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Introduction

In our classical world, there are two practical ways to distinguish two objects. First, we can
measure their intrinsic properties such as their mass or their electrical charges. If these quantities
are all identical, the only possibility is to track their positions versus time. In the quantum world,
because of the wave particle duality, the second method is not relevant anymore. Indeed, the
resolution of the position measurement at different times is limited by one inherent principle
of quantum physics, namely the Heisenberg uncertainty principle. As a consequence, original
situations emerge in quantum physics in which there are, at least, two fully indistinguishable
particles. However, in quantum physics, the particles can be separated into two classes depending
on one internal degree of freedom, namely the spin. On one side, we have the fermions (half-
integer spin) and on the other, the bosons (integer spin).

Bosons are allowed to occupy the same quantum state (which is forbidden for fermions),
described by its energy, momentum and spin. The particles are indiscernible as soon as their
wavefunctions overlap, ie. when the coherence length is of the order of the mean interparticle
distance. In this regime, bosons tend to cooperate because of quantum interferences and they
agglomerate in a single quantum state creating a macroscopic quantum wavefunction of matter.
This new state of matter, which is in the quantum degeneracy regime, has an original equation
of state compared to the classical case. In the peculiar case of weakly interacting particules
at thermal equilibrium, this transition is called Bose-Einstein condensation and can be crossed
varying one of its thermodynamics parameters such as the temperature. This phase transition
has been predicted by S.N. Bose and A. Einstein [I1] 12}, 13] in 1924-1925. The superfluidity of
liquid Helium [14] [15] has been the first experimental observation of such a quantum degenerate
state of matter, ie. in the limit of indistinguishability. It took some times to interpret this
effect in terms of Bose-Einstein condensation. A more direct experimental observation of a Bose-
Einstein condensation has been realized using ultracold atom gas in 1995 [16], opening the way to
the experimental study of Bose gas in the quantum degenerate regime. However, Bose-Einstein
condensation of atoms is intrinsically limited to the ultralow temperatures (sub-microKelvin
temperatures) because of their heavy mass (~ 10°m.). More recently, two major experimental
realizations of a Bose-Einstein condensate at room temperature have been obtained: in 2006 a
condensate of magnons [17], quanta of magnetic excitations in a magnetically ordered ensemble
of magnetic moments, and the Einstein’s dream in 2010: a condensate of photons [18]. In the
following part of this introduction, we will discuss the originalities of the polariton gas compared
to all of these systems and their potential as a quantum degenerate Bose gas to go beyond the
Bose-Einstein condensation.

A candidate for degenerate Bose gas physics: The exciton-polariton is an interesting
candidate to undergo the quantum degeneracy regime. It is a composite particle in solid state
physics made up of an electromagnetic field and an electronic matter field (called exciton) in the
strong coupling regime. As both of these fields are bosons, the polariton is a boson as well. The
first Bose-Einstein condensate of polaritons [19] has been observed in CdTe based microcavities
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for a temperature of the polariton gas of 20K in 2006. It has pioneered the emerging field of
quantum degenerate polariton gas in the solid state environment which has now shown major
results such as polariton superfluidity [1, 2, B3], 4l 5, 6], Josephson oscillations [7] or optical
manipulation of extended polariton condensates [§].

A driven dissipative system linking Bose-Einstein condensates and lasers: Be-
cause of the low lifetime of the photonic component of the polariton (~ ps), a polariton gas is,
by definition, an open and out of equilibrium system with a fixed average number of particles
driven by an external energy input. Quasi-equilibrium is achievable in this condition thanks to
the excitonic fraction of the polariton. Interestingly, depending on the thermalization time 7p
of this gas with respect to the polariton lifetime 7,, it is possible to link two different classes
of quantum degeneracy regime [20]. If 77 << 7, the system can reach a quasi-equilibrium and
transit into a Bose-Einstein condensate. On the other hand, if 77 >> 7,, the system is definitely
out of equilibrium and the polariton gas presents a laser-like transition. The polariton gas is,
therefore, the missing link between the Bose-Einstein condensates and the lasers. Moreover,
the dissipative character of the polariton gas brings to light another unusual property of non-
equilibrium superfluids: the possibility to create a superfluid state with a ground state (ie. a
lowest energy state) with a non-null momentum thanks to the constant energy input |5l 21].

Control and manipulation of the condensate: The solid state environment, despite its
effect on the coherence properties of the polariton gas, provides a powerful tool to control and
manipulate the condensate. For example, it allows electrical injection of polaritons [22], trapping
in original geometries [8, 9, 23, 24] or transport of the degenerate gas of polaritons through a
circuit [§].

Potentiality for room temperature operation: Thanks to its photonic component, the
polariton has a low effective mass ~ 10~®m,. Since, at thermal equilibrium, the coherence length
scales like the inverse of the square root of the mass, polaritons have a larger coherence length
than atoms and quantum degeneracy regime can be reached at temperatures as high as 300K.
Consequently, polaritons are a very interesting candidate to bring the quantum degeneracy from
ultralow temperature to room temperature. A large effort has been done in this direction using
new materials with robust excitons at room temperature.

During this thesis, we have studied two different strategies to study robust polaritons in the
quantum degenerate limit up to room temperature and in original geometries. In both strategies,
we used II-VI wide band gap materials, namely ZnO and ZnSe, because they provide a robust
exciton with a high binding energy, respectively 60 meV and 17 meV, compared to the thermal
energy at 300K, ie. ~ 26meV. In both cases, the growth method are much less developed than
GaAs growth and, therefore, is a challenging task requiring a careful characterization. The first
strategy was a top-down approach. In collaboration with Pr. Hommel, C. Kruse and K. Sebald
from the Bremen university, we have designed and characterized three generations of ZnSe based
microcavities, a heterostructure with two Bragg mirrors and quantum wells in between. We
succeeded in obtaining promising structures such as the observation of the quantum degeneracy
regime at low temperature and stable polaritons at room temperature. However, the poor quality
of the structures at that time, affected by a strong disorder on both the photonic and excitonic
components, prevented us to go beyond these first results. As a consequence, this strategy is not
discussed in this thesis. Very recently, ZnSe-based microcavities of high quality has been grown.
The following step consists in etching these structures in order to trap, control and manipulate
the polariton gas in the quantum degenerate limit and at room temperature. The second strategy
is a bottom-up approach. The structure is a monolithic wire made of bulk ZnO with a diameter
around micrometer scale (called ZnO microwires). It is much less demanding from the growth
point of view compared to ZnSe-based microcavities since it does not involve any heterointerface.



The microwire geometry is an original semiconductor structure and have been poorly studied
before from the strong coupling regime point of view. From a more fundamental point of view,
the polaritons in this microwire geometry are one-dimensional (1D). The study of quantum
degeneracy in a system where only one degree of freedom is free is of high interest. Indeed, a rich
phase diagram from 10K to 300K is expected [25] simply because, in 1D system, traffic jam-like
effects result in the Tonks-Girardeau regime where the boson gas tends to “fermionize”, ie. to
behave like a fermion gas.

Because of the unusual structure of the ZnO microwires compared to the most common
polariton devices, this thesis starts from the very basic electronic and photonic properties in
such ZnO microwires (see part I). Indeed, most of their properties are directly connected to their
bulk character, which has been studied decades ago [26], 27, 28] while, one of our goals, will be to
demonstrate that they exhibit a robust strong coupling regime compared to the currently most
used polariton structure, the microcavities.

The first chapter describes the elementary electronic properties of a bulk ZnO crystal. The
exciton concept, which is a bound state resulting from the Coulomb interaction between an
electron and a hole, will be presented. Then, we will focus on the three main excitons involved in
the light-matter interaction. As described first by J. Hoppfield [26, 27, 28], the true eigenstate of
this structure is a polariton mode, ie. a mixed state between an exciton and a photon, resulting
from the coupling between the three excitons states and one photon mode. This strong coupling
regime will be discussed in terms of the current knowledge on polariton devices.

The second chapter aims, firstly, to describe the photonic mode in a microwire with a hexag-
onal cross-section. For a sake of clarity, the photonic mode in a microwire with a circular cross-
section will be discussed as a first step in order to understand the main characteristics of such
1D confinement. Secondly, our aim will be to demonstrate that the polaritons in a microwire are
similar to the bulk case, ie. they have the same main properties, except for the dimensionality.
In other words, the microwire geometry is simply confining the bulk polariton modes.

Once the concept of 1D polaritons in ZnO microwires is introduced, we will be able to situate
these structures with respect to the up-to-date state of art in the third chapter. We will see that
it is a promising system for room temperature operation because it provides robust polaritons at
room temperature and it is much easier to grow than a microcavity. Moreover, its 1D character
opens the way for the study of 1D out of equilibrium phase diagram from 4K to 300K.

The experimental tools used during this thesis are described in the fourth chapter. The three
main goals of our experimental set-up are to inject optically a large amount of carriers in the
semiconductor in order to reach the quantum degeneray regime and to address the 1D polaritons
in a proper way using 1D Fourier spectroscopy.

The second part of this thesis deals with the experimental linear properties of the ZnO
microwires. In the fifth chapter, we will extract the main charateristics of the strong coupling
regime between the photonic modes and the three main excitons such as the light-matter strenght,
called the Rabi splitting, the one-dimensional character and the polarization properties. GaN
microwires have been as well investigated during this thesis because of their potential for electrical
injection and allows a nice parallel with the ZnO microwires.

In the sixth chapter, the unusual situation of ZnO microwires, ie. polaritons featuring
linewidths at room temperature similar to the low temperature ones, is presented. It will be
explained in terms of the quenching of the LO phonon interaction allowed by the fact that the
polariton splitting exceeds the LO phonon energy. This effect is particularly useful in our case
since it isolates the polaritons from the main source of decoherence in our system, the phonon
bath, even at room temperature.

In the third part, we will investigate the non-linear properties of ZnO microwires at low
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temperature where an unusual situation is observed, ie. a quantum degenerate state of polaritons
with an exceedingly high excitonic fraction of 97%. The seventh chapter aims to demonstrate
that polariton gas can reach the quantum degeneracy regime at low temperature. We will focus
in demonstrating the main features of a quantum degenerate polariton gas emphasizing on the
fact that the strong coupling regime is preserved in this regime.

Finally, in the eighth chapter, thanks to the unusual microwire geometry, we will be able to
address the dynamics of the excitonic reservoir and the relaxation mechanisms from the reservoir
towards the polariton state through the polariton lasing regime. This study is of particular
interest since it allows an insight in the dynamics and the thermodynamics of the polariton gas
and its environment.



Part 1

Introduction to polaritons in ZnO
microwires






Chapter 1

Bulk exciton polaritons in ZnO crystal

Contents
1.1 Excitonsin ZnOf. . . ... ... ... 0 oo, 7
[1.1.1  Crystal structure] . . . . . . . .. ... oo 7
1.1.2 7n nd str el . .o 8
1.1.3 FExcatonsin ZnOl. . . . . ... .o oo 10
(1.2 Bulk polaritons as eigenstates of a ZnO crystall . . . . ... ... 13
[1.2.1  Linear response theory for excitons| . . . . . ... ... .. ... .. 13
[1.2.2  Bulk polariton in ZnO crystall . . . . ... ... ... ... 17

Zn0O microwires exhibit a peculiar situation of strong coupling regime between excitons and
photons in an original structure. Firstly, they are made of pure ZnO: there is no heterostructure.
Secondly, they have a wire-like shape with a diameter of the order of one micrometer. Therefore,
before entering into the detailed description of the strong coupling regime in these structures, it is
thus convenient to describe the electronic properties of a bulk crystal of ZnO. Indeed, the complex
ZnO band structure has important consequences on the strong coupling regime in microwires.

In this part, we will start from the crystal structure and the band structure of ZnO, in order
to explain the exciton levels in ZnO. In particular, we will focus on the “bright” excitons which
interact with light. Then, we will recall that excitons are not the proper eigenstates in a bulk
semiconductor. Their strong coupling regime with light results in a new quasi-particle: the bulk
polariton. We will discuss how this coupling modifies ZnO exciton levels using linear response
theory. Since a ZnO microwire is a bulk structure from the electronic point of view, this review
will provide the required background to introduce microwire polaritons. Indeed, most of the
properties of microwire polaritons derive from those of bulk polaritons.

1.1 Excitons in ZnO

1.1.1 Crystal structure

ZnO is a semiconductor which belongs to the II-VI group. The electronic configuration of Zinc
(equation and Oxygen (equation allow sp® hybridization.

50Zn « (15)*(25)%(2p)°(35)* (3p)*(3d) " (45)° (1.1)

7



Chapter 1. Bulk exciton polaritons in ZnO crystal

Figure 1.1: Wurtzite type lattice. Blue and black sites correspond to the two different species.
a, b and c axis of the wurtzite structure are represented with the black arrows

520+ (15)*(2s)*(2p)* (1.2)

As a consequence, there are four equivalent orbitals organized in a tetrahedron geometry for
each atom site of the crystal. In this kind of arrangement, most common crystal structure, at
ambient conditions, are zinc blend or wurtzite structures. In the case of ZnO, wurtzite is the
most stable phase and is easier to grow [29]. Our microwires have this structure, therefore this
is the one we will consider in this chapter.

The lattice of a Wurtzite structure is hexagonal (see figure with two ZnO units per
unit cell. This crystal is anisotropic with two equivalent axis called A and B (lattice constant
a=b=0.325 nm at ambient condition) and a third one called C (lattice constant ¢=0.52 nm at
ambient condition). This characteristic results in anisotropic electronic and excitonic properties.

1.1.2 ZnO band structure

Historically, a semiconductor is defined as a material which requires energy input (such as pho-
toexcitation, electric field, thermal exitation, etc..) to switch from insulator behavior (electrons
cannot be accelerates) to conductor behavior (electrons are free). In the case of an inorganic
semiconductors, an energetic splitting arises from the periodicity of the unit cell resulting in an
energy band gap where no electronic states are present. Below (respectively above) band gap,
energy bands are called valence (respectively conduction) bands. Without any energy input,
valence band is entirely filled by electrons. They cannot move through the crystal because of
the Pauli exclusion principle. On the other hand, without any energy input, conduction band is
empty.



1.1. Ezcitons in ZnO

Band structure in ZnO

ZnO belongs to direct semiconductor group and is interesting for optoelectronics in the near UV
wavelength range. Indeed, its band gap energy at room temperature is 3.3 €V ( 375 nm). The
fine structure of the valence bands of ZnO results from the wurtzite crystal structure, the spin-
orbit interaction and the crystal field. It is represented on the figure Spin-orbit interaction
couples the spin of an electron with its orbital momentum. The crystal field corresponds to the
electrostatic field induced by the different electronegativity of the compounds (1.65 for Zn and
3.44 for O) and the crystal anisotropy. It can split spatially degenerate states in which more
than one spatial configuration of the wavefunction is possible.

We will now focus on a qualitative description of the band structure of wurtzite ZnO (details
discussed in [29]).

In ZnO, the lowest conduction band is a s-like state. It is associated to one wavefunction
with a zero orbital momentum L = 0 twice degenerated because of 1/2 spins. As the orbital
momentum is zero for this band, spin-orbit does not affect it. Its energy is modified by the
crystal field but it is not split because s-like wavefunction is isotropic. On the contrary, the
highest valence band is a p-like state. It corresponds to three wavefunctions with a non-zero
orbital momentum L = 1 two-fold degenerated because of spins. The crystal field removes the
degeneracy of the p-like state. As it is an uniaxial anisotropy, the three p-like states are split
into two degenerate states in the plane (L, = +1) at higher energy and one state along the c-axis
(L, = 0) at lower energy. In ZnO, contrary to other II-VI materials, spin orbit interaction can
be seen as a weak perturbation compared to the crystal field because of its very ionic character.
Therefore the spin-orbit term involved in the Hamiltonian of the system (usually proportlonal
to S.L with S the spin of the electron) can be approximated to be proportional to S..L.. Spin
orbit interaction is relevant only along the z axis and the momentum quantum number of interest
is J_; = ITZ + 572 In this case, only the degenerate states L, = £1 of the valence band is split
into J, = +3/2 and J, = £1/2.

Finally, as shown on figure there are three different valence bands called, from low to
high energy, A, B and C bands. In the very peculiar case of ZnQ, because of the strong p-d
coupling in the valence band leading to a negative spin-orbit interaction, the two upper valence
bands are inverted compared to usual wurtzite semiconductor (see page 78 of [29] and [30]).

Electronic wavefunction in semiconductor materials

We will now discuss the electronic excitations in a semiconductor to derive, later, the electron
hole bound states. In this case, an electron from the valence bands is promoted to the conduc-
tion band. In the Born-Oppenheimer approximation [31], nuclei are assumed to form a static
lattice creating a periodic potential landscape. Conduction (valence) electrons interact with the
potential and their wavefunctions ¢, () (4, (7)) with a momentum k and a position 7 satisfy
Schrodinger equation. Since these particles are indistinguishable and using the Hartree-Fock ap-
proximation, the ground state of the crystal ¢(r1,...,rx) for N electrons is given by the following
Slater determinant:

S, o) = \/%!Det(wv’,a (7).t 4. (730) (1.3)

with a zero total momentum. In this equation, all the electrons are in the valence band.
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Figure 1.2: Level structure of ZnO presenting the conduction band and the three valence bands.
Aso (Acr) corresponds to the spin-orbit (crystal field) energy and J, to the total momentum
of the electronic band in the weak perturbation limit.

Neglecting electron-electron interactions via Coulomb force, the first excited state reads:

1
Ol e 1) = e Det(W, g (7)., i (50, 5, (1) (1.4)

where one electron is promoted to the conduction band. Its momentum is given by k= k_;—k:l
where ky, (k_;;) is the momentum of the electron in the ground state (in the excited state). In
this state, one electron is in the conduction band and can participate to conduction through the
semiconductor.

1.1.3 Excitons in ZnO

In usual semiconductors, an electron and a hole attract each other via electrostatic interaction
and form a new quasi-particle: an exciton that has a lower energy than the band gap. Switching
on Coulomb interaction in state and [L.4] results in this bound electron hole states.

Generality on exciton: electron hole pair bound by Coulomb interaction

Exciton wavefunction, Hydrogen-like model and binding energy An example of a
complete derivation of the exciton concept can be found in reference [3I]. The crucial point
of this development is that the exciton is an elementary excitation in a many body system
with Coulomb interaction. In this case, the first excited state of the crystal is not described
by equation but by the exciton wavefunction. In a first order perturbation theory, exciton

10
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wavefunction is a linear combination of the electronic wavefunctions given by:
¢ea:c,E = ZAE(k,)¢E/ (15)

where AE(I_{’ ) is the Fourier transform of the wave function of the excited state in real space.

As a result, many electron states participate to the exciton wavefunction (ie. AE(E’ ) is small
compared to 1). Therefore, at low density, the electron states involved in an exciton state fully
satisfy the Pauli exclusion principle.

It can be shown that the envelope function of the exciton (ie. the Fourier transform of AE(%’ )
in equation satisfies hydrogen-like Schrodinger equation, with an effective binding energy
E}, and Bohr radius ap given by:

R et
e Y _
E; = 3 = 5232, wheren = 1,2, ...
. h%
a = —
B ,ue2

where ! =m_ ! + mgl is the reduced mass of the electron-hole system, Ry is the effective

Rydberg radius. n refers to the principal quantum number of the hydrogen model and, conse-
quently, to the shape of the electron-hole envelop wavefunction (s-state, p-state, etc...) and € is
the absolute permittivity. Around zero momentum, exciton has an effective mass M = m, +my,
and its energy dispersion reads:

h2u§—’|2
2M

Ex = E,— E} +

with F, the band gap energy and K the total momentum of the exciton.

In the case of ZnO, for n = 1 state, the exciton reduced mass is u = 0.19 mq [29] where mg
is the free electron mass, the Bohr radius is 1.8 nm [29] and the binding energy is approximately
60 meV [29]. This last value is higher than in other materials used for polaritonic devices based
on inorganic materials: GaAs (4.8 meV), CdTe (10 meV), GaN (25 meV) or ZnSe (17 meV) [32].
As this binding energy greatly exceeds room temperature thermal energy ( 26meV), this exciton
is stable at high density and high temperature. It has been shown experimentally that ZnO
excitons are not ionized at room temperature [33].

Radiative recombination Exciton features a non-zero dipole momentum. Therefore, it is
coupled with light and recombines into photons. However, radiative recombination of excitons
is possible only under certain conditions and, therefore, some excitons are “bright” and other
“dark”. In this paragraph, we will discuss these selection rules.

The first requirement concerns the dipolar nature of excitons. Let us consider a bare exciton,
one can apply the first order perturbation theory to the light-matter interaction hamiltonian.
Assuming that the dipolar matrix element between electrons and holes is independent of their
momentum, the dipole-transition probability reads [34]:

1
Neh

where | X > corresponds to the exciton wavefunction, | 0 > corresponds to the ground state,
Nep, is defined in [1.1.3) ¢, (0) is the envelop function at a zero radial coordinate with usual

| HY P= <X |HZ[0>]*= | rm (0) P|< vt | HY | v >I° (1.6)

11
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hydrogen quantum numbers n, [ and m, H )l? Je is the dipole interaction hamiltonian for exciton
(X) or electron-hole (e) and | ¥¢ Ju > 1s the wavefunction of an electron in a conduction (c) or
valence (v) band.

As a result of equation , since | @nim(0) |? is non zero only for I = 0, only s-like exciton can
recombine via dipole interaction. Exciton with [ # 0 would be dipole forbidden (ie. | HY |>= 0)
and would decay via quadrupole interaction with a much smaller probability. Fortunately, exciton
ground state has a s-like wavefunction with [ = 0.

The second requirement concerns the spin of the heavy-hole exciton. Indeed, exciton recom-
bination involves the recombination of an electron (spin projection £1/2) and a heavy hole (spin
projection +3/2) resulting in four exciton states with total momentum J = +2 and J = =+1.
Since photons have a spin +1, excitons with a total orbital momentum .J = 42 cannot recombine
radiatively unless the recombination process involves a spin-flip process. As a consequence, they
are not directly coupled to light and are called “dark excitons”. On the opposite, excitons with
a total orbital momentum J = +1 can directly recombine radiatively.

ZnO exciton states: Three “Bright” excitons

The previous concepts (wavefunction, binding energy, effective mass and recombination) are
applicable in more realistic structures such as ZnO crystal. However, they get more complex
due to the anisotropy and the multiple valence bands, for example. In ZnO, exciton states result
from the possible transitions between the conduction band and the three different valence bands.
Wavefunction of the exciton is a combination of the one of the electron, the hole and the envelop
function. According to the group theory (exact formulation in [29 B5]), in ZnO, for the n =1
state, one can write the exciton group symmetry as a direct product of the symmetry groups of
its components:

Exciton group Electron group Hole group Envelop function
symmetry symmetry symmetry group symmetry

Using group notation |29, B3], it corresponds to:

'y =T7® (AT’ + BTy + CT'7) @ T’y

FX = AFl =+ AFQ +AF5(X2) + BFﬁ(XQ) =+ BF5(X2) + CF1 =+ CPQ + CF5(X2)

where (x2) means twice degenerated state and I' refers to the symmetry of the wavefunction.

As a result, there exist twelve excitons in ZnO among which only five are bright. Indeed,
depending whether the recombination involves a spin-flip or is dipole-allowed, the radiative tran-
sition probability is drastically modified. Table summarizes these properties. Finally, five
excitons have a large oscillator strength resulting, because of degeneracy, in three resonances
with different energies. AIl's and BT'5 excitons interact both with light linearly polarized per-
pendicularly to c-axis of the wurtzite structure whereas CT'; exciton, at higher energy, mainly
interacts with light linearly polarized parallel to c-axis. Because they have a large oscillator
strength (ie. a high transition probability), these three excitons will be the largest contributors
in the near band-edge light-matter interactions in ZnO bulk crystal.

Table [I.2)summarizes some properties of the three “bright” excitons A, B and C in ZnO. Most
of these physical quantities have been already discussed and new ones, such as LT splitting, will
be discussed later.

12



1.2.  Bulk polaritons as eigenstates of a ZnO crystal

’ Exciton state ‘ Spin-flip involved | Dipole allowed ‘ Transition probability ‘

ATy Yes Yes for E || ¢ Small

Al Yes No Very small
AT'5(x2) No Yes for E L ¢

BTlg Yes No Very small
BT'5(x2) No Yes for £ L ¢

CTy No Yes for F || ¢

CTy Yes No Very small

CT; Yes Yes for £ L ¢ Small

Table 1.1: Selection rules of the A, B and C excitons. (x2) means twice degenerated state. [29]

1.2 Bulk polaritons as eigenstates of a ZnO crystal

In reality, excitons are not the true eigenstates of an infinite crystal. J. Hopfield [26, 27, 28]
understood back in 1958 that exciton is in the strong coupling regime with light because of the
reversible exchange of energy between these two oscillators. The true propagative eigenstates
in this system are bulk polaritons which are an exciton-photon mixture. As ZnO microwires
studied in this thesis are made of bulk material, it is interesting to enter the detailed description
of bulk polaritons in an infinite crystal of ZnO.

In this section, we will first describe the linear response theory which allows to understand the
effect of the light-matter strong coupling regime on the optical properties of a semiconductor.
This method was first developped by J. Hopfield to describe optical response of excitons in
bulk semiconductors and especially ZnO [26), 27, 28]. Then, we will discuss the concept of bulk
polaritons in detail and, especially, in the case of ZnO. Finally, we will obtain the expression of
the Rabi Splitting in bulk material and in ZnO microwires.

1.2.1 Linear response theory for excitons

Linear response theory describes the macroscopic response of a material under electromagnetic
excitation. This semi-classical theory relies on a macroscopic quantity e(w) which characterized
the amount of polarization field generated by an electromagnetic excitation. This effective di-
electric function e(w) in the vicinity of a resonance like the exciton transition can be understood
by a mechanical analogy where the exciton is described by an harmonic oscillator. The Maxwell
equations solved with this dielectric function €(w) accounts for energy properties of the strong
coupling regime in the limit of the linear response, ie. the first order in the polarization field.

Lorentz oscillator

Lorentz oscillator model corresponds to the motion equation of a polarization field under elec-
tromagnetic excitation. Using the fundamental principle of dynamics, the scheme [L.3| can be
described by the equation:

mE = Fs || + | Fy [| + || Feae | (1.7)
with, the Hooke’s law for the spring: || Fs ||= —kx, the viscous resistance force|| ﬁf |l= —~&
and an electromagnetic excitation| Fize ||= ¢|| E || = eEge~ !

13



Bulk exciton polaritons in ZnO crystal

Chapter 1.

Exciton | Energy at 0K (meV) | Energy at 300K (meV) | Polarization selection rules
A 3375.5 [10] 136] 37 3309 [38] mainly £ L ¢
B 3381.5 [10] 36] 37] 3315[38] mainly E L c
C 3420 [10] 136] 137 3355[38] mainly E || ¢

Exciton | Wavefunction group symmetry | LT splitting (meV) | Oscillator strength (meV?)

A I's 1.5]38] 139] 10000

B I's 11.1]38] 139] 73600

C I'y 13.9[381 39] 93300

Table 1.2: Brief summary of A, B and C excitons properties
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1.2.  Bulk polaritons as eigenstates of a ZnO crystal

Electromagnetic excitation

Spring
constant k

Viscous resistance y

Figure 1.3: Mechanical analogy of a Lorenz oscillator under electromagnetic excitation

where k is the spring constant, ~ is the friction coefficient and Ey is the strength of the
electric field at a pulsation w.
Injecting ' = L as well as the resonance pulsation w% = % and Fourier transforming equation

we can write:

[
m

)
wg — w? + iy'w

This oscillating motion will generate a polarization field in the medium characterized by its
polarizibility & = e:%;)) = wg—wz-m’w

(see figure [1.4] left panel) which is softened by the linewidth ' (see figure [1.4] right panel). This
divergence will result eventually in the strong coupling regime.

. This equation has a strong divergence at the resonance wy

Effective dielectric function

In the following, we will see how the polarizibility can be inserted in the Maxwell equations.
Around exciton resonances, a semiconductor can be described as an ensemble of identical and
independant oscillators. If we define N,, the density of oscillator per unit volume, the induced
polarization reads: P = N,aE. As a result, one can define the electric displacement D as the
sum of the electromagnetic excitation and the electromagnetic emitted by the dipoles:

. L Na. -
D=eB+P=ec(l+-2)E
€0

Relative permittivity is defined by D = ¢yeE and leads to an effective complex value of e
including exciton resonance:

NU€2
=14 0" 1.8
¢ wi — w? + iy'w (18)
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Figure 1.4: a) shows the dielectric function associated to the BI's exciton of ZnO at low tem-
perature with /f = 274meV, hwy = 3.383e¢V and hy' = OmeV. b) shows the function with
hy' = 1meV [40]

Oscillator strength

The quantity f = ]Zov—sj is defined as the oscillator strength and corresponds to the numerator of
the fraction of equation It characterizes the strength of the light-matter interaction for the
resonance of interest. In the case of excitons in semiconductor, oscillator strength can be derived
more rigorously in a quantum mechanical way using dipole-field interaction seen in [I.1.3}

2N,wo D2
= H
St | HR |

f

The factor i has been added to to preserve homogeneity of the equation. In this case, the
oscillator strength f unit is eV2.

Complex dielectric function: Polarization response and dissipation in a semiconduc-
tor

The relative dielectric function €(w) is a complex number. The real part of equation describes
the polarization response (including exciton resonances) of the semiconductor material. The
imaginary part of equation describes the dissipation of the energy in the semiconductor
material (via absorption). Equation can be rewritten:

f(hwo)? — (hw)?)

D=1 o — (a7 + () )P -
—f (') (hw)
T = 1.10
™) = ) = (w2 + () ()2 (10
The imaginary part of € is vanishing for Ay’ = OmeV because hy' is characterizing the

oscillation damping. Ay’ # 0meV corresponds to the broadening of the excitonic transition via
non-radiative losses or dephasing induced by exciton phonon scattering for example. Figure
a) shows the dielectric function for iy = OmeV with a vanishing imaginary part and a
divergent real part at resonance. On the other side, figure b) shows the same function but
with Ay = ImeV.
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Longitudinal Transverse (LT) splitting

For each exciton, two states are electromagnetic active and are split. In the case of ZnO “bright”
excitons, this splitting is 1.5 meV for Al's, 11.1 meV for BI's5 and 13.9 meV for CT'1[39].

The first active state is at resonance hwy = 3.383eV where the dielectric function diverges
as shown on figure Indeed, at this point, the Maxwell equation VD = e(w)ﬁE = 0 with
€(w) # 0 leads in the Fourier space to the relation k.E = 0. The total electromagnetic field
(ie. the sum of the electromagnetic excitation and the polarization field) is then polarized (for
both electric and magnetic fields) in a plane perpendicular to the propagation: it is a transverse
field. Excitation and dipole electromagnetic fields oscillate in phase in a transverse mode and
propagate through the crystal. Since it is transverse, this field can couple to the modes exterior
to the crystal.

The second active state is at hw = 3.394eV exactly at 11.1 meV above the exciton resonance.
In this peculiar point, e(w) = 0 and the field is not necessarily transverse. The exciton dipole
and the electromagnetic field are longitudinal and oscillate out of phase (even in an isotropic
medium). For longitudinal waves, the fields points in the opposite direction to the polarization
induced by the oscillators. Consequently, it acts as a supplementary restoring force for the oscil-
lators characterized by the oscillator strength (ie. the light-matter coupling). This consideration
explains that the pulsation of this mode is higher than the transverse mode and physically con-
nect these two quantities. From the equations and e(w) = 0 with hy/ = OmeV, one can
compute a relation between f and wpp, assuming a small LT splitting (wpr < wp):

[ = 2hwrrhw

wrr is a measurable quantity (by reflectivity measurement for example) which is known for
a lot of materials. It is interesting that this quantity provides in a straightforward way the Rabi
splitting (ie. Q = +/f as we will see further) of the bulk polaritons.

Spatial dispersion: ensemble of coupled oscillators

As we have seen in energy and pulsation of excitons depend on the momentum k. Therefore,
the dielectric function including the excitonic resonance depends on this factor as well. This
means that the response of the medium to the electromagnetic field is non-local and depends on
the spatial position. For symmetry consideration of the system, wo(E) is a symmetric function
and can be developed around I' point:

- h2k? R2k?
ky=FEx=FE,—E'+ — = —
hwolk) = Bx = By = B + 53 = hwo & 557
The dielectric function, in this case, depends explicitly on the wavevector k and reads:
f

(hwo (k)2 — (hw)? + il hw

1.2.2 Bulk polariton in ZnO crystal

As we have seen in [1.2.1] linear response theory allows to describe the response of an excitonic
resonance to an electromagnetic excitation. In this subsection, we will discuss the propagating
states in a bulk crystal by applying Maxwell equations with the dielectric function including
excitonic resonance. Bulk polaritons will naturally appear. Then, we will focus on the experi-
mental observation of such quasi-particles in ZnO bulk crystal and their specific properties. As
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we will see, multiple bulk polaritons dispersions can be observed which are related to the three
excitons A,B and C of ZnO.

