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Introduction 

Strong coupling of light and matter in semiconductor nanostructures gives rise to 

many new interesting effects, the most direct being the creation of a composite particle called 

exciton-polariton. This half-light, half-matter particle carrying the properties of both its 

origins, can demonstrate extremely rich physics, including various nonlinear spin effects, the 

famous Bose-Einstein condensation (BEC), predicted long ago but observed only very 

recently, and maybe even the superfluidity. 

The coupling of light and matter itself has been studied for several decades (starting 

from the seminal paper by J.J. Hopfield, 1958), and quite extensively, but all the effects that 

may come out of it have not been discovered yet neither theoretically nor experimentally. The 

properties of exciton-polaritons are so unusual that it has been foretold that the BEC, observed 

for atoms at the temperatures of the order of nanokelvins, can be produced even at room 

temperature for exciton-polaritons. For some time, since the proposal of BEC-based polariton 

lasers by A. Imamoglu et al (1996) and the proposal of room-temperature polariton lasers by 

G. Malpuech et al (2002), this was rather a dream, although very tempting, but in 2006 the 

Grenoble group of Le Si Dang has observed the BEC of polaritons in a CdTe cavity at 40 K 

(J. Kasprzak et al, 2006). Similar experiments of S. Christopoulos et al (2006) have 

demonstrated polariton lasing in a GaN cavity at room temperature. Next year, R. Balili et al 

(2007) have reported the BEC of polaritons in a GaAs cavity at 4K. These temperatures are 

determined by the exciton stability and by the strength of light-matter coupling in 

corresponding materials. Now, with these results, the topic of exciton-polaritons in 

microcavities becomes very hot. It is necessary to explain some existing results, and to 

propose the ways to obtain and use new effects. 

In the first chapter of this thesis we introduce the theoretical models we will use 

throughout the text. We also give an introduction on linear properties of microcavities in the 

framework of the transfer matrix formalism. The full theoretical description of the non-linear 

effects which are of the topical interest nowadays can be done only using the quantum kinetic 

theory and density matrix formalism. Since the complete density matrix of the quantum 

system we are dealing with would be too complicated for any kind of calculations (analytic or 

numeric), we use two distinct limits: the Boltzmann equation and the Gross-Pitaevskii 

equation. The first one corresponds to the limit when any coherence is lost immediately as a 

result of interactions, and only diagonal elements of the density matrix are kept. The second is 
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the opposite: only coherent processes are taken into account, and no loss of coherence can be 

described. 

Which parameters determine the possibility of the BEC of polaritons? How the 

existing structures should be improved? Which structures are best suitable for manufacturing 

an effective room-temperature polariton laser? These practical questions we answer in chapter 

2, using the Boltzmann equations to simulate polariton relaxation in different GaN-based 

microcavities. We plot the kinetic phase diagrams of GaN microcavities, showing the regions 

in which they can operate as polariton lasers. 

The polaritonic nonlinear effects have already been studied for a long time. The 

optical (or polariton) parametric oscillator configuration with three macroscopically occupied 

states has proven to be very interesting, demonstrating rich polarization dynamics. It was in 

this configuration that the bosonic nature of polaritons has been proven clearly for the first 

time by P.G. Savvidis et al (2000). In chapter 3 we present the model based on spin-

dependent Boltzmann equations, and demonstrate its power by simulating three different 

experiments involving polarization effects. We reproduce such effects as polarization rotation 

due to the TE-TM splitting, the self-induced Larmor precession, and the polarization 

inversion. The model proves to be extremely useful, allowing description of all polarization 

experiments, even the dynamic ones. 

Once the polariton condensates have been obtained, it becomes even more important 

to study their properties. Chapter 4 is devoted to spatial propagation of polaritons and 

polarization effects. We first demonstrate a simple analytical model that can be used to 

describe polariton propagation in the linear case, and then compare it with the behavior of 

polariton condensate, describing it with the Gross-Pitaevskii equation. We also consider a 

resonantly-pumped macroscopically occupied polariton mode, analyze its stability and 

calculate the dispersions of the excitations taking into account the polarization degree of 

freedom, which leads to completely new effects with potentially rich applications such as the 

multistability of polariton system. We demonstrate that even in a system with pump and decay 

linear dispersion of excitations leading to superfluidity of polaritons can be observed at 

particular conditions. 

One intriguing question that has not yet been answered is the following. The BEC of 

weakly interacting particles had been usually associated with superfluidity, because the 

Bogoliubov dispersion of the weakly-interacting Bose gas satisfies the Landau criterion of 

superfluidity. However, none of the groups reporting the BEC of polaritons have observed 

linear dispersion and superfluidity. In the last chapter we propose the explanation to be that 
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the Bose-glass phase is formed in the reported experiments due to the disorder. We study the 

transition between the Bose glass and superfluid phases of polaritons and find the thresholds 

for polariton superfluidity in cavities of two different types: CdTe (less disordered, but 

smaller light-matter interaction) and GaN (more disordered, but stronger light-matter 

interaction). In both cases the thresholds turn out to be accessible, though close to the border 

of the strong coupling regime. 
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Chapter 1. Mathematical tools and the exciton-polaritons 

In this chapter we give an introduction on exciton-polaritons in planar microcavities. We 

then introduce the general mathematical tools that will be used afterwards for the description of 

exciton-polaritons in various conditions. The most general description of the evolution of a quantum 

system is given by its density matrix. However, for such a complex system as exciton-polaritons in 

a microcavity, the equation for the density matrix for most of the problems would be impossible to 

treat analytically or numerically. Therefore, simplifying assumptions have to be taken. We work in 

two opposite limits: completely incoherent, but allowing to describe relaxation (Boltzmann 

equations) and completely coherent, but not allowing to include relaxation processes (Gross-

Pitaevskii equation). 
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1.1. Microcavity exciton-polaritons 

The exciton-polariton or simply polariton, as we will call it throughout the thesis, is a 

composite quasiparticle consisting of a photon and an exciton (which is a composite particle itself). 

A cavity polariton is formed in a quantum microcavity, which consists of an active layer (e.g. 
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quantum well) sandwiched between mirrors. The mirrors are usually distributed Bragg reflectors 

(DBR), consisting of a series of / 4λ  layers with high and low refractive indices. The polariton is 

only formed when the microcavity operates in the strong coupling regime (when the interaction 

between photon and exciton is larger than any dephasing). The strong coupling was first observed 

by Claude Weisbuch et al (1992). Polaritons are good bosons; their bosonic nature has been clearly 

demonstrated experimentally for the first time by P.G. Savvidis et al (2000).The most unusual 

property of a polariton is its dispersion, which is strongly non-parabolic. The particular shape of the 

dispersion depends on many parameters, including the detuning (the difference between the photon 

and exciton energy levels). The effective mass of a polariton in the vicinity of the ground state of 

dispersion is very light, close to that of a cavity photon ( 55 10pol em m−≅ × , where em  is the free 

electron mass). This particular property is very important for Bose condensation, since it makes the 

theoretical threshold density for exciton-polaritons condensation about 510  times lower than that of 

excitons. This allows to expect Bose condensation of polaritons at much higher temperatures than it 

could be possible for excitons. Indeed, the Bose condensation of polaritons has been observed very 

recently in CdTe by J. Kasprzak et al (2006), in GaN by S. Christopoulos et al (2007), and in GaAs 

by R. Balili et al (2007). These works are published in the most well-known scientific journals 

(Nature, Physical Review Letters, Science), which demonstrates that the topic is currently very hot. 

1.1.1. Two-oscillator description of strong coupling 

The classical polariton dispersion can be obtained from a simple two-oscillator model by 

diagonalization of a Hamiltonian. We will show an example with only a single excitonic state here: 

 ( ) ( )
( )

X

C

E
H

E
 Ω

=  Ω 

k
k

k
h

h
 (1.1) 

Here ( )XE k  is the exciton dispersion with an effective mass of the order of em  and ( )CE k  

is the photon dispersion with an effective mass of the order of 510 em− . 

The eigenvalues of this matrix are given by 

 ( ) ( )( ) 2 2det 0 0X CE Eλ λ λ− = ⇔ − − − Ω =M I h  (1.2) 

The solutions of this equation are : 

 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

2 2 2

2 2 2

1 4
2 2

1 4
2 2

C X
U C X

C X
L C X

E k E k
E k E k E k

E k E k
E k E k E k

+
= + − + Ω

+
= − − + Ω

h

h

 (1.3) 

where UE and LE  are the energies of the upper and lower polariton branches, respectively. 

To find one of the eigenvectors, we look for the solutions of 
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( )

( )
( )
( ) ( ) ( )

( )
X U U

U
C U U

E X k X k
E k

E C k C k
    Ω

=    Ω    

k
k

h

h
 (1.4) 

with the normalization condition 2 2 1U UX C+ = . The solution is : 

 
( )

( )

22 2

2 2

22 2

U X
U

U X

U

U X

E EC
E E

X
E E

−
=

Ω + −

Ω
=

Ω + −

h

h

h

 (1.5) 

The same procedure for the second eigenvector gives : 

 ,L U L UX C C X= = −  (1.6) 

where ( )L UX
 
and ( )L UC  are the Hopfield coefficients for the upper (lower) polariton branch. 

An example of dispersion for a microcavity with GaN quantum wells obtained using 

Eq. (1.3) is shown in figure 1.1. The parameters for this calculation are given in section 2.1.2. The 

non-parabolicity of the lower polariton branch is clearly visible. 
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Figure 1.1. Dispersion of a GaN microcavity with QWs. The typical non-parabolicity is clearly 

visible. Rabi splitting is 90 meV. 

 

In a more complicated case the energies of the excitonic and photonic modes can include 

imaginary parts, which allows to account for dissipative processes. In case of spatial dispersion of 

excitonic resonances, one has to write an implicit dispersion equation, like discussed by J. Lagois 

(1977). In our case, we do not need to use this approximation. 
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1.1.2. Transfer matrix method applied to DBR 

Another powerful method which allows to calculate the optical properties of a Bragg mirror 

or of a microcavity as a whole is the transfer matrix method. The idea of the method is to represent 

the effect of each layer on the electromagnetic wave passing through this layer by a matrix, and the 

wave itself by a vector, its components being the components of the electromagnetic field ( Eτ  and 

Hτ ). It is convenient to use the tangential component basis ,E Hτ τ  for s-polarization and ,H Eτ τ  for 

p-polarization. We follow the method described by A. Kavokin and G. Malpuech (2003). 

One can write the transfer matrix across a layer of a thickness a with refractive index n: 

 
1cos sin

sin cos
ka in kaT

in ka ka

− 
=  
  

 (1.7) 

where k is the wavevector of light in corresponding material. The transfer matrix of several 

layers is a product of their transfer matrices. For an infinite Bragg mirror one can write the 

dispersion equation involving a transfer matrix of a period of the mirror: 

 ( ) ( )11 22cos / 2Q a b T T+ = +  (1.8) 

where Q is the effective wave-vector of light in the mirror and a, b are the respective 

thicknesses of the two layers. Real Q solutions form allowed bands and complex Q solutions form 

photonic gaps or stop-bands. 

At the central frequency of the stop-band the transfer matrix of the mirror period becomes: 

 
0

0

a

b

b

a

n
n

T
n

n

 − 
=  
 −
 

 (1.9) 

The reflection coefficient is obtained from the condition 

 ( ) ( )0 0

1 1
1 1

a

b

r rnT
n r n rn

+ +   
= −   − −   

 (1.10) 

where n0 is the refraction coefficient of the medium (vacuum). 

In the vicinity of the stop-band center 2 /cω π λ=  one can linearize the matrix T as a 

function of ω ω−  and obtain the following expression for the reflection coefficient: 

 
( ) ( )

0

exp
2

a b

b a

n nr i
n n n c

λ ω ω
 

= −  − 
 (1.11) 

The coefficient 

 
( )2

a b
DBR

b a

n nL
n n

λ
=

−
 (1.12) 

is called the effective length of a Bragg mirror. 



 15

In the case of oblique incidence the transfer matrices are modified and become different for 

s- and p-polarizations. S-polarization is also called TE (transverse electric) and corresponds to 

electric field of light wave oscillating in the plane, whereas p-polarization (TM or transverse 

magnetic) corresponds to magnetic field being in the plane. The expression for the reflection 

coefficient can be obtained in the following form: 

 ( ),
, , 0 ,exp coss pc

s p s p DBR s p
nr r i L
c

ϕ ω ω = − 
 

 (1.13) 

where for s-polarization 

 

1/ 22

0 0

cos cos1 4
cos cos

N
f f a a

s
b b

n nr
n n

ϕ ϕ
ϕ ϕ

  
 = −     

 (1.14) 

 
( )

cos cos
2 cos cos

a a b b
s

a b a b

n nc
a b n n

ϕ ϕπω
ϕ ϕ
+

=
+

 (1.15) 

 ( )
( )

2 2 2 2

2 2 2 2
0 0

2 cos cos
cos

a b a bs
DBR

b a

n n a b
L

n n n
ϕ ϕ

ϕ
+

=
−

 (1.16) 

where N is the number of periods in a finite mirror, 0ϕ  is the incidence angle, ,a bϕ  are the 

propagation angles in the layers with refractive indices ,a bn , and fϕ  is the propagation angle in the 

material behind the mirror which has a refractive index fn . They are linked by the Snell-Descartes 

law: 

 0 0sin sin sin sina a b b f fn n n nϕ ϕ ϕ ϕ= = =  (1.17) 

In p-polarization : 

 

1/ 22

0

0

cos cos1 4
cos cos

N
f a b

p
f b a

n nr
n n

ϕ ϕ
ϕ ϕ

  
 = −     

 (1.18) 

 
( )2 2

cos cos
2 cos cos

a b b a
p

a b a b

n nc
n n a b

ϕ ϕπω
ϕ ϕ
+

=
+

 (1.19) 

 
( )

( )
2 2 2 2

2 2 2 2 2
0

2 cos cos

cos cos
a b a bp

DBR
b a a b

n n a b
L

n n n

ϕ ϕ

ϕ ϕ

+
=

−
 (1.20) 

The optical TE-TM splitting, which is the difference between the eigenmodes of a cavity in 

two different polarizations, originates from the difference in the above effective DBR lengths and 

reflectivities. The exact expression for this splitting will be given below. 
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1.1.3. Light-matter interaction in a quantum well 

We will describe the optical properties of a quantum well following the non-local dielectric 

response theory developed in the end of 1980s by L.C. Andreani, F. Tassone, F. Bassani (1991) and 

E.L. Ivchenko (1991) as it is given in the textbook of A. Kavokin and G. Malpuech (2003). This 

theory is based on the assumption that the exciton-induced dielectric polarization can be written in 

the form: 

 ( ) ( ) ( )4 , ' ' 'excP z z z E z dzπ χ
∞

−∞
= ∫  (1.21) 

where 

 ( ) ( ) ( ) ( ), ' 'z z z zχ χ ω= Φ Φ%  (1.22) 

with 

 ( ) 3

0
, B LT B

Q Q a
i

χ ω ε ω π
ω ω γ

= =
− −

 (1.23) 

Here ( )zΦ  is the exciton wave-function taken with equal electron and hole coordinates (z), 

ω  is the frequency of the incident light, γ  is the homogeneous broadening of the exciton resonance 

caused by the acoustic phonons, for example, and LTω  and Ba  are two intrinsic excitonic 

parameters called longitudinal-transverse (LT) splitting and Bohr radius. The Bohr radius in GaAs 

is 150 A, whereas in wide-bandgap semiconductors it can be as low as 30 A. 

The exciton LT splitting LTω  is a measure of the exciton-light coupling strength in bulk 

semiconductors. The reason is the following (considering cubic crystals for simplicity): at k=0, 

there is no distinction between longitudinal and transverse excitons. Hence, optically active states 

must be threefold degenerate at k=0. If the interaction with radiation is neglected, longitudinal and 

transverse excitons are found to be split by the long-range part of the exchange interaction. Hence 

the interaction with the radiation field must compensate for this splitting, by shifting the energy of 

the transverse exciton at k=0 by an amount exactly equal to LTω . The quantitative relation between 

the LT splitting and oscillator strength reads: 

 
2

0 0

2
LT

e f
m V

πω
ε ω∞

=
h  (1.24) 

where 0ω  is the energy of the exciton resonance and f is the oscillator strength. 

For the ground exciton state in GaAs 0.08meVLTω =h , while in wide-bandgap materials 

(GaN, ZnO) it is an order of magnitude larger. 

Using the above expression (1.21) for polarization, one can solve the Maxwell’s equation 

and find the reflection and transmission coefficients of the QW. We will not detail this procedure. 

Finally, one obtains in the case of normal incidence of light, 
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 ( ) ( )
0

0 0

ir
i

ω
ω ω γ

Γ
=

− − Γ +%
 (1.25) 

 ( ) ( )1t rω ω= +  (1.26) 

where 

 ( )( )2
0

0 cos
2 B

Qk z kz dz
ε

Γ = Φ∫  (1.27) 

is an important characteristic called exciton radiative broadening and 

 ( ) ( )0
0 0 ' sin '

2 B

Qk dzdz z z k z zω ω
ε

= + Φ Φ −∫∫%  (1.28) 

The radiative broadening 0Γ  is connected with the exciton radiative lifetime τ  by the 

relation 

 
0

1
2

τ =
Γ

 (1.29) 

This radiative lifetime is about 10 ps in typical GaAs-based QWs. 

At oblique incidence these results are modified, because the Maxwell’s equations become 

more complicated. We will present the resulting expressions for the reflection and transmission 

coefficients in order to have a complete description of quantum well interaction with 

electromagnetic field: 

 ( ) ( )
0

0 0
s

ir
i

ω
ω ω γ

Γ
=

− − Γ +

%

%%
 (1.30) 

 ( ) ( )1s st rω ω= +  (1.31) 

where 0 0 / cosϕΓ = Γ% , and for the p-polarization case : 

 ( ) ( ) ( ) ( )0 1 0 1, 1p pr p p t p pω ω ω ω= − = + +  (1.32) 

where 

 
( )0

0

cos
cos

x

x

ip
i

ϕ
ω ω ϕ γ

Γ
=

− − Γ +

%

%
 (1.33) 

 
( )

( )( )
1

1 1
0

cos cos

cos cos
x

z

i
p

i

ϕ ϕ

ω ω ω ϕ ϕ γ

−

−

Γ −
=

+ ∆ − − Γ − +

%

%
 (1.34) 

with 

 0 cosx ϕΓ = Γ%  (1.35) 

 
2

0
sin
cosz

ϕ
ϕ

Γ = Γ%  (1.36) 
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 ( )3 2
LT Ba z dzω ω π∆ ≈ Φ∫  (1.37) 

The parameters ,x zΓ%  are proportional to the oscillator strength of excitons polarized parallel 

and normal to the interface, correspondingly, and ω∆  is the splitting between these states. The 

normal component is zero for heavy hole excitons, as it follows from the interband selection rules. 

In a similar way one can analyse the optical response of several quantum wells. 

1.1.4. Microcavity with a QW 

Let us consider a symmetric microcavity with a single QW in the center. The transfer matrix 

approach consists in representing each layer (or set of layer) by its transfer matrix. This can be done 

for a QW since its reflection and transmission coefficients have been determined in the previous 

section. The transfer matrix of the QW is, therefore: 

 
2 21

1QW
t r r

T
t r
 −

=  − 
 (1.38) 

The transfer matrix across the cavity with the QW inside is a product : 

 
/ 2 / 22 2

/ 2 / 2

0 01
10 0

c c

c c

ikL ikL

c ikL ikL

t r re e
T

t re e− −

    −
=     −    

 (1.39) 

To find the eigenfrequencies of the exciton-polariton modes of a microcavity one should 

search for non-trivial solution of Maxwell’s equations under the requirement of no light incident 

from outside the cavity. This yields 

 
1

1
B

c
B

r
T A

r
  

=   
   

 (1.40) 

where Br  is the angular-dependent reflection coefficient of the Bragg mirrors for the light 

incident from inside the cavity and A is a constant. 

Excluding A from the system (1.40) one can write the explicit dispersion equation: 

 2 2

1
c

c

ikL
B

B
ikL

B

r r e
t t r

r t r e r
t t

−− +
=

−
+

 (1.41) 

This dispersion equation can be represented in the following form: 

 ( )( )( )2 1 1 1 0c cikL ikL
B Br r e r e+ − + =  (1.42) 

For the even modes and normal incidence using linearized expression for the Bragg mirror 

reflectivity 

 ( )1 c
B DBR c

nr r iL
c

ω ω ≈ + − 
 

 (1.43) 
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one can obtain the dispersion equation in its final shape 

 ( )( ) 2
0 c ci i Vω ω γ ω ω γ− − − − =  (1.44) 

where 

 
( ) ( )

2 01 1,c
c c DBR c

DBR c

cr rVn r n L Lr L L
c

γ Γ− +
= =

++
 (1.45) 

The solutions of the dispersion equation are : 

 ( ) ( )( )
2 2

20 0
1,2 02 2 2 2 2

c c c
c c c

i iVω ω ω ω γ γω γ γ ω ω γ γ+ − −   = − + ± + − + − −   
   

 (1.46) 

the parameter V is the strength of coupling between the cavity photon mode and the exciton 

resonance. If 0 cω ω=  the splitting of the two solutions is given by ( )224 cV γ γ− − . If 

 
2

cV γ γ−
> , (1.47) 

the system is in the strong coupling regime, characterized by two distinct exciton-polariton 

branches manifested as resonances in the reflection and transmission spectra. The splitting between 

them is referred to as vacuum-field Rabi splitting. In the opposite case the system is in the weak 

coupling regime, when the exciton and photon modes cross. The exciton decay rate is increased at 

the resonance point of the two branches. 

In the general case of oblique incident light to obtain the s- and p-polarization dispersion 

branches one should solve equation (1.41) with angular-dependent reflection and transmission 

coefficients of the QW (1.30) and (1.32), and with the angular-dependent reflection coefficients for 

the Bragg mirrors (1.14) and (1.18). 

1.1.5. Optical TE-TM splitting 

An approximate analytical expression for the TE-TM splitting in a microcavity with a QW 

has been given in the paper of Panzarini et al (1999). The splitting of an empty cavity is given by 

 
( )

∆
−+

≈Ω
eff

effeff

DBRc

DBRc
LT LL

LL
ϕ
ϕϕ

2

2

2 sin21
sincos2

 (1.48) 

where 
c

eff n
0sin

arcsin
ϕ

ϕ ≈ , ( ) Bab

ba
DBR nn

сnn
L

ω
π

−
≡ , 0ϕ  is the incidence angle in vacuum, cL  is 

the cavity width, ban ,  are the refractive indices of the layers composing the DBRs, cn  is the 

refractive index of the cavity, Bω  is the central frequency of the optical stop-band of the DBRs, and 

B cω ω∆ = −  is the difference between the cavity-mode eigenfrequency at normal incidence cω and 

Bω . Eq. (1.48) predicts a quadratic dependence of the splitting of the eigen-energies of bare photon 
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modes of the cavity on the incidence angle. This splitting gives rise to an effective magnetic field in 

the coherent part of the spin-dependent Boltzmann equations (1.74) and to rotation of the 

pseudospin vector around the corresponding axis. 

1.2. Boltzmann equation 

The kinetic Boltzmann equation has been derived by Ludwig Boltzmann in 1872, it is one of 

the basic equations of physical kinetics. The Boltzmann equation describes the time evolution of the 

distribution function. An equilibrium distribution satisfies the Boltzmann equation automatically, 

and any non-equilibrium distribution has a tendency to evolve into an equilibrium distribution, 

which is why one can say that the Boltzmann equiation describes the relaxation dynamics of 

classical particles. 

In the first subsection we will show the derivation of a Boltzmann equation for classical 

particles (i.e. ideal gas). In the next subsection it will be demonstrated how a Boltzmann-type 

equation can be derived from a quantum Hamiltonian of interacting bosons without spin. 

1.2.1. Boltzmann equation for classical particles 

Let us consider a distribution function ( , , )f t Γr  where t  is the time parameter, r  is the set 

of space coordinates and Γ  are the generalized coordinates describing the particle parameters that 

are not changing between scatterings (like particle momenta for a monoatomic gas). We follow the 

procedure from E.M. Lifshitz and L.P. Pitaevskii (1980) here. 

Without interactions the distribution function obeys the Liouville theorem, which states that: 

 0df
dt

=  (1.49) 

In the absence of external field one can take into account the conservation of the coordinates 

Γ  and write: 

 df f f
dt t

∂
= + ∇
∂

v  (1.50) 

where v is the particle velocity. Taking into account the interactions, this equation changes 

into 

 Stdf f
dt

=  (1.51) 

where St f is the collision integral. Then, (1.50) can be rewritten as: 

 Stf f f
t

∂
= − ∇ +

∂
v  (1.52) 
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Of course, the collision integral should be somehow defined for this equation to make sense. 

Let us write the total number of collisions leading to transitions 1 1, ,′ ′Γ Γ →Γ Γ  in a volume dV per 

unit of time: 

 ( )1 1 1 1 1, ; ,dV d ff d d dω ′ ′ ′ ′Γ Γ Γ Γ Γ Γ Γ Γ∫  (1.53) 

where ω  is the transition probability. Then let us write the transitions into dΓ  from outside: 

1 1, ,′ ′Γ Γ →Γ Γ . The total number of collisions leading to these transitions will be 

 ( )1 1 1 1 1, ; ,dV d f f d d dω ′ ′ ′ ′ ′ ′Γ Γ Γ Γ Γ Γ Γ Γ∫  (1.54) 

The difference of (1.53) and (1.54) is the change of the number of particles in dVdΓ  due to 

collisions per unit of time: 

 ( )1 1 1 1St f f f ff d d dω ω′ ′ ′ ′ ′= − Γ Γ Γ∫  (1.55) 

The second term in (1.55) can be rewritten using the condition of microscopic reversibility 

of transitions (this was first done by E.C.G. Stuckelberg, 1952), after which the collision integral 

obtains its final form: 

 ( )1 1 1 1St f f f ff d d dω′ ′ ′ ′ ′= − Γ Γ Γ∫  (1.56) 

and we can write the classical kinetic Boltzmann equation: 

 ( )1 1 1 1
f f f f ff d d d
t

ω∂ ′ ′ ′ ′ ′+ ∇ = − Γ Γ Γ
∂ ∫v  (1.57) 

It is assumed here that the interactions of the particles are immediate. Therefore, this 

equation can be used to describe the evolution of a system on a time scale longer than the 

characteristic time of a single interaction. Any kinetic equation for a distribution function that has 

the shape (1.52) or (1.57) is usually called Boltzmann equation. 

