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ABSTRACT 

 
Carbon nanotubes (CNTs) as filler are particularly interesting because they possess 

very high aspect ratio (length/diameter), typically up to 10,000. Hence, they can 

form conductive path in polymer matrix at much lower concentrations (below 5%), 

whereas in case of carbon black filler more than 20wt% loading is needed. However, 

the development of applications based on nanotubes with high value addition has 

been hampered by processing limitations resulting from the difficulty of dispersing in 

a polymeric medium. The formation of aggregates or bundles of nanotubes into host 

polymer do not allow obtaining homogeneous mixtures. The solution lies in the 

functionalisation of nanotubes with polymer chains to reduce the effect of 

interactions between CNTs and better compatibility with the host polymer in the 

mixture. Here, in this study, we aim to functionalise carbon nanotubes by using a 

polyolefin grafting procedure involving radical ‘grafting onto’. The radical grafting 

reaction was performed in the presence of dicumyl peroxide used as a hydrogen 

abstracter. The major drawback of this strategy is its radical grafting selectivity 

associated with a very short lifetime of radicals which leads coupling reactions and β-

scission. We, therefore, carried out a study with pentadecane as a model compound 

to facilitate analysis of reaction products by conventional techniques. The radical 

grafting of pentadecane on carbon nanotubes has been verified by Raman 

spectroscopy and quantitatively confirmed by elemental and thermogravimetric 

analysis (30% grafting of pentadecane on nanotubes by weight). The state of 

dispersion of functionalised carbon nanotubes was investigated by transmission 

electron microscopy and we have shown an improvement in the stability of 

suspensions of pentadecane grafted carbon nanotubes in solvents such as DMF, 

toluene, dichlorobenzene, and xylene. For a grafting density of 1.464 mmol/g, 

solubility ranged from 1.1mg/mL to 19.2mg/mL depending on the type of the solvent 

used. The highest solubility was obtained in dichlorobenzene (i.e. 19.2mg/mL). The 

introduction of nitroxyl radical (TEMPO) in the grafting reaction increased the 

grafting density of pentadecane onto nanotubes by reducing the coupling reactions 

which has been shown by gas chromatography coupled with mass spectrometry. In 

polyethylene medium, the grafting density was evaluated to be around 0.015 

mol.m-2 at 160°C; and strongly enhanced by the use of oligomers of nitroxide- and 

thiol-end-functionalised polyethylene. With same procedure, polypropylene has 

been grafted on the CNTs and the study of nanocomposite containing 3wt% PP 

grafted nanotubes by TEM did not show any significant improvement in the 

dispersion of nanotubes in the PP matrix; however, it was observed that aggregate 

size of CNTs in PP reduced. 
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Polymer systems are widely used due to their unique attributes; however, polymers 

have lower modulus and strength as compared to metals and ceramics. One way to 

improve their mechanical properties is to reinforce polymers with inclusions (fibres, 

whiskers, platelets, or particles). The embedding of inclusions in a host matrix to 

make composites or filled polymer systems, which gives material properties not 

achieved by either phase alone, has been a common practice for many years. Using 

this approach, polymer properties can be improved while maintaining their light 

weight and ductile nature.  Traditionally, composites were reinforced with micron-

sized inclusions or fillers. Recently, processing techniques have been developed to 

allow the size of inclusions to go down to nanoscale. Through alteration/control of 

the additives at nanoscale level, one is able to maximise the property enhancement 

of selected polymer system to meet the requirement of current commercial, military 

and aerospace applications.  

 

Polymer nanocomposites or the more inclusive term, polymer nanostructured 

materials, represents a radical alternative to these traditional filled polymer systems 

where the reinforcement is of the order of microns. Among these nanofillers, carbon 

nanotubes (CNTs) has taken a prominent position in modern filled systems, since the 

introduction of Carbon nanotubes (CNTs) as additive into polymer systems has 

resulted in composites exhibiting multifunctional, high performance polymer 

characteristics beyond what traditional polymeric systems possess.   

 

Nanotubes were first documented in 1991, and the first report on polymer 

nanocomposites using carbon nanotubes as a filler were published in 1994. Earlier 

nanocomposites used nanoscale fillers such as carbon blacks, silicas, clays, and 

carbon nanofibres to improve the mechanical, electrical, and thermal properties of 

polymers. Carbon nanotubes possess high flexibility, low mass density, and large 

aspect ratio. CNT have a unique combination of mechanical, electrical, and thermal 

properties that make nanotubes excellent candidates to substitute or complement 

the conventional nanofillers in the fabrication of multifunctional polymer 

nanocomposites. Some nanotubes are stronger than steel, lighter than aluminium, 

and more conductive than copper. Because of these extraordinary properties of 
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isolated carbon nanotubes, great enthusiasm exists among researchers around the 

world as they explore the immense potential of these nanofillers.  

 

These documents address various aspects of nanotubes production, purification, 

suspension, filling, functionalisation, and applications as well as the fabrication and 

characterization of polymer nanocomposites with various types of nanotubes. 

However, there are only a few nanotube-based commercial products in the market 

at present.  

 

In conclusion, nanotubes/polymer composites offer both great potential and great 

challenges, marking it as a vibrant area of work for years to come. The improvement 

and application of these composites will depend on how effectively we can handle 

the challenges. The significant progress in the understanding of these composite 

systems within the past few years points towards a bright future.   
 

The most common method for preparing polymer nanotubes composites has been 

to mix the nanotubes and polymer in a suitable solvent and to evaporate the solvent 

to form composite film. But to gain the advantages at its best, one needs: (i) high 

interfacial area between nanotubes and polymer; and, (ii) strong interfacial 

interaction. Unfortunately this solvent technique does not help much in achieving 

these targets; and as a result a nanocomposite having properties much inferior to 

theoretical expectations are obtained. 

 

In order to obtain higher contact area between nanotubes and polymer, the issue of 

dispersion needs to be addressed. Uniform dispersion of these nanotubes produces 

immense internal interfacial area, which is the key to enhancement of properties of 

interest. On the other hand modification of nanotubes surface through 

functionalisation is required for creating an effective interaction with the host matrix 

and to make nanotubes soluble and dispersible [1]. 

 

Despite the availability of considerable research work (figure 1), one of the greatest 

impediments to progress is that all known preparations of CNT give mixtures of 

nanotube chiralities, diameters, and lengths along with different amount of 

impurities and structural defects. These parameters vary significantly both within a 

                                                 
1 Polymer Nanocomposites by Joseph H Koo. McGraw-Hill Ed 1

st
  (2006). 

 

http://search.barnesandnoble.com/booksearch/results.asp?ATH=Joseph+H%2E+Koo
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sample and between samples from different batches and laboratories. Thus, it is very 

difficult to conduct reproducible controlled experiments with these inconsistent 

nanofillers and virtually impossible to compare results between different researchers 

[1].  
 

Polyethylene (PE) is one of the most common materials in our daily lives and 

accounts for 40% of the total volume of world production of plastic materials. From 

the chemical point of view, it is a basic material, or better a semi-finished industrial 

material used as a raw material by companies that transform it into a range of 

finished goods, form the most basic to the highly sophisticated. The addition of 

nanotubes to PE would results in widening the range of its application in high-tech 

products and cutting-edge technology. 

 

We selected ‘grafting onto’ approach to covalently bond PE on the surface of 

nanotubes which would assist in achieving the goals of a high degree of dispersion 

and a robust interfacial interaction between the two phases of the composite. We 

employed a systematic model compound study, prior to surface modification of 

nanotubes with PE, because of the following motives: 

 

 To establish an optimised model for PE grafting onto nanotubes. 

 To foresee the extent of side reactions and attempt to minimise it. 

 To check the effects of reaction conditions on the degree of grafting. 

 To perform extensive characterisation, which might be difficult in case of PE.  

 To examine the compatibility of surface modified nanotubes with various 

organic solvents. 

 

For this purpose we selected pentadecane as our model compound, which offers 

ease in experimentation and represents the characteristics of PE. After this 

simulation study with pentadecane, we employed this model for PE grafting onto 

nanotubes. 
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In the course of experimentation with model compound, we thoroughly investigated 

the undesired reactions taking place on the sidelines of the main reaction. We 

examined the radical preferences for combination and addition to gain a better 

understanding of the radical chemistry of the grafting reaction. Some blank samples 

were also prepared to use as reference to verify some crucial findings. 

 

The literature review carried out in chapter 1 outlines the research work carried out 

in the field of filled polymer systems and gives an insight into the methods adopted 

to make filled polymer systems more efficient. It also presents a comprehensive 

overview of the emerging techniques for preparing nanotubes/polymer composites 

which are believed to broaden the use of polymer nanocomposites’ in high-tech 

applications. 

 

The idea of Polyolefin’s grafting on nanotubes is implemented stepwise in chapter 2. 

Starting with a simple model compound approach in chapter 2, we attempted to 

restrain the undesired side reactions by means of a radical scavenger (TEMPO) in 

chapter 3. Chapter 4 applies the established model in chapter 2 and 3 for PE grafting 

to nanotubes. Chapter 5 presents a parallel study on the similar lines for 

polypropylene (PP) grafting on nanotubes. This study was carried out with the 

participation of a post-doc researcher. 

 

Finally, chapter 6 presents the original contribution of this dissertation and also 

outline the future work and application of this piece of research. A comprehensive 

summary of the thesis in French has been added at the end of the thesis. 
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This review is written with purpose to obtain a general understanding of various 

techniques used for the functionalisation of carbon nanotubes (CNTs) with polymers. An 

overview of nanofillers in the field of developing polymer filled nanocomposites, 

followed by a short glimpse of properties of polymer/CNTs composites is presented. 

General comprehension of the surface chemistry and modification of nanotubes is also 

summarised by reviewing recent research work.  

 

1.1 Nanofillers 

 

Nanoscience and nanotechnology include the areas of synthesis, characterisation, 

exploration, and application of nanostructured and nanosize materials. A decrease in 

grain size, equivalent to an increase in specific area of the system, indicates not only 

increase in reactivity but also those physical properties are no longer dominated by the 

physics of the bulk materials. Therefore individual nanofillers exhibit greater mechanical 

and electrical properties [1]. 

 

Dimensionally there different types of nanofillers are generally used in preparation of 

polymer nanocomposites. The first type of nanofillers has only one dimension may be in 

the nanometre range. They possess a platelet like structure. The lateral dimension may 

be in the range of several hundred nanometres to microns, while the thickness is usually 

less than 100 nm. Nanoclay is the example of this type of nanofillers. 

 

 The second type of nanofillers has two dimensions in the nanometre scale while the 

third dimension is larger than few hundred nanometres in size. They possess an 

elongated structure. Carbon nanotubes and nanocellulose fibre belong to this group. 

The third type of nanofillers has all three dimensions in the nanometre scale, for 

example, spherical silica and metals nanoparticles. The nanoparticles can also be 

classified into two different classes based on their aspect ratio. Theses are high- and 

low- aspect ratio nanoparticles. High aspect ratio nanoparticles include nanotubes and 
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nanowires, with various shapes, such as helices, zigzags, belts, rod, etc. Small-aspect 

ratio morphologies include spherical, oval, cubic, prism, helical, or pillar. Collections of 

many particles exist as powders, suspensions, or colloids. Thus nanosize thin layered 

aluminonsilicates or nanoclays, a large number of nanometals and their oxides, carbon 

nanotubes, cellulose nanofibre, etc are used as nanofillers for the preparation of 

polymer nanocomposites. 

 

1.1.1 Carbon nanotubes 

 

The discovery of carbon nanotubes were reported by Iijima et al in 1993 [2]. Remarkable 

progress has been made in the ensuing years from the discovery of two basic types of 

nanotubes (single-walled and multi-walled) to realistic practical application. 

 

1.1.1.1 Types and manufacturing   

 

They are generally prepared by high temperature processes such as arc discharge, laser 

ablation [3,4], and low temperature processes such as chemical vapour deposition 

techniques [5]. Nanotubes can be single-walled or multi-walled (figure 1-1). 

 

Figure 1-1: Structure of carbon nanotubes: single-walled (a); multi-walled (b). 

 

Various techniques are used for the preparation of nanotubes; each having its own 

positive and negative aspects. The following table (1-1) summarises these techniques. 
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Table 1-1: Preparation Techniques of Carbon Nanotubes. 

Nanotubes  Technique  Final Product Characteristics 

Multiwalled Carbon arc [6] Fractal structure consisting of aligned fibers made of 
aligned nanotubes and nanotubes bundles (low 
yield) 

Multiwalled  Catalytic vapour deposition 
[7] 
 

Curved and entangled nanotubes with good 
uniformity of size (higher yield than carbon arc) 

Multiwalled  Microwave plasma-enhanced 
CVD [8] 

 Aligned nanotubes 

 Multiwalled  Hot-filament-enhanced CVD 
[9] 

 Aligned nanotubes 

 Single walled  Electric arc [10] Web-like structure 

 Single walled  Laser ablation [11]  Hexagonal ropes arrangement (70–90 vol%) 
 Single walled Solar furnace [12] Structure similar to the electric arc with purity level 

depending on the furnace power 
 Single walled Catalytic CVD [13] Straight and open-ended short nanotubes 

 

Among these techniques, arc discharge method is widely used and it produces good 

quality CNTs. In this technique a current of 50 amperes between two graphite 

electrodes in a helium atmosphere is applied. This causes the graphite to vaporise, parts 

of which are condensed on the walls on reaction vessel and parts are condensed on the 

cathode. This cathode condensed vapour is MWCNTs. The SWCNTs are produced 

similarly when Co and Ni or some other metals are used to the anode. 

 

CVD is a common method for the commercial production of carbon nanotubes. For this 

purpose, the metal nanoparticles (Co, Fe, Ni) are mixed with a catalyst support such as 

MgO or Al2O3 to increase the surface area for higher yield of the catalytic reaction of the 

carbon feedstock with the metal particles [14]. One issue in this synthesis route is the 

removal of the catalyst support via an acid treatment, which sometimes could destroy 

the original structure of the carbon nanotubes. Different modifications in CVD process 

have shown potential for improving manufacturing process. For instance, plasma 

enhanced chemical vapour deposition process ensures the vertical aligned growth of 

nanotubes [15] and water-assisted chemical vapour deposition process in which the 

activity and life of the catalyst are enhanced by addition of water into the CVD reactor. 
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In 2007, researchers at the University of Cincinnati developed a process to grow aligned 

carbon nanotubes arrays of 18 mm length in their carbon nanotubes growth system. 

 

Carbon nanotubes are cylindrical sheets of carbon atom and can be thought of as a 

rolled up sheet of graphite. Depending on how the sheet is rolled into a tube, different 

nanotube structures are produced. Figure 1-2 shows several types of nanotubes, each 

with a different atomic structure. 

 

Figure 1-2: Based on the rolling angle, three types of nanotubes are possible: armchair (a); zigzag (b); 
and chiral (c).  

 

 The structures can be clearly distinguished by looking at the cross-section or along the 

axis of the nanotube. The structure of a SWCNT can be conceptualised by wrapping a 

one-atom-thick layer of graphite called graphene into a seamless cylinder. The 

nanotube's chirality, along with its diameter, determines its electrical properties. The 

armchair structure has metallic characteristics. Both zigzag and chiral structures produce 

band gaps, making these nanotubes semiconductors. Most SWCNTs have a diameter of 

close to 1 nanometre, with a tube length that can be many thousands of times longer. A 

MWCNT consist of multiple rolled layers (concentric tubes) of graphite. There are two 

models which can be used to describe the structures of multi-walled nanotubes. In the 

Russian Doll model, sheets of graphite are arranged in concentric cylinders, e.g. a (0,8)  

http://en.wikipedia.org/wiki/University_of_Cincinnati
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SWCNT within a larger (0,10) single-walled nanotube. In the Parchment model, a single 

sheet of graphite is rolled in around itself, resembling a scroll of parchment or a rolled 

newspaper. The interlayer distance in multi-walled nanotubes is close to the distance 

between graphene layers in graphite, approximately 3.4 Å. 

 

The special place of double-walled carbon nanotubes (DWNTs) must be emphasised 

here because their morphology and properties are similar to SWCNTs but their 

resistance to chemicals is significantly improved. This is especially important when 

functionalisation is required (this means grafting of chemical functions at the surface of 

the nanotubes) to add new properties to the CNT. In the case of SWCNTs, covalent 

functionalisation will break some C=C double bonds, leaving ‘holes’ in the structure on 

the nanotube and thus modifying both its mechanical and electrical properties. 

 

1.1.1.2 Characteristics  

 

Nanotubes bear unique properties that make them an extremely important class of 

nanostructured materials. Some important electrical and mechanical characteristics of 

carbon nanotubes are shown in Table 1-2.  

 
Table 1-2: Theoretical and experimental properties of carbon nanotubes [16]. 

Property  CNTs  Graphite  

Specific gravity 0.8 g/cm
3
 for SWCNT; 1.8 g/cm

3
 for MWCNT 

(theoretical) 
1.16 g/cm

3
 

Elastic modulus ≈1 TPa for SWCNT; ≈0.3–1 TPa for MWCNT 1 TPa (in-plane) 
Strength 50–500 GPa for SWCNT; 10–60 GPa for MWCNT  
Resistivity 5–50 μΩ cm 50 μΩ cm (in-plane) 
Thermal 
conductivity 

3000 W m
−1

 K
−1

 (theoretical) 3000 W m
−1

 K
−1

 (in-plane), 
6 W m

−1
 K

−1
 (c-axis) 

Magnetic 
susceptibility 

11 × 10
6
 EMU/g (perpendicular with plane), 

0.5 × 10
6
 EMU/g (parallel with plane) 

 

Thermal 
expansion 

Negligible (theoretical) −1 × 10
−6

 K
−1

 (in-plane), 
19 × 10

−6
 K

−1
 (c-axis) 

Thermal stability >700 °C (in air); 1800 °C (in vacuum)  
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It is clear that CNTs have unique mechanical, electrical, magnetic, optical and thermal 

properties. In some special applications, such as space explorations, high-performance 

lightweight structural materials are required, and they can be developed by adding CNTs 

to polymers or other matrix materials. Moreover, although graphite is a semi-metal, 

CNTs can be either metallic or semi-conducting due to the topological defects from the 

fullerene-like end caps in CNTs (pentagons in a hexagonal lattice). Thus, the physico-

mechanical properties of CNTs are dependent upon their dimensions, helicity or 

chirality.  

 

1.1.1.3 End and defect-site Chemistry  

 

The end caps of nanotubes (when not closed by the catalyst particle) tend to be 

composed of highly curved (and hence, unstable) fullerene like hemispheres, which are 

therefore highly reactive, as compared with the sidewalls [17,18]. The sidewalls 

themselves contain defect sites (figure 1-3) such as pentagon-heptagon pairs called 

Stone-Wales defects, sp hybridized defects, and vacancies in the nanotube lattice [19]. 

Frequently, these intrinsic defects are supplemented by oxidative damage to the 

nanotube framework by strong acids which leave holes functionalised with oxygenated 

functional groups such as carboxylic acid, ketone, alcohol, and ester groups [20].  
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Figure 1-3:  Typical defects in a SWNT. A) Five-or seven-membered rings in the carbon framework, 
instead of the normal six-membered ring, leads to a bend in the tube. B) sp

3
-hybridized defects (R = H 

and OH). C) Carbon framework damaged by oxidative conditions, which leaves a hole lined with -COOH 
groups. D) Open end of the SWNT, terminated with COOH groups. Besides carboxy termini, the 
existence of which has been unambiguously demonstrated, other terminal groups such as —NO2, OH, H, 
and O are possible [21]. 

 

1.1.1.4 Covalent sidewall functionalisation  

 

Whereas fullerenes have a well developed addition chemistry [22], sidewall 

functionalisation of carbon nanotubes has only been achieved relatively recently [23]. In 

CNTs the chemical reactivity in strained carbon systems arises from two factors: a) 

pyramidalisation at the carbon atom, and b) n-orbital misalignment between adjacent 

carbon atoms [24]. Smaller diameter tubes are expected to be more reactive than larger 

diameter tubes. The high degree of chemical functionalisation possible through covalent 

sidewall derivatisation makes these routes ideal for applications such as composite 

formation. However, one disadvantage of these reactions is that they usually result in 

the loss of the intrinsic electronic structure.  

 

It has been predicted that covalent chemical attachments can decrease the maximum 

buckling force of SWCNTs by as much as 15%, regardless of tube helical structure or 

radius [25]. A threefold decrease in thermal conductivity, due to a decrease in the 

phononscattering length, was calculated to occur upon 1% sidewall functionalisation of 
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SWCNTs with phenyl groups [26]. Numerous diverse ways of nanotubes 

functionalisation have been reported in literature (figure 1-4). 

 

 

Figure 1-4: Schematic describing some covalent sidewall functionalisation reactions of nanotubes. Some 
typical examples are: ozonation [27], hydrogenation [28], alkylation [29], radical addition [30], 
dichlorocarbene addition [31], diazotization [32], 1,3 dipolar cycoladdition [33], nitrene cycloaddition 
[34], Bingel reaction [35], nucleophilic addition [36]. 

 

1.1.1.5 Price, production and safety aspects  

 

The safety and bio-compatibility of nanotubes is a debatable question. However, 

nanotubes cytotoxic properties appear situational, depending highly on the degree and 

type of functionalisation, aggregation state and the presence of metal catalyst particles 

remaining from synthesis [37]. Fortunately, nanotubes may be toxic in the free state but 

they are not at all toxic in the fixed structured or in bound state. As in polymer 
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nanocomposites, the nanotubes are in bound state so they are not toxic. But they could 

release and become harmful because of the decomposition, degradation or wear and 

tear of nanocomposites .However the preparation processes should ensure minimum 

exposure to nanotubes. MWCNTs are generally easier to make at large scale and thus 

less expensive as compared to single walled. Product developers are using MWCNTs for 

their high thermal conductivity and to add mechanical strength and electrical 

conductivity to polymer composites [38]. A decade ago, carbon nanotubes were sold 

primarily in tiny research quantities for hundreds or thousands of dollars per gram. By 

2005, MWCNTs prices had come down to several hundred dollars per kilogram.  Prices 

are expected to fall even further as capacity continues to rise.  

 

There are over 85 companies in the carbon nanotubes market, making it extremely 

competitive. Several major players are building commercial levels of capacity and 

bringing prices down significantly. Major market players are Hyperion Catalysis, Arkema, 

Thomas Swan, Bayer Material Science, and Showa Denko. All these companies are large 

materials and chemicals companies. The main markets at present are electronics and 

data storage, defence, aerospace and automotive. Arkema is one of the biggest 

producers of nanotubes. Their recent R&D activity and patents show worldwide interest 

in large-scale manufacturing for commercial products [39,40,41]. 

 

1.2   Polymer Carbon nanotubes composites  

 

1.2.1 Need for surface modification of nanotubes  

 

Despite many advantages such as high mechanical, electrical, and thermal properties of 

nanotubes, their homogeneous dispersion in polymer matrix has been a problem to get 

high performance nanocomposites. This is because of strong interfacial interactions in 

the form of electrostatic and van der Waals interactions between the layers of CNTs. 

The poor dispersion leads to rope like aggregates or bundles of nanotubes, which slide 
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against each other instead of enhancing a load transfer capacity to the host polymer. As 

nanotubes do not have any functionality and surface is very uniform, so it is difficult to 

get any interaction with polymer matrix as well as a uniform dispersion. So to overcome 

these problems, they need to be modified. They are generally modified to generate 

some functional groups on their outer surface without much damaging the structure. 

These surface modified nanotubes could further be used to attach other chemical 

moieties of interest for different purposes. Different strategies have been adopted to 

integrate nanotubes into different host systems. The main approaches for modification 

can be grouped into two main categories:  (a) the covalent attachment of chemical 

groups through reactions onto the π-conjugated skeleton of CNT; (b) the noncovalent 

adsorption or wrapping of various functional molecules. SWCNTs generally have a 

higher degree of perfection than MWCNTs; however, apart from different physical 

properties, both types are believed to respond equally to chemical surface modifications 

(covalent or noncovalent). 

 

The covalent attachment of functional groups to the surface of nanotubes can improve 

the efficiency of load transfer. However, it must be noted that these functional groups 

might introduce defects on the walls of the perfect structure of the nanotubes. These 

defects will lower the strength of the reinforcing component. Therefore, there will be a 

trade-off between the strength of the interface and the strength of the nanotube filler. 

The functional groups attached could be small molecules or polymer chains. The 

chemical functionalisation is an especially attractive target, as it can improve solubility 

and processibility and allows the unique properties of CNTs to be coupled to those of 

other types of materials.  

 

1.2.2 Composites processing 

 

Fabrication methods have overwhelmingly focused on improving nanotube dispersion 

because better nanotube dispersion in the polymer matrices has been found to improve 
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properties [42]. Similar to the case of nanotube/solvent suspensions, pristine nanotubes 

have not yet been shown to be soluble in polymers illustrating the extreme difficulty of 

overcoming the inherent thermodynamic drive of nanotubes to bundle [43]. The 

methods of solution blending, melt blending, and in situ polymerisation are widely 

applied to produce nanotube/polymer composites (figure 1-5) [44].  

 

Figure1- 5: Schematic representation of different steps of polymer/CNTs composite processing: solution 
mixing (a); melt mixing (b); in situ polymerisation (c). 

 

1.2.2.1 Solution blending 

 

Perhaps the most common method for preparing polymer nanotube composites has 

been to mix the nanotubes and polymer in a suitable solvent before evaporating the 

solvent to form a composite film. One of the benefits of this method is that agitation of 

the nanotubes powder in a solvent facilitates nanotubes’ de-aggregation and dispersion. 

Almost all solution processing methods are based on a general theme which can be 

summarised as:  

1. Dispersion of nanotubes in either a solvent or polymer solution by energetic agitation.  

1. Mixing of nanotubes and polymer in solution by energetic agitation. 

3. Controlled evaporation of solvent leaving a composite film. 
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In general, agitation is provided by magnetic stirring, shear mixing, reflux or 

ultrasonication. Sonication can be provided in two forms, mild sonication in a bath or 

high-power sonication using a tip or horn. An early example of solution based composite 

formation is described by Jin et al [45]. By this method, high loading levels of up to 

50 wt% and reasonably good dispersions were achieved. 

 

A number of papers have discussed dispersion of nanotubes in polymer solutions 

[46,47]. This can result in good dispersion even when the nanotubes cannot be 

dispersed in the neat solvent. Coleman et al used sonication to disperse catalytic 

MWCNT in polyvinylalcohol/H2O solutions, resulting in a MWCNT dispersion that was 

stable indefinitely. Films could be easily formed by drop-casting with microscopy studies 

showing very good dispersion. Cadek et al [48] showed that this procedure could also be 

applied to arc discharge MWCNTs, double walled nanotubes (DWNTs) and High-

Pressure CO Conversion (HiPCO) SWCNTs. They also showed that this procedure could 

be used to purify arc-MWCNTs by selective sedimentation during composite production. 

 

1.2.2.2 Melt mixing 

 

While solution processing is a valuable technique for both nanotube dispersion and 

composite formation, it is completely unsuitable for the many polymer types that are 

insoluble. Melt processing is a common alternative method, which is particularly useful 

for dealing with thermoplastic polymers. This range of techniques makes use of the fact 

that thermoplastic polymers soften when heated. Amorphous polymers can be 

processed above their glass transition temperature while semi-crystalline polymers 

need to be heated above their melt temperature to induce sufficient softening. 

Advantages of this technique are its speed and simplicity, not to mention its 

compatibility with standard industrial techniques [49,50]. 
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In general, melt processing involves the melting of polymer pellets to form a viscous 

liquid. Any additives, such as carbon nanotubes can be mixed into the melt by shear 

mixing. Bulk samples can then be fabricated by techniques such as compression 

moulding, injection moulding or extrusion. However it is important that processing 

conditions are optimised, not just for different nanotube types, but for the whole range 

of polymer–nanotube combinations. This is because nanotubes can affect melt 

properties such as viscosity, resulting in unexpected polymer degradation under high 

shear rates [51]. 

 

In two papers in 2001 Andrews and co-workers [52] showed that commercial polymers 

such as high impact polystyrene, polypropylene and acrylonitrile–butadiene–styrene 

(ABS) could be melt processed with CVD-MWCNT to form composites. The polymers 

were blended with nanotubes at high loading level in a high shear mixer to form master 

batches. A similar combination of shear mixing and compression moulding was also 

used by a number of other groups [53,54]. Injection moulding has also been used to 

fabricate composites. Meincke et al [55] mixed polyamide-6, ABS and CVD-MWCNT in a 

twin screw extruder at 160 °C. Another example of using combined techniques was 

demonstrated by Tang et al [56]. High density polyethylene pellets and nanotubes were 

melted in a beaker, then mixed and compressed. The resulting solid was broken up and 

added to a twin screw extruder at 170 °C and extruded through a slit die. The resulting 

film was then compression moulded to form a thin film. 

 

1.2.2.3 In Situ Polymerisation 

 

This fabrication strategy starts by dispersing nanotubes in monomer followed by 

polymerising the monomers. As with solution blending, functionalised nanotubes can 

improve the initial dispersion of the nanotubes in the liquid (monomer, solvent) and 

consequently in the composites. Furthermore, in situ polymerisation methods enable 

covalent bonding between functionalised nanotubes and the polymer matrix using 
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various condensation reactions.  Initially, in situ radical polymerisation was applied for 

the synthesis of PMMA composites by Jia et al [54]. In this work, the reaction was 

performed using radical initiator 1,1’-azobisisobutyronitrile (AIBN). The authors 

suggested that π-bonds of the CNT graphitic network were opened by the radical 

fragments of initiator and therefore the carbon nanostructures could participate in 

PMMA polymerisation by acting as efficient radical scavengers. If all reactants were 

mixed simultaneously, the growth of polymer chains was inhibited since many of the 

initiator molecules would be consumed by the CNTs.  

 

By using an improved in situ process [57,58], in which CNT material is added a little time 

after the mixing of initiator and monomer, longer polymer chains were obtained in the 

resulting composite, giving rise to better mechanical properties of the composites. 

Concerning the preparation of anisotropic CNT–polymer composites, Kimura et al [59] 

have mixed styrene monomer with nanotubes and subjected the suspension to a 

constant magnetic field of 10 T. By polymerising the mixture, the nanotubes were found 

to be kept aligned within the polymer matrix.  

 

Epoxy nanocomposites comprise the majority of reports using in situ polymerisation 

methods [60,61], where the nanotubes are first dispersed in the resin followed by curing 

the resin with the hardener. Zhu et al [62] prepared epoxy nanocomposites by this 

technique using end-cap carboxylated SWCNTs and an esterification reaction to produce 

a composite with improved tensile modulus (E is 30% higher with 1 wt % SWCNT). Note 

that as polymerisation progresses and the viscosity of the reaction medium increases, 

the extent of in situ polymerisation reactions might be limited. Noteworthy extensions 

of in situ polymerisation include infiltration methods in which the reactive agents are 

introduced into a nanotube structure and subsequently polymerised [63,64].  
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1.2.2.4 Novel methods 

 

Rather than avoid the high viscosities of nanotube/polymer composites, some 

researchers have decreased the temperature to increase viscosity to the point of 

processing in the solid state. Solid-state mechanochemical pulverisation processes 

(using pan milling [65] or twin-screw pulverisation [66]) have mixed MWCNT with 

polymer matrices. Pulverisation methods can be used alone or followed by melt mixing. 

Nanocomposites prepared in this manner have the advantage of possibly grafting the 

polymer on the nanotubes, which account in part for the observed good dispersion, 

improved interfacial adhesion, and improved tensile modulus. 

 

An innovative latex fabrication method for making nanotube/polymer composites 

disperses nanotubes in water (SWCNT require a surfactant, MWCNT do not) and then 

adds a suspension of latex nanoparticles [67,68]. Freeze-drying and subsequent 

processing of this colloidal mixture produces composites with uniform dispersion of 

nanotubes even in a highly viscous matrix like high molecular weight polystyrene. This 

promising method can be applied to polymers that can be synthesised by emulsion 

polymerisation or formed into artificial latexes, e.g., by applying high-shear conditions 

[41].  

Finally, to obtain nanotube/polymer composites with very high nanotube loadings, 

Vigolo et al [69] developed a ‘coagulation spinning’ method to produce composite fibers 

comprising predominately nanotubes. This method disperses SWCNT using a surfactant 

solution, coagulates the nanotubes into a mesh by wet spinning it into an aqueous 

poly(vinyl alcohol) solution, and converts the mesh into a solid fiber by a slow draw 

process. In addition, Mamedov et al [70] developed a fabrication method based on 

sequential layering of chemically modified nanotubes and polyelectrolytes to reduce 

phase separation and prepared composites with SWCNT loading as high as 50 wt %. In 

conclusion, interest in polyolefin composites is growing and will continue to grow as 

new polyolefins are made and as new applications are source for these materials.  
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1.3 Functionalisation of carbon nanotubes with polymers 

 

CNT are considered ideal materials for reinforcing fibres due to their exceptional 

mechanical properties. Therefore, nanotube-polymer composites have potential 

applications in aerospace science, where lightweight robust materials are needed [71]. It 

is widely recognised that the fabrication of high performance nanotube-polymer 

composites depends on the efficient load transfer from the host matrix to the tubes. 

The load transfer requires homogeneous dispersion of the filler and strong interfacial 

bonding between the two components [72]. To address these issues, several strategies 

for the synthesis of such composites have been developed. Currently, these strategies 

involve physical mixing in solution, in situ polymerisation of monomers in the presence 

of nanotubes, surfactant-assisted processing of composites, and chemical 

functionalisation of the incorporated tubes.  As mentioned earlier, in many applications 

it is necessary to tailor the chemical nature of the nanotube’s walls in order to take 

advantage of their unique properties. For this purpose, two main approaches for the 

surface modification of CNTs are adopted i.e. covalent and noncovalent.  Figure 1-6 

depicts a typical representation of such surface modifications.  