Bulk polariton dispersion

To obtain the polariton dispersion, we need to take the dieclectric function e(w) into account
in the photon dispersion. Three equations have to be solved together to obtain the polariton
dispersion:

1. The uncoupled photon dispersion relation:
_ hck?
Ve

where E7 is the energy of the uncoupled photon mode for a given momentum k7. This first
equation relation gives the vacuum photon dispersion relation without any excitonic
contribution to the dielectric function.

EY

(1.11)

2. The dielectric function:

fi
(B)=1+ > — T (1.12)
—aB.C EXi — E* +ihyE

where Ex, is the energy of the i*" exciton resonance.

3. The polariton dispersion:
EY
EP = ——— (1.13)

e(EP)
where EP is the polariton energy. This last equation gives the polariton dispersion
relation. It is similar to the uncoupled photon dispersion equation [1.11] however, the
dielectric function (equation [1.12)) including the excitonic resonances has been taken into
account. Moreover, it is an implicit equation compared to equation [I.11; EP is in both
side of the equality.

By solving these three equations [I.11}f1.12| and [1.13]| in the general case and including the
spatial dispersion, it is possible to numerically compute the relation between the polariton energy
energy I, and its momentum k. The result in ZnO is shown on figure by taking into account
only the B exciton. Dashed lines shows the uncoupled case, ie. f = 0. As one can see, because
of the oscillator strength of the exciton, there is a splitting in the region where the uncoupled
transitions cross. This splitting is a result of the anticrossing behavior in the strong coupling
regime. The modes of propagation in the crystal are mixed states between exciton and photon:
the two polarization fields exchange energy. This is the strong coupling regime. The low (high)
energy branch is called the lower (upper) polariton branch.

Interestingly, it is possible to solve the equations [I.11|]1.12)and [1.13]in a simple case. Indeed,
in the case of one excitonic resonance with 4" = 0 and without any spatial dispersion (condition
satisfied in the light cone) and assuming that the polariton energy FE), is close to the uncoupled
exciton and photon resonance compared to the square root of the oscillator strength /f, it is
possible to obtain the simple two oscillators model equation:

(EP — Ex) (EP — E7) = (1.14)

B~
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Figure 1.5: Bulk polariton dispersion for the B exciton alone in ZnO with hy' = 0meV (log
scale). Full lines corresponds to the strong coupling regime and dashed lines to the uncoupled
case (pure exciton and photon).

This equation gives rather simple expressions for the lower (+ sign) and upper (- sign) polariton
branches:

o Ex+E'+£\/(Ex —E,)2+f
UP/Lp 9
We will now link the oscillator strength of excitons in bulk crystal with the so-called Rabi
splitting using the equation . Rabi splitting is defined by the minimal splitting between the two
eigenstates and is achieved when the two non-coupled modes are resonant. Using these conditions
and equation [1.2.2] calculation leads to a very simple relation:

Q= /F = vV2uwrr

which is the Rabi splitting associated to the bulk polaritons when the exciton-photon overlap
is equal to unity. In semicondutors, this value is generally large as compared to Rabi splitting
encountered in the literature in micro-cavities. For example, in CdTe, Qgﬁfé = 36meV while in
CdTe based-microcavities, the Rabi splitting is of the order of 26 meV.

For a set of excitons separated by an energy much smaller than their respective Rabi splittings,
the total oscillator strength can be obtained by adding the oscillator strength of each of them.
So for bulk polaritons in ZnO, in the polarization E_lc, the total Rabi splitting is Qg =

Q4+ Q% = /(135meV)? + (268meV)? = 300meV. For E || ¢, we obtain Qp). = 288meV .
Since the overlap between photon and bulk exciton in ZnO microwires is close to unity, this value
is an indication for a Rabi splitting of the same order of magnitude in these structures.

Momentum space mapping in ZnO

Experimental observation of bulk polaritons is a challenging task. Indeed, the key feature of the
polariton concept is the anti-crossing behavior. However, it is not directly accessible using linear
spectroscopy techniques such as reflection, transmission or luminescence without an elaborate
theoretical fit. Moreover, the lower bulk polariton dispersion is situated outside the light cone
and, thus, is difficult to study using resonant excitation for example. However, as described
in reference [32], it is possible to access the polariton dispersion using non-linear experimental
techniques such as two photon absorption or two photon Raman scattering.
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Figure 1.6: Polariton branches in bulk ZnO. Squares, circles, and triangles refer to resonances
of the ATl'5, BI's, and CT'y states, respectively, measured by three-photon difference frequency
generation and two-photon excitation spectroscopy at 4K. T: transversal exciton, L: longitudinal
exciton. Taken from reference [41]

Figure , taken from reference [41], presents a three-photon difference frequency and a two
photon absorption experiments on a bulk crystal of ZnO. One can see the anticrossing behaviour
around k = 4.107m~! for the E Lc polarization as shown in figure as well as the LT splitting.
In this polarization, AT's and BT'5 have to be taken into account resulting in a third branch in
between the two excitons called middle polariton branch. Therefore, there are three polariton
branches resulting from the coupling of the F ¢ polarized light and the AI's and BT'5 excitons
(see left panel of figure[1.6)). On the other hand, there are two polaritons arising from the coupling
of the E || ¢ polarized light and the CT'; exciton (see right part of figure [1.6). Indeed, AT'5 and
BT's excitons, on one hand, and CT'; exciton on the other results in two linearly cross-polarized
independent families of polaritons. Because of polarization selection rules, in the case of bulk
ZnQ, these two cross-polarized set of polaritons are not coupled together. Interestingly, this
situation will not be fully recovered in ZnO microwires.

Excitonic and photonic fraction of a polariton state

The excitonic fraction of the polariton depends on its spectral position with respect to the energy
of the bare exciton and photon states. When both uncoupled states are at resonance, the lower
and upper polariton fields are made up of half excitonic field and half electromagnetic field.
The excitonic and photonic fraction of the polariton field can be computed thanks to the linear
response theory. In this framework, the quantity of interest is the energy carried by each fields.
In a dispersive medium characterized by its permittivity € and permeability u, the time-average
energy density w, in a general formulation, reads:

Ldwe) o | 1d(p)

1 S,
w = —Re H|?
2 2 dw 2 dw ||
where |E|? and |H|? are the magnitude of the electric and auxiliary magnetic fields. In a semi-
conductor, close to the excitonic resonance, the important variation of the dielectric function €
has to be taken into account while the permability p is constant. Considering a plane electro-

magnetic wave in the semiconductor at an energy hiw propagating without any losses (ie. v/ = 0),
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1.2.  Bulk polaritons as eigenstates of a ZnO crystal

it leads to:

_ «lEP?

1
5 +

2 2
w g (W +wj)

(wf —w?)”
in which the constant part corresponds to the usual time-averaged energy density for a plane wave

and the energy dependent part corresponds to the energy stored in the exciton field. Assuming
Y~ 1, the proportion of energy stored in the exciton field | X|? reads:

f
2 _
X" = f+ 4(hw — huwp)?

(1.15)

The excitonic fraction, given by equation [I.15] is coherent with the exciton-photon mixing picture
| X)? =1 for w = wp (pure exciton case), | X|?> = 0.5 for w = wp — g and |X|? = 0 for large
value of w (pure photon case). As a consequence of equation , the excitonic fraction of a
polaritons changes from zero to unity depending on its spectral position.

The fact that a polariton is a mixed state provides scientifically motivating properties com-
pared to pure exciton or pure photon. First of all, contrary to a pure photon, a polariton can
interact with its environment and other polaritons through its excitonic fraction |X|?. If the
polariton has a non-zero ground state (like in a cavity for a photon), it can lead to a thermal
equilibrium. On the other hand, its photonic component will tend to lower the polariton mass
compared to the pure exciton case because of its steep dispersion compared to the exciton dis-
persion. Therefore, like in a laser, polariton can undergoes bosonic stimulation at high density
but, contrary to the laser, polaritons are interacting, can thermalize and one can goes from pure
photon stimulation to pure exciton stimulation in a solid state environment.

Limits of the polariton pictures in a semiconductor

Strong coupling regime requires a coherence condition which in certain situation can break down
leaving two weakly coupled states. In this subsection, we will explore some relevant limits of this
regime for exciton-polaritons in relation with some interesting features of the polaritons in ZnO
microwires.

Reversible oscillations The first condition to reach strong coupling is a reversible coupling
between photons and excitons. Indeed, to observe the strong coupling regime, exciton radiative
decay has to be reversible. For example, this condition is realized in bulk semiconductor crystal
where excitons and photons can exchange energy indefinitely. However, in a single bare quantum
well structure for example, because of the broken translation symmetry, excitons in the light cone
are coupled to a large continuum of photonic modes (outside the quantum well) and then, strong
coupling regime is unreachable.

Do we need a “one to one coupling”: dimensionality issues? “One to one coupling”
rule states that an exciton state defined by its momentum k will be coupled to only one photon
mode with the same momentum. It is a sufficient condition to reach the strong coupling regime.
This is the case, for example, in a bulk crystal, where the exciton and the photon are both three
dimensional. However, it is possible to observe strong coupling regime even if this condition is
not met, as explained in appendix Cy of reference [42]. In this case, the coupling between single
state (ie. like a photon mode (E, k1)) and a continuum of states is studied. It is shown that
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Chapter 1. Bulk exciton polaritons in ZnO crystal

the parameter of interest is the spectral linewidth of the continuum to be compared to the Rabi
splitting. The density of states in the continuum coupled to the single state A(FE) reads [42]:

A(E) = p(E)|Hi(E)?

where p(E) is the density of states of the continuum coupled to the single state and |H(E)]
is the matrix element of interaction between them. p(E) is increasing with increasing energy
(in the three-dimension case) while |H(F)| is generally decreasing. In the three dimension case,
the density of states A(FE) coupled to the single state is a “bell curve” with a linewidth T'y. As
discussed in appendix Cpyy of reference [42], if 'y is much smaller than the coupling strength
of the system (ie. the Rabi splitting in the case of exciton-polariton), then, the system is in a
strong coupling regime limit.

This argument is valid, for example, for bulk planar microcavities. In this case, the exciton
is free to move in the three dimensions of space whereas the photon propagation is limited to
two dimensions. Therefore, a given photon state defined by its two-dimensional momentum l;::y is
coupled to a one-dimensional continuum of exciton states. The matrix element |H(E)| is non-
zero only in the light cone where the exciton dispersion is almost flat. Therefore, it is possible
to overestimate the linewidth of the continuum I'g by the relation:

EX
2M X 62
which leads to I'g ~ 10peV for ZnO. This value is 10* times smaller than the bulk Rabi splitting
and explains why the strong coupling regime is achievable in a bulk planar microcavity whereas
the dimensionality of the photon and excitons states are different. As we will see in the following
part, this point is as well the reason why strong coupling regime is possible in a structure like ZnO
microwires where photonic modes are one dimensional whereas excitons are three dimensional.

I'y <

Do polaritons require spatial coherence? This criterion has been greatly discussed in
reference [43] by L. C. Andreani. Spatial coherence of the exciton was thought to be an important
criterion to reach strong coupling regime [44] [45]. It states that the exciton coherence length
should be larger than the wavelength of the light. Qualitatively, the coherence length can be
computed directly using the coherence time and the group velocity of the exciton. However, a
simple criterion is impossible to set mainly because the exciton group velocity vy = dﬂ” depends
explicitly on the momentum. Nevertheless, using equation with Ay # 0meV and including
the spatial dipersion of the exciton, one can show that the two polariton dispersions presented

on figure start crossing at a critical broadening +/, given by [44], 45]:

€ohuwg
Mc?

This critical broadening ~., is directly connected to the exciton coherence time corresponding
to an exciton coherence length of the order of the wavelength of the photon states involved in
the strong coupling regime. Exciton-polariton spatial coherence seems to require 7/ < «. . Using
the parameter for a bulk crystal of ZnO, we obtain kv, = 8.3meV . If we compare this value to
thermal broadening measured in reference [46, [47], strong coupling should be greatly suppressed
in bulk ZnO above 175K. This is incompatible with experimental observations [48], 149, 50} 511, 52]
and the criterion breaks up.

Actually, the spatial coherence is guaranteed by the extension of the photonic wavefunction
over many exciton wavefunctions. In other words, excitons involved in the polariton state are

iy, = 2Q

(1.16)
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1.2.  Bulk polaritons as eigenstates of a ZnO crystal

selected by the photonic wavefunction to preserve spatial coherence and, then, the strong coupling
regime holds. This criterion has been greatly discussed by V. Savona in reference [53] from the
point of view of the disorder in microcavities. In this case, quantum well excitons can be localized
by interface fluctuations leading to a small coherence length (ie. of the order of the Bohr radius).
In this review, using theoretical modeling, it is shown that the polariton is not really affected by
the exciton disorder thanks to spatial motional narrowing. Moreover, it is shown that polariton
localization length (and then its coherence length) is of the order of the micrometer thanks of
its photonic component. This fact has been checked, as well, for Frenkel excitons (localized on a
molecule scale) for organic planar microcavities [54].

And temporal coherence? From the temporal point of view, both components of a polariton
should not experience decoherence during, at least, one Rabi oscillation. As a consequence, the
excitonic and photonic linewidths should satisfy:

T x <9 (1.17)

If this condition breaks down, the system is in the so-called weak coupling regime. The Rabi
splitting between the polariton states is impossible to resolve at resonance and the concept of
strong coupling is not valid anymore.

In a bulk ZnO crystal, the Rabi splitting € is equal to 288meV which corresponds to a
beating period % = 14fs. A photon is not affected by decoherence via interaction with matter
and its coherence time is then limited by its lifetime (which is finite in nanostructures due to the
photonic losses). However, exciton is interacting with phonons as well as free carriers and other
excitons resulting in finite homogenous linewidth. This linewidth temperature dependency [46]
as well as direct measurement of decoherence time via four-wave mixing experiments [47] have
been realized on bulk crystal of Zn0O. It leads, at room temperature, to a homogenous broadening
of 20 meV (half-width at half maximum) which corresponds to a coherence time around 60fs.
The criterion is satisfied by one order of magnitude even at room temperature in a bulk
crystal of ZnO.

However, we will see further in this dissertation that exciton homogenous broadening should
be considered in a different way and the criterion is not valid anymore. Indeed, in ZnO mi-
crowires, linewidth of polaritons cannot be directly inferred from the excitonic linewidth caused
by phonon scattering. Normally, polariton linewidth is computed by taking into account the ex-
citonic and photonic linewidth. Actually, we will see that in ZnO microwires, phonon interactions
are only a perturbation to the polariton state (and not the exciton state!). Therefore, strong
coupling regime preserved if the polaritons are protected from the phonon bath (for example)
whereas the exciton is not.

Finally, what is the most relevant criterion to observe strong coupling regime? Fi-
nally, one criterion needs to be fulfilled in any case to reach the strong coupling regime. The
polariton linewidth has to be small enough to observe an anti-crossing behavior which can be
expressed by the following criterion:

r,<Q

where I, is the polariton linewidth.
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Polaritons 1in ZnO microwires

Contents
2.1 Structural description of ZnO microwires| . ... ... ... ... 26
(2.2 Whispering gallery modes (WGM) in cylinder| . .. ....... 26
-section of the wirel . . . . ... .. .. 26
2.3 Hexagonal whispering gallery modes in microwires| . . . . . .. 32
[2.3.1 Hexagonal whispering gallery modes (HWGMSs)| . . . . .. ... .. 33
2.4 General properties of the strong coupling regime in ZnO mi- |
CTOWILEl « + o v ¢ o o o o o o o o o o o o o o o o o o s o o o s o o o oo 36
[2.4.1  Polariton dispersion in Zn0O cylindrical microwire] . . . . . . . . .. 36
[2.4.2  Strong coupling regime, Rabi splittingl . . . . ... ... ... ... 38
[2.4.3  Why 1D photonic modes and 3D excitons would be in the strong |
coupling regime? What 1s the dimensionality of such a polariton?| . 38
[2.4.4  Density of states of the polariton modes| . . .. ... .. ... ... 39
[2.4.5  Two set of cross-polarized polaritons| . . . . .. ... .. ... ... 41
[2.4.6  Exciton-photon overlap and strong coupling regime| . . . . . . . .. 41

In the previous chapter, we have seen that bulk polaritons are the proper eigenstates of bulk
semiconductor, and a fortiori in ZnO where oscillators strength is so large. The A and B excitons
are coupled to the light polarized E_L ¢ whereas C exciton is coupled to the light polarized E|| ¢
with a Rabi splitting of the order of 300 meV. In this thesis, we are interested in ZnO microwires
with a diameter of the order of micrometer in order to confine the light in the cross-section.
This confinement has important consequences on the photon dispersion and its dimensionality
whereas it is not affecting the excitonic properties. The goal of this chapter is to understand
how the polaritons properties are modified in these structures compared to bulk material.

Firstly, we will show that the photonic modes in a cylindrical microwire are the so-called
whispering gallery modes. Then, we will be able to understand the photonic modes (called
hexagonal whispering modes) in a more complex structure: ZnO microwires with a hexagonal
cross-section. These modes are coupled to A, B and C excitons resulting in a peculiar strong
coupling regime between three dimensional excitons and one dimensional photonic modes that
will be discussed.
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Chapter 2. Polaritons in ZnO microwires

2.1 Structural description of ZnO microwires

The microwires we have been studied in this thesis are single-crystalline wurtzite ZnO structures
with a hexagonal cross-section with a typical length of 50 — 300um and a diameter around 1um
(see figure[2.1)). On the c) panel of figure[2.1]is shown an scanning electron microscopy micrograph
of a ZnO microwire where three facets of the hexagon are visible. Wurtzite c-axis is found to
coincide with the wire main axis. The first generation of microwires were grown by a vapor-phase
transport method under atmospheric pressure at 900°C by the team of our collaborator professor
Zhanghai Chen [55]. The results of this method is a powder consisting mostly of ZnO tetrapods
shown on figure a). On each tetrapod, there are four ZnO microwires with a gradient of
radius (see figure 2.1/ b) ). The tetrapods are broken and the wires are dispersed on a substrate
in order to isolate single wires (see figure[2.1]c) ). Surprisingly, this rather simple growth method
provides excellent regularity of the hexagonal shape and very low surface roughness. Moreover,
as we will see this thesis, at low temperature, sharp lines are observed with linewidths below meV
thanks to the excellent ZnO quality. However, only less than one percent of the wires exhibit
strong coupling regime with well-definied polaritons at room temperature because of the random
character of this method. Indeed, in this method, neither the average radius of the wire nor its
gradient of radius is controlled. The length without any photonic or excitonic disorder along the
wires is small: between one to few microns.

The second generation of ZnO microwires (not studied in this thesis) are grown by met-
alorganic vapour phase epitaxy (MOCVD). These wires exhibit a regular diameter over tens of
microns. Almost every MOCVD microwires exhibit well-definied polaritons at room-temperature.

2.2 Whispering gallery modes (WGM) in cylinder

With the hexagonal cross-section of the ZnO microwires, the confinement regime for the light
trapped within the microwire is more complicated because of the broken rotational invariance.
Before its complete description, it is interesting to understand the photonic modes in a simplified
geometry: a microwire with a circular cross-section. We will see how the light is confined in this
structure and why these modes are interesting.

2.2.1 Confined modes in the cross-section of the wire
Energy of WGM

In a wire shaped dielectric material, light can remain confined within the cross-section by total
internal reflection on the air-dielectric interface. WGM corresponds to photonic modes confined
in the circular cross-section and free to propagate along the wire axis. They are fundamentally
different from guided modes because they are still confined even if they are not propagating
along the wire axis (ie. zero momentum along this axis). For WGM, the confinement relies on
the total internal reflections on the circular cross-section. Total internal reflections are circular
cross-section wire made of a material with a refractive index ng larger than in air. Using Maxwell
equations, electric E and magnetic B field inside the structure satisfy the equation [56]:

<V2 +,UJ€(;)22) { g; } =0 (2.1)

where w is the energy of the mode, € the dielectric constant, p the permittivity, ¢ the light
speed and V the Nabla operator. In a elongated cylindrical wire, the system can be considered
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Figure 2.1: Scanning electron microscopy image of : a) powder of ZnO tetrapods b) single
tetrapod with four needle-shape microwires ¢) single microwire lying on a glass substrate. The
hexagon cross-section is materialized with the white line on the panel ¢). Three facets of the
hexagon are visible
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Chapter 2. Polaritons in ZnO microwires

invariant under a translation along the wire axis (called z-axis here) and any rotation around
this axis. Consequently, the solutions of equation can be written, for both the electric and
magnetic field in the form: R(T)ei(m‘b*kﬂ*wt) where 7, ¢, z are the cylindrical coordinates, ¢ the
time variable, R(r) a radial function, m the azimuthal number of the mode and k,the momentum
along the z-axis. The radial function R(r) are given by Bessel’s function of the first kind inside
the wire and Hankel’s functions of the first kind outside the wire.

From the resolution of equation 2.1} two set of modes split in energy are found for k, =0 :

e Transverse Electric (TE) modes: No electric field along z-axis E, = 0
e Transverse Magnetic (TM) modes: No magnetic field along z-axis B, = 0

For k, = 0, energy of each mode F is defined by its azimuthal number m (ie. the number of
half-wavelength in one roundtrip in the cross-section), its radial number j and its polarization
TE or TM. Assuming a wire radius much larger than the wavelength of light and neglecting
decay, a simplified equation of eigenfrequencies is given by [57]:

hc )

Ej,m,TE/TM = dngp (2j +m £1/2) (2.2)

where p is the radius of the wire and the + (-) signs corresponds to the TE (TM) and ng

is the background refractive index. In this equation, the term 2j (m) describes the number of
wavelength along the radius (around the cross-section). The term +1/2 corresponds to the phase
shift accumulated by reflection along the circular cross-section for TE and TM modes. The free
spectral range between two modes of successive azimuthal numbers is A = %Cp. In cylindrical
ZnO wires, this splitting would be equal to 260 meV (for p = 500nm and n = 2.4). Note that
TE and TM modes are degenerate in this model. Indeed, a TE mode described by the numbers
j and m is degenerated with a TM mode described by the numbers j and m + 1 as well as other

TE/TM modes.

Linewidth and Q-factor

WGMs have dragged a lot of interest in microspheres |58 59)] or microdisks [60), 61] because of
the long-lived electromagnetic modes existing in these geometries. Indeed, WGMs do not have
the drawback of mirrors since the reflectivity for total internal reflection is equal to unity in the
limit of the ray model of light. Photonic losses, in these ideal structures, are only limited by
diffraction: its wavefunction spills over the cross-section. The Q factor of a confined electro-
magnetic modes characterizes the storage efficiency of the light: @ = AWT(J)U' It is related to the
number of oscillations of a mode before leaking out of the system. For WGM in microdisks, Q
factor up to 12000 has been measured[60, 61]. In microspheres, this value has reached 107 —8.108
[59, 58]. The main advantage of these modes is that they are supported by structures made of
bulk material without any heterostructures such as Bragg or metallic mirrors.

In reference [57], theoretical linewidth of a WGM in GaAs cylindrical has been calculated
versus the azimuthal mode number m and is displayed in figure Linewidth of WGMs
decreases almost exponentially for increasing azimuthal quantum number m. Indeed, WGM
with high azimuthal number are closer to the ray light model where linewidth tends to zero
because of total internal reflection. In other words, by increasing the azimuthal number, the
wavelength of light decreases and, therefore, photonic losses due to diffraction decrease.
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Figure 2.2: Dependence of the radiative decay rate on mode azimuthal number m of the first
mode with radial quantum number j=0 at photon energy 1.515 €V (parameters taken for GaAs).
Open (solid) symbols correspond to the TM (TE) polarization. Figure taken from [57].

Dispersion of confined photons

In a given WGM defined by the mode numbers (4, m), photons have only one degree of freedom
left characterized by its momentum k., along the free axis: these modes are one-dimensional.
Energy of a photon in a dielectric material is given by the relation: E = f;%k (see subsection
with ng the refractive index of the medium and k the magnitude of the momentum vector.
In a confined system, the magnitude of the momentum k depends only on its component along
the free axis and can be written: k = \/k2 + k3 where ko is a constant. The degrees of freedom
ko are quantized in the other axis. As a consequence, confined photons have a ground state (ie.
a non-zero energy state at k, = 0) in the light cone. The exact value of the energy of the ground
state Ej is given by the equation and depends on the mode numbers j and m. As shown on
figure a), photonic dispersion is a hyperbola. In semiconductor optics, we will focus in the
light cone region (ie. around k, ~ 0) where the photon dispersion is a parabola (see figure
b) ). In this region, the one-dimensional photon dispersion can be written:

hck hick, \? ko (hk,)?
E=—""=|FE? z ~ F z 2.
n Uns < no ) o+t 2M* (2:3)

where the effective reads M*c? = n3Ey. k, is defined on figure c). In the range of energy of
interest for ZnO, this effective mass is M* ~ 20eV ~ 4.10~°m, where m, is the electron mass.
According to their dispersion relations, confined photons behave like finite mass particles. Their
masses is extremely small compared to the exciton mass (ie. mx ~ 0.1me). As a consequence,
curvature of the photon dispersion is much more pronounced than the curvature of the exciton
dispersion and, generally, exciton dispersion is negligible within the light cone because its spectral
shift in this region is generally much smaller than its linewidth.

Polarization versus momentum relation

Even in isotropic material, confinement into WGMSs can result in complicated polarization prop-
erties which can affect in turns polarization properties in the strong coupling regime. As a
consequence, it is interesting to study this relation in an isotropic and, then, in an anisotropic
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Figure 2.3: a) Dispersion of free photon in the vacuum (dashed lines and semi-transparent blue),
of the free photon in ZnO (solid lines) and confined photons in ZnO microwires for j=0 and m=1
to 48 (grey scale color solid line) using ZnO microwires characteristics A ~ 375nm, n ~ 2.6 and
R ~ 500nm. Free photon dispersion in solid line (semi-transparent blue) are shown assuming
zero (non-zero) momentum along the other directions of space. b) Zoom in the region of interest

for ZnO (around 3.3 €V) in the light cone. Dispersions of confined photons are hyperbolas. ¢)
Definition of the momentum parallel k£, and perpendicular k; to the wire
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Figure 2.4: Electric and magnetic fields orientation with respect to the wire for pure TE/TM
modes at k, = 0 (figure a) and b) ) and for mixed modes for k, # 0 (figure ¢) and d) ).

cylindrical microwire to understand its effect on the strong coupling regime between WGMs and
excitons.

Isotropic structure In an isotropic cylinder, from the point of view of the refraction index,
there is no birefringence. Refractive indexes along the wire and perpendicularly to the wire are
exactly the same. The dielectric function € is a scalar quantity independent of the polarization
direction. In an isotropic cylinder, Maxwell equations read:

V.0 = V.= (FE) =0 (2.4)

V.B=kB=0

As a consequence, E, E and B are respectively orthogonal. Figure shows the different
orientations of the electric and magnetic field inside the material for k, = 0 and k, # 0. Following
the definition given in pure TM modes exist only for k, = 0. For k, # 0, a component
of the electric field appears perpendicularly to the wire. There is a mixture of polarization for
k, # 0.

To have a better insight on these polarization properties versus the momentum along the
wire axis k,, we can derive a rule of thumb. The degree of polarization p of a photonic mode as
a function of k, is defined as:

Iy — ITE

 Iry + I
where I7p; (respectively I7g) is the intensity of the electric field parallel (respectively per-
pendicularly) to the wire. This physical quantity can be directly measured using polarization
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Chapter 2. Polaritons in ZnO microwires

sensitive optical components. Notice that these components are in general sensitive only to the
electric field component of the electromagnetic field. Assuming a wire diameter much larger than
the wavelength of light, it is possible to infer the relation between the degree of polarization with
respect to the angle 6 between the total momentum k and the cross-section plane of the wire
(see figure [2.4). The degree of polarization of a TM mode is expected to switch from 1 to -1 for
increasing k., whereas it has a constant value -1 for TE modes. For TM modes, it can directly
be expressed, inside the material, using the angle 6, by:

PTM/in = c05(20)

Thus, WGMs purely TM at k, = 0 acquire some TE components at k, # 0. In ZnO
microwires, it means that, in the strong coupling regime, pure TM WGMs at k, = 0 will be
coupled to both A, B and C excitons at larger momentum k,. The simple figure gives a
rather good physical interpretation to the polarization behavior. However, for a wire diameter
of the order of the wavelength of light, a complete understanding requires a wave model based
on the resolution of the Maxwell equations in the geometry of the wire. In this case, the scheme
given in figure turns wrong. Such a wave model will be presented in the subsection

Anisotropic structure The anisotropy of ZnO makes the pictures even more complicated
because of the birefrengence between the c-axis and the a-b plane. The mismatch between
the two refractive indexes, of the order of few percents in ZnO, has to be taken into account
to reproduce the polarization dependency with the momentum along the wire. Indeed, in an
anisotropic structure such as ZnO, equation becomes:

VE =k.E =k E| (1—) #0

where k| (respectively Ej) are the projections of the momentum k (respectively E) along
the z-axis. This equation is zero (ie. k and E are perpendicular) only in the isotropic case or
at k| = 0. Therefore, a stronger polarization mixing is expected at k, = 0 as compared to the
isotropic case.

In this case, electric and magnetic fields can be written as a linear combination of the cylin-
drical harmonics (see reference [62]):

T (62 t) =D An U (r, ¢, 2,1)
m
where A,, is a weighting term obtained by introducing the boundary conditions, cyl( 0, z,t)
R(r)eiméthkz2=wl) where R(r) is a radial function given by Bessel’s function of the first kind in-
side the wire and Hankel’s functions of the first kind outside the wire and m’ the azimuthal
number of the WGM in the anisotropic case.

2.3 Hexagonal whispering gallery modes in microwires

In the previous section, ZnO cylindrical microwires has been studied to get a simple a physical
interpretation of the photonic modes in these structures. Our microwires have a hexagonal cross-
section. Therefore, we will now focus on the differences provided by this unusual geometry. These
differences comes from the photonic modes supported by a hexagon cross-section: the so-called
hexagonal whispering gallery modes (HWGMSs). Firstly, we will describe them with a simple
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2.8. Hexagonal whispering gallery modes in microwires

Figure 2.5: Ray light representation of HWGM. R corresponds to the minimal radius of the
hexagon

ray-light model which is relevant for large diameter compared to the wavelength of light. Then,
we will move on a wave model based on Maxwell equations. Finally, we will discuss the strong
coupling regime in this structure.

2.3.1 Hexagonal whispering gallery modes (HWGMs)
Ray light model

Hexagonal whispering gallery modes (HWGM) are the eigenstates of the electromagnetic field
in a hexagonal microwires. They are the analogs of whispering gallery modes in a resonator
with circular cross-section but without full rotational invariance around the cross-section. Using
Snell-Descartes law, the difference of refractive between the air and the material leads to a critical
angle value given by: 0. = arcsin(nmaterial) assuming air outside (see figure . In the case of
ZnO, Nuaterial = 2.6 this critical angle is 8, = 23°. As shown on figure [2.5], it is then possible
to find closed ray-lights in this cross-section involving total internal reflection. In the ray-light
model, these modes cannot leaks out of the hexagon.

Using figure and Fresnel relations, one can compute the quantization of the wavelength
for this simple ray light HWGM model. Indeed, in one round, the length of the path 6 R, should
be equal to an integer number of wavelength in the material plus a term of phase shift added for
the reflection at the interface. This leads to:

6R = A (m + garctan(ﬁTE/TM\/ 3n? — 4)> (2.5)

no

with ng the background refractive index of the material, m the azimuthal quantum number
such as m > 1, R, the minimal radius of the hexagon defined in and fry = n~t for TM
modes (E || ¢) and frg = n for TE modes (E L ¢)[63].

This simple ray model of light describes correctly HWGMs energies for large values of the
azimuthal mode number m where the HWGMs wave character vanishes. Using ZnO microwires
parameters (A ~ 375nm, n ~ 2.6 and R ~ 500nm), one finds that the mode number m corre-
sponding to an energy approaching that of the band edge of ZnO is around 18 whereas in planar
microcavity this number is, generally, situated between one and five. This model is then a good
first approach to understand the HWGM spectrum in ZnO microwires.
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However, to go one step further and to understand also the linewidth and polarization prop-
erties in such structures, a wave-model has been developed in references [64], [65] and [62] specif-
ically for hexagonal cross-section resonators. It is based on Maxwell equations in a hexagonal
cross-section including the anisotropy of the refractive index. In this subsections, we will see the
main differences with the circular cross-section case.

Wave model

Eigenstates and dispersion As we have seen in the subsection electric and magnetic
fields in a circular cross-section are given by ¥ (r, ¢, z,t) = R(r)e ’(m¢+kzz @) where R(r) is a
radial function given by Bessel’s function of the first kind inside the wire and Hankel’s functions
of the first kind outside the wire. In the anisotropic case, we have seen that the electric and
magnetic fields can be written as a linear combination of the cylindrical harmonics (see reference
[62]).

The following step consists in taking into account the hexagonal shape. Again, electric and
magnetic fields are written as a linear combination of the cylindrical harmonics, but in the
anisotropic case this time [62]:

panis hex (r,d,2,t) ZAm,\I/amgcyl (ryé,2,t) (2.6)

where A/ , is a weighting term obtained by 1ntroduc1ng the hexagonal boundary conditions and
M the azimuthal number of the HWGM in the anisotropic case. M corresponds to the mode
number of the cylindrical mode with the higher contribution. The approximations made in
this model are based on Rayleigh hypothesis for expansion of fields in cylindrical waves [66].
This model is valid if the perturbation to the cylinder geometry is small (see reference [62] for
more details) which is satisfied for a hexagonal cross-section. However, the sharper the corners,
the more harmonics contribute. Therefore, geometries with sharp corners, this condition is not
satisfied.

