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Introduction

The motivation for this work comes from the comparison of the measured
dynamic response of a TGV train with the result of a simulation model.
The precise measurement of the track irregularities has made it possible to
simulate the dynamic behaviour of the TGV train under realistic conditions
for the French highspeed lines. It was found that the model represents the
dynamic behaviour of the TGV train well but that further improvements
would be desirable having in mind new applications of simulation models as
the virtual homologation of railway vehicles or model-based condition mon-
itoring. With the excitation signal and the system response exactly known
in form of measured track irregularities and accelerations the idea came up
to identify the parameters of the vehicle model by solving an inverse prob-
lem. This work investigates the properties of the identification problem and
proposes an approach for the parameter identification.

The liberalization of the railway market and the need for economic efficiency
require the reduction of cost and improved comfort. Less energy consump-
tion, the reduction of wear of rails and wheels and an optimized maintenance
are thus of large interest. For all new technical solutions the constructors
and operators always have to guarantee the security - the most important
criterion and quality feature of the rail traffic.

All these aims are related to the dynamic behaviour of the vehicle-track sys-
tem. The accelerations on the passenger should not exceed a certain limit
guaranteeing a good comfort. The forces in the wheel rail contact should
be low reducing wear and material fatigue and in consequence maintenance
cost. And the accelerations and forces always have to be within the limits of
the norm for the security.

An important tool for the achievement of these aims is the simulation of
the dynamic behaviour. Multi-body programs have been used for years by
the constructors of railway vehicles during the conception and construction
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2 Introduction

phase. They allow the comparison and optimization of different technical so-
lutions with respect to the comfort and the security of the vehicle long before
the first vehicle runs on the track. The expensive construction of prototypes
is no longer necessary. These multi-body programs represent the vehicle by
a structure of rigid or elastic bodies with mass connected by suspension ele-
ments.

Before a new or modified railway vehicle is allowed to run on a network it
has to be certified. The homologation is a costly procedure defined in the
norm UIC518 which requires the realization of many inline tests for different
track and vehicle conditions and takes several months in some cases years.
Due to the strict security requirements the use of simulations is not allowed
yet. The validation of the simulation model is not considered as sufficient.
This concerns in particular the influence of different running conditions on
the validity of the model.

In order to reduce the cost and time needed for the homologation the con-
structors and operators, among them the SNCF, aim at replacing at least
some of the measurements by simulations. This requires an improvement of
the simulation programs in order to build precise and reliable measurement
substitutes.

One obstacle for more exact simulations has been unavailable or imprecise
excitation signals in form of the vertical and lateral irregularities of each rail.
With the new measurement train IRIS320 these data are now available in nu-
merical form and high precision. The second difficulty concerns the model of
the railway vehicle itself. The exact reproduction of the dynamic behaviour
of the real system requires the modelling of the different elements of the pri-
mary and secondary suspension. Every suspension element is described by a
mechanical model with a certain number of parameters. Often these param-
eters are not precisely known, on the one hand because the suppliers are not
able to specify them and on the other hand due to changes in the parameter
values caused by wear and damage during operation. A requirement for the
further reaching use of multi-body programs is therefore the validation and
parameter identification of the vehicle model from measurement data. An
identification of the suspension parameters during operation could be used
for improved maintenance procedures based on condition monitoring.

The development of a parameter identification procedure for a TGV train
model is the aim of this work. The model represents a TGV train running
over a track with measured track irregularities. The response of the model
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is compared with the response measured in the train and the suspension pa-
rameters are updated by solving an inverse problem.

The identification of the suspension parameters of a railway vehicle model is
a so-called white box identification problem. A physical model is constructed
beforehand from available information about the real system. Then the pa-
rameters of the model are estimated by adjusting the model response to the
response of the real system. To perform this identification a large variety of
approaches exists each one beeing suitable to particular applications. The
parameter identification for a complete train model based on in-line mea-
surements is a fairly new and rarely explored application. It has to take
into account the nonlinear characteristics of the wheel-rail contact, the large
number of parameters and the limitation to operational measurements ob-
tained from a highly coupled system under non-periodic excitation. This
work aims at outlining the particularities of the vehicle-track system and
their consequences on the parameter identification. Based on this knowledge
a parameter identification procedure is developed and applied.

The work is structured in four chapters. The first chapter gives an introduc-
tion to the modelling of the vehicle-track system and the parameter identi-
fication. A literature survey presents and discusses relevant methods. For
both domains - the modelling of the vehicle-track system and the parameter
identification - the focus is laid on the aspects concerning their interaction.
Which characteristics of the vehicle-track system have to be considered when
applying the parameter identification to this model? And which parameter
identification method among the wide range of identification methods can
be fitted to the particularities of the vehicle-track system? The first chap-
ter discusses these questions and sets the direction for the following chapters.

In the second chapter the construction and particularities of the vehicle-track
model are outlined. Two models are presented in detail: the model of the
TGV train for which the parameter identification tends to be applied and
the simplified model of a single bogie. It is composed of the wheelsets and
the bogie frame and serves as a test model for the parameter identification
with relatively simple and completely known properties taking into account
the particularity of the wheel-rail contact at the same time.

In the third chapter the parameter identification is applied to the bogie
model. Different suitable approaches for the identification of the suspension
parameters are compared. Local gradient methods require the sensitivity
gradients of the vehicle response relative to the suspension parameters. The
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computation of the gradients using the adjoint state method is developed.

Finally, the fourth chapter discusses the application of the parameter identi-
fication to the more complex model of the TGV train. The measured track
irregularities used as excitation signal of the vehicle model and the in-line
measurements of accelerations and forces in the train are analyzed. As a re-
sult appropriate identification problems are defined, performed and discussed.



Chapter 1

Modelling and parameter
identification of a TGV train:
technical and theoretical basis

The system for which the parameter identification should be performed is
the TGV Duplex train running on the track. Before working on the different
aspects of the identification process, it is indispensable to define the system
and its properties. One has to be clear about the physical effects the model
is supposed to reproduce. The identification can give reliable results for the
parameters only if the model is able to represent these effects. The process of
identifying an adequate model, the system identification, is therefore the first
step in modelling. The second step aims at identifying the design parameters
of the model from the measured system response.

This chapter describes the technical and theoretical basis of these two steps.
It is therefore divided into two main sections. The first section 1.1 includes a
description of the vehicle track system and its modelling in a multibody ap-
proach. The identification of the model parameters from inline measurements
is the topic of the second section 1.2.

5



6 1 Modelling and parameter identification of a TGV train

1.1 The vehicle track system and its mod-
elling in a multibody approach

1.1.1 The mechanical structure of the vehicle track
system

A train running on a track is a complicated integrated system composed by
several subsystems which are coupled to each other. The vehicle itself and its
guidance, the track, can not be regarded separately if the dynamic behaviour
is described.

Vehicle and track are coupled by the wheel-rail contact. This enables to
support the vehicle, to guide it along the track and to transmit acceleration
and braking forces. For the comprehension of the system the geometric and
physical properties of the wheel-rail contact is a crucial point. Across a small
contact surface all forces are transferred: normal forces compensating the ve-
hicle mass and inertia effects and tangential forces due to friction.

1.1.1.1 The wheel-rail contact

Wheel and track profiles The track is composed of the subgrade, the
sleepers and the rails. The rails guide the vehicle. For this purpose the ve-
hicle is equipped with wheelsets - two wheels rigidly connected by an axis -
which run on the track as shown in figure 1.1. The geometry of the rail and
wheel profile determines this movement. It consists of the running surface
and the flange. In the simplest case, the running surface is conical. Due
to the conical profile the wheelset returns to the centreline for small lateral
displacements. The lateral displacement results in a rolling radius difference
between the left and the right wheel. The translational speed of the outer
wheel increases turning the wheelset back towards the centreline. The forces
acting in the wheel-rail contact can be divided into geometric and friction
forces.

At important excitations and narrow curves the conical form of the running
surface is not sufficient for the guidance of the vehicle. It is assured by the
flange restricting the lateral displacement. Nowadays wheel and rail profiles
are standardized. Often used wheel and rail profiles can be seen in figure
1.2. The UIC 60 profile is used for recent lines and is composed of circular
profiles of different radii.
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Figure 1.1: Wheelset on track (from [98])

(a) (b)

Figure 1.2: Wheel profile DIN EN 13715 (a) and rail profile 60 E1 DIN
EN13674-1 (b)
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Contact mechanics Wheel and rail are in contact at one or several points
depending on the position of the wheelset relatively to the rail. By displacing
the wheelset laterally the contact point moves on the profile. The determi-
nation of the contact points is the first step when describing the wheel-rail
contact. If the wheel and rail profiles are perfectly circular this relation is
continuous and an analytical solution exists. Their derivation can be found
in [52]. It shows that among the 6 degrees of freedom for an uncoupled
wheelset 4 are independent and 2 are dependent.

The wheel profiles used today are so called wear profiles. As outlined in
[8] they have been developed taking into account the wear which changes
the profile and therefore the dynamic behaviour during time. In contrast to
circular or conical wheel profiles they lead to discontinuities in the contact
point. The kinematic equations have no analytical solution. Figure 1.3 (b)
shows the difference between left and right wheel contact radii as a function
of lateral displacement of the wheelset against the track for a UIC 60/S1002
profile combination (a).

(a) (b)

Figure 1.3: Wheel rail contact (a), Difference between left and right wheel
contact radii as a function of lateral displacement y (b) (from [52])

When talking about the contact point one has to bear in mind that - con-



1.1 The vehicle track system 9

sidering the material elasticity - the contact point is a surface. For circular
profiles this surface has the shape of an ellipse. For the geometrically more
complicated wear profiles complex non-elliptical forms appear. Figure 1.4
shows the result of measurements of the contact surface for worn profiles
obtained by [53]. This complicates the modelling of the wheel-rail contact.

Figure 1.4: Contact surface for worn profiles (S1002, UIC60)[53]

Track irregularities The track does not only fulfil the crucial task to
carry and guide the vehicle. It is also the main source for the excitation of
unwanted vibrations in the vehicle. The track never has an ideal geometry.
Imperfections in the position and geometry of the rails provoke displacements
of the wheelset which are transferred into the vehicle as vibrations and noise.
Different types of track irregularities can be distinguished: periodic, singular
and stochastic irregularities.
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Periodic excitations can be caused by a wheel-defect or periodic defects of
the rail. Singular excitations are for example track stiffness variations due to
switches or bridges appearing at well-defined positions. The most important
type of excitation is stochastic track defects.

For a certain position along the track the irregularities are described by four
independent parameters. These are the vertical and lateral displacements of
the left and the right rail. Often a representation relative to the centreline
of the track is used: the horizontal and vertical displacement of the track,
its inclination and variations in the gauge. The last parameter only has an
importance if nonlinear stability effects are considered. The different track
irregularities are depicted in figure 1.5.

Figure 1.5: Track irregularities described by four degrees of freedom (vertical
z, lateral y, cross level ψ, gauge e or vertical left zl, lateral left yl, vertical
right zr, lateral right yr)

At SNCF measurement trains measure continuously the irregularities of the
track. The most recent one is a modified TGV train (IRIS320) equipped
with camera-and-laser-based light-section measurement systems. Results of
the track defects measurements performed for the high speed line TGV Est
will be presented in chapter 4.
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1.1.1.2 Types and functionality of the suspension elements

The connection between the different bodies of the train (wheelsets, bogies,
carbodies) is achieved by suspension elements. Their function is the attenu-
ation of vibrations caused by the track irregularities as well as the guidance
of the vehicle along the track.

Primary and secondary suspension levels Most trains are equipped
with bogies. Then two suspension levels exist: the primary suspension be-
tween the wheelset and the bogie frame and the secondary suspension be-
tween the bogie frame and the car body. The same holds for the TGV which
has some specific features compared to classical rail vehicles. As shown in
figure 1.6 it is an articulated train where each bogie (Jacobs bogie) supports
two carbodies leading to a more important dynamic coupling. The carbodies
are coupled by elastic pivots and hydraulic dampers.

Figure 1.6: Jacobs Bogie in TGV train

The primary suspension ensures the guidance of the wheelset on the track
and reduces vibrations transmitted from the wheelsets. The vertical char-
acteristic of the primary suspension is chosen with the objective of vibra-
tion attenuation. This is obtained by a relatively weak stiffness. Often coil
springs take over this function. The longitudinal and lateral stiffness controls
the running stability of the wheelset since it prevents or reduces the hunting
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movement. In the TGV train a high transversal stiffness is assured by guid-
ance springs in the power unit or guidance arms for the carrying bogies.

The secondary suspension is crucial for the comfort of the vehicle. It has the
function to attenuate the vibration transmission from the bogie frame to the
car body. Both low frequency vibrations leading to perturbing accelerations
on the passengers as well as structure-borne noise are concerned. During
the last decades the air spring has become the standard suspension element.
Despite its higher complexity compared to coil springs the good attenuation
properties justify its usage. In the TGV Duplex train air springs are used in
the secondary suspension of the passenger vehicles.

1.1.1.3 Time scales of vehicle behaviour

In general, two effects can be distinguished when studying the dynamics
of railway vehicles. The short time dynamics describes the accelerations
and forces in the vehicle due to the track irregularities for a certain vehicle
speed. It is the basis for analysis concerning the security and the comfort of
the vehicle. Besides, there are processes which arise after many kilometers
traveled and which change the dynamic behaviour over a long time. This
concerns wear and deterioration processes. An example is the friction forces
in the wheel-rail contact which cause material removal on the wheel and rail
surface. This changes the profile geometry and eventually the dynamic be-
haviour of the vehicle.

For this work both aspects are important: the parameter identification for
the model is performed using the measured response of the system. By re-
peating the parameter identification over a longer period one aims to detect
deterioration processes in the vehicle.

1.1.2 Modelling of the vehicle track system

After the real system has been determined the modelling may be consid-
ered. It has the aim to reproduce the physical effects of the system which
are important for the envisaged analysis by a mechanical model. The type
of model and its complexity depend on the physical effects one wants to take
into account.
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1.1.2.1 Multi-body description

In order to analyse the comfort and security of the vehicle the dynamic re-
sponse in a low frequency range up to 20Hz is sufficient. The eigenmodes of
the system in this frequency range are induced by the primary and secondary
suspension. The elastic eigenmodes of the vehicle bodies can be neglected.
The system is therefore represented by rigid bodies connected by suspen-
sion elements. Figure 1.7 shows a railway bogie modeled with a commercial
multi-body program.

Figure 1.7: Bogie modeled in a multi-body program

In a multi body system (MBS) model with rigid bodies every body is de-
scribed by 6 degrees of freedom. Coupling elements and constraints reduce
the number of degrees of freedom. For the multi body model of the TGV
train a total number of around 300 degrees of freedom is obtained.

The bodies which form the multi body model of a train vehicle are basically
the wheelset, the bogie and the car body. Depending on the complexity of
the model further bodies can be added for example for the detailed descrip-
tion of suspension elements, brake equipment or motor-gear units.

1.1.2.2 Modelling of the suspension elements

The connection between the bodies is ensured by suspension and coupling
elements. For the TGV train some are mentioned in the description of the
vehicle system above.
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The adequate modelling of the suspension elements is a difficult task in the
construction of multi-body models. Ideally the inherent dynamic behaviour
of a suspension element is known from test rig measurements so that a model
can be chosen for the frequency range of interest. If this is not the case the-
oretical considerations form the basis of the modelling. For coil springs a
simple linear description by a constant stiffness is usually sufficient. For
more complex elements like the air spring and the rubber spring the con-
struction of an adequate model is by far more difficult.

1.1.2.3 Modelling of the wheel-rail contact

A correct representation of the wheel-rail contact is crucial for the modelling
of the vehicle. On a small contact surface all forces between vehicle and track
are transmitted. In [90] a comprehensive introduction to the rolling contact
is given.

Normal contact model For the modelling of the wheel-rail contact nor-
mal and tangential effects are distinguished. The normal contact forces are
composed of static forces due to the mass of the vehicle and dynamic forces
due to inertia effects. They give rise to a contact surface as a result of the
elastic strain of the wheel and the rail.

The form of this contact surface depends on both the normal force and the
geometry of the bodies in contact. For its calculation the Hertz theory is
applied. The hypothesis of the Hertz theory are the following: the bodies
in contact have the same linear-elastic material behaviour, are homogeneous
and isotropic and can be considered as half spaces described by second or-
der surfaces. The surfaces are continuous and non-conforming. Under the
conditions of the Hertz theory the contact surface has the form of an ellipse
with the contact radii a and b (figure 1.8). In the contact surface the stress
distribution has the form of a half ellipsoid. Based on the radii of curvature,
the material properties and the known normal force, the radii of the ellipse
are calculated. The Hertz theory is found in [43] and its application to the
wheel-rail contact of circular profiles in [52].

The Hertz theory describes the normal contact problem with a sufficient ac-
curacy for many applications. However, one has to bear in mind that due to
curvature discontinuities the UIC60/S1002 profile geometries do not respect
the assumptions made in the Hertz theory and lead to other more complicated
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forms of the contact surface. An approximation of the non-elliptical contact
surface by an elliptical one can lead to errors. Then more complicated mod-
els which are able to calculate non-elliptical contact surfaces have to be used.

The properties of the normal contact form the input data to the transversal
contact model which aims to calculate the friction forces in the contact sur-
face.

Figure 1.8: Calculation of the contact ellipse with contact radii a and b ac-
cording to Hertz for a circular rail (Rη2) and circular wheel profile (Rη1)(from
[52])

Tangential contact model Fundamental works in wheel-rail contact me-
chanics were developed by Kalker. His theory relates the slip in the contact
surface (longitudinal νξ, lateral νη, spin νζ) to the friction forces Tξ, Tη and
Tζ . The slip denotes the normalized relative velocity between the rail and
the wheel in the contact point and is computed from the nonlinear geometric
relations of the wheelset.

Then the coefficients for the friction model are computed as functions of the
slip, the normal forces and the form and dimension of the contact ellipse
(a, b). In his linear theory Kalker [44] developed a table including these
coefficients (Kalker coefficients Cij) as functions of the named parameters.
From the Kalker coefficients, the slip, the ellipse size and the shear modulus
G the friction forces are computed according to (1.1).
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This linearised relation between slip and friction forces (1.9) holds only for
small slip values. For higher slip values the friction forces reach a saturation
level. The reason for this saturation effect is the appearance of two different
zones in the contact surface: an adhesion and a slip zone. A point on the
wheel entering into the contact surface first adheres. Due to the relative
velocity between the wheel and the rail this leads to an increasing tangential
tension. When the tangential tension reaches its saturation level defined
by the Coulomb friction law the particle begins to slip. It enters the slip
zone. With increasing relative velocity the slip zone becomes larger until
it represents the whole contact surface. The tangential tensions reach their
maximum and saturation appears. It is considered in the theory of Vermeulen
and Johnson and in the nonlinear theory of Kalker (FASTSIM) based on a
discretisation of the contact surface. For more information it is referred to
[44] and [45].

Figure 1.9: Relation between slip and friction forces

1.1.2.4 Impact of nonlinearities on the modelling

The vehicle-track system is characterized by nonlinearities. This raises the
question whether the nonlinearities of the system have to be considered for
its modelling. In order to answer this question, the effect of the nonlinearities
on the dynamic behaviour is analyzed.
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In general, nonlinearities appear in all real systems. However, they have of-
ten only a weak influence on the system behaviour and can be neglected in
the modelling process. This allows to work with linear models and to take
advantage of all the properties of linear systems like superposition and modal
analysis.

For railway vehicles neglecting nonlinearities is in general not possible. Some
nonlinearities determine significantly the dynamic response of the vehicle. In
[97] the impact of nonlinearities in railway vehicle dynamics is outlined.

Wheel-rail contact nonlinearities Once again the wheel-rail contact has
to be named in the first place. Even if the profiles of the rail and wheel are
considered as circular and conical respectively the geometric relations de-
scribing the difference in the contact point radius, the contact-angle and the
elevation of the centreof gravity of the wheelset as functions of the degrees
of freedom are strongly nonlinear. One might use a Taylor development to
linearize these terms but for the vertical elevation a nonlinear term of sec-
ond order remains. The derivation of the nonlinear equations is outlined in
chapter 2.

The relation between the friction coefficients and the relative velocities also
shows a nonlinear characteristic in form of saturation. Only for small slip
values a linear relation can be assumed.

Suspension element nonlinearities The second important source of non-
linearities in railway vehicles is the suspension elements. When analyzed in
test rigs, rubber spring elements and the air spring show a significantly non-
linear behaviour. Nonlinearities are also caused by bumpstops which restrict
the vehicle movement. In the same way as for a single suspension element in
a test rig, inline measurements from the TGV might be used to detect and
characterize nonlinearities. However, due to the complexity of the system and
numerous sources of error, the analysis is difficult to perform. The detection
and identification of nonlinearities in mechanical systems is a current subject
in research and a large diversity of articles can be found. A good summary of
the current state of research and the different methods is given in [50] and [9].
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1.1.2.5 Detection of nonlinearities from inline measurements

When working through the methods and the examples for their application,
a difficulty becomes apparent. The presented examples always deal with very
simple mechanical systems with only a few degrees of freedom. Due to the
individualistic character of the nonlinear problems the application is often
limited to a special type of system.

Applications to complex systems like the vehicle-track system considered
here are rarely found. Exceptions are the detection and characterisation of
nonlinearities for an airplane structure treated in [25] and [27]. However,
in these references the measurements are performed in a test rig with well-
defined excitation signals. The transferability of the methods on the vehicle
track problem is often not possible. The track excitation is neither a periodic
excitation with a stationary spectrum nor a white noise signal. Besides, the
vehicle is exposed to correlated multiple excitations in form of the contact
forces at every wheel.

Eigenmodes from transfer functions The invalidity of the superposi-
tion principle is one important indicator for the influence of nonlinearities.
The same applies to the dependence of system modes on the excitation. For
linear systems the modes described by their eigenfrequencies and eigenforms
are system-inherent properties which do not depend on the excitation. For
nonlinear systems the modes identified from the transfer functions between
excitation and response depend on the excitation level. Due to the charac-
teristics of the real track, the distinction of section with different track defect
amplitudes is difficult to perform. However it is found that the level of the
wheel forces depends on the speed of the vehicle. Therefore, a comparison
of the transfer functions between wheel forces and acceleration responses for
different vehicle speeds give important information on nonlinearities. If the
effect of nonlinearities is studied for the model of the TGV, analytical track
defects with precisely defined properties offer interesting possibilities. The
response to sinusoidal excitation is especially suitable for the detection of
nonlinearities.

Another characteristic of nonlinear systems is the frequency dependence of
the homogeneous solution on the initial conditions and the occurrence of limit
cycles. While an undamped linear oscillator vibrates at its eigenfrequencies
and an amplitude defined by the initial condition, the homogeneous solution
of an nonlinear oscillator shows eigenfrequencies depending on the initial con-
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ditions. Using a perturbation method for solving the dynamic equation an
amplitude dependent frequency is found.

Correlation analysis The correlation function and the comparison be-
tween the H1 and H2 estimates of the transfer function, calculated from the
crossspectra Sij and autospectra Sii are an indication for nonlinearities.

H1 =
Syx(f)
Sxx(f)

H2 =
Syy(f)
S∗yx(f)

(1.2)

However, it has too be considered that lower values in the correlation function
and differences between the transfer function estimation can also be caused
by noise in the measurement data.

Higher order spectra An interesting criterion based on the transfer func-
tion is the Hilbert transformation applied in [9]. Differences in the Nyquist
plot between the transfer function and its Hilbert transform indicate nonlin-
earities. Hickey [37] proposes the extension of the cross-and autospectra to
higher order spectra. Bispectra and trispectra and their correlation functions
can be used to identify quadratic and cubic nonlinear modes in a system and
their coupling. He presents successful applications to simple systems with a
few degrees of freedom. If the approach is applicable to the complex vehicle-
track system, the high modal density and disturbing noise effects remains to
be figured out.

Restoring force surface method The same applies to the restoring force
surface method. In [33] restoring force plots are used to characterize the
frequency and amplitude characteristics of nonlinearities from experimental
measurements of a tire-vehicle suspension system. Since the restoring force
method only uses output acceleration measurements it can be used even
when input measurements are not available. Haroon [33] uses the relation
between accelerations in the sprung mass and the relative velocity between
the sprung mass and the unsprung mass for the charaterisation of nonlinear
damping forces.

In the same way the stiffness forces are characterized by using the relative
displacements. Displacement and speed are calculated by integrating the
measured acceleration in the bogie. For the vehicle-track system the forces
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are measured in the specially equipped measurement wheelsets. Accelera-
tions are measured in the axle boxes, the bogies and car bodies.

Glösmann [24] applies the Karhunen-Loève transform (KLT), developed in
order to find structures in random process data, on the measurements of a
railway wheelset on a test rig. The KLT describes the random process y
by a orthonormal basis Ψ as y = Ψα. The basis vectors Ψi are referred to
as characteristic functions and the realisation αi as weighting factors. Since
the wheelset dynamics is highly nonlinear the measurement of the different
degrees of freedom at the time step k is considered as one realization of a
multi-dimensional random process. The KLT is used to identify correlations
of the different degrees of freedom.

For the application of the KLT it is considered that each track excitation
causes a deviation of the wheelset trajectory. Since the track defects are
stochastic each initial trajectory position can be seen as the result of a ran-
dom experiment. Between two excitations at tk and tk+1 the dynamics are
assumed to be stationary and can be characterized by the results of the
Karhunen-Loève transform. For each stationary time interval ∆t = tk+1− tk
the weighting factors can be interpreted as the amplitude of the wheelset in
the direction of the actual eigenvectors described by the characteristic func-
tions. For the wheelset the characteristic functions describe the principal
directions of mouvements. In this way parameter changes of the system due
to nonlinearities can be identified as changes in the eigenvalues and eigen-
vectores.

1.2 Identification of the model parameters from
inline measurements

The analysis of the measurement data allows to characterize the dynamic
properties of the system. Together with the knowledge of the physical phe-
nomena the analysis of the measurement data provides the basis for the
construction of the vehicle model. The detection of nonlinearities from mea-
surement data is an important part of the model identification. Such a model
based both on the insight in the physical phenomena and on measurement
results is called grey-box model. Contrary to a white-box model which is
based on the exact description of the physical effects. Due to the complex
nature of many physical processes - the thermodynamic description of the air
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spring is a good example - these models become very complex. It is therefore
necessary to neglect terms and the attributed physical effects in the model
description whose effect on the considered dynamic behaviour is low. This
requires the analysis of measurements.

After the model has been built one is confronted with the task of identifying
the model parameters so that the model coincides best with the measured
response of the real system.

The parameter identification for a multi-body model of a TGV train repre-
sents the main objective of this work. The choice of an adequate identifica-
tion method will therefore be discussed more in detail. From the previous
considerations some important aspects can be pointed out:

- The multi-body model of a vehicle-track system is relatively compli-
cated due to the wheel-rail contact and different types of suspension
elements.

- Not all nonlinearities can be neglected in the model. Some of the
model parameters one aims to identify are therefore related to nonlinear
effects.

- The number of parameters the identification methods should deal with
is relatively high.

1.2.1 Choice of an adapted parameter identification
method

The aim of parameter identification methods is to determine the parameters
of a model so that it reproduces best the real system. All methods are
therefore based on a criterion which expresses the difference between the
real system and the model. The parameter identification methods can be
classified depending on how this criterion is defined. An important distinction
is made between time domain and frequency domain methods.

1.2.1.1 Time series analysis

ARMAX and NARMAX modelling An application which has been
used in control technique for a long time is the time-series analysis. The
model of the system is not expressed by a differential equation system but
by finite differences equations giving a discrete description of the model. A
dynamic model described by a differential equation of the form:
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Mü + Ku = f (1.3)

is transformed into a differences equation using the relations:

u̇(t) =
uk − uk−1

∆t
ü(t) =

uk − 2uk−1 + uk−2

∆t2
(1.4)

giving:

uk(
1

∆t2
M + K)− uk−1

2M
∆t2

+ uk−2
M

∆t2
= f (1.5)

This Autoregressive Moving average (ARX) is therefore of the form:

ui =
ny∑

j=1

ajui−j +
nx∑

j=1

bjfi−j (1.6)

By fitting the ARX model to the measured time series the coefficients are
identified. If noise is present the ARX model is extended to the ARMAX
model by the addition of a noise model to the system model.

In [66] and [67] this approach is used for the parameter identification from
excitation and response data in presence of noise and unmeasured sources of
periodic and random excitation. The parameters of the ARMAX model are
estimated by a multistage optimization algorithm and then used to calculate
the modal parameters. The method is applied to experimental data from
measurements on a beam. The application to a more complex real system
can be found in work of Lardies [56].

In order to enable the time series analysis for nonlinear system, the ARMAX
model has been extended to nonlinear cases. The identification of nonlinear
systems using NARMAX models is treated in [78]. The output is then cal-
culated from delayed input and output variables, the regressors, related by
a nonlinear function.

The application of the time series method to the TGV measurements reveals
several difficulties. Only if the ARMAX model is built from the continuous
differential equation system model the time-series parameters have a physical
meaning. They are expressed by the mass, stiffnesses and dampings of the
differential equation system. Consequently, if the ARMAX model is applied
directly on the measurement data the identified parameters do not have a
physical meaning. This represents an important disadvantage for the ap-
plication to a multibody model. Furthermore, for complex systems like the
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vehicle-track system with a high modal density, the order of the ARMAX
model that is required for the adequate description can increase significantly.

Temporal structural model updating A time domain approach which
is adapted for complex systems is the structural model updating. The sys-
tem can be described by a complex model with a large number of parameters
and nonlinear properties. This is the case for the multi-body model of the
vehicle-track system. The criterion is then defined as the distance between
the measured and modeled time responses. Typically the distance is ex-
pressed by the L1 or L2 norm.

The parameters of the model are identified by applying a parametric opti-
mization method which minimizes the distance between model and measure-
ment response. Kang [47] applies the structural modal updating to measured
accelerations from a relatively complicated structure. The identification al-
gorithm minimizes a misfit function defined by the time integral of the least
square error between measured and modeled accelerations. He pays attention
to the ill-posedness of the inverse problem due to noise and incompleteness
of measurements and proposes a new regularization function defined as the
time integral of the squared first time derivative of system parameters. It is
pointed out that the choice of proper regularization factors is critical for the
accuracy of the solution.

The identification of parameters in multi-body dynamic systems by struc-
tural model updating is also treated in [88]. A least square misfit function
is defined and minimized using the Levenberg-Marquard method. The work
deals with the question if an unique solution exists. This is the requirement
for the identifiability of the parameters.

1.2.1.2 Frequency analysis: application to nonlinear systems and
operational analysis

A drawback of structural model updating methods is the large amount of
data used and the sensitivity to measurement errors. Therefore a frequency
analysis can be advantageous. The identification is based on spectra or trans-
fer functions. Transfer functions between an input and output signal form
the basis of modal analysis methods.
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Linear case For linear systems, modal analysis has an outstanding impor-
tance in identification problems. If the system is excited with a known input
and responses are measured, the transfer functions can be calculated. By
different techniques the modal parameters (eigenfrequencies, eigendampings
and eigenforms) are extracted. Heylen [35] gives a comprehensive introduc-
tion into the theory of modal analysis and its application. In the case of
a linear system the transfer functions and modal parameters are inherent
properties of the system and describe completely the dynamic behaviour.
By superposition of all modes the response of the system can be rebuilt for
every excitation. The governing equations of the system are decoupled due
to the orthogonality of the modes.

When the dynamic equations are available the eigenvalues can be obtained
analytically by solving an eigenvalue problem. To the eigenvalues corre-
sponds a set of eigenvectors describing the shape of the mode. They con-
tain complex modal displacements and can differ in their phases for damped
systems. With the modal parameters it is possible to replace the coupled
dynamic equations of the systems by decoupled equations. Then the transfer
functions can be expressed analytically as the sum of the contributing modes.

It will be shown in chapter 4 that the nonlinearities of the vehicle-track sys-
tem can not be neglected. The application of the linear modal analysis to
this problem is therefore not possible. However, with the concept of nonlin-
ear normal modes presented in the following section some principles of the
modal analysis can be assigned to nonlinear systems.

Nonlinear case For nonlinear systems the previously described properties
do not hold. Transfer functions and modal parameters now depend on the
excitation level and the principle of superposition does not apply. This lim-
its the application of modal analysis to linear systems. However, approaches
using the principles of modal analysis for nonlinear systems have been devel-
oped.

One is the quasi-linearization of the system by considering a constant ex-
citation level. Then a local modal analysis for this excitation level can be
performed using all linear properties. Evidently, the identified modal param-
eters are only valid for the chosen excitation. For the vehicle-track system
this approach would require a constant vehicle speed and track excitation
level. It could therefore be used for vehicle tests on a test rig with constant
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speed. In this work inline measurements will be used for the identification.
Since the speed and the excitation are varying, this approach is unadapted.

Schmidt-Fellner [85] describes an approach for the identification of parame-
ters of nonlinear coupling elements based on transfer functions. It is assumed
that the system is composed by linear subsystems connected by nonlinear
coupling elements. Each subsystem is described by a linear differential equa-
tion system. The nonlinear coupling elements are taken into account as
external forces on the subsystems. The coupling parameters are identified
by minimizing the misfit function which is defined as the distance between
measured and simulated transfer functions.

The same approach is used by the identification through feedback of the out-
put methods (NIFO). Nonlinearities are considered as unmeasured internal
forces that act on the underlying linear system together with the measured
inputs.

Nonlinear normal modes The principle of normal modes for undamped
linear systems has been transferred to nonlinear systems ([72], [51], [73]).
The nonlinear normal modes (NNM) have a conceptual relation to linear
modal modes even though their properties differ significantly. One difference
arises from the frequency-energy dependency of nonlinear systems described
before. This prevents a separation between space and time in the governing
equations. In [72] the principle of nonlinear normal modes is applied to the
modal analysis of nonlinear structures. A main task of his work is the ex-
traction of nonlinear normal modes (NNM) from experimental data.

Nonlinear normal modes can be represented in different ways. In the phase
plot the velocity is plotted as a function of the displacement for a degree of
freedom. While for a linear system this plot shows a circular form the phase
plot of a nonlinear system is deformed. In a similar way the displacements
of two degrees of freedom can be plotted. Due to the nonlinear relations
between the degrees of freedom curved lines are obtained. They illustrate
well that the concept of orthogonality of modes is not valid for nonlinear
systems. A representation proposed in [72] is the frequency-energy plot. The
eigenfrequencies of the modes are shown as a function of energy brought into
the system. Figure 1.10 shows an example of a frequency-energy plot for a
2dof oscillator. It is noticed that the modes behave linearly until a certain
energy level is attained. Than the eigenfrequency of both modes increases.
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Figure 1.10: Frequency-energy plot of a system with two nonlinear normal
modes (from [72])

Beside the frequency-energy dependency mentioned before nonlinear normal
modes have other properties which distinguish them from linear modes. One
is the modal interaction. Internal resonances in the system lead to an energy
transfer from the excited mode to other nonlinear modes. The eigenfrequency
of these modes can be very different from the excitation frequency. This
coupling explains why even if the system is exited with only one frequency
several frequencies can appear in the response spectra. A consequence and
further property of nonlinear normal modes is that their number can exceed
the number of degrees of freedom of the system. For linear systems this is
not possible.

Excitations types The results which can be obtained from modal anal-
ysis depend on the excitation signals used. Originally, the modal analysis
has been developed for test rig measurements with well-defined excitations.
These excitations are applied artificially by a shaker or a similar device and
are chosen according to the demand of the analysis.

The most exact results are received if the measurements are repeated a large
number of times for a harmonic excitation signal with increasing frequency
(stepped or swept sine excitation in [35] and [26]). In this way only the modes
which are in resonance at the actual frequency are excited. The modal pa-
rameters can be extracted with a good precision. Since nonlinear effects can
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not cancel due to averaging the sine stepped is used for the detection of non-
linear behaviour. P. Verboven [104] uses the multi-sine excitations for the
detection, qualification and quantification of nonlinear distortions in FRF
measurements.

Disadvantageous are the high costs since the measurement has to be repeated
for each discretization step of the frequency. By using a white noise excita-
tion all modes are excited uniformly since the amount of energy going into
the system is uniformly distributed over frequency. Broad band excitation
reduces significantly the cost but can lead to difficulties in the extraction of
the model parameters if the modal density is high and the responses of sev-
eral modes overlaid. Besides, random excitation is exposed to leakage since
the signal is not periodic within the observation time window. Broadband
excitation results in a linearized estimate of the system since nonlinear effects
different in every time section tend to chancel due to averaging.