 

 

Figure 1-6: Different possibilities for nanotubes’ functionalisation: sidewall covalent functionalisation 
(a); defect-group covalent functionalisation (b); noncovalent polymer wrapping (c); noncovalent pi-
stacking (d).  
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1.3.1 Noncovalent attachment of polymers 

 

The noncovalent attachment, controlled by thermodynamic criteria [73], which for some 

polymer chains is called wrapping, can alter the nature of the nanotube’s surface and 

make it more compatible with the polymer matrix. The advantage of noncovalent 

attachment is that the perfect structure of the nanotube is not altered, thus its 

mechanical properties should not change. The main potential disadvantage of 

noncovalent attachment is that the forces between the wrapping molecule and the 

nanotube might be weak, thus as a filler in a composite the efficiency of the load 

transfer might be low. 

 

1.3.1.1 Polymer wrapping 

 

Bahr et al [74] reported that nanotubes could be reversibly solubilised in water by 

noncovalently associating them with a variety of linear polymers such as polyvinyl 

pyrrolidone (PVP) and polystyrene sulfonate (PSS). They demonstrated that the 

association between the polymer and the nanotubes is robust, not dependent upon the 

presence of excess polymer in solution, and is uniform along the sides of the tubes. 

Conjugated luminescent polymer poly-{(m-phenylenevinylene)-co-[(1,5-dioctyloxy-p-

phenylene)-vinylene]} (PmPV) and its derivatives [75,76,77] have been successfully used 

for the wrapping around nanotubes on account of stabilising noncovalent bonding 

interactions, presumably as a result of π–π stacking and van der Waals interactions 

between PmPV and the surfaces of the nanotubes. Stoddart et al [78] also synthesised 

the Stilbenoid dendrimers, a hyperbranched variant of the PmPV polymer, which 

exhibits an appropriate degree of branching, and it was found to be more efficient at 

breaking up nanotube bundles, provided it is employed at higher polymer-to-nanotube 

ratios than was the ‘parent’ PmPV polymer.  The following figure (1-7) gives an idea of 

polymer wrapping around nanotubes. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWW-4GKW7CY-4&_user=1697204&_coverDate=11%2F30%2F2005&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000032458&_version=1&_urlVersion=0&_userid=1697204&md5=eebd0e20e0bbf21c5bb538c70e0fe3b8#bib9
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Figure 1-7: Some possible wrapping arrangements of PVP on an 8,8 SWNT. A double helix (top) and a 
triple helix (middle). Backbone bond rotations can induce switch-backs, allowing multiple parallel 
wrapping strands to come from the same polymer chain (bottom) [79]. 

 

Gum Arabic has also been used to exfoliate the bundles, and stabilise individual carbon 

nanotubes in aqueous dispersions [80]. It is clear from theses accounts that noncovalent 

functionalisation of carbon nanotubes can be achieved without disrupting the primary 

structure of the nanotubes themselves. 

 

1.3.1.2 Polymer absorption 

 

Xia et al [81] devised a method to prepare  polymer-encapsulated MWCNTs had been 

successfully prepared through ultrasonically initiated in situ emulsion polymerisations of 

n-butyl acrylate (BA) and methyl methacrylate (MMA) in presence of MWCNT. Another 

noncovalent method of modifying SWCNTs was developed by encasing the SWCNTs 

within crosslinked, amphiphilic copolymer micelles [82]. SWCNTs were dispersed in the 

dimethylformamide (DMF) solutions of amphiphilic poly(styrene)-block-poly(acrylic acid) 

copolymer. Water was added to the solutions and the poly(styrene)-block-poly(acrylic 

acid) copolymer wrapped the SWCNTs and formed micelle. Then the PAA blocks of the 

micellar shells were permanently crosslinked by addition of a water-soluble diamine 

linker and a carbodiimide activator. This encapsulation significantly enhances the 
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dispersion of SWCNTs in a wide variety of polar and nonpolar solvents and polymer 

matrices. In addition, because the copolymer shell is permanently fixed, the 

encapsulated SWCNTs are stabilised with respect to typical polymer processing and 

recovery from the polymer matrix. 

 

Moreover, n-Doping of carbon nanotubes by functionalisation of SWCNTs’ sidewalls 

with polymers was prepared by submerging SWCNT in a 10 wt% solution of 

polyethylene imine (PEI) in methanol for use as field effect transistors (FETs) [83]. Zhang 

et al [84] reported the synthesis of tubular composite of doped polyaniline (PANI) core 

(c-MWCNTs)-shell (doped-PANI) structures by in situ polymerisation of aniline 

monomers adsorbed on the surface of carboxylic groups contained MWCNT (c-

MWCNT). The conductivities of these tubular composites are several times higher than 

that of PANI without MWCNTs, which will offer new application possibilities. In addition, 

MWCNTs had been solubilised in water and in various organic solvents by noncovalent 

side-wall functionalisation by pyrene containing polymers [85].  

 

1.3.2 Covalent attachment of polymers 

 

Covalent functionalisation and surface chemistry of single-walled carbon nanotubes 

have been envisaged as very important factors for nanotubes processing and 

applications. Recently, many efforts on polymer composites reinforcement have been 

focused on an integration of chemically modified nanotubes containing different 

functional groups into the polymer matrix.  

 

Covalent functionalisation can be realised by either modification of surface-bound 

carboxylic acid groups on the nanotubes or direct addition of reagents to the sidewalls 

of nanotubes. As discussed previously, in situ polymerisation is also one of the main 

approaches for the preparation of polymer grafted nanotubes. Therefore, work on the 
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preparation of polymer grafted nanotubes frequently overlaps with in situ 

polymerisation processing [86]. 

 

The covalent reaction of CNT with polymers is important because the long polymer 

chains help to dissolve the tubes into a wide range of solvents even at a low degree of 

functionalisation. There are two main methodologies for the covalent attachment of 

polymeric substances to the surface of nanotubes, which are defined as ‘grafting to’ and 

‘grafting from’ methods. The former relies on the synthesis of a polymer with a specific 

molecular weight followed by end group transformation. Subsequently, this polymer 

chain is attached to the graphitic surface of CNT. A disadvantage of this method is that 

the grafted polymer contents are limited because of high steric hindrance of 

macromolecules. The ‘grafting from’ method is based on the covalent immobilisation of 

the polymer precursors on the surface of the nanotubes and subsequent propagation of 

the polymerisation in the presence of monomeric species. 

 

1.3.2.1 ‘Grafting from’ method 

 

The ‘grafting from’ approach, in general, involves the polymerisation of monomers from 

surface-derived initiators on either MWCNTs or SWCNTs. These initiators are covalently 

attached using the various functionalisation reactions developed for small molecules, 

including acid-defect group chemistry and sidewall functionalisation of CNTs. The 

advantage of ‘grafting from’ approach is that the polymer growth is not limited by steric 

hindrance, allowing high molecular weight polymers to be efficiently grafted. In 

addition, nanotube–polymer composites with quite high grafting density can be 

prepared. However, this method requires strict control of the amounts of initiator and 

substrate as well as accurate control of conditions required for the polymerisation 

reaction [87].  
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1.3.2.1.1 Cationic/anionic polymerisation 

 

In situ anionic polymerisation of styrene in the presence of modified SWCNTs was 

developed by Viswanathan et al [88]. Carbanions were introduced onto the SWCNT 

surface by treatment with the anionic initiator (sec-butyllithium) that served to exfoliate 

the bundles and to provide initiating sites for the polymerisation of styrene (figure 1-8). 

The PS content in grafted SWCNTs was about 10 wt%, while the PDI of the polymer was 

about 1.01. A similar method was used for PMMA [89], where PMMA content was 

around 45 wt% determined by TGA. 

 

 

Figure 1-8: Anionic polymerisation of styrene onto carbon nanotubes. 

 

PEI was also grafted onto the surface of MWCNTs by performing a cationic 

polymerisation of aziridine in the presence of amine-functionalised MWCNTs [90]. The 

obtained PEI had a dendritic structure with primary, secondary, and tertiary amines in a 

molar ratio of about 1:1:1. 

 

Moreover, polytetramethylene ether was chemically anchored to the surface of 

MWCNTs by cationic polymerisation of THF starting from acyl chloride-functionalised 

MWCNTs [91]. The polymer had Mw ≈1000 and PDI of 1.0 after cleaving from nanotube 

surface. DSC measurements showed a huge increase of the Tg (about 65 °C) in the 

composite sample, which was attributed to the immobilization of polymer chains onto 

the CNT sidewalls. 
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1.3.2.1.2 Metallocene catalysis polymerisation 

 

Anchored Ziegler–Natta catalyst (MgCl1/TiCl4) at the surface of oxidized SWCNTs was 

used for in situ polymerisation of ethylene monomer [92]. The prepared SWCNT-PE 

samples contained 94 wt% of polymer. Similarly, in situ polymerisation of ethylene by a 

highly active metallocene complex anchored onto the nanotube surface was reported 

[93]. It was observed that by supporting the catalytic system onto MWCNTs, an increase 

of the ethylene polymerisation rate was seen. The prepared MWCNT–PE composites 

contained up to 83 wt% of polymer. This method was also used for surface coating of 

MWCNTs by in situ copolymerisation of ethylene and 1-norbornene. Depending on the 

experimental conditions used (ethylene pressure, solvent, feed 1-norbornene 

concentration), the relative quantity of ethylene-1-norbornene copolymer could be 

tuned, as well as the 1-norbornene content in the formed copolymers and accordingly 

their Tg. Two independent groups used MWCNT-Cp2ZrCl2 as catalyst to produce PE by in 

situ polymerisation [94,95]. PDI was determined to be 1.95 with a unimodal curve by 

GPC. The melting temperature indicated that the obtained PE was high-density 

polyethylene. 

 

Li et al [96] first functionalised SWCNTs with α-alkene groups on their sidewalls and 

consequently performed metallocene catalysed copolymerisation of ethylene- and 

alkene-functionalised SWCNTs. The polymer-grafted SWCNTs contained 91.5 wt% of PE. 

In a similar approach, the preparation of isotactic polypropylene nanocomposites filled 

with pristine, purified and oxidized MWCNTs was accomplished by polymerisation of 

propylene with a metallocene/methylaluminiumoxane catalyst [97]. 

 

1.3.2.1.3 Free radical polymerisation 

 

MWCNTs purified by oxidative treatment were modified with PMMA chains via an in 

situ radical polymerisation [98,99]. During polymerisation, MWCNTs consumed initiator-
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derived radicals which were added to π-bonds of CNT network. As a result, the 

molecular weight of PMMA increased with the MWCNT content, as the possibility of 

primary termination reactions were diminished appreciably. The bonding between 

MWCNTs and PMMA chains was supported by FT-IR spectroscopy. Later on, this 

procedure was modified, using CNTs as macroinitiator [100]. In the first step, an amount 

of potassium persulfate was dissolved in hydrogen peroxide solution to obtain grafting 

of initiator on the CNT surface. In the second step, MMA monomer containing vinyl 

benzene as crosslinking agent were emulsified and added to solution of activated 

MWCNTs. In an analogous manner, PMMA chains were grafted on SWCNTs by in situ 

free radical polymerisation in a poor solvent (methanol) for the polymer [101]. The 

weight loss of PMMA-g-SWCNTs measured by TGA and the solubility in ethyl acetate 

suggests that an appreciable amount of PMMA (up to 17 wt%) was successfully grafted 

on SWCNTs after a 3 h reaction. Alternatively, Yue et al [102] performed in situ 

polymerisation of MMA in supercritical CO2. The surfaces of the SWCNTs were first 

functionalised with amino ethyl methacrylate by amidation of oxidized nanotubes. The 

supercritical fluid enhanced the diffusivity of monomer and facilitated the growth of 

tethered PMMA chains. The grafting of oxidized MWCNTs with PS molecules using an in 

situ radical polymerisation reaction was reported by Shaffer and Koziol [103]. The water 

dispersion of oxidized MWCNTs was combined with styrene monomer and a radical 

initiator. TEM micrographs of grafted nanotubes revealed a thin polymer coating (figure 

1-9).  

 

 

Figure 1-9: TEM micrograph of a typical grafted nanotube where a thin polystyrene coating (5–10 nm) 
can be seen [100]. 
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 Grafting ratios of 50–90% were observed depending on initial nanotube concentration. 

The grafting efficiency was around 0.5% for the benzoyl peroxide system, but reached 

18% in the case of the potassium persulfate initiator. The different grafting efficiencies 

observed for the two initiators were explained in terms of their solubilities in the 

organic phase. 

 

In another attempt, an easy method for preparing polymer-grafted multi-walled carbon 

nanotubes (MWCNTs) with high graft yields was developed by using free radical graft 

polymerisation from photoinduced surface initiating groups on MWCNTs [104]. 

Polystyrene, poly(butyl acrylate), poly(methyl methacrylate), and poly(2-hydroxyethyl 

methacrylate) were successfully grafted onto the surface of MWCNTs with graft yields of 

46, 26, 37, and 53 wt.%, respectively, after 15 h of free radical graft polymerisation. 

Figure 1-10 shows a high resolution TEM image for a polystyrene grafted MWCNT. 

 

Figure 1-10: Surface of PS-g-MWCNT covered with 4–5 nm thick amorphous polystyrene layer observed 
via high resolution TEM [101]. 

 

 

 In the work of Yang et al [105], vinyl modified MWCNTs were synthesized by the 

amidation of acyl chloride-functionalised MWCNTs and allylamine, followed by the in 

situ free radical polymerisation of styrene to produce MWCNT-g-PS with hairy rod 

structures. The results showed that 1 of every 100 carbon atoms of MWCNTs was 

functionalised and grafted by PS with Mw=9800 g/mol (PDI ≈ 1.8). A similar approach 

was used by Kim et al [106] in which vinyl functionalised MWCNTs were obtained by 
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reaction of hydroxyl terminated MWCNTs with methacryloxypropyl trimethoxysilane. 

The amount of PS content was estimated by TGA to be about 14%. 

 

PAM was grafted to oxidized MWCNT by an in situ UV radiation-initiated polymerisation 

[107]. The diameter of MWCNT–PAM hybrid nanostructures increased 3–8 times. Qin et 

al [108] reported grafting of P4VP to SWCNTs by in situ free radical polymerisation. The 

composite contained 39 wt% of P4VP, determined by TGA. In the same year, Qin et al 

[109] reported the grafting of SWCNTs by poly(sodium 4-styrenesulfonate) (PSS) using 

radical polymerisation (figure 1-11). TGA analysis determined 45 wt% of PSS.  

 

 

 
Figure 1-11: Grafting of polystyrene derivate by in situ radical polymerisation. 

 

In another account Kumar et al [110] oxidised MWCNTs and reacted with HEMA via 

esterification reaction followed by free radical polymerisation of HEMA. Weight loss 

measurements in TGA showed that a moderated amount of 10% of PHEMA was grafted 

by this technique. 

 

A facile strategy to prepare water-soluble MWCNTs by γ-radiation was developed by 

Chen et al [111]. First, MWCNTs were irradiated in ethanol. The radiolysis of ethanol 

produced many active species such as CH2CH2OH and CH(CH3)OH which can react with 

carbon ethylene bonds on the surface of MWCNTs. Afterwards, PAA was covalently 

grafted to the surface of modified MWCNTs by radiation in the presence of the vinyl 

monomer. TEM images provided direct evidence of the formation of a core–shell 
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structure, and the external diameter of resultant MWCNTs was increased remarkably. 

The amount of grafted polymer was determined to be about 10 wt%. 

 

Polyvinyltriethoxysilane was grafted to MWCNTs by free radical polymerisation of 

vinyltriethoxysilane by using benzoyl peroxide as radical initiator [112]. The weight 

fraction of polymer in functionalised MWCNTs was 35%. In the work of Maity et al  

[113], the different degree of MWCNT and SWCNT efficiency to N-vinyl carbazole 

polymerisation has been demonstrated. Analyses revealed that under the same 

experimental conditions, the ability of SWCNTs to initiate the in situ polymerisation of 

the monomer was higher compared to that of MWCNTs. The morphology of resultant 

nanocomposites revealed wrapping and grafting of some PVK chains on SWCNTs, 

whereas only wrapping of outer surfaces of MWCNTs by PVK chains. 

 

1.3.2.1.4 Controlled radical polymerisation  

 

Atom transfer radical polymerisation (ATRP) 

 

An in situ polymerisation process using modified CNTs as the initiating species was 

developed by Yao et al [114]. Initially, the SWCNT sidewalls were functionalised with 

alkyl bromide moieties using a two-step procedure involving first a 1,3-dipolar 

cycloaddition to introduce phenol functionalities, followed by an esterification with 1-

bromoisobutyryl bromide. The prepared surface modified CNTs served as macroinitiator 

for ATRP of MMA and tBA (figure 1-12).  
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Figure 1-12: ATRP ‘grafting from’ modification approach of carbon nanotubes. 

 

In the case of PMMA-based composites it was observed that the glass transition 

temperature (Tg) of the polymer increased from 111 °C in the bulk to 118 °C when 

attached to the nanotubes. Surprising, no solubility enhancement was observed for 

these samples in a mixture of H2O/CH2Cl2. In the case of PtBA-functionalised nanotubes, 

DSC showed slight increasing for Tg. After acidic hydrolysis of the tert-butyl groups to 

PAA-functionalised SWCNTs, an enhanced solubility in aqueous solution was observed 

and no solubility in organic solvents. 

 

The ATRP technique was used by independent groups [115,116] for grafting PMMA 

chains to MWCNTs. It was observed by TEM that the average thickness of the polymer 

layer increased with increasing feed ratio of monomer and nanotube initiator. The 

weight fraction of the polymer layer ranged from 31% to 81%. In a subsequent step, a 

block copolymer with 1-hydroxyethyl methacrylate (HEMA) was prepared [117]. The 

molar ratio of PHEMA to PMMA calculated from 1H NMR was 1.1:1, while the ratio 

calculated from TGA was only 0.55:1. 
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The grafting of PMMA and PS brushes by ATRP from surface of aligned MWCNTs was 

reported by Matrab et al [118]. In the first step, the ATRP initiator was grafted to the 

nanotube surface by electrochemical treatment with diazonium salts. 

 

Baskaran et al [119] reported ATRP of styrene and MMA from MWCNTs. The amount of 

PMMA covalently attached in MWCNT-g-PMMA was determined by TGA ( 70 wt%), 

while in the case of MWCNT-g-PS it varied from 18 to 33 wt% depending on the initiator 

concentration. The discovery of a correlation between the concentration of initiator on 

nanotubes and the amount of polymer present on the surface, allows control of the 

molecular weight of the growing polymer chains. Surface grafted copolymer MWCNT-g-

(PS-co-PMMA) was also synthesized in this work. Large increase in the glass transition 

temperature (Tg) of the grafted PMMA and PS (15 < ΔTg < 30 °C) was observed due to 

tethering. In a later work, Liu et al [120] reported ATRP polymerisation of MMA with 

SWCNTs, in which the relative amount of polymer was determined by TGA to be about 

17 wt%. 

 

The grafting of styrene-co-acrylonitrile (SAN) copolymer from MWCNTs was carried out 

through the introduction of ATRP initiator onto the surface of CNTs [121]. For 

comparison, PS- and PAN-grafted MWCNTs were prepared. The amount of PS, SAN and 

PAN covalently bound to MWCNTs were estimated to be 63.4, 45.5 and 64.5 wt%, 

respectively. A significant increase of Tg of grafted polymer was observed, indicating an 

enhanced immobilization of chains due to adsorption onto the CNTs. 

As demonstrated in a number of the aforementioned studies, a general conclusion is 

that nanotubes can influence the progress of solution-phase ATRP, although the precise 

mechanism is not clear. It may be possible that initiating radicals and propagating 

polymer chains undergo radical coupling to CNT sidewalls, thereby quenching the 

polymerisation and increasing the molecular weight distribution. 
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Reversible addition-fragmentation chain transfer (RAFT) 

 

The grafting of MWCNTs by PS via a reversible addition-fragmentation chain transfer 

(RAFT) polymerisation process was performed by Cui et al [122]. In the first step the 

authors immobilized a thiocarbonylthio RAFT agent to the surface of oxidized 

nanotubes. In the next step, the styrene was polymerised in the presence of RAFT agent 

and using 1,1′-azobisisobutyronitrile (AIBN) as an initiator (figure 1-13). 

 

 

 
Figure 1-13: RAFT polymerisation of styrene from nanotube’s surface. 

 

TGA analysis determined the amount of PS ranged from 31.5 to 61.1 wt% depending on 

reaction conditions. The same procedure was used for grafting the PNIPAAM, a 

temperature-responsive polymer [123,124]. The molecular weight of PNIPAAM chains 

on MWCNTs increased linearly with NIPAAM conversion. The amount of PNIPAAM 

attached to MWCNTs determined by TGA varies from 35 to 87 wt% as the 

polymerisation time increased from 9 to 36 h. Water-soluble polyacrylamide (PAM) was 

also grafted by RAFT polymerisation to SWCNTs [125]. The RAFT agents were covalently 

attached to the SWCNT sidewalls by in situ generated diazonium chemistry. As the 

polymerisation time increased from 11 to 50 h, the amount of PAM attached onto 

nanotube surface, determined by means of TGA, varied from 46.3% to 77.9%. The 

amount of PAM exhibited a linear increase with increasing polymerisation time, 

indicating the ‘living’ characteristics of the RAFT polymerisation. Amphiphilic polymer 

brushes consisting of a MWCNT hard core and a relatively soft shell of PS-b-PNIPAAM 

was easily constructed by in situ RAFT polymerisation of styrene followed by NIPAAM on 
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the modified convex surfaces of MWCNT–PS [126]. The amount of PS-b-PNIPAAM 

attached to MWCNTs varied from 56 to 86 wt% when the polymerisation time increased 

from 10 to 36 h. The prepared MWCNT–PS-b-PNIPAAM was very sensitive to 

temperature, due to the thermoresponsive properties of PNIPAAM. 

 

Similarly, the diblock polymer PMMA-b-PS was attached onto MWCNTs by in situ RAFT 

polymerisation [127,128]. The results showed that both styrene and acrylate monomers 

can be easily initiated and then propagate from the MWCNT sidewalls via the radical 

polymerisation method. 

 

The RAFT method was also used for grafting different kind of water-soluble ionic 

polymers, such as poly[1-(dimethylamino)ethyl methacrylate] (PDMEMA), poly(acrylic 

acid) (PAA) and poly[3-(N-(3-methacrylamidopropyl)-N,N-dimethyl)ammoniopropanate 

sulfonate] (PMDMAS) onto the MWCNTs surface [129]. The amount of PMDMAS 

attached to the MWCNTs determined by TGA was about 78 wt% after 10 h 

polymerisation (70 wt% for PDMA and 50 wt% for PAA after 15 h polymerisation). Other 

methacrylate polymer grafted by RAFT on the nanotube surface was poly(1-

diethylaminoethyl methacrylate) (PDEAEMA) [130]. The polymer content determined by 

TGA was 60 wt%. In the final step, PDEAEMA-grafted MWCNTs were quaternised with 

methyl iodide, resulting in cationic polyelectrolyte-grafted MWCNTs. 

 

Nitroxide-mediated radical polymerisation 

 

Datsyuk et al [131] reported an in situ nitroxide-mediated polymerisation (NMP) of 

MMA onto double-walled carbon nanotubes (DWCNTs). The main advantage of this 

two-step synthetic route is that it does not involve any CNT pre-treatment or 

functionalisation. In the first step, short chains of PAA or PS were polymerised in situ in 

the presence of NMP initiator. A pre-composite (DWCNT-PAA or DWCNT-PS) was thus 

obtained. In the second step, the presence of the stable nitroxide radical on CNTs 
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surface makes it possible to reinitiate the polymerisation of different monomers. The 

authors did not perform any relevant analytical measurements to confirm chemical 

bonding. The final composites namely DWCNT-PAA-PMA and DWCNT-PS-PMA were 

prepared with CNT content varied between 0.3 and 4.7 wt%. The same procedure was 

applied later for the grafting of PAA-b-PMA or PAA-b-PS to MWCNTs and DWCNTs [132]. 

 

NMP of styrene was carried out on the surfaces of MWCNTs initiated by an MWCNT-

supported initiator (MWCNT-TEMPO) [133]. A copolymer, PS-b-P4VP, was also grafted 

to MWCNTs by further polymerisation of 4-vinylpyridine initiated by MWCNT–PS. 

According to the polymerisation results with the same ratio of MWCNT-TEMPO to 

styrene (w/w), the weight percentage of PS increased from 36.7 to 56.6% when the 

polymerisation reaction time increased from 14 to 48 h; it is worth mentioning that the 

weight percentage of PS varied from 0 to 61.4% when MWCNT-TEMPO/styrene (w/w) 

ratio varied from 1/7.5 to 1/60. A similar experiment was performed on N-doped 

MWCNTs with polystyrene [134], in which authors grafted 35 wt% of polymer. In the 

work of Fan et al [135] MWCNT–PS composites were prepared by NMP of MWCNT-

TEMPO and styrene. The maximal weight percentage of the polymer was estimated to 

be 30.7%. The molecular weight increased almost linearly with monomer conversion. 

 

1.3.2.2 ‘Grafting to’ method 

 

The ‘grafting to’ method means that the readymade polymers with reactive end groups 

reacted with the functional groups on the nanotubes’ surfaces. It is the reaction 

between the surface groups of nanotubes and readymade polymers.  The main 

approaches exploited in this functionalisation strategy are radical or carbanion additions 

as well as cycloaddition reactions to the CNT double bonds. Since the curvature of 

the carbon nanostructures imparts a significant strain upon the sp2 hybridised 

carbon atoms that make up their framework, the energy barrier required to convert 

these atoms to sp3 hybridisation is lower than that of the flat graphene sheets, making 
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them susceptible to various addition reactions. Therefore, to exploit this chemistry, it is 

only necessary to produce a polymer-centred transient in the presence of CNT material. 

Alternatively, defect sites on the surface of oxidized CNTs, as open-ended 

nanostructures with terminal carboxylic acid groups, allow covalent linkages of oligomer 

or polymer chains. The ‘grafting to’ method onto CNT defect sites means that the ready-

made polymers with reactive end groups can react with the functional groups on the 

nanotube surfaces. In most cases, polymer chains terminated with amino or hydroxyl 

moieties are attached by amidation or esterification reactions with the nanotube 

surface-bound carboxylic acid groups.  

 

1.3.2.2.1 Nucleophilic addition/coupling reactions 

 

Wu et al [136] reported a functionalisation methodology based on the nucleophilic 

addition reaction of polymer carbanions generated from hydrids and/or organometallic 

reagents, such as sodium hydride or butyllithium. In their experiments, 

polyvinylcarbazole (PVK)- and polybutadiene (PB)-modified SWCNTs were obtained. TGA 

analysis determined the polymer contents in the composites to be around 5 wt% for 

PVK and 8 wt% for PB. Living polystyryllithium anions prepared by anionic 

polymerisation were covalently bonded to MWCNT-COCl by a nucleophilic substitution 

reaction (figure 1-14) [137].  

 

Figure 1-14: Nucleophilic substitution reaction of living polystyryllithium anions with acyl choride-
modified CNTs. 
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The PS content in the MWCNT–PS sample was nearly 40%. TEM images clearly showed 

an uneven distribution of PS on the surface of MWCNTs. Analogous results were 

observed by Baskaran et al [138] with living polystyryllithium and polybutadienyllithium 

grafted at fractions up to 15%. The percentage of PS grafted onto the MWCNTs 

increased with decreasing molecular weight of the precursor living polymer. 

 

Blake et al [139] used an alternative approach for the preparation of chlorinated 

polypropylene (PP)-modified MWCNTs. Butyllithium-functionalised MWCNTs have been 

reacted with chlorinated PP to give nanotubes covalently bonded to polymer chains. 

According to TGA, the estimated polymer content was 31 wt%. Using a different 

approach, Xie et al [140] first introduced alkynyl groups onto the SWCNT surface 

followed by reaction with chlorinated polymers. A number of phenylalkyne groups were 

bonded to the SWCNT surface via diazonium salt chemistry [141], which can further 

react with the benzyl chlorine groups appended on the polymer chains. The diblock 

polymers used were polystyrene-co-poly(p-chloromethylstyrene) and polystyrene-co-

poly(p-chloromethylstyrene)-b-polystyrene and were synthesized by the living free 

radical polymerisation. The palladium-catalysed coupling reaction between benzyl 

chloride moieties and alkyne-modified SWCNTs could be completed under relatively 

mild conditions. The contents of the polymer layers calculated from TGA were 53 and 

81 wt% for polystyrene-co-poly(p-chloromethylstyrene) and polystyrene-co-poly(p-

chloromethylstyrene)-b-polystyrene, respectively. 

 

Similarly, You et al [142] decorated the MWCNT sidewalls and tips with a thiol-reactive-

functionality by amidation reaction. In a subsequent step, the modified tubes were 

reacted with a thiol-terminated poly[N-(1-hydroxypropyl)methacrylamide] (PHPMA) by 

a coupling reaction. FT-IR, HRTEM, NMR and TGA results showed that this thiol-coupling 

reaction is effective to produce water-soluble polymer-modified MWCNTs under mild 

conditions. 
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In addition, Oxidized MWCNTs were chemically modified by a ligand exchange reaction 

of ferrocene [143]. The modified MWCNTs underwent a direct monolithiation at 

the ferrocene moieties by tert-butyllithium and were terminated with p-

chloromethylstyrene. The p-chloromethylstyrene-terminated species were then 

functionalised with living polystyryllithium chains. According to TGA traces, the polymer 

content in MWCNT–PS was approximately 80 wt%. 

 

1.3.2.2.2 Condensation 

 

Poly(urea-urethanes) end-capped with aminopropyltriethoxysilane were covalently 

bonded to MWCNTs functionalised with alkoxysilane by hydrolytic condensation of 

alkoxy groups of silane (figure 1-15) [144].  

 

 

Figure 1-15: Siloxane bonding between nanotube and silane terminated polymer. 

 

An analogous approach was used for the grafting of vinyltrimethoxysilane-modified 

MWCNTs with linear low density polyethylene (LDPE) terminated by silanol group [145] , 

as well as the crosslinking of 3-isocyanato-propyltriethoxysilane-modified MWCNTs with 

vinyltriethoxy silane-capped PMMA [146]. 

 

Jung et al [147] crosslinked polyurethane (PU) chains to MWCNTs by a reaction between 

carboxylic acid groups of oxidized MWCNTs and isocyanate groups (NCO) of 

prepolyurethane (figure 1-16).  
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Figure 1-16: Crosslinking of polyurethanes chains with carbon nanotubes. 

 

Similarly, waterborne polyurethane terminated with isocyanate group was grafted to 

amino-functionalised MWCNTs [148]. The copolymerisation of short carboxylic acid 

functionalised SWCNTs with poly(p-phenylene benzobisoxazole) oligomers terminated 

by aminophenol group was successfully carried out in a mixed solvent of polyphosphoric 

acid and methanesulfonic acid in the presence of P2O5 [149]. The degree of 

functionalisation was estimated from elemental composition, assuming that the average 

number of monomer units was 15 (one PBO oligomer for about 150 CNT carbons). 

 

1.3.2.2.3 Cycloaddition 

 

The cycloaddition reaction of azide-terminated PS and SWCNTs in inert atmosphere was 

performed by Qin et al [150] (figure 1-17).  

 

 

Figure 1-17: Cycloaddition reaction of azide-terminated polystyrene onto CNTs surface. 

 

The degree of functionalisation was estimated to be one polymer chain per 48 CNT 

carbons calculated from the molecular weight of PS and the TGA result (85% weight 

loss of polymer). 
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Wang et al [151] observed that the amount of PS on the surface of SWCNTs first 

increased with increasing molecular weight of PS, followed by a gradual decrease. In an 

analogous approach, a well-defined azide-terminated PS was used for cycloaddition 

reaction to alkyne-decorated SWCNTs [152], in which alkyne-functionalised SWCNTs 

and PS-N3 were coupled via [3 + 1] Huisgen cycloaddition between the alkyne and azide 

end groups. TGA measurements indicated that the SWCNT-PS consisted of 45wt% 

polymer.  

 

In a subsequent work, the same group performed a sulfonation reaction to the 

grafted PS chains [153]. The degree of PS sulfonation could be controlled by the amount 

of the sulfonation reagent (acetyl sulfate) used in the reaction mixture and ranged from 

10 to 33 mol%. 

 

 

1.3.2.2.4 By amide linkage  

 

Sun and co-workers [154,155,156] reported the grafting of poly(propionylethylenimine-

co-ethylimine) (PPEI-EI) to acyl-activated tubes by direct heating or carbodiimide-

assisted amidation. The polymer-bound nanotubes were found to be luminescent with 

quantum yields up to 11%. The luminescence properties were found to be independent 

from the chemical grafting approach [157]. Scanning tunneling microscopy (STM) 

images confirmed that the polymer interacts with the whole length of the tube and not 

just at the CNT ends [158]. TGA measurements determined approximately 30 wt% 

content of polymer for the ‘acylation-amidation’ route and about 40 wt% of polymer for 

the ‘heating’ method [159]. 

 

Hu et al [160] grafted branched polyethyleneimine (PEI) to acyl chloride-modified CNTs 

and they used the CNT adduct as a substrate for neurite outgrowth and branching. Two 
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independent techniques (UV–vis–NIR and TGA) indicated that SWCNTs constitute about 

10% by weight of the graft copolymer SWCNT-PEI. Neurons grown on SWCNT-

PEI showed more branched neurites than those grown on the as-prepared MWCNTs. 

