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TORIC VARIETIES: PHYLOGENETICS AND DERIVED
CATEGORIES

MATEUSZ MICHALEK

Streszczenie pracy w jezyku polskim

Rozmaitosci toryczne: filogenetyka i kategorie
pochodne

Celem niniejszej pracy doktorskiej jest badanie specjalnych wtasnosci
rozmaitodci torycznych. Praca jest podzielona na trzy czesci. Pierwsze
dwie z nich sa silnie ze soba powiazane.

W pierwszej czesci zajmujemy sie glownie badaniem rozmaitosci al-
gebraicznych zwigzanych z procesami Markowa na drzewach. Z kazdym
procesem Markowa na drzewie mozna stowarzyszy¢ rozmaitosé alge-
braiczng. W zwiazku z motywacjami biologicznymi, skupiamy sie na
procesach Markowa okreslonych poprzez dziatanie grupy. Badamy wa-
runki, kiedy uzyskane rozmaitosci sg toryczne oraz podajemy ich opis,
Twierdzenie 5.63. Przedstawiamy twierdzenia, podajace warunki wystar-
czajace do tego, aby otrzymane rozmaitosci byty normalne, 5.73, jak
rowniez podajemy przyktady, gdy nie sa one normalne 5.74, 5.75. Jed-
nym z gtéownych uzywanych narzedzi jest uogolnienie poje¢ wtykow i
sieci, wprowadzonych w [BWO07|, do dowolnych grup abelowych. W
naszej definicji sieci tworza grupe, Definicja 5.24, ktora dziata na roz-
maitosci. Ponadto, przestrzen w ktorej zanurzona jest rozmaitosé jest
regularng reprezentacja tej grupy.

Glownym otwartym problemem do ktorego odnosimy sie w tej czesci
jest hipoteza Sturmfelsa i Sullivanta [SS05, Hipoteza 2|. Stwierdza ona,
ze ideal afinicznej rozmaitosci skojarzonej z modelem 3-Kimury jest
generowany w stopniu 4. Nasz najsilniejszy wynik dowodzi, ze schemat
rzutowy zwiazany z tym modelem moze by¢ opisany poprzez ideal gen-
erowany w stopniu 4, Twierdzenie 12.1. Wraz z Marig Donten—Bury
przedstawiamy sposob generowania wielomianéw nalezacych do ideatu
stowarzyszonego z rozmaitoscia dla dowolnego modelu. Dowodzimy,
ze nasza metoda generuje caly ideal dla wielu modeli wtedy i tylko

wtedy, gdy zachodzi hipoteza Sturmfelsa i Sullivanta [SS05, Hipoteza
4
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1], Twierdzenie 7.8. Prezentujemy kilka zastosowari, na przyktad do
problemu identyfikowalnosci w biologii.

Druga czes¢ pracy dotyczy rozmaitosci algebraicznych zwiazanych z
trojwalentnymi grafemi oraz modelem binarnym Jukesa-Cantora. Jest
to wspolna praca z Weronika Buczyniska, Jarostawem Buczynskim i
Kaie Kubjas. W przypadku grafu, stowarzyszona rozmaito$¢ moze by¢
reprezentowana przez polgrupe z gradacja. Badamy zwiazki pomiedzy
wlasno$ciami grafu i otrzymanej polgrupy. Glowne twierdzenie 14.1
dowodzi, iz pierwsza liczba Bettiego grafu plus jeden jest gornym osza-
cowaniem na stopienn w ktorym generowana jest potgrupa.

W ostatniej czesci badamy kategorie pochodne gtadkich, zupelnych
rozmaitosci torycznych. We wspolnej pracy z Michatem Lasoniem
|[LM11] konstruujemy pelne, silnie wyjatkowe kolekcje wiazek liniowych
dla szerokiej klasy gtadkich, zupelych rozmaitosci torycznych o liczbie
Picarda rownej trzy. Wiele pytan dotyczacych jakiego rodzaju kolekcji
mozna oczekiwaé na rozmaitosciach torycznych pozostaje otwartych.
Jeden z otrzymanych wynikow pokazuje, ze P rozdmuchane w dwoch
punktach nie posiada petnej, silnie wyjatkowej kolekcji ztozonej z wiazek
liniowych dla wystarczajaco duzego n. Otrzymujemy nieskonczong
rodzine kontrprzyktadow do hipotezy Kinga 19.2. Pierwszy taki kontr-
przyktad zostat skonstruowany przez Hille i Perlinga [HP06]. Ostatnio
Efimov podat takze kontrprzyktady dla rozmaitosci Fano |Efi|.

Pracujemy nad ciatem liczb zespolonych C. Wszystkie rozmaitosci
sa rozmaitosciami algebraicznymi w sensie |[Har77]|.
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STRESZCZENIE I WPROWADZENIE DO CZESCI PIERWSZEJ

Motywacja dla konstrukcji rozpatrywanych w pierwszej czesci pracy
jest matematyka stosowana. Zacznijmy od przypomnienia podsta-
wowych wtasnosci tancuchow Markowa oraz proceséow Markowa na
drzewach. Lancuch Markowa to ciag zmiennych losowych (X;) spelnia-
jacy okreslone warunki. Przy ustalonym stanie zmiennej X; ; zmienna
losowa X jest niezalezna od wszystkich zmiennych losowych X;_; dla
j > 1. Zazwyczaj tancuch Markowa jest przedstawiany jako Sciezka.
Kazdy wierzchotek odpowiada zmiennej losowej. Zmienne X; oraz X;
sa potaczone, jak na rysunku ponizej.

Xo

Dla danego taricucha Markowa wprowadza sie prawdopodobienstwa
warunkowe, ktore okreslaja wszystkie wlasnosci tanicucha. Zatozmy, ze
zmienna X; moze by¢ w a; < oo stanach. Kazdej krawedzi taczacej
X;_1 z X; mozemy przypisa¢ macierz o wymiarach a;_; X a;. Kolumny
i rzedy tej macierzy sa oznaczone odpowiednio stanami zmiennych X;
oraz X;. Odpowiednie wpisy w macierzy okreslaja prawdopodobienstwa,
warunkowe. Konkretnie, wpis w p-tym rzedzie i i g-tej kolumnie od-
powiada prawdopodobienstwu, ze X; jest w stanie p pod warunkiem, ze
X;_1 jest w stanie q. Otrzymane macierze nazywamy macierzami przej-
cia. Jesli znamy rozklad zmiennej losowej X oraz macierze przejscia,
to mozemy tatwo obliczy¢ rozklady wszystkich zmiennych losowych
wystepujacych w danym tancuchu Markowa.

Konstrukcje te mozemy bezposrednio uogdlni¢ do drzew ukorzenio-
nych. Drzewem ukorzenionym okre§lamy spojny graf, bez cykli, z
wyroznionym wierzchotkiem. Liscie drzewa to wierzchotki, ktore po-
siadaja tylko jednego sasiada. Wezly to wierzcholki, ktore nie sa
lis¢émi. W pracy czasami utozsamiamy liscie z krawedziami z ktorymi
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sa one polaczone. Dla uproszczenia jezyka przyjmujemy, ze drzewo jest
grafem skierowanym i wszystkie krawedzie sg skierowane od korzenia.
W ponizszym przyktadzie korzen zostal oznaczony jako o.

o

)
ERN

Tak jak w przypadku tancuchéw Markowa, kazdemu wierzchotkowi
przyporzadkowujemy zmienng losowa. Mowimy, iz wierzchotek vy jest
bezposrednim przodkiem v, jesli istnieje krawedz skierowana od v; do
vy, Zauwazmy, iz kazdy wierzcholek ma dokladnie jednego bezposred-
niego przodka, poza korzeniem, ktory nie posiada przodkéw. Potom-
kami wierzchotka v nazywamy wszystkie wierzchotki do ktorych istnieje
ciezka skierowana, zaczynajaca sie w v. Wtasno$¢ Markowa stwierdza,
iz zmienna X jest niezalezna od wszystkich zmiennych ktoére nie sg jej
potomkami, przy ustalonym stanie bezposredniego przodka.

Procesy Markowa na drzewach sa dobrymi modelami dla wielu zjawisk
przyrodniczych. Sztandarowym przyktadem jest tutaj proces ewolucji.
Jednym ze znanych zatozen jest fakt, iz DNA danego gatunku zalezy
tylko od stanu bezposredniego poprzednika. Filogenetyka jest nauka
badajaca zmiany ewolucyjne. Jej gléwnym zadaniem jest opis procesu
Markowa modelujacego ewolucje gatunkéw. Przy tym modelu zaktada
sie, ze zmienne moga mie¢ cztery stany odpowiadajace zasadom azo-
towym wchodzacym w sktad DNA: adeninie, cytozynie, guaninie oraz
tyminie. Stany te oznacza sie literami A, C', G, T. Oczywiscie, a
priori, nie znamy parametréw macierzy przejscia, ani ksztattu drzewa.
Jednakze badajac zyjace gatunki mozemy pozna¢ rozktad zmiennych
losowych przypisanych lisciom odpowiadajacym tym gatunkom. Bi-
ologia teoretyczna przedstawia rowniez mozliwe typy macierzy przejs-
cia. W zaleznosci od modelu teoretycznego ktory wybierzemy, macierze
przejscia moga naleze¢ do réznych przestrzeni liniowych. Rézne mod-
ele biologiczne sa przedstawione w Rozdziale 4. Bardzo interesujacy
jest fakt, iz modele zaproponowane przez biologdéw teoretycznych czesto
posiadaja wlasnosci ciekawe z matematycznego punktu widzenia. Doktad-
nie rzecz ujmujac pewne przestrzenie macierzy przejscia sa zadane jako
macierze niezmiennicze ze wzgledu na dziatanie grupy.
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Przedstawmy jeden z mozliwych sposobéw rozwigzania probleméw
filogenetycznych, korzystajacy z geometrii algebraicznej. Ustalmy drze-
wo T', o ktorym podejrzewamy, ze moze wtadciwie opisywaé proces
ewolucji. Rozwazmy macierze przejscia z wolnymi parametrami, ktore
zaleza jedynie od wybranego przez nas modelu biologicznego. Do prze-
strzeni parametryzujacej dodajemy rowniez parametry rozktadu zmien-
nej losowej stowarzyszonej z korzeniem. Dla danych parametréw obli-
czamy rozklad zmiennych losowych stowarzyszonych z lis¢mi. Otrzy-
mujemy odwzorowanie' 7 o 1. Jego dziedzina to parametry macierzy
przejscia oraz zmiennej losowej przypisanej korzeniowi. Obraz od-
wzorowania to wszystkie mozliwe rozktady zmiennych losowych przy-
pisanych lisciom.

Przyktad W tym przyktadzie zakltadamy, ze kazda zmienna moze
miec dwa stany oznaczone poprzez 0 oraz 1. Korzen ma dwoch po-
tomkow. Zmienna losowa przyjmuje wartosé 0 z prawdopodobienstwem
Ao oraz 1 z prawdopodobienstwem \i. Macierze przejScia majg nastepu-

jacq postac.

a1 a ) b1 b
s ]/ \[\\ "]
Mamy 6 parametrow. Zmienne stowarzyszone z lis¢mi mogq byé w 4

stanach:

1) obie w stanie 0,

2) lewa w stanie 0, prawa w stanie 1,

3) prawa w stanie 1, lewa w stanie 0,

4) obie w stanie 1.

Otrzymujemy odwzorowanie:
™o 12)\ : (A()a )\17 ay, dg, b17 b2) —

()\0&161 -+ )\1&262, )\0&162 -+ )\1&261, )\0&2b1 -+ )\1&1b2, )\oagbg + )\1a1b1).

Niech P bedzie punktem, wyznaczonym na podstawie badan bio-
logicznych, reprezentujacym rozklad zmiennych losowych przypisanych
lisciom. Pragniemy stwierdzi¢ czy punkt P nalezy do obrazu od-
wzorowania, o{ﬁ\. Jesli punkt nie nalezy do obrazu, to mozemy stwier-
dzi¢, iz wybrany model biologiczny jest bledny lub rozwazane drzewo
nie opisuje ewolucji w sposob prawidtowy. Jesli punkt P nalezy do

1Wyb(’)r notacji zostanie uzasadniony w kolejnych rozdziatach.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 9

obrazu, mozemy pyta¢ o wlokno odwzorowania 7 o J nad punktem
P. Niestety stwierdzenie czy punkt nalezy do obrazu jest w ogdlnosci
bardzo trudne. Jedna z metod wykorzystuje fakt, iz odwzorowanie
m o jest algebraiczne. Rozwaza sie domkniecie obrazu w topologii
Zariskiego. Jest to afiniczna rozmaitos$¢ algebraiczna. Problem spro-
wadza sie wtedy do opisu ideatlu tej rozmaitodci i stwierdzeniu czy jego
generatory zeruja sie na punkcie P. Elementy wyzej wymienionego
idealu nazywane sg niezmiennikams filogenetycznymi.

Podejsécie przez nas przedstawione moze nie by¢ efektywne. Opis
idealu rozmaitosci zadanej przez parametryzacje nie jest prostym za-
daniem. Jednakze odwzorowania, ktore rozpatrujemy czesto posiadaja
specjalne wlasnosci. Jak zauwazyli Evans i Speed [ES93| rozmaitosci
stowarzyszone z niektorymi modelami ewolucji sa toryczne. Doktad-
niej, istnieje uklad wspotrzednych w ktoérym odwzorowanie parame-
tryzujace rozmaitos¢ jest zadane jednomianami. Pozwala to na za-
stosowanie metod geometrii torycznej przy wyznaczaniu ideatu roz-
maitosci.

W calej pracy zaktadamy, ze zmienna losowa stowarzyszona z wierz-
chotkiem posiada rozktad jednorodny. Zatozenie to nie jest motywowane
przez biologie. Otrzymujemy jednak dzieki niemu lepszy opis ma-
tematyczny. Z tego powodu zaktadamy, ze przestrzen parametryzujaca
rozmaito$c sktada sie tylko z parametrow macierzy przejscia.

Jednym z gtéwnych celéw pracy jest ustalenie przy jakich warunkach
z danym modelem jest stowarzyszona rozmaito$¢ toryczna oraz podanie
jej opisu. Otrzymane wyniki przedstawiaja bardzo og6lna konstrukcje
5.63. Wszystkie definicje obiektow wystepujacych w twierdzeniu po-
jawia sie w pozniejszych rozdziatach.

Twierdzenie 5.63 Niech H bedzie normalng, abelowq podgrupq
grupy G C S,,. Zatdzmy, ze H dziata w sposob tranzytywny i wolny na
zbiorze S on elementach. Rozwazmy macierze przejscia nalezqce do
przestrzent W, ktore sq niezmiennicze ze wzgledu na dziatanie grupy G.
Niech W bedzie przestrzeniq wektorowq rozpietq przez wektory bazowe
utozsamiane z elementamsi zbioru S. Model ﬁlogen/efyczny dla dowol-
nego drzewa T zwigzany z przestrzeniami W oraz W zadaje toryczng
rozmaito$¢ algebraiczng.

W szczeg6lnosci rozpatrywane przez nas modele zawieraja wszys-
tkie modele biologiczne o ktorych wiadomo, ze sa stowarzyszone z roz-
maitos$ciami torycznymi. Badamy rowniez wlasnosci otrzymanych roz-
maitosci. Dowodzimy, ze rozmaitosci stowarzyszone z pewnymi mode-
lami s3 normalne 5.73.
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Twierdzenie Modele filogenetyczne zwigzane z dowolnym drzewem
trojwalentnym oraz jedng z grup: Zeo, Lo X Zs, L3 oraz Ly zadajg roz-
maitoS¢ normalng.

Podajemy rowniez przyktady rozmaitosci, ktore nie sa normalne 5.75.
Nastepnie badamy dla jakich modeli rozmaitosci stowarzyszone z drze-
wami trojwalentnymi o ustalonej liczbie lisci naleza do jednej rodziny
ptaskiej. Dla modelu binarnego Jukesa-Cantora fakt ten zostal udowod-
niony w pracy |[BWO07|. Dla 3-Kimury nie jest on prawdziwy, co wyka-
zano w pracy |[Kubl0O]. Obliczajac wielomiany Hilberta wielu roz-
maitosci stwierdziliémy, ze wiekszo$¢é rozwazanych modeli nie ma tej
wtasnosci.

Kolejny, bardzo istotny problem badany w doktoracie dotyczy niezmi-
ennikow filogenetycznych.

Definicja (Drzewo gwiezdziste) Drzewo gwiezdziste K, ; to drzewo
posiadajace jeden wezet i n lisci.

Dla wielu modeli, w szczegolnosci tych ktore sa glownym przed-
miotem tej pracy, wyznaczanie niezmiennikow filogenetycznych zostato
zredukowane do przypadku drzewa gwiezdzistego [SS05], [AR08|, [DK09].
Jednakze wyznaczenie ich nawet w tym szczegdlnym przypadku jest
bardzo trudnym zadaniem. Nie wiemy nawet w jakim stopniu ideal sto-
warzyszonej rozmaito$ci jest generowany. Znana hipoteza Sturmfelsa
i Sullivanta [SS05, Conjecture 1| podaje doktadne gorne ograniczenie
na ten stopien. Ciekawa obserwacja jest fakt, iz wyzej wymieniona
hipoteza implikuje opis ideatu jako sumy prostszych ideatéow. Prezen-
tujemy metode generowania wielu niezmiennikoéw filogenetycznych dla
dowolnego modelu, dla drzewa gwiezdzistego 7.2. Stawiamy hipoteze,
iz nasza metoda pozwala w pelni opisa¢ ideat. Dowodzimy, iz w wielu
przypadkach nasza hipoteza jest rownowazna hipotezie Sturmfelsa i
Sullivanta — Twierdzenie 7.8. Nasz najsilniejszy wynik 12.1 dotyczacy
tego tematu dowodzi stabszej, teorio zbiorowej wersji [SS05, Hipoteza
2|, co jest wystarczajace z punktu widzenia zastosowan.
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STRESZCZENIE I WPROWADZENIE DO CZESCI DRUGIEJ

Niech G bedzie grafem trojwalentnym. Niech d bedzie liczba na-
turalna. Glownym przedmiotem naszych badan jest podzbior 7(G)4
zbioru wszystkich numerowan krawedzi grafu G za pomoca liczb catko-
witych. Dane numerowanie nalezy do 7(G)4, gdy spelnione sa nastepu-
jace wrunki:

V] (parzystosé) suma liczb przyporzadkowanych krawedziom za-
wierajacym dany wierzchotek jest parzysta;
[-+] (dodatnio$é) liczby przypisane krawedziom sa nieujemne;
|A| (nierdwnosci trdjkgta) trzy liczby przypisane krawedziom za-
wierajacym dany wierzcholek spelniaja warunek trojkata;
[’] (ograniczenie stopnia) dla dowolnego wierzchotka suma liczb

przypisanych krawedziom, ktére go zawieraja nie przekracza
2d.

Szczegoly konstrukeji oraz formalne definicje znajduja sie w Rozdziale 15.
Badamy obiekt 7(G) = | |,cn 7(G)a, ktory poprzez dodawanie liczb
przypisanym krawedziom ma strukture monoidu. Nazywamy go mono-
idem filogenetycznym grafu G. Glowny wynik tej czesci to nastepu-
jace twierdzenie.

Twierdzenie Niech G bedzie dowolnym grafem tréjwalentnym o pier-
wszej liczbie Bettiego g. Monoid T(G) jest generowany w stopniu co
najwyzej g + 1. Ponadto dla kazdego g parzystego istniejq grafy dla
ktorych podane oszacowanie jest doktadne.

Dla g = 1 oraz g = 3 takze istniejg grafy, ktore nie sa generowane
w stopniu g. Konstruujemy réowniez przykltady graféw o nieparzystej
liczbie Bettiego g, ktore nie sa generowane w stopniu g — 1. Otwartym
problemem pozostanie pytanie czy istnieja grafy o nieparzystym g >
5, ktore nie sa generowane w stopniu g. Podajemy takze dokladne
stopnie w ktorych generowane sa monoidy stowarzyszone z grafami
typu gasienica z petelkami przedstawionymi ponizej.

I P

Figure 1: Gasienica z petelkami
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STRESZCZENIE I WPROWADZENIE DO CZESCI TRZECIEJ

W tej czesci wszystkie rozwazane rozmaitosci algebraiczne sa gltad-
kie. Cazytelnikowi zainteresowanemu konstrukcja kategorii pochodnej
snopow koherentnych na rozmaito$ci X polecamy pierwsze rozdziaty
[Huy06] lub artykut [C&l05]. Dtuzszym, klasycznym zrodtem informa-
cji na ten temat jest rowniez ksiazka |[GMO3|.

Struktura i wtasnosci kategorii pochodnej moga by¢ bardzo skomp-
likowane i sa przedmiotem licznych badan. Jeden ze sposobow opisu tej
kategorii uzywa pojec¢ obiektow wyjatkowych. Przedstawy nastepujace
definicje (patrz rowniez [GR87]):

Definicja

(i) Snop koherentny F na X jest nazywany wyjgtkowym jesli
Hom(F, F') = K oraz Ext{, (F,F) = 0dlai> 1.

(ii) Ciag (Fy, Fi, ..., Fy,) snopow koherentnych na X nazywamy
kolekcjg wyjatkowq jesli kazdy snop F; jest wyjatkowy oraz
Extd, (Fy, Fj) =0 dla j < k oraz i > 0.

(iii) Kolekcja wyjatkowa (Fy, Fi, ..., Fy,) snopow koherentnych na
X jest silnie wyjgtkowq kolekcjg jesli ExtéX(Fj,Fk) = 0 dla
j < korazi>1.

(iv) (Silnie) wyjatkowa kolekcja (Fy, Fi, ..., F,,) snopow koher-
entnych na X jest pelng, (silnie) wyjatkowq kolekcjg jesli
generuje ograniczona kategorie pochodna DP(X) rozmaito$ci
X, tzn. najmniejsza triangulowalna kategoria zawierajaca

{Fy, Fy, ..., F,} jest rownowazna z D*(X).

W tej czesci doktoratu badamy petne, silnie wyjatkowe kolekcje wig-
zek liniowych na gtadkich, zupelnych rozmaitosciach torycznych o licz-
bie Picarda 3. Wiadomo, ze dla kazdej gltadkiej rzutowej rozmaitosci
torycznej istnieje petna, wyjatkowa kolekcja snopéw koherentnych —
[Kaw06]. Jednakze wiele pytan w tej dziedzinie pozostaje otwartych.
W szczegodlnodei nie wiadomo czy istnieje petna, silnie wyjatkowa kolek-
cja snopow koherentnych lub czy istnieje petna, wyjatkowa kolekcja
ztozona z wiazek liniowych. Wiadomo jednak, iz istnieja gladkie rzu-
towe rozmaitosci toryczne nie posiadajace pelnej, silnie wyjatkowe;j
kolekcji ztozonej z wiazek liniowych, co pierwotnie sugerowala hipoteza
Kinga. Pierwszy kontrprzyktad zostal podany w pracy [HP06|. W tej
czedci pracy pokazujemy, iz P" rozdmuchane w dwdch punktach nie
posiada pelnej, silnie wyjatkowej kolekcji ztozonej z wigzek liniowych
dla dostatecznie duzych n — Twierdzenie 19.72.

Twierdzenie Niech n > 20. Dowolna silnie wyjgtkowa kolekcja
wigzek lintowych na P rozdmuchanym w dwdch punktach ma dtugosé
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co najwyzej 3n — 2. Ranga grupy Grothendiecka wynosi 3n — 1, wiec
kolekcja ta nie moze byé petna.

We wspolnej pracy z Michatem Lasoniem konstruujemy réwniez takie
kolekcje dla szerokiej klasy gtadkich, zupelnych rozmaitosci torycznych
o liczbie Picarda 3. Rozmaitosci te zostaty sklasyfikowane przez Baty-
reva [Bat91l| w terminach kolekcji prymitywnych. Sa to minimalne
kolekcje promieni wachlarza, ktore nie tworza stozka. Takich kolekcji
moze by¢ 3 lub 5. Przypadek, gdy wystepuja tylko 3 kolekcje jest
dobrze zbadany. Zajmowalismy sie gtownie przypadkiem 5 kolekcji.
Wachlarze takie mozna doktadnie sklasyfikowa¢. Definicje terminow
wystepujacych w klasyfikacji znajduja sie w ostatniej czesci doktoratu.

Twierdzenie [Bat91, Theorem 6.6]
Niech )/z = Xz U Xi-‘,—l; dlaz € Z/5Z,

X0:{1)17"'7Up0}7 Xlz{yla"'7yp1}7 XQZ{Zla"'7zp2}a

X3:{t1,...,tp3}, X4:{U1,...,Up4},

gdzie po + p1 + p2 + p3 + ps = n + 3. Dowolny n-wymiarowy wachlarz
Y. 0 zbiorze generatorow promieni | J X; oraz pieciu kolekcjach prymi-
tywnych Y; moze by¢ opisany z doktadnoscig do symetrii pieciokata za
pomoca nastepujacych kolekcji prymitywnych o wspélczynnikach na-
turalnych co, ..., cp,, b1, ..., bpy:

Vit A Up Y1t Y —Coza— = Cpy Zp, — (D1 F 1)t =+ - = (bpy 1)1,
Yt Yy o 2y — U — e — Uy, = 0,
zi4 otz Fti 4ty =0,
i+t tpy Fur+ Uy, —y1r — - —yp, =0,

Up - Uy, F VLA Vp, — CoZa = Cpy 2y — Uity — - = byt = 0.
O

W celu odnalezienia petnych, silnie wyjatkowych kolekcji uzywaliSmy
metody pochodzacej od Bondala. Polega ona na rozwazaniu rozpadu
pchniecia wiazki trywialnej przez odpowiednio wysoki toryczny mor-
fizm Frobeniusa. Kolkecja taka nie musi by¢ silnie wyjatkowa. Moze
nawet nie zawiera¢ takiej kolekcji, co wykazaliSmy razem z Michatem
Lasoniem. Jednakze dla bardzo wielu rozmaito$ci otrzymane w ten
sposob wiazki liniowe stanowia dobry punkt wyjscia. W nowej pracy
Efimov |Efi| wykazal, Ze istnieja gladkie, zupelne rozmaitosci toryczne
typu Fano o liczbie Picarda 3, nie posiadajace pelnej, silnie wyjatkowe;j
kolekcji wiazek liniowych.

=0,
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Résumé en Francais
Variétés toriques: phylogénie et catégories dérivées

L’objectif de cette thése est d’étudier les propriétés de variétés toriques
particuliéres. La these est divisée en trois parties, les deux premiéres
étant fortement liées.

Dans la premiére partie, nous étudions des variétés algébriques as-
sociées aux processus de Markov sur les arbres. A chaque processus de
Markov sur un arbre on peut associer une variété algébrique. Motivé
par la biologie, nous nous concentrons sur les processus de Markov défi-
nis par une action de groupe. Nous étudions les conditions pour que la
variété obtenue soit torique, le théoréeme 5.63. Nous donnons un résul-
tat ou les variétés obtenues sont normales (cf proposition 5.73), ainsi
que des exemples ou elles ne le sont pas (cf proposition 5.74 et calcul
5.75). L’une des principales méthodes que nous utilisons est la général-
isation des notions de prises et de réseaux introduites dans [BWO07| &
des groupes abéliens arbitraires. Dans notre contexte, les réseaux for-
ment un groupe décrit a la définition 5.24 qui agit sur la variété. Par
ailleurs, 'espace ambiant de la variété est la représentation réguliére
de ce groupe.

Le principal probléme ouvert que nous essayons de résoudre dans
cette partie est une conjecture de Sturmfels et Sullivant [SS05, Conjec-
ture 2| indiquant que le schéma affine associé au modéle 3-Kimura est
défini par un idéal engendré en degré 4. Notre meilleur résultat dit que
le schéma projectif associé peut étre défini par un idéal engendré en
degré 4 (cf théoréme 12.1). Avec Maria Donten—Bury, nous proposons
une méthode pour engendrer l'idéal associé a la variété pour tous les
modéles. Nous montrons que notre méthode fonctionne pour de nom-
breux modéles ainsi que pour les arbres si et seulement si la conjecture
de Sturmfels et Sullivant est vraie (cf proposition 7.8). Nous présen-
tons quelques applications, par exemple au probléme d’identifiabilité
en biologie.

La deuxiéme partie concerne les variétés algébriques associées aux
graphes trivalents pour le modeéle de Jukes-Cantor binaire. Il s’agit
d’un travail en commun avec Weronika Buczyniska, Jarostaw Buczynski
et Kaie Kubjas. La variété associée & un graphe peut étre représentée
par un semi-groupe gradué. Nous étudions les liens entre les propriétés
du graphe et le semigroupe. Le théoréme principal 14.1 borne le degré
en lequel le semi-groupe est engendré par le premier nombre de Betti
du graphe, plus un.
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Dans la derniére partie, nous étudions la structure de la catégorie
dérivée des faisceaux cohérents des variétés toriques lisses. Dans un
travail commun avec Michal Lason [LM11], nous construisons une col-
lection fortement exceptionnelle compléte de fibrés en droites pour une
grande classe de variétés toriques complétes lisses dont le nombre de
Picard est égal a trois. De nombreuses questions concernant le type
de collections auxquelles on peut s’attendre sur les variétés toriques de
certains types sont encore ouvertes. A ce titre, nous prouvons que P”
éclaté en deux points ne posséde pas de collection fortement exception-
nelle compléte de fibrés en droites pour n assez grand. Ceci fournit une
collection infinie de contre-exemples a la conjecture de King 19.2. Le
premier contre-exemple est di a Hille et Perling [HP06|. Récemment,
des contre-exemples ont également été trouvés par Efimov |Efi] dans le
cadre des variétés de Fano.

Nous allons travailler sur le corps des nombres complexes C. Toutes
les variétés considérées sont des variétés algébriques dans le sens de
[Har77].
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General Introduction

The aim of this thesis is to investigate the properties of special toric
varieties. The thesis is divided into three parts. The first two of them
are strongly related to each other.

In the first, main part we study algebraic varieties associated to
Markov processes on trees. To each Markov process on a tree one
can associate an algebraic variety. Motivated by biology, we focus on
Markov processes defined by a group action. We investigate under
which conditions the obtained variety is toric, Theorem 5.63. We pro-
vide conditions ensuring that the obtained varieties are normal, 5.73,
as well as give examples when they are not 5.74, 5.75. One of the main
tools we use is the generalization of the notions of sockets and networks
introduced in [BWO7] to arbitrary abelian groups. In our setting the
networks form a group, Definition 5.24, that acts on the variety. More-
over the ambient space of the variety is the regular representation of
this group.

The main open problem that we address in this part is a conjecture
of Sturmfels and Sullivant [SS05, Conjecture 2| stating that the affine
scheme associated to the 3-Kimura model is defined by an ideal gener-
ated in degree 4. Our strongest result states that the associated projec-
tive scheme can be generated in degree 4, Theorem 12.1. Together with
Maria Donten—Bury we also propose a method for generating the ideal
defining the variety for any model. We prove that our method works
for many models and trees if and only if the conjecture of Sturmfels
and Sullivant holds, Proposition 7.8. We present some applications, for
example to the identifiability problem in biology.

The second part concerns algebraic varieties associated to trivalent
graphs for the binary Jukes-Cantor model. It is a joint work with
Weronika Buczynska, Jarostaw Buczynski and Kaie Kubjas. In case
of the graph, the associated variety can be represented by a graded
semigroup. We investigate the connections between properties of the
graph and the semigroup. The main theorem 14.1 bounds the degree
in which the semigroup is generated by the first Betti number of the
graph plus one. Due to connections with the first part much of the
terminology that we use is either a specialization or generalization of
previous definitions. From the one hand, as we are working with graphs
with possible loops the notions of leaves, nodes and valency are more
subtile than for trees. From the other hand, as we are dealing only
with the binary Jukes-Cantor model, sockets and networks have got a
very special form.
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In the last part we study the structure of the derived category of
coherent sheaves for smooth toric varieties. As a result of a joint work
with Michat Lason [LM11]| we construct a full, strongly exceptional col-
lection of line bundles for a large class of smooth, complete toric vari-
eties with Picard number three. Many questions concerning what kind
of collections should be expected on toric varieties of certain types are
still open. As a contribution we prove that P” blown up in two points
does not have a full, strongly exceptional collection of line bundles for
n large enough. This provides an infinite collection of counterexamples
to King’s conjecture 19.2. The first such counterexample is due to Hille
and Perling [HP06]. Recently also counterexamples in the Fano case
were found by Efimov [Efi|.

We will work over the field of complex numbers C. All the varieties
considered are algebraic varieties in the sense of [Har77].
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1. NOTATION

We present the list of symbols used in the thesis. The definitions
presented here are not formal and should be only treated as indications.
Precise definitions are given later — we provide the references.

add

aoo
add’

bi

a transition matrix associated to the action of g on W,
Definition 5.1

the morphism summing elements associated to edges at
each vertex, Definition 5.16

extension of add to a lattice, Definition 6.3

the group morphism summing elements associated to
leaves, Definition 5.19

a bijection between sockets and networks, Definition
5.29

a monoid in a lattice

the category of GG-models, Definition 10.3

the category of general group-based models

the function summing up coordinates in M., Definition
5.39

Definition 15.5

the derived category of X, Subsection 18.1

the bounded derived category of X, Subsection 18.1
the set of edges of a tree, Definition 4.2

the set of edges of a graph

a morphism that forgets coordinates, Definition 5.29
Definition 5.55

phylogenetic complexity of a group, Subsection 7.1

a group

a trivalent graph

Definition 5.13

an abelian group

the claw tree with n leaves, Definition 3.2

the set of leaves of a tree, Definition 4.2

a finite set of labels

the basis element of W indexed by a character of an

abelian group, Definition 5.6
a lattice of characters
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a sublattice of Mg, Definition 6.1

the lattice with basis elements indexed by characters,
Definition 5.32

the lattice with basis elements indexed by pairs of an
edge and an orbit, Definition 5.64

the lattice with basis elements indexed by pairs of an
edge and a character, Definition 5.32

sublattice of Mg, Definition 5.40

sublattice of ]\//TE, Definition 5.40

a sublattice of Mg generated by points of P, Definition
5.38

a lattice, Definition 15.2

the lattice with basis elements indexed by sockets, Def-
inition 5.32

sublattice of Mg with coordinates summing up to zero,
Definition 5.40

lattice of one parameter subgroups or the set of nodes
of a tree

the set of inner vertices of a graph

the group of networks, Definition 5.24

the set of orbits (usually of the adjunction action of a
group G on H*)

a basis element of W indexed by a character of an
abelian group, Definition 5.2

an integral polytope, (often representing the variety as-
sociated to a model, Definition 5.34)

an projective toric variety, Definition 2.7

Definition 4.9

the category of polytopes in lattices, Definition 10.4
Definition 4.7

the rational map induced by 7 o QZ, after Definition 4.9
the morphism of lattices induced by 1}, Definition 5.33
a projection onto the vertex v, Definition 5.16

the projective variety ags\ociated to the tree T" with a
model distinguished by W

a finite set of states

the group of sockets, Definition 5.24

a fan, Definition 2.25

a rooted tree

a trivalent tree
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T an algebraic torus

T a real (topological) torus

7(G) phylogenetic monoid, Definition 15.6

V the set of vertices of a tree, Definition 4.2

vV the set of vertices of a graph

W a vector space with basis elements corresponding to
states, Definition 4.1

/V[7e Definition 4.4

/WE Definition 4.6

Wg the space isomorphic to the ambient space of the variety
representing the model, Definition 5.31

W, Definition 4.6

Wi, the ambient space of the variety representing the model,
Definition 5.31

W, Definition 4.4

Wi, Definition 4.6

1% the space of transition matrices, Definition 4.3

X(T,VV,/W) the affine variety associated to a tree 7' and a model
distinguished by W

Y; primitive collection, Theorem 19.7

Y; collection of indices in Y;

7E a lattice with basis elements indexed by edges, Definition
15.2

ZoE the group of networks for the binary Jukes-Cantor

model, Definition 15.9

2. TORIC VARIETIES — THE SETTING

The study of toric varieties is a relatively new subject. However
its origins can be traced back even to Newton who had an idea to
represent a polynomial by lattice points. To a monomial in n variables
xft -+ xfn =: 2% one associates a point (ay, ..., a,) € Z". The following
definition will not be used throughout the thesis. However we include
it to give a reader not familiar with toric geometry first foundations.

Definition 2.1 (Newton polytope). Let f = ) _n 2z® be a polyno-
maal in n variables. The Newton polytope of f is the convex hull of
points associated to monomials x, such that o, # 0. The definition
can be easily extended to Laurent polynomials.

To find much more information on Newton polytopes we advise the
reader to consult [Stu98|. One of the first papers where toric varieties



22 MATEUSZ MICHALEK

were studied in a systematic way is [KKMSD73]. The authors call toric
varieties "toroidal embeddings" and view them as special compactifica-
tions of the algebraic torus (C*)™. Classical reference for toric varieties
are |Oda87| and [Ful93]. The latter book focuses more on the torus ac-
tion. Recently a new, very modern, user friendly book appeared |CLS].
The point of view on toric varieties presented there is closest to the one
from this thesis. The reasons why toric varieties have recently become
so popular are numerous. A few most important are for sure:

(i) toric varieties are strongly related to combinatorial objects,
what makes a lot of computations possible or at least easier,
(ii) toric varieties are simple, but fertile enough to provide a good
testing ground for conjectures, proofs, theorems, examples,
(iii) toric varieties appear naturally as simplifications of other va-
rieties,
(iv) toric varieties appear in applied mathematics.

This section contains well known results. We present the proofs,
trying to find the easiest and most direct. We hope that, with little
effort, the section can be read by people not familiar with toric geome-
try. Details that are skipped can be considered as exercises. We avoid
referring to any general theorems, as the theory is, on this level, easy
enough to develop from scratch. Many ideas presented in this part
come from [CLS| and [Stu96]. We will use the setting presented in this
section throughout the thesis. We encourage the reader familiar with
toric geometry to take a look, as often our approach is different from
the standard one.

In modern algebraic geometry a variety is locally described as a spec-
trum of an algebra. Thus the most important object connected to an
affine algebraic variety is its ideal containing all polynomials vanishing
on it. Note however that many varieties can be constructed in a differ-
ent way. Given k polynomials fi, ..., fr in n variables one can consider
the map (f1,..., fr) : C* — C*. The Zariski closure of the image is
an algebraic variety. Furthermore we can generalize this construction
assuming that f; are Laurent polynomials. In this case the domain of
the map is (C*)". Let us start the discussion of toric geometry by in-
troducing affine toric varieties. In most simple terms the study of affine
toric varieties is the study of the case where all f; are monomials.

Definition 2.2 (Affine toric variety). Consider k Laurent monomials
in n variables f; = x%, where a; € Z™. An affine toric variety is the
Zariski closure of the image of the map (fi,..., fr) : (C*)* — CF.

Note that we do not require the affine toric variety to be normal.
This issue will be addressed later. Moreover the affine toric varieties
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come with an embedding in the affine space. Recalling Newton’s idea
the map (f;) can be represented by k points a; € Z". The geometry
of these points is strongly related to the geometry of the affine toric
variety. We will say that the variety is associated to the set of points

{ai}.

Proposition 2.3. The ideal of the affine toric variety is generated by
binomials. Suppose that the parametrization of the variety is given by
k monomials f; in n variables x;. Let P, € ZF be a point associated to
fi. A binomial y?* - - ~yz’“ —yit- - yk for b, c; € Nois in the ideal if and
only if ¥, bP, = Y, i

Proof. The binomials of the given form vanish on the image of the map
(f1,--., fx), hence also on the Zariski closure. We will prove that they
not only generate the ideal, but span it as a vector space. Fix any
order on the monomials. Suppose that the ideal is not spanned by the
binomials of the given form. Let g be such a polynomial in the variables
y; that:

e is in the ideal of the variety,
e is not spanned by binomials of the given form,
e its leading coefficient is least possible.

Let am(yi, ..., yx) be the leading coefficient of g where m is a mono-
mial. As g is in the ideal, by substituting y; by f; we get a Laurent
polynomial that is zero on (C*)". Hence it has to be equal to zero. In
particular the term am(fi, ..., fx) has to reduce with the term induced
by some different monomial Sm/(f1,..., fx) appearing in g. Thus the
monomials m and m’ induce an integer relation between the points P;.
In particular m — m’ is a binomial of the chosen form. By subtract-
ing a(m —m') from g we get a polynomial in the ideal with a strictly
smaller leading coefficient which gives a contradiction. 0

The above proposition allows us to describe the algebra of an affine
toric variety.

Definition 2.4 (Semigroup algebra). Let (C,®) be a monoid. The
monoid algebra C[C] as a vector space is spanned freely by the elements
of C. The multiplication for c¢1,co € C' C C[C] is defined as cicy :=
c1 @ o and extended to C[C] using the azioms of C-algebra.

