N

N

Modélisation Multi-échelle et Analyse d’Assemblages
Macro-moléculaires Ambigus, avec Applications au
Complexe du Pore Nucléaire
Tom Dreyfus

» To cite this version:

Tom Dreyfus. Modélisation Multi-échelle et Analyse d’Assemblages Macro-moléculaires Ambigus,
avec Applications au Complexe du Pore Nucléaire. Géométrie algorithmique [cs.CG]. Université Nice
Sophia Antipolis, 2011. Francais. NNT: . tel-00702403

HAL Id: tel-00702403
https://theses.hal.science/tel-00702403
Submitted on 30 May 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-00702403
https://hal.archives-ouvertes.fr

UNIVERSITE DE NICE-SOPHIA ANTIPOLIS
ECOLE DOCTORALE STIC

SCIENCES ET TECHNOLOGIES DE L’ INFORMATION ET DE LA COMMUNICATION

THESE

pour obtenir le titre de

Docteur en Sciences
de I’Université de Nice-Sophia Antipolis
Mention Informatique

présentée et soutenue par

Tom DREYFUS

Modélisation Multi-échelle et Analyse
d’Assemblages Macro-moléculaires Ambigus,
avec Applications au Complexe du Pore Nucléaire

Multi-scale Modeling and Analysis of Ambiguous Macro-molecular Assemblies,
with Applications to the Nuclear Pore Complex

These dirigée par Frédéric CAZALS

soutenue le 20 décembre 2011

Jury:

M. Joachim Giesen Professeur, Université de Jena Rapporteur
M. Patrick Schultz Directeur de Recherche, IGBMC Rapporteur
M. Gilles Bernot Professeur, UNSA Examinateur
M. Jean-Daniel Boissonnat Directeur de Recherche, INRIA Examinateur
M. Alain Denise Professeur, UPS Examinateur
M. Felix Rey Directeur de Recherche, Institut Pasteur Examinateur

et Académie des Sciences
M. Frédéric Cazals Directeur de Recherche, INRIA Directeur






Contents

(1 Introduction (English Version)|
|1.1 ~ Reconstructing Large Systems by Data Integration| . . . . ... ... .. ... ... ... ....
|I.1.1  Macromolecular Machines and Biological Functions| . . . . . ... ... ... ......
|I1.1.2 Reconstructing Macromolecular Machines by Data Integration| . . . . . . . ... ... ..
|I1.1.3  Relevant Biochemical and Biophysical Data, and Their inherent Difficulties| . . . . . . ..
1.2 The Nuclear Pore Complex: a Concise Description| . . . . . ... ... ... ... ........
1.3 Modeling the Nuclear Pore Complex| . . . . . .. ... ... ... ... ... ... .......
|1.3.1 A Hierarchy of Coarse-grain Models|. . . . . .. ... ... ... .. ... ........
|1.3.2  Input Data and the Associated Restraints| . . . . . ... ... ... ... ... ......
|11.3.3  Optimization Methods| . . . . . . ... ... . .

|1.4  Voronoi Diagrams and a-complexes| . . . . . . . . .. .. o
|1.4.1  Handling Uncertainties with Affine Voronoi Diagrams and Related o-shapes| . . . . . ..
|I1.4.2  Generalized Voronoil Diagrams|. . . . . . .. .. .. ..o o o o o

[LS  Thesis OVEIVIEW! . . . . . . v v v v i ittt e e e e e e e e e e e
[1.5.1  Compoundly Weighted Voronoi Diagram and their A-Complex|. . . . ... ........
|1.5.2  The Nuclear Pore Complex: Material and Methods| . . . . . . ... ... ... ......
11.5.3  Assessing Pairwise Contacts at the Assembly and Sub-Complex Levels| . . . . .. .. ..
|11.5.4  Assessing Graphical Models of Sub-Complexes|. . . . . ... ... ... ... .. ....
[1.5.5  Softwarel . . . . . . . . .

[2 Introduction (Version Francaise)|
2.1 Reconstructions de gros systemes par intégration de données| . . . . . . . . .. .. ... ...
2.1.1 ~ Machines macromoléculaires et fonctions biologiques| . . . . . ... .. ... ... ...
[2.1.2  Reconstruction des machines macromoléculaires par intégration de données| . . . . . . . .
[2.1.3  Données biochimiques et biophysiques pertinentes, et leur difficultées inhérentes| . . . . .
2.2 Le complexe du pore nucléaire: une descriptionconcisef. . . . . . . . ... ...
2.3 Modélisation du complexe du pore nucléaire de lalevurel . . . . . .. ... ..o 0oL
[2.3.1  Une hiérarchie de modeles gros grains| . . . . . . .. ... ... ... ... ... ...,

2.3.3  Les méthodes d’optimisation] . . . . . . . . . . . ... ..

2.4 Les diagrammes de Voronoi et les &-complexes| . . . . . . . .. ... o oL
2.4.1 ‘Traitement des incertitudes avec les diagrammes de Voronoi affines et leur &-complexe| . .
2.4.2  Les diagrammes de Voronoi généralisés| . . . . . . . .. ... ... ... ... .....

2.5 Apercudelathesel. . . . . . . . . e
[2.5.1  Les diagrammes de Voronoi additif-multiplicatif et les A-complexes| . . . . . . ... ...

2.5.2 Le complexe du pore nucléaire: matériel et méthodes| . . . . . . .. ... ... ... ...

2.5.3  Evaluation des contacts binaires aux niveaux de 1’assemblage et des sous-complexes| . . .

2.5.4 Evaluation de modeles graphiques de sous-complexes| . . . . . ... ...........

5. ogiciell . . . . L




4 CONTENTS

3 Compoundly Weighted Voronoi Diagrams and their A-Complex| 53
53

53

2. 53
Bmm ........................... 54

13.2.3  “loleranced Tangency and Generalization of the Empty Ball Property|. . . . . . . ... .. 54

3.3 Compoundly Weighted Voronoi Diagrams and Space Filling Diagrams| . . . . . .. ... ... .. 56
B3I Bisectorsinthe CW Casel . . . .. ... .. ... .. ... 56

[3.3.2  Compoundly Weighted Voronoi Diagram and its Dual Complex| . . . . ... ... .. .. 61

E 3.3~ Gabriel, Dominant and Dominated SImplices| . . . . . . . . . . v .o vt 64
[3.3.4  The A-complex Filtration|. . . . . . .. .. ... .. ... ... 65

B335  Classiication of SIMPIICES] . -« « « o o oo e 66
13.3.6  Tracking Topological Events| . . . . . .. .. .. ... . . o oo 67
A Algorithms| . . . . L e e e e 68
3.4.1 UsingaSentinel Balll . . . .. .. ... .. 68
asse Diagrams of Tuples and Simplices| . . . . . .. ... ... ... ... ....... 68
4. omputing Candidate Tuples|. . . . . . .. .. .. ... ... 70
B44_ Top-down Construction of the Dual Complex] . . . .« . v oo oo 70
[3.4.5  Computing the (reduced) A-complex|. . . . . . . . . ... 73
3.4.6  Implementation| . . . . . . .. .. .. .. 73
[4  The Nuclear Pore Complex: Material and Methods| 77
4.1 Introduction - Rationalel. . . . . . . . . ... 77
4.2 Sub-systemsof Interest| . . . . . . . . .. L 77
4.2.1 The Y-complex and Related Complexes| . . . . . ... ................... 77
e T-complex and Related Complexes| . . . . . . ... ... ... ... .. ....... 78
2. e Nup ub-Complex and Related Complexes| . . . . .. ... ... ... .. .... 79
n the Density Maps Used| . . . . . . . . . . 0 o o 79
[#3.1T On the Number of Connected Components| . . . . . . . . ..o v v v ... 80
[4.3.2 On the Volume of Connected Components|. . . . . . .. ... ... ... ......... 80
4.4 Constructing Toleranced Models| . . . . . . ... ... ... ... . . o 81
4.4.1  Allocating Occupancy Volumes| . . . . . . . ... ... ... .. .. 82
sing Canonical Shapes| . . . . . . . . .. ... 82
[F4. ssessing Toleranced Models| . . . . . . ... ... o oL 84
B3 Swpplomental] - . - - . . . 87
A5 1 Probability Density Map PICIUTES| . . . . . . . . o v vt i e 87

[S  Assessing the Reconstruction of Macro-Molecular Assemblies: Contact Probabilities and Sub-complexes{105
BT TIntroduction - Rafionale] . . . . .« o v v v vt e e e 105
[5.2Analysis Tools for Toleranced Models of Proteins and Assemblies| . . . . . . . .. ... ... .. 105
[5.2.1  Tracking Contacts Between Proteins in Toleranced Models| . . . . . . ... ... ... .. 105
[5.2.2  Analyzing Proteins and Contacts during the Growth Process| . . . . . ... ... ... .. 106
[5.2.3 Combining the Geometric, Topological and Biochemical Assessments| . . . . . . ... .. 107
esults: Contact Probabilities o airs of Protein S| . e e e e e e e e e e e e 107
B3.T_Contact Probabilites versus Contact Frequencies . . . . . - . . .. ... ......... 107
[5.3.2 Contact Probabilities with Prescribed Stoichiometry Al . . . . . . ... .. ... ..... 109
5.4 Results: Y-complex Analysis| . . . . . .. ... ... 109
5.4.1 Contactprobabilities| . . . . . . .. ... ... 109
[5.4.2  Stoichiometry, symmetry, stability . . . . . ... ... oo 0oL 109

§§§ EurtEer !n—Sl!lco Exﬁerlments| ................................ 111
|§§ Eesu!ts: T—comﬁ!ex Ena!251s| ..................................... 111
[F501 Contactprobabilities] . . . . . . . . ... ... ... 111

5.5.2 Stoichiometry, symmetry, Stability] . . . . . . . . . . . o i 111
15.5.3  Further In-Silico Experiments| . . . . . . . ... ... ... .. .. ... ... . .. ... 111

5.6  Results: Nup82-complex Analysis| . . . . . ... ... ... ... ... . 112




CONTENTS 5

5.6.1 Contact probabilities| . . . . . . . . .. ... .. 112

[5.6. toichiometry, symmetry, stability| . . . . . . . . . . . ... 112
[3.6.3  Further In-Silico Experiments| . . . . . . . . . . . o . it 112

BZ AWK . . . . . 114
5.8 Supplemental| . . . . . ... e 123
[5.8.1  Partial Computation of the A-Complex| . . . . ... ... ... ... ........... 123

[6  Probing a Continuum of Macro-molecular Assembly Models with Graph Templates of Sub-complexes|125
6.1 _Introduction - Rationalel. . . . . . . . .. ... . 125
[6.2  Analysis Tools for Protein Complex in a Hasse Diagram| . . . . ... ... ... ......... 125
6.2.1 Comparing a Protein Complex to a Template] . . . ... .. ........ ... ... ... 125

2. nalyzing Perfect an ternate Matching|. . . . . ... .. ... ... ... L L. 126

623 Assessing a Template in a Hasse DIaram] . . . . . . .. . ... 126

B3 Results: Ycomplex ATAIYSTS] - - - - » -~ » o o o oo e 127
[6.3.1 Perfect Matching| . . . . . . . . . . ... e 127
[6.3.2  Alternate Matching| . . . . . ... ... ... ... 127

633 Further In-siico BXPEHRMENT] . . . -« o o o o oo 128

|§§ Eesu!ts: Z—comﬁ!ex Ena!231s| ..................................... 128

BAT  Pofect MAORING - -« « « o o o oo e e e 129
[6.4.2  Alternate Matching| . . . . . . . . . . . . ... 129
16.4.3  Further In-Silico Experiments| . . . . . . . . .. ... ... . 130
6.5 Artworkl . . . ... e 131
6.6 Supplemental| . . . . . ... 133
BOT  ATGOMAMS] . . o o o o o oo oo 133

7 Software 135

[Z1 Introduction - Rationalel. . . . . . .. . ... .. . 135
[7.2 Overview: Applications and File Formats| . . . . ... ... ... ... .. ... ......... 135
[7.2.1 Overall application| . . . . . . . . . ... ... e 135
[7.2.2  Density map SEZMENIET]. . . . . . . . . . . o vt 136
................................. 137
724 Masse DIagram ENGING . - . - . o o o o oo oo 137
7.2.5 Graph Matcher] . . . . . . . . . 139

T3 Dosign oF the PACKAET] . . - « « « « o o oo e oo 141
3T 0OVervIEWl . . . . o o o o e 141

[/4 Packages: Details| . . . . . ... ... ... ... 142
AL GEOMEIY| - - -« o o o oo e oo e e 142

4. ra COTY| . v v e e e e e e e e e e e e e e e e e 143

A3 Biochemicall . . . . . ¢ oo 143
[7.4.4  Density Map Segmenter] . . . . . . . .. .. . ... 143
[7.4.5 'Toleranced Model Designer] . . . . . ... ... .. ... ...... ... ...... 144

4.6 Hasse Diagram Engine| . . . . . . . . ... 144

raph Matcher] . . . . . . .. 144

8 Conclusion 147



6 CONTENTS

La critique est nécessaire mais l’invention est vitale car en toute invention il y a une critique de la convention.
Gustave Parking

Quoi qu’il arrive, une découverte, une idée lancée, n’appartient plus a son auteur. Galilée s’est récusé, mais la
terre n’a pas pour autant cessé de tourner.
Emmanuel Boundzéki Dongala
Un Fusil dans la main, un poeme dans la poche



Remerciements

Il y a énormément de monde que je souhaite remercié, aussi bien professionnellement que personnellement, aussi
bien mes collegues de travail que mes amis et ma famille. Tous ont participé d’une maniere ou d’une autre a
I’accomplissement de ma thése, et a la personne que je suis aujourd’hui.

Mon directeur de these, Frédéric, par sa ténacité et sa constante motivation, m’a appris au cours de ces années a
transformer la simple intuition en raisonnement détaillé. Précision, Concision, Exactitude et Originalité: les mots
qu’il a inscrits sur mon tableau il y a presque 4 ans sont maintenant inscrits en moi, méme si je suis loin de les
respecter tous a la lettre | Merci.

Mon amour, Andreea, rencontrée au début de ma dernieére année de thése, a non seulement su combler un vide en
moi, mais m’a aussi beaucoup soutenu et supporté dans cette derniere année pleine de stress. Ses encouragements
m’ont aidé dans autant de directions que j’ai de passions, méme lorsque je ne les connaissais pas ! Merci.

Mon meilleur ami et beau frere, Guillaume, m’a apporté autant de choses, de par sa passion, ses connaissances,
son ouverture d’esprit et son humour. Alors que je cherchais encore ma voie, il m’a aidé a comprendre ce que je

voulais, sans jamais oublier qui j’étais. Il m’a beaucoup aidé a voir le monde tel que je le vois aujourd’hui. Merci.

A tous les autres que je n’ai pas cités, collegues, amis ou famille, et qui j’espere se reconnaitront:

MERCI



CONTENTS



List of Acronyms

NP s L Nuclear Pore Complex
CrYO-B L e cryo-electron-microscopy
A P Tandem Affinity Purification
O Lo Toleranced Model
CW VD o Compoundly Weighted Voronoi Diagram
ML S e e e Maximal Common Induced Sub-graph
M CES: . Maximal Common Edge Sub-graph



10

CONTENTS



List of Notations

pi:

Bl' .
A(B;,x) :
KOIref(Pi) :
Va(pi):

pij -

A PIOLEIN LY PE ottt et ettt ettt et e e e e 20]
A PrOtIN INSTAINICE . ..ottt ettt ettt et ettt e e et et e
A DAl L
atoleranced ball .........iuiii et e 33
the compoundly weighted diStance ..............co.iuiriririininiiiiiananannn. 53|
the referenced volume of a protein type ..........c.ovvviiiieiiiii e [B0]
the volume ratio of a toleranced proteinat A ...............coiiiiiiiiiinninann.. 106
the k-contact probability of two protein types ............. ... i 107

11



12

CONTENTS



List of Figures

1.1~ The four steps of the reconstruction of the NPC by data integration| . . . . . . .. ... ... ... 20
[L.2  Sketchy structure of the NPC} . . . . . .. ... ... ... oo 22
[[:37Schematic representation of the structure of the NPC| . . . . . . . . . ..ot 23
|1.4 " The hierarchical representation of the NPC|. . . . . .. ... ... .. ... ... .. ....... 24
I1.5 The 9 representation levels of proteins in the model of Alberetal.| . . . . . ... ... ... ... 25
1.6  'The two main steps of the optimization protocol of the reconstruction of the NPC| . . . . . . . .. 28
|17 Level set surface within the 3D density map resulting from the NPC reconstruction| . . . . . . . . 29
1.8 A 2D example of the ar-complex of three points xp,x; and xo, foroe >0 . . . . . .. .. ... .. 30
2.1 Les 4 étapes de la reconstruction du NPC par intégration de données| . . . . . . .. ... ... .. 36
2.2 Structure grossiere du NPC| . . . . . . . . ... o 39
[2.3Représentation schématique de la structure du NPC| . . . . . ... ... ..o 0L 40
P4 Tareprésentation Merarchique du NPC|. - - - -« o o o e 41
2.5 Les 9 niveaux de représentation des protéines dans le modele de Alberetal.| . . . . . . . ... .. 42
2.6  Les deux etapes principales du protocole d’optimisation de la reconstruction du NPC| . . . . . .. 45

Surface de niveau dans une carte de densité 3D résultant d’une reconstru luNPCl . ... .. 46
2.8 Un exemple 2D de I’ @¢-complexe de trois points xp,x; et xo, pour @ >0 . . . ... ... ... .. 48
3.1 Comparing the variation of the radius for the compoundly weighted model and the Mobius mode 55
[3:2 Toleranced tangent balls and conflict-Tree balls] . . . . . . ... ... ... ... ......... 55
3.3 Two toleranced balls and their bisector which 1s a degree four algebraiccurve| . . . . . . . .. .. 57
3.4 Relative position of minimal and maximal toleranced tangent balls of two balls| . . . . . . .. .. 58
3.5 Bisectors of three toleranced balls| . . . . . . . . ... ... o 59
3.6 Upon growing, four toleranced balls may intersect into four distinct points| . . . . . . . . ... .. 61
[3.7  Dual complex of the four balls of Figure[3.6] . . . . .. ... ... .. ... ... ......... 62
3.8 Hidden toleranced balll . . . . . . ... . ... 62
[3.11 Hasse diagram of simplices of the dual complex of the Voronoi diagram of Figure[3.9] . . . . . . . 63
3.9 The compoundly weighted Voronoi diagram of 7 toleranced balls in 2D . . . . . ... ... ... 63
13.10 Dual complex for the compoundly weighted Voronoi1 diagram of Figure[3.9 . . . ... .. .. .. 63
[3.12 Gabriel, dominant and dominated simplices illustrated with the CW VD of 3 toleranced balls| . . . 65
[3.13 Restricted Voronoi regions for the compoundly weighted Voronoi diagram of Figure[3.9/for A = 1| 66
[3.14 Computing Voronoi faces using restrained and unrestrained connected components| . . . . . . . . 69
13.15 Correspondence between layers 1n tuples Hasse diagram and simplices Hasse diagram|. . . . . . . 69
[3.16 Computing dual stmplices| . . . .. ... .. .. .. .. ... ... .. ... 73
[3.17 Example of 200 toleranced balls uniformly generated at random inacube] . . . . ... ... ... 74
[3.18 Statistics for the reduced A-complex up to A = 1] . . . . . .. oo 75
[3.19 Distribution of A values associated with Gabriel simplices and tetrahedra] . . . . .. ....... 75
4.1 Model of the Y-complex and its embedding inthe NPC| . . . . . .. ... ... . ... ...... 78
4.2 Model of the T-complex and its embeddingmmthe NPC| . . . . .. .. ... ... ... .. ... 79
{43 Sketchy model for the architecture of the NPC|. . . . . ... ... ... ... ..., 80
B4 Assessing the quality of probability demSity MaDs| - .« « « « « + « o oo e oo 81
B35 Toleranced modelof the whole NPCl . . . . . . ... ........ .. .. ... .......... 83



14

LIST OF FIGURES

4.6  Probability density map vs toleranced model of Sec13 (Vol,.r = 40.7nm3)| ............. 87
4.7 Probability density map vs toleranced model of Pom34 (Vol,.r = 42.627nm>)| . . . . . .. .. .. 87
4.8 Probability density map vs toleranced model of Sehl (Vol,.y = 47.892nm°)| . . . . . . ... ... 88
4.9 Probability density map vs toleranced model of Gle2 (Vol,,r =49.6nm°). . . . . . ... ... .. 88
4.10 Probability density map vs toleranced model of Nup42 (Vol,.r = 51.853nm”)| . . . . . . .. ... 89
4.11 Probability density map vs toleranced model of Nup49 (Vol,.; = 60.199nm™) . . . . . ... . .. 89
4.12 Probability density map vs toleranced model of Nup53 (Vol,.r = 64.695nm>) . ... ... 90
4.13 Probability density map vs toleranced model of Nup37 (Vol,.r = 70.401nm>) . . . . . .. .. .. 90
4.14 Probability density map vs toleranced model of Nup59 (Vol,.; = 71.3nm>)|. . . . . . .. .. ... 91
4.15 Probability density map vs toleranced model of Nup60 (Vol,.; = 72.133nm>) . . . . . ... ... 91
4.16 Probability density map vs toleranced model of Nup145N (Vol,.r = 179.4nm5)| .......... 92
4.17 Probability density map vs toleranced model of Ndc1 (Vol,.r =92.760nm°) . . . . . .. .. ... 93
4.18 Probability density map vs toleranced model of Nup145C (Vol,.r = 179.373nm>) . . . . . . . .. 93
4.19 Probability density map vs toleranced model of Nup82 (Vol,.r = 101.9nm”) . . . . . . .. .. .. 94
4.20 Probability density map vs toleranced model of Nup84 (Vol,.r = 104.171nm>). . . . . . ... .. 95
4.21 Probability density map vs toleranced model of Nup85 (Vol,.; = 105.416nm°). . . . . . . . ... 95
4.22 Probability density map vs toleranced model of Nspl (Vol,.r = 104.4nm”) . . . . . . ... .. .. 96
4.23 Probability density map vs toleranced model of Nic96 (Vol,.; = 119.9nm) . . . . . . ... ... 97
4.24 Probability density map vs toleranced model of Nup100 (Vol,.r = 121.039nm>)| . . . . . . . . .. 98
4.25 Probability density map vs toleranced model of Nup! (Vol,.r = 138. 103nm5)| ........... 98
4.26 Probability density map vs toleranced model of Nup116 (Vol,er = 141.053nm°)| . . . . . . . . .. 99
4.27 Probability density map vs toleranced model of Nup120 (Vol,.r = 149.8nm™) . . . . .. . . . .. 99
4.28 Probability density map vs toleranced model of Nup133 (Vol,.; = 165.734nm>)| . . . . . . . . .. 100
4.29 Probability density map vs toleranced model of Pom152 (Vol,.; = 188.354nm>)| . . . . . . . . .. 100
4.30 Probability density map vs toleranced model of Nup157 (Vol,or = 194.7nm™)[ . . . . . . . . . .. 101
4.31 Probability density map vs toleranced model of Nup159 (Vol,.; = 193.902nm°)| . . . . . . . . .. 101
4.32 Probability density map vs toleranced model of Nup170 (Vol,.r = 210.930nm>)| . . . . . . . . .. 102
4.33 Probability density map vs toleranced model of Nup188 (Vol,.; = 237.054nm>) . . . . . . . . .. 102
4.34 Probability density map vs toleranced model of Nup192 (Vol,.r = 239.604nm>)| . . . . . . . . .. 103
[5.1T Tracking the interactions of three toleranced proteins of three toleranced balls each] . . . . . . . . 114
5.2 Example of two contact curves related to the Y-complex| . . . . ... ... ... .. ....... 115
5.3 Partitioning pairs (P;, P;) into three classes reveal that pg}) is more discriminatory than fi;{. . . . . 116
5.4 Partitioning pairs (F;, P;) into three classes reveal that pg ;) is more discriminatory than f;;|. . . . . 117
5.5 An example of over-represented pair in the toleranced model| . . . . . .. ... o000 118
[5.6 An example of under-represented pair in the tolerancedmodel] . . . . . . .. ... .. ... ... 118
5.8 Computing cliques and quasi-cliques 1n the graph of contacts 1dentifies sub-systems of the NPC| . 119
5.7 Evolution of contact probabilities pgf) as a function of the stoichiometry of contacts (Pi,Pj)l ... 119
5.9 Hasse diagram of the Y-complex and closure of the two rings of the NPC| . . . . . ... ... .. 120
5.10 Painting Nup133 in blue evidences its role in the closure of the tworings|. . . . . . . .. ... .. 120
5.11 All copies of the Y-complex are split in two pieces in the probability density maps of [ADV"07al| 121
[5.12 Hasse diagrams of the 7-complex and privileged contacts of the N1c96-2 and Nsp1-2 sub-populations|121
5.13 Hasse diagrams of the Nup82-complex and privileged contacts of the Nsp1-2 sub-population| . . . 122
5.14 A-complex versus partial A-complex| . . . . . .. ... 123
5.15 Number of missed contacts between protein instances when using the partial A-complex, in A| . . 124
6.1~ Comparing graphs with matchings: illustration of the MCES and MCIS constructions| . . . . . . . 131
|6.2  Signature of a matching between the skeleton graphs of a complex C and of a template restricted to C|132
|6.3  Tllustrations of MCES and MCIS resolution via Maximum clique problem| . . . . . . . ... ... 134
[7T Overview of the applications of VOrATOM] . . . . . . . . . . . . ittt et 135
[7.2 The .pdm file format to representacubicmap| . . . . . . . . ... .. ... ... ... ..., 136
7.3 The .ovl file format to represent the occupancy volumes of a list of protein instances|. . . . . . . . 137
7.4 The .tbl file format to represent the toleranced balls of a list of protein imnstances| . . . . . . .. .. 137




