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Abstract

Magnetic Resonance Spectroscopy (MRS) and Spectroscopic Imaging (MRSI) play an

emerging role in clinical assessment, providing in vivo estimation of disease markers while

being non-invasive and applicable to a large range of tissues. However, static magnetic

field inhomogeneity, as well as eddy currents in the acquisition hardware, cause important

distortions in the lineshape of acquired NMR spectra, possibly inducing significant bias in

the estimation of metabolite concentrations. In the post-acquisition stage, this is classically

handled through the use of pre-processing methods to correct the dataset lineshape, or

through the introduction of more complex analytical model functions.

This thesis concentrates on handling arbitrary lineshape distortions in the case of quan-

titation methods that use a metabolite basis-set as prior knowledge. Current approaches

are assessed, and a novel approach is proposed, based on adapting the basis-set lineshape

to the measured signal. Assuming a common lineshape to all spectral components, a new

method is derived and implemented, featuring time domain local regression (LOWESS) fil-

tering. Validation is performed on synthetic signals as well as on in vitro phantom data.

Finally, a completely new approach to MRS quantitation is proposed, centred on the use of

the compact spectral support of the estimated common lineshape. The new metabolite esti-

mators are tested alone, as well as coupled with the more common residual-sum-of-squares

MLE estimator, significantly reducing quantitation bias for high signal-to-noise ratio data.

Résumé

La Spectroscopie et l’Imagerie Spectroscopique de Résonance Magnétique (ISRM) jouent

un rôle émergent parmi les outils cliniques, en donnant accès, d’une manière complètement

non-invasive, aux concentrations des métabolites in vivo. Néanmoins, les inhomogénéités du

champ magnétique, ainsi que les courants de Foucault, produisent des distorsions significa-

tives de la forme de raie des spectres, induisant des conséquences importantes en terme de

biais lors de l’estimation des concentrations. Lors des traitements post-acquisition, cela est

habituellement traité à l’aide des méthodes de pré-traitement, ou bien par l’introduction de

fonctions analytiques plus complexes.

Cette thèse se concentre sur la prise en compte de distorsions arbitraires de la forme

de raie, dans le cas des méthodes qui utilisent une base de métabolites comme connais-

sance a priori. L’état de l’art est évalué, et une nouvelle approche est proposée, fondée sur

l’adaptation de l’amortissement de la base des métabolite au signal acquis. La forme de raie

présumée commune à tous les métabolites est estimée et filtrée à l’aide de la méthode LO-

WESS. L’approche est validée sur des signaux simulés, ainsi que sur des données acquises

in vitro. Finalement, une deuxième approche novatrice est proposée, fondée sur l’utilisation

des propriétés spectrales de la forme de raie commune. Le nouvel estimateur est testé seul,

mais aussi associé avec l’estimateur classique de maximum de vraisemblance, démontrant

une réduction significative du biais dans le cas des signaux à haut rapport signal-sur-bruit.
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Notations

Greek letters
α Damping factor

γ Proton gyro-magnetic ratio

δ Chemical shift (in ppm)

ε noise

λ Smoothing hyper-parameter

ν Normalized frequency

σ Nuclear shielding constant or Standard Deviation

ϕ Phase

ω Angular speed

Latin letters
B0 Static magnetic field

B1 RF pulse

c Metabolite concentration

f Frequency shift (Hz)

Gx, Gy, Gz Magnetic gradient fields associated with the gradient coils.

H Hessian matrix

J Jacobian matrix

ts sampling time

Abbreviations
AMARES Advanced Method for Accurate,Robust and Efficient Spectral fitting

AQSES Accurate Quantitation of Short Echo time domain Signals[138]

AWG(N) Additive White Gaussian (Noise)

BSR Bias to standard deviation ratio

CI Confidence Interval

CR(LV)B Cramér-Rao (Lower Variance) Bounds [45, 152]

DF Degrees of Freedom

DFT Discrete Fourier Transform

ECC Eddy Current Correction

ECD Estimated Common Decay

FFT Fast Fourier Transform [43]

FD Frequency domain

HSVD Hankel Singular Matrix Decomposition
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iid independent and identically distributed

LCModel Linear Combination of Model [145]

LOWESS Locally Weighted regression and smoothing scatter-plots [38]

LS Least Squares

MC Monte Carlo

MLE Maximum Likelihood Estimator

MRS Magnetic Resonance Spectroscopy

MRSI Magnetic Resonance Spectroscopic Imaging

NLLS Non-Linear Least Squares

NMR Nuclear Magnetic Resonance

QUEST Quantitation based on quantum estimation [156]

RMSE Root Mean Square of Error

ROI Region of Interest

SNR Signal-to-Noise Ratio

TD Time Domain

UdES Undamped Estimated Signal

VOI Volume of Interest

VARPRO Variable Projection

Metabolite abbreviations
Cho Choline Lip Lipids

Cr Creatine mI Myo-inositol

Glc D-Glucose MM Macromolecules

Gln Glutamine NAA N-acetylaspartate

Glu Glutamate NAAG N-Acetylaspartateglutamate

Gly Glycine PCr Phosphocreatine

Lac Lactate tCr Total Creatine (Cr+PCr)

Other symbols
�{z} Real part of complex number z

‖z‖ Module of complex number z

ı Square complex root of -1 (ı =
√
−1)

N normalizing factor or normal distribution

�(νmin, νmax) Inverted gate function (�(ν) = 0 if νmin ≤ ν ≤ νmax , and 1 otherwise)

x� y Element-wise product of vectors x and y (Hadamard product).

L2 Total mean energy (the L2 norm)

E[·] Expectation operator

C1 Cost function corresponding to LS residue

C2 Cost function corresponding to spectral compactness (cf. chapter IV)

p̂ Estimated parameters

p̌ True, unknown parameters
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Préambule

Dès l’année 1959, le docteur E. Odeblad, écrivait sur la Résonance Magnétique Nucléaire

(RMN) : “La RMN semble avoir maintes possibilités pour l’étude, de manière non invasive,

de multiple problèmes en biologie et médecine... Avec le développement de l’instrumentation

en RMN dans les laboratoires médicaux, cette technique va être utilisée en routine pour les

diagnostics cliniques.” [124] En 2010, les prévisions de Dr. Odeblad peuvent être considérées

comme réalisées, car la majorité des grands hôpitaux possèdent des scanners RMN. De plus,

grâce aux progrès techniques, à une vaste recherche méthodologique et à l’accroissement des

ressources de calcul, une riche palette d’outils issus de la RMN est devenue accessible.

Parmi les nombreuses méthodes fondées sur la RMN, deux approches sont particulière-

ment intéressantes dans le cadre de cette thèse. La Spectroscopie RMN (SRM) et l’Imagerie

Spectroscopique par RMN (ISRM) fournissent l’estimation des concentrations de différents

métabolites 1 , in vivo, en s’affranchissant des procédures invasives (e.g. la biopsie) ou semi-

invasives (e.g. des injections de marqueurs). L’absence d’effets secondaires connus et la nature

non-invasive des méthodes (I)SRM ont rendu possible l’utilisation de ces techniques RMN

dans des domaines peu explorés auparavant, comme le métabolisme du cerveau et du foie,

ou l’imagerie pédiatrique.

Les pathologies du cerveau sont particulièrement intéressantes pour la communauté scien-

tifique à cause du rôle qu’elles jouent dans les maladies liées au vieillissement des popula-

tions, surtout dans les pays développés. Les techniques de SRM et ISRM constituent des

outils importants dans l’étude des pathologies du cerveau [44] comme : les accidents vascu-

laires cérébraux (AVC), les maladies neurodégénératives (Parkinson, Alzheimer), la sclérose

en plaques [176], les affections neurologiques (l’épilepsie), les maladies mentales, etc. Parmi

les moyens dérivés de (I)SRM on pourrait aussi mentionner des outils de diagnostic et pro-

nostic (ie. études préopératoires [2]), de guidage du geste chirurgical ou biopsique ou bien

du suivi postopératoire ou therapeutique (ie. analyse de l’efficacité du traitement, dépistage

des récidives tumorales, prévention des complications, etc.).

Néanmoins, les études (I)SRM ne se limitent pas au cerveau. La SRM du cœur [80] et de la

musculature striée [20] utilisent principalement des noyaux 31P pour évaluer le métabolisme

énergétique du phosphate, même si des techniques complémentaires existent basées sur des

noyaux 1H, 23Na ou 13C (hyperpolarisé). Des applications pour l’étude du foie [59] ou du

pancréas [128], de même que la détection des néoplasmes (cancer de la prostate [118] et

du sein [76]), sont également basées sur les techniques SRM. La méthode HRMAS (High-

Resolution Magic Angle Spinning), même si impraticable in vivo, représente un outil précieux

pour les analyses ex vivo à cause de sa très haute résolution spectrale.

1. Dans le contexte de ce travail, un métabolite est un composant biochimique qui participe, ou est le

produit d’un ou plusieurs chemins métaboliques. Généralement ce terme est réservé aux composants de

petites tailles.

1



2 PRÉAMBULE

Cependant, la RMN en général et les techniques I(SRM) en particulier, comportent de

nombreux défis, surtout par leur besoin d’un savoir-faire interdisciplinaire. Le processus

d’acquisition des signaux RMN n’est pas simple, et son développement nécessite l’interaction

de spécialistes de nombreux domaines, comme l’électronique, l’ingénierie, les mathématiques,

la physique quantique, etc. Une fois le signal acquis, quelques paramètres seulement (ie. les

concentrations des métabolites) sont estimés, grâce à des méthodes non-triviales d’estimation

paramétriques et/ou de traitement de signal. Pour les médecins, ce système complexe est

automatisé et devient une bôıte noire, devant mesurer et retourner un résultat avec un

minimum de paramètres à configurer.

Avec les améliorations spectaculaires des performances des matériels et grâce à l’accessi-

bilité aux ressources de calcul bon marché, le perfectionnement des techniques de traitement

de signal associées à la RMN devient essentiel. A l’heure actuelle, les méthodes de quan-

tification ne permettent pas la récupération intégrale de l’information suite à l’acquisition

du signal. De plus, la mauvaise compréhension par les utilisateurs (les médecins), des li-

mites liées aux algorithmes de quantification génère souvent des interprétations erronées des

résultats ou peut engendrer le choix de protocoles de quantification sous-optimaux.

Objectifs et plan de la thèse

Cette thèse a pour objectif la mise en évidence de certains problèmes liés au traitement

de signal et à l’estimation paramétrique à l’intérieur de cette bôıte noire et de proposer des

nouvelles méthodes et stratégies pour surmonter ses limitations. Une approche pédagogique

est employée pour assurer un meilleur transfert de connaissances entre les spécialistes du

traitement de signal et les utilisateurs des méthodes de quantification. La problématique

de la quantification en RMN est construite depuis les bases physiques du phénomène et

jusqu’à une estimation plus générale du modèle, avec un ajout de diverses informations

complémentaires, nécessaires à la compréhension clinique, mathématique et numérique des

méthodes de quantification SRM. Certaines questions, actuellement peu développées, comme

l’estimation de la qualité de quantification, sont également traitées et le savoir-faire sur le

sujet est passé en revue.

Cette thèse est structurée en deux grandes parties. La première partie, composée des

chapitres I et II, passe en revue les techniques et approches existantes en RMN. Par ailleurs,

la deuxième partie (troisième et quatrième chapitres), présente des approches nouvelles ayant

pour but d’améliorer l’estimation des paramètres SRM.

Première partie

Dans le premier chapitre, nous présentons les bases physiques et méthodologiques de la

spectroscopie et de l’imagerie spectroscopique par résonance magnétique. Nous décrivons

d’abord le phénomène physique de la Résonance Magnétique Nucléaire, en insistant sur

l’influence d’un champ magnétique hétérogène sur le signal acquis. Ensuite, la méthodologie

d’acquisition est brièvement explorée, aussi bien pour la spectroscopie que pour l’imagerie

spectroscopique. Finalement, les composants chimiques (métabolites) les plus utilisés dans

l’étude par RM du cerveau sont décrits.

Le deuxième chapitre se concentre sur les problématiques liées au traitement de signal

et à l’estimation paramétrique en SRM. Dans une première approche, à partir des relations
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introduites dans le chapitre précèdent, un modèle du signal SRM est proposé. La forme de

raie est introduite naturellement, à partir de l’influence du champ magnétique statique in-

homogène. Cela permet aussi de poser le problème inverse de la SRM : comment à partir du

signal acquis, sujet à de multiples facteurs, peut-on isoler et quantifier l’effet de la concen-

tration de chaque métabolite ? Le reste du chapitre est consacré aux moyens mis en œuvre

pour la résolution de ce problème inverse.

Le premier moyen analysé est l’emploi des transformations mathématiques pour décom-

poser le signal en une somme de signaux plus simples. La Transformée de Fourier est briève-

ment expliquée, ainsi que d’autres alternatives comme la décomposition en valeurs singulières

(SVD) ou la Transformée de Padé.

Ensuite, nous traitons des techniques plus complexes, fondées sur l’inclusion de l’infor-

mation a priori via un modèle physique. Les méthodes les plus pertinentes pour cette thèse

sont décrites plus en détails, dans un format commun, facilitant la comparaison, tandis que

le reste de l’état de l’art est présenté d’une manière plus brève.

L’avant-dernière section du chapitre II est consacrée à la prise en compte de la forme de

raie des spectres RMN. Quelques techniques utilisées à ce jour sont répertoriées.

Enfin, la dernière section du chapitre touche une problématique d’un fort intérêt clinique,

mais qui, à notre avis, à été insuffisamment traitée dans le monde RMN : l’estimation de la

qualité des valeurs quantifiées. La théorie de Bayes liant incertitudes et erreurs est discutée,

ainsi qu’une palette d’outils permettant de construire un intervalle de confiance pour les

valeurs estimées, mais aussi des approches proposées dans le monde RMN pour rejeter des

valeurs estimées aberrantes.

Deuxième partie

Le chapitre III est dédié aux études sur l’influence et l’estimation d’une forme de raie

quelconque, commune à tous les métabolites, issue principalement des effets d’inhomogénéité

du champ magnétique B0.

Tout d’abord une étude a été menée pour comparer plusieurs approches de prise en compte

d’une forme de raie non Lorentzienne. Des simulations Monte Carlo, ainsi qu’une démarche

plus théorique, via les Bornes de Cramér-Rao, ont démontré que la meilleure approche est

d’adapter la connaissance a priori (base des métabolites) au signal, et non l’inverse.

Ensuite, nous proposons une nouvelle technique pour estimer une forme de raie commune

à tous les métabolites, sans utiliser une raie de référence. Cela est fait à partir d’un modèle du

signal non-amorti, qui permet d’estimer une version bruitée de la fonction d’amortissement

(forme de raie) commune (estimated common damping - ECD function). Ensuite, l’ECD est

filtré, et la nouvelle information est utilisée pour adapter l’amortissement des signaux de la

base des métabolites. Plusieurs études Monte Carlo sont menées pour valider et analyser la

solution proposée. La même démarche est aussi utilisée sur des signaux réels de fantômes,

issus d’une étude sur la sclérose en plaques.

Dans le quatrième chapitre, une nouvelle approche de quantification est proposée, fondée

sur des principes développés dans le chapitre précèdent. Ainsi, au lieu d’estimer la ECD

et ensuite l’utiliser pour améliorer la base des métabolites, on l’utilise comme une fonction

coût pour estimer directement les paramètres d’intérêt (les concentrations). Alors que cette

approche novatrice n’est pas encore assez développée pour être appliquée in vivo, nous en

démontrons sa preuve de concept, avec un fort potentiel de développement ultérieur.
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Introduction

As early as 1959, Dr. E. Odeblad, a physician, wrote about nuclear magnetic resonance

(NMR): “NMR really seems to possess extensive possibilities to help study, in a non-invasive

way, many problems in biology and medicine ... When instruments for NMR become more

common and available at medical laboratories, we may expect direct routine clinical diagnosis

with this new technique” [124]. In 2010, Odeblad’s prediction can undoubtedly be consid-

ered accomplished, with NMR machines installed in most major hospital centres. Moreover,

advancements in hardware, as well as significant research in methodology and the increased

computation resources available, have rendered accessible a large NMR-related tool-set, in-

cluding whole-body MR Imaging (MRI), Diffusion MRI (DTI), MR angiography, functional

MRI (fMRI) , MR Spectroscopy (MRS), MR spectroscopic imaging (MRSI), etc.

Among the large palette of methods engendered by NMR, two methods are of special

interest to this thesis. NMR Spectroscopy, and the related NMR Spectroscopic Imaging allow

estimation of different metabolite 3 concentrations, in vivo, without the use of invasive (ie. :

biopsy) or semi-invasive (ie. injected markers) procedures. The lack of significant known

side-effects, together with the non-invasive nature of MRS(I), have allowed the use of these

NMR techniques in previously under-explored fields, such as brain and liver metabolomics

or pædiatric imagery.

Brain pathologies are of special interest to the research community mainly due to the

importance they play in health problems associated with ageing populations, especially in

developed countries. MRS and MRSI have brought critical tools in the study of brain

pathologies[44], including: cerebrovascular accidents (strokes), neurodegenerative diseases

(Parkinson’s, Alzheimer’s, etc.), multiple sclerosis[176], neurological disorders (ie. epilepsy),

psychiatric disorders, etc. Clinical tools derived from MRS(I) also include exploratory and

assessment studies (ie. pre-surgery) [2], interventional guidance (ie. for biopsy or surgery) or

follow-up studies (ie. non-invasive graft monitoring [12]).

MRS(I) studies have not been limited to the brain. MR spectroscopy of the heart[80] and

skeletal muscles [20] focuses mainly on 31P nuclei to determine the high-energy phosphate

metabolism, although some applications have been also developed for 1H, 23Na or (hyper-

polarized) 13C nuclei. Hepatic [59] and pancreatic [128] applications, as well as neoplasia

detection (ie. prostate [118] and breast cancer [76]) also strongly benefit from MRS. Worth

mentioning here is also High-resolution Magic Angle Spinning (HRMAS) spectroscopy, that

although, not practicable in vivo, proves to be an invaluable tool in ex vivo analysis.

However, NMR, in general, and MRS(I) in particular still pose great challenges, mainly

due to requiring a wide interdisciplinary know-how. The NMR acquisition process is not

simple, and its development requires interaction between specialists in many fields, such as

3. In the context of this work, a metabolite is defined as a biochemical compound that participates, or is

the product of one or more metabolic pathways. Generally the term is restricted to molecules of small size.

5
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electronics, electrical engineering, mathematics, quantum Physics, etc. Once a signal is ac-

quired, only some parameters of interest (such as metabolite concentrations) are extracted

through non-trivial parameter estimation and/or signal processing. All this system is com-

monly used by medical practitioners, mainly as a “one-button black-box”, that is expected

to measure and give a result, with as few parameters to configure as possible.

With hardware performances dramatically improving lately, and with computing re-

sources available at very low cost, improvement of the signal processing associated with NMR

measurement becomes very important. High fields and low signal-to-noise ratios have made

apparent that current quantitation 4 do not allow full recovery of the information available

after signal acquisition. Moreover, misunderstanding of quantitation algorithm limitations

often leads to incorrect interpretation of the results by users (ie. clinical practitioners) or to

the choice of a quantitation protocol that is sub-optimal.

Goal and outline of the thesis

This thesis attempts to review some problems linked to the signal processing inside the

“one-button black box”, and propose new methods and strategies to overcome its limita-

tions. A pedagogical approach is preferred so as to contribute to better know-how “perfu-

sion” between signal processing specialists and quantitation “users”. The NMR quantitation

paradigm is built from the physical background to a more general estimation model, and

various adjacent information critical to the understanding of MRS quantitation clinically,

mathematically or numerically, are provided. Some of the issues that are currently under-

developed, such as estimation of the quantitation quality, are also discussed, and current

know-how on the subject is reviewed.

This manuscript is structured in four chapters, the first two of which review current tech-

niques and procedures, while the latter two propose novel strategies to deal with lineshape

accommodation.

Chapter I introduces the main principles of different NMR techniques pertinent to this

study. Physical mechanisms are briefly described, allowing establishment of the main equa-

tions of importance to this thesis. A minimal metabolomical background familiarizes the

reader with the main functions and current knowledge on commonly 1H-MRS-studied brain

metabolites.

Chapter II reviews signal processing concepts associated with MRS and MRSI. Spectral

analysis concepts are briefly described, including a short review of current methods to ac-

commodate lineshape distortions. Numerical methods that are currently significant for MRS

quantitation are described, with a stress on algorithms taking into consideration significant

a priori information. Finally, a section is dedicated to methods of assessing the quality of

the results obtained from MRS and MRSI studies.

Chapter III focuses on the influence of lineshape distortions in MRS quantitation, es-

pecially when no reference peak is available. Different lineshape accommodation strategies

4. In this context quantitation refers to the process of estimating physical variables (quantities) from a

NMR-generated signal.
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are compared via Monte Carlo studies as well as via Cramér-Rao Lower Bounds analytical

considerations. A novel approach to deal with lineshape distortion is proposed, based on

the assumption that all peaks share the same lineshape. The ensuing algorithm is further

studied, both analytically and using Monte Carlo approaches, and a local filtering technique

is proposed to improve the estimated common decay (ECD) signal. Finally, quantitation

results are shown for both MC studies and an in vivo dataset.

Chapter IV proposes a new approach to MRS quantitation, based on the assumption of a

common decay function of limited effective spectral support. Unlike traditional approaches,

this method does not attempt to estimate a common lineshape, but estimates directly the

metabolite parameters by minimizing the spectral support of the assumed common lineshape.

Extensive description of the method is given, as well of its numerical implementation using

analytically-derived Jacobian matrices. A validation study of the novel method is described,

where its performances are compared to those of methods currently used, as well as to those

proposed in the previous chapter. In the end of the chapter, several prospective improvements

are discussed, including a time domain implementation.

The work described in chapters III and IV has been done in close collaboration with

TU Delft, NL, in the general framework of the FAST 5 Marie Curie Research and Training

Network (RTN). For complementary work, also see the works of Osorio Garcia et al. [126,

127], at KU Leuven, Belgium, also part of the FAST network.

5. FAST, Advanced Signal-Processing for Ultra-Fast Magnetic Resonance Spectroscopic Imaging, and

Training, (MRTN-CT-2006-035801) is a Research and Training Network (RTN) granted by Marie Curie

Actions in the 6th Framework Program (2007-2010). URL: http://www.fast-mariecurie-rtn-project.

eu/



8 INTRODUCTION



Chapter I

In vivo MRS and MRSI

This chapter provides the necessary basis to understand the forming and acquisition

of Nuclear Magnetic Resonance (NMR) signals. The first section summarily introduces

the physics involved in NMR phenomena. The second section describes the basis of NMR

Spectroscopy (MRS), while the third section briefly describes NMR Spectroscopic Imaging

(MRSI) concepts. The main metabolites used in a brain MRS are mentioned in the last

section.

I.1 Nuclear Magnetic Resonance Basic Concepts

Nuclear Magnetic Resonance (NMR) is based on the quantum-physical property of ele-

mentary particles called ’spin’. This concept (though not the name) has been first introduced

by Wolfgang Pauli in 1924, and its relationship with relativistic quantum physics has been

further developed by Paul Dirac in 1928. In quantum mechanics, the spin angular momen-

tum of a system is quantized, meaning that it can only take some discrete values, given

by:

|�S| = �

√
s(s+ 1) (I.1)

where � is the reduced Plank constant, and s is the non-negative spin quantum number. The

value of s depends only on the type of the particle, and can only take integer or half-integer

values (0, 1/2, 1, 3/2, etc.). The total spin of particle system (also called net spin) is given

by the sum of spins of all its elementary components. Nuclear Magnetic Resonance uses

the spin properties associated with nuclei. The nuclear net spin depends on the number of

protons and neutrons:

– If the number of neutrons and the number of protons are both even, the nuclear net

spin is null.

– If the number of neutrons plus the number of protons is odd, the nucleus possesses

half-integer spin (ie. 1
2
, 3

2
).

– If the number of neutrons and the number of protons are both odd, the nucleus pos-

sesses integer spin (ie. 1, 2, 3)

If the spin is projected on a privileged axis, denoted z from now on, quantum physics

allows the magnitude of the projection to take only 2s+ 1 discrete values given by :

Sz = m� , with m = −s . . . s (I.2)

9
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Particles with a spin can possess a magnetic dipole moment just as any electrically-

charged body in classical electrodynamics. If a particle has a charge q, a mass M and a spin

S, then the magnitude of its intrinsic magnetic moment μ is given by:

μ = g
q

2M
S (I.3)

where g is a dimensionless quantity called g-factor.

The projection on the z axis of the magnetic dipole moment is given by

μz = mg
q�

2M
= mγ� , with m = −s . . . s (I.4)

The constant γ = q/2M is called the gyro-magnetic ratio and is specific to each nucleus

type. For the proton 1H+ its value is [123]:

γp = 2.675222099× 108 s−1T−1

-γp ≡
γp
2π

= 42.5774821 MHz T−1 (I.5)

In the absence of an exterior magnetic field, no privileged direction exists 1 and so, the

individual spins have random orientations, summing up to a null overall magnetization.

However, when an exterior magnetic field �B0 is applied, oriented on the �z axis, then the

individual spins align with �B0. In the case of atoms having a nuclear net spin equal to 1
2
,

such as 1H, 13C or 19F, the magnetic quantum number m can only take the values −1
2
and

+1
2
. The energy corresponding to each possible state m is calculated as the scalar product

of the magnetization and the magnetic field

Em = −μzB0 = −γm�B0 (I.6)

The difference in energy between levels (also called transition energy) in the case of 1
2
nuclear

net spin nuclei is then

	E = E− 1
2
− E 1

2
= γ�B0 (I.7)

This generates a difference in the equilibrium populations between the two states, slightly

overpopulating the lower energy level corresponding to m = +1
2
. The populations that

occupy the two possible states can be calculated, according to the Boltzmann statistics, as

N−

N+
= exp(−	E

kBT
) (I.8)

where kB = 1.3805 × 10−23 JK−1 is Boltzmann’s constant, T is the temperature and

N+ and N− are the respective populations corresponding to m = +1
2
and m = −1

2
. At

room temperature (T ≈ 300K), the relative difference in population when a magnetic field

B0 = 1 T is applied is of the order of

N− −N+

N− +N+
=

1− exp(−γ�B0/kBT )

1 + exp(−γ�B0/kBT )
≈ 3.4× 10−6 (I.9)

1. Consistent orientation of the spins may exist even without the existence of an external magnetic field

(cf. ferromagnetism). However this is not discussed in this context, as it has little relevance to MRS.
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Figure I.1: Energy level differentiation of 1H nuclear spins under the influence of an exter-

nal field B0. When the magnetic field is degenerate (a) all spins share the same energy level

and the sum of magnetizations is null, since individual pairs cancel themselves out (greyed

out). When B0 �= 0 (b) more spins occupy the low energy parallel state (m = +1
2
) than the

high energy anti-parallel state (m = −1
2
). In this case the overall resulting sum of magnetic

moments is not zero any more, making apparent a macroscopic magnetization given by the

sum of the surplus +1
2
spins (not greyed out).

If a radio frequency oscillating magnetic field (RF pulse) B1 is applied to the system,

in such a way that the energy of the electromagnetic wave is hν = 	E = hγB0

2π
, the sys-

tem becomes resonant and may absorb the radiation. The corresponding frequency of the

radiation, referred to as Larmor’s frequency, is thus given by

ν0 =
γB0

2π
≡ -γB0 (I.10)

From a quantum physical point of view, a part of the population on the lower energy level

m = +1
2
is moved on the higher energetic level m = −1

2
, leading to an unstable popula-

tion distribution. If the excitation is stopped, the system will return to the corresponding

equilibrium Boltzmann distribution, by spin-lattice relaxation mechanisms.

Although the explanation of the NMR phenomena is only possible by means of quan-

tum physics, a more classical approach permits a simpler explanation, better suited for the

purpose of this work. While not all relaxation phenomena can be explained through the

classical physical approach, it provides nevertheless sufficient background to treat paradigms

pertinent to this work.

Thus, the nuclei can be seen as macro-particles, obeying to the laws of Newtonian physics.

In the presence of a magnetic field, the particles would spin themselves around the direction

�z of the magnetic field �B0. The angular speed of rotation is given by Larmor’s equation:

ω0 = 2πf0 = γB0 (I.11)

If a rotating electro-magnetic field B1 is applied to the system and if the angular frequency

of the rotation is equal to the Larmor frequency, then the movement of one spin can be

written very simply in the frame of reference rotating with ω0 around the �z axis. This frame
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of reference will be referred to as R′(0, �x′, �y′, �z), so as to differentiate it from the fixed lab

frame of reference R(0, �x, �y, �z). If the instant �B1 field is created so as to be perpendicular to
�B0 (and thus also to �z), then the spin will be subject to a torque �μ ∧ �B that will rotate it

around the instant �B1 direction. The final angle of the spin in the rotating reference R′ is
given by

θ = 2πγτB1 (I.12)

where τ is the time lapse during which �B1 has been applied.

Seen from the laboratory frame of reference R, the particle is engaged in a movement of

precession around the static magnetic field �B0.

I.1.1 Macroscopic evolution of the magnetization

Given the number of spins in any physical sample, it becomes apparent that a description

of the magnetization for each spin is of limited interest. What is far more appealing is the

evolution of the overall magnetization (given by the sum of all individual spins). This process,

as seen in the lab frame of reference R is given by the Bloch [23] equation :(
d

→
M (t)

dt

)
R

= −γ
→
B (t) ∧

→
M (t)−

(
Mz(t)−M0

T1

)
�z −
(
Mx(t)�x+My(t)�y

T �
2

)
(I.13)

where M0 is the macroscopic magnetization at equilibrium and
→
M= Mx�x +My�y +Mz�z

the decomposition of the macroscopic magnetization in the lab frame of reference R. T1 and

T �
2 represent two time constants that are characteristic for the transient process of return

to equilibrium. In NMR experiments it is usual to decompose �B = �B0 + �B1, where �B0 is a

static magnetic field and B1(t) is time varying (cf. §I.1.1.1).
The macroscopic magnetization can be detected through the current it induces in a re-

ceiver coil. Since the longitudinal magnetization is too weak to be detected, being superposed

to the much higher static field B0, the main focus of NMR acquisition is the retrieval of the

transversal magnetization evolution �Mxy(t). This is usually done using a receiver coil that

is in a plane perpendicular to �B0. The currents induced in this coil are thus proportional to

the transversal magnetization projected on the coil support axis.

The detected signal in the receiving coil, proportional to the electromagnetic force induced

in the receiving coil, is given [75, §7.2] by Eq.I.14:

sx(t) ∝
d

dt

∫
sample

→
M (�r, t) · �Breceived3r (I.14)

where �Breceive is the magnetic field per unit current that would be generated by coil at �r.

Eq.I.14 shows that the acquired signal depends on both the sample magnetizations and on

the characteristics of the receiving antenna. Furthermore, if the transversal magnetization

is assumed to have an exponentially decaying sinusoidal dependency (cf. I.16), the signal is

shown to be also proportional to the Larmor frequency [75, §7.3].
In order to help the subsequent data analysis, a complex signal s is constructed from sx

and sy as follows:

s(t) = sx(t) + ısy(t), where ı =
√
−1 (I.15)
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I.1.1.1 One pulse sequence

The solutions of the Bloch equations depend of course on the time sequence formed by the

values of �B1(t), also called the B1 pulse. To get a better understanding of the mechanisms

involved, it is common to study the evolution of �M in a simple case: the one pulse sequence.
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Figure I.2: Evolution of the macro magnetization during a ’one pulse’ MRS sequence.

During the excitation phase (a) the electromagnetic pulse B1 is applied. In the relaxation

phase (b) the spins go back to the equilibrium state. The ensuing varying magnetic field

produces electric currents in the receiver coil, that can be measured via the voltage they

induce (c).

1. Equilibrium - All spins are in a statistical equilibrium, defined by Boltzmann statis-

tics. The overall magnetization has the value M0 and is parallel to �B0 : �M(0) = M0
�B0

B0

2. B1 pulse - Precession movement. Longitudinal �Mz component decreases and transver-

sal �Mxy component increases. The movement is governed by Eq.I.12.

3. Relaxation - The electromagnetic pulse B1 is not applied any more. The system

returns (slowly) to the equilibrium state. The solutions to the Bloch equations (and

thus the acquired signal s) are complex decaying exponentials:

s(t) = c exp

(−t

T2

)
exp(ı2πf0t) exp(ıϕ) (I.16)

In equation I.16, c is a constant of proportionality that takes into account mainly the

gain of the acquisition chain and the local density of spins and ϕ is a dephasing due

to the arbitrary choice of the R reference frame. T2 is called the transversal relaxation

time constant, and depends on the interaction between the spin and its environment.

The signal s(t) is usually referred to as Free Induction Decay (FID). By extension, this

name is also used to describe the right (decaying) part of an echo, in the case when

the RF pulse sequence used is more complicated than the ’one pulse’.

The longitudinal macroscopic magnetization Mz cannot be usually directly measured

due to its very small variation compared to the collinear B0 field. Its evolution is

also governed by an exponential increase with a time constant T1 called longitudinal

relaxation time. The law of longitudinal magnetization regrowth is

Mz(t) = M0

[
1− exp

(−t

T1

)]
(I.17)

with M0 the longitudinal magnetization at equilibrium.
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I.1.2 Transversal relaxation in an inhomogeneous B0 field

Until now it has been assumed that the applied B0 field is perfectly homogeneous and

constant in time. In reality it is not possible technologically to generate such a magnetic

field. In the following studies it is assumed here that B0 variations in time are negligible

when compared to the spatial inhomogeneity, and thus only the latter is taken into consider-

ation. The most significant reasons that spatial static (B0) inhomogeneities occur relate to

(a) the design and manufacturing of the coils, (b) the ferro-magnetic materials in the imme-

diate environment of the scanner installations (ie.metallic doors, wiring) and (c) magnetic

susceptibility variation in in vivo and in vitro samples. While (a) and (b) are experiment

independent, and are usually minimized during manufacturing and installation, (c) has to

be optimized at each experiment.

The procedure of optimizing static field homogeneity is referred to as “shimming”, and

is usually achieved using additional coils, called shim coils. Prior to the acquisition proper,

algorithms such as FASTMAP [70, 71] or PACMAP [202] are used to adjust the currents

in the shim coils so as to optimize B0 homogeneity. However, due to the limited number

of shim coils, residual static inhomogeneity persists, especially in the high frequency spatial

domain.

According to Eq. I.11, a spin at the position (x, y, z) will rotate at the frequency

f0(x, y, z) = γ
2π
B0(x, y, z). Assuming an ideal RF pulse 2, at the beginning of the relax-

ation time all spins are in phase. The overall evolution of s is given by an integral over all

the spins in the excited Volume Of Interest (VOI) :

s(t) =

∫∫∫
V OI

s(x, y, z, t) dxdydz

=

∫∫∫
V OI

[
c exp

(−t

T2

)
exp(ı2πf0t) exp(ıϕ)

]
dxdydz (I.18)

= c exp

(−t

T2

)
exp(ıϕ)

∫∫∫
V OI

exp(ı2πf0(x, y, z)t) dxdydz

= c exp

(−t

T2

)
exp(ı2πf0t) exp(ıϕ)

∫∫∫
V OI

exp[ı2π 	f0(x, y, z) t] dxdydz

= c exp

(−t

T2

)
exp(ı2πf0t) exp(ıϕ)︸ ︷︷ ︸

a.

∫∫∫
V OI

exp[ıγ	B0(x, y, z) t] dxdydz︸ ︷︷ ︸
b.

As it can be seen in Eq. I.18, the effect of B0 inhomogeneity is apparent in the form of

an extra damping function (b.), depending on the distribution of the B0, that multiplies the

ideal FID (a.), see Eq.I.16. The decaying nature of the (b.) term, although computable in

the case of a known 	B0 distribution, can be more easily described using the instant phase

ϕ =
∫ t
0
γ	B0dt spatial distribution. For small t the instant phase distribution is a scaled

(in width) version of the 	B0 distribution. For bigger t, while the unwrapped instant phase

remains a scaled B0 distribution, due to the periodic nature of the phase, it tends towards

an uniform distribution. This, in turn causes the average instant phase to tend towards zero,

that is the expected value of the phase when it is uniformly distributed between 0 and 2π.

2. The same reasons that cause static inhomogeneity may also cause RF (B1) inhomogeneity. Further-

more, undesired B1 spatial variability is increased because of the generally small size of the emitter coil

(leading to localized non-uniform radiation pattern), as well as by the increasing wave-like behaviour of the

RF pulse at high fields Fischi Gómez [60].
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Because of the decaying nature of term (b.), it is commonly replaced by a decaying

exponential 3 exp(−t · T−1
inhomo), where Tinhomo describes the inhomogeneity of the static field.

In this case, the Eq.I.18 can be rewritten as

s(t) = c exp

(−t

T ∗
2

)
exp(ı2πf0t) exp(ıϕ)

with
1

T ∗
2

=
1

T2

+
1

Tinhomo

(I.19)

I.1.3 Gradient coils and pulse sequences

The influence of the local variations of the B0 magnetic field can be also be used in order

to obtain more information about the sample that is being analysed by NMR. In this case a

second field, collinear with the original is applied via additional coils, called gradient coils.

The additional magnetic field produced by the gradient coils shall be referred as �G. Its norm

G is generally of the form G(t, x, y, z), having both a spatial and a temporal variation.

Generally, the spatial variation of the gradient field is given by the superposition of three

linearly varying gradient fields:

�G(x, y, z) = [Gx(x) +Gy(y) +Gz(z)] �z (I.20)

Gx(x) = xGx0 + gx

Gx(x) = yGy0 + gy

Gx(x) = zGz0 + gz

(I.21)

The temporal variation of the gradient field is controlled by the acquisition chain. Together

with the variation of the electromagnetic pulse B1 it forms the backbone of the program called

’pulse sequence’ that drives the acquisition (cf. §I.2.3 for examples). The effective means of

controlling the gradient coils depend on the hardware, but are generally implemented as the

reading of a“pulse program”, that itself can be created directly by the user, or compiled from

another higher-level programming language. To this day, pulse programs (pulse sequence im-

plementations) remain very machine-related, making pulse programs effectively non-portable

from one manufacturer to another, and sometimes even between machines coming from the

same manufacturer.

I.2 Magnetic Resonance Spectroscopy

Magnetic Resonance Spectroscopy (MRS)100. + is a technique allowing the non-invasive

characterization of a sample by means of spectral NMR signatures of its chemical compo-

nents. It is widely used in chemistry and bio-chemistry for the characterization of unknown

compounds or for information on their three-dimensional structure. Due to its non-invasive

nature, it has also recently been used in medical and pharmaceutical applications. Follow-

ing is a brief explanation of the basic concepts of MRS, some considerations on the pulse

sequences specific to MRS, as well as a non-exhaustive list of metabolites that are currently

investigated in brain MRS studies.

3. For a study on the validity of assuming that the inhomogeneity contribution adds exponential decay,

see [73].
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I.2.1 Principles

Individual nuclei lie, in solid and liquid matter, in close proximity to each other. Due

to the complex structure of molecules, different nuclei in a molecule can be subjected to

a level of magnetic shielding due to other magnetic momenta in close proximity. As the

influence of neighbours diminishes drastically with distance (proportionally to the square

of the distance), only the closest neighbours present a coherent quantifiable influence. This

allows the detection of chemical groups and is a major method of compound structure analysis

in chemistry.

In liquids, the two main effects that influence the magnetic resonance frequency of nuclear

spins are (a) the nuclear shielding due to the electron orbitals and (b) the spin-spin inter-

actions between nuclei in close proximity. In the following subsections the two mechanisms

are briefly discussed.

I.2.1.1 Chemical shift

Due to the presence of electron orbitals around the nuclei, the magnetic field seen by the

nuclear spins is not equal to the external field B0, but needs to be corrected by the magnetic

field produced by the orbiting electrons (see Fig.I.3a):

B = B0 (1− σ) (I.22)

where σ is called the shielding (or screening) constant and it is specific to each atom in a

molecule. In order to understand how this works, consider the simplest case of 1H atom,

consisting of the proton 1H+ and the enveloping s orbital. Under an external magnetic field,

the electron adopts, according to Lentz’s law, a trajectory so that it creates an opposing field

to B0, so that the field “seen” by the nucleus is diminished. It is said in this case that the

s electron orbital shields the nucleus, creating a diamagnetic shift. For more complicated

orbitals, the concept is the same, but due to the non-symmetrical orbital clouds, the induced

shielding is more complex, and can be paramagnetic as well as diamagnetic. Furthermore,

due to electron exchanges and orbital deforming as the result of other atoms, the induced

electron magnetic field may depend on many local chemical conditions, such as temperature,

pH, etc.

In order to describe nuclear shielding, the term“chemical shift” is used, because the nuclei

are seen as if their Larmor resonance frequency is shifted relative to the reference frequency

corresponding to the static field B0:

f = -γB0︸︷︷︸
f0

− σ -γB0︸ ︷︷ ︸
�f

(I.23)

Expressing the chemical shift in Hz would require the magnetic field to be known. In order

to bypass this, a derived quantity called frequency deviation 4 (δ) is computed as a ratio

between 	f and f0. The frequency deviation depends solely on the atom’s specific shielding

constant and, since 	f is of the order of Hz while f0 is in the Mhz range, it is usually

expressed in parts-per-million (ppm), using a reference resonance frequency fref . In
1H and

4. Please note that it is common to use, by extension, “frequency shift” or “chemical shift” instead of

“frequency deviation”. For clarity, the measuring unit should be checked: ppm indicate frequency deviations,

while Hz indicate frequency shifts.
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13C MRS, tetramethylsilane (TMS) and 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) are

the most commonly used references.

The relationship between shielding constants (σ), resonance frequencies (f , in MHz),

chemical shifts (	f , in Hz) and frequency deviation (δ, in ppm) can be summarized by:

δ =
f − fref
fref

=
	f

fref
=

σ − σref

σref

(I.24)

Figure I.3: Main mechanisms responsible for frequency shifts in MRS. (a) Nuclear shielding

modifies the field experienced by the nucleus due to the extra field Be generated by mobile

electrons. The simpler case of an s orbital is presented here, where due to orbital symmetry

the extra field is subtracted from B0. (b) Illustration of first order J-coupling generated

splitting of spectral peaks from nearby nuclei. The presence of two Hx nuclei, with 4 possible

overall states (two of which are equivalent), causes the HA peak to split into a triplet with

relative intensities (1:2:1). Partially adapted from [90].

I.2.1.2 Spin-spin coupling

The second major mechanism that causes spectral lines to shift is the effect of neighbour-

ing nuclear groups. This influence is present in two forms: the dipolar coupling, representing

interaction through space, and the scalar coupling, representing interaction through the

electrons in chemical bonds. Even though dipolar interactions are the main mechanisms

for relaxation in liquids, there is no net interaction between nuclei since rapid molecular

tumbling averages the dipolar interactions to zero[50, §1.10]. However, interactions through
electrons in chemical bonds do not average to zero and give rise to the phenomenon of scalar

coupling, also termed “Spin-spin splitting” or “J coupling”.

A comprehensive explanation of J-coupling is only possible through quantum physics,

and goes beyond the scope of this work. In order to compute the signal given by spin-

spin splitting, the different quantum states must be described, and the results weighted by

the probability of each state. Assume a nucleus k, with Nk vicinal nuclear spins, assume

the probability of a state n among the Nk + 1 possible ones is given by Pk(n), with the
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corresponding J coupling constant Jn,k. The expected signal is given by (see Eq.I.16):

sk(t) =

Nk∑
n=0

[
exp

(
− t

T2

)
exp[ı2π(f0 + Jk,n)t] exp(ıϕ) Pk(n)

]

= exp

(
− t

T2

)
exp(ı2πf0t) exp(ıϕ)

Nk∑
n=0

[exp(ı2πJk,nt)Pk(n)]︸ ︷︷ ︸
J coupling effect

= exp

(
− t

T2

)
exp(ı2πf0t) exp(ıϕ) Υk(t) (I.25)

where Υk is the function composed on frequency-shifted complex sinusoids, describing the

peak-splitting due to J-coupling.

Generally, nuclear groups consisting N nuclei cause splitting of neighbouring group peaks

into N+1 components (cf. Fig.I.3b), distributed in area according to the Pascal triangle (ie. a

group of 3 protons would case splitting into a quartet with relative intensities 1 : 3 : 3 : 1).

This splitting pattern assumes that J coupling constants are small in comparison to chemical

shift (spectra that obey this rule are termed “first-order”). In cases when group frequency

shift and J-coupling effects are comparable, second-order coupling must also be taken into

consideration, yielding more complex patterns. Furthermore, other factors, such as molecule

geometry, can also increase splitting pattern complexity.