1.2.2. Semi-classical Boltzmann equations for bosons and fermions 

A derivation of the semi-classical Boltzmann equation from the microscopic Hamiltonian is 

given in Appendix I. Uhlenbeck and Gropper (1932) first proposed to include the quantum 

character of particles involved, taking into account their fermionic or bosonic nature. The semi-

classical Boltzmann equation for bosons reads: 

 ( ) ( )' ' ' '
' '

1 1dn P n n W n n W n
dt → →= −Γ − + + +∑ ∑k

k k k k k k k k k k k
k k

 (1.58) 

and for fermions it is modified the following way : 

 ( ) ( )' ' ' '
' '

1 1dn P n n W n n W n
dt → →= −Γ − − + −∑ ∑k

k k k k k k k k k k k
k k

 (1.59) 
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The coefficients (1 )n+ k  and (1 )n− k  describe stimulation of transitions for bosons and 

suppression of transitions for fermions due to increase of the occupancies of corresponding states 

nk . 

1.3. Spin-dependent Boltzmann equations 

We will start the derivation of spin-dependent semi-classical Boltzmann equations for 

bosons with spin 1 from the Liouville equation for the complete density matrix of the system. This 

has been first done by M.M. Glazov et al (2005). The equations we finally find are valid for any 

bosons interacting with the reservoir, but their form in the pseudospin representation is best suited 

for the description of exciton-polaritons, to which they will be applied in chapter 3. 

In the interaction representation the Liouville equation reads (same as Eq. (1.1) of Appendix 

I): 

 ( )ˆ ,di H t
dt
ρ ρ =  h  (1.60) 

where H is the time-dependent Hamiltonian of the system, in our particular case taking into 

account the weak interaction of bosons with each other and their interaction with reservoir: 

( )

,
, , ,

(1) (2)
, , , , , , , , , , ,

,

1 2 . .
4

LT

q

H a a b b a a

U a a b b V a a a a V a a a a h c

σ σ σ σ
σ σ σ

σ σ σ σ σ σ σ σ σ σ
σ σ

ω+ + +
−

+ + + + + +
− − −

= Ω + + Ω +

 + + + + + 

∑ ∑ ∑

∑ ∑

k k k k k k k k k
k k k

k,q k k-q q q k,k' k k' k-q k'+q k,k',q k k' k-q k'+q
k,q, k,q

h h

(1.61) 

Here ( )a aσ σ
+

k k  are the annihilation (creation) operators for the bosons with wave-vector k 

having the spin projection 1σ = ±  on the chosen axis, bk  and b+
k  are the operators for phonons (by 

which the interaction with reservoir is described), Ωk  and ωk  are the boson and phonon bare 

energies, respectively. The matrix element ,Uk q  describes the interaction of bosons and phonons, 

and the matrix elements ( )1
, ,V ′k k q  and ( )2

, ,V ′k k q  describe the scattering of bosons in triplet and singlet 

configurations. In the case of polaritons, this scattering is anisotropic, and (1) (2)V V . The term 

with LTΩ  describes the effect of a magnetic field (LT-splitting in the case of polaritons). 

We separate the Hamiltonian into two parts, as a sum of “shift” (coherent) and “scattering” 

(incoherent) terms. Here the “shift” term describes interaction of exciton-polaritons without 

wavevector transfer (q’=0) but having possibly different spins: 

 
( )( )

( )

2(1) (2)
, , , , ,0 , , , ,0 , , , ,

, ,

(1) (2)
, ',0 , , ' , , ' , ',0 , , ' , , '

, ' , ,

shift LTH a a V a a V a a a a

V a a a a V a a a a

σ σ σ σ σ σ σ σ
σ

σ σ σ σ σ σ σ σ
σ

+ + + +
− − −

=↑ ↓

+ + + +
− −

≠ =↑ ↓

= Ω + + +

+ +

∑

∑

k k k k k k k k k k k k k
k

k k k k k k k k k k k k
k k k

h

 (1.62) 

The “scattering” term describes scattering between states with wave vector transfer (q≠0) : 
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( ) ( ) ( ) ( )( ) ( ){

( ) } ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

1
, , , , ' , , '

, , 0, ,

2
, ', , , ' , , ' , , ,

, 0, ,

1
4

12 . .
2

it E E E E

scatt

it itE E E E

H e V a a a a

V a a a a U b b a a e e h c

σ σ σ σ
σ

ω ω

σ σ σ σ σ σ
σ

′ ′+ − + − − + +
′ ′+ −

′ ≠ =↑ ↓

+ − + − − − −+ + + +
+ − − − − +

≠ =↑ ↓

= +

 
+ + + + + 

 

∑

∑

k k k q k q

k k q k q k q k k
k k q

k k k q k k k q

k k q k q k q k k k q q q k q k
k q

h

h h

(1.63) 

We write the Liouville equation for the total density matrix of the system ρ : 

 [ ]( ), ( ) ( ),shift scatt
di H t H t H t
dt
ρ ρ ρ = = + h  (1.64) 

Eq. (1.64) can be treated within the Born-Markov approximation. The Markov 

approximation is, in general, not true for the coherent processes described by the Hamiltonian Hshift, 

but is a reasonable approximation for the scattering processes involving the momentum transfer. We 

apply the Markov approximation to the scattering part of Eq. (1.64) which therefore rewrites: 

 [ ]2

1 1( ), ( ), ( ), ( )
t

shift scatt scatt
d H t H t H d
dt i
ρ ρ τ ρ τ τ

−∞

   = −    ∫h h
 (1.65) 

The density matrix can be factorized into the product of phonon density matrix and boson 

density matrices corresponding to the different states in the reciprocal space by using the Born 

approximation: 

 phρ ρ ρ= ⊗∏ k
k

 (1.66) 

The polarization effects in a simple bosonic system are conveniently described by using the 

pseudospin formalism if the bosons can be treated as a two-level system described by a 2x2 density 

matrix ρk , which is completely analogous to the spin density matrix of electrons. It is convenient to 

decompose the density matrix as: 

 
2

kN
= + ⋅k kρ I S σ  (1.67) 

where I is the identity matrix, σ is the Pauli-matrix vector, kS  is the pseudospin of a bosonic 

state characterized by the wave vector k. It corresponds to the Poincaré vector of partially polarized 

light (see Fig. 1.2). The common convention is to use the basis of circularly polarized states, i.e. to 

associate states having definite zS  with the states with the spin projection on an axis equal to ±1. 

These states emit circularly polarized light. Their linear combinations correspond to eigenstates of 

xS  and yS  yielding linearly polarized emission. The pseudospin parallel to x-axis corresponds to x-

polarized light, the pseudospin antiparallel to x-axis corresponds to y-polarized light, the 

pseudospin oriented along y-axis describes diagonal linear polarizations. 
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Figure 1.2. A Poincaré sphere with a pseudospin. The equator of the sphere corresponds to different 

linear polarisations, while the poles correspond to two circular polarisations. 

 

If the density matrix is decomposed in the way described above, the diagonal elements of 

the density matrix ρk  give the populations of the spin-up and spin-down states: 

( ), TrN a a ρ+
↑ ↑ ↑= kk k k , ( ), TrN a a ρ+

↓ ↓ ↓= kk k k , and the off-diagonal components are linked with the in-

plane projection of the pseudospin , , ,x x y yS S S⊥ = +k k ke e  in the following way: 

( ), , Trx y kS iS a a ρ+
↑ ↓− =k k k k . Here xe  and ye  are the unit vectors in the cavity plane. The difference 

with the results from section 1.1.2 is that we did not trace out the pseudospins, thus keeping 

information on the polarization. 

Finally, a Lindblad-type equation for the polariton density matrix can be obtained, which 

allows the derivation of the spin-dependent Boltzmann equations for the boson occupation numbers 

and in-plane projections of their pseudospins. These equations will be written explicitly in the 

following subsections. 
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1.3.1. Interactions with acoustic phonons 

The dynamics with acoustic phonons is given by the following expression: 

( ) ( )( ) ( ),
' ' ' ' ', ' , ' , ,

'

.
phon

dN
W W N N W N W N

dt
↑ ↓

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

   = − + + −    
∑k

k k kk k k k k kkk k k k
k

S S (1.68) 

( ) ( ) ( )( ) ( ),
' ' , ' , ' , ' ' ,' '

'

1
2

phon

d
W W N N N N W W

dt
⊥

⊥ ⊥ ⊥ ⊥↑ ↓ ↑ ↓

   = − + + + + −     
∑k

k k kk k k k k k kk kk k k k
k

S
S S S S (1.69) 

where the scattering rates W are 

 
( )

( ) ( )

2

, '

'
2

, '

2 ,

2 1 ,

ph

ph

V n
W

V n

π δ ω

π δ ω

 Ω −Ω −= 
 + Ω −Ω − <


k,k'-k k'-k k k k'-k

kk

k,k'-k k'-k k k k'-k

k' > k

k' k

h

h

 (1.70) 

The Dirac delta functions in (1.70) account for the energy conservation during any scattering 

act. Mathematically they appear from integration of the time-dependent exponents in (1.65). In 

numerical calculations, the delta functions should be replaced by resonant functions having finite 

amplitudes proportional to the inverse energy broadenings of corresponding states. 

 

1.3.2. Interaction with bosons 

The part describing the interactions between the bosons reads 

 

{
( )

( )

(1)
'' '' ' '' '' ' ''

''

(2)
'' , '' , ' '''' ' '' '' ' ''

, , '' '

( 1) ( 1)

( 1)( 2 )

( )(

dN
W N N N N N N N N

dt

W N N N N N N

N N N N

↑
↑ ↑ + ↑ − ↑ + ↑ − ↑ ↑ ↑

⊥ + ⊥ −↑ ↓ + ↑ − ↓ + ↓ − ↑

⊥ ⊥↑ ↓ + ↑ −

= + + − + + +  

+ + + + + ⋅ −

+ ⋅ +

∑k
k,k',k k k' k k k k k k k k k k'

k',k

k,k',k k k k kk k' k k k k k k k k

k k'k k' k k k

S S

S S '' '' ' ''

(12)
'' , , ' '' , , '' , , ' '' , ''' ''

(12)
'' , , '' , , ' ''' '' ' ''

2)

2 ( ) ( ) ( )

[( )( ) ( )

N N

W N N N

W N N N N

↓ + ↓ − ↑

⊥ ⊥ − ⊥ ⊥ + ⊥ ⊥ − ⊥ +↑ − ↑ ↑

⊥ ⊥ + ⊥ ⊥ −− ↑ − ↓ ↑ ↓

+ + + +
 + ⋅ + ⋅ − ⋅ + + 

+ ⋅ + − − + ⋅

k k k k k

k,k',k k' k k k' k k k' k k k kk'' k k k

k,k',k k k k k k kk k k k k' k'

S S S S S S S

S S S S }'' ''( )]N N N N+ ↑ + ↓ ↑ ↓+ − −k k k k k' k'

 (1.71) 

Let us look into the physical meaning of different terms in (1.71). First term with ( )1
, ,W ′ ′′k k k  

describes scattering of bosons with the same spin taking into account bosonic stimulation. Second 

term with ( )2
, ,W ′ ′′k k k  describes scattering of bosons with opposite spins with all possible combinations. 

The scalar product of the in-plane pseudospin components ( ), , '⊥ ⊥⋅k kS S  accounts for the 

polarization sensitivity of scattering. Third and fourth terms with ( )12
, ,W ′ ′′k k k  describe polarization-

dependent effects when two bosons with the same spin are interacting at the same time with two 

bosons having opposite spins. The equations for N↓  are obtained by replacing ↑  by ↓  and vice 

versa. 
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,

(1)
''

, '' ' '' '' ' '' '' ' '' '' ' ''
, ''

(1)
'' , '' , , ' '' , ' '' , , '' , ,

( 1) ( 1)
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( ) ( ) (

d
dt

W
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⊥
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⊥ ⊥ ⊥ − ⊥ − ⊥ ⊥ ⊥ ⊥
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= + − + + − + + +   


+ ⋅ + ⋅ −
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+ + + + ⋅ −

+ + + + + + + −

− ⋅

k k k

k,k',k
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kk,k',k k' k

S

S S S S
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( ) ( )( )'' , , ' ''

(12)

, ' '' '' '' '' ''

(12)
''

, '' ' '' ' '' ' '' ' ''

2(( 1) ( 1) ) ( )( )
2

2(( 1) ( 1) ) (
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W
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W
N N N N N N N

⊥ ⊥ −

⊥ − ↑ ↑ ↓ ↓ ↑ ↓ ↑ ↓ ↑ ↓

⊥ ↑ − ↑ ↓ − ↓ − ↑ − ↓

+ ⋅ +

+ + + + + + − − + +  

+ + + + + + −

+k k' k k

k,k',q
k k k' k +k k' k +k k +k k +k k' k' k k

k,k',k
k +k k' k k k' k k k k k k k

S S

S

S )( )N N N↑ ↓ ↑ ↓

− +  


' k' k k

(1.72) 

The equation for the in-plane pseudospin contains a set of terms similar to that of (1.71). 

The terms with ( )1
, ,W ′ ′′k k k  describe in-plane pseudospin evolution due to the interaction of bosons with 

the same spin. One can note, for example, that the increase of linear polarization can take place due 

to stimulated scattering from the two initial states as described by the term 
( )1
, '; ''

,2
W

N N′′ ′ ′′⊥ + −
k k k

k k k k kS . 

The polarization degree is kept constant in this case. One can see that the pseudospin of each state is 

affected by the pseudospins of all other states: the transfer of pseudospin from the state ′′+k k  to 

the state k depends on the scalar product of the pseudospins of the two other states: ( )′ ′ ′′−⋅k k kS S . 

Next group of terms with ( )2
, ,W ′ ′′k k k  describe scattering of bosons with opposite spins with all 

possible combinations. Since linearly-polarized state corresponds to equal occupation numbers 

,N N↑ ↓ , scattering with opposite spins leads to direct transfer of in-plane pseudospin, which is why 

this group includes a term ( ), , ,′′ ′ ′′⊥ ⊥ + ⊥ −⋅k k k k kS S S , which was not there in the previous group. 

The last group of terms with ( )12
, ,W ′ ′′k k k  describe polarization-dependent effects when two 

bosons with the same spin are interacting at the same time with two bosons having opposite spins. It 

is interesting to note that the terms 
( )

( ) ( )( )( )
12
, ;

, 2 1 1
2

W
N N N N′ ′′

′ ′′⊥ − ′ ′ ′ ′′↑ + ↑ ↓ + ↓+ + +k k k
k k k k k k k kS  that 

couple the pseudospin of the initial state with the pseudospin of the final state, in the spontaneous 

regime when N ′k  can be neglected, one can obtain the linear polarization inversion depending on 

the sign of ( )12
, ,W ′ ′′k k k , which is negative in the case of exciton-polaritons. 

The scattering rates are defined as follows 
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W V V

π δ

π δ

π δ
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+ −
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= Ω +Ω −Ω −Ω

= Ω +Ω −Ω −Ω

k,k',k k,k',q k k k k k k

k,k',k k,k',k k k k k k k

k,k',k k,k',k k,k',k k k k k k k

h

h

h

 (1.73) 

Here as in Eq. (1.70) the delta functions ensure the energy conservation. The signs of the 

terms (1)
''Wk,k',k , (2)

''Wk,k',k  and (12)
''Wk,k',k  can differ in different systems. Although (1)

''Wk,k',k , (2)
''Wk,k',k  are always 

positive, (12)
''Wk,k',k  can be positive or negative depending on the phase shift between the matrix 

elements of the singlet and triplet scattering. In particular it is negative if these matrix elements are 

real and have opposite signs. Realistic values of the matrix elements for exciton-polaritons are 

discussed in chapter 3. As one can see, the system of equations (1.71), (1.72) is rather heavy for 

analysis. The corresponding numerical simulations also can hardly be carried out without sufficient 

simplifications. 

1.3.3. Rotation terms 

The rotation terms, derived from the “coherent” part of the complete Hamiltonian, read: 

 ,, effz
rot rot

dN dN
dt dt

↑ ↓
⊥

     = − = ⋅ ×         
k k

kke S Ω  (1.74) 

 
( ) _

,
,, int, 2

eff

rot

N Nd
dt
⊥ ↑ ↓

⊥

− 
 = × +   

 
k k k

kk k

S
S Ω Ω  (1.75) 

where ze  is a unitary vector in the direction of the structure growth axis, ,eff kΩ  is a possible 

effective magnetic field, which may be present in a bosonic system and affect its behavior (e.g. TE-

TM splitting for polaritons), 
_

,eff kΩ  is obtained from ,eff kΩ  by the rotation by 90° about the structure 

growth axis, and the effective magnetic field int,kΩ  is produced by the disbalance of the σ +  and σ −  

bosons. It is given by the following expression deduced from Hshift : 

 ( )( )(1) (2)
int, ,0 ,02 z V V N N↑ ↓= − −∑k k,k' k,k' k' k'

k'
Ω eh  (1.76) 

This is the self-induced Larmor precession which will be described more in detail for 

polaritons in chapter 3. 

All the terms described in the above subsections describe the relaxation of bosons with spin 

towards an equilibrium distribution. They need to be completed by specific pumping and decay 

terms to describe the functioning of polariton parametric oscillator (chapter 3). 
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1.4. Gross-Pitaevskii equation 

In this section we introduce the tools for description of a Bose condensate once it is formed. 

We will work in the approximation of weak interactions and diluteness of the Bose gas. The 

perturbation technique for this purpose was first developed by Bogoliubov, who worked with 

uniform Bose gas. Then this solution was generalized for the case of non-uniform dilute gas by 

Gross and Pitaevskii. We will develop the latter formalism from the very beginning. Since we are 

studying the condensate, its coherence should not be lost in our description, and therefore the 

Boltzmann approach developed in earlier sections in not suitable. 

The Bose-Einstein condensate is a special state of matter formed by a system of bosons, 

predicted by A. Einstein (1925). Let us briefly show why do bosons accumulate in a single quantum 

state under certain conditions. Let us consider N non-interacting bosons at a temperature T in a 

volume Rd (here d is the dimensionality of the system). The bosons are distributed according to the 

Bose-Einstein distribution function (kB=1): 

 ( )
( )( )( )

1, ,
exp / 1Bf T

E T
µ

µ
=

− −
k

k
 (1.77) 

where k is the particle wave-vector, E(k) is the dispersion and µ  is the chemical potential 

(always negative for Bosons, if one counts the energy E(k) from zero). The chemical potential can 

be understood as the energy needed to add one particle to the system. Its value is given by the 

normalization condition: 

 ( ) ( ) ( )
, 2 /

1( , ) , , , ,
exp / 1B B

k R
N T f T f T

T π

µ µ µ
µ ≥

= = +
− −∑ ∑

k k
k k  (1.78) 

where we have separated the ground state from the others for convenience. One can 

calculate the total particle density by integration over the reciprocal space: 

 ( ) ( )
( )

( )0

, 1, lim , ,
2

d
BddR

N T
n T n f T d

R
µ

µ µ
π→∞

= = + ∫ k k  (1.79) 

where 

 ( ) ( )0
1 1, lim

exp / 1dR
n T

R T
µ

µ→∞
=

− −
 (1.80) 

The integral in (1.79) is an increasing function of µ , therefore, if one increases the particle 

density, the chemical potential also increases. The maximum particle density which can be 

accommodated in the excited states of the system is therefore 

 ( )
( )

( )
0

1lim , ,
2

d
c Bdn T f T d

µ
µ

π→
= ∫ k k  (1.81) 
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This function can be calculated analytically in the case of a parabolic dispersion relation. It 

is convergent if d>2 and divergent if 2d ≤ . In higher than 2 dimensions cn  gives an expression for 

critical density above which the extra particles collapse in the ground state only, which is called the 

Bose-Einstein condensate. 

For the 2D case we consider, the Bose-Einstein condensation strictly speaking does not take 

place. However, a transition to a superfluid state called Kosterlitz-Thouless phase transition may 

take place. In a finite 2D system quasi-condensation of bosons is also possible, because in this case 

the integral (1.81) takes finite value, since the integration is done on the reciprocal space excluding 

the diverging region around the ground state. 

1.4.1. Equation for the field operator 

Because of the long-rage correlations between the elements of the one-body density matrix 

in a system with macroscopically occupied state (Bose condensate) the field operator ( )Ψ̂ r  can be 

written in a basis of single-particle wave functions iϕ  even for interacting and non-uniform 

systems: 

 ( )ˆ ˆ ,i i
i

aϕ=∑Ψ r  (1.82) 

where ( )†ˆ ˆi ia a  are the annihilation (creation) operators of a particle in the state iϕ . The 

‘condensate’ term can be separated from the other components: 

 ( ) ( ) ( )0 0
0

ˆ ˆ ˆi i
i

a aϕ ϕ
≠

= +∑Ψ r r r  (1.83) 

Here one introduces the Bogoliubov approximation, which consists of replacing the 

annihilation and creation operators with c-number 0N  (this is the macroscopic occupation of the 

condensate). This is equivalent to ignoring the noncommutativity of these operators and is a good 

approximation when 0 1N . This is also equivalent to treating the macroscopic component of the 

field operator as a classical field. Thus the equation (1.83) can be rewritten as 

 ( ) ( ) ( )0
ˆ ˆδ= +Ψ r Ψ r Ψ r  (1.84) 

At very low temperatures and if the gas is dilute, the non-condensate component can be 

neglected, because the depletion due to these factors is small. In this case the system behaves like a 

classical object. The function ( )0Ψ r  is called the wave function of the condensate and plays the 

role of an order parameter. 

The diluteness condition means that the scattering length a  which can be related with the 

matrix element of interparticle interaction in the Born approximation should be much smaller than 

the distance between particles: 
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 1/3a n− , (1.85) 

where n is the particle concentration 0 /n N V= (V is the normalization volume). 

To write the Gross-Pitaevskii equation for the classical field ( )0Ψ r  describing the 

nonuniform Bose gas at zero temperature, let us start from the field operator in the Heisenberg 

representation, which fulfils the exact equation 

 
( ) ( )

( ) ( ) ( ) ( ) ( )
2 2

†

ˆ ˆ ˆ, , ,

ˆ ˆ ˆ, ', ' ', ' ,
2 ext

i t t H
t

V t t V t d t
m

∂  Ψ = Ψ = ∂
 ∇
− + + Ψ − Ψ Ψ 
  

∫

r r

r r r r r r r

h

h
 (1.86) 

For an effective soft interaction potential V(r) one can replace the operator ( )Ψ̂ r  by the 

classical field ( )0Ψ r . Assuming the function ( )0Ψ r  varies slowly on the scale of distance between 

particles, one can substitute r for r’ and obtain finally the Gross-Pitaevskii equation: 

 ( ) ( ) ( ) ( )
2 2 2

0 0 0, , , ,
2

i t U t t t
t m

α
 ∂ ∇

Ψ = − + + Ψ Ψ ∂  
r r r rh

h  (1.87) 

Here ( )V dα = ∫ r r  is the interaction coupling constant, which can be expressed in terms of 

the s-wave scattering length a: 24 /a mα π= h . The value of the interaction constant for exciton-

polaritons will be discussed in further chapters. 

The equation (1.87) is also called the nonlinear Schroedinger equation, because without the 

nonlinear term proportional to α  it reduces to the ordinary Schroedinger equation. 

1.4.2. Dispersion of excitations of a condensate 

Let us find the dispersion of weak excitations of the classical field described by (1.86). We 

shall consider small deviations from the constant average value N : 

 ( ) ( ) ( )*, i t i wtt n Ae B eω− − −Ξ = + +kr krr  (1.88) 

where A and B are small complex amplitudes. Substituting this into (1.87), linearizing by A 

and B and separating terms with different complex exponents, one obtains a system of equations 

( p k= h ): 

 
( )

( )

2

2

2

2

pA A n A B
m
pB B n A B
m

ω α

ω α

= + +

− = + +

h

h

 (1.89) 

If one solves this system for ω , one obtains the famous Bogoliubov dispersion law: 

 ( )
22 2

2

2
p p n
m m

ω α
 

= + 
 

h  (1.90) 



 31

The dispersion described by this law is linear for small p and approaches the free particle 

dispersion for large p. The change between the two takes place when energy becomes equal to nα . 

From this dispersion one can obtain the speed of excitations, or the speed of sound in a dilute Bose 

gas with interactions: 

 nc
m
α

=  (1.91) 

This linearization approach can be used very efficiently to find the dispersions and to 

analyze stability in many complicated cases, as will be shown afterwards. 

1.4.3. Superfluidity of a condensate 

One of the most important properties of a condensate described by the Gross-Pitaevskii 

equation is that the condensate is superfluid. Its superfluidity follows directly from the Landau 

criterion, which tells whether the creation of excitations is energetically favourable in a liquid 

propagating through a capillary. 

Let us consider a uniform fluid at zero temperature flowing along a capillary at a constant 

velocity vr . The only dissipative process assumed is the creation of elementary excitations due to 

the scattering by the walls of the capillary. The basic idea of the derivation is to calculate energy 

and momentum in the reference frame moving with the fluid and in the static one, making the link 

between the two frames by a Galilean transformation. If a single excitation with momentum k
r

h  

appears, the total energy in the moving frame is 0 ( )E E kε= +
r

, where E0 is the energy of the 

ground state and ( )kε
r

 is the dispersion of the fluid excitations. In the static frame however, the 

energy and momentum of the fluid read: 

 2
0

1' ( ) .
2

E E k k v Mvε= + + +
r r r

h  (1.92) 

 'P p Mv= −
r r r  (1.93) 

where M is the total mass of the fluid. 

Equation (1.92) shows that the energy of the elementary excitation in the static system is 

( ) .k k vε +
r r r

h . Dissipation is possible, only if the creation of elementary excitations is profitable 

energetically which means: 

 ( ) . 0k k vε + <
r r r

h  (1.94) 

Dissipation can therefore take place only if ( )kv
k

ε
>

r

h
. The flow stays superfluid if velocity is 

smaller than: 
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 ( )minc
kv
k

ε 
=  

 

r

h
 (1.95) 

Formula (1.95) is the Landau criterion of superfluidity. In case of a parabolic dispersion vc is 

zero and there is no superfluid motion. On the opposite, in case of Bogoliubov dispersion vc is 

nothing but the speed of sound which means that the fluid can move without dissipation with any 

velocity smaller than the speed of sound. 

The link between Bose-Einstein condensation and superfluidity is even more profound. If 

( )ˆ , tΨ r  is a solution of the equation for the field operator in the Heisenberg representation (1.86), 

then 

 ( ) ( ) 21, , exp
2

it t t m mv t  ′Ψ = Ψ − ⋅ −  
  

r r v v r
h

 (1.96) 

where v  is a constant vector, is also a solution of the same equation. This gives us the Galilean 

transformation of the field operator. In the coordinate system where the sample is at rest, the 

condensate wave function of a uniform fluid is given by /
0 0

i tn e µ−Ψ = h , where 0n  is a constant. In 

the frame where the fluid moves with velocity v , the order parameter instead takes the form 

0 0
iSn eΨ = , where 

 21 1
2

S m mv tµ  = ⋅ − +  
  

v r
h

 (1.97) 

is the new phase, while the amplitude n0 has not changed. Equation (1.97) shows that the velocity is 

proportional to the gradient of the phase: 

 s S
m

= ∇v h  (1.98) 

and can be identified as the superfluid velocity. This equation establishes the irrotationality of the 

superfluid motion, the phase of the order parameter playing the role of a velocity potential. The 

equation (1.98) is a genuine consequence of Bose-Einstein condensation, i.e. of the existence of the 

classical field 0Ψ  associated with the macroscopic component of the field operator. 