Example 2.5. For the monoid N” we obtain the algebra of polynomi-
als in n variables. For the group Z™ we obtain the algebra of Laurent
polynomials.

Corollary 2.6 (From Proposition 2.3). Consider the affine toric vari-
ety parameterized by monomials f; in n variables. Let P; € Z™ be the
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point representing f;. Let C' be the monoid generated by points P;. The
algebra of the affine toric variety is C[C]. O

We will be often working with projective toric varieties.

Definition 2.7 (Projective toric variety). Consider k + 1 Laurent
monomials f; in n variables. A projective toric variety is the Zariski
closure of the map (f1,..., fey1) : (C*)™ — PF.

If P C Z" is the set of points representing the monomials f;, we
will say that the closure of the image of (f;) in P* is a projective toric
variety associated to P and we will denote it by P(X)p. We can adapt
Proposition 2.3 and Corollary 2.6. First let us consider an affine cone
over a projective toric variety. Its parametrization is as follows:

Mooy M) = (C)"FE = CFFL

Notice that we have added a nonzero parameter A\, as we passed to
affine space. Of course Af; is still a monomial. If f; is represented by
a point P, € Z" then \f; is represented by P; x {1} € Z"*!. Thus in
the projective case it is more natural to consider the points P; in the
lattice of dimension one bigger and put the last coordinate equal to 1.
The monoid generated by P; x {1} gives rise to a monoid algebra of the
cone over the projective variety. Moreover the last coordinate gives the
grading of this algebra. The projective toric variety is the Proj of this
graded algebra. Thus affine toric varieties correspond to finitely gen-
erated monoids in Z". Projective toric varieties correspond to finitely
generated monoids in Z"*! with generators with last coefficient equal
to 1. A reader interested in this topic may extend these results to
varieties embedded in weighted projective spaces as an exercise.

Usually one assumes that a toric variety is normal. Let us explain
why. We start by recalling basic definitions.

Definition 2.8 (Normal algebraic variety). An affine algebraic variety
15 normal if and only if its algebra is integrally closed in its field of
fractions. An abstract algebraic variety is normal if and only if it can
be covered by normal affine algebraic varieties.

The concept of normality is very important for a number of reasons.
Let us recall that smoothness implies normality. Moreover the singular
locus of a normal variety has codimension at least 2. Most toric geome-
ters work with normal varieties, as this allows for a nice combinatorial
description of the variety [Oda87, Theorem 1.4].

Definition 2.9 (Lattice). A lattice is a finitely generated abelian group
with no torston. In other words a lattice is an abelian group isomorphic
to Z7.".
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Consider a subset of points P in a lattice M ~ Z". As in the Def-
inition 2.7 the set P defines a projective toric variety P(X)p together
with an embedding. Let X be the affine cone over P(X)p. Let C' be
the monoid generated by the points of P x {1} C M x Z. We know
that X = Spec C[C]. Let M C M x 7 be the sublattice generated by
P x {1}.

Definition 2.10 (Projective normality). We call the projective variety
P(X) projectively normal if and only if the affine cone X over this
variety is normal.

Of course each projectively normal variety is normal. In the toric
setting both normality and projective normality can be described in
combinatorial language.

Definition 2.11 (Saturated monoid, saturation, saturated set of points).
Let C be a monoid contained in a lattice M. We say that C' is saturated
if and only if for any x € M and any positive integer k the element
kx € C if and only if v € C. N

For any monoid C one can define its saturation C' that is the smallest
saturated monoid containing C'. In other words x € C' if and only if
for some positive integer k we have kx € C.

We say that a set of points is saturated in a lattice M if and only if it
generates a saturated monoid. We say that a set of points is saturated
iof it is saturated in the lattice that it generates.

Definition 2.12 (Integral polytope). An integral polytope is a conver
hull of a finite number of points in the lattice. As we will be dealing
only with lattice polytopes we will often call them just polytopes.

Definition 2.13 (Normal polytope). We say that a polytope P C M
is normal in the lattice M if and only if the set P x {1} is saturated in
M x Z. We say that a polytope P is normal if and only if it is normal
wn the lattice that it generates.

In other words a polytpe P is normal in the lattice M if and only if
for any k € N any point Q € kP N M is a sum of k points from P.

Note that it is very important to specify the lattice. Consider the
polytope P C M := Z3. Let P have got four integral points: (0,0, 0),
(1,1,0), (0,1,1), (1,0,1). This is a normal polytope. Note however
that it is not normal in M. Indeed (1,1,1) € 2P and (1,1,1) is not
the sum of two integral points of the polytope.

Note that if the set P x {1} is saturated then P must be a polytope in
the lattice that it generates. Indeed suppose that P x {1} is a saturated
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set, of points. Let M be the lattice spanned by P. Let D € M be a
linear combination of points from P with positive coefficients summing
up to 1. From the linear algebra it follows that we can assume that
the coefficients are rational. Hence some multiple of D x {1} is in the
monoid generated by P x {1}. As P x {1} is saturated it must contain
D x {1}. Thus the convex hull of P intersected with M equals P.
Hence P is a polytope.

Fact 2.14. The variety P(X)p, defined by a set of points P, is pro-
jectively normal if and only if the set of points P x {1} is saturated.
Equivalently P must be a normal polytope.

Fact 2.15. Let D be any point of the set P x {1}. Let Pp be the set
P x {1} — D, where the minus is the lattice operation. The variety
P(X)p associated to P x {1} is normal if and only if for any D €
P x {1} the set Pp is saturated. In such a case P does not have to be
normal.

Proof. Both facts are a direct consequences of Proposition 2.22. For the
first, the algebra of the cone over the variety equals the monoid algebra
for the monoid C' spanned by P x {1}. The monoid C' is saturated, if
and only if P is normal.

For the second, one can notice that points of P x {1} correspond to
variables of the ambient projective space. Consider the affine subvari-
ety of P(X) corresponding to setting one variable, corresponding to a
point D, to 1. The algebra of this affine variety is the monoid algebra
associated to the monoid spanned by Pp. O

Definition 2.16 (Cone, cone over a polytope). A cone is a finitely
generated, saturated monoid of a lattice.

In the literature it is often called a convex polyhedral cone. More
precisely in this thesis we identify lattice points of the polyhedral cone
with the cone.

Let P be a polytope that spans the lattice M. The cone over P is the
saturation of the monoid spanned by P x {1} C M x Z.

We will see in Proposition 2.22 that normal affine toric varieties are
associated to finitely generated cones. Projectively normal projective
toric varieties are associated to cones over normal polytopes.

There is one important case where even in the projective case one
can consider the set of points P instead of P x {1}. Suppose that
P is contained in a hyperplane given by an equation ) a;x; = b for
b # 0. In this case the monoid generated by P is isomorphic to the
monoid generated by P x {1}. In the first part of the thesis we will be
considering such polytopes.
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We would like now to explain the name toric variety. It is connected
to the algebraic torus T = (C*)" = Spec C[z']. Using coordinate-
wise multiplication T is an algebraic group. On the level of algebras
the action is given by a morphism Clzf'] — C[z7'] ® C[zF'] that as-
sociates to a generator x; the tensor product z; ® x;. Note that an
arbitrary Laurent polynomial f is not sent to f ® f. This is true only
for monomials. Let us consider algebraic morphisms T — C* that pre-
serve the abelian group structure. These are called characters. Such
a map is in particular a regular function on T hence must be given
by a Laurent polynomial. Due to the fact that it must preserve the
group structure one can prove that it must be a monomial. By iden-
tifying a monomial with a lattice point we see that characters form a
lattice Z™. Intrinsically, one defines the sum of characters f and g by

(f +9)(x) = f(z)g(x).

Definition 2.17 (Lattice of characters M). The lattice of characters
M of a torus T consists of morphisms of algebraic groups T — C* with

addition defined by (f + g)(x) = f(x)g(x).

Dually one defines one parameter subgroups as morphisms of alge-
braic groups C* — T. By projecting onto coordinates we see that each
such morphism is of a form ¢t — (¢**,...,t%) for a; € Z. It can be iden-
tified with a point (ay,...,a,) € Z™. Hence one parameter subgroups
also form a lattice.

Definition 2.18 (Lattice of one parameter subgroups N). The lat-
tice of one parameter subgroups of a torus T consists of morphisms of

algebraic groups C* — T with addition defined by (A4 96)(t) = A()d(t).

It is well known that lattices M and N are dual. The pairing can be
described as follows. Fix f € M and A € N. The composition fo\is a
morphism of one dimensional tori. Hence it is a form ¢ — t*. We define
the product of f and A to be equal to a. After using the identification
of M and N with Z" this is the standard scalar product.

As we have seen the characters correspond exactly to monomials
in the algebra of the torus. Hence T is the spectrum of the monoid
algebra C[M]. Points of T correspond to maximal ideals of this algebra
or to surjective morphisms of algebras f : C[M] — C. Of course to
determine such a morphism it is enough to define it on M. As M is a
group its image has to be contained in C*. Moreover due to the fact
that f is a map of algebras the map M — C* must preserve the group
structure. Hence the points of T correspond to maps M — C* that
preserve the group structure. Precisely for a point P we associate to a
character y its value on P.
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Definition 2.19 (Abstract toric variety). A toric variety X is an al-
gebraic variety, finitely generated over C, containing T as a dense open
subset. Moreover we require that the action of T on itself extends to an
algebraic action on X.

A crucial fact is that an abstract toric variety that is affine is an
affine toric variety in the sense of Definition 2.2. This fact is usually
proved using the following, very important lemmas.

Lemma 2.20. Suppose that a torus T acts on a vector space V.. Then
there exists a basis of V' such that the action is diagonal.

Proof. For t € T and v € V' we have:

= 3" X0 A (v),

where the sum is over a finite collection of characters of T. One can
notice that A, are projections to subspaces on which T acts by multi-
plication by a value of the corresponding character. U

Lemma 2.21. The algebra of an abstract toric variety X that is affine
1s a monoid algebra associated to a monoid contained in the character
lattice of the torus associated to the variety.

We propose an approach that proves the this lemma directly.

Proof. As T is Zariski dense in X we know that the algebra A of X is a
subalgebra of C[M]. Fix f € A. We know that f = Zle a;x; for some
Xi € M and a; # 0. Let W be a vector space spanned by characters
x; for i = 1,... k. Consider the vector subspace V := ANW. Our
first aim is to prove that V' = W. Suppose that V is contained in a
proper vector subspace. Let (by,...,b;) be such that if Zle dix; €V,
then Zle d;b; = 0. By the assumptions T acts on X, hence on A. An
action of a point ¢ € T on y; is given by x;(¢)y;. Hence the action of
con f gives Zle a;xi(c)x; € V. Thus for any ¢ € T we must have
Zle ba;xi(c) = 0. Hence Zle b;a;x; must be identically zero on T.
This is possible only if all b; = 0 what gives a contradiction.

Hence the algebra A is spanned as a vector space by characters of
M. Obviously these characters must form a monoid. O

As we have seen the algebra of an abstract toric variety X that is
affine is equal to C[C] for a monoid C' C M. As the algebra is finitely
generated, so is the monoid C. Let xi,...,xx be generators of C.
Consider the embedding of the torus acting on X by (x1,..., xx). Due
to Corollary 2.6 its Zariski closure in C* is isomorphic to X.
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Proposition 2.22. Let X be an affine toric variety. Let C be a monoid
in the character lattice M of the torus acting on X. The variety X is
normal if and only if C' is a cone.

Proof. First let us prove that if X is normal then C' is saturated. Con-
sider any point kc € C for ¢ € M. We want to prove that ¢ € C. For
m € M let x,, be a corresponding character. Consider a polynomial
f(X) = X* — x4 with coefficients in the algebra of X. Clearly x.
satisfies the equation f. Moreover as C' spans M, the character x. is
in the quotient field of the algebra of X. Due to the normality of X
we know that y. is also in the algebra. Hence ¢ € C.

Now we want to prove that if C' is saturated, then C[C] is normal.
First note that the quotient field of C[C] is equal to the quotient field of
C[M]. As the torus is smooth, its algebra is normal. One can also prove
it by noticing that its algebra is a UFD (as it is a localization of the
polynomial ring). Consider any monic polynomial f € C[C][z]. Sup-
pose that ¢ is in the quotient field and satisfies the equation f(g) = 0.
From the normality of C[M] we know that g € C[M]. One can repeat
the argument of Lemma 2.21. Namely we can act on the equation
f(g) by any point P of the torus. The action of P on f gives a monic
polynomial with coefficients in C[C]. Hence the action of P on g gives
polynomials that are in the normalization of C[C]. By the same ar-
guments as in Lemma 2.21 we see that every character appearing in g
with nonzero coefficient must be in the normalization of C[C]. Thus
we can assume that g € M.

Suppose that f is of degree d. Notice that f(g) = 0 implies that
dg = d'g + ¢o for some integer 0 < d’ < d and ¢ € C, as the character
Xdg Must reduce with some other character. Thus (d — d')g € C and
by normality g € C. O

It is also worth mentioning how we can recover the torus of an affine
toric variety given by a parametrization. There are a few equivalent
ways to do this. Note that our construction of an affine or projective
variety defines them with an embedding in an affine or projective space
with a distinguished system of coordinates. These coordinates are in
bijection with the points in the lattice that define the variety. The
construction also distinguishes a dense torus in the embedding space.
It contains all points with nonzero coordinates.

Fact 2.23. Consider a parametrization f = (f1,..., fx) : T := (C*)" —
CF, where f; are Laurent monomials in n variables. Let X be the
Zariski closure of the image of this map. Let T" = (C*)* C C* be the
torus containing all points with all coordinates different from zero, with
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the action given by coordinatewise multiplication. Let M’ and M" be
the character lattices respectively of the tori T' and T". Then:

(i) On the level of algebras the parametrization map f is induced
by group homomorphism f : M" — M’,

(i) The image T of T" in T" is Zariski closed, isomorphic to a
torus, with the group action induced from T”,

(1ii) The character lattice of T is equal to the image off or equiv-
alently to the quotient of M" by the kernel of f,

(iv) The variety X contains T as a dense open subset and the action
of T extends to X.

4

One can identify the torus T that acts on the projective toric variety
P(X)p. Asin the affine case it is the image of the parameterizing torus.
It is also equal to the intersection of P(X)p with a torus T” containing
all points of the projective space with all coordinates different from
zero. The action of T is induced from the action of T” on the projective
space. Using the basis it is given by the coordinatewise multiplication.

We will be often comparing a projective variety with its affine cone.
The following discussion concerns the ambient spaces. There is a nat-
ural morphism m : C"*\ {0} — P". A system of coordinates distin-
guishes a torus T’ in C™™! consisting of the points with all coordinates
different from zero. Let M’ be the character lattice of T’. Choose a
coordinate system on P compatible with the one on C**! by the mor-
phism m. The image of T’ is a torus T” consisting of the points with
all coordinates different from zero. Let M"” be the character lattice of
T”. Note that C*™! is a toric variety, with the action of T’ given by
coordinatewise multiplication. So is P with the action of T”. Each
coordinate of C"™! is a character of M’. All coordinates distinguish
a basis of M’. The morphism m can be restricted to T" and can be
considered as morphism of tori, preserving the group action. It induces
a map of character lattices m : M” — M’. As m is a surjective mor-
phism of tori, the morphism 7 is injective. Hence M" is a sublattice of
M'. Using the basis of M’ we can give a precise description of elements
that belong to M"”. Namely an element of M’ belongs to M” if and
only if its sum of coordinates in M’ is zero.

Definition 2.24 (Face of a cone). Let C' be any cone in a lattice M.
Let v € M* = Hom(M,Z). Suppose that for any ¢ € C we have
v(c) > 0. Let vt be a hyperplane of M consisting of elements x such
that v(z) = 0. A face of the cone C' is any subset that is given by v-NC
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for some v satisfying the conditions above. Notice that a face of a cone
15 also a cone.

Equivalently a face F of C can be defined as a submonoid satisfying
the following condition:

e For any cy,co € C such that ¢, + co € F' we have ¢1,¢co € F.

For an affine toric variety corresponding to a cone C' the faces of
C' correspond to orbits of the torus acting on it. Let us present this
correspondence in details. We fix a finitely generated monoid C' in a
lattice M and its generators xi,...,xx € C. As in Definition 2.2 the
closure of the embedding in CF of the torus Spec C[M] by characters y;
is the affine toric variety X := Spec C[C]. Note that we distinguished
a basis in C*, but not on the torus C[M]. Due to Fact 2.23 we know
that:

e the dense torus orbit of X contains precisely those points that
have all coordinates different from zero,

e the character lattice of the torus acting on X is equal to the
sublattice of M spanned by C.

We will generalize this to other orbits. Assume that C' is a cone. Each
orbit will be indexed by a face F' of the cone. The face F' distinguishes
a subset [ of indices from {1,...,k} such that ¢ € I if and only if
Xi; € F. The orbit corresponding to F' can be characterized as follows:

1) the orbit contains precisely those points that have got coordinates
corresponding to ¢ € [ different from zero and all other equal to
zZero,

2) the orbit is a torus with a character lattice spanned by elements of
F,

3) the closure of the orbit is a toric variety given by the cone F,

4) each point of the orbit is a projection of the dense torus orbit onto
the subspace spanned by basis elements indexed by indices from 1,

5) the inclusion of the orbit in the variety is given by a morphism of
algebras C[C] — C[F]. This morphism is an identity on F' C C[C]
and zero on C'\ F.

Note that each orbit will contain a unique distinguished point given
by the projection of the point (1,...,1) € C¥. We will only present a
sketch of a proof of these observations.

Proof. As in case of the torus we can identify the points of X with
monoid morphisms C' — (C,-). Fix any point x € X. The characters
X € C such that x(z) # 0 must form a face of F'. Hence x distinguishes
a subset of indices I C {1,...,k}. Of course the set of points with
nonzero coordinates indexed by I and other coordinates equal to zero
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in X is invariant with respect to the action of the torus acting on X. So
to prove 1) it is enough to prove that all these points are in one orbit.
The point x represents a morphism C' — (C,-) that is nonzero on F'
and zero on C'\ F. Consider the restriction of this morphism to F. As
it is nonzero it can be extended to a morphism M’ — C*, where M’ is
a sublattice generated by F'. Next we can extend this morphism to the
lattice M"” generated by C. Thus we obtain a morphism f : M" — C*
that agrees with the one representing x on F'. Note that f represents a
point p in the torus acting on X. By the action of p~! on x we obtain
a point given by a morphism that associates one to elements from F
and zero to elements from C'\ F. Thus we have proved 1). Moreover
we showed that each orbit contains the distinguished point. Point 2)
follows, as morphism that are nonzero on F' and zero on C' \ F are
identified with morphisms from M’ to C*. Point 3) is a consequence of
2) and previous discussion on affine toric varieties. Indeed, we already
know that the orbit is a torus with the lattice generated by F. This
torus is the image of the torus Spec C[M] in C* by characters from I and
all other coordinates equal to zero. Let A be the affine space spanned
by basis elements indexed by indices in I. The orbit corresponding to
F' is contained in A. In fact, by the construction it is the image of
Spec C[M] by characters x;, such that ¢ € I. The closure of this torus
is exactly given by Spec C[F], as generators of the monoid C' contained
in F' are generators of F'. Point 4) is obvious, as the point p constructed
in the first part of the proof projects to z. O

We finish this section by stating some results about normal abstract
toric varieties.

Definition 2.25 (Fan). A fan X is a finite collection of cones in a
lattice that satisfy the following conditions:
1) if a cone C' is in the fan then all its faces are also in the fan,

2) an intersection of any two cones from the fan is a face of both,
3) for any cone C' € X if x € C, then —x ¢ C.

A general, normal toric variety can be represented by a fan in the
one parameter subgroups lattice N.

Definition 2.26 (Dual cone). Let L and L' be dual lattices with the
pairing given by (-,-). Let 6 C L be a cone in L. We define the dual
cone 6* C L' as:

0 ={x el foranyy e d we have (x,y) > 0}.

A toric variety X is constructed from a fan X by gluing together

affine schemes Spec(Clo}]), where o C M is a cone dual to o; € ¥.

1
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One dimensional cones in Y are called rays. The generators of these
monoids are called ray generators.

Many properties of the variety X can be described using the fan >.
For example X is smooth if and only if for every cone o; the set of its
ray generators can be extended to a basis of N. Moreover to each ray
generator v we may associate a unique 7" invariant Weil divisor denoted
by D,. For fans containing maximal dimensional cones there is a well
known exact sequence:

(2.1) 0 — M — Divy — CIl(X) — 0,

where Divr is the group of T" invariant Weil divisors and C1(X) is the
class group. The map M — Divyp is given by:

m — Z m(v;) Dy, ,

where the sum is taken over all ray generators v;.

So far we have defined objects of the category of toric varieties.
Not every algebraic morphism is a morphism in this category. Indeed,
as toric varieties are endowed with the torus action, it is natural to
distinguish those morphisms that respect this action.

Definition 2.27 (Toric morphism). Let f : X — Y be a morphism of
toric varieties. Let Tx C X, Ty C Y be the tori acting respectively
on X and Y. We call f a toric morphism if f(Tx) C Ty and for any
points p,q € Tx we have:

fpq) = f(p)f(q).

Notice that, as the tori are Zariski dense in the varieties, this immedi-
ately implies that for any p € Tx and q € X the same equality holds.

As the restriction of the toric morphism is a morphism of algebraic
tori, it induces a map of character lattices f : My — Mx. By dualizing,
this gives a map of one parameter subgroups f* : Nx — Ny. In fact one
can easily characterize which morphisms of one parameter subgroups
give rise to toric morphisms. For each cone 4 in the fan representing X
there must be a cone ¢’ in the fan representing Y such that f*((S) cd.

Much more information on the topic can be found in [CLS|, [Ful93].

Part 1. Algebraic varieties associated to Markov processes
on trees

Dans la premiére partie, nous étudions des variétés algébriques as-
sociées aux processus de Markov sur les arbres. A chaque processus de
Markov sur un arbre on peut associer une variété algébrique. Motivé
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par la biologie, nous nous concentrons sur les processus de Markov défi-
nis par une action de groupe. Nous étudions les conditions pour que la
variété obtenue soit torique, le théoréeme 5.63. Nous donnons un résul-
tat ou les variétés obtenues sont normales (cf proposition 5.73), ainsi
que des exemples ou elles ne le sont pas (cf proposition 5.74 et calcul
5.75). L’une des principales méthodes que nous utilisons est la général-
isation des notions de prises et de réseaux introduites dans [BWO07| a
des groupes abéliens arbitraires. Dans notre contexte, les réseaux for-
ment un groupe décrit a la définition 5.24 qui agit sur la variété. Par
ailleurs, ’espace ambiant de la variété est la représentation réguliére
de ce groupe.

Le principal probléme ouvert que nous essayons de résoudre dans
cette partie est une conjecture de Sturmfels et Sullivant [SS05, Conjec-
ture 2| indiquant que le schéma affine associé au modéle 3-Kimura est
défini par un idéal engendré en degré 4. Notre meilleur résultat dit que
le schéma projectif associé peut étre défini par un idéal engendré en
degré 4 (cf théoréme 12.1). Avec Maria Donten—Bury, nous proposons
une méthode pour engendrer 'idéal associé a la variété pour tous les
modéles. Nous montrons que notre méthode fonctionne pour de nom-
breux modéles ainsi que pour les arbres si et seulement si la conjecture
de Sturmfels et Sullivant est vraie (cf proposition 7.8). Nous présen-
tons quelques applications, par exemple au probléme d’identifiabilité
en biologie.

3. INTRODUCTION

The motivation for the constructions in the first part of the thesis
comes from applied mathematics. Let us recall basic properties of
Markov chains and Markov processes on trees. A Markov chain is a
sequence of random variables { X;} that satisfy specific conditions. For
a fixed state of a variable X;_; the variable X, is independent from the
set of all the variables X;_; for j > 1. Typically, this chain is depicted
vertically by associating a vertex to each variable and joining X; with
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Xi—l-
Xo

Xi1

For a Markov chain we usually introduce conditional probabilities that
specify all the properties of the chain. Suppose that each variable X;
can be in a; < oo states. Then to each edge joining X; ; and X; we
can associate an a;_; X a; matrix. The columns and rows of the matrix
are indexed respectively by states of X; ; and X;. The given entries
correspond to conditional probabilities. Namely, an entry indexed by
a pair of states (p,q) equals the probability that X; is in the state ¢
under the condition that X;_; is in the state p. These matrices are
called transition matrices. If we know the distribution of Xy and the
transition matrices we can easily calculate the distributions of all other
variables.

This construction can be directly generalized to rooted trees. By a
rooted tree we will always mean a connected graph with one distin-
guished vertex and no cycles. By leaves we mean vertices of valency
one. Nodes are vertices that are not leaves. In the thesis we will
sometimes identify leaves with edges adjacent to them. To simplify
the language we assume that the tree is a directed graph and all the
edges are directed away from the root. In the example below the root
is denoted by o.

o

)
ERN

As before to each vertex we associate a random variable. We say that
a node v; is a direct ancestor of vy if there is an edge directed from
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v1 to v9. Note that there is always one direct ancestor, except for the
root that does not have ancestors. The descendants of a vertex are
all the vertices that can be reached from it by a directed path. The
Markov property ensures that a variable X is independent from all
other variables that are not its descendants once the state of the direct
ancestor is fixed.

Markov processes on trees are good models for many empirical phe-
nomena. For example evolution processes are often modeled it this
way. It is intuitively plausible that the DNA of a species depends only
on the state of its direct ancestor. The science that models the evo-
lutionary changes is called phylogenetics. For more information about
mathematical and computational methods in phylogenetics the reader
is advised to consult [SS03| and |[Fel04]. The main aim of phylogenet-
ics is to establish the Markov process that models evolution of species.
In this situation we assume that the random variables have four states
corresponding to four nucleobases that form the DNA. These are called
adenine, cytosine, guanine, thymine and are denoted respectively by A,
C, G and T. A priori we do not know the transition matrices and the
shape of the tree. However, by examining the living species, we know
the distribution of random variables associated to leaves. Theoreti-
cal biology also provides us with possible types of transition matrices.
According to the theoretical model we choose the transition matrices
may belong to different linear subspaces. Different biological models
are discussed in Section 4. A very interesting fact is that the models
proposed by theoretical biologists often have very nice mathematical
properties. Precisely certain subspaces of possible transition matrices
are given as invariants under a group action.

One of the possible approaches to solve the problems in phylogenetics
using algebraic geometry is as follows. We fix a rooted tree T' that we
suspect is a correct model of evolution. We consider any transition
matrices with entries that are free parameters, that possibly depend
only on the biological model that we choose. To the space of parameters
we add also possible distributions of the variable associated to the
root. We calculate the distribution of random variables associated to
leaves. More precisely we get a map® 7o) . Its domain parameterizes
entries of transition matrices and possible distributions of the random
variable associated to the root. Its image parameterizes all possible
distributions of the random variables associated to leaves.

Example 3.1. In this example we suppose that each variable can be in
two states denoted by 0 and 1. There is one root with two descendants.

2The reason for choosing this notation will become clear in the following sections
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The variable associated to the root attains the value 0 and 1 with the
probability given respectively by Ay and A;. The transition matrices
are as follows.

(o ]/ \[\\ o

Hence there are 6 parameters. The leaves can be in 4 states. We order
them as follows:

1) both leaves are in state 0,
2) the left leaf is in state 0 and right in state 1,
3) the left leaf is in state 1 and right in state 0,
4) both leaves are in state 1.

We obtain the map:
™o "Z : ()\Oa )\17 ay, as, b17 62) —
(Aoa1br + Arasba, Aga1ba + Aiasbr, Aoasb + Ajaiba, Agasby + Ajaiby).

Let P be the point, established empirically, that represents the dis-
tribution of random variables associated to leaves. We would like to
check if P belongs to the image of m o). If it is not in the image, then
we know that either the biological model we used is wrong, or the tree
T is not the right one. If the point P is in the image, we can ask for
a description of the fiber. However determining if P belongs to the
image is hard in general. One of the methods bases on the fact that
T o QZ is an algebraic map. We can consider the Zariski closure of its
image. This is an affine algebraic variety. One would like to describe
its ideal and check weather the generators vanish at P. The elements
of this ideal are called phylogenetic invariants.

This approach may be not very effective. The description of the ideal
of a variety given by a parametrization is not an easy task. However the
maps we get are not arbitrary. As it was observed first by Evans and
Speed [ES93| for certain models of evolution the variety we consider is
toric. More precisely there are coordinates in which the parametriza-
tion map is given by monomials. This allows to apply methods of toric
geometry in order to determine the ideal of the variety.

Throughout the thesis we assume that the random variable associated
to the root has got a uniform distribution. This assumption is not
motivated by biology. We use it only to obtain nicer results from the
mathematical point of view. Hence in our study the parameter space
contains only coefficients of transition matrices.
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One of the main aims of this thesis is to determine under what con-
ditions the model of evolution gives rise to toric varieties. Our results
give the most general known criterion 5.63. In particular we believe
that our approach covers all biological models of interest that were
known to give rise to toric varieties. Further we investigate properties
of the obtained toric varieties. We prove that varieties associated to
certain biological models are normal 5.73. However we give also exam-
ples where the obtained varieties are not normal 5.75. Next we address
the question for which models the varieties associated to trivalent? trees
belong to the same flat family. For the binary Jukes-Cantor this fact
was known to be true by [BWO07]|, while for 3-Kimura it does not hold
due to [Kub10]. By calculating Hilbert polynomials of many varieties
we found out that most considered models do not have this property.

Another very important task concerns phylogenetic invariants.

Definition 3.2 (Claw tree). A claw tree K, is a tree with exactly one
mner vertex and n leaves.

For many models, in particular those that are most important for us,
the study of phylogenetic invariants of any tree was reduced to the case
of the claw tree [SS05], [AR08], [DK09]. However establishing phyloge-
netic invariants in this special case turned out to be very difficult. We
do not even know the degree in which the ideal of phylogenetic invari-
ants is generated. There is a well-known conjecture due to Sturmfels
and Sullivant [SS05, Conjecture 1| that gives a precise upper bound
for this degree. The conjecture is astonishingly similar to an old theo-
rem of Noether. The theorem bounds the degree in which the ring of
invariants of the group action on the polynomials is generated. How-
ever, as we will see in Section 6 it is hard to give a description of the
whole algebra of the phylogenetic variety as a ring of invariants. More-
over, even if some description is possible, the order of the group is big
— Corollary 6.6. One of interesting observations is that the conjecture
implies a description of the ideal as a sum of more simple ideals. In fact
we propose a method for obtaining many phylogenetic invariants for
any model for the claw tree 7.2. We conjecture that our method gives
a description of the whole ideal. We show that in many cases our con-
jecture is equivalent to the one made by Sturmfels and Sullivant 7.8.
Our strongest result 12.1 in this topic proves a weaker, set-theoretic
version of [SS05, Conjecture 2|, that is sufficient for applications.

3The valency of all vertices is either one or three.
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4. BASIC DEFINITIONS

The section introduces objects that will be studied in the first part
of the thesis. The subsection 4.1 is the most important. Other parts
can be treated as motivations and examples.

We will be dealing with algebraic varieties associated to phylogenetic
models. These varieties are always given as closures of the image of
a parametrization map — details will be presented in Section 4.1. A
short, algebraic introduction to the topic can be found in [ERSS04].

Let S be a finite set, called the set of states. In the biological setting
S is often supposed to have four elements. These elements correspond
to four nucleobases. The set S is the codomain of random variables in
the Markov process. Let A C RISl be the probabilistic simplex that
contains all the points with nonnegative coordinates summing up to
one. The points of A parameterize all possible distributions of random
variables with the set of states equal to S. In algebraic geometry instead
of considering the simplex A one considers the whole complex vector
space CI5I.

Definition 4.1 (Space W). We define W to be a complex vector space
spanned freely by elements of S. More precisely W = @,c5C,, where C,
15 a field of complex numbers corresponding to one dimensional vector
space spanned by a € S.

Suppose that we are given a rooted tree 7" with edges directed from
the root.

Definition 4.2 (Sets L, V, N and E). Let L, V, N and E be respec-
tively the set of leaves, vertices, nodes and edges of the tree T. We have
V=LUN and LN N = 0. We identify leaves with edges adjacent to
them.

The objects that we study are derived from Markov processes on
a tree. To each vertex one can associate a random variable with
the set of states equal to S. The Markov property ensures that the
variable in a vertex depends only on the variable associated to its
first ancestor. Formally let X; be a variable associated to a vertex
v;. Suppose that there is an edge directed from v; to vy. Consider
any set of vertices vs,...,v; that are not descendants of v,. Then
P(Xg = I2|X1 = ZEl,Xg = ZE3,...,Xj = Z‘j) = P(Xg = I2|X1 = xl),
where x; are some states. This mathematical model is applied for ex-
ample in phylogenetics. The nodes of the tree correspond to species
and the Markov property describes the fact that evolutionary changes
depend only on the direct ancestor. More information on Markov pro-
cesses can be found for example in [Ibe09]. The reader interested in
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phylogenetics in advised to look in [PS05]. There one can also find a
detailed explanation of the relationship between Markov processes on
trees and models that we consider. -

To define a model we need to distinguish a subspace W C End (V).

Definition 4.3 (Transition matrix). Any element of the space W rep-
resented as a matriz in the basis corresponding to S is called a transition

matriz.

The entries of a transition matrix correspond in biology to proba-
bilities of mutation. Most often a model is distinguished by specifying
the type of transition matrices.

Let us present some of the models.

(1)

The Cavender-Farris-Neyman model also called 2-state
Jukes-Cantor model®. This is the most simple model. It was
first introduced in [Ney71|. In most of biological articles it is
called the Cavender-Farris-Neyman model or just the Neyman
model. However recently, especially in algebraic phylogenet-
ics, it is called the 2-state Jukes-Cantor model or the binary
model [SS05], [BW07], [ERSS04]. In this model S has got two
elements and the transition matrices are of the following type:

b

This model has got a lot of nice properties. One of the most
interesting is the fact that the algebraic varieties arising from
trivalent trees with the same number of leaves are deformation
equivalent — see [BWO07| for the original, algebraic proof and
[11t10] for a combinatoric one. It is a general group-based model
for the group G = Zs — the definition of general group-based
models will be introduced in subsection 5.1.
3-Kimura model. This is a four state model. It was intro-
duced in [Kim81|. It is a general group-based model for the
natural action of the group G = Zs X Zs on the nucleobases
A,C,G,T |ES93|. The transition matrices are of the type

QL O T
[SIISURS IS o
SR L0
Q "0

*We would like to thank Elizabeth Allman for the information on the ambiguity.
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(iii) 2-Kimura model. This is a model for four states. It was
introduced in [Kim80]. The transition matrices are of the type:

SN0 o R
o o o
> 0
Q@ o0 o

(iv) Jukes-Cantor model. This is the most simple model for four
states. It was introduced in [JC69|. The transition matrices
are of the type:

oy o Q
> Q>
>~ o o
Q oo o

(v) General Markov model. This model can be considered on
any number of states, but for biological reasons it is typically
considered for four states. The space W is equal to the whole
space of endomorphisms End W. Hence for four states the
transition matrices are arbitrary:

Ss-mg
S . s>
SO T o
N~ X

4.1. A variety associated to a mo/(jel. We will associate an alge-
braic variety to a tree 7" and a space W C End W. This is a standard
construction. In the literature one can find a lot of generalizations of
the approach presented here — see for example [DK09].

Definition 4.4 (Spaces W, and We) To each vertex v of the tree we
attach a complex vector space W, with a fixed isomorphism iso, : W =~
W,. The images of the basis elements of W corresponding to states
S by iso, give a basis of W,. The element/s\of this basis are denoted
by {a,}. We also consider a vector space W C End(W), determined
by the model we choose. To each edge e of the given rooted tree T we
associate a vector space /We isomorphic to W,

Remark 4.5. The natural basis on W induces an isomorphism W =
W*. Hence End(W) =2 W* @ W =2 W @ W. We may regard W and

o~

respectively each W, as subspaces of W @ W.
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Definition 4.6 (Spaces Wy, /WE, Wrp). We recall that V, L and E are
respectively the set of vertices, leaves and edges of a tree. We define
the three following spaces:

Wy =Q@W,, Wr=QRQW, Wg=QRW.

veV leL ecE
We call Wy, the space of all possible states of the tree, Wi, the space of
states of leaves and Wy the parameter space.

Definition 4.7 (The map +, Construction 1.5 [BWO7]|). Let o Wg —
Wy, be a map whose dual is defined as:

~

V" (@ueray) = Geen (@) @ o),
Here the edge e is directed from the vertex vi(e) to vy(e).

The map QZ is just a map well known to biologists that to a given
choice of matrices associates the probability distribution on the set of
all possible states of vertices of the tree.

Example 4.8. Let us consider the binary Jukes-Cantor model. Fix
the tree with one root r and two leaves {; and ls. /T\he spaces W and W
are two dimensional. Hence the spaces Wy, and Wg are respectively 8
and 4 dimensional. The basis elements of Wy, correspond to states of
the variables associated to nodes of trees. Hence they can be indexed
by triples (p, q, s) for p,q, s = 0,1. Assume that the first element of the

triple is associated to the state of r. The elements of W are matrices

of the type
a b
b a |’

Fix a simple tensor in /WE represented by a pair of such matrices:

aq b1 a9 bg
b1 ay ’ bg a9 ’
To this element the morphism 12 associates an element of Wy, given
as:
alag((), 0, O) + &1&2(1, 1, 1) + albg((), 0, 1) + &162(1, 1, O)
+b1a2(0, 1, O) -+ blag(l, O, 1) + blbg(o, ]_, 1) + blbg(l, O, 0)
Thus the map 15 associates to a given choice of transition matrices
the "probability dirstribution" on the set of all possible states of the
tree. This is up to a scalar, as we assume that the root has got uniform

distribution. Moreover, as we work over complex numbers and there
are no probabilistic restrictions on elements of W the map 1) is obtained
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by the rule for Markov processes, but in general the elements of the
image have no probabilistic meaning.

Recall that N = V' \ L is the set of nodes of a tree. We consider the
map 0 = Y« € W* that sums up all the coordinates.

Definition 4.9 (7). Let 7 : Wy — Wy be a map defined as m =
(Rueridw,) @ (Ruenow,). The map w sums the probabilities of all the
states of vertices that differ only on nodes.

If we compose the map {/)\ with 7 we obtain a map from /WE to Wr.
This induces a rational map:

b [[POWL) --» P(W).

eckE

The closure of the image of this map is denoted by P(X (T, WV, /W))
This is the algebraic projective variety associated to the model
that is the main object of stuiy of this section. We will also
consider the affine model X (7', W, W) that is the affine cone over this
variety.

5. GROUP-BASED MODELS

The aim of this subsection is to investigate the properties of certain
models. The space of transition matrices will be given as a subspace
invariant under a group action. We will see under what conditions we
obtain a toric variety. We will also study the properties of so obtained
varieties and their connections with trees and groups. We have to point
out that in this section we do not assume that a toric variety has to
be normal. We only assume that a torus acts on a variety and one of
the orbits is dense. This setting is most common when dealing with
applications. Much information can be found in [Stu96]. The main
drawback of this approach is that the varieties we consider will not be
given by a fan. However, still they can be represented by polytopes,
that do not have to be normal. For this reason we will often work with
the character lattice M instead of the one parameter subgroup lattice
N.

We will be defining objects that will depend on a tree T" and a group
G. For any object O if we want to stress its dependence on either
T or G we write them in the indices: O}. For the vector spaces on
which a group G acts we use the standard notation for the subspace of
invariants, by putting G in the upper index.
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5.1. General group-based models. In our study we are mainly in-
terested in specific models. We set the notation for general group-based
models. We generalize the notions of "sockets" and "networks" intro-
duced in [BW07|. This enables us to extend some of the results from
Zs to arbitrary abelian groups. We believe that these notions give a
nice, unified description of the variety associated to the model.

The inspiration for this section comes from the work [ES93] of Evans
and Speed who recognized a natural action of an abelian group G on S
in biological case. Namely the group G = Zy x Zy acts on {A,C, G, T}
transitively and freely. Hence from now on we assume that we have
a transitive and free action of an abelian group G on S. In such a
situation S if often called a G-torsor. The action of G on S extends
naturally to the action of G on W. The fact that general group-based
models give toric varieties was already observed in [ES93], [SSE93|.

Definition 5.1 (A,). For g € G let A, be the transition matriz (equiv-
alently the linear map) corresponding to the action of g on W.

