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PROK , VK , γK , CMK , TWK , CLK , WSK   correction factor for cutting forces due to manufacturing 
process, cutting speed, rake angle, cutting material, tool wear, cutting fluid and workpiece 
shape respectively 

L  vector of link geometry, 3 1   

cm  exponent of specific cutting force 

qn  number of passive joints q  in a serial chain 

θn   number of virtual  joints θ  in a serial chain  

N  spindle speed, [rpm] 

p  and p  spatial position of the point and it displacement caused by loading, 3 1  

{ , | 1, }i i i n p p  displacement field, where ip  define the node initial location and ip  refers to the node 
displacement due to the applied force/torque, and n is the number of considered nodes 

iP    skew-symmetric matrix corresponding to the vector ip , 3 3  

spP  spindle power, [kW] 

q  and δq  passive joint coordinates and their deflections caused by loading, q 1n   

R  orthogonal rotational matrix, 33  

t  and δt   end-effector (end-point) location and it displacement caused by loading, 6 1  

0t  end-point location for the unloaded mode, 6 1  
(F)
0t   modified target location, 6 1  

jt  location of j-th node-point, 6 1  
1

0( | )f t F t  non-linear deflection-force relations corresponding to the target point 0t  

T , Base 3D Link Tool, (...), ,iT T T T  homogenous transformation matrices, 4 4  

cv   cutting speed, [m/min] 

W , 1W , 2W  wrenches applied to the link ends, 6 1  

   scalar parameter insuring convergence, (0,1)   

cr  critical deflection, [mm] 

iε  accumulates influences of all geometrical errors on the end-point location of i-th 
kinematic chain, 6 1  

θ  and δθ   virtual joint coordinates  and  their deflections caused by loading, θ 1n   

0θ  preloading in virtual joints, θ 1n   

   Poisson's Ratio 

 standard deviation 

qτ  vector of the passive joint reactions on the loading, q 1n    

θτ  vector of the virtual joint reactions on the loading, θ 1n   

φ  and φ  orientation of the element and it displacement caused by loading, 3 1  



 

INTRODUCTION 
 

Motivation. At present, aerospace and ship building industries progressively replace conventional 
materials by new ones that provide essential advantages from the point of view of mechanical properties of 
the final products, but at the same time introduce some complexity in the manufacturing process. In 
particular, machining of modern high-performance materials requires revision of some approaches in design 
and programming of manufacturing cells that must provide high accuracy and high productivity 
simultaneously.  

In machining of such materials, currently there are two main trends. The first of these is based on 
conventional CNC-machines that are provided by dedicated cutting tools, which are able to achieve desired 
quality and productivity. However, this classical approach has essential limitations and can be hardly applied 
when a workpiece geometry is complicated and its dimensions are rather large. In this case, the second trend, 
which is based on industrial robotic manipulators, looks very attractive. This type of machining cells can be 
implemented using either serial or parallel manipulators. Both approaches have their advantages and 
disadvantages. In particular, serial robots provide large workspace but usually are quite heavy and the 
influence of gravity forces is significant. In contrast, in parallel manipulators the gravity influence is 
essentially smaller (but not negligible), while the work envelop is limited by particularities of this 
architecture. Aside these, in both cases the cutting forces produce essential compliance errors that influence 
the quality of the final product. For this reason, stiffness analysis of robotic manipulators under essential 
external forces becomes a critical issue in design of robotic-based manufacturing cells for machining of 
modern high-performance materials. 

In literature, the main results in manipulator stiffness analysis are obtained assuming that the 
compliance errors are small enough and may be evaluated by linear models. However, for the considered 
application area this assumption should be revised, which requires development of relevant non-linear 
stiffness modeling techniques that are able to evaluate the compliance errors caused by different types of 
external and internal loadings (cutting and gravity forces, internal preloading in joints introduced in order to 
eliminate backlash, forces generated by gravity compensators, internal stresses caused by assembling of non-
perfect over-constrained closed-loops in parallel manipulators, etc.). Another difficulty is related to taking 
into account the influence of passive joints that are numerous in parallel manipulators. Hence, the 
manipulator stiffness modeling for these industry-motivated conditions is a challenge in robotic science. 

In this work, to develop the desired stiffness model and corresponding compliance error compensation 
technique, the Virtual Joint Modeling (VJM) concept is used. This choice is motivated by its essential 
advantages for the considered application areas, such as high computational efficiency and acceptable 
accuracy. Compared to other alternative approaches (Finite Element Analysis, Matrix Structural Analysis), 
the VJM technique is more suitable for both on-line and off-line modes, but it should be essentially enhanced 
to ensure stiffness modeling in the cases of significant external/internal forces for manipulators with passive 
joints. In addition, the models to be developed should be able to detect some certain non-linear effects in the 
stiffness behavior of the manipulator under high loading (buckling for instance). Another promising research 
direction is related to accuracy improvement of the VJM model parameters using FEA-based virtual 
experiments for manipulator elements, because current approaches still use crude approximations of 
manipulator links that are not able to take into account real shape of links and contact surfaces. In addition, 
existing approaches implicitly assume that all robot components are perfect and there are no internal stresses 
caused by assembling of over-constrained structure. So, in spite of the fact that the problem of stiffness 
modeling of serial and parallel manipulators was in the focus of numerous researches ([Salisbury 1980], 
[Gosselin 1990], [Yi 1992], [Pigoski 1998], [Ciblak 1999], [Chen 2000a], [Zhang 2002], [Alici 2005], 
[Quennouelle 2008a], [Pashkevich 2010] and others), the main results are in the area of linear stiffness 
analysis and there are still a number of open theoretical questions, some of which will be considered in this 
work.  

 



Introduction 2 

The industrial importance of these problems is confirmed by application of the obtained results in the 
frame of the research projects "Integrated design of parallel mechanisms and industrial robotic systems for 
automated processing of composite materials" (RoboComposite) founded by a project of the “Pays de la 
Loire” region of France and "Imageur Robotisé pour les Intervention Mini-Invasives" (IRIMI) FUI project 
and "Modelling and control of robots for machining operations of large composite parts and friction stir 
welding." (COROSOO) ANR project. 

 

Thesis goal and research problems. This thesis focuses on enhancement of stiffness modeling 
techniques for serial and parallel manipulators in order to increase the accuracy and efficiency of robotic-
based machining of high performance materials by means of compensation of the compliance errors (in on-
line or/and off-line mode). To achieve this goal, several problems have to be solved: 

 

Problem 1:  

 Accuracy improvement of stiffness matrices used in the VJM model (taking into account 
complex shape of manipulator links, coupling between rotational/translational deflections and 
joint particularities). 

 

Problem 2:  

 Enhancement of VJM-based stiffness modeling technique for serial and parallel manipulators 
with arbitrary location of passive joints in the case of small deflections (unloaded mode). 

 

Problem 3:  

 Extension of the proposed VJM-based technique for the case of large deflections caused by 
internal and external loadings, taking into account related changes in Jacobians and equilibrium 
coordinates. 

 

Problem 4:  

 Application of the developed technique to the analysis of non-linear effects in manipulator 
stiffness behavior under loadings and determining the potentially dangerous configurations and 
critical forces that may provoke undesired buckling phenomena, i.e. sudden change of current 
configuration of the loaded manipulator. 

 

Thesis structure. To address the above defined problems, the thesis is organized as follows. 
Chapter 1 is devoted to the state of art and literature review on the robotic based processing of high 
performance materials and stiffness modeling of robotic manipulators. It includes a review of robot 
applications for machining of high performance materials, determination of potential demands, limitations 
and advantages, specification of robots errors in machining application and review of error compensation 
methods. The main focus of this chapter is on the stiffness modeling methods and stiffness modeling 
approaches for unloaded and loaded modes. Finally, this allows us to define the goal and the problems 
statement of the thesis 

 

Chapter 2 is devoted to the accuracy improvement of the elastostatic model for manipulator links. It 
proposes a computationally efficient identification procedure which is based on the FEA-modeling and 
allows us to obtain the stiffness matrix taking into account complex shape of the link, couplings between 
rotational and translational deflections and joints particularities. Simulation study shows that it is able to 
evaluate the stiffness matrix elements with accuracy about 0.1% and also to detect non-significant ones. The 
developed identification procedure is illustrated by several examples that will be used in the following 
chapters for the VJM-based modeling of the entire manipulator. 
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Chapter 3 is devoted to the enhancement of VJM-based stiffness modeling technique for serial and 
parallel manipulators with arbitrary location of passive joints in the case of small deflections (unloaded 
mode). It proposes a computationally efficient procedure which is able to produce singular and non-singular 
Cartesian stiffness matrix for the kinematic chain both in numerical and an analytical form. This allows us to 
extend the classical stiffness mapping equation for the case of manipulators with passive joints and to 
evaluate stiffness matrix properties analytically. It also proposes a new aggregation technique, which is able 
to take into account geometry of the mobile platform and to compute internal deflections and forces/torques 
as well as the displacement of mobile-platform caused by geometrical errors in the kinematic chains. The 
developed stiffness analysis technique is illustrated by several examples which deal with parallel 
manipulators. 

 

Chapter 4 is devoted to the extension of the VJM-based stiffness modeling technique developed in the 
previous Section for the case of large deflections (loaded mode). It proposes a computationally efficient 
procedure, which is able to take into account the internal and external loadings and to obtain a non-linear 
force-deflection relation. It also produces Cartesian stiffness matrix both in numerical and analytical form. 
This allows us to extend the classical stiffness mapping equation for the case of manipulators with passive 
joints in the loaded mode. The stiffness model aggregation technique is also extended for the case of the 
loaded parallel manipulator. It is able to produce non-linear force-deflection and deflection-force relations as 
well as to compute internal deflections and forces/torques caused by different types of loadings and 
geometrical errors in kinematic chains. In addition, a non-linear compliance errors compensation technique is 
proposed based on the developed stiffness model. These results are illustrated by several examples. 

 

Chapter 5 is devoted to the application of the developed modeling technique for the non-linear 
stiffness analysis of the manipulators with passive joints in the loaded mode. It focuses on detecting non-
linear effects in the manipulator stiffness behavior under loading and determining potentially dangerous 
configurations and critical forces that may provoke undesired buckling phenomena (i.e. sudden change of 
current configuration of the loaded manipulator). The stiffness analysis is carried out for serial and parallel 
manipulators with different assumptions on their flexibility and the type of loading. Particular attention is 
paid to multiple equilibriums, stability of the kinematic chain configuration and kinetostatic singularities in 
loaded manipulators. Finally, Conclusion summarizes the main results and defines future research directions.  

 

Main contributions. Theoretical results presented in this work are in the area of the VJM-based non-
linear stiffness modeling of robotic manipulators with passive joints under external and internal loadings. 
Among them, there are four contributions that can be treated as the most essential ones. Their brief summary 
is presented below. 

  

(i)  FEA-based methodology for stiffness matrix identification of the manipulator links with the complex 
shape, which takes into account coupling between rotational/translational deflections and joint 
particularities that are related to the contact surfaces of the adjacent links.  

This result contributes to the area of virtual experiments planning in CAD-based environment and algorithmic data 
processing that produces the desired stiffness matrix with required accuracy. In contrast to other works, the developed 
technique operates with the deflection field in the neighborhood of the reference point, which provides higher 
identification accuracy (about 0.1% for stiffness matrix element). Proposed analytical expressions for accuracy evaluation 
of the developed identification technique provides the ability to determine the optimal settings for the FEA-based 
experiments and to improve the identification accuracy. In addition, statistical processing of the experimental data allows 
us to minimise the identification errors by eliminating outliers, to determine the confidence intervals for the matrix 
elements and to set to zero non-significant ones. This methodology provides good integration with existing CAD-based 
systems and results of the identification technique can be used both for the VJM and the MSA methods, which operates 
with 6 6  and 12 12  stiffness matrices respectively.  
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(ii) Stiffness modeling of serial and parallel manipulators with passive joints in the unloaded mode (i.e. 
under assumption of small deformations). 

This contribution is in the area of the VJM modeling approach that was enhanced for serial and parallel manipulators 
with arbitrary location of passive joints. In contrast to other works, the developed technique starts from stiffness 
modeling of all kinematic chains separately and then aggregates them in a unique model. For the serial chains is 
proposed an analytical expression for stiffness matrix modification induced by passive joints, which extends the classical 
stiffness mapping notion, and related recursive procedure for stiffness matrix elements computing, which allows to treat 
passive joints sequentially (one-by-one). The developed technique is more computationally efficient, includes low-order 
matrix inversion, and is able to obtain both non-singular and singular stiffness matrices that take intoaccount the 
influence of passive joints or the kinematic singularities. Relevant assembling procedure allows to compute the 
aggregated Cartesian stiffness matrix of the parallel manipulator and also to evaluate the internal forces/torques and end-
platform deflections caused by geometrical errors in the kinematic chains of over-constrained mechanism. This issue has 
never been studied before and has essential practical significance for evaluating desired tolerances in links/joints 
geometry and corresponding internal stresses in over-constrained mechanisms. The developed method combines 
advantages of the FEA and the VJM modeling approaches (accuracy and computational efficiency respectively) and 
allows to obtain stiffness matrices either in numerical or in analytical form. 

 

(iii) Non-linear stiffness modeling of serial and parallel manipulators with passive joints in the loaded 
mode (i.e. under assumption of large deformations). 

This result contributes to generalization of the VJM modeling approach for the case of large deflections caused by 
internal and external loadings applied to the end-point or/and to the intermediate nodes of the kinematic chains. In 
contrast to other works, the developed technique includes computing of the static equilibrium configuration 
corresponding to the given loading. In addition, it allows us to check the "internal stability" of relevant chain 
configuration. Similar to the unloaded mode, the stiffness modeling of parallel manipulators starts from kinematic chains, 
but it yields a non-linear function describing force-deflection relation. Besides, for each kinematic chain, this technique is 
also able to obtain both non-singular and singular stiffness matrices. Relevant aggregation procedure allows us to obtain 
a non-linear force-deflection (or deflection-force) relation for the parallel manipulator and to compute the aggregated 
Cartesian stiffness matrix, as well as to evaluate the internal forces/torques and end-platform deflections caused by 
loadings and geometrical errors in the kinematic chains. Further, this model is used for compensation of the compliance 
errors caused by the internal and external loadings. The developed method also combines advantages of the FEA and the 
VJM modeling approaches (accuracy and computational efficiency respectively). 

 

(iv) Application of the developed stiffness modeling technique for the non-linear stiffness analysis of serial 
and parallel industrial manipulators used in machining of high-performance materials. 

This contribution deals with detecting non-linear effects in the manipulator stiffness behavior and determining the 
potentially dangerous configurations and critical forces that may provoke undesired buckling phenomena in typical 
robotic architectures. In contrast to other works, it was firstly showed that in externally/internally loaded manipulators 
some kinematic chains may be unstable and/or there may exist elastostatic singularities (in addition to ordinary 
geometrical ones), for which even small disturbances may lead to sudden change of current configuration. From practical 
point of view, these results are useful for pre-design stage. They allow the designer to evaluate admissible range of the 
loading that does not create undesirable effects in the manipulator behavior during machining.  

 

Publications and conference presentations. The main results obtained in this thesis are have been 
published in 9 works and have been presented at 7 conferences. Among them, there are two papers in 
international journals (Mechanism and Machine Theory, Mobile Robotics & Intelligent Systems), a book 
chapter (In: Advances in Robot Manipulators), proceedings of six international conferences (IEEE/RSJ 
International Conference on Intelligent Robots and Systems, IFTOMM European Conference on Mechanism 
Science, International Symposium Advances in Robot Kinematics, International Conference on Computer 
and Automation Technology, CIRP Conference on Manufacturing Systems, CIRP Design Conference).  
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This chapter is devoted to the state of art and related literature review on the 
robotic based processing of high performance materials and stiffness modeling of robotic 
manipulators. It proposes a review of robot applications for machining of high 
performance materials, determination of potential demands, limitations and advantages, 
specification of robots errors in machining application and review of error compensation 
methods. The main focus of this chapter is to review existing literature on stiffness 
modeling methods and stiffness modeling approaches for unloaded and loaded modes. 
Finally, this allows us to define the goal and problems for the thesis 

 

1.1 ROBOT APPLICATION FOR MACHINING OF HIGH PERFORMANCE MATERIALS 

High performance materials provide greater strength, resistance, durability and ductility and 
significantly increase the longevity of structures. For these reasons they are widely used in the aerospace and 
ship building industries and in other fields. But their processing introduces additional complexity compared 
to conventional materials and often requires special equipment, so a manufacturing process has to be revised. 
Moreover, since aerospace and ship building usually employ limited production systems and operate with 
rather large workpieces, application of industrial robots in machining of high-performance materials is very 
reasonable. However, it creates a number of engineering problems, that are in the focus of this Chapter.  

1.1.1 Modern trends in machining 

General trends in machining. Generally, modern trends in machining are aimed at improving 
machining efficiency while reducing the product price. These trends are contradictive, so all related research 
focus on a compromise that ensures high manufacturing accuracy and acceptable cost. In the frame of formal 
models used in this area, most of the design objectives are usually converted into the constrains that define 
acceptable (but obviously not strictly optimal) values of corresponding performance measures. This approach 
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allows us to reduce complexity of the related optimization problem, but does not eliminate the need for 
development of specific mathematical models for assessing of each particular performance. 

The most useful ways of reducing the price and improving the product quality are related to the 
enhancement of cutting technology and optimization of tool path. In particular, reducing the total amount of 
material removal and using optimal cutting parameters for the maximization of metal removal rate yield an 
essential reduction of the manufacturing time. While the first improvement can be achieved rather easily (by 
proper dimensioning of raw primary part), the second one requires optimization of the machining process by 
increasing of the depth of cut and feed rate as well as the spindle speed to the maximum allowed levels. The 
later is obviously accompanied by an increase of cutting forces that still are not very essential for the 
conventional CNC-machines with rather rigid mechanical structure. However, in robotic-based processing, 
these forces may cause essential deformations of the manipulator and consequent impact on the processing 
accuracy. Therefore, this issue needs detailed analysis which will be in the focus of this work. 

The tool path optimization is aimed at the reduction of non-cutting time as well as the minimisation of 
efforts in actuator drives by proper selection of the tool moving direction. The first of them is also called 
'airtime' [Castelino 2003] in order to distinguish from the machining time when the tool is actually cutting 
material. As it follows from related research [Veeramani 1998], [Oysu 2009], the airtime can be quite 
significant when multiple tools are used or a number of small regions are being machined. Mathematically, 
this problem is formulated as a specific version of the traveling salesman problem with rather hard 
precedence constraints [Ozgur 1995]. The second issue, minimisation of actuator efforts, is equivalent to 
optimization of tool path in the manipulator workspace. It was previously studied mainly using kinematic 
criterion [Nektarios 2010], but machining application (especially for hard materials) requires direct 
computing of forces/torques in actuated joints that are also considered in this work.   

Other issues that are important for manufacturing but are beyond of the scope of this work are related 
to minimization of setup time, using multi-operation machine tools and quick-change systems for tooling, 
automation of loading/unloading operations, improving accuracy of traditional roughing process, reduction 
of manufacturing lead time, applying of just-in-time production strategy, minimization of inventory cost, etc. 
[Lin 2011]. Besides, on the product development stage, the concurrent engineering methodology is also 
attractive. Integration of all these approaches yields maximal utilization of expensive equipment and 
significantly reduces the product price. 

 

Figure 1.1 General limits for High Speed Machining [Garant 2010] 

It is worth mentioning that, in spite of obviously positive impact, some advances in modern machining 
technology adversely affect the processing accuracy. For instance, increasing depth of cut generates high 
forces/torques which may cause significant (and inadmissible) compliance deformations of the machining 
tool or robot. To reduce related machining errors there exist two main approaches. The first these is aimed at 
increasing of the machine tool or robot stiffness as well as optimal part placement in the workspace. 
However, increasing of the mechanism stiffness obviously leads to decreasing of the dynamic properties (due 
to higher mass and inertia of the links). The second approach is based on compliance errors compensation 
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via proper off-line modification of control program describing desired tool trajectory or by using the force 
feedback in the online mode. To implement this approach, a suitable stiffness model of the CNC-machine or 
manipulator is required, which is proposed in the following chapters.  

High Speed Machining (HSM). The most essential current trends in machining of high performance 
materials are integrated in HSM-concept, which has been already successfully implemented in several 
projects for the aerospace and ship building industries [Terrier 2004] that are known by their strong 
requirements for accuracy and high demands for efficiency. But simultaneously with obvious advantages, 
these applications demonstrated rather strong constrains on the specifications of the manufacturing 
equipment. This is caused by high spindle speed, high feed rate and by other factors. Typically, HSM-based 
manufacturing conditions are associated with the following parameters [Garant 2010]: 

 spindle speed N from 8000-10000 revolutions per minute (rpm) for widely used wares and up to 
40000 rpm and higher for aerospace and medical industry, high accuracy wares and machining 
with small tools; 

 cutting speed cv  from 700 m/min for milling with small tools; 

 feed rate tf  has to be at least 2-2.5 m/min and amount up to 40 m/min and more for high velocity 
machining; 

 spindle power spP  from 10-15 kW for tools with low feed rate and traverse 50 kW for high velocity 
machining of stiff materials. 

It should be stressed that all these specifications of the machining process are not strict and can vary, 
but they essentially differ from the conventional ones. Approximate manufacturing conditions limits for 
HSM are summarized in Figure 1.1. Main advantages of HSM are summarized in Figure 1.2, which shows 
the influence of cutting speed on cutting forces, surface quality, time-cutting volume, thermal workpiece load 
and tool life travel [Garant 2010].  

 

Figure 1.2  Influence of cutting speed on the process evaluation [Garant 2010] 

Special requirements of HSM. To obtain potential advantages of HSM, a number of special demands 
for the manufacturing process have to be satisfied [Garant 2010], [Sharma 2001]. All these requirements can 
be classified into the following groups with respect to their origins:  

(a)  Spindle drive requirements: 

 High speed rpm takes significant amounts of power just to rotate the spindle, besides the 
additional power required to cut the material, which increases with feed rate. Hence, a 
powerful spindle motor to machining with high feed rates is required. 

 Static and dynamic stiffness of the spindle must have the bending compliance.  

 High performance spindles must have short run uptime and high stiffness. 

 Size and type (angular contact, roller), number of bearings, bearing preload (stiffness), 
type of lubricants, and bearing material (steel, ceramic) require to be critically examined 
for high speed machine tools.  
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(b)  Machining process requirements: 

 Working method with low backlash and low vibration, 

 High rigidity, 

 Light-construction moving parts, 

 High speed and concentricity of spindles, 

 Implementation of high feed rates (linear drives), 

(c)  Requirements for the tool: 

 Appropriate cutting tool system: longer tool-life and better surface qualities can only be 
achieved with the corresponding tool materials, 

 High concentricity, 

 High balancing speed (geometry, shank design), 

 Long tool-life (with special cutter geometries and coatings), 

 High rigidity. 

(d)  Tool holder requirements: 

 High concentricity, 

 Hydroexpanding, high-precision or shrink-fit chuck. 

(e)  Requirements for workpiece:  

 Stable and low-vibration fixing, 

 

Hence, to achieve potential advantages of HSM, the machining process and its components should 
satisfy very strict requirements. One of promising direction in this area is using parallel kinematic machines 
(or parallel robots) instead of traditional CNC-machines with Cartesian architecture. Hypothetically, the 
parallel architectures offer a number of advantages due to lower moving masses but their stiffness models are 
not trivial [Yi 1992], [Deblaise 2006a], [Quennouelle 2008a], [Wei 2010]. Besides, to evaluate possible 
compliance errors, it is required to estimate the forces and torques caused by interaction between the cutting 
tool and the workpiece. This issue is conspired in the following subsection. 

1.1.2 Machining of high performance materials 

Machining of high performance materials generates significant loading on the processing mechanism 
caused by interaction of machining tool and workpiece (Figure 1.3). It is evident that, this loading is 
essentially higher compared to conventional materials and it leads to the compliance errors which can be 
significant and deteriorate surface property. Generally, the compliant errors depend on two independent 
factors: the loading value and the resistance of the machining mechanism to the loading. Let us concentrate 
first on the computation of the force/torque associated with the machining process, while the issue of the 
machining mechanism resistance to the loading will be considered further. 

 

Figure 1.3 Cutting forces in machining process 

In general, cutting forces depend on a number of factors. Among the most important ones are the 
materials of the machining tool and workpiece, the feed rate and the spindle rotation speed, the degree of tool 
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wear, the tool temperature, the cutting geometry, the cutting width and thickness and other factors 
[Tsai 2001], [Lamikiz 2004], [Xu 2007], [Wan 2009]. Moreover, the cutting forces are not constant and vary 
with the feed rate. Since in practice it is difficult to find the exact value of the cutting force, it is reasonable 
to estimate it for the worst case. For this reason, in engineering practice, usually simplified expressions are 
used where the impact of each factor is taken into account via a relevant correction coefficient 
[Garant 2010], [Grote 2009], [Beitz 1994]: 

 с PRO V γ CM TW CL WSF b h k K K K K K K K           (1.1) 

Here b , h  are the chip width and thickness respectively, сk  is 'the specific cutting force', PROK  is a 
correction factor for the manufacturing process, VK  is the cutting speed correction factor, γK  is the rake 
angle correction factor, CMK  is the cutting material correction factor, TWK  is the tool wear correction factor, 

CLK  is the cutting fluid correction factors, WSK  is the workpiece shape correction factor. Typical values of 
the correction factors are presented in Table 1.1.  

Table 1.1 Correction factors for the cutting force computing [Grote 2009] 

Correction factor Notation Value 

Manufacturing process PROK  
1.2 1.4PROK    

(the factor takes into account that the machining 
indices obtained from turning tests) 

Cutting speed  VK  
0.153

2.023
V

c

K
v

  for 100 / mincv m  

0.07

1.380
V

c

K
v

  for 100 / mincv m  

Rake angle  K  
1.09 0.012K     (steel) 

1.03 0.012K     (cast iron) 

Cutting material  CMK  

1.05CMK   (HSS) 

1.0CMK   (cemented carbide) 

0.9 0.95CMK    (ceramic) 

Tool wear  TWK  
1.3 1.5TWK    

1.0TWK   for sharp cutting edge 

Cutting fluid  CLK  

1CLK   (dry) 

0.85CLK   (non-water soluble coolant) 

0.9CLK   (emulsion-type coolant) 

Workpiece shape  WSK  
1.0WSK   (outer diameter turning) 

1.2WSK   (inner diameter turning) 

 

The remaining coefficient ck  (so called 'the specific cutting force') that is not included in the above 
table, depends on the chip thickness h  nonlinearly and is usually computed as [Garant 2010]:   

 1.1

c

c
c m

k
k

h
  (1.2) 

where 1.1ik  is the main value of the specific cutting force (which depends on the material properties), cm is its  
exponent. Table 1.2 contains typical values of 1.1ck  and cm  for several high performance materials.  
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Table 1.2 Mechanical properties of typical high performance materials [Garant 2010] 

Material 
Main value of specific 

cutting  power 
2

1.1 , [N / mm ]ik   

Rise of the 
tangent  

cm  

Typical use 

Monel 400 

(NiCu30Fe) 
2600 0.19 

Aerospace material with favourable 
mechanical and chemical-corrosion properties, 

pressure tank construction, centrifuges,  
ship's valves 

Inconell 718 

(NiCr19NbMo) 
2088 0.29 

Aerospace material, excellent properties in the 
extremely low temperature range, very good 
corrosion resistance, rocket propulsion units, 

gas turbines, pumps 

Ti Al 6 V 4 1370 0.21 
Aircraft and spacecraft construction, fittings, 

mechanical engineering 

Al Mg 4.5 Mn 780 0.23 
Vehicle construction, shipbuilding,  

pressure tanks 

There also exist nonlinear expressions for the cutting force which take into account some other 
specific factors. For instance, [Paris 2007] has proposed the fractal model for cutting force 

 
2

1 2

3

· ·

1 ·

h
F

ha a

ha





 (1.3) 

where h  is the cut depth and 1 2 3, ,a a a  are the model coefficients that depend on material properties, specific 
chip thickness and cutting stiffness. 

For the worst-case analysis, expressions (1.1) and (1.3) can be reduced to the linear relation 

 c2maxF k b h     (1.4) 

which includes only factor ck  depending on the cutting tool and material properties as well as the cutting 
cross-section b h . Numerical values of the maximum cutting forces computed using this expression are 
presented in (1.4) which includes results for two high performance materials with different cutting settings. 
They allow us to compare maxF  for two materials with essentially different cutting stiffness. In particular, for 
the same cutting depth 0.2h mm , cutting width 8b mm  and cutting speed from 1000 to 2000 m/min, the 
cutting force is about 2 kN for the aluminum alloy (Al Mg 4.5 Mn) and close to 7 kN for Monel 400. It is 
evident that both of these values are high enough to cause significant deformations of the CNC-machine or 
robotic manipulator. For instance, for robot manipulator KUKA-240 [Dumas 2010] such loading may 
generate linear deflections 0.1..5.0 mm and angular deflections 0.1..0.2° depending on the cutting force 
direction. 

It is worth mentioning that, for the constant feed rate, the cutting force reduces with increasing of the 
spindle speed. This effect is in good agreement with equation (1.4): increasing of the spindle speed for the 
same feed rate does not change the cutting speed, while the chip thickness h  reduces. This effect is widely 
used in practice. But to save the processing time, usually the feed rate increases with the spindle speed. This 
does not allow us to reduce relevant compliance errors.  

Another issue that should be taken into account while evaluating reactions associated with machining 
of high performance materials is related to the spindle axial torque. Usually this value is obtained from 
experiments [Kaya 2011], but it is also possible to estimate its range from nominal values of spindle power 
and rotation rate. For instance, the values 20 kW and 10000 rpm correspond to the torque of about 10 N·m 
(for the efficiency factor 50%). For typical industrial application based on robot KUKA-240, this torque may 
cause linear/angular deflections of 0.001..0.008 mm and 0.1..1.6° respectively (depending on the feed 
direction). Besides, the cutting forces may exert essential lateral torque with respect to the robot-mounting 
flange. For example, for the tool reference point offset of 100 mm, the cutting force 2-7 kN (see Table 1.3) 
produces the torque 20-140 N·m that makes non-negligible linear and angular deflections.  
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Table 1.3 Cutting forces for high performance materials 

Cutting speed cv  m/min 
Material 

Depth of 
cutting h , mm 

Width of 
cutting b , mm 1000 1500 2000 

8 6.97 kN 6.77 kN 6.64 kN 
0.2 

16 13.94 kN 13.54 kN 13.28 kN 

8 25.65 kN 24.93 kN 24.44 kN 

Monel 400 

(NiCu30Fe) 
1 

16 51.30 kN 49.86 kN 48.88 kN 

8 2.23 kN 2.17 kN 2.12 kN 
0.2 

16 4.46 kN 4.34 kN 4.24 kN 

8 7.70 kN 7.48 kN 7.33 kN 
Al Mg 4.5 Mn 

1 
16 15.40 kN 14.96 kN 14.66 kN 

 

Hence, the cutting forces and torques associated with milling of high performance materials are 
essentially higher compared to conventional ones. They may cause significant linear and angular deflections 
of the machining tool that lead to essential reduction of the accuracy and quality of the final product. This 
issue justifies the goal of this research work. 

 

1.1.3 Machining with robots versus traditional machining tools 

At present, there are two main approaches in designing of machining workcells: (i) utilization of 
classical CNC-machines with Cartesian architecture and (ii) using industrial robots of either serial or parallel 
architecture. Both of them have their own advantages and disadvantages that are briefly discussed below 
from the point of view of applicability to machining of high performance materials.  

CNC-machines. Computer Numerical Control (CNC) machines refer to the automatic machine tools, 
which use abstractly programmed commands to specify the tool path and relative location of the workpiece 
while machining [Lo 2000]. The earliest CNC equipment was based on existing traditional machine tools 
that were supplemented by motors that control the cutter feed rate. Further, all control execution functions 
were given to computers and the control program preparation was carried out in CAD/CAM environment 
[Newmana 2008], [Werner 2000], [Xu 2006]. The latter advances have essentially changed the machining 
process and provided fundamental benefits, which can be summarized as follows: 

(i)  full automation of the machining and programming processes, which requires the final 
dimensions of the product only; this reduces human errors to minimum; 

(ii) ability to produce both simple trajectories and the surfaces of high complexity, which extend 
their application from conventional milling to drilling, lathing, laser cutting, etc.;  

(iii)  high accuracy and good surface quality that is insured by high rigidity of the tool manipulation 
mechanism and accurate control of the tool motions; 

(iv)  flexibility of machining which allows us to process different types of products and combine 
several operations (milling, drilling, grinding) by changing control program only; this 
essentially reduces the manufacturing time and the product cost; 

There are also some other benefits that are offered by the CNC machines and promote their wide application 
in industry (advanced machine control, more precise production planning due to high reputability of the 
machining, etc.) [Newmana 2008]. However, relatively high cost and limited workspace are usually treated 
as their main disadvantages [Krause 1984]. Typical examples of CNC-machines are presented in Figure 1.4. 

Variety of existing CNC-machines is usually classified with respect to the type of motion control 
system, implemented control algorithm and the number of actuated axes. With respect to the motion control 
system, the CNC-machines may be classified as point-to-point and contouring ones. The first of them, also 
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called a positioning system, moves the tool to the given location without control of the path and speed (they 
are not important for some applications, such as drilling). Continuous path systems ensure the path and speed 
control of the tool while machining, they implement simultaneous control of all driven axes. Typical 
application areas of continuous motion control are milling and turning.  

 

Figure 1.4 Examples of CNC-machines 

Based on the control algorithm, the CNC-machines are divided into open-loop and closed-loop ones. 
In the open-loop systems, the actuator input is entirely defined by the programmed instructions and there is 
no feedback to check whether the desired goal (position, velocity) has been achieved. They are obviously 
rather sensitive to external disturbances, so their application area is limited by the cases where the accuracy 
requirements are not critical. In contrast, closed-loop systems have a feedback, which allows us to 
compensate any differences between the desired position/velocity and its actual value. This feedback may be 
implemented using both analogous and digital technique, the close-loop systems are usually considered to be 
very precise and attractive for accurate machining. 

With respect to the third classification factor, the number of axes, the CNC-machines with 2, 3, 4 and 
5 axes are distinguished. The first of these usually have only two translational driven axes that ensure control 
of the tool in the plane. The 3-axis machines are able to process more complex 3-dimentional surfaces, they 
usually employ three translational drives with mutually orthogonal axes. The more sophisticated are 4- and 
5-axis CNC machines that are able to change the tool orientation, in addition to translational motions. This 
allows to produce more complex tool path movements and to process very complicated products. In general, 
increasing of the number of axes provides numerous advantages such as better surface quality, reduction of 
the machining time, improved access to under cuts and deep pockets, etc. It is worth also mentioning that the 
axes may be actuated either sequentially or simultaneously, but present systems usually implement the 
simultaneous control.  

In modern CNC systems, the machining trajectory design is highly automated and is performed in a 
CAD/CAM environment. It is used for creating spatial representation of a part; planning and optimization of 
the tool paths and cutting parameters in creating CNC code; loading, initialization, and operating the CNC-
machine; etc. So, CAD/CAM technologies introduce essential benefits to machining such as higher 
productivity, reduced design time, more accurate designs, less time required for modifications, repeatability.  

Hence, the CNC-machines ensure a number of benefits for machining of high performance materials. 
However, for some aeronautic applications that are closely related to this research, they have rather limited 
workspace and are not applicable for machining of large dimensional parts. In this case, industrial robots are 
more attractive, so their suitability for the milling of high performance materials is considered below. 

Industrial robots. For the considered application area, robots could gain all functionalities of the 
CNC-machines and are reasonable alternative for them. Also, they provide larger workspace and more 
flexibility [Fassi 2000], [Larsson 2006], [Brogardh 2007]. Besides, emerging technologies allow robots to 
perform diverse manufacturing processes such as complex cutting and material removal, tapping and drilling, 
surface finishing and others. All these functions can be realized by the same robot, that makes it universal, 
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while CNC-machines can execute only one or a group of similar operations. In addition, robot-based 
machining cells are applicable for secondary operations and have a relatively large working envelope, which 
is extremely important for large components. Such machining cells are more flexible and allow us to produce 
different products at the same time, they can be also easily adopted to manufacturing of other products. They 
usually provide two alternative solutions to modify the tool path: (i) to change it in the CAD/CAM system, 
or (ii) to teach a robot in some key points. Robots are more intelligent and ensure more sophisticated motion 
control, and users can map their inaccuracies and compensate for them off-line using a dedicated model (the 
stiffness model for instance, as in this work) [Rocco 1997] . 

In machining applications, robots often use force and torque sensors that allow online estimation of the 
deflections in the tool locations with respect to the desired ones. The force and torque sensors are usually 
integrated into a robot's wrist, and the robot controller are able to compensate these deflections via relevant 
calculations. However, to achieve good quality of machining process and to eliminate robots errors caused 
by different factors, some additional research is required [Sulzer 2010]. This is the main issue that resists to 
robot applications in some areas.  

With respect to their architecture, all industrial robots can be classified into two groups. First group 
includes robots with strictly serial architecture, which are currently the most common industrial ones. The 
second group put together manipulators with strictly parallel architecture and cross-linkages [Merlet 2006], 
[Merlet 2008]. Typical examples of robots from both groups are presented in Figure 1.5. In order to indicate 
advantages of both architectures let us focus on their principal features. 

 

Figure 1.5 A serial Kuka robot (a) and an Adept parallel robots (b) 

Serial robots. This type of robots is based on serial kinematic chains composed of rather rigid links 
connected by actuated joints. The joints may be either rotational or translational. The main advantage of 
serial robots is large workspace with respect to their own volume and occupied floor space. But, since serial 
manipulators have open kinematic structure, all errors are accumulated and amplified from link to link. 
Besides, it is impossible (or rather difficult) to get high stiffness and high dynamic properties simultaneously. 
For instance, robots with high stiffness usually are heavy and cannot provide high speed. Moreover, their 
own weight induces undesirable significant stresses in actuated joints that reduces allowed payload. On the 
other hand, serial robots with small link mass have low stiffness and cannot provide high payload because of 
significant compliance errors. These issues essentially decrease efficiency and application areas of such 
manipulators. However, some limitations related to manufacturing errors can be withdrawn by advanced 
control. 

According to its kinematic architecture, serial manipulators can be classified into three main groups: 
(a) SCARA robots, (b) Articulated robots and (c) Cartesian/Gantry robots [www robotmatrix]. It is worth 
mentioning that sometimes the robot classification includes some other types of manipulators (cylindrical, 
spherical, etc.) but here they are included in articulated ones. 

The SCARA acronym stands for "Selective Compliant Assembly Robot", it is also often referred to as: 
"Selective Compliant Articulated Robot Arm". This type of robots is based on a 4-axis manipulator (Figure 
1.6a) [Das 2005]that ensures motion to any point within its workspace (X-Y-Z translation) and the end-
effector rotation around the vertical axis (theta-Z). For  this architecture, the vertical Z-motion is independent 
and is provided by a dedicated linear actuator, while three remaining rotational joints (with parallel axes) 
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ensure full range of translations and rotations in XY-plane. Because of this specific architecture (with three 
parallel rotational joints), SCARA is slightly compliant in the XY-plane but is rather rigid in the Z-direction 
(so called selective compliance). The selective compliant feature makes this robot highly suitable for many 
types of assembly operations. Due to low mass in moving parts, it provides very good dynamic properties. 
This promote SCARA to be ideal for pick-and-place, palletizing and de-palletizing, machine 
loading/unloading and packaging applications, which require fast, repeatable and articulate point-to-point 
movements.  

 

Figure 1.6 Typical architectures of serial robots 

The second group includes articulated robots (Figure 1.6b) [Matsuoka 1999], [Benamar 2010], which 
are also called "anthropomorphic arms". Their mechanical structure is based on rotational joints and the links 
are arranged in a chain. Usually the articulated robots have five or six controlled axes, while robots with 
seven and more actuated  joints also exist. This structure provides very good kinematic dexterity, so the 
robots have an ability to reach the target location over obstacles and ensure almost any position and 
orientation of the tool within the workspace. Essential advantage of the articulated robots is that they are 
very compact and provide the largest workspace relative to their size. However, because of complexity of 
direct/inverse kinematics, their control is not trivial: when driving an articulated robot in its natural 
coordinate system (joint space), it is difficult to obtain a straight-line-motion of the end-effector in Cartesian 
space. So, intensive computations are required to transform the Cartesian location into the actuated joint 
angles (and vice versa), but this problem is not already significant because of essential computing capacity of 
modern microprocessors. The capabilities of the articulated robots make them well suit for a wide variety of 
industrial application, including machining [Olabi 2010], [Abele 2007].  

The third group includes Cartesian robots (Figure 1.6c) [Dadfarnia 2004], which have almost the 
same kinematic architecture as conventional CNC-machines. The main differences are in the areas of control 
principle, programming language and mechanical design of the end-effector connector, which for the robots 
is rather universal. The mechanical structure of such robots is based on three translational actuated joints 
whose axes are mutually orthogonal. Such arrangement ensures very simple control when any motion in X-
Y-Z space is achieved by straightforward actuation of relevant joints. Cartesian robots have a rectangular 
workspace whose volume can be increased easily. Extremely large work envelope is ensured by Gantry 
robots (also belonging to the Cartesian family), where one of the horizontal translational axes is supported at 
both ends. Due to their mechanical structure, Cartesian robots provide high rigidity and good accuracy but 
their kinematic dexterity is rather limited; sometimes they cannot reach around objects. Besides, to satisfy 
the large workspace requirement, they need large volumes to operate and occupy essential floor space. 
Because of its rigidity, such robots are very attractive for machining applications, but only if the tool 
orientation may remain the same during processing.  

Parallel robots. This type of robots, which are also often referred to as parallel kinematic machines 
(PKM), is a closed-loop mechanism whose end-effector is linked to the base by several independent 
kinematic chains [Merlet 2006]. The kinematic chains are composed of several links that are connected to 
each other by both passive joints and actuated joints (rotational or translational). Such kinematics claim to 
offer several essential advantages, like high structural rigidity, high dynamic capacities and high accuracy 
[Tlusty 1999], [Wenger 1999, 2001]. Another important advantage of parallel robots is better accuracy, 
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because here the position and orientation errors of separate kinematic chains are averaged by the end-
platform (instead of straightforward accumulation, as in serial robots). Besides, using special arrangement of 
kinematic chains, it is possible to ensure high stiffness and high dynamic properties simultaneously. These 
capabilities make the parallel robots well suitable for high-speed machining and they are often used in the 
manufacturing cells (Figure 1.7), for instance in HexaM 5-axis milling machine, Hexapod OKUMA 
machine, the VERNE machine, Hexapod-Machine Mikromat 6X, Urane SX, and others [Pierrot 1999], 
[Goto 1985], [Kanaan 2009], [Neugebauer 1998], [Renault 1999], [Son 2009]. 

 

Figure 1.7 Examples of parallel robots integrated in the machining cells 

However, parallel robots have very complex workspace and highly non-linear relation between natural 
coordinates (actuated joints) and Cartesian ones. Consequently, their performances (maximum speeds, 
accuracy and rigidity) essentially differ from point to point and also depend on the moving directions. Other 
disadvantages of parallel manipulators are their large footprint-to-workspace ratio (except the Tricept robot 
which requires less space) and small range of motion because of parallel configuration. These are the main 
obstacles for the machine application of parallel robots [Kim 1997], [Wenger 1999], [Rehsteiner 1999].  

At present, there exists a large variety of parallel manipulators, several examples are presented in 
Figure 1.8. Depending on the architecture, they may be divided into two groups that differ by the type of 
connection between the base-platform and the serial chains [Chablat 2003].  

