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Résumé:

les relations spatiales entre les différentes régions d’ une image sont utiles pour
la compréhension et l'interprétation d’une scéne presentée. L’analyse Spatio-
temporelle d’une scéne implique l'intégration du temps dans des relations spatiales
entre les objets en mouvement. Les relations spatio-temporelles sont définies dans
un intervalle de temps utilisant la géométrie 3D ou I'extension de la géométrie 2D &
la dimension temporelle. La modélisation des relations spatiales dynamiques prend
en compte la position relative des objets et leur relations directionnelles, ceci im-
plique les relations topologiques, directionnelles et de distance. Ces relations sont
étendues aux domaine temporel.

Dans notre travailon décrit une méthode de combinaison 1’ information
topologique et directionnelle ot les relations d’Allen floues 1D sont appliquées dans
le domaine spatial. Cette méthode intégre le flou au niveau des relations. La méth-
ode trés gourmande initialement en temps de calcul en raison & 1’ approximation
des objets ainsi qu’a 'algorithme de fuzzification des segments des sections longi-
tudinales a été améliorée et la complexité initialement évaluée a O(nM+/M) a été
ameéliorée pour étre de l'ordre de O(nNlog(N)), et ceci en utilisant une approxi-
mation polygonale adaptée pour les objets considérés, avec n, M et N représentent
respectivement le nombre des directions,de pixels et des sommets des polygones.
L’algorithme du fuzzification des segments d’une section longitudinale est quant &
lui remplacé par les opérateurs d’agrégation floue. Dans la méthode proposée, Les
relations topologiques 2D sont représentées par un histogramme. Cette méthode de
représentation des relations spatiales a été améliorée. Les relations floues n’étant pas
exhaustives et disjoints deux a deux (JEPD), un algorithme de défuzzification des
relations spatiales a été proposé pour réaliser un ensemble JEPD de relations spa-
tiales. Cet ensemble de relations spatiales est représenté par un graphe de voisinage
ol chaque neeud du graphe représente la relation topologique et directionnelle. Cette
méthode définit des relations spatio-temporelles en utilisant le modéle de données
Espace-Temps. Un ensemble de relations spatio-temporelles est également fourni a
l'aide de la stabilité topologique.

Afin de valider le modeéle, nous avons développé des applications fondées
sur méthode de raisonnement spatio-temporelle proposée. Le raisonnement
spatio-temporel a permit la création de tables de composition pour les relations
spatiales. La table de composition pour les relations topologiques est structurées
en sous-tables. Les entités de ces sous-tables sont liées les unes aux autres par des
relations spatiales. Dans une seconde application, nous avons proposé une méthode
de prédiction des événements entre objets en mouvement fondée sur le méme
raisonnement spatio-temporel. Les objets en mouvement changeant de position &
chaque instant, la prédiction de la nouvelle position d’un objet tient compte de
I’historique de ces mouvements.

Mots-clés: Les relations spatiales floues, les relations spatio-temporelles, le
raisonnement spatio-temporel, mouvement, prédiction.



Title: Modeling Spatial Relations Between Moving Objects

Abstract: Spatial relations between different image regions are helpful in image
understanding, interpretation and computer vision applications. Spatio-temporal
analysis involves the integration of spatial relations changing over time between
moving objects of a dynamic scene. Spatio-temporal relations are defined for a
selected time interval using 3D geometry or extension of 2D object geometry to
the time dimension with sequence occurrence of primitive events for each snapshot.
Modeling dynamic spatial relations takes into account the relative object position
and their directional relations, this involves the topological, directional and distance
relations and their logical extension to the temporal domain.

In this thesis, a method for combining topological and directional relations infor-
mation is discussed where 1D temporal fuzzy Allen relations are applied in spatial
domain. Initially, the method had a high computational cost. This computing cost
is due to the object approximation and the algorithm for fuzzification of segments of
longitudinal section. The computing time has been decreased from O(nM+/M) to
O(nNlog(N)) using polygonal object approximation and fuzzy aggregation opera-
tors for segments of a longitudinal section , where n, M and N respectively represents
number of directions, pixels and vertices of polygons .

In this method, two dimensional topological relations are represented in a his-
togram. The representation method for two dimensional spatial relations has been
changed. These fuzzy relations are not Jointly Exhaustive and Pairwise Disjoint
(JEPD). An algorithm for defuzzification of spatial relations is proposed to re-
alize JEPD set of spatial relations, these JEPD spatial relations are represented
in a neighborhood graph. In this neighborhood graph, each node represents the
topological and directional relation. This method is further extended for defining
spatio-temporal relations using space and time data model, a set of spatio-temporal
relations are also elaborated using the stability property in topology.

In an application, a method for spatio-temporal reasoning based on this new
model is developed. Spatio-temporal reasoning consist of developing the compo-
sition tables for spatial relations. Composition table for topological relations are
rearranged into sub-tables. Entities in these sub-tables are related to each other
and mathematical rules are defined for composition of spatial relations which elabo-
rate the relation between entities of sub-tables. In another application, we propose
a method for motion event predictions between moving objects. It is a similar pro-
cess to the spatio-temporal reasoning. Dynamic objects occupy different places at
different time points, these objects have multiple choices for subsequent positions
and a unique history. Prediction about motion events take into account the history
of a moving object and predict about the semantics of a motion event.
Keywords: Fuzzy topological relations, spatio-temporal relations and motion
events, spatio-temporal reasoning, motion events predictions
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sets theory, operators and fuzzy relations.
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CHAPTER 1

General Introduction

Numerous theories are developed to study the dynamic objects including the spatial
relations theory, whereas the relative position of objects is elaborated through the
binary spatial relations extended to temporal domain for modeling spatio-temporal
relations. Digital data stored in snapshot format and single image analysis is ex-
tended to the analysis of sequence images, spatio-temporal phenomena is exploited
to understand the dynamic visual world, moving objects and tracking moving ob-
jects.

Spatio-temporal relations play an important role in spatio-temporal reasoning, as
in path planning task in robotics, cognition, trajectory annotation, automatic video
interpretation and video understanding systems. Spatio-temporal relations are also
used in modern devices like smart cell phones, hand held sets, wireless modems,
Global Positioning Systems (GPS) devices, Temporal Geographic Information Sys-
tem (TGIS) and other new technologies. Effective representation of spatio-temporal
data has been an important feature in many TGIS applications, general approach
represents the video database in a sequence of scenes or static images. A group of
frames, called key frames are selected. A spatio-temporal relation holds between
objects if a spatial relation holds for a time duration consisting on durative span of
key frames. Modeling these relations involves at least analysis and comparison of
two snapshots or frames. Spatio-temporal relations are developed by describing the
change in topological and directional relations in a sequential order.

In existing techniques, dynamic objects are represented by points and usually
by their geometric center. As a result, some features of the spatio-temporal date
is missed. Motion of an extended object is entirely dependant on the motion of its
particles. Movement of an object can be modeled continuously when space and time
are modeled as the adjacency spaces. In snapshot data models, motion is modeled
as a sequence of change in positions, considering conceptual neighborhoods in spa-
tial relations. Identity of objects as well as their topological and metric relations
can be exploited to derive changes that occur between two consecutive snapshots.
Automatic derivation of change from snapshots can add spatio-temporal reasoning
power to GISs. This process will help to replace human intervention in the detection
of change, which might consequently result in reduction of costs for parties with an
interest in the evolution of spatial phenomena. knowledge about changes be used in
methods to identify different types of change and sequential temporal order of spatial
relations are used for developing spatio-temporal relations and motion events.
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1.1 Moving Objects

An object is under motion if it occupies different positions in space at different
times. Movement theory may be incorporate to theories of time, space, objects
and position. Theory of time articulates the raw duration into time, it is an ordered
relation and points are basic entities. In the space theory, standard mathematical
tool for analysis is point set topology and length, area and volume are called sets
of points. Something is considered as an object, if it has some sense for movement.
Objects may be rigid or deformable and objects are modeled as sets. Position theory
brings together the object and space theory by providing the means of specifying
that where an object is located in space. Depending on how these theories are pre-
sented, we might end up with very different theories of movement. Motion is simply
a mapping from time to space. Let us consider the theory of spatial relations. In this
theory, spatial relations are grouped into three classes, topological, directional and
distance relations. In study of moving objects, we study changes in spatial relations
and these relations can change simultaneously or separately (see [Ibrahim 2007a,
Frank 1992, Davis 2000, Gerevini 2002, Delafontaine 2008, Egenhofer 1992]). Spa-
tial relations for two successive frames are compared and change in these relations
is derived, this change is used for extending spatial relations in temporal domain.
While describing the dynamic objects, we encounter the several problems like rep-
resentation of moving objects in space and nature of movement.

1.1.1 Handling Moving Objects

Reasoning can be performed on quantitative as well as qualitative way. Motion seems
to be orientation in space-time images, i.e., image sequences. It is a fundamental fact
in all theories of motion analysis. The earliest work of modeling spatio-temporal re-
lations appeared within other domains of Artificial Intelligence (AI) and computer
science, with a variety of objectives. Research areas like robotics, physical rea-
soning, computer vision, natural language understanding, Geographic Information
Systems(GIS) and Computer-Aided Design (CAD) have contributed to the study of
representing and reasoning moving objects with spatial knowledge. A view widely
held was that the ontology of space was unproblematic, topology and Euclidean
geometry being the only mathematical models to be considered.

The representation of moving objects becomes much more compact as geometries
are factored out and represented not in moving objects but once and for all with
the network. For example, in the standard model a vehicle moving with constant
speed along a road needs a piece of representation with every bend of the road. Some
assumptions about moving objects are made in every theory of motion analysis, such
as an assumption " moving objects don’t change their brightness during movement"
in optical flow theory. The theory of positions made following assumptions about
moving objects.

e An object must be located at different parts of space at different times.
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e A moving object cannot be at different places at the same time unless its
spatial size is greater than the interval between places.

e Two objects are at rest relative to each other or absolutely if both objects are
at rest.

These limitations don’t prevent us from drawing information and conclusions
from the data source. We use the change in spatial scene and spatial relations for
reasoning the moving objects and modeling spatio-temporal relations.

1.1.2 Types of Movement

Objects may be rigid or deformable. A rigid object maintains its shape and size
at all instants, whereas a deformable one can change its shape and size. Objects
in nature, such as lakes, islands and forests are considered as non rigid objects.
Artificial objects, such as land parcels, cars are considered as rigid objects. Both
type of objects change position in space, moving objects can be studies through
the spatial relations. Change in binary topological relations describe change in
topological structure due to movement and change in directional and distance spatial
relations describe only movement. In all the existing techniques, some limited cases
for the change in spatial relations are studied due to moving objects. Such as,
on road networks where topological relations are supposed to be disjoint and only
directional changes are studied [Maeyera 2005, de Weghe 2006].

Movement is categorized into two types, objects moving along the networks and
objects moving under certain constraints, where movement is limited in certain
directions. This movement is one-dimensional along a path that is embedded into
a two-dimensional space. This movement is called Constraint Movements and
basic geometric entities are points, lines and two-dimensional objects. Objects can
move without any constraint on the space. Under this type of movement, the objects
move freely in two-dimensional space, this movement of spatial objects is called Un-
constraints movement.

1.2 Spatial Relations

Spatial logic is more complex than temporal logic because of dimensionality of spatial
objects, point of view of objects. Position of an object is specified in terms of
topological and directional relations between the object pair for a spatial scene.
In literature, many spatial relations like topological and directional relations are
found and various theories are developed on this topic. Topology theory is used
for modeling the classes of statements with an intuitionistic flavor and topological
relations are characterized by the point set topology or Region Connection Calculus
(RCC). Directional relations provide information about the spatial arrangement of
these classes. These relations are determined by directional algebra, vector calculus
or simple geometrical approaches. In this section, various sorts of binary topological
and directional relations are discussed between two objects. These methods include
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the topological relations in R and R? and can be divided into the following four
classes between object pair.

Crisp Objects and Crisp Spatial Relations: Contents in an image can be un-
derstood with the help of certain properties of space. Topological proper-
ties of space provide us information about spatial organization of objects
(sets) contained in space. Initially these methods were developed for crisp
objects, simple point set topological notations or a pointless topology, Re-
gion Connection Calculus (RCC) is used to described these properties of
space |Egenhofer 1991, Egenhofer 1993, Cohn 1996]. Binary spatial rela-
tions hold between object pair, when the objects are crisp or have de-
termined contour. In such a case, objects are modeled as crisp sets and
topological relations are crisp. These set of topological relations and mod-
ifications in these methods are discussed in [Du 2005a, Schockaert 2008c].
For modeling the directional relations, point based spaces are studied in
[Frank 1996, Frank 1992, 1i 2008, Skiadopoulos 2007].

Crisp Objects and Fuzzy Spatial Relations: These spatial relations use the
exact object models. This sort of methods associate fuzziness with relations
and each relation in this class holds with a certain probability. Commonly,
these relations represent the class of directional relations such approaches are
developed in [Miyajima 1994, Wendling 1998, Bloch 1999, Polkowski 2003,
Wang 2003] and some approaches in distance relations like method described
in [Bloch 1995]. In topological domains, this class is ignored and much less
developed. Main focus of our work is to develop such type of spatial relations.

These spatial relations can be used in many application. As an example, in
road networks. Fuzzy topological relations can be used to maintain road side
safety and security. A minimum distance is maintained between moving ob-
jects (vehicles) on road networks. In this case, a distance based fuzzy meet
topological relation can be used to create alerts for vehicle driver to maintain
minimum distance. Another example for possible application of a such rela-
tions is that the robot must stop at some distance from the artifacts on his
path, fuzzy meet relation can be used to create the alert commands. Example
for such methods is described in [Matsakis 2005]. Fuzzy spatial algebra is
used to model these spatial fuzzy relations between object.

Fuzzy Objects and Crisp Spatial Relations: Fuzzy spatial objects exist in na-
ture like cloud, fog and smoke etc, due to the spatial indeterminacy or fuzziness
in the boundary of a spatial object. These objects are modeled as fuzzy object
and treated in two ways, modeling fuzzy objects as crisp object using a-cut
approach and modeling objects as fuzzy sets |Li 2004, Zhan 1998, Du 2005a,
Du 2005b, Shi 2007, Tang 2004]. In this class of spatial relations, fuzzy set
based and probabilistic models are used for object modeling. In fuzzy set
techniques, object is determined by a-cut or fuzzy segmentation methods are
applied. Once the object is determined, then exact object methods are applied
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to develop spatial relations between these objects. In this method fuzzy objects
are due to spatial indeterminacy and three valued logic is used [Roy 2001].

Fuzzy Objects and Fuzzy Spatial Relations: Fuzzy spatial relations are also
developed between fuzzy objects, for this, crisp topological methods are ex-
tended to deal fuzziness. In this class, objects are modeled using rough
set and fuzzy set based approaches, such as concept of broad boundaries
[Clementini 1996], egg-yolk model [Cohn 1996] for object representation.
Then fuzzy set and fuzzy topological operators are applied to determine
the topological relations between objects. In this area significant works
are described in [Clementini 1997, Tang 2004, Schockaert 2008b, Liu 2009,
Polkowski 2003, Roy 2001]. Different number of fuzzy topological relations
are developed using these methods, for example, 44 fuzzy topological relations
between simple 2D objects are expressed through point set topology and 46
relations are expressed using RCC' theory.

1.3 Spatio-Temporal Relations

Dynamic spatio-relations are concerned with spatial relations of moving objects.
Modeling the spatio-temporal relations are at the crossroads of Al and logic had
been proposed for a long time. Starting from the basic need to deal with the struc-
ture of time in computational systems, theories and techniques have been developed
that take into account efficiency and the need to integrate time in a more extended
reasoning apparatus. Spatio-temporal reasoning will become a key factor in under-
standing references, retrieving relevant data (figures, video clip fragments, and so
on), giving theoretical structure, and presenting the information. Many applications
of spatio-temporal relations in computer vision and image and video understand-
ing/interpretation are described in [Bremond 2007].

Modeling spatio-temporal relations is an extension of spatial relations modeling
with time. For modeling spatio-temporal relations where topology governs changes,
interval temporal logic or point temporal logic is used [Galton 2009, Allen 1983|.
In interval temporal logic two-dimensional objects are extended into time and they
behave like the volumetric objects and 3D topology is used [Muller 2002|. For point
temporal logic, 2D topological is used and objects occupy different positions of space
at each time instant and follows the theory of locations postulates [Gerevini 2002,
Erwig 2003|. The method we proposed in chapters 5 and 6, we describe the spatial
relationships among objects for a given key frames in a video scene description,
where temporal relationships are handled through the logic and spatial relations
hold in a sequence for the duration spanning over the key frames.

1.4 Thesis Objective

In applications such as Geographic Information Systems (GIS), Modern data is
stored in digital form as snapshots. Initially computer vision researchers focus on
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single image analysis and exploitation. Research on sequence of images started
with the study of motion and moving objects and sequence image analysis allows
computers to understand the dynamic world and detect motion type and moving
objects.

Modeling spatio-temporal relations is an interdisciplinary subject and spatial
relations occur in description of a spatial scene. These spatial relations involve
topological, directional and distance relations. These relations have following prop-
erties.

e Topological relations are invariant to the topological transformations on space
such as translation, rotation, scale, shear.

e Directional relations vary with topological transformations, directional rela-
tions change with the rotation, scale and shear transformations.

e Distance relations also variant to the scale and shear transformations.

The objects in a scene are described by a set of spatial adjacent pixels corre-
sponding to objects. Spatial relations are determined when the segmentation and
labeling process terminates. Different steps in image analysis are expressed in fig-
ure 1.1 and problems at segmentation stage inherit by the spatial data to all the
following process. To avoid such problems, we use the sketched images for verifying
our method.

' — ; .
g Pre-treatment Object detection
Spatial knowledge Labelling Sommilfion

Figure 1.1: Process in image treatment

Modeling spatial relations between fuzzy objects is a slightly different topic from
modeling fuzzy spatial relations between objects. For modeling fuzzy spatial rela-
tions between objects, we need only contour of objects. Thus a regular closed sets
are considered as an object and such objects are taken only by their contours.

A sequence of snapshot, featuring identity states and topological relations of ob-
jects, allows an automatic derivation of changes that affect either identity, topology
or a combination of identity and topology of objects. Similarly for directional rela-
tions. Automatic extraction of feature semantics form motion and provide a base
for semantic-based motion detection. For modeling the spatio-temporal relations
between moving objects, we need derivation of change in topological and directional
relations.
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Primary intention of this thesis is to study the moving objects through the
spatio-temporal relations and extend the spatial relations theory to theory of spatio-
temporal relations. The objective of our study is to develop a domain free method for
modeling spatio-temporal relations between moving objects. This include modeling
the fuzzy topological and directional relations at the same abstraction level for a
snapshot and then extend this logic for modeling the spatio-temporal relations. For
this purpose, we choose the method for combined extraction of topological and
directional relations, introduced by Matsakis [Matsakis 2005|. This method can’t
be used for real time applications and modeling spatio-temporal relations due to high
computational cost and histogram representation. We work for both the problems,
i.e., reduce the computational cost and change the representation of visual results.
We extend this method for modeling spatio-temporal relations and we also use this
logic for modeling composite events which are the sequence of primitive events. In
applications, we use this method for building composition tables of spatial relations
used for spatio-temporal reasoning. We also propose a motion event predictions
method using the combined topological and directional relations method.

1.5 Short Description of The Dissertation Chapters

This section summaries the whole thesis, in subsections, each following chapter is
explained shortly.

1.5.1 Fuzzy Sets and Fuzzy Operators

In this chapter, we describe briefly the basic notation of fuzzy sets and fuzzy opera-
tors which are frequently used in the theory of fuzzy sets and fuzzy operators. Fuzzy
sets are represented with the help of a fuzzy membership function. Different fuzzy
member functions are described along with the fuzzy operators. Fuzzy relations are
also expressed by the fuzzy membership functions, these relations are divided into
two categories (i) fuzzy relations defined over the pair of crisp sets and (ii) fuzzy
relations as a composition of two fuzzy membership functions, in this case sets over
which the relations are defined are also fuzzy. The notation of the fuzzy sets and
related terms, which are introduced in this chapter, are frequently used in the thesis
hereafter. Fuzzy operators are frequently discussed in numerous books related to
decision theory, fuzzy knowledge representation and many other related fields of
Artificial Intelligence. Readers familiar with these notations can skip this chapter
and readers who are new to fuzzy set, have to read this chapter to understand the
basic terminology used in this thesis.

1.5.2 Spatial Relations and Change Detection in Spatial Scene

This chapter is concerned with the spatial changes in a spatial scene. These changes
can be derived from spatial relations, which incorporate topological and directional
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relations. Methods for topological relations include the application of Allen rela-
tions in spatial domain, 9-intersections and Region Connection Calculus (RCC).
Topological relations can be represented in neighborhood graphs and spatial change
in topological aspects of space can be derived from graphs. Moving objects and
change in their topological relations follow the common sense continuity and all
these topological changes are derived by comparing the binary spatial relations at
two consecutive states or snapshots. In next sections, methods for directional rela-
tions are discussed and possible changes in the directional relations are also described
due to moving objects. In this chapter we also discuss different types of fuzziness
involved into topological and directional relations and a method for combined fuzzy
topological and directional relations.

1.5.3 On the Improvement of Combined Fuzzy Topological and
Directional Relations Information

(Pattern Recognition (to be appear) and ICCS-09 [Salamat 2009])

In this part of the thesis, we propose our method for developing fuzzy spatial re-
lations. It discusses in detail the method of combined topological and directional
relations information, objects are considered as regular closed sets and these objects
are decomposed into parallel segments in a direction. Allen relations are applied to
each segment. There can exist multiple segments for a line in one direction called
longitudinal section. This is due to two reasons, spatial indeterminacy, fuzziness or
object has convex shape or disconnected boundary. This method has the time com-
plexity of O(nM VM ), where n and M respectively stands for number of directions
and number of pixels. Time complexity is due to the algorithm for fuzzification of
segments of a longitudinal section.

Longitudinal section is handled in two ways, existence of longitudinal section
due to spatial indeterminacy or spatial fuzziness is eliminated by considering the
polygonal object approximation and longitudinal section due to disconnected object
boundary is coped with the application of fuzzy connectors. Application of fuzzy
operators and polygonal object approximation decreases down the computation time
for the method from O(nM+/M) to O(nNlog(N) where N represents the number
of vertices of polygons. Affine transformations are also discussed, these properties
are helpful for image retrieval in spatial database.

1.5.4 Two-Dimensional Fuzzy Topological Relations: A New Way
of Computing and Representation

(Published in IPCV-10 [Salamat 2010bland HAIS-10 [Salamat 2010a])

Chapter "Two-Dimensional Fuzzy Topological Relations: A New Way of Comput-
ing and Representation" concerns with new representation of fuzzy topological and
directional relations, previously combined topological and directional relations in-
formation are represented in a histogram. One-dimensional topological relations
are represented through histograms of fuzzy Allen relations, directional view of two-
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dimensional objects for every direction from [0, 27]. In complex situations it is hard
to decide about 2D binary topological relation between objects. The histogram is
replaced by the matrix representation where limited qualitative directions are rep-
resented. We also propose an algorithm for defuzzification of spatial relations, it is
helpful to know the 2D topological relation between objects with some additional
information that in which direction a particular topological relation holds. This
provide us a Jointly Exclusive and Pairwise Disjoint (JEPD) topological and di-
rectional relation. JEPD topological and directional relations are represented in a
neighborhood graph, this entails the common sense reasoning.

1.5.5 Spatio-Temporal Relations and Motion Events

Spatial logic provides us a formal view for any language interpreted over a class
of structures featuring geometric entities and relations. Language of spatial logic
considers the topological and directional relations as a fundamental entity and a
sequence occurrence of these entities over time formulate the spatio-temporal rela-
tions. This chapter concerns with the spatio-temporal relations modeling and some
visual representation of spatio-temporal events.

In modeling spatio-temporal relations, we use the point interval logic and spatio-
temporal relations are considered as the continuous transitions from one snapshot
to the next consecutive snapshot. These spatio-temporal relations are defined in the
topological viewpoint, topology of space with time, relations are based on the stable
and unstable categories. Topologically stable and unstable spatio-temporal relations
play an important role in field of Artificial Intelligence (A.I) such as natural language
processing and other areas of soft computing. In natural language processing, motion
events describe the continuous transitions from one snapshot to other in a temporal
ordering. We develop some motion events which are related to the topologically
unstable spatio-temporal Meet and Partially Overlap relations.

1.5.6 Spatio-Temporal Reasoning Based on Combined Topological
and Directional Relations

(HAL version hal-00551282)
Reasoning involves different aspects like common sense reasoning, mathematical
reasoning etc. Common sense reasoning and reasoning about human thinking levels
pledges to become the fundamental aspects of future knowledge representation tech-
niques and systems, such a system must support a temporal projection. Separate
methods for reasoning with topological and directional relations are developed and
possible relations predictions are represented into composition tables. These tables
consist of 64 entities (8 x 8 tables) for topological relations and for eight directional
relations systems.

Spatial reasoning is more complex than temporal reasoning because more object
dimensions, multiple perspective of space are involved. A suitable representation of
entities and feasible perspective for automatic spatial reasoning is required. In this
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chapter, we propose a mechanism for spatio-temporal reasoning based on Combined
Topological and Directional (CTD) relations method. Representation of neighbor-
hood graph in our proposed method resembles with the method developed by Daniel
Hernéndez in [Hernandez 1991|, our method involves some addition information by
introducing the directional contents in T'PP and T'PPI topological relations. In
other words Daniel Hernandez’s approach becomes the refinement of our method.
Mathematical formulas are also developed, this reduces the composition table and
computational time for developing these composition tables and reasoning process.

1.5.7 Spatio-Temporal Motion Event Predictions

(Published in 4 th International Conference on Pattern Recognition and Machine
Intelligence (PReMI-11) [Salamat 2011a])

Spatio-temporal reasoning is a process where subsequent positions or subse-
quent spatial relations are predicted between an object pair. Reasoning meth-
ods are largely developed for topological relations, point or interval tempo-
ral logic is used [Allen 1983, Ibrahim 2007a, Galton 2003]. In approaches
[Gerevini 2002, Ibrahim 2007b, Cohn 1997, Wolter 2000], topological relations are
computed through point set topology, Region Connection Calculus (RCC) and Allen
relations [Guesgen 1989, reasoning process supports the common sense reasoning,
i.e., method supports the space, time and cognitive representation of entities. A
few methods are developed for spatio-temporal reasoning with directional relations
[Frank 1992].

Objects in future and history have the similar behavior but they have multiple
choices for future and a unique history. Moving objects change the topological,
directional or both type of relations at same time. In this chapter we propose a
method for spatio-temporal motion event predictions which uses the CTD method
for computing static spatial relations. This method keeps into account topological
and directional relations information simultaneously and history of spatial relations
between moving objects. Motion event prediction is a similar process like the spatio-
temporal reasoning, the difference is that this method holds the object history and
can predict motion event considering the possible occurrence of a primitive event
and its temporal ordering.

1.5.8 Conclusion and Perspectives

Spatio-temporal relations are largely used by research communities in fields of GIS,
computer vision and AI. This chapter summarizes the findings of thesis and some
outlines for the perspective. We point out possible extension of our work in future
in the field of computer vision and image analysis.



CHAPTER 2

Fuzzy Sets and Fuzzy Operators

In classical set theory, the membership of elements in a set is assessed in binary
terms according to a bivalent condition. They can be used to represent black and
white conceptual thinking. Oftentimes, when something is a member of a given
crisp set it is then not a member of any other crisp set.

On the other hand, in 1965, concept of fuzzy sets was introduced by Zadeh
[L.A 1965] as an extension of the classical notion of sets. Fuzzy set theory permits
gradual assessment of the membership of elements in a set, this is described with
the aid of a membership function. Commonly, object classes in physical world don’t
have precise membership criteria. They have ambiguities in their definitions. Let
us consider examples, class of tall men, class of good cricket players in the world,
soup is hot, class of beautiful women, Elvira is blond. In all these sets, fundamental
property is not definitive. In this chapter we recall fundamental properties of fuzzy
sets and fuzzy operators.

2.1 Fuzzy Sets

Fuzzy sets are used quite frequently in the real world. Most of the people in every-
day thinking and in their linguistic phrases, use the concept of fuzzy sets. These
classes don’t constitute the exact sets in a usual way in mathematical sense. Such
imprecise knowledge plays an important role in human thinking particularly in pat-
tern recognition, artificial intelligence, cognitive sciences, decision theory etc. In
this section we denote some basic definitions.

Fuzzy set: A fuzzy set is denoted by an ordered set of pairs. Fuzzy set A in a set X
is a function, i.e., it is represented by its membership function gy : X — [0, 1]
such that A = {(z, u(z))|x € X)}

Fuzzy point: A fuzzy set in X is called a fuzzy point if and only if it takes values
0 for all x € X except one point. Let e € X be a fuzzy point if its value at e
is a (0 < a<1). It is denoted by eq,.

Universal fuzzy set: It is a special fuzzy set where membership value is one ev-
erywhere in the set, i.e.,, u(z) =1V e X

Support of fuzzy set: The support of a fuzzy set A in X is a crisp set that con-
tains all the elements of X that have nonzero membership values in A, i.e.,
supp(A) = {x € X|pa(x) > 0}. If the support of a fuzzy set is empty, it is
called an empty fuzzy set.
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Core of fuzzy set: Core of a fuzzy set A is the set of all points € X such that
pa(x) =1. ie., Core(A) = {z|pa(zx) =1}

Height of a fuzzy set: The height, h(A), of a fuzzy set A is the largest member-
ship grade obtained by any element in that set. i.e., h(A) = SupyexA(x).
A fuzzy set A is called normal when h(A) = 1, it is called subnormal
when h(A) < 1. A fuzzy set can be normalized using norm function. i.e.

B =norm(A) = pp(z) = ’ﬁ:%ff))

Cross over point: The crossover point a of a fuzzy set A in X is the point in X
whose membership value in A is 0.5, i.e., a = {z|ua(xz) = 0.5}

Equality: Two fuzzy sets A and B are called equal if they have the equal member-
ship values, i.e., pa(x) = pp(x),Vr e X

Containment or Subset: Fuzzy set A is contained in fuzzy set B if and only if
pa(z) < pp(x). AC B & pa(z) < pp(e),Ve e X

2.2 Fuzzy Membership Functions

Elements of a fuzzy set are represented by the membership functions. People working
in this field developed a number of fuzzy membership functions according to their
application. In this section different membership functions and their mathematical
formulations are denoted.

S Shape membership function: This spline-based curve is a mapping on the
vector x, and is named because of its S-shape. The parameters oo and 3 locate
the extremes of sloped portion of the curve.

0 fr<a
( 8 2(4=2)? ifa<:1:<# (2.1)
x,a, ) = .
H 1-2(52 it <a<p
1 ifg<zx

where x,a,8 € R and o < 8. This fuzzy membership function is used to
modal a step function in the forward sense. This function is explained in
figure 2.1(a)

Z Shape membership function: This spline-based curve is a mapping on the
vector X, and is named because of its z-shape. The parameters o and 3 locate
extremes of the sloped portion of the curve, formally this function is written

as
1 ifr <o
1-2(32 ifa<a< g’
u(z, o, B) = o(z=a)2 ats o (2.2)
(5—04) if 5= <z <p

0 ifg< x
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where x,a,8 € R and o < . This fuzzy membership function is used to
modal a step function in the backward sense. Graphical representation of this
function is shown in figure 2.1(b).

Gaussian membership function: This membership function is mathematically

defined as

—(z—p)?

pala) = e o (2.3)

where p and § respectively represent the center and width of membership
function. This fuzzy membership function is used to fuzzify a point. This
function is shown in figure 2.1(c).

Sigmoid membership function: This type of membership function is defined as

1

pa(®) = Tz (2.4)

Sigmoid membership function can be determined by « which controls slop
and [ denotes the inflection point of curve. This function resembles with
the S shaped fuzzy membership function for positive a and with z shaped
membership function for negative value of . An example is given with oo =1

and 8 = 6 in figure 2.1(d).

Triangular membership function: Mathematically this function is written as:

rT—a Yy—x

B—a'y-p

);0) (2.5)

u(z; a, B,7) = maz(min(

where x, a, 8, v € R and a < 8 < v and this fuzzy membership function is
used to fuzzify a point. This function is graphically shown in figure 2.1(e).

Trapezoidal membership function: This function can be defined using the max.
and min. operators such as

Tr— o 0—=x

p(z; o, B,7,0) = mam(min(m, 1, p

);0) (2.6)

where z, o, B, 7, 6 € Rand a < f <+ < ¢ and this is used to fuzzify an
interval. This function is shown in figure 2.1(f). Shape of this function can
easily be changed like a triangular, S and Z shaped membership functions by
changing parameters o, (3, v, 9.

Pi-shaped curve membership function: This membership function is defined
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as
(0 ifr<a
_ 2 . +B
2(5=2 if o << %57
1-2(52) it <z <p
u(z;a, B,7,0) =41 ifB<z<n (2.7)
1-2(52)7 ify<z<iP
2(3=2)? if <z<s
0 ifo<zx

where z, o, 6,7 € R and a < § < ~ and this function is used to fuzzify an
interval. This function is represented graphically in figure 2.1(g). Its shape
resembles with trapezoidal membership function.

