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TORIC VARIETIES: PHYLOGENETICS AND DERIVEDCATEGORIESMATEUSZ MICHA�EK
Stresz
zenie pra
y w j�zyku polskimRozmaito±
i tory
zne: �logenetyka i kategoriepo
hodneCelem niniejszej pra
y doktorskiej jest badanie spe
jalny
h wªasno±
irozmaito±
i tory
zny
h. Pra
a jest podzielona na trzy 
z�±
i. Pierwszedwie z ni
h s¡ silnie ze sob¡ powi¡zane.W pierwszej 
z�±
i zajmujemy si� gªównie badaniem rozmaito±
i al-gebrai
zny
h zwi¡zany
h z pro
esami Markowa na drzewa
h. Z ka»dympro
esem Markowa na drzewie mo»na stowarzyszy¢ rozmaito±¢ alge-brai
zn¡. W zwi¡zku z motywa
jami biologi
znymi, skupiamy si� napro
esa
h Markowa okre±lony
h poprzez dziaªanie grupy. Badamy wa-runki, kiedy uzyskane rozmaito±
i s¡ tory
zne oraz podajemy i
h opis,Twierdzenie 5.63. Przedstawiamy twierdzenia, podaj¡
e warunki wystar-
zaj¡
e do tego, aby otrzymane rozmaito±
i byªy normalne, 5.73, jakrównie» podajemy przykªady, gdy nie s¡ one normalne 5.74, 5.75. Jed-nym z gªówny
h u»ywany
h narz�dzi jest uogólnienie poj�¢ wtyków isie
i, wprowadzony
h w [BW07℄, do dowolny
h grup abelowy
h. Wnaszej de�ni
ji sie
i tworz¡ grup�, De�ni
ja 5.24, która dziaªa na roz-maito±
i. Ponadto, przestrze« w której zanurzona jest rozmaito±¢ jestregularn¡ reprezenta
j¡ tej grupy.Gªównym otwartym problemem do którego odnosimy si� w tej 
z�±
ijest hipoteza Sturmfelsa i Sullivanta [SS05, Hipoteza 2℄. Stwierdza ona,»e ideaª a�ni
znej rozmaito±
i skojarzonej z modelem 3-Kimury jestgenerowany w stopniu 4. Nasz najsilniejszy wynik dowodzi, »e s
hematrzutowy zwi¡zany z tym modelem mo»e by¢ opisany poprzez ideaª gen-erowany w stopniu 4, Twierdzenie 12.1. Wraz z Mari¡ Donten�Buryprzedstawiamy sposób generowania wielomianów nale»¡
y
h do ideaªustowarzyszonego z rozmaito±
i¡ dla dowolnego modelu. Dowodzimy,»e nasza metoda generuje 
aªy ideaª dla wielu modeli wtedy i tylkowtedy, gdy za
hodzi hipoteza Sturmfelsa i Sullivanta [SS05, Hipoteza4



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 51℄, Twierdzenie 7.8. Prezentujemy kilka zastosowa«, na przykªad doproblemu identy�kowalno±
i w biologii.Druga 
z�±¢ pra
y doty
zy rozmaito±
i algebrai
zny
h zwi¡zany
h ztrójwalentnymi grafemi oraz modelem binarnym Jukesa-Cantora. Jestto wspólna pra
a z Weronik¡ Bu
zy«sk¡, Jarosªawem Bu
zy«skim iKaie Kubjas. W przypadku grafu, stowarzyszona rozmaito±¢ mo»e by¢reprezentowana przez póªgrup� z grada
j¡. Badamy zwi¡zki pomi�dzywªasno±
iami grafu i otrzymanej póªgrupy. Gªówne twierdzenie 14.1dowodzi, i» pierwsza li
zba Bettiego grafu plus jeden jest górnym osza-
owaniem na stopie« w którym generowana jest póªgrupa.W ostatniej 
z�±
i badamy kategorie po
hodne gªadki
h, zupeªny
hrozmaito±
i tory
zny
h. We wspólnej pra
y z Mi
haªem Lasoniem[LM11℄ konstruujemy peªne, silnie wyj¡tkowe kolek
je wi¡zek liniowy
hdla szerokiej klasy gªadki
h, zupeªny
h rozmaito±
i tory
zny
h o li
zbiePi
arda równej trzy. Wiele pyta« doty
z¡
y
h jakiego rodzaju kolek
jimo»na o
zekiwa¢ na rozmaito±
ia
h tory
zny
h pozostaje otwarty
h.Jeden z otrzymany
h wyników pokazuje, »e Pn rozdmu
hane w dwó
hpunkta
h nie posiada peªnej, silnie wyj¡tkowej kolek
ji zªo»onej z wi¡zekliniowy
h dla wystar
zaj¡
o du»ego n. Otrzymujemy niesko«
zon¡rodzin� kontrprzykªadów do hipotezy Kinga 19.2. Pierwszy taki kontr-przykªad zostaª skonstruowany przez Hille i Perlinga [HP06℄. OstatnioE�mov podaª tak»e kontrprzykªady dla rozmaito±
i Fano [E�℄.Pra
ujemy nad 
iaªem li
zb zespolony
h C. Wszystkie rozmaito±
is¡ rozmaito±
iami algebrai
znymi w sensie [Har77℄.



6 MATEUSZ MICHA�EKStresz
zenie i wprowadzenie do 
z�±
i pierwszejMotywa
j¡ dla konstruk
ji rozpatrywany
h w pierwszej 
z�±
i pra
yjest matematyka stosowana. Za
znijmy od przypomnienia podsta-wowy
h wªasno±
i ªa«
u
hów Markowa oraz pro
esów Markowa nadrzewa
h. �a«
u
h Markowa to 
i¡g zmienny
h losowy
h (Xi) speªnia-j¡
y okre±lone warunki. Przy ustalonym stanie zmiennej Xi−1 zmiennalosowa Xi jest niezale»na od wszystki
h zmienny
h losowy
h Xi−j dla
j > 1. Zazwy
zaj ªa«
u
h Markowa jest przedstawiany jako ±
ie»ka.Ka»dy wierz
hoªek odpowiada zmiennej losowej. ZmienneXi orazXi−1s¡ poª¡
zone, jak na rysunku poni»ej.

· X0...
· Xi−1

· Xi...Dla danego ªa«
u
ha Markowa wprowadza si� prawdopodobie«stwawarunkowe, które okre±laj¡ wszystkie wªasno±
i ªa«
u
ha. Zaªó»my, »ezmienna Xi mo»e by¢ w ai < ∞ stana
h. Ka»dej kraw�dzi ª¡
z¡
ej
Xi−1 z Xi mo»emy przypisa¢ ma
ierz o wymiara
h ai−1 × ai. Kolumnyi rz�dy tej ma
ierzy s¡ ozna
zone odpowiednio stanami zmienny
hXi−1orazXi. Odpowiednie wpisy w ma
ierzy okre±laj¡ prawdopodobie«stwawarunkowe. Konkretnie, wpis w p-tym rz�dzie i i q-tej kolumnie od-powiada prawdopodobie«stwu, »e Xi jest w stanie p pod warunkiem, »e
Xi−1 jest w stanie q. Otrzymane ma
ierze nazywamy ma
ierzami przej-±
ia. Je±li znamy rozkªad zmiennej losowej X0 oraz ma
ierze przej±
ia,to mo»emy ªatwo obli
zy¢ rozkªady wszystki
h zmienny
h losowy
hwyst�puj¡
y
h w danym ªa«
u
hu Markowa.Konstruk
j� t� mo»emy bezpo±rednio uogólni¢ do drzew ukorzenio-ny
h. Drzewem ukorzenionym okre±lamy spójny graf, bez 
ykli, zwyró»nionym wierz
hoªkiem. Li±
ie drzewa to wierz
hoªki, które po-siadaj¡ tylko jednego s¡siada. W�zªy to wierz
hoªki, które nie s¡li±¢mi. W pra
y 
zasami uto»samiamy li±
ie z kraw�dziami z którymi
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zone. Dla uprosz
zenia j�zyka przyjmujemy, »e drzewo jestgrafem skierowanym i wszystkie kraw�dzie s¡ skierowane od korzenia.W poni»szym przykªadzie korze« zostaª ozna
zony jako ◦.
◦

· ·

· · ·Tak jak w przypadku ªa«
u
hów Markowa, ka»demu wierz
hoªkowiprzyporz¡dkowujemy zmienn¡ losow¡. Mówimy, i» wierz
hoªek v1 jestbezpo±rednim przodkiem v2 je±li istnieje kraw�d¹ skierowana od v1 do
v2. Zauwa»my, i» ka»dy wierz
hoªek ma dokªadnie jednego bezpo±red-niego przodka, poza korzeniem, który nie posiada przodków. Potom-kami wierz
hoªka v nazywamy wszystkie wierz
hoªki do który
h istnieje±
ie»ka skierowana, za
zynaj¡
a si� w v. Wªasno±¢ Markowa stwierdza,i» zmienna X jest niezale»na od wszystki
h zmienny
h które nie s¡ jejpotomkami, przy ustalonym stanie bezpo±redniego przodka.Pro
esy Markowa na drzewa
h s¡ dobrymi modelami dla wielu zjawiskprzyrodni
zy
h. Sztandarowym przykªadem jest tutaj pro
es ewolu
ji.Jednym ze znany
h zaªo»e« jest fakt, i» DNA danego gatunku zale»ytylko od stanu bezpo±redniego poprzednika. Filogenetyka jest nauk¡badaj¡
¡ zmiany ewolu
yjne. Jej gªównym zadaniem jest opis pro
esuMarkowa modeluj¡
ego ewolu
j� gatunków. Przy tym modelu zakªadasi�, »e zmienne mog¡ mie¢ 
ztery stany odpowiadaj¡
e zasadom azo-towym w
hodz¡
ym w skªad DNA: adeninie, 
ytozynie, guaninie oraztyminie. Stany te ozna
za si� literami A, C, G, T . O
zywi±
ie, apriori, nie znamy parametrów ma
ierzy przej±
ia, ani ksztaªtu drzewa.Jednak»e badaj¡
 »yj¡
e gatunki mo»emy pozna¢ rozkªad zmienny
hlosowy
h przypisany
h li±
iom odpowiadaj¡
ym tym gatunkom. Bi-ologia teorety
zna przedstawia równie» mo»liwe typy ma
ierzy przej±-
ia. W zale»no±
i od modelu teorety
znego który wybierzemy, ma
ierzeprzej±
ia mog¡ nale»e¢ do ró»ny
h przestrzeni liniowy
h. Ró»ne mod-ele biologi
zne s¡ przedstawione w Rozdziale 4. Bardzo interesuj¡
yjest fakt, i» modele zaproponowane przez biologów teorety
zny
h 
z�stoposiadaj¡ wªasno±
i 
iekawe z matematy
znego punktu widzenia. Dokªad-nie rze
z ujmuj¡
 pewne przestrzenie ma
ierzy przej±
ia s¡ zadane jakoma
ierze niezmienni
ze ze wzgl�du na dziaªanie grupy.



8 MATEUSZ MICHA�EKPrzedstawmy jeden z mo»liwy
h sposobów rozwi¡zania problemów�logenety
zny
h, korzystaj¡
y z geometrii algebrai
znej. Ustalmy drze-wo T , o którym podejrzewamy, »e mo»e wªa±
iwie opisywa¢ pro
esewolu
ji. Rozwa»my ma
ierze przej±
ia z wolnymi parametrami, którezale»¡ jedynie od wybranego przez nas modelu biologi
znego. Do prze-strzeni parametryzuj¡
ej dodajemy równie» parametry rozkªadu zmien-nej losowej stowarzyszonej z korzeniem. Dla dany
h parametrów obli-
zamy rozkªad zmienny
h losowy
h stowarzyszony
h z li±¢mi. Otrzy-mujemy odwzorowanie1 π ◦ ψ̂. Jego dziedzina to parametry ma
ierzyprzej±
ia oraz zmiennej losowej przypisanej korzeniowi. Obraz od-wzorowania to wszystkie mo»liwe rozkªady zmienny
h losowy
h przy-pisany
h li±
iom.Przykªad W tym przykªadzie zakªadamy, »e ka»da zmienna mo»emie¢ dwa stany ozna
zone poprzez 0 oraz 1. Korze« ma dwó
h po-tomków. Zmienna losowa przyjmuje warto±¢ 0 z prawdopodobie«stwem
λ0 oraz 1 z prawdopodobie«stwem λ1. Ma
ierze przej±
ia maj¡ nast�pu-j¡
¡ posta¢.

◦
[

a1 a2
a2 a1

] [
b1 b2
b2 b1

]

· ·Mamy 6 parametrów. Zmienne stowarzyszone z li±¢mi mog¡ by¢ w 4stana
h:1) obie w stanie 0,2) lewa w stanie 0, prawa w stanie 1,3) prawa w stanie 1, lewa w stanie 0,4) obie w stanie 1.Otrzymujemy odwzorowanie:
π ◦ ψ̂ : (λ0, λ1, a1, a2, b1, b2) →

(λ0a1b1 + λ1a2b2, λ0a1b2 + λ1a2b1, λ0a2b1 + λ1a1b2, λ0a2b2 + λ1a1b1).Nie
h P b�dzie punktem, wyzna
zonym na podstawie bada« bio-logi
zny
h, reprezentuj¡
ym rozkªad zmienny
h losowy
h przypisany
hli±
iom. Pragniemy stwierdzi¢ 
zy punkt P nale»y do obrazu od-wzorowania π ◦ ψ̂. Je±li punkt nie nale»y do obrazu, to mo»emy stwier-dzi¢, i» wybrany model biologi
zny jest bª�dny lub rozwa»ane drzewonie opisuje ewolu
ji w sposób prawidªowy. Je±li punkt P nale»y do1Wybór nota
ji zostanie uzasadniony w kolejny
h rozdziaªa
h.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 9obrazu, mo»emy pyta¢ o wªókno odwzorowania π ◦ ψ̂ nad punktem
P . Niestety stwierdzenie 
zy punkt nale»y do obrazu jest w ogólno±
ibardzo trudne. Jedna z metod wykorzystuje fakt, i» odwzorowanie
π ◦ ψ̂ jest algebrai
zne. Rozwa»a si� domkni�
ie obrazu w topologiiZariskiego. Jest to a�ni
zna rozmaito±¢ algebrai
zna. Problem spro-wadza si� wtedy do opisu ideaªu tej rozmaito±
i i stwierdzeniu 
zy jegogeneratory zeruj¡ si� na punk
ie P . Elementy wy»ej wymienionegoideaªu nazywane s¡ niezmiennikami �logenety
znymi.Podej±
ie przez nas przedstawione mo»e nie by¢ efektywne. Opisideaªu rozmaito±
i zadanej przez parametryza
j� nie jest prostym za-daniem. Jednak»e odwzorowania, które rozpatrujemy 
z�sto posiadaj¡spe
jalne wªasno±
i. Jak zauwa»yli Evans i Speed [ES93℄ rozmaito±
istowarzyszone z niektórymi modelami ewolu
ji s¡ tory
zne. Dokªad-niej, istnieje ukªad wspóªrz�dny
h w którym odwzorowanie parame-tryzuj¡
e rozmaito±¢ jest zadane jednomianami. Pozwala to na za-stosowanie metod geometrii tory
znej przy wyzna
zaniu ideaªu roz-maito±
i.W 
aªej pra
y zakªadamy, »e zmienna losowa stowarzyszona z wierz-
hoªkiem posiada rozkªad jednorodny. Zaªo»enie to nie jest motywowaneprzez biologi�. Otrzymujemy jednak dzi�ki niemu lepszy opis ma-tematy
zny. Z tego powodu zakªadamy, »e przestrze« parametryzuj¡
arozmaito±¢ skªada si� tylko z parametrów ma
ierzy przej±
ia.Jednym z gªówny
h 
elów pra
y jest ustalenie przy jaki
h warunka
hz danym modelem jest stowarzyszona rozmaito±¢ tory
zna oraz podaniejej opisu. Otrzymane wyniki przedstawiaj¡ bardzo ogóln¡ konstruk
j�5.63. Wszystkie de�ni
je obiektów wyst�puj¡
y
h w twierdzeniu po-jawi¡ si� w pó¹niejszy
h rozdziaªa
h.Twierdzenie 5.63 Nie
h H b�dzie normaln¡, abelow¡ podgrup¡grupy G ⊂ Sn. Zaªó»my, »e H dziaªa w sposób tranzytywny i wolny nazbiorze S o n elementa
h. Rozwa»my ma
ierze przej±
ia nale»¡
e doprzestrzeni Ŵ , które s¡ niezmienni
ze ze wzgl�du na dziaªanie grupy G.Nie
h W b�dzie przestrzeni¡ wektorow¡ rozpi�t¡ przez wektory bazoweuto»samiane z elementami zbioru S. Model �logenety
zny dla dowol-nego drzewa T zwi¡zany z przestrzeniami W oraz Ŵ zadaje tory
zn¡rozmaito±¢ algebrai
zn¡.W sz
zególno±
i rozpatrywane przez nas modele zawieraj¡ wszys-tkie modele biologi
zne o który
h wiadomo, »e s¡ stowarzyszone z roz-maito±
iami tory
znymi. Badamy równie» wªasno±
i otrzymany
h roz-maito±
i. Dowodzimy, »e rozmaito±
i stowarzyszone z pewnymi mode-lami s¡ normalne 5.73.



10 MATEUSZ MICHA�EKTwierdzenie Modele �logenety
zne zwi¡zane z dowolnym drzewemtrójwalentnym oraz jedn¡ z grup: Z2, Z2 × Z2, Z3 oraz Z4 zadaj¡ roz-maito±¢ normaln¡.Podajemy równie» przykªady rozmaito±
i, które nie s¡ normalne 5.75.Nast�pnie badamy dla jaki
h modeli rozmaito±
i stowarzyszone z drze-wami trójwalentnymi o ustalonej li
zbie li±
i nale»¡ do jednej rodzinypªaskiej. Dla modelu binarnego Jukesa-Cantora fakt ten zostaª udowod-niony w pra
y [BW07℄. Dla 3-Kimury nie jest on prawdziwy, 
o wyka-zano w pra
y [Kub10℄. Obli
zaj¡
 wielomiany Hilberta wielu roz-maito±
i stwierdzili±my, »e wi�kszo±¢ rozwa»any
h modeli nie ma tejwªasno±
i.Kolejny, bardzo istotny problem badany w doktora
ie doty
zy niezmi-enników �logenety
zny
h.De�ni
ja (Drzewo gwie¹dziste) Drzewo gwie¹dziste Kn,1 to drzewoposiadaj¡
e jeden w�zeª i n li±
i.Dla wielu modeli, w sz
zególno±
i ty
h które s¡ gªównym przed-miotem tej pra
y, wyzna
zanie niezmienników �logenety
zny
h zostaªozredukowane do przypadku drzewa gwie¹dzistego [SS05℄, [AR08℄, [DK09℄.Jednak»e wyzna
zenie i
h nawet w tym sz
zególnym przypadku jestbardzo trudnym zadaniem. Nie wiemy nawet w jakim stopniu ideaª sto-warzyszonej rozmaito±
i jest generowany. Znana hipoteza Sturmfelsai Sullivanta [SS05, Conje
ture 1℄ podaje dokªadne górne ograni
zeniena ten stopie«. Ciekaw¡ obserwa
j¡ jest fakt, i» wy»ej wymienionahipoteza implikuje opis ideaªu jako sumy prostszy
h ideaªów. Prezen-tujemy metod� generowania wielu niezmienników �logenety
zny
h dladowolnego modelu, dla drzewa gwie¹dzistego 7.2. Stawiamy hipotez�,i» nasza metoda pozwala w peªni opisa¢ ideaª. Dowodzimy, i» w wieluprzypadka
h nasza hipoteza jest równowa»na hipotezie Sturmfelsa iSullivanta � Twierdzenie 7.8. Nasz najsilniejszy wynik 12.1 doty
z¡
ytego tematu dowodzi sªabszej, teorio zbiorowej wersji [SS05, Hipoteza2℄, 
o jest wystar
zaj¡
e z punktu widzenia zastosowa«.
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zenie i wprowadzenie do 
z�±
i drugiejNie
h G b�dzie grafem trójwalentnym. Nie
h d b�dzie li
zb¡ na-turaln¡. Gªównym przedmiotem naszy
h bada« jest podzbiór τ(G)dzbioru wszystki
h numerowa« kraw�dzi grafu G za pomo
¡ li
zb 
aªko-wity
h. Dane numerowanie nale»y do τ(G)d, gdy speªnione s¡ nast�pu-j¡
e wrunki:[♥♥℄ (parzysto±¢) suma li
zb przyporz¡dkowany
h kraw�dziom za-wieraj¡
ym dany wierz
hoªek jest parzysta;[+℄ (dodatnio±¢) li
zby przypisane kraw�dziom s¡ nieujemne;[△℄ (nierówno±
i trójk¡ta) trzy li
zby przypisane kraw�dziom za-wieraj¡
ym dany wierz
hoªek speªniaj¡ warunek trójk¡ta;[°℄ (ograni
zenie stopnia) dla dowolnego wierz
hoªka suma li
zbprzypisany
h kraw�dziom, które go zawieraj¡ nie przekra
za
2d.Sz
zegóªy konstruk
ji oraz formalne de�ni
je znajduj¡ si� w Rozdziale 15.Badamy obiekt τ(G) =

⊔
d∈N τ(G)d, który poprzez dodawanie li
zbprzypisanym kraw�dziom ma struktur� monoidu. Nazywamy gomono-idem �logenety
znym grafu G. Gªówny wynik tej 
z�±
i to nast�pu-j¡
e twierdzenie.Twierdzenie Nie
h G b�dzie dowolnym grafem trójwalentnym o pier-wszej li
zbie Bettiego g. Monoid τ(G) jest generowany w stopniu 
onajwy»ej g + 1. Ponadto dla ka»dego g parzystego istniej¡ grafy dlaktóry
h podane osza
owanie jest dokªadne.Dla g = 1 oraz g = 3 tak»e istniej¡ grafy, które nie s¡ generowanew stopniu g. Konstruujemy równie» przykªady grafów o nieparzystejli
zbie Bettiego g, które nie s¡ generowane w stopniu g− 1. Otwartymproblemem pozostanie pytanie 
zy istniej¡ grafy o nieparzystym g ≥

5, które nie s¡ generowane w stopniu g. Podajemy tak»e dokªadnestopnie w który
h generowane s¡ monoidy stowarzyszone z grafamitypu g¡sieni
a z p�telkami przedstawionymi poni»ej.
Figure 1: G¡sieni
a z p�telkami



12 MATEUSZ MICHA�EKStresz
zenie i wprowadzenie do 
z�±
i trze
iejW tej 
z�±
i wszystkie rozwa»ane rozmaito±
i algebrai
zne s¡ gªad-kie. Czytelnikowi zainteresowanemu konstruk
j¡ kategorii po
hodnejsnopów koherentny
h na rozmaito±
i X pole
amy pierwsze rozdziaªy[Huy06℄ lub artykuª [C l05℄. Dªu»szym, klasy
znym ¹ródªem informa-
ji na ten temat jest równie» ksi¡»ka [GM03℄.Struktura i wªasno±
i kategorii po
hodnej mog¡ by¢ bardzo skomp-likowane i s¡ przedmiotem li
zny
h bada«. Jeden ze sposobów opisu tejkategorii u»ywa poj�¢ obiektów wyj¡tkowy
h. Przedstawy nast�puj¡
ede�ni
je (patrz równie» [GR87℄):De�ni
ja(i) Snop koherentny F na X jest nazywany wyj¡tkowym je±liHom(F, F ) = K oraz Ext i
OX

(F, F ) = 0 dla i ≥ 1.(ii) Ci¡g (F0, F1, . . . , Fm) snopów koherentny
h na X nazywamykolek
j¡ wyj¡tkow¡ je±li ka»dy snop Fi jest wyj¡tkowy orazExt i
OX

(Fk, Fj) = 0 dla j < k oraz i ≥ 0.(iii) Kolek
ja wyj¡tkowa (F0, F1, . . . , Fm) snopów koherentny
h na
X jest silnie wyj¡tkow¡ kolek
j¡ je±li Ext i

OX
(Fj, Fk) = 0 dla

j ≤ k oraz i ≥ 1.(iv) (Silnie) wyj¡tkowa kolek
ja (F0, F1, . . . , Fm) snopów koher-entny
h na X jest peªn¡, (silnie) wyj¡tkow¡ kolek
j¡ je±ligeneruje ograni
zon¡ kategori� po
hodn¡ Db(X) rozmaito±
i
X , tzn. najmniejsza triangulowalna kategoria zawieraj¡
a
{F0, F1, . . . , Fn} jest równowa»na z Db(X).W tej 
z�±
i doktoratu badamy peªne, silnie wyj¡tkowe kolek
je wi¡-zek liniowy
h na gªadki
h, zupeªny
h rozmaito±
ia
h tory
zny
h o li
z-bie Pi
arda 3. Wiadomo, »e dla ka»dej gªadkiej rzutowej rozmaito±
itory
znej istnieje peªna, wyj¡tkowa kolek
ja snopów koherentny
h �[Kaw06℄. Jednak»e wiele pyta« w tej dziedzinie pozostaje otwarty
h.W sz
zególno±
i nie wiadomo 
zy istnieje peªna, silnie wyj¡tkowa kolek-
ja snopów koherentny
h lub 
zy istnieje peªna, wyj¡tkowa kolek
jazªo»ona z wi¡zek liniowy
h. Wiadomo jednak, i» istniej¡ gªadkie rzu-towe rozmaito±
i tory
zne nie posiadaj¡
e peªnej, silnie wyj¡tkowejkolek
ji zªo»onej z wi¡zek liniowy
h, 
o pierwotnie sugerowaªa hipotezaKinga. Pierwszy kontrprzykªad zostaª podany w pra
y [HP06℄. W tej
z�±
i pra
y pokazujemy, i» Pn rozdmu
hane w dwó
h punkta
h nieposiada peªnej, silnie wyj¡tkowej kolek
ji zªo»onej z wi¡zek liniowy
hdla dostate
znie du»y
h n � Twierdzenie 19.72.Twierdzenie Nie
h n > 20. Dowolna silnie wyj¡tkowa kolek
jawi¡zek liniowy
h na Pn rozdmu
hanym w dwó
h punkta
h ma dªugo±¢
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o najwy»ej 3n − 2. Ranga grupy Grothendie
ka wynosi 3n − 1, wi�
kolek
ja ta nie mo»e by¢ peªna.We wspólnej pra
y z Mi
haªem Lasoniem konstruujemy równie» takiekolek
je dla szerokiej klasy gªadki
h, zupeªny
h rozmaito±
i tory
zny
ho li
zbie Pi
arda 3. Rozmaito±
i te zostaªy sklasy�kowane przez Baty-reva [Bat91℄ w termina
h kolek
ji prymitywny
h. S¡ to minimalnekolek
je promieni wa
hlarza, które nie tworz¡ sto»ka. Taki
h kolek
jimo»e by¢ 3 lub 5. Przypadek, gdy wyst�puj¡ tylko 3 kolek
je jestdobrze zbadany. Zajmowali±my si� gªównie przypadkiem 5 kolek
ji.Wa
hlarze takie mo»na dokªadnie sklasy�kowa¢. De�ni
je terminówwyst�puj¡
y
h w klasy�ka
ji znajduj¡ si� w ostatniej 
z�±
i doktoratu.Twierdzenie [Bat91, Theorem 6.6℄Nie
h Yi = Xi ∪Xi+1, dla i ∈ Z/5Z,
X0 = {v1, . . . , vp0}, X1 = {y1, . . . , yp1}, X2 = {z1, . . . , zp2},

X3 = {t1, . . . , tp3}, X4 = {u1, . . . , up4},gdzie p0 + p1 + p2 + p3 + p4 = n + 3. Dowolny n-wymiarowy wa
hlarz
Σ o zbiorze generatorów promieni ⋃Xi oraz pi�
iu kolek
ja
h prymi-tywny
h Yi mo»e by¢ opisany z dokªadno±
i¡ do symetrii pi�
iok¡ta zapomo
¡ nast�puj¡
y
h kolek
ji prymitywny
h o wspóª
zynnika
h na-turalny
h c2, . . . , cp2, b1, . . . , bp3 :
v1+· · ·+vp0+y1+· · ·+yp1−c2z2−· · ·−cp2zp2−(b1+1)t1−· · ·−(bp3+1)tp3 = 0,

y1 + · · ·+ yp1 + z1 + · · ·+ zp2 − u1 − · · · − up4 = 0,

z1 + · · ·+ zp2 + t1 + · · ·+ tp3 = 0,

t1 + · · ·+ tp3 + u1 + · · ·+ up4 − y1 − · · · − yp1 = 0,

u1+ · · ·+up4+v1+ · · ·+vp0 −c2z2−· · ·−cp2zp2 −b1t1−· · ·−bp3tp3 = 0.

�W 
elu odnalezienia peªny
h, silnie wyj¡tkowy
h kolek
ji u»ywali±mymetody po
hodz¡
ej od Bondala. Polega ona na rozwa»aniu rozpadup
hni�
ia wi¡zki trywialnej przez odpowiednio wysoki tory
zny mor-�zm Frobeniusa. Kolke
ja taka nie musi by¢ silnie wyj¡tkowa. Mo»enawet nie zawiera¢ takiej kolek
ji, 
o wykazali±my razem z Mi
haªemLasoniem. Jednak»e dla bardzo wielu rozmaito±
i otrzymane w tensposób wi¡zki liniowe stanowi¡ dobry punkt wyj±
ia. W nowej pra
yE�mov [E�℄ wykazaª, »e istniej¡ gªadkie, zupeªne rozmaito±
i tory
znetypu Fano o li
zbie Pi
arda 3, nie posiadaj¡
e peªnej, silnie wyj¡tkowejkolek
ji wi¡zek liniowy
h.



14 MATEUSZ MICHA�EKRésumé en Fran
aisVariétés toriques: phylogénie et 
atégories dérivéesL'obje
tif de 
ette thèse est d'étudier les propriétés de variétés toriquesparti
ulières. La thèse est divisée en trois parties, les deux premièresétant fortement liées.Dans la première partie, nous étudions des variétés algébriques as-so
iées aux pro
essus de Markov sur les arbres. A 
haque pro
essus deMarkov sur un arbre on peut asso
ier une variété algébrique. Motivépar la biologie, nous nous 
on
entrons sur les pro
essus de Markov dé�-nis par une a
tion de groupe. Nous étudions les 
onditions pour que lavariété obtenue soit torique, le théorème 5.63. Nous donnons un résul-tat où les variétés obtenues sont normales (
f proposition 5.73), ainsique des exemples où elles ne le sont pas (
f proposition 5.74 et 
al
ul5.75). L'une des prin
ipales méthodes que nous utilisons est la général-isation des notions de prises et de réseaux introduites dans [BW07℄ àdes groupes abéliens arbitraires. Dans notre 
ontexte, les réseaux for-ment un groupe dé
rit à la dé�nition 5.24 qui agit sur la variété. Parailleurs, l'espa
e ambiant de la variété est la représentation régulièrede 
e groupe.Le prin
ipal problème ouvert que nous essayons de résoudre dans
ette partie est une 
onje
ture de Sturmfels et Sullivant [SS05, Conje
-ture 2℄ indiquant que le s
héma a�ne asso
ié au modèle 3-Kimura estdé�ni par un idéal engendré en degré 4. Notre meilleur résultat dit quele s
héma proje
tif asso
ié peut être dé�ni par un idéal engendré endegré 4 (
f théorème 12.1). Ave
 Maria Donten�Bury, nous proposonsune méthode pour engendrer l'idéal asso
ié à la variété pour tous lesmodèles. Nous montrons que notre méthode fon
tionne pour de nom-breux modèles ainsi que pour les arbres si et seulement si la 
onje
turede Sturmfels et Sullivant est vraie (
f proposition 7.8). Nous présen-tons quelques appli
ations, par exemple au problème d'identi�abilitéen biologie.La deuxième partie 
on
erne les variétés algébriques asso
iées auxgraphes trivalents pour le modèle de Jukes-Cantor binaire. Il s'agitd'un travail en 
ommun ave
 Weronika Bu
zy«ska, Jarosªaw Bu
zy«skiet Kaie Kubjas. La variété asso
iée á un graphe peut être représentéepar un semi-groupe gradué. Nous étudions les liens entre les propriétésdu graphe et le semigroupe. Le théorème prin
ipal 14.1 borne le degréen lequel le semi-groupe est engendré par le premier nombre de Bettidu graphe, plus un.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 15Dans la dernière partie, nous étudions la stru
ture de la 
atégoriedérivée des fais
eaux 
ohérents des variétés toriques lisses. Dans untravail 
ommun ave
 Mi
haª Laso« [LM11℄, nous 
onstruisons une 
ol-le
tion fortement ex
eptionnelle 
omplète de �brés en droites pour unegrande 
lasse de variétés toriques 
omplètes lisses dont le nombre dePi
ard est égal á trois. De nombreuses questions 
on
ernant le typede 
olle
tions auxquelles on peut s'attendre sur les variétés toriques de
ertains types sont en
ore ouvertes. A 
e titre, nous prouvons que Pné
laté en deux points ne possède pas de 
olle
tion fortement ex
eption-nelle 
omplète de �brés en droites pour n assez grand. Ce
i fournit une
olle
tion in�nie de 
ontre-exemples à la 
onje
ture de King 19.2. Lepremier 
ontre-exemple est dû à Hille et Perling [HP06℄. Ré
emment,des 
ontre-exemples ont également été trouvés par E�mov [E�℄ dans le
adre des variétés de Fano.Nous allons travailler sur le 
orps des nombres 
omplexes C. Toutesles variétés 
onsidérées sont des variétés algébriques dans le sens de[Har77℄.



16 MATEUSZ MICHA�EKGeneral Introdu
tionThe aim of this thesis is to investigate the properties of spe
ial tori
varieties. The thesis is divided into three parts. The �rst two of themare strongly related to ea
h other.In the �rst, main part we study algebrai
 varieties asso
iated toMarkov pro
esses on trees. To ea
h Markov pro
ess on a tree one
an asso
iate an algebrai
 variety. Motivated by biology, we fo
us onMarkov pro
esses de�ned by a group a
tion. We investigate underwhi
h 
onditions the obtained variety is tori
, Theorem 5.63. We pro-vide 
onditions ensuring that the obtained varieties are normal, 5.73,as well as give examples when they are not 5.74, 5.75. One of the maintools we use is the generalization of the notions of so
kets and networksintrodu
ed in [BW07℄ to arbitrary abelian groups. In our setting thenetworks form a group, De�nition 5.24, that a
ts on the variety. More-over the ambient spa
e of the variety is the regular representation ofthis group.The main open problem that we address in this part is a 
onje
tureof Sturmfels and Sullivant [SS05, Conje
ture 2℄ stating that the a�nes
heme asso
iated to the 3-Kimura model is de�ned by an ideal gener-ated in degree 4. Our strongest result states that the asso
iated proje
-tive s
heme 
an be generated in degree 4, Theorem 12.1. Together withMaria Donten�Bury we also propose a method for generating the idealde�ning the variety for any model. We prove that our method worksfor many models and trees if and only if the 
onje
ture of Sturmfelsand Sullivant holds, Proposition 7.8. We present some appli
ations, forexample to the identi�ability problem in biology.The se
ond part 
on
erns algebrai
 varieties asso
iated to trivalentgraphs for the binary Jukes-Cantor model. It is a joint work withWeronika Bu
zy«ska, Jarosªaw Bu
zy«ski and Kaie Kubjas. In 
aseof the graph, the asso
iated variety 
an be represented by a gradedsemigroup. We investigate the 
onne
tions between properties of thegraph and the semigroup. The main theorem 14.1 bounds the degreein whi
h the semigroup is generated by the �rst Betti number of thegraph plus one. Due to 
onne
tions with the �rst part mu
h of theterminology that we use is either a spe
ialization or generalization ofprevious de�nitions. From the one hand, as we are working with graphswith possible loops the notions of leaves, nodes and valen
y are moresubtile than for trees. From the other hand, as we are dealing onlywith the binary Jukes-Cantor model, so
kets and networks have got avery spe
ial form.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 17In the last part we study the stru
ture of the derived 
ategory of
oherent sheaves for smooth tori
 varieties. As a result of a joint workwith Mi
haª Laso« [LM11℄ we 
onstru
t a full, strongly ex
eptional 
ol-le
tion of line bundles for a large 
lass of smooth, 
omplete tori
 vari-eties with Pi
ard number three. Many questions 
on
erning what kindof 
olle
tions should be expe
ted on tori
 varieties of 
ertain types arestill open. As a 
ontribution we prove that Pn blown up in two pointsdoes not have a full, strongly ex
eptional 
olle
tion of line bundles for
n large enough. This provides an in�nite 
olle
tion of 
ounterexamplesto King's 
onje
ture 19.2. The �rst su
h 
ounterexample is due to Hilleand Perling [HP06℄. Re
ently also 
ounterexamples in the Fano 
asewere found by E�mov [E�℄.We will work over the �eld of 
omplex numbers C. All the varieties
onsidered are algebrai
 varieties in the sense of [Har77℄.
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TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 191. NotationWe present the list of symbols used in the thesis. The de�nitionspresented here are not formal and should be only treated as indi
ations.Pre
ise de�nitions are given later � we provide the referen
es.
Ag a transition matrix asso
iated to the a
tion of g on W ,De�nition 5.1
add the morphism summing elements asso
iated to edges atea
h vertex, De�nition 5.16
add extension of add to a latti
e, De�nition 6.3
add′ the group morphism summing elements asso
iated toleaves, De�nition 5.19
bi a bije
tion between so
kets and networks, De�nition5.29
C a monoid in a latti
e
GM the 
ategory of G-models, De�nition 10.3
GMab the 
ategory of general group-based models
dege the fun
tion summing up 
oordinates in Me, De�nition5.39
degv(ω) De�nition 15.5
D(X) the derived 
ategory of X , Subse
tion 18.1
Db(X) the bounded derived 
ategory of X , Subse
tion 18.1
E the set of edges of a tree, De�nition 4.2
E the set of edges of a graph
fo a morphism that forgets 
oordinates, De�nition 5.29
fo De�nition 5.55
φ(G), φ(G, n) phylogeneti
 
omplexity of a group, Subse
tion 7.1
G a group
G a trivalent graph
GN De�nition 5.13
H an abelian group
Kn,1 the 
law tree with n leaves, De�nition 3.2
L the set of leaves of a tree, De�nition 4.2
Lab a �nite set of labels
lχ the basis element of Ŵ indexed by a 
hara
ter of anabelian group, De�nition 5.6
M a latti
e of 
hara
ters
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Mdeg a sublatti
e of ME , De�nition 6.1
Me the latti
e with basis elements indexed by 
hara
ters,De�nition 5.32
ME,G the latti
e with basis elements indexed by pairs of anedge and an orbit, De�nition 5.64
ME the latti
e with basis elements indexed by pairs of anedge and a 
hara
ter, De�nition 5.32
ME,0 sublatti
e of ME , De�nition 5.40
M̂E,0 sublatti
e of M̂E , De�nition 5.40
M̂E a sublatti
e of ME generated by points of P , De�nition5.38
Mgr a latti
e, De�nition 15.2
MS the latti
e with basis elements indexed by so
kets, Def-inition 5.32
MS,0 sublatti
e of MS with 
oordinates summing up to zero,De�nition 5.40
N latti
e of one parameter subgroups or the set of nodesof a tree
N the set of inner verti
es of a graph
N the group of networks, De�nition 5.24
O the set of orbits (usually of the adjun
tion a
tion of agroup G on H∗)
wχ a basis element of W indexed by a 
hara
ter of anabelian group, De�nition 5.2
P an integral polytope, (often representing the variety as-so
iated to a model, De�nition 5.34)
P(X)P an proje
tive tori
 variety, De�nition 2.7
π De�nition 4.9
Poly the 
ategory of polytopes in latti
es, De�nition 10.4
ψ̂ De�nition 4.7
ψ̌ the rational map indu
ed by π ◦ ψ̂, after De�nition 4.9
ψ̃ the morphism of latti
es indu
ed by ψ̂, De�nition 5.33
pv a proje
tion onto the vertex v, De�nition 5.16
P(X(T,W, Ŵ )) the proje
tive variety asso
iated to the tree T with amodel distinguished by Ŵ
S a �nite set of states
S the group of so
kets, De�nition 5.24
Σ a fan, De�nition 2.25
T a rooted tree
T a trivalent tree
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T an algebrai
 torusT a real (topologi
al) torus
τ(G) phylogeneti
 monoid, De�nition 15.6
V the set of verti
es of a tree, De�nition 4.2
V the set of verti
es of a graph
W a ve
tor spa
e with basis elements 
orresponding tostates, De�nition 4.1
Ŵe De�nition 4.4
ŴE De�nition 4.6
W̃E the spa
e isomorphi
 to the ambient spa
e of the varietyrepresenting the model, De�nition 5.31
WL De�nition 4.6
W̃L the ambient spa
e of the variety representing the model,De�nition 5.31
Wv De�nition 4.4
WV De�nition 4.6
Ŵ the spa
e of transition matri
es, De�nition 4.3
X(T,W, Ŵ ) the a�ne variety asso
iated to a tree T and a modeldistinguished by Ŵ
Yi primitive 
olle
tion, Theorem 19.7
Ŷi 
olle
tion of indi
es in Yi
ZE a latti
e with basis elements indexed by edges, De�nition15.2
Z2E the group of networks for the binary Jukes-Cantormodel, De�nition 15.92. Tori
 varieties � the settingThe study of tori
 varieties is a relatively new subje
t. Howeverits origins 
an be tra
ed ba
k even to Newton who had an idea torepresent a polynomial by latti
e points. To a monomial in n variables

xa11 · · ·xann =: xa one asso
iates a point (a1, . . . , an) ∈ Zn. The followingde�nition will not be used throughout the thesis. However we in
ludeit to give a reader not familiar with tori
 geometry �rst foundations.De�nition 2.1 (Newton polytope). Let f =
∑

a∈Nn αax
a be a polyno-mial in n variables. The Newton polytope of f is the 
onvex hull ofpoints asso
iated to monomials xa, su
h that αa 6= 0. The de�nition
an be easily extended to Laurent polynomials.To �nd mu
h more information on Newton polytopes we advise thereader to 
onsult [Stu98℄. One of the �rst papers where tori
 varieties



22 MATEUSZ MICHA�EKwere studied in a systemati
 way is [KKMSD73℄. The authors 
all tori
varieties "toroidal embeddings" and view them as spe
ial 
ompa
ti�
a-tions of the algebrai
 torus (C∗)n. Classi
al referen
e for tori
 varietiesare [Oda87℄ and [Ful93℄. The latter book fo
uses more on the torus a
-tion. Re
ently a new, very modern, user friendly book appeared [CLS℄.The point of view on tori
 varieties presented there is 
losest to the onefrom this thesis. The reasons why tori
 varieties have re
ently be
omeso popular are numerous. A few most important are for sure:(i) tori
 varieties are strongly related to 
ombinatorial obje
ts,what makes a lot of 
omputations possible or at least easier,(ii) tori
 varieties are simple, but fertile enough to provide a goodtesting ground for 
onje
tures, proofs, theorems, examples,(iii) tori
 varieties appear naturally as simpli�
ations of other va-rieties,(iv) tori
 varieties appear in applied mathemati
s.This se
tion 
ontains well known results. We present the proofs,trying to �nd the easiest and most dire
t. We hope that, with littlee�ort, the se
tion 
an be read by people not familiar with tori
 geome-try. Details that are skipped 
an be 
onsidered as exer
ises. We avoidreferring to any general theorems, as the theory is, on this level, easyenough to develop from s
rat
h. Many ideas presented in this part
ome from [CLS℄ and [Stu96℄. We will use the setting presented in thisse
tion throughout the thesis. We en
ourage the reader familiar withtori
 geometry to take a look, as often our approa
h is di�erent fromthe standard one.In modern algebrai
 geometry a variety is lo
ally des
ribed as a spe
-trum of an algebra. Thus the most important obje
t 
onne
ted to ana�ne algebrai
 variety is its ideal 
ontaining all polynomials vanishingon it. Note however that many varieties 
an be 
onstru
ted in a di�er-ent way. Given k polynomials f1, . . . , fk in n variables one 
an 
onsiderthe map (f1, . . . , fk) : Cn → Ck. The Zariski 
losure of the image isan algebrai
 variety. Furthermore we 
an generalize this 
onstru
tionassuming that fi are Laurent polynomials. In this 
ase the domain ofthe map is (C∗)n. Let us start the dis
ussion of tori
 geometry by in-trodu
ing a�ne tori
 varieties. In most simple terms the study of a�netori
 varieties is the study of the 
ase where all fi are monomials.De�nition 2.2 (A�ne tori
 variety). Consider k Laurent monomialsin n variables fi = xai , where ai ∈ Zn. An a�ne tori
 variety is theZariski 
losure of the image of the map (f1, . . . , fk) : (C∗)n → Ck.Note that we do not require the a�ne tori
 variety to be normal.This issue will be addressed later. Moreover the a�ne tori
 varieties
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ome with an embedding in the a�ne spa
e. Re
alling Newton's ideathe map (fi) 
an be represented by k points ai ∈ Zn. The geometryof these points is strongly related to the geometry of the a�ne tori
variety. We will say that the variety is asso
iated to the set of points
{ai}.Proposition 2.3. The ideal of the a�ne tori
 variety is generated bybinomials. Suppose that the parametrization of the variety is given by
k monomials fi in n variables xi. Let Pi ∈ Zk be a point asso
iated to
fi. A binomial yb11 · · · ybkk − yc11 · · · yckk for bi, ci ∈ N is in the ideal if andonly if ∑i biPi =

∑
i ciPi.Proof. The binomials of the given form vanish on the image of the map

(f1, . . . , fk), hen
e also on the Zariski 
losure. We will prove that theynot only generate the ideal, but span it as a ve
tor spa
e. Fix anyorder on the monomials. Suppose that the ideal is not spanned by thebinomials of the given form. Let g be su
h a polynomial in the variables
yi that:

• is in the ideal of the variety,
• is not spanned by binomials of the given form,
• its leading 
oe�
ient is least possible.Let αm(y1, . . . , yk) be the leading 
oe�
ient of g where m is a mono-mial. As g is in the ideal, by substituting yi by fi we get a Laurentpolynomial that is zero on (C∗)n. Hen
e it has to be equal to zero. Inparti
ular the term αm(f1, . . . , fk) has to redu
e with the term indu
edby some di�erent monomial βm′(f1, . . . , fk) appearing in g. Thus themonomials m and m′ indu
e an integer relation between the points Pi.In parti
ular m − m′ is a binomial of the 
hosen form. By subtra
t-ing α(m−m′) from g we get a polynomial in the ideal with a stri
tlysmaller leading 
oe�
ient whi
h gives a 
ontradi
tion. �The above proposition allows us to des
ribe the algebra of an a�netori
 variety.De�nition 2.4 (Semigroup algebra). Let (C,⊕) be a monoid. Themonoid algebra C[C] as a ve
tor spa
e is spanned freely by the elementsof C. The multipli
ation for c1, c2 ∈ C ⊂ C[C] is de�ned as c1c2 :=

c1 ⊕ c2 and extended to C[C] using the axioms of C-algebra.Example 2.5. For the monoid Nn we obtain the algebra of polynomi-als in n variables. For the group Zn we obtain the algebra of Laurentpolynomials.Corollary 2.6 (From Proposition 2.3). Consider the a�ne tori
 vari-ety parameterized by monomials fi in n variables. Let Pi ∈ Zn be the