The first group contains manipulators with fixed foot points and variable length struts. Most robots of 
this group implement the Stewart-Gough architecture, have 6 degrees of freedom and are called Hexapods 
(Figure 1.9) [Merlet 2006]. They provide high precision and accuracy, good stiffness and high load/weight 
ratio. Due to these essential advantages, Hexapods are often used in flight simulators, precision machining, 
surgical robots, and other areas. By variation of the link lengths, Hexapods may satisfy both small and large 
workspace, but increasing of the link length has a direct effects on the accuracy. The main technical problem 
of Hexapod is high friction in the ball joints. Typical examples of parallel manipulators belonging to the first 
group are presented in (Figure 1.8 a-g), they include VARIAX, HEXA, TRICEPT, TRIPOD, Delta and 
others [Geldart 2003], [Pierrot 1991], [Pierrot 2009], [Neumann 1988], [Zhang 2005], [Clavel 1988], 
[Tsai 2000]. 
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Figure 1.8 Typical architectures of parallel robots 
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Figure 1.9 Examples of Hexapod parallel kinematic machines 

The second group includes manipulators with foot points gliding on fixed linear joints. Robots of this 
group differ by the number of actuated translational axes and their location with respect to each other, as well 
as by the type of links connecting the base and moving platforms. Typically, they have 5 or 6 degrees of 
freedom (HEXAGLIDE, HexaM) but there are also 3 degrees of freedom translational manipulators of this 
family (Orthoglide) that employ parallelogram-based links similar to Delta robots [Wiegand 1996], 
[Toyama 1998]. [Chablat 2003]. The robots of the second group (see Figure 1.8 h-l) are attractive for 
machining application because of lower moving mass compared to the hexapods and tripods. However, to 
ensure large workspace, such robots require large volumes to operate and occupy essential floor space. 

Hence, parallel robots provide essential benefits compared to the serial ones, which promote them to 
high speed and high precision machining applications considered in this work. For this reason, they have 
already been employed in commercial machining centers (see Figure 1.7) that progressively replace 
conventional CNC machines based on serial Cartesian architecture. A short summary of a dedicated 
comparison study is given below. 

Résumé. Integrated results of the above analysis are summarized in Table 1.4. They show that the 
CNC-machines are quite suitable for majority of machining operations provided that a large workspace and 
high dynamics are not required. However, for high speed machining of relatively large parts that are widely 
used in the aerospace and shipbuilding industries, conventional CNC-machines can be hardly used. In 
contrast, robotic manipulators are able to execute such tasks and simultaneously ensure higher flexibility of 
automated machining cells. The only problem with robots application is their rather low stiffness that leads 
to non-negligible position errors under the forces/torques of the technological process. Thus, the next section 
focuses on the robot accuracy issue. 

 

Table 1.4 Comparison of CNC and robotic-based machining 

Robotic-based machining Performance 
factor 

Conventional XYZ 
CNC-machines Serial robots Parallel robots 

Workspace 
Limited 

(by foot print) 
Large  

(limited by link lengths) 
Limited  

(by parallel architecture) 

Flexibility 
Limited number of 

operations 
Any operation in the workspace 

Dynamics Low Limited High  

Accuracy High  Depends on the stiffness, link weights and payload 

Stiffness High 
Moderate, compliance is 

accumulated along the chain  
High, separate chain  

stiffness is aggregated  
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1.2 ROBOTS ERRORS IN MACHINING APPLICATION  

In machining applications, robot accuracy depends on a numbers of factors. The most essential of 
them are related to manufacturing tolerances leading to geometrical parameters deviation with respect to 
their nominal values (geometrical errors) as well as to the end-effector deflections caused by the cutting 
forces and torques (compliance errors). This section gives detailed analysis of different error sources and 
their compensation techniques.  

1.2.1 Classification of robots errors 

In literature [Kevin 2000], precision of the robotic manipulator is usually described by three different 
performance measures: the resolution, repeatability and accuracy. The first of them, resolution, determines 
the smallest incremental move that the robot can produce. Repeatability is a measure of the robot's ability to 
move back to the same position and orientation. And finally, robot accuracy (that is also referred to as 
absolute accuracy) is defined as its ability to precisely move to a desired location in Cartesian space. For 
machining applications, the dynamic accuracy that describes the robot ability to follow a desired trajectory is 
also important. However, in the frame of this work, the main attention will be paid to the absolute accuracy 
that can be essentially improved using the kinetostatic models developed in the following chapters. 

Following [Khalil 2002] and [Paziani 2009], the main sources of robot positioning errors can be 
divided in two principal groups: geometrical and non-geometrical ones. A more detailed classification is 
presented in Figure 1.10. It is worth mentioning that these sources may be both independent and correlated 
but in practice they are usually treated sequentially, assuming that they are statistically independent.  

 

Figure 1.10 Sources of errors in robotic manipulator 

Usually, in applications where the external forces/torques applied to the end-effector are relatively 
small, the prime source of manipulator inaccuracy are the geometrical errors. As reported by the number of 
authors [Elatta 2004], [Rolland 2003], they are responsible for about 90% of total position error. These errors 
are associated with differences between nominal and actual values of the link/joint parameters. Typical 
examples of them are the differences between the nominal and the actual lengths of links, differences 
between zero values of actuator coordinates in real robot and mathematical model embedded in comptroller 
(joint offsets); they can also be induced by non-perfect assembling of different elements and arise in shifting 
and/or rotation of the frames associated with different components, which normally are assumed to be 
matched and aligned. It is clear that the geometrical errors do not depend on the manipulator configuration, 
while their effect on the position accuracy depends on last one. At present, there exists a number of 
sophisticated calibration techniques that are able to identify differences between actual and nominal 
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geometrical parameters [Veitchegger 1986], [Roth 1987], [Bennett 1991], [Mirman 1992], [Khalil 2004], 
[Daney 2006], [Dolinsky 2007], [Hollerbach 2008]. Consequently, this type of errors can be efficiently 
compensated for either by adjusting the controller input (i.e. the target point coordinates) or by 
straightforward modification of geometrical model parameters used in the robot controller.  

In some other cases, the geometrical errors may be dominated by non-geometrical ones that are caused 
by influence of a number of factors [Gong 2000], [Cui 2006], [Bogdan 2009]. For instance, the 
forces/torques associated with the tool-workpiece interaction in the technological process may cause 
essential deformations of the manipulator components (compliance errors) [Meggiolaro 2005]. Also, the 
environmental conditions (temperature, atmospheric pressure and others) may affect physical properties of 
manipulator components and lead to undesirable changes in link dimensions. It is worth mentioning that, in 
the regular service conditions, the compliance errors are the most significant ones. Their influence is 
particularly important for heavy robots and for manipulators with low stiffness. For example, the cutting 
forces/torques from the technological process may induce significant deformations, which are not negligible 
in the precise machining. In this case, influence of the compliance errors on the robot position accuracy can 
be even higher than the geometrical ones. This issue is very important for the designers of parallel 
manipulators, who often are looking for a compromise between the manipulator stiffness and its dynamic 
capabilities [Cheboxarov 2000]. 

Generally, the compliance errors depend on two main factors: (i) the stiffness of the robotic 
manipulator and (ii) loading applied to it. In additional to conventional external loading (cutting forces and 
torques), in some cases it is necessary to take into account influence of the link weights, the effect of the  
gravity compensation mechanisms, as well as preloadings in the joints introduced in order to eliminate 
backlash. Similar to the geometrical ones, the compliance errors highly depend on the manipulator 
configuration and essentially differ throughout the workspace. However, relevant modeling and 
compensation techniques are still under development. There are only some results which will be presented in 
the following sub-section [Ramesh 2000], [Dow 2004], [Bera 2011]. 

1.2.2 Compensation of robot errors 

To increase robot accuracy, the above described errors should be compensated. The straightforward 
approach in robot error compensation is based on the absolute position feedback, which is provided by 
additional sensors that are able to measure the position and orientation of the end-effector with respect to the 
robot base coordinate frame. Its essential advantage is an ability to compensate all types of the robot errors 
(caused by various factors), independent of their physical nature. However, in practice, industrial robots are 
equipped with joint encoders only, so the end-effector absolute location is estimated via the direct kinematic 
transformation. The absolute measurement systems are usually considered as too expensive and non-suitable 
for industrial application, they are mostly used for robot calibration or laboratory experiments 
[Watanabe 2006]. Typically, such measurement equipment is based on stereo vision systems or laser 
scanners [Daney 2006] that can hardly provide desired data in common industrial environment with 
numerous obstacles in the neighborhood of the end-effector. Hence, for the considered application area that 
deals with robot-based machining of high performance materials, a dedicated error compensation technique 
should take into account real-life industrial constraints. In particular, it should utilize the feedback from the 
joint encoders only and, perhaps, from the force/torque sensors that may be integrated in the end-effector. 

Under such constraints, the problem of the robot error compensation can be solved in two ways that 
differ in degree of modification of the robot control software:  

(a) by modification of the manipulator model (Figure 1.11a) which better suits the real manipulator 
and is used by the robot controller (in a simple case, it can be limited by tuning of the nominal 
model, but may also involve essential model enhancement by introducing additional parameters, 
if it is allowed by a robot manufacturer);  

(b) by modification of the robot control program (Figure 1.11b) that defines the prescribed 
trajectory in Cartesian space (here, using relevant error model, the input trajectory is generated 
in such way that the output trajectory coincides with the desired one).  
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Figure 1.11 Robot error compensation methods 

It is clear that the first approach can be implemented in on-line mode, while the second one requires 
preliminary off-line computations. It is worth mentioning that the stiffness models being developed in this 
work are suitable for both of these approaches. But in practice it is rather unrealistic to include the stiffness 
model in a commercial industrial controller where all transformations between the joint and Cartesian 
coordinates are based on the manipulator geometrical model. In contrast, the off-line error compensation, 
based on the second approach, is attractive for industrial applications. 

For the geometrical errors, relevant compensation techniques are already well developed. 
Comprehensive review of related works is given in [Bernhardt 1994], [Elatta 2004], [Hollerbach 2008]. 
Here, if the main error sources are concentrated in the link length or in the joint offsets, the compensation is 
reduced to straightforward modification of the manipulator parameters in the robot controller. Otherwise, if 
there are any geometrical error sources that are not presented in the nominal inverse/direct kinematics, 
relevant modification of the controller input is required. In this case, it is possible to use (in off-line mode) 
either extended geometrical model with additional parameters or simply a non-linear function that describes 
the error distribution throughout the workspace. Examples of such a function are given in [Zhong 1996], 
[Lu 1997] where the neural network technique is employed. In the frame of this work, it is assumed that the 
geometrical errors are less essential compared to the non-geometrical ones caused by the force/torque 
interaction between the machining tool and workpiece. So, the main attention will be paid to the compliance 
errors and their compensation techniques. 
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For the compliance errors, the compensation technique must rely on two components. The first of 
them describes distribution of the stiffness properties throughout the workspace and is defined by the 
stiffness matrix as a function of the joint coordinates or the Cartesian location. The second component 
describes the forces/torques acting on the end-effector while the manipulator is performing its manufacturing 
task (it will also be referred to further as a manipulator loading). In this work, it is assumed that the second 
component is given and can be obtained either from the dedicated technological process model or by direct 
measurements using the force/torque sensor integrated into the end-effector. However it is necessary to take 
into account that the force sensors introduce additional undesirable compliance which has direct affect on the 
position accuracy. More detailed information concerning the force/torque computing and measurement for 
high speed milling of high performance materials is given in [Budak 2006], [Grote 2009], [Garant 2010]. 

The stiffness matrix required for the compliance errors compensation highly depends on the robot 
configuration and essentially varies throughout the workspace. Hypothetically, it can be also approximated 
by a neural network, similar to the geometrical error compensation mentioned above. However, this 
approach is not practically attractive, so it is more convenient to compute the stiffness matrix using specially 
developed expressions and algorithms that are described in more details in Section 1.3. This work also 
contributes to the stiffness matrix computation algorithms (for some particular cases, when external loading 
is essential and/or manipulator includes numerous passive joints).  

From general point of view, full-scale compensation of the compliance errors requires essential 
revision of the manipulator model embedded in the robot controller. In fact, instead of a conventional 
geometrical model that provides inverse/direct coordinate transformations from the joint to Cartesian spaces 
and vice versa, here it is necessary to employ the so-called kinetostatic model [Su 2006]. The later defines 
the mapping between the joint and Cartesian spaces taking into account deflections caused by external 
forces/torques applied to the manipulator end-effector. It is essentially more complicated than the 
geometrical model and requires rather intensive computations that are discussed in Chapter 4.  

 

Figure 1.12 Method of symmetrical trajectory for compensation of the compliance errors  

If the compliance errors are relatively small, composition of conventional geometrical model and the 
stiffness matrix give rather accurate approximation of the modified mapping from the joint to Cartesian 
space. In this case, for the first compensation scheme (see Figure 1.11a) the kinetostatic model can be easily 
implemented online if there is access to the control software modification. Otherwise, the second scheme 
(see Figure 1.11b) can be easily applied. However with regard to the robot-based machining, there is a very 
elegant solution that does not require force/torque measurements or computations [Seo 1998], 
[Depince 2006]. Its basic idea is presented in Figure 1.12, where at the first stage it is performed, the 
machining experiment gives a trajectory corrupted by the compliance errors. Then, the difference between 
the desired and the obtained trajectories is evaluated via appropriate measurements, which give the 
compliance errors along the path. Using this data and assuming that the stiffness model is linear, the target 
trajectory for the robot controller is modified by applying the "mirror" technique (where corresponding 
points of the corrupted and target trajectories are symmetrical with respect to the relevant points of the 
desired trajectory). An evident advantage of this technique is its applicability to the compensation of all types 
of the robot errors, including geometrical and compliance ones. However, this approach is only suitable for 
the large-scale production where the manufacturing task and the workpiece location remains the same. There 
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are also some other publications [Drouet 1998], [Meggiolaro 1998], [Meggiolaro 2004], where the problems 
of geometrical and compliance errors compensation are considered simultaneously but these techniques 
cannot be applied to robot-based machining directly.  

Summarizing this section, it should be noted that, to be applied to the considered application area, the 
existing compliance errors compensation techniques should be essentially revised to take into account 
essential forces and torques associated with high speed machining of high performance materials. The next 
section presents the state of the art in the manipulator stiffness modeling, which is a fundamental issue for 
the compliance errors compensation. 

1.3 STIFFNESS MODELING OF ROBOTIC MANIPULATOR 

To ensure efficient compensation of the compliance errors in the robot-based machining, an 
appropriate stiffness model which is able to take into account both changes in manipulator configuration and 
influence of the external forces/torques is required. This section presents an analytical review of existing 
approaches in the stiffness modeling of robotic manipulators both serial and parallel architectures, with 
special attention to the virtual joint method providing a reasonable compromise between the model accuracy 
and computational efficiency. In addition, a special emphasis is given to the stiffness modeling in the loaded 
mode, which is essential for the considered application area.  

1.3.1 Problem of stiffness modeling and existing approaches 

Common approaches. Similar to general structural mechanics, the robot stiffness characterizes the 
manipulator resistance to the deformations caused by an external force or torque applied to the end-effector 
[Duffy 1996], [Angeles 2007]. Numerically, this property is usually defined through the stiffness matrix K , 
which is incorporated in a linear relation between the translational/rotational displacement and static 
forces/torques causing this transition (assuming that all of them are small enough). The inverse of K  is 
usually called the compliance matrix and is denoted as k . As it follows from related works, for conservative 
systems K  is a 6 6  semi-definite non-negative symmetrical matrix but its structure may be non-diagonal to 
represent the coupling between the translation and rotation [Kövecses 2007]. However, in general, for non-
conservative systems and/or some special parameterizations of end-effector location, in the loaded mode the 
stiffness matrix may be asymmetrical1. 

In stiffness modeling of robotic manipulator, because of some specificity, there are some peculiarities 
in terminology. In particular, the matrix K  is usually referred to as the “Cartesian Stiffness Matrix” CK  and 
it is distinguished from the “Joint-Space Stiffness Matrix” θK  that describes the relationship between the 
static forces/torques and corresponding deflections in the joints [Ciblak 1999]. Both of these stiffness 
matrices can be mapped to each other using the Conservative Congruency Transformation [Kao 1999], 
[Chen 1999], [Huang 2002], which is trivial if the external (or internal) loading is negligible. In this case, the 
transformation is entirely defined by the corresponding Jacobian matrix. However, if the loading is essential, 
it is described by a more complicated equation that includes both the Jacobian as well as the Jacobian 
derivatives and the loading vector [Yi 1993], [Chen 2002]. Other specific cases, where the above 
transformation is non-trivial (non-linear or even singular), are related to manipulators with passive joints and 
over-constrained parallel architectures [Pashkevich 2010]. Since this work contributes to both problems, 
these issues will be considered in more detail below. 

In the most general sense, existing approaches to the manipulator stiffness modeling may be roughly 
divided into three main groups: (i) the Finite Elements Analysis (FEA), (ii) the Matrix Structural Analysis 
(MSA), and (iii) the Virtual Joint Modeling method (VJM). Their advantages and disadvantages are briefly 
presented below, with special emphasis to the computational complexity and accuracy.  

Finite Element Analysis method (FEA). Its basic idea is to decompose the physical model of the 
mechanical structure on a number of rather small (finite) elements and to introduce compliant relations 
between adjacent nods described by relevant stiffness matrices. These finite elements have a standard shape 

                                                 
1 In robotic literature, there is rather intensive discussions concerning the symmetry of the stiffness matrix in the loaded mode [Ciblak 1994], 
[Zafran 1996], [Pigoski 1998], [Howard 1998] [Ciblak 1998], [Chen 1999], [Chen 2000a,b], [Zafran 2002]. But in this work, due to the adopted 
assumptions, the stiffness matrix is certainly symmetrical. 
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(pyramids, cubes, etc.) for which the stiffness matrix can be computed analytically. Using this discretization, 
the static equilibrium equations for each node are derived, and they are aggregated in a global matrix 
expression defining relations between the applied force/torque and node deflections. Then, the obtained 
matrix of rather large size is inverted and is used to obtain the desired stiffness matrix by simple extraction of 
proper elements. In the modern CAD-environment, the above process is highly automated and is integrated 
with 3D-modeling of mechanical structures and mechanisms. In particular, the decomposition into a set of 
finite elements (so called meshing) usually needs definition of the discretization step and the mesh type only. 
The latter can be either linear or parabolic, which correspond to pyramids with 4 and 10 nodes respectively 
(with either 6 or 12 compliance relations). Then (for this finite element model), the CAD-based tools 
provides both numerical data and convenient visualization defining the deflections vectors for each nodes 
and potential dangerous areas with high stresses.  

An evident advantage of the FEA-modeling is its high accuracy that is limited by the discretization 
step only. For robotic application it is very attractive, since the links/joints are modeled with its true 
dimension and shape [Corradini 2004] [Bouzgarrou 2004], [Akin 2005]. However, while increasing of the 
number of finite elements, the problem of limited computer memory and the difficulty of the high-dimension 
matrix inversion become more and more critical. Besides the high computational efforts, this matrix 
inversion generates numerous accumulative round-off errors, which reduce accuracy. In robotics, this causes 
rather high computational expenses for the repeated re-meshing and re-computing, so in this area the FEA 
method is usually applied at the final design stage only [El-Khasawneh 1999], [Long 2003], [Corradini 
2004], [Rizk 2006]. Nevertheless, in this work this method is applied for the links stiffness matrix 
identification that is further used in the frame of the VJM technique. Such combination allows us to use the 
advantages of the FEA while avoiding intensive computations for different manipulator configurations.  

Matrix Structural Analysis method (MSA). This method incorporates the main ideas of the FEA but 
operates with rather large compliant elements such as beams, arcs, cables, etc. [Martin 1996]. This obviously 
leads to the reduction of the computational expenses and, in some cases, allows us to obtain an analytical 
stiffness matrix for the specific task. Similar to the FEA-modeling the MSA method gives forces/torques and 
displacements for each node, but here it has a clear physical interpretation (manipulator active or passive 
joint), which can be useful for some tasks [Nagai 2008]. For parallel robots, this method has been developed 
in works [Deblaise 2006a], [Deblaise 2006b], where a general technique for stiffness modeling of the 
manipulator with rigid/flexible links and passive joints was proposed. It has been illustrated by stiffness 
analysis of parallel manipulator of Delta architecture where the links were approximated by regular beams. 
The latter causes some doubts in the model accuracy compared to the combination of the FEA and VJM 
techniques that are being developed here. Besides, this result was obtained under the assumption that the 
external forces/torques are relatively small (i.e. for the unloaded mode), and it is unlikely that such approach 
can be enhanced to take into account particularities of manipulator behavior in loaded mode. In addition, 
here there exists a problem of the stiffness matrix computation for the manipulator singular configurations. 

From a computational point of view, the MSA method is less complicated than the FEA-based one. In 
spite of the fact that the MSA still involves matrix operations of rather high-dimension, it gives a reasonable 
trade-off between the accuracy and computational time, provided that links approximations by the beam 
elements are realistic. It should be also noted that, in their general formulations, the FEA and MSA methods 
are closed: both of them interpret physical system as a set of nodes with mutual flexible connections. The 
main difference is that the MSA operates with true physical objects (like beams, arcs and others), while the 
FEA decomposes them into small finite elements. So, the MSA can be treated as a special case of the FEA 
that has already found its application in robotics.  

From the other side, if each link is applied to the FEA-based stiffness matrix identification technique 
developed below (see Chapter 2), an advanced combination of the MSA and FEA that is suitable for the 
stiffness modeling of arbitrary parallel manipulators (with numerous internal loops) can be obtained. 
However, it is out of the scope of this work because of the above mentioned critical limitation, which makes 
the method applicable to the case of the unloaded mode only.  

Virtual Joint Modeling method (VJM). The core of this method is an extension of the conventional 
rigid-body model of the robotic manipulator, where the links are treated as rigid but the joints are assumed to 
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be compliant (in order to accumulate all types of existing flexibilities in the joints only). Geometrically, such 
approximation is equivalent to adding to the joints some auxiliary virtual joints (with embedded virtual 
springs). It is obvious that such lumped presentation of the manipulator stiffness (that in reality is distributed) 
essentially simplifies the model. So, at present it is the most popular stiffness analysis method in robotics. 
This method was first introduced by Salisbury [Salisbury 1980] and Gosselin [Gosselin 1990], who assumed 
that the main flexibility sources were concentrated in the actuator joints. The derived expression defining 
relation between the joint and Cartesian stiffness matrices (Conservative Congruency Transformation) 
became a basis for the manipulator stiffness analysis in many research works. Later, these results have been 
further developed in order to take into account some specific geometrical constrains [Yi 1993], 
[Quennouelle 2009a] and external loading [Alici 2005], [Chen 2002]. Nevertheless, external loading is 
assumed small enough to detect any non-linear effects discovered in this work. Due to its computational 
simplicity, the VJM method has also been successfully applied to the analytical stiffness analysis of a 
translational parallel manipulator [Majou 2007].  

A key issue of this method is how to define the virtual spring parameters. At the beginning, it was 
assumed that each actuated joint is presented by a single one-dimensional virtual spring [Pigoski 1998], 
[Zhang 2000], [Gosselin 2002]. Further, to take into account the links flexibilities, the number of virtual 
joints was increased and in each actual actuated or passive joint several translational and rotational virtual 
springs were included [Majou 2004]. The latest developments in this area operate with 6-dimensinal virtual 
springs identified using the FEA-based method [Pashkevich 2010]. This leads to essential increasing of the 
VJM method accuracy that becomes comparable with the accuracy of the FEA-based techniques, but with 
much lower computational expenses.  

The only essential disadvantage of the VJM method is related to some difficulty in stiffness modeling 
of parallel manipulators. While for strictly parallel architectures, where there are only serial chains between 
the base and moving platforms, for architectures with internal loops (or with parallelogram-based links) the 
VJM-base stiffness analysis is rather complicated. Nevertheless, taking into account all advantages and 
disadvantages of the FEA, the MSA and the VJM techniques, this work give preference to the VJM method 
that is presented in more details in the next sub-section. 

Computational complexity. The main benchmark that allows us to evaluate the computational 
complexity of the above described methods is related to the computational efforts required for the matrix 
inversions inside of the corresponding algorithms. Generally, for the matrix inversion of size n n , it can be 
defined as 3( )O n [Lin 2009]. 

For the FEA method n  depends on the discretization step and the type of finite elements used. As it 
follows from a relevant study, in the case of the parabolic mesh (10 nodes and 12 connections per a finite 
element) the value of n  can be approximately computed as 30 Ln n , where Ln  is the number of 
manipulator links,   is the number of finite elements per link (it should be about 103 to ensure desired 
precision). For the MSA method, the upper bound of the above matrix size 12 dn n  can be computed via the 
node number dn . Finally, for the VJM method, the size of the matrix to be inverted is 6 qn n  , where qn  
is total number of the degrees of freedom in the passive joints.  

Using these formulas, it was estimated the stiffness model complexity for three types of manipulators 
(Stewart platform, Delta, Orthoglide). Relevant results are presented in Table 1.5. As it follows from them, 
the VJM method essentially overcomes FEA and MSA, so it will be used in this work as a preferable one. It 
is presented in more details below.  

Table 1.5 Computational complexity of existing stiffness modeling methods 

Manipulator architecture 
Stiffness modeling method 

Stewart Platform Delta Orthoglide  

FEA 1610  1710  1710  

MSA 610  810  710  

VJM 310  310  310  
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1.3.2 Virtual Joint Method in stiffness modeling of robots  

Since the VJM-based method is proved to be more computationally efficient while providing 
acceptable accuracy, let us consider it in more details. Taking into account some specificities of the 
considered application area, the main attention will be paid to the VJM applicability to the stiffness modeling 
of parallel manipulators (both under-constrained and over-constrained), considering the impact of the passive 
joint, evaluating the influence of the external and internal forces/torques as well as accuracy improvement of 
the stiffness model. 

VJM method background. In the frame of this method, all types of compliance existing in a real 
manipulator (both distributed and lumped) are replaced by localized virtual springs located in its joints. 
Then, for this mechanism consisting of rigid links and compliance joints, the static equilibrium equations is 
derived and linearized in order to obtain Cartesian stiffness matrix, which in a general case depends on the 
manipulator posture (configuration). Usually it is assumed that the elastic deflections in virtual springs are 
relatively small and linearization is performed in the neighborhood of the equilibrium configuration 
corresponding to zero forces and torques (unloaded mode). 

This technique originates from the work of Salisbury [Salisbury 1980] who derived a closed-form 
expression for the Cartesian stiffness matrix of a serial manipulator assuming that the mechanical elasticity is 
concentrated in the actuated joints. The basic equations have been written as it follows 

 T
θ θ θδ δ ; ; δ ;     t J θ τ J F τ K θ  (1.5) 

where δt  denotes the end-effector displacement in Cartesian space (both positional and orientational), F  is 
the vector of the external loading applied to the end-effector (that includes both the force and the torque 
components), δθ  is the deflection in the virtual joint coordinates θ  caused by this loading, τ  is  the vector 
of reactions in the elastic joints, θK  is the corresponding joint stiffness matrix, θJ  is the Jacobian matrix 
computed with respect to the elastic joints. Here, the first equation is derived from the manipulator 
geometrical model, the second one describes the static equilibrium condition (assuming that the load is not 
essential), and the third equation presents the linear elasticity relation (Hooke's law).  

After relevant transformations of (1.5), the desired linear relation between the external loading F  and 
the end-effector displacement δt  is presented as 

  1 T
θ θ θδ    t J K J F , (1.6) 

which gives Cartesian stiffness matrix 

 T 1
C θ θ θ· · K J K J  (1.7) 

In literature [Li 2001], [Chen 2000a,b], the latter may be also presented in a slightly different form 

 T
θ θ C θ· ·K J K J  (1.8) 

which sometimes is referred to as Conservative Congruency Transformation (CCT), to emphasize that it 
describes mapping from the joint stiffness to Cartesian one, and vice versa.  

In further works, similar equations were obtained for parallel manipulators assuming that they are not 
over-constrained and the elasticity is concentrated in the actuator joints while the passive joints are perfect 
[Gosselin 1990]. Other contributions to this area include [Ciblak 1994, 1999], [Ciblak 1998], [Pigoski 1998], 
[Zhang 2004], [Xi 2004], [Zhang 2002], [Company 2005], [Pashkevich 2010], where the VJM method was 
partially extended. It is also worth mentioning the works where the VJM technique was applied to particular 
manipulators, in particular to the CaPAMan, Orthoglide and H4 robots, Stewart–Gough platforms, etc. 
[Corradini 2002], [Company 2002], [Arumugan 2004], [Abele 2007], [Majou 2007], [Vertechy 2007], 
[Tyapin 2009]. 

VJM model parameters. In the first works, it was explicitly assumed that the main sources of 
elasticity are concentrated in actuated joints. Correspondingly, the links were assumed to be rigid and the 
VJM model included one-dimensional springs only. In other recent works, compliance of the links has been 
taken into account by introducing additional virtual joints describing their longitudinal elasticity 
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[Gosselin 2002] or stiffness properties in several directions [Mayou 2007]. Recent development in this area 
use 6-dimensional virtual joints to describe elasticity of each link [Li 2008].  

At the beginning, the stiffness parameters of the virtual joints describing the link elasticity (and 
incorporated in the matrix θK ) were evaluated rather roughly, using a simplified representation of the link 
shape by regular beams. Besides, it was assumed that all linear and angular deflections (compression/tension, 
bending, torsion) are decoupled and are presented by independent one-dimensional springs that produce a 
diagonal stiffness matrix of size 66 for each link. Afterwards, this elasticity model was enhanced by using 
complete 66 non-diagonal stiffness matrix of the cantilever beam [Li 2008]. This allowed taking into 
account all types of the translational/rotational compliance and relevant coupling between different 
deflections. Other enhancements include the link approximation by several beams, but it gives rather modest 
improvement in accuracy.  

Further advance in this direction (applicable to the links of complicated shape) led to the FEA-based 
identification technique that involves virtual loading experiments in CAD environment and stiffness matrix 
estimation using dedicated numerical routines [Pashkevich 2010]. The latter essentially increased accuracy 
of the VJM-modeling while preserving its high computational efficiency. It is worth mentioning that usual 
high computational expenses of the FEA is not a critical issue here, because it is applied only once for each 
link (in contrast to the straightforward the FEA-modeling for the entire manipulator, which requires complete 
re-computing for each manipulator posture). As a result, this approach allowed the authors to integrate 
accuracy of the FEA-modeling into the VJM-modeling technique that provides high computational 
efficiency. General methodology of this hybrid approach  is presented in Figure 1.13.  

 

Figure 1.13 Integration of VJM modeling approach with FEA-based identification technique 
of the stiffness model parameters  

However, in spite of good results obtained for some case studies, there are still a number of open 
questions in the FEA-based identification technique. They include optimal setting of the virtual experiment 
(i.e. definition of the mesh parameters, the joint contact surfaces to apply forces, etc.) and enhancement of 
numerical algorithms used for computation of the stiffness matrix elements (increasing robustness with 
respect to FEA-modeling errors, distinguishing zero elements from small ones, etc.). These issues have never 
been given proper attention in previous works and will be in the focus of Chapter 2. 

VJM model for manipulators with passive joints. Another important issue is related to taking into 
account influence of the passive joints, which are widely used in parallel manipulators. In the simplest case, 
when the geometrical constraints imposed by the manipulator assembly are not redundant, the passive joint 
coordinates may be just eliminated from the kinematic model, allowing us direct application of the Salisbury 
formula. However, in the case of over-constrained or under-constrained manipulators, the elimination 
technique cannot be used directly.  

For serial kinematic chains with passive joints, the problem has been solved for the general case 
[Pashkevich 2008]. In particular, it was proposed an algorithmic solution that extends the Salisbury formula 
and is able to produce the rank-deficient stiffness matrices describing “zero-resistance” of the end-effector to 
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certain types of displacements, which do not require deflections in the virtual springs (due to presence of 
passive joints and/or kinematic singularity of the examined posture). The relevant technique involves 
inversion of dedicated square matrix of size θ θ( 6) ( 6)n n   , which is composed of the links stiffness 
matrices, and kinematic Jacobians of both virtual springs and passive joints (here θn  is the number of passive 
joints). Then, the desired Cartesian stiffness matrix is obtained by simple extraction of an appropriate 6 6  
sub-matrix from the computed inverse. Corresponding expression for stiffness matrix computation can be 
presented as 

 

11 T
θ θ θ qC

T
q

          

J K J JK
J 0

 (1.9) 

where θJ  is Jacobian related to the virtual springs ( θ6 n ), qJ  is Jacobian related to the passive joints 
( q6 n ). The main advantage of this method is its computational simplicity, since the number of the virtual 
springs do not influence on the size of the matrix to be inverted. Besides, the method does not require manual 
elimination of the redundant spring corresponding to the passive joints, since this operation is inherently 
included in the numerical algorithm. 

However, for parallel manipulators with passive joints, solutions were obtained for less general cases. 
They include “pure” parallel architectures where the base and the end platform are connected by strictly 
serial kinematic chains. Here, the total stiffness matrix can be presented as the sum of partial matrices 
corresponding to separate chains (computed using the above described technique) 
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so the passive joints are taken into account easily. Besides, in this case the over-constraining of the 
mechanism does not create additional difficulties. For instance, for the over-constrained manipulator of 
Orthoglide family [Chablat 2003], each of the parallel chains yields the stiffness matrix of rank 4 while their 
aggregation gives the matrix of full rank 6. But if there exists a cross-linking between the parallel chains 
(like in kinematic parallelograms, for instance), this method can not be applied directly. For this case, some 
interesting results are presented in [Quennouelle 2008b, 2008c, 2009a] where the geometrical constraints 
were treated in a general way but detailed computational techniques were not developed. 

VJM modeling of parallel manipulators. In spite of the fact that the VJM technique has been 
originally developed for serial manipulators, it can be efficiently applied to parallel robots. The basic idea 
here is to obtain first the stiffness models of each kinematic chain separately, and after, to integrate them in a 
united model corresponding to the parallel manipulator. This idea was partially implemented in [Xi 2004], 
[Pashkevich 2010], where the manipulator structure was assumed to be strictly parallel (i.e. without internal 
loops) and the kinematic chains where assembled in the same end-point.  

Under such assumptions, the stiffness matrix of the parallel manipulator can be computed via 
straightforward summation of the chain stiffness matrices 

 ( )
C C

1

n
i

i

K K  (1.11) 

where the index i defines the kinematic chains and n is the total number of chains. However, in more general 
(and practically important) cases where the kinematic chains are connected to different points of the end-
platform, this formula cannot be applied directly. Besides, for parallel manipulators with parallelogram-
based links, some essential modifications are required. 

Other limitation of the existing results devoted to the parallel manipulators is related to the assumption 
that the assembling does not produce any internal stresses. But in practice, numerous errors are accumulated 
in serial chains [Rizk 2007] and they cause non-negligible internal forces in manipulator joints (even if the 
external force applied to the end-effector is equal to zero). The internal forces may essentially change the 
manipulator behavior (modify the stiffness matrix, change the end-effector location, etc.) and should be 
obviously taken into account in the stiffness model. However, existing works ignore this issue. Another 
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research issue is associated with stiffness modeling of parallel manipulators under loading, which has not 
received proper attention yet.  

1.3.3 Stiffness modeling under external and internal loadings 

Manipulator stiffness modeling in the loaded mode is a relatively new research area, which is worth to 
be considered separately. This subsection presents analysis of related works and defines some important 
research problems that will be in the focus of this work. Some of them are based on the analogy that can be 
established between robotics and structural mechanics (it concerns buckling phenomena, for instance).  

Types of loadings. Manipulator loading may be of different nature. For the stiffness modeling, it is 
reasonable to distinguish two main types of loading, external and internal ones. The external loading is 
caused mainly by an interaction between the robot end-effector and the workpiece, which is processed or 
transported in the considered technological process [Alici 2005], [Chen 2000a]. Another type of external 
loading exists due to the gravity influence on the manipulator links, for many heavy manipulators employed 
in machining the link weight is not negligible [Yi 1992], [Yi 1993]. Besides, to compensate in a certain 
degree the gravity influence, some manipulators include special mechanisms generating external 
forces/torques in the opposite direction. It is worth mentioning that the external loading generated by a 
technological process is always applied to the manipulator end-effector while others may be applied at 
intermediate points (at joints, for instance). Besides, the external loadings caused by gravity have obvious 
distributed nature.  

In addition to the above mentioned forces/torques, internal loading in some joints may exists. For 
instance, to eliminate backlash, the joints may include preloaded springs, which generate the force or torque 
even in standard "mechanical zero" configuration [Wei 2010]. Though the internal forces/torques do not 
influence on the global equilibrium equations, they may change the equilibrium configuration and have 
influence on the manipulator stiffness properties. For this reason, internal preloading is used sometimes to 
improve the manipulator stiffness, especially in the neighborhood of kinematic singularities. Another case 
where the internal loading exists by default, is related to over-constrained manipulators that are subject of the 
so-called antagonistic actuating [Chakarov 1999], [Chakarov 2004]. Here, redundant actuators generate 
internal forces and torques that are equilibrated in the frame of close loops.  

It is obvious that the both external and internal loadings influence on the manipulator equilibrium 
configuration and, consequently, may modify the stiffness properties. So, they must undoubtedly be taken 
into account while developing the stiffness model.  

VJM model for the loaded mode. At present, in most of related works the stiffness is evaluated in a 
quasi-static configuration with no external or internal loading. There is a very limited number of publications 
that directly address the loaded mode case (or so-called case of “large deflections”), where in addition to the 
conventional “elastic stiffness” in the joints it is necessary to take into account the “geometrical stiffness” 
arising due to the change in the manipulator configuration under the load. Although the existence of this 
additional stiffness component for elastic structures has been known for a long time [Przemieniecki 1968], 
the importance of this problem for robotic manipulators has been highlighted rather recently. The most 
essential results in this area were obtained in [Alici 2005], [Chen 2002], [Li 2002a] where there are presented 
both some theoretical issues and several case studies for serial and parallel manipulators. Several authors 
[Chakarov 1999], [Chakarov 2004], [Wei 2010] addressed the problem of stiffness analysis for the 
manipulators with internal preloading or antagonistic actuating, but in relevant equations some of the second 
order kinematic derivates were neglected. Using notation adopted in this work and summarizing existing 
results [Alici 2005], [Chen 2002], [Merlet 2008], the manipulator stiffness matrix for the loaded can be 
expressed as follows  

  -T -1
C θ θ F θ K J K K J  (1.12) 

where FK  is θ θn n  stiffness matrix that is induced by external loading and is not presented in previous 
equation (1.7). This matrix depends on both the derivatives of the Jacobian θJ  and the loading vector F . 
Required details concerning computing of FK  are given in [Chen 2002].  
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In the frame of the same concept, the manipulator stiffness model for the loaded mode was proposed 
in [Yi 1992], [Yi 1993], where numerous factors were taken into account (conventional external loading, 
gravity forces, antagonistic redundant actuation, etc.). The final results for the stiffness matrix is presented as 

 -T 1
C θ u θ

K J K J  (1.13) 

where uK  is a solution of a non-linear matrix equation, which includes the joint stiffness and the 
external/internal loadings as parameters. However, this approach is rather hard from computational point of 
view. Besides, in this work the Jacobians and all their derivatives have been computed not in a "true" 
equilibrium configuration (it was unreasonably replaced by unloaded one). For this reason, since the 
equilibrium obviously depends on the loading magnitude, some essential issues were omitted. As a result, 
any nonlinear effects have been detected in the stiffness behavior of the examined manipulators. 

Another significant result, which should be mentioned here, is related to the stiffness modeling of the 
parallel manipulators with the cross-linkage. Firstly this problem was considered in [Yi 1992], [Yi 1993] 
where all coordinates where decomposed into two groups (dependent and independent ones). But no clear 
rule for such coordinate splitting has been proposed, besides the developed technique involved very non-
trivial computations. Further, the cross-linkage was in the focus of [Quennouelle 2008a], 
[Quennouelle 2008c] where a rather compact expression for the stiffness matrix has been proposed 

  -T 1
C θ θ F I θ

  K J K K K J  (1.14) 

which, compared to (1.12),  includes additional matrix IK  that is induced by the geometrical constraints 
(cross-linkage). However, there are still a number of open questions concerning the coordinate splitting rule 
(i.e. dividing them into dependent and independent ones) and computing of the equilibrium configuration 
corresponding to the applied loading. 

It should be noted that this problem of (computing the loaded equilibrium) has been omitted in most of 
the related works. At the same time, it is clear that the changes in the manipulator configuration directly 
influence the Jacobians (and their derivatives) as well as on the end-effector location. For this reason, 
computing the Jacobians and Hessians in a traditional way (i.e. for the unloaded configuration) may lead to 
excessively rough simplification of the stiffness model. In particular, some non-linear phenomena in 
manipulator stiffness behavior can be hardly detected, while they should obviously exist from the point of 
view general theory of elastic structures.  

Nonlinear-behavior of the manipulator under loading. In mechanics, it has been known since a 
long time that the elastic structures may suddenly change their configuration if the loading exceed some 
critical value. A classical example is the so-called Euler column that retains its straight shape until the 
loading (Figure 1.14) [www civildb], [www highline]. This effect (buckling) is well known in structural 
mechaniques, however in robotics this aspect has never been studied before.  

 

Figure 1.14 Examples of buckling in column [www civildb], [www highline] 
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Non-linear behavior of force-deflection relation and possible buckling effects have been known since 
a long time. However in robotics, these questions did not attract much attention, mainly due to high rigidity 
of commercially available robots. But current trends in mechanical design of manipulators that are targeted 
at essential reduction of moving masses motivate relaxing this assumption. Hence, non-linear stiffness 
analysis is also important for the robotic manipulator. As it was mentioned before, existing stiffness analysis 
techniques for robots are strictly assumed that loading cannot change configurations of an examined 
manipulator or these changes are negligible. This simplification imposes crucial limitations for the stiffness 
analysis and, as a result, does not allow us to detect buckling and other non-linear phenomena known from 
general theory of elastic structures. 

Similar to the classical mechanics three types of buckling can appear in a robotic system: buckling of 
the link, contact buckling and geometrical buckling. First type of buckling is defined by the mechanical 
properties of the link and easily can be detected by FEA analysis or critical loading for it can be computed 
via approximated equations. Normally these loadings are unreachable in robots, while minimization of the 
link cross-sections can make these limits reachable. Thus it is reasonable to check critical loads for the 
buckling of elements on the design step. The second type of buckling is caused by the contact of the links 
with environment. It can be avoided on the machining process designing stage. The nature of the geometrical 
buckling is closed to the buckling of the elements, while several elements should be analysed together. In 
this case the critical force is defined by the stiffness of the links and junctions between them. Since stiffness 
of the junction may be lower than stiffness of links, or even in parallel manipulators can be negligible (for 
the passive joints), the critical force can be reduced in times comparing with the critical loading of the 
separate elements. So, nonlinear effects and buckling can appear in robots and they require additional 
analysis, however these questions have been omitted before.  

In practice, it is impossible to detect non-linear effect without finding the loaded equilibrium, while 
this question was omitted in previous works. Besides, the loading may potentially lead to multiple 
equilibriums, to bifurcations of the equilibriums and to static instability of the manipulator configurations. 
These effects are essentialy dangerous for parallel manipulators wich impose numerious passive joints. Some 
aspects of multiple-equilibrium problem for robotic manipulators have been examined in the works 
[Hines 1998], [Carricato 2002] who applied the Catastrophe theory for the stability analysis of the planar 
parallel manipulators with several flexural elements under external loading. However, they did not propose a 
general approach for stability analysis of the manipulator configurations. Therefore, it will be also in the 
focus of this research. 