 

 Ge et al [161] grafted oxidized MWCNTs with a non-fluorinated polyetherimide. The 

reaction occurred in the solid state at high temperatures under inert atmosphere 

without the addition of a catalyst or force fields. The authors speculated that the 

polymer was grafted onto MWCNTs via not only the amide but also the imide linkages. 

They grafted about 30 wt% of polymer. Sano et al [162] grafted monoamine-terminated 

poly(ethylene oxide) (PEO) (Mw ≈5000) to acyl-activated SWCNTs. The amidation 

reaction time was dramatically reduced by using microwave radiation conditions [163].  

 

In a different approach, Chattopadhyay et al [164] prepared CNT salts by treating 

SWCNTs with lithium in liquid ammonia. Subsequently, these anionic tubes reacted with 

ω-bromocarboxylic acid to yield sidewall-derivatised SWCNTs with pendant carboxylic 

acid groups. Such derivatised SWCNTs reacted with amine-terminated PEG chains 

by carbodiimide-activated reaction to yield water-soluble PEGylated SWCNTs. The group 

of Tour and co-workers [165] grafted ultra-short carboxylated SWCNTs with amino-

terminated PEG by carbodiimide-activated reaction. These water-soluble nanotubes 

underwent further functionalisation with diazonium salts in order to produce 

multifunctional CNT-based material. 

 

The carboxylic acid groups of oxidized SWCNTs were converted into acyl chlorides and 

were then treated with the tenth generation G10 of poly(amidoamine) (PAMAM) 

starburst dendrimer [166]. Oxidized SWCNTs were grafted with amino-terminated 

poly(N-isopropylacrylamide) (PNIPAAm) by carbodiimide-activated reaction, which 

yielded a 8wt% polymer content [167]. In a different approach, oxidized MWCNTs were 

attached onto polyacrylonitrile (PAN) nanoparticles through the reaction of the reduced 

cyano-groups of the polymer and the carboxylic moieties of CNT surface [168] . In 
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addition, the amidation reaction was used for grafting of oligohydroxyamides to 

MWCNTs as described in figure 1-18 [169]. This adduct was covalently incorporated in a 

poly(phenylenebenzobisoxazole) (PBO) matrix during the in situ polymerisation process. 

 

 

Figure 1-18: Synthesis of oligo-HA-grafted MWNT (MWNT-oHA) 
 

 
1.3.2.2.5 By ester linkage  

 

The grafting of both oxidized SWCNTs and MWCNTs with a polystyrene (PS) copolymer 

was reported by Sun and co-workers [170] , where a solution of poly(styrene-co-p-(4-(4′-

vinylphenyl)-3-oxobutanol)) (PSV) in tetrahydrofuran (THF) was mixed with 

acyl chloride-activated nanotubes. According to thermogravimetric analysis (TGA), the 

CNT contents in the PSV-functionalised SWCNT and MWCNT samples are approximately 

11wt% and 18wt%, respectively. Similarly, Zehua and co-workers [171] grafted 

a styrene–maleic anhydride copolymer (SMA) onto MWCNTs and the modified material 

was incorporated into poly(vinyl chloride) (PVC) matrix. Mechanical testing showed 

significant enhancements of the elongation at break and the impact strength. 

Alternatively, the reaction of hydroxy-terminated PS with thionyl chloride treated 

MWCNTs was performed by Baskaran et al [172], resulting in a hybrid containing 86 wt% 

of CNTs. 
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Poly(vinyl alcohol) (PVA) was grafted by carbodiimide-activated esterification reactions 

of oxidized SWCNTs and MWCNTs [173]. Riggs et al [174] reported the grafting of 

poly(vinyl acetate-co-vinyl alcohol) (PVAc-VA) via ester linkages to acyl-activated 

SWCNTs for measurement of the optical properties of the prepared modified 

nanotubes. Other PVA-based copolymers used for functionalisation of nanotubes was 

poly(ethylene-co-vinyl alcohol) (EVOH) copolymer under carbodiimide-activated 

esterification reaction conditions [175]. Nuclear magnetic resonance (NMR) spectra 

showed that nanotube content in the SWCNT-EVOH is about 14 wt%, whereas 

thermogravimetric analysis showed 10 wt%. 

 

Silicone-functionalised CNT derivatives were prepared by opening terminal epoxy 

groups of functionalised polydimethylsiloxanes (PDMS) by the carboxylic groups of acid-

treated MWCNTs [176].  The esterification reaction was used for grafting polyethylene 

glycol (PEG) chains to acyl chloride-activated SWCNTs [177]. Such modified nanotubes 

were found to modulate neurite outgrowth, indicating a potential application 

in nerve regeneration [178]. In the absence of solvent medium, a grafting reaction of 

hydroxy-terminated PEG with thionyl chloride treated MWCNTs was performed at 

temperatures above the melting point of the polymer[179]. However, grafting efficiency 

was low, as the TGA analysis showed the presence of 93 wt% of nanotubes. 

Both oxidized SWCNT and MWCNT material were targeted for carbodiimide-activated 

esterifications with a derivatised polyimide endcapped with alkoxysilane 

groups [180,181] or having pendant hydroxyl groups [182].  

 

Grafting reactions of hydroxyl terminated poly(methyl methacrylate) (PMMA-OH) and 

poly[(methyl methacrylate)-co-(1-hydroxyethyl methacrylate)] (PMMAHEMA) with 

acyl chloride-activated MWCNTs were carried out in different solvents at various 

temperatures [183]. It was found that at higher temperatures and longer reaction times 

favoured the grafting reaction. Increasing the concentration ratio of hydroxyl groups to 

acid-chloride groups did not improve the grafting efficiency. Other examples of 
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esterification reactions include the grafting of poly(bisphenol-A-co-epichlorohydrin) 

chains to oxidized MWCNTs [184]  by a reactive blending process and the grafting of 

hyperbranched polyester based on 1,1-bis(methylol)propionic acid to the surfaces of 

MWCNTs [185]. 

 

1.3.2.2.6 By radical chemistry 

 

Lou and co-workers [186] studied the attachment of poly(1-vinylpyridine) (P1VP) of 

controlled molecular weight end-capped by 1,1,6,6-tetramethylpiperidinyl-1-oxyl 

(TEMPO) group to MWCNT sidewalls (figure 1-19).  

 

 

Figure 1-19: TEMPO-terminated polymer thermal dissociation and radical grafting of polymer radical to 
CNTs. 

 

Heating of TEMPO-terminated P1VP chains (at 140°C) causes the TEMPO group to 

dissociate, resulting in radical-terminated chains which were grafted to CNTs. The 

grafting ratio was found to be in the 6–11% range. The same approach used by the same 

authors for grafting PS, polycaprolactone (PCL) and the corresponding block copolymer 

(PCL-b-PS) [187]. Changing the dormant end group to benzyl-alkyl-N-oxide led the 

authors to the conclusion that the efficiency of grafting is independent of the 

alkoxyamine moiety. In addition, it was found that longer polymer chains covered a 

larger surface and the grafting density decreased. 

 

 

Adronov and co-workers [188] functionalised shortened SWCNTs with PS and poly[(tert-

butyl acrylate)-b-styrene] (PtBA-b-PS) through a radical coupling reaction involving 
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thermal loss of a nitroxide capping agent. TGA analysis indicated that samples 

with PS were composed of 13tw% CNTs by weight, whereas the (PtBA-b-PS)-SWCNT 

sample contained approximately 38 wt% of CNTs. In a subsequent step, SWCNT-(PtBA-b-

PS) sample was hydrolysed to yield SWCNT-(PAA-b-PS). The same approach was used for 

grafting PS, poly(4-vinylpyridine) (P4VP) and their random and block copolymers 

terminated with TEMPO onto MWCNTs [189]. The authors observed a non-uniform 

coating of CNT sidewalls with PS and their copolymers, but in the case of P4VP they 

observed complete and continuous surface coating. It is interesting to note that this 

composite was tested as a sensor for organic vapour detection. 

 

A diazo-carrying macroinitiator of polyvinylpyrrolidone (PVP), PEG and dextran was used 

for radical grafting of oxidized SWCNTs [190]. PVA and its two derivates (dimethylketal 

and polyvinylacetone) were grafted onto MWCNTs by γ-ray irradiation [191]. The 

content of grafted PVA was about 38wt%, whereas the weight fraction of PVA 

derivatives was in the range between 13wt% and 31wt%. 

 

1.3.3 Recent patents on polymer carbon nanotubes composites 

 

Patents are rich sources of technical and commercial information. Analysis of patents 

provides information on the nature and growth of the inventive activity; its international 

comparison; the active players from industry, academia and government; co-

inventorship; linkages with science; and technological trends [192]. 

 

The number of patents in the field of polymer/CNTs composites is rising every passing 

year. This shows the interest in transforming basic research into application. A number 

of patents can be cited in this connection. For instance, Thomas et al [193] invented a 

polymer/CNT composite electrochemical actuator. A series of uniform composites was 

prepared by dispersing purified single walled nanotubes with varying weight percents 
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into a polymer matrix (NAFION®), followed by solution casting. The resulting 

Polymer/CNTs composite was found successful for use as electrochemical actuator.  

 

Nadia et al  [194] invented a processing method for fine dispersion of nanotubes in a 

water-soluble polymer using high shear in an aqueous medium first, and then 

evaporating water. This method is claimed to lower the percolation threshold, at the 

same time further improving the conductivity of CNT reinforced polymers. Richard 

invented a method to functionalise nanotubes with m-phenylenevinylene-1,5-

disubstituted-p-phenylenevinylene polymers.  

 

These polymer grafted nanotubes are reported to be advantageous in dispersing into 

other polymer matrix as a master batch. Exemplary base polymers include epoxy, 

polyester, or nylon [195]. Michael et al [196] invented methods of selectively 

functionalising carbon nanotubes of a specific type, based on their electronic properties, 

using diazonium chemistry. They claimed that this invention is also directed toward 

methods of separating carbon nanotubes into populations of specific types via selective 

functionalisation and electrophoresis, and also to the novel compositions generated by 

such separations. Valerie et al [197] in a recent patent application described a 

procedure to prepare toners comprising functionalized CNTs in a suspension of wax, 

colorant and surfactant etc. This toner exhibits increased conductivity, and is thus 

suitable for conductive developing methods. 

 

1.3.4 Properties of polymer/carbon nanotubes composites 

 

1.3.4.1 Mechanical Properties 

 

The outstanding potential of CNTs as reinforcements in polymer composites is evident 

from different accounts available. Composite films consisting of alternating layers of 

CNTs and polyelectrolyte have shown great promise as high strength light weight 
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materials [198,199]. Composites containing 50 wt% SWCNTs were estimated to have 

modulus and strength values of about 11 GPa and 315 MPa, respectively, which are one 

order higher than the corresponding values for the neat matrix. The structural integrity 

of the films was greatly enhanced by chemical crosslinking reactions between the 

components of the composite. In the category of solution-based bulk composites, the 

most obvious conclusion is that matrices filled with CNTs bearing covalently attached 

polymer chains show enhanced mechanical properties [200,201,202,203]. This is not 

surprising since polymer grafting should significantly improve both CNT dispersion and 

stress transfer to the matrix. Regarding the blending of unmodified CNTs with polymers 

by a solution-phase protocol, PVA shows significant reinforcement after incorporation of 

CNT material [204,205]. This can be explained by the fact that CNT sidewalls nucleate 

the crystallization of the polymer, thus leading to stiffer composite.  

 

Similarly, in situ polymerisation has presented a number of advantages over other 

composite processing methods [206,207,208]. This is because it is easier to get strong 

interactions between polymer and nanotube during the growth stage rather than mixing 

the constituents by various means. A salient message is the low reinforcement observed 

for the melt processed bulk composites. On the contrary, microfibers produced by melt 

spinning/drawing techniques display better reinforcement compared to the bulk, due to 

CNT alignment effects [209,210]. Spitalsky et al [211] concluded that CNT reinforcement 

is much more effective for ductile matrices, whereas for brittle polymers the CNT filler 

does not seem to improve considerably the mechanical properties of the matrix. 

 

1.3.4.2 Electrical properties 

 

Literature survey reveals a large variation of the electrical properties values as a 

function of the polymer matrix, processing method and CNT type. Nanocomposites 

based on PMMA and MWCNTs as a filler show a significant enhancement in the 

electrical conductivity. Kim et al [212] reported a value of ≈3000 S/m at 0.4 wt% for 
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extremely low percolation threshold (≈0.003 wt%) prepared by the solution mixing 

method. Furthermore, the addition of MWCNTs to polycarbonate by the melt mixing 

technique induces a dramatic increase of about 16 orders of magnitude in the maximum 

conductivity; reaching the value of ≈1000 S/m at 15 wt% [213]. 

 

According to Koerner et al [214] a σmax value of 1000 S/m is observed for PU filled with 

17 wt% MWCNTs using the solution casting technique. The same conductivity value has 

been achieved for SWCNTs/PANI composite prepared by solution mixing at 15 wt% 

loading. Composite fibres SWCNTs/PEI prepared by means of the coagulation fibre 

spinning process exhibit a considerably high σmax value of 1 × 104 S/m. 

 

Concerning Φc polymer hosts such as PI, PMMA, epoxy and PS exhibit extremely low 

percolation threshold values. It is important to stress the recently reported ultra low Φc 

value of 0.000846 wt% for MWCNTs/PVC composites [215]. As a general statement, the 

excellent electrical properties of composites containing MWCNTs are promising for the 

design of low cost polymer composites for numerous future applications. 

 

1.3.4.3 Other properties 

 

The viscoelastic properties of nanotube/polymer composites have both practical 

importance related to composite processing and scientific importance as a probe of the 

composite dynamics and microstructure. As with electrical percolation, the rheological 

percolation is found to depend on nanotube dispersion, aspect ratio, and alignment. 

Mitchell et al [216] improved dispersion by functionalising SWNTs, such that the 

rheological percolation threshold dropped from 3 wt% when using pristine SWNT to 1.5 

wt% in functionalised SWNT/polystyrene composites. The values of G‘ at low 

frequencies were also higher for the functionalized composites, indicating better load 

transfer between the nanotube network and the polymer. The effect of aspect ratio 
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(shape) was illustrated by comparing nanotube and layered silicate nanofillers, which 

are disk-shaped and require a higher loading to form a percolated network [217].  

 

The thermal conductivity, κ, of carbon materials is dominated by atomic vibrations or 

phonons. Nanocomposites with good thermal conductivity have potential applications 

in printed circuit boards, connectors, thermal interface materials, heat sinks, and other 

high-performance thermal management systems. The excellent thermal conductivity of 

individual nanotubes led to early expectations that it will enhance the thermal 

conductivity of polymer nanocomposites, as nanotubes do with the electrical 

conductivity. Choi et al [218] reported a 300% increase in thermal conductivity at room 

temperature with 3 wt % SWNT in epoxy. Optical properties of polymer/nanotubes 

composites have also been explored for various applications [219,220]. 

 

1.3.5 Polyolefins  

 

Polyolefins are synthetic polymers obtained from olefinic monomers. They are the 

biggest polymer family by volume of production and consumption. Several million 

metric tons of polyolefins are produced and consumed globally each year, and they are 

regarded as commodity polymers. Figure 1-20 shows a break-up of different types of 

polyolefins consumed in 2009.  

 

Figure 1-20: Global polyolefin consumption reported for 2009 [221]. 
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Polyolefins have enjoyed great success due to many application opportunities, relatively 

low cost, and wide range of properties. Polyolefins are recyclable and significant 

improvement in properties is available through blending and composite manufacturing 

technologies. Polyolefins may be classified based on their monomeric unit and chain 

structures as ethylene-based polyolefins (contain mostly ethylene units), propylene-

based polyolefins (contain mostly propylene units), higher polyolefins (contain mostly 

higher olefin units), and polyolefin elastomers. Today polyolefins and polyolefin-based 

materials are used in main many applications. Theses applications include 

transportation (automotive, aerospace), packaging, medical, consumer products (toys, 

appliances, etc.), electronics, cable and wire coating, thermal and acoustic insulation, 

and building and construction. Polyolefins can be extruded as filament (fibres), films 

(cast and blown), and pipes/profiles. They can be moulded into parts of various shapes. 

They can be foamed with physical and chemical foaming/blowing or/and can be coasted 

onto other materials. And what’s more, incorporation of reinforcement materials can 

expand their application to sophisticated and customised applications. 

 

1.4 Nanocomposites based on Polyolefins 

 

Polyolefins are today the most used thermoplastic materials thanks to the high 

technology and sustainability of the polymerisation process, their excellent 

thermomechanical properties and their good environmental compatibility, including 

easy recycling. In the last few decades much effort has been devoted worldwide to 

extend the applications of polyolefins by conferring on them new properties through 

mixing and blending with different materials. In this latter context, nanocomposites 

have recently offered new exciting possibilities. This has been made possible on the 

basis of the improvement of polyolefin functionalisation processes with the availability 

of several olefin homo- and copolymers bearing a small (generally less than 1 mol%) 

amount of backbone grafted polar groups. These are indeed adequate to endow 
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favourable interface interactions with polar macromolecules and inorganic compounds, 

leading first to compatible blends and then to microcomposites.  

 

Literature review shows that researchers have adopted various routes to prepare 

nanostructured biphase materials having the typical structural properties of polyolefins 

(continuous matrix) but showing enhanced thermomechanical properties, 

thermostability, lower flammability, lower gas permeability and electrical and optical 

properties, thanks to the presence of an extended interphase interaction with very 

different nanodispersed species [222].  

 

Additives in polyolefin composites may be classified according to their functions as 

modifiers (e.g. fillers, plasticizers, blowing agents, coupling agents, impact modifier, and 

nucleating/clarifying agents), property extenders (e.g. heat stabiliser, antioxidants, 

flame retardants, light stabilisers, antistatic agents, and biocides), and processing aids 

(e.g. lubricants, slip agents, and antiblocking agent). In terms of specific chemical names, 

additives used in polyolefin composites include, but not limited to, the following: glass 

fibres, hollow glass bubbles, clay minerals, carbon black, carbon nanotubes, carbon 

fibres, graphite, magnesium hydroxide, aluminium trithydroxide, titanium dioxide, 

calcium carbonate, silica, and natural fibres.  

 

In a recent account Ling et al [223] prepared a microwave absorbing composite by melt 

blending MWCNTs in LLDPE and Ethylene-octene copolymer matrix. This composite 

containing 30wt% MWCNTs showed strong absorbance of microwave at 4.4 GHz and the 

maximum reflection loss achieved was -11.15 dB.  

 

Isaji et al [224] manufactured composite films with a mixture of MWCNTs in low and 

ultra high molecular weight PE by gelation/crystallisation from a dilute decalin solution. 

The filler content was 10 wt% of MWCNTs. The temperature dependence of electrical 

conductivities measured from 25 to 220°C shows that the conductivity increased slowly 
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and had small jump-down near to the melting point matrix, and then increased again till 

to the 220°C. The jump-down associated with the thermal expansion of polymer 

happened near melting points of matrix ≈ 127 °C and ≈ 100 °C corresponding to the 

melting points of UHMWPE and LMWPE respectively. 

 

In another work, Prashantha et al [225] obtained an effective dispersion of nanotubes 

via extrusion process by master batch dilution technique to prepare PP/CNTs composite. 

They concluded that preparation of nanocomposites by master batch dilution technique 

is an excellent method to obtain well-dispersed CNTs, while limiting the handling 

difficulties (potential health and safety hazards) in plastics processing industrial 

workshops and also offering a greater flexibility and cost-effective adaptation ability of 

the nanofiller content to focused applications. 

 

1.5 Trends and future perspectives 

 

Basically nanotubes are incorporated into a polymer matrix to enhance electrical, 

mechanical, and thermal or a combination of theses properties. In polymer 

nanocomposites, properties such as strength and stiffness, flam retardation/char 

formation, barrier, heat distortion temperature, electrical and thermal conductivities 

can be improved significantly at low (typically < 5 wt%) nanotubes loading. However 

studies are now more focused on nanocomposites with lower nanotubes content and 

more efforts are being made to achieve a perfect dispersion of nanotubes in host matrix 

[226,227,228].  

 

Reinforced/filled polyolefin composites with improved impact are increasingly replacing 

low end engineering polymers such as ABS and polyamides. Attempts are being made to 

prepare textile weaved with polymer CNTs composite fibres (by melt spinning on large 

scale) which have shown promising results [229]. Carbon nanotubes are a model system 

for nanoelectronics [230] and a huge part of the nanotechnology research is devoted 
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towards practical applications like sensors [231,232], conduction composites [233,234], 

electromegnetic shielding [235], antistatic coatings [236] etc. Interests in hybrid 

nanocomposites are also growing owing to its potential applications. Recently Liao et al 

[237] have reported that double walled carbon nanotube–Fullerene hybrids exhibit 

superior optical limiting performance to those of Fullerenes and CNTs. Another study 

reports that functionalised nanotubes in an electroactive fullerene-based (C60−Pd) 

polymer film markedly increases the capacitance and decreases the resistance of the 

electrode [238]. Engineering of CNTs into microwires can open up new synthetic routes 

for novel electrodes that overcome mass transport limitations and provide high specific 

areas [239]. 

 

New approaches are being introduced to stabilise nanotubes in polymer suspensions. 

Saint-Aubin et al [240] has recently prepared stable aqueous solution of nanotubes in 

Poly(acrylic acid). Such formulation could be used for manufacturing conductive inks, 

paints etc. Polymer/CNTs composites are also being investigated for space suit 

reinforcements, radar absorbance material for stealth applications [241]. Most of the 

reported work on polymer nanocomposites is based on experimental studies; however, 

some researchers are concentrating on theatrical work [242,243] to develop 

mathematical models to estimate the properties of nanocomposites and characteristics 

of interface between the nanotubes and polymer. The establishment of such models 

would help in future in preparing polymer nanocomposites with tailored properties. 

Another prospective trend is particularly important from the standpoint of the 

development of nanotubes composites that are environmentally sustainable, recyclable, 

renewable and reusable.  This last factor could define the future of wider applications of 

polymer/CNTs composites. Moreover new functional polymers [244] could also provide 

further opportunities for nanocomposite manufacturing.  
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1.6 Summary 

 

Nanotubes are a tiny miracle. But perhaps they are useless, unless incorporated in some 

host matrices in order to make functional materials that are fit to be used for specific 

purposes. A review of research work presented in this chapter shows that carbon 

nanotubes are promising candidates for developing high-performance functional 

materials. But the structure and chemistry of nanotubes make it a challenging task. Its 

tendency to agglomerate in bundles is a major obstacle in achieving homogenous 

composites that could be used for different applications.  To reap the full benefits of this 

wonderful discovery, it has to be integrated in various other materials especially 

polymers. 

 

Functionalisation of nanotubes generally has two motives: 1) to facilitate the dispersion 

of nanotubes by surface modification that minimise the possibility of bundling (e.g. in 

solvents or polymer melts); and 2) to incorporate such chemical moieties onto 

nanotubes’ surface that can further attached to other species (e.g. polymers). 

 

Researchers have discovered various routes to facilitate the incorporation of CNTs into 

polymer host matrix, ranging from noncovalent (such as solvent evaporation, melt 

mixing, polymer wrapping and absorption, and in situ polymerisation) to covalent (such 

as ‘grafting from’ and ‘grafting to’). All these routes have their own upside and 

downside and selected according to the limitations/requirements related to product, 

processing, cost, scale of production, yield and other feasibility parameters. CNTs have 

been dispersed in a variety of polymer matrices using solution processing, melt 

processing, or in situ polymerisation using pristine, functionalised (with polymer or 

other chemical moieties).  Literature presents processing of CNTs composites with 

different polymers including semicrystalline, amorphous, liquid crystalline, conjugated, 

and solvent-processable polymer, as well as thermosetting resins. Property 

enhancement include strength, stiffness, thermal stability, solvent resistance, glass 
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transition temperature, crystallisation time, crystallinity, electrical conductivity, reduced 

thermal shrinkage and optical anisotropy.  

 

In order to covalently attach polyolefin onto nanotubes two potential approaches can 

be considered: (i) ‘Grafting to’ approach through radical chemistry and (ii) via functional 

polyolefins. The former approach is simple in terms of large scale application as radicals 

have short life times which make this kind of processing possible in an extruder; 

however, control of side reactions is complicated as radicals have limited selectivity. The 

latter approach requires the synthesis of end-functionalisation polyolefin which is a 

complex way, moreover the degree of functionalisation of these polyolefins is in the 

range of 50-75%. 

 

Carbon nanotubes can lend new functionality to polymer, metal, or carbon matrices and 

therefore with the discovery of new methods of incorporation of nanotubes in these 

matrices is believed to further widen the scope of such nanocomposites. 
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2.1 Model compound approach for PE grafting onto nanotubes 

 

 

 

2.1.1 Overview 

 
PE is by far the most common commercial polymers that we encounter in day-to-day 

life. A number of disadvantages prevent their even wider use. These include the lack 

of functional groups and polarity, which results in poor adhesion and incompatibility 

between polyolefins and other materials such as glass fibres, clays, metals, pigments, 

fillers, and most polymers. The properties of polyolefins are modified through the 

introduction of the fillers, but the components are not compatible as such. To reduce 

the interfacial tension between the matrix and the filler, fillers are often 

functionalised, coated by different techniques as detailed in literature review. 

 

In order to prepare PE/nanotubes composite with enhanced properties of interest 

e.g. reinforcement, there must be a good dispersion of CNTs and some chemical 

linkage between the two phases of the composite. To overcome incompatibility of 

nanotubes and PE we envisaged a scheme to graft PE during extrusion through 

radical grafting onto nanotubes. But before using this procedure a model compound 

study was adopted to obtain optimised reaction conditions. Pentadecane was 

selected as a model since it represents the chemical structure of PE. Moreover use of 

pentadecane makes the extensive characterisation easier which might be difficult in 

case of PE since pentadecane is in liquid form at ambient temperature. 
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In this model compound study we observed that there is a tough competition 

between two reactions: combination of radicals and addition of radicals to 

unsaturated carbon bonds available on the surface of the nanotubes. We optimised 

our reaction conditions (e.g. temperature, concentration of reactants) to obtain high 

grafting density.  

 

One of the most challenging tasks of this study was to identify the reaction pathways 

as there were many possible side reactions involving combination of radicals. We 

used gas chromatography mass spectroscopy (GC-MS) technique to follow the 

reaction trail. Grafting of pentadecane onto nanotubes was confirmed qualitatively 

(by Raman spectroscopy and transmission electron microscopy) and quantitatively 

(by thermogravimetric and elemental analysis). 

 

The results of this model compound study provided a base for further exploitation of 

this strategy of ‘grafting onto’. 

 

2.1.2 Article Details  

 

This work was published in Polymer,volume 50, issue 12, pages 2535-2543 on 5 June 

2009, entitled ‘Radical grafting of polyethylene onto MWCNTs: A model compound 

approach’. Parts of the contents of this paper were presented in ‘7th Eurofillers 

International conference − From macro to nanofillers for structural and functional 

polymer materials’ held in the Alessandria site of the Polytechnic of Turin, Italy from 

21 to 25 June, 2009; and in ‘5th International ECNP conference − Nanostructured 

Polymer and Nanocomposites’ convened by The European Centre for 

Nanostructured Polymer at Ecole Nationale Supérieure d' Arts et Métiers ParisTech 

(ENSAM), Paris, France, from 15 to 17 April 2009.  

 

 

 

http://www.ensam.fr/
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2.2 Radical grafting of polyethylene onto MWCNTs: A model compound approach

  

 

 

Sohaib Akbar a,b,c, Emmanuel Beyou a,b,c, Philippe Cassagnau a,b,c, Philippe 

Chaumont a,b,c, Gholamali Farzi a,b,c  

 

a Université de Lyon, Lyon F-69003, France 

b Université de Lyon 1, F-69003 Villeurbanne, France 

c CNRS UMR5223, Ingénierie des Matériaux Polyméres, Laboratoire des Matériaux 

Polyméres et Biomatériaux, F-69622 Villeurbanne, France  

 

2.2.1 Abstract 

 

Covalent functionalisation of pentadecane-decorated multiwalled carbon nanotubes 

(MWCNTs) has been studied as a model compound approach for the grafting of 

poly(ethylene-co-1-octene) onto MWCNTs by reactive extrusion. It was 

accomplished through radical addition onto unsaturated bonds located on the 

MWCNTs’ surface using dicumyl peroxide as hydrogen abstractor. It was found that 

this surface treatment results into the break-up of the native nanotube bundles and 

increases solubility in various solvents. Raman spectroscopy was utilized to follow 

the introduction of pentadecane on the MWCNTs’surface; while thermogravimetric 

analysis and elemental analysis indicated the extent of this grafting. Pentadecane 

functionalized MWCNTs were imaged by transmission electronic microscopy 

showing single long functionalized MWCNTs distinct from the starting pristine 

bundles. 

 

2.2.2 Introduction 

 

Carbon nanotubes (CNTs) are extremely promising for applications in materials 

science and engineering. Much attention has been paid to CNT-based 

nanocomposites for the preparation of high-performance materials exhibiting 
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improved or unusual mechanical and physical properties. The combination of a soft 

polymer matrix with nanosized rigid filler particles can provide new nanocomposite 

materials with largely improved modulus and strength. However, the homogeneous 

dispersion of raw CNTs within a polymeric matrix is relatively difficult to achieve, 

especially in apolar matrixes such as polyolefins. Indeed, carbon nanotubes tend to 

aggregate as very long bundles due to the high surface energy and the stabilization 

by numerous of π–π electron interactions among the tubes. Several methods for 

preparing polymer/CNTs nanocomposites have been explored to achieve good 

dispersion and load transfer, such as noncovalent [1,2,3] and covalent [4,5] 

approaches. The noncovalent methods, including solution mixing [6], melt mixing [7] 

and in situ polymerization [8] are simple and convenient; however, the dispersion of 

CNTs and the interfacial interaction between CNTs and polymer matrix are poor, 

especially in the case of melt mixing. In contrast, the covalent approaches, including 

“grafting to” [4,9] and “grafting from” [9,10], leading to chemical linkage between 

polymer and the surface of CNTs, improve the dispersion of CNTs in polymer 

matrices. However, the synthesis of end-functionalized polyethylene (PE), which is 

necessary in the “grafting to” approach, is difficult [11]. Otherwise, the grafting 

procedure can be achieved by in situ polymerization of ethylene as catalyzed directly 

from the nanotubes surface treated by a highly active metallocene-based complex 

[8,12].  

 

Another promising route for a chemical modification of MWCNTs by PE is to use free 

radical initiators such as peroxides. The general mechanism of free radical grafting of 

vinyl compound from hydrocarbon chains detailed by Russell [13], Chung [14] and 

Moad [15] seems to express a widespread view. The grafting reaction starts with 

hydrogen abstraction by alkoxyl radicals generated from thermal decomposition of 

the peroxide. Then, the active species generated onto the hydrocarbon backbone 

react with unsaturated bonds located on the MWCNTs surface. This chemical 

modification is thus conceivable during reactive extrusion because the radicals' 

lifetimes (in the range of few milliseconds) are compatible with typical residence 

time in an extruder (around 1 min). Nevertheless, the main drawback of the free 

radical grafting is the low selectivity of the radical center, specially at high 
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temperatures (in the range of 150–200 °C, required for extrusion of polyethylene), 

leading to side reactions such as coupling and chain scission [13,16]. Moreover, 

performing this chemical modification by reactive processing brings in many 

constraints inherent to the processing (e.g. short reaction time, viscous dissipation 

and high temperature). For instance, the difference of viscosity between the 

monomer and the molten polymer could enhance these side reactions. So, to 

separate these physical influences from the chemical modification, the grafting 

reaction is, in this work, predicted with a model compound approach based on a 

radical grafting reaction between peroxide-derived alkoxyl radicals, and a low molar 

mass alkane representing characteristics moieties of PE. We resorted to 

pentadecane (C15H32) as model for polyethylene.  

 

Indeed, high boiling points of long chain alkanes permit study under high 

temperature conditions, typically over 150 °C. It also gives clues about low viscosity 

at 150 °C, on top of that the formed products in the grafting experiment can hence 

be analysed more easily than in the polymer melt.  

 

Scanning the factors influencing the selectivity toward hydrogen abstraction and 

radical grafting reaction is of particular interest and dicumyl peroxide (DCP) has been 

selected to generate alkoxyl radicals in presence of the alkane model. Experiments 

reported here involve decomposition of DCP. Its thermal decomposition is carried 

out in a range of temperatures close to the ones expected during reactive extrusion 

of poly(ethylene-co-1-octene) typically few minutes at 150–200 °C. 

 

This manuscript aims at describing the course of the generated radical species and 

the extent of the grafting reaction in regards to the DCP concentration and 

temperature. This chemical functionalization approach leads to high degree of 

functionalization which influences solubility behaviour of the formed pentadecane-

grafted MWCNTs in various solvents. In addition, pentadecane-grafted MWCNTs 

were analysed by Raman spectroscopy, transmission electronic microscopy, 

thermogravimetric analysis and elemental analysis. 
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2.2.3 Experimental 

 

2.2.3.1 Materials   

MWCNTs (Graphistrength™ C100: see salient characteristics in Table 2-1) were kindly 

supplied by ARKEMA. 

 

Table 2-1: Characteristics of Graphistrength™ C100. 