For the vehicle-track system, measurements in a test rig with a well defined
excitation signal can not be performed. Instead, the measurements are per-
formed during operation and the excitation signal is caused by the track
irregularities. It is therefore neither a signal with only one frequency nor
a fully random white noise signal. From spectral analysis it is found that
the frequency content of the track excitations is distributed non-uniformly
in the frequency domain of interest. In consideration of these difficulties,
modal analysis techniques for operational modal analysis have been devel-
oped. They take into account complex excitation signals or even the case
that excitation signals are not known at all. Another characteristic of the
real track excitation is the presence of multiple excitations which are corre-
lated to each other. This is due to the wheelsets running of the irregularities
at a defined distance. In order to calculate the transfer function between
one force and response correctly the simultaneous force signals have to be
uncorrelated.

Considering these properties of the vehicle-track system, several difficulties
become obvious when applying modal analysis: first the measurements are
not performed in a test rig under well-defined conditions and the track ex-
citation represents a not fully random non-stationary signal. Secondly non-
linearities exist in the system. For nonlinear systems, transfer functions and
modal parameters depend on the excitation making basic concept of classical
modal analysis invalid. Finally, the train is exposed to multiple correlated
excitation forces perturbing the transfer function computation.
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New concepts allowing to apply modal analysis for nonlinear systems and
in-operation structures have been developed but are often restricted in their
applicability. Gontier [28] uses an energetic criterion for quantifying the con-
tribution of modes in the framework of a stochastic modal analysis. Industrial
applications for modal testing of structures under operational conditions are
described in [36]. In general, operational modal analysis is often limited to
cases where the excitation can be described by stationary white-noise signals
thus assuming all modes are excited uniformly.

Conclusion: application of the structural model updating method
Based on the properties of the presented identification methods, the choice
for the application on the vehicle-track system is made. Taking into account
the nonlinearities and the measurement data received from operational mea-
surements, the structural modal updating based on the direct usage of time
responses seems to be most suitable.

A comprehensive introduction to the identification of parametric models is
given in [99]. It describes the different steps of the parameter identification
procedure aiming to answer the following questions: which criterion is used
for the misfit function describing the difference between model and measure-
ment? Which parameters are considered in the optimization process? Which
parametric optimization method is used for the minimization of the misfit
function?

In the following section these questions are discussed and the different steps
of the structural model updating outlined.

1.2.2 The procedure for the parameter identification
using the structural model updating method

The aim of this section is to propose a survey over the methods used for the
different steps of the structural model updating

1.2.2.1 Misfit function criteria

The distance between measurements and model results is described by a
misfit function defined in the time domain. Depending on the norm used
and the available knowledge on the noise corrupting the measurement data
different definitions of the misfit function can be used.

• Least square criterion
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Most commonly quadratic misfit functions based on least squares are
used. For every time step the error vector e(p, t) between model and
measurement is computed e(p, t) = xmeas(t) − xmodel(t, p). Using the
square of the L2 norm and a weighting matrix W the cost function
value is calculated and integrated over the time length T

Jls(p) =
∫ T

0
eT (p, t)We(p, t)dt (1.7)

W is a weighting matrix defining the relative importance of the different
measurement channels on the cost function. If W is chosen diagonal
the cost function can be written as a sum over the channels k and time
steps tl:

Jls(p) =
1
N

∑

k

∑

l

wlk[xmeask(tl)− xmodelk(tl, p)]2 (1.8)

The weighting can be used to normalize the cost function by choosing
wlk = [xmeask(tl)]−2 or to reduce the effect of measurement noise by
using the result of the Maximum likelihood criterion described below.

• Least modulus criterion

Another criterion is the least modulus based on the absolute value
norm L1. This criterion lays less importance to large errors between
measured and simulated results.

Jls(p) =
1
N

∑

k

∑

l

wlk|xmeask(tl)− xmodelk(tl, p)| (1.9)

In the same way as for the least square criterion weighting factors can
be used. wlk = 1/|xmeask(tl)| leads to relative errors. One disadvantage
of the least modulus criterion is the non-differentiability preventing the
use of series expansions for the cost function.

• Maximum likelihood criterion

If the measurement data are corrupted by noise more sophisticated cost
functions can be defined. They are based on the maximum likelihood
method and take into account the measurement noise. In [99] a com-
prehensive introduction to this method can be found.
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The maximum-likelihood estimate maximizes the misfit function:

jml(p) = πx(xs|p) (1.10)

Normally the term πx(xs|p) describes the probability density of the
random vector generated by a model with the parameters p. When
used as an optimization criterion, the vector xs is fixed and describes
the measured response while p are the unknown parameters. πx(xs|p)
therefore becomes a function of the parameters p. The maximum like-
lihood method is based on the maximisation of this likelihood function
with respect to the parameters p taking into account measurement
noise. Consequently, if prior information on the measurement noise is
available it can be considered in the cost function criterion definition.

In the case of a Gaussian noise with known variance the misfit func-
tion criterion is obtained from the maximum likelihood method. It is
assumed that the measurement data x(ti) satisfies:

x(ti) = xm(ti, p∗) + ǫi (1.11)

In this formulation the vector xm(ti, p∗) describes the model result for
the true parameter values p∗. ǫ represents the measurement noise with
known variance σ. Based on the assumption that the noise ǫi has a
Gaussian distribution, its probability density function is described by:

πǫi
(ǫi) = (2πσ2

i )−0.5 exp[−1
2

(
ǫi
σi

)2] (1.12)

Assuming that the difference between the model and the measurements
is only given by the Gaussian noise ǫ the likelihood simplifies to the
density function of ǫ. Its maximization results in the misfit function:

Jls(p) =
1
2

nt∑

i=1

[
x(ti)− xm(ti, p)

σi
]2 (1.13)

This results corresponds to the misfit function obtained from the least
square criterion with a weighting factor wi = 1/σ2

i . The weighting fac-
tor defined at each time step ti for a channel is given by the inverse of
the noise variance. This has the effect that the influence on the misfit
function is reduced when the measurement is corrupted by noise.
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• Method based on correlation

If the measurement signals are corrupted by noise, correlation based
misfit function criteria are suitable. In his work Hu [39] has applied
this approach to nonlinear systems. It is based on the observation that
the noise signals do not correlate after a short time while the vehicle
response signals are correlated.

The least square method minimizes the sum of all modelling errors
e(p, t) which is equivalent to the minimization of the trace of the cor-
relation matrix Re(τ) for τ = 0.

J(p) = E[eT (t)e(t)] = trace[Re(0)] (1.14)

The result of the minimization is corrupted by the noise contained in
the error signal e(p, t). By taking advantage of the fact that the noise
is not correlated after a short time the bias error due to noise can be
reduced if the correlation matrix for τ 6= 0 is used:

J(p) = E[eT (t+ τ)e(t)] = trace[Re(τ)] (1.15)

The difficulty is to find a τ for which the noise is uncorrelated while
the response signals are still correlated.

An important requirement for the application of this method is that the
excitation of the system is described by a stationary stochastic signal.
As outlined in this work this is not the case for real track excitation
signals. High frequency noise in the acceleration signals is removed due
to the low pass-filtering at maximal 20Hz.

1.2.2.2 Regularization

The identification of the model parameters from the measured response re-
quires the solution of an inverse problem. In general, the correct result can
only be obtained if the problem is well-posed. A well-posed problem is a
problem for which a solution exists which is unique and depends continu-
ously on the data.

The existence of several solutions requires the choice of one solution using
additional information. More problematically is the loss of continuity. If the
solution does not depend continuously on the data even a small error in the
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measured response can have a large effect on the solution. These character-
istics of inverse problems are outlined in [48] and [49]

The regularization of an ill-posed inverse problem allows to obtain a well-
posed problem. By adding a regularization term to the misfit function one
aims to assure a unique and continuous solution to the problem. In return a
bias is introduced. This error is accepted when it allows the convergence to
a solution.

Tikhonov regularization A well-known regularization method is the Tikhonov
regularization. It is based on the introduction of a penalty term using a priori
information of the parameter values p:

Jls(p) =
1
2

∫ T

0
‖xmeas(t)− xmodel(t, p)‖2dt+

1
2
α‖p− p ∗ ‖2 (1.16)

where α is the regularization parameter. The idea is that the penalty term
will attract the parameter values towards a reasonable region of the param-
eter space defined by the a priori parameter estimation p∗. This problem
assures a unique solution. Studies and application of the Thikhonov reg-
ularization are numerous in literature. In [49] and [42] an introduction to
the Tikhonov regularization is given. [17] studies the convergence rates for
the Tikhonov regularization. Depending on the noise in the measured data
convergence rates for the regularized solution are defined.

The accurate choice of the regularization parameter α is a crucial step when
applying the Tikhonov regularization. Evidently, if it is chosen too small
the regularization has no influence on the solution and the inverse problem
remains ill-posed. Too important values will force the parameter to converge
to the initial estimation p∗. The parameters can not converge to the optimal
solution and the optimization then becomes useless. The aim is therefore to
find a compromise between a stable convergence and a bias which is as small
as possible. An approach for the choice of the regularization parameter is to
take the measurement noise into account.

Morozov discrepancy principle In order to choose the regularization
parameter α the Morozov’s discrepancy principle [2], [49] is used in this
work. The discrepancy principle is based on the assumption that the mea-
surement data are corrupted by noise. Even if the model represents perfectly
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the real system an error persists due to the measurement noise. It is there-
fore reasonable to choose a regularization factor which causes a bias of the
same dimension as the measurement noise without losing the precision of the
solution. With x the ideal response and xδ the available noisy data the noise
level is defined as:

‖x− xδ‖ ≤ δ (1.17)

The condition for the choice of the regularization parameter is therefore given
by a constraint on the result of the minimization:

‖xmodel(popt(α))− xδ‖ = δ (1.18)

popt(α) is the parameter vector obtained from the minimization of the misfit
function with α as regularization parameter.

The determination of the regularization factor α requires therefore the com-
putation of the root for the nonlinear problem:

‖xmodel(popt(α))− xδ‖ − δ = 0 (1.19)

If the model can be described by a linear equation system of the form Ax = y
an analytical solution can be found. For the nonlinear equation system the
root is determined numerically.

1.2.2.3 Detection of identifiable parameters from sensitivity anal-
ysis

Before choosing the parameters for the identification process an important
question has to be considered: Which parameters are identifiable from the
available measurement data. In [99] identifiability is defined for the idealized
case that the model and the real system have an identical structure and that
the measurement is noise free. In this case the model is able to reproduce
exactly the measurements if the true parameter values are chosen for the
model parameters. Structural global identifiability is fulfilled under the con-
dition that the identical input-output behaviour implies the same parameters
values for the model and the system:

M(pmodel) = M(ptrue) ⇒ pmodel,i = ptrue,i (1.20)

If this is valid only around a neighbourhood of ptrue structural local identifia-

bility is fulfilled. In the case that several parameter vectors lead to the same



34 1 Modelling and parameter identification of a TGV train

input-output behaviour of the model, they are not structurally identifiable.

From literature [99] and [100] several methods for testing the identifiability
of parameters are available. Some apply only to time-invariant linear models
represented by state-space models while others can be used for non-linear
models also. However, all methods are based on the analytical equation sys-
tem of the model. If the model equations are not available or the system is
too complex the identifiability of the parameters is studied using a sensitivity
analysis. It is based on a simple principle: the evaluation of the system is
repeated for different values of one or several parameters and the influence
on the system response is compared. Parameters which have an influence on
the response are identifiable.

It is distinguished between deterministic local methods and probabilistic
global methods.

1.2.2.3.1 The screening method The factor screening method is a de-
terministic method where only one parameter varies while the others are held
constant as illustrated in figure 1.11. The variation is performed between the
minimal and the maximal value of the tolerance. This approach allows to cal-
culate the influence of one parameter on the misfit function. Its advantage is
the easy graphical representation of the solution surface of the misfit function.

Figure 1.11: Screening method: the parameter pi is varied while the others
are held constant (cal: number of calculations)

However, the sensitivity obtained from the deterministic screening approach
has several drawbacks. The influence of a parameter on the misfit function
does not only depend on the gradient obtained above but also on the vari-
ability of the parameter. In order to consider the variability of the parameter
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values the sensitivity analysis has to be based on the variances.

Besides, the screening method can not take into account interactions be-
tween more than two parameters on the misfit function. These interactions
are important for systems that are nonlinear in their parameters. Then the
superposition principle is not fulfilled and the effect of changing several pa-
rameter values simultaneously is different from the sum of their individual
effects. Evidently, the sensitivity obtained from the screening method is only
valid for one parameter set with fixed values.

1.2.2.3.2 Consideration of nonlinear coupling by the use of global
methods In order to overcome these limitations, probabilistic global meth-
ods have been developed. These methods take into account the parameter
variances and the interactions. They allow all input parameters to vary
simultaneously by treating the input parameters as random variables with
assumed probability density distributions. Then a Monte-Carlo calculation
is performed on the multi-body model. As a result the probability density
distribution of the misfit function is received. The principle is illustrated in
figure 1.12.

Figure 1.12: Principle of global optimization: the input parameters are given
as probability density functions. As a result the probability density function
of the misfit function is obtained

As inputs the global methods require the probability density functions of
each parameter. For the suspension parameters their determination repre-
sents a difficulty. Ideally the parameter has been measured for many suspen-
sion elements of the same type allowing to determine the probability density
function from a statistical analysis. For the TGV suspension elements these
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measurements are not available and the probability density functions have
to be estimated. Under the assumption that the variability of the suspension
parameters is caused by a large number of independent random effects the
central limit theorem holds and Gaussian distributions are chosen. The mean
value and the variance of the distribution are based on the nominal values
and tolerances specified by the manufacturers.

Another difficulty with global methods is their enormous computational cost
due to the probabilistic operators which require a large number of model
evaluations. Efforts have been undertaken to develop global methods de-
manding less computational cost. One result is the Morris method presented
in the following section.

Morris method The Morris method is a one-factor-at-a-time method which
can take into account nonlinear interactions between the parameters. The
method proposes two measures: one which represents the overall effect of the
parameter and another estimating the second-and higher order effects of the
parameter.

The basic idea of the Morris method is to repeat a local one-factor-at-a-time
method several times for randomly chosen data sets. This allows to take into
account the interactions between the parameters. As described before, the
one-factor-at-a-time method describes the influence of one parameter on the
misfit function J when the others are fixed. The gradient of J with respect
to pi is therefore:

∇pi
J =

J(p1, ..., pi−1, pi + ∆p, pi+1), ..., pn)− J(p)
∆p

(1.21)

This calculation is repeated for randomly chosen samples of the parameter
set p giving a distribution of elementary effects for each parameter. The
average of this distribution describes the overall effect of the parameter and
the standard deviation the interaction between the parameters. A high value
of the standard deviation means that the elementary effect of the parameter
depends strongly on the values of the other parameters. If the interaction is
low the elementary effect is not influenced by the other parameters and the
standard deviation is small.

The cost needed for the computation of the sensitivity is an important cri-
terion. Basically, if r samples are calculated for a set of n parameters the
number of misfit function evaluations is eval = 2nr. Morris proposes an
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approach which reduces the computational cost.

The samples of the parameter vector are constructed outgoing from an initial
vector. The following samples are obtained by changing only one component
with respect to the previous vector. The component is randomly selected
among all parameters apart the ones which have been varied before. There-
fore two consecutive samples differ only in one component and each compo-
nent has been varied at least once. The parameters are varied using a small
number of values which are chosen within the range of tolerance. Figure 1.13
illustrates the sampling procedure for the case of two parameters (k=2) and
5 value levels (p=5). The sampling procedure is repeated 4 times (r=4).

Figure 1.13: Sampling for Morris method with two parameters x and y (k=2,
p=5, r=4)

For more details it is referred to [82].

Variance-based methods The Morris method presented in the previous
section has the main advantage of low computational cost. The required
number of model evaluations is low. In return, its precision is less high. The
Morris method provides a sensitivity measure which tends to be qualitative.
If the exact quantitative effect of each parameter on the misfit function is of
interest variance-based methods have to be used. Their main disadvantage
is the enormous computational cost.

Variance-based methods use Monte-Carlo calculations with probability den-
sity functions as inputs and outputs. If all parameters are left free to vary
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over their range of tolerance the unconditional variance V (J) of the misfit
function is obtained. Then, by fixing one parameter to its true value and per-
forming the Monte-Carlo computation the reduction of the misfit function
variance due to the fixed parameter is received. This Monte-Carlo calcu-
lation is repeated n times where n is the number of parameters. In each
calculation one parameter is fixed. Now importance factors can be defined
which take into account the nonlinear interactions between the parameters.
The approach is illustrated in figure 1.14.

Figure 1.14: Probabilistic sensitivity analysis considering nonlinear interac-
tions

The result received for each calculation is the variance of the misfit function
under the condition that pi is fixed at its true value p∗i :

V (J |pi = p∗i ) (1.22)

If a simulation and not the real measurements are used as reference in the
misfit function, the true parameter values are known and the conditioned
variance from equation (1.22) can be used directly. If instead real measure-
ments are used the true values p∗ are not known. In this case it is required
to average the conditioned variance V (J |pi = p∗i ) over all possible values of
pi giving the mean value of the variance:

E(V (J |pi)) (1.23)

Due to the relation:

V (J) = E(V (J |pi)) + V (E(J |pi)) (1.24)

it is possible to use the variance of the mean value of the misfit function Vi

as a measure for the importance of the parameter pi. The importance factor
becomes:
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Si =
Vi

V (J)
=
V (E(J |pi))

V (J)
(1.25)

This importance measure is called first order effect. It represents the effect
of one parameter in a decomposition of the misfit function variance:

V (J) =
∑

Vi
︸ ︷︷ ︸

First order effect

+
∑

i

∑

j>i

Vij + ... + V1,2,...,k (1.26)

By dividing the equation with V (J) the sensitivity indices are obtained as:

∑

i

Si +
∑

i

∑

j>i

Sij + ... + S1,2,...,k = 1 (1.27)

Interactions are described by higher order effects on the misfit function vari-
ance. The effect of the interaction between two parameters pi and pj on the
misfit function is given by:

Vij = V (E(J |pi, pj))− V (E(J |pi))− V (E(J |pj)) (1.28)

The term V (E(J |pi, pj)) represents the joint effect between the parameters
pi and pj by fixing both parameters in the Monte-Carlo calculation. By sub-
tracting the first-order effects of each parameter from the joint effect the so
called second order effect is obtained. Consequently, third-and higher-order
effects are evaluated by fixing three parameters and more.

An important drawback of the variance-based sensitivity analysis is the enor-
mous computational cost. Therefore different estimates of the V (E(J |pi))
calculation have been developed. One of them is the Sobol method which
can be found in [82].

For the approaches presented above another simplifying assumption is made.
It is assumed that the parameter values are not correlated. For each compu-
tation step of the Monte-Carlo simulation the parameter values are chosen by
a probabilistic operator according to their probability density distribution.
A possible correlation between the parameter values is not taken into ac-
count. In [105] the effect of correlated parameters on the sensitivity analysis
is studied.

Correlation between parameters If available, correlation between pa-
rameter values as shown in figure 1.15 can be obtained from statistical anal-
ysis of measurements or from physical and technical considerations. For the
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TGV, correlation measurements are not available. From the technical point
of view the assumption of independence is justifiable. Variabilities in the sus-
pension parameters will mainly depend on production or weather condition
but less on other parameter values. However, interactions between different
elements leading to a correlation of the parameter values can not be excluded
either. In this works a determination of these interactions is not possible.

Figure 1.15: Probabilistic sensitivity analysis

1.2.2.4 Minimization of the misfit function

Local versus global methods When the misfit function is defined and
the identifiable parameters found one can turn toward the solution of the
inverse problem. By minimizing the misfit function one aims to identify the
parameter values for which the model reproduces best the measured system
response. The misfit function is minimized using an optimization method. In
literature the optimization methods are numerous. It can be distinguished
between local deterministic methods and global methods based on proba-
bilistic operators. Local methods can be further classified in direct methods
which only use the misfit function and gradient methods. Gradient methods
seek the minimum of the misfit function by use of the gradient.

The choice of a suitable optimization method depends on the properties of
the system and the model. Important properties are the number of parame-
ters and the form of the solution surface of the misfit function which might
have one or several minima. If the misfit function has only one minimum
or if it can be assumed that the starting point is situated in the attractor
region of the global minimum, local optimization methods are the suitable
choice. Due to their deterministic operator the convergence to the minimum
is guaranteed. Instead, if the misfit function has several minima local meth-
ods converge to the closest local minimum. They are not able to leave it in
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order to find a better minimum.

Therefore, if several local minima exist global optimization methods have
to be used. Thanks to their probabilistic operators they can leave a local
minimum. One of their drawbacks is the calculation cost due to the large
number of iterations needed. Besides, the convergence to the global minimum
is not guaranteed and no well defined convergence criterion exists. Syrjakow
[94] therefore proposes the combination of a global and a local optimiza-
tion method. The same approach is pursued by Ismael [40] who combines a
heuristic global method (particle swarm) with the pattern search method for
local optimization. This new designed particle swarm pattern search solver
has been compared to other global optimization methods and showed good
features. Among the large amount of references on optimization methods,
the general introductions of Geiger [21] and Nocedal [69] are recommended.

Gradient calculation For some optimization methods the cost increases
significantly with the number of parameters. Others are less dependent. If
gradient-based optimization methods are used, the calculation of the gradi-
ent causes most of the computational cost. The chosen technique for gradient
calculation therefore plays an important role. Finite differences offer a simple
approach but become very costly if the number of parameters increases.

An analytic calculation of the gradient from adjoint equations reduces the
cost. A comprehensive introduction can be found in the inverse engineering
handbook [102]. In [23], [14], [21], [76], [71], [1] and [60] the construction and
application of adjoint states on optimization problems is outlined. Martins
[60] uses adjoint states for an airfoil shape optimization problem character-
ized by a large amount of parameters and complex system equations. The
adjoint approach allows to compute the gradient of the misfit function at the
cost of an equivalent flow solution. In [71] the adjoint state approach is used
for the computation of the second order sensitivities of the objective function
in an viscous flow problem. The second order sensitivities are needed in the
Hessian matrix used in the Newton optimization method. By using an ad-
joint approach the computation of the Hessian matrix requires the solution
of N+1 flow system solutions for N design parameters.

The use of the adjoint approach for models solved with Runge-Kutta schemes
is treated in [1]. The adjoint solution of a nonlinear model depends on the
direct model response. Since the adjoint model is integrated backwards in
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time the computation of the direct response has to be performed before. In
order to obtain high accurate adjoint solutions an interpolation of the for-
ward model response is needed. Protas [76] deals with the regularization of
adjoint analysis.

In the references named above the adjoint state approach is used in the field of
flow mechanics. Applications of the adjoint method to multibody problems
are less numerous in literature. Ding [16] computes the first- and second-
order derivatives of a misfit function for a multibody model. The results are
compared and validated with the direct computations of the derivatives. In
his work Sandel [84] uses the adjoint method for the sensitivity analysis of
a simple multi-body model. He shows the good performance of the adjoint
method in the case of a large number of constructive parameters. The non-
linearity of the multibody model is taken into account.

The automatic/algorithmic differentiation of differential equation systems is
another interesting approach for the gradient calculation. In the book of
Griewank [31] its principles and practical implementation are treated com-
prehensively.

Noise and other sources of error can significantly alter the parameter identifi-
cation results. Approaches to analyze the uncertainty attached to the results
are summarized in [99]. Measurement noise is an important error source.
Depending on if the noise variance is known or not different approaches for
the calculation of confidence region of the identified parameters are available.
Beside, other error sources specific to the studied identification problem have
to be considered. The lack of information about the measurement setup or
unknown excitations has to be mentioned in this context.

In the following sections some relevant methods are presented.

1.2.2.4.1 Application of local methods Since local methods are based
on deterministic algorithms using the misfit function and its derivatives they
show generally a faster convergence than global methods. When possible
they should be preferred. The requirement is however, that the misfit func-
tion is convex or that the starting point is assumed to be situated in the
attractor region of the global minimum (figure 1.16) .

A method which only uses the misfit function is called direct method. A
widely used method is the pattern search method introduced in the following
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(a) (b)

Figure 1.16: Misfit function: convex solution surface (a), solution surface
with local and global minima (b)

section. Gradient methods instead, according to their name, require also the
gradient of the misfit function. They get by with a lower number of function
evaluations but require the calculation of the gradient.

The pattern search method The pattern search method is based on the
principle of slightly varying the parameters at every step until a smaller value
of the misfit function has been found. The method stands out due to its good
convergence properties, low memory demand and a simple algorithmic struc-
ture. The pattern search method is outlined in the work of Lewis [58].

In order to initialize the algorithm, initial parameter values, initial step sizes
and a tolerance ǫ are chosen. The optimization is based on two types of
steps: first, each parameter is varied with a defined stepsize hi and the misfit
function values are compared. If a reduction of the misfit function is found
for a step an extrapolation in the direction vi of this step is performed. This
allows to choose a suitable step length. The combination of these two types
of steps leads to a fast convergence.

The step size hi and the direction vector vi are adapted to the misfit function
during the minimization process. However, the convergence speed depends
strongly on the choice of the initial step length which should be adapted to
the problem. If the initial step length is chosen too small many iterations
are needed in order to increase them. Besides, too small step sizes can cause
problems if the misfit function surface is perturbated forming a solution sur-
face with many local minima.
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1.2.2.4.2 Application of gradient methods A faster convergence is
obtained if information about the derivatives of the misfit function is used.
This is the main feature of gradient methods. They use the gradient and
optionally the Hessian matrix of the misfit function for the determination of
the search direction. A detailed introduction to these methods can be found
in the books of Nocedal [69] and Geiger [21].

In general two groups of gradient methods can be distinguished: line search
methods and trust region methods. Line search methods require two compu-
tational steps. In a first step the search direction in which the misfit function
decreases is determined. Then a unidimensional minimization is performed
along this direction. Trust region methods are based on the definition of a
trust region around the actual parameter value in which the misfit function
can be approximated by a quadratic function. Then the minimum in this re-
gion is sought. Trust region methods thus require the solution of a quadratic
optimization problem with constraints. In return, a method for the choice of
the step length is not necessary.

In table 1.1 an overview of the different gradient optimization methods is
given.

The steepest descent method is the simplest approach. It is based on a
first order expansion of the misfit function gradient. Basically, the search
direction is simply chosen as the opposite direction of the maximal slope or
gradient respectively. For the choice of the step length different approaches
can be considered. The simplest one, a constant step length, is not suit-
able. A small step length leads to a very slow convergence while for large
step lengths the first-order approximation is no longer valid. Instead a uni-
dimensional optimization is performed in the search direction in order to
identify the step-length.

The Newton method implemented in the Matlab function fmincon minimizes
a quadratic approximation of the misfit function m(dk). The search direc-
tion is given by the first and second-order derivatives. The Newton method
requires the calculation of the Hessian matrix which can be computationally
expensive. This can be avoided if a specific estimation of the Hessian matrix
is used such as the one implemented in the Quasi-Newton method.
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Gradient methods

Method Description

Steepest de-
scent method

For the line search direction the negative gradient value is
used:

dk = −∇Jk/||Jk|| (1.29)

Unidimensional minimization in line direction
Newton Minimization of quadratic approximation of the misfit func-

tion

m(dk) = J(pk) + dT
k∇J(pk) +

1
2

dT
k∇2J(pk)dk (1.30)

with line search direction:

∇m(dk) = ∇J(pk) +∇2J(pk)dk = 0 (1.31)

dk = −(∇2J(pk))−1∇J(pk) (1.32)

Quasi Newton For the calculation of the line search direction an estimation
is used for the Hessian matrix:

dk = −B−1
k ∇J(pk) (1.33)

BFGS is a common method for the estimation of Bk.
Nonlinear
conjugate gra-
dient methods

For the line search direction the conjugate direction is used:

dk = −∇J(pk) + βndk−1 (1.34)

Unidimensional minimization in search direction. Different
formulas for βn are available: Fletcher-Reeves:

βn =
(−∇J(pk))T (−∇J(pk))

(−∇J(pk−1))T (−∇J(pk−1))
(1.35)

Levenberg-
Marquardt

The method is based on Newton and uses a Tikhonov regu-
larisation.

dk = −[∇2J(p0)T∇2J(p0) + νI]−1∇2J(p0)T∇J(p0) (1.36)

Trust Region Quadratic approximation m of J in trust region. Acceptance
criteria for trust region radius rk:

ρk =
J(pk)− J(pk + dk)

m(0) −m(dk)
≃ 1 (1.37)

and optimization :

min mk(dk) = J(pk) +∇J(pk)dk +
1
2

dT
k Bkdk ‖dk‖ ≤ rk

(1.38)

Table 1.1: Gadient methods
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1.2.2.4.3 Methods for the calculation of the gradient The gradient
methods require the computation of the first- and eventually second-order
derivatives of the misfit function relative to the design parameters. For a
complex system with a large number of parameters as the one considered in
this work, the gradient computation can represent the most expensive step
in the optimization algorithm. The choice of an adapted method for the
computation of the gradient is therefore crucial and will be outlined in this
section.

Evidently, a simple but rarely the best way of obtaining approximated nu-
merical values of the misfit function gradient is the finite differences method.
For the parameter value p the gradient is estimated by evaluating the mis-
fit function at one or two other points aside. In equation (1.39) the misfit
function values at p and p+ h are used:

D+hJ(p) =
J(p+ h)− J(p)

h
(1.39)

For a large number of parameters this method is very costly. Besides, the
choice of the steplength h is difficult. If h is too large, then truncation errors
become significant. Even if h is optimally chosen, the derivative of the misfit
function J will be accurate to only about 1/2 or 2/3 of the significant digits
of J .

Therefore alternative computation methods have been studied. If the differ-
ential equations describing the system are available, analytical approaches
can be used. For simple linear-in-parameters systems the derivation of the
dynamic equations relative to the parameters is straight forward. However, if
the equations are complex and nonlinear in the parameters the analytical cal-
culation of the gradient becomes a difficult task. From the literature survey
on sensitivity analysis and parameter identification two analytical methods
appear suitable: the adjoint state method which is in particular adapted to
systems with a large number of parameters and the algorithmic differentia-
tion method.

Gradient calculation from adjoint state approach The main advan-
tage of the adjoint state method is that its complexity does not depend on
the number of parameters. This makes it suitable for problems requiring
the identification of a large number of design parameters. Typically these
problems appear in flow mechanics where numerous applications were found
in literature. The application to complex nonlinear multi-body model is still
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at the beginning.

The aim of the adjoint method is to calculate the gradient of the misfit
function J(x(p), p) used in the optimization algorithm:

∇pi
J(x(p),p) = 0 for i = 1...n (1.40)

n: number of parameters

The misfit function depends directly on the parameters pi and on the response
x(p) of the system. Therefore, the total derivative of the misfit function with
respect to the parameters pi gives:

dJ

dpi

=
∂J

∂pi

+
∂J

∂x

dx

dpi

+
∂J

∂ẋ

dẋ

dpi

(1.41)

In this equation the derivative of the forward model response x with respect
to the parameters are not known. The adjoint approach allows to eliminate
these derivatives by using the Lagrangian equation given by the sum of the
misfit function and the state equation times the adjoint state solution. If
the stationary point of the Lagrangian equation is found one also obtains the
minimum of the misfit function.

Gradient calculation from automatic differentiation (AD) From lit-
erature another interesting approach for the computation of the gradient is
retained: the automatic differentiation. A detailed description of this method
can be found in [31].

The code describing the equations of motion of the multibody model is rewrit-
ten as a sequence of basic operations. Then the gradient is calculated by
applying the chain rule. Finally, AD gives a program code for the calcula-
tion of the gradient. It does not apply a symbolic expression for the gradient.

Several AD packages are available. Outgoing from the program code of the
model they produce a transformed program that calculates the derivatives.
The accuracy of the gradient satisfies the same accuracy as the response cal-
culated from the original program. Generally, AD tools are able to transform
even very complex program structures including loops. This is of importance
for the multibody models used here which are solved by a numerical integra-
tion algorithm like the Runge-Kutta algorithm.
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The principle of automatic differentiation is based on transforming the pro-
gram in a sequence of basic operations resulting in an evaluation trace. First,
the input variables are defined. Then the result of each basic operation is
represented by an intermediate variable. Each intermediate variable is there-
fore simply calculated from previously defined variables by applying a basic
operation.

Two different principles of automatic differentiation can be distinguished:
the forward and the reverse mode.

The forward mode The forward mode calculates the derivatives of every
intermediate variable relative to the input variables of interest by applying
the chain rule. The derivatives are calculated together and in the same or-
der as the values themselves. It should be pointed out that the symbolic
expression of the gradient is never calculated. The numerical value of the
derivative for each intermediate variable is calculated from the previously
calculated numerical values.

The reverse mode The reverse mode starts with an output variable and
calculates the derivative of that output variable with respect to all interme-
diate variables. The derivatives are therefore calculated backwards.

The transform of the underlying program into the transformed program pro-
viding the derivatives is automated in the automatic differentiation tools.
In some cases it can however be necessary or advantageous to rewrite the
underlying code before the application of an automatic differentiation tool.

1.2.2.4.4 Global methods For complex multibody systems the solution
surface of the misfit function has several minima. The aim is therefore to
identify the global minimum. The exclusive use of local methods is therefore
unsuitable since the convergence to the global minimum is not guaranteed.
Depending on the initial parameter values they converge to the closest local
minimum.

In order to identify the global minimum of the misfit function global opti-
mization methods have to be applied. They are able to leave the attractor
region of a local minimum in order to converge to the global minimum of
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the solution space. This capacity is achieved by a probabilistic operator.
In the simulated annealing method ([94]) the probability for the acceptance
of an increase of the misfit function values depends on a parameter called
temperature. The method simulates the cooling process of a material and
is presented in the following. Another widely-used approach are the genetic
algorithms discussed in [63].

The capability to identify the global minimum comes along with several draw-
backs which still constrain the use of global optimization methods. Due to
the probabilistic operators a very large number of misfit function evalua-
tions is necessary even for relatively small problems. This leads to the slow
convergence of global algorithms especially when the algorithm has already
approached the global optimum.

Besides, the global optimization algorithms do not guarantee the convergence
to the global minimum. Only if the whole solution surface is exploited the
identification of the global minimum is guaranteed. However, this is normally
impossible to perform and heuristic methods are used. Consequently, it is
not possible to define clear convergence and termination criteria for global
algorithms. Depending on the choice of the control parameters suboptimal
solutions can be obtained.

Simulated annealing The simulated annealing method reproduces the
physical cooling process. The material is heated until it reaches the melting
point. In this high-energy state the atoms are arbitrary distributed. Then
the material is slowly cooled down with the aim to reach the state with the
lowest energy corresponding to an ideal atomic structure. An important cri-
terion is the gradient of the temperature reduction. If the material is cooled
down too fast higher energetic states are obtained.

The basic principle of this cooling process has been transformed to the opti-
mization problem. The different solutions of the misfit function correspond
to the energy states of the material. The optimization problem is represented
by the solution space of the parameter values and the misfit function. Im-
portant elements of the simulated annealing algorithm are the probabilistic
generator which creates a new parameter set from the previous one, the loop
for the temperature reduction and the maximal number of tries and successes
within one temperature.

The calculation of a new parameter set from the previous one is performed by
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a probabilistic generator. At each iteration only one parameter is changed.
A value is obtained which lies in the tolerance defined initially. Then the
misfit function value is compared to the previous one. If a reduction is ob-
tained, the new parameter set is accepted. If the misfit function increases
the new parameter set is accepted with a probability which depends on the
temperature. This allows the algorithm to leave local minima.

At the beginning of the optimization high temperature values correspond to
an important probability that increases in the misfit function are accepted.
If instead the temperature is approaching zero the probability decreases ex-
ponentially and the algorithm behaves like a local method.

Consequently, the choice of the control parameters of the simulated anneal-
ing algorithm has an important effect on the results. If the temperature
decreases too fast the algorithm can converge to a local minimum because
the local search charateristics are emphasized. The choice of the temperature
algorithm and the number of function evaluations for every temperature is
difficult since standard adjustments of the control parameters are not known
yet. In this work several adjustments have been tested and compared. In
the work of Azizi [5] two approaches for the control of the temperature are
presented. They are based on the number of consecutive improving moves
and the adding of a tabu list.

Another difficulty which all global methods have in common is the choice of a
termination condition. The temperature or the number of iterations without
any improvement of the misfit function can be used.