24 MATEUSZ MICHA�EKpoint representing fi. Let C be the monoid generated by points Pi. Thealgebra of the a�ne tori
 variety is C[C]. �We will be often working with proje
tive tori
 varieties.De�nition 2.7 (Proje
tive tori
 variety). Consider k + 1 Laurentmonomials fi in n variables. A proje
tive tori
 variety is the Zariski
losure of the map (f1, . . . , fk+1) : (C∗)n → Pk.If P ⊂ Zn is the set of points representing the monomials fi, wewill say that the 
losure of the image of (fi) in Pk is a proje
tive tori
variety asso
iated to P and we will denote it by P(X)P . We 
an adaptProposition 2.3 and Corollary 2.6. First let us 
onsider an a�ne 
oneover a proje
tive tori
 variety. Its parametrization is as follows:
(λf1, . . . , λfk+1) : (C

∗)n+1 → Ck+1.Noti
e that we have added a nonzero parameter λ, as we passed toa�ne spa
e. Of 
ourse λfi is still a monomial. If fi is represented bya point Pi ∈ Zn then λfi is represented by Pi × {1} ∈ Zn+1. Thus inthe proje
tive 
ase it is more natural to 
onsider the points Pi in thelatti
e of dimension one bigger and put the last 
oordinate equal to 1.The monoid generated by Pi×{1} gives rise to a monoid algebra of the
one over the proje
tive variety. Moreover the last 
oordinate gives thegrading of this algebra. The proje
tive tori
 variety is the Proj of thisgraded algebra. Thus a�ne tori
 varieties 
orrespond to �nitely gen-erated monoids in Zn. Proje
tive tori
 varieties 
orrespond to �nitelygenerated monoids in Zn+1 with generators with last 
oe�
ient equalto 1. A reader interested in this topi
 may extend these results tovarieties embedded in weighted proje
tive spa
es as an exer
ise.Usually one assumes that a tori
 variety is normal. Let us explainwhy. We start by re
alling basi
 de�nitions.De�nition 2.8 (Normal algebrai
 variety). An a�ne algebrai
 varietyis normal if and only if its algebra is integrally 
losed in its �eld offra
tions. An abstra
t algebrai
 variety is normal if and only if it 
anbe 
overed by normal a�ne algebrai
 varieties.The 
on
ept of normality is very important for a number of reasons.Let us re
all that smoothness implies normality. Moreover the singularlo
us of a normal variety has 
odimension at least 2. Most tori
 geome-ters work with normal varieties, as this allows for a ni
e 
ombinatorialdes
ription of the variety [Oda87, Theorem 1.4℄.De�nition 2.9 (Latti
e). A latti
e is a �nitely generated abelian groupwith no torsion. In other words a latti
e is an abelian group isomorphi
to Zn.
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e M ≃ Zn. As in the Def-inition 2.7 the set P de�nes a proje
tive tori
 variety P(X)P togetherwith an embedding. Let X be the a�ne 
one over P(X)P . Let C bethe monoid generated by the points of P × {1} ⊂ M × Z. We knowthat X = SpecC[C]. Let M̃ ⊂ M × Z be the sublatti
e generated by
P × {1}.De�nition 2.10 (Proje
tive normality). We 
all the proje
tive variety
P(X) proje
tively normal if and only if the a�ne 
one X over thisvariety is normal.Of 
ourse ea
h proje
tively normal variety is normal. In the tori
setting both normality and proje
tive normality 
an be des
ribed in
ombinatorial language.De�nition 2.11 (Saturated monoid, saturation, saturated set of points).Let C be a monoid 
ontained in a latti
e M̃ . We say that C is saturatedif and only if for any x ∈ M̃ and any positive integer k the element
kx ∈ C if and only if x ∈ C.For any monoid C one 
an de�ne its saturation C̃ that is the smallestsaturated monoid 
ontaining C. In other words x ∈ C̃ if and only iffor some positive integer k we have kx ∈ C.We say that a set of points is saturated in a latti
e M if and only if itgenerates a saturated monoid. We say that a set of points is saturatedif it is saturated in the latti
e that it generates.De�nition 2.12 (Integral polytope). An integral polytope is a 
onvexhull of a �nite number of points in the latti
e. As we will be dealingonly with latti
e polytopes we will often 
all them just polytopes.De�nition 2.13 (Normal polytope). We say that a polytope P ⊂ Mis normal in the latti
e M if and only if the set P ×{1} is saturated in
M ×Z. We say that a polytope P is normal if and only if it is normalin the latti
e that it generates.In other words a polytpe P is normal in the latti
e M if and only iffor any k ∈ N any point Q ∈ kP ∩M is a sum of k points from P .Note that it is very important to spe
ify the latti
e. Consider thepolytope P ⊂ M := Z3. Let P have got four integral points: (0, 0, 0),
(1, 1, 0), (0, 1, 1), (1, 0, 1). This is a normal polytope. Note howeverthat it is not normal in M . Indeed (1, 1, 1) ∈ 2P and (1, 1, 1) is notthe sum of two integral points of the polytope.Note that if the set P×{1} is saturated then P must be a polytope inthe latti
e that it generates. Indeed suppose that P×{1} is a saturated



26 MATEUSZ MICHA�EKset of points. Let M be the latti
e spanned by P . Let D ∈ M be alinear 
ombination of points from P with positive 
oe�
ients summingup to 1. From the linear algebra it follows that we 
an assume thatthe 
oe�
ients are rational. Hen
e some multiple of D × {1} is in themonoid generated by P ×{1}. As P ×{1} is saturated it must 
ontain
D × {1}. Thus the 
onvex hull of P interse
ted with M equals P .Hen
e P is a polytope.Fa
t 2.14. The variety P(X)P , de�ned by a set of points P , is pro-je
tively normal if and only if the set of points P × {1} is saturated.Equivalently P must be a normal polytope.Fa
t 2.15. Let D be any point of the set P × {1}. Let PD be the set
P × {1} − D, where the minus is the latti
e operation. The variety
P(X)P asso
iated to P × {1} is normal if and only if for any D ∈
P × {1} the set PD is saturated. In su
h a 
ase P does not have to benormal.Proof. Both fa
ts are a dire
t 
onsequen
es of Proposition 2.22. For the�rst, the algebra of the 
one over the variety equals the monoid algebrafor the monoid C spanned by P × {1}. The monoid C is saturated, ifand only if P is normal.For the se
ond, one 
an noti
e that points of P × {1} 
orrespond tovariables of the ambient proje
tive spa
e. Consider the a�ne subvari-ety of P(X) 
orresponding to setting one variable, 
orresponding to apoint D, to 1. The algebra of this a�ne variety is the monoid algebraasso
iated to the monoid spanned by PD. �De�nition 2.16 (Cone, 
one over a polytope). A 
one is a �nitelygenerated, saturated monoid of a latti
e.In the literature it is often 
alled a 
onvex polyhedral 
one. Morepre
isely in this thesis we identify latti
e points of the polyhedral 
onewith the 
one.Let P be a polytope that spans the latti
e M . The 
one over P is thesaturation of the monoid spanned by P × {1} ⊂M × Z.We will see in Proposition 2.22 that normal a�ne tori
 varieties areasso
iated to �nitely generated 
ones. Proje
tively normal proje
tivetori
 varieties are asso
iated to 
ones over normal polytopes.There is one important 
ase where even in the proje
tive 
ase one
an 
onsider the set of points P instead of P × {1}. Suppose that
P is 
ontained in a hyperplane given by an equation ∑

aixi = b for
b 6= 0. In this 
ase the monoid generated by P is isomorphi
 to themonoid generated by P ×{1}. In the �rst part of the thesis we will be
onsidering su
h polytopes.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 27We would like now to explain the name tori
 variety. It is 
onne
tedto the algebrai
 torus T = (C∗)n = SpecC[x±1
i ]. Using 
oordinate-wise multipli
ation T is an algebrai
 group. On the level of algebrasthe a
tion is given by a morphism C[x±1

i ] → C[x±1
i ] ⊗ C[x±1

i ] that as-so
iates to a generator xi the tensor produ
t xi ⊗ xi. Note that anarbitrary Laurent polynomial f is not sent to f ⊗ f . This is true onlyfor monomials. Let us 
onsider algebrai
 morphisms T → C∗ that pre-serve the abelian group stru
ture. These are 
alled 
hara
ters. Su
ha map is in parti
ular a regular fun
tion on T hen
e must be givenby a Laurent polynomial. Due to the fa
t that it must preserve thegroup stru
ture one 
an prove that it must be a monomial. By iden-tifying a monomial with a latti
e point we see that 
hara
ters form alatti
e Zn. Intrinsi
ally, one de�nes the sum of 
hara
ters f and g by
(f + g)(x) = f(x)g(x).De�nition 2.17 (Latti
e of 
hara
ters M). The latti
e of 
hara
ters
M of a torus T 
onsists of morphisms of algebrai
 groups T → C∗ withaddition de�ned by (f + g)(x) = f(x)g(x).Dually one de�nes one parameter subgroups as morphisms of alge-brai
 groups C∗ → T. By proje
ting onto 
oordinates we see that ea
hsu
h morphism is of a form t→ (ta1 , . . . , tan) for ai ∈ Z. It 
an be iden-ti�ed with a point (a1, . . . , an) ∈ Zn. Hen
e one parameter subgroupsalso form a latti
e.De�nition 2.18 (Latti
e of one parameter subgroups N). The lat-ti
e of one parameter subgroups of a torus T 
onsists of morphisms ofalgebrai
 groups C∗ → T with addition de�ned by (λ+ δ)(t) = λ(t)δ(t).It is well known that latti
esM and N are dual. The pairing 
an bedes
ribed as follows. Fix f ∈M and λ ∈ N . The 
omposition f ◦λ is amorphism of one dimensional tori. Hen
e it is a form t→ ta. We de�nethe produ
t of f and λ to be equal to a. After using the identi�
ationof M and N with Zn this is the standard s
alar produ
t.As we have seen the 
hara
ters 
orrespond exa
tly to monomialsin the algebra of the torus. Hen
e T is the spe
trum of the monoidalgebra C[M ]. Points of T 
orrespond to maximal ideals of this algebraor to surje
tive morphisms of algebras f : C[M ] → C. Of 
ourse todetermine su
h a morphism it is enough to de�ne it on M . As M is agroup its image has to be 
ontained in C∗. Moreover due to the fa
tthat f is a map of algebras the map M → C∗ must preserve the groupstru
ture. Hen
e the points of T 
orrespond to maps M → C∗ thatpreserve the group stru
ture. Pre
isely for a point P we asso
iate to a
hara
ter χ its value on P .



28 MATEUSZ MICHA�EKDe�nition 2.19 (Abstra
t tori
 variety). A tori
 variety X is an al-gebrai
 variety, �nitely generated over C, 
ontaining T as a dense opensubset. Moreover we require that the a
tion of T on itself extends to analgebrai
 a
tion on X.A 
ru
ial fa
t is that an abstra
t tori
 variety that is a�ne is ana�ne tori
 variety in the sense of De�nition 2.2. This fa
t is usuallyproved using the following, very important lemmas.Lemma 2.20. Suppose that a torus T a
ts on a ve
tor spa
e V . Thenthere exists a basis of V su
h that the a
tion is diagonal.Proof. For t ∈ T and v ∈ V we have:
tv =

∑
χ(t)Aχ(v),where the sum is over a �nite 
olle
tion of 
hara
ters of T. One 
annoti
e that Aχ are proje
tions to subspa
es on whi
h T a
ts by multi-pli
ation by a value of the 
orresponding 
hara
ter. �Lemma 2.21. The algebra of an abstra
t tori
 variety X that is a�neis a monoid algebra asso
iated to a monoid 
ontained in the 
hara
terlatti
e of the torus asso
iated to the variety.We propose an approa
h that proves the this lemma dire
tly.Proof. As T is Zariski dense in X we know that the algebra A of X is asubalgebra of C[M ]. Fix f ∈ A. We know that f =

∑k

i=1 aiχi for some
χi ∈ M and ai 6= 0. Let W be a ve
tor spa
e spanned by 
hara
ters
χi for i = 1, . . . , k. Consider the ve
tor subspa
e V := A ∩W . Our�rst aim is to prove that V = W . Suppose that V is 
ontained in aproper ve
tor subspa
e. Let (b1, . . . , bk) be su
h that if ∑k

i=1 diχi ∈ V ,then ∑k

i=1 dibi = 0. By the assumptions T a
ts on X , hen
e on A. Ana
tion of a point c ∈ T on χi is given by χi(c)χi. Hen
e the a
tion of
c on f gives ∑k

i=1 aiχi(c)χi ∈ V . Thus for any c ∈ T we must have∑k

i=1 biaiχi(c) = 0. Hen
e ∑k

i=1 biaiχi must be identi
ally zero on T.This is possible only if all bi = 0 what gives a 
ontradi
tion.Hen
e the algebra A is spanned as a ve
tor spa
e by 
hara
ters of
M . Obviously these 
hara
ters must form a monoid. �As we have seen the algebra of an abstra
t tori
 variety X that isa�ne is equal to C[C] for a monoid C ⊂ M . As the algebra is �nitelygenerated, so is the monoid C. Let χ1, . . . , χk be generators of C.Consider the embedding of the torus a
ting on X by (χ1, . . . , χk). Dueto Corollary 2.6 its Zariski 
losure in Ck is isomorphi
 to X .
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 variety. Let C be a monoidin the 
hara
ter latti
e M of the torus a
ting on X. The variety X isnormal if and only if C is a 
one.Proof. First let us prove that if X is normal then C is saturated. Con-sider any point kc ∈ C for c ∈ M . We want to prove that c ∈ C. For
m ∈ M let χm be a 
orresponding 
hara
ter. Consider a polynomial
f(X) = Xk − χkc with 
oe�
ients in the algebra of X . Clearly χcsatis�es the equation f . Moreover as C spans M , the 
hara
ter χc isin the quotient �eld of the algebra of X . Due to the normality of Xwe know that χc is also in the algebra. Hen
e c ∈ C.Now we want to prove that if C is saturated, then C[C] is normal.First note that the quotient �eld of C[C] is equal to the quotient �eld of
C[M ]. As the torus is smooth, its algebra is normal. One 
an also proveit by noti
ing that its algebra is a UFD (as it is a lo
alization of thepolynomial ring). Consider any moni
 polynomial f ∈ C[C][x]. Sup-pose that g is in the quotient �eld and satis�es the equation f(g) = 0.From the normality of C[M ] we know that g ∈ C[M ]. One 
an repeatthe argument of Lemma 2.21. Namely we 
an a
t on the equation
f(g) by any point P of the torus. The a
tion of P on f gives a moni
polynomial with 
oe�
ients in C[C]. Hen
e the a
tion of P on g givespolynomials that are in the normalization of C[C]. By the same ar-guments as in Lemma 2.21 we see that every 
hara
ter appearing in gwith nonzero 
oe�
ient must be in the normalization of C[C]. Thuswe 
an assume that g ∈M .Suppose that f is of degree d. Noti
e that f(g) = 0 implies that
dg = d′g + c0 for some integer 0 ≤ d′ < d and c0 ∈ C, as the 
hara
ter
χdg must redu
e with some other 
hara
ter. Thus (d − d′)g ∈ C andby normality g ∈ C. �It is also worth mentioning how we 
an re
over the torus of an a�netori
 variety given by a parametrization. There are a few equivalentways to do this. Note that our 
onstru
tion of an a�ne or proje
tivevariety de�nes them with an embedding in an a�ne or proje
tive spa
ewith a distinguished system of 
oordinates. These 
oordinates are inbije
tion with the points in the latti
e that de�ne the variety. The
onstru
tion also distinguishes a dense torus in the embedding spa
e.It 
ontains all points with nonzero 
oordinates.Fa
t 2.23. Consider a parametrization f = (f1, . . . , fk) : T′ := (C∗)n →
Ck, where fi are Laurent monomials in n variables. Let X be theZariski 
losure of the image of this map. Let T′′ = (C∗)k ⊂ Ck be thetorus 
ontaining all points with all 
oordinates di�erent from zero, with



30 MATEUSZ MICHA�EKthe a
tion given by 
oordinatewise multipli
ation. Let M ′ and M ′′ bethe 
hara
ter latti
es respe
tively of the tori T′ and T′′. Then:(i) On the level of algebras the parametrization map f is indu
edby group homomorphism f̃ :M ′′ →M ′,(ii) The image T of T′ in T′′ is Zariski 
losed, isomorphi
 to atorus, with the group a
tion indu
ed from T′′,(iii) The 
hara
ter latti
e of T is equal to the image of f̃ or equiv-alently to the quotient of M ′′ by the kernel of f̃ ,(iv) The variety X 
ontains T as a dense open subset and the a
tionof T extends to X.
�One 
an identify the torus T that a
ts on the proje
tive tori
 variety

P(X)P . As in the a�ne 
ase it is the image of the parameterizing torus.It is also equal to the interse
tion of P(X)P with a torus T′′ 
ontainingall points of the proje
tive spa
e with all 
oordinates di�erent fromzero. The a
tion of T is indu
ed from the a
tion of T′′ on the proje
tivespa
e. Using the basis it is given by the 
oordinatewise multipli
ation.We will be often 
omparing a proje
tive variety with its a�ne 
one.The following dis
ussion 
on
erns the ambient spa
es. There is a nat-ural morphism m : Cn+1 \ {0} → Pn. A system of 
oordinates distin-guishes a torus T′ in Cn+1 
onsisting of the points with all 
oordinatesdi�erent from zero. Let M ′ be the 
hara
ter latti
e of T′. Choose a
oordinate system on Pn 
ompatible with the one on Cn+1 by the mor-phism m. The image of T′ is a torus T′′ 
onsisting of the points withall 
oordinates di�erent from zero. Let M ′′ be the 
hara
ter latti
e of
T′′. Note that Cn+1 is a tori
 variety, with the a
tion of T′ given by
oordinatewise multipli
ation. So is Pn with the a
tion of T′′. Ea
h
oordinate of Cn+1 is a 
hara
ter of M ′. All 
oordinates distinguisha basis of M ′. The morphism m 
an be restri
ted to T′ and 
an be
onsidered as morphism of tori, preserving the group a
tion. It indu
esa map of 
hara
ter latti
es m̃ : M ′′ → M ′. As m is a surje
tive mor-phism of tori, the morphism m̃ is inje
tive. Hen
e M ′′ is a sublatti
e of
M ′. Using the basis ofM ′ we 
an give a pre
ise des
ription of elementsthat belong to M ′′. Namely an element of M ′ belongs to M ′′ if andonly if its sum of 
oordinates in M ′ is zero.De�nition 2.24 (Fa
e of a 
one). Let C be any 
one in a latti
e M .Let v ∈ M∗ = Hom(M,Z). Suppose that for any c ∈ C we have
v(c) ≥ 0. Let v⊥ be a hyperplane of M 
onsisting of elements x su
hthat v(x) = 0. A fa
e of the 
one C is any subset that is given by v⊥∩C
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onditions above. Noti
e that a fa
e of a 
oneis also a 
one.Equivalently a fa
e F of C 
an be de�ned as a submonoid satisfyingthe following 
ondition:
• For any c1, c2 ∈ C su
h that c1 + c2 ∈ F we have c1, c2 ∈ F .For an a�ne tori
 variety 
orresponding to a 
one C the fa
es of

C 
orrespond to orbits of the torus a
ting on it. Let us present this
orresponden
e in details. We �x a �nitely generated monoid C in alatti
e M and its generators χ1, . . . , χk ∈ C. As in De�nition 2.2 the
losure of the embedding in Ck of the torus SpecC[M ] by 
hara
ters χiis the a�ne tori
 variety X := SpecC[C]. Note that we distinguisheda basis in Ck, but not on the torus C[M ]. Due to Fa
t 2.23 we knowthat:
• the dense torus orbit of X 
ontains pre
isely those points thathave all 
oordinates di�erent from zero,
• the 
hara
ter latti
e of the torus a
ting on X is equal to thesublatti
e of M spanned by C.We will generalize this to other orbits. Assume that C is a 
one. Ea
horbit will be indexed by a fa
e F of the 
one. The fa
e F distinguishesa subset I of indi
es from {1, . . . , k} su
h that i ∈ I if and only if

χi ∈ F . The orbit 
orresponding to F 
an be 
hara
terized as follows:1) the orbit 
ontains pre
isely those points that have got 
oordinates
orresponding to i ∈ I di�erent from zero and all other equal tozero,2) the orbit is a torus with a 
hara
ter latti
e spanned by elements of
F ,3) the 
losure of the orbit is a tori
 variety given by the 
one F ,4) ea
h point of the orbit is a proje
tion of the dense torus orbit ontothe subspa
e spanned by basis elements indexed by indi
es from I,5) the in
lusion of the orbit in the variety is given by a morphism ofalgebras C[C] → C[F ]. This morphism is an identity on F ⊂ C[C]and zero on C \ F .Note that ea
h orbit will 
ontain a unique distinguished point givenby the proje
tion of the point (1, . . . , 1) ∈ Ck. We will only present asket
h of a proof of these observations.Proof. As in 
ase of the torus we 
an identify the points of X withmonoid morphisms C → (C, ·). Fix any point x ∈ X . The 
hara
ters

χ ∈ C su
h that χ(x) 6= 0 must form a fa
e of F . Hen
e x distinguishesa subset of indi
es I ⊂ {1, . . . , k}. Of 
ourse the set of points withnonzero 
oordinates indexed by I and other 
oordinates equal to zero
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t to the a
tion of the torus a
ting on X . Soto prove 1) it is enough to prove that all these points are in one orbit.The point x represents a morphism C → (C, ·) that is nonzero on Fand zero on C \F . Consider the restri
tion of this morphism to F . Asit is nonzero it 
an be extended to a morphism M ′ → C∗, where M ′ isa sublatti
e generated by F . Next we 
an extend this morphism to thelatti
e M ′′ generated by C. Thus we obtain a morphism f :M ′′ → C∗that agrees with the one representing x on F . Note that f represents apoint p in the torus a
ting on X . By the a
tion of p−1 on x we obtaina point given by a morphism that asso
iates one to elements from Fand zero to elements from C \ F . Thus we have proved 1). Moreoverwe showed that ea
h orbit 
ontains the distinguished point. Point 2)follows, as morphism that are nonzero on F and zero on C \ F areidenti�ed with morphisms from M ′ to C∗. Point 3) is a 
onsequen
e of2) and previous dis
ussion on a�ne tori
 varieties. Indeed, we alreadyknow that the orbit is a torus with the latti
e generated by F . Thistorus is the image of the torus SpecC[M ] in Ck by 
hara
ters from I andall other 
oordinates equal to zero. Let A be the a�ne spa
e spannedby basis elements indexed by indi
es in I. The orbit 
orresponding to
F is 
ontained in A. In fa
t, by the 
onstru
tion it is the image of
SpecC[M ] by 
hara
ters χi, su
h that i ∈ I. The 
losure of this torusis exa
tly given by SpecC[F ], as generators of the monoid C 
ontainedin F are generators of F . Point 4) is obvious, as the point p 
onstru
tedin the �rst part of the proof proje
ts to x. �We �nish this se
tion by stating some results about normal abstra
ttori
 varieties.De�nition 2.25 (Fan). A fan Σ is a �nite 
olle
tion of 
ones in alatti
e that satisfy the following 
onditions:1) if a 
one C is in the fan then all its fa
es are also in the fan,2) an interse
tion of any two 
ones from the fan is a fa
e of both,3) for any 
one C ∈ Σ if x ∈ C, then −x 6∈ C.A general, normal tori
 variety 
an be represented by a fan in theone parameter subgroups latti
e N .De�nition 2.26 (Dual 
one). Let L and L′ be dual latti
es with thepairing given by (·, ·). Let δ ⊂ L be a 
one in L. We de�ne the dual
one δ∗ ⊂ L′ as:

δ∗ = {x ∈ L′ : for any y ∈ δ we have (x, y) ≥ 0}.A tori
 variety X is 
onstru
ted from a fan Σ by gluing togethera�ne s
hemes Spec(C[σ∗
i ]), where σ∗

i ⊂ M is a 
one dual to σi ∈ Σ.
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ones in Σ are 
alled rays. The generators of thesemonoids are 
alled ray generators.Many properties of the variety X 
an be des
ribed using the fan Σ.For example X is smooth if and only if for every 
one σi the set of itsray generators 
an be extended to a basis of N . Moreover to ea
h raygenerator v we may asso
iate a unique T invariant Weil divisor denotedby Dv. For fans 
ontaining maximal dimensional 
ones there is a wellknown exa
t sequen
e:
0 →M → DivT → Cl(X) → 0,(2.1)where DivT is the group of T invariant Weil divisors and Cl(X) is the
lass group. The map M → DivT is given by:

m→
∑

m(vi)Dvi ,where the sum is taken over all ray generators vi.So far we have de�ned obje
ts of the 
ategory of tori
 varieties.Not every algebrai
 morphism is a morphism in this 
ategory. Indeed,as tori
 varieties are endowed with the torus a
tion, it is natural todistinguish those morphisms that respe
t this a
tion.De�nition 2.27 (Tori
 morphism). Let f : X → Y be a morphism oftori
 varieties. Let TX ⊂ X, TY ⊂ Y be the tori a
ting respe
tivelyon X and Y . We 
all f a tori
 morphism if f(TX) ⊂ TY and for anypoints p, q ∈ TX we have:
f(pq) = f(p)f(q).Noti
e that, as the tori are Zariski dense in the varieties, this immedi-ately implies that for any p ∈ TX and q ∈ X the same equality holds.As the restri
tion of the tori
 morphism is a morphism of algebrai
tori, it indu
es a map of 
hara
ter latti
es f̃ :MY →MX . By dualizing,this gives a map of one parameter subgroups f̃ ∗ : NX → NY . In fa
t one
an easily 
hara
terize whi
h morphisms of one parameter subgroupsgive rise to tori
 morphisms. For ea
h 
one δ in the fan representing Xthere must be a 
one δ′ in the fan representing Y su
h that f̃ ∗(δ) ⊂ δ′.Mu
h more information on the topi
 
an be found in [CLS℄, [Ful93℄.Part 1. Algebrai
 varieties asso
iated to Markov pro
esseson treesDans la première partie, nous étudions des variétés algébriques as-so
iées aux pro
essus de Markov sur les arbres. A 
haque pro
essus deMarkov sur un arbre on peut asso
ier une variété algébrique. Motivé
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on
entrons sur les pro
essus de Markov dé�-nis par une a
tion de groupe. Nous étudions les 
onditions pour que lavariété obtenue soit torique, le théorème 5.63. Nous donnons un résul-tat où les variétés obtenues sont normales (
f proposition 5.73), ainsique des exemples où elles ne le sont pas (
f proposition 5.74 et 
al
ul5.75). L'une des prin
ipales méthodes que nous utilisons est la général-isation des notions de prises et de réseaux introduites dans [BW07℄ àdes groupes abéliens arbitraires. Dans notre 
ontexte, les réseaux for-ment un groupe dé
rit à la dé�nition 5.24 qui agit sur la variété. Parailleurs, l'espa
e ambiant de la variété est la représentation régulièrede 
e groupe.Le prin
ipal problème ouvert que nous essayons de résoudre dans
ette partie est une 
onje
ture de Sturmfels et Sullivant [SS05, Conje
-ture 2℄ indiquant que le s
héma a�ne asso
ié au modèle 3-Kimura estdé�ni par un idéal engendré en degré 4. Notre meilleur résultat dit quele s
héma proje
tif asso
ié peut être dé�ni par un idéal engendré endegré 4 (
f théorème 12.1). Ave
 Maria Donten�Bury, nous proposonsune méthode pour engendrer l'idéal asso
ié à la variété pour tous lesmodèles. Nous montrons que notre méthode fon
tionne pour de nom-breux modèles ainsi que pour les arbres si et seulement si la 
onje
turede Sturmfels et Sullivant est vraie (
f proposition 7.8). Nous présen-tons quelques appli
ations, par exemple au problème d'identi�abilitéen biologie.

3. Introdu
tionThe motivation for the 
onstru
tions in the �rst part of the thesis
omes from applied mathemati
s. Let us re
all basi
 properties ofMarkov 
hains and Markov pro
esses on trees. A Markov 
hain is asequen
e of random variables {Xi} that satisfy spe
i�
 
onditions. Fora �xed state of a variable Xi−1 the variable Xi is independent from theset of all the variables Xi−j for j > 1. Typi
ally, this 
hain is depi
tedverti
ally by asso
iating a vertex to ea
h variable and joining Xi with
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Xi−1.

· X0...
· Xi−1

· Xi...For a Markov 
hain we usually introdu
e 
onditional probabilities thatspe
ify all the properties of the 
hain. Suppose that ea
h variable Xi
an be in ai < ∞ states. Then to ea
h edge joining Xi−1 and Xi we
an asso
iate an ai−1×ai matrix. The 
olumns and rows of the matrixare indexed respe
tively by states of Xi−1 and Xi. The given entries
orrespond to 
onditional probabilities. Namely, an entry indexed bya pair of states (p, q) equals the probability that Xi is in the state qunder the 
ondition that Xi−1 is in the state p. These matri
es are
alled transition matri
es. If we know the distribution of X0 and thetransition matri
es we 
an easily 
al
ulate the distributions of all othervariables.This 
onstru
tion 
an be dire
tly generalized to rooted trees. By arooted tree we will always mean a 
onne
ted graph with one distin-guished vertex and no 
y
les. By leaves we mean verti
es of valen
yone. Nodes are verti
es that are not leaves. In the thesis we willsometimes identify leaves with edges adja
ent to them. To simplifythe language we assume that the tree is a dire
ted graph and all theedges are dire
ted away from the root. In the example below the rootis denoted by ◦.
◦

· ·

· · ·As before to ea
h vertex we asso
iate a random variable. We say thata node v1 is a dire
t an
estor of v2 if there is an edge dire
ted from
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v1 to v2. Note that there is always one dire
t an
estor, ex
ept for theroot that does not have an
estors. The des
endants of a vertex areall the verti
es that 
an be rea
hed from it by a dire
ted path. TheMarkov property ensures that a variable X is independent from allother variables that are not its des
endants on
e the state of the dire
tan
estor is �xed.Markov pro
esses on trees are good models for many empiri
al phe-nomena. For example evolution pro
esses are often modeled it thisway. It is intuitively plausible that the DNA of a spe
ies depends onlyon the state of its dire
t an
estor. The s
ien
e that models the evo-lutionary 
hanges is 
alled phylogeneti
s. For more information aboutmathemati
al and 
omputational methods in phylogeneti
s the readeris advised to 
onsult [SS03℄ and [Fel04℄. The main aim of phylogenet-i
s is to establish the Markov pro
ess that models evolution of spe
ies.In this situation we assume that the random variables have four states
orresponding to four nu
leobases that form the DNA. These are 
alledadenine, 
ytosine, guanine, thymine and are denoted respe
tively by A,
C, G and T . A priori we do not know the transition matri
es and theshape of the tree. However, by examining the living spe
ies, we knowthe distribution of random variables asso
iated to leaves. Theoreti-
al biology also provides us with possible types of transition matri
es.A

ording to the theoreti
al model we 
hoose the transition matri
esmay belong to di�erent linear subspa
es. Di�erent biologi
al modelsare dis
ussed in Se
tion 4. A very interesting fa
t is that the modelsproposed by theoreti
al biologists often have very ni
e mathemati
alproperties. Pre
isely 
ertain subspa
es of possible transition matri
esare given as invariants under a group a
tion.One of the possible approa
hes to solve the problems in phylogeneti
susing algebrai
 geometry is as follows. We �x a rooted tree T that wesuspe
t is a 
orre
t model of evolution. We 
onsider any transitionmatri
es with entries that are free parameters, that possibly dependonly on the biologi
al model that we 
hoose. To the spa
e of parameterswe add also possible distributions of the variable asso
iated to theroot. We 
al
ulate the distribution of random variables asso
iated toleaves. More pre
isely we get a map2 π ◦ ψ̂ . Its domain parameterizesentries of transition matri
es and possible distributions of the randomvariable asso
iated to the root. Its image parameterizes all possibledistributions of the random variables asso
iated to leaves.Example 3.1. In this example we suppose that ea
h variable 
an be intwo states denoted by 0 and 1. There is one root with two des
endants.2The reason for 
hoosing this notation will be
ome 
lear in the following se
tions
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iated to the root attains the value 0 and 1 with theprobability given respe
tively by λ0 and λ1. The transition matri
esare as follows.
◦

[
a1 a2
a2 a1

] [
b1 b2
b2 b1

]

· ·Hen
e there are 6 parameters. The leaves 
an be in 4 states. We orderthem as follows:1) both leaves are in state 0,2) the left leaf is in state 0 and right in state 1,3) the left leaf is in state 1 and right in state 0,4) both leaves are in state 1.We obtain the map:
π ◦ ψ̂ : (λ0, λ1, a1, a2, b1, b2) →

(λ0a1b1 + λ1a2b2, λ0a1b2 + λ1a2b1, λ0a2b1 + λ1a1b2, λ0a2b2 + λ1a1b1).Let P be the point, established empiri
ally, that represents the dis-tribution of random variables asso
iated to leaves. We would like to
he
k if P belongs to the image of π ◦ ψ̂. If it is not in the image, thenwe know that either the biologi
al model we used is wrong, or the tree
T is not the right one. If the point P is in the image, we 
an ask fora des
ription of the �ber. However determining if P belongs to theimage is hard in general. One of the methods bases on the fa
t that
π ◦ ψ̂ is an algebrai
 map. We 
an 
onsider the Zariski 
losure of itsimage. This is an a�ne algebrai
 variety. One would like to des
ribeits ideal and 
he
k weather the generators vanish at P . The elementsof this ideal are 
alled phylogeneti
 invariants.This approa
h may be not very e�e
tive. The des
ription of the idealof a variety given by a parametrization is not an easy task. However themaps we get are not arbitrary. As it was observed �rst by Evans andSpeed [ES93℄ for 
ertain models of evolution the variety we 
onsider istori
. More pre
isely there are 
oordinates in whi
h the parametriza-tion map is given by monomials. This allows to apply methods of tori
geometry in order to determine the ideal of the variety.Throughout the thesis we assume that the random variable asso
iatedto the root has got a uniform distribution. This assumption is notmotivated by biology. We use it only to obtain ni
er results from themathemati
al point of view. Hen
e in our study the parameter spa
e
ontains only 
oe�
ients of transition matri
es.
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on-ditions the model of evolution gives rise to tori
 varieties. Our resultsgive the most general known 
riterion 5.63. In parti
ular we believethat our approa
h 
overs all biologi
al models of interest that wereknown to give rise to tori
 varieties. Further we investigate propertiesof the obtained tori
 varieties. We prove that varieties asso
iated to
ertain biologi
al models are normal 5.73. However we give also exam-ples where the obtained varieties are not normal 5.75. Next we addressthe question for whi
h models the varieties asso
iated to trivalent3 treesbelong to the same �at family. For the binary Jukes-Cantor this fa
twas known to be true by [BW07℄, while for 3-Kimura it does not holddue to [Kub10℄. By 
al
ulating Hilbert polynomials of many varietieswe found out that most 
onsidered models do not have this property.Another very important task 
on
erns phylogeneti
 invariants.De�nition 3.2 (Claw tree). A 
law tree Kn,1 is a tree with exa
tly oneinner vertex and n leaves.For many models, in parti
ular those that are most important for us,the study of phylogeneti
 invariants of any tree was redu
ed to the 
aseof the 
law tree [SS05℄, [AR08℄, [DK09℄. However establishing phyloge-neti
 invariants in this spe
ial 
ase turned out to be very di�
ult. Wedo not even know the degree in whi
h the ideal of phylogeneti
 invari-ants is generated. There is a well-known 
onje
ture due to Sturmfelsand Sullivant [SS05, Conje
ture 1℄ that gives a pre
ise upper boundfor this degree. The 
onje
ture is astonishingly similar to an old theo-rem of Noether. The theorem bounds the degree in whi
h the ring ofinvariants of the group a
tion on the polynomials is generated. How-ever, as we will see in Se
tion 6 it is hard to give a des
ription of thewhole algebra of the phylogeneti
 variety as a ring of invariants. More-over, even if some des
ription is possible, the order of the group is big� Corollary 6.6. One of interesting observations is that the 
onje
tureimplies a des
ription of the ideal as a sum of more simple ideals. In fa
twe propose a method for obtaining many phylogeneti
 invariants forany model for the 
law tree 7.2. We 
onje
ture that our method givesa des
ription of the whole ideal. We show that in many 
ases our 
on-je
ture is equivalent to the one made by Sturmfels and Sullivant 7.8.Our strongest result 12.1 in this topi
 proves a weaker, set-theoreti
version of [SS05, Conje
ture 2℄, that is su�
ient for appli
ations.3The valen
y of all verti
es is either one or three.
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 definitionsThe se
tion introdu
es obje
ts that will be studied in the �rst partof the thesis. The subse
tion 4.1 is the most important. Other parts
an be treated as motivations and examples.We will be dealing with algebrai
 varieties asso
iated to phylogeneti
models. These varieties are always given as 
losures of the image ofa parametrization map � details will be presented in Se
tion 4.1. Ashort, algebrai
 introdu
tion to the topi
 
an be found in [ERSS04℄.Let S be a �nite set, 
alled the set of states. In the biologi
al setting
S is often supposed to have four elements. These elements 
orrespondto four nu
leobases. The set S is the 
odomain of random variables inthe Markov pro
ess. Let ∆ ⊂ R|S| be the probabilisti
 simplex that
ontains all the points with nonnegative 
oordinates summing up toone. The points of ∆ parameterize all possible distributions of randomvariables with the set of states equal to S. In algebrai
 geometry insteadof 
onsidering the simplex ∆ one 
onsiders the whole 
omplex ve
torspa
e C|S|.De�nition 4.1 (Spa
e W ). We de�ne W to be a 
omplex ve
tor spa
espanned freely by elements of S. More pre
iselyW = ⊕a∈SCa, where Cais a �eld of 
omplex numbers 
orresponding to one dimensional ve
torspa
e spanned by a ∈ S.Suppose that we are given a rooted tree T with edges dire
ted fromthe root.De�nition 4.2 (Sets L, V , N and E). Let L, V , N and E be respe
-tively the set of leaves, verti
es, nodes and edges of the tree T . We have
V = L ∪N and L ∩N = ∅. We identify leaves with edges adja
ent tothem.The obje
ts that we study are derived from Markov pro
esses ona tree. To ea
h vertex one 
an asso
iate a random variable withthe set of states equal to S. The Markov property ensures that thevariable in a vertex depends only on the variable asso
iated to its�rst an
estor. Formally let Xi be a variable asso
iated to a vertex
vi. Suppose that there is an edge dire
ted from v1 to v2. Considerany set of verti
es v3, . . . , vj that are not des
endants of v2. Then
P (X2 = x2|X1 = x1, X3 = x3, . . . , Xj = xj) = P (X2 = x2|X1 = x1),where xi are some states. This mathemati
al model is applied for ex-ample in phylogeneti
s. The nodes of the tree 
orrespond to spe
iesand the Markov property des
ribes the fa
t that evolutionary 
hangesdepend only on the dire
t an
estor. More information on Markov pro-
esses 
an be found for example in [Ibe09℄. The reader interested in
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s in advised to look in [PS05℄. There one 
an also �nd adetailed explanation of the relationship between Markov pro
esses ontrees and models that we 
onsider.To de�ne a model we need to distinguish a subspa
e Ŵ ⊆ End(W ).De�nition 4.3 (Transition matrix). Any element of the spa
e Ŵ rep-resented as a matrix in the basis 
orresponding to S is 
alled a transitionmatrix.The entries of a transition matrix 
orrespond in biology to proba-bilities of mutation. Most often a model is distinguished by spe
ifyingthe type of transition matri
es.Let us present some of the models.(i) The Cavender-Farris-Neyman model also 
alled 2-stateJukes-Cantor model4. This is the most simple model. It was�rst introdu
ed in [Ney71℄. In most of biologi
al arti
les it is
alled the Cavender-Farris-Neyman model or just the Neymanmodel. However re
ently, espe
ially in algebrai
 phylogenet-i
s, it is 
alled the 2-state Jukes-Cantor model or the binarymodel [SS05℄, [BW07℄, [ERSS04℄. In this model S has got twoelements and the transition matri
es are of the following type:
[
a b
b a

]
.This model has got a lot of ni
e properties. One of the mostinteresting is the fa
t that the algebrai
 varieties arising fromtrivalent trees with the same number of leaves are deformationequivalent � see [BW07℄ for the original, algebrai
 proof and[Ilt10℄ for a 
ombinatori
 one. It is a general group-based modelfor the group G = Z2 � the de�nition of general group-basedmodels will be introdu
ed in subse
tion 5.1.(ii) 3-Kimura model. This is a four state model. It was intro-du
ed in [Kim81℄. It is a general group-based model for thenatural a
tion of the group G = Z2 × Z2 on the nu
leobases

A,C,G, T [ES93℄. The transition matri
es are of the type



a b c d
b a d c
c d a b
d c b a


 .4We would like to thank Elizabeth Allman for the information on the ambiguity.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 41(iii) 2-Kimura model. This is a model for four states. It wasintrodu
ed in [Kim80℄. The transition matri
es are of the type:



a b c b
b a b c
c b a b
b c b a


 .(iv) Jukes-Cantor model. This is the most simple model for fourstates. It was introdu
ed in [JC69℄. The transition matri
esare of the type:




a b b b
b a b b
b b a b
b b b a


 .(v) General Markov model. This model 
an be 
onsidered onany number of states, but for biologi
al reasons it is typi
ally
onsidered for four states. The spa
e Ŵ is equal to the wholespa
e of endomorphisms EndW . Hen
e for four states thetransition matri
es are arbitrary:




a b c d
e f g h
i j k l
m n o p


 .4.1. A variety asso
iated to a model. We will asso
iate an alge-brai
 variety to a tree T and a spa
e Ŵ ⊂ EndW . This is a standard
onstru
tion. In the literature one 
an �nd a lot of generalizations ofthe approa
h presented here � see for example [DK09℄.De�nition 4.4 (Spa
es Wv and Ŵe). To ea
h vertex v of the tree weatta
h a 
omplex ve
tor spa
e Wv with a �xed isomorphism isov : W ≃

Wv. The images of the basis elements of W 
orresponding to states
S by isov give a basis of Wv. The elements of this basis are denotedby {αv}. We also 
onsider a ve
tor spa
e Ŵ ⊂ End(W ), determinedby the model we 
hoose. To ea
h edge e of the given rooted tree T weasso
iate a ve
tor spa
e Ŵe isomorphi
 to Ŵ .Remark 4.5. The natural basis on W indu
es an isomorphism W ∼=
W ∗. Hen
e End(W ) ∼= W ∗ ⊗W ∼= W ⊗W . We may regard Ŵ andrespe
tively ea
h Ŵe as subspa
es of W ⊗W .
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es WV , ŴE , WL). We re
all that V , L and E arerespe
tively the set of verti
es, leaves and edges of a tree. We de�nethe three following spa
es:
WV =

⊗

v∈V

Wv, WL =
⊗

l∈L

Wl, ŴE =
⊗

e∈E

Ŵe.We 
all WV the spa
e of all possible states of the tree, WL the spa
e ofstates of leaves and ŴE the parameter spa
e.De�nition 4.7 (The map ψ̂, Constru
tion 1.5 [BW07℄). Let ψ̂ : ŴE →
WV , be a map whose dual is de�ned as:

ψ̂∗(⊗v∈V α
∗
v) = ⊗e∈E(αv1(e) ⊗ αv2(e))

∗
|Ŵe
.Here the edge e is dire
ted from the vertex v1(e) to v2(e).The map ψ̂ is just a map well known to biologists that to a given
hoi
e of matri
es asso
iates the probability distribution on the set ofall possible states of verti
es of the tree.Example 4.8. Let us 
onsider the binary Jukes�Cantor model. Fixthe tree with one root r and two leaves l1 and l2. The spa
es W and Ŵare two dimensional. Hen
e the spa
es WV and ŴE are respe
tively 8and 4 dimensional. The basis elements of WV 
orrespond to states ofthe variables asso
iated to nodes of trees. Hen
e they 
an be indexedby triples (p, q, s) for p, q, s = 0, 1. Assume that the �rst element of thetriple is asso
iated to the state of r. The elements of Ŵ are matri
esof the type [

a b
b a

]
.Fix a simple tensor in ŴE represented by a pair of su
h matri
es:[

a1 b1
b1 a1

]
,

[
a2 b2
b2 a2

]
.To this element the morphism ψ̂ asso
iates an element of WV givenas:

a1a2(0, 0, 0) + a1a2(1, 1, 1) + a1b2(0, 0, 1) + a1b2(1, 1, 0)

+b1a2(0, 1, 0) + b1a2(1, 0, 1) + b1b2(0, 1, 1) + b1b2(1, 0, 0).Thus the map ψ̂ asso
iates to a given 
hoi
e of transition matri
esthe "probability dirstribution" on the set of all possible states of thetree. This is up to a s
alar, as we assume that the root has got uniformdistribution. Moreover, as we work over 
omplex numbers and thereare no probabilisti
 restri
tions on elements of Ŵ the map ψ̂ is obtained
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esses, but in general the elements of theimage have no probabilisti
 meaning.Re
all that N = V \ L is the set of nodes of a tree. We 
onsider themap δ = ∑
α∗
i ∈ W ∗ that sums up all the 
oordinates.De�nition 4.9 (π). Let π : WV → WL be a map de�ned as π =

(⊗v∈LidWv
)⊗ (⊗v∈N δWv

). The map π sums the probabilities of all thestates of verti
es that di�er only on nodes.If we 
ompose the map ψ̂ with π we obtain a map from ŴE to WL.This indu
es a rational map:
ψ̌ :

∏

e∈E

P(Ŵe) 99K P(WL).The 
losure of the image of this map is denoted by P(X(T,W, Ŵ )).This is the algebrai
 proje
tive variety asso
iated to the modelthat is the main obje
t of study of this se
tion. We will also
onsider the a�ne model X(T,W, Ŵ ) that is the a�ne 
one over thisvariety. 5. Group-based modelsThe aim of this subse
tion is to investigate the properties of 
ertainmodels. The spa
e of transition matri
es will be given as a subspa
einvariant under a group a
tion. We will see under what 
onditions weobtain a tori
 variety. We will also study the properties of so obtainedvarieties and their 
onne
tions with trees and groups. We have to pointout that in this se
tion we do not assume that a tori
 variety has tobe normal. We only assume that a torus a
ts on a variety and one ofthe orbits is dense. This setting is most 
ommon when dealing withappli
ations. Mu
h information 
an be found in [Stu96℄. The maindrawba
k of this approa
h is that the varieties we 
onsider will not begiven by a fan. However, still they 
an be represented by polytopes,that do not have to be normal. For this reason we will often work withthe 
hara
ter latti
e M instead of the one parameter subgroup latti
e
N .We will be de�ning obje
ts that will depend on a tree T and a group
G. For any obje
t O if we want to stress its dependen
e on either
T or G we write them in the indi
es: OT

G. For the ve
tor spa
es onwhi
h a group G a
ts we use the standard notation for the subspa
e ofinvariants, by putting G in the upper index.