By choosing one element of the set S and associating it to the neutral
element of G we obtain an action preserving bijection between the
elements of S and GG. The element associated to a € S will be denoted
by g,. Canonically the rows and columns of the transition matrix are
labeled by elements of S. After fixing a bijection we can also label them
with group elements, but this is not canonical. The choice of a bijection
allows us also to find another basis of IV, indexed by characters of G.
This is done by the discrete Fourier transform.

Definition 5.2 (w,). Let x € G* be any character of the group G. We
define a vector w, € W by:

Wy = Z X(ga)a'

a€sS

Due to the orthogonality of characters the elements w, form a basis
of W. Let us notice that although the choice of the bijection between
S and G is not canonical, the one dimensional spaces spanned by w,
are. Changing the bijection just multiplies each vector w, by x(g)
for some g € GG. In the language of representation theory W is the
regular representation of G. The one dimensional spaces spanned by
w,, are of course unique irreducible one dimensional representations
corresponding to all characters of G.

The group structure distinguishes also naturally a specific model,

namely the vector space . This is done as follows. We have a natural
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action of G on W ® W — the action of ¢ is just ¢ ® g:

Q(Z Aa; @ ag) = Z Ag(a1) ® g(az).
Definition 5.3 (/V[7) Let G be an abelian group acting on the set S
transitively and freely. Due to Remark 4.5 we identify End(W) with

W @ W. For a general group based model we define W as the set of
fized points of the G action on End(W) =W @ W.

Remark 5.4. In other words we take only such transition matrices
that satisfy the following condition for any g € G:
If we permute the columns and rows of a matrixz with a permutation
corresponding to g, then we obtain the same matrizx.

Hence the parameters in the transition matrices depend only on the
difference of group elements labelling the row and column of a given

entry. In particular the dimension of W is equal to |G].

In general in the thesis we assume that the tree is rooted and directed
away from the root. However the construction from subsection 4.1 can
be easily generalized to other orientations of the edges of the tree. The
reason why we make the assumption is that it simplifies the language.

Remark 5.5. One can see that if A € W, then AT € W. This means
that if we consider a tree T' with two different orientations then the
associated varieties are exactly the same. If a point is the image of some
element of the parameter space with respect to a given orientation than
it is also the image of an element of the parameter space with respect
to the second orientation. We just have to transpose matrices that are
associated to edges with different orientation.

The following elements are invariant with respect to the G action
hence belong to .

Definition 5.6 (Elements [, € /W) Let x be a character of G. We

define
w X = X/
l )= X .

It follows that (ly)yeq+ is a base of W. Moreover W is equal to
the space of diagonal matrices in the basis (w,)yeq+. The following
Proposition gives the description of [, in terms of the basis associated
to elements of S. We omit the proof, as it relies on basic computation.
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Proposition 5.7.

1
[ (CL()) ‘G’ (gao Wy = ’G‘ ZX gao ga

aesS

O

The vectors [, are independent from the choice of the bijection be-
tween S and (. The element g;olga is a unique element of G that
sends ag to a, hence does not depend on the bijection. The map [, is a
projection onto the (canonical) one dimensional subspace spanned by
Wy,

Using this basis we will see that the map J is injective. Hence the
induced algebraic map [[,., P(W,) — P(Wy ) is given by the full Segre

system. The algebraic map 7 o ¢y will be given by a subsystem of the
Segre system. We will describe it using the notions of "sockets" and
"networks". Let us start with a few lemmas. The action of G on W
extends to the action of G on Wy, and W,

Lemma 5.8. The dimensions of G invariant subspaces of Wy and W,
are as follows:

dim Wg = |G|IVI=1,
dim W& = |G|IF-1,

Proof. Let us consider the basis of Wy, given by (®,eyw,, ). The action
of g in this basis is diagonal, so the space of invariant vectors is spanned
by invariant elements of this basis. As g(w,) = X(g_l)wx we obtain:

g(®v€Vva) = ®U€VXU wa H Xv ®U€V wxva
veW
so an element ®,cyw,, is invariant if and only if for any g € G we have
[I.cv Xo(g) = 1. This is equivalent to the condition that > i, x, is
equal to the trivial character (we use additive notation for the group of
characters G*). From this we see that the dimension dim W is equal to
the number of sequences, indexed by vertices of the tree, of characters
that sum up to a neutral character. This gives us |G*|/VI=! sequences
and proves the first equality, as for abelian groups |G*| = |G|. The
proof of the second equality is the same. O

Remark 5.9. The basis {®,evw,,} of Wy depends on the choice of
the bijection between the set S and G. However the basis {®eyw,, :
> ver Xo = Xot of W is natural. Changing the bijection multiplies w,

by x(g) for a fixed g € G. As > ., Xxo = Xo, then (3, o x0)(g) = 1
and the vectors remain unchanged.
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One can easily see that the image of /WE in Wy, is invariant with
respect to the action of G.

Proposition 5.10. The map 12 s an isomorphism of vector spaces

Wg and WG. It takes the base {®.cp|G|l.} bijectively onto the base
{®vevwy, : Y ey Xo = Xo}, where xq s the trivial character.

Proof. Using Proposition 5.7 we can see that:

(®uevan) (@ @ecplGli)) = T (—xe)(Gar, )Xe(Gary)-

e=(vi1,v2)EE

For given characters y. let us define characters y, for all v vertices of

the tree as:
Z X(v,w) — Z X(w,v)+

(vyw)eE (ww)eE
This corresponds to summing all characters on edges adjacent to v
with appropriate signs, depending on the orientation of the edge. We
consider an element ®,cyw,, that is clearly in the chosen basis of W‘g
as each character x. is taken twice with different signs, so the sum of
all y, is the trivial character. Moreover

Ruey Wy, = ®v€V(Z Xv(ga)&)
a€S
0 (Doev ) (Ruevwy,) = HvGV Xv(9a,), which proves the theorem.
O

Corollary 5.11. The following morphism'
v [[PWe) — POVE),

eceE

1s given by a full Segre system. In the basis from Proposition 5.10 it is
given by monomials. U

Our aim will be to obtain a result similar to Proposition 5.10 for the
map m o 12 Let us notice that apart from the action of G on W @ W
given by g ® g that allowed us to define /W, we have got another action
of G on W ® W given by g ® id, where 2d is the identity map.

Lemma 5.12. The action g ® id restricts to w.

Proof. 1t is enough to prove that the image of the action of g ® ¢d on
any element that is invariant with respect to the action ¢’ ® ¢’ is also

invariant. Let C be any element of W.
(9'®9")((g2id)C = (g'g29')(C) = (99'®9')(C) = (9@id)(g'@g')(C) =
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(9 ®id)(C).
Here we used the fact that G is abelian. O

Definition 5.13 (The group Gy). We define pj, for each v € N,

g € G and e € E as an isomorphism of the space /We. The action on
/We depends on e and v. If e is not adjacent to v it is the identity. If e
s an outgoing edge from v it is equal to g ®id and if e is an incoming
edge it is equal to g~! ® id.

For each v € N and g € G we define an isomorphism of /WE given
by pf = Recppld.. We also define a group Gy C End(/WE) as a group
generated by all p3.

Remark 5.14. [t is crucial to realize how g ®id acts on elements of w
considered as morphisms. One can check that g ® id(Ay,) = Ay o Ay,
so the action of g ® ¢d composes given morphism with A,-1.

To obtain a nice description of the morphism WOJ we need a technical
lemma.

Lemma 5.15. The group Gy = GV There is a base in which Gy
acts diagonally on Wg.

Proof. Using 5.14 we obtain:
(9 ® 1d(ly))(wy) = [ Ag-1(wy) =
= LA ()X (9a)a) = (DX (9a)g "a) =

acA acsS
= lx(z X' (9a9)a) = X' (9)l (wyr) = x(9) 1 (wy),
aces
where the last equality follows from the fact that [, (w,/) is non zero
only if x = x’. This proves that g ® id(l,) = x(g)ly, what proves the
theorem. 0

Let F' be any abelian group. In our examples F' = G or F' = G*.
Let us consider two groups F'¥ and FV. The elements of each are
associations of group elements respectively to edges and to nodes of
the tree.

Definition 5.16 (Adding morphism add, projection p,). We define
a morphism add : F¥ — FN. Let m € F¥ and p, : FN¥ — F be a
projection onto the component indexed by a vertex v € N. The element
po(add(m)) is equal to the sum of group elements associated by m to
edges incoming into v minus the sum of group elements associated to
edges outgoing from v.
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Example 5.17. Consider ' = Z3. Let T be a claw tree with three
edges. We have
add : (Zg)g — Zg,

where add is the usual sum in Zs.

Definition 5.18 (trivial signed sum). We say that an element m € F¥
has got trivial signed sum around a vertex v if and only if p,(add(m))
s the neutral element of F.

Definition 5.19 (map add’). We define a map add’ : FX — F. This
map sends an association of group elements to leaves to their sum.

Remark 5.20. As in Proposition 5.10 elements of the base of /WE are
bijective with the sequences of characters indexed by edges of a tree.

In other words an element of the basis of WE can be described as an
association of a character of G' to each edge of a tree. Moreover the

elements of the basis of /WE that are invariant with respect to the action
of Gy are exactly such associations that the signed sum of characters
around each inner vertex is the trivial character.

Lemma 5.21. The map 7 : Wy — W, can be described as follows:
7T(®U€wav> = ’G“N| ®l€L le

iof all the characters x., for the inner vertices are trivial or zero other-
wise.

Proof. First let us look at ®,ecyw,, in the old coordinates:
Quev Wy, = ®U€V(Z Xv(ga)a) = Z (H Xv(gav))(@)vevav)a
acsS (aw)uecyv €SV vEV

where the sum 7\ qv is taken over all [V|-tuples (indexed by
vertices) of basis vectors. In other words this sum parameterizes the
basis of Wy, made of tensor products of base vectors corresponding to
elements of G. This is equal to:

S0 T we) T[] 0(a) @een a0 @jer ay.

(@u)uen€SN (ar)ie ST vEN feL
We see that m(®ucvwy,) is equal to:

Z Z HXv(gav)HXf(gaf) Rter af =

(aw)ueNESN (ar)jep ST vEN fer

(IO xw@)) > TIxsla) @seray.

veN geG (91)1e,€GN feL
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The product [[,cn(>-,eq Xu(9)) is equal to zero unless all characters

Xu for u € N are trivial. In the latter case the product is equal to
|G|V, Of course

Z (H X7 (91))(®ieLg1) = @ierwy,,

(9)icL €GN fEL

which proves the proposition. O

The following theorem is a direct generalization to arbitrary abelian
groups of Theorem 2.12 from [BWO07].

Theorem 5.22. The spaces (W) and (WE)GN are isomorphic.

Proof. One can prove it using dimension argument, but it is better to
look how the basis are transformed. The base of (/WE)GN is given by
®eer|G|ly,, where the signed sum of all characters at any vertex is
trivial. This, thanks to Proposition 5.10, by the morphism @//)\ : /WE —
Wy is transformed bijectively into an independent set ®,cyw,,, where
characters for inner vertices are trivial and the sum of all characters
is trivial. Using Lemma 5.21 the image of this set by 7 gives the set
]GUM ®ier, Wy,, where the characters y; sum up to the trivial character.
The last set forms a base of W O

Corollary 5.23. The morphism m o 1; 1S a toric morphism.
Proof. Follows from the proof of Theorem 5.22. 0

Our aim is to describe the monomials that define 7 o @ This moti-
vates the following definitions of groups of sockets and networks.

Definition 5.24 (Groups & and ). We fiz an abelian group F = G*.
The group of networks N s the kernel of the morphism add. The group
of sockets & is the kernel of the morphism add'.

Hence a socket is an association of characters from G* to each leaf
such that the sum of all these characters is the trivial character. A net-
work is an association of characters from G* to each edge such that the
signed sum of characters at each inner vertex gives the trivial character.

Example 5.25. Let us consider the group G = G* = Z3 and the

following tree:

es

€4

o
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Here eq, €3, €4 and e5 are leaves. An example of a socket is an associa-
tioney — 1,e3 —1,e4 — 2, 65 — 2.

Example 5.26. We consider the same tree as in Example 5.25. We
can make a network using the same association and extending it by
e — 2.

Remark 5.27. Networks and sockets were introduced in [BWO7| —
see the discussion below. As the construction presented here directly
generalizes the previous one we decided to keep the name. However,
networks could also be named group based flows. Indeed, the con-
dition that at each vertex the sum of elements associated to incoming
edges equals the sum of elements associated to outgoing edges is the
well known condition for a flow. The only difference is that we asso-
ciate elements of an arbitrary group. As we will see in Proposition 5.30
there is a bijection between sockets and networks. This is similar to
the theorem that for a flow the sum over all sources equals the sum
over all sinks.

In [BWO07] for the group Z, the socket was defined as an even subsets
of leaves. That corresponds to associating 1 to chosen leaves and 0 to
the other leaves. The condition that the subset has got even number
of elements is just the condition that the elements from the group sum
up to the neutral element. We see that this definition is compatible.
Networks were defined as subsets of edges such that there was an even
number chosen around each inner vertex — this is also the condition of
summing up to the neutral element around each inner vertex.

Let us generalize the results on sockets and networks from [BWO07].

Lemma 5.28. There are exact sequences of abelian groups:

0= N — (G % (@GN >0,

06— (G Y 6 .

Proof. As add and add’ are surjective the lemma follows from Definition
5.24. [

Definition 5.29 (morphism fo and bi). There is a group morphism
fo: (G")F — (G")L that forgets all the components indexed by edges
not adjacent to leaves. From the diagrams in Lemma 5.28 the image of
N by fo is contained in S. We define bi : W — & to be the restriction

of fo.
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There is the following diagram:

0= M= (GNP (G)V - 0,
\Lbz \Lfo \I/fsum
0= 6 (GVY @ = o
The map —sum : (G*)N — G* associates to an |N|-tuple of characters
minus their sum.

Proposition 5.30. For any tree and any abelian group G the mor-
phism bi that associates a socket to a network is a group isomorphism.

Proof. Let n be a network. We know that the signed sum p,(add(n))
around each inner vertex v is the neutral element. Hence ) _\ p,(add(n)) =
e, where e is the neutral element. Let us consider an edge directed
from vy to vy, where vy, vy € N. Let us note that the group elements
n(vy, ve) and n(vy, v2) ! appear in p,, (add(n)) and p,,(add(n)). We see
that > .y po(add(n)) = >°,., n(l). This means that a restriction of
the network to leaves gives a socket.

Given a socket s we can define a function n : £ — G inductively,
starting from leaves, using the condition of summing up to the neutral
element around inner edges. The only nontrivial thing is to notice that
the sum around the root also gives the neutral element. This follows
from the previous equality Y _\ po(add(n)) = >,., n(l) and the fact
that p,(add(n)) = e for each node v different from the root. O

Each network determines naturally an element of the basis of (/WE)GN
and each socket an element of the basis of W&. The isomorphism in
Theorem 5.22 just uses the natural bijection 5.30. This motivates the
following definition.

Definition 5.31 (Spaces WE, WL) We define the subspace Wp =
(Wg)¥~ C Wg. Recall that basis elements of Wg are indezed by ele-

ments of (G*)¥ as in Remark 5.20. The basis elements of /VIV/E corre-
spond to elements of N.

We define the subspace /V[V/L = WS C Wp. The basis elements of WL
correspond to associations that form a socket — cf. proof of Lemma 5.8.

Using Theorem 5.22 we know that the variety X(T,VV,/W) is the
closure of the image of the rational map induced by 7 o 1):

5 [, = C69 S 77,

where the coordinates of the domain are indexed by pairs (e, y) for
e € FF and xy € G*. The coordinates of the codomain are indexed by
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sockets (or equivalently networks). In fact the codomain is a regular
representation of the group 1. In forthcomigg sections we will use the
action of this group on the variety X (7, W, W).

Note that for a fixed basis of a vector space, the points with nonzero
coordinates form an algebraic torus that acts on the space. Let us
describe the affine map 7o QZ in toric terms.

Definition 5.32 (Lattices Mg, M., Mg). To each edge e we associated
a vector space /V[Z with the distinguished basis given by w,. The points
with nonzero coordinates in this basis form an algebraic torus with the
action given by coordinatewise multiplication. We define M, as the
character lattice of this torus. -

The product vector space [ [ .z We has got a basis induced from each
We. The points with nonzero coordinates form an algebraic torus with
the character lattice given by Mp.

The wvector spaces Wy = W have got the distinguished basis with
elements corresponding to sockets. The points with nonzero coordinates
form an algebraic torus with the character lattice given by Msg.

Let us note that the coordinate system on the vector space distin-
guishes the basis of the lattice. The basis of each lattice M, is indexed
by characters. As Mg = @, M. the basis of Mg is indexed by
pairs (e, x) where e is an edge and y a character of G. The basis el-
ements of Mg corresponds to sockets or networks. The rational map
1@ [ lecg We = Wg = Wy is an equivariant parametrization of a toric
variety.

Definition 5.33 (Morphism J)v The morphism ¢ : Mg — My is the
morphism of lattices induced by 1.

In this setting the description of 1}? is particularly simple. Let f, €
Mg be a basis vector corresponding to a network n. The element ¥( f,,)
will be an element of the unit cube in Mg. Let h(.,,) € Mg be the basis
vector indexed by a pair (e, y) € £ x G* and let I, be its dual. We

have:
- Lifn(e) = x
hi n)) =
(e (V(fn)) {O otherwise.

We come to the most important definition of this section.

Definition 5.34 (Polytope P). We define the polytope P C Mg to be

the convex hull of the image of the basis of Mg by 1. In other words the
vertices of the polytope P correspond to networks. More precisely each
vertex has got 1 on coordinates indexed by pairs that form a network
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and 0 on other coordinates. Note that the polytope P is a subpolytope
of a unit cube. Hence all its integer points are vertices.

Example 5.35. Let us consider the tree 7" with one inner vertex and
three leaves [y, [y and l3. Let G = G* = Z,. The lattice Mg is the
4 dimensional lattice generated freely by vectors e(o,0), €(1,1,0): €(1,0,1)
€(0,1,1) that correspond to sockets/networks on T'. The lattice Mg is a 6
dimensional lattice with basis vectors f(, ;) with 1 <14 < 3 and g € Zs.
We have QZ(e(a7b7C)) = far,a) + faop) + fus,e- Hence each vertex of P
will have three coordinates equal to zero and three to one. Let us con-
sider the base of M in the following order f, o), fu,,1), - - -5 fus,0)5 fas1)-
The vertex corresponding to e, is (1,0,1,0,1,0). In the same or-
der €(1,1,0) —7 (0, 1, 0, 1, 1, O), €(1,0,1) —7 (0, 1, 1, O, 0, 1) and €(0,1,1) —7
(1,0,0,1,0,1). These are of course all vertices of P.

Remark 5.36. Suppose that a tree T has got a vertex v of degree two.
Let e; = (u,v) and e5 = (v, w) be respectively an incoming and outgoing
edge. Consider any network n. We have n(e1) = n(ez). Let T be a
tree obtained from T be remouving the verter v, edges ey, e and adding
an edge (u,w). We see that the polytope associated to T is isomorphic
to the polytope associated to T".

The polytope P is the polytope associated to the toric variety X (7', G).
The algebra of this variety is the algebra associated to the monoid gen-
erated by P in Mg. The generating binomials of a toric ideal associated
to a polytope P correspond to integral relations between integer points
of this polytope, Corollary 2.6. Hence in our situation phylogenetic in-
variants correspond to relations between networks. Each such relation
can be described in the following way. We number all edges of a tree
from 1 to e. The networks are specific e-tuples of group elements. For
example for the claw tree these are e-tuples of group elements summing
up to the neutral element. Each relation of degree d between the net-
works is encoded as a pair of matrices with d columns and e rows with
entries that are group elements. We require that each column repre-
sents a network. Moreover the rows of both matrices are the same up
to permutation.

Example 5.37. Consider the binary Jukes-Cantor model and the
following tree.

(5.1)
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U1 <
The leaves adjacent to v; have got numbers 1 and 2. We assign 3 to
the inner edge. An example of a relation is given by a pair of matrices:

1 07 [0 17
01 10
11 11
1017110
01 0 1
L0 0 LO O

The numbers 0 and 1 are treated as elements of Zy. Due to the defi-
nition of the socket the third row has to be the sum of both the first
two and last three rows.

Note that P does not have to generate the lattice Mp.

Definition 5.38 (Lattice ]/\/[\E) We define the lattice My as a sublattice
of Mg generated by vertices of P.

The lattices defined so far corresponded to affine objects. A rational
map from a vector space to its projectivization is well defined on points
with non zero coordinates. Hence it induces a surjective morphism of
tori, what corresponds to an injective morphism of character lattices.

Definition 5.39 (Degree functions deg,). Note that for a character
lattice M with a distinguished basis we can define a function deg :
M — 7 that sums up coordinates. The degree of a lattice element is
the degree of the monomial function associated to it. For lattices M,
the corresponding degree functions are denoted by deg,.

Definition 5.40 (Lattices Mgy, Mgy and ]/W\E,O)- For a lattice Mg
we define Mg as a sublattice of elements with the sum of coordinates
equal to zero. In particular Mg is the character lattice of the torus

whose points are identified with points of P(Wg) with all coordinates
different from zero.

We define Mg as a sublattice of Mg defined by equalities deg, = 0
for each edge e. This is the character lattice of the torus whose points
are identified with points of [[P(W.) with all coordinates different from
zero.
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We define ]\//TE,O = MgoN ]\//TE This is the character lattice of the
torus whose points are identified with points of the projective toric va-
riety P(X(T)) with all coordinates different from zero.

Recall that the basis of the lattice Mg is indexed by pairs (e, x)
where e is an edge and x is a character of G. Also to each such pair
we can associate a one parameter subgroup in the dual of Mg. This is
given as a morphism from Mpg to Z that is the dual vector to the vector
of the base of My that is indexed by the pair (e, x). In particular for
each leaf [ and character y € G* we obtain a one parameter subgroup
AY. Using the morphism dual to 1/; : Mg — Mp, for each pair (e, y) we
obtain a one parameter subgroup in the lattice dual to Mg. For each
t € C* we have an action of AX(t) on AIL=DXIGl 5 X The weight
of this action on the coordinate indexed by a socket s is either 0 or 1
depending on whether the socket s associates to the leaf [ character y
(in this case 1) or not (in this case 0).

Remark 5.41. In [BWO07| the authors considered only one one pa-
rameter subgroup for each leaf although their group had two elements.
Notice however that in our notation for the group Z, the weights of
the action of A} are completely determined by the weights of the action
of A} — one weights are negations of the others. In our notation the
authors considered only A

The setting presented here, where an abelian group G acts transi-
tively and freely on the set of states is the most well-understood. The
models obtained in this way are called general group-based models. Al-
though this definition is quite clear, the question what is a group-based
model is much less obvious. This motivates the discussion of the next
section 5.2.

5.2. Notation. In Section 5.1 we have introduced the general group-
Egsed models. The key point of the definition was that the vector space
W was given as the subspace of End W invariant under the action of
an abelian group that acts transitively and freely on the basis of W.
This setting enabled us to apply the discrete Fourier transform and
associate toric varieties with the models. There are a few possibili-
ties to generalize this construction depending on the assumptions on
the group, its action on the space W and properties of the obtained
associated variety.

The first idea would be to consider any action of any group on W.
Even more general construction is presented in [DK09|, where the vec-
tor space W may vary depending on the vertex of the tree. Such models
are called equivariant models. Of course, in this case, in general one
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cannot apply the discrete Fourier transform, as the group G is not
abelian. Moreover if the group G is small the transition matrices may
be to general and the associated variety will not be toric. For exam-
ple if G has got only one element it is abelian. However the model
corresponding to it is just the general Markov model. The varieties
associated to this model are an object of intensive study, see for exam-
ple [ARO8| and references therein. They are very far from being toric
and establishing their properties even for the simplest tree is a great
challenge. For example it is an open problem to determine the ideal in
case of the tripod [BO10].

As we want to work with toric varieties it is reasonable to make
further assumptions. Let us notice that the adjective "general" indi-
cates that other group-based models should be more specific. In other
words the subspace W for a group-based model should contain specific
transition matrices of a general group-based model. Thus we fix an
abelian group H that acts on the space W transitively and freely. A
group-based model will be obtained by requiring further conditions on
the space of transition matrices.

Before stating definitions that will be used in this thesis let us present
the state of art. In the literature one can find many references to group-
based models [SS05|, [APRS11], [PS05, p. 327]. In this setting one
assumes that there is a bijection between elements of an abelian group
and elements of S, as in general group-based models. One also requires
that the entries of the transition matrices depend only on the difference
of group elements labelling the row and the column of the given entry.
However we allow the parameters for different differences to be the
same — a formal definition is presented in 5.43. This is a very general
definition that covers many models, like Jukes-Cantor on any number
of states, 2-Kimura or any general group-based model. However for
example in [APRS11] [SS05, p.460] one can also find theorems, usually
originating to [ES93| that group-based models are toric. We do not
believe that this is true in such a general setting. The example is
presented in the Appendix 1, where after the Fourier transform we
do not get monomials but polynomials. The reason for this is that
equality of variables before Fourier transform does not imply equality
of parameters after it. We would like to stress that the fact that Jukes-
Cantor and 2-Kimura give rise to toric varieties was known before. To
give a formal definition of group based-models we use a method of
labellings due to Sturmfels and Sullivant [SS05, Section 3|.

Definition 5.42 (Labelling function). Let Lab be any finite set and H
an abelian group. A labelling function is any function f : H — Lab.
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Later, we will consider special labellings, induced by group actions,
that will turn out to have interesting properties.

Definition 5.43 (Group-based model). We define group-based mod-

els by specifying the space of transition matrices W. Suppose that an
abelian group H acts on the set of states S transitively and freely. For
any two states si1,s2 € S we define a morphism pg, 5, : End W — C.
It is given by the equality ps, s,(M) = (s5)(M(s1)) where s; € W is
an element of the basis and s, is an element of the dual basis. Let
Js,,so € H be the unique element sending s, to ss.

We fix any labelling function f on H. We define W as the largest
subspace of transition matrices M satisfying the following condition:
For any si, 2,583,514 € S such that f(gs,s,) = f(gsssa) we have

Psy,s2 (M) = Ps3,s4 (M)

Less formally, but more intuitively one labels the rows and columns
of transition matrices with elements of H. The condition requires
that entries labelled by (g1, ¢2) and (g3, g4) equal if (f(g1), f(g2)) =
(f(g3), f(g4)). Notice that the space W is obtained from the space of
transition matrices of a general group-based model by specific hyper-
plane sections. It is important to understand that in this setting the
class of group-based models is much larger than the class of general
gr;oup—based models. The latter are called "general" because the space
W is the most general. They correspond to labellings that are injec-
tive. The main drawback of this setting is that varieties associated to
group-based models do not have to be toric. Because of the hyperplane
sections, the parametrization after the discrete Fourier transform does
not have to be given by monomials. Although, as we have already said,
in many cases it is. This is a motivation for the next Section 5.3. We
will distinguish a class of group based-models, so called G-models. For
them, we will require that the labelling is given by a specific group
action. In this setting the associated varieties will be toric.

5.3. G-models. This section contains results from [Micl11b]. Our main
aim is to introduce the general framework that would include all models
of interest described as group-based, but still would give rise to toric
varieties. Moreover we obtain a particulary nice description of the
associated polytope.

The setting of this section is sufficiently general to cover many Markov
processes, in particular this will be a generalization of the results of Sec-
tion 5.1. However the inspiration is the 2-Kimura model, that is the
phylogenetic model in which the transition matrices are of the following
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type:
a b c b
b a b c
c b a b
b ¢ b a

In this case, as in the previous section, we also have an abelian group
H = 7y x Zsy that acts on the basis (A,C, G, T) of a four dimensional
vector space W. As we have seen the fixed points of the action of H on
W @ W define the 3-Kimura model. We may however define a larger
group G, namely the dihedral group of order 8, that contains H as a
normal subgroup. The action of G on W & W defines the 2-Kimura
model. Details of this construction can be found in [BDWO09|. This
motivates the following setting.

Let S be an n-element set of states. Let G be a subgroup® of S, =
Sym(S) acting on S. Suppose moreover that the group G contains a
normal, abelian subgroup H and the action of H on S is transitive and
free. Elements of S once again correspond to states of vertices of a
phylogenetic tree 7. We define W as in Definition 4.1.

The basic difference with the abelian case is that we define elements
of W as matrices fixed not only by the action of H, but by the whole
action of G. We assume that End(W) =W @ W, cf. Remark 4.5.

Definition 5.44. Let
W={ ) Aaa@i © 52 Mooy = Ag(ar) g(a)V9 € G-

a;,aj es

Remark 5.45. The characterization of W from Remark 5.4 is still
valid. However due to additional symmetries the dimension is different.

Remark 5.46. The situation of the previous section corresponds to
G=H.

Remark 5.47. As before by choosing an element e € S we make a
bijection between S and H. An element associated to a € S will be
denoted by h, € H. The element e corresponds to the neutral element
of H and is the index of the first row of transition matrices. Notice
that the action of G on S (as permutation) will not generally be the
same as the action of G on H (as a group).

We will often use the following easy observation.

Lemma 5.48. Let h € H be an element that as a permutation sends
a to b, where a,b € S. Then h = hyh,!.

Snot necessarily abelian
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Proof. Both elements send a to b, so because H acts on S freely, they
have to be equal. O

Definition 5.49 (G-model). Let G be a finite group acting on a finite
set S. Suppose that G contains a normal, abelian subgroup H that acts
on the set S tmnsztwely and freely. A G-model is an algebraic variety

X(T,W, W) for W and W as in Definitions 4.1 and 5.44.

Our aim is to prove that also in this generalized setting we will obtain
toric varieties. We will proceed in four steps.

(i) We introduce a general method for constructing endomorphisms
of W from complex functions on H. We prove that under cer-
tain conditions (namely a function should be constant on orbits
of the conjugation action of G on H), the obtained endomor-
phism is in W. Such functions can regarded as a generalization
of class functions to pairs of groups.

(ii) We prove that some sums (over the orbits of the action of G on
H*) of characters of H are functions that can define elements of
/V[7./\We also notice that we obtain a set of independent vectors
of W.

(iii) Using dimension arguments we prove that the set defined in
step 2 is in fact a basis.

(iv) Finally, using theorems from Section 5.1, we prove, using the
new coordinates, that our variety is toric.

Definition 5.50. We define WH to be the vector space of matrices fized
by the action of H.

Remark 5.51. From the previous subsection we know that the closure
of the image of the map:

¢ TTR(Wa)e) --> POV,

eck

is a toric variety. Moreover we also found the base in which the de-
scribed morphism is given by monomials. As Wc /WH, our aim is to
prove that the restriction of the previous map is also given by mono-
mi@l\s in certain base. We will use the base on /WH to define the base
of W.

5.3.1. Step 1: Correspondence between functions on H and endomor-
phisms of W. We are going to define some endomorphisms of W.
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Definition 5.52. Let f: H — C be any function. We define:
Z fhgthy)a
abGS

Remark 5.53. Notice that due to Proposition 5.7 the previous defi-
nition is consistent with the definition of [, for x € H*. Moreover the
vector s depends only on the function f and not the bijection between
S and H, as h,'hy is the only element from H that sends a to b.

Proposition 5.54. Let us consider the conjugation action of G on H:
(g, h) = ghg~
If f is constant on orbits of this action then l; € w.

1

Proof. Consider any element g € GG. We focus on two entries of the
matrix [, namely (aq,b;) and (aq, by), where

g(ay) = ay and g(by) = bs.

These entries are from the definition of [; respectively f(h;'hy,) and
f(hg}!hs,). Due to Remark 5.4 we want to prove that f(hy'hy,) =
f(h;}hy,). Consider an element ghy, h,'g~". Clearly it is an element of
H (because H was a normal subgroup of G) that sends as to by. From
Lemma 5.48 we obtain:

ghbl h;llgil = th h;; .

This completes the proof, as f was constant on orbits of the conjugation
action. 0

5.3.2. Step 2: Appropriate functions on H. In the abelian case we
considered characters of H. As G was equal to H, these functions
were of course constant on (one element) orbits of the action of G on
H. In a general case it may happen that we do not have an equality

X(ghg™") = x(h).
Of course this equality holds if a character of H extends to a character
of G, but this is not always the case. If we define the vectors [, for

X € H* they may not be in . To obtain the vectors in W we will
sum up some characters to obtain functions that satisfy the condition
of Proposition 5.54. Consider the action of G on H*:

X! (h) = x(ghg™).
Let O be the set of orbits of this action. Elements of O give a partition
of H*. Let us define for each element o € O a function f, : H — C.
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Definition 5.55 (Function f,). Let f, = > . x. Here we are sum-
ming characters as complex valued functions, not as characters, so this
is the usual sum, not the product. We obtain ly, =3 . .

Proposition 5.56. The function f, satisfies the conditions of Propo-
sition 5.5/ that is, it is constant on orbits of the conjugation action of
G on H.

Proof. As the action of ¢’ is a permutation of the orbit o we have:
o(ghg ™) = x(g'hg™) =D (g ) () =D x(h) =
X€Eo X€Eo X€Eo

4

Corollary 5.57. The vectors ly, for o € O are in W, Moreover, as [,

forms a basis of /WH, and ly, are sums over a partition of this basis,
they are independent.

Proposition 5.58. Any complex function constant on orbits of O is a
linear combination of the functions f,.

Proof. Let us fix a function f constant on orbits. As the characters of
H span the space of all functions we know that f = ZXeH* ayx. We
have to prove that coefficients of y in the same orbit are the same. Let
X] = x2. We know that for any h € H we have

> ayx(h) = f(h) = flghg™) = D ayx(ghg™) = D ax’(h).

xeH* xeH* xeH*
From the independence of characters we see that a,, = a,, which
completes the proof. O

Corollary 5.59. The number of orbits in O (and so the number of
vectors ly, ) is equal to the number of orbits of the conjugation action

of G on H.

Proof. This follows from comparing dimensions of spaces of complex
functions on H that are constant on orbits. U

5.3.3. ngp 3: Dimension of/W. We are going to prove that the dimen-
sion of W is equal to the number of orbits |O|. First let us note that
all coefficients of any matrix in W (in the basis S) are determined by
coefficients in the first row. This follows from Section 5.1. We see that
dim W is equal to the number of independent parameters in the first
row, that is indexed by e. The action of G imposes some conditions,
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namely the coefficient in the e-th row and a-th column and the coeffi-
cient in the e-th row and b-th column for a,b € S have to be equal if
and only if there exists an element g € G such that:

g(e) =e and g(a) = b.

Lemma 5.60. The following conditions are equivalent:

(i) there exists g € G that sends e to e and a to b,
(ii) the elements h, and hy, are in the same orbit with respect to
the action (g,h) = ghg™'.
Proof. Of course h, and h;, are in the same orbit if and only if 4, and
hgl are in the same orbit. For the proof we concentrate on the second
variant.
i)= ii): From Lemma 5.48 we know that gh;'g™' = h; ', because
both elements send b to e.
i)< ii): Suppose that gh,'g~' = hy'. Let ¢ = h; 'ghy-1). The
element ¢’ sends e to e, but ¢’ = gh,'hy-1(), hence it also sends a to
b. O

Proposition 5.61. The dimension of W is equal to the number of
orbits |O)|.

Proof. Classes of equal parameters in the first row of matrices in W
correspond bijectively to orbits of the action of G on H from Lemma
5.60 and remarks at the beginning of this subsection. By Corollary
5.59 this finishes the proof. O

Corollary 5.62. The elements ly, for o € O form a basis of w.

Proof. The vectors [y, are independent due to Corollary 5.57. The
number of vectors equals the dimension of the space due to Proposition
5.61. O

5.3.4. Step 4: G-models are toric. Let us define a basis on /We/cglsist—
ing of vectors l;,. We consider the inclusion map i : W, — (Wg),, in
the basis made respectively of [;, and [,. We know that [, = ero ly.
Let us describe the morphism 7 in the CO(E@tes corresponding to the
basis {;, on W, and to the basis [y on (Wg),. Fix x € o. We have
i) = 13, (2). -

This shows that the map from [[ ., P(We) to P(W) that parame-
terizes the model is also given by monomials — these are exactly mono-
mials from Section 5.1, where we just make some variables equal to
each other. Let us describe which variables are identified. We recall
that variables in the abelian case correspond to networks. Fix two
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networks n; and ny. We identify them if and only if for each edge e
the characters ny(e) and ny(e) are in the same orbit of the adjoint G
action.

We have got the following commutative diagram:

[LepBOWV.)  — B(Wg) - B(W)
L L )
HeeEP(WHe) — IP)(VVHE) -3 P(WL)

This proves the main theorem of this section.

Theorem 5.63. Let G be a finite group that acts faithfully on a finite
set S. Let H be a normal, abelian subgroz@\ of G. Suppose that the
action of H on S 1is transitive and free. Let W be the space of matrices
wnwvariant with respect to the action of G and let W be the vector space
spanned freely by elements of S. Then the G-model X (T, W, W) is toric
for any tree T.

We will now describe the lattices of characters of the tori that appear
in the construction. As in Section 5.1 there is a lat/t\ice Mg with basis
elements corresponding to sockets and two lattices Mg g C Mg . The
letter has got basis elements indexed by pairs (e, x) where e € E is an
edge of the tree and y € H* is a character.

Definition 5.64 (Lattice Mg ). Let Mg be a lattice with basis el-
ements indexed by pairs (e,0), where e € E and o is an orbit of the
adjoint action of G on H*.

Let f., € Mg g be a basis element indexed by the pair (e, x). Let
feo € Mg be a basis element indexed by the pair (e,0). There is
a natural projection Mgy — Mg . To an element f., we associate
fe,0, where x € o. The image of a polytope P C Mg g for the general
group-based model is a polytopej’ that is associated to the variety
representing the GG model. Hence P is a subpolytope of a unit cube. An
element ) . feo. is a vertex of P if and only if there exist characters
Xo. € 0 such that Y . fe.,. is a vertex of P. The lattice spanned by

P will be denoted by Mpg . The following diagram commutes.
Mg —— Mg u

N

Mg

The morphisms from Mg correspond to embeddings of both models in
an affine space. The surjective vertical morphism corresponds to in-
clusion of models. Indeed, by introducing new conditions on transition
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matrices for a G-model we restrict the image, hence there is a natural
inclusion in a general group-based model.

We finish this section by presenting relations of G-models to la-
bellings 5.42. From Lemma 5.60 it follows that the entries of transition
matrix labelled respectively by (hi,hs) € H? and (hs, hy) € H? are
equal if the elements hl_th and h51h4 are in the same orbit of the
adjoint action of G on H. Let Lab be the set of orbits of the adjoint
action of G on H. The labelling function f : H — Lab associates to
an element its orbit.

Definition 5.65 (m-friendly labelling, friendly labelling, [SS05, Def-
inition 8|). Let H be any abelian group and Lab any finite set. Fiz a
labelling function f: H — Lab. For m > 3 consider the set

m—1

Z =g, 9m) EH™ ) i = g}

i=1

Consider the induced map f 2 Z C H™ — Lab™ and denote by m; the
projection m; : H™ — H onto the i-th coordinate. The function [ is
called m-friendly if, for every l = (Iy,...,l,) € f(Z) C Lab™,

(YD) = f7YL) foralli=1,...,m.
A labelling 1s friendly if it is m-friendly for all m > 3.
Lemma 5.66. The labellings for G-models are friendly.

Proof. Fix an m-uple of orbits (oy,...,0,,) for the adjoint action of
G on an abelian normal subgroup H. Suppose that there exist el-
ements h; € o; such that H?:llhi = h,,. Fix any element fzio €
0i,- There is an element ¢ € G such that fzio = ghi,g~*. Con-

sider an element (ghig™', ..., ghmg™'). Let f and m; be as in Defi-
nition 5.65. Of course f(ghig™',...,ghmg™") = (01,...,0m). More-
over i, (gh1g™", ..., ghmg™") = hi,, which proves that the labelling is
friendly. U

The main reason to introduce friendly labellings is that they allow
to apply a very important inductive procedure. Assuming that we are
dealing with a model given by friendly labelling the variety associated
to any tree T' can be described in terms of the varieties associated to
claw trees. The polytope associated to a tree T' is a fiber product of
polytopes associated to claw trees. More information can be found in
Section 5.5 and articles [Sul07], [SS05, Lemma 12|.

At this point we should make a remark about the difference between
group elements and characters. To define the space of transition ma-
trices for a G-model we used a G action on the space End(W). We
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considered the basis of W that corresponded to states, or by choosing
a bijection to elements of an abelian group. The adjunction action of
G on H allowed us to define the labelling that described a G-model.
Note however that this is not the labelling that identifies the coor-
dinates of the parametrization of the variety. In the latter case the
variables correspond to pairs (e, y) where x € H*. The labelling iden-
tifies the variables corresponding to pairs with characters on the second
coordinate that are in the same orbit. Hence the set of labels is the
set of orbits of the adjoint action of G on H*. The labelling associates
to a character its orbit in the adjoint action. The same proof as in the
Lemma 5.66 shows that this is also a friendly labelling.