1.4.4. BEC in non-equilibrium situation 

The particular situation of BEC at non-equilibrium has been treated in a number of papers. 

For example, the various timescales of the condensate formation have been considered by H.T.C. 

Stoof (1991). D.G. Barci, E.S. Fraga, and R.O. Ramos (2000) have developed non-equilibrium field 

theory description of BEC also addressing the question of condensate formation. Among older 

papers on the kinetics of condensation of interacting bosons one can cite E. Levich and V. Yakhot 
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(1977). The authors have as well addressed the different timescales of condensation by means of the 

kinetic equation they have developed. 

In the works cited above the authors were assuming bosons having infinite lifetime; their 

main interest was the evolution of the particle distribution (condensate fraction) with time. Another 

important non-equilibrium situation can be linked with finite lifetime of the particles. Here one can 

apply the ideas from the laser theory, because photons in a laser have a finite lifetime by definition. 

This is why the researchers have started to explore the field of “atom lasers”. One of the first works 

on this topic has been done by A.N. Oraevskii (1997), K. Helmerson et al (1999) and by T. Lahaye 

et al (2004). For polaritons the influence of the finite lifetime is an important, but open question. 

A recent work of M. Wouters and I. Carusotto (2007) presents a phenomenological model of 

nonequilibrium condensate of polaritons allowing to calculate its dispersion of excitations. By the 

nature of this model its results are very close to the previous results of C. Ciuti and 

I. Carusotto (2005) for the Goldstone mode obtained in the case of quasi-resonant pumping in scalar 

approximation, and to the results presented in chapter 4. Main conclusion of this paper is that in 

case of non-equilibrium situation the dispersion of the excitations contains a diffusive part. 

 

1.5. Conclusions 

We have introduced the basic tools necessary for the description of microcavity exciton-

polaritons. Transfer matrix method allows to use the electromagnetic approach to find the 

dispersion of polaritons in different polarizations. The Boltzmann equations allow to describe 

polariton relaxation, taking into account their polarization properties. The Gross-Pitaevskii equation 

can be applied once a condensate of polaritons is formed and its properties need to be studied. In 

some situations, more complicated schemes are necessary, that we do not use here. For example, 

one can describe the transition from completely coherent to completely incoherent case with 

increasing dephasing, using quantum equations with high-order correlators. This is a work in 

progress, that one can read about in I.A. Shelykh et al (2005) and in other articles to be published 

(see e.g. I.A. Shelykh et al, 2007). 
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Chapter 2. Polariton laser based on GaN 

In this chapter we introduce the concept of polariton laser. We present a kinetic model 

of polariton relaxation which allows simulation of polariton lasers. We compare bulk and 

quantum well polariton lasers based on GaN and demonstrate that they can operate at room 

temperature. We plot the kinetic phase diagrams of GaN cavities showing the range of 

parameters at which the cavities can operate as polariton lasers. 
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2.1. Polariton laser 

The polariton laser itself is a device, a concept of which has been first proposed by 

A. Imamoglu et al (1996). This device is completely based on the properties of Bose-Einstein 

condensate, this is why it was during some time called ‘boser’. The idea is that the coherent 

emission should be provided not by stimulated transitions associated with population 

inversion, but rather by natural properties of a Bose condensate of polaritons, which should 

form in a microcavity in a thermodynamic equilibrium once the density exceeds certain value. 

The particular property of this laser is that the population inversion is not required: the system 

starts to emit coherent light once the population of the ground state exceeds 1. This is what 

raised interest in polariton lasers: an opportunity to investigate fundamental physics of Bose 

condensation at the same time as creating new device with unusual properties. 

 

 
Figure 2.1. Diagram comparing the exciton-polariton laser to the concepts of exciton BEC and 

photon laser. The u and v coefficients are excitonic and photonic fractions (Hopfield 

coefficients), correspondingly (figure from A. Imamoglu et al, 1996). 
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To operate as a polariton laser, the microcavity should be in the strong coupling 

regime. It means that the Rabi splitting (the light-matter interaction constant), which 

manifests itself as the splitting between the two polariton branches, should be larger than the 

broadening induced by all possible sources, in particular, temperature. Therefore, only 

semiconductors with large exciton oscillator strength can be considered as materials for the 

active region of a room-temperature polariton laser. Such semiconductors include GaN and 

ZnO. Their utilisation for the fabrication of RT polariton lasers has first been proposed by 

G. Malpuech et al (2002) and M. Zamfirescu et al (2002). Even in bulk GaN cavities the 

exciton oscillator strength is strong enough to observe Rabi splitting at room temperature 

(A. Kavokin and B. Gil, 1998). 

The main problem preventing the creation of a polariton laser was the bottleneck, 

which has first been given this name and theoretically described by Tassone et al (1997). The 

bottleneck is a region of the polariton dispersion, where the relaxation of polaritons slows 

down. In this region, where one passes from the excitonic effective mass of the polariton to 

the photonic one, the acoustic phonons become less efficient, because they can not exchange 

large quantities of energy and small wave vectors at the same time. This term was first 

attributed to 3D polaritons, due to the shape of the dispersion, and the same effect as 2D 

polariton as 2D polaritons with respect to acoustic phonon emission. Different ways to 

overcome this problem have been proposed. For the CdTe cavity the solution has proven to be 

positive detuning, which reduces the bottleneck by changing the polariton dispersion. For 

GaN the question of the bottleneck will be the main subject of the current chapter.  

The polariton laser does not always operate at thermal equilibrium. The population of 

polaritons can be more or less thermalized depending on the system properties and excitation 

conditions. In this chapter we consider polariton laser as a device and speak of it as such, 

whereas in chapters 4 and 5 we will pay attention to the properties of polariton condensates 

and macroscopically occupied modes in different conditions. 

 

2.2. Polaritons in GaN 

In this section we consider polaritons in bulk GaN cavities and in cavities with GaN 

quantum wells. We describe the specifics of GaN, present the most recent experimental data 

and calculate the polariton dispersions that will be used for the kinetic simulation of polariton 

relaxation. 



 38

GaN is a wide-bandgap semiconductor (Eg~3.4 eV, direct bandgap) which is mostly 

grown in hexagonal (wurtzite) structure. Only at high pressures (37-65 GPa) does it 

crystallize into the rocksalt phase. A metastable zinc-blende GaN can exist at any pressure. 

Main commercial application of GaN is for fabrication of blue light emitting diodes (LEDs), 

which has started only in the 90s. Before this material was believed to be useless for 

optoelectronics mainly because of its low quality. The blue and green LED market is almost 

completely occupied only by InGaN materials. Another field of application is vertical cavity 

surface emitting lasers (VCSELs) based on nitride materials. An optically pumped nitride 

VCSEL with InGaN quantum wells and GaN/AlGaN DBRs operating at room temperature 

has been demonstrated by T. Someya et al (1999). A VCSEL is something very close to the 

polariton laser by its structure, and the main difference is that the former operates in the weak 

coupling regime, and the latter – in the strong coupling regime. The main advantage of the 

polariton laser should be its low threshold, allowing to fabricate devices with lower power 

consumption.  

One of the main drawbacks of GaN is its crystalline quality. The main problem is 

obtaining large high-quality crystals which could be used as substrates for epitaxial growth. 

This is a direct consequence of thermodynamical properties of GaN, in particular, the melting 

conditions are so extreme, that the application of the common growth methods from 

stoichiometric liquids is technically impossible (I. Grzegoryu and S. Porowski, under ed. 

B. Gil, 2002). Since high-quality GaN substrates for homoepitaxy were not available, the 

development of GaN-optoelectronics was based on MOCVD of GaN structures on sapphire 

substrates, though highly mismatched. In these structures the dislocation densities are as high 

as 108-1010 cm-2, but efficient luminescence is nevertheless possible, because GaN and its 

alloys are more tolerant to the structural defects than the conventional III-V systems due to 

lower diffusion length of carriers and lower mobility of defects. The most typical defects for 

GaN are threading dislocations. Another typical defect is an inversion domain, which is 

characterized, as follows from its name, by the inverse order of Ga and N atomic layers. The 

inversion domains have been shown to be the origin of the 3.42 eV PL band in GaN epitaxial 

layers and nanocolumns (T.V. Shubina et al, 2003). 

The choice of the substrate is an important factor for GaN growth. While best results 

were obtained on sapphire substrate with an ELO process (epitaxial lateral overgrowth), other 

substrates can be used. SiC provides a better thermal management and a back side electrode, 

thus simplifying the process. The crystalline quality and surface preparation are, however, not 

as good as those of sapphire. In addition, the availability and price of SiC substrates are still 
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limitations. GaN substrates offer first of all a high quality homoepitaxy, but also a reasonable 

thermal conductivity and an excellent back side contact. The choice of the substrate can 

strongly affect the properties of GaN polariton laser as we will see below (e.g. figure 2.2). 

 

2.2.1. Bulk GaN 

The excitonic structure of GaN is quite complex. There are 3 excitonic bands (A,B,C) 

which differ in exciton energy, oscillator strength and effective mass (S. Bechtedt, ed. by 

B.Gil, 2002). The energy of excitonic levels depends on the structure strain, which in bulk 

samples is determined mostly by the type of the substrate and the growth procedure (see 

figure 2.2). This may even lead to the exchange of the relative positions of A and B excitonic 

levels. The same can be said about the exciton oscillator strength (emission intensity) of these 

lines. 

For a given set of excitonic levels, one can calculate the polariton dispersion using the 

standard multiple-oscillator approach. However, the result is complicated by several factors. 

The oscillator strength is different for different projections of the electric field on the c-axis of 

the structure, and the mass is also anisotropic. For B and C bands there is a mixing between 

singlet and triplet states, which creates two optically active branches for each band (P.P. 

Paskov et al, 2001). Therefore, the final exciton-polariton dispersion includes 6 branches. The 

true dispersion is usually not resolved experimentally in realistic structures, because the 

splittings between some branches are tiny relative to broadening in GaN. For the first time the 

strong coupling between excitonic resonances and light in bulk GaN at room temperature was 

observed by F. Semond et al (2005), and then on another sample by R. Butté et al (2006). It is 

the latter that we simulate theoretically in this chapter because of its better quality. 
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Fig. 2.2. Evolution of the transition energies in GaN epilayer grown with strain along the 

[0001] direction on various substrates: sapphire with GaN buffer layer, SiC, Si, ZnO. Black 

circles on the right-hand side correspond to growth on A-plane sapphire. The literature locates 

the continuum of A exciton between the two bold dashed lines (figure from A. Alemu et al, 

1998) 

 

 

An example of polariton dispersion in a bulk GaN microcavity is shown on figure 2.3. 

This figure has been calculated using the diagonalization method described above (see Eq. 

(1.2)) and the values given in P.P. Paskov et al (2004), but for a cavity (not for a bulk sample 

without resonator). To obtain the dispersions in TE and TM polarizations we had to use the 

polarization-dependent optical parameters of Bragg mirrors and the expressions for the light-

matter coupling constant, which have been extensively introduced in chapter 1. The 

parameters correspond to free-standing GaN, which means that some buffer strain relaxation 

techniques should be used in case of growth on an ordinary substrate. Fig. 2.3 shows two sets 

of dispersions corresponding to TE and TM polarizations of incident light. 
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Figure 2.3. Polariton dispersion in a bulk GaN cavity in TE (a) and TM (b) polarizations. The 

intermediate branches are usually mixed together by inhomogeneous broadening. 

 
Figure 2.4. Experimentally resolved a) dispersions of exciton-polaritons in bulk GaN 

microcavity at room temperature together with theoretical fit b) relative fractions of each of 

the uncoupled modes (figure from R. Butte et al, 2006). 

 

a) b) 
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In our polariton relaxation simulations described below we have considered a real 

sample – bulk GaN 3 / 2λ  microcavity with 35-period lattice-matched 

Al0.85In0.15N/Al0.2Ga0.8N bottom DBR and 10-period SiO2/Si3N4 top DBR (grown and studied 

by R. Butte et al, 2006). In this sample 4 polariton branches are resolved experimentally 

(Fig. 2.4) with splittings of the order of 30-40 meV. 

In GaN cavities there is always large inhomogeneous broadening due to excitonic and 

photonic disorder. In the state-of-the-art cavity described above the exciton inhomogeneous 

broadening is supposed to be around 5 meV. However, usually much larger values have been 

reported (e.g. 19 meV in I.R. Sellers et al, 2005, where the strong coupling at room 

temperature was observed for the first time), reaching sometimes 30 meV. Such broadening 

mixes all the intermediate polariton branches, which are not strongly split. This is why, to 

simplify the picture, only two relevant branches of the dispersion have been included in our 

kinetic simulations. One is the lower polariton branch with 2D density of states (always 

determined by the dimensionality of photon). The other is an excitonic branch with 3D 

density of states (see figure 2.5), which can be considered as a reservoir. 
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Figure 2.5. The simplified polariton dispersion used in the bulk cavity simulation 

 

2.2.2. GaN Quantum Wells 

The GaN quantum wells of the state of the art quality exhibit excitonic 

inhomogeneous broadening of the order of 25 meV (as reported by G. Christmann et al, 
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2006). Different excitonic levels are usually not resolved. The exact value of the broadening 

depends on many parameters. Its main origin are the fluctuations of the quantum well 

thickness. Also, due to the piezoelectric effect an electric field appears in the quantum well 

strained by the barriers. Therefore, the inhomogeneous broadening depends on the thickness 

of the barriers and on their composition, as has been shown by F. Natali et al (2005), 

figure 2.6. Since the broadening can strongly vary, it is important to investigate the threshold 

dependence on this parameter. 

 
Figure 2.6. QW emission linewidth dependence on the well width for different AlxGa1-xN 

barrier compositions x. Solid and open symbols are experimental results, curves are calculated 

using an approximated formula (figure from F. Natali et al, 2005). 
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We have performed kinetic simulations for a QW cavity with Rabi splitting and 

thickness being the same as in the case of bulk cavity. Taking the state-of-the-art GaN QW 

cavity described in G. Christmann et al (2006) we estimate that it is necessary to have 18 

QWs to provide identical parameters. For QW cavities, only one pair of polariton branches is 

usually resolved, so we take into account one lower and one upper polariton branch. The 

upper and lower polariton branches for the cavity we have simulated are shown in figure 1.1 

as an example of QW polariton dispersion. Here we took the following parameter values: 

( ) ( )0 0 3.543eVC XE E= = , 00.2em m= , 01.1hm m= , X e hm m m= + , 2 90meVΩ = , 

2.55effn = , 211nmcL = , eff
C

c

hn
m

cL
= . 

 

2.2.3. GaN cavities 

The progress with the growth of GaN cavities has been difficult. Although high-

reflectivity distributed Bragg reflectors (DBRs) with R>99% have been reported quite long 

ago (see the review by R. Butte, 2005), the cavities with these reflectors have shown small 

quality factors Q λ
λ= ∆ . Recent findings by G. Christmann et al (2006) show that this is due 

to fluctuations of quality (i.e. disorder) of the cavities, and that on a small scale a quality 

factor as high as 2800 can be measured. 

 
Figure 2.7. Spatial distribution of cavity quality factor (figure from G. Christmann et al, 

2006). 
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Since the quality factor (or the cavity lifetime) is crucially important for Bose 

condensation of polaritons, in the following we consider a small region of cavity with a high 

value of a quality factor of the order of 2000. It is in this region that the condensate of 

polaritons forms. We have also investigated the threshold dependence on the cavity quality 

factor. 

 

2.3. Kinetic simulation of polariton relaxation 

We have studied the polariton relaxation in the case of a pulsed non-resonant optical 

pumping in the semi-classical Boltzmann approximation (see chapter 1), which allows 

accounting for bosonic stimulation. Electron-hole pairs are created by means of a short optical 

pulse with high energy. Usually this energy is chosen to be inside a transparency window of 

the Bragg mirror. We assume that because of the interaction with LO phonons, the carriers 

rapidly relax to form a cloud of correlated electron-hole pairs or excitons. We therefore 

assume, as an initial polariton distribution function, a Botzmann distribution, which has an 

effective temperature of LO phonons (90 meV for GaN, first observed by R. Dingle et al, 

1971). This is clearly an overestimation of the initial effective temperature, but it is anyway 

necessary to make some approximation as a starting point. We then solve a system of 

Boltzmann equations, which reads: 

 ( ) ( )' ' '
' '

1 1 '
dn P n n W n n W n
dt → →= −Γ − + + +∑ ∑k

k k k k k k k k k k k
k k

 (2.1) 

where nk is the occupation number of a state with wave-vector k, Pk and k knΓ  terms 

describe pumping and decay of particles, and 'k kW →  are the scattering rates between the states 

with corresponding wave-vectors. These rates are calculated using the Fermi Golden rule 

considering exciton-phonon, exciton-exciton and exciton-electron interactions. 

We have assumed cylindrical symmetry of the reciprocal space for 2D branches and 

spherical symmetry for the excitonic 3D branch in the case of bulk microcavity. We take into 

account only the bright excitonic states. This means an underestimation of the reservoir 

density of states by a factor of 2 at most. Since the reservoir states are not strongly populated, 

the discrepancy of the exciton density due to this approximation should not be strong. Taking 

into account the dark states is difficult from the numeric point of view, because it would mean 

solving spin-dependent Boltzmann equations which are especially heavy. The reservoir of 

excitons is described explicitly by the 3D branch in the bulk model and by the upper part of 

the 2D branch in the QW model. The discretization of the reciprocal space requires particular 



 46

attention. The main requirement is that the distribution function should not vary too abruptly 

from one cell to another. Therefore the spacing of the cells should be small in the regions 

where the dispersion (and hence the distribution function) changes strongly. The ground state 

requires particular attention, because the condensation is linked with a discontinuity of the 

distribution function. If one accounts for the finite system size R, it gives the natural limit for 

the spacing between the state at k=0 and the next one. The inhomogeneous broadening of the 

polariton line is taken into account when scattering rates are calculated (as described in 

A. Kavokin and G. Malpuech, 2003). It essentially relaxes the energy conservation constraints 

on the scattering processes. 

This simulator of polariton relaxation is best described in the textbook of A. Kavokin 

and G. Malpuech (2003). The results obtained with its help have been published in a number 

of papers, including G. Malpuech et al (2002) for a GaN cavity; G. Malpuech, A. Kavokin, 

A. Di Carlo, and J.J. Baumberg (2002) for GaAs cavity, and in the textbook cited above for 

CdTe cavity. It is interesting to compare this approach with a slightly different approach of D. 

Porras et al (2002). In this paper the authors separate the reservoir from the lower polariton 

branch (as we do in the case of bulk GaN), and consider the reservoir as having Boltzmann 

distribution. This approximation should significantly decrease computational costs of the 

model. As compared with this paper, our model includes also exciton-electron interaction and 

inhomogeneous broadening, both being important in the case of GaN (see results below). Our 

model may be in general more precise in the pulsed excitation case, when the evolution of the 

reservoir can be complicated. 

2.3.1. Exciton-phonon interaction 

Exciton-phonon interaction in nitrides is well described in a chapter by X.B. Zhiang 

and B. Gil in “Low-dimensional nitride semiconductors” edited by B. Gil (2002). The main 

mechanisms of interaction of excitons with phonons in GaN are: Froehlich interaction (LO 

phonons), deformation potential and piezoelectric field (acoustic phonons).  

The matrix element of the interaction of excitons with acoustic phonons by means of 

the deformation potential can be written as 

 ( ) ( )
2ac

s

qM G
c Vρ

=q qh  (2.2) 

where 36150kg/mρ =  is the density and 7960m/ssc =  is the speed of sound in the 

medium (we take the speed of sound in the direction [001], because in GaN it is different in 

different directions; however, the difference would not affect strongly the results). Here G is 
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the product of deformation coefficients of the conduction and valence bands with overlap 

integrals between exciton and photon mode. In 2D one has to separate the overlap integrals in 

the plane and in the growth direction. The expression for G reads: 

 ( ) ( ) ( ) ( ) ( ), z e e z e h h z hG q q D I q I q D I q I q⊥ ⊥= +  (2.3) 

The expressions for the overlap integrals in 2D read: 

 

( ) ( ) ( )
( ) ( )( )
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 (2.4) 

For an infinite quantum well, we approximate the z-dependence of the overlap integral 

as follows: 
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−

∫
 (2.5) 

The second expression sets the limits for the effective interaction between excitons 

and phonons depending on the phonon wave vector in the growth direction. 

In 3D the overlap integral reads: 

 ( ) ( ) ( )

22

1
2

Be h
e h

m a
I

M

−
  
 = +      

q
q  (2.6) 

The piezoelectric interaction matrix element in wurtzite structures writes, according to 

E. Cohen and M.D. Sturge (1982): 

 
( ) ( )2

( ) 15
. ( )

2
13 33

[ sin sin cos
2

sin cos cos ]

TA LA z y
s TA LA

y z

qM q e e U U
c V

e U e U

θ θ θ
ρ

θ θ θ

= +

+ +

h

 (2.7) 

where . ( )s TA LAc  are the transverse and the longitudinal sound velocities, respectively. 

, ,x y zU  is the displacement of atoms in the unit cell, θ  is the angle between q  and z axis, and 

15 33 13, ,e e e  are the nonzero components of the piezoelectric tensor in wurtzite structures. The 

angular factors in the Eqn. (2.7) can be spherically averaged to give effective piezoelectric 

constants for TA and LA phonons, respectively: 
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( ) ( )

( ) ( )

22 2
33 33 31 15 31 15

22 2
33 31 15 15 33 31 15 15

1 4 82 2
7 35 105
2 16 16

35 105 35

TA

LA

e e e e e e e

e e e e e e e e e

= + + + +

= − − + − − +
 (2.8) 

Using the Fermi Golden Rule one can write the scattering rate for an exciton or an 

exciton-polariton with excitonic fraction xk to go from a state k  to a state 'k  by interaction 

with an acoustic phonon in the 2D case (here 0, 1 correspond to phonon absorption and 

emission): 

( ) ( )

( ) ( )( ) ( )

2 2 2 2 2
. .

' ' '
. .

'
2 2

' '

'2 0,1
2 2

/

'

z

z

z

TA LAac ph ac ph
k k

s s TA s LAq

k
z

k

e e e eGL qW x x N
SL c c c

dq
E k E k

π
π ρ

γ π

ω γ

→ − +

− +

 −
 = + + + ×
 
 

×
− +

∫k k k k q

k k q

k kh

h

h

m h h

 (2.9) 

and in the 3D case : 
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( ) ( )( ) ( )
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' '3
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2 2
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'2 0,1
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γ π

ω γ
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×
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q

k k

q

h

h

h

m h h

 (2.10) 

The integration in 3D case is more complicated because it is performed for a 3D 

vector q . 

The interaction with LO phonons is mainly mediated by the Froehlich mechanism 

(H. Froehlich, 1937). The matrix element of interaction reads: 

 ( ) 0

0 0

1 1
2

LO
LO

LO
s

MeM
q V q V

ω
ε ε ε ε∞

 −
= − = 

 
q h  (2.11) 

where LOωh  is the optical phonon energy (90 meV in GaN), ε∞  is the optical 

dielectric constant, sε  is the static dielectric constant, V is the normalization volume. In 2D 

one considers quantized optical phonons having /m
zq m Lπ= , where L is the QW width. The 

overlap between exciton and phonon wave-function quickly vanishes when m increases. 

Therefore it is sufficient to consider only the first confined phonon state. Considering a flat 

dispersion for LO phonons, one can write the 2D scattering rate: 
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( )

( ) ( )( ) ( )
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' ' 02
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LW x x M
S k T
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π ω
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→

 
= + ×  − − 

×
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k k
h h

h

m h h

 (2.12) 

There is no integration because we account for a single value of quantized wave vector 

in z direction, and the in-plane component of the phonon wave vector is negligible compared 

with this value. 

In 3D the integration for LO phonons is the same as for the acoustic phonons (Eq. 

(2.10)), except that the energy of the phonon does not depend on its wave vector (flat 

dispersion). 

2.3.2. Exciton-exciton interaction 

The exciton-exciton interaction has been considered in Born approximation. We have 

taken the constant of paraexciton interaction (triplet configuration), which is different in 3D 

and 2D. The 2D value is (F. Tassone and Y. Yamamoto, 1999): 

 
2

6 b B
ex

E aM
S

≈  (2.13) 

and the 3D value is (A.I. Bobrysheva et al, 1972): 

 
313

3
b B

ex
E aM

V
π

≈  (2.14) 

These approximations remain valid for wavevectors smaller than the inverse Bohr 

radius. They are based on the fact that the exchange term dominates other interaction terms. 

The binding energy and the exciton Bohr radius are, of course, different in both cases. 

The difference in these matrix elements is one of the main sources of the threshold difference 

in bulk and QW cavities, because the exciton-exciton interaction becomes dominant once the 

states become strongly occupied. 

The polariton-polariton scattering rate reads: 

 
( )

( ) ( ) ( ) ( )( ) ( )

2
' ' ' '
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2 2
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2 1

/
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×
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∑k k q k k q q k k
q

q k k

h

h

h

 (2.15) 

Passing to the thermodynamic limit in the plane, this rate can be expressed as (2D): 
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and in 3D : 
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As one can see, the a priori unknown distribution of polaritons is needed to calculate 

scattering rates. This means that in any simulation these scattering rates should be updated 

dynamically throughout the simulation time, which can be extremely time consuming. 

Polariton-polariton scattering has been shown to be extremely efficient when a 

microcavity is excited resonantly, and it leads to many interesting effects discussed in all 

further chapters (we will be considering only cavities with QWs in these chapters, therefore, 

using Eq. (2.13) as the estimate for the exciton-exciton interaction in triplet configuration). It 

also plays a fundamental role in the case of non-resonant excitation. 

2.3.3. Exciton-electron interaction 

The exciton-electron scattering rate can be written using the Fermi Golden Rule: 
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where elNq  is the electron distribution function and em  the electron mass. The 

electrons are considered to be always at thermal equilibrium, and their distribution is given by 

the Fermi-Dirac function with a chemical potential 

 
2

ln exp 1
2

e
e B

B e

nk T
k Tm

µ
π

  
= −     

h  (2.19) 

where en  is the electron concentration. elMq  is the matrix element of interaction 

between an electron and an exciton. For the 3D case, we use the matrix element in Born 

approximation which was calculated by H. Haug and S. Koch (1977). For the 2D case, a more 

rigorous calculation has been developed in A. Kavokin, G. Malpuech (2003). The matrix 



 51

element is composed by a direct contribution and an exchange contribution. In 2D case the 

integrals for both can be done analytically, which gives the following result: 

 

( ) ( )

( ) ( )
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where 2
, ,

1 '
2

D
e h e h Baξ β= −k k , 2' ' D

c e Baξ β= + − −k k k q , /e excm mβ = . 