Genetic Algorithms Genetic optimization methods are based on the prin-
ciples of evolution. They belong to the probabilistic optimization methods
and are suitable for complex optimization problems with many local minima.
Like the simulated annealing algorithm they combine deterministic and prob-
abilistic elements. A crucial difference to the simulated annealing method is
that they provide not only one solution but a set of possible solutions. Re-
ferring to natural genetics this set of possible solutions is called population
and every potential solution individual. In this application the individual
is therefore represented by a suspension parameter set. The misfit function
value for a parameter set is referred to as the fitness of the individual. It
serves as the selection criterion in the evolution process.
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The initial population is created outgoing from the initial parameter set. The
initial parameters are varied in accordance with the defined value constraints
and distributions using a probabilistic operator in order to obtain the indi-
viduals of the initial population. The number of individuals per population
is a control parameter chosen by the user which has an important influence
on the performance of the algorithm.

The creation of a new population from the previous one is based on the prin-
ciples of evolution selection and recombination. Individuals with a better
fitness show a higher probability to be selected. These individuals might
then be modified due to crossover and mutation. Crossover combines the
properties of two parent individuals hence in this application the creation of
a new parameter set from two previous parameter sets. Mutation describes
the probabilistic modification of one parameter set. The probability for a
mutation is defined by the mutation rate another important control param-
eter. This process is repeated according to the defined number of generations.

The consideration of a large number of possible solutions in parallel combined
with probabilistic operators taking into account the performance of each so-
lution is the main advantage of genetic algorithms. They can be used for
complex optimization problems with many local minima and are therefore of
large interest for the application to the parameters identification discussed
here. However, despite these advantages the genetic algorithm is exposed to
the same conflict of objectives as the simulated annealing method described
in the previous section: the exploiting of the best solution with low compu-
tational cost on the one hand and exploring the search space on the other
hand. The size of the population and the evolutionary pressure allow the user
to control the importance of these conflicting objectives. The right choice
giving the best balance between exploration and exploitation of the search
space depends on the optimization problems and is the main difficulty for
the application of genetic algorithms.

An unsuitable choice of the control parameters can provoke the convergence
to a local minimum. This is the case when the selective pressure is chosen
too high. Instead, a large population diversity emphasizes the exploitation
of the search space but might make the algorithm ineffective and costly.

A detailed description of the genetic algorithm, application examples and
strategies to prevent premature convergence can be found in the book of
Michalewicz [63].
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1.2.2.4.5 Combined global-local method: combination between
simulated annealing and pattern search The literature survey on the
application of the simulated annealing method has revealed several draw-
backs. One is the large number of function evaluations needed. Especially
close to the minimum the convergence speed is very slow. Besides, the def-
inition of termination criteria is difficult leading to large variations in the
performance. Global optimization methods are therefore subject of research
aiming to reduce calculation misfit and improving the convergence stability.

An approach used in [94], [96] and [64] is the combination of a global heuristic
optimization algorithm with local deterministic ones. By combining a local
with a global search mechanism the advantages of both methods are used:
the exact localization of minima with a fast convergence using local methods
and the capacity of global methods to leave local attractor regions.

Syrjakow [94] divides the optimization into two phases: the pre-optimization
and the fine-optimization. The pre-optimization phase uses the simulated
annealing method and aims at identifying a parameter set which lies in the
attractor region of the global minimum. Then in the second phase a local
direct or gradient method is used in order to converge fast to the global min-
imum.

The main difficulty is evidently to switch from the first phase to the second
since no precise convergence criteria for the global algorithm exist. In gen-
eral, the control parameters of the global algorithm should be chosen in a
way so that the whole parameter space of interest is exploited and a too early
convergence avoided.

The global optimization is finished when a termination criterion is reached.
The choice of the termination criterion has to follow two opposed aims: on
the one hand the misfit of the evaluation should be low, and on the other hand
the convergence of the global algorithm in the attractor region of the global
minimum should be avoided. This requires that the whole solution space is
covered in order to identify the global attractor region. The solution of the
global optimization has to be located in the global attractor region with a
high probability. The exact localization of the minimum is then achieved by
the local optimization.

Well-defined criteria for the switching from the global to the local optimiza-
tion do not exist. Heuristic criteria are used which guarantee to locate the
global attractor region with a high probability. They are based on the num-
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ber of iterations performed during the global optimization, the distribution of
the generated parameter values in the solution space and the corresponding
misfit function values. For genetic algorithms the accumulation of param-
eter values in a region of the solution space indicates the convergence in a
attractor region. Evidently, the difficulty is that each local minimum has an
attractor region in which solutions can accumulate. The use of the variance
is therefore not suitable.

Instead, several accumulation regions have to be defined and the one corre-
sponding to the global minimum chosen. This can be done by taking into
account the number of points included in the accumulation region, its dimen-
sion and variance. Accumulation regions are defined by measuring after each
iteration the distance of the parameter value to the previously calculated
values. Beginning at a define number of iterations the distance between all
parameter values is computed and used as a criteria for their classification
in accumulation regions. The global optimization is terminated if one of the
accumulation regions passes a defined size. However, the application to the
models has shown that the choice of this criterion is difficult and can lead to
errors.

The evolution of the misfit function values should be taken into account also.
If the misfit function value stabilizes on a low level this indicates that the
global attractor region is reached.

Miettinge [64] does not call the local solver after the global one. He shows
different ways how to integrate the local solver directly into the simulated
annealing algorithm.

It is difficult to choose the optimization methods the most suitable for the pa-
rameter identification problem discussed here. It depends principally on the
characteristics of the multi-dimensional solution surface. Even though exact
knowledge about the solution surface is not available the sensitivity analysis
will give important indications. Generally both approaches, the global and
the local methods will be considered. With regard to the complexity of the
model a complex solution surface of the misfit function is probable, requiring
the application of global methods. However, in order to overcome the dis-
advantage of slow convergence the combination of global methods with local
methods is a promising approach.
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1.3 Conclusions

In the first chapter the identification problem has been characterized. Based
on the properties of the vehicle-track system an adequate approach for the
parameter identification has been chosen.

Due to the wheel-rail contact and nonlinear suspension elements the system
shows a nonlinear behaviour which can not be neglected. Therefore an iden-
tification in the frequency domain using modal analysis has been rejected.
The modal parameters would depend on the excitation and running condi-
tions. The requirement of identifying physical parameters of the multi-body
model makes the identification of a nonlinear filter from time series analysis
inappropriate also. As a result the structural model updating in the time
domain will be used in the following. It compares directly the time signals
of the measurement and the simulation and minimizes a misfit function de-
scribing the distance between these signals. For the definition of the misfit
function and its minimization different approches will be studied.

In the following chapter the selection of an adequate model is outlined before
applying the parameter identification in the chapters 3 and 4.



Chapter 2

Selection of an adequate model
structure for the representation
of the low frequency dynamics
of the vehicle track system

The first step in modelling is the selection of an adequate model. It starts
from the question which physical effects of the real system the model is sup-
posed to take into account. It is therefore preceded by an analysis of the
dynamic behaviour of the system under consideration. Then the properties
of the system which the model should reproduce are selected and a model is
built. Based on this model the parameter identification is performed. If the
results of the parameter identification are not satisfying, the model has to be
improved.

Criteria for selection As outlined in chapter 1, the aim of this work is
the identification of suspension parameters for a TGV train. The system un-
der consideration is a complete TGV train running on a track. All dynamic
properties of the system which have an influence on the security and comfort
of the vehicle and which lie in the frequency range of interest have to be
taken into account. One decisive criterion for the model selection is therefore
the reproducibility of these properties.

But it is not the only criterion. Since the parameters of the model are not
exactly known from the beginning, the system identification is followed by
the second step of the modelling process, the parameter identification. The
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response of the model is compared with the measured response of the system.
By minimizing a misfit function describing the difference between the model
and the system response one aims at improving the estimate of the model pa-
rameters. The parameter identification leads therefore to an inverse problem.

Model parameters with physical meaning This implies two important
criteria for the choice of the model: first, the aim is the identification of the
suspension parameters. It is therefore necessary that the model parameters
can be related to the suspension elements of the system. In other words, a
model whose parameters do not have any physical meaning even if it fits well
the measured response is not suitable. This is the reason why in chapter 1
the use of the ARMAX analysis has been rejected. For the nonlinear vehicle-
track system it would be very complicated to relate the ARMAX model to
a physical model. Instead, a multi-body model which is composed of rigid
masses and suspension elements connecting them allows to rebuild the struc-
ture of the system and to relate the model parameters to system parameters
with a physical meaning.

Identification method requirements The second criterion concerns the
optimization algorithms used for the misfit function minimization. Some
algorithms require more information about the model than others. From
chapter 1 it is known that the adjoint method requires the nonlinear dynamic
equations of the vehicle model for the calculation of the adjoint equations.
Commercial multi-body programs do not provide this information because
they are developed as black box systems. They require input parameters and
give the dynamic response of the system but do not provide access to the
equations of motion.

Use of commercial multi-body programs Commercial multi-body pro-
grams have many advantages. They offer predefined elements for the different
types of suspension elements and notably for the wheel-rail contact. Due to
these elements and a predefined structure, they simplify considerably the
construction of large multi-body models of trains. By placing rigid bodies
and connecting them with suspension elements, the user builds the model
without having to set up the equations of motion himself. For this reason
the multi-body program Vampire is used in this work for the modelling of
the TGV train. It allows to set up a complex model which takes into account



2 Selection of an adequate model structure 57

a nonlinear description of the wheel-rail contact and all the different types of
suspension elements in the primary and secondary suspension and between
the vehicles. A detailed description of the Vampire TGV model is given in
section 2.3. Notably the modelling of the complex elements like the rubber
spring in the primary suspension, the air spring in the carrying bogies and
the wheel-rail contact are discussed in detail.

The important drawback of the Vampire model is the lack of information
about its mathematical description. As mentioned before, commercial multi-
body programs are designed as black box systems. The user has no access
to the nonlinear dynamic equations of the model. If the model parameters
are assumed to be known and the model is used for simulating the dynamic
response, this represents no difficulty. Such use as a forward model is the
normal case in vehicle dynamics.

However, in this work the model is integrated in an optimization algorithm
requiring the solution of an inverse problem. Then the lack of information
concerning the nonlinear dynamic equations of the model becomes impor-
tant. It makes the use of the optimization algorithms which require these
equations impossible. As outlined in chapter 1 an important group of local
optimization methods are based on the calculation of the gradient of the
misfit function. The adjoint state method and the automatic differentiation
method, giving a better accuracy and a lower calculation cost than the fi-
nite difference approach, need the knowledge of the dynamic equations. At
present, they can not be applied to the commercial multi-body model.

Use of a simplified model For this reason a second multi-body model is
used. It is derived from the equations of motion of the multi-body system
and implemented in Matlab. Thanks to the known analytical description, the
model can be used with all parameter identification methods, notably with
the gradient calculation from adjoint states and analytical differentiation.
However, the aim is not to have a complete model of the TGV train with
the same precision as the Vampire model. This would require an enormous
modelling effort comparable to the implementation of a complete multi-body
code and could not be the objective of this work. Such a complex problem is
much better handled with a well-established multi-body code like Vampire.
The parameter identification for the TGV train based on actual measure-
ment data is therefore exclusively performed on the Vampire model.
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The motivation for a multi-body model in Matlab is to identify a relatively
simple model structure which represents nevertheless important characteris-
tics of the vehicle-track system. Nonlinearities due to the wheel-rail contact
and suspension elements as well as the excitation by rail irregularities should
be taken into account by this model. For this reason the model of a bogie
including two wheelsets running on the track, the primary suspension and
the bogie frame is chosen.

In the section 2.1 the multi-body model of the bogie will be described before
presenting the Vampire model of the TGV in section 2.3.

2.1 Implementation of a bogie model derived
from kinematic and dynamic equations

The bogie model is composed of three bodies: the bogie frame and two
wheelsets. It runs on the track with a constant speed v. The model is ex-
cited by the irregularities spatially defined along the track. With the vertical
and horizontal displacement of the right and the left rail relative to the the-
oretical position four degrees of freedom are necessary for their description.
Otherwise the track is supposed to be rigid. In figure 2.1 the structure of the
model is shown.

2.1.1 Kinematic equations of the wheel-rail contact

In order to formulate the equations of motion for the model, the position
and velocity have to be described for each body. This is done relatively to an
inertial frame moving on the track centreline with the constant vehicle speed
v. The position of each body is described by three translational and three
rotational degrees of freedom. Kinematic constraints lead to a reduction of
this number of degrees of freedom. The remaining degrees of freedom form
the vector of generalized coordinates which describes completely the dynamic
behaviour of the system.

Degrees of freedom For the bogie the identification of the degrees of free-
dom is evident since no kinematic constraint exists.

The determination of the degrees of freedom for the wheelset and its posi-
tion relatively to the track requires the solution of the kinematic relations.
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Figure 2.1: Model of the bogie including two wheelsets
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Supposing that the wheel and the rail are always in contact and that there
are no strains in the rail, two kinematic constraints exist. This reduces the
number of degrees of freedom for the wheelset to 4: the lateral displacement
uy, the rotation around the z axis δz, the longitudinal displacement ux rela-
tively to the constant vehicle speed and variations of the constant rotational
velocity of the wheelset δ̇y. Vertical displacements and rotation around the
longitudinal x-axis are prevented by the track.

If acceleration and braking effects are not considered, the relative longitudi-
nal displacement ux and the relative rotational velocity δy can be neglected.
It is assumed that the vehicle and also the centres of gravity of the wheelsets
move with constant speed. This implies that no longitudinal friction forces
appear when the wheelset is not skewed. As outlined later this assumption is
justified since mainly lateral effects determine the dynamic of the wheelset.
This approximation reduces the number of degrees of freedom per wheelset
to two.

Finally, 10 degrees of freedom are identified for the model: two for each
wheelset and six for the bogie frame. The vector of generalized coordinates
relative to the inertial system is composed of the following degrees of freedom:

x = (rbx, rby, rbz, δbx, δby, δbz, ue1y, ue2y, δe1z, δe2z)T (2.1)

with:
rbx, rby, rbz: bogie position, δbx, δby, δbz: bogie rotation, ue1y, ue2y: lateral

displacements of wheelsets, δe1z, δe2z: yaw rotations of wheelsets.

The aim of the kinematic equations is to describe the position of the wheelset
and the contact points as functions of the degrees of freedom. The vertical
position of the centreof gravity uz as well as the rotation around the longi-
tudinal axis δx depend on the generalized coordinates and track irregularities.

Kinematic constraints for ideal track As described in chapter 1 these
kinematic relations become very complicated for real profile combinations. In
this case analytical relations are not available any longer. In order to obtain
an analytic mathematic description, a simplified contact geometry is applied.
When both rail and wheel are described by circular profiles, an analytical so-
lution exists. For this bogie model a circular rail profile and a conical wheel
profile are used as shown in figure 2.2. In the following the derivation of the
dynamic equations for this profile combination is outlined for an ideal track
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without irregularities. It is based on the detailed descriptions given in [52]
and [62].

Figure 2.2: Model of the wheelset with conical profile on a circular track

In the first step the independent coordinates of the wheelset have been iden-
tified. The next and difficult step is to relate the two dependent coordinates
uz and δx to the degrees of freedom. Beside the position of the centre of
gravity, two values are important for dynamic calculations of the vehicle: the
difference between the left and right contact radii ∆r and the contact angle
δr(l) in the contact point for the right and left rail respectively. δr(l) describes
the angle of the contact surface between wheel and rail and is shown in figure
2.4. For real profiles the contact angle and the conicity respectively depend
on the track gauge e0 describing the distance between the two rails. The cal-
culation of these kinematic relations is rather complicated and not outlined
here. It results in the following nonlinear equations which can be found in
[52]:

[uy + hW sin δx]2 = (RW − RR)2 g2
W sin2 δx

g2
W − 2gWgR cos δx + g2

R

(2.2)

[uz + hW cos δx + hR]2 = (RW − RR)2 g2
W sin2 δx

g2
W − 2gWgR cos δx + g2

R

(2.3)
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with the terms :

gW = e0 +RW sin δ0

hW = e0 +RW cos δ0

gR = e0 +RR sin δ0

hR = e0 +RR cos δ0

with:
RW : wheel radius, RR: rail radius, e0: track gauge, δ0: angle of conical wheel.

By applying a Taylor development these relations are linearized except for
the vertical displacement where quadratic terms persist. Details of these cal-
culations are given in the appendix A.

∆r ∼= λuy (2.4)

tan δl(r)
∼= tan δ0 ± ǫ

2
e0

uy (2.5)

δx
∼= σ

2
e0
uy (2.6)

uz =
1
2
ζu2

y −
1
2
ξδ2

z (2.7)

λ, ǫ, σ, ζ and ξ are geometry parameters defined in [52] which depend on
the radius of the wheel and of the rail. As outlined in the appendix A, they
are given for the general case that wheel and rail profiles are circular. The
case of circular profiles is illustrated in figure 2.3. They are described by the
curvatures in lateral direction. Since the wheel profile used in this study is
conical the equations are simplified by letting the radius of the wheel going
to infinity.

The kinematic relations describe the radius difference, the contact angle for
the left and right wheel, the rotation around the x-axis and the vertical dis-
placement as a function of the two degrees of freedom and the geometric
parameters of the wheel-rail contact. In order to better understand the re-
sults it is interesting to relate them to the geometric relations obtained from
a graphical representation.
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Figure 2.3: Wheel-rail contact for circular profiles represented by the lateral
curvatures RW for the wheel and RR for the rail(from [52])

Graphical representation For this graphical consideration the rail radius
is assumed to be infinitesimal small. The rail is therefore degenerated to a
line. The geometry parameters are reduced to:

λ = δ0 (2.8)

ǫ = δ0 (2.9)

σ = δ0 (2.10)

ζ = 4δ0/e0 (2.11)

ξ =
1
2
δ0e0 (2.12)

The contact angle in the contact surface is the sum of the cone angle δ0 and
the wheelset angle around the x-axis δx:

δ′l = δ0 − δx (2.13)

From the trigonometric relations in figure 2.4 the contact angle is expressed
by the lateral displacement uy and the length l:

cos δ′l =
uy

l
⇒ l = uy

1
cos δ′l

(2.14)

From the same trigonometric relations the radius difference for the left wheel
∆rl is obtained:
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Figure 2.4: Geometric relations between contact point radius, contact point
angle and lateral displacement for the left rail

∆rl = l sin δ0 = uy
sin δ0

cos δ′l
= uy

sin δ0

cos(δ0 − δx)
(2.15)

If the rotation of the wheelset around the x-axis δx is neglected an estimate
for the radius difference ∆rl is obtained which corresponds to the estimate
(2.4) obtained from the nonlinear kinematic relations:

∆rl
∼= uy tan δo (2.16)

The rotation angle of the wheelset δx is calculated from the track gauge e0 and
the radius difference between right and left rail 2∆r with ∆rl = ∆rr = ∆r:

sin δx = 2
∆r
e0

= 2
uy

sin δ0

cos (δ0−δx)

e0
(2.17)

For small rotation angles the same estimate as for the kinematic relation
(2.6) is found again:

δx
∼= 2

tan δ0

e0
uy
∼= 2

δ0

e0
uy (2.18)

If this result is inserted into equation (2.13) for the contact angle a result is
obtained which corresponds to the estimation (2.5) received from the non-
linear kinematic relations.
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The last coordinate which one wants to estimate from graphical considera-
tions is the vertical displacement of the wheelset. From trigonometric con-
siderations it can be easily seen that it depends on the lateral displacement
uy and the rotation around the z-axis δz.

uz(uy, δz) = uy tan δx −
1
4
δ0e0δ

2
z (2.19)

Using the result received for the rotation angle δx in 2.18 and the dependence
on the rotation around the z-axis the vertical displacement becomes:

uz(uy, δz) = 2u2
y

δ0

e0
− 1

4
δ0e0δ

2
z (2.20)

This is the same term obtained from nonlinear equations.

Kinematic constraints for real track So far the position vector of the
wheelset has been described relatively to the two degrees of freedom of the
wheelset. Evidently, the position of the wheelset relatively to the inertial
system depends also on the track irregularities, expressed by the vertical
displacement dz, a horizontal displacement dy and a cross level irregularity
of the track γd relative to its ideal position. Variations in the track gauge
are neglected. Taking into account the track irregularities in the kinematic
relations obtained before, the vertical displacement uz, the angle δx, the
contact radius difference ∆r and the contact angle tan δl(r) are given by:

Figure 2.5: Geometric relation between the position of the wheelset and the
geometric track irregularities
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uz = dz −
1
2
r0(γd)2 +

1
2
ζ(uy − dy + r0γd)2 − 1

2
ξδ2

z (2.21)

δx = γd + σ
2
e0

(uy − dy + r0γd) (2.22)

rl(r) = r0 ± λ(uy − dy + r0γd) (2.23)

tan δl(r) = tan δ0 ± ǫ
2
e0

(uy − dy + r0γd) (2.24)

The nominal contact radius r0 represents the wheel radius at the contact
point when the wheelset is centreed on the track. No lateral displacement
exists and the contact radii on the left and right wheel are identical.

From the two-dimensional representation in figure 2.5 some of the additional
terms in the kinematic equations can be illustrated. The lateral displacement
of the wheelset relative to the ideal centreline of the track is now described
by the difference between the wheelset displacement uy and the track dis-
placement due to the lateral and cross track irregularity dy − r0γd. Besides,
additional terms appear in the vertical displacement of the wheelset.

2.1.2 Derivation of the nonlinear dynamic equations
using the Lagrange approach

Outgoing from these kinematic relations the position vectors of the bogie
frame and of the two wheelsets can be described with respect to the de-
grees of freedom and the track irregularities. It forms the basis for the setup
of the equations of motion. Two different approaches can be applied: the
Euler/Newton and the Lagrange approach. If Euler/Newton is used the
equilibrium of forces and moments has to be derived for every body. Here
the Lagrange approach is used. The equations of motion are derived from
the kinetic energy of the system.

Lagrange’s equations For each degree of freedom xi of the vector of gen-
eralized coordinates (2.1) the Lagrangian equations have the form:

d

dt
(
∂Ec

∂ẋj
)− ∂Ec

∂xj
= dj , j = 1, ...., 10 (2.25)
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Ec is the kinetic energy of the system calculated with the translational vi

and rotation velocities ωi at the centre of gravity for every body i described
by its mass mi and inertia Ji:

Ec =
1
2

3∑

i=1

(vT
i mivi + ωT

i Jiωi) (2.26)

The generalized forces d of the Lagrangian equations are calculated with the
forces fEi and moments mEiP acting on the centre of gravity of every body.
JT i and Jri are the Jacobian matrices of translation and rotation:

d =
3∑

i=1

(JT
T ifEi + JT

rimEiP ) (2.27)

In order to calculate the kinetic energy Ec the translational and rotational
velocities have to be calculated for every body relativ to the inertial system.
The vector d of the generalized forces is composed of the spring and damping
forces of the primary suspension and the friction forces of the wheel-rail con-
tact. The spring and damping forces are calculated using the displacements
and velocities at the coupling points of the suspension expressed in inertial
coordinates. The derivations of the translational and rotational velocities as
well as the force terms can be found in the appendix A.

The friction forces are related to the slip in the contact surface between
wheel and rail through the coefficient of friction. The slip ν is defined as
the relative velocity in the contact point normalized by a reference velocity.
Here the constant vehicle speed v is used as reference velocity giving for the
slip ν:

ν =
vrel

v
(2.28)

Three different slips are distinguished: the lateral slip νξ, the vertical slip
νη and the rotational slip νζ . They are described relatively to the inertial
system. The objective is thus to determine the friction forces T and moments
M as functions of these slips. It is distinguished between the longitudinal
friction force Tξ, the lateral friction force Mζ and the spin Mζ . The spin
describes the moment due to the rotation in the contact surface.

Tξ = Tξ(νξ, νη, νζ)
Tη = Tη(νξ, νη, νζ)
Mζ = Mζ(νξ, νη, νζ)
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The relative velocities are illustrated in figure 2.6. Figure (a) shows a top
view of the left wheel and figure (b) the front view of the wheelset. The
relative velocities are described in a local coordinate system in the contact
point whose ζ axis is normal to the contact surface.

The longitudinal relative velocity v
r(l)
ξ is caused by a rotation δz of the

wheelset around the z-axis. It is the difference between the vehicle speed
v, the component due to the constant rotational velocity Ω of the wheel and
the rotational speed δ̇z around the z-axis. If the yaw angle of the wheelset is
zero (δz = 0) and ideal rolling without friction is assumed, the longitudinal
relative velocity becomes zero.

v
r(l)
ξ = rr(l)Ω cos δz ± δ̇ze0/2− v (2.29)

The lateral relative velocity is illustrated in figures 2.6 (a) and (b). It is
composed by three components: the speed of the contact point due to the
rotational velocity Ω of the wheelset when the yaw angle δz is non-zero (1),
the lateral velocity due to changes in the lateral displacement (2) and the
lateral velocity due to a rotational speed of the wheelset around the x-axis (3).

vr(l)
η = rr(l)Ω sin δz cos δr(l)

︸ ︷︷ ︸

(1)

− d

dt
[(uy − dy + r0γd) cos δr(l)]

︸ ︷︷ ︸

(2)

− d

dt
[δx(

e0

2
sin δ0 + rr(l)cosδ0)]

︸ ︷︷ ︸

(3)

(2.30)

Perpendicular to the contact surface a rotational relative velocity appears.
It depends on the contact angle and is composed by two components: the
normal part of the rotational speed of the wheelset (4) and the velocity due
to the rotation around the z-axis (5).

v
r(l)
ζ = ±Ω sin δr(l)

︸ ︷︷ ︸

(4)

− d

dt
[δzcosδr(l)]

︸ ︷︷ ︸

(5)

(2.31)

For the calculation of the friction forces and moments, the linearized Kalker
theory is applied. As outlined in chapter 1 it assumes that the slip rates are
small so that a linear ratio between slips and friction forces can be applied.
More information on the linear and other theories developed by Kalker can
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(a)

(b)

Figure 2.6: Relative velocities between the wheel and the rail: top view of
a wheel turned with angle δz to the track (a) and front view of a wheelset
displaced laterally by (uy − dy + r0γd)(b)
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be found in [107]. The values for the Kalker coefficients Cij depend on the
form of the contact ellipse and can be found for example in [52].
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with: G: shear modulus

The form of the contact surface is elliptic and described by the contact radii
a and b. They are obtained from the Hertz theory of the normal contact
problem. The Hertz theory has been introduced in chapter 1.

The Hertz theory allows to compute for a known normal force the contact
radii, the elastic strain and the stress in the contact surface. Input param-
eters are the radii of curvature for the rail and the wheel and the modulus
of elasticity. The normal force is composed by static forces due to the mass
and a dynamic part. The calculation itself can be found in the appendix A.

Finally, the nonlinear equations of motion for the bogie model are obtained
from the Lagranges’s equations in the form:

M(x, t)ẍ(t) + g(x, ẋ, t) = d(x, ẋ, t) (2.33)

M is the mass matrix and depends generally on the parameter vector x and
time. The vector g regroups all nonlinear terms depending on the parameter
vector x and its first derivative ẋ. The vector d is the nonlinear vector of
generalized forces.

For the computation of the friction forces at every time step the vertical
wheelforces have to be known. Basically, the vertical wheelforces are com-
posed by a static component given by the mass of the bogie and car-body
and a dynamic component due to the inertia of the bogie and car-body. For
the computation of the dynamic forces the accelerations of the masses at
each time step are required. They are obtained from the two previous time
step by differentiating the velocity.

ak =
vk−2 − vk−1

∆t
(2.34)
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2.1.3 Analysis of the dynamic behaviour of the bogie
model

The bogie model is described by a nonlinear differential equation system with
initial conditions and an excitation. Equation (2.35) gives the state space
equation of the system received above with w = [x, ẋ]. It is not possible
to solve this equation system analytically. Numerical integration algorithms
have to be used instead.

ẇ =

(

0 I
0 0

)

w +

(

0
M−1(d(x, ẋ, t)− g(x, ẋ, t))

)

(2.35)

All numerical integration algorithms are based on a discretization of the anal-
ysis time interval [0, T ]. For every time step an estimation of the solution
is calculated. The distance between two time steps, the step length, has an
important effect on the accuracy of the results. Generally, two types of inte-
gration algorithms can be distinguished: one-step algorithms and multi-step
algorithms. For computing the estimation at a time step the one-step solver
only uses the solution of the previous step. Multi-step solvers use the esti-
mations of several steps before.

In Matlab both one- and multi-step solvers are available. For this problem
the one-step solver ODE45 based on the explicit Runge-Kutta formulas and
the multi-step solver ODE113 are used.

For the choice of the solver and the integration step length h, the required
accuracy is important. This necessitates the calculation of the local error
for an integration step. Normally, solvers for practical applications offer an
automatic control of the integration step length. The step length h is cho-
sen so that a given tolerance, the absolute tolerance, is kept. The method
is based on the calculation of two approximations, one of order p and one
of order p + 1. Based on the two approximations Y p

k+1 and Y p+1
k+1 the local

discretization error is estimated. If it is smaller than the absolute tolerance
the steplength is accepted otherwise the integration step is repeated with a
smaller steplength h.

The local discretisation error τ is given by:

τ =
Y p+1

k+1 − Y p
k+1

hold
≈ Chp

old (2.36)

If the local error is smaller than the defined tolerance TOL (τ < TOL)
the integration steplength h is accepted. If not the new steplength hnew is
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calculated as follows:

hnew = hold(
TOL

τ
)1/p (2.37)

The forward response of the bogie model has been calculated for the solvers
ODE45, ODE113 and ODE15s for different tolerances and initial time steps.
The accuracy of the result and the calculation time are compared since they
will play an important role in the parameter identification methods outlined
in the next chapter. As excitation signal a lateral track irregularity shown
in figure 2.7 is used.
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Figure 2.7: Lateral track defect as excitation signal

Besides, the forward model allows to analyze the dynamic behaviour of the
bogie model. Although it is relatively simple, important properties of vehicle
track systems are reproduced. If the lateral displacement and the rotation of
the wheelsets are plotted the typical hunting movement is found: a wheelset
which has been displaced laterally is exposed to lateral geometric and lon-
gitudinal friction forces leading to a rotational movement toward the centre
of the track. Due to the moment of the lateral friction forces it crosses the
centreline and continues to turn until the moment of the longitudinal friction
forces which is now opposed becomes larger. The cycle is illustrate in figure
2.8.

Below the so-called critical speed the wheelset behaves in a stable way and
the oscillation decays. If the vehicle speed is increased and the critical speed
is attained the behaviour changes abruptly. An initial displacement leads
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Figure 2.8: Hunting movement of wheelset due to friction and geometric
wheel forces (F: friction forces, S: geometric forces)

to an oscillatory movement with increasing amplitude. The system becomes
unstable. When analyzing the poles of the linearized wheelset model in the
complex plane this corresponds to poles in the positive half plane. For the
nonlinear system the amplitude increases until a limit cycle is obtained as
shown in figure 2.9.
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Figure 2.9: Yaw angle of the wheelset for a vehicle speed below and above
the critical speed

The critical speed of the wheelset depends on the suspension properties. By
changing the suspension parameters the critical speed is increased or reduced.
Notably the longitudinal stiffness of the primary suspension has an impor-
tant effect on the critical speed as shown in figure 2.10.
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Figure 2.10: Dynamic response of the bogie model as a function of the lon-
gitudinal stiffness

The parameters of the bogie model which may be considered in the iden-
tification are summarized in table 2.1. It is distinguished between inertia
parameters, suspension parameters and parameters of the wheel-rail contact.
Even though the conicity of the wheel-rail contact and the coefficients of the
Kalker friction model are listed here there identification is unlikely due to
their unstationarity and nonlinear effects.



2.1 Implementation of a bogie model 75

Bogie model parameters

Name Unit Valeur Description
Geometry

ls [m] 2.5 wheelset distance
Inertia

m [t] 1.8 mass wheelset
Ix [Kgm2] 960 Inertia x wheelset
Iy [Kgm2] 450 Inertia y wheelset
Iz [Kgm2] 960 Inertia z wheelset
m [t] 2.38 mass bogie frame
Ix [Kgm2] 1924 Inertia x bogie frame
Iy [Kgm2] 1080 Inertia y bogie frame
Iz [Kgm2] 2970 Inertia z bogie frame

Suspension

cx [MN/m] 52 stiffness x
cy [MN/m] 3.5 stiffness y
cz [MN/m] 1.0 stiffness z
dx [MN/m] 0.0003 damping x
dy [MN/m] 0.0003 damping y
dz [MN/m] 0.012 damping z

Wheel-rail contact

δ0 [rad] 0.2 conicity
e [m] 1.435 track gauge
sfV [−] 1 factor Kalker coefficients

Table 2.1: Parameters of bogie model
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2.2 Vampire bogie model as virtual experi-
mental data

Figure 2.11: Bogie model implemented in Vampire

The model of the bogie described in section 2.1 has been implemented in
Vampire. The model is used to validate the Matlab model and will serve as
measurement substitution for the parameter identification of the bogie model
in the following chapter.

The model is composed of two wheel-sets and a bogie frame connected by
the primary suspension. The parameter values for the inertia and suspension
elements are the same as outlined in table 2.1. The exact description of the
wheel rail contact is not known.

As outlined before Vampire proposes different models of the wheel-rail con-
tact. For the bogie model the linear creep law and the nonlinear creep model
have been compared. The linear creep law assumes a linear relationship be-
tween the slip and the friction forces. Therefore it is only applicable for
low slip values when no saturation appears. Besides, it is assumed that the
wheels are perfectly coned. For the non-linear creep law the real profiles of
the wheel and the rail are used.

The comparison between the bogie models implemented in Matlab and Vam-
pire is shown in the figures 2.13 to 2.15. Even though the same masses and
model parameters have been used differences in the dynamic response of the
two models appear. They might be due to differences in the model struc-
ture notably the kinematic description of the wheel rail contact which is not
exactly known for the Vampire model.
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Figure 2.12: Lateral track irregularity signal to Vampire and Matlab model
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Figure 2.13: Lateral displacement for wheelset 1 (a), and wheelset 2 (conic-
ity=0.3, friction=0.3)(b)
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Figure 2.14: Yaw angle for wheelsets 1 (a), and 2 (conicity=0.3, fric-
tion=0.3)(b)
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Figure 2.15: Lateral displacement of bogie frame (a), and yaw angle (conic-
ity=0.3, friction=0.3)(b)
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2.3 Model of the TGV train implemented in
Vampire

The model of the TGV Duplex train is implemented with the commercial
multi-body program Vampire. The system is assembled from rigid bodies
and connected by suspension elements. This is done by defining the masses,
inertias and positions of the bodies as well as the types and parameters of the
suspension elements. Predefined elements and a graphical interface reduce
the effort for building a model.

After the model setup, different kinds of computations can be performed:
transient analysis for the nonlinear model with the track excitation and modal
analysis for the linearized model. The dynamic equations are automatically
created and solved. The functionality of the Vampire program will not be
outlined here. For more details it is referred to the Vampire manual [103].

In the following the focus is laid on the selection of an adequate model for
the TGV train. Once again the important questions of model selection are
treated: which properties of the real system the model is supposed to repro-
duce? Which model structure and complexity are needed in order to model
these properties?

One limitation is made from the beginning. The model is entirely composed
of rigid bodies and can not represent effects due to elastic modes of the real
system. The frequency domain covered by the model ranges to 30Hz approx-
imately. For the analysis of the passengers comfort and criteria concerning
the security of the vehicle, this is sufficient.

From the description of the vehicle-track system in chapter 1, the crucial
points for the model selection are known. One is the wheel-rail contact. Sev-
eral models of different complexities and precisions have been developed in
railway vehicle dynamics. In the first part of this chapter which is about
the model implementation for a bogie, the kinematic relations for a circular
rail and conical wheel profile and the linear Kalker theory have been imple-
mented. This approach enables an analytical description of the wheel-rail
contact mechanics but implies important simplifications.

In Vampire more accurate models are available leading to a better represen-
tation of the real system. They will be discussed in the following paragraphs.
The second important point in the model selection concerns the suspension
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elements. Situated in the primary and secondary suspension as well as be-
tween the carriages they assure the coupling between wheelsets, bogies and
carbodies. Some of them, mainly the airsprings in the secondary suspen-
sion and the rubber elements have complicated dynamic properties. Their
modelling is a difficult task and will be discussed in section 2.3.2. The used
suspension element models, their properties and modelling are summarized
in the appendix B.