An important thing to notice here is the measuring unit used for J-coupling description.

Since the energy level alterations produced by the neighbouring nuclear spins do not de-

pend on the external B0 static field, J-coupling constants are usually expressed in Hz (they

normally range up to 20Hz).

I.2.1.3 From nuclear environment to molecular MRS signatures

As seen in the previous two subsections, nuclear spin response to RF stimulation is

affected by nuclear shielding (chemical shift) as well as by nearby groups of nuclei. The

combined effects, in conjunction with theoretical data coming from molecular-level chemistry

(ie. predicted molecule geometry, electro-negativity, etc.) allows in-depth analysis of chemical

and biochemical compounds through NMR. Furthermore as in other spectrometry domains,

it allows identification of present chemical compounds, while also providing quantitative

information. This latter application is mostly used in clinical MRS 5.

In order to understand how the MRS signature of a molecule is used as a priori infor-

mation, consider a nuclear spin k, described by the shielding constant σk and by the vicinity

of Nk nuclear groups. According to §I.2.1.1-I.2.1.2, the ideal expected MRS signal generated

by the nucleus k is

sk(t) = exp

(
− t

T2,k

)
exp[ı2πf0(1− σk)t] exp(ıϕ) Υk(t)

= exp

(
− t

T2,k

)
exp(ı2πf0t) exp(ıϕ) exp(−2πf0σkt)Υk(t) (I.26)

5. The term “MRS” is usually used to describe in vivo spectroscopy, while “NMR Spectroscopy” is

generally used to describe applications in analytical chemistry, such as protein structure reconstruction. In

this thesis, MRS is the centre of focus.
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The total MRS signal bm given by a molecule m in ideal conditions is the sum of all the

nuclear contributions k = 1 . . . Km.

bm(t) =
Km∑
k=1

sm,k(t)

= exp(ı2πf0t)
Km∑
1

[
exp

(
− t

T2,k

)
exp(ıϕ) exp(−2πf0σkt) Υk(t)

]
(I.27)

This signal, described by Eq.I.27, is specific to each molecule. The collection of these

molecule-specific signals is called a ’metabolite basis set’ and it contains the basic information

needed to interpret Magnetic Resonance Spectroscopy (MRS) signals. Furthermore, the

signal basis-set can be measured or simulated.

Given a volume VV OI , the total numbers of molecules for each metabolite m = 1 . . .M

can be computed as VV OI × cm, where cm is the concentration of metabolite m. Then, the

overall acquired signal can be modelled as:

s(t) ∝ VV OI

M∑
m=1

[cmbm(t)] (I.28)

Assuming the basis-set signals {bm(t)}m=1...M are perfectly known, information about

the concentration of different metabolites can be extracted from a signal containing multiple

compounds, by solving the inverse problem associated with Eq.I.28. However field inhomo-

geneities have not been included in this model. For a more in-depth model, as well as a

description of techniques used to solve the inverse problem see chapter II.

I.2.2 HRMAS

High Resolution Magic Angle Spinning (HRMAS) [4] is a technique available for ex vivo

studies, where the sample is placed on a rotor and turned at high angular velocities, at the

magic angle. This reduces the transversal decay effect, providing spectra with very narrow

peaks (width at half height of less then 0.5 Hz). For an example of HRMAS spectra, see

Fig.I.12 on page 30.

I.2.3 Some NMR Spectroscopy pulse sequences

NMR Spectroscopy is performed on modern scanners using pre-programmed control se-

quences of the acquisition hardware, that are usually referred to as Pulse Sequences. Con-

trary to what the name might suggest, pulse sequences describe not only the RF pulse being

transmitted, but also the exact evolution of main static gradients as well as all hardware

timings and signal sampling during the process. Implementing a pulse sequence is usually

a manufacturer-specific procedure (if not machine specific), and is done generally outside

the clinical framework. However, clinically-available pulse sequences have usually a certain

number of parameters that are software-encoded and can be changed in clinical use to ac-

commodate specific targeting. Following is a non-exhaustive short summary of some MRS

pulse sequences pertinent to this thesis.
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One pulse sequence The simplest pulse sequence for NMR Spectroscopy is the ’one

pulse’ sequence. As its name suggests, only one α (often 90◦) RF pulse is transmitted, then

the signal acquisition occurs. Before another measure is made, the complete regrowth of

the longitudinal magnetization must be achieved. In clinical MRS, the value of the one

pulse sequence currently lies more in the theoretical domain, as an example of machine

implementation, proof of concept, or as a brick for more complex pulse sequences; however

it remains routinely used in chemistry, where localization is non essential.

Spin Echo The spin echo sequence has first been introduced by Hahn in 1950 [77] and

further improved by Carr and Purcell [31]. The principle of the method is the presence of a

180 ◦ pulse that partially refocuses the spins in an ’echo’.

Suppose that two magnetizations s1 and s2 are under slightly different magnetic fields B01

and B02, resulting in precession frequencies f1 and f2. If one 90
◦ pulse is applied, after a time

t the dephasing between the two spins is 	ϕ(t) = 2π(f2−f1)t. At time T after the 90◦ pulse
the dephasing is 2π(f2 − f1)T . If now a 180 ◦ pulse is applied, the system can be considered

as inverted, with the dephasing becoming −2π(f2 − f1)T . The new dephasing evolution is

written as 	ϕ(t) = −2π(f2−f1)T +2π(f2−f1)(t−T ) = 2π(f2−f1)(t−2T ). It is interesting

to observe that if t = TE = 2T the dephasing becomes exactly zero 	ϕ(TE = 2T ) = 0,

whatever the difference in the B0 field seen by the spins.

In the case of a large number of spins, the approach is similar, but at a statistical level.

The spin dephasing is following the same statistical law as the B0 field distribution, with a

dispersion proportional to time. As the phase (and the dephasing) is defined as periodic over

[0, 2π), as time tends to infinity the dephasing distribution tends to a uniform distribution,

and thus the sum of magnetizations tends to zero. If a 180◦ pulse is applied at T = TE/2,

then at TE the dephasing distribution will be strictly a degenerate value of zero, creating an

echo from all the spins in phase.

0 T 2T 3T 4T 5T 6T 7T 8T

ACQ

B1

P90 P180 P180 P180 P180

Echo 1 Echo 2 Echo 3 Echo 4

time

Figure I.4: Spin Echo Pulse Sequence. First 90◦ pulse creates a transversal magnetization.

Following 180 ◦ pulses refocus spins so that 4 echoes are visible. Echo magnitude decreases

exponentially with T2 time constant.

Figure I.4 shows a spin echo pulse sequence that generates 4 echoes. Excitation is achieved

by the first 90◦ pulse, while the following four 180◦-pulses refocus 6 the spins. Echoes are

present at times nTE, with magnitudes decaying exponentially with a time constant T2.

Change of the echo time parameter TE allows selective acquisition according to the T2

constants of each metabolite. Long echo time (TE > 120ms for in vivo 1H MRS) is used in

6. Spin refocusing cannot be complete, because of spin-spin relaxation. A 180◦-pulse refocuses spins that
have been defocused by field inhomogeneity, but the coherence of the signal slowly decays, as predicted by

the T2 relaxation constant.
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applications where metabolites of interest are NAA, Cr, Cho and Lac. At short echo time

(typically TE = 30 ms for in vivo 1H MRS) all metabolites, as well as contributions from

macromolecules and lipids, become visible.

PRESS Point RESolved Spectroscopy (PRESS) has been introduced by Bottomley [25] to

obtain localized NMR Spectra. The sequence is a spin echo sequence, with two 180 ◦ pulses

needed for complete 3D localization.

Figure I.5: Selection of a cube with a PRESS pulse sequence. The three spatially-selective

rf pulses within the sequence are marked and the selected regions after each pulse are shown

for a cubic object. The selected voxel, resulting from the intersection of the three selected

slabs, has the shape of a cube. Signal acquisition time frame is not fully shown. Figure from

Klose [89].

Figure I.5 shows a typical PRESS pulse sequence implementation. Z slice selection is

performed using the Gz gradient during the 90◦ excitation pulse. During the two following

180◦ pulses Gy and Gx are used to select a 3D cube as the intersection of 3 slices. Noteworthy

are the spoiling gradients, that allow dephasing of unwanted resonances.

The use of spin echo techniques has the beneficial effect of decreasing sensitivity to B0

field inhomogeneity by rephasing, while at the same time being subject to artefacts due to

partial volume effect. Furthermore, the spatial selectivity of the gradients is limited by the

duration of the pulses, and excitation of spins outside the volume of interest arises frequently.

For brain, lipid contamination by the subcutaneous fat in the scalp may arise, for example,

when unwanted (fat) molecules are excited outside the intended VOI.

STEAM STimulated Echo Acquisition Mode has been proposed by Frahm[61] and uses

a different approach to generate spin echoes. The sequence consists optimally of three 90 ◦

pulses, allowing, as PRESS, selection of a 3D Volume of Interest. The first pulse turns the

magnetization from z to the xy plane, in the same manner as PRESS. A second pulse will

rotate the magnetization from the xy plane to the zy. While the transversal component of the
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magnetization will be dispersed due to T2∗, the longitudinal component remains practically

untouched during the TM (mixing time) period. After the third 90◦ pulse, the previously

longitudinal component is rotated into the xy plane. This pulse functions as a refocusing

pulse, generating an echo after TE/2 time, because the total excitation angle seen by the

spins that participate in the longitudinal magnetization during TM is equal to 90◦ + 90◦ =

180◦. During TM there is also a T1 longitudinal regrowth effect, but sequence parameters are

chosen such as to make this effect small comparable to T2.

One of the important advantages of the STEAM sequence is that the total time needed

to acquire a spectrum is smaller than in the case of PRESS, since TM can be chosen to be

well inferior to TE. The sole use of 90◦ pulses also reduces hardware stress and provides a

more energy efficient acquisition process. However, signal amplitudes obtained are only half

of those obtained with a PRESS sequence.

Figure I.6: Sequence scheme for the STEAM sequence. The refocusing gradients have to

be positioned before the second rf pulse and after the third rf pulse. Only the first part of the

data acquisition time is shown. Figure from Klose [89].

A more in-depth comparison of STEAM and PRESS, as well as a more detailed discussion

of the artefacts and methods to overcome them has been done by Moonen in [115] and more

recently by Klose in [89].

I.3 Magnetic Resonance Spectroscopic Imaging

Magnetic Resonance Spectroscopic Imaging (MRSI), sometimes also referred to as Chem-

ical Shift Imaging (CSI) is a further development of MRS so as to obtain spatial mapping of

the metabolite concentrations. Between imaging and spectroscopy, MRSI has considerably

longer acquisition times, but provides a more detailed set of data. In the following para-

graphs, the basis of MRSI acquisition is described, as well as the current pulse sequences in

use. For a more in-depth view of the current advancements and bottlenecks of human brain

MRS(I) see Barker and Lin [8], as well as the older contribution of Pohmann et al. [131].
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I.3.1 MRI & Principles of space encoding in NMR

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique that allows

spatial mapping of the proton spin density via the use of space- and time-varying magnetic

field gradients. MRI has been made possible due to the ground-breaking contributions of

Lauterbur [94] as late as 1973. Although bulky installations are needed compared with other

medical imaging techniques (X-Ray, Ultrasound, etc.), MRI can have several advantages: it

provides very good signal-to-noise ratio, the imaging procedure does not imply radioactive

elements or high energy radiation, and different acquisition parameters can adapt to a large

range of tissue. As such, MRI is extensively used for studies of the brain or of tissue that is

not observable via X-Ray imaging, such as cartilage [99] or mammary tissue [27].

In order to understand the basics of MRI, consider the simpler case of 2D MRI, where

a fine slice on the �z axis has been selected. Then all the z-depending terms associated with

the static gradient function G (cf. I.1.3) can be ignored, giving only a G(t, x, y) variation.

Consider a very small volume dV situated at the position �r, having all spins rotating in

the magnetic field Bz = Bz�z. Arbitrarily considering the initial magnetization phase null,

the instant phase of the magnetization vector at a time t is given by the sum of all the

contributions of the time-variable Bz:

ϕ(t) =

∫ t

0

dϕ =

∫ t

0

γBz(t)dt (I.29)

Furthermore, the magnitude of the magnetization vector is proportional to the density of

spins ρ(x, y). Under the assumption that the T2 effect is sufficiently small for the duration

of the acquisition, and with Bz(t) = B0(t) + Gx(t)x + Gy(t)y the equation describing the

acquired signal becomes:

s(t) =

∫
sample

ρ(x, y) exp

[
ıγ

∫ t

0

B0(τ) + xGx(τ) + yGy(τ)dτ

]
dV (I.30)

For practical reasons it can be considered that the static field B0 is not time-varying.

After removal of the B0, modulation, the acquired signal ca be thus written as:

s(t) =

∫
sample

ρ(x, y) exp

[
ıγ

∫ t

0

xGx(τ)dτ

]
exp

[
ıγ

∫ t

0

yGy(τ)dτ

]
dV (I.31)

=

∫
sample

ρ(x, y) exp(ı2πxkx) exp(ı2πyky) dV (I.32)

with kx =
∫ t
0 -γGx(τ)dτ and ky =

∫ t
0 -γGy(τ)dτ .

This formalism has been first introduced by Ljunggren [97] and Twieg [185], greatly

simplifying the conception and understanding of MRI sequences. Under a more general form

the demodulated signal s(t) can be written as:

s(t) ≡
∫ t

0

ρ(�x) · e2πı �k·�xd�x (I.33)

with �k(t) =
∫ t
0
�G(τ)dτ called the k-space trajectory. This formalism is of very high

importance to NMR, since it allows to write the acquired signal as a Fourier Transform
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of the effective spin density ρ. Computation of the spin density image is done via the

corresponding inverse Fourier transform:

ρ̂(�x) ≈ I(�x) =

∫ t

0

s( �k(t)) · e−2πı �k·�xd�k (I.34)

I.3.2 Slice Selection

Slice selection (Fig.I.7) is performed by applying a Gz gradient while transmitting a B1

pulse that has a well defined frequency content. Consider that a linearly varying Gz field is

applied so that within the region of interest defined by zmin and zmax the resulting B0 field

varies from B0,min = B0+ zminGz0 to B0,max = B0+ zmaxGz0. This implies that the resonance

frequency of the atoms within will be between f0,min = γ
2π
B0,min and f0,max = γ

2π
B0,max. If

the B1(t) excitation is such as to only have frequency components between f0,min and f0,max,

then only the atoms that are between zmin and zmax are excited by the RF B1 pulse.

Figure I.7: Slice selection in MRI. The B1 pulse (a) is transmitted by the antenna and it

excites spins that whose Larmor frequency corresponds to non-null components of the pulse

Fourier Transform (b). Spin Larmor frequency is proportional to the local B0 field, who in

turn is proportional to the value of the Gz gradient. To the two limit values of Gz that are

excited correspond the two limit values of z (c), since Gz is linear. The excited spins form a

slice delimited by the two limit values zmin and zmax (d). The final image obtained (e) depends

on the imaging sequence taken, but is representative of the average spatial distribution of the

spins in the selected slice.

The slice thickness 	z = zmax − zmin is therefore given by:

	z =
2π	fpulse

γGz

(I.35)

In order to achieve better spatial selectivity (decrease 	z), few options are available:

(1) Increase Gz or (2) decrease the frequency passband of the RF pulse. The first option

is limited by hardware, as stronger pulses require better RF coils, improved energy heat

management and increased power consumption, while the second option is limited by time

requirements, since a more passband selective filter also requires a longer time lapse.



I.3. MAGNETIC RESONANCE SPECTROSCOPIC IMAGING 25

It should be noted that due to the limited time available for the transmission of the B1

magnetic pulse its frequency response is theoretically infinite and thus the excited volume

is also theoretically infinite. In practice this is not so problematic, but it can induce arte-

facts from partial volume effects of contamination from other resonances from outside the

acquisition VOI.

I.3.3 MRSI principles

MRSI is based on the hypothesis that the spatial spin density of every metabolite is

constant during the time of the acquisition. In this case, the purpose of MRSI is to find

the spin density ρm(�r) of the metabolite m at the position defined by �r = (x, y, z), from

the results of a series of NMR acquisitions. As such, MRSI is a combination of NMR

Spectroscopy (identifying the metabolite m) and NMR imaging (mapping the spin density).

In MRSI terminology, we will refer to a “voxel” as the basic unit of volume, from which only

one value per metabolite can be extracted.

The simplest way to perform MRSI would be to use single-voxel spectrometry (MRS)

over and over, while changing each time the localization of the selected MRS-VOI so as to

sweep the entire MRSI region of interest.

To understand the principles of spatial-spectral encoding, the MRI encoding formalism

(Eq.I.30) has to be modified to take into account the magnetic field shielding seen by a

metabolite with a chemical shift δ:

ds(t, δ, x, y) = ρ(σ, x, y) exp

[
ıγ δ

∫ t

0

(B0(τ) + xGx(τ) + yGy(τ)) dτ

]
dV (I.36)

The total signal given by all metabolites is the integral over all δ of s(t, δ). Using a similar

simplification procedure as in the case of MRI, we obtain the total acquired signal s(t):

s(t) ≈
∫
σ

∫
ROI

ρ(σ, x, y) exp(ı2π x kx) exp(ı2π y ky) exp(ı δ kσ) dxdydσ (I.37)

Equation (I.37) shows that the total signal acquired can be represented as a point

s(t, kx, ky) of a multi-dimensional Fourier Transform of the MRSI chemical-shift-dependent

spin density ρ(δ, x, y). In order to obtain the spin density, the Inverse Fourier Transform can

be applied to the signal S formed by all the individual points s(t, kx, ky). By convention,

the acquisition of S is said to be in the Fourier Space, further decomposed as the k space

for the spatial components (kx, ky), and the frequency space for the temporal components.

From now on, the notations Kx,Ky and K
2 = Kx ×Ky will be used to refer to the k spaces.

Similar notation will be used for the other possible spaces : T for time, F for frequency and

R for Cartesian coordinates.

Finding the spin density image for each resonance is not always directly sufficient to de-

termine the concentrations of the metabolites, mainly due to spin relaxation and eventually

to overlapping. Spectral analysis techniques similar to MRS have to be applied. Classically,

the signal is first transformed from K
2 ×T to R

2 ×T using a 2D inverse Fourier Transform.

Then on each time-domain series MRS quantitation methodology is applied, obtaining es-

timated concentrations that, as a final step, are assembled in concentration maps for each

metabolite.
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I.3.4 MRSI Pulse Sequences

MRSI pulse sequences, usually derived from single voxel spectroscopy, have been devel-

oped to optimize localized spectroscopy on a larger region of interest. Because of hardware

limitations and time necessary for a full acquisition, MRSI has not been used on a large

clinical scale, but due to recent improvements, both in hardware and in pulse sequences, its

use has begun to rise. In the following section some of the pulse sequences used in MRSI are

briefly described.

Classical CSI The classical MRSI acquisition sequence is chemical shift imaging (CSI) [29,

107, 147, 78, 111] where one excitation is required to acquire each spatial phase encode. The

pulse scheme is roughly a sequence of MRS acquisitions, with the gradient values adjusted at

each step so as to provide full coverage of the K2 space. The major disadvantage of classical

MRSI acquisition is the time constraint. When acquiring a MRSI image with a resolution

of Nx × Ny the total time required is Nx × Ny × TR where TR is the time between two RF

excitations (repetition time 7). This, coupled with the usual technique of averaging over a

number of spectra in order to obtain acceptable SNR, makes a classical MRSI acquisition

generally too lengthy for routine clinical use.

Fast(er) MRSI In order to render MRSI possible in a clinical environment by severely

reducing the total acquisition time, several techniques have been developed to accelerate

MRSI. One approach is to change the sampling of the K
2 space, as information is usually

concentrated in the centre of it, while also possessing symmetry properties that allow recon-

struction from partial datasets. K
2 space trajectories can also be changed from the usual

Cartesian sampling to a more adapted one, such as radial or spiral Hugg et al. [83], although

this requires a more complicated reconstruction. These two approaches trade speed for

spatial resolution, while not touching spectral resolution. The time gain factor is moderate.

Another class of techniques, inspired from fast MRI methods such as EPI manage a much

more important gain in terms of time. They use refocusing methods to generate echoes, thus

compressing in one RF pulse cycle the acquisition of a number of K2 space points. Figure I.8

shows a comparison between three fast MRSI techniques : “turbo” MRSI [53], echo planar

MRSI (PEPSI) [134] and spiral-MRSI (see the recent review by Delattre et al. [51] on spiral

acquisition schemes).

Echo Planar Spectroscopic Imaging Echo planar MRSI sequences combine the space

encoding of echo planar imaging (EPI) with spectral encoding to provide spectroscopic imag-

ing. First proposed by Doyle and Mansfield [52] in 1987, EPSI has long suffered from lack

of implementation due to insufficiently powerful hardware, as the pulse sequences especially

need strong gradients. With the recent developments though, most current scanners al-

low the necessary gradient power, making EPSI an appealing technique due to its strong

reductions of the total acquisition time.

It should be noted that EPSI sequences trade spectral resolution for speed, making them

unsuitable for applications where spectral resolution is essential. Following are two examples

of currently used EPSI encoding schemes. For a more detailed description of EPSI, as well

as an interesting discussion on the method trade-offs, see Mulkern and Panych [119].

7. Repetition time should allow longitudinal magnetization to grow back; it is thus bounded downwards

by T1. Pulse sequences with only partial regrowth exist, but are not discussed in this context.
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Figure I.8: Different readout strategies for fast MRSI pulse sequences; in the examples

shown here all sequences use spin echo excitation preceded by CHESS water suppression and

OVS lipid suppression. (A) In fast-spin-echo , or “turbo” MRSI, multiple spin echoes are

acquired, each one with its own phase-encoding gradient, (B) in Proton echo-planar spec-

troscopic imaging (PEPSI), an oscillating read gradient is applied during data acquisition,

and (C) in spiral-MRSI, two oscillating read gradients are applied during data acquisition.

Reproduced from Barker and Lin [8].

Proton Echo-Planar Spectroscopic Imaging (PEPSI), proposed by Posse et al.

[134, 135] provides simultaneous acquisition of a K×T space after each RF excitation pulse.

This preserves good spectral resolution. Figure I.9 illustrates a (P)EPSI pulse sequence with

double outer volume supression.

Echoplanar Chemical Shift Imaging (EP CSI) is a MRSI acquisition method

proposed by Guimaraes et al. [74] and designed to acquired a complete K2 space for each RF

excitation pulse. This improves considerably the acquisition time, while trading off spectral

resolution. Figure I.10 illustrates a EP-CSI pulse sequence, as well as the corresponding K

space trajectory.

For more information on current state-of-the-art in MR Spectroscopic Imaging, as well

as for more information and references concerning basic principles, also see the recent review

by Skoch et al. [167].
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Figure I.9: EPSI pulse sequence with double-outer volume suppression. The pulse sequence

is based on a stimulated echo localization scheme in which all three RF pulses (grey symbols

labelled S select the same section. Spatial suppression (SS1 and SS2) is applied orthogonal to

the echo-selected section to suppress superficial lipid signals. Multiple (n=8) spatial supres-

sion pulses with subsequent gradient dephasing are applied each supression period in different

spatial orientations to follow the contours of the brain. Two chemical shift selective water

supression pulses (WS1 and WS2) are applied. Spatial localization is achieved by means of

echo-planar spectral-spatial encoding in one spatial dimension and by phase encoding in the

other dimensions. Gx,y,z - gradients. Reproduced from Posse et al. [134].

Figure I.10: (a) Echo Planar CSI sequence, which combines phase encoding of the frequency

dimension with the EPI encoding of spatial dimensions. The 180◦ pulse is shifted 	τ on

successive excitations while the readout is kept constant. This ensures coding of the spectral

information. (b) K space trajectory of EP CSI sequence. Each 	τ encodes the chemical

shift into the phase of the signal, then a full K space is acquired using EPI. Adapted from

Guimaraes et al. [74].
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I.4 Clinical Metabolites of Interest in brain MRS

The number of metabolites whose concentrations are measurable in vivo is limited at

present times by technical considerations, such as noise, field strength or shim. Figure I.11

shows a rat brain spectrum obtained by Mlynárik et al. [113] at 9.4 T. Seventeen metabolites

have been quantified by the authors. Two aspects restrain though such performances for

current in vivo acquisitions: (1) the field strength used (9.4T) is far superior to any certified

clinical scanner (max. 3T) and (2) the acquisition is performed on rats under anaesthesia,

currently forbidden for clinical methodology. Human scanners face additional challenges

such as field inhomogeneity due to field size, movement artefacts and serious limitations on

acquisition time. For example, in 2007 Gottschalk et al. [66] reported being able to identify

reliably only seven metabolites at 3T on in vivo brain tissue.

Figure I.11: A proton spectrum measured with the SPECIAL (SPin ECho, full Intensity

Acquired Localized spectroscopy) pulse sequence from a volume of 4× 3× 4 mm3 comprising

the frontal cortex and putamen of the rat brain (TR = 4000 ms, TE = 2.2 ms, and number

of scans = 160). A shifted Gaussian function (gf = 0.12, gfs = 0.08) was used for modest

resolution enhancement. No baseline correction or post-processing for water signal removal

was applied. Ala = alanine, Asp = aspartate, Cr = creatine, GABA = γ-aminobutyc acid,

Glc = glucose, Gln = glutamine, Glu = glutamate, GPC = glycerophosphocholine, Ins =

myo-inositol, Lac = lactate, NAA = N-acetylaspartate, NAAG = N-acetylaspartylglutamate,

PCr = phosphocreatine, Tau = taurine. Unlabeled peak at 4.7 ppm is residual water. Adapted

from Mlynárik et al. [113]. Field strength is 9.4T.

As the main focus of this thesis is signal processing and parameter estimation for brain

MRS and MRS Imaging data, below are listed some of the most relevant metabolites for in

vivo brain spectra. Some background information, as well as a summary spectral description

and a non-exhaustive list of current clinical application is provided for each metabolite.

Creatine (Cr) and Phosphocreatine (PCr), sometimes referred to as their sum tCr

- total Creatine, are very important for the energetic cycle of the cells, having the role of



30 CHAPTER I. IN VIVO MRS AND MRSI

Figure I.12: High resolution magic angle spinning 1H NMR spectra for five tumour

groups. Spectra were baseline corrected and then scaled to the spectral area between 0.5 ppm

and 4.5 ppm. Tau-Taurine, PEth-phosphorylethanolamine, PCho-phosphorylcholine, mI-

myo-inositol, Lac-lactate, Gly-glycine, GPC-glycerophosphorylcholine, Gln-glutamine, Glu-

glutamate, Cr-creatine. Adapted from Wilson et al. [197].

energy storage for the quick anaerobic conversion between ATP and ADP. As such, most Cr

is found in the skeletal muscle and in the brain, although it can also be found in the liver

(where it is synthesized) and in the blood (as it is transported to the muscles). Because of

its small variation in the case of brain pathologies, as well as due to the high SNR observed

for their singlets, Cr and PCr are generally used as internal references for the estimation of

the other metabolite concentrations. Recent studies have, however, questioned this practice,

showing tCr variations in pathological cases [158], as well as between different regions of the

brain Grachev et al. [68]. Li et al. [95] also provides an analysis of metabolite variance when

tCr is used as a reference, concluding that such use may be faulty.

Creatine spectra exhibit singlets at 3.03 ppm, 3.9 ppm and 6.65 ppm. Phosphocrea-

tine NMR resonances are almost indistinguishable from Cr, with frequency shift differences

smaller than 0.07 ppm [67]; meanwhile high field MRS or HRMAS provide good separation

[35]. Typical concentrations in the human brain have been reported to be 4.0–5.5mmol·kg−1

for PCr and 4.8–5.6 mmol · kg−1 for Cr. [136, p.17]. Govindaraju et al. [67] give human

brain concentration ranges of 5.1-10.6 mmol ·kg−1 for Cr and of 3.2-5.5 mmol ·kg−1 for PCr.
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N-acetylaspartate (NAA) and N-acetylaspartateglutamate (NAAG) are highly

concentrated acetylated compounds found predominantly in the nervous system of verte-

brates and invertebrates, and presumably linked to each other in terms of biosynthesis[114].

Their function in not yet well understood, but current research hints to the role played as an

organic osmolyte that removes excess water from neurons. There is also compelling evidence

that NAA is essential for the lipid synthesis and myelination [102]. Because of their predomi-

nant neuronal localization [62], their high concentrations and the fact that they provide very

distinct peaks in water-suppressed proton NMR Spectroscopy, NAA and NAAG have been

extensively used as a non-invasive marker for neuronal dysfunction. Most brain pathologies

show an important decrease in NAA levels, one exception being the Canavan disease, that

shows accumulation of NAA due to the lack of degradative enzyme activity [102] .

NAA spectra spectra are highly recognizable by the 2.01 ppm singlet, with other multi-

plets at 2.48 ppm, 2.67 ppm, 4.38 ppm and 7.82 ppm. Reported NAA concentrations in the

human brain are between 7–16 mmol · kg−1. NAAG is primarily detected via the 2.04 ppm

resonance peak, therefore appearing as a lineshape deformation of the 2.01 ppm NAA peak.

Lactate (Lac) is a product of anaerobic glycolysis and is usually recycled by the liver as

part of the Cori cycle. Recent studies have shown that lactate provides an alternative source

of energy for glucose in the brain [188], especially during physical effort, when oxygen and

glucose in blood is mainly consumed by muscular cells [148]. During the normal functional

cycle, the quantity of lactate in the brain is very small, usually under the detection limit of

current MRS studies. Increases in Lac usually show loss of cell oxygenation and are thus

considered markers for brain damage due hypoxia, such as stroke, trauma or tumours [159].

Increase of lactate can also be an indicator of increased macrophage activity or of presence

of neoplasm, that have been shown to have increased glycolitic activity [204].

Lactate spectra are constituted by a 1.33 ppm doublet and a quartet at 4.09 ppm. Doublet

observation can be seriously impaired by lipid resonance at 1.3 ppm, while the quartet is

usually not detectable in vivo because of the water peak. Lac concentration is normally very

small in the brain cells, but concentrations as high as as 5.10 mmol ·kg−1 have been reported

in the brain extracellular fluid [1].

Myo-inositol (mI) is the isomer of inositol most commonly found in human tissue. Its

functions have not yet been completely understood, although current research suggests that

mI plays various roles in cell membrane potential and intracellular Ca2+ concentration main-

tenance [181], gene expression [162], inositol lipids synthesis and construction of membrane

lipids. Myo-Inositol is also known to be an important part of the phosphatidylinositol second

messenger system (PI-cycle) and as such it is of special interest to psychiatric research [164].

Myo-Inositol spectra consist of doublet-of-doublet at 3.52 ppm, a triplet at 3.61 ppm,

a triplet at 3.27 ppm (typically hidden under Cho) and a triplet at 4.05 ppm (typically

under water peak supression area). Typical concentrations are at 4−8 mmol ·kg−1, although

significantly altered values have been reported in pathological cases [67].

Choline is mainly present in the brain under its free form (Cho) or as other choline com-

pounds: glycerophosphocholine (GPCh) and phosphorylcholine (PCh). Due to the very

small frequency shift between the choline forms (<0.02 ppm) the total Choline (tCho) signal

is usually measured in low-field MR Spectroscopy. Choline participates in the transsulfura-
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tion pathway and serves as a precursor for the neurotransmitter acetylcholine. PCh is an

intermediate product in the synthesis of the insoluble phospholipids that constitute the cell

membrane and also plays a role in the identification of damaged cells by the immune sys-

tem via C-Reactive Proteins, while GPCh is a product of cell membrane degradation [136,

p. 16]. High values of tCho are usually associated with an increased cell membrane construc-

tion/deconstruction and have been used as indicators of brain tumours and demyelinating

diseases [158].

Choline spectra show a prominent peak at 3.19 ppm and multiplets at 3.50 ppm and 4.05

ppm. PCh has a major peak at 3.21 ppm and multiplets around 4.28 and 3.64 ppm, while

GPCh has a more complicated structure, with a singlet at 2.21 ppm and multiplets around

4.3, 3.66 and 4 ppm. Because of the very difficult separation, total choline concentration has

more applications in NMR spectroscopy, having typical values of 1−2 mmol · kg−1.

D-Glucose (Glc) is the form of aldohexose sugar most present in the human metabolism.

Glc is one of the most important cellular energy sources, being used by aerobic respiration,

anaerobic respiration or fermentation, while also playing a critical role in protein production

and in lipid metabolism. As the primary source of energy for brain cells, D-Glucose has been

extensively used as marker for brain activity in functional studies, as well as in traumatic or

pathological brain dysfunction cases [87, 141].

D-glucose exists mainly in two anomeric forms, designated α-Glc and β-Glc, found in

solution at an approximately stable rate of α:β = 36:64 . This ratio has been shown to vary

due to different metabolic properties of the two anomers [125], but in the absence of external

mechanisms should return to equilibrium value. Spectra associated to the two anomers have

a complex multiplet pattern, that at lower field strengths collapses in multiplets around

3.43 and 3.8 ppm [67], making direct NMR detection under normal circumstances very

difficult. Usual Glc brain concentration is around 1 mmol · kg−1, although values as high as

9 mmol · kg−1 have also been reported [72].

Amino acids in their free form are also detectable in the human brain tissue, having var-

ious roles in the brain metabolism, including being the building blocks for protein and being

precursors for neurotransmitters, polyamines and nucleotides. In the following paragraphs

some of the amino acids most pertinent to brain NMR analysis are shortly described.

γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter of the central

nervous system. Typical values are of 1 mmol · kg−1 and altered values have been used

as markers of neurological disorders [149, p. 24].

Glutamine(Gln) and Glutamate (Glu), sometimes grouped under the abbreviation

Glx, are the most abundant amino acids in the brain. As standard amino-acids, Glx

have roles in protein synthesis. Gln is also a cellular energy source (next to Glc) and a

precursor to Glu, while the latter is the most abundant excitatory neurotransmitter in

the nervous system. Typical values for Gln and Glu are 12 mmol ·kg−1 and, respectively,

24 mM [136, p. 17]. Changes in the Gln/Glu ratio have been used as markers for cerebral

ischemia, hepatic encephalopathy and Rett’s syndrome [67].
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Met. Concentration Chemical Shifts.

(mmol/kgww) (ppm)

Cho 0.9 - 2.5 3.21(3.18), 4.05, 3.50

Cr 5.1 - 10.6 3.03, 3.91, 6.65

GABA 1.3 - 1.9 2.99(3.01), 1.89, 2.28

Glc 1.0 (see anomers below)

Glc(α) † * 5.21, 3.51, 3.70, 3.40, 3.82, 3.82, 3.75

Glc(β) † * 4.63, 3.23, 3.47, 3.39, 3.45, 3.89, 3.71

Gln 3.0 - 5.8 3.75, 2.13, 2.11, 2.43, 2.45, 6.81, 7.53

Glu 6.0 - 12.5 3.74, 2.04, 2.12, 2.34, 2.35

Lac 0.4 4.10, 1.31

mI 3.8 - 8.1 3.52, 4.05, 3.52, 3.61, 3.27, 3.61

NAA 7.9 - 16.6 2.00, 4.38, 2.67, 2.49, 7.82

NAAG † 0.6 - 2.7 2.04, 4.61, 2.72, 2.52, 4.13, 1.89, 2.05, 2.20, 2.18

PCr 3.2 - 5.5 3.03, 3.93, 6.58, 7.30

Table I.1: Typical concentrations and spectral NMR resonances for the main human brain

metabolites, as reported by Govindaraju et al. [67] and more recently by Rabeson [149, Ap-

pendix A]. When reported values do not match, the value in parantheses is the one reported

in [67]. The DSS-trimethyl resonance has been used as reference (δref = 0 ppm). Spectra

have been observed at f0 = 500 or 600 MHz, T = 37◦C and pH = 7.0. Metabolites marked

with † had their chemical shifts measured in D2O.

Glycine(Gly) is the smallest amino acid, with the main role as protein building block

and inhibitory neurotransmitter. Gly spectra consist of one singlet around 3.56 ppm.

Typical concentrations are around 1mmol · kg−1.

Other MRS-relevant amino acids are usually only observable in current in vivo

brain MRS acquisitions under special circumstances. Examples include Taurine (Tau),

with reported concentrations of between 1.3−1.9 mmol · kg−1 in the adult brain, Aspar-

tate (Asp), reported between 0.3−1.1 mmol · kg−1 and Alanine (Ala), between 0.2−0.8

mmol · kg−1 [129].

Lipids (Lip) are present in the brain in their free form mainly due to cell and membrane

degeneration, and have been proposed as a marked for necrosis.

Because lipids have T2 relaxation times much smaller than the main metabolites they

produce very large spectral peaks, with the main contributions at 1.3 ppm and 0.9 ppm.

Lipid concentrations are typically very small, but have been reported to drastically increase

in the case of tumours. Another cause of high Lip peaks in MRS is subcutaneous fat tissue

present in the skull, either because the tissue is part of the acquired voxel or because of

signal contamination due to chemical shift artefacts.

Macromolecules (MM) are biochemical components whose size is above 3500 Da 8 [101],

such as proteins, nucleic acids or polysaccharides [184]. On weight basis, macromolecules

8. Dalton (Da, sometimes d), also called the unified atomic mass unit (u) is a unit of mass used to express

atomic and molecular masses. 1 Da = 1.660538782(83) 10−27 kg, roughly the mass of a 1H atom.
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are the most abundant molecule types in living cells, forming about 26% of the wet weight

( water represents 70% of the wet weight) . They are also very diverse, counting about

than 3000 macromolecular types [3, p.53-73]. Due to their size, macromolecules have a

very strong interaction with their environment, that further translates in small T1 and T2

relaxation times, with MM signal being typically concentrated only in the first points of the

acquired data.

Although some research has suggested possible use of the MM signal [155], it is currently

seen in MRS studies as a nuisance signal, being usually assimilated in the baseline. Several

techniques have been developed in order to minimize MM influence on the quantification

of other metabolites, both at acquisition and post-processing. The difference in T1 be-

tween metabolites and macromolecules allows the so-called inversion-recovery (IR) metabo-

lite nulling, where the pulse sequence parameters are chosen in such a way as to minimize

the metabolite contribution, allowing for the modeling of the MM signal [46, 100, 101].

Conclusion

In this chapter, the basic concepts that lead from spins to MR Spectroscopy and Spectro-

scopic Imaging signals have been discussed. The next chapter focuses on techniques allowing

the exploitation of MRS(I) data (quantitation), as well as on signal processing aspects asso-

ciated with it.



Chapter II

Signal Processing for MRS and MRSI

This chapter introduces the signal processing aspects present in NMR Spectroscopy and

briefly describes most common currently used procedures. Section II.1 shows how MRS

models are derived from physical phenomena described in the previous chapter. Section

II.2 briefly describes important concepts in visualization and analysis of harmonic signals.

Section II.3 offers an insight into the theory and implementation of nonlinear least-squares

minimization problems. Section II.4 presents the state-of-the-art in MRS quantitation (pa-

rameter estimation). Finally, section II.6 provides some insights into the error, incertitude

and confidence problems associated with MRS data acquisition and quantitation.

II.1 MRS problem overview

In the previous chapter, we have described the mechanisms that produce a signal in MRS,

showing different methods to obtain a signal that depends on the physical and chemical

properties of the sample in the NMR scanner. The signal processing paradigm is the inverse

problem associated with NMR spectroscopy: from the signal s obtained via MRS, how can

the physical and chemical properties be determined, and with what accuracy. Although

different properties have been explored (e.g. temperature [36, 84], pH [64], etc. ), the main

aim of spectroscopy is the identification and concentration estimation of various chemical

compounds, a process often referred to as “quantitation”.

Figure II.1: NMR acquisition chain. The bio-physical sample is described by the unknown

parameters p∗. During the acquisition process, a signal s is acquired, representative of p∗.
During the quantitation step, mathematical methods are applied to estimate p̂ from s. The

parameter estimates p̂ are expected to be equal to p∗, and the whole process is expected to

be transparent to the clinical user. Notice however that acquisition and quantitation are

complementary steps, and that the performance of the whole measurement chain cannot be

correctly assessed by taking in consideration only quantitation errors.

35
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In order to understand and properly analyse the various techniques for MRS quantitation,

it is necessary to build a satisfactory model for the signal generated according to techniques

described in the previous chapter. In order to keep the model as simple as possible, while

introducing the effect of static field heterogeneity, several assumptions have been made. Most

properties of the acquisition sample (metabolite concentrations, temperature, T1, T2, etc.),

as well as the static field of the scanner (B0) are assumed to be constant in time.

Assume that inside a very small volume dV , situated at the position r = (x, y, z), the

static magnetic field is homogeneous and equal to B0(r). The MRS signal generated by dV

can be written as (see Eq.I.27)

ds(r, t) =
M∑

m=1

{
cm

Km∑
k=1

[
exp

(
− t

T2,m,k

)
exp(ıϕ) exp[ıγB0(r)(1− σm,k)t] Υm,k(t)

]}
dV

(II.1)

whereM is the total number of metabolites andKm is the number of nuclei in each metabolite

m.

The total signal obtained from an acquisition where only the spins inside the Volume of

Interest (VOI) are assumed to make a contribution is given by the integral sum over the VOI

of Eq.II.1:

s(t) =

∫
r∈V OI

ds(r, t)

=

∫
V OI

M∑
m=1

⎧⎪⎨
⎪⎩cm(r)

Km∑
k=1

⎡
⎢⎣exp(− t

T2,m,k

)
exp(ıϕ) exp[ı2π -γB0(r)(1− σm,k)︸ ︷︷ ︸

(a)

t]Υm,k(t)

⎤
⎥⎦
⎫⎪⎬
⎪⎭ dr3

(II.2)

In Eq.II.2, the term (a) stands for the frequency of the spin k of the metabolite m,

without taking into account J-coupling spectral splitting 1. Looking closely at (a), several

simplifications can be made.

– The local static field B0(r) can be written as sum of the homogeneous static field B0

and the local variation 	B0(r) = B0(r)−B0. Using current hardware, the ratio �B0(r)
B0

is usually under 1 ppm in typical VOIs in the human brain (cf. Fig.II.2).

– After demodulation at the frequency f0 = -γB0, the term -γB0 can be subtracted from

(a).

– Since σ is also in the order of ppm, the cross-term 	B0(r)σ is very small and thus the

following approximation is viable 2:

[B0 +	B0(r)](1− σ)− B0 ≈ 	B0(r)− σB0 (II.3)

1. As shown in the previous chapter (see Eq.I.25), the J-coupling is conveniently represented in Eq.II.2

by the splitting function Υ.
2. There are certain cases when the shielding - inhomogeneity cross factor must be taken into account,

but they do not represent the focus of this thesis. In MRSI, for example, this factor induces a well-known

spatial displacement artifact.
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Figure II.2: MRI images (upper row) and B0 magnetic field inhomogeneity maps (lower

row), corresponding to a healthy human brain, measured in a 8T whole-body MRI system.

Inhomogeneity is is ppm/cm. i: axial, ii: mid-sagittal, iii: coronal. Images come from

different patients. Adapted from Truong et al. [183].
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Replacing Eq.II.3 in Eq.II.2, allows further factorization to take place:

s(t) =

=

∫
r∈V OI

M∑
m=1

⎧⎨
⎩cm(r)

Km∑
k=1

⎡
⎣exp(− t

T2,m,k

)
exp(ıϕ) ·

· exp[ı2π -γ(	B0(r)− σm,kB0)︸ ︷︷ ︸
simplified (a)

t] Υm,k(t)

⎤
⎥⎦
⎫⎪⎬
⎪⎭ dr3

=
M∑

m=1

{∫
r∈V OI

cm(r) exp(ıγ	B0(r)t) exp[ıϕ(r)] ·

·
Km∑
k=1

[
exp

(
− t

T2,m,k

)
exp(ıϕ) exp[ı2π -γ(−σm,kB0)t] Υm,k(t)

]
dr3

}
(II.4)

Although Eq.II.4 does not appear to have a simple form, it is noticeable that the terms

inside the sum
∑Km

k do not depend on r, and are very similar to the single contribution of

one spin, as described by Eq.I.27. Therefore these terms are replaced with the metabolite

basis-set signals bm:

bm(t) =
Km∑
k=1

exp

(
− t

T2,m

)
exp (−ı2πσm,kf0)Υm,k(t) (II.5)

The remaining terms from Eq.II.4 depend on the spatial distribution of the concentrations

of each metabolite, coupled with the effect of the inhomogeneity field. We call this the context

function Ψm(t), computed as:

Ψm(t) =

∫
r∈V OI

cm(r) exp [ıγ	B0(r)t] exp [ıϕ(r)] dr
3 (II.6)

The last step in MRS modelling is getting Eq.II.6 to be re-written in the traditional

form, similar to the contribution in ideal conditions (see Eq.I.27), introducing the average

concentration c̄m = ‖Ψ(0)‖
VV OI

, the overall phase ϕm = arg[Ψ(0)] and the extra damping function

dm(t), defined as normalized context function dm(t) = Ψ(t)
Ψ(0)

. The dm normalization forces

dm(0) = 1. The final model of the signal can now be written as:

s(t) = VV OI

M∑
m=1

c̄m exp ıϕm dm(t)︸ ︷︷ ︸
extra decay function

bm(t)︸ ︷︷ ︸
m. basis-signal

(II.7)

The function d(t) represents the extra damping due to the inhomogeneity of B0. It is

usual in NMR to replace this extra damping with a Lorentzian damping factor, replacing T2

with T ∗
2 . However, in this work we attempt to correct the effect of an unknown lineshape,

thus placing ourselves in a more general case.