Using boundary equations in hexagonal geometry, our collaborators in the LASMEA labora-
tory [62] obtained the dispersion of HWGMs (see figure [2.6) using ZnO parameters. Interestingly,
they show that HWGMs dispersion and spectral position can be easily reproduced by a WGM
model with a slightly different refractive index. Therefore, is is possible to describe HWGMs
dispersion with a WGMs based model which is a lot less demanding from the numerical imple-
mentation point of view.

Linewidth of HWGM Like WGMs, HWGMs feature losses caused by diffraction. However,
the losses are much larger in HWGM due to the six sharp corners. Figure presents the cal-
culated near-field intensity pattern for a given HWGM done by Wiersig [64] where an important
proportion of the field is situated in the corner region.

Therefore, as shown on figure HWGM linewidth is at least two orders of magnitude
larger than WGMs. However, HWGMs have a sufficiently small linewidth (~ 1—4meV on figure
compared to the ZnO Rabi splitting (2 ~ 300meV’) to be strongly coupled to the excitonic
resonance in ZnQO.

Polarization dependency The qualitative behavior of the polarization dependency of HWGM
with the angle of emission 6 is similar to the WGMs case. The quantitative change comes from
the mode mixing described by equation [2.6] This effect if presented on figure 2.9 where the
polarization degree p of HWGMs has been compared to WGMs. TE modes remain stlll close to
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Figure 2.6: Dispersion of TE and TM modes within circular cross-section wires: TE, m=8 (x
symbols, blue) and TM, m=9 (+ symbols, red) and for the corresponding hexagonal modes: TE,
m=2 (dashed blue line) and TM, m=3 (full red line). The four upper branches are the same
modes but replacing m by m+1. The angle 6 relates to the photon angle of emission which is
directly connected to the momentum along the wire axis. Taken from [62]

Figure 2.7: Calculated near-field intensity pattern of a HWGM with well-defined chirality which
is the analogous to a ray of light circling counter-clockwise within the cross-section. Intensity is
higher for redder colors, and vanishes in the dark regions. Taken from [64]
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Figure 2.8: Linewidths of the lower energy modes of the figure versus the angle of emission
0. Red solid line: TM mode in hexagon cross-section. Blue dashed line: TE mode in hexagon
cross-section. Red 4 symbols: TM in circular cross-section. Blue x symbols: TE in circular
cross-section. The index of refraction is n=2.5 and the cross-section area S=0.09 pm?2. Taken
from [62].

-1 over 60°. On the other hand, polarization degree of TM modes is affected by the hexagonal
geometry. Indeed, it almost switches to TE modes between 40° and 60°. Therefore, in the strong
coupling regime, this “TE” modes will be coupled to the three A, B and C excitons. Measurement
of the polarization versus the angle of emission 6 in the strong coupling regime will be studied
in the part IT and compared to this theoretical results.

2.4 General properties of the strong coupling regime in ZnO mi-
crowire

Like we discussed in chapter I, in ZnO, A, B and C excitons are in the strong coupling regime with
light. The microwire shape does not affect the excitonic properties of ZnO and the dielectric
function remains unchanged with respect to the bulk material case. On the other hand, as
shown in the previous subsection, photonic density of states is modified. In the dispersion

=\ 2 -
% = epe(w, k), only the left hand-side term characterizing the photonic component

is modified: photonic states are confined into the WGMs. In this subsection, we will discuss the
theoretical polariton dispersions resulting from this confinement and the expected properties of
such polaritons compared to the bulk case.

relation

2.4.1 Polariton dispersion in ZnO cylindrical microwire

Assuming only one excitonic resonance, polariton dispersion in ZnO cylindrical microwire can
be computed by combining the three equations [1.11}]1.12| and [1.13| given in the subsection
of chapter 1. In these equations, only the dispersion of the photon state is modified because of
the confinement and reads:
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Figure 2.9: Polarization degree of the lower energy modes of the figure hexagon modes m=2
(TE, red full line) and m=3 (TM, blue dashed line) and corresponding cylindrical modes. Taken
from [62].

e Uncoupled photon dispersion relation:

2
_ hek” _ . JE2 + (hck)
Veo €0
where E, is the energy of the uncoupled photon mode for a given momentum k, and Ej is
the energy of the WGM at zero momentum. This equation gives the photon dispersion

relation (ie. energy E7 versus momentum along the wire axis k,) without any excitonic
contribution to the dielectric function.

EY

(2.7)

Figure a) presents the theoretical polariton dispersion for a WGM resonant with the
exciton resonance at k, = 0 obtained using these three equations and Close to the
excitonic resonance, assuming iy’ = OmeV, the dielectric function is divergent and so does
the refractive index. Consequently, for large momentum k., the momentum dependent term in
the polariton dispersion equation vanishes and the polariton dispersion tends to the exciton
energy. This is a typical feature of the strong coupling regime resulting in the anti-crossing
between the lower and upper polariton branches. This anti-crossing behavior, resulting in an
inflexion point, is clearly seen on figure a).

As shown in the polariton dispersion equation the polariton energy E, at k, = 0 scales
like 1/ /e. Therefore, the polariton free interval spectral range depends on the dielectric function
in the strong coupling regime and is decreasing for polaritons getting closer to the exciton energy
as it is observed in figure b).

Another characteristic feature of the strong coupling regime is the modification of the cur-
vature of the polariton dispersion around k, ~ 0 observed in the figure b). Indeed, as the
dielectric function diverges close to the excitonic resonance, the curvature of the polariton (ie.
its dependency on the momentum along the free axis) close to k, ~ 0 is decreased. Therefore,
by measuring the curvature in momentum space of a given polariton modes versus its spectral
position with respect to the exciton resonance, one can compute the dielectric function of the
system (see chapter . This is a direct measurement of the Rabi splitting in microwires.
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Figure 2.10: a) Dispersion of lower and upper polariton branches (solid lines) resulting from
the coupling of the B exciton (flat dashed line) with a photonic mode (dispersed dashed line)
calculated using linear response theory. X (X7) stands for longitudinale (respectively transverse)
exciton. b) Dispersion of three lower and upper polariton branches involving different photonic
mode energy (ie. 3.15 eV, 3.3 eV and 3.45 V). In both case, ZnO microwires parameters at room
temperature have been used.

2.4.2 Strong coupling regime, Rabi splitting

Depending on the WGMs linewidths, the strong coupling regime can be preserved in these kind of
microwires [57]. Indeed, modes with a large azimuthal quantum number have a small linewidth.
For example, on figure [2.2] mode with m = 4 have a linewidth of the order of meV. From
the excitonic point of view, these kind of structures are made of bulk material without any
heterostructure. Therefore, excitonic linewidth is not limited by disorder. For a ZnO crystal,
at low temperature, excitonic linewidth is of the order of the meV. Finally, in a ZnO-based
structure (2 = 300meV’), it is possible to easily fulfill the criterion I',,x < € which is sufficient
to reach the strong coupling regime. Notice that the Rabi splitting taken into account is the
bulk Rabi splitting 2 = 300meV because of the strong confinement providing a close to unity
exciton-photon overlap. In this case, as the free interval spectral range for WGM is around
240 meV, many WGM will be coupled to the excitons resulting in a set of polaritons and not
only one polariton state. Finally, as the Rabi splitting greatly exceeds thermal energy at room
temperature (726 meV), strong coupling regime would be preserved at this temperature.

2.4.3 Why 1D photonic modes and 3D excitons would be in the strong cou-
pling regime? What is the dimensionality of such a polariton?

As we have seen in the chapter I, it is possible to reach the strong coupling regime between a
single state and a continuum of state if the spectral linewidth of the continuum is smaller than
the Rabi splitting. In the case of ZnO microwires, HWMGs have one degree of freedom while
excitons have three degrees of freedom. Figure represents the momentum space in such
a structure. A given state of the electromagnetic field in a HWGM is fully determined by its
energy Ej,, and its momentum along the wire axis k9, ie. two scalars. On the other hand, for
a momentum k2, there is a continuum of excitonic modes coupled to this HWGM state with
energies given by the relation: Ex = ES + %(kg + k2 + (k2)?) where x and y axis corresponds
to the cartesian axis in the cross-section of the wire. An excitonic state is determined by four
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Figure 2.11: Schematic representation of an uncoupled 1D photonic mode and the 3D excitonic
continuum in the momentum space.

numbers (its energy and a three-dimensional wavevector) among which only the component kY
of its wavevector must match the one of the photon state. Therefore, a photonic mode defined
by (E, k?) is coupled to a 2D excitonic continuum.

We should now consider the extension of the photonic mode in the x-y momentum space to
know to which excitons it is coupled to. By definition, the extension of the photonic mode in
the x-y momentum space (which is simply the Fourier transform of the wavefunction in the wire
cross-section) never exceeds the light cone. Therefore, a photonic mode (E, k) is only coupled to
excitons within the light cone. Since the mass of an exciton is 10* times larger than the effective
mags of the photonic mode, we can neglect exciton dispersion in the momentum space in the
light cone and, finally, a 1D photonic mode is only coupled to 3D excitons continuum which has
a linewidth much smaller than its homogeonous linewidth. Therefore, in spite of this not “one
to one” coupling situation, strong coupling regime is possible in this structure.

Using this reasoning, we can understand the dimensionality of the polaritons resulting from
the strong coupling regime in this structure. The photonic mode is only coupled to excitons with a
momentum in the cross-section matching the momentum allowed by the photonic wavefunction in
this plane. Therefore, in real and momentum space, the photonic mode and the coupled excitons
have exactly the same wavefunction. Finally, the resulting polariton has the same wavefunction
which is one dimensional: its degree of freedom in the cross-section of the wire is quantized.

2.4.4 Density of states of the polariton modes

In the previous subsection, we have seen that the 1D polariton modes result from the strong
coupling regime between 1D photonic modes and 3D exciton states. It is now interesting to
wonder what is the density of states of such polariton modes. Indeed, we expect to observe a
1D-like density of states close to k, = 0 for a given polariton mode while we expect to recover
the 3D-like density of states of the excitons above the exciton energy. Firstly we will discuss the
density of states associated to a single polariton mode and then, to the whole set of polariton
modes in a microwire. For a sake of simplicity, we choose here to study a cylindrical wire with
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a large radius such as we can consider the raylight model instead of the wave model. We will
see afterward that these hypothesis simplify the calculations without modifying the underlying
physics.

The cylindrical geometry imposes the cylindrical coordinates in the momentum space, ie. (k;,
k, and k). Since we choose to study a cylindrical wire with a large radius, the wavevector in the
cross-section of a given mode is fully determined by the momentum £k, ie. with its component
along the circle perimeter. The i*” mode will have a momentum in the cross-section written k:j_
The volumic number of states in an element d®k for the i*” mode reads:

2 x 27‘(’dede]€2
(2m)3
To obtain the density of states from the expression we just have to integrate over the
momentum which let the energy constant within § F. We obtain:

g(k)d’k = 8(k1 — k) (2.8)

1, (dE\
g(E) = Tﬂgkj_ <dkz> (2.9)

where Ej; is the energy of the i*" polariton mode. Knowing the energy E;(kz = 0) of the
corresponding uncoupled photonic mode at zero momentum along the wire axis (ie. k, = 0), k'
is obtained thanks to the formula:

L hc

It is then possible to compute the density of states for a given polariton mode. The result is
given by the black line on figure Two 1D-like densities of states are visible below and above
the exciton energy. The lowest energy one corresponds to the density of states of the polariton
branch close to the ground state of the polariton mode (ie. k, = 0) while the higher energy one
corresponds to the region out of the light cone, ie. where the lower polariton is almost completely
excitonic. Notice that the higher energy density of states is non-physical, ie. it would correspond
to the density of states of a one-dimensional pure exciton. However, in order to reconstruct
the smooth transition between the 1D-like density of states below the exciton energy and the
3D-like density of states above, we have to take into account this “1D-like” density of states for
the exciton. Therefore, we are going to sum the equation over all the possible momentum in
the cross-section k:lL for the upper and lower polariton branches. The contribution of the upper
polariton to this sum is negligible since its density of states (directly linked to its dispersion) is
orders of magnitude below the lower polariton one. The sum over all the polariton modes reads:

g(E)zlicwki<dE%>_l (2.10)

o2 £ "L\ dk,

The result of this summation is given by the blue line on figure For a sake of claricity,
the result has been convoluted with a lorentzian with a linewidth of 0.1 meV and presented in
a logscale. Interestingly, we recover the 1D-like density of states well below the exciton energy
while we regain a 3D-like density of states above. In between, a smooth transition is observed.
The fact that, at some point, the density of states is stepped, ie. it is 2D-like (see inset of figure
, raises the question of the true dimensionality of these polaritons. The answer is that
the polaritons are one-dimensional only if the momentum within the cross-section k:ll is frozen
during the polariton lifetime. For example, there should be no decay channels between polariton
modes like the emission of a LO-phonon and the thermal fluctuations should not exceed the
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Figure 2.12: Black line: Logscale calculated density of states using the equation for a single
lower polariton mode with i = 17. Blue line: Logscale calculated complete density of states using
the equation for i ranging from 1 to 1000. Inset: same figure zoomed in the region from
3.366 €V to 3.372 eV where the density of states is 2d-like (ie. displaying steps).

spectral separation between two consecutive modes. In the case of the microwires, it is possible
to find two consecutive modes with a spectral separation above the thermal energy even at room
temperature, ie. 26 meV. However, it is not clear yet if there is a non-negligible channel between
two polariton modes such as the emission or the absorption of the LO phonon. In any case, from
the photoluminescence experiments presented in this thesis, we observe that the luminescence
does not exceed few modes, around 5 to 6. Therefore, if these modes can exchange polaritons,
this exchange does not exceed 5 to 6 modes and the momentum kzﬂ_ can take only 5 to 6 discrete
values. This situation is not purely one dimensional, however, it remains extremely interesting
since the wire axis degree of freedom is free while the two other are almost frozen.

2.4.5 Two set of cross-polarized polaritons

In ZnO, A and B excitons are coupled to light with a polarization E | ¢ whereas C exciton is
coupled to cross-polarized light E || ¢. For k, = 0, WGMs can be separated into two families
of cross-polarized modes: pure TE (ie. E L ¢) and pure TM (E || ¢). As a consequence, for
k., = 0, two set of cross-polarized polaritons should result from the strong coupling regime. At
larger momentum k,, polarization dependency is more striking for two reasons: TM WGM have
a mixed polarization and the strong coupling regime is mixing as well the polarization. This
behaviour will be discribed theoretically and experimentally for ZnO hexagonal microwires in
part II.

2.4.6 Exciton-photon overlap and strong coupling regime

In a hexagonal cross-section microwire, the strong coupling regime is close to the case of the
ZnO cylindrical microwires (see 2.4). The main difference is the confinement of the photonic
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mode. Indeed, for HWGMs, a non-negligible part of the electromagnetic field is situated outside
the wire. Therefore, the exciton-photon overlap is decreased and, as a consequence, the Rabi
splitting. This effect can be easily taken into account to compute the Rabi splitting for ZnO

microwires using the formula [42]:

Zn0O __ ZnO
Q - \/&Qbulk

nwire

where Qf&}i?e (QZ19) is the Rabi splitting in a ZnO microwire (bulk crystal) and o the

exciton-photon overlap integral given by:

o= // (g, 2 (a, ), 2)dadydz |
:E,y,z

where ¥ x (z,y, z) (¥,(x,y, 2)) is exciton (photon) wavefunction.
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Bose-Einstein condensation of polaritons has been experimentally demonstrated at 20K in
2006 [19] in a microcavity. This quasiparticle is a mixed state between two bosons (ie. with
interger spin) and, therefore, is a boson as well. It has opened the way for the study of degenerate
Bose gas in solid state environment. Solid state environment offers new means to manipulate and
study these gases in original geometries with complex interactions with its environment leading
to a very rich physics.

Polaritons in ZnO microwires are one dimensional particles stable at room temperature with
a high Rabi splitting. As a consequence, these particles are potential candidates for the study of
low dimensional Bose gas in solid state environment and could lead to a new class of practical
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Figure 3.1: Band gap renormalization (black line) and the exciton energy (blue line) as a function
of the exciton density.

devices using its macroscopic coherence properties including the low threshold polariton laser at
room temperature.

In this chapter, firstly, we will describe the polariton as a candidate for degenerate Bose gas
physics and look at the up-to-date Bose gas physics achievements involving this particle. Then,
we will report the different works towards the goal of this thesis: 1D polariton gas Physics at
high density and temperature. Finally, the motivations to study the ZnO microwires will be
presented in relation to up-to-date bibliography.

3.1 Polaritons: a candidate for degenerate Bose gas physics

In this section, we will discuss the fact that a polariton is a promising candidate to study
degenerate Bose gas physics. First of all, we will see that it is stable even in the quantum
degenerate limit if the strong coupling does not break down. Then, we will show that it can
undergo the bosonic stimulation which is characteristic of this regime. Finally, we will discuss
the specificities of polaritons to study degenerate Bose gas physics compared to other bosons.

3.1.1 Polariton: a stable boson?

An exciton-polariton is a composite boson. Once strong coupling regime is reached, its stability
relies on the exciton binding energy. As explained in the appendix A of reference [46], in a
bulk crystal, band gap energy decreases with increasing exciton density because of exchange
and correlation effects. On the other side, the exciton binding energy decreases with increasing
exciton density because of ionization via exciton-exciton interaction. Finally, these two effects
compensate exactly in a bulk crystal. The exciton energy is stable whereas its oscillator strength
decreases with increasing exciton density as shown on figure The Mott density is defined
on this figure as the crossing point of the band gap and exciton energy. Above this density, the
stable state, ie. with the lowest energy, is an electron hole plasma: exciton is unstable because
it is instantly ionized.

The critical density characterizing this regime can be estimated, in a bulk crystal, thanks to
the relation: njys ~ é where ap is the Bohr radius and K is a model-dependent parameter,
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greatly discussed in appendix A of reference [46]. In a naive model where K = 1, the Mott
density corresponds to one exciton in a volume delimited by the Bohr radius. However, this
model is overestimating this critical density. A complete and experimentally checked model
taking into account the electrostatic screening and the energy distribution of the excitons gives

ap
3

a value K = 0.002 [32], 67] which gives a mean interparticle distance of I,,, = T 8 ap. For

ZnO, it gives ny;y = 3,4 x 107em™3 which corresponds to an interparticle mean distance of
Iy = 14nm. Let us now compare this electron hole plase transition with the degenerate Bose
gas regime.

For a three dimensional thermal gas, quantum degeneracy arises when the De Broglie wave-

length A = % gets close to the average interparticle distance [ = %\/ﬁ In the case of a
pure exciton in ZnO at 4K, one can compute A ~ 35nm which leads to a critical density of
Ndeg = 2,3 X 10'em=3. Only one order of magnitude in terms of density separates the quantum
degeneracy limit from the EHP transition for a pure gas of exciton. It partially explains the
difficulty to undergo quantum degeneracy for pure excitons.

The picture is completely different for a gas of polaritons thanks to its photonic component.
Indeed, the effective mass of a polariton is 107% — 10~ times lower than an exciton. Therefore,
the De Broglie wavelength associated to a polariton gas at thermal equilibrium is A ~ 5pm.
Quantum degeneracy is then expected well before any decrease of the binding energy of the
excitonic component of the polariton. Of course, if the polariton population coexists with an
excitonic reservoir, the picture is more complex.

3.1.2 Bosonic stimulation

In this subsection, we are going to briefly discuss the reason why bosons tend to occupy only
one state in the quantum degeneracy limit. Firstly, we will discuss a toy model allowing to
understand the role of the quantum interferences depending on the symmetry of the particle
wavefunctions. Then, we will be able to understand the influence of this macroscopic occupancy
on the coherence properties of such a gas.

Symmetric wavefunction for boson

The symmetrization postulate states that the multiparticle wavefunction of bosons is symmetric
by any exchange of two particles. For fermions, the multiparticle wavefunction is antisymmet-
ric. Main consequences of this postulate are the Pauli exclusion principle for fermions and the
bosonic stimulation for bosons. These principles will be qualitatively explained thanks to a
simple calculation.

Two particles are considered here at two positions x, and x; associated with two normalized
and orthogonal wavefunctions ¥, and 1. If these two particles are distinguishable, one can write
the two particles wavefunction ¥, (z1)¥p(z2). The mean square separation between two particles
is given by:

<(p—2a)? >g=< TSI F <> 2<x>< x>y
where < z >;= [ z[¢;(x)|*dz. For two indistinguishable bosons, the wavefunction reads
Uposon (1, x2) = % (Va(1)p(z2) + Ya(2)1hp(z1)) which is symmetric by the exchange x1 <> x2.

On the other hand, for fermions, it is W termion(T1,22) = % (Vo (z1)Vp(z2) — Vg (x2)thp(21))
which is antisymmetric by the exchange z; <+ z2. Finally, the mean square separation between
two particles can be written:
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< (l‘b — l‘a)2 >b/ =< (xb — :L‘(L)Q >d :|:2| < T >gp ‘2

where < @ >g= [z} (x)1q(z)dz. In the two particles case, this calculation shows that
bosons tend to get closer than fermions in real space. More generally, two fermions cannot
be in the same quantum state defined by its position (or its momentum), its energy and its
spin whereas bosons tend to occupy one state in the quantum degeneracy regime. As shown in
this calculation, this property is a consequence of quantum interferences between the particles
wavefunctions. There is no interaction involved in this problem:.

Bosonic stimulation

In a gas of bosons, the probability to decay from an initial state toward a final state is proportional
to N +1 where N is the number of particles in the final quantum state. When N ~ 1 is reached,
bosonic stimulation arises. At a certain point, a macroscopic occupation of this quantum state
will be attained. This is a direct consequence of the constructive quantum interference for bosons.
This behavior, true for photons in a laser as well as for polaritons, has the effect to create a non-
linear increase of the population in the ground state that can be measured via the light emitted
by the particles.

As a matter of comparison, for a gas of fermions, the probability to decay from an initial
state to a final state is proportional to 1 — N where N is the number of particle in the final
state. This terms is canceled when N ~ 1 which is a direct consequence of the Pauli exclusion
principle.

Macroscopic wavefunction coherence: off-diagonal long-range order [68§]

In the bosonic stimulation regime, most of the particles are in one quantum state defined, at
least, by its energy and its momentum. As a consequence of the localization of the wavefunction
in the momentum space, the bosons will have a coherent wavefunction over a macroscopic scale
in real space.

This property is properly explained thanks to the one-body density matrix. It reads:

n(s) =< T (r)T(r+5) >

and can be understood as the probability to annihilate a boson at r + s and create it at r
with the exact same properties. Obviously, in an incoherent system, when s — +oo, n(!)(s) has
to vanish.

However, for a system of indistinguishable bosons, it is possible to see off-diagonal long-range
coherence (ie. n™M (s — +00) # 0). For a gas of bosons in the stimulated regime, the one-body
density matrix in momentum has collapsed (ie. almost one quantum state is occupied) and can be
approximated by a Dirac function. The one-body density matrix in real space, obtained simply
by Fourier transforming the density matrix in momentum space, is then constant whatever the
value of s. In this case, the gas of bosons is coherent over a macroscopic scale.

This macroscopic coherence has dragged an important interest. Indeed, a macroscopic wave-
function over pm allows to completely manipulate quantum mechanics and to bring quantum
phenomena at our scale in a solid state environment. As we will see in it has already been
possible to “play” with this macroscopic wavefunction in original structures.
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3.1.3 Originality of polaritons as a degenerate Bose gas
Polariton laser without inversion

We will now discuss the fact that, compared to an usual laser, polariton laser, in the ideal case,
does not require population inversion to reach the amplification regime. Left panel of figure [3.2
presents the principle of a laser with two levels 1 and 2. The incident light is resonant with the
two levels transition of an active medium. In this case, the absorption is equal to K N7 whereas
the stimulated emission is proportional to K No where K characterized the transition probability
and is similar for absorption and stimulated emission. In this simple model, we have neglected
the spontaneous emission because it is only a weak contribution compared to the stimulated
emission. Light amplification is possible if the stimulated emission exceeds the absorption. It
leads to the criterion No — N1 > 0 which corresponds to the population inversion achieved using
three or four levels systems.

As shown on the right panel of figure the situation is different for a polariton laser. It
has been shown in reference [69] that the population inversion condition should not be required
for polaritons. Indeed, amplification of the polariton field starts as soon as there is one polariton
per lifetime in the polariton state, ie. IN,, ~ 1, since the polaritons cannot be re-absorbed by the
level 2 (see figure . The polariton state is filled by N2/r. particles per time unit where 7, is
the time constant characterizing the relaxation from the level 2 towards the polariton state. In
this case, threshold of the amplification of the polariton field is reached when the polariton filling
is of the order of the losses. It corresponds to the relation N2/r, = Np/7, where 7), is the lifetime
of the polariton including radiative and non-radiative lifetime. This class of laser would be,
indeed, thresholdless if 7/, < 1. Therefore, polariton lasers could lead to low threshold lasers
(ie. without population inversion) by taking up technological challenges using room temperature
suitable materials. However, in realistic structures, it is observed that the threshold is still high
because of:

e the difficulty to inject efficiently particle in the level 2 (electrically or optically) without
degrading the structure

e the high value of the ratio /7, around 100 which is leads to the population inversion
relation No ~ 100V,. Indeed, the relaxation from the level 2 is generally not efficient

e the additionnal relaxation channels of the the level 2 towards other states

Specificities of a degenerate polariton gas

A polariton is a very unique boson because it is a composite quasiparticle made up of excitons
and photons in a solid state environment. First of all, mainly because of its photonic component,
it has a short lifetime. For example, in ZnO microwires, radiative lifetime of polaritons is of the
order of one picosecond. In order to obtain a fixed average number of polaritons in the system,
one needs to permanently inject polaritons to counter the photonic losses. This is possible, for
example, by non-resonant optical pumping. In this case, hot carriers are injected at high energy
and, then, relax towards the polariton states. Bosonic stimulation is reached, if the average
number of particles of a given state attains one (ie. N, ~ 1). By definition, this system is
intringically out of equilibrium. As the average number of particles is conserved, this system is
in a quasi-equilibrium and can reach thermal equilibrium.

The photonic losses have an interesting counterpart. Photons emitted by the polaritons give
a direct insight on its properties. It is then possible to obtain directly the first/second order
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Figure 3.2: Schematic representation of the principle of the photon laser (left panel) and the
polariton laser (right panel)

spatial /temporal correlation functions of the system. These quantities are directly connected to
the degree of coherence of the system.

Because of its photonic component, polaritons have a low effective mass compared to a pure
exciton. In the case of ZnO microwires, for example, polariton mass is 10* — 10° smaller than
the exciton mass. As a consequence, quantum degeneracy in the thermodynamic limit is possible
at elevated temperatures and could lead to room temperature quantum degenerate states if the
excitonic component is stable in this regime, which is the case for ZnO excitons.

Contrary to pure photons, a polariton can interact with its environment (phonons, excitons,
polaritons, etc...) through its excitonic component inducing complex thermalization process.
However, as we will see in chapter 6, original situations can occur in which polariton are isolated
from the phonon bath at room temperature.

Finally, a polariton gas is a non-equilibrium bosonic system in a solid state environment
connecting laser physics and degenerate Bose gas physics.

3.2 Polaritons: Low dimensional Bose gas physics achievements

As we have seen, polariton is a suitable particle to undergo degenerate Bose gas transition
in solid state environment. In this section, we will discuss the up-to-date achievements in low
dimensional polariton in the quantum degeneracy limit. We will begin by the basic work on BEC
and superfluidity in CdTe 2D planar microcavity. Then, we will describe the works exhibiting
interesting properties in structures with original geometries.

3.2.1 BEC/Superfluidity in CdTe microcavities

Even if true BEC is forbidden in dimension lower than three [68], it is still possible to reach
quantum degeneracy in a thermal gas. The name of this kind of transition in two dimensions is
the Berezinskii-Kosterlitz-Thouless transition which is the analog of BEC in 3D. As this transition
presents the same properties than a true Bose-Einstein condensation (ie. macroscopic occupancy
of the ground state, increase of the coherence time of the system, thermal equilibrium before
threshold and coherence build-up), this phenomenon has been called, by extension, Bose-Einstein
condensation of polaritons. Interesting properties of such a gas, like superfluidity or Josephson
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Figure 3.3: Schematic representation of a planar microcavity. Z-axis corresponds to the confined
axis.

oscillations, have been demonstrated and will be discussed in this subsection. First of all, we
will briefly describe a microcavity as it is the most usual structure in polariton physics.

What is a planar microcavity?

A planar microcavity has been the most widely used structure in the polariton physics. As shown
on figure [3.3] it is composed of two mirrors facing each other. Photons are confined along the
z-axis defined in figure [3.3] and free to propagate in the plane. An excitonic active medium is
placed at the antinode of the confined photon mode. We focus here on the planar microcavities
in the strong coupling regime, ie. the excitonic and photonic losses are low enough to have energy
exchange between the two fields.

Mainly, two types of mirrors can be found in the literature:

e The first ones are distributed Bragg mirrors which consist of an alternation of dielectric
materials with different refractive index. By adjusting the refractive index and the thick-
ness of each layer, the reflected light by these multi-layers is constructively interfering.
Exceedingly high reflection above 99.9% can be obtained. However, a large part of the
electromagnetic field is located in the mirrors, which are micrometer thick, and does not
interact with the excitonic active medium, reducing the light-matter coupling. From the
growth point of view, these heterostructures are challenging because it requires to have
lattice matching all along the structure.

e The second ones are metallic mirrors. The reflectivity of such a mirror is low in UV (65%
at 380 nm for a 10 nm thick layer of Aluminum). However, if the strong coupling regime is
reached with such a low reflectivity, a larger part of the electromagnetic field will interact
with excitonic active medium compared to distributed Bragg mirrors resulting in a larger
light matter coupling. This kind of mirrors can be deposited on any material and does not
affect the quality of the excitonic active medium

Two strategies, depending on the material, exist for the active medium:

e For materials with a low exciton binding energy, well below the thermal energy at room
temperature (for example, 4.8 meV for GaAs, 10 meV for CdTe), the exciton is not stable
enough against high density and temperature. Therefore, in order to artificially increase its
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binding energy, excitonic active medium based on these materials are composed of mutiple
quantum wells. As described in [70], lowering exciton dimensionality greatly enhances its
binding energy. For example, it can be doubled in quantum well system if its thickness
corresponds to the exciton Bohr radius. It results in an enhanced oscillator strength, and
consequently, a higher Rabi splitting. Moreover, in a microcavity, in order to preserve the
strong coupling regime at high polariton density, it is possible to increase the number of
quantum wells. Indeed, the polariton density per quantum well at the critical density is
decreased if the number of quantum wells is increased [71]. Of course, the complete growth
of these structures (Bragg mirrors and quantum wells) is a complex task.

e In large band gap materials, the exciton binding energy is much larger (60 meV for ZnO,
25 meV for GaN) and the exciton is stable even at room temperature. So, for microcavities
based on these materials, the active medium consists only in a bulk crystal with a thickness
of the order of hundreds of nanometers providing a larger exciton-photon overlap and
coupling. Moreover, as the number of hetero-interfaces is reduced in this case, the overall
structural disorder in the microcavity is reduced.

As we will see now, these structures have exhibited very interesting features such as Bose-Einstein
condensation of polaritons, superfluidity and Joesephson oscillations. A part of the research effort
tries to obtain a stable polariton in new material such as ZnO or GaN at room temperature in
order to produce the so-called polariton laser.

Bose-Einstein condensation in CdTe planar microcavity|19]

Bose-Einstein condensation (BEC) is a thermodynamic phase transition towards a quantum
degenerate Bose gas. Indeed, in this case thermal equilibrium is reached. Degenerate Bose gas
regime can be obtained via increasing the number of particles or decreasing the temperature of
the system in order to increase the de Broglie wavelength.

