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Introduction

Despite extensive observational and theoretical studies from the ground and from space,
the intimate nature of the minor bodies of the Solar System remains essentially un-
known.

In particular the asteroids, in the commonly accepted scenario, suffered an intense
collisional life, as a result of the dynamical processes that shaped our planetary system.
It is commonly accepted that catastrophic processes, such as disruption and gravi-
tational reaccumulation, deeply modified their structure, creating highly fragmented
bodies.

At least a fraction of them would have a very low internal cohesion, resulting in
objects that are essentially kept together by gravity. The internal properties of these
“gravitational aggregates” remain however poorly known, as most observational con-
straints are related to the surface properties of asteroids.

Binary asteroids are a peculiar case of primary importance for understanding the
physics and the evolution of such objects, since their observations more easily convey
useful data on their internal structure.

In fact, first of all, they can provide fairly accurate estimates of their total masses,
from the characteristics of the mutual orbit. Binary asteroids lightcurves provide a
direct measure on the sizes of the components and their orbits, even for objects not
spatially resolved. A precious knowledge of the density can thus be obtained.

Rotation states and shapes can also be more easily determined, permitting useful
estimates about the internal stresses and more accurate geo-morphological models in
microgravity conditions.

The existence of binaries themselves, and the variety thereof, is directly linked to
main processes that have sculpted the asteroid belt. Any determination of their physical
properties is thus seminal to our understanding of both their formation, and the global
picture of the asteroids’ evolution.

Many possible mechanisms have been proposed for the origin of asteroid binaries:
from tidal encounters, to energetic cratering impacts driving mass into orbit; from direct
binary re-accumulation after a catastrophic collision to fission by angular momentum
increase. All of them, and their domain of applicability, are currently under test both
by observations and by theoretical modeling.

The aim of this work is to explore the behavior of spinning gravitational aggregates,



when they are close to their upper angular momentum limit before mass shedding. Fur-
ther spin-up provides insights on the splitting processes, closely related to the formation
of asteroid satellites.

We model asteroids numerically, by a specialized N-body code, as “perfect rubble-
piles”: aggregates of mono-dispersed rigid spheres subject to their mutual gravity and
inelastic collisions. In search for the instabilities possibly leading to a binary, we in-
crease their rotation rate to a threshold where major instabilities set in, and explore
the resulting reshaping and formation of satellites.

We also tentatively study the question of the long-term orbital stability of the sys-
tems obtained and discuss the current limitations of our approach.

Eventually, the results are examined in a wider context, by comparison to other
theoretical or numerical studies, and to observations.

This Thesis is structured as follows:

In Chapter 1 we briefly outline the techniques for the observation of binary aster-
oids and give an overview on their current inventory. We also briefly review the current
understanding of the processes leading to the formation of satellites.

In Chapter 2 we present models for approaching the study of the equilibrium shapes
for gravitational aggregates.

In Chapter 3 we present the numerical approach we use for our study, its limitations
and properties, mainly based upon the experience built during the doctorate work; pre-
vious related results that we obtained are also briefly recalled.

In Chapter 4 we study the possibility of forming binary asteroids starting from bod-
ies that have accumulated an excess of angular momentum beyond the fissioning limit.

In Chapter 5 we use a gradual spin-up for simulating the application of a slow-acting
perturbing force to an otherwise stable body, for exploring the splitting as a function
of complex initial conditions.



Chapter 1

The observation of asteroids

1.1 The minor bodies within the Solar System

The number of the minor Solar System bodies whose orbit has been computed ranges
in the hundreds of thousands!. According to their orbital parameters, they are grouped
in a few classes, the more important of which being;:

Near-Earth Objects (NEOs) (or Near Earth Asteroids (NEAs)), a collection
of objects whose orbit is near, or crosses, the orbit of the Earth (and of the other
inner planets)

Main Belt (MB) , a large toroidal region between ~ 2.06 and 3.28 AU from the Sun,
between the orbits of Mars and Jupiter, where most objects internal to Neptune’s
orbit are located

(Jupiter) Trojans , two groups in 1:1 orbital resonance with Jupiter, roughly dis-
persed around the leading and trailing points 60° apart from the planet?

Trans Neptunian Objects (TNOs) , a vast group with semimajor axes beyond the
orbit of the giant planets (a>30AU)

with other minor groupings existing based on orbital characteristics.

The objects orbiting the Sun at or closer than Jupiter’s orbit semimajor axis con-
stitute the traditional asteroid population, and are mainly rocky objects of densities
~ 1+ 3g/em?, with lighter and lighter objects as we move away from the Sun.

The TNOs total mass and number is estimated at orders of magnitude larger than
MB objects, though ounly a very limited fraction has been discovered so far, with proba-
bly many large (500+km in size) objects yet to be discovered. The discovery of a larger
and larger number of them had the International Astronomical Union® officially define
a “planet” as an object:

ef. http://hamilton.dm.unipi.it/astdys/index.php?pc=1.0.0

2the L4 and Ls Lagrangian points

3XXVI General Assembly, Prague, 24th August 2006;
http://www.iau.org/static/resolutions/Resolution  GA26-5-6.pdf



e orbiting the Sun,

e having sufficient mass for the self-gravitation to overcome rigid body forces, as-
suming a hydrostatic equilibrium shape,

e having cleared the neighbourhood around its orbit.

The objects not respecting the third criterion are classified as “dwarf planets”, which
are hydrostatically relaxed objects sharing their orbital space with other similarly-sized
(or larger) bodies .

The modern classification of minor bodies thus includes the many other irregularly-
shaped objects orbiting the Sun at different distances, for which self gravitation must
play together with other forces to determine the overall behaviour.

1.1.1 solar system formation

Under the Standard Model of planetary systems formation (cf. [V.S. Safronov, 1969]),
while the Sun was forming, part of the original protostellar cloud remained in orbit
around it in a disk of gas and dust.

This mass in a relatively short time started to coalesce into larger and larger plan-
etesimal bodies by the means of a runaway mechanism, which mutually disturbed their
orbits, driving a greater part of the original mass either unto the Sun or into outer space.
Eventually, a relatively small number of proto-planets emerged, that rapidly swept their
orbits gathering almost all remaining matter. The length of the process can be esti-
mated in ~ 10 My by radionuclides dating (|G.W. Lugmair, A. Shukolyukov, 2001])*.

The planets, due to the heat gathered by the colliding planetesimal that formed
them and to the decay of primitive radionuclides trapped deep inside their surface
(McSween et al. in [ASTEROIDS III|), were initially composed of molten rock and
metal, that allowed for internal differentiation into metal-rich cores and more rocky
mantels. Eventually, the terrestrial planets’ outer layer cooled and solidified °.

It is understood that for the asteroids this process has been partial at bestS.

1.1.2 the asteroids today

The Main Belt is today a depleted zone with a mass ~ 3.3-10?' kg (~ 5.5-10™*Mg), and
is the remnant of an early stage of Solar System history. The rapid growth of Jupiter

Tt is possible [K. Tsiganis et al., 2005] for Saturn, Uranus and Neptune to have been formed closer
to the Sun than where they orbit today. An outer orbiting belt of planetesimal, that never coalesced
into large planets due to the low density of the disk far away from the Sun, could have at first slowly
disturbed the giant planets orbits up to a point when mutual resonances eventually drove these into
their current orbits, dispersing the greatest part of the planetesimal belt. A part of these objects
being pulled towards the Sun, they are considered the impactors responsible for a so-called Late Heavy
Bombardment (|R. Gomes et al. (2005)]) (~ 6 - 10% years into Solar System age) of the inner Solar
System objects as recorded by their cratered surfaces.

Sthe giant planets still conserve a thick layer of lighter elements (mainly H and He) from the
protoplanetary disk, swept away from the inner system by the solar wind

Sthough still observable in some of the largest ones, either original unshattered bodies (4 Vesta) or
the largest members of dynamical families (e.g. 8 Flora)

10
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Figure 1.1: Distribution of proper elements for the ~12,500 asteroids whose orbit was known
in 1995: the families can easily be seen. Image by P. Paolicchi

(and secondarily of Mars) has highly destabilised the orbits of the planetesimal of this
region, rapidly depopulating the zone and blocking the growth of a major planet.

This influence of the different gravitational perturbers on the survived population
induces a slow evolution of the asteroids orbits, with short-period variations of their in-
stantaneous values (the so-called “osculating parameters”) around fairly stable averages:
such proper elements (cf. [A. Milani, Z. Knezevi¢, 1994]) are the parameters considered
for e.g. the determination of dynamical families (cf. fig. 1.1). Generally, the orbit of
an asteroid is often the first and simplest parameter to find, strictly needed for its sub-
sequent recovery.

The current size distribution of asteroids is compatible at first order with the
power law dng/dRo RS (R. Davis e al. in [ASTEROIDS II1]); this has been shown
([J.W. Dohnanyi, 1969]) to be the resulting distribution for a population where the
objects periodically collide with projectiles energetic enough to shatter them, with a
relaxing time of but a few million years for the estimated density of the Main Belt.

As the asteroids are fragmented, part of the material re-accumulates into a new
gravitational aggregate object and part is dispersed. If we examine the proper elements
(a' - €) plane for asteroid orbits, the presence of families of body with similar orbits can
be seen. In many cases, tracing back their history showed them to be compatible with
the origin from a single parent body ([P. Michel et al., 2001]). This is also the possible
source for many binary asteroids (see § 1.3.2).

11



While Main Belt objects are today mainly stable, the orbits of those crossing the
Earth’s are highly unstable. The current NEOs population, because of the frequent
close encounters with the inner planets, would be lost in a few million years. A mecha-
nism is thus responsible for continually replenish this class of objects with bodies taken
from the Main Belt.

the asteroids as gravitational aggregates

Under the Standard Model for Solar System formation, the history of asteroids is a very
collisional one with frequent impacts that can highly fragment them, and the presence
of the families witnessing this. Their highly collisional history is a first clue that many
asteroids not being simple monolithic objects, but rather gravitational aggregates or
rubble-piles” .

Following the current estimates, the average time between catastrophic collisions for
the largest bodies in the Solar System is calculated to be of the order of Solar System
age, while the smaller bodies may have been shattered multiple times.

Another evidence comes from the distribution of rotation rates (see fig. 1.2). Simple
statistics of rotation periods make conspicuous the fact that an intrinsic limit seems to
exist on their distribution in the nearby of T ~ 2.2 h for asteroid larger than R ~ 50 m.

[P. Pravec, A.W. Harris, 2000] notes that this limit corresponds to a rotation speed
near the dispersion limit for (spherical) bodies without internal cohesion, faster ones
being won by centrifugal forces. If a substantial part of medium and large asteroids
were monolithic, such an abrupt transition would hardly be observed.

Binary asteroids and space probes can give reliable values for the mass and den-
sity of a number of asteroids, and large asteroids’ masses can be estimated by different
means. A comparison with the calculated density of many medium and large asteroids
with that of meteorites found on Earth and supposed of being of analogous composition
shows us that, excepting the very biggest (Ceres, Palls, Vesta), whose cases must be
treated separately, most other cases are examples of either a high fracturing (but still
within the limits compatible with a certain global cohesion) or a real global fragmenta-
tion, with macroporosities equal to or larger than 30% (cf. fig. 1.3).

Cratering observation on asteroid surfaces is also both an indication of high colli-
sional rate and of the fact that the impacts that would create some of the largest craters
(see fig. 1.5) would as well easily shatter them were not they already fragmented with
large part of the impact energy dissipated by the low resulting elasticity.

Even the presence of binaries themselves, some of which may have been formed by
fission of a fast spinning parent body, also suggest asteroids to be aggregates instead of
monoliths.

"sometimes these are used interchangeably in literature, while some authors suggest using the first

term for asteroids where the main binding force is self-gravity

12
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Figure 1.2: Diameter-spin rate relation for a thousand asteroids: the T ~ 2.2 hours limit is
apparent for asteroids larger than 150 m. From [Phys.Sol.Sys., p. 402], data from P. Pravec.

1.1.3 why do we study binary asteroids ?

The discovery of binary asteroids in the last 20 years has not been simply the answer
to a long sought after question®.

Asteroids are intrinsically difficult to observe and measure because of their tiny
dimension, and binary systems appears a natural solution to many such problems.

The most difficult quantity to measure for asteroids is mass, and for most single
asteroids (except some very large ones) only a very rough estimate is known; for bi-
naries, however, the total mass of the system can immediately be computed once the
mutual orbit has been determined. The determination of the dimensions also benefits
from lightcurves containing features coming from mutual eclipses and occultations of
the two components (see § 1.2.1), which can directly give information even on visually
unresolved systems. Determination of shapes and rotation states is simplified as well
for eclipsing binaries with the information given by mutual shadowing bodies.

This is an important point for all the models about asteroid internal behaviour,
which can find a reliable validation test-bed in the binaries.

The study of asteroids, validated by the easily obtainable data for binaries, can
improve our understanding of diverse fields among which collisional physics, granular
systems, petrography, celestial mechanics, photometry, spectroscopy, astrobiology.

8[C. André, 1901]
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Figure 1.3: macroporosity for some large asteroids and the two martian moons, obtained
subtracting from the total porosity, as calculated based upon composition and density, the

measured microporosity of analogously composed meteorites.

[ASTEROIDS I1I])

From (D.T. Britt et al., in

Figure 1.4: The small “contact binary” asteroid 25143 Itokawa, visited in September 2005 by
the space probe Hayabusa in the first attempted (and successful) sample return mission. Its
two main blocks are ~ 500 and 200 m long. also, pebbles on the surface are visible. Image from

JAXA

14



Figure 1.5: Asteroid 253 Mathilde photographed by NEAR probe on 27 June 1997: the large
crater in the foreground suggests that in order to resist the high impact that generated it,
the asteroid must consist of highly inelastic material, like multiple fragments kept together by
gravity. Image from NASA

1.2 Physical parameters and observation techniques

For convenience, we will call quantities relative to the primary and the secondary with
a convenient subscript “1” or “2”, indicating the mean radius with R, the mass with M,
the density with p, the angular velocity with 2 and the rotation period with P.

Contrary to orbit determination, the determination of physical parameters (mass,
dimension, shape, rotational state) of the asteroids has always been a problem because
of their tiny dimension. In fact, even in the most potent telescopes available up to
relatively recent times they appear as point-like, distinguishable from the stellar back-
ground only thanks to their rapid angular motion on the celestial sphere.

The detection of binary asteroids poses some additional constraints.

Satellites for an asteroids are to be looked for in the region between the Roche®
(~1.5R1) and the Hill distance!® (roughly a hundred primary radii for NEAs to some
hundreds for MB asteroids).

9where the tidal forces from the primary are greater than the secondary self-gravitation:

31

1/3
> Rl ~ 1.5 Rl
P2

RRoche ~ <

0the distance at which the gravitation of the Sun prevails over the primary’s in determining the
orbit of a test mass, thus being the maximal distance a satellite can reach without being captured in

an independent heliocentric orbit:
a pP1
Rpin ~ —R1 @/ 57—
Ro 3pSun

@ being a(1 — e). For comparison Earth’s Hill radius is ~ 215Rgqrth, while for asteroidal systems at
comparable distance it would be somewhat less due to both lower density and higher eccentricity
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Figure 1.6: light curves of two asteroid from the Asteroid Photometric Catalogue; left: 87
Silvia, observed on 3rd (black circles) and 6th (red squares) of February 1987, data from
Weidenshilling e al., 1990; right: 6 Ebe, observed on 18th (red squares), 23rd (black cir-
cles) and 27th (hollow squares) of June 1987, data from Hutton & Blain, 1988. from
[D. Hestroffer, P. Tanga, 2006]

This is even for MB asteroids a sufficiently large region (up to some arcsec) for a
secondary to be found with traditional telescopes; though much smaller distances have
been the norm so far, with the separation smaller than atmospheric seeing (~ 1”).

1.2.1 photometry and lightcurves

Visible and near IR photometry allows for important measures on asteroids.
By observing the variation of magnitude over a suitable time interval (hours or days)
we can obtain a lightcurve for an object (see fig. 1.6), whose temporal variation is in-

terpretable as variation of the surface section directed towards the observer!!.

These curves (generally sinusoidal and periodic), usually allow us to immediately
retrieve the rotation period of the object, which is simply the light curve period (two
minima and two maxima, usually slightly different).

The curve amplitude also gives an estimation of the object relative dimensions,
information to be filtered by keeping in mind the aspect angle between the body rotation
axis and the observing direction (supposing an approximately ellipsoidal shape, we can
infer the axes ratios).

By knowing the asteroid’s spectroscopic class we can also derive an estimate of the
asteroid absolute size (and very roughly of mass).

The hypothesis of asteroids having an ellipsoidal shape is less respected for smaller
bodies (<~500m): some of these present irregular light curves, with several maxima
and minima (albeit, usually two), in which even non uniform albedo can play a role.

However, at least a good estimate in possible in most cases'?.

Hsupposing a uniform albedo

12vet, some bodies can pose problems because of their irregular rotation, like with the Halley comet or
the asteroid 4179 Toutatis, whose angular momentum is not aligned along one of main axes of inertia
and which presents a classical precession motion; in the case of sufficiently rigid or lowly spinning
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Figure 1.7: light curve of (175706) 1996 FG3 showing occultation of the primary and eclipsing
of the secondary superimposed to the primary rotation rate. from [P. Pravec et al., 2000]

A number of binaries have been discovered by irregularity in the lightcurves. The
detection is possible when the primary’s rotation is asynchronous and the mutual orbit
is favourably oriented as for the secondary to periodically occult the primary and/or
be eclipsed by it: this result in a double periodicity where the two frequencies are
interpreted as primary’s rotation and mutual orbital rates (see fig. 1.7).

Other selection effects include close orbits, for one or several full periods to be
observed, and large secondaries (~ a fifth of primary in length).

1.2.2 direct imaging

Obtaining satisfactory asteroid pictures from Earth to extract data about their size has
long been hampered by the small apparent dimensions for most asteroids, inferior to
atmospheric seeing (~ 1”).

Resolving binaries poses similar problems: the point-spread function of the primary
is usually larger than the typical secondaries distances of observed binary asteroids.

Yet, some TNOs have been discovered to be binaries, thanks to their high average

separation'3.

Today we can obtain direct images of a number of asteroids, as well as reveal bina-
ries thanks to different techniques, mainly adaptive optics (AO) or space telescopes.

bodies, the relaxation time to re-orient their spin along the highest inertia could be of the order of

Solar System age, or longer ([D. Hestroffer, P. Tanga, 2006]).
3indeed, Pluto was identified as a binary in 1978 before the discovery of the transneptunian object

group
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Figure 1.8: Adaptive optic image of MB 45 Eugenia at five different times, showing the
motion of its satellite in a circular orbit of radius ~ 11 Ry, taken at the Canada-France-Hawaii
Telescope. Primary brightness has been reduced to enhance sharpness; the outer pattern is due
to diffraction from the secondary mirror support. image by CFHT.

Adaptive optic substitutes a traditional mirror with a surface formed by many mobile
mirrors, which is constantly deformed in real time to counter the microvariations of
atmospheric refraction. The best telescopes can theoretically resolve down to 0.05” or
less in the H-band (IR); however to calibrate the system they need a reliable point-like
source.

For deep astronomy observations this is usually a nearby star. For observing as-
teroids, which move fast, the background is not usable, and the asteroid itself must be
used. This degrades the image somewhat, and the calibration itself is not possible for
too faint objects.

Once observations spanning a few orbits have been made, a fairly estimate for the
orbit can be extracted using the standard techniques used for binary stars'®,

Visual observation of a binary usually allows for a good determination of the relative
size of the two objects.

Two binary MB systems (45 Eugenia in 1998, and the double 90 Antiope in 2000)
discovered through adaptive optics are shown in fig. 1.8 and 1.9.

For a handful of asteroids space probes have made close fly-bys, and have taken
highly detailed pictures of them (cf. fig. 1.4, 1.5 and 1.10).
Space probes have also been used in the search of binaries: it is to remember how

14 An indetermination for the direction of the pole may still be present
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Figure 1.9: Adaptive optic images of MB 90 Antiope, taken at the VLT site. Its double nature
is manifest. image by ESO

the first discovered double asteroid, 243 Ida, has revealed (by chance) its nature thanks
to a later manual examination of the photographs taken by the Galileo probe in 1993
([M. Belton, R. Carlson, 1994], see fig. 1.10).

1.2.3 radar astronomy

An independent technique for the determination of size and rotation status of the as-
teroids is given by radar astronomy.

A series of powerful electromagnetic impulses is sent from Earth towards the object,
which reflects and sends them back to the observer. The return signal presents variations
in its return time depending on the asteroid shape, and in its frequency by Doppler effect
depending on overall velocity and spin of the asteroid. With those informations it is
possible to extract its shape and rotational state with a fairly low incertitude.

Because of the huge power necessary to detect the faint return signal (signal intensity
of the return beam decreases with the fourth power of the distance), a use of the major
terrestrial radar telescopes is necessary, and the only objects suited for this kind of
survey are the NEOs.

A number of these revealed their binary structure through the presence of a narrow
frequency band superimposed to a broader spectrum: as successive signals showed a
periodic oscillation of the narrow band, this can be easily interpreted as the variation
in Doppler effect from an orbiting secondary, which can be usually distinctly resolved.

The peculiar shape of 4179 Toutatis has also been revealed by radar (see fig. 1.11).

1.2.4 occultations

A direct measuring method for an asteroid dimension is based on the observation of a
stellar occultation by the body itself: when it is found passing in front of a star, the
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Figure 1.10: image of the asteroid 243 Ida taken from the Galileo probe on 28th August 1993;
on the right a small satellite, Dactyl, is clearly visible. image from NASA

Figure 1.11: radar images of the Mars-crosser asteroid 4179 Toutatis obtained on 8, 9, 10 and
13 December 1992. from NASA
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latter is occulted: from the measure of the occultation time it is in principle possible to
extract the diameter of the occulting body. In practice, the efficiency of this technique
is limited by many factors, like the difficulty of finding a suitable candidate occultation,
the planning (several measurements must be made from different points at once), the
site availability and the right atmospheric conditions.

Ounly of a limited number of asteroids, generally the major ones (30=40 km of
diameter), faithful data are available. Being nonetheless a rather precise, direct method
for apparent diameter measure, it is useful as a gauge for photometric methods.

1.2.5 spectroscopy

The main and historically most important method to obtain information on the com-
position of the asteroids is the one linked to analyses of reflected radiation spectra: by
studying the absorption profiles and confronting them with laboratory samples we can
infer the (superficial, at least) composition of an observed object.

1.2.6 determination of mass

As mentioned above, the most difficult parameter to determine for an asteroid is its
mass.

It can theoretically be computed based on the influence it has over the orbit of a
second asteroid that happens to pass nearby, which will be somewhat deviated from
its original unperturbed trajectory. In practice, this system meets noteworthy obsta-
cles both in the smallness of the perturbation itself produced by even a medium-large
asteroid, which would require very close fly-bys (which are rare) and very precise obser-
vations before and after the encounter, and because, even with these most favourable
conditions, the perturbation effects from third bodies must be subtracted as much as
possible (effects that are larger the longer the arc of the orbit observed, and thus the
easier would seem the calculation of the overall perturbation).

The most favourable situation is that of binary asteroids, whose total mass can
immediately be extracted from the revolution period and the mutual distance. Knowing
additionally the relative sizes of the two objects we can even determine each one’s mass,
supposing a similar density.

If to a good estimation of the mass we add informations about the absolute size
of the body, computation of the density is immediate. Asteroid density is generally
low, as discussed before, with most objects being on the (1+3 g/cm3) variation band'?,
sensibly less than that of the rocks that appear to form them. This fact is one of the
main reasons leading astronomers to believe them being of highly internal porosity, in
the most extreme cases even larger than 50% (cf. fig. 1.3).

5noteworthy exceptions however exist, especially among the very largest ones like 4 Vesta (the second
most massive object of the Main Belt, of which it contains ~ 8.5% of the total mass): a peculiar object
of density ~ 3.4 g/cm® with a basaltic surface which would appear to be the only object with a certain
internal composition differentiation which has survived almost intact the collisional evolution phase of
the Belt, apart from some fragments today comprised almost exclusively in the Vesta family itself
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1.3 Inventory of binary asteroids

In the last 20 years the discovery of binaries has been abundant.

Many NEOs are today known to have satellites, with an estimated binary population
of (15 £ 4)% ([P. Pravec et al., 2006]), compatible with the findings of double craters
on Earth (JASTEROIDS II, S.J. Weidenshilling et al., p.643]). Most systems are much
more efficient for NEQOs, these being much nearer to Earth than main belt objects. Yet,
the nature of their orbits have them often be observable only for defined periods spaced
multiple years apart, a problem that does not exist for more distant objects. For NEOs
in particular, an abundance of small (sub-km) objects with fast orbiting secondaries can
be observed.

Observations in the Main Belt, while not as easy, have nevertheless shown a relative
abundance of binaries, among with a population of synchronous ones.

It is also well known for several TNOs to be binary objects (including Pluto itself).

1.3.1 binary asteroid populations

The discovered binaries appear as a diverse set of objects: they widely differ in size,
mass ratio, spin rates, density, orbit shape ([P. Descamps, F. Marchis, 2008], [P. Pravec,
A.W. Harris, 2007]).A still incomplete classification can though be schematized, with
some groups that start appearing from the continually increasing data. See fig. 1.12'6.

large primary, small mass-ratio binaries

This is Pravec and Harris group L'7, concentrated in the Main Belt.

Prominent examples would be 22 Kalliope, 45 Eugenia, 87 Sylvia, 107 Camilla, 121
Hermione.

These are large primaries with R; from 45 to 135 km with small satellites (mass ratio
< 1%, but mainly <0.1%). The primaries are among the fastest spinning object for
their size range (periods in the 4 — 7h range). The total L is in the 0.25+ 0.3 range, and
the systems lie in the vicinity of the Maclaurin-Jacobi bifurcation point in the (L —52)
plane, justifying their fast rotations (see fig. 1.13 and 2.4). A possible creation scenario
(|P. Descamps, F. Marchis, 2008|) involves a mechanism for extracting material from
fast spinning large bodies (impacts?) and putting it into orbit forming a small satellite.

asynchronous small binaries

This is Pravec and Harris group A, composed of NEAs, Mars Crossers and small Main
Belt asteroids. The primaries are of medium to small size (R; <~bkm) with substantial
secondaries (mass ratio in the 1 = 10% range).

Their angular momentum content L is mainly comprised in the 0.3<0.5 range, which
is compatible with a fragmentation from a fast spinning parent body. A candidate for

1for considerations about the meaning of the “normalised” angular momentum L see § 2.1.4 and eq.
2.31

"note that for some authors the “mass ratio” is actually M /M,, while in the present work we use
the reciprocal ratio Ma/M;
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[P. Pravec, A.W. Harris, 2007] (see § 1.3.1):

the plotted quantities are the primary di-

ameter D; and rotation period P, and the normalised angular momentum “«,” of the couple
which uses a different normalisation factor than the L used in the present work (L = 2/5ar).
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[P. Descamps, F. Marchis, 2008].

spinning the bodies up to their fragmentation limit is thought to be the YORP effect
(cf. 1.3.3).

synchronous similar-size small binaries

This is Pravec and Harris group B, composed of mainly Main Belt bodies with large
secondaries (mass ratio >0.5) which can be thought of as double bodies.

There certainly is an observational bias against them in the difficulty of detecting
this kind of objects from lightcurves analysis (see § 1.2.1). The sizes are on the same
range as for the previous group, with a high L in the 0.6 < 0.65 range. The primary
rotation periods are high, compatible with the synchronous state.

It is not clear if these are a tail of the previous population that could have reached
synchronicity thanks to their high mass ratio and their location in the main belt (the
highly unstable heliocentric orbits that inner planet crossers have may constitute a bias
against observing them among the NEAs, as they may lack the time needed to reach a
synchronous state).

To note is their location in the (L — ﬁz) plane near the region of the “mass ratio =
1.0” binaries from [I. Hacisu, Y. Eriguchi, 1984] (see fig. 2.4 and 2.5).
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contact binaries

These are somewhat wanna-be binaries whose two components lie unto each other,
touching. Interestingly, their angular momentum and spin locate them in the region of
the “Dumbbell sequence” (2.5) in the (L — 52) plane.

Of course, these are not true binaries, and their spin rate is not a direct indication
for their mass. They are the witness that a gentle encounter has occurred between two
asteroids, likely constituting an earlier de-spun couple.

others

Other yet unclassified objects include some wide binaries (with orbital semiaxis > ~
50 primary radii) as well some objects like two different fairly large (R ~ 42 and 50)
double synchronous asteroids: 90 Antiope in the outer Main Belt and the trojan 617
Patroclus.

Antiope’s L is ~ 0.50 is within the range of the small populations’, while Patroclus’
high L of ~ 0.82 is, as of now, anomalous.

1.3.2 the origin of binaries

Binary objects are observed in all the major population of asteroids (NEOs, Main
Belt, Trojans, TNOs), but their diverse nature suggests different kinds of formations as
well (JASTEROIDS III, W.J. Merlin et al., p. 289]|, [P. Descamps, F. Marchis, 2008|,
[P. Pravec, A.W. Harris, 2007]).

planetary close encounters

The high percentage of binaries among NEOs is generally considered due to a tidal
effect from the inner planets that, in the occasion of maybe multiple close encounters,
may have disrupted an initial rubble-pile or fragmented body. As tidal forces and
other non-gravitational (e.g. YORP) effects can as easily disrupt an otherwise formed
binary, and with the estimated life expectancy for a NEO before being expelled from the
inner planets zone measured in some ~ 107years [S.A. Jacobson, D.J. Scheeres, 2011],
it looks clear that this must be a dynamical equilibrium situation (|[W.F. Bottke, H.J.
Melosh, 1996]).

cratering ejecta

High energy impacts cratering an asteroid and releasing material into orbit are also
a possible source for binary formation, while some problems remain: for example, on
how to put fragments into stable orbits, as a normal elliptical trajectory would have
them fall back on the primary in just a half “revolution”. Theoretical considerations
([ASTEROIDS II, S.J. Weidenshilling et al., p.643]) about the range of ejecta velocities
needed and the subsequent evolution would justify for these binaries a fast (P<6h)
rotating primary and a small satellite in a prograde orbit (possibly a gravitational
aggregate).