 

Summary of the VJM-based results. The above mentioned publications are briefly summarized in 
Table 1.6, where all notations are adopted to those used in this work. As it follows from their analysis, the 
stiffness modeling in loaded mode for both serial and parallel manipulators with passive joints needs further 
improvement. In particular, it is required to develop dedicated numerical techniques that are well adopted for 
robotic applications and provide a designer with capability of computing the loaded equilibriums (which may 
be non-unique), their stability analysis, local linearization of the force-deflection relation, and also evaluation 
of possible non-linear phenomena (such as buckling) that can be potentially dangerous in practical 
applications. This motivates the enhancement of previous results [Pashkevich 2010] and extending them for 
the case of the external and internal loadings. 
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Table 1.6 Summary of the related works and expressions for the Cartesian stiffness matrix 

Publications Model & assumptions Stiffness matrix 

Salisbury [Salisbury 1980] 
Serial manipulator, 

elasticity in actuators 
-T 1

C θ θ θ
K J K J  

Gosselin [Gosselin 1990], 
Ciblak & Lipkin  

[Ciblak 1998], [Ciblak 1999], 
Pigoski et al., [Pigoski 1998] 

Parallel manipulator, 
elasticity in actuators, 
non over-constrained 

-T 1
C θ θ θ

K J K J  

Zhang et al.  
[Zhang 2004], [Xi 2004] 

Serial kinematic chain 
 without passive joints, 

elasticity in virtual joints 

1

1 T
C θ θ θi i i

i


 

  
 
K J K J  

Pashkevich et al.  
[Pashkevich 2010] 

Serial kinematic chain  
with passive joints, 

elasticity in virtual joints 

11 T
θ θ θ qC

T
q

          

J K J JK
J 0

 

Zhang & Gosselin 
[Zhang 2002] 

Parallel manipulator  
without cross-linking  

between kinematic chains 

1

( ) ( ) 1 T
C C C θ θ θ;i i

j j j
i j



 
   

 
 K K K J K J  

Pashkevich et al.,  
[Pashkevich 2010] 

Parallel manipulator  
without cross-linking 

between kinematic chains 

( )
C

11( )
θ θ θ qC

T
q

;i
C

i

Ti
i i i i

i





          

K K

J K J JK
J 0

 

Alici & Shirinzadeh [Alici 2005] 

Chen & Kao [Chen 2000a] 

Marlet & Gosselin [Merlet 2008] 

Serial or parallel manipulator
with external loading 

(non over-constrained) 
 -T -1

C θ θ F θ K J K K J  

Quennouelle & Gosselin 
[Quennouelle 2008a], 
[Quennouelle 2008c]  

Parallel manipulator 
 with external loading and 
supplementary  geometric 
constraints (cross-linkings) 

 -T 1
C θ θ F I θ

  K J K K K J  

Yi & Freeman  
[Yi 1992], [Yi 1993] 

Parallel manipulator with 
external loading, inertia and 
gravity loads, joint stiffness, 

actuation redundancy  

-T 1
C θ u θ

K J K J  

uK  - solution of non-linear matrix 
equation that includes joint stiffness and 
external/internal loadings as parameters 
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1.4 SUMMARY: THESIS GOAL AND RELATED PROBLEMS 

As it follows from the presented review, the problem of stiffness analysis is very important for the 
robotic-based machining of high performance materials that are characterized by high loadings, which 
produce significant compliance errors. Besides, spesificity of serial and parallel robots is required to take into 
account influence of passive joints and different types of loading. Therefore, to evaluate errors and/or 
compensate them an accurate stiffness model of the manipulator with passive joints and different types of 
loading is required. However, existing stiffness modeling approaches substantially consider linear models. 

Performed comparison analysis of existing stiffness modeling methods illustrated that for a considered 
problem the VJM-based approach is more attractive, however it still required essential enhancements. 
Existing approaches of the VJM methods are computationally attractive, provide some results for the 
stiffness modeling in the loaded mode, but they are still based on the linear models and, consequently, are 
not able to detect any non-linear effects in the stiffness behavior of manipulator under high loading (buckling 
for instance). Besides, current approaches still use crude approximations of manipulator links, which is not 
able to take into account real shape of links and contact surfaces of the adjacent ones. In addition, existing 
approaches are implicitly assumed that there are no internal forces in close kinematic chains, gravity forces 
are neglected both for serial and parallel manipulators and it is supposed that all components of the robot are 
perfect. Hence, in order to obtain a non-linear stiffness model of robots with passive joints, these limitations 
should be withdrawn.  

For comparison, other methods have more essential limitations that do not allow us to consider all 
defined stiffness modeling aspects simultaniously.For instance, the FEA seems to be accurate but it is time 
consuming and is not suitable for non-linear stiffness analysis. Moreover, there is no general technique to 
define active and passive joints in the CAD model, which lead to some difficulties and indeterminacy of their 
definitions. The MSA method is less time consuming but still is not applicable for non-linear stiffness 
analysis and deals with crude approximations of the manipulator links. Besides, it has some difficulties of 
integration with CAD model. Howerever, in order to increase accuracy of the VJM model parameters, some 
ideas from the FEA modeling can be successfully used.  

Hence, the goal of this thesis is enhancement of stiffness modeling techniques for serial and parallel 
manipulators in order to increase the accuracy and efficiency of robotic-based machining of high 
performance materials by means of compensation of the compliance errors. To achieve this goal, several 
problems have to be solved: 

Problem 1: Accuracy improvement of stiffness matrices used in the VJM model (taking into account 
complex shape of manipulator links, coupling between rotational/translational deflections and 
joint particularities); 

Problem 2: Enhancement of VJM-based stiffness modeling technique for serial and parallel 
manipulators with arbitrary location of passive joints in the case of small deflections (unloaded 
mode); 

Problem 3: Extension of the proposed VJM-based technique for the case of large deflections caused 
by internal and external loadings, taking into account related changes in Jacobians and 
equilibrium coordinates; 

Problem 4: Application of the developed technique to the analysis of non-linear effects in manipulator 
stiffness behaviour under loadings and determining the potentially dangerous configurations and 
critical forces that may provoke undesired buckling phenomena, i.e. sudden change of current 
configuration of the loaded manipulator. 

To address these problems, the remainder of the work is organized as it follows. Chapter 2 deals with 
stiffness matrix identification for the links with complex shape. Chapter 3 focuses on the manipulator 
stiffness modelling for the unloaded mode. Chapter 4 is devoted to the stiffness analysis of serial and parallel 
manipulators in the loaded mode. In Chapter 5, non-linear stiffness behaviour of serial and parallel 
manipulators under different types of loadings is considered. 



 

CHAPTER 2  
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This chapter is devoted to the accuracy improvement of the manipulator link 
elastostatic model. It proposes computationally efficient identification procedure, which 
is based on the FEA-modeling and allows us to obtain the stiffness matrix taking into 
account the complex shape of the link, couplings between rotational and translational 
deflections and joints particularities. Simulation study shows that it is able to evaluate 
stiffness matrix elements with an accuracy of about 0.1% and also to detect non-
significant ones. The developed identification procedure is illustrated by several 
examples whose results will be used in the following chapters for the VJM-based 
modeling. 

 

2.1 INTRODUCTION 

The stiffness modeling approach developed in this work is based on the VJM-presentation of 
manipulator links/joints. Its core idea is that each mechanical element with distributed elasticity is replaced 
by a combination of a rigid body and a lumped virtual spring, whose properties are described by a 6 6  
stiffness matrix. Therefore, the accuracy of the manipulator stiffness models considered here directly 
depends on the accuracy of the stiffness matrices incorporated in them. For this reason, this chapter focuses 
on accuracy improvement of the kinetostatic models of manipulator elements and identification of their 
parameters. 

In robotic literature, there are several ways to obtain the stiffness matrix of a link. The simplest of 
them assumes that a real link (with rather complex shape) can be approximated by a simple beam, for which 



Chapter 2   Kinetostatic models of manipulator elements and identification of their parameters  34 

the stiffness matrix can be easily expressed analytically. Another, more accurate, technique deals with multi-
beam approximation where the link is presented as a serial chain of rigid bodies separated by virtual springs. 
For this presentation, the stiffness matrix of the whole link is computed using a common procedure known 
from stiffness analysis of serial manipulators. However, in spite of computational convenience and better 
accuracy, the second approach can be hardly applied to many industrial manipulators (where links may be 
nonhomogeneous, their shape is quite complex and cross-section is non-constant, etc). For instance, for the 
Orthoglide foot (Figure 2.1), even a four-beam approximation provides an accuracy of only 30-50% 
[Pashkevich 2010]. 

 

Figure 2.1 CAD model of the link with complex shape 

To achieve desired accuracy, here it is proposed to apply the FEA-based identification methodology 
that was firstly introduced in [Pashkevich 2010] but needs some further development. The corresponding 
algorithm is schematically presented in Figure 2.2. At the first step, a CAD model of the link is created, 
which properly describes the link shape, cross-sections, distribution and physical properties of the material 
(density, Young's modulus, Poisson's ratio, etc.). Then, at the second step, one of the link ends is fixed in 
accordance with contact surfaces of an adjacent element (for example by cylindrical surface for the revolute 
joint). At the second end of the link, certain distributed (or localized) force/torque is applied in accordance 
with contact surfaces of an adjacent element. For these settings, the FEA-modeling is performed which 
yields the deflection field for a huge number of points generated by the meshing procedure. From this set, a 
subset (so called 'deflection field') is extracted corresponding to the neighborhood of the reference point. This 
field contains desired information on the link compliance with respect to the applied force/torque. Such 
virtual experiments are repeated several times, for different directions of forces and torques (issue of their 
magnitude is discussed in the following sections). And finally, at the third step, the proposed identification 
procedure that gives the desired stiffness matrix of the link is applied.   

 

Figure 2.2 Algorithm for stiffness matrix identification procedure 
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It is worth mentioning that the above described algorithm has some essential advantages, which are 
not achievable while using any analytical technique. In particular, here it is possible to take into account 
(straightforwardly and explicitly) the joint elasticity that usually has a number of particularities, such as 
significant compliance of link/joint areas located closed to the contact points or surfaces. For instant, for a 
case study presented in Section 2.7 of this chapter, some of the stiffness matrix elements are reduced by the 
factor of 10-12 if the joint particularities are modeled properly. It is evident that existing analytical 
expressions do not take into account these issues.  

Hence, the goal of this chapter is the accuracy improvement of the stiffness matrix identification for 
manipulator elements. As it follows from the related analysis, particular problems that should be considered 
here are the following: 

(i)  Further development of the FEA-based methodology for the link stiffness matrix identification, 
which allows us to take into account the link shape, coupling between rotational/translational 
deflections and joint particularities; 

(ii)  Development of numerical technique, which computes the stiffness matrix from the set of points 
(displacement field) extracted from the FEA-based virtual experiments; 

(iii) Evaluation of this technique accuracy with respect to virtual experiment settings (meshing 
type\size, deflection range, fixing and force application method) and size\shape of virtual 
sensor; 

(iv) Minimization of the identification errors by statistical processing of the experimental data 
(outlines elimination, determination of the confidence intervals and detecting "zero" elements of 
the stiffness matrix); 

(v) Validation of the developed technique on application examples related to typical parallel 
manipulators and their comparison with conventional regular-shape approximation models. 

To address these sub-problems, the remainder of this chapter is organized as follows. Section 2.2 
introduces the FEA-based methodology for identification of the link stiffness matrix. Section 2.3 proposes a 
numerical technique for evaluating the stiffness matrix elements from the field of points. Section 2.4 focuses 
on the accuracy estimation. Section 2.5 deals with minimization of the identification errors. Section 2.6 is 
devoted to the extension of the developed technique for the case of double-side loading, which operates with 
12 12  stiffness matrices instead of traditional 6 6  ones. In Section 2.7, the developed  technique is applied 
to the links of Orthoglide manipulator. And finally, Section 2.8 summarizes main results and contributions of 
this chapter. 

2.2 FEA-BASED APPROACH FOR IDENTIFICATION OF LINK STIFFNESS MATRIX 

Let us start from a detailed description of the FEA-based methodology for the link stiffness matrix 
identification. It is based on a number of the virtual experiments that are conducted in the CAD-environment 
(CATIA with ANSYS, for instance). Each of these experiments gives some information on the resistance of 
an elastic body or mechanism to deformations caused by an external force or torque. The desired stiffness 
model is obtained by integrating data obtained from several different experiments, which differ in the 
direction of applied forces/torques. 

For relatively small deformations, the stiffness properties are defined through the so-called stiffness 
matrix K, which defines the linear relation  

 
δ

          
F p

K
M φ

 (2.1) 

between the three-dimensional translational/rotational displacements T( , , )x y zp p pp ; 
Tδ δ δ( , , )δx y z  φ  and the static forces/torques T( , , )x y zF F FF , T( , , )x y zM M MM  causing this 

transition. As known from mechanics, K  is a 66 symmetrical semi-definite non-negative matrix, which 
may include non-diagonal elements to represent the coupling between the translations and rotations 
[Pashkevich 2010]. The inverse of K  is usually called the compliance matrix and is denoted as k .  
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It is worth mentioning, that there are a number of publications, which operate with non-symmetrical 
stiffness matrices that are derived via differentiation of the force-deflection relation under the assumption 
that the static loading is essential. However, as it was shown in [Zafran 2002], [Kövecses 2007], that non-
symmetrical stiffness matrices are obtained for very specific definitions of the force and displacement only 
(for instance, when the displacement is defined with respect to moving frame and the scalar product of the 
force and displacement does not correspond to the work in common sense). On the other hand, for 
conservative mechanical systems the stiffness matrix can be defined as the second derivative of the potential 
energy, which is always symmetrical. Hence, since here we consider only conservative systems and classical 
definitions of the force and displacement, there are no reasons to obtain a non-symmetrical stiffness matrix 
from the identification procedure presented below.  

For robotic manipulators, the matrix K  can be computed semi-analytically provided that the stiffness 
matrices of all separate components (links, actuators, etc.) are known with desired precision [Pashkevich 
2010]. However, explicit expressions for the link stiffness matrices can be obtained in simple cases only 
(truss, beam, etc.). For more sophisticated shapes that are commonly used in robotics, the stiffness matrix is 
usually estimated via the shape approximation, using relatively small set of primitives [Majou 2007]. 
However, as it follows from the studies [Pashkevich 2010], the accuracy of this approach is rather low. 
Hence, in a general case, it is prudent to apply to each link the FEA-based techniques, which hypothetically 
produce rather accurate result.  

 

Figure 2.3 Identification experiment for the element with a complex shape 

Using the FEA, the stiffness matrix K  (or its inverse k ) is evaluated from several numerical 
experiments, each of which produces the vectors of linear and angular deflections (p, ) corresponding to 
the applied force and torque (F, M) (see Figure 2.3). Then, the desired matrix is computed from the linear 
system  
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where m is the number of experiments ( 6m  ) and the matrix inverse is replaced by the pseudo-inverse in 
the case of 6m  . It is obvious that the case of 6m   with special arrangement of the forces and torques is 
numerically attractive  
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corresponding to the diagonal structure of the matrix to be inverted. In this case, each FEA-experiment 
produces exactly one column of the compliance matrix 

 1 2 3 4 5 6
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/ / / / / /
/ / / / / /
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F F F M M M
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 
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p p p p p p
k

φ φ φ φ φ φ
 (2.4) 

and the values (pi, i) may be clearly physically interpreted. On the other hand, by increasing the number of 
experiments ( 6m  ) it is possible to reduce the estimation error. Besides, it is worth mentioning that the 
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classical methodology of the optimal design of an experiment cannot be applied here directly, because it is 
not possible to include in equation (2.4) the measurement errors induced by virtual experiments as additive 
components. Some aspects of this problem are studied in sub-section 2.4.4. 

Hence, to obtain the desired stiffness (compliance) matrix, it is required to estimate first the 
deflections (p, ) corresponding to each virtual experiment. This issue is in the focus of the following 
section. 

2.3 NUMERICAL TECHNIQUE FOR EVALUATING THE STIFFNESS MATRIX ELEMENTS  

Usually, in FEA-based experiments, the values (p, ) are computed from the spatial location of a 
single finite element enclosing the reference point. In contrast to this approach, here it is proposed to 
evaluate (p, ) from the set of points (displacement field) describing transitions of a rather large number of 
nodes located in the neighborhood of reference point. It is reasonable to assume that such modification will 
yield positive impact on the accuracy, since the FEA-modeling errors usually differ from node to node, 
exposing almost quasi-stochastic nature.  

2.3.1 Related optimization problem 

To formulate this problem strictly, let us denote the displacement field by a set of vector couples 
{ , | 1, }i i i n p p  (see Figure 2.4) where the first component ip  defines the node's initial location (before 
applying the force/torque), ip  refers to the node's displacement due to the applied force/torque, and n is the 
number of considered nodes. Then, assuming that all the nodes are close enough to the reference point, this 
set can be approximated by a “rigid transformation”  

 ( ) , 1,δi i i i n     p p R φ p p , (2.5) 

that includes as the parameters the linear displacement vector p  and the orthogonal 33 matrix R  that 
depends on the rotational displacement . Then, the problem of the deflection estimation can be presented 
as the best fit of the considered vector field by equation (2.5) with respect to the six scalar variables 
( , , , δ , , )δ δx y z x y zp p p     incorporated in the displacement vector p  and the rotation matrix R .  

 

Figure 2.4 Field of points from FEA modeling 

In practice, the FEA-modeling output provides the deflection vector fields for all nodes referring to all 
components of the mechanism. So, it is required to select a relevant subset corresponding to the 
neighborhood of the reference point p0. Besides, the node locations pi must be expressed relative to this 
point, i.e. the origin of the coordinate system must be shifted to p0. The latter is specified by the physical 
meaning of the deflections in the stiffness analysis. 

To estimate the desired deflections (p, ), let us apply the least square technique that leads to 
minimization of the sum of squared residuals  
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with respect to the vector t and the orthogonal matrix R representing the rotational deflections . The 
specificities of this problem (that does not allow direct application of the standard methods) are the 
orthogonal constraint T R R I  and non-trivial relation between elements of the matrix R and the vector . 
The following sub-sections present two methods for computing p, , as well as their comparison study. 
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2.3.2 Problem solution using SVD-based method 

For the comparison purposes, first let us briefly present the exact solution of the optimization problem 
(2.6). It relies on some results from the matrix algebra referred to as “Procrustes problem” [Gower 2004]. 
The corresponding estimation procedure is decomposed in two steps, which sequentially produce the rotation 
matrix R and the translation vector p. Then, the desired vector of rotation angles  is extracted from R. 

Let us transform the original optimization problem (2.6) to the standard form. First, for the non-
constrained variable p, straightforward differentiation and equating to zero gives an expression 
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Then, after relevant substitution and denoting  
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the original optimization problem is reduced to the orthogonal Procrustes formulation 
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with the constraint T R R I . The latter yields the solution [Gower 2004] 

 TR VU  (2.10) 

that is expressed via the singular value decomposition (SVD) of the matrix 
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which requires some computational efforts. Hence, the above expressions (2.7), (2.10) allow to solve the 
optimization problem (2.6) in terms of variables R and p.  

Further, to evaluate the vector of angular displacements , the orthogonal matrix R must be 
decomposed into a product of elementary rotations around the Cartesian axes x, y, z. It is obvious that, in a 
general case, this decomposition is not unique and depends on the rotation order. However, for a small  
(that is implicitly assumed for FEA-experiments) this matrix may be uniquely presented in differential form  
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Using this expression, the desired parameters δ δ δ, ,x y z    may be extracted from [ ]ijrR  in several 
ways (Table 2.1), which are formally equivalent but do not necessarily possess similar robustness with 
respect to round-off errors. A relevant comparison study will be presented in sub-section 2.4.2. 

Table 2.1 Evaluation of the rotation angles from matrix R  

Method x  y  z  

SVD+ 32r  13r  21r  

SVD- 23r  31r  12r  

SVD± 32 23( ) / 2r r  13 31( ) / 2r r  21 12( ) / 2r r  

SVD+asin 32asin r  13asin r  21asin r  

SVD-asin 23asin r  31asin r  12asin r  

SVD±asin  32 23asin ( ) / 2r r   13 31asin ( ) / 2r r   21 12asin ( ) / 2r r  
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2.3.3 Efficiency improvement of developed technique 

To reduce the computational efforts and to avoid the SVD, let us introduce linearization of the 
rotational matrix R at the early stage, using explicit parameterization given by expression (2.12). This allows 
rewriteing the equation of the ‘rigid transformation’ (2.5) in the form   

 δ ; 1,i i i n    p p φ p  (2.13) 

that can be further transformed into a linear system of the following form 
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where iP  is a skew-symmetric matrix corresponding to the vector :ip  
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Then, applying the standard least-square technique with the objective 

 
2

1

miδ n
n

i i
,

i

f


    
φ t

p P φ p  (2.16) 

one can get the solution 
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that employs the 66 matrix inversion. This solution can be simplified by shifting the origin of the 
coordinate system to the point 1

1

n
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n


 p p  leading to expression  
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that requires inversion of the matrix of size 33. Here, ˆ
iP  denotes a skew-symmetric matrix corresponding to 

the vector ˆ
i i c p p p .  

It is evident that the obtained expression (2.18) is more computationally efficient compared to (2.8) 
and (2.10). Besides, for some typical cases corresponding to regular meshing patterns of the FEA, expression 
(2.18) can be further simplified as shown in the following subsection. 

2.3.4 Analytical solutions for typical case studies 

In practice, the points ip  are distributed in the space in a regular way, in accordance with the meshing 
options chosen for the FEA-modeling. This allows us to inverse the matrix 

1
ˆ ˆn T

i ii P P  analytically and to 
obtain very simple expressions for p, . Let us consider several patterns that are useful for practice and are 
presented in Figure 2.5. 

Case 1: Symmetrical field (Figure 2.5a).  If the field is symmetrical with respect to its centre cp , the 
solution (2.18) can be presented in a compact analytical form as 
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where the matrix 
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is diagonal and easily inverted. 

Case 2: Cubic field (Figure 2.5b). If the field is symmetrical and, in addition, it is produced by 
uniform meshing of the cubic subspace a a a  , the matrix D is expressed as d D I  where 

2 3 3( 1) 6( 1)d a n n n   .  

Case 3: Planar square field (Figure 2.5c). For the field produced by uniform meshing of the square 
a a  located perpendicular to the x-axis, the expression for the matrix  / 2 / 2diag d d dD  

 

 

Figure 2.5 Typical patterns of the deflection field 

 

Summarizing Section 2.3, it should be noted that the proposed numerical technique is computationally 
attractive and allow simultaneous estimation both translational and rotational deflections p,  from the 
FEA-produced field. Below it is evaluated from the point of view of the precision and robustness.  

2.4 ACCURACY OF THE DEVELOPED NUMERICAL TECHNIQUE 

To be applied in practice, the accuracy of the developed numerical technique should be evaluated with 
respect to the virtual experiment settings (meshing type\size, deflection range, fixing and force application 
method) and size\shape of virtual sensor. Let us consider several case studies corresponding to typical 
industrial applications. 

2.4.1 Error sources and their impact 

It is obvious that the main source of estimation errors is related to the FEA-modeling that highly 
depends on the size and type of the finite elements, meshing options, incorporated numerical algorithms, 
computer word length and the round-off principle. Hypothetically, the accuracy can be essentially improved 
by reducing the mesh size and increasing the number of digits in presentation of all variables. But there are 
some evident technical constraints that do not allow ignoring the FEA limitations. 

Another type of errors arises from numerical differentiation incorporated in the considered technique. 
Strictly speaking, the linear relation (2.1) is valid for rather small deflections that may be undetectable 
against the FEA-modeling defects. On the other side, large deflections may be out of the elasticity range. 
Hence, it is prudent to find a compromise for the applied forces/torques taking into account both factors. 

2.4.2 Influence of linearization and round-offs 

Since both of the considered algorithms (SVD-based and the proposed one, see Section 2.3) involve 
numerous matrix multiplications, they may accumulate the round-off errors. Besides, they employ the first-
order approximation of the matrix R that may create another source of inaccuracy. Hence, it is prudent to 
obtain numerical assessments corresponding to a typical case study. 

For these assessments, there were examined data sets corresponding to the cubic deflection field of 
size 101010 mm3 with the mesh step of 1 mm (1331 points). The deflections have been generated via the 
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‘rigid transformation’ (2.5) with the parameters ( , , )Ta a ap  and ( , ,δ )Tb b bφ  presented in Table 2.2, 
Table 2.3. All calculations have been performed using the double precision floating-point arithmetic. 

Table 2.2 Identification errors for the rotation  [deg] 

Rotation amplitude b  
Method 

0.01  0.05  0.1  0.5  1  5  

SVD-based technique 

SVD+ 62 10  54 10  42 10  34 10  22 10  0.48  

SVD- 62 10  54 10  42 10  34 10  22 10  0.48  

SVD± 79 10  52 10  59 10  32 10  39 10  0.24  

SVD+asin 62 10  54 10  42 10  34 10  22 10  0.48  

SVD-asin 62 10  54 10  42 10  34 10  22 10  0.48  

SVD±ain 79 10  52 10  59 10  32 10  39 10  0.24  

LIN-based technique 

LIN 79 10  52 10  59 10  32 10  39 10  0.24  

LIN asin 79 10  52 10  59 10  32 10  39 10  0.24  

 

Table 2.3 Identification errors for the translation [mm] 

Translation amplitude a  
Method 

0.01 mm 0.1 mm 1.0 mm 10 mm 

SVD 10-16 10-16 10-16 2·10-14 

LIN 10-16 10-16 10-16 3·10-15 

 

As it follows from the analysis, the influence of the linearization and round-offs is negligible for the 
translation (the induced errors are less than 10-14 mm). In contrast, for the rotation, practically acceptable 
results may be achieved for rather small angular deflections that are less than 1.0° (the errors are up to 
0.01°). The latter imposes an essential constraint on the amplitude of the forces/torques in the FEA-modeling 
that must ensure reasonable deflections. Another conclusion concerns comparison of the SVD-based and 
LIN-based methods. It justifies advantages of the proposed LIN-based technique that provides the best 
robustness and lower computational complexity. 

2.4.3 Influence of FEA-modeling errors 

By its general principle, the FEA-modeling is an approximate method that produces some errors 
caused by the discretization. Beside, even for the perfect modeling, the deflections in the neighborhood of 
the reference point do not exactly obey the equation (2.5). Hence, it is reasonable to assume that the ‘rigid 
transformation’ (2.5) incorporates some additive random errors  

 ( ) ; 1,δi i i i i n      p p R φ p p ε  (2.21) 

that are supposed to be independent and identically distributed Gaussian random variables with zero-mean 
and standard deviation .  

In the frame of this assumption, the expression for the deflections (2.18) can be rewritten as  
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where the superscript ‘o’ corresponds to the ‘true’ parameter value. This justifies usual properties of the 
adopted point-type estimator (2.18), which is obviously unbiased and consistent. Furthermore, the variance-
covariance matrices for t,  may be expressed as  
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allowing to evaluate the estimation accuracy using common confidence interval techniques.  

As it follows from (2.21), for the translational deflection p the identification accuracy is defined by the 
standard deviation n  and depends on the number of the points only. In contrast, for the rotational 
deflection, the spatial location of the points is a very important issue. In particular, for the cubic field of the 
size a a a  , the standard deviation of the rotation angles may be approximately expressed as / 6a n . 

To evaluate the standard deviation  describing the random errors ε , one may use the residual-based 
estimator obtained  from the expression 
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The latter may be easily derived taking into account that, for each experiment, the deflection field consists of 
n three-dimensional vectors that are approximated by the model containing 6 scalar parameters. Moreover, to 
increase accuracy, it is prudent to aggregate the squared residuals for all FEA-experiments and to make 
relevant estimation using the coefficient 2(3 6)n m , where m is the experiments  number. 

In addition, to increase accuracy and robustness, it is reasonable to eliminate outliers in the 
experimental data. They may appear in the FEA-field due to some anomalous causes, such as insufficient 
meshing of some elements, violation of the boundary conditions in some areas of the mechanical joints, etc. 
The simplest and reliable method that is adopted in this research is based on the ‘data filtering’ with respect 
to the residuals (i.e. eliminating certain percentage of the points with the highest residual values). Another 
practical question is related to detecting zero elements in the compliance matrix or, in other words, 
evaluating the statistical significance of the computed values compared to zero. These issues will be studied 
in Section 2.5. 

2.4.4 Optimal settings for identification experiments 

Finally, to evaluate the combined influence of various error sources, let us focus on the deflection 
identification from the cubic field of size 101010 mm3 (1331 points, mesh step 1 mm). In particular, let us 
contaminate all deflections using the Gaussian noise with the s.t.d. 5×10-5 mm that is a typical value 
discovered from the examined FEA data sets (Table 2.4). Similar to the previous case, all calculations were 
performed using the double precision floating-point arithmetic (16 decimal digits). 

Table 2.4 Parameters of the FEA-modeling noise for different mesh type 

Meshing options 

Type of the mesh Notation Size of the finite element 
σ, mm 

3L 3 mm 4.10·10-5 

2L 2 mm 4.59·10-5 Linear mesh 

1L 1 mm 3.87·10-5 

5P 5 mm 6.40·10-5 

3P 3 mm 5.26·10-5 Parabolic mesh 

2P 2 mm 5.60·10-5 
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The obtained results confirmed the main theoretical derivations of the previous subsections. The 
identification errors obey the normal distribution (Figure 2.6) but their s.t.d. should be evaluated taking into 
account some additional issues. Thus, the s.t.d. of the translational error is about 61.36 10  mm and depends 
only on the FEA-induced component that is evaluated as 6/ 1.37 10n    mm. The influence of the 
linearization and round-offs is negligible here (this component is less than 10-14 mm). Also, this type of the 
error does not depend on the translation amplitude. 

In contrast, for the rotational deflections, there exists strong dependence on the amplitude (Figure 2.7). 
In particular, for the angular deflection 0.1°, the s.t.d. of the identification error is about  58.4 10  deg,  
while the FEA-induced component is evaluated as 5/ / 6 1.8 10a n    deg and the linearization 
component is about 8.8·10-5 deg (see Table 2.2). Moreover, the simulation results allow to define preferable 
values of the angular deflection that may be extracted from the FEA-data with the highest accuracy. They 
show that the deflection angles should be in the range 0.01 …0.2° to ensure the identification accuracy of 
about 0.2%  

 

 

Figure 2.6 Histograms for the identification errors ( a = 1.0 mm, b=0.1°, = 5×10-5 mm) 

 

 

Figure 2.7 Identification errors for different amplitudes of the rotational deflections  

 

Thus, the case studies considered in Section 2.4 confirm that the proposed LIN-based algorithm 
ensures the same accuracy as the SVD-based one, while possessing lower computational complexity. 
Besides, these results give some practical recommendations for setting the FEA-based experiments and 
evaluating the identification accuracy. 
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2.5 MINIMIZATION OF IDENTIFICATION ERRORS 

To demonstrate efficiency of the developed technique and to evaluate its applicability to real-life 
situations, let us consider an example for which the desired compliance matrix can be obtained both 
numerically and analytically. A comparison of these two solutions provides convenient benchmarks for 
different FEA-modeling options and also gives some practical recommendations for achieving the required 
accuracy. 

2.5.1 Benchmark example 

As an example, let us consider a cantilever beam of size 10001010 mm3 (see Figure 2.8) with the 
Young's Modulus 5 2/2·10E N mm and the Poisson's Ratio 0.266  . These data correspond to geometry 
and material properties of a typical robot link studied in this work. 

 

Figure 2.8 Examined cantilever beam 

For this element, an analytical expression for the compliance matrix can be presented as  
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where non-zero elements are: 2
35 53 / 2 yk k L E I   , 11 /k L E A , 3

22 / 3 zk L E I , 3
33 / 3 yk L E I , 

44 /k L G J , 55 / 3 yk L E I , 66 / 3 zk L E I , 2
26 62 / 2 zk k L E I  . Here L  is the length of the beam, A is 

its cross-section area, yI , zI  are the second moments, J  is the cross-section property.  

The FEA-modeling has been performed using the CATIA V5R16 CAD system. It is a complete tool 
for preparing parts geometry and generating finite element models with powerful meshing capabilities. The 
software was run on a computer with a 1.8 GHz processor and 1 GB memory, which impose essential 
constraints on the finite element dimensions even for this simple case (a single beam element) 
[Zamani 2005]. 

During modeling, the loads have been applied at one end of the beam with the other end fully 
clamped. The force/torque amplitudes were determined using expression (2.23) and the optimal accuracy 
settings for the deflections 0.1…1.0 mm and 0.01…0.20°, which yielded the following values: 1000 x NF  , 

1 yF N , 1 zF N , 1 ·xM N m , 1 ·yM N m , 1 ·zM N m . These loads were applied sequentially, 
providing 6 elementary FEA-experiments, each of which produced a single column of the compliance matrix 
k, in accordance with (2.4). 

2.5.2 Optimal selections of FEA-modeling options 

Since the identification errors, which are studied here, essentially depend on the discretization of the 
FEA-based model and definition of the deflection field, let us focus on the influence of the meshing 
parameters of the FEA-model and on dimensions of the virtual sensor that specifies this field.  

Meshing options. The adopted software provides two basic options for the automatic mesh 
generation: linear and parabolic ones. It is known that, generally, the linear meshing is faster computationally 
but less accurate. On the other hand, the parabolic meshing requires more computational resources, but leads 
to more accurate results.  
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For the considered case study, both meshing options have been examined and compared with respect 
to the accuracy of the obtained compliance matrix. The mesh size was gradually reduced from 5 to 1 mm, 
until achieving the lower limit imposed by the computer memory size. The obtained results (Table 2.5 and 
Figure 2.9) clearly demonstrate advantages of the parabolic mesh, which allow achieving appropriate 
accuracy of 0.1% for the mesh step of 2 mm using standard computing capacities. In contrast, the best result 
for the linear mesh is 12% and corresponds to the step of 1 mm.  

 

Table 2.5 Maximum errors in estimation of compliance matrix elements 

Meshing options 

Type of the mesh Notation Size of the finite element 

Maximum errors in 
elements of identified 

matrix kij 

3L 3 mm 27% 

2L 2 mm 20% Linear mesh 

1L 1 mm 12% 

5P 5 mm 3.3% 

3P 3 mm 0.19% Parabolic mesh 

2P 2 mm 0.10% 

 

 

 

Figure 2.9 Errors (%) in estimations of non-zero elements of the compliance matrix 
(3L,2L,1L are linear mesh with steps 3,2,1 mm; 5P,3P,2P are parabolic mesh with steps 5,3,2 mm) 

 

Accuracy of these results can also be evaluated by the difference between the deflections computed 
using analytical expression (2.25) and the identified compliance matrix (assuming that the link is under 
similar loadings as in virtual experiments). This allows us to simplify physical meaning of the identification 
errors and also to obtain a weighted performance measure that neglects some identification failures, whose 
impact on the reference point deflection is not essential. Relevant results are presented in Figure 2.10, where 
there are presented the worst values selected from six virtual experiments. They confirm that the mesh 2P 
(parabolic with step 2 mm) ensures accuracy of 0.1% and is preferable for practice. On the other hand, as it 
follows from separate study, further reduction of the mesh step does not lead to essential reduction of the 
identification errors. Obviously, this conclusion is valid for this case study only, but it can be applied to other 
cases using proper scaling of dimensions.  
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Figure 2.10 Influence of the stiffness matrix errors on the position accuracy 

 

Defining the virtual sensor. The developed technique operates with the deflection field bounded by 
the virtual sensor (see Figure 2.3), which is located in the neighborhood of the reference point (RP). As 
stated above, this neighborhood should be large enough to neutralize the influence of the FEA-induced 
errors, but its unreasonable increase may lead to violation of some essential assumptions and, consequently, 
to a reduction in the accuracy. 

To get a realistic inference concerning this issue, a number of experiments have been carried out, for 
different definitions of the RP-neighborhood (i.e., the virtual sensor size). The obtained results (Table 2.6) 
show that the highest accuracy 0.1% is achieved for the one-layer configuration of the deflection field, which 
is composed of the nodes located on the rare edge of the examined beam. This pattern is very close to the 
square-type field 1010 mm2 studied above (see sub-section 2.3.4). In contrast, increasing the sensor size up 
to the cubic-type of 101010 mm3 leads to the identification error of about 0.08%. Hence, in practice, it is 
reasonable to estimate the deflection values from the field of points corresponding to the square-type virtual 
sensor. 

 

Table 2.6 Evolution of the identification errors for different virtual sensors 

h-sensor k11 k22 k33 k44 k55 k66 k62 k53 

1-layer 0.10% 0.05% 0.05% 0.03% 0.10% 0.10% 0.04% 0.04% 

0.1% 0.11% 0.13% 0.13% 0.01% 0.08% 0.09% 0.09% 0.09% 

0.2% 0.09% 0.2% 0.2% 0.05% 0.04% 0.04% 0.14% 0.14% 

0.3% 0.04% 0.28% 0.28% 0.10% 0.02% 0.02% 0.19% 0.19% 

0.5% 0.06% 0.42% 0.42% 0.20% 0.13% 0.13% 0.29% 0.29% 

1% 0.33% 0.8% 0.80% 0.46% 0.41% 0.41% 0.54% 0.54% 

2% 0.86% 1.55% 1.55% 0.98% 0.91% 0.92% 1.03% 1.03% 

 

It is worth mentioning that, in practice, the reference point of the link may be located outside the the 
link material (see Figure 2.1). Consequently, the RP-neighborhood does not include any finite elements that 
may be used for creating the deflection field required by the identification procedure. In this case, the link 
CAD-model should be complemented with an additional solid body centered in the reference point and 
restrained by the surfaces of the corresponding joint (this body should be rigid enough to insure correctness 
of FEA-based simulations). After such modifications, the virtual sensor can be defined in the usual way. As 
it follows from our experience, proper definition of the virtual sensor (and additional solid body) as well as 
applied loading (distributed on the joint surfaces) play a crucial role in conducting of virtual experiments. 
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2.5.3 Statistical processing of FEA-based data 

Though the finite element analysis is based on strictly deterministic assumptions, it includes tedious 
computations that may generate some errors, which may be treated statistically. This idea is applied below in 
order to improve the identification accuracy and to detect the stiffness matrix elements that may be set to 
zero (in practice, the stiffness matrices with strictly zero elements are rather common).  

Eliminating outliers. As noticed above, the FEA-modeling data may include some anomalous 
samples that do not obey the assumed statistical properties. This phenomenon has been detected in 2 of 6 
experiments, (see Figure 2.11) where the histograms demonstrated obvious presence of the outliers changing 
the regular distribution shape (local maximums around the tails). For this reason, a straightforward filtering 
technique was applied that eliminated 10% the nodes corresponding to the highest residual values (see Figure 
2.12).  This technique essentially improved the identification accuracy, the maximum error for the 
compliance matrix elements reduced from 0.1% to 0.05%.  

 

Figure 2.11 Residuals for stiffness model identification with parabolic mesh of 2 mm 

 

Figure 2.12 Filtering of the deflection field outliers 



Chapter 2   Kinetostatic models of manipulator elements and identification of their parameters  48 

It is worth mentioning that here, because of the 3-dimensional nature of the problem, each node has 
been evaluated by three residuals and it was eliminated if any of these residuals was treated as an outlier. In 
addition, the detailed analysis showed that the outliers were concentrated at the beam edges, which confirms 
previous assumptions concerning the FEA-induced errors.  

Eliminating non-significant elements. According to (2.23), the desired compliance matrix includes a 
number of zero elements (26 of 36), but the proposed identification procedure may produce some small non-
zero values. To evaluate their statistical significance, for each element kij the confidence interval was 
computed. Relevant computations were performed using expressions for the variances of the deflections 
(2.21) and the s.t.d. value of the FEA-modeling noise, which was estimated as 55.6 10 mm    (by 
averaging for all 6 experiments). Then, the computed confidence intervals were scaled in accordance with 
(2.4), to be adopted to corresponding elements of the matrix k (this procedure involves simple division by 
the magnitude of the applied force or torque).  

Using this approach, the compliance matrix was revised by assigning to zero all non-significant 
elements. The employed "decision support" algorithm treated an element as a non-significant one if its 
confidence interval included zero. As shown in Table 2.7, this technique allowed us to detect all 26 zero 
elements mentioned above. It should be also noted that all non-zero elements were evaluated as ’significant’ 
ones, with essential ‘safety factor’ of 102 and higher.  

Table 2.7 Eliminating non-significant elements 

Parameter Estimated value CI Exact value 

k11 5.00·10-5 ±2.3·10-8 5.00·10-5 

k22 2.00·100 ±2.4·10-5 2.00·100 

k33 2.00·100 ±2.4·10-5 2.00·100 

k44 9.00·10-6 ±6.0·10-9 9.00·10-6 

k55 6.00·10-6 ±8.2·10-9 6.00·10-6 

k66 6.00·10-6 ±8.2·10-9 6.00·10-6 

k26 -3.00·10-3 ±2.4·10-8 -3.00·10-3 

k62 -3.00·10-3 ±8.5·10-6 -3.00·10-3 

k35 3.00·10-3 ±2.4·10-8 3.00·10-3 

k53 3.00·10-3 ±8.5·10-6 3.00·10-3 

k31 1.8·10-8 ±2.3·10-8 0 

k32 7.8·10-6 ±2.4·10-5 0 

k23 7.8·10-6 ±2.4·10-5 0 

k45 -6.2·10-10 ±8.4·10-8 0 

k54 -5.7·10-10 ±5.6·10-8 0 

k63 -6.7·10-9 ±2.4·10-8 0 

 

Remarks and comments. The presented illustrative example that deals with a classical element 
(cantilever beam) confirmed validity of the developed method but also demonstrated some limitations of the 
FEA-modeling with respect to the stiffness analysis. In particular, some (not very essential but non 
negligible) disagreement between numerical values of the applied forces/torques and their values extracted 
from the modeling protocol were detected. Besides, there are a number of non-trivial issues in defining 
modeling options that are normally set by default. All these factors contribute to the accuracy, but a 
practically acceptable level 0.1% can be achieved rather easily, using standard computing facilities. Some 
additional enhancement can be achieved symmetrizing the obtained matrix : ( ) / 2T k k k  that is motivated 
by the physical reasons. 
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2.6 STIFFNESS MATRIX FOR A DOUBLE-SIDE LOADED LINK 

The above presented identification technique allows us to obtain stiffness matrices of size 6 6 , which 
are common for the VJM-based modeling. These matrices describe the link stiffness behavior that is 
evaluated assuming that one of the link ends is fixed and the loading is applied to the second one. In 
mechanics, such arrangement is known as "cantilever beams" (Figure 2.13a). Though for kinematic chains 
studied in the following sections this assumption (fixing of one of the link ends) is not valid in strict sense. 
The stiffness model developed in the following chapters operate with 6 6  stiffness matrices only. This is 
achieved due to a special procedure of deriving the static equilibrium equations, where the links are 
considered sequentially, and one-by-one, assuming that each link is fixed in the previous joint and the 
loading is applied to the next one. This is an essential advantage of the VJM-modeling that operates with 
stiffness matrices of relatively small dimensions. 

However, there is an alternative approach (the MSA-modeling) that operates with 12 12  stiffness 
matrices, which does not assume that any of the link ends is fixed. In contrast, it is assumed here that the 
links are subject to double-side loading and deflections are defined for both of this sides (Figure 2.13b). For 
such arrangement, the stiffness matrix should have size 12 12  because it defines the linear relations 
between two deflection vectors (of size 6 each) and two vectors of loading (of size 6 each). From a physical 
point of view, it is clear that both stiffness matrices (of size 6 6  and 12 12 ) describe the same properties 
of the link, while the smaller one contains exhaustive information on the stiffness. Hence, it is useful to 
obtain expressions that allow us to transform a 6 6  stiffness matrix into a 12 12  one, which is required for 
the MSA-modeling technique that usually deals with standard and simple link approximations (beams, truss, 
etc.).  

 

 

Figure 2.13 Physical models of cantilever beam (a) and double-side loaded beam (b) 

 

To derive desired expressions, let us denote the above described stiffness matrices as 6 6K  and 12 12K . 
Let us also assume that the link geometry and its spatial location are defined by the vector T( , , )x y zl l lL  
connecting corresponding nodes. Besides taking into account that both of the matrices are symmetrical, it is 
convenient to present them in the block form as 
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where 1,2i   and 1,2j  . 