II.2 Spectral analysis : theory and methods

Direct interpretation of the acquired FID MRS signals is very difficult due to the super-

posed exponentially damped sinusoids. However, mathematical procedures exist that allow
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visualization and interpretation of sums of decaying complex exponential signals. This sec-

tion introduces some of the Spectral Analysis tools commonly used in MRS(I), with a focus

on the mathematical models used for signal decomposition. Quantitation methods based on

the presented decompositions are reviewed later, in section II.4.

II.2.1 Spectral estimation by Fourier Transform

The metabolite contribution separation problem is often visualized and/or solved using a

function space defined by the Fourier Transform (FT). The equation linking a function s(t)

and its Fourier Transform S(f) is given by:

F{s(t)} = S(f) =

∫
t

s(t) exp(ı2πft) dt

F−1{S(f)} = s(t) =

∫
f

S(f) exp(−ı2πft) df

Several properties of the FT are of special interest for MRS

– The FT is linear, meaning that for any scalars a and b it is true that

F{a · s1(t) + b · s2(t)} = a · F{s1(t)}+ b · F{s2(t)} (II.8)

– The Inverse Fourier Transform (IFT) F−1 is very similar to the direct FT, the only

difference being that the direction of the variable t is inverted. It is thus possible

to obtain the IFT from the FT just by reversing the signal, equivalent to making

the variable transformation t → −t. Because of this property, the IFT is sometimes

(inexactly) replaced in literature by the FT.

– The FT of the product of two functions is given by the convolution operator ∗(·, ·),
defined as

∗(s1, s2) ≡ s1(t) ∗ s2(t) =
∫ ∞

−∞
s1(τ) · s2(t− τ)dτ

– The area under the FT transform is linked to the first point of the time series:

s(t = 0) =

∫
f

S(f)df ≡ AS(f) (II.9)

In the case of discrete signals the Discrete Fourier Transform (DFT) is used to make

the conversion between the discrete time series and the discrete FT output. Because of the

discrete nature, the DFT is periodic with a period of Fs = T−1
s , where Ts is the sampling

time and Fs is the sampling frequency. In signal processing, instead of labelling the DFT

abscissa in Hz, the normalized frequency 3 is often used, defined as ν = f/Fs, that only takes

values between −1
2
and 1

2
.

S[i] =
N−1∑
j=0

s[j] · exp(ı2π i · j
N

) i = 0 , . . . , N−1

It is interesting to note that the DFT can be written as a matrix multiplication between the

signal vector s and the DFT matrix F. Furthermore, by using normalized frequencies, F

3. The normalization is equivalent to considering the sampling time Ts equal to 1 [s].
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depends only on the number of points N in the signal:

S = s · F ≡ s ·

⎛
⎜⎜⎜⎝

ζ0N ζ0N . . . ζ0N
ζ0N ζ1N . . . ζN−1

N
...

... ζ i×j
N

...

ζ0N ζN−1
K . . . ζ

(N−1)×(N−1)
K

⎞
⎟⎟⎟⎠

Moreover, as F is a Vandermonde matrix formed by the N th order complex root of the unit,

it is non-singular. This effectively means when a signal is transformed by DFT, all the

information is conserved, and perfect reconstruction can be made using the Inverse DFT.

Although the DFT can be simply computed as the matrix product previously described,

it is usually computed using a much more efficient class of algorithms, commonly referred to

as Fast Fourier Transform (FFT). The variant most commonly used was proposed by Cooley

and Tukey [43], but multiple approaches exist, with different trade-offs in terms of speed and

numerical stability. Section 12.2 of [140] provides a good introduction in FFT computing

techniques as well as a list of bibliography concerning the different methods available.

II.2.2 Spectral estimation by HSVD

Hankel Singular Matrix Decomposition (HSVD) [92] is a method to decompose a signal

into a sum of complex exponentials. The Hankel matrix associated to a given signal s[n],

n = 1, · · · , N is built by delaying by 1 each consecutive row.

H =

⎛
⎜⎜⎜⎝

s[1] s[2] . . . s[M ]

s[2] s[3] . . . s[M + 1]
...

...
. . .

...

s[L] s[L+ 1] . . . s[L+M − 1]

⎞
⎟⎟⎟⎠ (II.10)

Consider that s is a sum of K complex exponentials

s[n] =
K∑
k=1

c′i · znk (II.11)

with the complex amplitudes c′k = ck exp(jϕ) and the poles zk = exp(j2πfkTs − αTs)

Then the Hankel matrix H associated to the signal can be written as

H =

⎛
⎜⎜⎜⎝

z01 z02 . . . z0K
z11 z12 . . . z1K
...

...
. . .

...

zL−1
1 zL−1

2 . . . zL−1
K

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
FLK

⎛
⎜⎜⎜⎝

c′1 0 . . . 0

0 c′2 . . . 0
...

...
. . .

...

0 0 . . . c′K

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
CKK

⎛
⎜⎜⎜⎝

z01 z11 . . . zM−1
1

z02 z12 . . . zM−1
2

...
...

. . .
...

z0K z1K . . . zM−1
K

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Q�

MK

(II.12)

H = FLK CKK Q

MK

CKK is a square diagonal matrix composed of the complex amplitudes c′k and FLK and

QMK are Vandermonde matrices associated to the poles zk. This decomposition is called Van-

dermonde decomposition, and it would give direct access to the desired parameters (c′k, zk).
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Unfortunately, no algorithm currently exists to compute it. Thus indirect methods have to

be used to estimate the (c′k, zk).
It should be noted that the rank of H is equal to K if the generating signal s[n] is

composed of exactly K components.

Also, it can be easily proven that any Vandermonde matrix S generated by the vector

Z = (z1 . . . zn) has the following property (called shift-invariance):

S↑ = S↓Z (II.13)

where S↑ and S↓ represent cropped versions of S, without the first and respectively the last

row.

Any complex matrix can be written using the so-called Singular Value Decomposition

(SVD), into a product of three matrices

H = UΣVH (II.14)

where U and V are unitary matrices and Σ is a rectangular diagonal matrix of the size of

H.

Since the rank of H is K, the SVD will yield only K different values, and thus the size

of UK corresponding to these values is L ×K, is the same as the size of the Vandermonde

decomposition matrix FLK . Further more, both UK and FLK have, due to their nature

(unitary or Vandermonde), non-zero determinants. This means that there exist a square

inversible matrix Q ∈ C
K×K so that

UK = SQ (II.15)

Furthermore, the Q matrix can also be used to express U↑
K and U↓

K and thus to re-write the

shift-variance property as defined in Eq.II.13:

S↑ = U↑
KQ

−1

S↓ = U↓KQ−1

U↑
KQ

−1 = UK↓Q−1Z

U↑
K = UK↓ Q−1ZQ (II.16)

From Eq.II.16 one can compute the matrix

Z′ = Q−1ZQ =
(
U↑

K

)+
UK↓ (II.17)

where
(
U↑

K

)+
=
(
U↑H

K U↑
K

)
U↑H

K represents the pseudo-inverse of U↑
K .

In order to obtain Z from Z′ one has only to diagonalize it. If, moreover, Z is ordered,

then the solution is unique, represented by the ordered eigenvalues of the matrix Z′.
Once the poles zk of the signal have been computed, replacing them in Eq.II.11 gives

a linear problem for determining the complex amplitudes c′k. The simplest method is to

determine the LS solution to the over-determined matrix equation⎛
⎜⎜⎜⎝

z01 z02 . . . z0K
z11 z12 . . . z1K
...

...
. . .

...

zN−1
1 zN−1

2 . . . zN−1
K

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

c′1
c′2
...

c′K

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x1

x2
...

xN

⎞
⎟⎟⎟⎠ (II.18)
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In the case of noisy signals, the shift-invariance property (Eq.II.13) does not hold any

more, stricto sensu, and the matrix H becomes full rank. However, if the SNR of implicit

HSVD decomposition of the noise-free signal is of sufficient value, the matrix H can be

approximated by a HSVD decomposition HK of rank K [136, §2.2.2]:

H = UΣV
 ≈ UKΣKV


K = HK (II.19)

It should be mentioned that in this case the decomposition is not exact any more, and the

relative value of the residue (or the modelling error) s− ŝHSV D decreases with SNR. Several

optimizations exist for the HSVD algorithm. HSLVD [130, 112] uses the Lanczos iterative

algorithm to compute SVD in the order of decreasing pole magnitude. When all relevant

poles are computed, the algorithm can be stopped, thus considerably speeding up the process.

HLSVD Partial Reorthogonalization (HSLVD-PRO) [93] further improves SVD by treating

numerical problems of the Lanczos algorithm. HSVD Total Least Squares (HTLS) Vanhuffel

et al. [191] uses a Total Least Squares [105] approach instead of a classical LS method.

II.2.3 Spectral estimation by Padé Transform

An alternative to DFT and HSVD approaches for modeling MRS data, the Fast Padé

Transform (FPT), has been proposed by Belkić and Belkić [15, 13, 16, 14, 17, 18, 19]. The

method is based on the Padé Approximants, and is known under various names in different

disciplines [14], particularly Auto-Regressive Moving Average (ARMA) in signal processing.

Furthermore, the DFT and its more general form, the z-transform, can be seen as special

cases of the Padé Approximants.

As opposed to the DFT, that can be seen as a polynomial model GN(z
−1) with the

variable z = exp ıωt, the FPT approximates the signal as a ratio of unique polynomials

P−
K (z−1) and Q−

K(z
−1) of the same variable z:

FPT (−) : F (z−1) ≈ P−
K (z−1)

Q−
K(z

−1)
=

∑K
n=0 p

−
n z

−n∑K
n=0 q

−
n z

−n
(II.20)

Several properties of the FPT are appealing, according to authors, for MRS analysis:

– Quadratic Convergence rate of the FPT, as opposed to the linear convergence of

the FFT. This allows a better approximation when the transformation rank is chosen

to be smaller than the number of data, as shown in Fig.II.3.

– Non-linearity of the FPT, allows, according to [19], a better separation of the noise

from the useful signal, and thus better SNR values.

– Signal approximation without explicit modelling is available by FPT. This

comes in contrast with HSVD, where nonlinear spectral components ζk have to be

computed first, and the linear parameters are computed in a second step, as a LLS

problem (see Eq.II.18).

II.3 Methods for numerical functional minimization

II.3.1 Notations

Unless otherwise specified, the following conventions and symbols hold for the mathe-

matical writing:
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– Symbols in bold (ie v) denote matrices, whereas normal font denotes scalars

– v
 denotes the transposed version of v

– ‖v‖ denotes the L2 norm of vector a v of length N , computed as ‖v‖ = v
 v =
∑N

i=1 v
2
i

symbol meaning expression

s the signal to be fitted s (si) = [s1, s2, . . . , sNs ]



Ns number of data points

Np number of model parameters

p the parameter vector p = (pj) = [p1, p2, . . . , pNp ]

ŝ(p) the model function † ŝ(p) = (ŝi(p)) = (ŝi) = [ŝ1, ŝ2, . . . , ŝNs ]



r the residue † r = s− ŝ

J the model Jacobian † J =
(

∂ŝ
∂pj

)
=
[

ŝ
∂p1

, ŝ
∂p2

, . . . , ŝ
∂pNp

]
† Dependence of p may be omitted for notation simplification. For example, ŝ

is equivalent to ŝ(p).

II.3.2 Non Linear Least Squares fitting

In order to fit a model to a given dataset, a score function is needed to compute the good-

ness of fit. One of the most commonly used score function is so called ’least squares’ criterion.

In the following section an overview of the least-squares (LS) formalism is presented.

The least squares problem can be defined as:

find p∗, a local minimizer for F (p) =
1

2

Ns∑
i=1

r2i (p). (II.21)

The F function is referred to as cost function or objective function, and is generally

smooth enough that for a small enough parameter variation h the following Taylor expansion

is valid:

F (p+ h) = F (p) + h
g +
1

2
h
H h+O(‖h‖3 ) (II.22)

where g ≡ F′(p) =
[
∂F
∂p1

(p), ∂F
∂p2

(p), . . . , ∂F
∂pNp

(p)
]


is the gradient and H ≡ F′′(p) =[
∂2F

∂pi∂pj
(p)
]
is the Hessian. The gradient can also be written in function of the Jacobian

matrix of the model, denoted J, as g = r
J .

In an analogous manner to a 1D function, the local minima and the local maxima satisfy

the cancellation of the first derivative. Solving a LS problem is thus reduced to solving the

(matrix) equation

F′(p∗) ≡ r
 J = 0 (II.23)

In the case of linear least squares problems, solving Eq.II.23 is achievable in one step. In

the case of the more complex non-linear least squares (NLLS) problems, only an iterative

process is possible. This further implies that starting values need to be provided to start the
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iterations. Another aspect of the iterative nature of the algorithm is the proof and speed

of convergence. To ensure convergence most algorithms enforce that subsequent iterations

evaluate the score function lower, a condition that can be written as h
F′(p) < 0. The

vector h respective of this condition is called a descent direction.

Convergence speed is defined as the speed at which the series defined by consecutive

iterations pn converges to p∗. In function of the error en = pn − p∗, method convergence

speed can be roughly classified in

– Linear convergence : ‖en+1‖ ≤ α‖en‖ with 0 < α < 1

– Quadratic convergence : ‖en+1‖ ≤ O(‖en‖2)
– Superlinear convergence : ‖en+1‖/‖en‖ → 0 for n → ∞
In the following paragraphs some important algorithms used to solve minimization prob-

lems in general and NLLS problems in particular are presented.

II.3.3 Constrained minimization and regularization

Often extra information (a priori information) is available, and finding a solution that is

respective of this information is desirable. The approach most widely used consists of adding

constraints to the minimization function. Minimization with constraints a functional f(x)

can be summarized as follows

minimize g(x) = f(x) + h(x)

subject to αi(x) = ai for i = 1, . . . , n Equality constraints

βj(x) ≤ bj for j = 1, . . . ,m Inequality constraints

The explicit constraints αi and βj are called hard constraints. The introduction of an

additional term h(x) in the minimization criterion allows the so called soft constraints, that

are local cost functions that allow to introduce more flexible a priori information. The main

difference between the two constraint types is that hard constraints have to be respected,

while soft constraints point to a preferred, but not required solution [10].

In the case of nonlinear minimization problems, it is often the case that the functional

f(x) to be minimized is very unstable so that small variations of x make large variations of

f(x) or vice-versa. In this case, the minimization usually converges to significantly different

values for very small variations in the dataset, a behaviour that is usually not desirable. In

order to limit the output variation, a special case of constraints is imposed: regularization.

Regularized solutions offer a trade-off between the best agreement to the data (f) and

the best smoothness 4. In order to control this trade-off, the cost function is re-written using

the smoothness hyper-parameter λ as:

g(x) = f(x) + λ h(x) (II.24)

Very small values of λ are equivalent to minimization without regularization, while very large

values ignore the underlying model and give only a smooth solution. For more information

on inverse problems and the use of a priori information see [140, §19.4] or other standard

works on inverse problems.

4. In this context smoothness is equivalent to the regularization function, as the latter’s purpose is usually

to avoid important solution variability.
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II.3.4 Steepest descent algorithm

The Steepest Descent method (also called Gradient Descent) is based on the choice of a

variation of the parameter p in the direction opposite to the local gradient, which is also the

direction where the function should decrease the fastest.

1. Compute steepest descent direction hn = −Jn

2. Find optimal value for αn to minimize F (pn + αnhn)

3. Compute next iteration pn+1 = pn + αnhn

The second step of a Newton-Raphson iteration involves finding the length of the vari-

ation. This is usually done via line search methods. For an introduction in line search see

the course by Madsen et al. [103, cf. §2.3].
Gradient Descent has a linear convergence rate, making it too slow for most applications.

However, combined with a good linear search algorithm to find α it may have good perfor-

mances in the initial stage of the iterations. Due to this, a number of methods use a hybrid

approach, where steepest descent is used at the beginning, and Newton’s method when the

solution is considered close enough.

II.3.5 Newton-Raphson algorithm

According to Eq.II.23 the point p∗ has to be found as to solve F′(p∗) = 0. The basis of

Newton’s method (also called Newton-Raphson method) is given by Taylor’s expansion of

F′ around p∗:

F′(p+ h) � F′(p) + F′′(p)h (II.25)

Setting the first term of the relation at the target value of F′(p + h) = 0 gives F′′(p)h =

−F′(p) and suggests the following algorithm:

1. find hn solution to Hnhn = −J

n (̂sn − s)

2. compute next iteration pn+1 = pn + hn

Newton’s method exhibits quadratic convergence rate, but is very sensitive to initial

conditions, making it the method of choice when the desired solution is known to be very

close to the initial conditions.

II.3.6 Gauss-Newton algorithm

The Gauss-Newton method is a variation of Newton-Raphson for least squares methods,

based on a local approximation of the Hessian matrix. The term hij of the Hessian H is

written as

hij =
∂

∂pi

∂

∂pj

[
[ŝ(p)− s]2

]
=

∂

∂pi

[
∂ŝ(p)

∂pj
[ŝ(p)− s]

]

=
∂2ŝ(p)

∂pi∂pj
[ŝ(p)− s] +

∂ŝ(p)

∂pi

∂ŝ(p)

∂pj

≈ ∂ŝ(p)

∂pi

∂ŝ(p)

∂pj
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The last approximation is the basis of the Gauss-Newton algorithm. It enables a faster

calculation because the Hessian H does not have to be computed, only the Jacobian J.

Reasons for the validity of the approximation include (1) the fact that curvature should

be very small if in proximity to the solution and (2) the fact that ŝ(p) − s represents the

modelling error and thus it should take statistical values distributed around zero, thus when

summing the contributions of the curvature it should give statistically zero.

In this case H can be written as H = J
J and the iteration equations become

1 : J

nJn hn = −J


n (̂sn − s)

2 : pn+1 = pn + hn

II.3.7 Trust region and damped algorithms

Methods presented so far have been based on the Taylor approximation of the score

function in Eq.II.22, but this converges only for very small values of h. We can thus write

that for very small h the function F can be approximated by a quadratic model function M

F (p+ h) � M(p) ≡ F (p) + h
g +
1

2
h
H h

The minimization problem can thus locally transformed from minimizing F to minimizing

M. In order to integrate the information that the model is sufficiently accurate only in the

neighbourhood of the point p, two approaches are mainly used: trust region methods and

damped methods.

– In a trusted region method the maximum step h with which the parameters pn can

evolve are bounded by a positive number 	, that is assumed to be known. The method

can be thus written as

find h to minimize M(h) with ‖h‖ ≤ 	

– In a damped method a penalization factor is introduced in the minimization process,

so that great variations of pn are discouraged. Usually a scaled version of the L2 norm

‖h‖ = h
h is used. Given a smoothing parameter μ ≥ 0, the method can be written

as

find h to minimize M(h) +
1

2
μh
h

II.3.8 Levenberg-Marquardt algorithm

Levenberg (1944) and then Marquardt (1963) have suggested a particularly interesting

damped Gauss-Newton method, that is used today in most NLLS minimizations. The iter-

ation step hn is defined by (
J
J+ μI

)
hn = −J
 (̂s− s)

An insight on the method behaviour can be obtained when analysing extreme values for

μ:

– for large values of μ the Hessian approximation term can be ignored, and the method

is equivalent to h � − 1
μ
J
 (̂s− s), which is the value computed by steepest descent.

This is interesting in the first iterative steps, when the solution is far from the initial

guesses.
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– for very small values of μ, the smoothing term can be ignored, and the step is equivalent

to the Gauss-Newton method: J
Jh = J
 (̂s− s). This should be the case when the

intermediate solution pn is close to p∗ and assures quasi-quadratic final convergence.

In order to update the value of μ during the iterative process, the gain ratio � is used,

defined as � = [F (p)−F (p+h)]/[M(0)−M(h)]. The gain ratio illustrates the ratio between

the actual variations of the score functions and the variations predicted by the use of the

model M. The general strategy is to change μ in function of � as follows:

– Large values of � indicate that the model is very accurate, and thus μ can be increased.

– Small values of � indicate that the model is inaccurate. Decreasing μ provides two ben-

efits in this case: (1) reducing the step length so as to improve the model accurateness

and (2) moving the iteration closer to gradient descent.

II.4 MRS current quantitation methods

Due to the non-triviality of modelling MRS(I) data, as well, perhaps, as to the difficulty

of assessing the result accuracy and reliability, numerous methods have been proposed to

quantify MRS(I) data. This section attempts to classify them, to briefly describe some

methods more relevant to this work, as well as to provide further reference to some reviews

and comparative studies.

II.4.1 Classification of MRS quantitation methods

II.4.1.1 Fitting Domain

A first approach to quantitation method classification is possible according to what input

is used for the quantitation algorithm: (i) time-domain (TD) methods use the raw signal,

as represented the signal representation in the measurement domain), (ii) frequency-domain

(FD) methods use a spectral estimate of the raw signal (mostly by DFT), while (iii) TD-FD

approaches combine the two.

TD methods benefit from the fact that data are fitted in the same domain as it is mea-

sured. This, in turn gives better flexibility and allows usually simpler models to be used.

The baseline can also be more easily separated in the TD due to its high T ∗
2 relaxation time.

The main difficulties in TD analysis lie with the (visual) assessment of the fit. VARPRO,

AMARES, AQSES and QUEST (cf. following subsections) are examples of TD methods.

Useful overviews of TD fitting have been compiled by Vanhamme et al. [190] and more

recently by Poullet et al. [139]

FD methods have historically been developed first due to the relative ease of interpreting

MRS signals in the FD. Visualization of the results, as well as of the goodness-of-fit is usually

performed in the FD, even for non-FD methods. Also, FD methods tend to be better suited

for frequency-selective analysis, mainly by reducing the number of model parameters [136,

§3.5]. However, several drawbacks are also present: artefacts introduced by the DFT, the

very high importance of phasing if taking only the spectral absorption mode, or the difficulty

of separating metabolites from the baseline. LCModel is an example of FD fitting, as well

as Gabr et al. [63]’s method of fitting circles in the Fourier complex plane. For examples of
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SVD-based FD techniques see [160], while for a more general overview of FD methods see

the review by Mierisová and Ala-Korpela [110] and the FD section in [139].

TD-FD methods combine methodology from TD and FD fitting. Examples include meth-

ods proposed by Slotboom et al. [168] and by Young/Soher et al. [171, 200, 199].

II.4.1.2 Parametric, semi-parametric and non-parametric methods

Another classification, very common in MRS quantitation literature, concerns the pres-

ence of an underlying Physical model in the quantitation algorithm. Methods that include

or approximate a physical model are called parametric 5, while models that are based on a

pure mathematical decomposition, without direct link to a Physical model are called non-

parametric. When multiple parametric and non-parametric approaches are used in the same

algorithm, it is usually described as semi-parametric.

It is very important to mention here that no MRS quantitation is possible without a priori

information, let it be solely information on the spectral peak locations. While some authors

equate a priori information to parametric models, the problem is perhaps better described

in shades of gray instead of blank and white. Generally, non-parametric methods use the a

priori information after the data have been mathematically decomposed (separated), while

parametric approaches include the information in the decomposition itself.

Another aspect worth mentioning here is linked to the method interactivity. Due to

the mathematical description involved, non-parametric approaches tend to have a black-box

approach, meaning that the data are decomposed with no user involvement. While this makes

the process fully automatic, it may also have the disadvantage of making very small use of

possible extra information available (e.g. relationship between peaks). Parametric methods

tend to be more diverse in user interactivity, as it is fixed not by the algorithm itself but

by a compromise between automation and user flexibility. For example, Provencher [146]’s

approach for LCModel enables minimal interaction between the user and the software, while

QUEST [156] allows the user to modify inner parameters for optimal use. Low interactivity

contributes to reproducibility and a certain amount of methodological accuracy even for

beginner users, while high interactivity profits the most to expert users.

Non-parametric methods, also called black-box methods, are based on a mathematical

description of the signal, such as a decomposition by HSVD or FT. Due to the general

possibility of complete or partial signal reconstruction from the mathematical decomposition,

black-box methods are also extensively used as preprocessing 6 methods.

Parametric methods, on the other hand, are based on modelling of the underlying phys-

ical processes, and tend to give values directly related to Physical measures. Most current

physical models used can be derived from Eq.II.7.

5. Please note that the meaning of “parametric” is specific in this context to MRS quantitation methods.

In other signal processing fields the definition may considerably differ.
6. Preprocessing means transforming the dataset so that the quantitation algorithm gives better results

or for better visualization. Examples include dephasing adjustment, spectral x-axis mirroring, lineshape

correction, etc.
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Semi-parametric methods usually combine a parametric description of the metabolite

spectral components with non-parametric approaches for the unknown or sparsely described

components, such as the baseline or lineshape.

II.4.2 Peak Integration

Peak integration methods are based on the model in Eq.II.7. Taking two metabolites m1

and m2, and assuming that the two signals can be separated from the signal s given by all

metabolites, their ratio can be computed using the formula

c1
c2

=
‖sm1(t = 0)‖
‖sm2(t = 0)‖

‖bm2(t = 0)‖
‖bm1(t = 0)‖ (II.26)

The ratio ‖bm2(t=0)‖
‖bm1(t=0)‖ , that corrects for the different spin multiplicities in the metabolites is a

priori known via quantum mechanics.

The separation problem is traditionally solved using the Fourier Transform of the signal

s(t), usually referred to as the signal spectrum. Visual interpretation is possible in the spectral

domain, since contributions centred around sufficiently different frequencies are represented

at different abscissa, and thus can be easily separated. Additionally, the average of the

spectral component can be usefully linked to the first point of the time series, as shown

in Eq.II.9. This enables the computation of the concentration ratios as quotients of the

areas defined by the real part of the spectral representation associated to each metabolite

contribution 7, thus providing a visual representation of metabolite concentrations:

c1
c2

=

∥∥∥∥A1

A2

∥∥∥∥ ‖bm2(t = 0)‖
‖bm1(t = 0)‖ (II.27)

where Ai represents the area under the curve of the metabolite mi.

II.4.3 AMARES / VARPRO

Method summary

Type NLLS (NL2SOL for AMARES and Levenberg-Marquardt for VARPRO)

find p as to minimize ‖s− ŝ(p)‖2
Model

Ŷn =
K∑
k=1

cke
ıϕke(−dk(1−gk+gktn)tn)eı2πfktn (II.28)

tn = t0 + n ts

Yn = Ŷn + εn

ck : component amplitude ϕk : component phase

dk : component damping fk : component frequency

t0 : delay ts : sampling time

gk : lineshape selector (gLOR
k ≡ 0,gGAU

k ≡ 1)

ε : noise (AWGN) p = (t0, ck, ϕk, αk, fk) , k = 1 . . . K

K : Number of spectral components

7. One can also say that the metabolite average concentrations are proportional to the area under their

spectral peak. It should be noted that the concentrations relate to the areas and not to the amplitudes of

the spectral peaks.
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Number of parameters : 4×K + 2

Processing Domain : Time Domain

Base-line accommodation : not estimated, weighting function of the initial

data points

Lineshape accommodation : Lorentzian and Gaussian

Implementation : jMRUI package [175] 1

[Fortran77] upon direct request

AMARES (Advanced Method for Accurate, Robust and Efficient Spectral fitting) [189]

is a method based on NLLS modelling, with advanced possibility of a priori information in-

tegration. Moreover, a more efficient approach to the minimization problem is implemented,

a development of variable projection (VARPRO) algorithms previously proposed by van der

Veen et al. [187].

Variable projection is a method to simplify the solving of non-linear MRS model mini-

mizations by eliminating, in a first approach, the linear terms. Consider the original nonlinear

problem, and its cost function defined by

G(a,d, f , φ, t0) =
N−1∑
n=0

∣∣∣∣∣yn −
K∑
k=1

ake
ıφke(−dk+ı2πfk)tn

∣∣∣∣∣
2

= ‖y −ΨL‖2 (II.29)

with

Ψ =

⎡
⎢⎣ e(−d1+ı2πf1)t0 · · · e(−dK+ı2πfK)t0

...
. . .

...

e(−d1+ı2πf1)tN−1 · · · e(−dK+ı2πfK)tN−1

⎤
⎥⎦ (II.30)

Assume that the non linear parameters that generate Ψ are known. Then the linear param-

eters L can be computed via linear least squares as L̂ = Ψ†y, where Ψ† = (Ψ
Ψ)−1Ψ


denotes the pseudo-inverse of Ψ. Substituting this estimate in the original cost function G

of Eq.II.29 results in a second cost function V , called variable projection functional:

V (d, f) = ‖y −ΨΨ†y‖ (II.31)

The variable projection functional V only depends on the signal and on the non-linear

parameters of frequency and damping factors. After minimization of V by the method

of choice (Levenberg-Marquardt in the original VARPRO), the linear parameters in L can

be estimated by LLS.

Improvements brought in AMARES as compared to VARPRO include : (1) a better

numerical implementation of the minimization problem using NL2SOL instead of Levenberg-

Marquardt, (2) better a priori information management via a singlet approach, unlike the

VARPRO multiplet approach, as well as (3) an improved possibility of imposing upper and

lower bounds to the parameters. To this day, AMARES is extensively for MRS quantitation,

especially when a basis-set approach is less practical, as in the case of 31P MRS.

1. Available at http://www.mrui.uab.es/mrui/. (Accessed February 1, 2010)
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II.4.4 LCModel

Method summary

Type Regularized NLLS (CONTIN)

find (p,B,S) as to minimize

1
σ2(Y )

∑N
k=1

(
�
[
Y (νk)− Ŷ (νk)

])2
+ ‖αSRSS‖2 + ‖αBRBB‖2+

+
∑M

l=1

(
[γl−γ0

l ]
2

σ2(γl)
+

ε2l
σ2(εl)

)
with constraints: γl ≥ 0, εl ≥ 0,

∑
S = 1

Model

Ŷ [νk] = e−ı(φ0+νkφ1)

[
NB∑
j=1

βjBj(νk) +

NM∑
l=1

cl

NS∑
n=−NS

SnMl(νk−n; γl, εl)

]
(II.32)

Y [νk] = Ŷ [νk] + ε[νk]

φ0 : zero-order phase φ1 : first-order phase

αB : baseline regularization coefficient αS : lineshape regularization coeff.

RB : baseline regularization matrix RS : lineshape regularization matrix

B : spline coeffs. for baseline model S : spline coefficients for LS model

βj : spline basis-set for baseline model νk : frequency

cl : metabolite concentration Ml : metabolite model including fre-

quency and damping factors

γl : frequency shift εl : extra damping

N : noise (AWGN) p = (cl, εl, γl, ϕ0, ϕ1) , l = 1 . . .M

M : Number of metabolite models

Number of model parameters : 3 ×M + 2 +DF (BLαB
) +DF (LSαB

)

Processing domain : Frequency Domain (real part only)

Base-line accommodation : Parametric-Regularized / Cubic B-Splines

Lineshape accommodation : Regularized model (reference peak)

Implementation : LCMgui/LCModel package 8 [146]

LCModel (Linear Combination of Model) [145, 146] is the first MRS quantitation method

to have proposed a semi-parametric NLLS approach based on the a priori information via a

metabolite basis-set. The model is built on the real part of the FT spectrum, and is composed

of two parts, one representing the spectral lines and a second representing the baseline.

Minimization is done using the CONTIN software, developed previously by Provencher [142,

143].

The baseline is modelled by LCModel using a cubic B-spline approach. This method,

seen as a generalization of the Bézier 9 curve, allows that given a set of Nk control points

Fc = (f c)k=1...Nk
, an interpolation is found that is continuously 2 times differentiable. When

this is applied for smoothing a curve, the value of the control points are computed from the

8. Demo available at http://s-provencher.com/pages/lcmodel.shtml (Accessed February 1, 2010)
9. Bézier (or Bernstein-Bézier) curves are extensively used in computer graphics for representation of

smooth curves. For more information, cf. http://mathworld.wolfram.com/BezierCurve.html and refer-

ences therein.
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data to be fitted using a least squares approach. In addition, it is possible to introduce a

penalty for the smoothness of the curve. LCModel uses for this purpose a smoothness matrix

defined as

Ri,j =

∫
B′′

i (f)B
′′
j (f)df

. Estimation for the smoothness hyper-parameter λ is done internally in CONTIN.

LCModel is a fully automated package, with the intent of very high simplicity of use, at

the expense, perhaps, of some tuning possibilities. Metabolite databases are stored internally,

mainly from in vitro measures and/or GAMMA simulated spectra [144]. Error estimation

is provided via CRLB, but up to this date the exact method used has not been published,

thus it is not possible to say to what extent and how, for example, the baseline estimation

errors are accounted for.

II.4.5 AQSES

Method summary

Type Regularized NLLS (Levenberg-Marquardt)

find (p,k) as to minimize ‖s− ŝ(p)‖2 + λ2‖Dk‖2

Model

ŝ[n] =
M∑

m=1

(cmbm[n] exp(ıϕm + αmt[n] + ı2πfm)t[n] + (Ak)[n]) (II.33)

s[n] = ŝ[n] +N [n]

cm : metabolite amplitudes ϕm : metabolite extra dephasing

αm : metabolite extra damping fm : metabolite frequency shift

k : spline amplitudes A : spline basis set

bm : metabolite basis signal M : Number of metabolites

N : noise (AWGN) p = (cm, ϕm, αm, fm) , m = 1 . . .M

Number of model parameters : 4×M +DF (Akλ)

Processing domain : Time (Measurement) Domain

Base-line accommodation : Parametric-Regularized / Splines

Lineshape accommodation : Lorentzian (Basis-set can have any lineshape)

Implementation : [MATLAB] SPID [137]

[java] AQSES GUI [121]

AQSES (Accurate Quantitation of Short Echo time domain Signals) [138], is a time-

domain regularized-NLLS method that incorporates a priori information via a metabolite

basis-set. The model function is built in the complex space C = R
2 and composed of two

parts, one representing the actual signal, and a second one representing the base-line.

The signal is parametrized as a linear combination of a Lorentzian-modified basis-set

signals, thus for each metabolite m included in the basis-set four parameters are used: am-

plitude cm, dephasing ϕm, extra damping factor αm and frequency shift fm. The base line

is modelled as the sum of splines in the frequency domain, then transformed in the time

domain via the Inverse Fourier Transform (IFT). The base-line model can thus be written as
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the matrix multiplication A�k, where A is the matrix formed by the IFT-transformed splines

and �k is the vector containing the linear coefficients.

A maximum-phase impulse response filter MP-FIR [180] is also used to confine the min-

imization procedure to a given spectral zone of interest. The MP-FIR coefficients are com-

puted automatically prior to the actual ACQSES procedure [136, p.36], but the filter is

applied at each step of the minimization process, both on the fitted signal s and on the

fitting signal ŝ.

For fitting the model to the data AQSES uses a regularized non linear least squares algo-

rithm (NLLS), based on the Levenberg-Marquardt[116] optimization algorithm. A modified

version of variable projection, proposed by Sima and Huffel [166], is used to split the mini-

mization problem in a linear part and a non-linear part, while also imposing constraints on

the upper and lower bounds of the nonlinear parameters. Initial values for the non linear

parameters, required by the Levenberg-Marquardt algorithm, are initialized at zero.

II.4.6 QUEST

Method summary

Type NLLS (Levenberg-Marquardt)

find p as to minimize ‖s− ŝ(p)− B‖
Model

ŝ[n] = exp(jϕ0)
M∑

m=1

(cmbm[n] exp(ıϕm + αmt[n] + ı2πfmt[n])) (II.34)

t[n] = t0 + nts

s[n] = ŝ[n] + B[n] + ε[n]

cm : metabolite amplitude ϕm : metabolite phase

αm : metabolite extra damping fm : metabolite frequency shift

t0 : delay ts : sampling time

ϕ0 : first order phase B : base-line

ε : noise (AWGN) p = (ϕ0, cm, ϕm, αm, fm) , m = 1 . . .M

Number of parameters : 4M + 2 +DF (B)
Processing domain : Time (Measurement) Domain

Base-line accommodation : Semiparametric / HLSVD

Lineshape accommodation : Lorentzian (Basis-set can have any lineshape)

Implementation : jMRUI package [175] 10

QUEST (QUantitation based on QUantum ESTimation), proposed by Ratiney et al.

[156, 153] is a time domain NLLS method that incorporates a priori information via a

metabolite basis-set. The model function is built in the complex space C = R
2. Base-line

accommodation is achieved via a non-parametric procedure based on the presence of the

base-line only in the first points of the acquired signal.

10. Available at http://www.mrui.uab.es/mrui/. (Accessed February 1, 2010)
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The signal is parametrized as a linear combination of a Lorentzian-modified basis-set

signals, thus for each metabolite m included in the basis-set four parameters are used: am-

plitude cm, phase ϕm, extra damping factors αm and frequency shift fm. Two additional

parameters allow for overall phasing: zero order phase ϕ0 and the receiver dead-time t0
11.

In some cases t0 is estimated before the actual QUEST procedure, and is transmitted as a

fixed value to the algorithm, for better convergence.

Base-line accommodation is provided in QUEST via a semi-parametric method based

on the distinctive time-domain distributions of the metabolite and macromolecule signals.

The separation principle is somewhat similar to the approach proposed by Weiland et al.

[192], although the two methods diverge considerably in the choice of later modelling and

processing, as QUEST makes use of HSVD. The macromolecule signal sMM, due to the

high T2 of its components decays much faster than the metabolite signal smet. Considering

that after a known time τMM the value of the macromolecule signal becomes much smaller

than the noise, the overall signal s = sMM + smet can be split in the sections s0→τMM =

s0→τMM
met + s0→τMM

MM and sτMM→∞ = sτMM→∞
met + sτMM→∞

MM ≈ sτMM→∞
met .

The algorithm used for baseline accommodation is thus the following:

Substract-QUEST

input

s signal to be quantified.

τMM Time after which the macromolecule signal is considered negli-

gible (truncating time).

b Metabolite basis-set

step

01 Compute sτMM→∞
met by time-wise truncation of s.

02 Quantify sτMM→∞
met using QUEST. Store result in ptrunc.

03 Construct the metabolite model for the whole time domain:

ŝmet = ŝ(ptrunc).

04 Estimate the macromolecule signal by subtraction

ŝMM = s− ŝ(ptrunc).

05 Model ŝMM using HSVD. The result is s̃MM.

06 Estimate metabolite only signal s̃met = s− s̃MM

07 Quantify s̃met using QUEST. Store result in psub.

output

psub Value of final estimated parameters

Due to step 6, the algorithm is referred to as Subtract-QUEST, as the final quantitation is

done on a signal from which the baseline components have been subtracted. Another version

of the algorithm has been proposed, named InBase-QUEST, where steps 6-7 of Subtract

11. The delay represented by t0 translates in the frequency domain into dephasing linearly dependent to

frequency, according to the relationship φ1(f) = 2πft0



56 CHAPTER II. SIGNAL PROCESSING FOR MRS AND MRSI

QUEST are replaced with one QUEST quantitation, the specificity of which is that the

complex exponential components of s̃MM have been added to the metabolite basis-set.

II.4.7 Other newly proposed methods

In the following paragraphs some other quantitation methods present in literature are

briefly described, with a stress on the novel approaches.

– TARQUIN (Totally Automatic and Robust Quantitation In NMR), proposed in [157]

and implemented in the open source TARQUIN package 12 is a fully automated TD

method based on a simulated metabolite basis-set. In order to account for effects

such as pH, a method is described to iteratively improve the basis-set by adapting it

to the signal. Metabolite basis-set signals are subdivided into semi-dependent groups

(multiplets) and parameters such as frequency shifts and extra damping factors are

computed for each group through line search.

– Elster et al. [57] propose a TDFD semi-parametric method with baseline accom-

modation via reproducing kernel Hilbert space (RKHS) techniques. An interesting

development is the alternative proposed to CRLB, based on a Bayesian approach.

– Belkić and Belkić [18] proposes a quantitation method based on the Fast Padé Trans-

form (FPT). The spectral estimate provided by the FPT is used to compute all the

spectral parameters. Froissart doublets (zero-pole cancellations) are used to separate

useful peaks from noise. The authors claim [19] that this FPT based method outper-

forms established ones, such as AMARES or LCModel.

– Artificial Neural Networks (ANN) are used by Bhat et al. [22] to provide an alternative

to traditional line-fitting procedures. Wavelet shrinkage Young et al. [200] is used to

accommodate the baseline, while QUALITY is used for lineshape processing. Quanti-

tation is performed in the FD, as a combination of Gaussian and Lorentzian peaks, via

a radial basis function neural network (RBFNN) approach. The authors emphasize the

excellent computational time of the method as compared to line fitting based methods.

– CFIT (Circular FITting) is a method proposed by Gabr et al. [63], based on the fitting

of circles in the 2-D �×� representation of the signal spectra. Baseline distortions are

accounted via an elastic free-form regularized contour called “snake”. Baseline accom-

modation and metabolite-fitting via minimizing the error energy occur in consecutive

iterative steps, until convergence criteria are satisfied. Fig.II.4 shows an example of

the representation used, in the case of a simulated 31P human brain spectrum.

– Principal Component Analysis (PCA) techniques applied to MRS spectroscopy have

been reviewed by Stoyanova and Brown [178], and more recently by Poullet et al.

[139]. PCA is a statistical method that performs an orthogonal transformation so that

the variance is maximized on consecutive axes (the greatest part of the variance is

explained by the first axis/variable, second greatest variance component by the second

axis/variable, and so on). In order for PCA to work, a statistical population of spectra

with independent concentrations is necessary.

– A Time-Domain Frequency-Domain (TD-FD) approach has been proposed by Slot-

boom et al. [168], where the model is kept in the TD but the minimization itself is

done after FT. While if the whole spectral domain is investigated this is equivalent

to a TD approach, when frequency-selective approaches are considered, the use of the

12. Available at http://tarquin.sourceforge.net/. Accessed March 1, 2010
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Figure II.4: CFIT spectral representation. (A) The real part of a simulated 31P human

brain spectrum with noise σ = 25. Part (B) is the 2D projection of the 3D spectrum trajectory

onto the real-imaginary plane. Part (C) is a 3D plot of the spectrum showing the helical

trajectory of the peaks. Reproduced from Gabr et al. [63].

signal FT reduces significantly the estimation time.

II.4.8 Some method reviews and comparisons

For a recent review of quantitation methods, as well as further references, see the work

of Poullet et al. [139]. While less recent, Vanhamme et al. [190] and Mierisová and Ala-

Korpela [110] provide valuable insights in TD and FD methods respectively. To this day

no extensive comparison has been made between different methods, although examples of

comparative measurement exist for certain method pairs: LCModel-QUEST (Li et al. [96]

and Shen et al. [163] ) LCModel-AMARES (Weis et al. [193]), AMARES-QUEST ( Calvar

[30] ) , AQSES-QUEST (Poullet et al. [138]), etc.

II.5 Lineshape and decay function

A phenomenon of particular interest to spectroscopy in general, and MRS in particular,

is the spectral dispersion resulting in the much faster transverse decay time T ∗
2 . Consider

all the spins belonging to the same species k (experiencing the same nuclear shielding and

the same J-coupling). Ideally, all these spins would contribute to the MRS signal at the

same center frequency fk, and, should the T2 relaxation be left apart, the contributions can

be modeled by a value proportional only to the concentration of the spin species and the

frequency fk. This is usually denoted as a Dirac δ, and is mathematically described as a

distribution in the Hilbert space. The discrete counterpart is somewhat simpler, as the Dirac

is defined as 13.

