W0

nball,i−1∑

f=0

||ηsif ||σsif .

Therefore, the scheme writes:

|C0
i | = |Cni |

|C1
i | − |C0

i | =
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f=0

A1
if =

τ

2
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)
.
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A necessary and natural condition for the above relations to be satisfied is to have, for each
facet (or bi-segment in 2D) f of each Finite Volume cell Ci:
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(5.5)

Therefore, normal speed σsif at stage s of facet f of cell Ci must be updated as follows in the
Runge-Kutta process:

σ0
if =

2A1
if

τ ||η0
if ||

,

σ1
if =

−2A1
if + 2A2

if

τ ||η1
if ||

,

σ2
if =

−2A2
if + 6A3

if

τ ||η2
if ||

,

σ3
if =

−2A3
if + 2A4

if

τ ||η3
if ||

.

Practical computation of the Asif is detailed in Section 5.3.5.

5.3.4.2 Other schemes

RKSSP(3, 3).

Butcher representation Shu-Osher representation ts = tn + cs τ
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For each Finite Volume facet f and each Finite Volume cell Ci, we have:
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(5.6)

RKSSP(2, 2).

Butcher representation Shu-Osher representation ts = tn + cs τ
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For each Finite Volume facet f and each Finite Volume cell Ci, we have:
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(5.7)

RKSSP(3, 2)

Butcher representation Shu-Osher representation ts = tn + cs τ
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For each Finite Volume facet f and each Finite Volume cell Ci, we have:
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(5.8)

RKSSP(4, 2)

Butcher representation Shu-Osher representation ts = tn + cs τ
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For each Finite Volume facet f and each Finite Volume cell Ci, we have:
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RKSSP(5, 2)

Butcher representation Shu-Osher representation ts = tn + cs τ

Yi
0 = Yi

n

Yi
1 = Yi

0 +
τ

4
F0
i c1 = 1

4

Yi
2 = Yi

0 +
τ

4

(
F0
i + F1

i

)
Yi

2 = Yi
1 +

τ

4
F1
i c2 = 1

2

Yi
3 = Yi

0 +
τ

4

(
F0
i + F1

i + F2
i

)
Yi

3 = Yi
2 +

τ

4
F2
i c3 = 3

4

Yi
4 = Yi

0 +
τ

4

(
F0
i + F1

i + F2
i + F3

i

)
Yi

4 = Yi
3 +

τ

4
F3
i c4 = 1

Yi
5 = Yi

0 +
τ

5

(
F0
i + F1

i + F2
i + F3

i + F4
i

)
Yi

5 =
1

5
Yi

0 +
4

5
Yi

4 +
τ

5
F4
i c5 = 1

For each Finite Volume facet f and each Finite Volume cell Ci, we have:
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5.3.5 Practical computation of the areas swept

We assume that facet f of cell Ci is associated with edge eij of element K = (Pi, Pj , Pk, Pl). G
is the center of gravity of K and wG is the mesh velocity at G. The algebraic area swept by
cells interface between the initial and the current Runge-Kutta stage s are computed using the
formula given in [Nkonga 1993].
In the sequel, we note (wG)sif the velocity of the gravity center of the considered facet and η̃sif
a pseudo non-normalized normal used to compute the area swept by this facet. This pseudo
normal should not be mistaken with the facet (bi-segment) normal itself. It is only
define for the computation of swept areas and plays no other role.
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2D case. Let us assume the considered interface f is associated with edge eij and belongs to
triangle K = (Pi, Pj , Pk). In two dimensions,

Asif = cs τ (wG)sif · η̃sif ,

with
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3D case. Let us assume the considered facet f is associated with edge eij and belongs to
tetrahedron K = (Pi, Pj , Pk, Pl). In the following, if Gk denotes the gravity center of face
Fk = (Pi, Pj , Pl) of tetrahedron K and Gl the gravity center of face Fl = (Pi, Pj , Pk):

Asif = cs τ (wG)sif · η̃sif

with
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and we compute:
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Implementation issues. We can notice that, for these RKSSP schemes, the computation of
σsif depends on Asif and As+1

if , which are the areas swept by interface f of Ci between the initial
RK stage and the current s and next s + 1 Runge-Kutta stages, respectively. Therefore, for
each element, the areas swept by its associated interfaces at previous Runge-Kutta step must be
stored (three values in two dimensions, six values in three dimensions) to compute geometrical
parameter σsif at next RK stage.

Note that, in accordance with Mavriplis-Yang approach, the cells normals ηsif used to compute
numerical flux Φ(W s

i , η
s
if , ||ηsif ||σsif ) between stages s and s+ 1 are those computed when the
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mesh is in its configuration at ts = tn+cs τ . This is also true for the upwind/downwind elements
if high-order spatial schemes (see Section 5.2.2) are used: these elements are those computed on
the current Runge-Kutta configuration. Again, they are imposed by the Runge-Kutta scheme.

It is also important to use the Shu-Osher representation of the scheme while practically comput-
ing the numerical flux. With this formulation, we just have to store the previous cells interfaces
normals while we would have had to store the interfaces normals of several previous stages if we
had used the equivalent Butcher representation.

5.4 A new changing-topology ALE formulation

5.4.1 Problematics

Usually, when the topology of the mesh must be changed between two time steps, local or global
interpolation procedures are used to get the solution on the new mesh. It is standard practice
to use a simple P1-Lagrangian projection, even if an increasing number of research teams try
to investigate and improve the accuracy and conservativity properties of this interpolation step
[Alauzet 2010c, Venkatakrishnan 2007, Margolin 2004]. However, the effects of these repeated
interpolations are still not well understood, especially when they are performed locally on the
fly after each topology change.

Our opinion is that having an ALE scheme compatible with meshing operations would get
us rid of this spoiling projection step and would better fit into the global ALE framework.
However, as already mentioned, as soon as Fluid-Structure Interaction problems are considered,
time advancing strategies seem mandatory because the computational domain is part of the
unknown of the problem. In this context, topology changes are not known in advance and are
performed on the fly depending on the evolution of the moving mesh. In this context, designing
an ALE procedure handling all kinds of topological operations is far from straightforward, for
the reasons detailed below.

Data structures: The mesh data structures will be much more complex and dynamic. The
number of edges and elements is the same in two dimensions but varies in three dimensions
if connectivity changes occur. If edges collapsing and splitting are authorized, the number
of vertices also evolves in time. So does the number of cells.

Four dimensional meshes: The generation of four dimensional space-time meshes is required,
linking Finite Volume cells at tn with cells at tn+1 (see Figure 5.9). To our knowledge, such
type of meshes are actually not easily generated. This also implies that a four-dimensional
mesh must be generated at each time step, which means that four-dimensional mesh generator
must be especially efficient to maintain reasonable CPU times. Eventually, these space-time
meshes must be hybrid. Indeed, to be coherent with the classical ALE framework, the four-
dimensional mesh involves cell-based pseudo-prismatic elements (prismatic-elements with
twisted space-time interfaces) in regions were the connectivity of the mesh does not change
and tetrahedra when connectivity changes occur, see Figure 5.9.

General ALE schemes: A new fully ALE scheme must be written, which handles all kinds of
topological changes.
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To our knowledge, only a few attempts to do this can be found in the literature, see for instance
[Isola 2010, Meriaux 2003, Kucharik 2008, Olivier 2011].

5.4.2 Our approach

In our opinion, such a general approach cannot be considered at the moment as it would imply
the rewriting of most of the Finite Volume ALE code and would necessitate the inclusion of a
four-dimensional mesh generator inside the solver. As a first step, we therefore chose to simplify
the problem following the line described below.

• First, we focus on changing-topology meshes only involving swaps (see definition in
Section 4.2.2), i.e. vertex addition or suppression is not allowed. This choice is due to the
powerfulness of this tool and the fact that it is especially appropriate to handle shears and
large deformation movements. With this strategy, only the number of tetrahedra and edges
varies in three dimensions. The number of vertices remains fixed. In two dimensions, the
number of elements does not even change and neither does the number of edges.

• Second, to fit at best the existing Finite Volume framework, we impose that only the geomet-
rical parameters associated with moving/swapped edges are impacted by topology changes.
More precisely, the Mavriplis-Yang approach is adopted, which means that the only param-
eters that are allowed to be corrected due to edge swapping are the edges normal velocities.

• Third, we impose that once a swap has been performed, all the edges touching the swapped
edge are set as blocked until the next optimization step. This clearly simplifies the man-
agement of data structures, which remains pseudo-static. But above all, it is absolutely
necessary to be able to virtually build a space-time mesh between two solver time steps and
thus to define an ALE formulation handling edge swapping.
Note that this is not as restrictive as it may seem at first glance. Indeed, imagine an edge
has been blocked due to a previous swap in its neighborhood while one would have wished
to swap it. It is generally not a problem as this swap might be done at the next step on a
configuration which is generally not too different from the current one.

• Finally, the space-time mesh is generated implicitly, i.e. its entities are never stored in
practice but they virtually exist through the way our new scheme works.

Only the two-dimensional case has been implemented. Note also that for the sake of clarity,
only the case of the RKSSP(1, 1) time scheme is addressed in a first time. However, extension
to other RKSSP schemes will be discussed at the end of this section.

5.4.3 Swapping evanescent cell and volume redistribution

Three-dimensional space-time representation of edge swapping. The swap operation is
considered as a time continuous process during which some Finite Volume cells interfaces appear
and other collapse. The idea is to consider a three-dimensional mesh linking the cells affected
by the swap at tn and those at tn+1, the time being the third dimension. In the classical ALE
framework, all the space-time interfaces are quadrangular and generally twisted, see Figure 5.9
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(left). If a swap occurs, the space-time mesh in the swap region exhibits four tetrahedral elements
in three dimensions, the faces of which are planar and made of triangles, see Figure 5.9 (right).
Note that in this case, space-time interfaces are straight, i.e. the bi-segments normals keep the
same direction while moving along these space-time triangular faces between two time steps.

Evanescent Finite-Volume cell. By cutting the three-dimensional space-time mesh at an
intermediate time between tn and tn+1, for instance tn+ 1

2 , we see that an evanescent cell is
created just after tn and vanishes at tn+1. Consequently, some fluxes are exchanged between
this evanescent cell and its surrounding real cells between the two configurations. The cells
present at tn+ 1

2 are depicted in Figure 5.10. In Figure 5.12 (right), we have represented the
directions of the purely geometrical fluxes entering and going out of this evanescent cell on a
specific configuration.

Main ideas. Following the above considerations, we have to find a way of correcting the ALE
geometrical parameters of the involved edges so as to take these new volume exchanges into
account. The main idea is to take all the volume exchanges occurring during the swap into

t = tn

t = tn+1

Fixed topology Changing topology

Quadrangular and triangular
space-time cells interfaces

Only quadrangular space-time
cells interfaces

cutting plane tn+ 1
2

Figure 5.9: Left, space-time interfaces in the fixed-topology case. Finite Volume space-time
interfaces are quadrangular and twisted. Right, space-time interpretation of the edge swap-
ping operation and its effect on space-time Finite Volume cells interfaces (in blue). The four
tetrahedral space-time elements are depicted in blue lines.
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account only by attributing adequate DGCL parameters to the six edges involved, i.e. the four
bordering edges plus the old and the new edges.
For instance, let us consider two cells connected by one of the bordering edges, for instance C0

and C3 which are connected by edge e03. During the swap, these cells can exchange volume
either directly through the movement of the associated bordering bi-segment bij or though the
evanescent cell which collects some volume from the four cells and redistribute this volume
between the four cells. For instance, in Figure 5.12, arrows in violet, which represent mass
exchanges, show that cell C3 may receive mass from C0 directly through edge e03 (left figure)
but can also get some mass from C0 through the evanescent cell (right figure). The idea is to take
into account the volume exchanged through the evanescent cell by correcting the geometrical
parameters associated with edge e03. Corrected parameters will be noted with superscript ∗.
Once these corrections are performed, everything works exactly as they do in the classical ALE
framework, i.e. these geometrical parameters are used to compute Euler ALE fluxes.

5.4.4 Notations

A crucial remark on relevant parameters. One essential remark made in [Mavriplis 2006]
is that, in the classical ALE framework, the interface normal velocity σij associated with an
edge eij never appears alone when computing the mass exchange between two cells but always
appears under product Aij = τσij ||ηij ||. For instance, when the Roe numerical flux is used, the

evanescent cell

G1

G3
G2

G0

M01

M23

vanishing interface

created interface

bordering edge

M13
M12

M03

M02

P3

P2

P0

P1

P0

P1

P3

P2

Figure 5.10: Left, effect of edge swapping on Finite Volume cells interfaces. The old edge is
represented with a dotted green line and the new one with a dotted red line. The old Finite
Volume bi-segments are in green and the new ones in red. Right, representation of the evanescent
cell obtained at intermediate configuration tn+ 1

2 .
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algebraic mass transferred from cell Ci to cell Cj is given by:

τ ||ηij ||ΦRoe(Wi, Wj , σij , ηij)

= τ ||ηij ||
Fi + Fj

2
− τσij ||ηij ||

Wi +Wj

2
+ τ ||ηij || |Ã(Wi, Wj)− σijIn|

Wi −Wj

2

= τ ||ηij ||
Fi + Fj

2
− τσij ||ηij ||

Wi +Wj

2
+
∣∣∣τ ||ηij ||Ã(Wi, Wj)− τ ||ηij ||σijIn

∣∣∣Wi −Wj

2

= τ ||ηij ||
Fi + Fj

2
−Aij

Wi +Wj

2
+
∣∣∣τ ||ηij ||Ã(Wi, Wj)−AijIn

∣∣∣Wi −Wj

2
= MRoe(Wi, Wj , Aij , ηij , τ)

Similarly, if the approximate HLLC Riemann solver is chosen, the algebraic mass exchanged
between Ci and Cj during τ is:

τ ||ηij ||ΦHLLC(Wi, Wj , σij , ηij) = τ ||ηij ||





Fi − σijWi if Si − σij > 0

F∗i − σijW ∗i if Si − σij ≤ 0 < SM − σij
F∗j − σijW ∗j if SM − σij ≤ 0 ≤ Sj − σij
Fj − σijWj if Sj − σij < 0

=





τ ||ηij ||Fi − τ ||ηij ||σijWi if τ ||ηij ||Si − τ ||ηij ||σij > 0

τ ||ηij ||F∗i − τ ||ηij ||σijW ∗i if τ ||ηij ||Si − τ ||ηij ||σij ≤ 0 < τ ||ηij ||SM − τ ||ηij ||σij
τ ||ηij ||F∗j − τ ||ηij ||σijW ∗j if τ ||ηij ||SM − τ ||ηij ||σij ≤ 0 ≤ τ ||ηij ||Sl − τ ||ηij ||σij
τ ||ηij ||Fj − τ ||ηij ||σijWj if τ ||ηij ||Sj − τ ||ηij ||σij < 0

=





τ ||ηij ||Fi −AijWi if τ ||ηij ||Si −Aij > 0

τ ||ηij ||F∗i −AijW ∗i if τ ||ηij ||Si −Aij ≤ 0 < τ ||ηij ||SM −Aij
τ ||ηij ||F∗j −AijW ∗j if τ ||ηij ||SM −Aij ≤ 0 ≤ τ ||ηij ||Sl −Aij
τ ||ηij ||Fj −AijWj if τ ||ηij ||Sj −Aij < 0

= MHLLC(Wi, Wj , Aij , ηij , τ) .

Quantity Aij represents the area swept by interface Iij associated with edge eij between tn and
tn+1, and τ = tn+1 − tn is the solver time step.
This means that the relevant geometrical parameters for ALE computations are not σij and ηij
as it is often suggested, but rather Aij and ηij .

The second important remark is that the choice of normal ηij , and especially its direction, has
no influence on the value of the mass exchanged between Ci and Cj due to the geometrical
deformation of the mesh. Indeed, this purely geometrical exchange writes Mij = −AijW , and is
independent of the direction of ηij . The normal only influences the physical flux computation
as F = F · n. In other words, geometrical fluxes are not directional, contrary to physical ones.
These simple remarks are of crucial importance for the understanding of our new ALE formula-
tion. Actually, our approach comes to consider mass exchanges rather than fluxes.

Notations for the four bordering edges. For each of the four bordering edges e02, e03, e12

and e23, the bi-segment located inside the swap area is noted f = bij ∈ {1, 2}. The normal speed
of bi-segment bij of bordering edge eij is noted σij,bij . bij is the other bi-segment associated
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with bordering edge eij , which is located outside the swap area. The interface associated with a
bordering edge eij is noted Iij . For this interface, geometrical parameters are noted as follows:

• According to Mavriplis-Yang approach, the non-normalized normal to bi-segment f ={
bij , bij

}
associated with interface Iij is the one computed on the initial Runge-Kutta con-

figuration ηnij,f ,

• The global non-normalized normal associated with Iij is: ηnij = ηnij,bij + ηn
ij,bij

,

• The area swept by bordering bi-segments f = {bij , bij} associated with interface Iij are
noted Aij,f , with (i, j) ∈ {(0, 2), (0, 3), (1, 2), (1, 3)},

• The total area swept by interface Iij is: Aij = Aij,bij + Aij,bij . If σij is the DGCL normal
velocity associated with Iij in the fixed-topology ALE framework, we have, for RKSSP(1, 1):

Aij = τσij ||ηnij || .

Notations inside the mixing area. Two interfaces, noted I0 and I1 are now associated with
old green edge e01 and two interfaces I2 and I3 with new red edge e23, instead of just one.
Each of these interfaces has its own ALE parameters that will be used to compute the ALE flux
crossing them. We also define new parameters for the four interfaces of this evanescent cell, each
interface being made of two bi-segments f = 1 and f = 2, see Figure 5.11.

• The area swept by bi-segment f = {1, 2} associated with interface Ii is noted Ai,f , with
i ∈ J0, 3K,

• The total area swept by interface Ii is: Ai = Ai,1 +Ai,2,

• The non-normalized normal to bi-segment f = {1, 2} associated with interface Ii is noted
ηi,f ,

• The global non-normalized normal associated with Ii is : ηi = ηi,1 + ηi,2.

Due to the specific geometric configuration of the evanescent cell, see Figure 5.11 (right), the
reversed Thales theorem applies and we have the following relations, for all t ∈ [tn, tn+1]:

η0,1(t) = −η1,1(t) , η0,2(t) = −η1,2(t) , ||η0(t)|| = ||η1(t)|| ,
η2,1(t) = −η3,1(t) , η2,2(t) = −η3,2(t) , ||η3(t)|| = ||η2(t)|| . (5.11)

5.4.5 Swept areas computations

In two dimensions, we recall (see Section 5.3.5) that the area swept by a moving bi-segment f
associated with interface I is computed as:

AI,f = τ (wG)I,f · η̃I,f , with η̃I,f =
1

2

(
ηnI,f + ηn+1

I,f

)
,

where (wG)I,f is the velocity of the center of gravity of bi-segment f associated with interface
I. It is important to understand that normals η̃I,f are pseudo-normals which are used only to
compute the areas swept by the bi-segments. It must not be mistaken for normals to bi-segments
taken at tn, ηnI,f , that will be used for the computation of ALE fluxes.
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Areas swept by bi-segments inside the mixing area. First, pseudo-normals η̃ij,f associated
with the bi-segments located in the mixing area are computed. For interfaces I0 and I1, the
normals are of null norm at tn+1. Moreover, Relations (5.11) are true in particular for pseudo-
normals. Therefore, we get:

η̃0,1 =
ηn0,1

2
, η̃0,2 =

ηn0,2
2

, η̃1,1 =
ηn1,1

2
= −

ηn0,1
2

, and η̃1,2 =
ηn1,2

2
= −

ηn0,2
2

.

Similarly, for interfaces I2 and I3, the normals are of null norm at tn. Therefore, we get:

η̃2,1 =
ηn+1

2,1

2
, η̃2,2 =

ηn+1
2,2

2
, η̃3,1 =

ηn+1
3,1

2
= −

ηn+1
2,1

2
and η̃3,2 =

ηn+1
3,2

2
= −

ηn+1
2,2

2
.

In the sequel, we compute the areas AI,f swept by vanishing and appearing bi-segments. The
following notations are used:

wi =
xn+1
Pi
− xnPi
τ

and wPn→Qn+1 =
xn+1
Q − xnP

τ
.

η̃03,b03

η̃13,b13

η̃12,b12

η̃02,b02

η̃1,1 = −η̃0,1
η̃1,2 = −η̃0,2

η̃1 = −η̃0

η̃0

η̃0,1

η̃0,2

η̃2,1

η̃2,2

η̃2

η̃3 = −η̃2

η̃3,1 = −η̃2,1

η̃3,2 = −η̃2,2

I0

I1

I3

I2

P3

P2

P1

P0

Figure 5.11: Notations. Left, pseudo-normals η̃ij,bij associated with the four bordering inner
bi-segments associated with each bordering edge. Right, pseudo-normals η̃i,f used to compute
the areas swept by vanishing or created bi-segments inside the mixing area.
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Hence, the four algebraic swept areas by the four vanishing bi-segments are computed as
follows, see Figure 5.13 (middle):

A0,1 = τw(G3+M01)/2→G0
· η̃0,1 , with w(G3+M01)/2→G0

=
1

12
(−w0 − 5w1 + 4w2 + 2w3) ,

A0,2 = τw(M01+G2)/2→G0
· η̃0,2 , with w(M01+G2)/2→G0

=
1

12
(−w0 − 5w1 + 2w2 + 4w3) ,

A1,1 = τw(G3+M01)/2→G1
· η̃1,1 , with w(G3+M01)/2→G1

=
1

12
(−5w0 −w1 + 4w2 + 2w3) ,

A1,2 = τw(M01+G2)/2→G1
· η̃1,2 , with w(M01+G2)/2→G1

=
1

12
(−5w0 −w1 + 2w2 + 4w3) .