44 MATEUSZ MICHA�EK5.1. General group-based models. In our study we are mainly in-terested in spe
i�
 models. We set the notation for general group-basedmodels. We generalize the notions of "so
kets" and "networks" intro-du
ed in [BW07℄. This enables us to extend some of the results from
Z2 to arbitrary abelian groups. We believe that these notions give ani
e, uni�ed des
ription of the variety asso
iated to the model.The inspiration for this se
tion 
omes from the work [ES93℄ of Evansand Speed who re
ognized a natural a
tion of an abelian group G on Sin biologi
al 
ase. Namely the group G = Z2×Z2 a
ts on {A,C,G, T}transitively and freely. Hen
e from now on we assume that we havea transitive and free a
tion of an abelian group G on S. In su
h asituation S if often 
alled a G-torsor. The a
tion of G on S extendsnaturally to the a
tion of G on W . The fa
t that general group-basedmodels give tori
 varieties was already observed in [ES93℄, [SSE93℄.De�nition 5.1 (Ag). For g ∈ G let Ag be the transition matrix (equiv-alently the linear map) 
orresponding to the a
tion of g on W .By 
hoosing one element of the set S and asso
iating it to the neutralelement of G we obtain an a
tion preserving bije
tion between theelements of S and G. The element asso
iated to a ∈ S will be denotedby ga. Canoni
ally the rows and 
olumns of the transition matrix arelabeled by elements of S. After �xing a bije
tion we 
an also label themwith group elements, but this is not 
anoni
al. The 
hoi
e of a bije
tionallows us also to �nd another basis of W , indexed by 
hara
ters of G.This is done by the dis
rete Fourier transform.De�nition 5.2 (wχ). Let χ ∈ G∗ be any 
hara
ter of the group G. Wede�ne a ve
tor wχ ∈ W by:

wχ =
∑

a∈S

χ(ga)a.Due to the orthogonality of 
hara
ters the elements wχ form a basisof W . Let us noti
e that although the 
hoi
e of the bije
tion between
S and G is not 
anoni
al, the one dimensional spa
es spanned by wχare. Changing the bije
tion just multiplies ea
h ve
tor wχ by χ(g)for some g ∈ G. In the language of representation theory W is theregular representation of G. The one dimensional spa
es spanned by
wχ are of 
ourse unique irredu
ible one dimensional representations
orresponding to all 
hara
ters of G.The group stru
ture distinguishes also naturally a spe
i�
 model,namely the ve
tor spa
e Ŵ . This is done as follows. We have a natural
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tion of G on W ⊗W � the a
tion of g is just g ⊗ g:
g(
∑

λa1 ⊗ a2) =
∑

λg(a1)⊗ g(a2).De�nition 5.3 (Ŵ ). Let G be an abelian group a
ting on the set Stransitively and freely. Due to Remark 4.5 we identify End(W ) with
W ⊗W . For a general group based model we de�ne Ŵ as the set of�xed points of the G a
tion on End(W ) ∼= W ⊗W .Remark 5.4. In other words we take only su
h transition matri
esthat satisfy the following 
ondition for any g ∈ G:If we permute the 
olumns and rows of a matrix with a permutation
orresponding to g, then we obtain the same matrix.Hen
e the parameters in the transition matri
es depend only on thedi�eren
e of group elements labelling the row and 
olumn of a givenentry. In parti
ular the dimension of Ŵ is equal to |G|.In general in the thesis we assume that the tree is rooted and dire
tedaway from the root. However the 
onstru
tion from subse
tion 4.1 
anbe easily generalized to other orientations of the edges of the tree. Thereason why we make the assumption is that it simpli�es the language.Remark 5.5. One 
an see that if A ∈ Ŵ , then AT ∈ Ŵ . This meansthat if we 
onsider a tree T with two di�erent orientations then theasso
iated varieties are exa
tly the same. If a point is the image of someelement of the parameter spa
e with respe
t to a given orientation thanit is also the image of an element of the parameter spa
e with respe
tto the se
ond orientation. We just have to transpose matri
es that areasso
iated to edges with di�erent orientation.The following elements are invariant with respe
t to the G a
tionhen
e belong to Ŵ .De�nition 5.6 (Elements lχ ∈ Ŵ ). Let χ be a 
hara
ter of G. Wede�ne

lχ(wχ′) :=

{
wχ χ = χ′

0 χ 6= χ′
.It follows that (lχ)χ∈G∗ is a base of Ŵ . Moreover Ŵ is equal tothe spa
e of diagonal matri
es in the basis (wχ)χ∈G∗ . The followingProposition gives the des
ription of lχ in terms of the basis asso
iatedto elements of S. We omit the proof, as it relies on basi
 
omputation.



46 MATEUSZ MICHA�EKProposition 5.7.
lχ(a0) =

1

|G|
χ(g−1

a0
)wχ =

1

|G|

∑

a∈S

χ(g−1
a0
ga)a.

�The ve
tors lχ are independent from the 
hoi
e of the bije
tion be-tween S and G. The element g−1
a0
ga is a unique element of G thatsends a0 to a, hen
e does not depend on the bije
tion. The map lχ is aproje
tion onto the (
anoni
al) one dimensional subspa
e spanned by

wχ.Using this basis we will see that the map ψ̂ is inje
tive. Hen
e theindu
ed algebrai
 map ∏
e∈E P(We) → P(WV ) is given by the full Segresystem. The algebrai
 map π ◦ ψ̂ will be given by a subsystem of theSegre system. We will des
ribe it using the notions of "so
kets" and"networks". Let us start with a few lemmas. The a
tion of G on Wextends to the a
tion of G on WV and WL.Lemma 5.8. The dimensions of G invariant subspa
es of WV and WLare as follows:
dimWG

V = |G||V |−1,

dimWG
L = |G||L|−1.Proof. Let us 
onsider the basis ofWV given by (⊗v∈V wχv

). The a
tionof g in this basis is diagonal, so the spa
e of invariant ve
tors is spannedby invariant elements of this basis. As g(wχ) = χ(g−1)wχ we obtain:
g(⊗v∈Vwχv

) = ⊗v∈V χv(g
−1)wχv

=
∏

v∈W

χv(g
−1)⊗v∈V wχv

,so an element ⊗v∈V wχv
is invariant if and only if for any g ∈ G we have∏

v∈V χv(g) = 1. This is equivalent to the 
ondition that ∑
v∈V χv isequal to the trivial 
hara
ter (we use additive notation for the group of
hara
ters G∗). From this we see that the dimension dimWG

V is equal tothe number of sequen
es, indexed by verti
es of the tree, of 
hara
tersthat sum up to a neutral 
hara
ter. This gives us |G∗||V |−1 sequen
esand proves the �rst equality, as for abelian groups |G∗| = |G|. Theproof of the se
ond equality is the same. �Remark 5.9. The basis {⊗v∈V wχv
} of WV depends on the 
hoi
e ofthe bije
tion between the set S and G. However the basis {⊗v∈V wχv

:∑
v∈V χv = χ0} ofWG

V is natural. Changing the bije
tion multiplies wχby χ(g) for a �xed g ∈ G. As ∑
v∈V χv = χ0, then (

∑
v∈V χv)(g) = 1and the ve
tors remain un
hanged.
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an easily see that the image of ŴE in WV is invariant withrespe
t to the a
tion of G.Proposition 5.10. The map ψ̂ is an isomorphism of ve
tor spa
es
ŴE and WG

V . It takes the base {⊗e∈E|G|lχe
} bije
tively onto the base

{⊗v∈V wχv
:
∑

v∈V χv = χ0}, where χ0 is the trivial 
hara
ter.Proof. Using Proposition 5.7 we 
an see that:
(⊗v∈V av)

∗(ψ̂(⊗e∈E |G|lχe
)) =

∏

e=(v1,v2)∈E

(−χe)(gav1 )χe(gav2 ).For given 
hara
ters χe let us de�ne 
hara
ters χv for all v verti
es ofthe tree as:
χv :=

∑

(v,w)∈E

χ(v,w) −
∑

(w,v)∈E

χ(w,v).This 
orresponds to summing all 
hara
ters on edges adja
ent to vwith appropriate signs, depending on the orientation of the edge. We
onsider an element ⊗v∈V wχv
that is 
learly in the 
hosen basis of WG

Vas ea
h 
hara
ter χe is taken twi
e with di�erent signs, so the sum ofall χv is the trivial 
hara
ter. Moreover
⊗v∈V wχv

= ⊗v∈V (
∑

a∈S

χv(ga)a),so (⊗v∈V av)
∗(⊗v∈V wχv

) =
∏

v∈V χv(gav), whi
h proves the theorem.
�Corollary 5.11. The following morphism:

ψ :
∏

e∈E

P(Ŵe) → P(WG
V ),is given by a full Segre system. In the basis from Proposition 5.10 it isgiven by monomials. �Our aim will be to obtain a result similar to Proposition 5.10 for themap π ◦ ψ̂. Let us noti
e that apart from the a
tion of G on W ⊗Wgiven by g⊗ g that allowed us to de�ne Ŵ , we have got another a
tionof G on W ⊗W given by g ⊗ id, where id is the identity map.Lemma 5.12. The a
tion g ⊗ id restri
ts to Ŵ .Proof. It is enough to prove that the image of the a
tion of g ⊗ id onany element that is invariant with respe
t to the a
tion g′ ⊗ g′ is alsoinvariant. Let C be any element of Ŵ .

(g′⊗g′)((g⊗id)C = (g′g⊗g′)(C) = (gg′⊗g′)(C) = (g⊗id)(g′⊗g′)(C) =
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(g ⊗ id)(C).Here we used the fa
t that G is abelian. �De�nition 5.13 (The group GN ). We de�ne ρgv,e for ea
h v ∈ N ,

g ∈ G and e ∈ E as an isomorphism of the spa
e Ŵe. The a
tion on
Ŵe depends on e and v. If e is not adja
ent to v it is the identity. If eis an outgoing edge from v it is equal to g⊗ id and if e is an in
omingedge it is equal to g−1 ⊗ id.For ea
h v ∈ N and g ∈ G we de�ne an isomorphism of ŴE givenby ρgv := ⊗e∈Eρ

g
v,e. We also de�ne a group GN ⊂ End(ŴE) as a groupgenerated by all ρgv.Remark 5.14. It is 
ru
ial to realize how g⊗ id a
ts on elements of Ŵ
onsidered as morphisms. One 
an 
he
k that g⊗ id(Ag′) = Ag′ ◦Ag−1,so the a
tion of g ⊗ id 
omposes given morphism with Ag−1 .To obtain a ni
e des
ription of the morphism π◦ψ̂ we need a te
hni
allemma.Lemma 5.15. The group GN

∼= G|N |. There is a base in whi
h GNa
ts diagonally on ŴE.Proof. Using 5.14 we obtain:
(g ⊗ id(lχ))(wχ′) = lχAg−1(wχ′) =

= lχAg−1(
∑

a∈A

χ′(ga)a) = lχ(
∑

a∈S

χ′(ga)g
−1a) =

= lχ(
∑

a∈S

χ′(gag)a) = χ′(g)lχ(wχ′) = χ(g)lχ(wχ′),where the last equality follows from the fa
t that lχ(wχ′) is non zeroonly if χ = χ′. This proves that g ⊗ id(lχ) = χ(g)lχ, what proves thetheorem. �Let F be any abelian group. In our examples F = G or F = G∗.Let us 
onsider two groups FE and FN . The elements of ea
h areasso
iations of group elements respe
tively to edges and to nodes ofthe tree.De�nition 5.16 (Adding morphism add, proje
tion pv). We de�nea morphism add : FE → FN . Let m ∈ FE and pv : FN → F be aproje
tion onto the 
omponent indexed by a vertex v ∈ N . The element
pv(add(m)) is equal to the sum of group elements asso
iated by m toedges in
oming into v minus the sum of group elements asso
iated toedges outgoing from v.
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law tree with threeedges. We have
add : (Z3)

3 → Z3,where add is the usual sum in Z3.De�nition 5.18 (trivial signed sum). We say that an element m ∈ FEhas got trivial signed sum around a vertex v if and only if pv(add(m))is the neutral element of F .De�nition 5.19 (map add′). We de�ne a map add′ : FL → F . Thismap sends an asso
iation of group elements to leaves to their sum.Remark 5.20. As in Proposition 5.10 elements of the base of ŴE arebije
tive with the sequen
es of 
hara
ters indexed by edges of a tree.In other words an element of the basis of ŴE 
an be des
ribed as anasso
iation of a 
hara
ter of G to ea
h edge of a tree. Moreover theelements of the basis of ŴE that are invariant with respe
t to the a
tionof GN are exa
tly su
h asso
iations that the signed sum of 
hara
tersaround ea
h inner vertex is the trivial 
hara
ter.Lemma 5.21. The map π : WV →WL 
an be des
ribed as follows:
π(⊗v∈V wχv

) = |G||N | ⊗l∈L wχlif all the 
hara
ters χv for the inner verti
es are trivial or zero other-wise.Proof. First let us look at ⊗v∈V wχv
in the old 
oordinates:

⊗v∈V wχv
= ⊗v∈V (

∑

a∈S

χv(ga)a) =
∑

(au)u∈V ∈SV

(
∏

v∈V

χv(gav))(⊗v∈V av),where the sum ∑
(au)u∈V ∈SV is taken over all |V |-tuples (indexed byverti
es) of basis ve
tors. In other words this sum parameterizes thebasis of WV made of tensor produ
ts of base ve
tors 
orresponding toelements of G. This is equal to:

∑

(au)u∈N∈SN

∑

(al)l∈L∈SL

∏

v∈N

χv(gav)
∏

f∈L

χf(gaf )⊗v∈N av ⊗f∈L af .We see that π(⊗v∈V wχv
) is equal to:

∑

(au)u∈N∈SN

∑

(al)l∈L∈SL

∏

v∈N

χv(gav)
∏

f∈L

χf(gaf )⊗f∈L af =

(
∏

v∈N

(
∑

g∈G

χv(g)))
∑

(gl)l∈L∈GN

∏

f∈L

χf (gl)⊗f∈L af .
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t ∏u∈N(
∑

g∈G χu(g)) is equal to zero unless all 
hara
ters
χu for u ∈ N are trivial. In the latter 
ase the produ
t is equal to
|G||N |. Of 
ourse

∑

(gl)l∈L∈GN

(
∏

f∈L

χf (gl))(⊗l∈Lgl) = ⊗l∈Lwχl
,whi
h proves the proposition. �The following theorem is a dire
t generalization to arbitrary abeliangroups of Theorem 2.12 from [BW07℄.Theorem 5.22. The spa
es (WG

L ) and (ŴE)
GN are isomorphi
.Proof. One 
an prove it using dimension argument, but it is better tolook how the basis are transformed. The base of (ŴE)

GN is given by
⊗e∈E|G|lχe

, where the signed sum of all 
hara
ters at any vertex istrivial. This, thanks to Proposition 5.10, by the morphism ψ̂ : ŴE →
WV is transformed bije
tively into an independent set ⊗v∈V wχv

, where
hara
ters for inner verti
es are trivial and the sum of all 
hara
tersis trivial. Using Lemma 5.21 the image of this set by π gives the set
|G||N |⊗l∈Lwχl

, where the 
hara
ters χl sum up to the trivial 
hara
ter.The last set forms a base of WG
L . �Corollary 5.23. The morphism π ◦ ψ̂ is a tori
 morphism.Proof. Follows from the proof of Theorem 5.22. �Our aim is to des
ribe the monomials that de�ne π ◦ ψ̂. This moti-vates the following de�nitions of groups of so
kets and networks.De�nition 5.24 (Groups S and N). We �x an abelian group F = G∗.The group of networks N is the kernel of the morphism add. The groupof so
kets S is the kernel of the morphism add′.Hen
e a so
ket is an asso
iation of 
hara
ters from G∗ to ea
h leafsu
h that the sum of all these 
hara
ters is the trivial 
hara
ter. A net-work is an asso
iation of 
hara
ters from G∗ to ea
h edge su
h that thesigned sum of 
hara
ters at ea
h inner vertex gives the trivial 
hara
ter.Example 5.25. Let us 
onsider the group G ∼= G∗ = Z3 and thefollowing tree:

◦
e1

e2

e3
e4

e5
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ket is an asso
ia-tion e2 → 1, e3 → 1, e4 → 2, e5 → 2.Example 5.26. We 
onsider the same tree as in Example 5.25. We
an make a network using the same asso
iation and extending it by
e1 → 2.Remark 5.27. Networks and so
kets were introdu
ed in [BW07℄ �see the dis
ussion below. As the 
onstru
tion presented here dire
tlygeneralizes the previous one we de
ided to keep the name. However,networks 
ould also be named group based �ows. Indeed, the 
on-dition that at ea
h vertex the sum of elements asso
iated to in
omingedges equals the sum of elements asso
iated to outgoing edges is thewell known 
ondition for a �ow. The only di�eren
e is that we asso-
iate elements of an arbitrary group. As we will see in Proposition 5.30there is a bije
tion between so
kets and networks. This is similar tothe theorem that for a �ow the sum over all sour
es equals the sumover all sinks.In [BW07℄ for the group Z2 the so
ket was de�ned as an even subsetsof leaves. That 
orresponds to asso
iating 1 to 
hosen leaves and 0 tothe other leaves. The 
ondition that the subset has got even numberof elements is just the 
ondition that the elements from the group sumup to the neutral element. We see that this de�nition is 
ompatible.Networks were de�ned as subsets of edges su
h that there was an evennumber 
hosen around ea
h inner vertex � this is also the 
ondition ofsumming up to the neutral element around ea
h inner vertex.Let us generalize the results on so
kets and networks from [BW07℄.Lemma 5.28. There are exa
t sequen
es of abelian groups:

0 → N → (G∗)E
add
→ (G∗)N → 0,

0 → S → (G∗)L
add′

→ G∗ → 0.Proof. As add and add′ are surje
tive the lemma follows from De�nition5.24. �De�nition 5.29 (morphism fo and bi). There is a group morphism
fo : (G∗)E → (G∗)L that forgets all the 
omponents indexed by edgesnot adja
ent to leaves. From the diagrams in Lemma 5.28 the image of
N by fo is 
ontained in S. We de�ne bi : N → S to be the restri
tionof fo.



52 MATEUSZ MICHA�EKThere is the following diagram:
0 → N → (G∗)E

add
→ (G∗)N → 0,

↓bi ↓fo ↓−sum

0 → S → (G∗)L
add′

→ G∗ → 0.The map −sum : (G∗)N → G∗ asso
iates to an |N |-tuple of 
hara
tersminus their sum.Proposition 5.30. For any tree and any abelian group G the mor-phism bi that asso
iates a so
ket to a network is a group isomorphism.Proof. Let n be a network. We know that the signed sum pv(add(n))around ea
h inner vertex v is the neutral element. Hen
e∑v∈N pv(add(n)) =
e, where e is the neutral element. Let us 
onsider an edge dire
tedfrom v1 to v2, where v1, v2 ∈ N . Let us note that the group elements
n(v1, v2) and n(v1, v2)−1 appear in pv1(add(n)) and pv2(add(n)). We seethat ∑

v∈N pv(add(n)) =
∑

l∈L n(l). This means that a restri
tion ofthe network to leaves gives a so
ket.Given a so
ket s we 
an de�ne a fun
tion n : E → G indu
tively,starting from leaves, using the 
ondition of summing up to the neutralelement around inner edges. The only nontrivial thing is to noti
e thatthe sum around the root also gives the neutral element. This followsfrom the previous equality ∑
v∈N pv(add(n)) =

∑
l∈L n(l) and the fa
tthat pv(add(n)) = e for ea
h node v di�erent from the root. �Ea
h network determines naturally an element of the basis of (ŴE)

GNand ea
h so
ket an element of the basis of WG
L . The isomorphism inTheorem 5.22 just uses the natural bije
tion 5.30. This motivates thefollowing de�nition.De�nition 5.31 (Spa
es W̃E , W̃L). We de�ne the subspa
e W̃E :=

(ŴE)
GN ⊂ ŴE. Re
all that basis elements of ŴE are indexed by ele-ments of (G∗)E as in Remark 5.20. The basis elements of W̃E 
orre-spond to elements of N.We de�ne the subspa
e W̃L := WG

L ⊂ WL. The basis elements of W̃L
orrespond to asso
iations that form a so
ket � 
f. proof of Lemma 5.8.Using Theorem 5.22 we know that the variety X(T,W, Ŵ ) is the
losure of the image of the rational map indu
ed by π ◦ ψ̂:
ψ̌ :

∏
Ŵe = C|G||E| → W̃L,where the 
oordinates of the domain are indexed by pairs (e, χ) for

e ∈ E and χ ∈ G∗. The 
oordinates of the 
odomain are indexed by
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kets (or equivalently networks). In fa
t the 
odomain is a regularrepresentation of the group N. In forth
oming se
tions we will use thea
tion of this group on the variety X(T,W, Ŵ ).Note that for a �xed basis of a ve
tor spa
e, the points with nonzero
oordinates form an algebrai
 torus that a
ts on the spa
e. Let usdes
ribe the a�ne map π ◦ ψ̂ in tori
 terms.De�nition 5.32 (Latti
esMS,Me,ME). To ea
h edge e we asso
iateda ve
tor spa
e Ŵe with the distinguished basis given by ωχ. The pointswith nonzero 
oordinates in this basis form an algebrai
 torus with thea
tion given by 
oordinatewise multipli
ation. We de�ne Me as the
hara
ter latti
e of this torus.The produ
t ve
tor spa
e ∏
e∈E Ŵe has got a basis indu
ed from ea
h

Ŵe. The points with nonzero 
oordinates form an algebrai
 torus withthe 
hara
ter latti
e given by ME.The ve
tor spa
es W̃E
∼= W̃L have got the distinguished basis withelements 
orresponding to so
kets. The points with nonzero 
oordinatesform an algebrai
 torus with the 
hara
ter latti
e given by MS.Let us note that the 
oordinate system on the ve
tor spa
e distin-guishes the basis of the latti
e. The basis of ea
h latti
eMe is indexedby 
hara
ters. As ME =
⊕

e∈E Me the basis of ME is indexed bypairs (e, χ) where e is an edge and χ a 
hara
ter of G. The basis el-ements of MS 
orresponds to so
kets or networks. The rational map
ψ̌ :

∏
e∈E We → W̃E

∼= W̃L is an equivariant parametrization of a tori
variety.De�nition 5.33 (Morphism ψ̃). The morphism ψ̃ : MS → ME is themorphism of latti
es indu
ed by ψ̌.In this setting the des
ription of ψ̃ is parti
ularly simple. Let fn ∈
MS be a basis ve
tor 
orresponding to a network n. The element ψ̃(fn)will be an element of the unit 
ube inME . Let h(e,χ) ∈ME be the basisve
tor indexed by a pair (e, χ) ∈ E ×G∗ and let h∗(e,χ) be its dual. Wehave:

h∗(e,χ)(ψ̃(fn)) =

{
1 if n(e) = χ

0 otherwise.We 
ome to the most important de�nition of this se
tion.De�nition 5.34 (Polytope P ). We de�ne the polytope P ⊂ ME to bethe 
onvex hull of the image of the basis of MS by ψ̃. In other words theverti
es of the polytope P 
orrespond to networks. More pre
isely ea
hvertex has got 1 on 
oordinates indexed by pairs that form a network
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oordinates. Note that the polytope P is a subpolytopeof a unit 
ube. Hen
e all its integer points are verti
es.Example 5.35. Let us 
onsider the tree T with one inner vertex andthree leaves l1, l2 and l3. Let G ∼= G∗ = Z2. The latti
e MS is the4 dimensional latti
e generated freely by ve
tors e(0,0,0), e(1,1,0), e(1,0,1),
e(0,1,1) that 
orrespond to so
kets/networks on T . The latti
eME is a 6dimensional latti
e with basis ve
tors f(li,g) with 1 ≤ i ≤ 3 and g ∈ Z2.We have ψ̂(e(a,b,c)) = f(l1,a) + f(l2,b) + f(l3,c). Hen
e ea
h vertex of Pwill have three 
oordinates equal to zero and three to one. Let us 
on-sider the base ofME in the following order f(l1,0), f(l1,1), . . . , f(l3,0), f(l3,1).The vertex 
orresponding to e(0,0,0) is (1, 0, 1, 0, 1, 0). In the same or-der e(1,1,0) → (0, 1, 0, 1, 1, 0), e(1,0,1) → (0, 1, 1, 0, 0, 1) and e(0,1,1) →
(1, 0, 0, 1, 0, 1). These are of 
ourse all verti
es of P .Remark 5.36. Suppose that a tree T has got a vertex v of degree two.Let e1 = (u, v) and e2 = (v, w) be respe
tively an in
oming and outgoingedge. Consider any network n. We have n(e1) = n(e2). Let T ′ be atree obtained from T be removing the vertex v, edges e1, e2 and addingan edge (u, w). We see that the polytope asso
iated to T is isomorphi
to the polytope asso
iated to T ′.The polytope P is the polytope asso
iated to the tori
 varietyX(T,G).The algebra of this variety is the algebra asso
iated to the monoid gen-erated by P inME . The generating binomials of a tori
 ideal asso
iatedto a polytope P 
orrespond to integral relations between integer pointsof this polytope, Corollary 2.6. Hen
e in our situation phylogeneti
 in-variants 
orrespond to relations between networks. Ea
h su
h relation
an be des
ribed in the following way. We number all edges of a treefrom 1 to e. The networks are spe
i�
 e-tuples of group elements. Forexample for the 
law tree these are e-tuples of group elements summingup to the neutral element. Ea
h relation of degree d between the net-works is en
oded as a pair of matri
es with d 
olumns and e rows withentries that are group elements. We require that ea
h 
olumn repre-sents a network. Moreover the rows of both matri
es are the same upto permutation.Example 5.37. Consider the binary Jukes-Cantor model and thefollowing tree.(5.1)
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v1The leaves adja
ent to v1 have got numbers 1 and 2. We assign 3 tothe inner edge. An example of a relation is given by a pair of matri
es:




1 0
0 1
1 1
1 0
0 1
0 0



,




0 1
1 0
1 1
1 0
0 1
0 0



.The numbers 0 and 1 are treated as elements of Z2. Due to the de�-nition of the so
ket the third row has to be the sum of both the �rsttwo and last three rows.Note that P does not have to generate the latti
e ME .De�nition 5.38 (Latti
e M̂E). We de�ne the latti
e M̂E as a sublatti
eof ME generated by verti
es of P .The latti
es de�ned so far 
orresponded to a�ne obje
ts. A rationalmap from a ve
tor spa
e to its proje
tivization is well de�ned on pointswith non zero 
oordinates. Hen
e it indu
es a surje
tive morphism oftori, what 
orresponds to an inje
tive morphism of 
hara
ter latti
es.De�nition 5.39 (Degree fun
tions dege). Note that for a 
hara
terlatti
e M with a distinguished basis we 
an de�ne a fun
tion deg :

M → Z that sums up 
oordinates. The degree of a latti
e element isthe degree of the monomial fun
tion asso
iated to it. For latti
es Methe 
orresponding degree fun
tions are denoted by dege.De�nition 5.40 (Latti
es MS,0, ME,0 and M̂E,0). For a latti
e MSwe de�ne MS,0 as a sublatti
e of elements with the sum of 
oordinatesequal to zero. In parti
ular MS,0 is the 
hara
ter latti
e of the toruswhose points are identi�ed with points of P(W̃E) with all 
oordinatesdi�erent from zero.We de�ne ME,0 as a sublatti
e of ME de�ned by equalities dege = 0for ea
h edge e. This is the 
hara
ter latti
e of the torus whose pointsare identi�ed with points of ∏P(We) with all 
oordinates di�erent fromzero.
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hara
ter latti
e of thetorus whose points are identi�ed with points of the proje
tive tori
 va-riety P(X(T )) with all 
oordinates di�erent from zero.Re
all that the basis of the latti
e ME is indexed by pairs (e, χ)where e is an edge and χ is a 
hara
ter of G. Also to ea
h su
h pairwe 
an asso
iate a one parameter subgroup in the dual of ME . This isgiven as a morphism fromME to Z that is the dual ve
tor to the ve
torof the base of ME that is indexed by the pair (e, χ). In parti
ular forea
h leaf l and 
hara
ter χ ∈ G∗ we obtain a one parameter subgroup
λχl . Using the morphism dual to ψ̃ :MS → ME , for ea
h pair (e, χ) weobtain a one parameter subgroup in the latti
e dual to MS. For ea
h
t ∈ C∗ we have an a
tion of λχl (t) on A(|L|−1)×|G| ⊃ X . The weightof this a
tion on the 
oordinate indexed by a so
ket s is either 0 or 1depending on whether the so
ket s asso
iates to the leaf l 
hara
ter χ(in this 
ase 1) or not (in this 
ase 0).Remark 5.41. In [BW07℄ the authors 
onsidered only one one pa-rameter subgroup for ea
h leaf although their group had two elements.Noti
e however that in our notation for the group Z2 the weights ofthe a
tion of λ0l are 
ompletely determined by the weights of the a
tionof λ1l � one weights are negations of the others. In our notation theauthors 
onsidered only λ1l .The setting presented here, where an abelian group G a
ts transi-tively and freely on the set of states is the most well-understood. Themodels obtained in this way are 
alled general group-based models. Al-though this de�nition is quite 
lear, the question what is a group-basedmodel is mu
h less obvious. This motivates the dis
ussion of the nextse
tion 5.2.5.2. Notation. In Se
tion 5.1 we have introdu
ed the general group-based models. The key point of the de�nition was that the ve
tor spa
e
Ŵ was given as the subspa
e of EndW invariant under the a
tion ofan abelian group that a
ts transitively and freely on the basis of W .This setting enabled us to apply the dis
rete Fourier transform andasso
iate tori
 varieties with the models. There are a few possibili-ties to generalize this 
onstru
tion depending on the assumptions onthe group, its a
tion on the spa
e W and properties of the obtainedasso
iated variety.The �rst idea would be to 
onsider any a
tion of any group on W .Even more general 
onstru
tion is presented in [DK09℄, where the ve
-tor spa
eW may vary depending on the vertex of the tree. Su
h modelsare 
alled equivariant models. Of 
ourse, in this 
ase, in general one
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annot apply the dis
rete Fourier transform, as the group G is notabelian. Moreover if the group G is small the transition matri
es maybe to general and the asso
iated variety will not be tori
. For exam-ple if G has got only one element it is abelian. However the model
orresponding to it is just the general Markov model. The varietiesasso
iated to this model are an obje
t of intensive study, see for exam-ple [AR08℄ and referen
es therein. They are very far from being tori
and establishing their properties even for the simplest tree is a great
hallenge. For example it is an open problem to determine the ideal in
ase of the tripod [BO10℄.As we want to work with tori
 varieties it is reasonable to makefurther assumptions. Let us noti
e that the adje
tive "general" indi-
ates that other group-based models should be more spe
i�
. In otherwords the subspa
e Ŵ for a group-based model should 
ontain spe
i�
transition matri
es of a general group-based model. Thus we �x anabelian group H that a
ts on the spa
e W transitively and freely. Agroup-based model will be obtained by requiring further 
onditions onthe spa
e of transition matri
es.Before stating de�nitions that will be used in this thesis let us presentthe state of art. In the literature one 
an �nd many referen
es to group-based models [SS05℄, [APRS11℄, [PS05, p. 327℄. In this setting oneassumes that there is a bije
tion between elements of an abelian groupand elements of S, as in general group-based models. One also requiresthat the entries of the transition matri
es depend only on the di�eren
eof group elements labelling the row and the 
olumn of the given entry.However we allow the parameters for di�erent di�eren
es to be thesame � a formal de�nition is presented in 5.43. This is a very generalde�nition that 
overs many models, like Jukes-Cantor on any numberof states, 2-Kimura or any general group-based model. However forexample in [APRS11℄ [SS05, p.460℄ one 
an also �nd theorems, usuallyoriginating to [ES93℄ that group-based models are tori
. We do notbelieve that this is true in su
h a general setting. The example ispresented in the Appendix 1, where after the Fourier transform wedo not get monomials but polynomials. The reason for this is thatequality of variables before Fourier transform does not imply equalityof parameters after it. We would like to stress that the fa
t that Jukes-Cantor and 2-Kimura give rise to tori
 varieties was known before. Togive a formal de�nition of group based-models we use a method oflabellings due to Sturmfels and Sullivant [SS05, Se
tion 3℄.De�nition 5.42 (Labelling fun
tion). Let Lab be any �nite set and Han abelian group. A labelling fun
tion is any fun
tion f : H → Lab.
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onsider spe
ial labellings, indu
ed by group a
tions,that will turn out to have interesting properties.De�nition 5.43 (Group-based model). We de�ne group-based mod-els by spe
ifying the spa
e of transition matri
es Ŵ . Suppose that anabelian group H a
ts on the set of states S transitively and freely. Forany two states s1, s2 ∈ S we de�ne a morphism ps1,s2 : EndW → C.It is given by the equality ps1,s2(M) = (s∗2)(M(s1)) where s1 ∈ W isan element of the basis and s2 is an element of the dual basis. Let
gs1,s2 ∈ H be the unique element sending s1 to s2.We �x any labelling fun
tion f on H. We de�ne Ŵ as the largestsubspa
e of transition matri
es M satisfying the following 
ondition:For any s1, s2, s3, s4 ∈ S su
h that f(gs1,s2) = f(gs3,s4) we have
ps1,s2(M) = ps3,s4(M).Less formally, but more intuitively one labels the rows and 
olumnsof transition matri
es with elements of H . The 
ondition requiresthat entries labelled by (g1, g2) and (g3, g4) equal if (f(g1), f(g2)) =

(f(g3), f(g4)). Noti
e that the spa
e Ŵ is obtained from the spa
e oftransition matri
es of a general group-based model by spe
i�
 hyper-plane se
tions. It is important to understand that in this setting the
lass of group-based models is mu
h larger than the 
lass of generalgroup-based models. The latter are 
alled "general" be
ause the spa
e
Ŵ is the most general. They 
orrespond to labellings that are inje
-tive. The main drawba
k of this setting is that varieties asso
iated togroup-based models do not have to be tori
. Be
ause of the hyperplanese
tions, the parametrization after the dis
rete Fourier transform doesnot have to be given by monomials. Although, as we have already said,in many 
ases it is. This is a motivation for the next Se
tion 5.3. Wewill distinguish a 
lass of group based-models, so 
alled G-models. Forthem, we will require that the labelling is given by a spe
i�
 groupa
tion. In this setting the asso
iated varieties will be tori
.5.3. G-models. This se
tion 
ontains results from [Mi
11b℄. Our mainaim is to introdu
e the general framework that would in
lude all modelsof interest des
ribed as group-based, but still would give rise to tori
varieties. Moreover we obtain a parti
ulary ni
e des
ription of theasso
iated polytope.The setting of this se
tion is su�
iently general to 
over manyMarkovpro
esses, in parti
ular this will be a generalization of the results of Se
-tion 5.1. However the inspiration is the 2-Kimura model, that is thephylogeneti
 model in whi
h the transition matri
es are of the following
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

a b c b
b a b c
c b a b
b c b a


 .In this 
ase, as in the previous se
tion, we also have an abelian group

H = Z2 × Z2 that a
ts on the basis (A,C,G, T ) of a four dimensionalve
tor spa
e W . As we have seen the �xed points of the a
tion of H on
W ⊗W de�ne the 3-Kimura model. We may however de�ne a largergroup G, namely the dihedral group of order 8, that 
ontains H as anormal subgroup. The a
tion of G on W ⊗W de�nes the 2-Kimuramodel. Details of this 
onstru
tion 
an be found in [BDW09℄. Thismotivates the following setting.Let S be an n-element set of states. Let G be a subgroup5 of Sn =
Sym(S) a
ting on S. Suppose moreover that the group G 
ontains anormal, abelian subgroup H and the a
tion of H on S is transitive andfree. Elements of S on
e again 
orrespond to states of verti
es of aphylogeneti
 tree T . We de�ne W as in De�nition 4.1.The basi
 di�eren
e with the abelian 
ase is that we de�ne elementsof Ŵ as matri
es �xed not only by the a
tion of H , but by the wholea
tion of G. We assume that End(W ) ∼= W ⊗W , 
f. Remark 4.5.De�nition 5.44. Let

Ŵ = {
∑

ai,aj∈S

λai,ajai ⊗ aj : λai,aj = λg(ai),g(aj )∀g ∈ G}.Remark 5.45. The 
hara
terization of Ŵ from Remark 5.4 is stillvalid. However due to additional symmetries the dimension is di�erent.Remark 5.46. The situation of the previous se
tion 
orresponds to
G = H .Remark 5.47. As before by 
hoosing an element e ∈ S we make abije
tion between S and H . An element asso
iated to a ∈ S will bedenoted by ha ∈ H . The element e 
orresponds to the neutral elementof H and is the index of the �rst row of transition matri
es. Noti
ethat the a
tion of G on S (as permutation) will not generally be thesame as the a
tion of G on H (as a group).We will often use the following easy observation.Lemma 5.48. Let h ∈ H be an element that as a permutation sends
a to b, where a, b ∈ S. Then h = hbh

−1
a .5not ne
essarily abelian
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ause H a
ts on S freely, theyhave to be equal. �De�nition 5.49 (G-model). Let G be a �nite group a
ting on a �niteset S. Suppose that G 
ontains a normal, abelian subgroup H that a
tson the set S transitively and freely. A G-model is an algebrai
 variety
X(T,W, Ŵ ) for W and Ŵ as in De�nitions 4.1 and 5.44.Our aim is to prove that also in this generalized setting we will obtaintori
 varieties. We will pro
eed in four steps.(i) We introdu
e a general method for 
onstru
ting endomorphismsof W from 
omplex fun
tions on H . We prove that under 
er-tain 
onditions (namely a fun
tion should be 
onstant on orbitsof the 
onjugation a
tion of G on H), the obtained endomor-phism is in Ŵ . Su
h fun
tions 
an regarded as a generalizationof 
lass fun
tions to pairs of groups.(ii) We prove that some sums (over the orbits of the a
tion of G on

H∗) of 
hara
ters ofH are fun
tions that 
an de�ne elements of
Ŵ . We also noti
e that we obtain a set of independent ve
torsof Ŵ .(iii) Using dimension arguments we prove that the set de�ned instep 2 is in fa
t a basis.(iv) Finally, using theorems from Se
tion 5.1, we prove, using thenew 
oordinates, that our variety is tori
.De�nition 5.50. We de�ne ŴH to be the ve
tor spa
e of matri
es �xedby the a
tion of H.Remark 5.51. From the previous subse
tion we know that the 
losureof the image of the map:

ψ :
∏

e∈E

P((̂WH)e) 99K P(WL),is a tori
 variety. Moreover we also found the base in whi
h the de-s
ribed morphism is given by monomials. As Ŵ ⊂ ŴH , our aim is toprove that the restri
tion of the previous map is also given by mono-mials in 
ertain base. We will use the base on ŴH to de�ne the baseof Ŵ .5.3.1. Step 1: Corresponden
e between fun
tions on H and endomor-phisms of W . We are going to de�ne some endomorphisms of W .
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tion. We de�ne:
lf =

1

|H|

∑

a,b∈S

f(h−1
a hb)a⊗ b.Remark 5.53. Noti
e that due to Proposition 5.7 the previous de�-nition is 
onsistent with the de�nition of lχ for χ ∈ H∗. Moreover theve
tor lf depends only on the fun
tion f and not the bije
tion between

S and H , as h−1
a hb is the only element from H that sends a to b.Proposition 5.54. Let us 
onsider the 
onjugation a
tion of G on H:

(g, h) → ghg−1.If f is 
onstant on orbits of this a
tion then lf ∈ Ŵ .Proof. Consider any element g ∈ G. We fo
us on two entries of thematrix lf , namely (a1, b1) and (a2, b2), where
g(a1) = a2 and g(b1) = b2.These entries are from the de�nition of lf respe
tively f(h−1

a1
hb1) and

f(h−1
a2
hb2). Due to Remark 5.4 we want to prove that f(h−1

a1
hb1) =

f(h−1
a2
hb2). Consider an element ghb1h−1

a1
g−1. Clearly it is an element of

H (be
ause H was a normal subgroup of G) that sends a2 to b2. FromLemma 5.48 we obtain:
ghb1h

−1
a1
g−1 = hb2h

−1
a2
.This 
ompletes the proof, as f was 
onstant on orbits of the 
onjugationa
tion. �5.3.2. Step 2: Appropriate fun
tions on H. In the abelian 
ase we
onsidered 
hara
ters of H . As G was equal to H , these fun
tionswere of 
ourse 
onstant on (one element) orbits of the a
tion of G on

H . In a general 
ase it may happen that we do not have an equality
χ(ghg−1) = χ(h).Of 
ourse this equality holds if a 
hara
ter of H extends to a 
hara
terof G, but this is not always the 
ase. If we de�ne the ve
tors lχ for

χ ∈ H∗ they may not be in Ŵ . To obtain the ve
tors in Ŵ we willsum up some 
hara
ters to obtain fun
tions that satisfy the 
onditionof Proposition 5.54. Consider the a
tion of G on H∗:
χg(h) = χ(ghg−1).Let O be the set of orbits of this a
tion. Elements of O give a partitionof H∗. Let us de�ne for ea
h element o ∈ O a fun
tion fo : H → C.
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tion fo). Let fo =
∑

χ∈o χ. Here we are sum-ming 
hara
ters as 
omplex valued fun
tions, not as 
hara
ters, so thisis the usual sum, not the produ
t. We obtain lfo = ∑
χ∈o lχ.Proposition 5.56. The fun
tion fo satis�es the 
onditions of Propo-sition 5.54 that is, it is 
onstant on orbits of the 
onjugation a
tion of

G on H.Proof. As the a
tion of g′ is a permutation of the orbit o we have:
fo(g

′hg′−1) =
∑

χ∈o

χ(g′hg′−1) =
∑

χ∈o

(g′, χ)(h) =
∑

χ∈o

χ(h) = fo(h).

�Corollary 5.57. The ve
tors lfo for o ∈ O are in Ŵ . Moreover, as lχforms a basis of ŴH , and lfo are sums over a partition of this basis,they are independent.Proposition 5.58. Any 
omplex fun
tion 
onstant on orbits of O is alinear 
ombination of the fun
tions fo.Proof. Let us �x a fun
tion f 
onstant on orbits. As the 
hara
ters of
H span the spa
e of all fun
tions we know that f =

∑
χ∈H∗ aχχ. Wehave to prove that 
oe�
ients of χ in the same orbit are the same. Let

χg
1 = χ2. We know that for any h ∈ H we have
∑

χ∈H∗

aχχ(h) = f(h) = f(ghg−1) =
∑

χ∈H∗

aχχ(ghg
−1) =

∑

χ∈H∗

aχχ
g(h).From the independen
e of 
hara
ters we see that aχ1 = aχ2 whi
h
ompletes the proof. �Corollary 5.59. The number of orbits in O (and so the number ofve
tors lfo) is equal to the number of orbits of the 
onjugation a
tionof G on H.Proof. This follows from 
omparing dimensions of spa
es of 
omplexfun
tions on H that are 
onstant on orbits. �5.3.3. Step 3: Dimension of Ŵ . We are going to prove that the dimen-sion of Ŵ is equal to the number of orbits |O|. First let us note thatall 
oe�
ients of any matrix in Ŵ (in the basis S) are determined by
oe�
ients in the �rst row. This follows from Se
tion 5.1. We see that

dim Ŵ is equal to the number of independent parameters in the �rstrow, that is indexed by e. The a
tion of G imposes some 
onditions,
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oe�
ient in the e-th row and a-th 
olumn and the 
oe�-
ient in the e-th row and b-th 
olumn for a, b ∈ S have to be equal ifand only if there exists an element g ∈ G su
h that:
g(e) = e and g(a) = b.Lemma 5.60. The following 
onditions are equivalent:(i) there exists g ∈ G that sends e to e and a to b,(ii) the elements ha and hb are in the same orbit with respe
t tothe a
tion (g, h) = ghg−1.Proof. Of 
ourse ha and hb are in the same orbit if and only if h−1

a and
h−1
b are in the same orbit. For the proof we 
on
entrate on the se
ondvariant.i)⇒ ii): From Lemma 5.48 we know that gh−1

a g−1 = h−1
b , be
auseboth elements send b to e.i)⇐ ii): Suppose that gh−1

a g−1 = h−1
b . Let g′ = h−1

b ghg−1(b). Theelement g′ sends e to e, but g′ = gh−1
a hg−1(b), hen
e it also sends a to

b. �Proposition 5.61. The dimension of Ŵ is equal to the number oforbits |O|.Proof. Classes of equal parameters in the �rst row of matri
es in Ŵ
orrespond bije
tively to orbits of the a
tion of G on H from Lemma5.60 and remarks at the beginning of this subse
tion. By Corollary5.59 this �nishes the proof. �Corollary 5.62. The elements lfo for o ∈ O form a basis of Ŵ .Proof. The ve
tors lfo are independent due to Corollary 5.57. Thenumber of ve
tors equals the dimension of the spa
e due to Proposition5.61. �5.3.4. Step 4: G-models are tori
. Let us de�ne a basis on Ŵe 
onsist-ing of ve
tors lfo . We 
onsider the in
lusion map i : Ŵe → (̂WH)e, inthe basis made respe
tively of lfo and lχ. We know that lfo = ∑
χ∈o lχ.Let us des
ribe the morphism i in the 
oordinates 
orresponding to thebasis lfo on Ŵe and to the basis lχ on (̂WH)e. Fix χ ∈ o. We have

l∗χ(i(x)) = l∗fo(x).This shows that the map from ∏
e∈E P(Ŵe) to P(WL) that parame-terizes the model is also given by monomials � these are exa
tly mono-mials from Se
tion 5.1, where we just make some variables equal toea
h other. Let us des
ribe whi
h variables are identi�ed. We re
allthat variables in the abelian 
ase 
orrespond to networks. Fix two



64 MATEUSZ MICHA�EKnetworks n1 and n2. We identify them if and only if for ea
h edge ethe 
hara
ters n1(e) and n2(e) are in the same orbit of the adjoint Ga
tion.We have got the following 
ommutative diagram:
∏

e∈E P(Ŵe) → P(ŴE) 99K P(WL)
↓ ↓ l∏

e∈E P(ŴHe) → P(ŴHE) 99K P(WL)This proves the main theorem of this se
tion.Theorem 5.63. Let G be a �nite group that a
ts faithfully on a �niteset S. Let H be a normal, abelian subgroup of G. Suppose that thea
tion of H on S is transitive and free. Let Ŵ be the spa
e of matri
esinvariant with respe
t to the a
tion of G and let W be the ve
tor spa
espanned freely by elements of S. Then the G-model X(T,W, Ŵ ) is tori
for any tree T .We will now des
ribe the latti
es of 
hara
ters of the tori that appearin the 
onstru
tion. As in Se
tion 5.1 there is a latti
e MS with basiselements 
orresponding to so
kets and two latti
es M̂E,H ⊂ME,H . Theletter has got basis elements indexed by pairs (e, χ) where e ∈ E is anedge of the tree and χ ∈ H∗ is a 
hara
ter.De�nition 5.64 (Latti
e ME,G). Let ME,G be a latti
e with basis el-ements indexed by pairs (e, o), where e ∈ E and o is an orbit of theadjoint a
tion of G on H∗.Let fe,χ ∈ ME,H be a basis element indexed by the pair (e, χ). Let
fe,o ∈ ME,G be a basis element indexed by the pair (e, o). There isa natural proje
tion ME,H → ME,G. To an element fe,χ we asso
iate
fe,o, where χ ∈ o. The image of a polytope P ⊂ ME,H for the generalgroup-based model is a polytope P̃ that is asso
iated to the varietyrepresenting the G model. Hen
e P̃ is a subpolytope of a unit 
ube. Anelement ∑e∈E fe,oe is a vertex of P̃ if and only if there exist 
hara
ters
χoe ∈ oe su
h that ∑e∈E fe,χoe

is a vertex of P . The latti
e spanned by
P̃ will be denoted by M̂E,G. The following diagram 
ommutes.

