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Résumé  
Le volcan actif Mont Nemrut, situé à l’ouest du lac Van, est l'un des volcans les 

plus importants d’Anatolie orientale. Il possède une caldeira sommitale de 8.5×7 

kilomètres de diamètre. L'activité volcanique du Nemrut a commencé il y a ~1 Ma 

et s’est poursuivie jusque dans les périodes historiques. Les éruptions les plus 

récentes ont été signalées en 1441, 1597 et 1692 A.D. Parmi les volcans 

anatoliens orientaux; le Nemrut est le volcan le plus dangereux, compte tenu de 

sa proximité avec des sites urbanisés environnants ; il menace directement 

135.000 habitants. Les manifestations actuelles de l’activité volcanique sont 

représentées par une activité hydrothermale et fumerollienne  au sein de la 

caldeira. 

 

L'évolution structurale du volcan se subdivise en deux stades principaux (pré-

caldeira et post-caldeira) séparés par l'effondrement catastrophique de la caldeira. 

Les produits de l’activité anté-caldeira sont majoritairement représentés par des 

écoulements et des dômes de lave felsiques. Les séries ignimbritiques du Nemrut 

et de Kantaşı, manifestations majeures de l’activité de la caldeira, sont constituées 

d’unités pliniennes et d’écoulements ignimbritiques. L'activité post-caldeira est 

représentée par une activité phréatomagmatique explosive et une activité effusive 

basaltique-rhyolitique bimodale, concentrées au sein de la caldeira et au niveau 

de la zone de rift récente du Nemrut, sur le flanc nord. 

 

L’analyse des données multisources (études de polarisation spontanée, modèles 

numériques de terrain et bathymétrie ainsi que leurs produits dérivés, images 

Landsat et ASTER) a permis de caractériser la structure de la caldeira du Nemrut 

et les circulations hydrothermales associées. La synthèse de ces approches pluri-

thématiques et des interprétations correspondantes permet de proposer que la 

caldeira est constituée de trois blocs principaux, conséquence des processus de 

fragmentation générés lors des phases d’effondrement. Les frontières délimitant 

ces blocs et la frontière structurale principale de la caldeira contrôlent les 

principales activités hydrothermales intra-caldeira. 

 



Le régime tectonique régional de compression-extension existant au Pliocène est 

structuralement enraciné et est responsable du déclenchement du volcanisme du 

Mont Nemrut. Le jeu de systèmes décrochants surimposés aux structures pré-

existantes a provoqué l’apparition d’une zone de faiblesse localisée au sein de 

laquelle le système volcanique du Nemrut s’est préférentiellement mis en place. 

 

La surveillance de l’activité du volcan Nemrut a été initiée avec l’installation d’un 

ensemble de trois sismomètres, ce qui constitue le premier réseau de surveillance 

sismo-volcanique sur un volcan en Turquie. Les données temps réel sont 

acquises, traitées et archivées depuis octobre 2003. L’interprétation des signaux 

volcaniques acquis dans le cadre de cette surveillance sismologique, couplée aux 

résultats de l’étude du système hydrothermal, confortent clairement l’existence 

d’une chambre magmatique active localisée aux environs de 4-5 kilomètres de 

profondeur. La surveillance à long terme de ce volcan potentiellement actif est 

essentielle pour la prévention des risques associés et fournira de plus une base 

de données essentielle pour une meilleure connaissance et compréhension du 

mode de fonctionnement de ce volcan. 

 

Mots Clés: Nemrut, Lac Van, Anatolie de l’Est, Turquie, Polarisation spontanée, 

ASTER, Imagerie Infrarouge thermique, système hydrothermal, Surveillance 

Sismologique, Collision Continentale, Extension, Ignimbrites. 
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Öz 
Van gölünün batısında yeralan Aktif Nemrut volkanı, Doğu Anadolu’da yeralan 

volkanların en önemlilerinden biridir. Zirvesinde 8.5x7 km çapında bir kaldera 

yeralmaktadır. Nemrut dağının volkanik faaliyeti ~1 My önce başlamış ve tarihsel 

çağlara kadar devam etmiştir. Volkanın en genç patlamaları M.S. 1441, 1597 ve 

1692’de gerçekleşmiştir. Doğu Anadolu’da yeralan volkanlar arasında Nemrut 

dağı, çevresi için en tehlikeli volkandır ve etrafında yaşayan 135.000 kişiyi tehdit 

etmektedir. Güncel volkanik faaliyet, kaldera içindeki hidrotermal faaliyet ve buhar 

çıkışları ile belirgindir. 

 

Volkanın yapısal gelişimi, katastrofik kaldera çökmesi ile ayrılan iki ana evrede 

(kaldera öncesi ve kaldera sonrası) incelenmiştir. Kaldera öncesi ürünler esas 

olarak felsik lav akıntıları ve domlardan oluşmaktadır. Pliniyen üniteler ve ignimbirit 

akıntılarından oluşan Nemrut ve Kantaşı ignimbirit serileri kaldera oluşturan 

faaliyeti temsil etmektedir. Kaldera sonrası faaliyet ise kaldera içindeki patlayıcı 

hidrovolkanik ve riyolitik lav akıntıları/domları ile Nemrut rift zonundaki bimodal 

bazaltik-riyolitik efüzif faaliyet ile temsil edilmektedir. 

 

Nemrut kalderası içindeki hidrotermal akışkan hareketleri ve kaldera’nın 

yapısallığı, doğal-potansiyel ölçümleri, batimetri verisi, SAM (Sayısal Arazi Modeli) 

türevleri ve Landsat - ASTER uydu görüntüleri yardımıyla açığa çıkarılmıştır. 

Kaldera’nın üç ana bloktan oluştuğu ve parçalı tipte çökme ile oluştuğu 

düşünülmektedir. Bu blokların arasındaki yapısal sınırlar ve ana kaldera sınır fayı 

kaldera-içi hidrotermal faaliyeti kontrol etmektedir. 

 

Pliyosen’de sıkışma-açılma tektonik rejiminin başlaması Nemrut volkanizmasını 

tetiklemiş ve yapısal anlamda köklerini oluşturmuştur. Daha önceden var olan 

yapılara doğrultu-atımı bileşeninin dahil olması, Nemrut volkanının oluşumuna 

olanak tanıyan  yerel açılmalara izin vermiştir. 

 

Nemrut volkanının gözlemlenmesi amacıyla üç adet sismometre ile yerel bir sismik 

ağ kurulmuştur. Bu ağ, Türkiye’de bir volkanın etrafına kurulan ilk sismik volkan 

gözlem ağıdır ve 2003 yılından beri gerçek-zamanlı veri sağlamaktadır. 



Hidrotermal durum ve gözlenen volkanik kökenli sinyaller, 4-5 km derinlikte bir aktif 

magma odasına işaret etmektedir. Sessiz bir dönemde olan bu aktif volkanın uzun 

süreli gözlemlenmesi elzemdir ve volkan hakkındaki bilgilerimizi artıracaktır. 
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Abstract 
 
Active Mt. Nemrut volcano, situated at the west of Lake Van, is one of the most 

important volcanoes of the Eastern Anatolia. It has a summit caldera with 8.5×7 

km diameter. Volcanic activity of Mt. Nemrut started ~1 Ma ago and has continued 

in historical times. The most recent eruptions of the volcano were in 1441, 1597 

and 1692 A.D. Amongst the Eastern Anatolian volcanoes; Mt. Nemrut is the most 

hazardous volcano for its vicinity, threatening 135,000 habitants living nearby. The 

present volcanic activities are represented by hydrothermal and fumarolic output 

within the caldera. 

 

Structural evolution of the volcano is mainly investigated in two stages (pre-

caldera and post-caldera) separated by catastrophic caldera collapse. Pre-caldera 

products are dominated by felsic lava flows and domes. Nemrut and Kantaşı 

ignimbrite series represent the caldera forming activity, of which sequences are 

comprised of plinian units and ignimbrite flows. Post-caldera activity is represented 

by bimodal basaltic - rhyolitic effusive and explosive hydrovolcanic activity 

concentrated in the caldera and on Nemrut rift zone. 

 

Hydrothermal fluid circulation paths in Nemrut caldera and the structure of the 

caldera have been revealed using self-potential surveys, bathymetry data, 

derivatives of DEMs, Landsat and ASTER images. It is proposed that the caldera 

consists of three main blocks and has collapsed in a piecemeal manner. 

Boundaries delimiting these blocks and the main structural boundary of the 

caldera control the intra-caldera hydrothermal activities. 

 

Initiation of compressional-extensional tectonic regime in Pliocene structurally 

rooted and triggered the volcanism of Mt. Nemrut. Addition of strike-slip 

component to the pre-existing structures has led localized extensions where 

Nemrut volcanic system has been preferentially emplaced. 

 

To monitor the Nemrut volcano, three seismometers were installed. This is the first 

volcano-seismic monitoring network around a Turkish volcano and real-time data 

are being collected since October 2003. Hydrothermal signature as well as 



acquired volcanic signals clearly refer to an active magma chamber emplaced 

around 4-5 km depth. Long term monitoring of this active-quiescent volcano is vital 

and will yield more knowledge about this volcano. 

 

Keywords: Turkiye, Eastern Anatolia, Nemrut, Self-potential, hydrothermal 

system, ASTER, night-time thermal infrared, Seismic surveillance, Continental 

collision, Extension, Ignimbrites, Lake Van. 
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“Change is the only constant.” 

Heraclites 
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1. Introduction 
Turkey forms one of the most actively deforming regions in the world and has a 

long history of devastating earthquakes (Bozkurt, 2001). Run of disasters (Kocaeli, 

M: 7.4; Düzce, M: 7.2) at the end of 1999 aroused interest on active tectonics of 

Turkey once again. Close location of earthquakes to one of the most crowded 

cities in the world also attracted interest of the public. Earthquakes, their genesis 

and results became a popular discussion subject. The popularity of the discussion 

also banished the subject from its scientific basis which must originally be the root 

of the following research, construction and reconstruction. After the catastrophic 

events, large amount of research budget on tectonics (worldwide) were directed 

into the research under Marmara Sea. Participation and support of local civil 

authorities to the ongoing research was also polemical. Politicians disregarded the 

importance of the research needed for future protection. In summary, even the 

disaster was catastrophic, both funding and interest of civil authorities for future 

research are not seem to be adequate. 

In addition to the active tectonic regime, volcanism played an important role in the 

geological evolution of Anatolia. Research on volcanism and the natural risk 

associated with the volcanoes in Turkey is much more complex when compared to 

active tectonism. In the primary and secondary education of Turkey, it is said that 

volcanoes of Turkey are all extinct. On the other hand, Global volcanism program 

indexes 13 volcanoes have had Holocene activities (Table 1.1). Some of these 

volcanoes have historical records. Thus there are some questions awaiting 

answer: Can we classify these volcanoes as extinct volcanoes? In a zone where 

tectonic regime is dominantly active, can the natural risk of the volcanoes be 

disregarded? Present study concerns with the structural investigation of Mt. 

Nemrut, one of the youngest volcanoes in Eastern Anatolia and will be focused on 

the natural risk possibly associated with the volcano. 
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Name Status Type Last known 
eruption Dating technique Eruptive 

characteristics
Kula Holocene Cinder cones Unknown

Karapınar 
Field Holocene Cinder cones Unknown

Mt. Hasan Anthropology Stratovolcano 6200 BC (in or 
before) Anthropology

Göllüdağ Holocene? Lava dome Unknown

Acıgöl-
Nevşehir Anthropology Caldera 2080 BC ± 200 

years Anthropology  Explosive 
eruption

Karacadağ Holocene Shield volcano Unknown

Mt. Erciyes Holocene? Stratovolcano 253 AD (in or 
before)

Eruption is 
UNCERTAIN

Flank (excentric) 
vent, Explosive 
eruption  (?)

Mt. Süphan Holocene Stratovolcano 8050 BC (?) Tephrochronology
Flank (excentric) 
vent, Explosive 
eruption  (?)

Girekol Holocene Unknown

Mt. Nemrut Historical Stratovolcano 1692 Apr 13 Eruption is 
UNCERTAIN

Explosive 
eruption  (?)

Mt. Tendürek Historical Shield volcano 1855 Historical Records Explosive 
eruption

Mt. Ağrı 
(Ararat) Historical Stratovolcano 1840 Jul 2 Historical Records

Explosive 
eruption, 
Mudflow(s) 
(lahars)...

Kars Plateau Holocene? Volcanic field Unknown  
Table 1.1. Young volcanism in Turkey. Data from Global Volcanism Program (GVP: Simkin and 

Siebert, 2002-). Locations of these volcanoes can be found on Figure 1.2. 
 

1.1. Tectonics and Volcanism in Anatolia 

Complete demise of the Paleotethyan Ocean initiated the continental rifting in the 

present-day Mediterranean region in the Late Triassic and resulted in the opening 

of a Mesozoic Neotethyan Ocean (Şengör and Yılmaz, 1981). This rifting ceased 

during the Middle Jurassic with the development of a passive margin through the 

south of Cyprus (Garfunkel, 1988) while complex processes of terrain accretion 

and new continental crustal build-up started to the north (Şengör and Yılmaz, 

1981; Şengör and Natal’in, 1996). Convergence between African and Eurasian 

plates, which began in the Late Cretaceous (Şengör and Yılmaz, 1981) resulted in 

the progressive closure of these ocean basins and amalgamation of the 

surrounding continental fragments (Bozkurt, 2001).  
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These relative plate motions resulted in the closure of the northern branch of 

Neotethyan Ocean and suturing in Anatolia during Paleogene and Early Miocene 

(Şengör and Yılmaz, 1981). Northward subduction of the African plate along 

Cyprean arc begun during the Early Miocene and during the middle Miocene, 

Arabia was separated from Africa along the left-lateral Dead Sea fault zone (e.g. 

Le Pichon and Gaulier, 1988; Fig. 1.1). Accompanying relative motion between 

Arabian and Eurasian plates formed Bitlis suture zone (Yürür and Chorowicz, 

1998). 

 

 
Figure 1.1. Simplified tectonic map of Turkey showing major neotectonic structures and 

neotectonic provinces (after Şengör et al., 1985; Barka, 1992; Bozkurt, 2001). NAFZ – 
North Anatolian Fault Zone, EAFZ – East Anatolian Fault Zone, DSFZ – Dead Sea Fault 
Zone, NEAFZ – Northeast Anatolian Fault Zone. Data for fault and plate slip rates  
indicated in boxes are from (1) Şengör and Yılmaz, 1981; (2) Straub and Kahle, 1995; (3) 
Reilinger et al., 1997; (4) Barka and Reilinger, 1997; (5) Westaway, 1994; (6) Barka, 1992; 
(7) Oral et al., 1995; (8) Reilinger et al., 2006. Datum: WGS84. 

 

Later tectonic regime totally differs from the previous history of Anatolia. African-

Arabian-Eurasian collision resulted in the formation of four neotectonic structural 

features in Anatolia: North Anatolian Fault Zone (NAFZ), East Anatolian Fault 

Zone (EAFZ), Northeast Anatolian fault (NEAFZ) zone and Bitlis suture zone (Fig. 

1.1; McKenzie, 1970, 1972; Dewey and Şengör, 1979; McKenzie and Yılmaz, 

1991; Bozkurt, 2001) dividing Anatolia into four main neotectonic provinces 

namely Western Anatolian extensional province, Central Anatolian “Ova” (plain) 
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province, North Anatolian province and East Anatolian contractional province 

(Şengör et al., 1985; Bozkurt, 2001).  

The Anatolian plate is clearly “escaping” westward (Fig. 1.1) into the western 

Mediterranean oceanic tract, where its motion relative to Africa, is taken up by 

subduction at the Aegean Trench (Dewey and Şengör, 1979). Neotectonic 

movement of Anatolian plate has been observed by many researchers (e.g. Straub 

and Kahle, 1995; Reilinger et al., 1997; Barka and Reilinger, 1997; McClusky et 

al., 2000; Reilinger et al., 2006) and simply shown in Figure 1.1. The GPS-derived 

velocities for the interaction zone of the Arabian, African (Nubian, Somalian), and 

Eurasian plates indicates counterclockwise rotation of a broad area of the Earth’s 

surface including the Arabian plate, adjacent parts of the Zagros and central Iran, 

Turkey, and the Aegean/Peloponnesus relative to Eurasia at rates in the range of 

20-30 mm/yr (Reilinger et al., 2006). This relatively rapid motion occurs within the 

framework of the slow-moving (~5 mm/yr relative motions) Eurasian, Nubian, and 

Somalian plates (Reilinger et al., 2006). 

Within the frame of neotectonics of Anatolia, volcanism played an important role. 

Volcanics cover an area more than 250,000 km2 which constitutes approximately 

¼ of the total area of Turkey (Fig. 1.2). Volcanism in Northern Turkey is 

represented by older series. Quaternary and Neogene volcanism appears widely 

in the western, central and eastern Turkey. In western Anatolia, volcanic activity 

began during the Late Oligocene – Early Miocene compressional regime, 

represented by a widespread suite of andesitic and dacitic calc-alkaline rocks. 

Then the change from N-S compression to N-S stretching in the Middle Miocene 

was accompanied by a gradual transition to alkali basaltic volcanism (Yılmaz, 

1990). In the Eastern Anatolia, volcanic activity began in the Late Miocene to 

Pliocene and continued into historical times. There is still a lack of knowledge 

about the Eastern Anatolian volcanism.  
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Figure 1.2. Layout of volcanic rocks in Turkey. Data from: MTA, 1964; Aydar, 1992; Pawlewicz et 

al., 1997. Percentages refer the area covered by the related color in the map relative to the 
area of Turkey. AV: Ağrı volcano, AcV: Acıgöl caldera complex, EV: Erciyes volcano, GiV: 
Girekol volcano, GöV: Göllüdağ complex, HaV: Hasan volcano, KaV: Karacadağ volcano, 
KPT: Kars plateau tuffs, KpV: Karapınar field, KuV: Kula volcanics, NV: Nemrut volcano, 
SV: Süphan volcano, TV: Tendürek volcano. Datum: WGS84.  

 

Widely-known volcanoes of Eastern Anatolia are Ağrı, Süphan, Tendürek and 

Nemrut volcanoes. As well, they are not the only ones; Eastern Anatolia hosts a lot 

of volcanoes which are almost unknown (Fig. 1.3). Although there is some 

research on the eastern Anatolian volcanism, they represent a general approach 

in the context of petrology, geology and regional tectonics. Yet, there is limited 

research on the most well-known volcanoes in the region. 

Eastern Anatolia is an area of special interest from the point of view of global 

tectonics (Innocenti et al., 1976) and the tectonic regime is certainly in close 

relation with the volcanism. Movement of Arabian plate (15 – 25 mm/yr:  Reilinger 

et al., 1997; Barka and Reilinger, 1997; Oral et al., 1995; McClusky et al., 2000; 

Reilinger et al., 2006) relative to the Eurasian plate (Fig. 1.1) is fronted in the 

Caucasian belt forming the thrust zone. Relaxation of the Anatolian plate is 

accompanied by counter-clockwise rotation of the Anatolia in its western part with 

the help of NAFZ. On the contrary, although there is a general agreement for the 
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initiation and evaluation of the compressional regime in the eastern Anatolia, there 

are different approaches on the consequences of the compression and on the 

nature of dynamics of the Eastern Anatolian crust (Şengör and Kidd, 1979; Yılmaz, 

1990; McClusky et al., 2000; Bozkurt, 2001; Koçyiğit et al., 2001; Şengör et al., 

2003; Dhont and Chorowicz, 2005; Angus et al., 2006; Facenna et al., 2006; 

Reilinger et al., 2006). 

 
Figure 1.3. Main volcanic centers in the eastern Anatolia. AV: Ağrı volcano, AçV: Akça volcano, 

AkV: Akdoğan caldera, BV: Bilican volcano, BiV: Bingöl caldera, BoV: Bozdağ caldera, ÇV: 
Çıplak (Topdağı) volcano, GV: Gel volcano, GiV: Girekol volcano, HV: Hayal volcano, KV: 
Kandil volcano, KaV: Karacadağ volcano, KPV: Kargıpazarı volcanoes, KPT: Kars Plateau 
tuffs, MV: Meydan caldera, NV: Nemrut caldera, SV: Süphan volcano, TV: Tendürek 
volcano, YV: Yıllık volcano, ZV: Zor volcano. Colors of the volcanic rocks are as in Figure 
1.2. 

 

Eastern Anatolian tectonics may be discussed in terms of three main structural 

elements (Figs. 1.3 and 1.4; Koçyiğit et al., 2001; Bozkurt, 2001; Dhont and 

Chorowicz, 2005), these are; (1) NW-SE and NE-SW trending dextral and sinistral 

active strike-slip faults, (2) N-S, NNW-SSE and NNE-SSW trending/elongated 

fissures and/or Plio-Quaternary volcanoes (Fig. 1.4), and (3) undeformed basins 

related to strike-slip and/or trust faults which are filled with Plio-Quaternary 

volcano-sedimentary sequences (Fig. 1.3).  
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Figure 1.4. Simplified geological map showing major compressional and extensional structures 

(from Koçyiğit et al., 2001). Locations: BY. Bayburt, E. Erzurum, Er. Erevan, K. Kağızman, 
and Sp. Spitak; Volcanoes: AE. Allahuekber volcano, AG. Alagöz volcano, AK. Akbabadağ 
volcano, ALD. Aladağlar volcano, Ar. Ağrı volcano, AS. line of Aboul–Samsar volcanoes, 
AZ. Azizan volcano, BD. Böğütlüdağ volcano, Ç. Çatak volcano and fissure, GR. Girekol 
volcano, GU. line of Guegam volcanoes, J. line of Javakheti volcanoes, KP. line of 
Kargapazarı volcanoes, KRD. Karacadağ volcano, N. Nemrut volcano and fissure, S. 
Süphan volcano, and V. line of Vardinis volcanoes; AAB. Basins: Aktaş-Akhalkalaki basin, 
AB. Ağrı basin, ARB. Ardahan basin, ASB. Ahaltsikhe basin, BYB. Bayburt basin, HB. 
Horasan basin, HKB. Hasankale basin, KB. Karasu basin, KÇB. Karaçoban basin, KLB. 
Kelkit basin, KTB. Kağızman–Tuzluca basin, MB. Muş basin, and TB. Tercan basin; Fault 
zones: AÇFZ. Akdağ–Çayırlı fault zone, BF. Başkale fault, BGF. Balıkgölü fault, BKF. 
Borjomi–Kasbeg fault, ÇF. Çaldıran fault, ÇDS. Çobandede fault segment, ÇFZ. 
Çobandede fault zone, DF. Doğubeyazıt fault, DFZ. Dumlu fault zone, EF. Ercis¸ fault, 
EFZ. Erevan fault zone, ESFZ. East Samegrelo fault zone, HF. Horasan fault, HTF. 
Hasantimur Lake fault, IF. Iğdır fault, KBF. Kavakbaşı fault, KÇFZ. Kelkit–Çoruh fault zone, 
KGF. Kağızman fault, KLS. Kelkit fault segment, KRF. Karçal reverse fault, KS. Kura fault 
segment, LDF. Leninakan–Digor fault, MF. Malazgirt fault, MTGC. Master thrust of Great 
Caucasus, NATF. North Adjara–Trialetian thrust fault zone, PS. Posof fault segment, 
PSFZ. Pambak–Seven fault zone, SATFZ. South Adjara–Trialetian fault zone, SF. Süphan 
fault, SMF. Salmas fault, TAFZ. Tercan–Aşkale fault zone, TF. Tutak fault, WSF. West 
Samegrelo fault, and YFZ. Yüksekova fault zone. 

 

Two systems of strike-slip faults occur in the east Anatolian Plateau: (a) NW-SE-

trending dextral strike-slip faults paralleling the North Anatolian Fault Zone (NAFZ, 

Figs. 1.1 and 1.4) with the same sense of motion; (b) NE-SW trending sinistral 

strike-slip faults paralleling the East Anatolian Fault Zone (EAFZ) with the same 

sense of motion (Koçyiğit et al., 2001; Bozkurt, 2001). These two fault systems are 

same in age (Late Pliocene) and they are connected with stress field linked to the 
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N-S directed intra-continental convergence between the Eurasian and Arabian 

plates (Koçyiğit et al., 2001). Numerous strike-slip basins occur in the east 

Anatolian plateau (Fig. 1.4). They can be categorized, based on their age and 

type, into two groups: (1) Oligo-Miocene inverted basins or superimposed basins, 

and (2) newly formed pure strike-slip basins resulted from the geometric 

discontinuities including step-overs, bends and bifurcations along through going 

fault segments (Koçyiğit et al., 2001). 

The third group of structures characterizing the east Anatolian plateau is the 

fissures, alignment of volcanic cones (Koçyiğit et al., 2001). Elongated volcanic 

edifices or craters and clusters of aligned vents are rooted on tension fractures 

and extensional features that are related to the step-over and horsetail geometries 

of the strike-slip faults (Adıyaman, 1998). Fissures or local extensional normal 

faults are well exposed at the summits of large isolated-to-composite strato-

volcanoes of Plio-Quaternary age (Koçyiğit et al., 2001). 

Koçyiğit et al. (2001), notes these fissures as isolated and NNW-SSW-trending 

single crack, or a zone of cracks ranging from 30 m to 2 km in width and 400 m to 

50 km in length. Dhont and Chorowicz (2005), defines a mean value of N05ºE-

trending fissures and extensions on the eastern Anatolian volcanoes (Fig. 1.5). On 

the other hand, different trends of the extensional features on the large edifices 

such as Mount Ağrı, Mount Aragat, Mt. Süphan are evident. Structure of eastern 

Anatolian volcanoes must be studied in detail for a more comprehensive approach 

in the context of plate dynamics. 

The N-S-directed compressional-contractional tectonic regime and related 

structures (folds, thrust-to-reverse faults and ramp basins) are prominent in the 

north (Great Caucasus and the Transcaucasus), while the compressional-

extensional tectonic regime related structures (both the sinistral and dextral strike-

slip faults, various strike-slip basins and N-S trending fissures) become prominent 

in the south (the Lesser Caucasus and east Anatolian plateau, Figure 1.4; Koçyiğit 

et al., 2001). Tectonic evolution of east Anatolian plateau is schematically 

synthesized in Figure 1.5. 
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Figure 1.5. Schematic illustration of tectonic evolution of eastern Anatolia (Data from: Şengör and 

Kidd, 1979; Koçyiğit, 2001; Bozkurt, 2001, *Dhont and Chrowicz, 2006). Lines in figures: 
strike-slip faults, line with triangles: thrusting, red ellipse: elongation of volcanoes and 
volcanic fissures, black arrows: compression, white arrows: extension. 

 

1.2. Nemrut Caldera 

Plio-Quaternary volcanism played an important role in the present morphology of 

Eastern Anatolia. Mount Nemrut, situated to the western tip of Lake Van is one of 

the main volcanic centers in the region (Fig. 1.6), with a spectacular summit 

caldera 8.5 x 7 km in diameter (Fig. 1.7, Aydar et al., 2003; Ulusoy et al., 2008). 

Within 100 km radius, there are seven other volcanoes; these are, Süphan, 

Bilican, Akdoğan, Bingöl, Çıplak, Bozdağ and Meydan volcanoes (Fig. 1.6). 



 23

 
Figure 1.6. Map showing the study area and the volcanoes around the study area. Datum: 

European 1950 (UTM). 
 
Nemrut caldera is situated just north of Bitlis-Zagros suture zone, close to the Bitlis 

edge (Figs. 1.1, 1.4 and 1.6). The Bitlis Suture is a complex continent-continent 

and continent-ocean collisional boundary that lies north of fold-and-thrust belt of 

the Arabian platform and extends from southeastern Turkey to the Zagros 

Mountains in Iran (Şengör and Yılmaz, 1981; Bozkurt, 2001 and references 

therein). Bitlis suture closed in the Eocene. This closure was then followed by 

prolonged convergence that involved distributed shortening all over the place, and 

then the strike-slip fault zones (NAFZ and MOFZ) came into being at <5 Ma, then 

the geometry changed at <3 Ma when the EAFZ developed (Bozkurt, 2001). 

Muş basin with 10-18 km width and ~92 km length is the most important structural 

feature at the western side of the volcano. It corresponds to the deformed and 

dissected remnant of the WNW-ESE-trending Oligo-Miocene Muş-Van basin 
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located at the northern foot of the Bitlis suture zone (Koçyiğit et al., 2001). 

Although the Muş basin seems to still retain its earlier nature of ramp basin, its 

northern margin-bounding reverse fault has a considerable dextral strike-slip 

component, implying an inversion in the nature of tectonic regime in the Pliocene 

(Koçyiğit et al., 2001). On the other hand, Dhont and Chorowics (2006) define this 

basin as a half-ramp basin and indicate the northern boundary fault as a 

transtensional dextral oblique-slip fault. 

Lake Van, by its volume of 576 km3 is the fourth largest terminal lake and the 

largest soda lake on Earth (Landmann et al., 1996). The surface area amounts to 

3522 km2; its maximum depth reaches 460 m (Landmann et al., 1996). The water 

of the Lake is highly alkaline, with a pH of 9.8, and brackish with a salinity of 22 ‰ 

(Landmann and Kempe, 2005). Although the faults forming the Muş basin are 

WNW-ESE-trending, structural features in the Lake Van seem to be mainly 

directed in ENE-WSW and NNW-SSE (Fig. 1.6). Both this slight reversal in the 

structural alignments and location of Nemrut volcano at the center of this reversal 

is important in the context of regional tectonics. 

Close to the Nemrut Caldera, İncekaya tuff cone, and Mazik and Girekol domes 

(Fig. 1.7) may be regarded as in the system of Nemrut volcanism. Nemrut volcano 

is in the vicinity of Bitlis city and closest populated towns are Tatvan, Ahlat and 

Güroymak towns (Fig. 1.7 and Table 1.2). Kirkor domes to the south and 

Nemrutbaşı cone to the north of the caldera are important parasitic volcanic 

features around the volcano (Fig. 1.7). There are five intra-caldera lakes. Three 

small lakes are seasonal, while western half of the caldera is filled by a fresh 

water. Near the northern rim, another lake with hot springs (~60º) is present where 

fumarolic activity can also be observed. 
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Figure 1.7. Study area, main roads, populated places, and important hydrogeologic, topographic 

and volcanic features in the study area. Datum: European 1950 (UTM). 
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1.3. Previous studies 

Previous research on Nemrut volcano can not be disregarded amongst other 

poorly studied east Anatolian volcanoes. Latest research on east Anatolian 

volcanoes mainly focused on this volcano. Özpeker (1973a) studied petrogenesis 

of the volcano and presented a large scale geologic map. Güner (1984) presents a 

study for a general geological/volcanological approach on the Nemrut caldera. 

Research of Atasoy et al. (1988) is one of the extensive works carried out on the 

volcano focusing mainly geothermal energy potential of the volcano, also deals 

with volcanology and petrology of the volcano. Ünlü and Can (1983) also 

discussed the geothermal energy potential of the volcano. Bal (1986) presented 

the results of a magnetic etude aiming to investigate the geothermal potential of 

the volcano. Yılmaz et al. (1998) presents a general geological and petrologic 

state of the volcano together with other well-known volcanoes of eastern Turkey. 

More recently, research was focused on the petrology of Nemrut volcano (Özdemir 

et al., 2006, Çubukçu et al., 2007); lately Çubukçu (2008) presented a detailed and 

extensive research on the context of petrography and petrology. Karaoğlu et al. 

(2005), deals with the caldera forming eruptions and their stratigraphy. On the 

other hand, there is no research on the structure, structural evolution, and 

potential activity of the volcano. Natural risk of this potentially active volcano was 

also never studied before. Ersoy et al. (2006), proposed a qualitative method for 

qualitative textural discrimination of volcanic ashes, and applied the method to 

phreato-magmatic ash samples from Nemrut caldera. Although they are limited, 

there are also historical and mythological bibliography and researches (Şerefhan, 

1597; Karakhanian et al., 2002, 2006; Gadjimuradov and Schmoeckel, 2005) that 

should be mentioned. Historical inscriptions and myths are complied and shortly 

summarized in Appendix A. 

Results of this study were previously presented in (and submitted to) international 

peer reviewed journals and international conference proceedings (articles:  Aydar 

et al., 2003 (Appendix B); Ulusoy et al., 2008; Ulusoy et al., submitted; 

proceedings: Ulusoy et al., 2006a, 2006b, 2007). 
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1.4. Structural Approach and Natural Risk of the Nemrut Caldera 

Nemrut volcano is located on a highly active tectonic zone: high magnitude 

seismic events have been reported (29.03.1907, M: 5; 27.01.1913, M: 5; 

14.02.1915, M: 6; 03.11.1997, M: 5; 30.05.1881 (data from Boğaziçi University, 

Kandilli Observatory and Earthquake Research Institute, National center of 

earthquake monitoring.); 18.05.1881, M: 6.7 (Karakhanian et al., 2002) within a 30 

km radius of the volcano during the last century (Ulusoy et al., 2008). One of the 

most active tectonic zones in the world; Karlıova triple junction (Fig. 1.6) is located 

125 km NW of the volcano, and Bitlis suture zone (Fig. 1.7) is 16 km south of the 

volcano. Structural evolution of the volcano in this active tectonic regime, its 

relation with the volcanic evolution and its role in the past and potential future 

activity forms one of the main aims of this study. 

Latest works documented that Nemrut volcano witnessed volcanic activity in the 

last millennium (Aydar et al., 2003; Ulusoy et al., 2008; Karakhanian et al., 2002; 

2006). Wisps of smoke and hot springs can be found inside the caldera, hot 

springs also appear around the Mazik and Girekol domes at the eastern flank of 

the volcano. The present active tectonic regime, historical eruptions, occurrence of 

mantle-derived magmatic gases (Nagao et al., 1989; Güleç et al., 2002), the 

fumarole and hydrothermal activities on the volcano make Nemrut Volcano a real 

danger for its vicinity (Aydar et al., 2002; Ulusoy, et al., 2006b). The population in 

the vicinity of the volcano (~135,000), especially in the nearby towns is 

significantly important (Table 1.2 and Fig. 1.7). Besides, Bitlis city grows to the 

north, towards the volcano. Nagao et al. (1998), and Feraud and Özkocak (1993), 

previously pointed out that Nemrut volcano may be potentially active. As well as 

other Anatolian volcanoes, there is a big gap on the research on the activity of 

Nemrut volcano. Second aim of this work is to identify the previous and the current 

activity of the volcano and their structural relationships. 
1990 2000 2007

Total City Village Total City Village Total City Village
BİTLİS 
City center  68 132  38 130  30 002  65 169  44 923  20 246
Tatvan  81 992  54 071  27 921  84 276  66 748  17 528
Güroymak  37 030  16 613  20 417  48 118  22 521  25 597
Ahlat  34 217  16 742  17 475  52 814  34 787  18 027
Total  330 115  144 029  186 086  388 678  219 511  169 167 327 886  179 260  148 626  
Table 1.2. Demographical data from 1990, 2000 and 2007 consensus for the vicinity of the 

Nemrut volcano (Data from Turkish Statistical Institute). 
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1.4.1. Methodology 

Wide variety of methodological approaches was used to introduce the structural 

evolution of the volcano and the associated natural risk. A comprehensive 

literature study was carried out before and during the study. Needful data found in 

the literature studies were complied and necessary data were digitized to reinforce 

the study. 

Available useful digital data (such as SRTM elevation data, Landsat ETM+ 

imagery, GIS data, Seismic data, and others) provided for free use in the World 

Wide Web were collected, adopted and integrated to the database of this study. 

Earth Science Data Interface of Global Land Cover Facility, USGS open file 

reports and Boğaziçi University, Kandilli Observatory and Earthquake Research 

Institute, National center of earthquake monitoring are some of these databases. 

Geological, volcanological and geophysical field studies constitute an integral part 

of this study. To reveal the volcanological and volcano-structural evolution, 

geological field surveys were focused on the structural context. General 

stratigraphy of the volcanic rocks and particularly caldera forming eruptions and 

their products were studied in detail. 

Geophysical surveys constitute one of the fundamental parts of this study. Self-

potential surveys were applied, not only to reveal the current hydrothermal activity 

of the volcano, but also to reveal the hydrothermal fluid circulation and its relation 

with the internal structure of the caldera. Research on hydrothermal condition of 

the caldera was supported by remote sensing approaches. Both diurnal imagery 

and night-time TIR imagery were used to analyze the hydrothermal background 

and status of the volcano. 

Monitoring of the volcano was essential to constitute a general idea about the 

current activity state of the volcano and to make a quantitative approach on the 

natural risk potential of the volcano. For the first time, a seismological study was 

carried out on a volcano in Turkey. A small seismological network was installed 

around the caldera to monitor the volcano-seismic activity. Various problems were 

faced during the data transfer, maintenance, and analysis processes; these 

problems also gathered knowledge and experience in construction and 

maintenance of such systems. Additionally, for the monitoring purpose, four 

thermo-data-loggers have been recently installed on the volcano. 
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When necessary, computer codes were written to support, fasten, automate and 

facilitate the data processing and handling. Three codes were written to for 

analyzing and handling the seismic network. Another code (Ulusoy et al., 

submitted) using a new method was written for the image based retrieval of 

altitude and aspect effects on night time TIR imagery. 

All the produced data were processed in computer environment and appended in 

the GIS environment. Extensive GIS database constructed for Nemrut volcano 

significantly aided and fastened the study and will facilitate future research on the 

volcano. 
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Virtual view of Nemrut volcano, before caldera collapse 
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2. Geology, Caldera forming eruptions 
Beyond the geophysical, morphological and structural studies, in order to 

comprehend the evolution of the Nemrut volcano, a detailed geological study was 

carried out. This section discusses the Quaternary Nemrut volcanism under two 

subheadings as pre-caldera and post-caldera volcanism. With a special emphasis, 

pyroclastic stratigraphy and characteristics of pyroclastic deposits are discussed in 

detail for a better understanding of the formation stage of the caldera. Other then 

the Quaternary Nemrut volcanism, pre-volcanic basement is summarized shortly. 

Recent activity will be summarized at the end of the chapter. 

Geological Map 
During the study, a detailed geological map of the volcano has been elaborated 

(Fig. 2.1). Geological rock names were defined according to the extensive 

petrological work of Çubukçu (2008). We benefited from geological maps of Güner 

(1984) and Atasoy et al. (1988), especially at the northernmost section of our map 

area, but our map offers major additions and changes to previous maps. It should 

be appropriate to discuss these changes here, because important errors have 

been pointed out on previous maps. 

Former geological maps of the volcano were presented by Özpeker (1973a), 

Güner (1984) and Atasoy et al. (1988). These maps were followed by maps of 

Yılmaz et al. (1998) and Karaoğlu et al. (2005) with no major changes. Contrarily, 

they followed the same mistakes. Aydar et al. (2003) presented a modified version 

of Yılmaz et al. (1998)’s map. Özdemir et al (2006) used the same map with 

Karaoğlu et al. (2005). 