The case of Ida (length ~ 56km) must be mentioned. By the available images,
its cratering (|C.R. Chapman et al., 1996]) would indicate a long age for the primary
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(>2My). The estimated time between impacts that would destroy Ida’s moon Dactyl
(D~ 1.4km) is estimated in (|[D.R. Davis et al., 1996]) 240 My at most. This indicates
a much younger age for Dactyl, whose likely origin is from re-accumulated ejecta from a
large impact on Ida. In fact, it is possible for Dactyl to have been broken several times
in the course of its history, its round shape and regolith presence being clues of it being
an aggregate.

shattering and re-accumulation

A more extreme case could be of a catastrophic collision directly fissioning the body,
and possibly accumulating a sufficient amount of angular momentum for the couple to
enter into mutual orbit. The presence of families, witnessing past shattering events, can
be a clue for some fragments remaining in orbit after the original creation event rather
than being dispersed.

The accumulation of angular momenta of binary asteroids around values correspond-
ing to the critical threshold for centrifugal disruption of a single body ([P.Pravec, A.W.
Harris, 2007]) also suggests many of them to have been formed from a breakup of an
original body subjected to fragmentation and re-accumulation, a grazing collision accel-
erating the spin of a body above the threshold and detaching a fragment by centrifugal
fission, or, as recently suggested, and explored in the present work (cf. chapter 5), a
progressive spinning up due to non-collisional forces that again pushes a parent body
beyond the rotationally stable region.

The results we present in chapter 4 may be a step into the understanding of catas-
trophically originated binaries.

primordial binaries

Binary presence in more distant populations from the Sun (especially TNOs, but also
trojans or Main Belt) of binaries whose age is compatible with that of the Solar System
also suggests that a fraction of them might well be primordial, i.e. a relic from the early
Solar System creation period.

1.3.3 YORP effect and binaries

More recently, YORP has also been suggested as the origin of some binaries.

The YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) effect is a mechanism that
transfers (rotational) angular momentum to a (small) body orbiting the Sun because of
anisotropic reflection and/or re-emission of photons by the irregular asteroid surface'®.
This mechanism has been directly measured in 2007 ([S.C. Lowry et al., 2007]) for the
asteroid (54509) 2000 PHs (a ~ 120m NEO subsequently renamed “YORP”), with a
rapidly changing rotation period whose changing rate is of the order of halving it in
~ 6-10° years, along with erratic axial tilt and precession.

The mechanism is potentially capable of slowly spinning-up a body leading it to
mass shedding by centrifugal force.

!8the YORP effect is a variation of the Yarkovsky effect that exerts a torque on the asteroid vary-
ing its orbit, proposed for the first time in 1888, though for different purposes than asteroid studies
(G. Beekman, 2006])
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Figure 1.14: a model of the asteroid (66391) 1999 KW, as obtained by radar data; the average
slope on the surface of the primary is ~ 28 ([D.J. Scheeres et al., 2006]). image by NASA

a previous study

In [K.J. Walsh et al., 2008], a study has been performed to show how binaries may have
been formed by the action of YORP. In particular, they tried to reproduce the binary
asteroid (66391) 1999 KW, (see fig. 1.14): a NEA with a fast rotating primary (Pa2.8h)
of Ry ~ 750m and p ~ 2g/cm? and a close orbiting satellite (a/R; ~ 3.9 in circular
orbit around it with a mass ratio of = 5.7%).

The primary is peculiar as it presents a characteristic ridge along the equator: due
to its fast rotation, a small rock placed on it would be just on the verge of entering
orbit, moving with a velocity barely below the escape velocity. The tested hypothesis
is that due to its initial shape, an asteroid has been accelerated by YORP effect up to
having part of its surface mass migrate towards the equator (at lower potential energy),
initially creating the ridge. As this configuration favoured YORP spin-up, the increas-
ing angular momentum pumped on the body would start to gently detach material from
the ridge and put it in orbit around the parent body. As more and more material was
gathered in orbit, it was possible for it to eventually start to coalesce into a secondary
just outside the Roche distance from the primary, the secondary continuing to grow
into the mass it has today by intercepting all mass continually being emitted from the
primary.

They ran a series of simulations by considering a range of spherical or ellipsoidal
starting bodies, to which they applied a slow and steady angular acceleration in the
form of small sudden “kicks” spaced by a short period for the body to readjust.

They used both spherical and elongated ellipsoidal shapes (with 2:1:1 axes ratios),
with both high (¢ ~ 40°) and low (¢ ~ 0°) angle of friction'® rubble-piles.

What they observed with the high friction structures, contrary to the expectations
of clagsical hydrostatics, is that with the increasing of their angular momentum the
elongated bodies start to alter their shape and turn into more spherical ones, essentially
by losing particles from the ends which are expelled from the system. As soon as the
body assumes a more spherical nature (or if it starts as such), the emitted particles,
now coming from all around the equator, start being emitted with negative energy and
remaining in orbit. Eventually, they manage to gather into a secondary that monopolise

Ysee § 2.3

27



the situation englobing most emitted mass from the primary.

In their study, this mechanism is prevented when using low friction structures. Here,
acting more like the classical hydrostatic result would dictate, the fast spinning bodies
tend to rapidly assume elongated shapes, retaining them during the mass loss process
and preventing any secondary to form.

Somewhat middle results are obtained with moderate friction, with the secondary
formation being more and more favoured as the angle of friction is increased.

In their study, “no large-scale ‘fission’ event” occurs.

It is our and others’ opinion (cf. [S.A. Jacobson, D.J. Scheeres, 2011]) that this be-
haviour is not entirely physical. The lifespan of each of the small fragments put in orbit
is generally short: under the influence of the primary, their orbits continually change,
quickly exploring the whole a-e parameters space and are expelled from the system with
a probability very near to 1 (cf. § 1.3.4 below). This happens in a relatively short time
compared to the typical timescale of YORP, the mechanism considered responsible for
the spin-up, to the point that particles dissipation is faster than their creation. The
time the system is left evolving between spin-up kicks is an artificially shortened in-
terval to simply allow the primary to reach gravitational equilibrium, and its length is
not calibrated on the speed of the physical spin-up process; to maintain these particles
in orbit during the successive spin-ups and eventually allow them to coalesce is thus a
contradictory approach (yet, some particles do survive long orbiting very axisymmetric
primaries, see § 1.3.4).

|[K.A. Holsapple, 2010| also suggests that the (very) finite “resolution” of the body,
composed of ~ 1000 particles may play a role in allowing the particles to leave the
surface and determining the critical primary spin conditions.

In § 3.1.1 we analyse some of the reasons behind this observed behaviour, and in
chapter 5 we present new findings for the possible efficiency of small-scale perturbations
that may be induced by YORP.

1.3.4 a NEAs binary asteroid cycle model

Models on the stabilities and evolution of binaries have been produced.

In [S.A. Jacobson, D.J. Scheeres, 2011| the authors show a semi-analytical model
that may explain different kinds of binary systems and the possibilities for their evolu-
tion in the NEAs region. In fig. 1.15, a summary of their results is shown.

Via the numerical simulation of a large number (some hundreds) of systems, they
draw a scenario of how binaries are formed and disrupted among the NEAs.

They assume YORP (see § 1.3.3) as a major driving force, that initially spins up
the bodies having just been diverted in the NEAs region from outside. These bodies
are mostly gravitational aggregates, and as they reach a limit spin, they fission; the
fissioning surface is actually pre-determined by the internal arrangements of the com-
ponents (taken as free parameters), which determine a correspondent spin limit (see
[D.J. Scheeres, 2009 I]).

After the separation, the newly formed binary has exactly the right energy to put the
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[S.A. Jacobson, D.J. Scheeres, 2011] (see § 1.3.4); q is the secondary/primary mass ra-

tio.
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secondary into orbit?’. They model the binary components as two ellipsoidal shapes
with parallel axes of rotation (and parallel to the system angular momentum), and
calculate the (approximated) mutual interaction forces between them as they orbit each
other, including a tidal dissipation term.

From this point on, they follow the history of the binary with the aid of numerical
integration of the analytical equations.

The post-fission dynamics are dominated by chaotic spin-orbit interactions. Pat-
terns are however observed for the systems as a whole, which can be classified into two
main regimes, according to the Ms/M; mass ratio?!.

For systems with My/M; >~ 0.2, the free energy of the system (kinetical + mutual
gravitational, but neglecting the internal gravitational energy for the two bodies con-
sidered rigid) necessary to fission the parent body is negative: as a consequence, if no
further fission occurs, the system is bound. Moreover, their tidal evolution is fast, and
eventually reach the full synchronous regime. The typical time to reach this state varies
with mass ratio and the model used, but is estimated at ~ 4 My for the less favourable
case (and being 20 times smaller for just a 0.3 mass ratio). As the permanence time in
the NEAs region is larger than this, synchronous binaries are expected among the NEAs
and to still be detected??. From there, other non-gravitational forces are modeled that
may contract or expand the couple, leading to either a newly re-formed contact binary
via a gentle impact or an asteroid pair.

For system with My/M; <~ 0.2, the free energy at fissioning is positive. Spin-orbit
coupling will lead the secondary to rapidly explore the (a-e) plane exchanging angu-
lar momentum and energy with the primary. Eventually, the satellite finds a way out
of the gravitational well and escapes the primary. The tiny fraction (~ 2%) of those
who survive for 10% years are all with almost perfect spheroidal shape (ag/a;>0.98).
Secondary YORP fissioning (favoured by the small secondary mass) is also competing
against spin-orbital interactions, and the evolution of ternary systems (modeled by el-
lipsoid + 2 spheres) is considered as well.

The lower bound for the mass of the secondary for it to remain in stable orbit of
~ 20% M is in partial agreement with the results we find in chapter 5.

The main limitation of this work is that in does not take care of the very internal dy-
namics of the binary creation process, with e.g. the initial mass ratio being determined
randomly, only considering the external conditions (limit rotation rate for detaching)
at the moment of formation.

20they assume pre-fission objects are in a minimum-energy configuration
ey in fig. 1.15
22\e remember the bias against observing them via lightcurves, cf. § 1.2.1

30



Chapter 2

Asteroid modeling

A classic first-order model for the description of asteroids shapes in general, and of
rubble piles in particular, is provided by the hydrostatic theory!, which still represents
a useful term of comparison to infer the intensity of the body forces inside gravitational
aggregates.

A limit of analytical solid models lies in the fact that generally, in order to give a
solution to the equilibrium problem, it is necessary to know quite precisely the previous
history of a body; in an elastic material model, any shape is in principle an equilibrium
one given a suitable relazed initial shape, upon which the models do not give prediction;
in the Mohr-Coulomb plastic model, briefly analysed in sect. § 2.3, the theory gives
a maximum limit on the range of shapes outside of which a deformation necessarily
happens, but for a larger precision many data on the single asteroids are to be known
than are available.

The discovery that many asteroids of large dimensions could be gravitational ag-
gregates with much internal void could be in line with a fluid description, yet granular
physics is now beginning to be more and more used in the description of asteroids in
search of a faithful model that can describe the physics of this class of celestial objects.

2.1 Hydrostatic fluid equilibrium

A first modeling corresponds to an ideal frictionless fluid exposed to its own (isotropic)
pressure and gravity |Ell.fig.equil.].

2.1.1 the virial equation

Let’s assume an inertial reference frame with matter distribution p(x,t); this generates
a Newtonian potential:

vx) = G [ LB g (2.1)

v [x = x|

'studies date as far back as Newton: see [I. Newton, 1687, liber II, prop XVIII and XIX]
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to which a gravitational potential energy is associated:

1

Qﬁz—J U dx’
2Jv

Called u;(x,t) the matter velocity field, kinetic energy ends being

1

R= J plul? dx
2 v

For ease, let’s define the following tensorial quantities:

i — ) (xj — )

(x
V;j(x) = GJV p(x') x— 12 dx’
1
Qﬂi]‘ = _QJV p‘l]ij dx
1
.ﬁij = 5 Vpuiuj dx

(2.2)

(2.3)

(2.4)
(2.5)

(2.6)

whose traces are, respectively, U, 2J and K, and let’s further define the momenta relative

to the centre of mass:

I = dex:M
%4

I, = J px; dx
Vv
Iij = J P LT dx
v
It is worthwhile to additionally define a global pressure integral
II= J p dx
1%

The motion is governed by the equation:

du; op oy

P dt - _al'i +paZL‘Z‘
where
a_0 d
at ot Mar

is the derivative associated with the matter element.
Total mass conservation allows us to write:

aM

t)ydx = — =
(x,t) dx p 0

dt )"
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the momenta expansion

The general case solution is complex.
A suitable way of managing it consists in the computation of the equation “momenta’”,
where its members are multiplied by 1, x;, x;x, xjz,2), etc... and then integrated over
the whole volume V.

At first order we simply get:

cCZit pu; dx = —J pdS; — GJ J x') LT gxdx! (2.14)

IX x'[?

where S is the free surface delimiting the volume V' occupied by the fluid.

The surface integral is zero because pressure must cancel out on the border, and the
double volume integral is zero because of the antisymmetry with respect to x and x’;
the 2.14 reduces then to

d d? d?I;
7 puZ dx = p7e] Vpxi dx = o 0 (2.15)
which expresses the system’s linear momentum conservation.
The second order term gives
d
o puzajj dx = 28;; + ;5 + 04511 (2.16)

which corresponds to nine real equations. Isolating the antisymmetric and the sym-
metric terms with respect to the (i, j) couple we obtain (being the right-side member
completely symmetric)

1d

Sq pluizj —ujx;)dx =0 (2.17)

which expresses the angular momentum conservation, and

1d
3dt . pluiz; + ujx;) dx =
1d*I;
5 dt; = 28 +W;; + ;11 (2.18)

which takes into account the body shape variation.

2.1.2 the virial equation in a rotating system

Being interested in the equilibrium rotating shapes, it is convenient to write the equa-
tions in a rotating reference frame with (constant) velocity €2; equation (2.11) assumes
then the form

dui _ ap oy 1

Pat =~ "o Pan T2,

+ 2pe”kujﬂk (219)
where we suitably introduced the centrifugal and Coriolis forces.
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(2.16) is replaced by

d
i y P UL dx = Q.Qij +Qﬂij + QQIU — QiQkIjk + 52']‘1_[ + 2€;1mm JV PUIT dx . (2.20)

By supposing no internal mass motions, in (2.20) we can substitute u = 0 overall on
the body; by aligning for ease the z3 axis along the €2 direction we obtain the relation:

Wij + (L — Sizlzj) = =611 (2.21)

which must be satisfied by any rotating body in equilibrium with stationary €2 angular
velocity with respect to an inertial frame.
(2.21) has as general solution (we remember the simmetricity of 20;; and I;;)

Wiy + D211 = Wy + NIy = Wsg = —11
Wio + 92112 =0
Wiz =Waz =0
I3 = Iog = 0 (2.22)

where, in particular, I;; is not necessarily diagonal, but has the form

Ly Lz O
Lij=| Iz Iz O (2.23)
0 0 Is33

and analogously for 20;;.

This fact was discovered for the first time by Jacobi in 1834, and represents the
noteworthy result of foreseeing stable constantly spinning shapes not presenting rota-
tional symmetry. Obviously it is always possible in these cases to redefine the axes as
to diagonalise I;; (and 20;;), where we will then nevertheless have 11 # 2.

2.1.3 homogeneous ellipsoids

The virial equation in the form (2.11) is sufficiently general to be applied to many
different models, according to the relation between pressure p(x) and density p(x), from
which indirectly the U;;, 0,5, I;;, Rij, II quantities depend, by the means of complex
relations.

The simplest model is the study of triaxial ellipsoids at constant and uniform density
p(x); in such a case the computation is greatly simplified, and the aforementioned
quantities can explicitly be written.

Called a1, as,as the three semiaxes, supposed aligned with the coordinate frame,
let’s define for ease the following quantities:

4 JOO du
i = Q10203 NP Y
! o A(a? +u)
(e8]
d
J = a%alagag au , (2.24)
0 A
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where
a;
= — 2.25
Q5 a ( )

A= \/(a% +u)(ad + u)(ad + u) (2.26)

and in which the integrals depend exclusively upon the shape «;; furthermore, the
relation

3
DlaiAi =3 (2.27)
i=1
holds.
For 2U;; and I;; we thus have:
1
Iij = gM(L?(SZ]
Qﬁij = —QFGpAiIij (228)
2
W = —yerMJ

in which the dependence from M, p and the shape «; is suitably factored.

2.1.4 the Maclaurin sequence

The first discovery of a rotationally symmetric sequence of stable, pole-flattened, shapes
(so-called spheroids) happened in 1742 by Maclaurin.

By imposing in (2.22) the homogeneity and rotational symmetry around zg (I1; =
I5) we obtain the relation

94,1 — O°Ty1 = 243153 (2.29)

where Q) = Q/4/mGp is a suitable renormalization on the angular velocity, as to eliminate
dependence on p. From (2.28), and the explicit calculation of the A; (elliptic integrals)
we get the relation
—2 2 \V4 1 - 62 2 .1 6 2
Q :T(?)—Qe )sin 6—6—2(1—6 ) (2.30)
binding ellipticity e = 4/1 — a3/a? to the angular velocity; (2.30) possesses solution for
any value 0 < e < 1, which can thus act as parametrization of the Maclaurin sequence.
Another important parameter of the sequence is the angular momentum L: by
defining, as with the angular velocity 2, a suitable renormalised value to eliminate
mass and volume dependence, we have:
where we define the mean radius @® = ajagas.
In figure 2.1 the variation of Q and L is tabulated along the Maclaurin sequence: it
is to note in particular that, while L is monotone and tending to infinity, Q reaches a
maximum around the value e = 0.92995 before decreasing back to zero.
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Q2=Gp | L/(GM?3a)} e Q2=Gp | L)(GM3a)} e Q2/nGp |L|(GM3q)

0 0 0-75 0-31947 | 0-25792 | 0-91 0-44507 | 0-41563
0-00534 | 0-02539 | 0-80 0-36316 | 0-29345 | 0-92 0-44816 | 0-43302
0-01204 | 0-03829 | 0-81 0-37190 | 0-30153 | 0-93 0-44933 | 0-45254
0-02146 | 0-05144 | 0-81267 | 0-37423 | 0-30375 | 0-94 0-44785 | 0-47480
0-03363 | 0-06491 | 0-82 0-38059 | 0-31001 | 0-95 0-44264 | 0-50074
0-04862 | 0-07882 |10-83 0-38917 | 0-31893 | 0-95289 [ 0-44022 | 0-50912
0-06647 | 0-09329 | 0-84 0-39761 | 0-32835 | 0-96 0-43193 | 0-53194
0-08727 | 0-10846 | 0-85 0-40583 | 0-33833 | 0-97 0-41257 | 0-57123
0-11108 | 0-12450 | 0-86 0-41378 | 0-34895 | 0-98 0-37802 | 0-62486
0-13799 | 0-14163 | 0-87 0-42136 | 0-36029 | 0-99 0-31030 | 0-71209
0-16807 | 0-16013 | 0-88 0-42845 | 0-37247 | 0-995 0-24371 | 0-79443
0-20135 | 0-18037 | 0-89 0-43490 | 0-38563 | 0-999 0-12540 | 0-97380
0-23783 | 0-20286 | 0-90 0-44053 | 0-39994 | 0-9999 | 0-04286 | 1-22633
0-27734 | 0-22834

Figure 2.1: trends of 0 and T as a function of e for the Maclaurin spheroids. from
[Ell.fig.equil., p. 78])

Maclaurin sequence instabilities

The virial equation gives even a method for the study of perturbations at the equilibrium
(or with respect to any flux even in the absence of equilibrium).

Be &(x,t) the (supposed small) variation of position of a matter element at time ¢
with respect to the unperturbed position x at the same time. Be then the Lagrangian
variation the variation induced on the generic local quantity Q(x,t) linked to the matter
element that in the unperturbed flux was described by the field Qo(x,t):

AQ(Xv t) = Q(X + E(X7 t)7 t) - QO(X7 t) (2'32)

where, in particular, Au = %, and be instead the Eulerian wvariation the difference

between the same quantities with respect to the same point in space x at the same time
t:

5Q(x,1) = Q(x,t) = Qo(x,1) - (2.33)
In general, these relations hold
d 0
A;—|[=0 0;—1=0 2.34
{ ’ dt] { ’ 5t] (2:34)
A=6§+¢ 0 (2.35)
= i :
For the integral quantities, they are subject to the transformation
Jo = f Qox ) dx  — = [ Q1) dx (2.36)
\% V+AV

where the volume V + AV is that delimited by the surface S + &(S, t).
To the first order in &, the §.J variation can be written:

57 - fV(AQ L QV-E) dx (2.37)
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linking to each other €, @ and J, and allowing us to write the variations of the quantities
appearing in the different momenta of the virial equation.

A suitable application of (2.32-2.37) to the virial equation (2.19) leads to linking
together the & perturbation with the linear variations of the global quantities 20;;
and I;; (small perturbations), allowing us to study the systems proper frequencies at
equilibrium.

In the case of the Maclaurin sequence, supposing a perturbation of the kind

E(x,1) = €€ (x) (2.38)

we can notice how in correspondence of e ~ 0.81267 one of the characteristic frequencies
relative to the second order of the virial gets to zero: here the (2.38) periodicity of
the function is lost, and we have a case of indifferent equilibrium with respect to the
corresponding (small) perturbation.

This frequency is associated to a perturbation leading the Maclaurin spheroid to deform
into a triaxial ellipsoid: in correspondence of this point, in fact, the Maclaurin sequence
meets a bifurcation, from which the Jacobi triaxial ellipsoids sequence branches off (see
below).

Another point to notice is the one in correspondence of e ~ 0.95289 in which two
real solutions coincide, and beyond which they change into complex solutions, causing
the rise of an unstable equilibrium.

A last interesting fact to notice is that if in the virial equation we insert additional
dissipative terms due to internal frictions, the Maclaurin sequence becomes unstable
from the Jacobi bifurcation point: for a Maclaurin spheroid beyond the branching point
even a small dissipative term would lead to global instability.

2.1.5 the Jacobi sequence
Let’s define for ease the quantities (cf. eq. 2.24)

. oqo@agj du
v Aa? —i—u)(a + u)

041042043 u du 9
B;.; = =A;—a’A;; 2.39
K A( a + u)( a4 + u) § T g ( )

and let’s consider again the (2.22) in the form:
QQCL% — 24143 = ﬁzag — 24503 = —2A3d3 (2.40)

and add to the three members 2aZa3A1s.
The pair of resulting equalities

a1 (Q — 2B12) = a2(Q — 2312) = 2(1412@10,2 A3a3) (241)

is satisfied, once the a1 = a9 case, corresponding to the Maclaurin shapes, is excluded,
if and only if

a1a2A12 - CLSA?,
O’ = 2B, (2.42)
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afay | agla Q2/(nGp) | L)(GMa) | ay/a, ag/a; Q/(nGp) | L)(GM?a)t

1-:00 | 0-582724 | 0-374230 | 0-303751 | 0-48 | 0-372384 | 0-302642 | 0-369473
0-96 | 0-570801 | 0-373987 | 0-303959 | 0-44 | 0-349632 | 0-287267 | 0-385940
0-92.| 0-558330 | 0-373190 | 0-304602 | 0-40 | 0-325609 | 0-269678 | 0-406073
0-88 | 0-545263 | 0-371785 | 0-305749 | 0-36 | 0-300232 | 0-249693 | 0-430872
0-84 | 0-531574 | 0-369697 | 0-307467 | 0-32 | 0-273419 | 0-227153 | 0-461750
0-80 | 0-517216 | 0-366837 | 0-309837 | 0-28 | 0-245083 | 0-201946 | 0-500777
0-76 | 0-502147 | 0-363114 | 0-312956 | 0-24 | 0-215143 | 0-174052 | 0-551140
0-72 | 0-486322 | 0-358424 | 0-316938 | 0-20 | 0-183524 | 0-143610. | 0-618069
0-68 | 0-469689 | 0-352649 | 0-321923 | 0-16 | 0-150166 | 0-111044 .| 0-710927
0-64 | 0-452194 | 0-345665 | 0-328081 | 0-12 | 0-115038 | 0-077281 | 0:848770.
0-60 | 0-433781 | 0-337330 | 0-335618 | 0-08 | 0-078166 | 0-044168 | 1-079302
0-56 | 0-414386 | 0-327493 | 0-344796 | 0-04 | 0-039688 | 0-015415 | 1-58276
0-52 | 0-393944 | 0-315989 | 0-355941 | 0 0 0 ©

Figure 2.2: trends of ag/ay, % and T as a function of az/ay for the Jacobi ellipsoids. from
[Ell.fig.equil., p. 103])

hold.

In such a case, they give a solution for an arbitrary value of ay (for simplicity, we
can always assume it to be < 1), to which an angular speed and a third axis length will
correspond as shown in fig. 2.2; as it can be observed, the rotation axis a3 is always the
shortest of the three. The trends of Q> and I are shown in fig. 2.3 together with the
Magclarin sequence.

Jacobi sequence instabilities

Even the Jacobi sequence presents several critical points of instability. The most note-
worthy is the one corresponding to as ~ 0.432232, where the sequence definitively loses
stable equilibrium in favour of an egg-like configuration (Poincaré sequence). The
corresponding instability is proper of the third order of the virial equations (quadratic
dependance on the coordinates).

2.1.6 other constant-density sequences

The search for equilibrium shapes even in presence of the restricted problem of uni-
form density body model remains an infinite degrees of freedom problem, and several
approaches have been used, like successive approximations or numerical integration, to
find stable shapes or sequences, including shapes where a fission of the body into two
or more parts is considered.

An example of some of these is given in figure 2.4.

A sequence to note is the so called Dumbbell sequence (see fig. 2.5), which branches
off from the unstable part of the Jacobi sequence, from a triaxial ellipsoid to a body with
a more and more pronounced central narrowing, which increases in size up to eventually
separate the body into two separate equal mass and symmetric fragments. This kind of
sequence is the one approximately followed by our bodies in the simulations presented
in chapter 5.

Note that more than one binary sequence are in fact present, based upon different
mass ratios, and that no stable known sequence exists connecting them to the known
single body stable shapes region (apart for the 1:1 mass ratio), fact that imposes for
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Figure 2.4: some hydrostatic equilibrium sequences at constant density (‘j’ is the angular
momentum; note that normalization factors are different from the ones used in this work: for

comparison, the Maclaurin-Jacobi bifurcation has (I; ") coordinates ~(0.30 ; 0.37) ). from
[I. Hacisu, Y. Eriguchi, 1984]

Ellipsoid Dumb-Bell

Figure 2.5: the Dumbbell sequence of shapes. from [I. Hacisu, Y. Eriguchi, 1984]
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Figure 2.6: [P. Magnusson, C. Neese, 1996] database asteroids for which we know both axes
ratios, compared to the Maclaurin and Jacobi sequences. from [P. Tanga et al., 2009 I]

them a necessarily chaotic or catastrophic origin. Of course these are but mathematical
solutions for perfectly cohesionless and synchronous fluid systems, fact that must be
considered when comparing them to real objects.

An important fact, which must enter a theory determining and predicting real ob-
jects’ shapes, is that the effective reaching of a particular equilibrium shape instead of
another depends more or less strongly on the previous body history. Theoretically, for
any non equilibrium situation, the correct solution of the variational equations gives
the right velocity field to which the body is subjected, and that will lead it to a new
equilibrium point; in practice, the constant density (and mass) model must however be
abandoned in favour of more complex models to take into account, for example, the
initial creation phases themselves of the original object.

2.2 Real objects distribution

Available asteroid observations show that gravitational aggregates candidates do not
correspond strictly to hydrostatic equilibrium shapes, but are rather dispersed within a
quite wide region around them (cf. fig. 2.6).

If the classical Maclaurin and Jacobi sequences constitute a reference regarding their
equilibrium shapes, and especially so for gravitational aggregates, other factors come
into play in the case of solid, or granular, material, for which alternative models are to
be considered.
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2.3 Elasto-plastic material

The behaviour of the internal forces in a material and its small scale effects can be
modeled in different ways. A global approach considers the use of the stress tensor o;;
defined as

dA;

where F is the contact force acting on the oriented surface A at the internal point x
(negative in case of compressive forces); it describes the status of the internal forces in
terms of normal (04, 0yy, 02-) and tangential (04y, 042, 0y.: the tensor is symmetrical)
components acting along the different directions.

According to the model used, o0 must be subjected to some restrictions if the body
has to be in equilibrium without any permanent deformation or breaking in the material
occurring.

To obtain o, in the case of a triaxial ellipsoid, we assume ([K.A. Holsapple, 2001]),
for body symmetry, a shape like:

(2.43)

0ij(x) =

oi = kio + kija;  0ij = Kijain; (2.44)
dependent upon 15 parametres, which have to be determined with as many relations.

Three are given by the equation for general equilibrium with mass forces:

00’1‘]‘ _ 6V
é’xj B pé’xi

(2.45)

where V' is the potential to which matter is subjected: in the case of body spinning
around the z axis, it is equal to the sum of gravitational U and centrifugal

¢ = T(a:2 + %) (2.46)

potentials.
Secondly, we must impose that the stress vector on the surface of the body be zero
everywhere (free surface). The latter is given by:

t=h-o (2.47)

where 1 is the normal to the surface in x, proportional to (z/a?, y/b%, z/c*). Substituting
the surface equation

x z

—+ 4+ —=—=1 (248)
and imposing it be zero in every point, we obtain for each of the 3 equations (2.47) 3
fixed combinations for the coefficients of (2.44) which must be set to zero, determining
9 further parameters.

To completely determine o it is finally necessary to impose a specific model: for a
perfect fluid we will have for example

Ogx = Oyy = Oz2 Opy = Ogz = Oyz = 0

42



Another possibility consists of using the Hook law to couple o to the strain tensor e,
but that requires an a priori knowledge of a supposedly “original” shape which has been
deformed into the actual current one via deformations elastically induced by pressure
forces.

This approach is of difficult use in the case of asteroids, whose knowledge of such
a rest shape is possible only by knowing the whole previous history of a body and the
possible breaks that may already have occurred, which further requires a much broader
formulation of the original problem that must include besides a variable mass even a
precise analysis of the fluxes induced by the overcoming of the elastic bonds breaking the
threshold (so called yielding). Additionally, such an approach may be dependent upon
a supposed continuity inside the body, which is not necessarily apt for the modeling of
highly porous bodies, as many medium to large asteroids appear to be.