LIST OF FIGURES 15

[7.5__The .tap file format to represent a pulldown 1.e. a list of protein types|. . . . . . .. ... ... .. 138
7.6 e .pch file format to represent a protein contact history| . . . . . . . . . . .. ... .. ... .. 138

[7.10 Dependence diagram of the C++ classes involved in a package, depicted using the UML formalism| 142




16

LIST OF FIGURES



List of Tables

1.1~ The classical Voronoi diagrams|. . . . . . .. .. .. ... o o 32
2.1 Les diagrammes de Voronoi classiques| . . . . . . . . . ... ... Lo . 49
[3.1 Classification of simplices in the A-complex| . . . . . . ... ... ... .. ... .. ....... 67
4.1 Volume comparison of sub-complexes of interest: crystal structure vs toleranced model| . . . . . . 85
42 Protein types sorted by decreasing average molecular weights]. . . . . . . . . . . ... .. ... 86
[5.TOver-represented pairs of types in the toleranced model fora =0.1andb=0.9 . . . .. ... .. 108
[5.2 Under-represented pairs of types in the toleranced model fora = 0.1andb=0.9] . ... ... .. 109
5.3 Contact probabilities versus contact frequencies for the Y-complex| . . . . . . ... ... ... .. 110
[>.4  Contact probabilities versus contact frequencies for the T-complex| . . . . . .. .. ... ... .. 112

. ontact probabilities versus contact frequencies for the Nup82-complex| . . . . . ... ... ... 113
5.6 A-complex versus partial A-complex: comparing the number of edges connecting toleranced balls| 124
6.1 Perfect matchings for the templates G,(Y)[ . . . . . . . ... ... .. ... ... . ... . ..., 127
6.2 Alternate matchings for the template G, (Y)| . . . . . . . . .. ... .. .. 128
6.3 Perfect matchings of G;(Y) without Secl3 in the toleranced model| . . . . . .. ... ... .... 128
6.4  Alternate matchings of G,(Y) without Sec13 in the toleranced model| . . . . . . .. ... .. ... 128
6.5 Perfect matchings for the templates G;(T'), G,;(T-comp) and G;(T-new)| . . . . .. ... ... .. 129
6.6  Alternate matchings for the templates G,(T ), G,(T-comp) and G,(T-new)| . . . . . ... ... .. 130

17



18

LIST OF TABLES



Chapter 1

Introduction (English Version)

1.1 Reconstructing Large Systems by Data Integration

1.1.1 Macromolecular Machines and Biological Functions

Biology rests on macro-molecular complexes, so that understanding biological phenomena from the structural
standpoint at the atomic level requires describing such complexes. In its most general form, this task remains an
open challenge, and numerous sub-questions are faced. The first one is concerned with the stability of complexes,
as the life-span of biological complexes varies a lot, from transcient (few micro-seconds, like complexes involved
in oxydo-reduction) to obligate (permanent, like some multi-subunit enzymes). The second one is concerned with
the specificity of interactions, as the number of partners of a molecule can vary dramatically.

In investigating these questions, a key difficulty is the size of the systems, since the largest assemblies, such as
viral capsides or the Nuclear Pore Complex (NPC), may involve hundreds of polypeptidic chains. Size also poses
problems in terms of plasticity, as the composition of big assemblies may vary over time — a particular assembly
may contain different proteins at different moments of the cell cycle. Another key difficulty is flexibility, as the
conformations of the molecules may change upon formation of the complex or assembly, or may also change
while the complex is operating—we shall discuss this later in the case of the NPC.

These difficulties motivate research activities which are found at the cross-roads of biophysics, structural biology,
and computer science. To improve our understanding of the aforementioned biological functions, one would
ideally like to build and animate atomic models of these molecular machines. Experiments are naturally key to
these modeling activities, as they provide data which can be used to derive models, and to challenge them. But
while atomic models of small complexes can be obtained from X ray crystallography and / or Nuclear Magnetic
Resonance, the reconstruction of large assemblies such as molecular motors (cell locomotion), branched actin
filaments (muscle contraction), chaperonin cavities (protein folding) or nuclear pore complexes
(nucleo-cytoplasmic regulation) is more challenging.

1.1.2 Reconstructing Macromolecular Machines by Data Integration

The modeling challenges arising to reconstruct large assemblies are different from those faced for binary docking,
and also from those encountered for intermediate size complexes. For binary complexes, key challenges are
currently faced to dock flexible molecules [LW 10] and to design discriminatory scoring functions [FO10], as
evidenced by the community-wide experiment CAPRI (Critical Assessment of PRotein Interaction), whose focus
is the blind prediction of complexes which have been resolved by crystallography. Complexes of intermediate
size, on the other hand, are also often amenable to a processing mixing cryo electron microscopy (cryoEM) image
analysis and classical docking [LTSWQ9].

For large assemblies, however, these approaches do not restrain the space of solutions enough. More complex
strategies must be resorted to, and one particular strategy of interest is reconstruction by data integration
[AFKT08]. In a nutshell, this strategy is reminiscent from NMR and consists of mixing experimental data from a
variety of sources, so as to find out the model(s) best complying with the data. This paradigm actually requires
three ingredients:

19



20 CHAPTER 1. INTRODUCTION (ENGLISH VERSION)

e A geometric model of the system studied. For coarse-grain models, a collection of balls representing
protein domains is typically used.

e Various experimental data, shedding complementary light on the system. These data are turned into
so-called restraints, which when added up define a scoring function measuring the coherence between the
model and the data.

e An optimization strategy aiming at finding the most significant local minima of the scoring function.

These ingredients can then be used in a process which iteratively mixes computation and data generation. This
process has been used for the reconstruction of plausible models of the NPC [ADV " 07al], and is presented on
Figure[I.T] In the sequel, we make the three ingredients just presented more explicit.

Start Final structure
Data generation ) tSt'”r‘;TtU:?
callection of 1N Erb;ll a ||oln
experimental data ensemoie precision,
accuracy

Experiment Computation
4

Data interpretation Modeling

translation into spatial by satisfaction of
restraints spatial restraints

Figure 1.1: The four steps of the reconstruction by data integration, applied to the determination of the global
structure of the Nuclear Pore Complex. From the Supplementary Information of [ADV™07al].

1.1.3 Relevant Biochemical and Biophysical Data, and Their inherent Difficulties

Turning experimental data into restraints, used to constrain the model being reconstructed, in a non trivial task.
Before presenting the restraints used for the NPC, we discuss the relevant experimental data.

Tandem Affinity Purification (TAP) TAP experiments give access to all the protein types found in all
complexes containing a prescribed protein type [PCR™01], say P, and can thus be used to constrain the spatial
proximity within a model.

More precisely, the method consists of the following steps. First, a fusion protein is created by modifying the
gene for P: coding sequences for two affinity tags are added, separated by a sequence coding for a protease
cleavage site. Upon introducing this engineered gene into a host cell, the modified protein (called PrA-tagged
protein) gets expressed and takes its place in its usual complexes—assuming that there is no hindrance induced by
the tags themselves. On lysing the cell, the protein complexes containing protein P are retrieved thanks to two
affinity purification steps. Each purification step consists of capturing the complexes on an affinity purification
column thanks to one of the affinity tags. Between the first and the second purification steps, the complexes
hooked on the first column are released by a protease which cuts the linker containing the first affinity tag at the
level of the cleavage site. This reveals the remaining affinity tag for the second purification step. Upon
completing these purification steps and dismantling the complexes during electrophoresis, one gets a gel with one
band per protein type. Mass spectrometry is then used to identify the protein types present.

This list of protein types obtained, also called a pulldown or pulldown, calls for two comments. First, one does
not know whether the list of interacting types corresponds a single complex or to several complexes. For example,
alist (P,P',P") obtained by tagging P may correspond to a single complex containing the three species, or to two
complexes respectively involving (P, P’) and (P,P"). Second, no information on the stoichiometry of protein
instances within a complex is available. Despite these inherent combinatorial ambiguities, TAP data are of prime
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interest for the reconstruction of large assemblies: knowing that protein instances participate in a complex
imposes distance restraints between them.

Overlay assays. In contrast with TAP data, overlay assays aim at detecting pairwise protein-protein contacts,
allowing to directly constrain protein contacts in the model. A protein P, called bait is first purified and
immobilized on nitrocellulose. Then, a fusion protein P, called probe is also purified and overlaid with P,,. After a
period of incubation and a washing step for eliminating unbound probes, the detection of overlaid proteins is
carried out [HalO4], yielding a signal S, 5, which is specific from the protein complex probe-bait.

However, note that the observed signal contains background noise due to the two following reasons: first, during
the purification step, contaminant particles may be not eliminated; second, during the incubation step, the number
of non specific interactions in an assay increases linearly in time. Extracting the relevant signal is thus a
challenging task.

Ultracentrifugation. Ultracentrifugation allows to determine the shape of globular (domains of) proteins,
which is useful to assign rough shapes to proteins.

A centrifuge is a refrigerated, evacuated chamber containing a rotor which is driven by an electrical motor
capable of high speed rotation. The experiment consists in rotating a protein sample in the centrifuge. Two
opposite main forces act on the sample: the centrifuge force and the forces of friction with the solvent. Thus, the
sample migrates until it reaches the bottom or the top of its container, or until equilibrium between forces is
reached. It is possible to use a solvent with a density gradient (such as sucrose): in this case, the protein sample
will migrate to the zone of the solvent sharing the same density, if any. In practice, the density is determined by
comparing the sample to a set of marker proteins that migrates to the same zone of the solvent. By measuring the
sedimentation velocity of the protein sample, one can determine an abstract value called the sedimentation
coefficient S, which is constant among the marker proteins having the same density. § is directly related to the
molecular mass, the volume and the shape of the involved proteins [Eri09]. Intuitively speaking, small values of S
correspond to elongated proteins having a large surface subjected to forces of friction, while large values of S to
globular proteins.

Cryo-electron microscopy (cryoEM). A further approach under active development is cryo-electron
microscopy (CryoEM) [Era06]. Structures as large as whole cells and as small as individual proteins can be
imaged with electrons, and with cryo techniques final resolutions on the order of 0.3 nanometers have been
attained. In single particle analysis, bombarding isolated samples with electrons yields images corresponding to
different viewpoints, and these can be combined into a 3D model of the particle. In cryoEM tomography, a given
sample is instead bombarded at incremental degrees of rotation, from which a 3D model can also be
reconstructed. In both cases, the result is a 3D density map, where each voxel encodes the density of matter. This
density is in general very noisy due to the low electron doses used to avoid damaging biological specimens.
Choosing a density level for contouring a surface (called the envelope) enclosing the model is non-trivial, as the
intensity is generally high for globular domains of the proteins, but low for unstructured regions such as linkers
connecting these domains. Typically, medium (around 5A, secondary structure elements visible) to low (less than
10 A, domains visible) resolutions are achieved in cryoEM. In favorable cases, fitting existing and/or modelled
structural elements into such maps yields atomic resolution models.

Immuno-electron microscopy. In immuno-EM, one wishes to locate specific proteins within an assembly
[SHO1], this positional information being used to favor the location of proteins in the model.

To this end, the protein of interest is attached to a specific antibody or a big tag. The detection of the shape of the
antibody or the additional mass of the tag allows to locate the protein in the cell. In the NPC case, antibodies
against the required antigen are labeled with gold particles and are then examined under the electron microscope.
Then regions of images containing assemblies with gold-labeled particles are selected with circles: the center of
each circle is manually aligned with the assembly. After a quality selection step, batches of assembly images are
manually aligned to generate montages; the position of every gold particle in each montage is measured.

A major issue from immuno-localization comes from the impossibility to establish precisely the coordinates of
the gold particles. Moreover, for several reasons (rotation of the antibodies around the tags, distortion or damage
of the samples during preparation), each montage demonstrates a high degree of gold particle scattering.
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Except for the overlay assays, biochemical and biophysical data cannot be directly interpreted as simple
geometric restraints. For example, pulldowns obtained with the TAP do not reveal pairwise interactions between
proteins, inducing a combinatorial aspect to the geometrical restraint. The variety of geometrical restraints
included in the scoring function is also important: there may be a bias in the final model if geometrical restraints
are not independent (e.g. geometrical restraints on the locations and distances between several proteins), or if a
particular feature (e.g. locations of proteins) is represented by several geometrical restraints. All these issues
imply that the models computed inherently encode uncertainties that are very hard to interpret. Even if a high
quality model is produced from this methodology, it is impossible to make precise quantitative statements about
the shape of proteins, or about their relative positions and contacts.

1.2 The Nuclear Pore Complex: a Concise Description

Biological features. The Nuclear Pore Complex (NPC for short) is the largest protein assembly known to date
in eukaryotic cells. It is involved in the transit of molecules across the nuclear envelope, see Figure[I.2] with in
particular the import of proteins or the export of RNA [WRI10].

The NPC is formed by a channel of circa 100 nm of diameter, filaments containing docking sites for molecules
crossing over the channel, and a basket on the nuclear side. Small particles (<30kDa) are able to pass through the
NPC by passive diffusion, but larger particles may be recognized by the filaments containing specific sequences
called the FG-repeat sequences [DPUT 03], which help in their active transport from one side to the other. The
proteins involved in this process are known as karyopherins.

Figure 1.2: Sketchy structure of the Nuclear Pore Complex (a) The NPC are located on the nuclear envelope. (b)
Zooming on the nuclear envelope: (1)Nuclear envelope (2) Outer ring (3) Spokes (4) Basket (5) Filaments. Picture
from Wikipedia at http://en.wikipedia.org/wiki/Nuclear_pore.

Structural features. Experiments have shown that the NPC is ring-shaped with a 8-fold rotational symmetry
axis perpendicular to the nuclear envelope plane [ADV"07b]. It is thus made of 8 identical blocks termed spokes,
see Figure [[.3] Each spoke has a nuclear side and a cytoplasmic side, each of them termed half-spoke.

To describe models of the NPC, it is convenient to talk about protein fypes and protein instances i.e. copies of a
given type. In a recent work [ADV™07b], the NPC has been modeled using 30 different protein types, with 29
protein instances of 27 different protein types for a cytoplasmic side half-spoke, and 28 protein instances of 25
different types of protein for a nuclear half-spoke. Therefore, these models involve a total of 8 x (29 +28) = 456
proteins instances.
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From a global standpoint, the NPC may be segmented in four functional concentric cylinders [HSBHOQ7], namely
(i) the channel cylinder, containing protein types having unstructured regions i.e. filaments regulating the active
transport; (ii) the adapter cylinder, involving intermediate protein types between channel protein types and
scaffold protein types; (iii) the coat cylinder, which defines the scaffold of the NPC; (iv) the pore membrane
cylinder, anchoring the NPC into the nuclear membrane.

Cytoplasmic side

.......................... Pore membrane cylinder
...... ~... Coat cylinder

- Adapter cylinder

... Channel cylinder

............ Channel

-..].- Cytoplasmic half-spoke (29 proteins)
+

Nuclear half-spoke (28 proteins)

<o
/ Spoke (57 proteins)

Figure 1.3: Schematic representation of the structure of the Nuclear Pore Complex. It is composed of 8 symmetrical
spokes, each of them divided into two symmetrical half-spokes. Each spoke contains 57 proteins of 30 different
types located in the Channel (yellow), Adapter (orange), Coat (dark green) or Pore membrane (blue) cylinder.
Adapted from [HSBHO7].

Nuclear side

1.3 Modeling the Nuclear Pore Complex

In [ADV"07al|ADV07b]], Alber et al proposed the first coarse grain model of the whole yeast NPC based on
data integration. The reconstruction procedure was used to select N = 1000 plausible models. We now briefly
review the three steps of the reconstruction procedure mentioned in Section[I.1.2] and also briefly discuss the
exploitation of the N models.

1.3.1 A Hierarchy of Coarse-grain Models

A hierarchy of models. In the model of [ADV"07al], the NPC is represented with a 4-level hierarchy, see

Figure[T.4}

e (i) the assembly level, a given model being denoted A;,i = {1,...,N}, where N is the total number of
models;

e (ii) the half-spoke unit UY, where s = 1,...,8 in the spoke index, and the index 8 € {1,2} refers to the
cytoplasmic and nuclear sides, respectively.

e (iii) the protein instance level, a given instance being denoted p;, j = {1,...,456}.

e (iv) the bead / particle level, a particular bead B being parametrized by its center and radius.
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Figure 1.4: The hierarchical representation of the NPC: (i) the overall assembly A; (ii) the half-spoke unit Use (iii)
the protein instance p; (iv) the bead By.

Before running the optimization process, all the instances of a protein type have the same geometry, which
consists of several beads of a fixed size. (Note that this size depends on the protein type.) The goal of the
optimization is to reshape these initial geometries, to comply with the experimental data.

To account for all possible inter-spoke interactions between protein instances without FG-repeat sequence, the
authors consider that each half-spoke has four neighboring half-spokes that are obtained by rotating of 27/8 all
cytoplasmic half-spokes. (For proteins with FG-repeat sequences, the authors supposed that filaments could
interact with protein instances that are not in the neighboring half-spokes.)

Finally, the NPC is anchored on the Nuclear Envelope, which is a mould for the assembly. The Nuclear Envelope

is represented by spheres with a fixed diameter corresponding to the average thickness of the NE (4.5nm).

Representation of the protein instances. In order to consider interactions and locations of the different regions
of a protein, the authors introduced nine levels of representation numbered from k = 1 to 9 — see Figure[[.5] At
the level k = 1, one finds the root representation, corresponding to the finest representation of the protein. All
other representations are derived from the first level and allow to consider independently the following features of
a protein. The classification goes as follows:

e representation level k = 2 and k = 3: the globular domains,

e representation level k = 4: the unstructured regions,

e representation level k = 5: the non membrane-spanning regions,

e representation level k = 6: the membrane spanning regions of pore membrane proteins,

e representation level k = 7: the perinuclear non membrane spanning regions of pore membrane proteins,
e representation level k = 8: the pore side non membrane spanning regions of pore membrane proteins,

e representation level k = 9: the C-terminal region of Pom152, a pore membrane having homotypic
interactions at the medial plane of the NPC through its C-terminal region.

The root representation consists of a linear flexible oriented chain of identical beads that fits within an ellipsoid
computed from the observed sedimentation coefficient of the protein: the first bead represents the C-terminal
region of the protein and the last one represents the N-terminal region of the protein.
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The Cartesian coordinates of a bead at representation levels k = 2 to k = 9 has the same coordinates as a bead in
representation k = 1, with two exceptions. For k = 3 and k = 6, a single bead is used, its coordinates being
computed from a weighted average of the coordinates of the beads at the representation level k =2 and k = 1,
respectively.

k=1
Root representation
(finest representation)

/ \

k=2 k=4 k=5 k=9 .

Globular protein Unstructured Non membrane Homotypic interactions
. tein resions spanning between two copies of
domalils protein regions protein regions Pom152

- \ |

Globular protein one particular membrane protein
domains (one bead)

covers all proteins X

k=7 k=6 k=8
Non membrane Non membrane

spanning protein . L spanning protein
regions protein regions regions

(perinuclear side) (one bead) (pore side)

Membrane spanning

membrane proteins only

Figure 1.5: The 9 representation levels of proteins in the model of Alber et al. The arrow from k =2 to k=3
corresponds to coarsening the protein representation. All the remaining arrows can be seen as selectors, since they
discriminate a particular region / feature of the protein. It should also be noticed that there are two cases where a
single bead is enforced, namely for k = 3 and k = 6.

1.3.2 Input Data and the Associated Restraints

The scoring function is interpreted as a sum of spatial restraints, a restraint being a real-valued function defined at
some representation level k, encoding the coherence of the model with respect to some experimental data. The
function returns O if the model is coherent with the data, and some positive value otherwise. There are three types
of spatial restraints :

e the localization restraints, which constrain the position of some beads;
o the distance based restraints, which constrain the distances between two beads;
e the symmetry restraints, which constrain two sets of beads to have the same property;

‘We now discuss these restraints as a function of the available data.

Tandem Affinity Purification (TAP)

Practical matters. For a tagged protein type, the authors obtained several pulldowns with a quality factor
ranging from 1 (top quality) to 3 (low quality). The authors reported 75 pulldowns containing from two to 20
protein types, classified as follows: top quality: 34; intermediate quality: 21; low quality: 20.

Restraints. Restraints related to a pulldown are used at the representation levels 2,4 and 9. Recall that a
pulldown cannot be directly interpreted as a spatial restraint due to its combinatorial nature. For each half-spoke
Use, a two step strategy is applied for selecting the pairs of protein instances with types in the pulldown for which
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a contact is constrained. First, a complete weighted graph is defined over the node set corresponding to the protein
types. The weight of an edge corresponding to the types P and P’ is set as follows: a score is computed for each
pair of protein instances p; and p;- of the types P and P, such that at least one of the two protein instances is in U
and the other one is in the same half spoke or one of the four neighbor half-spokes. (As already mentioned, the
selection of protein instances with a protein with a FG-repeat sequence is not restricted to neighbor half-spokes.)
This score is the minimal distance between centers of beads of p; and p’j. Then the pair of protein instances
minimizing this score is retained and the weight of the edge (P, P’) is set to this score. Second, a minimal
spanning tree is computed on the complete graph. The selected edges define a minimal connectivity amongst the
protein types. The sum of the weights of selected edges is the score of the spatial restraint of the pulldown.

Overlay assays

Practical matters. The authors generated 30 overlay assays corresponding to the 30 probe protein types
involved in the NPC model: they obtain a matrix of signals S, ;, for each possible pairs of probe / baits. For
reducing the noise-to-signal ratio, the authors first normalized the signal S, ;, from each bait (b) with a given
probe (p) to the general background signal across all n baits for that probe (on one overlay blot). A similar
correction was applied for the general background signal for each bait across all k probes (on the different
overlays) to generate a normalized signalfor each bait with each probe Y; ; :

Si,j
i'=n j'=k
(Z,-rzl Sy i+ Zj-/:l Sijp— Si,j)

Yij = (1.1)

Then, only probe-bait interaction giving a signal more than 10 times above its average was considered significant.
Following this protocol, only 7 pairwise interactions (involving 5 protein types) are qualified as significant.

Restraints. Restraints related to overlay assays are used for representation levels 2,4 and 9. The pairwise
interactions observed with the overlay assays are constrained using the same strategy as the one used for
pulldowns. Note, though, that the minimal spanning tree of a connected graph with two nodes is the graph itself.