In all of these maps, there is a major discrepancy on the layout and the type of the 

pyroclastic units. Özpeker (1973a) mapped a pyroclastic unit encircling the 

topographic rim of the volcano, and combines this unit with the products of intra-

caldera maar eruptions cresting the eastern caldera wall. He defined one 

ignimbrite unit on the flanks of the caldera. Yılmaz et al. (1998) presented the 

same map with Güner (1984). Güner (1984) was the first who mapped two 

different caldera forming ignimbrite series. Atasoy et al. (1988) also mapped these 

two ignimbrite series; they updated the boundary between the two ignimbrites 

mostly at northern and northwestern flanks of the volcano. But in their map, they 

did not completely separate these two series; they named the former as 
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“Crystalline welded tuff + pumice” and the latter as “Crystalline welded tuff”. 

However, in their report, Atasoy et al. (1988) clearly indicated that they identified 

two different ignimbrite flows. Karaoğlu et al. (2005) surprisingly removed the 

second ignimbrite series, disregarded previous definitions and related the collapse 

of the caldera with only one ignimbrite series. Additionally, they used 

approximately the same boundaries for the upper ignimbrite series defined by 

Güner (1984) and Atasoy et al. (1988), but changed the unit to “plinian fall 

deposits”. In our fieldwork, we defined two ignimbrite series leaded to the collapse 

of the caldera and mapped them carefully (Fig. 2.1, Nemrut ignimbrites and 

Kantaşı ignimbrites). For the first time, we defined and mapped two other 

ignimbrite units older than the products of caldera forming eruptions (Fig. 2.1, Tuğ 

ignimbrite and Yasintepe ignimbrite). 

The second discrepancy initiated with the map of Güner (1984) and followed by 

Karaoğlu et al. (2005) without acknowledging his work. At the northern flank of the 

caldera and around the rift zone, Güner (1984) defined many lava flows and 

named them as “scoria flows”. According to us, this was a considerably 

fundamental error. In the maps of Güner (1984), Yılmaz et al. (1998) and Karaoğlu 

et al. (2005), these “scoria flows” are originated from the ridge forming the Nemrut 

rift zone between Kantaşı hill (Fig. 2.1) and northern rim of caldera and flowed 

along eastern and western side of this ridge up to ~4 km distance. We particularly 

want to indicate that there are no “scoria flows” in this area. Whole area is covered 

with the Kantaşı ignimbrites. Latest activity of Nemrut volcano generated along the 

rift zone, and few comenditic and basalt flows originated from the rift flowed to east 

and western side of the rift. Boundaries of these few lava flows are very clear and 

the flows extended to a maximum distance of about 1.5 km. They are lying upon 

the Kantaşı ignimbrites. In the close vicinity of the rift zone there are ballistic ejecta 

and there are dispersed basalts of aa-like lava flows, but these vesicular basalts 

are limited and the dispersion is not dense. These materials and highly welded 

Kantaşı ignimbrite were most probably confused with “scoria flows” and caused 

the error in the maps of Güner (1984), Yılmaz et al. (1998) and Karaoğlu et al. 

(2005). This error was corrected totally in Atasoy et al. (1988) and partially in 

Aydar et al. (2003). 

The third major error was introduced to the literature with the maps of Karaoğlu et 

al. (2005) and Özdemir et al. (2006). They define monzonitic intrusions exposed in 
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topographic lows within the caldera. Çubukçu et al. (2006) discussed this error in 

detail. They have neither given any petrographical/mineralogical description nor 

geochemical analysis of this unit (Çubukçu et al., 2006). In addition, the area 

mapped (~0.4 km2) as monzonite is within intra-caldera maars whose post-caldera 

products contain abundant holocrystalline fragments (Çubukçu et al., 2006). These 

intra-caldera maars are among the centers of post-caldera 

phreatic/phreatomagmatic activities (Çubukçu et al., 2006). Their basements are 

filled with post-eruption deposits while their walls are subjected to intense 

hydrothermal alteration (Çubukçu et al., 2006). This error was checked again in 

our later fieldworks and no monzonitic bodies and rocks defined in Karaoğlu et al. 

(2005) and Özdemir et al (2006) were observed. 

We introduced a map purified from these errors and removing the discrepancy on 

the definition of pyroclastic units. 

2.1. Pre-volcanic basement 

Pre-volcanic basement rocks can be divided into three main groups as Bitlis 

metamorphics, Çatak ophiolites, and Tertiary sediments (Ahlat formation). The 

stratigraphy of the basement rocks in the Nemrut area is fairly well known 

(Gunderson, 1988). However, the basement rocks have been structurally 

disrupted several times since the Mesozoic (Gunderson, 1988). In the vicinity of 

Nemrut, all of the pre-volcanic basement rocks are cut by the faults which 

separate Muş basin from Bitlis metamorphics on the south and from Tertiary 

sedimentary rocks on the north (Gunderson, 1988). 
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2.1.1. Bitlis Metamorphics 

The oldest crustal rocks underlying Nemrut are the Precambrian to Mesozoic Bitlis 

Metamorphics (Güner, 1984; Gunderson, 1988). They cropped out along the steep 

mountains at the southern margin of Muş basin (Atasoy et al., 1988), ~15 km 

south of the Nemrut (Fig. 2.1). The Bitlis Massif forms a part of the Tethyan suture 

zone that was assembled during Late Mesozoic – Early Cenozoic time (Yılmaz et 

al., 1993; Robertson, 1998). It is a regional-scale allochthonous unit with a high-

grade metamorphic basement and a lower-grade cover sequence (Göncüoğlu and 

Turhan, 1984; Ustaömer et al., in press). These metamorphics consist of 

metapelites, metabasites, amphibolite-biotite gneisses, chlorite-schists, calc-

schists, meta-quartzites and recrystalized marbles (Gunderson, 1988; Atasoy et 

al., 1988). Small granitic plutons and associated granitic dykes intrude the pre-

Devonian basement of the Bitlis Massif (Ustaömer et al., in press). The thickness 

of the units is unknown but presumed to be more than a few kilometers. Historic 

Urartian stronghold near Tatvan pier was built on recrystalized limestones of Bitlis 

Metamorphics (Fig. 2.1). 

2.1.2. Çatak Ophiolites 

Commonly thrust on top of the Bitlis Metamorphics are Cretaceous ophiolitic rocks 

(Gunderson, 1988; Atasoy et al., 1988), these rocks are usually thrust from north 

to south, and were emplaced during Eocene and Miocene compressional events 

(Gunderson, 1988). Çatak ophiolites typically include serpentines, greenstones, 

cherts, micrites, limestones, and greywackes (Gunderson, 1988). These rocks are 

cropped out east of Ahlat town, out of our study area. Tertiary sediments are 

overlain by volcanic products of Nemrut along Yolgözler, Yünören, Sikeftan, Bahçe 

and Atakır villages, though it is not possible to observe ophiolites. North to the 

Nemrut volcano, they are probably overlain by volcanic products (Atasoy et al., 

1988). 

2.1.3. Tertiary Sediments (Ahlat formation) 

Tertiary sedimentary rocks overlie Cretaceous ophiolitic rocks unconformably 

(Gunderson, 1988). The sedimentary rocks were deposited in small, usually E-W-

trending elongated basins that were opened between the Eocene and Miocene 

(Gunderson, 1988). The sedimentary sequences typically include sandstones, 
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mudstones, carbonates, lacustrine and coarse-grained fluvial deposits 

(Gunderson, 1988). Tertiary sedimentary rocks outcrop to the west and northwest 

of Nemrut volcano and at the east of the Ahlat Town. Ahlat formation is 

represented by Eocene and Oligocene conglomerates and sandstones, Miocene 

limestones, and Pliocene lacustrine deposits (Güner, 1984; Gunderson, 1988; 

Atasoy et al., 1988). 

2.2. Volcanism in the vicinity of Mt. Nemrut 

In the near vicinity of the Nemrut volcano, there are four main volcanic centers: 

Süphan volcano, Bilican volcano, Kolango dome, and İncekaya Tuff Cone. A short 

note on these volcanoes is essential to define the structural state of the region and 

the relationship between the products of these volcanoes and Nemrut volcano. 

İncekaya Tuff cone is thought to be activated during the pre-caldera activity of 

Nemrut volcano. Our remarks on the İncekaya volcanism will be discussed below 

(see section 2.2.3). 

2.2.1. Süphan Volcano 

Süphan volcano is situated 60 km northeast of Mt. Nemrut and 15 km north of 

Lake Van (Fig. 1.6). It is the second highest mountain of Turkey with an elevation 

of 4158 m. It culminates on the well known (e.g. Dhont and Chorowicz, 2006) NE-

SW directed sinistral Süphan fault. Quaternary volcanism (Notsu et al., 1995) of 

Mt. Süphan is compositionally defined as mildly sub-alkaline (Yılmaz et al. 1998). 

In the study area, ignimbrite units of Süphan volcano outcrops around Ahlat town 

commonly in the valleys (Fig. 2.1). In the Ahlat town, the historic caves (Fig. 2.1) 

were built into these ignimbrites (Fig. 2.2a). The ignimbrite unit is consolidated, 

beige in color, bears white pumices and the thickness of the unit reaches 13 m. 

Another unit of Süphan ignimbrites appears closer to the Lake Van; it is reddish 

burgundy in color and it bears coarse prismatic quartz crystals in pumices. This 

unit is overlain by lacustrine sediments. Pyroclastics of Süphan volcano outcrops 

at the northeastern side of the Karnıç stream which is bounding Lake Nazik to 

Lake Van. Both ignimbrite units of Süphan volcano are covered by the fall-back 

units of Nemrut ignimbrite series. Near the historic ruins (Fig. 2.1) in the Ahlat 

town, the thickness of these fall-back units reaches up to ~17 m (Fig. 2.2b). 
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Figure 2.2. Pyroclastic outcrops in the Ahlat town. a) Historic caves in the upper ignimbrite unit of 

Süphan volcano. b) Fall-back units of Nemrut ignimbrites overlying Süphan ignimbrites.  

 

2.2.2. Bilican volcano and Kolango dome 

Bilican volcano lies 38 km north of Mt. Nemrut (Fig. 1.6); highest peak of the 

edifice is 2754 m. Other than the morpho-structural definition made by Adıyaman 

et al. (1998), the information about Bilican is limited. Calc-alkaline Bilican volcano 

is a volcanic edifice rooted on a tension fracture (Adıyaman et al., 1998). The 

tension fracture has about 12 km length and at the largest point, its width is about 

3 km (Fig. 1.6). At north of the edifice, there are five adjacent cones forming a 

linear cluster trending N12ºE (Adıyaman et al., 1998). Several small volcanic 

cones are found near the Bilican volcano (Adıyaman et al., 1998). To the east, 

they form two linear clusters parallel to the main one. To the west, cones are not 

adjacent to each other but they are still aligned in the same direction. To the south, 

no linear cluster can be identified but some of the edifices are elongated 

approximately in the N–S direction (Adıyaman et al., 1998). 

Kolango dome is situated 26 km north of Nemrut volcano and 10 km SSW of 

Bilican volcano at the western shore of Nazik Lake (Fig. 2.1). There is a lack of 

data about this volcano; the Kolango dome could be included to the Bilican 

system. Its summit culminates at 2321 m. A NW-SE-trending lineament passing 

through the summit of the dome is evident on the satellite images. Moreover, there 

is also a WNW-ESE-trending rift zone along the ridge westbound of Kolango 

dome. Pınardüzü hills (Fig. 2.1) form the northern ridge of the rift zone which is 

about 6 km long and reaches to ~800 m width. The WNW-ESE-trending rift zone is 

noteworthy. The volcanism in the eastern Turkey is often said to be rooted on N-S-
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trending fracture/fault systems, but there are many exceptions to this assumption 

(including Mt. Ağrı, Mt. Süphan, Mt. Girekol, and Mt. Aragat in Armenia). 

2.2.3. İncekaya Tuff Cone 

İncekaya Tuff Cone is located on the southwestern shore of Lake Van, 25 km SE 

of Nemrut volcano; it rises 387 m from the Lake level (Figs. 2.1 and 2.3). Bitlis 

Metamorfics constitute its basement (Fig. 2.1). Özpeker (1973a), and Güner 

(1984) defined the İncekaya system as a caldera but, both its morphology and 

products clearly depict that İncekaya is a tuff cone.  There is a relatively small 

maar (İncekaya maar) forming the NE end of the tuff cone at Zin cape (Figs. 2.1 

and 2.3). South to the Cone there are six scoria cones and four of them are 

aligned along an inferred fault (Fig. 2.1). Largest of these cones is situated near 

Dibekli village and named Dibekli cone. Originating from southern side of the 

Dibekli dome, a basaltic lava flow is lying (Fig. 2.1). 

 

 
Figure 2.3. Panoramic photograph of inner view of İncekaya Tuff Cone and İncekaya maar at the 

left side. 
 
Surge units of the cone are mainly basaltic in composition (Güner, 1984) and have 

black, gray and greenish colors. Consolidated accretionary lapilli rich levels, 

coarse quartz and schist xenoliths belonging to the metamorphic basement are 

evident in the surge units (Figs. 2.4a, b). Products of the tuff cone, that flown over 

Lake Van are observed 14 km NNE of the cone, on the İnce cape (Figs. 2.1 and 

2.4c). On the hills across the Lake Van that are facing the eastern flanks of 

İncekaya Tuff Cone, plaques of surge units flown away up to 10 km across the 

lake, were also observed. 
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Figure 2.4. Products of İncekaya Tuff Cone. a) Quartz and b) schist xenoliths in the surge units. c) 

Fine-grained units of İncekaya Tuff Cone observed on İnce cape, north of Lake Van. 
 

2.3. Geological evolution of Nemrut volcano 

Nemrut volcano started its activity ~1 Ma ago and continued until historical times 

(Ulusoy et al., 2008; Çubukçu, 2008). Mt. Nemrut exhibits a spectacular summit 

caldera with dimensions of 8.5 × 7 km. The summit of the caldera rim, Sivri hill, is 

on the north side and is 2935 m high; the highest point within the caldera is Göl hill 

(2486 m) located in the eastern part (Figs. 2.1 and 2.28). The western half is filled 

by a freshwater lake (Nemrut Lake, Fig. 2.1) with a surface area of 12.36 km2, and 

a smaller lake with hot springs. The altitude of the lake surface is 2247 m. The 

eastern half of the caldera is filled by pyroclastic deposits of maars, lava domes 

and flows (Ulusoy et al., 2008). 

Since the introductory study of Özpeker (1973a), detailed studies of volcanological 

evolution of Nemrut caldera were a matter of debate (Çubukçu, 2008). Most of the 

previous researchers described various evolutionary stages for the volcano 

without evident structural phase changes or petrological differences. Atasoy et al. 
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(1988) divided volcanic evolution of the Nemrut volcano into four stages namely, 

pre-cone, cone-building, caldera-forming and post-caldera stages. Yılmaz et al. 

(1989) proposed pre-cone, cone-building, climactic, post-caldera and late phases. 

However, Yılmaz et al. (1989) also propose the same evolutionary template for 

other volcanoes of eastern Anatolia (Süphan, Ağrı and Tendürek) which are 

located on a complex tectonic system and present different petrological 

characters. Karaoğlu et al. (2005) and Özdemir et al (2006) proposed three 

evolutionary stages: pre-caldera, post-caldera and late stages. Furthermore, the 

criteria for such discrimination (i.e. separating the late stage from the post-caldera 

stage) were unclear, ambiguous and volcanological point of view is lacking (c.f. 

Çubukçu et al., 2007; Çubukçu, 2008). Aydar et al. (2003) and Çubukçu (2008) 

suggested two main evolutionary stages intervened by the paroxysmal eruptions 

leading to the caldera collapse: pre-caldera and post-caldera stages. Moreover, 

Çubukçu (2008) detailed this volcano-structural discrimination according to the 

petrological evolution of the volcano. Evolutionary stages of the volcano will be 

proposed as pre-caldera and post-caldera here (Table 2.1, Fig. 2.5), and the 

volcano-stratigraphy will be built upon the detailed petrological description of 

Çubukçu (2008). Evolution of the volcano is also presented as video, produced by 

modifications of DEM and evolutionary representation of the Geological map of the 

volcano (e-Appendix-1). 
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Stage Sub-stage ID Eruption dates Product Event Method (source)
a1 13.April.1692 ? Eruption of gas and ash Historical (1)
a2 1597 AD Comendite, Basalt Lava fountains and flows Historical (2,3)
a3 1441 AD Comendite, Basalt Lava fountains and flows Historical (1)
a4 657 ± 24 BC Ash Ash eruption varve (4)
a5 787 ± 25 BC Ash Ash eruption varve (4)
a6 4055 ± 60 BC Ash Ash eruption varve (4)
a7 4938 ± 69 BC Ash Ash eruption varve (4)
a8 5242 ± 72 BC Ash Ash eruption varve (4)
a9 7 ± 4 ka (*) Mugearite Lava flow K/Ar (11)
a10 8 ± 3 ka Ash (Comenditic) Phreatic Eruption K/Ar (11)
a11 <10 ka Rhyolite Lava flow K/Ar (7)
a12 9950 ± 141 BC Ash Ash eruption varve (5)
a13 10042 ± 142 BC Ash Ash eruption varve (5)
a14 10111 ± 143 BC Ash Ash eruption varve (5)
a15 10305 ± 145 BC Ash Ash eruption varve (5)
a16 10330 ± 145 BC Ash Ash eruption varve (5)
a17 10356 ± 146 BC Ash Ash eruption varve (5)
a18 11010 ± 166 BC Ash Ash eruption varve (5)
a19 15 ± 1 ka Comendite Lava flow K/Ar (11)
a20 15 - 19 ka Comendite Lava flow K/Ar (6)
a21 <20 ka Comendite Lava flow K/Ar (7)
a22 24 ± 1 ka Comendite Lava flow K/Ar (7)
a23 <30 ka Comendite Lava flow K/Ar (9)

a24 80 ± 20 ka Olivine basalt Lava flow K/Ar (7)
a25 89 ± 2 ka Comenditic Trachyte Lava flow K/Ar (11)
a26 93 ± 3 ka Comenditic Trachyte Lava flow K/Ar (11)
a27 99 ± 3 ka Pantellerite Lava flow K/Ar (11)
a28 100 ± 50 ka Mugearite Lava flow K/Ar (7)
a29 158 ± 4 ka Comendite Lava flow K/Ar (11)
a30 242 ± 15 ka Comendite Lava flow K/Ar (6)
a31 263 ± 6 ka Comenditic Trachyte Lava flow K/Ar (11)
a32 272 ka Ignimbrites (?) Ash flow K/Ar (6)
a33 310 ± 100 ka Comendite Lava flow isotope (10)
a34 333 ± 41 ka Comenditic Trachyte Lava flow K/Ar (6)
a35 384 ± 23 ka Pantelleritic Trachyte Lava flow K/Ar (6)
a36 567 ± 23 ka Comendite Lava flow K/Ar (6)
a37 <700 ka Comenditic Trachyte Lava flow K/Ar (8)
a38 1.01 ± 0.04Ma Trachyte Lava flow K/Ar (6)

VII.          
Intra-caldera 

Phreatic/ 
Phreatomag. 

eruptions, 
Lava flows 
and domes

P
R
E
 
C
A
L
D
E
R
A

V. Caldera forming eruptions: Nemrut and Kantaşı ignimbrite series

I.            
Lava flows

II.           
Lava flows

III. Peripheral 
Doming and 
Lava flows

IV.          
Lava flows

VI.          
Intra-caldera 
Lava flows

P
O
S
T
 
C
A
L
D
E
R
A

VIII.         
Rift activity 
(bimodal)

 
Table 2.1. Historical and older eruptions of the Nemrut volcano. Data source: 1: Karakhanian et al. 

(2002); 2: Şerefhan (1597); 3: Aydar et al. (2003); 4: Landmann (1996); 5: Landmann et al. 
(1996) corrected according to Landmann and Kempe (2005); 6: Atasoy et al. (1988); 7: 
Notsu et al. (1995); 8: Pearce et al. (1990); 9: Ercan et al. (1990); 10: Yılmaz et al. (1998); 
11: Çubukçu (2008); (*) indicates the suspicious (Çubukçu, 2008) analysis of Mugearite. 
Geochemical descriptions of lava flows are taken from Çubukçu (2008). Known locations of 
dated samples are indicated in Figure 2.5 with reference IDs given in this table (a1-a38). 
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Figure 2.5. Stratigraphical evolution of Nemrut Volcano. Roman numerals in the legend reference 

the sub-stages given in Table 2.1. Quotations made in white boxes are the known locations 
of dated samples given in Table 2.1. Geological representation was superimposed on 
Swiss style hillshade of DEM. Projection: UTM, European Datum 1950. 
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2.3.1. Pre-caldera activity 

Pre-caldera stage of Nemrut volcanism extends from 1.0 Ma to 80 ka. This 

construction period can be divided into five sub-stages (Table 2.1, Fig. 2.5: I, II, III, 

IV, V); two initial sub-stages (I, II) are represented by lava flows and in the third 

one (III) peripheral doming is associated with lava flows. Lava flows dominated the 

forth sub-stage (IV), and the final stage (V) corresponds to the pyroclastic activity 

which lead to the formation of caldera. 

Pre-caldera products of Nemrut volcanism, prior to the caldera forming eruptions, 

are dominantly composed of silica oversaturated trachytes and rhyolites (Çubukçu, 

2008). Nevertheless, there are scarce outcrops of basaltic trachyandesites 

(mugearites) and metaluminous trachytes (Çubukçu, 2008). 

It has been suggested that the oldest volcanic products of Nemrut volcanism were 

fissure basalts (e.g. Özpeker, 1973a; Güner, 1984; Atasoy et al., 1988; Karaoğlu 

et al., 2005; Özdemir et al., 2006) located in Bitlis Valley, ~45 kilometers south of 

the Nemrut volcano (Çubukçu, 2008). On the contrary Ercan et al. (1990) 

proposed a fissural basaltic origin different than Nemrut for these lava flows. Two 

different ages were obtained from these basalts: <2.5 Ma (Ercan et al. (1990) and 

0.79 Ma (Atasoy et al., 1988). Both Çubukçu (2008) and Ercan et al. (1990) 

suggested that these relatively older Bitlis valley basalts should not be included 

into the Nemrut volcanic system. These flows most probably belong to an earlier 

different system. 

Sub-stage I (~1.0 Ma – 500 ka) 
Nemrut volcanism has been initiated with lava flows represented by metaluminous 

felsic rocks exposed on the southeastern flanks of the volcano, and continued 

with, the oldest known peralkaline silicic (Çubukçu, 2008) lavas represented by the 

samples of Atasoy et al. (1998) and Pearce et al. (1990) taken from the western 

caldera wall. Lower contacts of these lava flows were not observed in our field 

studies; consequently this age signifies the lowest limit of temporal space of 

Nemrut volcanic history (Çubukçu, 2008). These lava flows are about 300 m 

above the western base of the main cone, it would be viable to state that the 

volcanism has initiated prior to this activity. 
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Sub-stage II (500 – 300 ka) 
During sub-stages II and III, volcanic activity seems to be intensified and the 

central cone was formed (Çubukçu, 2008). The lava flows of the second sub-stage 

exhibit stratigraphical, thus temporal evolution from trachytic to rhyolitic 

compositions (Çubukçu, 2008). 

Sub-stage III (300 – 200 ka) 
The third sub-stage continued to produce rhyolitic and trachytic lava flows. 

However, peripheral doming marked the third sub-stage, forming Kirkor domes, 

Yumurtadağ, Fakı, Kalekirana hills and Kale Hills (Figs. 2.1 and 2.6a, b) at the 

southern flank and Mazik and Girekol domes at the lower western flank of the 

volcano (Fig. 2.1 and 2.7). The geochemical data and dating are lacking, but 

stratigraphically domes forming Kayalı, Tavşan and Arizin hills at the northern side 

of the volcano belong to the same sub-stage. All of these domes are partially 

covered by the later pyroclastic units. 

Kirkor domes (Fig. 2.6a) culminates at 2478 m (western peak) and 2442 m 

(eastern peak). Domes are comenditic in composition (Çubukçu, 2008) and dated 

at 242 ± 15 ka (Atasoy et al. 1988) Lavas originating from Kirkor complex have 

flowed 3 km to the southwest (Figs. 2.1, 2.5 and 2.6a) and formed steep plateaus 

of ~ 30 m height. 

Kale Hills west of the Çekmece village and Kalekirana hill (Figs. 2.1 and 2.6b) are 

comenditic in composition. These domes are aligned on a fault and as it will be 

discussed later, the same fault probably separates the caldera into two blocks. 

Mazik and Girekol domes are at the western flank of the volcano and southeastern 

end of Muş basin (Figs. 1.6, 1.7, 2.1 and 2.7). Mazik dome is a trachytic lava 

dome, covered with ignimbrites, that culminates at 1680 m, rising 370 m from Muş 

basin. 
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Figure 2.6. Peripheral domes at the southern flank of Nemrut volcano. a) Kirkor domes and associated lava flows (Comenditic Trachytes) as viewed from 

south, b) Aligned Kale Hills and Kalekirana hill (from east). 



 46

 
Figure 2.7. Mazik and Girekol domes at east of Nemrut volcano. Landsat image (6:3:1) 

superimposed on DEM. Projection: UTM, European Datum 1950. 
 

The most striking feature of the Mazik dome is the NE-SW-trending breach related 

to the two faults on the top of the dome. Together with the concentric faults at 

southern flank of the dome (Figs. 2.1 and 2.7), it resembles an interrupted 

tumescence of a rigid body. Girekol dome is smaller, its total height is 200 m, and 

it culminates at 1480 m. A lava flow originates from comenditic Girekol dome 

(Figs. 2.1 and 2.7), and at the northern side, there are (at least) two hot springs 

(Fig. 2.7). 

Atasoy et al. (1988) stratigraphically places the İncekaya volcanism concurrent 

with the post-caldera volcanism of Mt. Nemrut. On the contrary by petrological 

means, Çubukçu (2008) suggest that İncekaya volcanism is generated in the third 

evolutionary sub-stage, during the pre-caldera period. Although there are no dated 

samples representing İncekaya volcanism, fine-grained base-surge deposits 

observed at İnce cape north of Lake Van are overlain by caldera forming Nemrut 

Ignimbrites. Consequently, İncekaya volcanism was most probably generated prior 

to the collapse of the caldera. 
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Sub-stage IV (200 – circa 80 ka) 
Initial period of this stage is represented by lava flows of basaltic and mugearitic 

composition. One of these flows can be observed on Kerkorumıksi hill (Figs. 2.1 

and 2.28). The other one crops out through Kale hills to Benekli village at south 

(Fig. 2.1 and 2.28). This flow observed as small outcrops covered with ignimbrites 

(Fig. 2.8a). Later period generated pantellerite, comenditic trachyte and comendite 

type lava flows. First group of these flows occur at elevations higher than ~2100 m 

(Figs. 2.1 and 2.5) and gave the final shape to the pre-caldera volcanic edifice. A 

comendite flow, which is observed to change direction after bumping onto 

Kelakirana and Kerkorumıksi domes, is older than 158 ± 4 ka (i.e. Çubukçu, 2008). 

Çubukçu (2008) concluded that the timing of peripheral doming, in at least the 

well-exposed southern area, could be confined to ages older than 160 ka. The 

second group of the fourth sub-stage lava flows is distributed on the lower flanks 

at the periphery of the edifice, they are observed near the peripheral lava domes 

at north of the caldera and on the shoreline of Lake Van (Figs. 2.1 and 2.5). 

 

 
Figure 2.8. Mugearite outcrops covered with ignimbrites at southeast of Kale hills. 
 

Tuğ and Yasintepe ignimbrites 
There are at least two pyroclastic activities within the third and probably fourth 

sub-stages. Although these pyroclastic units are covered by the products of later 

activities, they were observed in the drill holes of UNOCAL and TPAO (Atasoy et 

al., 1988 and references therein) and alternate with lava flows of third and fourth 

sub-stages.  

In our field studies, we evidenced two ignimbrite units that are differing from 

caldera forming ignimbrite series; they were not mentioned in previous studies. 

The first ignimbrite unit was observed south of Tatvan town (Fig. 2.1) at about 17 
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km distance from the caldera. Ignimbrite unit outcrops along the E-W directed 

valley between Dalda village and Tuğ district, close to Tuğ district and named after 

it. Tuğ ignimbrite unit is white-yellow in color and bears white pumice fragments up 

to 3-4 cm. The ignimbrite is often overlain by resedimented layers and lacustrine 

sediments, or at some locations, by plinian units. These ignimbrite deposits are 

subjected to intense weathering. On the northern flank of the valley, Nemrut 

ignimbrites uncomformably overlie the Tuğ ignimbrites. 

The second ignimbrite unit is observed at Yasin hill west of Ahlat town. Yasin hill is 

at 6.5 km north of Taşharman village, and 17 km NE of Nemrut caldera (Figs. 2.1 

and 2.9a). This unit is named after this location as Yasintepe ignimbrite. Large 

pumices (Fig. 2.9a; mean of 5 max. pumice sizes: 14.9 cm) and white color of the 

unit (Fig. 2.9b) are the most distinctive characteristics of the Yasintepe ignimbrite. 

The ignimbrite outcrops along Yasin hill, southwestern and northeastern side of 

the exposure is covered with later Nemrut ignimbrites. Other ignimbrite units do 

not bear coarse pumices as Yasintepe ignimbrite at a distance of 17 km from the 

caldera. For the origin of Yasintepe ignimbrite, possibility of a source different than 

Nemrut volcano should not be disregarded. 

 

 
Figure 2.9. a) Outcrop of Yasintepe ignimbrite at Yasin hill, b) Sample ignimbrite blocks mined for 

commercial purposes. Color changes in Nemrut ignimbrite from black to reddish brown. 
Yasintepe ignimbrite displays white color, differently from all other ignimbrite units in the 
vicinity of Nemrut volcano. 
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2.3.2. Caldera forming eruptions (Sub-stage V) 

Products of eruptive activity that caused the collapse of the caldera were studied 

in detail. At 63 locations, stratigraphic sections of the pyroclastic units were 

measured. Location map of these sections is given in Figure 2.10. At all these 

locations, physical features of pyroclastics were investigated, thickness of the 

units, maximum size of lithics and pumices were measured. To create a color 

distribution map, ignimbrite units were photographed at all locations. Because of 

the large size of the data, detailed stratigraphic sections with descriptions and 

photographs were provided in electronic appendix-2. All the stratigraphic sections 

were correlated; these correlations are presented in Figure 2.11 (a stratigraphical 

accordance was chosen to present the correlations).  
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Figure 2.10. Location map of stratigraphic sections. Pyroclastic IDs (PID) point the stratigraphic 

section locations. Detailed stratigraphic sections are presented in e-appendix-2 with same 
PIDs. Projection: UTM, European Datum 1950. 
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Figure 2.11. a) Correlation of stratigraphic sections. Locations of the sections are provided in Figure 2.10 with Pyroclastic IDs (PID). Letters in yellow boxes 

indicate the correlation in the next figures. 
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Figure 2.11. b) Correlation of stratigraphic sections (continued). Locations of the sections are provided in Figure 2.10 with Pyroclastic IDs (PID). 



 53 

 

 
Figure 2.11. c) Correlation of stratigraphic sections (continued). Locations of the sections are provided in Figure 2.10 with Pyroclastic IDs (PID). 
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Figure 2.11. d) Correlation of stratigraphic sections (continued). Locations of the sections are provided in Figure 2.10 with Pyroclastic IDs (PID). 



 55 

 
Figure 2.11. e) Correlation of stratigraphic sections (continued). Locations of the sections are provided in Figure 2.10 with Pyroclastic IDs (PID). 
 



 56 

 
Figure 2.11. f) Correlation of stratigraphic sections (continued). Locations of the sections are provided in Figure 2.10 with Pyroclastic IDs (PID). 
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Generalized pyroclastic section of pyroclastic products is presented in Figure 2.12. 

Two different ignimbrite series related to the formation of the caldera were 

identified: Nemrut ignimbrites and Kantaşı ignimbrites. 

Older eruptions 
Emplacements of plinian units older than Nemrut and Kantaşı ignimbrites were 

observed (Figs. 2.11 and 2.12). These units are separated from Nemrut 

ignimbrites by reworked layers. Four older fall-back units were discriminated (Figs. 

2.11 and 2.12: XFB1-4). These units are composed of pumice-rich material and 

there are many quarries working on these units. XFB1 is observed on Aktepe hill, 

at north of Sarıkum village (Fig. 2.12: PID: 14). Outcrops of XFB2, XFB3 and 

XFB4 (Fig. 2.12) are distributed over an area between Tatvan town and Saka 

village southeast of Ahlat town. Between XFB1 and XFB2, we observed a 

reworked layer (Fig. 2.12); XFB2 and XFB3 were emplaced with no time gap, and 

XFB4 overlies these units again over a resedimented layer (Figs. 2.12 and 2.13). 

This second reworked layer is thinner (few tens of centimeters) when compared to 

the first one. Pumice sizes in XFB2 are homogeneous, whereas they are 

heterogeneous and larger in XFB3 (Fig. 2.13, Table 2.2). The contact between 

these levels is gradational and these two levels must be regarded as one unit that 

represent a change in the eruption intensity rather than two different units. XFB4 is 

rich in lithics when compared to XFB2 and XFB4. Rapid change in pumice size in 

XFB2 and XFB3, reworked layers and lithics in XFB4 are key features to 

differentiate these fall-back units. 

Pumice and ash sample from a valley north of Fakı hill (Fig. 2.5: a32) was dated at 

272 ka (Table 2.1), and is considered to be related to Nemrut ignimbrites (Atasoy 

et al., 1988). However, we observed that Nemrut ignimbrites overlie lava flows that 

were dated between 89 ka to 263 ka (Table 2.1), and could not be older than 89 

ka (e.g. Çubukçu, 2008). Sample dated by Atasoy et al. (1988) probably 

represents XFB units. In hence, XFB units are not related to caldera forming 

eruptions, they were emplaced in sub-stage IV and sub-stage V. 
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Figure 2.12. Generalized stratigraphic sections of pyroclastic units. 
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Figure 2.13. Photographs of fall-back units older than caldera forming eruptions (XFB2, XFB3 and 

XFB4) and reworked levels (Rw) a) at a quarry north of Sarıkum village (PID: 14) and b) at 
a quarry on Yumurta hill located east Sarıkum bay (PID: 15). 

 

PID XFB1 XFB2 XFB3 XFB4 XFB1 XFB2 XFB3 XFB4
3 5.9 74 63
5 5.6 270
7 66

12 385
14 8.9 12.2 24.4 10 800 150 374 176
15 24.8 129 960
18 4.5 5.1 57 160
20 3.7
29 11.8 400
38 898 109
48 300
56 4.8 7.7 60 64
58 5.5 11.1 6.4 386 366 150

Total 800 796 3281 1520
Mean 800 159.2 410.1 190

~Volume 
(km3)

5 1.2

Average of 5 max. Pumice size (cm) Thickness (cm)

3.5
 

Table 2.2. Average of maximum 5 largest pumice sizes, thicknesses and volume estimations of 
XFB units. For locations, refer to PID values in Figure 2.10. 
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No ignimbrites related to those fall-back units were observed, but Yasintepe 

ignimbrite or Tuğ ignimbrite may be related to these eruptive phases. Mean 

thicknesses of XFB units are given in Table 2.2. Using these thicknesses, we 

made a rough calculation of the volume of these pyroclastics (Table 2.2). An 

approximate area (620 km2) considering the distribution of the XFB units was used 

in the calculation. 

Nemrut Ignimbrite Series 
Nemrut ignimbrites have the largest outspread amongst the other products of the 

Nemrut volcano. Karaoğlu et al. (2005) also used the nomenclature “Nemrut 

ignimbrite”, but the stratigraphic and physical description they introduced is totally 

different from the one that will be presented here. Moreover, they did not identified 

Kantaşı ignimbrites. 

In the study area (Fig. 2.1), Nemrut ignimbrites cover an area of 1089 km2. 

Moreover, fall-back units extend through NE and the pyroclastics in Lake Van 

must not be disregarded. 

Nemrut ignimbrite series are composed of three plinian units (Fig. 2.12: NeFB1, 

NeFB2 and NeFB3) and an ignimbrite unit (Fig. 2.12: NeIg). It is possible to 

observe these plinian units occur almost all around the volcano.  

Products of caldera forming eruptions begin with felsic fallout tephra that has 

formed during the initial plinian phase (Çubukçu, 2008). NeFB1 is the lowermost 

plinian unit of the series and overlies older fall-back units with a hiatus that is 

represented by a reworked layer (Fig. 2.14a). NeFB1 is a grey, yellowish colored 

pumice fall-back unit (Fig. 2.14a). When compared to other units of the Nemrut 

series NeFB1 is the least observed unit. Outcrops of this unit occur between 

Kıyıdüzü village and southeastern flank of the volcano (Fig. 2.10); extension of the 

unit is limited within this area. 
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Figure 2.14. Photographs of pyroclastics of Nemrut ignimbrite series (Rw: reworked levels): a) at a 

quarry east of Fakı hill (PID: 38), b) reverse to normal graded NeFB2 (Nemrut fall-back) 
unit and overlying Nemrut ignimbrite (NeIg) near Kıyıdüzü village (PID: 56), c) NeFB2 unit 
at southwest of Nemrut volcano, near Kirkor domes and d) thick NeFB2 unit and overlying 
Nemrut ignimbrite at north of Kıyıdüzü village. 

 

NeFB2 and NeFB3 are the key units in the series. NeFB2 is a pumice fall-back 

unit, generally white, grayish and yellowish in color. Typically from the bottom of 

the unit to the top, NeFB2 has well-developed reverse to normal grading (Figs. 12 

and 2.14b). At some outcrops, top few decimeters are dominated by a reddish, 

brownish color. Sometimes it is possible to observe a thin brownish ash level 

between reverse graded and normal graded horizons (Figs. 2.11, 2.12 and 

2.14b,c). 
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Maximum pumice diameters (average of 5 largest pumices) and tephra thickness 

at 13 outcrops were measured for NeFB2 unit (Table 2.3). The maximum pumices 

at each outcrop occur generally in the upper horizons, presumably when maximum 

eruption intensity occurred. We were able to produce an isopleth map (Fig. 2.15) 

for NeFB2 deposit. Isopleths show that the eruption cloud was evolved towards 

Lake Van under the effect of prevailing wind which was directed E05ºS. On the 

other hand, at the present day, prevailing wind is directed SSW with a max velocity 

of 29.0 m/s (Fig. 2.15, black arrow; Table 2.4) towards Bitlis city. 