MS ME,H

ME,GThe morphisms from MS 
orrespond to embeddings of both models inan a�ne spa
e. The surje
tive verti
al morphism 
orresponds to in-
lusion of models. Indeed, by introdu
ing new 
onditions on transition
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es for a G-model we restri
t the image, hen
e there is a naturalin
lusion in a general group-based model.We �nish this se
tion by presenting relations of G-models to la-bellings 5.42. From Lemma 5.60 it follows that the entries of transitionmatrix labelled respe
tively by (h1, h2) ∈ H2 and (h3, h4) ∈ H2 areequal if the elements h−1
1 h2 and h−1

3 h4 are in the same orbit of theadjoint a
tion of G on H . Let Lab be the set of orbits of the adjointa
tion of G on H . The labelling fun
tion f : H → Lab asso
iates toan element its orbit.De�nition 5.65 (m-friendly labelling, friendly labelling, [SS05, Def-inition 8℄). Let H be any abelian group and Lab any �nite set. Fix alabelling fun
tion f : H → Lab. For m ≥ 3 
onsider the set
Z = {(g1, . . . , gm) ∈ Hm :

m−1∑

i=1

gi = gm}.Consider the indu
ed map f̃ : Z ⊂ Hm → Labm and denote by πi theproje
tion πi : H
m → H onto the i-th 
oordinate. The fun
tion f is
alled m-friendly if, for every l = (l1, . . . , lm) ∈ f̃(Z) ⊂ Labm,

πi(f̃
−1(l)) = f−1(li) for all i = 1, . . . , m.A labelling is friendly if it is m-friendly for all m ≥ 3.Lemma 5.66. The labellings for G-models are friendly.Proof. Fix an m-uple of orbits (o1, . . . , om) for the adjoint a
tion of

G on an abelian normal subgroup H . Suppose that there exist el-ements hi ∈ oi su
h that ∏m−1
i=1 hi = hm. Fix any element h̃i0 ∈

oi0. There is an element g ∈ G su
h that h̃i0 = ghi0g
−1. Con-sider an element (gh1g

−1, . . . , ghmg
−1). Let f̃ and πi be as in De�-nition 5.65. Of 
ourse f̃(gh1g−1, . . . , ghmg

−1) = (o1, . . . , om). More-over πi0(gh1g−1, . . . , ghmg
−1) = h̃i0 , whi
h proves that the labelling isfriendly. �The main reason to introdu
e friendly labellings is that they allowto apply a very important indu
tive pro
edure. Assuming that we aredealing with a model given by friendly labelling the variety asso
iatedto any tree T 
an be des
ribed in terms of the varieties asso
iated to
law trees. The polytope asso
iated to a tree T is a �ber produ
t ofpolytopes asso
iated to 
law trees. More information 
an be found inSe
tion 5.5 and arti
les [Sul07℄, [SS05, Lemma 12℄.At this point we should make a remark about the di�eren
e betweengroup elements and 
hara
ters. To de�ne the spa
e of transition ma-tri
es for a G-model we used a G a
tion on the spa
e End(W ). We
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onsidered the basis of W that 
orresponded to states, or by 
hoosinga bije
tion to elements of an abelian group. The adjun
tion a
tion of
G on H allowed us to de�ne the labelling that des
ribed a G-model.Note however that this is not the labelling that identi�es the 
oor-dinates of the parametrization of the variety. In the latter 
ase thevariables 
orrespond to pairs (e, χ) where χ ∈ H∗. The labelling iden-ti�es the variables 
orresponding to pairs with 
hara
ters on the se
ond
oordinate that are in the same orbit. Hen
e the set of labels is theset of orbits of the adjoint a
tion of G on H∗. The labelling asso
iatesto a 
hara
ter its orbit in the adjoint a
tion. The same proof as in theLemma 5.66 shows that this is also a friendly labelling.5.4. Example of 2-Kimura model. In this subse
tion we will showhow the 
onstru
tion from the previous subse
tion works on Kimuramodels. We will also present the algorithm for 
onstru
ting a polytopeof a model for a given group G with a normal subgroup H . The methodwas des
ribed in a di�erent language in [SS05℄. The main di�eren
e(apart from the notation) is that the authors assumed the existen
eof a friendly labelling fun
tion, that des
ribed whi
h 
hara
ters areidenti�ed. In 
ase of G-models we exa
tly know this fun
tion: it asso-
iates to a given 
hara
ter its orbit of the G a
tion. This is a friendlylabelling.If G = H the 
onstru
tion is parti
ularly easy. The polytope has got
|G||E|−|N | verti
es and the algorithm works in time O(|N |(|G||E|−|N |))assuming that we 
an perform group operations in unit time.Algorithm 1. INPUT: A rooted tree T and an abelian group GOUTPUT: Verti
es of the polytope asso
iated to the tori
 varietyrepresenting the model for the tree T and the group G(i) Orient the edges of the tree from the root.(ii) For ea
h inner vertex 
hoose one outgoing edge.(iii) Make a bije
tion b : G → B ⊂ Z|G|, where B is the standardbasis of Z|G|.(iv) Consider all possible asso
iations of elements of G with not-
hosen edges (there are |G||E|−|N | su
h asso
iations).(v) For ea
h su
h asso
iation, make a full asso
iation by assigningan element of G to ea
h 
hosen edge in su
h a way that thesigned sum of elements around ea
h inner vertex gives a neutralelement in G.(vi) For ea
h full asso
iation output the vertex of the polytope:

(b(ge)e∈E), where ge is the element of the group asso
iated toedge e.
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orresponding to the group
Z2 × Z2, on a tree with one inner vertex and three leaves the verti
esof P 
orrespond to triples of 
hara
ters of the group that sum up to aneutral 
hara
ter:1) (0, 0), (0, 0), (0, 0) 2) (0, 0), (1, 0), (1, 0) 3) (1, 0), (0, 0), (1, 0)4) (1, 0), (1, 0), (0, 0) 5) (0, 0), (0, 1), (0, 1) 6) (0, 1), (0, 0), (0, 1)7) (0, 1), (0, 1), (0, 0) 8) (0, 0), (1, 1), (1, 1) 9) (1, 1), (0, 0), (1, 1)10) (1, 1), (1, 1), (0, 0) 11) (0, 1), (1, 0), (1, 1) 12) (0, 1), (1, 1), (1, 0)13) (1, 0), (1, 1), (0, 1) 14) (1, 0), (0, 1), (1, 1) 15) (1, 1), (0, 1), (1, 0)16) (1, 1), (1, 0), (0, 1)This in the 
oordinates of the latti
e gives us verti
es of the polytope:1) 1,0,0,0,1,0,0,0,1,0,0,0 2) 1,0,0,0,0,1,0,0,0,1,0,03) 0,1,0,0,1,0,0,0,0,1,0,0 4) 0,1,0,0,0,1,0,0,1,0,0,05) 1,0,0,0,0,0,1,0,0,0,1,0 6) 0,0,1,0,1,0,0,0,0,0,1,07) 0,0,1,0,0,0,1,0,1,0,0,0 8) 1,0,0,0,0,0,0,1,0,0,0,19) 0,0,0,1,1,0,0,0,0,0,0,1 10) 0,0,0,1,0,0,0,1,1,0,0,011) 0,0,1,0,0,1,0,0,0,0,0,1 12) 0,0,1,0,0,0,0,1,0,1,0,013) 0,1,0,0,0,0,0,1,0,0,1,0 14) 0,1,0,0,0,0,1,0,0,0,0,115) 0,0,0,1,0,0,1,0,0,1,0,0 16) 0,0,0,1,0,1,0,0,0,0,1,0The basis for Ŵ for 3-Kimura (in previous notation ve
tors lχ =∑
χ(h−1

a hb)a⊗ b) is the following:
l1 =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 , l2 =




1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1


 ,

l3 =




1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1


 , l4 =




1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1


 .For the 2-Kimura model the four elements of H , treated as permuta-tions de
omposed into 
y
les, are in order:

(1)(2)(3)(4); (1, 2)(3, 4); (1, 3)(2, 4); (1, 4)(2, 3).The group G is spanned by H and the transposition (3, 4).If we 
onsider the a
tion of G on H∗ we obtain three following orbits:



68 MATEUSZ MICHA�EK(i) The orbit of the trivial 
hara
ter 
ontains only the trivial 
har-a
ter. This tells us that the ve
tor
f1 =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 ,is in ŴG and will be 
onsidered as the �rst basis ve
tor.(ii) The orbit of the 
hara
ter that asso
iates −1 to (1, 3)(2, 4) and

(1, 4)(2, 3) and 1 to other elements. It has got also only oneelement. For example let us noti
e that
χ((3, 4)(1, 3)(2, 4)(3, 4)) = χ((1, 4)(2, 3)) = −1 = χ((1, 3)(2, 4)).This means that the ve
tor

f2 =




1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1


 .will be a basis ve
tor of ŴG.(iii) The orbit that 
ontains the two remaining 
hara
ters. If wetake their sum (as fun
tions, not 
hara
ters) we obtain a fun
-tion that asso
iates 2 to (1)(2)(3)(4), −2 to (1, 2)(3, 4) and 0to other two elements. This gives us an element:

f3 =




2 −2 0 0
−2 2 0 0
0 0 2 −2
0 0 −2 2


This is the sum of two other lχ.We obtain f1 = l1, f2 = l4, f3 = l2 + l3. Let F = {f1, f2, f3} and

L = {l1, . . . , l4}. From the previous se
tion we know that F is the basisof ŴG and L of ŴH . This 
an be 
he
ked dire
tly in this example. Letus now look at the map for the tripod tree . Elements of ŴG arespe
ial elements of ŴH . We have a map:
(f ei

j )j=1,...,3,i=1,...,3 → (leij )j=1,...,4,i=1,...,3.Here j parameterizes base ve
tors and i parameterizes edges. Ourmodel is the 
omposition of this map and a model map for H . Theimage of the �rst map is a subspa
e given by a 
ondition that the
oordinates 
orresponding to lei2 and lei3 are equal for ea
h i = 1, . . . , 3.Let us see this dire
tly.
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tion b from the Algorithm 1 is the following:
b(e) = (1, 0, 0, 0), b(χ3) = (0, 1, 0, 0)

b(χ1) = (0, 0, 1, 0), b(χ2) = (0, 0, 0, 1)where χ1 and χ3 are in the same orbit. The domain of ψ̂ for the group
H is {(x1, . . . , x12) : xi ∈ C} in the order as in Example 5.67 (we �x anisomorphism with χ1 = (1, 0) and χ3 = (0, 1)). This tells us that thesubspa
e ∏

e∈E(ŴG)e is given by 
onditions x2 = x3 (the 
oordinatesof l2 and l3 for Ŵ e1
H ), x6 = x7, x10 = x11.This pro
edure works generally. After having �xed the polytopefor a subgroup H , that is in the latti
e M (whose 
oordinates areindexed by edges and 
hara
ters of H) we 
onsider a morphism from

M onto the latti
e M ′ (whose 
oordinates are indexed by edges andorbits of 
hara
ters of H) that just assigns a 
hara
ter to a given orbit.This morphism sums up 
oordinates that are in the same orbit of thea
tion of G on H∗. The image of the polytope P is a polytope of ourmodel. For 3-Kimura we sum up 
oordinates ordered as in Example5.67 obtaining a polytope for 2-Kimura model:1) 1,0,0,1,0,0,1,0,0 2) 1,0,0,0,1,0,0,1,03) 0,1,0,1,0,0,0,1,0 4) 0,1,0,0,1,0,1,0,05) 1,0,0,0,1,0,0,1,0 6) 0,1,0,1,0,0,0,1,07) 0,1,0,0,1,0,1,0,0 8) 1,0,0,0,0,1,0,0,19) 0,0,1,1,0,0,0,0,1 10) 0,0,1,0,0,1,1,0,011) 0,1,0,0,1,0,0,0,1 12) 0,1,0,0,0,1,0,1,013) 0,1,0,0,0,1,0,1,0 14) 0,1,0,0,1,0,0,0,115) 0,0,1,0,1,0,0,1,0 16) 0,0,1,0,1,0,0,1,0After removing double entries we get the following verti
es:1) 1,0,0,1,0,0,1,0,0 2) 1,0,0,0,1,0,0,1,03) 0,1,0,1,0,0,0,1,0 4) 0,1,0,0,1,0,1,0,05) 1,0,0,0,0,1,0,0,1 6) 0,0,1,1,0,0,0,0,17) 0,0,1,0,0,1,1,0,0 8) 0,1,0,0,1,0,0,0,19) 0,1,0,0,0,1,0,1,0 10) 0,0,1,0,1,0,0,1,05.5. Further notation and appli
ations. In this se
tion we will in-trodu
e notation 
on
erning spe
i�
 group-based models. We start byintrodu
ing the so 
alled "time-reversibility" 
ondition. This 
onditionfor
es the transition matri
es to be symmetri
 [PS05, Lema 17.2℄. Itis satis�ed for many models 
onsidered in appli
ations, for example forthe 3-Kimura model. One 
an noti
e that a general group-based modelgives rise to symmetri
 transition matri
es if and only if all nonneutralgroup elements are of order two. We have to point out that in theliterature often one adds to the de�nition of group-based models the



70 MATEUSZ MICHA�EKrequirement that matri
es are symmetri
 [BDW09℄, [PS05, p. 328℄. Wedo not use this 
onvention. This leads to the following de�nition.De�nition 5.68 (general symmetri
 group-based model, symmetri
group-based model). Let H be an abelian group a
ting transitively andfreely on the set of states S. We de�ne the general symmetri
 group-based model, as the model asso
iated to the ve
tor spa
e Ŵ given as themaximal spa
e of symmetri
 matri
es invariant with respe
t to the Ha
tion.Analogously we de�ne the symmetri
 group-based model, as a modelasso
iated to a subspa
e of Ŵ given by hyperplane se
tions that makesome parameters of the transition matri
es equal.Symmetri
 group-based models do not have to be tori
. For a 
ounterexample one 
an 
onsider the general group-based model for Z6. Thetransition matri
es are of the following type:



a b c d e f
f a b c d e
e f a b c d
d e f a b c
c d e f a b
b c d e f a


Let us 
onsider a symmetri
 submodel with transition matri
es ofthe following type: 



a a c d c a
a a a c d c
c a a a c d
d c a a a c
c d c a a a
a c d c a a



.After the Fourier transform we do not get a map given by monomials� see the Appendix 1. However the general symmetri
 group-basedmodels always give rise to tori
 varieties.Proposition 5.69. General symmetri
 group-based models give rise totori
 varieties.Proof. This is the 
orollary of Theorem 12.1. Suppose that H is anyabelian group. We take G to be a semi dire
t produ
t ofH by Z2 wherethe a
tion of 1 ∈ Z2 on h gives h−1. In this 
ase the assumptions ofthe Theorem 12.1 are satis�ed and the subspa
e invariant with respe
tto the G a
tion gives the general symmetri
 group-based model. �



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 71There are two abelian groups of order 4. For Z2 × Z2 the generalsymmetri
 group-based model is the same as the general group-basedmodel and is the 3-Kimura model. For Z4 the general symmetri
 group-based model is the 2-Kimura model. Noti
e however that the 
lass ofgeneral symmetri
 group-based models does not in
lude Jukes-Cantoron four states that is a G-model. It 
an be obtained for example byan embedding of Z2 × Z2 in S4 as a normal subgroup. More pre
iselyas {id; (12)(34); (13)(24); (14)(23)}. In 
on
lusion we believe that the
G-models form the largest known 
lass of group-based models that giverise to tori
 varieties.We would like to �nish this subse
tion by restating the results ofSturmfels and Sullivant obtained for group-based models, in the 
aseof G-models. We have seen that to ea
h tree T and a G-model we
an asso
iate a polytope P . Fix a group G with a normal abeliansubgroup H . The polytope P de�nes a proje
tive tori
 variety as de-s
ribed in 2 and this is the variety representing the model. For generalgroup-based model the points of P 
orrespond to networks 5.24, thatis spe
ial asso
iations of 
hara
ters of a group to edges of the tree. Us-ing the labelling method we identify two networks if for ea
h edge theasso
iated 
hara
ters are in the same orbit of the adjoint a
tion of Gon H∗.De�nition 5.70 (Join of two trees, split of a tree into two subtrees).Fix a tree T with an inner edge e = (v1, v2). We distinguish two subsets
S1 and S2 of verti
es of T . The set S1 
ontains all des
endants of v1,in
luding v1. The set S2 
ontains all verti
es that are not des
endantsof v2, in
luding v2. Let T1 and T2 be indu
ed subtrees of T with verti
esgiven respe
tively by S1 and S2. Note that the edge e is a distinguishedleaf both in T1 and T2. One 
an spe
ify the roots of T1 and T2 arbitrarily.A 
anoni
al 
hoi
e is to take respe
tively v1 and v2.We 
all the trees T1 and T2 the split of T . The tree T is a join of T1and T2 (with a distinguished edge e).Friendly labellings allow to des
ribe the polytope asso
iated to T asa �ber produ
t of the polytopes asso
iated to T1 and T2. In parti
ularwe 
an give a des
ription of the polytope of any tree knowing just thepolytopes asso
iated to 
law trees.Re
all that the polytope asso
iated to the tree T is 
ontained in thelatti
e ME,G with the basis given by pairs (k, o), where k is an edge of
T and o is an orbit of the adjoint G a
tion on H .Fa
t 5.71 ([Sul07, Theorem 12℄, [SS05, Theorem 23℄). Let T be a joinof two trees T1 and T2 with a distinguished edge e. Let M be the latti
easso
iated to the tree T . Consider a G-model asso
iated to a group G
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orrespondinglatti
es for the trees T1 and T2. Let Me be the latti
e generated by thebasis elements (e, o), where o is any orbit of the adjoint G a
tion on Hand e is a �xed edge. There are natural proje
tions p1 :M1 →Me and
p2 :M2 →Me.The polytope asso
iated to the tree T is a �ber produ
t over the pro-je
tions p1 and p2 of the polytopes asso
iated to trees T1 and T2. �5.6. Normality of G-models. We have seen that the models asso
i-ated to a group 
ontaining a normal, abelian subgroup are tori
. Themonomial parametrization map is su�
ient for the appli
ations. How-ever for an algebrai
 geometer this would not be enough, as one wouldalso need to prove the normality of these varieties. We will now addressthis problem. By normality we will mean proje
tive normality, that isnormality of the a�ne 
one equivalent to normality of polytopes. Wewill see that in general one 
annot expe
t a G-model to be normal, butin many 
ases it is. First let us start with a te
hni
al lemma. Di�er-ent versions of it that worked only for polytopes with a unimodular
over were presented in [BW07℄ and [Zwi℄. Re
ently these results weregeneralized in the paper [EKS11℄.Lemma 5.72. Let P1 and P2 be two normal polytopes 
ontained re-spe
tively in latti
es L1 and L2 spanned by the points of the polytopes.Suppose that we have got morphisms pi : Li → L of latti
es for i = 1, 2su
h that pi(Pi) ⊂ S, where S is a standard simplex (
onvex hull ofstandard basis). Then the �ber produ
t P1 ×L P2 is normal in the lat-ti
e spanned by its points.Proof. Let q ∈ n(P1 ×L P2) for some positive integer n. Let qi be theproje
tion of q to Li. Suppose q is in the latti
e spanned by points of
P1×LP2. Hen
e q is equal to the sum of points that belong to P1×LP2with integral 
oe�
ients summing up to n. We know that it is in the
onvex hull of n(P1 ×L P2). Hen
e ea
h qi is the sum of points thatbelong to Pi with 
oe�
ients summing up to n and is in the 
onvexhull of nPi. This means that qi ∈ nPi ∩ Li. From the assumptions weobtain:

qi =

n∑

j=1

vij ,with ea
h vij ∈ Pi. We also know that p1(q1) = p2(q2) and this is anelement of nS. Moreover pi(vij) ∈ S. Let us noti
e that ea
h element of
nS 
an be uniquely written as the sum of n elements of S. This meansthat the 
olle
tions (p1(v11), . . . , p1(v1n)) and (p2(v

2
1), . . . , p2(v

2
n)) are thesame up to permutation, so we 
an assume that p1(v1j ) = p2(v

2
j ). Thus
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an lift ea
h pair (v1j , v
2
j ) to a point vj ∈ P1 ×L P2 that proje
tsrespe
tively to v1j and v2j . One obtains q =

∑n

j=1 vj whi
h 
ompletesthe proof. �Due to Fa
t 5.71 the polytope asso
iated to a tree with more thenone inner vertex is the �ber produ
t of polytopes asso
iated to treeswith stri
tly smaller number of inner verti
es. Due to Lemma 5.72 if wewant to prove normality of a polytope asso
iated to any trivalent treewe only have to 
onsider normality of a polytope for a tripod. Moregenerally if we want to prove normality of a polytope asso
iated to atree with verti
es of valen
y less or equal to m we have to 
he
k thenormality of polytopes asso
iated to 
law trees with at most m leaves.Proposition 5.73. Let us 
onsider a trivalent tree. The G-models forthe abelian groups: Z2, Z2 × Z2, Z3 and Z4 are normal.Proof. One 
an �nd the polytopes for the tripod and 
he
k their nor-mality using Ma
aulay 
omputer program [GS℄. The proposition thenfollows from Lemma 5.72. �Proposition 5.74. The polytope of the 2-Kimura model for the tripodis not normal. Moreover the proje
tive variety asso
iated to the modelis not normal.Proof. As the se
ond part of the statement is stronger we prove onlythat part. The polytope of the 2-Kimura model has for verti
es:1) 1,0,0,1,0,0,1,0,0 2) 1,0,0,0,1,0,0,1,03) 0,1,0,1,0,0,0,1,0 4) 0,1,0,0,1,0,1,0,05) 1,0,0,0,0,1,0,0,1 6) 0,0,1,1,0,0,0,0,17) 0,0,1,0,0,1,1,0,0 8) 0,1,0,0,1,0,0,0,19) 0,1,0,0,0,1,0,1,0 10) 0,0,1,0,1,0,0,1,0Let Q = (1, 0, 0, 1, 0, 0, 1, 0, 0) be a vertex of P . Due to Fa
t 2.15it is enough to prove that the monoid C generated by integral pointsof P − Q is not saturated. Let us 
onsider the 
one C̃ that is thesaturation of C. The point L = (−1, 0, 1,−1, 0, 1,−1, 0, 1) is in C, as
2L is equal to
(−1, 0, 1,−1, 0, 1, 0, 0, 0)+(−1, 0, 1, 0, 0, 0,−1, 0, 1)+(0, 0, 0,−1, 0, 1,−1, 0, 1).The point L is also in the latti
e spanned by the verti
es as
L = (0, 1, 0, 0, 1, 0, 0, 0, 1)−(0, 1, 0, 0, 1, 0, 1, 0, 0)+(0, 1, 0, 0, 0, 1, 0, 1, 0)

−(0, 1, 0, 0, 0, 1, 0, 1, 0) + (0, 0, 1, 0, 1, 0, 0, 1, 0)− (0, 0, 1, 0, 1, 0, 0, 1, 0).However it is not an integral sum with positive 
oe�
ients of verti
esof P − Q. Indeed ea
h vertex of P − Q with 0 on the se
ond, �fth
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oordinate has got an even sum of third, sixth and ninth
oordinates. However the sum of these 
oordinates for L is odd. �In a joint work with Maria Donten-Bury [DBM℄ we managed to getfurther results. Using the implementation of the Algorithm 1 one 
anobtain the set of verti
es of the polytope related to the investigatedgroup and the tripod. We applied Polymake [GJ00℄ to 
he
k the nor-mality of this polytope (in the latti
e generated by its verti
es). Weobtained:Computation 5.75. The polytope asso
iated with G-model for the tri-pod and the group G = H = Z6 is not normal. Hen
e the a�ne alge-brai
 variety representing this model is not normal.In parti
ular, the 
lass of abelian models 
ontains non-normal mod-els. We believe it 
an be di�
ult to 
hara
terize the 
lass of groups forwhi
h G-models are normal, or even to determine a big (in�nite) 
lassof normal, tori
 G-models. On the other hand one has the followingresult:Proposition 5.76. Let T be a phylogeneti
 tree and let G1 be a sub-group of an abelian group G2. If the variety 
orresponding to the tree Tand group G1 is not normal then the variety 
orresponding to the tree
T and group G2 is also not normal.Proof. Let Mi be a latti
e whose basis is indexed by pairs of an edgeof a tree and an element of the group Gi. The in
lusion G1 ⊆ G2 givesus a natural inje
tive morphism f : M1 → M2. Let Pi ⊂ Mi be thepolytope asso
iated to the model for the tree T and group Gi. Let
M̃i ⊂Mi be a sublatti
e spanned by verti
es of the polytope Pi.As P1 is not normal in the latti
e spanned by its verti
es, there existsa point x ∈ nP1∩M̃1, that is not a sum of n verti
es of the polytope P1.Let us 
onsider y = f(x). The verti
es of P1 are mapped to verti
es of
P2. We see that y ∈ nP2 ∩ M̃2. If P2 was normal in M̃2 we would beable to write y =

∑n

i=1 qi with qi ∈ P2.Let us noti
e that ea
h point in the image f(M1) has got zero onea
h entry of the 
oordinates indexed by any edge and any element ofthe group g ∈ G2 \ G1. In parti
ular y has got zero on these entries.As all entries of all verti
es of P2 are nonnegative, this proves that allentries indexed by any edge and any element of the group g ∈ G2 \G1are zero for qi. However, we see that verti
es of P2 that have got all nonzero entries on 
oordinates indexed by pairs of an edge and an element
g ∈ G1 are in the image of P1. Hen
e qi = f(pi) for pi ∈ P1. We seethat x =

∑
pi, whi
h is impossible. �
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ular we see that all abelian groupsG su
h that |G| is divisibleby 6 give rise to non-normal models.6. Des
ription of the variety using the group a
tionLet us des
ribe pre
isely the 
hara
ters of the torus that is the denseorbit of the variety asso
iated to the model. Let us �x a tree T and anabelian group H . We have got the following diagram:
ψ̂ :MS M̂E ⊂ME

MS,0Let us de�ne a sublatti
e of ME .De�nition 6.1 (Mdeg).
Mdeg = {m ∈ ME : dege1(m) = dege2(m) e1, e2 ∈ E}Proposition 6.2. The latti
e M̂E is 
ontained in the sublatti
e Mdeg.Proof. For any basis element b ∈ MS 
orresponding to a so
ket andfor any edge e ∈ E we have dege(ψ̂(b)) = 1. Hen
e the image of anyelement of MS satis�es the relations in the de�nition of Mdeg. �Of 
ourse the elements of M̂E satisfy more relations. We will des
ribethem now.De�nition 6.3 (Morphism add). There is a natural surje
tive groupmorphism add :ME → (H∗)N . For a node n ∈ N let pn : (H∗)N → H∗be the proje
tion onto the 
orresponding fa
tor. Let fe,χ ∈ ME be abasis element 
orresponding to an edge e and a 
hara
ter χ ∈ H∗. Wede�ne

pn(add(fe,χ)) =





χ0 if and only if n is not adja
ent to e
χ if and only if e is an edge in
oming to n
−χ if and only if e is an edge outgoing from n,where χ0 is the neutral 
hara
ter.We say that an element m ∈ M̂E has a trivial sum around a node nif and only if pn(add(m)) = χ0.Consider the 
omposition add ◦ ψ̂. Let s ∈ MS be a basis element
orresponding to a network s̃ ∈ N ⊂ (H∗)E . We have add ◦ ψ̂(s) =

add(s̃). However due to De�nition 5.24 we have add(s̃) = 0, hen
e
add ◦ ψ̂(s) : MS → (H∗)N is equal to zero. This means that M̂E is
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ontained in the kernel of the morphism add. We will prove that thereis an exa
t sequen
e:
0 → M̂E →Mdeg → (H∗)N → 0,where the last morphism is the restri
tion of add toMdeg. In parti
ularranks of M̂E and Mdeg are equal.Corollary 6.4. The dimension of the a�ne variety asso
iated to themodel, is equal to the dimension of the dense torus orbit that is

dim M̂E = dimMdeg = (|H| − 1)|E|+ 1.The dimension of the proje
tive variety equals (|H| − 1)|E|.We have to prove the following lemma.Lemma 6.5. Every element of Mdeg that is in the kernel of add belongsto M̂E.Proof. We pro
eed by indu
tion on the number of inner verti
es of thetree. First let us assume that the tree T is a 
law-tree with l leaves.The elements ofMdeg 
an be des
ribed by sequen
es of length l given byelements (∑ a1χχ, . . . ,
∑
alχχ) with the 
ondition ∑

a1χ = · · · =
∑
alχ.We prove that elements of the form (g1+g2−g1g2−χ0, 0, . . . , 0), where

g1, g2 ∈ H∗ are any 
hara
ters are in M̂E . Su
h an element is equal to
(g1, g

−1
1 , χ0, . . . , χ0)+(g2, χ0, g

−1
2 , χ0, . . . , χ0)−(g1g2, g

−1
1 , g−1

2 , χ0, . . . , χ0)−
(χ0, . . . , χ0). Ea
h element of the sum is given by a so
ket, hen
e it isin M̂E .We now �x any element (∑ a1χχ, . . . ,

∑
alχχ) = m ∈ Mdeg that is inthe kernel of add. We will redu
e it modulo the image of MS to zero.Let us assume that ∑ a1χ = · · · =

∑
alχ = d.Using elements as above we 
an redu
em and assume that for χ 6= χ0the 
oe�
ient ajχ for ea
h 1 ≤ j ≤ l is zero apart from one 
hara
ter forea
h j for whi
h the 
oe�
ient 
an be equal to one. Pre
isely if thereare two 
hara
ters with a positive (resp. negative) 
oe�
ients we 
anrepla
e them with their sum plus (resp. minus) the trivial 
hara
ter.If one entry is equal to g1 − g2 we add g2 + g1g

−1
2 − g1 − χ0. If there isone negative g on an entry we add g + g−1 − 2χ0.In other words m is equal to (χ1, . . . , χl)+(d−1)(χ0, . . . , χ0) modulothe image of MS . As ∑χj = χ0 in H∗ this element is in the image of

MS.Now we will prove the indu
tion step. Let us �x a tree T with atleast two inner verti
es. We may 
hoose an inner edge e of T , su
hthat 
utting along the edge e we obtain two trees T1 and T2 (the tree
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T is a join of T1 and T2) with stri
tly lower number of inner verti
es.In one of the trees, say T2, we have to 
hoose a root � this will be avertex belonging to the edge e. In this way all edges of T2 are orientedas in T apart from e whi
h has an opposite dire
tion. An element
m ∈Mdeg gives us two elements mi ∈M i

deg for i = 1, 2 that are also inthe kernels of add for both trees. By indu
tion hypothesis we 
an �ndtwo elements si ∈ M i
S whi
h images give mi. Let si = ∑

cijb
i
j where

bij is the basis of M i
S 
orresponding to so
kets on Ti. Let us 
onsiderthe multisets Zi that are the proje
tions of ∑ cjb

i
j onto the edge e �ea
h bj distinguishes an element on e. The multiset Zi has cj elementsdistinguished by bij with a minus sign if cj < 0. Zi is a signed multisetof 
hara
ters. Let Z ′

i be a multiset obtained by redu
tions 
an
elling χwith −χ in the multiset Zi. The multiset Z ′
1 is just the signed multisetof 
hara
ters 
orresponding to me. The multiset Z ′

2 gives the samemultiset as Z ′
1 if we inverse all 
hara
ters. This means that we 
an pairtogether elements from Z ′

1 and Z ′
2 su
h that ea
h pair gives rise to aso
ket on the tree T . The image of the sum of these so
kets does nothave to give m yet. We have to lift also the so
kets that we 
an
elledby passing from Zi to Z ′

i. This is done as follows. Suppose that twoso
kets b1 and b′1 give χ on the edge e and so, b1 and −b′1 were 
an
ellingea
h other in Z1. We 
hoose any so
ket s on T2 that gives χ−1 on theedge e. We 
an glue together b1 and s obtaining a so
ket (b1, s) of thetree T and analogously (b′1, s). The image of the di�eren
e of so
kets
(b1, s)− (b′1, s) on the edges of the tree T1 is the same as the di�eren
eof b1− b′1 and zero on the edges belonging to T2. In this way we obtainthe so
kets of T whi
h image agrees with ∑

cjb
i
j on Ti, hen
e is equalto m. �Corollary 6.6. For the tree T and the group H the dense torus orbitof the a�ne variety representing the model has a natural des
riptionas a quotient of the dense orbit of the torus of the parameter spa
e bythe HN × (C∗)|E|−1 a
tion.Proof. The 
hara
ters of the dense orbit of the parameter spa
e aregiven by the latti
e ME . Its algebra is C[ME ] = C[x±1

(e,χ)]e∈E,χ∈H∗.First let us des
ribe the a
tion of Gr = (C∗)|E|−1. We regard this torusas a subtorus of (C∗)|E| with an additional 
ondition that the produ
tof all 
oordinates is one. Hen
e an element of Gr is just an asso
iationof a nonzero 
omplex number to ea
h edge of the tree T , su
h that theprodu
t of all these numbers is one. The a
tion of Gr just multiplies
x(e,χ) by the 
omplex number asso
iated to e. In this way the invariant
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t to ea
h edge is thesame, hen
e MGr
E =Mdeg.The 
oordinates of the group HN are indexed by nodes. There is anatural diagonal a
tion of the group HN on the algebra C[ME ]. Let us�x a node v ∈ N . The a
tion of the h ∈ H 
onsidered as an element of

HN , equal to h on the 
oordinate indexed by v and the neutral elementon the other 
oordinates is as follows:
• for an edge e in
oming to v we have h(x(e,χ)) = χ(h)x(e,χ)
• for an edge e outgoing from v we have h(x(e,χ)) = (χ(h))−1x(e,χ)
• for the other edges h(x(e,χ)) = x(e,χ).First let us noti
e that elements of M̂E are invariant by the a
tion of

HN . They are in the kernel of add, so the signed sum of 
hara
tersaround ea
h inner vertex gives a trivial 
hara
ter. But the a
tion of
h ∈ H ⊂ HN just multiplies the monomial by the value on h of the
hara
ter that is a signed sum of 
hara
ters asso
iated to edges adja
entto v, hen
e by 1. Conversely if the signed sum of 
hara
ters on any
h ∈ H is 1, then the sum has to be a trivial 
hara
ter. So an elementof Mdeg is invariant with respe
t to the HN a
tion if and only if it is inthe kernel of add, so by 6.5 if and only if it belongs to M̂E . �The group HN × (C∗)|E|−1 a
ts also on the algebra of the parame-ter spa
e C[x(e,χ)]e∈E,χ∈H∗. However the quotient is not equal to thevariety representing the model, 
ontrary to what is stated in [CFS08,Theorem 3.6℄. Indeed the algebra of the variety is generated by thepolytope (
ontained in the positive quadrant of Mdeg) and is invariantby the a
tion of HN × (C∗)|E|−1. However the invariant monomials of
C[x(e,χ)]e∈E,χ∈H∗ 
orrespond to all the monomials of M̂E that are inthe positive quadrant of ME . Not all su
h monomials are generatedby the polytope. For example for the 3-Kimura model the monomial
x2e0,χ

∏
ei∈E

x2ei,e, where e is the trivial 
hara
ter is invariant for any χand any distinguished edge e0 (be
ause χ+χ = e). This is not howeverthe sum of any two verti
es of the polytope asso
iated to the variety.Let us present some appli
ations.Corollary 6.7. There is an exa
t sequen
e of groups:
MS,0 →ME,0 → (H∗)|N | → 0.The �rst map is given by ψ̂. The se
ond one is the restri
tion of addto ME,0. �This 
orollary 
an be applied in the identi�ability problem to deter-mine the parameters of transition matri
es. We will do this in Se
tion11.4.1.
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ts on the variety X(T,G). Re
all that theambient spa
e W̃L is a regular representation of N.Proposition 6.8. The a
tion of the group of networks N on W̃L re-stri
ts to the variety X(T,G).Proof. Consider the parametrization morphism πL ◦ ψ̂ : C|E||H∗| →
W̃L. The basis ve
tors of the a�ne spa
e C|E||H∗| are indexed by pairs
(e, χ) ∈ E×H∗. We denote the 
orresponding basis elements by b(e,χ).For t ∈ C|E||H∗| we de�ne t(e,χ) := b∗(e,χ)(t). The basis elements of W̃Lare indexed by networks n ∈ (H∗)E. We identify a network with asequen
e of 
hara
ters n = (ne := χe)e∈E indexed by edges. Note thatthe group of networks a
ts also on the domain C|E||H∗| by:

(n(t))(e,χ) := t(e,n−1
e χ).It is easy to 
he
k that the morphism πL ◦ ψ̂ is equivariant. �7. Phylogeneti
 invariantsThe se
tion 
ontains results of joint work with Maria Donten-Bury[DBM℄. We investigate the most important obje
ts of phylogeneti
algebrai
 geometry � ideals of phylogeneti
 invariants. The main prob-lem in this area is to give an e�e
tive des
ription of the whole ideal ofthe variety asso
iated to a given model on a tree. Our task is to �ndan e�
ient way to 
ompute generators of these ideals.We suggest a way of obtaining all phylogeneti
 invariants of a 
lawtree of a G-model � more pre
isely we 
onje
ture that our invariantsgenerate the whole ideal of the variety. These, together with Fa
t 5.71,
ould provide an algorithm listing all generators of the ideal of phylo-geneti
 invariants for any tree and for any G-model (so in parti
ularfor a general group-based model).7.1. Inspirations. The inspirations for our method were the 
onje
-tures made by Sturmfels and Sullivant in [SS05℄. They are still openbut, as we will see, they strongly support our ideas. In parti
ular, wewill prove later that our algorithm listing the generators of the idealworks for the 3-Kimura model if we assume that the weaker 
onje
turemade in [SS05℄ holds.First we introdu
e some notation. As before let Kn,1 be a 
law treewith n leaves. Let φ(G, n) = d be the least natural number su
h thatthe ideal asso
iated to Kn,1 for the group based model G is generatedin degree d. The phylogeneti
 
omplexity of the group G is de�ned as
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φ(G) = supnφ(G, n). Note that due to [SS05, Theorem 23℄ (see also[Sul07, Theorem 12℄) the number φ(G, n) bounds the degree in whi
hthe ideal asso
iated to any tree of valen
y at most n is generated. Basedon numeri
al results Sturmfels and Sullivant suggested the following
onje
ture:Conje
ture 7.1. For any abelian group G we have φ(G) ≤ |G|.This 
onje
ture was separately stated for the 3-Kimura model, thatis for G = Z2 × Z2.Still very little is known about the fun
tion φ apart from the 
ase ofthe binary Jukes-Cantor model (see also [CP07℄):Proposition 7.2 (Sturmfels, Sullivant [SS05℄). In 
ase of the binaryJukes-Cantor model φ(Z2) = 2. �There are also some 
omputational results � to the table in [SS05℄presenting the 
omputations made by Sturmfels and Sullivant a few
ases 
an be added.Computation 7.3. Using 4ti2 software [tt℄ we obtained the following:

• φ(Z3, 6) = 3,
• φ(Z5, 4) = 4,
• φ(Z8, 3) = 8,
• φ(Z2 × Z2 × Z2, 3) = 8.For the 3-Kimura model we do not even know whether the fun
tion

φ is bounded. As we will see later, this 
onje
ture is strongly relatedto the one stated in the next se
tion.7.2. A method for obtaining phylogeneti
 invariants. We pro-pose a method that is inspired by the geometry of the varieties we
onsider. First we have to introdu
e some notation.De�nition 7.4. Let Vi be the set of verti
es of a tree Ti for i = 1, 2.Let e be an inner edge of T2 joining v1, v2 ∈ V2. We say that the tree
T1 is obtained from the tree T2 by 
ontra
tion of an edge e if:

• V1 = {v} ∪ (V2 \ {v1, v2}),
• for w ∈ V1 \ {v} a pair (v, w) is an edge of T1 if and only if
(v1, w) or (v2, w) is an edge of T2,

• for w ∈ V1 \ {v} a pair (w, v) is an edge of T1 if and only if
(w, v1) or (w, v2) is an edge of T2,

• for w, u ∈ V1 \ {v} a pair (w, u) is an edge of T1 if and only if
(w, u) is an edge of T2.In su
h a situation we say that T2 is a prolongation of T1.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 81Remark 7.5. Note that these de�nitions are not the same as thede�nitions of �attenings introdu
ed in [AR08℄ and further studied in[DK09℄.Assume that we are in an abelian 
ase, that is we are dealing witha general group�based model. Using Algorithm 1 one 
an see thatverti
es of the polytope 
orrespond to so
kets. As explained in Se
tion2 verti
es of the polytope 
orrespond to 
oordinates of the ambientspa
e of the variety. In this setting the variety X(T1) asso
iated tothe tree T1 is in a natural way a subvariety of X(T2). Noti
e that we
an identify so
kets of both varieties, as we may identify their leaves, soboth varieties are 
ontained in Ps, where s is the number of so
kets. Thenatural in
lusion 
orresponds to the proje
tion of 
hara
ter latti
es: weforget all the 
oordinates 
orresponding to the edge joining the verti
es
v1 and v2. Details are presented in Proposition 8.1. In this setting thefollowing 
onje
ture is natural:Conje
ture 7.6. The variety X(Kn,1) is equal to the (s
heme theo-reti
) interse
tion of all the varieties X(Ti), where Ti is a prolongationof Kn,1 that has only two inner verti
es, both of them of valen
y at leastthree.AsX(Kn,1) is a subvariety ofX(Ti) for any prolongation Ti one in
lu-sion is obvious. Note also that the valen
y 
ondition is made, be
auseotherwise the 
onje
ture would be obvious � one of the varieties thatwe interse
t would be equal to X(Kn,1) by Remark 5.36. All Ti havegot a stri
tly smaller maximal valen
y than Kn,1, so if the 
onje
tureholds then we 
an indu
tively use Theorem 23 of Sturmfels and Sul-livant [SS05℄ (see also Theorem 12 [Sul07℄) to obtain all phylogeneti
invariants for a given model for any tree of any valen
y, knowing justthe ideal of the tripod. In su
h a 
ase the ideal of X(Kn,1) is justthe sum of ideals of trees with smaller valen
y. More pre
isely, if 7.6holds then the degree in whi
h the ideals of 
law trees are generated
annot grow when the number of leaves gets bigger. This means that
φ(G) = φ(G, 3) whi
h 
an be 
omputed in many 
ases. In parti
ular,the 
onje
ture 7.6 implies all 
ases of the 
onje
ture 7.1 in whi
h we 
an
ompute φ(G, 3) � this in
ludes the most interesting 3-Kimura model.Remark 7.7. Let us note that varietiesX(T1) andX(T2) are naturally
ontained in the same ambient spa
e for any model, even if it does notgive rise to tori
 varieties. Indeed using the 
onstru
tion of the varietypresented in Se
tion 4 one 
an see that the ambient spa
e depends onlyon leaves of the tree. Hen
e if we 
an identify the leaves of trees we 
anidentify ambient spa
es of asso
iated varieties. Thus 
onje
ture 7.6 
an
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ompute the ideals of 
law trees for a large 
lass of phylogeneti
models.Of 
ourse one may argue that the 
onje
ture 7.6 above is too strongto be true. Later we will prove it for the binary Jukes-Cantor model.We will also 
onsider two modi�
ations of this 
onje
ture to weaker
onje
tures that 
an still have a lot of appli
ations. The �rst modi�-
ation just states that the 
onje
ture 7.6 holds for n large enough.Proposition 7.8. For any G-model the 
onje
ture 7.6 holds for n largeenough if and only if the fun
tion φ is bounded.Proof. One impli
ation is obvious. Suppose that 7.6 holds for n > n0.We 
hoose d su
h that the ideals asso
iated to Kl,1 are generated indegree m for l ≤ n0. Using 7.6 and the results of [SS05℄ we 
an des
ribethe ideal asso
iated to Kn,1 as the sum of ideals generated in degree m.It follows that this ideal is also generated in degree m, so the fun
tion
φ is bounded by m.For the other impli
ation let us assume that φ(n) ≤ m. Let us
onsider any binomial B that is in the ideal of the 
law tree and is ofdegree less or equal tom. We prove that B belongs to the ideal of someprolongation of a tree T , whi
h is in fa
t more than the statement ofConje
ture 7.6.Su
h a binomial 
an be des
ribed as a linear relation between (atmost m) verti
es of the polytope of this variety. Ea
h vertex is givenby an asso
iation of orbits of 
hara
ters to edges su
h that there existrepresentatives of orbits that sum up to a trivial 
hara
ter. Let us�x su
h representatives, so that ea
h vertex is given by n 
hara
terssumming up to a trivial 
hara
ter.Now the binomial B 
an be presented as a pair of matri
es A1 and
A2 with 
hara
ters as entries. Ea
h 
olumn of the matri
es is a vertexof the polytope. The matri
es have got at most m 
olumns and exa
tly
n rows. Let us 
onsider the matrix A = A1 −A2, that is entries of thematrix A are 
hara
ters that are di�eren
es of entries of A1 and A2.We 
an subdivide the �rst 
olumn of A into groups of at most |H|elements summing up to a trivial 
hara
ter. Then indu
tively we 
ansubdivide the rows into groups of at most |H|i elements summing upto a trivial 
hara
ter in ea
h 
olumn up to the i-th one.For n > |H|m + 1 we 
an �nd a set S of rows of A su
h that the
hara
ters sum up to a trivial 
hara
ter in ea
h 
olumn restri
ted to S,su
h that both the 
ardinality of S and of its 
omplement are greaterthen 1. Note that the sums of the entries lying in a 
hosen 
olumnand in the rows in S are the same in A1 and A2. Therefore, addingto both matri
es an extra row whose entries are equal to the sum of



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 83the entries in the subset S gives a representation of a binomial B on aprolongation of T . �In parti
ular, this proof shows that if the 
onje
ture 7.1 of Sturmfelsand Sullivant holds for the 3-Kimura model, then 
onje
ture 7.6 alsoholds for this model for n > 257. Later we will signi�
antly improvethis estimation.For the se
ond modi�
ation of the 
onje
ture 7.6 let us re
all a fewfa
ts on tori
 varieties. Let T1 and T2 be two tori with latti
es of 
har-a
ters given respe
tively by M1 and M2. Assume that both of themare 
ontained in a third torus T with the 
hara
ter latti
e M . Thein
lusions give natural isomorphisms M1 ≃ M/K1 and M2 ≃ M/K2,where K1 and K2 are torsion free latti
es 
orresponding to 
hara
tersthat are trivial when restri
ted respe
tively to T1 and T2. The ideal ofea
h torus (inside the algebra of the big torus) is generated by binomi-als 
orresponding to su
h trivial 
hara
ters. The points of T are givenby monoid morphismsM → C∗. The points of Ti are those morphismsthat asso
iate 1 to ea
h 
hara
ter from Ki. We see that the points ofthe interse
tion T1 ∩ T2 are those morphisms M → C∗ that asso
iate1 to ea
h 
hara
ter from the latti
e K1 +K2. Of 
ourse the (possiblyredu
ible) interse
tion Y is generated by the ideal 
orresponding to
K1 +K2. This latti
e may be not saturated, but Y 
ontains a distin-guished torus T ′, that is one of its 
onne
ted 
omponents. If K ′ is thesaturation of the latti
e K1 + K2 then the 
hara
ters of T ′ are givenby the latti
e M/K ′. Suppose that X is a tori
 variety that 
ontainsthe dense torus orbit equal to T . Let Xi be the tori
 variety that isthe 
losure of Ti and X ′ be the 
losure of T ′ in X . We 
all the tori
variety X ′ the tori
 interse
tion of X1 and X2. The de�nition extendsto a greater number of tori
 varieties embedded equivariantly in onetori
 variety. The most important 
ase that we will use is when X isthe a�ne spa
e and Xi are a�ne tori
 varieties.In the setting of 7.6 we 
onje
ture the following:Conje
ture 7.9. The tori
 variety X(T ) is the tori
 interse
tion ofall the tori
 varieties X(Ti).This 
onje
ture di�ers from the previous one by the fa
t that we al-low the interse
tion to be redu
ible, with one distinguished irredu
ible
omponent equal to X(T ). We state this 
onje
ture, be
ause it 
an be
he
ked using only the tori. As the points important from the biolog-i
al point of view are 
ontained in the torus (see [CFS08, De�nition2.13℄), this 
onje
ture is a weaker version of Conje
ture 7.6 whi
h isstill suitable for appli
ations. Moreover, it is quite easy to 
he
k it for
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omputer programs.To explain it properly, let us 
onsider the following general setting.Assume that the tori Ti are asso
iated to polytopes Pi and that T isjust the torus of the proje
tive spa
e Pn ⊇ Ti 
onsisting of the pointswith all 
oordinates di�erent from zero. Let Ai be a matrix whose
olumns represent verti
es of the polytope Pi. The 
hara
ters trivialon Ti or respe
tively binomials generating the ideal of Ti are exa
tlyrepresented by integer ve
tors in the kernel of Ai. The 
hara
ters trivialon the interse
tion are given by integer ve
tors in the sum of latti
es
kerA1 + kerA2.Note that the ideal of the tori
 interse
tion T ′ of the tori Ti in T isgenerated by binomials 
orresponding to 
hara
ters trivial on T ′, thatis by the saturation of kerA1 + kerA2. These binomials de�ne a tori
variety in Pn. This variety is 
ontained in the interse
tion (in fa
t it isa tori
 
omponent) of the tori
 varieties that are the 
losures of Ti. Theequality may not hold however, as the interse
tion might be redu
ible.In 
onje
ture 7.9 we have to 
ompare two tori, one 
ontained in theother. To do this, it is enough to 
ompare their dimensions, that isthe ranks of the 
hara
ter latti
es. Let us note that the dimensionof the interse
tion T1 ∩ T2 is given by n minus the dimension (as ave
tor spa
e) of kerA1 +kerA2, as it is equal to the rank of the latti
e
Zn ∩ (kerA1 + kerA2). To 
ompute this dimension it is enough to
ompute the ranks of matri
es A1, A2 and B, where B is a matrixobtained by putting A1 under A2 (that is, kerB = kerA1 ∩ kerA2).This 
an be done very easily using GAP ([GAP℄). The results obtainedfor small trees will be used in the following se
tion.
7.3. Main Results. To support Conje
ture 7.6 let us 
onsider the 
aseof binary Jukes-Cantor model. This model is well understood [BW07℄,[CP07℄, [SS05℄.Proposition 7.10. Conje
ture 7.6 holds for the binary Jukes-Cantormodel.Proof. We use the same notation as in the proof of Proposition 7.8.Let us �x a number of leaves l. We 
laim that we 
an �nd twospe
ial trees T1 and T2 for whi
h the s
heme-theoreti
 interse
tion
X(T1,Z2) ∩X(T2,Z2) equals X(Kl,1,Z2). We number the leaves from
1 to l. The trees T1 and T2 are isomorphi
 as graphs but have di�erent
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v1For the tree T1 the leaves adja
ent to v1 have got numbers 1 and 2.For the tree T2 they are numbered 1 and 3. The ideal of the varietyasso
iated to a tree for the group Z2 is always generated in degree 2by Proposition 7.2. Hen
e the generators of the ideals are of the form

n1n2 = n3n4 where ni for 1 ≤ i ≤ 4 are 
oordinates 
orrespondingto networks. Ea
h binomial equality 
orresponds to a pair of matri
es
(M0,M1), with entries that are group elements, whose 
olumns repre-sent networks and rows are the same up to permutation. Hen
e ea
hgenerator of the ideal of X(Kl,1,Z2) is represented by a pair of 2 × lmatri
es with entries from Z2. Moreover the sum in ea
h 
olumn isthe neutral element and rows of both matri
es are the same up to per-mutation. As we 
an permute 
olumns of ea
h matrix we may assumethat the �rst rows of both matri
es 
oin
ide. Let us 
onsider any su
hgenerator (M0,M1) in the ideal of X(Kl,1,Z2). First suppose that theentries in the �rst row are the same, that is either 00 or 11. Then therelation holds both for X(T1) and X(T2). Hen
e we may suppose thatthe �rst row is 01 or 10. If the se
ond row would be equal to 00 or
11 then the relation would hold for X(T1). The same reasoning holdsfor the third row and X(T2). Hen
e all three rows in both matri
esare either 01 or 10. If the se
ond (resp. third) rows are the same inboth matri
es then the relation holds for X(T1) (resp. X(T2)). Sothe only possibility left is that the se
ond and third row of M1 arerespe
tively the negation of the se
ond and third row of M0. In this
ase the relation does not hold in any X(Ti) but we 
an generate it.We 
onsider a matrix M that is equal to M0 with the �rst two rowspermuted. The pair (M0,M) represents a relation in X(T1). Moreoverthe pair (M,M1) represents a relation in X(T2).