Manufacturing CCVD 

Apparent density 50–150 kg/m3 
Mean agglomerate size 200–500 μm 
C contents 90 wt% 
Mean number of walls 5–15 
Outer mean diameter 10–15 nm 
Length 0.1–10 μm 

 

The low molecular weight hydrocarbon substrate, used as model for poly(ethylene-

co-octene), was pentadecane (99%, Sigma–Aldrich – France). Initiator was dicumyl 

peroxide (99%, Sigma–Aldrich – France) and all other solvents were used without any 

further purification so as to fit with the industrial conditions required in the melt 

processing. 

 

2.2.3.2 Surface activation of MWCNTs 

 

In this study, MWCNTs were oxidized in air at 450 °C for 1 h. Air oxidized MWCNTs 

are used throughout this study and referred as pristine (p-MWCNTs). 

 

2.2.3.3 Decomposition of DCP in the presence of p-MWCNTs and alkanes 

 

The thermolysis of dicumyl peroxide (DCP) in pentadecane was performed in a glass 

reactor. In a typical grafting experiment, DCP (0.23 g/0.85 mmol), as a radical 

initiator, was first mixed in with p-MWCNTs (50 mg) and pentadecane 

(7.69 g/36.26 mmol) and then sonicated for 15 min. After that, the suspension was 

degassed by 4 freeze-pump-thaws, and then it was heated to 150 °C under stirring. 

After 6 h, the reaction mixture was cooled down quickly and diluted in DMF for 
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characterization through gas chromatography analysis. The grafted MWCNTs were 

collected by centrifugation (11K rpm, 20 min) and subsequent filtration. 

 

2.2.3.4 Recovery of free and tethered pentadecane molecules 

 

The free pentadecane molecules were isolated from the grafted MWCNTs by 

exhaustive cleaning of the suspension by dialysis. In a typical process, 30 mL of the 

MWCNTs' suspension was introduced into a cellulose membrane (Spectra/Por, MW 

cut-off, 1000 by Spectrum Medical Industries, Inc.) and repeatedly dialyzed against 

DMF until no residual pentadecane could be detected in the recovered solution 

(determined gravimetrically). Then, the pentadecane-grafted MWCNTs suspension 

was dried at 80 °C to evaporate the solvent prior to characterization. Details of the 

specimens prepared and tested are given in Table 2-2. 

 

Table 2-2: List of samples according to the experimental conditions. 

Sample Constituents Reaction conditions Principal product 

A MWCNTs (50 mg) + DCP 

(0.23 g) + pentadecane (7.69 g) 

150 °C for 6 h Penta-g-MWCNTs 

B-1 Blank experiment: DCP 

(0.23 g) + pentadecane (7.69 g) 

150 °C for 6 h Interlinked 

pentadecane 

B-2 Blank experiment: MWCNTs 

(50 mg) + DCP (0.23 g) + DMF (5 mL) 

150 °C for 6 h Cumyloxyl-g-

MWCNTs 

C MWCNTs (50 mg) + DCP 

(0.23 g) + pentadecane (7.69 g) 

At different temperatures 

for 6 h 

Penta-g-MWCNTs 

D MWCNTs (50 mg) + DCP (different 

ratios 

  

 

2.2.4 Characterisation 

 

Gas chromatography–mass spectrometry (GC–MS) was performed with an Agilent 

6890 series GC system equipped with an HP-5ms (5%-phenyl)-methylpolysiloxane, 

ref. 19091S-433. The injector was at 250 °C and the temperature programme 

followed was: 50–310 °C at 20 °C/min. Injection and detection by MS were carried 

out at 280 °C. 
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Raman spectra were obtained by using a Raman spectrometer (RM1000, Renishaw, 

Wotton under Edge, U.K.). The sample was excited with Argon Laser at 514.5 nm. 

Thermogravimetric analysis (TGA) was carried out with a DuPont Instruments TGA 

2950 thermobalance, controlled by a TC10A microprocessor. Samples were heated 

at 20 °C/min under a nitrogen flow (100 mL/min). 

 

Elemental analysis (EA) was carried out (Analyzer: LECO SC144, Service central 

d'analyse du CNRS, Vernaison, France) to determine the contents of C and H. 

 

Transmission electron microscopy (TEM) was carried out with a Philips CM-120 

microscope (Philips Consumer Electronics BV, Eindhoven, The Netherlands) operated 

at 80 keV. 

 

Solubility was determined gravimetrically. In a typical experiment, saturated 

solutions of penta-g-MWCNTs were prepared by sonication in vials. Sonication was 

done using S 40 H Elmasonic by Elma (Singem, Germany) for 15 min. Water bath 

temperature therein raised maximum to 35 °C. Vials were kept free standing over 

one month at room temperature and then the upper half aliquot part was carefully 

taken out with a syringe and heated to remove solvent under vacuum. All the 

weighting was carried out using an analytical balance with a sensitivity of 0.1 mg. 

 

2.2.5 Results and discussion 

 

2.2.5.1 Free radical grafting of pentadecane onto MWCNTs 

 

Fig. 2-1 sums up main reactive pathways of free radical grafting of pentadecane onto 

MWCNTs with dicumyl peroxide as initiator.  
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Figure 2-1: General reactive pathways of free radical grafting of pentadecane onto MWCNTs. 

 

The hydrogen abstraction reaction from alkyl hydrocarbon bonds was studied 

starting from the reaction of DCP-derived radicals with pentadecane. However, the 

alkoxy radicals can undergo additional reactions including β-scission leading to the 

formation of methyl radicals [17]. These latter preferentially induce coupling 

reaction (Fig. 2-1, route β and η) or attack onto the sp2 carbon of the MWCNTs (Fig. 

2-1, route γ) whereas cumyloxyl radicals are more prone to hydrogen abstraction 

from pentadecane [15]. The formed pentadecyl radicals through hydrogen 

abstraction are able to react with MWCNTs by radical addition onto sp2 carbon of the 

MWCNTs (Fig. 2-1, main route α) and with other radical species via the common 

radical coupling reactions (Fig. 2-1, routes δ1 and β). According to the results of 

Johnston [18,19], based on a study of the crosslinking reaction of poly(ethylene-co-1-
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octene) in the presence of DCP at 160 °C, coupling reactions are four times more 

prone to happen than scission reactions so we assume that pentadecyl radicals do 

not undergo scission reactions. First, we investigated the selectivity of cumyloxyl 

radicals, coming from the thermal decomposition of DCP, to find out the chemical 

structure of the formed species. As described in Fig. 2-1, the cumyloxyl radical, can 

undergo two main reactions leading to the formation of 2-phenyl-2-propanol (2p2p) 

through H-abstraction from the hydrocarbon substrate, or acetophenone (aceto) by 

intramolecular β-scission. We found it interesting to see whether the presence of the 

MWCNTs could modify the radical species course. 

 

First, products arising from the reaction involving a solution of DCP in pentadecane 

(blank, sample B-1, Table 2-2) were analysed by GC–MS (Fig. 2-2). Three main peaks 

corresponding to 2p2p, aceto and pentadecane are observed in Fig. 2-2 confirming 

H-abstraction from pentadecane and β-scission reaction from cumyloxyl radicals 

respectively. The small peaks observed from 6 min to 14 min are attributed to 

interlinked pentadecane molecules and are believed to be synthesized by 

combination of the formed pentadecane radicals. 

 

 

Figure 2-2: GC–MS chromatogram of the liquid phase of the blank sample B-1 (diluted with DMF 
after reaction); inset: a myriad of small pentadecane peaks observed after ca. 6 min. 

 

 

For the reaction procedure where MWCNTs are included in the solution of DCP in 

pentadecane (sample A, Table 2-2), GC–MS analysis of the formed products (Fig. 2-3) 
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mainly displays a big peak corresponding to 2p2p and a smaller one attributed to 

aceto.  

 

 

Figure 2-3: GC–MS chromatogram of the liquid phase of the sample A (diluted with DMF after 
reaction). 

 

 

Assuming that the A2p2p/AAceto area ratio of the corresponding peaks is directly linked 

to the [2p2p]/[aceto] concentration ratio [17], we investigated the course of 

pentadecane radicals through the calculations of A2p2p/AAceto, APenta/Aaceto, APenta/A2p2p 

area ratios (Table 2-3). The A2p2p/AAceto area ratio is ten times higher in the case of 

sample A than in the case of sample B-1, suggesting that presence of MWCNTs 

favorably changes the course of reaction by limiting β-scission reaction and 

attracting cumyloxyl radicals. In a similar way, the area ratio APenta/Aaceto is higher for 

sample A and no significant change is observed for the APenta/A2p2p ratio in any of the 

samples (Table 2-3).  

 

Table 2-3: Area ratios of different constituents in GC analysis. 

Ratio Fig. 2-1, sample B-1 Fig. 2-2, sample A 

A2p2p/AAceto  0.9 10 
APenta/AAceto  4 30 
APenta/A2p2p  5 4 

 

Moreover, GC-MS chromatogram of sample A (Fig. 2-3) only displays two other 

peaks assigned to interlinked pentadecane molecules. On contrary, chromatogram of 

sample B-1 displays a large number of such peaks (Fig. 2-2) giving an evidence that 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TXW-4W32KR1-3&_mathId=mml1&_user=1697204&_cdi=5601&_pii=S0032386109002626&_rdoc=1&_issn=00323861&_acct=C000032458&_version=1&_userid=1697204&md5=268e6788a4cc7c7040045f8a03d1ade9
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TXW-4W32KR1-3&_mathId=mml2&_user=1697204&_cdi=5601&_pii=S0032386109002626&_rdoc=1&_issn=00323861&_acct=C000032458&_version=1&_userid=1697204&md5=fb2abdad320e3b5648df2b49bd119adb
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TXW-4W32KR1-3&_mathId=mml3&_user=1697204&_cdi=5601&_pii=S0032386109002626&_rdoc=1&_issn=00323861&_acct=C000032458&_version=1&_userid=1697204&md5=f693cf098ef0e79fa505cee0e7f4c97e
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most radical pentadecane chains are grafted onto MWCNTs surface in case of sample 

A. Besides, no DCP traces were detected in any of the samples (A and B-1). 

 

Direct evidence for covalent sidewall functionalization can be also found by Raman 

spectroscopy [20,21,22]. G band is a characteristic feature of the graphitic layers and 

corresponds to the tangential vibration of the carbon atoms. The second 

characteristic mode is a typical sign for defective graphitic structures (D band). The 

ratio between the G band and D band is a good indicator of the changes in chemistry 

of CNTs. Interestingly, Raman spectra of p-MWCNTs (Fig. 2-4a) and penta-g-MWCNTs 

(Fig. 2-4b) show two main peaks around 1350 cm−1 (D band) and 1586 cm−1 (G band). 

The relatively high intensity of the G band relative to D band (AD/GD = 1.55) for 

penta-g-MWCNT sample in comparison with that of p-MWCNT (i.e. AD/AG = 1.2) 

could be designated as an indicator of grafting species. 

 

 

Figure 2-4: Raman spectra of: p-MWCNTs (a) and penta-g-MWCNTs (b). 

 

To gain a more quantitative picture of the extent of nanotube functionalization, 

thermogravimetric analysis was performed on the reaction products. Indeed, it is 

well known that heating functionalized nanotubes in an inert atmosphere removes 

the organic moieties and restores the pristine nanotubes structure [23,24,25].It is 

noteworthy that the adsorbed molecules can be removed from the grafted ones by 

dialysis as mentioned in the experimental part. As shown in Fig. 2-5, the amount of 
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organic functionalities physically and/or covalently attached to the initial MWCNTs 

can be neglected (weight loss < 1.5%).  

 

Figure 2-5: TGA data (under N2) for cumyl-g-MWCNTs and penta-g-MWCNTs with that of p-
MWCNTs and pure pentadecane for corresponding reference. 

 
 

After treatment with DCP (blank experiment B-2), the weight loss increases to 8% 

(Fig. 2-5) as expected for MWCNTs with more organic moieties on the surface. In 

addition, TGA results show that pure pentadecane can be completely decomposed at 

a temperature of 450 °C; therefore, the amount ofpentadecane that covalently 

attached to the p-MWCNTs is estimated by the weight loss of pentadecane-grafted 

MWCNTs sample between 180 °C and 450 °C. In Fig. 2-5, we estimate the weight of 

grafted pentadecane to be around 30%. It is notable here that this degree of 

functionalization is higher than those reported earlier for MWCNTs derivatized 

through the billups reaction (10–20%) [26]. The weight losses of blank sample B-2 

and sample A, which are 8% for cumyloxyl groups and 30% for pentadecyl groups 

correspond to a surface coverage of approximately 31,600 cumyloxy groups per 

nanotube and 75,400 pentadecyl groups per nanotube (the calculations are based on 

a 5 mm long and 13 nm wide nanotube with a surface of 2.04 × 105 nm2 and a 

volume of 8.8 × 105 nm3). The average density of the nanotubes is 100 kg/m3 so 

there are around 1.13 × 1013 nanotubes present per mg). Therefore, adsorptions of 

0.08 mg cumyloxy group/mg CNTs (0.59 mmol/g) and 0.3 mg pentadecyl group/mg 

CNTs (1.42 mmol/g) suggest a grafting density of 0.034 mg/m2 and 
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0.13 mg/m2 respectively. Comparable grafting densities have been recently reported 

for pyrene polymer functionalized MWCNTs [27]. 

 

We can conclude that the grafting efficiency is higher for the pentadecyl radicals 

than for other radical species. These consequences might have originated because of 

two factors: (1) the increase of grafting efficiency suggests poor attack onto the 

sp2 carbon of the MWCNTs by the cumyloxyl radicals; (2) the high molecular weight 

of the grafted molecules, i.e. pentadecane. Elemental analysis (Table 2-4) is also an 

indicator of degree of grafting. 

 

Table 2-4: Carbon and hydrogen contents determined by elemental analysis. 

Sample Element % 

p-MWCNTs C 
H 

87–90 
0.3–0.66 

Penta-g-MWCNTs (A) C 
H 

87–90 
5–6 

 

 We can observe that carbon content does not increase after the grafting procedure 

and hydrogen content increases from the range of 0.3–0.6 wt% for neat MWCNTs to 

the range of 5–6 wt% for the pentadecane-grafted MWCNTs. The hydrogen content 

of the grafted species, calculated from TGA, gives a value close to the one found 

from elemental analysis: a weight loss of 30% for the pentadecane-grafted MWCNTs 

(sample A) corresponds to 4.7 wt% H contents. 

 

2.2.5.2 Influence of temperature 

 

As discussed earlier, DCP generates methyl radicals through β-scission reaction (Fig. 

2-1). This reaction is characteristic to tertiary peroxides, which undergo a 

unimolecular reorganisation of the primary alcoxyl radical into an alkyl radical 

(usually a methyl radical). It is also strongly sensitive to temperature as its driving 

force is entropic [28]. In order to increase the understanding of the cumyloxyl 

radicals' behaviour, the experiments C1 to C5 (Table 2-5) correspond to the ones 

performed with 3 wt% DCP, as hydrogen abstractor, at temperatures varying from 

140 °C to 180 °C. For temperatures lower than 170 °C (samples C1–C3), the number 
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of pentadecyl groups per CNT, calculated through thermogravimetric analysis, varies 

from 62,800 to 77,900. The highest grafting density is obtained for sample C2 (i.e. 

1.464 mmol/g).  

 

Table 2-5: Effect of reaction temperature on the degree of grafting with 3% DCP. 
Experiment Reaction 

temperature 
(°C) 

A2p2p/AAceto  APenta/A2p2p  Percent 
graftinga  
(weight 
loss in 
TGA) 

Chains 
per 
CNTb 

Grafting densityb 

      mg m
−2

 mmol g
−1

 

C1 140 9 4 25 62,800 0.108 1.180 
C2 150 10 4 31 77,900 0.134 1.464 
C3 160 9 5 27 67,800 0.117 1.278 
C4 170 4 9 16 40,200 0.069 0.754 
C5 180 3 15 10 25,100 0.043 0.470 
a Based on TGA results. 

b Based on calculations assuming avg. CNT length of 5 μm and OD of 13 nm. Number of 

chains includes interlinked chains as well. 

 

For temperatures greater than 160 °C (i.e. 170 °C and 180 °C), the grafting density 

dramatically decreases from 1.278 mmol/g (weight loss = 27%) to 0.470 mmol/g 

(weight loss = 10%) and a fraction of insoluble product is detected. Moreover, 

the A2p2p/AAceto area ratio (calculations are based on GC analysis of the resulting 

mixture) decreases by increasing temperature, while APenta/A2p2p area ratio increases 

(Table 2-5). These results confirm that the β-scission reaction of cumyloxyl radical 

also increases as the temperature increases, leading to the formation of methyl 

radicals. These latter preferentially react by combination whereas cumyloxyl radicals 

are more prone to hydrogen abstraction from pentadecane [15]. 

 

2.2.5.3 Influence of DCP concentration 

 

Maximum pentadecane grafting density was observed at 150 °C while on higher 

temperatures the amount of insoluble product was increased so experiments were 

conducted at 150 °C with various concentrations of DCP. 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TXW-4W32KR1-3&_mathId=mml4&_user=1697204&_cdi=5601&_pii=S0032386109002626&_rdoc=1&_issn=00323861&_acct=C000032458&_version=1&_userid=1697204&md5=893f0d571edd615169ef67fd4c1ec5d4
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TXW-4W32KR1-3&_mathId=mml5&_user=1697204&_cdi=5601&_pii=S0032386109002626&_rdoc=1&_issn=00323861&_acct=C000032458&_version=1&_userid=1697204&md5=da52526eb79114c3bcb992b87e23d923
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TXW-4W32KR1-3&_user=1697204&_coverDate=06%2F05%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1321643653&_rerunOrigin=scholar.google&_acct=C000032458&_version=1&_urlVersion=0&_userid=1697204&md5=decf1b6dda0fd68778c699fc7c03e5b0#tblfn1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TXW-4W32KR1-3&_user=1697204&_coverDate=06%2F05%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1321643653&_rerunOrigin=scholar.google&_acct=C000032458&_version=1&_urlVersion=0&_userid=1697204&md5=decf1b6dda0fd68778c699fc7c03e5b0#tblfn2
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TXW-4W32KR1-3&_user=1697204&_coverDate=06%2F05%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1321643653&_rerunOrigin=scholar.google&_acct=C000032458&_version=1&_urlVersion=0&_userid=1697204&md5=decf1b6dda0fd68778c699fc7c03e5b0#tblfn2
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Experiments from D1 to D4 (Table 2-6) show that, for initiator concentration up to 

3%, the more the DCP concentration is used the higher the grafting density is 

achieved (from 0.229 mmol/g to 1.464 mmol/g).  

Table 2-6: Effect of amount of peroxide on degree of grafting at 150 °C. 

Experiment DCP (wt% of  

pentadecane) 

Percent grafting
a
  

(weight loss in TGA) 

Chains per 

CNT
b
 

Grafting density
b
 

    mg m
−2

 mmol g
−1

 

D1 0.5 5 12,600 0.021 0.229 

D2 1 9 22,600 0.039 0.426 

D3 2 15 37,700 0.065 0.710 

A/D4
c
 3 31 77,900 0.134 1.464 

D5 4 12 30,200 0.052 0.568 

D6 5 8 20,100 0.034 0.371 

a Based on TGA results. 

b Based on calculations assuming avg. CNT length of 5 μm and OD of 13 nm. Number of 

chains includes interlinked chains as well. 

c Samples A and D4 are basically same; here ‘A’ is named as ‘D4’ to keep the sequence. 

 

For initiator concentration higher than 3 wt%, the grafting density decreases from 

1.464 mmol/g to 0.371 mmol/g upon increasing DCP concentration up to 5%. Thus, 

to get high grafting efficiency, one should opt for optimal initiator concentration, i.e. 

3 wt%, and choose the most favourable reaction temperature, i.e. 150 °C. Upon 

using higher amount of DCP yields a major part of MWCNTs that are not soluble in 

various solvents. This result is due to the fact that the presence of higher 

concentration of radicals changes the reaction kinetics, possibly leading to 

combination reactions (Fig. 2-1). This particular aspect needs further investigation in 

future studies to find out how concentration of different radicals changes the course 

of radical combination and  addition. 

 

2.2.5.4 Solubility behaviours of cumyl-g-MWCNTs and penta-g-MWCNTs 

 

To investigate the stability of the p-MWCNTs and the functionalized MWCNTs in 

organic solutions, we prepared solutions by adding 200 mg of the samples into the 

same amount of various solvents followed by sonication for 15 min at 20 W and then 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TXW-4W32KR1-3&_user=1697204&_coverDate=06%2F05%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1321643653&_rerunOrigin=scholar.google&_acct=C000032458&_version=1&_urlVersion=0&_userid=1697204&md5=decf1b6dda0fd68778c699fc7c03e5b0#tblfn3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TXW-4W32KR1-3&_user=1697204&_coverDate=06%2F05%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1321643653&_rerunOrigin=scholar.google&_acct=C000032458&_version=1&_urlVersion=0&_userid=1697204&md5=decf1b6dda0fd68778c699fc7c03e5b0#tblfn4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TXW-4W32KR1-3&_user=1697204&_coverDate=06%2F05%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1321643653&_rerunOrigin=scholar.google&_acct=C000032458&_version=1&_urlVersion=0&_userid=1697204&md5=decf1b6dda0fd68778c699fc7c03e5b0#tblfn4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TXW-4W32KR1-3&_user=1697204&_coverDate=06%2F05%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1321643653&_rerunOrigin=scholar.google&_acct=C000032458&_version=1&_urlVersion=0&_userid=1697204&md5=decf1b6dda0fd68778c699fc7c03e5b0#tblfn5
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leaving them free standing for 5 min to 2 months. As illustrated in Fig. 2-6, for p-

MWCNTs (unfunctionalized), we found unstable dispersions in both polar and 

nonpolar solvents meaning that it is not possible to well disperse p-MWCNTs in 

these solvents even after sonication.  

 

 

Figure 2-6: Solubility behaviour of pristine carbon nanotubes (p-MWCNTs) after 5 min, cumyloxy 
grafted CNTs (cumyloxy-g-MWCNTs) after 30 min andpentadecane-grafted MWCNTs (penta-g-
MWCNTs) after 2 months in DMF (A); acetone (B); chloroform (C); THF (D); toluene (E); DCB (F); 

xylene (G). 

 

Two phenomena affect p-MWCNTs dispersion: nanotube morphology and attractive 

forces between the tubes. Not only the tube surfaces are attracted to each other by 

molecular forces, but the extremely high aspect ratios coupled with the flexibility 

also dramatically increase the possibilities for entanglements. For the cumyloxyl 

grafted MWCNTs (grafting density = 0.371 mmol/g), similar behaviour is observed 

suggesting that the grafting density is not high enough to ensure a good dispersion. 

In contrast, for pentadecane-grafted MWCNT, we found stable dispersions in DMF, 

toluene, DCB and xylene where the CNTs could not be centrifuged down easily (Fig. 

2-6).  

 

The obvious improvement in the suspension stability of the penta-g-MWCNTs 

confirms that the long alkane organic groups are covalently linked onto the sidewalls 

of MWCNTs that ensure fine dispersion. Three states of dispersion could be found 

in Fig. 2-6: sedimented—as in case of p-MWCNTs in all solvents despite sonication; 

swollen—as in case of cumyloxyl-g-MWCNTs and penta-g-MWCNTs in chloroform 
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and THF; and dispersed—as in case of penta-g-MWCNTs in DMF, toluene, DCB and 

xylene. The stability of pentadecane-grafted MWCNTs is disturbed in polar solvents 

such as acetone, chloroform and THF, however, pretty good solubility in DMF, 

toluene, DCB and xylene. The usual methods to separate the solubilized CNTs from 

those that are insoluble are vacuum filtration and Soxhlet extraction [29]. The 

solubility of these pentadecane stabilized dispersions was achieved according to the 

following procedure. At first, 200 mg of accurately weighed functionalized MWCNTs 

was added in 5 mL of the selected solvent under study in order to obtain a saturated 

solution. Then, the solution was sonicated, separated into three portions and left 

free standing for one month at room temperature. Then their upper half aliquot 

parts were carefully taken out with a syringe and solubility of pentadecane-grafted 

MWCNTs was finally calculated by an average weighing of the three samples after 

removing the solvent under vacuum at 100 °C for 12 h. The solubility values 

of pentadecane-grafted MWCNTs in typical organic solvents are given in Table 2-7.  

 

The reported solubilities highly depend on degree of functionalization and values 

reported in Table 2-7 correspond to solutions of penta-g-MWCNTs with a grafting 

density of 1.464 mmol/g (sample A). Depending on the solvent, solubilities vary from 

1.1 mg/mL to 19.2 mg/mL. 

 

 As shown in Table 2-7, penta-g-MWCNTs show the best solubility in 

dichlorobenzene (i.e. 19.2 mg/mL). These solubility values are close to those 

of octadecylamine modified MWCNTs reported by Guo [29] with solubilities varying 

from 9 mg/mL to 14.3 mg/mL in aromatic solvents and determined through UV/Vis 

absorption spectroscopy. As discussed by Guo [29], the relatively high solubilities 

of pentadecane-grafted MWCNT in various solvents provide the possibility to easily 

disperse MWCNTs which allows preparing MWCNTs/polymer composites. 

 

 

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TXW-4W32KR1-3&_user=1697204&_coverDate=06%2F05%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1321643653&_rerunOrigin=scholar.google&_acct=C000032458&_version=1&_urlVersion=0&_userid=1697204&md5=decf1b6dda0fd68778c699fc7c03e5b0#bib29
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Table 2-7: Room temperature stability and solubility of ‘penta-g-MWCNTs’ (sample A/D4) in various 
solvents. 

Solvent Solubility 

(mg mL
−1

) 

Stability Dielectric 

constant 

Surface 

tension 

(20 °C in 

mN m
−1

) 

n-Hexane – Suspension; complete precipitation 

with time 

2 18.43 

n-Heptane – Suspension; complete precipitation 

with time 

1.9 20.14 

n-Octane – Suspension; complete precipitation 

with time 

1 21.62 

Acetone 1.1 Metastable; high precipitation with 

time 

20.7 25.2 

THF – Suspension; complete precipitation 

with time 

7.5 26.4 

n-Pentadecane – Suspension; complete precipitation 

with time 

2.2 26.9 

Chloroform – Suspension; complete precipitation 

with time 

4.8 27 

Toluene 14.6 Stable over months; negligible 

precipitation with time 

2.4 28.4 

Xylene 16.3 Stable over months; negligible 

precipitation with time 

2.6 30 

DCB 19.2 Stable over months; negligible 

precipitation with time 

2.8 33.6 

DMF 13.9 Metastable; little precipitation with 

time 

38 37.1 

N.B. MWCNTs are reported in literature to have surface tension in the range of 40–

80 mN m−1. 

 

It is evident from Table 2-7 that the classic principle of “like dissolves like” is no 

longer applicable here and does not explain well the solubility of functionalized 

nanotubes. Amazingly, even being nonpolar, penta-g-MWCNTs are not soluble in 

some nonpolar solvents like hexane, heptane, octane, and even in pentadecane; 

however soluble in toluene and xylene that are nonpolar as well. On the other hand 

these functionalized CNTs are soluble in one polar-aprotic solvent, i.e. DMF, but not 
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soluble in the others like THF and acetone. Various accounts suggest surface 

tension [27,30] and dielectric constant [31,32] are better indexes of polarity; hence 

might be used to investigate this strange solubility behaviour. Table 2-7 shows an 

interesting correlation of solubility of penta-g-MWCNTs with surface tension and 

dielectric constant of the solvents. As a rule of thumb, penta-g-MWCNTs make stable 

suspensions in all those solvents having surface tension and dielectric constant 

greater than those of pentadecane (i.e. grafted species). 

 

When it comes to chloroform, its surface tension is almost equal to that 

of pentadecane and dielectric constant, too, not higher enough making it insoluble. 

Stephenson et al. [26] have also reported a meagre value of solubility (0.12 mg mL−1) 

for alkyl chains grafted MWCNTs in chloroform. 

 

In addition, a transmission electronic microscope was used to evaluate the local 

state of debundling of functionalized MWCNTs. TEM pictures of the sonicated p-

MWCNTs, cumyl-g-MWCNTs and penta-g-MWCNTs are shown in Fig. 2-7, Fig. 2-

8 and Fig. 2-9, respectively. Fig. 2-7 and Fig. 2-8 are shown at 1 μm scale, since it is 

hard to take close up photos by TEM in the presence of large accumulated mass that 

do not let the light to pass through. 

 

 

Figure 2-7: TEM images of p-MWCNTs. 
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Figure 2-8: TEM micrographs of MWCNTs coated with cumyloxy groups. 

 

 

Figure 2-9: TEM micrographs of pentadecane-grafted MWCNTs. 

 

Apparently, TEM observations demonstrate that the functionalization leads to better 

debundling of MWCNTs. Fig. 2-7 shows the morphologies of p-MWCNTs and 

illustrates the heavily entangled nature of CNTs within these agglomerates leading to 

the presence of large bundles and ropes scattered around. However, it is not easy to 

distinguish the differences between the number and the size of agglomerates in p-

MWCNTs and cumyl-g-MWCNTs from the TEM micrographs (Fig. 2-7 and Fig. 2-

8 respectively). TEM micrographs of cumyl-g-MWCNTs (Fig. 2-8) seem not to show 
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agglomerates as big as visible in Fig. 2-7 for p-MWCNTs. Here loosely entangled 

swelled mass shows that the functionalization has untied the otherwise tightly held 

bundles of p-MWCNTs. This morphology might better be understood considering the 

behaviour of cumyl-g-MWCNTs in various solvents (Fig. 2-6). Contrary to p-MWCNTs, 

cumyl-g-MWCNTs are precipitated as a swollen mass at the bottom of the vials, 

especially in toluene (Fig. 2-6) suggesting that functionalization has succeeded in 

unfastening the p-MWCNTs bundles, despite the low grafting density of cumyloxy 

groups. 

 

In contrast, for the penta-g-MWCNTs sample, with a high grafting density, TEM 

micrographs at nanoscale show CNTs mostly debundled into individual tubes (Fig. 2-

9) leading to a fine nanodispersion in various solvents (Fig. 2-6). Even at microscale, 

the image shows a large amount of light passing through TEM sample which gives an 

evidence of spacing between the individual nanotubes. 

 

These results highlight that radical grafting of long alkane molecules onto the 

sidewalls of MWCNTs is a promising way to chemically graft polyethyleneonto 

MWCNTs. 

 

2.2.6 Conclusion 

 

Thermolysis of dicumyl peroxide initiator performed in pentadecane and in presence 

of MWCNTs (depending on the melt conditions set up to chemically 

modify polyethylene) appeared to induce alkane grafting onto MWCNTs. This 

method is a simple way to directly incorporate organic moieties onto the CNTs' 

surface leading to pentadecane-grafted MWCNTs with a grafting density as high as 

1.46 mmol/g at 150 °C. At higher temperatures, the grafting density decreases 

because the β-scission reaction of cumyloxyl radical accelerates as the temperature 

increases, leading to the formation of methyl radicals. These latter preferentially 

react by combination whereas cumyloxyl radicals are more prone to hydrogen 

abstraction from pentadecane. Pentadecane-grafted MWCNTs have exhibited good 

dispersibility in various organic solvents and we showed that a grafting density of 
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1.464 mmol/g leads to a solubility of 19.2 mg/mL in dichlorobenzene. Moreover, 

TEM images clearly indicated that the pentadecane coating grafted on the sidewalls 

allows debundling of MWCNTs to a high exfoliation degree. We believe that this 

functionalization approach will provide convenience and versatility in building up 

polyolefin architectures on CNTs in future work.  
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3.1 Effect of a radical scavenger on pentadecane grafting density 

 

 

 

3.1.1 Overview 

 
The study of pentadecane grafting onto nanotubes, in which pentadecane acted as a 

model compound for PE, shows that there is a tough competition between two 

reactions: combination of radicals and addition of radicals to unsaturated carbon 

bonds available on the surface of the nanotubes. In the first part of our model 

compound study we optimised our reaction conditions (e.g. temperature, 

concentration of reactants) to obtain higher grafting density. Here in this work, we 

used TEMPO as a radical scavenger. We envisaged that the radical scavenging ability 

of TEMPO would tilt the competition in favour of addition reaction by suppressing 

combination of radicals. One of the most difficult tasks of this study was to identify 

the reaction pathways as there were many possible side reactions involving 

combination of radicals. We used gas chromatography mass spectroscopy technique 

to determine various reaction products and by which we drew the reaction pathway. 

Grafting of pentadecane and TEMPO onto nanotubes was confirmed qualitatively (by 

Raman spectroscopy and transmission electron microscopy) and quantitatively (by 



Effect of TEMPO on Grafting 

 

3 – 2  

 

thermogravimetric and elemental analysis).  The results of this model compound 

study showed an improvement in grafting density and helped in understanding the 

role of TEMPO in this reaction. 

 

3.1.2 Article Details  

 

This work is submitted for publication in ‘Macromolecular Chemistry and Physics’. 

Parts of the contents of this paper were presented in ‘7th Eurofillers International 

conference − From macro to nanofillers for structural and functional polymer 

materials’ held in the Alessandria site of the Polytechnic of Turin, Italy from 21 to 25 

June, 2009.  