Ultracentrifugation

Practical matters. The authors use ultracentrifugation to determine the finest representation of a protein in
terms of beads. Each protein instance is represented by a prolate ellipsoid (i.e an ellipsoid rotated about its major
axis). The number of beads per protein is set to the nearest integer value of the axial ratio (a/b) of the prolate
ellipsoid and the radii of the beads are scaled to reproduce the volume of the protein, estimated from its sequence.
To compute the axial ratio, the authors derive from the sedimentation coefficient S of a protein type the Perrin
function P, which is a molecular shape function. Using the inversion formula of a prolate ellipsoid with a
development of order n (n is generally set to 6) [HC935], one can obtain the following formula:

(a/b) = ao +l§aiP" (1.2)
=1

L

where ag and (g;);<, are given parameters [HC95| Table 3 and 4].

The authors also use ultracentrifugation for estimating the length D of the largest axis of the ellipsoid fitting the
Y-complex, a well known protein complex composed of 7 protein types—see details in Section [.2.1]

Restraints. Three spatial restraints depend only on ultracentrifugation data: the first one constrains any pair of
beads to have an empty intersection; the second one constrains two consecutive beads of a protein instance to be
tangent; the last one constrains beads of protein instances of the Y-complex in a half-spoke to be contained in a
sphere of diameter D.

'In fact, the formula provided in JADV'07al Supplemental, page 11] is as follows:
Sij
v i'—k .
YiTiEy T Sy
That is, the signal is divided by the sum of all signals, that is constant among all signals. We believe that this do not normalize the signals

Yij=
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Cryo-electron microscopy

Practical matters. The map obtained from single particle cryoEM experiments were used to derive several
important global features: the eight-fold (eight spokes) and two-fold (two half-spokes per spoke) symmetries, the
anchoring of the NPC into the nuclear envelope, the diameter of the channel. Also, the density map is used as
reference for maps generated by immuno-electron microscopy.

Restraints. Spatial restraints derived from cryoEM are used in two ways. First, a spatial distance restraint for
the representation level 5 constrains the beads of protein instances and the beads of the nuclear envelope to have
an empty intersection. Second, due to the eight-fold and two-fold symmetries, two spatial symmetry restraints for
the representation level 2 constrain two protein instances (p;, pj) of type P present in two different half-spokes to
share the same configuration of beads: (i) by constraining two pairs of beads of p; and p; to have an identical
distance, and (ii) by constraining two sets of four beads of different protein instances in two different half-spokes
to share the same dihedral angle.

Immuno-electron microscopy

Practical matters. Except for two nucleoporins (Nup1, and Nup60), the authors collected 300 particle positions
for each protein type, by aligning the selected circles drawn on electron microscopy images, with the intersection
point of the central Z-axis and equatorial plane of the NPC. To account for the inherent scattering, the authors
created a scenario where the position of proteins was known —the model distribution. More precisely, a plastic
membrane is coated with tagged proteins, is observed, and a Gaussian distribution is fitted so as to recover the
model distribution. Getting back to the NPC experiments, this Gaussian distribution is slided along the Z and R
axis so as to maximize the overlap with the experimental distribution of the observed gold particles. The overlap

is defined as:
Nb

1
0verlap:175i§i|Ei7Ci| (1.3)

where E and C are respectively the experimental and calculated distributions normalized to add up to 1, and N, is
the number of the 2.5nm bins spanning the distributions from O to a large positive value.

Finally, the authors correct for localization errors presumably due to the steric hindrance of the nuclear envelope
and of the NPC. These structural portions are embedded in the structure of the NPC as visualized in reference
cryoEM maps. Hence, the total immuno-electron microscopic map is manually aligned to maximize its overlap
with the cryo-electron microscopic map.

Restraints. Restraints related to immuno-electron microscopy are used for the representation level 1. Two
spatial localization restraints are defined to favor Z and R coordinates of all beads of all proteins instances (except
Nupl and Nup60) to be in the described range.

1.3.3 Optimization Methods

As mentioned in Section[I.3.1] a protein is represented by a collection of beads. In the sequel, by configuration of
the NPC, we refer to the position and the size of these beads at the root representation level. If we assume that the
radii of all balls can be estimated so as to match the volume of a protein estimated from its sequence, notice that
the dimension of the configuration space is exactly three times the number of balls.

Overall strategy. The optimization strategy consists of the two steps illustrated on Figure[1.6] The first one
selects 200,000 configurations. The second one starts with the top 20,000 configurations of the first round, and
refines them. Finally, the configurations corresponding to the top 1000 scores are retained. The optimization of a
configuration A; of the NPC is done by minimizing a scoring function f(A;) which is a linear combination of a
subset of the spatial restraints. Indeed, the restraints are not considered all at once, but are instead gradually added
along the optimization [BG85|. The minimization of f(A;) is done using rounds of conjugate gradients and
molecular dynamics with simulated annealing. For each configuration A;, ten rounds are realized during the
coarse grain step, and at most eight rounds during the fine grain step.
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Figure 1.6: The two main steps of the optimization protocol: coarse optimization (left), and fine optimization on
the (right). From the Supplemental Figure 11 of [ADV07al.

1.3.4 Results and their Assessment

The N = 1000 structures were not released, but two derived products were so: contact frequencies, and probability
density maps. These are available from http://salilab.org/npc/. We now discuss briefly these results.

Contact frequencies significance. The contact frequency of a pair of protein types (P, P’) is the fraction of the
selected models, out of N = 1000, which display a contact between at least one instance p of P and one instance
p' of P'. That is, a particular model qualifies provided that there is at least one pair of beads, one bead from p and
one from p’, such that the distance between their centers satisfies a distance constraint. Note that if two particular
protein instances of types P and P’ are in contact in all models, but all other possible pairs of protein instances of
these types are not, the contact frequency is equal to 1. That is, contact frequencies do not account for the
stoichiometry of the contacts.

Probability density maps uncertainties. To exploit the N = 1000 models selected globally, the author
computed one probability density map per protein type. More precisely, consider one particular protein type.
Having collected all the balls of the protein instances of this type across the N models, the authors blended these
balls to produce a probability density map representing the overage position of all these instance.

Contouring this maps yields a representation of the proteins, as illustrated on Figure[I.7] These density maps
offer a qualitative result on shapes and locations of proteins in the NPC. However, due to uncertainties on
biochemical and biophysical data, and bias introduced by the methodology, it is very hard to make quantitative
analysis on these maps. As an extremal case, the ring around the NPC on Figure [I.7] corresponds to the density
map of the 16 protein instances of Pom152.

The following quotes witness the qualitative nature of the analysis carried out [ADV"07a,IADV07b]:

< Our map is sufficient to determine the relative positions of proteins in the NPC; we do not interpret features
smaller than this precision. >

<& Because of the limited precision of the information used here, the localization volume of a protein should not
be mistaken for its density map, such as that derived by cryo-EM. >

<& The localization volumes [...] allow a visual interpretation of the relative proximities of the proteins. >


http://salilab.org/npc/
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Figure 1.7: A level set surface corresponding to the threshold 0.5 within the 3D probability density map resulting
from the NPC reconstruction. Plotted with the CHIMERA software.

1.4 Voronoi Diagrams and o-complexes

1.4.1 Handling Uncertainties with Affine Voronoi Diagrams and Related a-shapes

Voronoi diagrams, spatial partitions, and parameterized models As we have seen while presenting the
reconstructions of the NPC, the uncertainties on the input directly translate on the output. In particular, given a
probability density map, placing the protein instances is an ill posed problem which, in general, does not have a
unique solution. On the other hand, in a number of cases, one can delimit a zone within which interesting
phenomena can be confined. This zone can then be used as the support of a parameterized model sweeping the
region of interest. Naturally, confining the model in the region may prevent finding features of the model. But in a
number of cases, delimiting the region is rather straightforward. The argument which will be refined when
dealing with probability density maps will be to use to same uncertainty for the zone (and also for the
parameterized model) as that observed on the input data.

While the previous paradigm seems appealing, the key question consists of defining the parameterized shapes. To
this end, a design choice consists of considering a parametrization that yields nested shapes. The classical case in
computational geometry is that of the weighted ¢-shape associated with a power diagram, a remarkable
construction proposed by E. Edelsbrunner [Ede92]. For the sake of clarity, we present the even simpler case of
a-shapes related to the Euclidean Voronoi diagram.

Euclidean Voronoi diagrams of a set of points. Formally, given a set . of n points in the Euclidean space E,
the Euclidean Voronoi diagram of .& is the partition of the space into Voronoi cells such that each Voronoi cell
contains all points of the space closer to a point x; € . than any other point x;; € ./ w.r.t. the Euclidean
distance:

Vor(x;) = {x e Esuch that || x—x; ||<|| x—x; ||,Vx; #x}. (1.4

In 2D, all points equally distant from two points x; € . and x; € . are located on a straight line called the
bisector. The intersection of the Voronoi cells of x; and x;, yields a connected portion of the bisector called a
Voronoi edge. The intersection of two Voronoi edges (or generically of three Voronoi cells) yields a point that is
called a Voronoi vertex. Let v be a Voronoi vertex. Since v is equally distant to the three points (x;,x;,x¢) € .7, it
is the center of the ball B circumscribing the triangle (x;,x;,x;). Furthermore, since v is closer to x;,x;,x than any
other point in ., the ball B does not contain any other point of .% in its interior. This property is called the empty
ball property or conflict-free property and can be extended to points on a Voronoi edge or a Voronoi cell.

Dual structure of Euclidean Voronoi diagram. The Voronoi diagram has a dual structure called the Delaunay
triangulation, which is obtained by collecting vertices, edges and triangles as follows:
—a Voronoi cell associated with a point x; contributes a Delaunay vertex;
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— a Voronoi edge ¢; ; associated with two points x; and x; contributes the Delaunay edge (x;,x;), obtained by
joining x; and x;;

— a Voronoi vertex v; ; ; associated with three points x;,x; and x; contributes the dual triangle (xi,xj,xx), which
may be seen as the convex hull of the three points.

Generically, i.e. of no four points are co-circular in 2D, this dual structure is a triangulation. Due to the empty
ball property, the circumscribed spheres of all dual triangles have no point of . in their interior. Similarly, for
each point contained in the interior of a Voronoi edge, there exists an empty sphere passing through the vertices of
the dual Delaunay edge. Also, note that the circumscribed ball B; ; of a dual edge (x;,x;), namely the ball whose
diameter is (x;,x;), is empty iff the center of B; ; is located on ¢; ;. A dual edge having this property is said
Gabriel.

The triangulation is actually a so-called simplicial complex, namely a collection of simplices such that any two of
them intersect on a common face if they intersect at all. With this terminology, the Delaunay triangulation
consists of k-simplices, where k is the dimension of the simplex: a Delaunay vertex is a 0-simplex; a Delaunay
edge is a 1-simplex; a Delaunay triangle is a 2-simplex. The dual of a k-simplex is a Voronoi cell (k = 0), a
Voronoi edge (k = 1) or a Voronoi vertex (k = 2): we call Voronoi 2 — k-face the dual of a k-simplex.

Space filling diagrams, the a.-complex and the a-shape. The Voronoi diagram admits the following intuitive
construction: start growing balls centered on the points, at the same speecﬂ v/, and they will meet on their
common bisectors. The domain covered by these growing balls is called a space filling diagram. Let the
restriction of a ball be the intersection between the ball and its Voronoi region. The strategy just presented actually
consists of tracking intersections between restrictions. Note that this is a more stringent condition that tracking
intersection between balls, as illustrated by the growth of three balls forming an obtuse triangle, see Figure [I.]

Similarly to the construction of the Delaunay triangulation, we can report simplices corresponding to the
intersection of restrictions. All such simplices form another simplicial complex called the a-complex, and the
domain of these simplices (the union of the geometric domains of the vertices, edges and triangles) defines the
so-called a-shape.

Sm V@) Sie, VA

Sa(r2, /)

Figure 1.8: A 2D example of the a-complex of three points xp,x; and x», for & > 0. The Voronoi diagram is
drawn in dotted lines, and the Delaunay triangulation in solid lines. The red points and red lines correspond to
simplices in the a-complex. The restriction of spheres Sy (xo, /), S1(x1,+/@) and S»(x2, /@) are shown in black
solid lines. S; and S, are drawn in dashed lines. Note that Sy and S} intersect at the point i in the interior of the
ball bounding by S»: the corresponding dual simplex is not Gabriel.

2The justification of the speed /a rather than ¢ will be clear when discussing power diagrams.
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Note that growing balls is a monotonic process: when the radii are being enlarged, the restrictions are nested, and
so are the o.-complexes. In fact, the 0-complex matches the collection of points, and for a large enough value, the
a-complex matches the whole Delaunay triangulation.

Note also that the monotonic growth process just presented matches the nestedness requirement discussed in
Section[I.4.1] In fact, the methodological contribution of this thesis is a generalization of the a-complex. To
position this contribution, we now briefly present three classical Voronoi diagrams.
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1.4.2 Generalized Voronoi Diagrams

A Voronoi diagram being a partition of the ambient space induced by a (generalized) distance to objects, a variety
of such diagrams can be defined. Three of them are particularly interesting, and their specifications are
summarized in Table E} In all these cases, the generalized distance has the form

ai|| x—ci || —b;, (1.5)

where the parameters a; and b; are respectively called the multiplicative and additive parameters, and k € N* is the
power of the distance. The reader is referred to [BWYO06] for more on these diagrams.

Name Generalized Distance Bisector Diagram in 2D

Power Diagram
of
spheres:
Si(Ci,W,' = rlz)

d(S,-(c,-,w,-)7x)
= Radical hyperplane
| ci—x []> —w;

Apollonius Diagram

of d(Si(CZVi),X) (\

Hyperboloid or straight lines

spheres: T
Si(chri) H Ci X || T
Mobius Diagram
Of & d(u/i(ci7ai7bi>7-x) “~\
compoundly weighted points: = 5 Hypersphere (possibly degenerated) —
ai|| ci—x [|* =b;
Wi(ci,ai, bi)

Table 1.1: The classical Voronoi diagrams.

Power diagram. This diagram deals with spheres and the so-called power distance. In the sequel, the dimension
of the ambient space is denoted by d, and the objects considered are called spheres. This diagram generalizes the
Euclidean case, as all affine Voronoi diagrams are power diagrams. The bissector of two spheres is called a
radical flat. Any point located on a d — k-dimensional Voronoi face is the center of a sphere which is orthogonal[ﬂ
Two interesting situations not encountered in the Euclidean case may appear: A Voronoi cell of a sphere S; € ./
(1) may not contain the center of S; (the dual of the Voronoi cell is not Gabriel) or (ii) may be empty (S; is hidden).

Apollonius diagram. It is the generalization of the Euclidean case to spheres, under an additive distance. (The
additive distance refers to the distance of a point to the sphere, rather than the distance to its center. That is, the

3Two spheres S;(c;,r;) and S;(c;,r;) are orthogonal provided that || ¢; —c; ||>=r? + r?.
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radius acts as additive parameter.) Points on the bisectors of k spheres in .7 are locii of spheres tangent to the &
spheres. For example in 2D, a bisector is either one branch of a hyperbolae, or a straight line. A Voronoi cell of a
sphere S; € . (i) always contains the center of S; (its dual is always Gabriel) and (ii) is empty iff there is another
sphere S; € .7 that contains S;. Note that two spheres (S;,.5;) € -/ may have several common Voronoi edges, and
that three spheres (S;,5;,Sk) € .# may have at most two common Voronoi vertices.

Mbobius diagram. It is the generalization of the power case to compoundly weighted points and compoundly
weighted power distance. For two spheres, the bisector is a sphere or a straight line. A Voronoi cell of a
compoundly weighted point W; € . (i) has not necessarily a Gabriel dual simplex and (ii) may be empty. Note
that one weighted point (W;) € .# may have several Voronoi cells, two weighted points (W;, W;) € .# may have
several common Voronoi edges and three weighted points (W;, W;,Wy) € . may have at most two common
Voronoi vertices.

1.5 Thesis Overview

From a practical standpoint, this thesis aims at correcting the limitations of the models mentioned in Section
From a methodological standpoint, this goal motivated the development of algorithms and concepts related
to curved Voronoi diagrams. We now put these contributions in perspective.

1.5.1 Compoundly Weighted Voronoi Diagram and their A-Complex

In order to model macro-molecular assemblies with uncertainties, we introduce toleranced models to
accommodate the positional and conformational uncertainties of protein instances within large assemblies. A
toleranced model is a collection of toleranced balls, each such ball consisting of two concentric balls called the
inner and outer balls, respectively meant to encode high and low confidence regions. A linear interpolation of the
radius of a toleranced ball defines a growth process which is that of the so called compoundly weighted Voronoi
diagram, or CW for short.

In Chapter[3] we first introduce toleranced models. We then generalize the empty ball property, examine
properties of the bisectors, of the Voronoi diagram itself, of its dual structure. We proceed with the generalization
of the a-complex, which we call the A-complex. Finally, we present a naive output sensitive algorithm for
computing an abstract representation of the CW VD and its A-complex.

1.5.2 The Nuclear Pore Complex: Material and Methods

The Nuclear Pore Complex is the largest known macro-molecular assembly in the eukaryotic cell, and
understanding its structure and function is a key endeavor in cell and structural biology. In particular, analyzing
the location and the partners of each protein instance is required to determine the structure of the assembly. The
model of the NPC of Alber et al presented in Section [I.3]is a first step, but the qualitative results makes the
interpretation a very hard task.

Chapter [d] provides an introduction to the key features of the NPC. We first introduce three important
sub-complexes of the NPC (namely the Y-complex, T-complex and Nup82-complex), which play key roles from
the structural and functional standpoints. We then present a brief assessment of the probability density maps of
[ADV(Q7al. Finally, we present algorithms to construct toleranced model of the NPC based on these probability
density maps.

1.5.3 Assessing Pairwise Contacts at the Assembly and Sub-Complex Levels

Chapter [5] presents certain analysis on the NPC, based on the toleranced models presented in the previous chapter,
and on the A-complex of this model. The overall goal is to present a multi-scale analysis of contacts between
protein types, as well as the investigation of the protein complexes involving selected protein types.

First, we present the Hasse diagram of a toleranced model, that is an interpretation of the A-complex in terms of
protein instances. We use the protein contact history contained in the Hasse diagram to define the contact curve of
two protein types, a curve containing stoichiometry dependent information on the contacts between instances of
the two types. Finally, focusing on the complexes involving specific types, we present analysis aiming at
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assessing the symmetry properties of the toleranced model. This particular task is specifically carried out on the
three sub-complexes described in Chapter (]

1.5.4 Assessing Graphical Models of Sub-Complexes

The last analysis of the previous chapter focuses on protein complexes involving specific protein types, but
regardless of the pairwise contacts within such a complex. This chapter refines these analysis for complexes
whose atomic structure is known.

To see how, let a template of a complex be the graph whose nodes are the protein instances and the edges encode
contacts between these instances. We compare such templates to the contacts observed between the toleranced
proteins, at multiple scales. In doing so, we confirm / question / suggest protein contacts of the template based on
the prominent contacts seen in the toleranced model,and hint at missing and or ill-placed proteins. Note that these
tools can naturally be used to run in-silico experiments aiming at testing hypothesis.

1.5.5 Software

All the machinery described before requires elaborate implementations, in particular the CW VD and the
A-complex, as algebraic numbers are dealt with. The machinery also requires an advanced software design, as the
interface should accommodate several implementations of the algorithms. To take a single example, a number of
algorithms to compute toleranced models may be designed.

Chapter 7] presents our implementations, from two perspectives. The first one is of the user manual type, and
presents the input, output and analysis available. The second one is of the reference manual type, and discusses
precisely the C++ classes involved, and their traits parameters.

We note in passing that all the executable developed are made available from
http://cgal.inria.fr/abs/voratom.


http://cgal.inria.fr/abs/voratom

Chapter 2

Introduction (Version Francaise)

2.1 Reconstructions de gros systemes par intégration de données

2.1.1 Machines macromoléculaires et fonctions biologiques

Les mécanismes biologiques reposant sur des complexes macromoléculaires, la compréhension de ces
mécanismes d’un point de vue structural nécessite la description de ces complexes au niveau atomique. Dans sa
forme la plus générale, cette tiche reste un probléme ouvert posant de nombreuses questions. Premierement, la
durée de vie d’un complexe peut varier largement de quelques microsecondes pour un complexe transitoire
(comme ceux impliquant les réactions d’oxydoréduction) & la durée de vie du systeme biologique le contenant
(comme pour certaines enzymes avec plusieurs sous-unités). Comment pouvons nous caractériser la stabilité de
ces complexes ? Deuxiemement, le nombre de partenaires d’une molécule peut varier dramatiquement. Quelle est
la spécificité des interactions observées ?

De nombreux difficultés font obstacle a la résolution de ces questions, en particulier en ce qui concerne la taille
des complexes étudiés, les plus gros assemblages moléculaires tel que les capsides virales ou le Complexe du
Pore Nucléaire (NPC) étant composés de plusieurs centaines de chaines polypeptidiques. De gros assemblages
ont généralement une composition pouvant varier au cours du temps, posant des problemes de plasticité (un
assemblage particulier peut contenir différentes protéines a différents moments du cycle cellulaire). Par ailleurs,
la conformation des molécules du complexe peut aussi changer au cours de la formation de I’assemblage, ou
méme pendant que 1’assemblage est en activité (nous discuterons ce dernier cas dans le cadre du NPC), posant
des problemes de flexibilité.

Toutes ces difficultés motivent les activités de recherche a la frontiere de la biophysique, de la biologie structurale
et de ’informatique. Construire des modeles atomiques animés de ces machines moléculaires permettrait
d’accroitre notre compréhension de leur fonctionnement et des fonctions biologiques. Les expériences en
laboratoire, fournissant des données a partir desquelles les modeles peuvent étre développés et testés, sont une clé
pour la modélisation. Pour des complexes de petite taille, des modeles atomiques peuvent étre obtenus a partir
d’analyses de cristallographie par rayons X ou de résonance magnétique nucléaire (RMN). Mais pour les raisons
indiquees ci-dessus, il est beaucoup plus difficile de reconstruire de gros assemblages tels que les moteurs
moléculaires (pour la mobilité des cellules), les filaments d’actine (pour la contraction musculaire), les protéines
chaperonnes (pour le repliement des protéines) ou les complexes du pore nucléaire (pour la régulation du trafic
nucléo-cytoplasmique)

2.1.2 Reconstruction des machines macromoléculaires par intégration de données

Les problemes de modélisation rencontrés dans la reconstruction de gros assemblages sont différents de ceux
inherents a I’amarrage protéique binaire, ou de ceux posés par la reconstruction de complexes de taille
intermédiaire. Pour les complexes binaires, les problemes principaux consistent actuellement a amarrer des
molécules flexibles [LW10] et a créer des fonctions de score sachant identifier les complexes biologiques [FO10].
En particulier, I’expérience CAPRI (Critical Assessment of PRotein Interaction) invite les chercheurs a prédire en
mode aveugle la structure de complexes dont la structure cristallographique a été résolue par ailleurs. Concernant

35
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les complexes de taille intermédiaire, la reconstruction peut se faire en combinant le traitement d’images
provenant de cryomicroscopie électronique (cryoEM) a des méthodes d’amarrage classique [LISW09].

Pour les gros assemblages, ces méthodes ne permettent pas de restreindre suffisamment 1’espace des solutions.
Des stratégies plus sophistiquées doivent étre employées, comme en particulier la reconstruction par intégration
de données [AFK™08]]. Inspirée de la reconstruction 2 partir de données RMN, cette stratégie consiste a combiner
des données expérimentales variées a fin de pouvoir cibler le ou les modele(s) les plus cohérents avec ces
données. Le paradigme actuel requiert trois ingrédients:

e Un modele géométrique du systeme étudié. Pour les modeles gros grains, une famille de boules
représentant les domaines des protéines est généralement utilisée.

e Des données expérimentales variées, éclairant différents aspects du systeme étudié. Ces données sont
interprétées comme des restrictions (restraints en anglais), dont leur somme définissent une fonction de
score mesurant la cohérence entre le modele et les données.

e Une stratégie d’optimisation visant a trouver les minima les plus significatifs de la fonction de score.