(5.12)
Pseudo-normals are computed using the coordinates of vertices P0, P1, P2 and P3:

η̃0,1 =
ηn0,1

2
=

1

2

(
2yn3 − yn0 − yn1
−2xn3 + xn0 + xn1

)
, η̃0,2 =

ηn0,2
2

=
1

2

(
2yn2 − yn0 − yn1
−2xn2 + xn0 + xn1

)
.

The four algebraic areas swept by the four appearing bi-segments are computed as follows,

η∗
1 = −η̃0

η∗
3 = −η̃2

η∗
0 = η̃0

η∗
2 = η̃2

ηn
13,b13

ηn
13,b13

ηn
12,b12

ηn
02,b02

ηn
03,b03

ηn
03,b03

ηn
02,b02

ηn
12,b12

P3

P2

P0

P1

Figure 5.12: Geometrical mass exchanges induced by edge swapping (violet). Left, geometri-
cal mass exchanges through the four bordering edges. According to Mavriplis-Yang approach,
the effective normals used to compute the global fluxes through these edges are the ones com-
puted on the initial Runge-Kutta configuration. Right, geometrical mass exchanges between the
evanescent cell and its four neighboring Finite-Volume cells. As explained in Section 5.4.6, the
effective normals η∗i associated with these evanescent interfaces can be chosen arbitrarily.
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see Figure 5.13 (right):

A2,1 = τwG2→(G0+M23)/2 · η̃2,1 , with wG2→(G0+M23)/2 =
1

12
(−2w0 − 4w1 + 5w2 +w3) ,

A2,2 = τwG2→(M23+G1)/2 · η̃2,2 , with wG2→(M23+G1)/2 =
1

12
(−4w0 − 2w1 + 5w2 +w3) ,

A3,1 = τwG3→(G0+M23)/2 · η̃3,1 , with wG3→(G0+M23)/2 =
1

12
(−2w0 − 4w1 +w2 + 5w3) ,

A3,2 = τwG3→(M23+G1)/2 · η̃3,2 , with wG3→(M23+G1)/2 =
1

12
(−4w0 − 2w1 +w2 + 5w3) .

(5.13)
The associated pseudo-normals are:

η̃2,1 =
ηn+1

2,1

2
=

1

2

(
2yn+1

0 − yn+1
2 − yn+1

3

−2xn+1
0 + xn+1

2 + xn+1
3

)
, η̃2,2 =

ηn+1
2,2

2
=

1

2

(
2yn+1

1 − yn+1
2 − yn+1

3

−2xn+1
1 + xn+1

2 + xn+1
3

)
.

Note that the evanescent nature of the middle cell is contained in formula:

(A0,1 +A0,2 +A1,1 +A1,2) + (A2,1 +A2,2 +A3,1 +A3,2) = 0⇐⇒ A0 +A1 +A2 +A3 = 0 .

From now on, we note a+ = max (0, a) (resp. a− = min (0, a)) the positive (resp. negative)

A3,1 < 0

A3,2 < 0 A2,2 < 0

A

G0

G1

G2

G3
G3

G2

G1

G0

M01

M23

A03,b03 < 0 A02,b02 < 0

A12,b12 < 0
A13,b13 < 0

A1,1 > 0 A1,2 > 0

A0,1 > 0 A0,2 > 0

P1

P0

P2
P3

A2,1 < 0

Figure 5.13: Left, areas swept by the four inner bordering bi-segments during the swap operation.
Middle, areas swept by vanishing bi-segments associated with evanescent interfaces Ii inside
the mixing area during the edge swapping operation. Right, areas swept by appearing bi-
segments associated with evanescent interfaces Ii inside the mixing area during the edge swapping
operation. In this very specific case, A0,1, A0,2, A1,1 and A1,2 are positive while A2,1, A2,2, A3,1

and A3,2 are negative.
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part of a real value a. Classically, we have:

a+ ≥ 0 , −a− ≥ 0 , a = a+ + a− , |a| = a+ − a−
2

, and a+a− = 0 . (5.14)

Then, using Relations (5.14), we get:

A0 +A1 +A2 +A3 = 0⇐⇒ A+
0 +A−0 +A+

1 +A−1 +A+
2 +A−2 +A+

3 +A−3 = 0

⇐⇒ A+
0 +A−0 +A+

1 +A−1 = −
(
A+

2 +A−2 +A+
3 +A−3

)
= A .

(5.15)

Area A is depicted in Figure 5.13. To finish with, we define the total volume eaten and redis-
tributed by the evanescent cell during the swap:

M = A+
0 +A+

1 +A+
2 +A+

3 = −
(
A−0 +A−1 +A−2 +A−3

)
> 0 .

Areas swept bi-segments associated with the four bordering edges. The areas swept by
these bordering bi-segments are represented in Figure 5.13.

A12,b12 = τ w(Mn
12+Gn3 )/2→(Mn+1

12 +Gn+1
0 )/2 · η̃12,b12

,

with w(Mn
12+Gn3 )/2→(Mn+1

12 +Gn+1
0 )/2 =

1

24τ

(
5w1 + 5w2 + 2wPn0 →P

n+1
3

)

and η̃12,b12
=

1

2

(
ηn12,b12

+ ηn+1
12,b12

)
=

1

12

( −2
(
yn0 + yn+1

3

)
+
(
yn1 + yn+1

1

)
+
(
yn2 + yn+1

2

)

2
(
xn0 + xn+1

3

)
−
(
xn1 + xn+1

1

)
−
(
xn2 + xn+1

2

)
)
,

A13,b13 = τ w(Mn
13+Gn2 )/2→(Mn+1

13 +Gn+1
0 )/2 · η̃13,b13

,

with w(Mn
13+Gn2 )/2→(Mn+1

13 +Gn+1
0 )/2 =

1

24τ

(
5w1 + 5w3 + 2wPn0 →P

n+1
2

)

and η̃12,b12
=

1

2

(
ηn13,b13

+ ηn+1
13,b13

)
=

1

12

( −2
(
yn0 + yn+1

2

)
+
(
yn1 + yn+1

1

)
+
(
yn3 + yn+1

3

)

2
(
xn0 + xn+1

2

)
−
(
xn1 + xn+1

1

)
−
(
xn3 + xn+1

3

)
)
,

A02,b02 = τ w(Mn
02+Gn3 )/2→(Mn+1

02 +Gn+1
1 )/2 · η̃02,b02

,

with w(Mn
02+Gn3 )/2→(Mn+1

02 +Gn+1
1 )/2 =

1

24τ

(
5w0 + 5w2 + 2wPn1 →P

n+1
3

)

and η̃02,b02
=

1

2

(
ηn02,b02

+ ηn+1
02,b02

)
=

1

12

( −2
(
yn1 + yn+1

3

)
+
(
yn0 + yn+1

0

)
+
(
yn2 + yn+1

2

)

2
(
xn1 + xn+1

3

)
−
(
xn0 + xn+1

0

)
−
(
xn2 + xn+1

2

)
)
,

A03,b03 = τw(Mn
03+Gn2 )/2→(Mn+1

03 +Gn+1
1 )/2 · η̃03,b03

,

with w(Mn
03+Gn2 )/2→(Mn+1

03 +Gn+1
1 )/2 =

1

24τ

(
5w0 + 5w3 + 2wPn1 →P

n+1
2

)

and η̃03,b03
=

1

2

(
ηn03,b03

+ ηn+1
03,b03

)
=

1

12

( −2
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2

)
+
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0
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+
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3

)

2
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2

)
−
(
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0

)
−
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3

)
)
.
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Figure 5.14: A trickier swapping configuration. Top, areas swept by vanishing bi-segments inside
the mixing area. Bottom, areas swept by appearing bi-segments inside the mixing area. If blue
arrows and bi-segments normals evolve in the same direction (their scalar product is positive),
the swept area is positive. On the contrary, if they have opposite evolution directions, it is
negative.
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Illustrations. Figure 5.13 shows these swept areas and their signs on the configuration depicted
in Figure 5.11. By way of example, for the configuration described in Figures 5.12 and 5.13,
A1 > 0, A0 > 0, A3 < 0 and A2 < 0. As A0 and A1 are of the same sign, all the mass taken
from cell C0 (resp. C1) is fully redistributed to C2 and C3 and nothing is given to C1 (resp. C0).
In other words, there is no mass exchange between C0 and C1. Similarly, as A2 and A3 are of
the same sign, all the mass given to cell C2 (resp C3) comes from cells C0 and C1 and nothing
comes from C3 (resp. C2). There is actually no mass exchange between C2 and C3 during the
swap. However, this case is a very special one and does not correspond to what will be generally
encountered in practice.

Figure 5.14 shows a trickier and more realistic configuration, with its associated swept areas and
their respective signs. In this case, A0 > 0, A1 > 0, A2 > 0 and A3 < 0. As A2 > 0 and A3 < 0

are of opposite signs, there is a mass exchange between C2 and C3. More specifically, C3 takes
some mass from C2 during the swap.

5.4.6 The changing-topology ALE schemes

Mavriplis-Yang approach. As recalled in Section 5.4.4, the relevant ALE geometrical param-
eters associated with interface Iij are not σij and ηij , but rather Aij and ηij . According to
[Yang 2005], the configuration on which flux normal ηij must be computed is dictated by the
chosen time integration scheme. In our case, the RKSSP(1, 1) is used, which means that the
effective normals - the one that must be used to calculate Euler fluxes - are those computed
on the initial Runge-Kutta configuration. The only quantities that can be adjusted to take the
mass exchanges through the evanescent cell into account are swept areas Aij .
The idea is thus to correct geometrical parameters Aij associated with the six involved edges
-the four bordering edges plus the old swapped edge and the new one - to take the volume ex-
changes though the evanescent cell into account. To this aim, a detailed mass balance analysis
is performed. The corrected relevant DGCL geometrical parameter is noted A∗ij .

Volume exchanges through the evanescent cell.M represents the total volume taken from
the four cells by the evanescent cell during the swap. Thus, A+

j /M represents the fraction of
this total collected volume which has been stolen from cell Cj . Indeed, if Aj is positive, then cell
Cj is losing volume because the geometrical flux between cell Cj and the evanescent cell writes
−A+

j W < 0.
M is also the total volume redistributed by the evanescent cell to the four cells during the swap.
Thus A−j /M represents the fraction of this total redistributed volume which is given to cell
Cj . Indeed, if Aj is negative, then cell Cj is gaining volume from the evanescent cell since the
geometrical flux between cell Cj and the evanescent cell writes −A−j W > 0.

Then, the algebraic volume Amixij exchanged between cells Ci and Cj through the evanescent
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cell, see Figure 5.12 (right), is equal to:

Amixij =
A+
j

M︸︷︷︸
fraction of volume
taken from Cj

w.r.t total volume
collected by

evanescent cell

A−i︸︷︷︸
which is

recuperated by Ci

− A+
i

M︸︷︷︸
fraction of volume
taken from Ci

w.r.t total volume
collected by

evanescent cell

A−j︸︷︷︸
which is

recuperated by Cj

.

Amixij is negative if Ci gives volume to Cj and positive otherwise.

Volume exchanges through bordering edges. For the four bordering edges, the volume
exchanges due to the displacement of the bordering bi-segments, see Figure 5.12 (left), must
also be taken into account. It is equal to:

Aborderij = Aij,bij +Aij,bij = Aij .

Global volume exchanges for the six involved edges. We deduce that the global volume
exchanged by two cells Ci and Cj writes:

A∗ij = Amixij +Aborderij = Aij +
A+
j

M
A−i −

A+
i

M
A−j .

As edges e01 and e23 are not bordering edges, they are not associated with any bordering bi-
segment and A01 = A23 = 0. Finally, the corrected ALE parameters

(
A∗ij , η

n
ij

)
associated with

the six edges are given by:

Edge e02 :

(
A∗02 = A02 +

(A+
2 A
−
0 −A−2 A+

0 )

M
, ηn02

)
,

Edge e03 :

(
A∗03 = A03 +

(A+
3 A
−
0 −A−3 A+

0 )

M
, ηn03

)
,

Edge e12 :

(
A∗12 = A12 +

(A+
2 A
−
1 −A−2 A+

1 )

M
, ηn12

)
,

Edge e13 :

(
A∗13 = A13 +

(A+
3 A
−
1 −A−3 A+

1 )

M
, ηn13

)
,

Edge e01 :

(
A∗01 =

(
A+

1 A
−
0 −A−1 A+

0

)

M
, ηn01

)
,

Edge e23 :

(
A∗23 =

(
A+

3 A
−
2 −A−3 A+

2

)

M
, ηn23

)
,

(5.16)
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and we have noted:

M = A+
0 +A+

1 +A+
2 +A+

3 = −
(
A−0 +A−1 +A−2 +A−3

)
> 0 .

Implementation issues. The integration of this new scheme inside an existing ALE Finite
Volume solver is relatively easy. In two dimensions, only the edges structure has to be modified.
Practically speaking, the old and the new edges coexist in the mesh between tn and tn+1. Some
additional space is added at the end of the edges structure to handle the coexistence of old and
new edges due to edge swappings performed during the optimization phase. In two dimensions,
it is sufficient to allocate 20% more space than what is needed to store the initial number of
edges. When a swap occurs, the new edge is added at the end of the table.

Then, corrected ALE geometric parameters are attributed to the six edges involved during the
swap. Even if, as already mentioned, σij and ηij are not the most relevant parameters to write
the changing-topology ALE scheme, it may be useful to define these quantities for the six edges
in order to fit existing ALE Finite Volume solvers and to avoid adding a new field to the edge
structure. For the four bordering edges e02, e03, e12 and e13, this is easily done by defining a
corrected normal velocity σ∗ij as:

σ∗ij =
A∗ij

τ ||ηnij ||
.

There is also no problem for edge e01:

σ∗01 =
A∗01

τ ||ηn01||
.

On the contrary, this definition seems problematic when considering edge e23. Indeed, in this
case, ||ηn23|| is zero at time tn because edge e23 does not exist at this time. Defining σ23 as
described above is impossible as it would imply a division by 0.
However, as explained in Section 5.4.4, the geometrical flux through interface Iij is not directly
dependent of the choice of the normal ηij used in the approximate Riemannian solver. This
geometrical flux depends only on the solution state Wn and on Aij , which in turn depends only
on ηnij and ηn+1

ij . Therefore, the choice of the configuration on which ηij is computed is of no
importance for the geometrical flux. This means that we have the right to define:

σ∗23 =
A∗23

τ ||ηn23||
,

even if ||ηn23|| = 0, because this quantity will always be multiplied by ||ηn23|| when computing
geometrical mass exchanges.
Note that although the choice of the configuration on which ηij is computed is of no importance
for geometrical mass exchanges computation, it has a strong influence on the computed physical
mass exchanges through I23. Indeed, as ||ηn23|| = 0, the physical flux through I23 is null in the
case of the RKSSP(1, 1) time scheme.
Finally, it is possible to define pseudo-normal velocities for evanescent interfaces I0, I1, I2 and
I3:

σi =
Ai

τ ||η∗i ||
,
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where η∗i is an arbitrarily chosen normal. Indeed, the choice of this normal has no influence
on the scheme because σi will always be multiplied by ||η∗i || while computing effective mass
exchanges. For instance, we can take η∗i = η̃i. This leads to:

σ0 = 2
A0

τ ||ηn01||
, σ1 = 2

A1

τ ||ηn01||

σ2 = 2
A2

τ ||ηn+1
23 ||

and σ3 = 2
A3

τ ||ηn+1
23 ||

.

With the above definitions, the corrected normal velocities associated with the six edges involved
during the edge swapping are:

A∗ij = Aij +
A+
j

M
A−i −

A+
i

M
A−j

⇒ σ∗ij =
Aij

τ ||ηnij ||
+

A+
j

τ ||ηnij ||M
A−i −

A+
i

τ ||ηnij ||M
A−j

=
τσij ||ηnij ||
τ ||ηnij ||

+
τσ+

j ||η∗j ||
τ ||ηnij ||M

(
τσ−i ||η∗i ||

)
− τσ+

i ||η∗i ||
τ ||ηnij ||M

(
τσ−j ||η∗j ||

)

= σij +
(
σ+
j σ
−
i − σ−j σ+

i

) τ ||η∗i || ||η∗j ||
||ηnij ||M

.

Finally, the following parameters are used in the classical ALE Finite Volume solver:

Edge e02 :

(
σ∗02 = σ02 +

(
σ+

2 σ
−
0 − σ−2 σ+

0

) ||η∗0||||η∗2||
||ηn02||Ṁ

, ηn02

)
,

Edge e03 :

(
σ∗03 = σ03 +

(
σ+

3 σ
−
0 − σ−3 σ+

0

) ||η∗0||||η∗3||
||ηn03||Ṁ

, ηn03

)
,

Edge e12 :

(
σ∗12 = σ12 +

(
σ+

2 σ
−
1 − σ−2 σ+

1

) ||η∗1||||η∗2||
||ηn12||Ṁ

, ηn12

)
,

Edge e13 :

(
σ∗13 = σ13 +

(
σ+

3 σ
−
1 − σ−3 σ+

1

) ||η∗1||||η∗3||
||ηn13||Ṁ

, ηn13

)
,

Edge e01 :

(
σ∗01 =

(
σ+

1 σ
−
0 − σ−0 σ+

0

) ||η∗0||||η∗1||
||ηn01||Ṁ

, ηn01

)
,

Edge e23 :

(
σ∗23 =

(
σ+

3 σ
−
2 − σ−3 σ+

2

) ||η∗2||||η∗3||
||ηn23||Ṁ

, ηn23

)
,

(5.17)
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and we have noted:

Ṁ =
M

τ
=

A+
0 +A+

1 +A+
2 +A+

3

τ
= − A−0 +A−1 +A−2 +A−3

τ
> 0 .

Ṁ has the dimension of a sweeping velocity.

Once geometrical parameters have been defined, these edges are treated exactly like the others,
i.e. a complete (geometrical plus physical) ALE flux is computed across them, with the chosen
Riemannian approximate solver. Once the fluxes between tn and tn+1 have been computed, the
old edge is removed and replaced by the new one. Note that with this strategy, the extremities
of the edges involved in the swap operation can also move during the edge swapping. It will
automatically be taken into account by Scheme (5.19).
As explained in Section 5.4.2, once a swap has been performed, all the bordering edges are
blocked and cannot be swapped anymore until the next solver time step.

5.4.7 Generalizations

5.4.7.1 Extension to other time schemes

The extension to multi-step integration schemes like the implicit Backward Differentiation For-
mula schemes seems quiet easy, even if we have not tested it yet.
As regards the extension of this new scheme to ALE DGCL Runge-Kutta schemes of Sec-
tion 5.3.2, we again follow [Yang 2005], which means that the normal used to compute the
solution at Runge-Kutta stage s+ 1 is the one computed on the sth Runge-Kutta configuration.
Thus, the following "relevant" ALE DGCL parameters (A∗,sij , η

s
ij) are proposed for the six edges

at the sth Runge-Kutta stage:

Edge e02 :

(
A∗,s02 = As02 +

(A+,s
2 A−,s0 −A−,s2 A+,s

0 )

M s
, ηs02

)
,

Edge e03 :

(
A∗,s03 = As03 +

(A+,s
3 A−,s0 −A−,s3 A+,s

0 )

M s
, ηs03

)
,

Edge e12 :

(
A∗,s12 = As12 +

(A+,s
2 A−,s1 −A−,s2 A+,s

1 )

M s
, ηs12

)
,

Edge e13 :

(
A∗,s13 = As13 +

(A+,s
3 A−,s1 −A−,s3 A+,s

1 )

M s
, ηs13

)
,

Edge e01 :

(
A∗,s01 =

(
A+,s

1 A−,s0 −A−,s1 A+,s
0

)

M s
, ηs01

)
,

Edge e23 :

(
A∗,s23 =

(
A+,s

3 A−,s2 −A−,s3 A+,s
2

)

M s
, ηs23

)
,

(5.18)
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where





Asij is the area swept by Iij between the initial and the sth RK configuration ,
Asi is the area swept by Ii between the initial and the sth RK configuration ,
ηsij is the non-normalized normal to Iij computed on the sth RK configuration ,
M s = A+,s

0 +A+,s
1 +A+,s

2 +A+,s
3 = −

(
A−,s0 +A−,s1 +A−,s2 +A−,s3

)
> 0 .

Swept areas computation. Areas swept by the bi-segments between the initial Runge-Kutta
configuration at tn and current one at ts = tn + csτ are computed using the following relation:

AsI,f = csτ (wG)sI,f · η̃sI,f .

(wG)sI,f is velocity of the center of gravity of the bi-segment f of interface I computed between
the initial and the current Runge-Kutta configuration. It is equal to:

(wG)sI,f =
xsGI,f − x0

GI,f

csτ
= cs

xn+1
GI,f
− xnGI,f
csτ

=
xn+1
GI,f
− xnGI,f
τ

= (wG)I,f .

η̃sI,f is the pseudo-normal of the considered bi-segment computed between the initial and the
end of the current Runge-Kutta configuration. For bordering bi-segments, it is equal to:

η̃I,f =
1

2

(
η0
ij,f + ηsij,f

)
=

1

2

(
ηnij,f + ηnij,f + cs

(
ηn+1
ij,f − ηnij,f

))
=

1

2

(
(2− cs)ηnij,f + csη

n+1
ij,f

)
.

In particular, for vanishing bi-segments, we get:

η̃s0 = −2− cs
2

ηn01 and η̃s1 =
2− cs

2
ηn01 ,

and for appearing bi-segments:

η̃s2 = −cs
2
ηn+1

23 and η̃s3 =
cs
2
ηn+1

23 .

Note that this is consistent with the expressions found for RKSSP(1, 1), for which cs = c1 = 1.