2.3.1 Modelling of the wheel-rail contact

The wheel-rail contact, implemented in Vampire, involves the calculation of
the relative velocities in the wheel-rail contact and the creep law relating the
friction forces to the relative velocities. Three relations are provided for the
friction law: the linear, the square root and the non-linear creep law.

The longitudinal creepages, calculated as the relative velocity in the contact
normalized with the vehicle speed, for the left and the right wheel are [103]:

νl
ξ = 1 +

e0δ̇z

2v
+
rlΩ
v

+
e0

2Rcurve
+
u̇x

v
(2.38a)

νr
ξ = 1− e0δ̇z

2v
+
rrΩ
v
− e0

2Rcurve
+
u̇x

v
(2.38b)

with: δz: yaw angle, Ω: roll rotation, e0: track gauge, u̇x: variation from
vehicle speed, Rcurve: curve radius.

If these expressions are compared to the creepages calculated for the bogie
model two additional terms are found. The third term describes the longi-
tudinal creepage due to track curvatures with the radius Rcurve. It does not
appear in the bogie model since a straight track is considered. The last term
describes variations from the constant vehicle speed which are not taken into
account in the bogie model in order to reduce the number of degrees of free-
dom from 4 to 2.

In the lateral direction the creepage is calculated:

νl
η = (

u̇y

v
+
rlΩδz

v
)

1
cos δl

(2.39a)

νr
η = (

u̇y

v
+
rrΩδz

v
)

1
cos δr

(2.39b)
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with: uy: lateral displacement, δl(r): contact angle for left and right wheel

For the lateral creepage an additional term is considered in the bogie model.
It describes the creepage due to the rolling rotation of the wheelset around
the x-axis. Since the rolling movement of the wheelset is small the term is
neglected in Vampire.

Finally, the spin creepage is described by the expressions:

νl
ζ = −(

Ω
v

) sin δl + δ̇z (2.40a)

νr
ζ = (

Ω
v

) sin δr + δ̇z (2.40b)

This corresponds to the description used for the bogie model.

The creepage relations presented above are used in the non-linear creep law
model. For the linear and the square root model simplifications are intro-
duced. As recommended by Vampire, the nonlinear transient analysis pro-
gram has been chosen for analyzing the TGV model.

In order to allow an analytical calculation of the kinematic relations in the
wheel rail contact, a circular rail profile and a conical wheel are used in the
bogie model. However, as outlined in chapter 1 real wheel and rail profiles
have more complicated geometries. For these profiles a closed analytical solu-
tion is no longer available. The nonlinear creep law implemented in Vampire
uses wheel-rail contact data files in forms of two tables. One table contains
the contact data with respect to the lateral displacement and the other, op-
tional table, the contact data with respect to the yaw angle of the wheelset
relative to the track. For a straight track or very large curve radii the contact
data for zero yaw angle should be used.

The table describing the contact data as a function of the lateral displace-
ment gives precisely the position of the contact point. It involves the left
and right wheel contact radii, the contact angles, the longitudinal, lateral
and vertical positions of the contact surface as well as the area of the contact
ellipse and its semi-axes ratio a/b. According to the Hertz theory, the con-
tact area and the ratio of the ellipse semi-axes depend also on the axleload.
The calculation of the table is performed for static axleloads and dynamic
wheelloads are taken into account by supplying a factor on the static load.
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For each time step during the numerical integration process the lateral dis-
placement of the wheelset is calculated. It is then used for a linear interpola-
tion of the contact data table in order to obtain the contact point parameters
needed for the calculation of the creepages. Finally, the friction forces are
obtained from the relation between creepage and friction forces.

If the full non-linear contact theory of Kalker is used the creep forces are cal-
culated by interpolating the tabulated creepage-force relation. Consequently,
for each time step the procedure can be divided into three steps: the location
of the contact point, the calculation of the creepages and the calculation of
the friction forces. A good introduction to the theories developed by Kalker
for the wheel-rail contact is given in [107]. For more information it is referred
to the papers of Kalker [46],[44] and [45].

2.3.2 Modelling of the suspension elements

The suspension elements have an outstanding influence on the dynamic be-
haviour of the vehicle. A proper modelling is therefore an important require-
ment for accurate model results.

In the TGV train different types of suspension elements are used. From
the design drawing in figure 2.16 the suspension elements are identified: the
primary suspension of the power car is composed by vertical coil springs,
guidance springs and a vertical damper. In the secondary suspension, ver-
tical coil springs as well as vertical, lateral, and anti-yaw dampers are used.
In the carrying bogies, the function of the guidance spring is fulfilled by a
motion link. In the secondary suspension, air springs are used instead of coil
springs in order to obtain a better comfort.

The suspension has to meet several criteria. One is the attenuation of the
vibrations of the wheelset caused by track irregularities. The other concerns
the running stability of the vehicle. As shown before for the bogie model,
the stiffness of the suspension in longitudinal direction determines the critical
speed at which the hunting movement occurs. Therefore, in order to ensure
running stability up to very high speeds the value of the longitudinal stiffness
in the primary suspension of the TGV is important.

The modelling of the suspension elements is complicated. From test rig mea-
surements of suspension elements, it is known that some show a considerable
nonlinear behaviour. In these tests the suspension element is mounted in a
test rig and excited by a known displacement with varying amplitudes and
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Figure 2.16: Motor bogie of a high speed train (source: Alstom)

frequencies. From the measured spring forces, the spring characteristic is
identified as a function of amplitude and frequency. The results stand as a
basis for the modelling of the suspension element.

In literature, test rig measurements for different suspension elements and
dampers can be found. Generally, the setup for the experimental testing of
the dynamic properties is similar. The test component is mounted in a servo-
hydraulic test machine between two masses. While one is fixed, the other
is excited by a piston imposing a defined displacement on the suspension
element. The motion and the force of the suspension element are measured
by displacement sensors and load cells respectively. From these data the
displacement-force curves and stiffnesses can be analyzed as functions of the
amplitude and frequency of the piston displacement.

For example, in [95] rubber spring elements are analyzed. The dependence
between displacement and force and the dynamic stiffness are measured in a
test rig and compared to results received from a material model. Dynamic
tests with different amplitudes have been performed over a frequency range
from 1 to 100Hz. Some results are shown in figure 2.17.

In the following sections the different suspension elements of the TGV train
are described and approaches for their modelling presented. The focus lies
in the modelling and implementation of these elements in Vampire. The
physical principles, results of test rig measurements if available and derivation
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(a) (b)

Figure 2.17: Rubber bushing: measured and modeled hystereis loop (a),
magnitude and dynamic loss factor for dynamic stiffness (b)

of model equations can be found in the appendix B.

2.3.2.1 Air spring model

The air spring is a complicated thermodynamic system composed of variable
volumes and interconnecting pipes. It takes advantage of the compressibil-
ity of the air. The reasons for the widespread use of airsprings in railway
vehicles lie in the possibility to control the height by changing the pressure
level and the progressive stiffness characteristic. Besides, self-damping can
be achieved by an orifice between the air bellow and the reservoir. Due to
the air flow in the orifice the airspring system has non-linear characteristics.
The dynamic response depends on the amplitude as well as the frequency.

The general structure of an air spring system is shown in figure 2.18. The
coupling between the bogie and the car body is provided by the air spring
bellows (6). The stiffness of the air spring in the vertical direction is inversely
proportional to the volume. By adding air reservoirs (2) and (5) to the bel-
low volume, the spring stiffness is reduced. Depending on the orifice in the
pipe (4) between the bellow and the reservoir self damping is achieved. The
compressor (1) and the level controller (3) provide the required air pressure
in the system.

The modelling of the air spring is based on the thermodynamic equations
describing the air exchange between the bellow and the reservoir. Important
work has been performed by Krettek [55] and Grajnert [29]. Their thermo-



2.3 Model of the TGV train implemented in Vampire 85

Figure 2.18: Airspring (1: compressor, 2: main air reservoir, 3: level con-
troller, 4: pipe, 5: auxiliary air reservoir, 6: air spring, 7: car body, 8: bogie
(from [32])

dynamic model describes most accurately the dynamic behaviour of the air
spring and forms the basis to the air spring models in ADAMS rail ([30] and
[61]) and Simpack. A short introduction to this model can be found in the
appendix B.

Vampire provides a special air spring element. It belongs to the group of the
shear elements tending to model suspension elements where large vertical
loads are carried with lateral flexibility. The airspring model is divided into
a vertical and a lateral model which are to a large extent independent from
each other. The vertical air spring model is shown in figure 2.19.

It is based on the model developed by Nishimura and Oda [70] extended
by a mass. The model is simpler than the complete thermodynamic model
proposed by Krettek. It does not describe the heat and mass flow relations
between the bellow and the reservoir. The calculation of the spring stiffness
is based on the ideal gas law. The spring rate cz is given by:

cz =
dFz

dz
(2.41)

The vertical force Fz is calculated from the pressure difference p∆ between the
system pressure p and the atmospheric pressure pa and the effective spring
surface Ae giving:

cz =
dFz

dz
=

d

dz
(p∆Ae) = p∆

dAe

dz
+
dp∆

dz
Ae = p∆

dAe

dz
+
dp

dz
Ae (2.42)
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Figure 2.19: Vertical airspring model implemented in Vampire

with p = pa + p∆.

The pressure differential dp
dz

is calculated from the ideal gas law:

p1V
n

1 = p2V
n

2 = constant (2.43)

In this equation n is the polytropic rate. Its value depends on the process. If
the heat generated during compression is immediately dissipated the process
is isothermal and the value of n is 1. In the air spring, due to the fast com-
pression, only a small part of the heat is dissipated. Therefore the air spring
is much better described by an adiabatic process so that the polytropic rate
becomes the isentropic factor κ given by the ratio of the heat capacity at
constant pressure (Cp) to the heat capacity at constant volume (CV ). For
air κ is 1.4.

Differentiating the ideal gas law with respect to z and solving the equation
for dp

dz
with Ae = −dV

dz
gives:

d

dz
(pV κ) = pκV κ−1dV

dz
+
dp

dz
V κ = 0 (2.44)

dp

dz
=
−pκV κ−1 dV

dz

V κ
=
pκAe

V
(2.45)

Inserting the result for dp
dz

in equation (2.42) gives the spring rate :

cz = κp
A2

e

V
+ p∆

dAe

dz
(2.46)
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Taking into account that the total volume is composed of the bellow and
the reservoir volume two stiffness terms are obtained which are in series
in the model. Besides, a damping term is added taking into account the
flow resistance caused by the surge pipe. It depends on the flow resistance
coefficient Rf , the gravitational acceleration g and the diameter of the surge
pipe and is given by:

C = RfA
2
epg (2.47)

The vertical air spring model in Vampire is extended by a fourth stiffness in
series with the Nishimura model representing the stiffness of a series rubber
element. Besides, the inertia of the air mass in the pipe is taken into account
by the Vampire model represented by the parameter nM . Even though the
mass is small the large flow velocities in the pipe can lead to important inertia
effects. The final model parameters are: K1: stiffness of the air bellow, K2:
stiffness of the reservoir, K3: stiffness change due to variable effective spring
area and C: orifice damping. A level controller is not considered in this model.

K1 = κp
A2

e

Vbellow
(2.48)

K1 = κp
A2

e

Vreservoir
(2.49)

K3 = p∆
dAe

dz
(2.50)

The Vampire air spring element also includes a model for the horizontal
behaviour of the air spring shown in figure 2.20. The lateral spring charac-
teristic is determined by the stiffness of the air bellow material. It shows
the characteristic of rubber spring elements with nonlinear stiffness and hys-
teresis. The parameters of the model are the nonlinear lateral stiffness Ky,
the hysteresis force Fh, the hysteresis exponential distance constant α, the
lateral damping rate Cy and the lateral damping series stiffness Kc.

The model parameters are estimated from technical information about the
air spring system and test rig measurements performed by the supplier. How-
ever, due to incomplete information, difficulties appear. The geometric pa-
rameters like the bellow and reservoir volumes and the length of the pipe
are available. For the parameters of the lateral model, notably the nonlinear
stiffness, the hysteresis force and the damping, the estimation is more diffi-
cult. From the supplier results from test rig measurements are available but
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Figure 2.20: Lateral airspring model implemented in Vampire

not extensive. Often these measurements are performed for static charges
and do not represent the dynamic behaviour of the air spring.

Figure 2.21a shows the lateral nonlinear stiffness of the air bellow. In 2.21b
the dependence of the effective air spring area Ae from the air pressure is
shown.

(a) (b)

Figure 2.21: Test rig measurements of air spring: lateral stiffness (a), effective
spring area as a function of pressure for different heights (b)

The initial estimation of the parameter values is the main difficulty for all
presented models. If the values are not or incompletely given by the supplier
the experimental determination of these values in a test rig is the most ac-
curate approach for their identification. If test rig measurements can not be
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performed the parameter estimates are exclusively obtained from the physical
and technical properties of the system. This is the aim pursued in [75].

2.3.2.2 Coil springs

Coil springs are used in the primary and secondary suspension. They are
made by a wire with a circular cross section shown in figure 2.22 (a).

(a) (b)

Figure 2.22: Cylindrical coil spring (a), Transversal stiffness due to Flexicoil
effect (b) [32]

Their spring characteristic is approximately linear and is calculated from the
material shear modulus G, the number of windings i, the wire diameter d
and the diameter of the spring r:

c =
d4G

64ir3
(2.51)

The spring rate in transversal direction is described by the Flexicoil effect
represented in figure 2.22b. It is caused by lateral displacements of the air
spring. Notably in the secondary suspension of the power unit this effect
is important since the coil springs have to compensate the longitudinal dis-
placements due to the yaw movement of the bogie in curves. In the primary
suspension this effect is less important since the wheelset is guided in longi-
tudinal direction by the stiff guidance springs. Beside the spring parameters
named above, the transversal stiffness depends on the vertical force and is
described by the relations:
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cx = cy =
1

1
Fz

( 2
x
tan1

2
xL− L) + L

S

(2.52)

with the coefficients:

x =

√
√
√
√

Fz

B(1− Fz

S
)

(2.53)

S = 3360
Ld4

ir3
(2.54)

B = 1460
Ld4

ir
(2.55)

In the Vampire model the coil spring of the primary and secondary suspen-
sion is modelled by a shear element with constant stiffness in the vertical and
transversal directions. Shear elements are suitable for the representation of
suspension components which carry a static load and provide flexibility in
directions perpendicular to this load. This is the case for the flexicoil spring
described above.

The dynamic behaviour of the shear spring element is described by six stiff-
ness values: the longitudinal, lateral and vertical stiffnesses as well as the
roll bending, pitch bending and torsional stiffness. From figure 2.23 the def-
inition of the lateral stiffness is apparent: it is given by the ratio between
the lateral force F and the lateral displacement y and can be calculated from
equation (2.52) presented above.

cx = cy =
F

y
(2.56)

The bending stiffness illustrated in figure 2.23b is defined as:

cθ =
M1

θ1
=
M2

θ2
(2.57)

Considering the structure of the TGV bogie it can be assumed that the sup-
porting areas of the coil spring are always in parallel. The bending stiffness
is therefore neglected in the model.

2.3.2.3 Hydraulic damper

Coil and air springs do not have sufficiently internal damping. It is necessary
to connect hydraulic dampers in parallel. The damping is created by the flow
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(a) (b)

Figure 2.23: Computation of the lateral stiffness (a) and bending stiffness
(b) in Vampire (from: [103])

resistance of the oil when pressed through an orifice. In [32] the functional
principle of the hydraulic damper is described. The design of a hydraulic
damper used in the TGV is shown in figure 2.24. It shows the oil flow be-
tween the volumes in the damper for the compression and expansion process.

The velocity force relation of a hydraulic damper is nonlinear. As an exam-
ple, figure 2.25 shows the measured nonlinear velocity-force characteristics of
the transversal damper of the secondary suspension. More measured damper
characteristics for the TGV are included in the appendix B.

In Vampire the hydraulic damper is modelled by a viscous damping element
(pinlink) shown in figure 2.26. The damping characteristic is given as a
nonlinear relation between compression velocity and damping force. For the
dampers of the TGV model measured nonlinear damper characteristics are
available. In addition a constant stiffness c is defined in parallel.

The position of the damper element is described by the x and y position
and the height above the rail for each end. The axis in which the force acts
depends on the relative position of the bodies the damper is attached to.
Moments can not be transmitted.

2.3.2.4 Rubber spring elements

Rubber spring elements are used at several positions in the TGV train. In
the primary suspension of the power unit the guidance springs are made
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Figure 2.24: Oil flow in a hydraulic damper: compression (a) and expansion
(b)

Figure 2.25: Nonlinear damping velocity-force characteristics for the
transversal damper of the secondary suspension
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Figure 2.26: Vampire model of hydraulic damper with nonlinear damping
d(v) and linear series stiffness c

from rubber. They are composed of steel and rubber segments. As shown in
figure 2.27, the displacement-force characteristic of rubber elements is non-
linear and shows a hysteresis. It depends on the deformation rate and the
deformation amplitude. The model has to reproduce the dynamic behaviour
for the frequency range of interest.

(a) (b)

Figure 2.27: Load-displacement measurement of power car guidance spring
(a), guidance spring in primary suspension (b)

The simplest model for rubber spring elements is the Kelvin-Voigt model
composed of a spring and viscous damping in parallel. The spring rate am-
plitude dependence is not taken into account.

The modelling can be improved by using the generalized Maxwell element
presented in figure 2.28. By adding more spring-damper elements in parallel
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the accuracy of the model is improved. In return the number of parameters
for the identification process increases.

Figure 2.28: Generalized maxwell element

In literature more complex models for rubber elements can be found. Berg
[7] presents a nonlinear model which takes into account the dependence of
the spring rate on the deformation velocity and amplitude. The model is de-
scribed by three forces which are superposed: an elastic force, a visco-elastic
force and a friction force.

In Vampire the bush element is proposed for the modelling of rubber spring
elements. It is a Maxwell model with 18 parameters: the stiffness, damping
and series stiffness for all six degrees of freedom.

2.3.3 Model properties

The structure of the TGV Duplex model is represented in figure 2.29. It is
composed of two traction units (M1 and M2) and 8 carriages (R1 to R8).
Each traction unit rests on two bogies (A,B,C,D) while for the carriages Ja-
cobs bogies are used. The car bodies and bogies frames are described by
6 degrees of freedom respectively. Due to the constraint of the wheel-rail
contact each wheelset has only two degrees of freedom. In total the number
of degrees of freedom of the TGV train is 300.

The model parameters which may be considered in the identification are
summarized in appendix B. They can be distinguished in mass and inertia
parameters and parameters of the suspension. The suspension parameters
are classified in primary and secondary suspension for the traction units and
carriages. In total 117 parameters are considered assuming that all elements
of the same type have the same parameter value. If all elements are consid-
ered independently the number of model parameters increases significantly.
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Figure 2.29: Structure of the TGV Duplex model

2.4 Summary of the system and model prop-
erties and conclusions

Two models have been selected which will be used for the following parame-
ter identification: a model of a single bogie implemented in Matlab and the
model of a complete TGV train. According to their intended use the models
have different properties. For the bogie model the complete mathematical
description is known allowing the application of the adjoint state gradient
calculation. The suspension is modeled by a stiffness and damping element
per direction, leading to a low number of parameters. Since measurements
for a single bogie have not been performed an identification on real measure-
ment data is not possible. Instead the simulation results of a Vampire bogie
model will be used as virtual experimental data.

The TGV model is designed to reproduce the dynamic behaviour of the real
train. The parameter identification will be performed on real measurement
data. This requires the detailed modelling of the suspension elements lead-
ing to more than 100 different parameters in total. The parameters of the
wheel-rail contact are not considered.

The properties of the two models are summarized in table 2.2.
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Model properties

Property TGV model Bogie model

Model type ⊲ Multi-body ⊲ Multi-body
⊲ Representing physical struc-
ture

⊲ Representing physical struc-
ture

⊲ Degrees of freedom > 300 ⊲ Degrees of freedom = 10
⊲ Black box ⊲ Model equations known

Parameters ⊲ Physical meaning ⊲ Physical meaning
⊲ Suspension ⊲ Suspension
⊲ Masses, Inertia ⊲ Masses, Inertia

⊲ wheel-rail contact
⊲ Number > 100 ⊲ Number = 16

Track irregu-
larity

⊲ Real track irregularities ⊲ Analytical track irregulari-
ties

⊲ Analytical track irregulari-
ties

Nonlinearities ⊲ not linear in inputs ⊲ not linear in inputs
⊲ not linear in outputs ⊲ not linear in outputs

Table 2.2: Comparison of model properties for the TGV and the bogie model



Chapter 3

Application of the parameter
identification to the bogie
model

After the two multi-body models have been selected one can turn toward
the second step of modelling: the parameter identification. It represents the
focus of this work. The aim is to identify the parameters of the model so
that the simulation results coincide best with the measured results. Out-
going from an initial estimation of the model parameters the identification
algorithms seek to minimize the difference between model and simulation
results expressed by a misfit function. This requires the coupling between
an optimization algorithm and the model. At each step the optimization
algorithm updates the parameter vector. Then the model is evaluated for
the updated parameters and the misfit function calculated. The principle of
the parameter identification is shown in figure 3.1.

The principal aim of this work is to propose an approach for the identification
of the TGV suspension parameters. However, from the previous chapter it is
known that the TGV model implemented in Vampire is exposed to important
restrictions. Due to the black box characteristic of the software the dynamic
equations of the model are not accessible. Besides, the complexity of the
model might complicate the application and analysis of the identification.
Therefore a second much simpler model of a bogie has been realized as a first
step. It takes into account the wheel-rail contact and explains the nonlinear
dynamics of the railway vehicle.

Following this approach the parameter identification will be first applied to
the suspension parameters of the bogie model (cx,cy,cz,dx,dy,dz) outlined in

97



98 3 Application of the parameter identification to the bogie model

Figure 3.1: Principle of parameter identification

table 2.1. It is the aim of this chapter. The known mathematical description
allows the application of all identification methods of interest. The results
and their relevance for the TGV model are discussed. The application of the
parameter identification on the TGV model will then be treated in chapter 4.

The structure of this chapter therefore follows one aim: outgoing from the
defined problem, the bogie model, the different steps of the parameter iden-
tification procedure are applied. Even though this work focuses on some
aspects of the identification procedure which will be discussed more in detail
it is indispensable for the understanding to present the complete identifica-
tion procedure.

The first step outlined in section 3.1 is the definition of the misfit function.
As virtual experimental data, reference simulations of the Matlab model as
well as the Vampire bogie model for nominal parameters values will be used.
Misfit functions considering a different number of vehicle response degrees of
freedom are compared.

In a second step all suspension parameters which have an influence on the
misfit function have to be identified. This is done by a sensitivity analysis
applied to the bogie model in section 3.2. Suspension parameters with a
negligible influence on the vehicle response are not taken into account in the
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following identification.

When the misfit function criterion is chosen and the relevant parameters are
defined from the sensitivity analysis, one can turn to the optimization. It
consists in identifying the parameter values which minimize the misfit func-
tion. The relevant methods are applied to the bogie model in section 3.3.

3.1 Definition of a misfit function as a norm
of the distance between model prediction
and measurements

The identification of the parameters is performed by minimizing a scalar mis-
fit function with respect to the model parameters. The choice of the misfit
function is an important step since the precision of the identified parameter
values depends on the misfit function.

From section 2.1 it is known that the bogie model is described by 10 degrees
of freedom: the lateral displacement and yaw rotation for the wheelsets and
all 6 degrees of freedom for the bogie frame.

xmodel = (rbx, rby, rbz, δbx, δby, δbz, ue1y, ue2y, δe1z, δe2z)T (3.1)

The degrees of freedom used in the misfit function have been varied. In gen-
eral, since virtual experimental data obtained from a simulation is used, all
degrees of freedom are available. Of course, in the case of real measurements
only some degrees of freedom are measured.

Two types of virtual measurement data are used in the identification: the
simulation result of the Matlab model obtained for nominal parameter values
and the simulation result of the Vampire bogie model outlined in section 2.3.
Since the Vampire model does not have the same structure a identification
on these data is adequate for validating the method.

The quality of the measured data which might motivate the exclusion of a
perturbated channel will be considered for the TGV model where the iden-
tification is based on real measurement data. For the bogie model where
a reference simulation replaces the measurements this aspect has no impor-
tance. The same holds for the choice of the frequency range. Since the
measured and the modeled response are both the result of a simulation they
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are valid in the same frequency domain.

As outlined in chapter 1 different misfit function criteria are available: the
least squares criterion, the least modulus criterion and the maximum like-
lihood criterion. The last one should be generally the first choice if the
measurements are corrupted by noise and if the characteristic of the noise
is known. For the bogie model the virtual measurement data has not been
corrupted by noise. In this case the adequate choice for the misfit function
criteria is therefore the least squares methods. By adding white noise to the
simulated vehicle response the influence of measurement noise on the simu-
lation result can be studied. In this case misfit function criteria which take
into account the noise should be used.

If less importance should be laid to large errors between measured and sim-
ulated results the least modulus criterion has to be used. Figure 3.2 shows
the least square and least modulus criterion for the vertical displacement of
wheelset 1 ue1y of the bogie model.

One can see that for the least modulus method the amplitude differences
between the peaks are smaller while for the least square method the large
errors are amplified.

The misfit function used here is normalized with the integral of the square
of the measured signal xmeas:

Jls(t, p) =
∫ T

0 ‖xmeas(t)− xmodel(t, p)‖2dt
∫ T

0 ‖xmeas(t)‖2dt
(3.2)

This allows to evaluate the quality of the model and the improvement ob-
tained by the parameter identification.

3.1.1 Analysis of the misfit function solution surface

For the application of optimization methods the characteristics of the misfit
function plays an important role. It is described by a solution surface with a
number of dimensions equal to the number of parameters. In order to visu-
alize the solution surface the misfit function is in the following calculated as
a function of the two suspension parameters cx and cy for the bogie model.
Of course, the computation and plotting of the misfit function surface is not
realizable in practice. The number of parameters and the high computa-
tional cost render this impossible therefore requiring the use of optimization
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methods.

Figure 3.3a shows the misfit function as a function of the stiffnesses cx and
cy. The solution surface is characterized by a curved valley with several local
minima. This can disturb the convergence of the optimization algorithm.
Due to the small gradient and local disturbances in the valley the solution is
not unique and depends on the chosen initial values.

In order to improve the convergence of the optimization algorithm a Tikhonov
regularization is applied. The properties of an ill-posed inverse problem and
the Tikhonov regularization have been outlined in chapter 1. It consists in
adding a regularization term to the misfit function:

Jls([cx, cy]) =
1
2

∫ T

0
‖xmeas(t)− xmodel(t, [cx, cy])‖2dt

︸ ︷︷ ︸

solution surface without regularization

+
1
2
α‖[cx, cy]− [cxinitial, cyinitial]‖2

︸ ︷︷ ︸

solution surface of regularization term introduces bias

(3.3)

By doing so a convex surface is added to the solution surface of the non-
regularized misfit function from figure 3.3a with the aim to obtain a distinct
minimum. In return a bias error is introduced in the solution. The choice of
the regularization factor α is not trivial. If α is chosen too small the regu-
larization has no influence on the solution surface and the problem remains
ill-posed. Instead, a too large α has the effect that the convex surface dom-
inates the regularized misfit function forcing the parameters to converge to
the initial values p∗.

How to choose a suitable value of the regularization parameter? Since the so-
lution surface of the misfit function is known a simple and obvious approach
is the trial and error approach. The solution surface of the regularized misfit
function is calculated for different values of α and compared with the non-
regularized misfit function. Figures 3.3b to 3.3e shows the regularized misfit
function for α = 1 (3.3b), α = 0.1 (3.3c), α = 0.01 (3.3d) and α = 0.001
(3.3e) for the parameter values:

Parameter values [m/s]

True values Initial values
cx cy cx cy

5.2e7 3.5e6 4.7e7 3.2e6
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Figure 3.3: Regularization of the misfit function relative to cx and cy for
different values of the regularization parameter α
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For the choice of the suitable α several criteria are considered. One concerns
the form of the solution surface. For α = 1, α = 0.1, α = 0.01 the valley with
its local minima is avoided and a convex misfit function with one minimum
obtained. However, more important is to estimate the error introduced by
the regularization. The parameter values and the misfit function values of the
regularized misfit function are therefore compared with the non-regularized
function. For α = 1 and α = 0.1 the distance between the true parameter
values and the parameter values at the minimum of the regularized misfit
function is with 16% important. The same holds for the value of the cost
function. The choice α = 0.01 represents a good compromise. The regular-
ized misfit function is convex and the errors in the parameter values and the
misfit function value are with 5% small.

However, when choosing the value of the regularization factor it has to be
considered that the result depends strongly on the initial parameter values.
Figures 3.4a and 3.4b show the regularized misfit function for two different
initial values of the parameters.

Regularised cost function with error 4.9964% in tolerance region (alpha=0.01)
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(a) α = 0.01, cx = 5.7e7, cy = 3.8e6
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(b) α = 0.01, cx = 6.2e7, cy = 3.38e6

Figure 3.4: Regularized misfit function for different initial parameter values

It can be seen that an initial value situated in the valley leads to a larger
error relative to the true value than an initial value outside the valley.

The comparison of the non-regularized and regularized misfit functions for
different values of α is not convenient. It requires the misfit function to be
known a priori and is time consuming. Therefore, in chapter 1 an approach
was presented which allows to determine the regularization parameter as a
function of the noise level in the measurement data. The Morozov’s dis-
crepancy principle [2] is based on the idea that the error between model and
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measurements can not be smaller than the noise corrupting the measurement
data. It is therefore reasonable to choose a regularization factor which causes
a bias of the same dimension as the measurement noise.

The discrepancy principle is applied to the misfit function J relative to cx

and cy even though the used virtual measurement data is not corrupted by
noise. For a supposed noise level δ one seeks the value for α which fulfils the
condition:

Jnon−regularized(popt(α))− δ = 0 (3.4)

where popt(α) = arg minJregulaized(p, α).

The determination of the root of equation 3.4 is performed numerically with
the function fzero. Each iteration requires the minimization of the regular-
ized misfit function in order to obtain the optimized parameter vector popt.
The principle is illustrated in figure 3.5.

Figure 3.5: Determination of the regularization factor from the discrepancy
principle

Figure 3.7 shows the value of α for different values of the noise level.

However, if the solution surface of the misfit function is not known a priori
and/or if it is depending on more than two parameters a numerical mini-
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Figure 3.6: Application of the discrepancy principle for the determination of
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mization is required.

The analysis of the misfit function solution surface for the simple two param-
eter case illustrates a difficulty for the parameter identification. Several local
minima appear which will perturb the convergence of optimization methods.
If more than two parameters are considered in the misfit function hypersur-
faces with order k are obtained. A way to avoid or reduce the effect of local
minima is the regularization.

3.1.2 Technical constraints for the suspension param-
eters

The parameters of the bogie model represent physical properties of the pri-
mary suspension. Their values are therefore restricted to a range given by
the tolerance of the suspension element.

As outlined in chapter 1 the tolerances lead to inequality constraints. They
indicate that the parameters can only take values in a certain range. In fig-
ures 3.8a and 3.8b the effect of constraints on the solution space of the misfit
function is demonstrated. In figure 3.8a the global minimum is situated in
the tolerances while in figure 3.8b it is outside indicating an insufficient model
description.

(a) Unequality constraints for stiff-
nesses cx and cy

(b) Global minimum outside of toler-
ances

Figure 3.8: Parameter constraints on the solution surface of the misfit func-
tion

In the optimization the parameters tolerances are taken into account by ap-
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plying a constrained optimization algorithm. In addition to the function to
be minimized the constraints on the parameter values have to be defined.

3.2 Parameter identifiability testing based on
sensitivity analysis

When the misfit function of the bogie model is calculated relatively to all
suspension parameters cx, cy, cz, dx, dy and dz (figures 3.10a to 3.11b) two
observations can be made: first, the effect of the parameters on the misfit
function is very unequal. Some parameters have almost no influence on the
misfit function. And secondly, the influence of one parameter on the misfit
function can depend strongly on the values of the other parameters indi-
cating a coupling between them. Both effects have to be considered in the
identification.

Parameters which have an effect on the misfit function are called identifiable.
For the bogie model the identifiability is evaluated by performing a sensitiv-
ity analysis as described in chapter 1. As a result of the sensitivity analysis
a reduced model is obtained which includes only the identifiable parameters.
All other parameters are fixed at their nominal values. The procedure is
illustrated in figure 3.9.

The sensitivity analysis is based on a simple principle: the simulation is re-
peated for different values of one or several parameters and the influence on
the misfit function is compared. In chapter 1 local and global sensitivity
methods were distinguished. Since the bogie model is nonlinear and the ef-
fect of the parameters coupled, both types of methods are applied.

In section 3.2.1 the results of the local screening method are presented. They
complete the result for the misfit function relatively to the parameters cx and
cy already used in section 3.1.1.

The coupling between the parameters due to the nonlinear structure of the
model is taken into account by performing a global sensitivity analysis. In
section 3.2.2 the results of the Morris method are outlined.
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Figure 3.9: Model reduction: Selection of identifiable parameters using a
sensitivity analysis

3.2.1 Application of the screening method

The screening of the misfit function is performed relatively to two parameters
consecutively providing a three-dimensional solution surface. It has already
been used for the analysis of the misfit function solution surface relative to
the stiffnesses cx and cy in section 3.1.1. In this section the result for all
suspension parameters of the bogie model is presented. Their nominal value,
minimal and maximal values are given in table 3.1:

Stiffness parameters [N/m] Damping parameters [Ns/m]

parameter Values parameter Values
nominal min max nominal min max

cx 5.2e7 4e7 6.4e7 dx 300 200 400
cy 3.5e6 3e6 4e6 dy 300 200 400
cz 0.5e6 1e6 1.5e6 dz 1.2e4 0.7e4 1.7e4

Table 3.1: Parameter values of the bogie model used for the screening method

The misfit function is defined using all 10 degrees of freedom of the bogie
model.
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For the stiffnesses cx-cy, cx-cz and cy-cz the results shown in figure 3.10 are
obtained.
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Figure 3.10: Two-parameter screening for the stiffnesses cx-cy, cx-cz and cy-cz

As already known the misfit function relative to the stiffnesses cx and cy is
described by a curved valley indicating a nonlinear coupling between these
parameters (figures 3.10a and 3.10b). The result of the screening relative
to the stiffnesses cx-cz and cy-cz reveals that the effect of the parameters on
the misfit function is unequal. The vertical stiffness is much more important.

The results of the screening relative to the damping parameters dx-dy and
dx-dz are given in figures 3.11a and 3.11b.

It is found that the influence of the damping parameters on the misfit func-
tion is also very unequal. The damping dz and dy have much higher influence
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than the damping dx. However, more important is the fact that the influence
of the damping on the misfit function is in general negligible compared to
the stiffnesses. It is 2 to 3 orders of magnitude smaller. Besides, the solution
surface of the misfit function relative to dx-dy is very perturbed.

3.2.2 Sensitivity analysis taking into account the pa-
rameter interaction

The coupling between more than two parameters can not be taken into ac-
count by the local screening method. In order to do so global methods have
to be used. Therefore the Morris method which has been presented in chap-
ter 1 is applied to the bogie model also. It proposes two measures: one which
represents the overall effect of the parameter and another estimating the sec-
ond and higher order effects of the parameter.

The Morris method is applied to the stiffness and damping parameters of
the secondary suspension defined in table 3.2. The misfit function is defined
using all 10 degrees of freedom of the bogie model.

The result of the Morris method is given by a point for each parameter in a
two dimensional graph. On the abscissa the average and on the ordinate the
standard deviation of the elementary effect ∇n

pi
J = J(pn+1)−J(pn)

∆p
are shown.

They represent the overall effect of each parameter and the coupling between
them respectively.
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Stiffness parameters [N/m] Damping parameters [Ns/m]

Parameter Values Parameter Values
nominal min max nominal min max

cx 5.2e7 4e7 6.4e7 dx 300 200 400
cy 3.5e6 3e6 4e6 dy 300 200 400
cz 0.5e6 1e6 1.5e6 dz 1.2e4 0.7e4 1.7e4

Table 3.2: Parameter values of the bogie model used for the Morris method

µpi
=

r∑

n=1

∇n
pi
J/r σpi

=

√
√
√
√

r∑

n=1

(∇n
pi
J − µpi

)2/r (3.5)

The sampling procedure which consists in varying randomly step by step
each parameter of the initial parameter vector according to the procedure
described in chapter 1 is repeated r times. The choice of r determines with
which precision the overall effect and the coupling of each parameter are
identified. In order to estimate the scattering of the Morris method for a
given r the calculation is repeated several times with the same r.