Ces trois ingrédients peuvent alors étre utilisés dans un processus mixant itérativement le calcul et la génération
de données. Cette stratégie a été utilisée pour la reconstruction de modeles plausibles du NPC [ADV " (07al, voir
Figure[2.1] Dans la suite, nous décrivons plus précisement ces trois ingrédients.

Début Structure finale
Génération Interprétation

des données |« des structures

ensemble de donnés SRR des

expérimentales X P
modeles générés

Expériences

Calculs

Interprétation Modélisation
des données |4 par satistaction des

en - .
- ) restrictions spatiales
restrictions spatiales

Figure 2.1: Les 4 étapes de la reconstruction par intégration de données, appliquées a la détermination de la
structure globale du Complexe du Pore Nucléaire. Traduit & partir du matériel supplémentaire de [ADV " 07al.

2.1.3 Données biochimiques et biophysiques pertinentes, et leur difficultées inhérentes

Interpréter les données expérimentales en terme de restrictions qui serviront a contraindre le modele a
reconstruire n’est pas une tache triviale. Avant de présenter ces restrictions dans le cas du NPC, nous discutons
d’abord des données expérimentales les plus pertinentes dans ce cadre.

Méthodes TAP (Tandem Affinity Purification). Les méthodes TAP permettent d’accéder a tous les types de
protéines trouvées dans tous les complexes contenant un type de protéines donné [PCR™01], que nous
appellerons P. Ces données peuvent donc étre utilisées pour contraindre la proximité spatiale entre différents
types de protéines dans un modele.

Plus précisément, la génération de données TAP est constituée des étapes suivantes. D’abord, une protéine de
fusion est créée en modifiant le gene de P: les séquences de deux marqueurs y sont intégrées, séparées par une
séquence codant pour un site de clivage d’une protéase. Apres avoir introduit le gene modifié dans une cellule
hote, la protéine modifiée (appelée protéine marqueur PrA, ou PrA-tagged protein) est exprimée et prend place
dans au sein de ses complexes usuels — en supposant que les marqueurs ne fassent pas obstacle. En lysant la
cellule, les complexes protéiques contenant les protéines de type P sont retrouvés a 1’aide de deux étapes de
purification. Chaque étape consiste a capturer ces complexes par purification sur colonne de chacun des
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marqueurs. Entre les deux étapes de purification, les complexes retenus lors de la premiere étape sont libérés par
une protéase coupant le premier marqueur au niveau du site de clivage. Ceci permet d’exposer le second
marqueur pour la seconde étape de purification. Une fois ces étapes de purification faites, les complexes sont
démantelés par électrophorese, permettant d’obtenir un gel avec une bande pour chaque type de protéine dans le
complexe. Les types présents sur le gel sont identifiés par spectrométrie de masse.

La liste des types de protéines ainsi obtenue (appelée en anglais pullout ou pulldown) appelle deux commentaires.
Premierement, il n’est pas possible de savoir si la liste des types de protéines correspond a la composition d’un ou
plusieurs complexe(s). Par exemple, une liste (P, P', P") obtenue en marquant P peut correspondre 2 un unique
complexe contenant les trois types, ou bien 2 deux complexes différents contenant chacun (P,P’) et (P,P").
Deuxiemement, la liste des types de protéines ne donne pas d’information sur la stoechiométrie des protéines au
sein d’un complexe. Malgré les ambiguités combinatoires inhérentes aux données TAP, ces données sont d’intérét
primordial pour la reconstruction de gros assemblages: savoir que des instances de protéines participent a la
formation d’un méme complexe impose des restrictions sur les distances entre elles.

Essais de superposition (Overlay assays). Contrairement aux méthodes TAP, les essais de superposition ont
pour but de détecter des contacts entre paires de protéines, permettant de contraindre sans ambiguité les contacts
entre protéines dans le modele. Une protéine P, appelée I’appat est en premier lieu purifiée et immobilisée sur un
gel de nitrocellulose. Puis une protéine de fusion P, appelée la sonde est a son tour purifiée et superposée avec P.
Apres une période d’incubation variable et une étape de lavage pour éliminer les sondes libres, les protéines
superposées sont détectées [Hal04]], fournissant un signal S, ;, spécifique du complexe binaire sonde-appat.

Cependant, un bruit de fond perturbe le signal observé pour deux raisons particulieres: premierement, durant
I’étape de purification, des particules non éliminées peuvent contaminer 1’échantillon; deuxieémement, durant
I’étape d’incubation, le nombre d’interactions non spécifiques entre appats et sondes augmente linéairement avec
le temps. Extraire un signal significatif devient alors un probleme difficile.

Ultracentrifugation analytique. L’ ultracentrifugation analytique permet de déterminer la forme globulaire (des
domaines) des protéines, ce qui est particulierement utile pour assigner a des protéines des formes ébauchées.
Une centrifugeuse est une chambre réfrigérée, sous vide, contenant un rotor, alimenté par un moteur électrique,
capable d’imprimer un grande vitesse de rotation. L’expérience consiste a faire tourner dans la centrifugeuse un
échantillon de protéines. Deux forces principales opposées agissent: la force centrifuge et les forces de friction de
I’échantillon avec le solvant. L’échantillon migre alors jusqu’a ce qu’il atteigne le fond ou le haut de son
conteneur, ou bien jusqu’a ce que les forces en jeu atteignent un équilibre. En utilisant un solvant avec un gradient
de densité (comme le sucrose), 1’échantillon de protéines migre dans une zone du solvant partageant la méme
densité. En pratique, la densité des protéines est déterminée par comparaison de la migration de I’échantillon avec
celles d’un ensemble de protéines marqueurs migrant dans la méme zone du solvant. En mesurant la densité de
I’échantillon, on détermine alors le coefficient de sédimentation S, qui est constant pour toutes les protéines
marqueurs partageant la méme densité que 1’échantillon. Ce coefficient S est directement relié & la masse
moléculaire, au volume et a la forme des protéines de I’échantillon [Eri09]]. Intuitivement, pour des protéines de
méme volume, S est petit pour des protéines de forme allongée ayant une plus grand surface sensible aux forces
de friction, alors que S est grand pour des protéines de forme globulaire.

Cryomicroscopie électronique (cryoEM). Une autre approche en plein essor est la cryomicroscopie
électronique (cryoEM) [Fra06]. Des images des structures aussi grandes que des cellules, et aussi petites que des
protéines, peuvent étre obtenues en bombardant d’électrons des échantillons préalablement cryogénises, donnant
acces dans le meilleur des cas a des images de résolution finale de I’ordre de 0.3 nanometres. Deux modalités sont
utilisées. Dans 1’analyse de particules isolées (single particle analysis), le bombardement d’échantillons isolés
permet d’obtenir des images correspondant a différents points de vue sur 1I’échantillon. Ces images peuvent étre
combinées en un modele tridimensionnel. Dans la cryo-tomographie, un échantillon donné est bombardé sous
différents angles, générant plusieurs images a partir desquelles un modele tridimensionnelle peut aussi étre
reconstruit. Dans les deux cas, le modele résultant est une carte de densité 3D ol chaque voxel est muni d’une
densité de la matiere dans 1’espace qu’il contient. En raison de la faible dose d’électrons requise pour ne pas
abimer les échantillons biologiques, cette densité est généralement tres bruitée. Choisir un niveau de densité pour
dessiner une surface (appelée 1’enveloppe) enfermant le modele est une tache non triviale: les domaines



38 CHAPTER 2. INTRODUCTION (VERSION FRANCAISE)

globulaires des protéines correspondent a des zones de haute intensité alors que les régions non structurées,
comme celles connectant les domaines globulaires, correspondent a des zones de faible intensité. Typiquement, la
résolution obtenue en cryoEM varie de moyenne (autour de 5A, permettant d’observer des éléments de structure
secondaire), a faible (moins de 10A, permettant d’observer des domaines). Dans les meilleurs cas, il est possible
de plonger dans ces cartes des éléments structurales existants, ou résultants d’une modélisation, permettant ainsi
de générer des modeles de résolution atomique.

Immunomicroscopie électronique (immunoEM). En immunoEM, le but est de localiser des protéines
spécifiques au sein d’un assemblage [SHOI1]], I’information sur leur positionnement permettant de favoriser la
localisation des protéines dans le modele. Pour y parvenir, des anticorps sont marqués avec des particules d’or
puis, ces anticorps ciblant les antigénes d’intérét. Les anticorps marqués sont ensuite examinés en microscope
électronique. Les régions des images contenant des assemblages avec les particules d’or sont alors sélectionnées
avec des cercles: le centre de chaque cercle est manuellement aligné avec 1’assemblage. Apres une étape de
sélection de qualité, des fournées d’images d’assemblages sont manuellement alignées pour générer plusieurs
montages; la position de toutes les particules d’or de chaque montage est alors mesurée.

L’impossibilité d’établir précisément les coordonnées des particules d’or est un probleme majeur de
I’immuno-localisation. De plus, pour plusieurs raisons (la rotation des anticorps autour des marqueurs, la
distorsion ou les dégéts subits par les échantillons durant la préparation), chaque montage montre un haut degré
d’éparpillement des particules d’or.

Ainsi et omission faite des essais de superposition, les données biochimiques et biophysiques ne peuvent étre
directement interprétées comme de simples restrictions spatiales. Par exemple, les listes de types de protéines
obtenues avec les méthodes TAP ne révelent directement aucune interaction binaire entre les types de protéines,
introduisant un aspect combinatoire aux restrictions spatiales correspondantes. La variété des restrictions
spatiales a inclure dans la fonction de score est aussi importante: il peut y avoir un biais dans le modele final si les
restrictions spatiales ne sont pas indépendantes (par exemple avec des restrictions spatiales sur les localisations et
distances de plusieurs protéines), ou si une propriété particuliere (comme la localisation des protéines) est
représentée par différentes restrictions spatiales. Tous ces problemes impliquent que les modeles calculés
présentent des incertitudes qu’il est trés difficile d’interpréter. M€me si un modele de haute qualité est produit par
cette méthodologie, il est impossible de faire une évaluation précise sur la forme des protéines, leurs positions
relatives et les contacts entre elles.

2.2 Le complexe du pore nucléaire: une description concise

Propriétés biologiques. Le Complexe du Pore Nucléaire (NPC) est le plus gros assemblage protéique de la
cellule eucaryote connu a ce jour. Il est impliqué dans le trafic moléculaire a travers la membrane nucléaire, voire
Figure[2.2] avec en particulier I'import des protéines ou I’export de I’ ARN [WRTO0].

Le NPC est formé d’un canal de 100nm de diametre, de filaments contenant des sites d’amarrage pour les
molécules traversant le canal, et d’un panier du c6té nucléaire. Les petites particules (<30kDa) peuvent passer a
travers le NPC par diffusion passive, alors que les particules plus grandes doivent étre reconnues par des filaments
contenant des séquences spécifiques dites les séquences FG-répétées [DPU" 03], aidant ainsi au transport actif
d’un co6té du pore a I’autre. Les protéines participant a ce processus actif sont appelées les karyophérines.
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Figure 2.2: Structure grossiere du Complexe du Pore Nucléaire (a) Les NPC sont localisés sur la membrane
nucléaire. (b) Coupe d’une portion de membrane nucléaire: (1) La membrane nucléaire (2) L’anneau extérieur
(3) Les rayons (4) Le panier (5) Les filaments. Traduit a partir de Wikipedia, http://en.wikipedia.org/
wiki/Nuclear_pore.

Propriétés structurales. Les données expérimentales ont permis de montrer que le NPC est organisé en
anneaux avec une symétrie d’ordre huit perpendiculairement au plan de la membrane nucléaire [ADV"07b]. 1l est
en fait composé de 8 blocs identiques appelés les rayons, voire Figure[2.3] Chaque rayon se décompose en deux
demi rayons, du c6té cytoplasmique et du coté nucléaire.

Pour décrire les modeles existants du NPC, nous parlerons de types de protéines et d’instances de protéines, c’est
a dire de copies d’un type donné. Dans un travail récent [ADV07b], le NPC a ét€ modélisé avec 30 types
différents, 29 instances de 27 types pour les demi rayons cytoplasmiques, et 28 instances de 25 types pour les
demi rayons nucléaires. Les modeles du NPC comportent donc un total de 8 x (29 4 28) = 456 instances de
protéines.

D’un point de vue global, le NPC peut étre segmenté en quatre cylindres fonctionnels concentriques [HSBHO7]]:
(1) le cylindre du canal qui contient les types avec des régions non structurées (les filaments impliqués dans la
régulation du transport actif); (ii) le cylindre des adaptateurs, contenant les types intermédiaires entre les types de
protéines du canal et ceux participant a I’architecture du NPC; (iii) le cylindre du manteau, contenant les types
définissant I’architecture du NPC; (iv) le cylindre de la membrane du pore, contenant les types ancrant le NPC
dans la membrane nucléaire.


http://en.wikipedia.org/wiki/Nuclear_pore
http://en.wikipedia.org/wiki/Nuclear_pore
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Cytoplasme

~Cylindre de la membrane du pore
Cylindre du manteau

Cylindre des adaptateurs
-Cylindre du canal

~Canal

Demi rayon cytoplasmique
(29 instances de protéines)

+

- Demi rayon nucléaire
(28 instances de protéines)

Rayon

(57 instances de protéines)

Figure 2.3: Représentation schématique de la structure du Complexe du Pore Nucléaire. Le NPC est composé
de 8 rayons symétriques, chacun d’eux étant divisé en deux demi-rayons symétriques. Chaque rayon contient 57
protéines de 30 types différents localisés dans les cylindres du canal (jaune), des adaptateurs (orange), du manteau
(vert foncé) ou de la membrane du pore (bleu). Adapté depuis [HSBHO7|.

2.3 Modélisation du complexe du pore nucléaire de la levure

Dans [ADV07a,/ADV07b]], Alber et al ont proposé un premier modele gros grain du NPC de la levure basé sur
I’intégration de données. Leur procédure de reconstruction leur a permis de sélectionner N = 1000 modeles
plausibles. Nous allons maintenant brievement récapituler les trois étapes de la procédure de reconstruction
mentionnée dans la Section[2.1.2] puis discuter brievement leur exploitation de ces N modeles.

2.3.1 Une hiérarchie de modeles gros grains

Une hiérarchie de modeles. Dans le modele de [ADV'07a], le NPC est représenté a I’aide d’une hiérarchie a 4
niveaux, voire Figure 2.4}

e (i) le niveau de I’assemblage, un modele donné étant noté A;,i = {1,...,N}, o N est le nombre total de
modeles;
e (ii) le niveau du demi rayon USG, ous=1,...,8 est I'indice du rayon, et I'indice 6 € {1,2} réfere

respectivement au coté cytoplasmique ou nucléaire.

e (iii) le niveau de I’instance d’une protéine, une instance donnée étant notée p;, j = {1,...,456}.

e (iv) le niveau de la bille / particule, une bille B étant paramétrée par son centre et son rayon.
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98nm

30nm 38nm 30nm

Le canal

<« L’assemblage A;

Les deux demi rayons U?
d’un rayon

Une instance de protéine p;,

i.e. une chaine de billes By,

Figure 2.4: La représentation hiérarchique du Complexe du Pore Nucléaire: (i) I’assemblage A; dans son ensemble
(ii) le demi rayon US6 (iii) I'instance de prot€ine p; (iv) la bille By.

Avant la procédure d’optimisation, toutes les instances d’un type de protéine ont la méme géométrie, consistant
en une famille de billes de taille fixée. (La taille des billes dépend du type de protéine.) Le but de I’optimisation
est de modifier les géométries initiales de maniere a ce qu’elles deviennent cohérentes avec les données
expérimentales.

Pour considérer toutes les interactions entre les instances de protéines dénuées de séquence FG-répétée a travers
les différents rayons, les auteurs consideérent que chaque demi rayon a quatre demi rayons voisins, obtenus par la
rotation de 27r/8 des demi rayons cytoplasmiques. (Pour les protéines avec des séquences FG-répétées, les
auteurs supposent que les filaments peuvent interagir avec des instance de protéines qui ne sont pas dans des demi
rayons voisins.)

Finalement, la membrane nucléaire sert de moule pour I’assemblage qui s’y trouve ancré. La membrane nucléaire
est représentée par des spheres de diametre fixé correspondant a son épaisseur moyenne (4.5nm).

La représentation des instances de protéines. Dans le but de rendre compte de la diversité morphologique et
biologique des différentes régions d’une protéine, les auteurs introduisent neuf niveaux de représentation
numérotés de k = 1 a9 — voire Figure[2.5] Le niveau k = 1 est la représentation racine, correspondant a la
représentation la plus fine de la protéine. Toutes les autres représentations sont dérivées du premier niveau et
permettent de considérer indépendemment les caractéristiques suivantes d’une protéine:

e niveau de représentation k = 2 et k = 3: domaines globulaires,

e niveau de représentation k = 4: régions non structurées,

e niveau de représentation k = 5: régions non transmembranaires,

e niveau de représentation k = 6: régions transmembranaires des protéines de la membrane du pore,

e niveau de représentation k = 7: régions non transmembranaires des protéines de la membrane du pore
situées du c6té périnucleaire,

e niveau de représentation k = 8: régions non transmembranaires des protéines de la membrane du pore
situées du coté du pore,

e niveau de représentation k = 9: région C-terminal de Pom152, une protéine de la membrane du pore ayant
des interactions homotypiques a travers sa région C-terminal dans le plan médian du NPC.
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La représentation racine consiste en une chaine orientée linéaire et flexible de billes identiques. Les billes sont
choisies de maniere a rentrer dans une ellipsoide calculée & partir du coefficient de sédimentation de la protéine: la
premiere bille représente la région C-terminal de la protéine alors que la derniere représente sa région N-terminal.
Les coordonnées cartésiennes d’une bille dans les niveaux de représentations k =2 & k = 9 ont les mémes
coordonnées qu’une des billes de la représentation racine, avec toutefois deux exceptions. Pour k =3 et k = 6,
une seule bille est utilisée, ses coordonnées étant calculées a partir d’une moyenne pondérée des coordonnées des
billes aux niveaux de représentation respectifs k =2 et k = 1.

——FREDERIC SAYS: PARAGRAPH CI-DESSUS: A REVISER«

k=1
Représentation racine
(la plus fine)

/ \
k=2 k=4 k=5 k=9 .
Domaines globulaires Régions Régions ) Interactions homotypiques
de la protéine non st,ructul:fzcs mnon transmem};rannau‘es entre deux copies de
de la protéine de la protéine Pom152
' | \
k=3
Domaines globulaires Une protéine membranaire particuliere
de la protéine
(une bille)

couvre toutes les protéinesx

k=7 k=6 k=8
Régions Régions Régions )
non transmembrannaires| | ransmembrannaires | 07 transmembrannaires
de la protéine de la protéine de la protéine
(coté périnucléaire) (une bille) (coté du pore)

protéines membranaires uniquement

Figure 2.5: Les 9 niveaux de représentation des protéines dans le modele de Alber et al. La fleche de k =2 a
k = 3 correspond a une vulgarisation de la représentation de la protéine. Toutes les autres fleches peuvent étre vues
comme des sélecteurs discriminant une région ou une caractéristique particuliere de la protéine. On notera aussi
que pour les niveaux de représentation k = 3 et k = 6, il n’y a forcément qu’une seule bille.

2.3.2 Les données et les restrictions associées concourant a la fonction de score

La fonction de score est interprétée comme une somme de restrictions spatiales, une restriction étant une fonction
a valeur entiere définie pour certains niveaux de représentations k, concourant a mesurer la cohérence du modele
avec les données expérimentales. La fonction associée a une restriction renvoie 0 si le modele est cohérent avec
les données, et une certaine valeur positive sinon. Il existe trois différents types de restrictions spatiales:

e les restrictions de localisation, contraignant la position des billes;
e les restrictions de distance, contraignant les distances entre deux billes;
e les restrictions de symétrie, contraignant deux ensembles de billes a avoir les mémes propriétés;

Nous allons maintenant discuter ces restrictions comme une fonction des données disponibles.

La méthode TAP

Génération des données. Pour un type de protéine marqué, les auteurs obtiennent plusieurs listes de protéines,
chacune qualifiee d’un facteur de qualité variant de 1 (haute qualité) a 3 (basse qualité). Les auteurs ont ainsi
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obtenu 75 listes contenant de 2 a 20 types de protéines, classées selon leur qualité: 34 de haute qualité, 21 de
qualité intermédiaire et 20 de basse qualité.
—FREDERIC SAYS: RESTRICTION DEVIENT CONTRAINTE ?«+—

Restrictions. Les restrictions relatives aux données TAP sont utilisées pour les niveaux de représentation 2,4 et
9. Rappelons qu’a cause de sa nature combinatoire, une liste de types de protéines ne peut étre directement
interprétée comme une restriction spatiale. Pour chaque demi rayon U?, une stratégie en deux temps est appliquée
pour sélectionner les paires d’instances pour lesquelles un contact peut étre contraint. Premierement, les auteurs
définissent un graphe complet pondéré dont les noeuds sont les types de protéines de la liste. Le poids d’une aréte
du graphe entre deux types P et P’ est défini comme suit. Un score est calculé pour chaque paire d’instance de
protéines p; et p;- de types P et P/, de sorte qu’au moins 1’une des deux instances soit dans U? , et I’autre dans le
méme demi rayon ou dans le voisinage. (Comme déja mentionné, la sélection des instances de protéines pour les
protéines avec des séquences FG-répétées n’est pas restreinte au voisinage.) Ce score est la distance minimale
entre les centres des billes de p; et p’j. Alors, la paire d’instances de protéines minimisant le score est retenue et le
poids de I"aréte (P, P’) devient ce score. Deuxiémement, un arbre couvrant minimal est calculé sur le graphe
complet. Les arétes sélectionnées définissent une connexion minimale des types de protéines. La somme des
poids des arétes sélectionnées forme le score de la restriction spatiale de la liste de types de protéines.

Les essais de superposition

Génération des données. Les auteurs ont générés 30 essais de superpositions correspondant aux sondes, i.c les
30 types de protéines incluses dans le modele du NPC: ils ont obtenu ainsi une matrice de signaux S, ,
correspondant a toutes les paires possibles des k sondes / n appéts. Pour réduire le rapport bruit /signal, les auteurs
ont d’abord normalisé le signal S, , de chaque appét (b) avec une sonde donnée (p) au signal général de fond de
tous les appats avec p. Une correction similaire a été appliquée pour le signal général de fond de chaque appat
avec toutes les sondes pour générer un signal normaliséﬂpour chaque appat i avec chaque sonde j, Y; ; :

Sij
i i'=k
(Z;::rf Si’.j + Zj":l Si,j’ - SZJ)

Y j= 2.1

Seule une interaction sonde / appat ayant un signal 10 fois supérieur a leur moyenne sont considérées comme
significatives. En suivant le protocole, seulement 7 interactions binaires (faisant intervenir 5 types de protéine)
sont qualifiées de significatives.

Restrictions. Les restrictions relatives aux essais de superposition sont utilisées pour les niveaux de
représentation 2,4 et 9. Les interactions binaires observées avec les essais de superposition sont contraintes en
utilisant la mé&me stratégie que pour les données TAP. Cependant, 1’arbre couvrant minimal d’un graphe connexe
a deux sommets étant lui méme, 1’aspect combinatoire disparait.

L’ultracentrifugation analytique
—FREDERIC SAYS: (a/b) NE VEUT RIEN DIRE: PARTIE ENTIERE SUPERIEURE OU INFERIEURE?+—

—FREDERIC SAYS: CI-DESSOUS: DERIVENT DEVIENT DEDUISENT? DE PLUS: INVERSION DE QUOI?+—

!En fait, la formule fournie dans [ADV " 07al Supplément, page 11] est:
Sij
i "=k .
LTy Se
Toutefois, le signal est divisé par la somme de tous les signaux, ce qui est constant pour tous les signaux. Nous pensons que cette formule ne
normalise pas les signaux.