5.4. Example of 2-Kimura model. In this subsection we will show
how the construction from the previous subsection works on Kimura
models. We will also present the algorithm for constructing a polytope
of a model for a given group GG with a normal subgroup H. The method
was described in a different language in [SS05]. The main difference
(apart from the notation) is that the authors assumed the existence
of a friendly labelling function, that described which characters are
identified. In case of G-models we exactly know this function: it asso-
ciates to a given character its orbit of the G action. This is a friendly
labelling.

If G = H the construction is particularly easy. The polytope has got
|G|'PI=INT vertices and the algorithm works in time O(|N|(|G|FI=IN]))
assuming that we can perform group operations in unit time.

Algorithm 1. INPUT: A rooted tree T and an abelian group G
QUTPUT: Vertices of the polytope associated to the toric variety
representing the model for the tree T and the group G

(i) Orient the edges of the tree from the root.

(ii) For each inner vertex choose one outgoing edge.

(iii) Make a bijection b : G — B C ZI°!, where B is the standard
basis of ZIC1.

(iv) Consider all possible associations of elements of G with not-
chosen edges (there are |G|IPI7INI such associations).

(v) For each such association, make a full association by assigning
an element of G to each chosen edge in such a way that the
signed sum of elements around each inner verter gives a neutral
element in G.

(vi) For each full association output the vertex of the polytope:
(b(ge)eck), where g, is the element of the group associated to
edge e.
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Example 5.67. For the 3-Kimura model, corresponding to the group

Zis X Zo, on a tree with one inne

r vertex and three leaves the vertices

of P correspond to triples of characters of the group that sum up to a

neutral character:

1)(0,0),(0,0),(0,0) 2) (0,0),(1,0),(1,0) 3) (1,0),(0,0),(1,0)
4)(1,0). (1,0),(0,0) 5)(0,0),(0,1),(0,1) 6)(0,1),(0,0),(0,1)
7)(0,1),(0,1),(0,0) 8)(0,0),(1,1),(1,1) 9) (1,1),(0,0), (1,1)
10) (1,1),(1,1),(0,0)  11)(0,1),(1,0),(1,1)  12)(0,1),(1,1),(1,0)
zgj ((1,0)), ((1,1)) (( )) 14)(1,0),(0,1),(1,1)  15)(1,1),(0,1),(1,0)
16

This in the coordlnates of the lattice gives us vertices of the polytope:

1) 1,0,0,0,1,0,0,0,1,0,0,0
3) 0,1,0,0,1,0,0,0,0,1,0,0
5) 1,0,0,0,0,0,1,0,0,0,1,0
7) 0,0,1,0,0,0,1,0,1,0,0,0
9) 0,0,0,1,1,0,0,0,0,0,0,1
11) 0,0,1,0,0,1,0,0,0,0,0,1
13) 0,1,0,0,0,0,0,1,0,0,1,0
15) 0,0,0,1,0,0,1,0,0,1,0,0

The basis for W for 3-Kimura (in previous notation vectors [,

2) 1,0,0,0,0,1,0,0,0,1,0,0

4) 0,1,0,0,0,1,0,0,1,0,0,0

6) 0,0,1,0,1,0,0,0,0,0,1,0
8) 1,0,0,0,0,0,0,1,0,0,0,1
10) 0,0,0,1,0,0,0,1,1,0,0,0
12) 0,0,1,0,0,0,0,1,0,1,0,0
14) 0,1,0,0,0,0,1,0,0,0,0,1
16) 0,0,0,1,0,1,0,0,0,0,1,0

1
1
-1

1
1
-1

-1
-1
1

-1
-1
1

S x(h;thy)a @ b) is the following:
1111
1111
h=11 111"k
1111
1 -1 -1 1
I e e
3711 1 -1
1 -1 -1 1

-1 -1 1 1

For the 2-Kimura model the four elements of H, treated as permuta-

tions decomposed into cycles, are

in order:

(1)(2)(3)(4); (1,2)(3,4); (1,3)(2,4); (1, 4)(2,3).

The group G is spanned by H and the transposition (3,4).
If we consider the action of G on H* we obtain three following orbits:
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(i) The orbit of the trivial character contains only the trivial char-
acter. This tells us that the vector

is in /V[7G and will be considered as the first basis vector.
(ii) The orbit of the character that associates —1 to (1, 3)(2,4) and
(1,4)(2,3) and 1 to other elements. It has got also only one
element. For example let us notice that

x((3,4)(1,3)(2,4)(3,4)) = x((1,4)(2,3)) = =1 = x((1,3)(2,4)).
This means that the vector
1 1 -1 -1
1 1 -1 -1
=11 4 1 1
-1 -1 1 1

will be a basis vector of /Wg.

(iii) The orbit that contains the two remaining characters. If we
take their sum (as functions, not characters) we obtain a func-
tion that associates 2 to (1)(2)(3)(4), —2 to (1,2)(3,4) and 0
to other two elements. This gives us an element:

2 -2 0 0
2 2 0 0

=10 0 2 -9
0 0 -2 2

This is the sum of two other [,.
We obtain f1 = ll, fg = l4, f3 = lg + l3. Let ' = {fl,fg,f3} and
L ={ly,...,l4}. From the previous section we know that F is the basis
of /WG and L of /WH This can be checked directly in this example. Let
us now look at the map for the tripod tree L. Elements of /WG are
special elements of /V[7H We have a map:

(f7)i=1,.3i=1,.3 = ([ )j=1,.45i=1,..3-
j J

Here j parameterizes base vectors and i parameterizes edges. Our
model is the composition of this map and a model map for H. The
image of the first map is a subspace given by a condition that the
coordinates corresponding to [5" and 5’ are equal for each i =1,...,3.
Let us see this directly.
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The fixed bijection b from the Algorithm 1 is the following:
b(e) = (1,0,0,0), b(xs) = (0,1,0,0)

b(Xl) = (07 0,1, 0)7 b(X?) = (07 0,0, 1)
where x; and x3 are in the same orbit. The domain of @//)\ for the group
His {(x1,...,m12) : x; € C} in the order as in Example 5.67 (we fix an
isomorphism with x; = (1,0) and x5 = (0,1)). This tells us that the
subspace HeeE(/WG)e is given by conditions x5 = x3 (the coordinates

—~

of [y and I3 for W), x¢ = x7, 219 = 211.

This procedure works generally. After having fixed the polytope
for a subgroup H, that is in the lattice M (whose coordinates are
indexed by edges and characters of H) we consider a morphism from
M onto the lattice M’ (whose coordinates are indexed by edges and
orbits of characters of H) that just assigns a character to a given orbit.
This morphism sums up coordinates that are in the same orbit of the
action of G on H*. The image of the polytope P is a polytope of our
model. For 3-Kimura we sum up coordinates ordered as in Example
5.67 obtaining a polytope for 2-Kimura model:

1) 1,0,0,1,0,0,1,0,0 2) 1,0,0,0,1,0,0,1,0

3) 0,1,0,1,0,0,0,1,0 4) 0,1,0,0,1,0,1,0,0

5) 1,0,0,0,1,0,0,1,0 6) 0,1,0,1,0,0,0,1,0

7) 0,1,0,0,1,0,1,0,0 8) 1,0,0,0,0,1,0,0,1

9) 0,0,1,1,0,0,0,0,1 10) 0,0,1,0,0,1,1,0,0

11) 0,1,0,0,1,0,0,0,1 12) 0,1,0,0,0,1,0,1,0

13) 0,1,0,0,0,1,0,1,0 14) 0,1,0,0,1,0,0,0,1

15) 0,0,1,0,1,0,0,1,0 16) 0,0,1,0,1,0,0,1,0

After removing double entries we get the following vertices:

1) 1,0,0,1,0,0,1,0,0 2) 1,0,0,0,1,0,0,1,0

3) 0,1,0,1,0,0,0,1,0 4) 0,1,0,0,1,0,1,0,0

5) 1,0,0,0,0,1,0,0,1 6) 0,0,1,1,0,0,0,0,1

7) 0,0,1,0,0,1,1,0,0 8) 0,1,0,0,1,0,0,0,1

9) 0,1,0,0,0,1,0,1,0 10) 0,0,1,0,1,0,0,1,0

5.5. Further notation and applications. In this section we will in-
troduce notation concerning specific group-based models. We start by
introducing the so called "time-reversibility" condition. This condition
forces the transition matrices to be symmetric [PS05, Lema 17.2]. It
is satisfied for many models considered in applications, for example for
the 3-Kimura model. One can notice that a general group-based model
gives rise to symmetric transition matrices if and only if all nonneutral
group elements are of order two. We have to point out that in the
literature often one adds to the definition of group-based models the
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requirement that matrices are symmetric [BDWO09], [PS05, p. 328|. We
do not use this convention. This leads to the following definition.

Definition 5.68 (general symmetric group-based model, symmetric
group-based model). Let H be an abelian group acting transitively and
freely on the set of states S. We define the general symmetric group-
based model, as the model associated to the vector space W given as the
mazimal space of symmetric matrices invariant with respect to the H
action.

Analogously we define the/fymmetric group-based model, as a model
associated to a subspace of W given by hyperplane sections that make
some parameters of the transition matrices equal.

Symmetric group-based models do not have to be toric. For a counter
example one can consider the general group-based model for Zg. The
transition matrices are of the following type:

fa b ¢ d e f]
f a b ¢ d e
e fa b ¢ d
d e f a b c
c d e f a b

| b ¢ d e f a ]

Let us consider a symmetric submodel with transition matrices of
the following type:

fa a ¢ d ¢ a
a a a ¢ d c
c a a a c d
d ¢c a a a c
c dc a a a
la ¢ d ¢ a a |

After the Fourier transform we do not get a map given by monomials
— see the Appendix 1. However the general symmetric group-based
models always give rise to toric varieties.

Proposition 5.69. General symmetric group-based models give rise to
toric varieties.

Proof. This is the corollary of Theorem 12.1. Suppose that H is any
abelian group. We take GG to be a semi direct product of H by Zy where
the action of 1 € Zy on h gives h=!. In this case the assumptions of
the Theorem 12.1 are satisfied and the subspace invariant with respect
to the GG action gives the general symmetric group-based model. 0
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There are two abelian groups of order 4. For Zs x Zs the general
symmetric group-based model is the same as the general group-based
model and is the 3-Kimura model. For Z, the general symmetric group-
based model is the 2-Kimura model. Notice however that the class of
general symmetric group-based models does not include Jukes-Cantor
on four states that is a G-model. It can be obtained for example by
an embedding of Zy X Zs in S, as a normal subgroup. More precisely
as {id; (12)(34);(13)(24); (14)(23)}. In conclusion we believe that the
G-models form the largest known class of group-based models that give
rise to toric varieties.

We would like to finish this subsection by restating the results of
Sturmfels and Sullivant obtained for group-based models, in the case
of G-models. We have seen that to each tree 7' and a G-model we
can associate a polytope P. Fix a group G with a normal abelian
subgroup H. The polytope P defines a projective toric variety as de-
scribed in 2 and this is the variety representing the model. For general
group-based model the points of P correspond to networks 5.24, that
is special associations of characters of a group to edges of the tree. Us-
ing the labelling method we identify two networks if for each edge the
associated characters are in the same orbit of the adjoint action of G
on H*.

Definition 5.70 (Join of two trees, split of a tree into two subtrees).
Fiz a tree T with an inner edge e = (vy,vq). We distinguish two subsets
Sy and Ss of vertices of T. The set Sy contains all descendants of vy,
including vi. The set Sy contains all vertices that are not descendants
of v, including vo. Let Ty and T5 be induced subtrees of T with vertices
given respectively by S1 and Ss. Note that the edge e is a distinguished
leaf both in T} andT5. One can specify the roots of Ty and Ty arbitrarily.
A canonical choice is to take respectively vi and vs.

We call the trees T1 and Ty the split of T'. The tree T is a join of T}
and Ty (with a distinguished edge e).

Friendly labellings allow to describe the polytope associated to T as
a fiber product of the polytopes associated to T} and 75. In particular
we can give a description of the polytope of any tree knowing just the
polytopes associated to claw trees.

Recall that the polytope associated to the tree 7T is contained in the
lattice Mg ¢ with the basis given by pairs (k, 0), where k is an edge of
T and o is an orbit of the adjoint G action on H.

Fact 5.71 (|Sul07, Theorem 12|, [SS05, Theorem 23|). Let T' be a join
of two trees Ty and Ty with a distinguished edge e. Let M be the lattice
associated to the tree T'. Consider a G-model associated to a group G
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with a normal abelian subgroup H. Let My and M be the corresponding
lattices for the trees Ty and Ty. Let M. be the lattice generated by the
basis elements (e, 0), where o is any orbit of the adjoint G action on H
and e is a fized edge. There are natural projections p; : My — M, and
P2 - M2 — Me'

The polytope associated to the tree T is a fiber product over the pro-
jections p1 and ps of the polytopes associated to trees Ty and Ts. U

5.6. Normality of GG-models. We have seen that the models associ-
ated to a group containing a normal, abelian subgroup are toric. The
monomial parametrization map is sufficient for the applications. How-
ever for an algebraic geometer this would not be enough, as one would
also need to prove the normality of these varieties. We will now address
this problem. By normality we will mean projective normality, that is
normality of the affine cone equivalent to normality of polytopes. We
will see that in general one cannot expect a G-model to be normal, but
in many cases it is. First let us start with a technical lemma. Differ-
ent versions of it that worked only for polytopes with a unimodular
cover were presented in [BW07| and [Zwi]|. Recently these results were
generalized in the paper [EKS11].

Lemma 5.72. Let P, and Py be two normal polytopes contained re-
spectively in lattices Ly and Lo spanned by the points of the polytopes.
Suppose that we have got morphisms p; : L; — L of lattices for 1 =1, 2
such that p;(P;) C S, where S is a standard simplex (convex hull of
standard basis). Then the fiber product Py X, Py is normal in the lat-
tice spanned by its points.

Proof. Let q € n(P, x, P,) for some positive integer n. Let ¢; be the
projection of ¢ to L;. Suppose ¢ is in the lattice spanned by points of
P, xp P,. Hence q is equal to the sum of points that belong to P, xp P,
with integral coefficients summing up to n. We know that it is in the
convex hull of n(P; x P,). Hence each ¢; is the sum of points that
belong to P; with coefficients summing up to n and is in the convex
hull of nP;. This means that ¢; € nP; N L;. From the assumptions we

obtain:
4 = ZU;-,
j=1

with each vj € P, We also know that pi(q1) = p2(¢2) and this is an
element of n.S. Moreover p;(v}) € S. Let us notice that each element of
nS can be uniquely written as the sum of n elements of S. This means
that the collections (py(vl),...,p1(v})) and (pa(v),. .., p2(v?)) are the
same up to permutation, so we can assume that py(v;) = pa(v5). Thus
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we can lift each pair (vj,v}) to a point v; € Py xp P, that projects

¥l )
respectively to vjl- and 1)32-. One obtains ¢ = Z;‘Zl v; which completes
the proof. O

Due to Fact 5.71 the polytope associated to a tree with more then
one inner vertex is the fiber product of polytopes associated to trees
with strictly smaller number of inner vertices. Due to Lemma 5.72 if we
want to prove normality of a polytope associated to any trivalent tree
we only have to consider normality of a polytope for a tripod. More
generally if we want to prove normality of a polytope associated to a
tree with vertices of valency less or equal to m we have to check the
normality of polytopes associated to claw trees with at most m leaves.

Proposition 5.73. Let us consider a trivalent tree. The G-models for
the abelian groups: Zs, Zo X 4y, L3 and Z4 are normal.

Proof. One can find the polytopes for the tripod and check their nor-
mality using Macaulay computer program [GS|. The proposition then
follows from Lemma 5.72. 0

Proposition 5.74. The polytope of the 2-Kimura model for the tripod
18 not normal. Moreover the projective variety associated to the model
15 mot normal.

Proof. As the second part of the statement is stronger we prove only
that part. The polytope of the 2-Kimura model has for vertices:

1) 1,0,0,1,0,0,1,0,0 2) 1,0,0,0,1,0,0,1,0

3) 0,1,0,1,0,0,0,1,0 4) 0,1,0,0,1,0,1,0,0

5) 1,0,0,0,0,1,0,0,1 6) 0,0,1,1,0,0,0,0,1

7) 0,0,1,0,0,1,1,0,0 8) 0,1,0,0,1,0,0,0,1

9) 0,1,0,0,0,1,0,1,0 10) 0,0,1,0,1,0,0,1,0

Let @ = (1,0,0,1,0,0,1,0,0) be a vertex of P. Due to Fact 2.15
it is enough to prove that the monoid C' generated by integral points
of P — @ is not saturated. Let us consider the cone C' that is the
saturation of C'. The point L = (—1,0,1,—1,0,1,—1,0,1) is in C, as
2L is equal to

(—-1,0,1,-1,0,1,0,0,0)+(-1,0,1,0,0,0,—1,0,1)+(0,0,0,—1,0,1,—1,0, 1).
The point L is also in the lattice spanned by the vertices as
L=(0,1,0,0,1,0,0,0,1)—(0,1,0,0,1,0,1,0,0)+(0,1,0,0,0,1,0,1,0)
-(0,1,0,0,0,1,0,1,0) + (0,0,1,0,1,0,0,1,0) — (0,0,1,0,1,0,0, 1,0).

However it is not an integral sum with positive coefficients of vertices
of P — Q. Indeed each vertex of P — () with 0 on the second, fifth
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and eighth coordinate has got an even sum of third, sixth and ninth
coordinates. However the sum of these coordinates for L is odd. O

In a joint work with Maria Donten-Bury [DBM| we managed to get
further results. Using the implementation of the Algorithm 1 one can
obtain the set of vertices of the polytope related to the investigated
group and the tripod. We applied Polymake [GJ00| to check the nor-
mality of this polytope (in the lattice generated by its vertices). We
obtained:

Computation 5.75. The polytope associated with G-model for the tri-
pod and the group G = H = Zg is not normal. Hence the affine alge-
braic variety representing this model is not normal.

In particular, the class of abelian models contains non-normal mod-
els. We believe it can be difficult to characterize the class of groups for
which G-models are normal, or even to determine a big (infinite) class
of normal, toric G-models. On the other hand one has the following
result:

Proposition 5.76. Let T' be a phylogenetic tree and let G be a sub-
group of an abelian group Gs. If the variety corresponding to the tree T'
and group G1 is not normal then the variety corresponding to the tree
T and group G5 is also not normal.

Proof. Let M; be a lattice whose basis is indexed by pairs of an edge
of a tree and an element of the group G;. The inclusion G; C G4 gives
us a natural injective morphism f : M; — M,. Let P, C M; be the
polytope associated to the model for the tree T and group G;. Let
M; C M; be a sublattice spanned by vertices of the polytope P;.

As P is not normal in the lattice spanned by its vertices, there exists
a point x € nP; N My, that is not a sum of n vertices of the polytope P;.
Let us consider y = f(z). The vertices of P, are mapped to vertices of
P,. We see that y € nP, N M,. If P, was normal in M, we would be
able to write y = )" | ¢; with ¢; € P».

Let us notice that each point in the image f(M;) has got zero on
each entry of the coordinates indexed by any edge and any element of
the group g € Gy \ G1. In particular y has got zero on these entries.
As all entries of all vertices of P, are nonnegative, this proves that all
entries indexed by any edge and any element of the group g € G5 \ Gy
are zero for ¢;. However, we see that vertices of P, that have got all non
zero entries on coordinates indexed by pairs of an edge and an element
g € Gy are in the image of P;. Hence ¢; = f(p;) for p; € P;. We see
that © = ) p;, which is impossible. O
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In particular we see that all abelian groups G such that |G| is divisible
by 6 give rise to non-normal models.

6. DESCRIPTION OF THE VARIETY USING THE GROUP ACTION

Let us describe precisely the characters of the torus that is the dense
orbit of the variety associated to the model. Let us fix a tree 7" and an
abelian group H. We have got the following diagram:

QZZMS‘»-]/\ZECME

|

Mg
Let us define a sublattice of M.

Definition 6.1 (Mg,).
Mgeyg = {m € Mg : deg, (m) = deg,,(m) ei,es € £}

Proposition 6.2. The lattice ]\/ZE is contained in the sublattice Mge,.

Proof. For any basis element b € Mg corresponding to a socket and
for any edge e € E we have deg.(1)(b)) = 1. Hence the image of any
element of Mg satisfies the relations in the definition of Mge,. O

Of course the elements of M, g satisfy more relations. We will describe
them now.

Definition 6.3 (Morphism add). There is a natural surjective group
morphism add : Mg — (H*)N. For a noden € N let p, : (H*)N — H*
be the projection onto the corresponding factor. Let f., € Mg be a
basis element corresponding to an edge e and a character x € H*. We
define

Xo if and only if n is not adjacent to e
Pn(ad0(fey)) = < X if and only if e is an edge incoming to n

—x if and only if e is an edge outgoing from n,
where o 1S the neutral character.

We say that an element m € ]\/ZE has a trivial sum around a node n

if and only if p,(add(m)) = xo.

Consider the composition add o 12)\ Let s € Mg be a basis element
corresponding to a network § € M C (H*)”. We have add o ih(s) =
add(s). However due to Definition 5.24 we have add($) = 0, hence
add o 12)\(3) : Mg — (H*)V is equal to zero. This means that My is
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contained in the kernel of the morphism add. We will prove that there
is an exact sequence:

0— My — My — (H*)N — 0,

where the last morphism is the restriction of add to My.,. In particular
ranks of Mg and My, are equal.

Corollary 6.4. The dimension of the affine variety associated to the
model, is equal to the dimension of the dense torus orbit that is

dim My = dim My, = (|H| — 1)|E] + 1.
The dimension of the projective variety equals (|[H| — 1)|E|.
We have to prove the following lemma.

Lemma 6.5. Every element of Mg, that is in the kernel of add belongs
to ME‘

Proof. We proceed by induction on the number of inner vertices of the
tree. First let us assume that the tree 7" is a claw-tree with [ leaves.
The elements of M., can be described by sequences of length [ given by
1 1 : e 1 1
elements (3 a,x,...,»_a)x) with the condition ) Ja, =--- =) a.
We prove that elements of the form (¢1+¢2—9192— X0, 0, . . ., 0), where

—

g1, 92 € H* are any characters are in Mg. Such an element is equal to

(91: 91" X0, - > X0)+(92: X0, 92 s X0s - - - X0)— (9192, 91 5 92 5 X0s - - - X0)—
(X0, - - -, Xo0)- Each element of the sum is given by a socket, hence it is
in ]/\/TE'

We now fix any element () aix, o Zalxx) =m € Mg, that is in
the kernel of ad0d. We will reduce it modulo the image of Mg to zero.
Let us assume that > al =---=>"d!, =d.

Using elements as above we can reduce m and assume that for x # xo
the coefficient ag'( for each 1 < j <[ is zero apart from one character for
each j for which the coefficient can be equal to one. Precisely if there
are two characters with a positive (resp. negative) coefficients we can
replace them with their sum plus (resp. minus) the trivial character.
If one entry is equal to g — go we add go + 9195 ' — g1 — Xo. If there is
one negative ¢ on an entry we add g + ¢~ — 2yo.

In other words m is equal to (x1, ..., x1)+(d—1)(xo,- - -, xo) modulo
the image of Mg. As ) x; = xo in H* this element is in the image of
Ms.

Now we will prove the induction step. Let us fix a tree T" with at
least two inner vertices. We may choose an inner edge e of T, such
that cutting along the edge e we obtain two trees 77 and T3 (the tree
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T is a join of T} and Ty) with strictly lower number of inner vertices.
In one of the trees, say T, we have to choose a root — this will be a
vertex belonging to the edge e. In this way all edges of T, are oriented
as in T apart from e which has an opposite direction. An element
m € Mg, gives us two elements m; € Méeg for 1 = 1,2 that are also in
the kernels of a0d for both trees. By induction hypothesis we can find
two elements s; € Mg which images give m;. Let s; = ) ¢’b’ where
bé- is the basis of M} corresponding to sockets on T;. Let us consider
the multisets Z; that are the projections of chbé- onto the edge e —
each b; distinguishes an element on e. The multiset Z; has c¢; elements
distinguished by b; with a minus sign if ¢; < 0. Z; is a signed multiset
of characters. Let Z! be a multiset obtained by reductions cancelling x
with —x in the multiset Z;. The multiset Z] is just the signed multiset
of characters corresponding to m.. The multiset Z) gives the same
multiset as Z] if we inverse all characters. This means that we can pair
together elements from Z] and Z} such that each pair gives rise to a
socket on the tree 7. The image of the sum of these sockets does not
have to give m yet. We have to lift also the sockets that we cancelled
by passing from Z; to Z!. This is done as follows. Suppose that two
sockets by and b} give y on the edge e and so, b; and —b) were cancelling
each other in Z;. We choose any socket s on T, that gives y~! on the
edge e. We can glue together b; and s obtaining a socket (by, s) of the
tree 7" and analogously (b, s). The image of the difference of sockets
(by,s) — (b}, s) on the edges of the tree T is the same as the difference
of by — b} and zero on the edges belonging to T5. In this way we obtain
the sockets of T which image agrees with > cjb§- on T;, hence is equal
to m. U

Corollary 6.6. For the tree T' and the group H the dense torus orbit
of the affine variety representing the model has a natural description

as a quotient of the dense orbit of the torus of the parameter space by
the HN x (C*)/EI=1 qaction.

Proof. The characters of the dense orbit of the parameter space are
given by the lattice Mp. Its algebra is C[Mg] = C[x(ie}x)]eeE,er*-
First let us describe the action of Gr = (C*)/¥I=1. We regard this torus
as a subtorus of (C*)'®l with an additional condition that the product
of all coordinates is one. Hence an element of Gr is just an association
of a nonzero complex number to each edge of the tree T', such that the
product of all these numbers is one. The action of Gr just multiplies
T(e,x) by the complex number associated to e. In this way the invariant
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monomials are those whose degree with respect to each edge is the
same, hence Mg’” = Mey-

The coordinates of the group H are indexed by nodes. There is a
natural diagonal action of the group H™ on the algebra C[My]. Let us
fix anode v € N. The action of the h € H considered as an element of
HYN equal to h on the coordinate indexed by v and the neutral element
on the other coordinates is as follows:

e for an edge e incoming to v we have h(z( ) = X(h)Z(cy)
e for an edge e outgoing from v we have h(z(c)) = (X (7)) (e
e for the other edges h(Z(c,y)) = T(c,y)-

First let us notice that elements of M, g are invariant by the action of
HY. They are in the kernel of add, so the signed sum of characters
around each inner vertex gives a trivial character. But the action of
h € H C H" just multiplies the monomial by the value on h of the
character that is a signed sum of characters associated to edges adjacent
to v, hence by 1. Conversely if the signed sum of characters on any
h € H is 1, then the sum has to be a trivial character. So an element
of Mgeq is invariant with respect to the H" action if and only if it is in

the kernel of ad0, so by 6.5 if and only if it belongs to ]\//TE U

The group HY x (C*)IFI=1 acts also on the algebra of the parame-
ter space C[z(c\)|cenyen+. However the quotient is not equal to the
variety representing the model, contrary to what is stated in [CFS08,
Theorem 3.6]. Indeed the algebra of the variety is generated by the
polytope (contained in the positive quadrant of My,) and is invariant
by the action of HY x (C*)/¥I=1. However the invariant monomials of

Clz(e,)lecr, e~ correspond to all the monomials of ]/\/[\E that are in
the positive quadrant of Mpg. Not all such monomials are generated
by the polytope. For example for the 3-Kimura model the monomial
22 Ile.cp®2 o, where e is the trivial character is invariant for any y
and any distinguished edge ey (because y +x = e). This is not however
the sum of any two vertices of the polytope associated to the variety.

Let us present some applications.
Corollary 6.7. There is an exact sequence of groups:

M5'70 — ME70 — (H*)‘N| — 0.

The first map is given by 15 The second one is the restriction of add
to ME',O- O

This corollary can be applied in the identifiability problem to deter-
mine the parameters of transition matrices. We will do this in Section
11.4.1.
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Let us fix an abelian group H and a tree 7. We will prove that
the group of networks 91 acts on the variety X (7, G). Recall that the

ambient space W, is a regular representation of 1.

Proposition 6.8. The action of the group of networks N on /V[V/L re-
stricts to the variety X(T,G).

Proof. Consider the parametrization morphism 7 o1 : CIEIHT —
. The basis vectors of the affine space C#!II"| are indexed by pairs
(e,x) € E x H*. We denote the corresponding basis elements by b .

For t € CII™" we define t(. ) := 0f, ,(t). The basis elements of W},

are indexed by networks n € (H*)E. We identify a network with a
sequence of characters n = (n. := x.)ecr indexed by edges. Note that
the group of networks acts also on the domain C/ZIH"| by:

(n(t))(eyx) = t(e,ne‘lx)'

It is easy to check that the morphism 7 o QZ is equivariant. U

7. PHYLOGENETIC INVARIANTS

The section contains results of joint work with Maria Donten-Bury
[DBM]. We investigate the most important objects of phylogenetic
algebraic geometry — ideals of phylogenetic invariants. The main prob-
lem in this area is to give an effective description of the whole ideal of
the variety associated to a given model on a tree. Our task is to find
an efficient way to compute generators of these ideals.

We suggest a way of obtaining all phylogenetic invariants of a claw
tree of a G-model — more precisely we conjecture that our invariants
generate the whole ideal of the variety. These, together with Fact 5.71,
could provide an algorithm listing all generators of the ideal of phylo-
genetic invariants for any tree and for any G-model (so in particular
for a general group-based model).

7.1. Inspirations. The inspirations for our method were the conjec-
tures made by Sturmfels and Sullivant in [SS05]. They are still open
but, as we will see, they strongly support our ideas. In particular, we
will prove later that our algorithm listing the generators of the ideal
works for the 3-Kimura model if we assume that the weaker conjecture
made in [SS05] holds.

First we introduce some notation. As before let K, ; be a claw tree
with n leaves. Let ¢(G,n) = d be the least natural number such that
the ideal associated to K, ; for the group based model G is generated
in degree d. The phylogenetic complexity of the group G is defined as
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o(G) = sup,p(G,n). Note that due to [SS05, Theorem 23] (see also
[Sul07, Theorem 12]) the number ¢(G,n) bounds the degree in which
the ideal associated to any tree of valency at most n is generated. Based
on numerical results Sturmfels and Sullivant suggested the following
conjecture:

Conjecture 7.1. For any abelian group G we have ¢(G) < |G]|.

This conjecture was separately stated for the 3-Kimura model, that
is for G = Zgy X Zo.

Still very little is known about the function ¢ apart from the case of
the binary Jukes-Cantor model (see also [CP07]):

Proposition 7.2 (Sturmfels, Sullivant [SS05|). In case of the binary
Jukes-Cantor model ¢(Zy) = 2. O

There are also some computational results — to the table in [SS05]
presenting the computations made by Sturmfels and Sullivant a few
cases can be added.

Computation 7.3. Using {t12 software [tt] we obtained the following:
L ¢(Z37 ) 3
O(Zs,4) = 4
(ZS’ )
(ZQ X ZQ X Z2,3) = 8.
For the 3-Kimura model we do not even know whether the function

¢ is bounded. As we will see later, this conjecture is strongly related
to the one stated in the next section.

7.2. A method for obtaining phylogenetic invariants. We pro-
pose a method that is inspired by the geometry of the varieties we
consider. First we have to introduce some notation.

Definition 7.4. Let V; be the set of vertices of a tree T; for i = 1,2.
Let e be an inner edge of Ty joining vy, ve € Vo. We say that the tree
Ty is obtained from the tree Ty by contraction of an edge e if:
o Vi ={vj U (V2 {v1,02}),
e for w € Vi \ {v} a pair (v,w) is an edge of Ty if and only if
(v, w) or (ve,w) is an edge of Ty,
o for w € Vi \ {v} a pair (w,v) is an edge of Ty if and only if
(w,v1) or (w,ve) is an edge of Ty,
o forw,u € Vi \ {v} a pair (w,u) is an edge of Ty if and only if
(w,u) is an edge of Ts.

In such a situation we say that Ty is a prolongation of T}.
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Remark 7.5. Note that these definitions are not the same as the
definitions of flattenings introduced in [ARO8| and further studied in
[DKO09].

Assume that we are in an abelian case, that is we are dealing with
a general group-based model. Using Algorithm 1 one can see that
vertices of the polytope correspond to sockets. As explained in Section
2 vertices of the polytope correspond to coordinates of the ambient
space of the variety. In this setting the variety X (7)) associated to
the tree T3 is in a natural way a subvariety of X (75). Notice that we
can identify sockets of both varieties, as we may identify their leaves, so
both varieties are contained in P°, where s is the number of sockets. The
natural inclusion corresponds to the projection of character lattices: we
forget all the coordinates corresponding to the edge joining the vertices
vy and vy. Details are presented in Proposition 8.1. In this setting the
following conjecture is natural:

Conjecture 7.6. The variety X (K, 1) is equal to the (scheme theo-
retic) intersection of all the varieties X (T;), where T; is a prolongation
of K, 1 that has only two inner vertices, both of them of valency at least
three.

As X (K, ) is a subvariety of X (7;) for any prolongation 7; one inclu-
sion is obvious. Note also that the valency condition is made, because
otherwise the conjecture would be obvious — one of the varieties that
we intersect would be equal to X (K, ) by Remark 5.36. All 7; have
got a strictly smaller maximal valency than [, ;, so if the conjecture
holds then we can inductively use Theorem 23 of Sturmfels and Sul-
livant [SS05] (see also Theorem 12 [Sul07]) to obtain all phylogenetic
invariants for a given model for any tree of any valency, knowing just
the ideal of the tripod. In such a case the ideal of X (K, ;) is just
the sum of ideals of trees with smaller valency. More precisely, if 7.6
holds then the degree in which the ideals of claw trees are generated
cannot grow when the number of leaves gets bigger. This means that
®(G) = ¢(G, 3) which can be computed in many cases. In particular,
the conjecture 7.6 implies all cases of the conjecture 7.1 in which we can
compute ¢(G, 3) — this includes the most interesting 3-Kimura model.

Remark 7.7. Let us note that varieties X (77) and X (73) are naturally
contained in the same ambient space for any model, even if it does not
give rise to toric varieties. Indeed using the construction of the variety
presented in Section 4 one can see that the ambient space depends only
on leaves of the tree. Hence if we can identify the leaves of trees we can
identify ambient spaces of associated varieties. Thus conjecture 7.6 can
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help to compute the ideals of claw trees for a large class of phylogenetic
models.

Of course one may argue that the conjecture 7.6 above is too strong
to be true. Later we will prove it for the binary Jukes-Cantor model.
We will also consider two modifications of this conjecture to weaker
conjectures that can still have a lot of applications. The first modifi-
cation just states that the conjecture 7.6 holds for n large enough.

Proposition 7.8. For any G-model the conjecture 7.6 holds for n large
enough if and only if the function ¢ is bounded.

Proof. One implication is obvious. Suppose that 7.6 holds for n > ny.
We choose d such that the ideals associated to K;; are generated in
degree m for [ < ng. Using 7.6 and the results of [SS05| we can describe
the ideal associated to K, ; as the sum of ideals generated in degree m.
It follows that this ideal is also generated in degree m, so the function
¢ is bounded by m.

For the other implication let us assume that ¢(n) < m. Let us
consider any binomial B that is in the ideal of the claw tree and is of
degree less or equal to m. We prove that B belongs to the ideal of some
prolongation of a tree T', which is in fact more than the statement of
Conjecture 7.6.

Such a binomial can be described as a linear relation between (at
most m) vertices of the polytope of this variety. Each vertex is given
by an association of orbits of characters to edges such that there exist
representatives of orbits that sum up to a trivial character. Let us
fix such representatives, so that each vertex is given by n characters
summing up to a trivial character.

Now the binomial B can be presented as a pair of matrices A; and
Ay with characters as entries. Each column of the matrices is a vertex
of the polytope. The matrices have got at most m columns and exactly
n rows. Let us consider the matrix A = A; — A,, that is entries of the
matrix A are characters that are differences of entries of A; and As.
We can subdivide the first column of A into groups of at most |H|
elements summing up to a trivial character. Then inductively we can
subdivide the rows into groups of at most |H|' elements summing up
to a trivial character in each column up to the 7-th one.

For n > |H|™ 4 1 we can find a set S of rows of A such that the
characters sum up to a trivial character in each column restricted to .5,
such that both the cardinality of S and of its complement are greater
then 1. Note that the sums of the entries lying in a chosen column
and in the rows in S are the same in A; and A,. Therefore, adding
to both matrices an extra row whose entries are equal to the sum of
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the entries in the subset S gives a representation of a binomial B on a
prolongation of 7. 0

In particular, this proof shows that if the conjecture 7.1 of Sturmfels
and Sullivant holds for the 3-Kimura model, then conjecture 7.6 also
holds for this model for n > 257. Later we will significantly improve
this estimation.

For the second modification of the conjecture 7.6 let us recall a few
facts on toric varieties. Let 17 and 75 be two tori with lattices of char-
acters given respectively by M; and M,. Assume that both of them
are contained in a third torus 7" with the character lattice M. The
inclusions give natural isomorphisms M; ~ M/K; and My ~ M/K,,
where K7 and K, are torsion free lattices corresponding to characters
that are trivial when restricted respectively to T7 and T5. The ideal of
each torus (inside the algebra of the big torus) is generated by binomi-
als corresponding to such trivial characters. The points of T" are given
by monoid morphisms M — C*. The points of T; are those morphisms
that associate 1 to each character from K;. We see that the points of
the intersection 77 N 75 are those morphisms M — C* that associate
1 to each character from the lattice K7 + Kj. Of course the (possibly
reducible) intersection Y is generated by the ideal corresponding to
Ki 4+ Ks. This lattice may be not saturated, but Y contains a distin-
guished torus 7", that is one of its connected components. If K’ is the
saturation of the lattice K; + Ky then the characters of 7" are given
by the lattice M/K’. Suppose that X is a toric variety that contains
the dense torus orbit equal to 1. Let X; be the toric variety that is
the closure of T; and X’ be the closure of 77 in X. We call the toric
variety X’ the toric intersection of X; and X,. The definition extends
to a greater number of toric varieties embedded equivariantly in one
toric variety. The most important case that we will use is when X is
the affine space and X; are affine toric varieties.

In the setting of 7.6 we conjecture the following:

Conjecture 7.9. The toric variety X(T) is the toric intersection of
all the toric varieties X (T5).

This conjecture differs from the previous one by the fact that we al-
low the intersection to be reducible, with one distinguished irreducible
component equal to X (77). We state this conjecture, because it can be
checked using only the tori. As the points important from the biolog-
ical point of view are contained in the torus (see |CEFS08, Definition
2.13|), this conjecture is a weaker version of Conjecture 7.6 which is
still suitable for applications. Moreover, it is quite easy to check it for
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trees with small enough number of leaves using computer programs.
To explain it properly, let us consider the following general setting.

Assume that the tori T; are associated to polytopes P; and that T is
just the torus of the projective space P™ DO T; consisting of the points
with all coordinates different from zero. Let A; be a matrix whose
columns represent vertices of the polytope P;. The characters trivial
on T; or respectively binomials generating the ideal of T; are exactly
represented by integer vectors in the kernel of A;. The characters trivial
on the intersection are given by integer vectors in the sum of lattices
ker Al + ker AQ.

Note that the ideal of the toric intersection 71" of the tori 7; in T is
generated by binomials corresponding to characters trivial on 7", that
is by the saturation of ker A; + ker A;. These binomials define a toric
variety in P". This variety is contained in the intersection (in fact it is
a toric component) of the toric varieties that are the closures of 7;. The
equality may not hold however, as the intersection might be reducible.

In conjecture 7.9 we have to compare two tori, one contained in the
other. To do this, it is enough to compare their dimensions, that is
the ranks of the character lattices. Let us note that the dimension
of the intersection T} N T3 is given by n minus the dimension (as a
vector space) of ker Ay + ker As, as it is equal to the rank of the lattice
Z™ N (ker Ay + ker Ay). To compute this dimension it is enough to
compute the ranks of matrices A;, A, and B, where B is a matrix
obtained by putting A; under A, (that is, ker B = ker A; N ker A,).
This can be done very easily using GAP (|[GAP]). The results obtained
for small trees will be used in the following section.

7.3. Main Results. To support Conjecture 7.6 let us consider the case
of binary Jukes-Cantor model. This model is well understood [BWO07],
[CPO7|, [SS05].

Proposition 7.10. Conjecture 7.6 holds for the binary Jukes-Cantor
model.