First the Morris method has been repeated 20 times with r = 10 for the
parameters cx and cy. The result is shown in figure 3.12 a. It shows a large
dispersion reducing the reliability of the results. Therefore the number of
sampling has been successively increased. Figure 3.12 b shows the result of
20 calculations for r = 50.

Figure 3.13 shows the result of the Morris method for 50 samplings. The
calculation has been repeated 20 times in order to estimate the dispersion of
the result. For all suspension parameters the dispersion lies between 20 and
30%. The result of the Morris method is coherent with the result obtained
by the screening. The lateral stiffness cy has the highest influence on the
vehicle response. The variance indicates a important coupling with the other
parameter values. If the coefficient between the variance and the mean is
calculated for the parameters cx, cy and cz approximately the same value is
found. The influence of the damping parameters is negligible.

From the sensitivity analysis two conclusions for the following parameter
identification are made:

- Due to the negligible influence on the misfit function and the perturbed
solution surface an identification of the damping parameters of the
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bogie model is not possible. They are therefore excluded from the
identification process.

- The coupling between the parameter values is not negligible requiring
all parameters to be considered simultaneously in the optimization.

3.3 Minimization of the misfit function by
applying adequate optimization methods

After the definition of a misfit function and the extraction of the identifiable
model parameters the optimization can be applied. It is the crucial step of
the parameter identification and aims at minimizing the misfit function in
order to identify the parameter values of the model.

The sensitivity analysis showed that among the suspension parameters of
the bogie model only the three stiffnesses cx, cy and cz are identifiable. In
contrast to the Vampire model with a large number of parameters the com-
putational cost is therefore less important.

In the following sections suitable optimization methods are applied to the
bogie model. Their performances are tested and compared. This may pro-
vide important information for the later application on the TGV model.

From the sections 3.1.1 and 3.2 important informations about the properties
of the misfit function have been obtained. They have to be taken into account
when applying the optimization methods and are shortly summarized here.
If possible the consequences for the choice of the optimization method are
outlined likewise:

- Unequal effect of the suspension parameters on the misfit
function:
From the sensitivity analysis in section 3.2 it is found that the influ-
ences of the stiffnesses cx, cy and cz on the misfit function are different.
This leads to small gradients in one direction compared to another
and might perturb the convergence of the optimization algorithm. By
regularizing the misfit function the convergence can be improved.

- Different dimensions of the suspension parameters:
The dimensions of the stiffnesses cx, cy and cz differ considerably. A
normalization of the parameter vector with the vector of the initial
parameters can improve the convergence .
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- Constraints on the parameter values:
The constraints on the parameter values due to the tolerances have to
be taken into account by the optimization algorithm. If unconstrained
optimization methods lead to parameter values outside the tolerances
constrained optimization methods have to be used.

- Existence of local minima:
The solution surface of the misfit function relative to the stiffnesses cx

and cy in figure 3.10a revealed the existence of local minima. Depending
on the initial parameter values local optimization methods described in
chapter 1 can therefore converge to the local instead of the global min-
imum. As outlined in section 3.1.1 this can be avoided by regularizing
the misfit function or by the use of global optimization methods.

An introduction to the different optimization methods which are considered
in this work can be found in chapter 1.

3.3.1 Application of local methods

The screening analysis in section 3.2.1 showed that the regularized misfit
function of the bogie model relative to the stiffnesses has a smooth solution
surface with only one minimum. The local minima which occur in the valley
of the misfit function relative to cx and cy can be avoided by regularizing the
misfit function.

It is therefore possible to solve the parameter identification problem for the
suspension parameters cx and cy by the use of local optimization methods.
As outlined in chapter 1 local methods use the misfit function value and its
derivatives at the considered point allowing generally a faster convergence
than global methods. For the bogie they should be preferred.

3.3.1.1 Application of the Pattern Search method as a gradient-
free local optimization method

The suspension parameters of the bogie model cx and cy are identified using
the Pattern Search method. It has been chosen due to its good convergence
properties and a simple algorithmic structure. A description of this gradient-
free direct method can be found in chapter 1.
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Initial step length The two control parameters of the algorithm, the step
size hi and the direction vector vi are adapted to the misfit function during
the minimization process. However, the convergence speed depends strongly
on the choice of the initial step length which should be adapted to the prob-
lem. If the initial step length is chosen too small many iterations are needed
in order to increase them. Besides, too small step sizes can cause convergence
problems if the misfit function surface is perturbated forming a solution sur-
face with many local minima. Therefore, different initial step lengths have
been tested for the bogie model.

In order to visualize the optimization in the misfit function solution surface
the pattern search method is applied to the parameters cx and cy for different
initial step lengths (table 3.3). The parameters cz, dx, dy and dz are held
constant at their nominal values.

Stiffness parameters [N/m]

Parameter Values Initial step length
true initial min max step1 step2

cx 5.2e7 4.5e7 4e7 6.4e7 5e4 5e3
cy 3.5e6 3.2e6 3e6 4e6 5e3 5e2

Table 3.3: Parameter values used for the Pattern search method

The misfit function is defined using all 10 degrees of freedom of the bogie
model.

The parameter values for each iteration are plotted in the misfit function
solution surface shown in figure 3.14.

The result shows the effect of two different initial step lengths. If the solution
surface of the misfit function is irregular containing local minima, as it is the
case here, a small stepsize can lead to convergence problems. By choosing
a sufficiently large stepsize this can be avoided since perturbances and local
minima on the solution surface are not visible. An alternative is to use the
regularized misfit function from figure 3.3d.

3.3.1.2 Identification with gradient methods

The Pattern Search method is a direct method and does not take advantage
of the derivatives of the misfit function for the determination of the search
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direction. It is therefore interesting to apply also gradient methods to the
bogie model. Since they use also information about the derivatives a faster
convergence should be obtained.

From chapter 1 it is known that many different gradient methods can be
distinguished. For the optimization of the bogie model Newton and Trust
region methods are applied. They are implemented in the Matlab function
fmincon which is adapted to the solution of nonlinear constrained optimiza-
tion problems. By using an analytically calculated misfit function gradient -
the available methods are outlined in the following sections - the trust region
method can be applied to the bogie model. It belongs to the large scale
option and is adapted to optimization problems with a large number of pa-
rameters.

Important numerical control parameters of the optimization algorithms are
the relative and absolute error tolerances defined in Matlab by the variables
TolX and TolFun. By reducing TolX and TolFun the precision but also the
computational cost are increased. This might be necessary if the misfit func-
tion is very flat and the small gradient values lead to an early termination of
the minimization. Besides, the choice of the initial values has an important
influence on the convergence of the algorithm. If several local minima exist
as it is the case for the non-regularized misfit function relatively to cx and
cy the algorithm will, depending on the initial values, converge to the closest
local minimum.

The function fmincon is applied to the identification of the spring stiffnesses
cx and cy. The parameters cz, dx, dy and dz are held constant at their nominal
values. The cost function is defined using all 10 available degrees of freedom
of the bogie model.

The stiffnesses and the corresponding tolerances have the values given in ta-
ble 3.4.

The optimization is performed for the Newton and Trust-region method with
and without regularization as summarized in table 3.5 (with: TolFun: Ter-
mination tolerance on the function value; TolCon: Termination tolerance on
the constraint violation; TolX: Termination tolerance on parameter values).
For the Newton method the Hessian matrix is calculated using the BFGS
method.

In the following the result for each configuration is illustrated by the param-
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Stiffness parameters [N/m]

Parameter Values
true initial min max

cx 5.2e7 4.5e7 4e7 6.4e7
cy 3.5e6 3.2e6 3e6 4e6

Table 3.4: Parameters used for the application of the gradient methods to
the bogie model

Optimization parameter

Cal. α Method TolFun TolCon TolX
1 no Newton method 1e-100 1e-100 1e-100
2 no Trust-region-reflective 1e-100 1e-100 1e-100
3 0.01 Newton method 1e-100 1e-100 1e-100

Table 3.5: Control parameters of the gradient methods

eter values on the solution surface of the misfit function and the decrease of
the misfit function as a function of the iteration steps.

• Calculation 1: Direct minimization with Newton method

The misfit function is not regularized and has several local minima.
The convergence of the Newton-method is analysed for two different
initial parameter sets with the values [cx = 4.5e7N/m, cy = 3.2e6N/m]
and [cx = 5.8e7N/m, cy = 3.2e6N/m] as shown in figure 3.15. Both
optimizations converge to the closest local minimum but not to the
global minimum indicated by the red circle on the misfit function so-
lution surface.

• Calculation 2: Trust-region method

The trust-region method is applied to the initial parameter set [cx =
4.5e7N/m, cy = 3.2e6N/m] in figure 3.16. It converges to the global
minimum by requiring a low number of iteration steps.

• Calculation 3: Tikhonov regularization

In order to improve the convergence of the algorithm the Tikhonov reg-
ularization is applied to the problem. The regularization parameter is
determined with the discrepancy principle as outlined in section 3.1.1.
For the given initial point figure 3.17 shows the relation between the
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noise level on the measurement data and the regularization factor alpha.
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For a real system the noise level can be estimated from a statistical
analysis of the measurement data. Since for the bogie model measure-
ment data is not available and a reference simulation is used instead
the noise level is zero. A choice of the regularization parameter leading
to a bias of the same order as the noise level is therefore not possible.
The regularization factor is chosen from knowledge of the misfit func-
tion solution surface so that local minima are avoided.

If the misfit function is regularized with α = 0.01 a smooth solution
surface with one minimum is obtained. The local Newton method (inte-
rior point) therefore converges to the global minimum of the regularized
problem shown in figure 3.18b. Nevertheless, the misfit function (fig-
ure 3.18a) does not decrease to zero and the identified parameter values
(figure 3.18c and 3.18d) differ slightly from the true values. This bias
is due to the error introduced by the regularization.

The three optimizations show the performances and limits of local optimiza-
tion methods. The convergence is fast. The trust-region method converges
after less than 70 iteration steps. For the non-regularized Newton method the
convergence is obtained after 120 iterations. The regularization of the misfit
function reduces the required iterations to around 40. The limitation of the
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local methods is the already evoked fact that they are not suitable for opti-
mization problems with many local minima. In the first example the Newton
method converges to different local minima as a function of the initial con-
ditions. Here, the trust region method converges to the global minimum but
in general it has the same limitation in common with the other local methods.

Even though the number of iteration steps is low for the gradient methods
the calculation times can increase significantly for large models. This is due
to the numeric calculation of the gradient necessary at every iteration.

3.3.2 Explicit calculation of the gradient

The gradient methods necessitate the calculation of the gradient. From chap-
ter 1 it is known that for complex systems with a large number of parameters
the gradient calculation can represent the most expensive step in the opti-
mization algorithm. In this case the choice of an adapted method for the
calculation of the gradient is crucial.

For the bogie model described by a small number of parameters the cost
required for the computation of the gradient is less relevant. The application
of different methods for the calculation of the gradient is nevertheless a focus
of this work and of this chapter in particular. The potential of the gradient
calculation methods is studied on the bogie model with regards to the model
of the complete train. As outlined in the next chapter the complete TGV
train is described by several hundred parameters if the parameter values are
considered to be independent. The cost required for the calculation of the
gradient with respect to each parameter becomes important.

Of course a simple but rarely the best way for obtaining approximated nu-
merical values of the misfit function gradient is the finite differences method.
For the parameter value p the gradient is estimated by evaluating the mis-
fit function at one or two other points aside. In equation (3.6) the misfit
function values at p and p+ h are used:

D+hJ(p) =
J(p+ h)− J(p)

h
(3.6)

For a large number of parameters this method is very costly. Besides, the
choice of the steplength h is difficult. If h is too large, then truncation errors
become significant. Even if h is optimally chosen, the derivative of the misfit
function J will be accurate to only about 1/2 or 2/3 of the significant digits
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of J.

Therefore alternative calculation methods should always be taken into ac-
count. If the equations of motion describing the system are available ana-
lytical approaches can be used. In chapter 1 two approaches for complex
nonlinear systems have been proposed: the adjoint state method which is in
particular adapted to systems with a large number of parameters and the
automatic differentiation method.

3.3.2.1 Gradient calculation from adjoint state approach

The gradient methods applied to the bogie model in section 3.3.1.2 require
the calculation of the misfit function gradient relative to the unknown param-
eters. The aim of the adjoint method outlined in this section is to calculate
the gradient of the misfit function J(p) in an analytical way requiring less
computational cost than the numerical calculation.

The minimization of the misfit function requires the zero value of the gradient
∇pi

J(p):

∇pi
J(p) = ∇pi

1
2

∫ T

0
‖xmeas(t)− xmodel(t, p)‖2dt for i = 1...n (3.7)

n: number of parameters

The misfit function depends on the parameters pi through the response x(p)
of the bogie model. The total derivative of the misfit function with respect
to the parameters pi is therefore:

dJ

dpi
=
∂J

∂pi
+∇xJ(p)

dx
dpi

(3.8)

with the gradient relative to x: ∇x = [ ∂
∂x1
, ..., ∂

∂xn
]: gradient

The derivatives dx

dpi
of the result of the forward model x with respect to the

parameters pi are not known. Due to the complexity of the nonlinear model
a straightforward calculation is not feasible.

In order to overcome this problem the following approach is used: instead of
minimizing the misfit function J the stationarity of the Lagrangian equation
L given by the sum of the misfit function and the state equation along with
a Lagrange multiplier is sought. This is possible since the stationarity of
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the Lagrangian equation implies the minimization of the misfit function.
It is supposed that the variables p, x and z in the Lagrange equation are
independent giving the derivative:

dL(p,x, z) = ∇pL(p,x, z)dp +∇xL(p,x, z)dx +∇zL(p,x, z)dz (3.9)

In the following this approach is illustrated for the bogie model. In chapter
2 the nonlinear equation of motion was found to be:

M(x,p)ẍ(t) + F(x, ẋ,p, t) = 0 (3.10)

From the Lagrangian equation L the gradient and the adjoint state equations
are calculated. The Lagrangian equation has the form:

L = J(p,x)−
∫ T

0
(zT , (M(x,p)ẍ(t) + F(x, ẋ,p, t)))dt = 0 (3.11)

For the misfit function J(p,x) displacement, velocities or acceleration sig-
nals can be used. The derivative of the Lagrange equation relatively to the
parameters p gives the gradient equation ∇pL. It does not depend on the
signal type used in the misfit function. If the Tikhonov regularization is used
as outlined in chapter 1 a regularization term is added to the misfit function.
It depends on p giving a gradient equation:

∇pL = α(p− pinitial)−
∫ T

0
((DpMẍ)T z +DpFT z)dt (3.12)

In order to minimize the misfit function the Lagrange equation gradient
∇pL(p,x, z) must vanish and provides the optimal parameters:

∇pL(p,x, z) = 0 (3.13)

The derivative of the Lagrangian equation with respect to x gives the adjoint
state equation:

∫ T

0
zT (DxMẍδx)dt+

∫ T

0
zT (Mδẍ)dt+

∫ T

0
zT (DxFδx)dt+

∫ T

0
zT (DẋFδẋ)

=
∫ T

0
(x− xexp)T δxdt

(3.14)
The right-hand term in (3.14) describes the derivative of the misfit function
J(p,x) relatively to x. It depends on the type of signal used in the misfit
function. Here the displacement of the model and measurement are used.



126 3 Application of the parameter identification to the bogie model

Alternatively the misfit function can be defined using the velocities or accel-
erations. For this description the three cases are outlined in parallel and are
denoted by (a), (b) and (c). The adjoint equations for the three cases are
given by:

(a) displacement
∫ T

0
zT (DxMẍδx)dt+

∫ T

0
zT (Mδẍ)dt+

∫ T

0
zT (DxFδx)dt+

∫ T

0
zT (DẋFδẋ) =

∫ T

0
(x− xexp)T δxdt

(3.15)

(b) velocity
∫ T

0
zT (DxMẍδx)dt+

∫ T

0
zT (Mδẍ)dt+

∫ T

0
zT (DxFδx)dt+

∫ T

0
zT (DẋFδẋ) =

∫ T

0
(ẋ− ˙xexp)T δẋdt

(3.16)

(c) acceleration
∫ T

0
zT (DxMẍδx)dt+

∫ T

0
zT (Mδẍ)dt+

∫ T

0
zT (DxFδx)dt+

∫ T

0
zT (DẋFδẋ) =

∫ T

0
(ẍ− ¨xexp)T δẍdt

(3.17)

In the next step the derivatives of x are separated and the terms from the
equations (3.15) integrated by parts in order to eliminate all derivatives of δx
from the adjoint state equation. For the left-hand side terms the integration
by parts is identical for the displacements, velocity and acceleration case.
Using the relation (Ax)T z = (AT z)T x one obtains the following results for
the four left-hand side terms:

1:
∫ T

0
(DxMẍδx)T z dt =

∫ T

0
((DxMẍ)T z)T δx dt (3.18a)

2:
∫ T

0
(Mδẍ)T z dt =

∫ T

0
(MT z)T δẍ dt

= [(MT z)T δẋ]T0 − [

.
︷ ︸︸ ︷

(MT z)T δx]T0 +
∫ T

0
(

..
︷ ︸︸ ︷

(MT z)T δx) dt (3.18b)

3:
∫ T

0
(DxFδx)T zdt =

∫ T

0
(DxFT z)T δx dt (3.18c)

4:
∫ T

0
(DẋFδẋ)T z) dt =

∫ T

0
(DẋFT z)T δẋ dt

= [(DẋFT z)T δx]T0 −
∫ T

0
(

.
︷ ︸︸ ︷

(DẋFT z)T δx dt (3.18d)
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For the right-hand side term three different cases have to be considered. If
displacements are used in the misfit function no further operation is neces-
sary. Instead, for the misfit function defined with the velocity or acceleration
integrations by part are needed in order to eliminate the derivatives of δx:

(b)
∫ T

0
(ẋ− ẋexp)T δẋ dt = [(ẋ− ẋexp)Tδx]T0 −

∫ T

0
(ẍ− ẍexp)T δx dt (3.19a)

(c)
∫ T

0
(ẍ− ẍexp)T δẍ dt = [(ẍ− ẍexp)Tδẋ]T0 −

∫ T

0
(
...
x − ...

x exp)T δẋ dt

= [(ẍ− ẍexp)T δẋ]T0 − [(
...
x − ...

x exp)T δx]T0 +
∫ T

0
(xIV − xIV

exp)
T δx dt

(3.19b)

From the integration by parts terms remain which are calculated at t = 0 and
t = T . They depend on δx and δẋ. Due to the initial condition x(t = 0) = 0
they become zero at t = 0. For t = T the final conditions are obtained by
separating the left and right-hand side terms depending on ∂x and ∂ẋ:

(a) Displacements:
z(T ) = 0 ż(T ) = 0 (3.20)

(b) Velocity:

MT z(T ) = 0 (3.21a)

−Ṁ
T
z(T )−MT ż(T ) +DẋFT z(T ) = (ẋ(T )− ẋexp(T )) (3.21b)

(c) Acceleration:

MT z(T ) = (ẍ(T )− ẍexp(T )) (3.22a)

Ṁ
T
z(T ) + MT ż(T )−DẋFT z(T ) = (

...
x(T )− ...

x exp(T )) (3.22b)

Now all the integral terms in the adjoint equation depend only on δx which
can be eliminated. For the three cases the adjoint equations are therefore
given by:

(a) (

..
︷ ︸︸ ︷

MT z) + (DxMẍ)T z +DxFT z−
.

︷ ︸︸ ︷

(DẋFT z) = x− xexp (3.23a)

(b) (

..
︷ ︸︸ ︷

MT z) + (DxMẍ)T z +DxFT z−
.

︷ ︸︸ ︷

(DẋFT z) = −(ẍ− ẍexp) (3.23b)

(c) (

..
︷ ︸︸ ︷

MT z) + (DxMẍ)T z +DxFT z−
.

︷ ︸︸ ︷

(DẋFT z) =
....
x − ....

x exp (3.23c)
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The signal in the adjoint state equations depend therefore on the type of
signal used in the misfit function. The three cases are summarized in tabel
3.6.

Adjoint state calculation

Signal in misfit function Signal in adjoint state
a displacements x displacements x

b velocities ẋ accelerations ẍ

c accelerations ẍ fourth derivative
....
x

Table 3.6: Ajoint state calculation for displacements, velocities and acceler-
ations used in the misfit function

Which of these approaches provides the best result depends on the available
data and the error introduced by integrating or differentiating the time sig-
nals. As outlined in [49] the differentiation leads often to spurious oscillations
and to numerical errors. A small perturbation in the data can lead to large
variation in the derivative. Therefore the derivation should be avoided.

Therefore, for the bogie model the use of displacements in the misfit function
is advantageous. It leads to displacements in the adjoint equation. Since the
results of the numerical integration calculated for state space equations are
available as displacements and velocities no differentiation is needed in this
case. We will see in the next chapter that for the identification of the TGV
parameters the case b should be used. The vehicle response is measured in
form of accelerations which could be used directly in the adjoint state equa-
tion. In order to obtain the velocities for the misfit function an integration
would be required.

In the adjoint state equation several derivatives of the matrix M appear:

M̈
T
z+MT z̈+2Ṁ

T
ż+(DxMẍ)T z+(DxFT )z−

.
︷ ︸︸ ︷

(DẋFT ) z−DẋFT ż = x−xexp

(3.24)
The term DxM describes the derivative of the matrix M with respect to a
vector x giving a tensor of order 3. According to the tensor algebra which
can be found in the appendix C a second order tensor is obtained when the
derivative of M is contracted with the vector ẍ. Using the index notation
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the contraction is given by:

(
∂mij

∂xs

ei ⊗ ej ⊗ es)ẍ =
∂mij

∂xs

(es, ẍ)ei ⊗ ej =
∂mij

∂xs

(ẍs)ei ⊗ ej (3.25)

Accordingly, an index appearing twice in a multiplicative term represents a
summation. The equation above can therefore be written as:

∑

s

ẍs
∂mij

∂xs
ei ⊗ ej (3.26)

For the validation of the adjoint state method the scalar product test pro-
posed in [48] is used. It is based on the definition of the adjoint state. At first
the differentiated equation of the system is solved for an arbitrary excitation.

(DxMẍ)δx + Mδẍ +DxFδx +DẋFδẋ = b(t) (3.27)

The result for δx is injected in the right side of the adjoint state equation
(3.24) and the following scalar products (b, z) and (δx, δx) are calculated.
If the two scalar products give the same result for different choices of b the
result of the adjoint equation is validated.

3.3.2.2 Gradient calculation from automatic differentiation (AD)

In chapter 1 another interesting approach for the calculation of the gradient
was outlined: the automatic differentiation.

The code describing the equations of motion for the forward bogie model is
rewritten as a sequence of basic operations. Then the gradient is calculated
by applying the chain rule. Finally, AD gives a program code for the calcula-
tion of the gradient. It does not apply a symbolic expression for the gradient.

For this work the TOMLAB/MAD toolbox [19] in Matlab has been used.
The numerical integration needed for the solution of the differential equation
system is treated by this automatic differentiation package. For the gradient
calculation the forward mode is used.

3.3.2.3 Comparison of the gradient calculations

The misfit function gradients obtained from the finite differences, adjoint
state and automatic differentiation approach are compared. The criteria for
the comparison are the accuracy of the gradients and the computational cost.
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The latter becomes important with regard to the TGV model where the gra-
dient is calculated relatively to a large number of parameters.

In addition to the method used the result and cost needed for the calculation
of the gradient depends of course on the numerical control parameters. Both
the calculation of the forward model response and the gradient require control
parameters which are summarized in table 3.7. All gradient methods require
the solution of the forward model. As outlined before it is described by a sys-
tem of nonlinear differential equations and solved by numerical integration.
If the gradients are calculated from finite differences only the forward model
response is needed. It is calculated at several parameter values shifted by a
certain steplength. The adjoint state approach requires the solution of the
adjoint state equation. As the forward model equation it is described by a
nonlinear differential equation system which is solved by numerical integra-
tion. The automatic differentiation requires no more than the choice of the
mode.

Numerical control parameters

Forward model

Solver type of solver ODE113
MaxStep max step size 0.01
RelTol relative tolerance 1e-4
AbsTol absolute tolerance 1e-6

Finite Differences Steplength 0.01

Adjoint state

Solver type of solver ODE113
MaxStep max step size 0.001
RelTol relative tolerance 1e-4
AbsTol absolute tolerance 1e-6
Type signal in misfit function displacement

Automatic differ-
entiation

Mode forward

Table 3.7: Control parameters for the gradient calculation methods

The control parameters of table 3.7 concern for the most part the numerical
integration algorithm used for solving the differential equation systems.

- Solver:
The solvers ODE are used for solving initial value problems for ordi-



3.3 Minimization of the misfit function 131

nary differential equations. Among the seven different solvers available
in Matlab the ODE45 and the ODE113 solvers have been used. The
ODE45 solver is an explicit Runge-Kutta(4,5) one-step solver which
uses only the result of the previous time step. It is recommended to
use this solver at first for most problems. If the numerical integration
is slow due to an expensive evaluation the ODE113 solver should be
used. It is a multi-step solver using the solution at several preceding
time steps. The order given by the number of preceding steps is vari-
able.

- MaxStep:
The upper bound of the solver step size is defined by the parameter
MaxStep.

- RelTol:
The parameter RelTol defines the relative error tolerance that applies
to all components of the solution vector x. The relative error is a
measure of the error relative to the size of each solution component.

- AbsTol:
The parameter AbsTol describes the absolute error tolerance that ap-
plies to the individual components of the solution vector. If the value
of the ith solution component is below this threshold it is neglected and
convergence to zero is assumed.

From section 3.3.2.1 it is known that the misfit function can be defined us-
ing the displacements, velocities and acceleration signals of the simulation
and measurement response. This choice concerns the forward model. The
integration by parts needed for the calculation of the adjoint state equations
leads to higher order derivatives. The relation between the signals used in
the misfit function and in the adjoint state equation has been summarized
in table 3.6.

The choice of the signal type depends on the available data and the error
introduced by a possible differentiation. In the following the displacement,
acceleration and 4th derivative of the direct model response are compared.
From the numerical integration the result is obtained as displacement and
velocity. In order to obtain the acceleration and the 4th derivative numerical
differentiation are applied. As outlined before the differentiation can lead to
an important amplification of errors in the original signal.
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The gradients of the misfit function have been calculated relative to all de-
grees of freedom. All three types can be used in the optimization algorithm.
As an example the forward model response for the dof 7 of the bogie model
is shown in figure 3.19.
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Figure 3.19: Displacement, acceleration and 4th derivative of dof 7 of the
vehicle response

It is found that the acceleration signal and in particular the 4th derivative
are disturbed. While the acceleration signal can be calculated directly by
evaluating the system equation for ẍ the calculation of the 4th derivative
requires a numerical differentiation. Due to the large errors introduced by
the differentiation the accelerations can not be used in the misfit function.

Computation of the adjoint state:
The forward model and the adjoint equation are solved by numerical inte-
gration using the Matlab functions ODE45 or ODE 113. At every iteration
step of the optimization algorithm the following operations are required for
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the calculation of the adjoint state:

- Solution of the forward model:
The forward model described by equation (3.10) is solved for the time
interval t = 0 to T = 10s using the defined maximal step size and tol-
erances. In figure 3.20 the inversed dof 7 of the forward model response
xforwardmodel is shown for the model and the measurement.

- Solution of the adjoint equation:
In the next step the adjoint equation (3.24) is solved for the time inter-
val t = T to t = 0 using the defined maximal step size and tolerance.
The adjoint equation is solved inverse in time requiring the forward
model to be solved for the whole time range chosen. The result is
shown in figure 3.20.

- Calculation of the gradient:
After the forward model and the adjoint equation have been solved the
gradient can be calculated from equation (3.24) by implementing the
adjoint variable for t = 0 to t = T .
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Figure 3.20: Forward model response and adjoint state for bogie model (dof
7)

Automatic differentiation:
For the calculation of the gradient by automatic differentiation the toolbox
tomlab/Mad is used. The automatic differentiation requires only the forward
model. The code for the gradient calculation is created automatically. Then
the forward model and its derivative are solved using an numerical integra-
tion algorithm.
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Comparison of gradients:
The misfit function gradients relative to the stiffnesses cx, cy and cz have been
calculated with the finite differences, adjoint state and automatic differenti-
ation method. In the following the results for the gradients are compared.
The criteria are the accuracy of the gradient calculation on the one hand and
the needed calculation time on the other hand.

The gradients of the misfit function have been calculated for different con-
figurations. For configuration 1 (table 3.8) a low friction value is used. For
configuration 2 (table 3.9) the friction value is increased. Finally, in configu-
ration 3 (table 3.10) the velocity signal is used in the misfit function instead
of the displacement signals.

Gradient calculation

Model Misfit Conicity Friction Time Track Para
Single Wheelset displ. 0.2 0.1 2 con cy
Complete bogie displ. 0.2 0.1 10 con cy

Table 3.8: Parameters for gradient calculation, configuration 1
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Figure 3.21: Gradient from adjoint state and finite differences for single
wheelset model, configuration 1

In a first step a special case is considered. The bogie frame is fixed moving
with constant speed so that the two wheelsets are not coupled any longer.
In this case the same gradients are obtained for all three cases. However, an
influence of the friction coefficient is recognizable. If the friction coefficient
and therefore the level of the friction forces is reduced the difference between
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Gradient calculation

Model Misfit Conicity Friction Time Track Para
Single Wheelset displ. 0.2 0.3 2 con cy
Complete bogie displ. 0.2 0.3 10 con cy

Table 3.9: Parameters for gradient calculation, configuration 2
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(b) complete bogie

Figure 3.22: Gradient calculated from adjoint state and finite differences,
configuration 2
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Figure 3.23: Gradient calculated from automatic differentiation and finite
differences, configuration 2
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Gradient calculation

Model Misfit Conicity Friction Time Track Para
Single Wheelset speed 0.2 0.1 2 con cy
Complete bogie speed 0.2 0.1 10 con cy

Table 3.10: Parameters for gradient calculation, configuration 3
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Figure 3.24: Gradient calculated from adjoint state and finite differences for
single wheelset model, configuration 3

state gradient and numerical gradient is reduced either.

If the full dynamics of the bogie model is considered the interpretation of the
results becomes more complicated. Between the numerical and adjoint state
gradient an important error occurs. No clear explanation of the differences
could be found. For the linearized model of the wheelset the adjoint method
could be validated with the scalar product test. From figure 3.23 it can be
seen that the effect of the friction coefficient and the conicity on the error
are negligible. In return, the differences are probably caused by the nonlin-
ear nature of the bogie model. Since an analytical solution of the gradient
calculation for the nonlinear model is not available the results can not be
validated. None of them can be seen as the reference calculation.

The gradient calculated by the automatic differentiation approach gives the
same result as the numeric gradient. This shows that the automatic differ-
entiation is a suitable approach for the calculation of the gradient even for a
complexe system solved by numerical integration methods.

The adjoint method has been implemented in the gradient based optimiza-
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tion methods. If the numeric gradient calculation in the Newton and Trust
region method is replaced by the gradient from the adjoint state approach
the same optimization result is obtained.

From the sensitivity analysis in section 3.2 it is found that the misfit function
relative to the stiffnesses cx and cy has several local minima. By regularizing
the misfit function these local minima could be eliminated. However, in gen-
eral the solution surface of the misfit function is not known a priori and local
minima can occur. Therefore, the exclusive use of local methods is unsuit-
able since the convergence towards the global minimum is not guaranteed.
The results of section 3.3.1.2 showed that the local optimization methods
converge to the minimum closest to the initial parameter values.

3.3.3 Parameter identification with simulated anneal-
ing from Matlab reference simulation

In order to identify the global minimum of the misfit function the simulated
annealing method is applied. As outlined in chapter 1 it is a global method
able to leave the attractor region of a local minimum in order to converge to
the global minimum of the solution space.

In a first step the simulated annealing method is applied to the bogie model
for the identification of the stiffnesses cx and cy using a Matlab simulation as
virtual experimental data. The choice of control parameters has an important
effect on the results. From the considerations in chapter 1 it is known that if
too fast the decrease of the temperature parameter can cause a convergence
to a local minimum since the local search characteristics are emphasized.

The choice of the temperature algorithm and the number of function eval-
uations for every temperature is difficult since standard adjustments of the
control parameters are not known yet. In this work several adjustments have
been tested and compared. Another difficulty which all global methods have
in common is the choice of a termination condition. Here, the temperature
parameter and the number of iterations are used.

The nominal and the initial value as well as the constraints of the parameters
are given in table 3.11.

The control parameters for which the simulated annealing is performed are
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Stiffness parameters of bogie model

Parameter stiffness [N/m]
true initial min max

cx 5.2e7 4.5e7 4e7 6.4e7
cy 3.5e6 3.2e6 3e6 4e6

Table 3.11: Parameters used for the simulated annealing method

listed in table 3.12:

Control parameter

Parameter Configurations

number of consecutive rejections 10000 10000 10000
number of tries within one temperature 10000 10000 10000
number of successes within one temperature 20 20 20
reduction of temperature 10% 40% 60%

Table 3.12: Control parameters for the simulated annealing method

with:

- Number of consecutive rejections:
Number of consecutive iterations for which the new misfit function
value is not accepted. If this number is achieved the simulated anneal-
ing algorithm is terminated.

- Number of tries within one temperature:
Number of misfit function evaluations in one temperature step. A large
number leads to a accentuation of the global exploratory properties of
the algorithm.

- Number of successes within one temperature:
Number of evaluations for which the new misfit function value is ac-
cepted.

- Reduction of temperature:
Percentage the temperature is reduced from one temperature level to
the next. A slow reduction also accentuates the global exploratory
properties of the algorithm.
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Figure 3.25: Simulated annealing for the stiffnesses cx and cy with 10% tem-
perature reduction
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Optimization 1:

With a temperature reduction of 10% the algorithm converges to the global
minimum of the misfit function.

In figure 3.25a an accumulation of parameter trials in three regions is recog-
nisable. These regions represent the local and the global minimum of the
misfit function surface. Due to the slow reduction of the temperature the
exploratory properties of the algorithm are accentuated and the local mini-
mum is left. In return, the number of iterations is high. The true parameter
values are identified after about 2500 iterations.

Optimization 2:
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Figure 3.26: Simulated annealing for the stiffnesses cx and cy with 60% tem-
perature reduction

If the temperature is reduced with 60% the simulated annealing algorithm



3.3 Minimization of the misfit function 141

becomes ineffective after a relatively short number of iterations. The algo-
rithm then behaves like a local method and converges to a local minimum.

The results show that the global search characteristics of the simulated an-
nealing algorithm should be emphasized at the beginning of the analysis.
In order to reduce the number of iterations the change from global to local
search characteristics can be accelerated if the convergence to the initially
found global minimum remains guaranteed.

3.3.4 Parameter identification with simulated anneal-
ing from Vampire reference simulation

In the section 3.3.3 a simulation with the Matlab bogie model has been used
as virtual measurement data for the parameter identification. The measure-
ment and simulation data was therefore obtained from the same model. This
explaines that the optimization algorithm converges to the exact parameter
values used in the reference simulation. The misfit function becomes zero.
Of course, in reality this is not possible. Since the model is a simplified rep-
resentation of the real system it can not reproduce the measurement exactly.
Therefore, in order to analyse the performance of the model and the param-
eter identification real measurement data should be used. If measurement
data is not available, the simulation results of another model, preferably with
a more complexe structure can be used. Therefore in this section the simu-
lation result obtained from the Vampire bogie model will be used.

Several identifications are performed. First, the convergence of the simulated
annealing algorithm has been tested for the case that the initial parameters
of the Matlab model corresponds to the nominal parameters used in the Vam-
pire model. Afterwards, the simulated annealing algorithm has been applied
to the case of different initial parameter values. The parameter values and
the degrees of freedom used for the definition of the misfit function are sum-
marized in table 3.13.

Besides, different misfit functions are compared. For the Vampire model the
response at all degrees of freedom is available, allowing to define the misfit
function with all 10 degrees of freedom. However, when measurement data
is used, the response is not available at all degrees of freedom. In order to
analyse the effect of reduced misfit functions two different cases are studied.
In one case only lateral displacements in the wheelsets are used while in the
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other case six degrees of freedom are taken into account. The different cases
studied are summarized in table 3.13.