Yij=
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Génération des données. Les auteurs utilisent ’ultracentrifugation analytique pour déterminer les billes a la
représentation racine d’une protéine. Chaque protéine est représentée par une ellipsoide de révolution (i.e une
ellipsoide obtenue par rotation d’une ellipse autour de son axe majeur). Le nombre de billes par protéine est
I’entier le plus proche du rapport axial (a/b) de I’ellipsoide, et le rayon des billes est choisi de maniére a
reproduire au mieux le volume de la protéine, lequel est estimé a partir de sa séquence d’acides aminés. Pour
calculer le rapport axial, les auteurs calculent la fonction de Perrin P (une fonction de forme moléculaire) du
coefficient de sédimentation S du type de la protéine. En utilisant la formule d’inversion d’un ellipsoide de
révolution avec un développement d’ordre n (n est généralement égal a 6) [HC935]], on peut obtenir la formule
suivante: .
=n .

(a/b) =ao+ Y aiP' (2.2)

i=1

ol a et (a;)i<n sont des parametres donnés [HC95| Table 3 et 4].

Les auteurs utilisent aussi 1'ultracentrifugation analytique pour estimer la longueur D de I’axe le plus long de
I’ellipsoide contenant le complexe Y, un complexe protéique bien connu composé de 7 types de protéine — voir les
détails dans la Section £.2.11

Restrictions. Trois restrictions spatiales dépendent uniquement de 1’ultracentrifugation analytique: la premiere
contraint n’importe quelle paire de billes a avoir une intersection vide; la deuxieme contraint deux billes
consécutives dans une instance de protéine a étre tangentes; la derniere contraint les billes des instances de
protéine du complexe Y dans un demi rayon du NPC a étre contenues dans une sphere de diametre D.

La cryomicroscopie électronique

Génération des données. La carte obtenue a partir de 1’analyse de particules isolées a été utilisée dans
I’établissement de plusieurs caractéristiques globales importantes: les symétries d’ordre huit (huit rayons) et
d’ordre deux (deux demi rayons par rayon), I’ancrage du NPC dans la membrane nucléaire et le diametre du
canal. La carte de densité a aussi été utilisée comme référence pour la génération des cartes
d’immunomicroscopie électronique.

Restrictions. Les données cryoEM sont utilisées pour deux types de restrictions spatiales. Premi¢rement, une
restriction de distance pour le niveau de représentation 5 contraint les billes des instances de protéine et les billes
de la membrane nucléaire a s’exclure mutuellement. Deuxieémement, a cause des symétries d’ordre huit et deux,
deux restrictions de symétrie pour le niveau de représentation 2 contraignent deux instances de protéine (p;,p;)
d’un type P présentes dans deux différents demi rayons a partager la méme configuration de billes: (i) d’abord en
contraignant deux paires de billes de p; et p; a avoir une distance identique, (ii) ensuite en contraignant deux
ensembles de quatre billes de différentes instances de protéine dans deux demi rayons différents a partager le
méme angle diédral.

L’immunomicroscopie électronique

Génération des données. Exceptées deux protéines (Nupl et Nup60), les auteurs ont collecté 300 positions de
particules pour chaque type de protéine, en alignant les cercles dessinés sur les images de microscopie
électronique avec I’intersection entre 1’axe Z central et le plan équatorial du NPC. Pour prendre en compte
I’éparpillement inhérent, les auteurs ont créé un scénario dans lequel la position des protéines était connue — la
distribution du modele. Plus précisément, une membrane plastique a été recouverte de protéines marquées, puis
observée de maniere a ajuster une distribution de Gausse recouvrant la distribution du modele. Cette distribution
de Gausse a ensuite été glissée le long des axes Z et R de maniére a maximiser le chevauchement avec la
distribution expérimentale des particules d’or observées. Le chevauchement est défini comme suit:

1 &
Chevauchement = 1 — > Z |E; — Ci] (2.3)

i=1

ol E et C sont respectivement les distributions expérimentales et calculées normalisées, et IV, est le nombre de
boites de dimension 2.5nm couvrant les distributions de 0 a une valeur positive suffisamment grande.
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Finalement, les auteurs corrigent les erreurs de localisation dues a des génes stériques entre la membrane
nucléaire et le NPC. Ces portions de structure sont plongées dans la structure du NPC obtenue par la carte de
densité de référence de cryoEM. Au final, la totalité des cartes de immunomicroscopie électronique est alignée de
maniere a maximiser le chevauchement avec la carte de référence.

Restrictions. Les restrictions relatives a I’immmunomicroscopie électronique sont utilisées pour le niveau de
représentations 1. Deux restrictions de localisation sont définies pour favoriser les coordonnées des axes Z et R de
toutes les billes des instances de protéine (exceptées Nupl et Nup60) a étre dans un intervalle donné.

2.3.3 Les méthodes d’optimisation

Comme dit dans la Section[2.3.1] une protéine est représentée par une collection de billes. Dans la suite, nous
appelons configuration du NPC la position et la taille de toutes les billes a la représentation racine. On notera que
si les rayons de toutes les billes peuvent étre estimés de manicre a atteindre les volumes estimés des protéines a
partir de leur séquence d’acides aminés, alors la dimension de I’espace des configurations est exactement trois
fois le nombre de billes.

Stratégie générale. La stratégie d’optimisation se fait en deux étapes, comme illustrer sur la Figure La
premiere étape dite gros grain permet de sélectionner 200 000 configurations. Puis la seconde dite fin grain,
démarrant avec les 20 000 configurations ayant le meilleur score parmi les 200 000 précédentes, raffine cette sous
sélection. Finalement, les 1000 configurations avec le meilleur score sont retenues. L’ optimisation d’une
configuration A; du NPC est réalisée en minimisant une fonction de score f(A;) consistant en une combinaison
linéaire d’un sous ensemble des restrictions spatiales. Toutes les restrictions ne sont pas ajoutées en une seule fois
a la fonction de score, mais sont a la place graduellement ajoutées au cours de I’optimisation [BG835)]. La
minimisation de f(A;) est réalisée par une conjugaison de descente de gradients et de dynamique moléculaire
couplées avec du recuit simulé. Pour chaque configuration A;, dix de ces conjugaisons sont réalisées durant
I’étape gros grain, et au plus huit durant I’étape fin grain.

Départ avec les 20 000

Début, — ¢ 5 .
| meilleures configurations

Génération de configurations Choix d’une configuration grossiere
aléatoires |

'

Ajout graduel des restrictions Ajout graduel des restrictions

|

20,000 cycle

Recuit simulé: grossier Recuit simulé: fin

' v
¥ v

Stockage du modele avec | Stockage du modele avec
le meilleur score a chaque round le meilleur score & chaque round

¥
¥ '

200 000 configurations grossicres e les 1000 meilleures configurations

Fin |

< 8 rounds

|

Figure 2.6: Les deux principales étapes du protocole d’optimisation: 1’optimisation gros grain (a gauche), et
I’optimisation fin grain (2 droite). Traduit de la Figure 11 [ADV 074, Supplément].
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2.3.4 Les résultats et leur évaluation

Les N = 1000 structures ne sont pas accessibles, mais deux produits dérivés le sont: les fréquences de contact, et
les cartes de densité de probabilité. Ces résultats sont disponibles sur http://salilab.org/npc/l Nous
allons maintenant discuter brievement ces résultats.

Signifiance des fréquences de contact. Les fréquences de contact d’une paire de types de protéine (P, P’) est la
fraction de modeles optimisés, parmi les N = 1000, ayant au moins un contact entre une instance p de P et une
instance p’ de P'. Il y a un contact entre deux instances si il y a au moins une paire de billes, une de p et une de p’,
tel que la distance entre leur centre satisfasse une contrainte de distance. Notons que si deux instances
particulieres de protéines de types P et P’ sont en contact dans tout les modeles, mais que toutes les autres paires
possibles d’instances de ces deux types ne sont pas en contact, la fréquence de contact est €gal a 1. Ceci montre
que les fréquences de contact ne prennent pas en compte la stoechiométrie des contacts.

Incertitudes dans les cartes de densité de probabilité. Pour exploiter globalement les N = 1000 modeles
sélectionnés, les auteurs ont calculé une carte de densité de probabilité par type de protéine. Plus précisément,
considérons un type de protéine particulier. Apres avoir collecté toutes les billes des instances de protéine de ce
type dans les N modeles, les auteurs mélangent ces billes a fin de produire une carte de densité de probabilité
représentant la position moyenne de toutes ces instances.

Comme représenter dans la Figure[2.7] choisir un niveau de densité dans ces cartes permet d’avoir une
représentation des protéines. Ces cartes de densité offre un résultat qualitatif sur les formes et les positions des
protéines au sein du NPC. Cependant, due a I’incertitude inhérente aux données biochimiques et biophysiques, et
au biais introduit par la méthodologie, il est tres difficile de faire une analyse quantitative de ces cartes. Pour
exemple extréme, I’anneau autour du NPC dans la Figure correspond a la carte de densité de 16 instances de
Pom152.

Les citations suivantes témoignent de la nature qualitative des analyses menées par [ADV'07al[ADVT07b]:

< Our map is sufficient to determine the relative positions of proteins in the NPC; we do not interpret features
smaller than this precision. >

(Nos cartes sont suffisantes pour déterminer les positions relatives des protéines du NPC; nous n’interprétons pas
les caractéristiques plus petites que cette précision 1a)

<& Because of the limited precision of the information used here, the localization volume of a protein should not
be mistaken for its density map, such as that derived by cryo-EM. >

(A cause de la précision limitée de 1I’information utilisée ici, le volume de localisation d’une protéine ne doit pas
étre confondu avec sa carte de densité, comme celle provenant de cryoEM)

<& The localization volumes [...] allow a visual interpretation of the relative proximities of the proteins. >>

(Le volume de localisation [...] permet une interprétation visuelle de la proximité relative des protéines)

Figure 2.7: Une surface de niveau correspondant a un seuil de 0.5 dans une carte de densité de probabilité 3D
résultante d’une reconstruction du NPC. Le logiciel CHIMERA a été utilisé pour 1’affichage.


http://salilab.org/npc/

2.4. LES DIAGRAMMES DE VORONOI ET LES a-COMPLEXES 47

2.4 Les diagrammes de Voronoi et les ot-complexes

2.4.1 Traitement des incertitudes avec les diagrammes de Voronoi affines et leur
a-complexe

Diagrammes de Voronoi, partitions de ’espace, et modeles parametres. Comme nous I’avons vu en
présentant les reconstructions du NPC, les incertitudes sur les entrées de la procédure sont directement traduites
sur les sorties. En particulier, étant donnée une carte de densité de probabilité, placer les instances des protéines
est un probléme mal posé, puisqu’en général, il n’y a pas d’unique solution. D’un autre coté, dans un certain
nombre de cas, il est possible de délimiter une zone dans laquelle les phénomenes intéressants peuvent étre
confinés. Cette zone peut étre alors utilisée comme support d’un modele paramétré balayant la région d’intérét.
Naturellement, confiner le modele dans une région peut revenir a chercher les caractéristiques de ce modele. Cet
argument est particulierement vrai pour les cartes de densité de probabilité si les incertitudes dans ces cartes sont
identiques aux incertitudes dans les modeles paramétrés.

Ce dernier paradigme semble attractif, mais le probleéme clé est de définir des formes paramétrées. A cette fin, un
choix de design consiste a considérer une paramétrisation revenant a des formes embofitées. Le cas classique en
géométrie algorithmique est I’ o-forme pondérée associée a un diagramme de puissance, une construction
remarquable proposée par E. Edelsbrunner [Ede92]]. Pour un soucis de clarté, nous allons présenter le cas plus
simple des a-formes associées aux diagrammes de Voronoi Euclidiens.

Diagrammes de Voronoi Euclidiens d’un ensemble de points. Formellement, étant donné un ensemble .% de
n points dans I’espace Euclidien E, le diagramme de Voronoi Euclidien de .# est la partition de 1’espace en
cellules de Voronoi telle que chaque cellule de Voronoi contienne tous les points de 1’espace plus proche d’un
point x; € .’ que n’importe quel autre point x;.; € . par rapport a la distance Euclidienne:

Vor(x;) ={xeEtelque || x—x; [|<|| x—x; [|,Vx; #x;}. 2.4)

En 2D, tous les points a égale distance de deux autres points x; € . et x; € . sont localisés sur une droite
appelée le bissecteur. L'intersection des cellules de Voronoi de x; et x; est une portion connexe du bissecteur
appelée aréte de Voronoi. Deux arétes de Voronoi (ou génériquement trois cellules de Voronoi) s’intersectent en
un point appelée le sommet de Voronot. Soit v un sommet de Voronoi. Puisque v est a égale distance de trois
points (x;,x;,x;) € .7, il est le centre d’un cercle B circonscrite au triangle (x;,x;,x;). De plus, puisque v est plus
proche de x;,x;,x; que n’importe quel autre point de .#, le cercle B ne contient aucun autre point de .’ dans son
intérieur. Cette propriété est appelée la propriété de la boule vide ou encore la propriété sans conflit et peut étre
étendue aux points d’une aréte de Voronoi ou d’une cellule de Voronoi.

Structure duale d’un diagramme de Voronoi Euclidien. Le diagramme de Voronoi a une structure duale
appelée la triangulation de Delaunay, laquelle est obtenue en collectant les sommets, arétes et triangles comme
suit:

— une cellule de Voronofi associée a un point x; correspond a un sommet de Delaunay;

— une aréte de Voronoi e; ; associée a deux points x; et x; correspond a une aréte de Delaunay (x;,x;), obtenue en
joignant x; et x;;

— un sommet de Voronoi v; j x associé a trois points x;,x; et x; correspond a un triangle de Delaunay (x;,x;,x¢),
lequel peut étre vu comme 1’enveloppe convexe des trois points.

N

Génériquement, si il n’y a pas quatre points cocirculaires en 2D, cette structure duale est une triangulation. A
cause de la propriété de la boule vide, les cercles circonscrits aux triangles de Delaunay n’ont aucun point de .
dans leur intérieur. De la méme maniere, pour chaque point contenu dans I’intérieur d’une aréte de Voronoi, il
existe un cercle sans conflit passant par les sommets de I’aréte de Delaunay duale. Nous notons aussi que le cercle
circonscrit B; ; d’une aréte duale (x;,x;), i.e le cercle dont le diametre est (x;,x;), est sans conflit si et seulement si
son centre est localisé sur e; ;. Une aréte duale ayant cette propri€té est dite de Gabriel.

La triangulation est en fait un complexe simplicial, c’est a dire une famille de simplexes tel que pour deux
simplexes qui s’intersectent, ils s’intersectent sur une face commune. Avec cette terminologie, la triangulation de
Delaunay consiste en une famille de k-simplexes, ol k est la dimension du simplexe: un sommet de Delaunay est
un O-simplexe; un aréte de Delaunay est un 1-simplexe; un triangle de Delaunay est un 2-simplexe. Le dual d’un



48 CHAPTER 2. INTRODUCTION (VERSION FRANCAISE)

k-simplexe est une cellule de Voronoi (k = 0), une aréte de Voronoi (k = 1) ou un sommet de Voronoi (k = 2):
nous appelons 2 — k-face le dual d’un k-simplexe.

Diagramme de remplissage de I’espace, I’¢-complexe et I’a-forme. Le diagramme de Voronoi admet la
construction intuitive suivante: faisons grandir des spheres centrées sur les points de ., a la méme vitesseE] Va:
les spheres s’intersectent sur leur bissecteur commun. Le domaine couvert par les boules bordées par ces spheres
grandissantes est appelé le diagramme de remplissage de I’espace. Nous appelons la restriction d’une boule son
intersection avec sa région de Voronoi. La construction précédente revient a suivre les intersections entre
restrictions. Notons que cette stratégie est plus restrictive que de suivre simplement 1’intersection entre les
spheres, comme I’illustre la croissance de trois spheres formant un triangle obtus, voire Figure 2.8]

De la méme maniere pour la construction de la triangulation de Delaunay, il est possible de trouver les simplexes
correspondant a I’intersection des restrictions. L’ensemble de ces simplexes forment un autre complexe simplicial
appelé I’ a-complexe, dont le domaine (I’union du domaine géométrique des sommets, arétes et triangles) définit
I’ ¢-forme.

S /@) Sifz,Va)

Sa(w2, /)

Figure 2.8: Un exemple 2D de I’ @-complexe de trois points xg,x; et x2, pour ¢ > 0. Le diagramme de Voronoi est
dessiné en pointillés, et la triangulation de Delaunay en lignes solides. Les points rouges et les lignes rouges corre-
spondent aux simplexes dans I a-complexe. Les restrictions des spheres So(xo, v/ ), S1 (x1,/¢) et S2(x2, /) sont
montrées en lignes noires solides. S1 et S; sont dessinées en traits interrompus. Notons que Sy et Sy s’intersectent
au point i a I’intérieur de la boule bordée par S,: le simplexe dual correspondant n’est pas de Gabriel.

Notons que faire croitre les spheres est un processus monotone: quand les rayons grandissent, les restrictions
s’emboitent, et il en va de méme pour les a-complexes. En fait, le 0-complexe correspond a I’ensemble des points
de .7, et pour une valeur suffisamment grande, 1’ -complexe correspond a la triangulation de Delaunay entiére.
Notons aussi que le processus de croissance monotone précédent correspond a I’emboitement discuté dans la
Section[2.4.1] En fait, la contribution méthodologique de cette these repose sur une généralisation de

I’ a-complexe. Pour positionner cette contribution, nous allons maintenant brievement présenter trois diagrammes
de Voronoi classiques.

2le choix de la vitesse v/a plutdt que o sera éclairci lorsque nous discuterons des diagrammes de puissance.
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2.4.2 Les diagrammes de Voronoi généralisés

Un diagramme de Voronoi étant une partition de I’espace ambiant induit par une distance (généralisée) entre
objets, de nombreux diagrammes de cette espece peuvent étre définis. Trois d’entre eux sont particulierement
intéressants, et leurs spécifications sont récapitulées dans la Table[2.1] Dans tous les cas, la distance généralisée
est de la forme:

ai || x—c; || —b;, (2.5)

ou les parametres ag; et b; sont respectivement appelés les parametres multiplicatif et additif , et k € N* est la
puissance de la distance. Nous référons le lecteur a [BWYQ6] pour une description plus précise de ces
diagrammes.

Nom Distance généralisée Bissecteur Diagramme en 2D

Diagramme de puissance
de
spheres:
S,‘(C,‘,W,' = rl2)

d(Si(ci,w,-)7x)
= Hyperplans radicaux
| ei=x [I> —wi

Diagramme d’ Apollonius

de d(Si(ci,ri),x)

. = Hyperboloides ou droites
spheres: | ei—x || —r
Si(ci,ri) ' '

Diagramme de Mobius
de
points additif-multiplicatifs:
Wi(ci,ai, bi)

d(Wi(ci,ai, bi),x)
= Hypersphere (possiblement dégénérées) ~—
ai|| ci—x || =bi

Table 2.1: Les diagrammes de Voronoi classiques.

Le diagramme de puissance. Ce diagramme est défini pour les spheres et généralise la distance a la puissance
entre spheres. Dans la suite, la dimension de 1I’espace ambiant est notée d, et les objets considérés sont des
spheres. Ce diagramme généralise le cas Euclidien, puisque tous les diagrammes de Voronof affines sont des
diagrammes de puissance. Le bissecteur de deux spheres est appelé I’hyperplan radical. Tout point situé sur une
d — k-face de Voronoi est le centre d’une sphére qui est orthogonale a k+ 1 spheres de .# et sur-orthogonale a
toutes les autres. ﬂ Deux situations intéressantes non rencontrées dans le cas Euclidien peuvent apparaitre: une
cellule de Voronoi d’une spheére S; € . (i) peut ne pas contenir le centre de S; (le duale de la cellule de Voronoi
n’est pas de Gabriel) ou (ii) peut étre vide (S; est cachée).

3Deux spheres Si(c;,r;) et Sj(c;j, ;) sont orthogonales si et seulement si || ¢; —c; |[>=r? + r%.
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Le diagramme d’Apollonius. 1l s’agit d’une autre généralisation du cas Euclidien aux spheres, en utilisant
cette fois ci une distance additive. (La distance additive réfere a la distance d’un point a une sphere, plutot qu’a
son centre. Il s’en suit que le rayon agit comme un parametre additif.) Les points sur le bissecteur de k spheres
dans . sont les centres de spheres tangentes a ces k spheres. En 2D, le bissecteur peut étre une branche d’une
hyperbole ou bien une ligne droite. Une cellule de Voronoi d’une sphere S; € .7 (i) contient toujours le centre de
S; (son dual est toujours de Gabriel) et (ii) est vide si et seulement si il existe une autre sphere S; € . contenant
Si. Notons que deux spheres (S;,S;) € . peuvent avoir plusieurs arétes de Voronoi en commun, et que trois
spheres (S;,S;,Sk) € - peuvent avoir au plus deux sommets de Voronoi en commun.

Le diagramme de Mobius. Il s’agit d’'une généralisation du diagramme de puissance aux points
additif-multiplicatifs, et a la puissance additive-multiplicative. Pour deux points additif-multiplicatifs, le
bissecteur est une hypersphere ou une ligne droite. Une cellule de Voronoi d’un point additif-multiplicatif W; € .7
(i) n’a pas nécessairement de simplexe dual de Gabriel et (ii) peut étre vide. Notons que un point
additif-multiplicatif (W;) € . peut avoir plusieurs cellules de Voronoi, que deux points (W;,W;) € . peuvent
avoir plusieurs arétes de Voronoi en commun et que trois points (W;, W;, Wy) € . peuvent avoir au plus deux
sommets de Voronoi en commun.

2.5 Apercu de la these

D’un point de vue pratique, cette these a pour but de corriger les limitations des modeles mentionnés dans la
Section[2.3.4] D’un point de vue méthodologique, ce but est motivé par le développement d’algorithmes et de
concepts relatifs aux diagrammes de Voronoi courbes. Nous allons maintenant introduire ces contributions.

2.5.1 Les diagrammes de Voronoi additif-multiplicatif et les A-complexes

Dans le but de modéliser des assemblages macromoléculaires avec de 1’ incertitude, nous introduisons les
modeles tolérancés pour accommoder les incertitudes sur le positionnement et la conformation des instances de
protéine au sein de ces assemblages. Un modele tolérancé est une famille de boules tolérancées, chacune de ces
boules consistant en deux boules concentriques appelées les boules intérieure et extérieure, encodant
respectivement les régions de haute et faible confiance. L’interpolation linéaire des rayons des boules tolérancées
définit un processus de croissance équivalent au diagramme de Voronoi additif-multiplicatif (CW).

Dans le Chapitre 3] nous introduisons en premier lieu les modeles tolérancés. Puis nous généralisons la propriété
de la boule vide, et examinons les propriétés des bissecteurs du CW, du diagramme lui-méme, et de sa structure
duale. Puis nous procédons a une généralisation de I’ ¢-complexe que nous appelons le A-complexe. Finalement,
nous présentons un algorithme naif sensible a la complexité de la sortie pour calculer une représentation abstraite
du dual du CW et de son A-complexe.

2.5.2 Le complexe du pore nucléaire: matériel et méthodes

Le complexe du pore nucléaire est le plus grand assemblage macromoléculaire connu dans la cellule eucaryote, et
comprendre sa structure et sa fonction est un probleme clé de la biologie cellulaire et structurale. En particulier,
analyser la position et les partenaires de chaque instance de protéine est nécessaire pour la détermination de la
structure de I’assemblage. Le modele du NPC de Alber et al présenté en Section [2.3|est une premiere étape, mais
les résultats de nature qualitative font de I’interprétation du modele une tache tres difficile.

Le Chapitre [d]introduit les caractéristiques clés du NPC. Nous introduisons d’abord trois importants
sous-complexes du NPC (le complexe Y, le complexe T et le complexe Nup82), jouant des roles clés d’un point
de vue structural et fonctionnel. Nous présentons ensuite une bréve évaluation des cartes de densité de probabilité
de [ADV07a]. Enfin, nous présentons des algorithmes pour construire le modele tolérancé du NPC basé sur ces
cartes de densité de probabilité.
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2.5.3 Evaluation des contacts binaires aux niveaux de I’assemblage et des
sous-complexes

Le Chapitre 5] présente un certain nombre d’analyses sur le NPC, basées sur le modgle tolérancé présenté dans le
chapitre précédent, et sur le A-complexe de ce modele. Le but général est de présenter une analyse multi-échelle
des contacts entre types de protéine, mais aussi de faire une investigation sur des complexes protéiques du NPC
faisant intervenir certains types de protéine.