The scattering rate in the integral representation in 2D is written as : 
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and in 3D as : 

 

( )

( ) ( ) ( ) ( )

23
' , , ' ' '3

'
22

222
'

1
4

' '
2

el el el el
k k

k

k
e

VW d M x x N N

E k E k q
m

π

γ

γ

→ + −= − ×

×
 

− + − + − + 
 

∫k k q k k q q k k
q

q

q k k

h

h

h
h

 (2.22) 

 

The exciton-electron interaction has been predicted by G. Malpuech et al (2002) to 

facilitate the relaxation of polaritons towards the ground state. The exact value of free electron 

density due to residual n-doping in GaN is unknown, this was one of the adjustable 

parameters of the model. Results shown in the following section correspond to the density of 

5x1011 cm-2. This value is quite close to the values reported experimentally. For example, in 

the chapter of T. Paskova and B. Monemar on GaN growth in “Low-dimensional nitride 

semiconductors” edited by B. Gil (2002) the authors give the free carrier concentration of (6-

7)x1016 cm-3 as one of the best parameters ever achieved for GaN, which corresponds to 

surface density of 1.2x1012 cm-2 in our case (cavity thickness is 210 nm), two times the value 

we use. This residual doping does not have a significant impact on light-matter coupling. 
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The issues of polarization are neglected in the simulation, because its main goal is to 

show the possibility to overcome the relaxation problems linked with bottleneck effect (see 

below). 

2.4. Simulation results 

We present detailed results for a bulk cavity here, because for a cavity with QWs 

(although with parameters different from ours) the calculations have been performed and 

published by G. Malpuech et al (2002). However, the kinetic phase diagrams are presented for 

the first time for both types of cavities here. In further sections, a comparison of bulk and QW 

GaN polariton laser properties (threshold dependencies on temperature etc) will be shown. 

2.4.1. Polariton relaxation in a bulk cavity 

One of the evident outcomes of a kinetic relaxation simulation is a distribution 

function. We start by presenting initial and final polaritons distribution functions below and 

above threshold. Note that since we perform simulation in a pulse excitation case, the “final” 

distribution function is not a static one, but rather a function corresponding to a moment of 

time, when the occupation of the ground state is maximal. All these results were calculated at 

300 K with cavity lifetime 0.5 ps and inhomogeneous broadening 15 meV. Figure 2.8 shows 

polariton distribution below threshold. At around 107 m-1 one can clearly see a bottleneck, 

which, however, is not strongly populated. Above threshold the distribution changes 

drastically – see figure 2.9. The occupation numbers of the ground state and the nearby states 

become very high, and the bosonic stimulation becomes dominant. There is no signature of a 

bottleneck any more. Once again, the “final” distribution is not a static one, which is why all 

the polaritons do not condense in the ground state only, but rather occupy also the nearby 

states. 
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Figure 2.8. Polariton distribution below threshold, ti=0 ps, tf=8 ps, ni=2x1013 cm-2
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Figure 2.9. Polariton distribution above threshold, ti=0 ps, tf=8 ps, ni=3.5x1013 cm-2. 
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With the polariton distribution function calculated over the time, one can find an 

experimentally measurable quantity – the angular-dependent time-integrated emission 

intensity (figure 2.10). Here one does not in general see a bottleneck below threshold, the 

angular dependence is very broad and flat. The bottleneck becomes visible only in a very 

narrow range of pumping intensity. Above threshold, the emission is concentrated in a cone of 

several degrees. This narrowing is a manifestation of the Bose-Einstein condensation. 

The angular-dependent time-integrated emission intensity can be directly compared 

with the experimental one (figure 2.11) published by S. Christopoulos et al (2007). Under the 

same experimental conditions, the agreement is very good. Flat distribution below threshold 

and narrow distribution above threshold are well reproduced. Note that flat angular 

distribution of time-integrated intensity of emission does not mean the absence of the 

bottleneck, because the intensity of emission contains also the photonic fraction of the states, 

which decreases the luminescence efficiency of the states with high wave vectors. To be 

equally emitting, these states need to be higher populated, thus the flat emission intensity is a 

manifestation of a bottleneck. 

One can also calculate the 3D image of polariton condensation in momentum space 

(figure 2.12), like the one presented in J. Kasprzak et al (2006) or earlier in K.B. Davis et al 

(1995). This image clearly demonstrates that above threshold the polaritons are strongly 

redistributed and that the most occupied state is the ground state. Such an image has been the 

first proof of Bose-Einstein condensation of cold atoms in the 90s. 
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Figure 2.10. Angular distribution of time-integrated emission below and above threshold; 

ni1=1x1013cm-2; ni2=3x1013cm-2; ni3=3.5x1013cm-2. 

 
Figure 2.11. Experimental results showing time-integrated PL intensity versus angle (figure 

from S. Christopoulos et al, 2007). 
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  Below threshold (x1000)   Above threshold 

 

Figure 2.12. 3D reciprocal space images of time-integrated emission 

 

 

Another comparison can be made with the dependence of the intensity of emission 

from the ground state on the pumping power (initial density of excitons created by the laser 

pulse). The theoretical curve is shown on figure 2.13, and the corresponding experimental one 

– on figure 2.14. This dependence shows a clear threshold with a very high jump of intensity 

(of the order of 103). Such a threshold can only be obtained with a relatively high bottleneck 

population of polaritons which collapses to the ground state once the bosonic stimulation 

becomes strong enough. The shape of this curve depends strongly on the electron density, 

which was a fitting parameter in our calculations, as mentioned before. Higher electron 

density facilitates polariton relaxation and thus weakens the intensity jump at threshold. With 

the value chosen, the agreement between theory and experiment is very good. 



 57

 
Figure 2.13. Time-integrated intensity of emission from the ground state versus particle 

density 

 

 
Figure 2.14. Power-dependent emission from a bulk GaN microcavity at T=300 K; inset 

showing spatial image of emission (from G. Baldassari H. v. H. et al, 2007) 
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2.4.2. Kinetic phase diagrams of bulk and QW cavities 

In this section we present the kinetic phase diagrams of both bulk and QW GaN 

microcavities. We compare the two in order to find a better candidate for the fabrication of the 

polariton laser. 

Figure 2.15 shows the dependence of the time-integrated intensity of emission from 

the ground state versus the initial polariton density (which is proportional to the pumping 

power) for bulk and QW cavities at 300 K (cavity lifetime 0.5 ps, inhomogeneous broadening 

15 meV). This curve has a typical non-linearity corresponding to the threshold of bosonic 

stimulation. The threshold densities 3x1012 cm-2 in QW cavity and 9x1013 cm-2 in bulk cavity 

lie well below the Mott densities 3x1013 and 5x1014 cm-2 correspondingly, which are 

determined from the exciton Bohr radius (34 Å for bulk and 20 Å for QWs). We took QW 

width of 40A. We therefore expect that they arise in the strong coupling regime. The 

difference in the thresholds is explained mostly by the exciton-exciton interaction matrix 

element, which depends on the exciton Bohr radius and binding energy. However, the 

dynamics of relaxation in bulk and QW is also different, and that plays a role as well. The 

emission intensity jump at threshold is of about 3 orders of magnitude. In a normal laser, this 

would correspond to a beta factor smaller than 10-3. Such a small beta in a normal bulk 

semiconductor laser would lead to a lasing threshold, orders of magnitude larger than the one 

we found for a bulk cavity. 

Figure 2.16 shows the polariton lasing threshold versus temperature calculated for QW 

(a) and bulk (b) cavities for pulsed excitation (black curve) and in the thermodynamic 

equilibrium (assuming an infinite particle lifetime – shown in red). It therefore represents a 

comparison between a thermodynamic and a kinetic phase diagram for the polariton phase 

transition. The kinetic curves show a large threshold at low temperature because of the slow 

relaxation kinetics in this temperature range. This threshold is almost flat because of disorder-

induced broadening (15 meV). At higher temperature, the threshold increases versus the 

temperature T because of the strong increase of the threshold in the thermodynamic 

equilibrium. At 300 K only one order of magnitude difference remains between the kinetic 

and thermodynamic thresholds. The threshold for QW cavities is found to be about 10 times 

lower than that for bulk cavities in a broad range of temperatures. The difference in thresholds 

between the QW and bulk cavities is mostly due to the difference in the matrix elements of 

exciton-exciton interaction, as mentioned above. 

The figure 2.17 shows the threshold dependence on the cavity lifetime for two 

different temperatures: 300 K and 50 K. At 50 K the difference between the kinetic curve and 
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thermodynamic one is much higher than at 300 K, and so the kinetic curve approaches this 

limit very slowly with the increase of the lifetime. Again, the threshold is lower for QW 

cavities. The dependence on lifetime is more pronounced for cavities with QWs because a 

larger part of excitons is coupled to light within such cavities, whereas in bulk the lifetime of 

most excitons is not determined by the cavity lifetime. 

We have also studied the dependence of the threshold density on the inhomogeneous 

broadening. The figure 2.18 has been calculated at 1 K and at 300 K, with 0.5 ps lifetime. One 

can see that the decrease of disorder can lead to strong decrease of the threshold density, 

especially at low temperatures. 

 

 
Figure 2.15. Threshold as a function of polariton density for bulk and QW cavities at 300 K 

 

 
Figure 2.16. Threshold as a function of temperature for a) QW and b) bulk cavities 
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Figure 2.17. Threshold as a function of cavity lifetime for a) QW and b) bulk cavities 

 

 

 
Figure 2.18. Threshold as a function of inhomogeneous broadening for a) QW and b) bulk 

cavities 
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2.5. Conclusions 

Only a few years ago the polariton laser was a dream far from achievement, but in the 

last two years polariton Bose condensation and lasing has been observed in three different 

materials by three groups. The theoretical predictions have proven to be right. 

We have shown that presently grown bulk GaN cavities can indeed operate as a 

polariton laser at room temperature. Our calculations compare very well with existing 

experimental results. Similar cavities with QWs, which present a technological challenge, 

would have a lower lasing threshold, but also a lower maximal density. We present a set of 

kinetic phase diagrams of polariton lasing and found the range of key parameters in which 

polariton lasers can operate. This analysis shows that GaN structures should operate close to 

the thermodynamic equilibrium at 300 K. 
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Chapter 3. Spin-dependent polariton-polariton scattering 

This chapter is devoted to various polarization effects which can be observed in 

polaritonic systems. Such effects are most prominent in the optical parametric oscillator 

configuration, and we will concentrate on this particular situation. However, another 

interesting case is the Kerr rotation in a diluted magnetic cavity, which will be described in 

the last section of this chapter. All these effects are conveniently described with the 

pseudospin formalism that has been introduced in chapter 1. 
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3.1. Spin-dependent Boltzmann equations for polaritons 

In this section we will use the spin-dependent Boltzmann equations for bosons 

introduced in chapter 1, adding several terms describing polariton-specific behaviour, like 

pseudospin rotation due to TE-TM splitting, self-induced Larmor precession and others. 

The general form of the kinetic equations written in terms of the occupation numbers 

and pseudospins reads: 

 , , , , ,

k rot phon pol pol

dN N dN dN dN
dt dt dt dtτ

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

−

     
= − + + +     

     

k k k k k  (3.1) 

 , , , , ,

k rot phon pol pol

d d d d
dt dt dt dtτ
⊥ ⊥ ⊥ ⊥ ⊥

−

     
= − + + +     

     
k k k k kS S S S S

 (3.2) 

where the first term describes the radiative decay of exciton polaritons, the indices rot, 

phon, pol-pol correspond to the pseudospin rotation in the effective magnetic field, the 

scattering with acoustic phonons and polariton-polariton scattering respectively. 

The interaction terms have been written in chapter 1 for bosons with spin 1±  

interacting with a reservoir by means of phonons (Eqs. (1.68)-(1.72)). In this section we will 

pay special attention to the different types of pseudospin rotation terms, which are specific for 

exciton-polaritons. 

3.1.1. TE-TM splitting 

The TE-TM splitting (already mentioned in chapter 1) is a splitting between two linear 

polarizations of a photon: TE, when the plane of oscillations of the electric field lies in the 

plane of the cavity, and TM, when the plane of oscillations of the magnetic field lies in the 

plane of the cavity. This splitting is also called longitudinal-transverse, or LT. It results from 

several factors, namely, different reflectivity and penetration length of dielectric mirrors for 

TE and TM polarizations, different angular dispersions in these polarizations, and energy 

dependence of the refractive index of the cavity. An extensive theoretical analysis of various 

cavities with QWs is given in Panzarini et al (1999). The formulae from this paper will be 

used throughout the thesis. Generally, the TE-TM splitting is proportional to the polariton 

wave vector squared. The exciton state in a QW in a cavity is also split, but this splitting is 

usually much smaller than the photon TE-TM splitting. In this chapter we use the TE-TM 

splitting as a fitting parameter. 
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3.1.2. Self-induced Larmor precession 

The self-induced Larmor precession discovered for the polariton parametric amplifiers 

(see below) by I. Shelykh et al (2004) is one of the effects caused by the anisotropy of the 

polariton-polariton interaction (i.e. dependence of the scattering amplitude on mutual 

orientation of the pseudospins of two interacting polaritons). Because of this anisotropy, an 

imbalance between σ +  and σ −  populations is responsible for the appearance of an effective 

magnetic field in the z-direction. The main idea is that a term 
( )( )( )1 (2)
, ',0 , ',0 ' '

'
2 z V V N N↑ ↓− −∑ k k k k k k

k
e  can be rewritten as an effect of an action of a magnetic 

field effΩ  on the polariton in-plane pseudospin S⊥ . 

3.1.3. Rotation terms 

The rotation terms taking into account the TE-TM (LT) splitting and effective 

magnetic field read, as in chapter 1: 

 ,, LTz
rot rot

dN dN
dt dt

↑ ↓
⊥

     = − = ⋅ ×         
k k

kke S Ω  (3.3) 

 
( ) _

,
,, int, 2

LT

rot

N Nd
dt
⊥ ↑ ↓

⊥

− 
 = × +   

 
k k k

kk k

S
S Ω Ω  (3.4) 

where ze  is a unitary vector in the direction of the structure growth axis, ,LT kΩ  is an 

effective in- plane magnetic field produced by TE- TM splitting,  
_

,LT kΩ  is obtained from 

,LT kΩ  by the rotation by 90° about the structure growth axis, the effective magnetic field 

int,kΩ  produced by the imbalance of the σ +  and σ −  polaritons is given by the following 

expression deduced from the interaction Hamiltonian: 

 ( )( )(1) (2)
int, ,0 ,02 z V V N N↑ ↓= − −∑k k,k' k,k' k' k'

k'
Ω eh  (3.5) 

This is exactly the self-induced Larmor precession described above. 

3.1.4. Polarization inversion during polariton-polariton scattering 

One can show analytically that in the spontaneous scattering regime the pseudospin 

dynamics during polariton-polariton scattering acts reduces to 

 ( ) ( )( )( )1 2 *0 0
12 1 1

4 Red V V N N
dt

τ⊥
⊥↑ ↓= +

S S
h

 (3.6) 
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Here the indices 0 and 1 mark two different states (final and initial, respectively). The 

matrix elements ( )1V  and ( )2V  have opposite signs since two polaritons with parallel spins 

always repel, while two polaritons with opposite spins attract each other and can even form a 

bound state (bipolariton). As a result, the in-plane components of the pseudospin of polaritons 

scattered to the signal state are antiparallel to those of the pump, resulting in the signal 

polarization inversion (rotation by 90 degrees). This result holds both below and above 

threshold. The effect was explained for the first time by K.V. Kavokin et al (2005). 

3.1.5. Polariton parametric amplifier 

A specific experimental configuration, where the LPB is resonantly excited at a magic 

angle, is called a polariton (or optical) parametric amplifier. This magic angle is characterized 

by the fact that a pair of polaritons created by the pump in the pump state, which corresponds 

to this angle, can scatter into the signal and idler states while conserving the energy and 

momentum at the same time: 

 ( ) ( ) ( )
2

2 0
p i

LPB p LPB LPB i

k k

E k E E k

=

= +
 (3.7) 

These conditions can be satisfied due to the non-parabolicity of the LPB in the strong 

coupling regime. The magic angle determined by (3.7) is usually close to the inflection point 

of the LPB dispersion. Due to the effect of bosonic stimulation, scattering intensity into the 

signal state can be greatly amplified by sending a weak probe pulse into this state. This is 

what is called parametric amplification. A schematic diagram of a polariton parametric 

oscillator is presented in figure 3.1. 

However, in the experiments described in this chapter the threshold of parametric 

amplification is passed not by sending a probe to the signal state, but by increasing the 

intensity of the pump. 

Different theoretical pictures of the polariton parametric oscillator have been drawn in 

literature. A micromodel describing polariton parametric oscillator and amplifier was 

proposed by C. Ciuti et al (2000) and in C. Ciuti et al (2001). In their model several important 

simplifying approximations have been used. The main one was to consider the pumped 

polariton state as a classical field which is valid only for the cw pumping below the 

stimulation threshold. An extended description of this model and its results can be found in a 

chapter by C. Ciuti, P. Schwendimann and A. Quattropani of a book edited by J. Baumberg, 

L. Viña, and S. Quin (2003). Other works (e.g. N.A. Gippius et al, 2004) are based on the 
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Gross-Pitaevskii equation. This allows taking into account all states of reciprocal space, but 

the spontaneous scattering, decoherence or relaxation associated with phonons are completely 

neglected. All these works neglect the spin degree of freedom, and so these models are not 

able to describe the polarisation properties of the emitted light. 

 

 

en
er

gy
 

idler

signal
pump

 

 

lower polariton

upper 
polariton

bare exciton

bare cavity

wavevector
 

Figure 3.1. Polariton dispersion branches and the three states that form a polariton parametric 

oscillator 

 

 

The model that we present here has the advantage of taking into account the 

polarization specifics of the polariton parametric amplifier and various decoherence 

processes. It lacks, however, the dispersion renormalization effects, which can affect the 

polarization as well. This question will be addressed in chapter 4, and it is also a subject of the 

work in progress. 

3.2. Stationary OPO configuration 

In this section we consider a cw pumped GaAs microcavity in OPO configuration. 

Extended experimental signal polarization studies have been performed by Krizhanovksii et al 

(2006), and here we present complete theoretical simulation of this data (which is also 

published in the paper mentioned above). It is the same GaAs cavity with 6 InGaAs QWs on 

which the bosonic nature of polaritons has been clearly demonstrated for the first time by a 

pump-probe experiment in the OPO configuration by P.G. Savvidis et al (2000). The structure 

exhibits Rabi splitting 6meVΩ = . Experimental measurements were carried out at 2K by 



 68

exciting with a cw laser in resonance with renormalized LPB at an angle of 12 degrees, close 

to the point of inflection of the LPB (Fig. 3.2(a), inset). 

Figure 3.2 presents main experimental results. As one can immediately see, the 

circular polarization degree of the signal cρ  depends on the pump power for both linear and 

circular polarization of the pump, with the maximum of polarization corresponding to the 

onset of stimulated scattering. For linear pumping, cρ  depends as well on the angle of 

rotation of the polarization plane of the pump (0 degrees correspond to TE polarization). 

Detailed experimental maps of the signal polarization for different angles of rotation of the 

pump above the stimulation threshold are given in Fig. 3.3. Data were obtained for 45excφ = °  

(Fig. 3.3(a)) and 33− °  (Fig. 3.3(b)), respectively, close to the angles for which 0cρ = , and at 

0excφ = °  (TE, Fig. 3.3(d)) and 90excφ = °  (TM, Fig. 3.3(c)), for which the absolute value of 

cρ  is maximal. It is found that when 45excφ = °  and 33− ° , the linear polarization of the signal 

is rotated by 90 5± °  relative to the pump. For TE and TM excitation, 40% 60%cρ = −  and 

the linear polarization is rotated by 60 (120) degrees anticlockwise to the pump. 

All this interesting and rich behavior can be described by the spin-dependent 

Boltzmann equations developed for bosons in chapter 1 and written for polaritons in 

section 3.1. 
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Figure 3.2. Experimental results with signal polarization degree for a stationary OPO 

configuration (Krizhanovskii et al, 2006). 

 
Figure 3.3. Polarization map of the signal for different angles of rotation of the polarization 

plane of the pump (Krizhanovskii et al, 2006). 
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Figure 3.4. Theoretical simulation of the circular polarization degree and rotation of 

polarization plane of the signal versus pumping power and pump polarization angle: a) signal 

polarization degree and intensity versus pumping power; b) polarization rotation angle; c) 

signal circular polarization degree versus the pump polarization angle. 

 

We consider three factors which can change the polariton pseudospin: 1) TE-TM 

splitting, which acts as an effective magnetic field in the plane of the structure; 2) self-

induced Larmor precession (effective magnetic field in the growth direction); 3) polariton-

polariton scattering (polarization inversion). 

Figure 3.4 presents the results of numerical simulations for a linearly polarized pump 

at an angle with respect to TE. The parameters have been taken as follows: 
( )1 26 /b BV xE a S= where 100Ba A= &  is the two dimensional exciton Bohr radius, 8meVbE =  is 

the exciton binding energy, x  is the exciton fraction, and S  is the laser spot area (50µm  

diameter), ( ) ( )2 10.01V V= − , 4psτ = . To fit the data we assumed 0.05meVin plane−Ω =  arises 

from the splitting between polariton states having polarization axes at +48 and -42 degrees 
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with respect to TE. The solid line in Fig. 3.4(a) shows the power dependence of the signal 

intensity, cρ  and lρ  versus pump power for 0excφ = . The three curves show a clear threshold 

and have very similar forms to those observed experimentally in Fig. 3.2(b). cρ  and lρ  decay 

far above threshold, also as observed experimentally. In this regime the rotation of the 

pseudospin about the z axis becomes faster than the polariton lifetime, resulting in a decay of 

the time-averaged polarization. 

The calculated variation of cρ  versus excφ  just above threshold in Fig. 3.4(b) shows 

that cρ  is 0 when the pump polarization is parallel to one of the polarization eigenstates 

42excφ = − °  or 48excφ = ° . For all other excφ  the in-plane effective field rotates the pseudospin 

of the polaritons, which gains some circular projection, in good agreement with Fig. 3.2(a). 

The circular polarization changes sign for positive or negative angles with respect to -42 and 

+48 degrees, and achieves a maximum value when the in-plane magnetic field and the 

pseudospin are perpendicular to one another (45 degree tilt with respect to -42 and +48 

degrees). The appearance of a nonzero circular component in the pump state gives rise to an 

effective magnetic field in the z direction. This field rotates the in-plane polarization in a 

direction which depends on the sign of cρ  (the self-induced Larmor precession). The 

polaritons are then scattered from the pump to the signal. The in-plane polarization is in 

addition rotated by 90 degrees during this scattering event by the polariton-polariton 

scattering term. 

The dependence of the angle rotφ  between the planes of polarization of the signal and 

the pump on excφ , is shown in Fig. 3.4(b). rotφ  is found to be exactly 90° when cρ  is 0 and less 

(larger) than 90 when cρ  is negative (positive) because of the self-induced Larmor 

precession. It is seen that the simulations (dashes), with the direction of the in-plane effective 

field different from that derived by the TE-TM directions, are in excellent agreement with 

experiment (circles). The most likely source of the in-plane field is the asymmetry of the QW 

in the z-direction (for the description of its effect see G. Malpuech et al, 2006). 
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3.3. Dynamic OPO study 

In this section we present experimental and theoretical results on the polarization 

dynamics of a GaAs microcavity with a single 8 nm Ga0.95In0.05As QW in the pulsed 

excitation case. The experiment is described in P. Renucci et al (2005) and together with 

theory in D.D. Solnyshkov et al (2007). 

The experimental data presented below have been collected on two samples. The 

sample 1 consists of two Bragg mirrors made of 22(26) AlAs/Al0.1Ga0.9 As layers with a single 8 

nm wide Ga0.95 In0.05 As QW embedded in the middle. The vacuum Rabi splitting is 3.5 meV and 

the photon lifetime in the cavity is cτ  ~ 8 ps. The sample 2 is similar to the previous one. 

It consists of two Bragg mirrors made of 17(27) AlAs/Al0.1Ga0.9 As layers; a single 8 nm wide 

Ga0.95 In0.05 As quantum well (QW) is embedded in the middle. The vacuum Rabi splitting is 

3.7 meV, and the photon lifetime in the cavity is cτ  ~ 3 ps. In both  samples, the cavity is 

wedged, so that the detuning δ between the cavity and exciton modes could be varied by 

moving the excitation spot on the sample surface. This has allowed to study the detuning 

dependence of the polariton spin relaxation. 

The excitation beam, resonant with the LPB, is incident at an angle of 8° (±1°), so that 

it generates LPB polaritons in a state with initial in-plane wave vector kp ≈ 1×104 cm-1. The 

cavity photon lifetime is deduced from time resolved emission measurements performed at 

negative cavity detuning (δ = - 9 meV for sample 1 and δ = - 3 meV for sample 2). In the 

linear excitation case the polarization of the incident light was parallel to the crystallographic 

axis [110]. 

3.3.1. The model 

Figure 3.5 shows a schematic diagram of the model of the polariton parametric 

amplifier that we consider in this section. The LPB dispersion curve has been calculated based 

on the parameters of the samples used in experiments. Our approach is to treat the polariton 

parametric amplifier as a spinor three-level system (pump, signal and idler) connected with a 

dissipative reservoir which consists mainly of bare exciton states, very close in energy to the 

pump and idler states in the zero detuning case. This coupling provides an additional 

mechanism of decay for the polariton population and pseudo-spin. Pump, signal and idler are 

coupled by the polariton- polariton parametric scattering, while the reservoir is taken into 

account by introduction of an effective spin decay time of the three main states. Polariton-
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polariton scattering is treated within the framework of the Born-Markov approximation (for 

the description of the spinor parametric amplifier beyond markovian approximation see I.A. 

Shelykh et al; 2005; I.A. Shelykh et al, 2007). 
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Figure 3.5. Schematic diagram of parametric amplifier with reservoir. The dashed line is the 

lower polariton dispersion. The black circles on the line are the signal pump and idler state 

respectively. The solid line arrows are sketching the parametric polariton scattering process. 

The dotted arrows show the phonon induced transfer between the idler state, the pump state 

and the excitonic reservoir. 

 

 

To make the simulations feasible one can either neglect polariton-polariton collisions 

and consider the scattering with acoustic phonons and free electrons as the only mechanism of 

the energy relaxation in the system (see e.g. K.V. Kavokin et al, 2004), or retain all the 

scattering mechanisms but restrict the number of states in the reciprocal space to some 

reasonable minimum. The latter approach is standard in description of the polariton 

parametric amplifier. Usually only three states are taken into account: the signal, the pump 

and the idler (this restriction has been first performed by C.Ciuti et al, 2000). This is a 

reasonable approximation in the cavities with strong negative detuning where these three 

Reservoir 
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states have extremely small wave numbers and thus lie at the photonic part of the LPB, so that 

their scattering with acoustic phonons is prohibited by energy and momentum conservation. 