Cal Vampire Model Bogie Model Misfit function

suspension parameters inital suspension parameters degrees of freedom

cx

[N/m]
cy

[N/m]
cz

[N/m]
cx

[N/m]
cy

[N/m]
cz

[N/m]
uy,ws1 δz,ws1 uy,ws2 δz,ws1 uy,b δz,b

1 5.2e7 3.5e6 1.0e6 5.2e7 3.5e6 1.0e6 + - + - - -

2 5.2e7 3.5e6 1.0e6 5.2e7 3.5e6 1.0e6 + + + + + +

3 5.2e7 3.5e6 1.0e6 2.0e7 1.0e6 0.5e6 + - + - - -

Table 3.13: Parameters and degrees of freedom in misfit function

For the computations 1 and 2 the nominal values of the Vampire model are
used as initial values for the bogie model. The simulated annealing algorithm
converges to different values due to the differences in the structure of the two
models. The degrees of freedom used in the misfit function play an impor-
tant role. If only the lateral displacements are used (calculation 1) different
parameter values are obtained for cx and cz.

For the calculations with the nominal values as initial values a reduction of
the misfit function is obtained. In the figures 3.30a to 3.30f the response of
the Vampire model is compared with the response of the Matlab model before
and after the optimization. The distance between Matlab and Vampire model
remains important according to the small reduction of the misfit function
observed before. This schows that the distance between the response are due
to structural differences in the model and not due to inaccurate parameter
values.

3.3.5 Parameter optimization for the bogie model: con-
clusions

In this chapter the parameter identification has been applied to the Matlab
bogie model. Both, local gradient optimization and the global simulated an-
nealing method have been tested. Since no measurement data for a single
bogie is available the result of a simulation with nominal parameters has been
used as virtual measurement data. Both, the Matlab model and the Vampire
bogie model have been used in order to obtain the virtual measurement data.
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Figure 3.27: Identification of Matlab model parameters from Vampire model
result with: Initial values Matlab model = from Vampire, 2 dof measured
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Figure 3.28: Identification of Matlab model parameters from Vampire model
result with: Initial values Matlab model = from Vampire, 6 dof measured
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Figure 3.30: Comparison of time data response for the Vampire model and
the Matlab model with initial and optimized parameters
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If the Matlab model is used the exact identification of the parameter values
is possible. Then the global simulated annealing method converges to the
global minimum given that the temperature reduction is sufficiently slow.
The local gradient methods using the adjoint state approach are also able to
converge to the global minimum if a regularization of the misfit function is
used.
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Chapter 4

Application of the parameter
identification to the TGV
model

4.1 Introduction

In the previous chapter the parameter identification problem was applied to
the model of a single bogie. The identifiable parameters have been chosen
using a sensitivity analysis. Then both local and global optimization meth-
ods have been applied in order to estimate the parameter values. However,
for this simple model a parameter identification based on real measurement
data was not possible. The simulation result obtained from the Vampire bo-
gie model has been used as virtual measurement data. Measurement noise
has not been considered but could be taken into account by adding a white
noise to the Vampire simulation results.

In this chapter the approach outlined previously will be applied to the model
of the TGV train. For the definition of the misfit function real measurement
data will be used.

For the parameter identification many references to the steps outlined in the
previous chapter will be found. This concerns mainly the choice of the pa-
rameters which have an influence on the vehicle response using a sensitivity
analysis and the application of different optimization methods. However, the
application to a far more complicated model and the use of real measurement
data require additional steps on which this chapter will focus.

149
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The parameter identification is not applied under well-defined laboratory con-
ditions. Instead, the measurements used in the misfit function are obtained
from operational measurements of a TGV train running on a real track with
varying properties. It is therefore necessary to characterise the measurement
conditions and analyse their influence on the parameter identification prob-
lem. The same concerns the vehicle. From chapter 2 it is known that the
TGV train is a complex coupled system with a number of nonlinear effects.
They are caused by the wheel-rail contact and several nonlinear suspension
elements like the airspring and rubber springs. It is important to know the
influence of these nonlinearities on the vehicle response in order to choose
an adapted identification method. Finally, it is indispensable to validate the
initial model with the measurement data. This allows to define the frequency
range for which the model is valid, to know the performance of the model for
different running conditions and to detect possible modelling errors.

These questions are discussed in the first section of this chapter. It anal-
yses the influence of different running conditions on the vehicle dynamics
and model performance using both the measurement data and simulation
results. It aims at evaluating the influence of nonlinearities on the identifica-
tion problem and it presents a validation of the model using the correlation
and misfit function between simulation and measurement. Finally, it uses the
sensitivity analysis developed in the previous chapter in order to analyse the
coupling of the model and to detect the parameters which have an influence
on the defined misfit functions.

The second section discusses the identification. Misfit functions defining the
distance between simulation and measurement results are defined and mini-
mized by the simulated annealing and genetic algorithm method. It will be
shown that global optimization methods are required due to the presence of
many local minima in the solution surface of the misfit functions and the
under-determined problem.

In the third section the results are discussed and conclusions about the ap-
plication of the parameter identification to the TGV model are presented.
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4.2 System analysis and calibration of the ini-
tial model

4.2.1 Analysis of the vehicle-track system with regard
to the parameter identification problem

The parameter identification is performed for operational measurements of
a TGV Duplex train running on the east-European high-speed line. The
main excitation of the train is the track characterised by a theoretical design
and the track irregularities indicating the divergence of the real track from
the theoretical design. Both properties have an important influence on the
vehicle dynamics and have to be taken into account for the parameter iden-
tification.

An identification using all available measurement information for the whole
line is practically impossible to perform due to the enormous amount of data.
The identification has to be restricted to some sections which give represen-
tative results. These so-called learn sections should cover different running
conditions for example straight and curved track as well as different line
speed or track quality levels. For a reliable identification of the suspension
parameters it has to be assured that the estimated values do not depend
considerably on the running conditions used in the identification problem.

4.2.1.1 Analysis of the main excitation of the system : the track

The theoretical design describes the construction parameters of the railway
line. It is given by the radii of the curves, the cant (or superelevation) of the
curves, the construction speed and the cant insufficiency. The cant describes
the difference in elevation between the outer and inner rail. It allows to re-
duce the component of the centrifugal force parallel to the track surface. For
a given curve radius and speed the component of the centrifugal and gravita-
tion force parallel to the track surface cancel out each other. Since the cant
is limited with regard to vehicles at standstill and a high contruction speed
is seeked the parallel component of the centrifucal force is not completely
compensated. This deficieny of cant is called insufficieny. It corresponds to
an uncompensated centrifugal force.

Figure 4.1 shows the track design for the east-European high-speed line used
in this work. The main parameters whose influence on the vehicle response
and parameter identification have been studied are the speed and the curve
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Figure 4.1: Track design PK30 - PK100: Plan view curvature (a), vertical
offset (b), superelevation (c)

The divergence of the real track position from the theoretical design is de-
scribed by the track irregularities. They are expressed by four degrees of
freedom either using the vertical and lateral displacement of the left and
right rail or the parameterization shown in figure 4.2. The irregularities are
described by the vertical and lateral displacement of the track centreline as
well as the cross-level and gauge failure.

In order to identify possible correlations between the track irregularities and
the performance of the simulation model the track irregularities have been
characterized both in the spatial and frequency domain. At SNCF the track
irregularities on high-speed lines are measured by the IRIS 320 test train, a
TGV train equipped with an optical measurement system. It is an inertial
measurement system which uses the laser cut method and the acceleration



4.2 System analysis and calibration of the initial model 153

Figure 4.2: Track irregularities (vertical z, lateral y, cross level ψ, gauge e)

measured in the bogie in order to calculate the absolute track position. The
laser cut method is based on the principle of triangulation. A line is projected
on the rail by a laser. The picture of the line is registered by an electronical
camera and transformed in 3D coordiantes of the rail position. Since the
camera is installed on the bogie the position of the bogie has to be known in
order to calculate the absolute rail position.

Spatial description of the track irregularities The spatial description
of the track irregularities is obtained by parameterizing the track with the
amplitude and wavelength of each defect as shown in figure 4.3. This is
done by representing the measured track irregularities by simple geometric
elements. Afterwards the maxima and standard deviations of the track de-
fect parameters amplitude and amplitude over wavelength are calculated for
sections of 250m length. As an example the result of this analysis is shown
for the cross-level in figure 4.4. The segmentation for 250m will be used also
for the misfit function thus allowing to study the influence of the track exci-
tation on the model performance. The results for vertical, lateral and gauge
irregularities can be found in annexe D.

Frequency description of the track irregularities The analysis has
also been performed in the frequency domain. A computation of the power
spectral density for the whole line using the Welch method gives an indica-
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tion on the frequency content but does not contain any spatial information.
Due to the averaging the instationary characteristic of the track is not visi-
ble. Therefore the Short-time Fourier Transform (STFT) has been used. The
spectra are computed for short sections of 50m thus allowing to have both
frequency and spatial information on the track irregularities. An example
is shown in figure 4.5 for the cross-level irregularity. Since the vehicle re-
sponse spectra are expressed in [Hz] the spatial frequency [1/m] of the track
irregularity is transformed in Hz using the mean vehicle speed per section.
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Figure 4.5: Spatial signal and Short Time Fourier transform for cross level
irregularity

The complete results can be found in annexe D.

4.2.1.2 Analysis of the response of the system to track excitation
using transfer functions

The description of the track design and irregularities beeing available the
next step is to study the effect of the track excitation on the response of the
real vehicle and of the model. This can be done both in the spatial and in the
frequency domain. In this section the analysis is performed in the frequency
domain using transfer functions.

The transfer functions are calculated for the primary and secondary suspen-
sion both in vertical and lateral direction in order to identify the suspension
modes. Figure 4.6 illustrates the different approaches for the real system and
the model.

In the case of the real system the excitation can not be chosen. It is given
by the design and irregularities of the real track as well as the vehicle speed.
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Figure 4.6: Calculation of the transfer function for the model with analytical
track excitation (a) and for the TGV train under real track excitation (b)
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Therefore the transfer functions are calculated between the measured wheel-
forces and the accelerations in the bogie and the car body. For the calculation
the auto- and cross spectra are used. This is possible since the track exci-
tation has a broad band characteristic in the frequency range of interest. In
order to take into account the unstationary process the transfer functions are
calculated for short sections following the principle of the short time Fourier
analysis.

For the model the transfer functions can be calculated for different clearly
defined track design and irregularity conditions. This allows to study the
influence of the curve radius, the wavelength and the amplitude of the track
defects. The transfer function is calculated between the amplitude of the
track defect and the response of the model.

Effect of the track design At first the influence of the track design on the
transfer functions has been analysed. Figure 4.7 shows the transfer functions
of the primary suspension in bogie A for a straight track and a curve with
radius 4100m (smallest admissible radius at 320km/h). The track elevation
is 180mm. For the track excitation a sine with an amplitude of 8mm and a
wavelength of 3m is used in vertical and lateral directions. The wavelength
of 3m corresponds to the axle distance of the bogie thus allowing the wheels
of a bogie to move in phase. It is found that the curve changes considerably
the modes of the primary suspension in lateral direction. This shows that
some suspension elements are only sollicitated in curve or straight track. The
influence of a suspension parameter will therefore change depending on if the
vehicle is running in a curve or on a straight track.

Coupling of vertical and lateral modes In figure 4.8 another important
effect is illustrated: the coupling between the vertical and lateral direction.
For the example of bogie 3 it is found that the vertical response depends
mostly on the vertical track excitation. Since the coupling between purely
lateral excitation and vertical modes is very low the influence of lateral sus-
pension parameters on the vertical vehicle response will also be low. This
is not the case for the lateral response of the vehicle. Figure 4.8 shows that
the vertical excitation has an important effect on the lateral mode. For fre-
quencies above 23Hz it is more important than the lateral excitation. The
comparison between the transfer function for a combined vertical and lateral
track excitation with the sum of the transfer functions for separated vertical
and lateral excitation shows important differences, indicating the coupling of
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Figure 4.7: Transfer function of primary suspension bogie A in lateral and
vertical direction for a straight track and a curve

the system. The combined track excitation leads to a significant increase of
the vehicle response.

The same behaviour can be observed for bogie 1 shown in figure 4.9 for the
vertical and lateral response.

Effect of the wavelength With its two wheelsets positioned at a distance
of 3m the bogie acts as a filter. Figure 4.10 shows the transfer fucntion be-
tween vertical track displacement and the displacement in the middle of the
bogie as a function of the track wavelength. Depending on the wavelength
contained in the track irregularity the transfer function amplitude will vary
and modify the influence of modes and suspension parameters. If the track
used in the simulation is filtered this might have an important effect on the
parameter identification.

In figure 4.11 the transfer functions are compared for a sinusoidal track of
3 and 4 m wavelength. While for a wavelength of 3m corresponding to the
axle distance of the bogie all wheels are moving in phase a wavelength of 4m
leads to pitch and roll movements of the bogie frame. In particular on the
lateral mode this movement has an important effect.

4.2.1.3 Detection of nonlinearities using transfer functions

The effect of nonlinearities on the dynamic behaviour of the system and their
correct representation in the model is of high importance for the parameter
identification problem. If a nonlinear behaviour of the real system is repre-
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Figure 4.8: Transfer function of primary suspension for bogie 3 in lateral
and vertical direction for vertical, lateral and combined sinusoidal track ex-
citation (Niv: vertical track displacement, Dres: lateral track displacement,
Niv+Dres: vertical and lateral track displacement, Niv+Dres superposition:
sum of the vertical and lateral transfer function)
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Figure 4.9: Transfer function of primary suspension for bogie 1 in lateral and
vertical direction for vertical, lateral and combined sinusoidal track excitation
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Figure 4.11: Transfer function of secondary suspension in bogie 3 in lateral
and vertical direction for track wavelengths 3m and 4m
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sented by a linear or unsuitable nonlinear model the model will not be able to
reproduce the real system behaviour at different excitation conditions. The
application of the parameter identification at one defined running and exci-
tation condition would lead to an adjustment of the model at this working
point.

From the previous results it is known that the running conditions have an
important influence on the dynamic behaviour of the vehicle. A model which
is able to reproduce the real system behaviour at these different conditions
requires thus a correct representation of the nonlinearities.

For the detection and characterisation of nonlinearities the transfer functions
are a suitable tool. As outlined in figure 4.6 they are calculated both for the
model and the real system. For the model the response is calculated for si-
nusoidal track excitation with different amplitudes. For the real system the
transfer functions are calculated from the wheel-forces and the accelerations
in the bogies and car bodies. Since the wavelengths and amplitudes of the
track irregularities vary randomly along the track a comparison of the modes
for different track defects is not possible. However, from a Short time Fourier
Transform of the wheel forces a dependence on the vehicle speed is found.
Figure 4.12 shows the vertical force in bogie A.
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Figure 4.12: STFT of wheelset forces in bogie A in vertical direction

Since the transfer functions are calculated between the wheel-forces and the
accelerations the comparison at different speeds is equivalent to different ex-
citation levels allowing thus to study the effect of nonlinearities. In figure
4.13 the transfer functions for the model and the real system are compared
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for the lateral direction of the primary suspension of bogie A. In both cases
a nonlinear mode is found between 20 and 30 Hz representing the primary
suspension.
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Figure 4.13: Transfer function of primary suspension in bogie A in lateral
direction: sine excitation at three different amplitudes A (a) and STFT of
measurement (b)

As outlined before the transfer function is calculated from the auto- and
crossspectra using a spatial sectioning. The choice of the section length and
number of averages per section as illustrated in figure 4.14 is important for
the detection of the nonlinear mode.

If the number of sections is chosen too large as in figure 4.15 (a) the nonlin-
ear mode is rarely visible due to the unsteady excitation caused by the track
irregularities. By reducing the number of sections to 80 and averaging over
around 1km using the Welch method 4.15(b) the effect of the track irregu-
larities is reduced and the nonlinear speed-dependent mode is better visible.
If the section is much larger than the speed variation the speed dependence
of the mode is not clearly visible either as it can bee seen in figure 4.15(c).
The complete results of the transfer function analysis can be found in ap-
pendix D. They show the important effect of nonlinearities on many transfer
functions. In general, the influence of nonlinearities on vertical modes is low
while for the lateral modes nonlinearities can not be neglected.

4.2.1.4 Detection of nonlinearities from phase plots

The nonlinearities of the model have been represented using phase plots. For
a linear system the response to a sinusoidal excitation is likewise a sine. A
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Figure 4.14: Computation of the power spectral density and transfer function
for each section using the Welch method

deformation of the sinusoidal signal indicates nonlinearities. By plotting the
displacement and the force together a phase plot is obtained. Since the effect
of the nonlinearities depends on the excitation frequency the phase plots
have been calculated at three different frequencies. Figure 4.16 shows the
phase plot and the plots relating the displacements in bogie and carbody of
carriage 3 for different frequencies. The deformation of the phase plot from
the elliptical shape at 2Hz in lateral direction indicates a nonlinear behaviour.

4.2.2 First Calibration of the initial model estimated
from the correlation and misfit function

Before applying the parameter identification the initial model is calibrated.
The calibration requires a comparison of the model response with the mea-
surement in order to quantify the performance of the model for the initial
parameter values as a function of the different running conditions and in or-
der to detect possible modelling errors.

Due to the important effect of nonlinearities and different running conditions
the parameter identification will be performed in the time domain using ac-
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Figure 4.15: Transfer function for different numbers of sections: 450 (a), 80
(b), 10 (c)
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of bogie and car-body are plotted. In (d) the speed in the bogie is added
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celeration signals directly. It is therefore reasonable to proceed in the same
way as for the validation of the bogie model. The time signals of the measured
accelerations and forces are compared directly to the results of the simula-
tion and a misfit function calculated from the least-square distance is defined.

A visual comparison of the time signals for the whole line is not possible
and calculating only one misfit function value for the whole line leads to a
complete loss of spatial information. Therefore a sectioning is used in the
same way as for the track irregularities in section 4.2.1.1. As illustrated in
figure 4.17 the response signals are divided in sections of 250m length and
the correlation and misfit functions are calculated.

Figure 4.17: Comparison of measurement and simulation for every channel
by calculating the correlation, coherence and misfit function or each section

A difficulty becomes obvious when the time signals are compared. Between
the measurement and the simulation result a shift in the kilometre signal
(PK) appears which depends on the position along the line and the considered
acceleration signal.

4.2.2.1 Correction of the PK shift

A PK shift between the measurement and simulation signal leads to impor-
tant misfit function values so that the misfit function does not represent the
actual distance between measurement and simulation. A precise correction
of the PK shift is therefore indispensable in order to obtain reliable misfit
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function values.

The PK shift is caused by the fact that the track irregularities and the ve-
hicle response are not measured in the same train. The track irregularities
are measured in the IRIS 320 test train while for the vehicle response a TGV
Duplex has been used. Inaccuracies in the PK measurement systems lead to
errors in the PK position.

In order to adjust the PK position of the accelerations signals relatively to the
track irregularities their cross correlation function is used. Since the signals
are non-periodic stochastic signals a distinct peak is obtained indicating the
shift. Although this correction can be applied to all acceleration signals the
best coherence is obtained between the vertical irregularity and the vertical
axle-box acceleration signals. The axle-box acceleration is measured below
the primary suspension thus avoiding the effect of nonlinearities. It serves
quasi as a sensor for the vertical track defect. The PK correction is illustrated
in figure 4.18.

4.2.2.2 Computation of the correlation and misfit function per
section

After dividing the measurement and simulation signals in sections of equal
length (250m) the previously described PK correction is applied to each sec-
tion. In the case that the coherence between the signals is too poor and no
distinct shift is obtained, an interpolation from the neighbouring sections is
used.

Having the PK shift corrected, the power spectral density, the coherence func-
tion and the misfit function are calculated. The power spectral density and
the coherence function indicate the correlation between measurement and
simulation as a function of frequency. They allow to choose the frequency
range for which the parameter identification is performed. Additionally the
transfer functions calculated in section 4.2.1.2 can be used. As an example
figure 4.19 shows the PSD and the coherence function for the lateral acceler-
ation in bogie A at PK51. A good correlation between model and simulation
until 12Hz is found. The divergence at higher frequencies might be due to
elastic modes in the real structure.

Finally for the chosen frequency range the initial misfit function is calculated.
For the previous example a low misfit function value of 26.5% relative to the
measurement is obtained (figure 4.20). Finally, the result for the misfit func-



168 4 Application of the parameter identification to the TGV model

53 53.2 53.4 53.6 53.8 54
−5

−4

−3

−2

−1

0

1

2

3

4

5

PK [km]

d
is

p
la

c
m

e
n
e
n
t

vertical displacement Irregularity − axle box

DS: 3  CH: 5 irregularity

DS: 2  CH: 42 axle box

(a)

−10 −5 0 5 10

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

cross correlation vertical irregularity − axle box displacement

time [s]

DS: 3  dt=0.51  PKcorr=0.048461 km

(b)

53.4 53.45 53.5 53.55 53.6 53.65 53.7 53.75 53.8

−5

−4

−3

−2

−1

0

1

2

3

4

5

PK [km]

d
is

p
la

c
e
m

e
n
t

comparison displacement vertical irregularity − axle box

DS: 3  CH: 5 Irregularity

DS: 2  CH: 42 axlebox

(c)

Figure 4.18: Correction of the kilometer position (PK): time signal of the
track irregularity and axlebox acceleration signal before correction (a), cross
correlation function between vertical track irregularity and vertical axlebox
acceleration (b), corrected time signal (c)
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tion is plotted for all sections as a function of the PK position in figure 4.21.
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Figure 4.20: Comparison of measurement and simulation for the lateral ac-
celeration in bogie A giving a misfit function value of 26.5%
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Figure 4.21: Misfit function describing the distance between measured and
simulated acceleration in bogie A calculated for sections of 250m length

Figure 4.21 shows an important variation of the misfit function values be-
tween 20% indicating a very good conformity between model and measure-
ment and 170% for the worst section. How can this variability of the misfit
function be explained? One approach is to consider the correlation of the
misfit function values with the previously defined track irregularities and
design. Figure 4.22 shows the correlation between the maximum of the am-
plitude and of the amplitude/wavelength coefficient with the misfit function
for bogie A lateral for 300 sections between PK 30 and PK 100. Even though
no important correlation is observed it is found that the misfit function is
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lower for higher amplitude and amplitude/wavelength values. One explana-
tion is that for sections with very low irregularity levels the vehicle response
is controlled by other excitations or the eigendynamics of the vehicle.
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Figure 4.22: Correlation between the cross-level defect amplitude and am-
plitude/wavelength with the misfit function in bogie A lateral

Figure 4.23 illustrates the correlation between the track curvature and cross-
level offset. It can be seen that low misfit function values appear in straight
track (curvature=0) while the highest values appear in curves. The model
reproduces better the behaviour on a straight track.
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Figure 4.23: Correlation between the curvature and the cross-level offset with
the misfit function in bogie A lateral

The complete results of the model validation can be found in the appendix E.
In general, the misfit function is worse for the lateral direction characterized
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by important nonlinear effects. While the misfit function for the vertical
wheel forces is mainly around 15% the lateral forces are worse reproduced
by the model with misfit function values between 40% and 90%. Finally it
is observed, that the misfit function deteriorates for accelerations measured
above the secondary suspension.

4.2.3 Sensitivity analysis: coupling between substruc-
tures and choice of identifiable parameters

A requirement for the definition of the identification problem is a detailed
knowledge about the coupling of the system and the identifiability of the
model parameters.

Coupling describes the interaction between different degrees of freedom of
the system. For the TGV model the coupling between the different substruc-
tures (bogie and car body for the traction units and the carriages) as well as
the vertical and lateral direction is considered. It describes the influence of
a suspension element acting in one defined direction on the vehicle response
in other substructures and directions.

The identifiability of the model parameters is strongly related to their in-
fluence on the vehicle response. Only parameters having an influence on a
model response for which measurement data is available can be estimated.
Parameters which are not identifiable are excluded from the identification
problem.

Both problems require to calculate the influence of all parameters of interest
on the model response. This is done by applying the sensitivity analysis
which has been used already for the bogie model in chapter 3. Both the local
screening and the global Morris method are applied. As for the bogie model
the least-square misfit function between the model response for nominal pa-
rameter values and the response for the modified parameter value is used as
criterion.

Correlation between parameter values When applying the sensitivity
analysis to the TGV model it is necessary to determine wether or not the
model parameters are correlated. In order to correctly answer this question a
statistical analysis of a sufficiently large number of parameter measurements
or a very precise physical model would be required. Both are not available.
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The measurement of the parameter values would require to measure the sus-
pension elements separately on a test rig.

In the absence of this correlation information two estimations are compared:

- One assumes that all parameters values of the same element type are
completely correlated corresponding to a correlation factor of 1. This
means that all elements of the same type are described by the same
value. Values of different element types are not correlated. This ap-
proach has been used for the definition of the identification problem in
the next section.

- The other estimation assumes that no correlation exists even between
the parameter values of the same element type. In practice the sec-
ond approach is difficult to implement since the number of parameter
increases drastically.

4.2.3.1 Calculation of the solution surface by varying one param-
eter

The screening method is applied to 117 model parameters using a tolerance
of 50%. A list of the analysed parameters can be found in appendix B. The
misfit functions are calculated for each bogie and car body in vertical and
lateral direction giving in total 36 misfit functions (figure 4.24).

For each couple parameter-misfit function the result is obtained in form of
a graph describing the misfit function value as a function of the parame-
ter value. Figure 4.25 shows as an example the influence of the coil spring
stiffnesses cy and cz of the primary suspension in the traction unit on the
vertical bogie accelerations. It can be seen that the vertical stiffness has an
important influence on the vertical acceleration in the bogies of the traction
unit described by a convex misfit function (b). The influence on the vertical
acceleration on the carriage bogies is negligible. In vertical direction the cou-
pling between traction unit and carriages is very low. The lateral stiffness
has a negligible influence on the vertical acceleration of all bogies (a).

As a second example the nonlinear yaw damper is regarded in figure 4.26.
It has a strong influence at low values. The solution surface of the misfit
function shows many local minima.

For the representation of the coupling of all parameters with the vehicle re-
sponse in total 4212 misfit function have to be taken into account. In order
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Figure 4.24: Numeration of car bodies, bogies and wheelsets for the TGV
Duplex train
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Figure 4.25: Sensitivity of the vertical bogie accelerations with respect to
the lateral (a) and vertical stiffnesses (b) of the coil spring in the primary
suspension of the traction unit
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with respect to the series stiffness of the yaw damper

to simplify the analysis of the result a more compact representation of the
results is used in the following which describes each misfit function by only
one value. As shown in figure 4.27 this value can be either the maximum, the
mean or the standard deviation value of the misfit function over the defined
parameter tolerance. A comparison of the values gives qualitatively the same
results. Then these values are arranged in a table with the model parameters
on the x- and the misfit function values on the y-axis. Their amplitude is
expressed by a color bar as shown in figure 4.28.
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Figure 4.27: Representation of the sensitivity by one value: maximum, stan-
dard deviation or mean value

Figure 4.29 shows the result of the screening analysis for the bogies using
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Figure 4.28: Intensity of parameter sensitivity used in table representation

the standard deviation. Several important results appear. The coupling of
the system differs completely between the vertical and lateral direction. In
vertical direction the coupling is low. The vertical response of the traction
unit bogies is controlled by vertical suspension parameters of the traction
unit. The same is valid for the bogies of the carriages. In lateral direction in
contrary all parameters have an important influence on the model response.
Some parameters like the airspring and the yaw damper stick out. The
system is strongly coupled and the minimization of a misfit function requires
to take into account a large number of parameters. In general the same result
is obtained for the car bodies as shown in figure 4.30. The influence of the
parameters in lateral directions differs more than for the bogie response.

4.2.3.2 Sensitivity taking into account the parameter interaction

The sensitivity of a parameter on the vehicle response obtained from the
screening analysis does not take into account the interaction of the parame-
ters. It can cause changes of the sensitivity of one parameter due to changes
of the other parameter values. In order to take into account this interaction,
important in particular for nonlinear systems, the Morris method is applied
to the TGV model.

For each misfit function the result is obtained in form of a point distribution
with the overall effect indicated on the x- and the coupling on the y-axis. As
an example figure 4.31 shows the result for the bogie A in lateral and vertical
directions. The result is conform with the result obtained from the screening
analysis. In vertical direction only some vertical suspension parameters of
the traction unit have an influence (vertical damper, coil spring, etc.) The
interaction between them is important. All other parameters have a negligi-
ble influence. In lateral direction on the contrary an important interaction
between a large number of parameters is found with the anti-yaw damper
as an element which is particularly important. In both cases the bogie mass
has an outstanding influence.

As a second example the car body acceleration of carriage 2 is regarded in fig-
ure 4.32. In general, the influence of the parameters on the lateral response



176 4 Application of the parameter identification to the TGV model

Figure 4.29: Screening for the accelerations in the bogies in vertical and
lateral direction with 50 % variance using the standard deviation
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Figure 4.30: Screening for the accelerations in car bodies in vertical and
lateral direction with 50 % variance using the standard deviation
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Figure 4.31: Morris method for bogie A vertical (a) and lateral(b)
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Figure 4.32: Morris method for carriage 2 in lateral (a) and vertical direction
(b)

is much higher. The interaction between a large number of parameters is
important. The vertical response is less sensitive to parameter changes and
controlled by few parameters notably the airspring.

In the same way as for the screening analysis the results are visualised in
table format. Figure 4.33 shows the overall effect of 117 parameters on the
bogie misfit functions. In figure 4.34 the coupling is represented in the same
form. If the results are compared to the screening analysis in figure 4.29
the same parameters as for the screening analysis are pointed out. However,
especially in vertical direction the Morris method shows that more paramters
have an important effect of the vehicle response. Examples are the coil
spring damping of the secondary suspension in the traction unit (20) or the
nonlinear vertical damper of the primary suspension of the carriages (51, 52).
Figure 4.35 shows the overall effects of the parameters on the carriage misfit
functions.

4.2.3.3 Sensitivity for independent suspension parameters

For the sensitivity analysis and the identification of the parameters it is sup-
posed that all parameters of the same element type are completely correlated
corresponding to a correlation factor of one. For an adjustment of the model
to the measurements this appraoch is considered as sufficient. It has the
advantage that the number of parameters taken into account stays manage-
able. Besides, information about the real correlation between the parameter
values is not available. The other estimation which can be applied assumes
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Figure 4.33: Morris method for the bogies in vertical and lateral direction
for the overall effect using real track excitation
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Figure 4.34: Morris method for the bogies in vertical and lateral direction
for the coupling effect using real track excitation
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Figure 4.35: Morris method for the carriages in vertical and lateral direction
for the overall effect using real track excitation
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in contrary that no correlation exists between the parameter values of the
same element type. This approach leads to a drastic increase of the num-
ber of parameters and has not been completly implemented. Therefore only
an example is shown here. It presents the results for the parameters of the
primary suspension in the carriages. For every wheelset 24 parameters are
needed: 6 stiffnesses for all degrees of freedom and 6 damping values both for
the left and right side. Calculated for the bogies 1 to 7 336 parameters are
considered in total. Figure 4.36 shows the result for the parameters 1 to 200.
It reveals an important coupling between the carriages of the train. Only
the vertical stiffness and damping parameters have a distinctive local effect
on the vertical response. In lateral direction no local effects are visible due
to the high coupling. Both for the vertical and lateral direction the effect of
parameters changes is more distinct in the middle of the train.
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Figure 4.36: Morris method for the bogies in vertical and lateral direction
for the overall effect using real track excitation and independent parameters
of the primary suspension
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4.3 Parameter identification

From the first section of this chapter all the information is available which
allows the definition of the parameter identification problem.

From the coupling analysis it is known that for a minimisation of the ver-
tical vehicle response the substructures traction unit and carriages can be
considered independently. For the vertical response of bogie A only 8 pa-
rameters have been identified as important: coil spring stiffness cz of the
primary suspension, the guidance spring damping dx and dz, the vertical
damper characteristic, the vertical bumpstop, the coil spring stiffness cz and
the vertical damper of the secondary suspension. A minimisation of the mis-
fit functions for the lateral vehicle response requires to take into account
most of the parameters.

The nonlinearities detected from the transfer function analysis are taken
into account for the choice of the identification method. Taking the previous
example the vertical response of bogie A is not influenced by nonlinearities.
The misfit function found for the coil spring has a convex form allowing
the use of local methods. The lateral vehicle dynamics are characterised
by important nonlinearities leading to complex solution surfaces with local
minima. A minimization of these misfit functions can only be obtained when
global algorithms are used.

4.3.1 Misfit function

For the identification problem the misfit functions are defined between the
measured and simulated vehicle response. Since the accelerations are not
measured in the centre of gravity the result obtained from the simulation
have to be recalculated for the exact measurement position taking into ac-
count the rotation of the body. This is done using the rotational matrix
R. In order to identify the exact accelerometer position which is not always
known a priori the misfit function has been calculated as a function of the
accelerometer position. The acceleromter position is varied in the range of
geometrically possible values and the misfit function is calculated.

Figure 4.37 shows the misfit function for the vertical acceleration in bogie
A as a function of the longitudinal and lateral accelerometer position. A
distinct minimum is found at x=0.84m and y=-1m relative to the centre of
gravity of the bogie. This corresponds approximately to the theoretical po-
sition defined at the primary suspension. Using this accelerometer position
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Figure 4.37: Misfit function for the vertical acceleration in bogie A as a
function of the accelerometer position

the measured signals are much better described by the simulation as shown
in figure 4.43 for the previous example.

Misfit function criteria For the misfit function two different criteria have
been used: the least-square criterion already used for the bogie model and
a criterion taking into account only the maxima of the response. This is
reasonable since for the analysis of the comfort and security only the peaks
of the vehicle response are of interest. The maxima criterion is illustrated in
figure 4.39. It is based on the detection of the maxima of the measured and
simulated response. For each measured maximum the existence of a corre-
sponding simulation maximum is checked. In a first step simulation maxima
in a certain control region around the measured maxima are identified giving
well defined couples. If the number of simulated and measured maxima be-
tween two of these couples is the same further couples are taken into account.
The misfit function is then defined using the amplitude and position distance
of each couple as well as the difference in the number of maxima per section.

Frequency range The frequency range for which is misfit fucntion is cal-
culated depends on the model description and the frequency content of the
excitation signal. As outlined before the validity of the model is limited
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Figure 4.38: Accelerations signals for bogie A vertical without (a) and with
(b) correction of accelerometer position
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Figure 4.39: Misfit function criterion based on the maxima values of the time
signal
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by the fact that elastic modes are not taken into account. The maximal
frequency considered in the misfit function is given by the lowest eigenfre-
quencies of the elastic modes which have an influence on the vehicle response.
The second limitation is given by the frequency range of the excitation signal.
For the IRIS320 measurement train which measures the track irregularities
between 3m and 200m the excitation signal contains frequencies between 0,4
and 28Hz at a speed of 300km/h.

4.3.2 Identification problems

Taking into account the coupling and influence of nonlinearities different
identification problems have been defined. They are summarized in table 4.1
and their results discussed in the following sections.

The notation used in the tables:

- Optimization methods (Opt): SA: Simulated annealing, GA: Genetic
algorithm, PS: Pattern Search

- Misfit function criterion (C): LS: Least aquares, Max: maximal values

- Channel type: TU: Traction unit, C: Carriage, PS: Primary suspension,
SS: secondary suspension

- Track type (T): s: straight track, c: curved track

- Masses (M): cb: car body

4.3.2.1 Bogie A vertical

At first only the vertical acceleration of bogie A is used for the misfit func-
tion. The optimization is performed for the global simulated annealing and
genetic algorithm method as well as for the local pattern search method. For
the misfit function the least-square and the maxima criteria are used.