D’abord, nous présentons le diagramme de Hasse d’un modele tolérancé, qui est I’interprétation du A-complexe
en terme d’instances de protéine. Nous utilisons I’ historique des contacts entre protéines contenu dans le
diagramme de Hasse pour définir la courbe de contacts de deux types de protéine, une courbe contenant une
information dépendant de la stoechiométrie des contacts entre instances de protéine de ces deux types.
Finalement, nous nous concentrons sur des complexes faisant intervenir des types de protéine spécifiques, en
présentant une analyse visant a évaluer les propriétés de symétrie du modele tolérancé. Cette tiche particuliere est
réalisée dans le cadre des trois sous-complexes décrits dans le Chapitre 4]

2.5.4 Evaluation de modeéles graphiques de sous-complexes

La derniere analyse du chapitre précédent se concentre sur des complexes protéiques impliquant des types de
protéine spécifiques, mais sans se préoccuper des contacts binaires au sein du complexe. Le Chapitre [6|raffine
cette analyse pour des complexes de structure atomique connue, ou pourvus d’un modele de résolution atomique.
Pour voire comment, nous définissons le patron d’un complexe comme le graphe dont les noeuds sont les
instances de protéine et les arétes encodent les contacts entre ces instances. Nous comparons de tels patrons aux
contacts observés entre les protéines du modele tolérancé, sur plusieurs échelles. Ainsi, nous pouvons confirmer,
questionner ou suggérer des contacts entre protéines du patron en se basant sur les contacts les plus observés dans
le modele tolérancé, et cibler les protéines manquantes ou mal positionnées. Notons que ces outils peuvent
naturellement étre utilisés pour des expériences in silico visant a tester des hypotheses.

2.5.5 Logiciel

Toute la machinerie décrite ci-dessus requiert une implémentation élaborée, en particulier pour le CW et son
A-complexe demandant des calculs potentiellement compliqués sur des nombres algébriques. La machinerie
requiert aussi un design de logiciel avancé, de maniere a ce que I’interface puisse accommoder différents
algorithmes. Pour prendre un exemple simple, différents algorithmes pour le calcul d’'un modele tolérancé
peuvent étre envisagés.

Le Chapitre[7] présente nos implémentations, sur deux points de vue. Le premier est de type manuel d’utilisateur,
et présente les entrées, les sorties et les analyses disponibles. Le second est de type manuel de référence, et
discute précisément les classes C++ impliquées, et comment les paramétrer.

Nous notons au passage que tous les exécutables développés sont accessibles via
http://cgal.inria.fr/abs/voratoml


http://cgal.inria.fr/abs/voratom
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Chapter 3

Compoundly Weighted Voronoi Diagrams
and their A-Complex

3.1 Introduction - Rationale

Spatial partitions have a long standing history in science and engineering, as they allow allocating regions to
specific objects, a general framework to model growth processes. The classical spatial partition is the usual
Euclidean Voronoi diagram, which is a particular case of the power diagram, the most general affine Voronoi
diagram. In a power diagram, balls are grown by adding a quantity « to their squared radii.

In this chapter, we develop the Voronoi diagram associated with a growth process which consists of linearly
interpolating the radii of a collection of balls. To begin with, we show in section [3.2] that this growth process is
equivalent to a so-called compoundly weighted (CW) Voronoi diagram. In Section[3.3] we proceed with the
analysis of selected properties of this diagram and of its dual, and generalize the a-complex to this setting.
Finally, we provide in Section [3.4]a naive algorithm for computing the dual of the CW Voronoi diagram.

3.2 Toleranced Models and Compoundly Weighted Voronoi Diagram

3.2.1 Compoundly Weighted Distance and Toleranced Balls
Toleranced Balls

Given a collection of weighted points W;(c;;a;,b;), with center ¢; and parameters (real numbers) a; > 0 and b;, we
define the additively-multiplicatively distance between W; and a point x as follows:

AWix)=a; || ci—x || —b;. 3.1

This distance is associated with so-called compoundly-weighted Voronoi diagrams [OBSCO00]. Geometrically
speaking, this distance is best understood using the following growth process. Let a roleranced ball Bi(ci;r; rf)
be a pair of concentric balls of radii r;” < ri+, centered at ¢;. These balls are called the inner and outer balls.
Given a toleranced ball B; and a real parameter A, consider the grown ball B;[A] centered at ¢; and whose radius is
defined by:

ri(d) =i + A0 =rp). (32)
Denoting §; = r;” —r;, a point x is reached by this growth process once r;(A) =|| ¢; —x ||, that is
— Cci—X r;
A(Bi,x) = w—é—i. (3.3)

In other words, a toleranced ball B;(c;;r; rf ) is tantamount to a weighted point W;(c¢;;a; = 1/8;,b; =r; /;); and
reciprocally, a weighted point W;(c;;a;,b;) is tantamount to a toleranced ball B;(c;;r;” = b;/a;, r;“ = (14b;)/a;).
In the sequel, we shall use both terminologies and exchangeably refer to a weighted point W; or to a toleranced
ball B;.
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3.2.2 On Concomitant Interpolation Processes

Consider two toleranced balls B; and Bj. We term the linear interpolation of Eq. concomitant since at A =0
(resp. A = 1) the grown balls B;[A] and B;[A] respectively match their inner (outer) balls. Concomitance is
important since, for a collection of toleranced balls, we aim at exploring the region sandwiched between the inner
and outer balls coherently. Interestingly, concomitance requires multiplicatively weighted Voronoi diagram —
CW or Mobius.

Non Concomitant Interpolations

For the power diagram, the growth process consists of modifying the weight w; (i.e the squared radius riz) as
follows:

wi(a) = rl-z(oc) =|| ¢i—x sz wi+a (3.4)

Let a toleranced weighted point be a pair of concentric balls of weights w; = (r; )% and (r;")2. The value b,

required to interpolate from the inner to the outer ball is b; = (r;")? — (r;)2. The interpolation is not concomitant

since for two toleranced weighted points, one generically has b; # b;.

The same observation holds for the growth process associated with an Apollonius diagram, which is not
concomitant unless the discrepancy r;r —r; of all toleranced balls is equal to some constant.

Concomitant Interpolations

To see that Mobius diagrams share the concomitance property with CW diagrams, recall that the generalized
Mbobius distance to a weighted point W;(c;,a;,b;) is defined by:

dWi,x)=a;|| ¢i—x ||2 —b;. 3.5)

Equivalently,

| ci—x |[P=—=(d+b)). (3.6)

1
a;
To make the connexion between the distance of Eq. (3.5) and a toleranced ball, we use d = 0 and d = 1, which
yields

bi 1+b;
—\2 i +1\2 i
()= o and () = = 37
Equivalently, one has:
1 (r7)?
e e (e Ch N (U R (e G

A comparison of the CW and Mébius growth models, that is r;(A) =|| ¢; —x || versus r;(d) = /|| ci—x |3, is
provided on Figure[3.1] Compared to the CW linear growth model and as shown by the variation of the derivative
of dr;(d)/dd, alarge difference (r;")> — (r; )? biases the Mobius interpolation towards small values.

3.2.3 Toleranced Tangency and Generalization of the Empty Ball Property

For affine (Apollonius) Voronoi diagrams, it is well known that for each point centered on a Voronoi face, there
exists a unique ball orthogonal (tangent) to the balls associated with the vertices of the dual simplex, and
conflict-free with all the other balls [H To derive the analogue in the CW-case, consider a point x and two
toleranced balls B; and B; such that A (B;,x) = A < A(Bj,x). For the pair B; and x, one gets with Eq. :

b; A
|| ci—x ||*f*;:0 S|l ci—x|[-r; =16 =0. (3-9)
1

1

Consider e.g. the power case, and pick a point x on the Voronoi face dual of a simplex involving a ball B;(c;,w;). Assume that point x
lies on the sphere bounding the ball B;(c;,w; + ¢). One has 7(x,B;) =|| ¢; —x ||> —w; — & = 0, or equivalently, the balls B; and X (x, &) are
orthogonal.
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Figure 3.1: Comparing the variation of the radius for the compoundly weighted model (green curve) and the

Mobius model (red curve) as a function of the interpolation parameter between 0 and 1. On this example, r; =0
and r; = 10.

Similarly, for the pair B; and point x:

b; A
| ¢j—x ||—a—;—a—j>o &l cj—x || —r; =A48;>0. (3.10)

We summarize with the following definition, illustrated on Figure3.2}

Definition. 1. A ball B(x, L) which satisfies the condition of Eq. @) with respect to a toleranced ball B; is
called toleranced tangent (1T for short) to B;. A toleranced ball Bj and a ball B(x,A) which satisfy the condition
of Eq. (3.10) are called conflict free.

Remark 1. Equation @) states that the inner ball B;[0] and the ball B(x, A 8;), namely the ball B(x, 1) scaled by
B;[0]

0, are tangent. Similarly, condition (@) states that B;[0] and B(x,A8;) do not intersect. We shall use this
property to illustrate TT balls, see e.g. Figure[3.2}

Remark 2. Let .7 be a collection of toleranced balls. Consider a ball B(x, L) which is TT to a subset of balls

T C ., and conflict-free with the toleranced balls in #\T. The center x of this ball is found at the intersection of
the spheres bounding the grown balls Bi[A] with B; € T, and is located outside the grown balls B[] with

Bje A\T.

Figure 3.2: Toleranced tangent (TT) balls and conflict-free balls. In dashed lines, toleranced balls E(0,0; 1,5),
B»(0,10;2,8), B3(4,—9;1,3). The three dotted circles represent B;[3/4], B2[3/4], B3[3/4]. The three circles
centered at x are the §;-scaled versions of ball B(x,3/4); following remark (1} ball B(x,3/4) is TT to By and B,
and conflict-free with B3.
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Remark 3. In Eq. (3.9) and (3.10), the radius of the toleranced ball B(x,A&;) depends on the parameter &; from
toleranced ball B;. Denoting 8% the additively weighted distance between two weighted points, Eq. (@) and Eq.
(3.10) may be rewritten as follows:

5" (8 2) B0} = O

—x |, (3.11)

and 51
5" (B(x.A).Bil0]) > Z=— [ ei—x || . (3.12)

The left-hand term involves B(x, ), a ball whose radius does not depend on parameters from toleranced balls o
¥, as for the power and Apollonius cases. But the right-hand-side depends on ;. In the sequel, we use Eq.

and Egq. @or a simpler geometric interpretation of toleranced tangency and conflict-ness. A generic ball not
belonging to . will be denoted B(x, ).

3.3 Compoundly Weighted Voronoi Diagrams and Space Filling
Diagrams
Consider a collection .7 of n toleranced balls, and denote .% the space-filling diagram, i.e. the domain covered

by the grown balls for a given value of A. The Compoundly Weighted Voronoi diagram is the partition of the
space according to the nearest neighbor relationship, for the CW distance, that is:

Vor(B;) = {x € R? | A(Bi,x) < A(Bj,x)Vj # i}. (3.13)

More generally, denoting 7y a tuple of k+ 1 toleranced balls, we are interested in Vor(Tj1) = Npey, Vor(B;).
Naturally, we are also interested in the dual complex generalizing the Delaunay triangulation, and in the subset of
the dual complex accounting for topological changes of the space-filling diagram .%; .

3.3.1 Bisectors in the CW Case

The bisector of a tuple of toleranced balls T is the loci of points having the same CW distance with respect to
every toleranced ball. We denote this bisector { (7} ), and examine in turn the case for pairs, triples, and
quadruples. Our analysis assumes that the §; are not equal, as this is the Apollonius case [BWYO06].

Bisector of two toleranced balls

Analysis. Let B; and B; be two toleranced balls. The ball B; is rivial with respect to B; iff {(i, j) does not exist
and A(Bj,c;) < A(Bj,c; ) The following property describes the triviality of B; w.r.t B;:

Proposition. 1. B; is trivial with respect to B; i i 0; < 5j and the following condition, which states that c; belongs
to the interior of the Voronoi region of B;, holds:

AB.c) < f%‘f. (3.14)

Proof. If the Voronoi region V; of B; is empty, one has in particular, ¢; ¢ V;, which is exactly Eq. (3.14). The
second implication also trivial holds. For the converse, applying the definition of A (B;,x) to any point x, we get:

5o la=xli=n _Jla=x| Ila—ell-r

A(Bi,x) = 5 5 5, (3.15)
| ei—x ||+ ci—ej || —r;
> 5 (3.16)
[ /Y Y 3.17)
5

The three derivations respectively stem from Eq. (3.14), from §; < §;, and from the triangle inequality. O
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Assumlng that £ (i, j) exists, its geometry depends on the relative values of §; and §;. Assuming w.l.0.g. that

0; < 8;, B; grows faster than B;; for a large enough value of A, the grown ball B; [M is contained in its counterpart
B;[A], so that the bisector is a closed surface, with ¢; in the bounded region delimited by { (i, j). Matching the
generalized distances shows that this surface is a degree-four algebraic surface. See Figure [3.3|for a 2D
illustration.

Figure 3.3: Two toleranced balls and their bisector which is a degree four algebraic curve —green curve. Dashed
circles corresponding to the inner and outer balls. Dotted circles correspond to the solutions of a degree four
equation : blue ones are toleranced tangent circles, red ones are algebraic artifacts.

Extremal TT balls. If the bisector exists, it makes sense to track the TT balls such that the corresponding A
value is a local extremum. By radial symmetry with respect to the line joining the centers of the balls, such balls
are necessarily centered at the intersection between the bisector and the line joining the centers. Assume w.l.0.g.
that §; < §;. The minimal ball satisfying the above condition, denoted M; ;(m; ;, p P, ) is such that B; [p ] and

Bj[p ]] are tangent at mn; ;. The maximal ball M; ;(7; j, p; ;) is such that B ;] is mterlor tangent to B o ;] at
m j.

Remark 4. As illustrated on thure B; ilp, ] may be exterior or interior to B; [p ] the ball B; [p ] is interior
to Bilp. ] iff Bj is closer to c; than B; for the CWdlstance i.e. A(Bi,cj) < A(Bj,cj ) In the limit case
/”L(B,,c,) A(Bj,cj), cj=m ; and B; ilp, j] may be considered as exterior to Bi[B,' j].
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Figure 3.4: Relative position of minimal and maximal TT balls of two balls (Left) Bj[p. ] and B;[p. | are exterior

o o Pi Pij
tangent (Right) B;[p, j] is interior tangent to B;[p. ],].

The parameters of these extremal TT balls are computed as follows:
Proposition. 2. The two extremal TT balls B(x, ) of two toleranced balls are characterized by

Al i—e; |l —(ar; +Br})

= .1
A as;+ B8, ’ G19
and 15 B
Gi=—a 0 (3.19)
| ci—cj I

where o0 = £1 and B = %1 depend on the ball processed (minimal or maximal) and the relative positions of B;
and Bj (case analysis in the proof).

Proof. Denote v the unit vector between two points x and x’. The extremal TT ball M ij=(x,A)or

M; ;= (x,A) of B; and B; being centered on the line joining the centers ¢; and ¢, we can express the weight A as
follows:

AT = i, (3.20)

Sl ci—x || Weat || ¢j—x ||7xc.f:|| ci—cj ||7C'ifj (3.21)
S| ¢i—x ||7m.7%+ | ¢j—x | 7“]..761.51. =|| ci—c;j || (3.22)
(A8 +r; ) +BAS+r;) =[] ci—c; |, (3.23)

where o = 761.)(.76!.9/ =+land B = U j'7c,-c_,« = +1. Equation (3.18) follows easily. We note in passing that
following remgk the signs of the dot products & and 3 are obtained from the sign of the expression
A(Bi;cj) —A(Bj,cj).

The weight of the extremal TT balls being determined, the center is computed as follows:

U = U cie; (3.24)
sa ! = el (3.25)
| ci—x [l |l ci—cj |l
ﬁa:awl—; (3.26)
| ci—cj |l
A+
& ox = it o (3.27)
Il ci—cj ||
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Bisector of three toleranced balls

Analysis. Consider three toleranced balls BTO,B,-] ,B;, such that the bisector of each pair exists. To avoid the
Apollonius case, we suppose without loss of generality that §;, < §;, < §;, with §;, < J;,. If there is no
intersection between § (ig, i) and £ (g, ), {(ip,i1,i2) does not exist, and reciprocally. Assume that & (io,i1,i2)
exists. Since at least one J; differs from the other two, there is at most one Apollonius bisector. The geometry of
{(io,i1,i2) depends on &;,,d;, and &;,, and the following cases are illustrated on Figure

> CWBLIIL1 If there is no Apollonius bisector, (ig,i1,i2) is a bounded curve resulting from the intersection of
two CW bisectors.

> CWB.IIL2 If the Apollonius bisector is not a half straight line, ¢ (io,1,i2) is a bounded curve resulting from the
intersection of one CW bisector, and one sheet of a hyperboloid (possibly degenerated to a hyperplane).

> CWBLIIL3 If the Apollonius bisector is a half straight line, {(ig, i1, i) is reduced to at most two intersection
points. Note that if there are two intersection points, &, = &, and B;, is included in and tangent to B, .

" ‘~ 'A kY
" \?éﬁ%@éﬁ%ﬁgﬁ ol
it ‘*Q\&éh\iﬂ m}; N
Vae ﬁ};@v v
ﬁ% Ay
7y

A
47

S A
S il

Figure 3.5: Bisectors of three toleranced balls. The red dots are the centers of the toleranced balls and the
pink/green/blue surfaces respectively represent the bisectors £(0,1) / £(0,2) / £(1,2). (Left) CWB.IIL.1 No
Apollonius bisector (Middle) CWBL.IIIL.2 One Apollonius bisector (Right) CWB.IIL3 One degenerate Apollonius
bisector.

Extremal TT balls. In any case, there are two (possibly identical) extremal TT balls. If one bisector is a half
straight line, these balls are found by intersecting this line with one of the other two bisectors.

In the general case, identifying these two balls involves four equations in four unknowns—the coordinates of the
center and the weight A. Denote 7 the plane defined by the centers of the three balls. The growth of the balls
being symmetric with respect to this plane, the fourth equation consists of constraining the center of an extremal
TT ball to plane 7. The calculation is covered by the following proposition for k = 2:

Proposition. 3. Let T; | = {BTI} j=0,...k be a triple or quadruple of toleranced balls, i.e. k =2 or k =3.
Computing the two extremal TT balls of the tuple T}, requires solving a degree four equation. A solution value A
of this equation is valid provided that A &;; + r, = 0,Vj=0,...,k

Proof. of Prop. for Tis1 = {Bi,.Bi,,Bi, }-
The ball sought has to be TT to each of the three toleranced balls, as specified by Eq. (3.9). Let P be the plane
containing the centers of the three balls. Squaring the three equations of toleranced tangency yields the system:

(3.28)
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Subtracting the first squared equation from the two subsequent ones yields:

(x— Cio)z = (15,'0 +rl-;)2

ZX(Cil _Ci()) = (l&-o —|—rl-;)2 — (2,5,'1 +}"i71)2— (02 —CZ)
2x(ci, — ciy) = (A, —|—rlg)2 — (Ao, + ri;)2 — (ci) - c,-22
Pix] =0

(3.29)

Using Gaussian elimination on the last three equations, one obtains three linear equations for the coordinates of x,
parametrized by A2. Injecting these quantities into the first equation yields the quartic equation in A. Note that a
solution is valid iff 7L5ij + ri; > 0, and sorting the valid values yields the extreme TT balls. Also note that the

coordinates of point x are rational fractions in 1%,

Remark 5. Geometrically, three intersecting spheres generically intersect in two points. The extreme TT balls
correspond to the situations where these two points coalesce.

Bisector of four toleranced balls

Analysis. Consider four toleranced balls B;,, B;, , B;,, B, such that the bisector of each pair exists. To avoid the
Apollonius case, we suppose w.l.o.g. that &, < §;, < §;, < §;, with §;, < &;,. If the intersection of { (io, 1),
C(io,in) and &(ig,i3) is empty, the intersection of all bisectors of pairs is empty and  (ig, i1, i,i3) does not exist,
and reciprocally. If { (ig,i1,i2,i3) exists, we have (i, i1,i2,i3) = §(io,i3) N E(i1,i2,i3), from which the following
analysis follows.

> CWB.IV.1 The bisectors {(ig,i3) and {(i1,i>,i3) being a surface and a curve, their generic intersection, if any,
consists of a finite set of points. As we shall see below, there are at most four such points.

> CWB.IV.2 As a degenerate case, when {(i1,i2,13) is a bounded curve, the intersection of {(iy,i3,i3) and
{(io,i3) may be § (i1, i2,i3). In this case, {(io,i1,i2,i3) has the geometry of the bisector §(iy,i2,i3) of three
toleranced balls.

Extremal TT balls. We distinguish two cases. If {(io,i;,i2,i3) has the geometry of a bisector of three
toleranced balls, we refer to the analysis carried out in section Otherwise, § (i, i1,i2,13) is reduced to at
most four points, as shown by the following constructive proof of proposition 3}

Proof. of Prop. for Ti+1 = {Bi,.Bi,,Bi,,Bi }
The ball sought has to be TT to each of the four toleranced balls, thatis || ¢;; —x [|=A§; + ri, for j=0,1,2,3.
Squaring the four equations of toleranced tangency yields the system

(x— C,'O)z = (16,'0 + ri;)z
(x—ci))> = (A&, +1;)°
(x—ci)? = (A8, +7,)? (3.30)
(x—ci3)2 = ()“31'3 +ri;)2

As for the case of three toleranced balls, we use Gaussian elimination on system (3.30) to get three equations
linear to the coordinates of x and parametrized by A2, and one quartic equation on A. Checking that
|| ci; —x ||> 0 provides the valid solutions, and sorting these provides the extremal solutions. O

Remark 6. As illustrated on Figure[3.6] the system may have four distinct solutions A; such that
2,,'3]' +r; >20.
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Before intersection: A = A; — &  After intersection: A = A; + €

¢

Figure 3.6: Upon growing, four toleranced balls may intersect into four distinct points. Denoting € an arbitrarily
small number, we display the toleranced balls B;[A; £ €]. The A; have been sorted by increasing value from Top to
Bottom.

3.3.2 Compoundly Weighted Voronoi Diagram and its Dual Complex
Empty Voronoi Regions

A toleranced ball whose region is empty is called trivial. Proposition[I| gives a condition of triviality for two
toleranced balls. But triviality of a toleranced ball amidst a collection of balls is more complex since a toleranced
ball might not be trivial with respect to any other one, yet, it might be trivial with respect to their union. To see
why, observe that Eq. (3.13) tells us that a point in space is attributed to the Voronoi region of a toleranced ball
provided that this toleranced ball reaches this point first in the growth process. Thus, a growing ball which is
always contained in the union of a collection of growing balls is trivial, although it might not be trivial with any of
them. Denoting T a collection of toleranced balls, and for any value of A, the following condition, illustrated on
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Figure[3.8] must hold for B; to be trivial: B o
BiAlc | Bj[A] (3.31)
BjeT

Remark 7. The triviality condition is more complex than in the Apollonius case, where a ball is hidden if and
only if it is included within another ball.

Figure 3.8: Hidden toleranced ball. By =
) ) (0,1/2;1,3) (red), B; = (0,0;3,4) (green) and B, =
Figure 3.7: Dual complex of the four balls of Figure (5,0;3,7) (blue). Ball By is neither trivial with re-

@—pottom and top rows . espectively represent 0- spect to B| nor By, but is trivial with respect to both.
simplices and 3-simplices.