Proof. We use the same notation as in the proof of Proposition 7.8.
Let us fix a number of leaves [. We claim that we can find two
special trees T; and 715 for which the scheme-theoretic intersection
X(T1,Zy) N X (T, Zs) equals X (K1, Zy). We number the leaves from
1 to [. The trees T7 and 75 are isomorphic as graphs but have different
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leaf labelling. The topology of the trees is as follows:

N, < ‘
For the tree T} the leaves adjacent to v; have got numbers 1 and 2.
For the tree T they are numbered 1 and 3. The ideal of the variety
associated to a tree for the group Z, is always generated in degree 2
by Proposition 7.2. Hence the generators of the ideals are of the form
ning = ngnyg where n; for 1 < i < 4 are coordinates corresponding
to networks. Each binomial equality corresponds to a pair of matrices
(My, My), with entries that are group elements, whose columns repre-
sent networks and rows are the same up to permutation. Hence each
generator of the ideal of X (K1, Zs) is represented by a pair of 2 x [
matrices with entries from Zs. Moreover the sum in each column is
the neutral element and rows of both matrices are the same up to per-
mutation. As we can permute columns of each matrix we may assume
that the first rows of both matrices coincide. Let us consider any such
generator (Mo, M) in the ideal of X (K1, Zsy). First suppose that the
entries in the first row are the same, that is either 00 or 11. Then the
relation holds both for X (7}) and X (73). Hence we may suppose that
the first row is 01 or 10. If the second row would be equal to 00 or
11 then the relation would hold for X (7). The same reasoning holds
for the third row and X (7). Hence all three rows in both matrices
are either 01 or 10. If the second (resp. third) rows are the same in
both matrices then the relation holds for X(77) (resp. X(73)). So
the only possibility left is that the second and third row of M; are
respectively the negation of the second and third row of M,. In this
case the relation does not hold in any X(7;) but we can generate it.
We consider a matrix M that is equal to M, with the first two rows
permuted. The pair (Mg, M) represents a relation in X (77). Moreover
the pair (M, M) represents a relation in X (7).

O

From the proof above it follows that in fact to obtain the variety
of the claw tree for the binary Jukes-Cantor model it is enough to
intersect two varieties corresponding just to three subdivisions. This
subdivisions correspond to S containing exactly the first and second
rows or the first and third rows. Note that it is not enough to intersect
two varieties corresponding to any prolongations — see Section 8.
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Now we prove the following conditional result for the 3-Kimura model:

Proposition 7.11. If the conjecture 7.1 of Sturmfels and Sullivant
holds then the conjecture 7.6 holds for n > 8.

Proof. We use the same notation as in Proposition 7.8. Consider any
binomial of degree k represented by a pair of matrices (M, My) with
entries given by group elements. Let A = M; — M;, where minus is
the group substraction. Matrix A has got k columns with entries from
Ziy X Zy. Consider A’ with 2k columns and entries from Z,. The matrix
A’ is obtained from A by applying two projections Zo X Zg — Zs to
each entry. Recall that matrices M; and M, had the same rows up to
permutation. This means that also after each projection the rows were
the same up to permutation. Note that a difference of two vectors with
entries from Z, that are the same up to permutation has got always an
even number of 1. Thus if we consider any row of matrix A" and either
odd or even entries of this row, the number of 1 is always even.

Once again we may assume that the entries in the first row of A’ are
neutral elements, that is they are equal to zero. Let A” be the matrix
obtained by deleting the first row of A’. For each subset of rows of A”
we may consider a vector of length equal to the number of columns of
A”, whose entries are given by sums of group elements from the subset.
Note that this vector always has an even number of 1 both in even
and odd columns. Because we assume conjecture 7.1, the matrix A”
has got at most 8 columns. By pigeonhole principle, if n > 8 then we
can find two subsets of rows of A” that are not complements of each
other, such that their sum vector is the same. If we take a symmetric
difference of these subsets, we obtain a strict, nonempty set S of rows
of A”, summing up in each column to the neutral element. We add
the first row of A’ to S or its complement, so that both sets have more
than one element. Thus we obtain a subdivision of the set of rows of
A such that the given binomial is in the ideal of the tree corresponding
to this division. 0

For n < 8 we checked, using the computer programs Polymake,
4ti2, Macaulay2 and GAP, that the toric intersection of the tori of
subdivisions gives the torus of the claw tree. We used the linear algebra
described in the previous section. This proves that if the conjecture 7.1
holds for 3-Kimura model, then the conjecture 7.9 holds. Moreover, in
all the checked cases it was enough to consider just two subdivisions.
This is not a coincidence as we will prove in Section 11.
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To summarize, we know that for 3-Kimura model conjecture 7.6 im-
plies both conjectures 7.9 and 7.1 and moreover conjecture 7.1 implies
7.9 and for n > 8 also conjecture 7.6.

8. INTERACTIONS BETWEEN TREES AND VARIETIES

The ideas from the preceding sections are general. We can define an
order on trees with [ leaves as follows. We say that 7} < T if T} can
be obtained from 75 by a series of contractions of inner edges. Here by
an edge contraction we mean identifying two vertices of a given edge
as in Definition 7.4. The smallest tree with [ leaves is the claw tree
K ; with one inner vertex. This is a part of a construction of the tree
space [BHVO01]. We fix an abelian group G.

Proposition 8.1. If T} < Ty then X(T1,G) C X (T3, G).

Proof. Although the statement is very easy we believe that the follow-
ing discussion may be helpful to better understand the forthcoming
sections. Both trees have got the same number of leaves, so we can
make a natural bijection between their sockets. This gives an isomor-
phism of the ambient spaces Wg. As T} < Ty we can make an injection
from the edges of T} to the edges of T;. Note that a network on 75, re-
stricted to the edges of 17 is a network on 77. This gives us a projection
T Mgl —» MEQ. The map 7 simply forgets the coordinates indexed
by (e, g), where e is an edge of T5 not corresponding to an edge of 7.
Moreover the projection of P2 is equal to PTt. The following diagram
commutes:
M}
/7

\ i
M

Mg

Any relation between the vertices of P72 is also a relation between the
vertices of P7'. Hence any polynomial in the ideal of X (T3, G) is also
in the ideal of X (77, G). O

The surjective morphism of algebras corresponding to the inclusion of
varieties is given by the restriction of the surjective morphism between
ME> and M} to the cones spanned by polytopes P™2 and P

It is natural to ask what is the relation between X (75, G) and the
scheme theoretic intersection of all X (7', G) for T, < T'. Conjecture 7.6
states that if there exists at least one T" > T}, then they are equal. So
far we only know that the answer is positive for G = Z, [CP07], [SS05],
[DBM].
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Conjecture 7.6 can be stated for any phylogenetic model, not nec-
essarily given by a group®. In particular for a general Markov model.
One would be also interested to know exactly what is an intersection
of a few varieties associated to different trees. In particular how many
ideals do we have to sum to obtain the ideal associated to the claw tree.
One could also hope that the intersection of X (7}, G) and X (75, G) is
equal to X (7, G) where T is the largest tree smaller than 7} and T5.
Here we present a counterexample. We will prove that a scheme the-
oretic intersection X (71, Zs) N X (T3, 7Zs) does not have to be equal to
X(Kj1,Zs) even if Ky is the only tree smaller then 77 and T5. We
consider the case of five leaves [ = 5. The trees 77 and T3 are isomor-
phic as graphs but have different leaf labelling. Their topology is as
follows:

(8.1)

U1 <
For the tree T} the leaves adjacent to v; have got numbers 1 and 2.

The tree T5 is isomorphic, with two distinguished leaves labelled with
4 and 5. We consider the relation given by a pair of matrices:

10 10
0 1 10
00/l,l00
0 1 0 1
10 0 1

This corresponds to a generator of the ideal of X (Kj,Z,). Consider
any relation involving the first matrix and some other matrix M for
X(T1) or X(T3). One can see that the first two rows of M must be
negations of each other and the third one is 00. Hence it is impossible
to generate the relation above.

9. COMPUTATIONAL RESULTS

This section contains results of the joint work with Maria Donten-
Bury [DBM]|. We used the implementation of Algorithm 1.

6T would like to particularly thank Elizabeth Allman for discussions on this topic.
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9.1. Hilbert-Ehrhart polynomials. The binary Jukes-Cantor model
(for trivalent trees) has an interesting property, stated and proved
in [BWO7|: an elementary mutation of a tree gives a deformation of
the associated varieties (see Construction 3.23). This implies that bi-
nary Jukes-Cantor models of trivalent trees with the same number of
leaves are deformation equivalent (Theorem 3.26 in [BWO07]). As it was
not obvious what to expect for other GG-models, we computed Hilbert-
Ehrhart polynomials, which are invariants of deformation, in some sim-
ple cases.

Let us recall basic facts about Hilbert polynomials for projective toric
varieties. Suppose that our variety corresponds to a polytope P x {1}
contained in the lattice M spanned by its integral points. There are
two functions that one can associate to the polytope P.

(i) Let o : N — N be a function. Let h(n) equal the number
of points in the monoid generated by P x {1} with the last
coordinate equal to n. We call h the Hilbert function.

(ii) Let e : N — N be a function. Let e(n) equal the number of
integral points in nP, or equivalently in n(P x {1}). We call e
the Ehrhart function.

The function e is a polynomial function, thus we call it the Ehrhart
polynomial. The function A is a polynomial function for large enough
values. The polynomial h such that for n large enough h(n) = h(n) is
called the Hilbert polynomial. From the definition of normal polytope
2.13 we see that the Hilbert function equals the Ehrhart polynomial
if and only if P is normal, that is if and only if the associated variety
is projectively normal. The associated variety is normal if and only if
the Hilbert polynomial equals the Ehrhart polynomial [Stu96, Theorem
13.11]. In this case we call it the Hilbert-Ehrhart polynomial.

9.1.1. Numerical results. We checked models for two different trees
with six leaves (this is the least number of leaves for which there are
non-isomorphic trees, exactly two), the snowflake and the 3-caterpillar.
The most interesting ones were the cases of the biologically meaningful
2-Kimura and 3-Kimura models.

To determine the Hilbert-Ehrhart polynomial of a G-model we com-
pute the number of lattice points in multiples of its polytope. Even if
it is not possible to get enough data to determine the polynomials (eg.
because numbers are too big), sometimes we can say that polynomi-
als for two models are not equal, because their values for some n are
different.

Before we completed our computations, Kubjas computed numbers
of lattice points in the third dilations of the polytopes for 3-Kimura
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model on the snowflake and the 3-caterpillar with 6 leaves and got
69248000 and 69324800 points respectively [Kub10|. Thus she proved
that varieties associated with these models are not deformation equiv-
alent.

Our computations confirm her results as for the 3-Kimura model and
also give the following

Computation 9.1. The varieties associated with 2-Kimura models for
the snowflake and the 3-caterpillar trees have different Ehrhart polyno-
mials. In the second dilations of the polytopes there are 56992 lattice
points for the snowflake and 57024 for the 3-caterpillar.

Also the pairs of varieties associated with G-models for the snowflake
and the 3-caterpillar trees and

(i) G = H = Zs,
(ii) G = H = 7y,
(iii) G = H = Zs,
(iv) G=H =7,

have different Hilbert-Ehrhart polynomials and therefore are not defor-
mation equivalent. (For these pairs G-models are normal, which can be
checked using Polymake.) The precise results of the computations are
presented in the Appendiz 2.

In the cases of

(i) G = H = Zs,
(i?:)G:H:ZQXZQXZQ,
(iii) G = H = Zq

the varieties have got different Hilbert functions. We were not able to
check if they are normal, however if they are then the Hilbert-Ehrhart
polynomials are different.

9.2. Some technical details. The first attempt to compute num-
bers of lattice points in dilations of a polytope was the direct method:
constructing the list of lattice points in nP by adding vertices of P
to lattice points in (n — 1) P and reducing repeated entries. This algo-
rithm is not very efficient, but (after adding a few technical upgrades to
the implementation) we were able to confirm Kubjas’ results [Kub10].
However, this method does not work for non-normal polytopes. As we
planned to investigate 2-Kimura model, we had to implement another
algorithm.

The second idea is to compute inductively the relative Hilbert poly-
nomials, i.e. number of points in the n-th dilation of the polytope
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intersected with the fiber of the projection onto the group of coordi-
nates that correspond to a given leaf. Our approach is quite similar to
the methods used in [Kub10| and [Sul07].

First we compute two functions for the tripod. Let P C Z3™ =~ Z™ x
Z™ x 7™ be the polytope associated to a tripod. Let pr; : Z3™ = Z™ x
7™ x 7™ — Z™ be the projection onto the i-th group of coordinates.
We distinguish one edge of the tripod corresponding to the third group
of coordinates in the lattice. Let f be a function such that f(a) for
a=(ay,...,ay) € Z™is the number of lattice points in (a;+- - -+a,,) P
that project to a by prz. We compute f(a) for sufficiently many values
of a to proceed with the algorithm.

Example 9.2. The polytope P for the binary Jukes-Cantor model
has the following vertices:

v =(0,1,0,1,0,1),
Vg = (0a1717071a0)7
U3 = (1a0707171a0)7

v =(1,0,1,0,0,1).

These are the only integral points in P. In this case f(1,0) = 2 because
there are exactly two points, (1,0,0,1,1,0) and (0,1, 1,0, 1,0), that are
in 1P = P and project to (1,0) via the third projection.

The function f will be our base for induction. Next, we need to
compute the number of points in the fiber of a projection onto two
distinguished leaves. Let g be a function such that g(a,b) for (a,b) =
(@1, @y by, ... by) € ZM X Z™ is the number of lattice points in
(ay + - - -+ a,,) P that project to a by prs and to b by pro. We compute
g(a,b) for sufficiently many pairs (a,b) to proceed with the algorithm.

Let T be a tree with a corresponding polytope P and a distinguished
leaf [. Let h be a function such that h(a) for a = (a,...,a,) €
7™ is equal to the number of points in the fiber of the projection
corresponding to leaf [ of (a; + -+ + a,,,) P onto a. We construct a
new tree 7" by attaching a tripod to the chosen leaf [ of T. We call
T a join of T' and the tripod. The chosen leaf of 7" will be one of the
leaves of the attached tripod. As proved in [BWO07], [SS05], [Mic11b],
[Sul07] (depending on the model), the polytope associated to a join of
two trees is a fiber product of the polytopes associated to these trees.
Thus we can calculate the function A’ for 7" by the following rule:
h'(a) = >, g(a,b)h(b), where the sum is taken over all b € Z™ such
that g(a,b) # 0.
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This allows us to compute inductively the relative Hilbert polyno-
mial. The last tripod could be attached in the same way. Then one
obtains the Hilbert function from relative Hilbert functions simply by
summing up over all possible projections. However, it is better to do
the last step in a different way.

Suppose that as before we are given a tree T" with a distinguished
leaf [ and a corresponding relative Hilbert function A. We compute the
Hilbert function of the tree 7" that is a join of the tree T and a tripod
using the equality h'(n) = >, f(a)h(a), where a = (a1, ...,a,) and
> a; = n. The function f is the basis for induction introduced above.

Thus, decomposing the snowflake and the 3-caterpillar trees to joins
of tripods, we can inductively compute (a few small values of) the cor-
responding Hilbert functions. This method works also for non-normal
models, if only the Hilbert function for the tripod can be computed.
In particular, for 2-Kimura model the computations turned out to be
possible, because its polytope for the tripod is quite well understood
at least to describe fully its second dilation. More precisely the points
of the polytope and the point constructed in the proof of Proposition
5.74 generate the cone over the polytope. This way we obtained the
results of 9.1.

10. CATEGORICAL SETTING

The aim of this section is to present a category GM of G-models and
its connections with other categories. As an application of the theory
we will present a proof of Conjecture 7.9 for the 3-Kimura model.

10.1. Category of G-models. A G-model is the following set of data:
e atree T
e a group G
e a normal, abelian subgroup H < G.
Let us remind that the group G acts on the characters H* by adjunction
x?(h) = x(ghg™'). This motivates the following definition.

Definition 10.1 (Compatible morphism of subgroups). Let us fiz two
pairs (H;, G;) where H; is an abelian, normal subgroup of G; for i =
1,2. We say that a morphism f : Hi — Hs is compatible if the dual
morphism f*: Hy — H{ preserves the orbits of groups G;. That is for
any pair of characters x, X' € Hj in the same orbit of the Gy action
the images f*(x) and f*(X') are in the same orbit of the Gy action.

Remark 10.2. Let us note that in the abelian case, that is G; = H; all
morphisms are compatible. Note also that compatible does not mean
that the orbits of the adjoint action of GG; on H; are preserved by f.
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Now we are ready to state the definition of the category GM.

Definition 10.3 (Category GM of G-models). Let GM be a category
where the objects are triples (T, G, H), as described above. A morphism
in GM between (Ty,G1, Hy) and (Tz,Go, Hy) will be a pair of maps
f:Ty — Ty and g : Hi — Hy. Here g is a compatible group morphism
and f is a morphism of graphs, that is an isomorphism onto the image.

We define the category of polytopes Poly.

Definition 10.4 (Category Poly of polytopes). Let Poly be a category
where objects are pairs (P, M), where M is a lattice and P a lattice
polytope, that spans the whole lattice A morphzsm from (Pl,Ml)

(P, ]\//72) s a lattice morphism from M1 to M2 that takes points of Py
to points of Ps.

10.1.1. Construction of the functor F. Our aim is to define a con-
travariant functor F' from the category GM to the category Poly. We
have already done thi/s\on objects; to a tree T" and a group G > H we
associate a pair (P, Mg ) as in the discussion after Definition 5.64.
Let us define the functor F' on morphisms. Suppose that we have
a morphism in GM, that is a pair of morphisms f : 77 — T, and
g: Hy — H,. Let P; C M, be the polytope and the lattice correspond-
ing to the tree T; with the group G, > H;. Let also M; be the lattice
with the basis elements indexed by (e, 0) — cf. Definition 5.64 — where e
is an edge of 7; and o an orbit in H}. The lattice M; contains the lattice
]\//Z. Morphism ¢ gives us a morphism of characters ¢g* : Hy — H{. We
proceed in two steps.

Step 1. The group morphism.

We consider a polytope P associated to the tree T, with the group
G1> H;. Let M’ be the lattice associated to this tree. The basis of M’
is indexed by pairs (e, 0), where e is an edge of T; and o is an orbit in
HY. Using the morphism ¢g* we can define a morphism m : My — M’
by sending a character over an appropriate edge to its image by g*.
Of course the points of P, are mapped to the points of P, because
the condition of summing up to a trivial character is preserved by the
action of the morphism and so are/t\he orlli\ts. This means that we can
restrict m to the morphism m' : My — M’, where M’ is a sublattice
of M’ spanned by points of P. This gives us a morphism in Poly from
(PQ,MQ) to (P M’)

Step 2. The tree morphism.
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Here we forget the coordinates corresponding to edges that are not in
the image. Of course the condition of summing up to a trivial character
around vertices that are in the image is preserved.

Remark 10.5. In the "big" lattice M; our morphism has got always
a form of:

-first summing up coordinates (that correspond to the orbits of char-
acters in the inverse image of a given orbit)

-second forgetting coordinates indexed by pairs (e, 0), where e is an
edge not in the image of the morphism of trees.

However, each time we have to remember about smaller lattices and
the fact/t\hat the image of our polytope may not span the whole "small"
lattice M; (if the morphism ¢* is not surjective).

Next we consider a covariant functor from Poly to the category of
algebras. We associate to a polytope P C M an algebra, that is defined
as a monoid algebra for the submonoid of Z x M, spanned by {1} x P.
The contravariant functor from the category of algebras to the category
of varieties is well known. In the toric case it was described in Section
2. Composing all we obtain a covariant functor from the category GM
to the category of toric varieties.

Remark 10.6. Note that first we associate to a polytope P C M an
algebra, that is defined as an algebra associated to the submonoid of
Z x M, spanned by {1} x P. This is not necessarily a cone, as P does
not have to be normal. Then we associate to this algebra a variety.
This does not have to be a toric variety associated to a polytope in
the sense of [Ful93|, [CLS] — that construction always gives a normal
variety.

10.2. Morphisms of groups and rational maps of varieties. The
motivation for this subsection is the following observation: if we look
at graded algebras (or respectively projective varieties), then the map
of graded algebras obtained from the map of polytopes in general gives
us only a rational map of varieties. However we obtain a morphism for
example if the map of graded algebras is surjective.

This observation allows us to define a functor G from GM to Proj,
where Proj is the category of embedded projective varieties with ra-
tional morphisms. The functor G is a composition of the functor F
from the previous section, a natural functor that associates to a poly-
tope a graded algebra generated in degree one (cf. Remark 10.6) and
a well-known functor that associates to a graded algebra a projective
variety [Har77, p. 76].
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In particular let us consider the abelian case, that is a full subcat-
egory GM® C GM containing all objects for which G = H. Then to
each morphism of groups G; — (G5 we can associate a rational mor-
phism of projective varieties. Note that this is a well defined morphism
of affine cones over the projective varieties. More information on the
abelian case can be found in Section 10.3.

Let us consider a G-model (T}, Gy, Hy). The affine variety associ-
ated to this model can be realized as a subvariety of A®, where s is the
number of vertices of the associated polytope. Notice that the mor-
phism between two G-models that is an identity on trees induces an
equivariant morphism of ambient spaces.

The following description of the morphism between the varieties will
be useful in the following sections. Consider two G-models (7', Gy, H;)
and (T,Gy, Hy). Let f : Hy — Hy be a compatible morphism that,
together with an identity on 7', induces a morphism of G-models. Let
P, and P, be the polytopes associated to corresponding models. As in
Definition 5.64 the polytope F; is contained in the lattice Mg g, with
basis elements indexed by pairs (e, 0) for e an edge of T and o an orbit
of G; action on H. The vertices of P; correspond also to coordinates
of the affine space embedding the affine variety associated to a model.
Note that f* induces a morphism m : Mg ¢, — Mg ,. Each vertex of
P, can be represented by an association of characters from H to edges.
The morphism m is simply an application of f* to the representants.

Proposition 10.7. Consider the setting described above. Let s; be
the number of vertices of P; and let A% be the affine space embedding
the affine variety associated to (T, G;, H;). The morphism of G-models
induces the morphism of affine spaces m : A** — A®2. This is an equi-
variant morphism induced by a restriction of m to positive quadrants.

Precisely, let e} be the coordinate corresponding to a vertex v € Py. We
have e} (m(z)) = e}, (). O

Let us now fix morphisms from (7, G;, H;) to (T, Gy, Hy) that are
identities on trees and are given by compatible group morphisms f; :
H; — Hy. Let P; be the polytope associated to the model (7', G;, H;).
Let Mg, be the lattice with basis elements indexed by vertices of F;.
We obtain a morphism of lattices m : Mg, — [[ Ms,. Let s; be the
dimension of Mg,. Let p; : [[ Ms, — Mg, be the projection to the j-th
factor.

Remark 10.8. The morphism of lattices described above corresponds
to the morphism of ambient spaces [[ A% — A®°. It can be described
in coordinates as follows:
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A coordinate corresponding to a vertex vy € Fy is a product of all
coordinates corresponding to vertices p;(m(vg)) € P;.

10.3. Abelian case. In this section we will establish connections be-
tween morphisms of abelian groups and morphisms of corresponding
varieties. Once again our main aim is application in geometry. We
are building the set up of the next section. That is why we restrict
to special cases. This reduces the complexity of the language but still
gives a geometric insight. Let us fix a tree 7T

Let f : G; — Gy be a morphism of abelian groups. It induces
morphisms of groups of sockets %2 — &%, This gives the following
commutative diagram :

Ms g, — Mg,

I

Ms g, — Mg.q,

Hence the morphism ]\/4\E7G1 — ]\/ZEGQ of character lattices restricts
to cones over polytopes. This gives a morphism of algebras of as-
sociated varieties. The morphism Mgqg, — Mg, restricts to posi-
tive quadrants of both lattices. Hence we get a morphism of ambi-
ent spaces f WL G WL ¢, compatible with morphism of varieties
f+ X(T,Gy) — X(T,G,). This gives a covariant functor from the
category of abelian groups to the category of embedded affine toric va-
rieties. Moreover if f* is injective (resp. surjective) then f’is dominant
(resp. injective). The second assertion is an easy exercise. We also need
the following setting. Suppose that we have morphisms ¢; : G; — G
fori=1,...,m. Just as above this gives us a morphism of embedded
varieties f; : X(T,G;) — X(T,G). Let P be the polytope associated
to X(7,G) and let P; be the polytope associated to X(T,G;). Con-
sider the induced morphism f MEG — HMEG If the product
fix - x fr . G — [[Gr is surjective, then f restricted to the
monoid spanned by P is surjective onto the monoid spanned by [] P;.
However, in general, if the product f; x --- x f* is injective then the
restriction of f to the monoid generated by P does not have to be

injective. If f is injective, than it induces a dominant map from the
product [[ X(T,G;) to X(T,G).

11. APPLICATIONS TO THE 3-KIMURA MODEL, PART 1

Our aim is to prove the Conjecture 7.9 for G = Zy X Zs.
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Conjecture 11.1. The dense torus orbit of the toric variety X (K, 1, ZyX
Zs) 1is the intersection of the dense torus orbits of the varieties X (T, Za X
Zs), where T is any tree with | leaves different from the claw tree.

Note that all dense torus orbits are contained in the dense torus orbit
O of the projective (or affine) ambient space. In the algebraic set O
all the considered orbits are closed subschemes. Hence Conjecture 11.1
can be regarded in a set-theoretic or in a scheme-theoretic version.
Both of them are equivalent. This follows for example from a more
general statement [ES96, Corollary 2.2| and is particularly simple in
toric case. However because the proofs of both versions are basically
the same for G = Zy X Zs we have decided to include both. Moreover
this also gives an idea how the elements of the ideal of X (K1, Zy X Zy)
can be generated by elements of ideals of X (T, Zy x Z5).

The main idea of the proof is to extend the results known for binary
models to the 3-Kimura model. The binary model is very well under-
stood and has a lot of special properties [BWO07|. In particular from
7.10 we know that Conjecture 7.6 holds for G = Zy. As G is abelian we
will be identifying G with G*. In particular, in this subsection we as-
sume that networks and sockets associate to edges group elements, not
characters. This convention does not change anything, but simplifies
the language.

We have got three natural projections f; : Zo X Zo — Zo for 1 =
1,...,3. The map fi; X fo X f3:Zo X Ly — Zy X Zgy X Zs is injective.
Moreover it induces a dominant map from the product of three binary
models onto the 3-Kimura model. This map is the key tool that will
allow us to transfer some of the properties from the binary model to
the 3-Kimura model. Unfortunately the map is not surjective, but just
dominant. We can projectivise the varieties, but then we get a rational
map. It turns out that a combine use of both of the maps allows to
derive the main theorem:.

Let f;: Mgsz,xz, — Mgz, be a morphism of lattices induced by f;.
More precisely a socket that associates to an edge e a group element
g € Zy X 7y is send to a socket that associates to e and element f;(g) €
Zy. Let i : Mgz,xz, — Mgz, X Mgz, X Mgz, be the morphism of
lattices induced by f; X fo X f3. A basis vector indexed by a pair (e, g)
is send to the product of three basis vectors indexed respectively by
pairs (e, f1(g9)), (e, f2(g)) and (e, f3(g)). For sublattices spanned by
basis vectors indexed by a fixed edge the morphism ¢ can be described
in coordinates as:

(a,b,c,d) = (a+c,b+d,a+b,c+d,a+d, b+ c).
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In particular we see that 7 is indeed injective. Let g : Mgz, — Mgz, be
the morphism of lattices that corresponds to the parametrization map
of the binary model — cf. Definition 5.33. Let gy : Mg 7,x2, = Mg 7,x7,
be the morphism of lattices that corresponds to the parametrization
map of the 3-Kimura model.

We have got the following commutative diagram:

gxgxg

M5722 X MS,ZQ X MS,ZQ ]\4}3722 X ]\4}3722 X ME,ZQ

fl*Xf;Xf;T ZT
go

Ms 7, <7, Mg 7,x7,

The following Fact follows from Corollary 6.4.

Fact 11.2. The dimension of the affine 3-Kimura model is equal to
3|E|+1. The dimension of the product of three affine binary models is
equal to 3(|F|+1). The dimension of the projective 3-Kimura model is
equal to 3|E|. The dimension of the product of three projective binary
models is equal to 3|E|. O

It follows that if we consider projective varieties representing the
models, the dominant morphism from the product of three binary mod-
els to the 3-Kimura model described above becomes a rational, gener-
ically finite map. As the map between projective varieties is not a
morphism we will restrict our attention only to dense orbits of the tori.
On these tori orbits all maps are well defined and are represented by
morphism of lattices.

11.1. Maps of dense torus orbits. Let us consider the following
diagram:
(11.1)

gxgxg

]\[5‘22 X ]\/[5722 X ]\/{5722 A““\/[E,Zz X A[E-,Zz X A/[ETZQ

I

Jixfsxf3 Ms oz, X Mgz, X Msoz, ZJ Mg oz, X Mg oz, X Mg oz,
Ms z,x2, 7

.
\

Ms.0.2,x7,

The rectangle on the back is just the previous diagram. The rectangle
in the front is induced from it by taking sublattices — cf. Definition
5.40. On the level of varieties the back is the affine picture, while the
front is the projective one. The left square with lattices of type Mg
corresponds to morphisms of ambient spaces. The square on the right

h —

Mg 0,2,x7,




TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 99

describes the maps between varieties, or parameterizing spaces. The
upper square corresponds to the product of three binary models, while
the bottom square to the 3-Kimura model.

Let us explain /t\he morphism j. It is injective, as it is a restriction
of ©. The lattice Mg is the character lattice of the torus acting on the
projective toric variety representing the model. The morphism j is in-
duced by the rational finite map from the product of three P(X (7, Z>))
to P(X(T,Zy x Zs)). Due to the coordinate system we can identify
dense torus orbits with the tori.

Definition 11.3 (The torus Tx). Let X be any toric variety in an
affine or projective space with a distinguished coordinate system. Sup-
pose that X is embedded equivariantly, as in Section 2. The dense torus
orbit of X will be denoted by Tx C X. Recall that T x consists precisely
of those points of X that have got all coordinates different from 0.

The morphism j of character lattices is induced by the finite mor-
phism from T(p(X(TZQ))p = (TP(X(T7Z2)))3 to TP(X(T,ZQXZQ))‘ Due to the
discussion in the proof of Proposition 8.1 we also know that the mor-
phism of ambient spaces does not depend on the tree, but only on the
number of leaves [. Hence the vertical morphisms of lattices on the left
hand side of Diagram 11.1 are the same for all trees with [ leaves.

11.2. Idea of the proof. The main reason for passing to tori is that
we want to have a well defined dominant finite map. This allows us
to take advantage of toric geometry. For example we know that the
number of points in the fiber of the morphism of tori (TP(X(TZQ)))?’ —
Tp(x(1,2ox22)) 1S equal to the index I; of the image of j in (]/\/[\Eﬁo,h)?’.
For the projective ambient spaces the situation is a little bit different.
The morphism [ : Mgoz,xz, — (Msoz,)? is not injective, so the
corresponding morphism of tori is not surjective. We will show that
the image of f in (Msoz,)? is of finite index, say I. It means that
the corresponding morphism of tori is finite with each fiber having I
elements. Moreover we will show that [, = I;. Hence we get the
diagram:
T

- T

(P(Wg,z,)%) P(WE 7y x7,)

J J

Tex(r,2.))2 — Te(x (1,22 x22))

where the horizontal maps are finite, étale of the same degree.
This means that if we consider the morphism of projective ambient
spaces, then the preimage of Tp(x(1rz,x2,)) 15 precisely Tpx(1,7,)))3-
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Hence any intersection results that hold for the binary model must also
hold for the 3-Kimura model. In particular as Conjecture 7.6 holds for
the binary model we obtain a set-theoretic version of Conjecture 11.1
for the 3-Kimura model. By easy algebraic arguments we will also
prove Conjecture 11.1 scheme-theoretically for 3-Kimura model.

11.3. Proof. Our first step will be to understand the morphism of
projective ambient spaces (P(Wgz,))? --+ P(Wgz,x2,). This is a well
defined map on dense tori orbits. The map of tori corresponds to
morphism of lattices f : Msoz,xz, — (Mso2z,)®. This morphisms
depend only on the number of leaves, not on the tree.

By the definition we can embed the group of sockets & in G'. We can
also view the group & as a Z-module. This gives us group morphisms
Mg — & — G'. The element of the basis of Mg indexed by a socket s

is mapped to the socket s.

Example 11.4 (The case of the binary model and trivalent claw tree).

Let us consider the tree K3, and the group Z,. We have got 4 sockets:
(0,0,0),(1,1,0),(1,0,1),(0,1,1). By coordinate-wise action they form
a subgroup of (Z,)?. The lattice Mg is freely generated by four basis
vectors e 0,0, €(1,1,0), €(1,0,1)s €(0,1,1)- Lhe morphism Mg — & maps
€(ap,e) to (a,b, c). Of course ke(qp,c) is mapped to k(a, b, ¢). For example
3eq,1,0) is mapped to (1,1,0) 4+ (1,1,0) + (1,1,0) = (1,1,0).

Lemma 11.5. We have an ezact sequence of groups:
MS,O,ZQXZQ — (]\45',0722):3 — (ZQ)Z'

The first morphism is given by f. The second is the sum of three
morphisms Mgz, — (Z2)" described above’.

Proof. Tt is clear that this is a complex. Let (});>¢ be the basis of
M? corresponding to sockets. Let s; be the socket corresponding to
b;. Moreover suppose that bf, corresponds to the trivial socket, that
is the neutral element of &. Let b; be the basis of Mgz, defined
as by = b — by for i > 0. Note that an element (b}, 0},b;) is in the
image of f; x f5 x fi if and only if the corresponding three sockets
Si, Sj, s, sum up to the neutral element of &. Hence the elements
of the form (b;,b;,0) = (b}, 0, b)) — (bp, bj), b)) are in the image of f.
We see that (2b;,0,0) = (b, b;,0) + (b;,0,b;) — (0,b;,0;) is also in the
image. Furthermore for any two sockets s; and s; there exists a socket
sk = 8; + s; such that (b;,b;,by) is in the image of f. This reduces
any element from (Mggz,)? to an element (b;,0,0) modulo the image

In this case the second operation is often called XOR.
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of f or to 0. Hence any element is in the image if the XOR of all its
coordinates is zero. U

Definition 11.6 (The kernel K). For any tree T let KT = K{ x KI x
KT c Ms oz, X Mgz, X Mgz, be the restriction of the kernel of the
morphism g X g X g to Msoz, X Msoz, X Mg oz,-

Each character in K™ is a character of (T}, g2, )%, that is the trivial
E

character when restricted to the product (Tp(x(z,))*. Each such char-
acter is a triple of characters of TP(W?)' Each character of the triple is
a quotient of monomials % of the same degree on the projective space
]P’(W?). The polynomials m; — mgy span® the ideal of the toric variety
P(X(Zs)). We want to view characters as functions. Hence we restrict
our attention to (TP(W?))?)' In the algebra of this torus the ideal of

(Tp(x(z5)))” is generated by elements k — 1, where k € K.

Definition 11.7 (The kernel D). For any tree T let DT be the kernel
of the map h defined on Diagram 11.1.

The elements of D represent characters trivial on the projective 3-
Kimura variety. In the setting described at the end of Subsection 7.2
we want to prove that sublattices DT for different trees 7" with [ leaves
generate the sublattice DXt1. The idea is to push the lattices D to
(Mso.z,)* using the morphism f. Next we use the results on binary
models to obtain the generation for f(D). Using properties of the
image of f we are able to conclude the generation in Mg 7,xz,. The
following lemma enables us to restrict to the image of f instead of
regarding whole lattice (Mg z,).

Lemma 11.8. For any tree T' the kernel KT is a sublattice of the image
of f.

Proof. Tt is enough to show that K7 x {0} x {0} C Im f. Suppose that
m =) .ab € KI‘F, where each b; is as in the proof of Lemma 11.5.
Hence b; = (¢ —e, ..., g/ —e), where e is the neutral element of Z, and
gj- € Zs are elements forming a socket. We know that g(m) = 0. In
particular the coordinates of Mg indexed by leaves are equal to zero.
Let us fix k& that is a number of a leaf 1 < k < [. Let us look at all
coordinates indexed by pairs (k,q) where ¢ € Z,. The restriction of
Mp to these coordinates is a free abelian group spanned by elements
of Zy. Hence ), a;(gx —e) = 0 in the free abelian group generated
formally by elements of Z,. Hence, a fortiori, ) . a;(gx — €) = e where

8They do not only generate the ideal, but even span it as the vector space.
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now the sum is taken in Z,. As the action in & is coordinate-wise we
see that the image of m in &, and hence in Z., is the neutral element.
Using Lemma 11.5 we see that m € Im f. O

Proposition 11.9. The index of the image of [ in (Mgpz,)* is equal
to the index of the image of j in (Mpgoz,)>.

Proof. This is a consequence of Lemma 11.8. U
Corollary 11.10. Conjecture 11.1 holds set-theoretically.

Proof. The index of the image of f equals the degree of the finite map
of tori. In particular we are in the situation of Diagram 11.2. The
corollary follows from the discussion at the beginning of Section 11.2.

Now we will prove Conjecture 11.1 scheme-theoretically. Let Ty =
K;,. We consider trees T; such that the ideal of Tp(x(7,z,)) is the sum
of the ideals Tp(x(1,z,))- Let KT be the kernel of g x g x g for the
tree T;. Let D*i be the kernel of h for the tree T;. We know from
Proposition 7.10 that the lattices K¢ for i > 0 span K70,

Theorem 11.11. The lattices DT for i > 0 span D. Conjecture
11.1 holds scheme theoretically.

Proof. Let a € DT. We know that f(a) € KZTS, so f(a) = > k;, where
k; € KZT;'. Using Lemma 11.8 we can find k! € D% such that f(k]) = k.
This means that a — ) k! is in the kernel of f. In particular, as j is
injective, a — >_ k! belongs to every D”i, hence we obtain the desired
decomposition. O

Remark 11.12. From Proposition 7.10 it is enough to take two (par-
ticular) different i > 0 to span DT, as it was in the case of binary
model.

11.4. Applications to phylogenetics. In this section we present
a few applications. The basic result that we use is due to Marta
Casanellas and Jestis Fernandez-Sanchez [CFS08|. It states that all
points important for biologists are contained in the dense torus orbit
of X(T,Zy x Zs). Thus, following [CFS08|, we call points of the dense
torus orbit biologically meaningful. In Section 11 we gave a precise
description of this orbit for any tree. This is sufficient for biologists.

People dealing with applications are usually interested in trivalent
trees. Let us motivate the use of other trees. The first, obvious reason
is that they can appear (at least hypothetically) as right models of evo-
lution. This however is a degenerate situation that is often neglected.
The next subsection presents a different reason.
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11.4.1. Identifiability. Dealing with applications we are given a point
P in the space of all possible probabilities 1W,. The first question is for
which trees this point can be realized. More precisely for which trees T'
we have an inclusion P € X (T, Zy X Zs). We are interested in knowing
if this is only one tree T" or there are several possibilities. This is a first
part of the identifiability problem. Hence Conjecture 7.6 is a question
about the locus of points for which the identifiability problem cannot
be resolved at all. Of course a generic point that belongs to any of the
varieties belongs to exactly one X (7T, Zy X Zy) with T trivalent. Much
more is known about the identifiability of different models. For the
precise results the reader is advised to look in [AR06]| or [APRS11] and
the references therein.

In particular we see that points that belong to some X (T, Zy X Zs)
where T' is not trivalent cannot identify the tree topology. Hence the
question about the locus of these points, or equivalently about the poly-
nomials defining such varieties may give some results for trivalent trees.
However, as situation in Section 8 shows, the phylogenetic invariants
of two varieties X (T, Z,) for two different trees, do not generate the
ideal of the variety associated to their degeneration.

The second, but equally important question about the identifiability
is to give the description of the fiber of the parametrization map of the
model ¢)"1(P). The biologist aim at distinguishing one point in the
fiber. This would enable to identify not only the tree topology, but also
corresponding probabilities of mutation. The algebraic setting allows
us to give a description of this fiber. We assume that P is biologically
meaningful, that is is contained in the dense torus orbit. Equivalently
all coordinates of P after the Fourier transform are different from zero.
We prefer to work up to multiplicity, that is regard the projectivization
of ¢/ denoted by ¢p. The fiber ¢/5'(P) is contained in the dense torus
orbit of [[P(W,). As this parameter space is of the same dimension as
the image, we know that ¢ is a generically finite map. Moreover when
restricted to dense torus orbits it is étale and finite. Hence each fiber
is finite and contains the same number of points, independent from P.
This number is the index of lattice Mg in a saturated sublattice of M5.
Of course we do not claim that all the points in the fiber have got a
probabilistic meaning. We just prove that from the algebraic point of
view there is always a fixed, finite number of possible candidates for
transition matrices.