 

PID NeFB1 NeFB2 
bottom

NeFB2 
middle

NeFB2 
upper NeFB3a NeFB3b NeFB1_t NeFB2_t NeFB3_t

7 5.4 3 3 336 53
12 4.2 11 225
19 4.2 6.3 20.3 1120
20 7.4 1.7 2.6 8.3 104
21 7 7.5 504
24 0.063 0.063 0.063 600
25 4.6 137
34 6 1.8 7.2
35 23.7 1150 163
36 4.5 19.4
38 161 566 140
41 506 144
43 19.2 19.2 300
44 17.4
45 0.3 6.2 8.7 3.5 175 33
48 73 200
56 6.9 17.2 12 12 503
58 4.2 4.2 4.2 0.063 0.063 122

Average of 5 max. Pumice size (cm) Thickness (cm)

 
Table 2.3. Average of maximum 5 largest pumice sizes and thicknesses of NeFB units. For 

locations, refer to PID values in Figure 2.10. 
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Figure 2.15. Isopleths for NeFB2 unit, drawn using average 5 maximum pumice sizes measured at 

13 locations (yellow points). White numbers referencing the isopleths are in centimeters. 
White arrow points the probable prevailing wind direction in the time of eruption. Black 
arrow points the annual average of prevailing wind direction for the last 30 years. 
Projection: UTM, European Datum 1950. 

 

 

I II III IV V VI VII VIII IX X XI XII
Direction SSW SSW ESE SSW SSW S W WNW SW ENE WNW SW SSW

Velocity (m/s) 29.0 25.4 25.3 26.5 28.3 23.0 18.0 25.3 20.0 22.8 23.6 20.9 29.0

Annual 
Average

Months

 
Table 2.4. Direction and velocity of prevailing wind at maximum velocity (Average of 30 years). 

Data from Turkish State Meteorological Service. 
 

NeFB2 is overlain by another plinian unit: NeFB3 (Fig. 2.12). Although, outspread 

of NeFB3 is not as large as NeFB2, this unit is well observed especially at the 

eastern and southern flanks of the volcano and around the southeastern flatlands. 

The unit is generally thinner than NeFB2 and reaches up to 3 m (Table 2.3). 

NeFB3 is typical with a color change; lower horizon (NeFB3a) of the unit is yellow, 



 
 

64

whereas, the upper horizon is (NeFB3b) brown/black/reddish (Fig. 2.16). In 

addition to the intense color change in the unit, petrographical differences were 

also noted by Çubukçu (2008): White pumices of NeFB3a bear euhedral to 

subhedral alkali feldspar phenocrysts in a highly vesicular glass, microphenocrysts 

of clinopyroxene and olivine are very scarce. Opaque minerals are observed only 

as microlites. Moreover, NeFB3b is comprised of ternary feldspar, clinopyroxene 

and minute olivine. Clinopyroxenes are subhedral, whereas olivines are anhedral 

and display slight resorption. Groundmass is highly vesicular aphyric. 

 

 
Figure 2.16. Plinian and flow unit of Nemrut ignimbrite series near Simek bay northeast of Tatvan 

(PID: 20), and yellowish to black/brown color change in NeFB3 fall-back unit (NeIg: Nemrut 
ignimbrite, NeFB: Nemrut fall-back units). 

 

These two plinian phases are overlain by the main ignimbrite flow: Nemrut 

ignimbrite (Figs 2.12, 2.14 a,b,d and 16: NeIg), observed extensively in the region. 

At the eastern and northeastern flanks of the volcano, a ground surge level 

constitutes the lowermost section of the ignimbrite unit. With its largest 

outspreading (Figs. 2.1 and 2.10), Nemrut ignimbrite is the most voluminous 

product of the volcano. With some exceptions the flow unit is generally welded, 

well-welded and consolidated. Blocks of ignimbrite are used as raw material for 

construction purposes for thousands of years. Regionally, Nemrut ignimbrite 

constitutes the main construction material of Urartian, Seljukian, Armenian and 
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Ottoman architecture. This tradition continues today; especially Ahlat town and old 

Bitlis city are constructed totally by using Nemrut ignimbrite. Locally, the welded 

ignimbrite blocks mined from Nemrut ignimbrite are called “Ahlat stone”. In 

addition to the modern production processes, it is still possible to see the 

traditional production methods (Fig. 2.17). 

 

 
Figure 2.17. Traditional mining of ignimbrite blocks, near Yasin hill at west of Ahlat town. 

Photograph by Adem SÖNMEZ (Those who wrest a living from the stone), used with 
permission of photographer. 

 

Karaoğlu et al. (2005) defined two ignimbrite series and named them as “initial” 

and “main (Nemrut)” ignimbrites. They divided the initial ignimbrite into five 

different layers according to their degree of welding and physical features. They 

located these layers in the Bitlis valley, and somehow located a pumice flow 

deposit underlying this initial phase. They also defined a second ignimbrite series 

with an ignimbrite flow sequence composed of four different units/layers. On the 

contrary, it is essential to state that the ignimbrite unit in the Bitlis valley (“initial 

ignimbrite” in Karaoğlu et al., 2005) and the ignimbrite that outspread the plains 

around the volcano (“main ignimbrite” in Karaoğlu et al., 2005) are the same 

ignimbrite unit (Fig. 2.12: Nemrut ignimbrite, NeIg) and composed of only one flow 

unit. Güner (1984), Atasoy et al. (1988) and Yılmaz et al. (1998) also defined 

these units as one ignimbrite unit. There is no pumice or scoria flow units in the 
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vicinity of the volcano as described by Karaoğlu et al., (2005), there are no 

different layers/units indicating an interruption in the ignimbrite flow. 

Nemrut ignimbrite is single flow unit, and represents rheological changes. Change 

in the degree of welding, consolidation and in the form of the components is 

common in the unit because of local variations in emplacement properties (i.e. 

channeling in Bitlis valley). Progressive change in color is the most evident 

characteristic of the unit; the color of the unit changes from black / dark grey / dark 

brown to light brown / reddish / pale yellow from bottom towards the top of the unit 

(Fig. 2.18). In the basal black level, a grayish/greenish horizon is marked at the 

northern caldera wall and in the Bitlis valley (Fig. 2.18d).  

 

 
Figure 2.18. Progressive color change in Nemrut ignimbrite unit at outcrops a) near Tatvan town 

(PID: 23), b) near Serinbayır village (PID: 27), c and d) at a construction site north of Bitlis 
valley (PID: 51). 

 

This color change is gradual in all locations except for two places (Fig. 2.19a,d). 

Near Tapu district (Fig. 2.1) which is located at northeast of Tatvan town, a thin 

light brown/orange colored level in the basal black horizon is clear (Fig. 2.19a,b,c). 

Around this outcrop near Tapu district, the change in color between basal black 

and upper light brown horizons is sharp (Fig. 2.19a), but when perused in detail, 
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no interruption could be observed between the two horizons. On the other hand, in 

the area between Aşağıkolbaşı village southwest of Kirkor domes and Raz district 

southeast of Güroymak town (Fig. 2.1), the upper light brown level is well welded 

and consolidated while the lower black level is not consolidated. In this area, 

locally, these two levels appear as if they are two different units (Fig. 2.19d). 

 

 
Figure 2.19. Nemrut ignimbrite with black basal and light brown upper horizons: a) Outcrop near 

Tapu district (PID: 63), b,c) thin light brown level in this outcrop, and d) outcrop where 
upper level emplaced like a different unit on the black lower horizon (PID: 53). 
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In addition to the change from bottom through the top of the unit, color of the 

Nemrut ignimbrite also changes spatially. For a better visualization of the spatial 

color change, we used the photographs of the unit. Red (R), Green (G) and Blue 

(B) color values for upper and lower horizons were sampled with an average of 

5x5 pixels from the photographs of the unit at various locations. A table of R, G 

and B values was constituted for different locations; then these values were 

interpolated separately (i.e. R values to constitute a red band) using spatial 

locations of the samples. The final R, G and B bands were combined to compose 

two color change maps, one for the basal (Fig. 2.20) and the other for the upper 

(Fig. 2.21) levels of the Nemrut ignimbrite. 

Basal black colored level of the ignimbrite is absent on the northwestern flanks 

and on the eastern flatlands (Fig. 2.20). This absence can be explained either by 

the limited flow of basal black level through the N, NE, S, SW and W flanks of the 

volcano (Fig. 2.20: white arrows), or by the change of the color of basal level 

during the cooling of the unit on the eastern and northwestern parts. 

On the other hand, light brown color of the upper level is the dominant color of the 

ignimbrite with a large outspread (Fig. 2.21). At the northern section of the 

volcano, and in the Bitlis valley, color of the upper level slightly becomes dark 

brown and reddish (Fig. 2.21: 5, 6), where the ignimbrite is very well welded and 

consolidated (Fig. 2.22a). Fiammes are abundant in these well welded zones (Fig. 

2.22c). In Bitlis valley, NeIg typically exhibit columnar jointing (Fig. 2.22a). It is 

strongly welded with significant fiammes exhibiting eutaxitic texture (Çubukçu, 

2008). These collapsed and deformed juvenile pumice fragments are dark brown 

in color set in brown to black matrix composed of (fine) ash (Çubukçu, 2008). It 

comprises free juvenile crystals and lithic fragments. Lithic fragments belong to 

former volcanics and metamorphic basement. These metamorphic fragments (Fig. 

2.22b) reach up to 2-3 cm in size and interestingly look like euhedral alkali feldspar 

crystals at the first glance in hand specimens (Çubukçu, 2008). 
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Figure 2.20. Map of spatial color change of the lower level of Nemrut ignimbrite around the 

volcano. Red dots are the R, G, B sample locations. White dotted line draws the 
approximate limits of basal black colored level of the NeIg. Projection: UTM, European 
Datum 1950. 
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Figure 2.21. Map of spatial color change of the upper level of Nemrut ignimbrite around the 

volcano. Red dots are the R, G, B sample locations. Areas limited with white dotted line 
draw the approximate limits where upper light brown level is absent. Projection: UTM, 
European Datum 1950. 
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Figure 2.22. Different outcrops of Nemrut ignimbrite (NeIg): a) Columnary jointed NeIg in the Bitlis 

valley (PID: 50), b) Metamorphic lithics in the basal level of columnary jointed ignimbrites in 
the Bitlis valley (PID: 50), c) Fiammes in the well welded NeIg unit (PID: 49), d) Poorly 
welded, grey colored basal level of NeIg at southwest of Kirkor domes, e) Basal black 
colored level of NeIg where upper light brown level is absent (PID: 37). 
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Upper light brown level is absent at southwest of Kirkor dome (Fig. 2.21: 1 and 

Fig. 2.22d), at the southeastern flank of the volcano (Fig. 2.21: 2 and Fig. 2.22e) 

and partially absent at southeast of Serinbayır village (Fig. 2.21: 3). At northwest 

of the volcano, another darker colored area appeared (Fig. 2.21: 4), but we have 

no data for the color interpolation here. Locations at the SE and ENE of the 

volcano (Fig. 2.21: 2, 3) are the same locations where small scaled laharic flows 

occurred on 19.07.2007 due to sudden, heavy rain. The upper level of the NeIg 

unit was never emplaced to these areas, or the repeated laharic flows / floods 

have swept the upper part of the ignimbrites. 

NeIg is observed to cover nearly all former lava flows and domes. Particularly, 

during its flow, Kirkor Dome complex in the southwest; Mazik dome in the west, 

Yumurtatepe and Fakı domes in the southeast acted as obstacles, onto which 

Nemrut ignimbrite has bumped and changed its direction (Fig. 2.1; Çubukçu, 

2008). Flow unit bumping at the northern flanks of Kirkor domes has partially 

surmounted the domes, leaving material on the summit of the domes and on the 

lava flows originating from Kirkor domes. At the southeastern flatlands of Kirkor 

domes, the ignimbrite is extremely poorly welded (Fig. 2.22d). Only the basal black 

colored part of the NeIg (Fig. 2.22d) was deposited on the southeastern side of the 

Kirkor complex, upper light brown level is absent here (Fig. 2.21: 1). The bump 

probably caused the jump of the turbulent flow producing an enlarged turbulent 

cloud of ash rich material (Fig. 2.23b, c), which leads to relative cooling of the 

cresting material. Following light brown-reddish colored material were channeled 

on the eastern and western sides of the Kirkor domes (Fig. 2.23c, d), sweeping 

some of the remnant black basal part from the north of the domes. This latter light 

brown-reddish colored flow was deposited like a second, unrelated flow unit on top 

of the unconsolidated black colored deposits in the southwestern vicinity of Kirkor 

complex (Fig. 2.19d). This hypothesis may explain the poorly welded black colored 

deposits on the northeastern side of the Rahva plain (Figs. 2.22d and 2.23d) and 

separation of basal black colored and upper light brown-reddish colored levels of 

the NeIg (Fig. 2.19d) on the southwestern side of Kirkor domes. 
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Figure 2.23. Synthesized emplacement model of Nemrut ignimbrite at the southwestern sector 

(Note that pyroclastic flow at the eastern flank is not limited to one channel; figure was 
simplified for an improved visualization). a) 3D view of the area, b) black colored basal part 
bumps to the Kirkor barrier and forms a small turbulent cloud, c) light brown colored upper 
flow channels around Kirkor domes, d) Emplacement of upper, light brown horizon around 
flatlands except SW sector of the Kirkor complex. 

 

Thickness of the NeIg unit varies around the volcano (Table 2.5); ignimbrite unit is 

observed to reach its maximum thickness in the Bitlis valley where it channeled 

into. Run out distance of the ignimbrite was measured 17.5 km from the southern 

end of Rahva plain (Fig. 2.1) and ~35.5 km from the center of the caldera. The 

columnary jointing at the basal layer, high consolidation and welding is thought to 

be highly related with the emplacement thickness and consequently with the 

cooling rate of the unit in the valley. 

Pumice fragments in NeIg are various in colors between dark brown to whitish. 

Their sizes and distribution within the flow unit vary (Table 2.5; Çubukçu, 2008). 

Besides, the degree of welding depends on the location with respect to paleo-

topography and distance from the volcano (Çubukçu, 2008). Free crystals are 

omnipresent throughout the flow unit. However, the nature of lithic fragments 

depends on the relative levels in the unit (Çubukçu, 2008). As we have mentioned 

above, basal sections bear readily metamorphic fragments whereas their 

abundance diminishes upward and these metamorphic fragments become absent 

towards the top, replaced by trachytic and rhyolitic fragments (Çubukçu, 2008). 

Furthermore, abundant obsidian fragments are also observed in the upper 
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sections of the unit (Çubukçu, 2008). NeIg is trachytic in composition, mineral 

compositions and forms slightly differ from bottom to the top of the unit. Lower 

sections of the unit bear euhedral to subhedral alkali feldspar phenocrysts in a 

densely welded crystal and lithic rich fine ash matrix and abundant lithic fragments 

are composed of presumably pre-volcanic basement, namely micaschists and 

former volcanics (Çubukçu, 2008). Middle section is dominantly crystal rich with 

anhedral spongy cellular phenocrysts of ternary feldspar, subhedral 

clinopyroxenes and anhedral moderately resorbed olivines. Besides, lithic 

fragments of former volcanics are observed. Groundmass is composed of fine ash 

matrix (Çubukçu, 2008). Upper section is pumice rich with again anhedral spongy 

cellular ternary feldspars, subhedral clinopyroxene and slightly resorbed anhedral 

olivine with opaque reaction rims which represent the crystal assemblage. 

Groundmass is glassy with minor axiolitic devitrification (Çubukçu, 2008). 

 

PID 4 7 11 12 19 22 23 24 25 27

Lower black 
horizon 2.5 7 2.5

Upper yellow 
horizon 4 8.8

1170* 624 86 74 325 93 383* 140* 55 310

PID 29 34 37 38 41 43 44 45 47 49

Lower black 
horizon 2.6 11.3 7 16.6

Upper yellow 
horizon 2.6 1.6

260 92* 820* 163* 1130 320 189 103 800* 800*

PID 50 51 52 53 54 55 56 58 59 61

Lower black 
horizon 5.7 9.2

Upper yellow 
horizon

1020* 6500** 2620* 652* 170* 318 86 108 379 578*

Av. Max. 
Pumice 

sizes (cm)

Thickness (cm)

Av. Max. 
Pumice 

sizes (cm)

Thickness (cm)

Thickness (cm)

Av. Max. 
Pumice 

sizes (cm)

 
Table 2.5. Average of maximum 5 largest pumice sizes and thicknesses of NeIg unit. For locations, 

refer to PID values in Figure 2.10. (*) refers apparent thickness where upper and/or basal 
contact is not observed, (**) refers the thickness in a private drilling at the northern end of 
Bitlis valley. 
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Kantaşı Ignimbrite Series 
Kantaşı ignimbrite series represent the second eruptive phase of the caldera 

forming eruptions (Fig. 2.10). Outspreading of this second ignimbritic sequence is 

not large when compared to Nemrut ignimbrites and the area covered (~150 km2) 

is limited to the northern, northeastern, southeastern and partially western and 

eastern flanks of the volcano. These pyroclastic series are termed as Kantaşı 

ignimbrite series due to their best exposure at the northern sector of the volcano 

and on the Kantaşı hill (Fig. 2.1). No reworked unit representing a hiatus was 

observed between Nemrut and Kantaşı ignimbrite series. The contact between the 

two series can be observed especially on the northern caldera wall (Fig. 2.24a) 

and around Serinbayır village (Figs. 2.1 and 2.24b). 

Kantaşı ignimbrites are composed of three plinian units (KaFB1, KaFB2 and 

KaFB3, Figs. 2.12 and 2.24a) and Kantaşı ignimbrite unit (KaIg, Figs. 2.12 and 

2.24a). Only at the northern rim of the caldera (PID: 41), a relatively thin 

grayish/yellowish ignimbrite flow unit related to KaFB1 crops out in a limited area 

(Fig. 2.24a, red box). Plinian pumice deposits of Kantaşı series are best observed 

at the outcrops on the northern and northeastern flanks and rim of the caldera 

(Fig. 2.11). KaFB1 and KaFB2 are grayish, whitish colored pumice fall-back 

deposits. Average pumice sizes and thicknesses related to Kantaşı ignimbrite 

series are given in Table 2.6.  

Most widely observed plinian unit of Kantaşı series is KaFB3; the unit reaches to 

its maximum thickness at the southeastern flank of the volcano over an altitude of 

2200 m (Table 2.6, PID: 40, 42). On the northern caldera wall, proximal outcrop of 

KaFB3 overlain by Kantaşı ignimbrite unit (KaIg) is well exposed (Fig. 2.25). In the 

upper horizon of this yellowish pumice fall-back unit (KaFB3), a greenish colored 

vitrified zone (Fig. 2.25b,c) which is formed due to the emplacement of KaIg unit is 

evidenced. 
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Figure 2.24. Kantaşı and Nemrut ignimbrite series (Ne: Nemrut, Ka: Kantaşı, Ig: ignimbrite, FB: 

fall-back, L: last). a) Photograph from northern caldera wall, where all the deposits of 
caldera forming are well observed. Sivri hill is the highest point of the caldera rim (PID: 41). 
b) Photograph from west of Serinbayır village where Nemrut ignimbrites and kantaşı 
ignimbrites are observed together (PID: 26). Blocky outlook of the KaIg unit is because of 
columnary jointing. For the abbreviations, refer to Figure 2.12. 
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PID KaFB1 KaFB2 KaIg1 KaFB3 KaIg LFB KaFB1 KaFB2 KaIg1 KaFB3 KaIg LFB
2 58
5 17.8 74
6 416 80
7 8.9 110
8 6.5 61
9 9.4 250
11 7.6 130 58 583
13 2.5
16 3.2 0.9 98
17 260
19 1.4 200
26 164
29 40
30 540
33 12.0 1959
39 350
40 500
41 5.1 786 97 61 49.6 361
42 4.6 600 159 30
58 0.063 0.063 0.063 105 101
61 14.9

Average of 5 max. Pumice size (cm) Thickness (cm)

 
Table 2.6. Average of maximum 5 largest pumice sizes and thicknesses of Kantaşı ignimbrite 

series and LFB unit. For locations, refer to PID values in Figure 2.10. 
 

 
Figure 2.25. Plinian units and flow unit of Kantaşı ignimbrite series (Ka: Kantaşı, Ig: ignimbrite, FB: 

fall-back). a) Proximal deposits of Kantaşı ignimbrites (PID: 41). b) Closer view of the basal 
level of the ignimbrite and KaFB3. c) More closer view of the contact between KaIg and 
KaFB3 units. Note the vitrified upper level of plinian deposit. 
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Kantaşı ignimbrite unit (KaIg, Fig. 2.12) constitutes the final pyroclastic flow of the 

Kantaşı series. Ignimbrite unit is best exposed on the northern flank of the 

volcano; moreover outcrops of both NeIg and KaIg, and their stratigraphic 

relationships are also exposed on the northern and northeastern sectors (Fig. 

2.24). KaIg is burgundy, black and dark brown in color, and well welded (Fig. 

2.25a). On the proximal outcrops (i.e. on the caldera rim), basal level of the unit is 

marked with a lithic rich brecciated zone (Fig. 2.25). 

This zone is dominated with a pale reddish color, and average of 5 maximum 

lithics is 13.2 cm in this zone (PID: 41). At the basal level of KaIg, brown colored 

fiammes (flattening ratio: 3.6) are typical (Fig. 2.25b). It is also possible to observe 

greenish colored fiammes in the black / burgundy colored middle horizon of the 

unit (Fig. 2.26c). 

Thickest outcrop of the KaIg is measured (19.6 m) in the crack of Nemrut rift zone 

(PID: 33, Fig. 2.26b; Table 2.6). At the other locations, KaIg unit is generally 

thinner (Table 2.6). Thinner outcrops of KaIg unit are marked with a columnar 

jointing (i.e. Feraud and Özocak, 1993) with column diameters between 0.5 – 1.5 

m. These columnary formations are best exposed around the rift zone, on the 

Kantaşı hill (Fig. 2.26a) and at the northeastern flanks of the volcano (Fig. 2.24b). 

Çubukçu (2008) summarizes the petrographical properties of KaIg as follows: In 

poorly welded or partially welded counterparts, subordinate feldspar mineralization 

with fan shape or axiolitic texture is observed in the vesicles of nondeformed 

pumice. Hence, vapor phase crystallization, which involves the growth of fine-

grained minerals in pore space within non-welded pyroclastic flow deposits 

(McPhie et al., 1993), is thought to occur after emplacement. Subhedral to 

anhedral cellular alkali feldspar with plagioclase, euhedral clinopyroxene and 

scarce olivine represent the phenocryst assemblage set in a glass rich fine grained 

matrix. Lithic fragments consist of either cognate or former volcanic activities. 
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Figure 2.26. Kantaşı ignimbrite unit (KaIg) at north of Nemrut caldera. a) KaIg unit and young lava 

flows around Kantaşı hill at northern margin of Nemrut rift zone. Blocky outlook of the 
ignimbrite unit is because of columnary jointing. b) Thickest KaIg unit which is exposed in 
the crack of Nemrut rift zone. c) Fiamme in the KaIg near Kantaşı hill. 

 

A whitish colored plinian unit (LFB) is observed to overlie KaIg unit. Small outcrops 

of this unit were observed on the Sivri hill (Figs. 2.1 and 2.24a), on the 

northeastern flank and north of Çekmece village (Fig. 2.1). This unit constitutes the 

latest episode of the caldera forming eruptions. 

Volume of the caldera related pyroclastics and collapse of the caldera 
Using the thicknesses measured (Tables 2.3, 2.5 and 2.6) for Nemrut and Kantaşı 

ignimbrite series; we calculated the volume of the caldera forming pyroclastic 

deposits. Measured thicknesses of the pyroclastic deposits were interpolated to 

constitute thickness maps for ignimbrites and for tephra deposits, and the volume 

of the pyroclastics was then calculated. Volumes of Nemrut ignimbrite and Kantaşı 

ignimbrite are 32.6 km3 and 3.8 km3, respectively. When the ignimbrites emplaced 

under Lake Van are considered, a total volume over 36.4 km3 could be estimated 

for the caldera related ignimbrites. Volume of the fall-back tephra of Nemrut and 

Kantaşı ignimbrites are 32.8 km3 and 6.1 km3 respectively. With an assumption of 
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50% loss, dense rock equivalent total volume of plinian tephra is roughly 19.5 km3. 

Though, rough estimation for the total caldera related pyroclastic volume is 56 km3 

(36.4 km3 + 19.5 km3). 

During its construction, the volcano is thought to be reaching to an altitude of 4500 

m (Aydar et al., 2003). This elevation leads to a collapsed volume of 64.3 km3 

(including volume of Nemrut lake: 1.264 km3). 

Due to the large volume pyroclastic activity, excess lithostatic pressure on the 

emptied reservoir led to the collapse of the roof (Fig. 2.27). The exact timing of 

caldera collapse is unknown, but as we mentioned earlier, previous timing (272 ka) 

suggested by Atasoy et al., (1988) is questionable, while the caldera forming 

Nemrut ignimbrites overlie the lava flows dated 89 ka. The collapse of the caldera 

has possibly occurred between 80 to 30 ka ago (e.g. Çubukçu, 2008). 

 

 
Figure 2.27. Nemrut caldera from the northern rim. Photograph by Adem SÖNMEZ; used with 

permission of photographer. 
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2.3.3. Post-caldera activity 

Post caldera volcanic activity was generated in the caldera and on the northern rift 

zone. We present a small-scaled geological map focusing the caldera for better 

visualization (Fig. 2.28). Post caldera volcanism is divided into three sub-stages 

(Table 2.1: Sub-stage VI, VII, and VIII). Western half of the caldera is covered with 

a fresh water lake (Fig. 2.28: Nemrut lake), limiting observation of the post-caldera 

activity in only the eastern part of the caldera. There is also a hot lake at the foot of 

the northern caldera wall which is fed by hot sources (Fig. 2.28: Ilığ lake). 

Sub-stage VI (30 -12 ka) 
This period is represented by comenditic intra-caldera lava flows and domes 

(Table 2.1; Fig. 2.28). Planar flow banding is evident in these lava flows (Fig. 

2.29a); holohyaline, obsidian facies units, occurrence of vesicular pumiceous 

zones are common (Çubukçu, 2008). In addition, intra-caldera lavas bear 

benmoreitic enclaves (Fig. 2.29b; Çubukçu, 2008). Clues of local hydrothermal 

alteration is evident especially in the lava dome forming Göl hill (Figs. 2.28 and 

2.29c) and in the lavas encircling the elongated maar at south of Göl hill (Fig. 

2.28). Hydrothermal alteration is marked with a strong devitrification. Former 

obsidian flow is marked with relict, angular glasses, surrounded with a devitrified 

casing around Göl hill (Fig. 2.29c, d). In larger scale, alteration is typical with 

reddish, brownish oxidation colors in the caldera (Fig. 2.29c).  

Sub-stage VII (12 ka - AD) 
Intra-caldera phreatomagmatic - phreatic activity is dominant in this sub-stage 

(Table 2.1). Moreover, there are multitudinous maars in the caldera; their products 

are stratigraphically interbedded, consequently the distinction of their products is 

not easy. They cover most of the former intra-caldera comenditic lava flows (Fig. 

2.28). Products of the Big maar (Fig. 2.28) are widespread in the caldera, plaqued 

on the western shore of Nemrut Lake. They also surmount the caldera rim and are 

deposited on the NE, E and SE flanks of the volcano. 
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Figure 2.28. Geological map of Nemrut caldera. 
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Figure 2.29. Post-caldera lava flows and hydrothermal alteration. a) Flow bending in lava flow, b) 

Benmoreitic enclave in obsidian, c) Hydrothermal alteration on Göl hill, d) Devitrified 
obsidian flow on Göl hill. 

 

Big maar continued its activity with a comenditic lava flow through west. Deposits 

of a latter maar (south of Göl hill) partially cover the comenditic flow of Big maar. 

Base surge deposits are typical with dune and anti-dune structures, bomb sags 

(Fig.2.30a, b), breadcrust bombs (Fig.2.30c) and cross bedding (Fig.2.30d). At the 

northeastern caldera rim, products of Big maar presents a very local, whitish – 

yellowish – dark brown colored sequence (Fig. 2.30e). Especially, yellowish and 

dark brown colored horizons of this sequence bear large (up to 25 – 30 cm) 

pumices and lithics. At first glance, these horizons may be confused with a plinian 

fall (i.e. NeFB3); however, there are large obsidian, basalt and most importantly, 

ignimbrite clasts in the brown horizon. 
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Figure 2.30. Base surge deposits and their components in the caldera. a, b) Bomb-sag structures, 

c) Large breadcrust bomb on the tuff ring, d) Cross-bedding in the base surge deposits, e) 
Proximal phreatomagmatic deposits with large clasts. 

 

Nemrut Rift zone (Sub-stage VIII; AD - Today) 
Latest activities took place in the historical times. This sub-stage is represented by 

rift zone activity (1441 – <1597 AD) on the northern flank of Nemrut volcano. 

Karakhanian et al. (2002) reported an historical event, which occurred around 

Tatvan town (Appendix-A); however, precise location of this event is still a matter 

of debate. Recent activity will be discussed in the subsequent chapters. 
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The rift activity occurred between Nemrut plain and Kantaşı hill (Fig. 2.28); the 

ridge along the rift and its surrounding is covered with Kantaşı ignimbrite. 

Throughout the ridge, rifting cracked the welded Kantaşı ignimbrites; lava poured 

and flown over them. The rift zone is slightly bended from NNW to N and 

continues throughout ~5 km. We observed paralleling fault cracks at the southern 

section of the zone; the cracks are relatively narrow (Fig. 2.31a) when compared 

to middle (Fig. 2.26b) and northern sections (Fig. 2.31b) of the rift zone. 

 

 
Figure 2.31. Nemrut rift zone at the northern section of the volcano. a) Narrower rifting cracks 

closer to the caldera and b) northern section of the rift zone with a larger crack and domal 
obsidian knob in the middle. For the scale please note the presence of three members of 
our team in red circle. 

 

Except the southernmost part of the rift zone, lava activity is obvious in the rift. The 

activity in the rift is observed as knobs of obsidians (Fig. 2.31b); furthermore, there 

are locations where the crack is totally filled with obsidians and basalts (Fig. 2.32a, 

c). Breadcrust bombs are found along the rim of the rift (Fig. 2.32b). 
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Figure 2.32. Nemrut rift zone and comenditic products. a) Rift crack filled with comenditic 

obsidians, b) Breadcrust bomb found at the rim of the rift, c) Basaltic lava pooled at the 
draining spot. For the scale please note the presence of the member of our team in red 
circle. 

 

In the crater of the cone forming Kantaşı hill, there is a comenditic lava lake (Fig. 

2.28) from which lava poured and flown through north (extent: 1 km) and south 

(extent: 230 m) (Figs. 2.26a and 2.33a). 

The most spectacular feature of the rift zone is the bimodal activity. Synchronously 

with the comenditic flows, basalt flows were effective at the rift zone (Fig. 2.33b). 

Şerefhan (1597) witnessed and well delineated the basaltic activity. He invigilated 

lava fountains for repeating years and described the lava flows (Aydar et al., 2003; 

Appendix-A). Originating from the rift, two (aa-like) basaltic flows are obvious 

throughout the eastern flank and their length reaches up to 890 m and 1.3 km 

respectively (Figs. 2.28 and 2.33c). Another basaltic flow originates from the 

southern side of the Kantaşı hill and extends 1.2 km to the east (Figs. 2.28 and 

2.26a). Two branches of basaltic lavas are overlain by obsidian flow at the 

northern side of Kantaşı hill (Figs. 2.28, 2.1 and 2.33b). Their lengths are 130 and 

780 m, respectively. Thicknesses of the obsidian flows may reach up to ~10 m, 

while basaltic flows are thinner than ~2 m. 
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Figure 2.33. Products of bimodal rift zone activity. a) Obsidian flown throughout north flank of 

Kantaşı hill and b) underlying basalt flow at the northern front of this obsidian flow. For the 
scale please note the presence of the member of our team in red circle. c) Basaltic flows 
originated from the rift, flown through the eastern flank of the ridge. Please note the flow 
channel indicated with white pointed line. 

 
 

2.4. Synthesis 

Nemrut volcano rises upon the pre-volcanic basement composed of Bitlis 

metamorphics, Çatak ophiolites, and Tertiary sediments (Ahlat formation). With 

nearby volcanic centers such as Süphan, Bilican, Kolango dome and İncekaya tuff 

cone, Nemrut is one of the important eruption centers around Bitlis city. Nemrut 



 
 

88

volcano has a semi-elliptical summit caldera, western half of the caldera is filled 

with a fresh water lake. 

The new, detailed geological map of the volcano offers rectifications to previous 

maps. Relying upon our observations, we made changes on the layout and the 

type of the pyroclastic units; “unknown” scoria flows at the northern sector and 

“unknown” monzonitic intrusions were removed from the map. 

Nemrut started its volcanic activity ~1 Ma ago and continued until historical times. 

Evolution of the volcano is investigated in two main stages (pre-caldera and post-

caldera) separated by catastrophic caldera collapse. Pre-caldera stage is divided 

into five sub-stages, our observations on effusive and eruptive activity is presented 

in detail with a special emphasis on caldera forming eruption products. Pre-caldera 

lava flows are composed of trachytes, comendites, comenditic trachytes, 

pantellerites, basalts and mugearites. Peripheral doming generated in the pre-

caldera stage is comenditic and trachytic in composition. Nemrut ignimbrite series 

and Kantaşı ignimbrite series represent the caldera forming activity; sequences 

are composed of plinian units and ignimbrite flows. Post-caldera activity of the 

volcano is presented in three sub-stages. Intra-caldera activity and rift zone activity 

are discussed. Intra-caldera activity is represented by comenditic lava flows, 

domes and phreatomagmatic/phreatic eruptions. Locally, hydrothermal activity is 

effected intra-caldera lavas and domes. Nemrut rift zone was activated during the 

historical times, and is characterized by bimodal activity with comenditic obsidians 

and basaltic lava flows. 
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Hydrothermal activity and fluid circulation 
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3. Introduction 
Recently, the most outstanding activity of the volcano is the hydrothermal activity 

and the fumaroles. Both in the caldera and around the Mazik and Girekol domes, 

there are hot springs. The hot sources in the caldera seem to be gathered around 

a small hot lake; namely Ilığ lake (Ilığ: warm; Fig. 2.28). Moreover, there are at 

least two hot sources at the shoreline of Nemrut Lake (Fig. 2.28). Thermal activity 

along the shoreline was also documented by Şerefhan (1597). In addition to the 

hot sources, there are also fumarole activities in the caldera floor (Aydar et al. 

2003). Fumarole activity is best observed around the Ilığ Lake; as well, bubbling in 

the sources of the hot water is obvious.  

The quantification of hydrothermal activity in the caldera and its relationship with 

the structure of the caldera was investigated with geophysical surveys and remote 

sensing methods. Attained facts and results of our studies were presented to be 

published in a peer reviewed international journals. Here, in this chapter these 

papers will be presented and our further investigations will be handled. 

The first paper presented here (Chapter 3.1) deals with the correction of slope 

aspect and altitude gradient effects on nighttime thermal infrared images and 

proposes a simple method for this correction. This method is applied to Nemrut 

case, application and results are then discussed. Method proposed is image 

based and applicable to other cases facing with the same problem, accordingly, an 

IDL (Interactive Data Language) code is written to automate the procedure with a 

GUI (Graphical User Interface). Written code and the procedure has been 

prepared to be published as an article and submitted to a journal, Computers and 

Geosciences. The article is under review since January 2008. Additional electronic 

content related to this code and procedure is provided in e-Appendix-3. Electronic 

content provided consists of source code, input data (for testing), output data (for 

testing), a short user-guide and a read-me text file. 

The second paper presented (Chapter 3.2) deals with the geophysical and remote 

sensing approach to the hydrothermal dynamics of the Nemrut caldera. We used 

Self-Potential (SP) method to characterize the hydrothermal fluid circulation, and 

to reveal the relationship between the structural features of the caldera system 

and the hydrothermal system. In addition to SP surveys, our field observations and 

morphological approaches were discussed. Remotely sensed data (ASTER 
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nighttime TIR, Landsat ETM+) were processed and the results were interpreted in 

the hydrothermal – structural context. Self-Potential maps and Thermal anomaly 

image derived from ASTER TIR data were correlated. Finally, our findings were 

used to gather a structural model for the collapsed caldera. This paper has been 

published (Ulusoy et al., 2008) in Journal of Volcanology and Geothermal 

Research. 
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3.1. Image based retrieval and correction of altitude and aspect 
effects on nighttime TIR imagery 
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STcorr: An IDL code for image based retrieval and correction of altitude and 
aspect effects on nighttime TIR imagery 

İnan Ulusoy*1, 2, Philippe Labazuy2, Erkan Aydar1 
1Hacettepe Univ. Dept. of Geological Engineering, 06532, Beytepe-Ankara, Turkey 
2Univ. Blaise Pascal, OPGC, Lab. Magmas et Volcans - UMR-6524 CNRS, 5 rue 

Kessler, 63038 Clermont Ferrand Cedex, France 

*e-mail: inan@hacettepe.edu.tr 

Abstract 

Thermal infrared imagery (TIR) is a useful tool to detect and monitor the surface 

temperature anomalies associated with geothermal fields. Monitoring temporal 

changes in surface temperature is an important aspect of volcano monitoring. 

Although day-time TIR images have long been used for temperature anomaly 

mapping after appropriate corrections, the increase of spatial resolution of 

commercially available nighttime thermal imagery provided a new scope to the 

remote geothermal monitoring and exploration. Still, the nighttime thermal imagery 

involves some major effects that needs appropriate corrections. The first of them is 

the masking of small-scale thermal anomalies by the thermal gradient of the region 

and the second one is the relict diurnal heat due to the radiation of sun. Correction 

of nighttime TIR imagery according to altitude and slope aspect of the region may 

reveal out more reliable data. 

STcorr is an IDL code to perform an image based polynomial regression analysis 

approach for the correction of altitude and aspect effects in nighttime thermal 

imagery. Surface Kinetic Temperature (ST) image and Digital Elevation Model 

(DEM) are used to calculate a thermal gradient model. After the retrieval of 

thermal gradient, depending on the relationship between corrected image and the 

aspect image, an illumination correction is performed. Interactive step by step 

structure of the code allows user to visually improve the quality of the raw thermal 

data. Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) nighttime ST image of the Mt. Nemrut volcano was corrected using 

STcorr and the quality of the final image is further discussed. 