Dual Complex

The Voronoi region Vor(T},1) of a tuple T;; may have several connected components, each being termed a face.
Each such face corresponds to the intersection of £+ 1 Voronoi regions, so that we associate an abstract simplex
or simplex for short in the dual complex. That is, if Vor(Tj..1) consists of m faces, one finds A;(Tjy1),j € 1,...,m
simplices in the dual complex. (The multiplicity is omitted if the tuple T}, yields a single simplex.) The dual of
a simplex A(T) is denoted A(T)". Assuming that the input toleranced balls are numbered from 1 to n, a simplex is
identified by a list of integers, and inclusion between such lists defines a partial order on simplices. We therefore
represent the dual complex by a Hasse diagram Dg with one node per simplex. The nodes of Dy corresponding to
k-simplices are denoted Dg(k). Note that we may also (arbitrarily) embed a simplex within the union of Voronoi
faces associated to it. See Figs. [3.9] [3.10|and [3.11]for a 2D illustration.

Topological Complications

A Voronoi region gets sandwiched between two neighbors when the corresponding toleranced ball defines a lens
between the Voronoi region of two neighboring toleranced balls, a case also found in the Apollonius diagram. In
the dual complex, the vertex of this toleranced balls has exactly two neighbors and the triangle corresponding to
these three toleranced balls does not have any coface.

A Voronoi region might not be connected, and this may happen for tuples of size one to four. We illustrate this in
2D with Figure For a toleranced ball, consider B4 whose Voronoi region is split into two faces, associated
with the vertices (zero-dimensional simplices) A;(4) and A;(4) in the Hasse diagram. For two toleranced balls,
note that the Voronoi region Vor(Bj,B;) consists of two faces—open line segments in this case, yielding the
simplices A1 (1,2) and A(1,2) in the Hasse diagram. For three toleranced balls, note that the triple (By,B5,Bs)
corresponds to two triangles.

A Voronoi region may not be simply connected. When one toleranced ball punches a hole into a face, the
corresponding one-simplex does not have any coface. See e.g. toleranced ball B7 and the simplex A(2,7) on
Figure[3.9] When two toleranced balls punch a hole into a Voronoi region, the two-simplex they define does not
have any coface either. Finally, when three toleranced balls punch a hole into a Voronoi region, two tetrahedra of
the dual complex share the same vertices, the same edges and same triangles. This latter case is illustrated in 2D,
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Aq(1,2,4)05(1,2,4)A1(1,3,4)Ax(1,3,4) A1(2,3,4) As(2,3,4) Ay(2,5,6) As(2,5,6)

Ao(4) A5) A(7)

Figure 3.11: Hasse diagram of simplices of the dual complex of the Voronoi diagram of Figure [3.9] The three
lines respectively corresponding to O-simplices, 1-simplices, and 2-simplices. Grey boxes correspond to Gabriel
simplices, and boxes with a red boundary mark dominated simplices. See text for details.

where a hole punched by two toleranced balls in a Voronoi region results in two triangles with the same vertices
and the same edges. See A;(2,5,6) and A;(2,5,6) on Figure[3.9]

Bounded and Unbounded Voronoi Regions

A toleranced ball B; € . is called maximal with respect to .7 if §; > & ;,Vj # i. A toleranced ball which is not
maximal has a bounded Voronoi region in the CW VD of .7, and the subset of maximal toleranced balls is
denoted .% max. The CW VD diagram of toleranced balls in 7 max 1S an Apollonius diagram since all ; are equal,
and a subset of balls in .%,x have an unbounded Voronoi region. Mimicking the affine case, a simplex is said to

lie on the convex hull CH(.¥) of the dual complex if its dual Voronoi face is unbounded. The vertices of such

simplices belong to 7max.

Figure 3.9: The CW VD of 7 toleranced balls
in 2D: By = (—5,-5;3,7), B> = (5.5;3,7), B3 =
(—1,0;4,5), By = (0,1;2,5), Bs = (8,7:2,3),
Bs = (8,5:3,4), B; = (1,10;1,2). Vor(Bs) and
Vor(By,B,) are not connected. Vor(B;) is not sim-
ply connected. &; and &, are maximal and By, B,
have unbounded Voronoi regions.

Figure 3.10: Dual complex for the CW VD of Fig-
ure 3.9 : O-simplices: black dots; one-simplices:
blue curves; two simplices: red dots. Note that
By is represented by two vertices Ay (4) and Ay (4).
A1(2,5,6) and A»(2,5,6) share the three same
edges. A(2,7) does not bound any triangle.
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3.3.3 Gabriel, Dominant and Dominated simplices

In the affine case, changes in the a-complex are associated with Gabriel simplices: a Gabriel simplex A(7) is a
simplex such that its minimal orthogonal ball M is conflict-free, and the simplex enters the a-complex when
A>p - with p r the weight of M. The generalization to the CW setting is not straightforward since Voronoi
regions might not be connected, and since a tuple T generally has two extremal TT balls, respectively denoted
My(mz,p.) and Mr(mr,py). We now examine these two balls and refer the reader to Figure for an

illustration. (To examine this figure, recall that a TT ball M (x, 1) is conflict-free with a toleranced ball B; iff the
scaled version of M by §; i.e. M(x, §;A) does not intersect the inner ball of B;.)

Minimal TT Balls and Gabriel Simplices

If the center my of the minimal TT ball M belongs to the relative interior of a Voronoi face of the tuple, or
equivalently the ball is conflict free, the simplex is called Gabriel.

Remark 8. The minimal TT ball My is unique, so that a single Voronoi face dual of the tuple T can witness a
Gabriel simplex. In particular, for any other Voronoi face of the tuple, the minimal TT ball associated with that
face involves at least another toleranced ball. For example, the Voronoi region of By in Figure is split into two
Voronoi faces. The center of the minimal TT ball of B4 being located within the Voronoi region of B3, the dual of
each Voronoi face of By is not Gabriel. The minimal TT balls of these two faces are in fact associated to the same
triple, namely By, B3 and By.

Maximal TT Balls and Domination of Simplices
For a simplex A(T), consider the intersection of the spheres bounding the grown balls, i.e.
ITM’] = OEU&E[A] (3.32)

In 3D, if T is a k+ 1 tuple, I7[A] is generically a 2 — k-sphere. Consider now a tuple such that the &; of its balls are
not all equal, and assume that 7= AU B, with A the balls realizing the maximum &; in the tuple. The
corresponding bisector is bounded and has a unique maximal TT ball M. If this ball is conflict-free, the spheres
bounding the grown balls in 7 intersect until /7[4] reduces to the point 7ir. Beyond that point, the intersection of
the spheres bounding grown balls in B is contained in the union of the grown balls in A. To formalize this
behavior, we define—recall that an ancestor of a node in the Hasse diagram is any node found on a path joining
this node to that associated with a zero-dimensional simplex:

Definition. 2. A simplex A(T) whose dual Voronoi face contains the center mr of the maximal TT ball is called
dominant.

A simplex A(U) which is an ancestor of the dominant simplex A(T) in the Hasse diagram, with BC U C T, is
called dominated.

As opposed to the Euclidean setting, a dominant simplex A(7) does not catch a coface when point 7y is reached
by the growing balls. Similarly, a dominated simplex does not catch any coface either when point 77 is reached.
To identify the moment in time where simplex A(U) gets dominated, we introduce

Yaw) = Pa(r)- (3.33)

The condition B C U C T actually yields 2 cases, namely (i) U = B, or (ii)) B C U C T. In three dimensions,
enumerating these possibilities yields the following cases:

>Dom.1 T = {B;,B,} with §; > &: case (i) thatis U = {B, }.

> Dom.2 T = {B},B,B3} with §; > &, > &3: case (i) thatis U = {B;,B3}.

>Dom.3 T = {By,B;,B3} with §; = &, > &3: case (i) thatis U = {B3}, and case (ii) that is U = {By,B3} or
U = {B,,B3}.

By convention and since a 4-tuple yields a discrete set of at most four tetrahedra, we say that a 3-simplex cannot
be dominant—which prevents a 2-simplex from being dominated. Also, a O-simplex cannot be dominant.
Dominant and dominated simplices are important to describe the evolution of the boundary d.%,: upon getting
dominated, a simplex does not contribute to d.%, anymore.
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Remark 9. A dominant simplex may have cofaces.

15 15
10+ 10+

] Maao)— By
scaled by d3 7/
5| 5|
1 Ma,, 1

scaled by d;
5 v 5 10 15 5 v 5 10 15

-5 -5

Figure 3.12: Gabriel, dominant and dominated simplices illustrated with the CW VD of 3 toleranced balls (dashed
lines): By = (5,4;1,4) (black), By = (7,7;2,3.5) (blue), B3 = (4,5;2,3) (red). (Left) The minimal TT ball M, 3,
is conflict-free (witnessed by the black dashed-dotted circle): A(2,3) is Gabriel. Simplices A(2), A(3) and A(1,3)
are Gabriel too. (Right) The max TT ball MA(1,3) is conflict-free (witnessed by the blue dashed-dotted circle):
A(1,3) is dominant and A(3) is dominated. A(1,2) is dominant and A(2) is dominated too.

3.3.4 The A-complex Filtration
The Filtration
Equipped with Gabriel simplices, the following mimics the Euclidean setting:

Definition. 3. The A-complex K;, is a subset of the dual complex defined as follows: a simplex A(T) belongs to
K;, iff (i) A(T) is Gabriel and A > Py O (ii) A(T) is a face of A(U) with A(U) € K.

Increasing A results in a nested sequence of (abstract) simplicial complexes, which eventually coincide with the
dual complex, so that the collection of A-complexes forms a filtration. At the far left of the spectrum, the first non
empty simplicial complex (generically) consists of a dual vertex which appears at A = Ap;, defined by:

Amin = min (—-%). (3.34)
Bics 51‘
For a large enough A, the A-complex matches the dual complex. Since there may be no new Gabriel simplex in
the last A-complex, this holds for A > Ap,x with

A = DAL 3.35
max = max{ max (p,), max (P} (3.35)

Remark 10. Consider Eq. . If the last event in the A-complex does not correspond to the addition of a
Gabriel simplex, it actually corresponds to a status change, namely a dominant simplex becomes Interior. See

Table 311

Remark 11. From a computational standpoint, collecting all the simplices of the A-complex may be an overkill.
In particular, contacts between proteins may be studies resorting to (abstract) simplices of dimension one. To the
end, we define the partial A-complex as the subset of the A-complex containing only the Gabriel simplices of
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dimension 0 and 1. Computing the partial A-complex is a straightforward task. A naive algorithm indeed consists
of visiting all the possible pairs of toleranced balls (B;,B;), and to check that M i j is conflict-free with all other
toleranced balls. For n toleranced balls, this is done in O(n?).

Status of Simplices

The status of a simplex in the affine setting is described from the topology of its link. In the CW case, the
presence of simplices without any coface as described in section [3.3.2]requires devising different classification
criteria. For a simplex A(T), consider the intersection I7[A] of Eq. (3.32). Upon increasing 4, this intersection
sweeps the Voronoi region of the tuple. We base our classification on the portion of the Voronoi region swept by
I7[A] up to time A. That is, a k-simplex of K, is classified as follows:

— Singular: the region swept by I7[A] up to time A is contained in the relative interior of the dual of the simplex.
— Interior: the region swept by Ir[A] up to time A contains the dual of the simplex in its interior.

— Regular: neither singular nor interior.

Figure 3.13: Restricted Voronoi regions for the CW VD of Figurefor A =1, and classification of edges in the
A-complex. Classification of the 8 dual vertices—black dots: A(5) and A(6) are interior and all other dual vertices
are regular. Classification of the 10 dual edges—blue edges: A(1,3) and A(2,7) are singular; A(2,3), A(2,5),
A(2,6), A(5,6) are interior; the remaining edges are regular. The 4 dual triangles in the A-complex are represented
by red dots vertices.

3.3.5 Classification of Simplices

Our classification of simplices follows the framework of the affine case [Ede92]. For simplices which are neither
dominant nor dominated, in addition to the weight P, o of the minimal TT ball, we denote M, @ and HA(T) the

A-values such that the simplex becomes regular and interior. For dominant simplices, we also use the weight of
the maximal TT ball ﬁA(T) , and the quantity ¥,y introduced in Eq. (3.33).

For the affine a-complex, the classification of a simplex as singular, regular, or interior requires considering the
four cases { Gabriel, not Gabriel } x { on the convex hull, not on the convex hull }. For simplices which are
neither dominant nor dominated, these four possibilities are also found in the CW case—lines 1-4 of Table 3.1}
On the other hand, dominant and dominated simplices are not found on the convex hull—each such simplex
involves at least one non-maximal ball, and always end up interior since the maximal TT ball of the tuple of a
dominant simplex is conflict-free. For dominant simplices, the two additional cases to be considered are Gabriel
and non Gabriel—lines 5-6 in Table Such a simplex becomes interior as soon as A > Pa(r)-

Similarly for dominated simplices, the two additional cases to be considered are Gabriel and non Gabriel—lines
7-8 in Table[3.1] Recall that a dominated simplex is always associated to a dominant simplex. Using the weight
Yacr) of the maximal TT ball of the tuple of the dominant simplex associated to the dominated simplex, see Eq.
, the dominated simplex becomes interior as soon as A > YA(T)-



3.3. COMPOUNDLY WEIGHTED VORONOI DIAGRAMS AND SPACE FILLING DIAGRAMS 67

These notions are illustrated on Figure [3.13] which features the restricted Voronoi diagram, i.e. the grown balls
restricted to their Voronoi regions. Note in particular that the status of simplices reads from the relative position
of the restriction with respect to the associated Voronoi face, as specified in section [3.3.4]

singular regular interior

(1) A(T) € CH(.”),Gabriel, non dominated/dominant (BA(T)’EA(T)} (HA(T),—FOO}

(2) A(T) € CH(.),non Gabriel, non dominated/dominant (p ATY +-oo]

(3) A(T) ¢ CH(.%”) Gabriel, non dominated/dominant (BA(T) ’EA(T)} (EA(T) Hamy) | (Baery,+e]
(4) A(T) ¢ CH(.#),non Gabriel, non dominated/dominant (u AT Hamy) | (Bacry, +o]
(5) A(T) ¢ CH(.#) Gabriel, dominant (BA(T)’EA(T)} (HA(TyﬁA(T)] (Pa(r)> T
(6) A(T) € CH(),non Gabriel, dominant (HA(T)’ﬁA(T)] (Pa(r)+o]
(7) A(T) ¢ CH(.%) Gabriel, dominated (BA(T)’HA(T)] (HA(T)’YA(T)] (Ya(rys |
(8) A(T) ¢ CH(”),non Gabriel, dominated (EA(T) ) | (Vars +]

Table 3.1: Classification of simplices in the A-complex. (Top rows) Common classification with @-complex.
(Bottom rows) A-complex specific cases.

3.3.6 Tracking Topological Events

Consider the space-filling diagram .%) . Selected values of A featured in Table|3.1|correspond to topological
events underwent by .%, —in terms of homology groups. Of particular interest for the application sketched in
section[5.2.2]are those events triggering a decrease of the number of connected components of .7, . Such events
are associated with selected one-dimensional simplices of the dual complex, and the connected components can
be maintained by a Union-Find algorithm upon sorting the A values featured in Table Following classical
terminology, the lifetime of a c.c. is called its topological persistence [ELZ02,|(CSEHO0S].
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3.4 Algorithms

In this section, we present an output sensitive algorithm to compute the dual complex, together with the
accompanying algorithms to compute the A-complex and a variant which we call the reduced A-complex.

3.4.1 Using a Sentinel Ball

To ease the implementation, denoting .7 the input balls and T max the maximal balls of .7, we define a new ball
Smax Which is the only maximal ball in . = .7 U {Spax }, and we compute the CW diagram of .#. Note that the
neighbors of Sy in the CW diagram of .# are the toleranced balls of .7 bounding the CW convex hull of .7. To
define Syax, We successively set its extremal radii and its center S -

First, the extremal radii are chosen such that Spay is maximal. We arbitrarily set r— =0, and set r so that

max Smax

Smax is maximal, that is:
rg =14+ max (§). (3.36)
max Bi€ T max
To set the center, we first compute the radius A’ of the largest extremal TT ball to all tuples (pairs, triples,
quadruples) of toleranced balls in 7. (Because of domination, we need to process not only quadruples but also
pairs and triples.) Consider now a toleranced ball B; € 7. Center ¢s, .. is chosen such that the radius of the
smallest TT ball of the pair (B;, Smax) is larger than A’,Vi. (It is in fact sufficient to process toleranced balls which
are maximal in .7.) From Eq. (3.18) with o = 1 and 8 = 1, this condition reads as:
| ci—es > A8+ O )+ (rgmax +r7). (3.37)
Without loss of generality, we choose €5, O the z-axis. Since A'8;+r;” > 0 for any toleranced ball B, e 7,
squaring Eq. (3.37) yields the following equivalent degree two condition:
f(@max) =] ¢i —(0,0,Zmax) H2 —(A(6;+ 6

Smax

Y+ (rg +r7))2>0 (3.38)
Smax t

Function f(zuqy) is always positive, or is so for two intervals (—eo,z;") and (z;",+o0) with z; <z It is therefore

sufficient to set Z,uc > Z?,Vi.

3.4.2 Hasse Diagrams of Tuples and Simplices
Tuples

A tuple reduces to the list of indices of the toleranced balls it contains, and the inclusion between these indices
defines a partial order. We shall use it to store selected tuples called candidate tuples into a Hasse diagram
denoted Dy, see next section.

Simplices

We represent the dual complex by the Hasse diagram Dy introduced in section The level Dg(k) features the
simplices of dimension k, and the predecessors and successors of a node in Dy respectively represent the faces
and cofaces of the corresponding simplex. A node with no successor is called ferminal. For two consecutive
levels Dg(k) and Dg(k+ 1), the slice graph D§ (k,k+ 1) is defined as follows : the nodes of D§' (k,k+ 1) are
those of Dg(k); two such nodes are incident if they share a coface of Dg(k+1).

Hasse Diagram Dg and Related Operations

We endow Dg with two operations to be used for the construction of the dual complex. Consider a tuple 7j. This
tuple is said to identify a (k — 1)-face if the vertices defining this (k — 1)-face correspond to the toleranced balls of
the tuple. Finally, consider the graph D3/ (k,k+ 1), together with a k-simplex A(Tj) having a (k — 1)-face
identified by Ty, that is Ty = Ty U{B;} for B; € .#\T;. In order to deal with non-simply connectedness and non
connectedness of Voronoi faces, we also define a restrained connected component (restrained c.c.) of

D! (k,k+ 1) anchored at A(Tj+1), as a maximal c.c. such that all its nodes are identified by the tuple 7;. Consider
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now a maximal set of restrained c.c. of DS/ (k,k+ 1) connected by nodes of DY (k,k + 1) which are not identified
by the tuple T;. Such a set defines an unrestrained c.c.. These notions are illustrated on Figure

Remark 12. For a non connected Voronoi region, an unrestrained c.c. may contain one ore several restrained
c.c.:

— if the unrestrained c.c. matches a restrained c.c., the dual of the nodes of this c.c. bound a hole. This is the case
of C, on Fig.

— if the unrestrained c.c. contains several restrained c.c.: the dual of the nodes of the restrained c.c. do not bound
a hole; furthermore, each restrained c.c. is associated to a different Voronoi face of the Voronoi region. This is the

case of Cy and C5 on Fig.

Figure 3.14: Computing Voronoi faces using restrained and unrestrained connected components. Example of two
toleranced balls B;, and B;, whose Voronoi region consists of Voronoi faces A; (i1,i2)" and A, (i,i»)" respectively
bounded by two and one cycle (C1,C; and C3). Color codes for Voronoi edges and vertices : red: Voronoi faces

bounding the Voronoi region of (B;,,B;,).; blue: Voronoi faces not bounding the Voronoi region of (B;,,B;, ). Each
cycle Cy,C, and Cj is arestrained connected component (c.c.). There are two unrestrained c.c., one grouping C; and
C;3 (these restrained c.c. respectively correspond to the connected region containing the Voronoi face A (iy,iz)",
and to A, (i1,i2)"), and one containing only C; (corresponding to the hole in A (i1,i2)"). See Remark

Mapping Tuples to Simplices

As seen in section[3.3.2] a tuple T possibly yields several simplices. Denoting m the multiplicity of a tuple 7, we
shall use a map Mrs mapping T to the corresponding simplices A;(T'), j € 1,...,m. The correspondence between
the levels of Dg and Dr is illustrated on Figure[3.15] Abusing terminology, we define:

Definition. 4. A simplex of the dual complex is said to be identified by a tuple T if the toleranced balls found in T
form a subset of the vertices of the simplex. The cofaces of the tuple T are the simplices of the dual complex which
are identified by T.

Map Mrs is used to retrieve the cofaces of a tuple T as follows: first, the successors of T in the Hasse diagram Dy
are collected; second, the simplices associated to each successor are accessed thanks to the map Mrg.

Layers of Hasse diagrams

k + 1-tuples k-simplices
Dr(4) . Ds(3)
Dr(3) Ds(2)
Dr(2) . Ds(1)
Dr(1) Dg(0)

map Mrg

Figure 3.15: Correspondence between the layers in the Hasse diagram of tuples Dy and the Hasse diagram of
simplices of the dual complex Ds.
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3.4.3 Computing Candidate Tuples

A number of practical settings are concerned with growth processes up to a maximum value Apax < Amax»
although in the absence of restriction we shall use Ayax = +90. We now define so-called candidate tuples, which
will be used in section[3.4.41

Definition. 5. A k-tuple with k < 2 is termed a candidate tuple if its minimal TT ball has a radius less than Amax.
Similarly, a 4-tuple is called candidate if at least one radius of its TT balls is less than Amax.

We report candidate tuples, from singletons to quadruples. The strategy consists of building the Hasse diagram
Dr in a bottom-up fashion, the last two layers being constructed from the layers below. More precisely:

> A toleranced ball is a candidate singleton provided that —7;” /6 > Amax. If s0, we store it into L.

> Consider a pair (B;, B;) out of the (;) possibly pairs. The pair is a candidate provided that
Bi[Amax] N B j[Amax] # 0. If so, we store it into L, and set the links to L;.

> For triples and quadruples, we exploit the recursive structure of tuples encoded in the Hasse diagram Dr.
Denote Ly the list of candidate k-tuples. We wish to compute L | from the lists L;,i =0, ...,k and Dr. Leta be a
node from L;_;. For two nodes ¢ and d which are successors of a in the Hasse diagram, one has | aUb |=k+ 1.
That is, all candidate (k+ 1)-tuples can be formed by examining all pairs of successors of nodes in L;_;. We also
set the diagram D7 along the way.

Using this strategy yields the following:

Observation. 1. Denote n the number of toleranced balls and T’ the number of candidates tuples. Computing all
candidate tuples has output sensitive complexity O(n*> +1'). Moreover, checking that the associated extremal TT
balls are conflict free has complexity O(n(n*+1')).

Proof. The quadratic term comes from the possible (g) pairs. For triples and quadruples, it is sufficient to observe
that a k-tuple associated to a (k— 1)-simplex is discovered a number of times equal to the number of its

(k — 3)-faces, that is, a triple is discovered three times and a quadruple six times. Hence the output sensitive
complexity for triples and quadruples.

For the second part of the claim, observe that for each candidate tuple, one needs to run one (four) iterations on all
remaining balls for singletons/pairs/triples (quadruples). O

3.44 Top-down Construction of the Dual Complex

To build the dual complex, assume that the pre-processing described in section [3.4.3| has been carried out, with
Amax = Foo. The algorithm builds the CW VD from cells to vertices. Three data structures are manipulated. First,
the Hasse diagram D7 is used and updated, since some candidate simplices which do not yield simplices are
removed. Second, the Hasse diagram Dy is constructed. Finally, the map Mrs mapping tuples to simplices is used
and incrementally updated.

Computing Ds(3) or equivalently the 0-skeleton of the CW VD

We examine each candidate 4-tuple, and create one simplex in Dg(3) for each conflict-free solution of system
(3:30). Map Mg is set accordingly.

Computing Ds(2) or equivalently the 1-skeleton of the CW VD

Case analysis. This step consists of computing Voronoi edges corresponding to Dg(2) and connecting them to
Voronoi vertices associated with Dg(3). We consider the candidate 3-tuples. Each such tuple possibly contributes
one or more Voronoi edges, and we face three cases. Assume that the cofaces of the tuple have been collected
thanks to map Mrs.