On the other hand, for zero and positive detuning the pump and idler states are efficiently 

coupled with a thermal reservoir of polaritons in the excitonic part of the LPB. As we show, 

this coupling should be taken into account in order to achieve a satisfactory description of the 

influence of the detuning on the spin dynamics of parametric amplifiers. 

We solve numerically the following system of kinetic equations that we write 

explicitly for a polariton parametric amplifier coupled with a reservoir: 
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where the indices s,p, and i correspond to the signal, pump, and idler respectively. The 

index po corresponds to the parametric process (where the summation over q and k’ should be 

omitted in this case). , ,s p iτ  are the radiative lifetimes of signal, pump and idler given by 
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where 0τ  is the photon life time in the cavity and 
2

,,; ips kkkLC  are the photon fractions 

of signal, pump and idler respectively. The r
ips ,,τ  are the decay times associated with 

irreversible escape of particles to the reservoir (these are much longer than the radiative 

lifetimes), and , , ; , ,
r
s p i x y zτ  are the spin relaxation times induced by the coupling to the reservoir 

of the x,y,z components of the pseudospin of signal, pump and idler respectively. The 

coupling of a state with the reservoir depends on its exciton fraction, on temperature (via the 

occupation of acoustic phonons modes) and on the energy difference between the state and 

the reservoir. These decay times are therefore given by 
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where 
2

,,; ips kkkLX  are the exciton fractions in signal pump and idler, , , ,r s p iE  are the 

energies of the reservoir, signal, pump, and idler, , ,
r
x y zτ  are the fitting parameters related to the 

exciton pseudospin decay time in the reservoir. Note that the signal is always effectively 

separated from the reservoir because of the large energy difference. 

As explained above and illustrated by Fig. 3.5, we have chosen a model accounting for 

three discrete polariton states, namely the signal state, the pump state, and the idler state. The 

excitonic reservoir is located in the vicinity of the bare exciton energy and is characterized by 

spin relaxation times , ,
r
x y zτ . As the wave vectors corresponding to signal, pump and idler 

states are relatively small, the TE-TM-splitting of polariton modes is also small there, ranging 

from 0 at signal to a few µ eV at the idler state, which yields the pseudospin rotation period 

of about 300 ps in the sample we consider. The field intΩ  describes the effects of the self-

induced Larmor precession and depends on the polariton concentration and on the circular 

polarization degree of pump. In the reservoir, the TE-TM splitting can be accounted for by 

introduction of an effective magnetic field randomly oriented in the plane of the structure. In 

this case, the in-plane linear polarization should decay twice slower than circular one in the 

reservoir. In the motional narrowing regime, characterized by the fact that the polariton 

linewidth is narrower than the linewidth of a photon or an exciton alone, we arrive to 
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where 
1/ 22

,LT rΩh   is an average value of the LT-splitting in the reservoir, scattτ  is a 

characteristic scattering time within the reservoir, circ
rsτ  is the decay time of the circular 

polarization and lin
rsτ  is that the decay time of linear polarization. As we shall see in the next 

section, this picture does not fit well with experimental findings which show a relatively fast 

relaxation of the circular polarization in the reservoir, and almost no relaxation of the linear 

polarization.  This suggests that in fact the relaxation times in two polarizations differ much 

stronger than what is predicted by Eq. (3.19). As clearly follows from the experimental data, 

the polarization parallel to the crystallographic axes [110] and [1-10] is quite well conserved 

in the reservoir. The most likely explanation of it would be that the reservoir is mainly 

composed of localized exciton states which are known to be strongly polarized along the main 

crystallographic axes (S.V. Goupalov, E.L. Ivchenko, A.V. Kavokin, 1998). We shall use this 

hypothesis in the further analysis. Choosing the X-axis in pseudo-spin space parallel to the  

[110] and [1-10], we shall assume: 11 200r r r
y z xps psτ τ τ= = << = . These two times are the 

only adjustable parameters of the model. 

To calculate the matrix element of exciton-exciton interaction, we have used once 

again the formula 
2

(1)
, ', 6ex b

k k q b
aV xE
S

=  where bE  is the exciton binding energy, ba  the 2D Bohr 

radius and S the laser spot size. 

3.3.2. Circular pumping, the effect of detuning 

Figure 3.6 shows the experimental data and theoretical simulation for sample 1 at 

different detunings in the spontaneous scattering regime. At negative detuning the system 

exhibits a polarization lifetime of about 300 ps as well as fast decay of the emission (30 ps). 

This fast decay shows that polaritons are not scattered out of the light cone (polariton trap 

zone) before to escape from the cavity by tunnelling across the mirrors. Three states 

composing the parametric amplifier have energies deeply inside the polariton trap and are 

therefore efficiently protected from the influence of the reservoir. The polarisation decay rate 

for these states approaches the intrinsic one, given by the value of the TE-TM splitting in the 

pump state. 
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Figure 3.6. Circular polarization degree of the luminescence for different detuning (circular 

pumping, below threshold): a) experimental and b) theoretical results for sample 1 with τC ≈ 8 

ps. 

 

At zero and positive detuning the situation changes drastically. In this cavity and at 

these detunings, the energy spacing between the pump and the reservoir becomes smaller than 

1.5 meV which is small enough to allow for their efficient coupling by phonon or free carrier 

scattering. As a result, a much longer decay time of the emission is observed. After a short 

initial polarization plateau (t<10 ps) which we attribute to surface Rayleigh scattering, the 

circular polarization drops with a decay time of about 100 ps. At short time delay, the ground 

state emission is governed by parametric luminescence mechanism. Later (t>30-50 ps), the 

particles remaining in the system lose their polarization due to interaction with the reservoir. 

This shows that in the first 10 ps, the ground state emission is governed by the parametric 

luminescence mechanism. After that, most of the particles remaining in the system have lost 

their polarization by interacting with the reservoir. 
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3.3.3. Linear pumping, polarization inversion 

Figure 3.7 shows the experimental data and corresponding theoretical simulation for 

the sample 1 under linear pumping, below and above the stimulation threshold (δ=0). Below 

threshold, the polarisation of emission is almost constant (-8%) and is opposite to the pump 

polarisation. Above threshold, the polarisation degree achieves a large negative value of -65% 

and then, in the long time limit, decreases to the spontaneous scattering value of -8%. These 

data are very well reproduced theoretically (see figure 3.7(b)). This peculiar non-monotonic 

behaviour of the linear polarization degree of emission is due to the anisotropy of the 

polariton-polariton interaction (see section 3.1.4). In the spontaneous regime, Eq. (3.10) 

which describes the motion of the signal pseudospin can be simplified and reduced to: 

 ( ), ,(12)
0, , ,p p

s
k k pp p

s

d
W N N

dt τ
⊥ ⊥

⊥↑ ↓= + − sS S
S  (3.20) 

where pk  is the in-plane wave vector of the pump. An analytical formula can be 

written for the linear polarisation degree of the signal in this case: 
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Note that the similar formula has been first proposed by K.V. Kavokin et al (2005) 

from qualitative arguments. In the isotropic case ( (2) (1)
0, , 0, ,2

p p p pk k k kV V= ) the linear polarisation 

degree of the signal should be +100 %. If ( )2V  is neglected, the memory of the initial linear 

polarisation is lost and lρ  is equal to 0 as one can also see in G. Dasbach et al (2005). For our 

microcavity sample, the relative values of scattering constants have been estimated as in P. 

Renucci et al (2005): 

 (2) (1)
0, , 0, ,2 0.08

p p p pk k k kV V= −  (3.22) 

)1(
,,0 pp kkV  and )2(

,,0 pp kkV  have opposite signs which reflects the different mechanisms 

of interaction between polaritons having the parallel spins (triplet configuration) and opposite 

spins (singlet configuration). In triplet configuration the interaction is repulsive because of the 

Pauli principle. On the other hand, the singlet configuration can lead to formation of an 

excitonic molecule (bi-exciton or bi-polariton), thus interaction between polaritons having 

opposite spins is likely to be attractive. Our measurements and analysis show that polariton-

polariton scattering is a very efficient channel of relaxation of the linear polarisation in 
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microcavities. Actually, in the spontaneous regime 92% of initial linear polarisation may be 

lost in a single polariton-polariton scattering event. On the other hand, in the stimulated 

regime, 8% of remaining linear polarization constitute a seed which allows to build up a huge 

population of polarized polaritons and achieve the negative polarisation degree of about 65 %  

 
Figure 3.7. Linear polarization degree of the luminescence of the sample 1 for different 

pumping intensities (linear pumping): a) experiment, b) theory. The dashed line corresponds 

to 0.25 W/cm2 (below threshold) and solid line corresponds to 2 W/cm2 (above threshold). 

(Note that the initial polarization positive peak in (a) is due to diffusion of the excitation pulse 

on the sample surface). 
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3.3.4. Elliptic pumping, self-induced Larmor precession 

The self-induced Larmor precession discovered for PPO by I. Shelykh et al (2004) and 

described in section 3.1 is one of the effects caused by the anisotropy of the polariton-

polariton interaction (i.e. dependence of the scattering amplitude on mutual orientation of the 

pseudospins of two interacting polaritons). Because of this anisotropy, an imbalance between 

+σ and −σ populations is responsible for the appearance of an effective magnetic field in the 

Z-direction (Eq. (3.6)) which is able to rotate the linear polarisation plane. Figure 3.8 shows 

time dependences of circular and linear polarization degrees for elliptic pumping at different 

pumping intensities (below and above threshold) measured on the sample 1. Below the 

threshold, the circular polarisation degree decays similarly to the circular excitation case. On 

the other hand, the linear polarization shows a single oscillation which starts from negative 

values of the polarization degree. We interpret this oscillation as a manifestation of the self-

induced Larmor precession effect. Above the stimulation threshold, the circular polarisation 

degree of the emission is again very similar to the circular excitation case showing a long 

plateau followed by a fast decay. The oscillation of the linear polarisation degree is still 

visible, but remarkably it has a longer period than in the spontaneous case both in experiment 

and theory. This is easy to understand, as the effective magnetic field acting on the polariton 

pseudospin is density dependent and its intensity decreases as time goes. Thus the oscillation 

period should rapidly increase versus time in a pulsed experiment. In the stimulated regime, 

the circular polarisation degree is kept for a long time, but the intensity of emission decays 

much faster. Thus the overall effective field which rotates the in-plane polarisation is 

decaying faster in the stimulated regime than in the spontaneous regime. That is why the 

period of self-induced Larmor precession is much longer if the stimulated scattering 

dominates. 
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Figure 3.8. Circular and linear polarization degree of the signal emission for elliptically 

polarized pumping: experiment (a, b) and theory (c, d). Dashed line corresponds to 0.5 W/cm2 

(below threshold) and solid line corresponds to 3 W/cm2 (above threshold). Note that the 

initial polarization peak in (a,b) is due to diffusion of the excitation pulse on the sample 

surface. 

3.4. Spin dynamics in diluted magnetic microcavities 

In this section we consider a microcavity not in the OPO configuration, but rather in a 

special experiment with a diluted magnetic quantum well in magnetic fields, which is 

however well described by the pseudospin formalism for polaritons. The experiment and the 

theory describing it are published in A. Brunetti et al (2006). To describe properly the spin 

relaxation we had to solve the equation for the density matrix instead of using Markovian 

approximation described in chapter 1 and earlier in chapter 3. 

3.4.1. Time-resolved Kerr rotation 

The Kerr rotation is very similar to Faraday rotation – rotation of the plane of 

polarization of light propagating in magnetic media or in a media with induced magnetization, 

the difference being that the Kerr rotation is measured in the reflection geometry. Time-

resolved Kerr rotation (TRKR) is a pump-probe technique appropriate for probing the spin 
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dynamics of carriers and excitons in semiconductors. The angle of Kerr rotation, like the 

angle of Faraday rotation, is directly proportional to the projection of the spin polarization 

vector on the probe beam propagation direction (see e.g. J.J. Baumberg et al, 1994). By 

changing the delay between pump and probe pulses one monitors the spin dynamics of 

excitons with a subpicosecond resolution. The method has been proven to be extremely 

successful in measuring both coherent spin evolution and spin dephasing time for electrons, 

holes and excitons in semiconductors. In diluted magnetic semiconductors (DMS), TRKR not 

only provides the information on spin dynamics but also gives direct access to the precession 

of magnetic ion spins mediated by their interaction with free carriers (see e.g. D.Scalbert et al, 

2004). 

In the experiment described, the spin polarization is introduced into a system of cavity 

polaritons by the circularly polarized pump pulse and it is probed measuring rotation of the 

polarization plane of the linearly polarized probe pulse reflected from the microcavity. In 

contrast with conventional QWs, the magnetic field induced splittings in DMS QWs are very 

large. In Voigt configuration, when the magnetic field is in the QW plane they are mainly 

given by the exchange interaction between electrons and magnetic ions. For example for 

Cd0.95Mn0.05Te QW the spin splitting at saturation is about 15 meV. This is more than enough 

to mix so-called dark and bright exciton states having the absolute value of total angular 

momentum projection to the structure axis 2zJ = ±  and 1zJ = ± , respectively. 

That is why, the spectrum of exciton-polaritons can no more be described in the 

framework of two coupled oscillator model (see section 2.1), but requires taking into account 

three coupled oscillators, namely two exciton states separated by Zeeman splitting and the 

cavity mode. In the TRKR the splittings of these three states determine the frequencies of the 

oscillations due to precession of the spin polarization coherently excited by the pump pulse 

around the in-plane magnetic field. Obviously, the giant Zeeman splitting provides a powerful 

tool to control the coupling between excitons and photons, since excitonic resonances can be 

tuned in a broad energy band by applying a magnetic field. 

Only two of three frequencies given by the simple three-oscillator model could be 

observed experimentally in the TRKR spectra of the sample. This is partly due to the strong 

broadening of the polariton modes, which rapidly destroys correlations between some 

eigenstates making difficult detection of the corresponding eigenfrequencies in the time 

domain. Since the finite lifetime of the polariton modes and processes of inelastic electron and 

hole spin relaxation cannot be self-consistently accounted for within the analytical three state 
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model we apply the polariton spin density matrix formalism (described below) to fit the 

experimental data. 

The sample under study consists of a Cd0.95Mn0.05Te QW of 8 nm width embedded in 

the middle of a / 2λ  Cd0.4Mg0.6Te cavity. The asymmetric Bragg mirrors were grown to 

maximize the magneto-optical Kerr rotation in the presence of small magnetic fields, while 

the high energy gap of the compounds ensures the absence of Kerr effect in the mirrors at the 

QW exciton resonance (D. Pereda Cubian et al, 2003). The reflectivity of the mirrors was 

estimated to be 76% for the top and 98% for the back mirror. The cavity is grown on a wedge 

(12 meV/mm), which allows to tune the cavity mode by simple shift of the laser spot. Here we 

only discuss the data obtained at the point corresponding to negative detuning between photon 

and exciton modes of -8 meV at zero field (i.e. the bare photon mode is 8 meV lower than the 

bare exciton mode). 

3.4.2. The model 

We are going to describe a pump-probe experiment. We will assume that the probe is 

affected by the pump, but not vice versa. The pump influences the probe via the energy shift 

of exciton levels due to interactions. The Hamiltonian expressions for the pump and the probe 

pulses are essentially similar, with the exception of the interaction term (see below). 

The Hamiltonian for the pump pulse writes: 

 0 RH H H= +  (3.23) 

The first term describes the coupling of excitons and photons inside the cavity and the 

second term describes coupling of the cavity photons with the continuum of external photonic 

modes and coupling of the excitons with the bath of acoustic phonons. 

For the probe pulse the Hamiltonian includes an extra term which describes interaction 

with the pump: 

 0 intRH H H H= + +  (3.24) 

The exciton-photon interaction term reads 
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where the indices ph, ex and d correspond to photons, bright excitons and dark 

excitons correspondingly. The first two lines in Eq. (3.25) describe the free particles, the third 

line contains the exciton-photon coupling term, the 4th corresponds to the magnetic field 

induced mixing of the bright and dark states. The mixing constants are given by 

 ( ), , , ,e h e h B eff x eff yg B iBα = µ +  (3.26) 

where ,e hg  is an electron/hole g-factor, the effB  is a sum of the external magnetic field 

and the exchange magnetic field exchB  created by the Mn ions. We shall neglect the field-

induced hh-lh mixing and thus we shall suppose 0hg = . The exchange field is given by the 

following expression: 

 0 e eff x
exch

e B

N x S
B

g
α

µ
=  (3.27) 

The term RH  describes interactions of the cavity mode with the external continuum of 

photons and coupling of excitons with the acoustic phonon bath. It reads: 
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 (3.28) 

where ,cω↑ ↓  are annihilation operators of the right and left circular polarized external 

photons, bω  is annihilation operator of the phonon. The first two terms stand for the 

transitions between cavity mode and external photons and between excitons and acoustic 

phonons. They are characterized by the coupling constants Cω  and Bω . The last two terms 

describe the phonon-assisted spin flips of electrons and holes, leading to their spin relaxation. 

Generally, RH  corresponds to the coupling of the quantum system with classical 

reservoir and can be treated within the framework of the Born-Markov approximation, 

familiar in the quantum optics. It results in the semiclassical terms describing the finite 

lifetimes of the cavity mode and the excitons, the external pumping and the processes of 

inelastic spin relaxation. 

The exciton-exciton interactions are essential for the photoinduced Kerr rotation and 

the corresponding term of the Hamiltonian reads: 
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where the matrix elements exV , dV , ex dV −  correspond to the interactions between bright 

excitons, dark excitons and mutual bright exciton – dark exciton interactions, respectively. 

The indices (1) and (2) mark triplet and singlet spin configurations, respectively. For the 

description of Kerr rotation it is sufficient to retain only the term corresponding to the 

interactions of bright excitons treated in the mean-field approximation. Neglecting all other 

terms the exciton-exciton interaction Hamiltonian reads: 

 ( ) ( )( ) ( ) ( )( )1 2 1 2
int ex ex ex ex ex ex ex exH V N V N a a V N V N a a+ +

↑ ↓ ↑ ↑ ↓ ↑ ↓ ↓= + + +  (3.30) 

where exN ↑  and exN ↓  are the occupation numbers of spin-up and spin-down exciton 

states. In microcavities, interactions between excitons with parallel spin projections on the 

structure growth axis is much stronger than for the excitons with antiparallel spin projections, 
( ) ( )1 2V V . In the case when the excitonic system has nonzero circular polarization this 

results in the appearance of the concentration dependent magnetic field directed along z axis 

which induces the Kerr rotation of the linear components of the polarization (self-induced 

Larmor precession, discussed in section 3.1.2). The matrix element ( )1V  is given by the usual 

expression ( )1 26 /b BV E a S= , where 25 meVbE = , 34Ba A= & , ( )2150µmS = . 

Polariton dynamics in DMS microcavities can be modelled by the Liouville-von 

Neumann equation for the density matrix ρ  with additional Lindblad terms describing the 

finite lifetime of the polariton modes and inelastic processes of the spin relaxation of electrons 

and holes forming the exciton. This equation should be written and solved separately for the 

pump and the probe pulses. The equation for the probe pulse includes the interaction with the 

pump pulse, and so depends on the pump density matrix. In the Born approximation the 

Liouville-von Neumann equations read: 

 0,pump
pump pump pump

d i H P
dt
ρ

ρ ρ = + Γ + h
 (3.31) 
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 ( )0 int,probe
probe pump probe probe

d i H H P
dt
ρ

ρ ρ ρ = + + Γ + h
 (3.32) 

where the first term describes the evolution of the system in the external in-plane 

magnetic field, the second term describes the damping processes such as the radiative decay 

and spin relaxation of electrons and holes, the last terms describe pump and probe action. In 

the basis of the four exciton and two photon states the diagonal components of the density 

matrix give the occupation numbers of these states. 

The Hamiltonian 0 intH H+  in this basis is given by a matrix: 
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The action of the superoperator Γ  can be represented in the Linblad form. It is defined 

in such a way that, once applied to the density matrix, it yields the following matrix elements: 
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where ,e hτ τ⊥ ⊥  are characteristic relaxation times of the z-projection of the spins of the 

electrons and holes,  the in-plane spin relaxation of the electrons and holes being neglected as 

it has a negligible impact on the magnetization in z-direction and TRKR signal in our system. 

We assumed the infinite non-radiative lifetime of the excitonic states, as in reality it is much 

longer than both the lifetime of the photon mode and spin relaxation times. 

Creation of polaritons by the pump and probe pulses is described by the terms 

pumpP and probeP  in Eqs. (3.31) and (3.32). For the circularly polarized pump pulse all the 

matrix elements of pumpP  are zero, except one: 

 ( ) ( ) ( )2 2 2 2
,33 cos exp /pump ppP t A t tω τ= −  (3.36) 

These terms are introduced phenomenologically in order to obtain the usual rate 

equations for the occupation numbers. For the linearly polarized probe pulse term four matrix 

elements are non-zero: 
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Here τ  is the duration of the light pulse, ω  is the central frequency, and ppA , prA  are 

the amplitudes of the pump and probe electric fields. The linear polarization of the emitted 

signal as a function of time is governed by the following correlator: 

 *
34( , ) ( , )ph ph phS t t a a t tρ+

↓ ↑∆ = = ∆  (3.38) 

The time- integrated linear polarization of the signal is: 

 *
34

0

( ) ( , ) ( ) ( )ph x yS t t t dt S t iS tρ
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∆ = ∆ = ∆ + ∆∫  (3.39) 

The angle of the Kerr rotation is then calculated as 

 ( ) ( )
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1 arctan
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S t
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S t
 ∆

φ ∆ =   ∆ 
 (3.40) 

where the factor 1/2 is connected with the fact that 90° rotation of the polarization of 

the light corresponds to the 180° rotation of the pseudospin. 

3.4.3. Experimental results and their simulation 

Figure 3.9a shows the TRKR scans measured under in-plane magnetic field from 0 to 

5T. One can see that at zero field the signal decays exponentially, while in the presence of the 

field the oscillations show up. Moreover, above 3T we observe the beats, that is an additional 
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lower frequency arising in the signal. This can be seen in Fourier spectra of the TRKR signal, 

Figure 3.9b. The summary of the frequencies observed in the TRKR is reported in Figure 3.10 

(circles), together with the polariton splittings calculated using a simple three-oscillator 

model. We identify the higher frequency beats as the beats between two exciton-like polariton 

branches (BD) while the lower frequency beats are between P and D states (PD). One can 

notice, that the peak associated with the exciton spin precession (BD) splits at 3T and has an 

asymmetric form at higher fields, suggesting exciton spin beats at two different frequencies. 

We believe that this is a manifestation of the inhomogeneous Mn2+ spin heating, an out of 

equilibrium phenomenon described in F.Teppe et al (2003), M. Vladimirova et al (2005). 

 
Figure 3.9. (a) Kerr rotation scans under magnetic field in Voigt configuration. (b) 

Corresponding Fourier spectra (from A. Brunetti et al, 2006). 
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Figure 3.10. Polariton beats frequencies from the Fourier spectra shown in Fig. 3.9b as a 

function of applied magnetic field (circles, crosses). Solid lines show theoretical prediction 

(from A. Brunetti et al, 2006). 
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At zero and low fields the absence of the PD beats is not surprising. Since the 

excitonic states are only weakly mixed, the polariton component D resulting from the exciton 

dark state is almost not excited by the incident light. As soon as the magnetic field mixes the 

exciton states the PD beats arise in the signal. However, neither at high nor at low fields the 

polariton beats between P and B branches are clearly observed. At zero field, the absence of 

the PB beats is particularly evident since we observe pure exponential decay of the TRKR 

signal, and neither at high fields the polariton beats between P and B branches are clearly 

observed. We explain it by a very short photon lifetime phτ  in our sample. Indeed, from the 

CW reflectivity measurements it can be estimated as / 0.25psphτ = Γ =h , where Γ  = 3 meV 

is the polariton broadening. The results of the calculation of the TRKR signal for the 

experimentally explored range of fields in the framework of the polariton spin density matrix 

formalism assuming R∆ = 5.2 meV, 8.0meVδ = − , T=7 K, and 0.25psphτ =  are shown in 

Figure 3.11. At zero field, the resonance corresponding to the BD beats is visible but is 

extremely weak. Its amplitude increases when one either increases the photon life time or 

reduces the detuning between the photon and the exciton mode. To illustrate the effect of the 

photon lifetime on the amplitude of Rabi oscillations, we show in Figure 3.12a the results of 

calculation using phτ  = 0.5ps and 0.2 ps at B=0. One can see that the oscillations which are 

smeared out in the case of phτ  = 0.2 ps and can be clearly distinguished when phτ  = 0.5 ps. 

Figure 3.12b shows in more details the Fourier spectra of TRKR at 3, 4 and 5T, together with 

calculated curves. At high fields, the weak and wide spectral features not well separated from 

BD oscillations peak may be interpreted as rapidly decaying PB beats. The corresponding 

frequencies are shown by crosses in Figure 3.10. Thus, under magnetic field three resonances 

appear in our numerical simulations. However, one or two of them remain extremely weak, so 

that the calculated signal fits rather well the experimental results. 

 

 



 91

 
Figure 3.11. (a) Calculated Kerr rotation scans under magnetic field in Voigt configuration. 

(b) Corresponding Fourier spectra (from A. Brunetti et al, 2006). 

 
Figure 3.12. (a) Calculated Kerr rotation scans at B=0 and two different values of photon 

lifetime. One can observe the smearing of Rabi oscillations when the photon lifetime is short. 

(b) Fourier spectra obtained from calculated and measured Kerr rotation scans from 3 to 5 T. 

Arrows indicate the resonance frequencies (from A. Brunetti et al, 2006). 
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3.5. Conclusions 

The pseudospin formalism and the spin-dependent Boltzmann equations allow to 

describe quantitatively many interesting polarization effects in polaritonic systems, including 

TE-TM splitting, self-induced Larmor precession, polarization inversion, and Kerr rotation. 