An interesting possibility as to what pertains to rubble-piles is offered by the use of
the Mohr-Coulomb model for the maximum stresses: a certain wide set of materials (even
of high granularity, like a particular kind of sand or mould) can be schematised as having
aresistance (strength) to yielding due to tangential forces which is a linear function of the
normal compressive force acting on the same surface (plus a rest cohesion parameter):
when a tangential force overcome this threshold, a definitive yielding occurs that breaks
the original elastic bonds (plastic deformation, fracture, mutual reorganization of the
grains positions). According to this model, for a generic material the law:

(01 + o3)sing — 2Y cos ¢ < (03 — 01) (2.49)

holds, where (negative) o1 and o3 are the greatest (least compressive) and least (most
compressive) eigenvalues of o, Y the cohesion stress, i.e. the tangential yielding force
without compression (akin to a static friction), dependent upon the material, and ¢
a coeflicient (angle of repose or angle of friction), depending on the material, which
expresses the proportional dependence between compressive and tangential yielding
forces.

Rubble piles are usually assumed to be cohesionless: by supposing Y = 0, we have:

(2.50)

This last relation, if applied to the six intersection points between the axes and the
ellipsoid surface, allows us to determine the last three parameters of (2.44): in each of
these points, having chosen the body axes as the reference frame axes in which to write
o, the three tangential stresses are zero for symmetry reasons, and the tensor is thus
diagonal. On the other hand, the normal component at the surface must also be zero?
and, positive stresses (tractions) not being possible, this leads to it being the maximal
one = o1; because of the (2.49) or the (2.50), o3 must also be zero, and thus all three.

2.3.1 the stability band

With these constraints, the resulting stress is:

oy = —pcialS (2.51)

Zcf. (2.47)
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where

and ¢; are the coefficients of the potential

V(x) =W+ chx?

that in the case of a body subjected only to its own gravity and centrifugal forces are
(cf. (2.24), (2.28) and (2.46))

2
c1 = pnGA; — %
2
Cy = ,07TGA2 — %
cs = pnGA; . (2.52)

The resulting tensor is thus always diagonal when written in the reference with the
axes aligned to the body ones, and the ratios between the components are independent
from the position inside the body: this means that, in case of overcoming of the (2.50)
limit, a global yielding on the whole body is expected rather than a local fracture (what
effectively is observed in all our simulations).

Thanks to (2.50) it is then possible to confront a generic shape a rotating at fixed
angular velocity with the repose angle needed to sustain it: the result is a “stability
zone” at fixed ¢ = ¢ around the classical equilibrium sequences of Maclaurin and
Jacobi, within which a body composed of a material with a given angle of repose > qg
can exist at equilibrium.

A comparison with the available data on size and rotation period of asteroids (see
fig. 2.7) shows that most lie within a region characterised by an angle ¢ dependent
upon the spectral class.

In [P. Tanga et al., 2009 11| (see § 3.10.2) we found that in fact ¢ ~ 5° is enough to
fit most asteroids and ran a series of numerical simulations to support this.

2.4 Granular system physics

If we want to make progress into understanding the physics of asteroids, their nature
as rubble-piles and the finite size of their components cannot be neglected. Granular
system physics does offer some insight into this problem, though it is a complex field of
study that has been up to recent past (end of 20th century) poorly investigated.

A granular system may be thought of as a physical system where the single compo-
nents (called grains) are macroscopic in nature (i.e. not subjected to thermodynamic
fluctuations) and in close (i.e. touching) interaction, each interaction being traceable
down to the component level; and yet, due to the high number of such grains, the overall
behaviour is determined by complex laws.

The friction angle (see § 2.3) for a granular material is an example of such overall
property not easily discernible from the single grains.

44



o — T v T ~2.67 hr
2.0 H=90"
s
- Assumes p=1.5 /":‘w
(0] $=30""""]
e; 725 Amanda 50—
Z 15 = -
3
é 4 4hr ~
L]
- n
= S
o o
£ 10 - e
°
n - o
e Z. = 6=5 =
o z g:
8 8 hr
(4]
0.5
®
odp 6300 4525 0=20° 0=15° =10 *g  Dos 0 @ gm \
o ) I | | | | | 14.":1‘) L whr
0 0.2 0.4 0.6 0.8 1
Aspect Ratio, a=p=b/a
20 $=90° 1T 2hr
¢=50‘j
Assumes p=3 $=40"
4=30"—"
G 0=25"—
& 15 | o :
> o o 120 = 1 2.67hr
? P o=15"—_
- =
é _ _°—° o— o~ 8
q; — S b=10"____| @
I — = ° e ° &
c 10 | ~ i g
c 8 oh / — - 4 hr .E
3 eographos V e
@ ? 7 el g
o 2
2 )
[ o
& °
0.5 T < 8hr
g=a0r  O=30"  0=25° ¢=20° ¢=15°
\ \, \ jo o | o
0 - o hr

0 0.2 0.4
Aspect Ratio, o=B=b/a

Figure 2.7: C (above) and S (below) -type asteroids compared to the (minimal) repose angle
¢ necessary to sustain their shapes; the as/a; ratio is the only generally known with a certain
precision. For these graphs as = as has been supposed for all cases, with a mean density of 1.5
g/cm? for C-type asteroids C and 3 g/cm? for S-type asteroids. All asteroids lie within a zone
defined by ¢ < 12" and 25" respectively. from [K.A. Holsapple, 2001]; asteroids data from (P.
Pravec, A. Harris)
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Figure 2.8: the different regimes of a granular system, according to the energy level. image by
A. Pouliquen

Rubble-pile asteroids present in this regard a highly heterogeneous set of grains,
from fine dust of micrometric size to large rocks of several hundred metres.

According to the energetic level of the ensemble, these systems have the property of
behaving under different regimes: solid-like, e.g. in a rubble-pile at equilibrium, liquid-
like, e.g. a snow and land avalanche, or in extreme cases even gas-like (see fig. 2.8).

At rest, a granular system may be characterized by many macroscopic variables
typical of continuous materials, such as elasticity or plasticity, which rely in part on the
characteristics of single grains (which may be deformable) and in part on the structure
as a whole (shape, packing efficiency). When a global shape change occurs (we can
think to the squeezing of a pack of sugar), the response of the whole is generally a
non-linear stress-deformation relation.

The physics of friction is of paramount importance in granular systems, as the
contact forces are their characteristic feature; a key in setting apart a solid from a
liquid behaviour lies in the more or less abrupt overcoming of the static frictions that
characterize a system, beyond which a more fluid structure behaviour settles in.

In a static (solid-like) granular continuum, the pressure forces are suitably unloaded
from one grain to another in a complex pattern, which largely depends on external
conditions, previous history of the material and, going down to the grain-to-grain level,
partly random behaviour. When energy is injected into the system (i.e. in the form
of elastic compression by pressure), the unloading pattern determines if and where the
solid breaks and a deformation or slide occurs.
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In fact, the very nature of microscopic contacts between grains due to the way
two otherwise macroscopically similar (same grain nature, size, volume, shape, tem-
perature) systems have been built does determine very different possible behaviours to
macroscopic external stimuli (pressures, gravity). This may be an important factor to
consider for the evolution of the asteroids, which is not expressly modeled in the code
we use for our simulations.

A higher cohesion may also arise as the result of a liquid intermixing with the grains
(e.g. a wet sand castle) or to the microdeformations of grains themselves (solid bridges)
that may naturally form with time in a static system at equilibrium, putting again the
previous history of the system as an important variable.

As the global behaviour is strongly dependent upon the external conditions, Earth-
based results may lack full validity in the microgravity environment of an asteroid,
for example by reducing the energy needed for a grain to move from its equilibrium
configuration and determine a local or global deformation. This may change our under-
standing of the behaviour of e.g. asteroid regolith (which also determines in turn the
spectroscopic properties observed from Earth) or gravitational aggregate macroscopic
properties (e.g. the angle of friction for its material).

The two fields of granular physics and gravitational aggregates studies are today
starting to exchange ideas and results to reach a better comprehension of their respec-
tive areas of study, and some experimental and numerical studies are being published
(IB. Rozitis et al., 2009], |P. Sanchez, D.J. Scheeres, 2011]).
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Chapter 3

Numerical methods

The simulations on binary formation presented here (see chapters 4 and 5) have been
obtained using the software pkdgrav, a gravitational N-body simulator managing mul-
tiparticle systems under the effect of gravity, originally written for cosmological simula-
tions by researchers from the University of Washington, successively modified by adding
a collision treatment for dynamical simulations in the Solar System ([T.R. Quinn et al.,
2000], [D.C. Richardson et al., 2000]), and later modified in part to suit specific needs
of gravitational aggregates.

It has been and is being used as basis for a growing literature on the rubble pile and
granular subjects (i.e. [P. Michel et al., 2001], [P. Tanga et al., 2004], [D.C. Richardson
et al., 2005], [J.F. Consigli et al., 2006], [K.J. Walsh et al., 2008], [P. Tanga et al., 2009
1], [P. Tanga et al., 2009 II]) and is one the best N-body gravitational simulators, using
parallel computing libraries in order to allocate work among several processors.

3.1 The perfect rubble pile model

The software uses spherical constant-density rigid spheres as basic mass units.

This considerably simplifies computations: firstly, the gravitational field generated
by each sphere is equivalent to that of a point mass, and allows an exact fast computation
for whatever configuration of particles; secondly it simplifies intrinsic angular momen-
tum managing in two ways: the tensor of inertia is always diagonal and a multiple
of the identity (and consequently the intrinsic angular momentum is always propor-
tional to spin), and all reciprocal collisions occur on a contact point belonging to the
line connecting the particles’ centres (where the reciprocal exerted torque and intrin-
sic/orbital angular momentum exchange only depends on the relative surface velocities
of the contact points).

The modeling of an asteroid by means of spherical particles, called of “perfect rubble
pile”; is a first attempt at using a numerical integration of the N-body problem for the
study of gravitational aggregates.

A body composed of spherical particles tends to have, for geometric reasons, a cer-

tain internal quantity of empty space (voids): if on one side this reproduces the fact
that, according to the models, real rubble piles go as far as having a worthwhile quantity
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of internal empty space, this artificiality in the choice of components can produce some
spurious behaviour.

When several particles pile up on each others, is it natural for them to settle in such
a way to minimise the empty spaces amongst them, thus reducing the potential energy,
and for a certain packing to appear.

3.1.1 the tightest theoretical packing: the “crystalline structure”

The best (densest) theoretically obtainable packing® with homogeneously sized spheres
reaches a filling coefficient (the ratio between the volume of the spheres and the volume

of the envelope) of mv/2/6 ~ 74.048%; such a value can be reached with an ordered
packing in the following way:

e along a plane we set down a layer of spheres with a hexagonal cell structure: this
is the most efficient packing for equal circles in a plane:

e we put then on top of it a second layer similar to the first so that the positions of
the second spheres correspond to holes in the first one

e only a hole out of two of the first layer disposition has been covered by a sphere
of the second one; the third layer, similar to the previous two, has thus two
possibilities of being positioned: either exactly overlapping the first, or level with
the holes of the first layer not covered by the second one

e the generic n-th layer has 2 possibilities: either exactly overlapping the (n-2)th,
or the third case different from that and the (n-1)th layer.

Calling a the first layer disposition, b the second one’s, and ¢ the third possibility
different from a and b, every packing can be described by the sequence of layers which
compose it, and is a combination of two main trends (cf. fig. 3.1):

abcabe , which reproduces a face-centered cubic crystal

ababab , called hexagonal compact.

!mathematically, it still is a conjecture, even if Gauss proved it to be nevertheless the best regular
packing
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Figure 3.1: crystalline packing: on the left, hexagonal prism crystal; on the right, cubic crystal.
images from wikipedia

experimental evidences

The geometric packing has occasionally been used ([D.C. Richardson et al., 2005], [K.J.
Walsh et al., 2008|) to examine under which conditions yielding occurs, and which are
the resulting shapes after such occurrences, including the possibility of YORP-induced
satellite formation (cf. § 1.3.3).

These studies have examined the behaviour of mainly prolate ellipsoids (ay = as) of
different ellipticity under different spinning conditions. Their results (cf. fig. 3.2) show
a very high strength for the aggregates in the low spinning regime, where almost any
shape is permitted, up to spin limits at which a mass loss occurs and the remaining
fragment reverts towards the hydrostatic sequences.

[K.J. Walsh et al., 2008] in particular, uses the crystalline structure as the “high
friction” rubble piles with which the growing secondary mechanism is achieved, noting
that in the non-crystalline packing (see below) this mechanism is prevented. In that
case, a general reshaping of the body out of the spheroid shape occurs at high spin,
which frustrates the possibility for expelled particles to remain in orbit (the medium
friction case is a crystalline core surrounded by an amorphous packing of smaller scale
spheres, which shows intermediate behaviour).

The crystalline structure presents various features that makes it unfit for a wide
study on the possible shapes that a rubble pile may assume. First, it is an artificial
construction arising only where it is expressly built up: every time there is a naturally
driven concentration of spherical particles, they tend instead to assume an unordered
packing. Similarly, when a crystalline body breaks down because of instabilities, it
inevitably assumes the more natural amorphous structure.

Second, the crystalline structure shows a tremendously anisotropic behaviour (cf.
[C. Comito, 2008, § 7.3]), going as far as having an angle of repose of ~ 70° against
compressions acting along its construction layers’ attitude, and very low (<10°) along
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Figure 3.2: results of [D.C. Richardson et al., 2005]: above, all the simulations; below,
only those with mass loss: ‘+’ for losses up to 10%, ‘x’ for those above 10%. from
[P. Tanga et al., 2009 I]

the perpendicular direction?.
Third, and perhaps most importantly, it does not allow for smooth transitions be-
tween shapes and for the exploration of the full range of possible configurations.

These reasons have been shown ([C. Comito, 2008] and see § 5.6.4) to strongly in-
fluence the results exposed above. Even the YORP-forming study (where a body is
slowly spin up, see § 1.3.3) can be subject to similar problems; which somewhat limit
the capability of this peculiar double asteroid formation process, which we expand in
chapter 5.

For these reasons, to explore the shape space available for rubble-piles, we definitely
used an unordered, amorphous rubble-pile structure (see fig. 3.3).

3.1.2 the “natural” packing: the “amorphous structure”

The crystal structure packing is not the natural packing obtained piling up spheres of
homogeneous size.

It has been studied ([H.M. Jaeger, S.R. Nagel, 1992]) as, subjected to an external
pressure, the spheres tend to assume a mainly irregular configuration, where every one
tends to settle, within limits, at the centre of one of the faces of a tetrahedron formed

2In fact, this high angle of repose may come in handy if an internal friction or non-zero cohesion has
to be modeled (or to take into account irregularly shaped components), but only when needed along a
specific predetermined plane
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Figure 3.3: example of an aggregate created with a random (“amorphous”) packing; cf. § 3.1.2

by other four (the tetrahedron not perfectly tessellating the space, this structure is
discontinuous).

The irregular packing has a filling coefficient of about 64%), significantly lower than
for the crystalline case, a fact that leaves inside the bodies more than a third of void
space; this value is on the other hand fully compatible with the available estimates for
asteroids believed to be rubble piles (cf. fig. 1.3).

This kind of packing is the one naturally observed in the case of re-accumulation
simulations of particles from an initially dispersed cloud, of re-aggregation following a
large mass loss from an initial body, or of a body reshaping after a massive yielding,
and shows good isotropic properties.

The crystalline structure is of course completely prevented if spheres of different sizes
are used; such mixing results in a very fluid-like behaviour ([K.J. Walsh et al., 2008],
[C. Comito, 2008|) that appears unsuited for describing a rocky aggregate; the thesis
work is thus concentrated on same-size unordered particles aggregates, which offer a
suitable middle ground of study.

3.1.3 the “frozen” aggregates

pkdgrav can also manage multi-spheres blocks as rigid aggregates, by forcing the mutual
distances of their component particles to remain constant. These “frozen” blocks can
be set in the starting conditions and also be created at run-time when two particles (or
blocks) collide with a predefined low mutual velocity (usually a fraction of the mutual
escape velocity). Similarly, they can be broken at run-time in the case of a collision
causing the differential stress between particles to exceed a certain strength threshold.

This has of course the effect of greatly increasing the computational burden on the
computers, which makes the resulting simulations unsuitable for the present first ex-
ploring work on the nature of multiparticles binary fragmentation.
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Figure 3.4: Example of tree code cells: in the integration of the forces acting on the central
particle, angle B is sufficiently large for the subtending cell to be divided into it subcells for the
force calculation; angle A, instead, is sufficiently small for the subtending cell to be treated as
a single distribution with its multipole moments pre-calculated to quicken up the code. From
[D.C. Richardson, 1993]

3.2 The tree code

A precise N-body interaction simulation must at every step determine N2 interaction
forces, which rapidly make the calculation burdensome as N increases. To alleviate this,
pkdgrav implements for the calculation of the forces the hierarchic tree system proposed
in [J.E. Barnes, P. Hut, 1986], which limits to a precise computation only the nearby
particles interactions, while for far-away particle clusters it only considers the effects of
a multipole expansion truncated at the desired order.

The tree code consists in the subdivision of the whole space in cubic bins in the
following way: starting from the global cell corresponding to the whole space, every
time it finds a particular cell to contain more than 1 particle, it divides the cell into 8
children subcells of (linear) size half of the parent cell’s, and proceeds then in the same
way to the analysis of each subcell (see figure 3.4).

The subdivision proceeds up to the point where every non-parent cell contains at
most 1 particle, or when a prearranged sublevel limit [ is reached, beyond which it is
allowed for a l-level subcell to hold an arbitrary number of particles.

It is to note that the subcells are created only where needed: a cell containing 0
or 1 particles is not subdivided further, to limit the quantity of allocated memory and
simplify the computations.

Position, speed and spin are recorded for every particle.
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For every cell containing more than one particle multipole moments are also com-
puted relative to the internal distribution with respect of the cell’s centre of mass.

To the order 0 (monopole), the field generated by the cell is approximated by that of
a single particle of corresponding mass located in the centre of mass of the distribution:

M =>"my, (3.1)
g = % . (3.2)

This requires the memorization of few data per cell, but it is generally a too rough
approximation.

The gravitational dipole, calculated with respect to the centre of mass, is always
Zero

Di=) Mnptn; =0 (3.3)
n

so that the following order is the quadrupole moment:

Qij = D mn(3n;itnyj — Tndi) (3.4)
n
t
2 _ Mr Q-r 5(r-Q-rr

g 3t 7 (3.5)

which, being symmetric, requires the memorization of 5 additional elements.
Subsequent terms are of course usable for bigger precisions, but the quadrupole is gen-
erally sufficient for most cases.

Let’s now consider a generic particle of which we want to integrate the motion, and
be r the distance of the centre of mass of a generic cell containing more than 1 particle
and d the linear dimension of the cell; we have that when

d
arctg; <0, (3.6)

the effect of the masses contained in the cell considered is approximated with the mul-
tipole expansion; otherwise, the cell is resolved into the 8 daughter cells, and the (3.6)
criterion is reconsidered for each of them (cf. fig.3.4).

Obviously, in the presence of a cell containing but 1 particle, its effect is calculated
normally regardless of (3.6).

The 6. is of course the key determining, as it is increased, the computation swiftness
to the detriment of precision.

For a generic distribution of particles, a dependence of the integration time as a
function of the particle number has been empirically noticed being of O(N log N).

The code is based on an evolution of an idea originally born for the study of planetary
rings and protoplanetary discs, and it is particularly efficient in the case of a scattered
distribution with the occasional bunch of objects whose effect on the supposedly many
distant particles can be approximated with a consequent noteworthy time saving.

3and thus normally divided into subcells, unless it already is in the last allowed sub-level
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The case of a single self-gravitating body is on the other hand the one where pkdgrav
is less efficient: the high concentration of particles in a small space makes the multipole
computation for every cell superfluous in most cases, as generally only cells containing
a relatively small quantity of particles are treated as a single multipole contribution, all
other subtending too large angles for every particle of the set, failing the (3.6) test.

As a consequence, in previous studies ([P. Tanga et al., 2009 II|) we found in fact a
more prosaic N? dependence of computational time on the particles number.

An advantage of the tree system is nevertheless that of giving a precise and rapidly
accessible hierarchy about the nearby particles, which is very useful in collisions fore-
seeing (see § 3.4).

3.3 The integration of the equation of motion

Particle integration happens by discrete and constant time steps whose length is se-
lectable by the means of a parameter 7 (pkdgrav having been written for Solar System
dynamics, its internal system of units is so that G=Me=ag=1 and the time unit is
thus year/27).

The algorithm used is the so-called Leapfrog which consists in the alternated inte-
gration of position and velocity with a 7/2 phase lag.

Every step is composed of three parts: firstly, the stored velocities of the particles
are linearly updated for a time 7/2 with constant acceleration equal to the simple ratio
between the total force acting on the particle and the particle’s mass (as calculated at
the start of the step); secondly, integration of the positions is performed at constant
velocity for a time 7; finally, velocities are updated again by integrating them for another
7/2 interval.

At the end of each step, the tree is then rebuild with the particles new positions.

The alternative way of integrating position-velocity-position, instead of velocity-
position-velocity, is characterized by the same approximation level, but from experi-
mental tests it appears to be slower.

3.3.1 the choice for the timestep

The length of the timestep to use in pkdgrav must be sufficiently low not to cause
visible computational errors in the particles’ velocities and positions, but not too much
to overload the computation.

As the rubble-piles simulations are based on gravitational interactions, it is natural
to use the characteristic free-fall time (the characteristic time needed for a cloud of size
R, mass M and density p = M /(47 R3/3) to collapse under its own gravity)

ber = TR3 B 3T (3.7)

= aam ~ N 8Gp '
as a reference, and to choose a sensibly lower value (e.g. ~ 1% has been used in
[P. Tanga et al., 2009 II|, a previous work of ours briefly exposed in § 3.10.2).
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3.4 Collisions detection

When updating the positions, the possibility for two particles to come at contact must
be considered, in which case the couple is to be separately treated.

To foresee a possible future collision within a timestep, it would be necessary to
determine for every particle pair whether they are approaching or not, that is whether

v-r<0

holds, with r and v relative position and velocity, and in such case compute the time
necessary for them to collide, which is the lesser positive root of

. 2 _ 2
feort = —rv—;’ lli\/l_ = (Rt Ro)’ | (3.8)

(r-v)?

where R; and Rp are the two particles radii. If ¢.,y; is less than the position integration
step 7 we are in the presence of a collision within the step.

In case that more than one collision is detected, the one relative to the shortest t..;
is of course processed first.

In practice, however, such a calculation is burdensome and of little relevance: what
pkdgrav does when searching for collisions is instead considering for every particle only
the nearest Ny ones, detected thanks to the tree disposition, with N, a fixed parameter
for each simulation (typically 32 is used).

In the case of a collision has been detected to occur, the code proceeds in the
following way:

1. the smallest t.,;; among all pairs is looked for: the corresponding collision is dealt
with first

2. integration of positions happens at first up to time t¢.,; only

3. the post-collisional velocities of the particles are calculated (see § 3.5), and used
to update the old, pre-collision velocities

4. a revision of all the future collisions involving the two particles takes place

5. the possible following collision is determined by comparison of the new set of t..y;
values

until no further collisions are detected inside the timestep.

3.5 Collisions solving

Once a collision is detected to occur, it is necessary to determine the exit configuration,
i.e. the after-impact linear and angular velocities of the two particles.
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Be m; and ms the two particles masses, Ry and Ry their radii, r; and ro their
positions, vi and vg their velocities and w; and ws their spins, and let the following
quantities be defined:

r=7TI9 —I] V =Vy —V]
n=2=
-

R, = Rin Ry = —Ron
o, =w, XR, o=09— 0
u=v-+o
uy = n(u-n) ur = u-—uy

2 2
M =mq1 +moy I, = gman

Wl

Let then the after-impact quantities be marked by

Because of (linear) momentum conservation,
mi(v] —vi) = —ma(vh —va) . (3.9)

As a consequence of the relative velocities of the contact points, each of the two
particles will exert a torque on the other altering their rotational states:

LW, —w,) =m,Ry x (v, —vyp) . (3.10)
Finally, to consider the dissipative forces between the two spheres,
u = —enyuy + erur (3.11)

is imposed, where ey and ep are two suitable coefficients of elastic restitution, which
take care of dissipating part of the energy of the collision (e = e = 1 is the completely
elastic, no friction case, while exy = ep = 0 is the completely inelastic one).

The solutions of (3.9)-(3.11) then give the after-impact quantities, which are assigned
to the two particles.

3.5.1 inelastic collapse and dCollapseLimit

A fact to be considered in the use of pkdgrav is that, by its own nature, it is not capa-
ble of managing two particles at rest in mutual contact. This creates a problem when
two particles collide with too small a relative speed: because of the speed loss in the
collision, they might tend to collide again after a small interval and so on, reducing the
collision interval more and more, causing a block of the software.

To avoid this, pkdgrav uses a suitable “dCollapseLimit” parameter (henceforward,
dCL) expressing a speed threshold so that any impact happening at lower speed is
considered elastic, ignoring the passed parameters ey and er. dCL is expressed as a
fraction of the mutual escape velocity of the two particles, given by

12G(m1 + ma2)
e = A ————— %, A2
v Ry + Ry (3 )
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and is typically set at a sufficiently low value not to have any too visible large-scale
effect.

The practical effect of this expedient is that of leaving, stored as random agitation
of the particles, a certain residual “temperature” in a system in equilibrium, i.e. when
the typical mutual speed of the particles has reached down values of order v ~ dCL-v./2.

Such “thermal energy” can out of curiosity be compared to the gravitational energy:

Er

Nm(dCL - v.)?  dCL?
Eq

~ G(Nm)? ~ON2/3
N13R

(3.13)

and, for the typical values like those used for this thesis (dCL=10"%, N = 1000), it is,
with respect to the latter, negligible.

In [C. Comito, 2008|, some tests have been performed to control if this value does
create spurious effects, confirming it to be a good choice.

3.5.2 merge on collision

It is possible to set the outcome of collisions to either merge or bounce off the particles
based on the impact speed. When merging, the two particles are removed from the
simulation and replaced with a new one with the same total mass and linear and angular
momenta (and with density either the same as the colliders’ or a selectable value).

This is not used in the present work’s simulations where all particles experience
repeated slow-speed collisions, which would immediately collapse a compact body to a
single particle in but a few steps.

3.6 Parallel computation

pkdgrav is specifically written for parallel computing. The routines can deftly assign
different particles cluster far away from each other to different processors for faster
processing, trying to minimise inter-processors exchanges as much as possible: this is
normally favoured by the tree code and the reduced computations performed when the
(3.6) condition is respected.

In the case of compact bodies, however, the situation is problematic: rarely the (3.6)
condition is respected as long as intra-aggregates computations are considered and 6,
is set to a reasonable value. This has the different processors exchange a consider-
able quantity of data about smaller and smaller children cells, which slows down the
computation.

In fact, the time saved by the parallel integration is often less than the time wasted
by inter-processors data exchange, considerably slower than if all the computations were
performed by a single CPU; this is so the case that actually simulation time increases
the more processors are used! The best performances being attained by using a single
processor, eventually the option of compiling pkdgrav without the expressly parallel

subroutines resulted in a further time gain®.

“the parallel environment may be more interesting for much higher N, though the absolute times
involved are, as for now, prohibitive
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This is a problem that appeared while we were performing tests to increase the
efficiency of the computations, about mid-way of the doctorate work. As a consequence,
all computations since then have been performed with 1 processor at a time, whichever
was at the moment free at the OCA Mésocentre to accept a run without waiting for the
most performing ones.

3.7 The heliocentric frame

To deal with Solar System simulations, pkdgrav also has a special heliocentric frame
option. By using it, the frame of reference is changed from a strictly inertial one to one
where the origin is fixed on a virtual mass of selectable size.

The resulting computation is slightly slowed for low particle density simulations due
to the non-inertial frame. However, besides the convenience of having the coordinates
referenced with the Sun (the difference being neglectable in most cases), this option
has an advantage over simulating the Sun as a separate particle in the simulations of
a single aggregate in heliocentric orbit. The latter choice would in fact create a much
wider space to consider for the pkdgrav tree-code, forcing the creation of many empty
cells and reducing the efficiency for collision searches among nearby particles.

This option has been used for the simulations in chapter 4.

3.8 Some relevant parameters

At call time (that is, when the programme is launched), pkdgrav accepts a series of
parameters from an input file, upon which to set some internal variables used during
the particles integration and collision routines.

A short list of those relevant to the present simulations follows:

dDelta : the timestep length, as discussed above
dTheta : the opening angle for the resolution of the cubic cells (see eq. 3.6)

nSmooth : the number of nearest neighbours checked for collision with each particle
each step (to quicken the computational time, collisions are looked for only with
those); set at 32 for all simulations - setting at lower values does not considerably
save time

dEpsN : the normal coefficient of restitution for collisions; normally set at 0.8 3

dEpsT : the tangential coefficient of restitution; which we normally set at the same
value as dEpsT ¢

dCollapseLimit : as discussed in § 3.5.1; normally set at 10™* or lower’

iOverlapOption : this parameter regulates pkdgrav behaviour in the case a particle
overlap is detected: see below

®in the range of values typical from literature
6a value of 1.0 is typical in literature
"there exists a similar limit also for the case of inelastic sliding, which is however of lower concern
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3.8.1 iOverlapOption

It is possible that, because of rounding problems, two particles may be found overlap-
ping. It is not normally a concern for low particle dentity systems like those for which
pkdgrav was originally written, this kind of event being rare and the choice of one or the
other of the following solutions having little effect. For dense systems like gravitational
aggregates this happens frequently, and the choice of the solution can have dramatic
consequences, as evidenced below.

pkdgrav offers four possible workarounds when an overlapping is found:

backstep : the particles are integrated back in time to a position just before the
overlapping occurs, and a collision is resolved at that time

adjpos : the particles are moved away along the line connecting the centres for the
smallest possible non-overlapping distance

repel : the particles are simply allowed to overlap (within limits), but the mutual grav-
ity is substituted with a repulsive force, to somewhat simulate matter elasticity

merge : the particles are merged (cf. § 3.5.2).

As the merge option is useless for dense systems (cf. § 3.5.2), and the adjpos option has
the possible outcome of being too rough, only the backstep and repel settings have
been considered.

Both options have a controlling parameter:

dBackstepLimit : the maximum backstep time (or infinity): if a greater one is needed,
an error is reported and pkdgrav halts

dRepelFactor : the magnitude of the repulsive force, as a fraction of mutual grav-
ity (i.e. for a couple of overlapping particles the mutual gravity is effectively
multiplied by —dRepel Factor).