Strong evidences for BEC of polaritons have been reported at 20K in 2006 in CdTe planar
microcavity [19]. Here are the proofs brought by the authors:

e Macroscopic occupancy of the ground state of the lower polariton branch

e Linewidth narrowing: indication for an increase of the coherence time in the system

e Negligible blueshift (less than 7% of the Rabi Splitting)

e Thermal equilibrium with an effective temperature of the polariton gas of 20K

e Linear polarization build-up at threshold without any correlation with the laser polarization

e The most unambiguous proof: Long-range spatial correlations over 10pm above threshold.
Below threshold, spatial correlation are given by the thermal De Broglie wavelength of the

polaritons (72-3 pm) (see figure

This work has opened the field of polariton quantum degeneracy physics. However, CdTe
microcavities suffered from photonic disorder which was localizing the condensate in fluctuating
potential. A good control of the condensate wavefunction was not possible. Moreover, CdTe
semicondcutor, because of the low binding energy of the free exciton (~ 10meV), is not suitable
for room temperature experiments.
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Figure 3.4: a) Correlation mapping below threshold using a linear colour scale. Each point (x, y)
in the map represents the correlation between points (x, y) and (-x, -y) of the condensate. The
correlation peak extends over 2.6 pm, thus providing a measurement of the de Broglie wavelength.
b) Same as a) but for excitation above threshold. Some islands with a high degree of correlation
(up to 30%) are formed for distances as long as 4.5 times the thermal de Broglie wavelength.
These islands correspond to the bright spots caused by the in-plane spatial disorder experienced
by the condensate. Figure taken from [19].

ol



Chapter 8. Towards low dimensional Bose gas in solid state environment: a short review

3.2.2 Superfluidity [1}, 2, 3], 4, [5, 6]

As polaritons are interacting particles, BEC of microcavity polaritons exhibits superfluidity.
Many superfluidity criteria have been checked:

e Landau criterion: frictionless flow below critical velocity of condensed polaritons through
defects under resonant pumping|2l 1]

e Quantized vortices 3, 4, 72, [73]: A quantized vortex has a zero density of polaritons in its
center and macroscopic phase shift of n27 around its center. It is the analog of a vortex in
classical hydrodynamics. In disorded system, vortices are pinned on defects. Notice that
half-vortices have been studied in a polariton fluid as well (ie. phase shift of n7 in only one
polarization) thanks to the spinor character of the polariton field (ie. the two polariton
degenerate spin states).

e Persistent superflow [5]

e Bogoliubov dispersion using a four-wave mixing experiment [6]

3.2.3 Josephson oscillations with two coupled 0D polariton degenerate gas
[7]

Josephson oscillations have been demonstrated in two polariton systems: two GaAs coupled mi-

cropillars (not published yet) and two condensates trapped in disorder traps in CdTe microcavities|7].

In both paper, two polariton traps are weakly coupled. Above condensation threshold, exchange

of population and phase is observed in time-resolved experiments. This phenomenom is achiev-
able thanks to the macroscopic wavefunction arising above condensation threshold.

3.3 Towards polaritons 1D Bose gas physics at room temperature

In this section, we will discuss the up-to-date experimental realization connected with the scope
of this thesis, ie. the study of 1D polaritons at room temperature, in order to situate the ZnO
microwires in this problematic. First, we will treat the planar microcavities based on large
band gap semiconductor such as ZnO and GaNN, designed to exhibit polariton lasing at room
temperature. Then, 1D GaAs cavity wires will be described. These structures, which are the
closest to the ZnO microwires, exhibit one-dimensional polaritons . However, GaAs excitons
are not stable at room temperature. Finally, we will discuss ZnO nanowires where the strong
coupling is realized at room temperature between the ZnO excitons and guided-modes along the
wire leading to zero-dimensional polaritons.

3.3.1 Planar microcavities based on large band gap semiconductor (2D sys-
tem)

Zn0 is well-suited for room temperature operation thanks to its large exciton binding energy of
the exciton (T60meV [74]) compared to the thermal energy (~26 meV). Therefore, it has dragged
a large interest in order to reach strong coupling at room temperature [75], [76] and, therefore,
the long awaited low threshold polariton laser. A microcavity based on ZnO is a technological
challenge. Indeed, in order to reach polariton stimulation at a relative low pumping power,
high quality factor is required. However, it is difficult to grow a high quality distributed Bragg
mirrors with a small lattice mismatch with ZnO. Therefore, most of ZnO based-microcavities
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suffer from excitonic and/or photonic disorder. Table summarizes the properties of the most
used materials in the ZnO-based microcavities described in this subsection and will help us to
understand the issues and the technological challenge to grow such a cavity. In this subsection,
we will investigate some realizations of ZnO-based microcavities which exhibit strong coupling
regime and polariton lasing at room temperature.

ZnO microcavities with oxide-based distributed Bragg mirrors [77]

In reference [77], the distributed Bragg mirrors of the microcavity is based on oxide alloys (Yttria
stabilized zirconia (YSZ)/Al2O3). The Rabi splitting was measured to be around 100 meV up
to room temperature. As shown on table Y SZ/AlsO3 distributed Bragg mirrors have the
advantage to exhibit a high index refractive mismatch 30% leading to a high quality factor of
the distributed Bragg mirrors up to 700. However, the growth of a ZnO wurtzite crystal phase
on amorphous layers (see table prevents from having a good quality ZnO layer. Therefore,
the exciton inhomogeonous broadening was around 15 meV because of the disorder.

Hybrid ZnO microcavities [48, 51}, [49]

In hybrid ZnO microcavities, the bottom mirror is based on nitrides (AIN, GaN or their ternary
alloy (Al,Ga)N) and the top one on oxides (SiOzand Si, Ny or HfOz). This strategy is in-
teresting because it allows to grow the nitride-based Bragg mirror and the ZnO layer with the
same wurtzite structure and with a small lattice mismatch (less than 5%, see table [3.1). As a
consequence, the quality of the ZnO layer is generally high (broadening of 5 meV measured at
low temperature in reference [49]). High values of the Rabi splitting up to room temperature
have been measured in such microcavities (€2 ranging from 40 meV to 58 meV). However, the low
refractive index difference of AIN/(Al,Ga)N and GaN/(Al,Ga)N as well as cracks prevent to
obtain a high quality factor (highest value @ = 220 in reference [48]). Generally, the top Bragg
mirror is made of oxide because it has a higher reflectivity and does not induce disorder on the
ZnO layer. An increase of the quality factor in these hybrid structures is crucial for the real-
ization of a polariton laser at room temperature based on ZnQO. Recently, a hybrid microcavity
with a high quality factor of 500 and a Rabi splitting around 130 meV has exhibited polariton
lasing at 120K [78] which is a breakthrough toward polariton lasing at room temperature in ZnO
based devices.

GaN-based microcavity [79) 80]

GaN material provides a free exciton binding energy around 25 meV which is suitable for room
temperature experiments. In reference [79], the bottom mirror is made of AlInN/AlGaN, which
are almost lattice matched with GaN, and the top mirror of SiOy/Si3Ny4 in order to obtain a
good quality of the GaN layer. Notice that in order to reach a high quality factor over 2000, 35
periods of AlInN/AlGaN have been grown for the bottom mirror. The active layer is a bulk
GaN crystal. This sample exhibits strong coupling regime (2 = 50meV’) and polariton lasing at
room temperature. Over threshold, the condensate is localized because of photonic disorder. This
result is very promising for obtaining electrically pumped polariton laser. Indeed, GaN is dopable
and can then be electrically driven. However, the electrical injection is irreversibly destroying the
heterostructure presented in reference [79] before the observation of electro-photoluminescence.

On the other hand, the microcavity presented in reference [80] is succesfully electrically
driven, ie. electrophotoluminescence of the polariton modes is observed at room temperature.
This structure relies on a superlattice of AIN/GaN for the bottom distributed Bragg mirror,
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Material 7 Structure 7 Lattice parameter () 7 Refractive index at 380 nm

HfOs Cubic 5 2
Si04 Amorphous X 1.5
SigNy | Amorphous X 2.1
AIN Wurtzite 3.1 2.2
GaN Wurtzite 3.19 2.6
Zn0 Wurtzite 3.25 2.6
YSZ Amorphous X 2.3
AlsO3 | Amorphous X 1.7

Table 3.1: Summary of the crystal structure, lattice parameter (in the A-B plane for wurtzite) and refractive index around exciton
resonance (~380 nm) of the material used in planar microcavities described in this chapter.
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10 GaN quantum wells and a T'a205/Si02 top distributed Bragg mirror. The measured Rabi
splitting is around 8 meV. The pillar geometry allows to efficiently evacuate the heat. The
polariton lasing regime has not been yet observed in this microcavity using electrical injection:
heat dissipation is not sufficient to prevent irreversible damages.

3.3.2 1D polaritonic wires [8, [9]

1D polariton in the quantum degeneracy limit has been demonstrated in well-controlled etched
GaAs microcavities [§] and in a disordered potential with an elongated shape in CdTe microcav-
ities [9]. In both cases, long-range coherence (more than tens of micrometers) is reported above
threshold.

An interesting feature shown in reference [§] is the propagation and the control of the polariton
condensate. It requires two phenomena: a long polariton lifetime and an initial kick-off. The
first condition is fulfilled thanks to the high Q-factor of this microcavities (Q 12000 and lifetime
around 30 ps). The second one is satisfied by the interaction between excitons of the reservoir
and polaritons. Indeed, these wires are pumped non-resonnantly and an incoherent bath of
hot carriers is created just underneath the pump spot. Exciton/polariton-polariton interaction
is repulsive and kick-off the polariton condensate as soon as it is created (see figure a)
). Therefore, propagation over 50 pm is observed (see figure b) ). Moreover, as the laser
induced exciton bath is creating a potential barrier for the condensate, it is possible to confine
the condensate on the side of the wire. Control of the propagation of the polariton condensate
opens the way toward macroscopic manipulation of a quantum wavefunction. One should notice
that this behavior is a peculiar property of polaritons compared to photon lasing: polaritons can
interact together via their exciton component.

However, these two structures suffer from the low free exciton binding energy in GaAs and
CdTe. Therefore, polaritons are not stable against temperature. Moreover, controlled realization
of such samples requires to grow lattice matched distributed Bragg mirrors and quantum wells.
This heterostucture is then etched into a wire geometry. As a consequence, this sample are
technologically demanding compared to ZnO microwires.

3.3.3 0D polaritons in ZnO Nanowires using Fabry-Pérot resonance [10]

Strong coupling has been observed in ZnO nanowires at room temperature. This system is really
different from microcavities. The samples are ZnO nanowires with diameter around 100 to 300
nm and length around 1 to 10 pm. Photonic modes of interest are guided along the axis of the
wire. The Fabry-Pérot cavity is formed by the two tips of the nanowire and gives a Q-factor
around 250. This value corresponds to a radiative lifetime around 100fs which is relatively
small to reach the quantum degeneracy regime. Finally, these polaritons are zero dimensional
(contrary to the claim of the reference [81]): two axis are strongly confined and the last one is
weakly confined. Thanks to momentum quantization with respect to the length of the cavity, L.
K. van Vugt et al. are able to map the dispersion of these polaritons. In this kind of structure,
Rabi Splitting goes up to 100 meV. The size (T100nm) and the zero dimensional confinement in
this structure do not allow to create an elongated condensate and to study its properties.
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Figure 3.5: a) Far-field emission above threshold (P=1.5Pth) taken at different position along
the wire. Polariton condensate is spontaneous kicked-off the laser spot. Solid line is the polariton
dispersion. shows the polariton dispersion. b) Real-space intensity distribution along the wire
in a coloured logarithmic scale measured above threshold (P=2.5Pth): condensed polaritons
propagate over the whole wire whereas higher-energy excitons remain in the excitation area
(magnified top panel); the white line shows the optically induced potential. Taken from [§]
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Figure 3.6: Phase diagram for a gas of 1D bosons. Ordinate axis corresponds to the number of
particles in the system and abscissa axis is proportional to the temperature. Taken from [25].

3.4 Why ZnO microwires are interesting: 1D degenerate Bose
gas Physics at room temperature

3.4.1 1D systems are different: Strong interaction at low density

In this subsection, we will consider a toy model demonstrating that 1D bosonic systems exhibit
unusual behavior in the quantum degenerate limit. Let us imagine a gas of bosons with a mass
m at zero temperature. The particles are separated by a mean interparticle distance called 7
satisfying 7 = ﬁ where n is the particle density and d the dimension of the system.

n

Kinetic energy per particle in this system can be estimated by: Ej = B B

o = %nQ/ ¢ whereas
the interaction energy between particles read: Fj,; = ng where g is the coupling constant
between two particles. Strong interaction regime corresponds to a kinetic energy smaller than
the interaction energy. In 3D system, we recover an usual behavior where strong interaction
corresponds to high density whatever the value of the coupling constant g. In a 2D system, the
interaction regime depends only on the value of the coupling constant g compared to a critical
value given by g. = % In a 1D system, an unusual situation arises: strong interactions regime
is reached at low density. This regime, specific to 1D systems, is called Tonks-Girardeau gas.

Phase diagram of 1D bosons at non-zero temperature has been studied by Petrov et al.
[25]. Figure describes this rich diagram of states. Interestingly, degenerate states are not
suppressed by the temperature. In the Tonks-Girardeau regime, bosons are expected to be
“fermionized” (ie. to behave like fermions) because of the strong interparticle interaction. There-
fore, a spatial antibunching would be expected in such a regime.

3.4.2 ZnO microwire: stable polaritons against high temperature and density
in a simple monolythic structure

As it is reported in this thesis, polaritons in ZnO microwires are stable against high temperature
(up to 500K [75]) and high density thanks to the large free exciton binding energy (760 meV).
Consequently, they are well suited to study this rich phase diagram. Up to now, 1D phase
diagram for polaritons has not been studied experimentally or theoretically. Deviations could be
expected in taking into account the dissipative nature of polaritons as well as the exciton-exciton
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interactions.

Growth of such ZnO microwires is less demanding than a microcavity as it is a monolythic
structure. Recently, high quality ZnO microwires, with a constant radius over tens of microns,
have been grown using MOCVD. Generally, in ZnO microwires, the excitonic disorder is of
intrinsic nature (alloy fluctuations of zinc or oxygen for example) which is small in a monolythic
structure. In this thesis, we will see that it is below 1 meV. From the photonic point of view,
thanks to the total internal reflection involved in the HWGMs, a high confinement is reached
with a quality factor up to 800 which is a key point to create an important population in the
polariton state.

From the electrical injection point of view, p-doping in ZnQ is still controversed. However,
it has been shown recently in reference [82] that Antimony p-doping has been used to obtain a
room temperature laser based on ZnO nanowires. Nevertheless, this process is not mature yet.
Therefore, electrically pumped polariton laser based on ZnO is not easily realizable despite the
high quality of the ZnO microwires. However, GaN microwires are studied in this thesis (see part
II) and exhibit similar properties of the strong coupling regime. Structure such as PIN diode
(p-doped semiconductor, insulator, n-doped semiconductor) connected with a radiator to remove
heat are already available (because easier to grow than a microcavity) and will be studied soon.

As a conclusion, ZnO microwires open the possibility to study quantum degeneracy in a non-
equilibrium 1D system with interacting bosons. Moreover, they are good candidates to obtain a
polariton laser operating at room temperature in a simple and well controlled structure scalable
towards technological applications. This very simple structure is suitable for other materials
(such as GaN) and, therefore, for electrical injection.
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Experimental Set-Up
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Polaritons are a mixed state between matter and electromagnetic fields, the latter compo-
nents leak outside the system due to the finite quality factor of the optcial cavity. This light
carries all the information describing the polariton field, ie. its energy, its longitudinal momen-
tum and its coherence properties. Moreover, optical injection of hot carriers does not require
any specific technological process compared to electronic transport measurements and can be
performed on ZnO microwires as they stand. Furthermore, microwires have specific advantages
over microcavities, mostly based on the fact that they do not feature any mirrors. As a conse-
quence, optics provides powerful tools to address experimentally the properties of 1D polaritons
in ZnO microwires.

In this chapter, firstly, we will discuss the non-resonant optical injection and relaxation in the
strong coupling regime. These two processes allow to populate the lower polariton branch. In a
first step, at low pumping power, it allows to study the linear properties of ZnO microwires. In
a second step, by increasing the pumping power, it is possible to enter into the non-linear regime
and create a degenerated gas of polaritons. Then, we will introduce the experimental and the
1D Fourier spectroscopy technique which is a key point to investigate 1D polariton dispersion in
the linear as well as in the non-linear regimes.

4.1 Description of the experimental set-up

4.1.1 Non-resonant injection and relaxation towards polariton state

For photoluminescence experiments presented in this thesis, polaritons were pumped non-resonantly,
ie. laser energy was higher than polariton energy and the laser energy was tuned to the A-B free
excitons transition of ZnO (see figure|d.1). This configuration combines the following advantages:
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Figure 4.1: Scheme describing relaxation timescales of excitons and polaritons. In most of the
experiments of this thesis, laser was resonant with A-B excitons and below band gap.

e it has an important absorption at the excitons energy (absorption coefficient: ~ 10%cm~!
at the A/B exciton energy [83])

e there is a small amount of energy to relax toward the polariton states compared to an
excitation above the band gap

e it prevents overheating of the excitons and the phonons bath compared to an excitation
above the band gap

e it generates neutral quasi-particles and, therefore, limits the effects on the electric field
close to the surface

On the other hand, this configuration has a drawback. Indeed, owing to the large absorption
(absorption coefficient: 10°em ™" [83]), the first 100 nanometers of the microwire only are excited.

Since ZnO is a strongly ionic material, fast relaxation and thermalization in the exciton region
(see figure is achieved by emission of LO and acoustic phonons at room temperature [84].
At low temperature, as we will see in details in part III, relaxation time constant of excitons in
the exciton region is of the order of 1-10ps and exciton-exciton scattering plays an important
role to reach the thermal equilibrium.

As the polariton lifetime is around picosecond and the density of states available in the
strong coupling region is small, slow relaxation is observed towards the lower polariton states
(see figure . This situation leads sometimes to an out of equilibrium phenomenon called
bootleneck effect where the polariton population is accumulated in the anti-crossing region [85]
and a small proportion only releases to the polariton ground state in k, = 0. Therefore, because
of the bottleneck effect and the photonic losses, a large number of pumped excitons do not relax
towards the polaritons states. The quantum degeneracy regime in k, = 0 is reached if the number
of polaritons per state is of the order of unity (ie. n, ~ 1). As a consequence, one needs high
intensity lasers and an efficient injection to reach the quantum degeneracy regime.
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4.1.2 Principle of the experimental set-up

The experimental set-up has been developed to provide a high efficiency of the laser injection
combined with a versatile detection to measure the energy as well as the time dependency of the
light emitted by the sample in either the real space or the momentum space.

Three kind of lasers, at the beginning of the injection line (see figure , have been used in
this thesis:

e High peak power pulsed laser (picosecond titanium-sapphire laser): Pulsed laser has the
advantage to produce high peak power compared to the same laser in a continuous intensity
mode. This high peak power is a key parameter to inject a large number of carriers in small
amount of time and, therefore, to reach the non-linear regime in semiconductor structures
with very high threshold.

e High power continuous wave (CW) laser (titanium-sapphire laser): CW lasers provide less
peak power than pulsed lasers. Therefore, they are less suitable to reach non-linear regimes.
However, they have the advantage to create a steady state in the semiconductor which is
much more easy to understand than the pulsed response of the system.

e Low power CW laser (Helium-Cadmium - wavelength: 325 nm): This “ready to use” laser is
ideal to quickly characterize large band gap material. However, it does not provide enough
power to reach the non-linear regime.

The two titanium-sapphire lasers produce light with an energy ranging from 700-900 nm and
were doubled to reach the ZnO transition energy in the UV (accessible wavelength range: from
360 nm to 425 nm). They were coupled to an acousto-optic modulator which was used to
chop the laser light. It allows to reduce the heating (related to the average power) without
changing the peak power necessary to reach the non-linear regime. As shown in figure the
laser light was injected in a transmission configuration. It has the advantage, compared to a
reflection configuration, not to used a 50/50 beam splitter on the detection range and therefore,
to maximize the injected power.

The sample is located in the cryostat mounted on a three axis micrometric stage. After
being collected by the objective, the photoluminescence is sent to the spectrometer to measure
its energy. By removing the Fourier plane lens, it is possible to switch from Fourier to real space
spectroscopy. Finally, this versatile set-up allows to quickly measure the energy of light with
either spatial, time or momentum resolution.

4.2 1D Fourier spectroscopy

In order to have insight into measurements along lower polariton branch (ie. momentum k,
resolution) on a single microwire, we have designed a micro-photoluminescence set-up stable
down to the micrometric scale and using 1D Fourier spectroscopy along the single translational
invariant axis of the microwires. Thanks to this powerful experimental technique, it is possible to
infer the dispersion of 1D polaritons inside the semiconductor and it allows to characterize light-
matter interaction, momentum-space population, linewidth, etc... even during the stimulation
regime. Therefore, this technique is a “must have” to study 1D polaritons.

First, we will discuss the energy and momentum conservation at an interface semiconductor-
air in 1D systems. Then, using the Fourier spectroscopy on the light emitted by a polariton, we
will show that it is possible to measure its 1D dispersion inside the semiconductor.
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Figure 4.2: Scheme of the experimental set-up separated into the injection (blue) and the detec-
tion part (red).

4.2.1 Energy-momentum conservation and interfaces in 1D system

In the strong coupling regime, polaritons cannot emit a photon inside the semiconductor because
there is no pure photon states. However, they can emit a photon outside the semiconductor
through the interfaces. At the interface, two physical quantities are conserved: the energy and
the momentum parallel to the interface. For a plane interface, the component of the momentum
parallel to the interface, which is a two-dimensional vector, is conserved like in the refraction
phenomenon for light. In a microwire, and generally in 1D systems, because of the reduced
translational invariance, only the momentum parallel to the wire k" is defined by a unique value
and is conserved through the interface. The energy momentum conservation is expressed by the
following formulas (see figure [4.3)):

Ein = Lout

k;n — k,gut
where k2" () is the component of the momentum along the free axis outside (respectively inside)
the semiconductor (see figure and E,y; (in) is the energy of the particle outside (respectively
inside) the semiconductor. As a consequence, by measuring energy and the momentum parallel
to the interface k2 of the emitted photon, one measures also these quantities for the polariton
that recombined.

As we will see now, a direct measurement of the light momentum parallel to the interface
is possible by using an angular resolved experiment. Energy momentum relation for photons in
free space reads (with the notation given on figure :
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Figure 4.3: Definition of the momentum and its perpendicular and parallel projections to the
interface.

Eout — hk,out c

Figure introduces the angle of emission of the photon §. The momentum parallel to the
interface inside the semiconductor can be rewritten:

Eout

kin —
z c

sinf (4.1)

This equation connects outside parameters carried by the emitted photon (photon energy Eoyy
and angle of emission 6, right hand-side) to the polariton momentum parallel to the interface
(left hand-side). Therefore, by measuring the angle of emission and the energy of the photon,
one can access to the dispersion of a polariton inside the semiconductor structure along the free
axis.

4.2.2 Angular resolved experiment using Fourier imaging along the free axis
Basic principle

In our experiments, the angular resolved experiments were performed using Fourier imaging.
The basic principle is described on figure [4.4] Fourier space of a given object is situated at the
focal length after the lens/objective. In a configuration presented on figure where the real
space and the Fourier space are situated, respectively, at a focal length before and after the lens,
the light collected in the Fourier space is the exact Fourier transform of the light emitted from
the real space. This statement is limited to the paraxial approximation which is valid up to
30°. As shown on figure Fourier space is a direct image of the directions of emission of the
object. Indeed, to a given angle of emission « corresponds only one position in the Fourier space
at f tana from the optical axis. Thereafter, one can optically manipulate this Fourier plane to
measure dispersion directly on a detector.

In this thesis, we have used a near-ultraviolet Mitutoyo objective with a numerical aperture
of 0.5. As a consequence, the angle of emission « can be studied over a 60° range. Of course, this
Fourier imaging technique can be coupled with different spectroscopy tools: photoluminescence,
reflectivity, time-resolved photoluminescence, etc...

For microwires, owing to the translational invariance along the free axis, two distinct angles
should be considered (see figure : the angle 6 along the wire axis and the angle ¢ along the
confined axis. This point is the main difference with microcavities from the experimental point
of view. Indeed, for planar microcavities, there are two translational invariance and only one
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Figure 4.4: Principle of an angular resolved experiment using Fourier space imaging. 6 is the
angle of emission of a photon.

angle with respect to the normal of the surface of the structure has to be taken into account.
Notice that angular resolved experiments along the confined axis for microcavities is much more
difficult to perform than for microwires.

Angular resolved experiment along the free axis

In a microwire geometry, the polariton wavefunction fy,(z,y, 2) has a well-defined momentum
along the wire axis, and one can write: fpo(2,¥,2) = fpo(x,y) X e'*=2 By Fourier transforming
this expression, we recover the fact that in the Fourier space of figure .4] only one position
corresponds to k, (ie. a dirac function at k). As already mentioned, for ¢ = 0 (ie. angular

resolved experiment along the wire axis), we have: k, = E;L’;‘t sind.

Angular resolved experiment along the confined axis

Along the free axis, the polariton momentum k7 is well-defined thanks to the translational
invariance. However, in the confined axis, the wavefunction of the polariton in the momentum-
space spills over multiple wave-vector. For § = 0 (ie. angular resolved experiment along the
confined axis), one can write: k; = %sinqﬁ. Therefore, a given polariton with (k, = 0,k )
can emit photons with various angle ¢. In this case, the Fourier space will corresponds to the
far-field emission of the wire (ie. the Fourier transform of the polariton wavefunction in the

cross-section).
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zC

Figure 4.5: Definition of the angles 6 and ¢ with respect to the wire orientation. 6 (¢) is related
to the momentum k, (k) parallel (perpendicularly) to the wire.
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Linear properties of polaritons in ZnO
microwires
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This part is dedicated to the experimental investigation of single ZnO microwires under weak
optical excitation, ie. in the limit of linear optics. Indeed, it is necessary to understand the
behavior of the polaritons below the quantum degeneracy limit (ie. at low excitation power)
before to move on to the non-linear regime in the part III.

In the chapter 5, we will focus on demonstrating that the strong coupling regime is achieved
and preserved in these structures up to room temperature. The polariton dispersions along the
wire axis will be reconstructed using linear response theory especially developed for hexagonal
microwires. A complex behavior appears because of the strong coupling regime between two
families of three-dimensional cross-polarized excitons (ie. A, B and C ZnO excitons) and two
sets of cross-polarized hexagonal whispering modes. The one-dimensional character is supported
by dispersion measurements at room temperature around the wire cross-section leading to one-
dimensional-like density of states. An interesting comparison between ZnO and GaN microwires
will be shown in order to demonstrate that the physics developed in this thesis can be extended
to other materials with the same structure. Moreover, GaN microwire, as it is a p and n dopable
material, is a necessary step towards electrically injected polariton laser.

In the chapter 6, the consequence of the large Rabi splitting as compared to the phonon
spectral broadening on the polariton linewidth is analyzed. Indeed, we will see that the LO
phonon interaction is quenched at room temperature in the ZnO microwires. In this case, the
polaritons are isolated from the LO phonon bath resulting in a lower than expected linewidth at
room temperature.
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Strong coupling regime in a single ZnQO
microwire
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This chapter is dedicated to the spectroscopy of a single ZnO microwire. First, we will study
the spatially-resolved spectroscopy of these wire to describe the main properties resulting from
the bulk character of the ZnO crystal as well as the unusual microwire geometry. Using 1D
Fourier spectroscopy, we will demonstrate that the strong coupling regime is preserved from
low temperature up to room temperature by modeling the polariton dispersion with the linear
response theory. A direct measurement of the polariton dispersion perpendicularly to the mi-
crowire will be presented in order to prove their one dimensional character. Once the strong
coupling regime will be properly established, the same physical concept will be extended to mi-
crowires made up of GaN exhibiting similar main properties than ZnO microwires. Of course,
some differences will be discussed such as the effect of doping inherent in the growth of GaN
microwires.
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5.1 Spectroscopy of a single ZnO microwire at low temperature

5.1.1 Spatially-resolved spectroscopy

Spatially resolved photoluminescence at low temperature has been performed on a single mi-
crowire. The result at 10K is presented on figure 5.1 on a logarithmic color scale. On this figure,
we can directly observe the energy of the emitted photon as a function of the position along
the wire. First, it is preferable to address the different peaks on this figure separately before
to describe the polaritons (lines with non-constant energy as a function of the position along
the wire axis in figure [5.1)). We will see that the ZnO microwires exhibit a photoluminescence
corresponding to an usual bulk piece of ZnO plus the polariton states. For the sake of simplicity,
we will focus on TE polarized polaritons in this section. Anyhow, TM polarized polaritons are
poorly populated at low temperature because of the spectral separation between A /B excitons
and C exciton 45meV compared to the thermal energy ~ 1meV (see section for details).

Bound exciton complex Around 3.36 eV, the several non-dispersed peaks on figure [5.1] cor-
respond to the ZnO bound exciton complex [86]. An exciton can bond on a point defect in a
semiconductor such as a substitution of a zinc or oxygen atoms by an impurity. In the case of
bulk ZnO, these defects are mainly shallow donor centers with an energy just below the con-
duction band. Therefore, the energy of an exciton bound to a donor (called D°X) is just below
(716 meV for ZnO) the free exciton energy. In certain cases, the exciton can bond to an ionized
donor (called DT X).

The bound exciton complex corresponds to the ensemble of peaks emitted by the bound
excitons with several different kinds of impurities. In the early work of Reynolds et al. [87],
they were numbered from Iy to I;;. The determination of the exact nature of the impurities
producing these emissions has been the topic of a large research effort (see chapter 7 of reference
[29] written by B. K. Meyer for a complete review). In our case, based on the energy position
given in reference [29], it is possible to retrieve the nature of this emission on figure which
is the zoom around 3.36 €V. From low energy to high energy on figure [5.2] we have two neutral
donor bound excitons (Io-Ig/I7) and two ionized donor bound excitons (Iy — I4). The shoulder
at 3.376 eV corresponds to the free A exciton emission. At low temperature (ie. below 7T0K),
bound exciton emission dominates over all the other peaks by at least one order of magnitude.
Their localization energies compared to the free exciton energy is around 16 meV. Therefore,
generally above 70K, thermal fluctuations prevent excitons to localize in a bound state and the
bound exciton complex emission vanishes.

LO phonon replica The broad emission from 3.3 eV to 3.33 eV is the first LO phonon replica
of the free exciton state. It corresponds to the emission, by a free exciton, of a LO phonon (with
an energy of Ero = 72meV in ZnO) and a photon at an energy Ex — Ero. The lineshape of
the m' LO phonon replica is given by the formula|88], 46]:

Exciton-LO phonon Exciton density Exciton energy Exciton

ro(E) o matrix element of states distribution Linewidth

- - = __E -
I16(E) x Win(E) x VE x ¢ %7% ® L£(E,T'x)
where E = E — (Ex —m x FEro), kpTx is the thermal energy of the exciton gas and E(E, I'x) is

a lorentzian with a linewidth I'yx. (Ex —m X Ero) gives the low energy side of the L.O phonon
replica emission. Of course, I1o(F) is zero for E < 0. The matrix element W,,(E) is given by:
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W (E) < E for m=1 and W,,(E) = 1 for m>1

As a consequence, the exponential decrease on the high energy side is connected to the
temperature of the exciton bath. The second LO phonon replica on figure [5.1| can be fairly
reproduced using this model. Firstly, it means that the exciton gas is at thermal equilibrium.
Secondly, the extracted exciton temperature is 15K + 2K. This value is slightly higher than
the lattice temperature (10K) which means that the thermalization with the lattice is almost
complete.

TE polarized polaritons A set of TE polarized polaritons can be identified on figure [5.1
because of their dispersion as a function of the position along the wire axis. These lines corre-
sponds to the lower polariton branches. TM polarized polaritons are, generally, not populated
at low temperature because of the C exciton is not thermally populated at this temperature (ie.
Exc — Exa/p =~ 45meV). Bottom part of figure is a schematic representation of the wire
studied in this experiment and gives a qualitative understanding on the spectral movement of
the polariton peaks along the wire. Indeed, the energy of the HWGMs is inversely proportional
to the radius of the wire: Epgwegy o« 1/R. As shown on figure , energy of the polaritons
increases for decreasing radius. Interestingly, in this wire, the radius is almost constant over 10
pm length resulting in an almost constant energy of the polariton in this region. Because of
the strong coupling regime, we can observe that the polariton energies on figure does not
cross the excitonic resonance: this a typical feature of the strong coupling regime. The relation
between the energy of a HWGM with the radius of the wire has been used in reference [52]
to demonstrate the strong coupling regime at room temperature in this structure with a Rabi
splitting above 250meV . However, as it is based on a position-radius correspondence measured
by scanning electron microscopy, a very accurate measurement of the diameter of the microwire
is required. In this thesis, another proof of the strong coupling regime will be given using 1D
Fourier imaging by measuring the polariton dispersion at a given position on the microwire.
Moreover, spatially resolved experiments do not take into account the polariton dispersion. The
polariton states presented in figure [5.1] are summed over all the momentum optically accessible.
To go further in the study of these structures in the linear and non-linear regime, it is necessary
to measure the dispersion of these polaritons at a given position to understand properly their
properties. In particular, Fourier spectroscopy is a privileged experimental tool to prove that
these polaritons are one dimensional.

5.1.2 Angular resolved photoluminescence

In this subsection, we will apply 1D Fourier spectroscopy on a single ZnO microwire at 10K
in order to demonstrate the strong coupling regime and to extract the Rabi splitting. These
experiments are performed with a small excitation spot (diameter ~1pum) on a region of the wire
where the radius is constant (for example, around 30pm on figure .