 

 

 



Effect of TEMPO on Grafting 

 

 3 – 3 

 

3.2 A model compound study for Polyethylene grafting onto nanotubes: effect of 

a nitroxyl-based radical scavenger on functionalisation with pentadecane  

 

 Sohaib Akbar a,b,c, Emmanuel Beyou a,b,c, Philippe Chaumont a,b,c, Flavien 

Melis a,b,c  

 

a Université de Lyon, Lyon F-69003, France 

b Université de Lyon 1, F-69003 Villeurbanne, France 

c CNRS UMR5223, Ingénierie des Matériaux Polyméres, Laboratoire des Matériaux 

Polyméres et Biomatériaux, F-69622 Villeurbanne, France  

 

3.2.1 Abstract 

 

The radical grafting of pentadecane onto multiwalled carbon nanotubes (MWCNTs) 

has been investigated here which establishes a model for functionalisation of 

MWCNTs with molten polyethylene. In this model compound approach pentadecane 

radical grafting reaction has been studied in order to determine the reaction 

conditions necessary to enhance the degree of grafting while minimising side 

reactions such as radical combination reactions. The effect of a nitroxyle-based 

radical scavenger (i.e. TEMPO) on competition between pentadecane radicals’ 

combination and addition to nanotubes has been explored. It was observed that the 

use of TEMPO resulted into a relatively higher grafting density without excessive 

pentadecane branching/crosslinking. We used qualitative and quantitative 

techniques such as gas chromatography‒mass spectroscopy, thermogravimetry, 

Raman and elemental analysis to confirm reaction products and nanotubes 

functionalisation. It was also observed that the addition of TEMPO influences the 

solubility behaviour of functionalised carbon nanotubes. 
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3.2.2 Introduction 

 

Incorporation of carbon nanotubes (CNTs) into a polymer matrix is a very attractive 

way to combine the mechanical and electrical properties of individual nanotubes 

with the advantages of plastics. The unique properties of individual CNTs make them 

the ideal reinforcing agents in a number of applications [1,2] but the low 

compatibility of CNTs set a strong limitation to disperse them in a polymer matrix. It 

is believed that incorporation of CNTs in polymer matrix may lead to ultimate fibre 

reinforcement nanocomposites with significantly enhanced mechanical properties. 

However, carbon nanotubes are strongly affected by Van der Waals’ forces which 

give rise to the formation of aggregates and make their dispersion difficult in 

polymers. The non-covalent approaches to prepare polymer/CNTs composites via 

processes such as solution mixing [3], melt mixing [4], surfactant modification [5], 

polymer wrapping [6], polymer absorption [7] and in situ polymerisation [8,9] are 

simple and convenient but interaction between the two components remains weak. 

Functionalisation of the nanotubes’ surface is a method to introduce reactive 

moieties, to disrupt the rope structure, and to improve dispersion in composites. 

Functional moieties are attached to open ends and sidewalls to improve the 

solubility of nanotubes [10-13] while the covalent polymer grafting approaches, 

including ‘grafting to’ *1,14,15+ and ‘grafting from’ *1,16,17+ that create chemical 

linkages between polymer and CNTs, can significantly improve dispersion. 

Polyethylene (PE) is one of the most widely used commercial polymer due to the 

excellent combination of low coefficient of friction, chemical stability and excellent 

moisture barrier properties [18]. To improve the stiffness and rigidity of PE, CNTs can 

be used to make CNT/PE composites [18-21]. A promising route for a chemical 

modification of MWCNTs by PE is to use free radical initiators such as peroxides [22-

24]. The main approach exploited in this functionalisation strategy is polymer radical 

additions to the CNT double bonds. This grafting reaction has been recently 

predicted with a model compound approach based on a radical grafting reaction 

between peroxide-derived alkoxyl radicals, and low molar mass alkanes representing 

characteristics moieties of polyethylene and polypropylene [25,26]. Nevertheless, 

the main drawback of the free radical grafting is the low selectivity of the radical 
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centre, especially at high temperatures (in the range of 150-200°C, required for 

extrusion of polyethylene) leading to side reactions such as coupling and chain 

scission [22, 27]. Using pentadecane as a model for polyethylene and temperatures 

greater than 160°C, we showed that the grafting density dramatically decreased 

because the -scission reaction of cumyloxyl radical lead to side reactions [25].  

In this paper, we describe the effect of a nitroxyl-based radical scavenger (i.e. 

TEMPO) on the course of grafting reaction. TEMPO is usually used in nitroxide 

mediated polymerisations [28,29]; and in this case of pentadecane radical grafting 

onto nanotubes, it acts as a radical scavenger by suppressing the combination of 

pentadecane radicals and hence promoting their addition to unsaturated carbon 

bonds on the surface of nanotubes. Moreover, we also examine the effect of TEMPO 

inclusion on the solubility behaviour of functionalised carbon nanotubes. This study 

helps in understanding the possibility of grafting polyethylene onto nanotubes; 

moreover, optimisation achieved in this model will be used for polyethylene grafting 

in our future work. 

 

3.2.3 Experimental 

 

3.2.3.1 Materials   

 

MWCNTs (Graphistrength™ C100; see characteristics in table 3-1) were kindly 

furnished by ARKEMA, France. Pentadecane (Sigma-Aldrich-France; 99% pure) was 

employed as a low molecular weight hydrocarbon substrate model for the 

poly(ethylene-co-octene).  

 

Dicumyl peroxide (DCP, Sigma-Aldrich-France; 99% pure) was used as initiator for 

radical generation. 2,2,6,6-tetramethylpiperidinooxyl (TEMPO), supplied by Sigma-

Aldrich-France, has been used as radical scavengers. Dimethylformamide (DMF, 

Sigma-Aldrich-France; 99% pure) and Dichlorobenzene (DCB, Sigma-Aldrich-France; 

99% pure) were used as solvent in some experiments.  
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Table 3-1: Characteristics of Graphistrength™ C100. 

Manufacturing CCVD 

Apparent density 50–150 kg/m3 
Mean agglomerate size 200–500 μm 
C contents 90 wt% 
Mean number of walls 5–15 
Outer mean diameter 10–15 nm 
Length 0.1–10 μm 
Elemental analysis of pristine MWCNTs shows: N, 0.78%; 
O, 0.89%; H, 0.30%; P, 1.81%. 
Raman spectrum of pristine MWCNTs is shown in figure 3-
7. 
TGA shows < 1.5% weight loss over a temperature range of 
30 to 700°C shown in figure 3-8. 

 

3.2.3.2 Thermolysis of DCP in the presence of pristine MWCNTs, petandecane and 

a radical scavenger (TEMPO) 

 

The thermal decomposition of DCP in a solution of TEMPO in pentadecane was 

performed in a glass reactor. In a typical grafting experiment (see table 3-2), DCP 

(0.23g/0.85mmole) was first mixed in with p-MWCNTs (50mg), pentadecane 

(7.69g/36.26mmole) and TEMPO (0.13g/0.85mmole) and then sonicated for 15 min. 

After that, the suspension was degassed by 4 freeze-pump-thaws, and then it was 

heated to 160°C under stirring. After 6 hours, the reaction mixture was cooled down 

quickly. The grafted MWCNTs were collected by centrifugation (11000 rpm, 20 min) 

and subsequent filtration to remove all solid contents from reaction mixture. The 

liquid portion was passed through GC-MS while solid part was purified and 

characterised. 
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Table 3-2: List of samples according to the experimental conditions. 

Sample Description Acronym Composition of reactants  

1 Crosslinked Pentadecane 
via DCP 

- Pentadecane: 7.69g/36.26mmole 
DCP: 0.23g/0.85mmole 
Solvent: pentadecane itself 

2 MWCNTs functionalisation 
by cumyloxyl radicals 

Cumyloxyl-g-MWCNTs MWCNTs: 50mg 
DCP: 0.23g/0.85mmole 
Solvent: DMF 

3 MWCNTs functionalised 
by pentadecane 

Penta-g-MWCNTs MWCNTs: 50mg 
Pentadecane: 7.69g/36.26mmole 
DCP: 0.23g/0.85mmole 
Solvent: pentadecane itself 

4 MWCNTs functionalised 
by TEMPO and cumyloxyl 
radicals 

Cumyloxyl.TEMPO-g-
MWCNTs 

MWCNTs: 50mg 
DCP: 0.23g/0.85mmole 
TEMPO: 0.04g/0.26mmole 
Solvent: DMF 

5 MWCNTs functionalisation  
by TEMPO controlled 
radical grafting of 
pentadecane  

Penta.TEMPO-g-
MWCNTs 

MWCNTs: 50mg 
Pentadecane: 7.69g/36.26mmole 
DCP: 0.23g/0.85mmole 
TEMPO: 0.1328 g/0.85mmole 
Solvent: pentadecane itself 

B-1 DCP thermolysis in DMF - DCP: 0.23g/0.85mmole 
DMF: 10 ml 

B-2 DCP thermolysis in DCB - DCP: 0.23g/0.85mmole 
DCB: 10 ml 

B-3 DCP thermolysis in the 
presence of TEMPO in DCB 

- DCP: 0.23g/0.85mmole 
TEMPO: 0.04g/0.26mmole 
DCB: 10 ml 

 

 

3.2.3.3 Purification of pentadecane grafted MWCNTs 

 

Functionalised MWCNTs were purified from free moieties (i.e. pentadecane, TEMPO 

and various compounds produced via radical combinations) by exhaustive cleaning 

of the suspension by dialysis. In a typical example, 30mL of the MWCNTs suspension 

(after completion of the reaction) was introduced into a cellulose membrane 

(Spectra/Pro, MW cut-off, 1,000 by Spectrum Medical Industries, Inc.) and 

repeatedly dialysed against DMF until no residual mass could be detected in the 

recovered solution (determined gravimetrically). Then, the functionalised MWCNTs 

suspensions were vacuum dried at 80°C for 48 hours to evaporate the solvent prior 

to characterisation. 
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3.2.3.4 Methodology of experiments 

 

As aforementioned, the effect of TEMPO has been studied here on pentadecane 

grafting onto nanotubes (sample 3 & 5). However during the course of study, 

functionalisation of MWCNTs by cumyloxyl and TEMPO radicals (sample 4 & 6) 

emerged as an interesting aspect of this work and therefore also investigated along 

with the main objective. Description of the samples is summarised in Table 3-2.  

 

Details about samples 1-3 are available in our previous study [25] and only the 

relevant results are mentioned herein for comparison. Three blank specimens (B-1; 

B-2; B-3) were also prepared for reference and confirmation of some results.  Solvent 

(DCB or DMF) was used only in those reactions in which pentadecane was not added. 

In the samples containing pentadecane, solvent was added after the reaction just to 

facilitate chromatography. 

 

3.2.4 Characterisation 

 

Gas chromatography-mass spectrometry (GC-MS) was performed with an Agilent 

6890 series GC system equipped with a HP-5ms (5%-phenyl)-methylpolysiloxane. The 

injector was at 250ºC and the temperature program followed was: 50-310ºC at 

20ºC/min. Injection and detection by MS was carried out at 280ºC. Samples in which 

DMF was not used as solvent in the first place, were diluted with DMF prior to GC-

MS. Samples for GC-MS analysis were prepared by adding DMF (50 w/w %) in the 

filtrate after filtering out functionalised nanotubes. 

 

The Raman analysis of pristine and functionalised MWCNTs was carried out on a 

Horiba Jobin-Yvon LabRAM ARAMIS Raman confocal microscope (632.8 nm, Aramis 

CRM, Horiba Jobin Yvon, Edison, NJ). A 50× objective was used to focus 18.5 mW of 

He−Ne laser light onto the sample surface with a spot size of about 1 μm.  

Thermogravimetric analysis (TGA) was carried out with a DuPont Instruments TGA 

2950 thermobalance, controlled by a TC10A microprocessor. Samples were heated 

at 20°C/min under a nitrogen flow (100mL/min). 
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Elemental analysis (EA) was carried out (Analyzer: LECO SC144, Service central 

d’analyse du CNRS, Vernaison, France) to determine the contents of H, O, N and P.  

 

Solubility was determined gravimetrically. In a typical experiment, saturated 

solutions of Penta-g-MWCNTs were prepared by sonication in vials. Sonication was 

accomplished using Vibracell™ 75041 (Bioblock Scientific, Illkirch, France) apparatus 

equipped with 3mm probe set at 40% of 750 W for 30 sec. Vials were kept free 

standing over three weeks at room temperature and then the upper half aliquot part 

was carefully taken out with a syringe and heated to remove solvent under vacuum. 

All the weightings were carried out using an analytical balance with a sensitivity of 

0.1 mg. 

 

3.2.5 Results and discussion 

 

3.2.5.1 Radical grafting of pentadecane onto MWCNTs controlled by a radical 

scavenger 

 

Figure 3-1 sums up main reactive pathways of free radical grafting of pentadecane 

onto MWCNTs with dicumyl peroxide as initiator and TEMPO as radical scavenger. 

The main step is the formation of DCP-derived radicals and its hydrogen abstraction 

reaction from pentadecane bonds. However, the alkoxy radicals can undergo 

additional reactions including β-scission leading to the formation of methyl radicals 

[30]. These latter preferentially induce coupling reaction (Figure 3-1, route β and η) 

or attack onto the sp2 carbon of the MWCNTs (Figure 3-1, route γ) whereas 

cumyloxyl radicals are more prone to hydrogen abstraction from pentadecane 

[24,25,30].  
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Figure 3-1: Reaction scheme for grafting pentadecane onto nanotubes with incorporation of TEMPO 
as a radical scavenger. 

 

 

The formed pentadecyl radicals through hydrogen abstraction are able to react with 

MWCNTs by radical addition onto sp2 carbon of the MWCNTs (Figure 3-1: main route 

α) and with other radical species via the common radical coupling reactions (Figure 
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3-1 : route δ1 and β). According to Johnston [31,32] coupling reactions are four times 

more prone to happen than scission reactions, when using poly(ethylene-co-1-

octene) in the presence of DCP at 160°C, so we assume that pentadecyl radicals do 

not undergo scission reactions. In competition to these coupling reactions (route β, 

η, δ1 and δ2) some other combinations reactions such as , L and  δ3 can also occur 

with the active participation of  TEMPO radicals. The latter combination reactions 

actually are reversible reactions which may favour the addition of pentadecyl 

radicals to MWCNTs leading to a higher grafting density. In case of reaction  there 

exists a possibility that after combination of methyl and TEMPO radicals a cleavage 

of bond happens between N and O creating further radicals. However we didn’t 

show this in reaction scheme for brevity.  First we present here the effect of TEMPO 

on the thermolysis of DCP in the presence of a solvent (sample 2 &4). This helps in 

understanding further discussion about our main task in which pentadecane was 

grafted onto nanotubes (sample 3 & 5).  

 

3.2.5.2 Effect of TEMPO on the thermolysis of DCP in DMF and DCB as solvents 

 

After treatment of MWCNTs with DCP in DMF at 150°C (sample 2), we have 

previously reported that the corresponding functionalised carbon nanotubes were 

not soluble because of low degree of grafting. Here we did this blank experiment 

again to carry out GC-MS analysis on the supernatant solution. Figure 3-2 shows GS-

MS chromatograms of sample 2 at 150°C and 160°C.  
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(a) 

 

(b) 

Figure 3-2:  GC-MS chromatogram of the reaction filtrate of the sample 2: at 150ºC (a); at 160ºC (b). 

 

 

Surprisingly, 2-phenyl-2-propanol (2p2p) peaks of considerable area are detectable 

in both chromatograms (Figures 3-2a and 3-2b). Moreover, some other unrecognised 

peaks around 4.7 minutes are observed (not labelled) in Figure 3-2 and no DCP 

traces are detected.  

 

As mentioned before, 2p2p is expected to come from hydrogen abstraction from 

alkane chains (Figure 3-1); but in the absence of any alkane the production of 2p2p 

was a little astonishing. Two main ways may explain this outcome: first, cumyloxyl 

radicals abstract hydrogen from other cumyloxyl radicals; second, cumyloxyl radicals 

abstract hydrogen from DMF to produce 2p2p. In order to gain a better 

understanding of the cumyloxyl radicals behaviour, DCB was selected as reference 

solvent because of its high boiling point (≈180°C) and its chemical structure that 

doesn’t offer any hydrogen abstraction reaction. Products arising from the reaction 

involving solutions of DCP in DMF (blank sample B-1, table 3-2) and in DCB (blank 

sample B-2, table 3-2) were analysed by GC-MS (Figure 3-3).  
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(a) 

 

(b) 

 

(c) 

Figure 3-3:  GC-MS chromatograms of blank sample A-1 (a); blank sample A-2 (b); and blank sample 
A-3 (c). [X = N,N'-(ethane-1,2-diyl)bis(N-methylformamide), see mass spectrum in figure 3-S1.] 

 

 

The peak corresponding to 2p2p, related to a H-abstraction reaction, was observed 

only in the presence of DMF as solvent (Figure 3-3a). This result rules out the 
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hypothesis that cumyloxyl radicals could abstract hydrogen from other cumyloxyl 

radicals and suggests that cumyloxyl radicals abstract hydrogen from DMF. Indeed, 

N,N'-(ethane-1,2-diyl)bis(N-methylformamide) (named X in Figure 3-3a) was 

identified (see mass spectrum in Figure 3-S1) as one of the products arising from the 

reaction of DCP with DMF (Figure 3-4).  

 
 

 

Figure 3- 4:  Reaction scheme supposed for hydrogen abstraction reaction from DMF by cumyloxyl 
radicals. The products i, ii and iii were confirmed through GC-MS. 

 

Some other peaks found in the GC-MS chromatogram could not be recognised and 

may be due to the hydrogen abstraction of radicals generated from DMF that led to 

the production of 2p2p. The peaks located at a time retention close to 8 minutes 

may be attributed to DCP as the mass spectra of these peaks are similar to that of 

DCP with some variations probably due to combination with some radicals. Such 

peaks associated with DCP are not visible in Figure 3-2, suggesting that cumyloxyl 

radicals’ course of reaction changes in the presence of MWCNTs.  
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The reactions in which TEMPO radicals are added along with DCP in DCB solvent 

(sample B-3, table 3-2), have been carried out to check TEMPO’s radical scavenging 

ability towards methyl radicals (Figure 3-1 and Figure 4). GC-MS analysis of the 

formed products (Figure 3-3c) mainly displays two peaks corresponding to 

acetophenone (aceto) and TEMPO-CH3 (see Figure 3-S2 for mass spectrum of 

TEMPO-CH3) with no trace of 2p2p, as expected. On contrary, adding TEMPO in a 

solution of MWCNTs and DCP in DMF (sample 4, table 3-2) results in the production 

of a mixture of aceto, TEMPO-CH3, 2p2p and some unrecognised products (Figure 3-

5).  

 

 

 

Figure 3-5:  GC-MS chromatogram of the reaction filtrate of cumyloxyl.TEMPO-g-MWCNTs (sample 
4). 

 

In addition, a new peak is observed at a retention time of 6.4 minutes (Figure 3-5) in 

comparison with the GC-MS chromatogram of sample 2 (Figure 3-2) which may be 

attributed to a product formed by a radical combination between DMF radicals and 

TEMPO radicals as its mass spectrum resembles with TEMPO with some additions 

corresponding to combination with other radicals (mass spectrum in figure 3-S4).   

In conclusion, our blanks experiments confirmed: (1) cumyloxyl radicals can abstract 

hydrogen from DMF (experiments B-1, B-2); (2) β-scission is much more likely to 

happen in the absence of MWCNTs and/or pentadecane; (3) TEMPO work efficiently 

to scavenge radicals in order to prevent unwanted combination reactions 

(experiment B-3). 
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According to these results, TEMPO radicals may be suitable to control and to 

improve the radical grafting of pentadecane onto MWCNTs by limiting the formation 

of interlinked pentadecane and methyl functionalised pentadecane. Moreover, the 

corresponding TEMPO-based alkoxyamines may also add to MWCNTs through the 

thermal cleavage of the alkoxyamine bond, which can also take part in enhancing the 

grafting density of pentadecane onto nanotubes.   

 

3.2.5.3 Effect of TEMPO on the radical grafting of pentadecane onto MWCNTs 

 

As discussed in our previous study [25], the products arising from the reaction 

involving a solution of DCP in pentadecane (blank, sample 1, table 3-2), were 

identified by GC-MS (Figure 3-S3). As expected, we obtained 2-phenyl-2-propanol 

(2p2p) through H-abstraction from the hydrocarbon substrate, acetophenone 

(aceto) by intramolecular β-scission and interlinked pentadecane molecules through 

combination of the formed pentadecane radicals. Moreover, it was verified that, 

contrary to sample 1, the presence of MWCNTs in sample 3 (at optimal reaction 

conditions) affects the radical course in three ways: (1) it lowers the interlinking of 

pentadecane chains (see GC-MS chromatogram, Figure 3-6a); (2) it causes radical 

grafting on sidewalls of nanotubes; (3) it restrains β-scission reaction. As discussed 

by Chaudhary [33,34], the reaction of TEMPO with an alkane and dicumyl peroxide is 

expected to yield a bimolecular combination of free radicals that is not susceptible to 

chain transfer.  

 

a) 
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b) 

Figure 3-6:  GC-MS chromatograms of the reaction filtrate of:  Penta-g-MWCNTs, sample 3, (a); 
Penta.TEMPO-g-MWCNTs, sample 5, (b). Diluted with DMF after reaction 

 

 

The location of the grafted species is controlled by concentration, solubility and 

diffusion of the peroxide and the nitroxyl species within the reaction medium [33]. 

Here, in the presence of MWCNTs this reaction leads to the appearance of additional 

peaks in the GC-MS chromatogram of the reaction filtrate (Figure 3-6b). It displays 

new small peaks located at retention times of 2.5 minutes and 5.8 minutes 

corresponding to TEMPO-CH3 and CH3-pentadecane, respectively. Moreover, some 

peaks are observed at around 9.3 minutes suggesting the formation of a little 

ungrafted interlinked pentadecane despite the presence of TEMPO. 

 

3.2.5.4  Qualitative evidence for covalent sidewall functionalisation: Raman 

analysis 

 

Raman spectroscopy is a powerful technique to investigate the structure changes of 

carbon nanotubes after functionalisation [35, 36]. Raman spectra of p-MWCNTs 

(Figure 3-7) show two main peaks around 1330cm−1 and 1583cm−1, corresponding to 

D-band (the disordered graphite structure) and G-band (sp2-hybridised carbon), 

respectively.  
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Figure 3-7:  Raman spectra of pristine and various functionalised nanotubes. 

 

The AD/AG ratio, which was defined as the intensity ratio of the D-band to G-band of 

CNTs, directly indicates the structural changes in nanotubes. Some authors used D to 

G area ratios (AD/AG) rather than intensity [37] which is a better indicator. The 

relatively high area ratio of the G band relative to D band for cumloxyl.-g-MWCNTs 

(AD/AG = 1.34), penta-g-MWCNT (AD/AG = 1.51, cumloxyl.TEMPO-g-MWCNTs (AD/AG 

=1.43), penta.TEMPO-g-MWCNTs (AD/AG =1.63), in comparison with that of p-

MWCNT (i.e. AD/AG =1.20) could be designated as an indicator of grafting species. 

 

3.2.5.5 Estimation of the extent of nanotubes’ functionalisation by 

thermogravmetric analysis (TGA) and elemental analysis (EA) 

 

It is well known that heating functionalised nanotubes in an inert atmosphere 

removes the organic moieties and restores the pristine nanotubes’ structure *38+. 

Therefore, in order to gain a more quantitative picture of the extent of nanotubes’ 

functionalisation, thermogravimetric analysis was performed on the reaction 

products and pure reactants for reference. Before carrying out TGA, the adsorbed 

(non-covalently attached) molecules were removed from the grafted one (covalently 
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attached) by dialysis as mentioned in the experimental part. As shown in Figure 3-8, 

the amount of organic functionalities physically and/or covalently attached to the 

initial MWCNTs can be neglected (weight loss < 1.5%).  

 

 

Figure 3-8:  TGA weight loss data (under nitrogen) for various samples (see details in table 3-2). Pure 
products (i.e. DCP, pentadecane and pristine nanotubes) are shown for corresponding reference. 

 

After treatment of MWCNTs with DCP, at 160°C (sample 2, Table 3-2), the weight 

loss increased to 17% between 100°C and 600°C as expected for MWCNTs with more 

organic moieties on the surface (Figure 3-8). We estimated the weight percentage of 

pentadecane to be around 17% because pure DCP is completely decomposed at a 

temperature of 200°C (Figure 3-8). The weight loss for cumyloxyl.TEMPO-g-MWCNTs 

(sample 4, Table 3-2) is around 23% that is around 6-7 percentage points more than 

that of cumyloxyl-g-MWCNTs. This increase in the weight loss suggests a higher 

degree of grafting for cumyloxy groups by using TEMPO in the reaction mixture 

and/or the grafting of TEMPO groups as well as cumyloxy groups onto MWCNTs. In 

the latter case, the polarity of the corresponding functionalised MWCNTs is expected 

to be higher than that of cumyloxyl-g-MWCNTs. Solubility behaviour of TEMPO 

grafted nanotubes is discussed ahead, which helps in understanding the polar nature 

of grafted TEMPO.  
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Similarly, the amount of pentadecane that covalently attached to the p-MWCNTs 

(sample 3, Table 3-2) is estimated by the weight loss of penta-g-MWCNTs between 

100°C and 600°C. Indeed, TGA results show that pure pentadecane completely 

decomposes at a temperature of 240°C (Figure 3-8). We estimated the weight 

percentage of pentadecane to be around 30%. As described for cumyloxyl.TEMPO-g-

MWCNTs sample, along the similar lines, TEMPO contributes to increase the weight 

loss of around 5 percentage points (i.e. 35%, Figure 3-8) for penta.TEMPO-g-

MWCNTs (sample 5, Table 3-2). It confirms that TEMPO acts as a radical scavenger 

which contributes to increase the degree of grafting. A qualitative indication of 

grafting comes from the colour of the mixture starting from dark yellow with free 

TEMPO before heating and turning lighter at the end of the reaction showing 

consumption of TEMPO during reaction. An increase in TEMPO/DCP molar ratio from 

1 to 2 did not change the degree of grafting. Reaction temperature is also a key 

parameter in a radical grafting reaction, therefore, some experiments were 

conducted at temperatures varying from 150°C to 180°C (Table 3-3).  

 

Table 3-3: Effect of reaction temperature on the degree of grafting. 

Sample Reaction 
Temperature 

(°C) 

Weight loss (TGA)  
 wt% 

4 
Cumyloxyl.TEMPO-g- MWCNTs 

 

150 11 

160 23 

5 
Penta.TEMPO-g- MWCNTs 

150 26 
160 35 

170 27 

180 15 

 

For both samples 4 and 5, the weight loss observed by TGA increases by increasing 

reaction temperature from 150°C to 160°C. However, for the temperatures greater 

than 160°C (i.e. 170°C and 180°C) the degree of grafting dramatically decreases from 

35% to 15%. These results confirm that the β-scission reaction of cumyloxyl radical 

also increases as the temperature increases, leading to the formation of methyl 

radicals that preferentially react by combination (Figure 3-1). The optimal reaction 

temperature is 160°C. It’s worth mentioning that behaviour of DCP radicals’ 
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generation and hydrogen abstraction is reported complex and different at a 

temperature higher than 170°C [39,40]. 

 

Elemental analysis (EA) is also an indicator of degree of grafting. A good agreement 

between degrees of grafting calculated from EA and TGA analysis is observed 

whatever the sample (Table 3-3). It is worth mentioning that nitrogen content in 

samples 4 and 5 suggests grafting of TEMPO-based groups onto MWCNTs permitting 

the calculation of TEMPO’s degree of grafting (Table 3-4). For instance, 

Penta.TEMPO-g-MWCNTs (sample 5, Table 3-2) contains 0.6% more N than pristine 

nanotubes, which correspond to 8% TEMPO by weight. The total amount of grafting 

species calculated from EA equals to the sum of TEMPO content and pentadecane 

contents. For sample 5, we obtained 32% and 35% from EA and TGA, respectively. In 

other words we can state that sample 5 contains 0.781 mg.m-2 of pentadecane and 

0.176 mg.m-2 of TEMPO grafted onto its surface. 

 

Table 3-4: Degree of grafting with 3% DCP, calculated by TGA and EA. 

Sample Degree of 
Grafting 
(TGA)

*
 

Degree of Grafting (EA)
*
 

wt% Elemental 
wt% 

wt% Pentadecane 
mg.m

-2 
 TEMPO Cumyl. Penta. 

2 
Cumloxyl-g-MWCNTs 

17 O: 1.8 - 15 - - 

3 
Penta-g- MWCNTs 

30 H: 4.0 - - 26 0.823 

4 
Cumloxyl.TEMPO-g- 

MWCNTs 

23 N: 0.7 
H:2.5 

8 15 - - 

5 
Penta.TEMPO-g- 

MWCNTs 

35 N: 0.6 
H:5.1 

7 Nil
†
 25 0.781 

* The values reported here are averages of 2-3 test samples. Degree of grafting is calculated based on 
the indicated element weight percent. 
† 

Supposed nil for calculations. 
N.B. All percentages shown above are rounded off and calculated after deduction of pristine MWCNTs 
values mentioned in table 3-1. Grafting density in mg.m

-2 
is based on calculations assuming avg. CNT 

length of 5µm and OD of 13nm
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3.2.5.6 Solubility/dispersibility behaviour of functionalised MWCNTs 

 

While raw MWCNTs form aggregates/bundles and settled down in most solvents, 

organic solubility can be achieved by appending alkyl groups onto the MWCNTs. The 

visual aspect of the dispersions is significantly different depending on the solvent 

and covalent functionalisation. In order to investigate the stability of functionalised 

nanotubes in different solvents, we prepared samples by adding 200 mg of the 

samples into the same amount of various solvents followed by sonication for 30 

seconds and then leaving them free standing for 5 min. to 4 weeks.  As illustrated in 

Figure 3-9 and Table 3-5, for p-MWCNTs (un functionalised), we found unstable 

dispersions in most solvents meaning that it is not possible to well disperse p-

MWCNTs in these solvents even after sonication. 

 

 

Figure 3-9:  Solubility/dispersibility behaviour in THF:  pristine carbon nanotubes after 5 min (a); 
pentadecane grafted MWCNTs, sample 3, after one week (b); and pentadecane and TEMPO grafted 

MWCNTs, sample 5, after one month (c). 

 

 The solubility values of samples 2-5 in different solvents are given in Table 3-5. 

These values are averages of three calculations made according to the procedure 

mentioned in experimental section. 

 

Figure 3-9 shows the states of dispersion: sedimented —as evident in vial ‘a’ p-

MWCNTs in THF; swollen —as obvious in vial ‘b’ for Penta-g-MWCNTs in THF (sample 

3, Table 3-2); and dispersed—as apparent in vial ‘c’ for Penta.TEMPO-g-MWCNTs in 

THF (sample 5, Table 3-2). The behaviour of sample 5 in contrast to sample 3 shows 
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the polar behaviour of grafted TEMPO as it makes functionalised nanotubes soluble 

in polar solvents like THF and chloroform. 

 

Table 3-5: Solubility of functionalised MWCNTs in various organic solvents. 

Sample Solubility (mg.ml
-1

) 

Acetone THF Chloroform Toluene Xylene DCB DMF 
2 

Cumyloxyl-g-MWCNTs 
7

 b
 7.2

 b
 5.3

 b
 2.9

 b
 × × 7.1

 b
 

3 
Penta-g- MWCNTs 

1.1
 a

 × × 14.6
 b

 16.3
 b

 19.2
 c
 13.9

 c
 

4 
Cumyloxyl.TEMPO-g- 

MWCNTs 

4.7
 b

 11.9
 c
 11.2

 c
 4.5

 a
 × 8.2

 c
 8.3

 b
 

5 
Penta.TEMPO-g- MWCNTs 

6.4
 b

 13.1
 c
 13.6

 c
 2.5

 a
 × 1.2

 a
 12.1

 b
 

a
 metastable; high aggregation/precipitation with time. 

b
 metastable; some aggregation/precipitation with time. 

c
 stable over weeks; negligible aggregation/precipitation with time. 

× not soluble. 
N.B. p-MWCNTs are not soluble in any of these solvents. 

 

 

A qualitative but very strong argument indicating the presence of different kind of 

species on the surface of functionalised nanotubes is the dissimilar behaviour of the 

samples in different solvents. For instance, Penta-g-MWCNTs (sample 3, Table 3-2) is 

not soluble in THF and chloroform but incorporation of TEMPO make them soluble in 

these solvents (sample 5, Table 3-5). For example, using THF as solvent, the solubility 

of sample 3 is 0mg.ml-1 and  the solubility of sample 5 is 13.1mg.ml-1. On the 

contrary, the solubilities of sample 5 in aromatic solvents such as  Toluene, Xylene 

and Dichlorobenzene decreases to values close to 0 mg.ml-1 in comparison with that 

of sample 3 (around 15 mg.ml-1). This behaviour suggests the presence of alkyl 

groups with different polarities on the MWCNTs changing the affinity between 

solvent and functionalised nanotubes. Cumyloxy-TEMPO functionalised MWCNTs 

(sample 4) also display better solubilities in polar solvent than the corresponding 

sample without TEMPO moiety (sample 2, Table 3-5). However, no great change of 

solubilities is observed in aromatic solvents for samples 2 and 4. 
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3.2.6 Conclusion 

 

This study provides a model base for polyethylene grafting onto nanotubes. We 

selected pentadecane as a model compound for polyethylene and investigated a 

simple radical grafting approach based on the use of dicumyl peroxide as an alkane 

hydrogen abstractor and in presence of TEMPO as radical scavengers. Incorporation 

of TEMPO as radical scavenger in the grafting reaction of pentadecane onto 

MWCNTs serves two purposes: Firstly, it actively suppresses radical combination 

reactions and hence promotes pentadecyl radicals’ addition to nanotubes (~16% 

increase in grafting density); and secondly, it effectively changes the polarity balance 

of the grafted species, making pentadecane and TEMPO functionalised nanotubes 

soluble in solvents such as THF and chloroform. Various characterisation techniques 

such as GC-MS, Raman analysis, TGA, elemental analysis were used to confirm 

functionalisation of MWCNTs by pentadecane and TEMPO groups and to verify 

reaction pathways. We believe that this functionalisation model would provide 

convenience and versatility in building up polyolefin architectures on CNTs and serve 

as a base for future work.  
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3.2.8 Supporting Information 

 

 
 

 
Figure 3-S1:  Mass spectrum of DMF and N,N'-(ethane-1,2-diyl)bis(N-methylformamide) obtained in 

GC-MS analysis (sample B-1, Figure 3-3a). The comparison of these two spectra clearly indicates the 

coupling of radicals generated from DMF. 
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Figure 3-S2:  Mass specta of TEMPO and TEMPO–CH3 obtained in GC-MS analysis (sample B-3, 

Figure 3-3c). The development of a new peak at m/z 171 corresponds to the addition of CH3 (m/z 

15) to TEMPO (m/z 156). 