We will now give a precise description of a general fiber for a gen-
eral group-based model corresponding to an abelian group H. Due to
Corollary 6.4 we know that the map of projective tori parameterizing
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the model is a finite map. By dualizing the exact sequence in Corollary
6.7 we see that the kernel has got a group structure isomorphic to HM!.
Due to |[CFS08| the only biologically meaningful points are contained
in the dense torus orbit.

Corollary 11.13. Let T be any tree and H any abelian group. Let
P(X) be the projective variety associated to the model. Let x € P(X)
be a biologically meaningful point. Up to multiplication by a constant
there are exactly ]HUM parameters in the fiber of x. In other words
there are exactly |H|N! possible transition matrices. t

Note that we do not use further restrictions on the parameters of
transition matrices. For example we do not assume that the param-
eters are real. This condition for sure further decreases the number
of possible transition matrices. However we see that when we consider
complex parameters the number of possible parameters is already finite
and moreover independent from the considered point.

11.4.2. Phylogenetic invariants. The main theorem gives an inductive
way of obtaining phylogenetic invariants of any tree. It is an open prob-
lem if these invariants generate the whole ideal. It is proved however
that they give a description of all biologically meaningful points in case
of the 3-Kimura model. The method is very simple. Suppose that we
know the phylogenetic invariants for all trees with vertices of degree
less or equal to d. Due to the results of [SS05] it is enough to describe
the phylogenetic invariants for the claw tree K44 ;. For 3-Kimura, to
obtain the description of the dense torus orbit we just take the sum
of two ideals — cf. Remark 11.12. They are both associated to trees
with the same topology. The tree has got two inner vertices v; and vy
of degrees 3 and d respectively. The difference between the ideals is
a consequence of different labelling of leaves. For one tree the leaves
adjacent to vy are labeled by 1 and 2. For the second tree they are
labeled 1 and 3. Notice that in fact we have to compute just one ideal.
The second one can be obtained by permuting the variables.

12. APPLICATIONS TO THE 3-KIMURA MODEL, PART 2

The aim of this subsection is to further investigate Conjecture 7.1 for
the 3-Kimura model. Let [, be the ideal of the variety X (T, Zs x Zs)
where T is a claw tree with n leaves. Let I, be the subideal of I,
generated in degree 4. The conjecture of Sturmfels and Sullivant states
that I, = I, for any n. In this subsection we will prove that I, and
I' define the same projective scheme. This is equivalent to the fact
that their saturations are equal [Har77, Exercise 5.10 b)|. In particular
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it follows that they define the same affine set. One concludes that in
order to check if any point belongs to the variety it is enough to consider
phylogenetic invariants of degree four. Due to [SS05, Theorem 23| the
result will follow for any tree. Let us state the main theorem of this
subsection.

Theorem 12.1. Consider any tree T' and the 3-Kimura model. The
tdeal of the variety associated to it and the subideal generated by poly-
nomials of degree at most four define the same projective scheme.

We hope that the method presented in this section can be applied
to other problems of the type "prove that a toric projective scheme can
be defined by an ideal generated in degree d". In general let [ be an
ideal of a projective toric variety. Let I’ be the subideal generated in
degree d. The aim is to prove that the saturation of I’ with respect to
the irrelevant ideal equals I.

Suppose that the variety is given by a polytope P, with points corre-
sponding to coordinates of the ambient projective space — as in Section
2. Proving that the saturation of I’ equals I is equivalent to proving
that I” and I are equal in each localization with respect to any coordi-
nate, represented by a point () € P. Thus we have to prove that any
generator of I multiplied by a sufficiently high power of the variable
corresponding to () belongs to I'.

Let us translate this condition to combinatorial language. The gen-
erators of I correspond to relations between points of P x {1}. Let
us fix a relation > A, = > Bj, where A;,B; € P x {1}. Multi-
plying the corresponding element of the ideal by the variable corre-
sponding to @ is equivalent to adding () to both sides of the relation.
Thus we have to prove that the binomial corresponding to the relation
YA +mQ =) B; +mQ is generated by binomials from I of degree
at most d for m sufficiently large.

A binomial corresponding to a relation > R; = > S; between points
of a polytope is generated in a degree d if and only if one can transform
Y R; to Y S; using a sequence of simple steps. In each single trans-
formation one can replace points Ry, ..., Ry for K < d by R},..., R},
if they satisfy the relation Zle R; = Zle R;. In such a case we say
that the relation is generated in degree d.

The proof scheme is very simple:

(i) Using degree d relations reduce A;, B; to some simple, special
points of Px{1} contained in a subset Ly C P.

(ii) Show that any relation between the points of L is generated
in degree d.
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In general any of this two points can be very difficult.

Remark 12.2. It is well known that the projective toric variety de-
fined by a polytope P is covered by affine subsets given by localizations
by coordinates corresponding to vertices. Thus one can be tempted to
prove that I = I’ only in the localizations by vertices. Note however
that in general, we do not know if the scheme defined by I’ is also cov-
ered by localizations by coordinates corresponding to vertices. Indeed,
I’ and I may be different on the set-theoretical level. For example if
Proj I’ contains a point that is zero on the coordinates corresponding
to vertices and nonzero on some other coordinates, then such a point
will not belong to any localization with respect to vertices. However
if rad I’ = I, then of course it is enough to consider localizations with
respect to vertices.

As our polytopes have only vertices, the problem described in Re-
mark 12.2 does not concern us.

Remark 12.3. We have got the following equivalences for a toric ideal
I given by a polytope P x {1}.

e All relations between vertices of Px {1} are generated in degree
d < the ideal [ is generated in degree d.

e For any point ) € P x {1} and any relation there is an integer
m such that after adding m@) to both sides of the relation, it
is generated in degree d < the projective scheme defined by [
can be defined by an ideal generated in degree d.

e For any relation there are’ points Q; € P x {1} such that after
adding > @Q; to both sides, it is generated in degree d < the
dense torus orbit of the variety is defined by the ideal generated
in degree d in the algebra of the ambient torus.

The whole subsection is devoted to the proof of Theorem 12.1. the
proof is involved but completely elementary. The first observation is
that by Proposition 6.8 the group of networks acts on the variety, hence
on the ideals I,, and I/. The action is transitive on the points of the
polytope, as they correspond to elements of the group. Using this
action we can reduce to the case where the point () of the polytope
represents the coordinate corresponding to the trivial network, that is
a network assigning neutral elements to all edges. Due to Fact 5.71 we
can consider only claw trees. Let us index the edges of a claw tree K, ;
with numbers 1,...,n. We will identify a network with an n-tuple of
group elements summing up to zero. The sum of such n-tuples will be

9not necessarily different
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a coordinatewise sum, where each entry is treated as an element of the
free abelian group generated by elements of Zy x Z,. Each network
represents a vertex of a polytope P C Mpg. The addition described
above is the addition in this lattice.

Example 12.4. For n = 4 we can add in the lattice Mg:
(0,(1,0)+(1,1),2-(0,1), —=3-(0,0))+((0,1), (1,0)—(1,1), (1,0), (0,0))
=((0,1),2-(1,0),2-(0,1) + (1,0),—2-(0,0)).

The trivial network is ((0,0), (0,0), (0,0),(0,0)).

Definition 12.5 (Support of a network). Let n be any network. The
set of indices of edges to which n associates a nonneutral element is
called the support of n.

Definition 12.6 (Pair, triple). We say that a network is a pair if and
only if the cardinality of the support is equal to two. We say that a
network is a triple if and only if the cardinality of the support is equal
to three.

By nt we denote the neutral element in the group of networks.

Lemma 12.7. For any network s, for m sufficiently large, s + m - nt
can be reduced using degree two relations to a sum of networks that
either:

1) assign the same nontrivial element to two edges — pairs
2) assign three different nontrivial elements to three edges — triples

and the neutral element to all other edges.

Proof. The proof is inductive on the size of the support. Suppose the
support of s is of cardinality at least four. We can choose a strict
subset S of the support such that the sum of group elements ) _ ¢ s(e)
is the neutral element. Consider the networks s’ and s” that agree
with s respectively on the set S and its complement and assign to all
the other edges the neutral element. We have s + nt = s’ + s”, which
finishes the proof. 0

Example 12.8. Consider the tree K, ;.
((1,0),(0,1),(0,1),(1,0)) + ((0,0), (0,0), (0,0), (0,0))
= ((1,0),(0,0), (0,0), (1,0)) + ((0,0), (0,1), (0, 1), (0, 0)).

We see that we can assume that f represents a relation only between
pairs and triples. This completes the first step of the method (*) pre-
sented at the beginning of the section. The set Ly consists of pairs and
triples.
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Let us fix any relation Y n; = > nf, where n; and n} are networks
that are either pairs or triples. Our aim is to transform » | n; to > n!in
a series of steps, each time replacing at most four n; by networks with
the same sum!’. We assume that among n, there are more or the same
number of triples as among n,. We first try to reduce the relation, so
that consequently:

(i) Among n; there are as few triples as possible,
(ii) Among n! there are as few triples as possible,
(iii) The degree of the relation is as small as possible.

More precisely let ¢ and ¢’ be the number of triples among respectively
n; and n,. Let d be the degree of the relation. Our proof will be
inductive on (¢,t',d) with lexicographic order.

To prove Theorem 12.1 we consider separately three cases depending
on the number of triples among n;. The cases are:

a) there are no triples,

b) there is exactly one triple,

c) there are at least two triples.

We say that a family of networks agrees on an index j if they all
associate the same element to j and j belongs to their support. We
will denote by ¢, go and g3 the three nontrivial elements of Zy x Zs.
A triple that associates g; to index a, g» to index b and g3 to index ¢
is denoted by (a,b,c). A pair that associates an element g; to indices
d and e will be denoted by (d,e),,. We say that g; is contained in a
network if there exists an index j, such that the network associates
g; to j. We believe that the following proofs are impossible to follow
without a piece of paper. We strongly encourage the reader to note
what networks appear in both sides of the relation at each step of the
proof.

12.1. The case with no triples. First note that there are no triples
among n.. Without loss of generality we may assume that n; is a pair
equal to (a,b),,. Hence there exists n}, say n/, that is (b, ¢),, for some
index c¢. If ¢ = a we can reduce this pair, hence we assume ¢ # a.
There exists a network, say no that is (¢, d),,. If d = b we can reduce
this pair. We consider two other cases:

1) d # a. Then we use the degree two relation (a,b),, + (¢, d), =
(a,d)g, + (b, ¢)g and we can reduce (b, c),,.

2) d = a. Then there is a network, say n} given by (a,e),,. If e =0
or e = ¢ we can reduce this pair. In the other cases we use the relation
(a,e)g, + (b,¢)g, = (a,b),, + (e,¢)q and we reduce (a,b),,.

10We are also allowed to add the trivial network to both sides.
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Notice that in this case we have only used degree two relations.
12.2. The case with one triple. Let n; be the only triple among n;.
Lemma 12.9. There is exactly one triple among nj.

Proof. Due to the assumption that there are less triples among n than
among n,; we know that if there is a triple among n/ then it is unique.
Suppose that there are no triples among n;. Then the element ¢
appears among n, an even number of times. Indeed each pair contains
g1 twice or does not contain it. As the sum of n; equals the sum of n;
also the number of times g; appears among n; must be even. This is
impossible as n; contains ¢; just once and all pairs contain g, twice or
do not contain it at all. 0

Due to the previous lemma we may assume that n} is the only triple
among n;. Let ny = (1,2,3).

12.2.1. Case: The triples do not agree on any element of the support.
We want to reduce to the case where n) agrees with n; on an index
that belongs to the support of both. Suppose that this is not the case.

The reduction in this case will have two steps. First, if n; and n
have the same support we will use the relations to move the supports,
reduce the triples or decrease the degree. Next we will show how to
deal with the case when the supports are not the same.

1) First step — suppose that {1,2,3} is also the support of n}.

Remember that due to the assumption 12.2.1 the triples n; and n
do not agree on any element from their support. As n{ has support
{1,2,3} without loss of generality we may assume that n} = (2,3,1).
Hence there must be a pair (2, a),, among n; and (1,b),, among n.. If
a =1 and b = 2 then both pairs are the same and can be reduced. As
both cases are symmetric we can assume that a # 1.

If a # 3 we can use the relation (2, a), +(1,2,3) = (a,2,3)+(2,1),,.
This reduces to the case with different supports. We are left with the
case a = 3. There must be a pair (3, z),, among n}. If z # 1 we can
use the relation (3, z),, +n} = (2,3,1) + (2, 3),,. This would enable to
reduce the (2, 3),, pair and decrease the degree. So we can assume that
z = 1. So far we have shown that there must be pairs (2,3),, among
n; and (3,1),, among n}''. By the same reasoning for g, and g3 we see
that we can use the following relation:

(17 2, 3)+(27 3)91+(17 3)g2+(17 2)93 = (27 37 1)+(27 3)93+(17 3)91+(17 2)92'

UNotice that we have made a symmetry assumption a # 1. The symmetric
assumption would be b # 2. However as the result we got was symmetric, also for
b # 2 we prove the existence of the same pairs.
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Notice that this is a degree four relation. It enables us to reduce triples.
2) Second step — the triples n; and n} have different supports.
Once again let (1,2,3) = n; and let (a,b,¢) = n}. We may assume

that a is not in the support of n;. We see that there must be a pair

(a, f),, among n;. If f # 1 we can use a relation (a, f),, +n1 =

(a,2,3) 4+ (f,1)g,. This reduces to the case when the triples agree on

a, hence we assume that f = 1. Hence there must be a pair (g, 1),,

among n,. If ¢ = a we can reduce this pair, so we assume g # a.

Notice that there must be a pair (g, h), among n,. If h # a, then we

can use relation (1,a), + (9,h)y = (9,1), + (h,a), and reduce the

pair (g,1),,. So we can assume h = a. Then there must be a pair

(a,1),, among n,. If i =1 then we can reduce it. Otherwise we can use

the relation (g,1),, + (a,1)y, = (9,a)q, + (1,7),, and reduce the pair

(g9,a)g, -

12.2.2. Case: the triples agree on exactly one element in their support.
So far we reduced to the case where triples agree on at least one element,
say 1, in their common support. Now we want to make a further
reduction, so that the triples agree on two elements that are in their
supports. Assume this is not the case.

As before let ny = (1,2,3) and n} = (1,b,¢). We consider three
cases.

1) b+#3.

There must be a pair (b,d),, among n;. If d # 2 then we can apply
the relation (b,d)y, +mn1 = (1,b,3) + (d, 2)4,. This reduces to the case
where triples agree on two elements. So we assume d = 2. There
must be a pair (2,e),, among n;. Hence there must also be a pair
(e, f)g, among n;. If f # b we can use a relation (e, f),, + (2,0),, =
(€,2)g, + (f, D)y, and reduce (e,2),,. For f = b we must have a pair
(b, g)g, among nj. If g =2 or g = e then this pair can be reduced. In
the other case we use the relation (e, 2),, + (b,9)4 = (€,9)4, + (b,2)4,
and reduce (b,2),,.

2) ¢ # 2.

This case is analogous to 1).

3)b=3and c = 2.

Lemma 12.10. If there is a pair (p,q),, among n;, such that p,q # 2
then we may assume that it is equal to (1,3).

Proof. Suppose that p # 1,3 and ¢ # 2. We apply a relation (p, q),, +
n1 = (1,p,3) + (¢.2),, and reduce to case 1) b # 2. O

Analogously if there is a pair (p,q),, among n}, such that p,q # 3
then this pair equals (1,2),,.
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Notice that there must be a pair (3, d),, among n; and a pair (2, e)g,
among n;. From Lemma 12.10 d equals 2 or 1 and e equals 3 or 1. We
will consider subcases.

3.1) Suppose that d = 2.

If e = 3 then we can make a reduction of pairs. If e = 1 we must
have a pair (1, f),, among n;. If f =2 we make a reduction, hence we
assume f = 3. This means that there must be a pair (3,g),, among

!/

n;. If g =2 or g =1 we can make a reduction. Otherwise we apply

the relation (1,2),, + (3,9)g = (1,3)4, + (2,9),, and reduce the pair
(17 3)92'

3.2) Suppose that e = 3.

This case is similar to 3.1).

3.3) Suppose that d =1 and e = 1.

As this is the only case left we may repeat the same reasoning for
gs. In particular, we must have a pair (1,2),, among n,. We see that
we can reduce the triples by applying the following relation:

(17 27 3) —"_ (17 3)92 + (172)93 - (17 37 2) —"_ (17 2)92 + (]‘73)93'

This is a degree three relation.

12.2.3. Case: the triples agree on at least two elements in their support.
So far we reduced to the case where triples agree on two elements, say
1 and 2, that are in their support. Suppose that n; = (1,2,3) and
n} = (1,2,¢). Of course if ¢ = 3 we can make a reduction. In other
case we must have a pair (¢, d),, among n,;. If d # 3 then we use the
relation (¢, d)g, + (1,2,3) = (1,2,¢) + (3,d),, and reduce the triples.
Hence d = 3. Analogously there must be a pair (3, ¢),, among n;, hence
we can reduce this pair.

12.3. The case with at least two triples. We suppose that there
are at least two triples among n;.

Lemma 12.11. If there are two triples ny, ny among n; that do not
agree on any element of their supports then we can make a reduction.
Thus we can assume that any two triples among n; agree on at least
one index.

Proof. The assumptions are equivalent to n; = (a,b,c), ny = (d, e, f)
with a # d, b # e, ¢ # f. We apply the relation n; + ny + nt =
(a,d)g, + (b,e)g, + (¢, f)g, that reduces the number of triples. O

Lemma 12.12. If there is no index on which all triples from n; agree
then we can make a reduction.



112 MATEUSZ MICHALEK

Proof. Suppose there is no index on which all n; agree. We may con-
sider only two cases due to Lemma 12.11.

1) Suppose that any two triples from n; agree on at least two ele-
ments.

Consider any triple ny = (1,2,3). Due to the fact that not all triples
from n; associate g; to 1 there is a triple (a, 2, 3) with a # 1 among n,.
There also must be a triple that does not associate g, to 2. It cannot
agree both with (1,2,3) and (a,2,3) on two indices.

2) There exist two triples that agree only on one index.

Let ny = (1,2,3) and ny = (1,b,¢) with b # 2 and ¢ # 3. Due to the
case assumption there is a triple ng = (d, e, f) with d # 1. Remember
that any two triples have to agree on at least one element due to Lemma
12.11. Hence without loss of generality we can assume e = b and f = 3.
We can apply the relation:

ny +ng +ns+nt = (d, 1), +(2,0),, + (3,¢)4 + (1,0,3),
that reduces the number of triples. O

Due to the previous lemma we may assume that there exists an inder,
say 1, such that all triples among n; associate to it the same nonneutral
element, say g;.

Definition 12.13 (k). Let k be the number of indices on which all
triples among n; agree. We know that 1 < k < 3.

We proceed inductively on k, as for £ = 0 we already know how to
reduce the relation. Hence from now on decreasing k is also a reduction.

Lemma 12.14. Suppose that all triples from n; associate g; to an index
I. If there is a pair (z,y)y, among n; with | # x,y then either {l,x,y}
1s the support of all triples among n; or we can make a reduction.

Proof. To simplify the language assume g; = ¢g; and [ = 1. Suppose
that there is a triple n; = (1,b,¢) with the support different from
{1,2z,y}. We can assume x # b,c. We apply the relation ny+(z,y),, =
(x,b,¢)+ (1,y), what reduces k. O

Lemma 12.15. Suppose that all triples from n; associate g; to an index
I. If all pairs (z,y),, among n; have [ in the support then we can reduce
all such pairs.

Proof. Let t be the number of triples among n;. Let p be the number
of g; pairs among n;. Let ¢} and ¢, be the number of triples in n;
that respectively assign or do not assign g; to [. Let p} and p), be the
number of g; pairs among n; that respectively have or do not have [
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in the support. We know that ¢ > ¢} + t,,. Comparing the number of
times g; appears in n; and n; we get:

t+2p =1, +th + 200, + ph).
Comparing the number of times g; appears on index [ we get:
t+p=1t,+p].

This forces t, = p, = 0, t =t} and p = p}. Hence all g; pairs and
triples among n, and n; must assign g; to [. Hence the multisets of
pairs must be the same for n; and n/. U

Lemma 12.16. If there are g1 pairs among n;, then we can make a
reduction.

Proof. We will prove that there are no pairs (a,b),, among n; that do
not have 1 in the support. Due to Lemma 12.15 this will finish the
proof. Suppose that there is a pair (a,b),, among n; with a,b # 1.
Due to Lemma 12.14 all the triples among n; must have the support
{1,a,b}. So either k =1 or k = 3. If k = 1 we can apply the relation

(1,a,0) + (1,b,a) + (a, b)g1 +nt = (1, @)gl + (1, b)gl + (a, b)gz + (a, 6)93'

This reduces the number of triples. Thus we can assume that all triples
among n; are equal to (1,a,b).

Claim: Consider any pair (c,d),, among n;. We can assume that its
support is contained in {1, a,b}.

Proof of the Claim. Suppose this is not the case, that is ¢ & {1, a, b}.
Due to Lemma 12.14 we can assume d = a.

1) Suppose that there is a go pair among n; that does not contain a
in the support.

It must be equal to (1,b),, due to Lemma 12.14. We can apply
the relation (1,b),, + (a,c¢)g = (¢,1)4, + (a,b),,. Applying once again
Lemma 12.14 to the pair (¢, 1),, we can make a reduction.

2) All g, pairs among n; contain a in the support.

Due to Lemma 12.15 we can make a reduction. U

Thus the support of all g, pairs among n; is contained in {1, a, b}.
The same holds for g; and g5 pairs. Thus all networks among n; have
support contained in {1,a,b}. Hence the same must hold for n,. So
our relation is a relation only on three indices. It is well known that
the ideal for a tree with three edges is generated in degree 4, so in
particular the considered relation is generated in degree 4. U

Corollary 12.17. If all triples among n; associate g; to an index I,
then there are no g; pairs among n;. Consequently there are no g;
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pairs among n;, and all triples among n) associate g; to l. Moreover the
number of triples among n; equals the number of triples among nj;. [

In conclusion we reduced to the case were there are no g; pairs neither
among n; nor n,. Moreover, there is the same number of triples among
n; and n; and they all associate g; to 1.

Lemma 12.18. If all the triples among n; and n, have support in
{1,2,3} then either k = 3 or we can reduce a triple.

Proof. In this case k = 1 or k = 3. If £ = 1 then among n; there is a
triple (1,2,3) and (1, 3,2). One of this triples can be reduced. O

12.3.1. Case: k = 1. We first consider the most difficult case k =
1. As always let ny = (1,2,3) and n} = (1,b,¢). As the proof is
quite complicated we decided to include the tree that describes most
important cases. While reading the proof we encourage the reader to
follow at which node we are. The proof is "depth-first, left-first".

/ k=1 \
b=2 \\ci’)any triples agree on exactly one index
no (3,1), (¢, w) (3,0)gs (¢ w)g,

)o: (1,¢,9) (1%729) (3,0)g

\

(2,9)g, (1,2,2)

We start with the left node in the second row — assume b = 2.

We move to the most left node in the third row — suppose that there
is no g3 pair among n; that has got ¢ in the support and, symmetrically,
there is no g3 pair among n/ that has got 3 in the support. There must
be a triple (1,e,¢) among n;. If e # 3 then we apply the relation
(1,2,3) + (1,e,¢) = (1,2,¢) + (1,e,3) and reduce the triple (1,2, ¢).
We have e = 3. Analogously among n/ there must be a triple (1, ¢, 3).
Hence there must be either a pair (¢, f)4, or a triple (1, ¢, g) among n,.

We continue to the most left node in the fourth row — suppose that
there is a pair (c, f),,. If f # 2 we apply the relation (1,2, 3)+(c, f)g, =
(1,¢,3) + (f,2),, and reduce the triple (1,¢,3). If f =2 we apply the
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relation (1,3,¢) + (¢,2)y, = (1,2,¢) + (3,¢)y, and reduce the triple
(1,2,¢).

Hence we can assume that there is a triple (1, ¢, g) among n; — second
node in the fourth row. If g # 2 then we apply the relation (1, ¢, g) +
(1,2,3) = (1,2,9) + (1,¢,3) and reduce the triple (1,¢,3). For g = 2
we apply the relation (1,2,3)+(1,3,¢)+(1,¢,2) = (1,2,¢) +(1,3,2) +
(1,¢,3) and reduce the triple (1,2, ¢).

We continue to the second node in the third row. We assume that
there is a pair (3,1),, among n. If | # ¢ we apply the relation (1,2, ¢)+
(3,0)g5 = (1,2,3) + (¢, 1)g, and reduce the triple (1,2,3). If there was
a pair (¢, m),, among n; then analogously we would have m = 3 and
we would be able to reduce this pair. So there must be a triple (1,n, c)
among n;. If n # 3 then we apply the relation (1,2,3) + (1,n,¢) =
(1,n,3) + (1,2,¢) and reduce the triple (1,2,¢). So we assume ny =
(1,3,c¢). Hence there is either a pair (3,0),, or a triple (1,3, p) among

We move to the third node in the fourth row — suppose that there
is a triple (1,3, p) among n’. If p # 2 we apply the relation (1,2, ¢) +
(1,3,p) = (1,2,p) + (1,3, ¢) and we reduce (1,3,¢). So we have p = 2.
There is either a pair (2, ¢q),, or a triple (1, z,2) among n;.

Consider the first node in the fifth row — suppose that there is a pair
(2,q),4, among n;. If ¢ # c then we apply the relation (1, 3, ¢)+(2,q), =
(1,3,2) + (¢, q) gy and reduce (1,3,2). If ¢ = ¢ we apply the relation
(1,2,3) + (2,¢)g, = (1,2,¢) + (2, 3),, and reduce the triple (1,2, c).

So we can move to the second node in the fifth row — assume that
there is a triple (1,x,2) among n;. If x # ¢ we apply the relation
(1,3,¢)+ (1,2,2) = (1,x,¢) 4+ (1, 3,2) and reduce the triple (1,3,2). If
x = ¢ we apply the relation (1,2,3) + (1,3,¢) + (1,¢,2) = (1,2,¢) +
(1,3,2) + (1,¢,3) and reduce the triple (1,2, ¢).

We pass to the fourth node in the fourth row — we assume that there
is a pair (3, 0),, and there is no triple (1,3, p) among n/. If o # 2 then
we apply the relation (1,2,¢) + (3,0),, = (1,3,¢) + (2, 0),, and reduce
(1,3,¢). So there is a pair (2, 3),, among n,. Suppose that this pair
appears r > 0 times among n,. Note that there are no pairs (2,s)g,
among n;. Indeed suppose that there is such a pair. If s # 3 then
we apply the relation (1,3,¢) + (2,s), = (1,2,¢) 4+ (3, s),, and reduce
the triple (1,2,¢). If s = 3 we reduce the pair (2,3),,. Hence there
must be at least r + 1 triples of the type (1,2,¢) among n;. If there
is a triple with ¢ # 3 then we apply the relation (1,3,¢) + (1,2,t) =
(1,3,t) + (1,2, ¢) and reduce the triple (1,2, ¢). Hence we have got at
least 7 4 1 triples (1,2,3) among n;. Notice that there are no triples
of the type (1,y,3) among n;. Indeed, in such a case we could apply
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the relation (1,v,3) + (2,3),, = (1,2,3) + (v, 3),, and reduce (1,2, 3).
Hence there must be at least r + 1 pairs of the type (3, u),, among n/.
If u # ¢ then we apply the relation (1,2, ¢)+(3,u)g, = (1,2,3)+ (¢, 1),
and reduce the triple (1,2, 3). Hence we have at least r+1 pairs (3, ¢)g,
among n;. Note that there are no pairs of the type (c,v),, among n,.
Indeed if v = 3 we could reduce this pair. If v # 3 then we apply
the relation (1,2,3) 4 (¢, v), = (1,2,¢) + (3,v)4, and reduce the triple
(1,2,¢). Hence we must have at least r 4+ 1 triples of the type (1, z, ¢)
among n,;. If z # 3 then we apply the relation (1,2,3) + (1,z,¢) =
(1,2,¢) + (1, z,3) and reduce the triple (1,2,¢). So there are at least
r + 1 triples (1,3, ¢) among n;. Note that the elements g on 3 cannot
be reduced — among n; there are only r pairs containing them and no
triples. The contradiction finishes this case.

Consider the third node in the third row — there is a pair (¢, w)g,
among n,;. This is completely analogous to the second node in this row,
already considered.

Also the second node in the second row — ¢ = 3 — is analogous to the
first node in the second row.

We are left with the last, third node in the second column — any
two triples n; and n} agree on exactly one index, that is on 1. Due
to Lemma 12.18 we can assume b # 2 and b # 3. Due to the case
assumption there must be a pair (b,d),, among n;. If d # 2 then we
apply the relation (1,2,3) + (b,d),, = (1,b,3) + (d,2),, and reduce to
the case b = 2'. Analogously we must have the same pair among n/
and it can be reduced.

12.3.2. Case: k = 2 or k = 3. Suppose now that £ = 2. Let n; =
(1,2,3) and n} = (1,2, ¢). If we cannot reduce n} then there must be a
pair (¢, d),, among n; and a pair (3,¢€),, among n,. If d =3 and e = ¢
we can reduce the pairs. Thus we can assume that d # 3. We apply
the relation (1,2,3) + (¢,d)y, = (1,2,¢) + (3,d)y, and reduce the triple
(1,2,3).

The last, easiest case is k = 3. Then all triples are equal to (1,2, 3)
and there are no pairs due to Corollary 12.17. Hence we can reduce
the triples. This finishes the proof of the theorem.

13. OPEN PROBLEMS

We have already presented a few conjectures in this part of the thesis.
Here we would like to give a list of problems that should be much easier,
however still we find them interesting.

I2Notice that we do not reduce to the case k = 2 as if this was true we would
have already been in the first node in the second column b = 2.
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We start with the questions concerning normality. We already know
that many general group-based models give rise to projectively normal
varieties for trivalent trees. However not much is known about trees
of higher valency. Of course, due to Proposition 5.72, it is enough to
consider claw trees. The questions on normality are important as many
toric methods work only for normal polytopes. We have already applied
some of them to compute Hilbert functions. Further applications to
the conjecture of Sturmfels and Sullivant could be possible due to the
methods of "finite generation in rings with infinitely many variables" —
for more details see [HS11], [DK11|. The question for the binary model
should not be difficult.

Conjecture 13.1. Let T be any tree. The polytope representing the
binary Jukes-Cantor model on T is normal.

The same question for the 3-Kimura model, in our opinion, is much
more ambitious.

Conjecture 13.2. Let T be any tree. The polytope representing the
binary 3-Kimura model on T is normal.

Recall that in Proposition 9.1 we showed that the projective variety
representing the model is not normal. We also know that the affine va-
riety representing the general group-based model for Zg is not normal.

Conjecture 13.3. The projective toric variety representing the general
group-based model for Zg on K 3 is not normal.

Another question is to what extent the methods of Section 12 can
be applied to other abelian groups.

Conjecture 13.4. The projective scheme associated to the group-based
model for Zs and any tree can be represented by an ideal generated in
degree 3.

We finish by restating, in our opinion, the most interesting, impor-
tant and difficult Conjecture 7.6.

Conjecture 13.5. The variety X (K, 1) is equal to the (scheme theo-
retic) intersection of all the varieties X (T;), where T; is a prolongation

of K1 that has only two inner vertices, both of them of valency at least
three.

APPENDIX 1

Here we show an explicit example when the equality of the param-
eters before the Fourier transform does not imply the equality after
it.
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Let G = Zg. The transition matrices are of the form:

fa b ¢ d e f]
f a b ¢ d e
e fa b ¢ d
d e f a b c
c d e f a b

| b ¢ d e f a ]

The matrix of the type above corresponds to a function g : G — C,
such that g(0) = a, g(1) = b, g(2) = ¢, g(3) = d, g(4) = eand g(5) = f.
The Fourier transform of g gives us: g(xo) =a+b+c+d+e+ f,
Fx1) = a+jb+2c+33d+ jle+ 5%, f(x2) = a+52b+jict+d+j2e+jle
etc. where j is a primitive sixth root of unity. We consider a submodel
defined by ¢(0) = ¢g(1) = ¢(5) and ¢(2) = g(4). This corresponds to
a =b = f and ¢ = e. The Fourier transform gives us respectively
(20, 21, Ta, 3, T4, x5) = (3a+2c+d,2a —c—d, —c+d,—a+2c—d,—c+
d,2a — ¢ —d). This defines a linear subspace given by x4 = xs, x5 = 21
and z1 + 32 + 2x3 = 0. This is not an equality of distinct variables.

APPENDIX 2

Here we present the precise results of the computations of Hilbert-
Ehrhart polynomials for a few G-models. The results are from a joint
work with Maria Donten-Bury [DBM].

For the groups Zs, Zo X Ziy X Zs and Zg we computed only the Hilbert
function and, as we could not check the normality, we do not know if
it is equal to Hilbert-Ehrhart polynomial.

Models for G = H = Zs.

dilation | snowflake 3-caterpillar
1 243 243
2 21627 21627
3 903187 904069
4 21451311 21496023
5 330935625 331976637
6 3647265274 3662146270
7 30770591364 30920349834
8 209116329075 210269891871
9 1189466778457 | 1196661601837
10 5831112858273 | 5868930577941
11 25205348411361 | 25377886917819
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Models for G = H = Zy X Zs (3-Kimura).

dilation | snowflake

3-caterpillar

1 1024

396928
69248000
2977866515
291069470720
8967198289920

S Ot = W N

Models for G = H = Z,.
dilation | snowflake

1024

396928
69324800
5990170739
291864710144
8995715702784

3-caterpillar

1 1024

396928
69248000
6122557220
310273545216
10009786400352

S Ol W N

Models for G = H = Zs.
dilation ‘ snowflake

1024

396928
69324800
6138552524
311525688320
10062179606880

‘ 3-caterpillar

1 3125

2 3834375

3 2229584375

4 640338121875

3125

3834375
2230596875
642089603125

119

Models for G = H = Z;. In this case the first three dilations of the

polytopes have the same number of points.

The numbers of points

in fourth dilations were too big to obtain precise results. Hence we
computed only the numbers of points mod 64, which is sufficient to
prove that the Hilbert-Ehrhart polynomials are different.

dilation ‘ snowflake

3-caterpillar

1 16807

2 117195211

3 423913952448
4 =54 mod 64

Models for G = H = Zs.
dilation ‘ snowflake

16807
117195211
423913952448
=14 mod 64

3-caterpillar

1 32768
2 454397952
3 3375180251136

32768
454397952
3375013036032
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Models for G = H = Zy X 7o X Zs.

dilation‘ snowflake ‘ 3-caterpillar
1 32768 32768
2 454397952 454397952

3 3375180251136 | 3375013036032

Models for G = H = Zjq.

dilation ‘ snowflake ‘ 3-caterpillar
1 59049 59049
2 1499667453 1499667453

3 20938605820263 | 20937202945056

Part 2. Semigroups associated to trivalent graphs

La deuxiéme partie concerne les variétés algébriques associées aux
graphes trivalents pour le modéle de Jukes-Cantor binaire. Il s’agit
d’un travail en commun avec Weronika Buczyriska, Jarostaw Buczynski
et Kaie Kubjas. La variété associée & un graphe peut étre représentée
par un semi-groupe gradué. Nous étudions les liens entre les propriétés
du graphe et le semigroupe. Le théoréme principal 14.1 borne le degré
en lequel le semi-groupe est engendré par le premier nombre de Betti
du graphe, plus un.

This part contains results of a joint work with W. Buczyriska, J.
Buczyniski and K. Kubjas. We use a generalization of the construction
that associated a variety to a tree. We will be working with arbitrary
trivalent graphs with possible loops and multiple edges between two
vertices. However our study concerns only an equivalent of the binary
Jukes-Cantor model.

14. INTRODUCTION

Let G be a trivalent graph. For a positive integer d, our main object
of study will be a subset 7(G), of all labellings of edges of G by integers.
A labelling is in 7(G)g4, if the following conditions are satisfied:

V] (parity condition) the sum of the three labels around each inner
vertex is even;
[-+] (non-negativity condition) each label is non-negative;
|A] (triangle inequalities) the three labels around each inner vertex
satisfy the triangle inequalities;
[°| (degree inequalities) the sum of the three labels around each
inner vertex is at most 2d.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 121

We give more details and formal definitions in Section 15. We will
be interested in 7(G) = | |,cn 7(G)a, which has a natural structure of a
monoid by edgewise addition, and we call it the phylogenetic monoid

of G.

14.1. Motivation. The combinatorics of the monoid 7(G) associated
to a trivalent graph G has several incarnations. Buczynska studied it
in [Bucl2| as a generalization of the polytope defining the Cavender-
Farris-Neyman [Ney71| model of a trivalent phylogenetic tree.

In more recent work Sturmfels and Xu, [SX10] found a universal
object for the Cavender-Farris-Neyman model of trivalent trees with
the same discrete invariants. More precisely, they proved that given the
number of leaves n, the Cavender-Farris-Neyman model of a trivalent
tree is a sagbi degeneration of the projective spectrum of the Cox ring
of the blow-up of P" in n — 3 points. This variety is closely related to
the moduli of quasiparabolic vector bundles on P! with n — 2 marked
points.

Further work in this direction was done by Manon in [Man09| and
[Man11]|. He uses a sheaf of algebras over moduli spaces of genus g
curves with n marked points coming from the conformal field theory.
The case g = 0 is the construction of [SX10]|, thus Manon’s work gener-
alises the Sturmfels-Xu construction. The monoid algebras C[7(G)] are
the toric deformations of the algebras over the most special points in
the moduli of curves in the Manon’s construction. Here G is the dual
graph of the reducible curve represented by a special point.

Jeffrey and Weitsmann in [JW92] study the moduli space of flat
SU(2)-connections on a genus g Riemann surface. In their context
a trivalent graph G describes the geometry of the compact surface of
genus g with n marked points. They consider a subset of Z-labellings
of the graph, which is exactly 7(G);. They prove that the number of
elements in this set is equal to the number of Bohr-Sommerfeld fibres
associated to £%?, where £ is a natural polarizing line bundle on the
moduli space in question. The Bohr-Sommerfeld fibres are the central
object of study in [JW92]|. By the Verlinde formula, the number of
those fibres equals the dimension of the space of holomorphic sections
of £#4. This number is the value of the Hilbert function of the toric
model of a connected graph with the first Betti numberg and n leaves.

Thanks to the Verlinde formula, which arises from mathematical
physics, the Hilbert function of the monoid algebras C[7(G)] has signif-
icant meaning. In the case of trivalent trees it was also used in [SX10|
and then studied by Sturmfels and Velasco in [SV10]. One of the fea-
tures of this model is that the Hilbert function depends only on the
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combinatorial data [BWO07]|, [Buc12|. This phenomenon fails to be true
for other, even general group-based models, see [Kub10] or Appendix
2 from Part 1.

14.2. Main results. If w € 7(G), then there exists d, such that w €
7(G)a. Such d is called the degree of w. We are interested in the
problem of determining the degrees of elements in the minimal set of
generators of the monoid 7(G). We prove an upper bound for the degree
of generators:

Theorem 14.1. Let G be any trivalent graph with first Betti number
g. Then the degree of each element in the minimal set of generators of
7(G) is at most g+ 1.

For ¢ = 0, that is G is a trivalent tree, this result is equivalent
to statement that 7(G); is a normal lattice polytope and it has been
obtained in [BWO07|. For g = 1, the result has been obtained in [Bucl2|.
For ¢ > 2 it has been previously unknown. We prove the theorem in
Section 16.

The lower bounds were presented in [BBKM10]. Let us just state
these results.

Theorem 14.2. Suppose g is even. Then there exists a trivalent graph
G with the first Betti number g and an element w € 7(G) of degree g+1,
which cannot be written in a non-trivial way as a sum of two elements
w = w + W with W',W" € 7(G). Specifically, G can be taken as the
g-caterpillar graph (see Figure 2), and w as the labelling on Figure 3.

oo e}

I

Figure 2: The g-caterpillar graph.
z% 22]%%: 2%4 ce o 22k$2ko

Figure 3: The indecomposable element w of degree g + 1 on the g-
caterpillar graph for even g.
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As for odd g, for all graphs with the first Betti number g = 1, the
bound is also attained, as proved in [Bucl2|. Also there exist graphs
with ¢ = 3, such that the bound is attained. The simplest of these is
the 3-caterpillar graph and we illustrate an indecomposable degree 4
element in Section 17.

We also know the maximal degree of generators of the monoid for
the g-caterpillar graph.