Initially, we intended to perform a brief comparison between the two, to control
their effective weights in determining the results (the difference should remain little for
internal consistency).

However, we noticed some problems with the backstep case: in the course of long
evolutions with massive aggregates, characteristic “explosions” may occasionally occur
with no physical reason (see fig. 3.5).

These were likely due to the backstep option trying to backtrack particles in a
dense system, causing successive backtracks for the new configuration an so on in a
chain reaction that eventually manifests macroscopically or, alternatively, particles may
be jammed in such a way that one is backtracked a while just to be found overlapping
again in a short time, similarly causing a runaway series of backsteps, but the details
are not clear. Initially, we found no way to circumvent the problem, and so sticked for
precaution with the repel option.

Eventually, we found that another linked option could be in part responsible: the
bStrictOverlap option can be set to ignore overlaps between receding particles (i.e.
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Figure 3.5: An “explosion” sequence occurring with the backstep setting for i00 during a
simulation. Panels to be read left to right, top to bottom as a single sequence; the represented
body is rotating anticlockwise (polar view). See § 3.8.1

if the overlapping problem is being solved by itself), thus decreasing the number of
detected “effective overlaps”. This apparently makes the problem disappear; though, no
extensive tests have been performed to further investigate the matter.

The limited number of (correct) runs performed with backstep does not have us to
believe the overall effect of the 100 option chosen to be of importance.

3.9 rubble pile analizer

rubble pile analyzer (rpa) is a companion programme to pkdgrav that extracts
statistical data from a given pkdgrav particle distribution data file (this stores the mass,
radius, position, velocity, spin for each particle, among other things such as simulation
time).

3.9.1 identification of aggregates

The first and foremost problem to face is the detection of the aggregates themselves: as
in pkdgrav two particles never rest on each other (cf. § 3.5.1), we cannot simply impose
contact between particles to identify the aggregates. Instead, one has to recognise and
isolate the aggregates in a generic particle dispersion, trying to understand which of
these are in fact part of a single object, on the basis of the available data on particle
positions.
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To that purpose, rpa uses a recursive test to determine and isolate the aggregates
trying to accumulate two of them into one if they are found at a sufficiently small
distance, based on a settable linking scale parameter > 1.

rpa starts considering every particle as a separate aggregate, and then follows the
algorithm:

1. analyses one aggregate at a time and looks for the nearest aggregates in a similar
way to that used by pkdgrav to detect collisions (see § 3.4); if on all the neighbours
the test has already been performed, it proceeds to the next aggregate

2. for each neighbour it determines if the spheres centred in the two centres of mass
and having as radii the respective semimajor axes multiplied by the linking scale
overlap at least partially (for axes determination, see below § 3.9.2): in the case the
test fails, the merging is not considered, and the following neighbour is considered

3. in the case of a positive outcome, it determines if the two aggregates are both
single particles, in which case the overall test is considered as positive, the two
particles are considered a single aggregate, and the following neighbour is tested

4. otherwise (i.e. in the case of multi-particle aggregates) it checks whether at least
one of the following is true:

e the two spheres centred on the centres of mass and with radii the respective
semiminor axes overlap

e the centre of one of the two aggregates is found within the imaginary ellipsoid
(see below) with which the other is modeled, scaled with the linking scale

in which case the two aggregates are considered in fact part of the same, otherwise
they are not; in both cases, the next neighbour is considered

5. a cycle of analyses being finished, if at least a pair of aggregates has been merged
into one, another cycle is performed, otherwise the algorithm ends.

The algorithm used by rpa for the determination of aggregates is quite powerful so
as to allow it to work in most cases without issues.

However, it presents some limits in the case of particularly elongated bodies or in
cases where a secondary is found in orbit around the primary in a particularly close
passage (e.g. at pericentre), both cases being however of little issue.

In the first case, contrary to a simple visual analysis, with the typical values used for
the linking scale (1.1+1.2), very elongated aggregates are detected as multiple (usually
2) bodies. This kind of problem arises for unnaturally long, cigar-shaped objects that
have nonetheless been observed in our simulations as stable figures of equilibrium for
fast rotating gravitational aggregates. In chapter 4 we deal mainly with body disruption
and the following re-accumulation, which generally produces overall spherical bodies,
but the problem is somewhat more present in chapter 5.

This behaviour appears strictly linked to the random nature with which rpa exam-
ines the particles configuration in search for aggregates, and to its accumulating process
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used to aggregate the rubble piles as they are being detected in the recursive procedure
shown above.

Normally, when two of the particle aggregates that are being recognized have encom-
passed all the particles that are between them and come into contact, they are simply
merged due to them passing the test performed in point 4. It may be the case that,
however, two quite elongated fragments do meet with an unfavourable configuration,
where their separation is of the order of the semimajor axes, too high for them to pass
the test. If no other particle or aggregate is left nearby that can join either of the
two fragments and so possibly favouring a future merging test, the two fragments can
remain formally separated, and manual intervention is needed, when discovered.

This usually is simply a manual increase of the linking scale from its standard value
of 1.1 to values of 1.11, 1.12 or 1.2 . In some cases, this is not sufficient due to the
internal configuration of the particles within the aggregate, and a more brutal use of a
high linking scale is used.

This has, again, no practical issues until the fear arises that some particles may de-
tach from the primary and remain close to the surface before possibly resettling down,
a relevant event that alters the measurements and is missed from detection if a high
linking scale is used.

The second problematic case is the opposite one: in some cases the instabilities can
produce a cloud of fragments orbiting a large and usually fast rotating primary typically
near the threshold of losing more particles due to centrifugal forces. The cloud itself
is unstable, and as it evolves particles settle onto the primary as new may come off:
during this time the exact limit of the primary is difficult to determine, as any near
particle risks being included in the aggregate (and distorting the perceived size and
shape, see below), and manual adjustments to the linking scale are to be made to give
results consistent with the visual observation as far as possible.

The process can be at times tricky to distinguish between the two cases, but is gen-
erally manageable.

Moreover, the behaviour of the algorithm is not monotone in the linking scale(!),
and in certain cases we experienced this directly. This is due to the fact that, once the
linking scale is augmented somewhat from A to (A + 0A), it is possible for a merging
test to pass between an aggregate and a neighbour of its at a distance R(A + d\/2)
(R being the aggregates dimension), which would have failed with linking scale=X\: in
this case, the centre of mass changes position, and this can affect the following tests
performed upon the fragment, for example a merging with a third fragment at distance
R(A — 0A/2) from the original aggregate, now too far away, which would have passed
had the first test failed.

3.9.2 determination of dimensions

Once an aggregate is found, rpa tries to give an estimation of their dimensions, with
the supposition of them being approximately ellipsoidal. It takes care of determining
the centre of mass, and then the direction of the axes by the computation of the inertia
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Figure 3.6: trend of the packing efficiency within a rubble-pile: on the x-axis the considered
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rpa, and on the y-axis the packing efficiency (spheres volume / total volume) of the spheres
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value; the density is constant up to 90% of the measured dimension and well corresponding to
the experimental results described in § 3.1.2
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of which the eigenvectors are found: these give the direction of the axes, i.e. the spatial
orientation of the ellipsoid.

To determine the effective lengths it considers, starting from the centre of mass, the
distance of the farthest particles in the three considered directions:

a; = max |r, - 7| (3.15)

where the r are the distances from the centre of mass, and 7 is the orientation of the
i-th axis, finding the candidate values for the ellipsoid axes lengths. From here, it keeps
increasing all three found dimensions of a factor (1+1073) at a time a number of times
needed so that all particles lie within the virtual ellipsoid, maintaining the mutual ratios
of the three.

One of the problems in the axes estimation by rpa lies in the fact that it tries to
include within the ellipsoidal shape all the particle. Even the case of a single surface
particle in a position too far from an hypothetical “smooth” surface can determine the
artificial increase of the detected axes lengths: as a result, a low-density surface layer is
included in the aggregate, thus invalidating the measures of dimensions, as well as all the
related quantities (above all, density and the normalization factors for L and Q), even
if the axes ratios may be correctly measured (the re-scaling happens homogeneously for
all three lengths) as long as any problematic particle lies far from the six “poles”.

Our estimates performed for [P. Tanga et al., 2009 II| have told us that the error
may be contained within 10% of the values estimated by rpa (see fig. 3.6), with 95%
as a best value, at least for approximately ellipsoidal shapes.

Particularly elongated or flat objects can cause more problems, as for a 1000-particle
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object minor axes can be as short as a couple of particle diameters, and incertitudes
can cause more hassle®.

Even more problematic are obviously non ellipsoidal objects, such as those found in
chapter b preluding a fission. To have an order of magnitude for the incertitudes over
the dimensions, we can estimate an error within a particle diameter on the measured
axes lengths. By considering a 10% excess on a (~ a particle diameter over the radius of
a 1000 particles spherical aggregate), we obtain an error on vVGM?3a (the normalisation
factor for L) of ~ 5%. This has been somewhat corrected by assuming a fixed packing
efficiency of ~ 2/3, in line with both the measures obtained with the more regular bodies
and the theoretical results of § 3.1.2.

Not being a too crucial a parameter for the interpretation of results, we sticked to
0.95 times the results given by rpa if an absolute length was needed.

A slightly different problem lies in the estimation of the axial ratios incertitudes,
the issue being in determining how much of the axes length error is systematic on all
three axes (and so being, irrelevant for the ratios).

It is to note that for stable bodies obtained at the end of simulations, the measured
axes ratios do not vary over time, suggesting an overall regular surface without free
wandering particles on it (which would tend to settle in one of the holes of the surface in
short time). Besides, as a matter of fact, even a reasonably high of R,/Raggregate ~ 5%
(for a 1000-particle aggregate, less for greater N) does not invalidate any of the thesis
results, and so we simply accept the given values when needed.

3.9.3 determination of angular velocity

The angular velocity €2 is determined by inverting
L=1-Q (3.16)

where the angular momentum with respect to the centre of mass L is easily calculated
from the particles’ positions and velocities.

There not being significant sources of error in the calculation of €2 for a stable body;,
the main problem comes from the fact that binary bodies, which we simulate here,
do interact with timescales (the mutual orbits) comparable with the rotation periods
themselves. We consequently tried to measure rotation periods for the components of
a binary when at large mutual elongation.

3.9.4 tracking of orbital parameters

By itself, rpa does not calculate the relevant physical and orbital parameters for the
minor (not primary) bodies beyond controlling if their instantaneous orbits are stable
(i.e. e<1 and pericentre distance>primary radius). We added the relevant routine
as to have rpa output the desired quantities in a convenient way. We also added the
calculations for the gravitational and kinetic energies, and a suitable procedure has been
added in order to trace these quantities.

8these are, however, mainly “pathological” cases
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Figure 3.7: Results of [P. Tanga et al., 2009 I] compared to the Maclaurin and Jacobi se-
quences: + for simulations with N=500 particles, x for simulations with N=1000 particles. A
tendency of forming Maclaurin spheroids when the initial cloud is spherical has been evidenced,
while Jacobi-like bodies can only be obtained in the case of elongated clouds. No objects are
formed with L > 0.4. From op. cit.

3.10 Some previous results on perfect rubble-pile models

3.10.1 re-accumulation studies

In a past work ([J.F. Consigli et al., 2006], [P. Tanga et al., 2009 1]), we performed a
study on the re-accumulation process of particles from an initial cloud with a certain
velocity dispersion.

The general results showed how the obtained shapes are in general well represented
by the classical hydrostatic sequences (see fig. 3.7).

An interesting feature has been that, independently of which kind of cloud shape,
velocity dispersion or initial angular momentum was imposed to the system, no resulting
aggregate could be formed with an L significantly higher than 0.4.

3.10.2 equilibrium of gravitational aggregates

As seen above (cf. fig. 2.6), by examining the shape distribution of asteroids it appears
that these are far from the classical hydrostatic sequences.

A previous work of ours (|[P. Tanga et al., 2009 II]) had shed light on the connection
between finite-size aggregates and hydrostatic theories.

To simulate a relaxed population of asteroids, we considered a series of different
rubble-piles, modeled with pkdgrav, of different shapes, and put them under a rigid
body rotation at different angular momenta to observe the shape they would assume in
the subsequent evolution.

starting conditions

We used as the starting objects for our simulations a number of ellipsoidal configurations
composed of homogeneous spheres. We created ellipsoid of different shapes by varying
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Figure 3.8: initial configuration for the aggregates

the axes ratios (ag; a3) in the set
0.1 0.2 04 06 08 1.0

for a total of 36 configuration sampling the whole (ag2;a3) = [0;1] x [0; 1] configuration
space.

The aim was to use N=1000 particles aggregates, a number which does not over-
burden the computation yet allows for a variety of shapes to be assumed. To obtain
aggregates with unordered packing in all the desired shapes, the actual bodies have
been obtained by carving them out of a 5000 particle aggregate that we obtained by the
collapse of a disperse cloud with an initially zero particle velocity. To carve the more
extreme shapes of low ag and/or ag and fit their length within the sphere diameter,
theoretical a sphere of some 10° particles would be needed, too burdensome? to be cre-
ated with a random process. The trick of deforming the 5000 particle object has been
used, by having it spin at high angular velocity to increase the equatorial radius before
carving out those problematic shapes. Yet, the most extremes of these were not possible
to obtain in a 1000 particle configuration, and we had to stick with 800 and 500 particles
respectively for the (e = 1; a3 = 0.1 and vice-versa) and the (a2 = 0.1; a3 = 0.1) cases
(see fig. 3.8).

All bodies were set with particle density p, = 3000 kg/m?3 and radius R, = 50m,
typical for asteroid rock densities'® and large fragment lengths for rubble piles (some-

9with the available hardware, the time to calculate a single integration step grows to beyond a day
1O%e remember that ppuix for an unordered packing of spheres is ~ 2/3p,
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Figure 3.9: Final equilibrium shapes found in [P. Tanga et al., 2009 II] for bodies of different
initial shapes and L between 0 and 0.5 compared with the Jacobi (traced line) and Maclaurin
(right border) sequences. cf. fig. 2.6.

what smaller than Itokawa’s two main components - cf. fig. 1.4).

We run different simulations for each of the bodies, by giving it different initial rigid
body rotations along the a3 axis so as to sample L in intervals of 0.1 from 0 to 0.5, an
upper bound for the reshaping mechanism without mass loss, and letting each of them
free to evolve. As timestep (cf. § 3.3.1) we chose 7 = 8107042 ~ 40, being ~1% of
the t¢. 500 steps (~ 5.5 hours) have been used for each simulation, which were more
than enough for each to reshape and reach the equilibrium.

results and comparisons

Our expectation was that they would follow the gradient of the gravitational+kinetic
energy content, dissipating energy by internal friction, before coming to rest at a more
energetically favourable shape at constant angular momentum.

By studying the energy content for the different ellipsoidal shapes (see fig. 3.10)
supposed at equilibrium at a given L, we verified that the simulated rubble-piles did
indeed migrate towards the minima (which are in fact the MacLaurin and Jacobi fig-
ures). Yet, due to the internal frictions, this migration was stopped prematurely, and a
dispersion of shapes resulted.

The striking results were that the final distribution of bodies at equilibrium (fig.
3.9) has a strong resemblance to the observed asteroid shape distribution (see fig. 2.6).

By examining the final results, an estimation of the angle of repose for a perfect
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Figure 3.10: Trend of the content of the kinetical+gravitational energy content (arbitrary

scale) for ellipsoidal bodies supposed at equilibrium (
mentum from L =

E7) for increasing values of angular mo-
0 to 0.5: the minima correspond to the Maclaurin and Jacobi sequences

of fluid equilibrium (1 Maclaurin shape per value of L, and 1 Jacobi shape per L >~ 0.304).
Similar figures exist for the angle of repose needed to sustain each shape (cf. fig. 3.11). images
from [C. Comito, 2008]
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Figure 3.11: Trend of the minimal angle of repose to sustain a given ellipsoidal shape supposed
at equilibrium for increasing values of L from 0 to 0.5: the zeros correspond to the Maclaurin and
Jacobi figures for each specific L. For high angular momentum, some shapes become unbearable
without an active cohesion (the white zones). cf. fig. 3.10. images from [C. Comito, 2008].
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rubble pile of equal sized spheres could be given at ~ 5° (cf. also fig. 3.11)!%.

This study set the background for the simulations we present in chapter 4, where
we explored the behaviour of the bodies under faster rotations in search of a binary
formation process.

1This angle of repose is, for cohesionless materials, the same as the maximum angle at surface
between the local normal to such surface and the perceived gravity+centrifugal field direction for these
ellipsoidal bodies, giving a link between the macroscopic and the microscopic physic levels
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Chapter 4

High Angular Momentum
Simulations

To have a view about the likelyhood and stability of a catastrophic binary-forming
process we ran different series of simulations starting from a unitary rubble pile body
setting it to a large angular momentum content.

This simple choice of approach was dictated by multiple reasons.

Firstly, it is a general approach unbound from the specific characteristic of the
impact that may have created it.

Secondly, it is of help in describing a general unstable situation to study the main
trends that the objects may take, under a variety of different kind of processes: one
such example would be, in a case similar to those studied in chapter 5, where a slow
increase of angular momentum due to external factors does bring a partly fragmented
but still mildly cohesive body outside the stability region for cohesionless bodies (cfr §
2.1.5) before the centrifugal force can definitively tear it apart.

Thirdly, it allows us to study the possibilities of (at least short-time, see § 4.3.3)
stability for a high angular momentum system, and the likelyhood for it to survive for
a significant time.

Finally, this study integrates and complete a previous work ([P. Tanga et al., 2009
I1], see § 3.10.2) that examined the stability for rubble-pile bodies under low angular
momentum content, showing how the actual observed asteroid shape distribution is
compatible with a relaxed rubble-pile population. While there we were interested in
mass conserving reshape, here we explore the possibility of forming a binary from a
highly unstable starting body.

4.1 Initial configurations

4.1.1 the initial shapes and parameters used

In the simulations we used as starting particle configurations the same bodies used in
[P. Tanga et al., 2009 II|. Briefly, these are 36 different ellipsoidal shapes of axes ratios
ag and a3 each assuming the values

0.1 02 04 06 0.8 1.0
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each composed of 1000 equal spheres® of density and radius
pp = 3000 kg/m® R, =50m

organized with the “amorphous” packing (cf. § 3.1.2).

The resulting bodies mean radius is R ~ 620 m (this gives a scale for the different
pictures showing the evolutions).

For ease, all considerations about shapes are given with reference to the ellipsoidal
shape space (awg; as). The initial configurations have been represented in fig. 3.8

For the coefficients of restitution we used
ey =€ep =0.8

These are in line with the values used in [P. Tanga et al., 2009 II|, and other values have
there been shown not to significantly alter the results, as long as they remain lower than
1.

As timestep (cf. § 3.3.1) we chose to keep the [P. Tanga et al., 2009 11| value of
T=8" 10*6% ~ 40 s, but run the simulations for a much longer time corresponding to
10,000 steps, or ~ 4.5 days.

dCL has been set at 104
For i0verlapOption we used the repel option, in accordance with § 3.8.1.

4.1.2 angular momentum content

As previously said, we created different sets at different angular momentum contents.

At a fixed angular momentum, only two ellipsoidal shapes can be in an equilibrium
configuration (albeit unstable at high L), corresponding to the MacLaurin and Jacobi
shapes; for high L, slightly deformed elongated shaped are also stable (see § 2.1.6).
All objects are then either attracted towards these equilibrium shapes conserving all
mass (and consequently all L), or the initial instabilities are too large and the body is
fragmented in the reshaping process.

As seen in |[P. Tanga et al., 2009 II|, a value of L ~ 0.4 = 0.45 is the upper bound
for which all objects can reshape without mass loss; this limit corresponds in fact to the
maximum (§ 3.10.1) obtainable angular momentum content for re-accumulated bodies
from a dispersed cloud with random initial particle velocities: the re-accumulation of
higher angular momentum aggregates being prevented by the intrinsic instability of
the these latter objects. Correspondingly, we started our search for asteroid binaries
formation from the L = 0.5 value, and increased it by 0.1 for each successive set.

For convenience, we aligned the initial rotation axis ag of the body with the z-axis
of the inertial frame.

!save for 3 for which 800, 800 and 500 particles were used: see § 3.10.2 for details over construction
of the initial bodies
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To have a comparison with real objects, we note that for L ~ 0.7+ 0.8, an “average”
prolate object (ag = ag = 0.5) of density p ~ 2000kg/m? will have a rotation period
near the limit spin observed for medium-sized to large asteroids (with more spherical
objects reaching the limit rotation for lower L contents). A higher L is thus attainable
only in a catastrophic collision event.

4.1.3 presence of the Sun

To simulate a more physical background, we inserted the Sun in the simulation. The
latter is not actually created as an additional particle, but rather the pkdgrav heliocen-
tric frame option (see § 3.7) has been used, and all objects have been initially put in a
circular orbit around the Sun at a conventional distance of 2.5 AU. The orbital plane
has been chosen to be the x-y plane: i.e. perpendicular to L, with the object internal
angular momentum aligned with the orbital one. We expect the presence of the Sun to
only be significant for long term stability (several heliocentric orbits) or for high mutual
distances for a formed binary (apocentre outside primary Hill sphere), being negligible
for short-term dynamics at single rubble-pile scale.

4.2 Results: L =0.5

The L = 0.5 case appears as a transition value between the lower L cases, where objects
do not present cases of mass loss and are able to deform into equilibrium figures, and
the higher spin ones described below.

The behaviours of the simulations are roughly classifiable into 2 different categories,
depending on their initial shape:

e those starting far from the spheroid shape (i.e. with ay < 1) tend to converge
towards the stable Jacobi shape for L = 0.5

e those starting as spheroid (i.e. with as = 1) tend to keep at least in a first phase
a more axisymmetrical shape and migrate towards the corresponding MacLaurin
figure

with both cases possibly showing some form of mass loss.

4.2.1 Jacobi-attracted

The first behaviour is the predominant one, due to the low stability of the MacLaurin
shapes at high L. The final shape is invariably in the vicinity of the Jacobi figure for
L=0.5.

About a 1/3 of them, whose initial shape is near the region in which the hydrostatic
stable shape is located, show no mass loss at all.

As we consider shapes farther away from this semi-stable region around the Jacobi
shape, mass loss starts to occur. This mass loss is in the form of single particles or little
clusters (in many cases, less than 5 particles, corresponding to 0.5% of the initial mass).
All the particles lost at this stage are from the “tips” of the ellipsoid. On the whole,
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Figure 4.1: Sequence of evolution of the 5 8 2 body (see § 4.4 for nomenclature) seen from
polar view; rotation proceeds anticlockwise. Initial shape and after 100, 200, 300, 500 and 700
steps; left to right, top to bottom. The body is towards the Jacobi ellipsoid with L = 0.5. A
small mass loss is evident. Typical behaviour for many bodies at median L

about half of them lose no mass or less than 5 particles (0.5% of the initial mass) (see
fig. 4.1).

In some cases, those farther from the stable Jacobi object, the mass loss is more
important. It is of note that, due to the centrifugal nature of the mass loss, the lost
particles are those with a high specific angular momentum content (with respect to the
centre of mass frame of the object, neglecting in this phase the heliocentric motion).
This entails a net loss of L, which settles however in all cases between 0.42 and 0.5.

4.2.2 MacLaurin-attracted

The second kind of behaviour is more chaotic. The fluid MacLaurin shape for L = 0.5
lies in the vicinity of the ag = 0.3 point. This configuration has, however, low stability,
and tends to lose its symmetry and transform into the Jacobi shape. Only one of the
considered bodies, the one starting with (ag;ag) = (1;0.4), already near the point, is
capable of maintaining a stable fully axisymmetric shape with no mass loss.

All others spheroids, while initially tending to migrate towards this point, do not
manage to come to a stable configuration. The initial reshaping phase driving towards
the MacLaurin equilibrium happens very fast, within 4000 to 10000s (1 to 3 hours, with
reference to an initial rotation period of ~ 6h). The result of this fast deformation
is a relatively flat, irregular body showing some asymmetries. Some particles may be
expelled from the fast rotating body in the initial phase, generally remaining gravita-
tionally bound to the primary and remaining in orbit around it. This configuration
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Figure 4.2: Sequence of evolution of the 5_A_6 body (see § 4.4 for nomenclature) seen from
polar view; rotation proceeds anticlockwise. Initial shape and after 400, 1000, 1500, 1800 and
2500 steps; left to right, top to bottom. At first maintaining an approximately axisymmetric
shape, it then collapse to a more favourable energetic configuration. Part of the mass expelled
falls back to the primary while a part remains in orbit. Typical behaviour for initially spheroidal
bodies at median L

of the primary is not stable; in a relatively short time of typically 10°s (1 day), the
asymmetries may grow, eventually leading to a more robust reshaping towards a more
elongated shape. This transition is more brutal, and produces a loss of mass, which
occur from the "tip” of the long axis, corresponding to the particles with the highest
tangential velocity with respect to the centre of mass (see fig. 4.2). This mass loss is
contained in a few percent of the total mass, and expelled at high speed in generally
unbound, hyperbolic orbits, composed of mainly single particles with possibly a few
small clusters.

The resulting configuration is a more or less elongated body which can be either
ellipsoidal or drop-shaped, with a remaining L between 0.4 and 0.45, and possibly a few
particles in orbit around it.

This behaviour is similar to the first stages of some chapter 5 results involving
spheroidal initial bodies (cf. § 5.3.12).

4.3 Results: L = 0.6 and higher

Starting from L = 0.6, the behaviour starts to concentrate into four main classes, which
can clearly be distinguished from the starting configuration. A qualitative map for the
different behaviours is given in fig. 4.3-4.5.
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Figure 4.4: As for fig. 4.3, but with initial L = 0.7. Dispersed systems also appear.
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Figure 4.5: As for figg. 4.3 and 4.4, but with initial L = 0.8.

4.3.1 Jacobi-like

This class is related to the general behaviour observed for the L = 0.5 case. In a
region around the corresponding Jacobi configuration, objects are generally capable of
reshaping into an elongated ellipsoidal body, with however some particle loss from the
ends of the long axis.

The more the initial angular momentum increases from 0.5 to 0.7, the more the region
of the (aw9;a3) plane showing this behaviour shrinks, and the greater the mass loss
become. The resulting configuration for this class are elongated bodies with rotation
periods in the range 5.8+8h, depending on shape and L. By the very nature of their
history, generally these bodies are rotating with a spin just below the threshold of losing
more mass by centrifugal force. No Jacobi-like figure is reached for L = 0.8 and beyond.

4.3.2 many particles orbiting

This class is the heir of the second type of behaviour observed for the L = 0.5 case,
and is represented by the initially spheroidal bodies. In some cases, the spheroid may
abruptly deform into an elongated shape with a consistent mass loss. In most cases,
though, their axisymmetrical shape coupled with the high angular velocity results in an
initial isotropic “equator explosion” and a following re-organization of the mass into a
(usually slightly) elongated primary and a cloud of orbiting particles (see fig. 4.6).

It is to note that the loss of axial symmetry is a general process involving fast
rotating bodies: this is in line with the classical hydrostatic theory according to which
the MacLaurin sequence is unstable at high L.
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Figure 4.6: Sequence of evolution of the 7 A 4 body (see § 4.4 for nomenclature) seen from
polar view; rotation proceeds anticlockwise. Initial shape and after 200, 500, 800, 1100 and
1400 steps; left to right, top to bottom. The body initially expands and then re-arrange its
mass into an elongated primary and a cloud of orbiting particles. Small secondaries form and
part of the mass is expelled from the system.

The particles and small clusters that separates are generally emitted with relatively
low speed, under the escape velocity from the remaining body, resulting in a cloud
of small satellites orbiting a fast rotating and possibly slightly irregular primary at
close range. The primary, being simply what is left by the mass loss process driven by
the centrifugal force, is as a consequence rotating at a speed just below further mass loss.

This system of irregular primary + cloud is in continual evolution: because of the
chaotic interactions between the fragments, occasionally, particles from the cloud settle
more of less gently onto the primary, while others detach from it. These latter are
picked up from the ends, possessing a weight barely capable of having them stick to
the primary surface, being easily put into orbit by the interaction with the cloud or
by the slow reshaping process that the primary in undertaking. The primary, in turn,
may deform driven especially in the beginning by the internal forces, and overall by
the mass exchange with the cloud. The cloud itself presents an evolution, with the
particles’ orbits interfering and the particles themselves being directed towards one of
three possible fates: colliding with the primary, being expelled from the system, or
slowly coalescing with other particles into small clusters.

The number of bodies in the cloud starts decreasing by one of the described pro-
cesses, the evolution timescale being of the order of a few days. The small satellites that
grow around the primary tend to strongly interact and have chaotic orbits, having them
follow one of the same fates of the single particles, in a process slightly reminiscent of
that of a protoplanetary cloud.
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Figure 4.7: The primary of 7_A 4 after 10000 steps (4.6 d): its shape has been regularized
(cf. fig. 4.6).

After the initially chosen run time, some configurations show a depleted cloud con-
taining generally no consistent satellites. Some cases are more interesting, with a gen-
erally small but noticeable satellite composed of some tens of particles at most which
has survived the initial chaotic phase, and has acquired an initially stable orbit. The
clouds themselves are not completely dispersed by the end of the 4.5 days time, and a
number of small 1-particle satellites often remain in orbit after a few days.

The primaries, with time, are slightly drawn to more regular, energetically favourable
shapes (cf. fig. 4.7).

This behaviour, as L increases show a more and more pronounced initial fragmen-

tation of the primary, sliding gradually towards the behaviour described in § 4.3.4.

4.3.3 similar-mass binaries (and multiple)

A third class of behaviour starts arising from the L = 0.6 simulation. Examining the
plots of the energy content and angle of repose necessary to maintain equilibrium for
the different ellipsoidal shapes at different low-to-medium L (see fig. 3.10 and 3.11),
one can note the appearance for the middle values of L between 0.3 and 0.5 of a range
of shapes for which, regardless of the friction that can be present for the constituent
material, no equilibrium is possible without a cohesion among the components. This
unstable region is not too surprisingly initially contained within the as > as portion
of the plane (i.e., the bodies rotating around the middle axis), which are known to be
particularly energetically unfavourable. This region becomes wider the greater the con-
sidered L, arriving with L = 0.5 to comprise most of the considered ellipsoidal shape
space.

Bodies originally within this region are too far from equilibrium to reach an equi-
librium shape, as the strong centrifugal force works to tear them apart. What results
is an extreme stretching of the aggregate, which then breaks into two big objects, with
some mass possibly left over (see fig. 4.8 for a typical example).