 
Keywords: Nemrut, volcano, ASTER, topographic, illumination, correction 
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1. Introduction 

The thermal infrared (TIR) imagery becomes a widely used tool in earth sciences 

during the last decade and finds the application domaines for; the detection of 

geothermal fields/spots (e.g. Coolbaugh et al.,2007; Lombardo and Buongiorno, 

2006), environmental studies (e.g. Wentz and Schabel, 2000), soil moisture 

assessment (e.g. Hejmanowska, 1998), mineral mapping (e.g. Vaughan et al., 

2005; Rowan et al., 2006) and volcano monitoring (e.g. Pieri and Abrams, 2005; 

Pugnaghi et al., 2006). The images from satellites bring different features using 

various filters in our knowledge. The remote sensing methods may be applied on 

two kind of principal images: daylight and nighttime images. While remote sensing 

increases its role in a large variety of research, success of the efforts in some 

cases has been limited by the difficulty in modeling the diurnal heating effects due 

to the sun (Coolbaugh et al., 2007). In daytime images, the topographic effect 

causes a phenomenon as the sun facing slopes appear brighter than the opposite 

slopes. Removal of this disturbing phenomenon is necessary before digital image 

classification or mathematical modeling of physical processes on the Earth 

(Hejmanowska, 1998). Depending on the acquisition time, this effect can also be 

evident in the nighttime thermal images. Different surface materials with specific 

physical properties such as thermal inertia, albedo, emissivity, and moisture 

content differently respond to solar radiation, resulting in different surface 

temperatures along 24-hours of a day (Elachi, 1987; Watson, 1973; Coolbaugh et 

al., 2007). Even during predawn hours, significant differences in temperature 

persist due to the differential heating effects of the sun of the previous day 

(Coolbaugh et al., 2007). Where topographic slopes are relatively steep and 

variable, such as mountainous terrain, it can be difficult and tedious to distinguish 

thermal anomalies from strong false anomalies caused by warmer sun-facing 

slopes in uncorrected nighttime images (Coolbaugh et al., 2007). 

Depending of the topographic characteristics of the region, a thermal gradient 

effect may also be coeval with the illumination effect. On volcanoes and around 

the active fault zones, geothermal activity may be masked due to the dominant 

signature of thermal gradient. Besides, it is relatively easy to detect high thermal 

anomalies around the summit zone of an active volcano where temperature 

decrease with height creates an obvious contrast with the thermal anomalies; 

however around the foot of the volcano, lack of this contrast may hide possible 
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anomalies. Clearly, the most difficult-to-detect thermal precursor anomalies on 

volcanoes are those that are only slightly warmer than the ambient background 

temperature (Pieri & Abrams, 2005). 

Following these observations, we implemented a surface temperature correction 

program (STcorr). STcorr is an IDL code designed to perform an image based 

approach for the correction of these two topographic effects in nighttime TIR 

imagery. Using nighttime surface kinetic temperature (ST) image, Digital Elevation 

Model (DEM) and the slope aspect image, it interactively removes the thermal 

gradient and the illumination effects from the ST image. Product is a thermal 

anomaly image. It was designed for Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) nighttime ST images but it can also be used for 

any nighttime ST image (concerning with the same problem). The ASTER 

instrument provides some important capabilities in the area of detection of 

volcanogenic energy anomalies as thermal precursors (Pieri & Abrams, 2004). 

The availability of five thermal bands on ASTER makes it possible to identify 

wavelength-dependent variations in emissivity so that true kinetic temperatures 

can be estimated (Hook et al., 1999). In addition, ASTER sensor has a high TIR 

spatial resolution of 90m/pixel (Abrams and Hook, 2002). 

 

2. Topographic correction of satellite images, methodology used in STcorr 

Quantitative theoretical modeling of the physical variables to predict surface 

temperatures involves differential equations and LaPlacian transformations that 

require iterative numerical solutions (Elachi, 1987; Kahle, 1977; Watson, 1973; 

Coolbaugh et al., 2007). Main methods to correct topographic effects depending 

on bidirectional reflectance distribution are cosine method (Smith et al., 1980; 

Teillet et al., 1982), Minneart correction (Minneart, 1941; Smith et al., 1980; 

Holben and Justice, 1980; Teillet et al., 1982), backscattering method (Hapke, 

1963; Hugli and Frei, 1983) and their advanced versions. Some known bugs of 

these methods such as over-correction of cosine method were previously 

discussed (Hejmanowska, 1998; Nichol et al., 2006; Law and Nichol, 2004). 

Empirical methods such as two-stage normalization (Civco, 1989; Nichol et al., 

2006) and minimization of temperature variations due to surface physical 

properties (Coolbaugh et al., 2007) give reliable results with less effort. However, 



 
 

96

these methods are aiming the topographical correction of daytime images and in 

different spectral ranges; on the other hand, nighttime TIR images may reflect a 

strong topographic effect. 

Methodology used in STcorr is a semi-empirical, image based, two-stage 

regression method to correct the thermal gradient and aspect effects in nighttime 

TIR images. In the first stage, a thermal gradient image is produced using the ST 

image and DEM. Thermal gradient correction of the image is made according to 

this calculated thermal gradient image. This procedure can be described simply 

as: 

( ) ( )zf
dz
dTGf ×⎟

⎠
⎞

⎜
⎝
⎛=1   (1) 

( ) ( ) ( )11 GfTfCf −=   (2) 

Where “G1” is the thermal gradient according to elevation, “T” is surface kinetic 

temperature, “z” is elevation, “f(C1)” is the altitude corrected image. The second 

stage uses the thermal gradient corrected image and aspect image to generate an 

aspect corrected image: 
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Here, “G2” is the aspect gradient according to slope aspect, “a” is slope aspect and 

“f(C2)” is the final (aspect) corrected image. 

3. Program design 

STcorr is an IDL (version 6.2 for Microsoft Windows© OS) code that can 

alternatively run standalone with runtime application, with IDL virtual machine or in 

the IDL environment. Seven images and two graphic windows open during the 

operations; to simplify the usage, code uses independent windows to visualize 

images. Each image is displayed with an appropriate color table (i.e. DEM with 

classic black-white linear color-scale representation), and stretched to visualize 

anomalous data. STcorr can deal with georeferenced images and uses GeoTIFF 

file format to interact with other image processing tools and GIS platforms before 
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and after the corrections. In the graphical user interface (GUI), systematic, step by 

step operations are provided to guide the user during calculations, each command 

button is activated if only necessary input is given or necessary calculations are 

made. 

3.1. Data preparation and input 

Prior to calculations, input data must to be processed to a certain level. From raw 

data to input, these processes are given in Figure 1. Reducing the spatial size of 

the input image according to the studied region, increases the speed of the 

program, working with a jumble of large display windows is avoided and possibility 

to detect false thermal anomalies due to unknown surface conditions is eliminated. 

 

 
Figure 1. Preparation process of input data for STcorr. Digital Elevation Model, Aspect image and 

ST image must be in the same spatial size. Prior to aspect and altitude correction, Thermal 
infrared raw data must be processed to achieve Surface Kinetic Temperature image. 

 

DEM must be spatially resized to the same spatial size and resolution with ST 

image; that is 90m/pixel in the case of ASTER data. Slope aspect image (in terms 

of 1 - 360 degree) should be derived from the DEM, with the same spatial size and 

resolution. Surface Kinetic Temperature image should be derived from the raw 

data; processing from raw ASTER TIR to Surface Kinetic Temperature image can 
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be found in Abrams and Hook (2002). Originally the unit of ST image is °K. STcorr 

could process data in both °K and °C. Optionally, if time series night TIR imagery 

for the same date are present, a correction for the differential cooling rate of 

various lithologic units can be applied. If the georeference information is 

embedded in the input Surface Kinetic Temperature image, STcorr utilizes this 

information, and registers the output according to this information. Grey boxes in 

Figure 1 depict the input images. 

3.2. Computation 

Simplified flow chart of STcorr is given in Figure 2. After the selection of the three 

input images (ST image, DEM and Aspect image), a masking option is given to the 

user. This option allows masking of input images interactively by defining a region 

of interest (ROI) polygon instead of using the full-scene images for corrections 

(default option). In some cases, blanking out the known (especially large) thermal 

anomalies may be useful to minimize their effect for altitude and aspect effect 

calculations. If masking option is selected, ROI is used as a blanking mask applied 

to the three input images. The corrections could be initiated with previously 

activated “Altitude vs. Temperature” button, which plots an altitude versus 

temperature scatter plot using DEM and ST image. It is then possible to apply a 

polynomial fit to the image with the appropriate (1 to 4th) degree. Polynomial fit will 

also be displayed on the Altitude vs. Temperature graph. Using the selected 

polynomial fit, STcorr will compute the thermal gradient image using equation 1 

and display it. Following this step, user could generate an altitude corrected image 

(equation 2), that represent surface temperature anomaly, where thermal gradient 

effect is removed. This image will be used for aspect correction. 

Similarly, a second polynomial fit regression is used to correct relict illumination 

effects of diurnal heat. Briefly, an Aspect versus Temperature anomaly graph is 

plotted and a polynomial fit (with an interactive choice of 1 to 6th degree) is applied 

to the plot. Using equation 3, an aspect gradient image which includes the 

illumination defects of the ST image will be produced. Lastly, “Generate aspect 

corrected image” button uses equation 4 to produce the final corrected image.  

Input ST image, altitude corrected ST anomaly image and the final corrected ST 

anomaly image are displayed with the same color table, allowing visual 

comparison between them. A text window on the user interface displays chi-
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square goodness-of-fit values during polynomial fit calculations. It is also possible 

to use full-scene images for altitude correction and masked images for aspect 

correction and vice-versa (masking could be applied after the first correction or 

full-scene ST image could be reloaded after the first correction). 

 

 
Figure 2. Simplified flow-chart of STcorr inferring the calculation process for altitude and aspect 

correction. 
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3.3. Output 

STcorr generates four output images that are respectively called “Thermal 

gradient”, “Altitude corrected thermal anomaly”, “Aspect gradient” and “Corrected 

thermal anomaly” images. Even if the masking option was selected, the code 

applies fit equations on the full-scene images to produce full-scene outputs. 

Depending on the unit of input ST image, the units of the output images are °C or 

°K. If map coordinate information was provided with the input ST image, user 

could save these images with georeference information in GeoTIFF file format; 

otherwise they will be saved as TIFF. Two plotted graphs and polynomial fit 

equations used to generate images can also be saved (as .TIFF and .TXT 

respectively). 

4. Correction of nighttime TIR image of Mt. Nemrut volcano 

Correction of nighttime TIR image using STcorr algorithm has been applied to Mt. 

Nemrut, an active dormant volcano situated in the eastern Turkey. It has a summit 

caldera with dimensions of 8.5 × 7 km (Fig. 3). The western half of the caldera is 

filled by a freshwater lake (Nemrut Lake) and a small lake with hot springs locates 

at the northern part (Fig. 3). Bathymetrical surveys exhibit that the maximum depth 

of the larger lake reaches to 176 m, while the deepest point of the small-hot lake is 

close to 11 m (Ulusoy et al., 2008). The eastern half of the caldera is filled by 

pyroclastic deposits related to maars, lava domes and flows. Fumerolic activity 

and hot springs can be observed within the caldera; hot springs also appear 

around the Mazik dome at the western flank of the volcano (Fig. 3). The 

temperatures of the springs around the Mazik dome were reported as 34°C and 

35°C (Atasoy et al., 1988). Temperature of one of the source springs of the hot 

lake was daily measured during one month period during 2005 field campaign; an 

average of 58°C was obtained (Ulusoy et al., 2008). Spring situated at the shore of 

the Nemrut Lake was measured 34°C. The temperature measured in the fumerolic 

vent east of the hot lake is 41.3°C and in the two other vents situated west of the 

hot lake temperatures are 41.2°C and 31.8°C (Ulusoy et al., 2008). 
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Figure 3. Hillshade image of Nemrut volcano showing the major geothermal hotspots and 

important volcanic features cited in the text. Area used in the masked copmutations of 
STcorr is framed. Cross hatched areas are the main populated areas around the volcano. 
Coordinate system: UTM(m), European datum (1950). 

 

Nighttime ASTER L1B TIR image of the volcano was acquired in 08.07.2005 at 

19:17:45 UTC (21:17:45 at local time), 1 hour and 38 minutes after the sunset. 

The “Radiance at sensor” data was atmospherically corrected and using the 5 TIR 

bands of the image, temperature and emissivity were separated applying 

emissivity normalization method (Hook et al., 1992; Kealy and Hook, 1993). 

Produced Surface Kinetic Temperature data in Kelvin was converted into Celsius 

degrees. A 400x400 pixel subset of the image was cropped from the original 

image preserving the original spatial resolution of 90 m/pixel. DEM of the same 

area was resized to 90 m/pixel and an aspect image was derived. ST image was 
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blanked out to remove the well known hydrothermal area (Fig. 3). Stcorr was both 

ran using the masked images and the original full-scene images. 

5. Results 

Scatter plots derived from the different steps of the method applied to Nemrut 

volcano are shown in Figure 4. Linear relationship between altitudes and surface 

temperatures is evident (Fig. 4a). For the altitude correction, regression equation 

generated by Stcorr can be defined as follows: 

bTfazf +×= )()(   (5) 

Where slope (a) defines the thermal gradient coefficient and the y-intercept (b) 

defines the theoretic sea level temperature. In theory, this equation (which is 

defining the thermal gradient) could be applied to the aspect corrected image to 

produce the aspect corrected real temperature image. 

When a masked dataset is used to correct the aspect effect (Fig. 4b), the 

relationship between the aspect and the temperature anomaly is more rigorous 

compared to the usage of the full-scene images (Fig. 4c). Applying the altitude 

correction before the aspect correction gives more reliable relationship than the 

aspect correction applied before the altitude correction (Fig. 4b, d), because the 

first case uses “temperature anomaly” instead of raw “temperature” data to build 

the relationship. 

Figure 5 shows the input ST image and output images of STcorr for the masked 

computation case. To avoid the lost of relative information between neighboring 

pixels, note that none of the images are enhanced using operations such as Look 

up table. Later application of such enhancement may reinforce the anomalies 

visually. Removal of altitude effect clearly reinforce the thermal signature 

especially around and on the Mazik dome (Fig. 5b) when compared to the 

uncorrected ST image (Fig. 5a). Still, the aspect effect due to relict diurnal heat is 

evident in altitude corrected image (Fig. 5b). Second regression step remove this 

aspect effect, and produce final corrected image (Fig. 5c). 
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Figure 4. Scatter graphs of various applications of STcorr code for Mt. Nemrut. (a) Surface Kinetic 

Temperature – Altitude relationship in full-scene image, (b) Temperature anomaly – Aspect 
relationship after altitude correction using masked image, (c) Temperature anomaly – 
Aspect relationship after altitude correction using full-scene image, (d) Surface Kinetic 
Temperature – Aspect relationship when the altitude correction is discarded. 

 

The relict heat causing a warmer false anomaly on the western and southwestern 

facing slopes of the domes, cones and the volcano itself is thus removed. 

Anomalies in the corrected image are consistent with the hydrothermal activity and 

the hot spots detected by self-potential measurements (Ulusoy et al., 2008). 

Ambiguous thermal anomalies appearing on the cone (Nemrutbaşı cone, Fig. 3) at 

the northern part of the volcano (Fig. 5c: arrows) are thought to be caused by the 

albedo effect. They correspond to basalt and obsidian lava flows and the lava lake 

of the 1441 and 1597 activities (Aydar et al., 2003). Temperature variations on 

lake surfaces appear noisy. As they normally must have no slope aspects, during 

the aspect calculations they were also classified according to DEMs. The 

temperature values on altitude corrected image are more reliable for water bodies. 
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Figure 5. Unprocessed and corrected thermal images of Mt. Nemrut. (a) Original Surface Kinetic 

Temperature image, (b) Temperature anomaly image after altitude correction, (c) Final 
corrected image after altitude and aspect corrections. Coordinate system: UTM(m), 
European datum (1950). 



 
 

105

6. Discussion 

We have used basic statistical analyses to show the quality of the produced 

images when compared to the initial image. Calculations can be grouped 

according to (1) selected areas of investigation depending on geological feature 

(Table 1: analysis - 1), (2) areas defined by pixel values greater than mean 

temperature (Table 1: analysis - 2), and (3) directional response. For geological 

approach, two known hydrothermal areas (Mazik dome and intra-caldera land 

area) and a hydrogeological area (where we observed pure hydrogeological 

signals in self-potential surveys, Ulusoy et al., 2008) were selected (Fig. 6). In the 

first group of statistical analyses, the standard deviation of temperature values 

were compared using the same selected areas in the original image and in the 

corrected images. The standard deviations of produced images are clearly 

reduced when compared to the uncorrected image in all the corrected images 

(Table 1: analysis - 1). This is an expected result, exhibiting the improvement after 

corrections. 

 

 
Figure 6. Map showing the area subsets used in statistical calculations. Coordinate system: 

UTM(m), European datum (1950). 
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Statistics Dataset Subset Min (°C) Max (°C) Mean (°C) Stdev # of pixels
A 7,00 26,46 18,03 2,72
B -7,62 6,36 0,00 1,78
C -8,20 6,75 0,03 1,81
A 8,44 18,46 13,28 1,68
B -6,60 2,55 -1,66 1,62
C -6,69 3,01 -1,51 1,62
A 17,37 25,88 21,55 1,20
B -3,25 4,38 0,59 1,08
C -1,74 3,44 0,38 0,84
A 12,51 21,41 16,96 2,08
B -1,71 3,12 0,15 0,82
C -1,74 3,44 0,38 0,84

A 18,04 26,46 20,33 1,59 75325
B 0,00 6,36 1,41 1,07 79725
C 0,00 6,75 1,41 1,08 81505
A 18,46 18,46 18,46 - 1
B 0,01 2,55 0,75 0,61 366
C 0,00 3,01 0,81 0,67 425
A 18,07 25,88 21,56 1,18 3607
B 0,00 4,38 1,11 0,74 2582
C 0,00 4,21 1,06 0,71 2271

Analyses 1: 
According to 
selected area

Whole image

Intra caldera 
land area

Mazik dome

Analyses 2: 
Acording to area 
defined by pixels 

greater than mean 
temperature

Whole image

Intra caldera 
land area

Mazik dome

160000

2245

3615

Hydrogeologic 
zone 925

 
Table 1. Simple statistical parameters of unprocessed and processed image datasets for selected 

specific areas and areas defined by pixels which have density number values greater than 
mean temperature. Image datasets are defined as A: unprocessed Surface Kinetic 
Temperature image, B: images after full-scene STcorr process and C: images after 
masked STcorr processes. 

 

Standard deviation calculations based on the selection of areas may strongly 

depend on the selected areas; a second test based on pixel values has been 

performed (Table 1: analysis - 2). For the pixel value approach, mean temperature 

of the images were used as a base threshold value. Consequently, areas having 

values greater than mean temperatures and their intersection with previously 

selected areas (Fig. 6) were used to create regions of interest. Based on the 

standard deviation values, increase in the quality of the produced images is 

evident (Table 1: analysis - 2). In the second analyses, minimum values of the 

processed image sets are close to zero which indicates the success of the 

regression process. In both analyses, it is obvious that standard deviations of the 

masked STcorr process results are generally lower when compared to the full-

scene process. 
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Finally, to investigate the changes in the sense of opposite facing slopes, 

directional statistical analyses were applied using 45° partitioned area surrounding 

the outer flank of the volcano (Fig. 6). An evident directional change in both ΔTmean 

and ΔTmax between the altitude corrected and aspect corrected images is 

observed (Fig. 7). Furthermore, this change is more evident when masked images 

(excluding hydrothermal areas) are used (Fig. 7). As the Nemrut volcano is 

situated on the northern hemisphere at 38°37’ latitude, sunset occurs at WSW to 

the volcano. After the correction using masked dataset, while the relict diurnal heat 

abundant on the W, SW, S and NE facing slopes were decreased, temperatures 

on the opposite facing slopes were considerably increased in the order of 0.62°C 

(maximum) and 0.59°C (mean). Higher intensity of the decrease of Tmean (-0.67°C) 

when compared to the decrease of Tmax (-0.35°C) on the lately sun facing slopes, 

reflects the preservation of anomalies on while retrieval of the relict diurnal heat 

effect. 

 

 
Figure 7. Polar graphs of change in Tmean and Tmax between altitude corrected image and aspect 

corrected image for full-scene process and masked process. 
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7. Conclusion 

For cases where topographic variations affect the geothermal anomalies and for 

volcano monitoring, retrieval of altitude and aspect effects may be essential in 

nighttime TIR imagery applications. 

Most of the illumination correction methods are dealing with daytime TIR images, 

even some are using uncorrected nighttime images to correct the daytime images. 

Most of the illumination correction methods, used in correction of the daytime TIR 

images, are using hill shade images (produced with a fixed sun azimuth angle and 

direction) instead of aspect correction. After the appropriate preprocessing aiming 

to reduce other daytime effects which were not described in this paper, this 

technique could be used in daytime images too. Aspect correction offers a whole 

scale correction while hillshade calculation may partially lose aspect related 

information depending on the resolution. 

Analysis based on the masked images, excluding the known hydrothermal areas 

give better and more rigorous results than using the whole image datasets, where 

hydrothermal anomalies are affecting the calculations. 

Regression is an efficient method to correct the nighttime TIR images. STcorr is 

using regression approach to correct the altitude and the aspect effects, and its 

computations are based on the image, which could give the appropriate response 

to variable conditions. Array oriented structure of the STcorr code allows rapid 

calculations when considered that it interacts with large image datasets. 
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3.2. Structure of the Nemrut caldera (Eastern Anatolia, Turkey) 
and associated hydrothermal fluid circulation 
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played an important role in the present physical state of Eastern Anatolia. Mount
Nemrut, situated to the west of Lake Van is one of the main volcanic centers in the region, with a spectacular
summit caldera 8.5×7 km in diameter. The most recent eruptions of the volcano were in 1441, 1597 and 1692.
Nemrut Lake covers thewestern half of the caldera; it is a deep, half-bowl-shaped lakewith amaximum depth
of 176 m. Numerous eruption centers are exposed within the caldera as a consequence of magma–water
interaction. Current activity of Nemrut caldera is revealed as hot springs, fumaroles and a small, hot lake.
Self-potential and bathymetric surveys carried out in the caldera were used to characterize the structure of the
caldera and the associated hydrothermal fluid circulation. In addition, analyses based on digital elevationmodels
and satellite imagery were used to improve our knowledge about the structure of the caldera. According to SP
results, the flanks of the volcano represent “the hydrogeologic zone”, whereas the intra-caldera region is an
“active hydrothermal area” where the fluid circulation is controlled by structural discontinuities. There is also a
northern fissure zone which exhibits hydrothermal signatures. Nemrut caldera collapsed piecemeal, with three
main blocks. Stress controlling the collapse mechanism seems to be highly affected by the regional neotectonic
regime. In addition to the historical activity, current hydrothermal and hydrogeologic conditions in the caldera, in
which there is a large lake and shallow water table, increase the risk of the quiescent volcano.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Mount Nemrut is a stratovolcano located in Eastern Turkey (Fig. 1),
which exhibits a spectacular summit caldera with dimensions of
8.5×7 km. The summit of the caldera rim, Sivri hill, is on the north side
and is 2935 m high; the highest point within the caldera is Göl hill
(2486 m) located in the eastern part (Fig. 2a, b). The western half is
filled by a freshwater lake (Nemrut Lake) with a surface area of
12.36 km2, and a smaller lake with hot springs. The altitude of the lake
surface is 2247m. Bathymetric surveys show that themaximumdepth
of the larger lake is 176 m, while the deepest point of the small, hot
lake is approximately 11 m. The eastern half of the caldera is filled by
pyroclastic deposits of maars, lava domes and flows. Our field studies
have revealed the existence of 10 maars (8 phreatomagmatic,
2 phreatic), 12 lava domes and 3 lava flows in the caldera (Fig. 2b).
Five of the maars, including the Big Maar, four of the lava domes and
the hot lake are aligned within the caldera (Fig. 2).
ent of Geological Engineering,
fax: +90 312 2992034.

l rights reserved.
Nemrut volcano has been well studied petrologically (Yılmaz et al.,
1998; Özdemir et al., 2006; Çubukçu et al., 2007), and only rarely
physically (Atasoy et al., 1988). For the first time the structure of the
caldera, its collapsemechanism, theactivehydrothermal zones and their
relationships with structural features within the caldera are demon-
strated in this paper. Geophysical methods and remote sensing studies,
in addition to the field survey, were incorporated into this study.

In order to reveal structural relationships and the hydrothermal
fluid circulation we used the self-potential (SP) method that has
already been applied to other volcanic regions (i.e. Jackson and
Kauahikaua, 1987; Lénat et al., 1998; Zlotnicki et al., 1998; Finizola
et al., 2002, 2004). Self-potential surveys carried out on stratovolca-
noes (Aubert and Dana, 1994; Zlotnicki et al., 1998; Finizola et al.,
2004) show positive anomalies from a few hundreds to thousands of
millivolts in amplitude. These positive anomalies often overlap with
hydrothermal or active zones whereas hydrogeologic zones show
negative trends (i.e. Finizola et al., 2004; Lénat, 2007). In most
volcanoes the downward flow of meteoric water gives rise to negative
anomalies, whereas the upward flow of the hot fluids in the active
areas produces positive anomalies (Zlotnicki et al., 1998; Lénat, 2007)
with some exceptions (Finizola et al., 2006). Therefore, negative
trends of SP anomalies are often observed on the flanks of volcanoes,
while summit zones are represented by hydrothermal areas with

mailto:inan@hacettepe.edu.tr
http://dx.doi.org/10.1016/j.jvolgeores.2008.02.012
http://www.sciencedirect.com/science/journal/03770273


Fig. 1. Study area. (a) Simplified tectonic map of Turkey showing major neotectonic structures and neotectonic provinces (afterŞengör et al., 1985; Barka, 1992; Bozkurt, 2001).
(b) Landsat image of the study area showing major volcanic centers, Muş basin, Bitlis suture zone, locations of hot springs, fumeroles, and latest effusive eruptions. Bitlis City, Tatvan,
Ahlat and Güroymak towns were indicated. Small red circles are the locations of the villages. Numbers given in boxes refer to known locations of dated samples given in Table 1. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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relatively positive SP signals (Fig. 3a). Potential sources of SP signals
have been previously explained by electro-chemical, thermal, and
electro-kinetic processes (Corwin and Hoover, 1979; Revil et al., 1999a,
b; Zlotnicki and Nishida, 2003; Revil et al., 2004).

We also used digital elevation model (DEM) and satellite imagery
analyses. In regions where bedrock is exposed multi-spectral remote
sensing can be used to recognize altered rocks by their reflectance
spectra, which differ from those of the unaltered country rock (Sabins,
1999). Considering the fact that the hydrothermally altered rocks may
overlap with the fluid circulation zones we used Landsat imagery to
detect these zones. In order to highlight the active hydrothermal
zones we have also used a method (Ulusoy et al., submitted for



Fig. 2.Nemrut caldera. (a) View of the Nemrut caldera from northern calderawall. Lineation of the main volcanic centers in the caldera is indicated. (b) Geomorphologic indication of
the main volcanic centers in the caldera.
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publication) which utilizes Aster night-thermal imagery, permitting
the identification of the surface kinetic temperature.

2. Previous and historical activity of the volcano

Nemrut volcano started its activity 1 Ma ago and continued until
historical times (Table 1). Effusive lava flows and fountains in 1441
(Karakhanian et al., 2002) and 1597 (Şerefhan, 1597; Aydar et al.,
2003) were reported. Historical data presented by Karakhanian et al.
(2002) showed that the latest volcanic activity (gas and ash eruptions)
occurred on April 13, 1692. Moreover, new data revealing other ash
eruptions were presented in comprehensive varve aging studies from
Lake Van (Landmann, 1996; Landmann et al., 1996; Landmann and
Kempe, 2005). Ten drill points of this study lie between the threemain
volcanic centers: Mt. Nemrut, Mt. Süphan and the Incekaya tuff cone
(Fig. 1). Any of these systems may be responsible for the ash varves
found in Lake Van. Formation of the Incekaya tuff cone was placed
stratigraphically after the collapse of Nemrut caldera by Atasoy et al.



Fig. 3. Self-potential patterns. (a) Conceptual model of SP patterns on a volcano (from Lénat, 2007). The typical pattern of SP anomalies is shown on the upper part. Hydrogeological
zone created by the mostly downward flow of water and hydrothermal zone where hot fluids move upward and their relationship with SP anomalies are shown. (b) SP profiles and
topographic section profile. (c) SP pattern observed at Nemrut volcano. Hydrogeological zone on the flanks of the volcano and the hydrothermal zone overlapping the caldera can be
seen in the figure. Main volcanic centers along the profile in the caldera are indicated. Anomalies discussed in the text are indicated with letters. “O2” refers to the small, positive
anomaly located near the shoreline of Lake Van indicating the intrusion of lake water.
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(1988). However, the last known activity of the Süphan system was
0.10±0.02 Ma (Notsu et al., 1995). Since the Nemrut volcano has the
most recent known eruptions of this region, we believe that the
Nemrut system would be the source for most of these ash levels.
Eruptions giving rise to ash layers dated at 657 BC and 787 BC (Table 1)
by Landmann (1996) might have been witnessed by the Urartian
civilization, which reigned in the area. Çilingiroğlu (1997) indicates
that the Urartian “Ayanis Castle” (situated ~30 km east of Mount
Süphan) was burned, demolished, and abandoned after 650 BC. He
noted that the reason for this demolition was unclear, but probably



Table 1
Historical and older eruptions of the Nemrut stratovolcano. For the varve dates see the explanation in the text. Data source: 1: Karakhanian et al. (2002); 2: Şerefhan (1597); 3: Aydar
et al. (2003); 4: Landmann (1996); 5: Landmann et al. (1996) corrected according to Landmann and Kempe (2005); 6: Atasoy et al. (1988); 7: Notsu et al. (1995); 8: Pearce et al. (1990);
9: Ercan et al. (1990); 10: Yılmaz et al. (1998). Known locations of dated samples are indicated in Fig. 1 with reference numbers given in this table (a1–a31)

No. Eruption dates Product Event Method (source)

a1 13.April.1692 ? Eruption of gas and ash Historical (1)
a2 1597 AD Obsidian, basalt Lava fountains and flows Historical (2,3)
a3 1441 AD Obsidian, basalt Lava fountains and flows Historical (1)
a4 657±24 BC Ash Ash eruption Varve (4)
a5 787±25 BC Ash Ash eruption Varve (4)
a6 4055±60 BC Ash Ash eruption Varve (4)
a7 4938±69 BC Ash Ash eruption Varve (4)
a8 5242±72 BC Ash Ash eruption Varve (4)
a9 b0.01 Ma Rhyolite Lava flow K/Ar (7)
a10 9950±141 BC Ash Ash eruption Varve (5)
a11 10,042±142 BC Ash Ash eruption Varve (5)
a12 10,111±143 BC Ash Ash eruption Varve (5)
a13 10,305±145 BC Ash Ash eruption Varve (5)
a14 10,330±145 BC Ash Ash eruption Varve (5)
a15 10,356±146 BC Ash Ash eruption Varve (5)
a16 11,010±166 BC Ash Ash eruption Varve (5)
a17 b0.02 Ma ? ? K/Ar (7)
a18 0.02±0.01 Ma Rhyolite Lava flow K/Ar (7)
a19 b0.03 Ma Rhyolite Lava flow K/Ar (9)
a20 0.08±0.02 Ma Olivine basalt Lava flow K/Ar (7)
a21 0.10±0.05 Ma Trachybasalt Lava flow K/Ar (7)
a22 0.15 Ma Comendite Lava flow K/Ar (6)
a23 0.242 Ma Quartz trachyte Lava flow K/Ar (6)
a24 0.272 Ma Ignimbrites Ash flow/caldera formation (?) K/Ar (6)
a25 0.31 Ma Trachyte Lava flow Isotope (10)
a26 0.333 Ma Quartz trachyte Lava flow K/Ar (6)
a27 0.384 Ma Quartz trachyte Lava flow K/Ar (6)
a28 0.567 Ma Quartz trachyte Lava flow K/Ar (6)
a29 b0.7 Ma Trachyte Lava flow K/Ar (8)
a30 b0.79 Ma Hawaiite Lava flow K/Ar (6)
a31 1.01 Ma Trachyte Lava flow K/Ar (6)
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caused by a natural disaster like earthquake or fire. Following this
disaster, the castle was plundered after the collapse of central
authority (Çilingiroğlu and Salvini, 2001).

2.1. Seismicity and current activity of the volcano

Fumarolic activity and hot springs are found in the caldera (Fig. 2b);
hot springs also exist around theMazik dome at thewestern flank of the
volcano (Fig. 1). In our field observations the temperature of one of the
springs in the hot lake (Fig. 2b, hs1) was daily measured over a one-
month period; an average of 58 °C was obtained. A new hot spring has
appeared in the summer of 2007 at the shore of Nemrut Lake (Fig. 2b,
hs2), and the temperature of this source was measured at 34.4 °C. The
temperature of the springs around the Mazik dome was reported as
being 34 °C and 35 °C (Atasoy et al., 1988). The temperature measured in
the fumarolic vent, east of the hot lake, is 41.3 °C and in the two other
vents, situated west of the hot lake, are 41.2 °C and 31.8 °C, respectively.
Helium isotope ratio (3He/4He) analyses indicate the magmatic con-
tribution to the samples of thehot lake and fumaroles (Nagaoet al.,1989;
Kipfer et al., 1994; Ercan et al., 1995), with the highest values in Anatolia
(between 7.954±0.052 and 10.671±0.050; Güleç et al., 2002). The ratios
reveal a significant mantle contribution in most parts, with almost pure
mantle-He being emitted in the crater lake of Nemrut volcano and in
Lake Van (Güleç et al., 2002). Nagao et al. (1989) note that this magmatic
contribution implies that the volcano still has potential activity.

The first volcano-seismic network in Turkey has been installed at
Nemrut volcano for real-time volcanomonitoring. The seismic activity
around the volcano has been observed since October 2003 with 3
stations equipped with one broadband and two short-period
seismometers. Data collected in the stations are sent to Hacettepe
University with a real-time Frame-Relay data communication link.
Raw data are processed by an automated numerical code in near real-
time. Following the hypocenter solutions of the seismic events, event
types are determined by frequency and depth spectrum analyses.

Within a two year period, between October 2003 and October
2005, 219 events were recorded; 98 of them were long-period (LP)
tectonic events and 89 were low magnitude local and regional
earthquakes. 32 events of volcanic origin (VT and Hybrid) have been
observed with a frequency of 1.3 events per month. A total of 133
events were observed in the vicinity of the volcano, with magnitudes
(Md) ranging from 1.3 to 4.0 (Ulusoy et al., 2006).

3. Data acquisition and treatment

3.1. Bathymetry and digital elevation model of the Nemrut caldera

During the 2004 field expedition, the bathymetry of the Nemrut
caldera lake was explored by a group of our expedition team. A Sonar/
GPS equipped boat was used to measure the depth of the lake.
Continuous data were recorded along the trip profiles. 19,976 data
points were collected to produce the bathymetry map.

The 10 m spatial resolution DEM of the area was obtained by
digitizing the elevation contour lines of sixteen 1:25,000 scaled
topographic maps. The DEM was generated using the Krigging (with
linear interpolation) method.

3.2. SP surveys

The self-potential surveys were performed during the 2004, 2005
and 2006 field campaigns. A total of 99.7 km of SP profiles were
carried out with 25 m spacing (3988 measurements). Equipment used
for the survey was a high input impedance voltmeter, a pair of Cu/
CuSO4 non-polarizing electrodes and an insulated Cu cable. All the
measurements were marked by a GPS receiver.
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Fig. 4. Bathymetry and topography. (a) Bathymetry of Nemrut Lake. Dashed line in the lake shows the lineation interpreted as a structural discontinuity. White arrows point to the
clear linear topographic change. (b) Slope image of bathymetry of Nemrut Lake. (c) Hillshade image showing the topographic traces of the faults. (d) Aspect map of DEM and DEMB.
Sharp, linear, reverse changes in the topography are indicated between arrows. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 5. Self-potential survey results. (a) SP map of Nemrut caldera. Positive SP anomalies discussed in the text are indicated with letters. (b) Ce gradient map of Nemrut calder ositive Ce anomalies discussed in the text are indicated with
letters.
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Fig. 6. Ce values on planar areas. (a) Closer view of Ce map showing southeastern part of the caldera near Big Maar. (b, c and d) Self-potential and Ce profiles along the Big Maar.
Relative positive rises of Ce are shown with black arrows.
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Two long SP profiles, one to the southeast, the other to the
northwest were carried out on the outer flanks of the caldera (Fig. 3b).
Nemrut Lake was selected as 0 mV reference for the interpolation of
the data. An additional isopotential profile of 25 m data spacing was
created on Nemrut Lake, along the shoreline with 0 mV potential. Two
profiles are out of the caldera, the southern profile reaches to Lake
Van. The northern profile was carried out to examine the hydro-
thermal activities along the northern fault zone where the latest
effusive activities occurred. A further 23 profiles weremeasured in the
caldera, where hot springs and fumaroles are situated. The two same
profiles were repeated in 2004–2005 to identify if there had been
annual changes; no annual differences were observed.

All of the data were combined with reasonable closure corrections
(b50 mV) permitting a high-resolution SP map of the caldera to be
generated. The interpolation of the datawas carried out in three steps.
SP data were interpolated using a 100 m resolution. Next, the original
data, together with the regional 100 m grid, were interpolated to
obtain a 40 m resolution grid. Finally, handling the original data again
and the 40 m grid, an SP grid of 25 m resolution was constituted. This
gradational interpolating technique was implemented in order to
preserve the original resolution of measurements.
4. Data analysis

4.1. Bathymetry and DEM

The digital elevation model of bathymetry (DEMB) of Lake Nemrut
and the digital elevation model (DEM) of the volcano were also
analyzed for topographic footprints of the caldera structure. Bathy-
metric studies depict that Lake Nemrut is a half-bowl-shaped deep
lake, where the average depth is around 140m over themajority of the
lake (Fig. 4a). The maximum depth of the lake is 176 m and the
calculated volume is 1264 km3. The northern and southern parts of the
lake bottom are separated by an approximately WNW-directed
lineament (Fig. 4a, b). This discontinuity seems to be comprised of
dome-shaped topographic features. When compared with the north-
ern domain, the southern domain is topographically higher.

Topographic traces of some structural features are visible on the
DEM (Fig. 4c). Two major collar collapses have been observed on the
west and SSW flanks of the caldera wall (Fig. 4c). Evidence of both
collapses are topographically expressed and the extent of the western
collapse is significant on the bathymetry map. Tectonic breccia
limiting the western slide was also noted during the field expeditions.
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An aspect map of DEM and DEMB was produced to investigate the
main topographical features related to structural discontinuities
(Fig. 4d). Aspect identifies the steepest downhill direction from each
cell to its neighbors, i.e. is the direction that is perpendicular to the
contour lines on the surface, and an aspect map can be thought of as a
slope direction map (Moore et al., 1993). A NNW directed lineation of
the volcanic centers in the caldera is evident in the aspect map. This
lineation clearly separates the eastern part (land area) of the caldera
floor into two parts. Topography and flanks in the eastern part of this
structure are facing to the ENE, while in the western part they face
towards the WSW. The dominant and abrupt change in topographical
features is illustrated on aspectmaps (black arrows, Fig. 4d). Except for
the one in the lake (Fig. 4d, white arrows), these structural features are
also visible in the field, as reported by previous researchers (Güner,
1984; Atasoy et al., 1988).