Polariton dispersion along the wire axis: experiments

Figure displays the angular-resolved TE polarized photoluminescence experiment along the
wire axis. The angle 6 is connected to the polariton momentum along the wire axis by the
relation: kzﬁ” = %sin@. Several well-defined TE polarized lower polariton branches are visible

from 3.3eV to 3eV. These polaritons are almost fully TE polarized in the range [-30° ; 30°].
Therefore, they result from the coupling between TE polarized HWGMs and A/B excitons
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Figure 5.3: a) Angular resolved TE polarized photoluminescence at 10K along the wire axis on
a logaritmic color scale for three spectral ranges. The two black lines corresponds to the A and
B exciton energy. b) Same figure than a) with the theoretical modeling described in the text.
Bound exciton complexes has been saturated for the claricity of the figure.

(which is coupled to TE polarized light). Their dispersion features demonstrate unambiguously
the strong exciton-photon coupling regime:

e Modes of high energy (i.e., closer to the exciton resonances) have a dispersion shape that
tends to flatness, while those at lower energy are markedly dispersed.

e The free spectral interval between two succesive polaritons decreases with increasing energy

A complete understanding of the polariton dispersion along the wire axis in the strong coupling
regime requires a careful modeling to extract the Rabi splitting from these experiments.

Polariton dispersion along the wire axis: modeling

The goal of this model is to extract the Rabi splitting from the TE polarized emission and not
to derive the eigenenergies of the modes. Therefore, we do not want to reproduce the spectral
position of HWGM given by Maxwell equations as well as the TE/TM splitting. Moreover, this
model will not reproduce the complex oscillator strength distribution emerging at high angle (ie.
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above 30°) that is modifying the polariton dispersion (see section for a discussion on the
oscillator strength mixing at non-zero angle). Therefore, it will be restricted to angular resolved
dispersion below 30°.

In ZnO microwires, owing to the conservation of energy and k., the shape of the dispersion
branches measured on figure is directly related with the spectral behavior of the dielectric
function € since the energy E,, of the m-th HWGM reads:

1
. 9 —=
sin“6 2
En,0)=FE,0)1——+— 5.1
n(0) = B,00) (1= 50 5.1

where 6 is the detection angle of the photoluminescence with respect to the z-axis. Thus, each
HWGM provides in principle a tight regular sampling of the dielectric function in the detection
window. In the framework of the linear response theory, excitonic transitions can be explicitly
accounted for in the dielectric function ¢(FE) under the form:

(E) 1+ 3 o7 (5.2)
€p = €xo 2 _ 12 .
i=A,B,C Bi-E

where €, is the dielectric function for TE-polarized light, €); is the contribution to the Rabi
splitting of the excitonic transition i=A, B and C of energy E; and where the damping constant
~ has been neglected. €. is the background dielectric constant which accounts for every other
contributions to the dielectric function. « is the spatial overlap integral between the excitonic
medium and the HWGMs which can be lower than 1 due to the evanescent part of the HWGMs
and to an excitonic dead layer located right below the air-semiconductor interfaces.

By inserting equation [5.2]into equation 5.1} and using a set of parameters at low temperature,
we can fit properly the entire set of dispersion branches of figure [5.3] The exciton energies
and oscillator strengths are well documented in the literature [39 40, B8] and, for the input
parameters, we choose:

Exa=3.3755eV , Q4 = 100meV

Exp = 3.3815eV , Qp = 271meV

Only two parameters are left free: o and e,,. These two parameters can be fitted independently
from each other since for polariton modes far below the excitons energy as compared to the();’s,
the right term of vanishes and the dispersion branch is sensitive only to €. It is the case of
the modes at the right panel of figure a).

Note that this procedure has a significant advantage compared to a complete modeling
method based on Maxwell equations (for example the model developed for ZnO microwires)
since it does not require any knowledge a-priori on the energy E,, of the uncoupled confined
electromagnetic modes versus mode number m (at # = 0°) in the microwire, which depends very
much on the precise shape of its cross-section. Instead, in this method the spectrum E,, is a
result of the procedure since it is connected with the measured energy of the polariton modes
versus m (at # = 0°) by the relation:

Noo -

En(0=0) = o5 B
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Polariton dispersion along the wire axis: Rabi splitting

We applied this method to the measurements shown in figures b) (black dashed lines). For
TE polarized polaritons, the contribution from C exciton can be neglected because of its small
coupling to TE light compared to the A and B exciton. The extracted a, n and Rabi splitting
are:

a=1+£01, ne =235+0.05

The background index ne, = 2.35 is coherent with the value found in literature for bulk ZnO
[89]. The large value of « is the first main result of this since it demonstrates unambiguously
the strong coupling regime at 10K.

This demonstration requires the comparison between the overall Rabi splitting € and the
linewidth I'g of the polariton mode around the resonance between the excitons and the uncoupled

HWGMs (i.e. around 3.23eV on figure . Q = ay/(Q4 + Q%) is a proper definition of the
overall Rabi splitting when the latter is much larger than the energy separation between the
different exciton levels. We find = 288meV £ 29meV at 10K which satisfy this condition.
Indeed, the linewidth 'y of the mode at 3.22¢V is I'g = 3.1.meV + 0.2meV. Finally, comparing
[y and Q at low and room temperatures shows unambiguously that the strong coupling regime
is achieved at low temperature with a large figure of merit (defined as the ratio between Rabi
splitting and polariton linewidth) of 93 at 10K.

5.2 Spectroscopy of a single ZnO microwire at room temperature

5.2.1 Near band-edge spectroscopy of a single microwire along the wire axis

Single ZnO microwire has been studied in a spatially resolved photoluminescence experiment at
room temperature on the same wire than figure Figure[5.4]is the result of this experiment in
a grey scale. Four sharp peaks stand on the top of a broad emission which has a spectral width
around 100 meV.

As demonstrated in reference [90] with temperature dependency expertiments, the back-
ground is dominated by the LO phonon replica of the free exciton at room temperature (generally
called blue band). Since the optical LO phonon energy in ZnO is 72 meV, phonon replica of the
exciton has an emission energy given by the relation: Ex — mEro = 3309meV — m x 72meV
where m is a positive integer [29]. Since the emission of LO phonons is less and less likely with
increasing m and it is convoluted with linewidth and the spectral distribution of excitons, it
results in a broad emission at room temperature.

On the top of this background, four well-defined lines are observed with linewidths ranging
from 2 meV to 6 meV and correspond to the lower polariton branches. As shown on figure [5.4]
these peaks can be separated in two families: TE (ie. E L ¢) and TM (ie. E || ¢) with respect to
the wire axis (ie. c-axis of the wurtzite). Bottom part of figure is a schematic representation
of the wire studied in this experiment and gives a qualitative understanding on the spectral
movement of the polariton peaks along the wire.

5.2.2 Polariton dispersion along the wire axis

In this subsection, we will apply 1D Fourier spectroscopy on a single ZnO microwire at room
temperature. These experiments are performed with a small excitation spot (diameter ~1lpum)
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Figure 5.4: Top part: Greyscale spatially resolved photoluminescence of a single ZnO microwire
at room temperature. TE/TM stands for TE/TM polarization modes. X 4,p corresponds to the
A/B exciton energy (white line). Bottom part: Schematic representation of the tapered wire
with a needle-like shape studied in this experiment. There is a constant radius part between 18
pm and 28 pm.
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on a region of the wire where the radius is constant (for example, between 18 pm and 28 pm on

figure .

Polariton dispersion along the wire axis: experiments

Figure a) displays the angular-resolved photoluminescence experiment along the wire axis.
The angle 6 is connected to the polariton momentum along the wire axis by the relation: ﬁ” =

hcsmﬁ Several well-defined lower polariton branches are visible, which can be separated into
two families according to their linear polarization, i.e. mostly TE with respect to the main axis
of the wire (electric field E perpendicular to the wire C-axis, right-hand side of the figure) or
mostly TM (E || ¢, left-hand side) at k, = 0 (f = 0). These two polariton families result from
the two linearly cross-polarized exciton families found in ZnQO, i.e., A and B are TE-polarized
excitons, while C are TM-polarized excitons. Within a given polarization family, several lower
polariton branches are visible, stacked one over the other in energy. Each branch results from
the strong coupling between free excitons and a given HWGM mode (the corresponding label of
the HWGM is shown in figure[5.5b) ). Their dispersion features demonstrate unambiguously the
strong exciton-photon coupling regime:

e Modes of high energy (i.e., closer to the exciton resonances) have a dispersion shape that
tends to flatness, while those at lower energy are markedly dispersed

¢ An inflexion point shows up at § = 40° — 50°, which results from the onset of anticrossing
between the involved HWGM and the exciton level.

A complete understanding of the polariton dispersion along the wire axis in the strong coupling
regime requires a careful modeling to extract the Rabi splitting from these experiments.

Polariton dispersion along the wire axis: modeling

The model used to fit the polariton branches in figure is based on Maxwell equations and
linear response theory and has been developed in collaboration with Guillaume Malpuech’s team
from the LASMEA laboratory in Clermont-Ferrand. Basically, it is based on the same model
than that developed in chapter 2 for WGMs in an anisotropic cylinder. The only difference is that
the anisotropy, in the strong coupling regime, is not due to the anisotropy of the background
dielectric function but comes from the two dielectric functions €, in the cross-section and e,
along the wire axis which are not coupled to the same set of excitons. Compared to the model
developed at low temperature, this model reproduces the exact spectral position of the polariton,
the TE/TM splitting and the polarization mixing at high angle of emission 6.
In ZnO microwires, the dielectric function can be written:

e 0 O
e(E)= 0 ¢ 0
0 0 e,
fr(z)
Er(z)( ) - 6r(z) 1+ Z _ E2 + Zhv’hw (53)

i= ABC

where ef,?z) is the background dielectric function along the radius of the wire (the wire z-axis),
i runs over the A B and C excitons, fw; is the exciton energy of the it exciton, ~4 is the non-

radiative decay rate of the i*" exciton and f;n %) is the oscillator strength of the i** exciton along
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Figure 5.5: a) and b) corresponds to the dispersion measurements in ZnO microwires at room
temperature as a function of the angle of emission along the wire. Both figures are split into
TM (left panels) and TE (right panels) polarizations. Theoretical fitting is superimposed to
experimental data on figure b). Solid, dashed and dot-dashed lines correspond, respectively, to
free A, B and C excitons, uncoupled HWGM’s and polaritons. The notation 17TMO00 stands
for the HWGM modes: the first number corresponds to m, the last one to j and TM to the
polarization in k” ~ 0.
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the radius of the wire (the wire z-axis). Notice that fir(z) satisfy the equation ff(z) = 2hwzhwz(;)l
where wZ(TZ)Z is the longitudinal-transverse splitting of the i** exciton along the radius of the wire
(the wire z-axis).

In this model, HWGMs have been approximated by WGM. Indeed, it has been shown nu-
merically (see reference [62] and chapter 2 of this thesis) that WGMs and HWGMs dispersions
match by slightly tuning the background reference for WGMs. The correspondence between the
radius of the hexagon Rj., and the cylinder R., has been chosen to have equal surface lead-
ing to the formula: R, = Rhem\/3\/§/27r. The electromagnetic field were computed using the
Maxwell equations in an anisotropic structure. Indeed, this problem is equivalent to the case of
an anisotropic cylinder except that:

e the dielectric function depends on the energy

e a supplementary anisotropy in the dielectric function is added to the problem. Indeed, A
and B excitons are included in €, whereas only C exciton is included in e,. Therefore, €,
will be increasing close to the A and B exciton energy while €, will not be really affected
at this energy by the C exciton

As shown in reference [56], transverse electromagnetic fields can be directly obtained by knowing
its components along the z-axis (ie. the wire axis) in a cylinder structure. In an anisotropic
structure, the Maxwell equations for the component of the field along the wire axis are:

0’E, (e E?
For TM modes: 8,2; <€i — 1> + AE, + WEZEZ =0

2
For TE modes: AH, + LETHZ =0
(he)?
where E, (H) stands for electric (magnetic) component along the z-axis of the electromagnetic
field, £ is the energy of the photon mode, and €,(,) is the dielectric function defined by equation
The solutions of these equations have already been discussed in chapter II and are linear
combinations of the cylindrical harmonics. Finally, by applying the continuity of the tangential
field components at the cylinder bound to these solutions, we can determine the constants of the
problem, derive the polariton dispersion relations and adjust them to the experimental data.

Polariton dispersion along the wire axis: Results

The results of the modeling process is superimposed to experimental data on figure ) and
show a good agreement between theory and experiment. The notation 17TMO00 stands for the
uncoupled HWGM modes: the first number corresponds to the azimuthal number M, the last
one to the radial number j and TM to the polarization in k| ~ 0. The longitudinal-transverse

splitting as well as the Rabi splitting extracted from the experiment data are summarized on the
table The other fitted parameters are:

hwa = 3.297eV

hwp = 3.303eV
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‘ Units: meV hwrr A ‘ Qa ‘ hwrr,B ‘ Qp ‘ hwir,c ‘ Qc ‘
Along the radius 2.7 133 12.8 290 0 0
Along the wire axis 0 0 0 0 16 327

Table 5.1: Summary of the longitudinal-transverse splitting Awpr; and associated Rabi splitting
Q; resulting from the fit of the experimental polariton dispersion.

hwe = 3.343eV

Changing the microwire radius by + 20 nm would change the mode quantum numbers leading
to a new overall fit. From this consideration, the error on the fitted parameters has been estimated
to be less than + 10%. Consequently, the background dielectric function anisotropy, which is of
the order few percents, cannot be resolved. 7' = OmeV was sufficient to reproduce correctly the
experimental data and therefore, has not been taken into account. This fact can be understood,
a posteriori, owing to the two orders of magnitude separating the Rabi splitting and polariton
linewidth in these structure.

Within the errorbars, a close to bulk Rabi splitting is recovered in these structures. Indeed,
the Rabi splitting in the cross-section is given by ngﬁe = /%4 + Q% = 319meV £ 30meV and
is compatible with the bulk Rabi splitting Q%‘ikc = 288meV. For the Rabi splitting along the
wire, we have: Q%chre = Q¢ = 327meV 4+ 33meV which is compatible to the bulk Rabi splitting
Q| = 288meV. Linewidth of polariton modes is around 4 meV on figure . Therefore, the
figure of merit (Rabi splitting over linewidth) in this system is 75 at room temperature which is
record value at room temperature.

5.2.3 Polariton dispersion perpendicularly to the wire axis: 1D character
Polariton dispersion perpendicularly to the wire axis

Thanks to the 1D Fourier spectroscopy, it is possible to demonstrate the 1D character of these
polaritons by studying the polariton dispersion along the angle of emission ¢ around the wire
cross-section. Figure 5.6/ shows the measured polariton dispersion versus the angle ¢ for = 0°
at room temperature on the same sample and at the same position than in figure 5.5l Polariton
modes are found to be strictly dispersionless, i.e., strictly monomode in the plane perpendicular
to the wire main axis. This is a direct evidence of the one-dimensional (1D) nature of the
polaritons investigated in this thesis. Since a hexagon is invariant by rotation of A¢ = 60°, the
knowledge of E(¢) over 60° is sufficient to know it over 360°.

Intensity modulation as function of the angle ¢ in the figure |5.6| corresponds to the far-field
emission of HWGMs in the strong coupling regime. Since the polariton wavefunction matches the
one of the associated photonic modes, the far-field emission corresponds to the far-field emission
of the HWGMSs described in reference [64]. Because of symmetry considerations, each HWGM is
twice degenerated in a traveling clockwise and a counter-clockwise modes. Their wavefunctions
are simply connected by the transformation ¢ — —¢. Therefore, their far-field emissions overlap
on figure [5.6| creating a complex intensity modulation as a function of the angle ¢ without any
clear behavior.
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Figure 5.6: Dispersion measurement in ZnO microwires at room temperature as a function of
the angle of emission perpendicularly to the wire. The figure is split into TE (left panel) and
TM (right panel) polarizations. This measurement has been performed on the same microwire
and at the same position than in figure 5.5

1D density of polariton states

We will now study the density of states of such polaritons in order to emphasize its one-
dimensional character. Since the polariton dispersions are flat along the angle ¢ for § = 0°
(ie. k, = 0), it is reasonable to assume that it is flat along the angle ¢ whatever the value of
0 is. Therefore, we will extract the density of states directly from the figure [5.5| assuming no
dependency with the ¢ angle.

Experimentally, the density of states is extracted by summing up the modified intensity on
figure over all the angles of emission 6 at a given energy E. It gives a parameter that we
will call ((E). First, let us demonstrate that this process allows to obtain the density of states
of these polariton states. We have:

O=r/2
E
() = / (5, 6) - cos(0)df (5.4)
c
O=—r/2
where I(FE, 0) is the intensity of the polariton state at a given energy E and angle of emission

given by the figure [5.5] The angle of emission 6 is connected to the momentum along the wire
axis k by the relation:

E
k= %sm(ﬁ)

Let exchange the variable 6 by k in equation
k=00

((B) = / I(E, k)dk (5.5)

k=—o00
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Chapter 5. Strong coupling regime in a single ZnO microwire

% has been approximated by +oco in equation because we focus on the polariton emission
close to k = 0, ie. in the range angle of emission [-30° ; 30°]. The polariton intensity I(E, k) is
given by the following convolution:

I(E,k) = 6(E — Ep(k)) © L(E) = L(E — Ep(F))

where E,(k) is the polariton dispersion and L£(E) is the line shape of the polariton state (ie.
Lorentzian for example). In equation let us now exchange the variable k£ by E,. It leads to:

Ep=00
amztfﬁw—%gzwp (5.6)

Ep=—00

The general formula to compute a one-dimensional density of state p(E) with only one free

degree of freedom k is given by:
1 (0E\""
E)=—|—
e = (5¢)

Therefore, we can write:

Ep=0c0
() =n [ LB Bo(EE, (5.7)

Ep=—o0

Assuming that the linewidth I" of L(E — E,) is small enough so that p(E,) is constant on I,
we write:

Ep=0c0

() =mplB) [ L(E - Ey)dE,

Ep=—o00

Finally, the density of state at a given energy E is given by the relation:

¢(E)
F) =
P(B) =~
where: Lo = E”ffo L(E — E,)dE, is the integral of the polariton lineshape.
Ep=—o00 p p

Figure presents the density of states up to a multiplicative factor of the polariton labeled
13TEO1 on figure using this method. The blue curve is the usual density of states for a 1D
massive particle with a parabolic dispersion and is proportional to 1/\/E-ES. A good agreement
is found in the range [3.185 eV - 3.215 eV]| comparing to a 2D or 3D density of states (blue
dashed lines on figure . The density of states presented on figure clearly support the
demonstration of the 1D nature of these polaritons.

5.2.4 Polarization dependency

The polarization dependency, in ZnO microwires in the strong coupling regime, is driven by the
strong artificial anisotropy caused by the excitons resonance A and B (E L ¢) and C (E || ¢).
For the modes 13TE(O1 and 14TMO1 on figure these considerations result in a polarization
switching as a function of the angle of emission 6.
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Figure 5.7: Density of states up to a multiplicative factor of the polariton labeled 13TE(01 on
figure p.9] The blue line corresponds the the density of states for a 1D massive particle with a
parabolic dispersion. Dashed blue lines corresponds to the 2D and 3D density of states

The absolute dielectric function is represented on figure [5.8] using the parameters extracted
from the dispersion fits at room temperature (figure[5.5(a) ). The dielectric function in the cross-
section of the wire (along the wire) takes into account the A and B excitons (C exciton). Close
to the A and B resonances, for example, an important difference between the dielectric functions
¢, and €, appears resulting in an important energy dependent birefringence. The differential
dielectric function Ae = ¢, — €, is represented on the panel b) of figure [5.8] A large mismatch
between €, and €, is indeed evidenced on this figure. It results in a birefringence which modifies
the polariton polarization dependency as a function of the energy (and therefore, as a function
of the angle of emission) compared to the uncoupled WGM model developed in chapter II.

The angular dependence of the polarization degree in the strong coupling regime is highly
non-trivial. Therefore, we have used the same model than in subsection in order to compute
the theoretical polarization degree. The HWGM has been approximated by WGM in a cylinder.
Figure displays the angular 8 dependency of the polarization degree of two polariton modes
(called 14TMO1 and 13TE01 on figure [5.5)). Polarization degree is defined by:

Ay — I
Ity + ITe

where Ity (I7g) is the polarization intensity in the TM (TE) polarization.

At angle # = 0°, both modes are pure either TM or TE. The most striking feature is the
change in the polarization observed with increasing emission angle . The 13TE01 (14TMO01)
mode at 6§ = 0° completely switches to TM (TE) mode at 6 40 (§ = 30). This polarization
switching is mainly due to the strong coupling regime. Indeed, because of the strong energy
dependent birefringence, the cavity mode is mixed with every exciton states simultaneously. It
is satisfactorily reproduced by the model in the strong coupling (solid lines in figure for the
TE mode but not for the TM mode. In fact, a complete agreement on this point is more difficult

to achieve for two reasons:

e The polarization mixing is sensitive to the geometry of the system (this model assumes a
circular and not hexagonal cavity). Indeed, as we have seen in chapter 11, the eigenstates
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Figure 5.8: a) Absolute dielectric function in the cross-section of the wire (black line) and
along the wire axis (blue line). Horizontal dashed line is the background dielectric function.
b) Differential dielectric function Ae = ¢, — €,. Horizontal dashed line corresponds to a zero
differential dielectric function. On panel a) and b), the vertical dashed lines correspond to the
exciton energy A,B and C.
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Figure 5.9: Angular 6 dependence of the polarization degree of modes a) 14TM01 and b) 13TEO01.
Open symbols are the measurements, solid and dashed lines are the calculations for polariton
modes and bare (uncoupled) optical WGMs, respectively.

in a wire with a hexagonal cross-section can be expressed as a linear combination of the
eigenstates of a cylinder. As shown in reference [62], about 10 cylinder harmonics have to be
taken into account to define a given HWGM. As a consequence, the modification caused by
the strong coupling regime on the polarization can be important. This is relevant especially
for TM modes because the electric field for TM mode has a large component parallel and
perpendicular to the wire axis at non-zero angle 6.

e The weak TM (TE) components of B (C) excitons have been neglected. B (C) exciton
has a small (below 1 meV) longitudinal-transverse splitting along the wire axis (in the
cross-section of the wire)[91]. Therefore, they can induce an additional modification of the
polariton polarization degree as a function of the angle 6.

5.3 Comparison with GaN microwires

With ZnO microwires, the hope for electrical injection of polaritons is very little since p-doping
technology of ZnO is not mature and well-controlled yet. On the other hand, n/p-doping of
nitrides is much more developed and polariton lasing [92] at room temperature have been real-
ized with microcavities based on nitrides. However, electrical injection within microcavities is a,
challenging task: free carriers must reach the quantum wells placed at the heart of the structure,
i.e. in the cavity layer. This requires the fabrication of p and n doped Bragg mirrors or advanced
etching technique. In addition, large bandgap microcavities have intrinsic drawbacks for oper-
ation in the strong coupling regime at room temperature like e.g. a low Rabi splitting in spite
of large exciton oscillator strength. This is due to the large fraction of the electromagnetic field
contained in the Bragg mirrors, and to the presence of large polarization and piezo electric-fields
at every heterointerfaces that reduces the exciton oscillator strength by quantum-confined Stark
effect [93].

In order to overcome these problems, we will investigate a new strategy based on GaN mi-
crowires. Indeed, they constitute a very interesting alternative for electrical injection compared
to microcavities or ZnO microwires. Unlike ZnO, Nitrides-based microwires can be nowadays
designed into p-i-n diodes for electrical injection [94) @5]. Moreover, the growth and nanofab-
rication of this material is technologically more mature, thus more complex structures with
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Chapter 5. Strong coupling regime in a single ZnO microwire

embedded quantum wells or quantum-dots in the strongly coupled microwire can be envisaged
on a short-term. Therefore, reaching the strong coupling regime in GaN microwires is of high
interest.

In this section, we will present a study performed on GaN microwires to demonstrate the
strong coupling regime. First, we will discuss the growth of these structures. The result is a GaN
microwire with a hexagonal cross-section (such as ZnO microwires) with a doped segment whereas
the rest of the wire is undoped. Then, using 1D Fourier spectroscopy, the strong coupling regime
will be characterized. Finally, an interesting transition from strong to weak coupling regime
between the doped and undoped segment of the wire will be evidenced.

5.3.1 Growth of GaN microwires

GaN microwires have been grown by MOVPE on c-plane sapphire substrates by our collaborators
in the CRHEA laboratory: Blandine Alloing and Jesus Zuniga Perez. In order to promote the
vertical growth along <0001> , and after a nucleation step in which truncated GaN pyramids
are formed, silane is injected into the reactor during the first 30 min of the growth together with
NH3 and TMGa [96]. As a result, the first half of the microwire is highly n-doped. Then, silane
injection is stopped so that the upper part of the wire is nominally undoped. During this step,
the TMGa to NH3 ratio (i.e. the V/III ratio) is much larger than that conventionally used for
two-dimensional growth. This growth procedure results in a transition layer, 1 to 2 micrometer
thick, at the interface between the doped and undoped segments of the wire (see figure
a) and b) z=40pm to z=42pm). The microwires thus obtained feature 2 to 10 micrometers in
diameter and 20 to 40 micrometers in length. As shown in figure [5.10} a low photonic disorder
has been reached over 10 pm. In all cases, the wurtzite GaN c-axis coincides with the wire
longitudinal axis (referred to in this thesis as z).

5.3.2 Spatially resolved photoluminescence on a single GalN microwire

Figure b) presents a spatially resolved photoluminescence experiment at 10K. The most
striking feature is the ensemble of spectrally narrow bent stripes separated by a few tens of
meV from each other and visible over the whole length of the wire. In the upper part of the
wire (22pm<z<41pm) which is nominally undoped, they correspond to HWGMs in the strong
coupling regime with the free excitons (the peaks on figure c), black line) as will be discussed
below. A weak contribution of A and B exciton (3482.5meV and 3487.5meV) can also be seen in
this region (figure[5.10|c) gray line). In the lower part of the wire (z>41jm), it is heavily n-doped
with a rough estimate of the concentration of n 1 — 2.102°cm =3 based on the high energy edge
(at 3555 meV) of the photoluminescence which exceeds by 45mev the exciton energy of undoped
GaN [97]. In this region we show that the HWGMs are in the weak coupling regime.

5.3.3 Strong coupling characteristics of the undoped segment of GalN mi-
crowires

Firstly, in order to demonstrate the strong coupling regime like in the previous section for ZnO
microwires, we measured the angular dispersion of the emission of several HWGMs in the undoped
segment of a single microwire. We chose to work with large wire diameters (3-7 microns) for
two reasons: first, the larger the diameter, the higher the quality factor of the HWGM at a
given energy [64]; second, the low free spectral range A = E,,+1 — E,, between two consecutive
HWGM, of 23.5 meV, provides us with about 20 well separated HWGMs within a detection
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Figure 5.10: a) Schematic representation of a GaN microwire. The dark grey region represents
the n-doped segment and the light gray one represents the undoped segment. Next to it is shown
a typical SEM micrograph of a GaN microwire. b) micro-photoluminescence spectrum (photon
energy on the horizontal axis, PL intensity is color scaled) versus position on the microwire
(vertical axis z) in the near band edge region of GaN at T=10K. The bright bent lines are
whispering gallery modes in the strong (undoped region, i.e. z=22um to z=40pm) and weak
coupling regime (doped region, i.e. z=42pm to z=5lpm) depending on the position z. The
exciton levels of undoped GaN at T=10K are indicated by the red vertical lines. c¢) Emission
spectra obtained from slices of measurement b) taken at z=31pm (light gray solid line, undoped
segment) and z=47pm (black solid line, doped segment).
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spectral window of [3100,3500] meV. As in ZnO, there are three excitons involved in the light
matter interaction called A,B and C in the range 3480 meV to 3500 meV at 4K.

The results are shown on the upper panels of figures and for temperatures of 10K
and 300K respectively. In this measurement only TE-polarized emission is detected (ie. E L ¢).
As in ZnO microwires, another family of polaritons is observed for TM-polarization, with a larger
contribution of the C exciton to the oscillator strength, a lower one from A and B, and a similar
overall Rabi splitting. But due to poor thermal population of the C exciton, we found that the
TM-polariton luminescence was too dim to be exploited quantitatively.

TE-polarized luminescence shows several well-resolved dispersion branches with decreasing
curvature from low (figure c) bottom) to high (figure a), top) emission energy. Such a
curvature change versus energy is a characteristic feature of the strong coupling regime between
exciton levels and HWGMs in the microwire, leading to 1-dimensional exciton-polaritons. To
confirm this interpretation, in section [5.3.4] we check experimentally that upon switching off the
excitonic oscillator strength using the doped region of the microwire, the strong coupling also
switches off.

Another striking feature is the spectral sharpness of these modes: the uncoupled region of the
spectra (lowest energy) reveals a quality factor of the HWGMs between 600 and 700. Note that
this value is a lower bound only since the measured linewidth is not always homogeneous. Indeed,
on top of (and sometime superimposed to) the brightest HWGMs, dimmer ones are visible (mostly
figure with different energy spacing, which result possibly from a non-perfectly hexagonal
cross-section.

Method to determine the exciton-photon coupling regime in a single GalN microwire

The model used for GaN microwires is the same than the model used for ZnO microwires at low
temperature. Actually, since the diameter is larger (~ 3pm), HWGMs will have large azimuthal
number m (above 100). Therefore, the HWGM energy equation in the ray-light representation
reproduces properly the HWGM energy and a wave model is not necessary from this point
of view. Therefore, in the specific case of GaN microwires, it is possible to extract the Rabi
splitting and to reproduce the spectral position of the polariton modes. Again, we will focus in
the range [-30° ; 30°| for the angle of emission where we do not need to take into account the
oscillator strenght mixing at high angle (ie. above 30°) caused by the artificial birefringence.

The exciton energies and oscillator strenght are well documented in the literature [98], 99, [100]
and are summarize on table 0.2 for 5K and 300K.

Results and discussion on the exciton-photon coupling regime in a single microwire

We applied this method to the measurements shown in figures and (upper panels, for
the undoped region). The extracted «, no and Rabi splitting are summarized in table : a
large background index n., = 3.1 is found, and an overlap integral « of which deviation from
1 is contained within the error bars. This background index is larger than 2.6 usually found in
the literature in the near-UV [98, ©99]. Likely contribution to this deviation could be residual
electron doping (density not measured) as well as the significant overlap of the HWGM with
a large density of deep electronic levels (contained within the bandgap) located at the surface
of the wire [I0I]. Note that the determination of the background index is realized using the
lowest energy HWGMs, which are negligibly affected by the excitons oscillator strength. Owing
to the form of equation a large uncertainty on the background index has no impact on the
uncertainty of the Rabi splitting.
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Figure 5.11: Measured TE-polarized photoluminescence intensity (color scale) of the undoped
(upper panels a, b and ¢) and heavily n-doped (lower panels d, e and f) segment of the wire at
T=10K with angular (x-axis) and spectral (y-axis) resolution.The free exciton energies labeled
X4, Xp and X¢ are indicated as straight red lines (solid, dashed and dot-dashed respectively).
The blue solid lines are the calculated dispersion branches. The contrast of the color scale
has been sometime adjusted within the same image in order to maximize the visibility of the
dispersion branches. In a) the energy corresponding to polaritons with zero detuning between
excitons and uncoupled HWGM is indicated by the yellow dashed line. The linewidth I' of
selected modes is indicated in panel b) and c)
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Figure 5.12: Like figure [5.11] but at room temperature. The measurements have been done on
the same microwire as that of figure [5.11
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T(K) Exa Q4 Exp QB Exc Qc
(meV) (meV) (meV) (meV) (meV) (meV)
) 3482.5 90 3487.5 78 3506 37
300 3409 90 3414 78 3432 37
Q r

TE) | oo | mev) | (mev)

5) 3.1+0.1 | 1+0.1 | 125413 6.5+1

300 | 3.1£0.1 | 1£0.3 | 125£50 7.5+1

Table 5.2: Exciton energies (Ex;) and Rabi splittings (€2;) used in this calculation are those
found elsewhere for weakly strained bulk GaN [98] 99, [100] at T=10K and room temperature. «
is the normalized spatial overlap integral and no, is the background index. The resulting overall
Rabi splitting €2, and the measured linewidth T’y of the polariton branch around zero detuning
are given in bold characters.

The large value of « is the first main result since it demonstrates unambiguously the strong
coupling regime at 10K and 300K. It leads to an overall Rabi splitting of 2 = 125meV + 13meV
at 10K, and 2 = 125meV £50meV at room temperature. The linewidth I'g of the mode at § = 0°
(cf. figure a) at T=10K and figure a) at room temperature) is fitted with a Lorentz
lineshape by carefully removing the background emission, for which we have taken advantage of
the fact that this emission is not angle dependent. We find I'g = 6.5meV + 1meV at T=10K
and I'g = 7.5meV £ 1meV at room temperature. Finally, comparing I'g and € at low and room
temperatures shows unambiguously that the strong coupling regime is achieved in both cases
with a conservative estimate of the figure of merit (defined as the ratio between Rabi splitting
and polariton linewidth) of 20 at 10K and 15 at room temperature.

Like in ZnO microwires, the very fact that each polariton branch is well separated from the
neighbouring ones in energy indicates that every branch is associated to a single transverse mode
with k, as only degree of freedom. As a result polaritons in these GaN microwires also have a
one-dimensional character.