(σ, η) formulation. Instead of using "relevant" geometrical parameters (A∗,sij , η
s
ij) to compute

the solution at stage s+1, it is possible to use another set of ALE DGCL geometrical parameters
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(σ∗,sij , η
s
ij) defined as:

Edge e02 :

(
σ∗,s02 = σs02 +

(
σ+,s

2 σ−,s0 − σ−,s2 σ+,s
0

) ||η∗0||||η∗2||
||ηs02||Ṁ s

, ηs02

)
,

Edge e03 :

(
σ∗,s03 = σs03 +

(
σ+,s

3 σ−,s0 − σ−,s3 σ+,s
0

) ||η∗,s0 ||||η∗,s3 ||
||ηs03||Ṁ s

, ηs03

)
,

Edge e12 :

(
σ∗,s12 = σs12 +

(
σ+,s

2 σ−,s1 − σ−,s2 σ+,s
1

) ||η∗,s1 ||||η∗,s2 ||
||ηs12||Ṁ s

, ηs12

)
,

Edge e13 :

(
σ∗,s13 = σs13 +

(
σ+,s

3 σ,s1 − σ−,s3 σ+,s
1

) ||η∗1||||η∗3||
||ηs13||Ṁ s

, ηs13

)
,

Edge e01 :

(
σ∗,s01 =

(
σ+,s

1 σ−,s0 − σ−,s0 σ+,s
1

) ||η∗0||||η∗,s1 ||
||ηs01||Ṁ s

, ηs01

)
,

Edge e23 :

(
σ∗,s23 =

(
σ+,s

3 σ−,s2 − σ−,s3 σ+,s
2

) ||η∗,s2 ||||η∗,s3 ||
||ηs23||Ṁ s

, ηs23

)
,

(5.19)

and we have noted:

Ṁ s =
M s

τ
=

A+,s
0 +A+,s

1 +A+,s
2 +A+,s

3

τ
= − A−,s0 +A−,s1 +A−,s2 +A−,s3

τ
> 0 .

Ṁ s has the dimension of a sweeping velocity. η∗,si are arbitrarily chosen normals associated with
evanescent interfaces Ii, which have no influence on the global flux computation. They are only
defined to fit the former ALE framework which uses σ and η as geometrical parameters. The
following choice can be made:

η∗,s0 = η̃∗,s0 = −2− cs
2

ηn01 , η∗,s1 = η̃∗,s1 =
2− cs

2
ηn01

η∗,s2 = η̃∗,s2 = −cs
2
ηn23 and η∗,s3 = η̃∗,s3 =

cs
2
ηn23 .

The definition of the σsi ’s depends on this choice and is given by:

σsi =
Asi

τ ||η∗,si ||
.

Finally, note that the volume of the evanescent cell at ts is given by:

|Cevanes.|s = As0 +As1 +As2 +As3 .

This is coherent with equality A0 +A1 +A2 +A3 = 0 found in the case of the RKSSP(1, 1) time
integration because in this case, there is only one stage and |Cevanes.|1 = |Cevanes.|n+1 = 0.
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Figure 5.15: Swept areas computations during the swap when a multi-stage Runge-Kutta
scheme is used. Top, areas swept by the four inner bordering bi-segments (left), by vanishing
bi-segments (middle) and by appearing bi-segments (right) between the initial and the current
Runge-Kutta configuration during the swap inside the mixing area. Bottom, geometrical mass
exchanges induced by edge swapping (violet) through the four bordering edges (left) and through
the evanescent cell (right) between the initial and the current Runge-Kutta configuration.
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5.4.7.2 Extension to three dimensions

The generalization of this scheme to three dimensional edge/face swapping is really hard but
some promising investigations are currently underway.

5.4.8 Scheme analysis

5.4.8.1 DGCL property

Case RKSSP(1,1). Let us first focus on the case where a RKSSP(1, 1) time integration is
used. In this case, the scheme obtained using the geometrical parameters described above is of
course DGCL as it exactly computes geometrical mass exchanges. However, we provide here a
mathematical demonstration of this property.
To prove that our new scheme is DGCL with respect to the RKSSP(1, 1) time integration
scheme, we demonstrate that any constant state solution W = W0 is preserved. Let us consider
the edge swapping that transforms edge e01 into e23, see Figure 5.11. If the solution at instant
tn is constant in space and equal to Wn, the integral of the physical mass exchanges around
non-boundary cell C0 is null. So, only the geometrical mass exchanges remain. The mass of cell
C0 after edge swapping at tn+1 is:

|C0|n+1Wn+1
0 = |C0|nWn

0 + τσ∗01||ηn01||Wn
1 + τσ∗02||ηn02||Wn

2 + τσ∗03||ηn03||Wn
3

= |C0|nWn + τ




(
σ+

1 σ
−
0 − σ−1 σ+

0

) ||η∗0|| ||η∗1||
Ṁ ||ηn01||

||ηn01||

+ σ02||ηn02|| +
(
σ+

2 σ
−
0 − σ−2 σ+

0

) ||η∗0|| ||η∗2||
Ṁ ||ηn02||

||ηn02||

+ σ03||ηn03|| +
(
σ+

3 σ
−
0 − σ−3 σ+

0

) ||η∗0|| ||η∗3||
Ṁ ||ηn03||

||ηn03||




Wn

Using the fact that, according to Relations (5.11), ||η∗0|| = ||η∗1|| and ||η∗2|| = ||η∗3||, we deduce
that:

|C0|n+1Wn+1
0 =

(
|C0|n + τσ02||ηn02||+ τσ03||ηn03||+ τσ−0

||η∗0||
Ṁ

[
(
σ+

2 + σ+
3

)
||η∗2||+ σ+

1 ||η∗0||
]

+ τσ+
0

||η∗0||
Ṁ

[
−
(
σ−2 + σ−3

)
||η∗2|| − σ−1 ||η∗0||

])
Wn .
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Using Relation (5.14), i.e. σ+
0 σ
−
0 = 0, we can add the terms marked in red in the following

expression without changing anything:

|C0|n+1Wn+1
0 =

(
|C0|n + τσ02||ηn02||+ τσ03||ηn03||+ τσ−0

||η∗0||
Ṁ

[
(
σ+

2 + σ+
3

)
||η∗2||+

(
σ+

1 + σ+
0

)
||η∗0||

]

+τσ+
0

||η∗0||
Ṁ

[
−
(
σ−2 + σ−3

)
||η∗2|| −

(
σ−1 + σ−0

)
||η∗0||

])
Wn .

Using Relation (5.15), we then obtain:

|C0|n+1Wn+1
0 =

(
|C0|n + τσ02||ηn02||+ τσ03||ηn03||

+ τ
(
σ−0 + σ+

0

)
︸ ︷︷ ︸

=σ0

||η∗0||
Ṁ

[
(
σ+

2 + σ+
3

)
||η∗2||+

(
σ+

1 + σ+
0

)
||η∗0||

]

︸ ︷︷ ︸
=Ṁ

)
Wn

=

(
|C0|n + τσ02||ηn02||+ τσ03||ηn03||+ τσ0||η∗0||

)
Wn

=

(
|C0|n +A02 +A03 +A0

)
Wn = |C0|n+1Wn .

Therefore, Wn+1
0 = Wn = Wn

0 . The same demonstration can be done for the four cells.
The scheme therefore preserves the constant solution and, as a consequence, is DGCL for
RKSSP(1, 1).

Case RKSSP(s,p). The mass of cell C0 after edge swapping at ts = tn + csτ is:

|C0|sW s
0 = |C0|nWn

0 + csτσ
∗,s
01 ||ηs01||Wn

1 + csτσ
∗,s
02 ||ηs02||Wn

2 + csτσ
∗,s
03 ||ηs03||Wn

3

= |C0|nWn + csτ




+
(
σ+,s

1 σ−,s0 − σ−,s1 σ+,s
0

) ||η∗,s0 || ||η∗,s1 ||
Ṁ s||ηs01||

||ηs01||

+ σs02||ηs02|| +
(
σ+,s

2 σ−,s0 − σ−,s2 σ+,s
0

) ||η∗,s0 || ||η∗,s2 ||
Ṁ s||ηs02||

||ηs02||

+ σs03||ηs03|| +
(
σ+,s

3 σ−,s0 − σ−,s3 σ+,s
0

) ||η∗,s0 || ||η∗,s3 ||
Ṁ s||ηs03||

||ηs03||




Wn
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Using Relations (5.11) at t = ts/2, we have in particular ||η∗,s0 || = ||η∗,s1 || and ||η∗,s2 || = ||η∗,s3 ||
and we deduce that:

|C0|sW s
0 =

(
|C0|n + csτσ

s
02||ηs02||+ csτσ

s
03||ηs03||+ csτσ

−,s
0

||η∗,s0 ||
Ṁ s

[(
σ+,s

2 + σ+,s
3

)
||η∗,s2 ||+ σ+,s

1 ||η∗,s0 ||
]

+ csτσ
+,s
0

||η∗,s0 ||
Ṁ s

[
−
(
σ−,s2 + σ−,s3

)
||η∗,s2 || − σ−,s1 ||η∗,s0 ||

])
Wn .

Using Relation (5.14), i.e. σ+,s
0 σ−,s0 = 0, we can add the terms marked in red in the following

expression without changing anything:

|C0|sW s
0 = (|C0|s + csτσ

s
02||ηs02||+ csτσ

s
03||ηs03||

+csτσ
−,s
0

||η∗,s0 ||
Ṁ s

[(
σ+,s

2 + σ+,s
3

)
||η∗,s2 ||+

(
σ+,s

1 + σ+,s
0

)
||η∗,s0 ||

]

+csτσ
+,s
0

||η∗,s0 ||
Ṁ s

[
−
(
σ−,s2 + σ−,s3

)
||η∗,s2 || −

(
σ−,s1 + σ−,s0

)
||η∗,s0 ||

])
Wn .

Using Relation (5.15), we then obtain:

|C0|sW s
0 =

(
|C0|n + csτσ

s
02||ηs02||+ csτσ

s
03||ηs03||

+ csτ
(
σ−,s0 + σ+,s

0

)

︸ ︷︷ ︸
=σs0

||η∗,s0 ||
Ṁ s

[(
σ+,s

2 + σ+,s
3

)
||η∗,s2 ||+

(
σ+,s

1 + σ+,s
0

)
||η∗,s0 ||

]

︸ ︷︷ ︸
=Ṁs

)
Wn

=

(
|C0|n + csτσ

s
02||ηs02||+ csτσ

s
03||ηs03||+ csτσ

s
0||η∗,s0 ||

)
Wn

= (|C0|n +As02 +As03 +As0)Wn = |C0|sWn .

Therefore,W s
0 = Wn = Wn

0 . The same demonstration can be done for the four cells. The scheme
therefore preserves the constant solution and, as a consequence, is DGCL for any RKSSP(ns, p)

scheme.

Conservativity. It may seem surprising that:

|C0|s + |C1|s + |C2|s + |C3|s 6= |C0|n + |C1|n + |C2|n + |C3|n .

Indeed, if solution Wn is constant, we have proved that the scheme is DGCL and thus W s is
also constant. The above inequality therefore rewrites:

|C0|sW s
0 + |C1|sW s

1 + |C2|sW s
2 + |C3|sW s

3 6= |C0|nWn
0 + |C1|nWn

1 + |C2|nWn
2 + |C3|nWn

3 ,
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which could suggest that our scheme is not conservative.
However, no mass has been lost. It has simply been transferred to the evanescent cell which
is "implicitly" taken into account and which is not associated with any vertex of the scheme.
Even if the evanescent cell is not created explicitly in the code (with a new data structure for
instance), it nevertheless exists and its existence should be taken into account when computing
the discrete total mass at an intermediate configuration. If the evanescent cell is taken into
account in the mass balance, conservativity is recovered:

|C0|sW s
0 + |C1|sW s

1 + |C2|sW s
2 + |C3|sW s

3 + |Cevanes.|sW s
evanes.

= |C0|nWn
0 + |C1|nWn

1 + |C2|nWn
2 + |C3|nWn

3 .

Of course, when the final Runge-Kutta stage is reached, the total mass present at tn has been
redistributed and the conservativity is explicitly recovered:

|C0|n+1Wn+1
0 + |C1|n+1Wn+1

1 + |C2|n+1W s
2 + |C3|n+1Wn+1

3 + |Cevanes.|n+1

︸ ︷︷ ︸
=0

Wn+1
evanes.

= |C0|n+1Wn
0 + |C1|nWn+1

1 + |C2|nWn
2 + |C3|nWn

3 .

Actually, our scheme is even more than conservative, it is locally conservative.

5.4.8.2 Accuracy order

As being DGCL is a sufficient condition for a scheme to be at least first-order time-accurate
on moving meshes according to [Guillard 2000], our changing-topology RKSSP ALE schemes
are at least of order one in time. Moreover, as we have followed Mavriplis-Yang approach, the
changing-topology version of ALE RKSSP(s, p) time schemes with p > 1 are expected to be of
order p in time.

Regarding spatial accuracy, the accuracy order can be enhanced using the MUSCL technique
coupled with a limiter, therefore guaranteeing that this truly ALE scheme is intrinsically TVD,
contrary to the classical projection approach which requires a repairing step. If low dissipation
is desired, one must determine how to compute upwind/downwind gradients which are necessary
for the V4/V6 schemes. Still following [Yang 2005], it is clear that preserving the expected order
of accuracy in time imposes that the upwind/downwind elements are computed on the current
Runge-Kutta configuration, i.e. on the mesh at ts.

Once the upwind/downwind triangles are found, the V4/V6 schemes is naturally extended
for our changing-topology ALE formulation. Therefore, this scheme is of order two in space,
with low numerical dissipation.

5.4.8.3 P1-preservation

Contrary to some conservative interpolation schemes, like the one described in Section 1.2.3, our
approach is not P1 preserving, i.e. it does not preserve a P1 solution. However, the classical
Finite Volume ALE formulation neither preserves linear solutions. Therefore, it seems natural
not to require such property for the changing topology formulation.
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5.5 Fluid Structure Interactions issues

5.5.1 Description of the moving objects

In this work, the ALE formulation is used to perform computations involving bodies interacting
with a surrounding fluid. Bodies are assumed to be rigid, of constant mass and homogenous,
i.e their mass is uniformly distributed in their volume. Moving bodies are made of only one
connected component and their topology remains the same during the whole movement, i.e.
bodies do not split into different parts.

Movement prescription. The movement of a body can be described in two different ways:

As a data: the movement of the geometries is prescribed analytically as a data of the prob-
lem. Practically, the user provides two functions of time: the translational and rotational
displacement of the object.

As an unknown: the position and orientation of the object is part of the unknowns. A Fluid-
Structure Interaction (FSI) problem between the fluid and rigid bodies has to be solved along
with the Euler equations.

We now detail the equations governing the movement of the objects in the latter case. Each
rigid body B is fully described by:

• ∂B = s(u, v) (resp. γ(u)) the parametrized surface (resp. curve in two dimensions) defining
its boundary,

• η = η(s(u, v)) the outward non-normalized normal to object boundary ∂B,

• xG = (xG(t), yG(t), zG(t)) the position of its gravity center,

• θ = θ(t) its angular displacement vector: the direction of θ gives the rotation axis while its
norm θ represents the angular displacement when a projection on the plane normal to θ is
performed,

• ω =
dθ
dt

its angular speed vector,

• m its mass assumed to be constant,

• JG its n× n matrix of inertia computed at G.

Matrix of inertia. The matrix of inertia of a solid is symmetric and depends only on the shape
and physical nature of the solid object:

JG =



∫
B

ρ
(
(y − yG)2 + (z − zG)2

)
dx −

∫
B

ρ (x− xG) (y − yG) dx −
∫
B

ρ (x− xG) (z − zG) dx

−
∫
B

ρ (x− xG) (y − yG) dx
∫
B

ρ
(
(x− xG)2 + (z − zG)2

)
dx −

∫
B

ρ (y − yG) (z − zG) dx

−
∫
B

ρ (x− xG) (z − zG) dx −
∫
B

ρ (y − yG) (z − zG) dx
∫
B

ρ
(
(x− xG)2 + (y − yG)2

)
dx
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And, as the objects are assumed to be homogeneous, the local volume mass of the object is
constant ρ =

m

V
with V the volume of B , and we get:

JG = ρ



∫
B

(
(y − yG)2 + (z − zG)2

)
dx −

∫
B

(x− xG) (y − yG) dx −
∫
B

(x− xG) (z − zG) dx

−
∫
B

(x− xG) (y − yG) dx
∫
B

(
(x− xG)2 + (z − zG)2

)
dx −

∫
B

(y − yG) (z − zG) dx

−
∫
B

(x− xG) (z − zG) dx −
∫
B

(y − yG) (z − zG) dx
∫
B

(
(x− xG)2 + (y − yG)2

)
dx



Here are a few useful examples for JG.

Spheric ball of mass m and radius R: J =
2mR2

5
In .

Solid cylinder of axis a of radius R, height h and mass m: the matrix of inertia is diagonal in
any orthonormal basis (a,b, c) including a.

J =
(

a b c
)




mR2

2
0 0

0
1

12
m
(
3R2 + h2

)
0

0 0
1

12
m
(
3R2 + h2

)



(

a b c
)T

.

Solid parallelepiped of mass m with height h, width w and depth d: if (a,b, c) are respectively
the height, width and depth axis of the parallelepiped,

J =
(

a b c
)




1

12
m
(
w2 + d2

)
0 0

0
1

12
m
(
h2 + d2

)
0

0 0
1

12
m
(
h2 + w2

)



(

a b c
)T

Axis of inertia Let us consider a solid particle of object B occupying volume dV and lo-
cated at coordinates vector x. The distance d between the particle and the axis of rota-
tion passing through body gravity center G and collinear to arbitrary direction a is d =

||x−xG− ((x− xG) · a) a||. a is assumed to be normalized. By using formula J(Ga) = md2 and
some simple vector algebra, it can be seen that the moment of inertia of this particle relative to
axis of rotation (Ga) is:

J(Ga) = ρdV
(
||x− xG||2 − [(x− xG) · a]2

)
,
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and a simple computation gives:

||x− xG||2 − [(x− xG) · a]2

=
(
a2
x + a2

y + a2
z

) (
(x− xG)2 + (y − yG)2 + (z − zG)2

)
− (ax(x− xG) + ay(y − yG) + az(z − zG))2

= a2
x

[
(y − yG)2 + (z − zG)2

]
+ a2

y

[
(x− xG)2 + (z − zG)2

]
+ a2

z

[
(x− xG)2 + (y − yG)2

]

− 2axay(x− xG)(y − yG)− 2ayaz(y − yG)(z − zG)− 2azax(z − zG)(x− xG) .

This is a quadratic form in a, which leads to a tensor formula for the moment of inertia relative
to axis (Ga):

dJ(Ga) = ρdV (ax, ay, az)




(y − yG)2 + (z − zG)2 −(x− xG)(y − yG) −(x− xG)(z − zG)

−(y − yG)(x− xG) (x− xG)2 + (z − zG)2 −(y − yG)(z − zG)

−(z − zG)(x− xG) −(z − zG)(y − yG) (x− xG)2 + (y − yG)2






ax
ay
az


 .

The moment of inertia relative to axis (Ga) is therefore given by:

dJ(Ga)(x) = aT dJG(x) a .

By integrating on all the volume of the body, the following relation between the matrix of inertia
at point G and the moment of inertia relative to any axis passing through G is found:

J(Ga) = aT JG(x) a .

The matrix of inertia is Symmetric Positive Definite and the spectral theorem applies: it has
three different eigen-directions, called principal axes of inertia. Note that a symmetry axis of
the object is also a principal axis of the matrix of inertia.

5.5.2 Movement of the geometries

We assume that bodies are only submitted to gravity and fluid pressure forces. The Euler
equations for solid dynamics in an inertial frame then read:





m
d2xG
dt2

= Fext =

∫

∂B
p(s)n(s) ds + mg

d2JGθ
dt2

= MG (Fext) =

∫

∂B

[
(s− xG) ∧ p(s)n(s)

]
ds ,

(5.20)

and we have used the fact that the kinetic moment of the gravity forces is zero because these
forces are applied at gravity center G of the object.

5.5.2.1 Two dimensional case

In two dimensions, the angular displacement and angular speed vectors remain collinear to ez
during the whole simulation, thus θ = θez and ω = ωez. This means that we only need one
equation on the kinetic moment as ω is fully described by a scalar. Besides, ez is also a symmetry



5.5. Fluid Structure Interactions issues 215

axis for the object and thus, it is a principal axis of inertia. In this context, the equation on the
kinetic moment is projected on axis (Gez):

d2 (JGθ)

dt2
· ez =

d2 (JGθ · ez)
dt2

=
d2
(
eTz · (JG · θez)

)

dt2
=

d2
[
θ
(
eTz · JG · ez

)]

dt2

=
(
eTz · JG · ez

) d2θ

dt2
= J(Gz)

d2θ

dt2

In this case, the dynamics fundamental relations applied to B simply read:




m
d2xG
dt2

= Fext · ex =

(∫

∂B
p(s)n(s) ds

)
· ex +mg · ex

m
d2yG
dt2

= Fext · ey =

(∫

∂B
p(s)n(s) ds

)
· ey +mg · ey

J(Gz)
d2θ

dt2
= MG (Fext) · ez =

(∫

∂B
(s− xG) ∧ p(s)n(s) ds

)
· ez

(5.21)

and the kinetic moment of the gravity forces is zero when computed at body’s gravity center G.
This means that a system of Ordinary Differential Equation (ODE) in the unknown functions
of time (xG, θ) must be solved for each body.

Additional constraint. If one point A of object B must remain fixed, the moment equation must
be rewritten at fixed point A. Actually, A becomes the new center of reduction of the dynamic
and action torsors. The system to be solved now reads:




dxA
dt

= 0,
dyA
dt

= 0

JA
d2θ

dt2
= MA (Fext) · ez

=

(∫

∂B
(s− xA) ∧ p(s)n(s) ds

)
· ez +m

(∫

∂B
(s− xA) ∧ g ds

)
· ez

(5.22)

with MA the kinetic moment of the external forces applied on ∂B computed at point A and
JA the moment of inertia of the object related to axis (Az). According to Huygens theorem, we
have:

J(Az) = J(Gz) + m dist ((Gz), (Az))2

and dist ((Gz), (Az)) = ‖−→GA‖ is the distance between axes (Gz) and (Az).