�From the proof above it follows that in fa
t to obtain the varietyof the 
law tree for the binary Jukes-Cantor model it is enough tointerse
t two varieties 
orresponding just to three subdivisions. Thissubdivisions 
orrespond to S 
ontaining exa
tly the �rst and se
ondrows or the �rst and third rows. Note that it is not enough to interse
ttwo varieties 
orresponding to any prolongations � see Se
tion 8.
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onditional result for the 3-Kimura model:Proposition 7.11. If the 
onje
ture 7.1 of Sturmfels and Sullivantholds then the 
onje
ture 7.6 holds for n > 8.Proof. We use the same notation as in Proposition 7.8. Consider anybinomial of degree k represented by a pair of matri
es (M1,M2) withentries given by group elements. Let A = M1 −M2, where minus isthe group substra
tion. Matrix A has got k 
olumns with entries from
Z2×Z2. Consider A′ with 2k 
olumns and entries from Z2. The matrix
A′ is obtained from A by applying two proje
tions Z2 × Z2 → Z2 toea
h entry. Re
all that matri
es M1 and M2 had the same rows up topermutation. This means that also after ea
h proje
tion the rows werethe same up to permutation. Note that a di�eren
e of two ve
tors withentries from Z2 that are the same up to permutation has got always aneven number of 1. Thus if we 
onsider any row of matrix A′ and eitherodd or even entries of this row, the number of 1 is always even.On
e again we may assume that the entries in the �rst row of A′ areneutral elements, that is they are equal to zero. Let A′′ be the matrixobtained by deleting the �rst row of A′. For ea
h subset of rows of A′′we may 
onsider a ve
tor of length equal to the number of 
olumns of
A′′, whose entries are given by sums of group elements from the subset.Note that this ve
tor always has an even number of 1 both in evenand odd 
olumns. Be
ause we assume 
onje
ture 7.1, the matrix A′′has got at most 8 
olumns. By pigeonhole prin
iple, if n > 8 then we
an �nd two subsets of rows of A′′ that are not 
omplements of ea
hother, su
h that their sum ve
tor is the same. If we take a symmetri
di�eren
e of these subsets, we obtain a stri
t, nonempty set S of rowsof A′′, summing up in ea
h 
olumn to the neutral element. We addthe �rst row of A′ to S or its 
omplement, so that both sets have morethan one element. Thus we obtain a subdivision of the set of rows of
A su
h that the given binomial is in the ideal of the tree 
orrespondingto this division. �For n ≤ 8 we 
he
ked, using the 
omputer programs Polymake,4ti2, Ma
aulay2 and GAP, that the tori
 interse
tion of the tori ofsubdivisions gives the torus of the 
law tree. We used the linear algebrades
ribed in the previous se
tion. This proves that if the 
onje
ture 7.1holds for 3-Kimura model, then the 
onje
ture 7.9 holds. Moreover, inall the 
he
ked 
ases it was enough to 
onsider just two subdivisions.This is not a 
oin
iden
e as we will prove in Se
tion 11.
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onje
ture 7.6 im-plies both 
onje
tures 7.9 and 7.1 and moreover 
onje
ture 7.1 implies7.9 and for n > 8 also 
onje
ture 7.6.8. Intera
tions between trees and varietiesThe ideas from the pre
eding se
tions are general. We 
an de�ne anorder on trees with l leaves as follows. We say that T1 ≤ T2 if T1 
anbe obtained from T2 by a series of 
ontra
tions of inner edges. Here byan edge 
ontra
tion we mean identifying two verti
es of a given edgeas in De�nition 7.4. The smallest tree with l leaves is the 
law tree
Kl,1 with one inner vertex. This is a part of a 
onstru
tion of the treespa
e [BHV01℄. We �x an abelian group G.Proposition 8.1. If T1 ≤ T2 then X(T1, G) ⊂ X(T2, G).Proof. Although the statement is very easy we believe that the follow-ing dis
ussion may be helpful to better understand the forth
omingse
tions. Both trees have got the same number of leaves, so we 
anmake a natural bije
tion between their so
kets. This gives an isomor-phism of the ambient spa
es W̃E. As T1 ≤ T2 we 
an make an inje
tionfrom the edges of T1 to the edges of T2. Note that a network on T2, re-stri
ted to the edges of T1 is a network on T1. This gives us a proje
tion
π : MT1

E ։ MT2
E . The map π simply forgets the 
oordinates indexedby (e, g), where e is an edge of T2 not 
orresponding to an edge of T1.Moreover the proje
tion of P T2 is equal to P T1. The following diagram
ommutes:

MT2
E

MS

MT1
E .Any relation between the verti
es of P T2 is also a relation between theverti
es of P T1. Hen
e any polynomial in the ideal of X(T2, G) is alsoin the ideal of X(T1, G). �The surje
tive morphism of algebras 
orresponding to the in
lusion ofvarieties is given by the restri
tion of the surje
tive morphism between

MT2
E and MT1

E to the 
ones spanned by polytopes P T2 and P T1.It is natural to ask what is the relation between X(T0, G) and thes
heme theoreti
 interse
tion of all X(T,G) for T0 < T . Conje
ture 7.6states that if there exists at least one T > T0, then they are equal. Sofar we only know that the answer is positive for G = Z2 [CP07℄, [SS05℄,[DBM℄.
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ture 7.6 
an be stated for any phylogeneti
 model, not ne
-essarily given by a group6. In parti
ular for a general Markov model.One would be also interested to know exa
tly what is an interse
tionof a few varieties asso
iated to di�erent trees. In parti
ular how manyideals do we have to sum to obtain the ideal asso
iated to the 
law tree.One 
ould also hope that the interse
tion of X(T1, G) and X(T2, G) isequal to X(T,G) where T is the largest tree smaller than T1 and T2.Here we present a 
ounterexample. We will prove that a s
heme the-oreti
 interse
tion X(T1,Z2) ∩X(T2,Z2) does not have to be equal to
X(Kl,1,Z2) even if Kl,1 is the only tree smaller then T1 and T2. We
onsider the 
ase of �ve leaves l = 5. The trees T1 and T2 are isomor-phi
 as graphs but have di�erent leaf labelling. Their topology is asfollows:(8.1)

v1For the tree T1 the leaves adja
ent to v1 have got numbers 1 and 2.The tree T2 is isomorphi
, with two distinguished leaves labelled with
4 and 5. We 
onsider the relation given by a pair of matri
es:




1 0
0 1
0 0
0 1
1 0



,




1 0
1 0
0 0
0 1
0 1



.This 
orresponds to a generator of the ideal of X(K5,1,Z2). Considerany relation involving the �rst matrix and some other matrix M for

X(T1) or X(T2). One 
an see that the �rst two rows of M must benegations of ea
h other and the third one is 00. Hen
e it is impossibleto generate the relation above.9. Computational resultsThis se
tion 
ontains results of the joint work with Maria Donten-Bury [DBM℄. We used the implementation of Algorithm 1.6I would like to parti
ularly thank Elizabeth Allman for dis
ussions on this topi
.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 899.1. Hilbert-Ehrhart polynomials. The binary Jukes-Cantor model(for trivalent trees) has an interesting property, stated and provedin [BW07℄: an elementary mutation of a tree gives a deformation ofthe asso
iated varieties (see Constru
tion 3.23). This implies that bi-nary Jukes-Cantor models of trivalent trees with the same number ofleaves are deformation equivalent (Theorem 3.26 in [BW07℄). As it wasnot obvious what to expe
t for other G-models, we 
omputed Hilbert-Ehrhart polynomials, whi
h are invariants of deformation, in some sim-ple 
ases.Let us re
all basi
 fa
ts about Hilbert polynomials for proje
tive tori
varieties. Suppose that our variety 
orresponds to a polytope P × {1}
ontained in the latti
e M spanned by its integral points. There aretwo fun
tions that one 
an asso
iate to the polytope P .(i) Let h : N → N be a fun
tion. Let h(n) equal the numberof points in the monoid generated by P × {1} with the last
oordinate equal to n. We 
all h the Hilbert fun
tion.(ii) Let e : N → N be a fun
tion. Let e(n) equal the number ofintegral points in nP , or equivalently in n(P ×{1}). We 
all ethe Ehrhart fun
tion.The fun
tion e is a polynomial fun
tion, thus we 
all it the Ehrhartpolynomial. The fun
tion h is a polynomial fun
tion for large enoughvalues. The polynomial h̃ su
h that for n large enough h̃(n) = h(n) is
alled the Hilbert polynomial. From the de�nition of normal polytope2.13 we see that the Hilbert fun
tion equals the Ehrhart polynomialif and only if P is normal, that is if and only if the asso
iated varietyis proje
tively normal. The asso
iated variety is normal if and only ifthe Hilbert polynomial equals the Ehrhart polynomial [Stu96, Theorem13.11℄. In this 
ase we 
all it the Hilbert-Ehrhart polynomial.9.1.1. Numeri
al results. We 
he
ked models for two di�erent treeswith six leaves (this is the least number of leaves for whi
h there arenon-isomorphi
 trees, exa
tly two), the snow�ake and the 3-
aterpillar.The most interesting ones were the 
ases of the biologi
ally meaningful2-Kimura and 3-Kimura models.To determine the Hilbert-Ehrhart polynomial of a G-model we 
om-pute the number of latti
e points in multiples of its polytope. Even ifit is not possible to get enough data to determine the polynomials (eg.be
ause numbers are too big), sometimes we 
an say that polynomi-als for two models are not equal, be
ause their values for some n aredi�erent.Before we 
ompleted our 
omputations, Kubjas 
omputed numbersof latti
e points in the third dilations of the polytopes for 3-Kimura
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aterpillar with 6 leaves and got69248000 and 69324800 points respe
tively [Kub10℄. Thus she provedthat varieties asso
iated with these models are not deformation equiv-alent.Our 
omputations 
on�rm her results as for the 3-Kimura model andalso give the followingComputation 9.1. The varieties asso
iated with 2-Kimura models forthe snow�ake and the 3-
aterpillar trees have di�erent Ehrhart polyno-mials. In the se
ond dilations of the polytopes there are 56992 latti
epoints for the snow�ake and 57024 for the 3-
aterpillar.Also the pairs of varieties asso
iated with G-models for the snow�akeand the 3-
aterpillar trees and(i) G = H = Z3,(ii) G = H = Z4,(iii) G = H = Z5,(iv) G = H = Z7have di�erent Hilbert-Ehrhart polynomials and therefore are not defor-mation equivalent. (For these pairs G-models are normal, whi
h 
an be
he
ked using Polymake.) The pre
ise results of the 
omputations arepresented in the Appendix 2.In the 
ases of(i) G = H = Z8,(ii) G = H = Z2 × Z2 × Z2,(iii) G = H = Z9the varieties have got di�erent Hilbert fun
tions. We were not able to
he
k if they are normal, however if they are then the Hilbert-Ehrhartpolynomials are di�erent.9.2. Some te
hni
al details. The �rst attempt to 
ompute num-bers of latti
e points in dilations of a polytope was the dire
t method:
onstru
ting the list of latti
e points in nP by adding verti
es of Pto latti
e points in (n− 1)P and redu
ing repeated entries. This algo-rithm is not very e�
ient, but (after adding a few te
hni
al upgrades tothe implementation) we were able to 
on�rm Kubjas' results [Kub10℄.However, this method does not work for non-normal polytopes. As weplanned to investigate 2-Kimura model, we had to implement anotheralgorithm.The se
ond idea is to 
ompute indu
tively the relative Hilbert poly-nomials, i.e. number of points in the n-th dilation of the polytope
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ted with the �ber of the proje
tion onto the group of 
oordi-nates that 
orrespond to a given leaf. Our approa
h is quite similar tothe methods used in [Kub10℄ and [Sul07℄.First we 
ompute two fun
tions for the tripod. Let P ⊂ Z3m ∼= Zm×
Zm×Zm be the polytope asso
iated to a tripod. Let pri : Z3m ∼= Zm×
Zm × Zm → Zm be the proje
tion onto the i-th group of 
oordinates.We distinguish one edge of the tripod 
orresponding to the third groupof 
oordinates in the latti
e. Let f be a fun
tion su
h that f(a) for
a = (a1, . . . , am) ∈ Zm is the number of latti
e points in (a1+· · ·+am)Pthat proje
t to a by pr3. We 
ompute f(a) for su�
iently many valuesof a to pro
eed with the algorithm.Example 9.2. The polytope P for the binary Jukes-Cantor modelhas the following verti
es:

v1 = (0, 1, 0, 1, 0, 1),

v2 = (0, 1, 1, 0, 1, 0),

v3 = (1, 0, 0, 1, 1, 0),

v4 = (1, 0, 1, 0, 0, 1).These are the only integral points in P . In this 
ase f(1, 0) = 2 be
ausethere are exa
tly two points, (1, 0, 0, 1, 1, 0) and (0, 1, 1, 0, 1, 0), that arein 1P = P and proje
t to (1, 0) via the third proje
tion.The fun
tion f will be our base for indu
tion. Next, we need to
ompute the number of points in the �ber of a proje
tion onto twodistinguished leaves. Let g be a fun
tion su
h that g(a, b) for (a, b) =
(a1, . . . , am, b1, . . . , bm) ∈ Zm × Zm is the number of latti
e points in
(a1+ · · ·+ am)P that proje
t to a by pr3 and to b by pr2. We 
ompute
g(a, b) for su�
iently many pairs (a, b) to pro
eed with the algorithm.Let T be a tree with a 
orresponding polytope P and a distinguishedleaf l. Let h be a fun
tion su
h that h(a) for a = (a1, . . . , am) ∈
Zm is equal to the number of points in the �ber of the proje
tion
orresponding to leaf l of (a1 + · · · + am)P onto a. We 
onstru
t anew tree T ′ by atta
hing a tripod to the 
hosen leaf l of T . We 
all
T ′ a join of T and the tripod. The 
hosen leaf of T ′ will be one of theleaves of the atta
hed tripod. As proved in [BW07℄, [SS05℄, [Mi
11b℄,[Sul07℄ (depending on the model), the polytope asso
iated to a join oftwo trees is a �ber produ
t of the polytopes asso
iated to these trees.Thus we 
an 
al
ulate the fun
tion h′ for T ′ by the following rule:
h′(a) =

∑
b g(a, b)h(b), where the sum is taken over all b ∈ Zm su
hthat g(a, b) 6= 0.
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ompute indu
tively the relative Hilbert polyno-mial. The last tripod 
ould be atta
hed in the same way. Then oneobtains the Hilbert fun
tion from relative Hilbert fun
tions simply bysumming up over all possible proje
tions. However, it is better to dothe last step in a di�erent way.Suppose that as before we are given a tree T with a distinguishedleaf l and a 
orresponding relative Hilbert fun
tion h. We 
ompute theHilbert fun
tion of the tree T ′ that is a join of the tree T and a tripodusing the equality h′(n) =
∑

a f(a)h(a), where a = (a1, . . . , am) and∑
ai = n. The fun
tion f is the basis for indu
tion introdu
ed above.Thus, de
omposing the snow�ake and the 3-
aterpillar trees to joinsof tripods, we 
an indu
tively 
ompute (a few small values of) the 
or-responding Hilbert fun
tions. This method works also for non-normalmodels, if only the Hilbert fun
tion for the tripod 
an be 
omputed.In parti
ular, for 2-Kimura model the 
omputations turned out to bepossible, be
ause its polytope for the tripod is quite well understoodat least to des
ribe fully its se
ond dilation. More pre
isely the pointsof the polytope and the point 
onstru
ted in the proof of Proposition5.74 generate the 
one over the polytope. This way we obtained theresults of 9.1. 10. Categori
al settingThe aim of this se
tion is to present a 
ategory GM of G-models andits 
onne
tions with other 
ategories. As an appli
ation of the theorywe will present a proof of Conje
ture 7.9 for the 3-Kimura model.10.1. Category of G-models. A G-model is the following set of data:

• a tree T
• a group G
• a normal, abelian subgroup H ✁G.Let us remind that the groupG a
ts on the 
hara
tersH∗ by adjun
tion

χg(h) = χ(ghg−1). This motivates the following de�nition.De�nition 10.1 (Compatible morphism of subgroups). Let us �x twopairs (Hi, Gi) where Hi is an abelian, normal subgroup of Gi for i =
1, 2. We say that a morphism f : H1 → H2 is 
ompatible if the dualmorphism f ∗ : H∗

2 → H∗
1 preserves the orbits of groups Gi. That is forany pair of 
hara
ters χ, χ′ ∈ H∗

2 in the same orbit of the G2 a
tionthe images f ∗(χ) and f ∗(χ′) are in the same orbit of the G1 a
tion.Remark 10.2. Let us note that in the abelian 
ase, that is Gi = Hi allmorphisms are 
ompatible. Note also that 
ompatible does not meanthat the orbits of the adjoint a
tion of Gi on Hi are preserved by f .
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ategory GM .De�nition 10.3 (Category GM of G-models). Let GM be a 
ategorywhere the obje
ts are triples (T,G,H), as des
ribed above. A morphismin GM between (T1, G1, H1) and (T2, G2, H2) will be a pair of maps
f : T1 → T2 and g : H1 → H2. Here g is a 
ompatible group morphismand f is a morphism of graphs, that is an isomorphism onto the image.We de�ne the 
ategory of polytopes Poly.De�nition 10.4 (Category Poly of polytopes). Let Poly be a 
ategorywhere obje
ts are pairs (P, M̂), where M̂ is a latti
e and P a latti
epolytope, that spans the whole latti
e. A morphism from (P1, M̂1) to
(P2, M̂2) is a latti
e morphism from M̂1 to M̂2 that takes points of P1to points of P2.10.1.1. Constru
tion of the fun
tor F . Our aim is to de�ne a 
on-travariant fun
tor F from the 
ategory GM to the 
ategory Poly. Wehave already done this on obje
ts; to a tree T and a group G✄H weasso
iate a pair (P̃ , M̂E,G) as in the dis
ussion after De�nition 5.64.Let us de�ne the fun
tor F on morphisms. Suppose that we havea morphism in GM , that is a pair of morphisms f : T1 → T2 and
g : H1 → H2. Let Pi ⊂ M̂i be the polytope and the latti
e 
orrespond-ing to the tree Ti with the group Gi ✄ Hi. Let also Mi be the latti
ewith the basis elements indexed by (e, o) � 
f. De�nition 5.64 � where eis an edge of Ti and o an orbit inH∗

i . The latti
eMi 
ontains the latti
e
M̂i. Morphism g gives us a morphism of 
hara
ters g∗ : H∗

2 → H∗
1 . Wepro
eed in two steps.Step 1. The group morphism.We 
onsider a polytope P̃ asso
iated to the tree T2 with the group

G1✄H1. Let M ′ be the latti
e asso
iated to this tree. The basis ofM ′is indexed by pairs (e, o), where e is an edge of T2 and o is an orbit in
H∗

1 . Using the morphism g∗ we 
an de�ne a morphism m : M2 → M ′by sending a 
hara
ter over an appropriate edge to its image by g∗.Of 
ourse the points of P2 are mapped to the points of P̃ , be
ausethe 
ondition of summing up to a trivial 
hara
ter is preserved by thea
tion of the morphism and so are the orbits. This means that we 
anrestri
t m to the morphism m′ : M̂2 → M̂ ′, where M̂ ′ is a sublatti
eof M ′ spanned by points of P̃ . This gives us a morphism in Poly from
(P2, M̂2) to (P̃ , M̂ ′).Step 2. The tree morphism.
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oordinates 
orresponding to edges that are not inthe image. Of 
ourse the 
ondition of summing up to a trivial 
hara
teraround verti
es that are in the image is preserved.Remark 10.5. In the "big" latti
e Mi our morphism has got alwaysa form of:-�rst summing up 
oordinates (that 
orrespond to the orbits of 
har-a
ters in the inverse image of a given orbit)-se
ond forgetting 
oordinates indexed by pairs (e, o), where e is anedge not in the image of the morphism of trees.However, ea
h time we have to remember about smaller latti
es andthe fa
t that the image of our polytope may not span the whole "small"latti
e M̂i (if the morphism g∗ is not surje
tive).Next we 
onsider a 
ovariant fun
tor from Poly to the 
ategory ofalgebras. We asso
iate to a polytope P ⊂ M an algebra, that is de�nedas a monoid algebra for the submonoid of Z×M , spanned by {1}×P .The 
ontravariant fun
tor from the 
ategory of algebras to the 
ategoryof varieties is well known. In the tori
 
ase it was des
ribed in Se
tion2. Composing all we obtain a 
ovariant fun
tor from the 
ategory GMto the 
ategory of tori
 varieties.Remark 10.6. Note that �rst we asso
iate to a polytope P ⊂ M analgebra, that is de�ned as an algebra asso
iated to the submonoid of
Z×M , spanned by {1} × P . This is not ne
essarily a 
one, as P doesnot have to be normal. Then we asso
iate to this algebra a variety.This does not have to be a tori
 variety asso
iated to a polytope inthe sense of [Ful93℄, [CLS℄ � that 
onstru
tion always gives a normalvariety.10.2. Morphisms of groups and rational maps of varieties. Themotivation for this subse
tion is the following observation: if we lookat graded algebras (or respe
tively proje
tive varieties), then the mapof graded algebras obtained from the map of polytopes in general givesus only a rational map of varieties. However we obtain a morphism forexample if the map of graded algebras is surje
tive.This observation allows us to de�ne a fun
tor G from GM to Proj,where Proj is the 
ategory of embedded proje
tive varieties with ra-tional morphisms. The fun
tor G is a 
omposition of the fun
tor Ffrom the previous se
tion, a natural fun
tor that asso
iates to a poly-tope a graded algebra generated in degree one (
f. Remark 10.6) anda well-known fun
tor that asso
iates to a graded algebra a proje
tivevariety [Har77, p. 76℄.
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ular let us 
onsider the abelian 
ase, that is a full sub
at-egory GMab ⊂ GM 
ontaining all obje
ts for whi
h G = H . Then toea
h morphism of groups G1 → G2 we 
an asso
iate a rational mor-phism of proje
tive varieties. Note that this is a well de�ned morphismof a�ne 
ones over the proje
tive varieties. More information on theabelian 
ase 
an be found in Se
tion 10.3.Let us 
onsider a G-model (T1, G1, H1). The a�ne variety asso
i-ated to this model 
an be realized as a subvariety of As, where s is thenumber of verti
es of the asso
iated polytope. Noti
e that the mor-phism between two G-models that is an identity on trees indu
es anequivariant morphism of ambient spa
es.The following des
ription of the morphism between the varieties willbe useful in the following se
tions. Consider two G-models (T,G1, H1)and (T,G2, H2). Let f : H1 → H2 be a 
ompatible morphism that,together with an identity on T , indu
es a morphism of G-models. Let
P1 and P2 be the polytopes asso
iated to 
orresponding models. As inDe�nition 5.64 the polytope Pi is 
ontained in the latti
e ME,Gi

withbasis elements indexed by pairs (e, o) for e an edge of T and o an orbitof Gi a
tion on H∗
i . The verti
es of Pi 
orrespond also to 
oordinatesof the a�ne spa
e embedding the a�ne variety asso
iated to a model.Note that f ∗ indu
es a morphism m :ME,G2 →ME,G1. Ea
h vertex of

P2 
an be represented by an asso
iation of 
hara
ters fromH∗
2 to edges.The morphism m is simply an appli
ation of f ∗ to the representants.Proposition 10.7. Consider the setting des
ribed above. Let si bethe number of verti
es of Pi and let Asi be the a�ne spa
e embeddingthe a�ne variety asso
iated to (T,Gi, Hi). The morphism of G-modelsindu
es the morphism of a�ne spa
es m̃ : As1 → As2. This is an equi-variant morphism indu
ed by a restri
tion of m to positive quadrants.Pre
isely, let e∗v be the 
oordinate 
orresponding to a vertex v ∈ P2. Wehave e∗v(m̃(x)) = e∗m(v)(x). �Let us now �x morphisms from (T,Gi, Hi) to (T,G0, H0) that areidentities on trees and are given by 
ompatible group morphisms fi :

Hi → H0. Let Pi be the polytope asso
iated to the model (T,Gi, Hi).Let MSi
be the latti
e with basis elements indexed by verti
es of Pi.We obtain a morphism of latti
es m : MS0 →

∏
MSi

. Let si be thedimension of MSi
. Let pj : ∏MSi

→MSj
be the proje
tion to the j-thfa
tor.Remark 10.8. The morphism of latti
es des
ribed above 
orrespondsto the morphism of ambient spa
es ∏Asi → As0 . It 
an be des
ribedin 
oordinates as follows:
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oordinate 
orresponding to a vertex v0 ∈ P0 is a produ
t of all
oordinates 
orresponding to verti
es pj(m(v0)) ∈ Pj.10.3. Abelian 
ase. In this se
tion we will establish 
onne
tions be-tween morphisms of abelian groups and morphisms of 
orrespondingvarieties. On
e again our main aim is appli
ation in geometry. Weare building the set up of the next se
tion. That is why we restri
tto spe
ial 
ases. This redu
es the 
omplexity of the language but stillgives a geometri
 insight. Let us �x a tree T .Let f : G1 → G2 be a morphism of abelian groups. It indu
esmorphisms of groups of so
kets SG2 → SG1 . This gives the following
ommutative diagram :
MS,G1 M̂E,G1

MS,G2 M̂E,G2Hen
e the morphism M̂E,G1 → M̂E,G2 of 
hara
ter latti
es restri
tsto 
ones over polytopes. This gives a morphism of algebras of as-so
iated varieties. The morphism MS,G2 → MS,G1 restri
ts to posi-tive quadrants of both latti
es. Hen
e we get a morphism of ambi-ent spa
es f̂ : ŴL,G1 → ŴL,G1 
ompatible with morphism of varieties
f̂ ′ : X(T,G1) → X(T,G2). This gives a 
ovariant fun
tor from the
ategory of abelian groups to the 
ategory of embedded a�ne tori
 va-rieties. Moreover if f ∗ is inje
tive (resp. surje
tive) then f̂ ′ is dominant(resp. inje
tive). The se
ond assertion is an easy exer
ise. We also needthe following setting. Suppose that we have morphisms φi : Gi → Gfor i = 1, . . . , m. Just as above this gives us a morphism of embeddedvarieties fi : X(T,Gi) → X(T,G). Let P be the polytope asso
iatedto X(T,G) and let Pi be the polytope asso
iated to X(T,Gi). Con-sider the indu
ed morphism f̃ : M̂E,G →

∏
M̂E,Gi

. If the produ
t
f ∗
1 × · · · × f ∗

m : G∗ →
∏
G∗

i is surje
tive, then f̃ restri
ted to themonoid spanned by P is surje
tive onto the monoid spanned by ∏
Pi.However, in general, if the produ
t f ∗

1 × · · · × f ∗
m is inje
tive then therestri
tion of f̃ to the monoid generated by P does not have to beinje
tive. If f̃ is inje
tive, than it indu
es a dominant map from theprodu
t ∏X(T,Gi) to X(T,G).11. Appli
ations to the 3-Kimura model, part 1Our aim is to prove the Conje
ture 7.9 for G = Z2 × Z2.
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ture 11.1. The dense torus orbit of the tori
 variety X(Kl,1,Z2×
Z2) is the interse
tion of the dense torus orbits of the varietiesX(T,Z2×
Z2), where T is any tree with l leaves di�erent from the 
law tree.Note that all dense torus orbits are 
ontained in the dense torus orbit
O of the proje
tive (or a�ne) ambient spa
e. In the algebrai
 set Oall the 
onsidered orbits are 
losed subs
hemes. Hen
e Conje
ture 11.1
an be regarded in a set-theoreti
 or in a s
heme-theoreti
 version.Both of them are equivalent. This follows for example from a moregeneral statement [ES96, Corollary 2.2℄ and is parti
ularly simple intori
 
ase. However be
ause the proofs of both versions are basi
allythe same for G = Z2 × Z2 we have de
ided to in
lude both. Moreoverthis also gives an idea how the elements of the ideal of X(Kl,1,Z2×Z2)
an be generated by elements of ideals of X(T,Z2 × Z2).The main idea of the proof is to extend the results known for binarymodels to the 3-Kimura model. The binary model is very well under-stood and has a lot of spe
ial properties [BW07℄. In parti
ular from7.10 we know that Conje
ture 7.6 holds for G = Z2. As G is abelian wewill be identifying G with G∗. In parti
ular, in this subse
tion we as-sume that networks and so
kets asso
iate to edges group elements, not
hara
ters. This 
onvention does not 
hange anything, but simpli�esthe language.We have got three natural proje
tions fi : Z2 × Z2 → Z2 for i =
1, . . . , 3. The map f1 × f2 × f3 : Z2 × Z2 → Z2 × Z2 × Z2 is inje
tive.Moreover it indu
es a dominant map from the produ
t of three binarymodels onto the 3-Kimura model. This map is the key tool that willallow us to transfer some of the properties from the binary model tothe 3-Kimura model. Unfortunately the map is not surje
tive, but justdominant. We 
an proje
tivise the varieties, but then we get a rationalmap. It turns out that a 
ombine use of both of the maps allows toderive the main theorem.Let f ∗

i : MS,Z2×Z2 → MS,Z2 be a morphism of latti
es indu
ed by fi.More pre
isely a so
ket that asso
iates to an edge e a group element
g ∈ Z2×Z2 is send to a so
ket that asso
iates to e and element fi(g) ∈
Z2. Let i : ME,Z2×Z2 → ME,Z2 ×ME,Z2 ×ME,Z2 be the morphism oflatti
es indu
ed by f1× f2× f3. A basis ve
tor indexed by a pair (e, g)is send to the produ
t of three basis ve
tors indexed respe
tively bypairs (e, f1(g)), (e, f2(g)) and (e, f3(g)). For sublatti
es spanned bybasis ve
tors indexed by a �xed edge the morphism i 
an be des
ribedin 
oordinates as:

(a, b, c, d) → (a + c, b+ d, a+ b, c+ d, a+ d, b+ c).
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ular we see that i is indeed inje
tive. Let g :MS,Z2 →ME,Z2 bethe morphism of latti
es that 
orresponds to the parametrization mapof the binary model � 
f. De�nition 5.33. Let g0 :MS,Z2×Z2 →ME,Z2×Z2be the morphism of latti
es that 
orresponds to the parametrizationmap of the 3-Kimura model.We have got the following 
ommutative diagram:
MS,Z2 ×MS,Z2 ×MS,Z2

g×g×g
ME,Z2 ×ME,Z2 ×ME,Z2

MS,Z2×Z2

g0

f∗

1×f∗

2×f∗

3

ME,Z2×Z2

iThe following Fa
t follows from Corollary 6.4.Fa
t 11.2. The dimension of the a�ne 3-Kimura model is equal to
3|E|+1. The dimension of the produ
t of three a�ne binary models isequal to 3(|E|+1). The dimension of the proje
tive 3-Kimura model isequal to 3|E|. The dimension of the produ
t of three proje
tive binarymodels is equal to 3|E|. �It follows that if we 
onsider proje
tive varieties representing themodels, the dominant morphism from the produ
t of three binary mod-els to the 3-Kimura model des
ribed above be
omes a rational, gener-i
ally �nite map. As the map between proje
tive varieties is not amorphism we will restri
t our attention only to dense orbits of the tori.On these tori orbits all maps are well de�ned and are represented bymorphism of latti
es.11.1. Maps of dense torus orbits. Let us 
onsider the followingdiagram:(11.1)

MS,Z2 ×MS,Z2 ×MS,Z2

g×g×g
ME,Z2 ×ME,Z2 ×ME,Z2

MS,0,Z2 ×MS,0,Z2 ×MS,0,Z2 M̂E,0,Z2 × M̂E,0,Z2 × M̂E,0,Z2

MS,Z2×Z2

g0

f∗

1×f∗

2×f∗

3

ME,Z2×Z2

i

MS,0,Z2×Z2

f

h
M̂E,0,Z2×Z2

jThe re
tangle on the ba
k is just the previous diagram. The re
tanglein the front is indu
ed from it by taking sublatti
es � 
f. De�nition5.40. On the level of varieties the ba
k is the a�ne pi
ture, while thefront is the proje
tive one. The left square with latti
es of type MS
orresponds to morphisms of ambient spa
es. The square on the right
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ribes the maps between varieties, or parameterizing spa
es. Theupper square 
orresponds to the produ
t of three binary models, whilethe bottom square to the 3-Kimura model.Let us explain the morphism j. It is inje
tive, as it is a restri
tionof i. The latti
e M̂E,0 is the 
hara
ter latti
e of the torus a
ting on theproje
tive tori
 variety representing the model. The morphism j is in-du
ed by the rational �nite map from the produ
t of three P(X(T,Z2))to P(X(T,Z2 × Z2)). Due to the 
oordinate system we 
an identifydense torus orbits with the tori.De�nition 11.3 (The torus TX). Let X be any tori
 variety in ana�ne or proje
tive spa
e with a distinguished 
oordinate system. Sup-pose that X is embedded equivariantly, as in Se
tion 2. The dense torusorbit of X will be denoted by TX ⊂ X. Re
all that TX 
onsists pre
iselyof those points of X that have got all 
oordinates di�erent from 0.The morphism j of 
hara
ter latti
es is indu
ed by the �nite mor-phism from T(P(X(T,Z2)))3 = (TP(X(T,Z2)))
3 to TP(X(T,Z2×Z2)). Due to thedis
ussion in the proof of Proposition 8.1 we also know that the mor-phism of ambient spa
es does not depend on the tree, but only on thenumber of leaves l. Hen
e the verti
al morphisms of latti
es on the lefthand side of Diagram 11.1 are the same for all trees with l leaves.11.2. Idea of the proof. The main reason for passing to tori is thatwe want to have a well de�ned dominant �nite map. This allows usto take advantage of tori
 geometry. For example we know that thenumber of points in the �ber of the morphism of tori (TP(X(T,Z2)))

3 →

TP(X(T,Z2×Z2)) is equal to the index I1 of the image of j in (M̂E,0,Z2)
3.For the proje
tive ambient spa
es the situation is a little bit di�erent.The morphism f : MS,0,Z2×Z2 → (MS,0,Z2)

3 is not inje
tive, so the
orresponding morphism of tori is not surje
tive. We will show thatthe image of f in (MS,0,Z2)
3 is of �nite index, say I2. It means thatthe 
orresponding morphism of tori is �nite with ea
h �ber having I2elements. Moreover we will show that I2 = I1. Hen
e we get thediagram:

T(P(W̃E,Z2
)3) TP(W̃E,Z2×Z2

)

T(P(X(T,Z2)))3 TP(X(T,Z2×Z2))where the horizontal maps are �nite, étale of the same degree.This means that if we 
onsider the morphism of proje
tive ambientspa
es, then the preimage of TP(X(T,Z2×Z2)) is pre
isely T(P(X(T,Z2)))3 .
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e any interse
tion results that hold for the binary model must alsohold for the 3-Kimura model. In parti
ular as Conje
ture 7.6 holds forthe binary model we obtain a set-theoreti
 version of Conje
ture 11.1for the 3-Kimura model. By easy algebrai
 arguments we will alsoprove Conje
ture 11.1 s
heme-theoreti
ally for 3-Kimura model.11.3. Proof. Our �rst step will be to understand the morphism ofproje
tive ambient spa
es (P(W̃E,Z2))
3
99K P(W̃E,Z2×Z2). This is a wellde�ned map on dense tori orbits. The map of tori 
orresponds tomorphism of latti
es f : MS,0,Z2×Z2 → (MS,0,Z2)

3. This morphismsdepend only on the number of leaves, not on the tree.By the de�nition we 
an embed the group of so
kets S in Gl. We 
analso view the group S as a Z-module. This gives us group morphisms
MS → S → Gl. The element of the basis of MS indexed by a so
ket sis mapped to the so
ket s.Example 11.4 (The 
ase of the binary model and trivalent 
law tree).Let us 
onsider the tree K3,1 and the group Z2. We have got 4 so
kets:
(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1). By 
oordinate-wise a
tion they forma subgroup of (Z2)

3. The latti
e MS is freely generated by four basisve
tors e(0,0,0), e(1,1,0), e(1,0,1), e(0,1,1). The morphism MS → S maps
e(a,b,c) to (a, b, c). Of 
ourse ke(a,b,c) is mapped to k(a, b, c). For example
3e(1,1,0) is mapped to (1, 1, 0) + (1, 1, 0) + (1, 1, 0) = (1, 1, 0).Lemma 11.5. We have an exa
t sequen
e of groups:

MS,0,Z2×Z2 → (MS,0,Z2)
3 → (Z2)

l.The �rst morphism is given by f . The se
ond is the sum of threemorphisms MS,0,Z2 → (Z2)
l des
ribed above7.Proof. It is 
lear that this is a 
omplex. Let (b′i)i≥0 be the basis of

MZ2
S 
orresponding to so
kets. Let si be the so
ket 
orresponding to

b′i. Moreover suppose that b′0 
orresponds to the trivial so
ket, thatis the neutral element of S. Let bi be the basis of MS,0,Z2 de�nedas bi = b′i − b′0 for i > 0. Note that an element (b′i, b
′
j , b

′
k) is in theimage of f ∗

1 × f ∗
2 × f ∗

3 if and only if the 
orresponding three so
kets
si, sj , sk sum up to the neutral element of S. Hen
e the elementsof the form (bi, bi, 0) = (b′i, b

′
i, b

′
0) − (b′0, b

′
0, b

′
0) are in the image of f .We see that (2bi, 0, 0) = (bi, bi, 0) + (bi, 0, bi) − (0, bi, bi) is also in theimage. Furthermore for any two so
kets si and sj there exists a so
ket

sk := si + sj su
h that (bi, bj , bk) is in the image of f . This redu
esany element from (MS,0,Z2)
3 to an element (bi, 0, 0) modulo the image7In this 
ase the se
ond operation is often 
alled XOR.
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e any element is in the image if the XOR of all its
oordinates is zero. �De�nition 11.6 (The kernel K). For any tree T let KT = KT
1 ×KT

2 ×
KT

3 ⊂ MS,0,Z2 ×MS,0,Z2 ×MS,0,Z2 be the restri
tion of the kernel of themorphism g × g × g to MS,0,Z2 ×MS,0,Z2 ×MS,0,Z2.Ea
h 
hara
ter in KT is a 
hara
ter of (T
P(W̃

Z2
E

)
)3, that is the trivial
hara
ter when restri
ted to the produ
t (TP(X(Z2)))

3. Ea
h su
h 
har-a
ter is a triple of 
hara
ters of T
P(W̃

Z2
E

)
. Ea
h 
hara
ter of the triple isa quotient of monomials m1

m2
of the same degree on the proje
tive spa
e

P(W̃ Z2
E ). The polynomials m1 −m2 span8 the ideal of the tori
 variety

P(X(Z2)). We want to view 
hara
ters as fun
tions. Hen
e we restri
tour attention to (T
P(W̃

Z2
E

)
)3. In the algebra of this torus the ideal of

(TP(X(Z2)))
3 is generated by elements k − 1, where k ∈ KT .De�nition 11.7 (The kernel D). For any tree T let DT be the kernelof the map h de�ned on Diagram 11.1.The elements of D represent 
hara
ters trivial on the proje
tive 3-Kimura variety. In the setting des
ribed at the end of Subse
tion 7.2we want to prove that sublatti
es DT for di�erent trees T with l leavesgenerate the sublatti
e DKl,1. The idea is to push the latti
es D to

(MS,0,Z2)
3 using the morphism f . Next we use the results on binarymodels to obtain the generation for f(D). Using properties of theimage of f we are able to 
on
lude the generation in MS,0,Z2×Z2 . Thefollowing lemma enables us to restri
t to the image of f instead ofregarding whole latti
e (MS,0,Z2)

3.Lemma 11.8. For any tree T the kernel KT is a sublatti
e of the imageof f .Proof. It is enough to show that KT
1 ×{0}×{0} ⊂ Im f . Suppose that

m =
∑

i aibi ∈ KT
1 , where ea
h bi is as in the proof of Lemma 11.5.Hen
e bi = (gi1−e, . . . , g

i
l −e), where e is the neutral element of Z2 and

gij ∈ Z2 are elements forming a so
ket. We know that g(m) = 0. Inparti
ular the 
oordinates of ME indexed by leaves are equal to zero.Let us �x k that is a number of a leaf 1 ≤ k ≤ l. Let us look at all
oordinates indexed by pairs (k, q) where q ∈ Z2. The restri
tion of
ME to these 
oordinates is a free abelian group spanned by elementsof Z2. Hen
e ∑

i ai(gk − e) = 0 in the free abelian group generatedformally by elements of Z2. Hen
e, a fortiori, ∑i ai(gk − e) = e where8They do not only generate the ideal, but even span it as the ve
tor spa
e.



102 MATEUSZ MICHA�EKnow the sum is taken in Z2. As the a
tion in S is 
oordinate-wise wesee that the image of m in S, and hen
e in Zl
2, is the neutral element.Using Lemma 11.5 we see that m ∈ Im f . �Proposition 11.9. The index of the image of f in (MS,0,Z2)

3 is equalto the index of the image of j in (M̂E,0,Z2)
3.Proof. This is a 
onsequen
e of Lemma 11.8. �Corollary 11.10. Conje
ture 11.1 holds set-theoreti
ally.Proof. The index of the image of f equals the degree of the �nite mapof tori. In parti
ular we are in the situation of Diagram 11.2. The
orollary follows from the dis
ussion at the beginning of Se
tion 11.2.