The thus obtained dielectric functions normalized by the background constant e, (to get rid
of the large uncertainty on the background index measurement which contributes only as a scaling
factor to the dielectric function), are plotted p.13|c) and d), together with the experimental points
obtained from the curvature of each polariton modes. The shape of this normalized dielectric
function depends only on the regime of coupling with the excitons: in the strong coupling regime,
we observe as expected a strong divergence of 1(—? upon approaching the exciton energy (figure
c¢) and d), undoped segment). While when the exciton levels are suppressed, the dielectric
function is not perturbed at this energy (figure c¢) and d), doped region).

Interestingly, with this method one can verify a posteriori that the uncoupled HWGMs are
equally spaced in energy by A = 23.5 + 0.3meV (cf. figure a) and b), hollow circles plots).
In the limit of modes of large angular momentum m this equal spacing is in agreement with
a wire of hexagonal cross-section given by equation A is then simply connected with the
radius of the microwire and the background index by the relation A = 6&2 7> Where R is the
small radius of the hexagon. R = 2.7pm is found in agreement with the micro-PL pictures.
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Figure 5.13: Measured polariton energy at 8 = 0° (black filled circles) at T=10K (a) and room
temperature (b) versus azimuthal number in the undoped segment. The black hollow circles are
the calculated uncoupled HWGMs energy in the undoped segment. Blue hollow squares are the
HWGMs energy at § = 0° obtained in the doped segment. The black dashed line is a linear fit of
the uncoupled HWGMSs energy which provides a free spectral range of A = 23.54+0.3meV. The
black solid line is the calculated polariton energy at 8 = 0°, assuming that the corresponding
uncoupled HWGMs are equally spaced in energy by A. The exciton levels A, B and C are
indicated with red lines. Lower panels show the measured and fitted (using equation and the
parameters listed table values of the dielectric function in the undoped (black filled circles
and black line respectively) at 10K (c¢) and room temperature (d). Hollow blue squares are values
of the dielectric function obtained in the doped region (the first data points have been arbitrarily
normalized to one).
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5.8. Comparison with GaN microwires

5.3.4 Switching off of the strong coupling regime due to Moss-Burstein effect:
spectroscopy of a heavily doped segment of a GaN microwire

We will know focus on the doped segment of the GaN microwires. Heavy n-doping is an interest-
ing situation in the context of the strong coupling regime between exciton and photon because
of its effect on the excitons: upon increasing the free charges density, exciton oscillator strength
decreases and gets spectrally broader. At large doping level, like in the present case, bound
electron-hole states do not exist anymore. Instead, correlated many-electrons plus one-hole
states are present (sometime called “Mahan exciton” or “Fermi edge singularity”) which exhibit
a strongly reduced oscillator strength as compared to that of exciton in the undoped case, but
slightly enhanced with respect to uncorrelated electron-hole recombination in the doped case
[102] 103]. Far beyond the Mott transition, these states have a recombination energy largely
blueshifted with respect to the undoped band to band transition. Indeed in this regime, the
bandgap renormalization (redshift due to Coulomb interaction between free electrons) is domi-
nated by Moss-Burstein effect (conduction band filling).

In the case of GaN microwires, in the n-doped region of the wire, we observe a high energy edge
of photoluminescence 45meV above the free excitons energies of undoped GaN (see figure ,
right panel). This behavior is consistent with the aforementioned regime of very large doping
density. Indeed the high energy photoluminescence (between 3480meV and 3560meV) results
from the recombination between a photogenerated hole and any electron between the conduction
band edge and the Fermi energy. This mechanism involves non k-conserving recombinations
which are allowed in the degenerate regime due to break-up of the single electron excitations
picture [104]. The important point in the context of this work is that in this regime, the excitonic
levels with the energy and oscillator strength characteristic of undoped GaN are completely
suppressed, i.e. the strong coupling regime between excitons and HWGMs is switched off.

We performed angle-resolved spectroscopy of the same microwire studied in the previous
section, but this time on the heavily n-doped segment to measure how the strong coupling
regime is affected by the suppression of the excitonic transitions. The results are shown on the
lower panels of figures and Well-resolved dispersion branches of HWGMs are observed.
Their linewidth is as narrow as that of the undoped segment, i.e. in the 5 meV range. This is
true even for modes lying above the energy of the undoped GaN exciton. Indeed, no absorption
induced broadening is expected [103] in heavily n-doped GaN.

Regarding the shape of the dispersion branches, their curvature in the vicinity of the band
edge is much less flattened than in the undoped region. Using equation we could fit each
dispersion branch independently (blue solid lines in figures and lower panels) and thus
determine the dielectric function in this region in order to compare it with the one obtained
in the strong coupling regime (figure c) and d) hollow blue squares). In this regime, the
divergence at the exciton energy has disappeared and a slowly increasing behavior is observed
instead, likely due to onset of absorption at the energy of the transition from the Valence band
to the Fermi level in the renormalized conduction band [103].

Note that in n-doped (electron densities up to 102°cm=3) bulk GaN a broad resonance with
slightly enhanced oscillator strength (with respect to the band-to-band transition) has been
already reported and attributed to Fermi edge singularity [103]. The latter could possibly par-
ticipate in the gentle increase of the dielectric function that we observe at high energy.

Assuming that the diameter of the wire is the same in both doped and undoped regions of
the wire (as is the case on the SEM micrograph of figure , we also plotted the modes energy
versus mode number in order to directly visualize that the anti-crossing of HWGMs with exciton
levels is lost, i.e. the HWGMs in this region are in the weak coupling regime with the microwires

95



Chapter 5. Strong coupling regime in a single ZnO microwire

electronic excitations. The direct comparison of both doped and undoped region of the same
microwire is the second main result observed in these structures. Everything else being identical,
one can observe directly how removing the excitonic transition results in switching off the (very)
strong coupling regime with the HWGMs.
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Chapter 6

Quenching of the polariton/LO phonon
interaction at room temperature
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In the previous chapter, we have seen that the strong coupling regime is achieved at room
temperature with a high figure of merit (775) in ZnO microwires. Linewidth of these polaritons
are surprisingly low as compared to the bare exciton broadening in ZnO at room temperature
(full width at half maximum ~ 40meV’).

The goal of this chapter is to characterize and understand this small polariton linewidth at
room temperature with respect to the exciton broadening. First, we will discuss in details the
expected linewidth of these polaritons at room temperature using a simple two oscillators model.
We will show that this model fails to predict properly the polariton linewidth in ZnO microwires.
Then, we will extract the thermal contribution to this linewidth in studying the temperature
dependency of the polariton modes. Finally, we will explain, with a simple physical picture and,
then, with a modeling using the Fermi golden rule, the quenching of the polariton/LO phonon
interaction in these structures. This effect has an important impact for the study of polaritons in
the quantum degenerate regime at room temperature since it allows to obtain polariton linewidth
at room temperature identical to the low temperature ones.

6.1 Failure of the damped coupled oscillators model

At first glance, the polariton mode linewidth (FWHM around 4 meV on ﬁgureright panel) at
room temperature seems to be relatively low compared to the bare exciton broadening (FWHM
around ~40meV).

The temperature dependency of ZnO excitons has been extensively studied by Klingshirn [46].
Figure presents the temperature dependency of the exciton broadening (taken from reference
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Figure 6.1: The temperature dependence of the broadening (half width at half maximum) of the
A and B exciton resonance of ZnO. Taken from reference [46]

[46]). In this reference, it is well reproduced using a linewidth dependency versus temperature
given by:

B

hE
exp("Ere) — 1

F(T) =Tg+aol +

where T’y is the linewidth (half width at half maximum) at 0K, « is the contribution of the
acoustic phonons and f is the average coupling strength with every optical phonon modes with
an effective phonon energy hEpo which is an average of all optical phonons from 12.5 meV to 73.3
meV. Numerical values of these parameters are given on figure Close to 0K, the broadening
'y = 0.65meV [46] may have contribution from inhomogeneity in the structure studied. The
exciton broadening (half width at half maximum) ranges from 0.65 meV to 20 meV between 0K
and 300K.

A relevant quantity to predict the polariton mode linewidth is the excitonic fraction of the
considered polariton mode at room temperature (ie. the Hopfield coefficient[28] defined in chapter
. In the coupled oscillators model, it reads:

2
‘ X|2 — 97

02 + (2A)2
where €2 is the Rabi splitting and A = Ex — E,, is the energy difference between the exciton
state and the polariton mode of interest. For example, we have |X|? = 1/2 for a polariton mode
at an energy E, = Ex — /2. Left panel of figure is the calculated excitonic fraction for TE
polariton modes with respect to the energy axis of the right panel using parameters extracted
from the dispersion fitting (see chapter 4). In this expression, only one exciton resonance has
been assumed (called X 4/5) which gathers all the oscillator strength (Q = 300meV’) owing to
the small splitting between A and B exciton compared to the Rabi splitting. As a result, the
excitonic fraction of such polariton modes is quite high (above 35% in this energy range). The
highest energy TE polariton mode has an excitonic fraction exceeding 80% at 6 = 0°.

Let us consider Ix(E,I'x) and I,(E,T',) respectively, the emission spectra of uncoupled

exciton and photon, with homogeneous linewidths I'x and I',. In a naive coupled oscillators
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Figure 6.2: Right panel: Dispersion measurements in ZnO microwires at room temperature as a
function of the angle of emission along the wire. Both figures are split into TE (left panel) and
TM (right panel) polarizations. It is the same figure than figure a). Left panel: Calculated
fraction with the same energy axis using parameter extracted from dispersion fitting. X,,p
stands for the A /B exciton resonances

model, the polariton spectrum I,(E,T'y) is given by the convolution of the lineshapes of the
exciton and the photon [105]. The linewidth of each oscillator is weighted by its contribution to
the polariton state (ie. |X|? for the exciton state and |y|? for the photon state). It leads to:

L,(E,T,) = Ix(E,|X|Tx) ® I, (E, ]A’T,) (6.1)

In the case of polaritons in ZnO microwires at room temperature, it is reasonable to consider
a homogenous broadening for both the exciton (owing to exciton-phonon scattering) and the
photon (owing to photon escape) resulting in Lorentzian lineshapes. Therefore, the polariton
mode linewidth extracted from equation is simply the average value of the bare exciton
linewidth and the photon linewidth:

Ty = [X[’Tx + 1T (6.2)

Let us overestimate the Quality factor of our structure in equation and set I'y = OmeV.
In this ideal case, the polariton mode linewidth is limited only by the excitonic linewidth, ie.
I') = 32meV (FWHM) for the highest energy polariton mode of figure in TE polarization
at 3.23eV. Even in overestimating the quality factor in these structures, it is not possible to
reproduce properly the polariton mode linewidth of 4meV with such a high excitonic content
using a standard coupled oscillators model. Now that the “smaller than normal” linewidth
problem is set, we will explain how such a small linewidth is possible in these structures.
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6.2 Temperature dependency of the angle resolved photolumines-
cence

It is interesting to decrease the exciton broadening (by decreasing the lattice temperature) in
order to separate the thermal contribution to the polariton mode linewidth from the photonic
contribution. Moreover, in TE polarization on figure [6.2] there is no polariton mode emission
in the range [Ex Ex — 70meV] while we have already seen bright emissions of polariton modes
emission in this range at low temperature (see figure . In any case, if the excitonic broadening
decreases, one should expect to see polariton modes appearing in this region close to the excitonic
transition.

General features Angle resolved photoluminescence for various temperatures ranging from
10K to 218K is shown in figure In the panels of figure the energy axes are offset in
order to always focus in the spectral range [Ex, Ex — Ero| whatever the temperature is. At
low temperature, the photoluminescence is dominated by the bound exciton complexes emission
which vanishes above 70K because of its low localization energy (T16meV).

Let us now focus on polariton modes versus temperature. First of all, the exciton photon
detuning (ie. § = E, — Ex) increases for increasing temperatures resulting in a spectral shift of
the polariton states towards the exciton energy. As a result, the excitonic fraction every polariton
modes in figure increases as well. It results in a decrease of the curvature of the polariton
dispersions for increasing temperatures. This is clearly visible in figure for the the lowest
energy TE polarized polariton mode while the polariton modes at higher energy are affected in
a lesser extent because of their higher excitonic content (above 88%).

Absence of TM polarized polariton branches at low temperature At low temperature
(see figure for T=10K and T=49K), we observe that TM polarized polariton branches are
not populated whereas the excitation energy was tuned far above the band gap (ie. HeCd laser:
3.815eV/325nm). The reason is the following: since the spectral separation between the A/B
excitons and the C exciton is 45bmeV, the C exciton cannot be thermally populated at low
temperature (ie. below ~ 130K on figure . As we will see in details in chapter 8, polariton
modes are mainly filled via the LO phonon replica of the excitons in the linear regime. Moreover,
we have measured the polarization degree of the LO phonon replica of the A/B excitons to be
superior to 90% in the TE polarization. As a consequence, TM polarized polariton modes cannot
be filled efficiently at low temperature because the C exciton is not populated. On the other
hand, TE polarized polariton branches are filled via the LO phonon replica of the A/B excitons
even at low temperature. In figure TM polarized polariton modes are clearly populated only
above 131K which is consistent with a thermal population of the C exciton (ie. kKT ~ 11meV at
131K corresponding to a boltzmann factor of 1.7%) as well as an enhancement of the probability
to thermally populate the C exciton caused by the increase of the exciton linewidth.

Well-resolved polariton modes with exceedingly high excitonic fraction up to 99.98%
One of the main results of figure is the presence of highly excitonic polariton modes at low
temperature. Indeed, on figure which is a zoom on the range [3.3eV ; 3.387eV| of the panel
T = 49K of figure [6.3] there is a polariton mode 10 meV below the excitonic resonance with
a shallow, but unambiguous, curvature. It is even clearer on figure for T=81K, where the
bound excitons emission has vanished. In this figure, the emission of three well-defined polariton
modes is observed (two TE polarized and one dim TM polarized) around 3351 meV (ie. 24 meV
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below A exciton energy) with linewidths about 2 meV and excitonic fractions ranging from 96%
to 98% for the TE polarized ones.

Polariton modes with high excitonic content are spectrally narrow enough thanks to the low
excitonic linewidth and the large Rabi splitting. In our case, the low excitonic linewidth arises
from the bulk character of the microwires. From the polariton mode linewidth on figure [6.3]
we can infer that the pure excitonic linewidth, including its inhomogeneous and homogenous
component, is smaller than 1meV. This value is smaller than that reported in ZnO-based
microcavities (from 5 to 15 meV, see chapter 3) where the ZnO layer is deteriorated because of
its amorphous substrate. With such a low excitonic linewidth, it is possible to spectrally resolve
polariton modes which are as close as 2meV below the exciton energy such as polariton mode
1 on figure in chapter 7. This polariton mode has an excitonic fraction up to 99.98%. It is
possible to set a criterion to observe polariton branches with an excitonic fraction up to 99%. It
requires that the Rabi splitting over the excitonic linewidth ratio is larger than 40, ie.: ©/rx > 40.
This criterion is greatly satisfied for ZnO microwires at low temperature, ie. /Ty ~ 300. As this
criterion does not take into account motional narrowing or effects such as the quenching of the
polariton/LO phonon interaction which are lowering the polariton mode linewidth, this criterion
is a sufficient condition to observe polariton branches with excitonic fraction up to 99%.

From the photonic point of view, it is possible to observe highly excitonic polariton modes
even with a low quality factor in ZnO microwires. Indeed, for a polariton mode made up of
90% of excitons in a cavity with a quality factor of 50, the polariton mode linewidth is about
8meV. Again, since effects such as motional narrowing or quenching of the polariton/LO phonon
interaction has been neglected, this value is a maximum value of the polariton mode linewidth.

Thermal broadening: two sets of polariton modes in ZnO microwires Interestingly,
the three polariton modes around 3351 meV on figure[6.3| vanish at T=220K whereas the linewidth
of the lowest energy polariton mode on figure is hardly affected by the increase of the temper-
ature despite its high excitonic content (ie. ~ 53%). We can conclude that there are two kinds
of polariton modes in ZnO microwires: those which are affected by the phonon population (ie.
which emission depends on the lattice temperature) and those which are isolated from this bath.
In the following section, we will see that this effect is well understood in terms of quenching of
the polariton/LO and acoustic phonon interaction for polaritons with energy below the first LO
phonon replica.

6.3 Quenching of the LO phonon interaction

6.3.1 Simple physical picture

As explained in reference [106], when the phonon contribution to the polariton mode linewidth
(thermal contribution) needs to be considered, this crude assumption is, in general, incorrect
because the exciton-photon interaction dominates in general over the exciton phonon by one
order of magnitude. In ZnO microwires, it is the case, even at room temperature because of the
large Rabi splitting (~ 300meV’). Then, the correct physical picture to account for the thermal
contribution to the polariton mode linewidth is scattering between polaritons and phonons:
phonon interaction is then a perturbation to the polariton picture. At low temperature (ie.
kT < Ero where Epo is the LO phonon energy), the optical phonons are not populated and only
the interaction of polaritons with acoustic phonons has to be taken into account. On the other
hand, at room temperature, there is a non-negligible population of LO phonons (kT ~ 26meV to
be compared to Ero = 72meV . Consequently, the interaction between polariton and the thermal
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Figure 6.3: Temperature dependency of the angle resolved photoluminescence (grey scale) in the
range [10K 218K]. The temperature is given at the top of each image. X4 stands for the A
exciton energy (white dashed line). Pol TE (TM) corresponds to TE (TM) polarized polariton
mode.
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Figure 6.4: This figure is a zoom on the range [3.3eV ; 3.387¢V] of the panel T' = 49K of figure
[6.3]in a logaritmic grey scale.

bath of LO phonons cannot be neglected. Low-temperature experiments with microcavities have
already shown that the polariton/phonon interaction was leading to a significant reduction of
the polariton scattering with acoustic phonons [107] compared to a coupled oscillators model.

We will now qualitatively explain the contribution of the LO phonon-polariton interaction to
the polariton mode linewidth. In ZnQO, the LO phonon mode that has the strongest interaction
with the excitons is that at 72.6 meV [29]. Let us consider two polariton branches as drawn on
figure In the top (bottom) panel, the polariton energy £, at zero momentum is in the range
[Ex — Ero, Ex] ([0, Ex — Ero]). Two scattering mechanisms are considered:

Polariton(E,y, k) + LOphonon(72meV, q)
For the top panel of figure [6.5} 4
Ezxciton(E, + 72meV, k + q)

Polariton(Ey, k) + LOphonon(72meV, q)
For the bottom panel of figure J
Polariton(E, + 72meV, k + q)

Since the LO phonon dispersion is almost flat, the final state can have a large momentum
and match with any polaritons or exciton states at the energy F, + Ero. As a consequence,
polariton modes in the range [Ex — Fro, Ex] (top panel of figure can scatter toward any
exciton states in the reservoir whereas polariton modes in the range [0, Ex — Erp] can scatter
only toward polariton states. According to the Fermi golden rule, the scattering probability
directly depends on the finale density of states. Since the lower polariton branch density of
states is four orders of magnitude lower than that of bare excitons, polariton modes in the
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Figure 6.5: Simple physical representation of the LO phonon interaction quenching.

range [0, Ex — Fro| are much less affected by the phonon interaction compared to those in the
range [Ex — Fro, Fx]. Naturally, this effect is temperature dependent. At low temperature
(kT ~ 1meV for example), LO phonons with an energy of 72 meV are not populated and none
of the polariton modes presented on figure [6.5] are affected by LO phonon interaction. On the
contrary, at high temperature (kg1 ~ 26meV for example), the LO phonons states are populated
and polariton modes in the range [Ex — Ero, Ex] are affected by the LO phonon interaction
because of the high exciton density of states. At room temperature, the LO phonon interaction
is quenched below the energy Ex — E1o resulting in a much smaller thermal contribution to the
linewidth compared to the range [Ex — Ero, Ex].

6.3.2 LO phonon interaction as a perturbation to the strong coupling: Fermi-
golden rule

To get a better understanding of this effect, we use the Fermi “golden rule” to compute the 1D
polariton scattering rate I' with acoustic and optical phonons [I08]. An important assumption
can be made: because the polariton density of states is four orders of magnitude lower than that
of bare excitons, the scattering rate from one polariton branch to another one can be neglected
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as compared to the scattering of polaritons toward bare exciton reservoir. In this limit, the
scattering rate of polariton modes of energy Epp with thermal phonons reads:

D(Erp) =Tac(ELp) + T'ro(ELp) (6.3)

where Tyo(Erp) (T'Lo(ELp)) is the scattering rate of polariton modes of energy E7 p with acoustic
(LO) phonons. Using the Fermi “golden rule”, it reads:

Lac(Erp) = nV|X (ELp)|” / d°q(2m) N (q)|Mac(@)*3(ELp — Ex(q) + Fuc(q))

Lro(ELp) = TFVlX(ELP)|2/dgfl(%)_?’N(Q)\MLO(Q)|25(ELP — Ex(q) + Ero)

| X (ELp)|? is the excitonic fraction of the considered polariton state, V is a quantization vol-
lume, q, E,.(q) and Ero are the phonon momentum and energies, respectively, and Mo LO)(q)
are the matrix element for exciton and acoustic phonon (optical LO phonon) interaction. The
polariton momentum is negligible as compared to g. The phonons are assumed to be at thermal
equilibrium, thus following a Bose distribution N(q) at the lattice temperature. The results of
this calculation are shown in figures (a) and (b) as red solid lines for temperatures of 70 K
(figure (a)) and 300 K (figure (b)), respectively.

At low temperature, only low-energy acoustic phonons are populated and the LO-phonon
population is negligible. Since the strength of the exciton-acoustic phonon interaction is much
smaller than the one of the exciton-LO phonon interaction, the polariton-phonon scattering
induces a low thermal broadening over the range of polariton mode energy (the red plot in figure
(a)). At room temperature, thermal broadening increases dramatically, but only for polariton
modes contained within the energy range A = [Ex, Ex — Fro| (Fro = 72meV’), while those
at lower energy remain virtually unaffected regardless of their excitonic fraction (the red plot in
figure (b)). The reason is as follows: At room temperature, polariton modes of which energy
is contained within A can undergo scattering with a thermal LLO phonon and end up in the pure
excitonic states of the reservoir at large momenta. This is a very efficient process because of the
large exciton—-LO-phonon matrix elements and because of the very high density of states of pure
exciton states. A second kink is visible on this plot (figure (b), red plot at ~ 3290meV),
which is owing to the contribution of acoustic phonons in this energy range. For polariton states
of energy lower than Fx — Fro, LO-phonon (and a fortiori acoustic-phonon) energy is too low
to scatter a polariton to the pure exciton states of large momentum. Instead, the scattering can
end up only in the polariton states, a process strongly weakened as compared to the previous
one owing to the very low density of polariton states.

We have verified this effect experimentally. To do so, we have analyzed the temperature
dependence of polariton emission in a tapered microwire. This tapered shape allows tuning of
the polariton mode energies along the wire axis. The results are shown on figure The black-
and-white images in figures (a) and (b) are the PL intensity plots (gray scale) obtained at
70 and 300 K, respectively, with spatial resolution (abscissa) and spectral resolution (ordinate),
of a segment of microwire 30 ym long. At 70 K, sharp polariton modes are visible within the
energy range A (modes S3, S4, and S5) as well as below A (modes S1 and S2). Their curved
shape is owing to the tapered shape of the microwire: the diameter increases from left to right.
At 300 K, however, polariton modes S3, S4, and S5 as well as the part of the S2 mode where
energy falls within A (corresponding to positions L < 34 um along the wire axis) are completely
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Figure 6.6: Spatially resolved TE-polarized emission spectrum along a 32 pm segment of a tapered
microwire at temperature (a) T = 70 K and (b) T = 300 K. Along this portion of the microwire,
the inhomogeneous diameter (presently increasing from left to right) provides a natural way to
continuously vary the exciton-photon detuning. S1-S5 label the five visible polariton modes at
70 K. The A = (Ex,Ex — Ero) energy range is shown by the white arrows. Red solid lines

show the calculation of the phonon contribution to the polariton linewidth vs energy.
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washed out by phonon damping (figure (b)). On the other hand, the part of the S2 mode
where energy is lower than A (positions L > 34 ym) remains unaffected, showing that phonon
damping is strongly suppressed below A.

A more direct and quantitative demonstration of this effect is obtained by performing a
measurement of the polariton linewidth versus temperature. To do so, a polariton mode of
energy situated directly below A (mode S2 at L=40pm, green circle in figure (a)) is chosen.
It is angle resolved to look at the homogeneous linewidth at k, = 0. For the sake of comparison,
the linewidth of free exciton A is also measured (same position, L = 40 ym, white circle in
figure (a)). The results are shown on figures (a) and (b). For temperatures increasing
from 10 to 300 K, the linewidth of polariton mode S2 stays fixed at 8 meV. At 10 K, this value
corresponds uniquely to the HWGM damping contribution I',. Upon increasing temperature,
this contribution decreases slightly owing to the change of excitonic fraction (from 30% to 47%),
and can be calculated. It is shown by the blue dashed plot of figure (b). Thus, the thermal
contribution to the polariton mode linewidth is the difference between the dashed blue plot and
the total linewidth (red plot): It does not exceed 3 meV at 300 K. This result is particularly
striking when one considers the excitonic fraction of this mode, 47% at 300 K. For comparison,
the thermal contribution to the bare exciton linewidth (c)] amounts to 9meV, already at 120
K. It becomes too broad at larger temperatures to be measured properly.

This model fairly reproduces TE polarized polariton modes. Figure presents the polar-
ization degree (ie. p = %) at room temperature, spatially resolved on the same microwire
than figure As already shown, the energy cut-off to undergo the quenching of the LO phonon
interaction corresponds to the energy X4 — 1LO for TE emission. For TM emission, we should
expect a cut-off 45 meV above the TE one since the C exciton is 45 meV above the A and B
excitons. However, this cut-off is at an energy slightly lower than the energy Xo—1LO. Actually,
this difference is explained by the weak TM component of the A/B excitons. Indeed, at large
wavevectors, A /B excitons turn to TM polarization and it is possible for TM polarized polariton
mode to scatter towards these states by absorbing a LO phonon. Finally, TM polarized polariton
modes can survive at slightly higher energy than TE ones with a cut-off in between X4 — 1LO
and X¢ — 1LO.

Since we have understood the main contributions to the polariton linewidth, we can properly
extract the quality factor of HWGMSs from figure [6.2] at room temperature, using the following
relation for the polariton linewidth I', with a photonic fraction |y|?:

I = |y°T, +T%"

where Fﬁh is the thermal broadening due to interaction between polaritons and the phonon bath
(given by equation and I'y is the photonic linewidth. It gives I', = 5meV and a quality
factor of 600 for this microwire.

In principle, the quenching of the LO phonon interaction can be observed on any structures
exhibiting strong coupling regime. However, in ZnO microwires, owing to the large Rabi split-
ting compared to the LO phonon energy, quenching of the LO phonon interaction appears for
polaritons with a significant excitonic fraction up to 80%. From these considerations, a general
criterion can be drawn: a polariton with 50% excitonic fraction is isolated from thermal phonon
damping if falf of the normal mode splitting exceeds the LO phonon energy:

—>F
5 LO

In practice, this criterion is difficult to meet, considering the large LO phonon energy in most
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Figure 6.7: (a) Pure exciton linewidth vs temperature (energy and position shown by the or-
ange circle in figure (a)). (b) Measured homogeneous linewidth of polariton mode S2 vs
temperature (red round symbols), when its energy lies below A. The dashed blue line plots the
photon-escape contribution to the linewidth (100% contribution to the linewidth at 10 K). The
homogeneous linewidths are obtained from angle-resolved measurement carried out in a region
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centered on L = 43 um (green circles in figures (a) and (b)).

semiconductors as compared to the Rabi splitting usually achieved in microcavities. In ZnO
microwires, this criterion is met, thanks to the very large oscillator strength combined with the

microwire geometry that provides a large Rabi splitting.
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Figure 6.8: Spatially resolved polarization degree (grey scale) of the photoluminescence on the
same tapered microwire than figure at room temperature. White (black) corresponds to TE
(TM) emission. X 4 — 1LO is the cut-off energy for TE polariton modes to undergo quenching of
the LO phonon interaction. Using experimental criterion, the cut-off for TM polarized polariton
modes is given by the white dashed line (called “TM cut-off”)
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Stimulated relaxation of 1D polaritons
at low temperature
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In the part II, we have demonstrated that the polaritons in ZnO microwires exhibit a large
Rabi splitting 2 = 300meV at room temperature. Moreover, the polaritons situated in the range
[0 Ex — Ero] are not affected by the interaction with the LO phonons and feature almost the
same linewidth than at low temperature. Therefore, these polaritons are interesting candidates
to obtain the quantum degeneracy regime at room temperature.

A non-linear emission in ZnO microwires has been observed at room temperature by the
team of our collaborator professor Zhanghai Chen [I09]. They have reported indications for
polaritons lasing using a nanosecond pulsed laser with a very high peak power. However, this
laser has a low repetition rate (f = 10H z, ie. 10 pulses per second) and, therefore, generates an
emission with a low signal to noise ratio. Moreover, it is difficult to couple with a time-resolved
detector. Although this result is convincing, the conservation of the strong coupling regime
remains ambiguous.

In order to observe polariton lasing regime unambiguously, we choose to study the stimulated
relaxation of polaritons in ZnO microwires at low temperature because it has a much lower
threshold. Indeed, at room temperature, because of the quenching of the LO phonon interaction,
the excitons from the reservoir have to release at least 72 meV (ie. the LO phonon energy)
to scatter from the exciton states towards the polariton states. On the other hand, at low
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temperature, there are plenty of polariton modes closer to the excitonic reservoir (ie. even 2
meV below the exciton energy). In this regime, an original regime of polariton lasing with an
exceedingly high excitonic fraction is observed.

In this chapter, we will present the experimental facts describing the polariton lasing we have
observed in ZnO microwires at low temperature. Firstly, we will discuss the general behavior
of the power dependency of the polaritons photoluminescence up to the quantum degeneracy
regime as well as the consequences of the high excitonic character (up to 97%) of these states.
Then, we will enter into the details of the polariton lasing regime in order to demonstrate that:

e there is a macroscopic occupancy of the polariton state by studying the power dependency
of the intensity of the light emitted by the polariton state

e there is an increase of the coherence time in the system

e the strong coupling regime is preserved above the threshold

7.1 General features of the polariton lasing with a high excitonic
content in ZnO microwires at low temperature

7.1.1 Introduction of the polariton lasing regime in ZnO microwires at low
temperatures

Before presenting the detailed features of the polariton lasing in a single ZnO microwire at low
temperature, we should briefly discuss the photoluminescence spectrum below and then above
the lasing threshold. Figure [7.1] presents the spatially resolved photoluminescence of a single
7ZnO microwire at 40K. A logarithmic color scale has been used to compare simply the different
components of this spectrum. Below the A and B excitons energies, we can observe the bound
exciton complexes at 3.36 €V and 3.363 eV as well as the emission of the polariton modes,
numbered from 1 to 5. As shown on the bottom panel of figure the microwire diameter is
increasing from the positions x=0 pm to x=7 pum, it is almost constant from the positions x=7
pm to x=10pm and decreases from x=10 pm to x=12 pm. Since the energy of the HWGMs is
inversely proportional to the radius of the wire, the energy of the resulting polariton mode will
increase for decreasing wire radius.

In order to reach the polariton lasing regime, we have measured the photoluminescence of the
microwire already described on the figure at various pulsed excitation power. The position
and the spot size of the laser is tuned to shine a region of the microwire with a constant radius
(see figure . We choose to study the spatially resolved photoluminescence instead of the
angular resolved experiment. Indeed, the photonic disorder (ie. caused by the radius gradient)
tends to localized the polaritons. Therefore, the photoluminescence in the momentum space is
drastically sensitive to the position along the wire of the laser. To overcome this difficulty, we
choose to collect the light intensity emitted by a polariton state at a given position rather than
at a given momentum along the wire axis. This method has a drawback: we cannot access the
polariton distribution in the momentum space to describe its thermalization for example.

Figure[7.2)represents the spatially resolved photoluminescence along the same microwire than
figure [7.1] for three different excitation powers (from left to right on figure 0.8%Pry,, T%Pry,
and 160%Pry) where Prp is the threshold power of the polariton lasing regime. We observe
that the intensity of the polariton 4 (numbered on figure for increasing pumping power
dominates all the other components of the spectrum above the threshold pumping power Prp
due to the lasing non-linearity. This polariton state is situated 16 meV below the A exciton
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Figure 7.1: Top panel: Spatially resolved photoluminescence in a logarithmic color scale along a
single ZnO microwire below polariton lasing threshold. Bottom panel: Schematic representation
of the microwire studied in this experiment displaying the radius gradient corresponding to the
photoluminescence.
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Figure 7.2: Spatially resolved photoluminescence (color scale) along the same microwire than
figure for three different pulsed excitation powers (from left to right: 0.8% Prp, 7%Prp, and
160%Prp). Pry, is the threshold power of the polariton lasing regime.

energy (ie. in the range [Ex — Ero Ex]|) and, therefore, is broadened at room temperature
because its interaction with the LO phonon is not quenched. Its energy difference with respect
to the A exciton energy is 16 meV as compared to the Rabi splitting 2 = 300meV . It results in
an excitonic fraction as large as 97%.