The main characteristic of this class is thus the almost instant creation of a similar-
sized couple, with most initial mass contained within the couple.
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Figure 4.8: Sequence of evolution of the 7_6 4 body (see § 4.4 for nomenclature) from polar
view; rotation proceeds anticlockwise. Initial shape and after 100, 200, 400, 600 and 800 steps;
left to right, top to bottom. The high rotation rate stretches the aggregate, which eventually
fission.

Considering the way it has been formed, the initial shape of the mutual orbit is
invariably a very elongated or close one. In fact, the pericentre distance must be no
greater than the value of the mutual distance of the two bodies at the instant they
“formed”, i.e. when the parent’s material could be considered to be effectively been split
into the newborn bodies, which in turn is typically of 2 or 3 initial parent diameters
at most. The rotation status of the two bodies is, approximately, dictated by angular
momentum conservation for the two halves of the parent, with the remaining angular
momentum and energy (part of which dissipated by friction in the splitting process)
determining the global a and e values.

The two members of the pair can generally be considered half or fully re-accreted
bodies, and assume typically ellipsoidal shapes, generally fast rotating, with primary
rotation periods mainly in the 2.5 = 3.25h range (with some slower).

The initially planned time for each evolution is too short to follow the couple and
study any mid-term evolution process. To obtain more interesting results in that direc-
tion, we chose some of the objects in this class to be followed more throughly along a
longer period, as described in § 4.4.

ternary and multiple systems

Occasionally, and more and more as L increases, this binary forming process leads to the
coalescence of 3 objects of comparable size, which may at first remain gravitationally
bound.
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As the number of created objects increases beyond 2, the system is driven more and
more chaotic, with full 3-body interaction in play. Some systems have been followed
throughly in § 4.4.

Eventually, as the number of created bodies grows along with more unstable con-
figurations and higher starting L, less and less mass remains bound to the primary,
leading to a dispersed system.

4.3.4 dispersed systems

As L increases, eventually too unstable configurations are created. A region starts to
appear at L = 0.7 around (as;a3) = (0.8;1), i.e. in the most energetically unstable
zone, where the behaviour of cases 2 and 3 (§ 4.3.2 and § 4.3.3) is brought to an extreme.

These systems have a positive overall energy, and are disrupted by the high centrifu-
gal forces into many fragments of different masses that begin to disperse. Some clusters
may form around the most massive objects, which could lead to multiple bound sub-
systems orbiting the Sun with similar orbits (see fig. 4.9).

The transition from cases 2 and 3 into the disperse systems behaviour is not a sharp
one, and the boundaries given in fig. 4.3-4.5 are approximative. A choice could be
made of defining this region as where less than 50% of the initial mass remains bound
within the most massive subsystem (primary and satellites), but even then the chaotic
nature of the fragmentation process would only allow us to trace but an approximating
boundary.

The dispersed systems have the potential of being a very interesting laboratory for
asteroid binary formation, and one case has tentatively been followed for a longer time
in § 4.4.

4.3.5 L =0.9 and above

The behaviour described in § 4.3.4 starts becoming predominant for L = 0.9 and beyond,
with more dispersed systems forming and with less mass conserved around the primary.
We chose to stop simulation at L = 1.0, where physical starting configuration are
deemed too rare to give significant results.

4.4 Subsequent binary evolution

The relatively short time initially reserved for the systems to evolve is enough to draft
a classification of the possible outcomes, as given in § 4.3. Generally, a first regime is
reached in ~ a day where the behaviour can be categorised according to the broad cases
shown.

Border cases exist which can be classified as transition cases from one region to
another.

In the most interesting case where a binary system is formed, however, the short
time is only enough for 2 or 3 full orbits at most. To obtain a deeper understanding
of the stability for those systems, as we previously said we selected a few of them
preferentially in the “similar-mass binaries” case, and extended their simulation for a
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Figure 4.9: Sequence of evolution of the 8 A 6 body (see § 4.4 for nomenclature) from polar
view. Initial shape and after 200, 500, 1000, 1500 and 2500 steps; left to right, top to bottom.
The initial object is a spheroid of euatorial radius ~ 750 m; the images have a side length of
~ 30km. The high angular momentum disrupts the body in multiple fragments. Some cluster
may subsequently re-join or form isolated binary/multiple systems which remain in similar
heliocentric orbits. 84
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Figure 4.10: As for fig. 4.3, but with initial L = 0.9. Dispersed systems are predominant, and
many binaries formed by fission are not gravitationally bound.

longer time of 200h of CPU time each, which is the standard allotted time for medium-
length simulations at the OCA Mésocentre, and corresponds to about 280,000 time
steps, or ~ 130 days (about 9% of a full heliocentric orbit at 2.5 AU).

The particular configuration of two large objects bound in an elliptical orbit is prone
to different possible short- or mid-term scenarios. The pair will evolve under the action
of the shapes-spin-orbit couplings, where all three elements vary in the process. Our
general expectation is that, due to the continuing action of the other member, each
aggregate would be continually stimulated, leading it to assume a more and more ener-
getically favourable configuration, corresponding in principle to the Jacobi or Poincaré
sequence of shapes, and thus a more regular one.

In a longer process, assuming the orbit proves to be stable, the spin-orbit periods
would be moved towards each other by tidal forces to a synchronous binary like some
that have been observed (cf. § 1.3.1).

The very nature of the often highly elliptical initial orbit is however the key in set-
ting the whole after-the-split evolution as a chaotic process. The very close pericentre
distance, of the order of a few primary radii, greatly enhances normal two-bodies inter-
action. In this scenario, the shape of the orbit is expected to abruptly change at each
pericentre passage; this would not normally be an issue in an isolated system: as long
as the total energy is negative, the couple is kept bound.

Here the Sun starts playing its disturbing role. The Hill radius for an asteroidal
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object orbiting the Sun in a circular orbit at 1 AU is ~ 150 primary radii?, and for the
chosen distance for the simulations (2.5 AU) it is ~ 350.

It is natural to think that, if the mutual orbit of the two bodies of the asteroid couple
is safely contained within the primary Hill sphere, the couple would remain bound.

If, on the other hand, the orbit deforms too much, the apocentre could be driven
dangerously near the Hill radius, thus having the Sun enter play, eventually separating
the couple.

As a general rule, every system behaves differently and any of the possible scenarios
presented in § 4.4 is possible.

A Dbrief description for each of them follows, to illustrate how the different final
configurations can be formed. Each of the simulations is named with the triple X 'Y Z
describing the initial conditions, where X denotes 10xL, Y and Z respectively 10xap
and 10xas (“A” has been used for the value of “17), and in brackets the case to which
it has been classified according to § 4.3 based on the evolution in the first 4.5 days.

Generally, the most intense phase is contained within the initial simulation, and a
first regime is reached within ~ a day. A summary is given in table 4.2.

4.41 5 6 A (Jacobi-like)

This is a particularly unstable case of L = 0.5. A small-scale explosion of the outer layers
of the initial body rapidly expels a fraction of the high angular momentum, settling the
remaining body at L = 0.33, along with a fraction of the mass, leaving the remaining
primary in the proximity of the Jacobi figure for its L content and with ~ 85% of the
initial mass.

A fraction of the expelled mass remains initially in orbit, including a small 6-particle
secondary. These small satellites appear unstable, the small secondary itself being
disgregated by tidal forces, and many particles are soon expelled from the system. A
dynamical equilibrium arises where 4-7 single particles remain orbiting the primary
in continually changing trajectories with close pericentre encounters (see fig. 4.11).
They are strongly influenced by the irregularly shaped primary and the other satellites;
occasionally some collide with the primary, while other particles may detach from its
surface entering orbit.

4.42 6_4 8 (similar-mass binary)

This body quickly separates radially into different clusters, with a transient composition
of two main bodies of 571 and 345 particles® (whence the classification), a tertiary of
54 particles, two minor clusters of 14 and 9 particles, and some free particles.

The formed secondary body does not however have enough momentum to enter into
orbit; as a result, bodies 1, 2 and 4 quickly fall onto each other merging into a large
primary, with the originally tertiary remaining in orbit around it. Quickly, all remaining
mass is expelled from the system.

2though, orbits of the NEAs are eccentric, which decrease stability
3the total being of 1000 particles, it is easy to convert between particle number and mass fraction

86



Figure 4.11: The system of 5_6_A after ~ 80 days: a number of particles (coloured red to
enhance visibility) are trapped into unstable elliptical orbits (some out of the picture). (cf.
text)

The newly formed primary is reminiscent of its origin as a (gentle) collision between
two similar-sized bodies, appearing elongated into a characteristic contact binary shape
(see fig. 4.12).

The resulting orbit has an ellipticity initially oscillating in the band (0.39 + 0.025),
while by towards the end of the simulation it has risen to a value of 0.455 (see fig. 4.13).

4.4.3 6_6_ 4 (similar-mass binary)

This body reshapes at the beginning into a characteristic “peanut” shape with a promi-
nent bulge. In short time, this evolves in the sense of separating the two component,
with a resulting couple of 772 and 217 particles respectively. The relatively few remain-
ing particles generally merge into one of the two main component or leave the system.
The shapes of the two bodies are quite regular.

The ellipticity of the mutual orbit is high, a characteristic of the class of similar-mass

binaries, but remains below 0.82 for all the simulation, while towards the end decreasing
down to ~ 0.773

4.4.4 6 _6_ 6 (similar-mass binary)

A similar case to 6_6_ 4, with the main difference being a small tertiary (9 particles) in
an eccentric unstable orbit leading it to quickly collide with the secondary in the first
close passage to the couple. The two bodies are composed of 740 and 234 particles, with
an orbit with eccentricity decreasing along the simulation from ~0.76 down to ~0.67
by the end.
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Figure 4.12: Sequence of evolution of the 6 4 8 body (cf. text) from polar view. Initial shape
and after 200, 600, 900, 1300 and 14900 steps; left to right, top to bottom; all rotations proceed
anticlockwise. The initial evolution shows a hint of multi-body dinamics. The final primary
bears the mark of its origin as a contact binary.
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Figure 4.13: evolution of the eccentricity of the mutual orbit for the binary formed from the
6_4 8 body. the spikes are in correspondence to the pericentre passage, where the calculation
of the (osculating) orbital parameters (based on the 2 point mass problem) carries a greater
incertitude

Figure 4.14: Sequence of evolution of the 66 4 body from polar view. Initial shape and after
200, 400, 600, 800 and 900 steps; left to right, top to bottom; rotation proceeds anticlockwise.
The secondary is emitted in a highly elliptical orbit.
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Figure 4.15: evolution of the eccentricity of the mutual orbit for the binary formed from the
6_6_4 body. the high eccentricity is typical of the binary fission process.

4.45 6_ 6 8 (similar-mass binary)

A similar case to 6 6 6, with a second small, eccentrically orbiting satellite surviving
a first passage at pericentre while altering its orbit and eventually falling onto it at its
second passage.

The two components are composed of 702 and 278 particles, with the eccentricity
oscillating within the (0.54 + 0.08) band.

4.4.6 7 2 4 (similar-mass binary)

The initial body separates into two fragments of 526 and 456 particles, with the little
(1.8%) remaining mass escaping the system.

The orbit is eccentric, remaining around ~0.8 for most of the simulation, with a
sudden rise to 0.9 after the last recorded passage. The final apocentre of the orbit being
located at ~ 70 Ry, this is not as of itself a source of concern, but the final fate could
be the dissolution of the couple if the eccentricity increases further.

4.4.7 7 2 8 (similar-mass binary)

Similarly tothe 6 4 8 system, an originally 521 and 229 particles bodies fast re-collapse
onto each other, leaving in orbit two relatively small satellites of 197 and 29 particles
and some free particles, with a small fraction of mass escaping the system. The new
originated primary proves unstable, and it quickly loses mass from its tip and remaining
with a pear-like shape.
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Figure 4.16: Smoothing of the primary in the evolution of the 7_2 8 system; from polar view.
The system after 2100, 7000 and 52000 steps.

While the following evolution mostly dissipates the cloud of fragments in orbit, an
interesting fact is that the primary is smoothed down towards more and more ellipsoidal
shapes.

The tertiary satellite is eventually expelled from the system after a close passage
with the secondary. The remaining couple orbits closely with a moderately eccentric
orbit (e ~ 0.39 + 0.015) and a few single particles having survived the initial chaotic
phase. A relatively high fraction of angular momentum is lost in the forming stage,
with remaining L =~ 0.55.

4.4.8 7 4 8 (similar-mass binary/multiple)

The initial body breaks into different main components of 343, 295, 235, 78 and 29
particles, with the two smallest ones, along with most remaining mass, directly released
into unbound orbits. Similarly to the 6 4 8 case, the 1st and 3rd bodies quickly merge.
The remaining satellite’s orbit is very eccentric (e>0.9), and after a first pericentre
passage it increases further; the resulting orbit has an apocentre distance of ~ 185R;,
and the two bodies eventually collide by the next encounter.

4.4.9 7 6 1 (similar-mass binary)

This very flat initial configuration initially deforms into a peanut shape which quickly
separates into two similar-mass components of 549 and 451 particles, which remain
bound in an orbit of eccentricity within the (0.6 + 0.75) range.

4.4.10 7 6 4 (similar-mass binary)

This initial body breaks into two fragments: an elonganted primary of 702 particles and
a more spherical secondary of 266 particles. A number of free particles remain orbiting,
which occasionally exchanges mass with the primary.

The eccentricity oscillates around 0.2 for all the observed period, with little evolution
of the mutual orbit.
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4.4.11 8 2 4 (similar-mass binary)

The body fission into two main fragments of 537 and 440 particles, in a close but fairly
circular orbit, the eccentricity remaining below 0.1 for the whole simulation. Occasion-
ally, some particles are detached from the primary surface, and collide back with either
of the two bodies.

4.4.12 8 2 6 (similar-mass binary)

The initial body separates into 5 fragments which in a process similar to that of 64 8
coalesce into 3 main bodies of 577, 333 and 62 particles, plus minor fragments and free
particles.

Initially, the two larger fragments are bound in a quite eccentric orbit with e~ 0.79
and a pericentre distance barely larger than the sum of their radii, which is highly
unstable. The tertiary possesses a similar apocentre distance and an initially safer
pericentre distance, which would by itself be a better chance of survival in the initial
phases of evolution.

The presence of 3 bodies in a close configuration is however unstable. By the first
orbit of the tertiary, the three bodies interact dramatically (see fig. 4.17): an exchange of
angular momentum is performed between the bodies, with the tertiary actually changing
the direction of its orbital angular momentum with respect to the centre of mass of the
system and being expelled.

The remaining 2-body system (which has not exchanged any mass with the tertiary)
has on the other side quite circularized its orbit (e~0.27, see fig. 4.18) with a safer
pericentre distance, the couple remaining stable for the whole simulation.

This is a manifest example of the inherent chaoticity of N-body simulation processes.
It is a mere accident, here, that the complex 3-body interaction leaves the system in its
actual configuration, as even a small difference in the fragmentation process, or in the
following reshaping can dramatically alter the overall system evolution.

4.4.13 8 4 2 (similar-mass binary/multiple)

The initial body separates into 4 fragments, of 552, 331, 88 and 27 particles. The
smallest body is simply expelled from the system, and the two larger ones remain bound
into a close circular (around e~ 0.055) and very stable orbit, with no appreciable initial
evolution.

The tertiary is actually initially put into a very elongated orbit. When the latter
returns in the proximity of the binary couple, its close passage has it collide and merge
with the secondary, modifying its orbit into a wider one (cf. fig. 4.19).

The following evolution shows no further appreciable change apart from the mutual
orbit eccentricity decreasing from the post-impact value of 0.18 to its final value below
0.1.

Similarly to the 8 2 6 case, this is another evident example of macroscopic chaotic-
ity, a small difference in some parameters possibly having large consequences on the
tertiary close encounter.
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Figure 4.17: An example of a strongly chaotic behaviour in the evolution of the 8 2 6 body
(cf. text). Polar view; left to right, top to bottom; all rotations and revolutions proceed
anticlockwise. (1) the three main bodies form. (2) the apocentre passage for the two satellites.
(3) the first pericentre passage of the secondary: the orbit is very eccentric. (4) the pericentre
passage of the tertiary. (5)-(6) the two satellites interact with an exchange of angular momentum
that changes their orbits: the secondary is pulled away from the primary in its course towards
the pericentre. (continues on next page) 93



Figure 4.17: (continuing from previous page) - left to right, top to bottom - (7) the tertiary has
had its angular momentum change direction. (8)-(9) the tertiary is expelled from the system.
(10)-(12) the binary has been left with a more circular orbit (see also fig. 4.18).
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Figure 4.18: evolution of the eccentricity of the mutual orbit for the binary formed from the
8 2 6 body: note the circularising action of the tertiary in the first phase. the final system
looks stable.

4.4.14 8 6 1 (similar-mass binary)

The initial body breaks into 2 main aggregates that quickly englobe all remaining bound
particles. The resulting pair is composed of 2 bodies of 501 and 495 particles, with an
orbital eccentricity oscillating in the (0.635 £ 0.020) range.

4.4.15 8 8 4 (similar-mass binary/multiple)

From an initial fragmentation of the body, three main bodies emerge in what essentially
appears a chaotic process: a contact-binary primary (the result of a previous collision)
of 706 particles and two spherical satellites of 154 and 54 particles.

The mutual orbits are unstable similarly to the 8 2 6 and 8 4 2 cases. The two
smaller body, having in the meantime collected most part of the cloud of fragments in
orbit, and interestingly conserving for a while a sub-satellite system of their own, collide
after a few orbits, leaving a roughly spheroidal secondary of 254 particles. The primary,
in turn, slowly regularize its shape in a process akin to that of the 72 8 case, being
reduced to 698 particles by the time of the secondaries merger.

The couple appears stable in the following evolution.

4.4.16 5 A A (many particles orbiting)

Almost the model for its category, the primary L quickly drops to ~ 0.35 while reshaping
into the corresponding Jacobi figure. A cloud of fragments forms orbiting the primary,
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Figure 4.19: Sequence of evolution of the binary formed from the 8 4 2 body. Polar view;
left to right, top to bottom; all rotations and revolutions proceed anticlockwise. (1) initially,
the parent body is split into four main aggregates. (2) the 4th body is expelled from the system,
and the tertiary is bound in a very eccentric orbit. (3) the remaining couple is left bound in
a very close circular orbit. (4) much later (~ a month - smaller scale: the centre of mass of
the couple has moved from a strictly circular heliocentric orbit and is no longer centreed in the
heliocentric circularly rotating frame) the tertiary returns in the vicinity of the couple (5)-(6)
the tertiary passes near the secondary and collides. (continues on next page)



Figure 4.19: (continuing from previous page) - left to right, top to bottom - (7)-(9) the tertiary
initially bounces off the secondary. (10)-(11) the tertiary collides again with the secondary and
the two merge into a larger secondary. (12) the new couple is left with a wider orbit (cf. also
fig. 4.20).
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Figure 4.20: evolution of the eccentricity and mutual separation for the binary formed from

the 8 4 2 body. Note in particular the tertiary impact on the secondary that, by chance,
widens the couple instead of disrupting the system (see text ang fig. 4.19 for details).
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which slowly dissipates and in which a secondary satellite is capable to grow coalescing
particles onto itself (see fig. 4.21).

By the end of the simulation, the system is composed of a primary of 853 particles,
a secondary of 45 particles and a number of single particles still orbiting.

4.4.17 6_A 6 (many particles orbiting)

A similar case to 5_ A A. The resulting system is however more composite, with several
multi-particles clusters still gravitationally bound to the primary at the end of the
evolution.

4.4.18 7 A 6 (many particles orbiting / similar-mass binary)

A border case between § 4.3.2 and § 4.3.3. The initial body is highly shattered by
the rapid rotation, with the largest fragments then re-accumulating into an irregular
primary. This rapidly rotating primary, in turn, fission by centrifugal force into two
fragments of 591 and 276 particles. The remaining cloud of particles dissipates very
quickly, leaving the two main bodies as the sole remnants of the system along with 2
single particles (see fig. 4.22).

The following evolution, after an initially apparently stable period where the ellip-
ticity of the orbit oscillates between ~ 0.4 and 0.7, suddenly presents a quickly increase
in the orbit elongation and ellipticity, leading to an abrupt separation of the couple
within 106 days, after about 60 mutual orbits.

4.4.19 8 A 6 (dispersed system)

The initial body shatters into multiple fragments, with a number of them re-accumulates
over the course of the month following the initial break-up (see fig. 4.9).

At the end of the simulation, corresponding to 185 days, the largest body has grown
to a 357 particle body, with a satellite of 121 particles in a elliptical orbit. Other
aggregates show no consistent satellites; their consistency and spins are tabulated in
tab. 4.1.

4.5 Shape-spin-orbit interactions

One of the goals of the simulations was to study the evolution of simulated binary
rubble-pile asteroids, following in particular the interactions among shape, spins and
mutual orbit. This would allow to try to extrapolate some macroscopic characteristics
of the perfect rubble pile model (like its dissipation function Q, see [Sol.Syst.Dyn., eq.
4.138]) which can be useful for future applications, comparison with real rocky objects
estimates, and trying to analytically predict the behaviour of the systems beyond the
relatively short simulation run times.

A first measurable result is the observation of the dependence of the spin period of
some primaries with their shapes as these evolve under the action of a secondary. An
example is given in fig. 4.24, where some abrupt changes in shape correspond to sharp
changes in the rotation period.
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Figure 4.21: Sequence of evolution of the 64 8 body (cf. text) from polar view; left to right,
top to bottom; all rotations and revolutions proceed anticlockwise. Initial shape and after 400,
700, 2000, 5000 and 20000 steps. Initially, the body flattens; then rapidly develops into an
ellipsoidal shape with consistent mass loss in the form of many particles that remain in orbit.
Slowly, a small secondary forms in orbit gathering mass from the orbiting particles.
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Figure 4.22: Sequence of evolution of the 7 A 6 body (cf. text) from polar view. Initial
shape and after 300, 800, 1300, 4000 and 12000 steps; left to right, top to bottom. The body
shatters and then re-accretes; two main aggregates emerge, which rapidly deplete the cloud of
orbiting single particles.
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Figure 4.23: evolution of the eccentricity of the orbit and rotation period of the primary for
the binary formed from the 7 A 6 body. The evolution is irregular, and eventually the couple
breaks apart: the necessary energy is extracted from the rotation of the primary in the last
close interaction after ~ 3.5 months (cf. text). For the increase in the primary rotation rate
after the couple dissolution, see § 4.6.
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Figure 4.24: evolution of the axes ratio and spin of the primary for the binary formed from
the 8 4 2 body under the perturbing action of the secondary: the abrupt change in the shape
of the primary observed at ~45 days is reflected in the rotation period; smaller bumps are also
visible.
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part. # P(h) satellites

357 7.3 a 121-particle (Pro; ~2.9h, e=0.76, a/R; ~ 20) + a single particle
160 3.1 4 single particles

66 3.4 2 single particles

52 3.1 2 single particles

49 7.0 a 2-particle satellite

23 3.8 -

18 4.7 -

11 4.3 1 single particle (?)

11 4.8 1 single particle (?)

10 4.6 -

Table 4.1: Aggregates of 10 or more particles (1% of parent’s mass) resulting from the frag-
mentation and re-accumulation of the 8 A 6 body. Plotted are the masses in particle numbers
(1000 initial particles), rotation periods in hours, and notes about satellites. Only the most
massive has a significant secondary. 32 aggregates (2+ particles) have been detected in total,
in addition to 46 free particles.

o

]

o,
<

My(%) Pi(h) Ms/M; a/Ry e L notes

87.3 2.7 only single particles in unstable orbits
85.3 2.7 0.053 7.5 0.43  0.38 single particles also orbiting
92.7 4.4 0.060 4.1 0.46  0.54 contact binary

77.4 2.5 0.28 17 0.73 0.66 see§ 4.6

73.9 2.9 0.32 12 0.67  0.59 tertiary-secondary merger
70.2 2.7 0.40 5.7 0.57  0.55

80.1 2.9 0.064 7.1 0.19 0.38 multiple small satellites
52.6 2.9 0.87 29 0.90 0.61

70.1 2.8 0.29 3.6 0.39 0.49 smoothed contact binary
87.6 3.3 0.089 unbound - original secondary merged with primary
54.9 2.5 0.82 13 0.69 0.69 no particle loss; see § 4.6
70.2 3.0 0.38 4.1 0.20  0.67

61.4 4.1 0.51 unbound - secondary escapes after ~60 orbits
53.7 2.8 0.82 5.5 0.058 0.75

57.8 2.6 0.58 8.0 0.22  0.81 tertiary lowers ecc.

55.2 2.8 0.76 8.0 0.088 0.74 tertiary widens orbit

50.1 2.7 0.99 13 0.65  0.82

69.6 3.2 0.37 10 0.60  0.75 smoothed contact binary
35.7 7.3 0.45 20 0.76  0.55 dispersed system
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Table 4.2: Final results for the long simulations. M is the mass fraction of the parent body
ending up composing the primary, P; is the primary rotation period, My/M; the mass ratio
of the two components, a the semimajor axis of the orbit (in primary average radii), e the
orbit eccentricity. For description of the notes, see text. All primaries (except for the dispersed
system) are fast rotators. The resulting close orbits are in line with those observed for the
actual binary asteroid population.

Generally, though, any study of complex interactions is hampered by the conserva-
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Figure 4.25: evolution of primary spin rate from the 6 4 8 simulation. the steady increase
is not due to primary-secondary synchronisation (see § 4.6).

tion problems shown by pkdgrav (see § 4.6).

4.6 The limits of pkdgrav and the validity of the simulations

Another interesting observation derived from some simulations is the gradual steady
increase of the primary rotation period (see fig. 4.25). We initially linked this to
a classical tidal mechanism of braking dissipation that could lead, with time, to a
partially or fully synchronous system. Yet, its constant nature instead of a discontinuous
behaviour (greatest near close encounters, minimal near apocentre) was a first clue that
there were more to it.

As we developed more refined measurements, an analysis of some binary angular
momentum trends (see fig. 4.26) was the definitive evidence that drew some limit
about the long-term precise rendering of compact bodies by pkdgrav.

While we expected a somewhat not perfect conservation of quantities like binary
angular momentum (the systems being in orbit around the Sun), the variations were
at most of + ~ 1% over ~4 months for many simulations, except for some exceptional
cases like 76 1 (cf. fig. 4.26), where a variation of more than 10% can be observed in a
5-month period. As this fact warranted more investigations, we run a few tests to locate
the problem. Repeating the simulation with the Sun removed, the results were similar;
as in the 7_6_ 1 simulation all the mass was contained in the pair, there couldn’t be
any doubt that the problem lied somewhere within pkdgrav code. We performed other
tests trying to “freeze” the two asteroids into rigid body configurations (see § 3.1.3) to
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Figure 4.26: Evolution of angular momentum content of the binary from the 7_6_ 1 simulation.
While it is not the only simulation presenting a significant variation of the angular momentum
content, this was peculiar in both sinuous trend, amplitude (5% and more) and the fact that
no other aggregates were present but the two members of the couple. a test without the Sun
confirmed this to be a spurious pkdgrav effect.

eliminate all internal particle interactions, trying to change 100 (see § 3.8.1) from “repel”
to “posadj” and “backstep”, by decreasing the timestep length, and even eliminating the
secondary (!); yet, the problem persisted.

In the end we found no real clue as for the reasons of such behaviour, or why some
cases are more of an issue than others.

The “frozen rubble-piles” test was also performed to test the physical consistence
the primary de-spinning patterns (as seen e.g. in fig. 4.25). The results showed no
appreciable change in the slope of the rotation period change (see fig. 4.27), differently
to what could be expected if that behaviour were due to tidal forces, which act by energy
dissipation by friction at the interior of the bodies which are continually deformed: by
turning off the deformation, this mechanism should be eliminated.

A question arises on the validity of the results obtained.

If a first consequence is that the code is not (yet) fit to precisely follow compact
bodies evolution for more than a few days if precise measurements are needed, the
overall errors obtained are largely covered by the general chaoticity of the simulations
themselves, where small initial changes (in the relative positions of the particles inside
the bodies, in the nature of the physical event that brought the bodies to an instability
in the first place, etc...) can greatly alter the subsequent macroscopic quantities (the
break-up of the initial bodies, their subsequent reshaping, the orbital parameters of the
objects formed, and so on) and the overall history of the systems.

In this sense, the results obtained, both regarding the “overall behaviour regions”
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Figure 4.27: evolution of primary spin rate from the 6 4 8 simulation with the aggregates
being “frozen” at fixed shape shortly after formation. the steady increase in the primary spin
period does not change from the normal case (fig. 4.25), indicating that it is not due to tidal
forces, which are suppressed in the rigid body configuration. this was an additional proof that
pkdgrav may not be suited for long-term precise integrations of compact bodies.

described in § 4.3 and the mid-term evolutions, can only be interpreted statistically, to
provide a general overview of the possible systems that can be obtained. Under this
limit, we can safely assume the results to be correct.

4.7 Size dependence

The initial R, = 50 m was chosen in [P. Tanga et al., 2009 II] because it is the typical
size of the objects in the transition region between monolithic asteroids and rubble piles,
and thus of the typical size of the large fragments we expect to find inside the actual
rubble piles (somewhat less than the length of the main Itokawa components, cf. fig.
1.4).

In [P. Tanga et al., 2009 II|] we also found that size was completely irrelevant for
that work’s results, at least within a factor of 10. To complement the results obtained
here, we performed two runs increasing Iz, by a factor 20

R, = 1km
keeping p, fixed (8000-fold increase of mass), and repeating the 7_6_4 and 6_A_6
simulations (L being correspondingly changed to keep L constant). This brings the

overall dimensions somewhat larger than the sizes of the largest of the small binary
asteroids (group B in the Pravec & Harris classification, see fig. 1.12).
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The results are shown in table 4.3, and show no significant change compared to
the R, = 50m case. Together with the results obtained from the simulations in
[P. Tanga et al., 2009 II|, we can trust the results to be valid for a wide category of
sizes.

body Mi(%) Pi(h) My/M; a/R; e L notes

6 A 6 80.1 2.9 0.064 7.1 0.19 0.38 multiple small satellites
6 A 6roy 84.0 3.2 0.054 7.0 0.19 0.43 some single particles orbiting

7 6 4 70.2 3.0 0.38 4.1 0.20 0.67
7 6 _4poyy T4.6 3.8 0.30 7.8 0.27 0.65

Table 4.3: comparison between the original and the simulations where the initial linear di-
mensions were multiplied by a factor of 20; final results are similar within the incertitudes of
general behaviour

4.8 Conclusions

In general, we show how binaries are a natural outcome for unstable cases of shattering
and re-accumulation.