5.5.2.2 Three dimensional case

Things are much more complex in three dimensions. Indeed, the number of parameters needed to
describe the dynamics of a rigid body now equals six, hence the name 6-DOF problem (6-Degrees-
of-Motion) used for this class of problems. This means that, contrary to the two-dimensional
case, System (5.20) must be fully utilized to compute the movement. Moreover, the directions
of θ and ω are not constant in time anymore, and none of the principal axes of inertia keeps a
constant direction. This means that:

d2 (JGθ)

dt2
6= JG

d2θ

dt2
,



216 Chapter 5. The Arbitrary-Lagrangian-Eulerian solver

as JG, written in the canonical basis, is not constant in time anymore.

To solve these difficulties, the idea is to rewrite Euler fundamental relations in a moving frame of
reference attached to the body. A natural orthonormal basis in this frame is formed by the three
principal axes (e1(t), e2(t), e3(t)) of the body. In this frame, the matrix of inertia is constant in
time and, as we have chosen a good basis, it is also diagonal:

JG|(e1(t), e2(t), e3(t))
= diag

(
Jb1 , J

b
2 , J

b
3

)
, with Jb1 , J

b
2 , J

b
3 constant in time . (5.23)

In the sequel, we note R = R(t) the matrix enabling to pass from the description in basis
(e1(t), e2(t), e3(t)) to the description in fixed canonical basis (ex, ey, ez):

e1(t) = r1x(t)ex + r1y(t)ey + r1z(t)ez
e2(t) = r2x(t)ex + r2y(t)ey + r2z(t)ez
e3(t) = r3x(t)ex + r3y(t)ey + r3z(t)ez

R = R(t) =




r1x(t) r2x(t) r3x(t)

r1y(t) r2y(t) r3y(t)

r1z(t) r2z(t) r3z(t)




ex
ey
ez

e1(t) e2(t) e3(t)

As the two basis are orthonormal, R(t) is always an unitary matrix, i.e. R(t)R(t)T = I3, ∀ t.

Derivation of vectors written in the body frame. An arbitrary vector vb(t) described in
frame (e1(t), e2(t), e3(t)) associated with the body has a description v(t) in the fixed inertial
frame. The link between these two representations is given by relation:

v(t) = R(t) vb(t) .

As transformation R(t) itself is time dependent, in general :

dv

dt
(t) 6= R(t)

dvb

dt
(t) .

The movement of the body frame must be taken into account while derivating:

dv

dt
(t) =

dR(t)

dt
vb(t)+R(t)

dvb(t)

dt
=

dR(t)

dt
RTv(t)+R(t)

dvb(t)

dt
= ω(t) ∧ v(t)+R(t)

dvb(t)

dt
.

Indeed, by derivating Relation RT (t)R(t) = I3, we get:

dR
dt

(t)RT (t) + R(t)
dRT
dt

(t) = 0

⇒ dR
dt

(t)RT (t) = −
(
dR
dt

(t)R(t)T
)T

( i.e.
dR
dt

(t)R(t)T is skew-symmetric)

⇒ ∃ ω = ω(t) ∈ R3,
dR
dt

(t)RT (t) =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 = ω(t) ∧ · ,
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with ω(t) = (ω1(t), ω2(t), ω3(t)). The first term ω(t) ∧ · accounts for the movement of the
body frame (its rotation) as compared to the inertial frame. ω(t) is the instantaneous angular
speed of the body frame as compared to the inertial frame, written in the canonical, fixed basis
(ex, ey, ez). We note ωb this same angular speed written in moving basis (e1(t), e2(t), e3(t))

attached to the body. We have ω(t) = R(t)ωb(t). Then, using the invariance property of the
cross-product, we have, for any arbitrary vector v:

dv

dt
(t) =

(
R(t)ωb(t)

)
∧ v +R(t)

dvb(t)

dt
= R(t)

(
ωb(t) ∧ vb(t) +

dvb(t)

dt

)
. (5.24)

Rewriting System (5.20). Using Formula (5.24) to rewrite d(Jω)
dt in System (5.20), we get:

d (JGω)

dt
= MG (Fext) ⇒ R(t)

(
ωb ∧ J bGωb +

d
(
J bGωb

)

dt

)
= R(t)Mb

G

(
Fb
ext

)

⇒ ωb ∧ J bGωb +
d
(
J bGωb

)

dt
= Mb

G

(
Fb
ext

)
⇒ ωb ∧ J bGωb + J bG

dωb

dt
= Mb

G

(
Fb
ext

)
,

and J bG written in the moving body frame is invariant. Term ωb ∧ J bωb can be developped as:



0 −ωb3 ωb2
ωb3 0 −ωb1
−ωb2 ωb1 0






Jb1 0 0

0 Jb2 0

0 0 Jb3






ωb1
ωb2
ωb3


 =



(
Jb3 − Jb2

)
ωb2 ω

b
3(

Jb1 − Jb3
)
ωb3 ω

b
1(

Jb2 − Jb1
)
ωb1 ω

b
2


 ,

which finally leads to the following system of equations for the dynamics of rigid bodies:




Jb1 0 0

0 Jb2 0

0 0 Jb3






ω̇b1
ω̇b2
ω̇b3


+




(
Jb3 − Jb2

)
ωb2 ω

b
3(

Jb1 − Jb3
)
ωb3 ω

b
1(

Jb2 − Jb1
)
ωb1 ω

b
2


 = Mb

G

(
Fb
ext

)

⇔




ω̇b1

ω̇b2

ω̇b3




=




Jb2 − Jb3
Jb1

ωb2 ω
b
3

Jb3 − Jb1
Jb2

ωb3 ω
b
1

Jb1 − Jb2
Jb3

ωb1 ω
b
2




+




M b
G,1

Jb1
M b
G,2

Jb2
M b
G,3

Jb3




(5.25)

with Mb
G

(
Fb
ext

)
given by:

Mb
G

(
Fb
ext

)
= R(t)TMG (Fext) . (5.26)

5.5.3 Resolution of the rigid bodies equations and loose coupling

In this section, the resolution of the FSI problem in three-dimensions is explained.
The equation governing the position of the rigid object gravity center is quiet easy to solve as
it is linear.

m
d2xG
dt2

=

∫

∂B
p(s)n(s) ds + mg . (5.27)
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The kinetic moment equations are more difficult to handle. Equation (5.25) describing the
movement of three-dimensional moving objects is a non-linear ODE system of the second-order
in θ. In order to solve this problem, it must first be rewritten as a system of equations of greater
size but of the first order:




θ̇b1

θ̇b2

θ̇b3

θ̈b1

θ̈b2

θ̈b3




=




θ̇b1

θ̇b2

θ̇b3

Jb2 − Jb3
Jb1

θ̇b2 θ̇
b
3

Jb3 − Jb1
Jb2

θ̇b3 θ̇
b
1

Jb1 − Jb2
Jb3

θ̇b1 θ̇
b
2




+




0

0

0

M b
G,1

Jb1
M b
G,2

Jb2
M b
G,3

Jb3




However, Mb
G cannot be computed directly as the moving frame associated with the moving

object is not known. Indeed:

Mb
G

(
Fb
ext

)
= R(t)TMG (Fext)

⇔




M b
G,1

M b
G,2

M b
G,3


 =




r11 r21 r31

r12 r22 r32

r13 r23 r33






MG,1

MG,2

MG,3


 =




r11MG,1 + r21MG,2 + r31MG,3

r12MG,1 + r22MG,2 + r32MG,3

r13MG,1 + r23MG,2 + r33MG,3




Therefore, the orientation of this moving frame as compared to fixed frame (ex, ey, ez) is also
an unknwon of the problem and is fully described by matrix R(t). In Section 5.5.2.2, we have
already shown that:

dR
dt

(t)RT (t) =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


⇔ dR

dt
(t) =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


R(t)

⇔ dR
dt

(t) =


R(t)




0 −ωb3 ωb2
ωb3 0 −ωb1
−ωb2 ωb1 0


R(t)T


R(t) = R(t)




0 −ωb3 ωb2
ωb3 0 −ωb1
−ωb2 ωb1 0


 .
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This linear system can be detailed coefficient by coefficient and we get the following nine first-
order differential equations on the coefficients of R:

dR
dt

(t) = R(t)




0 −θ̇b3 θ̇b2
θ̇b3 0 −θ̇b1
−θ̇b2 θ̇b1 0


 (5.28a)

⇔




˙r11 ˙r12 ˙r13

˙r21 ˙r22 ˙r23

˙r31 ˙r32 ˙r33


 =




r11 r12 r13

r21 r22 r23

r31 r32 r33






0 −θ̇b3 θ̇b2
θ̇b3 0 −θ̇b1
−θ̇b2 θ̇b1 0




⇔





˙r11 = θ̇b3r12 − θ̇b2r13

˙r12 = −θ̇b3r11 + θ̇b1r13

˙r13 = θ̇b2r11 − θ̇b1r12

˙r21 = θ̇b3r22 − θ̇b2r23

˙r22 = −θ̇b3r21 + θ̇b1r23

˙r23 = θ̇b2r21 − θ̇b1r22

˙r31 = θ̇b3r32 − θ̇b2r33

˙r32 = −θ̇b3r31 + θ̇b1r33

˙r33 = θ̇b2r31 − θ̇b1r32 ,

and θ̇b = dωb

dt . Finally, a larger system of size 15× 15 must be solved and it writes:




˙r11

˙r12

˙r13

˙r21

˙r22

˙r23

˙r31

˙r32

˙r33

θ̇b1

θ̇b2

θ̇b3

θ̈b1

θ̈b2

θ̈b3




=




θ̇b3r12 − θ̇b2r13

−θ̇b3r11 + θ̇b1r13

θ̇b2r11 − θ̇b1r12

θ̇b3r22 − θ̇b2r23

−θ̇b3r21 + θ̇b1r23

θ̇b2r21 − θ̇b1r22

θ̇b3r32 − θ̇b2r33

−θ̇b3r31 + θ̇b1r33

θ̇b2r31 − θ̇b1r32

θ̇b1

θ̇b2

θ̇b3[(
Jb2 − Jb3

)
θ̇b2 θ̇

b
3 + r11MG,1 + r21MG,2 + r31MG,3

]
/Jb1[(

Jb3 − Jb1
)
θ̇b3 θ̇

b
1 + r12MG,1 + r22MG,2 + r32MG,3

]
/Jb2[(

Jb1 − Jb2
)
θ̇b1 θ̇

b
2 + r13MG,1 + r23MG,2 + r33MG,3

]
/Jb3




(5.29)
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Let H be a vectorial, non linear function of R15 defined by:

H : R15 −→ R15

X =



x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15



7−→ H(X) =



x15x2 − x14x3

−x15x1 + x13x3

x14x1 − x13x2

x15x5 − x14x6

−x15x4 + x13x6

x14x4 − x13x5

x15x8 − x14x9

−x15x7 + x13x9

x14x7 − x13x8

x13

x14

x15[(
Jb2 − Jb3

)
x14 x15 + x1MG,1(X,Fext) + x4MG,2(X,Fext) + x7MG,3(X,Fext)

]
/Jb1[(

Jb3 − Jb1
)
x15 x13 + x2MG,1(X,Fext) + x5MG,2(X,Fext) + x8MG,3(X,Fext)

]
/Jb2[(

Jb1 − Jb2
)
x13 x14 + x3MG,1(X,Fext) + x6MG,2(X,Fext) + x9MG,3(X,Fext)

]
/Jb3


Then, System (5.29) can be summarize into:

Vb =




r

θb

ωb = θ̇
b


 , V̇b =




ṙ

θ̇
b

ω̇b = θ̈
b


 , V̇b(t) = H(Vb(t)) ,

with
r(t) = (r11(t), r12(t), r13(t), r21(t), r22(t), r23(t), r31(t), r32(t), r33(t))T .

Explicit coupling. As the geometry must be moved in accordance with the fluid computation,
the same time integration scheme has been taken to integrate the fluid and the solid equations.
Therefore, time-advancing of the rigid bodies ODE System (5.27-5.29) is performed using the
same RKSSP scheme as the one used to advance the fluid numerical solution. The coupling is
loose and explicit as the external forces and moments applying on rigid objects are computed
on the current configuration.

Moving vertices belonging to object boundaries. Finally, the displacement of a vertex P
of coordinates vector x which is attached to the object and which moves with the same rigid
movement is given by:

d = (x · θu)θu + cos θ [x− (x · θu)θu] + sin θ [θu ∧ (x− (x · θu)θu)]− x

= (x · θu)θu + cos θ [x− (x · θu)θu] + sin θ (θu ∧ x)− x

This formula can be interpreted geometrically as shown on Figure 5.16.



5.6. Numerical results 221

θ

r′

r

r− (r · θu)θu

θu

r′ = (r · θu)θu + cos θ [r− (r · θu)θu] + sin θ (θu ∧ r)︸ ︷︷ ︸
rotation in the plane having θu as normal

Figure 5.16: Three-dimensional rotation of an angle θ around an axis of direction θu.

5.6 Numerical results

5.6.1 Turbo-machinery

To show the usefulness and efficiency of the swap operation, we performed a simplified turbo-
machinery simulation. A fluid is emitted radially from a central hub of radius r0 = 0.3. The
emitted fluid applies a pressure on the blades, which makes them rotate quicker and quicker.
By centrifugal effects, the fluid is propelled toward the exterior. The initial conditions, written
in cylindrical coordinates (er, eθ) are as follows:

ρ = ρ(r) =
r0

r
ρ(r0) =

r0

r
ρin, ρu = ρ(r)qunifer, ρe =

punif
γ − 1

+
1

2
ρ(r)q2

unif

with ρin = ρ(r0) = 1 the inflow density on the hub, punif = 1 the initial uniform pressure and
qunif = ||uunif || the initial uniform radial velocity. This initial state ensures that we initially
have a constant, uniform radial flow. Indeed, if we take a ring delimited by radius r0 and r > r0,
all the mass entering the ring across the inner circle is expelled through the outer circle, which
means that the initial state satisfies the stationary conservation equation div (ρu) = 0.

2Π∫

θ=0

ρ(r)u(u) · er rdθ =

2Π∫

θ=0

ρ(r0)u(r0) · er r0dθ

The details of the geometry are given in Figure 5.17. An inflow boundary condition is imposed
on the hub, a slipping boundary condition on the blades and a transmitting boundary condition
on the bounding box.

The initial mesh is shown on Figure 5.17. Several sub-domains are defined: sub-domain i1
is linked to the hub and is set to be static, sub-domain i2 is linked to the blades and so turns while

sub-domain i3 is simply the rest of the computational domain and is also set to be static.
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0.50.3

2.

1

2

3

Figure 5.17: The test case geometry and the associated mesh. The three sub-domains of the
mesh are represented in violet, yellow and pink, respectively.

Figure 5.18: The density of the fluid obtained by resolution of the complete fluid-rigid-body
interaction problem, using our changing-topology ALE scheme. Solution at a-dimensioned time
t = 0.05, 4, 6, 9, 12 and 14.

This simulation constitutes an excellent example of the efficiency of the swap when the mesh is sheared.
Indeed, if we forbid the use of the swap operation, the mesh deteriorates very quickly because while
trying to follow the blades movement, the elements progressively stretch until the minimal altitude of
the mesh is so small that the simulation cannot advance in time anymore. Indeed, the CFL condition
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Figure 5.19: The variable-topology mesh at a-dimensioned time t = 0.05, 4, 6, 9, 12 and 14

(about 6 turns). Final mesh and solution are the obtained without a single global re-meshing,
and thus without any interpolation.

makes the solver time step tend to 0. In our simulation, the initial mesh has an excellent quality and
during the movement, only the layers of elements separating moving sub-domain 1 from the two other
fixed sub-domains change in time. The vertices attached to the blades are the only ones to move in time,
and, as they do it in a completely rigid manner, the initial quality of the mesh is preserved, without
any remeshing, see Figure 5.19. Therefore, the excellent quality of the initial mesh has been
maintained throughout the computation and the simulation can evolve as long as desired.
Besides, we note that the changing-topology ALE scheme works well and gives a result which at least
seems in accordance with physical intuition, Figure 5.18. The conservativity has also been positively
checked.

5.6.2 Pitching NACA0012 airfoil

A pitching NACA airfoil (AGARD CT5 test case) has been simulated with our changing-topology ALE
solver. Mesh adaptation has been performed using the extension of metric-based multi-scale mesh adap-
tation to moving mesh problems described in Chapter 3. The angle of attack α of the NACA is prescribed
analytically by:

α(t) = α(t0) + maxα sin (κ t), with: α(t0) = 0.016◦, max (α) = 2.51◦ and κ = 0.1628 rad/s .

The period of the movement is Tκ = 2π/κ = 38.5945 s. The inflow Mach is 0.755. The simulation
is of spatial order 2, with a V4 scheme. The RKSSP(3,3) scheme has been chosen for the temporal
discretization. Figure 5.20 shows the results obtained for this simulation. While the angle of attack
increases to its maximum, the upper shock wave moves towards the trailing edge and becomes sharper.
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On the contrary, the shock located on the intrados moves toward the leading edge and its amplitude
diminishes. Once the maximum value of the angle of attack has been reached, it decreases and the
shock wave located on the extrados moves back to the leading edge while its amplitude is dropping. The
intrados shock wave moves to the trailing edge and becomes sharper and sharper. The same phenomenon
occurs for the second-half of the period.

All the elements located inside a disk containing the airfoil have been stiffened, see Section 4.1.3. All
the vertices located inside this rigid disk have therefore the same pitching movement as the NACA. This
rigidifying process allows to preserve the quality of the initial mesh and reduces to its bare minimum the
CPU time devoted to mesh movement and optimization. Figure 5.20 shows how the shock wave always
evolves inside an adapted strip-shaped area of the mesh.

The adaptation is anisotropic and the density of the flow is taken as sensor. While the angle of attack
increases toward an extremum, the adaptation process naturally tends to privilege more and more the
side of the airfoil on which the shock wave becomes sharper. On the contrary, when the angle of attack
approaches zero, the flow is nearly symmetric and both shocks have a similar amplitude. Therefore, the
adaptation effort is balanced between the intrados and the extrados.

5.6.3 Blast test case

The changing-topology ALE scheme coupled with anisotropic metric-based mesh adaptation was tested
on a two-dimensional blast test case proposed in [Baum 1989]. A very strong shock wave at Mach 10
impacts a rectangular object, which is blown up. The object is first maintained fixed at the lower
right corner and released when the vertical speed exceeds a given threshold. The results obtained by
performing an L2 anisotropic adaptation on the density of the flow are shown in Figure 5.21.

First, the ALE formulation of the swap turns out to be very useful in this simulation to handle
the mesh shearing between the ground and the bottom of the object when it is released. Second, the
ALE fixed-point algorithm really enables to take the mesh movement into account in the adaptation
process. Indeed, the reflected shock wave not only evolves inside the adapted strip-shaped area, but the
strip-shaped area itself moves toward the shock wave. This ALE formulation of the swap, coupled with
new efficient moving mesh technique, enables to re-mesh only when the fixed-point algorithm requires it
and not because we are forced to do it due to our inability to move the mesh properly. To finish with,
let us give some CPU times. This blast test case has been run without mesh adaptation using on the
one hand the global re-meshing strategy (i.e. the domain is re-meshed each time the quality of the mesh
exceeds a prescribed threshold) and on the other hand using our changing-topology strategy. The global
re-meshing strategy has required 32 remeshings while not a single global remeshing has been performed
with our strategy. In terms of CPU time, the global re-meshing strategy was more than two times slower
than our strategy, with the same quality threshold.
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Figure 5.20: Anisotropic unsteady adaptation around a pitching NACA 0012 airfoil when the
area surrounding the NACA is rigidified.
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Figure 5.21: Moving mesh anisotropic mesh adaptation on a blast test case. The solution evolves
inside the adapted region and the adapted region moves towards the solution. No re-meshing
has been needed inside an adaptation sub-interval.



Conclusion

In this second part, a new moving mesh framework, which can be seen at the balance between local and
global re-meshing methods, has been introduced. This framework, which allows only a limited number
of meshing operations and maintain a constant number of vertices, is consistent with the moving mesh
adaptation theory developed in Chapter 3. It has been proved on various two- and three-dimensional
numerical examples that, although this strategy only permits swap and vertices relocation, large mesh
displacements can be performed. One advantage of this strategy, and not the least, is that it considerably
reduces CPU time, both on the solver and on the meshing side.
Second, as our moving mesh strategy allows topology changes, an extension of the classical ALE frame-
work to variable-topology moving meshes in two dimensions has been designed. This formulation, is
DGCL with respect to RKSSP(1,1) and has been validated on several two-dimensional tests cases. Inci-
dentally, the Mavriplis-Yang approach, which enables to create ALE time-integration scheme enforcing
a DGCL property while maintaining their expected order of accuracy has been introduced. It has been
applied to optimal RKSSP schemes. Full ALE and Fluid-Structure Interaction methodologies have also
been detailed.
Eventually, the first results coupling multi-scale metric based mesh adaptation and ALE simulations
have been presented.

Future work will certainly focus on 3D simulations. Regarding three-dimensional computations, the fixed-
topology ALE solver, the re-meshing software, the moving mesh adaptation loop and the 6-DOF Fluid-
Structure Interaction resolution are currently implemented. It remains to introduce dynamic topological
structures into the solver (tetrahedra and edges) and to implement a three-dimensional conservative
scheme to handle topology changes. This last point will certainly be the most difficult as the extension
of our two-dimensional changing-topology ALE scheme to three-dimensions is not at all straightforward.
A first option will consist in performing local conservative interpolation using the algorithm described in
[Alauzet 2010c]. With this compromise, three-dimensional ALE simulations coupling the new moving-
mesh global fixed-point algorithm (Chapter II-Chapter III), the moving mesh techniques described in
Chapter IV and a new 3D scheme handling topology changes (conservative interpolation or better) may
soon be available.
Further validation of our two-dimensional changing-topology ALE scheme, notably as compared to stan-
dard and conservative interpolation strategies, would also deserve some time. Finally, its extension to
higher-order time-integration schemes, notably the family of RKSSP schemes, would also be a good
point.