7.1.2 Polariton lasing with high excitonic content

Figure presents the excitonic fraction associated to the photoluminescence presented on figure
[7.1] using a model with one exciton resonance. The polariton 4, which is lasing on figure is
situated 17 meV below the A exciton energy and has an excitonic fraction of the order of 97%.
Polariton lasing with a 97% excitonic content is an unusual situation leading to the following
questions:

What is the effective mass and the De Broglie wavelength of such polaritons? The
polariton effective mass m,, is a way to characterize the extension of the polariton state in
the momentum state (as well as in the real space). Moreover, at thermal equilibrium, this
effective mass, and the associated De Broglie wavelength, are directly connected to the critical
temperature and the critical density of the quantum degenerate transition . In the limit of

two-coupled oscillators model, the polariton effective mass m,, can be expressed by:

1 1 1 1 1 1
)
my 2 [\my mx m~  Mmx

where |X|? is the excitonic fraction, m., is the photon effective mass and my is the exciton
mass. The 1D De Broglie wavelength at a temperature T is given by:

B h
N 27rm;k‘BT

Left panel of figure is the polariton effective mass as a function of the excitonic fraction
in a semilogaritmic scale. In ZnQO, it goes from 22eV for the pure photon to 1MeV for the pure
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Figure 7.3: Left panel: Polariton effective mass as a function of its excitonic fraction on a
semilogaritmic scale. Right panel: Corresponding De Broglie thermal length at a temperature
of 20K for the polariton gas as a function of the excitonic fraction.

exciton but remains close to the pure photon effective mass on the range [0% 80%]|. A strong
divergence arises on the last percentages of excitonic content. With its excitonic content of 97%,
the polariton 4 (defined on figure has an effective mass around 720eV/c?. This value is
one order of magnitude larger compared to polariton modes with an excitonic content around
50% but is still three orders of magnitude smaller than the exciton mass. Therefore, the spatial
extension of its wavefunction is still much larger than the exciton Bohr radius and the quantum
degenerate regime threshold will be much smaller than the threshold of the Mott transition.

Indeed, at thermal equilibrium, assuming a temperature of the polariton gas of 20K, it is
possible to compute the De Broglie thermal wavelength (see right panel of figure . It goes
from 2.5um for pure photons down to 12nm for pure excitons. For the polariton 4, it leads to a
De Broglie thermal wavelength around 450nm, which is larger than the critical mean interparticle
distance of 14nm to reach the electron-hole plasma regime (see section [3.1.1)). Finally, even with
this high excitonic content, the photon dressing of the exciton state is still efficient to protect
the exciton to be ionized.

What about the polariton-polariton interaction? As discussed in chapter 3, polariton is
an original boson that can be studied in the quantum degenerate regime. One of its peculiar
property is the fact that it is an interacting particle. Importantly, these interactions can be large
enough to reach the thermal equilibrium. This polariton-polariton interaction allows to reach
the Tonk-Girardeau regime where the polaritons are expected to “fermionized” (ie. to behave like
fermions). Therefore, it is interesting to be able to have large polariton-polariton interaction.

In our case, polariton lasing is achieved under non-resonant excitation on a polariton mode
with a slightly smaller excitonic content (ie. 97%) because of the spectral selectivity of the gain
mechanism (see chapter 8 for a discussion on the relaxation mechanisms). However, it is possible,
for example, to manipulate the polariton 1 (defined on figure resonantly to study polariton
modes made up of 99.98% of excitons up to the quantum degenerate limit.

Interstingly, the polariton-polariton interaction strength depends on the square of the ex-
citonic content, ie. |X|*. Therefore, in the case of ZnO microwires, we can easily tune this
interaction strength from its maximum value in ZnO (ie. corresponding to pure excitons) down
to an order of magnitude below by comparing polariton modes with excitonic fractions of 30%
and the polariton 4, for example, in which the excitonic fraction is 97%.
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Figure 7.4: Figure[7.I] with the associated excitonic fraction as a function of the spectral position
of polariton mode.

What is the coherence time of polaritons with a high excitonic content? The coher-
ence time of polariton is a key parameter to reach the quantum degenerate limit and to establish
coherence over all the polaritons. It is a function of the coherence time of the exciton 7x and
the radiative lifetime of the photon 7 given by the relation:

1 X2 2
1_IXP B

T T
Tp X T’Y

The quality factor of the pure photonic modes associated to the polariton modes on figure
is around @ = 50 and corresponds to a radiative lifetime of 60fs. Generally, for polariton
modes with | X |? and |y|? of the order of 50%, the formulais reduced to & = ‘Z‘TQ because the
exciton coherence time is much larger than the photon lifetime. Therefore,pthe cgherence time
of the polariton mode is limited by the radiative decay of its photonic component. In the case
of ZnO microwires, the low photonic radiative lifetime is counterbalanced by the high excitonic
content of the polariton mode. The excitonic coherence time of the exciton in ZnO at 10K has
been measured to be 1.6ps [47|. It leads, for polariton 4, to an overall coherence time of 0.9ps.

Contrary to the usual case, the photonic % = 2ps and excitonic ‘)T(XP = 1.6ps components
of the polariton coherence time are of the same order of magnitude. Finally, thanks to this
enhancement of the coherence time, the high excitonic content of the polariton state leads to a
smaller quantum degeneracy threshold compared to a polariton with an excitonic fraction | X|?

of 50%.

(7.1)

7.1.3 Difficulties with continuous wave laser excitation

Continuous excitation creates polaritons in a steady state and is ideal to study its behavior as
a function of the excitation power for example. Indeed, the collected photoluminescence is not
time dependent contrary to a pulsed excitation. However, in our case, continuous excitation is
not suitable to study ZnO microwires as they stand.
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Figure 7.5: Photoluminescence spectrum using a continuous and non-resonant laser at 40K.
Both spectrum are obtained under the same pumping power. Black line: Spectrum after 0
minute of continuous UV illumination. Grey line: Spectrum after 18 minutes of continuous UV
illumination.

Figure presents the photoluminescence of a ZnO microwire non-resonantly pumped above
the polariton lasing threshold by a continuous wave laser. On the black line spectrum of figure
the polariton mode at 3.355€V is in the non-linear regime whereas the polariton mode at
3.324eV is still in the linear regime. The grey line spectrum is realized at the same position along
the wire and at the same pumping power after 18 min of UV continuous laser illumination. An
important decrease of the intensity for both polariton modes is visible on this grey line. Figure
presents the evolution of the maximum intensity of both polariton modes as a function of
the UV illumination time. Both polariton modes features a decrease of the maximum intensity.
Because of its non-linear character, the emission of the polariton branch at 3.355eV is much more
affected than the one of the polariton branch at 3.324eV. In any case, this effect prevents from
performing reproducible experiments on ZnO microwires under continuous wave excitation. Here
is a list of the experimental observations done on this effect:

1. It is not directly reversible in vacuum, ie. if we stop the UV illumination after 20 minutes
and wait for few hours, the polariton mode intensity will remain the same under UV
illumination.

2. On the other hand, it is possible to recover the initial intensity value by heating the ZnO
microwires up to room temperature and at room pressure and return to low temperature.

3. This effect is not observed under pulsed excitation.

4. The time constant associated to this effect is of the order of 10 to 20 minutes and depends
on the pumping power.
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Figure 7.6: Maximum intensity of two polariton modes versus the continuous UV illumination.
Left panel corresponds to the polariton mode in the non-linear regime on figure Right panel
corresponds to the polariton mode in the linear regime on figure

In the case of ZnO microwires, the exact origin of this effect is not clear yet. However,
it is possible to suspect the role of oxygen adsorption and desorption at the surface of ZnO
[110], 111} 1T2]. This effect is pronounced for wire because of their large surface to volume ratio
compared to thin film. Without any UV illumination, oxygen molecules are adsorbed at the
surface of ZnO via the reaction:

Oz(gas) + e~ — O, (adsorbed)

where an electron, resulting from the extrinsic n-doping of ZnO, is captured by an oxygen
molecule which is finally stuck at the surface. This effect reduces the extrinsic carrier den-
sity and increases the upward band bending close to the surface. In our case, the excitons
photogenerated close to the suface by the UV illumination can be dissociated because of the
surface electric field. The hole is attracted by the trapped oxygen molecule and, then, interacts
with it via the reaction:

O; (adsorbed) + h* — Os(gas)

It results that the upward band bending is decreased and the free electron, initially trapped
at the surface, is released in the bulk of the wire.

This effect fits with the four experimental observations described at the beginning of this
section:

1. If the UV illumination releases an oxygen molecule, re-adsorption of an oxygen molecule
once the UV illumination is switched off is unlikely in vacuum (ie. in the cryostat).

2. At room temperature and condition, oxygen molecules is re-adsorbed at the microwire
surface. The microwire recovers its original properties.

3. This effect is sensitive to the number of injected carriers. For a similar peak power, in
our case, continuous excitation injects 10* more carriers than pulsed excitation for a given
illumination time.
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4. The time constant of this effect (10 to 20 minutes) is of the same order of magnitude
than the time constants measured in reference [I11] in vacuum and with similar excitation
conditions.

However, the effect of oxygen adsorption and desorption on the polariton intensity is not clear.
Indeed, if it reduced the upward band bending, this effect should enhance the strong coupling
regime by increasing the active exciton and photon overlap. In any case, it should not reduce
the intensity of the polariton mode. On the other hand, oxygen desorption tends to increase the
number of free electrons in the bulk of the wire and could induce band filling in the conduction
band. However, a large number of electrons should be released to band fill the conduction band
and this hypothesis is unlikely. In any case, the exact mechanism reducing the intensity of the
polariton mode is not clear yet.

Oxygen adsorption and desorption may be reduced by covering the microwires surfaces with
a coating transparent in the UV range like SiN in order to passivate the surface and suppress
oxygen desorption.

7.2 Characteristics of the non-linear emission: proofs for stimu-
lated relaxation of 1D polariton modes

In this section, we turn back to pulsed excitation to demonstrate and study the polariton lasing
regime in ZnO microwires. First, we will show that the emission features superlinearity and
linewidth narrowing which are the main characteristics of a stimulated relaxation towards the
polariton state (ie. called as well polariton lasing regime). We will show that the strong coupling
regime is preserved well above the threshold of the polariton lasing regime.

7.2.1 Stimulated relaxation

Figure presents the power dependency of the intensity as well as the spectral linewidth of
the light emitted by the polariton state at 10K. The power axis is threshold normalized, ie.
it corresponds to the ratio P/pr, where Py is the threshold power. The fine description of
the power dependency of the polariton intensity in figure is given in chapter [§] in terms
of relaxation mechanisms from the excitonic reservoir. First, we observe an increase of the
logaritmic-logaritmic slope of the intensity at P/Pr, = 10° (blue dots on figure . In order
to be quantitative, if we assume that the power dependency of the intensity is a power law
before and after threshold, the exponent would go from 1.8 to 3.3. As a consequence, there is
a non-linear increase of the number of particles relaxing towards the polariton state because of
the bosonic stimulation.

At the same threshold power P/Prj, = 10°, there is a steep decrease of the linewidth of the
emission of the polariton mode (black dots on figure from 1.4 meV down to the spectral
resolution of our monochromator (~ 250peV). If homogeneous, the linewidth of the polariton
mode I'" (HWHM) is connected to its coherence time by the relation:

» h

tcoh = ﬁ (72)

If not, % is a lower bound of the coherence time. Below threshold, the coherence time
obtained with the formula is around 1.6ps which is of the same order of magnitude than
the estimation obtained in section [7.1.2] ie. 7. = 0.9ps. Above threshold, the linewidth of the

polariton mode on figure goes down to the resolution of our experiment (ie. 250peV). It
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Figure 7.7: Blue dots: Power dependency of the intensity of the light emitted by the polariton
state at 10K in logarithmic-logarithmic scale. Black line: Calculated linear behavior in a logarit-
mic logaritmic scale. Black dots: Power dependency of the spectral linewidth of the light emitted
by the polariton state at 10K in a semi-logarithmic scale. The semi transparent green area de-
fines the polariton lasing regime. The power axis is threshold normalised, ie. it corresponds to
the ratio P/pr, where Ppy is the threshold power.

means that, above threshold, the polariton coherence time is superior to 8ps which is larger than
the estimated coherence time 7. = 0.9ps. In this regime, the temporal coherence of the polariton
gas is not limited by the polariton coherence lifetime thanks to the bosonic stimulation. The
coherence of the polariton gas is preserved over 4.8 times the coherence time of a single polariton.
Between P/pp, = 3.1072 and P/pp, = 4.107!, the linewidth of the polariton mode is slightly
increasing from 1.2meV to 1.4meV. This small increase can be assigned to polariton-polariton or
polariton-exciton interactions which tends to decrease the coherence time of the polariton mode.

Above P/pp, = 10, the linewidth increases from 250peV to 700peV. This increase is caused by
the blueshift of the polariton state integrated in time which is properly described in the following
section.

7.2.2 Strong coupling regime preserved above threshold

The previous arguments about the non-linear emission and the linewidth narrowing characterizes
a bosonic stimulation. However, they are valid for polaritons as well as photons in the case of
regular lasing, ie. stimulated emission. In this subsection, we will demonstrate that the strong
coupling is preserved above the non-linear threshold.

Blueshift of the polariton mode

The key parameter to demonstrate that the strong coupling regime is preserved is the spectral
blueshift of the polariton mode. It corresponds to the spectral shift d EP of the polariton state
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upon increasing pumping power compared to its initial energy at low pumping power, ie. EP(P =
0). It is given by the relation:

§EP = EP(P) — EP(P = 0)

It originates from the repulsive character of the exciton-exciton interaction. The strong
coupling regime is preserved if it is small compared to the other characteristic quantities of the
system (such as the Rabi splitting, the spectral distance to the next exciton or photon state,
etc...). In this case, the polariton state is lasing instead of a pure photonic mode. As shown on
figure from low power up to 10 times the threshold power, the blueshift of the polariton 4
(defined on figure is of the order of 250peV which is much smaller than:

e the Rabi splitting (~ 300meV)
e the energy difference between the polariton state and the A exciton (~ 18meV’)

e the energy difference between the polariton state and the bound exciton complexes (~
2meV)

As a consequence, the strong coupling is preserved above threshold. To rule out any possible
ambiguity, we time-resolved the emission the polariton mode. The luminescence decay is shown
on figure a) after a pulsed excitation with a peak power above the polariton lasing threshold.
Notice that this experiment has been performed on a different polariton mode than the polariton
4 from figure First, we can see that the energy of the polariton mode is shifting from 3.34625
eV to 3.345 eV because of the decrease of the exciton and polariton populations. The shift of
the polariton mode extracted from this figure is presented on the figure b). First, we can
see that the blue shift decreases smoothly over time and goes back to its non-blueshifted value
with a time constant of 25ps. Therefore, the laging mode is not jumping from mode to mode
over time and is a single polariton state.

Finally, owing to the small blueshift compared to the characteristic quantities of the system
and its smooth character as a function of time, we can state that the strong coupling regime is
preserved above threshold.

Origin of the blue shift

The blueshift of the polariton mode originates from the repulsive exciton-exciton interaction
(described in references [113, [114] for quantum wells based microcavities and reference [115] for
bulk materials). Three different situations emerge resulting in a blueshift of the polariton mode:

e Exciton-exciton interaction induces a blue shift of the bare exciton energy. However, in a
bulk material, this blueshift is in principle exactly counterbalanced by a decrease of the
oscillator strength caused by a band filling effect and, as a consequence, a decrease of
the binding energy [46]. Therefore, in ZnO microwires, the exciton energy would remain
constant with increasing pumping power while only the Rabi splitting would be reduced.

e Polariton-polariton interaction induces a blue shift of the polariton energy given by the
relation [116]:
OB = g|vf?

where g is polariton-polariton interaction constant [117, [I18] and v is the wavefunction of
the polariton mode. d EP is negligible below threshold because the polariton density is much
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Figure 7.8: Power dependency of the blueshift of the light emitted by the polariton state in
semi-logarithmic scale. The semi transparent green area defines the polariton lasing regime.
The power axis is threshold normalised, ie. it corresponds to the ratio P/pr, where Ppy, is the
threshold power.

smaller than the unity, ie. [1/|> < 1. Above threshold on figure , the blueshift is constant
from P/Pr;, = 1 to P/pr, = 10 while it is increasing above P/pr;, = 10. This behavior cannot
originate from the polariton-polariton interaction. Indeed, the blueshift displays on figure
[7.§ has to be compared to the power dependency of the polariton population given on figure
. In the range P/pPp, = 1 to P/pr, = 10, the blueshift is constant while the polariton
population is increasing. On the other hand, above P/p;, = 10, the blueshift is increasing
while the intensity is saturating.

e Exciton-polariton interaction creates a mix behavior between the two previous interactions.
In this case, the blueshift is sensible to the exciton and polariton populations.

Finally, we can conclude that the blueshift displays on figure [7.8] originates from either exciton-
exciton interaction or exciton-polariton interaction. A measurement on other lower polariton
or upper polariton states would dertermine if the blueshift originates from a decrease of the
Rabi splitting or a blueshift of the lower polariton state. Because of the large Rabi splitting
Q) = 300meV, we cannot access upper polariton branch. The blueshift of polariton 1 to 4
(numbered on figure are presented on figure Because of the high intensity of the
polariton 4 above threshold, it is not possible to access the blueshift of the polariton 1 to 3 above
threshold. However, below threshold, the blueshifts of polariton 1 to 4 are almost constant
emphasizing the fact that the strong coupling regime is preserved up to the threshold.

7.2.3 Emission pattern in the direction perpendicular to the wire in the non-
linear regime

The emission pattern along the cross-section of the wire gives an insight into the confinement
of the polariton state. Figure presents the polariton emission pattern perpendicularly to
the wire axis, ie. along the ¢ angle. Below polariton lasing threshold (left panel P/pr, = 0.6),
a non-dispersed and strong emission is observed at 3.359eV and 3.364eV corresponding to the
bound exciton complexes. The weak and non-dispersed emission at 3.354eV corresponds to the
polariton dispersion which is dispersed along the wire axis (not shown), ie. along the 6 angle,
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Figure 7.9: Blueshift of polaritons 1, 2 ,3 and 4 numbered on figure on a semi-logarithmic
scale. The power axis is threshold normalised, ie. it corresponds to the ratio P/pr, where Pry, is
the threshold power.

and flat perpendicularly to the wire axis (see figure , ie. along the ¢ angle because of the
confinement.

As already discussed in chapter 5, the flat dispersion does not feature any specific modulation.
Indeed, as explained in reference [64], HWGMs, and then polariton modes, are twice degenerated.
The far-field of the two degenerate modes overlap creating a non-modulated emission versus the
angle of emission ¢. However, above threshold on figure [7.11] a clear modulation appears as a
function of the angle ¢. This behavior is, in appearance, contradictory. Indeed, in the strong
coupling regime, these modulations should not depend whether the polariton modes are lasing
or not.

Actually, it is possible to explain this behavior by asuming that the two modes are not
degenerate. Indeed, in a realistic strucure, ie. a non-perfect structure, the two modes are
slightly coupled through back-scattering by imperfections. This coupling is lifting the degeneracy
between the two modes. Below threshold, the splitting is smaller than the polariton linewidth
and, therefore, modulation are invisible. On the other hand, above threshold, because of the
linewidth narrowing induced by the polariton stimulation, the splitting is possibly larger than
the polariton linewidth. In this case, mode selection between the two modes can favor one of
them. The mechanism of this mode selection is not clear yet.
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Figure 7.10: a) Time-resolved photoluminescence of a polariton state above the threshold of
polariton lasing (P = 1.8Pry). b) Time-resolved blue shift of the same polariton state than in
panel a) for the same pumping power. The time constant associated to this decay of the blue
shift is 25 ps.
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Chapter 8

Polariton lasing: Dynamics of the
exciton reservoir and gain mechanism
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Under non-resonant excitation, the dynamics of a polaritonic system implies rich physical
concepts since it involves a gas of polaritons in interaction with a complex environment: excitons,
phonons and other polaritons. A comprehension of the dynamics in such systems is necessary to
understand the gain mechanism and develop strategies to decrease the polariton lasing threshold
at room temperature. On a more fundamental aspect, a polariton gas is, by definition, an out-
of-equilibrium system since the polariton lifetime is extremely short (ie. of the order of the
picosecond). Therefore, some of its properties, such as thermal equilibrium and temperature,
depend on its environment.

Up to now, there have already been many works dedicated to the dynamics of polaritons
[119], 120}, 121] discussing the role of reservoir relaxation via acoustic phonons-exciton or exciton-
exciton scattering. However, these studies concern microcavities based on different materials,
different excitonic confinement (quantum wells) and different excitation strategy than ZnO mi-
crowires. With ZnO microwires, we have an interesting advantage over microcavity due to the
absence of mirror: we can study all the other components of the luminescence such as the LO
phonon replica of the exciton or the bound exciton states. Furthermore, in ZnO microwires, it
is possible to pump the excitons resonantly while it is impossible in a microcavity.

In this chapter, we will discuss different aspects of the dynamics in ZnO microwires from
the experimental point of view. First, we will discuss two main characteristics of the excitonic
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reservoir: its thermalization time and its lifetime. Then, we will discuss the relaxation mecha-
nisms from the excitonic reservoir towards the polariton states in both, the linear regime and
the non-linear regime.

8.1 Dynamics of the excitonic reservoir in ZnO microwires

With ZnO microwires, it is possible to directly inject excitons in the system. The reservoir of
excitons is then the first step to study the dynamics of the complete system. Thanks to the LO
phonon replica of the excitons, which can be considered as a photocopy of the exciton reservoir, it
is possible to study the exciton state. First, we will discuss the thermodynamics of this reservoir
and show that the thermalization of the exciton gas is fast, ie. of the order of few picoseconds,
below the polariton lasing regime. Then, we will study the lifetime of the excitons and show
that it depends on the excitation power. This effect will be explained by the saturation of non-
radiative channels. Once the exciton decay time will be understood, we will be able to study the
decay of polaritons in this system.

8.1.1 Thermodynamics of the reservoir

In order to measure the thermalization time of the exciton gas, we choose to study the impulse
response of the exciton level at 10K below the polariton lasing threshold (ie. £/pr, = 47%). The
energy of the laser was set 10 meV above the exciton energy and the photoluminescence of the
274 1,0 phonon replica was time-resolved (resolution ~ 10ps in this experiment). As we have
already seen, a LO phonon replica of the exciton gives a direct insight on the exciton kinetic
energy distribution and, therefore, to its thermodynamics state. Notice that the emission of a LO
phonon does not select any specific exciton momenta unlike direct recombination. The lineshape
of the 2”@ LO phonon replica of the exciton is given by (see chapter :

- = __E -
I10(E) x VE x ¢ 7% © L(E,Tx)

where E = E — (Ex —m x Ero), kgTx is the thermal energy of the exciton gas and [,(E, Ix) is
a lorentzian with a linewidth I'x. (EFx —m x ELp) gives the low energy side of the LO phonon
replica emission. Of course, I1o(E) is zero for E < 0. The collected luminescence Iro(t, At) at
a time ¢ during an interval At can be expressed by:

Probability per time unit for

Io(t, At) = ]jf(;itcei(;z(?n X an exciton to emit X EXS;E;H x At (8.1)
Y a photon and a LO phonon bop
The expression [8.I] can be rewritten in a formal way:
ILo(t, At) =K x PX—w—&-LO X nx(t, At) x At (82)

The direct consequence of formula[8.2]is that the time-resolved luminescence of the LO phonon
replica is directly the time-resolved luminescence of the exciton reservoir up to a multiplicative
factor.

The temperature of the exciton gas can be directly extracted from the LO phonon replica
lineshape. Similar experiments has been done for example in reference [122] in ZnSe quantum
wells. Figure presents the time-resolved photoluminescence in the spectral range of the 27¢

130



8.1. Dynamics of the excitonic reservoir in ZnO microwires

2"4LO phononreplica Laserenergy—2E,,

|

}Out-of equilibrium

25
2 50
g 75§ : | Thermal equilibrium
= | Ty=Tiattie=10K

3.23 3.235 3.24 3.245 3.25 3.25‘5
Energy (meV)

Figure 8.1: Time-resolved photoluminescence in the spectral range of the 2”@ LO phonon replica
at 10K. The pumping power was P/pr, = 47%. The white dashed line is a guideline showing the
thermalization of the exciton gas

LO phonon replica. At t = Ops, we can clearly see the out-of-equilibrium hot excitons created by
the excitation. The laser energy was 3.387eV and its replica is at 3.243eV, which is 2 x 72meV
below. Thermal equilibrium is restored after 10ps. Since, the resolution of this experiment
was 10ps, we can state that the thermalization time for figure 8] is below 10ps. After 10ps,
the temperature of the exciton gas is measured to be 10K by fitting the LO phonon replica
lineshape. Since the exciton temperature is the same than the lattice temperature, it means
that the exciton gas thermalizes mainly with the phonon bath. Indeed, if the thermalization was
exclusively caused by exciton-exciton interaction for example, the exciton mean kinetic energy
would not change, leading at equilibrium to a temperature of 140K given by the laser mean
energy (ie. ~ 10meV’). As a consequence, the thermalization time scale with the phonon bath
in the ZnO microwires is lower than 10ps.

8.1.2 Excitons and polaritons decay time
Excitons decay time

Using the same experimental strategy, we can measure the overall decay time of the reservoir.
In the previous section, we have determined that the thermalization time is below 10ps in these
structures. We find that for any excitation power and temperature, the decay time is orders of
magnitude larger than the thermalization time. As a consequence, the rise time of the replica
luminescence is always connected to this quantity which is sub-resolution. Because of this fast
thermalization, it is valid to sum the LO phonon replica luminescence over its spectral extension
in order to recover the exciton decay time: the decay time is the same on the whole replica
extension since the excitons thermalize rapidly. Finally, we obtain a decay spectrum as shown
in figure [82] with a quasi mono-exponential behavior.

The extraction of the decay time has been realized for various pumping power. Figure B3|
presents the result of this process as a function of the pumping power. The power axis is
normalized to the polariton lasing threshold.

We find a 3-fold increase of the decay time for increasing excitation power. It tends to
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Figure 8.2: Photoluminescence decay of the LO phonon replica at 10K under pulsed excitation
(P/pPri, = 47%). The red line is a monoexponential fit with a time constant of 125ps.

saturate to 150ps above P/pp, = 0.5. This striking behavior can only be explained assuming the
presence of saturating non-radiative channels. In this model, the exciton has two decay channels:

e the exciton decays towards a state which does not saturate. It can be the LO phonon
emission channel for example. The associated time constant is 7x.

e the exciton decays towards localized trap states off finite number N like impurities or
surface states [I123]. The lifetime of these trap states is called 7g. The relaxation time
constant from the exciton reservoir towards N trap state is called 7x_,g. Once the N
states are filled, this channel is blocked. In order to accumulate enough population to
reach the saturation in the saturating state, we need to have: 79 > 7x_.g.

The rate equations describing this model are:

d
Exciton states: % = —% — T)T(Lis (1-— n—]\?) + nod(t) (8.3)
dng nx ng ng
Trap states: —> = - 5=
rap states: — P— N) -

where the term ngd(t) stands for the creation of ny excitons at t = Ops.

At low excitation power, the trap states are not saturated, ie. ng ~ 0 and the effective
exciton decay time is given by the relation: i = i + TXiS. At high excitation power, the trap
states are completely saturated, ie. ng ~ N, and the effective exciton decay is simply 7x.

Since the experiment is carried out with ps pulses, the impulse response of these equations is
calculated numerically. Then, we performed a mono-exponential fit on the impulse response in
order to extract the same quantity than the experimental quantities. A quantitative agreement

has been found on this fitting process (red line on figure with the following time constants :

Tx = 155ps £ 15ps

x5 = 120ps + 30ps

Ts > 120ps
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Figure 8.3: Blue dots: Decay time of the LO phonon replica as a function of the pumping power
at 10K. The power axis is threshold normalized, ie. P/pp;, = 1 corresponds to the polariton lasing
threshold. This experiment has been performed on the same polariton state than the experiments
presented in chapter 7 (cf. figure in chapter 7 for example). Red line: calculation including
the effect of saturating non-radiative channels described in the text.

Notice that the exciton lifetime 7x = 155ps is not the exciton radiative lifetime since, in the
strong coupling regime, this quantity is not relevant anymore. The exciton lifetime 7x = 155ps
may be associated to the LO phonon replica channel or simply to non-radiative channels other
than trap states.

As shown on figure [8.3] we have been able to measure the exciton decay time above the
polariton lasing regime (up to P/pr, = 1.5). If the main decay channel of the exciton state was
the relaxation towards the polariton states, we should observe a decrease of its lifetime above
threshold. The fact that the decay time of the exciton state is constant even above threshold is
an indication that the relaxation towards the polariton states is dragging only a small fraction of
the total exciton population, at least up to P/pr, = 1.5. Indeed, it is very likely that the excitons
situated at the middle of the microwire are not coupled to the polariton states since they have
a negligible overlap with the HWGMs. As a consequence, the luminescence of the LO phonon
replica is dominated by these excitons and two exciton reservoirs coexist in these structures.

Polariton decay time

We measured the time-resolved photoluminescence of the polaritons 1, 2, 3 and 4 of figure in
chapter 7 which are, respectively, 2meV, 3.5meV, 6 meV and 19 meV below the exciton energy.
Notice that the polaritons 1, 2 and 3 do not lase in the investigated range of excitation power.
The rise time was measured to be smaller than the resolution (ie. 5ps in this experiment) which
is coherent with the low quality factor (750) of this microwire. A polariton has a radiative
lifetime of the order of the picosecond. Therefore, like the LO phonon replica, it is a photocopy
of the time decay of its reservoir in the linear regime, ie below the polariton lasing threshold.
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Figure 8.4: Decay time of the polariton modes 1, 2 and 3 (numbered on figure in chapter
7) at 10K under pulsed excitation. The power axis is threshold normalized, ie. P/pp, = 1
corresponds to the polariton lasing threshold. This experiment has been performed on the same
microwire and detuning than the experiments presented in chapter 7 (cf. figure in chapter 7
for example).

The decay time extracted from a mono-exponential fitting process for the polaritons 1, 2 and
3 is presented on figure 8.4l Comparing figures and [8.4] which have different scales on the
time axis, we can infer that these three polaritons are filled by the exciton reservoir since they
have qualitatively the same decay time power dependency. However, a full modelization would
be required to describe properly the polariton decay time. Indeed, as we will see in section
two-body scattering takes place in the system to fill some of the polariton states. It is not clear
whether or not this mechanism should modify the decay time of the three polaritons displayed
in figure 8.4

The time-resolved photoluminescence of polariton 4 has been studied as well and is shown
for two different excitation powers (Blue dots: P/pp, = 77%, black dots: P/pp, = 2%) on figure
We can separate these decays in two parts: a mono-exponential decay after 100ps and a
non mono-exponential decay before 100ps. Both of these components are modified for increasing
excitation power. Moreover, the rise time of the luminescence of the polariton 4 is above the
resolution of our experiment and evolves with the excitation power as well. As a consequence,
its general behavior is not clear. However, this fact is the first indication that the polariton 4 is
not filled in the same way than polaritons 1, 2 and 3 of figure in chapter 7. Actually, we will
see in section that the filling of this polariton involves a two-body process which does not
fill the polaritons at higher energy because of its spectral selectivity. This process is expected to
change the time-resolved photoluminescence of this polariton compared to polariton 1, 2 and 3.

8.2 Relaxation from the excitonic reservoir towards the polariton
states

In this section, we want to describe experimentally two relaxation mechanisms from the excitonic
reservoir towards the polariton states. At low exciton density, the polaritons in ZnO microwires
are mainly fed by the LO phonon replica of the exciton. At higher density and low temperature,
another mechanism builds-up, which involves two body scattering within the reservoir, and fills
the polariton states. We will show that this mechanism only fits with two possible scenarios: the
scattering of excitons with bound excitons and the bi-exciton decay.
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Figure 8.5: Photoluminescence decay of the polariton 4 (numbered on figure in chapter 7) at
10K under pulsed excitation for two different excitation power (Blue dots: P/pp, = 77%, black
dots: P/pr, = 2%).

8.2.1 LO phonon polariton feeding in the linear regime

The analysis done in this subsection is based on spatially resolved photoluminescence experiments
(ie. similar to figures[8.6]in this chapter and[7.1]in chapter 7) carried out at different temperatures
under continuous wave excitation and in the linear regime, ie. below the polariton lasing regime.
In these experiments and for certain ranges of position along the wire, the polariton energy
changes continuously along the wire axis. The goal of this section is to study the intensity of the
polariton state as a function of its spectral position to observe an enhancement of the polariton
intensity at the LO phonon energy.

8.2.2 Method

In order to extract the polariton intensity independently from the pumping power, we choose to
normalize the spectrum shown on figure by the exciton intensity. It results in an artificial
spectrum where the number of excitons is constant as a function of the position along the wire.