Bell shaped membership function: Generalized bell curve membership func-
tion is defined as

u(wia, B, ) (28)

where [ is a positive number, ¢ represents the curve center and « determine
the curve shape. This membership function is an extension to the Cauchy

probability distribution function. Graphically it is represented in figure 2.1(h).

2.3 Operations on Fuzzy Sets

Operations on fuzzy sets are defined via their membership functions. In most of the
cases, these operations are extended from the classical set theory. Many sorts of
fuzzy set operations are introduced in the fuzzy set theory [L.A 1965], some largely
used operators are discussed below.

Union: Union of two fuzzy sets A and B is defined as the maximum of two indi-
vidual membership functions.

paup(z) = {maz(A(z), B(x)) Ve € X} = max(pa(z), pp(e))-

where p4(x) and pp(x) are fuzzy membership functions at z. The union
operation in fuzzy set theory is equivalent to OR operation in boolean algebra.
It is the smallest fuzzy set containing both of the fuzzy sets A, B.

Intersection: Intersection of two fuzzy sets A, B where p4(x) and up(x) are fuzzy
membership functions at x, is defined as the minimum of the two individual
membership functions.

panp(x) = {min(A(z), B(z))|ve € X} = min(pa(z), pp(z)).

The intersection operation in fuzzy set theory is equivalent to AN D operation
in boolean algebra. It is the largest fuzzy set contained in fuzzy sets A and B.
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Figure 2.1: Fuzzy membership functions
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Fuzzy Sum: Let pa(x) and pp(z) be two fuzzy membership functions in fuzzy
sets A and B. The fuzzy sum in fuzzy sets is defined as

e Fuzzy algebraic sum operator : pa+p(x) = pa(z) +up(z) — pa(z)up(x)
e Fuzzy bounded sum: pagp(x) = min(l, pa(x) + pp(x))

e Fuzzy symmetric sum: Let My, Ms be called fuzzy symmetric sum, then
these operators are defined as

- Mi(ka(e)1us(@) = ST st

= Ma(pa(e). 15 (@) = T S @

Fuzzy Difference: Let A, B be two fuzzy sets and pa(z), up(z) are corresponding
membership functions. Fuzzy difference is defined in a multiple fashion like

e Fuzzy difference operator: Set difference between crisp sets is defined as
(A-B)=A-B=AnB"

This operator is extended in fuzzy sets as panp(x) = min(pa(x), up(z)).
In fuzzy sets, it is represented by AN D operator in boolean algebra.

e Absolute difference operator:

pavs(x) = |pa(x) — pp(x))

where pa(z), pp(z) are membership values in fuzzy sets A, B.

e Bounded difference operator: This operator is denoted by (A| — |B) and
it is defined as
waon (@) = maz(0, (A(z) - B(z))
where A(z), B(x) € [0, 1]

e Fuzzy symmetric difference: Let Ny, No be called fuzzy symmetric differ-
ences, then these operators are defined as

- Ni(pa(2), pp(a)) = Tesealeunt)

= Na(pale).np(e) = PRAETES
where A, B are fuzzy sets with memberships p4(x) and pp(z).
Complement: Complement of a fuzzy setA with membership function pa(x) is
defined as the negation of the specified membership function.

x() = 1 pale)

2.4 Properties of Fuzzy Sets

Fuzzy sets have similar properties as the ordinary or crisp sets. Let A, B, C be fuzzy
sets, X is a universal fuzzy set and ¢ is an empty fuzzy set, then following properties
hold in fuzzy sets.
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e Commutativity: AUB=BUAand ANB=BNA
e Associativity: AU(BUC)=(AUB)UC and AN(BNC)=(AnB)NnC
e Idempotency: AUA=Aand ANA=A

e Distributivity: AU(BNC)=(AUB)N(AUC) and
AN(BUuC)=(ANnB)U(AnNc)

e Absorption: AUp=A, ANX =A, ANp=¢pand AUX =X
e Transitivity: ACB A BCC= ACC

e De Morgan’s law: AU B = ANB and AN B = AUB. In general De Morgan’s
laws can be extended to a finite number of sets.

e Involution: This property sometime called double complement. A=A

e Equivalence Formula: (AU B)N(AUB) =(ANB)U(ANB)

2.5 Fuzzy Logic Connectors

In the decision or choice problem, when solution depends upon synthesizing of infor-
mation supplied by diverse sources |Herrera 1997|, it is more suitable to use fuzzy
connectors. Aggregation refers to combine values into one aggregated value so that
the final solution seems to be well addressed in a given fashion |Grabisch 1998|.
Information obtained from different sources can be combined by using union, inter-
section and complements. These operators can be modeled by so called t-norms,
t-conorms, fuzzy negation and fuzzy aggregation operators. It is a mapping

7:[0,1]" — [0, 1]

Fuzzy logic connectors are divided into three classes.

2.5.1 Conjunctive Operators

The conjunctive operators are generally include intersection of two fuzzy sets A and
B, which is specified by a binary operation on the unit interval. It is a function of
the form 7 : [0,1] x [0,1] — [0,1]. Let a, b, ¢, d be fuzzy membership values then
fuzzy t-norms has the following properties

e Boundary condition: Following are the boundary conditions for operator T’

- T(a,1)=T(1,a) =aand T(1,1) =1
— T(0,1) = T(1,0) = 0
— T(a,0) = T(0,a) =0

e Monotonicity: T'(a,b) < T(c,d) if a < c and b < d.
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e Commutativity: T'(a,b) = T'(b,a)
e Associativity:T'(a,T'(b,c)) = T(T'(a,b), c)
Examples of t — norms operators are AND, PRODUCT etc.

2.5.2 Disjunctive Operators

Commonly used disjunctive operators are triangular co-norms. Like fuzzy intersec-
tion, the general fuzzy union of two fuzzy sets A and B is specified by a function
S :[0,1] x [0,1] — [0,1]. The argument to this function is the pair consisting of the
membership grades of some element x in fuzzy sets A and B. Fuzzy s-norms has
the following properties

e Boundary condition: Co-norm operators (S-norms denoted by S) have bound-
ary conditions

— S(a,1) = S(1,a) = land S(1,1) =1

- S(0,1) = S(1,0) =

- S(CL, O) (Oa CL)
e Monotonicity: S(a,b) < S(c,d) if a < cand b < d.
e Commutativity: S(a,b) = S(b,a)
e Associativity:S(a, S(b,c)) = S(S(a,b),c)

t-norms and s-norms are dual to each other. Some examples are these operators
are OR, Algebraic sum and many others.

2.5.3 Aggregation Operators

These operators are located between the maximum and minimum values, i.e., val-
ues of these operators are always between the t-norms and t-conorms(s-norms).
Aggregation(averaging) operator have the compensative property. An example for
the aggregation operator is v operator. This function is defined as the combination
of algebraic product operator and algebraic sum operator.

piy () = [psun (@) x [(prop ()] 7 (2.9)

Where 0 < v < 1, out put of these operators is always between the maximum
and minimum value. These operators are point wise injective, continuous, monotone
and commutative. The operator using combination of min, max operators can be
written as

p(pa(), pp(e)) =y x min(pa(z), pp(@)) + (1 =) x maz(pa(z), pp(z)) (2.10)

The above defined operator in Eq. 2.9 can be rewritten as

pry(x) =y X [pa(@).pp(@)] + (1 =) % [ua(®) + pp(x) — pa(@).up(x)]  (2.11)
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There are many aggregation operators defined in literature, the choice of a ag-
gregation operator depends upon the certain criteria like numerical efficiency for
computation, adoptability for the semantics interpretation, compensation of the
participant operators etc.

2.6 Fuzzy Relations

A crisp relation represents the presence or absence of association, interconnection
and interconnectedness between elements of two sets. This concept is generalized
and it represent the degree of association or interconnectedness of two sets, called
fuzzy relations. Fuzzy relations are fuzzy sets, they have the same set theoretical
operations as fuzzy sets. These relations can be divided into two categories such as
a fuzzy relation holds between two crisp sets or a fuzzy relation between two fuzzy
sets. Let R and R; be two fuzzy relation from X to Y represented in example 1
and example 2.

2.6.1 Fuzzy Relations Between Crisp Sets

Let X,Y C R be two crisp sets. A fuzzy relation R is defined as
Hp )(><Yr——%[071]

This relation associates a membership degree to each pair (z,y) € X x Y. It is

called a fuzzy relation between two crisp sets. A fuzzy relation between crisp sets
X and Y is a fuzzy subset of X x Y.

Example 1 Let X = {x1,x9,23,24,25} and R be a fuzzy relation defined by

T1 ) I3 X4 Is
z1| 1 04 08 05 0.5
x |04 1 04 04 04
z3 108 04 1 05 0.5
z4 |05 04 05 1 0.6
z5 |05 04 05 06 1

In this example, sets X,Y are crisp and degree is associated to relation, hence it is
a fuzzy relation between crisp sets.

2.6.2 Fuzzy Relations Between Fuzzy Sets

Let X and Y be two non empty sets, A be a fuzzy set on X and B be a fuzzy
set on Y, then a mapping pug : [0, 12 — [0, 1] is called a fuzzy relation on
fuzzy sets. Let A and B be two fuzzy sets defined as A = {(z,pi(x))| =z € X}
and B = {(w,up())| v € Y} be two fuzzy sets then a fuzzy relation R =
{[(z,v), (ng(z,v)]| (z,y) € X x Y}, is a fuzzy relation on A and B if
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pi(z,y) <pgi(e), V(z,y) e X xY (2.12)
and

pp(@,y) < ppy), V(z.y) € X xY (2.13)

Fuzzy relations are fuzzy sets in product spaces and fuzzy relation between fuzzy
sets is simply composition of two fuzzy sets.

Example 2 Let Ry be a fuzzy relation on Ax B where A = {(3,0.5),(5,1),(7,0.6)}
and B = {(3,1),(5,0.6)} are fuzzy sets, then fuzzy relation Ry defined as Ry =
[(Ax B),min(pa(x), up(x)], can be written

2.6.3 Fuzzy Reflexive Relations

If {R(z,x) = 1 Vz € X}, then R is called a reflexive (fuzzy) relation. If X is
finite and R = (7ij)nxn, reflexivity implies that r; = 1, (¢ = 1,2,....,n) and vice
versa. As a result, we can observe the numbers on the principal diagonal of R to
judge whether R is reflexive or not. In example 1, R is a reflexive because diagonal
elements are 1.

2.6.4 Fuzzy Symmetric Relation

A fuzzy relation R is called a symmetric (fuzzy) relation if V (z,y) € X and
R(z,y) = R(y,z). Obviously, R is symmetric & R = R~!. We know that
R™1 = RT in the case of finite universe. Hence R is a symmetric relation if and
only if R as a matriz is symmetric. In example 1, R is symmetric fuzzy relation(
rij = rj). In addition, it is easily checked that R? = R, and thus R is a fuzzy
equivalence relation.

2.6.5 Fuzzy Transitive Relation

A fuzzy relation R is called a fuzzy transitive relation. If R?> C R, (x,y,2) €
R and R(z,y) AN R(y,z) = R(z,z). ie., Ris transitive is and only if (z,y,z) €
X, R(z,2) = R(z,) A R(y,2)

2.7 Conclusion

In this chapter we recall some basic definitions of fuzzy sets and fuzzy operators. We
also recall the definition of fuzzy relation. These relations are of two types, fuzzy
relations between fuzzy sets and fuzzy relations between crisp sets. Through out
this dissertation, we shall use fuzzy relations for relations between the crisp objects.



CHAPTER 3
Spatial Relations and Change
Detection in Spatial Scene

Spatio-temporal relations are the spatial relation with time as third dimension, this
involves the spatio-temporal object modeling or two-dimensional objects and a logi-
cal extension to temporal dimension. Cuboid object approximation or three dimen-
sional geometry is used to model the former and for lateral two-dimensional objects
occupy different spatial locations at different time points. Different approaches are
used to represent the spatio-temporal data, for example, space-time or space-and-
time data model. Changes in object’s position often go along with changes to the
topology and order information of objects in a spatial scenario. Various models
have been proposed for topological and directional relations description of objects
in space. The motivation for this chapter is a contribution to the collection of a
general approaches that are frequently used for modeling change in a spatial scene.
Here we describe the change in spatial relations and nature of object movement in
detail.

3.1 Change in Spatial Scene and Its Spatial Relations

Mobile objects are mostly represented by disjoint topological relations. These ap-
proaches ignore some aspects of reasoning in the certain domains such as activity
recognition in videos, automatic video surveillance, where objects can move within
the limited study area. In such a case one object is virtually defined and movement
of other object is studied with respect to the virtually defined object.

Events, changes and modeling of spatio-temporal relations has been made in the
integration of time within Geographic Information Systems (GIS). GIS often deal
with discrete data represented in snapshots so that changes can only be viewed as
a sequence of changes in mutual relations between entities. These types of change
either preserve topology of a spatial configuration (growing, shrinking and moving),
or modify metric properties and topology. Temporal changes of spatial objects
induce modifications of their mutual topological and metric spatial relations over
time.

3.2 Change in Spatial Scene and Topological Viewpoint

This section explains how the object pair in a spatial scene as well as their binary
topological relations can be exploited to derive changes that occur between two
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consecutive snapshots. Automatic derivation of changes from snapshots can add
spatio-temporal reasoning power to GISs. The types of change that can be derived
from information available in snapshots.

This section presented to derive changes from snapshots of qualitative spa-
tial data uses spatial scenarios that include two or more spatial regions in one-
dimensional or two-dimensional space. First step is to detect and identify specific
types of change that affect topological relations of the involved objects in snapshots.
Topological relations are derived for regions that undergo such a change. This anal-
ysis results in the set of topological relations that objects can have to a reference
object. Change derivation from snapshots using qualitative measures promise to
infer information that is not directly available. Topological change refers to the mo-
tion, shrinking, growing, shape transformation, splitting, merging, disappearing, or
reappearing of a spatio-temporal objects. Different theories for describing the topo-
logical relations are presented in this section. In the next subsections, we describe
theories for topological relations, continuous changes in topological relations with
the help of neighborhood graphs to derive the nature of change in spatial scene.

3.2.1 Allen Relations

Allen [Allen 1983] introduced interval algebra, which is extensively used by the arti-
ficial intelligence and knowledge representation community. These relations are de-
fined between two intervals of time such that A, and B be two intervals (A = [x1, 22],
B = [y1,y2]) where z1,y; are initial and 2, y2 are terminal points of intervals. These
relations are presented below in table 3.1 where interval B (one-dimensional object)
as reference and interval A is considered as argument object.

Allen relation Inverse
Before T9 < Y1 After Yo < X1
Meet To = Y1 Meet by Yo = X1
Overlap 1 <y1 <9 < yo || Overlapped by y1 <x1 <y2,¥2 < 22
Start x1 =91 A z9 < Yo Started by 1 =Y1 Nya < X9
During 1 <y1 Ays < 22 During by Y1 < x1 Axo < Y
Finishes 21 <y1 Axo =19 Finished by 1 <Y1 ,To = 1Yo
Equals 21 =y1 Axo =19 Equals T1 =YL ANx2 = Yo

Table 3.1: Allen relations and their inverse

These are the 13 Jointly Exhaustive and Pairwise Disjoint (JEPD) interval re-
lations. When directions are neglected, these temporal relations represent the eight
topological relations in spatial domain in R.
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3.2.2 Conceptual Neighborhood Graph of One-Dimensional Allen
Relations and Topological Change

Two relations between pairs of events are conceptual neighbors if they can be di-
rectly transformed into one another by continuous deformation (shortening, length-
ening or translation) of the events |[Freksa 1991|. These conceptual neighbor
play an important role for spatio-temporal reasoning and modeling the spatio-
temporal relations. These relations are used as the atomic relations in temporal
reasoning. Allen relations represent eight topological relations in spatial domain
[Allen 1983, Egenhofer 1993].

di ( contains )

< ( before ) > (after)

S (starts)

d (duriing)

Figure 3.1: Allen relations where black object is reference and light grey object
represents argument object.

Allen relations are represented in the neighborhood graph in figure 3.1. In spatial
domain neighborhood graphs are used to predicate the topological relations and the
change in the topological relation. These changes are categorized into different
classes of motion which are summarized in table 3.2.

3.2.3 Two-Dimensional Topological Relations

Binary topological relations in 2D space between objects are richly developed and
extensively used by the researchers in different fields of research. Two well-known
theories are Regions Connection Calculus (RCC) and the 9-intersections method,
are used to develop the topological relations. Both theories are discussed in detail
here.

Region Connection Calculus (RCC): In RCC theory, a particular subset of
topological relations, called RC'CS8 relations is considered and this theory de-
fines the topological configuration between binary objects. These models are
obtained from regular connected topological spaces and regions are consid-
ered as primitives. The relations defined in RC'C' are based on an atomic
relation C(X,Y), read as "X connected to Y" |Herring 1994, Randell 1992a,
Randell 1992b|. This relation holds when two regions X and Y share a com-
mon point.
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# Topological change Spatial effect

1 <&m movement

2 m <> o0 movement

3 0 fi movement

4 fi & d; movement

5 d; < s; movement

6 S; & 0; movement

7 0 = movement

8 =4 04 movement

9 048 movement

10 s d movement

11 d < o; movement

12 0; <> m; movement

13 m; > movement

14 fi o= Expansion of B or contraction of A
15 = f Expansion of B or contraction of A
16 d; <= Expansion of B or contraction of A
17 =d Expansion of B or contraction of A
18 8; = Expansion of B or contraction of A
19 = s Expansion of B or contraction of A

Table 3.2: Allen relations and motion type, A and B are intervals

RCC theory is based on axioms and proximity spaces form a useful inter-
mediatory between topological and axiomatic theories based on contact rela-
tions. Eight topological relations, Disconnected, Externally connetced, Par-
tially Owerlap, Tangent Proper Part, Non Tangent Proper Part, Tangent
Proper Part Inverse, Non Tangent Proper Part Inverse and Equal, are sum-
marized in the table 3.3. There is no particular condition on object concep-
tualization, objects can be considered as open or closed sets, each time an
interpretation is given, called closed and open object interpretation.

e Closed Interpretation: In this interpretation following fundamental con-
cepts are considered

1. A region is identified with a regular closed set of points
2. Regions are connected if they share at least one point
3. Regions overlap if their interiors share at least on point
e Open Interpretation: Postulates for open interpretation are
1. A region is identified with a regular open set of points
2. Regions are connected if their closures share at least one point

3. Regions overlap if they share at least on point

All of the relations described in table 3.3 are defined on three atomic relations:
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DC(X)Y) =gy -C(X,Y) X is not connected to Y
EQX)Y) =g P(X,Y) A P(Y, X) X coincides Y
POX)Y) =q4ef O(X, ¥)A X partially overlaps Y

~P(X,Y)A=P(Y,X)

X externally

BCXY) Zaes CXY)A-OX,Y) connects with Y

_ PP(X,Y)A X is a tangential

TPPXY) Zaer 3Z|EC(Z,X) N EC(Z,Y))] proper part of Y
_ PP(X,Y)A X is a non tangential

NTPP(XY)  Zacs -3Z[EC(Z,X)NEC(Z,Y)] proper part of Y
TPPIX,Y) =a; TPP(Y.X) X is a tangential

proper part inverse of Y

NTPPI(X,)Y) =ges NTPP (Y,X) Xis a no§ tangential
proper part inverse of Y

Table 3.3: Topological relation in RCC

e C(X)Y) a connection relation.
o P(X,Y) =45 VZ|C(Z,X) = C(Z,Y)] read as X is a part of Y.
o O(X,Y) =4y IZ[P(Z,X) NP(Z,Y)] read as X overlaps with Y.

The 9-Intersections Method: This theory was initiated by Max J. Egenhofer
and R. D. Franzosa [Egenhofer 1991], point set topology is used to explore
the topological relations. In this theory, topological parts of an object (ob-
jects are modeled as sets where interior, boundary and exterior of a set are
called topological parts of sets hence topological parts of objects) participate.
A function is defined on these topological parts of both objects and topolog-
ical structure is studied by the empty () and non-empty (=) intersections
of topological parts, a topological relation based on these values is defined
[Egenhofer 1994].

¢

¢

f(AvB)_{

Then the relation between two objects is defined as

f(A.B) [(4.0B) f(AB)
R(A,B)= | f(0A,B) f(04,0B) f(0A,B)

f(A,B) f(A,0B) f(AB)

where A,9A, A represents respectively interior, boundary and exterior of
an object A, similarly for the case of object B. Eight basic topological
configurations between 2D objects in R? are observed out of 512 possi-
bilities. These are similar configurations as in case of RCC theory with
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names Disjoint, Meet, overlap, Covers, Contain, Inside, Covered_by and
Equal. Many extensions have been proposed in the 9-intersections method
[Du 2005a, Zhan 1998, Egenhofer 1993, Egenhofer 1995, J. 2001].

3.2.4 Neighborhood Graph of 2D Topological relations and Topo-
logical Change

Topological relations in R? has been explored extensively since a long time and
these relations are represented in a neighborhood graph. These neighborhood graphs
represent change in binary topological relations between the objects. These relations
follow the common sense continuity, for example if two objects are disjoint at time
t1 and at time to they overlap, then there must be a time point ¢ between ¢; and
to when both objects have meet topological relation. Neighborhood graph of these
relations is represented in figure 3.2.

Figure 3.2: Neighborhood graph in 2D topological relations

When these topological relations change, they represent the certain motion types.
The change in spatial relation and motion class is represented in table 3.4.

3.3 Fuzziness and Topological Relations

Modeling the fuzzy topological relations involve the extension principle of crisp or
classical set theory to the fuzzy set theory. Fuzzy topological relations are developed
between the spatial objects where inherit fuzziness holds in the data. This fuzzi-
ness is due to the fact that objects don’t have the sharp boundary such as clouds,
vegetation forest boundaries,etc. In this class of topological relations, problem is
to model fuzzy spatial objects by fuzzy set theory. Fuzzy topological relations are
also developed between the segmented images, here fuzzy topological relations are
developed using extension principle from a crisp relation.

This section consist of two subsections, first we describe fuzziness and extension
of crisp sets and crisp functions to fuzzy sets and fuzzy membership functions.
Second section describe the existing theories for fuzzy topological relations and their
extension to model fuzzy topological relations.
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# Topological change Spatial effect

1 D« EC movement

2 EC + PO movement

3 PO < TPP movement

4 TPP < NTPP movement

5 PO < EQ movement

6 PO + TPPI movement

7 TPPI <+ NTPPI movement

8 TPP < EQ Expansion of A or contraction of B
9 EQ < TPPI Expansion of A or contraction of B

10 NTPP < EQ Expansion of A or contraction of B
11  FEQ + NTPPI; Expansion of A or contraction of B

Table 3.4: Change in 2D topological relations and motion type, A and B are 2D
objects

3.3.1 Fuzziness

Almost all the information, we process in the real applications is incomplete, un-
certain and imprecise. Fizziness is present at different levels in acquired data, there
are many reasons for this fuzziness. It may be due to the observed phenomena like
limited structure or objects or image acquisition process such as limited resolution
and numerical reconstruction of images. Fuzziness may be due to the pre-processing
steps in image analysis such as in object recognition steps, objects may have the
weaker contours like clouds, storms, air pollution or due to the fact that rough
segmentation is used. But in spite of all this, impression can also present in rela-
tionship semantics like approximately on Left, slightly Right of or it can be found
in questions or knowledge representations |Bloch 2005].

In modeling fuzzy spatial relations, fuzziness may be present at object level or
at relations level. In modeling fuzzy spatial relations where fuzziness is present in
inherit data, fuzzy set theory is used to model the objects and membership functions
are used at pixels level. It is a fuzzy membership function u, which represents the
impression at spatial extent of an object. It associate a membership degree to a
pixel for which it belongs to object or not. On the other hand, extension principle
for a relation is used for modeling fuzzy spatial relations between objects. A crisp
and fuzzy relations are represented through a membership functions as

e A crisp binary relation R is a crisp subset of 7O x O” (R C O x O). It is a
crisp set and it is described by a membership function as

f:0%x0 —{0,1}

f(OZ,OJ) =1& OZRO]

(O is related to O; through a relation R)
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e A fuzzy membership is used to express the fuzzy relation between pair of
objects. In this class of relations, an extension principle is used to extend the
definition of relation. It is represented as

f:0x0—[0,1]

in this definition, a relation holds with a certain probability and it is defined
as

0< f(O“OJ) <l& OzRO]

(O is related to O; through a fuzzy relation R with a certain degree)

3.3.2 Fuzzy Topological Relations

Topological relations are derived from geometric description. An uncertain relation
is a relation which exists with a certain probability. The 9-intersections (3 x 3)
model depends upon the point set topology and topological structure is studied by
the empty () and non-empty (=) intersection of topological parts.

This method is extended to deal with fuzzy objects and 44 useful topological
relations between two-dimensional simple fuzzy objects were developed using 9-
intersections and objects with extended boundaries [Clementini 1996]. This method
is also extended to 16 (4 x 4) intersections and a set of 152 useful configurations
between simple fuzzy regions in R? is realized [Tang 2004]. The 9-intersections
method deals well with fuzzy objects, the objects where contour of the object is not
strong due to the rough segmentation or any sort of noise. In this theory no distance
based algebraic function is involved so this theory can’t deal fuzziness at relation’s
level. It means this theory is used to develop the topological relations of type
crisp objects- crisp topological relations, fuzzy objects- fuzzy topological
relations and fuzzy objects- crisp topological relations.

On the other hand RCC theory is largely developed to deal with fuzzy objects.

In this theory the connection is an atomic relation. The connection relation can be
defined by topological operators as well as algebraic operators. 1. e.,
C(X,Y) =ges XNY # 0or C(X,Y) =gy {d(z,y) =0,z € X,y € Y} It is a
distance based function and fuzziness can be introduced at relation’s level. This
deals with fuzziness at object level and according to the best of our knowledge, S.
Schockaert et al. [Schockaert 2008b| have made efforts to extended theory to deal
the fuzziness at relation’s level. For this purpose he defined a pseudometric space
and used the resemblance relation R as fuzzy relation. A fuzzy connection relation is
defined as C(A, B) = Ao Ro B where A, B are fuzzy regions, o § are real numbers
and R is a resemblance relation written as

1 if d(z,y) < «

R p)(2,y) =40 if d(z,y) > af

%d(x’y) otherwise
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It is a definition in terms of distance between points x and y, where parameter 3
defines the smooth transition from closeness to away and « defines that up to how
much distance between points, they are considered close. This shows that this theory
is used to develop crisp objects- crisp topological relations, fuzzy objects-
crisp topological relations, fuzzy objects- fuzzy topological relations and
crisp objects- fuzzy topological relations. Having all this, one basic question
remains unanswered, RC'C theory did not reply that where a topological relation
holds in the space.

3.4 Change in Spatial Scene and Order Relations View-
point

The moving objects change the spatial configuration of data represented in a snap-
shot, sometimes these objects change the topological configuration of a snapshot,
resulting a change in the binary topological relations between them and sometimes
they don’t change the topological configuration and they only change order configu-
ration of a data represented in a snapshot. In such a case the angular order relations
or ordinal order relations are changed.

3.4.1 Theories to Represent the Angular Order

Order relations describe the position of an object in space with respect to another
object. Many methods have been developed to study the binary directional relations
between objects. The definition of directional relation concerns a reference object,
target object and reference frame. For instance, the description B north A indicates
that A is the reference object, B the target object, and north is a direction with
the reference frame. As a reference frame could be relative or absolute, therefore
directional relations can be described in a relative sense or an absolute sense. In a
relative sense, such descriptors as front, back, left or right are often in use, while in
an absolute sense the terms east, west, south or north are used.

Absolute Reference Frame: Absolute frame of reference is often based on cardi-
nal directions with respect to a local meridian in large-scale spaces. In such a
reference frame, compass directions are often used to partition space around
a reference object and then to analyze position of the argument object.

Relative Reference Frame: Relative frame of reference use relative orientation
in which positioning of a simple object is made with respect to an oriented
line or an ordered set of points forming a vector or to some intrinsic properties
of the reference object, e.g. front and back, left and right.

The methods for finding the directional relations can be divided into two classes,
the crisp methods and fuzzy methods. Some methods from both categories are listed
below.
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e Point Based Method: In point based methods, 2D objects are approx-
imated by a point, commonly it is the geometric center of the object. In
point based methods, Sometimes one object is considered as point object and
then projections are taken, examples are given in [Frank 1996, Moratz 2006].
These methods don’t consider the neutral zone.

These methods express the contextual orientation of a located point with
respect to a reference point (both objects are represented by points), as seen
from a perspective point. They apply to the reference point a local reference
frame in which the frontal direction is fixed by the direction (reference point).
In these methods, authors take the relation algebra approach and describe
the inferential behavior of the primitive relations in transitivity tables. These
methods don’t work when the objects are very close to each other

e Cone-shaped Method: In this class of methods, two mutually perpendicu-
lar lines are drown passing through the geometric center of reference object for
four directional systems. Four lines are drawn at slop of 7 for eight directional
systems. Relations are estimated through the intersection of cone and the ar-
gument object. This method is presented in [Peuquet 1987, Abdelmoty 1994].

e Minimum Bounding Rectangle: Methods using the minimum bounding
rectangle (MBR) represent extended objects by rectangle and then directional
relations are determined between them by using the Allen’s interval algebra
along projections of areas of both objects on the x-axis and y-axis. Example
for such a method are presented in [Frank 1996, Sun 2008|. A method where
both objects are considered by minimum bounding box, then Allen interval
algebra is applied is described in [Papadias 1994]. A set of nine directional
relations is released from (13 x 13) 169 possibilities.

e Matrix Method: This is the extension of the minimum bounding box pro-
posed by Roop K. Goyal [Goyal 2001| where the reference object is approx-
imated by its bounding box and then Max J. Egenhofer’s [Egenhofer 1991]
method of nine intersections is applied. The directional relations matrix will

be
NWsnNnB NsNB NEsNB

Dir(A,B)=| WinB OsNB EsNB
SWAHB) S4NB SE4NB

where the objectA is the reference object and Na, Wa,Sa, Ea, NEo, NW4,
SW 4 and SE 4 represents the directional tiles or partitions of space with re-
spect to reference object. O4 represents the central tile, called neutral direc-
tion.

e Internal Cardinal Directional Relations: Geographical spaces are enough
large but in small spaces, internal position of an object within the other ob-
ject is also important. These objects may represent the case when an object
is created through human imagination or convention, such as administrative
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units of a region. These objects can contain the other objects, to know the
position of argument object inside the reference object. For reasoning in such
a case Internal Cardinal Directional (ICD) relations method [Liu 2005] was
introduced. In such a case, central tile of the matrix method for directional re-
lations is further divided into four, nine or thirteen sub-tiles. Then intersection
is taken between the sub-tiles and the argument object.

e Fuzzy Directional Relations: Extended objects are used for defining the
binary directional relations in above cited methods and these methods ignore
the geometric properties of objects. To overcome this drawback fuzzy methods
were introduced. In these methods, a degree is associated to each relation,
which represents that how much part of an object lies in a given direction. For
this purpose different techniques are used, such as mathematical morphology
[Bloch 1999], numerical methods such as angle histogram [Miyajima 1994]
and force histograms [Matsakis 1999a). These methods represent that what
percentage of an object lies in a particular direction to the reference object.

3.4.2 Directional Relations and Angular Order Change

In MBR and the 9-intersections method for directional relations, region around the
reference object is divided into tiles where central tile represents the extended object
and then intersections are taken with the tiled region and the argument object. The
9-intersections method is used for deriving motion and trajectory representation of
moving objects in [Li 1997|. There doesn’t exist particular neighborhood graph.

#  Directional change Spatial effect

1 E+< NE movement
2 E < SE movement
3 E <O movement
4 NE < N movement
5 NE < O movement
6 N & NW movement
7 N+ O movement
8 NW < W movement
9 NW < O movement
10 W SW movement
11 W+ O movement
12 SW & S movement
13 SW + O movement
14 S+ SE movement
15 S+ O movement

Table 3.5: Change in directional relations and motion

In methods, MBR and matrix based possible motion predictions are represented
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in table 3.5. This table represents the motion transition from one state to the next
state, in these predictions O represents the neutral direction.

3.5 Combined Topological and Directional Relations In-
formation

In the existing methods, topological and directional relations are studied separately.
Topological relations are described by exact object geometry while in directional
relations approximate object geometry is used. For the spatio temporal data, the
objects in a snapshot changes their geometry or relative position, as a result their
topological, order or both relations at the same time are changed. For example their
relations for a snapshot at time t; are (aq,51) where « is a topological and (8 is a
directional relation. There are eight possibilities for change in relations for snapshot
at time to, relations may change to (e, 1), (ai1,02) and (ag,52) and there are
two possibilities for each o and 8. Then we have to apply four different techniques
to know the binary spatial relations at ¢; for a snapshot. As distance between the
objects is inversely proportional to the angular distribution of objects thus the dis-
tance relations then can be discarded. P. Matsakis and Nikitenko [Matsakis 2005]
introduced a method where 1D Allen relations are applied to a 2D object and the
results are represented in a histogram. In this method object geometry is not ap-
proximated, moreover this method represent the topological and directional relations
information at the same abstraction level. This method provide us information that
in which direction a particular topological relation holds. Apparently this method
has high computational cost and histogram representation.