CONCLUSION AND
PERSPECTIVES

Conclusion

This thesis has presented several novelties regarding the application of metric-based mesh adaptation to
unsteady simulations, for both fixed and moving computational domains. It has initiated a new research
track inside the INRIA-GAMMA project.
The problematics raised by mesh adaptation, unsteadiness and mesh movement have been spotted and
analyzed in the details, at all the levels of the resolution loop, i.e. solver, meshing and interpolation
phases.
Three main improvements of the transient fixed-point mesh adaptation algorithm described
in [Alauzet 2007] have been suggested. First, a new space-time error estimator has been designed,
which guarantees the equi-distribution of the complete local space-time error. On the contrary, the
former algorithm uses only the spatial part of the local space-time error. This work actually extends
the powerful continuous mesh framework described in Chapter 1 to unsteady computations. Second, the
control of the global space-time interpolation error, i.e. on the whole domain and during the whole time
frame, has been clarified. Notably, the issue of meshing inconsistencies has been solved using a global
normalization constant in the metric. The notion of Lp − L∞ error control has been clarified thanks to
a detailed analysis of the intersection procedure. Third, the expression of the optimal metric to handle
moving mesh simulations has been deduced. It has lead to a theortically well-founded extension of the
fixed-point mesh-adaptation strategy to moving mesh simulations, which has demonstrated its efficiency
in practice. This ALE metric takes the movement of the mesh into account in the error estimate.

In the perspective of metric-based multi-scale mesh adaptation, and to remain in accordance with the
fixed-point algorithm requirements, a new moving mesh framework has then been introduced, which
can be seen as halfway between global re-meshing methods and local re-meshing methods. Global re-
meshing methods allow only vertex displacements and ask for the re-meshing of the whole domain as
soon as the mesh quality exceeds a prescribed threshold. On the contrary, local re-meshing methods tend
to preserve the mesh quality while moving, using various local meshing operations. Our strategy consists
in trying to preserve the mesh quality like local re-meshing methods, but using only a limited number
of meshing operations: only edge/face swapping and vertex displacements are permitted. This moving
strategy enables to keep the number of vertices constant, which is in accordance with moving mesh
optimal metric theory developed in Chapter 3. But this strategy is at the same time sufficiently flexible
and efficient to handle large displacements involving various type of movements and of geometries, as
illustrated in Chapter 4 with various two- and three-dimensional moving mesh simulations. It is also
very effective in terms of CPU time as compared to the other recent methods.
Finally, the ALE solver has been adapted to handle this new moving mesh framework. In particular,
our moving mesh strategy, which allows mesh topology changes, is more flexible than what the classical
ALE framework permits. Therefore, a new changing-topology ALE scheme has been introduced, only
in two dimensions for the moment, which is consistent with the fixed-topology framework and enforce a
DGCL property. First results coupling metric-based multi-scale mesh adaptation with ALE simulations
and implementing this new scheme have been presented in two dimensions.

Future work on this subject will mostly consist in consolidating these advances, notably by emphasizing
the gain induced by multi-scale metric-based mesh adaptation for unsteady simulations. To this aim,
convergence studies both for fixed and moving-mesh computations will be realized, with the intention
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to demonstrate numerically that the expected second-order accuracy (if schemes which are high-order in
time and second-order in space are used) is indeed recovered.
Mesh movements techniques will also need some enhancements, notably to remain efficient even in the
presence of mesh anisotropy, for instance when moving bodies cross highly-anisotropic areas of the mesh.
A lot of work remains regarding changing-topology ALE schemes, notably regarding their extension to
three-dimensional computations. Several ideas are currently under study. Validation and comparison
with existing methods (standard and conservative interpolation) also lacks.
Finally, several additional features will be implemented in the ALE solver, such as the handling of body
contacts, which requires the implementation of a re-distanciation algorithm. At long term, deformable
structures and a fully consistent Fluid-Structure Interaction coupling will also probably be implemented.

Perspectives

A wide variety of perspectives stem from this work.

First of all, the coupling between metric-based mesh adaptation and mesh movement could be reinforced
by introducing the metric field inside the moving mesh equation. With such kind of strategy, the move-
ment prescribed to inner vertices would at the same time enforce the prescribed boundary displacement
of moving bodies, but would also move inner vertices depending on the interesting features of the flow.
In this case, the gradient of the metric field might certainly be involved. Actually, the moving equa-
tion could be reformulated under the form of a global optimization problem tending to enforce moving
boundary conditions and target metric prescriptions.
More generally, other kinds of moving mesh equations can be investigated. Elasticity-like analogy might
be enhanced in a anisotropic mesh adaptation perspective using other behavior laws, for instance linear
anisotropic behavior laws, involving a target metric field. Another idea is to use the metric field inside
moving mesh equations inspired by electro-magnetic analogy. The "magnetic" analogy might enable to
get a better control on the elements orientation depending on the prescribed metric field. Such strategies,
if they prove sufficiently efficient, might represent a first step toward moving mesh unsteady adaptation.
The idea would be to use mesh movement to adapt the mesh during unsteady simulations with fixed
geometry. This is not a completely novel idea but, by enabling swapping operations and by enhancing
the moving mesh equation to fit metric-based mesh adaptation, moving mesh unsteady adaptation might
be improved in terms of efficiency and accuracy.

Another interesting research perspective is the extension of unsteady goal-oriented metric-based mesh
adaptation to moving mesh simulations. Goal-oriented metric-based mesh adaptation has already proved
its efficiency for pseudo-steady simulations [Loseille 2010c] and its extension for unsteady problems will
certainly get the same successful results within the months to come, [Belme 2010]. It then seems nat-
ural to extend these goal-oriented mesh adaptation techniques to moving mesh simulations, using the
advances provided by this thesis. An efficient goal-oriented moving-mesh metric-based mesh adaptation
strategy would certainly arouse industrials interest. For instance, for Fluid-Structure Interaction, the
efforts applied to moving objects could be taken as quantity of interest, thus leading to a better predic-
tions of objects displacements submitted to flow forces (missile release, seat ejection, objects blown by
explosions...).







Appendix A

Temporal Hessian computation

A.1 Scheme to compute temporal Hessians

Scheme for k ≥ 1. For k ≥ 1, the temporal Hessian of the solution at tk is approximated at each
vertex Pi of coordinates vector xi by the following Finite Difference scheme:
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. (A.1)

This means that the solution obtained at previous iteration uk−1 and current iteration uk must be
stored when computing second-order derivatives in time. Fortunately, uk is already stored as it is used
for Runge-Kutta time advancing. Previous and current time steps must also be stored.

Scheme for k = 1. The above computation cannot be used at initial time t0. First, the following
approximation is used:
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and the gradient at t1 is approximated using a L2 projection:
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The temporal Hessian is then approximated by:
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2 . (A.2)

Clement interpolation. If the previous approximation is used like this independently for each vertex,
the numerical temporal Hessian obtained is non-smooth. To smoothen this approximation, a P0 Clement-
interpolator [Clément 1975] is used.

Π0(
∂2uh
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∑
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|K|
∫

K

∂2uh
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Besides, uh is piecewise linear and can be decomposed on the P1 Finite Element basis (φi)i∈ J1, NvK as:

uh(x, t) =

Nv∑

i=1

ui(t)φi(x) .

Therefore, as the mesh is assumed to be fixed in time, the temporal Hessian of uh is equal to:

∂2uh
∂t2

(x, t) =

Nv∑

i=1

d2ui
dt2

(t)φi(x) ,

and is also piecewise linear. As a consequence, the integral of
∂2uh
∂t2

on an element K is computed using
a first-order Gauss quadrature formula:

∫

K
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|K|
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Finally, temporal Hessian value at vertex Pi is approximated by:

Π0(
∂2uh
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(tk) =

1

n
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K ∈Ball(i)

|K| ∂
2uh
∂t2 |K
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|K| ,

and
∂2uh
∂t2

(xl, t
k) in Formula (A.3) is evaluated by Finite Difference Scheme (A.1-A.2).

A.2 Numerical illustration

Figure A.3 shows the time evolution of utt at six different vertices represented on Figure A.1. In Fig-
ure A.1, peak values of the temporal Hessian correspond to the passing of one of a shock wave through
the considered point.

Figure A.1: The six vertices for which the time evolution of utt has been computed.
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Figure A.2: From left to right and up to bottom, numerical temporal Hessian computed for a
two-dimensional adaptive city blast simulation at a-dimensioned times t = 0.03, 1, 2, 3, 4 and
t = 5.
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Figure A.3: Temporal Hessian at the six different points during a two dimensional adaptive
city blast simulation.



Appendix B

The elasticity system resolution

B.1 Problem formulation

We solve the three-dimensional linear elasticity equation:

divS(E) = 0 , (B.1)

where S and E are respectively the constiffnesst and the deformation tensors. The deformation tensor is
defined by the compatibility relation:

E =
∇d +∇dT

2
,

with d = (d1, d2, d3)T the Lagrangian displacement of the vertices. The constiffnesst tensor follows the
linear elasticity behavior law:

S(E) = λ trace(E)I3 + 2µ E , (B.2)

where λ and µ are the Lamé coefficients. The Lamé coefficients can also be expressed as a function of
the Young modulus E and the Poisson ratio ν:

E =
µ (3λ+ 2µ)

λ+ µ
and ν =

λ

2 (λ+ µ)

or λ =
E ν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
.

The following properties regarding the elasticity coefficients are deduced from thermodynamic consider-
ations:

λ+
2

3
µ ≥ 0 and µ > 0

E > 0 and −1 < ν <
1

2
.

Physically, it is very difficult to give a meaning to λ. µ, which is also named "shear modulus"
or "Coulomb modulus", is defined as the ratio of the shear stress to the shear strain and is generally
expressed in GPa.

Young modulus E is a measure of the stiffness of an isotropic elastic material. It is the ration between
the stress and the stretch of a solid particle in a given spatial directional. In the case of an isotropic
material, which is the assumption made in this Thesis, it is the same in all directions. The higher the
Young modulus, the stiffer the material. For instance, natural rubber has a small stiffness, comprised
between 0.01 and 0.1 GPa (109 Pascal). Aluminum and steel have a Young modulus of 70 and 210 GPa,
respectively, in standard conditions. For diamond, the value is 1220 GPa. For short-glass-fiber-reinforced
polyamides, E lowers to 10 GPa [Launay 2011].

The Poisson ratio ν is the ratio, measured on a stretched solid particle, of the contraction or transverse
stiffness (perpendicular to the applied load), to the extension or axial stiffness (in the direction of the
applied load). When a sample cube of a material is stretched in one direction, it tends to contract (or
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theoretically, expand if ν < 0) in the other two directions perpendicular to the load direction. Conversely,
when a sample of material is compressed in one direction, it tends to expand (or theoretically, contract) in
the other two directions. This phenomenon is called the Poisson effect. The Poisson ratio ν is a measure
of this Poisson effect. Even if negative Poisson coefficients are tolerated by the thermodynamics theory,
it has never been observed in practice for any homogeneous material. Except for some specific structural
materials, like sponges or trusses which can not actually be considered as homogeneous, the value of nu
is generally strictly greater than 0. One of the smallest value of ν is obtained for the beryllium (Be), one
of the component of emeralds with ν ≈ 0.03. A perfectly incompressible material deformed elastically at
small stiffness would have a Poisson ratio exactly equal to 0.5. It is the case, for example, of "perfect"
rubber. Most steels, when used within their design limits (before yield), exhibit values of about 0.3,
increasing to 0.5 for post-yield deformation (which occurs largely at constant volume). This is due to the
fact that plastic deformations leads to local incompressibility properties. Actually, the apparent Poisson
coefficient tends to 0.5 but the intrinsic one keeps the same value.

B.2 Finite-Element discretization

We note:

V = H1(Ω) = {u ∈ L2(Ω) such that ∇xu ∈ L2(Ω) in the distribution sense }

V0 = H1
0 (Ω) = {u ∈ H1(Ω) such that u|∂Ω

= 0}
The variational formulation of the linear elasticity equation (B.1) is:

Find d ∈ V n ,
∫

Ω

S(E) : ∇v dΩ +BdyTerms =

∫

Ω

fv , ∀v ∈ (V0)n (B.3)

where the operator ":" is understood as A : B =
∑
i,j aij bij . Test functions v are chosen in (V0)n because

we only consider Dirichlet boundary conditions, i.e we always impose the displacement on the boundary
and never impose the stiffness on the boundary. Thus, the boundary terms BdyTerms cancel.

2D case Let us first deal with the two dimensional case. Under matrix form, we have:

S(E) =




λ (
∂d1

∂x
+
∂d2

∂y
) + 2µ

∂d1

∂x
µ (
∂d1

∂y
+
∂d2

∂x
)

µ (
∂d1

∂y
+
∂d2

∂x
) λ (

∂d1

∂x
+
∂d2

∂y
) + 2µ

∂d2

∂y


 .

We choose a polynomial approximation space:

Vh = {u ∈ V such that u|∂Ω
∈ P k , ∀K ∈ H}

and we set s = λ+ 2µ. Then, the discrete variational formulation reads:

Find dh = (d1, d2)T ∈ V 2
h such that , ∀vh = (v1, v2)T ∈ V 2

h :

∫

Ωh

(
s
∂d1

∂x
+ λ

∂d2

∂y

)
∂v1

∂x
+ µ

(
∂d1

∂y
+
∂d2

∂x

)
∂v1

∂y

+ µ

(
∂d1

∂y
+
∂d2

∂x

)
∂v2

∂x
+

(
λ
∂d1

∂x
+ s

∂d2

∂y

)
∂v2

∂y
=

∫

Ωh

fhvh ,
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From now on, we note dJ,k the unknown value of the kth component of displacement dh at vertex PJ .
We then decompose each component of displacement dh on the Finite Element basis (ϕJ)J ∈ J1, NvK:

dh(x) =

(∑

J

dJ,1ϕJ(x) ,
∑

J

dJ,2ϕJ(x)

)T
and

∂dh
∂xk

(x) =

(∑

J

dJ,1
∂ϕJ
∂xk

(x) ,
∑

J

dJ,2
∂ϕJ
∂xk

(x)

)T
.

We obtain the following discrete approximate problem:

Find Ξ =
{

(dI,1, dI,2)T
}
I=1...N

such that, ∀vh = (v1, v2)T ∈ V 2
h :

∑

J

dJ,1

∫

Ωh

(
s
∂ϕJ
∂x

∂v1

∂x
+ µ

∂ϕJ
∂y

∂v1

∂y
+ µ

∂ϕJ
∂y

∂v2

∂x
+ λ

∂ϕJ
∂x

∂v2

∂y

)

+
∑

J

dJ,2

∫

Ωh

(
λ
∂ϕJ
∂y

∂v1

∂x
+ µ

∂ϕJ
∂x

∂v1

∂y
+ µ

∂ϕJ
∂x

∂v2

∂x
+ s

∂ϕJ
∂y

∂v2

∂y

)

=

∫

Ωh

fhvh

We now split the discrete variational equation into the following system by choosing respectively as test
functions v = (ϕI , 0)T and v = (0, ϕI)

T , with I the index of a vertex which is not on the boundary, so
that ϕI belongs to Vh:

∑

J

dJ,1

∫

Ωh

(
s
∂ϕJ
∂x

∂ϕI
∂x

+ µ
∂ϕJ
∂y

∂ϕI
∂y

)
+

∑

J

dJ,2

∫

Ωh

(
λ
∂ϕJ
∂y

∂ϕI
∂x

+ µ
∂ϕJ
∂x

∂ϕI
∂y

)

=
∑

J

fJ,1

∫

Ωh

ϕJϕI , for (ϕI , 0)T ∈ V 2
h

∑

J

dJ,1

∫

Ωh

(
µ
∂ϕJ
∂y

∂ϕI
∂x

+ λ
∂ϕJ
∂x

∂ϕI
∂y

)
+

∑

J

dJ,2

∫

Ωh

(
µ
∂ϕJ
∂x

∂ϕI
∂x

+ s
∂ϕJ
∂y

∂ϕI
∂y

)

=
∑

J

fJ,2

∫

Ωh

ϕJϕI , for (0, ϕI)
T ∈ V 2

h

Therefore, we have to solve the following linear system:

AΞ = F

where A is a block matrix having 2× 2 block AIJ at block index (I, J) given by:

AIJ =




∫

Ωh

s
∂ϕJ
∂x

∂ϕI
∂x

+ µ
∂ϕJ
∂y

∂ϕI
∂y

∫

Ωh

λ
∂ϕJ
∂y

∂ϕI
∂x

+ µ
∂ϕJ
∂x

∂ϕI
∂y

∫

Ωh

µ
∂ϕJ
∂y

∂ϕI
∂x

+ λ
∂ϕJ
∂x

∂ϕI
∂y

∫

Ωh

µ
∂ϕJ
∂x

∂ϕI
∂x

+ s
∂ϕJ
∂y

∂ϕI
∂y


 ,

and F is a block vector having FI as 2-vector at index I:

FI =




∑

J

fJ,1

∫

Ωh

ϕJϕI

∑

J

fJ,2

∫

Ωh

ϕJϕI


 .
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A11

...

...
. . . AIJ . . . . . .

...







d1,1

d1,2

...
dJ,1
dJ,2
...




=




F1,1

F1,2

...
FI,1
FI,2
...




Now, let us detail how to compute the integral terms in block AIJ . Classically, in the FEM method,
the shape functions are defined element by element as polynomial functions. As the shape functions
are designed such that a vertex only interacts with the vertices of its ball (see Conventions page 3), the

matrix assembly is done in one shot with a loop on triangles. For example, the term
∫

Ωh

s
∂ϕJ
∂x

∂ϕI
∂x

in

the AIJ matrix is computed as:
∫

Ωh

s
∂ϕJ
∂x

∂ϕI
∂x

=
∑

K∈Ωh

∫

K

s
∂ϕJ
∂x

∂ϕI
∂x

=
∑

K∈Ball(PI)

∫

K

s
∂ϕJ
∂x

∂ϕI
∂x

In the most general case of a P k approximation, we use a mapping from the reference element K̂ onto the
current element to compute the integrals on K in AIJ . Chosen reference triangle is K̂ = (P̂0, P̂1, P̂2),
with P̂0 = (0, 0), P̂1 = (1, 0) and P̂2 = (0, 1). In two dimensions, the Jacobian matrix of the mapping
from the reference triangle to the current triangle K = (P0, P1, P2) is given by:

BK =

(
x1 − x0 x2 − x0

y1 − y0 y2 − y0

)
=
(
e2 e1

)

B−TK =
1

detBK

(
y2 − y0 y0 − y1

x0 − x2 x1 − x0

)
=

1

2|K|
(
η1 η2

)

We note with a hat the quantities defined on the reference triangle. If f = f(x), then we change the
variable x into x̂ thanks to the mapping and we thus have the differentiation formula:

∇x̂f̂(x̂) = BTK∇xf(x) .