A comparison with the real asteroids is presented in fig. 4.28.

In general, the systems retain a mildly strong memory of the initial L content; by
comparing them to some groupings of binary asteroids, we can see how the systems
starting with L > 0.8 conserve generally too much angular momentum to be represen-
tatives of actual observed asteroid pairs. This could mean that the initial conditions
are not representative of actual situations (for example, hardly a body could be allowed
to accumulate such a high initial angular momentum before breaking, as this would
correspond in general with a rotation period < 2h)*.

On the other hand, the L = 0.5+0.7 cases are well within the possibility of being the
parent scenario for some observed asteroid pair. In particular, if with time the binaries
are allowed to reach the full synchronous state, they can be superposed to the region of
synchronous small secondaries of the main belt.

The large, small mass-ratio binaries from the main belt (Pravec and Harris group
L) have generally small satellites (~ 0.1%) and may originate in a wide variety of ways,
including the simulations of this chapter and chapter 5.

The history of some couples shows how the primary can be smoothed in a relatively
short time (months) from an irregular pear-like or contact binary shape. A comparison
with the same simulation where all other orbiting particles and satellites have been
removed shortly after the formation of the system shows how, in this case, the shape
remains irregular (see fig. 4.29): this allows us to interpret the smoothing as due
to the stresses induced by the secondary and/or matter exchange with a (possibly
present) cloud of small particles. This in part confirms the experimental fact of many
primaries of actual asteroid pairs being more regular and near to equilibrium figures
(|D. Hestroffer, P. Tanga, 2005]).

“they are in line with the L content of Patroclus, though
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Figure 4.28: Plot of some relevant quantities for the objects issued from the long (some months)
runs, compared to the groupings by [P. Pravec, A.W. Harris, 2007] (background image is the
same as fig. 1.12, from op. cit.). Colour discriminates among starting L: violet 0.5, blue 0.6,
orange 0.7, red 0.8. Circles and crosses discriminate the size razio as per the original image’s
key. The rightmost objects are those from § 4.7 (but note that, as simulations scale well with
size, each point can as well be though of as a horizontal bar; discriminating between sizes must
be made according to physical considerations external to the simulations). In the (D; — P)
plot, results are largely overlapping. The results are compatible with the small binary asteroid
population, even considering the mass ratio (not plotted here). With time, they may become
synchronous and fit within group B. Patroclus system might be compatible with the L = 0.8

bodies.



Figure 4.29: Smoothing of the primary in the evolution of the 7 2 8 system (left) is prevented
(right) if all satellites are removed early in the simulation. Both images show the object after
52000 pkdgrav steps of 40s each.

Some primaries do resist better, however, and retain their irregular shape, like the
contact binary primary of 6 4 8.
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Chapter 5
Spin-up Simulations

As shown by previous simulations (chapter 4, [J.F. Consigli et al., 2006], [P. Tanga et
al., 2009 I|) equilibrium figures for bodies described by hard particles can sometimes
differ from regular triaxial ellipsoids. A question then arises about their evolution when
these different shapes undergo some gradual change in angular momentum.By looking at
the possible range of equilibrium figures (cf. fig. 2.4), it is normal to wonder whether it
is possible to actually explore some of them: in particular those close to the bifurcation
towards binaries, to see if they can actually act as a passageway for binary formation
processes, as suggested for example in [P. Descamps, F. Marchis, 2008] (cf. fig. 1.13).

Here we present the exploration of some shapes with a technique similar to that of
[K.J. Walsh et al., 2008], but with a different premise and dramatically different results.

The approach we follow here is radically different from what was presented in chapter
4, where a sudden excess of angular momentum was introduced. As told in § 1.3.3,
YORP effect has in the past decade been suggested as a possible responsible for pushing
the asteroids beyond the stability limits of the simple ellipsoidal-like shape into binary
asteroid formation, especially for those smaller than ~ 25 = 50 km. Some studies have
been performed to test its validity, as we discuss in § 1.3.3. Small collisions, YORP,
periodical close encounter with the inner planets or other slow effects that may alter
the equilibrium for a body are imagined to act on a much longer scale than the self-
gravitational forces. While for example the YORP torque modifies the rotational state of
an aggregate, the latter has time to readjust itself to the continually modified conditions
in a quasi-static evolution.

We intended to explore the possible fission events and their issues, aiming at clarify-
ing the dependency from initial conditions, and looking for those shapes that can more
efficiently lead to a binary asteroid.

The idea is to simulate this kind of slow acting effects by subjecting the bodies to
small angular momentum increases followed each by a suitable time left to the body to
adjust its shape.

Here we just stress that we impose a gradual, regular change in spin which is inde-
pendent from the object shape. This approach is not fully consistent with the nature
of the YORP effect in itself, which may include spin-down periods and re-orientation
of the rotation axis, possibly dependent on small details of the asteroid shape as shown

111



in [T.S. Statler, 2009]. A full consintent YORP simulation is possible in principle, but
vastly increase the computational time involved, and is beyond the scope of this work.

Rather, the spin-up mechanism must be seen as a numerical method for approaching
a shape to its spin limit, not as a process finely reproducing the real spin evolution of
an object. We can however assume that, when close to splitting, our simulations could
reproduce the effect of a gentle spin-up due to YORP.

5.1 Initial configurations and chosen parameters

5.1.1 initial rubble-piles

Since our previous simulations both from chapter4 and other sources (e.g. [P. Tanga et
al., 2009 II]) have put at our disposal a large variety of shapes, sometimes presenting
strong asymmetries, it seemed natural to try to use as wide a gamut of shapes as possible,
to further examine the role of the initial shape in the possible binary formation process.

A first batch of shapes has been selected among the primary remnants of our 1000-
particles simulations, with the choice based mainly on two criteria:

1. the high number of initial particles, to ensure an adequate rubble-pile behaviour,
too few particles not being capable to assure a wide variety of shapes in response
to the changing environment (rotation increase)

2. the variety of initial shapes.
The 12 selected shapes are generally composed of
N ~ 850 = 1000
particles with the same characteristics of the simulations in chapter 4:
R, =50m p, = 3000kg/m?

To increase the range of bodies on which to study, we added in 6 more objects that
resulted from other simulations, with the following characteristics:

N ~ 1200 = 1500 R, ~ 86m p, =~ 1000kg/m>
of different shapes.

All resulting bodies have sizes ~ 1km.
For the lack of a suitable way to classify those shapes, we used a (rough) visual
appearance criterion, individuating the following kinds of shapes:

ellipsoidal (ell) shapes

double-pointed (dbp) shapes are similar to elongated ellipsoids, but with sharpened
tips, a result of some previous particle loss
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drop shaped (dro), which are bodies generated similarly to the previous ones, but
more asymmetrical, with the mass loss having occurred only on one side; the
most elongated may resemble the “egg-like” Poincaré shapes!

hamburger shaped (ham), a very flat spheroid
triangular shaped (#ri), a flat three-spiked object
bilobated / contact binary (c¢bi), a contact binary object
irregular (irr): other unclassified shapes.

where the 6 low density body are additionally marked with -ld. Additional relevant
information about their different shapes is given for the single bodies in § 5.3.

Most bodies are already in a high rotational state with generally L > 0.4, but are
in an initially stable equilibrium. It is posited that instability-creating mechanisms can
really start to influence the binary creation process only from this stage on, for example
by pushing the angular momentum beyond the quantity that a single rubble pile can
hold without breaking.

5.1.2 chosen pkdgrav parameters

The coefficients of restitutions and the 8. angle have been kept at
en=€¢r =08 6.=05 ,

as for the chapter 4
For the dynamical parameters, as we wanted to reproduce small incremental trans-
formations, we decided to act on the side of caution, to try to limit as much as possible
random numerical “noise” coming from pkdgrav and considering the results in § 4.6.
We took for the p, = 3g/ cm? objects a very conservative timestep of

t=8-10 Tyr/2r ~ 4s

i.e. 10 times less than for the high angular momentum simulations, and considerably
less than [K.J. Walsh et al., 2008]2. The 1500-particles p, = 1g/cm? simulations have
been run with a timestep re-scaled by p~1/2 to ~ 1.39¢ — 6yr/2m (corresponding to
~ 6.29s), in order to maintain the same accuracy. We also decreased the dCL down to
1076 for a higher precision than for the simulations of chapter 4.

For 100 we used the repel option, in accordance with what exposed in § 3.8.1.

Because we are primarily interested in studies on body deformations, differently
than for the simulations in chapter 4, we did not use the heliocentric reference frame
option (see § 3.7), as it unnecessarily slows the computation.

Lcf. the instabilities of the Jacobi sequence in § 2.1.5
they mainly used a 50s timestep length (K. Walsh, private communication)
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5.2 The simulations structure

The simulations run are each composed of a repeated cycle of three steps:

1. a pkdgrav integration of 50k timesteps of ~ 10_3tff under the sole role of self-
gravity and inter-particle collisions

2. a semi-automated search to look for any mass loss or secondary that may have
been formed

3. a sudden increase of 1% of the angular momentum of the body (the so-called
“spin-up kick”), in the case no secondary has appeared

5.2.1 pkdgrav integration

To ensure a suitable time passes between angular momentum increases, we left the
system evolve untouched for 50,000 timesteps, corresponding to ~50 t7¢, a time much
higher than what has been observed in |[P. Tanga et al., 2009 II| as necessary for the
reshaping into a new equilibrium. Overall, this mechanism reproduces the slow spin-up
performed for example by the YORP effect on a small asteroid.

As the initial bodies were selected as remnants from previous simulations where mass
loss had occurred, some may present single particles or small cluster initially detached
from the real primary. We thus chose to start with a 50k step integration before the
first “spin-up kick” to allow these particles to settle down and be sure the initial bodies
are effectively at equilibrium.

5.2.2 search for secondaries and elimination of the escaping minor
fragments

While the rubble-pile is left free to evolve in the pkdgrav integration, its shape is allowed
to change to adjust for the higher angular momentum content since the last spin-up kick.
In this process, after several kicks, it is inevitable for some mass to eventually escape
the body.

After each pkdgrav integration, each body is examined with rpa (see § 3.9) to detect
the presence of any fragment having detached from the aggregate.

A first automated examination is performed with the linking scale set to 1.2. If only
one aggregate is detected (i.e., apparently no mass loss has occurred), we accept the
result, and proceeded to the next spin-up kick.

This procedure, while speedy, has the potential for a “false-negative” mass loss de-
tection if a single particle or small cluster is found very close to the body surface, as
told in § 3.9.1. Yet, this exception is soon detected by the following step, when the
spin-up kick, applied to all particles, pushes free bodies orbits further away, allowing
their detection. As the particle has been detected in the following cycle, a rapid visual
inspection of its story will lead to a reconsideration of the previous step, if the need
arises to keep the particle?.

3i.e. in the case the particle is just “jumping” from one location to another on the surface of the
body
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Figure 5.1: Loss of particles from the tip of a body (polar view, rotation proceeds anticlock-
wise). Emissions of single particles or very small clusters happen frequently during the spin-up
simulations as the bodies are accelerated; mostly, these are emitted in hyperbolic orbits. As
this carries away angular momentum excesses, often the primary mass is simply rearranged as
to keep the overall shape similar than before the loss.

If the output of rpa indicates an actual mass loss, the test is repeated with different
linking scale values (generally from 1.05 up to a value of 5 or 10), to check for consistency
between the outputs. Again, if the results are in agreement (as they usually are), they
are simply accepted as such. Otherwise, a visual examination is performed to check for
the consistency of the secondaries.

As we look for a large-binary formation event, our idea was generally to eliminate
before the next “spin-up kick” any particle or cluster that do not remain in orbit around
the leftover primary.

For the purpose of the binary forming process, different kinds of mass loss can take
place, with each case deserving a separate description.

single particles escaping the primary

The most frequent case of mass loss consists of single particles escaping the body from
one of the tips. For the most part, these are emitted at high velocity on a hyperbolic
trajectory (see fig. 5.1).

As our goal is the observation of satellite formation, and these particles no longer
play any role in the reshaping of the body, they are simply ignored and removed from
the system.

single particles remaining in orbit

In some instances, emitted single particles can remain in orbit around the primary.
This is especially the case with the least elongated objects, and in particular in the first
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phases of the hamburger and triangle simulations, similarly to the cases examined in
§4.3.2.

These objects are midway to our goal of capturing a secondary formation event.
There are two main reasons as to why these objects should be kept in the simulation,
although they are not relevant for directly producing significantly large secondaries
(>~ 5+ 10% in mass).

First, if many small fragments are allowed to enter orbit during different “spin-
ups”, this cloud of fragments could, in a process already observed in some high angular
momentum simulations (see § 4.3.2), lead to an aggregation in orbit of a consistent
secondary. This is precisely the process observed in [K.J. Walsh et al., 2008] examined
in § 1.3.3). For the same reasons discussed there, single particles detaching from the
primary and entering orbit should be excluded from the system by the following step,
simulating their escape in times shorter than needed for the next mass loss.

Yet, it could be the case for a considerable number of particles to be emitted at
once, forming a cloud. In these cases, a real satellite could be formed by coalescence of
fragments, as observed in some simulations in chapter 4. In such (rare) extreme cases
where a big cloud of fragments is produced, we chose to adopt an ad hoc technique
to simply allow the cloud to evolve naturally with a longer pkdgrav integration before
applying the next spin-up kick.

Secondly, some small satellites have been observed that amount to only a tiny frag-
ment (~ 0.1%, see § 1.3.1) of the primary mass, in line with a ~ 1/1000 ratio of a single
particle to the whole aggregate. Again, there is no guarantee as to the stability or the
origin of these configurations. Moreover, our goal is an understanding of the formation
process of at least consistent medium to large sized secondaries.

These considerations lead us to simply remove from the system any single particle,
regardless of its orbit being initially bound or not.

By the same line of reasoning we can also remove very small clusters (a few particles
at most) that occasionally form.

large fragment emissions

The single particle (or very small cluster) mass losses do usually very little in reshaping
the primary: while some mass is expelled in small batches of particles from the tips
of the aggregates, new one coming from elsewhere on the body take its place, and the
resulting shape often resembles the pre-mass loss one*. In some instances, however,
after many spin-up cycles, it is possible for the aggregate to slowly deform out its initial
shape, especially in the case of little mass loss during the evolution. This produces in the
overall shape a narrowing in the figure, and the growth of a protuberance; eventually,
this detaches from the primary in a sort of “budding” or “fission” process (see figure 5.2)
creating a separate secondary aggregate.

“interestingly, a similar phenomenon is also observed with the crystalline (i.e. rigid) packing in
[K.J. Walsh et al., 2008], where it ensures the steady supply of mass for the secondary to form up
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Figure 5.2: Sequence of evolution of the dro3 body, from polar view; left to right, top to
bottom. (1) the initial configuration; (2) after 15 “spin-up kicks”, the shape has evolved a
protuberance; (3)-(6) after 18 kicks, in a fast process (the images describe the last (clock-
wise) rotation period of the parent body) the protuberance quickly detaches forming a sizable
secondary (mass ratio 0.25). see § large fragment emissions in 5.2.2



These secondaries can be emitted either in elliptical or in hyperbolic orbits.

As the aim of our study was to try to form asteroid binaries, we ignored and elimi-
nated from the simulation any secondary emitted in a hyperbolic orbit, similarly to the
single particles mass loss, and applied the next spin-up kick.

Conversely, we stopped the simulation if a stable secondary has formed, and no more
spin-up kicks are applied. A short study on the stability of the mutual orbit is then
performed.

5.2.3 spin-up kick

If no (initially stable) secondaries are formed, and after the elimination of any fragment
detached from the primary to speed and the simulation and keep it “clean”, the remaining
object is spun up to simulate the slowing action of e.g. YORP in accelerating the object.
We wrote a small automatic routine that increases the angular momentum of a
rubble pile by multiplying by a specified amount (here 1.01) all the velocity and spin
vectors of their component particles with respect to the centre of mass of the body.
In all cases, we used a kick of 1% increase (the same used by [K.J. Walsh et al., 2008]).
The resulting spun-up aggregate is then fed back to pkdgrav for the next integration.

5.2.4 negative simulation ending

After many cycles without a positive stable secondary formation, the practical question
of whether stopping the simulation or not arises.

We had initially planned to continue the cycle until a pre-determined fraction (for
example 1/3) of the initial mass had been lost. However, this has revealed as too time-
consuming, as the single particle mass loss showed to be a very slow process. As some
bodies did fission, while some others kept losing mass without any pattern evolution
(shape ~ constant), ultimately we decided that after ~ 50 “spin-up kicks” without any
significant secondary formation, the simulations were stopped anyway.

5.3 Simulation results

5.3.1 the angular momentum barrier

Some first conclusions can be drawn by examining the points in the simulations in
which there is a mass loss. There appears to be in particular an “angular momentum
barrier” (L-barrier), around L 0.4 to 0.5 (slightly different for each body), which is an
upper bound for the internal angular momentum content. When, in the course of the
simulations, L grows too much, an inevitable mass loss appears that drops L down to
a lower value (see fig. 5.3).

This is in agreeing with both the hydrostatic theory for fluid bodies (cf. § 2.1.5)
and previous results of chapter 4 and elsewhere (cf. 3.10) for the re-accumulation of
aggregates from a dispersed cloud of fragments, where the formation of bodies with L
beyond 0.4 is strongly suppressed.
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Figure 5.3: (above) evolution of L for the dbp1 body (see text for nomenclature). the “spin
up kicks” are visible as the steps of the stair-like pattern. occasionally, as a certain limit L (in
this case, between ~ 0.47 and 0.50, and cf. § 5.3.1) is reached, mass loss occurs. (below) the
parallel evolution of the mass of the primary. Most times, mass loss is due to groups of single
particles and very small fragments violently emitted from the ends of the body into hyberbolic
orbits. In this case, no stable secondary is formed.
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A brief description of each simulated body follows; each one is identified by the
three-letter symbol denoting its initial shape (see § 5.1.1) and by a progressive number
to distinguish them. The 6 low-density bodies have been marked with “ld”.

5.3.2 dbpl

An initially elongated body with sharpened ends, this object after some early minor
mass loss in the form of particle emissions, slightly deforms into a pear-like one. It
clearly present a L-barrier at L ~ 0.485 £ 0.015 (see fig. 5.3). The most interesting
feature in the evolution is certainly the bump that start forming on the tip. This fails
to transform into a real binary formation event, as the process is interrupted by the too
early detachment of the mass, which breaks into several minor clumps and is dispersed
(see fig. 5.4).

The subsequent part of the simulation does not show any further noteworthy shape
change.

5.3.3 dbp2

This body starts as a squatter shape than dbp1, and is capable to accumulate angular
momentum with little mass loss or reshaping. Eventually, the bump-forming mechanism
starts, and when the body reaches L ~ 0.52 the protuberance regularly evolves to form
a small secondary of ~ 15% the mass of the remaining primary, in an initially bound
orbit. The evolution of this body is plotted in fig. 5.5 - 5.65.

It is the smallest bound satellite formed; however, it is subsequently lost (cf. § 5.5).

5.3.4 drol

A quite elongated object, it suffers little shape change and only a small significant mass
loss. Tt eventually develops a secondary of ~ 30% of the primary mass through the
process described in § 5.2.2.large fragment emissions (see fig. 5.7).

Here, the L value increases beyond ~ 0.55 by the time of splitting.

5.3.5 dro2

A gimilar initial shape to drol, this body follows a different route. Presenting a L-barrier
at L ~ 0.47 + 0.01, it frequently presents minor mass emissions that never remain in
orbit; see fig. 5.8.

5.3.6 dro3

An initially similar object from dro2 , this body presents the opposite behaviour. It
shows no mass loss at all, gathering an L ~ 0.6 before splitting in two with a secondary
of ~ 25% the mass of the primary (see fig. 5.9 and 5.10).

Swe remind the meaning of the dimensionless angular velocity Q = Q/+/7Gp for a body, which have
been introduced in (2.29)
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Figure 5.4: the mass loss of the dbp1 body occurring after kick number 13 (cf. also fig. 5.3);
polar view; left to right, top to bottom; rotation proceeds anticlockwise. (1) the initial body
(obtained from other simulations; the two free particles visible are expelled from the system
and removed before the first kick). (2) by the 13th kick, a small protuberance has formed.

(2)-(6) in the course of one rotation this protuberance is lost, with its fragmented mass emitted
in hyperbolic orbit.
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Figure 5.5: (above) Evolution of L for the dbp2 body. Little mass loss occurs until the
secondary forming process. (below) The corresponding evolution of the axes ratios of the body;
the spikes are due to mass emissions that interfere with the rpa algorithm (see § 3.9). Initially,
the body does not deform. When the angular momentum reaches a certain amount, the body
starts to deform into more and more elongates shapes typical of the corresponding Jacobi shape
for the corresponding L, eventually producing a protuberance that in the final step separates
forming a secondary of mass ~ 15% that of the remaining primary. cf. also fig. 5.6.

122



0.5

04 B

03 | 1

spin’2

01} .

L

Figure 5.6: Evolution of the dbp2 body (red line) in the (f—§2)—plane (Maclaurin and Jacobi
sequences in green for comparison). The body starts near the centre of the figure. At first,
the L increase reflects exclusively on a greater spin rate. Once a limit for the stability has
been reached, the body starts to elongate (cf. fig. 5.5), covering a path parallel to the Jacobi
sequence. Eventually, the body fission: the abrupt turn donward corresponds to the separation
event. Sebsequent evolution is for the primary recompacting its material. (cf. below, § 5.6.2)

5.3.7 dro4

The initial body is similar to the droi, dro2 and dro8 cases, and its evolution presents
no appreciable shape change while it slowly but steadily releases particles from its tip,
maintaining a Poincaré-like shape. The slow L-barrier at L ~ 0.45 is probably connected
to this behaviour (see further § 5.6.3). See fig. 5.11 and 5.12 for its evolution.

5.3.8 dro5

Another elongated body. A similar case to dro4, it has a L-barrier around L ~ 0.47 +
0.01, several small mass losses and no appreciable shape change in the observed period.

5.3.9 dro6

This body is more spherical than the other dro cases, with an initial ay value of 0.6.
It initially develops into a pear-like structure, with the head eventually detaching into
a small “secondary” of ~ 4.5% of the primary mass, dispersing into an unbound orbit:
see fig. 5.13.

After 19 more kicks, a similar process repeats itself.
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Figure 5.7: (above) Shape evolution for the drol body. (below) the trajectory of drol (red

line) in the(f—ﬁz) plane compared to the hydrostatic MacLaurin and Jacobi sequences (green):
the path followed is similar to dbp2 (cf. fig. 5.6). The formed secondary has a mass of ~ 30%
that of the leftover primary.
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Figure 5.8: Shape evolution for the dro2 body. It keeps a ~ constant shape throughout the
evolution. cf. also 5.9.

5.3.10 dro7-1d

An initially ellipsoidal object, it evolves into more elongated shapes by each kick. By
the end of the simulation (67 kicks), it has reached a drop-like shape, with no sign of
settling at a preferential shape (see fig. 5.14). It may fission if the simulation is allowed
to continue, but no time scales can be foreseen and because of time limitations we did
not investigate further.

5.3.11 droS8-1d

An elongated egg-like object. Tt maintains the overall shape throughout the simulation.
The most significant event is a mass loss of ~ 3% concentrated in 2 small clusters and
some free particles, emitted into hyperbolic orbit.

5.3.12 haml

This body starts as a spheroid with L ~ 0.51, an unstable configuration (cf. § 2.1.4),
which with successive mass losses gradually transforms into a more elongated object.
The initial mass losses are similar to those of the spheroidal objects of the high angular
momentum simulation (cf. § 4.3.2).

In the second part of the simulation it presents no significant mass losses before
fissioning at L ~ 0.50 producing a secondary /primary mass ratio binary of ~ 0.26. The
evolution is shown in fig. 5.15 and 5.16.
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Figure 5.9: Evolution of the dro3 body, which forms a satellite with ~ 25% of primary mass.

(above) Axes ratios, cf. with 5.8. (below) Trajectory in the (Z—§2) plane (red line) compared
with the Maclaurin and Jacobi figures (green): this is similar to fig. 5.6 and 5.7.
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Figure 5.11: (left) initial shape of dro4. (right) its shape after 46 kicks. little evolution has
occurred in the process. cf. also fig. 5.12.
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Figure 5.12: Evolution of L for the dro4 body. The low angular momentum barrier at L ~ 0.45
produces many small mass losses with particles emitted into hyperbolic orbits.
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Figure 5.13: Sequence of evolution of the dro6 body, from polar view; left to right, top to
bottom. (1) the initial configuration; (2) by the 14th kick, the shape has evolved a protuber-
ance; (2)-(6) at a point, this rapidly detaches (rotation proceeds anticlockwise) into a small
gravitationally unbound cluster. A similar process repeats after 19 more kicks.
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Figure 5.14: Evolution of the dro7-1d body. (above) Initial and final shapes (67 total kicks);
the shape has changed and apparently the evolution is still ongoing (cf. § 5.3.10). (below)
Evolution of L; the low “L-barrier” probably prevents secondaries to form.
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Figure 5.15: Sequence of evolution of the ham1 body, from polar view; left to right, top to
bottom. Initial shape and after 5, 10, 15, 20 and 25 kicks. See § 5.3.12 and fig. 5.16.
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Figure 5.16: Evolution of the ham1 body, which forms a satellite with ~ 26% of primary
mass. (above) Axes ratios; initially starting as a spheroid, at each kick it reshapes into a
more elongated, energetically stable configuration with mass losses. (below) Trajectory in the
(L — 52) plane (red line) compared with the Maclaurin and Jacobi figures (green): the body
start on the Maclaurin sequence, in the upper part of the figure. After reaching the vicinity of
the Jacobi sequnce, the evolution is similar to those of dbp2, drol and dro3.
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Figure 5.17: (left) initial shape of tril. (right) its shape after 46 kicks. There are many
particle loss events, but no stable secondaries form.

5.3.13 tril

This body presents a L-barrier at L ~ 0.42 and several mass losses, with the shape
slowly turning into a squat drop-like object (see fig. 5.17). No stable secondaries are
observed during the simulation.

5.3.14 elll-1d

This object is initially drawn towards more and more elongated shapes, while some
minor mass losses occur. Eventually, a secondary is formed similarly to the previous
cases (cf. dbp2, drol, dro3 and haml). The fission event occurs at the relatively low L
value of ~ 0.46. The secondary produced has a mass of ~ 16% that of the primary. See
fig. 5.18-5.19 for the evolution.

5.3.15 ell2-1d

A similar shape to ell1-ld, evolves differently. It has a low L-barrier at L ~ 0.42, with
frequent mass losses. The object is drawn to a more elongated shape in the course of
the simulation. No secondaries form. See fig. 5.20.

5.3.16 ell3-1d

An initially ellipsoidal object similar to elll-Id and eli2-ld, its shape elongates during
the simulation (cf. fig. 5.21), though it appear to settle after a while with subsequent

mass losses not changing it further. The L-barrier is apparently as low as L ~ 0.40.
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Figure 5.18: (left) initial shape for the ell1-1d body. (right) the resulting binary after 49 kicks;
mass ratio is ~ 16%.

5.3.17 cbil-ld

This body is a contact binary. Its fission is thus strongly expected. It follows an
evolution without mass loss, up to eventually separating the two components at a L ~
0.55. The formed secondary has ~51% of the primary’s mass. See fig. 5.22.

5.3.18 irrl

This body presents a L-barrier around L ~ 0.45 and several mass losses that slowly
turn its shape into a more elongated egg-like one (see fig. 5.23). No stable secondaries
are observed during the simulation, though the reached shape may suggest that a future
fission may occur; time limitations and the dubiousness of such an event made us not
investigate further.

5.3.19 irr2

An initially irregularly shaped aggregate, this object slowly develops a quasi pear-like
structure, though an early mass loss prevents this process to reach a secondary formation
event (see initial and final shapes in fig. 5.24). No stable secondaries are observed during
the simulation. Presenting a low L-barrier at L ~ 0.42 +0.1 for most of the simulation,
towards the end starts pushing this threshold to a somewhat larger value of L ~ 0.46.

5.4 Parameters variation

To analyse the impact of some key parameters, we investigated the effects of variating
them. We already have as a basis the results in [C. Comito, 2008] by which no rele-
vant differences are detected in size and density variations, so we do not expect these
quantities to be an important factor.
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Figure 5.19: Evolution of the elll-1d body, which forms a satellite with ~ 16% of primary
mass. (above) Evolution of L. After the object has reached a limit angular momentum, some
minor mass losses occur. Eventually, the mass losses stop and the body reaches L ~ 0.46
where a fission occurs. (below) Trajectory in the (L — 62) plane (red line) compared with the
Maclaurin and Jacobi figures (green): the final stages of the evolution are similar to the other
cases of binary formation.
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Figure 5.20: (above) initial shape for the ell2-1d body. (below) Evolution of the axes ratio.

Similar in shape to ell1-ld (cf. fig. 5.18 and 5.19), it presents frequent mass losses and no stable
secondary after 67 “kicks”.
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Figure 5.21: (left) initial shape for the ell3-1d body. (right) the final shape after 67 kicks.

Body Ry Mi(%) Pi(h) My/M; a/Ri e L notes

dbp2 650m 86 5.9 0.15 29 0.89 0.53 nominal case
dbp2x10  6.5km  no stable secondaries; single biggest loss 0.036 of remaining primary
dbp2x100 65km 87 6.0 0.16 30 0.92 0.53

Table 5.1: Effects of the increased size (constant density) on the behaviour of the dbp2 body.
Ry is the original body length, M; is the mass fraction of the original body ended up in the
primary. Recorded e and a (in primary radii) are the values at binary formation. The size
variation does not show a significant variability of behaviour apart from statistical uncertainty.
The dbp2 nominal case is the same as the one in table 5.4.

We mainly used as proof-case the dbp2 body (p, = 3 -10% kg/m3), as it appears a
good border case for validations: it presents in the nominal case a secondary formation
of just the right size (~ 15% of primary mass) for it to be emitted in an initially
bound orbit. It is consequently easy to test whether positive or negative (or neither)
effects arise when varying some parameters, by seeing if the secondary forming process
is substantially enhanced or suppressed.