4.2. SP pattern of Nemrut volcano

We observed a signal of amplitude~2900 mV on the SP survey of
the Nemrut volcano. This value is at the higher range of values
previously observed in active volcanoes (~450 mV on Stromboli
(Finizola et al., 2002), ~4500 mV on Misti (Finizola et al., 2004),
~3800 mV on Piton de la Fournaise (Lénat, 2007)). The SP pattern
exhibits both hydrogeologic and hydrothermal zones similar to known
examples worldwide (Fig. 3a, i.e. Zlotnicki et al., 1998; Finizola et al.,
2002, 2004). The two profiles extending from the caldera rim to the
foot of the volcano give an accurate estimation of the geometry of the
hydrogeologic zone with characteristic negative trending SP–altitude
gradient (Fig. 3c). Negative peaks are associated with the caldera rim.
Relatively positive peaks are observed within the caldera. Some
positive anomalies are overlapped by the hot springs and fumarolic
vents (Fig. 3c). A hydrothermal zone, like the examples observed on
the summit zones of other active volcanoes, is identified in the caldera
of Mount Nemrut.

The SPmap of the survey (Fig. 5a) illustrates the observed negative
and relative positive anomalies. Some positive anomalies (O1,2,3,4) are
noticeable on the measurements out of the caldera (Fig. 5a). “O1” is a
small SP positive that was measured within the first 350 m from the
shoreline of Lake Van, with a maximum of 118 mV (Figs. 3c and 5a).
From Lake Van to the land, intrusion of brackish (22‰) and high pH
(9.8) water (Landmann and Kempe, 2005)may be responsible for this
small positive increase. “O2” is a geological signal measured due to
the lithological change at an obsidian flow–pyroclastic flow contact.
The anomalies “O3” and “O4” are situated north of the topographic
caldera rim and they may have a hydrothermal up-flow signature.
They are above the fissure zone located on the northern flank of
Mount Nemrut.

In the caldera, the suspected hydrothermal areas are described as
higher order (A, B, C, D, E, F, G, H, I, J, M) and lower order (K, L, P) relative
positive anomalies (Fig. 5a). Highest positive potential in the calderawas
measured as +273 mV around the hot lake (Fig. 5a, “A”). “A” also
identifies the anomaly observed on the Dome 8 (Fig. 2), where the
fumaroles exist. Relative positive anomaly “B” rises in the planar area
surrounding a seasonal lake in the eastern end of the caldera. “H”
anomaly is in the southern part, near the shore of Nemrut Lake. The
fourth anomaly “I” was observed along a lineation which comprised 4
monogenetic vents (maars 11,12;dome13, andmaar 10occupiedby lava
dome9). “D” defines the anomalywhich appears 400m southeast of Göl
Hill (Fig. 2). “E” anomaly can be divided into two geophysical structures:
the first was measured in the fault (Fig. 4c, black arrow) which passes
through the Big Maar; the second can be defined as a circular shaped
anomaly observed at the bottom of the Big Maar, close to the tuff ring.
“G”was observed around, and in, maars 16 and 17. “M”, “J”, “C” and “F”
anomalies appear respectively along the northern, north-eastern,
eastern and southern part of the structural boundary of the caldera.
The lowerorder “K” is pointingout the relative positive anomalies on the
structural caldera boundary, too. “L” is situated in the middle of the
northern trachytic obsidian lava flow and “P” is beside the maar-like
deep (90 m) explosion crater (referred as “maar 21” in Fig. 2).

As well as these positive SP values, which may be related to up-
flow hydrothermal fluid circulations, the relatively planar topography
of the caldera may give rise to misinterpretations due to the different
possible electric potential source mechanisms. Superimposition of
hydrothermal and hydrogeologic anomalies must be discriminated.
Such a problem can be overcome by considering the altitude with
respect to SP.

4.2.1. SP–elevation relationship on Nemrut volcano
Negative SP and elevation relationships are observed on Nemrut

volcano as documented in earlier studies on volcanoes (Corwin and
Hoover, 1979; Jackson and Kauahikaua, 1987; Lénat, 1987; Aubert and
Yene Atangana, 1996; Finizola et al., 2004). Jackson and Kauahikaua
(1987) defined a correlation coefficient “Ce”, which is the ratio
between the horizontal SP gradient and elevation. It is calculated on
portions of a profile where a linear relationship between SP and
altitude is observed (Lénat, 2007). Finizola et al. (2004) have used a Ce
gradient map onMisti volcano for a structural approach. There are two
significant advantages of calculating Ce values: firstly, it was noted
that a negative SP–elevation relationship is correlated with the
piezometric head, or with the thickness of the unsaturated zone
(Jackson and Kauahikaua,1987; Aubert et al., 1990), thus it can be used
to estimate the depth of the water table; secondly, they can amplify
the SP anomalies while masking any hydrogeologic gradient. The Ce
gradient approach appears to be promising for the qualitative
interpretation of SP surveys in volcanic areas as well as in other
environments (Lénat, 2007).

4.2.1.1. Ce map. A Ce map, produced with an automated code
written by Lénat (2007), clearly shows bipolar, positive and negative
anomalies (Fig. 5b). This code computes the SP/elevation gradient in
four directions (SN, WE, SW–NE and SE–NW) and utilizes the
highest SP gradient to form a Ce map. Considering the topography
inside the caldera is not steep in comparison to the flanks of a
volcano, within the calculation process Δzb1 m were masked to
avoid anomalous Ce values. A DEM and SP map of 50 m resolution
were used for gradient calculation. Using 3, 5, 7, 9 sample points
respectively, gradients were calculated from the SP map of Nemrut
caldera. Accuracy of the Ce map and the short wavelength anomalies
increases from 9 points of calculation to 3 points. Here, a 5-sample
point gradient map is shown for the visual quality (Fig. 5b). A 3×3
median filter was used to remove the relict short wavelength signals
from the gradient.

In addition to the detection of hydrothermal fluid activity spots,
the Ce gradient also helps to visualize the related structural
discontinuities (Fig. 5b). Four main SP–altitude gradient anomalies,
namely “Ce1”, “Ce2”, “Ce3” and “Ce4” are noteworthy (Fig. 5b). “Ce1”
appears on the western side of domes 9 and 13 and maars 10, 11 and
12. The group of anomalies defined as “Ce2” is elongated in a NNW
direction. “O5”, which is situated on the northern caldera wall, is
observed on a fault reported by Güner (1984). This fault probably
continues through the anomalies constituting the “Ce2” group (Fig. 5b)
and the red arrows in Fig. 4c indicate its topographic signature on its
southern edge. The “Ce3” anomaly covers the designated area of the
Big Maar (maar 18) in the SE of the caldera, with a circular positive
anomaly along the diatreme area (Fig. 5b). This positive Ce anomaly is
supposed to be an evidence of the hydrothermal signature of the “Big
Maar”. The “Ce4” anomaly is situated along the fault exposed
topographically (Fig. 4c yellow arrows) which is considered to be
continuing through the elongated maar (maar 16). Another hot spring
(Fig. 2b hs3) was noted on the SW end of this fault (Güner, 1984).
Anomalies marked with “H”, “C”, “J” and “K” correspond to the
positive Ce values along the structural caldera boundary. “A” anomaly
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Fig. 8. Spectral characters and remote sensing processing of clay minerals.
(a) Laboratory reflectance spectra of alunite, kaolinite, montmorillonite and illite and
the ranges of Landsat bands (from Sabins, 1999). The 5/7 band ratio image amplifies the
hydrothermal alteration because of the different spectral reflectance percentage of
these minerals in fifth and seventh bands. (b) Histogram of the derivated Landsat image
(Fig. 9b) and the color spectrum used to visualize the high accumulations of the
minerals mentioned. For the theoretical base of this color ramp, see Sabins (1999).
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lies on the fumaroles of dome 8. “O3” and “O4” appear on the rift zone
at the northern flank of Mount Nemrut. Lénat (2007) theoretically
showed that bipolar Ce anomalies are generated above heat sources.
“O4” is a bipolar anomaly where the rifting fissure is situated along the
positive and negative inversion.

The Ce map shows that some anomalies disappear by the
minimization of the topographic effect. It is noteworthy that Ce
anomalies on “H” and “B” are not as strong and large as appeared in
the SP map. Low water table is responsible for these anomalies in the
SP map. The seasonal lake (Fig. 2b) where “B” anomaly strongly
appears in the SP map denotes the low water table. Furthermore, no
hydrothermal signaturewas noted in these areas during the fieldwork.

It is important to note that Ce maps on planar topography where
the topographic effects are relatively less than the outer flanks of a
volcano must be investigated with care and in detail. This phenom-
enon produces higher values of Ce due to calculation procedure. As
discussed above, we used a filter in the computation process to
minimize these effects. This effect was investigated using profiles
along SPmeasurement points on one of the planar areas in the caldera
where we observed “Ce3” anomaly (Fig. 6a). Big Maar has relatively
low topographic contrast; on the other hand, Ce values observed are
dominant here. When analysed in detail, it is evident that even in the
caldera (i.e. Fig. 6a, profile-1); there is considerable altitude difference
(~60 m) along the profiles. The intra-caldera is not totally flat; there
are noticeable differences of altitude in the caldera. Ce anomalies on
the profiles in Fig. 6 are not simply overexposed values; they reflect
the positive and negative gradient of the self-potential.

4.3. Image analysis

4.3.1. Landsat TM image
The spectral bands of Landsat TM are well suited for recognizing

assemblages of alteration minerals (iron oxides, clay and alunite) that
occur in hydrothermally altered rocks (Sabins, 1999). Correlating SP
maps with image recognition of hydrothermally altered rocks may be
useful for fracturemapping and the future progress of SP techniques as
well. The 5/7 band ratio of a Landsat+ETM image was used for the
image derivative approach (Fig. 7a). This method helps to visualize the
hydroxyl clay minerals (alunite, illite, kaolinite and montmorillonite)
andwas previously used for the investigation of the ore bodies (Sabins,
1999 and references therein). This method utilizes the reflectance
spectra characteristics of clay minerals mentioned above (Fig. 8a). The
reflectance values of these minerals within band 5 are higher than in
band 7. Ratio images can emphasize and quantify these spectral
differences (Sabins, 1999). Proper use of color density distribution
(Fig. 8b) may highlight the areas where these clay minerals are
abundant.

It is noteworthy that the hydrothermal alteration map derived
from the Landsat ETM+image (Fig. 7a) yields compatible results with
SP anomalies (Fig. 5a). In Fig. 7a, red values (high values) theoretically
indicate the zones where hydroxyl clay minerals are abundant. SP
positive anomalies signed in Fig. 5a as “A”, “B”, “H”, “I”, “D”, “E”, “J” and
“P” are evident in the derived image (Fig. 7a). However, fresh soil and
rock surfaces are marked by the higher values in the Landsat image
while the areas covered with vegetation tend to give relatively lower
values. High alteration zones on the Landsat image, which are similar
to SP positives “B” and “H”, correspond to the fresh rock surfaces. It
should not be confused with hydrothermal alteration. Landsat image
Fig. 7. Remote sensing data processes for Nemrut volcano. (a) Hydrothermal alteration map
montmorillonite and illite rich areas. Small red areas pointed out by the black arrows are ind
arrows is also topographically visible on the aspect map. Black circles and ellipse show the ar
superimposed on DEM. Image is stretched linearly, color composition is: R: Band 7, G: Band 3
image with altitude and aspect corrections. Letters and arrows are pointing out the therma
superimposed on DEM is shown in Fig. 7b for comparison. Plant cover
around the small hot lake masks the hydrothermal alteration around
the area. Hydrothermal alteration spots observed in the caldera
(Fig. 7a: black arrows) are evident features on the image. Lineation of
high values along the ellipse in Fig. 7a infers hydrothermal alteration.

4.3.2. ASTER night-thermal image
An ASTER L1B night-thermal image acquired on 08.07.2005 at

19:17:45 (GMT) was used to produce a surface temperature image of
the volcano. The “Radiance at sensor” data were atmospherically
corrected and using the 5 TIR bands of the image, temperature and
derived from Landsat image. Red zones are theoretically indicating alunite, kaolinite,
icating the highly altered rocks observed in the field. The linear red zone betweenwhite
eas which correlate well with the SP map (Fig. 5a). (b) Landsat image of Nemrut volcano
, B: Band 2. (c) Thermal anomaly image derived from ASTER surface kinetic temperature
l anomalies. Red arrows point out the false anomalies.
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Table 2
Thermal anomalies in the unprocessed ASTER surface kinetic temperature image and in
the thermal anomaly image after altitude and aspect corrections. Notation in the first
column refers to the notations in Figs. 4a and 8c. ΔT refers to the thermal anomaly
difference between the hot spot and the cold region surrounding these spots

Notation Name # of
DNs

Min Max Mean SD ΔT

(°C) (°C) (°C) (°C)

Unprocessed ASTER surface kinetic temperature scene
A Hot lake 29 18.93 21.32 20.46 0.82 9.31

Nemrut Lake 1136 18.39 20.48 19.40 0.28 8.25
hs3 Hot source 9 17.72 19.49 18.79 0.60 7.64
B Seasonal lake 15 14.18 20.05 17.09 1.73 5.94
E Big maar 19 15.52 17.07 16.49 0.45 5.34
G Long maar 17 14.36 17.07 15.90 0.67 4.75
P Crater 4 15.00 16.10 15.57 0.46 4.41
I Obsidian maar 19 13.82 15.79 15.13 0.57 3.97

Cold regions 331 8.44 13.69 11.15 0.96

Thermal anomalies after altitude and aspect corrections
A Hot lake 29 3.68 6.59 5.05 0.90 9.12

Nemrut Lake 1136 2.07 5.50 3.89 0.69 7.96
hs3 Hot source 9 1.82 4.21 2.83 0.80 6.90
B Big maar 19 1.21 2.69 1.96 0.40 6.03
E Seasonal lake 15 −1.04 4.50 1.73 1.54 5.80
G Long maar 17 0.77 2.84 1.57 0.60 5.64
P Crater 4 0.63 1.46 0.93 0.38 5.00
I Obsidian maar 19 −0.18 1.87 0.89 0.63 4.96

Cold regions 331 −7.69 −2.40 −4.07 0.96
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emissivity were discriminated by emissivity normalization method
(Hook et al., 1992; Kealy and Hook, 1993; Johnson and Young, 1998;
Hernandez-Baquero, 2000). Produced surface temperature data in
Kelvin were converted into degrees Celsius. The altitude–temperature
gradient was corrected using DEM with a second-degree polynomial
equation. Finally, aspect difference due to the travel path of the sun
was corrected using the Aspect of DEM image and a fourth-degree
polynomial equation (Ulusoy et al., submitted for publication).

The corrected night-thermal surface temperature anomaly image
of Nemrut volcano is given in Fig. 7c. High compatibility between the
SP map (Fig. 5a) and the surface temperature image is evident.
Anomalies observed on the SPmap, such as “A”, “E”, “G”, “I”, “O3”, “O4”,
and “P”, were also observed on the surface temperature image
(Fig. 7c). The data of these anomalies in terms of temperature are
summarized in Table 2. SP anomalies along the structural caldera
boundary “H”, “F”, “C”, “J”, “K” and “M” are also detectable on the
surface temperature image. The shallow seasonal lake appeared as an
anomalyonboth the SPmapand the temperature image (Figs. 5a and7c:
“B”). This false anomaly is due to the existence of a seasonal lake and
a low water table around it in the SP map. Daytime warming up of
this shallow lake (b1 m) is easy compared to the other lakes of
Nemrut, resulting in a positive anomaly on surface temperature
image. Nemrut Lake also gives higher temperature values than
adjacent areas. This is because of the thermal inertia difference
between water and other materials. It is known that diurnal radiant
temperature variation of standing water gives lower response than
rocks and soils (Sabins, 1997). Hence, water bodies give higher
radiant temperature values than rocks and soils during nighttime
and lower values at noon.

The fresh, glassy surface of obsidian outcrops at the northern
fissure zone and the seasonal lake surface resulted in false
temperature anomalies (Fig. 7c: depicted by red arrows). Several
anomalies out of the caldera are visible on the image (Fig. 7c: black
andwhite arrows). The linear anomaly observed on the NE flank of the
caldera, which appears on both aspect and Landsat images, is
noteworthy (Fig. 7c: depicted by white arrows); future SP surveys
should be focused on this area.
5. Structural and hydrothermal model for Nemrut caldera

Calderas are important features in all volcanic environments and
are commonly the sites of geothermal activity and mineralization
(Cole et al., 2005). Yet, it is only in the last 25 years that a detailed
three-dimensional study of calderas has been carried out, utilizing
studies of eroded calderas, geophysical analysis of their structures and
analogue modeling of caldera formation (Cole et al., 2005).

Within the scope of our surveys and analyses, we present here an
innovative structural model of the Nemrut caldera (Fig. 9), stating that
it collapsed by a piecemeal mechanism. It consists of three main
blocks; namely P1, P2 and P3 (Fig. 9). Actual hydrothermal fluid
circulation quantified by SP analyses and the intra-caldera eruption
centers are mostly located on the structural discontinuities limiting
these blocks and on the caldera boundary faults. Blocks “P1” and “P2”
form the eastern part of the caldera. The structural boundary between
these blocks controls the main hydrothermal fluid flow in the caldera
and is supposed to be responsible for the major explosive intra-
caldera activity. Some other faults parallel to this one are evident in
and out of the caldera.

The other block, “P3” constitutes the western part of the caldera,
the bowl shaped topographic low, housing the Nemrut Lake. There is
an elevation difference of about 140 m between blocks “P2” and “P3”
(Fig. 9), separating the eastern and western parts of the caldera. This
zone is evident in both the DEMB (Fig. 4a) and the slope image of
DEMB (Fig. 4b) with high altitude difference and steep slopes. At the
shoreline of Nemrut Lake, this discontinuity is visible at some locations
(Figs. 9a and 4c). The lowest part of the caldera floor is the deepest point
ofNemrut Lake, at176mdepth, and is situated at thewesternedgeof the
caldera. Dome shaped bodies constituting aWNW-directed lineation at
the bottom of the lake are probably lineated along a fault. This fault
continues to the west and appears on the western caldera wall as a
reverse fault with approximately 50 m displacement (Figs. 9 and 10)
which is coupled with an ENE reverse fault with a small displacement
(Figs. 9 and 10). Near to the WNW fault, four dikes with a similar
orientation are observed on the caldera wall (Figs. 9a and 10). Karaoğlu
et al. (2005) andÖzdemir et al. (2006) reported that thesedikes are post-
caldera formations; we find, on the contrary, that these dikes were
formed in the pre-caldera phase.

Intra-caldera hydrothermal activity seems to be mainly controlled
by the internal structure of the caldera. Faults and the structural
boundaries of the caldera floor seem to be the main pathways for the
circulation of hydrothermal fluids. Positive SP and Ce anomalies
mainly appear on these structures (Fig. 9b: SP: red and Ce: blue
points). Thermal anomalies detected on the night-thermal image
reinforce that these zones are hydrothermally active and have been
active as visualized by the hydrothermal alteration image defining
clay mineralizations. The highest positive SP anomaly appears around
the Hot Lake, at the northern edge of the fault limiting the blocks “P1”
and “P2”. The structural boundary separating blocks P1 and P2 meets
the caldera boundary at its northern end and this intersection is
situated at the topographic lowwithin the caldera. This is why the hot
springs occur in this location. Other positive SP anomalies along this
boundary appear on the post-caldera maars as well. Most of the post-
caldera activity is hosted by this boundary. Although there is no
topographic difference between blocks P1 and P2, on the surface, these
blocks are facing the opposite directions (Figs. 4d and 9b). If there
were, topographic differences between these two blocks are further
reduced since they are both now covered with post-caldera units.
Possible scenario for this boundary is that it may simply be a post-
caldera fault detaching one block.

Within the spectrum of new data, the structural elements of the
Nemrut caldera were calculated as: topographic diameter: 8.5×7 km;
structural diameter: 6.7×5.3 km; topographic area: 46.7 km2; struc-
tural area: 27.9 km2; maximum collapse on the eastern part: 600 m;
maximum collapse from the bottom of the lake: 650 m; structural



Fig. 9. Structure of Nemrut caldera. (a) Structural map of Nemrut caldera and the blocks responsible for the piecemeal collapse of the caldera. (b) Simplified structural model of the
Nemrut caldera. The faults, hydrothermal spots and collapsed blocks are indicated. White stars: observed hydrothermal alterations; white arrows: general slope direction of the
block; white triangles: altitude points; dashed red circles: maars; red points: positive PS anomalies; blue points: positive Ce anomalies; black lines: known and observed faults;
dashed black lines: inferred faults; “P1, P2, P3”: caldera blocks. To simplify the visualization, caldera fill is discarded; note that there are approximately 280 m of caldera infilling
products according to drill logs of Atasoy et al. (1988).
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volume: 18.14 km3; topographic volume: 32.9 km3; northern collar
angle (on land): 29.2°, western collar angle (from lake bottom): 27.9°.
The lower collar angle value computed from the bottom of the lake
reflects a higher collar slide mechanism due to the existence of
Nemrut Lake.
6. Discussion

A Plio-Quaternary-aged compressional–extensional tectonic
regime, caused by the N–S collision between the Eurasian and Arabian
plates, generated N–S and NNW trending fissures on the Plio-



Fig. 10. Two visible structural features in the caldera: WNW trending reverse fault (white arrows) observed on the western caldera wall with ~50 m displacement and the ENE
trending reverse fault (black arrows) coupling it. Pre-caldera dikes parallel and sub-parallel to the WNW trending fault are shown.
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Quaternary-aged Eastern Anatolian volcanoes (Bozkurt, 2001; Koçyi-
ğit et al., 2001). Around the summit zone of Tendürek, Ağrı, Nemrut,
Bilican and Çatak volcanoes, clear examples of these fissures can be
observed. On the Eastern Anatolian plateau, Koçyiğit et al. (2001)
indicate that NW–SE trending dextral strike-slip faults parallel the
North Anatolian Transform Fault Zone (NATFZ) with the same sense of
motion. Together with the NE–SW trending sinistral faults, NW–SE
trending strike-slip faults constitute the two important structural
systems in the area.

Observed N–S and NNW dominant directions of the faults and
structural boundaries indicate the effect of regional tectonic stress on
the structural context of the Nemrut caldera. The continuation of
these structural elements both in and out of the Nemrut caldera
denotes that the regional tectonic stress played an important role on
the structural evolution of the volcano. In addition, they are
responsible for most of the post-caldera activity both in the caldera
and at the northern fissure zone. These faults control the major
hydrothermal activity. Regional and local structures have a profound
effect on the morphology of calderas (Cole et al., 2005). Pre-existing
structures can break up the caldera floor into a number of blocks that
can collapse independently of one another, depending on the
withdrawal dynamics and depth of the underlying magma chamber
(Branney and Kokelaar, 1994; Cole et al., 2005).

In comparison with the eastern flanks, the altitude difference
between the caldera rim and the basal plateau of the edifice on the
western side is huge. The altitude difference is 1350 m on the
western side, compared to only 800 m on the eastern side of the
volcano (over a 10 km radius). Nemrut Lake, with a volume of
1264 km3, is located in the western half of the caldera. Nemrut
volcano is situated on a highly active tectonic zone: high magnitude
seismic events have been reported (29.03.1907, M: 5; 27.01.1913, M:
5; 14.02.1915, M: 6; 03.11.1997, M: 5; 30.05.1881 (data from Boğaziçi
University, Kandilli Observatory and Earthquake Research Institute,
National center of earthquake monitoring); 18.05.1881, M: 6.7
(Karakhanian et al., 2002)) within a 30 km radius of the volcano
during the last century. There are previous examples of block slides
on the calderawall at the southwestern part: sudden release of water
out of the caldera could be catastrophic, especially for the town of
Güroymak to the west.
7. Conclusions

Hydrothermal fluid circulations on the Nemrut caldera and the
structure of the caldera have been investigated using a self-potential
survey, bathymetry data, derivatives of DEMs, Landsat and ASTER
images. Nemrut caldera collapsed in a piecemeal manner and was
composed of three main blocks. Boundaries delimiting these blocks
and the main structural caldera boundary seem to control the
hydrothermal activity in the caldera.

Negative SP–altitude relationships were observed on the profiles
outside the caldera. A Ce gradient map was utilized for the
interpretation of SP anomalies within the caldera. SP maps are useful
tools for the analysis of hydrothermal fluid circulations on volcanoes.
Moreover, Ce derivatives of SP maps have a potential to improve our
knowledge about the structure of volcanoes.

This new structural model of the Nemrut caldera gives us some
important clues about the nature of its structure and hydrothermal
fluid circulations in the caldera. Active tectonic regimes, historical
eruptions, occurrence of mantle-derived magmatic gases, fumarolic
and hydrothermal activities on the volcano make Nemrut volcano a
real danger for its vicinity (Aydar et al., 2003). “Merciless, cruel, and
sulky”, from which the name Nemrut derives, outlines the danger of
the volcano. It is obvious that the post-caldera activity of the volcano is
mainly controlled by the minor and major structural context of the
region; the caldera is still hydrothermally active. Knowing that the
most recent intra-caldera events correspond to maar eruptions, the
current hydrogeologic state of the caldera may give rise to violent
phreatomagmatic eruptions in the future.
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4. Introduction 
Eastern Anatolia is an intensively seismic area due to the contractional-

extensional tectonic events. Literature data show that the volcano witnessed 

dense volcanic activity since ~1 Ma; most of the volcanics are younger than 500 

ka (Aydar et al, 2003). Recently, ongoing studies on the Eastern Anatolia lead us 

to expand our knowledge on the historical eruptions of Mt. Nemrut (Table 2.1). 

Latest volcanic activities of the volcano occurred in 1441 (Lava flows, Karakhanian 

et al., 2002), before 1597 (Lava fountains and flows, Şerefhan, 1597; Aydar et al., 

2003) and 13 April 1692 (Eruption of gas and ash, Karakhanian et al., 2002). 

Beside the historical records, the volcano still have some hydrothermal and 

fumerol activities (Ulusoy et al., 2008).  

Güleç et al. (2002) showed that the Helium isotope ratio (3He/4He) values of water 

and gas samples of Nemrut caldera have the highest mantle derived Helium 

contribution in Anatolia. Besides, water samples collected from different levels of 

the greater caldera lake indicate an increase in mantle derived Helium contribution 

from top to the bottom in the lake (Kipfer et al., 1994). 

Reanalyzing the data of Kipfer at al. (1994), Songsheng and Ming (2008) 

mentioned a large amount of 3He and 4He release at the bottom of Lake Nemrut, 

associated with heat flow injection. 3Heex (excess tritium) and 4Heex are linearly 

related and indicate the injection of MORB-like mantle helium with an isotopic 
3He/4He ratio of 1.032x10-5 (Songsheng and Ming, 2008). The excess 3He at the 

bottom of Lake Nemrut is 100 times higher than at Lake Van (Songsheng and 

Ming, 2008). The 3He flux into Lake Nemrut is estimated to be 1x10-16 mol.m-2.s-1, 

much higher than that into LakeVan (3 – 5)x10-18 mol.m-2.s-1 (Kipfer et al., 1994). 

The global mantle 3He flux deduced from 3He flux in MOR fluids was estimated to 

be 7x10-20 mol.m-2.s-1 (c.f. Craig. et al., 1975). Thus, the 3He flux in Lake Nemrut is 

3 orders of magnitude higher than the global value. 

These consequential clues lead us to strictly consider about the possibility of a 

future eruption of the Nemrut volcano which is situated in a very active tectonic 

frame. Inhabitants of Bitlis city, Tatvan, Güroymak and Ahlat towns (Table 1.2) 

could be affected by future eruptions of this volcano; and the potential risk is 

undefined. There are many examples that volcanoes have created great 

catastrophes (eg. Mt. Pelée,1902; Nevado del Ruiz, 1985; Mt. Pinatubo, 1991), 
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even after long periods of silence. Hence, as a beginning, to monitor the volcano 

three seismometers were installed around the Nemrut volcano. The monitoring 

network was established, and data are being collected since October 2003. This is 

the first volcano-seismic observation network built around a Turkish volcano. On 

the basis of the recorded seismic data, our scope is to share and discuss the 

preliminary results in this chapter. 

4.1. Seismic Network 

A small seismic network containing three seismometers installed around the 

volcano approximately on a circle of 20 km radius (Fig. 4.1). The stations are 

established in the Gendarmerie headquarters of the Tatvan, Güroymak and Ahlat 

towns. The network is equipped with a broadband (0.033Hz-50Hz, in Tatvan) and 

two short-period (1Hz-80Hz, in Güroymak and Ahlat), 3-component Güralp 

seismometers. Data are digitized with 24 bit, 3-channeled digitizers and 

transferred to the acquisition systems (PC computers). Collected data are 

transferred to our laboratory in real-time by a frame-relay data communication link 

of Turkish Telecom. Data are being recorded in our laboratory (in Ankara) since 

October 2003. 

Seismic stations are configured with seismic monitoring equipment reinforced by 

power and data regulatory devices (Fig. 4.1). Seismometers are connected to a 

GPS device for real-time data acquisition. Collected data are transferred to local 

computers that manage each station. Computers are connected to a frame-relay 

modem via router devices (Fig. 4.1). Routers are assigning unique IP (internet 

protocol) addresses to each computer. For teleprocessing, a special data link 

called “frame-relay” is used. The capacity and the speed of the link are limited with 

the infrastructure of the local telecommunication network (8 kbps) of Bitlis city. In 

frame-relay teleprocessing system, data are flowing throughout two endpoints. 

Between those endpoints the data flow channel is variable and can not be 

predefined; the frame-relay network handles the transmission over a frequently-

changing path transparent to all end-users. This data flow process is called as 

“frame-relay cloud” (Fig. 4.1). 
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Figure 4.1. Teleprocessing, configuration and location of the seismic stations. 
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The frame-relay line is ended in a computer running in our laboratory at Hacettepe 

University (Ankara). Computers are designed for auto-run, the hardware and 

software are reinitializing in case of a power-cut. “SCREAM!” software of Güralp 

systems which is pushing (and pulling for the Hacettepe University side) data runs 

on all of the computers. Operating systems of the computers are configured for 

remote controlling, though in case of a problem, it is possible to manage the 

system from Hacettepe University. It is also possible to control and change the 

configuration of the digitizers remotely via “SCREAM!” software. 

Power system of the stations is reinforced with a regulator, an UPS 

(Uninterruptible power supply) and a surge protector. Surge protector and an 

additional circuit are also protecting the telephone line (connected to the modem) 

for any overcharging event (Due to a lightning stroke on the telephone line, away 

from the seismic stations, one of our frame-relay modem was demaged). 

4.1.1. Limitations, problems faced and efficiency of the network 

Nemrut seismic monitoring network is active since October 2003. Although the 

stations are equipped with proper devices, we faced with various limitations that 

affected the quality of the data and problems that interrupted the data flow from 

three stations. Accordingly, it is essential to discuss these problems and the 

efficiency of the monitoring network. 

Number of seismometers and their distance from the volcano 
The small monitoring network consists of three seismic stations. Beyond debate, 

the number of the stations is the first limitation for the network. Any interruption of 

data flow from one of the seismometers because of any type of device 

malfunction, unsurprisingly disallowed the hypocenter solution. The nearest station 

of the National Earthquake Monitoring Center (Boğaziçi University, Kandilli 

Observatory and Earthquake Research Institute) is situated at Varto, 90 km away 

from the Nemrut volcano equipped with a vertical component short period 

seismometer. Moreover, Kandilli Observatory publishes event based waveform 

data for magnitudes >3.5.  

Safety and security conditions in the region constrained us to install the stations in 

the Gendarmerie Headquarters, situated in the town centres; as a result, record of 

noise due to daily human activity was ineluctable. Additionally, stations were 
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installed relatively away from the volcano (14 km for Tatvan, 18.5 km for 

Güroymak and 22.5 km for Ahlat) resulting to lose some aftershocks in the noise. 

Electricity 
City mains are another constraining feature to stabilize the continuous data flow. 

Although stations are equipped with UPS devices, long-term electrical cuts or 

voltage drops passes beyond the capability of the stations. Time to time, 

especially in Güroymak town drop of voltage does not allow even efficient run of 

basic electronic devices, moreover, cause harm to the devices. Our configuration 

managed to overcome the damage caused by the electrical circuit however lost of 

data due to long-term cuts were unavoidable. 

Teleprocessing 
At the time of installation of the seismic stations (summer 2003) teleprocessing 

capability of telecommunication infrastructure of Bitlis city was limited. Cost of 

conventional networking tools were very high and were not efficient for data 

transfer. For example, ADSL (Asymmetric Digital Subscriber Line) system was not 

available in the Bitlis city, and to send data through an internet line was requiring a 

server system in the city. Only possible data communication system was Frame-

relay networking and the speed of this system was limited to 8 kbps in Bitlis. 

Although digitizers were capable of both recording in higher sample rates, speed 

limitation of Frame-ralay infrastructure only allowed the transfer of 50 sample per 

second (sps) data. Additionally, we were not able to use STA/LTA (Short term 

average / Long term average) filtering capability of the digitizers because the 

bandwidth available for data transfer was not large enough to acquire both 

continuous and triggered data. 

Efficiency of the seismic network 
Consequently, local conditions have highly affected the efficiency of the data flow. 

To check and update the efficiency status monthly, we wrote an Excel VBA (Visual 

Basic for applications) script. Script allows us to check the existence of hourly data 

for monthly periods and creates a worksheet. Created monthly worksheets were 

used to analyse the efficiency of the network (Fig. 4.2). 
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Figure 4.2. Monthly efficiency chart of the seismic network. Black arrows are pointing the yearly 

maintenance dates. White arrow is pointing the starting date of malfunction of Güroymak 
station initiated by a lightning strike. 

 

Overall efficiency for the network for four years of data recording is 62%, 49% and 

32% for Tatvan, Ahlat and Güroymak stations respectively. In September 2005, 

because of a lightning that stroke on the local telephone line, 3 km away from 

Güroymak station; frame-relay modem unit and the digitizer of the seismometer 

were damaged (Fig. 4.2). This event tragically ended the data flow from the 

Güroymak station and stopped the hypocenter solutions for the network. 

Consequently, analyses only performed before this date (between October 2003 

and October 2005) will be presented here. Efficiency of the network between 

October 2003 and October 2005 is 77%, 62% and 67% for Tatvan, Ahlat and 

Güroymak stations respectively. Still, there is a loss of 23% - 38% of data in this 

period. These losses are mainly because of the infrastructure of the local 

telecommunication system. Note that the efficiency of Tatvan station is higher than 

other two stations. This is because the telecommunication system infrastructure in 

Tatvan town is better than the other towns (Ahlat and Güroymak). 

Upgrades and Scheduled upgrades in the system 
To overcome the lost of data because of the telecommunication system and to 

increase the efficiency of the network, precautions were necessary. The first of the 

cautions was to strengthen the stations with additional surge protectors. Second 

change was the replacement of the computers at the stations in September 2007. 

These new computers are equipped with hard disc drives with high storage 
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capacities. Now data are both recorded at the stations and send to Ankara. Third 

scheduled upgrade will be in the data transfer protocol. At the end of 2007, local 

telecom added ADSL (Asymmetric Digital Subscriber Line) data transfer protocol 

to Tatvan, Güroymak and Ahlat towns. Teleprocessing with frame-relay system will 

be ended and will be changed to ADSL system before the end of 2008. This 

change in teleprocessing will be a quantum leap for Nemrut monitoring network: 

(1) continuous data flow will be more stable, (2) recording of 100 SPS data will be 

possible and (3) the digitizer units of the seismometers will be controlled and their 

software will be updated daily by the manufacturer of the seismometers. 

4.2 Data Processing 

Three codes were written in LabView environment to analyse the data. The first 

code “Nemtrig” (Nemrut trigger) is used to trigger the possible events (Fig. 4.3). 

The code and its short user guide is presented in e-Appendix-4. The code uses a 

two-level STA/LTA (Short-term average/Long term average ratio) filter to trigger 

and save possible events. Here, using two-level term, we mean that there are two 

synchronous STA/LTA algorithms running backwards. The first is running as usual 

STA/LTA trigger algorithm (Trnkoczy, 2002) while the second one searches the 

small amplitude events in the background and/or noise. Second STA/LTA 

algorithm uses a low triggering threshold and triggers if all the seismometers pass 

the low threshold level. One of the simplest and most successful methods is to 

bandpass filtering of the data before applying the STA/LTA detector (Blandford, 

1982; Ruud and Husebye, 1992). Nemtrig optionally allows the bandpass filtering 

before the STA/LTA triggering. 

Nemtrig accepts data in GCF (Güralp compressed file) format analyses data, cuts 

and saves triggered data in SAC (Seismic analysis code) file format. 

In process, raw data are band-pass filtered between 1-9 Hz, the STA value is set 

to 1 second and the LTA value is set to 30 seconds. STA/LTA threshold values for 

the first and the second triggering algorithms are set as 4 and 1.5 respectively. 

The triggered events are then analyzed and localization is then performed using 

another program: PickEv2000 (Frechet and Thouvenot, 1990; Thouvenot et al., 

1990), the seismic analysis software of Grenoble seismic network. 
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Figure 4.3. Screenshot of Nemtrig code in progress. In the signal charts STA/LTA signal flow for 

Tatvan, Güroymak and Ahlat stations are continuously visible during filtering process. 
Different colored lines are assigned to two horizontal and one vertical component channels 
of the seismometers. 

 

The second code we wrote, “Nemtract” (Nemrut extract) is supporting “Nemtrig” 

and is used to cut data (Fig. 4.4). Depending on the magnitude or the relative 

location of the triggered event, the event is not always triggered by all the three 

seismometers. During STA/LTA triggering process, when a possible event is 

triggered only by one or two seismometers, we use Nemtract to cut the related 

data portion using “Nemtrig” for the missing (untriggered) station(s). 

Our third code, “Nemspec” (Nemrut spectrogram), visualize the spectrogram of the 

event to determine the type of seismic event (Fig. 4.5). 
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Figure 4.4. Screenshot of Nemtract. For the defined pre-set time, event time and duration, 

Nemtract cuts the desired dataset and saves the cut file in SAC file format. 
 
 

 
Figure 4.5. Screenshot of Nemspec code in progress. For a given portion of the seismic signal, 

Nemspec draws the spectrum of the signal in terms of time, frequency and amplitude. 
 

4.3. Seismicity of the volcano 

Previous seismic activity around the volcano is reported by Boğaziçi University, 

Kandilli Observatory and Earthquake Research Institute, National center of 

earthquake monitoring (Fig. 4.6). The seismic activity around the volcano is being 

observed since November 2003 by our network. This is the first seismic network 

for the purpose of volcano monitoring in Turkey. 
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Figure 4.6. Seismic events (M>3) reported by Kandilli observatory and earthquake research 

institute in the last century (1900 - 2003). Magnitudes (under the point) and dates (over the 
point) of the events are indicated (Magnitude of the 1965 event is unknown). Projection: 
UTM, European Datum 1950. 