δτ [tn] =

{
1 if tn = τ

0 otherwise

As the transverse relaxation is taken into consideration, the ensuing signal can be written as

the composition of the undamped contribution and the T2 decay. How the two phenomena

13. Referring simply to the Dirac function, or to δ without mention of the parameter τ implies τ = 0



58 CHAPTER II. SIGNAL PROCESSING FOR MRS AND MRSI

interact depends on the mathematical space: in the measurement domain (time domain)

the composition amounts to a time-wise multiplication, while in the frequency domain it

amounts to a convolution:

time domain : sk(t) = ck exp ıϕk exp(ı2πfkt) exp(− t

T2,k

) (II.35)

frequency domain : Sk(f) = ck exp ıϕk δfk(f) ∗DL,T2,k
(f) (II.36)

where DL,T2,k
= F{exp(− t

T2,k
)} is the FT corresponding to the Lorentzian damping function

generated by T2,k relaxation. The function D(f) is termed lineshape, and its IFT d(t) is

commonly called decay function. In the simple case described here, of ideal T2 decay, an

analytical expression is available for both the lineshape and the decay function.

In the real case, the distribution of spectral contributions around fk depends on many

factors, so that an analytical expression is usually unavailable. However, a similar approach

is possible, based on Eq.II.7.

time domain : s(t) = VV OI

M∑
m=1

c̄m exp ıϕm dm(t)︸ ︷︷ ︸
decay function

bm(t)︸ ︷︷ ︸
m. basis-signal

(II.37)

frequency domain : S(f) = VV OI

M∑
m=1

c̄m exp ıϕm Dm(f)︸ ︷︷ ︸
lineshape

∗ Bm(f)︸ ︷︷ ︸
m. basis-signal

(II.38)

whereD(f) = F{d(t)} is the FT of the decay function d.

Equations II.37 and II.38, as well as figure II.5 show that the two notions very important

to MRS spectroscopy: (1) the (known) frequency shifts integrated in the metabolite basis-

set and (2) the (unknown) lineshapes associated with different metabolites. In order to

measure the parameters of interest (cm), both terms have to be taken into account. The

next paragraphs describe different options for handling the lineshape term, while the whole

quantitation process is reviewed in §II.4.

II.5.1 Current approaches to lineshape accommodation in MRS

Quantitation of a MRS signal using a priori generally requires that a model of the signal

is built up using a basis-set. The most commonly used a priori information is the relations

that exist between the peaks of metabolite spectra, due mainly to the influence of nearby

protons within the molecular structure.

There are two strategies to gather the basis-set: (a) a separate in vitro acquisition for each

metabolite, using as much as possible the same experimental conditions as the acquisition

of interest, or (b) using quantum simulation software ( such as NMR-SCOPE [69], GAMMA

[170, 172]), or others). The first option has the advantage of providing information that

includes partially the imperfections of the acquisition process, that would be otherwise very

difficult to model. It is important to notice that while the acquisition sequence is the same,

the actual distribution of the B0 field is not the same, thus the lineshape of the acquired

signal is not the same in vitro as in vivo. Using quantum simulation software, on the other

hand, requires no additional acquisition time, which is a very important aspect for clinicians.
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Figure II.5: Decay function and lineshape. To a signal with a very small TD decay (a), a

decay function (b) is applied. In the FD this corresponds to a convolution with a lineshape

(II.b). The resulting signal (c) exhibits fast decay (in the TD) and an asymmetric lineshape

(in the FD). Top Row (I) : time domain (TD). Bottom Row (II) : frequency domain (FD).

Only the real part is plotted (absorption mode). Notice in (II.a) the artefact of DFT repre-

sentation of very narrow spectra: peaks appear to have different phasing, as well as different

amplitudes, although in reality phasing is perfect and all amplitudes are equal. Also notice

in (II.c) the difficulty of distinguishing all five peaks.
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Throughout this work, a choice has been made to work with the quantum simulation

NMR-SCOPE. Several factors have influenced this decision, among which the complete in-

tegration of NMR-SCOPE into the jMRUI software package [175], as well as the need to

implement specific lineshapes, which could not have been achieved with in vitro acquisition.

Lineshape handling within the MRS quantitation process has two aspects: (1) the choice

of a type of accommodation of the unknown acquired lineshape and (2) the decision of

the adaptation target (ie. should the acquired signal be corrected to accommodate a known

lineshape, or should the prior information be adapted so as to fit the acquired signal without

modification of the latter). In the following paragraphs these two aspects are analyzed and

some pertinent methods in current use are briefly described.

II.5.1.1 Classification by number of accommodation parameters

Any method that accommodates lineshape will introduce a number of degrees of freedom

(DF) in the model, thus increasing variance of the estimator. The number of degrees of

freedom introduces increases roughly with the number of parameters in the model. In order

to classify the methods, it shall be considered that a lineshape model that allows an analytical

expression that does not depend on the number of points of the signal is parametric. Methods

that use approaches similar to filtering are to be considered non-parametric.

Lineshape accommodation methods could thus be classified as follows:

A The parametric approach defines analytical expressions of the lineshape, based on a phys-

ical underlying model. Most used in MRS are the following lineshapes:

1. Lorentzian dL(t) = exp(−αt)

The Lorentzian lineshape arises from the intrinsic interactions between spins. Under

perfect acquisition conditions, spectra are expected to have a Lorentzian lineshape.

2. Gaussian dG(t) = exp(−βt2) or dG(t) = exp(−β2t2)

The Gaussian lineshape is a consequence of the Central Limit Theorem, that states

that if a large number statistical distributions are summed, the result will tend to

be a Gaussian (Normal) distribution. A Gaussian lineshape can thus be considered

as the result of the influence of many unknown/unparameterizable factors. One of

the most important factors in this category is the spatial distribution of the actual

B0 magnetic field.

3. Voigt dV(t) = exp(−αt− βt2) or dV(t) = exp(−αt− β2t2)

Voigt lineshape is the product of Gaussian and Lorentzian lineshapes. The Lorentz

part expresses the ideal T2 decay mechanism, while the Gaussian part the influence of

unknown / unparameterizable factors. One of the difficulties of the Voigt lineshape

is that while its TD formula is quite simple, there is not simple analytical expression

for the FD formula. However, extensive work has been done in other spectroscopy

fields to compute good approximations for the Voigt FD profile. For a description of

some of the advantages of using the Voigt lineshape in MRS, see [106] and references

therein.

4. Howarth et al. [81] proposes a generalization of the Gauss-Lorentz lineshapes based

on the Tsallis distributions, while also providing an interesting review of the current

literature for NMR (and Electron Paramagnetic Resonance EPR) spectral lineshape

analytical accommodation.
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Figure II.6: Commonly used lineshapes for MRS peak accommodation. Thick blue line:

Gaussian profile dG = exp(−βGt
2), with βG = 2 · 10−4 s−2 ; continuous thin line :

Lorentzian profile dL = exp(−αLt), with αL =
√
4 ln 2 βG ; dashed thin line: Voigt pro-

file dV = exp(−αV t−βV t
2), with αV = αL

2
and βV = βG

2
. All profiles have the area under the

real part of the spectra equal to one. Lorentz and Gauss profile parameters have been chosen

so that the real part of the spectra have the same width at half-height. Left and right columns

have linear and, respectively, logarithmic ordinate scales.
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5. Jimenez-Dominguez et al. [85] propose an asymmetric lineshape based on the plasma

dispersion function. The lineshape is derived from the Voigt lineshape, with an asym-

metry factor introduced in such a way as to keep the Kramers-Kronig equations 14

valid.

6. Stancik and Brauns [174] propose a simple lineshape variation based on the Lorentz

and Gauss models, with an underlying asymmetric distribution.

B The non-parametric approach is typically linked to isolation and then mathematical mod-

eling of the lineshape. It is also possible to introduce the mathematical decomposition

of the lineshape into the estimator as parameters of ’nuisance’ 15. For example, Barache

et al. [7] use Continuous Wavelet Transform (CWT) modeling to correct the lineshape

for eddy current effects, while Provencher [145] introduces a spline decomposition of the

lineshape in the overall minimization function.

C The pre-processing approach is a special case of a non-parametric accommodation of the

lineshape. Typically using a reference signal or a reference peak, lineshape parameters

are partially extracted, and a processing step is performed on the spectrum, attempting

the transformation of the lineshape into a known one, usually Lorentzian. Some of the

methods widely used today include:

– Eddy Current Compensation (ECC), proposed by Klose [88]. Eddy Currents are com-

pensated using a reference peak, usually water non-suppressed signal. Only the phase

of the signal points is corrected.

– QUALITY, proposed by de Graaf et al. [49], is another method of lineshape prepro-

cessing inspired by the earlier work of Morris [117]. The acquired signal is deconvoluted

using point-wise division in the time domain, either using a reference peak or separately

acquired data. Maudsley et al. [108] proposed further development in automating the

process based on self-deconvolution.

– QUECC, by Bartha et al. [11] is devised to be a combination of QUALITY - for points

that have a sufficient SNR, and ECC - for the rest of the points. An algorithm is also

devised to internally estimate the limit between the two. By correcting only the phase

factor for points with small SNR, the risk of division-by-zero is limited.

II.5.1.2 Classification by accommodation target

There are basically four strategies that are currently proposed to treat lineshape accom-

modation. Each of them will now be briefly discussed:

I. No lineshape accommodation is a commonly used option. As it will be further

discussed, this is a very viable option when the acquisition conditions are very good, and

thus the actual lineshape of the acquired signal approaches an analytical model that can be

used for quantum simulation.

II. Adaptation of the signal lineshape to the basis-set lineshape is commonly

done as a preprocessing step before quantitation. It involves modifying the lineshape of the

14. the Kramers-Kronig equations (Kramers, Atti Cong Intern Fisica, 2, 545–557, 1927 and Kronig, J Opt

Soc Am, 12, 547–557, 1926 ) link the real and imaginary part of complex functions that are analytical in

the upper half plane (their imaginary part is always positive).
15. as opposed to parameters of interest, such as concentration.
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acquired signal, by deconvolution, and eventually re-convolution with an analytical lineshape

specific to the basis-set. Methods such as QUALITY [117] or QUECC [11] use a reference

peak to achieve this.

III. Adaptation of the basis-set lineshape to the signal lineshape is the method of

choice proposed in this work. Although obvious steps towards this are taken when simulation

parameters are chosen as close to the experimental conditions as possible, thus working, for

example, with signals that have the same width at half-width, we propose to take this concept

even further and apply an estimated lineshape specific to the acquisition on the basis-set.

IV. Introduction of the lineshape as degrees of freedom in the quantitation

proper is proposed, for example, by Provencher [145] in LCModel or by Poullet et al. [138]

in AQSES.

It should be noted, however, that the classification is a little bit artificial, as most quan-

titation methodologies today exploit a combination of these methods. Apodisation, for

example may be regarded as a preprocessing step, but it amounts to modifying the lineshape

of the acquired data.

II.6 Assessing the quality of quantified spectra

Parameter estimation is not only about giving an estimate of the parameter value. Press

et al. [140, §15.0] write, perhaps in an overly sarcastic manner, that:

“The important message is that fitting of parameters is not the end-all of model

parameter estimation. To be genuinely useful, a fitting procedure should provide

(i) parameters, (ii) error estimates on the parameters or a way to sample from

their distribution, and (iii) a statistical measure of goodness-of-fit. When the

third item suggests that the model is an unlikely match to the data, then items (i)

and (ii) are probably worthless. Unfortunately, many practitioners of parameter

estimation, never proceed beyond item (i). They deem acceptable if a graph of

data and model “looks good”. This approach is known as chi-by-the-eye. Luckily,

its practitioners get what they deserve.”

This quote emphasizes the need of a way of assessing fitting procedure results, mainly by

providing objective criteria. However, one should not go into the other extreme: providing

only numerical description of data, without a visual representation. As shown by numerous

researchers [see 5, 161], visual representation can sometimes prove invaluable for assessment

of bad fits. Figure II.7 shows four datasets that seem to be equally well fitted by the same

linear model, as shown by dataset statistics (mean, variance, correlation and regression line).

On visual inspection, per contra, it is possible to separate noise influence (A), from fitting

the wrong model (B) or from the influence of single outliers (C,D). Providing numerical

estimates for estimation accuracy and reliability is complementary to visual representation.

This section tries thus to answer two distinct questions:

(Q1) : How appropriate is the model for the data ?

(Q2) : Assuming that the model is appropriate, how much can the estimated parameters

be trusted?
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Figure II.7: Anscombe’s Quartet [5] showing some of the pitfalls of using simple nu-

merical statistics for goodness-of-fit assessment. All four data sets have the same mean

(X̄i = 9.0, Ȳi = 11.0), standard deviation (σXi = 3.317, σY i = 2.032), correlation between x

and y (corr(Xi, Yi) = 0.816) and LLS regression line yi = 0.5xi + 3 (dashed line).

The first question can be answered numerically by providing objective criteria for rejecting

measurements. The second question is usually answered by providing a confidence interval

for parameter values.

II.6.1 About estimation accuracy and reliability

In order to provide some answers to the two questions previously asked, the introduction

of some statistical concepts is necessary. Although by all means not the only approach,

the point of view chosen here is the Bayesian theory, that replaces the terms of error in

the result by the probability of the result. In this point of view the estimation question of

measuring the true parameters p∗ by analysing the measured signal s is converted to What

is the conditional probability P(p∗|s) that the measured parameters p are equal to the true

values parameters p∗ when the signal s is known ?

Bayes’s theorem provides some clues by linking P(p|s) to P(s|p), that is the probability
that the signal s is realized if the true parameter values are equal to p.

P(p|s) = P(s|p) P(p)

P(s)
(II.39)

The two new terms appearing in Eq.II.39 are linked to the absolute overall probability

of the true values p∗ and of the signal s. Since the signal has been measured, it can be

considered that P(s) = 1. The probability of the model, on the other hand, is linked to a

priori information. If this information is unavailable, then often a non-informative prior is

used, that is a constant that does not depend on p.

The final steps towards estimation are the replacement of the signal s with the error

ε = s− ŝ and the assumption that this error ε follows a probability law, usually the normal

distribution. In this case the conditional probability of having the signal s when the model

is correct, is given by the product of error probabilities for each point [140, §15.1]:

P(s|p) ∝
N−1∏
i=0

{
exp

[
−1

2

(
si − ŝi

σ

)2
]
	s

}
(II.40)

where σ is the true standard deviation associated with the normal law used N (0, σ) and 	s

is a very small integration-type variable. The function in formula II.40 , sometimes denoted

L(s,p) is also called the likelihood function, as it defines how likely is to have s when p

is known. Maximization of the likelihood function, or more commonly minimization of its
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natural logarithm results in the least squares formula. Estimators built in this manner are

referred to as Maximum Likelihood Estimators (MLE).

For some examples of explicit Bayesian theory applied to MRS quantitation , see Neil

and Bretthorst [120], [28] and references therein. For a brief introduction into Bayesian

techniques applied to biomedical research see Eddy [54]’s short discussion.

One key point to mention here is that while the MLE finds the most probable solution, the

likelihood function describes the probability of the whole set of possible solutions. Taking

a small interval [pmin,pmax] it is thus possible to compute the probability that the true,

unknown solution lies within the interval. If P(pmin ≤ p ≤ pmax|s) = α ∈ [0, 1], then

CIα ≡ [pmin,pmax] is referred to as the α confidence interval (CI). A more general version of

the CI is the α Confidence Region (CRα), that is defined as a multi-dimensional area with

100× α% of probability that the true values are within.

Since the influence of many independent effects can be modelled as a normal distribution

(cf. Central Limit Theorem in [98] or in any other work on mathematical statistics ), in most

cases unknown distributions are assumed to be normal. This in turn gives a particularly

simple way of estimating CI for parameters, based solely on their standard deviation σ.

Values such as CI0.68 = ±σ, CI0.95 = ±2σ or CI0.997 = ±3σ have been extensively used

in literature, to a point that the underlying hypothesis of normal distribution are often

disregarded. While using LS estimators is possible even when normality is not verified, it

should not be forgotten that the CI computed do depend on the desired confidence α, and

that CI should be computed taking into account all the specifics probability distribution

(and not just the standard distribution).

There are also cases when it is obvious that the estimated parameter cannot have a

normal distribution. Some of the cases in MRS are:

– Metabolite amplitudes are computed as the module of a complex function (see the

context function at the end of §II.1 ). If the real and imaginary parts are assumed

to be normally distributed, squared amplitudes follow a χ2 law with two degrees of

freedom.

– Dephasing is only defined on an interval of size 2π. If the un-wrapped dephasing

distribution may be assumed normal, the result of wrapping should be taken into

account.

– Ratios of metabolite amplitudes c1
c1
appear very often in MRS studies, as to this date few

methods exist for absolute quantitation. As seen previously, squared amplitudes can

be assumed to follow a non-central χ2 distribution with 2 degrees of freedom. Follows

that the squared relative amplitudes follow a doubly non-central F-distribution [194].

While for high SNR cases this distribution can be conveniently approximated, it can

also become messy and give unexpected CI in certain cases, especially for poor choice

of the reference metabolite m2.

II.6.2 Providing a statistical distribution for the estimated pa-

rameters

The framework previously discussed for the estimator can be generalized to the whole

MRS measurement paradigm. First let the measurement paradigm be defined

Given an environment perfectly described by a set of (infinite) unknown variables

ζ, where a signal s is produced, estimate the value of a subset p∗ ∈ ζ, called
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variables of interest. The variables p∗ are said to be measured.

It can be seen that the measurement does not only include the estimation itself, but also

questions the signal s. Moreover, it puts the focus on the variable of interest, that are the

purpose of a measurement.

In order to compute incertitudes and confidence intervals for measurements, as seen pre-

viously, the probability distribution P(p|p∗) has to be described. This is done by estimating

its cumulative distribution function (CDF), or, if not enough information is available, its em-

pirical distribution function (EDF) [47]. The difference between the two is that in the case

of the EDF the same weight is put on each observation, making it a discrete function that

depends on the number of observations; while the CDF is an (usually) unknown probability

function that generates the data. The two converge as the number of samples increases to

infinity 16.

Several possibilities are available to estimate the EDF/CDF:

– Sufficient experimental realizations provide an asymptotically true estimation for

the measurement CDF. However, most often this solution is unavailable, mainly due

to the increased cost, in time and other resources. Another possible obstacle for MRS

repeated acquisition is that the variable of interest may vary in time, thus making

sufficient experimental realizations impossible to obtain. Un-averaged MRS multiple

acquisitions (before the scanner averaging) tend, however, to be included into this

category, should the number of signals be sufficient.

– Analytical methods focus on the mathematical inner workings of acquisition and

estimation to provide estimations for the CDF. As such, these methods make assump-

tions on the nature of the processes, and are susceptible to giving the wrong results

should the assumptions not be verified. Examples in MRS include the Cramér-Rao

Lower Variance Bounds (cf. §II.6.4) or the alternative Bayesian approach by Elster

et al. [57].

– Monte Carlo methods (MC) are computer-intensive approaches based on the as-

sumption that if a given model is known for the process, more measurements can be

simulated and the EDF sufficiently described to estimate the CDF. This eliminates

the need for analytical (mostly very complicated) approaches, at the expense of high

computational resources, explaining the recent vast use in experimental science [140,

§15.6.1]. The common MC approach to CDF (and thus parameter CI) estimation is

shown in Fig.II.8c: the measured signal s0 is quantified, and the resulting parameter

value p0 is used to simulate a population of signals si. The parameter population pi

estimated from si is used to compute the estimator EDF.

– Resampling methods are an alternative to MC approaches, when the model is un-

known or incomplete. Resampling methods require that a population of signals already

be present, and its focus is on improving the CDF estimation by increasing the pop-

ulation size. Two approaches are generally employed: (1) subsampling, where the

new population is chosen as sub-samples of the original population, and (2) bootstrap,

where the new population is replicated by random sampling with replacement. More

on resampling methods is discussed in §II.6.3.

16. For more information on empirical approaches see [58, §1.6] or other similar statistics works
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II.6.3 Resampling methods

Resampling techniques are very powerful approaches to replace the MC when not enough

information about the underlying processes is known. The idea behind resampling is that

the initial data available are resampled so that new sets of data are created, and these

new sets are used to estimated the overall CDF in the same way as MC. Instead of using

an analytical model, as in MC, resampling uses an estimated probability model from the

original population. Although having had a difficult time getting accepted by statisticians,

resampling has lately gained a very good reputation, mostly by the publication of theorems

and analytical studies showing its validity [140, §15.6.2]. Figure II.9 illustrates the concept

of resampling (in the case of bootstrapping).

Figure II.9: Schematic representation of the bootstrap procedure. Unknown probability

model F is measured (observed) giving signal X. Using the observed samples X, the empirical

probability model F̂ is built and then sampled by X∗. Application of the estimator (statistic)

ŝ on the bootstrap set allows its probability function to be computed, eventually providing

confidence intervals for the statistic of interest θ̂. Adapted from Efron and Tibshirani [56]

The two current approaches, consisting of (1) subsampling and (2) bootstrapping are now

further discussed. An illustration of the difference between the two is given in Fig.II.10.

Subsampling is a version of resampling where new populations are built by sampling the

original population without replacement. The direct consequence is that the resampled popu-

lations have smaller size, but no duplication of elements. Several flavours exist: (i) jackknifing

creates populations of size M < N from the original population of size N and then modifies

the estimated statistics to account for size difference; (ii) the “all sub-samples” method cre-

ates all possible combinations of sub-samples and uses the particular statistical properties

of the ensuing distribution; (iii) half-sampling methods are used for non-parametric delta

method for variance approximation. For more information and bibliography on subsampling

methods see the review by Davison and Hinkley [47, §2.8-9].

Bootstrapping is a method introduced by Efron [55] and further analysed by Efron and

Tibshirani [56], based on the resampling of the original population with replacement. Be-

cause of the possibility of data replication, bootstrap applications are more limited than

jackknifing, as the initial population has to be independent and identically distributed (iid).



II.6. ASSESSING THE QUALITY OF QUANTIFIED SPECTRA 69

Figure II.10: Illustration of the difference between jackknife (a) and bootstrap (b) ap-

proaches. Jackknifing produces populations of inferior size, without any element repetition,

while bootstrapping produces populations of the same size as the original, but replication

randomly occurs. Element F is highlighted in blue to show possible relative importance of

elements: it can be found once or not at all in (a), while it can be found any number of times

in (b).

This eliminates data such as MRS signals (FIDs), where consecutive points are not indepen-

dent. Furthermore, bootstrap applications for rank statistics have to be closely watched, as

data replication might falsify the results.

In signal processing, in most cases the iid condition is violated. However, dependent data

bootstrap approaches have also been developed that are based either on partial knowledge of

the underlying model or the concept of weak-dependence. For more information on bootstrap

applications in signal processing, as well as for a good introduction in bootstrapping see the

course by Zoubir [206] or the subsequent book [205]. For an introduction in the statistical

resampling methods consult the work of Good [65], while for a more in-depth approach see

the comprehensive book by Davison and Hinkley [47].

Bootstrap methods have so far seen limited application in NMR, especially due to the

lack of independence between samples. In Diffusion Tensor Imaging (DTI), where large

data populations are available, bootstrap approaches have been applied to estimate DTI

parameter incertitudes (see Zhu et al. [203] and the review by Chung et al. [37]) , as well

as by Heim et al. [79] to investigate data quality. In MRI, M’hiri et al. [109] uses bootstrap

to speed up unsupervised HMRF-EM brain image segmentation. Ratiney et al. [154] uses

bootstrap and jackknife bagging to improve SNR in MRSI experiments designed for brain

tissue segmentation. Su et al. [179] provides an example of using bootstrapping in computing

performance of the proposed spectral separation MRSI method. Also see the bootstrap

application for HR-NMR Spectroscopy feature selection by Brelstaff et al. [26].

In MRS signal processing, Bolan et al. [24] have studied the feasibility of a bootstrap

approach for estimating the variance of spectral fitting parameters. In this approach, data

should be recorded prior to machine averaging. Simulations are performed to compare boot-

strap to CRLB, and it is subsequently shown that bootstrap is less prone to SNR-induced bias

than CRLB. However, results concerning in vivo signals show CRLB to be more consistent.

II.6.4 Cramér-Rao Lower Bounds (CRLB)

Of special interest to the quality of quantitation are the minimal error levels attainable.

The Cramér-Rao inequality (also called the information inequality) expresses a value for the
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lower bound of the variance of estimators of deterministic parameters [45, 152]. This bound

is usually referred to as the Cramér-Rao bound (CRB), Cramér-Rao lower bound (CRLB)

or Cramér-Rao lower variance bound (CRLVB). It should be noted that the true estimator

variance depends on the actual estimator used, while, as shown consequently, the CRLB are

not method-dependent. An estimator whose variance is equal to the CRLB is called efficient.

The Cramér-Rao theorem states that if p = p(s) is an unbiased estimator for p∗, then
under regularity conditions

VAR(pn) ≥ F−1
nn (II.41)

with F−1
nn the nth diagonal element of the inverse of the Fisher Information matrix F , defined

as

(F)ij = E

[
∂

∂pj
[ln(L(s,p∗))]

∂

∂pi
[ln(L(s,p∗))]

]
(II.42)

where E[·] denotes the Expectancy operator and L(s,p∗) is the likelihood function.

Reported in the NMR community as early as 1986 by Barkhuijsen et al. [9] and applied

in frequency shift estimation in 1989 by Stoica and Nehorai [177], the CRLB theory in MRS

has been consequently developed in MRS by de Beer and van Ormondt [48] and van den Bos

[186]. Moreover, for certain model functions and for limited number of peaks (up to three),

methodologies for numerical and analytical approximations for the CRB have been proposed

[196, 82, 32].

In order for the computation to take place, it is supposed that the noise bn is complex

additive white Gaussian noise (AWGN). Then the likelihood function for bn can be computed,

leading to the Fisher Information matrix and finally to the corresponding CRLBs. For

extensive details for the analytical computation in the case of Lorentzian lineshapes, please

refer to [34] and references therein.

The CRLB theory applies only to fully parametric models. In order to account for

the errors introduced by the presence of a semi-parametric approach, a method has been

proposed by Ratiney et al. [156], inspired by the work of Spall and Garner [173]. It proposes

an additive corrective term for the minimal variance, based on the covariance matrix of the

nuisance parameters:

VAR(pn) ≥ F−1
nn +

1

r
DθF

−1
θ D


θ (II.43)

where Dθ and Fθ are representative of the non-parametric 17 part modelling (ie splines,

HSVD, etc.). The coefficient r is linked by Spall to the quantity of information used to model

the non-parametric part. Another CRB extension, more specific to the semi-parametric non-

linear least squares problem posed by ACQSES, has been developed by Sima and Van Huffel

[165].

While CRLB are widely used today to provide uncertainty evaluation on the estimated

parameters, it is important to remember that they offer, in the best of cases, an estimation

of the minimal achievable variance using an unbiased estimator. As a consequence, following

are some aspects that the “unsuspecting” user should consider:

17. In this context ’non-parametric’ should be read like ’without physical parameters’. A spline model of

the baseline is considered non-parametric, because it’s modelling is purely mathematical, without parameters

linked to the Physical model (ie parameters ’of interest’).
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– True estimator variance depends on the actual estimator used, while the CRLB depend

only on the model. This is particularly true when the estimator’s stability is known

to be weak under certain conditions, or when the external constraints enforced on the

estimator are attained. It is therefore interesting to use CRLB for experimental design

and improvement, as well as for an indication of the relative incertitude or the order

of magnitude of the true underlying variance.

– It applies only to unbiased-estimators. In the case of biased estimators the CRLB

theory has to be modified. Using the CRLB theory when the estimator is biased might

give unreliable results, as some biased estimators give better variance (and even better

mean squared error) than the values of the CRLB.

– CRLBs need true parameter values. In practice, the estimated parameters are used

[33], considered to be close to the true values. One important consequence of this is

that when the estimation appears to be unreliable then the estimation of the CRLB

should also be considered with great caution.

– CRLB computation, as described by Cavassila et al. [32] makes several assumptions on

the nature of the noise. Since the noise is assumed to be of AWGN nature, applying the

CRLB when the residue is obviously not AWGN might also provide unreliable results.

As a special case of this, apodized signals should be treated cautiously, as apodized

noise is no longer stationary.

II.6.5 About fit and acquisition quality assessment

As previously represented in Fig.II.1, MRS quantitation results are representative of two

distinct phenomena: (i) NMR data acquisition and (ii) quantification procedure. Differ-

ent practitioners might have a different view and a different level of comprehension about

the quality of the results: spectroscopists, usually with in-depth know-how on acquisition

procedures might well evaluate acquisition quality, while sometimes misunderstanding the

quantitation that follows, while clinical researchers might overlook both source of errors and

use MRS as a black-box method.

Not detecting cases when the measurement chain produces bad results might prove very

costly, as results might be considered valid and significantly alter the experimental con-

clusions. In the same way, improper quantitation of the acquisition results, if undetected,

can falsify conclusions. It is thus important to define criteria so that measurements can

be rejected, or at least flagged so that more care is taken in the ulterior processing. The

following paragraphs treat present approaches to these criteria, both in terms of acquisition

and quantitation.

II.6.5.1 Acquisition Quality Assessment

Acquisition quality (AQ) assessment is mainly related to experimental conditions, as

logistics, protocol or hardware malfunctioning. Due to the important amount of know-how

involved, AQ remains to this day based on a subjective approach. Experienced researchers

are able to recognize phenomena as patient movement, hardware failures, bad shimming,

etc. based on prior experience. Such an approach has several inconvenients: (1) know-how

transfer is limited to people working with the experts, (2) increased availability of clinical

NMR make experts sparse compared to demand and (3), in the case of local lack of expertise,

new researchers in the field have to ’rediscover’ techniques and protocols, in the best of cases.
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A more numerical approach, on the other hand, would enable computers perform part of the

job, while leaving for experts more interesting cases and allowing clinical practitioners better

feed-back and reliability measures on their procedures.

Figure II.11: Conspicuity of artefacts in MRI and MRS. If a patient leaves the magnet

half-way through a scan, even a layman will refrain from interpreting the resulting image

(a). If this happens in a MRS scan, even the expert will not be able to recognize this fact

from the resulting spectrum (b), since only signal-to-noise and absolute concentrations will be

affected. Spectra (b) (half of the acquired FIDs contain noise only) and (c) (normal acquisi-

tion) were scaled to the largest peak, resulting in an apparent signal-to-noise difference, while

quantitative analysis would yield a 50% deficit for all metabolites. Unless double-checking

mechanisms are put in place and plausibility arguments are used, the resulting diagnosis will

be completely wrong. (Scan parameters: 38-year-old healthy woman; MRI, fast spin echo

with TE 102 ms, TR 3 s, 256 × 256, 4mm slice thickness; MRS, PRESS with TE 20 ms,

TR 3 s, 6.7 cm3 ROI in periventricular grey matter, 128 acquisitions). Adapted from Kreis

[91].

Several attempts have been made in literature to formalize AQ approaches. Kreis [91]

makes an ample review of customary MRS and MRSI acquisitions problems, and provides a

series of recommendations, mostly centred around checks on phantoms to ensure acquisition

reliability. Six data rejection criteria (RC) are also proposed:

[RC1] Full width at half maximum (FWHM) of metabolites between 0.07-0.1 ppm;

[RC2] Cramér-Rao Lower Bounds (CRLB) greater than 50% of the concentration

estimation for the given metabolite;

[RC3] If unexplained features appear in residuals, then: (i) reject, if it is an artefact

or (2) expand model, if it is an unexpected metabolite;

[RC4] Peaks doubled or patient moved (post-acquisition MRI);

[RC5] Lineshape strongly asymmetric after eddy correction;

[RC6] Outer volume ghosts or other artefacts present (at least exclude metabolites

overlaid with artefact).
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It is interesting to mention here that only [RC1, 4, 6] truly quantify the AQ proper, while the

others depend on the methods used in quantitation, relating as such more to goodness-of-fit

than to AQ.

Slotboom et al. [169] propose a different approach to AQ testing, based on normality

criteria. Signals are recorded prior to hardware averaging, providing thus not one realization,

but M realizations Sm, m = 1 . . .M . The null-hypothesis is that for a given nth point in the

time series, the series (Sm[n])m=1...M has statistical moments of 3rd degree (skewness) and

4th degree (kurtosis) that are null. Test statistics, called κ-tests, are developed to test the

null-hypothesis, and numerical criteria are derived for data rejection criteria.

Conclusions

Section II.1 showed how a model function can be constructed from the physical concepts

presented in chapter I. The concepts of basis-set and lineshape are naturally introduced by the

model. The link between the average estimated concentration and the actual concentration

is not straightforward.

Section II.2 introduced some essential aspects of spectral analysis, in order to achieve

better comprehension of the differences between the raw time-domain (measurement-domain)

signals and their visualized counterparts. Aspects of the commonly used Fourier Transform

are described, as well as the state-space based HSVD decomposition and the Fast Padé

Transform. Section II.3 briefly described the methods typically used for NLLS minimization

in current MRS quantitation algorithms. The use of possible a priori information is briefly

discussed.

Current MRS quantitation methods were reviewed in section II.4. Some elements of

classification enabling comparative study of various quantitation methods are also provided.

LCModel, VARPRO/AMARES, AQSES and QUEST are described more in detail due to

their direct interest in the current work. Lineshape issues in MRS, as well as current solutions

are discussed in section II.5.

Finally, section II.6 briefly described some useful concepts in assessing how confident

should one be in MRS-derived parameters. A statistical point of view is adopted, including

elements from Bayes’ theory, in order to derive confidence intervals for the measured values.

Statistical resampling and the Cramér-Rao Lower Bounds are briefly described as means of

estimating the result variance, and the somehow sparse current approaches to assessing the

quality of MRS-derived parameters are presented.
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Chapter III

Handling of the common metabolite

decay

This chapter is composed of two parts. The first part defines more in detail the problems

incurred by inappropriate modeling of the transversal decay function. Several solutions

currently available are discussed and tested in a Monte Carlo experiment. Conclusions are

also interpreted from a more theoretical point of view, using analytical expressions of the

Cramér-Rao Lower Bounds.

In the second part of the chapter, a novel method based on the commonly used “com-

mon decay” assumption is presented. Reduction of the estimated decay function’s degrees

of freedom is proposed through the use of local filtering techniques, and the appropriate

parameters and their influence on quantification errors is studied. Finally, the new approach

is validated on clinically-acquired MRS data.

III.1 Why is the lineshape important in MRS quanti-

tation?

As seen in the previous chapters, quantitation is the process of estimating metabolite

concentrations from acquired MRS or MRSI signals. However, even in a reduced model

(cf. §II.1), where only the heterogeneity of the static field B0 is taken into account, the link

between the actual distribution of a metabolite concentration cm(r) and the mean estimated

concentration c̄m is not immediate. This is due to the fact that contributions of different

molecules may be dephased or have different resonance frequencies, leading to a not-trivial

accumulation. The complex contribution has been defined as the interaction between mech-

anisms specific to the molecule species, encoded in the basis-set bm and mechanisms specific

to the analysed sample, encoded as the context function Ψ (see Eq.III.1). The latter de-

pends on local conditions, such as B0 heterogeneity and exact distribution of the metabolite

concentration.

s(t) ∝ VV OI

M∑
m=1

Ψm(t) bm(t) (III.1)

75
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Furthermore, the metabolite amplitude 1 cm, the first order phase ϕm, as well as the decay

function dm(t), have all been linked to the context function Ψm:

– cm = ‖Ψm(t = 0)‖ The metabolite amplitude is defined as the module of the context

function at t = 0. This corresponds, when considering the FT properties (cf. Eq.II.9),

to the area defined under the Fourier Transform of the signal contributed by metabolite

m.

– ϕ = arg[Ψm(t = 0)]. The zero order phase is defined as the phase of the context

function at t = 0.

– d(t) = Ψ(t)
Ψ(0)

. The decay function is defined as the normalized context function, so that

the first point has unitary module and null phase.

Replacing the context function by the previously defined functions gives the common model

in use for MRS modelling.

s(t) =
M∑

m=1

cm exp ıϕmdm(t)bm(t) (III.2)

The purpose of MRS quantitation is generally the determination of the metabolite am-

plitudes, so that the proportionally linked concentrations might be consequently calculated.

Looking at Eq.III.2, one can see classify the terms in different categories: s represents the

measured signal, b represents the available prior information, c represents the parameters

of interest while ϕ and d represent ’nuisance parameters’. The term used for the latter

comes from the fact that while their estimation is not essential, bad estimation might cause

important errors in the estimation of c.

In order to illustrate the problems incurred by bad modelling of the decay function,

consider the situation depicted in Fig.III.1. A Gaussian decay function dG(t) = cG exp(−βt2)

has been synthesized, with cG = 1 and β = 2 10−4. Sampling is uniform, with ts = 1s

and N = 10000 points. The signal is then NLLS-fitted using a Lorentzian decay dL(t) =

cL exp(−αt). The fit model yields an amplitude parameter αL = 1.254, overestimating the

original amplitude with over 25%. Inspection of the residue in the time domain (c) shows

that while trying to obtain best LS fit in the whole time domain, the NLLS minimization

achieves worst fit for the first point (t=0), that in turn represents the estimated amplitude

(dL(0) = cL).

III.2 Comparing Lineshape Accommodation strategies

The problem of possible errors due to sub-optimal modelling of the MRS decay function

has already been addressed by the NMR community (see §II.5). Current methods of lineshape

handling rely on two major approaches: (1) pre-processing and/or (2) inclusion as free

parameters in the quantitation model proper 2.

1. In the previous chapter, the term used has been mean metabolite concentration. Here, we use the

term metabolite amplitude so that all (unknown) multiplicative terms (gain, VVOI, etc) are included. The

metabolite amplitude should thus be proportional to the mean concentration. In the given conditions, the

proportionality relationship (∝) from Eq.III.1 can be replaced by equality (=), since the proportionality

constant is included in the definition of the amplitude. Please also note that the amplitude pertains to signal

processing, while concentration to the underlying bio-chemical reality.
2. We call “quantitation proper” the mathematical procedure of extracting the spectral parameters, usu-

ally via NLLS minimization of given criteria. Inclusion of free parameters in the quantitation proper means

extending the cost function so as to introduce terms describing the lineshape.
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Figure III.1: Amplitude over-estimation due to application of a Lorentz decay model

(cL exp−αt) on Gaussian decay generated data (cG exp−βt2). The initial amplitude (cG
= 1) has been overestimated by the Lorentzian model with cL = 1.254, representing a relative

error of 25%. The shape of residue in the spectral domain (d) is typical for the use of an

inappropriate lineshape model.

Pre-processing is referred to as the modification of the acquired data so as to eliminate

or correct certain features, in order for additional processing to be performed after. In the

specific context of lineshape handling, it means modifying the properties of the lineshape

associated with the acquired spectra, so that the ensuing quantification method behaves

optimally. While preparing the data for quantitation might look appealing, one must not

forget the risk of introducing additional artefacts, should the preprocessing not behave as

expected.

Quantitation model extension implies adding extra terms describing the lineshape to

the model functions to be minimized during the quantitation proper. Two flavours can be

distinguished: parametric and non-parametric modelling. (see §II.5). Examples of quantita-

tion model extension include the extra Lorentzian damping factors (parametric) in QUEST

[156], or the spline terms (non-parametric) in LCModel [145].

A third approach, currently underexploited in literature 3, is adapting the prior infor-

mation by modifying the lineshape inside the metabolite basis-set so as to accommodate

the lineshape of the acquired data. This approach has the advantage of not introducing

any artefact in the acquired data, and concentrating all prior information in just one place

(the metabolite basis-set). Furthermore, reduction in the number of free parameters in the

3. to the best of the author’s knowledge
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Figure III.2: Spectra used for the Monte Carlo study comparing different lineshape accom-

modation schemes. Thick black line : simulated signal without noise. Blue line: example of

one signal with a noise realization. Gray lines plot another 15 superposed signals. See text

for more details on simulation and noise level.

quantitation model function might improve convergence performances. In order to test the

feasibility of the proposed approach, a comparative Monte Carlo study has been performed.

The following subsections describe the methodology and the results.

III.2.1 Methods

In order to remain reasonably close to current state-of-the-art in MRSI acquisition, a

Monte Carlo approach has been developed based on in vivo 9.4T MRSI acquisitions encoded

by V.Mlynarik at EPFL 4, from the brain of a healthy rat., at ultra-short TE = 2.2ms. The

in vivo signals have been subsequently quantified using Subtract-QUEST inside the jMRUI

3.0 software package, using a metabolite basis-set simulated according to parameters in [67].

Values have then been rounded slightly (see ’true values’ in Table III.2, p.82), and metabo-

lites with extremely low SNR have been eliminated from the simulation. Eleven metabolites

have been included in the simulation: Aspartate (Asp), Choline (Cho), Creatine (Cr), γ-

amino-butyric acid (GABA), Glucose (Glc), Glutamate (Glu), Glutamine (Gl), Myo-Inositol

(mI), N-acetylaspartate (NAA and NAAG), Taurine (Tau). Two additional Lipids (Lip)

peaks, at 0.9 and 1.3ppm have also been included in the Monte Carlo model (cf. Fig.III.2 ).

The Monte Carlo model has been synthesized using the previously simulated basis-set

together with the quantification parameters. The lineshape of the simulated signal had a

Voigt damping function d(t) = exp(−αt− βt2) with coefficients α ranging from 5 Hz to 20

4. Ecole Polytechnique Fédérale de Lausanne, CH
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Figure III.3: Metabolite basis-set used for simulation and quantitation when comparing

three lineshape accommodation schemes. Amplitudes have been scaled to allow better visual-

ization.
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Hz and β = 4s−2.

Finally, in order to provide sufficient reliability for the statistical analysis, 200 signals

have been created by adding to the clean MC model 200 different complex additive white

Gaussian noise (AWGN) realizations. The complex noise standard deviation σ is such that

cCr : σ = 8.6 : 16, where cCr is the concentration of Creatine.

On the 200-signal Monte Carlo dataset, three approaches based on QUEST have been

applied, using three distinctive approaches. First, the data have been quantified using the

original basis-set that has a Lorentzian decay function. Secondly, the data-set has been

processed with a deconvolution method, so as to adapt its lineshape to a Lorentzian one.

Thirdly, the basis-set has been modified so as to have an adapted Voigt lineshape.

The method chosen to assess the performances of the pre-processing by deconvolution is

an adaptation by Rabeson [149, p.61–63] of QUECC[11]. The correction algorithm consists

of the following steps:

QUECC-type deconvolution

input

s signal to be processed

sref (noisy) reference signal (reference peak).

sideal ideal signal (reference peak).

step

01 The standard deviation of the noise in the reference signal σref

is estimated from sref

02 The reference signal sref is modelled using HSLVD ( typical 3

components). Result stored in s̃ref

03 The denoised estimated signal s̃ref is centred in the spectral

domain. Result stored in s̃ref .

04 Initial values for the damping factor of the ideal 5 lineshape are

estimated by single-component HLSD decomposition of sideal.

Damping factor is stored in αideal, while the corresponding de-

cay is stored in sLor

05 NQUALITY, representative of the index of the last points that

can be considered above noise level, is computed. NQUALITY =

maxn{|sLor(n)− s̃ref(n)| < σref}
06 Depending on the value NQUALITY one of two methods is ap-

plied for each point ni (see sub-steps). Result is stored in sdec

6.a For the points ni < NQUALITY, QUALITY [49] deconvolution

is applied (point-wise division) between s and sref .

6.b For the points ni ≥ NQUALITY, only phase correction (like in

ECC [88]) is applied.

5. In this context the ideal lineshape is the lineshape of the basis-set used for quantitation.
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07 Lorentzian apodisation of sdec by αideal enables the damping

factor of the corrected signal to match the ideal signal.

output

sdec Deconvoluted signal

III.2.2 Results

The results (Fig.III.4, Table III.2) show that there is an important bias in the estimation

of the concentrations when Lorentzian lineshapes are used to quantify data that have a Voigt

decay. Generally this is in the form of an over-evaluation, as in the case of Glu (+15% 6) or

Cr(+40%). For low concentration metabolites (Asp, Glc, Gln), the results are unreliable, as

the mean value is comparable to one standard deviation.

Figure III.4: Comparison of 3 lineshape accommodation strategies. White : Monte Carlo

model (True amplitudes). Red, hatched +45◦ : use of a Lorentzian lineshaped basis-set.

Blue, hatched -45◦ : Quantitation after deconvolution using a reference peak. Green:

Quantitation using a basis-set with adapted lineshape. Error bars represent one standard

deviation.

Pre-processing by QUECC deconvolution does not reduce significantly the bias in the

estimation of the metabolite amplitudes. In some cases it even slightly increases the bias

(e.g. relative bias: Glu from 15% to 22%, Cr from 40% to 42%). Amplitudes remain generally

over-estimated.

However, the adaptation of the basis-set with a Voigt lineshape reduces considerably the

bias (e.g.Glu from 15% to 3% and Cr from 40% to 15% ). The standard deviation of the

amplitude estimations is seen in Fig.III.4 (error bars) to be of similar values between the

three estimators used.