Corollary 14.3 (|[BBKM10|). For the g-caterpillar graph G, the monoid
7(G) is generated in degree g + 1 if either g is even or g < 3 and it is
generated in degree g if g > 5 and g is odd.

We present an indecomposable element of degree 6 on a graph with
the first Betti number 6 in Section 17. We do not know, if there exist
graphs with odd first Betti number g > 5 such that 7(G) has a degree
g + 1 minimal generator.

We also present the results of some computational experiments for
g-caterpillar graphs with g < 5. Specifically, we list all the generators
of 7(G) for g < 4 and enumerate these generators for g < 5.

15. SEMIGROUP ASSOCIATED WITH A TRIVALENT GRAPH

In this section we recall the construction of the monoid 7(G) intro-
duced in |Bucl2].

A graph G is aset V = V(G) of vertices and a set £ = £(G) of edges,
which we identify with pairs of vertices. A graph is trivalent if every
vertex has valency one or three. A vertex with valency one is called a
leaf and an edge incident to a leaf is called a leaf edge. A vertex that
has valency three is called an inner vertex. The set of inner vertices

is denoted N' = N(G).

Notation 15.1. From now on we shall assume that all graphs and
trees are trivalent.

The first Betti number of a graph is the minimal number of cuts
that would make the graph into a tree. Given the origins of the problem
explained in Section 14.1 it is tempting to call this number the genus
of the graph, but this is inconsistent with the graph theory notation,
where the genus of graph is the smallest genus of a Riemann surface
such that the graph can be embedded into that surface.

A path is a sequence of pairwise distinct edges ey, ..., e, with e; N
eiy1 # 0 for all i € {0,...,m — 1}, such that either both ey and e,,
contain a leaf, or ¢y Ne,, # 0. In the latter case, if in addition the
sequence has no repeated edges, the path is called a cycle. A cycle of
length one is a loop. A trivalent graph with no cycles is a trivalent
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tree. Two paths are disjoint if they have no common vertex. A
network is a union of pairwise disjoint paths — cf. Remark 5.27 and
the discussion afterwards. For consistency we say that the empty set
is also a network. An edge which is contained in a cycle is called cycle
edge.

Definition 15.2. Given a graph G let ZE = @eegZ - e be the lattice
spanned by £, and ZEY = Hom(ZE,Z) be its dual. Elements of the
lattice ZE are formal linear combinations of the edges, thus £ forms
the standard basis of ZE. The dual lattice ZEY comes with the dual
basis {€*}ece. We define

M={ueZE YveN Ze*(u) € 27}.
esv

Then the graded lattice of the graph is
M =ZaeM
with the degree map
deg : M9"=7Z® M — 7,
given by the projection onto the first summand.
Remark 15.3. An element of the lattice ZE represents also a labelling

of the edges of G with integers. For w € ZE the label of e € £ equals
e*(w).

Definition 15.4 (a,,b,,c,). Let v € N be an inner vertex and let
e1,es and e be the three edges'® adjacent to v. For w € M9 we define

av(w) = €j(w), by(w) = €3(w), cv(w) = e5(w).
Definition 15.5 (degree). We define the degree of w € M9 at an
inmer vertex v € N as 5(ay(w) + by(w) + ¢, (w)).

We rewrite the definition of 7(G) given in Section 14 so that 7(G) is
a submonoid of M9".

Definition 15.6. For a graph G we define the phylogenetic monoid
7(G) on G to be the set of elements w satisfying the following condi-
tions:
[0] (parity condition) w € M9";
[+] (non-negativity condition) e*(w) > 0 for any e € &;
[A] (triangle inequalities) For any inner vertex v € N

|ay(w) — by (w)]| < ¢y(w) < ay(w) + by(w);

131 there is a loop at the vertex then e; = es.
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[*] (degree inequalities) deg(w) > deg,(w) for any v € N.

The triangle inequalities [A] are symmetric and do not depend on
the embedding 7,.

Remark 15.7. If every edge of G contains at least one inner verter,
then the inequalities above imply deg(w) > e*(w) for all edges. On
the other hand, in the degenerate cases where one of the connected
components of G consists of one edge only, for consistency the inequality
deg(w) > e*(w) should be included in Definition 15.6. However, we will
not consider these degenerate cases here.

To define a network in the graded lattice M9", we first have to do so
in the lattice M: we identify paths and networks in G with elements of
the lattice M by replacing union with sum in the group ZE&.

Definition 15.8. A network in the graded lattice M9 is a pair
w=(1,a) € M9 where a € M is a network.

Definition 15.9. Following 5.24 we define the group of networks to

be a subset of
728 =P 2y -e

such that a formal sum in ey + ex + - -+ + e € ZoE is in the group
of networks if and only if {e1,es,...,ex} is a network. Note that this
subset forms a subgroup of ZyE&.

16. THE UPPER BOUND

The goal of this section is to prove Theorem 14.1. To do this, we
proceed in three steps. First we recall the result of [BWO07| that gives
Theorem 14.1 in the case g = 0 (that is, if G is a tree). In the sec-
ond step, we represent a graph G with first Betti number ¢ as a tree
T together with ¢ distinguished pairs of leaf edges, that are “glued”
together. Elements of 7(G) are in one-to-one correspondence with the
elements of 7(7") that have identical labels on each of the distinguished
pairs of leaf edges. Thus for an element w € 7(G) we consider the de-
composition of the corresponding element in 7(7") into a sum of degree
1 elements of 7(7). To each such decomposition we assign a matrix
with entries in {—1,0,1}. Since the decomposition is not unique, we
study how simple modifications of the decomposition affect the matrix.
Finally, we apply these modifications to the matrix and prove that any
sufficiently high degree element 7(G) decomposes. The details follow.
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16.1. The case of trees. The set of degree 1 elements 7(G); C {1} x
M C MY consists of networks — see [Bucl2, Lem. 2.30).

The monoid 7(G) is the intersection of the convex polyhedral cone
given by inequalities [+], [A], [?] with the lattice M9 — see [(V]. If
T is a trivalent tree, then the inequalities defining 7(7); define an
integral lattice polytope P in {1} x M C M9 — see [BW07, Lem. 2.8|.
Furthermore, by [BW07, Prop. A.5| this polytope is normal, which
means, that any lattice point in the rescaling nP can be obtained as
sum of n lattice points in P. This implies that the monoid 7(7) is
generated by 7(7);. We summarize by quoting [Bucl2, Prop. 2.32|:

Corollary 16.1. Let T be a trivalent tree. Then every w € (T )q can
be expressed as w = wy + - - + wy, where each w; € 7(T); is a network.

Note that usually the decomposition in the corollary is not unique.

16.2. Matrix associated to a decomposition of a lifted element.
To a given connected graph G with first Betti number g we associate
a tree 7 with ¢ distinguished pairs of leaf edges. This procedure can
be described inductively on g. If g = 0, then the graph is a tree with
no distinguished pairs of leaf edges. For g > 0 we choose a cycle edge
e. We divide e into two edges ¢ and e’ adding two vertices I’ and
" of valency 1. The edges ¢ and €¢” form a distinguished pair of leaf
edges. This procedure decreases the first Betti number by one and
increases the number of distinguished pairs by one. Note that usually
the resulting tree with distinguished pairs of leaf edges is not unique,
however a tree with distinguished pairs of leaf edges encodes precisely
one graph.

Let G be a graph and let 7 be an associated tree. There is a one-
to-one correspondence between elements of 7(G) and the elements of
7(7T) that assign the same value to the leaf edges in each distinguished
pair. Thus we have the natural inclusion 7(G) C 7(7). See |Bucl2,
§2.2-2.3| for a more geometric interpretation of this inclusion.

Let w be an element of 7(G). By Corollary 16.1, in the monoid 7(7)
there exists a decomposition w = wy + - -+ + Waeg(w), Where w; € 7(T)1.
For each such decomposition we consider the matrix Bow dea() with
deg(w) rows and g columns indexed by pairs of distinguished leaf edges.
The entry in the ¢-th row and column indexed by a pair of distinguished
leaf edges (¢, ") is " (w;) —€"*(w;). Thus, since w; is a network w;(e) €
{0,1} for any edge, entries of Bu,... wieqy are only —1, 0 or 1.

The matrix Bo,.ow dea() depends on the tree 7 and on the decomposi-

tion of w into the sum of degree one elements. An entry of Bwl,...,wdeg(w)
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is zero when the corresponding network is compatible on the corre-
sponding distinguished pair of leaf edges. Our aim is to decompose
any element w with deg(w) > ¢ + 1 in 7(G). This means that we are
looking for decompositions in 7(7) that are compatible on the distin-
guished pairs of leaf edges. Hence, it is natural to consider matrices
with as many entries equal to zero as possible.

Let w be an element of 7(7). Let w = wi + -+ + Waeg(w) be 2
decomposition of w into networks. Let By, dea() be the matrix with
deg(w) rows corresponding to the decomposition. Notice that for any
subset of indices {j1,...,j,} C {1,...,deg(w)} the following conditions
are equivalent:

(i) the element w;, + --- 4 w;, is in 7(G);
(ii) in each column of B, , the sum of entries in rows ji, .. ., jp
is equal to zero.

- Wdeg(w

Even if we start from a decomposable w the associated matrix might not
have this property; it depends upon the choice of decomposition of w
in 7(7). The following lemma shows how to change this decomposition
in order to obtain a matrix with the required property.

Lemma 16.2. Let w be an element of 7(T). Consider all decomposi-
tions of w and assoctated matrices. Let us choose a decomposition of
W= Wi+ +Wiegw) that gives a matriz Bw17,.,7wdeg(w) with as many zero
entries as possible. Let us choose two entries in the matriz Bwl,---,wdeg(w)
that are in the same column indezed by (€}, €!). Suppose that they are
equal, respectively, to 1 and —1. There exists a decomposition of w that
yields a matriz the same as B, except for those two entries,
which are interchanged.

1,...,wdeg(w) )

Proof. Let w = wy + - - - + Wqeg(w) be the given decomposition. Without
loss of generality we may assume that the entries are in the first and
second row. Hence w; associates to the edges €| and e} values 0 and 1
respectively, and similarly w, associates 1 and 0.

Let us consider all edges of the tree 7 on which the networks w; and
wy disagree. These edges form the network S on the tree 7. In fact,
S = wy 4+ wy, where the sum is taken in the group of networks. Define
p1 to be the unique path from S starting at e;. Suppose that we have
constructed a sequence of paths pq,...,p,_1 for m > 1, where the first
edge of p; is €] and the last is ej,; and (e}, e]) is a distinguished pair
for i € {1,...,m —1}. We consider the following cases:

(R

(i) If the edge €/, is not paired, then we stop the construction.
Otherwise we go to Case (ii).
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(ii) If there is a distinguished pair (e}, e/ ) and e/, *(w1) # €/ (w1)

m?m
or e, “(wq) # €/ "(ws) (i.e. at least one of the two entries in the

column (e, €/ ) is non-zero), then we stop the construction.

m? T m
Otherwise we go to Case (iii).
(iii) If there is a distinguished pair (¢/,,e” ) and e/ *(w) = €/ " (w1),
el “(we) = €/l “(ws), then w; and wy disagree on e/, and €/, is
in S. We define p,, to be the unique path from S starting from
er.. Let e ., be the other end of the path p,,. We increase m

by 1 and start over from Case (i).

Let us notice that the constructed paths are distinct. In particular,
the construction terminates. Indeed, each path p;.; uniquely deter-
mines the path p;. Hence the first path that would have been repeated
is p;. This is possible only if the previous path ends with €. From the
assumption, we would have been in Case (ii), hence the construction
would terminate.

We define a network b C S to be the network, which is the union
of paths (p1,...,pm_1). We use it to define two new networks w| and
wh. Namely, w; = w; + b, where the sum is taken in the group of
networks. In other words, w/ (resp. w)) coincides with w; (resp. wy) on
all edges apart from those belonging to the network b. On the latter
ones wj (resp. wj) is a negation of wy (resp. wsy), hence coincides with
wy (resp. wy). In particular, wy + wy = w] + w), where this time the
sum is taken in 7(7).

We get a decomposition w = w] + wy + w3 + -+ + Weg(w) With the
associated matrix Bwﬁ,...,wdeg(w)' We claim that it exchanges the two
chosen entries equal to 1 and —1.

Consider each distinguished pair of leaf edges through which we
passed during our construction of (p1,...,py_1). If we did not stop at
a pair (l1,ls) each network a; and as assigns the same value to [; and
ly — otherwise we would have stopped because of Case (ii). On these
leaf edges w| and w) agree with ws and w; respectively. Hence, they
also assign the same value to [y and 5. In particular, both Bwl,---,wdeg(w)

and B/ Sdeato) have zeros in first two rows in the column indexed
1900y eg(w

by (l1,l3). In fact, the only four entries on which B, wigeqy and

e o) might possibly differ are the entries in first two rows in the
seesWdeg(w
/ 4

columns indexed by (¢}, €) or (e}, e/ ), where p,, is the last path.
Let us exclude the possibility that the construction stopped in Case (i).
In this case the last leaf edge is not paired, hence we only change en-

tries in the column indexed by (e}, €). Since both w] and w) agree on
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¢} and €/, we have that B, ,
WiseWdeg(w)

had 1 and —1. This contradicts the choice of Bwl,...,wdeg(w)-
Suppose now that the construction terminated in Case (ii). We con-
sider two sub-cases.
1) The edges €], # ¢ are distinct. We will exclude this case. We
change four entries in two columns. The two entries in the column in-
dexed by (€}, €]) are changed from 1 and —1 to zero. We know that ma-

trix B, has at most as many zero entries as B, . Hence
17 %Wdeg(w) )

the two entries in the column indexed by (e, €/ ) must be changed from
two zeros to two non-zeros. Having two zeros in B, in those
entries contradicts the assumptions of Case (ii).

2) The edges €/, = €| are equal. In this case €/, = €}, so we only
exchange two entries in the column indexed by (e}, ¢]). This means
that we have exchanged 1 and —1, which proves the lemma. U

has two zeros, whereas Bwl,---,wdeg(w)

13 %Wdeg(w

19%Wdeg(w)

16.3. Proof of decomposability. We are ready to prove the theorem
on the upper bound of the degree of minimal generators of 7(G).

Proof of Theorem 14.1. Let us consider an element w of degree deg(w) >
g+ 1in 7(G). We consider any tree 7 associated with the graph G.
Let us choose a decomposition of w in 7(7), such that the associated
matrix Bwl,---,wdeg(w) has as many zero entries as possible. First we want
to find a subset of rows of the matrix Bwl,---,wdeg(w) such that the sum
of entries in each column is even. We reduce the entries of By,...w deae)
modulo 2 obtaining the matrix C,, with entries from Z,. We consider
rows of C,, as vectors of the g dimensional vector space over the field
Zs. We have deg(w) > g + 1 such vectors. Hence we can find a strict
subset of linearly dependent vectors. As we are working over Zy we see
that we have a strict subset of vectors summing to 0. The same subset
R of rows in matrix Bwl,...,wdeg(w) sums to even numbers in each column.

The element w is in 7(G). Hence the sum of entries in each column
of the matrix B, wieg) 18 Z€TO. Suppose that the sum of entries in
the rows from R is non-zero in a column. Using Lemma 16.2 we can
exchange the entries, changing the sum by 2 until it is equal to zero. In
this way we get a decomposition of w such that the rows from R sum
to zero in each column. Hence, the sum of networks corresponding to
rows from R is in 7(G). The sum of the remaining networks is in 7(G)

too. Thus we obtain a non-trivial decomposition of w. U

17. EXAMPLES ON SMALL GRAPHS

We conclude this part with some examples of indecomposable ele-
ments for special cases of graphs with low first Betti number g.
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The first one is an indecomposable element of degree 4 on the 3-
caterpillar graph. It proves that in the case g = 3, the upper bound of
Theorem 14.1 is attained.

The second example is a degree 6 indecomposable element on a graph
with 6 loops and one leaf.

The following table presents the numbers of generators of 7(G) in
each degree, where G is the g-caterpillar graph, and g < 5.

deg |g=1|g=2|9g=3|g=4]| g=5
all 3 15 163 | 2708 | 49187
1 2 4 8 16 32
2 1 7 37 175 781
3 4 64 704 | 6624
4 54 | 1701 | 35190
5 112 | 6560

Part 3. Derived categories

Dans la derniére partie, nous étudions la structure de la catégorie
dérivée des faisceaux cohérents des variétés toriques lisses. Dans un
travail commun avec Michal Lason |[LM11], nous construisons une col-
lection fortement exceptionnelle compléte de fibrés en droites pour une
grande classe de variétés toriques complétes lisses dont le nombre de
Picard est égal & trois. De nombreuses questions concernant le type
de collections auxquelles on peut s’attendre sur les variétés toriques de
certains types sont encore ouvertes. A ce titre, nous prouvons que P”
éclaté en deux points ne posséde pas de collection fortement exception-
nelle compléte de fibrés en droites pour n assez grand. Ceci fournit une
collection infinie de contre-exemples a la conjecture de King 19.2. Le
premier contre-exemple est di a Hille et Perling [HP06|. Récemment,
des contre-exemples ont également été trouvés par Efimov |Efi] dans le
cadre des variétés de Fano.
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18. INTRODUCTION

18.1. Definition of the derived category. Let X be a smooth va-
riety over the field C. Let us briefly recall the construction of the
derived category of X. We encourage the reader to consult first chap-
ters of [Huy06| for precise definitions, examples and most important
theorems. A well-motivated, relatively short introduction to derived
categories can be found in [Cal05]. A much longer, classical reference
is [GMO3].

We start the construction with the category Kom of complexes of
coherent sheaves on X. Let us introduce the homotopy category K of
complexes. The objects in K are the same as in Kom. We identify
morphisms that are homotopically equivalent.

Definition 18.1 (Homotopically equivalent morphisms of complexes,
Definition 2.12 [Huy06|). Let us consider two complezes

o; Oit1

5 o
..HBZA%BHIL...
and two morphisms f, g between them with components given by f;, g; :
A; — B;. We say that f and g are homotopically equivalent if and only
if there exists a collection of morphisms h; : A; — B;_1 such that

fi — g; = hi—l—l o 52 - (5’-71 9] hz

2

The relation of being homotopically equivalent is an equivalence rela-
tion. A morphism in the category K is an equivalence class of mor-
phisms up to this relation.

Recall that a morphism f between complexes A, B € Kom induces
a morphism in cohomology

. Im (51;1

=: H'(A) — H'(B).

Moreover if f and g are homotopically equivalent, then H'(f) = H(g).
Hence given a morphism in K we have the well-defined induced mor-
phism on cohomologies.

Definition 18.2 (Quasi isomorphism). A morphism between complezes
(in Kom or K ) is called a quasi-isomorphism if the induced morphism
on cohomologies is an isomorphism.
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The objects of the derived category D(X) will be complexes of co-
herent sheaves. However the morphisms in the derived category are
defined differently.

Definition 18.3 (Morphism in the derived categories). A roof (between
A and B) is the following diagram:

C
7N
A B
where A, B, C are complezes, f, g are morphisms in K and f is a quasi-
wsomorphism. Two roofs between A and B are called equivalent if they
can be dominated in K by a common roof. More precisely consider two
roofs for which the domains of the morphisms are given respectively by

C1 and Cy. These roofs are equivalent if and only if there exists the
following commutative diagram in K:

N,
o \

A B
with h o f a quasi-isomorphism. A morphism in the derived category

D(X) is an equivalence class of roofs. In particular, one can show that
a composition of roofs is also given by a roof that dominates them.

The construction seems, and indeed is, quite technical. In [C&l05]
the author motivates the construction by topology, especially the the-
orem of Whitehead. One of the aims of the construction is to make
quasi-isomorphisms, real isomorphisms. The process of adding inverse
morphisms to the category is called localisation'®. However, for the
localization process to work well one should pass from the category of
complexes Kom to the category K. Indeed, the derived category can
be regarded as the smallest possible category obtained from Kom by
adding inverses of quasi-isomorphisms. Formally this can be character-
ized by a universal property |[Huy06, Theorem 2.10| that the derived
category satisfies.

We will be mostly interested in the bounded derived category D?(X).
To define it one can repeat the construction of D(X) starting not from

“Indeed it is similar to the algebraic localization where we add formal inverses
of elements.
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the category Kom, but a subcategory of complexes with only a finite
number of nonzero elements. The category D°(X) is equivalent to a full
subcategory of D(X) containing complexes with only a finite number
of nonzero cohomology.

Details of category theory are beyond the scope of this thesis. How-
ever, we should mention that the derived category is not an abelian
category. Thus one cannot speak about exact sequences. Still, some
diagrams, called the distinguished triangles exist and play a role similar
to short exact sequences. This gives the derived category the structure
of the triangulated category. When we say that two derived categories
are equivalent, we assume that the exact triangles are preserved. For-
mally by an equivalence we mean an ezract equivalence. Details and
definitions can be found in any book on derived categories or homolog-
ical algebra.

On the one hand, the derived categories give a uniform language
that allows to state many definitions, useful from the point of view of
algebraic geometry. On the other hand, the structure of the derived
category can be extremely complicated and is an object of intensive
studies. In some cases one can consider a collection of objects from the
derived category that plays a role of the "basis" of the derived category.
The following sections investigate when such special collections exist.

We have to note, that the derived category of an algebraic manifold
does not fully characterize it. Indeed, the questions how subtile the
derived category is as an invariant, is one of the most important one
in the domain. Let us present two well-known results.

Theorem 18.4 (Bridgeland [Bri02|). Any two birational Calabi-Yau
threefolds have got equivalent derived categories. 0

Theorem 18.5 (Bondal, Orlov [BOO01]). Let X and Y be smooth pro-
jective varieties and assume that the (anti-)canonical bundle of X is
ample. If there exists an equivalence D°(X) ~ D*(Y), then X and Y
are isomorphic. O

18.2. Full, strongly exceptional collections. The structure and
properties of the derived category of an arbitrary variety X can be
very complicated and they are an object of many studies. One of the
approaches to understand the derived category uses the notion of ex-
ceptional objects. Let us introduce the following definitions (see also

|GR87|):

Definition 18.6 (Strongly exceptional collection).

(i) An object of the bounded derived category D*(X) of X is ex-
ceptional if Hom(F, F) = K and Ext}, (F,F) = 0 fori# 0.
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(ii) An ordered collection (Fy, Fi, ..., Fy,) of objects is an excep-
tional collection if each sheaf F; is exceptional and
Exty (F, F;) =0 for j <k and i > 0.

(iii) An exceptional collection (Fy, Fi, ..., F5,) of objects is a strongly
exceptional collection if Exty (Fj, Fy) = 0 for j < k and
1> 1.

(iv) A (strongly) exceptional collection (Fo, Fi, ..., Fy,) of objects

is a full, (strongly) exceptional collection if it generates
the bounded derived category D*(X) of X i.e. the smallest

triangulated category containing {Fy, Fy, ..., F,} is equivalent
to D°(X).
For an exceptional collection (Fyp, ..., F},) one may define an object

F = @",F; and an algebra A = Hom(F, F'). Such an object gives
us a functor Gy from D°(X) to the derived category D°(A — mod) of
right finite-dimensional modules over the algebra A. Bondal proved in
[Bon89|, that if X is smooth and (F}) is a full, strongly exceptional col-
lection, then the functor G gives an equivalence of these categories. In
further sections we will be mostly interested in the strongly exceptional
collections.

19. TORIC VARIETIES AND EXCEPTIONAL COLLECTIONS

In the whole section we assume that X is a smooth toric variety. In
particular X is normal, thus given by a fan.

19.1. Known results and counterexamples. As the structure of
derived categories is complicated it is natural to look at examples of
toric varieties. In particular, exceptional collections for toric varieties
have been an object of studies. The strongest positive result is due to
Kawamata [Kaw06].

Theorem 19.1 ([Kaw06|). For any smooth, projective toric variety
X, the bounded derived category D°(X) is generated by an exceptional
collection of coherent sheaves.

Due to the fact that line bundles have got a particularly nice de-
scription for toric varieties one could ask whether "coherent sheaves"
in previous theorem can be replaced by line bundles [Huy06, Remark
8.38]. This is an open problem. However, there exists a counter exam-
ple to the following conjecture of King.

Conjecture 19.2 (King’s). For any smooth, complete toric variety X
there exists a full, strongly exceptional collection of line bundles.
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The first known counterexample was presented by Hille and Perling
in [HP06]. They gave an example of a smooth, complete toric sur-
face which does not have a full, strongly exceptional collection of line
bundles. Further results gave a full description of the two dimensional
case |[HP|. In Section 19.7 we show that P™ blown up in two points
for n large enough are also counterexamples to King’s conjecture. The
conjecture was reformulated by Mir6-Roig and Costa (stated also in
[BH09)):

Conjecture 19.3. For any smooth, complete Fano toric variety there
exists a full, strongly exceptional collection of line bundles.

This conjecture has an affirmative answer when the Picard number
of X is less than or equal to two [CMRO4] or the dimension of X is
at most three |BH09|, [Bon89|, [BT09|. Recently it was disproved by
Efimov in [Efi|. In the same paper the author states the following
conjecture, suggested by D. Orlov.

Conjecture 19.4 (|Efi]). For any smooth projective toric Deligne—
Mumford stackY , the derived category D°(Y') is generated by a strongly
exceptional collection.

We will often make use of the construction of a collection of line
bundles due to Bondal. The construction is described in Section 19.3.
Using this, one obtains a full collection of line bundles in D°(X). In
some cases Bondal’s collection of line bundles is a strongly exceptional
collection (see also [Bon06]), but it is not true in general. Often one
can find a subset of this collection and order it in such a way that it
becomes strongly exceptional and remains full. This approach was well
described in [CMRb] for a class of toric varieties with Picard number
three.

19.2. Toric varieties with Picard number three. Smooth, com-
plete toric varieties with Picard number three have been classified by
Batyrev in [Bat91| according to their primitive relations. Let ¥ be a
fan in N =7Z" and let R be the set of rays of X.

Definition 19.5. We say that a subset P C R is a primitive collection
if it 1s a minimal subset of R which does not span a cone in 3.

In other words a primitive collection is a subset of ray generators,
such that all together they do not span a cone in X but if we remove
any generator, then the rest spans a cone that belongs to . To each
primitive collection P = {x,...,x;} we associate a primitive relation.

Let w = Zle z;. Let o € X be the cone of the smallest dimension
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that contains w and let yy,...,ys be the ray generators of this cone.
The toric variety of > was assumed to be smooth, so there are unique
positive integers nq, ..., ng such that
S
i=1
Definition 19.6. For each primitive collection P = {xy, ..., xy} let n;

and y; be as described above. The linear relation:
T+ Ty —myr — - —nsYs =0
is called the primitive relation (associated to P).

Using the results of [Grii03| and [OP91] Batyrev proved in [Bat91]
that for any smooth, complete n dimensional fan with n + 3 genera-
tors its set of ray generators can be partitioned into [ non-empty sets
Xo,...,X;_1 in such a way that the primitive collections are exactly
sums of p + 1 consecutive sets X; (we use a circular numeration, that
is we assume that i € Z/I7Z), where | = 2p + 3. Moreover [ is equal to
3 or 5. The number [ is of course the number of primitive collections.
In the case [ = 3 the fan 3 is a splitting fan (that is any two primitive
collections are disjoint). These varieties are well characterized, and we
know much about full, strongly exceptional collections of line bundles
on them. The case of five primitive collections is much more compli-
cated and is our object of study. For [ = 5 we have the following result
of Batyrev.

Theorem 19.7 ([Bat91, Theorem 6.6]). Let Y; = X; U X1, where
i €Z/5Z,
X0:{1)17"'7Up0}7 Xlz{yla"'7yp1}7 XQZ{Zla"'7zp2}a
ng{tl,...,tpg}, X4:{u1,...,up4},
where pog + p1 + p2 + p3s + pa = n+ 3. Then any n-dimensional fan X

with the set of generators | ) X; and five primitive collections Y; can be
described up to a symmetry of the pentagon by the following primitive

relations with nonnegative integral coefficients ca, ..., Cpy, b1, ..., byy:
V1t AUy YLt FYp, —Coza—+ - —CpyZpy — (D1 1)t —+ - - — (b, + 1)Ly, =
y1+'-'+yp1+21+'-'+2p2—u1—'-'—up4=0,
z1+ -tz Fli o+ =0,
ty4 oty Fur ot uy, —yr— - —yp, =0,
Up 4o Uy, VL AUy —Coa — = CpyZpy — b1t — - = byt = 0.

O

0,
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In this case we may assume that

Uly oo ey Upgs Y25 v v v s Ypry 225+ v v s Ypos L1y v v vy Ty Uy o oo Uy

form a basis of the lattice N. The other vectors are given by

B=—z— =y, — = —
(19.1) pi=—gp— =Y~ =~y turt o,
Uy = — Uy — " — Upy, — VU — = Upy + CoZa + -+ Cpy2p,

+ bltl + e + bp3tp3

19.3. Bondal’s construction and Thomsen’s algorithm. This sec-
tion contains joint results with Michal Lason [LM11].

We start this section by recalling Thomsen’s [Tho00| algorithm for
computing the summands of the push forward of a line bundle by a
Frobenius morphism. We do this because of two reasons.

First is that Thomsen in his paper assumes finite characteristic of
the ground field and uses absolute Frobenius morphism. We claim that
the arguments used apply also in case of geometric Frobenius morphism
and characteristic zero.

Moreover by recalling all methods we are able to show that the re-
sults of Thomsen coincide with the results stated by Bondal in [Bon06].
Combining both methods enables us to deduce some interesting facts
about toric varieties. A reader interested in a short proof and a method
for the decomposition of the push forward of a line bundle by a Frobe-
nius morphism is advised to consult [Ach].

Most of the results of this section are due to Bondal and Thomsen.
We use the notation from [Tho00]. Let ¥ C N be a fan such that the
toric variety X = X (3) is smooth. Let us denote by o; € ¥ the cones of
our fan and by T the torus of our variety. If we fix a basis (eq, ..., e,) of
the lattice IV, then of course T" = Spec R, where R = k[Xeiffl, o Xef%l].

In characteristic p we have got two p-th Frobenius morphisms F' :
X — X. One of them is the absolute Frobenius morphism given as
an identity on the underlying topological space and a p-th power on
structure sheaves. Notice that on the torus it is given by a map R — R
that is simply a p-th power map, hence it is not a morphism of &
algebras (it is not an identity on k).

The other morphism is called the geometric Frobenius morphism and
can be defined in any characteristic. Let us fix an integer m. Consider
a morphism of tori 7" — T that associates t" to a point ¢. This
is a morphism of schemes over k that can be extended to the m-th
geometric Frobenius morphism F': X — X. What is important is that
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both of these morphisms can be considered as endomorphisms of open
affine subsets associated to cones of 3. We claim that in both cases
Thomsen’s algorithm works.

We begin by recalling the algorithm from [Tho00]. Let v;i, ..., v;4,
be the ray generators of the d; dimensional cone ;. As the variety was
assumed to be smooth we may extend this set to a basis of N. Let
A; be a square matrix whose rows are vectors v;; in the fixed basis of
N. Let B; = A;l and let w;; be the j-th column of B;. Of course the
columns of B; are ray generators (extended to a basis) of the dual cone
of CM = N~.

Let us remind that X (3) is covered by affine open subsets U,, =
Spec R;, where R; = k[X Wit ... XWidi X*widier  X*win] Here we
use the notation X* = X7 ----- X7 Let also Xj; = X*%. In this
way the monomials X;q,..., X;, should be considered as coordinates
on the affine subset U,,, so we are able to think about monomials on
U,, as vectors: a vector v corresponds to the monomial X?. Of course
all of these affine subsets contain 7', that corresponds to the inclusions
R, C R.

Using basic results from toric geometry, see [Ful93, p. 21|, we know
that U,, NU,; = Us,ns, and this is a principal open subset of U,,. This
means that there is a monomial M;; such that Us,,n,, = Spec((R;)a,).

We are interested in Picard divisors. A T invariant Picard divisor is
given by a compatible collection {(U,,, X;"*)}s,ex. Compatible means
that the quotient of any two functions in the collection is invertible on
the intersection of domains. This motivates the definition:

I;; = {v : X! is invertible in (R;)ns, }-

Given a monomial X/, if we want to know how it looks in coordinates
Xer, ..., Xex (obviously from the definition of X;) we just have to mul-

B:'B; .
tiply v by B;: X! = XPiv. We see that X = X, ", That is why we

define Cj; = B;lBi and we think of C;; as the matrices that translate
the monomials in coordinates of one affine piece to another.

Now the compatibility in the definition of a Cartier divisor simply
is equivalent to the condition u; — Cju; € I;;. We define u;; = uj —
Csju; and think about them as transition maps. Of course a divisor is
principal if and only if w;; = 0 for all 7, j (vector equal to 0 corresponds
to a constant function equal to 1).

Let P, = {v = (v1,...,v,) : 0 < v; < m}. Later we will see that
this set has got a description in terms of characters of the kernel of the
Frobenius map between tori.
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Using simple algebra Thomsen proves that the following functions
are well defined (the only thing to prove is that the image of h is in

Definition 19.8 (hY,,, r¥%,). Let us fix w € I;; and a positive integer

ijm> Tijm
m. We define the functions
w .
Tiim © Pm — Pm,

for any v € P, by the equation
Ciyjv +w = mhj, (v) + 17, (v).

This is a simple division by m with the rest. Moreover 15, is bijective.

If we have any v € P,,, a T-Cartier divisor D = {(U,,, X;")}s,ex and
a fixed o; € ¥ then Thomsen defines ¢; = b (v). He proves that the
collection {(U,,, X;*)}s.ex: is a T-Cartier divisor D,. This is of course
independent on the representation of D up to linear equivalence. The
choice of [ corresponds to "normalizing" the representation of D on the
affine subset U,,. Although the definition of D, may depend on [, the
vector bundle @,cp, O(D,) is independent on [. Moreover Thomsen
proves that in case of p-th absolute Frobenius morphism and charac-
teristic p > 0 this vector bundle is a push forward of the line bundle
O(D). The proof uses only the fact that the Frobenius morphism can
be considered as a morphism of affine pieces U,,, so can be extended
to the case of geometric Frobenius morphism and arbitrary character-
istic. One only has to notice that the basis of free modules obtained
by Thomsen in [Tho00, Section 5, Theorem 1| are exactly the same in
all cases.

Now let us remind that there is an exact sequence 2.1:

0— M — Dy — Pic— 0,

where Dy are T invariant divisors. Let (g;) be the collection of ray
generators of the fan ¥ and D, a divisor associated to the ray generator
gj- The morphism from M to Dr is given by v — > . v(g;)D,;. Such
a map may be extended to a map from Mr = M ®z R by f :v —
>;[v(g;)]Dy;. Notice that this is no longer a morphism, however if
a € M and b € Mg, then f(a +0b) = f(a) + f(b). We obtain a map
T := 2& — Pic, where T is a real torus (do not confuse with 7). We
also fix the notation for an R-divisor D =} . a;Dy;:

D)= Y la,1D,,.

J



140 MATEUSZ MICHALEK

Let G be the kernel of the m-th geometric Frobenius morphism be-
tween the tori 7. By acting with the functor Hom(-, C*) we obtain an
exact sequence:

O—>M—>M—>G*:£—>O.
mM

We also have a morphism:

1 M

. G* ~ — — T,
that simply divides the coordinates by m. By composing it with the
morphism from T — Pic we get a morphism from G* to Pic. It can
be also described as follows:

We fix ¥ € G* and arbitrarily lift it to an element x,; € M. Now
we use the morphism M — Divy to obtain a T invariant principal
divisor D,.. The image of x in Pic is simply equal to [%] Of course
for different lifts of x to M we get linearly equivalent divisors. Now we
prove one of the results stated by Bondal in [Bon06|:

Proposition 19.9. Let L = O(D) by any line bundle on a smooth toric
variety X. The push forward F.(O(D)) is equal to @XGG*O([M]).

m

Remark 19.10. The characters of G play the role of v € P, in Thom-
sen’s algorithm. Notice also that it is not clear that @Xeg*O([DZDX] is
independent on the representation of L by D. If we prove that this is
equal to the push forward then this fact will follow, but in the proof we
have to take any representation of L and we cannot change D with a
linearly equivalent divisor.

Proof. Let D = {(U,,, X;")} and let us fix y € G*. We have to prove
that O([%]) is one of O(D,) for v € P,, and that this correspon-
dence is one to one over all x € G*. We already know that [%] is
independent on the choice of the lift of x, so we may take such a lift,
that v = xa +uy is in the P,,. Here [ is an index of a cone, but we may
assume that its ray generators form a standard basis of N, so A; = Id.
Of course such a matching between xy € G* and v € P, is bijective.
Let us compare the coefficients of [%] and D,. We fix a ray
generator r = (r1,...,7,) € 0;. Let k be such that this ray generator
is the k-th row of matrix A;. We compare coefficients of D,. Let

xm = (ai,...,a,). We see that:
|:7D + DX:| = ..+ |:(uj)k‘ + Z?u:l AwT'w D

m m

Pt
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Here of course (u;);, is not a transition map wj, but the k-th entry of
vector u; that is of course the coefficient of D, of the divisor D. From
Thomsen’s algorithm described above we know that

Cii(X +w) +wy = mt; +,
where r € P,,. We see that
o {Clj(x +w) + Ulj]
;= )

m
Now A; = Id and from the definition of u;; we have Cju; + w; = u;,
S0:
o [ Ax Tty
J m .
This gives us:

D,=---+

what completes the proof. O

From [Bon06| we know that the image B of T in Pic is a full collection
of line bundles. Of course B is a finite set (the coefficients of divisors
associated to ray generators are bounded). Moreover the image of
rational points of T contains the whole image of T (a set of equalities
and inequalities with rational coefficients has got a solution in R if and
only if it has got a solution in Q). This means that for sufficiently
large m the split of the push forward of the trivial bundle by the m-th
Frobenius morphism coincides with the image of T and hence is full.

Let us consider an example of P2. Let vy, vy and v3 = —v; — vy
be the ray generators of the fan. We fix a basis (vy,v2) of N. The
image of the torus T is equal to the set of all divisors of the form
la] Dy, + [b] Dy, + [—a — b]D,, for 0 < a,b < 1. We see that the image
of the torus T is O,O(—1),0(—2). This is a full collection. Notice
however that it is not true that if we have a line bundle L then there
exists an integer mg such that the push forward of L by the m-th
Frobenius morphism for m > my is a direct sum of line bundles from
B. For example the push forward of O(—3) always contains in the split
O(—3) that is not an element of B. However, as we will see only minor
differences from the set B are possible.

Definition 19.11. Let us fiz a natural bijection between points of T
and elements of Mg with entries from [0,1) in some fized basis. Now
each element of B has got a natural representative in Divr as sum
of Dy, with integer coefficients. Let By C Divy be the set of these
representatives. We define the set B’ as the set of all divisors D in Pic
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for which there exists an element in b € By, such that there exists a
representation of D whose coefficients differ by at most one from the
coefficients of b.

In other words we take (some fixed) representations of all elements
of B, we take all other representations whose coefficients differ by at
most one and we take the image in Pic to obtain B’.

Let us look once more at the example of P2. With previous notation
B is equal to 0, —D,,, —2D,,. The set B’ would be equal to +D,, +
n,, +D,,, +D, +D,, + D,, — D,,, £D,, £ D,, + D,, — 2D,,,. This
gives us 0(3),0(2),0(1), O, O(-1), O(-2), O(-3), O(—4), O(=5).

Proposition 19.12. For any smooth toric variety and any line bun-
dle there exists an integer mq such that the push forward by the m-th
Frobenius morphism for any m > myq splits into the line bundles from
B

Proof. From 19.9 we know that the line bundles from the split are of
the form [2 + %], where L = O(D) is a fixed representation of L. Of
course for sufficiently large m all coefficients of % belong to the interval
(—1,1). Hence the coefficients of [2 + %] differ by at most one from
the coefficients of [%] that is in B. This shows that [2 + %] ep. O

This combined with the result of Thomsen |[Tho00| that the push
forward and the line bundle are isomorphic as sheaves of abelian groups
gives us the following result:

Corollary 19.13. There exists a finite set, namely B’, such that each
line bundle is isomorphic as a sheaf of abelian groups to a direct sum
of line bundles from B'. In particular their cohomologies agree. 0

19.4. Techniques of counting homology. This section contains joint
results with Michal Lason [LM11|. Our aim will be to describe line
bundles on toric varieties with vanishing higher cohomologies, that
we call acyclic. Later, we will use this characterization to check if
Exzt'(L,M) = H'(LY @ M) is equal to zero for i > 0. We start with
general remarks on cohomology of line bundles on smooth, complete
toric varieties.