Let us consider simultaneously two static equilibrium equations   
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and 
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where the first one corresponds to the single-end loading (see Figure 2.13a) and the second equation 
corresponds to the double-side loading (see Figure 2.13b). Here, for the single-side loading case, F  and M  
are the force and torque applied to the non-fixed link end, p  and φ  are translational and rotational 
deflections caused by external loading. Similarly, for the double-side loading case, 1 1 1

T( , )W F M  and 

2 2 2
T( , )W F M  are the wrenches applied to the link ends, 1 t  and 2 t  are the deflections of corresponding 

link ends under the loadings 1W  and 2W . It is obvious that in both cases the model variables should satisfy 
the static equilibrium conditions, which eliminate some redundancy in notations for the second case.  

To obtain desired matrices, let us assume first that for the double-side model 1 t 0 . This allows us 
straightforwardly apply equation (2.28) and static equilibrium constrain that yield   

 21 2; ;
 
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That leads to the following presentation of equation (2.29)  
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which leads to 

 22 6 6K K  (2.32) 

Further, taking into account that  ·   F L L F  and using symmetrical properties of stiffness matrix,  
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Similarly, assuming that 2 t 0 , the model (2.29) can be re-written using expressions 
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and presented in the form 
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that after substitution of 12K , 21K , 22K  and relevant transformations gives the following expression 
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Finally, integrating all sub-matrices, the desired matrix of size 12 12  can be presented in the form 
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which includes elements of 6 6K  and the link's geometrical parameters  L  only. 

Therefore, the stiffness matrix identification technique developed in sections 2.1-2.5, can also produce 
12 12  matrices required for the manipulator stiffness modeling based on the MSA-approach. This also 
enhances previous results of [Deblaise 2006b] where the manipulator topology was quite general (parallel 
and with cross-linkage), but the links stiffness properties were described rather roughly. 

 

2.7 APPLICATION EXAMPLE: STIFFNESS MATRICES FOR ORTHOGLIDE LINKS 

Let us apply the proposed methodology to the identification of the link stiffness matrices for a parallel 
manipulator of Orthoglide family [Chablat 2003]. The principal components of the manipulator are presented 
in Figure 2.14, where the elements (b, e, f) are treated as flexible ones and the element (c) is assumed to be 
rigid. In previous works, relevant stiffness matrices have been obtained either via single-beam approximation 
[Majou 2007] or by using FEA-based identification procedure with linear meshing option 
[Pashkevich 2010]. Besides, joints particularities have not been taken into account and their influence on the 
elements of the stiffness matrix was not studied. Hence, it is quite possible that some stiffness matrix 
elements have been identified with essential errors.  

 

 

Figure 2.14 CAD model of Orthoglide and its principal components:  
Orthoglide (a), foot (b), end-effector (c), parallelogram (d), parallelogram axis (e) and bar (f) 

 

In accordance with sub-section 2.5.1, the FEA-based virtual experiments were performed using the 
parabolic mesh of size 2 mm (2P in Figure 2.9) and the test forces/torques of 1 N and 1 N·m respectively, 
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which, for considered link size and material properties, correspond to the area of linear force-deflection 
relation (see 0). As it follows from Table 2.5, such settings ensure accuracy of about 0.1%. Identification 
results are presented in Table 2.8, where the obtained matrices include a number of zero elements that were 
detected using the technique presented in sub-section 2.5.2. It is also worth mentioning that these matrices 
are symmetrical, which confirms validity of the developed method.  

For comparison purposes, similar matrices have been computed using other methods (single- and 
multi-beam approximations, the FEA-modeling with linear meshing). They are presented in Table 2.9 and 
show essential dissimilarity in the evaluation of some matrix elements by different methods. For instance, for 
the parallelogram bar (i.e., link (f) in 0), the torsional compliance defined by the element k44 differs by a 
factor of 13. The main reason for this is that the developed technique takes into account the joint 
particularities that define the force distribution rule for the applied loadings (previous results assumed that 
the loading was localized in the reference point). However, the final conclusion concerning accuracy of the 
obtained stiffness matrices can be obtained after integration of these matrices in the stiffness model of the 
entire manipulator and comparing it with a straightforward FEA-modeling of the manipulator assembly.  

 

Hence, presented examples confirm advantages of the developed stiffness matrix identification 
technique and demonstrate its ability to take into account complex link shapes as well as joint particularities 
related to the force/torque distribution. In addition, it produces symmetrical matrices with some zero 
elements in accordance with physical properties of the considered manipulator components. In the following 
chapters, these matrices will be used for the VJM-based stiffness modeling of parallel manipulators.  

 

Table 2.8 Compliance matrices of Orhoglide links 

Link Compliance matrix 
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Table 2.9 Comparison of the compliance matrix elements obtained from different methods  

Compliance matrix elements 

Method k11  

[mm/N] 
k22  

[mm/N] 
k33  

[mm/N] 
k44  

[rad/N·mm] 
k55  

[rad/N·mm] 
k66  

[rad/N·mm] 

Link (b): foot 

Single-beam  
approximation 

3.45·10-4 3.45·10-4 18.1·10-4 2.10·10-7 2.10·10-7 0.91·10-7 

Four-beam  
approximation 

2.77·10-4 4.34·10-4 17.9·10-4 2.11·10-7 1.95·10-7 0.91·10-7 

FEA-based evaluation 
(linear mesh) 

2.45·10-4 3.24·10-4 15.9·10-4 2.07·10-7 2.06·10-7 1.71·10-7 

FEA-based evaluation 
(parabolic mesh) 

2.77·10-4 4.15·10-4 19.4·10-4 2.29·10-7 2.30·10-7 0.84·10-7 

Link (e): parallelogram axis 

Single beam  
approximation 

1.34·10-6 2.65·10-5 2.65·10-5 4.29·10-8 3.18·10-8 3.18·10-8 

FEA-based evaluation 
 (linear mesh) 

1.99·10-6 1.29·10-5 1.50·10-5 6.81·10-6 8.23·10-6 2.67·10-6 

FEA-based evaluation 
(parabolic mesh) 

6.23·10-6 2.83·10-5 2.59·10-5 2.77·10-7 4.84·10-7 1.20·10-7 

Link (f): parallelogram bar 

Single-beam  
approximation 

3.75·10-5 4.38·10-2 1.09·10-1 3.96·10-6 3.40·10-6 1.37·10-6 

FEA-based evaluation 
(linear mesh) 

4.50·10-5 3.64·10-2 8.01·10-2 3.76·10-6 2.65·10-6 1.09·10-6 

FEA-based evaluation 
(parabolic mesh) 

4.55·10-5 5.08·10-2 2.33·10-1 2.88·10-5 7.19·10-6 1.50·10-6 
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2.8 SUMMARY 

 

The chapter is devoted to the development of the FEA-based methodology for stiffness matrix 
identification of the manipulator links with the complex shape. The main contributions are in the areas of 
virtual experiments planning and algorithmic data processing that produce the desired stiffness matrix with 
required accuracy. In contrast to other works, the developed technique operates with the deflection field in 
the neighborhood of the reference point, which provides higher identification accuracy (about 0.1% for 
stiffness matrix element). In addition, it allows us to estimate confidence intervals for the matrix elements 
and to set to zero non-significant ones. 

 

In more details, new results and contributions of Chapter 2 can be formulated as  

(i)  FEA-based methodology for stiffness matrix identification, which allows to evaluate the 
stiffness matrix from the deflection field produced by virtual experiments in a CAD 
environment, taking into account the link shape, coupling between rotational/translational 
deflections and joint particularities 

(ii) Numerical technique for computing the stiffness matrix from the deflection field extracted from 
FEA-based virtual experiments; comparative study of several versions (SVD-based, LIN-based 
etc.) with respect to computational efficiency and speed. 

(iii)  Analytical expressions for accuracy evaluation of the developed identification technique, which 
allow to determine the optimal settings for the FEA-based experiments and to improve the 
identification accuracy  

(iv) Technique for statistical processing of the experimental data, which allows us to minimise the 
identification errors by eliminating outliers, to determine the confidence intervals and to detect 
"zero" elements of the stiffness matrix. 

(v) Application of the developed technique to case studies (Orthoglide links) and comparison with 
previous methods (based on approximated models), which confirmed advantages of the 
developed method: reduction of errors in significant elements of the stiffness matrix from 20-
50% to 0.1% 

 

In spite of the fact that the developed technique produces 6 6  stiffness matrices (which are used in 
the VJM method), it is also useful to the MSA-based modeling that operates with matrices of the size 
12 12 . Required transformation is performed using the derived analytical expressions that are applicable in 
general cases. Thus, the developed identification technique allows us to increase the accuracy of both 
methods, the VJM- and the MSA-based ones.  

Besides, this technique can be efficiently applied not only to separate links but also to the entire 
manipulators, whose stiffness is evaluated through the FEA-modeling. In the case of constrained and over-
constrained manipulator, this application is straightforward. While for under-constrained manipulators, the 
CAD model should be slightly modified by introducing an additional constraint.  

Concerning limitations of the developed technique, they are related to the use of the lumped 
presentation for the stiffness of the manipulator link, whose properties are distributed by its nature. It is 
obvious that such idealization can be justified for some range of force/torque only. Moreover, the obtained 
stiffness matrices correspond to the linear model, whose applicability is also limited. However, as it will be 
shown in the following sections, the VJM-model of the entire manipulator may demonstrate essentially non-
linear behavior (though the stiffness of each link is described by a linear model). 

 

 

Main results of Chapter 2 are published in the following works: [Klimchik 2009b], [Klimchik 2011b]. 
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This chapter is devoted to the enhancement of the VJM-based stiffness modeling 
technique for serial and parallel manipulators with arbitrary location of passive joints in 
the case of small deflections (unloaded mode). It proposes computationally efficient 
procedure, which is able to produce singular and non-singular Cartesian stiffness matrix 
for the kinematic chain both in numerical and in an analytical form. This allows to extend 
the classical stiffness mapping equation for the case of manipulators with passive joints 
and to evaluate stiffness matrix properties analytically. It also proposes a new 
aggregation technique, which is able to take into account the geometry of the mobile 
platform and to compute internal deflections and forces/torques as well as the 
displacement of the end-platform caused by geometrical errors in the kinematic chains. 
The developed stiffness analysis technique is illustrated by several examples, which deal 
with parallel manipulators.  

 

3.1 INTRODUCTION  

Stiffness of an industrial manipulator is one of the most important performance indicators in any 
applications [Park 2008] [Angeles 2008] [Luca 2008]. For industrial robots the primary target is an accurate 
location of a technological tool during workpiece processing, while manipulator compliance introduces 
positioning errors arising due to the external loading during machining. Similarly, in the fast pick-and-place 
manipulations the stiffness defines admissible velocity and acceleration in order to avoid undesirable 
displacements due to inertia forces [Nof 1999]. In the case of large robotic manipulators, elastic 
deformations of mechanical components under the task load (and under own link-weight) also introduce 
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significant position errors [Meggiolaro 2005]. It is obvious that in all of these cases, the desired stiffness 
should be high enough to meet the requirements of the relevant application. 

Similar to the general structural mechanics [Timoshenko 1970] [Hjelmstad 1997], the robot stiffness 
analysis evaluates the manipulator resistance to the deformations caused by an external force/torque applied 
to the end-effector [Duffy 1996]. As it follows from Chapter 1, in robotics the stiffness modeling is usually 
based on the Virtual Joint Method (VJM), which describes flexible elements as rigid, while a localized 
virtual spring located in the manipulator joints take into account it compliance. Manipulator stiffness, as well 
as other manipulator properties (kinematical, for instance), depend on the manipulator configuration [Alici 
2005]. Moreover, in general, the force-deflection relation is nonlinear, while for small deformations or so 
called unloaded mode (which is normally in the engineering practice it is considered as an operational 
condition), they can be approximated by the linear function. Numerically this property is defined by the 
stiffness matrix K (or the compliance matrix k), which gives the linear relation between end-effector 
displacement and external loading which cause this transition (assuming that all of them are small enough) 
[Koseki 2000]. As it follows from related works, for the conservative systems, that are considered in this 
work, stiffness matrix K is 6×6 semi-definite non-negative symmetrical matrix but to represent the coupling 
between the translation and rotation its structure may be non-diagonal.  

In robotics 6×6 stiffness matrix K is usually referred to as the Cartesian Stiffness Matrix KC and it 
should be distinguished from the “Joint-Space Stiffness Matrix” Kθ that describes forces-deflections relation 
in the joint coordinates [Ciblak 1999]. These stiffness matrices can be mapped to each other using the 
Conservative Congruency Transformation [Chen 2000a]. Mathematical background for this computation 
originates from the work of Salisbury [Salisbury 1980] who derived a closed-form expression for the 
Cartesian stiffness matrix of a serial manipulator assuming that the mechanical elasticity is concentrated in 
the actuated joints. Retaining this assumption, Gosselin [Gosselin 1990] extended this result for the case of 
parallel manipulators (where the links were assumed to be rigid, and the passive joints to be perfect). Further 
development of this approach allowed to take into account links stiffness by supplementating the rigid beam 
with linear and torsional springs [Gosselin 2002]. Recent modification of VJM-modelling proposed by 
Pashkevich et. al. [Pashkevich 2010] and further developed in this thesis (see Chapter 2 for details) deals 
with 6×6 stiffness matrices which are computed from FEA experiments and are able to take into account 
couplings between translational and rotational deflections, the real shape of complex link and joints 
particularities. The latter essentially increased accuracy of the VJM-modeling while preserving its high 
computational efficiency. At present, there are different variations of VJM, which differ in modeling 
assumptions and numerical techniques [Majou 2007], [Corradini 2002]. They were developed for different 
kinematic architectures [Company 2002], [Arumugan 2004], but there are still a number of open questions 
that are considered in this Chapter. 

Currently, most of the related works are devoted to stiffness modeling of serial chains. They include 
both stiffness analysis of classical serial manipulators (without passive joints) [Salisbury 1980], [Ciblak 
1999], [Pigoski 1998] and also some results for serial chains with passive joints. In particular, in [Pashkevich 
2010] an algorithmic solution has been proposed. This solution is capable of producing rank-deficient 
stiffness matrices. In spite of its computational simplicity, the method is not able to produce an analytical 
expression for the desired matrix. This limitation motivates us to revise this technique. Also it is useful to 
evaluate impact of passive joints on the separate elements of the stiffness matrix. 

For parallel manipulators, stiffness modelling is usually performed for all kinematic chains 
simultaneously [Gosselin 1990] [Wei 2010], using the aggregated elastostatic equilibrium equations 
[Yi 1993], [Quennouelle 2008b]. In contrast to these works, our approach is based on a two-step procedure, 
which includes stiffness modelling of all kinematic chains separately and then aggregates them in a unique 
model. This approach has been used by several authors [Zhang 2004], [Xi 2004], [Pashkevich 2010], but 
related aggregation technique was reduced to simple summations of Cartesian stiffness matrices for the 
kinematic chains and the external loadings applied to their end-points. This corresponds to “pure” parallel 
architectures where the end-point location of all kinematic chains are aligned and matched at the end-
platform reference point. Besides, in this work it has been implicitly assumed that the kinematic chains are 
perfect, i.e. their geometrical parameters are strictly nominal and the parallel manipulator can be assembled 
without additional internal stresses. However, in practice, the parallel manipulator architecture is usually 
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quite complex. In particular, the kinematic chains may be attached to different points of the end-platform. 
Besides the kinematic chain geometry usually differs from the nominal one, which causes some internal 
forces/torques while assembling. These motivate further development of the stiffness model aggregation 
technique for parallel manipulators.  

Hence, as it follows from the above analysis, the manipulator stiffness modeling for unloaded mode 
needs further improvement. So, the goal of this chapter is the enhancement of VJM-based stiffness modeling 
technique for serial and parallel manipulators with arbitrary location of passive joints in the case of small 
deflections (unloaded mode). To achieve this goal, several sub-problems have to be solved: 

(i)  Enhancement of the VJM-based stiffness modeling technique for small deformations on the 
case of serial chains with the arbitrary location of passive joints   

(ii)  Investigation of a passive joints influence on the stiffness matrix elements and development of 
analytical technique for the relevant stiffness matrix modification (for serial kinematic chain);  

(iii) Development of the stiffness model-assembling technique that allows to aggregate the 
elastostatic models of separate kinematic chains in the stiffness model of the parallel 
manipulator and to evaluate the deflections and the internal forces/torques caused by the 
geometrical errors in the chains 

To address these sub-problems, the remainder of this chapter is organised as follows. Section 3.2 deals 
with numerical computing of the stiffness matrix and evaluating of internal deflections for serial chains with 
passive joints. Section 3.3 proposes an analytical solution of the problem. Further, Sections 3.4 and 3.5 focus 
on stiffness modelling of parallel manipulators, where the stiffness model aggregation technique is proposed 
for both perfect and non-perfect serial chains. And finally, Section 3.6 summarises main results and 
contributions of this Chapter.  

 

3.2 STIFFNESS MODELING OF SERIAL CHAIN OF PARALLEL MANIPULATOR 

Typical examples of the examined kinematic chains can be found in the 3-PUU translational parallel 
kinematic machine [Li 2008], in the Delta parallel robot [Clavel 1988] or in the parallel manipulators of the 
Orthoglide family [Chablat 2003] and other manipulators [Merlet 2006] (see Figure 3.1). It is worth 
mentioning that here a specific spatial arrangement of under-constrained chains yields the over-constrained 
mechanism that posses a high structural rigidity with respect to the external force. In particular, for 
Orthoglide, each kinematic chain prevents the platform from rotating around two orthogonal axes and any 
combination of two kinematic chains suppresses all possible rotations of the platform. Hence, the whole set 
of three kinematic chains produces a non-singular stiffness matrix while for each separate chain the stiffness 
matrix is singular. This motivated the development of dedicated stiffness analysis techniques that are 
presented below. 

 

 

Figure 3.1 Architecture of typical parallel manipulators and their kinematics chains 
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3.2.2 Serial chain with passive joints and its VJM-model 

Let us consider a general serial kinematic chain, which consists of a fixed “Base”, a number of flexible 
actuated joints “Ac”, a serial chain of flexible “Links”, a number of passive joints “Ps” and a moving 
“Platform” at the end of the chain (Figure 3.2). It is assumed that all links are separated by joints (actuated or 
passive, rotational or translational) and the joint type order is arbitrary. Besides, it is admitted that some links 
may be separated by actuated and passive joints simultaneously. Such architecture can be found in most of 
the parallel manipulators (Figure 3.1) where several similar kinematic chains are connected to the same base 
and the platform in a different way (with the rotation of 90° or 120°, for instance), in order to eliminate the 
redundancy caused by the passive joints. It is obvious that such kinematic chains are statically under-
constrained and their stiffness analysis cannot be performed by the direct application of the standard 
methods.  

 

 

Figure 3.2 General serial kinematic chain and its VJM model (Ac – actuated joint, Ps – passive joint). 

 

In order to evaluate the stiffness of the considered serial chain, let us apply a modification of the 
virtual joint method (VJM), which is based on the lump modelling approach [Gosselin 1990]. According to 
this approach, the original rigid model should be extended by adding virtual joints (localized springs), which 
describe elastic deformations of the links. Besides, virtual springs are included in the actuating joints, to take 
into account the stiffness of the control loop. Under such assumptions, the kinematic chain can be described 
by the following serial structure:  

(a) a rigid link between the manipulator base and the first actuating joint described by the constant 
homogenous transformation matrix BaseT ; 

(b) the 6-d.o.f. actuating joints defining three translational and three rotational actuator coordinates, 
which are described by the homogenous matrix function 3D a( )iT θ  where 

a a a a a a
a x y z φx φy φz( , , , , , )i i i i i i i     θ  are the virtual spring coordinates; 

(c) the 6-d.o.f. passive joints defining three translational and three rotational passive joints 
coordinates, which are described by the homogenous matrix function 3D p( )iT q  where 

p x y z φx φy φz( , , , , , )i i i i i i iq q q q q qq  are the passive joint coordinates; 

(d) the rigid links, which are described by the constant homogenous transformation matrix Link
iT ; 

(e) a 6-d.o.f. virtual joint defining three translational and three rotational link-springs, which are 
described by the homogenous matrix function 3D Link( )iT θ , where 

Link x y z φx φy φz( , , , , , )i i i i i i i     θ , x y z( , , )i i i    and φx φy φz( , , )i i i    correspond to the elementary 
translations and rotations respectively; 

(f) a rigid link from the last link to the end-effector, described by the homogenous matrix 
transformation ToolT .  

In the frame of these notations, the final expression defining the end-effector location subject to 
variations of all joint coordinates of a single kinematic chain may be written as the product of the following 
homogenous matrices  

         2 1 2
Base 3D a 3D p Link 3D Link 3D p Tool

i i i i i

i

      T T T θ T q T T θ T q T  (3.1) 
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where the components Base 3D Link Tool, (...), ,iT T T T  may be factorized with respect to the terms including the 
joint variables, in order to simplify computing of the derivatives (Jacobian and Hessian).  

This expression includes both traditional geometric variables (passive and active joint coordinates) and 
stiffness variables (virtual joint coordinates). The explicit position and orientation of the end-effector can by 
extracted from the matrix T  in a standard way [Angeles 2007], so finally the kinematic model can be 
rewritten as the vector function 

 ( , )t g q θ  (3.2) 

where the vector  T( , )t p φ  includes the position T( , , )x y zp  and orientation T
x y z( , , )  φ  of the 

end-platform, the vector 1 2 nq( , , ..., )Tq q qq  contains all passive joint coordinates, the vector 
T

2 nθ1( , , ..., )  θ  collects all virtual joint coordinates, qn  is the number of the passive joins, θn  is the 
number of the virtual joints.  

 

3.2.3 Cartesian stiffness matrix of a serial chain 

For the serial chain the unloaded configuration can be defined as 0 0 0( , )ft q θ , where 0q  is 
computed via the inverse kinematic and 0θ  is equal to zero (since there are no preloads in the springs). Let 
us assume that the external force F  relocates the manipulator to the position 0 0( , )f    t q q θ θ , which 
for small displacements may be expressed as  

 0 θ q Δ    t t J θ J q  (3.3) 

where θ ( , ) /f  J q θ θ  and q ( , ) /f  J q θ q are the kinematic Jacobians with respect to the coordinates , 
q, which may be computed from (3.1) analytically or semi-analytically, using the factorization technique 
proposed in [Pashkevich 2010]. 

For the kinetostatic model, which describes the force-and-motion relation, it is necessary to introduce 
additional equations that define the virtual joint reactions to the corresponding spring deformations. For 
analytical convenience, all relevant expressions may be collected in a single matrix equation 

 θ θ τ K θ  (3.4) 

where T
θ θ,1 θ,2 θ,nθ( , , ..., )  τ  is the aggregated vector of the virtual joint reactions, 

θ θ,1 θ,2 θ θ,n( , , ..., )diagK K K K  is the aggregated spring stiffness matrix of the size θ θn n , and θ,iK  is the 
spring stiffness matrix of the corresponding link. Similarly, one can define the aggregated vector of the 
passive joint reactions T

q q,1 q,2 q,nq( , , ..., )  τ  but, at the equilibrium, all its components must be equal to 
zero ( q τ 0 ). 

Further, let us apply the principle of virtual work assuming that the joints are given small, arbitrary 
virtual displacements Δθ  in the equilibrium neighborhood. Then, the virtual work of the external force F  
applied to the end-effector along the corresponding displacement θ qΔ Δ Δ   t J θ J q  is equal to the sum 

T T
θ q( ) )·Δ· ( Δ  F J θ F J q . For the internal forces, the virtual work includes only one component T

θ Δ τ θ  , 
since  the passive joints do not produce the force/torque reactions (the minus sign takes into account the 
adopted directions for the virtual spring forces/torques). Therefore, since in the static equilibrium the total 
virtual work is equal to zero for any virtual displacement, the equilibrium conditions may be written as  

 T T
θ θ q q;   J F τ J F τ  (3.5) 

This gives additional expressions describing the force/torque propagation from the joints to the end-effector. 

Hence, the complete kinetostatic model consists of four matrix equations (3.3)-(3.5) where either F  or 
Δt  are treated as known, and the remaining variables are considered as unknown. Thus, relevant equations 
of statics may be written as  

 T T
θ θ θ qq ; 0; 0         J J t F θ F Jq J Kθ  (3.6) 

here 0  t t t , and the general relation between the increments F , t , θ , q  can be presented as  
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     

0 J J F t
J K 0 θ 0

q 0J 0 0
 (3.7) 

The latter gives a straightforward numerical technique for computing the desired stiffness matrix: direct 
inversion of the matrix in the left-hand side of (3.7) and extracting from it the upper-left sub-matrix of size 
66 

 
θ q

1

T
θ

T
θ

q

C

*
*


    
              

0 J J K
J K 0
J 0 0

      (3.8) 

Since the matrix θK  is non-singular (it describes the stiffness of the virtual springs), the variables θ  
can be expressed via F  using the equations (3.6) 1 T

θθ · θ K J F . This leads to a reduced system of matrix 
equations with unknown F  and Δq  

 
1 T

θ θ θ q
T

q

Δ
Δ

                

J K J J F t
q 0J 0

. (3.9) 

that may be treated in the similar way, i.e. the desired stiffness matrix is also obtained by the direct inversion 
of the matrix in the left-hand side of (3.9) and extracting from it the upper-left sub-matrix of size 66: 

 

11 T
θ θ θ q C

T
q

*
          

J K J J K

J 0
 (3.10) 

where the sub-matrix 1 T
θ θ θ

 J K J  describes the spring compliance relative to the end-effector, and the sub-
matrix qJ  takes into account the passive joint influence on the end-effector motions. Therefore, for a 
separate kinematic chain, the desired stiffness matrix CK  can be computed by the direct inversion of the 

q q(6 ) )6(n n   matrix in the left-hand side of (3.10) and extracting from it the 6 6  sub-matrix. 

 

3.2.4 Deflections in serial chains with passive joints 

Cartesian stiffness matrix CK  computed in the previous sub-section, allows us to obtain the linear 
relation between the end-effector displacement t  and the external loading F  

 C F K Δt , (3.11) 

that defines the kinematic chain elastostatic properties in a traditional way. However, due to specificity of the 
robotic mechanism, it is useful to propose the additional performance measures that evaluate variations in 
passive q  and virtual joint coordinates θ  because of the end-point displacement. These values provide the 
designer a supplementary information on the manipulator properties, such as the weakest and strongest links 
with respect to the compliance errors, the most significant displacements in the passive joints caused by the 
shifting of the end-point location etc. It is worth mentioning that these values cannot be directly computed 
from kinematic equations due to redundant number of the joint variables (in fact, it is necessary to take into 
account additional relations derived from static equilibrium equations).  

The desired performance measures can be introduced in a similar manner, via the stiffness matrices 

CθK  and CqK  defining linear mappings of the end-point displacement to the internal coordinates deflections 
θ  and q : 

 Cθ Cq;    θ K t q K t  (3.12) 

These matrices CθK  and CqK  can be computed from the full scale force deflection relation (3.7) by the 
direct inversion of q θ q θ(6 ) 6( )n n n n     matrix in the left-hand side of (3.8) and extracting from it 

θ 6n   and q 6n   sub-matrices, which correspond to CθK  and CqK  respectively (see (3.8) for details). 
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Moreover, since the virtual joint coordinates θ  and external loading F  are defined, the internal loadings θτ  
in virtual joints can be computed using the expressions (3.4) and (3.5).  

To avoid high-dimensional matrix inversion, some transformations can be performed analytically 
assuming that the matrix CK  is known. In particular, using expressions 1 T

θ θ· θ K J F  and C Δ F K t  that 
follow from (3.4) and (3.5), the desired matrix CθK  can be expressed as 

 1
Cθ C

T
θ θ· ·K JK K  (3.13) 

and relevant torques in the virtual joints can be computed as   

 θθ C
T· Δ Jτ K t  (3.14) 

Further, to compute the matrix CqK , let us consider the first equation of the system (3.6) and substitute 

Cθ θ K t . This yields the redundant system of linear equations 

 θ Cθ q·      J K t J q t , (3.15) 

which can be solved using the common pseudo-inversion technique that gives the following expression for 
the second matrix 

    1T T
q q qCq θ Cθ· · · ·


 K J J J J KI  (3.16) 

that includes inversion of dimension q qn n . Hence, using expressions (3.13) and (3.16), the designer can 
obtain additional information allowing to evaluate resistance of the internal joint variables with respect to the 
deflection of the end-platform and to make the relevant modifications of the manipulator parameters.  

 

Summarising Section 3.2 it should be stressed that the developed technique can be applied to a serial 
kinematic chain with the arbitrary location of passive joints and allows us obtain even rank-deficient stiffness 
matrices caused by the presence of the passive joints or singular configuration of the chain. Also, it evaluates 
internal deflections (and corresponding forces/torques) that are useful for mechanical design. In contrast to 
previous works, the proposed technique is more computationally efficient and includes low-order matrix 
inversion. However, to evaluate properties of the considered matrices, it is worth to obtain an analytical 
solution.  

 

3.3 ANALYTICAL COMPUTING OF CARTESIAN STIFFNESS MATRIX  

The expressions proposed in Section 3.2 allow us to compute the Cartesian stiffness matrix CK  for 
serial kinematic chains with the passive joints in the numerical form, by the inversion of 

q θ q θ(6 ) 6( )n n n n     matrix (3.8) and extracting the 6 6  sub-matrix from it. Another more efficient 
solution, requires matrix inversion of dimension q q(6 ) )6(n n   in accordance with (3.10). This Section 
gives the analytical solution of the problem, which requires several matrix inversions of dimension 6 6  
only. Besides, it allows us to explicitly separate the influence of virtual elastic joints and passive joints. For 
illustration purposes, it also includes several case studies that show how the stiffness matrix is modified due 
to the presence of the passive joints. 

3.3.1 Extended stiffness mapping equation  

For the manipulators without the passive joints, the desired equation is well-known [Gosselin 1990], 
[Chen 1999] and is expressed as θC

1 -T
θ θ· ·K J K J  or θ θ

T
θ C· ·K J K J . In literature, it is also often called the 

"stiffness mapping" expression, which defines relation between the stiffness properties in the joint and 
Cartesian spaces. It is worth mentioning that in the previous works, it has been implicitly assumed that the 
Jacobian θJ  is a 6 6  invertible non-singular matrix, while in a general case the considered kinematic chains 
may produce non-square Jacobians of size θ6 n , but θ( ) 6rank J  due to the special arrangement of virtual 
springs. Let us generalize the stiffness mapping equation for the case of the manipulators with passive joints 
and a redundant number of virtual joints θ 6n  . 
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In order to derive the desired equation, it is reasonable to consider matrix expression (3.10) and apply 
the blockwise inversion technique of Frobenius [Gantmacher 1959] 

 
1 1

;
      


  

            

1 1 1 1 1
1

1 1 1

A A BH CA A BHA B
H D CA B

C D H CA H
 (3.17) 

where the sub-matrices A,...,H are expressed as 

 1 T T T 1 T 1
θ θ θ q q θq qθ θ; ; ; ; (· · · · · ·)       A J K J B J C J D 0 H J J K J J  (3.18) 

This yields the following presentation of the left-hand side of (3.10)  

 q

11
θ θ

T
q

· · T


          

J K J J A B
C DJ 0

 (3.19) 

where 
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q θ θ

q q

q q

q

qθ

1

· · · · · · · · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· ·( · ·

;

)

T


      



  

  

 

  

 

 

  

A J K J J K J J J J K J J J J K J

B J K J J J J K J J

C J J K J J J J K J

D J J K J J

 (3.20) 

Hence, the desired Cartesian stiffness matrix CK  can be presented analytically as 

         1 1 1 11 1 1 T 1 T
θ θ θ θ θ θ θ θ θ θ θ θ

1
T T

C q q q q· · · · · · · · · · · · · ·T T      


 K J K J J K J J K J J J JJ KJ J . (3.21) 

Similarly, the matrix CqK  defining mapping from the Cartesian space to the passive joint space can 
also be expressed analytically as  

     
11 1T 1 T T 1 T

Cq q θ θ θ q θ θq θ· · · · · · · ·
  K J J K J J J J K J . (3.22) 

To compare these results with the classical stiffness mapping equation 1 -T
C θ θ θ· ·K J K J , the 

expression (3.21) can be rewritten as the difference of two 6 6  matrices 

 0 0
C C C q Cq· · K K J KK  (3.23) 

where the first term 0
CK  is the stiffness matrix of the corresponding serial chain without passive joints 

   11 T
θ θ θ

0
C · ·

 J JK K  (3.24) 

and the second term 0
C q Cq· ·K J K  defines influence of the passive joints on the Cartesian stiffness matrix CK . 

Hence, the obtained expression (3.23) extends the classical stiffness mapping technique for the case of 
manipulators with passive joints by adding an additional component to it. The latter allows us to estimate the 
impact of passive joints on the kinematic chain stiffness in an explicit form and to obtain some useful 
analytical results presented in the following sub-section.  

It is worth mentioning that in contrast to previous works, the proposed extended stiffness mapping 
equation (3.23) can be also applied to the kinematic chains with non-square Jacobians θJ  of full rank, since 
the matrix inversion is applied to the 6 6  matrix 1 T

θ θ θ· ·J K J , which is always invertible (even for singular 
postures of kinematic chain).  Besides, it is in a good agreement with other relevant works 
[Quennouelle 2008a], [Quennouelle 2008c], [Chen 2008] where CK  was presented as the difference 
between the two matrices but the second one was computed in a different way (to take into account impact of 
geometrical constrains). 
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3.3.2 Stiffness matrix properties 

Let us analyze in details expression (3.21) that allows computing the stiffness matrix of a serial chain 
with passive joints CK  from the corresponding matrix of the chain without passive joints 0

CK . Assuming 
that 0

C( ) 6rank K , this matrix can be factorised into the product of two non-singular square matrices  
0
C

TK S S . This yields a compact presentation of the desired matrix in the form  

 T
C   K S M S  (3.25) 

where  

   1T T T T
q q q q( ) (· · · )· ·


   M I S J J S S J J S  (3.26) 

and the inverse T T 1
q q· ·( )· J S S J  exists due to the assumption q q( )rank nJ . Further, the product q·S J  can be 

also factorised using the SVD-technique [Strang 1998] as 

 
q q

q

T q
q 6 6 n ×n

6×n

· ij iju v


            

Σ
S J UΣV

0
 (3.27) 

where U , V  are the orthogonal matrices and the matrix q 1 2( , ,...)diag  Σ  is composed of qn  non-zero 
singular values i  (provided that q q( )rank nJ ). The latter gives the following presentation of M   

   1T T T
      M U I Σ Σ Σ Σ U . (3.28) 

where the product 1 T( )T   Σ Σ Σ Σ  may be computed in a straightforward way: 

   q

1
1 nT T q q

q q

6 6

· · ·






                            

I 0Σ Σ
Σ Σ Σ Σ Σ 0 Σ 0

0 0 0 0
. (3.29) 

So, the inner part of M  may be presented as 

  
q

1 T

6-n
6 6

· · · qnT 



 
     

  

0 0
M I Σ Σ Σ Σ

0 I
 (3.30) 

This leads to the final expression  

 · ·T T
C   K S U M U S  (3.31) 

that allows to evaluate the rank of the stiffness matrix CK  

 C q( ) ( ) 6rank rank n  K M  (3.32) 

For computational convenience, the orthogonal matrix U may be split into six vector columns 
 1 6, ...,u u  and the matrix product T· ·U M U  is expressed as a subsum of T

i iu u  corresponding to the non-
zero elements of M . This gives another presentation of the desired Cartesian stiffness matrix  

 
6

T T
C

1
i i

i nq 

 
   

 
K S u u S  (3.33) 

where the middle term includes only those unit vectors iu  that are not “compensated” by the passive joints 
(for this notation, the directions 1 nq,...u u  correspond to the end-effector motions, which do not produce 
elastostatic reactions because of the passive joints). It should be noted that in the case of q 0n  , i.e. without 
passive joints, the total sum of T

i iu u  produces a unit matrix 6I  and the latter expression is reduced to 
0 T
C ·K S S . 

All this leads to the following conclusion concerning computational singularities: 

 

Remark 1.  The first term of the expression (3.21) is non-singular if and only if  θ 6rank J , 
i.e. if the VJM model of the chain includes at least 6 independent virtual springs. 
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Remark 2.  The second term of the expression (3.21) is non-singular if and only if 

 q qrank nJ , i.e. if the VJM model of the chain does not include redundant 
passive joints. 

 

Remark 3.  If both terms of (3.21) are non-singular, their difference produces a symmetrical 
stiffness matrix, which is always singular and  C q6rank n K .  

 

Remark 4.  If the matrix 0
CK  of the chain without passive joints is symmetrical and positive-

definite, the stiffness matrix of the chain with passive joints CK  is also 
symmetrical but positive-semidefinite. 

 

Hence, in practice, expression (3.21) does not cause any computational difficulties and always produce 
a singular stiffness matrix of rank q6 n . In analytical computations, it can be also useful in modifying the 
original stiffness matrix 0

CK sequentially, which will be the focus in the next sub-section  

 

3.3.3 Recursive computation of the stiffness matrix 

To simplify the Cartesian stiffness matrix computation technique and to specify the impact of each 
passive joint on resulting matrix CK , it is useful to obtain recursive procedure which allows us sequentially 
modify the original stiffness matrix 0

CK . To obtain relevant recursive procedure, let us assume that it is 
possible to take into account passive joints sequentially, in two steps. Let us group these joints into two 
vectors 1q  and 2q  and decompose the Jacobian qJ  of size q6 n into two sub-matrices q1 q2[ , ]J J  of sizes 

q16 n  and q26 n  correspondingly. Then, recursive expressions corresponding to (3.21) can be written as 

    1 11 0 0 T 0 0 2 1 1 T 1 T 1
C C C q1 q1 C q1 q1 C C C C q2 q2 C q2 q2 C;T 
   K K K J J K J J K K K K J J K J J K  (3.34) 

In order to evaluate the obtained matrix 2
CK , let us substitute the first expression in the second one and 

perform some equivalent transformations using notations  

 
 

T 0 T 0 T 0 T 0
q1 C q1 q1 C q2 q2 C q1 q2 C q2

1T 0 T 0 T 0 T 0
q2 C q2 q2 C q1 q1 C q1 q1 C q2

; ; ;


   

     1

A J K J B J K J C J K J D J K J

H D CA B J K J J K J J K J J K J
 (3.35) 

This allows converting the original bulky expression  

 
     

      

1 12 0 0 T 0 T 0 0 0 T 0 0
С С С q1 q1 С q1 q1 С С С q1 q1 С q1 q1 С

1
1 1T 0 0 T 0 T 0 T 0 0 T 0 T 0

q2 q2 С С q1 q1 С q1 q1 С q2 q2 С С q1 q1 С q1 q1 С

· · · · · · · · · · · ·

· · · · · · · · · · · · · · · · ·

T 

 





   

 

K K K J J K J J K K K J J K J J K

J J K K J J K J J K J J K K J J K J J K
  (3.36) 

into a more compact form 

2 0 0 1 T 1 T 1 1 T 1 1 T 1 1 1 T 0
C C C q1 q1 q2 q2 q2 q1 q1 q2 q1 q1 C( )               K K K J A J J H J J H CA J J A B H J J A B H CA J K  (3.37) 

or, using block-matrix presentation, it can be written as 

 
T1 1 1 1 1 1
q12 0 0 0

1 1 1C C C q1 q2 CT
q2

·
     

  

               

JA A B H CA A B H
K K K J J K

H CA H J
 (3.38) 

Furthermore, using Frobenius formula for the blockwise matrix inverse (3.17), the derived expression can be 
presented in the form  

 

1T 0 T 0 T
q1 C q1 q1 C q2 q12 0 0 0
T 0 T 0C C C q1 q2 CT
q2 C q1 q2 C q2 q2

· · · ·
· · · ·

· · · ·


   

       
    

J K J J K J J
K K K J J K

J K J J K J J
, (3.39) 
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or 

 

1
T T
q1 q12 0 0 0 0

C C C q1 q2 C q1 q2 CT T
q2 q2

· · · · · ·


    

                 

J J
K K K J J K J J K

J J
 (3.40) 

that exactly coincide with the expression for the stiffness matrix CK corresponding to the aggregated 
Jacobian q q1 q2[ , ]J J J . Hence, it proves that the desired stiffness matrix of the kinematic chain with passive 
joints can be computed recursively, using arbitrary partitioning of the Jacobian qJ . Obviously, it is more 
convenient to apply column-wise splitting that allows sequential modification of the matrix 0

CK  taking into 
account the geometry of each passive joint separately (and reducing sequentially by one the rank of Cartesian 
stiffness matrix). 

 

Proposition.  If the chain does not include redundant passive joints, expression (3.21) allows 
recursive presentation  

   11 T T
C C C q q C q q C· · · · · ·i i i i i i i i i  K K K J J K J J K  (3.41) 

 in which the sub-Jacobians q q
i J J  are extracted from 1 2

q q q[ , ,...]J J J  in arbitrary 
order (column-by-column, or by groups of columns). 

 

Corollary.  The desired stiffness matrix CK  can be computed in qn  steps, by sequential 
application of expression (3.41) for each column of the Jacobian qJ  (i.e. for each 
passive joint separately). 

 

The latter motivates an additional analysis that is presented below and gives very simple and 
practically convenient expressions for the modifications of original stiffness matrix 0

CK .  

 

3.3.4 Single-joint decomposition in stiffness matrix computing 

Recursive equation (3.41) allows us to essentially simplify the computational procedure using the 
sequential modification of the original stiffness matrix 0

CK  for each passive joint independently, using 
separate columns of q q1, q2[ ,...]J J J . Moreover, for some typical cases, relevant computations may be 
easily performed analytically. Here, some useful techniques related to this approach are presented. 

Let us assume that a current recursion deals with a single passive joint corresponding to the i-th 
column of the Jacobian qJ , which is denoted as q

iJ  and has size 6 1 . In this case, the matrix expression 
T 1

q C q( )i i i J K J  is reduced to the size of 1 1  and the matrix inversion is replaced by a simple scalar division. 
Besides, the term  C q

i iK J  has size 6 1 , so the recursion (3.41) is simplified to  

 1 T ( 1) ( ) ( ) ( )
C C

1 1i i i i i i
i i jk jk j kor K K u u

 
               K K u u  (3.42) 

where i i
i C qu K J  is a 6 1 vector and T

q C q
i i i  J K J  is a scalar. Using the methodology presented in 

Section 3.3.1, it can be also proved that each recursions reduces the rank of the stiffness matrix by 1 

    1
C C 1i irank rank  K K  (3.43) 

provided that the current Jacobian q
iJ  is independent of the previous ones  1 2

q q, ...J J  (i.e. the i-th passive joint 
is not redundant relatively to the joints 1,..., 1i   ).  

Since in practice any combination of passive joints can be decomposed into elementary translational 
and rotational ones, it is enough to consider only two types of the Jacobian columns qiJ : 

    T T

tran 1 2 3 rot 1 2 3 1 2 30 0 0 ;e e e d d d e e e J J  (3.44) 
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where the unit vector  1 2 3e e ee , 1T e e  defines the orientation of the passive joint axis (both for 
translational and rotational ones) and the vector  1 2 3d d dd  defines the influence of the rotational 
passive joints on the linear velocity at the reference point, i.e.  d e r  where r  is a vector from the joint 
centre point to the reference point. After relevant substitutions, one can obtain the following expression for 
the translational joint 

 
3 3 3

( ) ( )

1 1 1

;i i
jk j k j jk k

j k k

K e e u K e
  

    (3.45) 

And for the rotational joint 

 
3 3 3 6 6 6 3 6

( ) ( ) ( ) ( ) ( )
3 3 3 3

1 1 1 4 4 4 1 4

2 ;i i i i i
jk j k jk j k jk j k j jk k jk k

j k j k j k k k

K d d K d e K e e u K d K e    
       

          (3.46) 

Hence, the single-joint decomposition allows to replace the matrix computations (3.41) by simple 
scalar calculations (3.42) that deal with the modification of the stiffness matrix elements, in accordance with 
the passive joint location defined by the vectors d  and e . It is worth mentioning that in general case, the 
transformation (3.42) affects all elements of the matrix C

iK , which differs from simple setting to zero the 
corresponding row and/or column that has been proposed in some publications [Taghvaeipour 2010]. Let us 
consider now several specific (but rather typical) cases where the transformation rules are more simple and 
elegant. 