5.4.1 dimension

To observe the validity of the secondary formation process, we proceeded to modify the
dbp2 body by increasing particle radius 10 times (volume factor 10%) and 100 times (vol-
ume factor 10%) at constant density, and with no consequent variation on the pkdgrav
integration timestep. The results are as in table 5.1.

It is to note that, even if the first case has failed to produce a secondary, the
second has. This confirms on one hand the fairly well scalability of the results with
linear dimension (and consequently mass), and on the other hand the chaoticity of the
process, where small differences can produce sensibly different results (cf. results in
chapter 4).
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At the moment of fission after 25 kicks. (below) Trajectory in the (I — Q1) plane (red line)
compared with the Maclaurin and Jacobi figures (green).
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Figure 5.23: (left) initial shape of irrl. (right) its shape after 46 kicks. There are several
particle loss events, but no stable secondaries form.

Figure 5.24: (left) initial shape of irr2. (right) its shape after 46 kicks. There are several
particle loss events, but no stable secondaries form. The final shape being quite different than
the initial one, the final fate is uncertain.
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Body Pagg Mi(%) Pi(h) My/My a/R; e L notes

dbp2,05 1.5 no stable secondaries; single biggest loss 0.038 of remaining primary
dbp2,075 2.25 85 6.7 0.14 12 0.76 0.51

dbp2 2.0 86 5.9 0.15 29 0.89 0.53 mnominal case
dbp2,1.25 3.75 no stable secondaries; single biggest loss 0.073 of remaining primary
dbp2,15 4.5 no stable secondaries; single biggest loss 0.034 of remaining primary
dbp2,1.75  5.25 no stable secondaries; single biggest loss 0.013 of remaining primary
dbp2,2 6 88 4.1 0.11 43 0.93 0.49

Table 5.2: Effects of varying density (constant size) on the behaviour of the dbp2 body. The
recorded pgqq is recorded as 2/3 of the particle density. M; is the mass fraction of the original
body ended up in the primary. Recorded e and a (in primary radii) are the values at binary
formation. The density variation does not show a significant variability of behaviour apart from
statistical uncertainty. The dbp2 nominal case is the same as the one in table 5.4.

5.4.2 density

We varied the density for the dbp2 body by exploring the particle density in the range
pp=15- 10 to 6 - 103kg/m? to test its influence in the results, with no change in size;
we modified the pkdgrav integration time step according to the ocp /2 rule for the free
fall time (cf. 3.7).

The results are as in table 5.2.

Similarly to the case in § 5.4.1, some cases (3 out of 8) do produce a secondary, and
some do not, losing a comparable mass fraction in a more disordered way instead of in
a single secondary. Again, as in § 5.4.1, this confirms the scalability of the secondary
forming process in all the asteroid density range.

5.4.3 coefficients of restitution

In literature, and in particular in [K.J. Walsh et al., 2008] (cf. 1.3.3), the tangential
coefficient of restitution is sometimes set to 1 (i.e., no tangential friction between frag-
ments, and consequently no transfer between the particles internal angular momentum
and the linear/angular momentum of the colliding one); in our simulations we preferred
to work with a value smaller than 1, notwithstanding the increase in computational
time, to provide a more physical result where such friction is present.

Nonetheless, we analysed the impact of setting this coefficient to 1. We used the
dbp2 and drol bodies, both of which produce a secondary in the nominal case.

The results are given in table 5.3: the process of secondary formation appears de-
layed, but more stable. In both cases the lack of tangential stress produces a more
even mass splitting event, with larger secondary /primary mass ratios (and more stable
orbits), lower eccentricity and closer orbit.

Apparently, the lack of tangential friction may allow for a more fluid behaviour and a
smoother transition into the binary state; a larger total mass loss has also been observed
before the fissioning event, which is normal given the higher total angular momentum
injected into the systems.
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Body # kicks Mi(%) Pi(h) My/My a/Ri e L notes

dbp2 23 86 5.9 0.15 29 0.89 0.53 nominal case
dbp2,—1 65 69 8.0 0.30 5.1 0.39 048
drol 31 75 6.3 0.30 10 0.64 0.55 nominal case
drole,—1 47 68 8.3 0.39 5.2 0.48 0.55

Table 5.3: Effects of imposing an er value of 1 on the behaviour of the dbp2 and drol bodies.
The number of kicks necessary for the bodies to fission is recorded. M; is the mass fraction of
the original body ended up in the primary. Recorded e and a (in primary radii) are the values
at binary formation. The lack of tangential friction apparently causes delayed fissioning, larger
secondaries and tighter orbits. The dbp2 and drol nominal cases are the same as the ones in
table 5.4.

5.5 Long-term stability of binaries

A question arises on the stability of the formed asteroidal binaries. This is the same
problem encountered in § 4.6. As we have ascertained, pkdgrav may have some struc-
tural problems in dealing with long-running compact bodies simulations. Nonetheless,
we tried to follow the evolution of the formed binaries for ~ 1.5M timesteps (~ 140
days for the p, = 3000 kg/m? systems).

Two aspects are to consider when examining the stability of the systems. The first
is the total energy (gravitational+kinetic) stored within the system. In the case of it
being positive, there is a high risk for the system to break up, unless the low eccentricity
allow for the extra energy (stored in the two bodies internal rotation) to be with time
dissipated by tidal forces; or alternatively the secondary may remain locked in a stable
resonant orbit, as suggested in [S.A. Jacobson, D.J. Scheeres, 2011].

It remain to be seen if however pkdgrav allows for an efficient tidal dissipation, as
for aggregates near the equilibrium, small scale dissipations by friction may be highly
suppressed (cf. § 3.5.1).

Second, even in the negative energy range, where the system looks definitely bound,
the case may arise for the apocentre to be located outside the primary’s Hill sphere (cf.
§ 4.4), or dangerously near this limit for a prolonged time. For some instability-creating
mechanisms like YORP or tidal encounters with the inner planets, the effect acts most
prominently in the vicinity of the Sun (among the NEAs population), and a value of
the apocentre distance of ~ 75+ 100 primary radii should be regarded as dangerous for
the long-time survivability of the couple.

Of the six found binaries, the dbp2 system is the only found to escape the primary.
It only manages to complete 5 full orbits with unstable values of e and a; after the last
close passage, the eccentricity is increased to ~1.1, and the couple is separated.

The dro3 binary reaches mutual distances comparable with the Hill Radius at 1 AU
from the Sun by the time of the last recorded orbit (see fig. 5.25).

In the other four cases, no problem is detected in the time considered.

Based on our results (see § 5.3 and table 5.4), we seem to be able to align similarly
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Figure 5.25: Evolution of the separation of the couple for the dro3 system. By the last recorded
(incomplete) orbit, the mutual distance reaches values comparable with the Hill radius for a
body orbiting at 1 AU from the Sun with zero eccentricity (~ 200); for an eccentric NEA
heliocentric orbit, this means the binary is easily separated.

to [S.A. Jacobson, D.J. Scheeres, 2011] regarding a lower limit for the mass of the sec-
ondary for it to be retained in a stable orbit, based mainly on simple dynamical reasons
about energy conservation. They set an analytical limit at ~ 20% of primary mass, with
variations up to ~ 28% depending on the shapes considered ([D.J. Scheeres, 2009 I,
|[P. Pravec et al., 2010]).

We can be roughly agree to a 30% limit (dbp2e,=1 has ~0 free energy), for a net
0 free energy for the systems. The higher energy at separation with respect to [S.A.
Jacobson, D.J. Scheeres, 2011] can be thought of as an additional energy necessary to
win the body strength in the perfect rubble pile model with respect to a 2-ellipsoid
model.

It is to note how [P. Pravec et al., 2010] do find asteroid pairs with mass ratios
comprised in the whole (0+0.3) interval, which would indicate previous unstable binaries
that separated with time because of positive free energy and spin-orbit coupling.

5.6 Results and discussion

In table 5.4, our results for the different cases have been summarised.

The recorded M; values are given as a reference, and a bias may be present: as we
arbitrarily stopped our simulations after a number of kicks if no secondaries form, it
may be the case that in some instances, by continuing the spin-up, a binary may be
created. As further mass loss is possible in the process, the total mass (and thus M)
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BOdy Pagg M1 (%) P1 (h) Mz/Ml a/R1 e Z notes

dbpl 2.0

dbp2 2.0 86 9.9 0.15 29 0.89 0.53 lost after a few orbits

drol 20 75 6.3 0.30 10 0.64 0.55 e reaches as high as
0.86 during the stabil-
ity tests

dro2 2.0

dro3 2.0 80 6.0 0.25 30 0.87 0.61 reaches limit of Hill
sphere for NEAs dis-
tances after a few orbits

dro4 2.0

drob 2.0

dro6 2.0 a number of clumps (biggest ~ 5% mass) detach over time and get lost

dro7-1d 0.65

lod8-1d  0.65

ham1 2.0 73 6.3 0.26 7.0 0.52 0.50

tril 2.0

elll-ld 0.6 83 9.9 0.19 8.0 0.63 0.46

ell2-1d  0.65

ell3-1d  0.65

cbil-ld 0.65 66 20 0.51 5.3 0.30 0.55 initially a contact binary

irrl 2.0

irr2 2.0

Table 5.4: The results of our nominal cases for spin-up-induced binary formation. The
body codenames represent the initial configuration (see § 5.1: dbp=double-pointed; dro=drop-
shaped; ham=hamburger-shaped (high-L Maclaurin); tri=near-triangular shape; irr=irregular;
lod=low-density particles); p.q4 are a reference value for the bulk densities in g/em? (which are
considered as being ~ 33% lower than particle densities pp, cf. § 3.9.2). M; is the mass of the
primary as a fraction of the initial body’s mass at the start of the simulation; eccentricity and
semimajor axis (in primary radii) values are those at formation.
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contained in these binaries may be lower than for the fissions observed here.

As for the results of chapter 4, the results are to be interpreted statistically, to verify
the possibility of a fissioning mechanism following a slowly acting external agent and to
examine the possible results in term of formed systems.

It is however clear that the slow action of an external perturbing agent can definitely
lead to binary formation.

5.6.1 differences with the high angular momentum simulations

A difference must be noted with the results from chapter 4 (cf. table 4.2): the primaries
obtained here rotate considerably slower (densities and binary L being equal). This is
due to the fact that the primaries obtained with small incremental instabilities inherit
the rotation rates of their elongate slowly-spinning parent. For the cases of chapter 4,
instead, the primaries are usually a (at least partly) re-accumulation of mass of a more
or less violent event, with the mass not allowed to fall unto the primary (for an excess
of L) forming the secondary or being lost.

As the resulting binaries here have a similar L content than those obtained in the
simulations of chapter 4.2 starting with L = 0.6, the two mechanisms may both be re-
sponsible for synchronous binaries, where the information on the initial primary rotation
rate has been lost.

5.6.2 the fissioning sequence

As a general trend (see fig. 5.6, 5.7, 5.9, 5.16, 5.19 and 5.22), the fissioning mechanism
leading to large secondary formation tends to always follow a similar scheme. Namely,
the aggregate tends to initially assume more elongated shapes, with possibly some minor
mass losses, following the Jacobi sequence towards shapes characteristic of higher and
higher L. At a critical point the evolution takes then a detour towards a peanut-like
shape before eventually accelerating the shape change and fissioning.

Following the hydrostatic classical results, which predict a MacLaurin shape not
being stable for high L (and again verified in chapter 4), even where the body starts
with a spheroidal (axisymmetric) shape this is as soon as possible catastrophically
diverted towards the more stable elongated (triaxial, egg- or drop-shaped) ones, with
violent reshaping and massive particle emission along the equator; for the ham! body,
this reshapes is again diverted towards the same region of the (Z—QQ) plane where the
fissioning events occur.

Very interestingly, the position of this critical point in the (L — 52) plane where
the fissioning event occurs is quite constant across the different simulations (even if
determining the exact location of a fissioning point is intrinsically difficult). In fact, it
corresponds to the neighbourhood of the theoretic onset of the instabilities of the Jacobi
sequence giving rise to the so-called “Dumbbell” sequence (see fig. 2.4 and 2.5), leading
to symmetric body fission.

Although this sequence has been described with mathematical models it has, to
our knowledge, never been observed “in action” in a simulation for a practical case of
effective binary formation.
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It must be noted, however, that the course of the sequence is only approximately
followed. The complete run through the Dumbbell sequence leading from a triaxial
Jacobi ellipsoid through a cigar-shaped object, a bilobate contact binary body, to sym-
metrical fission is complex and governed by very unstable equilibria, which are not
entirely suitable for actual physical systems, especially finite-size grains, either actual
or simulated.

Moreover, the course of the sequence is not monotone in angular momentum, while
in our simulations the angular momentum is slowly rising during the evolution, and
constant (whithin machine precision) during the last fissioning stage, with no mechanism
for dispersion (mass loss does not occur during the last stages). Finally, the sequence is
calculated for a perfectly symmetrical mass splitting, while in our cases a broad range
of secondary/primary mass ratios is observed (in the most extreme case, of a ~1-to-6
ratio).

The theoretical position of the sequence is nonetheless in good agreement with the
onset of the final splitting process, confirming both our results and the applicability
of classical fluidostatic results to gravitational aggregates, moreso if tangential friction
between spheres is set to zero.

Moreover, it is in good agreement with the observations of synchronous and contact
binaries (cf. fig. 1.13).

5.6.3 Dbinaries or not? the hidden parameters

That there seems to be a more or less sharp separation between the single particles’
emissions and the large clusters’, with little observable middle ground.

The two creation mechanisms are indeed different: in the first case we have, fol-
lowing a spin-up, a local instability that is immediately resolved with the emission of
some mass, mostly in the form of single particles, and of the excess angular momentum,
restoring the initial equilibrium; in the second case, the reshaping occurs in a longer
time frame, with the body altering its shape and developing a protuberance without
losing mass and eventually releasing the mass all at once in a fissioning event of some
tens of particles at least.

Global initial shape does not seem to be the main discriminant between presence
or lack of binary creation; e.g. both initially elongated bodies, near to the “contact
binary” region of the (L — §2) plane (like dro%), and a spheroid (ham1) are capable of
fissioning, while very similar bodies (dro2) are not.

A question thus arises as to why do some bodies develop into a binary systems and
others, similar in shape, density and size, do not.

The problem has probably an answer in the internal configurations of the bodies, as
different particles packing may distribute the internal forces in different ways. This is
probably reflected at the macroscopic level in the generally higher values of the “angular
momentum barrier” observed for the simulations forming a binary, whose particular
packing may allow some of the spin-up kick energy to be transfered into the body
shape (the growth of a narrowing in the body), allowing the rubble-pile to store it and
eventually, after many “kicks”, produce a secondary.
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Even if strains and stresses computations are completely alien to pkdgrav, the dif-
ferent particle adjustments may nonetheless well reproduce some key aspects of granular
systems (cf. 2.4), where apparently similar macroscopic configurations can in fact hide
very different forces and structures at the microscopic level, which strongly dictate the
dynamics of the systems (and where however other factors also kick in: contact forces,
plasticity, or other). For real asteroids, this is ultimately a chaotic aspect (or at least
a very poorly known or knowable one) that has connections with the formation history
of the single rubble-piles themselves.

5.6.4 a comparison with previous independent studies

It can be observed (similarly to what has been found in [S.A. Jacobson, D.J. Scheeres,
2011]) both by the binaries we form and by all of the expelled clusters in the different
runs that the larger the secondary, the greater the probability for it to be emitted in an
elliptical stable orbit.

The difference with the results found in |K.J. Walsh et al., 2008] (cf. § 1.3.3) is
evident. This is due to them using a crystalline packing. As they observe, they are
unable to recreate the satellite forming mechanism with the unordered packing.

The mechanism by which they produce the satellite is highly suppressed using more
fluid aggregates. In fact, the continually emission of particles into close circular orbits
from the equator of a fast spinning spheroid is not possible as the fast spinning spheroid
configuration is not a stable one unless the angle of repose for those asteroids be consid-
erably higher than for the unordered spheres packing. Any mildly fluid spheroid allowed
to continually accumulate angular momentum will quite soon turn into more elongated
and more energetically favourable shapes, stopping the mechanism they observe.

Any reshaping is on the contrary prevented by the crystalline structure. This is what
hides behind the “reshaping” of the elongated objects towards a spheroid apparently
contrary to the classical hydrostatic results (i.e. it is no reshaping at all, but rather
a slow particle removing process one at a time like from the top of a stack). If direct
reshaping is prevented by the geometric packing, the only shape changing event is the
possible loss, one at a time, of the surface particles at the equator due to the centrifugal
force, to be replaced by other surface particles sliding “down” from higher latitudes.

Aggregates formed by well interlocked rocks may be described by this model, and
their “hybrid” bodies (a geometrically packed crystal core surrounded by an unordered
distribution of smaller particles) can also be a good middle ground, though the apparent
contradiction between the mixing of the short gravitational timescale and the long
YORP timescale (see § 1.3.3) remains to be addressed.
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Conclusions

This work explores by numerical methods the behaviour of gravitational aggregates to
improve our understanding on the possible origin of binary asteroids, and possibly to
connect the initial conditions of the simulations to different classes of observed binaries.

Based on previous results both by us and in the literature, we have modeled an
asteroid with an unordered “amorphous” packing of spheres, for avoiding the intrinsic
geometric interlocking, especially when finer deformations where sought for, as in chap-
ter 5.

The scenario we use in chapter 4 is representative of a system having accumulated
a high amount of angular momentum, beyond the threshold for mass shedding for
a cohesionless aggregate. This accumulation can be due to the presence of a small
cohesion, or to a sudden event such as a major impact. We simulate the subsequent
fragmentation of these bodies exploring a wide range of parameters.

We have shown that binary formation is common for a moderate angular momentum
content ranging between the lowest limit typical of fluid equilibrium and the highest
values possible for a rigid body preserving surface regolith.

Large secondaries / double asteroids are produced, formed by splitting and / or re-
accumulation of the shattered body. Small satellites can accumulate in orbit, a scenario
favoured by an initially axisymmetric shape of the body.

Our results have been compared with the available data on asteroidal bodies to show
the resemblance in momentum, primary rotation rate and typical orbital distances. We
find that an agreement with observed classes of binaries can be found.

In chapter 5 we explored the equilibrium sequence connecting single bodies to binary
asteroids. The technique used is representative of the action of a slow perturbing force
that may gradually draw a body to an unstable configuration.

We were able to show how a gradual shape deformation can drive an arbitrary shape
to a bilobate aspect, then possibly fissioning and forming a multiple object. The ob-
served bilobate shape is reminiscent of both the semi-analytical results for fluid bodies
and the observed “contact binaries” among the asteroid population.

We investigated the long-term evolutions of the obtained binaries.

Both our approaches are original and have shed some light on poorly studied pro-
cesses. In fact, theoretical studies of the dynamical evolution of binaries starting from
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shapes in contact exist, but none of them can capture the richness of the phenomenology
of fission, whose complex details and highly chaotic behaviour can strongly affect the
formation (or not) of a (stable or unstable) binary object. Other numerical approaches
also failed in capturing the complexity of the spin-up process, focusing on single aspects
that we found to be not representative of the variety of possible situations.

In particular, for the first time we illustrate by numerical simulations the transition
to instability for Jacobi ellipsoids, showing that in-orbit accumulation of small fragments
is not the only mechanism forming satellites by spin-up.

Also, the path toward splitting appears to follow a typical development leading
through a limited set of shapes, whatever the shape in the initial conditions.

During this study we have also identified several limitation of the numerical approach
using hard spheres. Other approaches employing soft spheres are being investigated
by other authors, but most probably dramatic advances will be obtained by future
extensions towards irregular fragment shapes, certainly due in view of more realistic
simulations and closer comparisons to the mechanisms identified in the domain of the
physics of granular systems.
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Approccio numerico a N corpi
alla formazione ed evoluzione
degli asteroidi binari

Malgrado ampi studi osservativi e teorici da Terra e dallo spazio, la natura profonda dei
corpi minori del Sistema Solare rimane essenzialmente sconosciuta.

In particolare gli asteroidi, nello scenario comunemente accettato, hanno conosciuto
un'intensa vita collisionale come risultato dei processi dinamici che hanno modellato il nostro
sistema planetario. E comunemente accettato che processi catastrofici, come la frammenta-
zione e la riaccumulazione gravitazionale, ne hanno profondamente modificato la struttura
creando corpi altamente frammentati.

Almeno una frazione di questi avrebbero una coesione interna molto debole, che fa di
essi oggetti tenuti assieme essenzialmente dalla gravita. Le proprieta interne di tali “aggre-
gati gravitazionali” rimangono in ogni caso poco conosciute, in quanto la maggioranza dei
vincoli derivati dalle osservazioni degli asteroidi riguarda le proprieta superficiali.

Gli asteroidi binari sono un caso particolare di rilevante importanza per la comprensione
della fisica e dell'evoluzione di tali oggetti, in quanto le osservazioni ci forniscono in maniera
agevole dati importanti riguardanti la loro struttura interna.

Come prima cosa, esse possono fornirci stime accurate della massa totale a partire dalle
caratteristiche dell’orbita reciproca; siccome le curve di luce forniscono una misura diretta
della taglia delle componenti e delle loro orbite anche per gli oggetti non risolti spazialmente,
si pud dunque ottenere una preziosa informazione sulla loro densita.

Anche gli stati rotazionali e le forme possono essere determinati piu facilmente, permet-
tendo di avere migliori stime sulle tensioni interne e piu accurati modelli geomorfologici in
condizioni di microgravita.

L'esistenza stessa dei binari e la loro varieta sono direttamente legate ai principali processi
che hanno foggiato la fascia degli asteroidi, e qualsiasi determinazione delle loro proprieta
fisiche & dunque fondamentale sia per ottenere un quadro complessivo della loro formazione
e della loro evoluzione.

A.0.1 presentazione del lavoro

Molti possibili meccanismi sono stati proposti per I'origine degli asteroidi binari: dagli effetti
mareali agli impatti craterizzanti energetici capaci di espellere materiale in orbita, dalla riac-
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cumulazione in forma di binario di frammenti in seguito ad una collisione catastrofica alla
fissione a causa di un aumento del momento angolare; tutti sono attualmente sotto esamina
per mezzo dei dati osservativi e di modelli teorici.

Lo scopo del presente lavoro & di esplorare il comportamento degli aggregati gravitazio-
nali in rotazione in prossimita del limite superiore del momento angolare prima di perdere
massa: ulteriori accelerazioni oltre tale soglia offrono una visione del processo di fissione e
di formazione di satelliti.

Gli asteroidi sono modellati numericamente per mezzo di un codice a N corpi specia-
lizzato come “cumuli di macerie perfetti”: aggregati di sfere identiche soggette alla gravita
reciproca e ad urti anelastici. In cerca di instabilitd che possano condurre alla formazione di
binari, la loro velocita di rotazione viene aumentata sino alla soglia a cui grosse instabilita
si attivano, e vengono esplorate la deformazione risultante e la formazione di satelliti.

Si cerca inoltre di esplorare la questione della stabilita a lungo termine dei sistemi otte-
nuti, e vengono trattate le limitazioni attuali del nostro approccio.

| risultati sono infine esaminati in un constesto piu vasto, comparandoli con altri studi
teorici e numerici e con le osservazioni.

A.1 Gl asteroidi binari

Negli ultimi 20 anni sono stati scoperti un numero crescente di asteroidi binari, con carat-
teristiche molto diverse per dimensione del primario, rapporto di massa, separazione della
coppia, momento angolare del sistema, e le scoperte future potranno presentare un immagine
pill precisa.

Una prima classificazione pud comunque essere tentata (v. § 1.3.1), come per esempio
in [P. Pravec, AW. Harris, 2007] (cfr. fig. 1.12).

Si possono distinguere un gruppo di piccoli oggetti (dimensioni < 10km) in forte rota-
zione (con periodi generalmente < 4 ore) e con secondari consistenti (rapporto di massa
1+10%), distribuiti tra i NEO e la fascia principale®; un gruppo di piccoli binari sincroni
di dimensione comparabile con i precedenti ma che hanno raggiunto la sincronia grazie al-
I'elevato rapporto di massa (tipicamente > 0,5), che possono o meno essere una coda del
gruppo dei piccoli binari’; un gruppo di grossi asteroidi localizzati all'interno della cintura
principale con piccoli satelliti (rapporto di massa <~1% ma principalmente < 0,1%). Sono
stati osservati anche sistemi “irregolari” che sfuggono alla classificazione, cosi come esempi di
“binari a contatto” che, pur non essendo veri binari, testimoniano la loro storia di precedenti
coppie i cui componenti si sono delicatamente posati I'uno sull’altro.

62 naturalmente presente un effetto di selezione che favorisce |'osservazione di sistemi piil vicini

"per il momento, la grande maggioranza di essi & stata scoperta all'interno della cintura principale: un
ruolo a questo riguardo pud averlo il breve tempo a disposizione dei NEO prima di essere espulsi dal Sistema
solare, comparabile con i tempi necessari per raggiungere la sincronia
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A.2 La modellizzazione degli asteroidi

E generalmente accettato che la maggioranza degli asteroidi maggiori di ~100 m sono for-
temente fratturati o dei veri e propri “aggregati gravitazionali” di rocce tenuti assieme per
autogravita (v. § 1.1.2).

Il primo modello perdescrivere la loro forma resta quello dato dall'idrostatica classica,
che predice sequenze di forme stabili per oggetti autogravitanti in rotazione (v. § 2.1).

Conviene introdurre una normalizzazione per il momento angolare L, per eliminare ogni
dipendenza dalla massa M e dalle dimensioni, definendo L=L/vGM?3a , con @ raggio
medio del corpo.

Le figure pit semplici sono ellissoidi (siano a1, as e ag i tre semiassi, con a3 asse di
rotazione): si distinguono la sequenza di sferoidi® di Maclaurin, stabili a bassa rotazione
(L <~0,3), e la sequenza di ellissoidi triassiali di Jacobi, stabili per velocita di rotazioni pil
elevate (f tra ~0,3 e ~0,45). Esiste peraltro un numero infinito di sequenze matematica-
mente possibili, alcune di esse rappresentate in fig. 2.4.

La distribuzione delle forme degli oggetti reali & tuttavia apparentemente lontana da tali
sequenze (cfr. fig. 2.6), il che comporta che altre modellizzazioni piu elaborate devono
essere utilizzate, considerando le forze interne capaci di sostenere forme non strettamente
idrostatiche (cfr. § 2.3 - 2.4).

A.3 La modellizzazione numerica con i perfect rubble-piles

Questa tesi si occupa della modellizzazione numerica della formazione di asteroidi binari.
A tal scopo, abbiamo utilizzato il programma pkdgrav ([D.C. Richardson et al., 2000]), un
integratore gravitazionale a N corpi con gestione degli urti anelastici (v. cap. 3).

pkdgrav utilizza come unita di massa particelle sferiche rigide (v. § 3.1) sotto l'azione
della loro gravita; questo permette di modellizzare un aggregato gravitazionale come un
insieme di particelle libere di muoversi le une rispetto alle altre con una (limitata) liberta
secondo la dinamica imposta dalle forze globali (v. fig. 3.3): tale configurazione viene
chiamata un “perfect rubble-pile”.

Studi precedenti (v. § 3.10) ci avevano permesso di dedurre alcune proprieta di tale
modello, come I'osservare che per un aggregato & difficile contenere un L > 0.4.

La maggioranza degli aggregati utilizzati per le simulazioni di questa tesi & stata formata
con una densita di p ~ 2 g/cm? e con sfere di raggio R, = 50 m.
A.4 Simulazioni a momento angolare elevato

Per testare la possibilitd di formazione di asteroidi binari in uno scenario catastrofico, si
procede simulando una situazione accidentale in cui un aggregato altrimenti stabile rimane

8ellissoidi di rotazione con a1 = as > as
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vittima di un evento (come un impatto) che lo conduce improvvisamente verso una situa-
zione di instabilita (v. cap. 4).

A tal fine abbiamo preso una serie di corpi ellissoidali con differenti rapporti assiali (v. fig.
3.8) in orbita (circolare) attorno al Sole, e abbiamo fornito loro un alto momento angolare
sotto forma di campo di rotazione di corpo rigido su sé stessi. Abbiamo quindi seguito tali
aggregati durante la loro evoluzione guidata dall’autogravitazione e dagli urti reciproci, alla
ricerca in particolare dei casi in cui si formino sistemi binari (o multipli).

Abbiamo utilizzato differenti L da 0,5 a 1,0 per osservare il comportamento degli ag-
gregati in condizioni differenti e comparare i sistemi risultanti. Si possono osservare quat-
tro comportamenti tipo, a seconda della configurazione iniziale e del momento angolare
posseduto. Degli schemi sono presentati nelle figg. 4.3, 4.4, 4.5, 4.10.

forme allungate con al piti una piccola perdita di massa

Queste forme sono possibili quando L non superi ~0,7.

primari circondati da una nube di piccoli frammenti

Questi sistemi sono la norma per le configurazioni inizialmente a simmetria assiale (a; = as),
che rapidamente si portano verso vorme allungate perdendo massa isotropicamente. Que-
st’ultima rimane principalmente in orbita attorno al corpo principale nella forma di numerose
particelle che formano una nube.

Nel corso di alcuni giorni si possono formare piccoli satelli (di massa qualche percento
del primario) per accumulazione in orbita dei frammenti, mentre una parte della nube viene
dispersa dagli effetti perturbativi reciproci delle particelle. Questo processo & tuttavia lento,
e le nubi possono non riuscire a disperdersi nel tempo per cui ci & stato possibile seguire le
simulazioni.

Alcuni esempi sono presentati nelle figg. 4.6 e 4.12.

binari con componenti di massa simile

Una gran parte dei sistemi con L compreso tra 0,6 e 0,8 evolve rapidamente verso la
formazione di binari con componenti di massa comparabile (v. figg. 4.8 e 4.14).

Si tratta di un comportamento in cui I'aggregato viene sopraffatto dalla forza centrifuga
e condotto verso forme fortemente allungate fino a separarsi in duo (o pit) parti che restano,
almeno all'inizio, in orbita reciproca.

Data I'origine di tali sistemi binari, I'orbita iniziale presenta una distanza al pericentro
molto corta, dell’ordine di uno + tre diamtri del primario, ed ha la tendenza a evolvere molto
rapidamente in maniera imprevedibile.