3.6 Discussion and Conclusion

The 9-Intersections and RCCS8 methods are basically developed for crisp objects,
with the rise of fuzzy sciences and need to handle uncertainty, several extensions has
been proposed in these methods. The 9-intersections method deals well with the
fuzzy objects in two ways, the 9-intersections method for objects with extended
boundaries and 44 binary fuzzy topological relations are released between sim-
ple two-dimensional objects. Another extension of the 9-intersections is the 16-
intersections method and 152 binary fuzzy topological configurations are explored
between simple two-dimensional objects. This theory has been extended through
many ways, each time this deals with fuzzy objects and with inherit fuzziness in
data due to weak spatial resolution, objects don’t have sharp contours like clouds,
storms, air pollution etc. Fuzziness in image acquisition process, digital image re-
construction and fuzziness introduced at image pre-processing steps or fuzziness due
to rough segmentation. Fuzzy operators are applied to the topological parts of ob-
jects. Due to this reason different number of relations between fuzzy objects are
released. In this theory, a certain degree cannot be associated to a relation.
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On the other hand, RCC theory is largely developed and used for binary topo-
logical relations between regular objects (objects are modeled as sets and regular
open (A = int(A)) and regular closed (A = int(A)) sets are called regular objects,
where int(A) is called interior of set A and A is called closure of set A. The RCC
theory is based on connection (C(XY")) relation. This theory deals fuzziness at two
levels, fuzzy objects as well as fuzzy connection relation and 46 possible fuzzy topo-
logical relations are developed between fuzzy objects. Fuzzy connection relation is
based on nearness, in such a case degree of fuzziness is associated to the relation
[Schockaert 2008b] and possible number of relations between two-dimensional ob-
jects remains eight. This extension of topological relations represent the fuzziness
in relations semantics and question’s level. For example a mobile robot must stop
at a certain distance from the other object for security, but as question we describe
that mobile robot continue motion until meet topological relation holds between
the mobile robot and the other object. Having all this, one basic question remains
unanswered, RC'C' theory did not reply that where a topological relation holds in
the space. The methods for the directional relations work autonomously (both
topological and directional relations methods are independent from each other).

For the spatio-temporal relations we need topological, directional and distance
relations at each snapshot, then for the next snapshot all these relations are calcu-
lated then compared for deriving spatial change. In qualitative methods (methods
which provide yes or no answer. They don’t provide answer about the quantity
for example, consider the overlapping objects, these methods provide answer about
the topological relation overlap but don’t answer that what portion of two objects
overlap), one have to apply the four methods simultaneously, one method for each
binary topological, directional, internal cardinal directions and distance relations.

To extract all this information, a combined topological and directional relations
information method introduced by Matsakis and Nikitenko [Matsakis 2005] can be
used. This method represent both topological and directional relations information
on the same abstraction level and provide us information that where in space a
topological relation holds between object pair. Initially this method has high com-
putational cost and histogram representation but for modeling the spatio-temporal
relations between moving objects, we need definitive topological and directional rela-
tion between the binary objects. Due to this reason, histogram representation can’t
be used for extending this type of spatial relations to spatio-temporal relations. In
this thesis, we work for the temporal complexity and change its representation. We
also introduce an algorithm for defuzzification of spatial relations, this provide us
JEPD set of topological and directional relations and these relations are used for
modeling spatio-temporal relations.






CHAPTER 4

On the Improvement of Combined
Fuzzy Topological and Directional
Relations Information

Abstract

Concept of combined extraction of topological and directional relations informa-
tion developed by E. Zahzah et al. [Zahzah 2002| by employing the Allen’s tem-
poral relations in 1D spatial domain was improved by Matsakis and Nikitenko
[Matsakis 2005]. This latter algorithm has high computational complexity due to
its limitations of object approximation and segment fuzzification.

In this paper, fuzzy Allen relations are used to define the fuzzy topological and
directional relations information between different objects. Some extended results of
N. Salamat and E. Zahzah [Salamat 2009] are discussed. Polygonal object approx-
imation allows us to use fuzzy operators and this approach reduces computational
complexity of the method for computing the combined topological and directional
relations. To validate the method, some experiments are tested giving satisfactory
and promising results. Affine transformation are depicted, these properties will be
helpful for using the method in other areas of image analysis such as object tracking.

keyword: Fuzzy Allen relations, Topological and directional relations informa-
tion, Computational complexity, Fuzzy operators.

4.1 Introduction

One of the fundamental tenet of modern sciences is that a phenomenon can’t be
claimed to be well understood, until it is characterized in quantitative manners.
Advent of digital computers have determined an expansion in the use of quan-
titative methods where as vagueness and imprecise knowledge information give
rise to fuzzy methods. Spatial relations belong to these categories. Spatial re-
lations are used for content based image retrieval (CBIR), pattern recognition,
database management, artificial intelligence (AI), cognitive science, perceptual psy-
chology, robotics, linguistics expressions, medical imaging, image and video analysis
[Millet 2005, Bloch 2003, Egenhofer 1992, Egenhofer 1993, Goyal 2001]. Reasoning
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on spatial objects needs support from representation of topological, directional, or-
dinal, distance relations, object size and shape.

Topological relations are derived from geometric descriptions, while an uncertain
relation is a relation which exists with a certain probability. The well-known mod-
els for finding topological relations between spatial regions are the 9-intersections
[Herring 1994] and Region Connection Calculus (RCC) model [Randell 1992b].

These theories are extended to deal with fuzzy objects |Liu 2009, Palshikar 2004,
Shi 2007], in both theories, objects are modeled as fuzzy sets in R2. In 9-
intersections method, 44 useful topological relations were developed between simple
fuzzy regions. This method is also extended to 16 intersections and a set of 152
useful topological configurations between simple fuzzy regions in R? are realized
[Tang 2004]. This theory depends upon point set topology and simple set opera-
tors are used for modeling topological relations. This theory can’t be extended to
deal fuzziness at relation’s level. In RCC theory number of fuzzy relations are 46.
All of these relations represent the fuzziness at object’s level. Fuzziness may be
present in relation’s semantic, in this theory this effort is made by S. Schockaert
et al. [Schockaert 2008b| where connection relation based on closeness is defined.
Different other approaches are adopted for representing the positional information
as distance and orientation.

The methods for directional relations represent such information and fuzziness in
relation’s semantic are discussed in |Bloch 1999, Schockaert 2008d, Miyajima 1994,
Wang 2003, Matsakis 1999b]. Most of these methods work only for a particularly
disjoint topological relation and stop working as soon as objects meet or in some
cases overlap. In the methods based on force histograms [Matsakis 1999b|, 2D areal
objects are represented by union of 1D segments.

The 9-intersections model for topological relations and the RCC' theory have
a rich support for the topological relations [Egenhofer 1991, Randell 1992a] and
provide information about a topological relation without providing information that
where a topological relation exists in the space? Consider for instance that two
objects overlap, both of theories provide information about the topological relation
overlap, but they don’t give any information about where in space the two objects
overlap. As object A overlaps object B from north or north west or west, or other
topological relation, object A disjoint from object B and lies in south of object B.
To know the relative position of object A according to object B, we have to apply
another method type, because qualitative methods provide information regarding
the extended objects and they don’t care about the topological relation.

Allen [Allen 1983] introduced 13 interval relations in temporal domain. These
relations are commonly used to represent the knowledge in artificial intelligence.
Different approaches for fuzzification of Allen temporal relations are proposed such
as in [Schockaert 2005]. These temporal Allen relations are applied into the spa-
tial domain due to homeomorphism between the temporal domain and 1D spatial
domain. Allen relations represent the topological relations in R. These relations
are used to answer the question that where in space a certain topological relation
holds?
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Allen relations are applied in a 2D space by decomposition of a two-dimensional
object into 1D parallel segments. This decomposition process is repeated in all di-
rections and method is applied to get combined topological and directional relations
data. Combined topological and directional relations were first introduced by J.
Malki et al. [Zahzah 2002| by using the 1D Allen relations. Allen relations divide
the whole space into 13 partitions and each partition corresponds to an Allen rela-
tion. This method was further improved by Matsakis and Nikitenko [Matsakis 2005]
and fuzzification was introduced at relations level.

This latter method is costly regarding time constraint. The aim of this paper
is to reduce time consuming for the computation of combined fuzzy Allen relations
information developed in [Matsakis 2005]. Time is reduced in two ways, reducing
and simplifying the number of computations and suggest an alternative way for
the treatment of longitudinal section. As time constraint depends upon number
of segments to be treated, to reduce the number of segments a polygonal object
approximation is used. Algorithm for fuzzification of longitudinal section is replaced
by fuzzy connectors. This approach decreases its time complexity from O(nM VM )
to O(nNlog(N)), where n represents number of directions, N number of vertices of
polygons and M number of pixels to be processed

This paper is arranged as follows, next section describes some preliminary def-
initions. Section 4.2 describes the terminology used, Allen relations in 1D space,
fuzzification of Allen relations and finally the definition of a histogram of fuzzy Allen
relations. Fuzzy logic connectors are discussed in section 4.3, these fuzzy operators
are used for the treatment of a longitudinal section. Different affine transformations
are discussed in section 4.4, experiments and comparison of results with other meth-
ods are described in section 4.5. Time complexity for both methods is compared in
section 4.6, section 4.7 concludes the paper.

Preliminary Definitions

In this section we recall some basic definitions which are frequently used throughout
the remainder of the paper.

Fuzzy membership function A membership function p in a set X is a function
w: X —[0,1]. Different fuzzy membership functions are proposed according
to the requirements of the applications. For instance, Trapezoidal membership
function is defined as

T — 0—x

m,l,m),O) (4.1)

p(z; v, 8,7, 0) = maz(min(

it is written as pi(q,g,4,6)(z) where z,a, 8,7,6 € R and a < 8 <y < 6.

Fuzzy set A fuzzy set A in a set X is a set of pairs (X, u(z))such that
A = {(z, p(z)|z € X)} where u represents a membership function.
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Force histogram The force histogram attaches a weight to the argument object
A that this lies after B in direction 6, it is defined as

+00
FA8(9) = / F(6, Ag(v), By (v))dv (4.2)

—0o0

The definition of Force histogram FA5 (0), directly depends upon the definition
of real valued functions ¢, f and F used for the treatment of points, segments
and longitudinal sections respectively [Matsakis 1999b]. These functions are
defined as

¢(y)_{yl* ify >0 )

0  otherwise

II"‘?/?J"'ZJ Zy

f@ryly,z0) = / /d)(u — w)dw)du (4.3)

$I+y?J 0
F(0,46(v), Bo(v)) = > f(@rivlisj 205)
i=1..n,j=1..m )

where n, m represents the number of segments of object A and object B re-
spectively and variables (x, y, z) are explained in Fig. 4.1.

4.2 Histograms of Fuzzy Allen Relations

In this section, certain terms used for computations are explained. Drawing of ori-
ented lines, segments and longitudinal sections are explained in subsection 8.3.1
and Allen relations in section 4.2.2. Fuzzification is explained in section 4.2.3 com-
putation of histogram of fuzzy Allen relations are explained in section 4.2.4 and
treatment of longitudinal section is explained in 4.2.5.

4.2.1 Oriented Lines, Segments and Longitudinal Sections

Let A and B be two objects and (v,0) € R, where v is any real number and
0 € [—m,m|. Let Ag(v) be an oriented line at orientation angle § and A N Ag(v)
is the intersection of object A and oriented line Ap(v). It is denoted by Ag(v),
called segment of object A. If there exist more than one segment then it is called
longitudinal section as in case of Fig.4.1 where ANAy(v) has two segments, length of
its projection points on x-axis is . Similarly for object B where BN Ag(v) = By(v)
is segment and z is length of its projection points. The variable y is the difference
between the minimum of projection points of AN Ay(v) and maximum of projection
points of B N Ay (v).
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Figure 4.1: Oriented line, segment and longitudinal section

4.2.2 Allen Relations in Space

Allen [Allen 1983] introduced 13 mutually exclusive and exhaustive interval rela-
tions. These relations are arranged as A = {<,m,o,s, f,d, eq,d;, fi, Si, 0;, m;, >},
where {<,m,o0,s, f,d,} resp ({d;, fi, si,0i,m;,>}) are the relations before, meet,
overlap, start, finish, during (resp the inverse relations of the cited ones). The
relation eq is the equality spatial relation. All the Allen relations in space are
conceptually illustrated in Fig. 4.2. These relations have a rich support for the
topological and directional relations.

di ( contains )

Si (started by)

fi ( finished by,

> (after)

S (starts)

d (dutiing)

Figure 4.2: Black segments represent the reference objects and gray segments rep-
resent the argument objects

4.2.3 Fuzzification of Allen Relations

Different approaches are used for fuzzification of Allen temporal relations. Some
of them use the fuzzification based on the human defined variables and fuzzifi-
cation is described only for use in temporal domain, for the qualitative aspects
of temporal knowledge and qualitative temporal reasoning processes. There is a
homeomorphism between the Allen’s temporal relations and 1D topological re-
lations in spatial domain. Due to this homeomorphism, Allen relations are also
used for extracting the combined topological and directional relations information
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[Zahzah 2002, Matsakis 2005]. Fuzzy Allen relations are used to represent the fuzzy
topological relations where fuzziness is represented at the relation’s level.

Fuzzification of Allen relations doesn’t depend upon particular choice of fuzzy
membership function. Trapezoidal membership function (Eq.( 8.2)) is used due to
flexibility in shape. Let (I, J) be an Allen relation between segments I and J where
I € A(argument object) J € B (reference object), r’ is the distance between (1, .J)
and it’s conceptional neighborhood. We consider a fuzzy membership function u :
r’ — [0 1], where u is a trapezoidal membership function defined in Eq. 4.1. The
fuzzy Allen relations defined by Matsakis and Nikitenko [Matsakis 2005] are

J< (Iv J) = K(~o0, —c0, —b—3a/2, —b—a) (y)
I> (Iv ‘]) = (0, a/2, 0o, o0) (y)
fm(Ia J) = K(=b—3a/2, —b—a, —b—a, —b—a/2) (y)

Jmi(1, J) = W(—a/2,0,0,a/2)(¥)
fo(I,J) = t(—p—a,—b-a/2,—b—aj2,~b)(Y)
foill,J) = t(—a,—a/2,-a/2,0)(y)
frL, J) = min(p(—(b+a) /2,~a,—a+00) (Y)s (=3a/2,—a,—a,—a/2) (¥) s I(=00,—00,2/2,2) (T))
friL, J) = min(p—p—a/2,—b,—b—b+a/2(¥)s H(—o0,—00,—b,— (b+a)/2) (¥)s K(z,22 4 00,+00) (T))
fs(L,J) = min(p_p—ay2,—b,—b,—bt+a/2(¥)s H(—o0,—00,—b,— (b+a)/2) (U)s B(—o00,—00,2/2,2)(T))
fsil,J) = mm(,u (b+a)/2,—a,—a +oo)(l/)> H(-3a/2,—a,—a —a/2)(y)’ M(z 22,+00,+00) ( )
fa(I, J) = min(p—p —bta/2,—30/2,—a) (Y)s H(—00,—00,2/2,2) (T))
fai(L, J) = man(p—p,—bta/2,—3a/2,—a)(Y)s H(z,22,400,4+00) (T))

(4.4)
where a = min(z, z), b = maz(x,z), x is the length of segment (I), z is the
length of segment (J) and (x,y,z) are computed as given in section 8.3.1.

Most of the relations are defined by a single membership function and some of
them by minimum of multiple membership functions like d(during), d;(during by),
f (finish), f; (finished by). Two relations are directly neighbors if the fuzzy Allen
relations are shared between them. If 0 < ry(I,J) < 1 then 0 < ro(1,J) < 1 such
that r1(I,J) +r2(I,J) = 1 and r1(I,J), ro(1,J) are neighbors expressed in the
neighborhood graph (Fig. 4.2). This shows that sum of all the Allen relations is
always one, from this equal(f=(1,J)) relation is defined.

Histogram of fuzzy Allen relations represent the total area of subregions of A
and B that are facing each other in a given direction 6 |[Matsakis 2005]. Formally,
this definition is written as

—+00
PA0) = [ F(0.A00). Bo(w)de (45)
x+z C myE nNg

FT(eaAG( ) B9

(ar — ar-1)r (I}, 37) (4.6)
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Where FAB () represents the histogram of a fuzzy Allen relation in direction @
andF;.(0, Ag(v), Bg(v)) is the representation of histogram for a given v where

w =3 o1 2 ?21@?2?(% —ap-1)], @ = 37 2f and 2 = >k Zf

In this case my and ny represent the total number of segments of argument object
A and reference object B and c represents number algorithm loop for fuzzification
of a longitudinal section (algorithm is discussed in section 4.6).

4.2.4 Histogram of Fuzzy Allen Relations

Fuzzy Allen relation for each segment is a fuzzy set and fuzzy aggregation operators
are used to combine different values of fuzzy grades. In polygonal object approxi-
mation, fuzzy Allen relations are calculated for a limited number of segments and
within this region spatial relations don’t change, so simply generalize the given re-
lations. This technique minimizes the number of segments to be treated, decreasing
the temporal complexity of algorithm. This changes mathematical equation (Eq.
(4.6)) for histogram of fuzzy Allen relations. Formally,

F.(6,Ap(v), By(v)) =r(I,J) (4.7)

In discrete space, the integral can be written as a finite sum, thus above Eq.
(4.5) for discrete space can be rewritten as

n

FP0) = (X +2)> r(Ii, Ji) (4.8)
k=1

Where Z is the area of reference object and X is area of argument object in
direction 6, n is total number of segments to be treated and r(I, Ji) is an Allen
relation for segment pair (I, Ji) and F,.(0, Ag(v), Byp(v)) represents a histogram of
a fuzzy Allen relation.

4.2.5 Treatment of Longitudinal Section

During the decomposition process of an object into segments, there can be multiple
segments for a line Ay(v) depending on object shape and boundary which is called
longitudinal section. Different segments of a longitudinal section are at a certain
distance and these distances might affect final results. In this paper, we adopt the
force histograms as in |[Matsakis 1999b]. Here, we replace the sum operator in Eq.
(7.5) by a fuzzy operator and use the logic connectors, i. e.

Fr(e,Ae(’U), BG('U)) - Q(fr(ajl»y?a Z)a fr($27yg’ Z)’ [RERY fr(:tnay?ga Z))

where © is a fuzzy operator and r € A, A is denoted in section 4.2.2.

Example

We introduce an example to explain different steps of the method of combining
topological and directional relations. This better explains difference between method
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developed by Matsakis and Nikitenko [Matsakis 2005] and the method we proposed
in this paper.

Let us consider two simple objects for the computation of histogram of fuzzy
Allen relations. Let these simple polygonal objects be A andB where A =
{(5,5), (15,5), (20,10), (20, 15), (10,15)} and
B ={(5,15), (15,12), (20, 20), (15, 25), (10, 25), (5,20)} are the vertices of polygons,
it is shown in Fig. 4.3. Computing the histograms of Allen relation for objects A

Figure 4.3: Showing the computation of relations by an example where each line
passes through the vertex of a polygon and inclination angle is fixed at 30 degree

and B by our method involves the following steps.

1. Compute the boundary of both objects, for object A, line segments joining
the vertices of polygon A, in a similar way for objectB.

2. Fix the angle, let it be 30 degree and draw lines passing through the vertices
of polygons, in our case, total number of vertices are 11 there will be 11 lines,
each line passes through a vertex of a polygon.

3. Compute the intersection of line with boundary of an object, each line has one
or two intersecting points with one object due to simple concave objects. In
case of convex or objects with holes there may be more than two intersecting
points. Consider only those lines which intersect both objects, for all the
other lines relations are zero. As in Fig. 4.3, only Asgg(v4), Aso(v5), Aso(v6),
Asp(v7) lines intersect both objects, for other lines fuzzy Allen relations are
zero. These intersecting points are
Asp(vd) N A ={(6,6),(20,14)}, Aso(v5) N A ={(6,7),(20,15)},

Asp(v6) N A ={(9,13),(12,15)}, Agp(v7) N A = {(10,15)},
Asp(vd) N B = {(15,12)}, Asp(v5) N B = {(15,12), (16, 13)},
Aso(v6) N B = {(9,13),(20,20)}, Azo(v7) N B = {(8,14),(19,20)}

4. Take the projection (P) of these points on x-axis and calculate the values of
(x,y, z). Here, for line Azp(v4) these values are P(Asp(v4)NA) = {6,20} and
P(Asp(v4) N B) = {15}, from this we get (x, y, z)=(14,-9, 0).

5. Compute the fuzzy Allen relation for each segment by using Eq. (7.6). This
system of equations will provide us the following results for the aforemen-
tioned (x, y, z) ( segments obtained by taking intersection of objects with line
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Ago(v4)).

f>(Us, Ja) =0, f< (s, Js) = 0, fin(ls, Ja) = 0, frmi(ls, Js) =0,
fo(ly, Jy) = 0f0i(I4, J1) =0, fr(Is, J1) = Of pi(1s, J4) = O,
fs(Iy, J1) = 0fsi(La, Js) = 0, fa(ls, J1) =0, fai(ls, Js) = 1,
and f:(I47 J4) = 0,

6. Repeat this process for lines Asgg(v5), Azo(v6)andAzo(v7) ( for other lines
relations are already zero), sum all the relations and multiply the resultant
relation by the sum of surface areas of two objects between line Asg(v4) and
line Asp(v7). This will provide the number of pixels of both objects under
a specific fuzzy Allen relation and for normalization, divide each fuzzy Allen
by the sum of all the Allen relations for § = 30 degree, this will give us the
percentage area of two objects under a fuzzy Allen relation.

7. Increase the angle by one degree and repeat the above steps(2-6).

We calculate the values (z,y, z) for Matsakis and Nikitenko [Matsakis 2005]. In
this method objects are considered as regular closed sets. The difference between
methods is the way to compute the triplet (x, y, z) and object approximation.

1. Fix the angle 6 and draw the pencil of oriented lines Ag(v), in this case number
of lines will be much greater than 11 due to pencil of lines.

2. Compute the intersection of a oriented line with both objects A and B. Let
us consider the same line Asg(v4). Then
Asp(vd)N A ={(6,6),(7,7),(8,7),(9,8),(10,8),(10,9),(11,9),
(12,10),(13,10),(14,11),(15,11),(15,12), (16,12), (16,13),
(17,13),(18,13),(18,14),(19,14), (20, 14)}.
Similarly for object B, Aszo(v4) N B = {(15,12)}. Take projections on x-axis
and compute the values of (z,y, z), here the values will be the same as in above
case and produce the same results. i. e., x =14,y = —9,2 = 0, x and z are the
diameter of point sets on real line and y is the difference between the minimum
of argument point set and maximum of reference point set. Remaining process
of computation is identical to our method.

3. Compute Allen relations for every line that intersect the objects. Pencil of
lines is created then same calculations are made for every line.

This example elaborates the difference between two methods, and how the new
proposed method reduces the time for computation, by simplifying and limiting the
number of intersections in one line and an object. Secondly, it decreases the number
of lines to be treated for one direction.

4.3 Fuzzy Logic Connectors

In decision theory, there arise some situations where solution depends upon com-
bination of different information provided by different sources. In such a situation,
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fuzzy connectors are used. In this section, different fuzzy aggregation operators
(fuzzy logic connectors) are studied. Aggregation refers of combining values into
the one aggregated value so that the final solution seems to be well addressed in a
given fashion |Grabisch 1998, Beliakov 2001|. It is a mapping 7 : [0,1]" — [0, 1],
which combines different fuzzy grades. In literature of fuzzy set theory there exist a
variety of operators such as fuzzy T-norms, T-conorms and so on, some commonly
used operators are:

e Fuzzy OR: pogr(x) = mazx(ua(z), up(x));

e Fuzzy AND: panp(z) = min(ua(z), up(x));

Fuzzy Algebraic Product: pprop(z) = H?Zl(,u(i) (2));

Fuzzy Algebraic Sum: uspy(z) =1 — T2 (1 — pi(z));

Fuzzy ~y operator: p,(z) = [usuam(z)]? * [(uprop(z)]' ™7 where v € [0, 1]

The OR operator is actually the union or max operator, while the AND is
intersection or min operator. The contribution for resultant of OR (AND) fuzzy
operator is a single input value, which is mazimum (minimum). For other operators,
both values contribute. The fuzzy algebraic sum (product) operator makes the set
result larger than or equal to maximum (resp less than or equal to minimum ) the
contributing values while Fuzzy v operator changes the result value from minimum
to maximum values depending on the choice of 7. Application of these operators is
explained in Annex-10.1. In this example, t-norms and t-conorms are explained.

4.4 Affine Properties of Histograms of Fuzzy Allen Re-
lations

Affine properties are important in the pattern recognition especially object matching
in a scene analysis. These properties of histograms of fuzzy Allen relations are
depicted below which are independent from fuzzy membership functions.

e Object commutativity: Pair (A, B) be assessable, let 7 be a fuzzy Allen rela-
tions and for all relations, except the relation during(d) and during by(d;).
FTA’B(@) = FTB’A(@ + 7). For relation during and during_by we have
Fi'P(@) = Fi(e)

e Orthogonal symmetry: Let orthogonal symmetry denoted by sym about the

oriented line with slop «, then histogram of fuzzy Allen relations:
FrmAsmBl gy = FAP (20 - 0)

e Central dilation: Let central dilation(scale) denoted by dil and A is dilation
ratio, then FZUA41B) @) — \2pAB (@)
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e Stretch: Let stretch (stre) is orthogonal to x axis and k is stretch ratio, then

histogram of fuzzy Allen relations satisfies.
F;stre(A),stre(B) (@) _ kF;ﬁl,B(@)

e Translation: Let translation denoted by trans and (trans(A), trans(B)) is
assessable then following relation holds for histogram of fuzzy Allen relations.
Ftrans(A),trans(B) (9) o FA’B(@)
- T

r

e Rotation: Let rotation ( rot) be a p-angle rotation and (rot(A),rot(B)) is
assessable hence Fro'moB) (@) = FAB (@ — p)

4.5 Comparison With Others Works and Interpretation

In this section first we give the interpretation of results representation and then
compare our approach with Matsakis and Nikitenko method [Matsakis 2005]|. For
the experiment purpose, 360 directions are considered. Instead of drawing pencil of
lines in a direction, only those lines are considered which passes through vertices of
polygons. Fuzzy Allen relations are computed for each segment, if there exit longi-
tudinal section, then fuzzy aggregation operator is applied to obtain the resultant
fuzzy Allen relation for an oriented line.

Each relation is associated with the grey scale value like be fore with black, white
color represents after, each relation has a different boundary color for better visu-
alization of relations while opposite relations have the same boundary color such as
m(meet) and mi(meet by) relations have the yellow boundary color. Interpreta-
tion of the grey level association to a relation and its boundary color is given in Fig.
4.4(a). Object A has the light grey color and object B is represented by dark grey.
The thirteen histograms for directional and topological relations are represented by
layers and each vertical layer represents the total area of objects in specific direction.

< (before) Area

m (meets) l
o (overlaps) J
fi (finished by) f

i (started by)
f (Enishes) . &
oi (overlapped by) / \
a9 (et by) » I /‘"’ \'\ Angle
> (after) 0 & ; ’ 36?

(a) Histograms (b) Object pair (c) Histograms
representation

Figure 4.4: 4.4(a), Histogram representation for fuzzy Allen relations, 4.4(b), object
pair representation and 4.4(c) represents histogram of fuzzy Allen relations for object
pair in 4.4(b).
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Table 4.1: Comparison of normalized and un-normalized histograms of fuzzy Allen

relations with the Matsakis and Nikitenko and our method(axis are same as in Fig.
4.4(b) and 4.4(c)).

These histograms are normalized as A;(0) = Z;;?ji% where A;Vj=1,..,13
is an Allen relation. This technique of normalizz;ﬂé)n provide us the percentage
area of both objects under a histogram of fuzzy Allen relation. In this example
(Figs. in table 4.1) first row represents the object pair and its histograms which are
not normalized, computed by our method and method developed by Matsakis and
Nikitenko (for Matsakis and Nikitenko method we copied the figure directly from
[Matsakis 2005]). The second row represents normalized histogram of fuzzy Allen
relations with the respective method. Both of the histograms seem similar, a small
difference in the shape represents the small change in the total surface area of two
objects under the specific fuzzy Allen relation, which is less important.

In this set of examples (Figs. in table 4.2), histograms for fuzzy Allen rela-
tions are compared with the method of Matsakis and Nikitenko [Matsakis 2005].
Where the first column represents object pairs at different distances, second column
represents computation of histograms of fuzzy Allen relations by our method and
in third column histograms are represented computed by Matsakis and Nikitenko
method. These histograms of fuzzy Allen relations are distance dependant. As the
objects become closer, the new histogram for fuzzy Allen relation meet and meet_ by
emerges.

In both methods, similar histograms exist, there is a small difference in their
shapes. Histogram shape represents the total area under the specific relation, as
we consider object by the polygonal approximation and due to this approximation,
there is a small change in object area under a particular histogram.

In this example (Figs. are shown in table 4.3), polygonal objects are considered.
First, objects are at certain distances, only after and before relation exist. Histogram
resembles with the histogram computed by the Matsakis and Nikitenko method.
Sharp and sudden changes in the histogram shape computed by our method are due
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Obj. pairs Our method M & N method
/ \
j.
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Table 4.2: Comparison of histograms for rectangular objects (axis are same as in
Fig. 4.4(b) and 4.4(c)).

to the problems of taking intersections in the 2D digital space. Empty intersection
sometimes results a change in the object area (sharp ups and downs in histogram
shape in first row) and sometimes it causes the existence of new spatial relation such
as histogram in the after and before relations in third row.

Figure 4.5: 4.5(a) object pair, histograms of fuzzy Allen relations with our method
in 4.5(b) and Matsakis and Nikitenko method in 4.5(c). (axis are same as in figure
4.4(b) and 4.4(c)).

For the example Fig. 4.5(a)-4.5(c), concave object is considered. Fig. 4.5(a)
represents object pair, histogram in Fig. 4.5(b) is computed by our method and
fuzzy operator OR is used. Histogram represented in Fig. 4.5(c) is computed by
the method developed by Matsakis and Nikitenko. In certain direction object A is
before as well as after, in the meanwhile there exist relation meet and meet by due
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Obj. pairs Our method M & N method

O

Table 4.3: Comparison of histograms of fuzzy Allen relations with the Matsakis and

Nikitenko method and our method for the polygonal objects (axis are same as in

Fig. 4.4(b) and 4.4(c)).

to closeness of two segments. In our method, sharp change in histogram is due to
the change in surface area of objects due to the digitization process. This example
shows that two segments of an object have the opposite fuzzy Allen relations (a case
considered in Fig. 10.1(b))

In this set of examples (from Fig. 4.6(a)- 4.6(g)), argument object is a concave
object. Asit changes its position, one segment changes its topological and directional
relation with respect to argument segment. The other segment doesn’t change its
topological relation. As a result both segments have opposite Allen relations with
the reference segment and resulting histogram represents both relations at the same
time.

Examples given above show that histograms of fuzzy Allen relations are approx-
imately the same while they are computed either with the help of Matsakis and
Nikitenko [Matsakis 2005] method or polygonal object approximation. Our ap-
proach has a certain amount of decrease in the computation time. Computation
time with our approach drops from O(nM+/M) to O(nNlog(N)), where N repre-
sents the total number of vertices of polygons. For the treatment of longitudinal
section, when there exist more than one segment, fuzzy Allen relations are computed
between every pair of segments of reference and argument objects, then at the next
stage fuzzy OR operator is used to integrate the available fuzzy Allen relations.
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Figure 4.6: Concave & convex object pairs and their histogram of fuzzy Allen rela-
tions (axis are same as in figure 4.4(b) and 4.4(c)).

4.6 Complexity

Algorithm efficiency can be measured in terms of execution time. Method for find-
ing the combined topological and directional relations information is to couple the
force histograms with the fuzzy Allen relations. Time complexity for computing
the combined topological and directional relations information depends upon the
following three factors.

1. Object approximation
2. Algorithm for treatment of longitudinal section
3. Equation used for computation of histograms (Egs. 4.6 and 4.7)

These different aspects of time complexity are discussed separately here below. We
compare time complexity of both algorithms and at the end we note that there is a
sufficient decrease in the execution time of the modified algorithm.

Time complexity due to object approximation: Objects are approximated as
closed regular sets or by polygonal representation. Method for raster data
starts directly with the scan of lines. For polygonal approximation, the meth-
ods first determines the polygonal representation of object and polygons ver-
tices. Computation time for the polygon representation depends upon the
algorithm used for polygon representation. For example, we use the method
discussed in [Masood 2008], time complexity of this method is O(M N?) where
M and Nj represents respectively the number of dominant points and curve
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size. When we compute the force histogram, this time is also included in
computation time for force histogram with polygonal object approximation.