 

3.3.5 Analytical computations: chains with trivial passive joints 

For practical purposes, let us consider a special type of kinematic chains where the passive joint axes 
are collinear to the axes x, y or z of the Cartesian coordinate system. Such passive joints will be further 
referred to as "trivial" or "quasi-trivial" ones. For such cases, the vector-columns of the Jacobian qJ  include 
a number of zero elements, so the expressions (3.42) can be essentially simplified.  

Let us start from a set of trivial cases where the Jacobians q
iJ  are created from the columns of the 

identity matrix 6 6I : 

 (1) (2) (6)
q q q

1 0 0
0 1 0
0 0 0

, , ...,
0 0 0
0 0 0
0 0 1

     
     
     
       
     
     
          

J J J  (3.47) 

It can be easily proved that they cover the following types of the joint geometry: 

 translational passive joints with arbitrary spatial position (but with the joint axis directed 
along x, y or z); 

 rotational passive joints positioned at the reference point (and with the joint axis directed 
along x, y or z) or rotational passive joint Rx located at any point at the x-axis. 

For these cases, assuming that ( )
q

pJ denotes the vector-column with a single non-zero element in the p-
th position, a straightforward substitution into (3.42) yields ( )i

j jpu K ; ( )i
ppK  . So, the recursive expression 

for the Cartesian stiffness matrix is simplified to   

 
( ) ( )

( 1) ( )
( )

i i
jk kji i

jk jk i
pp

K K
K K

K


 
            

 (3.48) 

and the p–th row and column of the matrix 1
C
iK  become equal to zero 

 ( 1) ( 1)0; 0; 1,...6i i
pk kpK K p     . (3.49) 

So, the recursive computations are easily performed analytically. 
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For the trivial passive joints, the results are summarized in Table 3.1 where the original stiffness 
matrix [ ]ijK  is assumed to be sparse in accordance with the structure corresponding to a symmetric beam-
type link (see Section 2.5). As it follows from them, here in all cases the stiffness matrix modifications 
includes setting to zero of an appropriate row and column, but in some cases some elements of other rows 
and columns are also modified (by simple division by 4).  

 

Table 3.1 Stiffness matrix transformations caused by trivial passive joints 
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Further, let us consider a set of quasi-trivial cases where the Jacobians q
iJ  are of a more complicated 

structure compared to (4) (5) (6)
q q q, ,J J J  

 

xx

y y

(4 ) (5 ) (6 )zz
q q q

0
0

0, ,
01 0
10 0
00 1

dd
d d

dd  

    
    
    
      
    
    
        

J J J  (3.50) 

where , ,x y zd d d  denote the elements of the vector d  defining the passive joint location. It can be proved 
that such types of Jacobians describe 

 rotational passive joints shifted by a distance L with respect to the reference point in the 
direction either x, y or z (and with the joint axis directed along x, y or z), 

and the values of , ,x y zd d d  are equal to either L  or 0. 

For these case studies, relevant results are presented in Table 3.2 where the original stiffness matrix 
[ ]ijK  is assumed to be the same as above. As it follows from them, here the resulting stiffness matrix is 
singular but does not include purely zero rows and columns. Hence, the existing technique 
[Taghvaeipour 2010] based on simple zeroing of the rows and columns cannot be applied for such types of 
passive joints. 

Using results obtained for the trivial and quasi-trivial passive joints, in many practically significant 
cases we can easily modify analytically the original stiffness matrix by sequentially taking into account each 
passive joint in accordance with the developed recursive technique. Relevant examples will be presented in 
sub-section 3.4.2 

Table 3.2 Examples of stiffness matrix transformations for quasi-trivial passive joints 

 

Summarising Section 3.3, its main contribution can be defined as the development of the analytical 
technique for computing of Cartesian stiffness matrices for serial kinematic chains with passive joints. It is 
based on the extended stiffness mapping equation, which separates the impact of passive joints and 
compliant elements presented by actuated and virtual elastic joints. This technique can be applied in one-step 
manner or recursively, by sequentially modifying the stiffness matrix taking into account the effect of each 
passive joint separately. The latter significantly simplifies related analytical computation reducing them to 
elementary algebraic transformations. Advantages of the proposed technique are illustrated by several case 
studies that give simple and practically convenient rules for stiffness matrix modification for kinematic 
chains with trivial and quasi-trivial passive joints.  
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3.4 AGGREGATION OF STIFFNESS MODELS OF PERFECT SERIAL CHAINS 

The stiffness modelling technique proposed in Sections 3.2 and 3.3 allows us to compute the stiffness 
matrix for a serial chain with an arbitrary location of passive joints and to evaluate its properties. It also 
provides an analytical solution of the problem. But this technique is limited by the stiffness modelling of 
serial kinematic chains or serial manipulators. Hence, it is reasonable to extend this technique for parallel 
architectures and to propose the method of aggregation of the elastostatic models of separate kinematic 
chains to the stiffness model of the parallel manipulator. Let us consider this problem in details. 

 

3.4.1 Stiffness model aggregation technique 

Let us assume that a parallel manipulator may be presented as a strictly parallel system of the actuated 
serial legs connecting the base and the end-platform (Figure 3.1) [Merlet 2006]. Using the methodology 
described in the previous sections and applying it to each leg, a set of m Cartesian stiffness matrices ( )

C
iK  

expressed with respect to the same coordinate system but corresponding to different platform points can be 
computed. If initially the chain stiffness matrices have been computed in local coordinate systems, their 
transformation is performed in a standard way [Angeles 2007], as  

 
T

glob loc
C C T

          

R 0 R 0
K K

0 R 0 R
 (3.51) 

where R  is a 3 3  rotation matrix describing orientation of the local coordinate system with respect to the 
global one.  

To aggregate these matrices ( )
C
iK , they must be also re-computed with respect to the same reference 

point of the platform. Assuming that the platform is rigid enough (as compared to the compliance of the 
legs), this conversion can be performed by extending the legs by a virtual rigid link connecting the end-point 
of the leg and the reference point of the platform (see Figure 3.3 where these extensions are defined by the 
vectors iv ).  

 

Figure 3.3 Typical parallel manipulator (a) and transformation of its VJM models (b, c) 

After such extension, an equivalent stiffness matrix of the leg may be expressed using relevant 
expression for a usual serial chain, i.e. as ( ) T ( ) ( ) 1

v C v· ·i i i J K J , where the Jacobian ( )
v
iJ  defines differential 

relation between the coordinates of the i-th virtual spring and the reference frame of the end-platform. 
Hence, the final expression for the stiffness matrix of the considered parallel manipulator can be written as 

  T 1( ) ( ) ( ) ( )
С v С v

1

· ·
m

m i i i

i

 



K J K J  (3.52) 

where m is the number of serial kinematic chains in the manipulator architecture.  

As a result, expression (3.52) allows us to compute Cartesian stiffness matrix for the parallel 
manipulator based on stiffness matrices for serial chains and transformation Jacobians ( )

v
iJ , which define 

geometrical mapping between end-points of serial chains and reference point frame (end-effector). 
Moreover, it is implicitly assumed here that all stiffness matrices (both for the serial chains and for the whole 
manipulator) are expressed in the same global coordinate system, otherwise they should be recomputed to 
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requisite coordinates. Hence, the axes of all virtual springs are parallel to the axes x, y, z of this system. This 
allows to evaluate Jacobians ( )

v
iJ  and their inverses from the geometry of the end-platform analytically 

 ( ) ( ) 13 3
v v

3 36 6 6 6

( ) ( )
,i ii i

 

            
I v I v

J J
0 I 0 I

 (3.53) 

where 3I  is 3 3  identity matrix, and  v  is a skew-symmetric matrix corresponding to the vector v  : 

 
z y

z x

y x

0
( ) 0

0

v v
v v
v v

 
   
   

v  (3.54) 

Therefore, expression (3.52) represents explicit aggregation of the leg stiffness matrices with respect 
to any given reference point of the platform. It is worth mentioning that in practice, the matrices ( )

C
iK  are 

always singular while the aggregation usually produces non-singular matrix. Relevant examples are 
presented in the following sub-section. 

3.4.2 Application example: Gough platform 

Let us apply now the developed technique to computing of the stiffness matrix for two versions of a 
general Stewart-Gough platform presented in Figure 3.4 [Chen 2008], [Li 2002b], [El-Khasawneh 1999], 
[Arumugam 2004]. It is assumed that in both cases the manipulator base and the moving plate (platform) are 
connected by six similar extensible legs (Figure 3.5) but their spatial arrangements are different: 

 

Figure 3.4 Geometry of the Stewart-Gough platforms under study 

 

Figure 3.5 Geometry of the manipulator leg and its VJM model 

 

Case A: the legs are regularly connected to the base and platform, with the same angular 
distance 60° (it is obviously a degenerated design, where the stiffness matrix 
should be singular) 

Case B: the legs are connected to the base and platform in three pairs, with the angular 
distance of 120° between the mounting points (it is a classical design of Stewart-
Gough where the stiffness matrix should be non-singular). 

 

For both designs, the original leg stiffness (i.e. without the passive joints) can be described by the 
sparse matrix corresponding to the symmetric beam (see Chapter 2). Further, to take into account the 
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influence of the passive joints, it should be applied recursively to the procedure (3.41) with the elementary 
Jacobians  

 (1) (2) (3) (4) (5)
Rx Ry Rz Ry+ Rz+

0 0 0 0 0
0 0 0 0
0 0 0 0

; ; ; ;
1 0 0 0 0
0 1 0 1 0
0 0 1 0 1

L
L

         
         
                      
         
         
                  

J J J J J  (3.55) 

where L is the leg length. It is obvious that, due to the trivial structure of q
iJ , the recursive computations can 

be easily performed analytically (see Section 3.3.3). They sequentially produce the following results: 

 

Hence, in the final form, the derived matrix includes only the traction/compression terms (and not bending, 
torsion, etc.) that agrees perfectly with other results on Stewart-Gough platforms.  

Further, in order to be applied to each leg, the obtained matrix must be transformed from the local to 
the global coordinate system. In this specific case, due to the special structure of 5

CK , relevant 
transformation [Deblaise 2006a], [Angeles 2007]  

 
T

3 3
С 11 T

3 3 3 3

1
0

0i

i i

i i

K 

 

 
    

       
    

  

0R 0 R 0
K

0 R 0 R
0 0

 (3.56) 

expressed via the orthogonal rotation matrix iR describing orientation of the i-th local coordinate system 
with respect to the global one, is easily reduced to  

 
0 0

3 3
С 11

3 3 3 3
i

T
i iK 

 

    
 

u u 0
K

0 0
. (3.57) 

where 0
iu  is the unit vector directed along the leg axis iu  (see Figure 3.3). Besides, before aggregating, the 

stiffness matrices of the separate legs Ci
K must be re-computed with respect to the same reference point in 

accordance with expressions (3.51) (3.52) which yields 
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0 0T T6

3 3 3 3
С 11

3 3 3 3 3 31

( )
( )

i i i

ii

K 

 

                 
 I 0 u u 0 I v

K
v I 0 0 0 I

 (3.58) 

where iv  is the vector from the leg end-point to the platform reference point (see Figure 3.3). So, after 
relevant transformations, one can get the final expression of the manipulator stiffness matrix    

 
0 0T 0 0T T6

0 0T 0 0T TС 11
1

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

i i i i i

i i i i i i ii

K

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         

 u u u u v
K

v u u v u u v
 (3.59) 

or 
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K
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 u
K u v u

v u
 (3.60) 

where the vector iu , iv  describing spatial locations of the legs and computed via the direct kinematics, and 
0

i iv u  denotes the vector product (in contrast to the above notation ( )iv  which is referred to the 
corresponding skew-symmetric matrix). 

The derived equation has been applied to both case studies, assuming that the manipulators are in their 
“home” configurations when the platform is parallel to the base and it is symmetrical with respect to the 
vertical axis. Corresponding expressions for the leg vectors are 

 
cos( ) cos( ) cos( )
sin( ) sin( ) , sin( )

0

i i i

i i i i i

r R r
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   
   

u v  (3.61) 

where  0, 60 ,120 ,180 , 240 , 300i i         for the case A, and  0,120 ,120 , 240 , 240 , 360i       ; 
 60, 60,180 ,180 , 300 , 300i       for the case B. Substitution of these vectors into the expression (3.59) 

leads to the following stiffness matrices 
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and 
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where R and r  denote the circle radius which comprise the leg connection point at the base and moving 
platform respectively, ad R r  ; b / 2d R r  ; L  is the leg length, h  is the vertical distance between the 
base and the platform, and the superscripts ‘A’ and ‘B’ define the relevant case study. As it follows from 
these expressions, in ‘zero’ location the matrix ( )

C
AK  is singular and allows “free” rotation of the end-

platform around the vertical axis. In contrast, for the same location the matrix ( )
C
BK  is non-singular and the 

manipulator resists to all external forces/torques applied to the platform. These results are in good agreement 
with previous research on the Stewart-Gough platforms and confirm efficiency of the developed 
computational technique for manipulator stiffness modeling [Svinin 2001], [Li 2002b]. 

Hence, proposed stiffness model assembling technique allows us to aggregate elastostatic models of 
separate kinematic chains in the stiffness model of the parallel manipulator. It is also able to take into 
account the geometry of the end-platform and its connection with kinematic chains in an explicit form.  
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3.5 AGGREGATION OF STIFFNESS MODELS OF NON-PERFECT SERIAL CHAINS 

In the previous Section, it was implicitly assumed that kinematic chains of the parallel manipulator are 
"perfect", i.e. their geometrical parameters are strictly nominal and their end-frames can be aligned and 
matched without additional efforts and/or internal stresses, while assembling. However, in practice, the 
kinematic chain geometry may differ from the nominal one (i.e. be "non-perfect"), and the assembling causes 
internal stresses and shifting of the end-points location. Thus, let us extend the above aggregation procedure 
to the case of non-perfect serial chains and develop a technique, which is able to evaluate deflections and 
internal forces/torques caused by geometrical errors in the chains. 

3.5.1 Stiffness model aggregation technique 

Let us consider a parallel manipulator, which may be presented as a strictly parallel system of the 
actuated serial legs connecting the fixed base and mobile end-platform [Merlet 2006]. Using the 
methodology described in the previous sections, each i-th leg (serial chain) may be characterized by the 
geometrical function ( , )i i i it g q θ , where it  defines the end-frame location and ,i iq θ  are passive and 
virtual joint coordinates respectively, which define kinematic chain configuration. For perfect kinematic 
chains, the joint coordinates ,i iq θ  are computed using nominal geometrical model of the leg 0 ( , )ii ig q θ , for 
the given end-platform location 0t . These notations are illustrated by Figure 3.6a where iA  correspond to the 
end-points of the perfect chains and O  is the platform reference point. Similar to Section 3.4, the vectors 

iAO


 are denoted as iv . Using the above presented technique, it is possible to compute the Cartesian stiffness 
matrices of the chains and express them with respect to the same reference point O . Let us denote this 
matrix as ( )

C
iK  (see sub-section 3.4.1 for the details).  

 

Figure 3.6 Transformation of characteristic points of serial chains in assembling of non-perfect parallel 
manipulator; ( iA , iA  - end-point locations of serial chain before assembling for perfect and non-perfect 

manipulators respectively, iA   - end-point location of serial chain after assembling for non-perfect 
manipulator) 

For the non-perfect chain before assembling, similar configurations ,i iq θ  produce slightly different 
end-point locations of the chains 0 ( , )i i ii i t g q θ ε , which are denoted as iA  in Figure 3.6a. 
Correspondently, assuming that the platform is rigid enough, the points iA  can be mapped to iB   that differ 
from O  by iε . Hence, geometrical errors do not allow assembling parallel manipulator at the original 
reference point. 

To assemble all chains in the same reference point, it is required to apply additional efforts. 
Geometrically, it leads to relocation of the frames corresponding to the points iB   to a new position iB  , and 
relocations of the point iA  to iA   that is defined by the vector Δ it . In Figure 3.6b, relevant reference point 
of the platform is denoted as O . Hence, the stiffness model aggregation problem is reduced to computing of 
a new end-platform location 0 t t  for which end-frames of all kinematic chains are aligned and matched. 
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Consequently, a manipulator will occupy the most advantageous configuration with respect to the potential 
energy of the elastic elements.  

To compute the end-platform deflection t , let us assume that the geometrical errors are small 
enough and corresponding shifting of the chain end-points and end-effector do not change Cartesian stiffness 
matrices ( )

С
iK  or their influences are negligible. So, the stiffness matrices of the serial chains ( )

С
iK  are the 

same at the points O , iB   and O  and computed for the nominal configurations ,i iq θ . Let us also assume 
that the point O  is shifted from O  by Δp  and the mobile platform orientations for the parallel manipulator 
with perfect and non-perfect serial chains differ by φ . This allows us to express the potential energy of the 
parallel manipulator with geometrical errors in kinematic chains as 

     T ( )
C

1

·
2

·
1 i

i i

m

i

E


    ε t K ε t  (3.64) 

where ( , )   t p φ  is displacement (position and orientation) of the reference point. 

It is obvious that after assembling, the considered mechanical system will occupy the most 
advantageous configuration with respect to the potential energy, i.e. minE




t
. It means that the desired 

vector t  can be found from the expression  
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 (3.65) 

that yields the following linear equation  
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which allows us to evaluate the end-platform deflection  
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and the end-platform location after assembling 

 0   t t t  (3.68) 

For each separate kinematic chain, the end-frame deflections due to assembling can be expressed as 
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This allows us to compute the loading for each kinematic chain applied to the end-point (due to interaction 
with other non-perfect chains) 

 ( )
C ·i

i iF K Δt  (3.70) 

and corresponding loadings in the virtual joints )
θ
(iτ  

 ( ) ( )T T
θ θ θ C

) (( )· · ·Δi
i i

i i i J Jτ F K t  (3.71) 

It is worth mentioning that here 
1 i

m

i
 F 0 , since there is no external loading applied to the platform 

reference point after the assembling. Besides, it is possible to compute relevant deflections of the virtual and 
passive joint coordinates of the chains  

 ( ) ( )
Cθ Cq· ·;i i

i i i i θ K Δt q K Δt  (3.72) 

caused by the assembling.  

Thus, the above expressions allow us to evaluate the end-platform deflection and internal 
forces/torques caused by assembling of kinematic chains with geometrical errors. However, the total 
manipulator Cartesian stiffness matrix CK  is assumed to be the same as in Section 3.4, since the geometrical 
errors are assumed to be small enough.  
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3.5.2 Application examples: parallel translational manipulators  

Let us illustrate the developed stiffness model aggregation technique by examples that deal with 
assembling of Orthoglide and 3-PUU parallel translational manipulators with geometrical errors in kinematic 
chains (Figure 3.7). Both manipulators consist of three kinematic chains with one translational actuator along 
the axes x, y or z, two passive U-joints (or two separate rotational joints) and the bar or the kinematic 
parallelogram between them. These manipulators have the working area of size 200×200×200 mm with the 
transmission factor from 0.5 to 2; the detailed geometrical parameters are presented in [Chablat 2003], the 
link stiffness matrices were computed using an approach developed in Chapter 2. Their numerical values are 
presented in sub-section 2.7. Let us assume that the manipulators have geometrical errors in the kinematic 
chains, which have effects on the end-point location and provoke internal loadings in the joints.  

Taking into account the shape of the dexterous workspace, let us focus on the stiffness analysis of 
these manipulators in five characteristic points: isotropic point Q0, two limit points Q1 and Q2. with 
symmetrical configuration and two limit points Q3 and Q4. with non-symmetrical configuration 
[Pashkevich 2005] (see Figure 3.7). Let us estimate the end-effector location and internal 
deflections/loadings caused by the geometrical errors in the chains. The stiffness matrices of the chains for 
both manipulators in the points Q0...Q4 have been computed using the technique proposed in Section 3.2.3. 

 

Figure 3.7 CAD models of 3-PUU and Orthoglide manipulators 

For illustration purposes, let us investigate two types of geometrical errors 

 

Case A:  Each actuator of the manipulator has a position error 1 mm in actuator location 
     0 0 0

1 2 31, 0, 0, 0, 0, 0 ; 0, 1, 0, 0, 0, 0 ; 0, 0, 1, 0, 0, 0
T T T  ε ε ε ;  

Case B:  Each actuator of the manipulator has an angular error 1° in actuator location 

     0 0 0
1 2 30, 0, 0, 1 , 0, 0 ; 0, 0, 0, 0, 1 , 0 ; 0, 0, 0, 0, 0, 1
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  ε ε ε   .  

 

In case A, as it follows from the chains geometry, the deflections of the chain end-points before 
assembling iε  may be expressed as  

points Q0...Q4 

 0 0 0
1 1 2 2 3 3; ;  ε ε ε ε ε ε .  

In case B, the values iε  should be computed using the geometrical model ( , )i i ig q θ : 
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point Q1: 
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point Q2: 
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point Q3: 
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point Q4: 
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Further, substituting these deflections iε  and corresponding chain stiffness matrices ( )
C
iK  into 

formulas (3.67) - (3.72), we can compute the desired assembling-induced values of the end-platform 
displacement, the internal forces/torques and the relevant displacements in virtual and passive joints. Main 
results of this study for Orthoglide and 3-PUU manipulators are summarised in Tables 3-3 – 3-6, where 

maxq  is the maximum rotational displacement of passive joints, max max
p φ,   are maximum displacement of 

translational and rotational virtual springs respectively, max max
p φ,   are maximum torques in translational and 

rotational virtual joints respectively, maxM  is the maximum moment in the chains, caused by assembling of a 
parallel manipulator with the non-perfect kinematic chains.  

These results show that in the Case A (Tables 3-3 and 3-5), the geometrical errors in the kinematic 
chains do not cause any internal loading for both manipulators. However, they provoke the shift of the end-
platform location up to 2.02 mm (point Q2). Corresponding changes in passive joint coordinates are about 
0.42̊ (point Q2). 

In contrast, in the Case B, the geometrical errors in the kinematic chains of Orthoglide (Table 3.4) 
cause essential internal loadings. For instance, in point Q1 the torque applied to the end-point of the chain 
can reach up to 8.91N·m . This loading induces displacements up to 0.41mm  and 0.62  for translational and 
rotational virtual springs respectively. It should be noted that here the loadings for rotational virtual springs 
are up to 11.96 N·m , but for translational virtual springs they are equal to zero (in spite of non-zero 
deflections in them). Nevertheless, this result is reasonable due to the non-diagonal structure of the matrices 

( )
C
iK  representing couplings between rotational and translational deflections. Variations in the passive joint 

coordinates can reach up to 0.67  (Point Q3). For the end-platform, this case study gives the positional 
deflection up to 1.31 mm (Point Q3) and the rotational deflection up to 0.62  (Point Q1). It is obvious that the 
total sum of all internal loadings is equal to zero.  

However, in the Case B for the 3-PUU manipulator (Table 3.6), there is no internal loading caused by 
assembling of non-perfect kinematic chains, while the end-platform deflections can reach up to 0.98 mm and 
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1.33  which is slightly lower than for Orthoglide. This essential difference in properties of these two 
manipulators is explained by their geometrical structures (Orthoglide is over-constrained manipulator, while 
3-PUU is non over-constrained one). 

Table 3.3 Assembling of Orthoglide manipulator with non-perfect chains: loadings and displacements for 
the case A (  1 2 3, , , 0, 0, 0

T   t , 1 F 0 , 2 F 0 , 3 F 0 ) 

Point 
Displacement  
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p φ

0; 0
0.18 ;

0; 0
q

 

 

 
 

 
  

Q1 1 2 3 0.50mm      
max max
p φmax

max max
p φ

0; 0
0.14 ;

0; 0
q

 

 

 
 

 
  

Q2 1 2 3 2.02mm;      
max max
p φmax

max max
p φ

0; 0
0.42 ;

0; 0
q

 

 

 
 

 
  

Q3 
1 2

3

0.73mm;

mm0.27

 
 
 

 
max max
p φmax

max max
p φ

0; 0
0.20 ;

0; 0
q

 

 

 
 

 
  

Q4 
1 2

3

0.56mm;

mm1.28

 
 
 

 
max max
p φmax

max max
p φ

0; 0
0.26 ;

0; 0
q

 

 

 
 

 
  

 

Table 3.4 Assembling of Orthoglide manipulator with non-perfect chains: loadings and displacements for 
the case B (  1 2 3 1 2 3, , , , ,

T      t , 1 F 0 , 2 F 0 , 3 F 0 ) 

Point 
Displacement  

of end-point t  
Deflections and loadings  

in joints and links 

Q0 
1 2 3

1 2 3

0mm;

0. 3 ;0

  

  

  

     max max
p φmax

max max
p

x

φ

ma ·m

0.05mm; 0.94 ;
0.31 ;

0

2.09

; 2.09 N·m;

N

q

M

 

 

 





 



  

Q1 
1 2 3

1 2 3

0.41mm

. ;

;

0 62

  

  

  

      

max

max max
p φmax

max max
p φ

·m

0.54mm; 1.74 ;
0.63 ;

0; 11.96 N

8. 1N

·m

9

;
q

M

 

 

 





 




Q2 
1 2 3

1 2 3

0.96mm;

.21 ;0

  

  

   

     

max

max max
p φmax

max max
p φ

·m

0.14mm; 0.80 ;
0.52 ;

0

1.48

; 1.75N·m;

N

q

M

 

 

 





 



  

Q3 
1 2 3

1 2 3

0.91mm; 1.31mm; 0.58mm;
;0.19 ; ;0.49 0.44

  
  
   
        max max

p φmax

max max
p

m

φ

ax ·m;

0.99mm; 1.49 ;
0.67 ;

0

4.33

; 4.84 ·m;

N

N
q

M

 

 

 





 



  

Q4 
1 2 3

1 2 3

0.93mm; 0.10mm; 0.25mm
;

;
0.33 0.22 0. 1 ;3;

  
  
    
     

max

max max
p φmax

max max
p φ

·m;

0.62m

2.98

m; 1.30 ;
0.59 ;

0; 4.0 N·m

N

;

M

q
 

 

 
 








  
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Table 3.5 Assembling of 3-PUU manipulator with non-perfect chains: loadings and displacements for the 
case A (  1 2 3, , , 0, 0, 0

T   t , 1 F 0 , 2 F 0 , 3 F 0 ) 

Point 
Displacement  

of end-point t  
Deflections and loadings  

in joints and links 

Q0 1 2 3 1mm;      
max max
p φmax

max max
p φ

0; 0
0.18 ;

0; 0
q

 

 

 
 

 
  

Q1 1 2 3 0.50mm;      
max max
p φmax

max max
p φ

0; 0
0.14 ;

0; 0
q

 

 

 
 

 
  

Q2 1 2 3 2.02mm;      
max max
p φmax

max max
p φ

0; 0
0.42 ;

0; 0
q

 

 

 
 

 
  

Q3 
1 2

3

0.73mm

0

;

mm;.27

 

 


 
max max
p φmax

max max
p φ

0; 0
0.20 ;

0; 0
q

 

 

 
 

 
  

Q4 
1 2 0.56mm

1

;

mm;.28
  


 

max max
p φmax

max max
p φ

0; 0
0.26 ;

0; 0
q

 

 

 
 

 
  

 

Table 3.6 Assembling of 3-PUU manipulator with non-perfect chains: loadings and displacements for the 
case B (  1 2 3 1 2 3, , , , ,

T      t , 1 F 0 , 2 F 0 , 3 F 0 ) 

Point 
Displacement  

of end-point t  
Deflections and loadings  

in joints and links 

Q0 
1 2 3

1 2 3

0mm;

1 ;

  

  

  

     
max max
p φmax

max max
p φ

0; 0
0.13 ;

0; 0
q

 

 

 
 

 
  

Q1 
1 2 3

1 2 3

0.47mm;

0.66 ;

  

  

  

     
max max
p φmax

max max
p φ

0; 0
0.64 ;

0; 0
q

 

 

 
 

 
  

Q2 
1 2 3

1 2 3

0.98mm;

.33 ;1

  

  

   

     
max max
p φmax

max max
p φ

0; 0
1.97 ;

0; 0
q

 

 

 
 

 
  

Q3 
1 2 3

1 2 3

0.23mm; 0.89mm; 0.87mm;
0.44 1.21 0.; ; ;78

  
  
     
    

max max
p φmax

max max
p φ

0; 0
1.08 ;

0; 0
q

 

 

 
 

 
  

Q4 
1 2 3

1 2 3

0.64mm; 0.29mm; 0.13mm
;

;
1.1 ; ;1 0.41 1.28

  
  
   
      

max max
p φmax

max max
p φ

0; 0
1.50 ;

0; 0
q

 

 

 
 

 
  

 

 

Hence, here the stiffness model assembling technique from Section 3.4 has been extended for the case 
of parallel manipulators with geometrical errors in serial chains. In addition to computing of aggregated 
Cartesian stiffness matrix, it allows us to evaluate internal deflections and forces/torques in joints, as well as 
deflections of the reference point caused by geometrical errors in kinematic chains. In spite of this issue has 
essential practical significance for evaluating the desired tolerances in links/joints geometry and 
corresponding internal stresses in over-constrained mechanisms, it has never been studied before. 

 



3.6 Summary 79

3.6 SUMMARY 

The chapter is devoted to the stiffness modeling of serial and parallel manipulators in the unloaded 
mode (i.e. under the assumption of small deformations). The main contributions are in the area of the VJM 
modelling approach that has been enhanced for serial and parallel manipulators with arbitrary location of 
passive joints. In contrast to other works, the developed technique starts from stiffness modelling of all 
kinematic chains separately and then aggregates them in a unique model. Besides, for each kinematic chain, 
this technique is able to obtain both non-singular and singular stiffness matrices that take into account 
passive joints or kinematic singularities. Relevant assembling procedure allows to compute the aggregated 
Cartesian stiffness matrix of the parallel manipulator and also to evaluate the internal forces/torques and 
end-platform deflections caused by geometrical errors in the kinematic chains of over-constrained 
mechanism. The developed method combines advantages of the FEA and the VJM modeling approaches 
(accuracy and computational efficiency respectively) and allows to obtain stiffness matrices either in a 
numerical or in an analytical form. 

 

In more details, new results and contributions of Chapter 3 can be formulated as 

(i)  Enhanced VJM-based stiffness modeling technique for serial kinematic chains with arbitrary 
location of passive joints, which allows to take into account passive joints in an explicit form and 
to compute the stiffness matrix for any configuration (even for singular ones). Also, it evaluates 
internal deflections (and corresponding forces/torques) for the chains with arbitrary number of 
passive and actuated joints. In contrast to previous results, the developed technique is more 
computationally efficient, includes low-order matrix inversion, and is able to obtain even rank-
deficient stiffness matrices caused by the presences of passive joints or singular configuration of 
the chain.  

(ii)  Analytical expression for stiffness matrix modification induced by passive joints, which extends 
the classical stiffness mapping notion for serial manipulators, and related recursive procedure for 
stiffness matrix elements computing, which allows to treat passive joints sequentially (one-by-
one). For typical industrial architectures, which include trivial passive joints (where axes are 
collinear with Cartesian ones), simple and practically convenient rules for stiffness matrix 
modification have been proposed. These results significantly simplify computation of the desired 
stiffness matrix and reduce them to elementary algebraic transformations. 

(iii) Stiffness model assembling technique that allows to aggregate elastostatic models of separate 
kinematic chains in the stiffness model of the parallel manipulator. It also allows to evaluate 
internal deflections and forces/torques in joints, as well as deflections of the reference point, 
caused by geometrical errors in kinematic chains. This issue has never been studied before and has 
essential practical significance for evaluating desired tolerances in links/joints geometry and 
corresponding internal stresses in over-constrained mechanisms. 

 

However, these results are limited to the case of small deformations (corresponding to unloaded 
mode). Besides, it is assumed here that a parallel manipulator has strictly parallel architecture, i.e. there are 
no cross-linkages and internal loops in kinematic chains of the legs. The first of these problems will be 
considered in Chapter 4, which focuses on stiffness modeling of serial and parallel manipulators in the 
loaded mode (case of large deformations case). 

 

Main results of Chapter 3 are published in the following works: [Klimchik 2009a], [Klimchik 2011c], 
[Klimchik 2011d]. 
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This chapter is devoted to the extension of the VJM-based stiffness modeling 
technique developed in the previous Section for the case of large deflections (loaded 
mode). It proposes a computationally efficient procedure, which is able to take into 
account the internal and external loadings and to obtain a non-linear force-deflection 
relation. It also produces Cartesian stiffness matrix both in numerical and analytical 
form. This allows us to extend the classical stiffness mapping equation for the case of 
manipulators with passive joints in the loaded mode. The stiffness model aggregation 
technique is also extended for the case of the loaded parallel manipulator. It is able to 
produce non-linear force-deflection and deflection-force relations as well as to compute 
internal deflections and forces/torques caused by different types of loadings and 
geometrical errors in kinematic chains. In addition, it proposes a non-linear compliance 
errors compensation technique that is based on the developed stiffness model. These 
results are illustrated by several examples.  
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4.1 INTRODUCTION  

In the previous Chapter, it was explicitly assumed that the loading causes rather small changes in all 
manipulator variables (and also in equilibrium configuration). It allowed us to obtain linear relation between 
all considered variables and to limit our study by computing of stiffness matrices. This case was also referred 
to as the 'unloaded mode'. However in practice, the loading may cause essential deflections in manipulator 
elastic elements, so the stiffness model should be definitely non-linear. For this reason, in this Chapter the 
'small deflections' assumption is released and the study focuses on obtaining non-linear force-deflection 
relations and their linearization in the neighborhood of the elastostatic equilibriums, which produces relevant 
stiffness matrices. Below, the 'large deflections' case will be referred to as the 'loaded mode'. 

In literature, the manipulator stiffness modeling for the loaded mode has not been studied in details 
yet. The majority of the related works focus on computing of Cartesian stiffness matrix taking into account 
the loading value but implicitly assuming that the equilibrium is exactly the same as for the unloaded mode. 
To our knowledge, at present there are no robotic papers where non-linear force-deflection relation has been 
obtained strictly and for wide range of the external loading. In particular, in the works [Alici 2005], 
[Chen 2002] and [Li 2002a] one could obtain an extended expression for the stiffness matrix of a robotic 
manipulator, where in addition to the classical term -T -1

θθ θ· ·J K J , the second term -T -1
Fθ θ· ·J K J  that takes into 

account the configuration changes due to the loading has been introduced (here, θJ  is the Jacobian, θK  is 
the joint stiffness matrix and FK  is computed in a special way). From a mathematical point of view, this 
result can be treated as the second order approximation of the force-deflection relation in the neighborhood 
of the unloaded equilibrium. It means that, strictly speaking, this expression cannot be applied for a wide 
range of the external loading. Another limitation is related to the influence of the passive joints that have not 
been considered within the frame in the above mentioned papers. Other related works include [Alici 2005], 
[Chen 2000a], [Li 2002a], [Merlet 2008], [Quennouelle 2008a], [Quennouelle 2008a], [Quennouelle 2008c], 
where detailed analysis has been presented in Chapter 1. In our opinion, the most advanced results were 
obtained in [Yi 1992] and [Yi 1993], but the issue of computing of loaded equilibrium has been omitted.  

In industrial robotics it is usually assumed that the loading is caused by an interaction between the 
robot end-effector and a workpiece. However, there may exist other types of external or internal 
forces/torques that affect the manipulator stiffness properties. For instance, for heavy manipulators 
[Meggiolaro 1998], [Meggiolaro 2004], the gravity forces produce essential end-effector deflections. So, 
they are usually compensated by supplementary mechanisms that generate additional loadings applied to the 
manipulator elements. It is obvious that such type of external loading (both gravity itself and gravity 
compensation) must be taken into account in the stiffness model. Further, these types of forces/torques are 
referred to as the 'auxiliary loading'.  

Furthermore, kinematic chains of robotic manipulators may include some additional elastic elements 
in the actuated or/and passive joints that are intended to increase the robot positioning accuracy or to 
improve the stiffness properties in certain workspace areas. For example, to eliminate the backlash, the gear 
trains may include spring-loaded scissor elements that generate the internal forces, which must be also 
integrated in the stiffness model [Wei 2010]. Similar forces may also arise in the parallel manipulators with 
antagonistic actuating [Chakarov 1999], [Chakarov 2004]. Other examples include parallel manipulators 
with springs interposed in the passive joints in order to improve stiffness in the singularity neighborhood. For 
this type of force/torque a term 'internal preloading' will be used below.  

As it follows from our analysis, non-linear stiffness modeling of robotic manipulators must include 
explicit computation of the coordinates corresponding to the loaded equilibrium. These coordinates should 
be used while calculating Jacobians (and Hessians) of the manipulator geometrical model that are obviously 
included in the desired stiffness model. One of the potential problems here is that, in general, the static 
equilibrium equation of the loaded manipulator cannot be solved unambiguously, i.e. for the same loading 
multiple equilibriums may exist, either stable or unstable. Hypothetically, this may create very specific 
manipulator behavior while the loading is increasing or decreasing (sudden jump from one equilibrium 
configuration to another). Some aspects of this problem have been studied in [Hines 1998], [Carricato 2002]. 

In the frame of the non-linear stiffness modeling technique being developed in this Chapter, it is also 
worth to revise the stiffness models aggregation technique presented in Chapter 3. Here, in addition to the 
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aggregated Cartesian stiffness matrix, it is required to obtain the aggregated force-deflection relation 
assuming that the kinematic chain may include geometrical errors. Moreover, in practice, it is often 
necessary to solve the inverse problem that is equivalent to obtaining the non-linear deflection-force relation. 
These problems have not been studied in literature yet. Though, they are very important for the compliance 
errors compensation (via proper adjusting of the actuated coordinates). At present, the compliance errors 
compensation problems have been solved for linear stiffness model only [Salisbury 1980], [Surdilovic 1996], 
[Seo 1998] [Gong 2000], [Wang 2009]. 

 

Hence, as it follows from the above analysis, the manipulator stiffness modeling for the loaded mode 
needs further improvement. Thus, the goal of this chapter is to extend  the results of Chapter 3 for the case of 
large deflections (loaded mode). To achieve this goal, several sub-problems have to be solved: 

 

(i-a)  Development of non-linear stiffness modeling technique for kinematic chains with the passive 
joints in the case of the external loading at the end-point and preloading in the joints; 

(i-b) Extension of this technique for manipulators with external and internal loading applied to the 
node-points (auxiliary loading); 

(ii)  Stability analysis of kinematic chain configuration under loading in the case of single and 
multiple equilibriums  

(iii) Enhancement of the stiffness model aggregation technique for parallel manipulators with 
internal and external loadings (composed of perfect and/or non-perfect kinematic chains)  

(iv) Development of the compliance errors compensation technique for over-constrained parallel 
manipulators under external and internal loadings. 

 

To address these sub-problems, the remainder of this chapter is organized as follows. Section 4.2 deals 
with the serial chains with the loading at the end-point and preloadings in the joints. It proposes numerical 
technique for computing the loaded static equilibrium and obtaining the non-linear force-deflection relation 
as well as expressions for computing the stiffness matrices. In Section 4.3, this technique is extended for the 
case of serial chains with the auxiliary loading. Section 4.4 is devoted to the stability analysis of serial chain 
configuration. Section 4.5 focuses on non-linear stiffness models aggregation technique for parallel 
manipulators with perfect or/and non-perfect serial chains. Section 4.6 proposes the non-linear compliance 
errors compensation technique. And finally, Section 4.7 summarizes main results and contributions of this 
Chapter. 

 

 

4.2 SERIAL KINEMATIC CHAIN OF PARALLEL MANIPULATOR WITH LOADING AT 

THE END-POINT AND PRELOADING IN JOINTS 

Let us start the development of non-linear stiffness modeling technique assuming that the most 
essential loading is applied to the end-point of the kinematic chain. Besides, let us assume that some joints 
may include special springs, which eliminate backlash and/or modify the manipulator stiffness properties. 
Under these assumptions, the results of Section 3.2 cannot be applied in a straightforward way due to 
significant changes in the manipulator configuration under the loading. In particular, for loaded equilibrium, 
the values of virtual and passive joint coordinates ,θ q  cannot be computed pure geometrically (in contrast 
to Chapter 3). Moreover, here the stiffness properties should depend on the loading magnitude [Yi 1993], 
[Chen 2002], [Quennouelle 2009a] and some non-linear effects in the stiffness behavior can be discovered 
[Timoshenko 1970]. Let us focus on these issues.  
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4.2.1 Problem statement 

Similar to Section 3.2, the serial chain under study includes flexible actuated joints and flexible links 
that may be separated by passive joints. Its geometry is described by the vector function 

 ( , )t g q θ  (4.1) 

where the vector T( , )t p φ  includes the position T( , , )x y zp  and orientation T( , , )x y z  φ  of the end-
effector in the Cartesian space; the vector T

1 2 nq( , , ..., )q q qq  contains “perfect passive joint” coordinates 
(i.e., without internal preloading); the vector T

2 nθ1( , , ..., )  θ  collects coordinates of all virtual joints and 
“preloaded passive joints” (with auxiliary internal springs); qn , θn  are the sizes of q  and θ  respectively.  

 

 

Figure 4.1  Examples of auxiliary springs in preloaded passive joints. 

Several types of passive joints with and without internal preloading are presented in Figure 4.1. Such 
joints include internal springs, as such their statics is described by the following expression 

  θ θ 0i i i iK      (4.2) 

where θi  is the torque/force caused by the deviation of the joint coordinate i  from its unloaded (“zero”) 
value 0i , and coefficient θiK  defines the spring stiffness. For the purpose of generality, let us introduce 
similar “zero” values 0i  for the virtual springs that described flexibility of the links (obviously they are 
equal to zero for this subset of θ ). This allows us to define vector 0θ  of the same size as θ  and to present 
the static equations corresponding to all variables (corresponding to perfect and preloaded passive joints, 
virtual springs of links and actuators) in general form  

 θ θ 0 q( ),   τ K θ θ τ 0   (4.3) 

Here θ q,τ τ  are the generalized torque/force in joints corresponding to the variables θ  and q ; the matrix 

θK  collects stiffness coefficients of all springs of the kinematic chain. 

It is worth mentioning that in the case without internal preloading, the vector θ  describes only 
flexibility of manipulator links/actuators that are presented by virtual springs, while vector q  collects entire 
set of passive joint coordinates. In contrast, here, the passive joint coordinates are divided into two subsets: 
(i) “perfect passive joints” included in q , and (ii) “preloaded passive joints” included in θ  together with 
traditional virtual springs. Besides, if a passive joint includes a nonlinear spring (see Figure 4.1), the 
corresponding joint variable may be included either in θ  or q , depending on the current configuration of the 
manipulator. However, for each configuration, this assignment is strictly unique.   

In contrast to Section 3.2, here the desired stiffness model is defined by a non-linear relation 

 (Δ )fF t ,  (4.4) 

where (...)f  is a so-called “force-deflections” function that associates a deflection Δt  with an external force 
F  that causes deformations. It is worth mentioning that the function (...)f  can be determined even for the 
singular configurations (or redundant kinematics) while the inverse statement is not generally true. Hence, 
enhanced stiffness analysis must include the computation of this function and the detailed analysis of its 
singularities that may provoke various nonlinear phenomena (such as buckling). In the unloaded case, this 
function is usually defined through the “stiffness matrix” K , which describes the linear relation 

0 0( , ) Δ F K q θ t  between small six-dimensional translational/rotational displacements Δt , and the 
external forces/torques F  causing this transition. Here, it is assumed that Δt  includes three positional 
components ( , , )x y z    describing the displacement in Cartesian space and three angular components 
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(Δ , Δ , Δ )x y z    that describe the end-platform rotation around the Cartesian axes, while the vectors 0 0,q θ  
correspond to the manipulator equilibrium configuration for which the loadings (both internal and external) 
are equal to zero. However, for the loaded mode, similar linear relation is defined in the neighborhood of 
another static equilibrium, which corresponds to a different manipulator configuration ( , )q θ , that is 
modified by external forces/torques F . Respectively, in this case, the stiffness model describes the relation 
between the increments of the force δF and the position δt  

 ( , )F δF K q θ δt   (4.5) 

where  0q q Δq  and  0θ θ Δθ  denote the new configuration of the manipulator, and Δq , Δθ  are the 
deviations in the coordinates ,q θ  respectively. 