The identification is performed for several different configurations. An im-
portant distinction is the number of model parameters taken into account.
In the simplest case the parameter vector is formed by eight parameters of
the suspension of traction unit 1 which have been identified from the sen-
sitivity analysis. By introducing the PK correction between measurement
and simulation signal as additional parameter possible shifts due to changes
in the eigenfrequencies can be corrected during the optimization process. In
another configuration all suspension parameters are taken into account. The
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Misfit function Parameters

Opt C Bogie Car body dof Suspension PK M T Tol Num

lat vert lat vert TU
PS

TU
SS

C
PS

C
SS

SA LS
Max

- A - - 3 3 6
9 10
11

17
20
26

- - yes
no

- s,c 50,
10

8

SA LS
Max

- A - - 3 3 6
9 10
11

17
20
26

- - yes
no

cb s,c 50,
10

8

SA LS
Max

- A - - 3 all all all all yes
no

- s,c 50,
10

76

SA LS
Max

- A - - 3 all all all all yes
no

cb s,c 50,
10

76

GA LS - A - - 3 3 6
9 10
11

17
20
26

- - yes
no

- s 50,
10

8

GA LS - A - - 3 all all all all yes
no

- s 50,
10

76

GA LS - A - - 3 all all all all yes
no

cb s 50,
10

88

PS LS - A - - 3 3 6
9 10
11

17
20
26

- - yes
no

- s 50,
10

8

PS LS - A - - 3 all all all all yes
no

- s 50,
10

76

SA LS
Max

- - R2 - 3 all all all all yes
no

- s 50,
10

76

SA LS - - R2 - 3 all all all all yes
no

cb s 50,
10

76

GA LS - - R2 - 3 all all all all yes
no

- s 50,
10

76

SA LS A B A B M1 M1 11 all all all all yes
no

- s 50,
10

76

GA LS A B A B M1 M1 11 all all all all yes
no

- s 50,
10

76

SA LS A B
1 2 3

A B
1 2 3

M1
R1
R2
R3

M1
R1
R2
R3

22 all all all all yes
no

- s 50,
10

76

SA LS A B
1 2 3

A B
1 2 3

M1
R1
R2
R3

M1
R1
R2
R3

22 all all all all yes
no

cb s 50,
10

76

GA LS A B
1 2 3

A B
1 2 3

M1
R1
R2
R3

M1
R1
R2
R3

22 all all all all yes
no

- s 50,
10

76

PS LS A B
1 2 3

A B
1 2 3

M1
R1
R2
R3

M1
R1
R2
R3

22 all all all all yes
no

- s 50,
10

76

Table 4.1: Parameter identification methods and test configurations
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configuration with the highest number of parameters includes also masses
and inertia.

In order to study the effect of the running conditions the identification is
applied both to a section of straight track (PK 51-52) and to a section of
curved track (PK 41-42).

Finally the optimization is performed for three different parameter toler-
ances: unconstrained, 50% and 10%. In the first case the parameter values
are not restricted to a certain range. A convergence to values outside the
physically possible range can indicate modelling errors. In the second and
third case the range of admissible parameter values is limited to 50% and
10% of the nominal value respectively.

The results for this first identification problem are summarized in table 4.2.
The most important reduction of the misfit function of 62% is obtained for
the highest number of parameters on straight track for the unconstrained op-
timization (case 15). The obtained parameter values are nevertheless outside
the range of realistic values indicating that the algorithm has not converged
to the sought minimum. By restricting the variation range to 50% around
the nominal value 50% reduction are obtained (case 5). A further reduction
of the variation range to 10% reduces the gain considerably (case 17).

If only 8 parameters are considered the gain is slightly reduced to 42% (case
2) for 50% variation. This indicates the importance of these parameters for
the model response. The inclusion of the PK correction as an optimization
parameter has a small positive effect comparing cases 1 to 2 and 4 to 5.

As an example figure 4.40 shows the optimization result for case 1. The misfit
function is reduced by 41.5%. As a convergence criterion the stabilization of
the misfit function is used. If its value has not varied more than 1% over the
last 1000 iterations the optimization is finished. Eventually a local search has
been performed afterwards. Figure 4.41 shows the vehicle response for the es-
timated parameter values. The simulation reproduces well the measurement.

If the three different optimization methods are compared for the same con-
figuration approximately the same misfit function gain is observed. For the
pattern search method (case 20) this is interesting since it indicates the con-
vex form of the solution surface which has been found already from the
screening analysis in figure 4.25.
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Bogie A vertical (frequency range 1-10Hz, 3 dof)

Configuration Misfit gain
Meth Crit PK Num Tol

[%]
T L

[km]
init
[%]

end
[%]

red
[%]

Iter

1 SA LS no 8 50 s 1 37.2 21.8 41.5 15000
2 SA LS yes 8 50 s 1 37.2 21.4 42.4 15800
3 SA Max yes 8 50 s 1 38.8 28.4 26.8

(42.6)
13000

4 SA LS no 76 50 s 1 37.2 19.3 48.3 12000
5 SA LS yes 76 50 s 1 37.2 18.9 49.5 11000
6 SA LS yes 76 50 s 2 130 18.9 20 -
7 SA Max yes 76 50 s 1 37.7 30.5 21.2

(35)
-

8 SA LS no 8 50 c 1 37.7 28.9 23.6 -
9 SA LS yes 8 50 c 1 37.5 28.9 22.8 -
10 SA Max yes 8 50 c 1 146.3 110 24.8

(-7)
-

12 SA LS no 76 50 c 1 37.6 27.3 27.4 -
12 SA LS yes 76 50 c 1 37.8 26.7 29 -
13 SA Max yes 76 50 c 1 146.3 12.63 14 (2) -
14 SA LS no 76 - s 1 37.4 14 63.3 11000
15 SA LS yes 76 - s 1 37.4 16.2 57 11000
16 SA LS yes 88 - s 1 37.3 14.4 61.5 11000
17 SA LS no 8 10 s 1 36.14 35.2 2.5 -
18 SA LS yes 76 10 s 1 37.26 34.87 6.7 -
19 SA LS yes 88 10 s 1 37.3 34.5 7.5 -
20 PS LS no 76 - s 1 37.3 20.78 44.16 -
21 GA LS no 8 50(g) s 1 37.5 20.6 45.1 -0
22 GA Max no 8 50(g) s 1 39 19 51.26 -
23 GA LS no 76 50(g) s 1 37.5 21.54 42.56 -
24 GA LS no 76 - s 1 37.4 19 49.2 -
25 GA LS no 88 - s 1 37.3 17.7 52.6 -

Table 4.2: Comparison of different configurations for the identification using
the vertical accelerations in bogie A
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Figure 4.41: Measured and simulated acceleration signals for bogie A vertical
after optimization for case 1
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From the sensitivity analysis an influence of the track design on the model
performance was found. Therefore the optimization has been performed both
for straight and curved track. The misfit function gain is lower for curved
track (PK 41-42) and the estimated parameter values differ from the straight
track case (figure 4.42 and 4.43).
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]
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curve

Figure 4.42: Estimated parameter values for straight and curved track with
least square criterion (cases 1 and 8)

In figure 4.44 the relative parameter values are compared for the case that
76 parameters are considered. It is found that some parameter values dif-
fer considerably between straight track and curve. In particular lateral and
longitudinal parameters which have an import influence on the dynamic be-
haviour in the curve are concerned. The guidance spring stiffness cx (4) is
increased 50% for the straight track but reduced 50% for the curve. This
might indicate that the nonlinear behaviour of the guidance spring is not
well represented by the model. But if the sensitivity analysis is considered
(figure 4.45) it is found, that the longitudinal stiffnesses of the coil and the
guidance spring have a small influence on the considered vehicle response in
straight track. The identification of these parameters from the straight track
section is therefore not reliable. Instead, for the vertical stiffnesses (3) and
(6) of these elements which have a strong effect on the vehicle response the
same values are found for straight and curved track.
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Figure 4.43: Estimated parameter values for straight and curved track with
maxima criterion (cases 3 and 10)
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Figure 4.44: Estimated parameter values for straight and curved track with
least square criterion (cases 5 and 9)
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Figure 4.45: Sensitivity analysis for elements 1 and 4

4.3.2.2 Carriage 2 lateral

The second parameter identification problem studied in this work uses the
lateral acceleration of carriage 2 in the misfit function. Its properties differ
considerably from the first one. Due to the secondary suspension and nonlin-
ear effect the initial misfit function value is worse. The least square criterion
gives a value of 88%. The strong coupling in lateral direction found from the
sensitivity analysis necessitates to take into account 76 suspension parame-
ters. The problem is therefore highly under-determined. Besides, from the
solution surface of the misfit functions the existence of many local minima
was observed. The use of local optimization methods is therefore not possible.

The studied configurations and corresponding results are summarized in ta-
ble 4.3.

Carriage 2 lateral (frequency range 1-10Hz, 3 dof)

Configuration Misfit gain
Meth Crit PK Num Tol

[%]
T L

[km]
init
[%]

end
[%]

red
[%]

Iter

1 SA LS no 76 50 s 1 92 56 39 6500
2 SA Max no 76 50 s 1 7 3 44.3 6000
3 SA LS yes 88 10 s 1 88 58 34 9100
4 GA LS no 76 1 s 1 88 51 42 177

Table 4.3: Comparison of different configurations for the identification using
the lateral accelerations in carriage 2
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The reduction of the misfit function obtained for 50% parameter tolerance is,
with a value of 39%, lower than for the first optimization case. In comparison
to the first identifcation problem an interesting result is obtained when the
parameter tolerance is reduced to 10%. In contrast to the case of the vertical
bogie acceleration the misfit function gain does not drop significantly when
the tolerance is reduced to 10%. While it was reduced from 42.4% (2) to
6.7% (18) for the first optimization case the gain decreases only slightly to
34% for the lateral acceleration in the carriage. This indicates the important
influence of the parameters on the lateral vehicle dynamics. Even small errors
in the parameter values have an important effect on the model performance.
In lateral direction the model is less robust. Figure 4.46 shows the relative
change of the parameter values for a tolerance of 10%. It can be seen that
some parameters - 4 of 8 airspring parameters - reach the defined bound-
aries. It illustrates the difficulty when a simple suspension element model is
replaced by a more complicated one. The nominal parameters of the ther-
modynamic airspring model which replaced the simple equivalent stiffnesses
are not well known and increase the complexity of the identification problem.

Using the Genetic algorithm with 1% admissible variation per generation a
slightly higher misfit function gain of 42% is obtained. The figures 4.47 and
4.48 show the lateral acceleration signal in carriage 2 before and after the
optimization for case 1.

Figure 4.46: Relative changes of parameter values for a misfit function using
the lateral acceleration in carriage 2

Figure 4.49 shows the misfit function calculated for sections of 250m length
before and after the parameter identification. The misfit function is reduced
for most of sections.
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Figure 4.47: Measured and simulated acceleration signals for carriage 2 lat-
eral before optimization for case 1
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Figure 4.48: Measured and simulated acceleration signals for carriage 2 lat-
eral after optimization for case 1
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Figure 4.49: Misfit function before and after the parameter identification for
section of 250m length for the lateral acceleration in carriage 2
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4.3.2.3 Traction unit 1: bogies, car bodies, vertical, lateral

In the third identification problem the number of degrees of freedom consid-
ered in the misfit function is increased by including all available accelerations
measured in traction unit 1. The misfit function therefore includes both ver-
tical and lateral accelerations in the bogie and car body. Taking into account
the rotations in total 11 degrees of freedom are considered. The number of
parameters is 76 without and 88 with mass parameters. The coupling of
the system in lateral direction requires to take into account also suspension
parameters of the carriages.

The studied configurations and corresponding results are summarized in table
4.4.

Traction unit 1 (frequency range 1-10Hz, 11 dof)

Configuration Misfit gain
Meth Crit PK Num Tol

[%]
T L

[km]
init
[%]

end
[%]

red
[%]

Iter

1 SA LS no 76 50 s 1 42.2 40.5 4 4500
2 SA LS yes 76 50 s 1 44.2 39.3 11.2 9700
3 SA Max no 76 50 s 1 45.2 36.2 19.8 4500
4 SA LS yes 76 10 s 1 42.2 41.1 2.6 6500
5 SA LS yes 88 10 s 1 42.2 40.7 3.6 -
6 GA LS no 76 1 s 1 42.2 39.3 6.8 170
7 PS LS no 76 1 s 1 42.2 41.5 1.6 34

Table 4.4: Comparison of different configurations for the identification using
vertical and lateral accelerations in traction unit 1

The combination of vertical and lateral responses in the misfit function leads
to an important degradation of the misfit function gain. For a parameter
tolerance of 50% only 11% reduction are obtained. This might indicate a
conflict in the choice of the parameter values for vertical and lateral direc-
tion.

Due to the presence of local minima the pattern search method is not suitable
for this identification problem.

4.3.2.4 Traction unit, carriages

The last identification problem studied in this work uses accelerations both
from the traction unit and the carriages 1 and 2. In total 23 degrees of
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freedom are considered. All model parameters are included in the parameter
vector.

The studied configurations and corresponding results are summarized in ta-
ble 4.5.

Traction unit 1 + Carriages 1, 2 (frequency range 1-10Hz, 23 dof)

Configuration Misfit gain
Meth Crit PK Num Tol

[%]
T L

[km]
init
[%]

end
[%]

red
[%]

Iter

1 SA LS no 76 50 s 1 47 40.6 13.6 9500
2 SA LS yes 76 50 s 1 47 40.3 14.3 7000
3 SA LS yes 88 50 s 1 47 39 17 5600
4 SA LS yes 76 - s 1 47 38.3 18.6 5600
5 SA LS yes 76 10 s 1 47 43.3 7.9 11000
6 SA LS yes 76 10 s 1 47 43.3 7.9 11000
7 SA LS yes 88 10 s 1 47 42.5 9.6 8500
8 SA LS yes 32 10 s 1 47 44.3 5.8 11000
9 PS LS no 76 - s 1 47 43.4 7.7 33
10 GA LS no 76 1 s 1 47 40.5 13.9 170
10 GA LS no 76 10 s 1 47 38.3 18.5 80
11 GA LS no 88 10 s 1 47 38 19.2 80

Table 4.5: Comparison of different configurations for the identification using
vertical and lateral accelerations in traction unit 1

The highest reduction of the misfit function, obtained both for the simulated
annealing (case 4) and the genetic algorithm method (case 11), is around
19% when the parameter values are not constrained. By constraining the
parameter values to a range of 50% the reduction is reduced to 14% in case
2.
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4.4 Conclusions

4.4.1 Discussion of errors in the parameter identifica-
tion problem

The application of optimization methods on the parameter identification
problems defined in the previous section allowed to adjust the model to the
measurement. Reductions of the misfit function up to 60% could be obained.
But even though the performance of the model could be improved important
differences between the responses of the model and the measurement persist.
For the response with the best conformance, the vertical acceleration in bogie
A, the misfit function could not be reduced under 14%. For the other cases
much higher differences persist.

The reasons for these errors are both modelling errors and measurement un-
certainties. Modelling errors are due to the fact the the model is not an exact
representation of the real system. In order to obtain a model with reasonable
complexity and computation times not all physical effects of the real system
can be taken into account. The second source of errors is measurement un-
certainties. The excitations and the response of the real system can not be
measured exactly.

4.4.1.1 Modelling errors

For the TGV model the restriction to rigid bodies is the most important
limitation. The multi-body model is not able to reproduce the dynamic be-
haviour due to elastic modes. The modal analysis of the car body of a TGV
train in [93] shows that the first eigenmodes lie at frequencies under 20Hz.
The first vertical bending mode of the car body is found at 14.6Hz. It falls
into the considered frequency range and can explain the divergence between
model and measurement for frequencies above 15Hz. Other modes which
might influence the result are the first torsional mode at 19.7Hz, the first
lateral bending mode at 17,8Hz as well as a torional mode opposite to the
axcitation at 14Hz. The modal shapes show that the primary suspension is
not close to the nodal points. The identified modes can therefore be excited
under operation.

The other important source of modelling errors is the suspension elements.
The degradation of the misfit function observed for accelerations above the
secondary suspension relative to the accelerations in the bogie illustrates this.
For suspension elements with a complex physical behaviour in particular the
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airspring and rubber spring elements simplified models are used. Moreover,
a correct choice of the suspension parameters is made difficult by the lack of
measured information on the real system behaviour. Only for some acceler-
ation elements the measured nonlinear characteristics are available.

Varying conicity and friction conditions are not taken into account by the
model either. Since no measurement information about these parameters is
availbale constant values are used in the model.

Some physical effects are not considered by the model. For the TGV model
excitations due to aerodynamic effects are not taken into account. Aero-
dynamic forces act on the car body and can explain the lower conformity
between model and measurement above the secondary suspension. As shown
in [6] they have a significant influence on the dynamic behaviour.

Unsteady aerodynamic forces on the train can be caused by side winds and
turbulences due to bodies along the line (bridges) or trains passing on the
opposite track. The last point is of importance since the measurement where
performed during daytime and normal operation on the line.

Modelling erros can explain the convergence of parameter values to the
boundary of the defined tolerances and different identification results on
straight and curved track. As an example, the guidance spring stiffness
cx value obtained by the identification increases 50% for straight track while
a reduction of 50% was obtained for curved track. The differences in the
mistfit function are likewise important with 19% for the straight and 27%
for the curved track. In the curve many suspension elements are exposed to
higher forces and modelling errors become apparent. Then the optimization
for one running conditions leads to an adjustment at a certain working point
but not for the whole operation range. Besides, the sensitivity analysis of
the guidance spring stiffness cx showed that its influence is low on straight
track. The identifiaction is therefore not possible.

4.4.1.2 Measurement uncertainties

Although modelling errors represent the main source of errors in the identi-
fication problem the influence of measurement uncertainties has to be con-
sidered also. The measurement of the track excitation and accelerations is
corrupted by measurement noise and unknown systematic errors. Important
to mention are the not exactly known accelerometer positions and the shift in
the kilometer position (PK). The influence of these errors on the parameter
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identification has been analyzed by repeating the identification for varying
errors. As reference for the identification a simulation with the known pa-
rameter values is used. The effect of the PK and accelerometer position error
on the parameter estimation is illustrated in figure 4.50 for the example of the
coil spring stiffness in bogie A. It is found that already small uncertainties in
the position of the accelerometer and a kilometer shift lead to an important
difference between estimated and real parameter value.

Figure 4.50: Influence of the PK error on the identification result for coil
spring stiffness cz

Therefore the correction of the PK shift is essential for a reliable parameter
identification. It is performed using the cross-correlation function between
measurement and simulation result calculated per section. The shift is ob-
tained in the time domain and translated to a spatial shift using the mean
velocity of the section. The correction is therefore a mean value per section
and different section length might lead to different results. The section in
figure 4.51 has been devided in several numbers of subsections and the PK
correction values are calculated. Figure 4.52 shows the obtained PK correc-
tions for each subsection together with the mean value of all subsections. It
is found that uncertainties in the PK position up to 50cm have to be con-
sidered. According to the result in figure 4.50 this leads to an important
increase of the misfit function and errors in the identified parameters.
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Figure 4.51: Section of 1.5km length is devided in subsections
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4.4.2 Discussion and Perspectives

The application of the parameter identification problem to the TGV train
revealed the important potential for improved vehicle dynamics simulations
but also the limitations due to the model. For the first identification problem
using the vertical response of bogie A the least square misfit function could
be reduced, depending on the defined parameter tolerance, up to 60%. How-
ever, in order to avoid that the estimated parameter values lie outside the
range of realistic values the parameter tolerances have to be chosen carefully.
Otherwise the global optimization algorithm might converge to a minimum
which gives unrealistic estimates. For 10% tolerance a reduction of only 10%
was obtained indicating well estimated initial parameter values and robust-
ness of the traction unit model in vertical direction.

For the second identification problem using the lateral acceleration in carriage
2 an important reduction of the misfit function of 35% could be obtained for
10% parameter tolerance. Due to the strong sensitivity in lateral direction
the model is less robust and small changes in parameter values have an im-
portant effect on the misfit function.

For the more complicated identification problems 3 and 4 taking into account
several acceleration in traction unit and carriages the misfit function gain is
smaller.

In general, the misfit function gains obtained from the genetic algorithm
method and the simulated annealing method are of the same order. Differ-
ences in the obtained parameter values are due to complex solution surface
with many local minima. By introducing a regularization function the num-
ber of local minima might be reduced and the optimization improved in the
same way as for the bogie model. The choice of a suitable regularization
function therefore should be part of the further work.

Differences in the parameter values were likewise obtained for straight and
curved track. This indicates an inadequate model structure. Possible im-
provement of the model concern a more detailed description of the suspension
elements, the consideration of variable friction conditions and elastic modes.

These limitations of the actual model complicate the appication of the pa-
rameter identification to a model-based condition monitoring which could
allow to detect the degradation of the suspension elements. The monitoring
application would also require reduced computation times. For the model
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used in this work the dynamic equations are not available. Therefore for
the computation of the gradients only the numeric finite differences method
could be applied. For the large number of parameters considered, especially
if suspension parameters of the same element type are assumed to be inde-
pendent, improved gradient computation methods are needed. The adjoint
method is an interesting approach due to the lower computational cost.
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Conclusions and perspectives

This work showed the applicability and the potential of parameter identifi-
cation methods for the complex nonlinear system of a railway vehicle. Mea-
sured forces and accelerations of the vehicle can be used in order to adjust
the simulation model to the real system. This is necessary since many vehicle
parameters are not exactly known: stiffness and damping coefficients of the
suspension are subject to important variations.

The identification problem has been applied to two different models: the
model of a single bogie developed in Matlab and the model of a complete
TGV train implemented in the multibody simulation code Vampire.

The model of the bogie is composed of the bogie frame and two wheelsets
connected by the primary suspension. Thanks to the known mathemati-
cal description the adjoint state method can be applied to the model. Even
though with 10 degrees of freedom the model is relatively simple it includes a
full description of the nonlinear wheel-rail contact using the theory of Kalker.
The wheel is represented by a cone and the rail by a circular profile. The
conicity and the friction coefficients are important parameters which control
the dynamic behaviour of the model together with the suspension parame-
ters. The suspension is described by the stiffness and damping coefficients
in vertical, lateral and longitudinal directions. The model is excited by the
track irregularities described by a vertical and lateral displacement of the left
and the right rails.

The dynamic behaviour of the bogie model for different parameter values and
velocities has been analyzed and compared to a bogie model implemented in
Vampire. It is found that the model reproduces correctly the dynamics of
bogie and wheelsets. The wheelsets perform the typical hunting movement, a
combination of lateral displacement and yaw-rotation. Above a critical speed
which depends on the suspension parameters this movement becomes insta-
ble and a limit-cycle is obtained. The bogie model implemented in Vampire
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gives generally the same results. Smaller differences in the vehicle response
may be caused by differences in the model structure which is not completely
known for the Vampire model.

The aim of the identification is to find the correct parameter values of the
model from measurement data. For the bogie model only the suspension
parameters stiffness and damping coefficients are taken into account. The
parameters of the wheel-rail contact - the profil shape, the conicity and the
friction coefficients - are important also but more difficult to identify due to
their non-steady characteristics. They have not been considered in this work
but should be taken into account in future work.

Due to the nonlinear behaviour of the system the time-domain based model
updating has been identified as the most suitable method. It requires the
definition of a misfit function in the time domain and the minimization of
this function. The fastest convergence is in general obtained by the use of
local gradient methods. These methods require the calculation of the first
and second order derivatives of the misfit function relatively to every param-
eter. A calculation of the gradients from finite differences is time consuming
and less accurate. Therefore the application of the adjoint state method to
the bogie model has been developed. The gradients can be calculated from a
misfit function defined with the displacements, the velocities or the acceler-
ations of the vehicle response. Which of these approaches provides the best
result depends on the available data and the error introduced by integrating
or differentiating the time signals. It was found that the differentiation leads
to numeric errors and should be avoided. Therefore the displacements and
velocities have been used for the bogie model. Since no measurement data
is available for the bogie model, virtual measurement data obtained from
a reference simulation of the Matlab model has been used for the applica-
tion of the gradient method. Using the gradient method with the adjoint
state approach the stiffness parameters of the suspension could be identified.
Due to their negligible influence on the misfit function the identification of
the damping coefficients is not possible. The gradient calculation using the
adjoint method is a promising approach which will show its adavantage of
reduced calculation costs when applied to vehicle models with more param-
eters in future work.

A difficulty for the use of local gradient methods is the presence of several lo-
cal minima in the misfit function. Depending on the initial parameter values
the optimization converges to the closest local minimum and the parame-
ter values are not correctly identified. In order to avoid this, the Tikhonov
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regularization has been used. By adding a polynomial function to the misfit
function a solution surface with one minimum is obtained. The regularization
parameter has been chosen according to the discrepancy principle such that
the error introduced by the regularization is not larger than the measurement
noise. Since no information about the measurement noise was available a reg-
ularization factor has been assumed. For future work an estimation of the
noise level from statistical analysis of measurement data or from technical
knowledge about the measurement chaine should be used in order to define
the regularization parameter.

The model of the TGV train is more complicated. It includes two trac-
tion units and 9 carriages with over 300 degrees of freedom. The model
is implemented in the multi-body tool Vampire. Therefore the mathemat-
ical description of the model is not completely known and the application
of the adjoint state method has not been possible. As for the bogie model
the time-domain based model updating has been used due to the nonlin-
ear characteristics of the system. The analysis of the transfer functions of
the primary and secondary suspension at different velocities and running
conditions showed the important influence of nonlinearities on the vehicle
behaviour. A second important aspect is that the identification is performed
using operational measurements. The real track irregularities are measured
by the track inspection train and used as excitation signal in the multi-body
simulation. The track irregularities represent a transient signal with varying
frequency content. Therefore the linearization for a defined operating point
is not possible. A comparison of the transfer functions and the transient
response obtained from the measurement and simulation showed that the
nonlinear behaviour is in general reproduced by the model. Going more in
detail, the misfit function indicates larger differences for the car body accel-
erations than for the bogie. This is due to the complex nonlinear behaviour
of the secondary suspension with the air spring element.

The identification problem is applied to more than 100 parameters including
both suspension and inertia parameters. For the same reasons named above
the parameters of the wheel-rail contact are not considered. The solution sur-
face of the misfit functions reveals local minima distributed over the whole
parameter range. This impedes to obtain a minimization problem with a
unique solution. In this work the non-regularized optimization problem has
been used for the TGV model. The definition of a suitable regularization
function taking into account the characteristic of the solution surface and
the range of the parameter values is proposed for future work.
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Consequently, the use of global optimization methods is a suitable approach.
The simulated annealing and genetic algorithm methods have been applied.
Misfit functions with and without the kilometric correction taken into ac-
count as an optimization parameter have been compared. Generally, impor-
tant reductions of the misfit function up to 60% have been obtained. The
parameter values obtained from the different optimization methods and run-
ning conditions have been compared. For the first case using the vertical
acceleration in bogie A qualitatively the same modifications of the parame-
ter values are obtained. The misfit function reaches values lower than 20%
indicating a very good correlation between model and measurement. How-
ever, differences between the identification for straight and curved track are
observed. Besides, some parameter values reach the boundaries of the de-
fined tolerances indicating the need of modifications of the model structure.
If the response in the carriage is used the differences between model and mea-
surement remain larger. For the second case using the lateral acceleration
in carriage 2 misfit function values of 50% are obtained. In opposite to the
first case, an important reduction of 34% even for 10% parameter tolerance
showed that the initial parameters were not correctly choosen.

The variability of the misfit function along the TGV east line stays large
even after the identification. In order to explain this strong variability of the
model performance the correlation with the track design and the track irreg-
ularities has been analyzed. It explains only partly the results of the misfit
function. It is supposed that the dynamic behaviour of the TGV train is
controlled by other excitations and dynamic properties which are not taken
into account by the model. The importance of elastic modes and aerody-
namic forces should be mentioned. The first elastic modes of the carriages
lie at 15Hz thus in the frequency range considered in this work.

The result of this work opens the perspective to further applications. Up to
now only suspension parameters have been identified for the bogie model. As
mentioned before the parameters of the wheel-rail contact have an important
influence on the vehicle dynamics. Since exact information about the conic-
ity and friction coefficients is often not available they add uncertainty to the
simulation results. An identification of these parameters from measurement
data could help to better understand the vehicle behaviour under different
running conditions and improve the simulation results.

An interesting application of the parameter identification is the condition
monitoring. A continuous or repeated identification of parameters values dur-
ing operation would allow the detection of changes in suspension elements.
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This information could be used for the identification of damage models of
the suspension elements leading to improved maintenance procedures.

The condition monitoring would require to apply the parameter identifica-
tion to many runs on the same line. Already the computation of the forward
model would be very time consuming. The two-timescale homogenization
presented in [3],[4] and [10] could be used to reduce the computational time.
It is based on the idea to describe the dynamic behaviour of the system by
two different time-scales. One describing the short-time dynamics and an-
other describing slower effects. In this case the transient response due to the
track irregularities represents the vehicle dynamics at a fast time scale while
the evolution of the vehicle behaviour due to element damages takes place
at a slow time scale. The homogenization method would allow to calculate
the evolution due to several runs on a certain line by taking into account the
averaged effect of the transient dynamics at each run. Since the track irreg-
ularities do not represent a periodic excitation the principles of non-periodic
homogenization from [10] would have to be applied.

In this work the model parameters are considered as deterministic. For the
identifiable suspension parameters deterministic values were obtained and for
other model parameters constant parameters taken. In reality some of these
parameters are not exactly known and may vary during a measurement. In
particular for the wheel-rail contact parameters friction coefficient and conic-
ity this is the case. Besides, the measured accelerations are always corrupted
by noise introducing uncertainty to the identification results.

It is therefore reasonable to consider these parameters as stochastic parame-
ters with a certain probability distribution. A probabilistic model is obtained
and the identified suspension parameters will be stochastic values also. The
variability of the input parameters propagates to the output. Different meth-
ods as the Monte Carlo or the Bayesian network could be used to perform
the parameter identification in a probabilistic way. While the vehicle param-
eters have been considered as completely dependent or independent in this
work, probabilistic approach could account for the conditional dependencies
between parameter values.
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Appendix A

Multi-body model of bogie

Kinematic equations

The solution for the nonlinear kinematic equations of the wheelset with cir-
cular wheel and rail profiles is:

∆r ∼= λuy (A.1)

tan δl(r)
∼= tan δ0 ± ǫ

2
e0

uy (A.2)

δx
∼= σ

2
e0

uy (A.3)

uz =
1
2
ζu2

y −
1
2
ξδ2

z (A.4)

It describes the relation between the dependent parameters vertical displace-
ment uz, rotation around x-axis δx and difference between right and left
contact radii ∆r relative to the degrees of freedom of the wheelset. In [52]
the geometric parameters λ, ǫ, σ, ζ and ξ are defined as:

λ = lim
RR→∞

(
RR sin δ0

(RR − RS)
(1

2
e0 +RS sin δ0)

(1
2
e0 cos δ0 − r0 sin δ0)

) = sin δ0

1
2
e0 +RS sin δ0

1
2
e0 cos δ0 − r0 sin δ0

(A.5)

ǫ = lim
RR→∞
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1
2
e0

RR − RS

1
2
e0 +RR sin δ0

1
2
e0 cos δ0 − r0 sin δ0

) =
1
2
e0 ∗ sin(δ0)

1
2
e0cos(δ0)− r0sin(δ0)

(A.6)
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σ =
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(A.7)
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ξ = tan δ0(
1
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e0 − r0 tan δ0)2
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= tanδ0(
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e0−r0 tan δ0) ∼= 1

2
δ0e0

(A.9)

Lagrange equations

For the setup of the equations of motion the Lagrange approach based on
the kinetic energy is used. For each degree of freedom xi of the vector of
generalized coordinates the Lagrangian equations have the form:

d

dt
(
∂Ec

∂ẋj
)− ∂Ec

∂xj
= dj , j = 1, ...., 10 (A.10)

Ec is the kinetic energy of the system calculated with the translational ve-
locity vi and rotation velocity ωi at the centre of gravity for every body i
described by its mass mi and inertia Ji:

Ec =
1
2

3∑

i=1

(vT
i mivi + ωT

i Jiωi) (A.11)

Calculation of velocities

The Lagrange equations require the translational and rotational velocities for
every body. They are calculated from the vector q of generalized coordinates.
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The position vectors of the three bodies are expressed with these generalized
coordinates. For the bogieframe this is obvious since all three coordinates
are independent:

rbI(q, t) =






rbxI

rbyI

rbzI




 (A.13)

For the wheelset the position vector is given by the kinematic relations de-
rived in chapter 2.

re1I(q, t) =
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(A.14)
The translational speed of each body is received from a total derivation of
the position vector:

vi =
dri

dt
=
∂ri

∂q1

dq1

dt
+
∂ri

∂q2

dq2

dt
+ ...+

∂ri

∂qf

dqf

dt
+
∂ri

∂t
(A.15)

Using the Jacobian matrix of translation J
T i

the translational speed can be
written as:

vi = J
T i

(q, t)q̇ + v̂i(q, t) (A.16)

with the Jacobian matrix of translation given by:

J
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v̂i(q, t) is the so-called local velocity describing the direct derivation relative
to time:

v̂i(q, t) =






∂rxi

∂t
∂ryi

∂t
∂rzi

∂t




 (A.18)

Again for the bogie frame the description is simple. Since all coordinates are
independent the Jacobian matrix becomes:

J
T b

=






1 0 0 0 ... 0
0 1 0 0 ... 0
0 0 1 0 ... 0




 (A.19)

The translative speed is then calculated as:

vbI(q, t) =






ṙbxI

ṙbyI

ṙbzI




 (A.20)

For the wheelset the following Jacobian matrix is obtained:

J
T e1

=






0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 ζ(ue1y − dy + r0γd) 0 −ξδe1z 0




 (A.21)

This gives for the translational velocity:

ve1I(q, t) =






0
u̇e1y

u̇e1yζ(ue1y − dy + r0γd)− δ̇e1zξδe1z




+






0
0
ḋz − r0γdγ̇d + ζ(ue1y − dy + r0γd)(−ḋy + r0γ̇d)






(A.22)

The rotational velocity is derived from the rotational matrix R. In the fol-
lowing description it has to be distinguished between the coordinate system
K̂ attached to the body in the centreof gravity and the system K which
is also attached at the centre of gravity but remains always parallel to the
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inertial system. The two coordinate systems are related by the rotational
matrix R so that a position vector riK is given by:

riK = R
i
riK̂ (A.23)

Since riK̂ is a constant vector describing the position on the body the velocity
expressed in system K is:

⇒ ṙiK = Ṙ
i
riK̂ (A.24)

replacing riK̂ by:

riK̂ = R−1
i
riK = RT

i
riK (A.25)

the derivative of riK is given by:

⇒ ṙiK = Ṙ
i
RT

i
riK = ωi × riK = ω̃iriK (A.26)

with:
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i
(A.27)

In the same way as for the translational velocity the rotational velocity ωi

can be written as the time derivative of the generalized coordinates and the
rotational Jacobian matrix J

Ri
(q, t):

⇒ ωi = J
Ri

(q, t)q̇ + ω̂i(q, t) (A.28)

The rotational Jacobian matrix is defined by:
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(A.29)

its elements are calculated according to the definition of the rotational ve-
locity as:

∂Ri

∂qj
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(A.30)

Starting the bogie the rotational matrix is:
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R
b
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The elements of the first row of the Jacobian matrix corresponding to the
first degree of freedom are calculated as:
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∂δbx
RT
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In the same way the components of the Jacobian matrix are calculated for
the other degrees of freedom. The complete Jacobian matrix then becomes:

J
br

=






1 0 sin δby 0 ... 0
0 cos δbx − sin δbx cos δby 0 ... 0
0 sin δbx cos δbx cos δby 0 ... 0




 (A.33)

Since the local rotational velocity for the bogie is zero the rotational velocity
is diretly obtained as:

ωb =






δ̇bx + sin (δby)δ̇bz

cos(δbx)δ̇by − sin (δbx) cos (δby)δ̇bz

sin(δbx)δ̇by + cos (δbx) cos (δby)δ̇bz




 (A.34)

Due to the kinematic relations the calculation of the rotational velocity of
the wheelsets is more complicated. The rotational matrix is given by:

R
e

=






1 0 0
0 cos δex − sin δex

0 sin δex cos δex











cosωt 0 − sinωt
0 1 0

sinωt 0 cosωt
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0 0 1






(A.35)
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By inserting the term for the rotation angle δe1x the rotational matrix be-
comes:

R
e

=






1 0 0
0 cos (γd + σ 1

e0
(uy − dy + r0γd)) − sin (γd + σ 1

e0
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cosωt 0 − sinωt
0 1 0

sinωt 0 cosωt
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The rotational Jacobian matrix is calculated for the two degrees of freedom
for the wheelset:

J
eR

=







0 ... 0 2 σ
e0

0 sin (ωt) 0
0 ... 0 0 0 − cos (ωt) sin (γde0+2σuy−2σdy+2σr0γd

e0
) 0

0 ... 0 0 0 cos (ωt) cos (γde0+2σuy−2σdy+2σr0γd

e0
) 0







(A.37)
The rotational speed depends also on the track irregularities which are a
function of displacement and for the constant vehicle speed of time:

ωe =







−2σḋy+e0γ̇d+2σr0γ̇d

e0

ω cos (γde0+2σuy−2σdy+2σr0γd

e0
)

ω sin (γde0+2σuy−2σdy+2σr0γd

e0
)







(A.38)

The rotational speed for the wheelset is therefore:

ωe =







2u̇e
σ
e0

+ δ̇ez sin (ωt) + −2σḋy+e0γ̇d+2σr0 γ̇d

e0

−δ̇ez cos (ωt) sin (γde0+2σuy−2σdy+2σr0γd

e0
) + ω cos (γde0+2σuy−2σdy+2σr0γd

e0
)

δ̇ez cos (ωt) cos (γde0+2σuy−2σdy+2σr0γd

e0
) + ω sin (γde0+2σuy−2σdy+2σr0γd

e0
)







(A.39)
With the translational and rotational velocity of the bodies known the kinetic
energy can be calculated:

Ec =
1
2

3∑

i=1

(vT
i mivi + ωT

i Jiωi) (A.40)
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Calculation of suspension forces

Beside the kinetic energy the generalized forces are required in the Lagrange
equations. They are calculated with the forces and moments acting on every
body.