.  
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Figure 3-S3 : GC-MS chromatogram of the reaction filtrate of the blank sample (diluted with DMF 

after reaction); Inset: a myriad of small pentadecane peaks observed after ca. 6 min. Details about 

this sample are available in our previous study (Akbar S, Beyou E, Cassagnau P, Chaumont P, Farzi G. 

Polymer 2009;50:2535-43.). 
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Figure 3-S4 : Mass spectrum of a radical combination product that seems to be the combination of 

TEMPO with another radical produced in reaction (sample 4, Figure 3-5).   
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4.1 Grafting of polyethylene onto nanotubes by different ways 

 

 

 

4.1.1 Overview 

 
Polymer-based composites reinforced by carbon fibers have been widely used in 

advanced structures. Compared to the fibers, carbon nanoubes have many superior 

mechanical properties such as elastic moduli of 1−5 TPa and fracture strain of 

10−100 times better. In addition, their aspect ratio is much greater, which is 

preferable in making a stronger composite. As such, carbon nanotubes are being 

considered in place of fibers for reinforcing polymers. Some experimental works 

have been reported on various polymer−nanotube composites. 

 

PE is the one of the most common commercial polymers that we encounter in day-

to-day life. A number of disadvantages prevent their even wider use. The properties 

of polyolefins are modified through the introduction of the fillers, but the 

components are not compatible as such. To reduce the interfacial tension between 

the matrix and the filler, fillers are often functionalised, coated by different 

techniques as detailed in literature review. 

 

Since carbon nanotubes are fullerene-related structures, it may be possible to form 

chemical bonds between nanotube and polyethylene chains using free-radical 

generators such as peroxide. In principle, radicals can be generated on polyethylene 
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chains either by the abstraction of a hydrogen atom attached to the polymer 

backbone or by the cleavage of the backbone to yield terminal radicals. The former is 

frequently encountered as a result of chemical or radiation attack. For example, an 

oxy radical generated by homolysis of peroxide is capable of abstracting a hydrogen 

atom from a polyethylene chain and thereby generating a radical. Depending on the 

hydrogen that is removed, the radical site could be anywhere on the polymer chain. 

The backbone cleavage is generally caused by severe physical deformation in the 

molten state under conditions of extreme shear. For example, in the reported 

experimental works, the nanotube−polymer mixture is first stretched at or above the 

melting temperature of the polymer in order to have a uniform dispersion of the 

nanotubes. During this process, radicals can be generated by carbon−carbon bond 

cleavage. This work concentrates of grafting PE onto nanotubes based on our model 

compound studies. Moreover, the possibility of PE grafting through end-

functionalised nanotubes is also explored. Grafting of PE onto nanotubes was 

confirmed qualitatively (by Raman spectroscopy and transmission electron 

microscopy) and quantitatively (by thermogravimetric and elemental analysis). 

 

The results of study show the potential of radical chemistry for PE grafting on 

nanotubes to prepare reinforced composites. 

 

4.1.2 Article Details  

 

This work is in the process of submission for publication. This work was done in 

collaboration with another research group from ‘Laboratoire de Chimie, Catalyse, 

Polymères et Procédés, Lyon 1’. Parts of the contents of this paper were presented in 

‘3rd Young Scientist Conference - Nanostructured Polymer materials’ held in the 

Madrid, Spain from 25 to 27 April, 2010; and in ‘6th International ECNP conference − 

Nanostructured Polymer and Nanocomposites’ convened by The European Centre 

for Nanostructured Polymer in  Madrid, Spain, from 28 to 30 April 2010.  
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4.2 Synthesis of Polyethyelene-Grafted Multiwalled Carbon Nanotubes by using 

TEMPO- and thiol-terminated polyethylenes  

 

 Sohaib Akbar1, Emmanuel Beyou1*, Philippe Chaumont1, Jérôme Mazzolini, 

Edgar Espinosa, Franck D’Agosto2, Christophe Boisson2 

 

1 Université de Lyon, Lyon, F-69003, France, Université Lyon 1, Lyon, F-69003, France, 

CNRS UMR5223, Ingénierie des Matériaux Polymères: Laboratoire des Matériaux 

Polymères et Biomatériaux, 15 boulevard Latarget, F-69622 Villeurbanne, France  

 

2 Université de Lyon, Université Lyon 1, CPE Lyon, CNRS, UMR 5265, Laboratoire de 

Chimie, Catalyse, Polymères et Procédés (C2P2), LCPP group, 43, Bd. du 11 

Novembre 1918, F-69616 Villeurbanne, France 

 

4.2.1 Abstract 

 

Polyethylene, alkoxyamine- and thiol-terminated polyethylenes can be converted to 

macroradicals using a peroxide, a thermal cleavage of the alkoxyamine and a 

hydrogen transfer reaction of the thiol, respectively. The addition of these 

macroradicals to multiwalled carbon nanotubes (MWCNTs) were compared by 

performing grafting reactions at 160°C in 1,3-dichlorobenzene as solvent. Raman 

spectroscopy was utilised to follow the introduction of polyethylene on the 

MWCNTs’ surface while thermogravimetric and elemental analysis indicated the 

extent of this grafting. The grafting ratio was found to be in the 19–36wt% range. 

Polyethylene functionalised MWCNTs was imaged by transmission electronic 

microscopy showing a PE layer with various thicknesses covering the surface of 

nanotubes. It was found that higher levels of grafting were obtained using PE-TEMPO 

and PE-SH rather than a radical grafting reaction in which dicumyl peroxide, 

polyethylene and MWCNTs were reacted. 
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4.2.2 Introduction 

 

Polymer nanocomposites containing carbon nanotubes (CNT) have attracted much 

attention due to the excellent mechanical, electrical and thermal properties of CNTs 

[1-3]. Simple melt compounding is often difficult to achieve because CNT tend to 

form agglomerates during processing of composites. Indeed, carbon nanotubes form 

clusters as very long bundles due to the high surface energy and the stabilization by 

numerous of π−π electron interactions among the tubes. The mechanical properties 

of polyethylene (PE) reinforced by carbon nanotubes do not improve significantly 

since although the stiffness and strength increase, the ductility decreases [4-6]. The 

weak polymer-CNT interfacial adhesion prevents efficient stress transfer from the 

polymer matrix to CNT. A strategy for enhancing the compatibility between 

nanotubes and polyolefins consists in functionalising the sidewalls of CNT with 

polymers either by a ‘grafting to’ or a ‘grafting from’ approach. The “grafting from” 

approach involves the growth of polymers from CNT surfaces via in situ 

polymerisation of olefins initiated from chemical species immobilised on the CNT. As 

an example, Ziegler-Natta or metallocene catalysts for ethylene polymerisation can 

be immobilised on nanotubes to grow PE chains from their surface. However 

covalent linkages or strong interactions between PE chains and nanotubes cannot be 

created during polymerisation [7,8]. The “grafting to” approach is usually based on a 

radical process and requires the synthesis of a polymer with reactive groups9 or the 

use of a radical precursor [10,11]. In a subsequent reaction, the polymer chain is 

attached to the surface of nanotubes generally by addition reactions. Typically, 

peroxides are used as hydrogen abstractors to chemically react with polyolefins in 

the molten state. The radicals formed in the decomposition process must be able to 

abstract hydrogen atoms from the polyolefin to form macro radicals that can react 

with unsaturated systems [10,11] This grafting reaction has been previously 

described with a model compound approach involving a radical grafting reaction 

between a set of model alkyl radicals (formed by reaction of peroxide-derived alkoxy 

radicals with low molecular-weight alkanes) and multiwalled carbon nanotubes 

(MWCNTs) [12,13]. Recently, D’Agosto and Boisson [14-18] developed new strategies 

that rely on a one step in situ functionalisation reaction within an ethylene 
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polymerisation reactor to introduce a variety of functional groups including 

alkoxyamine [14-16] and thiol [16, 18] functions at the end of polyethylene chains. 

Di-polyethylenyl magnesium compound (MgPE2) were prepared using a neodymium 

metallocene complex which catalysed polyethylene chain growth on magnesium 

compounds. MgPE2 was in situ reacted with  2,2,6,6-tetramethylpiperidinyl-1-oxy 

(TEMPO) radical or elemental sulphur to provide a macroalcoxyamine (PE-TEMPO) 

and polysulphur based product (PE-Sn-PE) respectively. Polymers were recovered by 

simple precipitation. PE-SH was obtained by simple reduction of PE-Sn-PE. According 

to these results, we plan to investigate a strategy based on the use of those 

polyethylenes to generate radical-terminated chains formed either by thermal loss of 

a nitroxide (PE-TEMPO) or H-abstraction onto a thiol (PE-SH) and graft them onto 

CNTs. Indeed, Jerome [19] showed an efficient attachment of poly(2-vinylpyridine) 

(P2VP) of controlled molecular weight end-capped by TEMPO to CNT sidewalls by 

heating of TEMPO-terminated P2VP. Using the same strategy Liu [20] functionalized 

shortened CNT with PS and poly[(tert-butyl acrylate)-b-styrene] and Wang [21] 

grafted poly(4-vinylpyridine-b-styrene) onto CNT.  

Experiments reported here assess the thermal decomposition of TEMPO-terminated 

polyethylene at temperatures above 140°C to generate radical-terminated chains 

and graft them to MWCNTs. A second method to graft polyethylene onto CNT 

involving the use of dicumyl peroxide (DCP) in the presence of thiol-terminated 

polyethylene is also described. These functionalisation approaches have been 

compared with the reaction in which unfunctionalized PE is grafted onto CNT in the 

presence of DCP and TEMPO. In addition, the grafting of PE chains is discussed with 

the help of transmission electronic microscopy images. 

 

4.2.3 Experimental 

 

4.2.3.1 Materials   

 

A commercial LDPE brand FinatheneTM (Fina Chemicals, Belgium, MW=90000g/mole; 

density = 0.92 g.cm-3) was used in this study. End functionalised PE (PE-TEMPO, 60% 

TEMPO functionalised, Mn=1400g/mol and PE-SH, 78% SH functionalised, 
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Mn=820g/mol) used in this study was prepared according to previously reported 

procedure [14-16]. 

 

MWCNTs (Graphistrength™ C100) were kindly furnished by ARKEMA, France. 

Pentadecane (Sigma-Aldrich-France; 99% pure) was employed as a low molecular 

weight hydrocarbon substrate model for the poly(ethylene-co-octene). Dicumyl 

peroxide (DCP, Sigma-Aldrich-France; 99% pure) was used as initiator for radical 

generation. 2,2,6,6-tetramethylpiperidinooxyl (TEMPO), supplied by Sigma-Aldrich-

France, has been used as radical scavengers. Dimethylformamide (DMF, Sigma-

Aldrich-France; 99% pure) and Dichlorobenzene (DCB, Sigma-Aldrich-France; 99% 

pure) were used as solvent. 

 

4.2.3.2 PE Grafting onto MWCNTs via peroxide 

 

Description of samples and composition of reactants is given in table 4-1. 
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Table 4-1: List of samples according to the experimental conditions 

Sample Description Acronym Composition of reactants 

1 Crosslinked LDPE PEc LDPE: 1g 

DCP: 0.03g 

Solvent: DCB 50ml 

2 MWCNTs functionalisation 

by LDPE using DCP 

PE-g-MWCNTs MWCNTs: 50mg 

LDPE: 1g 

DCP: 0.03g 

Solvent: DCB 50ml 

Samples 2-A and 2-B were prepared with PE having mol. wt. ~1400 and 700 g.gmol
-1

 
respectively instead of LDPE. 

3 MWCNTs functionalisation 

by LDPE using DCP and 

TEMPO 

PE.TEMPO-g-MWCNTs MWCNTs: 50mg 

LDPE: 1g 

DCP: 0.03g 

TEMPO: 0.25g 

Solvent: DCB 50ml 

4 MWCNTs grafted via 

TEMPO functionalised PE  

PEf-TEMPO-g-MWCNTs MWCNTs: 50mg 

PEf-TEMPO: 1g 

Solvent: DCB 50ml 

5 MWCNTs grafted via SH 

functionalised PE  

PEf-SH-g-MWCNTs MWCNTs: 50mg 

DCP: 0.03g 

PEf-SH: 1g 

Solvent: DCB 50ml 

 

Grafting reactions were carried out in glass reactors. In order to prepare PE-g-

MWCNTs, DCP (0.03 g / 0.11 mmole) and LDPE (1g / 0.011 mmole) were mixed in 50 

mL of DCB along with 50 mg of MWCNTs. The mixture was then sonicated for one 

minute and degassed by four freeze-pump-thaw cycles. Grafting reactions were 

carried out under constant stirring and heating at 160°C for 6 hours. At the end of 

the reaction PE grafted MWCNTs were collected by centrifugation (11K rpm, 10 min) 

and subsequent filtrations. PE.TEMPO-g-MWCNTs prepared along the similar lines 

with the additional presence of TEMPO, i.e. 0.25 g / 1.6 mmole. Purification of 

grafted nanotubes was performed by Soxhlet extraction with DCB as solvent for 24 

hr. Solid materials and filtrates were collected and characterised. 
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4.2.3.3 PE Grafting onto MWCNTs via end-functionalised PE 

 

For the preparation of PE grafted nanotubes by means of TEMPO functionalised 

polyethylene, 50 mg of MWCNTs and 1 g (1 mmole) of PE-TEMPO were mixed in 50 

ml of DCB in a Schlenk-type reactor. Similarly, in order to perform PE grafting 

through thiol functionalised polyethylene, 0.03 g/0.11 mmole of DCP and 1 g (1.02 

mmole) of PE-SH were dissolved in 50 ml of DCB together with 50 mg of MWCNTs. 

After sonication for one minute the mixtures were degassed at least three times. The 

reactors were then placed in an oil bath at a temperature of 160°C for 8 hours. At 

the end of the reaction the contents were filtered out and dried in vacuum at 80°C 

for 48 hours. The products were thoroughly washed for purification prior to 

characterisation.  

 

4.2.4 Characterisation 

 

Purification of PE grafted nanotubes was carried out by washing with DCB in a 

Soxhlet apparatus for 24 hr to extract non-grafted material. These purified 

nanotubes were passed through various characterisations. 

 

Thermogravimetric analysis (TGA) was carried out with a DuPont Instruments TGA 

2950 thermobalance, controlled by a TC10A microprocessor. Samples were heated 

at 20°C/min under a nitrogen flow (100mL/min). 

 

Pyrolysis-Gas chromatography-mass spectrometry (Py-GC-MS). Samples were 

pyrolysed by gradual heating up to 700°C and the resulting fragmented products 

were analysed by GC-MS.  Gas chromatography-mass spectrometry (GC-MS) was 

performed with an Agilent 6890 series GC system equipped with a HP-5ms (5%-

phenyl)-methylpolysiloxane, ref. 19091S-433. The injector was at 250ºC and the 

temperature programme followed was: 50-310ºC at 20ºC/min. Injection and 

detection by MS was carried out at 280ºC. 
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The Raman spectra of pristine and PE grafted nanotubes were obtained by a Horiba 

Jobin-Yvon LabRAM ARAMIS Raman confocal microscope (632.8 nm, Aramis CRM, 

Horiba Jobin Yvon, Edison, NJ). A 50× objective was used to focus 18.5 mW of He−Ne 

laser light onto the sample surface with a spot size of about 1 μm.  

 

Elemental analysis (EA) was carried out (Analyzer: LECO SC144, Service central 

d’analyse du CNRS, Vernaison, France) to determine the contents of H and N.  

Sonication was accomplished using Vibracell™ 75041 (Bioblock Scientific, Illkirch, 

France) apparatus set at 40% of 750 W for 30 sec. 

 

Transmission electron microscopy (TEM) was carried out with a Philips CM-120 

microscope (Philips Consumer Electronics BV, Eindhoven, The Netherlands) operated 

at 80 keV. 

 

 

4.2.5 Results and discussion 

 

4.2.5.1 Synthesis of PE grafted nanotubes via peroxide (with and without TEMPO) 

 

Mylvaganam et al [22] have predicted with the aid of a quantum mechanics analysis 

that covalent bond formation between alkyl radicals and carbon nanotubes is 

energetically favourable; and that this reaction may take place at multiple sites of 

nanotubes. Hence one way to improve the load transfer of carbon nanotubes/PE 

composite via chemical bonds at the interface is to use free-radical generators such 

as peroxide in conjunction with preformed PE or to perform in situ polymerisation in 

the presence of nanotubes. Recently, we have described the ‘grafting to’ method 

with a model compound approach involving a radical grafting reaction induced by 

mixing peroxide-derived alkoxyl radicals, pentadecane and multiwalled carbon 

nanotubes (MWCNTs) [12]. Alkyl radicals produced from pentadecane are good 

representatives of linear polyethylene chain radicals. This strategy is based on the 

formation of multiple covalent bonds between polyethylene chain radicals and 
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nanotubes. Figure 4-1 sums up the main reactive pathways for free radical grafting of 

PE onto MWCNTs with dicumyl peroxide as initiator and TEMPO as radical scavenger.  

 

 

 

Figure 4-1: Reaction scheme for PE grafting onto MWCNTs with TEMPO as a radical scavenger. 

 

The main step is the formation of DCP-derived alkoxy radicals that abstract hydrogen 

from the polyethylene backbone. However, the alkoxy radicals can undergo 

additional reactions including β-scission leading to the formation of methyl radicals 

[23,24]. These latter preferentially induce coupling reaction or attack onto the sp2 

carbon of the MWCNTs whereas cumyloxyl radicals are more prone to hydrogen 

abstraction from polyethylene [25]. The formed PE-based radicals are able to react 

with MWCNTs by radical addition onto sp2 carbons of the MWCNTs (Figure 4-1) and 

with other radical species via the common radical-radical coupling reactions. 

According to Johnston [26,27] coupling reactions are four times more prone to 

happen than scission reactions, when using poly(ethylene-co-1-octene) in the 

presence of DCP at 160°C. Thus, we assume that for PE-based radicals scission 

reactions may be disfavoured. As discussed recently using a model compound 

approach [28], the presence of TEMPO radicals creates competitive combinations 

reactions that are actually reversible reactions which may favour the addition of PE-

based radicals to MWCNTs (Figure 4-1). 
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4.2.5.2 Synthesis of PE grafted nanotubes via end functionalised PE 

 

In recent studies, the production of polyethylene chains carrying alkoxyamine [14-

17] and thiol [18] end-groups has been described. The homolytic cleavage of 

alkoxyamine-terminated PE leads to the formation of stable nitroxyl radicals and PE 

radicals. We investigate a strategy based on the use of polyethylene radical-

terminated chains that could be formed by thermal activation (Figure 4-2a).  

 

 

(a) 

 

  (b) 

Figure 4-2: Reaction scheme for end functionalised PE grafting onto MWCNTs: (a) via PE-TEMPO; (b) 
via PE-SH 
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The reversible termination of the polyethylene chain is the key step for reducing the 

overall concentration of the radical chain end. The extremely low concentration of 

reactive chain ends is expected to minimize irreversible termination reactions, such 

as combination or disproportionation [29] (Figure 4-2a). The NO-C bond in N-

alkoxyamines is usually considered as the most labile. However, it is worth 

mentioning here that the competitive N-OC bond cleavage must be also considered 

at high temperatures [30,31] (Figure 4-2a). Thiol-terminated polyethylene has been 

also grafted onto CNTs using a similar procedure. In the presence of DCP-derived 

radicals and MWCNTs, thiyl radicals are formed and are expected to react by radical 

addition onto sp2 carbon of the MWCNTs (Figure 4-2b). 

 

4.2.5.3 Qualitative evidence for covalent sidewall functionalisation: Raman 

analysis 

 

Raman spectroscopy can give direct evidence for covalent sidewall 

functionalisation.[32-34] Gao et al [35] reported the analyses by Raman 

spectroscopy of  polymer coating on MWCNTs may lead to the observation of three 

different signals:  (1) only CNT signals are detectable if the polymer layer is 

transparent, (2) only polymer signals are present if the polymer layer can absorb and 

reflect the whole excitation energy, and (3) no signals or a strong photoluminescence 

can be observed if there is energy transfer between nanotubes and polymer chains 

or if the coated polymer changes the electronic property of CNTs. The Raman spectra 

of CNTs usually exhibit three characteristic bands: the tangential stretching G mode 

(1500–1600 cm–1), the D mode (~1350 cm–1) and the radial breathing modes (RBMs) 

(100–400 cm–1) [36].  Raman spectra of p-MWCNTs (Figure 4-3) shows two main 

peaks around 1330 cm−1 and 1583 cm−1, corresponding to D-band (the disordered 

graphite structure) and G-band (sp2-hybridised carbon), respectively.  
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Figure 4-3: Raman spectra of pristine and various functionalised nanotubes. Variations in D band — 
1330 cm-1; G band — 1583 cm-1; and D´ — 1608 cm-1 are visible. The legend follows the order of 

the peaks.  

 

A typical additional Raman band, D′, just after G band is only observed for MWCNTs. 

Similar to the D band, D′ is a double-resonance Raman feature induced by disorder, 

defects or ion intercalation between the graphitic walls. Some authors used G to D 

area ratios rather than intensity which is a better indicator as it covers both height 

and width of the Raman peaks [37]. Table 4- 2 shows the area ratios of D to G band, 

and D′ to G band.   

 

Table 4- 2: Area ratios of D and G bands in Raman spectra for pristine and various PE grafted 
nanotubes. 

Sample AD/AG AD′/AG 

2 

PE-g- MWCNTs 
1.53 0.84 

3 

PE.TEMPO-g- MWCNTs 
1.59 0.92 

4 

PEf-TEMPO-g- MWCNTs 
1.67 0.89 

5 

PEf-SH-g- MWCNTs 
1.44 0.90 
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For samples 2-5, the corresponding area ratios are larger than that of as-received 

pristine carbon nanotubes. Increases in these ratios are indicative of structural 

defects in MWCNTs’ surface due to covalent bonding with PE. Another interesting 

feature is the disappearance of RBM bands which were obvious in case of pristine 

MWCNTs (ca. 220 cm-1 and 282 cm-1, Figure 4-3). This fading of diameter sensitive 

bands is believed to be caused by an increase in thickness of the tubes due to 

polymer grafting [38,39].  

 

4.2.5.4 PE grafting density 

 

Heating functionalised nanotubes in an inert atmosphere removes the organic 

moieties and restores the pristine nanotubes’ structure. Therefore, 

thermogravimetric analysis was performed on the reaction products in order to gain 

a more quantitative picture of the extent of nanotubes’ functionalisation. Before 

carrying out TGA, the adsorbed (non-covalently attached) molecules were discussed 

from the grafted ones by extensive washings with DCB as mentioned in the 

experimental part.  

The TGA traces for both the starting pure reactants and the PE-grafted nanotubes 

are shown in Figure 4-4.  

 

Figure 4-4: TGA weight loss data (under nitrogen) for various samples (see details in table 4-1). Pure 
products (i.e. PE-SH, PE-TEMPO, LDPE and pristine nanotubes) are shown for corresponding 

reference. 
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Pure reactants completely decompose in the temperature range between 300 and 

510°C. As shown in Figure 4-4, the amount of organic functionalities physically 

and/or covalently attached to the initial p-MWCNTs can be neglected (weight loss < 

1.5%). PE-grafted onto MWCNTs are degraded at 300-540°C, which are nearly the 

same temperatures as pure PE reactants. In figure 4-4, the weight of grafted PE is 

estimated to be in the range 19-36% depending on the experimental procedure 

(Table 4-3). The corresponding grafting densities can be calculated using a specific 

surface area (SSA) of 225m2/g for MWCNTs [13, 40]. The calculated grafting densities 

are varying from 1.1mg.m-2 (0.012μmol.m-2) for high molar mass LDPE (sample 2, 

Table 4-3) to 2.3mg.m-2 (2.8 μmol.m-2) for low molar mass thiol end-functionalised 

PE (sample 5, Table 4-3). LDPE grafting density on nanotubes is 1.1mg.m-2 while 

incorporation of TEMPO raises the grafting density to 1.4mg.m-2 (sample 3, Table 4-

3). This increase in the weight loss suggests a higher degree of grafting for PE chains 

by using TEMPO in the reaction mixture and/or the grafting of TEMPO groups as well 

as PE chains onto MWCNTs. A qualitative indication of TEMPO consumption comes 

from the colour of the mixture starting from dark yellow with free TEMPO before 

heating and turning lighter at the end of the reaction. In order to improve the 

understanding of the polyethylene radicals behaviour towards carbon nanotubes, 

the samples 2-A and 2-B (table 4-3) correspond to the ones performed with low 

molar masses linear PE (1490g/mol and 770g/mol, respectively). For both samples 2-

A and 2-B, the weight loss observed by TGA increases to 28% and 29%, respectively 

(Table 4-3) despite their low molar masses (e.g. 1490g/mol and 770g/mol) in 

comparison with that of LDPE (e.g. 90000g/mol). These results indicate that the use 

of short PE chains permit a significant increase of the grafting density (e.g. 

1.2μmol.m-2 (1.7mg.m-2)  and 2.5μmol.m-2 (1.8mg.m-2)) in comparison with the 

grafting density obtained with LDPE (e.g. 0.012μmol.m-2 (1.3mg.m-2), Table 4-3). It 

suggests that longer polymer chains cover a larger surface decreasing the grafting 

density, as previously described by Jerome et al [19, 41] for the attachment of 

poly(2-vinylpyridine) (P2VP) and polystyrene (PS) onto MWCNTs. Indeed, they 

observed that PS grafting density decreases from 0.045μmol.m-2 to 0.01μmol.m-2 by 

increasing the molecular weight of PS-TEMPO from 3000g/mol to 30000g/mol [41].  
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By using TEMPO-terminated PE (sample 4, Table 4-3), the PE radical grafting reaction 

onto MWCNTs is improved although the functionalisation of PE was only 60%. 

Indeed, we obtained a PE grafting density of  2.5mg.m-2 (1.78μmol.m-2) (Table 4-3) in 

comparison with the corresponding non functional PE with the same molar mass (i.e. 

1.7mg.m-2 (1.2μmol.m-2)) (sample 2-A, Table 4-3). In the presence of a thiol-

terminated polyethylene (i.e. PE-SH, sample 5, Table 4-3), a hydrogen transfer 

process is required between cumyloxyl radicals and/or radicals located onto the 

MWCNTs and the thiol derivative. Then, the generated thiyl radicals can react with 

unsaturations of MWCNTs, leading to PE-g-MWCNTs. The grafting density of sample 

5 (e.g. 2.8μmol.m-2 (2.3mg.m-2), Table 4-3) is similar to that of TEMPO end-

functionalised PE (1.78μmol.m-2 (2.5 mg.m-2), sample 4, Table 4-3). A greater 

efficiency of addition of carbon centered radicals to MWCNTs than that of sulfur 

radicals is usually observed (well known for C60 [42]), but is not observed here. This 

may be attributed to both the lower molar mass of thiol end-funtionalised PE and 

the higher SH degree of functionalisation (e.g. 78% and 60% for TEMPO end-

functionalised PE). 

Elemental analysis (EA) is also an indicator of degree of grafting and a good 

agreement between grafting densities calculated from EA and TGA analysis was 

obtained (e.g. 2 mg.m-2 and 2.3mg.m-2, sample 5, Table 4-3). 

Pyrolysis-GC-MS analyses were also performed on samples 3-5 (Table 4-1) in order to 

characterise TEMPO- and sulfur-based molecules. Indeed, the main role of thermal 

cracking is to decompose of long hydrocarbon molecules into smaller ones. Cracking 

of LDPE occurs by random chain scission and therefore a broad hydrocarbon 

spectrum is produced [43, 44]. Herein, pyrolysis of PE-grafted MWCNTs (samples 3-5, 

Table 4-1) is expected to produce N- or S-containing molecules and small segments 

such as C4H8, C5H10, C6H12, and so on.  Figure 4-5 shows the pyrogram obtained for 

sample 3 which is mainly characterised by aliphatic compounds like C6H12 (m/z 84) 

and C8H16 (m/z 112).  
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Figure 4-5: Pyrogram of PE.TEMPO-g-MWCNTs (sample 3) in the temperature range 100-600°C . Ion 
current vs time for m/z 74, 84, and 112 corresponding to TEMPO, C4H8 and C5H10 respectively. 

 

These fragments are obtained in the temperature range of 400 to 590°C, which is in 

agreement with weight loss data for sample 3 obtained by TGA (figure 4-4). Another 

huge ion current (m/z 74) is observed in Figure 4-5 which is believed to originate 

from the fragmentation of TEMPO groups and probably corresponding to 

(CH3)2CH2NO (m/z 74). Figure S1 (in supporting information) shows the pyrogram of 

sample 5. Although we could not detect any traces of sulphur by this technique, 

small polyolefin segments obviously coming from PE disintegration were observed. 

Nonetheless, elemental analysis have already shown the presence of S and N (table 

4-3).  
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 Table 4-3: Effect of the grafting procedure on the degree of PE grafting. 

Sample Elemental 
wt% 

Calculation 
from 

Degree of PE Grafting  

wt% mg.m
-2 

 μmol.m
-2

 

2 
PE-g-MWCNTs 

H: 3.1 EA 22 1.2 0.013 
TGA 20 1.1 0.012 

2-A - TGA 28 1.7 1.2 

2-B - TGA 29 1.8 2.5 

3 
PE.TEMPO-g-MWCNTs 

N: 0.5 
H: 3.7 

EA 26 1.5 0.016 

TGA 24 1.4 0.015 

4 
PEf-TEMPO -g- MWCNTs 

N: 0.3 
H: 4.8 

EA 34 1.9 1.36 

TGA 36 2.5 1.78 
5 

PEf-SH-g-MWCNTs 
S: 0.8 
H: 4.2 

EA 30 2 2.4 

TGA 34 2.3 2.8 
N.B: Elemental analysis of pristine MWCNTs shows: N, 0.78%; O, 0.89%; H, 0.30%; P, 1.81%.; S, 
<0.2%.  All values shown above are rounded off.  Elemental wt% values are shown after 
deducting corresponding pristine nanotubes values. Grafting density in mg.m

-2 
is based on 

calculations assuming a specific surface area of 225 m
2
.g

-1
 for MWCNTs.

 

 

 

 

4.2.5.5  Morphological characterisation of PE-grafted MWCNTs 

 

To go one step forward, the morphological structures of p-MWCNTs and PE-grafted 

MWCNTs (samples 2-5) were examined by transmission electron microscopy (TEM). 

In these experiments, a few drops of dilute solutions of PE-grafted nanotubes in hot 

DCB were initially deposited onto a carbon-coated copper grid and further observed 

in a dried state after evaporation of the solvent. Functionalisation of MWCNTs by PE  

can be clearly seen in the TEM images of Figure 4-6.  
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Figure 4-6: TEM pictures of p-MWCNTs (0); PE-g-MWCNTs (2); PE.TEMPO-g-MWCNTs (3) ; PEf-
TEMPO-g-MWCNTs (4); PEf-SH-g-MWCNTs (5). 

 

As emphasised by the enlargment of TEM images in Figure 4-6, a contrast difference 

gives the indication that the MWCNTs are uniformly coated with the polymer layer, 

forming PE-grafted MWCNTs core-shell nanostructures. This result tends to support 

that the grafting onto process occurred over the entire surface of the initial MWCNT. 

The shell thickness of the PE coating is varying from 1.5nm (LDPE-gMWCNTs, sample 

2, 4-6) to 4.1nm (PEf-TEMPO-g-MWCNTs, sample 4, figure 4-6). The TEM observations 

are consistent with the TGA results : the grafted polymer contents can be highered 

by using end-functionalized PE (samples 4-5). In addition, as pointed out by Gao et al 

[45], the electron beam may destroy polymer chains especially at high resolution so 

the amount of polymer observed in the presented TEM images may represent a 

lower limit. 

 

4.2.6 Conclusion 

 

We investigated various ways to convalently functionalise multiwalled carbon 

nanotubes (MWCNTs) with polyethylene (PE). First, MWCNTs were successfully 

functionalised through a simple radical grafting approach based on the thermolysis 
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of dicumyl peroxide initiator performed in dichlorobenzene and in presence of PE 

and MWCNTs at 160°C. Raman, TGA data and EA attested for successful 

functionalisation of MWCNTs by polyethylene. Incorporation of TEMPO radicals as 

radical scavengers in the grafting reaction of polyethylene onto MWCNTs  slightly 

increased the extent of polyethylene grafting 1.1mg.m-2 (0.012μmol.m-2) to 1.4mg.m-

2 (0.015μmol.m-2). However, PE grafting density was significantly increased to 2.3 - 

2.5mg.m-2 (~2.5μmol.m-2) by using TEMPO- and thiol-terminated polyethylenes 

which was attributed to their low molar masses together with their specific chain-

end reactivity. Moreover, TEM images clearly indicated that the MWCNTs were 

uniformly coated with the polymer layer, forming PE-grafted MWCNTs core-shell 

nanostructures with a PE shell thickness varying from 1.5nm to 4.1nm.  