Per i sistemi ad alto momento angolare, la formazione di piu corpi di masse comparabili
pud creare situazioni caotiche con interazioni multiple.
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sistemi dispersi

Oltre L ~0,8 il comportamento dei sistemi & dominato dalla dispersione della maggioranza
della massa iniziale, che si riaccumula in pit corpi in orbita indipendente attorno al Sole,
con possibilmente alcuni sistemi binari (v. fig. 4.9).

A.4.1 evoluzione a lungo termine dei sistemi

Tra gli scopi iniziali del lavoro di tesi ci eravamo proposti di studiare I'evoluzione nel tempo
dei sistemi ottenuti. Tuttavia, un’evoluzione per piu di qualche mese (in tempo simulato) &
per il momento falsata da problemi numerici del codice (v. § 4.6).

A.4.2 conclusioni

Abbiamo mostrato come la formazione di distemi binari & una conseguenza normale per i
casi di distruzione catastrofica dei corpi, con la possibile formazione di sistemi diversi tra
loro.

E possibile comparare i sistemi ottenuti con le popolazioni di binari conosciute, osser-
vando come per tutti i principali parametri essi possano ben rappresentare i binari reali (v.
§ 4.8 e fig. 4.28).

A.5 Simulazioni ad accelerazione progressiva

Una domanda si pone riguardo la possibilita di far evolvere un aggregato verso la formazione
di un binario in maniera progressiva e senza salti.

Questo tipo di evoluzione pud applicarsi a diverse situazioni, come incontri ripetuti di un
NEA con i pianeti interni, piccoli impatti o per effetto YORP (v. § 1.3.3).

Per testare questa possibilita, abbiamo preso un insieme di aggregati stabili in forte
rotazione ottenuti da simulazioni precedenti e li abbiamo sottoposti a cicli di piccole accele-
razioni attorno al proprio asse seguite ciascuna da un periodo di evoluzione libera perché si
assestassero alle nuove condizioni. Questo conduce gli aggregati in un’evoluzione di forme
in modalita quasi-statica, simulando un’azione perturbativa esterna agente su tempi carat-
teristici pit lunghi del tempo caratteristico autogravitazionale.

A mano a mano che gli aggregati accumulano momento angolare, essi sono spinti verso
rotazioni non sostenibili da un corpo singolo, con una inevitabile perdita di massa per forza
centrifuga. Se i corpi sono globalmente spinti verso le forme di Jacobi plus allungate, si
possono distinguere, a prtire dal momento in cui queste forme sono raggiunte, due tipi di
comportamento.

perdita di massa attraverso particelle singole

In certi casi, si separano periodicamente dal corpo principale delle particelle dalle “punte”,
disperdendosi all'infinito in orbite iperboliche (v. fig. 5.1). Queste particelle sono spesso
sostituite da altre vicine, con in genere poco o nessun cambio di forma del corpo.
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fissione del corpo

In alcuni casi, i corpi riescono a perdere solo poca massa per mezzo del meccanismo pre-
cedente, arrivando ad accumulare una parte dell’energia fornita dalle accelerazioni in una
modifica della forma. Questa modifica consiste in una strozzatura che comincia a prodursi
nel corpo, allargandosi con tempo, causando infine una fissione dell’aggregato e formando
un binario (v. fig. 5.2) con orbita iniziale stabile.

A.5.1 la sequenza di fissione

Se si osserva nel diagramma (L; 52) (con € velocita di rotazione normalizzata = Q/y/7Gp)
I'evoluzione dei corpi che presentano fissione (v. fig. 5.6, 5.7, 5.9, 5.16, 5.19, 5.22), si nota
che tutti seguono uno stesso sviluppo che li porta verso le forme di Jacobi piu allungate fino
al punto in cui si distacca la sequenza teorica “dumbbell”® (cfr. fig. 2.4 e 2.5), che segue una
trasformazione degli aggregati da una forma ellissoidale allungata verso un binario passando
attraverso forme di binari a contatto. E nei dintorni di questa regione, dove si osservano i
binari a contatto reali (cf. fig. 1.13), che si produce la fissione nelle nostre simulazioni.

A.5.2 conclusioni

Abbiamo mostrato come & possibile la formazione di binari con un meccanismo non cata-
strofico ad azione lenta, seguendo forme gia previste a livello matematico.

Compariamo inoltre in nostro lavoro con [K.J. Walsh et al., 2008], in cui gli autori, usan-
do un meccanismo simile al nostro, trovano risultati differenti, dovuti alle diverse strategie
utilizzate nel formare gli aggregati originali.

Una questione interessante rimane riguardo al perché i corpi presentano comportamenti
totalmente differenti a parita di forma esterna, cosa probabilmente dovuta all'organizzazione
delle particelle all'interno degli aggregati.

A.6 Conclusioni

Questo lavoro esplora per mezzo di metodi numerici il comportamento di aggregati gra-
vitazionali di sfere rigide per migliorare la nostra comprensione sulle possibili origini degli
asteroidi binari, e possibilmente mettere in relazione le condizioni iniziali alle diverse classi
di binari osservati.

Basandosi su risultati precedenti ottenuti sia da noi che nella letteratura, abbiamo mo-
dellato un asteroide come aggregato di sfere rigide.

Lo scenario utilizzato nel cap. 4 (v. § A.4) & rappresentativo di un sistema che ha
accumulato una quantita di momento angolare oltre la soglia di perdita di massa per un
aggregato senza coesione. Questo sovra-accumulo pud essere dovuto alla presenza di una
piccola coesione o ottenuto improvvisamente per mezzo di un impatto catastrofico. Noi
simuliamo la conseguente frammentazione esplorando un ampio spettro di parametri.

%sequenza “a manubrio”
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Abbiamo mostrato come la formazione di binari sia un evento ordinario per momenti
angolari intermedi tra il limite superiore per i corpi in equilibrio idrostatico classico fino ai
pit grandi valori per i quali un corpo rigido pud conservare la propria regolite.

Grandi secondari / asteroidi doppi vengono prodotti per rottura e/o riaccumulazione del
corpo frammentato. Piccoli satelliti possono formarsi in orbita a partire da un aggregato
inizialmente a simmetria assiale.

| nostri risultati sono stati comparati con i dati disponibili sugli asteroidi reali per mo-
strare la somiglianza di momento angolare, rotazione del primario e distanza orbitale tipica,
trovando un buon accordo.

Nel capitolo 5 (v. § A.5) abbiamo esplorato la sequenza di equilibrio che raccorda i
corpi singoli ai binari. La tecnica & rappresentativa dell’azione di una forza perturbativa che
lentamente possa portare un corpo verso una configurazione instabile.

Abbiamo mostrato come una deformazione graduale pud guidare un aggregato arbitrario
verso una forma bilobata e una fissione, formando un oggetto binario. La forma bilobata
osservata ricorda sia i risultati semi-analitici per i corpi fluidi sia i “binari a contatto” osservati
tra gli asteroidi.

| nostri approcci sono originali e contribuiscono a far luce su processi scarsamente co-
nosciuti. Studi teorici sull’'evoluzione dinamica di binari a partire da oggetti in contatto
esistono, ma nessuno ha potuto riprodurre la ricchezza fenomenologica della fissione, la
complessita di dettagli e il comportamento altamente caotico della quale possono influire
pesantemente sulla formazione (o meno) di un oggetto binario (stabile o no). Altri approcci
numerici hanno inoltre mancato di riprodurre la complessita del processo di accelerazione
progressiva (spin-up), limitandosi ad aspetti particolari che, alla luce dei risultati presentati
qui, non rappresentano la varieta delle situazioni possibili.

In particolare, per la prima volta illustriamo con simulazioni numeriche la transizione
degli ellissoidi di Jacobi verso I'instabilita, mostrando che I'accumulo in orbita di piccoli
frammenti non & l'unico meccanismo per la formazione di satelliti per mezzo di spin-up.

Inoltre, il percorso verso la fissione appare seguire un cammino comune procedendo at-
traverso un insieme limitato di forme, qualunque siano le condizioni iniziali.

Nel presente studio abbiamo infine identificato varie limitazioni dell'approccio numerico
con sfere rigide. Altri approcci che impiegano sfere plastiche sono in corso di studio da
parte di altri autori, ma progressi importanti potranno essere ottenuti da sviluppi futuri
verso particelle di forma irregolare, certamente necessarie per simulazioni piu realistiche
e somiglianze pil strette con i meccanismi identificati nel dominio della fisica dei sistemi
granulari.
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sommario

Gli asteroidi binari hanno un ruolo d'importanza fondamentale nella determinazione di alcuni
parametri asteroidali difficili da misurare da Terra, in particolare la massa. Studiando I'origine
dei binari nel quadro generale degli aggregati gravitazionali, essi servono cosi da laboratori
naturali per la fisica dei sistemi granulari a bassa gravita, e forniscono dati preziosi per la
modellizzazione globale degli asteroidi.

Esiste una grande varieta nelle caratteristiche dei sistemi binari osservati, e numerose ipotesi
sono state formulate per la loro origine (frammentazione catastrofica di un corpo e riac-
cumulazione sotto forma di binario, influenze mareali da parte dei pianeti, craterizzazione,
YORP ...).

In questa tesi esploriamo, per mezzo di simulazioni numeriche a N corpi, la dinamica di un
aggregato gravitazionale fuori dal regime di stabilita per un corpo singolo, alla ricerca delle
configurazioni piu favorevoli alla formazione di un sistema binario.

In una prima parte mostriamo come in uno scenario catastrofico la formazione di sistemi
binari sia la norma, ben riproducendo la varieta nella popolazione osservata.

In un secondo studio esploriamo la possibilita di una deformazione progressiva di un aggregato
in un sistema binario sotto I'azione di una forza perturbativa lenta che porti eventualmente
alla fissione del corpo.

| nostri risultati offrono nuovi punti di vista nello studio della formazione degli asteroidi
binari, come mostrato da un confronto con le osservazioni e la letteratura esistente.

parole chiave: Sistema solare, asteroidi, formazione di satelliti, metodi numerici, YORP,
meccanica celeste, mezzi granulari
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Approche numérique a N corps a
la formation et évolution des
astéroides binaires

Malgré des études extensifs observationnels et théoriques de la Terre et de |'espace, la nature
profonde des corps mineurs du Systéme Solaire reste essentielement inconnue.

En particulier les astéroides, dans le scénario communément accepté, ont suffert une in-
tense vie collisionnelle, comme résultat des processus ayant modelé notre systeme planétaire.
Il est communément accepté que des processus catastrophiques, comme la fragmentation et
la ré-accumulation gravitationnelle, ont profondément changé leur structure en créant des
corps fortément fragmentés.

Au moins une fraction d’entre eux aurient une cohésion interne trés faible, ce qui com-
porte des objets tenus ensemble que par gravité. Les propriétés internes de ces « agrégats
gravitationnels » restent pourtant assez inconnus, étant que la plupart des contraintes ob-
servationnelles est liée aux propriétés superficielles des astéroides.

Les asteroides binaires sont un cas spécial d'importance fondamental pour comprendre la
physique et I'évolution de ces objets, puisque leur observation fournit aisément des données
sue leur structure interne.

Premierement, ils peuvent fournir des estimes fideles de leur masse totale 3 partir des
caractéristiques de |'orbite mutuelle ; comme les courbes de lumigre fournissent une mesure
directe de la taille des composants et de leurs orbites, mémé pour les objets non résolus
spatialement, on peut donc obtenir une précieuse information sur leur densité.

Les états de rotation et les formes peuvent aussi &tre déterminées plus facilement, ce
qui permet d’avoir des meilleures estimes sur les contraintes internes et des modeles géo-
morphologiques plus précis dans des conditions de microgravité.

L'existance mémeé des binaires et leur variété sont directement liée au processus primaires
ayant faconné la ceinture d’astéroides, et toute détermination de leurs propriétés physiques
est donc fondamentale pour une compréhension globale de leur formation et de leur évolution.

B.0.1 Présentation du travail

Beaucoup de mécanismes possibles ont été proposés pour I'origine des astéroides binaires :
des effets de marée aux impacts craterisants énergiques expulsant de la matiére en orbite,
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de la ré-accumulation en forme de binaire des fragments aprés une collision catastrophique
a la fission a cause d'une augmentation du moment cinétique; tout sont actuellement testés
avec observations et modeles théoriques.

Le but de ce travail est d'explorer le comportement des agrégats gravitationnels en
rotation en proximité de la limite supérieure pour leur moment cinétique avant de perdre
masse : des accélérations ultérieures au dela de cette limite fournissent des nouveaux regards
sur les processus de fission et la formation des satellites.

Nous modelons les astéroides numériquement avec un code a N corps spécialisé comme
des « tas de débris parfaits » : agrégats de spheres identiques sujettes a leur gravité mutuelle
et 2 des collisions inélastiques. En cherchant des instabilités conduisant a la formation d’un
binaire, nous augmentons leur vitesse de rotation jusqu’au seuil ol des instabilités majeures
s'activent, et explorons la déformation résultante et la formation de satellites.

Nous essayions aussi d’explorer la question de la stabilité a long terme des systémes
obtenus et traitons des limitations actuelles de notre approche.

Les résultats sont aussi examinés dans un contexte plus vaste, en les comparant avec
des autres études théoriques et numériques et avec les observations.

B.1 Les astéroides binaires

Dans les 20 derniers ans plus et plus d’astéroides binaires ont été découverts, avec des
caractéristiques fort différentes pour taille du primaire, rapport de masses, séparations du
couple, moment cinétique du systéme, et les découvertes futures pourrons nous présenter
une image plus précise.

Une premiere classifications peut néanmoins &tre tracée (voir § 1.3.1), comme par exaple
par [P. Pravec, A.W. Harris, 2007] (cf. fig. 1.12).

On peut distinguer un groupe de petits objets (taille < 10km) tournant trés vite
(généralement avec des périodes < 4 heures) et avec des secondaires consistants (rap-
port de masse 1+-10%), distribués dans les NEOs et la ceinture principale!®; un groupe
de petits binaires synchrones de taille comparable avec les précédents mais ayant atteint
la synchronicité grace a I'important rapport de masse (généralement > 0,5), qui peuvent
ou pas &tre une queue du groupe des petits binaires’!; un groupe de grandes astéroides
localisés dans la ceinture principale avec des petits satellites (rapport de masse <~1% mais
principalement < 0,1%). Des systémes « irréguliers » qui échappent a la classification ont
aussi été observés, tout comme des exemples de « binaires & contact » qui, bien que n'étant
des vrais binaires, nous témoignent de leur histoire d'ancien couple dont les composants se

sont posés délicatement I'un sur |'autre.

10l y a bien siir un effet de sélection favorisant 'observation de systémes plus proches

Ypour I'instant, la grande majorité d’entre eux ont été découverts dan la ceinture principale : le court
temps a disposition pour les NEOs avant d'étre explulsé du Systéme solaire comparable avec le temps
nécessaire pour attaindre la synchronicité peut y jouer un role
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B.2 La modélisation des astéroides

[l est généralement accepté que la majorité des astéroides plus grands que ~100 m sont for-
tement fracturés voir des véritables « agrégats gravitationnels » de rochers ténus ensemble
par auto-gravitation (voir § 1.1.2).

Le premier modele pour expliquer leur forme reste celui donné par I'hydrostatique clas-
sique, qui prédit des séquences de forme stables pour des objets autogravitants en rotation
(voir § 2.1).

Il convient d'introduire une normalisation pour le moment cinétique L, pour éliminer
toute dépendance de la masse M e de la taille, en définissant L=L/vGM?3a , @ étant le
rayon moyen du corps.

Les plus simples figures sont des ellipsoides (on nomme ay, ay et ag les trois demi-axes,
a3 étant I'axe de rotation) : on distingue la séquence de spheroides!® de Maclaurin, qui
sont stables a faible rotation (f <~ 0.3), et la séquence des ellipsoides triaxiales de Jacobi,
qui sont stables pour des vitesses de rotation plus importantes (L entre ~ 0.3 et ~0.45).
Il existe par contre un nombre illimité de séquences mathématiquement possibles, quelques
unes entre eux étant visualisées en fig. 2.4.

La distribution des formes des objets réels est toutefois apparemment lointaine de ces
séquences (cf. fig. 2.6), ce qui comporte que d'autres modélisations plus élaborées doivent
étre utilisées, en considérant les forces internes qui peuvent soutenir des formes non stricte-
ment hydrostatiques (cf. § 2.3 - 2.4).

B.3 La modélisation numérique avec les perfect rubble-
piles

Cette these s'occupe de la modélisation numérique de la formation d’astéroides binaires.
Pour le travail, nous avons utilisé le logiciel pkdgrav ([D.C. Richardson et al., 2000]), un
intégrateur gravitationnel 3 N corps avec gestion de collisions inélastiques (voir chap. 3).

pkdgrav utilise comme unités de masse des particules sphériques rigides (voir § 3.1)
sous l'action de leur gravité; ceci permet de modéliser un agrégat gravitationnel comme
un ensemble de particules pouvant se déplacer les unes par rapport aux autres avec une
(limitée) liberté selon la dynamique imposée par le forces globales (voir fig. 3.3) : on appelle
cette configuration un « perfect rubble-pile ».

Des études précédents (voir § 3.10) nous avaient permis de déduire quelques propriétés
de ce modele, comme voir que pour un agrégat il est difficile de contenir un L > 0.4.

La majorité des agrégats utilisés pour le simulations de cette thése a été formée avec
une masse volumique de p ~ 2 g/cm? et par des spheres de rayon R, = 50 m.

24|lipsoides de rotation avec a; = as > as
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B.4 Simulations a moment cinétique élevé

Pour tester la possibilité de formation d’astéroides binaires dans un scénario catastrophique,
on procéde simulant une situation accidentelle ot un agrégat autrement stable reste victime
d'un événement (comme un impact) lui conduisant soudainement vers une situation d'in-
stabilité (voir chap. 4).

A cette fin nous avons pris une série de corps ellipsoidales avec différents rapports axiaux
(voir fig. 3.8) en orbite (circulaire) autour du Soleil, et leur avons donné un moment cinétique
important dans la forme d’'un champs de rotation rigide sur eux mémé. Nous avons alors
suivi ces agrégats durant leur évolution gérée par autogravitation et collisions mutuelles, en
cherchant en particulier les cas ou des systéme binaires (voir multiples) se forment.

Différents L de 0,5 a 1,0 ont été utilisés pour observer le comportement des agrégats
dans des conditions différents et comparer les systemes résultants. On peut observer quatre
comportements type, selon la configuration initiale et le moment cinétique possédé. Des
schémas sont présentés en fig. 4.3, 4.4, 4.5, 4.10.

formes allongées avec au plus une petite perte de masse

Ces formes sont possibles lorsque L ne dépasse pas ~0,7.

primaires entourés par une nouage de petits fragménts

Ces systeémes son la norme pour les configurations initialement axisymétriques (a1 = as),
qui rapidement tournent vers des formes allongées en perdant de la masse isotropiquement.
Cette-ci reste principalement en orbite autour du corps principale dans la forme de nom-
breuses particules formant un nouage.

Dans le temps de quelques jours, des petits satellites peuvent se former (avec masse
quelques pourcents du primaire) par accumulation en orbite des fragments, tandis que une
partie des nouages est dispersée par les effets de perturbation mutuelles des particules. Ce
processus est pourtant lente, et les nouage peuvent ne pas se disperser dans le temps que
nous a été permis pour suivre les simulations.

Des exemples sont présentés en fig. 4.6 et 4.12.

binaires avec composants de masse similaire

Une fraction importante des systémes avec L entre 0,6 et 0,8 évoluent rapidement vers la
formation de binaires avec les composants de masse comparable (voir fig. 4.8 et 4.14).

Il s'agit d'un comportement ou |'agrégat initial est vaincu par la force centrifuge et
conduit vers des formes fortement allongées jusqu’a se séparer en deux (voir plus) parties,
qui restent, au moins au début, en orbite mutuelle.

Vu ['origine de ces systemes binaires, |'orbite initiale présente un distance au péricentre
trés courte, de l'ordre de un + trois diametres du primaire, et a la tendance a évoluer tres
rapidement de maniere imprévisible.

Pour les systemes & haut moment cinétique, la formation de plusieurs corps de masses
comparables peut générer des situations chaotiques avec des interactions multiples.
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systéemes dispersés

Au dela de L ~0,8 le comportement des systeémes est dominé par la dispersion de la majorité
de la masse initiale, qui se ré-accumule en plusieurs corps dans orbites indépendantes autour
du Soleil, avec possiblement des systemes binaires (voir fig. 4.9).

B.4.1 évolution a longue terme des systémes

Parmi les buts initiales du travail de thése on se proposait d'étudier I'évolution dans le
temps des systemes obtenus. Toutefois, une évolution pour plus que quelques mois (en
temps simulé) est pour l'instant faussée par des problemes numériques du code (voir § 4.6).

B.4.2 conclusions

Nous avons montré comme la formation de systémes binaires est une conséquence normale
pour des cas de destruction catastrophique des corps, pouvant former un ensemble varié de
systemes.

Nous pouvons comparer nos systémes avec les populations connues de binaires, en voyant
comme pour touts les principaux paramétres on peut bien représenter les binaires réels (voir
§ 4.8 et fig. 4.28).

B.5 Simulations a accélération progressive

Une question se pose quant a la possibilité de faire évoluer un agrégat vers la formation d’un
binaire de maniére progressive et sans sauts.

Ce type d’évolution peut s’appliquer a différents situations, comme des rencontres répétés
d’un NEA avec les planétes internes, des petits impacts, ou par effet YORP (voir § 1.3.3).

Pour tester cette possibilité, nous avons pris un ensemble d’agrégats stables sous impor-
tante rotation issus de simulations précédents, et les avons soumis a des cycles de petites
accélérations autour de leur axe suivies chacune d’un période d'évolution libre pour se tasser
dans leur nouvelle condition. Ceci conduit les agrégats dans une évolution des forme de
maniére quasi-statique, en simulant une action perturbatrice externe agissant sur des temps
caractéristiques plus longs que le temps de 'auto-gravité.

Au fur et 3 mesure que les agrégats accumules du moment cinétique, ils sont poussés
vers des rotations qu'ils ne peuvent pas soutenir comme corps unitaire, avec une inévitable
perte de masse par force centrifuge. Si tous les corps sont globalement poussés vers les
formes de Jacobi plus allongées, on peut distinguer, a partir du moment ou ces formes sont
atteintes, deux sortes de comportement.

perte de masse par particules individuelles

Dans certaines cas, des particules se détachent périodiquement des « pointes » des corps
se dispersant vers 'infini en orbites hyperboliques (voir fig. 5.1). Ces particules sont souvent
substituées par des autres particules voisines, avec généralement petit ou nul changement
de forme du corps.
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fission du corps

Dans un nombre de cas, les corps sont capables de ne perdre que une quantité limité de
masse avec le mécanisme précédent, arrivant a2 accumuler une partie de |'énergie fournie par
les accélérations dans une modification de leur forme. Cette modification prend la forme
d’un étranglement qui commence a se produire dans le corps, s'élargissant avec le temps et
qui enfin produit une fission de I'agrégat et la formation d'un binaire (voir fig. 5.2) avec une
orbite initiale stable.

B.5.1 la séquence de fission

Si on observe dans le diagramme (I;0°) (9 étant la vitesse de rotation normalisé =
Q/y/mGp) I'évolution des corps qui présentent une fission (voir fig. 5.6, 5.7, 5.9, 5.16,
5.19, 5.22), on s'apercoit que tous suivent un mémé développement qui les porte vers les
formes de Jacobi les plus allongées jusqu’au point d'ou il s'écarte la séquence théorique
« dumbbell »*3 (cf. fig. 2.4 et 2.5), laquelle suit une transformation des agrégats d’une
forme ellipsoidale allongée vers un binaire en passant par des formes de binaires 4 contact.
Dans les alentours de cette région, ou les binaires a contact réels sont observées (cf. fig.
1.13), la fission se produit dans nos simulations.

B.5.2 conclusions

Nous avons montré comment la formation de binaires est possible avec un mécanisme non
catastrophique agissant lentement, en suivant les forme déja prévues mathématiquement.

On compare notre travail avec [K.J. Walsh et al., 2008], o les auteurs, en utilisant un
mécanisme semblable au notre, trouvent des résultats différents, dus aux différents stratégies
utilisées pour former les agrégats originaux.

Une question intéressant reste sur pourquoi les corps présentent des comportements
totalement différents a parité de forme extérieure, ce qui est probablement di a I'organisation
des particules dans les agrégats.

B.6 Conclusions

Ce travail explore par le moyen de méthodes numériques le comportement d’agrégats gravi-
tationnels de spheres rigides pour améliorer notre compréhension sur les possibles origines des
astéroides binaires, et possiblement connecter des conditions initiales aux différents classes
de binaires observés.

En se basant sur des précédents résultats obtenus par nous et dans la littérature, nous
avons modelé un astéroide comme un agrégat de spheres rigides.

Le scénario utilisé dans le chapitre 4 (voir § B.4) est représentatif d'un systeme ayant ac-
cumulé une quantité de moment cinétique au dela du seuil de perte de masse pour un agégat
sans cohésion. Cette suraccumulation peut &tre due a la présence d’'une petite cohésion ol

13sgquence « 3 haltere »
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soudainement par le moyen d’un impact important. Nous simulons la fragmentation qui suit
en explorant un ample spectre de paramétres.

Nous avons montré comme la formation de binaires est un évenement ordinaire pour des
moyens moments cinétiques allant de la limite supérieure pour des corps en équilibre hydro-
statique classique jusqu'au plus grand valeurs pour lequelles un corps rigid peut conserver
son régolithe.

On produit des grandes secondaires / astéroides doubles par cassement et/ou ré-accumu-
lation du corps brisé. Des petits satellites peuvent se former en orbite a partir d’un agrégat
initialement axisymétrique.

Nos résultats ont été comparés avec les données disponible sur les astéroides réels pour
montrer la similarité en moment cinétique, rotation du primaire et distance orbitale typique,
en trouvant un bon accord.

Dans le chapitre 5 (voir § B.5) nous avons exploré la séquence d’'équilibre raccordant les
corps simples aux binaires. La technique est représentative de I'action d'une force perturbante
pouvant lentement porter un corps vers une configuration instable.

Nous avons montré comme une déformation graduelle peut guider un agrégat arbitraire
vers une forme bilobée et une fission, en formant un objet binaire. La forme bilobée observée
rappelle a la fois les résultats demi-analytiques pour les corps fluides et les « binaires 2
contact » observés parmi les astéroides.

Nos approches sont originales et contribuent a éclaircir des processus mal connus. Des
études théoriques existent sur |'évolution dynamique de binaires a partir d'objets en contacte,
mais aucun n’'a pu reproduire la richesse phénoménologique de la fission, dont les détails
complexes et le comportement fortement chaotique peuvent influer lourdement sur la for-
mation (ou pas) d'un objet binaire (stable ou instable). Autres approches numériques ont
aussi manqué de reproduire la complexité du processus d'accélération progressive (spin-
up), se fixant sur des aspects particuliers qui, a la lumiere des résultats présentés ici, ne
représentent pas la variété des situations possibles.

En particulier, pour la premigre fois nous illustrons avec des simulations numériques la
transition vers l'instabilité pour les ellipsoides de Jacobi, en montrant que I'accumulation en
orbite de petits fragments n’est pas le seul mécanisme formant des satellites par spin-up.

De plus, le parcours vers la fission parait suivre un chemin commun en procédant a
travers un ensemble limitée de formes, quelconque soient les conditions initiales.

Pendant cet étude nous avons aussi identifié plusieurs limitations de I'approche numérique
utilisant des spheres rigides. Autres approches employant des spheres molles sont en train
d’étre examinées par des autres auteurs, mais des progrés importants pourrons s'obtenir par
des développements futures vers des particules de forme irréguliere, certainement nécessaires
pour des simulations plus réalistes et des comparaisons plus rapprochées avec les mécanismes
identifiés dans le domaine de la physique des systemes granulaires.
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résumé

Les astéroides binaires ont un réle d'importance fondamentale dans la détermination de
paramétres astéroidales difficilement mesurables de la Terre, en particulier la masse. En
étudiant 'origine des binaires dans le cadre des agrégats gravitationnels, ils servent ainsi
comme laboratoires naturels pour la physique des systémes granulaires a basse gravité, et
ils nous donnent des éléments précieux pour la modélisation globale des astéroides.

Vue la grande diversité existante de caractéristiques des systemes binaires observés, nom-
breuses hypothéses ont été postulées pour leur origine (fragmentation catastrophique d'un
corps et ré-accumulation sous forme binaire, influences de marée par les planétes, cratérisation,
YORP ...).

Dans cette thése nous explorons, grice a des simulations numériques a N corps, la dyna-
mique d'un agrégat gravitationnel en dehors du régime de stabilité pour un corps simple, en
cherchant les configurations les plus favorables a la formation d'un systeme binaire.

Dans une premigre partie, nous montrons que dans un scénario catastrophique la formation de
systémes binaires est normale, ces-ci bien reproduisant la variété présente dans la population
observée.

En suite, nous explorons la possibilité d'une déformation progressive d'un agrégat vers un
systéme binaire sous I'action d'une force perturbante agissant lentement jusqu'a la fission
éventuelle du corps.

Nos résultats proposent des nouveaux regards dans I'étude de la formation des astéroides
binaires, comme montré par une comparaison avec les observations et la littérature existante.

mots-clés : Systéme solaire, astéroides, formation de satellites, méthodes numériques,
YORP, mécanique céleste, milieux granulaires
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abstract

Binary asteroids play a role of primary importance in determining some physical parameters
difficult to measure from Earth, such as the mass. By studying the origin of binaries in
the general frame of gravitational aggregates, we can use them as natural laboratories for
granular system physics in microgravity conditions, thus obtaining valuable information for
modeling asteroids in general.

A large variety exists as for the range of parameters of the observed binary systems, and many
possible origins have been suggested for them (catastrophic shattering of a parent object
and re-accumulation as multiple bodies, planetary tidal perturbations, cratering, YORP ...).
In this work we explore by numerical N-body simulations the dynamics of gravitational
aggregates outside the limits of stability for a single body, looking for the most favorable
configurations leading to binary systems formation.

First we show how common the formation of binary systems in a catastrophic scenario is,
well reproducing the variety in the observed population.

As a second step we explore the possibility of a gradual shape deformation of an aggregate
towards a binary system by the action of a slow perturbing force leading to a possible fission
of the body.

Our results provide new insights into the formation of asteroid binaries, as shown by a com-
parison to observations and existing literature.

keywords: Solar System, asteroids, satellite formation, numerical methods, YORP,
celestial mechanics, granular media
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