�Now we will prove Conje
ture 11.1 s
heme-theoreti
ally. Let T0 =
Kl,1. We 
onsider trees Ti su
h that the ideal of TP(X(T,Z2)) is the sumof the ideals TP(X(Ti,Z2)). Let KTi be the kernel of g × g × g for thetree Ti. Let DTi be the kernel of h for the tree Ti. We know fromProposition 7.10 that the latti
es KTi for i > 0 span KT0 .Theorem 11.11. The latti
es DTi for i > 0 span DT0. Conje
ture11.1 holds s
heme theoreti
ally.Proof. Let a ∈ DT0 . We know that f(a) ∈ KT0

Z2
, so f(a) = ∑

ki, where
ki ∈ KTi

Z2
. Using Lemma 11.8 we 
an �nd k′i ∈ DTi su
h that f(k′i) = ki.This means that a − ∑

k′i is in the kernel of f . In parti
ular, as j isinje
tive, a −∑
k′i belongs to every DTi , hen
e we obtain the desiredde
omposition. �Remark 11.12. From Proposition 7.10 it is enough to take two (par-ti
ular) di�erent i > 0 to span DT0, as it was in the 
ase of binarymodel.11.4. Appli
ations to phylogeneti
s. In this se
tion we presenta few appli
ations. The basi
 result that we use is due to MartaCasanellas and Jesús Fernández-Sán
hez [CFS08℄. It states that allpoints important for biologists are 
ontained in the dense torus orbitof X(T,Z2 × Z2). Thus, following [CFS08℄, we 
all points of the densetorus orbit biologi
ally meaningful. In Se
tion 11 we gave a pre
isedes
ription of this orbit for any tree. This is su�
ient for biologists.People dealing with appli
ations are usually interested in trivalenttrees. Let us motivate the use of other trees. The �rst, obvious reasonis that they 
an appear (at least hypotheti
ally) as right models of evo-lution. This however is a degenerate situation that is often negle
ted.The next subse
tion presents a di�erent reason.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 10311.4.1. Identi�ability. Dealing with appli
ations we are given a point
P in the spa
e of all possible probabilities W̃L. The �rst question is forwhi
h trees this point 
an be realized. More pre
isely for whi
h trees Twe have an in
lusion P ∈ X(T,Z2×Z2). We are interested in knowingif this is only one tree T or there are several possibilities. This is a �rstpart of the identi�ability problem. Hen
e Conje
ture 7.6 is a questionabout the lo
us of points for whi
h the identi�ability problem 
annotbe resolved at all. Of 
ourse a generi
 point that belongs to any of thevarieties belongs to exa
tly one X(T,Z2 × Z2) with T trivalent. Mu
hmore is known about the identi�ability of di�erent models. For thepre
ise results the reader is advised to look in [AR06℄ or [APRS11℄ andthe referen
es therein.In parti
ular we see that points that belong to some X(T,Z2 × Z2)where T is not trivalent 
annot identify the tree topology. Hen
e thequestion about the lo
us of these points, or equivalently about the poly-nomials de�ning su
h varieties may give some results for trivalent trees.However, as situation in Se
tion 8 shows, the phylogeneti
 invariantsof two varieties X(T,Z2) for two di�erent trees, do not generate theideal of the variety asso
iated to their degeneration.The se
ond, but equally important question about the identi�abilityis to give the des
ription of the �ber of the parametrization map of themodel ψ̌−1(P ). The biologist aim at distinguishing one point in the�ber. This would enable to identify not only the tree topology, but also
orresponding probabilities of mutation. The algebrai
 setting allowsus to give a des
ription of this �ber. We assume that P is biologi
allymeaningful, that is is 
ontained in the dense torus orbit. Equivalentlyall 
oordinates of P after the Fourier transform are di�erent from zero.We prefer to work up to multipli
ity, that is regard the proje
tivizationof ψ̌ denoted by ψ̌P. The �ber ψ̌−1

P (P ) is 
ontained in the dense torusorbit of ∏P(We). As this parameter spa
e is of the same dimension asthe image, we know that ψ̌P is a generi
ally �nite map. Moreover whenrestri
ted to dense torus orbits it is étale and �nite. Hen
e ea
h �beris �nite and 
ontains the same number of points, independent from P .This number is the index of latti
e M̂E in a saturated sublatti
e ofME .Of 
ourse we do not 
laim that all the points in the �ber have got aprobabilisti
 meaning. We just prove that from the algebrai
 point ofview there is always a �xed, �nite number of possible 
andidates fortransition matri
es.We will now give a pre
ise des
ription of a general �ber for a gen-eral group-based model 
orresponding to an abelian group H . Due toCorollary 6.4 we know that the map of proje
tive tori parameterizing



104 MATEUSZ MICHA�EKthe model is a �nite map. By dualizing the exa
t sequen
e in Corollary6.7 we see that the kernel has got a group stru
ture isomorphi
 to H |N |.Due to [CFS08℄ the only biologi
ally meaningful points are 
ontainedin the dense torus orbit.Corollary 11.13. Let T be any tree and H any abelian group. Let
P(X) be the proje
tive variety asso
iated to the model. Let x ∈ P(X)be a biologi
ally meaningful point. Up to multipli
ation by a 
onstantthere are exa
tly |H||N | parameters in the �ber of x. In other wordsthere are exa
tly |H||N | possible transition matri
es. �Note that we do not use further restri
tions on the parameters oftransition matri
es. For example we do not assume that the param-eters are real. This 
ondition for sure further de
reases the numberof possible transition matri
es. However we see that when we 
onsider
omplex parameters the number of possible parameters is already �niteand moreover independent from the 
onsidered point.11.4.2. Phylogeneti
 invariants. The main theorem gives an indu
tiveway of obtaining phylogeneti
 invariants of any tree. It is an open prob-lem if these invariants generate the whole ideal. It is proved howeverthat they give a des
ription of all biologi
ally meaningful points in 
aseof the 3-Kimura model. The method is very simple. Suppose that weknow the phylogeneti
 invariants for all trees with verti
es of degreeless or equal to d. Due to the results of [SS05℄ it is enough to des
ribethe phylogeneti
 invariants for the 
law tree Kd+1,1. For 3-Kimura, toobtain the des
ription of the dense torus orbit we just take the sumof two ideals � 
f. Remark 11.12. They are both asso
iated to treeswith the same topology. The tree has got two inner verti
es v1 and v2of degrees 3 and d respe
tively. The di�eren
e between the ideals isa 
onsequen
e of di�erent labelling of leaves. For one tree the leavesadja
ent to v1 are labeled by 1 and 2. For the se
ond tree they arelabeled 1 and 3. Noti
e that in fa
t we have to 
ompute just one ideal.The se
ond one 
an be obtained by permuting the variables.12. Appli
ations to the 3-Kimura model, part 2The aim of this subse
tion is to further investigate Conje
ture 7.1 forthe 3-Kimura model. Let In be the ideal of the variety X(T,Z2 × Z2)where T is a 
law tree with n leaves. Let I ′n be the subideal of Ingenerated in degree 4. The 
onje
ture of Sturmfels and Sullivant statesthat In = I ′n for any n. In this subse
tion we will prove that In and
I ′n de�ne the same proje
tive s
heme. This is equivalent to the fa
tthat their saturations are equal [Har77, Exer
ise 5.10 b)℄. In parti
ular
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on
ludes that inorder to 
he
k if any point belongs to the variety it is enough to 
onsiderphylogeneti
 invariants of degree four. Due to [SS05, Theorem 23℄ theresult will follow for any tree. Let us state the main theorem of thissubse
tion.Theorem 12.1. Consider any tree T and the 3-Kimura model. Theideal of the variety asso
iated to it and the subideal generated by poly-nomials of degree at most four de�ne the same proje
tive s
heme.We hope that the method presented in this se
tion 
an be appliedto other problems of the type "prove that a tori
 proje
tive s
heme 
anbe de�ned by an ideal generated in degree d". In general let I be anideal of a proje
tive tori
 variety. Let I ′ be the subideal generated indegree d. The aim is to prove that the saturation of I ′ with respe
t tothe irrelevant ideal equals I.Suppose that the variety is given by a polytope P , with points 
orre-sponding to 
oordinates of the ambient proje
tive spa
e � as in Se
tion2. Proving that the saturation of I ′ equals I is equivalent to provingthat I ′ and I are equal in ea
h lo
alization with respe
t to any 
oordi-nate, represented by a point Q ∈ P . Thus we have to prove that anygenerator of I multiplied by a su�
iently high power of the variable
orresponding to Q belongs to I ′.Let us translate this 
ondition to 
ombinatorial language. The gen-erators of I 
orrespond to relations between points of P × {1}. Letus �x a relation ∑
Ai =

∑
Bj, where Ai, Bj ∈ P × {1}. Multi-plying the 
orresponding element of the ideal by the variable 
orre-sponding to Q is equivalent to adding Q to both sides of the relation.Thus we have to prove that the binomial 
orresponding to the relation∑

Ai +mQ =
∑
Bj +mQ is generated by binomials from I of degreeat most d for m su�
iently large.A binomial 
orresponding to a relation ∑

Ri =
∑
Si between pointsof a polytope is generated in a degree d if and only if one 
an transform∑

Ri to ∑
Si using a sequen
e of simple steps. In ea
h single trans-formation one 
an repla
e points R1, . . . , Rk for k ≤ d by R′

1, . . . , R
′
kif they satisfy the relation ∑k

i=1Ri =
∑k

i=1R
′
i. In su
h a 
ase we saythat the relation is generated in degree d.The proof s
heme is very simple:(i) Using degree d relations redu
e Ai, Bi to some simple, spe
ialpoints of P×{1} 
ontained in a subset LQ ⊂ P . (*)(ii) Show that any relation between the points of LQ is generatedin degree d.



106 MATEUSZ MICHA�EKIn general any of this two points 
an be very di�
ult.Remark 12.2. It is well known that the proje
tive tori
 variety de-�ned by a polytope P is 
overed by a�ne subsets given by lo
alizationsby 
oordinates 
orresponding to verti
es. Thus one 
an be tempted toprove that I = I ′ only in the lo
alizations by verti
es. Note howeverthat in general, we do not know if the s
heme de�ned by I ′ is also 
ov-ered by lo
alizations by 
oordinates 
orresponding to verti
es. Indeed,
I ′ and I may be di�erent on the set-theoreti
al level. For example if
Proj I ′ 
ontains a point that is zero on the 
oordinates 
orrespondingto verti
es and nonzero on some other 
oordinates, then su
h a pointwill not belong to any lo
alization with respe
t to verti
es. Howeverif rad I ′ = I, then of 
ourse it is enough to 
onsider lo
alizations withrespe
t to verti
es.As our polytopes have only verti
es, the problem des
ribed in Re-mark 12.2 does not 
on
ern us.Remark 12.3. We have got the following equivalen
es for a tori
 ideal
I given by a polytope P × {1}.

• All relations between verti
es of P×{1} are generated in degree
d ⇔ the ideal I is generated in degree d.

• For any point Q ∈ P ×{1} and any relation there is an integer
m su
h that after adding mQ to both sides of the relation, itis generated in degree d⇔ the proje
tive s
heme de�ned by I
an be de�ned by an ideal generated in degree d.

• For any relation there are9 points Qi ∈ P ×{1} su
h that afteradding ∑
Qi to both sides, it is generated in degree d ⇔ thedense torus orbit of the variety is de�ned by the ideal generatedin degree d in the algebra of the ambient torus.The whole subse
tion is devoted to the proof of Theorem 12.1. theproof is involved but 
ompletely elementary. The �rst observation isthat by Proposition 6.8 the group of networks a
ts on the variety, hen
eon the ideals In and I ′n. The a
tion is transitive on the points of thepolytope, as they 
orrespond to elements of the group. Using thisa
tion we 
an redu
e to the 
ase where the point Q of the polytoperepresents the 
oordinate 
orresponding to the trivial network, that isa network assigning neutral elements to all edges. Due to Fa
t 5.71 we
an 
onsider only 
law trees. Let us index the edges of a 
law tree Kn,1with numbers 1, . . . , n. We will identify a network with an n-tuple ofgroup elements summing up to zero. The sum of su
h n-tuples will be9not ne
essarily di�erent
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oordinatewise sum, where ea
h entry is treated as an element of thefree abelian group generated by elements of Z2 × Z2. Ea
h networkrepresents a vertex of a polytope P ⊂ ME . The addition des
ribedabove is the addition in this latti
e.Example 12.4. For n = 4 we 
an add in the latti
e ME :
(0, (1, 0)+(1, 1), 2 · (0, 1),−3 · (0, 0))+((0, 1), (1, 0)−(1, 1), (1, 0), (0, 0))

= ((0, 1), 2 · (1, 0), 2 · (0, 1) + (1, 0),−2 · (0, 0)).The trivial network is ((0, 0), (0, 0), (0, 0), (0, 0)).De�nition 12.5 (Support of a network). Let n be any network. Theset of indi
es of edges to whi
h n asso
iates a nonneutral element is
alled the support of n.De�nition 12.6 (Pair, triple). We say that a network is a pair if andonly if the 
ardinality of the support is equal to two. We say that anetwork is a triple if and only if the 
ardinality of the support is equalto three.By nt we denote the neutral element in the group of networks.Lemma 12.7. For any network s, for m su�
iently large, s +m · nt
an be redu
ed using degree two relations to a sum of networks thateither:1) assign the same nontrivial element to two edges � pairs2) assign three di�erent nontrivial elements to three edges � triplesand the neutral element to all other edges.Proof. The proof is indu
tive on the size of the support. Suppose thesupport of s is of 
ardinality at least four. We 
an 
hoose a stri
tsubset S of the support su
h that the sum of group elements ∑e∈S s(e)is the neutral element. Consider the networks s′ and s′′ that agreewith s respe
tively on the set S and its 
omplement and assign to allthe other edges the neutral element. We have s + nt = s′ + s′′, whi
h�nishes the proof. �Example 12.8. Consider the tree K4,1.
((1, 0), (0, 1), (0, 1), (1, 0)) + ((0, 0), (0, 0), (0, 0), (0, 0))

= ((1, 0), (0, 0), (0, 0), (1, 0))+ ((0, 0), (0, 1), (0, 1), (0, 0)).We see that we 
an assume that f represents a relation only betweenpairs and triples. This 
ompletes the �rst step of the method (*) pre-sented at the beginning of the se
tion. The set LQ 
onsists of pairs andtriples.



108 MATEUSZ MICHA�EKLet us �x any relation ∑
ni =

∑
n′
i, where ni and n′

i are networksthat are either pairs or triples. Our aim is to transform∑
ni to∑n′

i ina series of steps, ea
h time repla
ing at most four ni by networks withthe same sum10. We assume that among ni there are more or the samenumber of triples as among n′
i. We �rst try to redu
e the relation, sothat 
onsequently:(i) Among ni there are as few triples as possible,(ii) Among n′

i there are as few triples as possible,(iii) The degree of the relation is as small as possible.More pre
isely let t and t′ be the number of triples among respe
tively
ni and n′

i. Let d be the degree of the relation. Our proof will beindu
tive on (t, t′, d) with lexi
ographi
 order.To prove Theorem 12.1 we 
onsider separately three 
ases dependingon the number of triples among ni. The 
ases are:a) there are no triples,b) there is exa
tly one triple,
) there are at least two triples.We say that a family of networks agrees on an index j if they allasso
iate the same element to j and j belongs to their support. Wewill denote by g1, g2 and g3 the three nontrivial elements of Z2 × Z2.A triple that asso
iates g1 to index a, g2 to index b and g3 to index cis denoted by (a, b, c). A pair that asso
iates an element gi to indi
es
d and e will be denoted by (d, e)gi. We say that gi is 
ontained in anetwork if there exists an index j, su
h that the network asso
iates
gi to j. We believe that the following proofs are impossible to followwithout a pie
e of paper. We strongly en
ourage the reader to notewhat networks appear in both sides of the relation at ea
h step of theproof.12.1. The 
ase with no triples. First note that there are no triplesamong n′

i. Without loss of generality we may assume that n1 is a pairequal to (a, b)g1 . Hen
e there exists n′
i, say n′

1, that is (b, c)g1 for someindex c. If c = a we 
an redu
e this pair, hen
e we assume c 6= a.There exists a network, say n2 that is (c, d)g1. If d = b we 
an redu
ethis pair. We 
onsider two other 
ases:1) d 6= a. Then we use the degree two relation (a, b)g1 + (c, d)g1 =
(a, d)g1 + (b, c)g1 and we 
an redu
e (b, c)g1 .2) d = a. Then there is a network, say n′

2 given by (a, e)g1 . If e = bor e = c we 
an redu
e this pair. In the other 
ases we use the relation
(a, e)g1 + (b, c)g1 = (a, b)g1 + (e, c)g1 and we redu
e (a, b)g1 .10We are also allowed to add the trivial network to both sides.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 109Noti
e that in this 
ase we have only used degree two relations.12.2. The 
ase with one triple. Let n1 be the only triple among ni.Lemma 12.9. There is exa
tly one triple among n′
i.Proof. Due to the assumption that there are less triples among n′

i thanamong ni we know that if there is a triple among n′
i then it is unique.Suppose that there are no triples among n′

i. Then the element g1appears among n′
i an even number of times. Indeed ea
h pair 
ontains

g1 twi
e or does not 
ontain it. As the sum of n′
i equals the sum of nialso the number of times g1 appears among ni must be even. This isimpossible as n1 
ontains g1 just on
e and all pairs 
ontain g1 twi
e ordo not 
ontain it at all. �Due to the previous lemma we may assume that n′

1 is the only tripleamong n′
i. Let n1 = (1, 2, 3).12.2.1. Case: The triples do not agree on any element of the support.We want to redu
e to the 
ase where n′

1 agrees with n1 on an indexthat belongs to the support of both. Suppose that this is not the 
ase.The redu
tion in this 
ase will have two steps. First, if n1 and n′
1have the same support we will use the relations to move the supports,redu
e the triples or de
rease the degree. Next we will show how todeal with the 
ase when the supports are not the same.1) First step � suppose that {1, 2, 3} is also the support of n′

1.Remember that due to the assumption 12.2.1 the triples n1 and n′
1do not agree on any element from their support. As n′

1 has support
{1, 2, 3} without loss of generality we may assume that n′

1 = (2, 3, 1).Hen
e there must be a pair (2, a)g1 among ni and (1, b)g1 among n′
i. If

a = 1 and b = 2 then both pairs are the same and 
an be redu
ed. Asboth 
ases are symmetri
 we 
an assume that a 6= 1.If a 6= 3 we 
an use the relation (2, a)g1+(1, 2, 3) = (a, 2, 3)+(2, 1)g1.This redu
es to the 
ase with di�erent supports. We are left with the
ase a = 3. There must be a pair (3, z)g1 among n′
i. If z 6= 1 we 
anuse the relation (3, z)g1 +n′

1 = (z, 3, 1)+ (2, 3)g1. This would enable toredu
e the (2, 3)g1 pair and de
rease the degree. So we 
an assume that
z = 1. So far we have shown that there must be pairs (2, 3)g1 among
ni and (3, 1)g1 among n′

i
11. By the same reasoning for g2 and g3 we seethat we 
an use the following relation:

(1, 2, 3)+(2, 3)g1+(1, 3)g2+(1, 2)g3 = (2, 3, 1)+(2, 3)g3+(1, 3)g1+(1, 2)g2.11Noti
e that we have made a symmetry assumption a 6= 1. The symmetri
assumption would be b 6= 2. However as the result we got was symmetri
, also for
b 6= 2 we prove the existen
e of the same pairs.
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e that this is a degree four relation. It enables us to redu
e triples.2) Se
ond step � the triples n1 and n′
1 have di�erent supports.On
e again let (1, 2, 3) = n1 and let (a, b, c) = n′

1. We may assumethat a is not in the support of n1. We see that there must be a pair
(a, f)g1 among ni. If f 6= 1 we 
an use a relation (a, f)g1 + n1 =
(a, 2, 3) + (f, 1)g1. This redu
es to the 
ase when the triples agree on
a, hen
e we assume that f = 1. Hen
e there must be a pair (g, 1)g1among n′

i. If g = a we 
an redu
e this pair, so we assume g 6= a.Noti
e that there must be a pair (g, h)g1 among ni. If h 6= a, then we
an use relation (1, a)g1 + (g, h)g1 = (g, 1)g1 + (h, a)g1 and redu
e thepair (g, 1)g1. So we 
an assume h = a. Then there must be a pair
(a, i)g1 among n′

i. If i = 1 then we 
an redu
e it. Otherwise we 
an usethe relation (g, 1)g1 + (a, i)g1 = (g, a)g1 + (1, i)g1 and redu
e the pair
(g, a)g1.12.2.2. Case: the triples agree on exa
tly one element in their support.So far we redu
ed to the 
ase where triples agree on at least one element,say 1, in their 
ommon support. Now we want to make a furtherredu
tion, so that the triples agree on two elements that are in theirsupports. Assume this is not the 
ase.As before let n1 = (1, 2, 3) and n′

1 = (1, b, c). We 
onsider three
ases.1) b 6= 3.There must be a pair (b, d)g2 among ni. If d 6= 2 then we 
an applythe relation (b, d)g2 + n1 = (1, b, 3) + (d, 2)g2. This redu
es to the 
asewhere triples agree on two elements. So we assume d = 2. Theremust be a pair (2, e)g2 among n′
i. Hen
e there must also be a pair

(e, f)g2 among ni. If f 6= b we 
an use a relation (e, f)g2 + (2, b)g2 =
(e, 2)g2 + (f, b)g2 and redu
e (e, 2)g2. For f = b we must have a pair
(b, g)g2 among n′

i. If g = 2 or g = e then this pair 
an be redu
ed. Inthe other 
ase we use the relation (e, 2)g2 + (b, g)g2 = (e, g)g2 + (b, 2)g2and redu
e (b, 2)g2.2) c 6= 2.This 
ase is analogous to 1).3) b = 3 and c = 2.Lemma 12.10. If there is a pair (p, q)g2 among ni, su
h that p, q 6= 2then we may assume that it is equal to (1, 3).Proof. Suppose that p 6= 1, 3 and q 6= 2. We apply a relation (p, q)g2 +
n1 = (1, p, 3) + (q, 2)g2 and redu
e to 
ase 1) b 6= 2. �Analogously if there is a pair (p, q)g2 among n′

i, su
h that p, q 6= 3then this pair equals (1, 2)g2.
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e that there must be a pair (3, d)g2 among ni and a pair (2, e)g2among n′
i. From Lemma 12.10 d equals 2 or 1 and e equals 3 or 1. Wewill 
onsider sub
ases.3.1) Suppose that d = 2.If e = 3 then we 
an make a redu
tion of pairs. If e = 1 we musthave a pair (1, f)g2 among ni. If f = 2 we make a redu
tion, hen
e weassume f = 3. This means that there must be a pair (3, g)g2 among

n′
i. If g = 2 or g = 1 we 
an make a redu
tion. Otherwise we applythe relation (1, 2)g2 + (3, g)g2 = (1, 3)g2 + (2, g)g2 and redu
e the pair

(1, 3)g2.3.2) Suppose that e = 3.This 
ase is similar to 3.1).3.3) Suppose that d = 1 and e = 1.As this is the only 
ase left we may repeat the same reasoning for
g3. In parti
ular, we must have a pair (1, 2)g3 among ni. We see thatwe 
an redu
e the triples by applying the following relation:

(1, 2, 3) + (1, 3)g2 + (1, 2)g3 = (1, 3, 2) + (1, 2)g2 + (1, 3)g3.This is a degree three relation.12.2.3. Case: the triples agree on at least two elements in their support.So far we redu
ed to the 
ase where triples agree on two elements, say
1 and 2, that are in their support. Suppose that n1 = (1, 2, 3) and
n′
1 = (1, 2, c). Of 
ourse if c = 3 we 
an make a redu
tion. In other
ase we must have a pair (c, d)g3 among ni. If d 6= 3 then we use therelation (c, d)g3 + (1, 2, 3) = (1, 2, c) + (3, d)g3 and redu
e the triples.Hen
e d = 3. Analogously there must be a pair (3, c)g3 among n′

i, hen
ewe 
an redu
e this pair.12.3. The 
ase with at least two triples. We suppose that thereare at least two triples among ni.Lemma 12.11. If there are two triples n1, n2 among ni that do notagree on any element of their supports then we 
an make a redu
tion.Thus we 
an assume that any two triples among ni agree on at leastone index.Proof. The assumptions are equivalent to n1 = (a, b, c), n2 = (d, e, f)with a 6= d, b 6= e, c 6= f . We apply the relation n1 + n2 + nt =
(a, d)g1 + (b, e)g2 + (c, f)g3 that redu
es the number of triples. �Lemma 12.12. If there is no index on whi
h all triples from ni agreethen we 
an make a redu
tion.



112 MATEUSZ MICHA�EKProof. Suppose there is no index on whi
h all ni agree. We may 
on-sider only two 
ases due to Lemma 12.11.1) Suppose that any two triples from ni agree on at least two ele-ments.Consider any triple n1 = (1, 2, 3). Due to the fa
t that not all triplesfrom ni asso
iate g1 to 1 there is a triple (a, 2, 3) with a 6= 1 among ni.There also must be a triple that does not asso
iate g2 to 2. It 
annotagree both with (1, 2, 3) and (a, 2, 3) on two indi
es.2) There exist two triples that agree only on one index.Let n1 = (1, 2, 3) and n2 = (1, b, c) with b 6= 2 and c 6= 3. Due to the
ase assumption there is a triple n3 = (d, e, f) with d 6= 1. Rememberthat any two triples have to agree on at least one element due to Lemma12.11. Hen
e without loss of generality we 
an assume e = b and f = 3.We 
an apply the relation:
n1 + n2 + n3 + nt = (d, 1)g1 + (2, b)g2 + (3, c)g3 + (1, b, 3),that redu
es the number of triples. �Due to the previous lemma we may assume that there exists an index,say 1, su
h that all triples among ni asso
iate to it the same nonneutralelement, say g1.De�nition 12.13 (k). Let k be the number of indi
es on whi
h alltriples among ni agree. We know that 1 ≤ k ≤ 3.We pro
eed indu
tively on k, as for k = 0 we already know how toredu
e the relation. Hen
e from now on de
reasing k is also a redu
tion.Lemma 12.14. Suppose that all triples from ni asso
iate gj to an index

l. If there is a pair (x, y)gj among ni with l 6= x, y then either {l, x, y}is the support of all triples among ni or we 
an make a redu
tion.Proof. To simplify the language assume gj = g1 and l = 1. Supposethat there is a triple n1 = (1, b, c) with the support di�erent from
{1, x, y}. We 
an assume x 6= b, c. We apply the relation n1+(x, y)g1 =
(x, b, c) + (1, y)g1 what redu
es k. �Lemma 12.15. Suppose that all triples from ni asso
iate gj to an index
l. If all pairs (x, y)gj among ni have l in the support then we 
an redu
eall su
h pairs.Proof. Let t be the number of triples among ni. Let p be the numberof gj pairs among ni. Let t′1 and t′2 be the number of triples in n′

ithat respe
tively assign or do not assign gj to l. Let p′1 and p′2 be thenumber of gj pairs among n′
i that respe
tively have or do not have l



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 113in the support. We know that t ≥ t′1 + t′2. Comparing the number oftimes gj appears in ni and n′
i we get:

t+ 2p = t′1 + t′2 + 2(p′1 + p′2).Comparing the number of times gj appears on index l we get:
t+ p = t′1 + p′1.This for
es t′2 = p′2 = 0, t = t′1 and p = p′1. Hen
e all gj pairs andtriples among ni and n′

i must assign gj to l. Hen
e the multisets ofpairs must be the same for ni and n′
i. �Lemma 12.16. If there are g1 pairs among ni, then we 
an make aredu
tion.Proof. We will prove that there are no pairs (a, b)g1 among ni that donot have 1 in the support. Due to Lemma 12.15 this will �nish theproof. Suppose that there is a pair (a, b)g1 among ni with a, b 6= 1.Due to Lemma 12.14 all the triples among ni must have the support

{1, a, b}. So either k = 1 or k = 3. If k = 1 we 
an apply the relation
(1, a, b) + (1, b, a) + (a, b)g1 + nt = (1, a)g1 + (1, b)g1 + (a, b)g2 + (a, b)g3.This redu
es the number of triples. Thus we 
an assume that all triplesamong ni are equal to (1, a, b).Claim: Consider any pair (c, d)g2 among ni. We 
an assume that itssupport is 
ontained in {1, a, b}.Proof of the Claim. Suppose this is not the 
ase, that is c 6∈ {1, a, b}.Due to Lemma 12.14 we 
an assume d = a.1) Suppose that there is a g2 pair among ni that does not 
ontain ain the support.It must be equal to (1, b)g2 due to Lemma 12.14. We 
an applythe relation (1, b)g2 + (a, c)g2 = (c, 1)g2 + (a, b)g2. Applying on
e againLemma 12.14 to the pair (c, 1)g2 we 
an make a redu
tion.2) All g2 pairs among ni 
ontain a in the support.Due to Lemma 12.15 we 
an make a redu
tion. �Thus the support of all g2 pairs among ni is 
ontained in {1, a, b}.The same holds for g1 and g3 pairs. Thus all networks among ni havesupport 
ontained in {1, a, b}. Hen
e the same must hold for n′

i. Soour relation is a relation only on three indi
es. It is well known thatthe ideal for a tree with three edges is generated in degree 4, so inparti
ular the 
onsidered relation is generated in degree 4. �Corollary 12.17. If all triples among ni asso
iate gj to an index l,then there are no gj pairs among ni. Consequently there are no gj
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i and all triples among n′

i asso
iate gj to l. Moreover thenumber of triples among ni equals the number of triples among n′
i. �In 
on
lusion we redu
ed to the 
ase were there are no g1 pairs neitheramong ni nor n′

i. Moreover, there is the same number of triples among
ni and n′

i and they all asso
iate g1 to 1.Lemma 12.18. If all the triples among ni and n′
i have support in

{1, 2, 3} then either k = 3 or we 
an redu
e a triple.Proof. In this 
ase k = 1 or k = 3. If k = 1 then among ni there is atriple (1, 2, 3) and (1, 3, 2). One of this triples 
an be redu
ed. �12.3.1. Case: k = 1. We �rst 
onsider the most di�
ult 
ase k =
1. As always let n1 = (1, 2, 3) and n′

1 = (1, b, c). As the proof isquite 
ompli
ated we de
ided to in
lude the tree that des
ribes mostimportant 
ases. While reading the proof we en
ourage the reader tofollow at whi
h node we are. The proof is "depth-�rst, left-�rst".
k = 1

b = 2 c = 3 any triples agree on exa
tly one indexno (3, l), (c, w) (3, l)g3 (c, w)g3

(c, f)g2 (1, c, g) (1, 3, p) (3, o)g2

(2, q)g3 (1, x, 2)We start with the left node in the se
ond row � assume b = 2.We move to the most left node in the third row � suppose that thereis no g3 pair among ni that has got c in the support and, symmetri
ally,there is no g3 pair among n′
i that has got 3 in the support. There mustbe a triple (1, e, c) among ni. If e 6= 3 then we apply the relation

(1, 2, 3) + (1, e, c) = (1, 2, c) + (1, e, 3) and redu
e the triple (1, 2, c).We have e = 3. Analogously among n′
i there must be a triple (1, c, 3).Hen
e there must be either a pair (c, f)g2 or a triple (1, c, g) among ni.We 
ontinue to the most left node in the fourth row � suppose thatthere is a pair (c, f)g2. If f 6= 2 we apply the relation (1, 2, 3)+(c, f)g2 =

(1, c, 3) + (f, 2)g2 and redu
e the triple (1, c, 3). If f = 2 we apply the
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e the triple
(1, 2, c).Hen
e we 
an assume that there is a triple (1, c, g) among ni � se
ondnode in the fourth row. If g 6= 2 then we apply the relation (1, c, g) +
(1, 2, 3) = (1, 2, g) + (1, c, 3) and redu
e the triple (1, c, 3). For g = 2we apply the relation (1, 2, 3)+ (1, 3, c)+ (1, c, 2) = (1, 2, c)+ (1, 3, 2)+
(1, c, 3) and redu
e the triple (1, 2, c).We 
ontinue to the se
ond node in the third row. We assume thatthere is a pair (3, l)g3 among n′

i. If l 6= c we apply the relation (1, 2, c)+
(3, l)g3 = (1, 2, 3) + (c, l)g3 and redu
e the triple (1, 2, 3). If there wasa pair (c,m)g3 among ni then analogously we would have m = 3 andwe would be able to redu
e this pair. So there must be a triple (1, n, c)among ni. If n 6= 3 then we apply the relation (1, 2, 3) + (1, n, c) =
(1, n, 3) + (1, 2, c) and redu
e the triple (1, 2, c). So we assume n2 =
(1, 3, c). Hen
e there is either a pair (3, o)g2 or a triple (1, 3, p) among
n′
i.We move to the third node in the fourth row � suppose that thereis a triple (1, 3, p) among n′

i. If p 6= 2 we apply the relation (1, 2, c) +
(1, 3, p) = (1, 2, p) + (1, 3, c) and we redu
e (1, 3, c). So we have p = 2.There is either a pair (2, q)g3 or a triple (1, x, 2) among ni.Consider the �rst node in the �fth row � suppose that there is a pair
(2, q)g3 among ni. If q 6= c then we apply the relation (1, 3, c)+(2, q)g3 =
(1, 3, 2) + (c, q)g3 and redu
e (1, 3, 2). If q = c we apply the relation
(1, 2, 3) + (2, c)g3 = (1, 2, c) + (2, 3)g3 and redu
e the triple (1, 2, c).So we 
an move to the se
ond node in the �fth row � assume thatthere is a triple (1, x, 2) among ni. If x 6= c we apply the relation
(1, 3, c) + (1, x, 2) = (1, x, c) + (1, 3, 2) and redu
e the triple (1, 3, 2). If
x = c we apply the relation (1, 2, 3) + (1, 3, c) + (1, c, 2) = (1, 2, c) +
(1, 3, 2) + (1, c, 3) and redu
e the triple (1, 2, c).We pass to the fourth node in the fourth row � we assume that thereis a pair (3, o)g2 and there is no triple (1, 3, p) among n′

i. If o 6= 2 thenwe apply the relation (1, 2, c) + (3, o)g2 = (1, 3, c) + (2, o)g2 and redu
e
(1, 3, c). So there is a pair (2, 3)g2 among n′

i. Suppose that this pairappears r > 0 times among n′
i. Note that there are no pairs (2, s)g2among ni. Indeed suppose that there is su
h a pair. If s 6= 3 thenwe apply the relation (1, 3, c) + (2, s)g2 = (1, 2, c) + (3, s)g2 and redu
ethe triple (1, 2, c). If s = 3 we redu
e the pair (2, 3)g2. Hen
e theremust be at least r + 1 triples of the type (1, 2, t) among ni. If thereis a triple with t 6= 3 then we apply the relation (1, 3, c) + (1, 2, t) =

(1, 3, t) + (1, 2, c) and redu
e the triple (1, 2, c). Hen
e we have got atleast r + 1 triples (1, 2, 3) among ni. Noti
e that there are no triplesof the type (1, y, 3) among n′
i. Indeed, in su
h a 
ase we 
ould apply



116 MATEUSZ MICHA�EKthe relation (1, y, 3) + (2, 3)g2 = (1, 2, 3) + (y, 3)g2 and redu
e (1, 2, 3).Hen
e there must be at least r + 1 pairs of the type (3, u)g3 among n′
i.If u 6= c then we apply the relation (1, 2, c)+(3, u)g3 = (1, 2, 3)+(c, u)g3and redu
e the triple (1, 2, 3). Hen
e we have at least r+1 pairs (3, c)g3among n′

i. Note that there are no pairs of the type (c, v)g3 among ni.Indeed if v = 3 we 
ould redu
e this pair. If v 6= 3 then we applythe relation (1, 2, 3)+ (c, v)g3 = (1, 2, c) + (3, v)g3 and redu
e the triple
(1, 2, c). Hen
e we must have at least r + 1 triples of the type (1, z, c)among ni. If z 6= 3 then we apply the relation (1, 2, 3) + (1, z, c) =
(1, 2, c) + (1, z, 3) and redu
e the triple (1, 2, c). So there are at least
r + 1 triples (1, 3, c) among ni. Note that the elements g2 on 3 
annotbe redu
ed � among n′

i there are only r pairs 
ontaining them and notriples. The 
ontradi
tion �nishes this 
ase.Consider the third node in the third row � there is a pair (c, w)g3among ni. This is 
ompletely analogous to the se
ond node in this row,already 
onsidered.Also the se
ond node in the se
ond row � c = 3 � is analogous to the�rst node in the se
ond row.We are left with the last, third node in the se
ond 
olumn � anytwo triples ni and n′
j agree on exa
tly one index, that is on 1. Dueto Lemma 12.18 we 
an assume b 6= 2 and b 6= 3. Due to the 
aseassumption there must be a pair (b, d)g2 among ni. If d 6= 2 then weapply the relation (1, 2, 3) + (b, d)g2 = (1, b, 3) + (d, 2)g2 and redu
e tothe 
ase b = 212. Analogously we must have the same pair among n′

iand it 
an be redu
ed.12.3.2. Case: k = 2 or k = 3. Suppose now that k = 2. Let n1 =
(1, 2, 3) and n′

1 = (1, 2, c). If we 
annot redu
e n′
1 then there must be apair (c, d)g3 among ni and a pair (3, e)g3 among n′

i. If d = 3 and e = cwe 
an redu
e the pairs. Thus we 
an assume that d 6= 3. We applythe relation (1, 2, 3)+ (c, d)g3 = (1, 2, c) + (3, d)g3 and redu
e the triple
(1, 2, 3).The last, easiest 
ase is k = 3. Then all triples are equal to (1, 2, 3)and there are no pairs due to Corollary 12.17. Hen
e we 
an redu
ethe triples. This �nishes the proof of the theorem.13. Open problemsWe have already presented a few 
onje
tures in this part of the thesis.Here we would like to give a list of problems that should be mu
h easier,however still we �nd them interesting.12Noti
e that we do not redu
e to the 
ase k = 2 as if this was true we wouldhave already been in the �rst node in the se
ond 
olumn b = 2.
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on
erning normality. We already knowthat many general group-based models give rise to proje
tively normalvarieties for trivalent trees. However not mu
h is known about treesof higher valen
y. Of 
ourse, due to Proposition 5.72, it is enough to
onsider 
law trees. The questions on normality are important as manytori
 methods work only for normal polytopes. We have already appliedsome of them to 
ompute Hilbert fun
tions. Further appli
ations tothe 
onje
ture of Sturmfels and Sullivant 
ould be possible due to themethods of "�nite generation in rings with in�nitely many variables" �for more details see [HS11℄, [DK11℄. The question for the binary modelshould not be di�
ult.Conje
ture 13.1. Let T be any tree. The polytope representing thebinary Jukes-Cantor model on T is normal.The same question for the 3-Kimura model, in our opinion, is mu
hmore ambitious.Conje
ture 13.2. Let T be any tree. The polytope representing thebinary 3-Kimura model on T is normal.Re
all that in Proposition 9.1 we showed that the proje
tive varietyrepresenting the model is not normal. We also know that the a�ne va-riety representing the general group-based model for Z6 is not normal.Conje
ture 13.3. The proje
tive tori
 variety representing the generalgroup-based model for Z6 on K1,3 is not normal.Another question is to what extent the methods of Se
tion 12 
anbe applied to other abelian groups.Conje
ture 13.4. The proje
tive s
heme asso
iated to the group-basedmodel for Z3 and any tree 
an be represented by an ideal generated indegree 3.We �nish by restating, in our opinion, the most interesting, impor-tant and di�
ult Conje
ture 7.6.Conje
ture 13.5. The variety X(Kn,1) is equal to the (s
heme theo-reti
) interse
tion of all the varieties X(Ti), where Ti is a prolongationof Kn,1 that has only two inner verti
es, both of them of valen
y at leastthree. Appendix 1Here we show an expli
it example when the equality of the param-eters before the Fourier transform does not imply the equality afterit.
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es are of the form:



a b c d e f
f a b c d e
e f a b c d
d e f a b c
c d e f a b
b c d e f a


The matrix of the type above 
orresponds to a fun
tion g : G → C,su
h that g(0) = a, g(1) = b, g(2) = c, g(3) = d, g(4) = e and g(5) = f .The Fourier transform of g gives us: ĝ(χ0) = a + b + c + d + e + f ,

f̂(χ1) = a+jb+j2c+j3d+j4e+j5e, f̂(χ2) = a+j2b+j4c+d+j2e+j4eet
. where j is a primitive sixth root of unity. We 
onsider a submodelde�ned by g(0) = g(1) = g(5) and g(2) = g(4). This 
orresponds to
a = b = f and c = e. The Fourier transform gives us respe
tively
(x0, x1, x2, x3, x4, x5) = (3a+2c+d, 2a−c−d,−c+d,−a+2c−d,−c+
d, 2a− c− d). This de�nes a linear subspa
e given by x4 = x2, x5 = x1and x1 + 3x2 + 2x3 = 0. This is not an equality of distin
t variables.Appendix 2Here we present the pre
ise results of the 
omputations of Hilbert-Ehrhart polynomials for a few G-models. The results are from a jointwork with Maria Donten-Bury [DBM℄.For the groups Z8, Z2×Z2×Z2 and Z9 we 
omputed only the Hilbertfun
tion and, as we 
ould not 
he
k the normality, we do not know ifit is equal to Hilbert-Ehrhart polynomial.Models for G = H = Z3.dilation snow�ake 3-
aterpillar1 243 2432 21627 216273 903187 9040694 21451311 214960235 330935625 3319766376 3647265274 36621462707 30770591364 309203498348 209116329075 2102698918719 1189466778457 119666160183710 5831112858273 586893057794111 25205348411361 25377886917819



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 119Models for G = H = Z2 × Z2 (3-Kimura).dilation snow�ake 3-
aterpillar1 1024 10242 396928 3969283 69248000 693248004 5977866515 59901707395 291069470720 2918647101446 8967198289920 8995715702784Models for G = H = Z4.dilation snow�ake 3-
aterpillar1 1024 10242 396928 3969283 69248000 693248004 6122557220 61385525245 310273545216 3115256883206 10009786400352 10062179606880Models for G = H = Z5.dilation snow�ake 3-
aterpillar1 3125 31252 3834375 38343753 2229584375 22305968754 640338121875 642089603125Models for G = H = Z7. In this 
ase the �rst three dilations of thepolytopes have the same number of points. The numbers of pointsin fourth dilations were too big to obtain pre
ise results. Hen
e we
omputed only the numbers of points mod 64, whi
h is su�
ient toprove that the Hilbert-Ehrhart polynomials are di�erent.dilation snow�ake 3-
aterpillar1 16807 168072 117195211 1171952113 423913952448 4239139524484 ≡ 54 mod 64 ≡ 14 mod 64Models for G = H = Z8.dilation snow�ake 3-
aterpillar1 32768 327682 454397952 4543979523 3375180251136 3375013036032



120 MATEUSZ MICHA�EKModels for G = H = Z2 × Z2 × Z2.dilation snow�ake 3-
aterpillar1 32768 327682 454397952 4543979523 3375180251136 3375013036032Models for G = H = Z9.dilation snow�ake 3-
aterpillar1 59049 590492 1499667453 14996674533 20938605820263 20937202945056Part 2. Semigroups asso
iated to trivalent graphsLa deuxième partie 
on
erne les variétés algébriques asso
iées auxgraphes trivalents pour le modèle de Jukes-Cantor binaire. Il s'agitd'un travail en 
ommun ave
 Weronika Bu
zy«ska, Jarosªaw Bu
zy«skiet Kaie Kubjas. La variété asso
iée á un graphe peut être représentéepar un semi-groupe gradué. Nous étudions les liens entre les propriétésdu graphe et le semigroupe. Le théorème prin
ipal 14.1 borne le degréen lequel le semi-groupe est engendré par le premier nombre de Bettidu graphe, plus un.This part 
ontains results of a joint work with W. Bu
zy«ska, J.Bu
zy«ski and K. Kubjas. We use a generalization of the 
onstru
tionthat asso
iated a variety to a tree. We will be working with arbitrarytrivalent graphs with possible loops and multiple edges between twoverti
es. However our study 
on
erns only an equivalent of the binaryJukes-Cantor model. 14. Introdu
tionLet G be a trivalent graph. For a positive integer d, our main obje
tof study will be a subset τ(G)d of all labellings of edges of G by integers.A labelling is in τ(G)d, if the following 
onditions are satis�ed:[♥♥℄ (parity 
ondition) the sum of the three labels around ea
h innervertex is even;[+℄ (non-negativity 
ondition) ea
h label is non-negative;[△℄ (triangle inequalities) the three labels around ea
h inner vertexsatisfy the triangle inequalities;[°℄ (degree inequalities) the sum of the three labels around ea
hinner vertex is at most 2d.
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tion 15. We willbe interested in τ(G) = ⊔
d∈N τ(G)d, whi
h has a natural stru
ture of amonoid by edgewise addition, and we 
all it the phylogeneti
 monoidof G.14.1. Motivation. The 
ombinatori
s of the monoid τ(G) asso
iatedto a trivalent graph G has several in
arnations. Bu
zy«ska studied itin [Bu
12℄ as a generalization of the polytope de�ning the Cavender-Farris-Neyman [Ney71℄ model of a trivalent phylogeneti
 tree.In more re
ent work Sturmfels and Xu, [SX10℄ found a universalobje
t for the Cavender-Farris-Neyman model of trivalent trees withthe same dis
rete invariants. More pre
isely, they proved that given thenumber of leaves n, the Cavender-Farris-Neyman model of a trivalenttree is a sagbi degeneration of the proje
tive spe
trum of the Cox ringof the blow-up of Pn in n− 3 points. This variety is 
losely related tothe moduli of quasiparaboli
 ve
tor bundles on P1 with n− 2 markedpoints.Further work in this dire
tion was done by Manon in [Man09℄ and[Man11℄. He uses a sheaf of algebras over moduli spa
es of genus g
urves with n marked points 
oming from the 
onformal �eld theory.The 
ase g = 0 is the 
onstru
tion of [SX10℄, thus Manon's work gener-alises the Sturmfels-Xu 
onstru
tion. The monoid algebras C[τ(G)] arethe tori
 deformations of the algebras over the most spe
ial points inthe moduli of 
urves in the Manon's 
onstru
tion. Here G is the dualgraph of the redu
ible 
urve represented by a spe
ial point.Je�rey and Weitsmann in [JW92℄ study the moduli spa
e of �at

SU(2)-
onne
tions on a genus g Riemann surfa
e. In their 
ontexta trivalent graph G des
ribes the geometry of the 
ompa
t surfa
e ofgenus g with n marked points. They 
onsider a subset of Z-labellingsof the graph, whi
h is exa
tly τ(G)d. They prove that the number ofelements in this set is equal to the number of Bohr-Sommerfeld �bresasso
iated to L⊗d, where L is a natural polarizing line bundle on themoduli spa
e in question. The Bohr-Sommerfeld �bres are the 
entralobje
t of study in [JW92℄. By the Verlinde formula, the number ofthose �bres equals the dimension of the spa
e of holomorphi
 se
tionsof L⊗d. This number is the value of the Hilbert fun
tion of the tori
model of a 
onne
ted graph with the �rst Betti numberg and n leaves.Thanks to the Verlinde formula, whi
h arises from mathemati
alphysi
s, the Hilbert fun
tion of the monoid algebras C[τ(G)] has signif-i
ant meaning. In the 
ase of trivalent trees it was also used in [SX10℄and then studied by Sturmfels and Velas
o in [SV10℄. One of the fea-tures of this model is that the Hilbert fun
tion depends only on the
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ombinatorial data [BW07℄, [Bu
12℄. This phenomenon fails to be truefor other, even general group-based models, see [Kub10℄ or Appendix2 from Part 1.14.2. Main results. If ω ∈ τ(G), then there exists d, su
h that ω ∈
τ(G)d. Su
h d is 
alled the degree of ω. We are interested in theproblem of determining the degrees of elements in the minimal set ofgenerators of the monoid τ(G). We prove an upper bound for the degreeof generators:Theorem 14.1. Let G be any trivalent graph with �rst Betti number
g. Then the degree of ea
h element in the minimal set of generators of
τ(G) is at most g + 1.For g = 0, that is G is a trivalent tree, this result is equivalentto statement that τ(G)1 is a normal latti
e polytope and it has beenobtained in [BW07℄. For g = 1, the result has been obtained in [Bu
12℄.For g ≥ 2 it has been previously unknown. We prove the theorem inSe
tion 16.The lower bounds were presented in [BBKM10℄. Let us just statethese results.Theorem 14.2. Suppose g is even. Then there exists a trivalent graph
G with the �rst Betti number g and an element ω ∈ τ(G) of degree g+1,whi
h 
annot be written in a non-trivial way as a sum of two elements
ω = ω′ + ω′′ with ω′, ω′′ ∈ τ(G). Spe
i�
ally, G 
an be taken as the
g-
aterpillar graph (see Figure 2), and ω as the labelling on Figure 3.