Now, we can use the above consideration to compute terms of the form
∫

K

∂ϕJ,j
∂xl

∂ϕI,m
∂xn

with 1 ≤

k, l,m, n ≤ 2 by performing a variable change in the integral:
∫

K

∂ϕJ,k
∂xl

∂ϕI,m
∂xn

dx = detBK

∫

K̂

[
B−TK ∇x̂ϕ̂J,k

]
l

[
B−TK ∇x̂ϕ̂I,m

]
n

dx̂

(note that vertices PI and PJ belong to K, otherwise the integral is zero)
In the case of a P1 approximation of d, all this simplifies a lot. Indeed, the shape functions and their
gradients on the reference triangle K̂ are given by:

ϕ̂0(x, y) = 1− x− y ∇x̂ϕ̂0 =
(
−1, −1

)T

ϕ̂1(x, y) = x ∇x̂ϕ̂1 =
(

1, 0
)T

ϕ̂2(x, y) = y ∇x̂ϕ̂2 =
(

0, 1
)T

(B.4)
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and remembering that η0 + η1 + η2 = 0, their gradients on the current element are given by:

∇x̂ϕ̂(x̂) = BTK∇xϕ(x)

⇔ ∇xϕ(x) = B−TK ∇x̂ϕ̂(x̂)

⇒





∇xϕ0(x) =
1

detBK

(
η1 η2

)( −1

−1

)
=

1

2 |K|η0

∇xϕ1(x) =
1

detBK

(
η1 η2

)( 1

0

)
=

1

2 |K|η1

∇xϕ2(x) =
1

detBK

(
η1 η2

)( 0

1

)
=

1

2 |K|η2

(B.5)

We immediately see that in the case of a P1 approximation, there is no need to calculate B−TK for each
triangle to perform the integrals. Indeed, the gradients of the shape functions are constant on each
triangle and the integral computation is trivially given by:

∫

K

∂ϕJ
∂xl

∂ϕI
∂xn

dx = |K|∂ϕJ
∂xl

∂ϕI
∂xn

For example, if vertex I and J have respectively I = 2 and J = 0 as local index in triangle K, we have:
∫

K

∂ϕJ
∂x

∂ϕI
∂y

dx = |K|∂ϕ0

∂x

∂ϕ2

∂y
=
|K|

4|K|2 (η0)x(η2)y

Thus, triangle K contributes to the following sub-blocks:

I, vK
2

I, vK
2

J, vK
0

J, vK
0

K, vK
1

K, vK
1

AII AIKAIJ

AJI AJJ AJK

AKI AKJ AKK

Note that the elasticity matrix is symmetric and that a triangle K contributes to 9 × 4 = 36 boxes of
the matrix (but we only need to fill 3× 4 + 3× 3 = 21 boxes as the matrix is symmetric).
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3D case The stiffness tensor reads:

S(E) =




s
∂d1

∂x
+ λ

∂d2

∂y
+ λ

∂d3

∂z
µ (
∂d1

∂y
+
∂d2

∂x
) µ (

∂d1

∂z
+
∂d3

∂x
)

µ (
∂d1

∂y
+
∂d2

∂x
) λ

∂d1

∂x
+ s

∂d2

∂y
+ λ

∂d3

∂z
µ (
∂d2

∂z
+
∂d3

∂y
)

µ (
∂d1

∂y
+
∂d2

∂x
) µ (

∂d2

∂z
+
∂d3

∂y
) λ

∂d1

∂x
+ λ

∂d2

∂y
+ s

∂d3

∂z




Then, the variational formulation is given by:

Find dh = (d1, d2, d3)T ∈ V 3
h such that, ∀vh = (v1, v2, v3)T ∈ V 3

h :

∫
Ωh


s
∂d1

∂x
+ λ

∂d2

∂y
+ λ

∂d3

∂z
µ (
∂d1

∂y
+
∂d2

∂x
) µ (

∂d1

∂z
+
∂d3

∂x
)

µ (
∂d1

∂y
+
∂d2

∂x
) λ

∂d1

∂x
+ s

∂d2

∂y
+ λ

∂d3

∂z
µ (
∂d2

∂z
+
∂d3

∂y
)

µ (
∂d1

∂y
+
∂d2

∂x
) µ (

∂d2

∂z
+
∂d3

∂y
) λ

∂d1

∂x
+ λ

∂d2

∂y
+ s

∂d3

∂z

 :



∂v1

∂x

∂v1

∂y

∂v1

∂z

∂v2

∂x

∂v2

∂y

∂v2

∂z

∂v3

∂x

∂v3

∂y

∂v3

∂z


=
∫

Ωh

fhvh

By developing the above expression and reorganizing the different terms, we get:
∫

Ωh

s
∂d1

∂x

∂v1

∂x
+

∫

Ωh

µ
∂d1

∂y

∂v1

∂y
+

∫

Ωh

µ
∂d1

∂z

∂v1

∂z
+

∫

Ωh

µ
∂d1

∂y

∂v2

∂x
+

∫

Ωh

λ
∂d1

∂x

∂v2

∂y

+

∫

Ωh

µ
∂d1

∂z

∂v3

∂x
+

∫

Ωh

λ
∂d1

∂x

∂v3

∂z

+

∫

Ωh

λ
∂d2

∂y

∂v1

∂x
+

∫

Ωh

µ
∂d2

∂x

∂v1

∂y
+

∫

Ωh

µ
∂d2

∂x

∂v2

∂x
+

∫

Ωh

s
∂d2

∂y

∂v2

∂y
+

∫

Ωh

µ
∂d2

∂z

∂v2

∂z

+

∫

Ωh

µ
∂d2

∂z

∂v3

∂y
+

∫

Ωh

λ
∂d2

∂y

∂v3

∂z

+

∫

Ωh

µ
∂d2

∂z

∂v1

∂y
+

∫

Ωh

λ
∂d2

∂y

∂v1

∂z
+

∫

Ωh

λ
∂d3

∂z

∂v2

∂y
+

∫

Ωh

µ
∂d3

∂y

∂v2

∂z

+

∫

Ωh

µ
∂d3

∂x

∂v3

∂x
+

∫

Ωh

µ
∂d3

∂y

∂v3

∂y
+

∫

Ωh

s
∂d3

∂z

∂v3

∂z

=

∫

Ωh

fhvh , ∀vh = (v1, v2, v3) ∈ V 3
h .

From now on, we note dJ,k the unknown value of the kth component of displacement dh at vertex PJ .
We decompose each component of displacement dh on the Finite Element basis:

dh(x) = (
∑
J dJ,1ϕJ(x) ,

∑
J dJ,2ϕJ(x) ,

∑
J dJ,3ϕJ(x))

T
,

fh(x) = (
∑
J fJ,1ϕJ(x) ,

∑
J fJ,2ϕJ(x) ,

∑
J fJ,3ϕJ(x))

T
.
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We then reintroduce this decomposition in B.2:

∑
J

dJ,1

 ∫
Ωh

s
∂ϕJ
∂x

∂v1

∂x
+

∫
Ωh

µ
∂ϕJ
∂y

∂v1

∂y
+

∫
Ωh

µ
∂ϕJ
∂z

∂v1

∂z
+

∫
Ωh

µ
∂ϕJ
∂y

∂v2

∂x
+

∫
Ωh

λ
∂ ϕJ
∂x

∂v2

∂y

+

∫
Ωh

µ
∂ϕJ
∂z

∂v3

∂x
+

∫
Ωh

λ
∂ϕJ
∂x

∂v3

∂z



+
∑
J

dJ,2

 ∫
Ωh

λ
∂ϕJ
∂y

∂v1

∂x
+

∫
Ωh

µ
∂ϕJ
∂x

∂v1

∂y
+

∫
Ωh

µ
∂ϕJ
∂x

∂v2

∂x
+

∫
Ωh

s
∂ϕJ
∂y

∂v2

∂y
+

∫
Ωh

µ
∂ϕJ
∂z

∂v2

∂z

+

∫
Ωh

µ
∂ϕJ
∂z

∂v3

∂y
+

∫
Ωh

λ
∂ϕJ
∂y

∂v3

∂z



+
∑
J

dJ,3

 ∫
Ωh

µ
∂ϕJ
∂z

∂v1

∂y
+

∫
Ωh

λ
∂ϕJ
∂y

∂v1

∂z
+

∫
Ωh

λ
∂ϕJ
∂z

∂v2

∂y
+

∫
Ωh

µ
∂ϕJ
∂y

∂v2

∂z

+

∫
Ωh

µ
∂ϕJ
∂x

∂v3

∂x
+

∫
Ωh

µ
∂ϕJ
∂y

∂v3

∂y
+

∫
Ωh

s
∂ϕJ
∂z

∂v3

∂z


=

∑
J

fJ,1

∫
Ωh

ϕJv1 +
∑
J

fJ,2

∫
Ωh

ϕJv2 +
∑
J

fJ,3

∫
Ωh

ϕJv3 ∀vh = (v1, v2, v3) ∈ V 3
h .

We can now split this formulation in three different parts corresponding to the three lines of the linear
system AΞ = F associated with the three components of vertex I. This is done by choosing as test
functions vh = (ϕI , 0, 0), vh = (0, ϕI , 0) and vh = (0, 0, ϕI), respectively. We get:

∑
J

dJ,1

∫
Ωh

s
∂ϕJ
∂x

∂ϕI
∂x

+

∫
Ωh

µ
∂ϕJ
∂y

∂ϕI
∂y

+

∫
Ωh

µ
∂ϕJ
∂z

∂ϕI
∂z

+
∑
J

dJ,2

∫
Ωh

λ
∂ϕJ
∂y

∂ϕI
∂x

+

∫
Ωh

µ
∂ϕJ
∂x

∂ϕI
∂y



+
∑
J

dJ,3

∫
Ωh

µ
∂ϕJ
∂z

∂ϕI
∂x

+

∫
Ωh

λ
∂ϕJ
∂x

∂ϕI
∂z

 =
∑
J

fJ,1

∫
Ωh

ϕJϕI ,

∑
J

dJ,1

∫
Ωh

µ
∂ϕJ
∂y

∂ϕI
∂x

+

∫
Ωh

λ
∂ ϕJ
∂x

∂ϕI
∂y

+
∑
J

dJ,2

∫
Ωh

µ
∂ϕJ
∂x

∂ϕI
∂x

+

∫
Ωh

s
∂ϕJ
∂y

∂ϕI
∂y

+

∫
Ωh

µ
∂ϕJ
∂z

∂ϕI
∂z



+
∑
J

dJ,3

∫
Ωh

λ
∂ϕJ
∂z

∂ϕI
∂y

+

∫
Ωh

µ
∂ϕJ
∂y

∂ϕI
∂z

 =
∑
J

fJ,2

∫
Ωh

ϕJϕI ,
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∑
J

dJ,1

∫
Ωh

µ
∂ϕJ
∂z

∂ϕI
∂x

+

∫
Ωh

λ
∂ϕJ
∂x

∂ϕI
∂z

+
∑
J

dJ,2

∫
Ωh

µ
∂ϕJ
∂z

∂ϕI
∂y

+

∫
Ωh

λ
∂ϕJ
∂y

∂ϕI
∂z



+
∑
J

dJ,3

∫
Ωh

µ
∂ϕJ
∂x

∂ϕI
∂x

+

∫
Ωh

µ
∂ϕJ
∂y

∂ϕI
∂y

+

∫
Ωh

s
∂ϕJ
∂z

∂ϕI
∂z

 =
∑
J

fJ,3

∫
Ωh

ϕJϕI .

Therefore, we have to solve the following linear system:

AΞ = F

where A is a block matrix having 3× 3 block AIJ at block indices (I, J) given by:

AIJ =



∫
Ωh

s
∂ϕJ
∂x

∂ϕI
∂x

+ µ
∂ϕJ
∂y

∂ϕI
∂y

+ µ
∂ϕJ
∂z

∂ϕI
∂z

∫
Ωh

λ
∂ϕJ
∂y

∂ϕI
∂x

+ µ
∂ϕJ
∂x

∂ϕI
∂y

∫
Ωh

µ
∂ϕJ
∂z

∂ϕI
∂x

+ λ
∂ϕJ
∂x

∂ϕI
∂z

∫
Ωh

µ
∂ϕJ
∂y

∂ϕI
∂x

+ λ
∂ϕJ
∂x

∂ϕI
∂y

∫
Ωh

µ
∂ϕJ
∂x

∂ϕI
∂x

+ s
∂ϕJ
∂y

∂ϕI
∂y

+ µ
∂ϕJ
∂z

∂ϕI
∂z

∫
Ωh

λ
∂ϕJ
∂z

∂ϕI
∂y

+ µ
∂ϕJ
∂y

∂ϕI
∂z

∫
Ωh

µ
∂ϕJ
∂z

∂ϕI
∂x

+ λ
∂ϕJ
∂x

∂ϕI
∂z

∫
Ωh

µ
∂ϕJ
∂z

∂ϕI
∂y

+ λ
∂ϕJ
∂y

∂ϕI
∂z

∫
Ωh

µ
∂ϕJ
∂x

∂ϕI
∂x

+ µ
∂ϕJ
∂y

∂ϕI
∂y

+ s
∂ϕJ
∂z

∂ϕI
∂z


,

and F is a block vector having FI as 3-vector at index I:

FI =

( ∑

J

fJ,1

∫

Ωh

ϕJϕI ,
∑

J

fJ,2

∫

Ωh

ϕJϕI ,
∑

J

fJ,3

∫

Ωh

ϕJϕI

)T
.

I, vK
2

I, vK
2

J, vK
0

J, vK
0

K, vK
1

K, vK
1

AII AIKAIJ

AJI AJJ AJK

AKI AKJ AKK

L, vK
3

L, vK
3

AIL

ALI ALL ALJ ALK

AJL

AKL
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Note that the elasticity matrix is symmetric and that a tetrahedron K contributes to 16×9 = 144 boxes
of the matrix (but we only need to fill 6× 9 + 4× 6 = 78 boxes as the matrix is symmetric).
As for the two dimensional case, we now detail the computation of the integral terms. K̂ =(
P̂0, P̂1, P̂2, P̂3

)
with P̂0 = (0, 0, 0), P̂1 = (1, 0, 0), P̂2 = (0, 1, 0) and P̂3 = (0, 0, 1) is taken as the

reference tetrahedron. The gradients of the P 1 shape functions (i.e the barycentrics) on the reference
tetrahedron are given by:

ϕ̂0 = 1− x0 − x1 − x2 , ∇x̂ϕ̂0 =
(
−1, −1, −1

)T

ϕ̂1 = x0 ∇x̂ϕ̂1 =
(

1, 0, 0
)T

,

ϕ̂2 = x1 , ∇x̂ϕ̂2 =
(

0, 1, 0
)T

,

ϕ̂3 = x2 , ∇x̂ϕ̂3 =
(

0, 0, 1
)T

.

(B.6)

The Jacobian matrix of the mapping from K̂ to the current tetrahedron K is given by:

BK =




x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0


 =

(
e0 e1 e2

)

B−TK =
1

detBK

(
η1 η2 η3

)
=

1

6|K|
(
η1 η2 η3

)
,

and the normals are defined in Section . As in 2D, we can now compute the gradients of the shape
functions on the current tetrahedron:

∇xϕ0(x) =
1

6|K|η0, ∇xϕ1(x) =
1

6|K|η1, ∇xϕ2(x) =
1

6|K|η2, ∇xϕ3(x) =
1

6|K|η3 .

Boundary conditions. We only use Dirichlet boundary conditions and strongly impose the displace-
ment on the domain boundaries. This means that if vertex PI is on the boundary, we set AII = In,
AIJ = 0 ∀J 6= I and FI =

(
dI,1, dI,2, dI,3

)T
in the linear system, with

(
dI,1, dI,2, dI,3

)T
the

imposed displacement at vertex I.
The displacement of the boundaries can be prescribed in different ways:

Numerically: by an external solution, for example the results of the FSIs resolution, see Section 5.5.3

Analytically: by prescription of a translation vector and a rotation vector.





Appendix C

Strong-Stability-Preserving
Runge-Kutta schemes

C.1 Runge-Kutta schemes

C.1.1 General formulation

The following first order Ordinary Differential Equation is considered:

Ẏ (t) = H(t, Y (t)), t ∈ [a, b] ⊂ R (C.1)

for which Y ∈ C1([a, b]) is either a scalar or vectorial function of t and H is either a scalar or vectorial
function.
Let

(
tk
)
k∈ J0, NiteK be a uniform time discretization of [a, b]. We note τ = tk − tk−1. Y (tk) is the

approximated solution of Problem (C.1) at t = tk.
A Runge-Kutta method involving ns stages can be written under general form:

Y (tk+1) = Y k + τ
ns∑
s=1

bsHs

and Hs = H(tk + csτ, Y
s + τ

ns∑
l=0

aslHl), s ∈ J0, nsK ,

where (asl)0≤s,l≤ns
, (bs)0≤s≤ns

and (cs)0≤s≤ns
are called the Butcher coefficients of the Runge-Kutta

scheme. These coefficients are sometimes represented using a Butcher array:

c0 a0,0 . . . a0,ns

...
...

...
cns

ans,0 . . . ans,ns

b0 . . . bns

(C.2)

The minimum conditions to be satisfied by these coefficients are:

cs =

ns∑

l=0

asl (exact prediction for the special equation Ẏ = 1)

1 =

ns∑

s=0

bs (consistency condition)
(C.3)

If these relations are checked, then Runge-Kutta schemes can be rewritten:

Y n+1 = Y n + τ
ns∑
s=0

bsH (tn + csτ, Y
s)

with Y s = Y n + τ
ns∑
l=0

aslH
(
tn + clτ, Y

l
)
,

(C.4)

and Y s can be interpreted as a predictor for the the value of the solution Y at ts = tn + csτ .
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C.1.2 Explicit and implicit schemes

In the following, the following notations are adopted:

A =




a00 . . . a0,ns

...
...

ans,0 . . . ans,ns


 and b =




b0
...
bns


 . (C.5)

If (j >= i⇒ aij = 0), i.e. A is lower triangular, then the scheme is explicit. Otherwise, it is implicit.
For an explicit Runge-Kutta scheme, its associated Butcher array has the following form:

c0 0 . . . 0

c1 a11 0 . . . 0
...

...
... 0

cns
ans,0 . . . ans,ns−1 0

b0 . . . bns

(C.6)

From now on, Problem (C.1) is assumed to be autonomous, i.e. H does not depend directly on t. As a
consequence, explicit Runge-Kutta schemes write:

Y (tk+1) = Y ns = Y 0 + τ
ns−1∑
s=0

bsH(Y s), bns
= ans,ns

and Y s = Y 0 + τ
s−1∑
l=0

aslH(Y s) with Y 0 = Y (tk) .

C.1.3 Shu-Osher representation

We now introduce two new set of parameters (αsl) and (βsl) with s ∈ J1, nsK and l ∈ J0, ns − 2K such
that:

s−1∑

l=0

αsl = 1 ∀ 1 ≤ s ≤ ns and βsl = asl −
ns−1∑

k=l+1

αsk akl , ∀s ∈ J1, nsK .

Runge-Kutta explicit schemes can then be reformulated using these coefficients as a convex combination
of forward Euler steps:

Y (tk+1) = Y ns = Y 0 + τ

ns−1∑

s=0

bsH(Y s)

Y s =

s−1∑

l=0

[
αslY

l + τ βslH(Y l)
]

=

s−1∑

l=0

αsl

[
Y l + τ

βsl
αsl

H(Y l)

]
(Shu-Osher representation) .

(C.7)

The proof is given below:

Y s = Y 0 + τ

s−1∑

l=0

aslH(Y l) =

(
s−1∑

l=0

αsl

)
Y 0 + τ

s−1∑

l=0

aslH(Y l)

Y s = αs0Y
0 +

s−1∑

l=1

αsl

(
Y l − τ

l−1∑

k=0

alkH(Y k)

)

︸ ︷︷ ︸
=Y 0

+ τ

s−1∑

l=0

aslH(Y l)

Y s =

s−1∑

l=0



αslY

l + τ

(
asl −

s−1∑

k=l+1

αskakl

)

︸ ︷︷ ︸
βsl

H(Y l)




(manipulation on sums) .
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C.2 Order of accuracy

Theorem 6 (ns ≥ p). The order of an explicit ns-stages Runge-Kutta method is less than or equal to
its number of stages ns (p ≤ ns )

Theorem 7. There is no explicit ns-stages Runge-Kutta method of order ns if ns ≥ 5

The following relationships must be satisfied by the scheme coefficients for the scheme to be of order p:

Order 1 2 3 4

Conditions
ns−1∑

s=0

bs = 1

ns−1∑

s=0

bscs =
1

2

ns−1∑

s=0

bsc
2
s =

1

3
ns−1∑

s=0

bs

s−1∑

l=0

aslcl =
1

6

ns−1∑

s=0

bsc
3
s =

1

4
ns−1∑

s=0

bscs

s−1∑

l=0

aslcl =
1

8
ns−1∑

s=0

bs

s−1∑

l=0

aslc
2
l =

1

12
ns−1∑

s=0

bs

s−1∑

l=0

asl

l−1∑

k=1

alkck =
1

24

(C.8)
These relations can be demonstrated by truncation error study (Taylar expansion) or in a much more
beautiful way using Butcher graph theory (rooted-trees), [Butcher 1987].

C.3 Linear stability results

Let us first consider the following linear problem, with λ constant:

Ẏ (t) = λY (t) , i.e. H(Y ) = λY (t) .

In this very special case, Runge-Kutta methods (explicit or implicit) read:

Y (tk+1) = Y 0 + τ

ns−1∑

s=0

bsHs , Y 0 = Y (tk)

with Hs = H(Y 0 + τ

s−1∑

l=0

aslHl) = λ

(
Y 0 + τ

s−1∑

l=0

aslHl

)
.

For s ∈ J0, ns − 1K:

Hs = λ

(
Y 0 + τ

ns−1∑
l=0

aslHl

)
⇒

(
Hs − λτ

ns−1∑
l=0

aslHl

)
= λY 0 ⇒ (Ins

− λτA) K = λY 0e

⇒ K = Y 0λ (Ins − λτA)
−1

e ,

where we have noted:

e =




1
...
1


 and K =




H0

...
Hs


 .
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Then, we get:

Y ns = Y 0 + τbT ·K = Y 0
(

1 + τλbT (Ins
− λτA)

−1
e
)

= Y 0R(τλ) ∈ C .

R(τλ) is a complex number and can be rewritten as:

R(hλ) =
det
(
Ins
− τλA+ τλe · bT

)

det (Ins
− τλA)

.

If we use an explicit method, the denominator is equal to 1 because A is triangular inferior with only
zeros on its diagonal. The stability factor is thus polynomial in λh. The stability region will never
contain the whole Re(λh) < 0 semi-plane.
If we use an implicit Runge-Kutta method, the stability factor is genereally rationnal, which tends to
bring more stability to the scheme.

C.4 Non-linear stability results

Non-linear stability definition. A scheme is said to be Strong-Stability-Preserving (SSP) if, in a
given semi-norm | · |, we have |W k+1| ≤ |W k|, with W k the numerical solution vector at time tk. This
notion is linked to the more classical concept of contractivity. The semi-norm is classically the TVD
norm appearing in the study of hyperbolic PDEs.

|W k|TV D =

N∑

i=1

|W k
i+1 −W k

i |

Indeed, under certain hypothesis, the true solution of this kind of equations is TVD, i.e. the solution
cannot exhibit new local extrema or minima during its time evolution.

Theorem 8. If the Forward Euler (FE) method is SSP under CFL restriction τ ≤ τFE, then the
Runge-Kutta method

Y (tk+1) = Y ns (C.9)

Y s =

s−1∑

l=0

[
αslY

l + βslτH(Y l)
]

=

s−1∑

l=0

αsl

[
Y l +

βsl
αsl

τH(Y l)

]
(C.10)

Y0 = Y n (C.11)

with βsl ≥ 0 is SSP provided τ ≤ CFLτFE where CFL is the CFL coefficient of the SSP Runge-Kutta
scheme given by:

CFL = min
s, l

αsl
βsl

.

C.5 SSP optimal schemes (i.e maximal CFL schemes)

C.5.1 Linear case with ns = p [Gottlieb 2001]

The following linear differential equation is considered, with L a linear operator:

Ẏ (t) = LY (t)

Theorem 9. Consider the family of ns-stages, p-order Runge-Kutta Strong-Stability-Preserving meth-
ods with non-negative coefficients αi,k, βi,k. The best (larger) CFL attainable with such methods is the
one dictated by the Forward Euler scheme.
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For the special case of linear equations, we can exhibit ns-stages Runge-Kutta schemes which are
ns-order accurate and SSP with CFL = 1.