Hence, the considered problem of enhanced stiffness modeling may be separated in two sequential 
sub-problems: (a) computing full-scale “force-deflections relation” for the loaded manipulator; (b) the 
linearization of the relevant force-deflection relations in the neighborhood of the equilibrium and computing 
corresponding stiffness matrix (that in a general case can be singular due to the presence of passive joints). 
Let us focus on these sub-problems. 

 

4.2.2 Static equilibrium configuration for serial chain in the loaded mode 

To solve the first sub-problem, it is desired to obtain a relation between the external loading F  and 
internal coordinates of the kinematic chain ( , )q θ  corresponding to the static equilibrium. Based on this data, 
the desired value of the end-point displacement can be computed straightforwardly, using geometric equation 
(4.1). In previous works, this issue was usually ignored and the linearization was performed in the 
neighborhood of the unloaded configuration assuming that the external load is small enough. It is obvious 
that the latter essentially limits relevant results and does not allow detecting non-linear effects such as 
buckling. From a mathematical point of view, the problem is reduced to solving of a system of the non-linear 
static equilibrium equations that may produce unique or non-unique, stable or unstable solutions.  

For computational reasons, let us consider the dual problem that deals with determining the external 
force F  and the manipulator equilibrium configuration ( , )q θ  that corresponds to the end-effector location 
t  taking into account internal preloading in the joints. Let us assume that the joints are given small, arbitrary 
virtual displacements , q θ  in the neighborhood of ( , )q θ . According to the principle of virtual 
displacements, the virtual work of the external force F  applied to the end-effector along the corresponding 
displacement θ qδ δ δ   t J θ J q  is equal to the sum T T

θ q( ) δ ( ) δ    F J θ F J q  (here θJ  and qJ are the 
kinematic Jacobians with respect to the coordinates , q). Since the passive joints do not produce any 
force/torque reactions, the virtual work corresponding to the generalized forces/torques θ q,τ τ  includes only 
one component T

θ δ τ θ . The minus sign takes into account the force-displacement directions for the virtual 
springs. In the static equilibrium, the total virtual work of all forces is equal to zero for any virtual 
displacement, therefore, the equilibrium conditions may be written as T

θ θ J F τ ; T
q  J F 0 , and taking 

into account assumptions and notations from the previous section, the static equilibrium conditions can be 
presented as 

  T T
θ θ 0 q; ; ( , )      J F K θ θ J F 0 t g q θ  (4.6) 

where the vector 0θ  defines internal preloading in the joints,  the matrix θK  describes stiffness of all springs 
in the adopted VJM model, while the external loading F  and the configuration ( , )q θ  are treated as the 
unknown for the given end-effector location ( , )t g q θ . Hence, the designed equilibrium configuration must 
satisfy the system of nonlinear equations (4.6). 

Since there is no general method to determine an analytical solution of this system, a numerical 
technique is required. Let us linearize the kinematic equation in the neighborhood of the current position 
( , )i iq θ   

 q 1 θ 1( , ) ( , ) ( ) ( , ) ( )i i i i i i i i i i       t g q θ J q θ q q J q θ θ θ  (4.7) 

and rewrite the static equilibrium equations as 



Chapter 4   Stiffness modeling of manipulators with passive joints in loaded mode 86 

  T T
θ 1 θ 1 0 q 1( , ) ; ( , )i i i i i i i      J q θ F K θ θ J q θ F 0 , (4.8) 

which leads to a system of linear algebraic equations with respect to 1 1 1( , , )i i i  q θ F  that includes the 
Jacobians θ ( , )i iJ q θ , q ( , )i iJ q θ  and the geometrical location function ( , )i ig q θ  computed in the previous 
point ( , )i iq θ : 

 

q 1 θ 1 q θ

T
q 1

T
θ 1 θ 1 θ 0

( , ) ( , ) ( , ) ( , ) ( , ) ;

( , )

( , )

i i i i i i i i i i i i i i

i i i

i i i i

 



 

        

 

     

J q θ q J q θ θ t g q θ J q θ q J q θ θ

J q θ F 0

J q θ F K θ K θ

 (4.9) 

This gives the following iterative scheme 

 
 

1

q θ q θ1
T

1 q
T

θ 01 θ θ

( , ) ( , ) , ( , ) ( , )
( , )

( , )

i i i i i i i i i i i ii

i i i

i i i









                            

0 J q θ J q θ t g q θ J q θ q J q θ θF
q J q θ 0 0 0

K θθ J q θ 0 K

 (4.10) 

that may be reduced down to   

 

11 T
θ θ θ q q θ1

T
1 q

1 T
1 θ θ 1 0

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
0( , ) 0

( ,

·

)

·i i i i i i i i i i i i i ii

i i i

i i i i







 

                  
   

J q θ K J q θ J q θ t g q θ J q θ q J q θ θF
q J q θ

θ K J q θ F θ

 (4.11) 

The latter is more convenient computationally, since it requires the inversion of a lower dimension 
matrix    6 6n n    instead of    6 6n m n m     , where n , m  are the sizes of the vectors q  and 
θ  respectively. For instance, for the kinematic chains of the Orthoglide manipulator (see example in 
Chapter 5), the expression (4.10) requires the inversion of 34 34  matrix, while iterative scheme (4.11) 
needs the inversion of 10 10  matrix only. It should be mentioned that 1

θ
K  is computed only once, outside 

of the iterative loop. 

Similar to the other iterative schemes, convergence of this algorithm highly depends on the starting 
point. However, due to the physical nature of the considered problem, it is possible to start iterations from 
the non-loaded configuration ( 0 0,q θ ). Besides, it is useful to modify the target point for each iteration in 
accordance with the expression   01i i i     t t t  using scalar variable i  that is monotonically 
increasing from 0 up to 1. Another approach can be used for computing the force-deflection curve. Here, the 
starting point can be taken from previously computed loaded configuration corresponding to another value of 
deflection that is very close to the target one. For typical values of deformations, the proposed iterative 
procedure convergences in 3-5 iterations if the configuration is stable. In the simulation studies, the 
convergence has been evaluated as the weighted sum of residual norms corresponding to equations (4.6) and 
the algorithm stops when this criterion achieved the prescribed value.  

However, some computational difficulties may arise in the case of buckling or in the area of multiple 
equilibriums, where the convergence problem becomes rather critical and highly depends on an initial point. 
Here, the number of iterations increases significantly and the computational time becomes non-negligible. To 
overcome these difficulties, it is proposed to modify the developed iterative scheme and to repeat the 
computations several times, with slightly modified initial points that are obtained by adding small random 
noise to 0 0,q θ . Another option is to add small disturbances to  ,i iθ q  at each iteration. These techniques 
were used in case studies presented in Chapter 5. 

The proposed iterative scheme can also be slightly modified to solve the original problem, i.e. 
computing the equilibrium configuration corresponding to given external loading F (instead of given t ). In 
this case, expressions (4.10), (4.11) are used in the internal loop, while the designed algorithm is 
supplemented by an external loop, which provides iterative searching for t  corresponding to the given F  

  1
1i i i i


    t t K F F  (4.12) 
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where ,i it F  and iK  are the location, the loading and stiffness matrix at the i-th iteration respectively. It is 
worth mentioning that the dual problem is meaningful only if the stiffness matrix iK  is non-singular. It is 
obvious that for a separate serial chain with passive joints the matrix iK  is always singular, while for a serial 
manipulator it is usually non-singular (the same as for a parallel manipulator due to specific assembling of 
kinematic chains). On the other hand, the dual problem considered in this Section (i.e. computing F  
corresponding to t ) is always  physically meaningful and has at least one solution.  

 

4.2.3 Stiffness matrix of serial chain in the loaded mode 

The previous sub-section presents a technique that generally allows us to obtain the relation between 
the elastic deformations and corresponding external force/torque. It is based on sequential computations of 
loaded equilibriums (and relevant force/torque) for various displacements of the manipulator end-point with 
respect to its unloaded location. However, though this relation is highly non-linear, common engineering 
practice operates with the stiffness matrix derived via its linearization.  

To compute the desired stiffness matrix, let us consider the neighborhood of the loaded configuration 
and assume that the external force and the end-effector location are incremented by some small values δF , 
 t . Besides, let us assume that a new configuration also satisfies the equilibrium conditions. Hence, it is 
necessary to consider simultaneously two equilibriums corresponding to the manipulator state variables 
( , , , )F q θ t  and ( δ , δ , δ , δ )   F F q q θ θ t t . Relevant equations of statics may be written as  

  T T
θ θ 0 q; 0     J F K θ θ J F  (4.13) 

and  

 
     

   

T

θ θ θ 0

T

q q

δ δ δ ;

δ δ 0

      

   

J J F F K θ θ θ

J J F F
 (4.14) 

where qδ ( , )J q θ  and θδ ( , )J q θ  are the differentials of the Jacobians due to changes in ( , )q θ . Besides, in 
the neighborhood of ( , )q θ , the kinematic equation may also  be presented in the linearized form:  

 θ qδ ( , ) δ ( , ) δ   t J q θ θ J q θ q  (4.15) 

Hence, after neglecting the high-order small terms and expanding the differentials via the Hessians of 
the function T( , )  g q θ F , equations (4.13), (4.14) may be rewritten as  

 
T F F
θ θq θθ θ

T F F
q qq qθ

( ) ( ) δ ( ) δ δ

( ) δ ( ) δ ( ) δ

      

     

J q, θ F H q, θ q H q, θ θ K θ

J q, θ F H q, θ q H q, θ θ 0
 (4.16) 

where 

 F 2 2 F 2 2 F F 2
qq θθ qθ θq/ ; / ; /             H q H θ H H q θ  (4.17) 

and the general relation between the increments of the state variables can be presented as  

 
q θ

T F F
q qq qθ
T F F
θ θq θθ θ

δ δ
δ
δ

                      

0 J J F t
J H H q 0

θ 0J H H K

 (4.18) 

The latter gives a straightforward numerical technique for computing the desired stiffness matrix: 
direct inversion of the matrix in the left-hand side of (4.18) and extracting from it the upper-left sub-matrix 
of size 66. Similarly, the matrices defining linear relations between the end-effector increment  t  and the 
increments of the joint variables δθ , δq  can be computed, i.e.: 

 C Cθ Cqδ δ ; δ δ ; δ δ     F K t θ K t q K t  (4.19) 

where 
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1

q θC
T F F

Cq q qq qθ
T F F

Cθ θ θq θθ θ

* *


  
       
       

0 J JK
K J H H
K J H H K

 (4.20) 

It is worth mentioning that the internal preloading (expressed by the variable 0θ ) is not included in the 
latter expression in the explicit way, but it directly influences on the variables ( , )q θ  describing the 
equilibrium configuration and corresponding Jacobians and Hessians, which are elements of (4.20). Besides, 
in contrast to previous works, here it is possible to obtain supplementary matrices  Cθ Cq,K K  that give 
additional measures of the manipulator stiffness which evaluate sensitivity of the joint coordinates ( , )q θ  
with respect to the external loading. 

In the case when the matrix inverse (4.20) is computationally hard, the variable δθ  can be eliminated 
analytically, using corresponding static equation: F T F F

θ θ θ θqδ δ δ     θ k J F k H q , where F F 1
θ θ θθ( ) k K H . 

This leads to a reduced system of matrix equations with unknowns  F  and q  

 
F T F F

θ θ θ q θ θ θq
T F F T F F F F

q qθ θ θ qq qθ θ θq

δ δ
δ

                         

J k J J J k H F t
q 0J H k J H H k H

 (4.21) 

that may be treated in the similar way, i.e. the desired stiffness matrix is also obtained by direct inversion of 
the matrix in the left-hand side of (4.21) and extracting from it the upper-left sub-matrix of size 66: 

 

1F T F F
C θ θ θ q θ θ θq

T F F T F F F F
Cq q qθ θ θ qq qθ θ θq


       

            

K J k J J J k H
K J H k J H H k H

 (4.22) 

Similar to subsection 4.1, this approach allows us to reduce the dimension of the inverted matrix from 
   6 6n m n m      to    6 6n n   , that in the case of Orthoglide (see Chapter 5) corresponds to 
34 34  and 10 10 respectively.  

It is worth mentioning that the structure of the latter matrix is similar to the one obtained for the 
unloaded manipulator and differs only by Hessians that take into account the influence of the external load. It 
should also be noted that, because of the presence of the passive joints, the stiffness matrix of a separate 
serial kinematic chain is always singular, but aggregation of all the chains for a parallel manipulator 
produces a non-singular stiffness matrix.  

Further simplification of (4.22) can be obtained by applying the block matrix inversion technique of 
Frobenius [Gantmacher 1959] that yields the following expressions  

  0( ) 0( ) F F
C q θ θ θq Cq·F F

C C     K K K J J k H K  (4.23) 

where the first term 0( ) F T 1
θ θ θ( )F

C
  K J k J  exactly corresponds to the classical formula defining stiffness of 

the kinematic chain without passive joints in the loaded mode [Chen 2000a], [Alici 2005] and  

       1
F F F F T F F T 0( ) F F T F F T 0( )

Cq qq qθ θ θq q qθ θ θ q θ θ θq q qθ θ θ·F F
C C


                 K H H k H J H k J K J J k H J H k J K  (4.24) 

Similarly, the matrix  CθK  can be expressed analytically as  

 F T F F
Cθ θ θ C θ θq Cq     K k J K k H K  (4.25) 

Hence, the technique presented in Section 4.2 allows us to compute the static equilibrium 
configuration and Cartesian stiffness matrix for serial chains with external loading applied to the end-point 
and with preloading in the joints. In Chapter 5, it will be applied to several case studies that deal with 
kinematic chains employed in typical parallel manipulators and demonstrate particularities of stiffness 
analysis of loaded manipulator with passive joints. However, this technique does not cover heavy 
manipulators, where the own weight of the robot is significant and the external loading is applied to both the 
end-point and internal points of the kinematic chain. Furthermore, this type of loading will be called an 
auxiliary one. 
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4.3 SERIAL KINEMATIC CHAIN OF PARALLE MANIPULATOR WITH AUXILIARY 

LOADINGS IN INTERMEDIATE NODES  

4.3.1 Problem statement 

For stiffness modeling of serial kinematic chain with auxiliary loading let us use the same VJM model 
as in Sections 3.2 and 4.2, but let us assume that the serial chain has the additional external loadings applied 
to the internal node points (Figure 4.2). These loadings can be caused by gravity forces (generally they are 
distributed, but in practice they can be approximated by localized ones) and/or gravity compensators. These 
forces will be denoted as jG , where 1,...,j n  is the node number in the serial chain starting from the fix 
base (here, j n  corresponds to the end-point). It should be noted that for computational convenience, it is 
assumed that the end point loading consists of two components nG  and F  of different nature.  

It is evident that in general the auxiliary forces iG  depend on the manipulator configuration. So, let us 
assume that they are described by the functions  

 ( , )j jG G q θ ,  (4.26) 

where q  and θ  collect all passive joints and virtual joints coordinates respectively. In contrast, for the 
external force F , it is assumed that there is no direct relation with the manipulator configuration.  

 

Figure 4.2 General structure of kinematic chain with auxiliary loading and its VJM model 

For the serial chains with the auxiliary loadings it is also required to extend the geometrical model. In 
particular, in addition to the equation  (4.1) defining the end-point location, it is necessary to introduce the 
additional functions  

 ( , ), 1,...,j j j n t g q θ  (4.27) 

defining locations of the nodes. It is worth mentioning that for the serial chain, the position jt  depends on a 
sub-set of the joint coordinates (corresponding to the passive and virtual joints located between the base and 
the j-th node), but for the purpose of analytical simplicity let us use the whole set of the joint coordinates 
( , )q θ  as the arguments of the functions (...)ig .  

Using these assumptions and the methodology of Section 4.2, the problem of stiffness modeling of 
serial chains with auxiliary loadings can be split in the following sub-problems: (a) deriving the static 
equilibrium equations for the chain with auxiliary loadings; (b) computing full-scale “force-deflections 
relation” for the end-point and intermediate nodes; (c) linearization of the relevant force-deflection relations 
in the neighborhood of the equilibrium and computing corresponding stiffness matrix. Let us focus on these 
sub-problems. 

 

4.3.2 Static equilibrium equations for serial chain with auxiliary loadings 

To obtain a desired stiffness model, let us derive first the static equilibrium equations that differ from 
the equations (4.6) used in the previous Section due to the influence of auxiliary loadings jG . Let us apply 
the principle of the virtual work and assume that the kinematic chain under external loadings F  and 

 1... nG G G  has the configuration  ,q θ  and the locations of the end-point and the nodes are ( , )t g q θ  
and ( , ), 1,j j j n t g q θ  respectively.  
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According to the principle of virtual work, the work of external forces ,G F  is equal to the work of 
internal forces τ  caused by displacement of the virtual springs δθ  

  T T T
θ

1

δ δ δ
n

j j
j

     G t F t τ θ  (4.28) 

where the virtual displacements δ jt  can be computed from the linearized geometrical model derived from 
(4.27) 

 ( ) ( )
θ qδ δ δ , 1..j j

j j n    t J θ J q , (4.29) 

which includes the Jacobian matrices  

    ( ) ( )
θ q, ; ,j j

j j

 
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 

J g q θ J g q θ
θ q

 (4.30) 

with respect to the virtual and passive joint coordinates respectively. 

Substituting (4.29) to (4.28) we can obtain the equation 

    T ( ) T ( ) T ( ) T ( ) T
θ q θ q θ

1

δ δ δ δ δ
n

j j n n
j j

j

             G J θ G J q F J θ F J q τ θ  (4.31) 

which has to be satisfied for any variation of δ , δθ q . It means that the terms regrouping the variables δ , δθ q  
have the coefficients equal to zero, hence the force-balance equations can be written as  

 ( )T ( )T ( )T ( )T
θ θ θ q q

1 1

; , 1..
n n

j n j n
j j

j j

j n
 

         τ J G J F 0 J G J F . (4.32) 

Also, these equations can be re-written in block-matrix form as 

 (G)T (F)T (G)T (F)T
θ θ θ q q;       τ J G J F 0 J G J F  (4.33) 

where 
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 (4.34) 

Finally, taking into account the virtual spring reaction  0
θ θ  τ K θ θ , where  

1 nθ θ θ,...,diagK K K , the 
desired static equilibrium equations can be presented as 

 
 (G)T (F)T 0

θ θ θ

(G)T (F)T
q q

     
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J G J F K θ θ

J G J F 0
 (4.35) 

It should be noted that compared to previously used equilibrium equations (4.6), here there are two 
additional terms (G)T

θJ G  and  (G)T
qJ G  that take into account the influence of the auxiliary loading G . 

Further, these equations will be used for computing the static equilibrium configuration and corresponding 
Cartesian stiffness matrix. 

4.3.3 Static equilibrium configuration for serial chain with auxiliary loadings 

To obtain a relation between the external loading F  and internal coordinates of the kinematic chain 
( , )q θ  corresponding to the static equilibrium, equations (4.35) should be solved either for the different given 
values of F  or for the different given values of t . In sub-section 4.2.2 these problems were referred to as the 
original and the dual ones respectively, but the dual problem has been discovered to be the most convenient 
from a computational point of view. Hence, let us solve static equilibrium equations with respect to the 
manipulator configuration  ,q θ  and external loading F  for given end-effector position  ,t g q θ  and 
function of auxiliary-loadings  ,G q θ  
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 
   

0 (G)T (F)T (G)T (F)T
θ θ θ q q;

, ; ,

         

 

K θ θ J G J F J G J F 0

t g q θ G G q θ
 (4.36) 

Compared to sub-section 4.2.2, here the unknown variables are the same  , ,q θ F , but the equation structure 
is more complicated.  

Since this system of equations usually has no analytical solution, an iterative numerical technique can 
be applied. Similar to the previous Section, the kinematic equations may be linearized in the neighborhood of 
the current configuration ( , )i iq θ  

          (F) (F)
θ1 1 1q, , , ;i i i i i i i i i i i        t g q θ J q θ θ θ J q θ q q  (4.37) 

where the subscript 'i' indicates the iteration number and the changes in Jacobians (G) (F) (G) (F)
θ θ q q, , ,J J J J  and the 

auxiliary loadings  ,G q θ  are assumed to be negligible from iteration to iteration. Correspondingly, the 
static equilibrium equations in the neighborhood of ( , )i iq θ  may be rewritten as 
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 



     

   

J q θ G q θ J q θ F K θ θ

J q θ G q θ J q θ F 0
. (4.38) 

Thus, combining (4.37) and (4.38), the iterative algorithm for computing of the static equilibrium 
configuration for the given end-effector location can be presented as 
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q J q θ 0 0 J q θ G
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 (4.39) 

where 1 1 1( , )i i i  G G q θ . 

To reduce the size of a matrix to be inverted, the above system can be slightly simplified. In particular, 
applying the same approach as in section 4.2.2 (based on analytical expression for 

1 (G)T (F)T 0
θ θ θ( )    θ K J G J F θ ), the unknown variables can be separated in two groups ( , )F q  and θ . This 

yields the iterative scheme  
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 (4.40) 

that requires matrix inversion of the essentially lower order (for example, for the 3-link manipulator with two 
passive joints and two actuated joints, the size of matrix inversion reduces from 34 to 14). 

The proposed algorithm allows us to compute static equilibrium configuration for the serial chains 
with passive joints and all types of loadings (internal preloading, external loadings applied to any point of the 
manipulator and loading from the technological process). The convergence properties of this algorithm are 
similar to one presented in sub-section 4.2.2. It can also be modified in a similar way to solve the problem of 
computing the equilibrium configuration corresponding to the given external loading F (instead of the given 
t ). Some examples illustrating its application will be presented in Chapter 5. 

 

4.3.4 Stiffness matrix for serial chain with auxiliary loadings 

The previous sub-section allows us to obtain the non-linear relation between elastic deflections Δt  
and external loading F . Since common engineering practice operates with the stiffness matrix, let us 
linearize this relation in the neighborhood of the equilibrium. Following the virtual work technique, let us 
assume that the external force and the end-effector location are incremented by some small values δF , δt  in 
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the neighborhood of current equilibrium configuration. Let us also assume that a new configuration also 
satisfies the equilibrium conditions. Hence, it is necessary to consider the two equilibriums corresponding to 
the manipulator state variables ( , , , )F q θ t  and ( δ , δ , δ , δ )   F F q q θ θ t t  simultaneously. The relevant 
static equilibrium equations may be written as  

 

 
 0 (G)T (F)T

θ θ θ

(G)T (F)T
q q

,

     
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t g q θ

K θ θ J G J F

J G J F 0

 (4.41) 

and 

 

 

         

       

T T0 (G) (G) (F) (F)
θ θ θ θ θ

T T(G) (G) (F) (F)
q q q q

δ δ , δ

δ δ δ δ δ

δ δ δ δ

   

          

       

t t g q q θ θ

K θ θ θ J J G G J J F F

J J G G J J F F 0

 (4.42) 

where the variables 0
θ, , , , , ,t F K q θG θ  are assumed to be known.  

After linearization of the function ( , )g q θ  in the neighborhood of loaded equilibrium, the system 
(4.41), (4.42) is reduced to three equations 
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 (4.43) 

which define the desired linear relations between δt  and δF , δq , δθ  that are expressed by the stiffness 
matrices CK , CqK , CθK  (see equations (4.19)). In this system, small variations of Jacobians may be 
expressed via the second order derivatives 
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where  
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Also, the auxiliary loading G  may be computed via the first order derivatives as 

 δ δ δ
 

   
 
G G

G θ q
θ q

 (4.46) 

Furthermore, to insure similarity between the results of this subsection and sub-section 4.2.3, let us 
introduce the additional notation  
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4.4 Stability of kinematic chain configuration under loadings 93

which allows us to present the system (4.43) in  the form 

 

(F) (F)
q θ
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q qq qθ
(F)T
θ θq θ θθ

δ δ
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 (4.48) 

that has the same structure as (4.18). Hence, similar to sub-section 4.2.3, the desired stiffness matrices can be 
computed via either a high order matrix inversion  
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Cq q qq qθ

(F)T
Cθ θ θq θ θθ

* *


  
       
        

0 J JK
K J H H
K J H K H

 (4.49) 

or lower order inversion  
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where F
θk  denotes the modified joint compliance matrix F 1

θ θ θθ( ) k K H . It is obvious that, using these 
notations, the matrices CK , CqK , CθK  can be also computed analytically in accordance with expressions 
(4.23), (4.24) and (4.25) respectively.  

Thus, in this Section, the non-linear stiffness modeling technique for serial chains was extended for 
the manipulators with external and internal loading applied to the node-points (auxiliary loading). It allows 
us to compute values of the internal variables corresponding to the equilibrium, to obtain the non-linear 
force-deflection relation and to compute the related stiffness matrices. However, the question related to the 
stability of the equilibrium configuration of the kinematic chain still remain open.  

 

4.4 STABILITY OF KINEMATIC CHAIN CONFIGURATION UNDER LOADINGS 

External and internal loadings applied to the serial chains may have influence on their configurations 
(i.e. on their shape). Moreover, for the same end-point location, due to the kinematic redundancy the 
kinematic chain can have multiple equilibrium configurations, either stable or unstable. For this reason let us 
concentrate on the stability analysis of the kinematic chains configuration under the loading. It is worth 
mentioning that in parallel manipulators, the considered configurations of the chains are equivalent with 
respect to the location of end-platform. But in practice only stable configurations may be observed. 

4.4.1 Definition of configuration stability for a serial chain under loading  

To investigate possible non-linear effects that may be caused by an external and internal loading, it is 
necessary to extend the notion of stability associated with the stiffness analysis. Traditionally, the stability of 
compliant mechanical systems (including manipulators) is defined as resistance of the end-point location t  
with respect to the “disturbing” effects of an external force F  applied at this point. In such formulation, the 
stability is completely defined by the stiffness matrix CK  that describes the linear relations (4.5) between the 
force and deflection deviations δ , δF t  with respect to the values F , t . It is obvious that the matrix CK  is a 
positive definite for the stable location t .  

However, in the compliant manipulators with the passive joints, the equilibrium configuration ( , )q θ  
corresponding to the same end-point location t  cannot be unique. Moreover, these configurations may be 
both “stable” and “unstable” and may correspond to different values of potential energy stored in the virtual 
springs. From this point of view, it is worth to distinguish stability of the end-point location t  from stability 
of the corresponding equilibrium configuration of the kinematic chain ( , )q θ , which may be defined as a 
resistance of the chain shape with respect to disturbances in redundant kinematic variables. This issue 
becomes extremely important for the loaded mode, due to the kinematic redundancy caused by the passive 
joints and excessive number of virtual springs. As such, small disturbances in ( , )q θ  may provoke an 
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essential change of current equilibrium configuration leading to the reduction of the potential energy and 
transition to another equilibrium state, while keeping the same end-point location. Hence, it is necessary to 
evaluate internal properties of the kinematic chain in the state of the loaded equilibrium that may correspond 
either to minimum or maximum of the potential energy for a fixed value of t .  

Let us illustrate this notion on the example of three-link chain (Figure 4.3a), which includes passive 
joints at both ends and two virtual torsional springs between the links, which insure the "straight" 
configuration for the unloaded mode. It is assumed that both ends of the chain are fixed by the external 
geometrical constrains while the internal configuration may change without shifting of the end-points, in 
accordance with redundant parameter value. It is evident that this chain is loaded, but the corresponding 
value of the force F depends on a particular configuration. Besides, among variety of possible configurations 
(corresponding to given end-point locations), only the equilibrium ones are in the focus of interest.  

For this case study, it is convenient to give an energy-based interpretation. The considered kinematic 
chain has one redundant parameter (rotation angle of any passive joint) and under geometrical constrains 
may occupy configurations with the different shape. Relevant relation between the energy stored in the 
virtual springs and the redundant parameter value is presented in Figure 4.3b. Due to the physical nature of 
this chain, for each given end-point displacement  , the examined plot presents a continuous closed criss-
cross curve that has exactly two minimum and maximum points, that correspond to the stable and unstable 
equilibriums respectively. Hence, numerical solution of static equilibrium equations presented in sections 
4.2.2 and 3.3.3  may yield both stable and unstable configurations, while in practice only stable ones should 
be considered. Thus, in addition, to the above mentioned algorithms, the criterion that allows to distinguish 
stable and unstable configurations of the kinematic chain is required. 

 

Figure 4.3 Stable and non-stable configurations of 3-link serial chain and their energy-based 
interpretation ( - passive join,  - virtual torsional spring) 

 

 

Figure 4.4 2D parallel manipulators with serial chains in stable and unstable configurations  
( - passive join,  - virtual torsional spring) 
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Physical meaning of this stability notion (related to the kinematic chain shape) is illustrated in Figure 
4.4, which contains several postures of the same parallel manipulator with exactly the same end-platform 
location. These postures differ in the shapes of serial kinematic chains that may be treated as internal 
configuration of the parallel manipulator, which is not "visible" from the end-platform side whose static 
stability is completely defined by the Cartesian stiffness matrix. In particular, Figure 4.4a,b present parallel 
manipulators that include at least one kinematic chain in unstable configuration that cannot be observed in 
practice but satisfy the general static equilibrium equation. In contrast, Figure 4.4c shows physically 
realizable posture of the same manipulator (with exactly the same location of the chain end-points) where for 
all kinematic chains the shapes are stable.  

 

Hence, a full-scale investigation into the stiffness properties of the loaded parallel manipulator must 
include the stability analysis of the internal kinematic chain configurations as presented in the following sub-
section.  

4.4.2 Stability criterion for kinematic chain configuration 

To evaluate stability of the static equilibrium configuration ( , )q θ  of a separate kinematic chain, let us 
assume that the end-point is fixed at the point T( , )t p φ  corresponding to the external load F , but the joint 
coordinates are given small virtual displacements q , θ  satisfying the geometrical constraint (4.1), i.e.  

 ( , ); ( δ , δ )   t g q θ t g q q θ θ  (4.51) 

For these assumptions, let us compute the total virtual work in the joints that must be positive for a 
stable equilibrium and negative for an unstable one. To achieve the virtual configuration ( δ , δ ) q q θ θ  and 
restore the equilibrium conditions, each of the joints must include virtual motors that generate the 
generalized forces/torques qδτ , θδτ  which satisfy the equations: 
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J F J J F τ
 (4.52) 

After relevant transformations, the virtual torques may be expressed as 

 T T
θ θ θ q qδ δ( ) δ ; δ δ( )     τ J F K θ τ J F  (4.53) 

where δ(...)  denotes the differential with respect to δq , δθ  that may be expanded via Hessians of the scalar 
function T( , )  g q θ F :  

 T F F T F F
θ θq θθ q qq qθδ( ) δ δ ; δ( ) δ δ         J F H q H θ J F H q H θ  (4.54) 

provided that  

 F 2 2 F 2 2 F F 2
qq θθ

T
qθ θq/ ; / ; /             H q H θ H H q θ  (4.55) 

Furthermore, taking into account that the virtual displacement from ( , )q θ  to ( δ , δ ) q q θ θ  leads to 
a gradual change of the virtual motor torques from (0, 0) to q θ(δ , δ )τ τ , the virtual work may be computed as 
a half of the corresponding scalar products 

  T T
θ q

1
δ δ δ δ δ

2
W     τ θ τ q  (4.56) 

where the minus sign takes into account the adopted conventions for the positive directions of the forces and 
displacements. Hence, after appropriate substitutions and transformations to the matrix form, the desired 
stability condition may be written as 
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qH H
 (4.57) 

where q  and θ  must satisfy the geometrical constraints (4.51).  
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In order to take into account the relation between δq  and δθ  that is imposed by (4.51), let us apply 
the first-order expansion of the function ( , )g θ q  that yields the following linear relation  

 θ q

δ
δ
        
θ

J J 0
q

 (4.58) 

Then, applying the SVD- factorization [Strang 1998] of the integrated Jacobian  
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and extracting from θV , qV  the sub-matrices o
θV , o

qV  corresponding to zero singular values, a relevant null-
space of the system (4.58) may be presented as  

 o o
θ qδ δ ; δ δ   θ V μ q V μ  (4.60) 

where δμ  is the arbitrary vector of the appropriate dimension (equal to the rank-deficiency of the integrated 
Jacobian). Hence, the stability condition (4.57) may be rewritten as an inequality  
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that must be satisfied for all arbitrary non-zero δμ . In other words, the considered static equilibrium 
configuration ( , )q θ  is stable if (and only if) the matrix 

 

T F Fo o
θθ θ qθθ θ

o oF F
q qθq qq

0
    
      

    

H K HV V
V VH H

 (4.62) 

is negative-definite. It is worth mentioning that the obtained result is in a good agreement with the previous 
studies [Chen 2002], where (for manipulators without passive joints) the stiffness properties were defined by 
the matrix F

θ θθK H  that evidently must be positive-definite for the stable configurations. In Chapter 5 these 
results are applied for detecting bifurcations and buckling phenomena in typical serial kinematic chains and 
relevant parallel manipulators. 

Thus, proposed stability analysis techniques for serial chain with the passive joints and related matrix 
stability criterion for the kinematic chain configuration allow estimating the stability of the serial chain 
configuration under external loading in the case of single and multiple equilibriums. 

4.5 STIFFNESS MODEL OF PARALLEL MANIPULATORS IN LOADED MODE 

The non-linear stiffness modeling technique proposed in Sections 4.2-4.4 deals with separate 
kinematic chains. In order to be applied to the parallel manipulators, it should be extended by appropriate 
stiffness model aggregation routines, as in Sections 3.4 and 3.5. Similar to the unloaded mode, these routines 
have to be applicable for both perfect and non-perfect kinematic chains. Besides, it is required to develop 
numerical algorithms for computing both direct and inverse force-deflection relations that are referred below 
to as non-linear stiffness and compliance models respectively.  

4.5.1 Aggregation of chains stiffness models  

Let us focus on the aggregation of stiffness models of separate serial chains into the stiffness model of 
the whole parallel manipulator in the loaded mode. To solve this problem, it is necessary to obtain the non-
linear force-deflection relation, which takes into account elastostatic properties of all kinematic chains, and 
to compute corresponding Cartesian stiffness matrix.  

Let us assume that the end-points of all kinematic chains are aligned and matched in the same target 
point 0t , which corresponds to the desired end-platform location. This point is assumed to be known and 
allows us to compute, from the inverse kinematic model, the actuator and passive joint coordinates defining 
nominal configurations of the chains 0 0, )( i iq θ . It is also assumed that the stiffness models of all kinematic 
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chains have been already obtained using techniques proposed in Sections 4.2 or 4.3 and are presented in the 
form of partial non-linear force-deflection relations 0( | )i ifF t t  corresponding to the target point 0t .  

It is evident that the external loading F  changes the end-platform location 0t , hence it is reasonable to 
consider the set of locations t  in the neighborhood of target one. Under the above assumptions, for any 
given point t  from neighborhood of 0t  it is possible to compute both the partial forces iF  and 
corresponding equilibrium configurations ( , )i iq θ  as well as to evaluate their stability (applying a criterion 
from Section 4.4). Then, in accordance with the superposition principle, the desired non-linear force-
deflection relation for the whole parallel manipulator can be found by straightforward summation of all 
partial forces iF , i.e.  

  0
1

|i

m

i

f


 t tF  (4.63) 

where F  denotes the total external loading applied to the end-platform. As a result, corresponding curves 
can be obtained by multiple repetition of the above described procedures for different values of the end-
platform location t . 

Furthermore, for each given t , the stiffness matrices ( )
C
iK  of all kinematic chains can be computed 

using expression (4.23) or its modified version that includes the auxiliary loadings iG  (see sub-section 4.3.4 
for details). This allows us to compute the Cartesian stiffness matrix CK  of the whole parallel manipulator 
as a sum  

 ( )
C C

1

m
i

i

K K  (4.64) 

However, the matrices ( )
Cq
iK  and )

Cθ
(iK  defining the "sensitivity" of the chain joint coordinates ( , )i iq θ  to the 

end-platform displacement cannot be aggregated in this way, they should be used separately to evaluate 
stresses in joints/links and resistance of the chain configurations with respect to external loading F  

      T ( )
θ θ C 0
( ) ( ) ( )

0 θ 0
( )

Cq C· · ; δ · ; δ ·i i i i
i

i
i    τ K t t q tJ K Kt θ t t  (4.65) 

where )
θ
(iJ  is Jacobian matrix of i-th kinematic chain with respect to virtual joint coordinates. 

It is worth mentioning that above it was implicitly assumed that the manipulator assembling is 
equivalent to the aligning and matching of the chain end-frames. To deal with more general case, when the 
chains are connected to the different points of the platform, it is necessary to slightly modify the chain 
geometrical models and to re-compute the forces/torques and the stiffness matrices by adding a virtual rigid 
link connecting the end-point of the chain and the reference point of the platform (see Figure 3-3 where these 
extensions are defined by the vectors iv ). After the relevant transformations that are described in details in 
sub-section 3.4.1, the above presented technique can be applied straightforwardly.  

Besides, in contrast to Chapter 3, here there are no evident differences in stiffness models aggregation 
of perfect and non-perfect kinematic chains. However, here the chain geometrical errors are implicitly 
included in the functions ε ( , )ii ig q θ . In particular for non-perfect chains, it is assumed that the nominal 
values of the joint coordinates 0 0, )( i iq θ  produce the end-point location vector which differs from 0t : 

  0 0
ε

0( , )i i ii  g q θ t ε  (4.66) 

where iε  accumulates influences of all geometrical errors on the end-point location of i-th chain. As a result, 
the end-platform cannot be located in the target point 0t  without external loading, i.e. 

  
0

1
0|
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i
i

f
 


t t

t t 0  (4.67) 

Moreover, without external loading, the end-platform location εt  is different from the target one 0t . The 
vector εt  can be computed from the equation  

  0ε
1

|
m

i
if



 t t 0  (4.68) 
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which will be considered in the next sub-section. Corresponding internal forces ε
iF  defining the chain 

loadings due to the geometrical errors in the chains can be computed by simple substitution εt  to the partial 
force deflection relations   

 ε
0( | )i if




t t
F t t  (4.69) 

It is obvious that the sum of the ε
iF  is equal to zero but they produce stresses in the links and joints if the 

parallel manipulator is over-constrained. 

 

Figure 4.5 Aggregation of serial chains stiffness models technique 

Hence, the developed aggregation technique allows us to obtain the non-linear force-deflection 
relation for a parallel manipulator in the loaded mode as well as to compute Cartesian stiffness matrices for 
any given target point 0t  and given set of the end-point locations { }t . This technique is summarized in 
Figure 4.5. 

4.5.2 Compliance model of parallel manipulator   

The non-linear force-deflection relation (4.63) allows us to evaluate the external force/torque F  
required to locate the manipulator in the target point t  (assuming that the actuated coordinates are computed 
for the end-platform location 0t  corresponding to the unloaded configuration). However in practice, it is 
often necessary to determine the end platform resistance to the external loading, i.e. to compute the 
deflection caused by the force F  applied to the end-platform. The desired value can be found from the non-
linear compliance model that in general case is expressed as  

 1
0( | )f t F t  (4.70) 

and is defined by the inverse 1(...)f   which for parallel manipulators usually exists (due to over-constrained 
structure). In contrast, for serial chains with passive joints, the function 1(...)f   cannot be computed since 
the corresponding Cartesian stiffness matrix ( )

C
iK  is singular. 

It is obvious that in a general case, the function 1(...)f   cannot be expressed analytically. Hence, it is 
required that a dedicated iterative procedure, which is able to solve the non-linear equation (4.70) for t  
(assuming that F  is given). It is proposed here to apply a modification of Newton-Raphson technique which 
iteratively updates the desired value t  in accordance with the expression  
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     C 0 0
1 | |f    t t K t t F t t  (4.71) 

where t  corresponds to the next iteration,   0C |K t t  is the Cartesian stiffness matrix computed in the point 
t , and 0t  denotes the unloaded location of the end-platform. For this iterative scheme, 0t  can be also used 

as the initial value of t .  Similar to sub-section 4.5.1, within each iterative loop, corresponding 
configurations ( , )i iq θ , the loadings iF  and stiffness matrices ( )

C
iK  for each kinematic chain are computed 

using equations (4.10), (4.20) or (4.39), (4.49), depending on the external loading type.  

As it follows from the relevant study, convergence of this iterative procedure is good enough if the 
function (...)f  is smooth and non-singular in the neighborhood of 0t . If it is required to improve 
convergence, it is possible to apply the same technique as in sub-section 4.2.2, when the force F  is modified 
from iteration to iteration in accordance with the expression · F F , where a scalar variable   is 
monotonically increasing from 0 up to 1. The stopping criterion can be expressed in a straightforward way as 

  0 F| εf F t t  (4.72) 

where Fε  is the desired accuracy. More details presentation of the developed iterative routines is given in 
Figure 4.6 

 

Figure 4.6 Procedure for obtaining deflection-force relation for loaded parallel manipulator 

Summarising this sub-section, it is worth mentioning that the developed technique allows to obtain the 
desired non-linear deflection-force relation describing the end-platform resistance with respect to the 
external force for a given 0t , which corresponds to the unloaded (nominal) manipulator configuration. 
However in practice, it is often required to compensate the compliance errors by proper adjusting of actuated 
coordinates (see Section 4.6). This procedure is equivalent to the modification of 0t . Before considering this 
problem in details, let us illustrate the developed aggregation technique by an example.  

4.5.3 Illustrative example: 2D translational manipulator with preloading in joints  

Let us apply the proposed techniques to the stiffness analysis of the planar parallel manipulator of the 
Orthoglide family (Figure 4.7a). For illustration purposes, let us assume that the only source of the 
manipulator elasticity is concentrated in actuated drives, while the passive joints may be preloaded by (i) 
standard linear springs, or (ii) non-linear springs with mechanical stop-limit (see Figure 4.7 for details).  

For this manipulator, the kinematic model includes a single parameter L (the leg length) and the 
dexterous workspace was defined as the maximum square area that provides the velocity (and force) 
transmission factors in the range [0.5, 2.0]. Using the critical point technique developed for this type of 
manipulators [Chablat 2003], it was proved that the desired square vertices are located in the points Q1(-p,-p) 
and Q2(p, p), where p=0.45 L. Besides, the square centre Q0(0, 0) is isotropic with respect to the velocity and 
force transmission. The parameters of the actuating drives are also assumed identical and their linear 
stiffness is denoted as K . The auxiliary springs (incorporated in the passive joints) are described by two 
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parameters: the angular stiffness coefficient K  and the activation angle 0  that defines the preloading 
activation point. During simulation, the manipulator end-point has been displaced by value   in the 
direction Q0Q1 or Q0Q2, and the corresponding magnitude of the external force F has been computed. 

The stiffness analysis results are summarized in Figure 4.8, Figure 4.9 and in Table 4.1. As it follows 
from them, the original manipulator (without preloading in passive joints) demonstrates rather low stiffness 
in the neighborhood of the point Q2, which is roughly 4 times lower than in the isotropic point Q0. In 
contrast, the linear stiffness in the point Q1 is twice higher than in the point Q0. Besides, in the point Q2, the 
external loading may provoke the buckling phenomenon that is caused by a local minimum of the force-
deflection relation. In this case, the distance-to-singularity is essentially lower than it is estimated from the 
kinematical model and the manipulator may easily lose its structural stability. 

To improve the manipulator stiffness and to avoid the buckling in the neighborhood of Q2, the passive 
joints were first preloaded by linear springs with activation angle 0 0  . As it follows from Figure 4.8, the 
preloading with parameter 20.1 ·K K L    allows to eliminate buckling completely and to improve the 
stiffness by the factor of 2.3. On the other hand, the stiffness in the points Q0 and Q1 changes non-essentially, 
by 10% and 5% respectively. Hence, with respect to the stiffness, such preloading has a positive impact. 