Figure 2: The g-
aterpillar graph.
2k 2 2k − 2 4 2 2k

2k 2k 2k 2kFigure 3: The inde
omposable element ω of degree g + 1 on the g-
aterpillar graph for even g.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 123As for odd g, for all graphs with the �rst Betti number g = 1, thebound is also attained, as proved in [Bu
12℄. Also there exist graphswith g = 3, su
h that the bound is attained. The simplest of these isthe 3-
aterpillar graph and we illustrate an inde
omposable degree 4element in Se
tion 17.We also know the maximal degree of generators of the monoid forthe g-
aterpillar graph.Corollary 14.3 ([BBKM10℄). For the g-
aterpillar graph G, the monoid
τ(G) is generated in degree g + 1 if either g is even or g ≤ 3 and it isgenerated in degree g if g ≥ 5 and g is odd.We present an inde
omposable element of degree 6 on a graph withthe �rst Betti number 6 in Se
tion 17. We do not know, if there existgraphs with odd �rst Betti number g ≥ 5 su
h that τ(G) has a degree
g + 1 minimal generator.We also present the results of some 
omputational experiments for
g-
aterpillar graphs with g ≤ 5. Spe
i�
ally, we list all the generatorsof τ(G) for g ≤ 4 and enumerate these generators for g ≤ 5.15. Semigroup asso
iated with a trivalent graphIn this se
tion we re
all the 
onstru
tion of the monoid τ(G) intro-du
ed in [Bu
12℄.A graph G is a set V = V(G) of verti
es and a set E = E(G) of edges,whi
h we identify with pairs of verti
es. A graph is trivalent if everyvertex has valen
y one or three. A vertex with valen
y one is 
alled aleaf and an edge in
ident to a leaf is 
alled a leaf edge. A vertex thathas valen
y three is 
alled an inner vertex. The set of inner verti
esis denoted N = N (G).Notation 15.1. From now on we shall assume that all graphs andtrees are trivalent.The �rst Betti number of a graph is the minimal number of 
utsthat would make the graph into a tree. Given the origins of the problemexplained in Se
tion 14.1 it is tempting to 
all this number the genusof the graph, but this is in
onsistent with the graph theory notation,where the genus of graph is the smallest genus of a Riemann surfa
esu
h that the graph 
an be embedded into that surfa
e.A path is a sequen
e of pairwise distin
t edges e0, . . . , em with ei ∩
ei+1 6= ∅ for all i ∈ {0, . . . , m − 1}, su
h that either both e0 and em
ontain a leaf, or e0 ∩ em 6= ∅. In the latter 
ase, if in addition thesequen
e has no repeated edges, the path is 
alled a 
y
le. A 
y
le oflength one is a loop. A trivalent graph with no 
y
les is a trivalent



124 MATEUSZ MICHA�EKtree. Two paths are disjoint if they have no 
ommon vertex. Anetwork is a union of pairwise disjoint paths � 
f. Remark 5.27 andthe dis
ussion afterwards. For 
onsisten
y we say that the empty setis also a network. An edge whi
h is 
ontained in a 
y
le is 
alled 
y
leedge.De�nition 15.2. Given a graph G let ZE =
⊕

e∈E Z · e be the latti
espanned by E , and ZE∨ = Hom(ZE ,Z) be its dual. Elements of thelatti
e ZE are formal linear 
ombinations of the edges, thus E formsthe standard basis of ZE . The dual latti
e ZE∨ 
omes with the dualbasis {e∗}e∈E . We de�ne
M = {u ∈ ZE : ∀v ∈ N

∑

e∋v

e∗(u) ∈ 2Z}.Then the graded latti
e of the graph is
Mgr = Z⊕Mwith the degree map

deg :Mgr = Z⊕M → Z,given by the proje
tion onto the �rst summand.Remark 15.3. An element of the latti
e ZE represents also a labellingof the edges of G with integers. For ω ∈ ZE the label of e ∈ E equals
e∗(ω).De�nition 15.4 (av, bv, cv). Let v ∈ N be an inner vertex and let
e1, e2 and e3 be the three edges13 adja
ent to v. For ω ∈Mgr we de�ne
av(ω) = e∗1(ω), bv(ω) = e∗2(ω), cv(ω) = e∗3(ω).De�nition 15.5 (degree). We de�ne the degree of ω ∈ Mgr at aninner vertex v ∈ N as 1

2
(av(ω) + bv(ω) + cv(ω)).We rewrite the de�nition of τ(G) given in Se
tion 14 so that τ(G) isa submonoid of Mgr.De�nition 15.6. For a graph G we de�ne the phylogeneti
 monoid

τ(G) on G to be the set of elements ω satisfying the following 
ondi-tions:[♥♥℄ (parity 
ondition) ω ∈Mgr;[+℄ (non-negativity 
ondition) e∗(ω) ≥ 0 for any e ∈ E ;[△℄ (triangle inequalities) For any inner vertex v ∈ N

|av(ω)− bv(ω)| ≤ cv(ω) ≤ av(ω) + bv(ω);13If there is a loop at the vertex then e1 = e2.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 125[°℄ (degree inequalities) deg(ω) ≥ degv(ω) for any v ∈ N .The triangle inequalities [△℄ are symmetri
 and do not depend onthe embedding iv.Remark 15.7. If every edge of G 
ontains at least one inner vertex,then the inequalities above imply deg(ω) ≥ e∗(ω) for all edges. Onthe other hand, in the degenerate 
ases where one of the 
onne
ted
omponents of G 
onsists of one edge only, for 
onsisten
y the inequality
deg(ω) ≥ e∗(ω) should be in
luded in De�nition 15.6. However, we willnot 
onsider these degenerate 
ases here.To de�ne a network in the graded latti
e Mgr, we �rst have to do soin the latti
e M : we identify paths and networks in G with elements ofthe latti
e M by repla
ing union with sum in the group ZE .De�nition 15.8. A network in the graded latti
e Mgr is a pair
ω = (1, a) ∈Mgr where a ∈M is a network.De�nition 15.9. Following 5.24 we de�ne the group of networks tobe a subset of

Z2E :=
⊕

Z2 · esu
h that a formal sum in e1 + e2 + · · · + ek ∈ Z2E is in the groupof networks if and only if {e1, e2, . . . , ek} is a network. Note that thissubset forms a subgroup of Z2E .16. The upper boundThe goal of this se
tion is to prove Theorem 14.1. To do this, wepro
eed in three steps. First we re
all the result of [BW07℄ that givesTheorem 14.1 in the 
ase g = 0 (that is, if G is a tree). In the se
-ond step, we represent a graph G with �rst Betti number g as a tree
T together with g distinguished pairs of leaf edges, that are �glued�together. Elements of τ(G) are in one-to-one 
orresponden
e with theelements of τ(T ) that have identi
al labels on ea
h of the distinguishedpairs of leaf edges. Thus for an element ω ∈ τ(G) we 
onsider the de-
omposition of the 
orresponding element in τ(T ) into a sum of degree
1 elements of τ(T ). To ea
h su
h de
omposition we assign a matrixwith entries in {−1, 0, 1}. Sin
e the de
omposition is not unique, westudy how simple modi�
ations of the de
omposition a�e
t the matrix.Finally, we apply these modi�
ations to the matrix and prove that anysu�
iently high degree element τ(G) de
omposes. The details follow.
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ase of trees. The set of degree 1 elements τ(G)1 ⊂ {1}×
M ⊂Mgr 
onsists of networks � see [Bu
12, Lem. 2.30℄.The monoid τ(G) is the interse
tion of the 
onvex polyhedral 
onegiven by inequalities [+℄, [△℄, [°℄ with the latti
e Mgr � see [♥♥℄. If
T is a trivalent tree, then the inequalities de�ning τ(T )1 de�ne anintegral latti
e polytope P in {1}×M ⊂Mgr � see [BW07, Lem. 2.8℄.Furthermore, by [BW07, Prop. A.5℄ this polytope is normal, whi
hmeans, that any latti
e point in the res
aling nP 
an be obtained assum of n latti
e points in P . This implies that the monoid τ(T ) isgenerated by τ(T )1. We summarize by quoting [Bu
12, Prop. 2.32℄:Corollary 16.1. Let T be a trivalent tree. Then every ω ∈ τ(T )d 
anbe expressed as ω = ω1 + · · ·+ ωd, where ea
h ωi ∈ τ(T )1 is a network.Note that usually the de
omposition in the 
orollary is not unique.16.2. Matrix asso
iated to a de
omposition of a lifted element.To a given 
onne
ted graph G with �rst Betti number g we asso
iatea tree T with g distinguished pairs of leaf edges. This pro
edure 
anbe des
ribed indu
tively on g. If g = 0, then the graph is a tree withno distinguished pairs of leaf edges. For g > 0 we 
hoose a 
y
le edge
e. We divide e into two edges e′ and e′′ adding two verti
es l′ and
l′′ of valen
y 1. The edges e′ and e′′ form a distinguished pair of leafedges. This pro
edure de
reases the �rst Betti number by one andin
reases the number of distinguished pairs by one. Note that usuallythe resulting tree with distinguished pairs of leaf edges is not unique,however a tree with distinguished pairs of leaf edges en
odes pre
iselyone graph.Let G be a graph and let T be an asso
iated tree. There is a one-to-one 
orresponden
e between elements of τ(G) and the elements of
τ(T ) that assign the same value to the leaf edges in ea
h distinguishedpair. Thus we have the natural in
lusion τ(G) ⊂ τ(T ). See [Bu
12,�2.2�2.3℄ for a more geometri
 interpretation of this in
lusion.Let ω be an element of τ(G). By Corollary 16.1, in the monoid τ(T )there exists a de
omposition ω = ω1 + · · ·+ ωdeg(ω), where ωi ∈ τ(T )1.For ea
h su
h de
omposition we 
onsider the matrix Bω1,...,ωdeg(ω)

with
deg(ω) rows and g 
olumns indexed by pairs of distinguished leaf edges.The entry in the i-th row and 
olumn indexed by a pair of distinguishedleaf edges (e′, e′′) is e′∗(ωi)−e′′∗(ωi). Thus, sin
e ωi is a network ωi(e) ∈
{0, 1} for any edge, entries of Bω1,...,ωdeg(ω)

are only −1, 0 or 1.The matrixBω1,...,ωdeg(ω)
depends on the tree T and on the de
omposi-tion of ω into the sum of degree one elements. An entry of Bω1,...,ωdeg(ω)
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orresponding network is 
ompatible on the 
orre-sponding distinguished pair of leaf edges. Our aim is to de
omposeany element ω with deg(ω) > g + 1 in τ(G). This means that we arelooking for de
ompositions in τ(T ) that are 
ompatible on the distin-guished pairs of leaf edges. Hen
e, it is natural to 
onsider matri
eswith as many entries equal to zero as possible.Let ω be an element of τ(T ). Let ω = ω1 + · · · + ωdeg(ω) be ade
omposition of ω into networks. Let Bω1,...,ωdeg(ω)
be the matrix with

deg(ω) rows 
orresponding to the de
omposition. Noti
e that for anysubset of indi
es {j1, . . . , jp} ⊂ {1, . . . , deg(ω)} the following 
onditionsare equivalent:(i) the element ωj1 + · · ·+ ωjp is in τ(G);(ii) in ea
h 
olumn ofBω1,...,ωdeg(ω)
the sum of entries in rows j1, . . . , jpis equal to zero.Even if we start from a de
omposable ω the asso
iated matrix might nothave this property; it depends upon the 
hoi
e of de
omposition of ωin τ(T ). The following lemma shows how to 
hange this de
ompositionin order to obtain a matrix with the required property.Lemma 16.2. Let ω be an element of τ(T ). Consider all de
omposi-tions of ω and asso
iated matri
es. Let us 
hoose a de
omposition of

ω = ω1+ · · ·+ωdeg(ω) that gives a matrix Bω1,...,ωdeg(ω)
with as many zeroentries as possible. Let us 
hoose two entries in the matrix Bω1,...,ωdeg(ω)that are in the same 
olumn indexed by (e′1, e

′′
1). Suppose that they areequal, respe
tively, to 1 and −1. There exists a de
omposition of ω thatyields a matrix the same as Bω1,...,ωdeg(ω)

, ex
ept for those two entries,whi
h are inter
hanged.Proof. Let ω = ω1+ · · ·+ωdeg(ω) be the given de
omposition. Withoutloss of generality we may assume that the entries are in the �rst andse
ond row. Hen
e ω1 asso
iates to the edges e′1 and e′′1 values 0 and 1respe
tively, and similarly ω2 asso
iates 1 and 0.Let us 
onsider all edges of the tree T on whi
h the networks ω1 and
ω2 disagree. These edges form the network S on the tree T . In fa
t,
S = ω1 + ω2, where the sum is taken in the group of networks. De�ne
p1 to be the unique path from S starting at e′′1. Suppose that we have
onstru
ted a sequen
e of paths p1, . . . , pm−1 for m > 1, where the �rstedge of pi is e′′i and the last is e′i+1 and (e′i, e

′′
i ) is a distinguished pairfor i ∈ {1, . . . , m− 1}. We 
onsider the following 
ases:(i) If the edge e′m is not paired, then we stop the 
onstru
tion.Otherwise we go to Case (ii).



128 MATEUSZ MICHA�EK(ii) If there is a distinguished pair (e′m, e′′m) and e′m∗(ω1) 6= e′′m
∗(ω1)or e′m∗(ω2) 6= e′′m

∗(ω2) (i.e. at least one of the two entries in the
olumn (e′m, e
′′
m) is non-zero), then we stop the 
onstru
tion.Otherwise we go to Case (iii).(iii) If there is a distinguished pair (e′m, e′′m) and e′m∗(ω1) = e′′m

∗(ω1),
e′m

∗(ω2) = e′′m
∗(ω2), then ω1 and ω2 disagree on e′′m, and e′′m isin S. We de�ne pm to be the unique path from S starting from

e′′m. Let e′m+1 be the other end of the path pm. We in
rease mby 1 and start over from Case (i).Let us noti
e that the 
onstru
ted paths are distin
t. In parti
ular,the 
onstru
tion terminates. Indeed, ea
h path pi+1 uniquely deter-mines the path pi. Hen
e the �rst path that would have been repeatedis p1. This is possible only if the previous path ends with e′1. From theassumption, we would have been in Case (ii), hen
e the 
onstru
tionwould terminate.We de�ne a network b ⊂ S to be the network, whi
h is the unionof paths (p1, . . . , pm−1). We use it to de�ne two new networks ω′
1 and

ω′
2. Namely, ω′

i = ωi + b, where the sum is taken in the group ofnetworks. In other words, ω′
1 (resp. ω′

2) 
oin
ides with ω1 (resp. ω2) onall edges apart from those belonging to the network b. On the latterones ω′
1 (resp. ω′

2) is a negation of ω1 (resp. ω2), hen
e 
oin
ides with
ω2 (resp. ω1). In parti
ular, ω1 + ω2 = ω′

1 + ω′
2, where this time thesum is taken in τ(T ).We get a de
omposition ω = ω′

1 + ω′
2 + ω3 + · · · + ωdeg(ω) with theasso
iated matrix Bω

′

1,...,ωdeg(ω)
. We 
laim that it ex
hanges the two
hosen entries equal to 1 and −1.Consider ea
h distinguished pair of leaf edges through whi
h wepassed during our 
onstru
tion of (p1, . . . , pm−1). If we did not stop ata pair (l1, l2) ea
h network a1 and a2 assigns the same value to l1 and

l2 � otherwise we would have stopped be
ause of Case (ii). On theseleaf edges ω′
1 and ω′

2 agree with ω2 and ω1 respe
tively. Hen
e, theyalso assign the same value to l1 and l2. In parti
ular, both Bω1,...,ωdeg(ω)and B
ω
′

1,...,ωdeg(ω)
have zeros in �rst two rows in the 
olumn indexedby (l1, l2). In fa
t, the only four entries on whi
h Bω1,...,ωdeg(ω)

and
B

ω
′

1,...,ωdeg(ω)
might possibly di�er are the entries in �rst two rows in the
olumns indexed by (e′1, e

′′
1) or (e′m, e′′m), where pm is the last path.Let us ex
lude the possibility that the 
onstru
tion stopped in Case (i).In this 
ase the last leaf edge is not paired, hen
e we only 
hange en-tries in the 
olumn indexed by (e′1, e

′′
1). Sin
e both ω′

1 and ω′
2 agree on
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e′1 and e′′1, we have that Bω

′

1,...,ωdeg(ω)
has two zeros, whereas Bω1,...,ωdeg(ω)had 1 and −1. This 
ontradi
ts the 
hoi
e of Bω1,...,ωdeg(ω)

.Suppose now that the 
onstru
tion terminated in Case (ii). We 
on-sider two sub-
ases.1) The edges e′m 6= e′1 are distin
t. We will ex
lude this 
ase. We
hange four entries in two 
olumns. The two entries in the 
olumn in-dexed by (e′1, e
′′
1) are 
hanged from 1 and −1 to zero. We know that ma-trix Bω

′

1,...,ωdeg(ω)
has at most as many zero entries as Bω1,...,ωdeg(ω)

. Hen
ethe two entries in the 
olumn indexed by (e′m, e′′m)must be 
hanged fromtwo zeros to two non-zeros. Having two zeros in Bω1,...,ωdeg(ω)
in thoseentries 
ontradi
ts the assumptions of Case (ii).2) The edges e′m = e′1 are equal. In this 
ase e′′m = e′′1, so we onlyex
hange two entries in the 
olumn indexed by (e′1, e

′′
1). This meansthat we have ex
hanged 1 and −1, whi
h proves the lemma. �16.3. Proof of de
omposability. We are ready to prove the theoremon the upper bound of the degree of minimal generators of τ(G).Proof of Theorem 14.1. Let us 
onsider an element ω of degree deg(ω) >

g + 1 in τ(G). We 
onsider any tree T asso
iated with the graph G.Let us 
hoose a de
omposition of ω in τ(T ), su
h that the asso
iatedmatrix Bω1,...,ωdeg(ω)
has as many zero entries as possible. First we wantto �nd a subset of rows of the matrix Bω1,...,ωdeg(ω)

su
h that the sumof entries in ea
h 
olumn is even. We redu
e the entries of Bω1,...,ωdeg(ω)modulo 2 obtaining the matrix Cω with entries from Z2. We 
onsiderrows of Cω as ve
tors of the g dimensional ve
tor spa
e over the �eld
Z2. We have deg(ω) > g + 1 su
h ve
tors. Hen
e we 
an �nd a stri
tsubset of linearly dependent ve
tors. As we are working over Z2 we seethat we have a stri
t subset of ve
tors summing to 0. The same subset
R of rows in matrix Bω1,...,ωdeg(ω)

sums to even numbers in ea
h 
olumn.The element ω is in τ(G). Hen
e the sum of entries in ea
h 
olumnof the matrix Bω1,...,ωdeg(ω)
is zero. Suppose that the sum of entries inthe rows from R is non-zero in a 
olumn. Using Lemma 16.2 we 
anex
hange the entries, 
hanging the sum by 2 until it is equal to zero. Inthis way we get a de
omposition of ω su
h that the rows from R sumto zero in ea
h 
olumn. Hen
e, the sum of networks 
orresponding torows from R is in τ(G). The sum of the remaining networks is in τ(G)too. Thus we obtain a non-trivial de
omposition of ω. �17. Examples on small graphsWe 
on
lude this part with some examples of inde
omposable ele-ments for spe
ial 
ases of graphs with low �rst Betti number g.
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omposable element of degree 4 on the 3-
aterpillar graph. It proves that in the 
ase g = 3, the upper bound ofTheorem 14.1 is attained.
2 2 4

2 2

1 1

2The se
ond example is a degree 6 inde
omposable element on a graphwith 6 loops and one leaf.
4 4

4

4

24

0

66

4

2

4

2

2

1

2 1

3

2

The following table presents the numbers of generators of τ(G) inea
h degree, where G is the g-
aterpillar graph, and g ≤ 5.
deg g = 1 g = 2 g = 3 g = 4 g = 5all 3 15 163 2708 49187
1 2 4 8 16 32
2 1 7 37 175 781
3 4 64 704 6624
4 54 1701 35190
5 112 6560Part 3. Derived 
ategoriesDans la dernière partie, nous étudions la stru
ture de la 
atégoriedérivée des fais
eaux 
ohérents des variétés toriques lisses. Dans untravail 
ommun ave
 Mi
haª Laso« [LM11℄, nous 
onstruisons une 
ol-le
tion fortement ex
eptionnelle 
omplète de �brés en droites pour unegrande 
lasse de variétés toriques 
omplètes lisses dont le nombre dePi
ard est égal á trois. De nombreuses questions 
on
ernant le typede 
olle
tions auxquelles on peut s'attendre sur les variétés toriques de
ertains types sont en
ore ouvertes. A 
e titre, nous prouvons que Pné
laté en deux points ne possède pas de 
olle
tion fortement ex
eption-nelle 
omplète de �brés en droites pour n assez grand. Ce
i fournit une
olle
tion in�nie de 
ontre-exemples à la 
onje
ture de King 19.2. Lepremier 
ontre-exemple est dû à Hille et Perling [HP06℄. Ré
emment,des 
ontre-exemples ont également été trouvés par E�mov [E�℄ dans le
adre des variétés de Fano.
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tion18.1. De�nition of the derived 
ategory. Let X be a smooth va-riety over the �eld C. Let us brie�y re
all the 
onstru
tion of thederived 
ategory of X . We en
ourage the reader to 
onsult �rst 
hap-ters of [Huy06℄ for pre
ise de�nitions, examples and most importanttheorems. A well-motivated, relatively short introdu
tion to derived
ategories 
an be found in [C l05℄. A mu
h longer, 
lassi
al referen
eis [GM03℄.We start the 
onstru
tion with the 
ategory Kom of 
omplexes of
oherent sheaves on X . Let us introdu
e the homotopy 
ategory K of
omplexes. The obje
ts in K are the same as in Kom. We identifymorphisms that are homotopi
ally equivalent.De�nition 18.1 (Homotopi
ally equivalent morphisms of 
omplexes,De�nition 2.12 [Huy06℄). Let us 
onsider two 
omplexes
· · · Ai

δi
Ai+1

δi+1
· · ·

· · · Bi

δ′i
Bi+1

δ′i+1
· · ·and two morphisms f, g between them with 
omponents given by fi, gi :

Ai → Bi. We say that f and g are homotopi
ally equivalent if and onlyif there exists a 
olle
tion of morphisms hi : Ai → Bi−1 su
h that
fi − gi = hi+1 ◦ δi − δ′i−1 ◦ hi.The relation of being homotopi
ally equivalent is an equivalen
e rela-tion. A morphism in the 
ategory K is an equivalen
e 
lass of mor-phisms up to this relation.Re
all that a morphism f between 
omplexes A,B ∈ Kom indu
esa morphism in 
ohomology

H i(f) :
Ker δi
Im δi−1

=: H i(A) → H i(B).Moreover if f and g are homotopi
ally equivalent, then H i(f) = H i(g).Hen
e given a morphism in K we have the well-de�ned indu
ed mor-phism on 
ohomologies.De�nition 18.2 (Quasi isomorphism). A morphism between 
omplexes(in Kom or K) is 
alled a quasi-isomorphism if the indu
ed morphismon 
ohomologies is an isomorphism.
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ts of the derived 
ategory D(X) will be 
omplexes of 
o-herent sheaves. However the morphisms in the derived 
ategory arede�ned di�erently.De�nition 18.3 (Morphism in the derived 
ategories). A roof (between
A and B) is the following diagram:

C
f g

A Bwhere A,B,C are 
omplexes, f, g are morphisms in K and f is a quasi-isomorphism. Two roofs between A and B are 
alled equivalent if they
an be dominated in K by a 
ommon roof. More pre
isely 
onsider tworoofs for whi
h the domains of the morphisms are given respe
tively by
C1 and C2. These roofs are equivalent if and only if there exists thefollowing 
ommutative diagram in K:

C
f

C1

h

C2

A Bwith h ◦ f a quasi-isomorphism. A morphism in the derived 
ategory
D(X) is an equivalen
e 
lass of roofs. In parti
ular, one 
an show thata 
omposition of roofs is also given by a roof that dominates them.The 
onstru
tion seems, and indeed is, quite te
hni
al. In [C l05℄the author motivates the 
onstru
tion by topology, espe
ially the the-orem of Whitehead. One of the aims of the 
onstru
tion is to makequasi-isomorphisms, real isomorphisms. The pro
ess of adding inversemorphisms to the 
ategory is 
alled lo
alisation14. However, for thelo
alization pro
ess to work well one should pass from the 
ategory of
omplexes Kom to the 
ategory K. Indeed, the derived 
ategory 
anbe regarded as the smallest possible 
ategory obtained from Kom byadding inverses of quasi-isomorphisms. Formally this 
an be 
hara
ter-ized by a universal property [Huy06, Theorem 2.10℄ that the derived
ategory satis�es.We will be mostly interested in the bounded derived 
ategory Db(X).To de�ne it one 
an repeat the 
onstru
tion of D(X) starting not from14Indeed it is similar to the algebrai
 lo
alization where we add formal inversesof elements.
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ategory Kom, but a sub
ategory of 
omplexes with only a �nitenumber of nonzero elements. The 
ategory Db(X) is equivalent to a fullsub
ategory of D(X) 
ontaining 
omplexes with only a �nite numberof nonzero 
ohomology.Details of 
ategory theory are beyond the s
ope of this thesis. How-ever, we should mention that the derived 
ategory is not an abelian
ategory. Thus one 
annot speak about exa
t sequen
es. Still, somediagrams, 
alled the distinguished triangles exist and play a role similarto short exa
t sequen
es. This gives the derived 
ategory the stru
tureof the triangulated 
ategory. When we say that two derived 
ategoriesare equivalent, we assume that the exa
t triangles are preserved. For-mally by an equivalen
e we mean an exa
t equivalen
e. Details andde�nitions 
an be found in any book on derived 
ategories or homolog-i
al algebra.On the one hand, the derived 
ategories give a uniform languagethat allows to state many de�nitions, useful from the point of view ofalgebrai
 geometry. On the other hand, the stru
ture of the derived
ategory 
an be extremely 
ompli
ated and is an obje
t of intensivestudies. In some 
ases one 
an 
onsider a 
olle
tion of obje
ts from thederived 
ategory that plays a role of the "basis" of the derived 
ategory.The following se
tions investigate when su
h spe
ial 
olle
tions exist.We have to note, that the derived 
ategory of an algebrai
 manifolddoes not fully 
hara
terize it. Indeed, the questions how subtile thederived 
ategory is as an invariant, is one of the most important onein the domain. Let us present two well-known results.Theorem 18.4 (Bridgeland [Bri02℄). Any two birational Calabi-Yauthreefolds have got equivalent derived 
ategories. �Theorem 18.5 (Bondal, Orlov [BO01℄). Let X and Y be smooth pro-je
tive varieties and assume that the (anti-)
anoni
al bundle of X isample. If there exists an equivalen
e Db(X) ≃ Db(Y ), then X and Yare isomorphi
. �18.2. Full, strongly ex
eptional 
olle
tions. The stru
ture andproperties of the derived 
ategory of an arbitrary variety X 
an bevery 
ompli
ated and they are an obje
t of many studies. One of theapproa
hes to understand the derived 
ategory uses the notion of ex-
eptional obje
ts. Let us introdu
e the following de�nitions (see also[GR87℄):De�nition 18.6 (Strongly ex
eptional 
olle
tion).(i) An obje
t of the bounded derived 
ategory Db(X) of X is ex-
eptional if Hom(F, F ) = K and Ext iOX
(F, F ) = 0 for i 6= 0.
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olle
tion (F0, F1, . . . , Fm) of obje
ts is an ex
ep-tional 
olle
tion if ea
h sheaf Fi is ex
eptional andExt iOX
(Fk, Fj) = 0 for j < k and i ≥ 0.(iii) An ex
eptional 
olle
tion (F0, F1, . . . , Fm) of obje
ts is a stronglyex
eptional 
olle
tion if Ext iOX

(Fj , Fk) = 0 for j ≤ k and
i ≥ 1.(iv) A (strongly) ex
eptional 
olle
tion (F0, F1, . . . , Fm) of obje
tsis a full, (strongly) ex
eptional 
olle
tion if it generatesthe bounded derived 
ategory Db(X) of X i.e. the smallesttriangulated 
ategory 
ontaining {F0, F1, . . . , Fn} is equivalentto Db(X).For an ex
eptional 
olle
tion (F0, . . . , Fm) one may de�ne an obje
t

F = ⊕m
i=0Fi and an algebra A = Hom(F, F ). Su
h an obje
t givesus a fun
tor GF from Db(X) to the derived 
ategory Db(A−mod) ofright �nite-dimensional modules over the algebra A. Bondal proved in[Bon89℄, that if X is smooth and (Fi) is a full, strongly ex
eptional 
ol-le
tion, then the fun
tor GF gives an equivalen
e of these 
ategories. Infurther se
tions we will be mostly interested in the strongly ex
eptional
olle
tions.19. Tori
 varieties and ex
eptional 
olle
tionsIn the whole se
tion we assume that X is a smooth tori
 variety. Inparti
ular X is normal, thus given by a fan.19.1. Known results and 
ounterexamples. As the stru
ture ofderived 
ategories is 
ompli
ated it is natural to look at examples oftori
 varieties. In parti
ular, ex
eptional 
olle
tions for tori
 varietieshave been an obje
t of studies. The strongest positive result is due toKawamata [Kaw06℄.Theorem 19.1 ([Kaw06℄). For any smooth, proje
tive tori
 variety

X, the bounded derived 
ategory Db(X) is generated by an ex
eptional
olle
tion of 
oherent sheaves.Due to the fa
t that line bundles have got a parti
ularly ni
e de-s
ription for tori
 varieties one 
ould ask whether "
oherent sheaves"in previous theorem 
an be repla
ed by line bundles [Huy06, Remark8.38℄. This is an open problem. However, there exists a 
ounter exam-ple to the following 
onje
ture of King.Conje
ture 19.2 (King's). For any smooth, 
omplete tori
 variety Xthere exists a full, strongly ex
eptional 
olle
tion of line bundles.
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ounterexample was presented by Hille and Perlingin [HP06℄. They gave an example of a smooth, 
omplete tori
 sur-fa
e whi
h does not have a full, strongly ex
eptional 
olle
tion of linebundles. Further results gave a full des
ription of the two dimensional
ase [HP℄. In Se
tion 19.7 we show that Pn blown up in two pointsfor n large enough are also 
ounterexamples to King's 
onje
ture. The
onje
ture was reformulated by Miró-Roig and Costa (stated also in[BH09℄):Conje
ture 19.3. For any smooth, 
omplete Fano tori
 variety thereexists a full, strongly ex
eptional 
olle
tion of line bundles.This 
onje
ture has an a�rmative answer when the Pi
ard numberof X is less than or equal to two [CMR04℄ or the dimension of X isat most three [BH09℄, [Bon89℄, [BT09℄. Re
ently it was disproved byE�mov in [E�℄. In the same paper the author states the following
onje
ture, suggested by D. Orlov.Conje
ture 19.4 ([E�℄). For any smooth proje
tive tori
 Deligne�Mumford sta
k Y , the derived 
ategory Db(Y ) is generated by a stronglyex
eptional 
olle
tion.We will often make use of the 
onstru
tion of a 
olle
tion of linebundles due to Bondal. The 
onstru
tion is des
ribed in Se
tion 19.3.Using this, one obtains a full 
olle
tion of line bundles in Db(X). Insome 
ases Bondal's 
olle
tion of line bundles is a strongly ex
eptional
olle
tion (see also [Bon06℄), but it is not true in general. Often one
an �nd a subset of this 
olle
tion and order it in su
h a way that itbe
omes strongly ex
eptional and remains full. This approa
h was welldes
ribed in [CMRb℄ for a 
lass of tori
 varieties with Pi
ard numberthree.19.2. Tori
 varieties with Pi
ard number three. Smooth, 
om-plete tori
 varieties with Pi
ard number three have been 
lassi�ed byBatyrev in [Bat91℄ a

ording to their primitive relations. Let Σ be afan in N = Zn and let R be the set of rays of Σ.De�nition 19.5. We say that a subset P ⊂ R is a primitive 
olle
tionif it is a minimal subset of R whi
h does not span a 
one in Σ.In other words a primitive 
olle
tion is a subset of ray generators,su
h that all together they do not span a 
one in Σ but if we removeany generator, then the rest spans a 
one that belongs to Σ. To ea
hprimitive 
olle
tion P = {x1, . . . , xk} we asso
iate a primitive relation.Let w =
∑k

i=1 xi. Let σ ∈ Σ be the 
one of the smallest dimension
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ontains w and let y1, . . . , ys be the ray generators of this 
one.The tori
 variety of Σ was assumed to be smooth, so there are uniquepositive integers n1, . . . , ns su
h that
w =

s∑

i=1

niyi.De�nition 19.6. For ea
h primitive 
olle
tion P = {x1, . . . , xk} let niand yi be as des
ribed above. The linear relation:
x1 + · · ·+ xk − n1y1 − · · · − nsys = 0is 
alled the primitive relation (asso
iated to P ).Using the results of [Grü03℄ and [OP91℄ Batyrev proved in [Bat91℄that for any smooth, 
omplete n dimensional fan with n + 3 genera-tors its set of ray generators 
an be partitioned into l non-empty sets

X0, . . . , Xl−1 in su
h a way that the primitive 
olle
tions are exa
tlysums of p + 1 
onse
utive sets Xi (we use a 
ir
ular numeration, thatis we assume that i ∈ Z/lZ), where l = 2p + 3. Moreover l is equal to
3 or 5. The number l is of 
ourse the number of primitive 
olle
tions.In the 
ase l = 3 the fan Σ is a splitting fan (that is any two primitive
olle
tions are disjoint). These varieties are well 
hara
terized, and weknow mu
h about full, strongly ex
eptional 
olle
tions of line bundleson them. The 
ase of �ve primitive 
olle
tions is mu
h more 
ompli-
ated and is our obje
t of study. For l = 5 we have the following resultof Batyrev.Theorem 19.7 ([Bat91, Theorem 6.6℄). Let Yi = Xi ∪ Xi+1, where
i ∈ Z/5Z,

X0 = {v1, . . . , vp0}, X1 = {y1, . . . , yp1}, X2 = {z1, . . . , zp2},

X3 = {t1, . . . , tp3}, X4 = {u1, . . . , up4},where p0 + p1 + p2 + p3 + p4 = n + 3. Then any n-dimensional fan Σwith the set of generators ⋃Xi and �ve primitive 
olle
tions Yi 
an bedes
ribed up to a symmetry of the pentagon by the following primitiverelations with nonnegative integral 
oe�
ients c2, . . . , cp2, b1, . . . , bp3:
v1+· · ·+vp0+y1+· · ·+yp1−c2z2−· · ·−cp2zp2−(b1+1)t1−· · ·−(bp3+1)tp3 = 0,

y1 + · · ·+ yp1 + z1 + · · ·+ zp2 − u1 − · · · − up4 = 0,

z1 + · · ·+ zp2 + t1 + · · ·+ tp3 = 0,

t1 + · · ·+ tp3 + u1 + · · ·+ up4 − y1 − · · · − yp1 = 0,

u1+ · · ·+up4+v1+ · · ·+vp0 −c2z2−· · ·−cp2zp2 −b1t1−· · ·−bp3tp3 = 0.

�
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ase we may assume that
v1, . . . , vp0, y2, . . . , yp1, z2, . . . , yp2, t1, . . . , tp3, u2, . . . , up4form a basis of the latti
e N . The other ve
tors are given by
z1 =− z2 − · · · − zp2 − t1 − · · · − tp3

y1 =− y2 − · · · − yp1 − z1 − · · · − zp2 + u1 + · · ·+ up4(19.1)
u1 =− u2 − · · · − up4 − v1 − · · · − vp0 + c2z2 + · · ·+ cp2zp2

+ b1t1 + · · ·+ bp3tp319.3. Bondal's 
onstru
tion and Thomsen's algorithm. This se
-tion 
ontains joint results with Mi
haª Laso« [LM11℄.We start this se
tion by re
alling Thomsen's [Tho00℄ algorithm for
omputing the summands of the push forward of a line bundle by aFrobenius morphism. We do this be
ause of two reasons.First is that Thomsen in his paper assumes �nite 
hara
teristi
 ofthe ground �eld and uses absolute Frobenius morphism. We 
laim thatthe arguments used apply also in 
ase of geometri
 Frobenius morphismand 
hara
teristi
 zero.Moreover by re
alling all methods we are able to show that the re-sults of Thomsen 
oin
ide with the results stated by Bondal in [Bon06℄.Combining both methods enables us to dedu
e some interesting fa
tsabout tori
 varieties. A reader interested in a short proof and a methodfor the de
omposition of the push forward of a line bundle by a Frobe-nius morphism is advised to 
onsult [A
h℄.Most of the results of this se
tion are due to Bondal and Thomsen.We use the notation from [Tho00℄. Let Σ ⊂ N be a fan su
h that thetori
 varietyX = X(Σ) is smooth. Let us denote by σi ∈ Σ the 
ones ofour fan and by T the torus of our variety. If we �x a basis (e1, . . . , en) ofthe latti
e N , then of 
ourse T = SpecR, where R = k[X±1
e∗1
, . . . , X±1

e∗n
].In 
hara
teristi
 p we have got two p-th Frobenius morphisms F :

X → X . One of them is the absolute Frobenius morphism given asan identity on the underlying topologi
al spa
e and a p-th power onstru
ture sheaves. Noti
e that on the torus it is given by a map R → Rthat is simply a p-th power map, hen
e it is not a morphism of kalgebras (it is not an identity on k).The other morphism is 
alled the geometri
 Frobenius morphism and
an be de�ned in any 
hara
teristi
. Let us �x an integer m. Considera morphism of tori T → T that asso
iates tm to a point t. Thisis a morphism of s
hemes over k that 
an be extended to the m-thgeometri
 Frobenius morphism F : X → X . What is important is that
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an be 
onsidered as endomorphisms of opena�ne subsets asso
iated to 
ones of Σ. We 
laim that in both 
asesThomsen's algorithm works.We begin by re
alling the algorithm from [Tho00℄. Let vi1, . . . , vidibe the ray generators of the di dimensional 
one σi. As the variety wasassumed to be smooth we may extend this set to a basis of N . Let
Ai be a square matrix whose rows are ve
tors vij in the �xed basis of
N . Let Bi = A−1

i and let wij be the j-th 
olumn of Bi. Of 
ourse the
olumns of Bi are ray generators (extended to a basis) of the dual 
one
σ∗
i ⊂M = N∗.Let us remind that X(Σ) is 
overed by a�ne open subsets Uσi

=
SpecRi, where Ri = k[Xwi1 , . . . , Xwidi , X±widi+1 , . . . , X±win]. Here weuse the notation Xv = Xv1

e∗1
· · · · · Xvn

e∗n
. Let also Xij = Xwij . In thisway the monomials Xi1, . . . , Xin should be 
onsidered as 
oordinateson the a�ne subset Uσi

, so we are able to think about monomials on
Uσi

as ve
tors: a ve
tor v 
orresponds to the monomial Xv
i . Of 
ourseall of these a�ne subsets 
ontain T , that 
orresponds to the in
lusions

Ri ⊂ R.Using basi
 results from tori
 geometry, see [Ful93, p. 21℄, we knowthat Uσi
∩Uσj

= Uσi∩σj
and this is a prin
ipal open subset of Uσi

. Thismeans that there is a monomialMij su
h that Uσi∩σj
= Spec((Ri)Mij

).We are interested in Pi
ard divisors. A T invariant Pi
ard divisor isgiven by a 
ompatible 
olle
tion {(Uσi
, Xui

i )}σi∈Σ. Compatible meansthat the quotient of any two fun
tions in the 
olle
tion is invertible onthe interse
tion of domains. This motivates the de�nition:
Iij = {v : Xv

i is invertible in (Ri)Mij
}.Given a monomial Xv

i , if we want to know how it looks in 
oordinates
Xe∗1

, . . . , Xe∗n
(obviously from the de�nition of Xi) we just have to mul-tiply v by Bi: Xv

i = XBiv. We see that Xv
i = X

B−1
j Biv

j . That is why wede�ne Cij = B−1
j Bi and we think of Cij as the matri
es that translatethe monomials in 
oordinates of one a�ne pie
e to another.Now the 
ompatibility in the de�nition of a Cartier divisor simplyis equivalent to the 
ondition uj − Cijui ∈ Iji. We de�ne uij = uj −

Cijui and think about them as transition maps. Of 
ourse a divisor isprin
ipal if and only if uij = 0 for all i, j (ve
tor equal to 0 
orrespondsto a 
onstant fun
tion equal to 1).Let Pm = {v = (v1, . . . , vn) : 0 ≤ vi < m}. Later we will see thatthis set has got a des
ription in terms of 
hara
ters of the kernel of theFrobenius map between tori.
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tionsare well de�ned (the only thing to prove is that the image of h is in
Iji).De�nition 19.8 (hwijm, rwijm). Let us �x w ∈ Iji and a positive integer
m. We de�ne the fun
tions

hwijm : Pm → Iji

rwijm : Pm → Pm,for any v ∈ Pm by the equation
Cijv + w = mhwijm(v) + rwijm(v).This is a simple division by m with the rest. Moreover rwijm is bije
tive.If we have any v ∈ Pm, a T -Cartier divisor D = {(Uσi

, Xui

i )}σi∈Σ anda �xed σl ∈ Σ then Thomsen de�nes ti = huli

lim(v). He proves that the
olle
tion {(Uσi
, X ti

i )}σi∈Σ is a T -Cartier divisor Dv. This is of 
ourseindependent on the representation of D up to linear equivalen
e. The
hoi
e of l 
orresponds to "normalizing" the representation of D on thea�ne subset Uσl
. Although the de�nition of Dv may depend on l, theve
tor bundle ⊕v∈Pm

O(Dv) is independent on l. Moreover Thomsenproves that in 
ase of p-th absolute Frobenius morphism and 
hara
-teristi
 p > 0 this ve
tor bundle is a push forward of the line bundle
O(D). The proof uses only the fa
t that the Frobenius morphism 
anbe 
onsidered as a morphism of a�ne pie
es Uσi

, so 
an be extendedto the 
ase of geometri
 Frobenius morphism and arbitrary 
hara
ter-isti
. One only has to noti
e that the basis of free modules obtainedby Thomsen in [Tho00, Se
tion 5, Theorem 1℄ are exa
tly the same inall 
ases.Now let us remind that there is an exa
t sequen
e 2.1:
0 →M → DT → Pic→ 0,where DT are T invariant divisors. Let (gj) be the 
olle
tion of raygenerators of the fan Σ andDgj a divisor asso
iated to the ray generator

gj. The morphism from M to DT is given by v →
∑

j v(gj)Dgj . Su
ha map may be extended to a map from MR = M ⊗Z R by f : v →∑
j[v(gj)]Dgj . Noti
e that this is no longer a morphism, however if

a ∈ M and b ∈ MR, then f(a + b) = f(a) + f(b). We obtain a mapT := MR

M
→ Pic, where T is a real torus (do not 
onfuse with T ). Wealso �x the notation for an R-divisor D =

∑
j ajDgj :

[D] :=
∑

j

[aj ]Dgj .
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 Frobenius morphism be-tween the tori T . By a
ting with the fun
tor Hom(·,C∗) we obtain anexa
t sequen
e:
0 →M →M → G∗ ≃

M

mM
→ 0.We also have a morphism:

1

m
: G∗ ≃

M

mM
→ T,that simply divides the 
oordinates by m. By 
omposing it with themorphism from T → Pic we get a morphism from G∗ to Pic. It 
anbe also des
ribed as follows:We �x χ ∈ G∗ and arbitrarily lift it to an element χM ∈ M . Nowwe use the morphism M → DivT to obtain a T invariant prin
ipaldivisor Dχ. The image of χ in Pic is simply equal to [Dχ

m
]. Of 
oursefor di�erent lifts of χ toM we get linearly equivalent divisors. Now weprove one of the results stated by Bondal in [Bon06℄:Proposition 19.9. Let L = O(D) by any line bundle on a smooth tori
variety X. The push forward F∗(O(D)) is equal to ⊕χ∈G∗O([D+Dχ

m
]).Remark 19.10. The 
hara
ters of G play the role of v ∈ Pm in Thom-sen's algorithm. Noti
e also that it is not 
lear that ⊕χ∈G∗O([D+Dχ

m
] isindependent on the representation of L by D. If we prove that this isequal to the push forward then this fa
t will follow, but in the proof wehave to take any representation of L and we 
annot 
hange D with alinearly equivalent divisor.Proof. Let D = {(Uσi

, Xui

i )} and let us �x χ ∈ G∗. We have to provethat O([D+Dχ

m
]) is one of O(Dv) for v ∈ Pm and that this 
orrespon-den
e is one to one over all χ ∈ G∗. We already know that [Dχ

m
] isindependent on the 
hoi
e of the lift of χ, so we may take su
h a lift,that v = χM +ul is in the Pm. Here l is an index of a 
one, but we mayassume that its ray generators form a standard basis of N , so Al = Id.Of 
ourse su
h a mat
hing between χ ∈ G∗ and v ∈ Pm is bije
tive.Let us 
ompare the 
oe�
ients of [D+Dχ

m
] and Dv. We �x a raygenerator r = (r1, . . . , rn) ∈ σj . Let k be su
h that this ray generatoris the k-th row of matrix Aj . We 
ompare 
oe�
ients of Dr. Let

χM = (a1, . . . , an). We see that:
[
D +Dχ

m

]
= · · ·+

[
(uj)k +

∑n

w=1 awrw
m

]
Dr + . . . .
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ourse (uj)k is not a transition map ujk, but the k-th entry ofve
tor uj that is of 
ourse the 
oe�
ient of Dr of the divisor D. FromThomsen's algorithm des
ribed above we know that
Clj(χ + ul) + ulj = mtj + r,where r ∈ Pm. We see that
tj =

[
Clj(χ + ul) + ulj

m

]
.Now Al = Id and from the de�nition of ulj we have Cljul + ulj = uj,so:

tj =

[
Ajχ+ uj

m

]
.This gives us:

Dv = · · ·+

[∑n

w=1 awrw + (uj)k
m

]
Dr + . . .what 
ompletes the proof. �From [Bon06℄ we know that the imageB ofT in Pic is a full 
olle
tionof line bundles. Of 
ourse B is a �nite set (the 
oe�
ients of divisorsasso
iated to ray generators are bounded). Moreover the image ofrational points of T 
ontains the whole image of T (a set of equalitiesand inequalities with rational 
oe�
ients has got a solution in R if andonly if it has got a solution in Q). This means that for su�
ientlylarge m the split of the push forward of the trivial bundle by the m-thFrobenius morphism 
oin
ides with the image of T and hen
e is full.Let us 
onsider an example of P2. Let v1, v2 and v3 = −v1 − v2be the ray generators of the fan. We �x a basis (v1, v2) of N . Theimage of the torus T is equal to the set of all divisors of the form

[a]Dv1 + [b]Dv2 + [−a − b]Dv3 for 0 ≤ a, b < 1. We see that the imageof the torus T is O,O(−1),O(−2). This is a full 
olle
tion. Noti
ehowever that it is not true that if we have a line bundle L then thereexists an integer m0 su
h that the push forward of L by the m-thFrobenius morphism for m > m0 is a dire
t sum of line bundles from
B. For example the push forward of O(−3) always 
ontains in the split
O(−3) that is not an element of B. However, as we will see only minordi�eren
es from the set B are possible.De�nition 19.11. Let us �x a natural bije
tion between points of Tand elements of MR with entries from [0, 1) in some �xed basis. Nowea
h element of B has got a natural representative in DivT as sumof Dgj with integer 
oe�
ients. Let B0 ⊂ DivT be the set of theserepresentatives. We de�ne the set B′ as the set of all divisors D in Pic
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h there exists an element in b ∈ B0, su
h that there exists arepresentation of D whose 
oe�
ients di�er by at most one from the
oe�
ients of b.In other words we take (some �xed) representations of all elementsof B, we take all other representations whose 
oe�
ients di�er by atmost one and we take the image in Pic to obtain B′.Let us look on
e more at the example of P2. With previous notation
B is equal to 0, −Dv3 , −2Dv3 . The set B′ would be equal to ±Dv1 ±
Dv2 ±Dv3 , ±Dv1 ±Dv2 ±Dv3 −Dv3 , ±Dv1 ±Dv2 ±Dv3 − 2Dv3. Thisgives us O(3),O(2),O(1), O, O(−1), O(−2), O(−3), O(−4), O(−5).Proposition 19.12. For any smooth tori
 variety and any line bun-dle there exists an integer m0 su
h that the push forward by the m-thFrobenius morphism for any m > m0 splits into the line bundles from
B′.Proof. From 19.9 we know that the line bundles from the split are ofthe form [D

m
+ Dχ

m
], where L = O(D) is a �xed representation of L. Of
ourse for su�
iently largem all 
oe�
ients of D

m
belong to the interval

(−1, 1). Hen
e the 
oe�
ients of [D
m
+ Dχ

m
] di�er by at most one fromthe 
oe�
ients of [Dχ

m
] that is in B. This shows that [D

m
+ Dχ

m
] ∈ B′. �This 
ombined with the result of Thomsen [Tho00℄ that the pushforward and the line bundle are isomorphi
 as sheaves of abelian groupsgives us the following result:Corollary 19.13. There exists a �nite set, namely B′, su
h that ea
hline bundle is isomorphi
 as a sheaf of abelian groups to a dire
t sumof line bundles from B′. In parti
ular their 
ohomologies agree. �19.4. Te
hniques of 
ounting homology. This se
tion 
ontains jointresults with Mi
haª Laso« [LM11℄. Our aim will be to des
ribe linebundles on tori
 varieties with vanishing higher 
ohomologies, thatwe 
all a
y
li
. Later, we will use this 
hara
terization to 
he
k if