Future work will consist in performing this procedure in an extruder and 

investigating the effects of this grafting on mechanical, rheological, and electrical 

properties of PE/CNTs composites. 
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5.1 Tetramethylpentadecane and PP grafting onto nanotubes   

 

 

 

5.1.1 Overview 

 
PP is a convenient thermoplastic with a balance between processing and 

performance. The melting temperature (Tm = 162 — 165°C) is high enough to resist 

boiling water yet low enough to permit ease of thermoforming composite sheets. PP 

is available in grades intended for extrusion into film, sheet and profiles, injection, 

moulding, and thermoforming.  

 

The extraordinary versatility of reinforced PP suits a wide spectrum of end-us 

applications for fibers, films, moulded pats. However, there always exist certain 

shortcomings in physical and chemical properties that can limit its use for certain 

applications.  Currently automotive and appliance applications employ glass or 

mineral filled systems with loading levels ranging from 15 to 50 percent. However 

this leads to greater moulded part weight.  PP is non polar and therefore lacks 

interaction with other materials such as glass fibres, clays, metals, pigments, fillers 

etc. Therefore, when PP nanocomposites are manufactured they exhibit less 

significant improvement in physical, chemical and mechanical properties if PP does 

not have a good interaction with nanofiller. Although physical blending with CNTs is 

an economic way to modify polypropylene performance, compatibilizing agents are 

necessary for creating strong interface between filler particles and the polymer 

phase. In both academic and industrial locations, the study of PP nanocomposites is 

an intense area of current interest and investigation. The driving force for such 

efforts is attributed to huge commercial opportunities in both automotive and 
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packaging applications.  Material design at relatively low nanofiller loading can 

address the inherent shortcomings of polypropylene resin by itself and can do so 

with favourable cost, processing and reduced moulded-part weight profiles.  In order 

to prepare PE/nanotubes composite with enhanced properties of interest e.g. 

reinforcement, there must be a good dispersion of CNTs and some chemical linkage 

between the two phases of the composite. To overcome incompatibility of 

nanotubes and PE we envisaged a scheme to graft PE during extrusion through 

radical grafting onto nanotubes. But before using this procedure a model compound 

study was adopted to obtain optimised reaction conditions. Pentadecane was 

selected as a model since it represents the characteristics of PE. Moreover use of 

pentadecane makes the extensive characterisation easier which might be difficult in 

case of PE since pentadecane is in liquid form at ambient temperature. 

 

In this study we functionalised MWCNTs by tetramethylpentadecane (TMP), 1-

dodecanethiol (DT) and polypropylene (PP) through radical addition onto MWCNTs' 

surface using dicumyl peroxide as hydrogen abstractor. TMP acts as a model for PP in 

the model compound approach. We also optimised our reaction conditions (e.g. 

temperature, concentration of reactants) to obtain high grafting density. 

Functionalisation of nanotubes was confirmed qualitatively (by Raman spectroscopy 

and transmission electron microscopy) and quantitatively (by thermogravimetric and 

elemental analysis). 

 

5.1.2 Article Details  

 

This study was published in Polymer, volume 50, issue 25, pages 5901-5908 on 27 

November 2009, entitled ‘Effect of radical grafting of tetramethylpentadecane and 

polypropylene on carbon nanotubes' dispersibility in various solvents and 

polypropylene matrix’. This piece of work was carried out in association with a post-

doctorate researcher (Gholamali Farzi) based on the idea and strategy we 

established on in chapter 2. 
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5.2 Effect of radical grafting of tetramethylpentadecane and polypropylene on 

carbon nanotubes' dispersibility in various solvents and polypropylene matrix  

 

 

Gholamali Farzi a,b,c,   Sohaib Akbar a,b,c, Emmanuel Beyou a,b,c, Philippe 

Cassagnau a,b,c  

 

a Université de Lyon, Lyon F-69003, France 

b Université de Lyon 1, F-69003 Villeurbanne, France 

c CNRS UMR5223, Ingénierie des Matériaux Polyméres, Laboratoire des Matériaux 

Polyméres et Biomatériaux, F-69622 Villeurbanne, France  

 

5.2.1 Abstract 

 

Multiwalled carbon nanotubes (MWCNTs) have been functionalized by 

tetramethylpentadecane (TMP), 1-dodecanethiol (DT) and polypropylene (PP) 

through radical addition onto MWCNTs' surface using dicumyl peroxide as hydrogen 

abstractor. Surface functionalized MWCNTs were characterized by Raman, IR 

spectroscopy, elementary analysis (EA) and thermogravimetric analysis (TGA). We 

studied the effect of temperature, peroxide concentration and solvent on TMP 

grafting densities and it was found that this surface treatment lead to a fair solubility 

in various solvents. TMP-functionalized MWCNTs were also imaged by transmission 

electronic microscopy showing single long functionalized MWCNTs distinct from the 

starting pristine bundles. For the first time, PP was then grafted onto MWCNTs 

through a radical grafting reaction. However, scanning electronic microscopy images 

of PP-functionalized MWCNTs/PP composites did not show a significant 

improvement in MWCNTs dispersion within the PP matrix. 

 

5.2.2 Introduction 

 

Polymer nanocomposites containing carbon nanotubes (CNTs) have attracted much 

attention due to the excellent mechanical, electrical and thermal properties of CNTs 
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[1,2,3]. Simple melt compounding is often difficult to achieve because CNTs tend to 

form agglomerates during processing of composites. Indeed, carbon nanotubes form 

clusters as very long bundles due to the high surface energy and the stabilization by 

numerous of π–π electron interactions among the tubes. Chemical modification of 

the CNTs' surface [4,5,6] and in situ polymerisation [7,8] have been used to achieve 

optimal enhancement in the properties of CNT/polymer composites. The use of 

“grafting to” [9,10,11,12] and “grafting from” [9,13,14,15,16] approaches, leading to 

chemical linkage between polymer and the surface of CNTs, have been also explored 

to improve the interfacial interaction between CNTs and polymer matrix. 

Polypropylene (PP) is one of the most widely used commercial polymer due to the 

excellent combination of mechanical resistance, chemical stability and excellent 

moisture barrier properties [17]. Although physical blending with CNTs is an 

economic way to modify polypropylene performance, compatibilizing agents are 

necessary for creating strong interface between filler particles and the polymer 

phase. Maleic anhydride grafted polypropylene (MA-g-PP) is often used as a 

compatibilizer which can improve the PP/CNTs composite properties by strong 

hydrogen bonding between hydroxyl groups located on the acidic-treated CNTs 

surface and anhydride groups of MA-g-PP [18,19].  

 

A more promising way to disperse CNTs in polyolefins is the in situ polymerisation 

approach because homogenous metallocene catalysts are soluble in hydrocarbons. 

First, the co-catalyst methylaluminoxane (MAO) is anchored on the CNT surface 

through covalent bonding to –COOH or –OH groups which are inherent to partially 

oxidized CNTs. Then, the metallocene catalyst and the monomer are added yielding 

polyolefin chains attached directly to CNTs [17,20,21,22]. Another strategy for 

enhancing compatibility between nanotubes and polyolefins consists in the sidewall 

CNT functionalization with short alkyl chains [23,24]. This method involves thermal 

decomposition of an alkyl peroxide (radical initiator) at 100 °C in toluene providing 

alkyl radicals which can react with unsaturated bonds located on the CNT surface. 

Peroxides are also used as hydrogen abstractors to chemically modify polyolefins in 

the molten state [25,26]. In this latter case, the radicals formed in the decomposition 

process must be able to abstract hydrogen atoms from polyolefin and to form radical 
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centres that can react with unsaturated systems. This grafting reaction has been 

previously described [27,28,29] with a model compound approach involving a radical 

grafting reaction between peroxide-derived alkoxyl radicals, a set of low molecular 

weight alkanes and a monomer [27,28] or multiwall carbon nanotubes (MWCNTs) 

[29]. Herein, we use the radical mechanism for attaching tetramethylpentadecane 

(TMP) as model for PP, dodecanethiol (DT) and PP to multiwall carbon nanotubes 

(MWCNTs). Experiments reported here involve thermal decomposition of dicumyl 

peroxide (DCP), used as hydrogen abstractor, at temperatures above 130 °C.  

 

The extent of grafting has been evaluated by thermogravimetric analysis, elemental 

analysis and scanning electronic microscopy (SEM) observations. We studied 

solubility behaviour of the formed TMP- and DT-grafted-MWCNTs in various solvents 

according to their grafting densities. In addition, PP coated MWCNTs were dispersed 

in a molten PP matrix before imaging by SEM. 

 

5.2.3 Experimental 

 

5.2.3.1 Materials   

 

MWCNTs (Graphistrength™ C100, manufacturing: catalytic chemical vapour 

deposition (CCVD), average outer diameter: 10–15 nm, length: 0.1–10 μm, average 

number of walls: 5–15, C contents: 91%.) were kindly supplied by ARKEMA. 

The low molecular weight hydrocarbon substrate, used as model for polypropylene, 

was 2,6,10,14-tetramethylpentadecane (TMP, 99%, Sigma–Aldrich-France). 

Dodecanethiol (DT, 99%, Acros) was used as received. A commercial grade of 

polypropylene (PPH7060) supplied by Atofina was used as the polymer matrix. 

Dicumyl peroxide (99%, Sigma–Aldrich-France) and all other solvents 

(dimethylformamide (DMF), dichlorobenzene (DCB)) were used without any further 

purification so as to fit the industrial conditions required in the melt processing. 

 

 

 



Polypropylene Grafting onto Nanotubes 

5 – 6  

 

5.2.3.2 Surface activation of MWCNTs 

 

In this study, MWCNTs were oxidized in air at 450 °C for 1 h. Air oxidized MWCNTs 

are used throughout this study and referred as pristine (p-MWCNTs). 

 

5.2.3.3 Decomposition of DCP in the presence of p-MWCNTs and hydrocarbon 

substrates 

 

The thermolysis of dicumyl peroxide (DCP) in hydrocarbon substrates was performed 

in a glass reactor. For experiments conducted in solution, DCP (0.12 g/0.44 mmol) 

was first mixed in a mixture of p-MWCNTs (50 mg), TMP (1 g/3.73 mmol) and DMF 

(or DCB; 10 mL) and then sonicated for 15 min. Afterwards, the suspension was 

degassed by 3 freeze–pump–thaws, and then it was heated up to 160 °C for 6 h 

under stirring. The grafted MWCNTs were collected by centrifugation (11 K rpm, 

20 min) and subsequent filtration. A similar procedure was employed to graft 

dodecanethiol and PP while maintaining the same molar ratio and using DCB as 

solvent for PP grafting reaction. 

 

5.2.3.4 Recovery of free and tethered molecules/PP chains  

 

The free molecules (TMP and DT) and PP chains were isolated from the grafted ones 

by exhaustive cleaning of the suspension by dialysis and Soxhlet extraction, 

respectively. In a typical process for the extraction of TMP (or DT), 30 mL of the 

MWCNTs' suspension was introduced into a cellulose membrane (Spectra/Por, MW 

cut-off, 1000 by Spectrum Medical Industries, Inc.) and repeatedly dialyzed against 

DCB (or DMF for DT) until no residual TMP (or DT) could be detected in the 

recovered solution (determined gravimetrically). Then, the alkane-grafted MWCNTs 

suspension was dried at 80 °C to evaporate the solvent prior to characterization. 

PP is not soluble in any solvent at ambient temperature so it was necessary to use 

soxhlet extractor to recover free PP and tethered PP in DCB at elevated 

temperatures. In a typical procedure, 1 g of the solid fraction filtered from MWCNTs' 

suspension in DCB (after reaction) was put in a cellulose thimble (Macherey–Nagel 
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GMBH & Co) and placed into the Soxhlet extractor refluxed with DCB at 140 °C for 4 

days. The non-soluble PP-g-MWCNTs were collected from thimble and dried at 90 °C 

under vacuum. 

 

5.2.3.5 PP/PP-g-MWCNTs nanocomposites processing 

 

For processing, Haake Polylab Rheomixer fitted with “Rheomix 600” internal mixer 

with two rotors running in a contra-rotating way was used. Each batch was of 

50 cm3 (44 ± 1 g) to fill the mixing chamber so as to receive the excellent shearing 

action to ensure the proven finest mixing. The amount of nanofiller in the final 

composites has been fixed to 3 wt%. Processing temperature was 200 °C and rotors 

rpm were 50. 

 

5.2.4 Characterisation 

 

Gas chromatography–mass spectrometry (GC–MS) was performed with an Agilent 

6890 series GC system equipped with a HP-5 ms (5%-phenyl)-methylpolysiloxane, 

ref. 19091S-433. The injector was at 250 °C and the temperature programme 

followed was: 50–310 °C at 20 °C/min. Injection and detection by MS was carried out 

at 280 °C. 

 

Raman spectra were obtained by using a Raman spectrometer (RM1000, Renishaw, 

Wotton under Edge, U.K.). The sample was excited with Argon Laser at 514.5 nm. 

FTIR spectra were recorded on a Perkin–Elmer spectrometer 2000 using powder-

pressed KBr pellets. Specimens for the measurements were prepared by mixing 2 mg 

of the sample powder with 100 mg of KBr and pressing the mixture into pellets. FTIR 

spectra were obtained at a resolution of 2.0 cm−1 at room temperature in the range 

of 4000 to 400 cm−1 wavenumber and averaged over 16 scans. 

 

Thermogravimetric analysis (TGA) were performed with a DuPont Instruments TGA 

2950 thermobalance, controlled by a TC10A microprocessor. Samples were heated 

at 20 °C/min under a nitrogen flow (100 mL/min). 
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Elemental analysis (EA) was carried out (Analyzer: LECO SC144, Service central 

d'analyse du CNRS, Vernaison, France) to determine carbon and hydrogen contents. 

Transmission electron microscopy (TEM) was carried out with a Philips CM-120 

microscope (Philips Consumer Electronics BV, Eindhoven, The Netherlands) operated 

at 80 keV. Scanning electron microscopy (SEM) was performed with a Hitachi S800 

microscope operated at 15 KV. 

 

Solubility was determined gravimetrically. In a typical experiment, saturated 

solutions of alkane-g-MWCNTs were prepared by sonication in vials. Sonication was 

done using S 40 H Elmasonic by Elma (Singem, Germany) for 30 min. Water bath 

temperature therein raised maximum to 35 °C. Vials were kept free standing over 

one month at room temperature and then the upper half aliquot part was carefully 

taken out with a syringe and heated to remove solvent under vacuum. All the 

weighting was carried out using an analytical balance with a sensitivity of 0.1 mg. 

 

5.2.5 Results and discussion 

 

5.2.5.1 Free radical grafting of TMP, DT and PP onto MWCNTs 

 

We resorted to 2,6,10,14-tetramethylpentadecane (TMP, C19H40) as model for 

polypropylene. Indeed, high boiling points of long chain alkanes permit study under 

high temperature conditions, typically over 150 °C. It also gives clues about low 

viscosity at 150 °C; on top of that the formed products in the grafting experiment can 

hence be analysed more easily than in the polymer melt. Thermolysis of dicumyl 

peroxide initiator performed in TMP and in presence of MWCNTs is depicted in 

Fig. 5-1.  
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Figure 5-1: Reaction scheme for the addition of TMP onto CNT in the presence of DCP. (NB: 
Hydrogen abstraction from PP is also possible at other places where steric hindrance does not have 

a strong effect.) 
 

 

Experiments as reported here involved decomposition of dicumyl peroxide (DCP) 

whose thermal decomposition is carried out in a range of temperatures close to the 

ones expected during reactive extrusion of polypropylene typically few minutes at 

150–200 °C. As shown in Fig. 5-1, the formed peroxide radicals have a high tendency 

to react readily with unsaturated systems and are also prone to hydrogen 

abstraction from hydrocarbon substrates [30]. In this latter case, it is expected that 

the active species generated onto the hydrocarbon backbone react with unsaturated 

bonds located on the MWCNTs surface. The main drawback of free radical grafting is 

low selectivity of radical centres, especially at high temperature (150–200 °C for the 

extrusion of PP) causing side reactions such as chain scission for PP derivatives 

(Fig. 5-1) [30,31]. However, this method is a simple way to directly incorporate 

organic moieties onto the CNTs' surface leading to TMP and PP grafted MWCNTs. 

Dodecanethiol has been also grafted onto CNTs using the same procedure. The thiol 

family of compounds is widely used for controlling molar mass in free radical 

polymerizations via a chain transfer process. The chain transfer process displays two 

contiguous steps: transfer of the thiyl hydrogen to the growing polymer chain 

followed by re-initiation, whereby a thiyl radical adds to a monomeric double bond. 

In the presence of MWCNTs, thiyl radicals are expected to react by radical addition 

onto sp2 carbon of the MWCNTs. First, according to our previous results [29] based 

on a study of the radical grafting of polyethylene derivatives onto MWCNTs, we 
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investigated MWCNTs' sidewall functionalization by TMP, DT and PP in the presence 

of 1 wt% DCP at 160 °C. DMF and DCB were used as solvents. For PP-based 

experiments, only DCB was used, as suitable hot solvent for PP. It is noteworthy that 

the unreacted molecules/polymer chains are removed from the grafted ones by 

dialysis/soxhlet extraction as mentioned in the experimental part. The efficient 

MWCNTs' sidewall functionalization by TMP, DT and PP has been confirmed with the 

aid of Raman and FTIR vibrational spectra.  

 

Raman spectra of p-MWCNTs and alkane-based derivatives-g-MWCNTs (Fig. 5-2) 

show two strong bands around 1340 cm−1 (D band) and 1590 cm−1 (G band). D-band 

is attributed to disorder or sp3-hydridized carbons in the hexagonal framework of the 

nanotubes walls (typical sign for defective graphitic structures) and G-band is a 

characteristic feature of the graphitic layers and corresponds to the tangential 

vibration of the carbon atoms [29,32,33].  

 

 

 

Figure 5-2: Raman spectra of pristine and TMP-, DT- and PP-g-MWCNTs. 

 

 

The ratio in intensities between the D band and G band is a good indicator of the 

changes in chemistry of CNTs. We can observe a relatively low intensity of the D 

band relative to G band (ID/IG < 1) for all the alkane-based derivatives-g-MWCNT 

samples (Fig. 5-2, Table 5-1) in comparison with that of p-MWCNT (i.e. ID/IG ≈ 1, 

Fig. 5-2, Table 5-1) whatever are the grafting experimental conditions. This behaviour 
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could be interpreted as an indication of the increase in the number of sp3 hybridized 

carbon atoms after polymer functionalization. 

 

Table 5-1: Band intensity ratios (ID/IG) of different samples in Raman spectra. 

Sample ID/IG 

Pristine MWCNTs 0.99 
TMP-g-MWCNTs 0.93 
DT-g-MWCNTs 0.95 
PP-g-MWCNTs 0.86 

 

TMP-g-MWCNTs and PP-g-MWCNTs were additionally analysed by FTIR spectroscopy 

(Fig. 5-3). The emergence of nearly identical series of vibrational bands for both 

grafted and non-grafted species suggest the successful grafting of TMP and PP onto 

MWCNTs. Then, we found it interesting to see whether the temperature, the 

peroxide concentration and the solvent could modify the TMP grafting density and 

the solubility of the resulting products. 

 

 

Figure 5-3: FTIR spectra of TMP- and PP-g-MWCNTs, along with pure TMP and PP spectra for 

reference. 

 

 

5.2.5.2 Effect of temperature, DCP concentration and solvent on TMP grafting 

density 

 

In order to increase the understanding of the cumyloxyl radicals behaviour, 

experiments from 1 to 6 (Table 5-2) correspond to the ones performed with TMP and 

1 wt% DCP relative to TMP in DMF as solvent at temperatures varying from 130 °C to 
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180 °C. The TGA traces for both the starting pure TMP and the TMP-grafted 

nanotubes are shown in Fig. 5-4. Pure TMP sample completely decomposes in the 

temperature range between 180 and 250 °C. For TMP-grafted nanotubes, one 

decomposition event is clearly visible at ca. 450 °C attributed to the loss of TMP 

(Fig. 5-4). In Fig. 5-4, we estimate the weight of grafted TMP to be around 8%. The 

TMP weight loss increases from 3.2% to 8.9% by increasing the reaction temperature 

from 130 °C to 160 °C (experiments 1–6, Table 5-2). The corresponding grafting 

densities can be calculated using the theoretical specific surface area (SSA) of 

MWCNTs defined as the following equation [34]: 

 

where de is the external diameter in nm and n is the number of shells. 

 

 

Table 5-2: Effect of temperature on grafting density for the preparation of TMP-g-MWCNTs (DCP 
conc.:1 wt%; DMF as solvent). 

Experiment Temperature (°C) TGA (wt loss %) Grafting density
a
 (mg m

−2
) 

1 130 3.2 0.15 
2 140 3.0 0.14 
3 150 7.8 0.38 
4 160 8.9 0.43 
5 170 6.3 0.30 
6 180 5.5 0.26 

a Based on calculations assuming a specific surface area of 225 m2 g−1 for MWCNTs.  

 

 

Figure 5-4: TGA data (under N2) for TMP-g-MWCNTs (experiment 3, Table 5-2) and the 
corresponding references of p-MWCNTs and pure TMP. 
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For our Graphistrength™ C100 MWCNTs, we obtain an average SSA of 225 m2 g−1. 

The calculated grafting densities are varying from 0.15 mg m−2 to 0.43 mg m−2 (Table 

5-2). The grafting density decreases from 0.43 mg m−2 to 0.26 mg m−2 for reaction 

temperatures above 160 °C (i.e. 170 °C and 180 °C, Table 5-2), suggesting that 

shorter half time life of DCP initiator favours competitive reactions which might lead 

to combination reactions. 

Peroxide concentration is also a key parameter in a radical grafting reaction so 

experiments with various DCP content (1 wt%–18 wt%, Table 5-3) were conducted at 

160 °C (optimal temperature for TMP grafting density). Experiments from 1 to 9 

(Table 5-3) show that the TMP weight loss determined by TGA slightly increases from 

8% to 15% by increasing initiator concentration from 1 wt% to 12 wt%. Comparable 

weight losses have been recently reported by Koval'chuck [23] for undecanyl-g-

MWCNTs but the current functionalization is feasible for a wider compound range. 

The corresponding grafting densities increase from 0.39 mg m−2 to 0.78 mg m−2 

respectively (Table 5-3).  

 

Table 5-3: Effect of DCP concentration on grafting density for the preparation of TMP-g-MWCNTs 
(160 °C, with DMF as solvent). 

Experiment DCP (wt% 
of TMP) 

EA (H 
content, %) 

EA (C 
content, %) 

Percent grafting 
(TGA weight loss) 

Grafting density
a
 

(mg m
−2

) 

     EA TGA 
1 1 – – 8 – 0.39 
2 1.5 3.25 88.75 8.9 0.52 0.43 
3 3 3.55 88.44 12 0.62 0.61 
4 4.5 3.71 88.3 13 0.67 0.66 
5 6 3.75 88.26 13 0.69 0.66 
6 9 3.78 88.21 13.5 0.70 0.69 
7 12 3.84 88.16 15 0.72 0.78 
8 15 3.79 88.20 13 0.70 0.66 
9 18 3.31 88.70 11 0.54 0.55 

EA of pristine MWCNTs shows: carbon  90%, hydrogen  1.4%. 
a Based on calculations assuming a specific surface area of 225 m2 g−1 for MWCNTs. 
 

Elemental analysis (EA) is also an indicator of degree of grafting and a good 

agreement between grafting densities calculated from EA and TGA analysis was 

obtained (e.g. 0.72 mg m−2 and 0.78 mg m−2 respectively, experiment 7, Table 5-3). 

For peroxide concentration higher than 12 wt%, the grafting density decreases from 

0.78 mg m−2 to 0.55 mg m−2 upon increasing DCP concentration up to 18 wt% (Table 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TXW-4XFPR20-3&_user=1697204&_coverDate=11%2F27%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000032458&_version=1&_urlVersion=0&_userid=1697204&md5=47ff7259bf6cb6c10efe7f6b8677da8d#tblfn2
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5-3). It suggests that the presence of higher concentration of radicals changes the 

reaction kinetics, possibly leading to combination reactions (Fig. 5-1). We can also 

speculate on the various radicals that can add to MWCNTs. However, according to 

the literature [19,35], the efficiency of addition of carbon radicals to MWCNTs is 

expected to be greater than that of oxygen radicals. 

 

The optimal DCP concentration for the TMP radical grafting reaction is 12 wt% at 

160 °C. However, the following experiments involve a usual low concentration of 

DCP (1.5 wt%) in order to prevent PP from degradation [36,37].  In order to check the 

influence of solvent onto TMP grafting density, experiments were therefore 

conducted at 160 °C with 1.5 wt% DCP in two kinds of solvents: DMF and DCB, which 

is a good solvent for PP at high temperatures. The initial visual aspect of the 

MWCNTs dispersions in DMF and in DCB is somewhat different. The dispersion of 

MWCNTs is totally unstable in DMF due to poor hydrogen bonding ability whereas 

MWCNTs take some time before settling down in DCB solution showing an affinity 

(though very low) with this solvent. After the radical grafting reaction in these 

solvent, it is observed that DCB ensures better TMP grafting density than DMF 

(0.75 mg m−2 and 0.43 mg m−2 from TGA respectively, Table 5-4) which may be 

attributed to the better miscibility of TMP with DCB. Using TMP as solvent, the 

grafting density increases to 0.92 mg m−2 suggesting a poorer TMP-based radical 

attack onto the sp2 carbon of the MWCNTs in dilute media. 

 

Table 5-4: Influence of solvent on TMP grafting density onto MWCNTs (DCP conc.:1.5 wt%). 

Solvent EA (H content, %) TGA (wt loss %) Grafting density (mg m
−2

) 

   EA TGA 
DMF 3.25 8.9 0.52 0.43 
DCB 3.81 14.4 0.71 0.75 
TMP (“bulk” = “Master-batch”) 4.15 17.2 0.83 0.92 

 

In the presence of a thiol (i.e. DT), a hydrogen transfer process is required between 

cumyloxyl radicals and/or radicals located onto the MWCNTs and the thiol 

derivative. Then, the generated thiyl radicals can react with unsaturated compounds, 

such as MWCNTs, leading to DT-g-MWCNTs. The experiment was conducted at 

160 °C in DMF with 1.5 wt% DCP and a grafting density of 0.20 mg m−2 was calculated 
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from TGA. This value is approximately lowered by a factor 2 in comparison with the 

TMP grafting density (e.g. 0.43 mg m−2, Table 5-4) suggesting that the efficiency of 

addition of carbon radicals to MWCNTs is greater than that of sulfur radicals, which 

is well-known for C60 [19,35] and a low occurrence of hydrogen transfer reactions 

between DT and radical species. 

 

It is expected that this functionalization approach will provide convenience and 

versatility in building up PP architecture on CNTs. For the first time, PP has been 

grafted onto MWCNTs through this radical grafting reaction, carried out under 

similar experimental conditions (1.5 wt% DCP, 160 °C) and using 1,2-dichlorobenzene 

(DCB) as solvent able to solubilize PP partially at elevated temperature. The 

corresponding PP-grafted nanotubes were analysed by TGA after a purification by 

soxhlet extraction in DCB. However, it was not possible to obtain reproductible 

results with weight losses varying from 50% to 80% for the above-mentioned 

experiment. This behaviour may be attributed to the purification procedure which 

does not permit to remove all the free PP chains. One may also speculate on the 

degradation behaviour of PP through the well-known β-scission reaction occurring in 

the presence of radical species therefore we were not able to give a PP grafting 

density. Nevertheless, the microstructure of the corresponding nanocomposites in 

PP matrix is discussed ahead in Section 6.2.5.4. 

 

5.2.5.3 Morphology and solubility 

 

As an additional evidence for the functionalization of TMP and PP onto MWCNTs, 

TEM pictures of the sonicated p-MWCNTs, TMP-g-MWCNTs and PP-g-MWCNTs are 

shown in Fig. 5-6.   
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Figure 5-5: Solubility behaviour of (1) DT-g-

MWCNTs, (2) DCP-g-MWCNTs, (3) TMP-g-
MWCNTs (0.92 mg m

−2
), (4) TMP-g-MWCNTs 

(0.75 mg m
−2

), (5) TMP-g-MWCNTs 
(0.43 mg m

−2
), (6) MWCNTs in various solvents.  

Figure 5-6: TEM micrographs of (A) bare 

MWCNTs, (B) TMP-g-MWCNTs, (C) PP-g-
MWCNTs. 

 

 

TEM analysis of TMP- and PP-g-MWCNTs exhibit predominant individual CNTs 

completely separated from the starting bundle. It demonstrates that the 

functionalization leads to better debundling of MWCNTs. Moreover, the surface of 

the p-MWCNTs seems to be smooth without any extra phase adhering to them 

(Fig. 5-6a) whereas the surface of TMP- and PP-g-MWCNTs is rough (Fig. 5-6b and c). 

Images reveal the presence of bumps on the sidewalls of the tubes. According to the 

literature [29,32,38,39,40], this morphology can be attributed to alkyl moieties 

attached to the tube wall.  
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Organic solubility can be achieved by appending DT and TMP alkyl chains onto the 

MWCNTs and the morphology might better be understood considering the 

behaviour of raw- and functionalized MWCNTs in various solvents. The visual aspect 

of the dispersions is significantly different depending on the solvent and covalent 

functionalization.  

 

Solutions were prepared by adding 20 mg of the samples into the same amount of 

various solvent followed by sonication for 15 min at 20 W and then leaving them free 

standing for one month. Room temperature solubility in various solvent were 

determined for TMP-g-MWCNTs with grafting densities varying from 0.43 mg m−2 to 

0.92 mg m−2 and DT-g-MWCNTs with a grafting density of 0.20 mg m−2 (Table 5-5). 

While raw MWCNTs form aggregates/bundles and settled down in most solvents, 

MWCNTs covered with TMP chains form stable colloidal suspensions in Acetone, 

THF, DMF and DCB (Fig. 5-5).  

 

Table 5-5: Room temperature solubilities (in mg. mL
−1

) of TMP- and DT-g-MWCNTs in various 

solvents at given grafting densities. 

Solvent DT-g-MWCNTs 
0.20 mg m

−2
 

TMP-g-MWCNTs 
0.92 mg m

−2
 

TMP-g-MWCNTs 
0.75 mg m

−2
 

TMP-g-MWCNTs 
0.43 mg m

−2
 

Acetone 5.4 23.2 13.1 9.2 
THF N/D 20.9 13.1 8.3 
DMF 5.1 8.7 6.6 6.3 
ETOH 26.5 N/D N/D 4.8 
DCB N/D 18.2 12.2 5.8 
Xylene N/D N/D N/D 18.8 

N/D: not determinable. 

N.B. Pristine MWCNTS are not soluble in any of these solvents.  

These suspensions are very little disturbed with time indicating that the long alkane 

organic groups covalently linked onto the sidewalls of MWCNTs ensure fine 

dispersion. In addition, contrary to TMP-g-MWCNTs, DT-g-MWCNTs give stable 

suspensions in EtOH suggesting that DT-g-MWCNTs suspension contains less 

remaining nanotubes aggregates in hydrophilic solvent. In this latter case, the thiyl 

grafting groups may slightly increase the polarity of the MWCNTs. The unstable DT-g-

MWCNTs suspension in both THF and DCB solvents may be attributed to the lower 

DT grafting density in comparison with the TMP one (e.g. 0.20 mg m−2 and 
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0.43 mg m−2, respectively) while various accounts suggest that surface tension 

[29,41,42] and dielectric constant [29,43] of the solvent are key parameters to make 

stable suspensions. The reported solubilities in Table 5-5 highly depend on degree of 

functionalization and solvent. For TMP grafted MWCNTs, the best solubilities are 

obtained for samples prepared from a radical grafting reaction in bulk. In the latter 

case, we assume that the higher TMP grafting density (e.g. 0.92 mg m−2, Table 5-5) 

explains this result. As a general rule, in most solvent the solubility of TMP-g-

MWCNTs increases with increasing the TMP grafting density. These solubility values 

are higher than those of pentadecane-g-MWCNTs [29] and octadecylamine modified 

MWCNTs [43] in polar solvent (e.g. Acetone, DMF and THF). For example, the high 

grafting density of TMP onto MWCNTs (e.g. 0.92 mg m−2) permit to obtain solubilities 

of 8.7, 23.2 and 20.9 mg mL−1 in DMF, Acetone and THF, respectively while 

pentadecane-g-MWCNTs display a solubility of 1.1 mg mL−1 in Acetone and are not 

soluble in THF [29]. Surprisingly, we found unstable TMP-g-MWCNTs dispersions in 

xylene when the TMP grafting density is higher than 0.43 mg m−2. In addition, the 

solubility of the DT-g-MWCNTs is lower than that of TMP-g-MWCNTs in all solvent 

except in ethanol, as described above. 

 

5.2.5.4 PP/PP-g-MWCNTs nanocomposites 

 

PP coated MWCNTs have been dispersed within a commercially available PP matrix 

using a contra-rotating Haake Rheomixer. The amount of nanofiller in the final 

composites has been fixed to 3 wt%. Morphological analysis is very important for the 

evaluation of dispersion and it was examined by using scanning electron microscopy 

(SEM). For a simple melt blend of PP with untreated MWCNTs, SEM images of the 

resulting material only show clusters of a few tens micrometers of diameter (Fig. 5-7) 

evidencing a poor interfacial adhesion in the material, as reported by Lee [19] for 

untreated MWCNT/PP composites MWCNTs containing of 2 wt%.  
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Figure 5-7: SEM micrographs of PP/MWCNTs 

composites with MWCNTs loading of 3 wt%.  