Let > be a fan in N = Z" with rays zy,...,z,, and let Py denote
the variety constructed from the fan X. For I C {1,...,m} let C;
be a simplicial complex generated by sets J C [ such that {z; : i €
J} generate a cone in . For r = (r; : ¢ = 1,...,m) let us define
Supp(?") = O{z r;>0}-

The proof of the following well known fact can be found in the paper
[BHO9):
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Proposition 19.14. The cohomology H’(Ps, L) is isomorphic to the
direct sum over allr = (r; i =1,...,m) such that O} ", r;D,,) = L
of the (n — j)-th reduced homology of the simplicial complex Supp(r).

Definition 19.15. We call a line bundle L on Ps acyclic if H'(Pg, L) =
0 for allv > 1.

Definition 19.16. For a fized fan ¥ we call a proper subset I of
{1,...,m} a forbidden set if the simplicial complex C; has nontriv-
tal reduced homology.

From Proposition 19.14 we have the following characterization of
acyclic line bundles.

Proposition 19.17. A line bundle L on Py, is acyclic if it is not iso-
morphic to any of the following line bundles

O(Z riDIi - Z(l + rl)DIZ)

il il
where r; > 0 and I is a proper forbidden subset of {1,...,m}.

Hence to determine which bundles on Py, are acyclic it is enough to
know which sets I are forbidden.

Inourcase Cr={JCIl:Y,:={j:a; €Y} L Jori=1,...,5},
since Y; are primitive collections. We call sets }A/Z also primitive collec-
tions. The only difference between sets Y; and Y; is that the first one
is the set of indices of rays in the second one, so in fact they could be
even identified.

In case of a simplicial complex S on the set of vertices V' we also
define a primitive collection as a minimal subset of vertices that do not
form a simplex. Complex S is determined by its primitive collections,
namely it contains simplexes (subsets of V') that contain none of the
primitive collections.

We describe a very powerful method of counting homologies of sim-
plicial complexes which are given by their primitive collections (as in
our case). To a simplicial complex S one can associate a complex C'
of vector spaces with the border map defined in the usual way. The
objects in the complex C' are indexed by nonnegative integers. Each
object indexed by i is a direct sum of one dimension vector spaces,
each corresponding to an ¢ dimensional simplex in S. We assume that
in C' there is a one dimensional vector space indexed by 0 that corre-
sponds to the empty set. Of course one can count cohomologies of any
complex C of vector spaces, not necessarily coming from a simplicial
complex. We transform the complex C' so that the homologies remain
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unchanged. The method is due to Mrozek and Batko [MB09]. We will
be removing some simplices from S. In particular, after some steps it
will be no longer true that all faces of a simplex from a complex are
in the complex. In this case the border map takes its values only in
the simplices that are in the complex. This is a special example of the
so-called S-complexes - for details see [MBO09].

Example 19.18. Suppose that a one dimensional simplex P, P, is in
the complex S. The usual border map would be

O(PP) = P, — Ps.
However if we suppose that P, does not belong to S then
O(PP) = Pi.

Definition 19.19 (Reductive pair). Suppose that in a complex C' the
there exist simplices Z and B such that either

0Z =B or 0Z = —B.
Then we call the pair (Z, B) a reductive pair.
We use the result of Mrozek and Batko [MBO09]:

Lemma 19.20. A reductive pair can be removed from a chain complex
without changing the homology.

Example 19.21. Consider a simplicial complex consisting of
{0, Py, Py, P3, PPy, P\ Ps, P,Ps}.
(i) We remove the reductive pair (P, ).

(ii) We remove the reductive pair (P Py, Ps).
(iii) We remove the reductive pair (P, Ps, P).

We are left with one simplex P, P3; and all border maps equal to zero.

For more information we advise the reader to consult [MB09, Section
6].

Definition 19.22. Let X be a simplicial complex defined by its set of
primitive collections P on the set of vertices V.. We say that simplicial
complex X' on the set of vertices V '\ P is obtained from X by deleting
a primitive collection P if the set of primitive collections of X' is equal
to the family of sets in {Q N (X \ P): Q € P} that are minimal with
respect to inclusion.

Lemma 19.23. Let X be a simplicial complex and suppose that there
exists an element x which belongs to exactly one primitive collection



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 145

P. Let m = |P| and let X' be a simplicial complez obtained from X by
delating P, then

hi (X) _ hiferl (X/)

Proof. Using Lemma 19.20 we will be removing inductively on dimen-
sion reductive pairs (Z, B) such that @ € Z. We start from ({z},0).
One can see that in each dimension we can take all (Z, Z\ {«z}) for Z
containing x as reductive pairs. Let us consider all simplexes of X that
do not contain P\ {z}. One can prove by induction on dimension that
we will remove all of them:

Let D be a simplex. If it contains x, than it will be removed as a
first element of a reductive pair. If it does not, then D U {z} is also a
simplex of X and we will remove (D U {z}, D).

We see that our simplicial complex can be reduced to a complex
with simplexes containing P \ {z}. Now one immediately sees that
such a complex is isomorphic to a complex X’ (with a degree shifted
by [P\ {z}| =m —1). O

The same method allows us to easily compute homologies when there
are few primitive collections and many points. The idea is that we can
glue together points that are in exactly the same primitive collections.

Definition 19.24. Let X be a simplicial complex defined by its set of
primitive collections P on the set of vertices V. Suppose that there
exist two points x,y € X such that they belong to the same primitive
collections. We say that a simplicial compler X' on the set of vertices
V\{y} is obtained from X by gluing points x and y if the set of primitive
collections of X' is equal to {Q \ {y}: Q € P}. We can think of it like
x was in fact two points x,y.

Proposition 19.25. Let X be a simplicial complex and suppose that
there exist two points x,y € X such that they belong to the same prim-
itive collections. Let X' be a simplicial complex obtained from X by
gluing points x and y, then

W (X) = h=H(X).

Proof. In both complexes we will be removing reductive pairs of the
form (Z, B) with € Z just as in Lemma 19.23. In both situations all
that is left are simplexes that contain a set of a form P\ {x}, where P
is a primitive collection containing z. In this situation all of simplexes
of X that are left contain y and they can be identified with simplexes
of X’ that are left, the maps are exactly the same what finishes the
proof. O
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Corollary 19.26. Let X be a simplicial complex on the set of ver-
tices V.. Let X' be a simplicial complex obtained from X by gluing
equivalence classes of the relation ~ that identifies elements that are
in ezxactly the same primitive collections. Suppose |V| — |V/ ~ | =m,
then

R(X) =h"™(X).
Proof. We use 19.25 for pairs of points in the equivalence classes. [

Corollary 19.27. In the situation of Lemma 19.23 and Corollary
19.26 X is acyclic if and only if X' is acyclic.

With these tools we are ready to determine forbidden subsets. In
general we have got two following Lemmas:

Lemma 19.28. If a nonempty subset I is not a sum of primitive col-
lections, then it is not forbidden.

Proof. There exists a € I such that a does not belong to any primitive
collection which is contained in I. Using Lemma 19.20 we can remove
subsequently on dimension reductive pairs (Z, B) such that a € Z. We
start from ({a},0). One can see that in this way we remove all of
simplexes and as a consequence the chain complex is exact. U

Lemma 19.29. A primitive collection is a forbidden subset.

Proof. Using Lemma 19.23 we can remove this primitive collection and
get a complex consisting of the empty set only that has nontrivial
reduced homologies.

This can be also seen from the fact that the considered complex
topologically is a sphere. 0

The following Lemmas apply to the case when the Picard number
is three and we have five primitive collections as in Batyrev’s classifi-
cation. Let us reArnind that primitive collections of simplicial complex
in this case are Y; := {j : x; € Y;}, for our convenience we define also

Xi={j:z; € X;}.
Lemma 19.30. A sum of two consecutive primitive collections is a
forbidden subset.

Proof. Using Lemma 19.23 we remove one primitive collection and get
a situation of Lemma 19.29. O

Lemma 19.31. A sum of three consecutive primitive collections )A/Z-,

—

Yii1, Yiio is not a forbidden subset.
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Proof. First we can remove primitive collection Y;. The image of }71:2
contains the image of }72-:1, so in fact we are left with just one primitive
collection P which is an image of 171:1 We can remove P and ob-
tain a nonempty full simplicial complex which is known to have trivial
homologies. 0

The above lemmas match together to the following:

Theorem 19.32. The only forbidden subsets are primitive collections,
their complements and the empty set.

This gives us that in our situation

Corollary 19.33. A line bundle L is acyclic if and only if it is not
isomorphic to any of the line bundles

O(O&Dvl‘f"'"f‘OéDyl+""f‘Oé;,Dzl‘f‘""i‘aiDtl‘f‘""i‘aéDul‘f‘"')

where exactly 2,3 or 5 consecutive a; == (o, -+, ol

7))

) are negative.

Proof. 1t is an immediate consequence of Proposition 19.17 and Theo-
rem 19.32 O

Corollary 19.34. If all of the coefficients b and ¢ are zero in the
primitive relations from Theorem 19.7 then a line bundle L is acyclic
if and only if it is not isomorphic to any of the line bundles

O(O&lDU -+ OdQDy -+ OngZ -+ Oé4Dt -+ Oé5Du)

where ezxactly 2,3 or 5 consecutive o; are negative and if a; < 0 then

Proof. Since all divisors corresponding to elements of the set X; are
linearly equivalent we match them together and as a consequence «; is
the sum of all of their coefficients. U

19.5. Large family of smooth toric varieties with Picard num-
ber 3. This section contains joint results with Michal Lason [LM11].
We give an explicit construction of a full, strongly exceptional collec-
tion of line bundles in the derived category D°(X) for a large family of
smooth, complete toric varieties X with Picard number three. Namely
for varieties X whose sets X7, X3 and X, from Batyrev’s classification
presented in Theorem 19.7 have only one element. We will use results
from Section 19.4.
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19.5.1. Our setting. In this subsection we establish a family of varieties
which we consider in this section and we also fix notation.

From now on for the whole Section let X be a smooth, complete
toric variety with Picard number three, which using the notation from
Theorem 19.7 has | X;| = | X;5| = | Xy| = 1.

Let 7 = | X3|. Then of course | Xy| = n —r. We allow arbitrary non-

negative integer parameters b := by, co, ..., c,.. This family generalizes
one considered in [DLMO09| (there, the case » = 1 was considered) and
[CMRa]| (there the case b=c¢; = --- = ¢, = 0 was considered).

Remark 19.35. A variety of this type is Fano if and only if

T
n—T>ZcT—|—b.
i=2

In what follows we do not restrict to the Fano case.

Let e1,...,e, be a basis of the lattice N. Let us write what are the
coordinates of the ray generators in the considered situation:

V1 = €1,V09 = €9,...,Upn_p = Ep_p

Y= —€ — = €ppt+Copryat ey — (b 1)(en_pi1 +--+ep)
(19.2)

21 = €npils ey 2 = €y

t:_en—r—f—l_"'_en

U= —€ — = Cpyt Cobppiot -+ ey —blenrp1 + -+ ep)

Let D,, be the divisor associated to the ray generator w. One can eas-
ily see that the divisors D,,,..., D are all linearly equivalent. Let

) Un—r

D, be any their representant in the Picard group. The other equiva-
lence relations that generate all the relations in the Picard group are:

Dy~ D, + D,
(19.3) D., ~ D, +bD, + (b +1)D,
D, ~Di+(b—c¢)Dy+(b—c;+1)D, 2<i<r

From these relations we can easily deduce:

Proposition 19.36. The Picard group of the variety X is isomorphic
to Z* and is generated by Dy, Dy, D,.
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We introduce two sets of divisors. We claim that these sets can be
ordered in such a way that line bundles corresponding to divisors from
these sets form a strongly exceptional collection.

Coly ={—sDy—sDy,+ (—(n—1r)—bs+q)D, :
(19.4) 0<s<r,0<¢g<n-—r}
Coly={—sDy—(s—1)D,+ (—(n—1r) —bs+q)D, :
1<s<r,0<qg<n-—r-—1}

Definition 19.37. Let Col = Col; U Cols,.

Remark 19.38. Let us notice that |Coly| = (r + 1)(n —r + 1) and
|Coly| = r(n—r), so |Col| =2rn —2r* +n + 1.

We calculate the number of maximal cones in the fan defining the
variety X. In order to obtain a maximal cone we have to choose n ray
generators that do not contain a primitive collection. This is equivalent
to removing three ray generators in such a way that the rest do not
contain a primitive collection. First let us notice that we can remove at
most one element from each group X; because otherwise the rest would
contain a primitive collection. We have the following possibilities:

1) We remove one element from X, and X,. Then we have to remove
one element from X3 or X;. We have got 2(n — r)r such possibilities.

2) We remove one element from X, and none from X,. We have got
n — r such possibilities.

3) We remove one element from X, and none from X,. We have got
r such possibilities.

4) We do not remove any elements from X, and from X,. We have
got 1 such possibility.

All together we see that we have 2rn — 2r? + n + 1 maximal cones.
From the general theory we know that the rank of the Grothendieck
group is the same. Let us notice that from Remark 19.38 our set Col
is of the same number of elements.

19.5.2. Acyclicity of differences of line bundles from Col. In this Sub-
section we order the set C'ol and prove that line bundles corresponding
to divisors from Col form a strongly exceptional collection.

Let us first check that Exty, (O(Dy),O(Ds)) = 0 for any divisors
Dy, Dy from the set C'ol and for any i > 0. We know that

Exth, (O(D1), 0(Dy)) = H{(O(Dy)" ® O(Dy)) = HI(O(D, — Dy)).
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This means that we have to show that all line bundles associated to
differences of divisors from Col are acyclic.

Definition 19.39. Let Diff be the set of all divisors of the form
Dy — D», where Dy, Dy € Col.

Proposition 19.40. The set Dif f is the union of the sets Dif fi,
Dif fy, Dif f5, where:

Diffy ={sDy+ sDy,+ (bs + q)D, :
—r<s<rr—-n<qg<n-r}
Diffo={sD;+ (s —1)Dy,+ (bs +q)D, :
—r+1<s<rr—-n+1<q¢<n-r}
Diffs={sD,+ (s +1)Dy+ (bs +q)D, :

—r<s<r—1l,r—n<qg<n-r-—1}

Proof. The set Dif f is equal to the set of all possible differences of two
divisors from Col; and this set contains all possible differences of two
divisors from Coly. The set Dif fy is the set of all possible differences
of the form Dy, — D,y, where Dy € Coly, Dy € Coly. The set Dif f3 is
equal to —Dif f and so it is equal to the set of all differences of the
form Dy — Dq, where Dy € Coly, Dy € Coly. These are of course all
possible differences of two elements from Col. O

From the Corollary 19.33 we know that it is enough to prove that
elements of Dif f are not of the form

a1 D, + ayDy + a3D., + 3D, + -+ as D, + ayD; + asD,,

where exactly two, three or five consecutive a;’s are negative (we call
a number positive when it is nonnegative and consider only two signs
positive and negative) and:

1) if a; < 0, then ay < —(n —r) (ay is in fact sum of all the
coefficients of D,,, which have to be of the same sign),

2) if any o < 0 then o < 0 (all parameters o} are treated as one
group and have the same sign).

From now on we assume that these conditions on «;’s are satisfied.
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Using the relations 19.3 we obtain:

a1 Dy 4+ as Dy + oéDz1 + 04§DZ2 +---+aiD, +asDi+ asD, =

(g + Z o) Dy + (ag — as + Z o) Dy+

j=1 j=1

(19.5)

(o + bag + Z(b — ¢j)ad + as) D,
i=2

Lemma 19.41. If the elements ozé are negative then the divisors from
Dif f are not of the form 19.5.

Proof. If ay was negative, then the coefficient of D, would be less than
or equal to —r — 1 and none of the divisors from Dif f has got such
a coefficient, so ay has to be positive. Since a3 is negative and ay is
positive, then as has to be negative and a5 has to be positive. This
means that the coefficient of D, is less then or equal to —r — 1. The
divisors from Dif f are not of this form. 0

From now on we may assume that «ag is positive.

Lemma 19.42. The divisors from Dif fi are not of the form (19.5).

Proof. Suppose that a divisor from Dif f; can be written in a form
(19.5). We have:

s s
J _ J
Oy + Q3 = Qg — Q5 + as,
J=1 J=1

SO ay + a5 = an. But as, oy and a5 cannot be of the same sign, so ay
and as have to have different signs. As a3 was positive we see that ay
is positive, so a5 and oy are negative. Let us notice that:

oy + bas + (Z(b —¢j)ad) +as <

=2

—n—i—r—i—b(Zag)—lS

j=1

—n+r—1+b(a4+2a§)
j=1
This shows precisely that the coefficient of D, is less than or equal to
—n + 1 — 1 plus b times the coefficient of D;. Let s be the coefficient



152 MATEUSZ MICHALEK

of D;. From the definition of Dif f; the coefficient of D, is at least
—n + 1+ bs. This gives us a contradiction. 0

Lemma 19.43. The divisors from Dif fs are not of the form (19.5).

Proof. Suppose that a divisor from Dif f3 can be written in a form
(19.5). We have:

T T
044—1—5 aézag—ag,—ljtg ad,
Jj=1 Jj=1

SO ay + a5 = ag — 1. The rest of the proof is identical to the proof of
Lemma 19.66. U

Lemma 19.44. The divisors from Dif fs are not of the form (19.5).

Proof. Suppose that a divisor from Dif f; can be written in a form
(19.5). We have:

T s
044+E Oég'):OéQ—Oég,—‘—l—i-E al,
= =1

S0 a4 + a5 = g + 1. But as, ay and aj cannot be of the same sign, so
we have two possible cases:

1) The coefficients a4 and «a; have different signs. In this case the
proof is the same as in Lemmas 19.66 and 19.43.

2) We have ay = a5 = 0 and s = —1. In this case ay has to
be negative, because as was positive. Let s = aq + 377, o be the
coefficient of D,. We have:

al—i—ba},)%—Z(b—cj)ozg—l—ozg) < —n+r+ bs,
=2

so the coefficient of D, is less than or equal to —n + r 4+ bs. But from
the definition of Dif f; we know that the coefficient of D, is at least
bs +r —n+ 1 what gives us a contradiction. U

Now we only have to order the line bundles corresponding to divisors
from Col in such a way that

0 = Exty (O(D1), O(Ds)) = H(O(D1)'®0(Ds)) = H°(O(Dy—Dy)).

for any divisors Dy > Ds.
Let us define the order by: L., < L{, < Lggi1, Let1,qs < Lisg,
where

Ly, =0O(—=sDy—sD,+ (q—bs—(n—r))D,)
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fors=0,...,rand ¢g=0,...,n—1r and
L;q:(’)(—sDt—(s—l)Dy+(q—bs—(n—r))DU)
fors=1,....,r—1land ¢=0,...,n—1r—1. It is easy to see that zero

cohomology of appropriate differences vanish.

19.5.3. Generating the derived category. We prove that the strongly
exceptional collection from Subsection 19.5.1 is also full. First we show
that it generates all line bundles. Due to [BH06, Corollary 4.8| the
collection generates the derived category. In order to generate all line
bundles we need several lemmas. Our first aim is to generate line
bundles of the type sD;sD, + ¢D, and sD; + (s + 1)D, + ¢D,,. We
first do it for fixed s and any ¢ — the result is in Lemma 19.49. The
idea is to generate the line bundles inductively on g. We will be doing
this using the Koszul complexes for families of divisors for different
primitive collections. As the ray generators corresponding to divisors
of a primitive collection do not form a cone, we obtain indeed the exact
sequences given by Koszul complexes.

Lemma 19.45. Let s and k be any integers. Line bundles L, =
O(=sD; — sDy + (k+q)D,) forq=0,....,n—7 and L, = O(—sD; —
(s—1)Dy,+(k+q)D,) forq=0,...,n—r—1 generate O(—sD; — (s —
1)Dy + (n —r + k)D,) in the derived category.

Proof. We consider the Koszul complex for O(D,), O(D,,), ...,O(D,, .):
0—O(-Dy,—(n—r)D,) = -+ — O(-=D,)""®O(-D,) - O — 0.

By tensoring it with O(—sD; — (s — 1)D, + (k+n —r)D,) we obtain:

0 — O(=sD;—sD,+kD,) — -+ — O(—=sD;—(s—1)D,+(k+n—r—1)D,)" "
®O(—sDy—sDy+(k+n—r)D,) = O(—sD,—(s—1)D,)+(k+n—r)D,) — 0.
All sheaves that appear in this exact sequence, apart from the last
one, are exactly O(—sDy — sDy, +kD,),...,O(=sD; — sD,+ (k+n —
r)D,), O(=sDy—(s—1)Dy+kD,),...,O(=sD;— (s —1)D,+ (k+n—

r —1)D,), so indeed we can generate O(—sD; — (s — 1)D, + (k+n —
r)D,). O

Lemma 19.46. Let s and k be any integers. Line bundles L, =
O(=sD; — sDy + (k+q)D,) forq=0,....,n—1 and L, = O(—sD; —
(s —1)Dy+ (k+q)D,) for ¢ =1,...,n —1r generate O(—sD; — (s —
1)Dy, + kD,) in the derived category.

Proof. The proof is similar to the last one. We deduce assertion from
the same exact sequence of sheaves. O
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Lemma 19.47. Let s and k be any integers. Line bundles L, =
O(—=sDy — sDy + (k+q)Dy) forqg=1,...,n—7r and L, = O(—sD; —
(s—1)D,+ (k+q)D,) forq=0,...,n—1r generate O(—sD; — sD, +
(n—r+k-+1)D,) in the derived category.

Proof. The proof is similar to the first one. We have to consider the
Koszul complex for line bundles O(D,), O(D,,),...,O(D,, _,):

0—-0(-D,—(n—-7r)D,) == O(=D,)" "®0O(-D,) -0 =0
we dualize it and we tensor it with O(—sD; — (s — 1)D, + kD,). O

Lemma 19.48. Let s and k be any integers. Line bundles L, =
O(=sDy—sDy+(k+q)D,) forq=1,....,n—r+1 and L, = O(—sD;—
(s—1)D,+(k+q)D,) forq=1,...,n—r generate O(—sD;—sD,+kD,)
in the derived category.

Proof. The proof is similar to the last one. We deduce assertion from
the same exact sequence of sheaves. U

Lemma 19.49. Let s and k be any integers. Line bundles L, =
O(=sDy—sDy+(k+q)D,) forq=0,...,n—r and L, = O(—sDy—(s—
1)Dy+(k+q)D,) forq=0,...,n—r—1 generate in the derived category
line bundles O(—sD, — sD, +¢'D,) and O(—sD; — (s —1)D, +¢'D,)
for an arbitrary integer ¢'.

Proof. We prove it by induction on |¢’|. For ¢ > k+ n — r we use
Lemmas 19.45 and 19.47, for ¢’ < k we use Lemmas 19.46 and 19.48.
O

Next we generate all line bundles of the type sD, + sD, + ¢D, and
sD; + (s + 1)D, + ¢D, with no restrictions on s and ¢g. The ideas are
the same and the result is in Lemma 19.54.

Lemma 19.50. Let k be any integer. Line bundles Ly, = O(—sD; —
sDy +qD,) for s =k,....k+r and arbitrary q and L, , = O(—sD; —
(s —1)D, +qD,) for s =k,...,k+r —1 and arbitrary q generate in
the derived category line bundles L'(k + r,q) = O(—(k +r)D; — (k +
r—1)D, + ¢D,) with arbitrary q.

Proof. Consider the Koszul complex for O(D,), O(D.,),...,O(D,,):
0—-O(-D, —(r—1)D,,— D,) — ...
o= O(=D,)®0(-D,,) ' ®0O(-D,) - O —0.

After tensoring it with O(—(k —1)D, + ¢'D,,) for appropriate ¢’ we get
the assertion. 0
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Lemma 19.51. Let k be any integer. Line bundles Ly, = O(—sD; —
sDy +qD,) for s =k,...,k+r and arbitrary q and L, , = O(—sD; —
(s—1)D,+qD,) for s =k+1,...,k+r and arbitrary q generate in the
derived category line bundles L'(k,q) = O(—kDy — (k — 1)D, + ¢D,)
for arbitrary q.

Proof. The proof is similar to the last one. We deduce assertion from
the same exact sequence of sheaves. U

Lemma 19.52. Let k be any integer. Line bundles Ly, = O(—sD; —
sDy+qD,) for s =k+1,...,k+r and arbitrary q and L, , = O(—sD;—
(s =1)Dy+qD,) for s=k+1,...,k+r+1 and arbitrary q generate
in the derived category line bundles L(k,q) = O(—kD; — kD, + ¢D,)
for arbitrary q.

Proof. Consider the Koszul complex for O(D.,),...,O(D,,),O(D;):
0= O(-D,, — (r—1)D,, — D) — ...
o= O0(=D.)®O(-D.,)" ' ®0O(-D,) = O — 0.

After tensoring it with O(—kD, + ¢'D,) for appropriate ¢’ we get the
assertion. 0

Lemma 19.53. Let k be any integer. Line bundles Ly, = O(—sD; —
sDy +qD,) for s =k,....k+r and arbitrary q and L, , = O(—sD; —
(s —1)D, +qD,) for s =k+1,...,k+r and arbitrary q generate in
the derived category line bundles L'(k+r+1,q) = O(—(k+r+1)D; —
(k+r)Dy +qD,) for arbitrary q.

Proof. The proof is similar to the last one. We deduce assertion from
the same exact sequence of sheaves. O

Lemma 19.54. Let k be any integer. Line bundles Ly, = O(—sD; —
sDy +qD,) for s =k,...,k+r and arbitrary q and L, , = O(—sD; —
(s —1)D, +qD,) for s=k,...,k+r —1 and arbitrary q generate in
the derived category line bundles L(s,q) = O(—sD; — sD, + qD,) and
L'(s,q) = O(=sD; — (s — 1) D, + qD,) for arbitrary s and q.

Proof. We prove it by induction on |s|. For s > k+n—r we use Lemmas
19.50 and 19.53, for r < k we use Lemmas 19.51 and 19.64. U

Finally we proceed inductively on the difference of the coefficients of
D, and D,.

Lemma 19.55. Let k be any integer. Line bundles O(—sD; — (s +
k)D,+qD,) and O(—sD; — (s +k+1)D,+qD,) for arbitrary s and q
generate in the derived category line bundles O(—sD; — (s+k+2)D,+
qD,) for arbitrary s and q.
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Proof. Consider the Koszul complex for O(D;), O(D,):
0—O(-D,—D,) = O(-D;) & O(-D,) - O — 0.

After tensoring it with O(—k'D,, + ¢') for appropriate k" and ¢’ we get
the assertion. 0

Lemma 19.56. Let k be any integer. Line bundles O(—sD; — (s +
k)D,+qD,) and O(—sD; — (s +k+1)D,+qD,) for arbitrary s and q
generate in the derived category line bundles O(—sDy— (s+k—1)D,+
qD,) for arbitrary s and q.

Proof. Consider the Koszul complex for O(D;), O(D,):
0—O(-D;—D,) — O(-D;) & O(-D,) - O — 0.

After tensoring it with O(—k'D,, + ¢') for appropriate k" and ¢’ we get
the assertion. O

Proposition 19.57. Line bundles
Ly, =0O(=sDy—sD,+ (q—bs— (n—r))D,)

fors=0,...,randq=0,...,n—7r and

L'&q =0(=sD;— (s —1)Dy+ (¢ —bs — (n—1))D,)
fors=0,....,r—1and ¢ =0,...,n —r — 1 generate in the derived
category all line bundles.
Proof. We use Lemmas 19.49, 19.54, 19.55 and 19.56. 0

Summarizing, we have proved:

Theorem 19.58. Let X be a smooth, complete, n dimensional toric
variety with Picard number three and the set of ray generators Xy U
-~ U Xy, where

Xo=Av1,...,on}, Xi ={y}, Xo={2z,..., 2}, Xs={t}, Xy={u},
primitive collections XoU Xy, X1 U Xo, ..., X4y U Xy and primitive re-
lations:
VAt Uty —czp— - —cz,— (b+ 1)t =0,
y+zi+--+2—u=0,
HA otz t=0,
t+u—y=0,
UV F Uy —Co2p — - — Gz — bt =0,

where b and ¢ are positive integers.

Then the ordered collection of line bundles

Ly, =0O(—=sDy—sD,+ (q—bs—(n—r))D,)
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fors=0,...,randq=0,...,n—7r and
L'Sﬂq:O(—sDt—(s—l)Dy+(q—bs—(n—r))DU)
fors=0,...,r—1and q=0,...,n—1r —1 where the order is defined

by Leg < L, < Legy1, Ley1qy < Lsg, 18 a full, strongly exceptional
collection of line bundles.

Proof. From Subsection 19.5.2 we already know that this is a strongly
exceptional collection. We have just checked the sufficient condition
for fullness in Proposition 19.57. 0

19.6. The split of the push forward of the structural sheaf not
containing a full, strongly exceptional collection. This section
contains joint results with Michal Lasoni [LM11].

19.6.1. Ezample. Let us consider the case when:
Xo={wn}, Xi={y,- -, u}, Xo={x},
X3 ={t1,...,tx}, Xg={uy,...,u}
then we can take
V1, Y2y ooy Yy b1y e e oy Loy Uy o oo, U

to be a basis of the lattice N = Z?*~1. Other vectors are like in 19.1
with all coefficients b; and ¢; equal to zero. We have linear dependencies
of divisors:

DU1:Du1+Dy1> Dti:DZI+Dy17 Dyiszla DuZ:Dul

Let B be the image of the real torus in the Picard group as described
in the Subsection 19.3. One can easily see that:

k k k

k
B={0(]>_ —aj]D.,+]>_ —al—a}| Dy, +[—a)+ > —ai+> ailD,,) :
1=2 =2 =1

i=1
0<aj,al, a0 <1}
So B is contained in the set:
S :={O(-aD,, —bD,, + (a —c)D,,) :a,b,c € {0,...,k}} =
={O(—-a(D,, — Dy,) —bD,, —cDy,) :a,b,c € {0,... . k}}.

From Corollary 19.34 we know that line bundle is acyclic if and only if
it is not isomorphic to any of the following line bundles

O(Oélel + OéQDyl -+ OégDzl -+ Oé4Dtl + Oé5Du1) =
= O((as + aq)(D,, — Dy,) + (oq + g + a3) Dy, + (a1 + a5)Dyyy),
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where exactly 2,3 or 5 consecutive a are negative and if ay < 0 then
as < —k, if oy < 0 then ay < —Fk and if a5 < 0 then a5 < —k. Let us
observe that line bundles from the set

R = {O(a(D-, =Dy )+bDy +cDu, ) : (a,b,¢) € [g,k]x[—k, —2—1]x[0,k]}

are not acyclic. Indeed fixing oy = —k,a3 = g and taking oy, as
nonnegative and oy negative we can achieve all of them. Let us define

the set of pairs

k a k b k ¢ k a
P = {—(§+§)(Dzl—Dy1)—(§+§) yl—(§+§)Duu—(5—5)(Dz1—Dy1)—
) k  c

k k
_(5 - i)Dzﬂ - (5 - §)Du1) : (a7 bv C) S [57 k] X [_kv _5 - 1] X [07 k]}
It is easy to see that elements of these pairs are distinct and they belong
to S. Difference in each pair is an element of R so it is not acyclic line
bundle. Hence to have a strongly exceptional collection C' in S we
have to exclude at least one element from each pair. To have integer
coefficients of divisors in P we should take a = b = ¢ = k (mod 2), so
we have to throw out at least ’;—; elements among (k + 1)3 elements in
S. Full, strongly exceptional collection has to have [ elements, where
[ is the rank of the Grothendieck group K°(X) (for toric varieties it
is isomorphic to Z!, where [ is the number of maximal cones). In our
case there are at least k&% maximal cones, since each time we throw out
one element from Xy, X, and X5 we get different maximal cone (exact
number is k® + 2k? + 2k). So we have proven the following:

Theorem 19.59. For k > 32 there is no full, strongly exceptional
collection contained in the set of line bundles that come from Bondal’s
construction.

Proof. For k > 32 we have (k+1)* — k% < k% + 2k* 4 2k so the proof
follows from the discussion above. ]

Remark 19.60. Notice that the considered variety is Fano, so is ex-
pected to have a full, strongly exceptional collection.

19.6.2. Our case. Let us consider the case from Subsection 19.5.1, but
with all coefficients ¢; equal to ¢ < b. Let B be the image of the real
torus in the Picard group as described in the Subsection 19.3. One can
see that:

T

B={0(]>_ —allD, + [i —al + cza; —(b+1) Za;)]py+

=1
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n—r T T
—I—[Z —a + cZai - bZai)]Du) :0<al,al <1}
i=1 i=2 i=1
So B is contained in the set:

S :={O0(—=sDy—sDy+qD,), O(—sD;—(s—1)Dy+¢D,) : s € {0,...,7},

qe {—(H—T)—C—(b—C)S),.,.,(b—C)(—S—i—1)}}

Our collection defined in Subsection 19.5.1, or its torsion, is con-
tained in the set S unless ¢r < b. It can be also shown that if this in-
equality fails then there is no full strongly exceptional collection among
line bundles that come from Bondal’s construction.

19.7. P" blown up in two points. The results of this section can be
found in [Miclla].

The varieties we consider are of Picard number 3. Using the clas-
sification of Theorem 19.7 P™ blown up in two points is given by
’X()’ = ’XQ’ = ‘Xg‘ = ’X4’ = 1 and ‘Xl‘ = n — 1 with all other
parameters equal to 0. Choosing the basis of the one parameter sub-
groups lattice N equal to vy, vs,...,¥yn_1, 21 the ray generators of the
fan are the basis elements and vectors yy, t1, uy satisfying:

hh=—21, Y1 =—Y2— " —Yn-1— 21 — V1, U = V1.

The rank of the Grothendieck group is equal to the number of maximal
cones that is 3n — 1. All divisors in a given X; are linearly equivalent
and, as before, are given by D,, D,, D, D;, D, respectively for ¢ =
0,1,2,3,4. Divisors with nonzero higher cohomology will be called
forbidden. The following classification of forbidden divisors is very
easy to establish. In a general case of Picard number three this has
been done in the previous section, but in this special case one can
use arguments of elementary topology. The forbidden divisors in our
case are a1 Dy, + aa Dy + a3 D, + oy Dy + s D,,, where exactly 2,3 or 5
consecutive (in a cyclic way, that is indices are considered modulo 5)
a’s are negative and if ap < 0, then ay < —n + 1.

We have D, = D; + D, and D, = D, + D,. We choose the basis
D, Dy, D,, what gives us forbidden divisors (o + a2 + a3) D, + (a3 +
a4)D; + (aq + a;)D,, with the conditions on a’s as above. A divisor
aD,+bD;+cD,, will be denoted by (a, b, ¢) and we reserve precise letters
for precise coordinates. A line bundle L; will be called compatible
with L, if and only if they can both appear in a strongly exceptional
collection, that is if and only if Ly — Ly and Ly — Ly = —(Ly — Ly) are
not forbidden.
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Let us fix a strongly exceptional collection E. We assume without
loss of generality that 0 € F and that all other divisors in £ have
nonnegative coefficient a.

Lemma 19.61. The only divisors with a = 0 compatible with (0,0, 0)

are:
(0,-1,0),(0,0,—1),(0,1,0),(0,0,1),(0,—1,1), (0,1, —1).

Proof. If b < —1, then we take ay = 0, as = 1, a3 = —1, ay-negative

to obtain b, as-any to obtain ¢. Analogously for ¢ < —1, hence —1 <

b,c < 1. Moreover (0,—1,—1) is also bad (so also (0,1,1)). O

Corollary 19.62. There can be at most 3 distinct line bundles with
a=01wm E. For a fired a we can have only 3 line bundles in E.

Proof. Follows by inspection. 0

Lemma 19.63. For a > 0 the only line bundles (a, b, c) that are not
forbidden must satisfy —1 < b < a and =1 +a—0b < c < a (and by
symmetry —14+a—c<b<a).

Proof. For b < —1 we take a; = 0, ag = —1, a-positive to have a, ay-
negative to have b, as-any to have c. For b > a we look at (—a, —b, —c)
and take a3 = —a, a3 = as = 0, ay-negative to have —b, as-any to

have —c. In the same way —1 < ¢ < a'. So the only case that we

have to exclude is —1 < ¢ < —1 4+ a — b. In such a case we can take
ag=—1,a3=0+1, a0 =0, 01 =a—b—1, a5 =c—a+b+1<0. U

Lemma 19.64. For three consecutive parameters a’s there can be at
most 8 line bundles in E.

Proof. We assume without loss of generality 0 < a < 2. If the lemma
does not hold, then from the Corollary 19.62 we would have to have 3
line bundles for each a. For a = 0 we can have either:

Case 1: (0,0,0), (0,—1,0), (0,0, —1) then for a = 1 there is only one
compatible from the Lemma 19.63 namely (1,0, 0).

Case 2:(0,0,0),(0,1,0),(0,0,1) then for a = 1 the compatible line
bundles are (1,1,1),(1,1,0), (1,0, 1). If we choose all of them then the
only one compatible for a =2 is (2,1,1) from the Lemma 19.63.

Case 3: (0,0,0),(0,—1,0),(0,—1,1); (0,0,0),(0,0,—1),(0,1,—1);
(0,0,0),(0,1,0),(0,1,-1); (0,0,0),(0,0,1),(0,—1,1). All these pos-
sibilities are cases 1 or 2 after subtracting a divisor from all three
considered divisors. O

15The parameters b and ¢ are in symmetry.
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Definition 19.65. Line bundles in the collection E with a > n are
called high. Others are called low.

Lemma 19.66. A high line bundle is forbidden unless either b = 1
(high bundles of type 1)or ¢ =1 (high bundles of type 2).

Proof. Suppose that b = 0 or b = —1. We show that (—a, —b, —c) is
forbidden. Take oy = —1, as = —a + 1, a3 = 0, ay = —b, az-any to
obtain —c. So b > 1 and analogously ¢ > 1. If both coefficients were
strictly greater than 1 we would obtain (—a, —b, —c) by taking all a’s
negative. U

Lemma 19.67. We cannot have high line bundles of both types in E.

Proof. From the Lemma 19.63 a high line bundle must have the coordi-
nate different from 1 greater or equal to n — 1. If we subtract two high
line bundles of different types we can assume that the first coordinate
is positive and one of the others will be less or equal to —n + 2 what
contradicts the Lemma 19.63 for n > 3. t

From now on without loss of generality we assume that we only have
high line bundles of type 1 in E. Let us project all high line bundles
from F onto the first coordinate obtaining a subset of N. Suppose that
this subset has got £ elements, that is high line bundles can have k
different parameters a. We obtain:

Lemma 19.68. There are at most k + 2 high line bundles in E.

Proof. We assumed that 0 € F, so the high line bundles in £ must not
be forbidden. We know that for each high line bundle in £ we have
b = 1, so from the Lemma 19.63 we know that 0 < a — ¢ < 2. Let
us notice that the difference a — ¢ cannot decrease when a increases
for high line bundles in E. Indeed suppose that we have two high
line bundles in E of the form (a1, 1,¢1), (ag,1,¢3) with ay > a; and
as — ¢y < ay — c;. By subtracting these two line bundles we obtain
(ag — ay,0,co — ¢1) that is forbidden by the Lemma 19.63.
Notice that each time we have more than one line bundle for a fixed
a then the difference a — ¢ strictly increases. This means that we can
have one line bundle for each a plus possibly two more as a — ¢ increases
from 0 to 2. This gives us in total k + 2 line bundles.
O

Proposition 19.69. There are at most 3(n — 1) + 6 low line bundles
(from the Lemma 19.64), so k >0 for n > 13.

Remark 19.70. Of course k is at most n + 1. Otherwise we would
have two high line bundles in E with the difference that is high. By
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the Lemma 19.67 the difference would have b = 0, hence by the Lemma
19.66 it would have ¢ =1 and would be forbidden by the Lemma 19.63.

From the definition of £ we know that there is a line bundle L =
(a,1,¢) in E, with a > n + k. Now we investigate line bundles with
a < k, that are called very low.

Lemma 19.71. Fach very low line bundle in E must have b = 0.

Proof. Let B be a very low line bundle. L — B is high, so from the
Lemma 19.66 either the second or third coordinate is 1. The third one
iscp—cg>ar,—2—agp>n+k—2—k=n—2>1,forn>3 We
see that by, — bg = 1. As by = 1 the Lemma follows. O

For very low line bundles in E the parameter c is either a or a — 1
by the Lemma 19.63 and the Lemma 19.71. Reasoning analogously to
the proof of the Lemma 19.68, we see that there are at most k + 1 very
low line bundles (the difference a — ¢ cannot decrease).

Theorem 19.72. The sequence E can have at most: k+1+ %(n— k—
D4+6+k+2<3n—2k+2 <3n—1 forn > 20.

Remark 19.73. The bounds on n can be easily improved. For example
by considering separately the case k =1 one can decrease the bound to
n > 18. We concentrated rather on brevity of the proof than sharp
bounds.
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