In the method of computing the combined topological and directional rela-
tions information, force histograms are coupled with the fuzzy Allen relations.
Time complexity of the method is directly related to the time complexity of
force histograms. Time complexity of force histograms for polygonal object
approximation is O(nNlog(NN)) where N denotes the number of vertices of
two polygons and n for number of directions to be computed. Computation
time for raster data is O(nM+/M) where M denotes the number of pixels of
the processed image (see [Matsakis 2002]).

Time complexity of Algorithm for treatment of longitudinal section:
Method for computing the combined topological and directional relations
information directly depends upon the force histograms. In this method
force histograms are coupled with the fuzzy Allen relations, where algorithm
developed by Matsakis and Nikitenko [Matsakis 2005] (algorithm 1)for
fuzzification of segments of a longitudinal section. This algorithm imposes
restrictions on the assumption of an object. Its time complexity is added
to the time complexity of the force histograms. For better elaboration, the
algorithm used by Matsakis and Nikitenko [Matsakis 2005] is given below.

Algorithm 1 has the time complexity of order O(n?®). Where n represents the
number of segments for a longitudinal section of a line. With the proposed
method, this algorithm is replaced by the fuzzy logic connectors, these logic
connectors have less time complexity as compared to this algorithm, these
fuzzy logic connectors are only used for dealing with the longitudinal section.

Time complexity of Eq. 4.6 and 4.7 Matsakis and Nikitenko used Eq. 4.6 for
computing the combined topological and directional relation information. This
equation has time complexity O(n?) where n represents the total number of
segments exist in a longitudinal section. (m + n represents the total number
of segments for a longitudinal section and c¢ represents the number of loops
in algorithm 1, it maximum value equals to number of disjoint segments).
Proposed Eq. 4.7 has time complexity N where IV represents the total number
of vertices of polygons. This shows that the Eq. 4.6 has higher time complexity
as compared to the time complexity of Eq. 4.7.

Algorithm for fuzzification of longitudinal section used by Matsakis and Nikitenko
(Algorithm 1) put limits for the object approximation. Due to this algorithm, time
complexity of method for combined topological and directional relations information
is O(nM~/M), where n represents the number of directions M number of pixels to
be processed, in this paper we replace the algorithm for fuzzification of segments
of a longitudinal section (algorithm 1) with the fuzzy logic connectors. This sub-
stitution of algorithm for fuzzification of longitudinal section made it possible to
consider objects by its polygon approximation, hence for the method we proposed,
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Algorithm 1 Algorithm for the fuzzification of a longitudinal section I. The symbol
H(I7 U I5) denotes the convex hull of If U If. Indexing is chosen in such a way that
I;, I; are consecutive in I, c¢ represents the number of iterations in while loop, its
maximum value is n. The algorithm increases the degree of oy associated with the
open interval Jy, = H(If UIf) — (If U If). Initially oy, = 0 and a denotes the a-cut
of a fuzzy membership function.

c 0

a 1

while a > 0 do

..... There exits one set {If}ic1..n, of mutually disjoint segments (and only one

) such that: af = Uje1. p.. For any i and any j in 1....n., with 7 # j the length
of I} is denoted by zf and the distance between I; and I7 is denoted by dj;.
for any¢in 1l..n,—1 do
for any j in 1"'%’5 do
B ool - WJZIJ))
for any kinl.n—1 do
if J, C H(IfU IJC) then

ar  mazx(ag,B)

end if
end for
end for
end for
a  maz{ogtrer,.n-1 MN[0,
c c+1

end while

time complexity for computing the combined topological and directional relations
information drops from O(nM+/M) to O(nNlog(N)), where N represents the total
number of vertices of polygons. Obviously N << M and n is number of directions
to be computed, it ranges from 32 to 360 directions.

4.7 Conclusion

Fuzzy Allen relations can be used to detect and analyze object position in space
and these relations have a rich support for defining the fuzzy topological relations.
These relations represent fuzziness in relation’s semantics, they can also answer the
questions that where in space a certain topological relation exists.

Polygonal approximation of objects and application of fuzzy logic connec-
tors simplifies the algorithm given by Matsakis and Nikitenko [Matsakis 2005].
This approach decreases its time complexity, it drops down from O(nM~/M) to
O(nNlog(N)), where n represents number of directions, N number of vertices of
polygons and M number of pixels to be processed, due to using fuzzy logic connec-
tors in lieu of the fuzzification of segments of a longitudinal section developed by
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Matsakis.

This approach of using fuzzy operator will open new fields of applications for
fuzzy logic connectors. This technique can further be developed for defining the
dynamic spatial relations in a quantitative way. In this paper, computations for
all the directions are calculated for experimental purpose and verification of affine
properties will be helpful for affine invariant description of relative object positions in
scene and image understanding applications by combined topological and directional
relations information. The aim of this paper is to validate formally the method we
propose, and for the future work we project to apply this method for real data
obtained by video sequences of real applications after extracting objects and their
polygonal approximation with the help of all the image processing techniques.



CHAPTER 5

Two-Dimensional Fuzzy Spatial
Relations: A New Way of
Computing and Representation

Abstract

In existing methods, fuzzy topological relations are based on computing topological
relations between fuzzy objects. This imprecision is also found in relationships,
hence, relations can also be fuzzy. In such a situation, fuzzy topological relations
are needed between crisp objects. These relations are much less developed.

In this paper, we propose a method for combining fuzzy topological and direc-
tional relations which is called combined topological and directional relations (CTD)
method. Moreover a single method is used to derive the fuzzy topological and direc-
tional relations and this method deals fuzziness in two ways, fuzziness in topological
and directional. This is a quantitative method for finding the topological and di-
rectional relations and an algorithm for defuzzification of relations is proposed to
determine the Jointly Exhaustive and Pairwise Disjoint (JEPD) topological and di-
rectional relations between a 2D object pair. These JEPD relations are represented
in a neighborhood graph for spatial relations. For the validation and the assessment,
a number of experiments have been performed on artificial data.

keywords:
Fuzzy reasoning, Combined topological and directional relations, Algorithm for
defuzzification of spatial relations, neighborhood graph.

Introduction

The space can be studied through the objects and spatial relationship between them.
Spatial relations between objects provide information regarding the image contents.
These spatial relations provide information about topological structure, orientation
and distance between objects, generally information about their relative locations.

Topological relations are derived from geometric descriptions. There are two
well-known methods for finding the topological relations, the 9-intersections and
Region Connection Calculus (RCC') method [Herring 1994, Randell 1992b]. The
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9-intersections method depends upon point set topology where topological parts (in-
terior, boundary and exterior) of an object participate. In this method, topological
structure is studied by empty () and non-empty (—0) intersections of topological
parts. Eight basic topological configurations between 2D objects in R? are observed
out of 512 possible configurations. Many extensions have been proposed in the 9-
intersections model [Du 2005a, Egenhofer 1993, J. 2001, Zhan 1998, Shi 2007|. This
method is extended to deal with fuzzy objects and 44 useful topological relations
were developed, using the 9-intersections between objects with extended boundaries
[Clementini 1996]. This method is also extended to 16 intersections and a set of
152 useful configurations between fuzzy regions in R? is realized [Tang 2004]. This
method doesn’t represent fuzzy spatial relations between crisp objects.

On the other hand, RCC provides us information about the topological structure
of an image which are corresponding to the eight basic topological relations. RC'C
models are applied to regular topological spaces. This calculus is based upon the well
established axiomatic theory in which regions are primitives |[CLARKE 1981]. In
this theory spatial relations are based on a C(z,y), called connection relation. This
calculus is extended to fuzzy theory and fuzzy topological relations are developed be-
tween fuzzy objects [Liu 2009, Palshikar 2004, Schockaert 2008b, Schockaert 2008c]|,
a set of 46 useful topological configurations are considered. This theory is also ex-
tended to deal fuzziness at relation’s semantics and fuzzy connection relation based
on nearness is defined [Schockaert 2008b|. In this case, the next question which
comes into mind is that where a topological relation holds in space?

Topological relations ignore the directional contents between objects. The
O-intersections model for directional relations and a projection based cardinal
directions relation method are developed in qualitative domains [Goyal 2001,
Frank 1992]. In the 9-intersections method for directional relations, objects are
considered by their Minimum Bounding Rectangle (MBR) and area around the ref-
erence object is divided into tiles. Intersections between argument object and these
tiles are computed and relations are defined based on empty and non-empty in-
tersections. In other methods, two-dimensional projections are taken on both axis
then Allen relations are used. Both methods provide similar results and MBR of
the reference object is called neutral or direction less region.

Reasoning about situations when argument object occupies space in the central
tile of reference object, a method of Internal Cardinal Directional (ICD) relations
was introduced |Liu 2005]. This method divides the central tile of the 9-intersections
method for directional relations between extended objects into four, nine or 13
sub-tiles and internal directional relation between object pair is calculated by the
intersection of sub-tiles and argument object. These methods describe the extended
objects according to their relative position. Once a directional relation is determined
then next question arises that what is the binary topological relation between object
pair? Either two objects be disjoint, meet, overlap or one object is inside the
other. These methods don’t answer the question that what is the topological relation
between the object pair?

In existing methods, One single method can’t be used to adequately describe
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object’s position in image understanding process. In qualitative domain commonly
topological relations are studied between fuzzy objects such as in RCC and the
9-intersections methods. In languages, people use fuzziness in relation’s semantics,
for example "Both objects are approximately equal” or "Both objects approximately
meet". In this case both objects are crisp but relations are fuzzy. In second example,
both objects don’t meet, but relation depends upon nearness. A method which can
describe fuzzy spatial relations between crisp objects is required. For this purpose,
idea of combined topological and directional relations is not new, fuzzy methods
[Malki 2000, Matsakis 2005, Salamat 2011c, Salamat 2010b| can be used to model
the fuzzy directional and topological relations at the same time. This method rep-
resents fuzziness at relation’s level along with the answer for question that where a
topological relation holds in space.

Allen relations create 13 partitions around the reference interval or segment cor-
responding to each relation and these partitions represent eight topological relations.
To represent fuzziness at relation’s level along with the direction information, fuzzi-
ness is introduced at Allen’s relations. This method deals with the positional fuzzi-
ness in topological relations. These fuzzy topological relations are used to model
the positional uncertainty. This uncertainty present according to the directional
viewpoint of relative position of object pair in a spatial domain. In this paper, the
idea is to specify fuzzy topological relations between 2D objects along with qual-
itative directional information. For this purpose each relation is split into several
components and 1D Allen relations are used.

This paper is structured as follows, Section 5.1 describes the related work. Some
preliminary definitions are denoted in Section 5.2 and Section 5.3 discusses in detail
the different terms and necessary computations for 1D Allen relations. In Sec-
tion 5.4, our method for computing the topological relations along with directional
aspects and their interpretation has been given. we also develop an algorithm for
defuzzification of spatial relations. A neighborhood graph for defuzzified topological
and directional relations is presented in Section 5.5. Results for different situation
is given in Section 5.6 and Section 5.7 consist of conclusion and future work.

5.1 Related Work

One of the developed trends in geographic information science is a move from deter-
minate geographic information science to the fuzzy geographic information science.
Spatial relations is a major part of the Geographic Information Systems(GIS). In-
formation on the spatial organization of objects in an image is useful for image
understanding and reasoning process. Methods of extracting and representing this
information greatly effect the obtained results.

In early years, fuzzy directional relations are studied separately and different
approaches were adopted like mathematical morphology [Bloch 1995, Bloch 2003]
and quantitative methods [Miyajima 1994], where fuzziness is associated to a re-
lation. It is first numerical description of an object’s relative position, called angle
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histogram. Force histograms [Matsakis 1999b| were the extension of angle his-
togram which deals only disjoint objects. In all these methods, fuzzy directional
relations are studied and less attention has been paid to fuzzy topological rela-
tions while topological, directional and distance relations are considered essential
to understand scene configuration, modeling common sense knowledge and spatial
reasoning.

In most of the existing topological relations methods [Du 2005a, Du 2005b,
Shi 2007, Tang 2004] uncertainty is represented at object level but uncertainty can
also exist at relation’s level. This type of uncertainty can be handled by assign-
ing fuzzy membership value to a relation. According to our best knowledge, S.
Schockaert et al. [Schockaert 2008b| are the pioneer in this field and they have de-
fined the fuzzy "Connection" relation based on nearness and the topological fuzzy
relations in RC'C' theory. Having all this, the basic question is that where a topolog-
ical relation holds in space remains unanswered. For example, France touches Bel-
gium from north _east direction rather than this that France touches Belgium, then
next question arises that France has common boundary with Spain, Monaco, Italy,
Switzerland, Germany, Luxembourg, in which direction Belgium touches France?

To answer the question, that where a topological relation exists, the idea of
combined topological and directional relations information was initiated by J. Malki
et al. [Malki 2000] using the Allen [Allen 1983] relations of temporal domain in
spatial domain. This work was revisited by Matsakis and Nikitenko [Matsakis 2005]
and fuzziness in the Allen relations was introduced. The time complexity for this
method is O(nM+/M), this complexity is due to the algorithm for fuzzification of
segments of a longitudinal section. This fuzzification algorithm is replaced by t-
conorms along with polygonal object approximation [Salamat 2009|. The use of
fuzzy connectors along with polygonal approximation decreases its computational
complexity to O(nNlog(N)) where n number of directions and N represents the
number of vertices of polygonal objects [Salamat 2010a]. This work is related to
fuzzy spatial aspects where the topological and directional relations are evaluated
according to fuzzy set theoretical viewpoint.

The method addressed fuzziness at two levels, in case of topological relations
and fuzziness according to the directional viewpoint. Method of combined fuzzy
topological and directional relations (CTD) has two fold impacts, Allen relations are
combined in such a way that whole space can be analyzed by using the directions
[0, 7] and this method answer well the question that where a topological relation
exists in space. This method will be helpful to answer the query completely in
managing database and detecting the small changes in scene descriptions.

5.2 Preliminary Definitions

In this section we denote some terms and definitions which are frequently used
throughout the remainder of paper.

Fuzzy membership function: A membership function y in a set X is a function
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w: X —[0,1]. Different fuzzy membership functions are proposed according
to the requirements of the applications. For instance, trapezoidal membership
function is defined as

r—a  d—x

uw; o, B,7,0) = maz(min(z—2, 1, 5—),0) (5.1)

it is written as pi(q,g,4,6)(z) where z,a, 8,7,6 € R and a < 8 <y < 6.

Fuzzy set: A fuzzy set A in a set X is a set of pairs (X, u(z))such that
A ={(z, u(z)|lz € X)}

where u represents a fuzzy membership function.

Force histogram: The force histogram attaches a weight to the argument object
A that object A lies after B in direction 0, it is defined as

+00
FAB(g) — / F(0, Ay(v), By(v))dv (5.2)

— o0

The definition of Force histogram F45(0), directly depends upon the definition
of real valued functions ¢, f and F used for the treatment of points, segments
and longitudinal sections respectively [Matsakis 1999b]. These functions are
defined as

0  otherwise

cb(y)—{ylr Hy =0

zl‘i’y?‘]‘i’z(] ZJ

fler iy 20) = / /(ﬁ(u —w)dw)du (5.3)

xr +y?J 0

F(0,A9(v), Bo(v)) = > fl@ri s 255)

i=1..n,j=1..m

where n, m represents the number of segments of object A and object B re-
spectively and variables (x, y, z) are explained in Fig. 5.1.

Conceptual Neighbor: Two relations between pairs of events are conceptual
neighbors, if they can be directly transformed into one another by contin-
uously deforming (by shortening, lengthening or moving) events in topological
sense. A set of relations between pair of events form a conceptual neighbor-
hood if its elements are path connected through conceptual neighbor relations
[Freksa 1992].
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5.3 Terminology Used for Computation of Fuzzy Allen
Relations

This section describes the terminology used to decompose the space and computation
of terms used in this paper.

5.3.1 Oriented lines, Segments and Longitudinal Sections

Let A and B be two spatial objects and (v,0) € R, where v is any real number and
0 € [0,27]. Let Ap(v) be an oriented line at orientation angle 8 and A N Ay(v) is
the intersection of object A and oriented line Ay(v). It is denoted by Agy(v), called
segment of object A and length of its projection interval on x-axis is x. Similarly for
object B where BNAgy(v) = By(v) is segment and length of its projection interval on
x-axis is z, y is the difference between the minimum of projection points of ANAy(v)
and maximum value of projection points of BN Ay(v)(for details [Matsakis 2005]).

Figure 5.1: Oriented line Ay(v), segment as in B, longitudinal section as A.

In case of polygonal object approximation (z,y, z) can be calculated from inter-
secting points of line and object boundary. Only those oriented lines are considered
which passes through at least one vertex of two polygons. If there exist more than
one segment, then it is called longitudinal section as in case of Ay(v) in Fig. 5.1.

5.3.2 1D Allen Relations in Space

Allen [Allen 1983] introduced 13 JEPD interval relations based on temporal interval
algebra. These relations are arranged as A = {<,m, o0, s, f,d, eq, d;, fi, Si, 0;, m;, >}
with meanings before, meet, overlap, start, finish, during, equal, during by, fin-
ish_ by, start_by, overlap by, meet by, and after. All the Allen relations in space
are conceptually illustrated in Fig. 5.2.

5.3.3 Fuzzification of Allen Relations

There is a homeomorphism between Allen’s temporal relations and 1D topological
relations, due to this homeomorphism, Allen relations are used for extracting the
combined directional and topological relations information. Fuzzy Allen relations



5.3. Terminology Used for Computation of Fuzzy Allen Relations 61

di ( contains )

S (starts)

(finshes)

d (durling)

Figure 5.2: Black segment represents the reference object and gray segment repre-
sents argument object

are used to represent the fuzzy topological relations where fuzziness is represented
at the relations level.

Fuzzification process of Allen relations doesn’t depend upon particular choice
of fuzzy membership function. Trapezoidal membership function (described in Eq.
5.1) is used due to flexibility in shape. Let r(I,.J) be an Allen relation between
segments [ and J where I € A(argument object) and J € B (reference object), r’
is the distance between (I, J) and it’s conceptional neighborhood. We consider a
fuzzy membership function such as defined in Eq. 5.1 and let p : " — [0,1]. The
fuzzy Allen relations are defined as:

o f<(I,J) = p(—c0,—00,~b—3a/2,~b—a)(¥)

o f-(1, ) = 10,a/2,00,00)(¥)

o fm(l,J) = t(—b—3a/2,~b—a,~b—a,—b—a/2)(¥)

o fmi(l,J) = p(—a/2,00,a/2)(¥)

o foll,J) = t(—b—a,—b—a/2,—b—a/2,6)(¥)

o foill,J) = t(—q,—a/2,~a/2,0)(¥)

o fr(I,J) =min(i(—(b+a)/2,—a,—arto0)(Y)s H(=3a/2,—a,—a,—a/2) (¥)s I(~00,—00,2/2,2) (T))
o fri(l,J) = min(t_p—a/2,—b—b—bt+a/2(¥)s H(—o0,—00,—b,—(b+a)/2) (Y) s H(z,22,400,+00) (Z)
o fs(I,J) =min(p_y—qs2,—b—b—bra/2(¥)s B(—o0,—o0,~b,—(b+a)/2) (¥)s H(—o0,~00,2/2,2) (T)
o fsi(I,J) = min(p(—(b+a)/2,—a,—a,+00) (Y)s (=3a/2,—a,—a,—a/2) (¥)s (2,22 400, +00) (T)

o fa(l,J) = min(p(—b,—b+a/2,—3a/2,—a)(Y); B(=o0,—00,z/2,2) (T)

hd fdi(I7 ']) - min(u(—b,—b+a/2,—3a/2,—a) (y)7 H(z,22,400,400) (m)
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where a = min(z, z),b = max(z, z) and x and z are the lengths of segment (I)
and segment (J) respectively and y is the difference between the minimum value of
projection points of Ay(v) and maximum value of projection points of By(v).

Most of relations are defined by one membership function like fo, fs, fm, fmi
and others are represented as a conjunction of more than one fuzzy membership
function, such as f, ffi, fs, fsis fa, fai- In fuzzy set theory, sum of all the relations
is one, this gives the definition for fuzzy equal relation. Fuzzy Allen relations are
not JEPD because there exist at least two relations between two spatial objects. All
these equations assign a numeric value to a spatial relation.

5.3.4 Treatment of Longitudinal Section

During the decomposition process of an object into segments, there can be multiple
segments for a line depending on object shape and boundary that is called longitu-
dinal section. Different segments of a longitudinal section are at a certain distance
and these distances might affect end results. Fuzzy T-norms, T-conorms and fuzzy
weighted operators are used for fuzzy integration of available information, here for
simplicity only T-conorm is used.

wor)(w) = max(pay(u), uepy(u))

Where w4, pup represents the membership value for first and second segments of a
longitudinal section. In this case each Allen relation has a fuzzy grade and objective
is to accumulate the best available information. The choice for this operator is
discussed in [Salamat 2011c|. When fuzzy operator OR is used, only one fuzzy
value contributes for the resultant value that is mazimum.

5.3.5 Normalization of Histogram of Fuzzy Allen Relations

Histograms of fuzzy Allen relations represent the total area of subregions of A and
B that are facing each other in given direction . Mathematically it can be written
as [Salamat 2009]
+00
PAP(0) = [ F(0,40(0). Ba(o)ds (5.4)
—0o0
where F.(6, Ag(v), Bp(v))dv = r(I}, Ji). In discrete space this integral can be writ-
ten as sum of the surface areas.
n
FP0) = (X +2)> r(Ii, Ji) (5.5)
k=1

where Z is the area of reference object and X is area of augment object in direction
0, n is total number of segments to be treated and r(Ij, Jy) is an Allen relation for
segments (Ix, Ji) and k =1,2,..,n.

These histograms can easily be normalized by dividing an Allen relation by sum
of them for every . It is represented by [FAB(0)| where r € A. [FAB(0)] =
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FAP(0)
> pca PP (0)
These normalized weights can be used to define the quantitative fuzzy directions.

. Each fuzzy Allen relation has its own weight in a specified direction 6.

5.3.6 Properties of Fuzzy Allen Relations

These fuzzy Allen relations verify some properties called reorientation of relations.
Such as

o [>(0) = f<(0+7), fmi(0) = [ (0 +7)
o [oi(0) = fo(0 + ), [7(0) = fs(0+ )
o fsi(0) = fri(0+ ), f=(0) = f=(0 + )
o fai(0) = fai(0 + ), fa(0) = fa(0 + )

These relations can be written as Ay = {<,m, 0, s,d, f;, d;, =} and their inverses
as Ay = {>,m;,0;, f,d, s;,d;,=}. Two-dimensional eight topological relations are
possible combination of eight independent Allen relations. These relations and their
reorientation show that the whole 2D space can be explored with the help of Allen
relations using the oriented lines varying from (0, 7).

5.4 Topological and Directional Relations

This section consists of five subsections. In subsection 5.4.1, fuzzy membership
functions for directional relations and possible combination of 1D Allen relations
are described. Subsection 5.4.2 discusses relationship between 1D Allen and topo-
logical relations. An algorithm for defuzzification of fuzzy relations is proposed in
subsection 5.4.3.

5.4.1 Fuzzy Membership Function for Directional Relations

The system of equations defined in section (5.3.3) assigns a numeric value to a spatial
relation in a direction 6. To asses qualitative directions, directional fuzzy sets are
used. A number of fuzzy membership functions has been proposed for assessing
the directional relations, these functions include the trigonometric, triangular and
trapezium membership function or by means of favorable and unfavorable forces in
force histograms method.

In this paper, we prefer to use trigonometric functions which are easy to im-
plement. The function f(@) to model the direction Right of for four directional
system, should have conditions, f(+5) =0 = f(—%) and f(0) = 1. This function
should be increasing in the interval (—7,0) and decreasing in the interval (0, 7). At
7 both relations Above or North and Right_of have equal values and similarly at
—Z both Below or South and Right_of have equal values. Cos?(0) = Sin?(0) = 3
at £7 are the best choices.
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To formulate eight directions, straightway process is to narrow the interval, i.e.,
J(+%) = 0= f(=%) and f(0) = 1 for relation Right_of. For this purpose double
angle trigonometric functions are used which satisfies all the above cited conditions.
Directions are represented as {E, NE, N, NW,W,SW, S, SE} with meanings Fast,
North_ Fast, North, North West, West, South _West, South and South_Fast.

The angle distribution is taken to the half plane so opposite Allen relations are
used to define the opposite directions except the direction East and West where
union of both relations are used. This exception is used due to the reorientation
of relations and domain of Fast and West relations lie in different Allen relations
(domain of Fast directional relation is [, §] and f<(0) = f~(0 + 7), using this
combination of relations results in the decrease of computational complexity due to
angle distribution from [0, 71]). Mathematically these relations can be written as

o fr= 24: As x cos?(20) + i A1 x cos?(20)

= __ 37
0=0 0=3%

A1 x cos?(20) + Zﬂ: As x cos?(20)

_3
0 g=3%

o fw=

P

0

3n

N = 24: Ap, X cos®(20)

0=1

3n

fs= 30 Ay, x cos?(20)
==

4

fvm =3 A x sin?(20)

6=0

° fNW = i .AQ X sin2(29)
==

2

° fsw = ZZ: Ap x sin?(20)
6=0

* fsp = i Ay x sin?(20)
0=5

Where A; € A;,7 = 1,2 given in section 5.3.6 are the fuzzy Allen relations with As
is the reorientation of A; and f € {D, M, PO,TPP, NTPP,TPPI,NTPPI,EQ}
is a topological relation ( Disjoint, Meet, Partially overlap, Tangent proper part, Non
Tangent proper part, Tangent proper part Inverse, Non Tangent proper part Inverse
and Equal). In this way the relations are manipulated as a (8 x 8) matrix (C(i,j))
where row hold the topological relations and columns have the qualitative directional
aspects of 2D scene information. Relations are expressed in numeric values where
each value (c(i,j)) represents the percentage area of two objects under a specific
topological relation in that qualitative direction.
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5.4.2 Driving Two-Dimensional Topological Relations from Allen
relations

Simple 1D definitions can’t be extended and applied directly to a 2D space. Some
assumptions have to be adopt and these definitions are extended to two-dimensional
case through logic.

In case of merging the topological and directional relations some of the topolog-
ical relations depend upon a finite direction and limited set of points such as EC,
PO, TPP, TPPI. Relations like NTPP, NTPPI, EQ) hold if the relation holds in all
directions. The topological relations which exist in a finite directions, they share
with another topological relation existing in another direction. The relations which
exist in all directions, they share directional relations. Temporal Allen relations
represent the eight topological relations in spatial domain R, these relations can be
extended to spatial domain R? through the logical implication. These relations are
defined as:

Disjoint D(A, B): In RCC theory, two objects are disjoint when there doesn’t
exist a connection relation (e.g., Disjoint(A, B) = —C(A, B)). A fuzzy con-
nection relation based on nearness' is defined using the resemblance relation.
This states that if two objects are at a certain distance and resemblance re-
lation is zero degree then objects will be disjoint. In our method, functions
fm and fm; plays the same role as the resemblance relation R, g(A, B) with
variable v = 0 for the 1D interval. In such a case both functions, fs and f.,
capture the semantics of R, 5(I, J), representing disjoint topological relation
between two intervals on a real line, along with additional information that
argument interval either before or after the reference interval. This definition
of Disjointness of 1D intervals can be extended to two-dimensional objects by
following relation

(A,B) are disjoint < {Vv € [0, 7] (I,J) are disjoint} (5.6)

where A, B are 2D objects. Now follow Eq. 5.6, objects have fuzzy disjoint
topological relation in a direction 6 if all parallel segments are topologically
disjoint in direction 6. A fuzzy disjoint topological relation exists in 2D domain
if it exists in all directions, i. e., all the f- or fs behave like crisp functions and
have a unit value along all oriented lines in [0, 7]. All the other functions have
zero values and objects are at certain distance. These relations are explained
in table 5.1.

!S. Schockaert et al. [Schockaert 2008b] defined a connection relation based on nearness as

1 if d(a,b) < «
Ro3(A,B)=10 if d(a,b) > a+ 0
%‘i(a’b) otherwise (8 # 0)
Where a € A,b € B and d is a Euclidian distance between objects A and B. They considered all

of three, i. e., relation R, and both objects (A, B ) are fuzzy, but the connection will remain fuzzy
if we consider the resemblance relation R as fuzzy relation and A, B as crisp regions.
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Meet M (A, B): According to the topological view point, two objects have a Meet

topological relation when they share at least one boundary point and they
don’t share the interior regions of two objects. In our method of defining the
topological relations, two functions are introduced f,, and f,,;. Both functions
play similar role like the resemblance relation defined by S. Schockaert et al.
in [Schockaert 2008b|, where degree of closeness is one, when the intervals
share a common point and smooth transition from closeness to apart depends
upon the size of the smaller interval. Both functions capture some additional
semantics regarding position of the interval, either the interval is after or before
the reference interval. To make the sense in 2D scene, overall Meet relation
holds if at least one f,, or f,; has some non zero value for any 0 € [0, 7] and
all the other directions have the Disjoint topological relation. These relations
are explained in table 5.2.

Partially Overlap PO(A, B): Partially overlap relation in topology (or overlap)

exists when two objects share their interior region, in such a case their bound-
aries intersect at least from two points. In R the functions f, and f,; capture
the overlap semantics on the interval along with the directional information.
When 2D objects are decomposed into 1D segments, each pair of segments
may have the different topological relations in different directions, e.g., the
object’s segments in direction #; may have overlap relation while in direction
0; may have meet topological relation and in direction ), both the segments
may be disjoint, where i # j # k A 6;,0;,0;, € [0, 7]. This shows that overlap
in 2D objects have other topological relations between 1D segments of both
objects. These relations are explained in table 5.3.

Tangent Proper Part TPP(A, B) and TPPI(A,B): TPP(A,B) topological

Non

relation holds in 2D space when A C B and they share a common point on
the boundary. In 1D spaces the relation fs or f; shares the same semantics,
if f is a crisp relation. In case of f is a fuzzy relation they represent the
fuzzy semantics. When a 2D object is decomposed into 1D segments, in a
limited number of directions they have the relation f; or f; while in other
directions object is contained in the container, d (during) Allen relation
exists. Similarly in case of TPPI topological relation, in some directions the
1D segments share the common boundary point and fs; and fy; fuzzy Allen
relations exist while in other directions the d; Allen relation exists. In our
system of defining the topological and directional relations information, T'PP
(TPPI) relation exist in some direction while in other directions NT'PP
(respectively NT'PPI) relation exists. These relations are explained in tables
5.4 and table 5.5.

Tangent Proper Part NTPP(A, B): This topological relation holds when
argument object is contained in reference object and both objects don’t share
boundary. It means that object is contained in container object in all direc-
tions. When 1D Allen relations are applied to the spatial domain, relation d
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Non

captures same semantics. If each segment of an argument object is contained
in the segment of a reference object in all directions, then argument object is
topologically inside the reference object and they don’t share boundary. Rep-
resenting the fuzzy semantics, it is observed that this relation holds when there
is a certain distance between boundaries of both objects. Situations having
such relations are explained in first row in table 5.6 of section 5.6.6.

Tangent Proper Part Inverse NTPPI(A, B): This topological relation
holds when the container is an argument object and reference object is con-
tained in the argument object, e. g., object B is a reference and A is an
argument object and object B is contained in object A, both objects don’t
share boundary points. It means that the object is contained in the container
object in all directions. When the 1D relations are applied to the spatial
domain, the relation d; captures the same semantics. If each segment of an
argument object is contained in the segment of a reference object and this re-
lation holds in all the directions, then there exist topological relation NT PPI
for a pair of 2D objects. As explained in second row in table 5.6 of section
5.6.6.

Equal EQ(A, B): Two objects A and B are equal if they share the interior, exte-

rior and boundary. Semantically both objects have the same interior, bound-
ary and exterior. In RCC' system equal topological relations are defined as
EQ(A, B) =4er P(A, B)AP(B, A). Geometrically two regions are called equal
when both objects seem equal in all direction. Function f— in our system cap-
tures the semantics equal if two intervals are equal. When this relation is
applied to 1D segments of 2D objects, segments of both objects must be
equal in all directions. These results that degree of EQ topological relation
distributed equally in all directions. As explained in third row in table 5.6 of
section 5.6.6.

5.4.3 Defuzzification of Relations

Numerical values for a relation are stored in a matrix called fuzzy matrix of relations.

The relations are manipulated in (8 x 8) matrix where topological relations are

represented into rows and columns show directional distribution of each topological
relation. The normalized histogram of fuzzy Allen relations represent a percentage
surface area of two objects in a given direction 6. Multiplication with the directional

fuzzy set normalises this histogram over the whole 2D space. Hence, each entity

of this matrix represents percentage surface area of two objects, C(i, ) represents

the i** topological relation in j** direction. Rows and columns of the representation

matrix are explained below?.

It is only representation and rows and columns explain how the relations are labeled
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Explanation of rows and columns in representation matrix

Row (i) 1 2 3 4 5 6 7 8
Topological relation | D M PO TPP NTPP TPPI NTPPI FEQ
Column (j) 1 2 3 4 5 6 7 8
Directional relation | E NE N NW W SW S SE

These relations are not Jointly Exhaustive and Pairwise Disjoint (JEPD). To
approximate 2D topological and directional relation, an algorithm for defuzzification
of relations are proposed.