The polariton energies in ZnO microwires are drastically modified by the gradient of radius.
We take advantage of this gradient to continuously tune the polariton energy across the LO
phonon replica. Experimentally, it is easier to address the polariton intensity at a given energy
FE rather than at a given position. Indeed, the emission background does not depend on the
position along the wire because it is not coupled to HWGMs while it varies quickly along the
energy axis. Therefore, we will focus on the quantity M(FE) which is the polariton intensity
integrated along the position axis after having carefully removed the constant background. Notice
that this quantity M(E) is not directly the polariton intensity at an energy E. Indeed, polaritons
with different energies contribute to this quantity. However, we will show now that it allows us
to obtain the polariton intensity at a given energy after correction. The following calculus is
similar to the one presented in section [5.2.3] M(E) is given by:
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Figure 8.6: Spatially-resolved photoluminescence along a ZnO microwire in the linear regime at
55K using a continuous excitation. This section focus in the non-constant radius range, from 0
pm to 20 pm, where the energy of the polariton modes is continuously changing. The exciton
photoluminescence is situated at 3.373 eV.
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where I,(E — Ep(z)) is the polariton intensity at an energy E and a position z along the wire

axis. E,(z) is the relation between the polariton energy and the position along the wire axis.

Let us exchange the variable z and Ep(z):

Ex 0z
M(E) = / I (E - Ep)ﬁdEp
P

—0o0
Let us now linearize E,(z) around the position zy which satisfies E,(z9) = E. In our case, this
assumption is valid since Ep(z) is linear on the linewidth I" of the polariton lineshape I,(E — E),)
(see ﬁgure. We have: E,(z) = K(29) % (2—20)+Ep(20) and then BéEZP |20 = K(20). Therefore,
we can write:

M(E)
}((Zo)
where Lo(E) = fi)é I,(E — E,)dE, is the polariton intensity at an energy E. Therefore, by

dividing the quantity M(E) by the slope of the curve E,(z) at a position zg satisfying E,(z) = E,
we can recover the polariton intensity at an energy E.

Lo(E) =

8.2.3 Results and discussion

This treatment has been applied to the figure as well as the same experiments for various
temperatures. The extracted polariton intensity Lo(E) is represented as a function of the polari-
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Figure 8.7: Top panel: photoluminescence spectra on a ZnO microwire at 55K under continuous
excitation on a wire length without any polariton. From low to high energy, we observe four
peaks corresponding to the 27¢ and 1! LO phonon replica of the exciton, the bound excitons and
the free exciton. Bottom panel: Polariton intensity extracted from the method described in the
text as a function of its energy. Notice that the emission background (including the LO phonon
replica) has been removed. Both panels have the same energy axis but different intensity axis.

ton energy E in the bottom panel of figure The top panel is simply the photoluminescence
of the same ZnO microwire in position range where there is no polariton state. Comparing both
panels of figure 8.7, the enhancement of the polariton intensity is clearly correlated with the
LO phonon replica lineshape. Therefore, it is reasonable to state that the mechanism filling the
polariton state in the linear regime involves LO phonons or the LO phonon replica. The simplest
mechanism is the emission of one LO phonon and a polariton by an exciton. If we compared the
polariton intensity out of LO phonon replica, at 3.387, and on the LO phonon replica, at 3.309,
the polariton luminescence is multiplied by a factor 10. We can conclude that, at 55K, the main
mechanism filling the polariton state includes a LO phonon replica of the excitons.

Figure a) represents the polariton intensity taken on the same polariton state for five dif-
ferent temperatures ranging from 10K to 125K. In the figure b), it is simply the photluminescence
of the same microwire in a region without any polariton state. First, we can see that, at 10K
and 26K, there are two additional contributions from 3.26eV to 3.295e¢V. The exact origin of
these extra-contributions is not clear and could be attributed to shallow donors, surface states or
LO-phonon replicas of the ZnO bound excitons resonantly exciting the polariton modes. These
two peaks corresponds to two emissions in the photoluminescence spectra (see figure b)).
There is as well a broad contribution above 3.32eV for these two temperatures 10K and 26K.
These contributions do not correspond to any peak in the photoluminescence experiment. By
elimination, this broad contribution above 3.32¢V is likely due to the acoustic phonons mediated
relaxation. For increasing temperatures, it is clear that the LO phonon contribution dominates
over all the other contributions.

The exciton relaxation assisted by the emission of LO phonons has the important advantage
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Figure 8.8: a) Polariton intensity extracted as a function of its energy for 10K, 26K, 55K, 73K
and 125K. b) Photoluminescence of a ZnO microwire without any polariton state for 10K, 26K,
55K, 73K and 125K. Each spectrum is offset compared to the previous temperature by a factor
1. The background of each spectrum is represented with dashed lines.

to allow the excitons to release a large amount of energy (given by m x 72meV where m is the
phonon replica number) and to relax directly close to the k = 0 polariton state. Therefore, it is
an efficient process compared to acoustic phonons mediated relaxation.

8.3 Gain mechanism of the polariton lasing at low temperature

In this section, we are going to discuss the possible gain mechanisms to reach the polariton lasing
regime in ZnO microwires at low temperatures. First, we will describe the experimental facts
allowing to conclude that the lasing polaritons are filled via a two body process involving excitons
and that this mechanism is spectrally selective. Then, we will show that among several possible
mechanisms only two are not ruled out by the experimental facts: the bound exciton/free exciton
scattering and the biexciton decay.

8.3.1 Gain mechanisms of the polariton lasing: Experimental facts
Gain mechanism: Two body scattering involving excitons

In the experiments presented in this chapter (like in the chapter 7), the pulsed laser energy
was set to the A/B exciton energy. As a consequence, we are directly injecting excitons in
the structure. Figure corresponds to the same experiment than the power dependency of
the lasing polariton shown on figure except that the different regimes are separated. The
abscissa of figure is the threshold normalized excitation power P/pr, and is proportional to
the number of excitons in the system while the intensity axis is proportional to the number of
polaritons. We can separate this power dependency on three regimes numbered on figure

1. In the first regime, at the lowest exciton density, the polariton population is almost linear
with the exciton population with a power law exponent of 1.1: if the number of excitons
in the system is doubled, the number of polaritons will be doubled as well. Therefore, in
this regime, the relaxation from the reservoir towards the polariton states is assisted by
exciton-phonon scattering or exciton-intrinsic carriers scattering.
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Figure 8.9: Same figure than figure[7.7 Blue dots: Power dependency of the intensity of the light
emitted by the polariton state in logarithmic-logarithmic scale at 10K under pulsed excitation.
Black line: Calculated linear behavior in a logaritmic logaritmic scale. The dashed lines separate
the different regimes: 1 is the linear regime, 2 is the regime involving a two-body process and 3
is the polariton lasing regime (ie. the semi transparent green area). The power axis is threshold
normalised, ie. it corresponds to the ratio P/pr, where Ppy, is the threshold power.

2. In the second regime, the polariton population increases almost quadratically with the
number of excitons with a power law exponent of 1.7. Since this exponent is almost twice
the exponent in the linear regime, the main relaxation mechanism in this second regime
requires two excitons.

3. The third regime is the polariton lasing regime characterized by a highly non-linear behavior
above threshold (semi-transparent green area of the figure followed by a saturation of
the polariton intensity which can be assigned to gain saturation.

Fine description of the power dependency Before entering into a detailed modelization
of this behavior, it is preferable to study the power dependency of the exciton state through its
LO phonon replica which is displayed on figure Intriguingly, below the polariton lasing
threshold, the power law exponent is 1.24. Since the laser injection takes place in the exciton
state, its power dependency is almost linear, ie. the initial number of excitons is fixed by the pump
power. However, in our case, we have seen that the decay time of the exciton states increases
with increasing pumping power because of the saturating trap states. The intensity presented
on figure [8.10] are time-integrated on each pulse. Therefore, we expect its power dependency to
be slightly super-linear, because of the increase of the decay time as a function of the excitation
power, which is explaining this power law exponent of 1.24. Above P/py, = 1.5, the intensity
of the LO phonon replica is slightly saturating. This fact can be explained assuming that the
the LO phonon decay time is decreasing because of stimulated relaxation which is taking place
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Figure 8.10: Power dependency of the intensity of the LO phonon replica luminescence in
logarithmic-logarithmic scale. Black line: Fitted power law with a power law exponent of 1.27.
The polariton lasing regime corresponds to the semi transparent green area. The power axis is
threshold normalised, ie. it corresponds to the ratio P/pr, where Ppy, is the threshold power.

in the system. In any case, the intensity of the LO phonon replica is not saturating just above
threshold which means that the excitonic reservoir is weakly affected by the polariton lasing
regime. Indeed, as explained in section [8.1.2] a large part of the exciton reservoir is spatially
separated from the polariton modes. Therefore, the depletion of the reservoir by the two body
scattering is neglected in the following modelization.

We can now write the rate equations that agree with our observations below the polariton
lasing threshold. Since we just want to qualitatively reproduce the power dependency of figure
we have neglected the saturating trap states which leads to a linear behavior of the exciton
reservoir. The rate equations are:

d
Exciton state: % = —T'xnx + nod(t) (8.4)

d / /
Polariton state: % =Tynx +Txxnk — Tpnp (8.5)

where 'y is the probability per time units for an exciton to leave the exciton state, F/X is the
probability per time units that an exciton decay toward the polariton state (via scattering with
LO and acoustic phonons for example), I', is the probability per time units for a polariton to
emit a photon, ngd(t) is the pulsed pumping term which creates ng excitons and F/XX is the
probability per time units that one exciton-exciton scattering creates one polariton. The exact
nature of this last mechanism will be discussed in the section

We have simulated numerically the behavior of the equations and in the pulsed
regime. In a second step, the intensity decay obtained for both the polariton and exciton states
are time-integrated. Figure presents the calculated power dependency (black dots) resulting
from this treatment with the following parameters: FIX = 1073ps~!, r, = 1ps~! and I"XX =
10~5ps~!. The values of F/X, I', and I‘/X  used for this numerical simulation have been chosen
arbitrarily. However, they allow to describe qualitatively the power dependency observed in figure
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Figure 8.11: Calculated power dependency given by the equation Two distinct regimes are
visible with non-integer power law exponent. Parameters used to simulate this power dependency
are given in the text.

Indeed, two non-integer power law exponents can be extracted from figure because of
the pulsed character of our experiment: 1.1 in the linear regime and 1.8 in the two-body regime.
During the population decay, the system undergoes the two-body regime at the beginning of
the decay and the linear regime after. The power law exponent is, therefore, not an integer
number, since the power dependency is smoothed. Finally, the modification of the power law
exponent is consistent with a transition between the linear regime and the two body scattering
regime in a pulsed experiment. A reservoir dynamics like that of equation should be coupled
to the equations and as well as the stimulated relaxation towards the polariton state to
reproduce properly the whole power dependency shown on figure [8.9

Comparison with non-lasing polariton modes From figure[7.2] it is possible to extract the
intensity of the two non-lasing polaritons numbered polaritons 2 and 3. The power dependency
of the intensities of polariton 2 and 3 has been appended to figure and are presented on
figure In the linear regime, the three polaritons are linear. However, contrary to the lasing
polariton (blue dots), the two non-lasing polaritons (red and black dots) saturate in the second
regime. Firstly, this measurement supports the fact that the lasing polariton is filled via a two-
body process while the non-lasing polaritons are not. Secondly, we can infer from figure [8.12
that the two-body process filling the lasing polariton is spectrally selective. Indeed, polariton 2
(black dots) and 3 (red dots) have, respectively, an energy 3.5meV and 6meV below the exciton
energy while polariton 4 (blue dots) have an energy 18meV below the exciton energy. As we
have seen in section [8.1.2] two exciton reservoirs coexist in these structures. The fact that the
polaritons 2 and 3 (red and black dots) saturate above P/pPy, = 5.1072 is an indication that the
exciton reservoir filling the polariton states is depleted by the two body mechanism, contrary to
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Figure 8.12: Power dependency of the intensity of the light emitted by the polariton state in
logarithmic-logarithmic scale. Blue dot corresponds to the polariton 4 situated 18 meV below
the A exciton energy on figure in chapter 7. Red dot corresponds to the polariton 3 situated
6 meV below the A exciton energy on figure in chapter 7. Black dot corresponds to the
polariton 2 situated 3.5 meV below the A exciton energy on figure in chapter 7.

the second reservoir, which is spatially uncoupled and exhibits a linear behavior.

Spectral selectivity of the gain mechanism

From the above results, it seems clear that two-body scattering is the main contribution to the
gain mechanism in the polariton lasing regime. In order to characterize the spectral selectivity
of this gain mechanism, we choose to measure the polariton lasing threshold as a function of
the polariton energy. Indeed, as shown on figure [8.12] polaritons which are not selected by the
two-body gain mechanism are not lasing. Thanks to the radius gradient, already discussed in
chapter , the energy of a given polariton state (ie. associated to a given HWGM state), can
be changed easily. Figure presents the lasing threshold of a polariton mode at 4K using a
pulsed picosecond laser as a function of A = Ex4 — Ep, the energy difference between the A
exciton and the polariton state.

In this out-of-equilibrium phase diagram, we can observe that the lasing threshold is increas-
ing for increasing energy difference A. At first glance, this behavior can be understood simply
because of the difficulty for the excitons to relax more and more energy to reach the polariton
state. The threshold increases by a factor of 60 between A = 16.7meV and A = 40meV. In this
spectral range of energy, the photonic fraction changes rapidly. It goes from 1.3% at A = 16meV
to 5.7% at A = 40meV and so does the polariton coherence time. The modification of the po-
lariton coherence time 7, in this spectral range has a non-negligible influence on the polariton
lasing threshold that can be estimated using the formula:
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where the exciton coherence time has been taken from reference [47], ie. 7x = 10ps, and the
photon lifetime has been taken from section [7.1.2} ie. 7, = 60fs. We found that the polariton
lifetime goes from 3ps at A = 16.7meV to 0.9ps at A = 40meV. The ratio between this two
values is 3.3 and is not sufficient to reproduce the great increase in the polariton lasing threshold
observed on figure (a factor of 60 between A = 16.7meV and A = 40meV).

The most striking feature of figure is the range of energy difference A between OmeV to
16meV where polariton regime is never reached whatever the power excitation. In this range,
the polariton emission saturates when polariton mode 4 is lasing. This spectral range where
polaritons are not lasing is clearly due to a spectral selectivity of the two-body process.

The same measurement has been realized at various temperature (see figure ranging
from 4K to 52K. All of these plots have the same threshold power axis and can be compared. The
main result of this figure is that, for increasing temperature, the lowest threshold shifts to higher
energy and the threshold at a given energy difference A increases. Above 60K, the polariton
lasing regime threshold becomes too high for our experiment and the gain mechanism is clearly
not efficient anymore. Above 70K, the polaritons in the range [Ex; Ex — FEro], ie. close to the
excitonic reservoir, become too broad: excitons has to release almost 72meV to reach the first
narrow enough polariton state leading to a very high polariton lasing threshold.
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Figure 8.14: Threshold power as a function of the energy difference A for T=4K, T=25K, T=40K
and T=b52K. The red dashed lines correspond to the limit of the non-lasing region at 4K.
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Gain mechanisms for the lasing polaritons: Which mechanisms are allowed?

These measurements provide conclusive information on the nature of the two-body scattering at
play in the gain mechanism. Six different mechanisms can be envisaged [124] to describe our
experimental observations which are schematically represented in figure [8.15]

Ruled out mechanisms

1. Exciton-acoustic phonons scattering Excitons from the reservoir can relax towards
the polariton state via the emission of phonons (see panel 1 of figure . LO phonons are
ruled out here since their energy (72meV’) largely exceeds the energy difference A between the
exciton and the polariton states. The emission of acoustic phonons is a linear process and does
not reproduce the power dependency presented on figure [8.9]

2. Exciton-free charges scattering In this process, excitons scatter with free charges
(see panel 2 of because, in general, ZnO is slightly n-doped. The free charges goes to a
higher energy state while the exciton can relax towards the polariton state. We can separate this
mechanism in two cases:

e In the first case, the free charges are present because of the intrinsic doping. This process
is a linear process since it requires only one exciton.

e In the second case, the free charges are photo-generated. This process is negligible in our
experiments at low temperature because the excitation energy is set to the exciton energy.

3. Exciton-exciton scattering (see panel 3 of figure This mechanism has been
thoroughly studied in the literature[120, 119, 121] for quantum well excitons in microcavities
in order to explain the exciton relaxation towards the polariton states avoiding the bootleneck
effect. For simplification, let us consider first the simple case in which scattered excitons have
the same initial energies and momenta.

Let us consider two excitons in the reservoir at an energy 4/2 (right part of figure [8.16). The
scattering process is:

X1(A/2, ko) + Xo(B/2, ko) = P(E),0) + X3(E3, 2ko)

where X; stands for the i*" exciton state and P for the polariton state. Because of energy and
momentum conservation, we obtain the relations:

E, =—A and E3 =34/2

As a direct consequence, excitons has to have an energy of 4/2 in order to relax an energy
A and reach the polariton state. The population of excitons, at the thermal equilibrium, is
described by a Maxwell-boltzmann depicted on the left part of figure with a mean energy of
kT (1meV at 10K from section [8.1.1)). Therefore, this mechanism is less and less efficient for
increasing A with a cut-off energy around 1meV. This behavior is inconsistent with the threshold
measurement presented on figure It is still possible that the exciton-exciton scattering
occurs at the laser energy Ajgser, i€. before thermalization of the exciton gas. However, in
this case, the threshold measurement should be peaked at value —2A;,4. which is not what we
observed on figure [3.13
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Figure 8.15: Overview of the six mechanisms described in the text. X stands for exciton state,

X? for the bi-exciton state, Pol for the polariton state, bound X for the bound exciton state, X

for the excited state of the exciton and X for the C-exciton.
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Figure 8.16: Right part: schematic representation of the exciton dispersion. In this scheme, the
two scattered excitons have similar energies. Left part: schematic representation of the exciton
population at a temperature T.

A more complete simulation is obtained in taking into account scattering of excitons with
different initial energies and momentum [120} 119, 121]. However, this calculation results in a
large gain in the same energy range than the simple model described above, ie. on a range given
by the exciton gas temperature. This is not compatible with our measurements shown in figure
where the lowest threshold is at A = 16meV . Moreover, such a process should be greatly
enhanced by the increase of the exciton gas temperature as it results in a redshift of the peak
gain which is inconsistent with figure [8.14]

4. Exciton-exciton scattering towards higher energy exciton states (see panel 4
of figure This model has been suggested in order to explain the photonic lasing regime
observed in bulk ZnO, CdS and CdSe structures at room temperature which was associated to
a non-linear emission peak called P-band [125], 126]. The principle is given on figure Two
excitons from the A/B exciton reservoir scattered together, one is relaxing towards the polariton
states while the other one scatters to a higher energy state. The process can be described by the
following formula:

Xls(El ~ 0) + XlS(EQ ~ O) - XQS/C(Eg = A,k‘3 ~ O) + P(E4 = —A, k4 ~ 0)
In the case of ZnO, the higher energy states can be:
e The C exciton which is 45meV above the A /B excitons

e The A/B exciton excited states. The binding energy of this state is 3/4 the binding energy of
the A/B exciton non-excited state. Therefore, the Xo4 energy is 45meV above the exciton
energy.

In both cases, the minimum energy the A/B excitons can relax are A = 45meV which is much
larger than the measured lowest threshold energy of 16meV observed on figure [8.13

Compatible mechanisms So far, we ruled out four mechanisms, the two following ones, on
the contrary, are compatible with our measurements.
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Figure 8.17: Schematic representation of the exciton dispersion. In this scheme, two excitons
are scattering: one is relaxing towards the polariton state while the other one scatters towards a
higher energy excitonic state. Xx* stands for the exciton excited states.

5. Bound exciton-exciton scattering (see panel 5 of figure [8.15) In this process,
excitons are scattering with bound exciton states. This process verifies the following criteria
[127]:

e [t is a two-body process which involves two photo-generated excitons, one in the exciton
reservoir, one bound on an impurity.

e As shown on panel 5 of figure this mechanism allows to excite polaritons with an
energy right below the bound excitons (situated 16meV below the exciton energy). To
explain this fact, we have displayed the two possible situations on figure [8.18 In the first
one (panel a) ), the exciton increases its kinetic energy while the bound exciton relax to
the polariton state. The second one (panel b) ) is drastically different since, because of
the energy conservation, the exciton from the reservoir has to relax in the non lasing range
where there is no obvious state available. Therefore, in this process, there is no gain in the
non-lasing range, from A = OmeV to A = 16meV, which is consistent with the figure(8.13

e It has a weak temperature dependency since it depends only in the temperature of the
exciton gas. Moreover, an increase of the temperature does not change the energy difference
cut-off A = 16meV.

e Above 60K, the thermal fluctuations tends to release the bound states. Therefore, this
scattering process is suppressed because of the absence of bound states.

This mechanism is in qualitative agreement with our experimental observations. It is possible
to argue that this process is very unlikely because of the low density of states of bound excitons
compared to the free exciton one. However, this argument is counterbalanced by the large
thermal population of this state compared to the free exciton state. Indeed, the thermal energy
at 60K is 5meV while the binding energy of the bound states is 16meV .

6. XX, Biexciton decay [128, 124] At large excitonic density, a significant fraction of
the population is bound into biexcitons (mainly the X X 4 biexciton for ZnO). The biexciton can
decay into an exciton and a polariton. The biexciton has already been observed in ZnO with a
binding energy of 14meV + 1meV [129, [130]. Notice that this value is the binding energy with
respect to the exciton states, ie. the binding energy of the biexciton reads:
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8.3. Gain mechanism of the polariton lasing at low temperature

a) b)
A Energy A Energy

Excitonic Excitonic
reservoir reservoir

= 0 meV j= 0 meV

Non lasing range Non lasing range
EOS
—- 16 meV —- 16 meV
Lasing range Lasing area

Figure 8.18: Schematic representation of the exciton-bound exciton scattering. a) Scattering
towards a polariton state with an energy verifying A > 16meV b) Scattering towards a polariton
state with an energy verifying 0 < A < 16meV

Eb:=2Ex — Ex
The decay of a biexciton is given by:
X?(Ex2,k) = X(Ex,k) + P(E,,0)
where the energy conservation leads to the relation:

E, < Ex — F%. (8.6)

The equation [8.6|means that the polariton emitted by the biexciton decay has an energy difference
A larger than 14meV.
Finally, this process fits with all of our experimental observations:

e It is a two body process since the biexciton is made up of two excitons

e [t provides gain only below A = 14meV . For larger energy differences A, this gain process
involves biexciton at higher energy which is less and less likely because of its thermal
population. Therefore, this mechanism is consistent with the figure [8.13

e It depends only on the temperature of the biexciton gas.

e At high temperature (above ~ 60K), the biexciton is not stable anymore because of its
binding energy of 14meV and does not provide gain anymore.
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Conclusion

The work presented in this thesis provides a detailed description of the physics of one-dimensional
strong coupling regime in ZnO microwires. In these structures, the three main excitons X 4, X3,
X¢ are coupled with the one-dimensional (1D) Hexagonal Whispering Gallery Modes (HWGM)
which are confined in the cross-section of the wire and free to propagate along the wire axis. we
have shown that the strong coupling regime between this two fields is sustained from cryogenic
temperature (10K) up to room temperature (300K) with a large Rabi splitting, ie. Q = 300meV
and a high figure of merit ~ 75. Notice that this value is the maximal splitting one can obtain us-
ing ZnO bulk material since it corresponds to the Rabi splitting of bulk polaritons. Interestingly,
we have shown that these polariton modes are isolated from the phonon bath at room tempera-
ture thanks to the quenching of the polariton-phonon interaction. This effect results from large
value of the Rabi splitting with respect to the LO phonon energy ~ 72meV. As a consequence,
the polariton modes decoherence is almost suppressed at room temperature, ie. these modes
features homogeneous linewidths at room temperature similar to the low temperature ones. We
also strove to demonstrate the 1D character of these particles resulting from the fact that the
polariton wavefunction matches the one of the pure HWGMs. Like in the ZnO case, the Rabi
splitting measured in GaN microwires match the one of the GaN bulk polaritons, ie. 125meV
from 10K to 300K. An original situation is observed in GaN microwires because of the highly-
doped part of the GaN microwires necessary for the growth of this structure. Indeed, we have
demonstrated that weak and strong coupling regimes are observed on a single microwire. Our
study on GaN microwires emphasized our understanding on semiconductor-based microwires in
the linear regime.

Our study on ZnO microwires in the non-linear regime has been focused on the low tem-
perature regime. The polariton lasing regime has shown an original situation since it involves
polaritons with an exceedingly high excitonic fraction ~ 97%. We have shown that this 1D
quasi-excitonic polariton field undergoes the quantum degenerate regime and that the strong
coupling regime is preserved unambiguously even above threshold. The polariton mode exhibits
a macroscopic occupation of the ground state and a linewidth narrowing which are two key sig-
natures of the polariton lasing regime. Thanks to the bulk character of the microwire, we have
been able to study the dynamics of this system. We found that the exciton reservoir, which is
filling the polariton states, reaches quickly the thermal equilibrium with the lattice (below 10ps).
Apparently, a large part of the exciton reservoir is not coupled to the polariton mode, ie. these
excitons do not fill the polariton states. We also shown that the lasing polariton mode is filled
via a two-body process presenting peculiar spectral selectivity. This mechanism is attributed
either to exciton-bound exciton scattering or biexciton decay.

Outlooks First of all, the polariton lasing threshold at room temperature is extremely high
(see the introduction of[7]) and prevents to obtain clear indications that the strong coupling regime
is preserved. In the ZnO microwires, the laser absorption at the exciton energy is 2.10%cm ™1 at
room temperature [83] which corresponds to an absorption length of 50 nm. As a consequence,
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most of injected excitons rely on the surface of the microwire and are poorly coupled to the
polariton modes. It is then interesting to change our excitation strategy. From this point of
view, the two-photon excitation with a laser energy at half the energy of the exciton is a much
better way to inject excitons. Indeed, the spatial decay of the pumping laser is not exponential
anymore for a two-photon absorption. Moreover, it has been shown experimentally that, in
ZnO, the doubling efficiency is sufficient to reach non-linear regime at low temperature [12§].
Therefore, this method should allow us a better pumping of the excitons in the microwire volume
with a much better coupling to the polariton states at room temperature.

The second perspective relies on the overcoming of two technological locks. First, the next
generations of both ZnO and GaN wires will be grown by MOCVD allowing an excellent diameter
regularity as shown in the case of GaN (see section and a larger wire length. Secondly, they
will be covered by a transparent coating (SiN for example). This coating should passivate the
surface of the wire (see section[7.1.3)) accordingly to the reference [I31] where they embedded ZnO
nanowires in a polymethyl methacrylate (PMMA) layer. Once these two technological locks are
removed, we will be able to study the phase diagram of 1D quantum degenerate polaritons at low
temperature. Owing to the larger wire length, spatial correlation on hundreds of micrometers
will allow to study the effect of the interactions between polaritons in this 1D system under
non-resonant continuous wave excitation. ZnO microwires have a significant advantage from
this point of view. Indeed, at low temperature, they provide well-defined polaritons close to the
energy of the biexciton resonance (7meV below the exciton resonance). Thanks to the polariton-
biexciton interaction [I32], it should be possible to tune the interactions between the polaritons
by order of magnitudes as it has already been done in atomic physics [I33]. In principle, with
this effect, we should be able to study all the different regimes offered by the 1D confinement,
ie. from quasi-condensation to Tonks-Girardeau regime and maybe the Super Tonks-Girardeau
regime.

The result on GaN microwires offers as well a complete set of outlooks. The short term
perspectives deals with the comparison of photon and polariton lasing on a single microwire
thanks to the switching off of the strong coupling regime in the doped part. From a practical
point of view, it is possible for the first time to compare the absolute value of the lasing threshold
on a unique structure in either weak and strong coupling regime. Of course, this study should
be done in taking into account the gain mechanisms in each part of the wire in order to have a
better understanding of each threshold.

The long term perspectives on GaN rely on the electrical pumping of the polariton condensate.
This step is based on a development of n and p doped part in a GaN microwire which is already
under its way. The electrical contact is as well possible since these skills have been developed in
the NPSC team of the Néel Institute by J. S. Hwang and F. Donatini for ZnO nanowires [134].
As a consequence, such a structure would be much less demanding compared to an electrically
pumped microcavity from the growth point of view.

To go one step further, these microwires offer the unique possibility to couple the quantum
degenerate polariton gas with an electron gas in a simple structure. This perspective takes
advantages of the simple microwire structure and its wire shape. Indeed, it has been shown that
radial growth of GaN around a GaN microwire [135 [130] is realizable in a single growth run. In
our case, we are interested in recovering the GaN microwire with a thin layer ~ 10nm of highly
doped GaN. Since the growth is lattice matched, the HWGMSs should not be affected by this
thin layer. Such a system, ie. a degenerate gas of polaritons coupled to a sea of electrons, has
been predicted, after electrical contacting, to engender a rich physics resulting from the coupling
between a quantum degenerate Bose gas and a Fermi gas [137] with the potentiality to observe
polariton-condensate mediated superconductivity.
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Résumé

Dans cette thése, nous avons étudié les propriétés expérimentales des polaritons unidimension-
nels dans les microfils de ZnO dans le but d’étudier le régime de dégénérescence quantique des
polaritons & haute température et en régime de confinement de basse dimensionnalité. ZnO est
en effet un matériau semiconducteur a grand gap dans lequel ’exciton bénéficie d'une trés forte
énergie de liaison qui garantit leur stabilité & température ambiante. D’autre part, la géométrie
en “fil” de section hexagonale et de diameétre micrométrique confine les modes photoniques et les
rend unidimensionnels. On montre que 'interaction entre I’exciton et ces modes photoniques est
en régime de couplage fort, et que les polariton-excitoniques qui en résultent sont eux aussi en
régime de confinement unidimensionnel.

Cette thése propose une étude détaillée de la physique de ces polaritons 1D. Dans un pre-
mier temps, on démontre que le régime de couplage fort unidimensionnel est conservé jusqu’a
température ambiante avec une trés grande énergie de Rabi de 300 meV pour une largeur de raie
typique 75 fois plus faible. Cette faible largeur de raie, méme & température ambiante, est une
conséquence inattendue de la grande énergie de Rabi en comparaison de I’énergie maximum des
phonons dans ZnQO. Cet effet isole trés efficacement les polaritons des vibrations thermiques du
réseau.

Nous nous sommes intéressés aussi a une structure similaire: les microfils de GaN. Dans
ces fils, on profite d’une zone fortement dopée pour comparer expérimentalement le spectre en
régime de couplage faible et en régime de couplage fort dans le méme fil.

Nous avons ensuite étudié les propriétés des gaz de polaritons dans les microfils de ZnO
sous forte excitation dans le but d’atteindre le régime de dégénérescence quantique 1D. Nous
démontrons qu'un régime de laser & polaritons est atteint & basse température en régime de
couplage fort dans une situation inédite ou les polaritons sont & 97% excitoniques. Cette propriété
est comprise grace & une étude détaillée des propriétés de relaxation des excitons vers les états
de polaritons en régime de faible et forte excitations.

Cette thése donne les bases de la compréhension des polaritons unidimensionnels dans les mi-
crofils de ZnO. Les propriétés observées montrent que les microfils de ZnO sont particuliérement
adaptés a ’étude des gaz de polaritons dégénérés 1D & haute température.

Mots-clés: Polariton, couplage fort, unidimensionnel, ZnO, microfil, mode de gallerie hexagonal,
boson, condensation, dégénerescence quantique

Abstract

In this thesis, we have studied the experimental properties of one-dimensional polaritons
in the ZnO microwires in order to study the quantum degenerate regime in a one-dimensional
polariton gas at high temperature. ZnO is a wide gap semiconductor material in which the
exciton is stable at room temperature thanks to its high binding energy. The “wire” geometry
with a micrometric scale hexagonal cross-section results in a one-dimensional confinement of the
light. The ZnO excitons and these photonic modes are in the strong coupling regime resulting in
new light-matter eigenstates called exciton-polaritons which are, as well, in the one-dimensional
confinement regime.



This thesis provides a detailed study of the Physics of these 1D polaritons. As a first step,
we demonstrate that the one-dimensional strong coupling regime is preserved up to room tem-
perature with a very high Rabi splitting of 300 meV for a typical linewidth 75 times smaller.
This small linewidth, even at room temperature, is an unexpected consequence of the high Rabi
energy compared to the maximum phonon energy in ZnO. This effect efficiently isolates the
polaritons from the thermal fluctuations of the lattice.

We have studied as well a similar structure: the GaN microwires. Because of a highly doped
part in these wires, it is possible to compare experimentally the spectrum in weak and strong
coupling regime in a single wire.

We have studied the properties of such polariton gas in ZnO microwires in the high excitation
regime in order to reach the 1D quantum degeneracy limit. We have demonstrated that the
polariton lasing regime is obtained at low temperature in the strong coupling regime and that
it exhibits an unusual situation: the lasing polariton mode is made up of 97% of exciton. This
property is understood thanks to a detailed study of the relaxation properties of the excitons
towards the polariton states below and above the polariton lasing threshold.

This thesis provides the basics to understand the one-dimensional polaritons in ZnQO mi-
crowires. The properties described in this thesis demonstrate that the ZnO microwires are
particularly suitable for the study of 1D degenerate polariton gas at room temperature.

Keywords: Polariton, strong coupling, unidimensional, ZnO, microwire, hexagonal whispering
gallery mode, boson, condensation, quantum degeneracy
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