One possible drawback of the proposed approach can be observed for NAA and NAAG,

known for their high correlation due to close spectral proximity. Estimations for NAA and

6. Relative bias has been computed as (cestimated − ctrue)/ctrue
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Metabolite True value Lorentz. BS Lor. BS Dec. Adapted BS

mean bias mean bias mean bias

Asp 1.00 1.16 0.16 0.84 -0.16 1.81 0.81

Cho 0.75 0.79 0.04 0.81 0.06 0.70 -0.05

Cr 8.60 12.07 3.47 12.23 3.63 9.88 1.28

GABA 2.50 1.35 -1.15 1.67 -0.83 2.31 -0.19

Glc 1.75 0.67 -1.08 0.93 -0.82 1.00 -0.75

Glu 14.50 16.61 2.11 17.65 3.15 14.88 0.38

Gln 0.90 0.09 -0.81 0.20 -0.70 0.76 -0.14

mI 3.50 4.01 0.51 4.13 0.63 4.03 0.53

NAA 8.50 12.40 3.90 11.83 3.33 4.93 -3.57

NAAG 1.75 0.93 -0.82 1.52 -0.23 5.73 3.98

Tau 2.75 3.72 0.97 3.61 0.86 3.58 0.83

NAA+NAAG 10.25 13.33 3.08 13.35 3.10 10.65 0.40

Table III.2: Mean metabolite amplitudes for the comparison of different methods for line-

shape handling. True values – amplitudes used for the Monte Carlo model. Lorentz. BS

– estimates when no lineshape accommodation was used, with Lorentzian lineshaped basis-set.

Lor. BS Dec. – signal is processed using a QUECC implementation prior to quantitation.

Adapted BS. – Quantitation uses Basis-set with adapted lineshape.

NAAG levels show significant errors when compared to the established methods. However,

when comparing the results for the sum NAA+NAAG, errors are drastically reduced, in

agreement with results obtained for the rest of the metabolites. This can be explained by the

decreased spectral sensibility of the Voigt lineshape compared to the Lorentzian lineshape.

While Lorentzian-based methods can distinguish between proximal peaks NAA and NAAG,

the Voigt-based method is unable to, leading to quasi-equal distribution between the two

metabolites. Adapting the basis-set lineshape to the acquired lineshape has traded spectral

resolution for amplitude precision.

As a conclusion, it can be inferred from the previously shown results that adapting the

lineshape of the metabolite basis-set to the signal to be quantified seems the best approach.

The implemented deconvolution approach, prior to quantitation, does not seem to produce

better results than the application of QUEST without any preprocessing. We have found this

fact to be a little surprising, as it was expected that at least some of the bias be eliminated by

the QUECC-like technique. However, there is an important point to temper enthusiasm over

the performances of the basis-set lineshape adaptation approach: in this study the lineshape

was known, thus errors in estimating the lineshape have not been taken into account.

In the following sections, adapting the lineshape of the metabolite basis-set to the ac-

quired signal is taken a step further, as a method is proposed to estimate the common

metabolite lineshape.
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III.2.3 Comparison of amplitude estimation incertitudes using the

Cramér-Rao Lower Bounds

In the context of the comparison between different lineshape accommodation strategies,

a secondary, more theoretical study has been performed to analyse whether, in equivalent

conditions, it would be better to analyse Gaussian or Lorentzian peaks. In order to assess

estimation convergence, we have chosen to assume the best possible case, when an ideal

non-biased and efficient estimator is available for both lineshape types. In such a case it is

possible to predict the quantitation errors with the help of the Cramér-Rao Lower Bounds

(CRLB) Theory (see §II.6.4).
Analytical values for the CRLBs have been computed using the approach described in

[32]. The majors steps of the computation are as follows:

1. Build the Fisher information matrix F associated with the model.

2. Simplify the terms in the Fisher matrix by assuming that

– the model decays to zero values for maximum values of the time

– the sum can be approximated, as the sampling time is small, by a corresponding

primitive.

3. Invert the simplified Fisher matrix F
4. Compute CRLBs as square root of the diagonal values of F−1

In order to automate the computations, the MAPLE software package [104] has been

used. A script has been developed that takes as input the model function and then attempts

to compute the associated CRLBs. Moreover, simplification of the Fisher information matrix

F is done via a slightly different approach than reported in [32]. Instead of approximating

the discrete sum by the corresponding integral, the Whittaker functions (see[195]) are used.

Replacement of the simplified terms is done automatically in the Fisher information matrix,

that is afterwards inverted. As a final step, a consistency check is performed by computing

the measurement units of the CRLBs, and comparing them with the measurement units of

the corresponding parameters.

Table III.3 summarizes the results given by the automated script for singlet models of

Lorentzian and Gaussian lineshapes. It can be seen that only the amplitude and the damping

factor influence the CRLBs. This is due to the fact that the models consist of singlets; the

influence of frequency shifts and phases only becomes apparent when multiple peaks are

considered.

The parameter of interest is the amplitude of the metabolite, that is representative of the

metabolite concentration. Assuming we have unbiased efficient estimators, the errors due

to noise will cause the results to have a statistical distribution with the standard deviation

given by the CRLBs. The ratio between the predicted incertitude on the amplitudes in the

case of Gauss and Lorentz lineshapes is:

CRLBamplitude
Gauss

CRLBamplitude
Lorentz

=

4

√
18
π
σβ

1
4

√
ts

2 σ α
1
2

√
ts

=

4

√
18
π
β

1
4

2α
1
2

(III.3)

In order to further compare the incertitudes on the amplitude, a relationship must be found

between the damping factors. In this study we chose to define equivalent lineshapes as

lineshapes that have the same amplitude and the same width at half-height (see Fig.III.5).
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The latter condition yields:

αLorentz =
√
4 log 2 βGauss (III.4)

Replacing Eq.III.4 in Eq.III.3 enables us to compute a numerical approximation:

CRLBamplitude
Gauss

CRLBamplitude
Lorentz

= 4

√
9

32π log 2
≈ 0.5994 (III.5)

Eq.III.5 shows that the predicted incertitude on amplitude estimation is about 40%

smaller on a Gaussian singlet than on a Lorentzian singlet. Moreover, the result is a constant

(under the assumption of equivalence at width at half-height). This effectively means, that

under equivalent conditions of noise, amplitudes and peak width, it is always preferable to

quantify Gaussian peaks than Lorentzian ones.

An alternative way to look at this finding is to consider, from a more signal processing

point of view, why does the Gaussian peak have better amplitude estimation performances

than the Lorentzian one. A possible answer lies in the fact that the Gaussian lineshape is

wider, yet more prominent (see Fig.III.5), thus containing more information that is separable

from noise. In the same time, by having a slower decay, the Lorentzian singlet has values

comparable to noise on a much larger extent, thus reducing the components that can be

effectively isolated from noise.

III.3 Estimating the Common Decay Function

As seen in the previous section, using an inappropriate model function when modelling the

decay function of MRS signals can induce considerable bias in the estimation of metabolite

amplitudes. It becomes thus essential to evaluate the properties of damping characteristics of

signals to be analysed. Although several analytical models have been proposed in literature

(cf. §II.5), we concentrate in this work on a non-parametric approach, ie. one that does

not require an overall analytical representation. Using a commonly assumed hypothesis of

different metabolites sharing the same lineshape, we discuss a simplified model of Eq.III.2,

leading to a way of estimating the common lineshape. The theoretical conditions for the

common lineshape assumption are discussed, and its pertinence is analysed in view of current

state-of-the-art as well as in view of the other methods available for lineshape handling.

III.3.1 Modelling a decay function common to all metabolites

Consider the common model used in MRS estimation ( III.2):

ŝ(t) =
M∑

m=1

cm exp ıϕm dm(t)︸ ︷︷ ︸
(a)

bm(t)︸ ︷︷ ︸
(b)

(III.6)

The total decay is given by the influence of two factors: (a) the dephasing of spins due to

B0 inhomogeneity and (b) the intrinsic T2 transversal magnetization decay mechanism. In

practice, in vivo B0 induced decay is much stronger than T2 decay, so that the former can be

considered dominant over the second (see [86, 201]). Furthermore, both terms, in the general

case, depend on the metabolite m, and can even vary for different spectral peaks of the same
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Lorentzian Gaussian

model c exp (−αt+ ıωt+ ıϕ) c exp (−βt2 + ıωt+ ıϕ)

amplitude (c) 2 σ α
1
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Table III.3: Cramér-Rao Lower Bounds (CRLBs) for Lorentzian and Gaussian singlets.

Noise model is white Gaussian. ts is the sampling time and σ is the noise standard deviation.

Notice that the CRLB on amplitude does not depend on the amplitude of the signal, while

the CRLBs corresponding to the other parameters depend on the signal-to-noise ratio c
σ
.
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Figure III.5: Illustration of Lorentzian and Gaussian decay functions, both in the time

domain (a) and in the frequency domain (b). Both models have the same amplitude (c = 1).

The damping factors have been chosen so that the corresponding lineshapes have the same

width at half height, giving the relationship αLorentz =
√
4 log 2 βGauss. Notice how in the

frequency domain the lineshapes have different maximal values, yet the same area under the

curve.
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metabolite. While T2 dependency on m can be measured (e.g. for T2 measurements in rat

brain at 9.4T see values reported by Xin et al. [198]), the effect of B0 spatial distribution is

more intricate, involving the context function Ψm (cf. §II.1 and §III.1).
Let us consider what assumptions and simplifications are necessary in order to be able

to factorize all damping factors in Eq.III.6 outside the sum. First of all, the T2 transverse

relaxations time constants need to be considered equal. Secondly, the B0 heterogeneity-

caused damping dm must also be independent of the metabolite m. However, dm has been

defined as the normalized version of the context function Ψm, that directly depends on

the magnetic field inhomogeneity distribution 	B0(r) and on the metabolite concentration

distribution cm(r) (see Eq.II.6):

Ψm(t) =

∫
r∈V OI

cm(r) exp [ıγ	B0(r)t] exp [ıϕ(r)] dr
3 (III.7)

While the 	B0 map does not depend on m, a common lineshape means that the con-

centration of different metabolites must be distributed in the same way across the region of

interest, ie. cm(r) = cm · dist(r), where dist(r) is the spatial distribution. Considering that

the metabolites are equally distributed is usually reasonable for small sizes of acquisition

voxel, and on the condition that no important boundary 7 lies within the voxel.

Should the aforementioned hypothesis be assumed verified, then it is possible to define

an overall decay function d(t), that includes both the decay due to B0 field heterogeneity

and the T2 decay. In this case Eq.III.6 can be re-written in a much simpler form:

ŝ(t) = d(t)
M∑

m=1

cm exp ıϕm bundamped
m (t) (III.8)

An important element that is introduced in Eq.III.8 is the undecaying (ie. non-decaying)

metabolite basis-set bundamped(t). A basis-signal (or metabolite model) represents known a

priori information. As such, bundamped(t) can be predicted by quantum mechanics and thus

simulated via software packages like NMRSCOPE [69]. Measuring the metabolite basis-

signal, while also a possibility, has the drawback of naturally including T2 decay, even in

ideal conditions, and thus must be consequently processed so that the decay be eliminated

or accounted for. In this work, we have concentrated exclusively on using NMR-SCOPE

generated spectra, mainly because of the facilities in direct subsequent exploitation, as well

as because of the seamless integration with the QUEST quantitation method inside the

jMRUI package[175].

Two more remarks are important at this stage, both concerning Eq.III.8. First, no

metabolite-wide frequency shift has been included into the model. Actually, the function

d(t) can implicitly include a frequency shift, that arises from the integral context function

Ψ. In order to separate the damping from the frequency shift in d, it is necessary to define

a criterion; the common choice would be to define the frequency shift as the location of

the maximum value of the d Fourier Transform. However, should the lineshape have two

peaks, the situation is more delicate. In the following implementations the question of

frequency shifts has been omitted for simplicity, and thus the model is further presented

without frequency shifts. Should a frequency shift be implemented, it would be common to

7. As an illustration of the case when the lineshape would not be the same, consider the case when the

VOI is split into two zones of different 	B0 distributions, one containing only metabolite m1 and the second

only m2.
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all metabolites, a consequence of the fact that the Ψ function generating the shift is also

common to all metabolites.

The second issue is the possibility of slightly extending the model to accommodate the

T2 dependence on the metabolite m. Adding a Lorentzian decay function specific to each

metabolite provides this accommodation, without very much increased complexity in the

model. However, due to reasons discussed further on, it is important that the term inside

the sum in Eq.III.8 be non- or very slowly-decaying. It is thus preferable that given a set of

Lorentzian decay constants αm = 1
T2,m

, the major part α0 of the damping factors be included

in the common decay function d(t), and only the differences 	αm = α0 − αm be left in

the sum. Estimating the common decay factor α0 can be done, for example, by choosing

α0 = maxm{αm}. The extended model can be written as

ŝ(t) = d(t)
M∑

m=1

cm exp ıϕm exp (−	αmt) b
undamped
m (t) (III.9)

III.3.2 The Estimated Common Decay function

Equation III.8 separated the decay function d from the a priori information included in

bundamp(t). It is possible to rewrite it so that the decay function d be expressed in function of

the signal s, the parameters p = (cm, ϕm) and the prior information included in bundamp(t):

d(t) =
ŝ(t)∑M

m=1 cm exp ıϕm bundamped
m (t)

(III.10)

Equation III.10 is the key relationship on which our new method is based. However,

the true parameters are not known, and neither is the denoised version of the acquired

signal. Instead we attempt to compute the Estimated Common Lineshape (ECD) d̂(t), by

replacing, in Eq.III.10, ŝ with the acquired signal s and the true (unknown) parameters with

some previously estimated parameters p̂ = (ĉm, ϕ̂m), assumed available and close to the true

parameters. The ECD function is thus defined as:

d̂(t) =
s(t)

ŝundamped(t)
(III.11)

with ŝundamped(t) =
M∑

m=1

ĉm exp ıϕ̂m bundamped
m (t) (III.12)

The denominator of the right term in Eq.III.11 represents a model of the signal that

excludes the decay function, subsequently called the Undamped Estimated Signal (UdES)

and denoted ŝundamped. The signal is a sum of complex harmonic signals, and as such exhibits

decreasing probability of cancelling itself in the time domain as the number of components

increases. Moreover, as no decay factor is present, the sum is not overall decaying, exhibiting

a statistically constant characteristics, such as mean value or mean energy. The properties,

restricting the appearance of very small values are particularly useful because the UdES is

used as a dividing term in estimating the ECD function.

An important factor to mention here is that, since the acquired signal s contains noise,

the estimated common decay function also contains noise. To illustrate this, as well as to

see how the noise inside the ECD behaves, consider that the acquired signal is generating

according to the same model used for estimating the ECD function, and with a stochastic
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component represented by AWG Noise ε(t). The true, unknown values of the parameters p

are denoted using the caronˇsymbol.

s(t) = ď(t)
M∑

m=1

čmb
undamped
m (t)ejϕ̌mejω̌mt + ε(t) (III.13)

Combining equations III.11 and III.13 enables the estimated common damping d̂ to be

expressed in function of the true, unknown common decay function ď:

d̂(t) = ď(t)

∑M
m=1 čmb

undamped
m (t)ejϕ̌ejω̌t∑M

m=1 ĉmb
undamped
m (t)ejϕ̂ejω̂t

+ ε′(t) (III.14)

with ε′(t) =
ε(t)∑M

m=1 ĉmb
undamped
m (t)ejϕ̂ejω̂t

(III.15)

Equation III.14 shows that if the estimated parameters p̂ are equal to the true ones p̌,

then the ECD is equal to the true common decay function, plus a noise term ε′. However, it
should be noted that the statistical distribution of ε′ is not AWGN, as was assumed for ε, but

depends strongly on the undamped model ŝundamped. In the special case when, for example,

ŝundamped(t) becomes very small or null, ε′ can attain values out of the representation range.

III.3.3 Convergence issues in the case of no ECD filtering

As it can be seen in Eq.III.14, the estimated common decay function depends on the initial

parameters p̂, while also including a noise term ε′. Since noise is present, direct adaptation of

a basis-set using this noisy ECD function may result in unwanted convergence. To illustrate

this, consider the aforementioned case. The adapted metabolite basis-set signals badapted
m can

be written as

badaptedm (t) = d̂(t) bundamped
m (t)

=
s(t)

ŝundamped(t, p̂)
sundamped
m (t)

= s(t)
bundamped
m (t)

ŝundamped(t, p̂)
(III.16)

Should now a second quantitation take place, using the same QUEST model, and giving

the results p̂′, the residue could be written as:

r′(t, p̂′) = s(t)−
M∑

m=1

ĉ′m · badaptedm (t) · ejϕ̂′
m · ejω̂′

mt

= s(t)− s(t)

ŝundamped(t, p̂)

M∑
m=1

ĉ′mb
undamped
m (t)ejϕ̂

′
mejω̂

′
mt

= s(t)

[
1−
∑M

m=1 ĉ
′
mŝm(t) e

jϕ̂′
mejω̂

′
mt

ŝundamped(t, p̂)

]

= s(t)

[
1−

∑M
m=1 ĉ

′
mb

undamped
m (t)ejϕ̂

′
mejω̂

′
mt∑M

m=1 ĉm · bundamped
m (t) · ejϕ̂m · ejω̂mt

]
(III.17)
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By replacing in Eq.III.17 p̂′ = p̂, we obtain that the terms in the square brackets cancel

themselves out and that the residue is zero in all points, regardless of the values of s(t), p̂

or sm(t). As the norm of the residue is concerned, it can only be greater than zero, and

would be zero if and only if the residue is zero in all points. This effectively means that if

there is only one global minimum to the equation minp̂′ ‖r (t, p̂′) ‖ it is equal to zero and it

is achieved for p̂′ = p̂.

It has thus been proved that in the best case scenario, a second QUEST-type minimization

using a basis-set on which an estimated lineshape has been applied would theoretically

converge to the parameters that have been initially used to estimate the lineshape. The

residue of this estimation is zero as all the noise has been inserted in the lineshape. In

practical cases, quantitation procedures do not always converge to the exact parameter

values corresponding to the global minimum, mainly due to local minima, thus achieving

even poorer performances. Reducing the degrees of freedom of the lineshape so as to filter

a maximum of the noise components eliminates the global minimum that depends on the

previous parameters. Filtering too much, however, eliminates useful information gained by

common decay function estimation, eventually making the algorithm equivalent to a pure

QUEST application.

III.3.4 Quantitation with Lineshape Accommodation based on Es-

timated the Common Decay Function

Based on the relationship between the true, unknown, decay function and the estimated

common decay function (Eq.III.14), we propose to use the latter as the basis for an esti-

mator for the former. Furthermore, the estimated decay function is then used to shape the

metabolite basis-set. The basic algorithm is based on the QUEST[156] quantitation method,

although any other measurement (time-) domain method that includes metabolite basis-set

prior information could be used. The choice of the method is mainly based on our extensive

experience with QUEST, as well as its easy implementation using the jMRUI package.

The proposed approach 8 is described in Fig.III.6, as well as in the following algorithmic

view.

QUEST-ECD (Estimated Common Decay)

input

s signal to be processed

bundamped metabolite basis-set (non decaying version).

bLor metabolite basis-set (decaying version).

step

01 Quantify s by QUEST using bLor. Store result in pini.

02 Build the undamped signal model ŝundamped.

03 Compute raw decay function draw(t) = s(t)
ŝundamped(t)

.

04 Compute filtered decay function dfiltered = FILTER{draw}.
8. In this section, we chose not to detail a key step of the proposed algorithm that is ECD function

filtering. The need for this step will be discussed at the end of this subsection, while actual implementations

are described in later sections.
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05 Generate new basis-set badapted (having an adapted decay

function) from dfiltered and bundamped.

06 Quantify s using QUEST and badapted. Store result in pfinal

output

pfinal Metabolite parameters

Figure III.6: Schematic description of the approach proposed for metabolite quantitation

with lineshape accommodation. Blue: input data. Yellow: Computation step. Green: inter-

mediary results and final output. See text for detailed description.

Step.1 The first step of the algorithm uses QUEST and a Lorentzian metabolite basis-set

in order to obtain an initial estimation of the metabolite model parameters. This

estimation is subsequently used to estimate the ECD function. Although QUEST

can manage a basis-set without decay, it is better at this stage to evaluate the

damping factor of s and to generate bLor accordingly.

Step.2 The undamped signal model ŝundamped is built according to Eq.III.12. Notice that

extra damping factors αm are not used.

Step.3 The raw estimated common decay (ECD) function is computed by a point-wise

division between s and the previously computed undamped signal model.

Step.4 A filtered version of the ECD is computed. In the initial implemented version,

HLSVD has been proposed for this task, while local filtering is subsequently consid-

ered.

Step.5 Adaptation of the basis-set is performed by point-wise multiplication between the

individual undamped metabolite basis-set signals and the filtered estimated decay

function.

Step.6 The final step consists of a second QUEST application on s, using the decay-function-

adapted metabolite basis-set.
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III.4 LOWESS filtering

In order to use the information in the estimated lineshape, some form of filtering could

be used to eliminate the noise ε′, thus obtaining a close estimation of the true lineshape.

The noise to be reduced is a Gaussian normally distributed noise (AWGN), divided by

the undamped estimated signal model (UdES) ŝundamped. As ŝundamped(t) can theoretically

approach or be equal to zero for some values of t, it means that ε′ is theoretically unbounded 9

noise. Simulating different values of UdES shows that as the complexity (number of peaks)

increases, the probability that multiple samples of UdES are nearly equal to zero decreases.

However, it is still the case for some points, for which the amplitude of the corresponding

lineshape estimation becomes significantly larger than the rest of the points.

A filtering method that would improve the estimation of the lineshape should have thus

two main characteristics:

1. Robustness : Outliers due to division by very small numbers would have to be effi-

ciently removed by the filtering.

2. Time localization : A good physical model of the lineshape is hard to create because

it depends on the distribution of the magnetic field B0 , that changes in every exper-

imental setup. However, due to the continuity in time of its evolution, an important

characteristic of the lineshape is that it has a local time-wise coherence, meaning that

the probability that two time samples having the same value is inversely proportional

to the time-span between the samples. The ideal filter should keep (and eventually

enhance), the local time coherence, while reducing noise, that is by definition non-

coherent.

III.4.1 Local fitting filtering

Local scatter-plot fitting is one of many “modern”modeling methods that build on “clas-

sical” methods, such as linear and nonlinear least squares regression [122]. Better perhaps

described as locally weighted polynomial regression, the method fits simple models on sub-

sets of data to build up a function that describes the deterministic part of the data. The

result is a combination between the simplicity of linear least squares and the advantages of

non-liner regression. The major trade-off resides in increased computational complexity.

LOWESS has been originally proposed by Cleveland ([38], 1979) and then improved by

Cleveland and Devlin under the name LOESS ([39], 1988). Computational methods and

implementation are discussed in [40, 41, 42], and the author’s implementation can be found

on the NETLIB online library ( 10). At each point in the data a polynomial model is fit using

weighted linear regression. The weight function is chosen so as to offer more importance to

the points near the estimated point and less weight to points further away. The final value

of the output is then computed by applying the local polynomial value to the corresponding

abscissa. LOWESS is complete when this process is complete for all the points in the dataset.

Figure III.7 summarizes the principles of local polynomial filtering.

Many of the details of the algorithm, such as the degree of the polynomial or the weight

function, are flexible, allowing the procedure to be customized to different applications. The

9. By unbounded we mean that it can take arbitrarily high or low values.
10. Available at http://netlib.sandia.gov/. Accessed March, 2010
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Figure III.7: The general principle behind local filtering techniques LOESS and LOWESS.

This illustration shows the steps taken for finding the value at xi, denoted by a grey hatched

box. First, the local vicinity is computed, as all the λN points nearest to the analysed sample.

Weights are then computed for each point in the vicinity, so as to give more importance to

samples closer to the analysed sample at xi. Then a polynomial interpolation is performed

using the vicinity and the previously calculated weights. The output point corresponding to

xi is the value of the interpolation polynomial at the point xi. The process is repeated for all

the N samples in the input (original) signal.
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influence of several parameters and the choices that have been made in the study are briefly

discussed next.

The local subsets of data are defined by the nearest-neighbours algorithm. A user-

supplied “bandwidth” hyper-parameter λ defines the number of points to be taken into con-

sideration NLOCAL = λN . λ can also be referred to as “smoothness parameter” because the

higher λ is, the smoother is the output.

Choosing a big value of smoothness produces a very smooth output, that varies little in

response to the fluctuations in the data. This can severely reduce the levels of details in the

data. On the other hand using a value for λ that is too small will make the output capture

random variations (noise) in the data.

Choosing a good value for λ is a non-trivial matter and it can have a great influence on

the outcome. It should depend on the inherent structure of the deterministic part of the

signal, as well as on the noise characteristics. An algorithm to choose a pertinent smoothness

parameter in the case of filtering for MR spectra is discussed later.

The degree of the polynomial used for the local fitting also plays an important role

in the method. If the degree is zero, than the method is equivalent to a moving average.

This is a somehow trivial solution, and in most cases does not fit well the data structure.

High-degree polynomials work, in theory, but the trade-off between increased computation,

numerical stability and increased resolution is most of the times not justified. In most cases

linear or quadratic polynomials are sufficient to obtain good results.

The weight function is used to give more weight to point that are closer to the point

being estimated. The use of a weight function is based on the idea that a local model is

explanatory for local points, and thus the local model should be mostly constructed using the

local information. The traditional weight function used by LOWESS is the tri-cube weight

function

wd(x) =

{
(1− |t|3)3 for |t| < 1

0 for |t| ≥ 1
.

Other weight functions have also been proposed in [38]. The weight used by the polyno-

mial model is computed after scaling of the weight distance variable x so that the maximum

distance corresponding to the subset span determined by λ is 1.

The robustness of the method can be enhanced by an iterative approach, that increases

the importance of points that fit the model well and decreases the importance of outliers.

At the end of all data-point estimations, the distance difference between the output and the

input is computed. Then a weight function is applied and the process is restarted, taking

into account the combined weight of the local weight function (different for each point) and

of the global weight function. The weight function generally used is the bi-square function

wr(x) =

{
(1− |x|2)2 for |x| < 1

0 for |x| ≥ 1
(III.18)
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Lowess Filtering

→ Input: signal s having N samples, smoothing hyperparameter λ

1. Initialize wr(xi) = 1

2. For all points (ti, si)

1. Create subset from λN nearest points.

2. Fit linear function Pi(t) on subset using weights defined by the

scaled tri-cubic function multiplied by wr.

3. Using Pi compute value ŝi corresponding to abscissa t̂i.

3. Compute the residue R = s− ŝ

4. Compute robustness weights wr based on residues R.

5. If Convergence, stop. Else, go to (2)

← Output: Filtered Signal Ŷ

III.4.2 Automatic value of the smoothing hyper-parameter

In order to automatically find a suitable value of the λ hyper-parameter, an approach

inspired by the CONTIN [142, 143] algorithm has been developed. From Eq.III.14, ignoring

the dependence on the parameter set p, it can be written that

d̂(t) = ˇd(t) + ε′(t) (III.19)

If we consider LOWESSλ

{
d̂(t)
}
as the filtered version of the estimated common damping

d̂(t), and taking into account that LOWESS is a linear filter, then we can write that

LOWESSλ {d(t)} = LOWESSλ

{
ď(t)
}
+ LOWESSλ {ε′(t)} (III.20)

meaning that the filtered ECD is given by the distinct contributions of the filtered true

common decay function and the filtered noise. If we subtract now the true value of the

lineshape, we obtain the expression of the error of the estimation of the common decay

function:

ErrorECD(λ, t) = ď(t)− LOWESSλ {d(t)}
=
[
ď(t)− LOWESSλ

{
ď(t)
}]︸ ︷︷ ︸

(a.)

+LOWESSλ {ε′(t)}︸ ︷︷ ︸
b.

(III.21)

The first term (a.) of Eq.III.21 represents the error that is incurred by the LOWESS

filter. The value of the hyper-parameter should be chosen so as to minimize this error, and

since the dependence is direct, it suggests to take the smallest possible value of λ. On the

other hand, the second term (b.) of Eq.III.21 shows the error that is given by the noisy first

estimation. The dependence of this error on λ is inversely proportional, meaning that we

should choose the biggest possible value of λ such as to decrease as most as possible any noise

contribution. In order to choose the optimal value of the hyper-parameter, it is needed to

find a good compromise between the rejected noise and the error introduced by the filtering.

A more in-depth view of the evolution of the two terms is needed.
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Evolution of residual variance in function of λ

It can be shown (cf. additional material) that the variance of AWG Noise ε filtered with

LOWESS follows a law of the form

VAR [LOWESSλ{ε}] ≈ A+
B

λ
(III.22)

with A and B two constants. Such a dependence only on the hyper-parameter λ is possible

because of the time-wise incoherence of AWG Noise.

The ECD function has, unlike AWG noise, a local temporal coherence. As it has been

hypothesized that it is smooth, we can suppose that the difference between consecutive values

is always small, and that one value cannot be too different that the average of the values

around it. It also effectively means that for small values of λ the LOWESS filter has a very

small effect.

The evolution of the variance of the filtered signal thus follows only two general rules:

(1) the variance is constant at the beginning (λ very small) and (2) the variance decreases

as λ increases. The latter property comes from the reduction in effective degrees of freedom.

Other than these rules the variation is not predictable and depends on every particular ECD

function.

Let us now reconsider Eq.III.21. The two terms (a) and (b) are independent, thus if

we apply LOWESS on a noisy ECD signal, we would get the combined effects previously

described: (1) AWGN contribution in the form of a function inversely proportional to λ

and with most evolution for small values of λ and (2) ECD contribution in the form of a

monotone function with small variations for small values of λ.

Figure III.8 illustrates this evolution for a simulated signal consisting of an exponential

decay signal to which AWG Noise has been added such that the SNR of the first point is

20:1 (≈ 26 dB). For λ ≤ 0.1 the variance evolution is given mostly by the reduction in noise.

Thus the smoothing hyper-parameter should be chosen so as to maximize noise reduction

while minimizing the distortion that becomes apparent for λ ≥ 0.2.

Automatic estimation of optimal λ

Based on the previous considerations an automatic procedure to investigate the optimal

smoothing parameter λ has been developed. The method consists in computing the evolution

of the variance of the residue and identifying which part comes mainly from an AWG noise

and which part comes mainly from the underlying “clean” ECD function.

Estimation of LOWESS hyper-parameter λ

→ Input: signal to filter d, smoothing hyper-parameter list (λi)

1. For all values λi compute residual variance fraction

rλi
=

VAR[d−LOWESSλi (d)]

VAR[d]

2. Compute the weighted linear regression r̂λ ∼ rλ = A− B 1
λ

3. Compute ς =
√
VAR[r − r̂]

4. Search in descending order the first λoptimal value for which

r̂(λoptimal) < rλ − ς

← Output: smoothing hyper-parameter λoptimal
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Figure III.8: Evolution of the residue variance for different values of the smoothness hyper-

parameter λ for LOWESS filtering. Top: original signal (Lorentzian model) and the noisy

realization that is to be filtered. Top-middle: Evolution of the residual variance for the noisy

signal (full line) as well as just for the noise (dashed line). For values at A, B and C,

the filtered signal (row III), as well as the residue (row IV) are plotted in the lower half of

the figure., together with the unfiltered signal and the noise respectively (in gray). Case A

corresponds to an over-fitted line (λ too small); notice the noise in the filtered signal (dark

blue) in III.A. Case C corresponds to an under-fitted signal (λ too large); notice the non-

random component in the residuals (dark blue) in IV.C. Case B corresponds to a well adapted

λ. Axes for plots (III) and (IV) are the same as for (I).
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In order to separate the influence of noise and of useful components in the residue, first a

model r̂ of the noise variance needs to be computed. This is performed by doing a weighted

least-squares fit on the overall evolution of the residual variance. The weights are chosen so

as to give more importance to the first points, where variance evolved predominantly because

of noise filtering. The model is derived from Eq.III.22.

The second step is to compute the standard deviation ς of the difference between the LS

fitted series r̂ and the computed series r. This is done in order to estimate the goodness

of fit , and to provide a useful reference when seeking to separate noise and deterministic

influence.

The final step is a search, starting from the maximal value of λ, so as to identify the

biggest value λoptimal that verifies the inequality r̂(λoptimal) < rλ − ς. In other words, we

choose λoptimal so that the quantity of useful information lost to the filtering procedure is of

the order of the precision in identifying the noise component’s influence.

III.5 QUEST-ECD Validation on synthetic data

In the following section several studies are performed, using synthetic data sets. The

reasoning for using simulated data is detailed in §III.5.1, while the rest of the section treats

the numerical examples.

III.5.1 Why validation on synthetic signals

Errors in parameter estimation generate estimates that follow a statistical distribution.

This distribution gives very important information on statistical properties of the estimator.

If the estimator can be accurately described, the distribution of the results can be computed

and, therefore, so can be the incertitude of a single estimation.

Among the most used statistics to measure the estimator quality we can find the bias

and the variance. If the estimator generates a normal (Gaussian) distribution, then these

two parameters alone suffice in fully describing it.

Variance is defined as the “scatter” of the data and often referred as measurement

precision. It defines the differences between an estimated value and the average estimated

value. In the case of a series of measurements, it can be estimated without knowing the true

values.

Bias, sometimes also called measurement accuracy, represents the difference between

the average of the estimated value and the true value. It can only be accurately computed

if the true value is known.

RMSE (Root Mean Square of Error) is defined as the norm of the errors in estimates, and

thus provides a measure of the combined effect of bias and variance. BIAS2+V AR = RMS2.

When quantitation is based on a physical model, the number of parameters in the model

can have an important effect on the quantitation results. If too many parameters are in-

cluded, random effects can be modelled as deterministic, increasing drastically the model

variability. However, should the model be inaccurate because the number of model degrees

of freedom is not sufficient to describe the physical dynamic, important bias may occur. In

“real life” (clinical or black-box use of estimators) the bias effect is very hard to see, and

people tend to look only at the data scatter (variance). Yet if for simple simulated cases

we can find a bias, then there is no reason why not to consider the existence of a bias in
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d(t) → known exp(αt) Estimation by Eq. (7) & HSVD

metabolite (true) Lorentz Case 1 Case 2 Case 3 Case 4

m = 1
1.0 1.62 2.37 2.09 1.98 2.01

(0.0) (-0.27) (0.09) (0.14) (0.12) (0.09)

m = 2
1.0 5.12 2.96 2.78 2.64 2.77

(0.0) (3.06) (0.26) (0.28) (0.18) (0.16)

m = 3
1.0 13.30 8.30 7.63 7.12 7.22

(0.0) (9.09) (0.45) (0.48) (0.33) (0.27)

Table III.4: Relative RMSE’s of estimated metabolite amplitudes obtained by Monte Carlo

simulation with 1000 noise realizations.

“real” data. Unfortunately, in order to compute it, the true value of the parameters must be

known.

One possibility is to perform measurements on samples with known metabolite concen-

trations (in vitro phantoms). Unfortunately, acquired signals suffer from combined effects of

many factors: environment variability (ex. temperature, pH), acquisition process variability

(ie. type of sequence used, B0 drift, etc), sample repeatability (ie. evolution of concentrations

in time ). Thus in order to study the quality of a phantom quantitation, one should take

into account all the acquisition chain parameters, making for quite a bulky model.

Another possibility is to simulate data that bear the statistical properties of measured

signal. Although this approach is intrinsically biased because it uses one model A to check

the quality of a model B (A and B can be the same model), it provides valuable insight into

the performances of the B estimator, by showing the cases when even in perfect conditions

the estimator fails.

In this work, we have chosen to simulate data because, when performing the ECD algo-

rithm with various λ hyper-parameter values, it can be clearly seen that the average of the

concentration estimates depend on λ. This means that λ has a direct (but unknown) effect

on the bias (as well as on the variance, but this is much easier to assess, even when the true

values are not available).

III.5.2 QUEST-ECD using HSVD modelling

A first Monte Carlo study has been performed on a synthetic signal consisting of three

metabolites, two of which severely overlap (cf. FigIV.3 on p.121). One thousand noisy signal

realizations have been quantified, using (1) a Lorentzian basis-set as well as (2) the ECD

algorithm with filtering by HSVD. Four different HSVD set-ups have been tested. Results

(cf. Table III.4) show that QUEST-ECD with HSVD filtering reduces errors for two of the

metabolites. Moreover, bias is significantly reduced, by all the HSVD set-ups.

The complete description of the study, including detailed results and discussions is given

in [132], included in this thesis in the Additional Material.

III.5.3 QUEST-ECD using LOWESS filtering

A noise-free signal has been simulated using an NMR-SCOPE generated metabolite basis-

set at 9.4T composed of Glutamate, Glutamine and Creatine with concentrations found in
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Figure III.9: 9.4 T spectra used for the Monte Carlo study. Blue: Noisy spectrum (σ = 5).

Orange: reconstructed spectrum using estimated lineshape. Dotted fine lines: individual

metabolite contributions. Note the distorted lineshape.

Figure III.10: Root Mean Square Error for the three metabolites (Glu,Gln and Cr), (250

noise realisations per noise standard deviation) and with a LOWESS smoothing parameter

λ = 0.2. Blue dots represent raw QUEST estimation (Lorentzian lineshape), green boxes

represent normalized QUEST estimation and the magenta diamonds represent estimations

with the LOWESS processed estimated decay function
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healthy human brain tissue. An asymmetric lineshape including eddy current effects has been

applied. Monte Carlo simulations have been performed by adding 250 noise realizations to

the noise-free signal for 15 different values of the noise standard deviation σ (Fig.III.9).

The data have been fitted using a MATLAB implementation of QUEST [156] enabling a

semi-parametric estimation of the lineshape, further processed using LOWESS. The latter

is applied to the basis-set and a second fitting with QUEST is performed. The quantita-

tion results have been normalized such that the first estimated data-point fits correctly the

corresponding raw data point. This has been done in order to better estimate the advan-

tages of the proposed method compared to using a pure Lorentzian lineshape, in the case of

estimation of metabolite amplitudes.

Results (see Fig.III.10) show that the processing of the estimated decay function using

LOWESS reduces the bias, which results in an overall better estimation of the metabo-

lite concentrations. As SNR deteriorates, the performances of the three approaches tested

converge, showing that the best results with QUEST-ECD can be obtained for very high

SNR.

III.6 Applications of QUEST-ECD on acquired MRS

data

In this section real data is quantified using the previously proposed QUEST-ECD algo-

rithm, with LOWESS ECD filtering. In order to gain additional knowledge on the possible

pitfalls of quantitation (ie. the impossibility to truly estimate bias), Monte Carlo techniques

are used to assess the estimator performances.

III.6.1 Data Description

Clinical data has been acquired by Bagory et al. [6] at CERMEP 11 during a 3 year time

span, in the context of clinical research on multiple sclerosis. In order to validate measure-

ment coherence during such a long period of time, phantom signals, as well as water signals

have also been acquired. The phantom used is a sphere containing a stabilized solution of

Water (W), Choline (Cho), Creatine (Cr), myo-Inositol (mI) and N-acetylaspartate (NAA),

with concentrations as follows

Cho 2 mmol

Cr 8 mmol

mI 8 mmol

NAA 8 mmol

Measurements have been made on a Siemens Magnetom Sonata Maestro Class system at

1.5 T, using a 8-channel head antenna in emission and a birdcage body antenna in reception.

The size of the Volume of Interest (VOI) is of 50x50x50mm. Measurements are made using

two PRESS sequences, at two different echo times TE = 30ms and TE = 135ms. Water

suppression is also active. For some of the signals (69 out of 122) the non-water-suppressed

version is also available (see Fig.III.11 for examples of acquired spectra).

11. Centre d’Etude et de Recherche Multimodale et Pluridisciplinaire en Imagerie du vivant CERMEP -

Imagerie du vivant, Bron, France
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Figure III.11: Spectra from the 69-signal data. The real part is plotted against the frequency

in ppm. The left spectra show the data prior to water suppression and the right spectra after

the HSLVD procedure (performed in jMRUI v4.0b)

III.6.2 Basis-set

22.533.544.5

 Cho

 Cr

 mI
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frequency (ppm)

Figure III.12: Real part of the basis set used for data generation and quantitation. The 4

metabolites are, in descending order, Cho, Cr, mI, NAA. The basis-set has been simulated

with NMR-SCOPE. Some components close to the water peak have been omitted because

of water suppression distortion. The spectra have been multiplied by scalars to optimize

viewing range. Due to very small damping, spectra appear to be dephased, but it is only

an artifact linked to the DFT sampling. Spectra are slightly frequency-shifted mimicking

phantom acquired signal shifts.

In order to use QUEST, a metabolite basis-set must be acquired or simulated. In this

case the latter variant has been chosen. Spectra (cf. Fig.III.12) have been simulated using the

NMR-SCOPE module in jMRUI v4.0b. Relevant spin parameters have been initially taken

as reported by Govindaraju et al. [67] and subsequently refined (in the research group) by

Rabeson [149]. The same HSLVD filter used for water residue removal has been applied on

the metabolite basis-set.

The ECD algorithm uses a basis-set with a very small damping factor. This basis-set



102 CHAPTER III. HANDLING OF THE COMMON METABOLITE DECAY

has been simulated using a damping of 0.4 Hz. Due to this small damping factor, and to

the finite nature of the time domain signal, artefacts appear in the visualization of the basis-

set, that make the spectra look dephased. These artefacts are generated by the underlying

sinc function associated with the limited acquisition time, and affect only frequency-domain

visualizations (and possibly frequency-domain algorithms). Zero-padding the spectra would

eliminate the distortion and show the underlying sinc convolution.

III.6.3 Estimation using conventional QUEST

In a first approach, the data acquired at TE=30ms have been quantified using the conven-

tional QUEST method. Two implementations have been used and compared: the jMRUI4

package [175], as well as a customized MATLAB version. The difference between the two

results, although non null, was not deemed significant and thus a choice has been made to

present only results obtained using the Matlab version of the algorithm. It should be noted

that further on, when using QUEST-ECD, only the MATLAB implementation is being used.

For an example of quantified spectra, see Fig.III.14.

Out of the 69 signals, one exhibited spurious quantitation convergence, and has been

discarded. The algorithm could have been finely tuned to allow improved convergence for

that signal (the 47th) as well, but for the purpose of this study it has been chosen to discard

it and to do statistics on the rest of the dataset.
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Figure III.13: Blue crosses represent the distribution for the concentration estimation using

a classical QUEST with Lorentzian lineshape correction. The mean (full line) and the errors

bars corresponding to one standard deviation (dashed lines) are shown in gray. The x axis

represent the signal index, from 1 to 68.

The amplitude estimates are shown in Fig.III.13, with their means and standard devia-

tions having the following values:

Metabolite Mean [a.u.] Standard deviation [a.u.] True value [mmol]

Cho. 86.9 13.8 2

Ch. 421.6 44.8 8

mI. 509.4 45.7 8

NAA 537.7 45.5 8
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Figure III.14: Example of quantitation of in vitro acquisitions (red line) using QUEST

(blue line) and ECD-QUEST (green line). Plot (II) shows the residues, using the same

colors. Notice how residues due to incorrect lineshape model are reduced when using ECD-

QUEST.

Normalization issues

Metabolite amplitude estimates are measured in arbitrary units, whereas the reference

concentrations are in mmol. An unknown proportionality constant κ, technically specific to

each acquisition, links the metabolite amplitudes and the corresponding mean concentrations:

c[in mmol]
m = κc[in a.u.]

m (III.23)

When performing statistical studies on the metabolite quantitation results, it is desirable

to eliminate the influence of the proportionality constant κn, specific
12 to each acquisition

n. To illustrate the importance of the variance of κ, consider the case when the actual

metabolite concentrations have exactly the same values, but due to different factors κ is

different for each acquisition. Measuring the variance of the amplitude estimates, supposing

that the quantitation itself is ideal, comes to measuring the variance of the proportionality

constant κ. The influence of the proportionality constant is typically circumvented in MRS

by the use of metabolite concentration ratios, while another possibility is the use of absolute

quantitation methodologies.

In order to mitigate the influence of the proportionality factor κ, three approaches have

been considered:

1. No scaling. In this case no attempt has been made to scale the concentrations.

12. For acquisitions that are performed in the same conditions and in a short lapse of time, it is expected

to have the same proportionality constant κ. However, in this case, data have been acquired over a long

period of time, on different patients. We can therefore assume the variations in κ significant.
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2. Water scaling. In this case the concentrations have been normalized with respect to

the acquired non-water-suppressed signal. The two signals are independently acquired.