Exti(L,M) = H i(L∨ ⊗M) is equal to zero for i > 0. We start withgeneral remarks on 
ohomology of line bundles on smooth, 
ompletetori
 varieties.Let Σ be a fan in N = Zn with rays x1, ..., xm and let PΣ denotethe variety 
onstru
ted from the fan Σ. For I ⊂ {1, . . . , m} let CIbe a simpli
ial 
omplex generated by sets J ⊂ I su
h that {xi : i ∈
J} generate a 
one in Σ. For r = (ri : i = 1, . . . , m) let us de�ne
Supp(r) := C{i: ri≥0}.The proof of the following well known fa
t 
an be found in the paper[BH09℄:
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ohomology Hj(PΣ, L) is isomorphi
 to thedire
t sum over all r = (ri : i = 1, . . . , m) su
h that O(
∑m

i=1 riDxi
) ∼= Lof the (n− j)-th redu
ed homology of the simpli
ial 
omplex Supp(r).De�nition 19.15. We 
all a line bundle L on PΣ a
y
li
 ifH i(PΣ, L) =

0 for all i ≥ 1.De�nition 19.16. For a �xed fan Σ we 
all a proper subset I of
{1, . . . , m} a forbidden set if the simpli
ial 
omplex CI has nontriv-ial redu
ed homology.From Proposition 19.14 we have the following 
hara
terization ofa
y
li
 line bundles.Proposition 19.17. A line bundle L on PΣ is a
y
li
 if it is not iso-morphi
 to any of the following line bundles

O(
∑

i∈I

riDxi
−

∑

i 6∈I

(1 + ri)Dxi
)where ri ≥ 0 and I is a proper forbidden subset of {1, . . . , m}.Hen
e to determine whi
h bundles on PΣ are a
y
li
 it is enough toknow whi
h sets I are forbidden.In our 
ase CI = {J ⊂ I : Ŷi := {j : xj ∈ Yi} * J for i = 1, . . . , 5},sin
e Yi are primitive 
olle
tions. We 
all sets Ŷi also primitive 
olle
-tions. The only di�eren
e between sets Ŷi and Yi is that the �rst oneis the set of indi
es of rays in the se
ond one, so in fa
t they 
ould beeven identi�ed.In 
ase of a simpli
ial 
omplex S on the set of verti
es V we alsode�ne a primitive 
olle
tion as a minimal subset of verti
es that do notform a simplex. Complex S is determined by its primitive 
olle
tions,namely it 
ontains simplexes (subsets of V ) that 
ontain none of theprimitive 
olle
tions.We des
ribe a very powerful method of 
ounting homologies of sim-pli
ial 
omplexes whi
h are given by their primitive 
olle
tions (as inour 
ase). To a simpli
ial 
omplex S one 
an asso
iate a 
omplex Cof ve
tor spa
es with the border map de�ned in the usual way. Theobje
ts in the 
omplex C are indexed by nonnegative integers. Ea
hobje
t indexed by i is a dire
t sum of one dimension ve
tor spa
es,ea
h 
orresponding to an i dimensional simplex in S. We assume thatin C there is a one dimensional ve
tor spa
e indexed by 0 that 
orre-sponds to the empty set. Of 
ourse one 
an 
ount 
ohomologies of any
omplex C of ve
tor spa
es, not ne
essarily 
oming from a simpli
ial
omplex. We transform the 
omplex C so that the homologies remain
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hanged. The method is due to Mrozek and Batko [MB09℄. We willbe removing some simpli
es from S. In parti
ular, after some steps itwill be no longer true that all fa
es of a simplex from a 
omplex arein the 
omplex. In this 
ase the border map takes its values only inthe simpli
es that are in the 
omplex. This is a spe
ial example of theso-
alled S-
omplexes - for details see [MB09℄.Example 19.18. Suppose that a one dimensional simplex P1P2 is inthe 
omplex S. The usual border map would be
∂(P1P2) = P1 − P2.However if we suppose that P2 does not belong to S then
∂(P1P2) = P1.De�nition 19.19 (Redu
tive pair). Suppose that in a 
omplex C thethere exist simpli
es Z and B su
h that either

∂Z = B or ∂Z = −B.Then we 
all the pair (Z,B) a redu
tive pair.We use the result of Mrozek and Batko [MB09℄:Lemma 19.20. A redu
tive pair 
an be removed from a 
hain 
omplexwithout 
hanging the homology.Example 19.21. Consider a simpli
ial 
omplex 
onsisting of
{∅, P1, P2, P3, P1P2, P1P3, P2P3}.(i) We remove the redu
tive pair (P1, ∅).(ii) We remove the redu
tive pair (P1P2, P2).(iii) We remove the redu
tive pair (P1P3, P3).We are left with one simplex P2P3 and all border maps equal to zero.For more information we advise the reader to 
onsult [MB09, Se
tion6℄.De�nition 19.22. Let X be a simpli
ial 
omplex de�ned by its set ofprimitive 
olle
tions P on the set of verti
es V . We say that simpli
ial
omplex X ′ on the set of verti
es V \P is obtained from X by deletinga primitive 
olle
tion P if the set of primitive 
olle
tions of X ′ is equalto the family of sets in {Q ∩ (X \ P ) : Q ∈ P} that are minimal withrespe
t to in
lusion.Lemma 19.23. Let X be a simpli
ial 
omplex and suppose that thereexists an element x whi
h belongs to exa
tly one primitive 
olle
tion
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P . Let m = |P | and let X ′ be a simpli
ial 
omplex obtained from X bydelating P , then

hi(X) = hi−m+1(X ′).Proof. Using Lemma 19.20 we will be removing indu
tively on dimen-sion redu
tive pairs (Z,B) su
h that x ∈ Z. We start from ({x}, ∅).One 
an see that in ea
h dimension we 
an take all (Z,Z \ {x}) for Z
ontaining x as redu
tive pairs. Let us 
onsider all simplexes of X thatdo not 
ontain P \ {x}. One 
an prove by indu
tion on dimension thatwe will remove all of them:Let D be a simplex. If it 
ontains x, than it will be removed as a�rst element of a redu
tive pair. If it does not, then D ∪ {x} is also asimplex of X and we will remove (D ∪ {x}, D).We see that our simpli
ial 
omplex 
an be redu
ed to a 
omplexwith simplexes 
ontaining P \ {x}. Now one immediately sees thatsu
h a 
omplex is isomorphi
 to a 
omplex X ′ (with a degree shiftedby |P \ {x}| = m− 1). �The same method allows us to easily 
ompute homologies when thereare few primitive 
olle
tions and many points. The idea is that we 
anglue together points that are in exa
tly the same primitive 
olle
tions.De�nition 19.24. Let X be a simpli
ial 
omplex de�ned by its set ofprimitive 
olle
tions P on the set of verti
es V . Suppose that thereexist two points x, y ∈ X su
h that they belong to the same primitive
olle
tions. We say that a simpli
ial 
omplex X ′ on the set of verti
es
V \{y} is obtained from X by gluing points x and y if the set of primitive
olle
tions of X ′ is equal to {Q \ {y} : Q ∈ P}. We 
an think of it like
x was in fa
t two points x, y.Proposition 19.25. Let X be a simpli
ial 
omplex and suppose thatthere exist two points x, y ∈ X su
h that they belong to the same prim-itive 
olle
tions. Let X ′ be a simpli
ial 
omplex obtained from X bygluing points x and y, then

hi(X) = hi−1(X ′).Proof. In both 
omplexes we will be removing redu
tive pairs of theform (Z,B) with x ∈ Z just as in Lemma 19.23. In both situations allthat is left are simplexes that 
ontain a set of a form P \ {x}, where Pis a primitive 
olle
tion 
ontaining x. In this situation all of simplexesof X that are left 
ontain y and they 
an be identi�ed with simplexesof X ′ that are left, the maps are exa
tly the same what �nishes theproof. �



146 MATEUSZ MICHA�EKCorollary 19.26. Let X be a simpli
ial 
omplex on the set of ver-ti
es V . Let X ′ be a simpli
ial 
omplex obtained from X by gluingequivalen
e 
lasses of the relation ∼ that identi�es elements that arein exa
tly the same primitive 
olle
tions. Suppose |V | − |V/ ∼ | = m,then
hi(X) = hi−m(X ′).Proof. We use 19.25 for pairs of points in the equivalen
e 
lasses. �Corollary 19.27. In the situation of Lemma 19.23 and Corollary19.26 X is a
y
li
 if and only if X ′ is a
y
li
.With these tools we are ready to determine forbidden subsets. Ingeneral we have got two following Lemmas:Lemma 19.28. If a nonempty subset I is not a sum of primitive 
ol-le
tions, then it is not forbidden.Proof. There exists a ∈ I su
h that a does not belong to any primitive
olle
tion whi
h is 
ontained in I. Using Lemma 19.20 we 
an removesubsequently on dimension redu
tive pairs (Z,B) su
h that a ∈ Z. Westart from ({a}, ∅). One 
an see that in this way we remove all ofsimplexes and as a 
onsequen
e the 
hain 
omplex is exa
t. �Lemma 19.29. A primitive 
olle
tion is a forbidden subset.Proof. Using Lemma 19.23 we 
an remove this primitive 
olle
tion andget a 
omplex 
onsisting of the empty set only that has nontrivialredu
ed homologies.This 
an be also seen from the fa
t that the 
onsidered 
omplextopologi
ally is a sphere. �The following Lemmas apply to the 
ase when the Pi
ard numberis three and we have �ve primitive 
olle
tions as in Batyrev's 
lassi�-
ation. Let us remind that primitive 
olle
tions of simpli
ial 
omplexin this 
ase are Ŷi := {j : xj ∈ Yi}, for our 
onvenien
e we de�ne also

X̂i := {j : xj ∈ Xi}.Lemma 19.30. A sum of two 
onse
utive primitive 
olle
tions is aforbidden subset.Proof. Using Lemma 19.23 we remove one primitive 
olle
tion and geta situation of Lemma 19.29. �Lemma 19.31. A sum of three 
onse
utive primitive 
olle
tions Ŷi,
Ŷi+1, Ŷi+2 is not a forbidden subset.
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an remove primitive 
olle
tion Ŷi. The image of Ŷi+2
ontains the image of Ŷi+1, so in fa
t we are left with just one primitive
olle
tion P whi
h is an image of Ŷi+1. We 
an remove P and ob-tain a nonempty full simpli
ial 
omplex whi
h is known to have trivialhomologies. �The above lemmas mat
h together to the following:Theorem 19.32. The only forbidden subsets are primitive 
olle
tions,their 
omplements and the empty set.This gives us that in our situationCorollary 19.33. A line bundle L is a
y
li
 if and only if it is notisomorphi
 to any of the line bundles
O(α1

1Dv1 + · · ·+α1
2Dy1 + · · ·+α1

3Dz1 + · · ·+α1
4Dt1 + · · ·+α1

5Du1 + · · · )where exa
tly 2, 3 or 5 
onse
utive αi := (α1
i , · · · , α

pi
i ) are negative.Proof. It is an immediate 
onsequen
e of Proposition 19.17 and Theo-rem 19.32 �Corollary 19.34. If all of the 
oe�
ients b and c are zero in theprimitive relations from Theorem 19.7 then a line bundle L is a
y
li
if and only if it is not isomorphi
 to any of the line bundles

O(α1Dv + α2Dy + α3Dz + α4Dt + α5Du)where exa
tly 2, 3 or 5 
onse
utive αi are negative and if αi < 0 then
αi ≤ −|Xi|.Proof. Sin
e all divisors 
orresponding to elements of the set Xi arelinearly equivalent we mat
h them together and as a 
onsequen
e αi isthe sum of all of their 
oe�
ients. �19.5. Large family of smooth tori
 varieties with Pi
ard num-ber 3. This se
tion 
ontains joint results with Mi
haª Laso« [LM11℄.We give an expli
it 
onstru
tion of a full, strongly ex
eptional 
olle
-tion of line bundles in the derived 
ategory Db(X) for a large family ofsmooth, 
omplete tori
 varieties X with Pi
ard number three. Namelyfor varieties X whose sets X1, X3 and X4 from Batyrev's 
lassi�
ationpresented in Theorem 19.7 have only one element. We will use resultsfrom Se
tion 19.4.
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tion we establish a family of varietieswhi
h we 
onsider in this se
tion and we also �x notation.From now on for the whole Se
tion let X be a smooth, 
ompletetori
 variety with Pi
ard number three, whi
h using the notation fromTheorem 19.7 has |X1| = |X3| = |X4| = 1.Let r = |X2|. Then of 
ourse |X0| = n− r. We allow arbitrary non-negative integer parameters b := b1, c2, . . . , cr. This family generalizesone 
onsidered in [DLM09℄ (there, the 
ase r = 1 was 
onsidered) and[CMRa℄ (there the 
ase b = c1 = · · · = cr = 0 was 
onsidered).Remark 19.35. A variety of this type is Fano if and only if
n− r >

r∑

i=2

cr + b.In what follows we do not restri
t to the Fano 
ase.Let e1, . . . , en be a basis of the latti
e N . Let us write what are the
oordinates of the ray generators in the 
onsidered situation:
v1 = e1, v2 = e2, . . . , vn−r = en−r

y = −e1 − · · · − en−r + c2en−r+2 + · · ·+ cren − (b+ 1)(en−r+1 + · · ·+ en)

z1 = en−r+1, . . . , zr = en

(19.2)
t = −en−r+1 − · · · − en

u = −e1 − · · · − en−r + c2en−r+2 + · · ·+ cren − b(en−r+1 + · · ·+ en)LetDw be the divisor asso
iated to the ray generator w. One 
an eas-ily see that the divisors Dv1 , . . . , Dvn−r
are all linearly equivalent. Let

Dv be any their representant in the Pi
ard group. The other equiva-len
e relations that generate all the relations in the Pi
ard group are:
Dv ≃ Du +Dy

Dz1 ≃ Dt + bDu + (b+ 1)Dy(19.3)
Dzi ≃ Dt + (b− ci)Du + (b− ci + 1)Dy 2 ≤ i ≤ rFrom these relations we 
an easily dedu
e:Proposition 19.36. The Pi
ard group of the variety X is isomorphi
to Z3 and is generated by Dt, Dy, Dv.
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e two sets of divisors. We 
laim that these sets 
an beordered in su
h a way that line bundles 
orresponding to divisors fromthese sets form a strongly ex
eptional 
olle
tion.
Col1 = { − sDt − sDy + (−(n− r)− bs + q)Dv :

0 ≤ s ≤ r, 0 ≤ q ≤ n− r}(19.4)
Col2 = { − sDt − (s− 1)Dy + (−(n− r)− bs+ q)Dv :

1 ≤ s ≤ r, 0 ≤ q ≤ n− r − 1}De�nition 19.37. Let Col = Col1 ∪ Col2.Remark 19.38. Let us noti
e that |Col1| = (r + 1)(n − r + 1) and
|Col2| = r(n− r), so |Col| = 2rn− 2r2 + n+ 1.We 
al
ulate the number of maximal 
ones in the fan de�ning thevariety X . In order to obtain a maximal 
one we have to 
hoose n raygenerators that do not 
ontain a primitive 
olle
tion. This is equivalentto removing three ray generators in su
h a way that the rest do not
ontain a primitive 
olle
tion. First let us noti
e that we 
an remove atmost one element from ea
h group Xi be
ause otherwise the rest would
ontain a primitive 
olle
tion. We have the following possibilities:1) We remove one element from X0 and X2. Then we have to removeone element from X3 or X4. We have got 2(n− r)r su
h possibilities.2) We remove one element from X0 and none from X2. We have got
n− r su
h possibilities.3) We remove one element from X2 and none from X0. We have got
r su
h possibilities.4) We do not remove any elements from X0 and from X2. We havegot 1 su
h possibility.All together we see that we have 2rn− 2r2 + n + 1 maximal 
ones.From the general theory we know that the rank of the Grothendie
kgroup is the same. Let us noti
e that from Remark 19.38 our set Colis of the same number of elements.19.5.2. A
y
li
ity of di�eren
es of line bundles from Col. In this Sub-se
tion we order the set Col and prove that line bundles 
orrespondingto divisors from Col form a strongly ex
eptional 
olle
tion.Let us �rst 
he
k that ExtiOX

(O(D1),O(D2)) = 0 for any divisors
D1, D2 from the set Col and for any i > 0. We know that
ExtiOX

(O(D1),O(D2)) = H i(O(D1)
∨ ⊗O(D2)) = H i(O(D2 −D1)).



150 MATEUSZ MICHA�EKThis means that we have to show that all line bundles asso
iated todi�eren
es of divisors from Col are a
y
li
.De�nition 19.39. Let Diff be the set of all divisors of the form
D1 −D2, where D1, D2 ∈ Col.Proposition 19.40. The set Diff is the union of the sets Diff1,
Diff2, Diff3, where:

Diff1 = {sDt + sDy + (bs + q)Dv :

−r ≤ s ≤ r, r − n ≤ q ≤ n− r}

Diff2 = {sDt + (s− 1)Dy + (bs + q)Dv :

−r + 1 ≤ s ≤ r, r − n+ 1 ≤ q ≤ n− r}

Diff3 = {sDt + (s+ 1)Dy + (bs+ q)Dv :

−r ≤ s ≤ r − 1, r − n ≤ q ≤ n− r − 1}.Proof. The set Diff1 is equal to the set of all possible di�eren
es of twodivisors from Col1 and this set 
ontains all possible di�eren
es of twodivisors from Col2. The set Diff2 is the set of all possible di�eren
esof the form D1 − D2, where D1 ∈ Col1, D2 ∈ Col2. The set Diff3 isequal to −Diff2 and so it is equal to the set of all di�eren
es of theform D2 − D1, where D1 ∈ Col1, D2 ∈ Col2. These are of 
ourse allpossible di�eren
es of two elements from Col. �From the Corollary 19.33 we know that it is enough to prove thatelements of Diff are not of the form
α1Dv + α2Dy + α1

3Dz1 + α2
3Dz2 + · · ·+ αr

3Dzr + α4Dt + α5Du,where exa
tly two, three or �ve 
onse
utive αi's are negative (we 
alla number positive when it is nonnegative and 
onsider only two signspositive and negative) and:1) if α1 < 0, then α1 ≤ −(n − r) (α1 is in fa
t sum of all the
oe�
ients of Dvi , whi
h have to be of the same sign),2) if any αi
3 < 0 then αj

3 < 0 (all parameters αj
3 are treated as onegroup and have the same sign).From now on we assume that these 
onditions on αi's are satis�ed.
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α1Dv + α2Dy + α1

3Dz1 + α2
3Dz2 + · · ·+ αr

3Dzr + α4Dt + α5Du =

(α4 +
r∑

j=1

αj
3)Dt + (α2 − α5 +

r∑

j=1

αj
3)Dy+

(α1 + bα1
3 +

r∑

j=2

(b− cj)α
j
3 + α5)Dv

(19.5)
Lemma 19.41. If the elements αj

3 are negative then the divisors from
Diff are not of the form 19.5.Proof. If α4 was negative, then the 
oe�
ient of Dt would be less thanor equal to −r − 1 and none of the divisors from Diff has got su
ha 
oe�
ient, so α4 has to be positive. Sin
e α3 is negative and α4 ispositive, then α2 has to be negative and α5 has to be positive. Thismeans that the 
oe�
ient of Dy is less then or equal to −r − 1. Thedivisors from Diff are not of this form. �From now on we may assume that α3 is positive.Lemma 19.42. The divisors from Diff1 are not of the form (19.5).Proof. Suppose that a divisor from Diff1 
an be written in a form(19.5). We have:

α4 +

r∑

j=1

αj
3 = α2 − α5 +

r∑

j=1

αj
3,so α4 + α5 = α2. But α2, α4 and α5 
annot be of the same sign, so α4and α5 have to have di�erent signs. As α3 was positive we see that α4is positive, so α5 and α1 are negative. Let us noti
e that:

α1 + bα1
3 + (

r∑

j=2

(b− cj)α
j
3) + α5 ≤

−n + r + b(

r∑

j=1

αj
3)− 1 ≤

−n + r − 1 + b(α4 +

r∑

j=1

αj
3)This shows pre
isely that the 
oe�
ient of Dv is less than or equal to

−n + r − 1 plus b times the 
oe�
ient of Dt. Let s be the 
oe�
ient



152 MATEUSZ MICHA�EKof Dt. From the de�nition of Diff1 the 
oe�
ient of Dv is at least
−n+ r + bs. This gives us a 
ontradi
tion. �Lemma 19.43. The divisors from Diff3 are not of the form (19.5).Proof. Suppose that a divisor from Diff3 
an be written in a form(19.5). We have:

α4 +

r∑

j=1

αj
3 = α2 − α5 − 1 +

r∑

j=1

αj
3,so α4 + α5 = α2 − 1. The rest of the proof is identi
al to the proof ofLemma 19.66. �Lemma 19.44. The divisors from Diff2 are not of the form (19.5).Proof. Suppose that a divisor from Diff2 
an be written in a form(19.5). We have:

α4 +
r∑

j=1

αj
3 = α2 − α5 + 1 +

r∑

j=1

αj
3,so α4 + α5 = α2 + 1. But α2, α4 and α5 
annot be of the same sign, sowe have two possible 
ases:1) The 
oe�
ients α4 and α5 have di�erent signs. In this 
ase theproof is the same as in Lemmas 19.66 and 19.43.2) We have α4 = α5 = 0 and α2 = −1. In this 
ase α1 has tobe negative, be
ause α3 was positive. Let s = α4 +

∑r

j=1 α
j
3 be the
oe�
ient of Dt. We have:

α1 + bα1
3 +

r∑

j=2

(b− cj)α
j
3 + α5 ≤ −n + r + bs,so the 
oe�
ient of Dv is less than or equal to −n + r + bs. But fromthe de�nition of Diff2 we know that the 
oe�
ient of Dv is at least

bs+ r − n+ 1 what gives us a 
ontradi
tion. �Now we only have to order the line bundles 
orresponding to divisorsfrom Col in su
h a way that
0 = Ext0OX

(O(D1),O(D2)) = H0(O(D1)
∨⊗O(D2)) = H0(O(D2−D1)).for any divisors D1 > D2.Let us de�ne the order by: Ls,q < L′
s,q < Ls,q+1, Ls+1,q1 < Ls,q2where

Ls,q = O(−sDt − sDy + (q − bs− (n− r))Dv)
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L′
s,q = O(−sDt − (s− 1)Dy + (q − bs− (n− r))Dv)for s = 1, . . . , r− 1 and q = 0, . . . , n− r− 1. It is easy to see that zero
ohomology of appropriate di�eren
es vanish.19.5.3. Generating the derived 
ategory. We prove that the stronglyex
eptional 
olle
tion from Subse
tion 19.5.1 is also full. First we showthat it generates all line bundles. Due to [BH06, Corollary 4.8℄ the
olle
tion generates the derived 
ategory. In order to generate all linebundles we need several lemmas. Our �rst aim is to generate linebundles of the type sDtsDy + qDv and sDt + (s + 1)Dy + qDv. We�rst do it for �xed s and any q � the result is in Lemma 19.49. Theidea is to generate the line bundles indu
tively on q. We will be doingthis using the Koszul 
omplexes for families of divisors for di�erentprimitive 
olle
tions. As the ray generators 
orresponding to divisorsof a primitive 
olle
tion do not form a 
one, we obtain indeed the exa
tsequen
es given by Koszul 
omplexes.Lemma 19.45. Let s and k be any integers. Line bundles Lq =

O(−sDt − sDy + (k + q)Dv) for q = 0, . . . , n− r and L′
q = O(−sDt −

(s−1)Dy +(k+ q)Dv) for q = 0, . . . , n− r−1 generate O(−sDt− (s−
1)Dy + (n− r + k)Dv) in the derived 
ategory.Proof. We 
onsider the Koszul 
omplex forO(Dy),O(Dv1), . . . ,O(Dvn−r

):
0 → O(−Dy − (n− r)Dv) → · · · → O(−Dv)

n−r ⊕O(−Dy) → O → 0.By tensoring it with O(−sDt − (s− 1)Dy + (k + n− r)Dv) we obtain:
0 → O(−sDt−sDy+kDv) → · · · → O(−sDt−(s−1)Dy+(k+n−r−1)Dv)

n−1

⊕O(−sDt−sDy+(k+n−r)Dv) → O(−sDt−(s−1)Dy)+(k+n−r)Dv) → 0.All sheaves that appear in this exa
t sequen
e, apart from the lastone, are exa
tly O(−sDt − sDy + kDv), . . . ,O(−sDt − sDy + (k+ n−
r)Dv),O(−sDt− (s−1)Dy+kDv), . . . ,O(−sDt− (s−1)Dy+(k+n−
r − 1)Dv), so indeed we 
an generate O(−sDt − (s− 1)Dy + (k + n−
r)Dv). �Lemma 19.46. Let s and k be any integers. Line bundles Lq =
O(−sDt − sDy + (k + q)Dv) for q = 0, . . . , n− r and L′

q = O(−sDt −
(s − 1)Dy + (k + q)Dv) for q = 1, . . . , n − r generate O(−sDt − (s −
1)Dy + kDv) in the derived 
ategory.Proof. The proof is similar to the last one. We dedu
e assertion fromthe same exa
t sequen
e of sheaves. �



154 MATEUSZ MICHA�EKLemma 19.47. Let s and k be any integers. Line bundles Lq =
O(−sDt − sDy + (k + q)Dv) for q = 1, . . . , n− r and L′

q = O(−sDt −
(s− 1)Dy + (k + q)Dv) for q = 0, . . . , n− r generate O(−sDt − sDy +
(n− r + k + 1)Dv) in the derived 
ategory.Proof. The proof is similar to the �rst one. We have to 
onsider theKoszul 
omplex for line bundles O(Du),O(Dv1), . . . ,O(Dvn−r

):
0 → O(−Du − (n− r)Dv) → · · · → O(−Dv)

n−r ⊕O(−Du) → O → 0we dualize it and we tensor it with O(−sDt − (s− 1)Dy + kDv). �Lemma 19.48. Let s and k be any integers. Line bundles Lq =
O(−sDt−sDy+(k+q)Dv) for q = 1, . . . , n−r+1 and L′

q = O(−sDt−
(s−1)Dy+(k+q)Dv) for q = 1, . . . , n−r generate O(−sDt−sDy+kDv)in the derived 
ategory.Proof. The proof is similar to the last one. We dedu
e assertion fromthe same exa
t sequen
e of sheaves. �Lemma 19.49. Let s and k be any integers. Line bundles Lq =
O(−sDt−sDy+(k+q)Dv) for q = 0, . . . , n−r and L′

q = O(−sDt−(s−
1)Dy+(k+q)Dv) for q = 0, . . . , n−r−1 generate in the derived 
ategoryline bundles O(−sDt − sDy + q′Dv) and O(−sDt − (s− 1)Dy + q′Dv)for an arbitrary integer q′.Proof. We prove it by indu
tion on |q′|. For q′ ≥ k + n − r we useLemmas 19.45 and 19.47, for q′ < k we use Lemmas 19.46 and 19.48.

�Next we generate all line bundles of the type sDt + sDy + qDv and
sDt + (s + 1)Dy + qDv with no restri
tions on s and q. The ideas arethe same and the result is in Lemma 19.54.Lemma 19.50. Let k be any integer. Line bundles Ls,q = O(−sDt −
sDy + qDv) for s = k, . . . , k + r and arbitrary q and L′

s,q = O(−sDt −
(s− 1)Dy + qDv) for s = k, . . . , k + r − 1 and arbitrary q generate inthe derived 
ategory line bundles L′(k + r, q) = O(−(k + r)Dt − (k +
r − 1)Dy + qDv) with arbitrary q.Proof. Consider the Koszul 
omplex for O(Dy),O(Dz1), . . . ,O(Dzr):

0 → O(−Dz1 − (r − 1)Dz2 −Dy) → . . .

· · · → O(−Dz1)⊕O(−Dz2)
r−1 ⊕O(−Dy) → O → 0.After tensoring it with O(−(k−1)Dy + q

′Dv) for appropriate q′ we getthe assertion. �



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 155Lemma 19.51. Let k be any integer. Line bundles Ls,q = O(−sDt −
sDy + qDv) for s = k, . . . , k + r and arbitrary q and L′

s,q = O(−sDt −
(s−1)Dy+qDv) for s = k+1, . . . , k+r and arbitrary q generate in thederived 
ategory line bundles L′(k, q) = O(−kDt − (k − 1)Dy + qDv)for arbitrary q.Proof. The proof is similar to the last one. We dedu
e assertion fromthe same exa
t sequen
e of sheaves. �Lemma 19.52. Let k be any integer. Line bundles Ls,q = O(−sDt −
sDy+qDv) for s = k+1, . . . , k+r and arbitrary q and L′

s,q = O(−sDt−
(s− 1)Dy + qDv) for s = k + 1, . . . , k + r + 1 and arbitrary q generatein the derived 
ategory line bundles L(k, q) = O(−kDt − kDy + qDv)for arbitrary q.Proof. Consider the Koszul 
omplex for O(Dz1), . . . ,O(Dzr),O(Dt):

0 → O(−Dz1 − (r − 1)Dz2 −Dt) → . . .

· · · → O(−Dz1)⊕O(−Dz2)
r−1 ⊕O(−Dt) → O → 0.After tensoring it with O(−kDy + q′Dv) for appropriate q′ we get theassertion. �Lemma 19.53. Let k be any integer. Line bundles Ls,q = O(−sDt −

sDy + qDv) for s = k, . . . , k + r and arbitrary q and L′
s,q = O(−sDt −

(s− 1)Dy + qDv) for s = k + 1, . . . , k + r and arbitrary q generate inthe derived 
ategory line bundles L′(k+ r+1, q) = O(−(k+ r+1)Dt−
(k + r)Dy + qDv) for arbitrary q.Proof. The proof is similar to the last one. We dedu
e assertion fromthe same exa
t sequen
e of sheaves. �Lemma 19.54. Let k be any integer. Line bundles Ls,q = O(−sDt −
sDy + qDv) for s = k, . . . , k + r and arbitrary q and L′

s,q = O(−sDt −
(s− 1)Dy + qDv) for s = k, . . . , k + r − 1 and arbitrary q generate inthe derived 
ategory line bundles L(s, q) = O(−sDt − sDy + qDv) and
L′(s, q) = O(−sDt − (s− 1)Dy + qDv) for arbitrary s and q.Proof. We prove it by indu
tion on |s|. For s ≥ k+n−r we use Lemmas19.50 and 19.53, for r < k we use Lemmas 19.51 and 19.64. �Finally we pro
eed indu
tively on the di�eren
e of the 
oe�
ients of
Dt and Dy.Lemma 19.55. Let k be any integer. Line bundles O(−sDt − (s +
k)Dy + qDv) and O(−sDt− (s+ k+1)Dy + qDv) for arbitrary s and qgenerate in the derived 
ategory line bundles O(−sDt− (s+k+2)Dy+
qDv) for arbitrary s and q.



156 MATEUSZ MICHA�EKProof. Consider the Koszul 
omplex for O(Dt),O(Du):
0 → O(−Dt −Du) → O(−Dt)⊕O(−Du) → O → 0.After tensoring it with O(−k′Dy + q′) for appropriate k′ and q′ we getthe assertion. �Lemma 19.56. Let k be any integer. Line bundles O(−sDt − (s +

k)Dy + qDv) and O(−sDt− (s+ k+1)Dy + qDv) for arbitrary s and qgenerate in the derived 
ategory line bundles O(−sDt− (s+k−1)Dy+
qDv) for arbitrary s and q.Proof. Consider the Koszul 
omplex for O(Dt),O(Du):

0 → O(−Dt −Du) → O(−Dt)⊕O(−Du) → O → 0.After tensoring it with O(−k′Dy + q′) for appropriate k′ and q′ we getthe assertion. �Proposition 19.57. Line bundles
Ls,q = O(−sDt − sDy + (q − bs− (n− r))Dv)for s = 0, . . . , r and q = 0, . . . , n− r and

L′
s,q = O(−sDt − (s− 1)Dy + (q − bs− (n− r))Dv)for s = 0, . . . , r − 1 and q = 0, . . . , n − r − 1 generate in the derived
ategory all line bundles.Proof. We use Lemmas 19.49, 19.54, 19.55 and 19.56. �Summarizing, we have proved:Theorem 19.58. Let X be a smooth, 
omplete, n dimensional tori
variety with Pi
ard number three and the set of ray generators X0 ∪

· · · ∪X4, where
X0 = {v1, . . . , vn−r}, X1 = {y}, X2 = {z1, . . . , zr}, X3 = {t}, X4 = {u},primitive 
olle
tions X0 ∪X1, X1 ∪X2, . . . , X4 ∪X0 and primitive re-lations:

v1 + · · ·+ vn−r + y − cz2 − · · · − czr − (b+ 1)t = 0,

y + z1 + · · ·+ zr − u = 0,

z1 + · · ·+ zr + t = 0,

t+ u− y = 0,

u+ v1 + · · ·+ vn−r − c2z2 − · · · − crzr − bt = 0,where b and c are positive integers.Then the ordered 
olle
tion of line bundles
Ls,q = O(−sDt − sDy + (q − bs− (n− r))Dv)
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L′
s,q = O(−sDt − (s− 1)Dy + (q − bs− (n− r))Dv)for s = 0, . . . , r− 1 and q = 0, . . . , n− r− 1 where the order is de�nedby Ls,q < L′
s,q < Ls,q+1, Ls+1,q1 < Ls,q2 is a full, strongly ex
eptional
olle
tion of line bundles.Proof. From Subse
tion 19.5.2 we already know that this is a stronglyex
eptional 
olle
tion. We have just 
he
ked the su�
ient 
onditionfor fullness in Proposition 19.57. �19.6. The split of the push forward of the stru
tural sheaf not
ontaining a full, strongly ex
eptional 
olle
tion. This se
tion
ontains joint results with Mi
haª Laso« [LM11℄.19.6.1. Example. Let us 
onsider the 
ase when:
X0 = {v1}, X1 = {y1, . . . , yk}, X2 = {z1},

X3 = {t1, . . . , tk}, X4 = {u1, . . . , uk}then we 
an take
v1, y2, . . . , yk, t1, . . . , tk, u2, . . . , ukto be a basis of the latti
e N = Z3k−1. Other ve
tors are like in 19.1with all 
oe�
ients bi and ci equal to zero. We have linear dependen
iesof divisors:

Dv1 = Du1 +Dy1, Dti = Dz1 +Dy1 , Dyi = Dy1, Dui
= Du1Let B be the image of the real torus in the Pi
ard group as des
ribedin the Subse
tion 19.3. One 
an easily see that:

B = {O([

k∑

i=1

−αi
t]Dz1+[

k∑

i=2

−αi
u−α

1
v]Du1+[−α1

v+

k∑

i=2

−αi
y+

k∑

i=1

αi
t]Dy1) :

0 ≤ αi
v, α

i
y, α

i
t, α

i
u < 1}.So B is 
ontained in the set:

S := {O(−aDz1 − bDu1 + (a− c)Dy1) : a, b, c ∈ {0, . . . , k}} =

= {O(−a(Dz1 −Dy1)− bDu1 − cDy1) : a, b, c ∈ {0, . . . , k}}.From Corollary 19.34 we know that line bundle is a
y
li
 if and only ifit is not isomorphi
 to any of the following line bundles
O(α1Dv1 + α2Dy1 + α3Dz1 + α4Dt1 + α5Du1) =

= O((α3 + α4)(Dz1 −Dy1) + (α1 + α2 + α3)Dy1 + (α1 + α5)Du1),
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tly 2, 3 or 5 
onse
utive α are negative and if α2 < 0 then
α2 ≤ −k, if α4 < 0 then α4 ≤ −k and if α5 < 0 then α5 ≤ −k. Let usobserve that line bundles from the set
R = {O(a(Dz1−Dy1)+bDy1+cDu1) : (a, b, c) ∈ [

k

2
, k]×[−k,−

k

2
−1]×[0, k]}are not a
y
li
. Indeed �xing α1 = −k, α3 = k

2
and taking α4, α5nonnegative and α2 negative we 
an a
hieve all of them. Let us de�nethe set of pairs

P := {−(
k

2
+
a

2
)(Dz1−Dy1)−(

k

2
+
b

2
)Dy1−(

k

2
+
c

2
)Du1,−(

k

2
−
a

2
)(Dz1−Dy1)−

−(
k

2
−
b

2
)Dy1 − (

k

2
−
c

2
)Du1) : (a, b, c) ∈ [

k

2
, k]× [−k,−

k

2
− 1]× [0, k]}.It is easy to see that elements of these pairs are distin
t and they belongto S. Di�eren
e in ea
h pair is an element of R so it is not a
y
li
 linebundle. Hen
e to have a strongly ex
eptional 
olle
tion C in S wehave to ex
lude at least one element from ea
h pair. To have integer
oe�
ients of divisors in P we should take a ≡ b ≡ c ≡ k (mod 2), sowe have to throw out at least k3

32
elements among (k + 1)3 elements in

S. Full, strongly ex
eptional 
olle
tion has to have l elements, where
l is the rank of the Grothendie
k group K0(X) (for tori
 varieties itis isomorphi
 to Zl, where l is the number of maximal 
ones). In our
ase there are at least k3 maximal 
ones, sin
e ea
h time we throw outone element from X2, X4 and X5 we get di�erent maximal 
one (exa
tnumber is k3 + 2k2 + 2k). So we have proven the following:Theorem 19.59. For k > 32 there is no full, strongly ex
eptional
olle
tion 
ontained in the set of line bundles that 
ome from Bondal's
onstru
tion.Proof. For k > 32 we have (k+1)3− 1

32
k3 < k3+2k2+2k so the prooffollows from the dis
ussion above. �Remark 19.60. Noti
e that the 
onsidered variety is Fano, so is ex-pe
ted to have a full, strongly ex
eptional 
olle
tion.19.6.2. Our 
ase. Let us 
onsider the 
ase from Subse
tion 19.5.1, butwith all 
oe�
ients ci equal to c ≤ b. Let B be the image of the realtorus in the Pi
ard group as des
ribed in the Subse
tion 19.3. One 
ansee that:

B = {O([

r∑

i=1

−αi
z]Dt + [

n−r∑

i=1

−αi
v + c

r∑

i=2

αi
z − (b+ 1)

r∑

i=1

αi
z)]Dy+
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+[

n−r∑

i=1

−αi
v + c

r∑

i=2

αi
z − b

r∑

i=1

αi
z)]Du) : 0 ≤ αi

v, α
i
z < 1}.So B is 
ontained in the set:

S := {O(−sDt−sDy+qDv),O(−sDt−(s−1)Dy+qDv) : s ∈ {0, . . . , r},

q ∈ {−(n− r)− c− (b− c)s), . . . , (b− c)(−s + 1)}}Our 
olle
tion de�ned in Subse
tion 19.5.1, or its torsion, is 
on-tained in the set S unless cr ≤ b. It 
an be also shown that if this in-equality fails then there is no full strongly ex
eptional 
olle
tion amongline bundles that 
ome from Bondal's 
onstru
tion.19.7. Pn blown up in two points. The results of this se
tion 
an befound in [Mi
11a℄.The varieties we 
onsider are of Pi
ard number 3. Using the 
las-si�
ation of Theorem 19.7 Pn blown up in two points is given by
|X0| = |X2| = |X3| = |X4| = 1 and |X1| = n − 1 with all otherparameters equal to 0. Choosing the basis of the one parameter sub-groups latti
e N equal to v1, y2, . . . , yn−1, z1 the ray generators of thefan are the basis elements and ve
tors y1, t1, u1 satisfying:

t1 = −z1, y1 = −y2 − · · · − yn−1 − z1 − v1, u1 = −v1.The rank of the Grothendie
k group is equal to the number of maximal
ones that is 3n− 1. All divisors in a given Xi are linearly equivalentand, as before, are given by Dv, Dy, Dz, Dt, Du respe
tively for i =
0, 1, 2, 3, 4. Divisors with nonzero higher 
ohomology will be 
alledforbidden. The following 
lassi�
ation of forbidden divisors is veryeasy to establish. In a general 
ase of Pi
ard number three this hasbeen done in the previous se
tion, but in this spe
ial 
ase one 
anuse arguments of elementary topology. The forbidden divisors in our
ase are α1Dv + α2Dy + α3Dz + α4Dt + α5Du, where exa
tly 2, 3 or 5
onse
utive (in a 
y
li
 way, that is indi
es are 
onsidered modulo 5)
α's are negative and if α2 < 0, then α2 ≤ −n + 1.We have Dz = Dt + Dy and Dv = Du + Dy. We 
hoose the basis
Dy, Dt, Du, what gives us forbidden divisors (α1+α2 +α3)Dy + (α3 +
α4)Dt + (α1 + α5)Du with the 
onditions on α's as above. A divisor
aDy+bDt+cDu will be denoted by (a, b, c) and we reserve pre
ise lettersfor pre
ise 
oordinates. A line bundle L1 will be 
alled 
ompatiblewith L2 if and only if they 
an both appear in a strongly ex
eptional
olle
tion, that is if and only if L1 −L2 and L2 −L1 = −(L1 −L2) arenot forbidden.



160 MATEUSZ MICHA�EKLet us �x a strongly ex
eptional 
olle
tion E. We assume withoutloss of generality that 0 ∈ E and that all other divisors in E havenonnegative 
oe�
ient a.Lemma 19.61. The only divisors with a = 0 
ompatible with (0, 0, 0)are:
(0,−1, 0), (0, 0,−1), (0, 1, 0), (0, 0, 1), (0,−1, 1), (0, 1,−1).Proof. If b < −1, then we take α1 = 0, α2 = 1, α3 = −1, α4-negativeto obtain b, α5-any to obtain c. Analogously for c < −1, hen
e −1 ≤

b, c ≤ 1. Moreover (0,−1,−1) is also bad (so also (0, 1, 1)). �Corollary 19.62. There 
an be at most 3 distin
t line bundles with
a = 0 in E. For a �xed a we 
an have only 3 line bundles in E.Proof. Follows by inspe
tion. �Lemma 19.63. For a > 0 the only line bundles (a, b, c) that are notforbidden must satisfy −1 ≤ b ≤ a and −1 + a − b ≤ c ≤ a (and bysymmetry −1 + a− c ≤ b ≤ a).Proof. For b < −1 we take α1 = 0, α3 = −1, α2-positive to have a, α4-negative to have b, α5-any to have c. For b > a we look at (−a,−b,−c)and take α3 = −a, α1 = α2 = 0, α4-negative to have −b, α5-any tohave −c. In the same way −1 ≤ c ≤ a15. So the only 
ase that wehave to ex
lude is −1 ≤ c < −1 + a − b. In su
h a 
ase we 
an take
α4 = −1, α3 = b+1, α2 = 0, α1 = a− b−1, α5 = c−a+ b+1 < 0. �Lemma 19.64. For three 
onse
utive parameters a's there 
an be atmost 8 line bundles in E.Proof. We assume without loss of generality 0 ≤ a ≤ 2. If the lemmadoes not hold, then from the Corollary 19.62 we would have to have 3line bundles for ea
h a. For a = 0 we 
an have either:Case 1: (0, 0, 0), (0,−1, 0), (0, 0,−1) then for a = 1 there is only one
ompatible from the Lemma 19.63 namely (1, 0, 0).Case 2:(0, 0, 0), (0, 1, 0), (0, 0, 1) then for a = 1 the 
ompatible linebundles are (1, 1, 1), (1, 1, 0), (1, 0, 1). If we 
hoose all of them then theonly one 
ompatible for a = 2 is (2, 1, 1) from the Lemma 19.63.Case 3: (0, 0, 0), (0,−1, 0), (0,−1, 1); (0, 0, 0), (0, 0,−1), (0, 1,−1);
(0, 0, 0), (0, 1, 0), (0, 1,−1); (0, 0, 0), (0, 0, 1), (0,−1, 1). All these pos-sibilities are 
ases 1 or 2 after subtra
ting a divisor from all three
onsidered divisors. �15The parameters b and c are in symmetry.
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olle
tion E with a > n are
alled high. Others are 
alled low.Lemma 19.66. A high line bundle is forbidden unless either b = 1(high bundles of type 1)or c = 1 (high bundles of type 2).Proof. Suppose that b = 0 or b = −1. We show that (−a,−b,−c) isforbidden. Take α1 = −1, α2 = −a + 1, α3 = 0, α4 = −b, α5-any toobtain −c. So b ≥ 1 and analogously c ≥ 1. If both 
oe�
ients werestri
tly greater than 1 we would obtain (−a,−b,−c) by taking all α'snegative. �Lemma 19.67. We 
annot have high line bundles of both types in E.Proof. From the Lemma 19.63 a high line bundle must have the 
oordi-nate di�erent from 1 greater or equal to n− 1. If we subtra
t two highline bundles of di�erent types we 
an assume that the �rst 
oordinateis positive and one of the others will be less or equal to −n + 2 what
ontradi
ts the Lemma 19.63 for n > 3. �From now on without loss of generality we assume that we only havehigh line bundles of type 1 in E. Let us proje
t all high line bundlesfrom E onto the �rst 
oordinate obtaining a subset of N. Suppose thatthis subset has got k elements, that is high line bundles 
an have kdi�erent parameters a. We obtain:Lemma 19.68. There are at most k + 2 high line bundles in E.Proof. We assumed that 0 ∈ E, so the high line bundles in E must notbe forbidden. We know that for ea
h high line bundle in E we have
b = 1, so from the Lemma 19.63 we know that 0 ≤ a − c ≤ 2. Letus noti
e that the di�eren
e a − c 
annot de
rease when a in
reasesfor high line bundles in E. Indeed suppose that we have two highline bundles in E of the form (a1, 1, c1), (a2, 1, c2) with a2 > a1 and
a2 − c2 < a1 − c1. By subtra
ting these two line bundles we obtain
(a2 − a1, 0, c2 − c1) that is forbidden by the Lemma 19.63.Noti
e that ea
h time we have more than one line bundle for a �xed
a then the di�eren
e a − c stri
tly in
reases. This means that we 
anhave one line bundle for ea
h a plus possibly two more as a−c in
reasesfrom 0 to 2. This gives us in total k + 2 line bundles.

�Proposition 19.69. There are at most 8
3
(n− 1) + 6 low line bundles(from the Lemma 19.64), so k > 0 for n > 13.Remark 19.70. Of 
ourse k is at most n + 1. Otherwise we wouldhave two high line bundles in E with the di�eren
e that is high. By



162 MATEUSZ MICHA�EKthe Lemma 19.67 the di�eren
e would have b = 0, hen
e by the Lemma19.66 it would have c = 1 and would be forbidden by the Lemma 19.63.From the de�nition of k we know that there is a line bundle L =
(a, 1, c) in E, with a ≥ n + k. Now we investigate line bundles with
a < k, that are 
alled very low.Lemma 19.71. Ea
h very low line bundle in E must have b = 0.Proof. Let B be a very low line bundle. L − B is high, so from theLemma 19.66 either the se
ond or third 
oordinate is 1. The third oneis cL − cB ≥ aL − 2 − aB > n + k − 2− k = n− 2 > 1, for n > 3. Wesee that bL − bB = 1. As bL = 1 the Lemma follows. �For very low line bundles in E the parameter c is either a or a − 1by the Lemma 19.63 and the Lemma 19.71. Reasoning analogously tothe proof of the Lemma 19.68, we see that there are at most k+1 verylow line bundles (the di�eren
e a− c 
annot de
rease).Theorem 19.72. The sequen
e E 
an have at most: k+1+ 8

3
(n−k−

1) + 6 + k + 2 ≤ 8
3
n− 2

3
k + 19

3
< 3n− 1 for n > 20.Remark 19.73. The bounds on n 
an be easily improved. For exampleby 
onsidering separately the 
ase k = 1 one 
an de
rease the bound to

n > 18. We 
on
entrated rather on brevity of the proof than sharpbounds. Referen
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