The model that we have developed is applicable for a broad range of experiments. In some 

cases, however, the renormalization of dispersion can lead to other effects that need special 

treatment (see chapter 4). Another limitation of the present model is that any correlations 

between the states are neglected, which corresponds to rapid dephasing. If the correlations are 

to be taken into account, one has to keep high-order correlators and write the quantum 

equations, like it is done in I.A. Shelykh et al (2005). This approach has an advantage over the 

Gross-Pitaevskii equation in that it allows taking into account such effects as spontaneous 

scattering and decoherence. They allow to study the transition between quantum and classical 

limits with increasing decoherence (see I.A. Shelykh et al, 2007). Another advantage is that 

these equations are numerically much less heavy. This direction is a subject of ongoing 

research. 
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Chapter 4. Polarization and propagation of a polariton condensate 

In this chapter we consider a polariton state with macroscopic occupation, whether it is 

formed by Bose condensation, or by quasi-resonant pumping. In the first case we call this state a 

Bose condensate, and in the second – a macrooccupied driven mode. In both cases we will be 

interested in the polarization of the mode and in the dispersion of the excitations. In a case of pulse 

pumping one can also study real space propagation together with polarization effects. All these 

different cases are well described by the spinor Gross-Pitaevskii equation, which takes into account 

the polarization of the state. 
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4.1. Ballistic propagation of polaritons in real space 

We start with a description of propagation of polaritons in real space in the simplest case. 

We consider a case with low polariton density, when the interaction of polaritons and corresponding 

renormalization of dispersion can be neglected. We will be interested mostly in the polarization 

issues. Experimental study of polariton propagation in real space has been first performed by T. 

Freixanet et al (2000) for a GaAs microcavity. The authors have studied polariton group velocity as 

a function of detuning and excitation wavevector. 

Let us consider a microcavity with GaAs QWs which is excited by a relatively long and very 

narrow (in real space) pulse. Such a pulse could excite polaritons with all wave-vectors, but since it 

has relatively narrow energy spectrum, it excites only the polaritons with particular wave-vector 

length. These polaritons then propagate in real-space, and their polarization changes with time as 
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controlled by the LT splitting. We neglect any disorder-scattering, dephasing or non-linear effects 

thus assuming that the polaritons propagate ballistically and keep coherence during their lifetime. 

We calculate the dispersion relations of T- and L-polarized polariton modes using the transfer 

matrix technique. LT-splitting of the exciton-polaritons mostly comes from the LT-splitting of the 

photonic eigenmodes of the microcavities TLLT ωω −≡Ω , where Lω  and Tω , correspond to the 

longitudinal and transverse polariton eigenmodes, respectively. We recall the approximate equation 

from chapter 1 for the optical TE-TM splitting (1.48): 

 
( )

∆
−+

≈Ω
eff

effeff

DBRc

DBRc
LT LL

LL
ϕ
ϕϕ

2

2

2 sin21
sincos2

 (4.1) 

where 
c

eff n
0sin

arcsin
ϕ

ϕ ≈ , ( ) Bab

ba
DBR nn

сnn
L

ω
π

−
≡ , 0ϕ  is the incidence angle in vacuum, cL  is 

the cavity width, ban ,  are the refractive indices of the layers composing the DBRs, cn  is the 

refractive index of the cavity, Bω  is the central frequency of the optical stop-band of the DBRs, and 

B cω ω∆ = −  is the difference between the cavity-mode eigenfrequency at normal incidence cω and 

Bω . Eq. (1.48) predicts a quadratic dependence of the splitting of the eigen-energies of bare photon 

modes of the cavity on the incidence angle. For the exciton-polariton modes, this quadratic 

dependence is altered by the photon fraction of the polariton state, which depends on the angle as 

well. At very negative detuning and for small in-plane wave vector 0sinBk
c
ω ϕ≈ , with the light 

velocity c, the photon fraction is close to 1, and the splitting of polariton modes is close to the value 

given by Eq. (1.48). At larger in-plane wave vectors, the photon fraction of the polariton state 

rapidly decreases. As a result, the splitting with increasing k first shows an inflection, then a 

maximum and subsequent decrease when the dominantly excitonic region of the low polariton 

branch is reached. In what follows we shall only consider the lower polariton dispersion branch for 

simplicity. 

The polarization dynamics of exciton-polaritons in microcavities in the linear regime is 

governed by the beats between coherently excited T- and L- polarized polariton dispersion branches 

(see e.g. K.V. Kavokin et al, 2004, I.A. Shelykh et al, 2004). As it was done in previous chapters, 

we use the pseudospin formalism to describe the polarization dynamics. The components of the 

pseudospin vector can be found from the elements of the pseudospin density matrix ρk : 

 ˆ
2

N Iρ = + ⋅k
k kσ S  (4.2) 
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where kN r  is the sum of populations of T- and L-polarized quantum states having the same 

wave-vector k  , σ  is the Pauli matrix-vector, and Î  is the identity matrix. The dynamics of ρk  is 

given by a Liouville-von Neumann equation 

 ˆ ˆ,i H i
t
ρ ρ ρ∂  = − Γ ∂

k
k k kh  (4.3) 

where the Hamiltonian Ĥk  describes the dispersion of the lower polariton branch ( )kE  and 

the LT-splitting: 

 ( )ˆ ˆ
k B effH I gω µ= + ⋅k σ Bh  (4.4) 

with the average polariton dispersion 
2

T L
k

ω ωω +
= , the effective magnetic field 

eff
B gµ

=B Ωh , where Ω  has the components 

 ( )22
2 yx
LT

x kk
k

−
Ω

=Ω , yx
LT

y kk
k 22
Ω

=Ω , (4.5) 

the Bohr magneton Bµ , and the effective exciton Zeeman-factor g. The superoperator ˆ ρΓk k  

describes the radiative decay of the polariton population due to their tunneling across the DBRs. 

The similarity of the Hamiltonian (4.4) with the well-known Rashba Hamiltonian for the electrons 

has inspired a recent proposal by A. Kavokin, G. Malpuech and M. Glazov (2005) of the optical 

spin Hall effect for exciton-polaritons which consists in the build-up of the circular polarization in 

the Rayleigh scattering spectra of a linearly polarized light incident on a microcavity. This effect 

has recently been observed by the group of LKB and has been published in Nature Physics 

(C. Leyder et al, 2007). 

Though in general Eq. (4.3) can be solved numerically to obtain the time-dependent 

polarizations of different polariton states, in the configuration of the experiment we describe the 

result can be found analytically. Diagonalization of the Hamiltonian (4.4) readily yields a couple of 

eigen-frequencies ( )T kω and ( )L kω . Accounting for the finite life time of polaritons τ , the electric 

field amplitudes corresponding to T- and L-polarized modes behave as 

 
( ) ( )

( )
0

0

( , ) exp ( )

( , ) ( ) exp ( )
T T T

L L L

E k t E k i k t t

E k t E k i k t t

ω τ

ω τ

= − −

= − −
 (4.6) 

where TE0  and LE0  are initial values of the amplitudes of the T- and L-modes, respectively. 

The Bragg mirror reflectivity is less for the L than for the T mode, resulting in a smaller lifetime for 

the L mode as noted in Panzarini et al (1999). However, the relative difference of the reflectivity 
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coefficients for the range of the wavevectors considered is of the order of 10-4. So we assume that 

the life-time is equal for both modes. 

In the case of excitation by x-polarized light, the field amplitudes read 

 
( ) ( )
( ) ( )

0 0

0 0

sin

cos
T X

L X

E k E k

E k E k

φ

φ

= −

=
 (4.7) 

where φ  is the angle between the wave vector k  and x-axis. 

We use the rotation matrix to rewrite the time-dependent amplitudes (4.6) in the xy basis: 
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( ) 0 0

cos cos 2 sin, cos sin cos 2 2( ) ( )
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= =       Ω−      −  

(4.8) 

Eq. (4.8) shows that for a given direction of the wave-vector the amplitudes of x- and y-

polarized components oscillate in time with the frequency 2LTΩ , and it yields the angular 

dependence of the intensity of the cross-polarized light φ2sin22
∝yE . Note that Eq. (4.8) also 

allows extracting the dynamics of circular-polarized components of the emission and is therefore 

suitable to describe the optical spin-Hall effect. 

In order to reproduce theoretically the real space propagation of a ring excited by a light 

pulse we Fourier-transform the amplitude vector (4.8) taking into account the spectral and 

directional shape ( ) ( )f h kω  of the excitation pulse field, which is assumed to factorize and have a 

cylindrical symmetry in the wave-vector distribution h(k). We assume that the frequency width of 

the pulse is much larger than the LT splitting. Therefore the electric field amplitude created by the 

excitation light pulse is ( )0 ( ) ( )X kE k f h kω= . We notice that the origin of the time axis in this 

model corresponds to the maximal density of polaritons in the cavity, which is about 1 ps (half 

width of the pulse) later than the maximum of the excitation pulse because the pulse duration is 

shorter than the polariton lifetime, and therefore the polariton density continues to increase even 

after the maximum of the exciting pulse. This time shift had been accounted for in our calculations.  

The spatially resolved components of the electric field read: 

 ( )
( )
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0 2 0
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2 2,
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∫

∫
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, (4.9) 

where θ  is the angle between the radius-vector r  and the polarization axis (x-axis), and we 

use the Bessel functions  
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 The intensities of co- and cross-polarized components of the emission are given by 

 ( ) ( ) 2
, ,co xI t E t∝r r  , ( ) ( ) 2

, ,cross yI t E t∝r r . (4.10) 

A summary of experimental data of Langbein et al (2007) obtained in the experimental 

conditions described in this chapter (taken for the specific excitation energy eωh =1.51682eV) is 

given in Fig. 4.1. In the upper frames the spatially resolved emission intensities, proportional to the 

polariton densities, at times 5 ps, 10 ps, and 15 ps after the polariton injection at t = 0 ps at the 

origin by a pulse with eτ =1.8 ps are shown. The excited polaritons are centered at k =2.8/µm. The 

non-resonant reflection close to the excitation position is blocked by a sphere suspended on a wire 

in the image plane. Due to the short cavity lifetime (2.3 ps), the polariton density reduces rapidly 

with time. The data scale has been adjusted to compensate for this decay. Ballistic polariton 

propagation over macroscopic distances is found with a velocity of 6.8µm/ps. A ring-shaped 

distribution is found, as expected from the excitation geometry. The polaritons were excited with 

linear polarization along the x-axis. Detecting co-linearly polarized (left panels of Fig. 4.1), the 

intensity is showing a minimum in the diagonal directions. Detecting cross-linearly polarized 

instead (right panels), the intensity is maximal in the diagonal directions, and zero for propagation 

along the excitation and detection polarization directions x and y. This observation is due to the LT-

splitting. The excitation polarization along x ( 0φ = ) is not an eigenstate of polaritons with 

propagation directions other than x or y, and a polarization beating occurs in these directions. 
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Figure 4.1. Experimental results showing polariton propagation and polarization dynamics in real 

space ( 12.8 mk µ −= ) (From W. Langbein et al, 2007) 

 

We have calculated the intensities of co- and cross-linearly polarized components of the 

emission from the cavity using Eqs. (4.9) and (4.10), taking into account the calculated polariton 

dispersion, radiative broadening and LT splitting. For the excited polariton pulse we took 

( ) ( )( )2 2
0exp /k k kf ω ω ω ω= − − ∆ , ( ) (4 / )h k m kµ= Θ − , where Θ  is the Heaviside function. The 

spectral width ω∆  was 0.6 meV (FWHM 1 meV), and k∆  = 1/µm. The excitation frequency 

0kω was varied to get the right excitation wavevector. 

The resulting spatially resolved images of the intensities of emission of propagating 

polaritons in co- and cross-polarizations corresponding to the experimental data of Fig. 4.1 are 

shown in Fig. 4.2. One can see that the propagation speed matches the experimental velocity, 

which, in its turn, corresponds to the group velocity obtained from the dispersion. The diagonal 

cross-like shape of cross-polarization and the small anisotropy of the co-polarization, which are due 

to the pseudospin rotation, are well reproduced. 
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Figure 4.2. Simulated real-space dynamics of polariton propagation and polarization after a point-

like excitation ( 12.8 mk µ −= ) 

 

Another comparison of the analytical model with experiment is done on Fig. 4.3. Here we 

show for the same experiment the experimental and theoretical radial intensity of emission 

( , , )I r t rφ ⋅  corrected for the cylindrical propagation geometry by multiplying with the radius for co- 

and cross-polarizations at various times. One can see that initially (after 6 ps) the intensity in co-

polarization is much higher than the one in cross-polarization, while after 14 ps they become 

comparable, due to the pseudospin rotation. The experimental data are quantitatively reproduced by 

the theory. 

We can therefore conclude that the theoretical tool developed in this section works well to 

describe the experiments performed in linear regime, when the density of polaritons is small enough 

in order for the renormalization to be negligible. This simplest case has the advantage of having an 

analytical solution. In more complicated cases one has to solve numerically the spinor Gross-

Pitaevskii equations to obtain the spatial and polarization dynamics, as it is done in the following 

sections. 
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Figure 4.3. Measured and simulated radial intensity distribution ( ), ,c cr I r tφ  corrected for cylindrical 

propagation, for various times after excitation of polaritons centered at 12.8 mk µ −= . Top: 

measured (from W. Langbein et al, 2007). Bottom: simulated. Left: Colinearly polarized for 

/ 2φ π= . Right: cross-linearly polarized for / 4φ π= . 

 

4.2. Polarization and evolution of a polariton condensate 

In this section we first consider a polariton condensate in thermodynamic limit. We try to 

determine the polarization of a spontaneously formed condensate, which can be done analytically. 

Then we consider the time evolution of real-space distribution and polarization of a macroscopic 

population of polaritons created by a short pulse, and we find ring-like excitations propagating at 

the speed of sound waves with Bogoliubov dispersion, thus manifesting superfluidity. 

4.2.1. Spin effects in atomic condensates 

First atomic condensate observed by K.B. Davis et al (2005) was observed for a single 

species of alkali atoms (23Na). Such a condensate could be described by a single scalar 

wavefunction. Immediately after, a more complex situation has attracted theoretical attention. T.-L. 

Ho and V.B. Shenoy (1996) have considered a possibility of condensation of a mixture of different 
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atoms, like 23Na-87Rb or 87Rb-85Rb, or different hyperfine states of the same alkali, like the (F=2, 

MF=2) and (F=1, MF=1) states of 87Rb. The theoretical approach was to write a wavefunction not 

as a scalar, but as a vector, and then write the Gross-Pitaevskii equation for this vector. Different 

configurations can produce various effects like interpenetration or phase separation of the species. 

Utilization of optical traps instead of magnetic ones has allowed to study the spin degree of 

freedom of atomic condensates. The first experimental observation of spin-1 condensate was 

reported by J. Stenger et al (1998), and the various effects like metastability and quantum tunneling 

across spin domains have been readily explained by D.M. Stamper-Kurn et al (1999) and in other 

papers with the use of spinor Gross-Pitaevskii equations. After that a number of papers have been 

published, studying the dynamics of spin-2 condensates (e.g. H. Smaljohann et al, 2004) and 

comparing them to the spin-1 condensates (e.g. Nille N. Klausen, John L. Bohn and Chris H. 

Greene, 2001). One can see that the spinor (or, in general, vector) Gross-Pitaevskii equation is a 

well-established tool for the description of multi-component condensates in various conditions. 

The important differences of exciton-polariton condensates from the atomic ones are 1) TE-

TM splitting, which affects the dispersion of excitations; 2) different effective masses for excitons 

and photons; 3) presence of interaction terms only for excitons. Our final spinor Gross-Pitaevskii 

equation will have to take into account all these peculiarities. Another non-negligible peculiarity is 

the finite lifetime of polaritons. 

4.2.2. Polarization of the polariton condensate 

Let us start with the Hamiltonian density of a polariton system 

 ( ) ( )2* * *2 2
0 1

1
2

H i U U = ⋅ − ∇ ⋅ + ⋅ −  
ψ T ψ ψ ψ ψ ψ  (4.11) 

Here we assume the cylindrical symmetry of the cavity, which allows only two isotropic 

quartic invariants. ψ  is a two-component vector with components corresponding to TE and TM 

polarizations. The 0U  term describes polarization independent properties of the condensate, while 

the 1U  term defines so-called linear-circular dichroism (experimental observation of an effect of 

this type has been first reported by P.D. Maker, R.W. Terhune, and C.M. Savage, 1964). 

We consider the heavy-hole exciton polaritons having only TM and TE modes, and we 

neglect the mixing with the light-hole polaritons having a split-up mode polarized normally to the 

quantum-well plane. With respect to the configuration of the in-plane component of the electric 

field (defined by the 2D vector) and the in-plane 2D wave vector k, the TM and TE modes are 

longitudinal and transverse, respectively. Their dispersions can be found by the transfer matrix 

technique (chapter 1). The modes are degenerate at 0k =  and the energy will be calculated from the 

bottom of the band. Then, the kinetic energy tensor ( )T k  is ( 1=h ): 
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 ( ) ( ) ( ) ( ) 2
i j

ij t ij l t

k k
T k k k

k
ω δ ω ω = + − k  (4.12) 

When the ψ  vector is directed parallel (perpendicular) to k  this expression reduces to the 

expected ( ) ( )l tω ψ⋅ =T k ψ . 

The equilibrium properties of polariton condensate at 0k =  depend crucially on the 

presence and the sign of the dichroic U1 term. For U1 > 0 the free energy density ( )*F H µ= − ⋅ψ ψ  

is minimized at a linear polarization of the condensate (i.e., when * 0 × = ψ ψ ). In this case the last 

term in (4.11) has its maximal possible absolute value and min / 2F nµ= − , where ( )*n = ⋅ψ ψ  is the 

2D concentration of condensed polaritons and the chemical potential is ( )0 1U U nµ = − . Note that 

µ  defines the experimentally measurable blueshift of the polariton emission line due to formation 

of the condensate. In contrast, in the case U1 < 0 the polariton condensate is formed with a circular 

polarization ( 0⋅ =ψ ψ ), that assures disappearance of the U1 term. In the absence of the dichroic 

term (U1 = 0) there is no superfluid transition at any finite temperature, as it follows from the 

Landau criterion because one of the dispersion branches is parabolic. 

Clearly, the above analysis of the condensate polarization is valid for the very dilute limit 

and ( )2
1 0sU na U  ( sa  is the effective scattering length). 

The coupling coefficients U0 and U1 can be estimated through the matrix elements of the 

polariton-polariton scattering in the singlet ( 2α ) and triplet ( 1α ) configurations as 0 1U α=  and 

( )1 1 2 / 2U α α= − . According to Ciuti et al (1998) one usually has 1 2α α , so that 1 00 U U< < . 

Therefore, the polariton condensate is formed with a linear polarization. The condensate ground 

state can be written as grnd n=ψ e , where 1=e  is a real unit vector. 

4.2.3. Spectrum of excitations 

The spectrum of excitations of the polariton condensate at equilibrium can be studied on the 

basis of Gross-Pitaevskii equation, which will be written here for two polarizations: 

 
( )

*

* *
0 1

i

i

ij ij j j j i j j i

Fi
t

T i U U

ψ δ
δψ

µδ ψ ψ ψ ψ ψ ψ ψ

∂
= =

∂

 = − ∇ − + − 

 (4.13) 

Following the linearization method demonstrated in chapter 1, we look for the solutions of 

Eq. (4.13) in the form 

 ( ) ( ) ( )*, i t i tt n e eω ωψ − − −= + +kr krr e A B  (4.14) 
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Linearizing (4.13) with respect to the small amplitudes iA  and iB  one obtains two equations 

for these complex amplitudes: 

 
( ) ( ) ( )

( ) ( ) ( )
0 1 1 0 1

0 1 1 0 1

2 0

2 0

ij i j ij j i j ij j

ij i j ij j i j ij j

T u u e e u A u e e u B

T u u e e u B u e e u A

ω δ δ

ω δ δ

   + − + − + − =   
   − + − + + + − =   

k

k
 (4.15) 

where 0 0u nU=  and 1 1u nU= . This system of equations has non-trivial solutions provided 

the frequency ω  satisfies the dispersion equation: 
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l t
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+ −
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 − + + − + + 
 + + − + = 

 (4.16) 

where ( ) ( )cos 2 / 2l t l tω ω ω ω ω ϕ±  = + ± −   and ϕ  is the angle between the condensate 

polarization e  and the wave vector k . In the region of small wave vectors the solutions of the 

dispersion equation (4.16) give two sound branches of excitation spectrum (i.e. the spectrum is 

linear). However, the particularity of the polariton condensate is that these branches are anisotropic: 

 ( )2 2
0 1 12 , 2u u uω ω ω ω+ −−  (4.17) 

The anisotropy of the quasiparticle spectrum is a result of both the cylindrical-symmetry 

breaking due to the presence of condensate and the existence of LT splitting. The dispersion 

becomes isotropic and simplifies significantly if one neglects the LT splitting of noninteracting 

polariton bands by putting 0l tω ω ω= = . In this case the result becomes Bogolyubov-like: 

( )2 2 2
0 0 1 0 0 02 2u uω ω ω ω µω= + − = +  for quasiparticles copolarized with the condensate ( A B e ), 

and 2 2
0 1 02uω ω ω= +  for the cross-polarized quasiparticles ( ⊥A B e ). 

The renormalization and the strong anisotropy of the splitting between the two branches of 

the polariton spectrum is shown in Figure 4.4 (a,b). The interaction constants are chosen as 
18 2

0 2.4 10 eV mU −= ×  and 1 00.55U U=  (which corresponds to 2 10.1α α= − ) in accordance with the 

estimation of P.Renucci et al (2005) and the parameters used in the next subsection; the condensate 

density is 15 210 mn −= . The bare polariton spectrum corresponds to a CdTe microcavity showing a 

Rabi splitting of 10 meV at zero detuning between exciton and photon modes at k = 0. The 

dispersion of polaritons is clearly strongly modified and becomes linear close to k = 0. Note that 

while the splitting is enhanced in one direction of the wave vector ( ⊥k e  in our case), it is 

suppressed for its perpendicular direction. Moreover, one can observe the crossing of renormalized 

longitudinal and transverse branches. The strong anisotropy of the splitting is better seen in Fig. 

4.4(c). 
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Figure 4.4. The dispersions of bare (dashed lines) and renormalized (solid lines) lower polariton 

branches in the region of strong coupling. The splitting is shown in a dashed-dotted line. The wave 

vector is perpendicular to the condensate polarization in panel (a) and collinear with it in panel (b). 

Panel (c) shows the overall behavior of the splitting. 
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The Gross-Pitaevskii equation (4.13) describes adequately the excitation spectrum only for 

the case of a weakly depleted condensate. The non-superfluid fraction outn  can be calculated using 

the Landau quasiparticle formula, which gives a reliable result for the 2D case as shown by D.S. 

Fisher and P.C. Hohenberg (1988). At low temperatures T, when the phononlike parts of the two 

branches are mostly occupied, the depletion is  

 ( ) ( ) ( )
3

4 4
0 12 *

3 3
2

B
out

k T
n v v

m
ζ
π

− −= +
h

 (4.18) 

where * 410m −  is the polariton effective mass, ( ) 1/ 2*
0 0 1 /v U U n m = −   and 

1/ 2*
1 1 /v U n m =    are the sound speeds in co- and cross-polarizations, and we neglect LT splitting 

for simplicity. It is seen from (4.18) that 2
outn n−∝ . For T < 20 K the depletion becomes negligible 

at 15 210 mn −= . This particle density corresponds well to the experimentally observed (by 

M.Richard et al, 2005) blueshift 1 meV. Note also that the correction to the blueshift 

( )0 1 outU U n−  is of the order of a few µeV , and it is much smaller than the anisotropic splitting seen 

in Fig. 4.4. The above estimation is confirmed by the numerical calculations allowing for the 

nonparabolicity of the spectrum (G. Malpuech et al 2003). 

4.2.4. Real-space dynamics 

In this subsection we study numerically the impact of the anisotropic splitting on the real-

space coherent dynamics of polariton condensates in nonequilibrium conditions. We take into 

account the pumping and finite lifetime of polaritons following the approach of I. Carusotto and 

C. Ciuti (2004). The model of the mentioned paper is, however, generalized by us to take into 

account the polarization degree of freedom. In this approach, instead of one polariton wave function 

( ), tψ r , we use its two components, photonic ( ), tφ r  and excitonic ( ), tχ r  parts, which satisfy two 

coupled vector equations (Gross-Pitaevskii for excitons and Schroedinger for photons): 

 
( ) ( )
( )

( ) 1

( ) 1 * *
0 1

,ph
i ij ph ij j R i i

ex
i ij ex ij j R i j j i j j i

i T i i f t

i T i i V V

ϕ τ δ ϕ χ

χ τ δ χ ϕ χ χ χ χ χ χ

−

−

 = − ∇ − +Ω + 
 = − ∇ − +Ω + − 

r&

&
 (4.19) 

Here ( ), tf r  describes the exciting pump within a limited spot and RΩ  is the Rabi 

frequency. We consider the case of zero detuning, where the exciton-exciton interaction parameters, 

V0 and V1, are related to the polariton-polariton ones as 0 04V U=  and 1 00.55V V= . The kinetic T 

tensors have a form of Eq. (4.12) with parabolic free-particle dispersions. Note also that unlike the 

equilibrium case considered before, the Gross-Pitaevskii equations (4.19) contain the lifetimes 

( )ex phτ  in place of chemical potentials. 
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We consider a 1.8 ps exciting pulse of light having a lateral size of 15 µm . It resonantly 

excites the ground state of the lower-polariton branch, as well as some of the excited states, because 

of its finite broadening. It is polarized horizontally (along the x axis). We assume zero temperature, 

the cavity photon lifetime 7 psphτ = , and infinite exciton nonradiative lifetime exτ . Figure 4.6 

shows the 2D plot of the absolute value of the photon part of the wave function at different times 

for both horizontal and vertical polarizations, whereas figure 4.5 shows the corresponding cross-

sections. The contrast on the 2d plots has been adjusted to get the best visibility. 

The upper panels in Figs. 4.5 and 4.6 show the wave function before the arrival of the 

maximum of the excitation pulse, when the polariton density is very small and nonlinear effects are 

negligible. Without the exciton-exciton interaction, the wavefunction would have kept its shape, 

slowly expanding with time. The x-polarized component at small times keeps the Gaussian spatial 

shape of the exciting pulse. At the same time the y-polarized or cross component appears in the 

diagonal directions, which are the directions where the horizontal and vertical polarizations are no 

more the quasiparticle eigenstates and the presence of the LT splitting results in the precession of 

polarization. The mechanism here is the same as in section 4.1 (figures 4.1 and 4.2). 

At a time 2.4 ps after the maximum of the pulse, the x-polarized component forms a ring 

which quickly expands with time (Figs. 4.5 and 4.6, middle panels). This way of motion is 

characteristic for a linear dispersion1, and not for a parabolic one. We believe that the observation of 

such a ring under the described excitation conditions would be a clear experimental evidence of 

polariton superfluidity, because if the dispersion had stayed parabolic, the ring would not have 

appeared. The inhomogenity of spatial distribution introduced by the shape of the pulse excites the 

excitations of the condensate. The condensate itself is formed by the homogeneous fraction of the 

particle density. This fraction does not move anywhere because it has zero momentum and the 

dispersion for the motion of the condensate as a whole is parabolic. 