3. Sum scaling. In this case the amplitude estimates for each metabolite have been

normalized such that the sum of the amplitudes always yields the same amount.
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Figure III.15: Correlation of am-

plitude estimates using QUEST (line-

shape correction using an additional Lo-

rentzian decay term). A: Unscaled am-

plitude estimates. B: Relative esti-

mated amplitudes, with respect to the

water signal. C: Relative estimated am-

plitudes, with respect to the sum of esti-

mated amplitudes. Diagonal plots repre-

sent the histograms for each metabolite

concentration estimate. In non diago-

nal plots each point represents a signal,

as a pair of metabolite amplitude esti-

mates. Please be aware that scales are

different between metabolites - data have

been plotted so as to optimize the view-

ing range.

Figure III.15 presents the comparative results of the three methods of scaling in the form

of a multiple correlation plot. The diagonal plots represent the histogram of the distribution

of the estimated metabolite amplitudes. On all the other graphics, each point represents a

quantitation result, represented as a pair of amplitude estimates. Ideally, if quantitation of

all signals would render the same results, the plots would consist of precisely overlapping
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points. Because of several factors 13, however, points are scattered.

More, if the series defined by two metabolite amplitude estimates are correlated, this ten-

dency would clearly show up in these graphs. If such is the case, it means than, statistically,

estimation errors on the amplitudes of the two metabolites are bounded together, hinting at

some bias 14. The graphs should be interpreted in the following way:

– If the scatter plot resembles a line with a slope that is not horizontal or vertical, the

errors are correlated and there might be important bias.

– If the scatter plot resembles a horizontal or vertical line, results show a relative differ-

ence in variability between the estimated concentrations for two metabolites. From a

error correlation point of view, it means that errors are not correlated, the scatter-plot

being similar to a 2D independent normal distribution.

– Outliers should be investigated as they show that one (or more) signals has been

quantified in a significantly different manner as the others. Possible reasons are different

proportionality constant κ or quantitation convergence issues.

Results (cf. Fig.III.15a) show that the unscaled amplitudes (as estimated by the QUEST

algorithm implemented in MATLAB) tend to have a good error correlation, excepting per-

haps the Cr-NAA and Cho-mI pairs, that seems to be slightly linearly correlated with a

positive slope 15. Scaling by the amplitude of the unsuppressed water signal seems to slightly

improve this correlation, while making apparent some correlation between NAA and Cho.

On the other hand, scaling using the sum of metabolite amplitude estimates deteriorates

significantly the independence of amplitude estimations. While this is normal to a certain

extent because we have blocked the sum of the metabolite relative amplitudes at 1, the

important amount of correlation may suggest that this method may not be optimal in this

case.

III.6.4 ECD-LOWESS QUEST estimation

In order to take into account the effect of the lineshape, a series of QUEST-ECD quantita-

tion has been applied. The effect of the lineshape smoothness parameter λ is very important,

as it can be seen from the evolution of concentration estimation in function of λ

If the true value of the concentrations would be known, then it would be possible to

compute error RMS and thus find the best possible λ. Unfortunately there are several reasons

why, although the true concentrations in the test tube are known, true values expected cannot

be exactly:

– The proportionality constant κ is an unknown 16 factor that links the signals (in

arbitrary units) to the concentrations (in mmol) . Because of this factor, in real cases

only relative concentrations can be estimated (ie ratios between two metabolites). In

order to obtain absolute concentrations an internal reference can be used. In our case

we have used the non-water-suppressed signal.

13. Most important factors include acquisition noise, time variability of the metabolite concentrations in

the phantom, changing conditions between acquisitions.
14. The link between the proportionality constant κ and the estimation bias is given by BIAS(c) =

c
[in mmol]
true − c

[in mmol]
estimated = c

[in mmol]
true − κc

[in a.u.]
estimated.

15. The correlation slope is defined as the slope between the regression line representing the data and the

x axis. Positive correlation between metabolites A and B suggests that when metabolite A is over-estimated,

so is metabolite B.
16. The proportionality constant can be estimated in the case of “absolute” quantitation.
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– Water suppression during acquisition eliminates water in a given frequency band,

allowing to obtain readable metabolite quantities. Unfortunately, the scale difference

between water and the other metabolites makes that the water suppression residue is

comparable, if not stronger then the other metabolite contributions. It is therefore

customary to apply a second water removal procedure, by mathematical preprocessing

of the acquired data. However, the frequency suppression range function is not a

perfect gate function, having an important transition zone between the passband and

the stopband. If metabolite peaks are present in this zone (and they are) their spectra

will be non-linearly affected by the water suppression. One of the possible solutions

is to ignore peaks that are too close to the water peak. Another solution would be to

find a way to predict the effect of water suppression and apply it to the metabolites.

In this study we have chosen the latter.

III.6.5 Monte Carlo study

Previous results show that mean amplitude estimates depend on the value of the smooth-

ing hyper-parameter λ. In order to assess the possible bias produced by quantitation, as well

as choose an appropriate value for λ, a Monte Carlo study is performed.

III.6.5.1 Methodology

To keep simulations as close to the real acquisition as possible, we have chosen to use

“true values” estimated from acquired data. In order to obtain the simulation data, the

following steps have been taken

1. Signal Lineshape has been extracted from the non-water-suppressed signal. The

first points present artifacts due to the digital filter on the scanner, but they have

not been corrected. Alternatively, a slightly LOWESS filtered lineshape was used.

Please note that the water signal has been used to produce a lineshape mimicking

acquisition conditions. It is used only for generating the signals, and not for consequent

quantitation, where the ECD-QUEST is employed.

2. The basis-set is constructed using an undamped simulated basis-set and the previ-

ously estimated lineshape.

3. “True”parameter values are obtained by performing QUEST on the acquired signal

using the previously computed basis-set.

The following parameters are thus considered“true” in the subsequent Monte Carlo study:

no. metabolite c 	α 	f 	ϕ

[a.u.] [s−1] [s−1] [deg]

1 Cho 108.541 -0.0723 -4.810 +13.27

2 Cr 438.134 -2.8700 +1.010 +05.58

3 mI 581.865 +0.0000 -9.710 +13.88

4 NAA 510.808 -0.0312 -0.026 +08.11

Complex AWG Noise has been added with a standard deviation of σ = 150, larger than

the actual noise level in the measured signal.
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Figure III.16: Blue: The simulated “clean” spectra used for the Monte Carlo study. Red:

Spectra including one noise realization. Green: The acquired corresponding signal. Only the

real part of the spectra is plotted. For more details on the acquired signal, see §III.6.1
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Figure III.17: Lineshape signal used for simulations (Time and Frequency domains). This

lineshape has been extracted from non-water-suppressed acquired signal associated with the

metabolite acquired signals.

In the original signal dispersion measurement of the real part of the signal between the

index 400 and 924 yielded an estimated SD of 15.12 using Variance and 14.12 using Inter-

Quantile Range (IQR). Thus it can be considered that the complex noise SD is σmeasured
Noise =√

2×14.5 ≈ 20.5. The same procedure gives a value of the simulated noise of σsimulated
Noise ≈ 147.8

for the first noise realization.

In order to evaluate the evolution of the quantitation as a function of the smoothing

hyper-parameter λ, we have a non-uniform sampling of it. The reason behind this is that

the LOWESS procedure is sensitive to small variations for small λ’s but not so sensitive

for greater values of λ. This is explained by the fact that the number of points taken into
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account by the sliding window is roughly λN where N is the length of the signal.Thus the

relative weight of a point inside LOWESS is inversely proportional to λ. In order to get a

good view of the influence of λ one must plot tight points for small λ and can leave bigger

spacing for greater λ.

Sixty (60) values have been chosen for λ, ranging from λmin = 0.009775 to λmax = 0.4995.

The sampling chosen is as follows: linear for λ < 0.255 and then logarithmic for λ > 0.255.

Please note that for the first value the LOWESS procedure does not actually modify the data,

and that the ECD algorithm is thus equivalent to the (Lorentzian-)QUEST quantitation.

III.6.5.2 ECD quantitation results

The results of the ECD/LOWESS - QUEST quantitation are shown in Fig. III.18.

Means for each parameter are plotted against λ to understand the general evolution of the

quantitation. True value and Lorentzian model value are also plotted, for comparison. One

should note the evolution of the extra damping 	α that evolves monotonically with λ. This

is because as the lineshape is more and more filtered, it behaves more and more like an

negatively-apodized signal (but without the effect of enhancing noise). To the extreme, if λ

is equal to 1 the filtered signal would be a constant signal, thus having zero-decay (although

otherwise-degenerated as well).
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ness hyperparameter λ. Red curve = Lorentzian equivalent. Blue curve = true values. λ
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Also to be noted are the non-negligible differences between the values of the phase,

frequency shift and extra damping . This is mainly because the “true” parameters have been

considered without the influence of the lineshape, that includes itself and extra dephasing

	ϕLS, extra damping 	αLS and extra frequency shift 	fLS.

III.6.5.3 Metabolite amplitudes

Figure III.19 shows the results of the ECD-QUEST algorithm. Concentration estimation

error ci− cTRUE
i statistics are presented in function of the smoothing hyperparameter λ. The

value corresponding to a classical Lorentzian QUEST are also plotted as a dashed red line.

First of all, it can be observed that the bias represents the majority of the total errors,

for all metabolites. As it has been seen before this poses a significant problem in real cases,

when bias cannot be estimated due to the unknown “true” value.

Secondly, each error curve has a similar form, but present minima at slightly different λ

values. This poses a problem because it effectively means that there is a slightly different

value of smoothness for which best quantitation is achieved. In order to get a more general

view,the fifth row of Fig. III.19 shows the summed errors of all metabolites RMS2
TOTAL =∑

i RMS2
i .

The changes in Error RMS value can be summarized, for λ = 0.32, as follows:

Metabolite RMS2 (LOR) RMS2(ECD) Relative change

Cho 1.50 E+2 0.62 E+2 -58 %

Cr 9.93 E+2 0.89 E+2 -91 %

mI 2.60 E+3 0.15 E+3 -94 %

NAA 8.31 E+2 2.04 E+2 -75 %

Sum 4.58 E+3 0.51 E+3 -89 %

III.6.5.4 Relative amplitudes (Concentration ratios)

In most current studies the lack of an efficient reference makes that ratio concentra-

tions are computed. This eliminates any common factor that might bias concentration

measurements, and thus might significantly change the error statistics. In order to test the

ECD-QUEST performance in this scenario, relative amplitudes have been computed, taking

as reference the best defined metabolite (NAA). The measured errors ( ci
cNAA

− cTRUE
i

c
NAATRUE

) are

compiled in Fig. III.20 .

First of all results show that the bias-variance relationship, while still being dominated

by bias, is more balanced that in the case of absolute concentrations. This reflects the fact

than a part of the bias due to a common proportionality factor has been removed.

Another notable aspect is that the error statistics show minima at different values of λ

for different metabolites. This reflects the different effect the lineshape can have on different

metabolites and illustrates part of the difficulty in finding the optimal value of smoothness.

The fourth row of Fig. III.20 shows the summed errors of all metabolites, thus providing a

more general view of the problem. The changes in Error RMS value can be summarized, for

λ = 0.2 as follows:
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Figure III.19: Error statistics (RMS2, BIAS2, VAR) in function of the smoothness hyper-

parameter λ. Fourth plot represents the same data as the third plot (VAR), but it is scaled

on the Y axis for better visibility. The red dotted curve represents the descriptor equivalent

value for the Lorentzian model.

Metabolite Ratio RMS2 (LOR) RMS2(ECD) Relative change

Cho:NAA 1.83 E-4 0.53 E-5 -71 %

Cr :NAA 4.81 E-4 5.19 E-4 +08 %

mI :NAA 1.88 E-3 0.73 E-3 -61 %

Sum:NAA 2.54 E-3 1.30 E-3 -48 %

It is important to notice a significant decrease in Error RMS improvement from the

results in Fig. III.19. This illustrates that the Lorentzian lineshape correction introduces a

common bias, that is eliminated when using metabolite concentration ratios.

Conclusions

The comparison between different lineshape handling approaches has shown that it is

of interest to adapt the basis-set to the acquired signal, and not vice-versa. Based on this

approach, we have developed an algorithm that estimates the common decay function, and

then uses it to adapt the metabolite basis-set signals.

However, testing the method directly on real data has the disadvantage of not being able

to estimate the bias, seen from Monte Carlo studies to be the major source of the error.

Because of this, several series of Monte Carlo, mimicking the acquired signals have been

performed, and have shown significant bias reduction.
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Figure III.20: Error statistics (RMS2, BIAS2, VAR) in function of the smoothness hy-

perparameter λ for concentrations relative to the forth metabolite (NAA). Fourth column

represents the same data as the third column (VAR), but it is scaled on the Y axis for better

visibility. The red dotted curve represents the equivalent statistics value for the Lorentzian

model.

Finally, the performances of the QUEST-ECD estimator depend very much on the choice

of the filtering method inside the ECD part. In the case of LOWESS filtering, a method to

automatically optimize the λ hyper-parameter has been developed, and shown to produce

significant bias reduction, for both metabolite amplitude ratios and “absolute” metabolite

amplitudes.
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Chapter IV

ECD Spectral Compactness

In this chapter, we propose another approach to metabolite quantitation, based on the

underlying properties of the lineshape. In the previous chapter, the estimated common

decay (ECD) function was filtered to eliminate spurious high frequency components. We

now propose a method based on the same hypothesis of limited lineshape bandwidth, that

allows, by itself or in combination with a more classical approach, the determination of the

MRS parameters of interest, and in particular of metabolite concentration.

IV.1 Method concept

It has been shown in the previous chapter that, under the assumption that all metabolites

share the same decay function, the “true” MRS signal š(t), and the ensuing noisy acquired

signal s(t) can be written as

š(t) = ď(t)
M∑

m=1

čm bm(t) e
jϕ̌m ejω̌mt (IV.1)

s(t) = š(t) + ε(t)

with ď the common decay function and p̌ = (čm, ϕ̌m, ω̌m)m=1...M the concentrations, phases

and frequency shifts and bm the metabolite basis-set. In the following sections, the caron

symbol ˇdenotes the true, unknown values that need to be estimated, while the hat symbol

ˆdenotes the estimated values. The term inside the sum in Eq.IV.1 has been defined as the

undamped signal model:

šundamped(t) =
M∑

m=1

čmbm(t)e
jϕ̌mejω̌mt (IV.2)

Furthermore, should the parameter values p̌ be estimated by the set p̂, then the lineshape

can be estimated via equation IV.3:

d̂(t) = ď(t)

∑M
m=1 čmbm(t) e

jϕ̌mejω̌mt∑M
m=1 ĉmbm(t) e

jϕ̂mejω̂mt
+ ε′(t) (IV.3)

where ε′(t) = ε(t)[
∑M

m=1 ĉm · sm(t) · ejϕ̂m · ejω̂mt]−1 is the ratio between AWG Noise and the

undamped estimated signal. This term is stochastic in nature, and it will be considered for

now to be generated by an unknown statistical model.

113
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For later simplicity the noise term is ignored in a first approach, and will be accounted

for later. Since the order of metabolites is not essential, a change of notation is performed

so that one metabolite may be considered as reference. The generality of the problem is not

changed by this, since any metabolite may be chosen. The reference metabolite is denoted

by the zero index, with the other metabolite indices ranging from 1 to M − 1.

d̂(t) = ď(t)

∑M−1
m=0 čmbm(t) e

ıϕ̌meıω̌mt∑M−1
m=0 ĉmbm(t) e

ıϕ̂meıω̂mt

d̂(t) = ď(t)
č0b0(t) e

ıϕ̌0eıω̌0t +
∑M−1

m=1 čmbm(t) e
ıϕ̌m · eıω̌mt

ĉ0b0(t) eıϕ̂0ejω̂0t +
∑M−1

m=1 ĉmbm(t) e
ıϕ̂ejω̂mt

(IV.4)

d̂(t) = ď(t)︸︷︷︸
(a)

č0e
ıϕ̌0eıω̌0t

ĉ0eıϕ̂0eıω̂0t︸ ︷︷ ︸
(b)

b0(t) +
∑M−1

m=1 č
rel
m bm(t) e

ıϕ̌rel
m eıω̌

rel
m t

b0(t) +
∑M−1

m=1 ĉ
rel
m bm(t) eıϕ̂

rel
m eıω̂rel

m t︸ ︷︷ ︸
(c)

(IV.5)

with the superscript ’rel’ denoting relative values with respect to the corresponding values

of metabolite m0: c
rel
m = cm

c0
, ωrel

m = ωm − ω0 and ϕrel
m = ϕm − ϕ0.

Eq.IV.5 shows the dependence for the estimated lineshape on the true and estimated

model parameters. The form chosen to represent the equation makes three terms apparent:

(a) The true decay function. The corresponding function in the Fourier Domain is the

lineshape.

(b) A shift term that depends only on the choice of the reference metabolite m0. When

performing the FT on this term, the result is a Dirac function, whose frequency position

is determined by the frequency error on the reference metabolite.

(c) A more complicated term taking into account the interaction between the metabolites.

It is shown later that the FT of this signal has a complicated structure, but its effective

bandwidth can be linked to the error p̌− p̂

Figure IV.1 illustrates an example of how the spectral effective compactness of the ECD

is influenced by the values p̂ in the undamped model function. Column (I) plots show the

case when the correct values are shown, while column (II) shows results for sub-optimal

values of p̂. Notice the frequency peaks that appear in (II) around ν ≈ ±0.35. Also notice

the effect in the time domain, where oscillations appear in the ECD (II.a); this effect is used

for a later alternative approach to the frequency domain spectral compactness in §IV.3.

IV.1.1 Ratio of two exponentially damped sinusoids

In order to get a better understanding of the link between the term IV.5(c) and the

principle of the method proposed, a simple case is now studied more in detail.

Consider the simple model built using two fictitious metabolites, each having a basis-set

consisting of only one peak. Moreover, one metabolite (m0) has its peak at the reference

frequency, so that ω0 = 0, and all its other parameters are known (ĉ0 = č0 = 1, ω̂0 = ω̌0 =

0, ϕ̂0 = ϕ̌0 = 0). The common lineshape is of pure Lorentzian nature, with a decay time

constant of α−1.
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Figure IV.1: Estimated Common Decay (ECD) functions, represented in the time domain

(a), and in the frequency domain (b-d). Time domain representation has been cropped at 200

points for better visualization. Left plots (I), represent the case when the parameters p̂ all

have the true values, as indicated in Table IV.1 (p.119). Right columns represent the ECD

when two parameters have the wrong values : ĉ1 = 0.6 , ĉ3 = 2.5. For each plot, the gray

fine line represents a signal realization with noise, whereas the thick black line represents

the estimation in the case that no noise is present. It should be noted that the latter is not

normally available in practice, but has been included here to illustrate how effective spectral

compact support is altered when using inappropriate parameter values. When the parameters

are not the correct ones, undulations appear in the spectrum, increasing the Out-of-Band

components, as well as the effective spectral compact support. This is clearly seen when

observing the spectra in dB (d), instead of a linear scale.
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Injection of this model into Eqs.IV.1-IV.5 gives the following signals:

š(t) = ď(t)[1 + č1 exp(ıϕ̌1 + ıω̌1t)] (noiseless signal)

d̂(t) = ď(t)
1 + č1 exp(ıϕ̌1 + ıω̌1t)

1 + ĉ1 exp(ıϕ̂1 + ıω̂1t)︸ ︷︷ ︸
(c)

(ECD function)

The aim of the method is to estimate the parameters corresponding to metabolite m1

without direct determination of d̂(t). In order to achieve this, two facts can be observed

concerning the ECD function:

– if the estimated parameters p̂1 are equal to the true parameters p̌1, then the estimated

common decay is equal to the true common decay, and therefore has all the properties

of the (unknown) function ď.

– although the true common decay function is unknown, it can be assumed to have

certain properties. One of the most important in this case is that in experimental

conditions it is expected that the static field inhomogeneities 	B0 be distributed with

a reasonably narrow distribution , leading to a lineshape with an important modal

component and small tails.

Combining the previously stated remarks yields that when the estimated parameters are

equal to the true parameters, then the estimated common decay (ECD) FT should have a

narrow peak with small tails. Furthermore, it can be shown that when p̂ �= p̌ the support

of the ECD-FT necessarily grows.

In order to show this, consider that the true lineshape has a compact 1 support. According

to Titchmarsh [182]’s theorem, the support span of the ECD-FT is equal to the support span

of the true CD-FT plus the support span of the term (c) FT. Minimal FT support of (c) is

achieved in the case of a Dirac distribution, leading to equality of p̂ and p̌. Any other (c)

term leads to a FT with larger support, thus increasing the support span of the ECD-FT as

well.

The next step towards p estimation is defining a measure for the ECD bandwidth (the

support of the ECD-FT). Without explicitly specifying this measure, consider that it is given

by a function C so that ‖C(d(p))‖ is representative of the effective bandwidth of the signal

d(p). Since it has been shown that ‖C‖ has a global minimum when p is equal to the true

underlying values p̌, the algorithm to compute an estimation p̂ is given by:

Find p̂ = [ĉ1, ϕ̂1, ω̂1] that is the global minimum of ‖C(d̂(p, t))‖,
with d̂(p, t) = s(t)[1 + c1 exp(ıϕ1 + ıω1t)]

−1

The measure ‖C(d̂)‖ is referred to as the cost function associated with the optimization

procedure. In order to distinguish between the classic least squares (LS) approach to quan-

titation, based on the minimization of the residue, and the novel approach proposed, we

introduce the symbols C1 and C2 respectively. When speaking of C1 the cost function is the

L2 norm of the residue s − ŝ. When C2 is mentioned, the cost function is derived from the

1. Two elements need to be specified when approximating the compact support of the true lineshape.

First, strictly speaking, the lineshape has an infinite support, but its values decays quickly. It is considered

that when the value of the decay function is smaller then an arbitrary constant (close to zero), the function

is approximatively equal to zero, thus giving a compact support. Secondly, only a frequency span equal to

the sampling frequency is considered, supposing that no aliasing takes place. Time truncation effects are

also considered, for now, negligible.
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principle of effective spectral compactness of the estimated common decay function. Slightly

abusing the notation, we also refer henceforth to minimizing C instead of ‖C‖.
In the following sections, different implementations of C2 are explored. Section IV.2

illustrates implementations based on a spectral domain approach. Section IV.3 discusses,

among other possible improvements to the method, a time-domain implementation of C2.

IV.2 C2 implementation in Frequency Domain

Figure IV.2: Partitioning of the spectral domain in the in-Band sub-domain and the out-

Band sub-domain. For the spectral implementation of C2, the spectral components in the

out-Band are minimized.

Since the Fourier Transform of the ECD function is expected to be in a narrow frequency

band, one possible criterion is to establish a partition of the frequency domain in two sub-

domains, using two constant frequencies fmin and fmax. The in-Band sub-domain is defined

by all the frequencies that have values in [fmin, fmax], while the rest of the frequencies con-

stitute the out-Band sub-domain (oB),cf. Fig.IV.2. If the estimated parameters are correct,

and if the in-Band limits have been chosen so that they enclose the support of the true com-

mon decay, then it is expected that no spectral components are present in the oB domain.

Furthermore, the larger the effective bandwidth, the more components are expected to be

present in the out-Band. This leads to the cost function C being proposed as the quantity

of out-Band spectral components of the estimated common lineshape:

C(p) = �{D̂(f,p)} � �(f, fmin, fmax) (IV.6)

where D̂ is the Fourier Transform of the estimated common decay function d̂, � is the

point-wise multiplication and � is the inverted square function, defined as

�(f, fmin, fmax) =

{
0 if fmax ≤ f ≤ fmax

1 otherwise
(IV.7)

Another formulation of the out-Band C2cost function can be found in [133], for the special

case when −fmin = fmax ≡ ftreshold, and implies the minimization of the ECD spectral

components for all frequencies |f | > ftreshhold.

The same published work also gives an implementation of the method, including a pre-

processing step before the actual computation. First of all the ECD function is truncated
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at the integer index closest to nlim = tdecayt
−1
s . The ECD is further zero-padded up to 1024

points, and the real part of its DFT is computed via FFT. Finally, the result is minimized

in function of p via an additive term to the classical residue LS cost function C1. A method

to derive the Jacobian matrix associated to the new criterion is also proposed, with direct

application in the case of a Newton-Raphson NLLS minimization procedure.

Nevertheless, several aspects of the published C2implementation can still be improved.

First the published version only takes into account the real part of the components in the

out-Band, leading to possible influence of the phase factors. Secondly, the truncation/zero-

padding introduces sinus cardinalis (sinc) interpolation that might unnecessarily enlarge the

support of the actual DFT. Finally, although the implementation seems to require no input

from the user, the hyper-parameters fmax and fmax setting the extent of the considered out-

Band still have to be set. Prospective improvements on the published method are discussed

in section §IV.3.

IV.2.1 Methodology

In order to assess the benefits of spectral compactness as a priori information, a Monte

Carlo study has been performed, based on simulated signals with properties pertinent to

the aim of the method (accommodation of unknown lineshape). This subsection describes

in detail the validation methodology. Also see the published material [133] included in the

Additional Material section at the end of this thesis.

IV.2.1.1 Metabolite model

The overall model generally used in MRS for quantifyingM metabolites is usually written

as (cf. §II.4 and Eq.III.2):

ŝ(t) = exp(ıϕ0)
M∑

m=1

cmd̂m(t)ŝm(t) exp[ı(2π	νmt+ ϕm)] (IV.8)

in which the time is discretized at N points t = t0+nts with n = 0, 1, . . . , N−1 and t0 the dead

time of the receiver, that in this study has been fixed equal to zero. The sampling time has

been fixed at ts = 1, reducing the problem to the normalized frequency case ν = f/Fs = fts.

This does not reduce the generality of the problem, while simplifying notation. The overall

phase ϕ0 is also chosen for convenience at zero, as it could very well be integrated in the

metabolite-specific phase ϕm. Three metabolites (M = 3) are simulated, and the different

model parameters are set as follows:

– cm is the quantity or concentration of metabolite m. In this study, their values are, in

arbitrary units c1 = 0.5, c2 = 2.0 and c3 = 2.0 a.u..

– ϕm is the phase of metabolite m, and has been put to zero in this study for all metabo-

lites.

– d̂m(t) is an analytical function that describes the decay function of each metabolite

(cf. §II.1 and III.1), and usually of little importance to clinicians. The most common

choices for analytical modelling are the Lorentzian and Gaussian functions, themselves

special cases of the the Voigt function, defined as dVoigt(t) = exp(αmt + βmt
2) with

αm, βm ∈ R− (cf. §II.5). Although at high resolution NMR each metabolite may have

a different decay function, this study is meant in the previously described estimated
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m cm k am,k νm,k ϕm,k

1 (0.5) 1 0.50 0.150 0

2 1.50 0.160 60

3 1.50 0.170 120

4 0.50 0.180 180

2 (1.0) 1 0.30 0.130 0

2 0.60 0.150 30

3 0.90 0.170 60

4 1.20 0.190 90

3 (2.0) 1 1.00 -0.160 0

Table IV.1: Model parameters used for signal simulation. νm,k is the normalized frequency,

corresponding to νm,k = fm,k/Fs. Dephasing ϕ is shown in degrees. Values in parantheses

(cm) represent the concentration used in the overall signal, and are shown here for conve-

nience.

common decay hypothesis (cf. §), when the dominant contributor is the field inhomo-

geneity, and sometimes the eddy currents. Consequently, in the following paragraphs

the subscript m of the decay function is dropped. The common decay function used

in this study is described in full detail in §IV.2.1.2.
– ŝm(t) =

∑Km

k=1 am,k exp[ı(2πνm,kt+ ϕm,k)] is the a priori known, non-decaying version

of the model function of metabolite m, in which am,k, νm,k, ϕm,k are the relative am-

plitudes , frequencies and phases of individual spectral components of a metabolite

model function. Table IV.1 summarizes the values used in the current work. There are

nine spectral components, grouped into two quartets (m1 and m2) and a singlet (m3).

The two quartets overlap heavily. The frequencies 0.150 and 0.170 are common to

the quartets, while the remaining two frequencies of m1 are enclosed in the remaining

frequencies of m2. Moreover, phases are different for each peak, rendering complex the

inter-peak interference.

An important aspect here is the fact that the a priori basis-set used has zero-decay. In

practice, acquired signals are always decaying, and thus this method cannot be applied

to in vitro basis-sets without further processing for decay minimization. However, when

using basis-sets simulated via quantum mechanics approaches (e.g. NMR-SCOPE [69]),

the decay can be set to arbitrary low values, thus providing (quasi-) non-decaying basis

set signals.

– 	νm represent frequency shift corrections, that arise from the average effective Bz

longitudinal magnetic field being applied. In this study no extra frequency shifts have

been applied (	νm = 0, ∀m).

IV.2.1.2 Decay Model

In order to simulate the complexity of an acquired decay function, the decay model has

been developed to include the intrinsic spin relaxation d̂relaxation, B0 inhomogeneity effects

and eddy current influence. The overall decay function is thus modelled in the time domain
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as a product of three independent decay functions:

d̂(t) = N · d̂patient(t) · d̂eddy(t) · d̂relaxation(t) (IV.9)

where N is a normalization constant so that |d̂(t = 0)| = 1. Furthermore,

– d̂patient is the decay due to the spatial distribution of the effective longitudinal magnetic

field Bz. The main source of Bz inhomogeneity comes from the interface effect of tissues

with different magnetic susceptibility, such as fat, bone, air, etc. (e.g. see [86]). In this

study an asymmetric lineshape determined by the extrema ν1 and ν3 and with the

centre at ν2 has been chosen to model the inhomogeneity effect. The complete model

is described by Eq.IV.10:

d̂patient(t) =
1

π(ν3 − ν1)

[
exp(2πıν2t)− exp(2πıν1t)

2π(ν2 − ν1)t
− exp(2πıν3t)− exp(2πıν1t)

2π(ν3 − ν1)t

]
(IV.10)

with ν1 = −0.001, ν2 = 0, ν3 = 0.015 .

– d̂eddy is a complex valued decay function caused by eddy currents induced in the walls

of the superconductor magnet mainly by the switching of the gradient fields. The

effect shows up as a harmonic amplitude modulated component that adds up to Bz.

Although present at each gradient field switch, the effect decays quickly in time. In

modern scanners the eddy currents are limited through passive and active shielding,

reducing its influence considerably. In this study the phase variation induced by the

eddy currents has been modelled by Eq.IV.11:

d̂eddy(t) = exp

[
J∑

j=1

cj,eddy exp(αj,eddyt)

]
(IV.11)

with J = 2, c1,eddy = 2.0, c2,eddy = −2.4, α1,eddy = −0.006, α2,eddy = −0.005,

– d̂relaxation is representative of the spin relaxation mechanism. In current literature, this

is usually modeled together with a simple inhomogeneity effect as the Voigt decay

function. In this work, the Voigt function has been degenerated to a Lorentzian decay,

completely modelled by Eq.IV.12:

d̂Voigt(t) = exp
(
αt+ βt2

)
(IV.12)

with α = −0.026, β = 0 .

Furthermore, in this work it is assumed that:

(i) The form of the decay function is a priori unknown

(ii) The corresponding lineshape is of reasonably compact support. This assumption can

also be translated as reasonable shim quality.

(iii) Although unknown, the decay function is common to each spectral component. This

assumption is based on the predominant influence of B0 heterogeneity and eddy cur-

rents. It should be noted here that this common decay hypothesis also stands at the

foundation of any method exploiting a reference peak.
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Figure IV.3: Real part (upper plot) and module (lower plot) of the fictitious, simulated

signal used for Monte Carlo validation. For the complete description of the model, please

refer to text. Metabolites 1 and 2 have 4 peaks each, while metabolite 3 has a single peak.

Please notice that the spectral peak positions do not correspond to exact values in Table IV.1,

especially in the plot of the real part. The difference is accounted for by the asymmetric

lineshape used, as well as, in the case of metabolites 1 and 2, of the inter-peak interference

and different peak dephasing. Notice how plotting the module corrects the peak position and

allows better identification of each peak.
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(iv) A reference signal enabling accurate estimation of the decay function is not available.

Consequently, the common decay function has to be estimated from the signal itself.

The models described in sections §IV.2.1.1-IV.2.1.2 fully describe the simulation method-

ology for this work. The resulting fictitious signals serve as substitute of real-world signals

from any of the nuclei 1H, 13C, 15N, 19F, 31P.

IV.2.1.3 Quantitation algorithm and implementation

The novel approach implemented in this study consists of enhancing the least-squares

classic approach (C1) with the newly proposed C2approach. The combined method has the

following steps. A detailed description of the implementation is given afterwards.

(i) Apply a preliminary NLLS fit of the model function described by Eq.IV.8. This is

equivalent to a primary application of QUEST on the data set, using a pure-Lorentzian

decay function. The estimated model parameters pstart serve as a starting point for the

rest of the algorithm. The usual set of equations corresponding to minimizing the L2

norm of the residue s− ŝ is referred to as criterion one (C1).

(ii) Build the undamped model ŝundamped using Eq.IV.2. The parameters used are the

previously computed pstart.

(iii) Compute the estimated common decay function d 2 by point-wise division of the signal

s to the undamped model ŝundamped. Next, normalize d with respect to the first point.

This yields the following simple estimator of the decay function:

d(t) = N s(t)

sstartundamped(t)
(IV.13)

where N =
∣∣∣ sundamped(0)

s(0)

∣∣∣ is the normalizing factor for the lineshape. This estimator is

not exact for two reasons. First, s(t) contains noise, whereas ŝ(t) does not. Second, the

initial estimates pstart are only approximate. As a consequence of the second reason,

d(t) comprises components with frequencies rather higher than those in the true decay

function.

(iv) Impose that components in d(t) with frequencies |ν| > νthreshold have minimal ampli-

tudes. νthreshold is derived from physical insight. The ensuing set of equations is referred

to as criterion two (C2). It has been implemented as follows:

(a) Truncate d(t) to zero once it has decayed into the noise, at t = tdecay = ndecayts.

(b) Zero-fill d(t) from n = ndecay to 1024.

(c) Calculate the derivatives of the lineshape �[FFT {d(t)})], in which d(t) has been

derived from Eq. IV.13 with respect to the metabolite parameters cm and 	νm,

m = 1, . . . ,M .

(d) Analogous to minimizing the residue, set up equations for minimizing the real part

of D(ν) = FFT{d(t)} for |ν| > νthreshold.

(e) Merge the equations of the two criteria.

2. The hat has been dropped from d̂(t) because the resulting expression is no longer strictly an analytical

formula.
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(v) Apply a two-criteria NLLS fit of

ŝ(t) = d(t)ŝundamped(t) (IV.14)

to s(t). In each NLLS iteration, C2minimizes the components in d(t) with |ν| > νthreshold.

Simultaneously, C1minimizes the the residue s(t) − ŝ(t). Also, d(t) is estimated with

Eq.IV.13 in each iteration, using the undamped model function ŝundamped built with the

latest parameter estimates.

To the best of our knowledge steps (iv) and (v) are new. The use of basis functions such as

wavelets or splines and the concomitant setting of hyper-parameters has been circumvented.

Hyper parameters to be set here are νthreshold and the relative weights of criterion 2 and

criterion 1. So far, their values appear not to be too critical.

Following, a detailed description of the algorithm implementation is given. For details on

the computation of the Jacobian matrices for C1 and C2, please refer to Additional Material

§B.

ECD Residue and Spectral out-Band Component Minimization

input

s signal to be quantified. Its length is denoted N

νt Threshold frequency delimiting out-Band domain [normalized frequency]

(between 0 and 0.5)

B Basis set (individual components are denoted bm)

λ relative weight of C1(between 0 and 1)

Nlim signal index of the last point where SNR is acceptable (between 0 and N)

step

01 Niter ← 0

Initialize inner variables.

01 p0 ← argminp{C1(s,p)}
Preliminary NLLS minimization for p starting values.

02 for all (n) do draw[n] ← s[n] / ŝnd(p
Niter−1)[n]

Estimation of the raw unnormalized ECD.

03 for all (n) do dnorm[n] ← draw[n] / |draw[n = 1]|
ECD normalization.

04 for all (n ≤ Nlim) do dzf[n] ← dnorm[n]

for all (Nlim < n ≤ N) do dzf[n] ← 0

Truncate at Nlim and then zero-fill up to N points.

05 D ← fft(dzf )

Compute DFT of processed ECD using FFT algorithm.

06 for all (1 ≤ j ≤ size(D)) if (|ν[j]| > νt) then eliminate D[j]

Nf ← size(D)
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Crop estimated lineshape so that only out-of-band spectral components

(as defined by the interval [−νt, νt] ) are kept. ν[j] represents the reduced

frequency corresponding to D[j]; this depends on the format of the fft()

output.

07 JC1 ← JacobianCriterionOne(t,B,pNiter−1)

Compute Jacobian matrix corresponding to the classic LS criterion C1.

This step (function JacobianCriterionOne) is detailed in text.

08 JC2 ← JacobianCriterionTwo(D)

Compute Jacobian matrix corresponding to the Out-of-Band Spectral

components criterion C2. This step (function JacobianCriterionTwo)

is detailed in text.

09 for all (1 ≤ n ≤ N) do Jcomposite[n] ← λJC1[n]

for all (1 ≤ k ≤ Nf) do Jcomposite[k+ N] ← (1− λ)JC1[k]

Build composite Jacobian matrix, from the concatenation of JC1 and JC2.

The λ hyper-parameter sets the relative weight of C1 and C2.

10 for all (1 ≤ n ≤ N) do rcomposite[k] ← λ(s[n]− ŝnd(p
Niter−1)[n]dnorm[n])

for all (1 ≤ k ≤ Nf)) do rcomposite[k+ N] ← (1− λ)× (−D[k])

Build composite residue vector, from the concatenation of C1residue and

C2out-Band spectral components.

11 	p ← LLSsolve(Jcomposite	p = rcomposite)

pNiter ← pNiter−1 +	p

Compute the next (better) estimation of the parameters p. This also corre-

sponds to the final step in pNiter ← argminp{λ2C1(s,p) + (1− λ)2C2(s,p)}
12 if StopConditions then stop

else Niter ← Niter + 1, goto (step.2)

Algorithm exit conditions. If not satisfied, increment Niter and compute

next iteration for p.

output

pNiter value of final estimated parameters

IV.2.2 Results

Validation of the method has been performed in the form of a Monte Carlo study, with

a 1000 signal realizations. Each signal is built taken into consideration the noise-free model

previously described, to which AWG noise is added, so that the noise standard deviation is

equal for each realization to 0.05 for both the real and imaginary parts.

Result assessment is achieved by computing the relative changes of the root-mean-square

errors (RMSE), as well as the bias-to-standard-deviation ratio(BSR), of estimated metabolite

concentrations (ĉm). In the optimal case, BSR should be as close to zero as possible, while

the relative RMSE (rRMSE) should be close to 1. The BSR and (r)RMSE used as a measure
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d(t) → Known exp(αt) ECD NLLS

metabolite (true) Lorentz Renormalized HSVD 2 criteria

(a) (b) (c) (d) (e)

m = 1 1.0 1.62 2.80 1.98 1.75

quartet (0.0) (-0.27) (-1.59) (-0.12) (-0.30)

m = 2 1.0 5.12 1.75 2.64 1.57

quartet (0.0) (3.06) 0.41) (0.18) (0.27)

m = 3 1.0 13.30 4.79 7.12 2.31

singlet (0.0) (9.09) (2.34) (0.33) (0.26)

Table IV.3: Relative RMSEs of estimated metabolite concentrations and bias-to-standard-

deviation (in parentheses) obtained by Monte Carlo simulation, with 1000 noise realizations.

Results obtained with two-criteria NLLS are indicated in boldface.

of success are defined by

RMSE(ĉm) =

√√√√ 1

K

K∑
k=1

(ĉm,k − ctruem )2 (IV.15)

rRMSE(ĉm) =
RMSE{case when d̂(t) is unknown}
RMSE{case when d̂(t) is known}

(IV.16)

BSR(ĉm) =
E[ĉm]− c∗m√

1
K−1

∑K
k=1 [ĉm,k − E[ĉm]]2

(IV.17)

E[ĉm] =
1

K

K∑
k=1

ĉm,k (IV.18)

where K is the number of noisy signals.

Table IV.3 shows the results of the Monte Carlo study. Column (a) is shown as a reminder

that we consider reference results (gold standard) the case when the decay function is known.

Column (b) is representative of using a Lorentzian decay function. In order to compensate

for a multiplicative constant on all the estimated concentrations, renormalization has been

performed. Results after renormalization are tabbed in column (c). Column (d) shows

results obtained after application of the ECD algorithm, with non-parametric ECD filtering

by HSVD. Finally, column (e) shows the results of NLLS minimization of the combined

criteria C1 and C2.

In all cases the combined C1 + C2 approach has better relative RMSE than the HSVD

ECD method. When compared to the use of a pure Lorentzian model, the novel method also

performs very well, achieving better performances for metabolites 2 and 3, and comparable

performances for metabolite 1. A key element to note is the performance in bias reduction;

while using just a Lorentz lineshape introduces significant bias, all methods tested have

managed to reduce it considerably. Renormalization, by correcting the amplitudes by a

multiplicative factor, decreases bias. However, it is common in MRS to use metabolite ratios

instead of metabolite amplitudes; such use nullifies the influence of a common multiplicative
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factor, thus making renormalization necessary. Best bias reduction is offered by both ECD

approaches (C1 or C1+C2).

IV.3 Further developments for C2-type criteria

The previous Monte Carlo simulation has proven the potential of significant error reduc-

tion when using a cost function that includes both C1 and C2 principles. However, as is

usually the case when the criterion is composed of the sum of two cost functions, a more

in-depth analysis is needed to see how each cost function behaves, and how the two criteria

compete in the convergence process. In this section a more in-depth analysis of the composite

criteria is performed, and several improvements are proposed for the C2 cost function.

IV.3.1 Convergence analysis for the composite criterion

First of all, as seen in §III.3.3, applying C1 in an iterative way, without any filtering of

the lineshape should not improve the results. This is because in the case of unfiltered ECD

the next iteration should 3 converge to exactly the previous iteration, giving zero LS residue

and achieving the global minimal null score.

On the other hand, writing the ECD as in Eq.IV.5 (arbitrarily choosing a reference

metabolite m0), makes apparent that the parameter values corresponding to one metabolite

has limited useful influence on the ECD spectral compactness.

d̂(t) =
1

ĉ0 · ejϕ̂0 · ejω̂0t︸ ︷︷ ︸
(b)

s(t)

b0(t) +
∑M−1

m=1 ĉ
rel
m · bm(t) · ejϕ̂rel

m · ejω̂rel
m t︸ ︷︷ ︸

(c)

(IV.19)

As explained in section IV.1.1, it is actually the term (c) that sets the width of the ECD

central peak, while the reference term (b) has the following influences:

The reference concentration acts as a multiplicative factor for the cost function.

Since the C2 cost function used is linear with respect to 1
c0
, minimizing only the second

criterion might give way to minimization of the inverse of the reference amplitude.

This in turn leads to all relative concentrations diverging towards very large values, a

numerically very unstable situation. However, should the reference value be fixed, this

problem is averted.

The reference phase ϕ0 has an influence on C2 because the cost function takes

into consideration only the real part of the estimated common lineshape. While a

minimizing value of this reference phase might exist so as to minimize C2, it will only

influence the overall dephasing, while introducing extra variability.

The reference frequency shift acts by translating (convolution of a non-centred

Dirac distribution) the spectral components of the ECD on the frequency axis. This

does not modify the spectral compactness per se (ie. the frequency span between the

furthest non-negligible spectral peaks). However, since the implemented C2criterion

used fixed limits, the reference spectral shift will converge so as to maximize the number

3. In this context, only the ideal case is considered, when the minimization converges to the global min-

imum. In the implementation case, numerical reasons, as well as method parameter choices (ie. effective

convergence conditions) can deteriorate performances significantly.
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of useful components inside the useful band. This has no physical meaning, while also

introducing an extra degree of freedom (thus increasing estimator variance).

Fixing the reference parameters at an arbitrary value eliminates the undesired influence

previously explained. However, should the reference values be incorrect, the overall signal

model will not fit the measured signal in the least-squares sense, making apparent a residue

s − ŝ. It can be said that the C2 cost function enables determination only of parameters

relative to a reference. The reference acts as overall parameters acting on the area, phase

and frequency shift of the lineshape, while the criterion minimizes aspects linked to its shape.

Lack of convergence for C2when attempting to use parameters for all metabolites can thus be

explained by attempting to estimate both the scale and the shape of a signal by minimizing

only criteria that take into account the shape.