The only negative consequence of such preloading is related to the changes of the actuator control 
strategy. In fact, instead of standard kinematic control, it is necessary to apply the kinetostatic control 
algorithm (see next Section for details). It allows compensating the position errors caused by elastic 
deformations due to the internal preloading and to achieve the target end-point location with modified values 
of the actuated joint coordinates. As it follows from Table 4.1, corresponding adjustments of the joint 
coordinates may reach 0.1 L  and are not negligible for most of the applications. 

 

Figure 4.7 Architecture planar version of the Orthoglide manipulator (a),  
and passive joints and alternatives for them (b)-(d)   

 

 

Figure 4.8 Force-deflection relations ( )/F Lf   in critical points:  
(1) 0K  , (2) 20.05K K L  , (3) 20.1K K L   
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Figure 4.9 Compliance maps for cases of: (a) manipulator without preloading; (b) manipulator with 
preloaded nonlinear springs ( 20.05K K L   and 0 /12  ) 

 

Table 4.1 Manipulator stiffness for different linear preloading 

Stiffness in preloaded joints 0K   20.01 K L  20.05 K L  20.1 K L  

Point Q0 :( isotropic point) 

Actuating joint coordinates   L L L L 

Manipulator stiffness CK  K  1.01K  1.05K  1.10 K  

Point Q1 (neighborhood of “bar” singularity) 

Actuating joint coordinates    0.437 L 0.433 L 0.419 L 0.402 L 

Manipulator stiffness  CK  2.276 K  2.286 K  2.329 K  2.382 K  

Point Q2 : (neighborhood of “flat” singularity) 

Actuating joint coordinates    1.345 L 1.356 L 1.399 L 1.453 L 

Manipulator stiffness  CK  0.24 K  0.27 K  0.39 K  0.55K  

Critical force crF  0.020 K L  0.027 K L  --- --- 

 

The most efficient solution that eliminates this problem is to use the non-linear springs with 
mechanical stop-limit that are activated while approaching Q2. For instance, as it follows from the dedicated 
study, the preloading with the parameters 20.05 ·K K L   , 0 /12   provides almost the same 
improvements in Q2 as the linear spring while preserving usual control strategies if the preloading is not 
activated. The efficiency of this approach is illustrated by the compliance maps presented in Figure 4.9. 

Thus, in Section 4.5, the stiffness model aggregation technique for parallel manipulators was extended 
for the loaded mode. Compared to the related results presented in Sections 3.4 and 3.5, it allows us to obtain 
a non-linear force-deflection (or deflection-force) relation and to compute corresponding Cartesian stiffness 
matrix that depends on the loading magnitude and direction. In practice, this technique can be applied for 
two purposes: (i) evaluating the external loading impact on the positioning errors and (ii) compensating the 
compliance errors by proper adjustment of actuated coordinates. The last issue is the focus for the next 
Section. 
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4.6 COMPENSATION OF COMPLIANCE ERRORS IN PARALLEL MANIPULATORS IN 

LOADED MODE 

In many robotic applications such as machining, grinding, trimming etc., the interaction between the 
workpiece and technological tool causes essential deflections that significantly decrease the processing 
accuracy and quality of the final product. To overcome this difficulty, it is possible to modify either the 
control algorithm or the prescribed trajectory, which is used as the reference input for a control system. This 
section focuses on the second approach that is considered to be more realistic for the practice. In contrast to 
the previous works, the proposed technique is based on the non-linear stiffness model (developed in this 
Chapter) that is able to take into account external and internal loadings of high magnitude.  

4.6.1 Inverse and direct kinetostatic problems for loaded manipulator 

In industrial robotic controllers, the manipulator motions are usually generated using the inverse 
kinematic model that allows us to compute the input signals for actuators 0ρ  corresponding to the desired 
end-effector location 0t , which is assigned assuming that the compliance errors are negligible. However, if 
the external loading is essential, the kinematic control becomes non-applicable because of changes in the 
end-platform location. It can be computed from the non-linear compliance model as 

  1
F 0|f t F t  (4.73) 

where the subscript 'F' refers to the loaded mode. 

To compensate this undeterred end-platform displacement from 0t  to Ft , the target point  should be 
modified in such way that, under the loading F , the end-platform is located in the desired point 0t . This 
requirement can be expressed using the stiffness model (4.63) in the following way 

  (F)
0 0|fF t t  (4.74) 

where (F)
0t  denotes the modified target location (which obviously is not attained because of the loading). 

Hence, the problem is reduced to the solution of the nonlinear equation (4.74) for (F)
0t , while F  and 0t  are 

assumed to be given. It is worth mentioning that this equation completely differs from the equation 

0( | )fF t t  considered in sub-section 4.5.2, where the unknown variable is t . It means that here the 
compliance model does not allow us to compute the modified target point (F)

0t  straightforwardly, while linear 
compensation technique directly operates with Cartesian compliance matrix [Seo 1998] [Gong 2000].  

To solve equation (4.74) for (F)
0t , the Newton-Raphson technique can be applied similar to sub-

section 4.5.2. It yields the following iterative scheme 

  (F) (F) (F) (F)
0 0 0t p. 0

1
0 0. ( | ) ( | )f    t t K t t F t t  (4.75) 

where the prime corresponds to the next iteration and (F)
0t.p. 0( | )K t t  is Cartesian stiffness matrix computed 

with respect to the second argument of the stiffness model (4.63)  

 0
0t.p.

0

( | )
( | )

f



t t

K t t
t

, (4.76) 

which can be interpreted is the target point. Here, the location 0t  can be also used as the initial value of (F)
0t . 

The stopping criterion can be also expressed as  

  (F)
00 F| εf F t t  (4.77) 

where Fε  is the desired accuracy. 

To overcome computational difficulties related to the evaluation of the matrix (F)
0t.p. 0( | )K t t , it is 

possible to use its simple approximation that does not changes from iteration to iteration. In particular, 
assuming that t  and 0t  are closed enough and the stiffness properties do not vary substantially in their 
neighborhood, the stiffness model can be approximated by a linear expression C 0·( )F K t t , which gives 

t.p. C K K . Hence, the iterative scheme (4.75) can be modified as  
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  (F) (F) (F) (F)
0 0 0 0 0 0

1
C· ( | ) ( | )f    t t K t t F t t  (4.78) 

where (0,1)   is the scalar parameter insuring convergence. Using non-linear compliance model (4.73), 
this idea can be also implemented in iterative algorithm  

  (F) (F) 1 (F)
0 0 0 0( | )· f   t t t F t  (4.79) 

which does not include stiffness matrices CK  or t.p.K  (see Figure 4.10 for details). Obviously, this is the 
most computationally convenient and it will be used in the next sub-section.  

 

Figure 4.10 Procedure for compensation of compliance errors in parallel manipulator 

Hence, using the computational techniques proposed in this sub-section, it is possible to compensate 
the compliance errors by proper adjustment of the reference trajectory that is used as an input for robotic 
controllers. In this case, the control is based on the inverse kinetostatic model (instead of kinematic one) that 
takes into account both the manipulator geometry and elastic properties of its links and joints. Efficiency of 
this technique is confirmed by an example presented below. 

 

4.6.2 Application example: kinetostatic control of Orthoglide in milling application 

Let us illustrate now the compliance errors compensation technique by an example of the circle groove 
milling of the radius 50r mm  with Orthoglide manipulator for the different workpiece locations in the 
manipulator workspace. It is assumed that the manipulator has assembling errors in actuator angular 
locations of about 1° (around the corresponding actuated axis). More detailed description of these 
assumptions is given in sub-section 3.5.2 that focuses on the assembling errors influence on the manipulator 
accuracy (using linear stiffness modeling technique and assuming that F 0 ). In contrast, there are two 
sources of inaccuracy here 

(i)  the assembling errors in the kinematic chains causing internal forces and relevant deflections in 
joints and links (similar to sub-section 3.5.1); 

(ii)  the external loading F 0  which generates essential compliance deflections causing non-
desirable end-platform displacement. 

It is worth mentioning that non-linear stiffness modelling technique, which has been developed in this 
Chapter, allows to compensate for the influence of both the factors above.  
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For the considered process (groove milling), the magnitude and direction of the external loading F  
can be found from the cutting technology models. According to [Majou 2007] such a technological process 
causes the loading 

 ( , , , · , · , 0)x xy z yF F F F Fh h F  (4.80) 

where xF  and yF  depend on the machining tool orientation angle   (Figure 4.11 a, b) as 

 cos sin ; sin cosx r t y r tF F F FF F        (4.81) 

and 215rF N ; 10tF N  ; 25zF N  ; 100h mm  

 

 

Figure 4.11 Milling forces and trajectory location for groove milling using Orthoglide manipulator 

 

The  milling  process  was  studied  for  six  typical  locations  of  the  desired  circular  trajectory 
(see Figure 4.11c):  

(1)  in the neighborhood of the isotropic point Q0, (which coincides with the circle center), where 
the manipulator configuration is the best from kinematic point of view; 

(2,3)  in the opposite corners of the cubic workspace Q1 and Q2 corresponding to the symmetrical 
manipulator configurations;  

(4,5,6) in the area of the workspace corners Q3, Q4 and Q5 that correspond to the non-symmetrical 
configurations of the manipulator.  

For each of these locations, the milling trajectory was oriented in xy-plane as shown in Figure 4.11.  

For such process parameters, without compensation, the compliance errors can exceed 1.2 mm, which 
is too high for the considered application. In particular, for the best location Q0, the cutting forces provoke 
the end-effector deflection of 0.35 mm. And for the worst location Q3, the end-effector deflection is about 
1.25 mm. Hence, the application of the developed compliance errors compensation technique is reasonable 
here. 

After compensation, the above mentioned errors are reduced to zero (it is obvious that in practice, the 
compensation level is limited by the accuracy of the stiffness model parameters). This compensation is 
achieved due to the modification of the actuator coordinates ρ  along machining trajectory. Compared to 
relevant values computed via the inverse kinematics (as in common-used industrial controllers), the actuator 
coordinates differ up to 0.6 mm for location Q0, and up to 1.9 mm for location Q3. Corresponding forces in 
actuators can reach 300 N. A more detailed result describing the compliance errors compensation are 
presented in Table 4.2, which includes a number of plots giving modification of the actuator coordinates ρ , 
values of compensated end-effector displacement t  and the torques in actuators  . 

It is worth mentioning, that the shape of the compensation curve ( )ρ  highly depends on the 
location of the milling trajectory (i.e. the function ( )ρ  cannot be normalized by scaling and shifting) and 
the compensation procedure requires intensive computing. However, it can be implemented off-line and the 
robot model motion program can be properly modified.  
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Table 4.2 Compliance error compensation for Orthoglide milling application with cutting force  
(215 N, -10 N, -25 N, 1 N·m, 21.5 N·m, 0) for different location of the workpiece  

 
  

Hence, as follows from the presented results, the developed algorithm demonstrates good 
convergence, it is able to compensate the compliance errors caused by different types of loadings and it can 
be efficient both for off-line trajectory planning and for on-line errors compensation. 
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4.7 SUMMARY 

The chapter is devoted to the non-linear stiffness modeling of serial and parallel manipulators in the 
loaded mode (i.e. under assumption of large deformations). The main contributions are in the area of the 
VJM modeling approach that was generalized for the case of large deflections caused by internal and 
external loadings applied to the end-point or/and to the intermediate nodes of the kinematic chains. In 
contrast to the other works, the developed technique includes computing of the static equilibrium 
configuration corresponding to the given loading. In addition, it allows us to check the "internal stability" of 
the relevant chain configuration. Similar to Chapter 3, the stiffness modeling of parallel manipulators starts 
from kinematic chains, but it yields a non-linear function describing force-deflection relation. Besides, for 
each kinematic chain, this technique is also able to obtain both non-singular and singular stiffness matrices. 
Relevant aggregation procedure allows us to obtain a non-linear force-deflection (or deflection-force) 
relation for the parallel manipulator and to compute the aggregated Cartesian stiffness matrix, as well as to 
evaluate the internal forces/torques and end-platform deflections caused by loadings and geometrical errors 
in the kinematic chains. In addition, this model is used for compensation of the compliance errors caused by 
the internal and external loadings. Similar to the previous chapter, the developed method combines 
advantages of the FEA and the VJM modeling approaches (accuracy and computational efficiency 
respectively). 

 

In more details, new results and contributions of Chapter 4 can be formulated as  

(i)  Non-linear stiffness modeling technique for serial kinematic chain under external and 
internal loadings (applied to end-point, to the intermediate nodes, preloading in the joints) which includes: 
computing the static equilibrium configuration in the loaded mode, obtaining full-scale force-deflections 
relation and computing of the stiffness matrix for the loaded mode  

(ii)  Stability analysis technique and related matrix stability criterion for kinematic chain 
configuration under loading in the case of single and multiple equilibriums, which takes into account the 
second derivatives of the chain potential energy. 

(iii) Enhanced stiffness model aggregation technique for over-constrained parallel manipulators 
under internal and external loadings, which takes into account shifting of the equilibrium due to the loadings 
and allows to evaluate internal deflections and forces/torques in joints, as well as deflections of the reference 
point, caused by geometrical errors in kinematic chains. 

(iv) Numerical technique for on-line and off-line compensation of the compliance errors caused 
by external loadings in parallel manipulators (including over-constrained ones) with perfect and non-perfect 
serial chains. In contrast to previous works this technique is based on non-liner stiffness model that gives 
essential advantages for robotic-based machining, where the elastic deflections can be essential. 

 

Concerning limitations of these results, it is worth mentioning that they are generally destined for the 
case of a parallel manipulator with strictly parallel architecture, as in Section 3. However, for some 
architectures (incorporating kinematic parallelograms, for instance) the developed method can be efficiently 
applied sequentially as shown in the author's publications [Klimchik 2010b], [Klimchik 2011d]. In addition, 
the developed modeling technique is able to detect some important non-linear effects in the manipulator 
stiffness behavior, which are considered in the next Chapter. 

 

 

The main results of Chapter 4 are published in the following works: [Klimchik 2009a], [Klimchik 
2009c], [Klimchik 2010a], [Klimchik 2010b], [Klimchik 2010c], [Klimchik 2011a], [Klimchik 2011b], 
[Klimchik 2011e]. 
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The chapter is devoted to the application of the developed modeling technique for 
the non-linear stiffness analysis of the manipulators with passive joints in the loaded 
mode. It focuses on detecting non-linear effects in the manipulator stiffness behavior 
under loading and determining potentially dangerous configurations and critical forces 
that may provoke undesired buckling phenomena (i.e. sudden change of current 
configuration of the loaded manipulator). The stiffness analysis is carryied out for serial 
and parallel manipulators with different assumptions on their flexibility and type of 
loading. Particular attention is paid to multiple equilibriums, stability of the kinematic 
chain configuration and kinetostatic singularities in loaded manipulators.  

 

5.1 INTRODUCTION  

To demonstrate advantages of the stiffness analysis technique developed in previous chapters, let us 
consider several case studies assuming that the loading is essential and causes significant deflections in 
elastic elements of the manipulators. In contrast to previous works, it allows us to investigate potential non-
linear phenomena in stiffness behavior of manipulators that were not detectable in the frame of linear 
models. It is worth mentioning that for robotics this problem is fairly new, but in structural mechanics, there 
are a number of interesting results that provide a useful analogy. 

As known from mechanics, in a general case the stiffness behavior of a structure (or a mechanism) 
may be essentially non-linear as it is illustrated by the force-deflection curves in Figure 5.1 [Jones 2006], 
[Timoshenko 1970]. In particular, in the simplest case, a corresponding curve is smooth, monotonically 
increasing but with its inclination progressively reduces while the force is increasing (see Figure 5.1a). Such 
a non-linear shape yields the stiffness coefficient, which depends on the applied loading and monotonically 
reduces. The second example (see Figure 5.1b) shows the force-deflection curve that is also monotonically 
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increasing but contains a salient point that corresponds to a sudden reduction of the stiffness coefficient 
(buckling). And finally, the third example (see Figure 5.1c) presents a non-monotonic (but smooth) force-
deflection curve with local maximum and minimum. In this case, the curve includes a region with negative 
inclination (i.e. negative stiffness coefficient) and the system behavior under the loading is highly non-linear. 
Here, deflection is increasing continuously at the beginning, but then it changes abruptly, while the loading 
achieves its critical value (it is also called buckling). Analyzing these examples, we can conclude that in 
robotic systems, similar phenomena may exist.  

 

Figure 5.1 Examples of non-linear force-deflection curves 

In the following sections, we will pay special attention to the buckling phenomena since they are 
considered as potentially very dangerous for mechanical structures and mechanisms, and may provoke 
failures. In general theory of elasticity, several types of buckling are usually distinguished: 

local buckling of a structural element (rod, beam, etc.), observed as a sudden change of the element 
shape and significant reducion of its stiffness;  

geometrical buckling of a mechanism or structure (arches, shells, etc.), observed as a sudden change of 
mechanism/structure geometrical configuration; 

contact buckling associated with boundary conditions for the mechanism/structure elements that can be 
observed similar to either local or geometrical buckling. 

Below, it will be shown that similar buckling phenomena also exist in robotic systems, but have never been 
studied in details.  

For the local buckling, a classical example is usually related to the axially compressed column 
[Jones 2006], which is also referred to as "Euler buckling". As shown in Figure 5.2, depending on end-point 
constrains, the loading may provoke different changes in the column shape that appear after achieving a 
critical value for the compressing force. Besides, here the column end-point can abruptly be moved either in 
axial or lateral direction. It is obvious that in application to the robotic manipulator, similar behavior may be 
observed both for a separate link and for a serial chain of links. However, it is unlikely that the VJM model 
can detect the local buckling for a separate link due to its simplified approximation (rigid rod and virtual 
spring at the end).  

 

Figure 5.2 Local buckling in axially compressed column  
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For the geometrical buckling, a representative example is two-rod arch with vertical loading presented 
in Figure 5.3. Here, when the loading exceeds its critical value, the elastostatic equilibrium becomes unstable 
and the system suddenly changes its configuration. Making the analogy with robotic manipulators, it is clear 
that similar behavior can be observed in parallel architectures with end-point loading and in serial chains 
with auxiliary loading applied in the intermediate nodes.  

 

Figure 5.3 Geometrical buckling in vertically loaded arch 

It is worth mentioning that in previous works devoted to the manipulator stiffness analysis, much 
attention has not been paid to the buckling phenomena. The authors mainly concentrated on computing of the 
stiffness matrices implicitly assuming that the force-deflection relation is monotonic and its second order 
approximation is good enough. Obviously, this approach does not allow us to detect salient points or local 
maximums/minimums that are essential for full-scale non-linear force-deflection analysis. To our 
knowledge, the only works that contain some comprehensive results on non-linear stiffness analysis are 
[Hines 1998], [Carricato 2002] where several case studies have been considered using the catastrophe theory. 
But it is unlikely that such technique can be applied in a general case. 

Hence, the goal of this Chapter is an application of the developed technique to the analysis of non-
linear effects in manipulator stiffness behavior under loadings and determining the potentially dangerous 
configurations and critical forces that may provoke an undesired buckling phenomena, i.e. sudden change of 
current configuration. To achieve this goal, the remainder of this chapter is organized as follows. Section 5.2 
deals with detecting buckling phenomena and determining potential dangerous configurations for serial 
chains under end-point loading and different assumptions of flexibility. Section 5.3 considers stiffness 
analysis of kinematic chains under auxiliary loadings. Section 5.4 focuses on the stiffness modeling of 
parallel manipulators in the loaded mode. And finally, Section 5.5 summarizes main results and contributions 
of this Chapter. 

 

5.2 BUCKLING PHENOMENA IN SERIAL CHAIN UNDER END-POINT LOADING 

Let us consider first a serial kinematic chain consisting of three similar links, which are separated by 
two similar rotating actuated joints. It is assumed that the chain is a part of a parallel manipulator and it is 
connected to the robot base via a universal passive joint, and the end-platform connection is achieved via a 
spherical passive joint. For each of these configurations, let us investigate three types of the virtual springs 
corresponding to different physical assumptions concerning the stiffness properties of the actuators/links. 
They cover the cases, in which the main flexibility is caused by the torsion in the actuators, by the link 
bending, and by the combination of elementary deformations of the links. 

5.2.1 Kinetostatic model of serial kinematic chain and its parameterization 

To apply the developed technique, first it is required to derive the models that describe geometry of 
the considered serial chain and stiffness properties of its elements. For all sub-cases, similar parameterization 
will be used that allows us to present results in a comparable form. 

Geometric model. The geometry of the examined kinematic chain (Figure 5.4) can be defined as 
UpRaRaSp where R, U and S denote respectively the rotational, universal and spherical joints, and the 
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subscripts ‘p’ and ‘a’ refer to the passive and active joints respectively. Using the homogeneous matrix 
transformations, it can be described by the equation  

 u 0 x s 1 z a1 s 2 z a2 x s 3 s t( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )xL q L q L         T R q T T θ R T T θ R T T θ R q  (5.1) 

where z (...)R  and x (...)T  are the elementary rotation/translation matrices around/along the z- and x-axes, 

u (...)R  is the homogeneous rotation matrix of the universal joint (incorporating two elementary rotations), 

s (...)R is the homogeneous rotation matrix of the universal joint (incorporating three elementary rotations), 

a1 a2,q q  are the coordinates of the actuated joints, L  is the length of the links, 0q is the coordinate vector of 
the universal passive joint located at the robot base, tq  is the coordinate vector corresponding to the passive 
spherical joint at the end-platform, s (...)T  is the homogenous matrix-function describing elastic deformations 
in the links and actuators (they are represented by the virtual coordinates incorporated in the vectors  

1 2 3, ,θ θ θ ). It is obvious that this model can be easily transformed into the form ( , )t g q θ  used in the frame 
of the developed technique. 

 

 

Figure 5.4  Examined kinematical chain and its typical configurations  
( Up – passive universal joint, Ra1, Ra2 – actuated rotating joints, Sp – passive spherical joint) 

 

To investigate particularities of this kinematic chain with respect to the external loading, let us also 
consider three typical postures that differ in values of the actuated coordinates:  

S-configuration: the links are located along the straight line (Figure 5.4a),  
the actuated coordinates are a1 q2 0q q   

-configuration: the chain takes a trapezoid shape (Figure 5.4b), 
the actuated coordinates are a1 q2 30q q     

Z-configuration: the chain takes a zig-zag shape (Figure 5.4c), 
the actuated coordinates are a1 a2 30q q     

For presentation convenience, let us also assume that the coordinates 0q  of the universal passive joint 
are computed to ensure location of the end-effector on the Cartesian axis x.  

 

Stiffness models. In order to investigate possible non-linear effects in the stiffness behavior of this 
chain, let us consider several cases that differ in stiffness models of the links and actuated joints:  

Case of 1D-springs (Model A): the flexible elements are localized in the actuating drives while the 
links are considered as strictly rigid. It allows without loss of generality to reduce the original UpRaRaSp 
model down to RpRaRaRp and define a single stiffness parameter  θK  (similar for both actuators) that will be 
used as a reference value for further analysis. Besides, it is possible to ignore the end-effector orientation and 
consider a single passive joint coordinate q  (at the base) and two virtual joint coordinates 1 , 2  (at 
actuators). 

Case of 2D springs (Model B): the actuators do not include flexible components but the manipulator 
links are subject to non-negligible elastic deformations in Cartesian xy-plane (bending and compression). 
Correspondingly, the link flexibility is defined by a 33 matrix that includes elements describing 
deformation in x- and y- directions and rotational deformation with respect to the z-axis. 
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Case of 3D springs (Model C): the actuators are strictly rigid but the link flexibility is described by a 
full-scale 3D model that incorporates all deflections along and around x-,y-,z-axes of the three-dimensional 
Cartesian space. Relevant stiffness matrix of the links has the dimension 66. The kinematics of this model 
corresponds to the general expression UpRaRaSp, it includes two passive joints ( , )tq q  incorporating in total 
five passive coordinates and three virtual-springs with 18 virtual coordinates totally (six for each link). 

 

Parameterization of stiffness models for serial kinematic chains. In order to simplify comparison 
of numerical values derived from the stiffness analysis of examined serial kinematic chains, the compliance 
matrices corresponding to all considered case studies have been parameterized similarly. Relevant 
expressions are presented below. 

In the case of 1D-springs (Model A), it is assumed that all flexible elements are localized in the 
actuating drives while the links are considered as strictly rigid. It allows to define a single stiffness 
coefficient  θK  (similar for both actuators) that is used as a reference value for other case studies. 

In the case of 2D springs (Model B), it is assumed that the actuators do not include flexible 
components but the manipulator links are subject to elastic deformations in Cartesian xy-plane (bending and 
compression). Correspondingly, the link flexibility is defined by a 33 matrix that includes elements 
describing linear deformation in x- and y- directions and rotational deformation with respect to z-axis. 
Relevant stiffness matrix may be written as [Connor 1976]  
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where L  is the length of the links, I  and A  are respectively its second moment and area of the cross-
section, E  is the Young module. To ensure comparability with model A, the element 3,3k  (corresponding to 
z-rotation) of the compliant matrix 1k K  was denoted as θ1/ K . It allows to eliminate the Young module 
and present the desired matrix as  
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where, for the rectangular cross-section a b , the remaining parameters are expressed as A ab  and 
3 /12I ab . 

In the case of 3D springs (Model C), the actuators are strictly rigid but the link flexibility is described 
by a full-scale 3D model that incorporates all deflections along and around x-,y-,z-axes of the three-
dimensional Cartesian space. Relevant stiffness matrix of the links has the dimension 66 and may be 
expressed as [Connor 1976]  
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where A, y z,I I  are the area and the second moments of the link cross-section, J  is the polar moment, E and 
G are the Young and Coulomb modules of the material. For the rectangular cross-section a b , the required 
parameters may be computed as A ab  and 3

y /12I a b , 3
z / 12I ab  .Similar to the previous case, the 

parameterization is performed by defining the compliance with respect to the z-axis as θ1/ K  (here, it is 
element 6,6k  of the compliant matrix 1k K  ).  This leads to the expression: 
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where the coefficient Jk  depends on the cross-section shape, I y z/k I I , and   is the Poisson ratio 
coefficient. 

Let us use these parameterizations of flexible elements sequentially and compare the stiffness analysis 
results for S, Π and Z configurations of the kinematic chain. 

 

5.2.2 Stiffness analysis for serial chain with 1D-springs 

In this case, the model includes a minimum number of flexible elements (two 1D virtual springs in the 
actuated joints) and may be tackled analytically. However, in spite of its simplicity, it is potentially capable 
to detect the buckling phenomena at least for S-configuration, because of evident mechanical analogy to 
straight columns behavior under axial compression. It is also useful to evaluate other initial configurations 
with respect to the multiple loaded equilibriums, their stability and to compare with numerical results 
provided by the developed technique. 

In the frame of this model, the end-effector motions are restricted to Cartesian xy-plane and the 
geometry is defined by equations  

 12 13

12 13

cos cos cos ,

sin sin sin

x L q L q L q

y L q L q L q

     
     

 (5.6) 

where L is the length of links, q  is the passive joint coordinate, 1 2,   are the virtual spring coordinates, 

12 1q q    and 13 1 2q q     . It is obvious that this model includes exactly one redundant variable. 
Without loss of generality, one can assume that the redundant variable is the passive joint coordinate q  
while the manipulator end-effector is initially located at the point ( , ) (3 , 0)x y L   , where   is a linear 
displacement along the x-axis.  

Then, assuming that the initial values of the actuating coordinates (i.e. before the loading) are denoted 
as 0

1 , 0
2 , the potential energy stored in the virtual springs may be expressed as the following function of 

the redundant variable  

     2 20 0
θ 1 1 θ 2 2

1 1
( ) ( ) ( )

2
· ·

2
E q K q K q        (5.7) 

where θK  is the stiffness coefficient, and 1 , 2  are computed via the inverse kinematics. Using these 
equations, the desired equilibriums may be computed from the extremum of ( )E q . In particular, stable 
equilibriums correspond to minima of this function, and unstable ones correspond to maxima.  

To illustrate this approach, Figure 5.5 presents a case study for the initial S-configuration. It allows 
comparing 12 different shapes of the deformated chain and selecting the best /worst cases with respect to the 
energy. As it follows from these results, here there are two symmetrical maximal and two minimal, i.e. two 
stable and two unstable equilibriums. Besides, the stable equilibriums correspond to -shaped deformated 
postures, and the unstable ones correspond to Z-shaped postures, as it is shown in Figure 5.6. A more 
detailed analysis allows deriving analytical expressions for the force and energy for small values of : 

 

stable equilibrium:         min θ /E K L   ;     S θ /F K L       

unstable equilibrium:    max θ3 /E K L   ;    N θ3 /F K L  
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Figure 5.5  Potential energy ( )E q  and geometric postures for different values of q   
 (Model A, case of initial S-configuration, / 10L  )  

 

 

 

Figure 5.6  Evolution of the S-configuration under external loading 

 

Hence, the external force θ /F K L  cannot change the manipulator shape, similar to small 
compressing of straight columns that cannot cause lateral deflections. Consequently, in this case the straight 
configuration is stable. Further, for θ θ/ 3 /K L F K L  , the straight configuration may be hypothetically 
restored but becomes unstable, so any small disturbance will cause sudden reshaping in the direction of the 
stable trapezoid-type posture. And finally, for θ3 /F K L , there may exist two types of unstable 
equilibriums: the trivial straight-type and a more complicated zig-zag one.  

If the assumption concerning small values of  is released, analytical solutions for the non-trivial 
equilibriums may be still derived. In particular, for the stable equilibrium, one can get  
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where arccos(1 / 2)     . For the unstable equilibrium a similar equation may be written as  
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Corresponding plots are presented in Figure 5.7 where there are also shown the bifurcation. The 
interpretation of this plot is similar to the axial compression of a straight column, which is a classical 
example in the strength of materials. It should be noted, that the developed numerical algorithm exactly 
produces the curve corresponding to the stable equilibrium.  

 

 

Figure 5.7  Model A: Force-deflection relations and bifurcations for the initial S-configuration 

 

For other initial shapes (-type and Z-type), the results essentially differ from the above ones (see 
Table 5.1). In particular, for small deflections, both - and Z-configuration demonstrate a rather linear 
behavior. Moreover, in most of the cases there exist a single stable and a single unstable equilibrium, so the 
kinematic chain cannot suddenly change its shape due to external loading. The only exception is the case of 
the initial -configuration where there are two stable and two unstable equilibriums, and here there exists a 
bifurcation of the stable equilibriums corresponding to the cuspidal point of the function ( )F   where the 
stiffness reduces sharply. Another conclusion concerns the profile of the force-deflection plots that are highly 
nonlinear in all cases.  

A more detailed analysis shows that -configuration demonstrates good analogy with axially 
compressed imperfect column where the deflection starts from the beginning of the loading and there is no 
sudden buckling, but the stiffness essentially reduces while the loading increases. In particular, for the 
examined kinematic chain the stiffness coefficient is about 2

θ1.78 /K L  at the beginning and 2
θ0.43 /K L  at 

the end of the curve ( )F  . 

However, for Z-configuration that corresponds to the unloaded zig-zag shape, the stiffness behavior 
demonstrates the buckling that leads to sudden transformation from a symmetrical to a non-symmetrical 
posture as shown in Figure 5.8. Here, there exist two stable equilibriums that differ in the values of the 
potential energy, so the stiffness coefficient reduces from 2

θ16.7 /K L  at the beginning to 2
θ0.39 /K L  at the 

end of the curve ( )F   (see Table 5.2). 

 

 

Figure 5.8  Evolution of the Z-configuration under external loading 
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Table 5.1 Force-deflection relations for different elasticity models of serial chain with passive joints 

 

 

Table 5.2 Summary of stiffness analysis for serial chain with passive joints and 1D-springs 

Stiffness around the buckling  
Configuration 

Critical 
force 

Stiffness for 
unloaded mode

crF F  crF F  

Stiffness for large 
deformations 

( L  ) 

S-configuration θK

L
     θ0.20

K

L
 θ0.22

K

L
 

-configuration --- θ1.78
K

L
 --- --- θ0.43

K

L
 

Z-configuration θ1.03
K

L
 θ16.7

K

L
 θ5.50

K

L
 θ0.20

K

L
 θ0.39

K

L
 

 

Hence, in the case of model A, the developed numerical technique provides results that correspond to 
the stable loaded equilibriums and coincide with relevant analytical solutions. Besides, a more general class 
of manipulator postures that are dangerous with respect to buckling was detected. They include all 
configurations possessing by an axial symmetry with respect to the direction of the external force (S- and Z-
configurations, for instance).  
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5.2.3 Stiffness analysis for serial chain with 2D-springs 

In this case, the manipulator stiffness is caused by elasticity in the links while the actuating joints are 
assumed to be rigid. The elastic deflections (bending and compression) are still restricted by the Cartesian 
xy-plane but each link includes three virtual joints. Totally, the stiffness model has 11 variables, so it was 
studied numerically (using the developed technique). The stiffness parameters of the elements (5.3) were 
evaluated assuming that the links are rectangular beams of the length L and the cross-section ab, where 

0.02a L  and 0.05b L . For comparison purposes, corresponding stiffness matrices were scaled with 
respect to the bending coefficient θ1/ K  to keep similarity with model A. The stiffness analysis was 
performed for the above defined S-, - and Z-configurations, assuming that the external force is directed 
along the x-axis. A summary of the modeling results are presented in Table 5.1 and Table 5.3 and are briefly 
described below. 

For S-configuration, here there is still a very strong analogy with the compression of the straight 
column. In particular, at the beginning of the loading, the links are subject to the axial compression and the 
stiffness is very high (about 2

θ2500 /K L , for the assumed link proportions). Then, after the buckling, the 
manipulator changes its shape to become non-symmetrical and the stiffness falls down to 2

θ0.20 /K L . The 
critical force may be also computed using the previous results, as 0 θ /F K L  .  

For -configuration, the stiffness properties are also qualitatively equivalent to the case of Model A 
but the stiffness coefficient is slightly lower (in the frame of the adopted parameterization); it varies from 

2
θ5.31 /K L  to 2

θ0.34 /K L . For Z-configuration, it also detected the buckling that occurs if the loading 
approaches the critical value 0 θ1.07 /F K L  . At this point, the stiffness falls down from 2

θ100 /K L  to 
2

θ0.13 /K L , which essentially differs from model A.  

 

Table 5.3 Summary of stiffness analysis for serial chain with passive joints and 2D-springs 

Stiffness around the buckling  
Configuration 

Critical 
force 

Stiffness for 
unloaded mode 

crF F  crF F  

Stiffness for large 
deformations 

( L  ) 

S-configuration θK

L
 θ

2
2500

K

L
 θ

2
2500

K

L
 θ

2
0.20

K

L
 θ

2
0.22

K

L
 

-configuration --- θ
2

5.31
K

L
 --- --- θ

2
0.34

K

L
 

Z-configuration θ1.07
K

L
 θ

2
100

K

L
 θ

2
0.13

K

L
 θ

2
0.13

K

L
 θ

2
0.16

K

L
 

 

Hence, stiffness analysis of Model B demonstrates qualitative similarity but some quantitative 
difference compared to Model A. The latter is caused by different arrangement of the elastic elements in the 
virtual joints that corresponds to other physical assumptions. 

5.2.4 Stiffness analysis for serial chain with 3D-springs 

Finally, for model C, the link elasticity is described in 3D space and corresponding stiffness matrices 
have dimension 66 (5.5) (the actuating joints are assumed perfect and rigid, similar to model B). It is also 
assumed that the links are rectangular beams of the length L with the cross-section ab, where 0.02a L  , 

0.05b L  and the smaller value a  corresponds to z-direction, which was not studied above. To ensure 
comparability of all examined cases, the link stiffness matrices were parameterized with respect to the 
bending coefficient of the z-axis θK . In total, the stiffness model includes 23 variables (five for passive 
joints and 18 for the virtual springs of three links) and it was studied numerically. The stiffness analysis was 
performed for the same initial configurations (S-, - and Z-type) and for the same direction of the external 
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force as for the models A and B. Summary of the modeling results are presented in Table 5.1 and Table 5.4 
and are briefly described below. 

For S-configuration, the results are qualitatively similar to ones obtained for model B. Besides, 
numerical value of the stiffness for the non-loaded case is the same, 2

θ2500 /K L . However, here the 
buckling occurs for an essentially lower critical force, θ0.16 /K L , that corresponds to sudden lateral 
deflection in z-direction. For comparison, according to the Euler formula, the local buckling of the links 
occurs for a compressing force of θ0.40 /K L , which is 2.5 times higher than the loading that provokes the 
geometric buckling of the examined mechanism. Then, after the buckling, the stiffness falls down to 

2
θ0.20 /K L . It is worth mentioning that the axial deflection corresponding to the critical force is very low, it 

is equal to  57 10 / L  . 

In contrast, for -configuration buckling which does not exist in models A and B was detected. In 
particular, if the external force exceeds the critical value θ0.20 /K L  the stiffness suddenly reduces from 

2
θ1.03 /K L  to 2

θ0.04 /K L  (for comparison, the stiffness coefficient for unloaded mode is 2
θ1.70 /K L ). 

Physically it is also explained by sudden deflection in z-direction, which was beyond capabilities of previous 
models. It is also worth mentioning that, in this case study, the stiffness of manipulator links in z-direction is 
essentially lower than in y-direction. Another interpretation of this buckling phenomenon may be presented 
as sudden loss of symmetry with respect to xy-plane.  

For Z-configuration, the results remain qualitatively the same as above, but corresponding numerical 
values are changed. Thus, manipulator stiffness for the unloaded mode is θ7.52 /K L , then it gradually 
reduces to θ5.88 /K L  and, after buckling, falls down to θ0.03 /K L . Corresponding value of the critical 
force is θ0.17 /K L  and it also corresponds to the z- deflection. 

 

Table 5.4 Summary of stiffness analysis for serial chain with passive joints and 3D-springs 

Stiffness around the buckling  
Configuration 

Critical 
force 

Stiffness for 
unloaded mode 

crF F  crF F  

Stiffness for large 
deformations 

( L  ) 

S-configuration θ0.16
K

L
 θ

2
2500

K

L
 θ

2
2500

K

L
 θ

2
0.023

K

L
 θ

2
0.029

K

L
 

-configuration θ0.20
K

L
 θ

2
1.70

K

L
 θ

2
1.03

K

L
 θ

2
0.043

K

L
 θ

2
0.13

K

L
 

Z-configuration θ0.17
K

L
 θ

2
7.52

K

L
 θ

2
5.88

K

L
 θ

2
0.027

K

L
 θ

2
0.035

K

L
 

 

Summarized results concerning all models A, B, C are presented in Table 5.1, Table 5.2, Table 5.3 and 
Table 5.4. As it follows from them, a full-scale 3D stiffness analysis yields essentially lower values of 
critical force compared to models A and B. Besides, for model C, all examined postures demonstrated 
buckling related to sudden deflections in the z- direction. This presents another source of potential structural 
instability of kinematic chains that posses the symmetry with respect to a plane. 

 

5.3 BUCKLING PHENOMENA IN SERIAL CHAIN WITH AUXILIARY LOADING  

Let us now focus on the non-linear stiffness analysis of a serial chain under auxiliary loadings applied 
to an intermediate node. It is assumed that the considered chain consists of two links (either rigid or flexible) 
separated by a flexible joint. Relevant analysis includes evaluating stiffness variation due to the loading, 
detecting of buckling and computing corresponding critical forces, as well as analysis of the auxiliary spring 
influence on the chain stiffness. 
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5.3.1 Serial chain with torsional springs 

Let us consider first a 2-link manipulator with a compliant actuator between the links and two passive 
joints at both ends. It is assumed that the left passive join is fixed, while the right one can be moved along x 
direction (Figure 5.9a). Besides, here both rigid links have the same length L  and the actuator stiffness is 

θK . The positions of the end-effector and the actuator for such a manipulator are defined as 

 
2 cos ; cos

0; sin
e a

e a

L x L

y y

x

L

 


 
 

 


 (5.11) 

where   is the angle between the first link and x -direction, and indices ‘e’ and ‘a’ correspond to the end-
effector and actuator positions respectively. 

 

 

Figure 5.9 Kinematic chain with compliant actuator between two links and its static forces/torques 

 

Let us assume that the initial configuration (i.e. for 0M  ) of the manipulator corresponds to 

0 / 6   , where 2·    is the coordinate of the actuated joint. It is also assumed that the external 
loading G  is applied to the intermediate node (Figure 5.9a) and it is required to apply the external loading 
( , )x yF F  at the end-point to compensate the auxiliary loading G . Since this example is quite simple, it is 
possible to obtain the force-deflection relation and the stiffness coefficient both analytically and numerically.  

Let us start from the analytical stiffness analysis taking into account static forces/torques presented in  
Figure 5.9b. The static equilibrium equation of this system can be written as 

 θ Fx Fy 0MM M   (5.12) 

where 

 θ θ 0 Fx x Fy y·( ), · ·sin , · ·cosK M F L M F LM          (5.13) 

Taking into account that 2   , 0 02    and / 2yF G  , the force-displacement relation can be 
expressed in a parametric form as 

 

θ 0cos
· 2· · ; ;

2 sin sin 2

2· ·cos ; 0

x y

KG G
F F

L

x L y

 
 




    

 
 (5.14) 

and stiffness of the manipulator can be presented in a parametric form as   

 
 0θ

3 32

·cos sin1
· · ;

4 sin sin
0x yL L

KG
K K

   
 

 
    (5.15) 

where ( / 2; / 2)     is treated as a parameter. 

As it follows from expression (5.15), the stiffness coefficient xK  essentially depends on the auxiliary 
loading G . In particular, for the initial configuration (when 0M  ), the coefficient xK  can be both 
positive and negative or even equal to zero when the auxiliary loading is equal to its critical value 
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θ
*

04 / sin·G K L  . It is evident that the case *G G  is very dangerous from a practical point of view, since 
the chain configuration is unstable. 

Summarized results for this case study are presented in Figure 5.10 and in Table 5.5 that contain the 
force-deflection relations and values of translational stiffness xK  respectively. They show that the auxiliary 
loading G  significantly reduces the stiffness of the serial chain. For example, in an initial configuration 
( 0x  ), for 0G   the stiffness is 2

θ14.9· /K L , while for *0.5·G G  it reduces to 2
θ8.67· /K L . Further 

increasment of the auxiliary loading up to *1.5·G G  leads to the unstable configuration with negative 
stiffness 2

θ7.46· /K L . Moreover, in the neighborhood of the critical value of *G G  (Figure 5.11), the 
force-deflection curves have extremum points which may provoke buckling. 

For this case study, similar analysis has also been performed using the developed numerical technique 
presented in Section 4.3. Some details concerning functions and matrices used in relevant expressions are 
presented in Table 5.6, where 1L  and 2L  denote the manipulator link lengths, 1q  and 2q  are  the passive joint 
coordinates,   is the virtual spring coordinate and 0  is the actuator coordinate. It is worth mentioning that 
the numerical technique yielded the same results as the analytical one, which confirms validity of the 
developed approach.  