Defuzzification can be performed by a multiple ways, topological relations don’t
depend on numerical values. Two dimensional objects are decomposed into one-
dimensional segments, two dimensional overlap topological relations give rise to all
the one dimensional topological relations in different directions. Another reason is
that our question at hand is that where a topological relation holds between the
object pair, we proceed for extracting topological relation then proceed for direc-
tional relation. Fuzzy directional relations are distributed over multiple directions
and reasoning about directional relations is performed by plausible occurrence of
relations so we choose the maximum numerical value of directional relations.

Algorithm 2 Algorithm for defuzzification of 2D fuzzy topological and directional

relations
for 7,7 =1 to 8 do

if C(3,7) # 0 then
topological  relation is overlap and  directional relation @ is
maxj(C(Q,j), C(3,7),C4,5),C(6,5))
else if C(4,j) # 0 then
topological relation is TPP and directional relation is max;(C(4, 7))
else if C(6,7) # 0 then
topological relation is TPPI and directional relation is maz;(C(6, j))
else if all C(5,:) are approximately equal for all j then
topological relation will be NTPP
else if all C(7,:) are approximately equal for all 7 then
topological relation is NTPPI
else if all C'(8,:) are approximately equal for all j then

topological relation will be FQ
else if C(2,5) #0A C(i,5) =0V i >3 then
topological relation is meet M and directional relation is maxz;(C(2, j))
else
topological relation is Disjoint and directional relation is maz;(C(1, j))
end if
end for

As discussed in section 5.4.2, that when a 2D object having a partially overlap
relation is decomposed into 1D segments, then almost all the relations are possible
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between the segments in different directions. This distribution of 1.D spatial relations
depend upon the size of objects and overlapping surface area of objects. Due to this
reason extraction method must be started from overlap relation. If partial overlap
relation don’t exist any where then we search for other possible topological relation.
Proposed algorithm for 2D topological relation from 1D is described as algorithm
2. This algorithm releases a pair of JEPD topological and directional relations.
These relations are possible to represent in a neighborhood graph for topological
and directional relations.

5.5 Neighborhood Graph

Conceptual neighborhood graphs describe the possible continuous transitions.
Graphs in topological relations describe the topological transitions between object
pair when topological transformations are applied. They denote the movement,
expansion and contraction of objects. On the other hand neighborhood graph in
directional relations captures only movement.

Figure 5.3: Neighborhood graph in the system of combined topological and direc-
tional relations (CTD) method.
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These neighborhood graphs are frequently used for common sense reasoning and
path planing in many A.l. fields. These graphs are developed between the crisp
relations. Combined topological and directional relations, after the defuzzification
process behave like the crisp relations. A graph can describe the three type of
movements, here for simplicity we represent one part of the complete graph.

In Fig. 5.3, it is shown that every node of the neighborhood graph has eight
edges except from the nodes representing the D and T'PP relations. Each node rep-
resents a pair («, ) of relations where « represents the topological and [ represents
the orientation relation. In this neighborhood graph each node has eight neigh-
bors circular, straight and diagonal neighbors, respectively represents directional,
topological and directional and topological neighbors.

5.6 Experiments

The fuzzy relations are manipulated in (8 x 8) matrix where topological relations are
represented into rows and columns show the directional distribution of each topo-
logical relation. Values in each cell represents the strength of the relation between
pair of the objects. Throughout this paper reference object B is represented by dark
grey color and light grey object represents the argument object A. Different set of
experiments are shown, some other examples are presented in annex (section 10.3).
In these tables, object pairs are represented in first column, second column shows
the graphical representation of results. In third column, results for the defuzzified
topological and directional relations are represented, these results are produced by
the algorithm 2.

5.6.1 Fuzzy Disjoint (D) Topological Relation

In this section the fuzzy disjoint topological relations in different directions are con-
sidered. As in table 5.1, first column represents the object spatial position and
second column represents the overall 2D topological and directional relations and in
third column the generated defuzzified topological and directional relation by algo-
rithm 2 are depicted. As object A changes its position, its directional relation also
changes, in first row of table 5.1, argument object lies in E to the reference object B.
The Algorithm generates the topological relation Disjoint and directional relation
East. In second row, argument object lies in direction North West, it histogram
representation shows that in the North West direction, it has the maximum mem-
bership value, as a result, algorithm allocates it a directional relation North_west.

5.6.2 Fuzzy Meet (M) Topological Relation

Fuzzy meet M relations in topology exist when the objects are exactly meeting or
very close to each other and it seems that they are sharing the boundary. The table
5.2 represents the fuzzy meet topological relation (M).
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Object pairs Matrix rep. of relations Algo. Output

Topological rel.= Disjoint

Direction— East

Topological rel.= Disjoint
Direction= North West

Topological rel.= Disjoint
Direction= West

zzzm
o

BicCoam
hogs

< i Topological rel.= Disjoint
Direction= South West

Table 5.1: Topological relation D

First column shows the object locations at different orientations of argument
object A with respect to the reference object B. First rows shows that the argument
object A touches the object B from the Fast direction (first column). Second column
shows its histogram representation of its relations where the relations are shared
between the Disjoint and Meet (second column) and their 2D topological relation
generated by the algorithm. Similarly second row represents the argument object
touches the reference object from North direction, for this object pair algorithm
produces the result that M topological relation with North directional relation. In
the third row argument object seems touching from the north  west direction, hence
the output of algorithm shows that M topological relation holds with directional
relation North West. Similarly argument object in last row nearly touches from
west as a result the algorithm for defuzzification of spatial relations produces the
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Object pairs Matrix rep. of relations Algo. Output

Topological rel.= M

Direction— East

Topological rel.= M
Direction= North

Topological rel.= M
Direction= North West

Topological rel.= M
Direction= West

Table 5.2: Topological relation M
resultant direction as West.

5.6.3 Fuzzy Overlap (PO) Topological Relation

In this example we consider the overlapping objects in different directions. The
object relative position, topological and directional relations and the topological
and directional relations generated by the algorithm 2 are described in table 5.3.
In the first column, object pairs are represented having the topological relation
Partially  Overlap in different directions, second column represents topological and
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Object pairs Matrix rep. of relations Algo. Output

Topological rel.= PO
Direction= East

Topological rel.= PO
Direction= North

Topological rel.= PO
Direction= West

Topological rel.= PO
Direction= South

Table 5.3: Object pairs with PO topological relation

directional relations in a histogram representation. The results generated by al-
gorithm are denoted in third column. As soon as object changes their position,
topological and directional relations matrix also changes. The directional relation
between overlapping objects depends upon the relative size, shape and overlapping
surface area of objects. In all the above cited examples, object A is smaller relatively
to object B.
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5.6.4 Fuzzy TPP Topological Relation

In crisp topological relations, this relation holds when the argument object lies
inside the reference object and share the boundary with the reference object. In
fuzzy relations, this relation (7PP) holds when the argument object lies inside the
reference object near the edge. In this method an entity in the matrix represents the
degree of topological relation in a particular direction, as a result this relation holds
in a particular direction along with the other fuzzy topological NTPP relation in
other directions, for example in first row of the table 5.4 where object lies near the
eastern edge of reference object, there relations show that highest value of topological
relation TPP exists in direction East while in all other directions fuzzy topological
relation NTPP holds.

Object pairs Matrix rep. of relations Algo. Output

Topological rel. = TPP
Direction= East

Topological rel.= TPP
Direction= North

LI | )
Fagszepn

Topological rel.= TPP
Direction= West

Topological rel.= TPP
Direction— South

Table 5.4: Object pairs with TPP topological and their directional relations
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5.6.5 Fuzzy TPPI Topological Relation

In this example reference object B is considered inside the argument object A. The
object pairs are shown in first column of the table 5.5. Second column shows the
histogram representation of relations and third column shows the results produced
by the algorithm 2.

Object pairs Matrix rep. of relations Algo. Output

Topological rel.= TPPI
Direction= East

Topological rel.= TPPI
Direction— North

Topological rel.= TPPI
Direction— West

Topological rel.= TPPI
Direction= South

Table 5.5: Object pairs with TPPI topological and their directional relations

Obviously it is an inverse relation as a result visually reference object seems to
be in opposite direction of the directional relation. In first row of the table, visually
reference object lies near the West edge of the argument object, but its relation is
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East, this is due to the inverse topological relation. When the objects commute,
the topological and directional relations become inverse, for example consider the
object pairs in third row of table 5.4 and first row of table 5.5, both represents the
same object pair, when the objects commute, both the topological and directional
relations become inverse to each other. Similarly for the other object pairs in table
5.4 and table 5.5, same object is used to represent the object pair when objects
commute the topological and directional relations become inverse.

5.6.6 Fuzzy NTPP, NTPPI and EQ Topological Relations

In these examples we consider the all those topological relations which must exist
in all the directions.

Object pairs Matrix rep. of relations Algo. Output

Topological rel.= NTPP
Direction= All
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Topological rel.= NTPPI
Direction— All

zz=zm
£°m

T
Bage

Topological rel.= EQ
Direction= All

Table 5.6: Topological relations NTPP, NTPPI and EQ

Here, it is explained that a single topological relation must be held in all the
directions for reference the object pairs represented in first column of the table 5.6.
In first row, argument object A lies inside the reference object B as a result the
NTPP relations holds equally in all directions, these results are represented in first
row of the table, the algorithm generates the directional relation All which means
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that this topological relation holds in all directions. In second row reference object
B lies inside the argument object, as a result inverse topological relations hold in
all directions. Third rows shows the situation, when both objects are equal in size,
thus fuzzy equal relation holds if both objects have equal size in all directions.

5.7 Conclusion and Future Work

In this paper a new method for finding fuzzy topological and directional relations was
proposed and all the topological relations are generated using fuzzy Allen relations
and directions are evaluated with the help of trigonometric functions. This method
deals with fuzziness at two levels, fuzziness in the topological relations due to their
geometrical description and fuzziness in directional relations. This method also deals
objects with holes or convex objects. Longitudinal section holds when objects with
holes or convex objects are decomposed into 1D segments. A method is described
in section 5.3.4 to deal with a longitudinal section. It is a numerical description
of relative position of objects and value in each cell represents the strength of the
relation between object pair.

This method can be used in designing and managing spatial database, where one
single model can answer adequately a query. This method can detect small changes
in a spatial scene when implemented to the same pair of objects at two different time
instant. In this way this method can replace the implementation of four methods
(topological, directional, distance and internal cardinal directional (ICD) relations)
of spatial relations which are used to compare a scene.

An algorithm for defuzzification of spatial relations is also given such that we can
estimate the 2D fuzzy topological relation along with the directional components.
These defuzzified spatial relations are represented by a neighborhood graph. Spatio-
temporal relations are the emerging issue in GIS and other sciences and hopefully
these results will be helpful in extending this work to a spatio-temporal aspects and
fuzzy spatio-temporal reasoning and natural language processing. These results will
be used in future to develop the spatio-temporal relations and motion verbs.






CHAPTER 6

Spatio-Temporal Relations and
Modeling Motion Classes by
Combined Topological and
Directional Relations Method

Abstract

Defining the spatio-temporal relations and modeling motion events are the emerging
issue of current research. Motion events are the subclasses of the spatio-temporal
relations, where stable and unstable spatio-temporal topological relations and tem-
poral order of occurrence of a primitive event play an important role.

In this paper we proposed a method of spatio-temporal relations based on topo-
logical and directional perspective. This method characterized the spatio-temporal
relations into different classes according to the application domain and topological
stability. This proposes a common sense reasoning and modeling motion events in
diverse application with the motion classes as primitives, which describe the changes
in topological and directional relations. Topological relations have a locative sym-
metry, to remove this symmetry we add the directional information in each motion
event and these events are defined as a systematic way. This will help to improve
the understanding of spatial scenario in spatio-temporal applications.

keywords: Spatio-temporal relations, motion events, event modeling, motion
classes.

6.1 Introduction

Automatic event detection in spatio-temporal data is gaining more and more at-
tention in computer vision and video researchers community. Visual scene de-
scription takes into account the ontological viewpoint of relative object positions
with other objects and spatial relations between them. It is sufficient to em-
phasize the modeling of moving object’s spatial relations such as modeling video
events |[Li 1997, Markus Schneider 2007]. Modeling spatio-temporal relations be-
tween moving objects involve the modeling of motion events such as durative events.
Spatial relations for a snapshot is called a primitive event. Durative events are the
union of primitive events holding in a sequence with a particular temporal order.
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Defining spatio-temporal relations have the two main domains of research,
spatio-temporal object and spatio-temporal relations modeling. Cuboid object
approximation or three dimensional geometry is used to model the former and
for lateral two-dimensional objects occupy different spatial locations at different
time points |[Worboys 2005|. Several types of logics for mechanizing the spatio-
temporal relations and reasoning process are used like interval temporal logic
[Allen 1983, Zaidi 2006|, point temporal logic [Galton 2003| and propositional
model logic [Halpern 1996]. The point temporal logic supports the instantaneous
snapshots of the world. A snapshot represents the current situation and a spatio-
temporal relation is defined if a particular spatial relation holds for every snapshot
during that interval. It is considered that time and space are bounded to each other.
Spatio-temporal relations are modeled between moving objects by taking transaction
from one snapshot to the next snapshot and spatio-temporal relations are called the
spatio-temporal features of a moving object. These features could be used for mod-
eling the spatio-temporal events and reasoning moving objects [Fernyhough 1999].

D. Vakarelov et al. in [Nenov 2008, Vakarelov 2010| provided the strong math-
ematical and logical bases for defining the general spatio-temporal topological re-
lations and divided them into two categories (i) stable spatio-temporal relations
and (ii) unstable spatio-temporal relations. A stable spatio-temporal relation is a
relation which holds for every frame or snapshot in the interval and unstable re-
lations are those which exist at least one snapshot during the temporal interval.
Some spatio-temporal relations are strictly stable such as Disjoint(D), Non Tangent
Proper Part(NTPP), Non Tangent Proper Part Inverse(NTPPI) and Equal(EQ)
and others may be stable or unstable like Meet(M), Partially Overlap(PO), Tangent
Proper Part(TPP), Tangent Proper Part Inverse(TPPI). This provides a way to use
the spatio-temporal relations in linguistics and modeling motion events.

Most of the existing theories of spatio-temporal relations are domain based. Do-
main knowledge imposes conditions to a spatio-temporal relation to be topologically
stable or unstable. A domain where the spatio-temporal relation is topologically sta-
ble, directional or distance relations are unstable such as spatio-temporal relations
on the road networks. In defining the motion events or verbs which represents the
transitive movement, stability or un-stability of topological relations and sequence
occurrence of primitive events play an important role where as directional relations
along with the topological relations remove the certain symmetries and help the user
to understand the real scene situation. Consider the following two examples.

1. Mr John (object, name of a person) crosses (relation) the football ground
(object).

2. Mr John (object, name of a person) crosses (relation) the football ground
(object) from north to south.

In proposition 1, there is no confusion about the topological relation that the
object A (John) has a sequence of topological relations changing over time with
object B (football ground). There is a symmetry about the directional relations and
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the user did not know the exact direction of object A to object B before and after
the occurrence of spatio-temporal event cross. In proposition 2 when directional
constraints are added, they remove the confusion about the directional relations
and symmetry of topological relations that object A (john) crosses the object B
(ground) from North to South. 1t justifies that how the topological relations in two
objects change, what was the temporal order of occurrence the events?

In our approach, we used Combined Topological and Directional (CTD) relations
method [Salamat 2010a, Salamat |, which is more suitable for reasoning about
moving objects and developing the motion events. A spatial situation is represented
by the relationship between the considered objects. It is natural to represented the
information using these spatial relations. Events can be expressed by interpreting
collective behavior of physical objects over a certain period of time. The main focus
of this work is to formalize the spatio-temporal relations and the spatio-temporal
events in a systematic way.

In this paper we propose a method for defining the spatio-temporal relations. In
this method, a point temporal logic is used for defining the general spatio-temporal
relations and spatio-temporal motion events. A general description of topologically
stable and unstable spatio-temporal relations are provided and these relations are
used for modeling the motion events using the sequence occurrence of primitive
events. A directional constraint is also introduce in modeling the motion events,
this removes the symmetry of topological relations and provides a sound description
of spatial situation.

This paper is arranged as follows, related work is discussed in Section 6.2 and
Section 6.3 composed of preliminary definitions. Section 6.4 explains the combined
topological and directional relations method, spatio-temporal relations are defined
in Section 6.5 and Section 6.6 composes on geometric representation of some motion
events and these motion events are defined in Section 6.7. Section 6.8 concludes the

paper.

6.2 Related Work

A moving object occupies the different positions at different time points and rel-
ative motion means that the object changes its position with respect to another
object. This relative motion can be studied through different aspects of space and
spatial relations are one of them. A spatial relation for a snapshot is considered
as a primitive event, then spatial relations between moving objects for an interval
are characterized as spatio-temporal relations and sequence occurrence of primitive
events over a period of time is known as spatio-temporal events.

Commonly adopted approaches are qualitative and domain based such as Qual-
itative Trajectory Calculus (QTC) [de Weghe 2006, Maeyera 2005]. This calcu-
lus describes the relation between moving point objects. Stewart Hornsby et al.
[Hornsby 2008] modeled the different spatio-temporal relations between moving ob-
jects on road network. All these relations represent certain class of motion verbs
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and objects are approximated as point objects. When the objects are under motion,
especially on road networks, the relations are purely directional relations where the
objects change their position, but don’t change the topological structure of scene.

A mereo-topological approach is extend to define the spatio-temporal relations
and a notation of temporal slice is used. A temporal slice is called an episode of
history for a given interval( see [Muller 2002, Ibrahim 2007a|). The primitive events
are defined using Allen’s temporal logic and defining the relation holds(P,i)(Property
P holds during the time interval i) [Allen 1994]. In this method, interval temporal
logic is used and a primitive temporal interval is defined as a smallest interval where
the relation doesn’t change. For composite events another property "occurs”, defined
as occurs(e,i)= event e occurs during the interval i and different hold predicates are
combined together through logical connectors in a sequential order.

Max. J. Egenhofer and Khaled K. Al-Taha [Egenhofer 1992] described a
method for spatio-temporal reasoning based on continuous transection from one
state to another state. In this method, topological relations are computed by
the 9-intersections method [Egenhofer 1993]. A spatio-temporal reasoning method
for reasoning topological changes is developed using the instantaneous point tem-
poral logic and snapshot model is used for representing spatio-temporal data
[Bittner 2009, Galton 2002, Adaikkalavan 2005]. This method of topological re-
lations is used by Markus schinder et al. [Erwig 2003, Ma 2004] to model the
motion events or motion classes. They model the motion events which involve the
topological changes at each frame. Spatio-temporal motion events between moving
objects are also effected by the environment regarding its application domain such
as modeling the relation cross, enter, leave shows that one object is only on concept
level. i.e., it is a region of interest which is defined by the observer itself. These
regions are also defined for a network, visual tracking, image understanding and
activity recognition or freely moving objects like defining the relations for road net-
works and modeling relations for ecological movement behavior analysis of animals
in social sciences.

Spatio-temporal topological relations are divided into two categories, stable and
unstable spatio-temporal relations [Vakarelov 2010|. Both stable and unstable
spatio-temporal relations play an important role in modeling the spatio-temporal
events. A snapshot represents the situation of the world at time instant ¢ which
is called a primitive event. Spatio-temporal events are embedded in time, they
have temporal boundaries, they have their relationship to time and they don’t oc-
cupy space but they are related to space. Spatio-temporal events are defined as
composite events. Next question is, how their different parts(primitive events) are
interrelated? A property holds_at(P,t) is used along with the instantaneous tem-
poral logic. The primitive events are defined for each snapshot during an interval T
using the Allen’s temporal logic and defining the relation holds(P,T). If interval T
has a zero duration, then it represents a snapshot and a relationship between holds
and holds_at can be represented as holds(P,T) =Vt € T, holds__at(P,t). This ex-
tension in definition provides us a relation between holds and holds_at such that a
property P holds for an interval T if it holds_ at for every point during the interval.
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Motion events are the subclasses of spatio-temporal relations with a temporal
ordering in a primitive events and they don’t formulate the necessitate of a calcu-
lus, they are only logical representation with temporal ordering of primitive events.
Modeling motion events, where the property (P) changes at each instant, it is suit-
able to use the sequential logic, seq ev(t, e, ea,s) (event ey occurs before ey in S
during time t) where seq ev represents the sequence event. Composite events are
the initial conditions dependant, when an initial primitive event occurs at a certain
time point %g, it set up the superclass and name of the possible composite event to
be happening.

Topological relations have a certain type of locative symmetries, they don’t
explain the symmetric location of path and motion direction of argument object.
To remove this symmetry in topological relations about the locative perspective,
relevant spatial direction is added in motion verbs. In language semantics, motion
events are divided into three classes, an initial, median and terminal [Muller 1997|
direction based events. Some motion classes are explained with the help of a single
directional relation such as enter, release, touch and some needs two directions like
cross, graze etc.

We used CTD method [Salamat | to develop such motion events where topologi-
cal components plays role for defining the motion events, directional components are
used to overcome the locative symmetries. For motion classes where directional com-
ponents are important, topological components can be used for controlling variables
such as moving objects on road networks. We hope this paper will create a bridge
between the two approaches of modeling the spatio-temporal events, approach based
on interval logic and point logic.

6.3 Preliminary Definitions

In this section we recall some basic definitions which are frequently used throughout
the remainder of the paper.

Fuzzy membership function: A membership function p in a set X is a function
w: X — [0,1]. Different fuzzy membership functions are proposed according
to the requirements of the applications. For instance, trapezoidal membership
function is defined as

T — 0—x

/,L(ﬁ, «, ﬂa e 6) = max(mm(m, ]-7 m

);0) (6.1)

it is written as p(,g4,6)(z) where z,, 8,7,6 € RAa < 8 <y <.

Fuzzy set: A fuzzy set A in a set X is a set of pairs (X, u(z))such that
A ={(z, p(z)|z € X)}

where p represents the fuzzy membership function.
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Force histogram: The force histogram attaches a weight to the argument object
A that this lies after B in direction 6, it is defined as

+00o
FAB(9) = / F(6, Ag(v), By (v))dv (6.2)
— o
The definition of Force histogram FAB(H), directly depends upon the definition
of real valued functions ¢, f and F used for the treatment of points, segments

and longitudinal sections respectively [Matsakis 1999b]. These functions are
defined as

0  otherwise

cb(y)—{ylr Hy =0

zl‘f’y?]‘f’z.] zJ
f@nyly z) = / /¢(u — w)dw)du (6.3)
z1+yf; 0

F(0,A9(v), Bo(v)) = > fl@ri sy 215)

i=1..n,j=1..m

where n, m represents the number of segments of object A and object B re-
spectively and variables (x, y, z) are explained in figure 6.1. These are the
definitions of Force histograms, directly depending upon the definition of func-
tion ¢. Notice that F45(0) is actually a real valued function.

6.4 Combined Topological and Directional Relations
Method

In this section we explain different steps of the CTD method. This explains different
terms used in computation of combined topological and directional relations.

6.4.1 Oriented Lines, Segments and Longitudinal Sections

Let A and B be two spatial objects and (v,0) € R, where v is any real number
and 0 € [0,27]. Let Ap(v) be an oriented line at orientation angle # and AN Ag(v)
is the intersection of object A and oriented line Ag(v). It is denoted by Agy(v),
called segment of object A. Length of its projection interval on x-axis is denoted
by z. Similarly for object B where B N Ay(v) = By(v) is segment and length of its
projection interval on x-axis is denoted by z. Let y be the difference between the
minimum of projection points of ANAy(v) and maximum value of projection points
of BN Ag(v)(for details [Matsakis 2005]).

In case of polygonal object approximation (z,y, z) can be calculated from inter-
secting points of line and object’s boundary. Only those oriented lines are considered
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Figure 6.1: Oriented line Ag(v), segment as in case of object B, longitudinal section
as in case of object A

which passes through at least one vertex of two polygons. If there exist more than
one segment, then it is called longitudinal section as in case of Ag(v) in figure 6.1.

6.4.2 Allen Temporal Relations in Spatial Domain and Fuzziness

Allen [Allen 1983] introduced the 13 Jointly Exhaustive and Pairwise
Disjoint (JEPD) interval relations. These relations are A = {<
,m,o,s, f,d eqd, fi, si,0i,m;,>} with meanings before, meet, overlap, start, fin-
ish, during, equal, during by, finish_ by, start_by, overlap by, meet_ by, and after.
All the Allen relations in space are conceptually illustrated in figure 6.2. These
relations have a rich support for the topological relations and represents the eight
topological relations in one-dimensional spatial domain. Fuzzy Allen relations are
used to represent nearness based fuzzy topological relations.

di ( contains)

< ( before)

d (duriing)

Figure 6.2: Black segment represents the reference object and gray segment repre-
sents argument object

Fuzzification process of Allen relations doesn’t depend upon particular choice
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of fuzzy membership function. The trapezoidal membership function (defined in
Eq. 6.1) is used due to flexibility in shape. Let r(I,J) be an Allen relation between
segments I (Segment of an argument object) and J (Segment of an reference object),
r’ is the distance between r(I,.J) and it’s conceptional neighborhood. We consider
a fuzzy membership function as p : ' — [0 1]. The fuzzy Allen relations defined
in [Salamat 2010b, Salamat 2011c| are

J< (Iv J) = K(—o0, —c0, —b—3a/2, —b—a)(y)
f> (Ia ‘])
fm(L J) = K(—b—3a/2, —b—a, —b—a, fbfa/Z)(y)

= (0, a/2, oo, oo)(y)

Fmi(L, J) = 1(—a/2,0,0,a/2)(y)
fo(I,J) = wb-a,-b—aj2,~b—as2,—b)(¥)
foi(l,J) = p(—a,—a/2,—a/2,0)(y)
Fr(L, ) = min(p—(b+a)/2,—a,—ato0) (V)5 H(=3a/2,—a,—a,—a/2) (Y) s (=00,~00,2/2,2) (T))
fri(L, ) = min(p_p—q2, b, b+a/2(y)7,u(—oo,—oo,—b (b+a)/2)(Y)s (2,22, 00,400) (T))
fs(L,J) = min(p_p—a/2,—b,—b,—b+a/2(¥)s H(—o0,—00,—b,— (b+a)/2) (¥)s B(—o00,—00,2/2,2)(T))
fsi(1, J) = min(p(—(b+a)/2,—a,—a,+00) (V) H(=3a/2,—a,—a,~a/2) (¥); :U’(z 22,4 00,4+00) (%))
fa(l,J) = mm(,u( b,—b+a/2,—3a/2,—a) (y)vu(—oo,—oo,z/Q,z) (z))
fai(L, J) = man(p_p,—bta/2,—3a/2,—a)(Y)s B(z,22,+00,4+00) (T))

(6.4)

where a = min(z, z),b = maz(z, z), x and z represent respectively the length of
segment (I) and (J). The triplet (z,y, z) are computed as described in section 6.4.1.

Most of relations are defined by a single membership function like f., fs and
some relations are defined by conjunction of more than one membership functions
like d(during), d;(during _by), f (finish), f; (finished by). In fuzzy set theory.
Sum of all the relations is one, this gives the definition for fuzzy equal relation. These
are the topological relations which represent the fuzziness at relation’s level, for
example here Meet topological relation is represented based on nearness and length
of the smaller interval defines the smooth transition between the Meet (Meet by)
and before (after) relation. In spatial domain, before (after) are called the disjoint
topological relations. These relations has the following properties.
f<(0) = >0+ ), fm(0) = fini(0+7), fo(0) = foi(6 + ),
ff(e) - fs(9 + T[‘), ffl(e) - fsl(a + T[‘), fd(e) = fd(e + 7T)>
fai(0) = fai(0 + ), f=(0) = f=(0 + )

Eight topological relations are possible combination of eight independent Allen
relations in one-dimensional spatial domain. These relations and their reorientation
show that the whole 2D space can be explored with the help of 1D Allen relations
using the oriented lines varying from (0, 7).
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6.4.3 Combining Topological and Directional Relations

The topological relations between 2D objects are developed largely by the Max.
J. Egenhofer [Egenhofer 1993] using the point set topological method and topo-
logical relations between two regions is represented by the 9-intersections method.
It turns out eight meaningful matrices, which correspond to the eight topological
relations. These topological relations are Disjoint, Meet, Overlap, Covers, Contain,
Covered_ by, Contained, Equal. 1t considers only one piece region without holes in
two-dimensional space.

On the other hand, Randell et al. [Randell 1992a] developed RCC the-
ory, it is an axiomatic theory. @ A reasonable set of topological relations
in this theory is called RCCS8 relations and same eight topological relations
with different names are released between an object pair. Relations are
{DC,EC,PO,TPP,NTPP,TPPI,NTPPI,EQ}, respectively DisConnected, Ez-
ternally Connected, Partially Overlap, Tangent Proper Part, Non Tangent Proper
Part, Tangent Proper Part Inverse, Non Tangent Proper Part Inverse and Fqual.
The difference of names is due to English language semantics' otherwise both the-
ories represent the same topological relations.

Same eight topological relations are represented in one-dimensional space by the
Allen’s temporal relations in spatial domain. We extend these Allen relations for
the 2D objects through the logical implication, where a 2D object is decomposed
into parallel segments of a 1D lines in a given direction and the relation between
each pair of line segments are computed.

The process of object decomposition is repeated for each direction varying from
0 to m. Two-dimensional topological relations are then defined as it provides us
information that how the objects are relatively distributed. These relations are
not JEPD [Salamat 2010a]. For obtaining JEPD set of topological and directional
relations, an algorithm was advocated in [Salamat |, it provides us the JEPD set
of relations. Different steps of computing the combined topological and directional
relations are explained as

e Fix an angle 6 and draw lines passing through the vertices of polygons repre-
senting the objects.

e For each line, compute the variables (z,y, z) as depicted in section 6.4.1 and
compute Allen relation for each segment as given by equation (6.4). In case of
longitudinal sections, use fuzzy operators to integrate the information, usually
the disjunction operators are suitable. These relations are computed for each
line in a direction, then obtained information are integrated into a single value.
Normalize these relations for a direction 6 by dividing sum of all Allen relations
to each Allen relation.

In RCC "DC= Disconnected" and the 9-intersections represent the "D=Disjoint" same se-
mantics we use in our terminology "D" for disjoint topological relation, similarly for "M" for
"meet".
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e These normalized fuzzy Allen relation is then multiplied by fuzzy directional
set to find the degree of an Allen relation in a direction.

e For qualitative directions, these information are summarized and different
topological relations with directional contents are defined. For example topo-

i ™
logical relation for East direction defined as fg = > Agxcos?(20)+ > A x
6=0 9—37

4
cos®(20), where f represents a topological relation and E represents the East

direction and A, is the reorientation of A;. Similarly for other relations.

e This information is represented in a matrix, an algorithm proposed in
[Salamat | is then used which enables us to have JEPD set of topological
and directional relations. For an example object pair is represented in Fig.
6.3(a), the fuzzy relations are represented in the Fig. 6.3(b).

Dlfs B

1nm
%m%ggz%m

Bl e

O™

02
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Figure 6.3: Object pair and their combined topological and directional relation
information qualitative topological and directional relations are (TPP, N)

This method describes well the possible topological relations between every sort
of objects.

6.5 Spatio-Temporal Relations

Spatio-temporal relations can be defined as a spatial relation holds for an interval.
These relation holds for a certain time interval and it doesn’t change. In spatio-
temporal object theory it is defined as spatio-temporal relation (P) is a relation
holding between all temporal slices of two entities during the relevant period of time.
All the eight spatio-temporal relations are defined below in terms of theorems.

6.5.1 Spatio-Temporal Relation

Theorem 1 A spatio-temporal disjoint relation between object pair (X,Y) holds
during the interval T if and only if a disjoint topological relation holds for every
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snapshot during the interval. In other words, D(XY,T) < Yt €T, the relation
D(XY,t) holds.

Proof 1 (=) A spatio-temporal disjoint D(XY,T) relation is defined as object pair
(X,Y) are disjoint during the interval T', it means X =; Y (X is temporally equiv-
alent to ' Y'). Let t, = t1 < to < t3... < ty, =t} be the partition of temporal interval
T = [tq tp]. Each t; € T, i = 1,2,..,n represents discrete point of the interval T
and this representation is equivalent to a snapshot, typically a snapshot is a result of
sampling process, which represents zero duration temporal slice of a spatio-temporal
object. There are n snapshots in the interval, as a result a disjoint relation exists
for each snapshot separately. Thus V't € T, D(XY,t) holds.

(<) Let us consider the n snapshots where temporal ordering holds. t1,ta, ..., t, be
points such that t1 < to < t3... < t,, and all these points form the partition of an in-
terval T'. If the disjoint topological relation holds at the discrete points of an interval,
it is disjoint throughout interval. i.e., D(XY,t;) A D(XY,ti11) = D(XY, [t; tiy1]).
Disjoint topological relation holds between object pair for each snapshot, it means
both the objects are temporally equivalent(x =; y). Hence D(XY, T) holds during
the whole interval T

Theorem 2 A spatio-temporal Meet relation holds for an interval T if meet re-
lation holds at least for one snapshot and for all other snapshots it is a disjoint
topological relation. i.e., M(XY,T) < 3teT s. t. M(XY, t)AVit; €T Nt; #
t = D(XY,t;) holds.