Minimizing a composite criterion built from C1 and C2 eliminates the lack of convergence,

as it combines the power of spectral compactness relative estimation with the fitting proper-

ties of the classical LS. The overall minimization problem can be separated into (1) finding

the best relative parameter values in respect to a reference (Eq.IV.5.(c)) and (2) finding the

optimal values of the reference metabolite so that the best LS fit is achieved. At each itera-

tive step, the ECD spectral compactness achieves (1), without modification of the reference

values. In the same time, the LS criterion changes all values (including the reference param-

eters), although it attempts convergence towards the previous iterative values. It becomes

thus clear how the parameter values are changed in the minimization process:

– The reference parameters are changed only by the LS C1 criterion, attempting to rescale

and frequency shift the model so as to best fit the measured signal.

– All the other parameters are only influenced by the C2 criterion. Although LS min-

imization participates at each step, it only adds difficulty in converging to a value

different from the previous one.

It is of interest to observe that, in practice, the metabolite amplitudes are rarely directly

sought, as the acquired signal is usually expressed in arbitrary units. The usual method is to

compute relative amplitudes (and thus relative concentrations), and then to fix a reference

metabolite (ie. Creatine in 1H MRS) at a known value, so that the other estimated concen-

trations might be respectively computed. In the case when only one signal is considered,

and in the context of the composite criteria used in this study, this amounts to choosing

the C2 reference to coincide with the measurement reference. It is thus possible to compute

directly the other concentrations, bypassing use of the LS criterion, as well as the subsequent

reference renormalization.

IV.3.2 Minimizing the influence of the choice of the reference

metabolite

If the C2 type criterion is to work without the use of another criterion, several modifi-

cations are of interest so that the influence of the reference metabolite m0 is nulled. The

proposed approaches to eliminate this influence are based on (1) normalization, to eliminate

the amplitude factor and (2) use of module instead of the real part to eliminate the possible

phase distortion. In the following paragraphs, we discuss on the normalization of the cost

function.

One of the most problematic divergence arises because of the fact that if the estimated

amplitudes are arbitrarily high, then the corresponding estimated common decay function



128 CHAPTER IV. ECD SPECTRAL COMPACTNESS

will have small values. This in turn has an effect on the cost function used, that is constructed

so as to have C2(0) = 0, where 0 is a matrix of convenient size composed solely of zero values.

Maximizing all the amplitudes of the free concentrations minimizes the score.

One step is taken in the presented algorithm to avoid divergence towards very large values

of c: the normalization at step.3 (cf. Additional Material, §IV.2.1.3). However, the influence
of this step is not included when the new parameter values p̂NN are computed at each step.

The alternating process of (1) normalizing the ECD function d and (2) computing the next

iteration can be combined in a single step that includes normalization in the criterion.

The new C2 cost function used used can be written as a rescaled version of the C2 criterion

previously described.

C2
rescaled(d) =

C2(d)

N , (IV.20)

where N is the normalizing factor used. The value of N needs to be proportional of the

amplitude-concentration proportionality factor, meaning that if all the amplitudes are multi-

plied by a factor, the resulting N should also be modified by the same multiplicative factor.

Among the different choices, two have been explored: (1) the value of the first point of the

ECD function d and (2) the L2 norm of the ECD.

Using the first point of the non-normalized ECD amounts to doing a normalization similar

to step.3 . The main difference is that it is included inside the criterion, meaning that

step.3 is no longer necessary and that the new 	pNiter computed at each step will take into

account also the normalization. However, a new, adapted Jacobian matrix has to be derived

(see Additional Material B).

Using the L2 norm of the ECD as normalization constant further improves the isoline

profile for the cost function. However, increased complexity for the Jacobian is needed, as in-

stead of computing the partial derivative of ŝundamped(0,p), the L2 norm 0 ‖ŝundamped(t,p)‖ =∑
t |ŝundamped|2 has to be derived. Using the norm also provides a more intuitive physical

interpretation, as it can be seen that the criterion checks the energy fraction represented by

the out-Band components.

Figure IV.4 shows the evolution of the score function when two metabolite concentration

have been varied around the true values. Applying normalization inside the criterion com-

putation adds a penalty for high concentration values. The convergence domain delimited

by the smallest isoline is much smaller (and also much better delimited) when normalization

is used (b, c).

IV.4 C2 implementation in the Time Domain

Another interpretation of the limited frequency bandwidth of the estimated lineshape can

be the smoothness of its time-domain counterpart, the ECD function d. That is because the

lineshape is constructed of low-frequency components, it is the sum of locally slowly-varying

functions, thus it is slowly-varying. It is thus expected that when the compact spectral

support of the ECD increases due to incorrect values of p̂, the lineshape becomes more

oscillating. An illustration of this effect can be seen in Fig.IV.1(II.a).

Such an interpretation brings forward another possible criterion: the smoothness of the

estimated lineshape. More ways are available to evaluate the smoothness of a curve, but
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Figure IV.4: Influence of the normalization procedure on the CFD
2 frequency domain cost

function. Upper plot (a) presents the previously validated CFD
2 cost function. Left plot (b)

presents the normalized score, using N = d̂(t = 0), which corresponds to L∞. Right plot (c)

shows the effect of L2 normalization. In all cases, the signal s has been generated using the

methodology in §IV.2.1. Then a gridsearch-like approach has been performed, changing only

the values of ĉ1 and ĉ3. The red cross represents the true values, where the cost function

should have minimal values. Notice how normalization (b, c) eliminates the unwanted ’valley’

towards arbitrary big values present in (a).
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here only the local numerical discrete derivatives of first and second orders are considered:

Cs1
2 (d) = ‖∂d(t)

∂t
‖ discretization−−−−−−−−→ Cs1

2 (d) =
1

2

[
N−1∑
n=1

‖d[n+ 1]− d[n]‖
]

(IV.21)

Cs1
2 (d) = ‖∂

2d(t)

∂t2
‖ discretization−−−−−−−−→ Cs2

2 (d) =
1

4

[
N−2∑
n=1

‖d[n+ 2]− 2d[n+ 1] + d[n+ 2]‖
]

(IV.22)

As with the frequency domain criteria, rescaling is also interesting for this time-domain

implementation, henceforth referred to as estimated decay smoothness (EDS). In the follow-

ing validation plots, a choice has been made to normalize according to the L2 norm of the

ECD, thus effectively comparing the energy of the ECD derivative to the energy of the ECD

function.
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Figure IV.5: Time Domain Smoothness (TDS) cost function CTD
2 as alternative to the CFD

2

cost function. Upper plot (a) presents the previously validated CFD
2 score. Plots (b) and (c)

present the TDS score, with evaluation via the first order (b) and second order(c) numerical

derivatives. Normalization using L2 of the ECD has been applied. In all cases, the signal s

has been generated using the methodology in §IV.2.1. Then a gridsearch-like approach has

been performed, changing only the values of ĉ1 and ĉ3. The red cross represents the true

values, where the score should be minimal. Notice how well the score functions in (b, c)

behave when compared to the frequency domain criteria in Fig.IV.4.
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Figure IV.5 plots the Estimated Decay Smoothness (ECD) cost against amplitude es-

timates ĉ1 and ĉ3. The context is the same as in Fig.IV.4. Results exhibit much sharper

convergence at the true values, and generally a better behaviour elsewhere. Furthermore,

when the score function evolution is observed closely (zoomed) in the immediate vicinity of

the true solution (not shown), the actual cost function minimum in the TDS case are much

closer to the true solution than in the case of the frequency-domain variant.

IV.4.1 Comparison between time-domain and frequency-domain

implementations of C2

In order to get a better understanding of the behaviour of the proposed TDS-based criteria

for noisy signals, a Monte-Carlo study has been performed, using the same signal described

in §IV.2.1. Nine values of noise, ranging logarithmically from 4 0.001 to 0.1 have been chosen.

For each noise value, 35 noise realizations have been computed, and each resulting signal

has been quantified using four criteria: L∞ and L2 scaled versions of frequency domain C2

and first and second-order estimated decay function smoothness, L2-scaled. Minimization

has been performed by a linesearch-like algorithm, provided by the fminsearch function in

MATLAB.

Results (cf. Fig.IV.6) show a different behaviour, especially at small SNR, when FD and

TD approaches are compared. FD criteria tend to converge to a slightly biased solution. In

a bid to see if the minimization process is to blame for this, a grid-search study similar to

the study in Fig.IV.4 has been performed, with the zone of interest zoomed in to see only the

zone immediately adjacent to the cost function minimum. The study (results not plotted

here) show that the cost function is not globally minimal at the true values. A possible

explanation for this are the DFT artefacts due to a limited time-span signal.

A major advantage of smoothness criteria over spectral out-Band ones is that all compu-

tations are performed in the time domain. This eliminates the need to compensate for DFT

artefacts, as well as perform processor-intensive computations for DFT estimation. Another

advantage is that no hyper-parameters need to be set.

Up to this moment, all validation studies concerning ECD smoothness criteria have been

done using either a grid-search approach for validation of the difference between local min-

ima and true values, or using line-search algorithms to study the convergence performance.

However, if a trust region method (such as Levenberg-Marquardt) is to be implemented,

Jacobian matrices should be computed. The necessary steps are briefly described in the

additional material B.

Conclusions

In this chapter a novel approach to MRS quantitation is presented. As opposed to the

classical approach, where a common lineshape is derived either from a reference peak, or

using some sort of processing, and then this estimated common lineshape is used to improve

the performance of a LS-type quantitation, the novel approach used the estimated lineshape

itself as a criterion. Signal parameters are thus estimated directly, without need of further

processing.

4. In this context the level of the noise has been defined as the standard deviation of its real part. If

considering the standard deviation of the whole complex noise, values should be multiplied with
√
2.
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Figure IV.6: Estimator performance using only spectral compactness criteria. Abscissa

represent the 9 noise levels simulated. The values correspond to the standard deviation of

the real part of the noise. For each noise value, 4 different criteria have been compared,

represented by the four series. Squares (�) represent the L2 rescaled version of the origi-

nally proposed CFD
2 Criterion. Circles (◦) represent the added Blackman-window apodisation.

Stars (∗) and diamonds (♦) represent the TDS approaches with first order and second order

derivatives respectively. For each noise level, 35 noisy signal realization have been quantified,

using C2 minimization with only c1 and c3 as free parameters. The central value corresponds

to the average estimated value, while the error bars correspond to one standard deviation.

True values are ctrue1 = 0.5 and ctrue3 = 2.0 (dotted lines). Notice the much improved bias

reduction of the Time Domain Smoothness criteria (∗ and ♦ ) when compared to the un-

apodized Frequency Domain CFD
2 criteria (�), especially at low σ. The Blackman apodized

version of CFD
2 (◦) exhibits very small bias, but is clearly less stable at low SNR.
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The proposed methods can be combined with LS criteria, or used alone. In the latter

case they are particularly adapted to estimation of metabolite concentration ratios. However,

once the relative parameters have been computed, an extra final step can also be performed

so that metabolite amplitudes (measured in the units specific to the spectra acquisition) can

be computed. For this, the first point of the signal is particularly well suited, because it has

the highest SNR of all the acquired points. Possible drawbacks of using the first point arise

when there is suspicion of signal corruption, such as in the case when digital filtering on the

acquisition hardware remains.

Two implementation types for ECD-SC methods have been discussed in this chapter (1)

out-Band Spectral Components and (2) ECD Smoothness. Using simulated spectra, the

different approaches have been validated, and compared with the performances of previous

techniques used in this context. Results show improvement in the bias of the estimators,

especially when compared to the use of a pure Lorentzian model.

For all the criteria presented, procedures have been described to compute the Jacobian

matrix, and the score itself has been formatted so as to closely resemble NLLS mechan-

ics. This allows immediate implementation using NLLS techniques, such as the widely used

Levenberg-Marquardt algorithm. Furthermore, the presented methods for Jacobian compu-

tations take advantage, in the case when a simultaneous LS quantitation is performed, of

the already-computed C1 Jacobian matrices.

Validation results show the feasibility of spectral compactness based criteria, especially

in the case when (1) SNR is very good, while (2) the lineshape resulting of B0 inhomogeneity

and eddy-current effects has a non-standard (ie. Voigt) profile. In the present study only

the case when direct determination of the common lineshape from a reference peak is not

possible has been considered.

Results also show some potential drawbacks of the proposed approach. The poor perfor-

mance of the method with low SNR makes its use prohibitory, if not combined with some

other technique. Direct processing of signals that are known not to posses a common line-

shape is also not possible. A special case of this is when a baseline or macromolecule signal

is present. In this latter case, a more indirect approach is advisable, such as explained in

§V.2.3.
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Chapter V

Conclusions and Perspectives

This last chapter reviews the main conclusions and original contributions in this the-

sis. More importantly, it provides possible leads to improving MRS lineshape handling and

quantitation.

V.1 Conclusions

Chapters I and II have introduced the main concepts and methods used in this thesis.

Beyond the theory presented, several conclusions could be inferred about the state-of-the-art

in MRS and MRSI quantitation:

– Users of the quantitation techniques attempt to use them as “one button black-box”

methods, ie. applying the method without sufficient understanding of the inner work-

ings. This in turn may lead to unexpected or misunderstood results, further leading

to possibly flawed conclusions.

– Mechanisms to warn the user of possible problems exist, but are still in an incipient

phase. Only two major contributions have been made [91, 169] to judging the quality

of MRS/MRSI results.

– Most methods to predict estimation incertitude are based on the Cramér-Rao Lower

Bounds (see [33]). Although undeniably a powerful tool, poor understanding of CRLB

derived incertitude values can lead to misuse.

– Development of objective criteria for assessing MRS/MRSI quantitation results, as

well as review and unification of currently proposed criteria would greatly benefit the

research community.

Chapter III focused on shedding new light on the common assumption that all peaks

share the same lineshape. First, as a preliminary study, three different approaches for han-

dling the assumed common lineshape have been compared. Results show that, except for

metabolites with very close frequency contributions (ie. Cr and PCr), adapting the basis-set

to the acquired signal gives the best results. The second part of the chapter focuses on intro-

ducing an algorithm enabling the estimation of the common decay function. Since it is shown

that filtering the estimated common damping (ECD) function is essential, a methodology

for this is proposed using LOWESS [38] local filtering. Results convey significant reduction

in bias, shown to be responsible for most of the quantitation error.

Chapter IV introduced a novel way of approaching MRS quantitation based on the as-

sumed common lineshape. Effective spectral compact support of the ECD has been shown to

be an efficient cost function, that allows by itself convergence of the metabolite parameters to

135
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the true values. Moreover, in order for trust-region methods to be used, a procedure to com-

pute analytically the Jacobian of the score is proposed. Results show that especially for high

SNR signals, the proposed method can significantly improve the quantitation performance.

V.2 Future work and open problems

Further research is necessary in the field of MRS and MRSI processing. The ultimate

goal is to develop transparent “one button black-box” methods, that can consequently be

used by clinical practitioners. In the following paragraphs we provide possible leads towards

achieving this goal, for methods described in this thesis as well as for issues encountered

during the underlying studies.

V.2.1 Assessing MRS quantitation results

As stated in §II.6, estimating metabolite concentrations should not only return parameter

values, but also the parameter incertitudes and a measure of goodness-of-fit, assessing the

level of confidence one should have in the results. However, current literature suggests

that few methods propose reliable estimates for incertitudes, and only few contributions

(e.g. [91, 169]) address directly the issue of MRS measurement confidence. We thus consider

that an important contribution is to be made into these issues.

A possible lead to better incertitude evaluation is given by Bayes’s theory, and the en-

suing link between the incertitude distribution on the quantitation results P(p|s) and the

incertitude on the signal if the true values are known P(s|p). (see §II.6)

P(p|s) = P(s|p)P(p) (V.1)

where p are the true parameters, s is the acquired signal and P(p) is the probability of p.

The prior information P(p) is usually replaced with a constant, assuming that all parameter

values are constant. However, the probability to have a certain concentration of Creatine in

healthy human white matter, for example, is not uniformly distributed. Using Bayesian the-

ory, it is possible to take into account the prior information (expected values of a metabolite

concentration) in the computation of the incertitude 1.

Another possible improvement to estimation of parameter incertitudes could be obtained

by applying resampling techniques (bootstrapping, jackknifing, etc.). The current method

widely used is to compute Cramér-Rao Lower Variance Bounds, and to assume that mea-

surement incertitudes are of the order of the CRLBs (cf. [33]). While presenting many

conveniences, the CRLBs remain a semi-analytical tool, and make strong assumptions. Bet-

ter results could be obtained by estimating the parameter incertitude distribution using a

dataset built from resampled signals.

A direct application comes in the case when multiple signals have been acquired in a short

time frame, using exactly the same methodology. Typically this is done on current scanners,

prior to an averaging step, when data are summed (or averaged), and only the result is given

to the user. Slotboom et al. [169] have already proposed a method to use such a data set

in order to provide a better result than the averaged default output. We would like to take

this a step further and quantify individual spectra, then build the ensuing distribution of p.

1. An even better way to include the probability distribution P(p) would be to use a Bayesian estimator,

thus to use the prior information not only for incertitude computation, but also for metabolite quantitation.
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Moreover, re-sampling can be used to increase dramatically the statistical sampling of the

output. The estimated p distribution can then be used to compute confidence intervals for

quantitation results.

So far, only parameter incertitudes have been addressed. However, goodness-of-fit issues

are just as important, because a bad fit might yield meaningless parameter values and incerti-

tudes. Unfortunately, few studies have addressed this issue in MRS so far, generally stopping

at rejecting MRS quantitation results if certain criteria are met. Goodness-of-fit generally

used are the residue level and ’appearance’, as well as the amplitude-CRLB to amplitude

ratio [91]. We believe that developing a numerical, objective measure for goodness-of-fit in

MRS quantitation is of critical importance; besides providing an automatic way to reject

unreliable estimates, it would also enable non-expert users assess when their “fit is good”.

V.2.2 Simulation of data

A recurrent criticism in papers evaluating MRS quantitation is that the validation tests

are performed on simulated signals, that in turn are too simplistic to realistically mimic in

vivo MRS and MRSI acquisitions.

Clinical practitioners, as well as researchers focused on acquisition of the MRS(I) data

often argue that only acquired data should be used for algorithm validation. However, as

seen in this thesis, some aspects of quantitation are very difficult to study without the use of

simulated data. Bias, in particular, can only be estimated if the true values are known. Of

course, true metabolite concentrations can be measured reliably using non-NMR methods;

but comparing estimated concentrations to true concentrations would require the whole

acquisition chain to be modelled as well, with possible errors and incertitudes in too many

places.

Synthetic data, however, depend only on known factors, that can be included or not

in each simulation. This allows customizable datasets, providing insight at what are the

factors influencing estimator performance. Moreover, data are ’free’, as opposed to the non-

negligible cost of data acquisition. MRS(I) data simulators are thus an essential tool for the

study and further improvement of quantitation algorithms.

In the following paragraphs we propose two approaches to improving the quality of data

simulations.

Enhanced numerical simulation. In vivo NMR acquisitions are influenced by two

major factors: (1) the intrinsic properties of the molecules in the sample and (2)

the local (physical, chemical, geometrical, etc.) properties of the analysed sample.

The choice of the acquisition methodology would be a third cause, but we choose to

distinguish between its influence on“ideal”spectra and its interaction on the acquisition

environment, and include these contributions in either (1) or (2).

The two factors have been addressed by the research community separately. Con-

cerning (1), several methods (for examples see [69] or [170] ) have been proposed to

predict NMR spectra, based on Quantum Mechanical computations. In the same time,

in MRI, methods have been developed to take into account the environment specific to

each acquisition (for an example see SIMRI [21]). Combining the two approaches would

yield a valuable tool for realistic simulation of in vivo spectra, while also taking advan-

tage of all the prior information (for example coupling constants and chemical shifts
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for different metabolites, anatomical 3D models for the human body, etc.) already

developed.

Extended analytical models. Most signals simulated for testing a quantitation

method are based on the underlying model in the associated estimator. Such practice

is necessary for model validation, but does not necessary extend validation to in vivo

signals, mainly due to the limited number of parameters 2 included in estimator models.

Development of more complex analytical models for MRS acquisition would allow better

mimicking of in vivo data, while avoiding the high computational resources needed for

a purely numerical approach.

Different analytical approaches have already been proposed for some of the MRS

artefacts. For example, macro molecules have been modelled as Gaussian peaks in [138,

156], while a model for eddy current distortions of the decay function has been given by

Rabeson et al. [150]. Combining the different analytical partial models for MRS(I), end

eventual software implementation of a simulator would provide the community with a

common complex model, enabling homogeneous simulation, and even perhaps better

insight for the development of quantitation estimators.

An additional advantage of a standard simulation package is its prospective use in com-

paring MRS quantitation methods. As seen in §II.4, a significant number of quantitation

methods has been proposed in literature. While several studies[190, 110, 139] have reviewed

and classified them, performance comparison has only been done between a small number of

methods. Moreover, published assessments of quantitation performances are based on differ-

ent data sets, and thus comparison is not trivial. Comparing the methods would thus require

universally accepted datasets, obtainable either through acquisition or through simulation.

While being the true golden standard, acquired signals have the disadvantages of (1)

including possibly unknown effects and (2) delivering true values for concentrations only

at the expense of modeling the whole acquisition process. Simulated signals, on the other

hand, can provide true values directly, while giving the user complete control over what

artifacts are to be included or not. This allows perfectly reproducible data sets, well suited

for quantitation analysis and comparison.

V.2.3 Further development of proposed algorithms

In chapters III we have proposed an algorithm to compute the estimated common de-

cay (EDF) function, and to use a filtered version of it to improve metabolite quantitation.

Although we have shown, by applying the method on acquired in vitro signals, that it is

functional, several improvements need to be made before application on in vivo acquisitions.

First of all, the method is to be implemented in the jMRUI package [175], making use

of the new plug-in oriented environment provided in the latest version. This allows easy

application on data acquired on different platforms, as well as a complete set of tools for

preprocessing and comparing with other quantitation algorithms (QUEST, AMARES, etc.).

2. The number of degrees of freedom, or of estimated parameters, is an important characteristic of an

estimator. If many parameters are estimated, individual estimation variance will grow, while for few model

parameters unaccounted effects will introduce bias. This is usually referred to as the bias-variance trade-off.

Due to it, an estimator should always have the minimal number of independent parameters, that accounts

for most of the signal variability.
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Secondly, a baseline accommodation strategy is to be implemented, similar to the ap-

proach in QUEST Ratiney [153], Ratiney et al. [156]. The following steps are considered:

Step.1 Estimate the baseline-free signal by truncation of the first points

Step.2 Apply ECD-QUEST on the truncated baseline-free signal.

Step.3 Extrapolate baseline-free model on the first points, and subtract result

from raw signal. Result estimates baseline.

Step.4 Model baseline (HSVD, splines, LOWESS (applied in the spectral do-

main), etc.).

Step.5 Use (Subtract- or Inbase-) QUEST to estimate final metabolites, imput-

ing raw signal and the ECD corrected basis-set signals computed inside

Step.2.

In chapter IV, a novel method to estimate metabolites, based on the properties of the

assumed common decay function, has been presented. Although validation tests have been

performed, they represent a proof-of-concept, and current application to in vivo data is not

possible as is. Some of the most important leads in the further development of C2 are:

– Poor convergence of the minimization procedure, although the cost function is shown to

have a reachable global minimum, shows, in out opinion, that a tailored minimization

procedure should be implemented.

– Combination of C1 and C2 can be improved by using some sort of filtering for the ECD

function inside C1, in a similar way as in chapter III.
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Ormondt, and D. Graveron-Demilly. jMRUI Version 4 : A plug-in platform. In Proc. IEEE In-

ternational Workshop on Imaging Systems and Techniques IST 2008, pages 346–348, September

2008. doi:10.1109/IST.2008.4659998.

157



158 PUBLICATIONS

[6] E. Popa, H. Rabeson, D. van Ormondt, and D. Graveron-Demilly. Lineshape Accommodation

in Quantitation of Magnetic Resonance Spectroscopy Signals. In Proceedings of the 18th An-

nual Workshop on Circuits, Systems and Signal Processing (ProRISC 2007), IEEE Benelux,

Veldhoven, the Netherlands, pages 250 – 253, November 2007.

Peer-reviewed international conferences

Oral Communications

[1] E. Popa, D. Karras, B.G. Mertzios, D. Sima, R. de Beer, D. van Ormondt, and D. Graveron-

Demilly. Handling Arbitrary Unknown Lineshape in In Vivo MRS Without Searching in Func-

tion Space. In IST 2010, Thessaloniki, Greece, 1-2 July 2010.

[2] E. Popa, E. Capobianco, R. de Beer, D. van Ormondt, and D. Graveron-Demilly. Lineshape

Estimation in In Vivo MR Spectroscopy without using a Reference Signal. In ESMRMB 2008,

page 304, Valencia, Spain, October 2-4 2008. Oral.

[3] E. Popa, D. Graveron-Demilly, E. Capobianco, R. de Beer, and D. van Ormondt. LineshapeEs-

timation in Vivo MR Spectroscopy without using a Reference Signal. In IEEE International

Workshop on Imaging Systems and Techniques – IST, pages 315–320, Chania, Greece, Septem-

ber 10–12 2008.

[4] D. Stefan, A. Andrasecu, E Popa, H. Rabeson, O. Strbak, Z. Starcuk, M. Cabañas, D. van
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A Analysis of LOWESS noise reduction in function of

smoothing hyper-parameter

Consider a AWG Noise distribution, centred on zero and with a mean of σ, noted N (0, σ). On

this points the N-average operator is applied, defined by X̄N = (1/N)×∑N
i=1 xi.

Let X1 = (xi)i=1→N−1 and X2 = (xi)i=2→N containing samples from X = (xi)i=1→N . Since

X,X1 and X2 are normally distributed with the same variance and zero-centred, their variances

are bound by the equation

VAR [X1] = VAR [X2] = VAR [X] (A.1)

The variance of the moving average (MA) with a span of two samples is given by

VAR [MA2(X)] =
1

N − 1

[
N−1∑
i=1

(
xi + xi+1

2

)2
]
=

=
1

4(N − 1)

[
N−1∑
i=1

(
x2i + 2xixi+1 + x2i+1

)]
=

=
1

4
[VAR [X1] + VAR [X2] + 2E [X1 ·X2]] =

=
1

4
[[VAR [X] + [VAR [X] + 0]

=
VAR [X]

2
(A.2)

In the more general case of the moving average with a span of Ns, a similar reasoning based on

the facts that
(∑N

i xi

)2
=
∑N

i x2i +
∑N

i

∑N
j 
=i xixj and that E[XiXj ]i 
=j = 0 gives that:

VAR [MANs(X)] =
VAR [X]

Ns
(A.3)

The effect of the LOWESS can be empirically estimated on a AWG Noise realization as the

effect of an equivalent moving average filter. Variance of the LOWESS filtered noise is linked to its

moving average (MA) correspondent by:

VAR[LOWESSλ{X}] ≈ 1√
2
VAR [MANs(X)]

=
1√
2

VAR [X]

Ns
(A.4)

with

Ns = 2λ/N (A.5)

If we now look at the residue Rλ = X − LOWESSλ{X} its variance can be computed, as the

residue is uncorrelated to the filtered signal:

VAR[X] = VAR[Rλ] + VAR[LOWESSλ{X}] + 2COV[LOWESSλ{X}, X]

VAR[Rλ] = VAR[X]−VAR[LOWESSλ{X}] = VAR[X](A− B

λ
)

VAR[Rλ]

VAR[X]
= A− B

λ
(A.6)

where A and B represent two constants, and COV is the covariance.
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B Computation of the Jacobian for C2

The Jacobian matrix of a function f(tj ,p) is the matrix with elements Jij =
∂f(t=tj)

∂pi
. The

computation of this matrix is essential for using a method based on the Gauss-Newton algorithm.

If no analytical expression can be given, the Jacobian is usually approximated numerically. In

the following paragraph the analytical computation of the Jacobian matrix in the case of C1 (LS

residue minimization) is recalled, and an analogous analytical approach is presented for C2 out-of-

band spectral component.

B.1 C1 : Lorentzian model and residue minimization

In the case of the classic Lorentzian model, minimized via NLLS, the computation of the

Jacobian is straightforward. Equations (B.1) show the necessary steps for computation of the

Jacobian:

– Since the model function s(t) is written (B.1a) as a sum of independent signals ŝm(t), its

partial derivative in function of a parameter pertaining to metabolite m (B.1b) takes into

account only the component generated by m’s basis-signal bm.

– Furthermore, the exponential form allows a particularly simple expression of the m-specific

Jacobian Jm as a product between the m signal component value ŝm(t) and a simple vector

[B.1c].

– Once everym-specific Jacobian Jm is computed, the overall Jacobian JC1 is built by horizontal

concatenation (B.1d).

ŝ(t,p) =
M∑

m=1

ŝm with ŝm = bm(t)cm exp[αmt+ ıωmt+ ıϕm] (B.1a)

∂ŝ(t,p)

∂pm
=

∂

∂pm

[
M∑
�=1

ŝ�

]
=

∂ŝm
∂pm

+
∑
�
=m

∂ŝ�
∂pm︸ ︷︷ ︸
0

=
∂ŝm
∂pm

(B.1b)

Jm(t,pm) =
∂ŝm
∂pm

=
(
∂ŝm
∂cm

∂ŝm
∂αm

∂ŝm
∂ωm

∂ŝm
∂ϕm

)
= ŝm ×

(
c−1
m t ıt ı

)
(B.1c)

JC1(t,p) =
(
J1(t,p1) J2(t,p2) · · · JM (t,pM )

)
(B.1d)

Please note that the Jacobian is a rectangular matrix, and that in the above computations only

a line has been explicitly computed. The Jm(t,pm) line is specific of the time. Assembling all the

N lines Jm(tn,pm) for n = 1, 2, . . . , N gives the rectangular matrix Jm(pm), that has N lines and

Msize(pm) = 4M columns.

B.2 C1 minimization of the spectral out-Band components

Analytical computation of the spectral compactness criterion C2is similar to the procedure used

for the case of the Lorentzian model least squares. The main difference is in the slightly more

complicated analytical formula introduced by (1) the Discrete Fourier Transform and by (2) the

nonlinear point-to-point division for the estimation of the raw ECD.

The C2criterion can be expressed 4 by the point-wise multiplication (also called Hadamard

product) of the estimated common lineshape and a inversed-gate function defined by the threshold

frequencies νmin and νmax

C(p) = F{d̂(p)} � �(νmin, νmax) (B.2)

4. Please note that the explicit dependence on the input signal s has been omitted for notation simplicity.
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where F{·} denotes the Discrete Fourier Transform along the time domain and the symbol �
denotes the element-wise product (also called Hadamard product ) of two equally sized matrices

{u � v}[n] = u[n]v[n]. Since the inverse-gate function does not depend on the parameters p, a

column of the Jacobian can be developed as:

JC2
pi ≡ ∂C(p)

∂pi
= �(νmin, νmax)�

∂

∂pi
F{d̂(p)} (B.3)

Furthermore, the Discrete Fourier Transform can be expressed as a matrix multiplication of a

Vandermonde matrix (cf. §II.2) F and the input vector d. Since F depends only on the size of the

input and output, it is possible to pass the derivative term inside the DFT. The Jacobian can then

be written as

JC2
pi = �(νmin, νmax)� F

∂d̂(p)

∂pi
(B.4)

The next step consists of computing the remaining unknown partial derivative of the ECD function.

This can be done using common derivation rules together with the definition of the ECD function

as (cf. Eq.IV.13) as ratio between the signal s and the estimated non-decaying signal ŝundamped:

∂d̂(t,p)

∂pi
=

∂

∂pi

[
s(t)

ŝundamped(t,p)

]
= − s(t)

[ŝ(t)]2
∂ŝundamped

∂pi
(t,p) (B.5)

The necessary partial derivatives of the non-decaying model ŝundamped can be computed in a similar

way as shown in section B.1. Moreover, due to the fact that the undamped model is expressed

in the same analytical way as ŝ, it is possible to obtain the Jacobian of the non decaying model

through the trivial process of eliminating from JC1 the terms corresponding to the damping factors

αm:

JC1 = [ · · · Jcm Jαm Jωm Jϕm · · · ]⏐⏐⏐>
Jsundamped

= [ · · · Jcm Jωm Jϕm · · · ]

Extracting the non-decaying model Jacobian from the decaying model Jacobian presents a special

interest as the latter in in any case computed when C1 and C2 are used together.

With the values of Jsundamped available, combining equations (B.4) and (B.5) yields the function

used to determine the Jacobian necessary for C2 minimization:

JC2 = −�(νmin, νmax)� F︸ ︷︷ ︸
(a)

×
[
s� 1

ŝ2ud
× Jsud

]
(B.6)

The term (a) in Eq.B.6 deserves some special attention. If the selection function �(νmin, νmax) is

combined with the DFT matrix F, a new matrix Freduced can be determined. The reduced matrix

extracted from F only the lines that are actually taken into consideration in C2. It is thus possible

to reduce the multiplication time by first computing Freduced and then multiplying with the rest

of the terms. This amounts to making only a partial DFT, where only the needed components

are computed. In practice, however, the FFT algorithm is usually used for the DFT, that im-

plements a faster relationship than the matrix multiplication. Which is better: (1) computing a

partial DFT, eventually by using alternative algorithms that support it (e.g. the chirp z-transform

algorithm [151]), or (2) computing the whole DFT using FFT [43] and then only extracting the

useful information, remains an open question, as it most probably depends on the extension of the

support of the selection function �(νmin, νmax).
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B.3 Jacobian for composite criterion (Ccomposite = C1 + C2)

In this study the two cont functions representative of C1 and C2 are combined using an weighted

additive approach. with λ between 0 and 1 a weight ratio between the two criteria, the equivalent

cost function is computed as:

‖Ccomposite‖2 = λ2‖C1‖2 + (1− λ)2‖C2‖2 (B.7)

The equivalent Jacobian for the composite cost function can be constructed directly by concate-

nating λ−weighted versions of JC1 and JC1 .

Jcomposite =

⎛
⎜⎜⎜⎜⎜⎝

λJC1
p

(1− λ)JC2
p

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λJC1
1,p

λJC1
2,p

...

λJC1
N,p

(1− λ)JC2
1,p

(1− λ)JC2
2,p

...

(1− λ)JC2
Nf ,p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.8)

B.4 Jacobian for L2 normalization of frequency domain C2

The analytical approach is similar to what has been shown in §B.2, with the difference that

d̂(t,p) is replaced by the normalized version d̂norm.(t,p) = d̂(t,p)× [d̂(t = 0,p)]−1. Eq.B.5 is thus

replaced by:

∂d̂norm(t,p)

∂pi
=

∂

∂pi

[
s(t)

ŝud(t,p)
× ŝud(0,p)

s(0)

]

= − s(t)

[ŝ(t)]2
ŝud(0,p)

s(0)

∂ŝud
∂pi

(t,p) +
s(t)

ŝud(t,p)

1

s(0)

ŝud(0,p)

∂pi
=

=
s(t)

ŝud(t,p)s(0)

[
− ŝud(0,p)

ŝud(t,p)

∂ŝud(t,p)

∂pi
+

∂ŝud(0,p)

∂pi

]
(B.9)

B.5 Jacobian for time domain implementation of C2

In the case of the time domain C2implementation the computation is also based on the pro-

cedures described in the previous subsections. However, neither DFT nor selection window are

necessary. Instead, for computation of the partial derivative at a point t in time, values of the ECD

Jacobian at the points around t are used:

∂

∂pi
(d[n+ 1]− d[n]) =

∂d[n+ 1]

∂pi
− ∂d[n]

∂pi
=

= − s[n+ 1]

(ŝud[n+ 1])2
∂ŝud
∂pi

(tn+1,p) +
s[n]

(ŝud[n])2
∂ŝud
∂pi

(tn,p) (B.10)
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Abstract—Metabolites can serve as biomarkers. Estimation of
metabolite concentrations from an in vivo MRS signal often uses
a reference signal from water for correction of the spectral line-
shape. When no reference signal is available, other methods
must be applied. The present work concerns semi-parametric
estimation of the perturbed line-shape from simulated signals of
the metabolites themselves. Errors are obtained from a Monte-
Carlo calculation. The method can be useful when the water
signal has not been acquired or is distorted, or when measuring
on, e.g., 13C or 31P.

Index Terms—metabolomics, MR Spectroscopy, in vivo, asym-
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I. INTRODUCTION

Metabolites [1] serve as markers of specific diseases [2],

also called biomarkers [3]. An in vivo Magnetic Resonance

Spectroscopy (MRS) scanner is the sole instrument enabling

non-invasive measurement of concentrations of metabolites

anywhere in the human body.

An MRS signal is the response to a sequence of radio-

frequency pulses and time-dependent gradient-fields and is ac-

quired in the time-domain. Each chemically distinct metabolite

contributes a unique set (‘fingerprint’) of decaying complex-

valued sinusoidal components. In frequency-domain terminol-

ogy, many components overlap severely, making estimation

of metabolite concentrations a challenging task. Note that

the decay function in the time-domain corresponds to the

lineshape in the frequency-domain.

In this paper, contributions from macromolecules, water, and

lipids, which complicate analysis have been omitted. Rather,

we have concentrated on estimating the a priori unknown form

of a badly perturbed decay function without the help of a so-

called [4], [5], [6] reference signal, using a new method [7].

The method is useful in the event that a suitable reference

signal is not available, a prevailing situation with the nuclei
13C, 19F, or 31P, but can happen with 1H too. Using a Monte

Carlo simulation, we investigated errors and bias-variance

trade-off of the estimated metabolite concentrations.

Finally, note that our method works directly in the

measurement-domain (time-domain). It will be implemented in

the freely available metabolite quantification package MRUI

[8]. A commercial package, LC-Model [9], working in the

frequency-domain, exists that is capable of accommodating

unknown lineshapes too. The structure of this paper is as

follows. Sec. II treats the Metabolite model function, its decay

function, alternative methods for estimation of the decay func-

tion, Monte Carlo simulation. Sec. III lists estimation errors

and shows graphical results. Sec. IV discusses starting values,

modelling of disentangled decay data, and bias-variance trade-

off. Sec. V presents Conclusions.

II. METHODS

A. The Metabolite Signal

An in vivo MRS signal, s(t), is complex-valued and is

acquired in the time-domain. It can be approximately modelled

by

ŝ(t) = eıϕ0

M∑
m=1

am d̂m(t) ŝm(t) e ı (2π�νmt+ϕm,0) , (1)

in which ˆ denotes model function rather than experimental or

simulated data, ı =
√
(−1), ϕ0 is an overall phase, t = n	t+

t0 is time, with 	t is the sampling interval and 0, 1, . . . , N −
1, and t0 a ‘dead’ time put to zero in this study; for each

metabolite, numbered m = 1, . . . ,M , we have:

• am is the quantity or concentration of metabolite m, the

most important piece of information for clinicians.

• d̂m(t) = eαm t+βm t2 , αm, βm < 0, is a Voigt 1 decay

(or damping) function, usually of no importance for

clinicians.

• ŝm(t) =
∑Km

k=1 am,k e ı (2πνm,kt+ϕm,k) is the a priori
known undamped, i.e., non-decaying, version of model

function of metabolite m, in which am,k, νm,k, ϕm,k

are the relative amplitudes, frequencies, and phases of

individual spectral components of a metabolite model

function. Metabolite model functions can be computed

quantum-mechanically with NMRSCOPE [10], [8] or

measured with in vitro MRS from appropriate liquid

metabolite solutions. The set of a priori known undamped

1or Lorentz if β = 0, or Gauss if α = 0



Figure 1. Real part of the FFT of the simulated, fictitious metabolite signal
used in this investigation. Contributions from macromolecules, water, lipids
were omitted. Three metabolites and added noise contribute to the signal.
Metabolites 1,2 each contribute four spectral components; overlap of the
spectral lines is extensive so that only five of the eight components can be
distinguished. The phases of the individual components were set to different
values. Metabolite 3 has only one spectral component. In this Figure all nine
components have been given the same damping function that is distorted by
simulated inhomogeneity of the static magnetic field B0 and eddy current
effect. The signal could be representative for any of the isotopes 1H, 13C,
(19F?), 31P.

model functions ŝm(t),m = 1, . . . ,M is called the

metabolite database. (NB. Measured metabolite signals

are naturally decaying (damped) and must be rendered

undamped by signal processing.)

• 	νm and ϕm,0 are corrections of the frequency and phase

respectively of the a priori known metabolite model

function sm, determined by the experimental conditions

of the measurement at hand.

Fourier transformation of an MRS time-domain signal yields

the spectrum in the frequency-domain. In the same vein,

Fourier transformation of a decay function yields the corre-

sponding lineshape in the frequency-domain. Fig. 1 shows the

spectrum of the simulated spectrum. More details are given

in [11], [12], except for the decay function. In the present

work we perturb the previously used decay function by taking

into account 1) asymmetric B0 inhomogeneity due to tissue

heterogeneity of a patient and 2) eddy-currents in the metal

walls of the superconducting magnet due gradient-switching.

This is treated in the next Section.

B. The Decay of in vivo MRS Signals

1) Introduction: Heterogeneity of living tissue and eddy

currents in the magnet walls are the dominant contributors

to the decay function of an in vivo MRS signal; see, e.g.
Refs. [13], [14] and references therein. The net decay function

d(t) resulting from these effects is a priori unknown. In

previous work [11], [12], we approximated d(t) with a Voigt

function, wielding a different one for each metabolite. Here

we aim to estimate a common shape of d(t), valid for all

metabolites, from the data.

Figure 2. Real part of the simulated lineshape, zoomed horizontally by a
factor of 10. Each spectral component in Fig. 1 has been given this shape.
Solid line: Re[FFT(d(t))] in Eq. (2). Dotted line: Re[FFT(dpatient(t))] in
Eq. (2). Recall that the lineshape in the frequency-domain is the FFT of the
decay function in the time-domain.

2) Simulation of a realistic decay function: Given the

circumstances described in Sec. II-B1 we model the decay

function as a product of three independent contributions

d̂(t) = d̂patient(t)× d̂eddy(t)× d̂Voigt(t) , (2)

in which

• d̂patient(t) is the decay due to heterogeneity of a patient

at the volume of interest. Sources of heterogeneity are

boundaries between fat, bone, air, blood vessels, etc., see,

e.g., [13]. Heterogeneity in turn causes inhomogeneity of

the static magnetic field B0 at the volume of interest.

The ensuing distribution of B0-values may well be asym-

metric. In the latter case, d̂patient(t) becomes complex-

valued. For mathematical ease we chose an asymmetric

triangular distribution function, represented by the dotted

line in Fig. 2. Ref. [15] describes alternative asymmetric

shapes in spectroscopy.

• d̂eddy(t) is a complex-valued decay function caused by

eddy-currents induced in the walls of the superconducting

magnet of a scanner by the switching of ‘gradient-fields’

that focus on a volume of interest. Eddy-currents produce

a perturbing modulation of B0 that decays with time and

returns on each new switch.

• d̂Voigt(t) is a Voigt decay function, introduced in

Sec. II-A.

More details are given in Appendix A. In the next Section, we

consider the decay function to be a priori unknown and treat

its estimation from the MRS data.

C. Estimation of an Unknown Decay Function

1) Simplification of the MRS model function: As mentioned

in the previous sections, the decay function of an in vivo MRS

signal is a priori unknown. It depends on the location of the

voxel of interest and to experimental conditions of the scan-

ner. This poses a problem. Yet, assuming that the dominant

contributions to the decay are from patient heterogeneity and



eddy-currents, it follows that all spectral components decay in

the same manner. This in turn enables a crucial simplification

of the model function. In fact one can re-write Eq. 1 as

ŝ(t) = d̂(t) ŝ(t)undamped , (3)

where

ŝ(t)undamped = eıϕ0

M∑
m=1

am ŝm(t) e ı (2π�νmt+ϕm,0) , (4)

the parameters of which have been explained in Sec. II-A.

2) Alternative Approaches: We distinguish two main

approaches, based on whether or not a dominant component

that can easily be disentangled from the rest – reference-

signal, see e.g. [4], [5], [6] – is available.

• Reference-Signal Available Disentanglement of a refer-

ence-signal from the rest of the MRS signal is usually

easy. Once done, this immediately yields an estimate of

d(t). After multiplying the latter with ŝ(t)undamped, one

can do a conventional NLLS fit of ŝ(t) to the data. This

approach is to be preferred.

• Reference-Signal NOT Available In this case, the decay

function is to be estimated (disentangled) from all data.

We distinguish the following two semi-parametric meth-

ods to this effect.

– For d̂(t) in Eq. (3), use a sum of L exponentially

damped sinusoids

d̂(t) =
L∑

�=1

a� e
(α�+ıν�)t+ıϕ� , (5)

with frequencies ν� ≈ 0. Then fit Eq. (3) to

the data. For L = 3, this choice of d̂(t) adds

maximally 3 × 4 = 12 free parameters, namely

a�, α�, ν�, ϕ�, � = 1, 2, 3, for fitting the experimental

damping. This number can be reduced by impos-

ing relations between the otherwise free parameters.