After 16.4 ps, the pattern again strongly changes. The x-polarized component consists of a 

central peak, which is not moving or spreading and shows radiative decay only. This static peak can 

be associated with the ground state polariton condensate. The ring that was formed on the previous 

stage does not disappear, but new rings of smaller intensity are formed on its surface. At the same 

time, in y polarization the rings propagate without deformations, new rings forming from the center 

while the external ones are expanding. The velocity of expansion is given by the velocities of sound 

in different directions ( ) *
0 0 1 /v U U n m= − , *

1 1 /v U n m= , as described in chapter 1 and defined 

                                                 
1 This is most easily understood for a 1D case: with parabolic dispersion a Gaussian excitation with zero group 

velocity keeps its shape while getting more and more broad, whereas with linear dispersion the same excitation gets 

separated into two traveling waves moving in opposite directions. 
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above. These velocities depend on the density n of the polariton condensate and they change in time 

because of the radiative decay of population. Note also that the black cross seen in the bottom right 

panel in Fig. 4.6 is slightly asymmetric: the horizontal band is wider than the vertical one. It 

happens because of the anisotropy of the splitting between polariton branches, which appears due to 

the renormalization of dispersion caused by the condensate formation. 

We should note that the experimental and theoretical results presented in section 4.1 cannot 

be associated with the superfluidity since (i) the interference rings are the result of excitation of 

polariton excited states and not the ground state, like in this section, and (ii) the observed cross is 

symmetric. Observation of the superfluid propagation of exciton polaritons remains an important 

challenge for experimentalists. The problem is mainly related to the presence of imperfections in 

microcavities able to attract or scatter the condensate wave function, and this problem will be 

addressed in details in chapter 5. 

 

 
Figure 4.5. Cross-sections of the photon part of the wavefunctions for co- and cross-

polarized components. 
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Figure 4.6. Real-space image of the photon part of the wave function, showing evolution of a 

Gaussian shape pulse in non-linear regime in x and y polarizations. Zero time corresponds to the 

peak intensity of the pulse. 
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4.3. Polarization of a driven mode 

In this section we consider the polarization of a pumped polariton mode with macroscopic 

occupation. It will be shown that the polarization of polaritons can be completely different from the 

polarization of the pumping laser. Therefore, it is very important to investigate this dependence, 

because it determines the initial conditions for the pseudospin formalism developed in the previous 

chapter and in the first section of this chapter, and it may affect strongly the results of experiments 

in the OPO configuration, where as much as three modes can be considered as macroscopically 

occupied. 

To find the polarization of a single macroscopically occupied mode with pumping and 

decay, we linearize the Gross-Pitaevskii equation for polaritons using the approach demonstrated in 

section 1.4. Here we neglect the LT splitting for simplicity and work with the ground state of the 

polariton dispersion. 

The Gross-Pitaevskii equation for the polaritons taking into account the pumping of the state 

0k =  and radiative decay reads ( 1=h ): 

 
( )
( )

0

0

2 2
0 1 2

2 2
0 1 2

i t

i t

i i H P e
t

i i H P e
t

ω

ω

ψ ψ ψ α ψ α ψ ψ
τ

ψ ψ ψ α ψ α ψ ψ
τ

−+ +
+ + − + +

−− −
− − + − −

∂
= − + + + +

∂
∂

= − + + + +
∂

 (4.20) 

It is a simplification of equation (4.13) written in circular basis in order to have simpler 

terms describing polariton-polariton interaction. The chemical potential µ  is replaced by the 

pumping and decay terms. 

Introducing the new variable 0i te ωφ −=ψ  to set the energy of the pump to zero one has 

 
( ) ( )
( ) ( )

2 2
0 0 1 2

2 2
0 0 1 2

i i H P
t

i i H P
t

φ φ ω φ α φ α φ φ
τ

φ φ ω φ α φ α φ φ
τ

+ +
+ + − + +

− −
− − + − −

∂
= − + − + + +

∂
∂

= − + − + + +
∂

 (4.21) 

Once again we use the linearization method by representing the solution in the following 

form: 

 ( ) ( )**
''0

*
0

i kx ti kx tA B
e e

A B
ωωφφ

φφ
− −−++ + +

−− − −

     
= + +      

      
 (4.22) 

Here the frequency 'ω  can be complex, which is why we need to write *'ω  instead of 'ω  in 

the term with *B  to avoid having a diverging wavefunction. Linearizing (4.21) with respect to small 

amplitudes and separating the terms with different time dependence one obtains the following large 

system of equations: 
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( )

( )

2 2
0 0 1 0 2 0 0

2 2
0 0 1 0 2 0 0

0

0

iH P

iH P

ω α φ α φ φ
τ

ω α φ α φ φ
τ

+ − + +

+ − − −

  − − + + + =    
  − − + + + =    

 (4.23) 

2 2 2 *
0 0 1 0 2 0 1 0 2 0 0 2 0 0

2 2*2 * * *
1 0 0 0 1 0 2 0 2 0 0 2 0 0

2 2*
2 0 0 2 0 0 0 0 1 0 2 0

( ) ' 2 0

( ) ' 2 0

( ) ' 2

iH k A B A B

iA H k B A B

iA B H k
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τ
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 + =
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(4.24) 

The equations (4.23) give us the occupation and polarization of the condensate as a function 

of the pump. It is interesting to note, that in general the polarization of the condensate does not 

coincide with the polarization of the pump. The equations (4.24) allow to find the dispersions of 

excitations of the macrooccupied mode (see section 4.3.2). 

4.3.1. Polarization multistability 

From the system (4.23) one can show that the polarization of the polariton system inside the 

cavity is multistable: for a given external pump (e.g. linear), the polarization inside the cavity can 

be linear or elliptic (either mostly right- or left-circular polarized). Qualitatively, the multistability 

can be understood as follows. Assume that the cavity is illuminated by laser light at normal 

incidence at the frequency above the bottom of the lowest polariton branch (LPB). At low pumping, 

the pump is not in resonance with the polariton eigenstate, so that the population of the driven mode 

remains low. At higher pumping, polariton-polariton interactions lead to the blue-shift of the LPB, 

so that it approaches the pump laser frequency. At resonance, the population jumps up abruptly. If 

the pumping power is then decreased, the population of the polariton mode jumps down back, but at 

a lower threshold. As a result the typical S-shape dependence of the polariton density on the 

pumping intensity, first observed by A. Baas et al (2004), appears as Figure 4.7 shows, which 

means the formation of a hysteresis cycle. The additional polarization degree of freedom makes this 

picture much more complex and rich. 
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Figure 4.7. Typical S-shape dependence of the polariton population versus pumping intensity for 

circularly polarized pump. Dashed line shows the unstable region. I1 and I2 mark two jumps in 

population caused by the increase and decrease of the pumping intensity, respectively. 

 

The energy of the laser ω  is chosen above the energy of the bare polariton state, 

0 3meVω ω− = , so that the curve shows the classical S-shape. We use 2
1 6 /b BxE a Sα = , where 

100Ba A= &  is the two dimensional exciton Bohr radius, 8meVbE =  is the exciton binding energy, 

1/ 2x =  is the exciton fraction, and 2100µmS =  is the laser spot area. The polariton life-time is 

2psτ = . These parameters are typical for an AlGaAs microcavity, as in section 4.1. We have 

denoted by 1I  and 2I  the laser intensities corresponding to the bending points of the S-shaped curve 

taking place with the increase and decrease of pumping intensity, respectively. 
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Figure 4.8. (a) Circular polarization degree of the driven mode versus external pumping intensity 

for slightly elliptical pump 0.2pρ = . Arrows show the direction in which the pump intensity is 

changed. (b) Circular polarization degree of the driven mode cρ versus circular polarization degree 

of the pump pρ . Arrows show the direction in which the pump polarization degree is changed. The 

pump intensity is just above 1I . Crosses mark the stable points at 0pρ = . 
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The evolution of the internal polarization can be conveniently illustrated and understood 

considering the case 2 0α = , when Eqs. (4.23) for two polarizations are simply decoupled and the 

two circular components evolve independently. The change of cρ  with the total pump intensity is 

shown in Fig. 4.8(a) for the elliptically polarized pump with 0.2pρ = , so that σ +  component 

slightly exceeds σ −  one. As the intensity of the pump increases, the solution moves along the lower 

branch of the S-curve for both σ +  and σ −  components. However, the σ +  component, since it 

dominates, reaches the threshold intensity I1 first. The corresponding intensity of the polariton field 

jumps abruptly to the upper branch. At the same time, the intensity of the σ −  pump has not yet 

reached the I1 bending point. So, the jump of the total polariton density is accompanied by a jump 

of the circular polarization degree. If the intensity of pump increases further, the intensity of the σ −  

mode also reaches I1. The polariton population increases again, but this now results in an abrupt 

decrease of the circular polarization degree of the driven mode. If we now reduce the intensity, the 

reversed process takes place at the pumping intensity I2 so that hysteresises in both the occupation 

and polarization power dependencies appear. 

Fig. 4.8(b) shows another interesting configuration, where the laser intensity I is kept 

constant in the domain 1I I>  and 1 2/ 2I I I> > . The cyan line shows the change of the circular 

polarization degree of the driven mode cρ  induced by the laser initially polarized σ +  and whose 

polarization is progressively rotated towards the σ −  polarization. One can observe a weak decrease 

of cρ , which however remains quite high even when the pumping is linearly polarized. This is due 

to the fact that the σ +  component remains on the upper branch of the S-curve whereas the σ −  

drops on the lower branch. Then there are two jumps of polarization corresponding to the jumps of 

σ +  and σ −  components of the polariton population, and finally the polarization becomes fully σ − . 

The black line shows the evolution of cρ  with the inverse change of the pump polarization. The 

stable points corresponding to full linear polarization of the laser are marked with crosses. One can 

see that the internal polarization can be either nearly σ + , either nearly σ − , or fully linear. The latter 

case is in fact degenerate. There can be two stable driven mode occupations N for the same value of 

the external laser intensity I. 

Fig. 4.9 shows the functional dependence between σ +  and σ −  components of the polariton 

population and the intensity and polarization of pump calculated accounting for the coupling 

between polaritons with opposite spins described by 2 10.1α α= − . This value of 2α  corresponds to 

recent estimations of Renucci et al (2005). The circular polarization degree of the pump laser is 
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represented by the color of the surface of solution and the intensity of the pump is on the vertical z-

axis. The linear part of the polarization of the laser is kept aligned along x-direction. 

 

X

XX

X

 
Figure 4.9. The pump intensity I and polarization (color) versus the circular polarized components 

of the driven mode (bright green corresponds to linear polarization). The crosses mark the four 

stable points for the driven mode corresponding to the same linearly polarized pump intensity. 

Arrows show the three possible jumps in case if the pump intensity is slightly increased above the 

stability point. 

 

The green areas correspond to nearly linearly polarized pumping. If the intensity of the 

pump increases, while its polarization is kept linear, the system follows the black solid line and 

black arrows shown in the Fig. 4.9. One can see that from the critical point at the end of the solid 

black line the system can jump into three possible stable points (shown by crosses). One of them 

corresponds to linearly polarized state and two others to nearly right- and left-circularly polarized 

states. The stability of the states was verified using the standard linearization procedure as it is done 

by N.A. Gippius and S.G. Tikhodeev (2004). The choice of the final state by the system is random 

and is triggered by fluctuations. 
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Note also that the jump of the system to the circularly polarized final state induces a red shift 

of the cross-circular component because of the negative sign of 2α . The red shift drives this 

component out of resonance with the pump, which leads to stronger polarization of the final state. 

The positive feedback in polarization of the polariton system would not take place for the case 

2 0α =  where only a linearly polarized driven mode would be formed. Experimentally, we expect 

this effect to have a key impact on the polarization measurements performed with resonantly 

excited microcavities. It will result in a random sign of the observed polariton polarization changing 

from one experiment to another. 

4.3.2. Chaotic behavior of a multistable system 

Dynamical chaos is a developing field of research since its discovery by Jacques Hadamard 

in 1898. When a system described by deterministic laws exhibits quasi-periodic and unpredictable 

behavior, this is usually called dynamical chaos. This chaos is generated not by the random 

properties of the system itself, but from the nonlinearities in the equations governing its behavior. 

The theory of chaos has advanced quite far. One of the most important theoretical results in 

this field is the Poincare-Bendixson theorem, which states that in a continuous dynamic system a 

strange attractor can arise only if the system has three or more dimensions. This theorem has 

important consequences for polariton system: without polarization, a polariton system cannot 

exhibit chaotic behavior although it can be bistable. Apart from arising problems like 

unpredictability of weather, the chaotic behavior can have positive effects for practical purposes. 

After the seminal paper about controlling the chaos by E. Ott, C. Grebogi, and J.A. Yorke (1990), 

the scientists are starting to think “stability good, chaos better” instead of “stability good, chaos 

bad”. This is true for certain systems, where the chaos can be limited, controlled and used. An 

interesting idea is the chaotic communications method (L.M. Pecora and T.L. Carroll, 1990; 

K.M. Cuomo, A.V. Oppenheim, 1993), which has been experimentally realized on the base of 

semiconductor laser operating in chaotic regime (I. Fischer, Yun Liu, and Peter Davis, 2000). 

A multistable system can have chaotic dynamics (this is true even for a bistable system with 

external control, as shown e.g. by M. Taki, 1997), and it can therefore be used for data encryption 

and transmission using the chaotic communication method mentioned above. The basic idea of the 

method is based on the fact that the chaotic oscillations of one system may be driven by the chaotic 

oscillations of another similar system. If the chaotic output of the driving system is slightly 

modulated by some useful signal, the oscillations of the driven system will remain non-modulated, 

because they are determined by the internal properties of this system, and the useful signal can then 

be extracted from the difference between the modulated signal received from the driving system and 
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the output of the driven system. Between two systems the signal remains completely chaotic, even 

if it is modulated, and the data is therefore protected from eavesdropping. 

4.3.3. Dispersion of excitations of the driven mode 

From the condition that the system of equations (4.24) should have non-trivial solutions for 

A and B one can find the dispersions of the excitations of the driven macrooccupied mode, like it 

has been done in chapter 1. The expressions for the general case of elliptic polarization of the pump 

are cumbersome, and it is more instructive to consider two particular cases: that of a circular pump 

and that of a linear pump. 

In the case of circular pumping the elementary excitations are also circularly polarized. The 

four dispersion branches are described by the following equations: 
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 (4.25) 

where 2
0n = Ψ . Here we wrote the equations for a σ +  polarized pump. 

The dependencies of real and imaginary parts of ( ),
1,2 kω↑ ↓  are shown in Figures 4.10(a,b) and 

4.11(a,b) respectively. Figure 4.10 shows the flat dispersion at 0k = , whereas figure 4.11 shows the 

flat dispersion at 0k ≠ . The bare polariton dispersion ( )LPE k  is taken parabolic with a polariton 

mass given by 5
03 10polm m−= ×  where 0m  is the free electron mass. We take 4 31.1 10 ,2.5 10n = × ×  

for a surface of S=(10 µm)2.  It is seen from (4.25) that renormalization of the dispersion of cross-

polarized excitations consists only in the concentration-dependent shift with respect to the bare 

dispersion. It remains parabolic with a constant imaginary part given by 1/τ . This is because 

polariton-polariton interactions do not mix the circularly polarized components. 

The renormalization of the co-polarized dispersion is much more interesting. It follows from 

(4.25) that it is completely imaginary in the vicinity of the point where 0LPE ω= . Physically it 

means that the renormalized mode is fully dissipative. The edges of the dissipative zone are given 

by the following expression ( ) 0 1LPE k nω α− = , which means that the difference between the 

energies of the bare polariton state and the pump energy is equal to the mean interaction energy in 

the driven mode. The increase of n resulting from the increase of the pump intensity leads to the 

spreading of the flat region of dispersion which incorporates the point 0k =  when 

( ) 0 10LPE nω α− = . 
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Figure 4.10. Real (a,c) and imaginary (b,d) parts of dispersions of the excitations in the case of 

circular (a,b) and linear (c,d) polarization of the macroscopically occupied mode with a flat part at 

k=0. 



 118

 
Figure 4.11. Real (a,c) and imaginary (b,d) parts of dispersions of the excitations in the case of 

circular (a,b) and linear (c,d) polarization of the macroscopically occupied mode with a flat part at 

|k|>0. Flat region of a real part of dispersion corresponds to an extreme of the imaginary part. 

 

 

In the case of a linearly polarized driven mode the elementary excitations are also linearly 

polarized with dispersions given by the following expressions  
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 (4.26) 

As linear polarizations are mixed by anisotropic polariton-polariton interactions, the 

dispersions of both co- and cross-polarized modes contain flat parts (purely dissipative regions). 

Real and imaginary parts of the dispersions in case of linear polarized mode are shown on 

Figures 4.10(c,d) (flat at 0k = ) and 4.11(c,d) (flat at 0k ≠ ) respectively. Here we took 
4 32.5 10 ,5 10n = × ×  for a surface S=(10 µm)2. The difference in behaviour of co- and cross-

polarized components is governed by the value and the sign of 2α . We have considered a realistic 

case with 2 10.1α α= − . 
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4.3.4. Stability analysis 

The approach presented above is only valid for a single macroscopically occupied polariton 

quantum state. This is indeed the case if the imaginary parts of the eigen-frequencies of all excited 

states are negative. On the other hand, if the imaginary part is positive for one of the upper states, 

the scattering towards this state becomes stimulated, and the state itself becomes macroscopically 

occupied. In this section we analyse the stability of the polariton dispersions obtained in the 

previous section. As before, we shall concentrate on two cases, namely, the circularly polarized 

mode and the linearly polarized mode. In the further analysis the most important parameter will be 

the detuning 0 LPEω∆ = − . 

For a strictly circular pump, only the coefficient 1α  is important, because the amplitude of 

the cross-polarized component of the polariton state is strictly zero. The driven mode is circularly 

polarized. The stability condition in this case reads: 

 ( )2 2
1 1 2

13 4 0a n nα
τ

− ∆ + ∆ + >  (4.27) 

Therefore, for a given value of detuning the system is unstable against parametric scattering 

in the (+k,-k) states if  
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The ground state itself is unstable if 

 
2 2 2 2

1
2 3 / 2 3/,

3 3
n τ τα

 ∆ − ∆ − ∆ + ∆ −
∈ 
  

 (4.29) 

The dispersion shows flat parts if the stability condition is verified and if 

 ( )2 2
1 13 4 0n nα α− ∆ + ∆ <  (4.30) 

which occurs when 1 ,
3

nα ∆ ∈ ∆  
. Therefore if 1nα  is between 0 and 

3
∆ , the flat parts are 

present at non zero wave vectors, if 1nα  is between / 3∆  and ∆  this flat part is around 0k = . The 

condition 1nα = ∆  yields a linear spectrum. One should note that this line belongs to the stable 

region. All these results are summarized in figure 4.12. We took / 1meVτ =h . The figure shows 6 

different regions, 2 of which are unstable and 4 correspond to different types of dispersions. In the 

region 1 the dispersion shows flat part at some nonzero wavevector k (and -k); in the region 2 the 

flat part is centered at 0k = ; the region 3 has a Bogoliubov-like dispersion (linear at small 

wavevectors); the region 4 has the original parabolic dispersion; the regions 5 and 6 are unstable. 
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Figure 4.12. Regions of stability for the circularly polarized mode: 

    1 - Flat part of the spectrum for (+k,-k) states; 

    2 - Flat part of the spectrum for k=0; 

    3 - Linear spectrum in k=0; 

    4 - Parabolic spectrum; 

    5 - Instability of the (+k,-k) states; 

    6 - Instability of the ground state.  
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Let us now consider a linearly polarized macrooccupied mode. This situation can correspond 

to different pumping polarisations, including, but not limited to, the linear polarization. The stability 

of the system requires the following conditions to be fulfilled: 
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These two conditions are equivalent if 2 0α = . If 2α  is positive, the condition of stability of 

the component co-polarised with the macrooccupied mode is the strictest, and therefore it is 

sufficient to check only this condition. If 2α  is negative, which is the realistic case, the condition on 

the cross-polarised component becomes stronger. This conclusion agrees well with the current 

understanding of the spin dependent polariton-polariton scattering. Indeed, it agrees with the fact 

that two polaritons of a given linear polarisation will scatter preferentially toward cross polarized 

polariton states if 2α  is negative and co-polarised if 2α  is positive (see chapter 3). Therefore, in the 

case of negative 2α , elementary excitations of the macrooccupied mode are mainly cross polarised 

and their stability governs the stability of the whole system. In what follows, we study only the 

realistic case and check the stability of the cross-polarised component. The system is always stable 

if: 
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Above this value the stability region is limited by the values 
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States with finite wave vectors show flat dispersions on the range 
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and the 0k =  state has flat dispersion on the range 
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The result is plotted in figure 4.13. This figure is more complicated than the figure 4.12, 

because both co- and cross-polarized components can show different types of dispersions. In region 

1 the dispersion shows flat part at some nonzero wavevector k±  (this applies to both polarizations, 
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as demonstrated by figure 4.11c); in regions 2 and 2' the flat part is centered at 0k =  (the prime 

corresponds to the cross-polarized component); regions 3 and 3' have the Bogoliubov-like 

dispersion, which takes place at different conditions for the co- and cross-polarized components; the 

region 4 has an ordinary parabolic dispersion; the regions 5 and 6 are unstable. It is important to 

note that the results shown here have been obtained for the linearly polarized macrooccupied 

polariton mode. 

 

 
Figure 4.13. Regions of stability for linear polarized mode: 

    1 - Flat part of the spectrum for (+k,-k) states; 

    2, 2' - Flat part of the spectrum for k=0; 

    3, 3' - Linear spectrum in k=0; 

    4, 4' - Parabolic spectrum; 

    5 - Instability of the (+k,-k) states; 

    6 - Instability of the ground state. 
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4.3.5. Probing renormalization of dispersion by analysing the microcavity emission 

The renormalization of the dispersion of elementary excitations of microcavity under 

resonant pumping affects the emission spectra in the pump-probe geometry. We perform numerical 

simulation of such an experiment using the coupled Gross-Pitaevskii equation for excitons and 

Schroedinger equation for photons taking into account their polarization, like discussed in 

section 4.2. The polariton lifetime is taken equal 1 ps. The circularly polarized pump is spatially 

homogeneous and detuned by -2.5 meV from the bottom of the low polariton branch. A weak probe 

of 0.1 ps duration and 1 µm spatial size is sent 15 ps after the pump is turned on. This probe excites 

the excitations in a broad energy and wave vector range. The photon component of the 

wavefunction is Fourier-transformed over 100 ps. 

Figure 4.14 shows resulting dispersions obtained at increasing pump intensities. Fig. 4.14a 

shows dispersion with flat regions at -11µm±  (region 1 of Fig. 4.12). One can see the bright 

emission spots due to the renormalization of the imaginary part of the dispersion. Fig. 4.14b shows 

flat dispersion centered at 0k =  (region 2 of Fig. 4.12). Fig. 4.14c shows the Bogoliubov-like 

dispersion linear at small wavevectors (region 3 of Fig. 4.12). Fig 4.14d shows the parabolic 

dispersion corresponding to the region 4 of Fig. 4.12. From the experimental point of view, it may 

be interesting to work with the linear polarized probe orthogonal to the linear polarized pump. In 

this configuration it should be easier to detect a system response to the weak probe. 

The direct prove for superfluidity of a liquid can be obtained in propagation experiments 

which would show zero viscosity (no dissipation). In order to reveal the superfluid regime for the 

ensemble of exciton polaritons, we have modelled the propagation of a Gaussian-shape repulsive 

potential fluctuation (defect) of 7 µm diameter and 10 meV amplitude propagating at a speed of 

5 µm/ps through the polariton condensate in two regimes: 1) when the pumping is such as to make 

the polariton dispersion parabolic at k=0 (as in Fig.4.12 d); 2) when the pumping is chosen so that 

to provide a linear dispersion of excitations in the vicinity of k=0 as in (Fig. 4.12c). Similar 

demonstration of superfluidity but with a polariton liquid flowing around a stationary defect has 

been performed for the first time in the papers of I. Carusotto and C. Ciuti (2004, 2005). The results 

are shown in Figure 4.15. If the dispersion is parabolic (Fig. 4.14d), the propagation of the defect 

induces the supplementary excitations leading to the polariton density waves. They are visible in 

log scale image about 50 µm away from the defect, even though the lifetime in the system is quite 

short (1 ps). However, if the pumping intensity is chosen to yield the linear dispersion (Fig. 4.14c), 

no density waves are seen even in the vicinity of the defect. This is a clear indication that the 

polaritons are not perturbed by the motion of a defect, and therefore the moving body does not lose 

its energy by interaction with polaritons. This is characteristic for the dissipationless propagation of 
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a body through a superfluid. We have checked also that the total density of polaritons does not 

depend on the fact whether the defect is moving or not, in the case the linear dispersion. As the 

energy lost by the system per a unit of time is directly proportional to the density of polaritons in 

the system, this confirms that there is no additional dissipation linked with the motion of the object. 

 
Figure 4.14. Emission spectra showing renormalized dispersions in the order of increasing pumping 

power: a) flat at 0k ≠ , b) flat at 0k = , c) linear, d) parabolic. The red lines show the real parts of 

the theoretical dispersions calculated using Eq.(4.25). 
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Fig. 4.15. Subsonic motion of a defect through a) normal, b) superfluid polaritons. 
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4.4. Conclusions 

In this chapter we have described propagation and polarization of polaritons both in linear 

and non-linear regimes. We have demonstrated that the presence of polariton “condensate” should 

manifest itself in superfluid propagation of ring-like excitations. We have also considered 

polarization of a driven macrooccupied mode and demonstrated its multistability, which may be a 

very important property from the point of view of applications. Finally, we have analyzed the 

excitations of the driven mode and their stability, and we have shown that even in this case 

polariton system can demonstrate superfluidity, in a particular case when the pump detuning is 

exactly equal to the blue shift induced by the interactions. An important step further can be to 

incorporate finite temperature effects e.g. using the Bogoliubov-de Gennes description of thermal 

clouds, like it has been done in the study of atomic condensates by M. Moreno-Cardoner et al 

(2007). 

The exciton-polariton condensates are being very actively studied now, and new papers get 

published each week. An interesting paper relevant to the present chapter has just been published by 

A. Amo et al (2007). This paper reports observation of polariton superfluidity in the OPO 

configuration (in the signal state), as predicted by I. Carusotto and C. Ciuti (2004). 
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Chapter 5. Polariton Bose condensate in a disordered system 

Obtaining polariton Bose condensation was a great challenge of physics of 

microcavities for a long time. Surprisingly, when the condensate had been observed, it did not 

manifest linear dispersion expected for a weakly interacting Bose condensate. Rather, a flat 

dispersion with blue shift has been observed (J. Kasprzak et al, 2007), corresponding to bright 

emission from localized spots in real space (M. Richard et al, 2005). In this chapter we will 

explain the theory describing this effect, and find the conditions for the observation of 

polariton superfluidity. We will study the transitions between the non-condensed polaritons, 

Bose glass and superfluid phases in CdTe and GaN at T=0 and at non-zero temperatures. 
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5.1. Bose glass and superfluidity 

In this section we will describe the phases of a polariton condensate in a disordered 

system: Bose glass and superfluid. We will first describe the behavior of polaritons in 

disordered systems and introduce the Bose glass phase which is even younger than the Bose-

Einstein condensate. We will study the transition between the two on the basis of the Gross-

Pitaevskii equation. 