Proof 2 (=) A spatio-temporal relation meet M (XY, T) holds between object pair
(X,Y) over interval T, where X =, Y. Lett, =t1 < tg < t3 < ... < t, =ty be parti-
tion of interval T = [tq tp], if VE € T, M(XY,t) holds then a stable M (XY, T) holds.
We consider on contrary, that 3t;, where the topological relation M (XY, t;) doesn’t
hold but it holds at M(XY,t;_1), then according to the temporal logic and continuity
of topological relations O(M (XY, t;—1)) = (D(XY,t;) VM(XY,t;) VPO(XY,t;).
This shows that any of the three relations are possible(Q) stands for future position).
If PO(XY, t;) holds, then the whole spatio-temporal relation is changed and it be-
comes the spatio-temporal partial overlap relation. This possibility is ruled out. In
other case, spatio-temporal relation remains meet and 3 1s an arbitrary variable, this
shows the minimum condition. Hence 3t € T, s.t. M(XY,t) holds.

(<) Let us consider that there are n snapshots in an order, which construct an
interval T. Now consider that there exist at least one snapshot during the whole
interval, where the spatial meet relation holds, and for all the other snapshots, the
spatial relation is disjoint. This shows that during the temporal interval T, the
unstable spatio-temporal meet relation holds. It satisfies the minimum conditions
for a spatio-temporal meet relation, hence M(XY,T) holds during the interval T

Theorem 3 A spatio-temporal Partial Overlap (PO) relation holds over interval T
such that PO(XY,T) < 3t e T,s.t. PO(XY,1).
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Proof 3 Spatio-temporal relations have the spatial and temporal boundaries, A sta-
ble spatio-temporal relation holds during the temporal slice, if it holds at every point
of the interval. As temporal slice is the union of finite points of temporal domain,
spatio-temporal partial overlap holds during the whole slice, if this relation holds at
least one snapshot, at remaining points any of the spatial relation may exist. Hence
JteT,s. t., PO(XY,t) and (3t; #t = CO(XY,t1) vV M(XY,t;) V D(XY, 1))
If there doesn’t exist such a t1, then the relation holds for every t € T, which shows
that a stable PO relation holds.

(<) We suppose on contrary that # t € T, s. t. PO(XY,t) holds. It means
that at all the points of temporal interval either the relations are complete overlap
or disjoint and meet. if the relations are complete overlap. ¥V t € T,CO(XY,t)
holds, then the spatio-temporal relation will be a part of complete overlap. In case
of other choice, 3 t € T such that M(XY,t) orV t € T,s. t. M(XY,t) holds,
then the spatio-temporal relation will be unstable or stable meet respectively. In case
VteT s t. DXY,t), the relation will be disjoint. The choice, It; € T and
M(XY,t) and 3ty € T such that CO(XY,t2) holds is impossible because in a such
a case, common sense continuity of spatial relations provide us information that
3t €T such that t1 < t < to and PO(XY,t) holds, which is contradiction to the
assumption that Bt € T for which PO(XY,t) holds (continuity of spatial relations).

Theorem 4 A spatio-temporal Tangent Proper Part (TPP) relation holds over
interval T, i. e, TPP(XY,T) & 3 t1 € T,sit. TPP(XY, t1) V to and
to # t1, NTPP(XY,t2) holds.

Proof 4 (=) Let O be the space contains the objects (X,Y) during the interval T
Oy represents the space corresponding the time point t, called snapshot during the
temporal interval T, then (X Y;) represents the objects in the snapshot Oy. Let us
consider that a spatio-temporal TPP(XY') relation holds during the interval T

Let t; 1 = 1,2,3 . . n be the partition of interval T, if this relation holds for
every t; then it is a stable TPP relation. If TPP relation doesn’t hold for every t;,
then relations must be NTPP(XY'). In case of contrary, the relations becomes the
PO(XY,T) because 3t € T and PO(XY,t) holds.

(<) Consider that 3 t; is TPP(XY,t;) holds for some t; € T. We consider on
contrary that ;41 V t;—1 such that NTPP(XY,t;—1) or NTPP(XY,ti+1) doesn’t
hold. Then possible topological relations at t;—1 are TPP(XY,t;_1, PO(XY,t;_1,
similarly for t;1q1. Other possibilities are ruled out due to continuity of topological
relations. EQ(XY,t;—1 doesn’t hold because objects are considered under motion and
expansion or zooming of one object is not allowed.

In case of the topological relation PO(XY,t;—1) holds then whole the spatio-
temporal relation over the interval T becomes Partial overlap. Similarly for instant
ti+1 which contradicts the fact. Since © is an arbitrary point, so this is impossible
for whole the interval T'. For the topological relation TPP(XY,t;_1), the spatio-
temporal relation becomes the stable spatio-temporal TPP.

2CO(XY) stands for complete overlap of objects (XY), s. t., CO(XY) = TPP(XY)V
NTPP(XY)VTPPI(XY)V NTPPI(XY)
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Theorem 5 A spatio-temporal Non Tangent Proper Part(NTPP) relation holds
over interval T,i. e., NTPP(XY,T) < NTPP(XY,t) holds for allt € T.

Proof 5 = Let us suppose on contrary that 3 t; € T st. NTPP(XY,t;)
doesn’t holds and at temporal points t;—1, tiy1 the relation NTPP(XY,t;_1) or
NTPP(XY,tiy1) holds. Then continuity of spatial relations force the existence of
TPP(XY.,t;) or EQ(XY,t;) spatial relations. This contradicts the existence of the
spatio-temporal NTPP(XY,T) relation. Hence NTPP(XY,t) holds for allt € T.
< [t is given that Vt € T, NTPP(XY,t) holds. If a spatial relation between ob-
ject pair holds at every point of the interval, it means it hold throughout the interval.

i. e., NTPP(XY,T) holds.

Theorem 6 A spatio-temporal Tangent Proper Part Inverse (TPPI) relation holds
over interval T,i. e., TPPI(XY,T) < 3t € T,s.t. TPPI(XY,t) and ¥ t; #
t, NTPPI(XY,t1) holds.

Proof 6 Proof is similar to the TPP(XY,T), just replace TPP by TPPI and
NTPP by NTPPI.

Theorem 7 A Spatio-temporal Non Tangent Proper Part Inverse (NTPPI) relation
holds over temporal interval T,i. e., NTPPI(XY,T) < NTPPI(XY,t) holds for
allteT.

Proof 7 Proof is similar to the NTPP(XY,T).

Theorem 8 A spatio-temporal relation Equal (EQ) holds between the object pair
XY, EQXY,T)=VteT, st, EQ(XY,t) holds.

Proof 8 (=) We suppose on contrary that there exist a t € T where the EQ(XY,t)
relation doesn’t hold. It shows that there are two possibilities that either the relation
at t is a complete overlap or partial overlap. If the relation at t is complete overlap,
then the spatio-temporal relation becomes T PP or TPPI. In the second case, the
spatio-temporal relation becomes the PO(XY,T) during the whole interval. Thus
both cases prove the contrary conditions, hence P t such that EQ(XY,t) doesn’t
hold, i. e., Vt e T, EQ(XY,t) holds.

(<) Converse of this proof is very simple and straight forward. Let T be the
interval for which we have to define the spatio-temporal relation, both the objects are
temporally comparable (X =, Y). Let t € T be an arbitrary point of the interval and
relation EQ(XY,t) holds for everyt € T. Since t is an arbitrary point so relation
EQ(XY) holds throughout interval T. i. e., EQ(XY,T) holds.

6.6 Visual Interpretation: A Three Dimensional View

Geometrical figures can better elaborate the underlying concepts. A moving object
changes its position at each instant ¢. These objects in a spatio-temporal domain
can be represented by their envelops, a two dimensional object becomes the volume.
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Here spatio-temporal meet and partially overlap relations are represented by their
envelops in Figs. 6.4(a)-6.4(d) and 6.5(a)-6.5(h). These are possible representation
of motion events. Spatial relations between moving objects are used in modeling
the motion verbs or motion events in natural language processing. A set of motion
relations is introduced that capture the semantic between pairs of moving objects.
This information of spatial relations are useful about reasoning the moving objects.
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Figure 6.4: Spatio-temporal Meet relation (Unstable Meet))
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Figure 6.5: Spatio-temporal Partial_ Overlap relation (Unstable Overlap))
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6.7 Modeling Motion Classes

Visual images may illustrate cases of a definition, giving us a more visual grasp of
its applications. They may help us understanding the description of a mathematical
situation or steps in reasoning. These relations can be defined as the transection of
relations at time ¢; to ¢;4+1. This change may be in topological or metric relations
and different classes of spatial relations between moving objects have been defined
[de Weghe 2006, Maeyera 2005, Hornsby 2002|. Motion classes based on intuitive
logics or motion verbs have been defined by Phillipe Muller [Muller 1998] and
Ralf H. Giiting and Markus Schneider in |Giiting 2005]. In this paper, we define
motion events where topological relations capture changes between situations. These
motion events can be defined using predicates holds-at, holds, occurs-at, occurs and
sequence.

6.7.1 TUnstable Meet Spatio-Temporal Relation

Unstable spatio-temporal relation is a relation where objects changes their states
at each time instant. A spatio-temporal Meet relation is characterized by different
motion events depending upon the logical and temporal order of primitive events.
These motion events are explained in detail by adding directional contents to these
events.

Touch(XY,T): A spatio-temporal meet relation can be characterized as a motion
event Touch, s. t. 3 t1,t9,t3 € Tand t; < t9 < t3 where primitive events
occur in an order and defined as

Touch(XY,T) = seq_eve(holds(D(XY,t1)) ANholds(M (XY, t2)) Aholds(D(XY, t3)))

where seq eve stands for sequence event. An institutive view of this spatio-
temporal relation is shown in Fig. 6.4(a). This relation can be expressed by a
single direction, where a meet topological relation holds. It means,

Dir(Touch(XY,T)) = holds(Dir(XY,ts))

Snap(XY,T): A spatio-temporal meet relation is called Snap if 3 1,65 €
T and t; < to such that

Snap(XY,T) = seq_eve(holds(D(XY,t1)) A holds(M (XY, ts2)))

A geometric representation is shown in Fig. 6.4(c). This relation can be
expressed by a single direction, where a meet topological relation holds. It
means,

Dir(Snap(XY,T)) = holds(Dir(XY,t2))
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Release(XY,T): A spatio-temporal Meet is called Release (Release(XY,T), read
as X releases Y during interval T') if it has a certain temporal ordering,
dt1,t9 € T and t; < t9 such that

Release(XY,T) = seq_eve(holds(D(XY,t1)) A holds(M (XY, t1)))

A three dimensional geometric view of this relation is shown in Fig. 6.4(d).
This relation can be expressed by a single direction, which is the destination
direction. For example object X releases (motion event) object Y towards
east (destination direction). Direction for such a relation is defined as

Dir(Release(XY,T)) = holds(Dir(XY,ts2))

Bypass(XY,T): A spatio-temporal Meet(XY,T) is called Bypass(XY,T), read as
X bypasses Y during interval T if it has a certain temporal ordering, i. e.,
dt1,t9,13,t4 € T such that t1 < to < t3 <4

Bypass(XY,T) = seq_eve(holds(D(XY,t1)) A holds(M (XY, t2))A
holds(M (XY, t3)) A holds(D(XY, 1))

This relation can be expressed by a single direction, where a meet topological
relation holds. It means,

Dir(Touch(XY,T)) = holds(Dir(XY,ts))

Excurse(XY,T): A spatio-temporal Meet(XY,T) is called Excurse(XY,T), read
as X excurse Y during interval T if it has a certain temporal ordering, an
intuitive view of this relation is shown in Fig. 6.4(b). 3¢y, t9,t3 € T,s.t. t1 <
to < i3

Excurse(XY,T) = seq_eve(holds(M (XY, t1))Aholds(D(XY, ty))Aholds(M (XY, t3)))

This relation is expressed by an initial and destination directions, the direction
for this relation can be defined as

Dir(Ezxcurse(XY,T)) = seq_eve(holds(Dir(XY,t1)) A holds(Dir(XY, ts)

6.7.2 Unstable Overlap Spatio-Temporal Relation

Enter(XY,T): An unstable spatio-temporal overlap relation is called Enter, gen-
erally denoted by Enter(XY,T) and read as "X enters in Y during interval
T". If 3t1,t9,t3,t4 € T such that t; < to < t3 < t4, then relation is define as

Enter(XY,T) = seq_ eve(holds(D(XY,t1)) A holds(M (XY, t3))A
holds(PO(XY, t3)) A holds(TPP(XY, t4))
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An intuitive view of this relation is shown in Fig.6.5(a). This relation can
be expressed by a single direction, because the destination point is inside and
can be expressed without direction, a direction for the Enter spatio-temporal
event is the direction where a meet topological relation holds. i. e.,

Dir(Enter(XY,T)) = holds(Dir(XY,ts))

Leave(XY,T): A spatio-temporal partial overlap relation is called Leave, de-
noted as Leave(XY,T) "X leaves Y during interval T". If 3 ¢y, t9,t3,t4 €
T such that t1 < to < t3 < t4, then relation is define as

Leave(XY,T) = seq_eve(holds(NTPP(XY,t1)) A holds(TPP(XY,t2))A
holds(PO(XY,t3)) A holds(M (XY, ts) A holds(D(XY,15)))

An intuitive view of this relation is shown in Fig. 6.5(b). This relation can
be expressed by a single direction which is the destination point, i. e.,

Dir(Leave(XY,T)) = holds(Dir(XY,t4))

Cross(XY,T): A spatio-temporal partial overlap relation is called Cross(XY,T)
"X crosses Y during the interval T". Its geometric view is given in Fig.
6.5(c). If 3 t1,ta,t3,...,t0 € T such that ¢; < to < ... < tg, then relation is
define as

Cross(XY,T) = seq_eve(holds(D(XY,t1))Aholds(M (XY, t3))Aholds(PO(XY, t3))A
holds(TPP(XY, 1)) A holds(NTPP(XY, t5)) A holds(TPP(XY, tg))A
holds(PO(XY,t7)) A holds(M (XY, tg)) A holds(D(XY,t9)))

This spatio-temporal relation is expressed by a initial as well as destination di-
rection such as object X crosses (motion event) objectY from north(direction)
towards east(direction) during the interval T

Dir(Cross(XY,T)) = seq_eve(holds(Dir(XY,t1)) A holds(Dir(XY,t9)))

Into(XY,T): A spatio-temporal partial overlap relation is called Into(XY,T) read
as "X get into Y during the interval T". If 3 ¢1,t9,t3 € T such that t; <
to < t3, then relation is define as

Into(XY,T) = seq_eve(holds(M (XY, t1))Aholds(PO(XY, ta2))Aholds(TPP (XY, t3))

Its three-dimensional geometric view is given in Fig. 6.5(e). This relation
can be expressed by a single direction in language semantics, where a meet
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topological relation holds. For example, object A get into (spatio-temporal
event) object B from north (direction). It means,

Dir(Into(XY,T)) = holds(Dir(XY,t1))

Out_of(XY,T): A spatio-temporal partial overlap relation Outof(XY,T) read as
"X comes out of Y during the interval T™", its intuitive view is considered in
Fig. 6.5(f). If 3 t1,t9,t3,t4 € T such that t1 < to < t3 < t4, then relation is
define as

Out_of (XY, T) = seq_eve(holds(TPP (XY, t))Aholds(PO(XY, t3))Aholds(D(XY, t3)))

This relation can be expressed by a single direction. Object X go out of
(motion event) object Y towards east (direction). where a meet topological
relation holds. It means,

Dir(out_of(XY,T)) = holds(Dir(XY,t3))

Melt(XY,T): A spatio-temporal partial overlap relation Melt(XY,T) read as
"X,Y melts during the interval T". If 3 ¢1,¢9,t3,t4 € T such that t; <
to < t3 < t4, then relation is define as

Melt(XY,T) = seq_eve(holds(D(XY,t1)) A holds(M (XY, t2))A
holds(PO(XY,t3)) A holds(EQ(XY,14)))
An intuitive view of this relation is shown in Fig. 6.5(g). This relation can be

expressed by a single direction because its destination point is dimensionless.
This can be its direction where initial spatial relation holds.

Dir(Melt(XY,T)) = holds(Dir(XY, t,))

Spring(XY,T): A spatio-temporal partial overlap relation Spring(XY,T) also
called Separate(XY,T) read as "X separates Y during the interval T". If
dt1,t9,t3,t4 € T such that t; < t9 < t3 < t4, then relation is define as

Spring(XY,T) = seq_ eve(holds(EQ(XY, t1)) A holds(PO(XY, t2))A
holds(M (XY, t3)) A holds(D(XY, t4)))



6.8. Conclusion and Future Work 97

Its three-dimensional geometric view is given in Fig. 6.5(h). This relation can
be expressed by a single direction because its destination point is dimension-
less. This can be its direction where terminal spatial relation holds.

Dir(Spring(XY,T)) = holds(Dir(XY,t4))

Graze(XY,T): A spatio-temporal partial overlap relation Graze(XY,T) read as
"X grazes Y during the interval T". If 3 t1,to,t3,t4,t5 € T such that ;1 <
to < t3 < t4 < ts5, then relation is define as

Graze(XY,T) = seq_eve(holds(D(XY,t1)) A holds(M (XY, t3))A
holds(PO(XY, t3)) A holds(M (XY, 1)) A holds(D(XY, t5)))

This relation is represented in a three-dimensional perspective in Fig. 6.5(d).
This spatio-temporal relation is expressed by a initial as well as destination di-
rection such as object X grazes (motion event) objectY from north(direction)
toward east(direction).

Dir(Graze(XY,T)) = seq_eve(holds(Dir(XY,t1)) A holds(Dir(XY,t4)))

6.8 Conclusion and Future Work

In this paper we define spatio-temporal relations where the discrete time space is
used and spatial relations are extended to the temporal domain using stability and
un-stability of topological relations. Motion events represent the subclass of spatio-
temporal relations, we denote the unstable meet and overlap spatio-temporal rela-
tion which represents the certain number of motion classes. In these spatio-temporal
relations temporal order of a primitive event is more important and this order has
a pivotal role in natural language semantics. Topological relations have a locative
symmetries, to remove these symmetries we add a directional components, this en-
hance the expressivity of a motion event. In this paper CTD method [Salamat | is
used to model the motion events, where topological and directional information are
captured at same abstract level. Hopefully this work will bring a significant change
in video understanding, modeling video events and other related areas of research.






CHAPTER 7

Spatio-Temporal Reasoning by
Combined Topological and
Directional Relations Information

Abstract

Spatio-temporal reasoning is extensively used in many areas of computer vision
and Artificial Intelligence (AI). Different methods for spatio-temporal reasoning
are proposed based on topological and directional relations separately in respective
domains. Reasoning about moving objects in a spatial scene or description about
the two-dimensional scene simultaneously needs both topological and directional
reasoning. We introduced a reasoning system for two-dimensional spatial scene
based on Combined Topological and Directional(CTD) relations method, where we
obtain both topological and directional information. Main task in spatial reasoning
is the construction of composition tables for topological and directional relations.
Entities in these composition-tables follows the mathematical rule for composition
of spatial relations, these rules are elaborated and composition table for topological
relations is divided and re-arranged into sub-tables.

Key words: Spatio-temporal reasoning, combined topological and directional
relations, composition rules.

7.1 Introduction

Common sense knowledge representation is qualitative and this type of knowledge
represents the superset of quantitative knowledge |[Guesgen 1989|. Spatial knowl-
edge has a central point in many domains like Al including spatio-temporal rea-
soning, natural language processing, human machine interaction and automated
reasoning. Spatio-temporal reasoning plays an important role in many computer
vision applications, such as path planning in robotics, visual object recognition at
higher level computing which includes the interpretation and integration of visual
information and video scene interpretation.

The objects in an image constitute a situation which is described through rela-
tionship between these objects. Moving objects change their relative position, they
change the relative information like distance between them, directional or topologi-
cal information. Topological transformation represent the different types of changes
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in spatial scene such as translation, uniform expansion or contraction and tearing
or shearing of an object. It is supposed that objects don’t change the topological
configuration, object doesn’t split into multiple objects. Under these conditions,
change in topological or in directional or in both type of relations are considered
as the objects are moving. Reasoning methods with these conditions are called
spatio-temporal reasoning for moving objects.

Spatial knowledge representation takes into account the topological, direc-
tional, distance relations, shape and size information. Methods for topological
reasoning are introduced like Region Connection Calculus (RCC) based meth-
ods [Cohn 1997, Cohn 1994, Cohn 2007, Gotts 1996, Wolter 2000|, fuzzy meth-
ods [Bao 2005, Homaifar 1997, Schockaert 2009, 1.i 2004] and the 9-intersections
method |[Egenhofer 1992]. In spatial knowledge representation techniques, knowl-
edge about topological and directional relations is represented at different ab-
stract levels. Two separate systems for reasoning with topological and directional
knowledge are developed [Freksa 1991, Muller 2002, Museros 2003, Galton 2009,
Wolter 2010, Schockaert 2008a] and a combined reasoning method is developed in
[Hernandez 1991, Li 2009]. It is observed that most of the existing spatio-temporal
formalism is domain based and are developed for a particular application.

CTD-relations method [Salamat | considers the intrinsic frame of reference and
both topological and directional relations are well-defined without generalizing ob-
ject’s geometry. The concept of directional and topological information are inte-
grated into the single method. CTD-relations method represents the topological
and directional relations information at same level of abstraction and combines
the features of directional and topological relations calculi. Spatial reasoning with
topological and directional relations are combined in this method. Topological and
directional relations are computed with CTD-method and composition tables for
these relations are developed separately.

In this paper, we proposed a method for the composition of spatial relations. we
divide the composition tables for topological relations into sub-tables, this table is
rearranged and it consist of nine sub-tables. Entities in these sub-tables are related
to each other under a mathematical formula. This mathematical formula combines
the inverse and commutative properties of a relation as a result computation for
constructing composition tables become easy. we develop the mathematical relations
between entities of these sub-tables as a result, less computation is required for
building composition tables for topological relations. This composition of relations
follows the common sense continuity of objects and all these entities in composition
tables belong to the neighboring spatial relations of participant relations. To make
the paper self contained, an introduction of the CTD-relations method is given.

This paper consists of following parts, section 7.2 explains the related work and
section 7.3 explains the relevant terms which are frequently used in this paper.
Combined topological and directional relations method is explained in section 7.4.
Section 7.5 explains the neighborhood graph and change in spatial scene, section 7.6
explains the relation between the object pair and their converse relation. Composi-
tion tables are explained in section 7.7, in this section we explain the mathematical
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formula between entities of the composition tables. Section 7.9 concludes the paper.

7.2 Related Work

Spatial reasoning attempts to represent data in linguistic variables, if the observers
or human controllers are involved, linguistic variables are related to numeric or ge-
ometric representation. Spatial reasoning, especially computing the composition
tables for topological and directional relations can be done at a coarse level infor-
mation or finer levels depending on the kinds of available information.

Many methods have been introduced for spatio-temporal reasoning during
the recent years [Bao 2005, Ibrahim 2007b, Cohn 1997, Cohn 2001, Cohn 2007,
Egenhofer 1992, Gotts 1996, O’smiaiowski 2010]. Fuzzy methods are among them
and fuzzy topological relations based on nearness are developed in [Schockaert 2009
for fuzzy reasoning. In this method, there are 144 general transitive rules and rea-
soning is based on these rules. This method related to topological reasoning and
the question about the directional relations still remains unanswered.

Allen [Allen 1983| introduced thirteen Jointly Exclusive and Pairwise Disjoint
(JEPD) interval relations for temporal reasoning. There is a direct homeomor-
phism between the physical structure of time and one-dimensional spatial struc-
ture. Nowadays, these relations are used for modeling the directional relations
[Matsakis 1999b| and combined topological and directional relations information
[Matsakis 2005, Salamat 2011c|. Topological and qualitative directional relations
are combined in [Salamat 2010b, Salamat 2010al. We used the CTD-relations
method, presented in [Salamat | for reasoning the topological and directional rela-
tions.

Our method for reasoning about the space is inspired by the method of rep-
resenting the spatial knowledge adopted in [Hernandez 1991, Li 2009|, where the
combined spatial knowledge of projection and orientation for a two-dimensional
scene is presented. In our method relative directional information for the inclusion
case is also introduced. Inclusion topological relation is further explored and direc-
tional contents are also introduced for the topological relations TPP and TPPI
(Tangent Proper Part, Tangent Proper Part Inverse). These cases are explored due
to certain reasons like all objects contained in the other object can be manipulated
by the parent objects. Describing the global scene, they can be relatively described
with respect to parent object. For example, objects inside the room inherit the ori-
entation of that room with respect to other rooms in the building. But how can be
objects described lying inside the room and what will be the orientation of objects
inside room relative to the room?

The method proposed in this paper also deals to the extension of knowledge
representation through RCC5 to RCCS in region connection calculus theory. In
this method, inclusion spatial relation is further divided into four spatial relations,
namely TPP, NTPP, TPPI, NTPPI. The relations TPP, TPPI also have the direc-
tional contents and reasoning for these relations is also introduced. Two separate
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systems of composition tables are developed for topological and directional relations.
Entities in these composition tables are interrelated through the mathematical rules.
These rule are explained in section 7.7. This reasoning process helps the user to get
the finer spatial knowledge from coarse information.

7.3 Preliminary Definitions

In this section we recall some basic definitions which are frequently used in the rest
of paper.

Fuzzy membership function: A membership function y in a set X is a function
w: X — [0,1]. Many fuzzy membership functions are proposed according
to the requirements of the application. For instance, trapezoidal membership
function is defined as

u(z; . 8,7, 8) = maz(min( T 0o

b5 0 (7.1)

it is written as pi(q,8,,5)(z) where z,a, 8,7, E RAa < 8 <y < 4.

Fuzzy set: A fuzzy set A in a set X is a set of pairs (X, u(x))such that
A ={(z, u(z)|lz € X)}

where p represents a membership function.

Converse of a relation: Let R be a relation between the object pair (A, B), writ-
ten as R(A, B). Converse relation R of R is a relation between the same object
pair when objects commute. The converse relation is then defined as

R(A,B) = R(B, A) (7.2)

Transitivity: The composition Ry ® Ry of two general relations Ry, Ro is a relation
R defined as
Ri(A,B) ® Ry(B,C) = R(A,C) (7.3)

where (A, B, C) are three objects and R is called a transitive relation.

Conceptual neighbor: Two relations between pairs of events are conceptual
neighbors if they can be directly transformed into one another by contin-
uously deforming (shortening, lengthening or moving) events in topological
sense. A set of relations between pair of events forms a conceptual neighbor-
hood graph if its elements are path connected through conceptual neighbor
relations [Freksa 1992].

Force histogram: The force histogram attaches a weight to the argument object
A that object A lies after object B in direction §. This is defined as
+00
FAB(9) = / F(0, Ag(v), By(v))dv (7.4)

—0o0
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The definition of Force histogram FAZ(6), directly depends upon the definition
of real valued functions ¢, f and F. These functions are used for the treatment
of points, segments and longitudinal sections respectively [Matsakis 1999b].
These functions are defined as

cb(y)—{ylr Hy=0

0  otherwise

wr+yl 42 2,
flryly z0) = / /cﬁ(u —w)dw)du (7.5)
zrtyf, O

F(0,A9(v), Bo(v)) = > fl@ri sy 255)

i=1..n,j=1..m

where n, m represent the number of segments of object A and object B respec-
tively. Variables (z,y, z) are explained in section 7.4.1 and diagrammatically
shown in Fig. 7.1. These definitions of Force histograms directly depend upon
the definition of function ¢. Notice that FAZ() is a real valued function.

7.4 Oriented Lines and Fuzzy Allen Relations

In this section terms used for computation of fuzzy Allen relations are explained.
Drawing of oriented lines, segments and longitudinal sections are explained in sub-
section 7.4.1 and Allen relations in section 7.4.2. Combination of topological and
directional relations are explained in section 7.4.3 and representation is elaborated
in section 7.4.4.

7.4.1 Oriented Lines, Segments and Longitudinal Sections

Let A and B be two spatial objects and (v,0) € R, where v is any real number
and 6 € [0,27]. Let Ap(v) be an oriented line at orientation angle # and A N
Ap(v) is the intersection of object A and oriented line Ag(v). It is denoted by
Ap(v), called segment of object A and length of its projection interval on x-axis
is denoted by z. Similarly for object B where B N Ay(v) = By(v) is segment, its
length of its projection interval on x-axis is denoted by z and y is the difference
between minimum value of projection points of A N Ay(v) and maximum value of
projection points of B N Ag(v)(for details [Matsakis 2005]). In case of polygonal
object approximation (z,y, z) can be calculated from intersecting points of line and
object boundary, oriented lines are considered which passes through at least one
vertex of two polygons. If there exist more than one segment, then it is called
longitudinal section as in case of Ay(v) in Fig. 7.1.
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Figure 7.1: Oriented line Ag(v), segment as in case of object B, longitudinal section
as in case of object A.

7.4.2 Allen Temporal Relations in Spatial Domain and Fuzziness

Allen [Allen 1983] introduced 13 Jointly Exhaustive Pairwise Disjoint (JEPD) in-
terval relations. These relations are A = {<,m, o, s, f,d, eq, d;, fi, $i, 0;, m;, >} with
meanings before, meet, overlap, start, finish, during, equal, during by, finish_ by,
start_ by, overlap by, meet by and after. Allen relations in space are conceptually
illustrated in Fig. 7.2.

di ( contains )

> (after)

d (duriing)

Figure 7.2: Black segment represents the reference object and gray segment repre-
sents argument object

These relations represent the eight topological relations in one-dimensional spa-
tial domain. FKEight relations are possible combination of eight independent Allen
relations. Inverse of these relations and their reorientation are represented in table
7.1 and table 7.2. These tables show that whole two-dimensional space can be ex-
plored with the help of one-dimensional Allen relations using oriented lines varying
from [0, ].

Fuzzy Allen relations are used to represent the fuzzy topological relations where
fuzziness is represented at the relation’s level. Fuzzification process of Allen relations
don’t depend on a particular fuzzy membership function. Commonly a trapezoidal
membership function (Eq. 7.1) is used due to flexibility in shape change.

Let r(I, J) be an Allen relation between segments I (argument object) and J
(reference object), r’ is the distance between r(I,.J) and it’s conceptional neighbor-
hood. We consider a fuzzy membership function u : ' — [0,1]. The fuzzy Allen
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Relation T Tnverse Relation || Re-orientation
= > < >'
. m mi
m mi )
o) ol 0 ol
S si S :
d di . .
B B di di

Table 7.2: Allen relations and their re-

Table 7.1: Allen relations and their inverse . .
orientation

relations are defined in [Salamat 2010b| as

f<(I, ) = (0o, —c0, ~b—3a/2, —b—a)(¥)
I> (Iv J) = K0, a/2, o, oo)(y)

fm(I> ']) = KH(-b—3a/2, —b—a, —b—a, —b—a/2) (y)
(1,7

2

(y),,u oo,—oo,z/Q,z)(x))
min H(—b,—b+a/2,~3a/2,—a) (y)a z2z,+oo,+oo)(x))

min H(—b,~b+a/2,—3a/2,—a)

Jmi(l, J) = W(—ay2,0,0,a/2) (V)
fo(l,J) = w—p—a,~b—a/2,~b—a/2,—)(Y)
foill, J) = t—a,—a/2,—a/2,0)(¥)
Fr(I J) = min(p(— (ba) /2,—a,—a+00) (¥)s (=3a/2,~a,—a,—a/2) (¥)s B(—o0,~00,2/2,2)(T))
Frill, J) = min(p_p—q/2,—b,—b,—b+a/2(¥)s B(—o0,—00,—b,—(b+a)/2) (U)s (2,22, +00,+00) (T))
fs(L, J) = min(p_p—a/2,—b,—b,—bt+a/2(Y)s H(=o0,—00,—b,— (b+a)/2) (U)s B(—o00,—o0,2/2,2)(T))
fsi(I,J) = min(p— (y+a)/2,—a,—a,+00) (Y)s l(-3a/2,—a,—a —a/2)( )7”(;: 22,+00,400) ()

(1, J) = min(

(1, J) = min(

o

(7.6)
where a = min(z, z), b = mazx(z, z) and z is the length of segment (I) and z is the
length of segment (J) and (x,y,z) are computed as described in section 7.4.1.

Most of relations are defined by one membership function but some of them
are defined by conjunction of more than one membership functions like d(during),
di(during _by), f (finish), f; (finished by). In fuzzy set theory, sum of all the
relations is one, this gives the definition for fuzzy equal relation.

These are the topological relations which represent fuzziness at relation’s level.
For example, Meet topological relation is represented based on nearness and length
of smaller interval defines the smooth transition between the Meet (Meet by) and
before (after) relation. In spatial domain, before (after) are called the disjoint topo-
logical relations.
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7.4.3 Combining Topological and Directional Relations

The approaches for defining binary topological relations between object pair are
largely developed by the Max. J. Egenhofer method [Egenhofer 1991| using the
point set topology. This relationship between two regions is represented by a 3 x 3
matrix, called the 9-intersections method and relations are Disjoint, Meet, Over-
lap, Covers, Contain, Covered by, Contained, Equal. The 9-intersections method
considers only one piece region without holes in two-dimensional space.