Event types 
Raw data are triggered by our code in near real-time. Following the hypocenter 

solutions of the seismic events, event types are determined by frequency and 

depth spectrum analyses. While classifying the events according to their spectral 

characteristics, we used the generally agreed features defined in the works of 

McNutt (1996a, 1996b, 2000), Chouet (1996) and Wassermann (2002). General 

characteristics of volcanic event types compiled from McNutt (2000) and 

Wassermann (2002) are presented in Table 4.1. Additionally, typical waveforms of 

volcanic earthquakes are shown in Figure 4.7. 
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Depth P - S waves Frequency 
spectra

Frequency 
class Sample Remarks

VT-A Deep    
~>2 km

Clear P and S 
wave arrivals

>5 Hz      
5-15 Hz HF

Most HF events are 
thought to be caused 
by shear failure or slip 

on faults.

Lo
w

 fr
eq

ue
nc

y 
- L

P 
ev

en
ts

Shallow 
~1-2 km

Clear P wave 
arrival, 

sometimes 
impossible to 

observe S 
wave arrival

1-5 Hz     
generally   
2-3 Hz

LF

Most LF events are 
thought to be caused 
by fluid pressurization 

process such as 
bubble formation and 
collapse and also by 
shear failure, tensile 
failure, or nonlinear 

flow processes which 
occur at very shallow 

depths for which 
attenuation and path 

effects play an 
important role.

LF

a) Hybrid, b) LF-LP events

A VT event that 
triggers LP event may 
cause such activity. An 
earthquake occuring 

adjacent to a fluid filled 
cavity that setting it 

into oscillation may be 
an example.

Type
Vo

lc
an

o-
Te

ct
on

ic
 e

ve
nt

s

Hybrid 
events

Could share the attributes of both      
VT-A and VT-B type events and LF (ex. 

Tornillo) events.

 
Table 4.1. Volcanic event types and their common attributes. HF: High-frequency, LF: Low-

frequency. 
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Depth P - S waves Frequency 
spectra

Frequency 
class Sample Remarks

> than 
Hybrid 

events,      3-
8 Hz

LF

Frequency content of 
this type of event is 
higher than Hybrid 

events but are related 
as well to energetic 

dome growth at a very 
shallow level.

Generally 
<2 km

Very emergent 
signal onset 

and no S wave 
arrivals

1-3 Hz LF

Locations are deduced 
mainly by amplitude 

distance curves, 
Hypocenter solutions 
could rarely be made 
by using broadband 

networks

1-5 Hz     
generally   2-

3 Hz
LF

LF

They are thought to be 
caused by the 

resonating bodies 
because of gases and 

inside the magma 
channels

Harmonic 
Tremor

Volcanic tremor is a 
continuous signal with a 
duration of minutes to 

days or longer. Tremor is 
a seies of LF events 

occuring at intervals of a 
few seconds.

Harmonic tremor is a LF, often single-
frequency sine-wave with smoothly 
varying amplitude, or sometimes 

consists of a fundamental frequency 
with many overtones.

Multi-Phase 
events

Could share the attributes 
of both VT-A and VT-B 
type events and LF (ex. 

Tornillo) events.

Long-Period 
or Long-

Coda events 
(Tornillo)

Volcanic 
Tremor

Type

 
Table 4.1.cont. Volcanic event types and their common attributes. 
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Figure 4.7. Typical waveforms of volcanic earthquakes: (a) High frequency or type A volcano 

structural earthquake, Redoubt volcano, 6.8 km deep, RED recorded, 8 km away from 
crater; (b) Mixed frequency event, 0.6 km deep (0.61 m above sea level), Redoubt volcano, 
RED recorded; (c) Low frequency or long-periodic event, 4 km deep, RED recorded; (d) 
Volcanic tremor, Redoubt Volcano, RED recorded; (e) Explosive shock, Pavlof Volcano, 
PVV recorded, 8.5 km away from the volcano (note: arrival of abrupt air wave); (f) Low 
frequency or type B event, Pavlof volcano, PVV recorded; (g) Volcanic tremor before 
eruption, Spurr volcano, CRP recorded, 4.8 km away from the volcano; (h) Tremor in the 
eruption, Pavlof volcano, PVV recorded (after McNutt, 1996b). 
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Examples of volcano-seismic events observed by our network beneath the Nemrut 

volcano are presented in Figure 4.8. A-type volcano tectonic event with its high 

frequency content (Figure 4.8a), LF event with 2-3 Hz dominant frequency (Figure 

4.8b) and the hybrid type event covering a large range of frequency spectrum 

(Figure 4.8c) is obvious in these three samples. 

 

 
Figure 4.8. Z-N-E components and Fourier amplitude spectrum (S-wave, Z-component) of the 

Seismic events of volcanic origin recorded by Hacettepe University Nemrut Monitoring 
Network between October 2003 and October 2005. a) A-type volcanic event recorded in 
29.05.2005 at 01:199:13.72 (UTC), b) LF-LP event recorded in 06.06.2005 at 10:15:16.20 
(UTC), and c) Hybrid event recorded in 16.10.2003 at 09:26:11.83 (UTC). 
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Magnitudes 
Duration dependent magnitude (Md) equations of the three seismic stations were 

derived using a regression method (Kalafat, 1989a,b; Ayhan et al., 1988). Local 

magnitude equations of recorded events were calculated using the magnitudes of 

the events reported by National center of earthquake monitoring (Kandilli 

observatory). In order to determine the duration dependent magnitude equation for 

Nemrut seismic monitoring network, we used the following equation: 

cDbLogTaMd ++=   (Kalafat, 1989b), 

Where “Md” is the duration dependent magnitude of the earthquake, “T” is the total 

signal duration, “D” is the epicentral distance in km, and “a”, “b” and “c” are the 

coefficients of regression. Using the least squares method, coefficients of 

regression for the Nemrut seismic monitoring network are calculated as: a = 0.40, 

b = 2.001 and c = -0.0016. 

4.3.1. Seismicity between October 2003 and October 2005 

Within a two years period, between October 2003 and October 2005, 219 events 

including regional Long-Period tectonic events and 89 low magnitude local and 

regional earthquakes have been recorded (Fig. 4.9). A total of 133 events were 

observed in the vicinity of the volcano, with magnitudes (Md) ranging from 1.3 to 

4.0 (Table 4.2, Fig. 4.9). 32 events that are thought to be of volcanic origin have 

been observed with a frequency of 1.3 events per month (Fig. 4.10). This is a 

considerable value for a dormant volcano. Occurrence frequency of events is an 

important precursor to determine an upcoming eruption, as the rates of seismicity 

before and during eruptions are typically several tens to several hundreds or more 

events per day, and include larger-magnitude events (McNutt, 2000). Events of 

volcanic origin were observed in three types: VT-A (volcano-tectonic, type A), LF-

LP (Low frequency – long period) and Hybrid events (Table 4.1). 18 VT-A type 

(Md: 1.7-3.8), 3 LF-LP type (Md: 2.4-3.0) and 12 Hybrid type (Md: 1.3-3.4) events 

were located in the close vicinity of the volcano (Fig. 4.10). 

Depths of the volcanic events range between 4 and 25.5 km. Under the Nemrut 

caldera, depth of the volcanic events could be grouped in two main swarms: first 

group events are localized between 3.9 and 8.5 km with an average of 5.8 km, 

second group is defined by only two events at 14.3 and 16.6 km depth (Fig. 4.10). 

Other than the events under the Nemrut volcano, volcanic events also occurred 
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under the Mazik dome with a depth ranging between 4.9 and 25.6 km (Fig. 4.10). 

Hypocenters of these events are slightly parallel to the N57ºE directed fault system 

which is located on the Mazik dome. 

 

 
Figure 4.9. Seismic events recorded by Hacettepe University Nemrut Monitoring Network between 

October 2003 and October 2005. White triangles indicate the station locations. Projection: 
UTM, European Datum 1950. 
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Figure 4.10. Seismic events recorded by Hacettepe University Nemrut Monitoring Network 

between October 2003 and October 2005 in the immediate area of Nemrut volcano. White 
triangles indicate the station locations. Projection: UTM, European Datum 1950. 

 

Shallow emplacements of the volcanic events occurred under Nemrut volcano 

(Fig. 4.10) are the indicative evidence of a shallow magma chamber at 4-5 km 

depth. According to his research on the phase equilibria among mineral species, 

Çubukçu (2008) also suggested that the crystallization takes place in a shallow 

magmatic reservoir.  
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NO DATE ORIGIN_(UTC) LAT LONG X Y Depth Md DMIN RMS T_(S) FC Pon Son ET
1 22.09.2003 03:07:11.23 38,3357 41,8590 225446,14 4247803,94 4,93 2,4 30,10 0,02 10,92 HF c c T
2 01.10.2003 13:13:59.96 38,0935 42,6818 296704,45 4218797,19 27,38 2,8 56,50 0,09 17,36 HF c c T
4 05.10.2003 14:46:58.34 39,0118 42,4542 279566,21 4321242,65 5,36 3,1 28,70 0,01 23,35 HF c c T
5 06.10.2003 17:57:18.80 39,0155 42,4628 280322,42 4321632,53 5,01 2,9 29,10 0,03 17,75 HF c c T
6 13.10.2003 13:50:50.64 39,1988 41,5540 202391,79 4344571,46 2,46 3,3 81,50 0,00 34,36 HF c c T
7 14.10.2003 20:49:51.45 38,6432 42,3355 268093,00 4280623,66 7,66 2,0 17,10 0,01 6,30 HF c c A-VT
8 15.10.2003 12:20:41.49 38,6860 42,6665 297026,59 4284588,69 9,30 2,1 17,30 0,00 7,24 HF c c T
9 16.10.2003 09:26:11.83 38,4057 42,2437 259311,29 4254498,80 4,31 2,4 10,50 0,01 10,24 MF c uc H

10 16.10.2003 18:13:38.83 38,5952 41,8373 224538,98 4276673,89 2,75 2,5 17,60 0,01 12,01 HF c c T
14 24.10.2003 15:58:14.95 38,9020 42,5027 283432,06 4308938,90 1,13 2,4 16,40 0,01 10,22 HF c c T
20 28.10.2003 22:06:9.22 38,7457 42,2603 261887,18 4292193,71 5,51 1,8 19,80 0,01 5,16 HF c c A-VT
22 03.11.2003 02:58:59.28 38,4253 43,0608 330716,37 4254856,43 5,60 3,0 61,90 0,03 22,29 LF c c T
23 03.11.2003 22:09:42.68 38,8108 42,3863 273046,38 4299099,01 5,46 2,2 10,80 0,01 7,88 LF c c T
24 10.11.2003 20:45:15.04 38,6583 42,5185 284068,22 4281852,59 4,53 1,6 11,00 0,03 4,06 LF c c T
25 12.11.2003 12:34:50.95 38,7140 42,3843 272565,37 4288359,68 4,69 1,7 10,10 0,00 4,79 LF c c T
26 20.11.2003 03:02:34.86 38,6645 42,6127 292284,18 4282323,00 5,57 2,7 14,70 0,05 13,94 LF c c T
27 26.11.2003 12:41:51.16 38,6557 42,6045 291545,09 4281364,92 7,35 1,7 14,90 0,02 4,62 LF c c T
28 15.01.2004 22:58:01.93 38,5512 42,2093 256796,66 4270738,87 14,29 2,8 9,10 0,06 16,17 HF c c A-VT
29 17.01.2004 21:23:45.35 38,6488 42,5053 282890,75 4280829,36 14,81 2,4 11,80 0,19 10,10 HF c c T
31 31.01.2004 18:54:40.14 38,8990 42,3480 270004,67 4308984,80 7,64 2,5 20,10 0,11 11,70 HF c c T
32 06.02.2004 05:27:42.90 38,6982 42,5310 285275,41 4286251,75 9,60 3,0 7,30 0,05 19,41 MF c c T
33 07.02.2004 03:19:31.34 38,7217 42,4898 281763,33 4288957,47 8,04 2,4 3,70 0,21 10,50 HF c c T
34 09.02.2004 19:09:01.49 38,7400 42,1570 252887,92 4291835,03 5,27 2,5 21,70 0,09 12,34 HF c c T
35 18.02.2004 00:53:57.99 38,4088 42,8135 309082,45 4253508,55 22,84 3,2 47,10 0,09 26,71 HF c c T
36 21.02.2004 00:24:42.80 38,7418 42,6300 294011,65 4290863,41 2,44 2,0 12,40 0,27 6,55 MF c c T
37 27.02.2004 03:07:41.91 38,1988 42,6353 292924,14 4230586,32 29,67 3,0 44,90 0,22 21,41 HF c c T
38 29.02.2004 00:43:01.56 38,6938 42,4143 275110,95 4286043,50 5,37 2,2 9,30 0,02 8,41 HF c c T
39 04.03.2004 01:01:52.22 38,6472 42,0870 246474,74 4281725,69 8,06 3,4 9,80 0,21 32,03 MF c uc H
40 07.03.2004 20:03:41.82 38,6967 42,3143 258105,74 4286863,96 4,52 3,0 31,80 0,00 20,32 MF c c A-VT
41 11.03.2004 02:38:09.06 38,6892 42,1277 250163,77 4286275,83 6,85 2,6 15,60 0,05 12,99 HF c c T
42 18.03.2004 00:42:07.08 38,9475 42,6623 297403,93 4313622,05 9,16 3,0 26,20 0,27 21,04 HF c c T
43 23.03.2004 22:39:12.57 38,5748 42,4805 280506,61 4272675,08 17,03 2,5 19,20 0,02 12,14 HF c c A-VT
47 09.04.2004 21:16:42.61 38,7107 42,2557 261370,81 4288320,80 6,76 1,7 20,80 0,21 4,69 HF c uc A-VT
48 09.04.2004 22:29:21.59 38,4655 42,1810 254038,30 4261301,90 3,21 2,0 9,60 0,02 6,21 HF c c T
49 09.04.2004 22:31:16.56 38,4645 42,1797 253921,45 4261194,38 2,88 1,9 9,80 0,03 5,48 HF c c T
50 10.04.2004 19:55:56.10 38,4628 42,0155 239585,58 4261457,60 1,47 2,9 11,90 0,06 17,69 LF c c T
56 22.04.2004 21:47:52.61 38,4243 42,8348 310982,91 4255184,85 25,58 3,4 47,50 0,07 35,67 LF c c T
57 22.04.2004 23:43:03.61 38,4250 42,8317 310714,09 4255268,91 27,68 3,1 47,30 0,11 25,66 LF c c T
58 25.04.2004 23:28:38.00 38,8103 42,4635 279749,26 4298854,53 16,58 2,9 6,60 0,25 18,57 HF c c T
59 26.04.2004 11:40:46.09 38,4613 42,0148 239519,09 4261293,09 1,38 3,4 12,10 0,06 32,37 LF c c T
60 01.05.2004 00:28:25.01 38,6557 42,0725 245242,67 4282709,40 6,53 2,4 10,20 0,03 9,98 HF c c A-VT
61 01.05.2004 19:49:24.08 37,5068 41,9518 230548,63 4155530,34 0,10 4,0 113,50 15,20 100,30 LF c c T
62 09.05.2004 15:13:19.07 38,4650 42,0078 238921,51 4261723,62 2,61 2,4 11,80 0,10 9,69 MF c c T
64 17.05.2004 00:57:11.04 38,9888 42,2127 258573,86 4319302,75 32,38 2,7 35,30 0,18 15,42 HF c c T
65 18.05.2004 10:40:38.09 38,6682 42,3900 272916,20 4283262,03 6,68 2,0 12,80 0,21 6,21 MF c c T
66 19.05.2004 02:07:32.92 38,7818 42,3745 271929,12 4295909,53 5,45 1,6 10,30 0,08 4,07 HF c c T
67 25.05.2004 06:12:56.01 38,6510 42,0858 246383,70 4282150,81 4,81 2,0 10,10 0,04 6,10 MF c c A-VT
68 30.05.2004 18:36:42.93 38,8413 42,5135 284185,16 4302175,96 15,28 2,4 9,90 0,35 10,23 HF c c T
69 31.05.2004 00:51:42.07 38,6715 42,5690 288502,01 4283199,89 5,25 2,4 11,60 0,03 10,22 HF c c T
70 02.06.2004 12:09:40.58 38,6345 42,3972 273436,53 4279503,74 5,95 1,9 15,50 0,20 5,97 HF c c T
71 03.06.2004 07:37:14.26 38,3948 42,2448 259371,20 4253286,12 4,27 2,7 11,60 0,06 14,58 LF c c T
72 05.06.2004 07:07:24.95 38,4663 42,0095 239074,56 4261863,10 2,48 2,3 11,60 0,06 9,07 HF c c T
73 07.06.2004 12:29:10.38 38,4487 42,0178 239735,60 4259886,02 14,56 3,0 13,40 0,04 21,54 HF c c T
74 09.06.2004 00:49:10.76 38,6630 42,6258 293419,83 4282126,91 8,86 2,5 15,70 0,02 11,40 HF c c T
75 23.06.2004 01:55:01.94 38,1798 42,5070 281630,55 4228772,37 6,68 3,1 40,00 0,09 23,02 LF c c T
78 24.07.2004 15:09:44.22 38,9177 42,4067 275155,24 4310913,99 17,01 2,5 19,50 0,02 11,65 HF c c T
81 29.07.2004 14:47:22.11 38,5372 41,6598 208841,23 4270783,42 5,68 3,1 33,00 0,01 22,80 LF c c T
87 13.08.2004 22:52:49.34 38,5942 42,2488 260382,60 4275407,80 5,44 2,5 11,50 0,05 11,67 LF c c? H
91 20.08.2004 13:03:58.71 38,9327 42,3605 271197,23 4312693,96 12,85 3,0 22,70 0,02 20,83 MF c c T
92 20.08.2004 23:49:37.90 38,7708 42,2798 263665,11 4294929,14 18,67 2,2 18,20 0,06 8,13 HF c c T
93 21.08.2004 05:32:15.73 38,9555 42,3462 270031,19 4315260,73 4,84 2,5 25,50 0,08 11,33 HF c c T
94 21.08.2004 07:24:25.50 38,9697 42,4380 278031,74 4316609,05 5,05 2,4 24,30 0,07 10,53 HF c c T
95 21.08.2004 16:26:34.73 38,9210 42,3683 271835,96 4311375,73 16,03 3,0 21,20 0,02 20,98 HF c c T
96 21.08.2004 17:15:04.30 38,9140 42,3825 273044,95 4310563,28 18,59 3,3 19,90 0,00 29,89 HF c c T
97 21.08.2004 17:34:05.28 38,9243 42,3653 271586,42 4311749,53 11,39 3,3 21,70 0,01 29,03 HF c c T  

Table 4.2. Datasheet of recorded seismic events. Md: duration dependent magnitude, Dmin: 
minimum distance to the closest station in km, T(s): coda duration, FC: frequency class, 
HF: high freq., LF: low freq., MF: middle freq., Pon and Son: P and S wave onset, c: clear, 
uc: unclear, ET: event types, Art.: Artificial expolsions. 
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NO DATE ORIGIN_(UTC) LAT LONG X Y Depth Md DMIN RMS T_(S) FC Pon Son ET
98 22.08.2004 10:17:56.80 38,9192 42,3727 272211,73 4311164,92 18,63 3,4 20,90 0,06 32,18 LF c c T
99 23.08.2004 21:44:14.96 38,4343 42,0210 239963,22 4258278,61 5,34 3,0 15,00 0,13 20,16 HF c c T

100 28.08.2004 08:48:28.65 38,4015 42,2460 259498,24 4254026,63 4,64 2,6 10,90 0,01 12,14 HF c c T
101 05.09.2004 23:05:48.82 38,4798 42,0527 242892,58 4263239,94 2,05 2,7 10,00 0,05 13,69 HF c c T
102 06.09.2004 06:21:00.02 38,4233 42,2825 262757,63 4256351,62 7,73 2,9 7,90 0,06 18,67 HF c c T
105 29.09.2004 23:03:01.70 38,7212 41,9878 238109,56 4290218,94 6,20 2,4 17,50 0,01 10,46 HF c c T
106 30.09.2004 00:24:18.73 38,7173 41,9773 237182,17 4289816,14 6,39 2,9 17,30 0,04 18,64 HF c c T
107 12.10.2004 08:41:27.49 38,6065 42,3177 266424,39 4276595,36 8,47 3,0 12,80 0,02 19,59 LF c c LF-LP
108 17.10.2004 16:59:50.99 38,6768 42,6708 297374,71 4283558,07 10,59 2,9 18,10 0,03 18,92 HF c c T
109 19.10.2004 03:01:52.47 38,6628 42,2068 256955,86 4283132,66 5,55 2,5 18,20 0,03 11,18 HF c c A-VT
110 22.10.2004 19:52:24.30 38,1742 42,1675 251868,29 4229005,88 5,00 2,7 37,00 0,30 15,15 MF c c T
111 24.10.2004 18:43:26.41 38,6663 42,3402 268576,54 4283175,74 7,52 2,1 16,20 0,30 7,12 HF c c A-VT
113 25.10.2004 04:14:45.45 38,6743 42,6038 291538,14 4283430,91 5,01 2,6 13,40 0,09 13,33 MF c c T
116 14.11.2004 02:09:27.10 38,9285 42,2865 264767,72 4312416,23 9,73 3,0 45,50 0,01 22,79 MF c uc H
117 14.11.2004 04:00:58.58 38,9642 42,3743 272494,45 4316155,82 8,58 2,9 52,70 0,02 20,20 LF c uc H
120 23.11.2004 23:38:53.99 38,6818 42,1303 250364,23 4285447,35 9,58 2,7 15,00 0,34 13,84 HF c c T
123 07.12.2004 02:18:51.52 38,7162 42,4930 282024,86 4288339,39 11,43 1,7 4,30 0,06 4,68 HF c c T
124 09.12.2004 12:53:36.95 38,6683 42,6345 294192,09 4282695,57 6,77 2,2 15,90 0,00 8,30 HF c c T
125 09.12.2004 16:12:23.91 38,6160 42,4842 280954,33 4277239,04 7,68 1,6 15,40 0,02 4,25 HF c c T
126 09.12.2004 20:33:02.66 38,5973 42,5255 284494,77 4275065,73 5,75 1,8 17,70 0,05 5,18 HF c c T
127 22.12.2004 00:06:39.16 38,7562 43,0272 328572,00 4291642,33 13,46 2,7 46,90 0,10 15,88 HF c c T
130 03.01.2005 18:38:51.31 38,5117 42,1612 252468,66 4266483,00 4,91 1,7 11,00 0,16 4,50 HF c c A-VT
131 03.01.2005 18:38:59.24 38,5310 42,1792 254104,21 4268576,90 7,35 2,5 10,10 0,12 11,41 HF c c A-VT
132 17.01.2005 04:40:40.12 38,8625 42,7540 305119,58 4303987,90 5,00 2,5 26,00 0,19 11,88 HF c c T
160 01.03.2005 00:43:22.11 38,7763 41,6110 205568,16 4297481,90 0,49 3,4 43,60 0,18 34,34 LF c c T
163 21.03.2005 12:43:57.09 38,7782 42,3170 266921,72 4295655,00 22,58 2,2 15,10 0,05 8,33 HF c c T
175 07.04.2005 01:30:43.87 38,3287 42,0228 239741,86 4246552,25 5,25 2,8 26,70 0,13 16,26 HF c c T
176 18.04.2005 11:01:26.94 38,5803 42,3557 269650,19 4273591,29 5,62 2,7 11,40 0,00 15,13 LF c uc H
178 05.05.2005 09:46:05.62 38,5480 42,2355 259069,65 4270314,64 5,45 1,3 7,30 0,17 2,75 HF c uc H
179 05.05.2005 09:46:17.35 38,6147 42,3268 267243,47 4277482,38 5,80 2,6 13,80 0,25 13,20 LF c uc LF-LP
180 19.05.2005 04:05:38.01 38,5240 42,0650 244122,38 4268111,72 5,25 1,9 5,50 0,07 5,95 LF c uc T
181 19.05.2005 04:08:36.04 38,6828 42,0380 242337,07 4285814,00 3,26 1,9 12,70 0,13 5,77 HF c uc T
182 29.05.2005 01:19:13.72 38,5900 42,0332 241586,11 4275526,70 16,45 3,8 2,40 0,03 47,80 HF c c A-VT
184 30.05.2005 14:28:39.29 38,5733 42,2652 261742,11 4273045,31 4,64 3,0 8,90 0,35 20,51 LF c uc H
187 06.06.2005 10:15:16.20 38,5717 42,3488 269021,46 4272654,08 5,20 2,4 10,20 0,01 10,33 LF c uc LF-LP
190 14.06.2005 13:55:53.46 38,5577 42,2810 263067,58 4271272,92 4,00 2,7 7,00 0,02 14,06 LF c c A-VT
191 21.06.2005 12:21:28.79 38,6205 42,2615 261576,03 4278293,88 5,12 2,5 14,10 0,00 11,16 LF c uc H
192 23.06.2005 13:47:32.17 38,5867 42,3030 265079,51 4274435,21 5,29 2,9 10,30 0,01 17,59 MF c uc H
193 25.06.2005 17:28:17.67 38,6525 42,4243 275851,96 4281434,99 7,22 2,9 21,30 0,01 19,48 LF c c A-VT
194 26.06.2005 02:42:37.87 38,6500 42,3848 272406,07 4281254,85 3,94 2,7 19,30 0,01 14,36 HF c c A-VT
197 09.07.2005 01:18:33.41 38,7565 42,4728 280391,82 4292860,70 13,20 1,6 1,30 0,01 3,93 HF c c T
198 09.07.2005 01:18:34.80 38,7805 42,5138 284027,55 4295426,86 18,52 1,4 3,70 0,01 3,33 HF c c T
199 09.07.2005 01:20:08.66 38,7598 42,4700 280158,61 4293233,70 12,20 2,1 1,70 0,02 7,32 HF c c T
200 09.07.2005 11:32:27.09 38,3922 42,2602 260707,84 4252957,44 4,62 2,7 11,60 0,00 13,95 LF c uc Art.
201 09.07.2005 14:51:26.86 38,3812 42,1417 250318,34 4252050,82 10,52 3,1 17,70 0,02 23,58 HF c c T
202 09.07.2005 14:52:28.64 38,3883 42,1395 250150,58 4252844,84 9,80 2,6 17,30 0,01 12,42 MF c c T
204 13.07.2005 15:02:48.12 38,3982 42,2497 259810,48 4253650,71 3,88 2,3 11,10 0,01 9,62 LF c uc Art.
205 15.07.2005 09:44:48.16 38,3810 42,2327 258268,27 4251786,08 8,25 2,0 13,40 0,00 6,12 MF c uc Art.
206 20.07.2005 15:37:46.06 38,4127 42,1995 255474,52 4255392,14 4,58 2,6 11,70 0,04 12,91 LF c uc Art.
207 23.07.2005 23:58:44.44 38,9885 41,9872 239037,10 4319892,12 15,26 3,2 46,80 0,01 27,13 HF c c T
208 24.07.2005 01:05:33.52 39,1518 41,9598 237270,12 4338098,67 5,64 2,9 63,60 0,07 20,70 HF c c T
209 02.08.2005 10:08:18.72 38,3910 42,2347 258476,30 4252890,76 4,75 2,6 12,30 0,04 12,20 LF c uc Art.
210 03.08.2005 14:52:45.51 38,3900 42,2048 255860,96 4252858,54 2,70 2,6 13,50 0,04 12,88 LF c uc Art.
211 06.08.2005 15:23:03.69 38,4198 42,2358 258668,27 4256084,47 4,80 2,9 9,30 0,05 17,34 LF c uc Art.
212 07.08.2005 11:37:57.63 38,9723 42,7102 301624,85 4316269,21 11,82 3,2 30,90 0,02 27,38 HF c c T
214 10.08.2005 16:34:43.45 38,4280 42,2460 259586,16 4256967,93 0,05 2,4 8,10 0,02 10,31 MF c uc Art.
215 12.08.2005 03:49:59.98 38,5987 42,4107 274499,69 4275496,96 16,85 2,5 15,90 0,02 11,02 HF c c T
217 13.08.2005 15.46:55.39 38,4178 42,2437 259351,47 4255841,81 4,36 2,4 9,20 0,07 9,63 MF c uc Art.
218 14.08.2005 19:53:12.05 38,6863 42,1180 249309,77 4285980,45 8,67 2,2 14,90 0,00 8,33 HF c c T
219 16.08.2005 03:28:40.86 38,6947 42,0263 241361,98 4287167,90 11,89 2,7 14,00 0,01 14,65 HF c c T
221 23.08.2005 17:43:04.20 38,6035 42,3982 273426,01 4276060,51 17,77 2,1 15,60 0,00 7,26 HF c c T
222 25.08.2005 09:36:35.44 38,3985 42,2050 255907,04 4253801,46 1,44 2,1 12,70 0,01 7,32 MF c uc H
223 30.08.2005 11:57:27.78 38,6353 42,0625 244299,71 4280472,86 25,57 2,5 7,70 0,04 10,79 HF c c A-VT
227 02.09.2005 23:55:24.38 38,6817 42,0958 247362,15 4285530,86 6,97 2,4 13,60 0,03 10,45 HF c c A-VT
228 03.09.2005 08:12:10.37 38,6618 42,4878 281407,08 4282313,84 4,71 1,7 10,30 0,06 4,38 HF c c T
229 11.09.2005 05:53:07.96 38,4082 42,2612 260847,96 4254730,72 23,32 2,6 9,80 0,06 12,25 HF c c Art.
230 11.09.2005 05:57:58.71 38,4132 42,2402 259030,54 4255340,40 24,97 2,3 9,80 0,24 9,44 HF c c Art.
231 11.09.2005 15:09:15.52 38,4907 42,2073 256418,32 4264028,99 16,56 2,7 6,80 0,11 13,96 MF c c H  

Table 4.2.cont. Datasheet of recorded seismic events. 
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Frequency of Occurrences 
Some anomalies in frequency of occurrence of seismic events in daily and monthly 

periods were observed (Fig. 4.11). A data collection of two years is not satisfactory 

for a healthy analysis. However, slight increase starting with spring time and 

ending in autumn (Fig. 4.11a, dashed line) must not be disregarded in the future 

monitoring of the volcano. Furthermore, masking of the signals by city noise is 

visible during day time (between 06:00 and 17:00 in local time, Fig. 10b).  

 

 
Figure 4.11. Temporal frequency of occurrence of events observed by Nemrut Network for a) 

monthly and b) hourly periods. (Some important earthquakes that affect the monthly 
histogram and their magnitudes are indicated. Monthly frequencies were normalized using 
the efficiency (Figure 4.2) data). 
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The small magnitude events located under the Lake Van are interpreted as 

tectonic events (Fig. 4.10). However, they have nearly the same spectra with the 

VT-A type events. Kipfer et al. (1994) applied helium isotope analysis from a 

location near these events, and they emphasized the injection of mantle type 

helium into Lake Van. Kipfer et al. (1994) pointed out that this injection is possibly 

related to the local extensional tectonics and the associated magmatic activity. 

Liability of volcanic origin for those small magnitude events must not be 

disregarded. Additionally, Toker et al. (2007), and Horasan and Boztepe-Güney 

(2006), indicated that the seismic events of volcanic origin have been recorded in 

the Lake Van. 

Frequency – Magnitude distrubution 
Some of the heterogeneities in the Earth crust can be mapped by variations in the 

frequency-magnitude distribution of earthquakes (Wiemer and Benoit, 1996; 

Wiemer and McNutt, 1997; Wiemer and Wyss, 1997). The “b-value” is the slope of 

the straight line that usually fits magnitude and logarithm of frequency distribution 

of the observed data. We calculated the b-values for the recorded event by using 

the frequency-magnitude distribution equation (Gutenberg and Richter, 1944): 

bMaNLog −=10  

Where “N” is the cumulative number of earthquakes having magnitude larger or 

equal to “M”, and “a” and “b” are constants. 

General trend of calculated b-values is 0.69 ± 0.06 for all the recorded events; 

trends below and over a magnitude of 2.4 are 0.15 ± 0.0002 and 1.34 ± 0.02 

respectively (Fig. 4.12). Generally, b-value does not vary much from its usual 

value of b = 1 (e.g. Froehlich and Davis., 1994), except for volcanic areas where 

high values, up to b = 2, are commonly reported (Wiemer and McNutt, 1997; Wyss 

et al., 1997, Warren and Latham, 1970). However, in all seismogenic areas, it is 

possible to observe b-values with significant variations (Wiemer and Wyss, 2002). 

Wiemer and Mcnutt (1997) reported that in volcanic areas, most of the crust shows 

normal or even low b-values (b<1), with rather small volumes of anomalously high 

b-values (b>1.3). 
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Figure 4.12. Calculated b-values of seismic events recorded by Hacettepe University Nemrut 

Monitoring Network between October 2003 and October 2005 in the vicinity of Nemrut 
volcano. 

 

An increase in material heterogeneity (Mogi, 1962) and in geothermal gradient 

(Warren and Latham, 1970) results in high b-values, whereas an increase in 

applied shear stress or effective stress (Wyss, 1973) induces a decrease of the b-

values (Horasan and Boztepe-Güney, 2007). 

By mapping the b-values in detail on a fine scale, gathering the information 

contained in the variation of b, or the mean earthquake size, as a function of space 

is possible (Wiemer and Wyss, 1997). 

The frequency-magnitude distribution of the earthquakes associated with the 

epicenters was analyzed to get a spatial distribution of the b-value (Fig. 4.13). 

Calculated b-values were evaluated by gathering the fit equations by manual fitting 

and then, b-values were interpolated using inverse distance weighting method. 

Number of events used to calculate the b-values and b-value map is very limited 

(133). Consequently, reliability of the map is controversial. Still, it is possible to 

note that the high b-values are concentrated around Nemrut volcano, Mazik dome 

and tectonically active zones (Fig. 4.13). Instead of using all values, with the 

accrual of data in time, use of frequency-magnitude distribution for specific depths 

and profiles will surely purvey important information on the volcano and the 

underlying magma chamber. 



 
 

148

 
Figure 4.13. b-value map of seismic events recorded by Hacettepe University Nemrut Monitoring 

Network between October 2003 and October 2005. It is possible to observe the higher b-
values around the volcano and tectonically active zones. Yellow points: epicenters of VT-A 
type events; Blue points: epicenters of VT-B type events; Green points: epicenters of 
Hybrid events; Red points: epicenters of tectonic events; Black lines: faults; Dashed black 
lines: inferred faults. Projection: UTM, European Datum 1950. 
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4.4. Synthesis 

Mt. Nemrut, probably the most hazardous for its vicinity, amongst the Anatolian 

volcanoes is being seismically monitored since October 2003. The seismic 

network (composed of three 3-component seismometers, a broadband and two 

short-period sensors) is the first and yet the only volcano-monitoring network on 

an Anatolian volcano. 

Raw data, digitally recorded by the stations are being collected in our laboratory 

with a Frame-Relay data communication link since October 2003. Raw data are 

being processed with a two-level STA/LTA triggering system and the triggered 

possible events are then analyzed. 

Mount Nemrut is an active dormant volcano which is threatening 135,000 

habitants living nearby (Aydar et al., 2003). In addition to the hydrothermal 

signature of the volcano, it is now clear that the volcanic signals beneath the 

volcano refer an active magma chamber at around 4-5 km depth. 

Identification of the seismic character of the Nemrut volcano, seasonal and long 

term effects on this character and more knowledge is possible by long term 

monitoring of the volcano. Measurements of at least a few years duration are 

necessary to characterize and understand the background seismicity (McNutt, 

2000). Long-term observation of Mt. Nemrut which is thought to be an active-

quiescent volcano will yield more knowledge about this volcano. 
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5. Discussion and Conclusions 

5.1. Structure of Nemrut Caldera 

Recent structural frame of the Nemrut volcano is undoubtedly marked by the 

spectacular summit caldera, which is 8.5 x 7 km in diameter and slightly elongated 

in the east-west direction. Western half of the caldera is filled with a half-bowl 

shaped lake (Nemrut Lake) with a maximum depth of 176 m and 1.264 km3 

volume. The average depth is around 140 m over the majority of the lake. At the 

northern section of the caldera, ~500 m east of Nemrut Lake, there is a second, 

smaller hot lake. The deepest point of this lake is 11 m. 

Within the spectrum of new data, the structural elements of the Nemrut caldera 

(Fig. 5.1) have been calculated as (Chapter 3): topographic diameter: 8.5 x 7 km 

(maximum diameter of the topographic rim of the caldera); structural diameter: 6.7 

x 5.3 km (maximum diameter of the structural boundary of the caldera, Fig. 5.1); 

topographic area: 46.7 km2; structural area: 27.9 km2; maximum collapse on the 

eastern part: 600 m; maximum collapse from the bottom of the lake: 650 m; 

topographic volume: 32.9 km3 (volume calculated using topographic diameter); 

structural volume: 18.14 km3 (volume calculated using structural diameter); 

northern collar angle (on land): 29.2°, western collar angle (from lake bottom): 

27.9°. The lower collar angle value computed from the bottom of the lake reflects a 

higher collar slide mechanism due to the existence of Nemrut Lake (Ulusoy et al., 

2008). Definitions of the structural elements we used here are literally as defined 

by Lipman (1997). 

Within the scope of our surveys and analyses, an innovative structural model of 

the Nemrut caldera was presented (Fig. 5.1), stating that it collapsed by a 

piecemeal mechanism (Ulusoy et al., 2008). It consists of three main blocks, 

namely P1, P2 and P3 (Fig. 5.1). The displacement between blocks P2 and P3 is 

topographically evident. Piecemeal caldera subsidence refers to a caldera with 

numerous floor blocks, and/or multiple collapse centers (Lipman, 1997, 2000; Cole 

et al., 2005). Small-displacement piecemeal faulting of subsiding caldera floors is 

probably common (Lipman, 1987). 
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Figure 5.1. Structure of Nemrut caldera (a) Structural map of Nemrut Caldera and the blocks 

responsible for the piecemeal collapse of the caldera. (b) Simplified structural model of the 
Nemrut Caldera. The faults and collapsed blocks are indicated. White arrows: general 
slope direction of the block; white triangles: altitude points; dashed red circles: maars; 
black lines: known and observed faults; dashed black lines: inferred faults; “P1, P2, P3”: 
caldera blocks. To simplify the visualization, caldera fill is discarded; note that there are 
approximately 280 meters of caldera infilling products according to drill logs of Atasoy et 
al., 1988. Projection: UTM, European Datum 1950. 
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Collapse of such calderas may be due to (1) multiple magma chambers with 

overlapping eruption times in which eruption of one may trigger eruption of the 

other (e.g., Scafell Caldera; Branney and Kokelaar, 1994) or (2) where tectonically 

controlled faults break the caldera floor into numerous blocks prior to the (main) 

eruption and control the collapse location (e.g. Glencoe Caldera; Moore and 

Kokelaar, 1997), or (3) where the entire caldera floor has been rendered a 

megabreccia (Branney and Kokelaar, 1994), inducing a chaotic subsidence 

(Lipman, 1997) in some cases (Cole et al., 2005). In Nemrut case, it is inessential 

to discuss the megabreccia and chaotic type subsidence. Çubukçu (2008) 

petrologically indicates that a single shallow magma chamber is stratified 

compositionally and physically on the basis of the intensive crystallization and 

reservoir parameters. Both petrologically and geologically, clues of multiple 

collapses following multiphase eruptions are absent. Eruption of Nemrut and 

Kantaşı ignimbrite series has led to the collapse of the edifice. Faults controlled by 

regional tectonic stress and discontinuities generated during the evolution and at 

the late stage of inflation, present the most consistent structural elements for the 

collapse mechanism of Nemrut caldera. 