 

Figure 5.10 Force-deflections relations for different values of  auxiliary loading  G :  
chain with torsional spring ( *

θ 04 / sin·G K L  , 2
θ· /xK K K L ) 

 

Table 5.5 Translational stiffness xK  for different values of auxiliary loading  G  and different 
displacements x  ( *

04 / sin·G K L  ) 

Translational stiffness xK  
Auxiliary   
loading G 0.1x L    

 

0.05x L    

 

0x   

 

0.05x L   

 

0  θ
2

4.10·
K

L
 θ

2
6.69·

K

L
 θ

2
14.9·

K

L
 θ

2
107·

K

L
 

*0.5·G  θ
2

2.08·
K

L
 θ

2
3.36·

K

L
 θ

2
8.67·

K

L
 θ

2
53.9·

K

L
 

*1.0·G  θ
2

0.06·
K

L
 θ

2
0.03·

K

L
 0  θ

2
0.58·

K

L
 

*1.5·G  θ
2

1.96·
K

L
  θ

2
3.31·

K

L
  θ

2
7.46·

K

L
  θ

2
52.7·

K

L
  
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Table 5.6 Functions and matrices used in numerical stiffness analysis of two-link manipulator with 
auxiliary loading (case of rigid links and compliant intermediate joint)  

  Intermediate point ap  End-effector ep  

Position  
1 1

1 1

1

cos
sina

L q
L q

q

 
 
 



 
g  

 
 

1 1 2 1

1 1 2 1

1 2

cos cos
sin sin

e

e

e

L q L q
y L q L q

q q

x 




     
         

    










g  

J  ( )
0
0
1

G


 
 
 
 

J  
 
 

2 1
( )

2 1

sin
cos

1

F

L q
L q




   
   





 




J  

Jacobians  

qJ  
1 1

( )
1 1

sin 0
cos 0
1 1

G
q

L q
L q
 
 





 

J  
 
 

1 1 2 1
( )

1 1 2 1

sin sin 0
cos cos 0

1 1

F
q

L q L q
L q L q




 


    
     
 

J  

H   ( ) 0G
 H   ( )

2
F h H  

qH   ( ) 0 0G
q H   ( )

2 0F
q h H  

qH   ( ) 0 0G
q

T

 H   ( )
2 0F

q

T
h H  

Hessians  

qqH  ( ) 1 0
0 0

G
qq

h    
H  ( ) 3 0

0 0
F

qq

h    
H  

1 1 1sin yL qh G   ,             2 2 1 2 1cos · sin ·x yh FL q L q F       , 

     3 1 1 2 1 1 1 2 1cos cos sin sinx yh FL q L q L q L q F              

 

 

 

Figure 5.11 Force-deflections relations for different values of auxiliary loading G   
in the neighborhood of critical value *G G : 

 

Hence, the presented case study demonstrates rather interesting features of stiffness behavior for 
kinematic chains under auxiliary loading that where not studied previously (negative stiffness, non-
monotonic force-deflection curves, etc.). This motivates the consideration of more sophisticated examples, 
with more complicated compliant elements.  
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5.3.2 Serial chains with torsional and translational springs 

In the second example, it is assumed that there are three compliant elements: an actuated joint with 
torsional stiffness parameter θK  and two non-rigid links with translational stiffness LK . Intuitively, it is 
expected that such systems should demonstrate more complicated stiffness behavior under the loadings 
compared to the previous one.  

 

 

Figure 5.12 Kinematic chain with compliant links and actuator and its static forces/torques 

 

Under such assumptions, the chain geometry (Figure 5.12a) is described by equations 

 
2( ) cos ; ( ) cos

0; ( ) sin
e a

e a

L L x L L

y y L

x

L

 


    


 
   

 (5.16) 

where L  is the axial deformation of the links (assumed to be similar to both of them) and the remaining 
notation corresponds to subsection 5.3.1. The static equilibrium of this system is defined by the balance of 
forces 

 ·cos ·sin ·x y LF F K L      (5.17) 

and the balance of torques (5.12) where L  is replaced by  L L  . Furthermore, applying a similar 
methodology as above, the force-displacement relation can be expressed in a parametric form as  

 
 

   
θ 0

2

θ 0

8 · ·cos
·

2 sin 2· · ·sin 2· · ·sin · · · ·2 s3 in

L
x

L L L

K KG

L K G G K K K
F

L

 
     




 

 



 (5.18) 

 

 
   2

θ 0

8 ·sin ·cos

2· · ·sin 2· · ·sin · · · ·s32 in

L

L L L

K
x

L K G G K L K K

 

    


   
 (5.19) 

where 

 
2

θ 01 1
· · · ·

4 2 4 sin
2

2L L L

KG L G L
L

K sin K sin K

 
  

    
     

 
 

 
 (5.20) 

This expression also allows us to compute stiffness coefficient xK  (via the parametric differentiation), but it 
is not presented here due to its cumbersome form. 

The force-deflection relations corresponding to expressions (5.18) are presented in Figure 5.13. 
Compared to the previous case, here for *0...G G  there is only a quantitative difference (i.e. the shape of 
the examined curves remains almost the same). However, for *G G  the chain may not only be unstable 
with respect to end-effector loading xF , but also the chain configuration may become unstable. 
Geometrically, the qualitative difference of the latter is observed similar to buckling in a vertically loaded 
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arch (see Section 5.1). Summary of different chain configurations and their stiffness behavior is presented in 
Figure 5.14.  

Similar results have also been obtained numerically using the expression presented in Table 5.7, which 
corresponds to a more general case, where the link lengths are not assumed to be the same and the auxiliary 
loading can be oriented arbitrary and includes the torque component. This, more general, model can be 
useful for stiffness analysis of serial manipulators with auxiliary loading caused by gravity compensators 
where G  is not oriented strictly vertically. 

 

Summarizing Section 5.3, it should be concluded that auxiliary loading essentially influences on the 
stiffness behavior of robotic manipulators. This may reduce the stiffness coefficient and also provoke 
undesirable phenomena (such as buckling) that must be taken into account by designers. This justifies results 
of Section 4.3 and gives perspectives for practical applications. 

 

 

Figure 5.13 Force-deflections relations for different values of auxiliary loading G : 
chain with torsional and translational springs ( *

θ 04 / sin·G K L  , 2
θ· /LK K K L ) 

 

 

 

Figure 5.14 Configuration of kinematic chain with auxiliary loading:  
case of torsional and translational springs ( *

θ 04 / sin·G K L  , 2 2
θ2·10 /·LK K L ) 
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Table 5.7 Functions and matrices used in numerical stiffness analysis of two-link manipulator with 
auxiliary loading (case of compliant links and compliant intermediate joint)   

  Internal point ap  End-effector ep  

Position  

 
 

1 1 1

1 1 1

1

cos

sin

a

a

a

x L q

y L q

q






 

 





 
     
     

1 1 1 2 3 1 2

1 1 1 2 3 1 2

1 2 2

cos cos
sin sin

L q L q
L q L q

q q

  
  



     
  

 
    

   

g  

J  
1

( )
2

0 0
0 0

0 0 0

F
j
j

 
 
 
 

J  
1 5 7

( )
2 6 8

0 1 0

F
j j j
j j j

 
 
 
 

J  

Jacobians 

qJ  
3

( )
4

0
0

1 1

G
q

j
j

 
 
 
 

J  
3 5

( )
4 6

0
0

1 1

F
q

j j
j j



 
 
 
 

J  
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0 0 0
0 0
0 0 0

G


 
 
 
 
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4
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h
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 
 
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q
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 
 
 
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
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 
 
 
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q

h


    
H  ( ) 5 3 4
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q

h hh


    
H  
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qqH  ( ) 2 0
0 0
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qq

h    
H  ( ) 6 0

0 0
F

qq

h    
H  

1 1cosj q ,   2 1sinj q ,    3 1 1 1sinj L q    ,    4 1 1 1cosj L q   ,    5 2 3 1 2sinj L q     ,  

   6 2 3 1 2cosj L q    ,   7 1 2cosj q   ,   8 1 2sinj q    

1 1 1sin cosx yq G qh G  ,         2 1 1 1 1 1 1cos sinx yh L q G L q G        , 

       3 2 3 1 2 2 3 1cos sinx yh L q F L q F            ,    4 1 2 1sin cosx yh q F q F         

5 1 1sin cosx yq F qh F  ,    6 3 1 1 1 1 1 1cos sinx yh h L q F L q F        

5.4 BUCKLING PHENOMENA IN TRANSLATIONAL PARALLEL MANIPULATORS 

Let us now consider several examples that deal with the stiffness analysis of 3-d.o.f. translational 
manipulators of the Orthoglide family and their kinematic chains that include parallelogram-based linkages. 
Each of these manipulators consists of three identical kinematic chains actuated by mutually orthogonal 
linear drives, which are arranged in a special way to ensure almost isotropic workspace kinematic properties 
and to restrict the end-effector motions in translation only. This architecture ensures the velocity 
transmission factors close to 1.0 (similar to the conventional Cartesian-type machines) and provides high 
stiffness in the unloaded mode [Chablat 2003] [Pashkevich 2010]. However, nonlinear stiffness properties of 
such manipulators and potential buckling phenomena have not been studied in previous works yet. 

5.4.1 Kinetostatic models of translational parallel manipulators under study 

For the Orthoglide manipulator, each kinematic chain includes a foot, a kinematic parallelogram with 
two axes and two bars, and an end-effector (Figure 5.15). To convert this architecture into a set of strictly 
serial chains two types of approximations were used: 
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3-PUU model, where the legs are comprised of equivalent limbs with U-joints at the ends (here, the 
limb stiffness is described a 6-dof virtual spring corresponding to the parallelogram bars with doubled cross-
section area); 

3-PUcUc model, where there is an explicit kinematic constraint describing parallelism of the 
parallelogram axes (in this case, the limb stiffness is described by equivalent 5-d.o.f. virtual spring). 

More details concerning these approximations can be found in [Pashkevich 2010].  

 

Figure 5.15 Kinematic chains of the Orthoglide manipulator and its 3-PUU counterpart 

Under these assumptions, the kinematic model of the PUU-chain is expressed as  

 base a Foot 1 2 Link 3 4 Tool( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x y z x z yq q L q q         T T T V θ R R T V θ R R T  (5.21) 

where base Tool,T T  are the constant transformations matrices (the matrix baseT  includes also the “foot” 
transformation); a Foot Link, , θ θ  are the virtual joint coordinates of the actuator, the “foot” and the “link” 
respectively; (...)V  is the homogeneous matrix-function of the virtual springs, and , , , , ,x y z x y zT T T R R R  
are elementary homogeneous transformation matrices. In the case of  PUcUc-chain, the third passive joint is 
eliminated by adding the kinematic constraint q3+q2=0). It is also assumed that for the PUU-chain the matrix 

(...)V  is expressed via the multiplication of six elementary transformations: 

 ( , , , , , ) ( ) ( ) ( ) ( ) ( ) ( )x y z x y z x x y y z z x x y y z z                     V T T T R R R  (5.22) 

These presentations allow computing the Jacobians and Hessians semi-analytically, via the 
straightforward differentiation of relevant products of homogenous matrices. 

The elasticity of the manipulator elements has been evaluated using the FEA-based methodology and 
special accuracy improvement tools proposed in Chapter 2. As it follows from our study, the rigidity of the 
parallelogram axes is high compared to the bar and the foot. For the remaining components, the compliance 
matrices were presented in Chapter 2.  

In the case of PUcUc chain, the parallelogram stiffness matrix depends on the joint variable q2 and is 
computed from the analytical expression [Pashkevich 2010]. 
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where Kij  are the elements of Kbar. 
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5.4.2 Stiffness analysis of parallelogram-based chains 

The most complex element from the point of view of the stiffness analysis in Orthoglide manipulator 
is a kinematic parallelogram. It is usually approximated by linear model (5.23) or even by a bar element with 
the double stiffness. To evaluate accuracy and validity of both approximations, first let us obtain the stiffness 
matrices for both of the models and then apply them for the parallel manipulator. For the purposes of 
comparison, the VJM-based approach developed in this work will be complemented by FEA-based analysis. 
The latter allows us to determine accuracy of the proposed technique and to detect critical forces that may 
provoke buckling phenomena. 

The considered manipulators include three parallelogram-type linkage where the main flexibility 
source is concentrated in the bar elements of length 310 mm. The stiffness matrix of the bar element was 
evaluated in Chapter 2. This bar-element has also been evaluated with respect to the structural stability under 
compression, and the FEA-modeling produced three possible buckling configurations presented in Figure 
5.16. It is obvious that these configurations (in different combinations, for two bar elements) are potentially 
dangerous for the compressed parallelogram. However, the parallelogram may also produce some other types 
of buckling because of the presence of the passive joints. 

 

Figure 5.16 Critical forces and buckling configurations of a bar element employed in the parallelograms 
of Orthoglide obtained by FEA 

For the parallelogram-base linkage incorporating the above bar elements, expression (5.23) yields the 
following stiffness matrix  
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corresponding to the straight configuration of the linkage (i.e. to 0q ). Being in good agreement with 
physical sense, this matrix is rank deficient and incorporates exactly one zero row/column corresponding to 
the z-translation, where the parallelogram is completely non-resistant due to the specific arrangement of 
passive joints. Also, as it follows from comparison with doubled stiffness matrix of a bar element (see 
Chapter 2) that may be used as a reference, the parallelogram demonstrates essentially higher rotational 
stiffness that mainly depends on the translational stiffness parameters of the bar (moreover, the rotational 
stiffness parameter 55K  of the bar is completely eliminated by the passive joints). The most significant here 

is the parallelogram width d  that was explicitly presented in the rotational sub-block of lgpK .  

To investigate applicability range of the linear model based on the stiffness matrix (5.23), a non-linear 
“force-deflection” relation corresponding to the parallelogram compression in the x-direction was computed. 
This computation has been performed using an iterative algorithm presented in Chapter 4. As it follows from 
the obtained results, the matrix (5.23) ensures a rather accurate description of the parallelogram stiffness in 
small-deflection area. However, for large deflections, the corresponding VJM-model detects a geometrical 
buckling that limits the applicability of the matrix (5.23).  

Similar analysis was performed using the FEA-technique, which yielded almost the same “force-
deflection” plot for the small deflections but detected several types of the buckling, with critical forces may 
be both lower and higher than in the VJM-modeling. Corresponding numerical values and parallelogram 
configurations are presented in Figure 5.17. 
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Figure 5.17 Force-deflection relations and buckling configurations for parallelogram compression 
(modeling methods : VJM, FEA, and LIN – linear model with proposed stiffness matrix). 

 

Table 5.8 Critical forces corresponding to different types of buckling for two configurations of the 
parallelogram-based linkage 

Critical force 
Straight configuration 

(q=0) 
Inclined configuration 

(q=30°) 

Fcr1 2.2 kN 2.3 kN 

Fcr2 5.6 kN 10.2 kN 

Fcr3 11.8 kN 12.7 kN 

Fcr4 19.4 kN 19.7 kN 

Fcr5 34.0 kN 35.0 kN 

 

 

Figure 5.18 Torque-rotation relations for parallelogram twisting. 

 

It is worth mentioning that a particular type of buckling that may appear in the manipulator highly 
depends on the type of joints that precede and succeed the parallelogram. This statement is confirmed by a 
separate stiffness modeling of the entire manipulators with parallelogram-based linkage. Besides, critical 
forces essentially depend on parallelogram joint variable q  defining its non-loaded configuration (Table 
5.8). Hence, with respect to translational deflections, the linearity zone where matrix (5.23) may be used 
without caution is defined by the value 0.1 mm, which is in the frame of reasonable technical specifications 
for this case study. 
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A similar analysis has also been performed for the rotational displacement around the x-axis (Figure 
5.18). The obtained results confirmed both validity of the linear model with the derived stiffness matrix (for 
very large linearity range, deflections up to 15°), and essential advantages of the parallelograms compared to 
equivalent bar-type links with doubled cross-section area. In particular, for the width parameter d=80 mm, 
this type of linkage ensures at least twice better rotational stiffness than a bar-type one. It is obvious that 
increasing of this parameter leads to further improvement of the rotational stiffness but there exists some 
physical limit that is beyond the presented model (in this case, increasing of parameter d  will introduce 
some additional sources of flexibility). 

Table 5.9 Stiffness coefficients of the Orthoglide manipulator for different assumptions concerning 
parallelogram linkage 

VJM-model FEA-model 
Model of linkage 

Ktran  [N/mm] Krot  [N/rad] Ktran  [N/mm] Krot  [N/rad] 

2x-Bar linkage 3.35·103 0.13·106 --- --- 

Parallelogram linkage 

(solid axis) 
3.23·103 4.33·106 3.33·103 4.10·106 

Parallelogram linkage 

(flexible axis) 
3.08·103 4.06·106 3.31·103 4.07·106 

 

Finally, the developed VJM-model of parallelogram has been verified in the frame of the stiffness 
modeling of the entire manipulator. Relevant results are presented in Table 5.9. They confirm the advantages 
of the parallelogram-based architectures with respect to the translational stiffness and perfectly match to the 
values obtained from FEA-method. However, releasing some assumptions concerning the stiffness properties 
of the remaining parallelogram elements (other than bars) modifies the values of the translational and 
rotational stiffness. The latter gives a new prospective research direction that targeted at more general 
stiffness model of the parallelogram. 

 

5.4.3 Kinetostatic singularity in the neighborhood of the flat configuration 

It is evident that the lowest stiffness of the considered translational manipulators corresponds to the 
near-flat configuration, where the parallel is approaching to geometrical singularity (flat configuration 
corresponds to geometrical singularity when all kinematic chains are laying in the single plane). Thus, to 
evaluate specificity of the near-flat configuration, let us consider this case in details. In order to provide 
comparability of all case studies which correspond to translational parallel manipulators, let us keep the same 
assumption concerning the force orientation (parallel to the coordinate frame bisector) but consider both of 
two possible directions, i.e. towards inside and outside of the cubic workspace.  

The simulation results for this manipulator posture are presented in Figure 5.19 and Table 5.10 where 
d0 denotes initial distance from the flat singularity, K0 is the translational stiffness for the unloaded mode, 
( , )cr crF   and ( , )cr crF   are respectively the critical deflection and the critical force for the opposite 
directions of the displacement. As it follows from these results, in the neighborhood of the flat singularity the 
stiffness properties are essentially non-symmetrical with respect to the force direction. This conclusion is 
valid for both of the examined models (3-PUU and 3-PUcUc), which demonstrate almost similar behaviors. 
In particular, for the inside-direction of the loading, the force increases non-linearly but monotonically while 
the deflection augments. However, for the outside-direction, initially the manipulator reacts to external 
loading in the same way: increasing of the deflection leads to increasing of the resisting elastic force. But 
after achieving the critical value, the reacting force begins to decrease, the configuration becomes unstable 
and the manipulator abruptly changes its posture to the symmetrical ones (in kinematics, it is treated as an 
alternative assembling mode). After that, the manipulator demonstrates stable behavior with respect to the 
loading. 
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Figure 5.19 Force-displacement relations for both of the examined manipulators  
(neighborhood of the flat singularity; distance to the singularity is 11.4 mm) 

 

Table 5.10 Summary of stiffness analysis in the neighborhood of the flat singularity 

Configuration 0d , 
[mm] 

Stiffness for  
unloaded mode,  

[kN/mm] 

crF  , 
[kN] 

cr
 , 

[mm] 
crF  , 

[kN] 
cr
 , 

[mm] 

Model A: 3-PUU manipulator 

Point Q2 91.7 0.402 -3.61 -12.6 4.80 9.8 

Point Q2
a 46.0 0.090 -0.67 -16.8 3.20 18.6 

Point Q2
b 11.4 0.005 -0.01 -4.6 2.50 36.6 

Model B: Orthoglide manipulator 

Point Q2 91.7 0.418 -2.06 -5.7 2.20 4.9 

Point Q2
a 46.0 0.095 -0.70 -17.1 1.45 11 

Point Q2
b 11.4 0.006 -0.01 -4.6 0.92 24 

Q2 = (-76.35, -76.35, -76.35);   Q2
a = (-100, -100, -100);   Q2

b = (-120, -120, -120) 

 

The simplest model that explains the above described phenomenon is presented in Figure 5.20. It is 
derived via generalization of the “toggle-frame” construction known from the structural mechanics, with 
relevant modifications motivated by the Orthoglide architecture and relative stiffness properties of its 
elements. Here, the elasticity is concentrated at the basis of the manipulator legs and it is presented by linear 
springs with the parameter K . It is assumed that initial distance between the end-point and the singularity-
plane is 0 0sind L  , where 0  is the corresponding angle between the leg and the plane. The derived 
expressions  

    0 0 0 03 1 cos / cos sin ; sin sinF K L d L            (5.25) 

perfectly describe the shape of the force-deflection curves obtained from the complete stiffness models.  

Besides, a more detailed analysis shows extremely fast reduction of the stiffness while approaching 
this singularity. Corresponding expressions derived for small value of 0  yield a linear relation for the 
critical deflection 00.42cr d   and cubic relation for the critical force 2 3

0/ 3crF K L d  . Hence, this 
simplified model is in perfect agreement with the simulation results and justifies conventional kinematic 
design objectives (velocity transmission factors, condition number, etc.) that preserve the manipulator from 
approaching the flat posture. In addition, it proves the common notion of the “distance-to-singularity” that is 
used in kinematics must be revised in kinetostatics taking into account the fact that loading essentially 
reduces the margin of the manipulator structural stability.  
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Figure 5.20 Simplified stiffness model of Orthoglide-type manipulators for near-flat configuration  

 

5.4.4  Stiffness analysis of 3-PUU parallel manipulator   

For a 3-PUU model, the stiffness analysis was performed for vertices Q1…Q4 of the dexterous cubical 
workspace 200200200 mm3 corresponding to the Orthoglide design specification with the range of the 
velocity transmission factors [0.5, 2.0]. Besides, a similar study has been done for the isotropic point Q0 
where the transmission factors are equal to 1.0, similar to a conventional Cartesian machine [Ceccarelli 
2002], [Pashkevich 2010]. For all of these points, there were computed non-linear curves of the force-
deflection relations assuming that the displacement is directed along the bisecting line of the coordinate 
system. 

As it follows from the obtained results (Figure 5.21, Table 5.11), for all considered points Q0…Q4, the 
force-deflection relations are essentially non-linear and include the buckling points where the stiffness 
reduces radically. Corresponding critical force varies from 4.8 kN for the point Q2 to 15.0 kN for the point 
Q1, while the critical deflections are within the range 2.1…9.8 mm. The isotropic point Q0 that is usually 
used for the benchmarks of such manipulators possesses intermediate values of these indices (critical force 
9.4 kN and critical deflection 2.7 mm). For all cases, the translational stiffness coefficient in the pre-buckling 
mode is almost constant, but it essentially varies throughout the workspace. In particular, the highest value 
7.1 kN/mm  is achieved at the Point Q1 and the lowest one 0.4 kN/mm  corresponds to the point Q2. 
However, after the buckling, the stiffness abruptly reduces down to 0.05 0.09 kN/mm . Hence, the 
traditional linear stiffness analysis (which ignores the influence of external loading) provides rather 
reasonable indicators for the pre-buckling mode but it does not allow us to evaluate the range of the loading 
for which the deflections may be treated as ‘small’ ones and the buckling phenomena do not appear yet. 

 

Table 5.11 Summary of stiffness analysis for 3-PUU manipulator in different workpoints along the bisecting 
line of the coordinate system 

Stiffness around the 
buckling. [kN/mm] Configuration 

Stiffness for 
unloaded 

mode,  
[kN/mm] 

Critical 
force,  
[kN] 

Critical 
deflection , 

[mm] 
crF F  crF F  

Stiffness for large 
deformations, 

[kN/mm] 

Point Q0 3.35 9.35 2.68 3.63 0.05 0.05 

Point Q1 7.10 15.05 2.09 7.17 0.18 0.07 

Point Q2 0.40 4.83 9.80 0.58 0.12 0.05 

Point Q3 6.26 9.77 1.48 7.00 0.10 0.05 

Point Q4 1.55 9.78 6.40 1.62 0.40 0.09 
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Figure 5.21  Stiffness of the 3-PUU manipulator in critical points of the cubic workspace 

It is also worth mentioning that for the points Q0…Q3, the physical nature of the buckling is perfectly 
explained by the results from the previous subsection. In these cases, the buckling is caused by sudden 
change of the configuration of one of the serial chains (from S- or Z- to -configuration, for instance). For 
the point Q2 that is close to the parallel singularity of the ‘flat’ type an additional analysis has been presented 
in Section 5.4.3.  

 

5.4.5 Stiffness analysis of Orthoglide parallel manipulator 

For 3-PUcUc model, the stiffness analysis has been performed for the same set of the workspace points 
Q0…Q4 where both of the considered manipulators are equivalent with respect to the kinematic 
performances. Similarly, for all of these points, the force-deflection relations have been computed and the 
critical values defining the buckling conditions were evaluated. 

The obtained results (Figure 5.22, Table 5.12) are qualitatively analogous to the previous ones; in 
particular, the translational stiffness of the unloaded manipulator varies from 16.6 kN/mm  for the point Q2 to 
0.4 kN/mm  for the point Q1. However, in this case, the numerical values of the critical forces are apparently 
lower, which slightly reduces advantages of the parallelogram-based architecture demonstrated in 
[Pashkevich 2010], where a comparison was done on the basis of the unloaded stiffness analysis. Thus, in the 
point Q0, the translational stiffness coefficient is almost the same as for 3-PUU case ( 3.2 kN/mm ) but the 
critical force and deflection are almost twice lower. Similar conclusions are also valid for the remaining 
points Q1…Q4. Therefore, the parallelogram-based architecture is less robust with respect to the buckling 
associated to the translational deflections but, as it follows from supplementary study, its rigidity is 
essentially higher with respect to the rotational deformations.  

The physical nature of the buckling detected for most of the cases (points Q0…Q3) can also be 
explained using results for the serial kinematic chains presented in Section 5.2. However, the parallelograms 
introduce some particularities that lead to additional bifurcations and salient points on the force-deflection 
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curves. For the area of flat singularity (point Q2 ) a complimentary analysis has been performed in Section 
5.4.3. 

 

Table 5.12 Summary of stiffness analysis for Orthoglide manipulator in different workpoints along the 
bisecting line of the coordinate system 

Stiffness around the 
buckling. [kN/mm] Configuration 

Stiffness for 
unloaded 

mode,  
[kN/mm] 

Critical 
force,  
[kN] 

Critical 
deflection , 

[mm] 
crF F  crF F  

Stiffness for large 
deformations, 

[kN/mm] 

Point Q0 3.23 4.65 1.41 3.36 0.03 0.03 

Point Q1 16.60 7.85 0.48 16.40 0.42 0.31 

Point Q2 0.42 2.24 4.85 0.48 0.06 0.03 

Point Q3 9.95 4.75 0.48 9.60 0.84 0.11 

Point Q4 5.41 2.78 0.52 5.09 0.65 0.06 

 

 

 

Figure 5.22 Stiffness of the 3-PUcUc manipulator in critical points of the cubic workspace 

 

Summarizing Section 5.4 it should be noted that the stiffness of 3-PUU and Orthoglide translational 
parallel manipulators are dependent upon the end-effector location and external loading, force-deflection 
relations are rather non-linear and have bifurcation points, which are correspond to buckling. Besides, it was 
first discovered that in robotic manipulators, along with geometrical singularities, kinetostatic ones may 
appear. 
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5.5 SUMMARY 

The chapter is devoted to the application of the developed stiffness modeling technique for the non-
linear stiffness analysis of serial and parallel manipulators under different types of loadings The main 
contributions are in the area of detecting non-linear effects in the manipulator stiffness behavior and 
determining the potentially dangerous configurations and critical forces that may provoke undesired buckling 
phenomena in typical robotic architectures. In contrast to other works, it was first showed that in 
externally/internally loaded manipulators some kinematic chains may be unstable and/or there may exist 
kinetostatic singularities (in addition to ordinary geometrical ones), for which even small disturbances may 
lead to sudden change of current configuration. From practical point of view, these results are useful for pre-
design stage, they allow a designer to evaluate an admissible range of the loading that does-not create 
undesirable effects in the manipulator behavior.  

 

In more details, Chapter 5 includes the following results: 

(i)  Non-linear stiffness analysis of three-link serial chains under end-point loading with different 
assumptions on compliant elements. It is proved that, in such chains, the stiffness essentially 
depends on the loading and the chain can loose its stability if the loading is too high. 
Expressions allowing us to compute the stiffness coefficient critical loading  for typical 
configurations were obtained.  

(ii)  Non-linear stiffness analysis of two-link serial chains under auxiliary loadings (applied in an 
intermediate node) with flexible/rigid links and compliant actuator. It was clearly demonstrated 
that the auxiliary loading may essentially reduce the stiffness of the chain or even to provoke a 
buckling. Relevant results are normalized with respect to designed parameters and are 
convenient in engineering form.   

 (iii) Non-linear stiffness analysis of Orthoglide parallel manipulators and its 3-PUU approximation. 
It has been discovered that, in the unloaded mode, the stiffness of Orthoglide is essentially 
higher than its 3-PUU counterpart. However, the critical forces (provoking buckling) for 
Orthoglide are about twice lower than for 3-PUU.  Another essential result here is related to the 
notion of kinetostatic singularity that completely differs from the classical geometrical one. 

 

Application study presented in this chapter has also demonstrated some limitations of the developed 
technique. In particular, only geometrical buckling can be detected in the frames of the adopted VJM 
approximation of the links. However, it is acceptable in practice since another types of buckling are usually 
observed for essentially higher loading that is not admissible in the normal operation mode. On the other 
hand, this limitation can be reduced by applying more sophisticated VJM-presentation of the links (i.e. 
dividing them by several rigid segments separated by virtual springs). 

 

 

The main results of Chapter 5 are published in the following works: [Klimchik 2009a], [Klimchik 
2009c], [Klimchik 2010a], [Klimchik 2010b], [Klimchik 2010c], [Klimchik 2011a], [Klimchik 2011b], 
[Klimchik 2011d], [Klimchik 2011e]. 

 

 

 



 

CONCLUSIONS AND PERSPECTIVES 
 

CONTRIBUTIONS OF THE THESIS. 

This thesis is devoted to the enhancement of stiffness modeling technique for serial and parallel 
manipulators in order to increase the accuracy and efficiency of robotic-based machining of high 
performance materials by means of  compensation of the compliance errors (in on-line and/or off-line mode). 
To achieve this goal, four main problems were considered that are presented in Chapters 2-5 respectively. 

 

Chapter 2 focuses on the accuracy improvement of the manipulator link elastostatic model parameters. 
It proposes a computationally efficient identification procedure which is based on the FEA-modeling and 
allowed us to obtain the stiffness matrix taking into account complex shape of the link, couplings between 
rotational and translational deflections and joints particularities. The developed method provides higher 
accuracy and good integration with existing CAD-based systems, comparing to existing ones (about 0.1% for 
the stiffness matrix element). In more detail, the results and contributions of Chapter 2 include: 

 FEA-based methodology for stiffness matrix identification, to evaluate the stiffness matrix from 
the deflection field produced by virtual experiments in a CAD environment, taking into account 
the link shape, coupling between rotational/translational deflections and joint particularities 

 Numerical technique to compute the stiffness matrix from the deflection field extracted from 
FEA-based virtual experiments; a comperative study of several versions (SVD-based, LIN-
based etc.) with respect to computational efficiency and speed. 

 Analytical expressions for accuracy evaluation of the developed identification technique, to 
determine the optimal settings for the FEA-based experiments and to improve the identification 
accuracy  

 Technique for statistical processing of the experimental data, to minimize the identification 
errors by eliminating outliers, to determine the confidence intervals and to detect "zero" 
elements of the stiffness matrix. 

 Application of the developed technique to case studies (Orthoglide links) and comparison with 
previous methods (based on approximated models), which confirmed advantages of the 
developed method: reduction of errors in significant elements of the stiffness matrix from 20-
50% to 0.1% 

Obtained results are also useful to the MSA-based modeling that operates with matrices of the size 12 12 . 
The required transformation is performed using the derived analytical expressions that are applicable in 
general cases.  

 

Chapter 3 deals with the stiffness modeling of serial and parallel manipulators in the unloaded mode 
(i.e. under assumption of small deformations). The main contributions are in the area of the VJM modeling 
approach that was enhanced for serial and parallel manipulators with arbitrary location of passive joints. In 
contrast to other works, the developed technique starts from stiffness modeling of all kinematic chains 
separately and then aggregates them in a unique model. Besides, for each kinematic chain, this technique is 
able to obtain both non-singular and singular stiffness matrices that take into account passive joints or the 
kinematic singularities. Relevant assembling procedure allowed us to compute the aggregated Cartesian 
stiffness matrix of the parallel manipulator and also to evaluate the internal forces/torques and end-platform 
deflections caused by geometrical errors in the kinematic chains of over-constrained mechanisms. The 
developed method combines advantages of the FEA and the VJM modeling approaches (accuracy and 
computational efficiency respectively) and allows us to obtain the stiffness matrices either in numerical or in 
analytical form. More precisely, the results and contributions of Chapter 3 include:  
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 Enhanced VJM-based stiffness modeling technique for serial kinematic chains with arbitrary 
location of passive joints, which allows us to take into account passive joints in an explicit form 
and to compute the stiffness matrix for any configuration (even for singular ones). Also, it 
evaluates internal deflections (and corresponding forces/torques) for kinematic chains with 
arbitrary number of passive and actuated joints. In contrast to previous results, the developed 
technique is more computationally efficient, includes low-order matrix inversion, and it is able 
to obtain even rank-deficient stiffness matrices caused by the presence of passive joints or 
singular configuration of the kinematic chain.  

 Analytical expression for stiffness matrix modification induced by passive joints, which extends 
the classical stiffness mapping notion for serial manipulators, and related recursive procedure 
for stiffness matrix elements computing, which allows us to include passive joints sequentially 
(one-by-one). For typical industrial architectures, which include trivial passive joints (where 
axes are collinear with Cartesian ones), simple and practically convenient rules for stiffness 
matrix modification have been proposed. These results significantly simplify computation of the 
desired stiffness matrix and reduce them to elementary algebraic transformations. 

 Stiffness model assembling technique that allows us to aggregate elastostatic models of separate 
kinematic chains in the stiffness model of the parallel manipulator. It also allows us to evaluate 
internal deflections and forces/torques in joints, as well as deflections of the reference frame, 
caused by geometrical errors in kinematic chains. This issue has never been studied in robotic 
applications before and has essential practical significance for evaluating desired tolerances in 
links/joints geometry and corresponding internal stresses in over-constrained mechanisms. 

 

Chapter 4 deals with the non-linear stiffness modeling of serial and parallel manipulators in the loaded 
mode (i.e. under assumption of large deformations). The main contributions are in the area of the VJM 
modeling approach that was generalized for the case of large deflections caused by internal and external 
loadings applied to the end-point and/or to the intermediate nodes of the kinematic chains. In contrast to 
other works, the developed technique includes computing of the static equilibrium configuration 
corresponding to the given loading. In addition, it allows us to check the "internal stability" of relevant chain 
configuration. Similar to Chapter 3, the stiffness modeling of parallel manipulators starts from kinematic 
chains, but it yields a non-linear function describing force-deflection relation. Besides, for each kinematic 
chain, this technique is also able to obtain both non-singular and singular stiffness matrices. Relevant 
aggregation procedure allows us to obtain a non-linear force-deflection (or deflection-force) relation for the 
parallel manipulator and to compute the aggregated Cartesian stiffness matrix, as well as to evaluate the 
internal forces/torques and end-platform deflections caused by loadings and geometrical errors in the 
kinematic chains. Also, this model was used for the compensation of the compliance errors caused by the 
internal and external loadings. Similar to the previous chapter, the developed method combines advantages 
of the FEA and the VJM modeling approaches (accuracy and computational efficiency respectively). In more 
details, the results and contributions of Chapter 4 include 

 Non-linear stiffness modeling technique for serial kinematic chains under external and internal 
loadings (applied to end-point, to the intermediate nodes, preloading in the joints) which 
includes: computing the static equilibrium configuration in the loaded mode, obtaining full-
scale force-deflections relation and computing of the stiffness matrix for the loaded mode  

 Stability analysis technique and related matrix stability criterion for kinematic chain 
configuration under loading in the case of single and multiple equilibriums, which takes into 
account the second derivatives of the kinematic chain potential energy. 

 Enhanced stiffness model aggregation technique for over-constrained parallel manipulators 
under internal and external loadings, which takes into account shifting of the equilibrium due to 
loadings and allows to evaluate internal deflections and forces/torques in joints, as well as 
deflections of the reference point, caused by geometrical errors in kinematic chains. 
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 Numerical technique for on-line and off-line compensation of the compliance errors caused by 
external loadings in parallel manipulators (including over-constrained ones) with perfect and 
non-perfect serial kinematic chains. In contrast to previous works this technique is based on a 
non-linear stiffness model that gives essential advantages for robotic-based machining, where 
elastic deflections can be essential. 

 

Chapter 5 demonstrates the application of the developed stiffness modeling technique for the non-
linear stiffness analysis of serial and parallel manipulators under different types of loadings. The main 
contributions are in the area of detecting non-linear effects in the manipulator stiffness behavior and 
determining the potentially dangerous configurations and critical forces that may provoke undesired buckling 
phenomena in typical robotic architectures. In contrast to previous works, it was firstly showed that in 
externally/internally loaded manipulators, some kinematic chains may be unstable and/or there may exist 
elastostatic singularities, for which even small disturbances may lead to sudden change of current 
configuration. From practical point of view, these results are useful for pre-design stage. They allow the 
designer to evaluate an admissible range of the loading that does not create undesirable effects in the 
manipulator behavior. More precisely, the results and contributions of Chapter 5 include 

 Non-linear stiffness analysis of three-link serial chains under end-point loading with different 
assumptions on compliant elements. It is proved that, in such kinematic chains, the stiffness 
essentially depends on the loading and the kinematic chain can lose its stability if the loading is 
too high. Expressions allowing us to compute the stiffness coefficient critical loading  for 
typical configurations were obtained.  

 Non-linear stiffness analysis of two-link serial chains under auxiliary loadings (applied in an 
intermediate node) with flexible/rigid links and compliant actuator. It was clearly demonstrated 
that the auxiliary loading may essentially reduce the stiffness of the kinematic chain or even to 
provoke a buckling phenomenon. Relevant results are normalized with respect designed 
parameters and are convenient in engineering form.   

 Non-linear stiffness analysis of Orthoglide parallel manipulators and its 3-PUU approximation. 
It has been discovered that, in the unloaded mode, the stiffness of Orthoglide is essentially 
higher than its 3-PUU counterpart. However, the critical forces (provoking buckling) for 
Orthoglide are about twice lower than for 3-PUU.  Another essential result here is related to the 
notion of elastostatic singularity that completely differs from the classical kinematic one. 

 

In general, the obtained results contribute to the area of non-linear stiffness modeling of serial and 
parallel manipulators and give a robotic designer a useful tool allowing to estimate reasonable limits in 
minimization of link geometry (cross-section, in particular) in order to avoid potentially dangerous 
phenomena in the manipulator stiffness behavior under external and internal loadings.  

 

LIMITATIONS OF OBTAINED RESULTS 

 

In spite of numerous essential advantages, the developed stiffness modeling technique still has several 
limitations that are related to the stiffness modeling assumptions. The most significant of them are presented 
below  

 

(i) Manipulator structure is assumed to be serial or strictly parallel (i.e. composition of serial chains 
assembled in end-point or at end-platform, except simple kinematic parallelograms). It is 
desirable to generalize the method to handle more complex structures that cannot be presented 
as composition of serial and parallel sub-chains (i.e. with cross-linkage) connected to the mobile 
platform with complex shape.   
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(ii) Some types of buckling cannot be detected. Due to limitations of links stiffness models (a 
pseudo-rigid body with multidimensional lumped virtual spring at the end) only geometrical 
buckling are detectible. To increase the method ability and allow us to detect buckling in a body 
(sudden change of link shape), the links should be described more precisely: as serial 
connections of several rigid bodies separated by the virtual springs.  

 

(iii) Limitations of the model accuracy (contradiction between distributed nature of the links and 
their lamped models). The VJM approach explicitly assumes that the forces are applied at the 
points corresponding to the locations of the virtual springs and this presentation is sufficient to 
describe the links stiffness properties. For this reason, the accuracy of the VJM-based model can 
not exceed 1-2% compared to FEA-modeling. 

 

However, these limitations are not critical for the most of industrial manipulators and the developed 
technique can be applied straightforwardly. Nevertheless some of these limitations will be in the focus of the 
future work. 

 

FURTHER INVESTIGATIONS AND PERSPECTIVES  

 

To generalize the obtained results and enlarge the application area, it is reasonable to continue 
research in the several directions and to concentrate on the following issues: 

 

(i) To develop a modification of the proposed method that can be applied to the parallel 
manipulators with internal loops. Besides it is useful  to consider the manipulators with several 
end-points (or end-effectors) and manipulators with non-rigid mobile platform. The main 
difficulty here (for both cases) is related to introducing additional geometrical constraints that 
are defined by another compliant mechanism. These allow us to generalize the developed 
stiffness modeling technique for any topology parallel manipulators. It is also desirable to 
extend the type of loadings that can be taken into account in the frame of the proposed method 
(by considering distributed gravity forces applied for the links, for instance). 

 

(ii) To extend the developed method in order to insure its ability to detect the local buckling of the 
manipulator links. This extension can be achieved by decomposition of the manipulator links 
into several sequential parts with corresponding stiffness matrices (i.e. by presenting each link 
as a serial kinematic chain with virtual springs in the nodes). The main problem here is essential 
increasing of the number of virtual joint variables that may influence the algorithm convergence 
while computing the equilibrium configuration. Another problem is related to obtaining optimal 
discretization step for the link which is able to detect desired effects. It is also imperative to 
investigate discretization rule: should it be regular or may be it will be better to use special 
discretization which will provides good accuracy and ability to detect buckling with a less 
number of elements. 

 

(iii) To evaluate critical loadings for existing industrial robots and to investigate the risk to reach 
elastostatic singularity under the normal task load. This type of singularity may exist in any 
manipulator, in addition to a conventional geometrical one, but this issue has never been 
studied. It is clear that this research may revise the dexterous work envelope of the industrial 
robots for the considered technological process.  
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(iv) To develop a toolbox that generates the revised machining trajectory for industrial robots using 
off-line compensation of the compliance errors caused by an interaction of the cutting tool and 
workpiece as well as by a gravity effect and a gravity compensation device. The main problem 
here is to evaluate the external loading caused by a technological process that depends on the 
type of the machining process, material properties, type of the tool, environmental factors, 
machining surface and other factors. Therefore, at first, it is reasonable to consider in details the 
technological process in order to obtain real models of cutting forces. 

 

(v) To optimize the workpiece location in the robot workspace in order to minimize the compliance 
errors. These results should improve accuracy of the robotic-based machining process without 
essential changes in the workcell hardware and software. The most important issue here is to 
investigate influence of geometrical and elastostatic errors on the accuracy of serial and parallel 
manipulators, and to compare their impact in the unloaded and loaded modes. This analysis will 
also be useful for robot calibration and for optimal design of calibration experiments. 

 

(vi) To extend capability of the developed stiffness model by taking into account the properties of 
active and passive joints (such as lubrication, temperature, bearing/velocity, clearance, friction 
and others). The main problem here is to obtain an adequate model for each factor and to 
investigate their influence on each other.  

 

(vii) To develop an optimal robot design procedure which is based on the developed stiffness model 
and produces an optimal shape of robot links. The main focus has on the machining accuracy 
and balancing of different errors sources between all manipulator links. 

 

(viii) To extend the proposed compliance errors compensation technique by adding to it the ability to 
compensate the dynamic errors (vibrations as well). The main problem which has to be solved 
here is related to the development of the adequate dynamic model of the robot-workpiece 
interaction, which produces forces/torques and state variables required for the compliance errors 
compensation.  

 

(ix) To apply the developed technique to the global stiffness modeling of the work-cell, which takes 
into account the stiffness properties of both robotic manipulators and auxiliary work-cell 
components (robot base frame, workpiece fixtures, etc.). 

 

(x) Experimental validation of the developed stiffness model that may also indicate some new 
directions for further enhancement of the proposed stiffness modeling technique.  

 

(xi) Integration of the obtained theoretical results in a software tool such as SyMoRoT, which will 
be able to automate the stiffness analysis for the mechanisms with a complex structure. 

 

The research results presented in this thesis were obtained in the frame of financial support provided 
by the project "Integrated design of parallel mechanisms and industrial robotic systems for automated 
processing of composite materials" (RoboComposite, region Pay de la Loire, France). Their practical 
implementation and further development will be performed in frame of the subsequent projects "Imageur 
Robotisé pour les Intervention Mini-Invasives" (IRIMI, FUI project) and "Modelling and control of robots 
for machining operations of large composite parts and friction stir welding." (COROSOO, ANR project) that 
have recently been started by robotic team of IRCCyN. 
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