On the other hand, the RCC method was developed by Randell et
al. [Randell 1992a] which is an axiomatic theory for representing the topological
relations. Relations in this theory are based on a single atomic relation called con-
nection. This theory also represents the same eight topological relations, called
RCCS relations between object pair. These relations are represented with different
names which are {DC, EC, PO, TPP,NTPP,TPPI,NTPPI, EQ}, called respec-
tively DisConnected, Externally Connected, Partially Overlap, Tangent Proper Part,
Non Tangent Proper Part, Tangent Proper Part Inverse, Non Tangent Proper Part
Inverse, Equal . The difference of names is due to English language semantics® oth-
erwise both theories represent the same topological relations. Allen’s temporal rela-
tions in spatial domain represents the eight topological relations in one-dimensional
space. We have extended these Allen relations for the 2D objects through the logical
implication. A 2D object is decomposed into parallel segments of a 1D lines in a
given direction. Allen relations between each pair of segments from both objects
are computed. This process is repeated for directions [0,7]. This is called CTD-
relations method [Salamat |. The steps involved for computing the two dimensional
topological relations are explained below

7.4.4 CTD-relations Method

The process of object decomposition is repeated for each direction varying from 0
to m. The 2D topological and directional relations are represented as a matrix.

This matrix provides us information that how the objects are relatively distributed
8
( > =1). In this representation, lines represent topological relation such as {D,
ij=1
M, TPP, NTPP, TPPI, NTPPI, EQ} with meanings disjoint, meet, tangent proper
part, non tangent proper part, tangent proper part inverse, non tangent Proper part
inverse and equal. Columns represent directional relations between object pair such
as {E, NE,N, NW, W,SW,S,SE} with meanings east, north east, north, north west,
west, south west, south and south east.
These relations are not JEPD relations. To obtain JEPD set of topological and
directional relations, an algorithm was advocated in [Salamat |. This algorithm

provides us the JEPD set of relations. These JEPD relations are represented as a

In RCC "DC= Disconnected" and the 9-intersections represent the "D=Disjoint" same se-
mantics we use in our terminology "D" for disjoint topological relation, similarly for "M" for
"meet".
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pair (Rp, Rpir), where Ry, Rp;, represents topological and directional relations re-
spectively. Objects are approximated through the polygon approximation. Different
steps of computing the matrix of CTD relations are

e Fix an angle 6 and draw lines passing through the vertices of polygons rep-
resenting the objects. For this purpose, simple line drawing formula of slop
intercept form are used.

e For each line compute variables (z,y, z) and use mathematical Egs. given in
section 8.3.2 to compute Allen relation. For longitudinal section, fuzzy aggre-
gation operators are used to integrate the information, usually the disjunction
operators are suitable. These relations are computed for each line in a di-
rection. The obtained information are integrated into a single value. These
relations are normalized for a given direction 6 by dividing sum of all Allen
relations to each relation.

e Normalized fuzzy Allen relation are multiplied by a fuzzy directional set to
find the degree of the Allen relation in a given direction.

e Topological relations with qualitative directional contents are defined. For ex-
ample topological relations with Fast direction are defined as

1 ™
fe =" Ay xcos?(20)+ > Aj x cos?(20), where f and E represents respec-
0=0 9:3%

tively the topological relation and the East direction and A; is reorientation
of an Allen relation A;.

e This information is represented in a matrix, an algorithm proposed in
[Salamat | is then used which enables us to have JEPD set of topological
and directional relations. For an example object pair are represented in Fig.
7.3(a), the fuzzy relations are represented in the Fig. 7.3(b).

zzzm
=g

|
=
|
—
)
=

;| -
|

mmo
m

(a) (b)

Figure 7.3: Object pair and their combined topological and directional relation

information representation where qualitative topological and directional relations
are (PO, N)
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7.5 Conceptual Neighborhood Graph and Change in
Spatial Relations

This section composed of three subsections. Section 7.5.1 explains changes in the
topological and directional relations, conceptual neighborhood graph for the CTD
method is elaborated in section 7.5.2 and section 7.5.3 explains continuity of spatial
relations.

7.5.1 Conceptual Neighborhood Graph and Change in Spatial Re-
lations

In real world situation, spatial and temporal relationships between objects change
continuously. The objects change their positions to the next neighboring position,
resulting the spatial relations also change to the neighboring spatial relations. The
continuous change in topological relations can be depicted as:

D(A,B)= M(A,B) = PO(A,B) = TPP(A,B) = NTPP(A,B)
The movement can be represented as change in directional relations,
N(A,B)= NE(A,B)= E(A,B) = SE(A,B)= S(A,B) = ..

Similarly for other topological and directional relations sequence of change in spa-
tial relations can be determined. These topological and directional relations are
taken together, they might change topological or directional part of the relation or
both topological and directional relations simultaneously between two objects. This
change in spatial relation between two objects can be represented as a change in
pair of relations. For better explanation let us consider the possible changes from
initial position of (M (A, B), E(A, B)) ( A, B meets each other from East)

B),NE(A, B)) Change in directional relation
,B),SE(A,B)) Change in directional relation
Change in topological
A B } ) .

and directional relation
PO(A,B),E(A, B)) Change in topological relation

Change in topological

A, B), SE(A, B)) and directional relation

(M(A,B),E(A,B)) =

Change in topological
D(A B), NE(A,B
(D(A, B), (4,B)) and directional relation

(D(A, B), E(A, B)) Change in topological relation
(D(A, B), SE(A, B)) Change in topological

and directional relation

This shows that there are eight possible future positions from topological relation
Meet and directional relation Fast. Similarly there will be 12 future positions from
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PO topological relation. The other possible transitions from one spatial position to
the other can easily be derived. The whole possible transitions are represented in a
transition graph, where connected pairs of the spatial relations are called neighbors
and the graph is called the neighborhood graph. This graph depicts all physical
transitions between spatial relations that can occur through the deformation of
intervals.

A neighborhood graph in topological relations describes three types of defor-
mation, A-deformation, B-deformation and C-deformation [Freksa 1992]. A-
deformation occurs when one interval expands or contracts with one point fixed
(one interval is stretched or sheared). A deformation is called B-deformation when
intervals don’t change the size, only interval change their position with time. C-
deformation is characterized as uniform expansion or contraction of interval take
place. This graph also represent all these types of deformation. For simplicity, we
represent here only one possible transition from partially overlap relation.

7.5.2 Conceptual Neighborhood and Neighborhood Graph

Neighborhood graph of topological relations represents three types of topological
deformations. Here for simplicity of the graph, only one branch of B-deformation
is considered and possible transitions are presented into the graph.

Figure 7.4: Neighborhood graph in the system of combined topological and direc-
tional relations

In the Fig. 7.4, object can move to a circular, straightened and diagonal path
and neighborhoods are called directional, topological and topological and directional
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neighborhood respectively. Neighborhood graph shows allowable transitions from
one relation to other relation. These transitions are possible when the objects move
or spatial scene changes. In Fig. 7.4, a node represents the pair of spatial relations
and an edge represents the transition or change from one spatial relation to other
spatial relations. Spatial relations are represented by a pair (Rp, Rp;-) where Rp
represents the topological and Rp; represents directional relation between object
pair.

In Fig. 7.4, it is shown that every node of a neighborhood graph has eight edges
except from the node representing the topological relation D and TPP. This is due
to the fact that when an object has a disjoint topological relation with the other
object and this object moves away from its counter part, there is only change in
directional relations and topological relations are stable in this case. Similarly when
an object has TPP topological relation, the object can’t change the topological
relation towards NTPP and directional relations simultaneously.

7.5.3 Conceptual Neighborhood Graph and Continuity

Continuity in motion is modeled as a continuous change in the spatial relations. In
neighborhood graph two connective nodes represent two states of moving objects
and the edge between them represent the time. Let us consider that (0,0) shows
the position of a node and +1 shows the possible change in a relation and —1 shows
change in relation in opposite direction. If topological relation is in outermost nodes,
then topological change is not possible in outward direction, as a result, in outward
direction, object change the distance relation or distance and directional relation at
the same time.

For example if (0,0) position shows the relation (M, E), then —1 in topological
neighborhood may represent the PO then 1 represents the D and vice versa. Simi-
larly —1 in directional neighborhood may represent the directional relation NE (SE)
then 1 will represent the relation SE (NE). Similar rule applies for the diagonal
neighborhood. If the objects have the FQ spatial relations then shell representing
the relation TPP/TPPI disappears and NTPP, NTPPI relation is replaced with
EQ relation.

7.6 Topological and Directional Relations and Their
Converse

The computation of spatial relations with CTD method provides the topological
and directional relations at the same abstraction level. Let R defines relation be-
tween object pair (A, B) then R has two components, first component corresponds
to topological and second component corresponding to directional relation. Topo-
logical and directional components provide us information about the topological and
directional relation respectively. Formally this can be written as

R(A7 B) = (RT(A7B)7RD1'T(A7B)) (7.7)
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Where Rr, Rp; represents topological and directional parts respectively. Con-
verse relation (recall Eq. 7.2) of R(A, B) has two components (Eq. 7.7). Each
component acts independently, it is written as

R(A, B) = (Rr(A, B), Rpir(A, B) (7.8)

Topological part has the topological converse and directional converse of a direc-
tional part commutes with the symmetric properties of directional relations. Con-
verse of a directional relation can be written as

Rpir(A,B) = Rpiy(B,A) = Rpir(A,B) + 7 (7.9)

By combining the Eq. (7.7), (7.8) and (7.9), The converse relation (7.2) can be
rewritten for this system of spatial relations as

R(A,B) = (Rp(B, A), Rpir(A, B) 4+ ) (7.10)
The table 7.3 represents converse of all the topological relations. This table

shows that most topological relations have the same converse relation. Topological
relation doesn’t depend on the order of objects. The table 7.4 shows the converse

‘ Topological relation (Rr) ‘ Symbol ‘ Converse topological relation (Rr) ‘ Symbol ‘
Disjoint D Disjoint D
Meet M Meet M
Partially overlap PO Partially overlap PO
Tangent proper part TPP Tangent proper part inverse TPPI
Non tangent proper part NTPP Non tangent proper part inverse NTPPI
Tangent proper part inverse TPPI Tangent proper part TPP
Non tangent proper part inverse | NTPPI Non tangent proper part NTPP
Equal Eq Equal EQ

Table 7.3: Topological relations and their converse

of directional relations. These relations have a difference m with their converses.

Directional relation (Rpj,) ‘ Symbol ‘ Converse dir relation (Rp;y) ‘ Symbol ‘

Bast E West W
North East NE South _west SW
North N South S
North  West NW South FEast SE

Table 7.4: Directional relations and their converse
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7.7 Composition Tables

Composition tables play important role in the spatio-temporal reasoning. These
tables specify the relation obtained by composing the relation in the corresponding
row to the relation in the corresponding column. These tables provide information
that which spatial relation is possible between the two objects at next time point.
CTD method consist of the 43 predicates. Composition table for CTD method is
composed of 1849 (43 x 43) entries. It is a huge table, difficult to analyze and reason-
ing is intractable. Both topological and directional relations are not interconnected,
we develop separate composition tables for topological and directional relations.

7.7.1 Composition Table For Topological Relation

We construct the composition tables for topological relations(table 7.5). In this
composition table, first we fixe one type of a relation then find the possibilities for
the other sort of spatial relations. Here, first we fix the directional relation for
example N, then we build a composition table for topological relations.

\ [ D ] M \ PO [ TPP [ NTPP [ TPPI | NTPPI |
D, M, D, M
D, M, D, M, 30, 30,
D No info. PO, 1o, To% 5B D D
I\?Tplff’ NTPP NTPP NTPP
DAL D, M, oM M, PO, PO,
M TPPI PO, TPP TPP, TPP, D, M D
; TPP, ’ NTPP NTPP
NTPPI TPPI, NTPP
EQ
D, M, D, M, D, M,
PO D, M, PO, No info TPB TPB PO, PO,
PO, TPPI, nio. NTPP NTPP TPPI, TPPI,
TPPI, NTPPI NTPPI NTPPI
NTPPI
D, M, D, M, DM
TPP D D, M PO, TPP, NTPP | NTPP PO, PO, TPPI,
TPP, TPP, PPy
NTPP TPPI,
EQ
D. M, D, M,
NTPP D D 1131% NTPP NTPP TPP% No info.
NTPP NTPP
D, M, PG PO, TPPI PO, TPPI
TPPI PO, TPPIL. NTPPL PO TPP, NTPPIL NTPPI
TPP]I, NTPDI NTPP
NTPPI
PO,
20" | po, TPRI PO, PO, IpP,
NTPPL | rpp; NTPPL TPPI, TPPI, NTPP, NTPPI NTPPI
) NTPPI NTPPI TPPI
NTPPI NTPPL
EQ

Table 7.5: Composition table for topological relations
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In this composition table (table 7.5) EQ topological relation is not computed
because it is an idempotent relation. We decompose the composition table for
topological relations (table 7.5) into multiple sub-tables, this table is composed
of nine sub-tables, separated by double lines. These tables represent the coarse
knowledge usually it is a disjunction of relations. This derived knowledge can further
be refined through the introduction of a directional contents between the object pair.

7.7.1.1 Properties of Composition Tables
We can define some composition rules based on these tables as follows

1. If the relation between object pairs are changed to their converse relations
along with order, then resulting relation also becomes its converse. Let R be a
topological relation between object pair (A4, B) and R is the relation between
the object pair (B, A), topological inverse, then composition will be

Rl(Aa B) © RQ(B? C) - R3(A7 O)
and

Ry(A,B) ® Ri(B,C) = R3(A,C)

2. Composition table for topological relations( table 7.5 when equal relation
is included. For details see composition tables for topological relations in
[Cohn 1997, Gotts 1996, Li 2004]) has the 21 different entries, out of 64, these
21 entries have a certain relation and can be computed through the above
cited relation. It is written as

Ri(A,B) ® Ry(B,C) = R(A,C) = Ry(A, B) ® Ri(B,C) = R(A,0)

These relations can be expressed as shown below.

Figure 7.5: Commutative-inverse composition relation

3. Equal relation is an identity element, it does not effect the composition of a
topological relation. If inverse topological relations are involved in the com-
position table, then all the topological relations are possible.
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4. Composition relations are always in topological neighbors.
5. A transitivity relation shows constraints that are satisfied by the spatial rea-
soning algorithm.
7.7.2 Composition Table for Directional Relations

We compute the composition table for the composition of spatial relations. For this,
we first fix the topological relations then proceed for the composition of directional
relations. Table 7.6 represents the composition table for directional relations. This

[ E [ NE [ N [ NW [ W [ SW [ S [ SE ]
E E ENE | ENB E: N | No info. sg]vi > £, S8, E, SE
NE | E,NE NE NE, N NEN. NNvalév No info. ESENE B N
N ENE L NE N N N Nw | N W \%I\SI% No info. | N, NE.
NW E N | NEN | noNw NW wNw | N W NW. W | No info.
W || No info. IQIVEV N N\}\}I, wo | N W w W woswo | W IW W SW,
sW | §8w | Neinfo. | WY | New | wosw SW SWs | W,

S S 3B, 1\@% B | No info. NSV\\/[VVSV o S.SW S S.SE
SE | E SE NE, B 1\% KE | No info. V\g AL SW. S, S, SE SE

Table 7.6: Composition table between directional relations

composition table can be refined by introducing the topological relations. A general
rule can be followed that if the neighboring direction and same topological relation
are involved in composition. In such a case, topological relation will be changed.
If they have opposite or perpendicular direction, then topological relation between
object pair are identical.

7.8 Spatio-Temporal Reasoning as Position Evaluation
and Path Navigation in Video Understanding Sys-
tems

Spatio-temporal reasoning is a multi-task process, it is used for approximating the
subsequent position, history as well as trajectory of a moving object, path navigation
and as the problem solvers in many areas of artificial intelligence. Here, we use
spatio-temporal reasoning for finding the relative position of a moving object with
respect to it previous position and as path navigation. We consider here a set of
information derived from Figs. 7.6(a) and 7.6(b), which represent the position of a
moving object A, where Al and A2 represent respectively position at ¢ and to.
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(b)

Figure 7.6: Object pairs at time ¢; and %o

We use the CTD method to derive the information from these primary images.
This method produces the results R(Al, B) = (M, N) and R(A2,B) = (D, E). The
set of derived information from these object pairs are represented as

o Al Meets B

e Al at North of B

e A2 and B are Disjoint
e A2 lies on Right of B

In the next stage we used the proposed method to know the position of A2 with
respect to Al and the path adopted by object A from Al to A2.

Spatio-temporal reasoning as position evaluation: In moving objects, mo-
tion direction is an important feature and this motion direction can be deter-
mined by the spatial relations between two consecutive positions of an object.
Then a natural question arises that what is the relation between Al and A27
First of all, we use proposed method for composition of spatial relations. This
composition of spatial relation will provide us answer that what are the topo-
logical and directional relations between the two positions of a moving object?
Summarized information are represented as

L] RT(Al,B) = M(Al,B) and RDiT‘(A].aB) == N(Al,B)

[ ] RT(AQ,B) = D(AQ,B) and RDiT(AQ,B) = E(AQ,B)

To know the position of A; with respect to Ao, first we need to know the
inverse of spatial relation between object pair (A2, B). Consider the inverse
of topological and directional relation separately.

Rr(As, B) = Ryp(B, Ry) similarly Rpir(As, B) = Rpi (B, Ay) = W (B, A)
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At this stage, we use the proposed method for spatial relations composition,
this composition of relations provide us the spatial relations between objects
A2(reference) and Al (argument) objects.

R(A1, A2) = R(A1,B) © R(B, As) )
= (Rr(A1, B), Rpir(A1, B)) © (Rr(B, As), Rpir(B, A3))
= (M(A1, B),N(A1,B)) ® (D(B, Ay), W(B, Az))
= ({M(A1, B) © D(B, A2)}, {N(A1, B) © W(B, As)})
= ({D,M, PO, TPPI,NTPPI}(A;, As), {N,NW, W }(A1, As))

This shows that topological relations between object Al and A2 is one of
the {D, M, PO, TPPI,NTPPI} and directional relations are {N, NW, W}.
Some of the topological relations like TPPI, NT PPI are not possible because
both object have same size and these topological relations depend upon size
of objects. Hence, topological relations between two objects are {D, M, PO}.
This represents the coarse knowledge of spatial relations between objects. This
knowledge is improved by introducing some constraints. For example, if we
know that topological relations are D then this knowledge improves the spatial
knowledge about directional relations. Now we use the method of CTD directly
to the combined image of three objects. These objects are represented in Fig.
7.7(a) and its relations are represented in 7.7(b). This method results out the
spatial relations between objects A2 to Al is (D,NW).

(a) (b)

Figure 7.7: Objects and spatial relations where the spatial relations are (D, W)

Spatio-temporal reasoning as path navigation: Al and A2 are the same ob-
ject and represents the positions of A at t; and to. then what is the path of
A from position Al to position A2.

One can follow the forward and backward reasoning using the graph of spatial
relations described in Fig. 7.5. This provides us the different navigation plans
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like

P = (M, N, ty), (PO,N, tg), (TPP, N, tg), (NTPP, t4), (TPP,E,t5),
(PO, E,ts),(M,E,t7),(D, E,tg)

Py = (M, N, tl), (M, NE,tg), (D,E,tg)

P = (M,N,tl),(M,NEJQL(M,E,tg),(D,E,t4)

Where P, P, and P3 denote the paths. Similarly, some other paths can also
be determined depending on the neighborhood graph of spatial relations. At
this level, domain knowledge is used to remove some possibilities of holding
spatial relation and possible path between object pairs.

7.9 Conclusion

Spatio-temporal reasoning is an important part of the Artificial Intelligence and
many applications in related fields, existing approaches in this field are domain
based. Commonly spatial reasoning consist of composition tables for spatial rela-
tions and these tables consist of disjunction of spatial relations. The disjunction of
relations represents the coarse knowledge and this information could be refined by
adding the topological information to the composition table for directional relations
and vice versa. Many techniques have been developed for reasoning with topologi-
cal and directional relations separately. Continuous moving objects can change the
topological or directional or both relations simultaneously.

In this paper, we used the CTD method for reasoning which leads from the coarse
knowledge to the finer knowledge of the spatial domain. This method represents the
fuzziness at relation’s level. We established that some entities of the composition
tables are interrelated and follow a mathematical framework. This mathematical
relation is generalized and the proposed composition table is rearranged and di-
vided into sub-tables. These rules are used to construct the composition tables for
topological relations and less calculation is required as compared to the existing
approaches. This method can be used for modeling predictive topological and di-
rectional movements of object pair. We plan to implement this method in realistic
applications such as motion event predictions and video scene analysis.






CHAPTER 8
Spatio-Temporal Motion Event
Predictions

Abstract

Motion is an open ended process while motion events are bounded subsets of this
process. Predictions about motion events is similar to spatio-temporal reasoning.
This process predicts motion event if interval for existing motion event is extended
to the next time point. Language semantics of a motion event also changes as soon
as a new spatial relation is added due to change in temporal bound of an event. In
this paper we proposed a method for the motion event predictions. This method
takes into account the topological and directional relations predicate simultaneously
along with the history of moving objects. These motion events predictions can be
used to build spatio-temporal queries in spatio-temporal database.

Key words: Motion event predictions, Spatio-temporal reasoning, Topological
predicates, Directional predicates.

8.1 Introduction

Different spatial languages are used to represent spatial objects and their relative
position in space. Spatial objects in space are studied through the topological and
metric aspects of space. For instance, in Geographic Information System(GIS), time
and spatial changes are handled through the sequence of static snapshots at discrete
time points. An individual snapshot at a discrete time ¢; represents the objects
relative position in terms of the topological and directional relations. Change in
spatial scene or spatio-temporal event under way is captured through the difference
in topological and directional relations between two consecutive snapshots.

The change in relative position may bring change in mutual topological, distance
or directional relations between spatial objects. The change in any sort of relations
needs analysis in topological, distance and directional view point between object pair
at each step. The change detection is helpful for modeling spatio-temporal relations
and motion events between moving objects. The spatio-temporal predictions are
based on the predictions in the topological and directional relations |[Erwig 1999,
Cohn 2001]. These predictions are useful for implementing the machine learning
based event recognition modules, decisions about the nature of events.
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Topological relations are studied through the 9-intersections method or Region
Connection Calculus (RCC) [Egenhofer 1991, Cohn 1997|. Eight topological con-
figurations are considerd between objects. Many extensions have been proposed
to deal with fuzzy objects. Neighborhood graph for topological relations is used
for modeling the topological and spatio-temporal predictions. These predictions
are based on topological changes in spatial scene. Directional relations are stud-
ied through qualitative, quantitative and fuzzy methods [Frank 1996, Goyal 2001,
1i 2008, Miyajima 1994, Matsakis 1999b, Bloch 1999]. In fuzzy methods, each direc-
tional relation holds with a certain degree. These relations are less used to model
the spatio-temporal relations. Directional relations commonly work for disjoint ob-
jects. A method for reasoning when reference object is contained in the argument
object is developed in [Liu 2005], called Internal Cardinal Directions (ICD) relations
method.

A set of motion events are modeled in [Erwig 1999, Muller 2002, Salamat 2011a]
where topology governs the changes at each snapshot. Composite events are the
union of primitive events and an event is a bounded subsets of a process. These
events can be derived from a process [Galton 2002] and events are bounded in
temporal intervals. After the addition of a time point to temporal interval, the
composite event also changes from a sub-event to super-event. Motion event predic-
tion is a process closely related to the spatio-temporal reasoning. Spatio-temporal
reasoning provide us information about the topological or directional relation for
the next time point. Spatio-temporal motion event prediction stores the history of
a moving object and provide us information about motion event for next time point.
In other words, if analysis interval is extended to the next time instant, then how
the motion event will change?

In this paper, we study the change in motion events with the extension
of temporal interval and propose a method for spatio-temporal motion events
predictions.  Combined Topological and Directional relations (CTD) method
[Salamat 2010a, Salamat | is used for finding topological and directional relations
for a snapshot at instant ¢t. These primitive events are stored into the history-tables
for a moving object and then new prediction for the topological and directional rela-
tions are added to the history of a moving object. A spatio-temporal relation holds
during an interval T, it represents a particular motion event. Motion is a process
and its subsets are called the motion events, composite event are sequential exis-
tence of the primitive events. A new primitive events can exist with the change in
bounds of temporal interval. This new primitive event is then added to the existent
event and it changes the existing motion event. We propose a method where spatial
reasoning is logically extended to motion event predictions.

The paper is arranged as follows, Section 8.2 describes related works. A short
description of CTD method is described in Section 8.3. Spatial predictions are given
in Section 8.4 and Section 8.5 compose of spatio-temporal motion event predictions.
The theoretical explanations of method is explained in Section 8.6. An example is
considered in Section 8.7 and Section 8.8 concludes the paper.
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8.2 Related Work

Naive knowledge takes into account different external forms of representation, which
are used by human being to encode language semantics, mathematical and formal
logic. Spatio-temporal event predictions is a similar process to the spatio-temporal
reasoning. Spatio-temporal relations hold the history of a moving object and spatial
prediction is added in the history-table of a moving object. This addition of spatial
prediction in the history-table of moving object can change spatio-temporal relation
or motion event over the interval. Spatio-temporal events are syntactic summary of
spatio-temporal relations of visual objects in an interval.

Predictions in spatial relations represent possible transition in topological and
directional relations. Methods for defining the topological predicates are developed
in |[Egenhofer 1995, Gerevini 2002, Cohn 2001]. In these methods, topological re-
lations are studied in context of point set topology or region connection calculus
[Egenhofer 1991, Cohn 1997, Cohn 2001|. In these methods, point temporal logic is
used to extend the spatial relations in temporal domain with neighborhood graph
for topological relations [Freksa 1991, Museros 2003]. The change in topological
relations follows the neighborhood graph.

Allen introduced interval temporal logic with two predicates holds(P,i) (prop-
erty P holds during interval i) and occurs(e,i)(event e occurs during interval
i) [Allen 1983, Allen 1994|. Philippe Muller [Muller 2002| used this logic and de-
veloped a class of motion events. This logic is further extended to the discrete
domain and two new predicates are introduced|Galton 2003|(holds-at and occurs-
at(holds-at(P,t) property P holds at time instant t, occurs-at(e,t) event e occurs at
time instant t). In [Erwig 1999] Markus Schinder used point interval logic and
introduced different motion event predictions. These predicates are frequently used
in linguistics.

Actions are decomposable into sub-actions with a simple temporal ordering.
These actions are parts of a process. M. Worboys in [Worboys 2005] introduced
a method where time can be handled as continuous process. It is known that
one event proceed the other event like a real number line. Each point of this line
is corresponding to an instant of time. In this method, time is considered as a
continuous and sequenced ticks. Two consecutive ticks are connected through a
channel. for example

ticky 22 ficky DTy picks DT gicky ... (8.1)

Where tick corresponds to a snapshot. Time between two consecutive snapshots
is correspond to next;;. In the motion event predictions, duration from snapshot
tick; to snapshot tick; is matched as a prediction. Spatial relations for snapshot
tick; is considered to the spatial relations at time ¢; and an edge in neighborhood
graph is correspond to the next;;. As time changes from tick; to tick;, a snapshot
also changes from snapshot; to snapshot; and spatial relations between the objects
of snapshot also changes continuously.
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In this paper, we propose a method, which stores the current spatial relations in
history-tables and spatial predictions are added into these histories. Topological and
directional relations are determined with combined topological and directional rela-
tions method [Salamat 2010b, Salamat 2011b]. These fuzzy relations are defuzzified
and represented in neighborhood graph. There are 43 topological and directional
relations predicates [Salamat |. These spatial predictions are used for modeling the
spatio-temporal event predictions. This model anticipate the motion events where
the spatial predictions for topological and directional relations are taken from the
CTD method.

8.3 Combined Topological and Directional (CTD) Rela-
tions Method

In this section we describe the terminology and different steps used for the compu-
tation of combined topological and directional relations method.

8.3.1 Oriented Lines, Segments and Longitudinal Sections

Let A and B be two spatial objects and (v,0) € R, where v is any real number
and 6 € [0,27]. Let Ag(v) be an oriented line at angle § and A N Ap(v) is the
intersection of object A with line Ag(v). It is denoted by Apy(v), called segment of
object A and length of its projection interval on x-axis is . Similarly for object B
where BN Ag(v) = Bp(v) is segment and length of its projection interval on x-axis
is z. Whereas y is the difference between the minimum of AN Agy(v) and maximum
of BN Ap(v)(for details [Matsakis 2005]).

Figure 8.1: Oriented line Ag(v), segment as in case of object B, longitudinal section
as in case of object A.

In case of polygonal object approximation (z,y, z) can be calculated from inter-
secting points of line and object boundary. Only those oriented lines are considered
which passe through the vertices of a polygon. If there exist more than one segments,
then it is called longitudinal section as in case of Ayp(v) in Fig. 8.1.

8.3.2 Allen Temporal Relations in Spatial Domain and Fuzziness

Allen  [Allen 1983] introduced the 13 Jointly Exhaustive and Pair-
wise Disjoint (JEPD) interval relations. These relations are A = {<
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,m,o,s, f,d eqd, fi, si,0i,m;,>} where each relation means respectively be-
fore, meet, overlap, start, finish, during, equal, during by, finish by, start_ by,
overlap by, meet_ by, and after. All the Allen relations in space are conceptually
illustrated in Fig. 8.2.

di ( contains )

Si (started by)

fi ( finished by)

> (after)

S (starts)

d (during)

Figure 8.2: Black segment represents reference and gray segment represents argu-
ment object

Allen relations represent eight topological relations in one-dimensional spatial
domain. Fuzzy Allen relations represent fuzziness at the relation’s level. Fuzzi-
fication process of Allen relations don’t depend on a particular choice of a fuzzy
membership function. For example, trapezoidal membership function is defined as

L r—a _ 0—=

,U,(CU’ «, Ba s 5) = mam(mzn(m, 17 m

where z,a, 3,7, € R and a < § < v < §. The fuzzy Allen relations using
equation 8.2 are defined as

);0) (8.2)

[>T, ) = 10,0/2,00,00) (Y) (8.3)

fm(Ia J) = H(—b—3a/2,~b—a,—b—a,—b—a/2) (y) (84)

where a = min(z, z),b = maz(z, z) and z is the length of segment (I), z is the
length of segment (J) and (z,y, z) are computed as described in section 8.3.1.

Relations are fuzzified in such a way that a small movement in object effects the
relation and its neighboring Allen relation. Such as in case (I1,J1), fmi({1,J1) <
1 and f>(I1,J1) < 1. Similarly for (Ia,J2), fimi(l2,J2) = 0 and fs(l2,Jo) = 1
rearI,J) =
1. For the treatment of longitudinal section, as in case of (I3,,J3) and (Is,,J3)
in Fig. 8.3, fuzzy Allen relations are computed for each segment separately then

These relations are fuzzified in such a way that for one line, >

fuzzy aggregation operators are applied. Commonly fuzzy disjunction operators are

easy to implement and better fit the situation. Histograms of Allen relations are
13

normalized as Y A;(f) = 1, normalized histograms are represented by [A4;(0)].

i=1
Fuzzy Allen histograms have reorientation property. These properties are

f<(0) = f>(0 + ), fm(0) = fmi(0 4+ 7), fo(0) = foi(6 + ),
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A

Ia,

I

T Sy ( U)

Figure 8.3: Fuzzification of Allen relations between reference and argument segments
where Ay(v) is oriented line

ff(e) = fs(e + W)a ffl(e) = fsl(e + ’/T)a fa(0) = fa(0 + 7T)7
fai(0) = fai(0 + m) and f-(0) = f=(6 + )

Topological relations are named as { D, M, PO, TPP,NTPP,TPPI, NTPPI,EQ}
called respectively Disjoint, Meet, Partially Overlap, Tangent Proper Part, Non
Tangent Proper Part, Tangent Proper Part Inverse, Non Tangent Proper Part
Inverse and Fqual. Eight topological relations are possible combination of eight
independent Allen relations in one-dimensional spatial domain. These relations and
their reorientation show that the whole 2D space can be explored with the help of
1D Allen relations using the oriented lines varying from (0, 7). Normalized fuzzy
Allen relations and their reorientation is used to find the qualitative directions for
a topological relation. For example

s

fe = [A(0)] x cos®(20) + Zﬂ: [A1(0)] x cos*(26) (8.5)
0=0 9—37”

Where f, E, [A2(0)] represents respectively topological, directional and normal-
ized Allen relation, As is reorientation of A; and this information is represented
in a matrix. An example in Fig. 8.4(a) and 8.4(b) for representing fuzzy spatial
relations is illustrated.

This matrix represents the fuzzy spatial and directional relations for a two-
dimensional case. An algorithm is proposed in [Salamat | for defuzzification of these
spatial relations. This enables us to have a JEPD set of topological and directional
relations and it is possible to represent these topological and directional relations in
a neighborhood graph.