Figure 5-8: SEM micrographs of PP/PP-g-

MWCNT composites with MWCNTs loading of 
3 wt%.  

 

 

In some areas, the concentration of neat-MWCNTs is high and the nanotubes are 

entangled together whereas none of neat-MWCNTs can be found in other areas. The 

interfacial bonding at the interface PP/MWCNTs composite is expected to prevent 



Polypropylene Grafting onto Nanotubes 

5 – 20  

 

MWCNTs from agglomeration. SEM images of the PP/PP-g-MWCNTs composites 

MWCNTs containing of 3 wt% (Fig. 5-8) demonstrate that there are still some areas 

where PP-g-MWCNTs are not found which is obviously connected with improper 

filler distribution. Nevertheless, sizes of the aggregates are slightly reduced in 

comparison with those of untreated MWCNT/PP composites indicating that the 

agglomerates have been partly destroyed through the functionalization. It is then 

clear from these results that the grafting of PP onto MWCNTs provides a low steric 

barrier against the strong intermolecular Van der Waals interactions among 

nanotubes within the PP matrix. 

 

5.2.6 Conclusion 

 

MWCNTs were successfully functionalized through a simple radical grafting approach 

based on the use of dicumyl peroxide as an alkane hydrogen abstractor. Raman, FTIR 

and TGA data attested for successful functionalization of MWCNTs by TMP and DT. 

For experiments conducted in DMF at 160 °C with 1.5 wt% DCP, TMP and DT grafting 

densities were as high as 0.43 and 0.20 mg/m2, respectively. The lower grafting 

density obtained for DT may be attributed to the lower efficiency of addition of 

sulfur radicals to MWCNTs. Moreover, TEM images showed the presence of 

individual MWCNTs with a characteristic rough surface. TMP grafted MWCNTs 

exhibited dispersibility in various organic solvents with solubilities varying from 

4.8 mg/mL in ethanol to 23.2 mg/mL in acetone. SEM images of the PP-g-MWCNTs 

nanocomposites with filler loadings of 3 wt% in PP matrix did not show a significant 

improvement in MWCNTs dispersion within the PP matrix although sizes of the 

aggregates were slightly reduced. Future work will focus on the influence of melt 

processing conditions (shear/stress, mixing time…) on PP-g-MWCNTs dispersibility in 

order to obtain deep insight into the microstructural features. 
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6.1  Conclusions  

 

In the frame of this study, an original method of preparing polyolefin/nanotubes 

composites is developed. This convenient method can be employed to graft 

polyolefin on nanotubes during the process of extrusion.  

 

The most frequent method for preparing polymer nanotubes composites has been 

mixing nanotubes and polymer in a suitable solvent and to evaporate the solvent to 

form composite film. But to increase the advantages at its best, one needs: (i) high 

interfacial area between nanotubes and polymer; and, (ii) strong interfacial 

interaction. Unfortunately this solvent technique does not help much in achieving 

these targets; and as a result a nanocomposite having properties much inferior to 

theoretical expectations are obtained.  

 

In order to obtain higher contact area between nanotubes and polymer, the issue of 

dispersion needs to be addressed. Uniform dispersion of these nanotubes produces 

immense internal interfacial area, which is the key to enhancement of properties of 

interest. On the other hand modification of nanotubes surface through 

functionalisation is required for creating an effective interaction with the host matrix 

and to make nanotubes soluble and dispersible.  The idea of grafting PE or PP with 

the help of peroxide during extrusion is exciting. We envisaged that cumlyoxly radical 

generated by thermolysis of DCP would abstract hydrogen from polyolefin chains, 

thus creating polyolefin macroradicals. These macroradicals could add to the 

unsaturated carbon bonds on the surface of the nanotubes. The upside of this 

strategy is that radicals have short lifetimes which make the procedure possible in an 

extruder where the residence time is generally low. On the contrary, the downside is 

the low selectivity of radicals. During the reacting there exist a competition between 

radical combination reactions and radical addition reactions.  

 

In first part model compound study we selected pentadecane as our model 

compound as pentadecane represents the chemical structure of PE. We carried out 

the reaction in a glass reactor to graft PE onto nanotubes. Different possibilities of 
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radical combination and addition made the reaction complex. We used GC-MS to 

follow the reaction pathways and by adjusting temperature and concentration of 

reactants we acquired the maximum grafting of pentadecane (i.e. 30 wt %). Despite 

optimising the reaction conditions we observed that the combination of radicals 

especially pentadecane radicals hinders their addition to nanotubes.  

 

This method provides a simple way to directly incorporate organic moieties onto the 

nanotubes surface leading to pentadecane-grafted MWCNTs with a grafting density 

as high as 1.46 mmol/g at 150 °C. At higher temperatures, the grafting density 

decreases because the β-scission reaction of cumyloxyl radical increases as the 

temperature increases, leading to the formation of methyl radicals. These latter 

preferentially react by combination whereas cumyloxyl radicals are more prone to 

hydrogen abstraction from pentadecane. Pentadecane-grafted MWCNTs have 

exhibited good dispersibility in various organic solvents and we showed that a 

grafting density of 1.464 mmol/g leads to a solubility of 19.2 mg/mL in 

dichlorobenzene. 

 

In order to suppress the combination of radicals we used TEMPO as a radical 

scavenger in second part of the model compound study. The use of TEMPO proved 

beneficial as it enhanced the grafting density up to 16 wt % (from 30 to 36 wt %). We 

used Raman spectroscopy to qualitatively monitor the changes in the chemistry of 

nanotubes. The extent of grafting was calculated through TGA and verified by 

elemental analysis. 

 

Solubility analysis showed three states of dispersion: sedimented—as in case of p-

MWCNTs in all solvents despite sonication; swollen—as in case of cumyloxyl-g-

MWCNTs and penta-g-MWCNTs in chloroform and THF; and dispersed—as in case of 

penta-g-MWCNTs in DMF, toluene, DCB and xylene. The stability of pentadecane-

grafted MWCNTs is disturbed in polar solvents such as acetone, chloroform and THF, 

however, pretty good solubility in DMF, toluene, DCB and xylene. 
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After establishing and optimised model for PE grafting we performed this procedure 

to graft PE onto nanotubes. The results were interesting however the degree of PE 

grafting remained lower than the model — 22% as compared to 30% in case of 

pentadecane. End functionalised PE can also be used for PE grafting onto nanotubes. 

To exploit this option we obtained TEMPO and thiol end functionalised PE. These end 

functionalised nanotubes were then grafted onto nanotubes in DCB solvent. TEM 

pictures showed a layer of considerable thickness around the periphery of the 

nanotubes demonstrating successful functionalisation.  

 

In order to follow the same strategy for nanotubes functionalisation with PP. We 

selected tetramethylpentadecane as a model compound for PP and we grafted it to 

nanotubes along the similar way. We successfully grafted 8 wt % of 

tetramethylpentadecane on to nanotubes which was characterised by IR and Raman 

spectroscopy. TMP grafted MWCNTs exhibited dispersibility in various organic 

solvents with solubilities varying from 4.8 mg/mL in ethanol to 23.2 mg/mL in 

acetone. SEM images of the PP-g-MWCNTs nanocomposites with filler loadings of 

3 wt% in PP matrix did not show a significant improvement in MWCNTs dispersion 

within the PP matrix although sizes of the aggregates were slightly reduced. 

 

 

6.2 Perspective 

 

This method is believed to provide ease in fabricating polyolefin/nanotubes 

composites for various applications. We have performed this procedure in a glass 

reactor; however, as we envisaged, this process needs to be carried out in an 

extruder. Experiments are underway in this connection. Secondly, dispersion is one 

of the critical factors that control the properties of the composite. We have seen 

qualitatively through solubility and TEM analysis that nanotubes were not in form of 

agglomerates after functionalisation. However this needs to be verified 

quantitatively through rheological measurement. Another interesting idea is to mix 

PE grafted nanotubes into polymer matrix. 
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In summary, future study would involve performing this procedure in an extruder. 

We expect that we will have to optimise this procedure for extrusion where mixing 

conditions and time limits will be different. 
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Introduction 

Les nanotubes de carbone (NTCs) sont des charges particulièrement intéressantes 

car ils présentent des facteurs de forme (longueur/diamètre) très élevés, jusqu’à 10 

000. Ainsi, ils permettent la formation de chemins conducteurs pour des 

concentrations inférieures à 5 % alors que des valeurs supérieures à 20 % sont 

nécessaires pour des charges de noir de carbone. Cependant, le développement de 

ces applications à haute valeur ajoutée a été freiné par les problèmes de mise en 

œuvre des NTCs (résultant de la difficulté de les disperser dans un milieu polymère) 

et par la formation d’agrégats de nanotubes en « fagots », ne permettant pas 

l’obtention de mélanges homogènes. La solution réside dans la fonctionnalisation 

des nanotubes avec des chaînes polymères afin de réduire l’effet des interactions 

entre NTCs et d’assurer une meilleure comptabilisation avec le polymère hôte au 

cours du mélange. Ici, nous nous sommes intéressés à la fonctionnalisation des 

nanotubes de carbone par des polyoléfines en utilisant une procédure de greffage 

radicalaire de type « grafting onto ». La réaction radicalaire a été effectuée en 

présence de peroxyde de dicumyle qui est utilisé en tant qu’abstracteur d’atomes 

d’hydrogène. L’inconvénient majeur du greffage radicalaire est sa non sélectivité liée 

à une durée de vie très courte des radicaux ce qui engendre des réactions 

secondaires de couplage et de β-scission. Dans un premier temps, nous avons donc 

fait une étude modèle en milieu pentadécane pour faciliter l’analyse du milieu 

réactionnel par des techniques conventionnelles.  

 

1. Greffage de pentadécane sur nanotubes de carbone 

Le système modèle permettant une étude du greffage radicalaire du polyéthylène 

sur nanotubes de carbone est donc défini par une chaîne hydrocarbonée linéaire (le 

pentadécane) et des nanotubes de carbone multi-walled  en présence d’un amorceur 

radicalaire (le peroxyde de dicumyle, DCP) (Figure 1). 
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Figure 1 : Principales réactions chimiques impliquées lors du greffage radicalaire du pentadécane 
sur nanotubes de carbone 

 

La nature chimique des radicaux générés par la décomposition de l’amorceur 

joue un rôle essentiel dans la sélectivité des réactions radicalaires. Tandis que les 

radicaux alcoxyles ont tendance à arracher des atomes d’hydrogène, les radicaux 

centrés sur le carbone comme les radicaux méthyles s’additionnent davantage à une 

double liaison et/ou se recombinent avec d’autres radicaux. Le DCP a été choisi en 

fonction des conditions du procédé d’extrusion, où la température est relativement 
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élevée, de 150 à 200°C. Les deux principaux facteurs à considérer sont le temps de 

demi-vie et la nature chimique de l’amorceur radicalaire. Le temps de demi-vie (t1/2) 

de l’amorceur, doit être idéalement court par rapport au temps de séjour dans 

l’extrudeuse.  Si le temps de séjour vaut cinq fois le temps de demi-vie, alors la 

consommation de l’amorceur est supérieure à 97%. Notre choix s’est donc porté sur 

le peroxyde de dicumyle (t1/2=1min à 178°C). Le tableau 1 résume les principales 

expériences qui ont été réalisées. 

Tableau 1: Conditions expérimentales du greffage de pentadécane sur MWCNTs. 

Echantillon Constituants Température, Temps Produit attendu 

A MWCNTs (50mg) +DCP(0.23g) 

+Pentadecane (7.69g) 

150°C for 6 hours Penta-g-MWCNTs 

B-1 Blank experiment:  DCP(0.23g) 

+Pentadecane (7.69g) 

150°C for 6 hours Interlinked pentadecane 

B-2 Blank experiment:  MWCNTs 

(50mg) +DCP(0.23g) + DMF (5 mL) 

150°C for 6 hours Cumyloxyl-g-MWCNTs 

C MWCNTs (50mg) +DCP(0.23g) 

+Pentadecane (7.69g) 

At different 

temperatures for 6 

hours 

Penta-g-MWCNTs 

D MWCNTs (50mg) +DCP(different 

ratios ) +Pentadecane (7.69g) 

150°C for 6 hours Penta-g-MWCNTs 

 

Il est à noter que l’analyse GC-MS de l’échantillon B-1 (Tableau 1) a mis en évidence 

la formation de Aceto et 2p2p (Figure 1) et de chaînes pentadecane branchées 

caractéristiques de la présence de réactions de couplage radicalaire. L’ajout dans le 

milieu réactionnel de nanotubes de carbone (échantillon A, Tableau 1) a diminué la 

quantité de 2p2p formé c’est à dire que la réaction de B-scission a été défavorisée au 

profit d’une addition radicalaire de radicaux cumyloxy sur les MWCNTs (Figure 1). Le 

greffage radicalaire de pentadecane sur les nanotubes de carbone a été mis en 

évidence de façon qualitative par spectroscopie Raman et l’analyse quantitative par 

analyse élémentaire et analyse thermogravimétrique  a permis de calculer une 

densité de greffage de 1,42mmol/g.  

 

 Nous avons aussi étudié l’effet de la température sur la densité de greffage. 

Nous avons donc fait varier la température de la réaction de 140°C à 180°C  et, pour 
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une concentration en DCP de 3% en poids, nous avons observé que les densités de 

greffage variaient de 1,18 à 1,63 mmol/g pour des températures respectives de 

140°C et 150°C (Tableau 2). Pour des températures supérieures à 160°C, la densité 

de greffage diminue jusqu’à 0,47mmol/g à 180°C avec formation d’insolubles 

(Tableau 2). Ces résultats indiquent que la réaction de B-scission des radicaux 

cumyloxy est favorisée à haute température  au détriment de la réaction 

d’abstraction d’atomes d’hydrogène sur le pentadécane. 

 

Tableau 2: Effect de la temperature de reaction sur la densité de greffage avec 3% en poids de DCP. 

échantillon T 
(°C) 

Aceto

pp

A

A 22  
pp

Penta

A
A

22

 
Percent 
grafting

a 

(perte 
de poids 
en ATG) 

Nombre de 
chaines par 

CNT
b
 

densité de greffage
 b

 

(mg.m
-2

) mmol.g
-1

 

C1 140 ~9 ~4 25 62800 0.108 1.180 

C2 150 ~10 ~4 31 77900 0.134 1.463 

C3 160 ~9 ~5 27 67800 0.117 1.278 

C4 170 ~4 ~9 16 40200 0.069 0.754 

C5 180 ~3 ~15 10 25100 0.043 0.470 

a 
Basé sur les resultats ATG 

b 
Basé sur un calcul en utilisant les données suivantes : CNT longueur = 5µm and diamètre de 13nm. 

 

 

En considérant une température optimale de réaction de 150°C, nous avons 

ensuite étudié l’influence de la concentration en DCP sur la réaction de greffage. En 

faisant varier la concentration en DCP de 0,5% en poids à 5% en poids, nous avons 

observé que la densité de greffage du pentadecane diminuait de 1,46mmol/g à 

0,37mmol/g par augmentation de la concentration en DCP de 3% en poids à 5% en 

poids. Cette tendance a été attribuée à l’augmentation des réactions de couplage 

inter-radicaux par augmentation de la concentration en radicaux dans le milieu. Les 

conditions expérimentales optimales pour le greffage du pentadécane sur NTCs sont 

donc : DCP=3w% et T=150°C. 

 

La stabilité des suspensions de nanotubes de carbone greffés pentadécane 

dans des solvants tels que le DMF, le Toluène, le Dchlorobenzène et le Xylène a aussi 
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été appréhendée. Pour une densité de greffage de 1,46mmol/g, les solubilités ont 

varié de 1.1mg/mL (dans l’acétone) à 19.2mg/mL dans le dichlorobenzène. 

 

L’état de dispersion des nanotubes de carbone fonctionnalisés a été exploré 

par microscopie électronique à transmission et les clichés montrent une diminution 

de la taille des agrégâts après le greffage de pentadécane (Figures 2 et 3). 

 

Figure 2 : Cliché MET des MWCNTs nus 

 

 

 

 

Figure 3 : Clichés MET des MWCNTs greffés pentadécane 
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L’étape suivante a été d’essayer de maitriser les réactions secondaires observées lors 

de la réaction de greffage radicalaire en introduisant dans le milieu des pièges à 

radicaux de type nitroxyde. 

 

2. Greffage de pentadécane sur nanotubes de carbone en présence de 

radicaux nitroxyles 

 

L’introduction de radicaux nitroxyles (TEMPO) au cours de la réaction de 

greffage du pentadecane sur les NTCs a été effectuée afin de diminuer les réactions 

de combinaison entre les radicaux de manière à augmenter la densité de greffage. 

L’utilisation de la chromatographie en phase gazeuse couplée à la spectrométrie de 

masse a permis de confirmer le rôle de piège à radicaux du TEMPO avec la formation 

d’espèces H3C-TEMPO et la présence d’une très faible quantité d’espèces branchées 

(Figure 4).  

 

 

Figure 4 : Chromatogramme GC-MS du filtrat de la reaction de greffage du pentadecane en 
présence de TEMPO à T=160°C 

 

Contrairement aux réactions en l’absence de TEMPO, la température optimale de 

greffage a été d’ici de 160°C pour une densité de greffage de 1,18mmol/g. 

 

 La présence de groupes TEMPO greffés sur les nanotubes de carbone a aussi 

été montrée par des tests de solubilités dans le THF. En effet, les suspensions de 

NTCs ne sont stables dans le THF que si la réaction de greffage du pentadécane a été 
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effectuée en présence de TEMPO c’est à dire que la polarité des groupes TEMPO 

fixés sur les NTCs les stabilise (Figure 5). 

 

 

Figure 5: Stabilité des suspensions de MWNTCs dans le THF:  MWCNTs nus après 5 min (a); 
pentadécane greffé sur MWCNTs après une semaine (b); pentadécane et TEMPO greffés sur 

MWCNTs après un mois (c). 

 

3. Greffage radicalaire de polyéthylène (PEBD) sur nanotubes de carbone 

par diffrentes voies 

 

Suite à l’étude modèle, nous avons exploré trois voies de greffage de PEBD sur NTCs :  

1) fonctionnalisation radicalaire des NTCs par le PEBD sans TEMPO (échantillon 2, 

Tableau 3),  

2) greffage radicalaire de PEBD en présence de TEMPO (échantillon 3, Tableau 3, 

Figure 6),  

3) greffage radicalaire en présence d’oligomères de PE fonctionnels (échantillons 4-5, 

Tableau 3, Figure 7). 
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Tableau 3: Liste des échantillons et descriptif des conditions expérimentales 

 
Echantillon Description Acronyme Composition des réactifs 

1 Crosslinked LDPE PEc LDPE: 1g 

DCP: 0.03g 

Solvent: DCB 50ml 

2 MWCNTs functionalisation 

by LDPE using DCP 

PE-g-MWCNTs MWCNTs: 50mg 

LDPE: 1g 

DCP: 0.03g 

Solvent: DCB 50ml 

Samples 2-A and 2-B were prepared with PE having mol. wt. ~1400 and 700 g.gmol
-1

 
respectively instead of LDPE. 

3 MWCNTs functionalisation 

by LDPE using DCP and 

TEMPO 

PE.TEMPO-g-MWCNTs MWCNTs: 50mg 

LDPE: 1g 

DCP: 0.03g 

TEMPO: 0.25g 

Solvent: DCB 50ml 

4 MWCNTs grafted via 

TEMPO functionalised PE  

PEf-TEMPO-g-MWCNTs MWCNTs: 50mg 

PEf-TEMPO: 1g 

Solvent: DCB 50ml 

5 MWCNTs grafted via SH 

functionalised PE  

PEf-SH-g-MWCNTs MWCNTs: 50mg 

DCP: 0.03g 

PEf-SH: 1g 

Solvent: DCB 50ml 

 

 

 

Figure 6: Greffage radicalaire de PEBD sur MWCNTs en présence de TEMPO 
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(a) 

 

  (b) 

Figure 7: Reaction scheme for end functionalised PE grafting onto MWCNTs: (a) via PE-TEMPO; (b) 
via PE-SH 

 

La reaction de greffage du PE sur NTCs a été montrée qualitativement par 

spectroscopie raman pour tous les échantillons concernés. 

 

L’analyse quantitative a été réalisée par analyse thermogravimétrique et par analyse 

élémetaire. Les densités de greffage obtenues sont rassemblées dans le tableau 4. 
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Tableau 3. Effect of the grafting procedure on the degree of PE grafting. 

Echantillon Analyse 

élémentaire 

wt% 

Densité de geffage du PE (TGA) 

wt% mg.m
-2

 μmol.m
-2

 

2 

PE-g-MWCNTs 
H: 3.9 20 1.1 0.012 

3 

PE.TEMPO-g-MWCNTs 

N: 0.5 

H:4.9 
24 1.4 0.015 

4 

PEf-TEMPO -g- MWCNTs 

N: 0.3 

H: 4.8 
36 2.5 1.78 

5 

PEf-SH-g-MWCNTs 

S: 0.8 

H: 3.8 
34 2.3 2.8 

N.B. Analyse élémentaire des MWCNTs shows: N, 0.78%; O, 0.89%; H, 0.30%; P, 1.81%.; S, <0.2%. 

Densités de greffage en mg.m
-2 

basées sur l’utilisation d’une surface spécifique de 225 m
2
.g

-1
 pour 

les MWNTCs.
 

 

Les densités de greffage obtenues varient de 1,1mg.m-2 ou 0.015mol.m-2 

(échantillon 2, Tableau 3) à 2,5mg.m-2 (échantillon 4, Tableau 3). L’incorporation de 

TEMPO dans le milieu réactionnel de l’échantillon 2 permet d’augmenter légèrement 

sa densité de greffage à 1,4 mg.m-2 (échantillon 3, Tableau 3). Par contre, l’utilisation 

d’oligomères de polyéthylène à terminaison de type nitroxyde et de type  thiol 

permet d’améliorer la densité de greffage du PE d’environ un facteur 2.  

 

Des expériences de pyrolyse couplées à la GC-MS (Figure 8) sur les 

échantillons 3,4 et 5 (Tableau 3), ont permis de montrer la présence de fragments à 

base de TEMPO dans les échantillons 3 et 4 et de souffre dans l’échantillon 5.   
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Figure 8 : Pyrogramme du PE.TEMPO-g-MWCNTs (échantillon 3, Tableau 3) dans la gamme de 
température 100-600°C . Ion current vs time pour m/z 74, 84, et 112 correspondants au TEMPO, 

C4H8 et C5H10 respectivement. 

 

Par ailleurs, les images MET (Figure 9) ont clairement clairement indiqué, quelque 

soit l’échantillon, que les NTCs ont été uniformément recouverts de la couche de 

polyéthylène, formant des structures de type cœur NTCs-écorce PE avec une 

épaisseur variant de 1,5 nm à 4.1nm.  

 

 

Figure 9: TEM pictures of p-MWCNTs (0); PE-g-MWCNTs (2); PE.TEMPO-g-MWCNTs (3) ; PEf-TEMPO-
g-MWCNTs (4); PEf-SH-g-MWCNTs (5). 

 

Selon la même procédure de greffage radicalaire, le polypropylène a été greffé sur 

les NTCs. 
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4. Greffage radicalaire de polypropylène (PP) sur nanotubes de carbone 

 

En utilisant la même stratégie que celle utilisée pour le greffage de PE sur NTCs, nous 

avons étudié le greffage de PP sur NTCs. La première étape a été de réaliser une 

étude modèle en simulant le polypropylène par du tétraméthylpentadecane (TMP) 

(Figure 10). 

 

 

Figure 10: Greffage du TMP sur NTCs en présence de DCP. 

 

Les conditions optimales de greffage du TMP ont été obtenues avec une 

température de 160°C et une concentration en DCP de 12% en poids. La densité de 

greffage obtenue dans ces conditions expérimentales a été de 0,78mg.m-2. 

Néanmoins, afin de limiter la dégradation très probable du PP (réaction de B-

scission)en présence d’une forte concentration en DCP, nous avons choisi de 

poursuivre l’étude avec une concentration classique en DCP de 1,5% en poids. 

 

 L’effet de solvant sur la réaction de greffage du TMP a été appréhendé dans le 

diméthylformamide (DMF), le dichlorobenzène (DCB) et le TMP (procédé « en 

masse »). Les densités de greffage obtenues ont été de 0,43 mg.m-2, 0,75mg.m-2 et 

de 0,92mg.m-2, respectivement. L’addition des radicaux issus du TMP sur les NTCs est 

donc défavorisée en milieu dilué. 
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 L’utilisation du dodécanethiol (DT) à la place du TMP pour générer des 

radicaux localisés sur les bouts de chaîne après une réaction de transfert n’a pas 

permis d’amélorer la densité de greffage et bien au contraire. En effet, dans ce cas 

nous avons obtenu une densité de greffage voisine de 0,2 mg.m-2. Cette faible valeur 

montre que l’addition des radicaux soufrés sur les NTCs est moins efficace que celle 

des radicaux carbonés ce qui a déjà été démontré sur C60. 

  

Le comportement des NTCs greffés TMP, DT et DCP en solution a ensuite été étudié 

dans différents solvants (Figure 11). 

 

 

Figure 11 : Comportement des suspensions de (1) DT-g-MWCNTs, (2) DCP-g-MWCNTs, (3) TMP-g-
MWCNTs (0.92 mg m

−2
), (4) TMP-g-MWCNTs (0.75 mg m

−2
), (5) TMP-g-MWCNTs (0.43 mg m

−2
), (6) 

MWCNTs  dans différents solvants. 

 

Les NTCs nus donnent des suspensions instables dans la plupart des solvents mais les 

NTCs greffés TMP donnent des suspensions stables dans l’acetone, le THF, le DMF et 

le DCB (Figure 11). Contrairement aux NTCs greffés TMP, les NTCs greffés DT ont 

donné des suspensions stables dans l’éthanol suggérant que l’atome de souffre 

présent augmente la polarité des NTCs. L’insatbilité des suspensions de NTCs greffés 

DT dans le THF et le DCB peut être attribuée à la plus faible densité de greffage du 

DT par rapport à celle du TMP (0,20 mg m−2 et 0,43 mg m−2, respectivement). La 
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haute densité de geffage du TMP sur les NTCs (0.92 mg m−2) a permis d’obtenr des 

valeurs de solubilité de 8,7 ; 23,2 et 20,9 mg mL−1 dans le DMF, l’acetone et le THF, 

respectivement alors que  le pentadecane greffé NTCs a une solubilité de 

1.1 mg mL−1 dans l’acetone et n’est pas soluble dans le THF. 

 

 Pour la première fois, le PP a ensuite été greffé sur les NTCs à 160°C en 

présence de 1,5% en poids de DCP dans une solution de DCB. L’analyse ATG des NTCs 

greffés PP (purifiés par une extraction au soxlhet de DCB) n’a pas permis d’obtenir 

des résultats reproductibles. Cependant, nous avons quand même étudié la 

morphologie de ces NTCs greffés PP par microscopie électronique à transmission 

(Figure 12). 

 

Les images MET révèlent la présence de nanotubes de carbone individualisés pour 

les NTCs greffés TMP ainsi que ceux greffés PP ce qui montre que l’étape de 

fonctionnalisation permet de désagréger les NTCs initiaux. De plus, les images 

indiques la présence de « bosses » sur les NTCs ce qui est carctéristique de la 

présence de groupes organiques sur les NTCs.nL’étude par microscopie électronique 

à balayage (SEM) de nanocomposites PP-g-MWCNTs dispersés à 3t% en poids n’a pas 

montré une amélioration significative de la dispersion des NTCs dans la matrice PP 

même si la taille des agrégâts de NTCs a été réduite (Figures 13a et 13b). 
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Figure 12: Images MET de (A) MWCNTs nus, (B) TMP-g-MWCNTs, (C) PP-g-MWCNTs. 

 

 

 

 

 
Figure 13a: images SEM de composites 

PP/MWCNTs avec 3w% de MWCNTs 
Figure 13b: images SEM de composites PP/PP-g-

MWCNTs avec 3w% de MWCNTs 
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Conclusions 

 

L'idée de greffer le PE et le PP sur les nanotubes de carbone (NTCs) en présence 

peroxyde de dicumyle (DCP) pendant une opération d'extrusion est un challenge. 

Nous avons envisagé que les radicaux cumlyoxly issus de la thermolyse du DCP 

seraient capables d’arracher des atomes d’hydrogène sur les chaînes de polyoléfine 

pour générer des macroradicaux susceptibles de s’additionner sur les NTCs. L’intérêt 

majeur de cette voie radicalaire est que la durée de vie très courte des radicaux est 

compatible avec un temps de séjour faible en extrudeuse. Par contre, la faible 

chimiosélectivité des espèces radicalaires formées impliquent la présence de 

nombreuses réactions secondaires (coupure de chaînes, réticulation, combinaison).  

Pour optimiser la réaction de greffage de PE sur NTCs, nous avons donc 

réalisé une étude modèle en sélectionnant le pentadecane pour simuler le PE.  

L’étude GC-MS des produits formés au cours de la réaction de greffage ont permis 

d’optimiser les conditions expérimentales de greffage qui nous ont permis d’obtenir 

une densité de greffage du pentadecane sur NTCs de 1.46 mmol/g at 150 °C. A des 

températures plus élevées,  nous avons constaté une diminution de la densité de 

greffage à cause de la réaction de β-scission reaction des radicaux cumyloxy. 

L’addition de radicaux nitroxyles dans le milieu réactionnel pour contrôler les 

réactions secondaires (et en particulier la réaction de combinaison des radicaux) a 

permis d’améliorer sensiblement la densité de greffage du pentadecane sur NTCs. De 

plus, les NTCs greffés pentadécane ont montré une bonne stabilité dans divers 

solvants et nous avons obtenu une solubilité de 19.2 mg/mL dans le dichlorobenzene 

pour une densité de greffage de 1.46mmol/g.  

 Le greffage de PE sur NTCs dans les mêmes conditions expérimentales que 

celles utilisées pour le pentadecane a été moins efficace que celui du pentadécane 

même si nous avons pu former des structures de type cœur NTC-écorce PE. Nous 

avons aussi sondé le greffage radicalaire d’oligomères de PE fonctionnels sur NTCs. 

Des oligomères de PE terminés TEMPO et thiol ont donc été greffés avec succès sur 

les NTCs avec une densité de greffage nettement supérieure à celle obtenue à partir 

d’un PE commercial. 
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 Avec la même stratégie, nous avons simulé le greffage du PP sur NTCs à partir 

du tétraméthylpentadécane (TMP).  Nous avons obtenu des solubilités variant de 

4.8 mg/mL dans l’éthanol à 23.2 mg/mL dans l’acétone.  En ce qui concerne le 

greffage de PP sur NTCs nous n’avons pas pu donner de valeur de densité greffage 

faute de reproductibilité des résultats. L’étude par microscopie électronique à 

balayage (SEM) de nanocomposites PP-g-MWCNTs dispersés à 3t% en poids n’a pas 

montré une amélioration significative de la dispersion des NTCs dans la matrice PP 

même si la taille des agrégâts de NTCs a été réduite. 

 

 Il reste maintenant à étudier cette méthode de greffage radicalaire de 

polyoléfines sur NTCs dans une extrudeuse sachant que nous avons montré que 

cette technique de fonctionnalisation est une bonne approche pour désagréger les 

NTCs et améliorer leurs stabilité en milieu solvant. Il restera aussi à étudier les 

propriétés mécaniques et électriques des composites correspondants. 



  



  

____________________________________________________________________ 

RESUME en français 

 

Les nanotubes de carbone (NTCs)
 
sont des charges particulièrement intéressantes car 

ils présentent des facteurs de forme (longueur/diamètre) très élevés. Cependant, le 

développement de ces applications à haute valeur ajoutée a été freiné par les 

problèmes de mise en œuvre des NTCs. Cependant, le développement de ces 

applications à haute valeur ajoutée a été freiné par les problèmes de mise en œuvre 
des NTCs (résultant de la difficulté de les disperser dans un milieu polymère) et par la 
formation d’agrégats de nanotubes en « fagots », ne permettant pas l’obtention de 
mélanges homogènes. La solution réside dans la fonctionnalisation des nanotubes 
avec des chaînes polymères afin de réduire l’effet des interactions entre NTCs et 
d’assurer une meilleure comptabilisation avec le polymère hôte au cours du 
mélange. Ici, nous nous sommes intéressés à la fonctionnalisation des nanotubes de 
carbone par des polyoléfines en utilisant une procédure de greffage radicalaire de 
type « grafting onto ».  
_____________________________________________________________________ 

TITRE en anglais 
 

Radical grafting of polyolefins onto multi-walled carbon nanotubes: Model study and 

application to manufacture PE & PP composites 
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RESUME en anglais 
 

Carbon nanotubes (CNTs) as filler are particularly interesting because they possess 

very high aspect ratio (length/diameter), typically up to 10,000. Hence, they can form 

conductive path in polymer matrix at much lower concentrations (below 5%), whereas 

in case of carbon black filler more than 20wt% loading is needed. However, the 

development of applications based on nanotubes with high value addition has been 

hampered by processing limitations resulting from the difficulty of dispersing in a 

polymeric medium. The formation of aggregates or bundles of nanotubes into host 

polymer do not allow obtaining homogeneous mixtures. The solution lies in the 

functionalisation of nanotubes with polymer chains to reduce the effect of interactions 

between CNTs and better compatibility with the host polymer in the mixture. Here, in 

this study, we aim to functionalise carbon nanotubes by using a polyolefin grafting 

procedure involving radical ‘grafting onto’. 
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