Advantages of this method are i) the damping data

are not disentangled from the signal in a separate

step, in other words ii) all parameters are estimated

simultaneously, iii) provided the residue of the NLLS

fit contains mainly noise, the Cramér-Rao Bounds

may be reliable.

This method is yet to be implemented.

– The second method, which is the main subject of this

paper, disentangles the decay data from the signal

in a separate step. In contrast to the first method,

it enables use of a priori knowledge about the

maximum frequency region covered by the lineshape

function. More on this in the Discussion, Sec. IV.

The method is based on re-writing Eq. (3) as [7]

d̂(t) =
ŝ(t)

ŝ(t)undamped
. (6)

Figure 3. Real part of first 600 (of 1024) datapoints of the true, simulated
d(t). Re[FFT(d(t))] is shown as solid line in Fig. 2.

Replacing then the model function ŝ(t) by the data

s(t) immediately yields the wanted result, albeit it

an approximate one:

d(t) ≈ s(t)

ŝ(t)undamped
. (7)

The disentangled decay data d(t) resulting from

Eq. (7) are not exact for two reasons. First, s(t)
contains noise whereas ŝ(t) does not. Second,

the amplitudes, phase corrections, and frequency

corrections in ŝ(t)undamped are only approximate.

In this work, the latter were estimated by fitting the

model function Eq. (1), which has Voigt-damping,
2 to the simulated noisy signal. See Sec. IV,

Discussion, for a way to exploit sensitivity to

starting values, possibly obviating the rest of the

method, immediately below.

Next, we model d(t) by a sum a exponentially

decaying sinusoids, using the algorithm HSVD [16].

By constraining the frequencies of the sinusoids to

a limited region around zero, most contributions to

d(t) from metabolites due to sub-optimal starting

values in the denominator of Eq. (7) are removed.

The result is indicated by d(t)HSVD.

Finally, the wanted metabolite parameters are

estimated by NLLS-fitting of Eq. (3) with

d̂(t) = d(t)HSVD as fixed entity, to the data.

Related error bounds are yet to be found.

Results are presented in Sec. III.

III. RESULTS

The method described above was applied in a Monte Carlo

simulation, using thousand different noise realisations, each

with same standard deviation. The signal-to-noise ratio (SNR)

can be gleaned from Fig. 1. Fig. 5 shows a typical result of

d(t)HSVD, for one of the thousand noise realisations.

2In this study, β = 0, amounting to Lorentz decay.



Table I
RELATIVE RMSE’S † OF ESTIMATED METABOLITE CONCENTRATIONS,

OBTAINED BY ‘MONTE CARLO’ SIMULATION,
WITH 1000 NOISE REALISATIONS.

d(t) → known exp(αt) Estimation by Eq. (7) & HSVD ‡

metabolite (true) Lorentz Case 1 Case 2 Case 3 Case 4

m = 1 1.0 1.62 2.37 2.09 1.98 2.01

(0.0) (-0.27) (0.09) (0.14) (0.12) (0.09)

m = 2 1.0 5.12 2.96 2.78 2.64 2.77

(0.0) (3.06) (0.26) (0.28) (0.18) (0.16)

m = 3 1.0 13.30 8.30 7.63 7.12 7.22

(0.0) (9.09) (0.45) (0.48) (0.33) (0.27)

NOTES
† Relative Root Mean Square Error =

(RMSE for d(t) is estimated) / (RMSE for d(t) is known = true).
‡ Cases 1-4 pertain to different choices of HSVD hyper-parameters:

Case 1: −0.10 ≤ ν ≤ +0.10. Case 2: −0.05 ≤ ν ≤ +0.05.

Case 3: −0.02 ≤ ν ≤ +0.03. Case 4: −0.015 ≤ ν ≤ +0.025.

m is the index of a metabolite.

In parentheses: bias-to-standard deviation ratio (BSR).

For the present study we wish to know the relative changes

of the Root Mean Square Errors (RMSE) and the changes of

the Bias-to-Standard deviation Ratio’s (BSR) upon changing

method. Hence Table I lists the ratio (RMSE for d(t) is

estimated) / (RMSE for d(t) is known = true) and related

BSR’s of the metabolite concentrations am for a total of six

cases.

The ideal case, yielding the smallest RMSE and BSR = 0,

is of course when the true d(t) is used; see column 2. The

case of using the approximate model function of Eq. (1) is

covered by column 3; as expected, the resulting bias is largest.

Columns 4-7 pertain to four different frequency limits (hyper-

parameters) used for modelling d(t) with HSVD; see NOTES

added to Table I. For m = 2, 3 results have improved w.r.t.

column 3. Comparing results for different metabolites, it is

striking that RMSE and bias are largest for m = 3, which is

the non-overlapping singlet; no explanation is available yet.

IV. DISCUSSION

Relevant issues in the present study are starting values of the

parameters in ŝ(t)undamped, modelling of d(t), bias-variance

trade-off.

Figure 4. Real part of first 600 (of 1024) datapoints of d(t), estimated with
Eq. (7). No more than about the first 120 datapoints will be assigned to d(t);
the rest carries no information and can be ignored.

Figure 5. Real part of first 600 (of 1024) datapoints of d(t)HSVD, obtained
by first applying Eq. (7), resulting in the signal in Fig. 4, and subsequently
modelling the first 120 datapoints with HSVD. The modelling can be seen to
deviate from simple exponential decay, implying that at least two sinusoids
were used in the modelling. Fig 3 shows the true shape of d(t).

A. Starting Values for ŝ(t)undamped

Eq. (6) is correct only if the true values of the parameters

of ŝ(t)undamped are used. If this condition is satisfied, d(t)
contains no components from metabolites and hence its spec-

trum is confined to a relatively narrow region around ν = 0,

as shown in Fig. 2.

In practice, however, starting values have to be obtained in

some way. Here, they were estimated by fitting the model

function of Eq. (1), based on Voigt (or Gauss, Lorentz) decay,

to the data. This appeared adequate. However, with increasing

difference between actual decay and Voigt decay, spectral

components of d(t) beyond ν ≈ 0 will become stronger.

Appearance of such additional components indicates that the

starting values were not optimal.

At first sight, sensitivity to starting values can be seen as a

disadvantage. On the other hand, this property could be used to

one’s advantage. In fact, one can vary the starting values in a

systematic way until the spectrum of d(t) approaches zero for

|ν| greater than some threshold frequency νthreshold available

from a priori knowledge.

The latter approach is yet to be programmed and tested. If

successful, obtaining good starting values can pose no prob-

lem. Rather, it may even simplify metabolite quantification



significantly. To see this, recall that validity of Eq. (6) requires

correct values of the parameters of ŝ(t)undamped. Hence, once

the spectrum of d(t) has been optimally minimised for |ν| >
νthreshold, the metabolite concentrations am needed to achieve

it are by definition optimal too. Often, this is all a clinician

wants. Note that it would obviate the subsequent NLLS fit

mentioned at the end of Sec. III. Bounds on estimation errors

can possibly be derived from an appropriate Jacobian used for

the mentioned minimisation.

Finally, note that improvement of starting values is addressed

in another contribution, by Osorio et al., to the same Work-

shop.

B. Modelling of d(t)

As mentioned in Sec. IV-A, less than optimal starting values

can result in contributions from metabolites in d(t). Modelling

d(t) with, e.g., HSVD, enables removal of such unwanted

contributions. The same effect can be achieved with wavelets

or splines; this is a subject for further research.

Should the method to obtain good starting values described in

the second part of Sec. IV-A, namely minimising FFT[d(t)]
beyond ±νthreshold work out well, then the mentioned ratio-

nale for modelling ceases to hold. In that case, modelling could

be omitted.

C. Bias-Variance Trade-off

At low SNR, the choice of d(t) is not very important.

However, steady improvement of the SNR of in vivo MRS

data warrants study of non-parametric estimation of the a
priori unknown decay function previously approximated by

simple models. Generally, the following rule applies: The more

parameters one estimates, the smaller the bias but the higher

the variance (standard deviation), and vice versa. The numbers

in Table I confirm this: In column 3, biases are much higher

than in columns 4-7. Automatic realisation of an optimal

bias-variance trade-off, and this for a one-time measurement

with arbitrary SNR and arbitrary metabolite composition, is a

challenge for future research. Another challenge is reliable es-

timation of error bars for the final product, i.e., for metabolite

concentrations from one-time measurements in a clinic.

V. CONCLUDING REMARKS

• Semi-parametric estimation of a common, asymmetric

lineshape (complex-valued decay function) from in vivo
MRS data without using a reference line is feasible.

Obtaining reliable estimation errors from a single mea-

surement in a clinic and related lower bounds remains a

challenge.

• The degree of improvement of metabolite quantitation

achieved with lineshape estimation depends on the signal-

to-noise ratio (SNR).

– The higher the SNR, the higher the improvement.

– Automatic adaptation of hyper-parameters to the

SNR and the metabolite composition at hand is yet

to be achieved.

• Obtaining adequate starting values for our method poses

no insurmountable problems. Possible high sensitivity to

starting values could open the way to an alternative, more

direct estimation of metabolite concentrations.

APPENDIX

A. This Appendix provides some details about the simulated

decay function, according to Eq. 2.

a) Patient Heterogeneity: The dashed line in Fig. 2

depicts an asymmetric triangle, representing a possible inho-

mogeneity of the magnetic field B0 due to heterogeneity of a

patient. The corresponding decay function in the measurement-

(time-)domain is

d̂patient(t) =
1

π(ν3 − ν1)t
×(

e2πıν2t − e2πıν1t

2π(ν2 − ν1)t
− e2πıν3t − e2πıν2t

2π(ν3 − ν2)t

)
, (8)

where ν1, ν2, ν3 are the frequencies of the left-

hand, top, and right-hand vertex, respectively, with

ν1 = −0.001, ν2 = 0, ν3 = 0.015. Furthermore,

1/(π(ν3 − ν1)) is a normalisation factor, such that d̂patient(t)
equals 1 for t → 0. d̂patient(0), in turn, corresponds to

the area of the triangle in the frequency-domain. Note that

d̂patient(t) is complex-valued when the triangle is asymmetric,

i.e., when ν2 − ν1 �= ν3 − ν2. In contrast, a Voigt decay

function is real-valued. As remarked in Sec. II-B2, many

alternative asymmetric forms are conceivable [15].

b) Eddy Current Effect: As mentioned in Sec. II-B2,

switching of magnetic gradient fields causes time-dependent

variations of B0. In modern scanners the effect is alleviated by

active screening. The nature of the remaining effect depends

on the instrumentation provided by a scanner manufacturer.

We modelled the resulting phase variation of the MRS signal

as

d̂eddy(t) = eı
PJ

j=1 cj,eddy eαeddyt

, (9)

with J = 2, c1,eddy = 2.0, c2,eddy = −2.4, α1,eddy = −0.006,

α2,eddy = −0.005.

c) Voigt Decay: We simulated Voigt decay with param-

eters α = −0.026 and β = 0, amounting to Lorentz decay.
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Abstract
Metabolites can serve as biomarkers. Estimation of metabolite concentrations from an in vivo
magnetic resonance spectroscopy (MRS) signal often uses a reference signal to estimate a
model function of the spectral lineshape. When no reference signal is available, the a priori
unknown in vivo lineshape must be inferred from the data at hand. This makes quantitation of
metabolites from in vivo MRS signals a semi-parametric estimation problem which, in turn,
implies setting of hyper-parameters by users of the software involved. Estimation of
metabolite concentrations is usually done by nonlinear least-squares (NLLS) fitting of a
physical model function based on minimizing the residue. In this work, the semi-parametric
task is handled by complementing the usual criterion of minimal residue with a second
criterion acting in tandem with it. This second criterion is derived from the general physical
knowledge that the width of the line is limited. The limit on the width is a hyper-parameter; its
setting appeared not critical so far. The only other hyper-parameter is the relative weight of the
two criteria. But its setting too is not critical. Attendant estimation errors, obtained from a
Monte Carlo calculation, show that the two-criterion NLLS approach successfully handles the
semi-parametric aspect of metabolite quantitation.

Keywords: biomarkers, MR spectroscopy, in vivo, lineshape estimation, semi-parametric
estimation, hyper-parameters, simulations

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Metabolites [1] serve as markers of specific diseases [2], also
called biomarkers [3]. Therefore, measurement of metabolite
concentrations is highly relevant. It is important to carry out
such measurements in vivo and non-invasively. Until today,
magnetic resonance spectroscopy (MRS) is the only technique
capable of this. The concentrations are estimated by fitting a
model function to the data. In MRS jargon, one speaks of
quantitation.

The present work concerns in vivo quantitation of
metabolites for the case that the model function describing the
MRS signal is incomplete, i.e., it comprises a parametric and a
non-parametric part and requires semi-parametric estimation

[4]. This condition is not very uncommon. In fact, real-world
measurements are often perturbed by mechanisms for which
no physical model function is available. Specifically, the case
that the shape of the MRS spectral lines is a priori unknown
is considered.

An MRS signal is the response of living tissue to
a sequence of radio-frequency pulses and time-dependent
magnetic-field gradients, and is acquired in the time domain
[5]. Each chemically distinct metabolite in the tissue
contributes a unique set (‘fingerprint’) of complex-valued
sinusoidal components [6]. Due to various physical processes,
the signal decays to zero over time. It is important to recall
that signal decay in the time domain corresponds to lineshape
in the frequency domain. The faster the decay, the broader the

0957-0233/09/104032+09$30.00 1 © 2009 IOP Publishing Ltd Printed in the UK
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lines. Under in vivo conditions, the dominant cause of decay
is often tissue heterogeneity in the patient under investigation,
especially at high magnetic fields; see examples in, e.g.,
[7–17]. Tissue heterogeneity, in turn, causes the magnetic field
to be inhomogeneous. Another effect perturbing the lineshape
originates from eddy currents in the walls of the magnet of a
scanner [18].

Fortunately, a technique called shimming can reduce
magnetic field inhomogeneity. But in heterogeneous regions
such as stroke-affected areas, frontal lobe, heart, breast and
prostate, among others, it is less successful; see examples in
[17]. In addition, it is difficult to shim well for each voxel
of a spectroscopic image. These conditions need not pose a
problem so long as a so-called reference signal, from which one
can accurately estimate the a priori unknown decay function,
is available. In that case, simple multiplication of the estimated
decay function with non-decaying versions of the metabolite
model functions suffices, as will be explained later on in this
paper. In the frequency domain, one can resort to procedures
like, e.g., QUECC [19].

Unfortunately, availability of a suitable reference signal
is not guaranteed. First, in the case of 1H-MRS, the shape
of the most commonly used reference signal, namely that
of tissue water, can be affected by, e.g., partial suppression.
Second, in the cases of 13C-, 15N-, 19F- or 31P-MRS—which
are insensitive to water—availability of a sufficiently strong
reference signal is not obvious. Therefore, the present work
concentrates on the case where a reference signal is not
available.

Once a suitable reference signal is lacking, estimation
of the decay becomes rather more complicated. The shape
of the decay being a priori unknown, one must resort to
non-parametric techniques assuming no functional form, i.e.,
one approximates the unknown shape with a series of basis
functions such as splines, wavelets, decaying sinusoids. The
number of terms in the series is called a hyper-parameter;
many other types of hyper-parameters exist. For optimal
estimation results, hyper-parameters need to be set by an
expert. Consequently, their number should be as low as
possible, so as to increase user-friendliness and facilitate
automation.

This study aims at reducing the number of hyper-
parameters by imposing strong, yet simple, a priori physical
knowledge in a novel way. The method builds on existing
ones [20–25]. Errors and bias-variance trade-off of the
estimated metabolite concentrations are obtained from a
Monte Carlo simulation. The simulated metabolite signal
comprises nine sinusoidal components (lines), distributed over
two quartets and a singlet. The quartets overlap extensively
thus creating a truly difficult case. The lineshape is heavily
perturbed by magnetic field inhomogeneity and eddy currents.
Contributions from macromolecules, water and lipids, which
complicate the analysis of 1H signals [26], were omitted so
far, enabling us to concentrate on the method proper. Finally,
simulation of the decay function (lineshape) is treated in the
appendix.

The algorithm operates directly in the measurement
domain (time domain). It will become available in the free

Table 1. The concentrations, frequencies and phases of the
metabolite database featuring in the non-decaying metabolite model
functions of equation (1). The model parameters of the decay
function are given in the appendix.

m k am,k νm,k
a ϕm,k

b

1 1 0.50 0.150 0
2 1.50 0.160 60
3 1.50 0.170 120
4 0.50 0.180 180

2 1 0.30 0.130 0
2 0.60 0.150 30
3 0.90 0.170 60
4 1.20 0.190 90

3 1 1.00 −0.160 0

a Frequencies are in units of 1/(2�t), i.e., −0.5 � ν < 0.5.
b In units of degrees.

metabolite quantification package jMRUI [27, 28]. Another
freely available algorithm, also capable of handling unknown
lineshapes, combining time- and frequency-domain methods,
is TDFDFIT [29]. A commercial package, operating in the
frequency domain and capable of accommodating unknown
lineshapes is LC-model [30]. Recently, available methods and
packages have been reviewed in [26].

2. Methods

2.1. The basic metabolite model function

This section describes the model function of the simulated
metabolite signal, excluding the effects of tissue heterogeneity
and eddy currents. An in vivo MRS signal, s(t), is complex
valued and is acquired in the time domain. Apart from noise
it can be modelled by

ŝ(t) = eıϕ0

M∑
m=1

amd̂m(t)ŝm(t) eı(2π�νmt+ϕm), (1)

in which a circumflex ˆ indicates that the symbol in question
represents an analytical model function, ı = √

(−1), ϕ0

is an overall phase, ϕm is a metabolite-dependent phase,
t = n�t + t0 is the time, with �t being the sampling interval,
n = 0, 1, . . . , N − 1, t0 a ‘dead’ time put to zero in this study,
and m = 1, . . . , M are the indices of the metabolites; see also
[31]. Furthermore,

• am is the quantity or concentration of metabolite m, the
most important piece of information for clinicians. In
this work, the metabolite concentrations are, in arbitrary
units, a1 = 0.5, a2 = 1.0, a3 = 2.0, while the phases ϕ0

and ϕm,m = 1, . . . ,M , have been put to zero; see also
table 1.

• d̂m(t) = eαmt+βmt2
, αm, βm < 0, is a Voigt4 decay function

[32], usually of little importance for clinicians. The
given function implies that each spectral component of
a metabolite m has the same decay function. When
analysing high-resolution data, each spectral component

4 This class of functions encompasses both Lorentz functions (β = 0) and
Gauss functions (α = 0). The actual ratio β/α = 0 chosen in this study
should have no consequence for the conclusions.
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of a metabolite m should have a separate decay function
[33], but this is too much detail in the case of in vivo data.
More importantly, in this study the authors assume the
effect of field inhomogeneity and eddy currents to be the
dominant contributor to the decay. As a consequence,
the subscript m of d̂m(t) will be dropped altogether later
on. More details on this are given in sections 2.2 and 4.

• ŝm(t) = ∑Km

k=1 am,k eı(2πνm,k t+ϕm,k) is the a priori known,
non-decaying version of the model function of metabolite
m, in which am,k, νm,k, ϕm,k are the relative amplitudes,
frequencies and phases of individual spectral components
of a metabolite model function. Table 1 shows the values
of model parameters used in the present and previous
simulations; see [31, 34]. There are nine sinusoidal
components grouped into two quartets and a singlet. The
two quartets overlap heavily. The frequencies 0.150
and 0.170 are shared while the remaining frequencies of
m = 1 are within the range covered by m = 2. Moreover,
the phases of all components of the quartets are different.
Note that all nine components in table 1 are given the
same decay function resulting from inhomogeneity of
the static magnetic field B0, eddy currents and some
exponential decay, causing an asymmetric lineshape and
phase perturbation, see section 2.2 and the appendix.

In practice, model functions of real-world metabolites
can be computed quantum-mechanically with NMR-
SCOPE [27, 28, 35] or measured with in vitro MRS
from appropriate liquid metabolite solutions. The set of a
priori known non-decaying model functions ŝm(t),m =
1, . . . ,M is called the metabolite database. (NB:
measured database signals are naturally decaying and
must be rendered non-decaying by signal processing.)

• �νm and ϕm are corrections of the frequency and phase,
respectively, for the a priori known metabolite model
function, ŝm, determined by the experimental conditions
of the measurement at hand.

Figure 1 shows the spectrum of the simulated signal. The
phases of the components are those in table 1, combined
with the phase of the decay function; see section 2.2 and
the appendix for the latter. Since the phases are different for
the large majority of the components, phasing of the spectrum
makes little sense and was omitted. The resulting fictitious
signal is to serve as a substitute of real-world signals from any
of the nuclei 1H, 13C, 15N, 19F, 31P.

Finally, as mentioned in section 1, it is assumed that a
reference signal from which one can estimate the perturbed
lineshape is not available. Semi-parametric approaches for
dealing with this condition are treated in sections 2.3.3
and 2.3.4.

2.2. Overall decay of in vivo MRS signals

This section supplements the decay mentioned in section 2.1
with additional terms originating from tissue heterogeneity
within and at the borders of a subject under investigation, plus
eddy currents in the magnet walls. In in vivo MRS, these terms
can be dominant; see, e.g., [10, 18] and references therein.
The resulting overall decay function d̂(t) is a priori unknown

Figure 1. Real part of the FFT of the simulated, fictitious
metabolite signal used in this investigation. Contributions from
macromolecules, water and lipids were omitted. Three metabolites
and added noise contribute to the signal. See the text for details.

and is written as a normalized product of three independent
contributions:

d̂(t) = N d̂patient(t)d̂eddy(t)d̂Voigt(t), (2)

in which

• d̂patient(t) is the decay due to heterogeneity of tissue in and
around the volume of interest. Sources of heterogeneity
are boundaries between fat, bone, air, blood vessels,
etc; see, e.g., [10]. Heterogeneity, in turn, causes
inhomogeneity of the static magnetic field B0 at the
volume of interest. The ensuing distribution of B0-values
may well be asymmetric. In the latter case, d̂patient(t)

becomes complex valued. For mathematical ease, an
asymmetric triangular distribution function was chosen,
represented by the dotted line in figure 2. Reference
[36] and references therein consider many alternative
asymmetric shapes in spectroscopy.

• d̂eddy(t) is a complex-valued decay function caused by
eddy currents induced in the walls of the superconducting
magnet of a scanner by the switching of ‘gradient-fields’
that focus on a volume of interest. Eddy currents produce
a perturbing modulation of B0 that decays with time and
returns on each new switch.

• d̂Voigt(t) is a Voigt decay function [32], introduced in
section 2.1. In the present study, the function is restricted
to the case β = 0, i.e., to exponential decay (Lorentz
lineshape).

• N is a normalization factor that constrains |d̂(0)| to 1.

More details are given in the appendix.
In previous work [21, 31, 34], d̂(t) was approximated with

only a Voigt function, yet allowing its width to be different for
each metabolite. Here, it is assumed:

(i) The form of the decay function is a priori unknown.
(ii) Although unknown, the decay function is common

to each sinusoidal component. This is because the
inhomogeneity of the magnetic field and eddy current
effect dominate all other processes causing decay. (This

3
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Figure 2. Real part of the simulated lineshape, zoomed horizontally
by a factor of 10. Each spectral component in figure 1 has been
given this shape. Solid line: Re[FFT(d(t))] in equation (2). Dotted
line: Re[FFT(dpatient(t))] in equation (2).

is the basic assumption whenever exploiting a reference
signal; naturally, it applies to the next point too.)

(iii) A reference signal enabling accurate estimation of
numerical values of the decay function is not available.
Consequently, the common decay function has to be
estimated from the metabolite signals themselves.

2.3. Nonlinear least-squares fitting

2.3.1. Preliminaries. In MRS, estimation of model
parameters is usually done by nonlinear least-squares (NLLS)
fitting of a model function to the data, in either domain; see,
e.g., [26] for a very recent review. The prevailing choice
of the MRS community is to work in the frequency domain
which amounts to NLLS fitting of the Fourier transformation
(FT) of the model function of the signal to the fast Fourier
transformation (FFT) of the measurement; see, e.g., [30]. This
is based on the assumption that FFT is an optimal spectrum
estimator. In addition, multiplication in the time domain
becomes convolution in the frequency (transform) domain;
the latter is more difficult to handle.

The authors’ method of choice is to NLLS fit the
model function of the signal directly to the data in the time
(measurement) domain; see, e.g., [37, 38]. In this way,
spectrum estimation and convolution are avoided.

Another important choice to make is whether to adapt
the model function to the data or the other way around. In
other words, one can (a) multiply the non-decaying metabolite
database with the estimated decay function and leave the
measurement untouched [22], or (b) divide the measurement
by the estimated decay function and subsequently multiply the
result with some desired decay function [19, 40, 39]. Here,
option (a) is used.

2.3.2. Simplification of the MRS model function. As
mentioned above, the decay function of an in vivo MRS signal
is a priori unknown. It depends on the location of the voxel

NLLS fit with decay function from Eq.(6).

NLLS fit with exponential decay
Parameter Updates from
(1) Minimal Residue.

(1) Minimal Residue,
Parameter Updates from

(2) Decay components zero beyond ν             .threshold

2 criteria:

1 criterion:

Figure 3. Diagram of metabolite quantitation using first
conventional NLLS with exponential decay and subsequently
two-criterion NLLS with an estimated decay function.

of interest and on experimental conditions of the scanner.
This poses a problem. Yet, assuming that the dominant
contributions to the decay are from heterogeneity of tissue
within a patient and eddy currents, it follows that all spectral
components decay in the same manner. This, in turn, enables
a crucial simplification of the model function. Thus, one can
rewrite equation (1) as

ŝ(t) = d̂(t)ŝ(t)nodecay, (3)

where

ŝ(t)nodecay = eıϕ0

M∑
m=1

amŝm(t) eı(2π�νmt+ϕm), (4)

the parameters of which have been explained in section 2.1.

2.3.3. NLLS with two optimization criteria. First, the decay
function is disentangled from the signal in a separate step,
using equation (5), below. Importantly, subsequent modelling
of the result by a sum of basis functions such as decaying
sinusoids, wavelets, splines [22–24] including concomitant
setting of hyper-parameters is omitted. Instead, physical a
priori knowledge about the maximum frequency present in
the decay function is used explicitly through introduction of
a second criterion, imposed simultaneously with the usual
criterion, in a subsequent NLLS fit. It is emphasized that this
second criterion does not involve introduction and use of new
parameters. Rather, it involves new derivatives with respect to
the same parameters used in criterion 1.

This method is new and consists of the following steps.
See also the diagram in figure 3.

(i) Apply a preliminary NLLS fit of the model function of
equation (1), with exponential decay, to the signal. The
model parameters thus estimated serve as starting values
for computing ŝ(t)nodecay in the next step. The usual
set of equations corresponding to minimizing the residue
s(t) − ŝ(t) is referred to as criterion 1.

(ii) Replace the model functions ŝ(t) and ŝ(t)nodecay in
equation (3) by the measurements s(t) and s(t)start

nodecay,
respectively. In the latter symbol, s(t)start

nodecay, the starting
values of the parameters mentioned in step (i) and the
sample times in force have been substituted.
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(iii) Divide both sides of the numerical version of equation (3)
obtained in step (ii) by s(t)start

nodecay. Next, normalize d(t)5.
This yields the following simple estimator of the decay
function:

d(t) = N s(t)

s(t)start
nodecay

, (5)

where N = ∣∣s(0)start
nodecay

/
s(0)

∣∣. This estimator is not exact
for two reasons. First, s(t) contains noise whereas ŝ(t)

does not. Second, the amplitudes, phase corrections and
frequency corrections in s(t)start

decay are only approximate.
As a consequence of the second reason, d(t) comprises
components with frequencies rather higher than those in
the true decay. In the following, the result of this step is
referred to as the ‘raw estimate of the decay’.

(iv) Impose that components in d(t) with frequencies |ν| >

νthreshold have minimal amplitude. νthreshold is derived from
physical insight. The ensuing set of equations is referred
to as criterion 2. It has been implemented as follows:

(a) Truncate d(t) to zero once it has decayed into the
noise, at t = tdecay = ndecay�t .

(b) Zero-fill d(t) from n = ndecay to 1024.
(c) Calculate the derivatives of the lineshape

Re:FFT[d(t)], in which d(t) has been derived
from equation (5), with respect to the metabolite
parameters am and �νm,m = 1, . . . , M .

(d) Analogous to minimizing the residue, set up
equations for minimizing Re:FFT[d(t)] for |ν| >

νthreshold.
(e) Merge the equations of the two criteria.

(v) Apply a two-criteria NLLS fit of

ŝ(t) = d(t)ŝ(t)nodecay (6)

to s(t). In each NLLS iteration, criterion 2 minimizes the
components in d(t) with |ν| > νthreshold. Simultaneously,
criterion 1 minimizes the residue s(t) − ŝ(t). Also, d(t)

is estimated with equation (5) in each iteration, replacing
s(t)start

nodecay by s(t)current
nodecay.

To the best of the authors’ knowledge steps (iv) and (v) are
new. The use of basis functions such as wavelets, splines,
sinusoids and concomitant setting of hyper-parameters has
been circumvented. Hyper-parameters to be set here are
νthreshold and the ratio of the weights of criterion 2 and criterion
1. So far, their values appear not to be critical.

2.3.4. Modelling of the raw estimate of the decay. Modelling
of the raw estimate of the decay, i.e., obtained from
equation (5), was presented in [22, 23]. Instead of optimizing
the disentangled decay with a two-criteria NLLS fit, it was
modelled by a sum of exponentially decaying sinusoids with
the state space implementation HSVD [41]. By restricting
the frequencies of the decaying sinusoids to a limited interval
based on a priori knowledge, most contributions to d(t) due to
sub-optimal starting values in the denominator of equation (5)
are removed. The result is indicated by d(t)HSVD. Subsequently,

5 The hat has been dropped fron d̂(t) because the resulting expression is no
longer strictly an analytical formula.

one applies step (v) above, but with criterion 1 only and d(t)HSVD

fixed. Hyper-parameters to be set are the numbers of rows and
columns of the Hankel data matrix of HSVD6, the sizes of the
subspaces, and the frequency interval that restricts the number
of acceptable components.

3. Results

The methods described above were applied in a Monte Carlo
simulation, using a thousand different noise realizations, each
with the same standard deviation, 0.5 × 10−1, for both its real
and imaginary parts. The signal-to-noise ratio (SNR) can be
gleaned from figure 1.

The present study uses the relative changes of the root-
mean-square errors (RMSE) in the metabolite concentrations
am and the changes of the related bias-to-standard-deviation
ratios (BSR) upon varying the method as a measure of success.
Hence, table 2 lists the ratio:

Relative RMSE

= RMSE, in case d(t) is adapted or estimated

RMSE, in case d(t) has true values
(7)

and related BSRs of am,m = 1, 2, 3, for a total of five methods.
The ideal case, with smallest RMSE and BSR = 0,

pertains to using the true d(t); see column 2. Use of the
incorrect, yet known parametric model function of equation (1)
with adaptable decay constant, is covered by column 3. As
expected, the resulting bias can become large; yet no hyper-
parameters need be set.

Column 4 shows that errors obtained with an incorrect
parametric decay function (column 3) can be reduced
by dividing the corresponding concentrations by N =∣∣s(0)start

nodecay

/
s(0)

∣∣. This operation—which involves no hyper-
parameters—is called ‘renormalization’, because the function
exp(αt) is already properly normalized. More details on
this are given in section 4. Column 5 lists the effect of
applying NLLS with a fixed, modelled version of the decay of
equation (5). In this case, modelling was done with HSVD
(state space), using more than one exponentially decaying
sinusoid [22, 23] per decay function.

Finally, column 6 shows that application of NLLS with
two criteria is beneficial.

Figure 4 displays the real part of five versions of the decay
d(t). The true, simulated version is given in figure 4(a). The
remaining four graphs pertain to estimated versions for various
cases. ntrunc was 150 and, therefore, their horizontal display
stops at that number. Figures 4(b) and (c) display d(t) obtained
with starting values from a noisy and a noiseless signal,
respectively. Especially in the noiseless case, oscillations due
to the approximate nature of the starting values are clearly
visible. Figure 4(d) shows that adding criterion 2 to the NLLS
fit successfully removes the oscillations; for better visibility,
noise was omitted. The effect of state space modelling of the
noisy d(t) in figure 4(b) is displayed in figure 4(e).

6 In [22, 23], seven different numbers of rows and columns of the Hankel
data matrix were chosen and the median of the resulting seven modelled decay
functions was used.
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Figure 4. (a) First 300 datapoints of the true Re[d(t)]. (b) First 150 datapoints of Re[d(t)] estimated with equation (5) from noisy
simulation. (c) First 150 datapoints of Re[d(t)] estimated with equation (5) from noiseless simulation. (d) First 150 datapoints of Re[d(t)]
estimated with equation (5) from noiseless simulation, followed by a NLLS fit with criterion 2. (e) First 150 datapoints of Re[d(t)]
estimated with equation (5) from noisy simulation, then modelled with HSVD.

4. Discussion

4.1. Overview of issues

First of all, a general remark on decay functions is in order.
According to [33], an NMR decay function depends on many
factors, such as molecular motion or rigidity, temperature,
exchange, etc. All sorts of decay functions can occur.
According to [32], a Voigt line is often appropriate for in
vivo conditions. However, when susceptibility effects are

strong, as in, e.g., [10], the effect of field inhomogeneity is
the dominant contributor to the decay function. The present
study addresses the latter condition. In practice, one has to
adapt to the condition at hand, which may be complicated. In
the limit of perfect shimming, each spectral feature may have
a distinct decay function. When trying to accommodate all in
the model function, it should be kept in mind that introducing
more parameters decreases bias but increases variance. In
fact, minimization of the RMSE should be sought. Research
on automation of this process is ongoing.
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Table 2. Relative RMSEs of estimated metabolite concentrations and bias-to-standard-deviation ratios (in parentheses) obtained by Monte
Carlo simulation, with a thousand noise realizations. Results obtained with two-criteria NLLS are indicated by boldface.

d(t) → Known exp(αt) Equation (5) and NLLS

metabolite (true) Lorentz Renormalizeda HSVD two criteria

m = 1 1.0 1.62 2.80 1.98 1.75
quartet (0.0) (−0.27) (−1.59) (−0.12) (−0.30)

m = 2 1.0 5.12 1.75 2.64 1.57
quartet (0.0) (3.06) (0.41) (0.18) (0.27)

m = 3 1.0 13.30 4.79 7.12 2.31
singlet (0.0) (9.09) (2.34) (0.33) (0.26)

a Using values of am obtained with ‘renormalized’ exponential decay,
d̂(t) = N−1 exp(αt).

Table 2 lists errors incurred with four different methods
of estimating metabolite concentrations from a signal whose
decay function has an a priori unknown, non-exponential
form. The errors are relative to those incurred in the ideal
case, i.e., when the true form of the decay is given (column 2).

The methods pertain to purely exponential decay and
estimated forms of the decay. Use of purely exponential decay
(i.e., Lorentz shape) leads to heavily biased estimates because
it is strongly incompatible with the true decay; see column 3
of the table. Especially the error of the singlet m = 3 is big.
Interestingly, the error of the quartet m = 1 is relatively low.
Probably, this has to do with the strong overlap of quartets
m = 1, 2, but the authors cannot offer a mechanism for this
phenomenon. This being a parametric approach, setting of
hyper-parameters is avoided.

Use of an estimated decay function is expected to improve
results because it enables adaptation to the true form. The
simple estimator of equation (5) was applied, as in, e.g.,
[20], in new ways. First, it was used in the ‘raw’ form
displayed in figure 4(b), without modelling of any kind.
Section 4.2 treats where this leads to. A useful result is
that metabolite concentrations estimated with incorrect (e.g.,
purely exponential) decay can be simply improved by a
scaling, here called renormalization (column 4); this still
avoids setting any hyper-parameter.

Section 4.3 discusses the effect of adding a second
criterion to the NLLS fit. This criterion is based on general
physical a priori knowledge about the form of the decay, and
acts in tandem with the usual minimization of the residue
s(t) − ŝ(t). Modelling of the decay with concomitant hyper-
parameters is omitted throughout. It appears that the resulting
errors in the metabolite concentrations (column 6) are nearest
to those of the ideal case, while only two hyper-parameters
need be set.

Finally, column 5 shows the result of modelling of the
decay obtained from equation (5) with HSVD, instead of
applying criterion 2. It reduces the errors too. Yet, this
approach requires more elaborate setting of hyper-parameters
[22, 24, 25].

4.2. NLLS with criterion 1 only

Replacing the decay model function d̂(t) in equation (3) by
the estimated version d(t) of equation (5), one arrives at the

signal model function,

ŝ(t) = N ŝ(t)nodecay

s(t)start
nodecay

s(t). (8)

NLLS fitting of ŝ(t) to s(t) subject to criterion 1 amounts to
minimizing s(t) − ŝ(t). It is important to note that s(t) can
be divided out from s(t) − ŝ(t), and that the remaining term,
1 − N ŝ(t)nodecay

/
s(t)start

nodecay, can be made exactly zero for

s(t)nodecay = N−1s(t)start
nodecay. (9)

Equation (9) can be satisfied by substituting in s(t)nodecay

the same parameter values as those in s(t)start
nodecay but with

am,m = 1, . . . ,M replaced by N−1am,m = 1, . . . ,M . With
this substitution, the residue of the fit becomes zero, which is
the minimum. It follows that NLLS fitting of equation (8)
to the signal subject to criterion 1 yields new estimates
to the extent that the original concentrations, obtained
from traditional exponential decay, have been scaled by N .
Table 2 shows that such scaling, indicated by renormalization,
is beneficial. It can be viewed as a compensation of using the
incorrect exponential decay for NLLS fitting to the signal at
hand.

It should be emphasized that the very result of
section 4.2 has to do with the fact that the estimated version
d(t) of equation (5) was left unchanged. After modelling
equation (5), s(t) can no longer be divided out. In that case
NLLS fitting with criterion 1 yields a new solution [22, 24, 25].

Yet more is possible without resorting to modelling. This
is described below in section 4.3.

4.3. NLLS with two criteria

Section 4.2 shows that applying criterion 1 without modelling
equation (5) amounts to renormalizing the exponential decay
function of the first step in section 2.3.3 and figure 3. Applying
a second criterion in the same NLLS fit can pull the parameters
away from those satisfying only criterion 1. For instance,
criterion 2 forces the reduction of high-frequency components
contained in the decay (see figure 4(c)), in compliance with
physical a priori knowledge. It achieves this by adapting
the parameters in the denominator in equation (5), leading
to a different solution; see figure 4(d)). Possibly, even
criterion 2 alone could deliver an optimal solution. However,
the corresponding minimum may not be global. Therefore,
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criterion 1 was maintained. It is emphasized that criterion 2
does not involve a new parameter space with attendant increase
of degrees of freedom and variance.

Only two hyper-parameters need to be set, the ratio of
the weights of criterion 2 and criterion 1, and νthreshold. So
far, they appeared not critical. More research on this aspect is
necessary. Also, optimization of the convergence rate under
the influence of two criteria needs investigation.

5. Concluding remarks

In this work, new methods were devised to reduce estimation
errors of metabolite concentrations for the case that the decay
function is a priori unknown. They are:

• A physically incorrect decay function can be improved by
a simple renormalization procedure that uses no hyper-
parameters.

• An estimated decay function can be improved by adding a
second minimization criterion—based on general physical
knowledge about decay functions—to the nonlinear least-
squares (NLLS) fit procedure. Only two non-critical
hyper-parameters need be set.

These methods reduce involvement of clinical personnel.
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Appendix

This appendix provides details about the decay function,
simulated according to equation (2).

A.1. Heterogeneity of tissue within a patient

The dashed line in figure 2 depicts an asymmetric triangle,
representing a possible inhomogeneity of the magnetic field
B0 due to heterogeneity of tissue within a patient. The
corresponding decay function in the measurement (time)
domain is

d̂patient(t) = N
(

e2πıν2t − e2πıν1t

2π(ν2 − ν1)t
− e2πıν3t − e2πıν2t

2π(ν3 − ν2)t

)
, (A.1)

where ν1, ν2, ν3 are the frequencies of the left-hand, top and
right-hand vertices, respectively, with ν1 = −0.001, ν2 =
0, ν3 = 0.015. Furthermore, N = 1/(π(ν3 − ν1)) is a
normalization factor, such that |d̂patient(0)| = 1. Note that
d̂patient(t) is complex valued when the triangle is asymmetric,
i.e., when ν2−ν1 �= ν3−ν2. In contrast, a Voigt decay function
is real valued. As remarked in section 2.2, many alternative
asymmetric forms are conceivable [36].

A.2. Eddy current effect

As mentioned in section 2.2, switching of magnetic gradient
fields causes time-dependent variations of B0. In modern
scanners, the effect is alleviated by active screening. The

nature of the remaining effect depends on the instrumentation
provided by a scanner manufacturer. The resulting phase
variation of the MRS signal was modelled as

d̂eddy(t) = eı
∑J

j=1 cj,eddyeαeddy t

, (A.2)

with J = 2, c1,eddy = 2.0, c2,eddy = −2.4, α1,eddy = −0.006,

α2,eddy = −0.005, respectively.

A.3. Voigt decay

Additional decay was simulated with parameters α = −0.026
and β = 0, amounting to Lorentz decay.
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TITRE en français
Algorithmes pour le traitement des distorsions de forme de raie en Spectroscopie et Imagerie Spec-
troscopique par Résonance Magnétique

RESUME en français

La Spectroscopie et l’Imagerie Spectroscopique de Résonance Magnétique (ISRM) jouent un rôle
émergent parmi les outils cliniques, en donnant accès, d’une manière complètement non-invasive,
aux concentrations des métabolites in vivo. Néanmoins, les inhomogénéités du champ magnétique,
ainsi que les courants de Foucault, produisent des distorsions significatives de la forme de raie des
spectres, induisant des conséquences importantes en terme de biais lors de l’estimation des concen-
trations. Lors des traitements post-acquisition, cela est habituellement traité à l’aide des méthodes
de pré-traitement, ou bien par l’introduction de fonctions analytiques plus complexes.

Cette thèse se concentre sur la prise en compte de distorsions arbitraires de la forme de raie,
dans le cas des méthodes qui utilisent une base de métabolites comme connaissance a priori. L’état
de l’art est évalué, et une nouvelle approche est proposée, fondée sur l’adaptation de l’amortissement
de la base des métabolite au signal acquis. La forme de raie présumée commune à tous les métabo-
lites est estimée et filtrée à l’aide de la méthode LOWESS. L’approche est validée sur des signaux
simulés, ainsi que sur des données acquises in vitro. Finalement, une deuxième approche novatrice
est proposée, fondée sur l’utilisation des propriétés spectrales de la forme de raie commune. Le
nouvel estimateur est testé seul, mais aussi associé avec l’estimateur classique de maximum de vrai-
semblance, démontrant une réduction significative du biais dans le cas des signaux à haut rapport
signal-sur-bruit.

TITRE en anglais
Algorithms for Handling Arbitrary Lineshape Distortions in Magnetic Resonance Spectroscopy and
Spectroscopic Imaging.

RESUME en anglais

Magnetic Resonance Spectroscopy (MRS) and Spectroscopic Imaging (MRSI) play an emerging
role in clinical assessment, providing in vivo estimation of disease markers while being non-invasive
and applicable to a large range of tissues. However, static magnetic field inhomogeneity, as well as
eddy currents in the acquisition hardware, cause important distortions in the lineshape of acquired
NMR spectra, possibly inducing significant bias in the estimation of metabolite concentrations. In
the post-acquisition stage, this is classically handled through the use of pre-processing methods
to correct the dataset lineshape, or through the introduction of more complex analytical model
functions.

This thesis concentrates on handling arbitrary lineshape distortions in the case of quantitation
methods that use a metabolite basis-set as prior knowledge. Current approaches are assessed, and
a novel approach is proposed, based on adapting the basis-set lineshape to the measured signal.
Assuming a common lineshape to all spectral components, a new method is derived and imple-
mented, featuring time domain local regression (LOWESS) filtering. Validation is performed on
synthetic signals as well as on in vitro phantom data. Finally, a completely new approach to MRS
quantitation is proposed, centred on the use of the compact spectral support of the estimated com-
mon lineshape. The new metabolite estimators are tested alone, as well as coupled with the more
common residual-sum-of-squares MLE estimator, significantly reducing quantitation bias for high
signal-to-noise ratio data.
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