Actual hydrothermal fluid circulation quantified by SP analyses and the intra-

caldera eruption centers are mostly located on the structural discontinuities limiting 

these blocks and on the caldera boundary faults. Blocks “P1” and “P2” (Fig. 5.1) 

form the eastern part of the caldera. The structural boundary between these 

blocks controls the main hydrothermal fluid flow in the caldera and is supposed to 

be responsible for the major explosive intra-caldera activity. Complexities in 

caldera-floor geometry may be indicated by scattered or transverse distributions of 

post-caldera, post-collapse vents that are commonly present within recurrently 

subsided calderas, as at Campi Flegrei, Aso, Santorini (Walker, 1984; Lipman, 

1997) or Nemrut as proposed on the schematic structural map of the caldera 

system (Fig. 5.1). 

According to their orientations, intra-caldera faults are grouped in three main 

groups (Fig. 5.1): N-S directed fault(s) separating blocks P2 and P3; NW-SE-

directed faults and NE-SW directed fault systems (Chapter 3). Intra-caldera 

hydrothermal activity seems to be mainly controlled by the internal structure of the 

caldera (Ulusoy et al., 2008). Faults and structural boundaries of the caldera floor 

are the main pathways for the circulation of hydrothermal fluids. Positive SP and 
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Ce anomalies mainly appear on these structures (Ulusoy et al., 2008). Thermal 

anomalies detected on the night thermal image reinforce that these zones are 

hydrothermally active and have been active as visualized by the hydrothermal 

alteration image defining clay mineralizations (Ulusoy et al., 2008). 

Two major slides were observed on the southwestern section of the caldera wall 

(Fig. 5.1a: slip faults). Both slide events are marked with a brecciated zone 

between the sliding material/block and inner topographic wall of the caldera (Figs. 

5.2 and 5.3).  

 

 
Figure 5.2. Panoramic photographs of slided block and underlying brecciated zone at the western 

sector collapse, a) upper and, b) lower section of the outcrop. Please note the size of the 
panorama with the scale of two members of our team indicated by red arrows. 

 

Dikes located at north of the slip fault southeast of Zerihuli hill (Fig. 5.3) are slightly 

rotated clockwise due to the small-scale collapse of the caldera rim. Collapse 

situated northwest of Zerihuli hill may be initiated and/or syn-generated with the 

effusive lava flow activity originating from the caldera wall and extending into the 

Nemrut Lake. This activity may be related with the caldera boundary fault and/or 

co-radial faulting on the caldera wall. 
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Figure 5.3. Geology and small scale caldera-rim collapses on the southwestern part of the caldera. 

White arrows are indicating the slide direction. 
 

Dikes are mostly observed on the western portion of the caldera wall (Fig. 5.1a). 

These dikes are pre-caldera injections and it is evident that some of these were 

acted as feeder-dikes (Figs. 2.28: trachytic dyke, and 5.4a). Physical properties of 

these dikes are summarized in Table 5.1. It was possible to observe furcation on 

one of these dikes (Fig. 5.4b); as well, jointing due to cooling is common (Fig. 

5.4c,d). 
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No X Y Orientation Azimuth Thickness (m)
1 259199 4284793 N75W/90 105 5
2 256455 4278815 N20W/82NE 160 4,47
3 257329 4276382 N36E/75NW 36 3,53
4 258125 4276127 N40E/71NW 40 11,6
5 258614 4276012 N20E/87NW 20 7,1
6 256318 4279476 N35W 145
7 256781 4280155 N15W/90 165 8
8 256488 4279922 N25W 155
9 256200 4278468 N35W 145

10 257585 4281275 N40W 140  
Table 5.1. Physical properties of dikes observed on the caldera wall. Coordinates are given in 

UTM, European Datum 1950 projection. 
 

 
Figure 5.4. Dikes on the caldera wall. a) Feeder dyke on the NW caldera wall, b) branched dyke 

on the SW caldera wall, c) columnary jointed dyke at the western caldera wall and d) its 
side view. 

 

Faults out of the caldera are mainly grouped in NW-SE and NE-SW directions. 

Kale hills and Kalekirana hill (Fig. 2.6b) are aligned on a fault paralleling the N-S 

directed fault separating caldera blocks P2 and P3 (Figs. 2.28 and 5.1a). 

Additionally, WNW-ESE directed reverse fault on the western caldera rim (Fig. 
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5.1b; Ulusoy et al., 2008) and arc shaped fault (and its en-échelon couples) on the 

northwestern flank of the volcano draw attention on the western side. This fault is 

best visualized by the high resolution imagery for example by GoogleTM Earth® 

(Fig. 5.5). N-S directed rifting on the northern zone must not be disregarded in the 

structural context of the volcano (Fig. 5.5). 

 

 
Figure 5.5. High resolution GoogleTM Earth® imagery, view of the caldera from SW corner. a) 

General view of the area and some of the major structural and volcanological features. 
White lines: faults; White, pointed lines: inferred faults. b) Closer view of the arc shaped 
fault (white arrows) on the NW flank of the volcano. 
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5.1.1. Tectonic evolution and initiation of Nemrut volcanism 

Several tectonic models have been proposed to explain the style of deformation in 

Eastern Turkey (Keskin, 2003). Pınar et al. (2007) summarized these models as 

follows: (1) Tectonic escape of the microplates to the east and the west along the 

NAFZ (North Anatolian Fault Zone), EAFZ (East Anatolian Fault Zone) and NEAFZ 

(Northeast Anatolian Fault Zone) transform faults (Fig. 1.1) has been proposed by 

McKenzie (1972), Şengör & Kidd (1979) and Jackson & McKenzie (1988). Most of 

the focal mechanisms (e.g. McClusky et al., 2000; Reilinger et al., 2006) support 

this model because they are dominantly of a strike-slip type, including a little 

component of reverse and normal faulting (Pınar et al., 2007). (2) The second 

model based on subcrustal earthquake activity is the subduction of the Arabian 

plate beneath Eurasia (Rotstein & Kafka 1982). (3) Another model proposed by 

Dewey et al. (1986), suggests that the Arabian-Eurasian collision results in 

thickening of the lithosphere in Eastern Anatolia. 

Researches on the crustal and tectonic evolution and recent tectonics of Eastern 

Anatolia continues (e.g. McClusky et al., 2000; Sandvol et al., 2003; Şengör et al., 

2003; Zor et al., 2003; Angus et al., 2006; Faccenna et al., 2006; Reilinger et al., 

2006); evidently, the complexity of the system is indisputable. 

On the other hand, large-scale effect of tectonics on volcano structures was 

previously discussed (e.g. in Eastern Anatolia: Adiyaman et al., 1998; Dhont and 

Chorowicz, 2006; in Cordón Caulle-Puyehue, Southern Andes: Lara et al., 2006). 

Regional effect on volcanic fracturing was also documented by actual 

observations. Dominiguez et al. (2001) studied the source characteristics of 

earthquakes that occurred during June-July 1998, that have been interpreted as a 

volcanic swarm within the edifice of Volcan de Colima. They introduced that the 

fracturing of the volcanic edifice occurred within a system of fractures coinciding 

with the general trend of regional fault Tamazula which intersect the volcanic 

structure. 

Relations between regional tectonics and caldera structure/geometry have also 

been presented geologically (e.g. Marti et al., 1994; Moore and Kokelaar, 1997; 

Accocella et al., 1999, 2003; Beresford and Cole, 2000; Ulusoy et al., 2004; Dhont 

et al., 2008) and experimentally (Lagmay et al, 2000; Holohan et al., 2005, 2008; 

Tibaldi, 2008). Regional and local structures have a profound affect on the 

morphology of calderas (Cole et al., 2005). 
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To introduce the relationship of local and regional tectonics and structure of 

Nemrut caldera is momentous. Structural, geometrical and morphological context 

of Nemrut caldera may shed light on the numerous questions arising: Is there a 

relationship between local and regional tectonics and the structure of the caldera? 

What is the effect of tectonics in the initiation and evolution of the volcanism? 

What produces the peralkaline volcanism (Çubukçu, 2008) in front of a 

contractional / collisional zone? What is the role of Muş basin (Chapter 1, Pg. 15; 

Fig. 1.6) in the general frame? Were the eruptions of Nemrut lead or played a role 

in the formation of Lake Van? 

To answer these questions, detailed definition of the general tectonic frame and 

state of Nemrut caldera in this frame is essential. We mapped the faults in the 

region using literature data (Koçyiğit et al., 2001; Bozkurt, 2001; Dhont and 

Chorowics, 2006) and SRTM DEM obtained from Earth Science Data Interface 

(Fig. 5.6). Faults in the region exhibit the general trends observed in Eastern 

Anatolia. WNW-ESE-directed faults are generally dextral or oblique with dextral 

component. Varto fault system (VF), Otluk fault (Otf), Kavakbaşı fault (KBF), 

Korkut faults (Ko1F, Ko2F) and Northern Bitlis Thrust fault (NBTF) exemplify this 

system (Fig. 5.6). Besides, NE-SW-trending faults represent sinistral strike-slip 

component; Malazgirt (MF), Süphan (SF) and Erciş (EF) faults are the examples 

for this type of movement. 

Muş Basin and Otluk fault 

In detail, Muş - Van basins (Lake Van), and Bitlis suture zone play an important 

role in the regional tectonic system. Dhont and Chorowicz (2006), denote that 

these basins have been regarded as ramp basins of compressional origin on the 

basis of interpretations of seismic sounding, earthquake focal mechanisms, 

photographs, and satellite images (McKenzie, 1972; Şengör and Kidd, 1979; 

Şengör et al., 1985). 
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Figure 5.6. Structural map of Nemrut volcano and its vicinity. Black, filled triangles on the thrust 

fault indicate the thrusting block. Beachball representations of fault-plane solutions are 
from Dhont and Chorowics (2006); Pınar et al., 2007 and Harvard Global Centroid Moment 
Tensor Catalog. Red lines on the beachballs represent the fault plane. Red arrows indicate 
the plate motions relative to Eurasia (values are in mm/yr; data from McCluscy et al., 2000; 
Reilinger et al., 2006). Volcanic centers: AV: Akdoğan volcano; BV: bilican volcano; İTc: 
İncekaya Tuff cone; Md: Mazik dome; NV: Nemrut volcano; SV: Süphan volcano. Faults: 
BF: Bilican fault; EF: Ecemiş fault; ELVF: Eastern Lake Van fault; KBF: Kavakbaşı fault; 
Korkut faults (Ko1F, Ko2F); MF: Malazgirt fault; NBTF: Northern bitlis Thrust fault; NLVF: 
Northern Lake Van fault; OtF: Otluk fault; SF: Süphan fault; VF: Varto fault; WLVF: 
Western Lake Van fault. Yellow pointed lines, P1 and P2  are the seismic reflection profiles 
of Toker et al. (2007). Red star: circular topographic feature. Projection: Geographic Lat / 
Long, European Datum 1950. 

 

Conversely, Dewey et al. (1986) noticed that Quaternary volcanic deposits around 

Lake Van remain unfolded (Dhont and Chorowixz, 2006). Gülen (1984), re-

interpreting seismic profiles of Wong and Finckh (1978), concluded that there are 

no major thrusts in these basins but mainly oblique-slip normal faults associated 

with subsidence (Dhont and Chorowixz, 2006). Muş basin is bounded to the north 

by the Otluk fault (OtF) and to the south by the Bitlis Thrust fault (NBTF). Dhont 

and Chorowicz (2006), specified the Otluk fault does not have the morphology of a 

reverse fault with a trace slightly curved rather than sinuous, and concluded that it 

forms the southern boundary of a tilted block represented by a planar erosion 
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surface dipping to the north. That tilted block is elongated up to Varto fault to the 

north, in an en-échelon manner, including Koruk faults (Fig. 5.6). Dhont and 

Chorowicz (2006) suggested that the Muş basin is an oblique-slip half-ramp basin 

and the Otluk fault is a transtensional dextral oblique-slip fault. Koçyiğit et al. 

(2001), defined the Otluk fault as a reverse fault, but also specified the 

considerable dextral component of the Otluk fault, and indicated that, this dextral 

movement was started with the inversion in the nature of tectonic regime in 

Pliocene. 

Localized extension on Nemrut caldera 

Focusing on the structure of Nemrut caldera will clarify its state in the general 

tectonic framework. On a volcanic edifice growing in relation to an extensional 

regime, the vents on its flanks are expected to be aligned perpendicular to the 

extension axes (Nakamura, 1977; Adiyaman, 2000). The elongation of the edifice 

is also expected to be parallel to the extension direction and perpendicular to the 

compression axis (e.g. Adıyaman et al., 1998; Nakamura, 1977). Holohan et al. 

(2005) well documented this phenomenon experimentally (Fig. 5.7); they 

concluded that elliptical calderas are formed above circular magma chambers 

when subjected to regional stress during formation. In the absence of regional 

forces, the local stress field due to a deflating (or inflating) oblate or spherical 

magma chamber will produce a circular caldera (Holohan et al., 2005). Acocella et 

al. (2005), also experimentally showed that the elongation of the calderas is 

parallel to the extension direction. 
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Figure 5.7. Plan view photographs of experimental caldera models made in sand under a) stress-

free conditions, b) regional extension and c) regional compression. The major axes of 
calderas in compression/extension experiments were denoted the A- and B-axes (From 
Holohan et al., 2005). 

 

Nemrut caldera is a semi-circular caldera with an aspect ratio of 0.85 (Fig. 5.8: 

B/A), and slightly elongated in E-W direction. In their experimental study, Holohan 

et al. (2005), stated that aspect ratio of the calderas in stress-free conditions is 

equal to 1. Under the extensional conditions they resulted that the average aspect 

ratio is 0.81 and 0.83 for deeper and shallower magma chambers, respectively. 

On the contrary, under compressional conditions, the average aspect ratio is 1.15 

for both deeper and shallower magma chambers. Theoretically, for Nemrut 

caldera, such an elongation may be governed either by N-S compression or E-W 

extension. For the region both tectonic regimes are effective; but locally, the N-S 

directed extensional rift zone at north and N-S alignment of domes (Kale hills) at 

south highlights the dominant effect of extension (Fig. 5.8). 
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Figure 5.8. Tectonic effect on the structure of Nemrut caldera. Blue arrows indicate the shear 

stress forming the localized extension. 
 

Peralkaline calderas are associated with areas of high extension (Cole et al., 

2005). They are common in the East African Rift (e.g., Ethiopia; Acocella et al., 

2003), but also occur in areas of unusually high rates of localized extension in 

convergent margin (e.g., Mayor Island, New Zealand; Houghton et al., 1992) or 

intra-plate oceanic islands (e.g., Canary Islands; Schmincke, 1967; Marti and 

Gudmundsson, 2000) (Cole et al., 2005). The genesis of Nemrut peralkaline 

magmatism in this collisional context has been ascribed to the localized 

extensions where the volcano has been located (Çubukçu, 2008). 
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Structural evidence of this localized extension appears on the western and 

northwestern sections of the caldera. Arc shaped fault on the northwestern flank of 

Nemrut caldera is most probably a track of a horsetail crack formed due to the 

oblique character of the Otluk fault. Same conclusion led Dhont and Chorowicz 

(2006), to interpret the Otluk fault as a transtensional dextral oblique-slip fault. 

Additionally, except the dikes on the western wall (Yellow pointed circle, Fig.5.8), 

radial emplacement of the dikes is evident on the caldera wall (Fig. 5.8). Dikes on 

the western wall, however, lie with an average angle of 64º, relative to the 

expected radial axis on the western flank of the volcano. Sheet intrusions are 

normally emplaced along planes perpendicular to the direction of the minimum 

principal compressive stress (σ3) (Anderson, 1936; Pollard, 1987; Marinoni, 2001). 

Though, concerning these dikes, we can conclude an intrusion, where σ3 is N26ºE 

(Fig. 5.8), favoring the effect of the shear force producing the arc-shaped fault on 

the northwestern flank. Generally, sheet intrusions produce the fracture, in which 

they propagate, although, given favorable boundary conditions, they may intrude 

suitably oriented pre-existing fractures (Delaney et al., 1986; Marinoni, 2001). 

Structure of Lake Van Basin 

Koçyiğit et al. (2001) defines Muş basin as the deformed and dissected remnant of 

the WNW-ESE-trending Oligo-Miocene Muş-Van basin located at the northern foot 

of the Bitlis suture zone (Fig. 5.6). This dissection, however, is of great importance 

on the initiation of Nemrut volcanism; it is best observed at north of the two basins. 

While the faults north of the Muş basin including the Otluk fault trend in WNW-ESE 

direction, the faults north of the Van basin trends in NE-SW direction (Fig. 5.6). In 

addition to this directional change, a change is also clear on the sense of the fault 

systems, dextral to sinistral. Moreover, paralleling the direction of faults, a bending 

of the topographic features, centered at north of Nemrut volcano is obvious (Fig. 

5.6). 

Following the initial bathymetric, geologic and geophysical studies (e.g. Wong and 

Degens, 1978; Wong and Finckh, 1978; Degens et al., 1984; Landmann, 1996; 

Landmann et al., 1996), recent geophysical studies provided a better approach on 

the nature of Lake Van. Seismic reflection profiles published by Toker et al. (2007) 

reveal that eastern and western edges of the basin are bounded by normal faults 

(Fig. 5.9a). Toker et al. (2007) interpreted the fault at the southern portion of 
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Tatvan basin (NBTF, Fig. 5.6) as a transtensive fault. However, this southern fault 

system defined as a thrust fault with a right-lateral strike-slip component (Pınar et 

al., 2007 and references therein). 

Toker et al. (2007) also interpreted the circular topographic feature located at the 

southern end of the Profile 2 (red star in fig. 5.6) as a collapsed volcanic center; 

however, volcanic nature of this feature is debatable for us. Any type of volcanic 

feature at this location was never referred before, in the literature or in the 

geological maps. According to our limited observations based on remote sensing, 

this depression rather represents the characteristics of a sedimentary plain 

bounded by hills. On the other hand, Toker et al., (2007), and Horasan and 

Boztepe-Güney (2006), pointed out the seismic events of volcanic origin, which 

have been recorded in the Lake Van. At this point, it would be helpful to remind the 

mantle originated Helium contribution to Lake Van, using the ratio 3He/4He, 

calculated as 75 % (Güleç et al., 2002; Kipfer et al., 1994). Moreover, Toker et al. 

(2007) indicated volcanic activity in their seismic reflection profiles under the lake 

(Fig. 5.9b). We also located seismic events of volcanic origin and events that 

present similar characteristics with VT-A events under Lake Van. In addition to the 

activity of Nemrut volcano, evidence of volcanic activity (gaseous activities and/or 

intrusions) are present under the Lake Van. 

Pınar et al. (2007) specified that source mechanism of 15 November 2000 event 

(Fig. 5.6) that took place on the southern boundary fault of Lake Van (NBTF, Fig. 

5.6) and its aftershocks, and concluded for an oblique component of the fault. In 

hence, dextral component of this fault and tensional faults at the western and 

eastern edge of Lake Van are in accordance with the E-W directed extension. 
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Figure 5.9. Seismic reflection profiles at Lake Van (From Toker et al., 2007; with their original 

interpretations). a) E-W profile; P1, as indicated in Fig. 5.6. Western and Eastern Lake Van 
boundary faults are clearly visible. b) N-S profile; P2, as indicated in Fig. 5.6.  Inferred 
Norhtern Lake Van boundary fault is indicated. 
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Consequently, the inversion of tectonic regime in Pliocene (Koçyiğit et al., 2001; 

Bozkurt, 2001), and the initiation of strike-slip regime, structurally rooted and 

initiated the volcanism of Mt. Nemrut. Addition of strike-slip component to the 

preexisting structures have led localized extensions where Nemrut volcanic 

system has been preferentially emplaced (Blue arrow couple, Figs. 5.6 and 5.10). 

General tectonic frame based on our regional volcano-tectonic interpretation is 

presented in Figures 5.10 and 5.11. 

N-S directed tensional fault system that shaped the edifice strongly suggests that 

Bilican volcano has also been shaped under the same extensional system (Fig. 

5.10). However, lack of geochemical, geophysical, geological and structural data 

on the Bilican volcano limits us for a firm interpretation on the nature of this 

volcano. 

 

 
Figure 5.10. General tectonic frame around Nemrut volcano based on volcano-tectonic 

interpretations (Please refer to Fig. 5.6 for abbreviations). Projection: Geographic Lat / 
Long, European Datum 1950. 
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Figure 5.11. Simplified, hypothetic block model representing the role of tectonics in the initiation of 

Nemrut Volcanism (not in scale). ELVF: Eastern Lake Van Fault; Ko1F, Ko2F: Koruk 
Faults; NBTF: Northern Bitlis Thrust Fault; NLVF: Northern Lake Van Fault; OtF: Otluk 
Fault; WLVF: Western Lake Van Fault. 

 

5.1.2. On the formation of Lake Van 

Formation of Lake Van has often been ascribed to the eruptions of Nemrut 

volcano (e.g. Maxson, 1936; Blumenthal et al., 1964; Degens et al., 1984; Güner, 

1984; Yılmaz et al., 1998). It has been said that the lava flows and/or pyroclastic 

eruptions of Nemrut would have blocked the discharge path of a river (older Murat 

valley) and rapidly formed the Lake Van. This hypothesis was first proposed by 

Maxson (1936), and has been accepted by following researchers, except Özpeker 

(1973b). One of the most important argument proposed by Özpeker (1973b), is the 

fossil rich (ostracoda) lacustrine sediments found at an altitude 86 m higher than 

the current lake-level (1773 m, Fig. 5.12a), suggesting a similar lake-level long 

before the Nemrut eruptions. Besides, during the latest 20 ka, fluctuations in the 

lake-level were documented by Landmann and Kempe (2005) (Fig. 5.12a, b). At 

north of Lake Van, at İnce cape (see Fig. 2.1 for the exact location), products of 

İncekaya Tuff cone are overlain by Nemrut Ignimbrites, suggesting that the tuff 

cone was present before the ignimbritic eruptions. High water influx is necessary 

to construct tuff cones (e.g. Fisher and Schmincke, 1984). Formation of İncekaya 

Tuff cone favors that the Lake Van was reached its current lake-level even before 

the Nemrut ignimbrites. 
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Figure 5.12. Lake Van, lake-level changes (data from Landmann and Kempe, 2005; Özpeker, 

1073b). a) Map of lake-level change, b) change of lake-level in the last 20 ka (from 
Landmann and Kempe, 2005). 
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If we consider the topography before the emplacement of Nemrut ignimbrites, 

between Lake Van and Bitlis valley, it is possible to argue that, Bitlis valley might 

have been a discharge route of Lake Van as proposed by Özpeker (1973b). 

Özpeker (1973b) indicated that the older terraces of Bitlis river were 15-20 m 

higher than its current level. In the direction of Lake Van, the basement 

metamorphics were met at 65 m depth (Fig. 5.12: Red arrow) in a drilling point 

(Table 2.5, PID: 51). To crest this barrier, the lake level should have been at least 

1713 m high. 

5.2. Natural Risk potential of Nemrut volcano 

Hydrothermal activity of Nemrut volcano has been previously discussed (e.g. 

Özpeker, 1973a; Güner, 1984; Atasoy et al., 1988); geochemical analysis of 

hydrothermal sources and fumaroles showed that the mantle derived “He” 

contribution to the hydrothermal sources is evident (e.g. Nagao et al., 1989; Kipfer 

et al.; 1994). Moreover, highest magmatic originated “He” contribution to the 

hydrothermal sources in Anatolia is observed on Nemrut volcano (Güleç et al., 

2002). We also made temperature measurements of the sources; some with a 

daily period during one month (see Ulusoy et al., 2008). Hot sources around Ilığ 

Lake and Nemrut lake (Fig. 2 of Chapter 3.2) reach to ~60ºC and ~30 ºC, 

respectively. Hydrothermal activity of the Nemrut caldera has been mapped by 

Self-Potential measurements and TIR satellite imagery (Chapter 3; Ulusoy et al., 

2008). Historical descriptions of Şerefhan (1597), show that, in addition to the 

hydrothermal activity he observed, northern rift zone was active during 1590’s. 

Besides, volcano is seismically active too. During our monitoring between October, 

2003 and October, 2005, volcanic originated events were observed and classified 

(Chapter 4). 

Nemrut volcano is an active, quiescent volcano, and it is potentially hazardous for 

its vicinity. Monitoring of the volcano should be continued and improved. We 

reported our geological, geophysical and seismological results to the local 

authorities every two years with unpublished reports during our works, and 

attended to a local symposium to present our findings (Ulusoy et al., 2007). A 

topographic risk map was also presented to the local authorities after the 

publication of Aydar et al. (2003). 
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As we specified in Ulusoy et al. (2008), very large volume of Nemrut Lake (1.264 

km3) is a potential danger for southwestern settlements, especially for Güroymak 

town (see Chapter 3.2). We mapped two large landslides which took place on the 

SW caldera wall (Fig. 5.3). Flank landslide is one of the most important and 

common hazards that can happen in volcanic terrains (Merle et al., 2008). 

Triggering factors of such flank landslides include dyke or magma emplacement, 

earthquakes, a weak decollement horizon within the edifice, excess pore 

pressures due to intrusion, regional faulting, cryptodome emplacement, volcano 

spreading, changing sea levels and hydrothermal alteration (Merle et al., 2008 and 

references therein). It is highly possible for Nemrut Caldera to meet one or more of 

these conditions. The area is tectonically and seismically active and faults defined 

on the western and northwestern flanks (Ulusoy et al., 2008; Fig. 5.5) increases 

the possibility of such a cataclysmic event. In addition to the flank landslide, large 

volume of the Nemrut Lake doubles the danger. To face such cataclysmic events, 

there is no way to protect civilians but to evacuate the entire population from the 

area at risk, before the collapse occurs (McGuire, 2003, Merle et al., 2008). Land 

planning and settlement in the area must be organized considering the danger. 

5.2.1. Small scale cold lahars 

On 19.07.2007 and 11.03.2008, two small scaled cold lahar flows occurred on the 

flanks of the Nemrut volcano. First event was observed on the northeastern and 

southeastern flanks of the volcano and occurred just after a heavy rain. At the 

northeastern flank, near Serinbayır village (Fig. 2.28), the road to the mountain 

and some agricultural fields were destroyed and the lahar filled its flow channel 

(older stream channel) with ~1.5 m thick pyroclastic material (Fig. 5.13a,b). Same 

day, another relatively large flow occurred at the southeastern flank of the volcano. 

The flow totally destroyed the road between Yumurtatepe village (Fig. 2.28) and 

the Caldera rim, channeled in the drainage channels, filled them and reached to 

the Lake Van (Fig. 5.13c). The flow formed 50-60 m long fans in the shoreline of 

the Lake Van (Fig. 5.13c). Drainage channels prevented possible mud floods that 

might effect the settlement and the agricultural areas at the lower altitudes. On the 

other hand, agricultural areas at higher altitudes were partially affected and the 

bridges on the drainage channels were damaged. 
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Figure 5.13. 19.07.2007 Lahar flows. a,b) Lahar flows originated from the northeastern flank of the 

caldera (destroyed road was bored by the villagers) and, b) Flood fans of the cold lahar 
flows in the Lake Van. These flows were originated from the southeastern flank of the 
caldera. 

 

Second event (11.03.2008) happened on the northwestern flank of the volcano, 

and it was possible to observe this event on the satellite imagery (Fig. 5.14). News 

services reported that the event was caused by melting of the snow due to the 

rising air-temperature. Gölbaşı Town was highly affected from the flow. Agricultural 

fields were destroyed, ~100 houses were highly damaged; drains and sewers 

were totally filled. 
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Figure 5.14. Two ASTER false color composite images demonstrating the difference before and 

after 11.03.2008 lahar flow event(images are from ASTER image database of volcanoes - 
Geological survey of Japan). a) ASTER VNIR image acquired on 14.08.2006, traces of 
older lahar flows are evident in the image. b) ASTER VNIR image acquired on 09.07.2008, 
Traces of lahar flows occurred on 11.03.2008 are visible with their darker colors. 

 

5.3. Suggestions 

Beyond doubt, our first and most important suggestion is the sustainable 

continuance of the monitoring of the volcano. Regarding the performance of the 

new data transfer protocol which will be installed till the end of 2008, installation of 

a new seismometer should be considered. The best location for the new 

instrument is the new ski-center constructed (in 2007) at the southern flank. It is 

the most closest, and secure place to install the equipment. Energy and data 

transfer issues may easily be solved at this location. The broadband seismometer 

located at Tatvan station may be transferred here, and a new short-period 

seismometer may be replaced at Tatvan station. Installation of a new station at the 

flank of the volcano where the artificial noise is low will surely provide precious 

data; and a fourth station will support the other three stations in case of a failure in 

one of them. A sustainable budget for the travel and maintenance expenses is 

essential. A local contributor may surely provide and improve the sustainability of 

the network. Newly founded Bitlis Eren University may be a possible address for 

this contribution. 

With the change of the data transfer protocol, software system used in the analysis 

must be revised and adopted to the new system. Digitizers of the seismometers 

have the capability of applying STA/LTA triggering in-situ and the new protocol 
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have the capability to provide the necessary data flow velocity to send both 

triggered and raw 100 SPS data. Consequently, the code “Nemtrig” is going to be 

out of usage. Instead, a new, easy code that will convert triggered data from GCF 

format to SAC format will be required. Güralp Systems provide an executable 

single file which does this conversion; we used this converter at the background of 

Nemtrig code. The new data acquisition protocol will surely simplify the duty of the 

network manager. Other present codes such as “Nemtract” and “Nemspec” may 

still be used in the analysis workflow without any problems. 

Risk and Hazard modelling is essential for the volcano. The modelling should 

primarily include the modelling of the impact areas of lahar risk, as well, pyroclastic 

activity risk should also be considered. High resolution imagery will provide 

tremendous amount of data and informations for the hazard modelling. During this 

study a large GIS database was constituted. All further research may be added on 

this large information database. 

Further geophysical surveys will also provide valuable information on the volcano. 

During this study, Self-Potential map of the caldera was completed. Two additional 

profiles were measured out of the caldera. A new Self-potential survey covering 

the area out of the caldera will quantify the hydrothermal system precisely. Total 

profiles length for this type of survey is roughly estimated as 170 km. The northern 

rift zone may be mapped in high resolution. 

Intra-caldera topography is very suitable for a multi-electrode resistivity survey. 

Multiple, parallel resistivity imaging profiles which may be set in NE-SW direction 

will precisely demonstrate the intra-caldera structural system. Together with the 

Self-potential data, resistivity imaging will provide valuable information on the 

shallow structure of the calderas. Finally, deep resistivity survey may provide a 

noteworthy contribution. 

5.4. Ongoing works 

5.4.1. On the calculation method of Ce Map 

SP/elevation gradient (Ce-gradient) calculation method proposed by Lénat (2007), 

which was used to produce Ce-gradient map of Nemrut volcano (Ulusoy et al., 

2008) calculates the gradient in four directions (N-S, E-W, NW-SE and NE-SW). 

Using an array-type operator could overcome the limitations of calculations with 
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four directional operators. For this purpose, a computer code using an array-based 

operator was designed and tested. The code uses a procedure that may be 

named as “Swirl procedure”. Swirl procedure depends on swirling two (in this case 

PS-PS or DEM-DEM) images (arrays) and applying a mathematical operation to 

overlapped pixels during swirling (Fig. 5.15a). Using PS image and DEM, this 

operation allows calculating ΔV or Δz between two points in image array (Fig 

5.15a). 

In swirl operation, the duplicate of the image array is shifted on the same image by 

predefined number of pixels. This predefined “number of pixels” can be called as 

“swirl degree”. A duplicate (red) of a 5x5 array (yellow) is shifted over the same 

image by 2 pixels in Figure 5.15b; therefore swirl degree is “2”. Using this 

condition of the shifted images (Fig. 5.15b), a mathematical operation between 

points A and B (or C and D) can be made (Fig. 5.15c). When the duplicate image 

is swirled on the original image, depending on the swirl degree, a mathematical 

operation can be applied on certain angles. These specific angles according to 

swirl degree are listed in Table 5.2. With the change of swirl degree, the lateral 

difference between pixels (dx) also changes for every point calculated. 

 

 
Figure 5.15. Principles of Swirl operation a) Swirl procedure using a duplicated Self-Potential (PS) 

image pair, to produce ΔV image. b) Image pairs shifted with a swirl degree of 2. c) 
Sample Pixel pairs (A-B and C-D) that the calculation will be based on with a swirl degree 
of 2. 

 

Swirl degree 1 2 3 4 5 6 7 8 9 10

Operation angle 45.00 22.50 11.25 5.63 2.81 1.41 0.70 0.35 0.18 0.09  
Table 5.2. Swirl degree and the corresponding angle between calculated pixels. 
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Two ways of calculation can be applied using swirl procedure: “Full-swirl” and 

“limited-swirl”. In the full-swirl calculation, all the neighboring pixels up to swirl 

degree are taken into account and final value of center pixel is calculated upon 

these neighboring pixels. On the other hand, limited-swirl operator uses only the 

pixel values defined by the swirl degree for the calculation. The contribution of 

pixels to the operation in full-swirl procedure (Fig. 5.16a), and in limited-swirl 

procedure (Fig. 5.16b), when the swirl degree = 2 is shown in Figure 5.16. Red 

point symbolizes the calculated center value and the black points symbolize the 

contributing neighboring pixels. Desired mathematical operation could be applied 

for all the pixels in the image. If the swirl degree = 1 there is no difference between 

full-swirl and limited-swirl procedures (Fig. 5.16c). 

 

 
Figure 5.16. Principles of Full-swirl and Limited-swirl procedures. Contributions of pixels in, a) Full-

swirl procedure b) Limited-swirl procedure, for swirl degree = 2 and, c) for swirl-degree =1.  
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Ce gradient calculation 

PS-altitude gradient (Ce) can be calculated using swirl procedure. A copy of PS 

image can be swirled on itself to calculate ΔV between two pixels (Fig. 5.17). 

Similarly, when swirl procedure is applied to a DEM covering the same area and 

resolution with PS image, Δz for same points used in PS swirl procedure can be 

calculated (Fig. 5.17). Using ΔV and Δz values four different methods can be 

applied to calculate Ce values: 

 

Method 1: Ce-mean calculation using full-swirl procedure, 

Method 2: Ce-mean calculation using limited-swirl procedure, 

Method 3: Ce-max calculation using full-swirl procedure, 

Method 4: Ce-max calculation using limited-swirl procedure. 

 

 
Figure 5.17. Swirl procedures used to calculate Ce-gradient. Black and grey points are 

representing the contributing pixel values to calculate final (red) value. a) Calculation of ΔV 
and Δz in full-swirl procedure for swirl degree = 2, b) Calculation of ΔV and Δz in limited-
swirl procedure for swirl degree = 2. 

 

We wrote an IDL code to calculate the Ce-gradient map, which is using the 

following equations for the four methods described above: 

 

Method 1 and 2: 
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Method 3 and 4: 
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At the end of the calculation Ce_calc code can filter the final image using median 

filter of selected kernel size. Advantages of this method are: 1) array based code 

can make the calculations rapidly, 2) Ce gradient calculations can be made using 

wide range of neighboring values (and more then 4 directions) which increases the 

reliability of the result. Where Δz values are very low (i.e. <1m for a dataset with 

25 m spatial resolution), resulting Ce-gradient is relatively more reliable than a 

calculation in 4-direction. Still, where Ce values are abnormally high due to low Δz 

values, it is possible to eliminate this effect by blinding low Δz values, using a NaN 

(not a number) definition in the code. Finally, when the code ran, due to the 

calculation method, a cropping related to the swirl degree is occurred on the final 

Ce-gradient image. 

Artificial dataset test run 

We have produced an artificial dataset (Fig. 5.18) which consists of PS and DEM 

sets (each set is an array of 90x58 pixels and have 16 m resolution). Using this 

dataset, Ce maps were calculated by our code with four methods described above 

(Fig. 5.19a,b,c,d). Calculation of Ce-mean, using Method 1 gave the most reliable 

output. Both positive and negative Ce-value ranges and the anomalies of Ce are 

consistent with the PS dataset. Ce-max calculators failed because: a) they don’t 

enclose the maximums in the negative range; b) maximum values are abnormally 

high. Code may be changed in an appropriate way to recalculate the negative 

maximum values (minimums), but the resulting positive and negative range of 

values will be still too high. 
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Figure 5.18. Artificial dataset to calculate Ce-gradient image. Artificial a) DEM and b) PS images. 
 

Real dataset test run 

The code was also used to produce Ce-gradient from Nemrut datasets and the 

output is given in Figure 5.20a. The old Ce map produced by code of Lénat is 

given in Figure 5.20b. Note that, identical color ramps were used for Ce-gradient 

images for a better comparison. 

 

 
Figure 5.19. Ce-gradient maps produced with Swirl method, using artificial dataset. Swirl degree = 

5, median filter size = 5x5. Final Ce-gradient image is overlapped on hillshade of artificial 
DEM. Contour lines show the artificial PS data. a) Ce-mean calculated with method 1, b) 
Ce-mean calculated with method 2, c) Ce-max calculated with method 3 and d)  Ce-max 
calculated with method 4.  
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Figure 5.20. Ce-gradient maps of Nemrut caldera. Both gradient images were filtered with a 5x5 

median filter. a) Ce-gradient (Ce-mean) calculated with swirl procedure (swirl degree = 5), 
method 1, b) Ce-gradient calculated using the method defined by Lénat (2007). 

 

Swirl procedure could be used in various applications (e.g. ΔT calculations with 

Thermal satellite imagery, topographic corrections in geophysics). Our studies on 

various uses of swirl procedure continue; a short paper describing the procedure 

and its applications will soon be prepared for publishing. 
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5.4.2. Lightweight multi-electrode resistivity cabling system 

Computer-controlled data acquisition systems of DC resistivity imaging techniques 

generally consists of a resistivity instrument, a relay switching unit, a computer, 

electrode cables, various connectors and electrodes (e.g. Overmeeren and 

Ritsema, 1988; Dahlin, 1993, 2001). In some cases two or more components are 

housed in the same box, e.g. a computer integrated with the instrument (Dahlin, 

2001). Some systems employ intelligent switches at each electrode take-out 

instead of a central switching unit (Dahlin, 2001). Commercially available resistivity 

imaging systems, especially the ones for long surveys are expensive and 

equipment (especially the cable) is heavy. We are currently developing a new 

resistivity cabling system which is reducing the cable weight to a considerable 

value and which is cheaper than the convenient systems (The work was carried 

out with Prof. Erkan Aydar and Assist. Prof. Harun Artuner). The system is using 

intelligent switch nodes which are connected to every electrode of the profile (Fig. 