8.3.3 Conceptual Neighborhood Graph in CTD Method

A neighborhood graph represents continuous transition in the spatial relations.
Neighborhood graph of spatial relations in CTD method describes all types of topo-
logical transformations, namely translation, uniform and non uniform expansion or
contraction of an object. Here, for simplicity of graph only one branch of translation
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Figure 8.4: Object pair and its combined topological and directional relation infor-

mation. Qualitative topological and directional relations are (PO, N) between this
object pair

transformation is taken into account and possible transitions are presented into the
neighborhood graph (Fig. 8.5). object can move in a circular, straight and diagonal
path, called directional, topological and topological and directional neighborhood.

Figure 8.5: Neighborhood graph in the system of combined topological and direc-
tional relations

Neighborhood graph shows allowable transitions among the relations. These
transitions are possible when the objects move or change occurs in a spatial scene. In
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Fig. 8.5, it is shown that every node of a neighborhood graph has eight edges. Each
node corresponds to (a, ), where a and [ respectively represent the topological
and directional relation. For better explanation let us consider the possible changes
from the initial position of (M (A, B), E(A, B)) (called A, B meets each other from
FEast)

M(A,B),NE(A, B)) Change in directional relation
M(A,B),SE(A,B)) Change in directional relation
Change in topological
4,B), NE(4, B)) and directional relation
PO(A,B),E(A,B)) Change in topological relation
AB Change in topological

(
(
(PO(A,
(
(

(M(A, B), E(4, B)) = PO(A, B), SE(A, B)) and directional relation
Change in topological
(D(4, B), NE(4, B)) and directional relation
(D(A,B),E(A, B)) Change in topological relation
(D(A, B), SE(A, B)) Change in topological

and directional relation

8.4 Spatial Predicates

Temporal changes of spatial objects induce modifications of their mutual topological
and directional relations over time. Spatial predicates are divided into three cat-
egories namely topological, directional and distance predicates. Distance relations
are inversely proportional to the directional relations. In the following subsections
we discuss the predicates for topological and directional relations separately.

8.4.1 Topological Predicates

Topological predicates are the most investigated topic by researchers community.
Method for topological predicates is discussed in [Egenhofer 1992] where a set
of possible conceptual topological neighborhoods are defined. Topological predic-
tions are based on the largely developed models for topological relations in this
domain, most popular methods are the 9-intersections and Region Connection Cal-
culus (RCC) |Egenhofer 1991, Randell 1992a|. In both methods eight topological
relations are released and they are represented in neighborhood graph as in Fig. 8.6.

A topological change occurs if different topological relationship between two
objects holds at time ¢; and t;+1. Neighborhood graph of topological relations
depicts all physical transitions between spatial relations that can occur through the
topological deformation. Topological predicates are represented in table 8.1.
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Figure 8.6: Neighborhood graph of spatial relations in 2D space

Topological Relation = Topological Prediction

D D, EC

EC D, EC PO

PO EC, PO, TPP, TPPI, EQ
TPP PO, TPP, NTPP
NTPP NTPP, TPP
TPPI PO, TPPI, NTPPI
NTPPI NTPPI, TPPI

EQ EQ, PO

Table 8.1: Topological Predictions

8.4.2 Directional Predicates

A method to describe the directional changes is developed in [Li 1997|. This method
describes directional neighborhood of objects in matrix based system of directional
relations and this method is used to annotate the trajectory of moving objects.
Actually, this method discusses the directional predicates and has no concern with
topological relations. Directional relations are not JEPD and no neighborhood graph
is defined. Predictions in MBR based nine-directions systems are described in the
following table 8.2. In this table, symbol O represents the neutral direction.

8.5 Spatio-Temporal Event Predicates

Motion events constitute the unbounded motion process and these events are
bounded subsets in this process. These events change with the change into their
temporal bounds. The spatio-temporal event predications help us to estimate the
spatio-temporal event when the analysis interval is extended, these event predictions
keep into account the history of spatio-temporal relation of moving object.

For defining the spatio-temporal relations and motion events, we need at least
two snapshots or primitive intervals. A motion event for two snapshots is a subclass
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Directional Relation | Directional Prediction
E SE, E, NE,O
NE E, NE, N, O
N NE, N, NW |, O
NW N, NW, W0
W% NW, W, SW, O
SW W, SW, S, O
S Sw, S, SE, O
SE S, SE.E, O

Table 8.2: Directional predictions in eight directional relations system

of all those events which stands for more than two snapshots provided that these ini-
tial snapshots are included into the interval. For example, following spatio-temporal
motion events.

o Snap(XY,T) :=seq_ev(DC(XY,t;), EC(XY, tiy1))
e Touch(XY,T) :=seq ev(DC(XY,t;), EC(XY,tiy1), DC(XY,ti12))
b Enter(XY, T) = SGQ_e,U(DC(Xya tl)aEC(XYa ti+1)’PO(XY7 tH—Q))TPP(XYa ti+3))

where seq ev represents a sequence event and t;, t;+1, tiy2, tivs € T and
t; < tiv1 < tiyo < tiy3. All these primitive events hold in a sequence. This shows
that Touch C Enter and Snap C Touch. When the interval is extended, a new
primitive event is added to the existing event, motion event may also change to its
superclass.

8.5.1 Temporal Composition

Event types are considered as necessity and sufficient conditions for their occurrence.
The composite events are detected when last primitive event occurs, it means com-
posite event is detected at the end point of its occurrence interval. Commonly, there
is a sequential composition of primitive events, concatenation of primitive events in
time space. Motion event predicates are the process of concatenation of instanta-
neous events in time space with existing motion events. Time can be handled by
two ways, logical combination and time as a process.

Logical Combination: In this method, logical combination of operators are used.
The properties holds, holds at, occurs, occurs at are used along with the
sequence operators seq eve and property In.

e Holds(P,i): Property P holds during interval i.
e Holds_at(P,t): Property P holds at time point £.

e Occurs(E,i): Event E occurs during interval 1.
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e Occurs_at(E,i): Event E occurs at time instant ¢.
e Seq eve(Fq, Es,i): Event E; occurs before event Fo during interval i.

e Occurs_in(E,i)3t(t; < t < to) A occurs(E, [tit]): Event E occurs in
interval 1.

when the temporal interval is extended to the next point, existing property
turns into the In property.

Time as Process: M. Worboys in [Worboys 2005] introduced the process-oriented
model for time. Ticking of a clock is a real world process linked to the contin-
uous time. Time is considered as a collection of sequenced tick process, where
two continuous ticks (tick;,tick(;41)) are joined through the link next;; )
(Eq. 8.1). Moving objects are considered as the temporally referenced iden-
tity. The spatio-temporal relations between moving objects are corresponding
to the ticks process and each primitive event represents a tick at a particular
snapshot and the joint next;;;1) stands for the change of spatial relations
between two consecutive snapshots.

In the following examples, logic concatenation of primitive spatial relation is
used. The properties Holds, Holds at, occurs, occurs _at and their relationship are
used, such as holds(P,t; Ut;+1) = holds-at(P,t;) A holds-at(P,t;+1) (A property P
holds during the interval [¢;,¢;+1] V ¢ = 1,2, ... when the same property holds at
each point of an interval.

8.5.2 Spatio-Temporal Motion Event Predicates

Spatio-temporal predictions about the motion events take place when objects are
continuously changing their positions and temporal component is added to spatial
relations. One end of the time space is closed and other end is open, as time passes,
a new point is added to the existing interval. The spatial relations at the new time
points, which follows the static predictions described in tables 8.1 and 8.2 are also
added to the existing spatio-temporal relation or motion event.

A single method could not be used to adequately predicate the spatio-temporal
motion events. This prediction may hold in topological, directional or in combined
properties of the space. In this paper, we use the CTD method, which enables us
to know binary topological and directional relations simultaneously. This method
represents fuzzy topological and directional relations. These relations are defuzzified
and represented in a neighborhood graph as described in Section 8.3.3.

In our method, we combine the information provided from topological and di-
rectional relations. A single method works in each situation with some additional
information. The method holds the object’s spatio-temporal history and change the
linguistic description of a motion event as soon as object’s new position and spatial
relations are added to the history of spatial relations. This logical addition in time
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domain can be represented formally by one of the subsequent relations.
STR; =STR;,_1U SR;,Vi=2,3, ... (8.6)
This equation can be rewritten as
STR; =STR,_ 1USP;,_1,Vi=2,3,.... (8.7)

where ST R, SR and SP respectively stands for spatio-temporal relations, spa-
tial relation and spatial prediction. This represents direction, topological or both
relations and ¢ denotes the time instant at which the relations are evaluated. Spatio-
temporal predictions can be formulated by

STP,=STR;, 1U SP,Vi=2,3,.... (88)

where ST P represents the spatio-temporal prediction. All these equations pro-
vide us mathematical formulas that how the temporal aggregation of different prim-
itive events effects the initial event.

8.6 Method Explanation

Motion is a continuous phenomenon and it is analyzed at discrete time points, be-
tween these time points it can be directly interpolated. These time points can
be chosen at a predefined time intervals or a specific snapshot of a video frame.
In modeling the spatio-temporal relations and motion events, we need at least two
snapshots. Spatio-temporal relations are defined based on stable and unstable topo-
logical relations. We start from two snapshots, at initial point, both spatio-temporal
and spatial predictions represent the same semantics. All the possible predicates for
motion events are given in table 8.3 where initially argument object lies in North
with disjoint topological relation.

SRy SP ST RoorST P,

(D,N) | (D,NE) Changing direction from N to NE
(D,N) | (D,NE) | getting closer or going away from N to NE
(D,N) | (D,N) getting closer or going away from N
(D,N) | (D,NW) Changing direction from N to NW
(D,N) | (D,NW) | getting closer or going away from N to NW
(D,N) | (M,NE) (Snap NE)

(D,N) | (M,N) (snap, N)

(D.N) | (M,NW) (Snap, NW)

Table 8.3: Spatio-temporal predictions for two frames

When the interval is extended to one snapshot, where the spatio-temporal rela-
tion is not changed. Every point has eight possible spatial predictions. We discuss
here the possible spatial predictions from (M, NE). Sequence of existing spatial
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relations is (D, N,t;), (M,NE, t;+1) and existing spatio-temporal relation at this
point is Snap from NE. Spatio-temporal predicates are depicted in table 8.4 when
moving objects have the history of spatio-temporal relations as SNAP. These spatio-
temporal predicates depend upon the current spatial predicates.

STRi_l SPi_l STRiOI'STPi_l
Snap from NE | ( ) Touching form NE
Snap from NE (M, E) Bypass
Snap from NE | (PO, E) | Graze, Enter, Into from E
Snap from NE | (D, NE) Touch from NE
Snap from NE | (P E) Enter, Into from NE
Snap from NE | ( ) Touching from NE
Snap from NE | ( ) Bypass towards N
Snap from NE | (PO, N) | Graze, Enter, Into from N

3rd

Table 8.4: Spatio-temporal predictions for snapshot

Similarly if we extend current interval to the next time point. The history of
spatio-temporal relation is (D, N, t;), (M, N, t;1+1), (PO, N, t;12). The current spa-
tial prediction is (T'PP, N), then possible spatio-temporal motion event predictions
are depicted in table 8.5.

STR; 1 SP_4 STR;orSTP;_4
Entering from N (PO, N) Entering from N
Entering from N | (PO, NE) | Graze from N towards NE
Entering from N | (PO,NW) | Graze from N towards NW
Entering from N | (M, NW) | Graze from N towards NW

Entering from N (M, N) Move backward
Entering from N (M,NE) Graze from N towards NE
Entering from N | (TPP,N) Entered from N
Entering from N | (TPP, NW) Entered from NW
Entering from N | (TPP, NE) Entered from NE

Table 8.5: Spatio-temporal predictions for 4% frame

8.7 Example

For the experimental purpose, we analyze an image sequence of traffic scene on a road
crossing point( http : //www.youtube.com/watch?v = 6prplJ1RcwU& feature =
related). In this sequence we observe that vehicles have many sorts of spatio-
temporal relations with each other. For modeling the spatio-temporal relations and
video events point of view, we consider the junction point as a reference object and a
moving vehicle is considered as argument object. Here two types of spatio-temporal
relations (motion events) are possible, U-turn and junction crossing of a vehicle.
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Both the relations have similar initial and final conditions. In such a case only
directional relation at each instant plays an important role for a specific linguistic
motion verb. Addition of a directional relation for modeling the motion verb may
help to understand the actual situation and point out where a specific event happen
in space. As a test case, we may consider the different frames of the video and
observe the movement of a white car. In figure it is mentioned in a blue rectangle.
Visually this car has a different motion direction, on can predict that this car is
taking a U-turn at frame mentioned in Fig. 8.7(e). To avoid the segmentation
problems we draw the sketches of each snapshot with two objects and consider their
binary spatial relations theoretically for each snapshot in a sequence.

(¢) Frame 0742

(d) Frame 770 (e) Frame 792 (f) Frame 0811

Figure 8.7: Description of different frames of a road junction scene image sequence

In this example, we consider two different scenarios. A car is approaching to a
road junction. In first scenario, car crosses the road junction and in second case, it
takes a U turn . In this example, the crossing point of roads (square) is considered
as the reference object (object B) and a moving object (car is considered as an
argument object A).

First consider junction crossing scenario, after the segmentation stage, object
positions are demonstrated in figures from 8.8(a) to 8.8(f). In this case, images
in the sequence are in such a way that time points are t; < ;41 < tipo <
tivs < tiya < ti45. For image at point ¢;, it spatial relations are written
as (D, W,t;). Prediction for spatial relation is (M, W, t;11) (no other possi-
bility due to the domain knowledge, car can’t in reverse direction on road net-
work). Motion event prediction becomes Snap from West, with the addition of
this image, Snap is completed and spatio-temporal prediction turn to all those
events which have same starting point. Motion event prediction predicts the pos-
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(a) t; (b) ti+1 (C) tito

(d) tits (e) tita (f) tivs

Figure 8.8: Car, crossing a road junction

sible occurrence of spatio-temporal relation of Touch, Entering for the third snap-
shot. At this stage, spatial predictions for ¢; 19 are (PO, W), (PO, NW), (PO, SW),
(M,NW),(M,SW),(D,W),(D,NW),(D,SW). It is the domain knowledge and
motion direction which adds the constraints. These constraints omit certain spatial
and spatio-temporal prediction Touch.

This continues for the third frame and spatial relation for this snapshot is
(PO, W,t;12). Spatio-temporal relation changes from Snap to Entering or Graze
from West. This sequence of images continues and the next spatial relation is
(TPP, W, ti+3), spatio-temporal relation becomes Entered from West. There are
different spatial predictions, for ;14 spatial relation is (T'PP, E,t;y4). Spatial re-
lation for ¢;45 is (PO, E,t;+5). This shows that the spatio-temporal relation is
Crossing the road junction and directional relations add the knowledge that car
continue its motion direction in the East direction (Car crosses the junction from
West towards Fast). This shows that some data is missing here, the continuity of
spatial relations also show that there is some data missing, such that, there exist a
tiys <t < tiyq, where (NTPP,t).

Now we consider scenario of U turn, after the segmentation stage scenario looks
like mentioned Figs. 8.9(a) to 8.9(e). In this case, first four images remains in
the same sequence and spatio-temporal motion event prediction also same. After
this, if the sequence of images is changed and the next image becomes as showed
in Fig. 8.9(e)(some data is missing, object can’t move directly to that point).
Spatial relation for this image is (PO, W, t5), spatial predictions for this time point
are (PO, NW),(PO,SW),(M,SW),(M,W) and (PO, NW). Some predictions are
discarded due to domain knowledge. When the prediction (M, W) is added to
existing spatio-temporal spatial relation or motion event. It turns to the cross, but
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(a) t; (b) tit1 () tiv2

(d) tits (€) tita

Figure 8.9: Car, U turn at road junction

knowledge of direction relations describe this particular cross relation as a U turn of
car. Directional relations at initial and final frames also specify the location of the
initial and possibly final location of car in spatial scene. It differentiate the particular
car taking U-turns from other vehicles taking U-turns from other directions.

8.8 Conclusion

Spatio-temporal reasoning and prediction are important fields in Artificial Intel-
ligence. Existence of topological and directional predicates in a sequential order
constitutes the motion events. Motion event prediction is a similar process to the
spatial predictions. Events are bounded in time, they constitute the process. Lan-
guage semantics of an event also change with change in temporal interval.

In this paper we develop a method for motion event predictions. This method
holds the history of a moving object and predict the occurrence of a motion event.
Time is a continue process and motion events are bounded into time process. A
snapshot or primitive interval is added to the existing sequence of images, when the
temporal interval is extended. The spatial relations for new snapshot are also added
to the history, related spatio-temporal relation and motion event may also change.
Hopefully this work will help in modeling spatio-temporal queries in moving object
database, modeling the natural language processing and some related research areas
like medical images for generating automatic medical reports, remote sensing images
etc.
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Conclusion and Perspectives

This chapter concludes the thesis work and discuss some future aspects of our work.
In spatio-temporal applications, snapshot data model is commonly used for repre-
senting spatial data by time-stamping layers. We used this technique and develop
the method for spatio-temporal relations modeling and motion events. Some main
features of our work are discussed in section 9.1 and some perspectives of the work
is elaborated in section 9.2.

9.1 Conclusion

Spatio-temporal relations are extensively used in Geographic Information Sciences.
For modeling spatio-temporal relations, spatial relations are extended to the tem-
poral dimension. We have to deal the topological, directional and distance relations
for each snapshot. Distance relations are inversely proportional to the directional
relations, hence these relations are ignored. For modeling spatio-temporal relations
we use combined topological and directional relations information method. This
method provides us information that where a topological relation holds in space.

This method uses Allen temporal relations for modeling 2D topological relations.
Initially this method has a high computation time which is due to object approxi-
mation and an algorithm for fuzzification of segments of a longitudinal section. we
work for computation time of the method and decrease computational time from
O(nM~/M) to O(nNlog(N)) where M, N, n respectively represents the number of
pixels to be treated, vertices of polygons and directions. Histogram representation
of the method could not be used to infer and visualize the change in topological
and directional relations. We change representation of fuzzy spatial relations and
develop an algorithm for defuzzification of spatial relations (Chapters 4,5). This
defuzzification provides us answer to the question that where in space a topological
relation holds? This defuzzification also provide us a JEPD set of spatial relations
and these relations are represented in a neighborhood graph. This method also de-
crease the computation time as information are obtained by using orientation angle
0eclo, 7.

Combined topological and directional relations (CTD) method is extended to
time dimension for developing the spatio-temporal relations. These relations are
based on stability property in topology and we define some spatio-temporal motion
events for unstable spatio-temporal relations. Some motion events are developed
and locative symmetry in motion events is removed by introducing the directional
constraints in unstable spatio-temporal topological relations. A reasoning method
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with topological and directional relations is developed based on Combined topo-
logical and directional relations method. Commonly reasoning is performed by
constructing the composition tables for spatial relations, a mathematical formula
is developed which expresses the relation between entities of composition table for
topological relations. This table is divided into sub-tables and entities of table are
rearranged. These tables represent the coarse knowledge and this is improved by
gradually introducing the directional relations constraints in composition tables for
topological relations and vice versa. This newly introduced method is also used for
prediction of motion events. This approach resembles to the topological or direc-
tional relations prediction or reasoning. This method stores the history of a moving
object. In this approach, it is considered that if an analysis interval is extended
to the next snapshot or primitive interval how the spatio-temporal motion event
changes.

9.2 Perspectives

Nowadays, Geographic Information Systems (GISs) are combined with expert sys-
tem, decision support system or other methods in Al, called Enhanced Geographic
Information Systems (EGISs) or Intelligent GISs. This is a hybrid information
system which deals with complicated applications of GISs and widely used in many
areas, such as in agriculture, forestry, ecosystem, traffic, transportation, environmen-
tal protection and public health. For problem solving methodologies, appropriate
knowledge based intelligent systems (GISs) are designed for a particular problems.
Solution to problem made by a human or a computer, the question is that what is
the role of GIS-based system? Is it a management tool or intelligent decision maker?
Our work is extendable in both dimensions, in future I would like to extend this
work in the following directions.

1. Fusion of CTD with Hidden Morkov Model (HMM) for Motion
Event Predictions: Qualitative spatio-temporal representation and reason-
ing models represent objects as abstract entities. Combined Topological and
Directional (CTD) relations method after the defuzzification behaves like a
qualitative model of spatial relations. These spatial relations are represented
into a conceptual neighborhood graph. HMM represents the random process
and used in applications concerned to prediction and recognition, qualitative
HMM can be used for the discrete time along with the qualitative spatial re-
lations to model the predictions for consequent spatial relations and motion
events. We shall use CTD method as fuzzy qualitative relations method along
with the qualitative probabilities and a qualitative HMM model for spatio-
temporal reasoning in our future works.

2. Image Interpretation and Computing With Words: Commonly known
approaches for image understanding and image interpretation algorithms start
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after the segmentation processes. Spatial relations are used in different fields
of image understanding, image analysis, knowledge representation techniques
etc. Similarly spatio-temporal relations are used for trajectory annotation of
moving objects, video understanding, video analysis etc. In modern ages, data
is in digital format and natural language descriptions is created from numerical
data for interaction between machine and user.

Computing With Words (CWW) is a reverse process of spatial reasoning where
a language or locative expressions are developed to express a situation. This
process consist of many modules, in encoder module, verbs are developed using
the images. Fuzzy sets and fuzzy spatial relations are used for developing the
adverbs like almost, probably, definitively etc. This conceptual frame work
will represent, manipulate, measure and human machine interaction in natural
language semantics of images about topological and directional information. In
the design of CWW encoder based on spatial relations, these spatial relations
provide information about binary topological and directional relations between
image objects.

We will extend our method to develop such a language, where fuzzy predicates
will be used for locative expressions. This can be used for automatic image
and video interpretation, automatic medical image interpretations for example
ultrasound image interpretations, based on spatial relations.

. Fusion With other Aspects: Spatio-temporal reasoning supports the spa-

tial and temporal attributes of moving objects, certain spatio-temporal func-
tions are developed which deals with both attributes simultaneously. This
involves many applications in social sciences such as behavior analysis, fraud
detection etc. We will use our method for interpretation of short and long
term behavior analysis between image and video objects in an environment.
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CHAPTER 10

Annexes

10.1 Annex-A

Now let’s consider that the following situations arise for the segments of a longitu-
dinal section when the objects are concave or objects have disconnected boundary.

(a) (b)

Figure 10.1: Different positions of reference object’s segments in case of longitudinal
sections

Figure 10.1(a) We discuss here the cases arising in figure 10.1(a) with all aggre-
gation operators. For the above cited examples, we use terms f(z1,y1,2) and
f(x2,y2,2) to express histograms of fuzzy Allen relations for first and second
segments, here x1 is the length of first segment of the argument object and
29 is the length of second segment, similarly y; is the difference between the
first segment of argument object and the reference object and y is the differ-
ence between the second segment of argument object and the reference object,
in this case consider both y1 > % and yo > % where a1 = min(z1, z) and
ag = min(xa, z).

f@i,y,2) = (10000 000O0O0GO0GO0 O0)
f@e,y2,2) = (1.0 0 0 00 0O0O0O0O0O0 0)

It means fs(I1,J) = 1 and fs(I3,J) = 1 and all the other values of his-
togram are zero. The possible outcomes with the application of different fuzzy
operators are

FoR(g,Ag('U), B@(v) - ma(l?(f(l’l,yl, Z)v f(332»y27 Z))
= (1,07O,O,O,O,O,O,O,O,O,O,O)t
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FAND(H»AO(U)’BG(’U) - min(f(l‘l,yl,Z),f((lfg,yg,Z))
= (1,0,0,0,0,0,0,0,0,0,0,0,0)t

FPROD(ea AG(U)aBo(U) - f('rbyhz) X f(x27y27z)
= (1,0,0,0,0,0,0,0,0,0,0,0,0)*

Fsunm(0,Ap(v), Bg(v) =1 — ((1 — f(z1,91,2)) X (1 = f(z2,92,2)))
= (1,0,0,0,0,0,0,0,0,0,0,0,0)t

In this case, the two segments of argument object have the same Allen relations
with the reference segment. Both segments behave like the crisp Allen relation.
In such a case, all fuzzy operator provide us similar information.

Figure 10.1(b) The cases arising in figure 10.1(b) with all aggregation operators.
In this case consider y; < —b — &% and yo > % where a1 = min(z1, 2),
by = max(x1,z) and ay = min(za, z) then f(z1,y1,2) and f(z2,y2,2) are

used to express the histograms of fuzzy Allen relations for first and second

segments.
flz1,y1,2) = (0 0 00 0O0O0O0O0GO0OGO0OTO0O 1)
flza,y2,2) = (1.0 0 0 0000 O0OO0O0 O O0)

The possible outcomes are

FOR(Q,AQ(U),B@(U) - max(f(xlay1>z)>f(x2ay2>z))
= (1,0,0,0,0,0,0,0,0,0,0,0,1)’

Fanp(8,Ap(v), Bp(v)) = min(f(x1,y1,2), f(x2,y2,2))
= (0,0,0,0,0,0,0,0,0,0,0,0,0)"
Fprop(0,Ag(v), Bg(v)) = f(x1,y1,2) X f(22,12,2)

— (0,0,0,0,0,0,0,0,0,0,0,0,0)"

FSU]W(Qa AG(U)7BQ(U)) = 1- ((1 - f(mlvyhz)) X (1 - f(any%Z)))
= (1,0,0,0,0,0,0,0,0,0,0,0,1)"
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The above cited examples explain that, in a particular situation, AND and
PROD operators cannot be used for the decision making process, when both seg-
ments of one longitudinal section of argument object have the same Allen relation
with the segment of reference object, all fuzzy operators have the same results. In
real situation different cases may arise and segments may have opposite relation as
in figure 10.1(b). In case of conjunction operators, all the information may be lost.

These results show that fuzzy conjunction operators give results counter intu-
itive (both AND, PROD represents the conjunction operators) and the disjunction
operators better fits the human intuition and provides here a better fusion of avail-
able fuzzy information. The third type of fuzzy operators such as Fuzzy v operator
can also be used to make possible contributions of two fuzzy values, but in this case
finding compensation values of v is a problem and for each case we have to adjust
.

Concave objects or objects with holes have several segments, called longitudi-
nal section. In such a case, fuzzy Allen relations are calculated for each segment
separately then fuzzy connectors are applied for combining information from both
segments.
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10.2 Annex-B

Histogram of Allen relations is defined as "Area of subregions of object A and B in
a particular direction having a relation r(I,J) where r is any Allen relation". Proof
of affine transformations can be divided into three parts

1. Effect on change in direction of oriented line.
2. Change in fuzzy membership value

3. Effect of affine transformations on object area

10.2.1 Change in Direction

These are the histogram of forces coupled to the Allen relations and F;4B represents
the histogram of fuzzy Allen relations in direction #. Concerning to the change
in direction of oriented line all the proofs are similar as in case of force histogram
[Matsakis 1998].

10.2.2 Change on Object Area

It is considered that an object is a polygon, if A;, is a transformation matrix of affine
transformation T' then its effect on polygon A is represented by [Dionisio 2006|:
Area(T(A)) = |Ag|Area(A) Now we calculate effect on area of each object due to
transformation. Translation is not a affine transformation hence proof for translation
is omitted, it has no effect on object area.

e Scale: Determinant for a matrix of 2d affine transformation for scale is:
k0

0 k= k% Object area is scaled by k? times where k is scale ratio.

e Rotate: Determinant for a matrix of 2d affine transformation for rotate is:

cos(0) —sin(0)
sin(0)  cos(0)
Determinant has value is 1. Rotation doesn’t change the object area.

= cos?(0) + sin?(0) = 1

e Shear: Determinant for a matrix of 2d affine transformation for shear is:

1 0
0 k
Object area is sheared by k times where k is shear ratio.

=k

e Reflection: Determinant for a matrix of 2d affine transformation for
reflection is:

cos(20)  sin(20)
sin(20) —cos(20)
Its absolute value is 1 so it will not change object area.

= —(cos?(20) + sin*(20)) = —1
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10.2.3 Effect on Fuzzy Membership Value

Grades of fuzzy membership value depends upon triplet (x,y,z). These are the
projective distance between two points, so we calculate effect on each point. Let
(21, x2) be coordinates of a points before transformation and (2, 24) are coordinates
of a 2d point after transformation.

e Scale: Effect of scale transformation on a projection of a segment:

- (D) ()
- (m)()

= k:a:l
A point after the scale transformation changes k times similarly a seg-
ment will also change k times. Now we calculate its effect on a fuzzy
membership function. 2/ = kz where 2’ is length of segment after scale
transformation and « is length of segment before scale transformation.
Har o (¥) = maz(min(4=5,1, 5=4),0)
= max(min( zg:lzg, 1, Z‘S_zyL 0)
= maz(min(§=.1, 9=v) 0)
- N(a,ﬂ,'y,5)(y)
This result shows that scale transformations does not change the value of a

fuzzy membership function. This is due to proportional change in value of
triplet (z,v, 2).

e Rotate: Effect of rotation on a projection of a segment :
o cos(0) —sin(0) xq e
! sin(0)  cos(0) x9 0

o (O ()

= cos(0)x1 — sin(0)xs

A point after the rotate transformation changes @’ = cos(0)x1—sin(0)x9 which
can be rewritten as &’ = kiz1 — koxo

where (x1,x9) is segment length along x and y axis respectively and kozo is
the projection of 2/ — z on x axis. This formula (ratio formula in analytic
geometry) shows that the length of a segment after the transformation divides

the original segment in a particular ratio called ki, ko. we can write it as:
¥ = (k1—ko)x = kx .

Where k = ki — ko and 2’ is segment length after transformation and z is
segment length before transformation. Now we calculate its effect on a fuzzy
membership function.
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Mg () = maz(min(§=%, 1, 5=4),0)
= mazx(min( ,]:z:’,zg, 1, Zg:llzf’/), 0)
= maz(min(§=3,1, g:—g),O) .
= M(a,,@,'y,é)(y)
This proves that rotation does not change the value of a fuzzy membership

function. This is due to proportional change in value of triplet (z,y, z).

Shear: Effect of shear on a projection of a segment:
t
o 10 x1 1
1 0 k To 0
- X1 t 1
n k{EQ 0

— 1

A point after the shear transformation does not change. Now we calculate its

effect on a fuzzy membership function. 2’ = (3 — 1) = = where 2’ is length

of segment after shear transformation and x is length of segment before shear

transformation. o

M(O/ﬁ',’y',é’) (y’) = max(mzn( %,:3/ s 1, & —~ ), O)
[

= mam(min(g:—z,l, ﬁ)ﬁ

= F(aB.,6)(Y)
This completes the proof for shear transformation.

~—

Reflection: Effect of reflection on a projection of a segment :
o << cos(20)  sin(20) > ( 71 >>t< 1 )
o sin(20) —cos(20) x9 0
B cos(20)z1 + sin(20)x, 1
B < sin(20)z1 — cos(20) 2 ) ( 0 >
= cos(20)x1 + sin(20)z2
A point after the reflection transformation changes ' = cos(26)x1 — sin(20)x-
which can be rewritten as: @’ = kyz1 — koxo where (z1,x2) is segment length
along x and y axis respectively and koo is the projection of 2z’ — z on x axis.
This formula (ratio formula in analytic geometry) shows that the length of a
segment after the transformation divides the original segment in a particular
ratio called ki, ko. we can write it as: o' = (k1 —ko)x = ka
Where k = ki — ko and x is segment length before transformation and z’ is
segment length after transformations. Now we calculate its effect on a fuzzy
membership function.
Har oy (Y) = maz(min(§=%,1,52%),0)

— mam(min(%, 1, ke=kyy ()
0

k
= maz(min(§=.1 5%)
Ha,8.7.0)(¥)
This proves that reflection does not change the value of a fuzzy membership
function. This is due to proportional change in value of triplet (z,y, z).
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10.3 Annex-C

For the better visualization, we elaborate the spatial relations and color attri-
bution in following example 10.2. We consider overlapping objects and their
spatial relations.  Object A (light gray) as argument object and object B
(dark gray) as the reference object. Here colors show the directional relations
and lines show the topological contents. These relations are arranged in or-
der as {D,M,PO,TPP,NTPP,TPPI,NTPPI,EQ} with meanings Disjoint,
Meet, Partially-Overlap, Tangent-Proper-Part, Non-Tangent-Proper-Part, Tangent-
Proper-Part-Inverse, Non-Tangent-Proper-Part-Inverse and Fqual. value of an en-

tity shows the percentage area of objects under a specific topological relation in a
8
given direction. i.e., Y, = 1. The object pair is shown in figure 10.2(a) and its
ij=1
spatial relations are shown in figure 10.2(b).

g=E=F"

08l

[ | IR(minf) ||

wwnw
m

0Bl

(a) Object Pair (b) Spatial Relations

Figure 10.2: Overlaping objects and their combined topological and directional
relations representation
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Figure 10.3: Objects at change positions from disjoint to equal topological relation,
spatio-temporal Merge relation from east direction and their graphical representa-
tion
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graphical representation






Hands are levers of influence on the world that made intelligence worth having.
Precision hands and precision intelligence co-evolved in the human lineage and the
fossil record shows that hands led the way.

Steven Pinker, in How the Mind Works