In order to calculated the suspension forces the position vector of the coupling
points have to be expressed in the inertial system. For the bogie frame this
relation is for a coupling point i:

ri = rb +R
b
riK̂ (A.41)

With relative displacement between two coupling points and the stiffness of
the suspension element the force is obtained.

For the calculation of the damping forces the local speed at the coupling
points is required. It is obtained from the translational and rotational speed
of the body as well as the rotational matrix as:

vi = vb + ωb ×R
b
riK̂ (A.42)

Calculation of contact forces

The contact forces are distinguished in the normal and tangential forces. The
normal forces are composed by a static part due to the weight of the vehicle
and a dynamic part. In order to calculate the dynamic part Fdyn = ma the
acceleration of the bodies have to be known. Since the actual acceleration at
the time step i is not known without the forces the acceleration calculated
at the previous time step i-1 has to be used.

For the calculation of the adjoint state the derivatives of the dynamic equa-
tions have to be calculated symbolically. Therefore the dynamic part of the
normal force has been neglected.

Hertz Theorie

With the normal forces known the contact surface can be computed using
the Hertz theory. It allows to calculate the contact radii of the contact ellipse
as well as the static deflection and the stress. The input parameters are the
normal force and the radii of curvature for the rail and wheel profile. The
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following illustration is based on the book on railway vehicle dynamics [52].

The normal force is computed from the equilibrium of forces and moments
for the wheelset. The forces which have to be considered are the normal
forces for the left Nl and right wheel Nr, the gravitational force mwg as well
as the spring Fc and damper forces Fd of the primary suspension:

mwawz = Nl +Nr −mwg − Fcl − Fcr − Fdl − Fdr (A.43)

Jexxδ̇ex = −(Fcl + Fdl)lsp + (Fcr + Fdr)lsp +Nle0 −Nre0 (A.44)

The normal forces are computed as:

NR =
(−(Fcl + Fdl) + (Fcr + Fdr))lsp

2e0
(A.45)

Figure A.1: Calculation of the contact ellipse according to Hertz

The next step is to combine the surfaces of the wheel and the rail described
by the radii of curvature R1ǫ, R2ǫ, R1η and R2η to a equivalent surface. The
radii of curvature are shown in figure A.1.

1
Rǫ

=
1
R1ǫ

+
1
R2ǫ

(A.46)

1
Rη

=
1
R1η

+
1
R2η

(A.47)

From the equivalent radii of curvature an averaged radius Rm is calculated:
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Rm =
√

RǫRη (A.48)

Under the assumption that the wheel and the rail are from the same material
the module of elasticity is:

E∗ =
E

2(1− ν2)
(A.49)

Then the contact radii a and b of the ellipse can be calculated based on the
approach proposed by Johnson. This is done by determining the averaged
radius of curvature c =

√
ab from the Rm:

c = 3

√

3
4

1
E∗

NRmF1(e) (A.50)

The factor F1 is received from a graphical representation as a function of the
relation between the relative radii of curvature. Besides, the relation between
a and b is given graphically so that a and b can be calculted.

a = c

√
a

b
(A.51)

b = c

√

b

a
(A.52)



Appendix B

Vampire model of the TGV
train

Suspension elements

The suspension elements of the TGV Duplex train are represented by physical
models. The parameter of the suspension elements are summarized in table
B.1. They are organised with respect to their position in the primary or
secondary suspension of the traction unit or car bodies. The keyword motor
describes elements in the traction unit and rame elements in the carriages.
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Parameters

num suspension type element

1 motor primary suspension coil spring cx

2 motor primary suspension coil spring cy

3 motor primary suspension coil spring cz

4 motor primary suspension guidance spring cx

5 motor primary suspension guidance spring cy

6 motor primary suspension guidance spring cy

7 motor primary suspension guidance spring dx

8 motor primary suspension guidance spring dy

9 motor primary suspension guidance spring dz

10 motor primary suspension vertical damper velocity

11 motor primary suspension vertical damper force

12 motor primary suspension vertical damper series

13 motor primary suspension vertical bumpstop displacement

14 motor primary suspension vertical bumpstop displacement

15 motor secondary suspension coil spring cx

16 motor secondary suspension coil spring cy

17 motor secondary suspension coil spring cz

18 motor secondary suspension coil spring dx

19 motor secondary suspension coil spring dy

20 motor secondary suspension coil spring dz

21 motor secondary suspension coil spring sx

22 motor secondary suspension coil spring sy

23 motor secondary suspension coil spring sz

24 motor secondary suspension transversal bumpstop displacement

25 motor secondary suspension transversal bumpstop force

26 motor secondary suspension vertical damper linear d

27 motor secondary suspension vertical damper linear c serial

28 motor secondary suspension transversal damper linear d

29 motor secondary suspension transversal damper linear c serial

30 motor secondary suspension antiyaw damper velocity

31 motor secondary suspension antiyaw damper force

32 motor secondary suspension antiyaw damper series

33 rame primary suspension coil spring cx

34 rame primary suspension coil spring cy

35 rame primary suspension coil spring cz

36 rame primary suspension coil spring ca

37 rame primary suspension coil spring cb

38 rame primary suspension coil spring cg

39 rame primary suspension coil spring dx

40 rame primary suspension coil spring dy

Table B.1: Suspension parameters considered in sensitivity analysis
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Parameters

num suspension type element

41 rame primary suspension coil spring dz

42 rame primary suspension coil spring da

43 rame primary suspension coil spring db

44 rame primary suspension coil spring dg

45 rame primary suspension guide arm cx

46 rame primary suspension guide arm cy

47 rame primary suspension guide arm cz

48 rame primary suspension guide arm ca

49 rame primary suspension guide arm cy

50 rame primary suspension guide arm cg

51 rame primary suspension vertical damper velocity

52 rame primary suspension vertical damper force

53 rame primary suspension vertical damper series

54 rame primary suspension vertical bumpstop displacement

55 rame primary suspension vertical bumpstop force

56 rame secondary suspension airspring vertical bellow

57 rame secondary suspension airspring vertical reservoir

58 rame secondary suspension airspring vertical damping

59 rame secondary suspension airspring vertical area

60 rame secondary suspension airspring lateral displacement

61 rame secondary suspension airspring lateral force

62 rame secondary suspension airspring lateral damping

63 rame secondary suspension airspring lateral force

64 rame secondary suspension vertical damper linear d

65 rame secondary suspension transversal damper displacement

66 rame secondary suspension transversal damper force

67 rame secondary suspension transversal damper series

68 rame secondary suspension antiyaw damper displacement

69 rame secondary suspension antiyaw damper force

70 rame secondary suspension antiyaw damper series

71 rame secondary suspension traction bogie-carbody0

72 rame secondary suspension vertical bumpstop displacement

73 rame secondary suspension vertical bumpstop force

74 rame secondary suspension transversal bumpstop displacement

75 rame secondary suspension transversal bumpstop force

76 rame secondary suspension transversal bumpstop 2 displacement

77 rame secondary suspension transversal bumpstop 2 force

78 rame secondary suspension anti-roll bar

79 traktion unit-coach coupler stiffness

80 traktion unit-coach buffer damping

Table B.2: Suspension parameters considered in sensitivity analysis
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Parameters

num suspension type element

81 coach-coach pivot joint cx

82 coach-coach pivot joint cy

83 coach-coach pivot joint cz

84 coach-coach pivot joint cg

85 coach-coach pivot joint dz

86 coach-coach longitudinal damper velocity

87 coach-coach longitudinal damper force

88 coach-coach longitudinal damper series

89 coach-coach transersal damper linear d

90 masse car body Traction unit 1 masse

91 masse car body Traction unit 1 Jx

92 masse car body Traction unit 1 Jy

93 masse car body Traction unit 1 Jz

94 masse car body carriage 1 masse

95 masse car body carriage 1 Jx

96 masse car body carriage 1 Jy

97 masse car body carriage 1 Jz

98 masse car body carriage 2 masse

99 masse car body carriage 2 Jx

100 masse car body carriage 2 Jy

101 masse car body carriage 2 Jz

102 masse bogie bogie A masse

103 masse bogie bogie A Jx

104 masse bogie bogie A Jy

105 masse bogie bogie A Jz

106 masse bogie bogie B masse

107 masse bogie bogie B Jx

108 masse bogie bogie B Jy

109 masse bogie bogie B Jz

110 masse car body bogie 1 masse

111 masse bogie bogie 1 Jx

112 masse bogie bogie 1 Jy

113 masse bogie bogie 1 Jz

114 masse bogie bogie 2 masse

115 masse bogie bogie 2 Jx

116 masse bogie bogie 2 Jy

117 masse bogie bogie 2 Jz

Table B.3: Suspension parameters considered in sensitivity analysis
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Thermodynamic airspring model

The thermodynamic airspring model developed by Krettek gives the most
accurate results and forms the basis to the air spring models in ADMAS rail
and Simpack. The equations are developed for the simple physical air spring
model shown in figure B.1.

Figure B.1: Physical air spring model

It is composed of the air spring bellow, a surge pipe with an orifice and the
reservoir. The relative displacements between the car body and the bogie
lead to pressure differences between the bellow and the reservoir which are
compensated by an air exchange between the two volumes. The spring char-
acteristic depends on the air spring surface Ae, the volumes of bellow V1 and
reservoir V2, the air pressure in the system but also on the form and material
of the air spring bellow. Krettek [54] determined the spring characteristic
for an air spring with no reservoir experimentally. An almost linear relation
was found between the force and the spring compression. This does not hold
any longer if an airspring with a reservoir and a surge pipe is analysed. The
spring characteristics then becomes strongly nonlinear.

The thermodynamic model developed by Krettek is based on the energy bal-
ance, the mass balance and the ideal gas law. With respect to the air mass,
the bellow, surge pipe and reservoir form a closed system. The total air mass
remains constant. For the energy balance this is not the case. Energy is
exchanged with the environment in form of work (spring compression and
depression) and heat. The change of the inner energy U is therefore deter-
mined by the heat transfer Q12, the volume work

∫ 2
1 dW =

∫ 2
1 pdV and the
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dissipation (Wdiss)12.

U2 − U1 = Q12 −
∫ 2

1
pdV + (Wdiss)12 (B.1)

The air is considered as an ideal gas described by the ideal gas law:

pV = nRT (B.2)

with: p: pressure, V : volume, n: amount of substance, R: ideal gas constant,
T : temperature.

Then the energy balance, mass balance and ideal gas law for the bellow and
the reservoir are set up. For the air bellow they are:

−Q1 + dQD = dU1 + dW (B.3a)

dM1 = −Gdt (B.3b)

p1dV1 + V1dp1 = R(M1dT1 + T1dM1) (B.3c)

and for the reservoir :

−Q2 − dQD = dU2 (B.4a)

dM2 = Gdt (B.4b)

V2dp2 = R(M2dT2 + T2dM2) (B.4c)

with: Q1(2): heat transfer with environment, QD: heat transfer between air
bellow and reservoir, dU1(2): change in inner energy, Q1(2): air mass in air
bellow and reservoir, G: mass stream between air bellow and reservoir.

In order to derive the thermodynamic equations for the air spring the different
termes in the equations have to be specified. The volume work due to a
compression or expansion of the air bellow is given

dW = −p1dV1 = −p1Adz (B.5)

From the specific heat capacity for a constant volume cv the inner energy of
the air bellow and reservoir is calculated:

U1 = cvT1 (B.6)

U2 = cvT2 (B.7)
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The heat flow between the air bellow T1 and the environment T0 and between
the reservoir T2 and the environment is calculated from the temperature
differences and the heat transfer coefficients β :

dQ1

dt
= β1(T1 − T0) (B.8)

dQ2

dt
= β2(T2 − T0) (B.9)

Between the air bellow and the reservoir heat is transported with the air
mass stream. The heat flow is therefore depending on the direction of the
mass flow. For p1 > p2 the heat stream is:

dQd = cpT1dM1 (B.10)

and for p2 > p1:

dQd = cpT2dM2 (B.11)

Now all termes of the mass and energy balance equation are specified for the
air spring system. If they are introduced in the equations B.3 and B.4 the
relations for the pressure and temperature changes of the air bellow and the
reservoir are obtained. The equations can be found in [29].

The only term which has not been specified yet is the mass stream G between
the air bellow and the reservoir. For the pipe flow other assumptions have
to be made. In order to consider the friction the air can not be treated as an
ideal gas any longer. Due to the vehicle vibrations and the large exchanged
air masses the flow in the pipe is turbulent. The air exchange is therefore
described by the Saint Venant equations. For pressure relations between bel-
low and reservoir larger than 0.5282 they are given by:

G = µ
πd2

0

4

√
√
√
√

2κ
κ− 1

p2
1

RT1
[
p1

p2

2
κ − p2

p1

κ+1
κ

] (B.12)

for p2>p1 and

G = −κµπd
2
0

4

√
√
√
√

2κ
κ− 1

p2
2

RT2
[
p1

p2

2
κ − p2

p1

κ+1
κ

] (B.13)

for p1>p2.
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The air spring model based on the thermodynamic equations presented above
has been implemented in Vampire and ADAM rails. It is supposed to give
the most accurate results for the modelling of the air spring.



Appendix C

Optimization methods

Newton method

The Newton method seeks to minimize the quadratic approximation m(p) of
the misfit function:

m(dk) = J(pk) + dT
k∇J(pk) +

1
2
dT

k∇2J(pk)dk (C.1)

pk is the parameter vector at iteration step k and dk the search direction.
If the Hessian matrix ∇2J(pk) is positive definite, pk + dk is the solution of
min m(dk).

∇m(dk) = ∇J(pk) +∇2J(pk)dk = 0 (C.2)

∇2J(pk)dk = −∇J(pk) (C.3)

dk = −(∇2J(pk))−1∇J(pk) (C.4)

Instead, if the Hessian matrix ∇2J(pk) is not positive definite it is possible
that the Newton search direction does not satisfy the condition ∇J(pk)Tdk <
0 or is not defined. In this case the steepest descent direction is used.

A drawback of the Newton method is the use of the Hessian matrix whose
calculation can become very costly. By replacing the Hessian matrix by an
approximation the calculation time can be reduced. This is done in the
Quasi-Newton method.

231



232 C Optimization methods

Quasi-Newton method

Instead of the Hessian Matrix an approximation Bk is used which is updated
at every iteration:

dk = −B−1
k ∇J(pk) (C.5)

Among the approximation of the Hessian matrix the BFGS method is well
known. Outgoing from an initial estimation which can be the identity matrix
the approximation is calculated from the gradients as:

Bk+1 = Bk +
qkq

T
k

qT
k sk

− BT
k s

T
k skBk

sT
kBksk

(C.6)

with:

sk = xk+1 − xk (C.7)

qk = ∇J(xk+1)−∇J(xk) (C.8)

Levenberg-Marquardt method

The Levenberg-Marquardt method completes the Newton method with a
regularization. The Tikhonov regularization is applied to the inverse matrix
for the calculation of the search direction dk:

dk = −[∇2J(p0)T∇2J(p0) + νI]−1∇2J(p0)T∇J(p0) (C.9)

The search direction is controlled by the parameter ν. For ν = 0 the method
corresponds to the Newton method and for ν = inf to the steepest descent
method

Conjugated gradient method

The conjugate gradient method initially developed for the solution of large
linear problems has been adapted to non-linear problems. Its advantage is a
fast convergence and low memory needs.

In the case of a non-linear system the methods allows to solve iteratively the
system:
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Ax = b (C.10)

The solution of the linear system corresponds to the minimisation problem:

min φ(x) =
1
2
xTAx− xT b (C.11)

The gradient of φ is equal to the residuum of the linear system.

∇φ(x) = Ax− b = r(x) (C.12)

The method is based on the creation of conjugated vectors defined by:

pT
i Apj = 0 for all i 6= j (C.13)

The introduction of conjugated vectors allows to minimize φ successively by
a minimisation in every direction.

xk+1 = xk + αkpk (C.14)

αk is the iteration step of the function φ. If x is replaced in the function φ
by xk + αkpk the iteration step αk is calculated by:

αk = − rT
k pk

pT
kApk

(C.15)

It is possible to show that the sequence xk converges to the solution of the
linear system. For the conjugate directions the eigenvalues of the matrice
A or a Gram-Schmidt orthogonalization can be used. However, both ap-
proaches are relatively costly. By using the conjugated gradient method for
the calculation of the conjugated vectors the complexity can be reduced. For
the calculation of the preceding search direction only the previous direction
is used:

pk = −rk + βpk−1 (C.16)

β is determined from the condition that pk−1 and pk are conjugated relative
to A. The method is therefore composed by two steps: with the actual search
direction pk and the residuum rk the step length and the new parameter val-
ues xk+1 and residues rk+1 are calculated. Then the new search direction is
calculated.

The Fletcher Reeves method is the extension to non-linear functions. The
residue is the gradient of the non-linear misfit function. Then a unidimen-
sional search is performed i the direction pk in order to identify the minimum.



234 C Optimization methods

xk+1 = xk + αkpk (C.17)

Trust region methods

Trust region methods are composed by two steps: the identification of a
suitable trust region and the solution of the subproblem in this region given
by a quadratic constrained optimization problem. The radius of the trust
region has an important effect on the performance of the method. A radius
which is chosen too small leads to a large number of iterations and a slow
convergence. In return, if it is chosen too large the quadratic approximation
is not valid any longer. The radius is chosen by comparing two iterations of
the misfit function J(p) and the quadratic approximation m(p):

ρk =
J(pk)− J(pk + dk)
m(0)−m(dk)

(C.18)

If the value of ρk is close to one the approximation describes well the misfit
function and the next point is accepted. If, instead, ρk is close to zero or
even negative the radius is reduced.

The next step is the minimisation of the quadratic approximation considering
the constraint given by the trust region radius. The quadratic approximation
is obtained by a Taylor development:

J(pk + dk) = J(pk) +∇J(pk)dk +
1
2
dT

k∇2J(pk)dk (C.19)

The minimisation is therefore given by:

min mk(dk) = J(pk) +∇J(pk)dk +
1
2
dT

kBkdk ‖dk‖ ≤ △k (C.20)

with: dk: search direction

In the same way as for the line search methods the subproblem is solved in
the steepest descent direction. If only the first derivative is used a linear
problem is solved:

dk = min J(pk) +∇J(pk)d (C.21)

by minimizing:

τk = min mk(τdk) ‖τdk‖ ≤ △k (C.22)



C Optimization methods 235

The solution of dk is the gradient normalized by the radius of the trust region:

dk = − △k

‖∇J(pk)‖∇J(pk) (C.23)

If the function mk is monotone in the trust region the solution corresponds
to the point on the radius of the trust region τk = 1. For a convex misfit
function mk τk is either the local minima of mk or the radius.

Tensor algebra for solution of the adjoint Method

The adjoint equation using the displacements in the misfit function is given
by:

∫ T

0
zT (DxMẍδx)dt+

∫ T

0
zT (Mδẍ)dt+

∫ T

0
zT (DxFδx)dt+

∫ T

0
zT (DẋFδẋ)

=
∫ T

0
(x− xexp)T δxdt

(C.24)
The term DxM describes the derivative of the matrix M with respect to a
vector x giving a tensor of order 3. The calculation of the gradient is based
on the following gradient definition for a scalar δ = δ(p1, p2, ..., pn) a vector
x = x(p1, p2, ..., pn) and a matrix A = A(p1, p2, ..., pn). Here the orthonormal
basis in the euclidean space is used for which the covariant derivative and the
contravariant derivatives are equal ei = ei. The basis vectors are self-dual.

gradδ = δ|iei (C.25)

gradx = xj |iej ⊗ ei (C.26)

gradA = Akl|iek ⊗ el ⊗ ei (C.27)

with: |i differential operator

E = (e1, e2, ..., en) is the basis of the n-dimensional Euclidean space with
orthonormal vector ei:

ei.ej = δij (C.28)

Tensors of second and third order are expressed by their coefficents aij and
aijk respectively and the tensor product of the basis vectors e:
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ai,jej ⊗ ei (C.29)

This gives a tensor of order 3 expressed as:

∂M

∂x
=
∂mi,j

∂xs
ei ⊗ ej ⊗ es (C.30)

The contraction of a third order tensor with a vector is defined as:

(u⊗ v ⊗ w)x = (w.x)(u⊗ v) (C.31)

If the derivative of M is contracted with the vector ẍ a second order tensor
is obtained:

(
∂mi,j

∂xs
ei ⊗ ej ⊗ es)ẍ =

∂mi,j

∂xs
(es, ẍ)ei ⊗ ej =

∂mi,j

∂xs
(ẍs)ei ⊗ ej (C.32)

Accordingly, an index appearing twice in a multiplicative term represents a
summation. The equation above can therefore be written as:

∑

s

ẍs
∂mi,j

∂xs

ei ⊗ ej (C.33)

For the calculation of the adjoint equation from the derivative of the Lagrange
equation the gradient of the matrix M is contracted two times with a vector.
Then a scalar product of this vector is calculated. For the transform described
in equation C.32 the order of these operations has to be altered. The scalar
product is associativ so that:

a.b = aibi(ei.ei) (C.34)

The contraction of a matrix A with a vector x is given by:

Aij(ei ⊗ ej)x = Aijei(ej.x) = Aijei(xj) (C.35)

The scalar product of this vector with another vector y gives:

Aijei(xj).(eiyi) = Aijxjyi.(ei.ei) (C.36)

If now the vector x and y are permuted the following result is received:

Aijei(yj).(eixi) = Aijyjxi.(ei.ei) (C.37)

The two results are equal if the indices of matrix A a permuted. This corre-
sponds to the calculation of the transposition of the matrix A:



C Optimization methods 237

(AT )ij = Aji (C.38)

By neglecting small movements the matrix M becomes independent of x. The
derivative of M leading to tensors of order 3 is avoided and the adjoint state
equation simplifies to:

Mẍ+DxF
T z − (DẋF

T z)′ = ẍ− ẍexp (C.39)
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Appendix D

Analysis of measurement data
and calibration of model

In order to analyse the measurement and calibrate the model three types
of signals are available: the simulated response of the model, the measured
response of the TGV train and the measured track irregularities. The proper-
ties of the signals are summarized in table D.1. Both, the simulation and the
measurement are time-based giving discretization with constant time-steps.
The PK signal is thus calculated using the vehicle speed. The time step of
the simulation has been chosen 2.5 times smaller than for the measurement
in order to allow a correct resampling.
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Data analysis

Signal Model System Track

Type Accelerations Accelerations Displacement
Forces Forces

Time ∆t = 0.001 ∆t = 0.0025 -
PK ∆PK = variable,

recalculation
using speed:
∆PKi = vi∆t

∆PK = variable,
recalculation
using speed:
∆PKi = vi∆t

∆PK = 0.25m

Speed v = measured v = measured -
Sampling
frequency

fs = 1/∆t =
1000Hz

fs = 1/∆t = 400Hz fs = 1/∆PK =
4[1/m] or calculation
for a defined vehi-
cle speed: fs =
1/∆t with dti =
∆PK/vifs variable

Table D.1: Parameters of signal analysis

Transfer functions

In order to detect nonlinearities the transfer function of the model and the
measured system are analysed. The transfer functions are compared for
the primary and secondary suspension in the traction unit and the carriage.
For the measurement the transfer functions are computed in the frequency
domain betwene the vertical and lateral forces on the wheel and the accel-
erations in bogie and car body. Since the measured wheel forces are only
available for the bogies A and 3 they have been used for this analysis. Their
position in the train can be found in figure D.1.

Transfer function for model

For the model a modal analysis with a sine excitation at different frequen-
cies is reproduced. For every simulation the train is running with a slightly
increased speed over a track with sinusoidal irregularities of 3m wavelength.
In order to detect nonlinearities this analysis has been repeated for different
amplitudes of the track irregularities.
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Figure D.1: Numeration of the wheelsets, bogies and car bodies of the TGV
Duplex train

Transfer function for measurement

The transfer functions are calculated in the frequency domain separately for
short sections allowing to detect changes in the eigenfrequencies due to non-
linearities. As illustrated in figure D.2 the signal is separated in a certain
number of sections. Then for each section the power spectral densities and
transfer functions are calculated using the Welch method. Depending on the
required frequency resolution the section is divided in several blocks which
might overlap. The PSD and transfer function is calculated for each block
and averaged over all blocks in one section.

The choice of the section length has been made from experience with the
aim to identify linear and nonlinear modes from the transfer function. If the
number of sections is chosen too large the nonlinear mode is rarely visible
due to the instationarities caused by the track irregularities. By reducing
the number of sections to 80 and averaging over around 1km using the Welch
method the effect of the track irregularities is reduced and the nonlinear
speed depended mode is better visible.

Traction unit vertical direction

The transfer function of the primary suspension in vertical direction for the
model (figure D.3 a) shows a nonlinear mode with an eigenfrequency between
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Figure D.2: Computation of the power spectral density and transfer function
for each section using the Welch method
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Figure D.3: Transfer function of primary suspension bogie A in vertical di-
rection
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Short time Fourier analysis

Parameter Formule Value Explication

PK Start-End [km] - 20-100 section with impor-
tant speed variations

Number sections N - 80 resolution adapted
to speed changes

Length section L[m] - approximately 1000 variable, depending
on speed

Time step ∆t[Hz] - 0.0025 defined by measure-
ment system

Datapoints total
Ntot

- 369841 all sections

Datapoints section
Nsection

Ntot/N 4623 one sections

Length section
Tsection [t]

Nsection∆t 11.5575 time length of one
sections

Required frequency
resolution ∆f [Hz]

- 0.5 detection of modes
possible

Welch method:
blocklength Tblock[s]

1/∆ f 1/0.5 = 2 averaging over sec-
tion length

Welch method: nfft Tblock/∆t 2/0.0025 = 800
Welch method: over-
lap [%]

- 60

Welch method: aver-
ages per section

Nsection/(nfft0.4) 14

Table D.2: Parameters of the test section for computing the transfer functions
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20 and 30Hz. It is probably due to the rubber spring in the primary suspen-
sion. The mode is not clearly visible in the measurements but a nonlinear
mode can be found between 20 and 30Hz.

Transfer function for traction unit 1 vertical
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Figure D.4: Transfer function of primary + secondary suspension bogie A in
vertical direction
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Figure D.5: Transfer function of secondary suspension bogie A in vertical
direction

From figure D.5 linear modes are found at 2 and 4Hz for the secondary
suspension of the model. These modes are also present in the measurement.
Besides, a nonlinear mode is visible between 20 and 30Hz which is probably
an effect due to the primary suspension.
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Transfer function for channel primary suspension bogie A lateral
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Figure D.6: Transfer function of primary suspension bogie A in lateral direc-
tion
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Figure D.7: Transfer function of primary + secondary suspension bogie A in
lateral direction

Transfer function between channel 3 and 33

frequency [Hz]

A

A=5mm

A=8mm

A=11mm

(a) Model

sections:40    df:0.5    average per section:11.572

fr
e
q
u
e
n
c
y
 [

H
z
]

0

10

20

30

40

200

250

300

350

400

PK [km]

V
 [
k
m

/h
]

(b) Measurement

Figure D.8: Transfer function of secondary suspension bogie A in lateral
direction
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Traction unit transversal direction

In lateral direction a highly nonlinear mode is found in the primary sus-
pension between 25 and 35Hz both for the simulation and the measurement.
The confirms the importance of nonlinearities in the lateral vehicle dynamics.
The secondary suspension is characterized by a quite linear mode at around
2 to 3Hz. At higher frequencies nonlinear effects are visible which might be
caused by the primary suspension.

Carriage vertical direction

Force measurements have been performed also for bogie 3. In order to take
into account the different suspension elements in the carriages and the effect
of the Jacobs bogies the transfer functions are computed for bogie 3 and
carriage 2.

Transfer function for bogie 3 vertical primary suspension
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Figure D.9: Transfer function of primary suspension bogie 3 in vertical di-
rection

For the primary suspension in vertical direction (figure D.9) a nonlinear mode
is found between 25 and 35Hz. It is supposed that this nonlinear mode is
caused by the rubber spring elements in the primary suspension acting both
in vertical and lateral direction. While the nonlinear mode is isolated in lat-
eral direction the vertical direction shows a linear component due to the coil
spring.

In the transfer function of the secondary suspension (figure D.10) a linear
mode is found at 2Hz both in the measurement and the model. It corre-
sponds to the vertical airspring. Besides, a nonlinear mode is visible in the
measurements. It is not correctly reproduced by the model where a second
linear mode can be seen.
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Transfer function bogie 3 − carriage 2 vertical
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(c) Measurement bogie 3 - carriage 2
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(d) Measurement bogie 3 - carriage 3

Figure D.10: Transfer function of secondary suspension bogie 3 in vertical
direction
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Carriage transversal direction

Transfer function for bogie 3 lateral primary suspension
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Figure D.11: Transfer function of primary suspension bogie 3 in lateral di-
rection

In lateral direction (figure D.12) a distinct nonlinear mode is found in the
primary suspension both in the model and in the measurement between 18
and 30Hz. Again, the influence of nonlienarities on the lateral vehicle be-
havior is important. The nonlinearity of the wheel-rail contact and rubber
spring elements can explain this behavior. In the secondary suspension (fig-
ure D.13) nonlinear effects appear for the mode of the airspring between 2
and 5Hz but also at higher frequencies.

Wheel rail contact

In order to characterize the effect of the wheel-rail contact the transfer func-
tions have been calculated between the measured wheel forces and axle-box
accelerations in vertical and lateral direction. Figure D.14 shows the spectra
of the vertical wheel-forces on the left and right wheel of wheelset A. They
show clear peaks at several frequencies.
The results for the transfer functions are shown in figure D.15. In vertical
direction the transfer function does not shown important modes. Vertical
forces and the axle-box acceleration are directly coupled in the low frequency
range. This is due to the geometric constraint in vertical direction and the
fact that at low frequencies track and wheel can be considered as rigid. In
lateral direction this direct coupling is not valid. The possible relative move-
ment between track and wheel as a function of the slip and friction forces
leads to a more complicated behavior and a transfer function with several
modes. Finally, it has to be considered that wheelsets and bogie are excited
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Transfer function for track bogie 3 − carriage 2 lateral secondary suspension
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Figure D.12: Transfer function of primary + secondary suspension bogie 3
in lateral direction
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Transfer function bogie 3 − carriage 2 lateral

frequency [Hz]

A=5mm

A=8mm

A=11mm

(a) Model bogie 3 - carriage 2

Transfer function bogie 3 − carriage 3 lateral

frequency [Hz]

A=5mm

A=8mm

A=11mm

(b) Model bogie 3 - carriage 3

sections:40    df:0.5    average per section:11.572

fr
e
q
u
e
n
c
y
 [

H
z
]

PK [km]

V
 [

k
m

/h
]

(c) Measurement bogie 3 - carriage 2
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(d) Measurement bogie 3 - carriage 3

Figure D.13: Transfer function of secondary suspension bogie 3 in lateral
direction
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in bogie A wheel
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(b) STFT of the vertical wheelforce 21
in bogie A wheel

Figure D.14: STFT of wheelset forces in bogie A in vertical direction
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simultaneously by several correlated forces. This can introduce errors when
calcualting the transfer function between one force and the vehicle response.
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Figure D.15: Transfer function H2 of wheel rail contact (force - acceleration
axle box) : vertical (a) lateral (b) of measurement

Figure D.16: Measured wheel forces and accelerations in the bogie
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Appendix E

Calibration of the initial model
using coherence and misfit
functions

The quality of the initial model is evaluated by analysing the differences be-
tween the measured and simulated vehicle response. Therefore the vehicle
response is devided in sections of 250m length. After an automatic correc-
tion of the kilometric shift using the cross-correlation function the coherence
function and the misfit function are calculated. This analysis is applied to
the wheel forces, the axle-box accelerations, the bogie accelerations and the
car-body accelerations.

Wheel forces

Bogie A and 3 are equiped with measurement wheelsets allowing to measure
vertical and lateral wheel forces. The frequency range for which the model
response is valid can be obtained from the power spectral density. For the
vertical wheel forces a very good correlation is found between 5 and 15 HZ
while most of the signal energy is contained between 5 and 25Hz. The coher-
ence calculated for each section shows an important variability with most of
the values between 0.8 and 1. However, some sections for example between
PK55 and 60 shows significantly lower coherence values. The results for the
coherence function correlates with the misfit fucntion. Most of the values lie
between 15 and 50% error with a mean of 30%. The good reproducibility
of the vertical wheel force by the model can be explained by the direct me-
chanical coupling between rail and wheel in vertical direction and the mainly
linear characteristics of the vertical suspension generating the dynmic part

253
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of the vertical wheel force.

For the lateral wheel forces the distance between model and measurement
is higher. Misfit function values between 40 and 1000% are obtained. The
reason is the complicated kinematics and the nonlinear behavior of lateral
suspension elements.

Model calibration

Signal type Wheel force
Frequency range 5 to15/25Hz
Section length 250m
Overlap 50%
Position Bogie A, vertical, lateral

wheel 11

Table E.1: Control parameters

Figure E.1: Measured and simulated power spectral density for choice of
frequency range
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Figure E.2: Initial misfit function and coherence function for vertical
wheelforce Q11 bogie A for frequency range 5 to 15Hz
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Figure E.3: Initial misfit function and coherence function for vertical
wheelforce Q11 bogie A for frequency range 5 to 25Hz
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Figure E.4: Initial misfit function and coherence function for lateral
wheelforce Y11 bogie A for frequency range 5 to 25Hz

Axle box acceleration

Axle box accelerations are measured on the wheelsets A and I in transversal
and vertical direction. Measured on the wheelset running on the track with-
out any suspension they show the same characteristics as the wheelset forces.
In vertical direction direction a good correlation between measurement and
simulation is obtained. Due to the geometric constraint in vertical direction
the acceleration depends directly on the vertical track irregularity. In lateral
direction the misfit function shows higher values. The axle box acceleration
depends on the nonlinear contact geometry and the friction forces in the
wheel rail contact.

Model calibration

Signal type Axle-box acceleration
Frequency range 5 to 25Hz
Section length 250m
Overlap 50%
Position Wheelset A lateral/vertical

Table E.2: Control parameters
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Figure E.5: Measured and simulated power spectral densities of axle-box
acceleration in vertical and lateral direction
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Figure E.6: Initial misfit function and coherence function for lateral axle-box
acceleration in wheelset A for frequency range 5 to 25Hz
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Figure E.7: Initial misfit function and coherence function for vertical axle-
box acceleration in wheelset A for frequency range 5 to 25Hz

Traction unit bogie acceleration

Model calibration

Signal type Traction unit bogie accelera-
tion

Frequency range 1 to 11Hz
Section length 250m
Overlap 50%
Position bogie A lateral/vertical

Table E.3: Control parameters

The distance between measured and simulated accelerations in the traction
unit bogie are analysed. From the power spectral density it can be seen
that the model is only valid up to frequencies of 14Hz in lateral and 10Hz
in vertical direction. This is probably due to the effect of elastic modes or
suspension modes not represented in the model. The misfit function and
coherence function values are good both for the vertical and lateral direction
with values between 40 and 80%. However, again important variations for
the sections can be observed.
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Figure E.8: Measured and simulated power spectral densities of bogie A
acceleration in vertical and lateral direction
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Figure E.9: Initial misfit function and coherence function for lateral acceler-
ation in bogie A
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Figure E.10: Initial misfit function and coherence function for vertical accel-
eration in bogie A

Traction unit car body acceleration

Model calibration

Signal type Traction unit car body accel-
eration

Frequency range 1 to 11Hz
Section length 250m
Overlap 50%
Position Traction unit 1 lat-

eral/vertical

Table E.4: Control parameters

The analysis of the power spectral density of the car body accelerations
shows important differences. This can be due to the complex behavior of the
secondary suspension which is not correctly represented in the model.
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Figure E.11: Measured and simulated power spectral densities of traction
unit 1 acceleration in vertical and lateral direction
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