Y s = Y s−1 + τLY s−1

Y ns =

ns−2∑

s=0

αns,sY
s + αns,ns−1

(
Y ns−1 + τLY ns−1

)

αns,s =
1

s
αns−1,s−1, s ∈ J1, ns − 2K

αns,ns−1 =
1

ns!
, αns,0 = 1−

ns−1∑

s=1

αns,s

Order ns αns,0 αns,1 αns,2 αns,3 αns,4 αns,5 αns,6 αns,7

1 1

2 1
2

1
2

3 1
3

1
2

1
6

4 3
8

1
3

1
4

1
24

5 11
30

3
8

1
6

1
12

1
120

6 53
144

11
30

3
16

1
18

1
48

1
720

7 103
280

53
144

11
60

3
48

1
72

1
240

1
5040

8 2119
5760

103
280

53
288

11
180

1
64

1
360

1
1440

1
40320

These schemes are low-storage, in the sense that only the previous state need to be stored to compute
the current state. These schemes are no more ns-order accurate if the equation is non-linear.

More generally, it is proved in [Spiteri 2002] that:

Theorem 10 (Optimal RKSSP CFL for linear problems). The optimal CFL coefficient of an ns-stage,
p-order RKSSP method applied to a linear, constant coefficient problem is ns − p+ 1

C.5.2 Non-linear case with ns = p

The coefficient CFL for the Runge-Kutta schemes with ns = p is such that CFL ≤ 1. Indeed, it is
already the case in the simple linear case (see above), so it is all the more the case in the non-linear case.
So, if we find a scheme satisfying the ns-order conditions and for which CFL = 1, then it is optimal.
Gottlieb and Shu [Gottlieb 1998] give a direct and technical proof of this result for ns = 2, 3, 4. The
proof is based on the accuracy relationships satisfied by the scheme coefficients. From these relations,
a general form of the Runge-Kutta coefficients is then found, usually involving unknown parameters.
Finally, a case study is performed to prove that it is impossible to have CFL > 1 with these families of
coefficient for ns = 2, 3, 4, which exactly means that these schemes are optimal.
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Order 2 RKSSP(2,2) An optimal second-order SSP Runge-Kutta method is given by:

Y 0 = Y (tk) (C.12)
Y 1 = Y 0 + τH(Y 0) (C.13)

Y (tk+1) = Y 2 =
1

2
Y 0 +

1

2
Y 1 +

1

2
τH(Y 1) (C.14)

α10 = 1 β10 = 1 (C.15)

α20 =
1

2
α21 =

1

2
β20 = 0 β21 =

1

2
(C.16)

and CFL = min
ij

αij
βij

= min
(
α10

β10
,
α20

β20
,
α21

β21

)
= 1 (C.17)

Thus the CFL for RKSSP(2,2) equals 1, as expected.

Order 3 An optimal third-order SSP Runge-Kutta method is given by:

Y 0 = Y (tk) (C.18)
Y 1 = Y 0 + τH(Y 0) (C.19)

Y 2 =
3

4
Y 0 +

1

4
Y 1 +

1

4
τH(Y 1) (C.20)

Y (tk+1) = Y 3 =
1

3
Y 0 +

2

3
Y 2 +

2

3
τH(Y 2) (C.21)

α10 = 1 β10 = 1 (C.22)

α20 =
3

4
α21 =

1

4
β20 = 0 β21 =

1

4
(C.23)

α30 =
1

3
α31 = 0 α32 =

2

3
β20 = 0 β21 = 0 β22 =

2

3
(C.24)

and CFL = min
ij

αij
βij

= min
(
α10

β10
,
α20

β20
,
α21

β21
,
α30

β30
,
α31

β31
,
α32

β32

)
= 1 (C.25)

Thus the CFL for RKSSP(3, 3) equals 1, as expected.

Order 4 A negative result:

Theorem 11. No four-stages fourth-order Runge-Kutta Strong-Stability-Preserving scheme exists with
positive βij coefficients (i.e with no adjoint operator computations)

C.5.3 Non-linear case with ns ≥ p

Theorem 12 (Order 1 schemes). : The optimal ns-stage RKSSP method of order 1 with βij ≥ 0 has
a CFL coefficient equal to ns and can be represented under the form:

αsl =

{
1 if l = s− 1 ,

0 otherwise
and βsl =

{
1
ns

if l = s− 1 ,

0 otherwise
, ∀ s ∈ J1, nsK .

Theorem 13 (Order 2 schemes). : The optimal ns-stage RKSSP method of order 2 with βij ≥ 0 has
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CFL coefficient ns − 1 and can be represented under the form:

αsl =

{
1 if l = s− 1 ,

0 otherwise
and βsl =

{
1
s−1 l = s− 1 ,

0 otherwise
∀ s ∈ J1, ns − 1K

αnsl =





1
ns

if l = 0 ,
ns−1
ns

if l = ns − 1 ,

0 otherwise
and βnsl =

{
1
ns

if l = ns − 1

0 otherwise
for s = ns .

Proofs of these theorems rely on the following lemma:

Theorem 14. If a method of the Shu-Osher form with αsl, βsl ≥ 0 has a CFL coefficient CFL > m > 0,
then 0 ≤ asl < 1

m , ∀l ∈ J0, s− 1K ands ∈ J1, nsK

The above lemma, combined with the accuracy relations of Section C.2 are used to prove that it
is impossible to have CFL > ns for an ns-stage RKSSP method of order 1 and CFL > ns − 1 for an
ns-stage SSPRK method of order 2. As the proposed RKSSP methods are exactly such that CFL = ns
for order 1 and CFL = ns − 1 for order 2, we deduce that they are optimal in the sense of the maximal
CFL coefficient.

First-order accurate RKSSP optimal schemes.

Stages αij βij CFL coefficient

1 1 1 1

2
1

0 1

1
2

0 1
2

2

3

1

0 1

0 0 1

1
3

0 1
3

0 0 1
3

3

(C.26)
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Second-order accurate RKSSP optimal schemes.

Stages αij βij CFL coefficient

2
1
1
2

1
2

1

0 1
2

1

3

1

0 1
1
3 0 2

3

1
2

0 1
2

0 0 1
3

2

4

1

0 1

0 0 1
1
4 0 0 3

4

1
3

0 1
3

0 0 1
3

0 0 0 1
4

3

5

1

0 1

0 0 1

0 0 0 1
1
5 0 0 0 4

5

1
4

0 1
4

0 0 1
4

0 0 0 1
4

0 0 0 0 1
5

4

(C.27)

RKSSP(5,3) and RKSSP(5,4) are obtained by Spiteri and Ruuth [Spiteri 2003] through the numerical
resolution of a non-linear programming problem.

Third-order accurate RKSSP optimal schemes.

Stages αij βij CFL coefficient

3

1
3
4

1
4

1
3 0 2

3

1

0 1
4

0 0 2
3

1

4

1

0 1
2
3 0 1

3

0 0 0 1

1
2

0 1
2

0 0 1
6

0 0 0 1
2

2

(C.28)

For clarity purpose, scheme RKSSP(5,3) is given under a different form. The Shu-Osher (αsl) coefficients
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are given by:

s αs0 αs1 αs2 αs3 αs4

1 1

2 0 1

3 0.56656131914033 0 0.43343868085967

4 0.0929948344413 0.00002090369620 0 0.90698426185967

5 0.00736132260920 0.20127980325145 0.00182955389682 0 0.78952932024253

,

and the (βsl) write:

s βs0 βs1 βs2 βs3 βs4

1 0.37726891511710

2 0 0.37726891511710

3 0 0 0.16352294089771

4 0.00071997378654 0 0 0.34217696850008

5 0.00277719819460 0.00001567934613 0 0 0.29786487010104

The maximal CFL coefficient for this scheme is CFL = 2.65062919294483.

Fourth-order accurate RKSSP optimal scheme. For clarity purpose, scheme RKSSP(5,3) is
given under a different form.

s αs0 αs1 αs2 αs3 αs4

1 1

2 0.44437049406734 0.55562950593266

3 0.62010185138540 0 0.37989814861460

4 0.17807995410773 0 0 0.82192004589227

5 0.00683325884039 0 0.51723167208978 0.12759831133288 0.34833675773694
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s βs0 βs1 βs2 βs3 βs4

1 0.39175222700392

2 0 0.36841059262959

3 0 0 0.25189177424738

4 0 0 0 0.54497475021237

5 0 0 0 0.08460416338212 0.22600748319395

The maximal CFL coefficient for this scheme is CFL = 1.50818004975927.

Remark 11. Note that the "classical" fourth-order Runge-Kutta scheme is not Strong-Stability-
Preserving. Indeed, this scheme writes:

Y 0 = Y (tk) , (C.29)

Y 1 = Y 0 +
τ

2
H(Y 0) , (C.30)

Y 2 = Y 0 +
τ

2
H(Y1) , (C.31)

Y 3 = Y 0 +
τ

2
H(Y2) , (C.32)

Y (tk+1) = Y 4 = Y 0 +
τ

6
f(Y 0) +

τ

3
H(Y1) +

τ

3
H(Y2) +

τ

6
H(Y3) . (C.33)

Hence, its Shu-Osher coefficients are:

α10 = 1 β10 = 1
2

α20 = 1 α21 = 0 β20 = 0 β21 = 1
2

α30 = 1 α31 = 0 α32 = 0 and β30 = 0 β31 = 0 β32 = 1

α40 = 1 α41 = 0 α42 = 0 α43 = 0 β40 = 1
6 β41 = 1

3 β42 = 1
3 β43 = 1

6

(C.34)

Then, we see that:

CFL = min
sl

αsl
βsl

=
α21

β21
=
α32

β32
=
α41

β41
=
α42

β42
=
α43

β43
= 0 ,

which means that this scheme is not SSP.

C.6 Implicit Backward Difference Formulae (BDF) methods

The backward differentiation formula (BDF) is a family of implicit methods for the numerical integration
of ordinary differential equations. They are linear multistep methods that, for a given function and time,
approximate the derivative of that function using information from already computed times, thereby
increasing the accuracy of the approximation. Backward Differentiation Formula methods are implicit
and, as such, require the solution of non-linear equations at each step. Typically, a modified Newton’s
method is used to solve these non-linear equations.

C.6.1 First-order accurate implicit Backward Difference Formula

Y (tk+1)− Y (tk) = H(t(k), Y (tk+1)) .
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C.6.2 Second-order accurate implicit Backward Difference Formula

For variable time steps, the second-order accurate BDF scheme writes:

1 + 2r

1 + r
Y (tk+1) + (−1− r)Y (tk) +

r2

1 + r
Y (tk−1) = H(tk+1, Y (tk+1)), where =

τk

τk−1
.

For constant time steps, i.e. r = 1, the above expression reduces to:

3

2
Y (tk+1)− 2Y (tk) +

1

2
Y (tk−1) = H(tk+1, Y (tk+1)) .

C.6.3 Higher-order accurate implicit Backward Difference Formula

Writing and solving appropriate Differential Algebraic equations leads to the following coefficients for
higher-order BDF schemes:

Order α0 α1 α2 α3 α4 α5 α6

1 1 −1

2
3

2
−2

1

2

3
11

6
−3

3

2
−1

3

4
25

12
−4 3 −4

3
−1

4

5
137

60
−5 5 −10

3

5

4
−1

5

6
49

20
−6

15

2
−20

3

15

4
−6

5

1

6

(C.35)

BDF- based methods are especially appreciated for their stability properties. The six schemes given
above are stable along the whole negative real axis. Note that for order higher than 7, the instability
region intersects the negative real axis, making it and any higher order BDF methods of little interest.





Appendix D

ALE mirror state slipping boundary
conditions

D.1 Preliminary: Jacobian matrix in three dimensions

The Euler system in the ALE framework writes, for any arbitrary closed volume C(t) of boundary ∂C(t):

∂

∂t
|ξ
(∫

C(t)

W dx

)
+

∫

∂C(t)

(F−W (w · n)) ds =

∫

C(t)

fext dx ,

and 



W = (ρ, ρu, ρe)
T is the conservative variables vector

F (W ) = F(W ) · n is the normal flux vector
fext = (0, ρ fext, ρu · fext)T is the external volumes forces vector

In the sequel, η is an outward non-normalized normal vector to C(t) and n its associated normalized
vector. Notation unor = u · n is used.

The flux vector F may be decomposed as F(W ) = F1(W ) ex + F2(W ) ey + F3(W ) ez with

F1(W ) =




ρu

ρu2 + p

ρuv

ρuw

(ρe+ p)u



, F2(W ) =




ρv

ρuv

ρv2 + p

ρvw

(ρe+ p)v




and F3(W ) =




ρw

ρuw

ρvw

ρw2 + p

(ρe+ p)w



.

These vectors may be expressed only in terms of conservative variables:

F1(W ) =




ρu

(ρu)2

ρ
+ p

ρu ρv

ρ
ρu ρw

ρ

(ρe+ p)
ρu

ρ




, F2(W ) =




ρv
ρu ρv

ρ

(ρv)2

ρ
+ p

ρv ρw

ρ

(ρe+ p)
ρv

ρ




and F3(W ) =




ρw
ρu ρw

ρ
ρv ρw

ρ

(ρw)2

ρ
+ p

(ρe+ p)
ρw

ρ




.

where p is written p = (γ − 1)ρe− γ − 1

2

(ρu)2 + (ρv)2 + (ρw)2

ρ
.

Normal flux for a normal vector n writes:

F(W ) = F(W ) · n =




ρunor

ρuunor + pnx
ρvunor + pny
ρwunor + pnz
(ρe+ p)unor



. (D.1)
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With the above expression, we are now able to differentiate these vectors with respect to the conservative
variables. The Jacobian of p with respect to the conservative variable, after simplifications, is:

∂p(W )

∂W
= (γ − 1) t

(
q2

2
, −u , −v , −w , 1

)
(D.2)

where q2 = u2 + v2 + w2. After simplifications, the Jacobian reads:

∂F1(W )

∂W
=




0 1 0 0 0
(γ − 1)

2
q2 − u2 −(γ − 3)u −(γ − 1)v −(γ − 1)w γ − 1

−uv v u 0 0

−uw w 0 u 0

(γ − 1)uq2 − γue γe− γ − 1

2

(
2u2 + q2

)
−(γ − 1)uv −(γ − 1)uw γu



,

∂F2(W )

∂W
=




0 0 1 0 0

−uv v u 0 0
(γ − 1)

2
q2 − v2 −(γ − 1)u −(γ − 3)v −(γ − 1)w γ − 1

−vw 0 w v 0

(γ − 1)vq2 − γvE −(γ − 1)uv γe− γ − 1

2

(
2v2 + q2

)
−(γ − 1)vw γv



,

∂F3(W )

∂W
=




0 0 0 1 0

−uw w 0 u 0

−vw 0 w v 0
(γ − 1)

2
q2 − w2 −(γ − 1)u −(γ − 1)v −(γ − 3)w γ − 1

(γ − 1)wq2 − γwE −(γ − 1)uw −(γ − 1)vw γe− γ − 1

2

(
2w2 + q2

)
γw



.

Note that we have (γ − 1)q2 − γe = (γ − 1)
q2

2
− h.

Thus, we deduce:

A(W ) =
∂ (F(W ) · n)

∂W

=



0 nx ny nz 0
(γ − 1)

2
q2nx − uunor unor − (γ − 2)unx uny − (γ − 1)vnx unz − (γ − 1)wnx (γ − 1)nx

(γ − 1)

2
q2ny − vunor v nx − (γ − 1)uny unor − (γ − 2)vny v nz − (γ − 1)wny (γ − 1)ny

(γ − 1)

2
q2nz − wunor wnx − (γ − 1)unz wny − (γ − 1)vnz unor − (γ − 2)wnz (γ − 1)nz

unor
(
(γ − 1)q2 − γe

) (
p

ρ
+ e

)
nx − (γ − 1)uunor

(
p

ρ
+ e

)
ny − (γ − 1)vunor

(
p
ρ
+ e
)
nz − (γ − 1)wunor γunor


.

A is diagonalizable and is decomposed as A = T D T −1. Matrices D, T and T −1 are:

D =




unor 0 0 0 0

0 unor 0 0 0

0 0 unor 0 0

0 0 0 unor + c 0

0 0 0 0 unor − c



, (D.3)
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T =
1

c2




nx ny nz
1

2

1

2

unx uny − nz unz + ny
u+ cnx

2

u− cnx
2

vnx + nz vny vnz − nx
v + cny

2

v − cny
2

wnx − ny wny + nx wnz
w + cnz

2

w − cnz
2

q2

2
nx + vnz − wny

q2

2
ny + wnx − unz

q2

2
nz + uny − vnx

h+ cunor

2

h− cunor
2




,

(D.4)

T −1 =



(c2 − (γ − 1) q2

2
)nx + (wny − vnz)c2 (γ − 1)unx (γ − 1) vnx + c2nz (γ − 1)wnx − c2ny − (γ − 1)nx

(c2 − (γ − 1) q2

2
)ny + (unz − wnx)c2 (γ − 1)uny − c2nz (γ − 1) vny (γ − 1)wny + c2nx − (γ − 1)ny

(c2 − (γ − 1) q2

2
)nz + (vnx − uny)c2 (γ − 1)unz + c2ny (γ − 1) vnz − c2nx (γ − 1)wnz − (γ − 1)nz

(γ − 1) q2

2
− c unor cnx − (γ − 1)u cny − (γ − 1) v cnz − (γ − 1)w γ − 1

(γ − 1) q2

2
+ c unor −cnx − (γ − 1)u −cny − (γ − 1) v −cnz − (γ − 1)w γ − 1


,

(D.5)

where h =
c2

γ − 1
+
q2

2
is the enthalpy per unit mass.

D.2 ALE mirror state description

BJ

∂BJ

Wi

Wi
n1

i ni
2

σ1n1
i

ui

n1
i

ui + ui
1

2

Pi

ui
1

Figure D.1: Mirror state across boundary interface k of cell Ci.

Mirror state W associated with boundary state W is an imaginary state, virtually defined on the other
side of the boundary and such that the extrapolated value of W |∂B

= (W + W )/2 on the boundary
satisfies:

(unor)|∂B
= σ|∂B

.
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We consider a Finite Volume cell Ci touching a moving object B, and we note nki the outward normalized
normal to the kth boundary facet and σki its normal speed, see Figure 5.5. The ALE mirror state
associated with state Wi,k on the other side of boundary interface k of cell Ci is defined by:





ρi = ρi ,

uki = uki − 2
(
uki .n

k
i − σki

)
nki ,

εi = εi .

.

Note that with this definition, we indeed have
(
uki
)
|∂B ·

(
nki
)
|∂B =

(
σki
)
∂B

.
For convenience, indices ki are dropped in the sequel. The squared norm of the fluid velocity associated
with mirror state W reads:

q2 = ||u||2 = ||u− 2(unor)n + 2σn||2
= ||u− 2unorn||2 + (2σ)

2 − 4σu− (2unorn) · n
= q2 + 4σ(σ − unor) .

The total energy per unit mass of the mirror state hence reads:

e = ε+
1

2
q2 = ε+

1

2
q2 − 2σ(σ − unor) = e− 2σ(σ − unor) .

The conservative mirror state finally writes:

W =




ρ

ρ (u− 2 (unor − σ)nx)

ρ (v − 2 (unor − σ)ny)

ρ (w − 2 (unor − σ)nz)

ρ (e− 2σ (unor − σ))



. (D.6)

Other quantities relative to mirror state W can also be computed:

p = (γ − 1) ρε = p ,

h = e+
p

ρ
= h− 2σ (unor − σ) ,

and finally,

c = (γ − 1)

(
h− q2

2

)
= (γ − 1)

(
ε+

p

ρ

)
= c .

The average Roe state W̃ between W and its mirror state W is defined by:

W̃ =





ρ̃ =
√
ρρ = ρ

ũ =

√
ρu +

√
ρu

ρ+ ρ
=

u + u

2
= u− (unor − σ) n

h̃ =

√
ρh+

√
ρh

√
ρ+
√
ρ

=
h+ h

2
= h− σ (unor − σ) .

Thus, we get:
q̃2 = ||ũ||2 = || (u− unorn)︸ ︷︷ ︸

orthogonal to n

+ (σn) ||2 = ||u− unorn||2 + σ2
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Finally, if we note utan = u− unorn, the celerity associated with Roe average state between W and W
writes:

c̃ = (γ − 1)

(
h̃− q̃2

2

)
= (γ − 1)

(
h− σ (unor − σ)− ||u

tan||2
2

− σ2

2

)

= (γ − 1)

(
h− σ unor − ||u

tan||2
2

+
σ2

2

)
.

Note that this Roe average state W̃ also satisfies:

ũ · n = σ . (D.7)

To end this section, we compute several quantities useful for the upcoming calculus:

W −W =




0

2ρ (unor − σ)nx
2ρ (unor − σ)ny
2ρ (unor − σ)nz
2ρσ (unor − σ)



. (D.8)

To finish with, we give:

F (W )− σW =




ρ(unor − σ)

ρu(unor − σ) + pnx
ρv(unor − σ) + pny
ρw(unor − σ) + pnz
ρe (unor − σ) + punor



,

and, for mirror state W , we replace variables associated with W by the ones associated with W in the
above expression:

F
(
W
)
− σW =




ρ(−unor + 2σ − σ)

ρ [u+ 2(−unor + 2σ − σ)nx] [−unor + 2σ − σ] + pnx)

ρ [v + 2(−unor + 2σ − σ)ny] [−unor + 2σ − σ] + pny)

ρ [w + 2(−unor + 2σ − σ)nz] [−unor + 2σ − σ] + pnz)

ρ [e− 2σ (unor − σ)] (−unor + 2σ − σ) + p(−unor + 2σ)




=




−ρ(unor − σ)

−ρu(unor − σ) + 2ρ(unor − σ)2nx + pnx
−ρv(unor − σ) + 2ρ(unor − σ)2ny + pny
−ρw(unor − σ) + 2ρ(unor − σ)2nz + pnz
−(ρe+ p) (unor − σ) + 2pσ + 2ρσ(unor − σ)2)




= − [F (W )− σW ] + 2




0

ρ(unor − σ)2nx + pnx
ρ(unor − σ)2ny + pny
ρ(unor − σ)2nz + pnz
pσ + ρσ(unor − σ)2



.