5.21a). The difference of the system from the other intelligent switching systems is 

the number of wires in the main cable. The system uses 6 wires in the main cable, 

4 of them are used to measure the resistivity and the other 2 wires are used to 

control the switching system. We adopted a resistivity-meter to our cabling system 

which is capable of providing digital output (Fig. 5.21b). The resistivity-meter is 

connected to a controlling device which is used to communicate with the computer 

and intelligent switch nodes (Fig. 5.21b). In the operation, switching nodes 

connected to the electrodes are automatically recognized and a number is 

assigned to each of them by the control device. Then using a predefined dataset, 

multi-electrode resistivity measurement is applied. The system must be improved 

to test the connectivity of the electrodes layout; it is preconfigured with a capability 

to make the connectivity test. The weight of the new cabling system is 75% less 

than the convenient resistivity systems which are using a central relay switching 

unit. The cost of the new cabling system is 2500 Euros. A patent application will 

soon be made for the new system. The most recently patented similar system 

(Abdelhadi, 2007) uses 10 cables and more complex relay units. 
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Figure 5.21. Resistivity imaging cabling system. a) Intelligent switching nodes connected to the 

new cabling system in a test array. b) Photograph introducing the cabling system. c) Result 
of a 1 meter spaced test profile (20 itterations, Final RMS fit: 1.15). Data inversion was 
made using Prof. Andrew Binley’s ProfileR software. 
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Armenian chronicles 

In their paper, which describes the historical volcanic eruptions in Anatolia and 

Armenia, Karakhanian et al. (2002) quote three historical events related to Mount 

Nemrut: 

1) 1441 AD: 

“In the year of 1441, Nemrut Mount between the towns of Ahlat and Baghesh 

(Tatvan) thundered suddenly as a terrific thunder-storm; the entire country 

shuddered since they saw how a wide crack split the mountain and misty smoke 

and fetid flame was coming out of the crack. Children fell sick of that smell, and 

stones boiled of the burning flame, huge stones five kangoun (?) in weight were 

thrown into sky; the fire was seen from the two-day travel distance. The town of 

Ahlat was trembling from that thunder. The mountain split and opened a huge 

abyss, and stones on the summit boiled and melted, and glued each other, and so 

this continued for years.” 

This event seems to be related with the eruptions located on the Nemrut fissure 

zone (Fig. A.1) and probably with the formation of the fissure. From the Şerefhan’s 

(1597) observations, we understand that the activity of the fissure zone continued 

until 1590’s. Other than the lava flows originating from the fissure zone, significant 

lava and dome activity were also generated in the fissure zone (Fig. A.1). 

2) April 13, 1692 AD: 

“In the town of Baghesh (Tatvan), on April 13, summer 1692, sunlight dimmed 

ever since the morning and colored plumbeous; darkness shrouded the earth so 

that people could not see each other. Till the very evening, red dust had fallen to 

the ground and there was an earthquake, many settlements were ruined and many 

people died.” 

Event described by here, has been a matter of debate between Karakhanian et al. 

(2006), and Haroutiunian (2004). A volcanic activity could still be suggested as 

proposed by (Karakhanian et al. (2002 and 2006), rather then a sandstorm 

mentioned by Haroutiunian (2004). 

3) May 18, 1881 AD: 

“On May 18, 1881, there was a strong earthquake in Van; everything was 

destroyed in Terzour Village. A day before the earthquake, one of the villagers 

heard terrible underground boom on Mount Nemrut. The village of Terzour is built 

on a lava flow from the Nemrut crater 400 years ago.” 
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This event, however, qualified as a weak volcanic activity by Karakhanian et al. 

(2002), is of question. The lava flow defined as “400 years old” could not be other 

than the lava flows on the Nemrut fissure; and there are no traces of remnants of 

any village along these flows and no village nearby exist. Moreover, the name 

Terzour is not found in literature; it is totally unknown or forgotten. 

 

 
Figure A.1. Nemrut fissure zone. Photograph was taken from south of Nemrutbaşı cone. For the 

scale please note the presence of three members of our team. 

Şerefhan’s observations 

Most detailed description of Mount Nemrut and its eruption was made by Şerefhan 

(1597); his “length” descriptions agree with the actual values. Mythological 

description given in the entrance of the text is still known as a folkloric tale (with 

small variations) in Anatolia. Live expression of the eruption at the north of Nemrut 

describes the lava flows and fountains at the northern fissure zone. Aydar et al. 

(2003) give the translation of the text with their remarks in parenthesis: 

“ (Mythological description) To the north of Bedlis (actual Bitlis City), 

between the cities of Muş and Ahlat, there is a high mountain called ‘Nemruz’ 

(actual Nemrut). Natives believe that Nemruz (the king) used to spend the 

winters around and the summers on this mountain. For this purpose, he had a 

castle and a palace built on the summit. He used to live and spend lots of time 
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there. He fell victim to God’s wrath and got caught. Consequently, the god let this 

mountain, the height of which was not less than 2000 zira (ancient length unit: 1 
zira = 0.757738 m), collapse and sink 1500 zira (caldera collapse).  

(Live description of Nemrut) This sinking created a lake of 5000 zira wide. 

Its water is crystal clear and extremely cool. It is strange that when digging a pit on 

its banks hot water spouts upward. The land is stony. There is neither much soil 

nor much mud. Because the black rocks (obsidian flows) lay next to each other. 

Some of these rocks are of a kind called camel’s eye by Turks. They are hard and 

do resemble filled honeycombs (spherulitic obsidian). In addition, there is 

another kind of stone which is softer than the others, like dark rocks (dark-colored 
ignimbrites). 

(Live description of the eruption) In the northern part of this location 

there is a canal (fissure) through which flows a dark water (basaltic magma). It 

resembles the dark water which flows of the blacksmith’s bellows and its weight is 

heavier than iron. It spouts upward and quickly flows down to the gorge. According 

to me, each year this water increases and decreases. It jets more than 30 zira 

(lava fountain), and spreads around longer than 100 zira (ejecta). And here it 

spouts out from several points (rift zone). Whoever has the intention to separate 

part of this water will face great difficulties (hard basaltic rock)”. 

Mythology 

Gadjimuradov and Schmoeckel (2005), etymologically resembles the word 

“Nemrut” with old Assyrian king “Ninurta” (Ninurda, Nimurda, Nimrud and Nemrut). 

“Nin” (or “nine”), in many Middle Eastern languages means mother and/or 

grandmother (grandmother in Turkish) and “urda” is “erde” in German, “earth” in 

English, “yurt” in Turkish (Gadjimuradov and Schmoeckel, 2005). Thus “ninurta” is 

the mother of earth. In present day Turkish language, the word “Nemrut” is literally 

“merciless, cruel, and sulky”. 

Urartian civilization that reined the area between 13th cc – 6th cc BC was 

repeatedly attacked by the Assyrians. Two Urartian towns were under the control 

of Tukulti-Ninurta I and Tukulti-Ninurta II (Çilingiroğlu, 1997). Assyrian kings 

Tukulti-Ninurta I (reigned 1244 BC to 1208 BC) and Tukulti-Ninurta II (reigned 890 

BC to 884 BC) may be related with the mythological tale given in Şerefhan (1597). 
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An older tale 

Gadjimuradov and Schmoeckel (2005), note that, other than Assyrian king, Ninurta 

is the hero god in Mesopotamian civilizations (as Ninurta in Akkadians and 

Nimmah or Ninhursag in Sumerians) and generally illustrated with a bow or spear 

(of flames). Ninhursag is the “goddess of earth” or “goddess of mountain ranges” 

and referred as the mother of Ninurta. Michael (1993) describes Ninurta as: 

“Ninurta (Babylonian-Akkadian), lord of plough, is god of thunderstorms and the 

plough. He was worshipped from around 3500 BC to 200 BC. Ninurta was the 

Sumerian god of the farmers and identified with the plough. Also being the god of 

thunder and a hero in the Sumerian pantheon he was closely linked with 

confrontation battles between good and evil which comprise much of 

Mesopotamian literature. He is one of the several challengers of the malignant 

dragon or serpent Kur, said to inhabit the empty space between the earth's crust 

and the primeval sea beneath.” 

An older myth describing the battle of Ninurta and the mountain (Karahashi, 2004) 

is also noteworthy. In the Sumerian mythological poem “Ninurta Lugal-e” (Exploits 

of Ninurta), Asag (or Anzu) is a monstrous demon (Black and Green, 1992). He 

was said to be accompanied into battle by an army of rock demon offspring - born 

of his union with the mountains themselves and was defeated by the god Ninurta. 

Asag, whose name means "demon that causes sickness", was often associated 

with the serpent or dragon mythological archetype by historians (Black and Green, 

1992). There are various descriptions of Asag, who was sometimes symbolized as 

a dragon (Fig. A.2; Karahashi, 2004). Foster (2000) and Karahashi (2004) suggest 

that “Asag” is “a demonically personified volcano and its associated phenomena”. 

Black et al. (1998), give the full translation of the Ninurta’s battle with the mountain 

(Karahashi, 2004) from Summerian: 

“The Lord cried "Alas!" so that Heaven trembled, and Earth huddled at his feet and 

was terrified (?) at his strength. Enlil (Father of Ninurta) became confused and 

went out of the E-kur. The Mountains were devastated. That day the earth became 

dark, the Anuna trembled. The Hero beat his thighs with his fists. The gods 

dispersed; the Anuna disappeared over the horizon like sheep. The Lord arose, 

touching the sky; Ninurta went to battle, with one step (?) he covered a league, he 

was an alarming storm, and rode on the eight winds towards the rebel lands. His 

arms grasped the lance. The mace snarled at the Mountains, the club began to 



 
 

201

devour the entire enemy. He fitted the evil wind and the sirocco on a pole (?); he 

placed the quiver on its hook (?). An enormous hurricane, irresistible, went before 

the Hero, stirred up the dust, caused the dust to settle, leveled high and low, and 

filled the holes. It caused a rain of coals and flaming fires; the fire consumed men. 

It overturned tall trees by their trunks, reducing the forests to heaps, Earth put her 

hands on her heart and cried harrowingly; the Tigris1 was muddied, disturbed, 

cloudy, stirred up. He hurried to battle on the boat Ma-kar-nunta-eda; the people 

there did not know where to turn, they bumped into (?) the walls. The birds there 

tried to lift their heads to fly away, but their wings trailed on the ground. The storm 

flooded out the fish there in the subterranean waters, their mouths snapped at the 

air. It reduced the animals of the open country to firewood, roasting them like 

locusts. It was a deluge rising and disastrously ruining the Mountains.” 

 

 
Figure A.2. Battle of Ninurta and Asag 

 

 

 

 

 

 

 

 

                                                 
 
1 Dicle river; Bitlis steam that sourced in the Bitlis valley (~19 km southeast of Mt. Nemrut) joins 
with Botan steam and then Dicle river. 
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Morphological analysis of active Mount Nemrut stratovolcano, eastern Turkey: 

evidences and possible impact areas of future eruption 
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Abstract

Mount Nemrut, an active stratovolcano in eastern Turkey, is a great danger for its vicinity. The volcano
possesses a summit caldera which cuts the volcano into two stages, i.e. pre- and post-caldera. Wisps of smoke and hot
springs are to be found within the caldera. Although the last recorded volcanic activity is known to have been in 1441,
we consider here that the last eruption of Nemrut occurred more recently, probably just before 1597. The present
active tectonic regime, historical eruptions, occurrence of mantle-derived magmatic gases and the fumarole and hot
spring activities on the caldera floor make Nemrut Volcano a real danger for its vicinity. According to the
volcanological past of Nemrut, the styles of expected eruptions are well-focused on two types: (1) occurrence of water
within the caldera leads to phreatomagmatic (highly energetic) eruptions, subsequently followed by lava extrusions,
and (2) effusions^extrusions (non-explosive or weakly energetic eruptions) on the flanks from fissures. To predict the
impact area of future eruptions, a series of morphological analyses based on field observations, Digital Elevation
Model and satellite images were realized. Twenty-two valleys (main transport pathways) were classified according to
their importance, and the physical parameters related to the valleys were determined. The slope values in each point of
the flanks and the Heim parameters H/L were calculated. In the light of morphological analysis the possible impact
areas around the volcano and danger zones were proposed. The possible transport pathways of the products of
expected volcanic events are unified in three main directions: Bitlis, Guroymak, Tatvan and Ahlat cities, the about
135 000 inhabitants of which could be threatened by future eruptions of this poorly known and unsurveyed volcano.
� 2003 Elsevier Science B.V. All rights reserved.

Keywords: Turkey; Nemrut; volcano; morphology; image analysis; impact area

1. Introduction

Eastern Turkey hosts several poorly known
sub-active/active volcanoes like Mount Ararat,
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Mount Tendurek, Mount Suphan and Mount
Nemrut (Yilmaz et al., 1998). All witnessed vol-
canic activity during the Late Pleistocene and/or
Holocene. The area still experiences tectonic de-
formations related to the collision of the Arabian
and Eurasian plates (Dewey et al., 1986). In this
active tectonic context, Nemrut Volcano is lo-
cated at the eastern end of the Mus Basin (Yilmaz
et al., 1987) (Fig. 1a). However, radiometric ages
collected from the literature show that the volca-
no has been active for the last 1.2 Ma; most of
the volcanics are younger than 500 ka. Although
the last volcanic activity is known to have oc-
curred in 1441 (Oswalt, 1912; Pfa¡engolz, 1950),
we found a live description of the last eruption of
Nemrut in an Arabic book written in 1597 (Se-
refhan, 1597). The Turkish translator of the men-
tioned book provides a note stating that the orig-
inal version of this book called ‘Serefname’ is in
the Bodleian Library of Oxford University, UK
(registration number 312). We decided to quote
the text as it is in the Turkish translation of the
mentioned book. Remarks in parentheses are our
own comments.

‘(Mythological description) To the north of Bed-
lis (actual Bitlis City), between the cities of Mus
and Ahlat, there is a high mountain called ‘Nemruz’
(actual Nemrut). Natives believe that Nemruz (the
king) used to spend the winters around and the
summers on this mountain. For this purpose, he
had a castle and a palace built on the summit. He
used to live and spend lots of time there. He fell
victim to God’s wrath and got caught. Conse-
quently, the god let this mountain, the height of
which was not less than 2000 zira (ancient length
unit : 1 zira = 0.757738 m), collapse and sink 1500
zira (caldera collapse).

(Live description of Nemrut) This sinking cre-
ated a lake of 5000 zira wide. Its water is crystal
clear and extremely cool. It is strange that when
digging a pit on its banks hot water spouts upward.

The land is stony. There is neither much soil nor
much mud. Because the black rocks (obsidian

£ows) lay next to each other. Some of these rocks
are of a kind called camel’s eye by Turks. They are
hard and do resemble ¢lled honeycombs (spherulitic
obsidian; Fig. 1e). In addition, there is another
kind of stone which is softer than the others, like
dark rocks (dark-colored ignimbrites).

(Live description of the eruption) In the north-
ern part of this location there is a canal (¢ssure)
through which £ows a dark water (basaltic mag-
ma). It resembles the dark water which £ows o¡
the blacksmith’s bellows and its weight is heavier
than iron. It spouts upward and quickly £ows down
to the gorge. According to me, each year this water
increases and decreases. It jets more than 30 zira
(lava fountain), and spreads around longer than
100 zira (ejecta). And here it spouts out from sev-
eral points (rift zone). Whoever has the intention to
separate part of this water will face great di⁄cul-
ties (hard basaltic rock)’.

As Nemrut represents historical volcanism as
well as current fumarole activity, we aim to inves-
tigate the volcanological and morphological fea-
tures of Mount Nemrut in this paper. A scenario
of possible volcanic events expected to occur in
future and their impact areas will be discussed.

2. Volcanological past of Mount Nemrut

Mount Nemrut stratovolcano, which culmi-
nates at 2948 m, is situated on the western shore
of Lake Van (1648 m above sea level), a soda lake
covering a surface of 3574 km2 (Fig. 1). The vol-
cano exhibits a summit caldera, the surface area
of which is 8.5U7 km. The eastern half of the
caldera is ¢lled by pyroclastic deposits related to
maar-like explosion craters (Fig. 1b), lava domes
and £ows. The western half is ¢lled by a fresh-
water lake covering a surface area of 5.3U3 km
and a small lake with hot springs (Fig. 1). The
average depth of the larger lake is estimated to be
100 m, although the maximum depth is close to
156 m (Ozpeker, 1973). The fumarole activity is

Fig. 1. Georeferenced SPOT image. (a) DEM of Turkey and the location of Mount Nemrut Volcano. (b) Field view of intracal-
dera phreatomagmatic products. (c) Fumarole activity at the caldera £oor. (d) A view of the caldera interior with obsidian £ow
and lake. (e) Spherulite occurrences on the obsidian £ow. (f) A general view of Bitlis valley.
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also present over a dome situated at the northern
part of the caldera (Fig. 1c). A 3He/4He isotopic
ratio measurement on the hot spring indicates
that the gases are actually released directly from
the mantle-derived magma (Nagao et al., 1989).
Mount Nemrut, however, is poorly known in the
literature, but was previously investigated in Yil-
maz et al. (1998), who proposed ¢ve evolutionary
phases for all East Anatolian volcanoes (the stra-
tovolcanoes of Mount Ararat, Mount Suphan,
Mount Nemrut and the shield volcano of Mount
Tendurek) as pre-cone, cone building, climactic,
post-caldera and late phase. Our stratigraphy
and evolutionary stage distinctions are di¡erent
and we de¢ned two main evolutionary stages in
the history of this active volcano, cut by the par-
oxysmal eruption leading to the caldera collapse
(Fig. 2): the pre-caldera and post-caldera stages.

2.1. Pre-caldera stage

It can be subdivided into two phases: construc-
tion and destruction phases.

2.1.1. Construction phase
This is characterized predominantly by basaltic,

trachytic, rhyolitic lava £ows, lava dome emplace-
ments and associated block-and-ash £ows (Fig.
1). The oldest lavas are ¢ssure-fed basalts related
to scoria cones, dated to 1.18� 0.23 Ma (Pearce et
al., 1990). At the southwest and west of the cal-
dera, the dome complex of Kirkor (dated to 0.31
Ma by Ercan et al., 1990) and Mazik were em-
placed within the Mus Basin. Measured £anks
and slope values lead us to suppose that the
summit of this primitive volcano reached about
4500 m high.

2.1.2. Destruction phase
During the destruction phase, the eruption style

of the volcano became paroxysmal with impor-
tant pumiceous plinian-style air-falls which were
subsequently followed by welded ignimbrite em-
placement. Near Tatvan city, 10 km from the
source, the thickness of plinian fall deposits is
some tens of meters. The ignimbrites are dark
brown colored and exhibit a ¢amme texture.
They are thin on the slopes of the volcano, only

several meters thick, while the thickness increases
drastically within the valleys, reaching several tens
of meters in the Bitlis valley. The volume of the
ignimbrite and its related products is estimated as
40 km3, over an area of 860 km2. Following this
paroxysmal event, the caldera collapsed. The sur-
face area of collapse, representing an ellipsoidal
shape, corresponds to 45 km2. The volumes of
caldera and total collapse are estimated to be 40
km3 and 65 km3, respectively. Although the age
of this major event is unknown, we observed the
ignimbrites over the Kirkor domes dated to 0.31
Ma by Ercan et al. (1990).

2.2. Post-caldera stage

This stage witnessed intracaldera and £ank
eruptions. The eastern half of the caldera is occu-
pied by phreatomagmatic craters, lava dome and
£ows (Fig. 1d). At least three explosion craters
are recognized. Their tu¡-rings exhibit base surge
deposits with dune and anti-dune structures,
bomb-sags and pool structures, bread-crust
bombs and cross-bedding. Trachytic and rhyolitic
lavas were extruded within the explosion craters
in the forms of either lava £ows, dominantly ob-
sidian £ows sometimes spherulitic (Fig. 1e), or
lava-domes. The radiometric ages of intracaldera
volcanism are very young, ranging from 0.02�
0.01 Ma to 6 10 ka (Nagao et al., 1989). Fuma-
role activity and hot springs are still present on
the caldera £oor.

Basalts and trachytes are dominant among the
£ank eruption products. Beside the scattered ba-
saltic and trachytic lavas on the £anks, the most
spectacular eruptive event is that of the northern
£ank, where there is a ‘rift zone’, supposed to
have occurred in 1441 (Fig. 1). It is composed
of ¢ssural basaltic and trachytic lavas.

3. Morphological analysis of Mount Nemrut

Because of present active tectonics, young ages,
historical eruptions, occurrence of mantle-derived
magmatic gases and fumarole and hot spring ac-
tivities on the caldera £oor, Nemrut Volcano is
considered dangerous for its vicinity. According
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to the volcanological past of Nemrut, the styles of
expected eruptions are of two types: (1) occur-
rence of water within the caldera leads to phrea-
tomagmatic (high energy) eruptions, subsequently
followed by lava extrusions, and (2) lava e¡usions
or extrusions (non-explosive or low energy erup-

tions) from the ¢ssures on the £anks. The ex-
pected future eruptions could have a great impact
on Tatvan city (Fig. 1) (10 km from the summit of
the volcano), where the population is 66 000 in-
habitants according to the results of Turkey’s
1997 census. The other impact areas are Bitlis
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city (Fig. 1f) (to the SSW of the volcano, popu-
lation: 52 000 inhabitants), Guroymak town (to
the SW of the volcano, population: 14 868) and
Ahlat city (to the NE of the volcano, population:
22 000). Around Nemrut Volcano, about 135 000
inhabitants could be a¡ected by future eruptions
of this poorly known and unsurveyed volcano.
For that reason, we undertook image analysis,
combined with ¢eld work observations, of the
possible impact areas and described transport
pathways of volcanic materials of future erup-
tions.

3.1. Methodology

We used three-band SPOT images, taken by the
SPOT-2 satellite with the HRV instrument on 8/9/
1997 (Fig. 1). Then, we constituted the image in
RGB format using the third, second and ¢rst
bands, respectively. The image was georeferenced
using 49 ground control points and then the
method of LUT (Look Up Table detailed in Rich-
ards, 1993) was applied using linear stretching.

In addition to the satellite image, a DEM (Dig-
ital Elevation Model), which covers 22U28 km of
surface area and has a resolution of 40 m, was
produced by digitizing 1/25 000 scaled topo-
graphic maps of the relevant area. Then, the digi-
tized map was linearly interpolated to have a de-
fect-free surface of the volcano. Finally, a raster
image of the DEM was generated for geomorpho-
logical analysis.

Hierarchical cluster analysis was applied as geo-
statistical method to Nemrut Volcano. This pro-

cedure attempts to identify relatively homogene-
ous groups of cases (or variables) based on
selected characteristics, using an algorithm that
starts with each case (or variable) in a separate
cluster and combines clusters until only one is left.
This procedure was applied in two steps. In the
¢rst step, each valley was grouped with respect to
its topographic elevations and slope values in each
processed point. Then, the average slope values of
groups and the slope values of the transition
points between the groups (break points) were
computed. As a second step, cluster analysis was
applied to the groups of the ¢rst step to have
homogeneous areal groups of slope values.
Then, the valley groups were interpolated using
kriging methods and the £anks of Nemrut Volca-
no were divided into four zones (green, yellow,
pink and red).

3.2. Application and interpretation

First we realized a slope visualization (Fig. 3a)
(the method used is detailed in Wood, 1996). The
western £ank of Nemrut is steeper than the
others, and this £ank hosts predominantly lava
facies. The other £anks, especially the southern
and eastern ones, mostly occupied by pyroclastics,
represent irregular surfaces due to erosional fac-
tors. The drainage pattern of the volcano (Fig.
3b) shows that the valleys are radially distributed
from the center. The deepest and longest ravines
are situated on the western and southern £anks,
and continue to Tatvan city.

To classify the steep valleys, the slope image

Fig. 4. Visualization of risk factors and the impact areas of future eruptions. (a) Illustration of deepest and longest valleys as the
most dangerous pathways. Contour map based on calculated H/L values. (b) Estimation for each slope value of valleys and val-
ley classi¢cation according to their importance. (c) Overlapped spot image and DEM of Mount Nemrut, creating 3D near-real
visualization. The risk zones and possible impact areas, during a volcanic event related to Mount Nemrut, deduced by morpho-
logical analysis (slope values and H/L parameters): green zone, high slope values which will be mantled by the products if an
eruption occurs; yellow zone, transitional zone from topography mantling to channeling; pink zone, smaller slope values where
the fan-style behavior of transported material will be expected; red zone, the possible deposition ¢eld of transported mass. Note
that the settlements are located within the pink and red zones.

Fig. 3. Risk analysis based on DEM of Mount Nemrut. (a) Slope visualization of Mount Nemrut. Dark areas correspond to
high slope values. (b) Drainage pattern of volcano. (c) Classi¢cation of the steep valleys obtained by overlapping of slope image
and valley visualization.
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Table 1
Physical characteristics of selected valleys and the results of geostatistical classi¢cation

Valley Processed
data
points

Length
of valley

Max.
depth

First
cluster
analysis

Mean slope values
of ¢rst cluster
analysis groups

Breaking point slope
value between ¢rst
and second groups

Breaking point slope
value between second
and third groups

Second
cluster
analysis

(m) (m)

Western and southwestern £anks
v1 140 5895 36 1 17.4 16.2 y

2 9.8 p
v2 160 4958 144 1 16.9 26.26 15.55 y

2 17.8 y
3 6.2 p

v3 151 4301 133 1 24.1 22.14 23.4 g
2 15.7 y
3 8.3 p

v4 190 5235 204 1 24.9 25.57 12.03 g
2 19.6 y
3 7.4 p

v5 219 6009 65 1 14.5 18.88 14.57 y
2 14.7 y
3 7.8 p

v6 132 3834 94 1 11.9 18.95 7.11 y
2 6.5 p
3 4.7 p

v7 111 3054 100 1 13.1 10.6 15.99 y
2 8.1 p
3 7.2 p

Southern and southeastern £anks
v8 313 9114 127 1 17.3 12.62 7.39 y

2 8.9 p
3 3.3 p

v9 209 7119 121 1 23.9 23.59 8.64 g
2 10.4 p
3 4.5 p

v10 287 7680 135 1 25.7 23.92 9.68 g
2 9.4 p
3 4.0 p

v11 180 4513 135 1 13.1 10.68 7.91 y
2 8.1 p
3 5.5 p

v12 155 4306 142 1 14.1 16.75 8.26 y
2 7.8 p
3 4.9 p

v13 123 3445 20 1 9.6 11.11 11.68 p
2 8.2 p
3 4.9 p

v14 192 5278 80 1 10.2 7.31 10.72 p
2 6.3 p
3 5.1 p

v15 251 7153 17 1 11.4 12.46 6.08 y
2 6.5 p
3 3.9 p

Northern and northeastern £anks
v16 97 2591 23 1 13.5 18.97 11.34 y

2 12.7 y
3 7.2 p

v17 107 2692 36 1 11.3 16.03 9.87 y
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and valley visualization were overlapped (Fig. 3c).
In the case of an eruptive event or a debris £ow,
transported materials will probably travel down
these valleys. The risk factors were estimated for
each slope value of the valleys and were classi¢ed
as ¢rst degree and second degree according to
their importance (Fig. 4a). Twenty-two valleys
were selected between the deepest and longest
ones as the most dangerous pathways. Although
they are numerous, the channels are uni¢ed in
three main directions: to Tatvan, Bitlis^Guroy-
mak and Ahlat cities. The slope values were clas-
si¢ed in four groups (Fig. 4b) using the statistical
method of Hierarchical Cluster Analysis (realized
by 3572 slope and altitude values) based on ‘be-
tween-groups linkage and squared Euclidean dis-
tance’ parameters. The results, except the low-
lands, are summarized in Table 1. To complete
the morphological analysis, we computed for 22
selected valleys and for each settlement the Heim
parameters H/L (vertical drop/runout distance be-
tween the source and the deposition area of pos-
sible debris £ows). For those calculations, the end
of each valley and also each settlement were con-
sidered as depositional areas for expected £ood
£ow. Although the values obtained do not corre-
spond to the mobility of any product, we eval-
uated the mobility character of possible £oods
under topographical in£uences. In their works
on hazard estimation of the possible pyroclastic

£ow disasters, Itoh et al. (2000) also suggest that
topography and starting direction of £ood
strongly in£uence the impact area more than the
volume of pyroclastics and discharge rate. The
contour map of those calculations presented in
Fig. 4a con¢rms the role of topographical in£u-
ences on possible impact areas. The contours are
condensed in three directions (WSW, SSE, NNE)
and show clearly that if any volcanic debris oc-
curs, these products will probably travel in those
directions. The sectoral average values obtained
from each valley are 0.202 for the WSW £ank,
0.115 for the SSE £ank and 0.185 for the NNE
£ank. The details are given in Table 2. Thouret et
al. (2000) plot H vs. L on a diagram for the small-
volume pyroclastic £ows, large-volume pyroclastic
£ows, debris £ows and cold rock avalanches of
Merapi and Unzen volcanoes. They clearly show
that most of the large-volume pyroclastic £ows
and debris £ows generated by Merapi and Unzen
have H/L ratios between 0.1^0.02, while H/L val-
ues of small-volume pyroclastic £ows and cold
rock avalanches range between 0.5 and 0.1. On
the other hand, Capra et al. (2002) also calculate
H/L ratios of debris £ows and debris avalanches
for Mexican volcanoes and point out that H/L
ratios are 0.03^0.05 for debris £ows and H/L val-
ues of less mobile debris avalanches are between
0.13 and 0.09. Comparing those values with
Mount Nemrut data, the £anks of Nemrut and

Table 1 (Continued).

Valley Processed
data
points

Length
of valley

Max.
depth

First
cluster
analysis

Mean slope values
of ¢rst cluster
analysis groups

Breaking point slope
value between ¢rst
and second groups

Breaking point slope
value between second
and third groups

Second
cluster
analysis

(m) (m)

2 10.0 p
3 4.9 p

v18 94 2722 47 1 12.1 24.08 y
2 7.3 p

v19 99 2646 35 1 27.7 18.18 g
2 10.4 p

v20 94 3229 40 1 22.0 12.98 g
2 7.1 p

v21 132 3576 40 1 18.6 21.31 y
2 7.2 p

v22 136 3556 44 1 24.4 20.91 7.5 g
2 13.5 y
3 6.0 p

Abbreviations: g, green; y, yellow; p, pink.
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most of the settlements around the volcano have
H/L values s 0.1. It means that considering the
literature data on Merapi, Unzen and Mexican
volcanoes, the £anks of Mount Nemrut will be
a¡ected by the future volcanic event. Some settle-
ments like Ahlat, Tasharman, Bitlis, Guroymak,
Citak have H/L values less than 0.1. According to
an assumption based on literature data, we can
suggest that those settlements will be threatened
only by large-volume, highly mobile pyroclastic
£ows and/or air-falls if they occur. On the other
hand, Ahlat town will probably be less threatened
from an event, because it is located in the £at-
land. It is di⁄cult to consider that the surge or
£ow products could reach Ahlat city if a future
eruption will occur as a hydrovolcanic one or cold
debris generated by strong rainfalls.

Transported volcanic materials (erupted or cold
debris) could reach the city center of either Tat-
van or Bitlis and Guroymak or both. We empha-
size that the altitude of the SW part of the Kirkor

domes, in the direction of Bitlis valley, is topo-
graphically 100 m below Lake Van (1646 m).

Finally, the spot image and DEM of Nemrut
were overlapped, creating 3D near-real visualiza-
tion (Fig. 4c). On this image, cluster classi¢cation
is shown with di¡erent colors as potential risk
zones as a function of their average slope and
H/L values which may a¡ect the mobility of
transported material. The expected behavior of
transported material which would be produced
during the next volcanic event on di¡erent zones
of Mount Nemrut is summarized as follows.

A green color corresponds to high slope values
and this area could be mantled by eruptive depos-
its. There are no settlements in the green zone, so
the expected impact of the next event will only
a¡ect the environment rather than the human
life in this zone. The average H/L ratio of this
zone is 0.26. The yellow zone is a transitional
zone from topography mantling to channeling.
Its average H/L ratio is close to 0.22. The average

Table 2
Calculated Heim parameters H/L for the valleys and settlements around the volcano

Valley H/L ratio for the £anks Settlement H/L

Green^yellow transition Yellow^pink transition Pink^red transition

Western and southwestern £anks
v1 0.200 0.242 0.214 Golbasi 0.155
v2 0.240 0.264 0.228 Oduncular 0.104
v3 0.380 0.421 0.276 Citak 0.086
v4 0.466 0.397 0.230 Guroymak 0.058
v5 0.238 0.241 0.179
v6 0.201 0.207 0.133
v7 0.251 0.183 0.154

Southern and southeastern £anks
v8 0.282 0.187 0.114 Yumurtatepe 0.158
v9 0.129 0.151 0.101 Cekmece 0.150
v10 0.472 0.179 0.109 Benekli 0.130
v11 0.229 0.178 0.145 Tatvan 0.101
v12 0.240 0.156 0.124 Bitlis 0.049
v13 0.168 0.159 0.122
v14 0.178 0.134 0.110
v15 0.203 0.138 0.102

Northern and northeastern £anks
v16 0.249 0.234 0.193 Derinbayir 0.125
v17 0.196 0.185 0.151 Tasharman 0.079
v18 0.169 0.208 0.166 Ahlat 0.033
v19 0.307 0.298 0.213
v20 0.191 0.269 0.191
v21 0.301 0.317 0.204
v22 0.402 0.267 0.181
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slope values and H/L ratios of the green and yel-
low zones lead us to suppose that those zones will
be a¡ected even from small-scale rock falls and
less mobile, highly viscous transported material.
The pink zone, where slope values are relatively
smaller than in the previous zones (6 14‡), will
witness the fan-style behavior of transported ma-
terial which could probably destroy mainly Tat-
van and/or Bitlis city. The red zone is the possible
deposition ¢eld of transported mass. The settle-
ments like the villages, town and cities are mainly
situated in the pink and the red zones (Fig. 4c)
where the slope values are gentle and most of
those settlements are located at the end of the
valleys. Cole et al. (1999) pointed out that the
settlements within valleys or at valley mouths
are particularly vulnerable to damage from tephra
remobilization both during and after an explosive
eruption of Furnas Volcano, Azores. In addition,
Hall et al. (1999) emphasized how the valleys
drain pyroclastic £ows and debris £ows on Tungu-
rahua Volcano (Ecuador) and their role in the risk
over Banos. In the light of our morphological
analysis, we conclude that the volcano £anks are
open to risks generated from all kinds of volcanic
events, while some settlements which have H/L
values less than 0.1 will be threatened if a debris
£ow is triggered.

4. Discussion and conclusion

Mount Nemrut stratovolcano is located in an
active tectonic context and releases mantle-de-
rived gases. However, the last eruption of Mount
Nemrut is known to have occurred in 1441 (Os-
walt, 1912; Pfa¡engolz, 1950; Ozpeker, 1973;
Fe¤raud, 1994; Yilmaz et al., 1998), but the live
description of the last eruption of Nemrut in a
book written in 1597 proves that the volcano
was very active about 400 years ago. Additionally,
the recent publication of Karakhanian et al.
(2002), based on the Armenian Chronicles, shows
that Mount Nemrut has had some historical vol-
canic activities. On the other hand, a study on
Lake Van varve records for the past 10 420 years
(Kempe and Degens, 1978) described the volcanic
products of the 1441 AD eruption based on the

sediment core sections as light-colored volcanic
tu¡ rather than the dark-colored products emitted
from the rift zone in 1441. So, in 1441, Mount
Nemrut probably produced the light-colored tu¡s
which are actually present on the southern £ank
and within the caldera, and were related to a
phreatomagmatic eruption.

According to the volcanological past of Mount
Nemrut, two major hypotheses may be proposed
for the expected eruption: intracaldera volcanism
or £ank eruption.

If the eruption occurs within the caldera, it will
be phreatomagmatic and destructive because of
the presence of water (about 1 km3) within the
caldera. The hot water mixed with pyroclastics
will form mud £ows, as occurred in the eruption
of Nevado del Ruiz (Colombia) where about
25 000 people were killed in 1985. On the other
hand, the region is high enough to have lots of
snow during winter. This is also very dangerous,
because if the magmatic gases heat snow by sev-
eral degrees, debris £ows can be generated.

The other possibility is a £ank eruption. If an
eruption occurs during winter, the same danger
mentioned above could be produced. If not, the
lava e¡usions could destroy the lands, as far as
the city of Tatvan. Or, the rift zone could be re-
activated, producing some lava £ows.

As summarized above, the major risk for
Mount Nemrut is its capability to produce small
or large-volume pyroclastic £ows and/or debris
£ows. This poorly known active volcano has
been morphologically analyzed and the results
are speculative. Twenty-two important valleys
were distinguished. The maximum depth of
some valleys reaches 200 m. The valleys are local-
ized in three zones: the WSW £ank where the
deeper valleys are present, the SSE £ank where
the longest valleys are located, and the NNE £ank
where the valley depths and lengths are less im-
portant. Based on the morphological analysis we
propose that Mount Nemrut Volcano has four
danger zones, illustrated in Fig. 4c. The green
and yellow zones will be a¡ected by all types of
event such as small or large-volume pyroclastic
£ows, cold or hot debris £ows, surges or cold
rock avalanches. The settlements are situated in
the pink and red zones, which will probably be

E. Aydar et al. / Journal of Volcanology and Geothermal Research 123 (2003) 301^312 311



threatened by channeled products. Considering
the water presence within the caldera, debris £ows
may be generated during the next volcanic activ-
ity. Debris £ows normally ¢ll depressions and
may attain their maximum thickness some dis-
tance from the edi¢ce, where valleys widen and
gradients become lower, as observed at Nevado
de Toluca Volcano by Capra and Macias (2000).
In this case those debris £ows will use the valleys,
be deposited in lowlands and probably destroy
settlements.

Finally, Mount Nemrut represents a real dan-
ger for 135 000 people that live in the area and it
is necessary to survey this volcano. So, a seismic
survey combined with periodical water and gas
sampling and analyzing will be proposed. An alert
code system and civil evacuation plans need to be
established.
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e-Appendix – 1 (in CD) Evolution of Nemrut volcano (movie file). 

e-Appendix – 2 (in CD) Stratigraphical sections (image file). 

e-Appendix – 3 (in CD) “STcorr” and short user guide (code and pdf). 

e-Appendix – 4 (in CD) “Nemtrig” and short user guide (code and pdf). 
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