5.1.1. Polaritons in a disordered system 

This is not the first study of the problems of disorder and Bose condensation of 

exciton-polaritons. One should give credit to the activity of the Cambridge group of P.B. 

Littlewood. A paper of J. Keeling et al (2004) and a recent paper of F.M. Marchetti et al 

(2006) study the effect of excitonic disorder on the thermodynamics and excitations of 
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exciton-polariton condensates. These works are based on the idea that exciton-polaritons are 

formed with localized excitons having the highest oscillator strength, and that the exciton 

disorder is much more important than the polariton disorder. However, the typical scale of 

localization observed in recent experiments of M. Richard et al (2005) is much larger than 

that of excitonic disorder, which means that the photonic disorder must be affecting the 

exciton-polariton condensate in significant way. Moreover, the conclusion that the exciton-

polaritons are formed by localized excitons is based on a numerical calculation showing 

maximum of exciton oscillator strength at negative energies. This numerical calculation can 

be criticized for several problems, which will not be detailed here. These reasons make further 

investigation of disorder influence on polariton condensates necessary. 

We assume that the polaritons are moving in a random potential ( )V r  whose mean 

amplitude and root mean square fluctuation are give by ( ) 0V =r  and ( )2
0V V=r  

respectively. The correlation length of this potential is ( ) ( ) 2
0 00 d /R V V V= ∫ r r . As in any 

disordered system, there are two types of states: the free propagating states and the localized 

states, separated by the threshold energy cE . The localization radius scales like 

( ) ( )0 0 / ss
ca E a V E E∝ − , s being a critical index and 2

0 0/a MV= h . In two dimensions cE  is 

of the order of mean potential energy (i.e. 0 in our case), and 0.75s ≈ . The quasi-classical 

density of states is ( ) ( )( )2 01 erf /4
MD E E Vπ≅ +

h
 (see Fig. 5.1). These analytical results are 

the direct generalization of the results presented in a classical review on disordered 

semiconductors: A.L. Efros and B.I.Shklovskii (1989). 
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µ

 
Figure 5.1. Density of states and localization radius for a GaN cavity with 5 meV disorder 

 

 

 

If one simplifies the problem that has been posed in the introduction to this chapter, it 

reduces to a problem of percolation for a classical liquid on a disordered surface. Let us 

demonstrate that a liquid can flow through an infinite disordered surface with its given height 

( )V r , when the level of the liquid reaches the average value of the height ( )V r  (provided 

that ( )V r  is symmetric relative to its average value). 

The idea is that one should think not only about liquid flowing from one side of the 

surface to the other, but also about crossing this surface by passing over islands linked with 

each other without wetting the feet. Let us set the average value ( ) 0V =r  and call cV  the 

level of liquid required for the flow, and cV ′  the level of liquid required to have the possibility 

to pass over islands. Now, if for a large enough square the liquid cannot flow from the left 

side to the right side, it means that one can cross this square over islands from the top side to 

the bottom side. On the other hand, if a liquid can flow from the left side to the right side, one 

cannot cross this surface over islands without wetting the feet. For big enough surfaces, there 

is no need to speak about particular directions, and the above statement is generalized to the 
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following: the level of liquid required for the flow is the same as the level required for a 

passage over islands to exist, or 

 c cV V ′=  (5.1) 

For a function ( )V r  symmetric relative to its average value it is obvious that 

 c cV V ′= −  (5.2) 

and, therefore, 

 0c cV V ′= =  (5.3) 

This classical result has been first obtained by Zallen R., Schen H. (1971), Dykhne 

A.M. (1970). For the system under study it means that the chemical potential of polaritons 

should be equal to the average value of the disorder potential, for the superfluidity to appear. 

In the quantum limit, this result is modified, and its modification is considered in section 5.2. 

5.1.2. Bose condensation in 2D 

We consider formation of a polariton condensate in a disordered 2D system in the 

thermodynamic limit. Without interactions, the condensate would form in the lowest energy 

minimum accessible for polaritons. In a finite size system, the lowest energy state always 

exists. The interactions increase the energy of the lowest state as soon as it starts to get filled 

by particles, and above some limit it raises to a level of some other state. These states, 

equivalent from the thermodynamic point of view, now start to be both populated, and so on. 

Thus a Bose glass phase is formed, consisting of several spatially separated condensates 

having the same energy. The energy level of these condensates is the chemical potential of the 

system µ . In order to find it, one should minimize the free energy of the system given the 

number of particles. The Bose glass phase is characterized by an unusual dispersion of 

excitations which contains flat part corresponding to localized states. 

When the chemical potential reaches a certain threshold that we are going to find, a 

percolation takes place, which leads to the transition from the Bose glass to the superfluid 

phase. The particle density is still not completely spatially homogeneous, but does not go to 

zero anywhere. The dispersion in this phase becomes linear close to 0k = , as expected from 

the Bogoliubov theory (see chapter 1). 

Strictly speaking, non-interacting bosons in 2D cannot undergo Bose-Einstein 

condensation as the number of particles which can be fitted to all the excited states of the 

system is divergent for any µ > −∞ . Also, the deep localized states of polaritons have a 

different localization dimensions for excitonic and photonic parts and the quasi-classical 
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expression for the density of states ( )D E  given above becomes inapplicable (see 

V.M. Agranovich and Yu. N. Gartstein, 2007). The situation is thus different from the case of 

cold atoms trapped in a 2D power-law potential, for which the renormalization of the density 

of states makes “true” BEC possible (V. Bagnato, D. Kleppner, 1991). Therefore, even in the 

presence of disorder, BEC cannot take place strictly speaking for cavity polaritons. However, 

it is possible to define a quasi-phase transition which takes place in finite systems 

(G. Malpuech et al, 2003). Indeed, for a system with a finite size L  there is a finite number 

trapN  of potential traps for polaritons, thus, there is an energy spacing between the single 

particle states. The typical energy distance between the ground and excited states of the finite-

size system levels δ  under the assumption of long-range potential is approximately given by 

0 / trapV N  or 2 2
0/ 2MRh , whichever is smaller. In this framework the critical density is given by 

the total number of polaritons which can be accommodated in all the energy levels of the 

disorder potential except the ground one: 

 ( ) ( )02
0

1, , ,c B i
i

n T L f E E T
L ≠

= ∑  (5.4) 

where ( ), ,Bf E Tµ  is the Bose-Einstein distribution function, 0E  is the energy of the 

lowest localized state. 

To evaluate the critical density ( ),cn T L  the discrete sum is replaced by an integral in 

(5.4), and we find ( ) ( ) ( )( )/
0 ln 1/ 1 Bk T

c Bn T D E k T eδ≈ −  assuming ( )D E  is a smooth 

function. Above this density all additional particles are accumulating in the ground state and 

the concentration of condensed particles 0n  satisfies ( )0 cn n n≥ −  where n is the total density 

of polaritons. It is not a real phase transition since the system has a discrete energy spectrum 

and the value of the chemical potential never becomes strictly equal to E0. 

5.1.3. Bose glass phase 

Although the Bose glass was introduced for the first time as a new phase replacing the 

Bose condensate in a disordered system in a paper of J.A. Hertz, L. Fleishman, and 

P.W. Anderson (1979), only 20 years later this concept became a center of great research 

activity after a seminal paper of M.P.A. Fischer et al (1989), which is not even citing the first 

one. 

M.P.A. Fisher et al were studying the transition between the Mott insulator and 

superfluid phases for bosons on a lattice with a presence of a random disorder potential. In 
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such a system strong particle interaction leads to localization of bosons for commensurate 

densities, thus a Mott insulator phase appears. This phase is characterized by a presence of a 

gap for particle-hole excitations, and by zero compressibility. Disorder modifies the properties 

of the insulating state, leading to appearance of a new phase called Bose glass, which differs 

from the Mott Insulator in that it has gapless (and flat) dispersion for excitations and its 

compressibility has finite value. The authors argued that the transition from the Mott insulator 

to the superfluid phase with increasing hopping strength can take place only through the Bose 

glass phase, and that for some parameters the Mott insulator does not even exist as a phase. 

A few years later in 1991 R.T. Scalettar, G.G. Batrouni, and G.T. Zimanyi have 

proposed another localized phase for bosons on a lattice, which they called Anderson glass, 

because it appears from the Anderson localized state (non-interacting particles with any 

statistics become localized in a disorder potential). This phase has the same properties as the 

Bose glass phase of M.P.A. Fischer et al, the difference being that in the case of Anderson 

glass the interactions between particles lead to their delocalization, and in the case of Bose 

glass the interactions lead to the localization of particles. This is demonstrated by figure 5.2, 

where the superfluid density grows and then drops to zero again with increasing interactions 

strength, as the system passes from the Anderson glass to the superfluid and then to the Bose 

glass phases.  

This difference between the Bose glass and the Anderson glass of bosons has been 

introduced for bosons in a lattice, described by the Bose-Hubbard or similar models. The 

polariton system we are considering is very different from this picture, because the polaritons 

are not restricted to the lattice sites and there is no localization without disorder. The polariton 

density is, in the regime of Bose condensation, relatively high and the interactions are 

relatively small. Moreover, localization can not appear with increasing interaction strength, so 

the Bose glass in the sense of Bose-Hubbard model can not exist for polaritons. It appears 

therefore useless to distinguish different types of bosonic glasses, which is why we call the 

localized phase that we study the Bose glass, even if it is closer to the Anderson glass of 

bosons in the Bose-Hubbard model. 

It is interesting to note here that a proposition to simulate the Bose-Hubbard model 

within a system of polariton condensates has been recently published by C.W. Lai et al 

(2007). In this paper the authors proposed to make vary the coupling between several 

condensates localised in the minima of a specially created regular potential, in order to 

observe superfluid and Mott Insulator phases. 
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Fig. 5.2. The superfluid density at fixed density 0.625ρ =  and varying coupling. sρ  is zero in 

the Bose-glass phase at strong coupling, but goes to zero again in the Anderson phase (from 

R.T. Scalettar, G.G. Batrouni, and G.T. Zimanyi, 1991). 

 

5.1.4. The analogies of atomic condensates 

The behaviour of the condensates of cold atoms in disordered systems is a subject of 

active ongoing research. Many papers are being published each year. However, as it has been 

mentioned above, the models and the results for atoms do not immediately apply for 

polaritons, which is why we will not go into a detailed discussion of all the results obtained 

for the atomic condensates here, restraining to only few examples. 

One of the first cases of experimental evidence of superfluidity of atomic BEC after 

the observation of the BEC itself in 1995 by K.B. Davis et al is presented in a paper of C. 

Raman et al (1999) which studied dissipation in an atomic BEC at different velocities. One 

should also give credit to the paper of R. Onofrio et al (2000) reporting observation of 

superfluid flow of atomic BEC. The transition between superfluid and dissipative behaviour 

of BEC depending on the potential has been studied experimentally by S. Burger et al (2001). 

Theoretical research on the condensate localization in various conditions is very 

extensive in the atomic community, since it allows physical realization of the well-developed 

Bose-Hubbard model. An implementation proposal for the Bose and Anderson glasses has 
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been published by B. Damski et al (2003). Experimental observation of transition from Mott 

Insulator to the Bose Glass phase has been recently reported by L. Fallani et al (2007). 

 

5.1.5. Interacting polaritons at T=0 

Interactions between particles become dominant once the polaritons start to 

accumulate in the ground state. The quantitative analysis can be carried out in the framework 

of the Gross-Pitaevskii equation for the condensate wavefunction ( ), tΨ r  which reads 

 ( ) ( ) ( ) ( )
2

2
, , ,

2
i t V t t

t M
α

 ∂
Ψ = − ∆ + + Ψ Ψ ∂  

r r r rh
h  (5.5) 

We write the scalar Gross-Pitaevskii equation for polaritons here without taking into 

account the non-parabolicity of their dispersion and the LT splitting, in order to avoid 

overcomplication of the problem. The interaction constant here describes interaction of 

excitons having the same spin: 23 /b B QWE a Nα = . The wave function is normalized for surface. 

The solution of the equation (5.5) takes the form ( ) ( ) ( )0, exp /t i tµΨ = Ψ −r r h . The 

wavefunction ( )0Ψ r  is obtained by numerical minimization of the free energy of the system: 

 ( )( ) ( ) ( ) ( )
2 2 42

0 0 0d d d
2 2

F V
M

α
= ∇Ψ + Ψ + Ψ∫ ∫ ∫r r r r r r rh , (5.6) 

which is performed under the constraint 

 ( ) 2
0d NΨ =∫ r r  (5.7) 

where N is the number of polaritons in the system. 

We have performed the calculations in two different cases: for a CdTe and for a GaN 

cavity, both at zero detuning. In the first case (CdTe cavity) we have taken the polariton mass 
5

05 10m m−= ×  where 0m  is the free electron mass, 25meVbE = , 34Ba A= & , 16QWN = . We 

have included a random Gaussian disorder potential with 0 0.5meVV =  and 0 3µmR = . In the 

second case (GaN cavity) we have taken the polariton mass 5
03 10m m−= ×  where 0m  is the 

free electron mass, 50meVbE = , 20Ba A= & , 18QWN = . We have included a random 

Gaussian disorder potential with 0 5meVV =  and 0 4µmR = . As one can immediately see, the 

main difference is that in GaN the disorder is at least 10 times stronger than in CdTe. 

The results of calculations of the spatial distribution of polaritons are shown in Fig. 5.3 

(for CdTe) and Fig. 5.4 (for GaN). Panel (a) corresponds to the non-condensed situation. The 
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spatial profile is given by statistical averaging over all occupied states 

( ) ( )( ) ( ) 2
, ,B i ii

n f E T Tµ= Ψ∑r r . The temperature in this expression is set to the typical 

experiment temperature (20 K for CdTe and 300 K for GaN). At this temperature the disorder 

does not affect the spatial distribution of particles, which stays almost uniform. 

Once the condensate is formed one can neglect the thermal occupation of the excited 

states and the spatial image of the polariton distribution is given by the ground state 

wavefunction (solution of (5.6)). This case is plotted on panels (b) of figures 5.3 and 5.4. As 

expected, the condensate is well localized in the minima of the random potential. 

When the particle density exceeds the threshold, condensate becomes delocalized, 

although its wavefunction can still exhibit spatial modulation. The superfluid case is plotted 

on panels (c) of figures 5.3 and 5.4. 

To calculate the quasiparticle spectra shown in lower panels of figures 5.3 and 5.4 we 

introduce a single-particle Green’s function which takes the form 

 ( ) ( ) ( )†
0

0, i i

i i

G
Eω ω

Ψ Ψ
=

−∑
r r

r r
h

 (5.8) 

where iE  and ( )iΨ r  are the eigenenergies and eigenfunctions of the elementary 

excitations, found numerically from Eq. (5.5). The spectrum of elementary excitations is 

given by the poles of the Green’s function in the ( ),ωk  representation. This spectrum should 

not be thought of as a simulation of a real experimental spectrum, because it does not take 

into account the spectral weight of different states. 

For the non-condensed case the panels (d) show typical parabolic dispersion 

broadened by the disorder potential. For the Bose glass phase we find a parabolic dispersion 

with a flat part (panels (e) of figures 5.3 and 5.4). For the superfluid case the dispersion 

becomes linear (panels (f)). The figure 5.4(f) shows the onset of superfluidity, and one can see 

the transition from linear to parabolic dispersion at high wavevectors, described by the 

Bogoliubov formula. Panels (b) and (e) reproduce qualitatively the experimental observations 

of M. Richard et al (2005), shown on figure 5.5, and J. Kasprzak et al (2007), shown on 

figure 5.6, which are characteristics of the formation of a Bose glass. Linear dispersions on 

panels (f) are still to be observed experimentally. 
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Figure 5.3. Bose glass and superfluid real-space images and dispersions for a CdTe cavity. 

Red lines are the guides for the eyes. The figures shown correspond to densities 0, 6x1010, and 

2x1012 cm-2. 

 
Figure 5.4. Bose glass and superfluid real-space images and dispersions for a GaN cavity. The 

figures shown correspond to the densities 0, 3x1012, and 9x1012 cm-2. 
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Figure 5.5. Gray-scale two-dimensional images of the near-field polarized PL for different 

pumping powers. Vertical and horizontal axes are in-plane coordinates in the real space. 

Image (a) is taken below threshold and image (b) above (from M. Richard et al, 2005). 

 
Figure 5.6. Dispersion of x- and y-polarized polariton branches below (open symbols) and 

above (solid lines) the condensation threshold (from J. Kasprzak et al, 2007). 
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5.2. The twisted boundary conditions method 

It is instructive to analyze both the variation of the emission pattern and the quasi-

particle spectrum in comparison with the behavior of the superfluid fraction of the polariton 

system. The latter quantity can be calculated using the twisted boundary conditions method 

(A.J. Leggett, 1970). Another possible option is to move the disorder potential and estimate 

the fraction of particles which are dragged with the disorder. This would give the normal 

fraction, and the part which is not dragged, is superfluid. This approach is equivalent to the 

twisted boundary conditions, as shown by A. Astrakharchik (2004). However, the twisted 

boundary condition method is simpler to implement, because the modification of the 

minimization procedure described in the previous paragraph is evident. Imposing such 

boundary conditions implies that the condensate wavefunction acquires a phase between the 

boundaries, namely: 

 ( ) ( )i
i e θ

θ θΨ + = Ψr L r  (5.9) 

where iL  (i=x,y) are the vectors which form the rectangle confining the polaritons and 

θ  is the twisting parameter. The superfluid fraction of the condensate is given by 

 ( )2
0

2 20

2
lims

s

MLnf
n n

θ

θ

µ µ
θ→

−
= =

h
 (5.10) 

where θµ  is the chemical potential corresponding to the boundary conditions Eq. (5.9) 

and 0µ  is the chemical potential corresponding to the periodic boundary conditions ( 0θ = ). 

In the case of a clean system, ( ) 0V =r , the plane wave is the solution of (5.5) and 

2 2
20 2

n
MLθ

θµ µ− = h : the superfluid fraction is 1sf = . On the contrary, for the strongly 

localized condensate the wavefunction is exponentially small at the system boundaries and the 

change of the boundary condition (i.e. variation of θ ) does not change the energy of the 

system, thus ( )( )0exp /sf L a µ−  and goes to 0 for an infinite system. Due to the 

exponential tails of the localized wavefunctions a small degree of superfluidity remains in the 

finite size system. Equations (5.5) and (5.9) allow to study the depletion of the superfluid 

fraction for arbitrary disorder. The contribution of the disorder to the normal density of 

polaritons can be represented as 

 ( )1d
n sn f n= −  (5.11) 

Figure 5.7 shows the superfluid fraction for the CdTe cavity calculated as a function of 

the polariton density in the system for 0KT = . Due to the finiteness of the system considered 
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the superfluid fraction remains non-zero for any finite density, but a very clear threshold 

behavior for densities corresponding to the percolation threshold as observed on Fig. 5.2 , is 

also shown. 

For high values of the chemical potential, where 2
0 / 1V gµ , perturbation theory 

applies and we obtain 2
0 / 4d

nn V gµ=  for the normal density (O.R. Berman et al, 2004), which 

coincides with the twisted boundary conditions approach for high polariton densities, as 

shown on Fig. 5.7. 

Because the disorder potential and the polariton density vary very strongly in GaN 

cavity, the twisted boundary conditions method is much more numerically difficult to apply in 

this case. This is why we show results only for the CdTe cavity. 

 
Figure 5.7. Superfluid fraction as a function of density for CdTe cavity, obtained by twisted 

boundary conditions method (black line) and by using the perturbation theory (red line) 

 

 

5.3. Phases of a polariton condensate in disordered cavities 

We turn now to the calculation of the cavity polariton phase diagrams for disordered 

CdTe and GaN cavities. Similarly to previous works (e.g. Malpuech et al, 2003) we start by 

roughly defining temperature and density domains where the strong coupling is supposed to 

hold in both cavities. The limits are shown on Fig. 5.8 and 5.9 as thick dotted lines: the edge 

temperature is assumed to be equal to the exciton binding energy and the maximum polariton 
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density is taken 2 QWN  times larger than the bleaching exciton density in a single quantum 

well. The transition from normal to Bose glass phase can be calculated from Eq. (5.4) and a 

realistic realization of disorder. The lower solid lines on Figs. 5.8 and 5.9 show ( )cn T  for the 

same realizations of disorder as for Figs. 5.3 and 5.4. The free polariton dispersion is 

calculated using the geometry of Kasprzak et al (2006) for CdTe cavity and the geometry of 

G. Christmann et al (2006) for GaN cavity. 

We now calculate the density for the transition between the Bose glass and the 

superfluid phase. In the low temperature domain, this density is approximately given by the 

percolation threshold cEµ =  and does not depend significantly on temperature. This 

condition corresponds with good accuracy to the abrupt change of the superfluid fraction sf  

shown in Fig. 5.7. However, at higher temperature the thermal depletion of the condensate 

becomes the dominant effect. In that case the chemical potential of the condensate is much 

higher than the percolation energy cE  and the depletion induced by disorder can be neglected 

compared to the thermal depletion of the superfluid. The normal density then reads 

 ( )
( )

( ) ( )( )0
2

, 0,2 d
2

B
n

f T
n T E

ε µ
επ

∂ =
= −

∂∫
k

k k  (5.12) 

and the superfluid density of the system given by ( ) ( )0
s nn T n n T= −  can be substituted 

into the Kosterlitz-Nelson formula to obtain a self-consistent equation for the transition 

temperature: 

 ( )2

2
s KT

KT

n T
T

M
π

=
h

 (5.13) 

The superfluid phase transition temperature ( )KTT n  as shown on Figs. 5.8 and 5.9, is 

determined from the solution of Eq. (5.13).  

For CdTe, below 120 K the critical density is given by the percolation threshold and 

there is no temperature dependence. Above 200 K the superfluid depletion is determined 

solely by the thermal effects. In the intermediate regime the crossover between the thermal 

and disorder contributions takes place and our approximations are no longer justified. 

For GaN, below 350 K the critical density is given by the percolation threshold and 

there is no temperature dependence. Above 600 K the superfluid depletion is determined 

solely by the thermal effects. 
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We also find that the superfluid transition takes place very close to the weak to strong 

coupling threshold and for densities 3 orders of magnitude larger than the one of the Bose 

glass transition at 19 K for CdTe. 
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Figure 5.8. Phase diagram for a CdTe cavity 
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Figure 5.9. Phase diagram for a GaN cavity 
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5.4. Conclusions 

In this last chapter we have analyzed the new phase of polaritons – the Bose glass 

phase. We have demonstrated that with increasing polariton density the system first exhibits 

transition to the Bose glass phase, and then to the superfluid one, the latter transition being 

rather close to the loss of strong coupling threshold. We have analyzed the behaviour of 

polaritons in two types of disordered cavities: CdTe and GaN, showing that observation of 

polariton superfluidity should be possible in both. 
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Appendix I. Derivation of the Boltzmann equation 

In this section we will demonstrate the derivation of the spinless Boltzmann equation 

for bosons interacting with phonons starting from their microscopic Hamiltonian. This 

procedure is described in A. Kavokin and G. Malpuech (2003). We consider only scattering 

by the phonons for simplicity, because the derivation for bosonic interactions is lengthier. The 

final shape of the equations will be different, however, from (1.57), because the nature of 

interactions is different.  

We begin with writing the Liouville-von Neumann equation (analogue of (1.51) for a 

quantum system): 

 ( )ˆ ,di H t
dt
ρ ρ =  h  (1.1) 

where ρ  is the density operator of the system in the interaction representation (in 

which the density matrix is defined as 
0 0iH t iH t

I e eρ ρ
−

= h h ), and ( )Ĥ t  is the time-dependent 

Hamiltonian describing the interaction of bosons and phonons: 

 ( ) ( )' '
' ' '

, '

ˆ . .i tH t V e b a a h cω −Ω −Ω − +
−= +∑ k k k k

kk k k k k
k k

 (1.2) 

here ( )a a+
k k  are the annihilation (creation) operators for bosons and ( )b b+

k k  are the 

annihilation (creation) operators for phonons; Ωk  is the energy of non-interacting bosons and 

ωk  is the energy of phonons, both given by dispersion relations. 'Vkk  is the matrix element of 

the transition. 

The Liouville equation can be rewritten in a different form by time-integrating (1.1) 

and substituting it back into (1.1): 

 ( ) ( ) ( )2

1 ˆ ˆ, ,
td H t H d

dt
ρ τ ρ τ τ

−∞
  = −   ∫h

 (1.3) 

We apply the Markov approximation, which means physically that the system is 

assumed to have no phase memory. This allows to integrate in (1.3) and obtain: 

 
( )

( )

' ' ' ' ' ' '
' '

' ' ' ' ' ' '
' '

1 2
2

1 2
2

phon

phon

d W a a a a a a a a a a a a
dt

W a a a a a a a a a a a a

ρ ρ ρ ρ

ρ ρ ρ

+ + + + + +
→

≠

+ + + + + +
→

≠

= − −

+ − −

∑∑

∑∑

k k k k k k k k k k k k k k
k k k

k k k k k k k k k k k k k k
k k k

 (1.4) 

where 
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 ( )2
' '

'

2 (0,1 ) ( ') ( ) )phonW V n E k E kπ δ ω′ ′→ − −
−

= + −∑k k kk k k k k
k k

m h
h

 (1.5) 

The density matrix can be factorized into the product of phonon density matrix and 

boson density matrices corresponding to the different states in the reciprocal space by using 

the Born approximation: 

 phρ ρ ρ= ⊗∏ k
k

 (1.6) 

The diagonal elements of the density matrix ρk  give the populations of the bosonic 

states with wave vector k: ( )n Tr a a ρ+=k k k k , and the same for phonons, whose populations 

are assumed to be given by an equilibrium distribution. Finally we obtain: 

 ( ) ( )1 1dn n W n n W n
dt ′ ′ ′ ′→ →

′ ′

= − + + +∑ ∑k
k k k k k k k k

k k
 (1.7) 

One can extend this equation to incorporate the pump and decay, and the bosonic 

interactions, and write the general Boltzmann equation for particles in a system with pump 

and decay in reciprocal space: 

 ' ' '
' '

dn P n n W W n
dt → →= −Γ − +∑ ∑k

k k k k k k k k k
k k

 (1.8) 

where Pk  is the generation term (number of particles appearing at k due to pumping 

per unit of time), Γk  is the particle decay rate (defined similar to generation) and 'W →k k  is the 

total scattering rate between the states k and k’ due to any kind of physical process (an 

example for interaction of bosons and phonons is given by equation (1.5)).
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