(D.9)

D.3 Roe ALE mirror state slipping boundary condition

The Roe ALE numerical flux function ΦRoe computed between states W and W is given by:

ΦRoe (W, W, n, σ||η||
)

= ||η||
(

F(W ) + F(W )

2
− σ W +W

2
+ |Ã − σIn|

|W −W |
2

)
,
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where Ã = A(W̃ , n) is the Jacobian matrix of normal continuous flux F evaluated for Roe average state
W̃ between W and W .
We have:

Ã − σIn = T̃
(
D̃ − σIn

)
T̃ −1 ,

where D̃, T̃ and T̃ −1 are computed by evaluating Matrices (D.3), (D.4) and (D.5) for average Roe state
W̃ between W and W .

D.3.1 Upwinding term computation

First, we focus on the computation of the upwinding term appearing in Roe ALE numerical flux:

|Ã − σIn|
|W −W |

2
.

According to Relation (D.7), Roe average state between W and W satisfies ũnor = σ, which leads to:

D̃ − σIn = D̃′ = diag (ũnor − σ, ũnor − σ, ũnor − σ, ũnor − σ + c̃, ũnor − σ − c̃)

= diag
(
d̃′1 = 0, d̃′2 = 0, d̃′3 = 0, d̃′4 = c̃, d̃′5 = −c̃

)
.

Vector W −W , given by Relation (D.8), can be decomposed on the eigen-basis (r̃1, . . . , r̃5) of Ã − σIn,
which is the same as the one of Ã:

W −W =

5∑

k=1

αkr̃ ,

and :



α1

α2

α3

α4

α5




= T̃−1




0

2ρ (unor − σ)nx
2ρ (unor − σ)ny
2ρ (unor − σ)nz
2ρσ (unor − σ)




= 2ρ (unor − σ)




(γ − 1) (ũnor − σ)nx
(γ − 1) (ũnor − σ)ny
(γ − 1) (ũnor − σ)nz
c̃− (γ − 1) (ũnor − σ)

−c̃− (γ − 1) (ũnor − σ)




= 2ρ (unor − σ)




0

0

0

c̃

−c̃



.

For the "viscous" part of the flux, using Expression (D.8), we get:

|Ã − σIn|
|W −W |

2
=

5∑

k=1

|d̃′k|αkr̃k .

As d̃′1 = d̃′2 = d̃′3 = 0, the above summation simplifies to:

|Ã − σIn|
|W −W |

2
= c̃α4r̃4 + c̃α5r̃5 = 2ρ (unor − σ) c̃2 (r̃4 − r̃5) . .

r̃4 and r̃5 are respectively the fourth and last column of T̃ , and we get, according to Expression (D.4):

|Ã − σIn| |W −W | = 2ρ (unor − σ) c̃2

[



1
2
ũ+c̃nx

2
ũ+c̃ny

2
ũ+c̃nz

2
h̃+c̃ũnor

2



−




1
2
ũ−c̃nx

2
ũ−c̃ny

2
ũ−c̃nz

2
h̃−c̃ũnor

2




]
= 2ρ (unor − σ) c̃2




0

c̃nx
c̃ny
c̃nz
c̃ ũnor︸︷︷︸

=σ
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D.3.1.1 Centered term computation

We are now interested in the computation of the centered term:

F(W ) + F(W )

2
− σ

W +W

2
.

According to Relation (D.9), we immediately get:

F(W ) + F(W )

2
− σW +W

2
=

1

2

[
(F(W )− σW ) +

(
F(W )− σW

)]
=




0(
p+ ρ (unor − σ)

2
)
nx(

p+ ρ (unor − σ)
2
)
ny(

p+ ρ (unor − σ)
2
)
nz

σp+ ρσ (unor − σ)
2




Finally, the complete Roe flux is obtained by adding the upwind and the centered parts:

ΦRoe
(
W, W, n, σ||η||

)
= ||η||

(
F(W ) + F(W )

2
− σW +W

2
+ |Ã − σIn|

|W −W |
2

)

= ||η||




0(
p+ ρ (unor − σ)

2
)
nx(

p+ ρ (unor − σ)
2
)
ny(

p+ ρ (unor − σ)
2
)
nz

σp+ ρσ (unor − σ)
2




+ ρ||η|| (unor − σ)




0

c̃nx
c̃ny
c̃nz
c̃σ




= ||η||




0(
p+ ρ (unor − σ)

2
+ ρc̃ (unor − σ)

)
nx(

p+ ρ (unor − σ)
2

+ ρc̃ (unor − σ)
)
ny(

p+ ρ (unor − σ)
2

+ ρc̃ (unor − σ)
)
nz

pσ + ρσ (unor − σ) (unor − σ + c̃)



,

where

c̃ = (γ − 1)

(
h− σunor − ||u

tan||2
2

+
σ2

2

)
and utan = u− unorn .

If the boundary condition is actually enforced, i.e. unor = σ, this flux writes:

ΦRoe (W, W, n, σ||η||
)

= ||η||




0

pn

pσ


 .

D.4 HLLC ALE mirror state boundary condition

The HLLC flux between state W and its associated mirror state W is described by the following three
waves phase velocities:

S = minunor−c, ũnor−c̃ , S = maxunor+c, ũnor+c̃ and SM =
unor(c− unor)− ρunor(c− unor) + p− p

ρ(c− unor)− ρ(c− unor) ,
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and two approximate states W ∗ and W
∗
:

W ∗ =





ρ∗ = ρ
S − unor
S − SM

p∗ = ρ (unor − S) (unor − SM ) + p

(ρu)
∗

=
(S − unor) ρu + (p∗ − p) n

S − SM

(ρe)
∗

=
(S − unor) ρe− punor + p∗SM

S − SM

W
∗

=





ρ∗ = ρ
S − unor
S − SM

p∗ = p∗ = ρ
(
unor − S

)
(unor − SM ) + p

(ρu)
∗

=

(
S − unor

)
ρu + (p∗ − p) n

S − SM

(ρe)
∗
R =

(
S − unor

)
ρe− punor + p∗SM
S − SM

The HLLC flux through the interface is given by:

ΦHllc (W, W, n, σ||η||
)

= ||η||





F(W )− σW if S − σ > 0

F(W ∗)− σW ∗ if S − σ ≤ 0 < SM − σ
F(W

∗
)− σW ∗ if SM − σ ≤ 0 ≤ S − σ

F(W )− σW if S − σ < 0

According to Relation (D.7), ũnor = σ and using the definition of mirror state W associated with W :

ρ = ρ, p = p and unor = −unor + 2σ ,

we have:

S = min (unor − c, ũnor − c̃) = min (unor − c, σ − c̃)

and S = max (unor + c, ũnor − c̃) = max (−unor + 2σ + c, c̃+ σ) .

In any case, we have S = 2σ − S. Indeed:

If unor − c ≤ σ − c̃ then −unor + c ≥ c̃− σ

⇒ −unor + c+ 2σ ≥ c̃+ σ

⇒ S = unor − c and S = 2σ − unor + c

⇒ S = 2σ − S ,

If unor − c ≥ σ − c̃ then −unor + c ≤ c̃− σ

⇒ −unor + c+ 2σ ≤ c̃+ σ

⇒ S = σ − c̃ and S = σ + c̃

⇒ S = 2σ − S .
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Besides, the middle wave speed writes:

SM =
ρunor

(
S − unor

)
− ρunor (S − unor)− (p− p)

ρ
(
S − unor

)
− ρ (S − unor)

=
ρ (−unor + 2σ) (2σ − S + unor − 2σ)− ρunor (S − unor)−

0︷ ︸︸ ︷
(p− p)

ρ (2σ − S + unor − σ)− ρ (S − unor) =
2ρσ (unor − S)

2ρ (unor − S)
= σ .

We now compute the fluxes involved in the HLLC solver.

F (W ∗)− σW ∗ =




ρ∗(unor)∗

ρ∗u∗(unor)∗ + p∗nx
ρ∗v∗(unor)∗ + p∗ny
ρ∗w∗(unor)∗ + p∗nz
(ρ∗e∗ + p∗) (unor)

∗



−




σρ∗

σρ∗u∗

σρ∗v∗

σρ∗w∗

σ (ρ∗e∗ + p∗)



. (D.10)

Taking the dot product of ρ∗u∗ and n, we compute:

ρ∗(unor)∗ =
(S − unor)ρunor + (p∗ − p)

S − σ ,

and using the expression of ρ∗ and p∗, we deduce:

(unor)∗ =
(S − unor)ρunor + (p∗ − p)

ρ (S − unor) =
(S − unor)ρunor + ρ(unor − S)(unor − SM )

ρ (S − unor)

= unor − (unor − SM ) = SM = σ .

Substituting (unor)∗ by its value in Expression (D.10), we get:

F (W ∗)− σW ∗ =




0

p∗nx
p∗ny
p∗nz
p∗σ



,

with
p∗ = ρ (unor − S) (unor − σ) + p = ρ (unor − σ)max (c, c̃+ unor − σ) + p .

A similar computation leads to:

F
(
W
∗)− σW ∗ =




0

p∗nx
p∗ny
p∗nz
p∗σ



,

with

p∗ = ρ
(
unor − S

)
(unor − σ) + p

= ρ (−unor + 2σ − (2σ − S)) (−unor + 2σ − σ) + p = ρ (−unor + S) (−unor + σ) + p = p∗ .
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D.5 ALE mirror slipping boundary conditions coupled with
DGCL Runge-Kutta schemes

2D case. Let e = (P0, P1) be a boundary edge. It is made of two Finite Volume interfaces: I0 = (P0, M)

associated with cell C0 and I1 = (M, P1) with C1, see Figure (D.2). The area swept by boundary interface

I0

I1

G1

G0

M

P0

P1

boundary edge e

Figure D.2: A boundary edge and its two associated boundary Finite-Volume interfaces.

Ii between the initial and the current Runge-Kutta configuration s is:

Asi = = csτ w
s
Gi
· η̃si ,

wherews
Gi

is the velocity of the center of gravity Gi of interface Ii and η̃sij is the pseudo-normal associated
with Ii, computed between the initial and the current Runge-Kutta configurations.
However, the two interfaces are colinear, which means that their pseudo-normals have the same direction.
Moreover, as median cells are used, their pseudo-normals have also the same norm, which is equal to
half of the norm of the pseudo-normal to edge e.

η̃si =
1

2
η̃e =

1

4

(
η0
e + ηse

)
.

In the sequel, the following notation is used:

ws
i =

xsi − x0
i

csτ

We easily compute the gravity centers velocities ws
Gi
:

ws
Gi

=
1

2
(ws(Pi) +ws(M)) =

1

4

(
3ws

i +ws
j

)

and thus,

Asi =
csτ

4

[
3ws

i +ws
j

]
· 1

4

(
η0
e + ηse

)
.

The following ALE DGCL parameters,

σsi,e =
Asi

csτ ||ηne ||
, ηni = ηne ,

are finally used to compute boundary mass exchange between Ci and the outside through Ii, for instance
using mirror states:

Ms,boundary
i,e = csτ σ

s
i,e||ηne ||Φ(W s

i , W
s

i , σ
s
i,e, η

n
e ) .
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P0

P1

P2

G

M1

M2

M0

G02

G01
G10

G12

G20

G21

boundary triangle K

T02

T01
T10

T12

T21T20

I2

I0

I1

Figure D.3: A boundary triangle and its three associated boundary Finite-Volume interfaces.
Each of these interfaces Ii is made of two sub-triangles Tij and Tik.

3D case. Let K = (P0, P1, P2) be a boundary triangle. It is made of three quadrangular Finite
Volume interfaces: I0 = (P0, M2, G, M1) associated with cell C0, I1 = (P1, M0, G, M2) with C1 and
I2 = (P2, M1, G, M0) with C2. Each interface Ii is made of two sub-triangles, noted Tij and Tik with
j, k 6= i, see Figure (D.3).

The area swept by boundary interface Ii between the initial and the current Runge-Kutta configu-
ration s is:

Asi = AsTij
+AsTik

= csτ w
s
Gij
· η̃sij + csτ w

s
Gik
· η̃sik ,

where ws
Gij

is the velocity of the center of gravity Gij of triangle Tij and η̃sij is the pseudo-normal
associated with Tij , computed between the initial and the current Runge-Kutta configurations.

However, the six triangles Tij are coplanar, which means that their pseudo-normals have the same
direction. Moreover, as median cells are used, their pseudo-normals have also the same norm, which
is equal to one sixth of the norm of the pseudo-normal to triangle K. This common pseudo-normal is
therefore equal to:

η̃s =
1

6
η̃sK =

1

6

[
1

4

−−−→
P0P

0
1 ∧
−−−→
P0P

s
2 +

1

4
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s
1 ∧
−−−→
P0P

0
2 +

1

2

−−−→
P0P

0
1 ∧
−−−→
P0P

0
2 +

1

2

−−−→
P0P

s
1 ∧
−−−→
P0P

s
2

]

Asi = csτ
[
ws
Gij

+ws
Gik

]
· η̃s ,

In the sequel, the following notation is used:

ws
i =

xsi − x0
i

csτ

We easily compute the gravity centers velocities ws
Gij

:

ws
Gij

=
1

18

(
11ws

i + 5ws
j + 2ws

k

)

and thus,

Asi =
csτ

18

[
22ws

i + 7ws
j + 7ws

k

]
· 1

24

[
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P0P

0
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s
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1 ∧
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0
2 + 2
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0
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0
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1 ∧
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]
.

The following ALE DGCL parameters,

σsi,K =
Asi

csτ ||ηnK ||
, ηni = ηnK ,
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are finally used to compute boundary mass exchange between Ci and the outside through Ii, for instance
using mirror states:

Ms,boundary
i,K = csτ σ

s
i,K ||ηnK ||Φ(W s

i , W
s

i , σ
s
i,K , η

n
K) .
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List of notations

EsL∞(t) global spatial interpolation error in L∞ norm.

|Hi,max| maximal (intersected) Hessian associated with adaptation sub-interval i.

R matrix of the eigenvectors.

es(x, t) local spatial interpolation error.

nptfx number of fixed-point iterations for the fixed-point algorithm .

ns number of Runge-Kutta stages.

(e1, e2, . . . , en) canonical basis of Rn.

(ex, ey) canonical basis in 2D.

(ex, ey, ez) canonical basis in 3D.

B a moving rigid body.

CFLgeom geometric CFL number.

DL∞L∞ L∞ − L∞ metric global normalization constant.

E Young modulus for elasticity.

Hs
u spatial Hessian matrix of scalar function u.

Hs
i,k spatial Hessian matrix of u at sampling time ti,k.

J(Ga) body moment of inertia w.r.t axis of direction a passing through G.

K simplicial mesh element.

Nptfx prescribed spatial complexity for each fixed-point mesh.

Ne number of edges.

Nt number of elements.

Nv number of vertices.

Nite number of solver iterations.

Pi mesh vertex.

Qtarget maximal quality threshold.

Rh smooth reconstruction operator.

W Euler conservative state vector (dim n+ 2).

[0, T ] simulation time frame.

[ti, ti+1] adaptation sub-interval for the fixed-point algorithm .

Λ diagonal matrix of the eigenvalues ofM.

Ωh computational domain.

Ω physical domain.
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Πc Clément interpolation operator.

ΠL2 L2 projection operator.

Πh P1 Lagrangian interpolation operator.

Π an interpolation operator.

η non-normalized outward normal.

ω body angular speed vector.

φ mapping between domain Ωk and Ωk+1 .

θ body angular displacement vector.

w instantaneous mesh velocity.

·T tensor transposition operator.

χ stiffening power for elasticity assembly.

δt time between two samples in the fixed-point algorithm .

E deformation tensor.

fext resultant of the external volume forces applied to a moving body.
D
Dt Lagrangian derivative (following particle trajectories) .

γ heat capacity ratio.

g gravity vector.

K̂ reference element.

κi anisotropic quotient hn
i

n∏
j=1

hj

.

λt space-time metric time eigenvalue.

λ first Lamé coefficient.

(Ω,Rn,M) Riemannian space.

(Ω,Rn) affine Euclidian space.

(βj(P ))j ∈ J1, n+1K barycentric coordinates .

M metric field.

dels displacement field prescribed by elasticity resolution.

d mesh displacement field .

et space-time metric eigenvector corresponding to time direction.

eij mesh internal or boundary edge.

n normalized outward normal.

u fluid Eulerian velocity.

xG body gravity center coordinates vector.

x coordinate vector.

A Jacobian tensor of the Euler fluxes.
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C continuous mesh complexity.

EM unit ball of metric tensorM.

H simplicial mesh.

In identity matrix of Rn×n.

JG body matrix of inertia computed at point G.

L a spatial differential operator.

Mst space-time optimal metric.

Ms spatial part of the space-time metric.

M metric tensor.

S strain tensor.

dtels time step between two elasticity resolution.

MG (Fext) kinetic moment of external volume forces computed at G.

ξ mesh position field w.r.t a determined initial configuration.

µ two Lamé coefficient.

ν Poisson ratio for elasticity.

W mirror state vector (dim n+ 2) for weak slipping boundary conditions.

η non-normalized inward normal.

n normalized inward normal.

∂Ωh computational domain boundary.

∂Ω physical domain boundary.

φ a scalar weight function.

ρ fluid volume mass or density.

τ solver time step.

Ball(Pi) ball of vertex Pi.

Neigh(K) set of neighboring elements of element K.

Shell(e) shell of edge e.

θ norm of body angular displacement vector.

W̃ Roe average state vector (dim n+ 2).

ε internal energy of the fluid per unit mass.

µ fluid kinematic viscosity.

a wave speed norm.

c local sound speed or celerity in the fluid.

d continuous mesh density.

estM(x, t) local total space-time interpolation error associated with continuous mesh M.
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e fluid total energy per unit mass.

hmax maximal prescribed mesh size.

h fluid enthalpy per unit mass.

h typical mesh size.

mt,i,thres. temporal eigenvalue threshold for adaptation sub-interval i.

mthres metric minimal threshold for the steady truncation algorithm.

m body mass (constant).

nk number of samples in an adaptation sub-interval for the fixed-point algorithm .

nadap number of adaptation sub-intervals for the fixed-point algorithm .

nball number of elements in the ball of a vertex.

n spatial dimension.

p fluid pressure.

q fluid velocity norm q = ||u||.
ti,k time of sample number k in adaptation sub-interval i.

unor fluid normal velocity unor = u · n.
u scalar solution or sensor function.

Si,k solution sample at ti,k .

|Ci| volume of the dual cell associated with Pi.



Acronyms

AGARD Advisory Group for Aerospace Research and Development.

ALE Arbitrary-Lagrangian-Eulerian.

BDF Backward Differentiation Formula.

CAD Computer-Aided Design.

CFD Computational Fluid Dynamics.

CFL Courant-Friedrichs-Lewy.

CPU Central Processing Unit.

DG Discontinuous Galerkin.

DGCL Discrete Geometric Conservation Law.

DOF Degrees of Motion.

FD Finite Difference.

FE Finite Element.

FSI Fluid-Structure Interaction.

FV Finite Volume.

GAMMA Génération Automatique de Maillage et Méthodes d’Adaptation.

GCL Geometric Conservation Law.

GMRES Generalized Minimal RESidual method.

HLLC Harten-Lax-van Leer Contact wave.

INRIA Institut National de Recherche en Informatique et Automatique.

MMPDE Moving Mesh Partial Differential Equation.

MUSCL Monotone Upstream-Centered Schemes for Conservation Laws.

NACA National Advisory Committee for Aeronautics.

ODE Ordinary Differential Equation.

PDE Partial Differential Equation.

RAM Random Access Memory.

RK Runge-Kutta.

RKSSP Runge-Kutta Strong-Stability-Preserving.

SPD Symmetric Positive Definite.

SSP Strong-Stability-Preserving.

TVD Total Variation Diminishing.





Anisotropic metric-based mesh adaptation for unsteady CFD simulations
involving moving geometries

Abstract: This thesis deals with time-evolving simulations involving fixed or moving geometries.
Growing expectations of industrials regarding this kind of simulations are currently observed, and most
of them would like such computations to be performed in their research centers on a daily basis, which
is clearly not the case at the moment. This works attempts to partly fulfill this demand, and notably
intends to improve the accuracy of these simulations as well as their efficiency in terms of CPU time.
Anisotropic metric-based mesh adaptation strategies, which have now reached a certain level of maturity
on steady problems, offers good perspectives to enhance time-evolving simulations, but their extension
in this context is far from straightforward. As for their application to moving mesh simulations, only few
attempts can be listed so far and only a minority address complex three-dimensional real-life problems.
This study proposes several novelties on these questions, notably the extension of multi-scale anisotropic
metric based mesh adaptation to unsteady problems, for both fixed and moving domains. Besides, mainly
for CPU reduction purpose, a genuine strategy has been adopted to handle moving mesh simulations.
It is notably demonstrated in practice that it is possible to move three dimensional complex objects
undergoing large displacements using only connectivity changes and vertex movements, which comes
to keep the number of vertices of the moving mesh constant throughout the simulation. Limiting the
number of mesh operations allowed enable to considerably reduce CPU time as time is saved both on the
meshing and on the solver parts. Finally, a new scheme extending the classical fixed-topology Arbitrary-
Lagrangian-Eulerian framework to variable -topology moving meshes is proposed and its validity has been
assessed on two dimensional test cases. All these methods have been applied to Computational Fluid
Dynamics simulations governed by the Euler compressible fluid equations around complex geometries in
two and three dimensions.

Keywords: Unsteady CFD simulations, moving mesh, ALE, metric-based mesh adaptation,
anisotropy, variable topology
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