> Vor-1a If the tuple does not have any coface in Dg(3) and its maximal TT ball has a conflict, the simplex does
not exist in the dual.
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> Vor-1b If the tuple does not have any coface in Dg(3) and has a conflict-free maximal TT ball, the simplex is
dominant and contributes its full bisector as a Voronoi edge.

> Vor-1c If the simplex has cofaces in Dg(3), assuming that % max contains a single ball, it contributes Voronoi
edges bounded by Voronoi vertices. This number of vertices is even, and the construction of Voronoi edges is a
two-stage process. First we sort the vertices along the bisector. To do so, we process separately the vertices found
in the two half-spaces delimited by the plane containing the centers of the toleranced balls. Sorting either set of
Voronoi vertices along the bisector is tantamount to sorting the weights of the TT balls associated with these
Voronoi vertices. Second, we form the curved Voronoi edges. If the smallest TT ball of the tuple is conflict-free,
there is a Voronoi edge between the two first Voronoi vertices of each half-space, and this edge determines the
remaining Voronoi edges in each half-space. Otherwise, there is a Voronoi edge between the first two Voronoi
vertices on each side of the plane — if any.

Algorithms. We examine the cases in turn.

> Vor-1a The sterile tuple is removed from Dy .

> Vor-1b The simplex is created, and the data structures Dg and Mrg are updated accordingly.

> Vor-1c Sorting Voronoi vertices along a bisector requires two predicates: the Orientation predicate to
locate the vertices in the two half-spaces; a comparison of roots of degree four polynomials to compare the radii
of extremal TT balls.

In terms of data structures, every simplex created triggers an update of Dg and Mrs.

Computing Ds(1) or equivalently the 2-skeleton of the CW VD

Case analysis. This step consists of computing Voronoi 2-faces corresponding to Dg(1) and connecting them to
Voronoi edges associated with Dg(2). Building a Voronoi 2-face requires identifying all the bounding Voronoi
vertices i.e. Voronoi O-faces, which are glued together by Voronoi 1-faces. As illustrated on Figure[3.14] this is a
non trivial task since the Voronoi region of a pair might not be connected, and a face might not be simply
connected. Let the support of a non simply connected face be the simply connected region which contains it. We
consider all the candidate pairs, and for each of them analyze the cofaces collected thanks to map M7g. We face
three cases.

> Vor-2a and Vor-2b These two cases are similar to those found for triples : a pair which does not have any
coface is either dominant or is not present in the dual complex.

> Vor-2c¢ The third case is the complex one. Using the 1-skeleton of the CW-VD, we identify those cycles
bounding the supports, and those bounding holes. To do so, we search the restrained and unrestrained c.c. of

Dgl (2,3,). There are three sub-cases:

— Vor-2c¢-1. The Voronoi region of the 2-tuple is simply connected : there is one restrained and one unrestrained
c.c. which are identical.

— Vor-2c¢-2. The Voronoi region is not connected (the topology of the faces are arbitrary): restrained and
unrestrained c.c. differ. An unrestrained c.c. consists of the union of one or more restrained c.c.. If there is only
one restrained c.c. in an unrestrained c.c., the cycle is one hole. If not, the cycles bound faces. As an example,
consider Figure[3.14] Each cycle C,C,,C3 is a restrained c.c.. There are two unrestrained c.c.: one includes
cycles C; and C3 which are connected in the 1-skeleton of the CW VD, the other one is C, which is not connected
to Cy and C; in the 1-skeleton of the CW VD.

— Vor-2c¢-3. The Voronoi region is connected but not simply connected. The two searches yield several c.c. which
are the same for the restrained and unrestrained case.

Algorithms. We focus on the complex case. Let T = (B;, B;) be the pair being processed.

> Vor-2¢ From an algorithmic standpoint, the computation of restrained and unrestrained c.c. is a two-stage
process. First, the (plain) c.c. of graph Dgl (2,3) are computed. Any c.c. containing nodes identified by the pair T
is an unrestrained c.c.. For example, on Figure[3.14] the process yields two such c.c., namely the c.c. defined by
(3, and that involving C1,Cs3 and the blue edges.

Second, we run a union-find algorithm on each such c.c.. More precisely, consider the subset Dg(3 | T), that is the
nodes of Dg(3) which are identified by the pair 7. These nodes correspond to Voronoi vertices involving the two
balls. Similarly, consider the subset Dg(2 | T') of nodes of Dg(2) which are identified by the pair T. These nodes
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of Dy correspond to Voronoi edges involving the two balls. We run a union-find process with node set Dg(2 | T')
and edge set Dg(3 | T). As illustrated on Figure[3.14] this process yields the restrained c.c..

In terms of data structures, the creation of a simplex triggers an update of Dg and Mrg.

Remark 13. For case Vor-2c-2, we do not know which faces of the Voronoi region bound cycles defining holes.
However, this information is irrelevant if we only focus on the neighborhood relationship between Voronoi
regions.

Remark 14. For case Vor-2c-3, one can further identify the cycle bounding the support. Let B; and B; be the
toleranced balls of the pair. Consider a cycle C, and let 8¢ be the maximum & of the toleranced balls involved in
Voronoi edges and vertices along C—and different from B; and B;. If d¢c < min{8;, 8;}, then cycle C bounds a
hole, and reciprocally. To see why, consider the bisector of the toleranced balls associated to dc and min{§;, §;}:
it bounds the Voronoi region of the toleranced ball associated to 8¢ iff oc < min{d;, 6;}.

Computing Ds(0) or equivalently the 3-skeleton of the CW VD

Case analysis. This step consists of computing Voronoi 3-faces corresponding to Dg(0) and connecting them to
Voronoi 2-faces associated with Dg(1). Building a Voronoi cell requires identifying all the bounding Voronoi
2-faces, which are glued together by Voronoi edges, i.e. Voronoi 1-faces. To do so, the difficulties are identical to
those faced to compute the 2-skeleton since the topological complications are the same—non connectedness and
non-simply connectedness. Analyzing the cofaces found for each toleranced ball yields the following two cases.

> Vor-3a If a toleranced ball has no coface, its Voronoi region is empty.

> Vor-3b If a toleranced ball has at least one coface, we use the algorithm computing Dg(1) using Dgl (1,2)
instead of Dgl (2,3). Note that if two dual triangles have a common bounded dual tetrahedron, they share at least
one dual edge.

Algorithms. Let T be the tuple of interest, which consists of one ball. To glue Voronoi 2-faces thanks to
Voronoi 1-faces, union-find is run on the node set Dg(1 | T) and edge set Dg(2 | T).

Complexity analysis

Denote Sorting(A) the cost of sorting set A, and Union-£find(A,B) the cost of running a union-find
algorithm on node set A using the edge set B.

The following observations, which directly stem from the description of algorithms, show that the algorithm
constructing the dual complex has output sensitive complexity:

e Computing the 1-skeleton has complexity Y7, 3j7) Sort ing(Ds(3 | T))
e Computing the 2-skeleton has complexity Y., (o) Union—£ind(Ds(3 | T),Ds(2| T))

o Computing the 3-skeleton has complexity Y.rc, (1)) Union—-£ind(Ds(2 | T),Ds(1 | T))

Analyzing these complexities is directly related to the complexity of the CW diagram, an open problem to the
best of our knowledge.

It should be noticed, though, that the cubic pre-processing might be optimal in the worst-case. Indeed, the
worst-case complexity of the diagram is clearly at least quadratic. And since a Voronoi region can be
disconnected, incremental algorithms aiming at finding conflicts may have to exhaustively probe the whole
diagram.



3.4. ALGORITHMS 73

Ailir,d2)  A(jr, j2) Aalin,ia)

Figure 3.16: Computing dual simplices. Hasse diagram representation of dual complex of example of Figure[3.14}
Color of simplices are the same that color of their dual in Figure[3.14] Links between simplices whose duals bound

the Voronoi faces of the pair (B;,, B;, ) are represented in solid lines.

3.4.5 Computing the (reduced) A-complex
Representation

In the A-complex, a simplex A is attached three tags stating whether (i) it is Gabriel or not, (ii) it contributes to the
convex hull CH(.¥) or not, and (iii) it is dominant, dominated, or neither one nor the other. Moreover, A is
endowed with three values delimiting the intervals of a row in Table[3.1]

Computation

The classical way to compute interval for simplices in the affine ot-complex consists of visiting simplices in a
top-down fashion, namely from tetrahedra to vertices [Ede92]. In doing so, the status and intervals of a simplex
are inferred from those of its cofaces. We apply this strategy for terminal nodes in the Hasse diagram, which are
either tetrahedra in Dg(3) or selected dominant nodes of Dg(2) and Dg(1).

On the reduced A-complex

Consider the case where one wishes to explore the growth process of the toleranced balls up to a maximum value
Amax < Amax Of 4. We call the collection of simplices that appear in the A-complex for A < A the reduced
A-complex. Computing the reduced A-complex requires processing a subset of all tuples involved in the entire
A-complex.

Having computed the candidate tuples as indicated in section the computation of the reduced A-complex is
identical to that of the entire A-complex.

3.4.6 Implementation
Sketch

The implementation follows the CGAL spirit, see/http://www.cgal.org, and we sketch it in terms of
concepts (a set of requirements) and models (a particular implementation). The class CW_dual representing the
dual complex is templated by a combinatorial class providing the Hasse diagram representation, and by a
geometric concept class CWGeomet ricKernal providing the predicates and constructions required. The
corresponding generic model CW_geometric_kernel is itself templated by a concept class
AlgebraicKernel providing the operations needed to deal with the extremal TT balls. As specified by
propositions |2{and |3} computing these TT balls requires solving linear systems or a degree four algebraic
equation, while the conflict-free test requires evaluating the conflict_free predicate of Eq. (3.10). We
implemented a model of the AlgebraicKernel named CW_algebraic_kernel_double which uses
CGAL’s Algebraic_kernel_d_1—the latter provides efficient operations on univariate polynomials. The
number type being double, this kernel does not provide exact predicates. Finally, the class CW_alpha_shape
inherits from CW_dual and provides the tags and intervals detailed in Table[3.1]
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Sanity Check

To probe the implementation, given a collection of toleranced balls with identical parameters, we checked its
ability to compute the Delaunay triangulation of the centers.

Performance

To scale the implementation, we ran it on random collections up to 1000 toleranced balls on a DELL computer
with Intel Xeon processor at 3.2 GHz with 2048 Mo of RAM. Balls were generated as follows: the set ¢ of
centers is uniformly generated at random in a cube; for each center c¢;, radius 7; is set to the length of the shortest
edge between ¢; and its neighbors in the periodic Delaunay triangulation of ¢, while r;" is set to the mean
between r;” and the length of the longest edge between ¢; and its neighbors in the periodic Delaunay triangulation
of € [CT09]. An example with 200 toleranced balls is shown on Figure[3.17

Statistics for the reduced Dual Complex computation up to A = 1 are reported on Figure We note in
particular that the number of candidate tuples increases linearly with the number of toleranced balls, as a linear
regression gives a slope of 515 with R-squared value of 0.99. So does the running time, which is about 251
minutes for 1000 toleranced balls.

An example calculation for the whole dual complex of 200 random toleranced balls is illustrated on Figure [3.19]
with the distribution of A values associated to Gabriel simplices and tetrahedra.(Note that in the affine case, all
tetrahedra are Gabriel, a property which does not hold in our case since four balls may contribute four tetrahedra
— one of them may be Gabriel.) The whole calculation took about 69 hours for 38,515,103 candidate tuples and
5004 simplices. There are 1971 Gabriel simplices and 1148 tetrahedra. Note that 88, 8% of Gabriel simplices and
tetrahedra appear in the A-complex for A < 1.

Figure 3.17: Example of 200 toleranced balls uniformly generated at random in a cube. Right. Inner balls (1 = 0).
Left. Outer balls (A = 1).
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Figure 3.18: Statistics for the reduced A-complex up to A = 1 for a random configuration of 200 toleranced balls.

density

Figure 3.19: Distribution of A values associated with Gabriel simplices and tetrahedra for a random configuration

of 200 toleranced balls.
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Chapter 4

The Nuclear Pore Complex: Material and
Methods

4.1 Introduction - Rationale

As shown in Chapter the reconstruction of the NPC in [ADV " 07a] is qualitative and analyzing directly the
information contained in probability density maps is a hard task. Our solution to gain this understanding consists
of using toleranced models, built from these probability density maps. In this perspective, the following elements
are presented in this chapter.

First, we discuss precisely several sub-complex of the NPC, namely the Nup84 sub-complex (called Y-complex),
the Nic96 sub-complex (called T-complex) and the Nup82 sub-complex. In doing so, we present so-called
skeleton graphs, which are graphs encoding the pairwise protein contacts within these these complexes. In
Chapter 6] these graphs will be used as probes to challenge the complexes observed in our toleranced models.

Second, we present in Section 4.3]a number of analysis on the density maps underlying our toleranced models.
Assessing the uncertainties of these maps is indeed mandatory to understand selected features of our toleranced
models.

Finally, in Section4.4] we present the algorithm used to construct toleranced models of the whole NPC from the
density maps.

4.2 Sub-systems of Interest

4.2.1 The Y-complex and Related Complexes

Each half spoke of the NPC restricted to the coat cylinder contains a heptamer called the Y-complex (Nup133,
Nup84, Nup145C, Sec13, Nup120, Nup85 and Sehl). To describe two models of the Y-complex and its
embedding in the NPC, illustrated on Figure we decompose the Y-complex into sub-systems, namely|'|the
Yy-short-arm, the Yy-long-arm, the Yy-edge, the Yx-tail, and the Y-arms, the Y-core, the Y-main, and Y -junction.
The model of the Y-complex proposed by Blobel et al. [KB09] presented on Fig. .1(Top left) comes from a
reconstruction involving single particle EM data, together with crystal structures of the Yx-short-arm, the
Yx-long-arm, the Yy-edge and Nup133. Using size-exclusion chromatography and analytical ultracentrifugation,
the authors show that two opposite proteins of the Y -complex namely (Nup120, Nup133) interact in a head-to-tail
fashion [SMD™09], a contact motivating the embedding of copies of the ¥Y-complex into the NPC in a ring-like
fashion. Kampman et al [M._11]] recently provided a strong support for an head to tail arrangement of these
complexes, in which 8 Y-complexes lie with their long axes parallel to the nuclear envelop plane and form two
rings through interaction of Nup133 with the arms of the neighboring Y -complexes.

Using the same pairwise contacts together with those involved in the Yx-tail, Brohawn et al. [BS0Q9] propose an
embedding of the Y-complex into the NPC where the Yx-tail extremities point towards the cytoplasmic and

I'The subscript X in Yx hints at a crystal structure.
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nuclear hemispheres of their respective half-spokes. This proposal is motivated by homology considerations with
coat vesicles and interactions with 7-complexes. We shall investigate these models using the skeleton graphs of

Figure[d.1]

Nup85

0

-

Nupl33 3

B Yy-short-arm : (Nup120) T Yy-edge : (I\u])84 Nup145C, Secl3) CytOplaSm
W Yx-long-arm : (Sehl, Nup85)
W Y-arms : (Nupl20, Sehl, Nup85)

ttul (Nup133, Nup84) Y -core : (Y-junction, \Iupzﬁl

( <— Half-spoke
TY junction : (Nup145C, Nup120, Nup85) NuCleuS
y Y-main : (Y-core, Ixupm Spoke

Figure 4.1: Model of the Y-complex and its embedding in the NPC. (Top Left.) Putative Y-complex model after
[KBQ9]. It is composed of 7 proteins: Nup133 (light red), Nup84 (red), Nup145C (yellow), Secl3 (orange),
Nup120 (green), Nup85 (blue) and Sehl (dark blue). The skeleton graph G, (Y) of the Y-complex is represented in
black solid lines. (Bottom Left.) Terminology used for sub-complexes of the Y-complex. (Top right.) Putative
arrangement of Y-complexes, from [KBQ9]. Interactions between Nup133 and Nup120 account for one ring of
head-to-tail Y-complexes in the cytoplasmic and nuclear hemispheres. (Bottom right.) Putative arrangement of
Y-complexes in a spoke [BS09]. Each spoke of the NPC contains two Y-complexes with Yy-tail pointing towards
the cytoplasmic and nuclear hemispheres.

4.2.2 The T-complex and Related Complexes

The nucleoporin Nic96 is located in the adapter cylinder, and makes the 7T-complex with instances of Nspl1,
Nup49 and Nup57 located in the channel cylinder. We split these proteins into the 7-core i.e. (Nic-96, Nspl) and
the T-leg i.e. (Nup49, Nup57), see Figure[d.2] Filaments of the latter three proteins are involved in the regulation
of the traffic trough the NPC. We are not aware of any crystal structure of complexes involving two or more such
proteins.

Contacts between proteins of the T-core were determined by purification experiments [GDH93]. Similarly, it has
been shown that Nup57 binds Nsp1 and Nup49 independently [SHL 97|, which motivates the first skeleton graph
G;(T) of the T-complex. A second skeleton graph G,(T-comp) encodes all possible contacts. This model is
warranted by in vitro binding assay experiments showing interactions between the filaments of the
T-leg proteins with Nic96. Finally, motivated by the graph analysis presented in Chapter[6} we introduce the
skeleton graph G, (T-new) referring to G;(7T-comp) without the contact between Nup57 and Nic96. See Figure
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Figure 4.2: Model of the T-complex and its embedding in the NPC (Top Left.) The T-complex consists of Nic96
(dark blue), Nspl (magenta), Nup49 (light blue) and Nup57 (apricot). Filaments are non structured domains of
Nspl, Nup49 and Nup57. (Bottom Left.) The skeleton graphs for the T-complex. (Right.) The putative location
of instances of the T-complex in the inner rim of the NPC.

4.2.3 The Nup82 Sub-Complex and Related Complexes

Restrained to the channel cylinder, the Nup82-complex is a trimeric complex involving Nup82, Nspl and
Nup159, especially localized in the cytoplasmic side [BSHP™98].. Interactions between Nup82 and Nsp1 was
shown by Eduard C. Hurt et al [GEW 95| using affinity purification with tagged Nsp1. However, mutant analysis
and affinity purification of tagged Nup82 reveal that the instances of Nsp1 involving in the 7-complex are not the
ones interacting with Nup82. Interactions between Nup82 and Nup159 were shown by Blobel et al [HdcB9S|].
Interestingly, transcriptional repression experiments show that Nup82 functionally interacts with the RNA
transport through the NPC, and Nup159 has a FXFG repeat sequence involving in the transport of mRNA through
the NPC.

4.3 On the Density Maps Used

The quality of the toleranced models built in section 4.4 depends on the accuracy of the probability density maps
used. All the probability density maps are shown in supplemental Section[4.5.1] A sketchy model of a
cytoplasmic half-spoke of the NPC derived from the probability density maps is shown in Figure It is meant
to intuitively position the proteins of the NPC with respect to one another.

In the following, on a per-density map basis, we report statistics aiming at qualifying these maps, in particular
regarding the number of connected components (c.c.) of voxels having a non null probability in Section#.3.1] and
the volume of these c.c. with respect to their expected volume in Section[d.3.2]
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Figure 4.3: Sketchy model for the architecture of the NPC. (Left) Side view (Right) Top view of a half-spoke
from the cytoplasmic side. Proteins are arranged into 5 layers, the middle one corresponding to the medial plane.
Proteins of the first three layers only are represented. Note that Nup145N is the only protein present on the nuclear
side only.

4.3.1 On the Number of Connected Components

Ideally, the number of c.c. of a map should match the stoichiometry of the corresponding protein. But this is not
always the case. To further this observation, Top of Figure [#.4]displays the number of c.c. for each density map:
this number is larger than / equal to / less than the stoichiometry in five / 19 / nine cases.

The 19 cases for which the stoichiometry matches with the number of c.c. are: Pom34, Seh1, Nup49, Nup57,
Nup145C, Nup82-1, Nup82-2, Nup84, Nup85, Nsp1-2, Nic96-1, Nic96-2, Nup100, Nup1, Nup120, Nup133,
Nup159, Nup170 and Nup188.

The nine cases for which the stoichiometry is lower than the number of c.c. are: Sec13, Gle2, Nup42, Nup53,
Nup59, Nup60, Nup145N-1, Nup145N-2 and Nup116. They correspond to ambiguous locations which induce
multiple connected components per instance. However, except for Sec13 and Nup116, the c.c. of the seven
remaining density maps may be visually grouped in the expected number of distinct clusters, avoiding ambiguity
on the location of instances.

The five cases for which the stoichiometry is larger than the number of c.c. are: Ndc1, Nspl-1, Pom152, Nup157
and Nup192. These cases occur when multiple c.c. located nearby merge. For Nspl and Ndcl, c.c. that are on the
same side of the NPC, but in two different spokes merge. For Nup170 and Nup192, two c.c. on the same spoke
but on both sides of the NPC merge. This phenomenon is extreme for Pom152, since a single c.c. corresponding
to a filled torus is observed. Note that merging the two density maps of Nup82 (called Nup82-1 and Nup§82-2)
results in eight c.c., see Figure d.19] However, each density map taken separately has eight c.c., allowing one to
assign one c.c. to each instance of Nup82.

4.3.2 On the Volume of Connected Components

In this analysis, we restrict ourselves to maps which have the correct stoichiometry, since the meaning of c.c. in
the remaining cases is unclear. For example, a c.c. within a plethoric map could be significant or could be
insignificant, depending on the values of the probabilities observed in this c.c.. In theory, analysing the relative
importance of c.c. in any map can be done using Morse theory and persistence theory, in a manner similar to the
algorithms developed in [CCS11]] in the context of Morse theory of the distance function. Yet, for general
(density) maps, effective algorithms for Morse-Smale decompositions yet have to be developed.

Let P be a protein type. We call reference volume Vol,.s(P) an estimation of the volume of P from its sequence
[HGC94]. Assume that the density map of P contains n c.c.. Denoting Vol (cc;) the volume of the ith c.c.,
consider the set of volume ratios

Vee; = Vol(cc;) [Volyer(P), fori=1,...,n. 4.1

We have drawn the box plots E] of the 19 density maps with correct stoichiometry on Bottom of Figure
Second, the whiskers extend to the extrema values of the plot, limited by 1.5 times the inter-quartile distance.

2Recall that the box plot of a set of values is presented as follows. First, the rectangle displays three values, namely the first and third
quartiles (small sides of the rectangle), and the median (bold line-segment inside the rectangle).
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Values below and above these thresholds are represented by circles. While most of the proteins have median
volume ratios in the range [2,5], small proteins such as Sec13, Pom34, Nup82-1, Nup82-2, Nup84, Nup85 have
worse values.

Statistics on connected components per density map
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Figure 4.4: Assessing the quality of probability density maps. The names of the 32 maps, with duplicate maps
for Nup82, Nspl, Nic96 and Nupl45N, are featured along the abscissa, and are sorted by increasing molecular
weight (from 33.0 x 10° for Sec13 to 191.5 x 103 for Nup192, see Table . Upper-part. Number of connected
components of voxels with non null density per density map—except for Pom152 which has a single c.c.. Disks
correspond to maps with a stoichiometry of 16, while triangles correspond to a stoichiometry of 8. The 19 maps
with black marks exhibit the expected stoichiometry, as opposed to the 13 maps with grey marks. Lower-part.
Box plots of the volume ratios v, of Eq. @) for density maps with a number of c.c. matching the stoichiometry
of the protein type.

4.4 Constructing Toleranced Models

The NPC model of [ADV"07a] involves 30 types, whence 34 maps due to four duplicated types (Nup82, Nspl,
Nic96, Nup145N). The map of Glel being missing from http://salilab.org/npc/, we use the remaining
33 maps as input, for a total of 29 types. We build a toleranced model for each type and merge them to obtain a
toleranced model of the whole NPC. Our toleranced model of the NPC comes from the superposition of the
toleranced models of the individual protein species. A probability density map involving n protein instances is
processed in two stages: first, the map is segmented into n connected regions of voxels, one per protein instance;
second, each such region is approximated by a canonical configuration of toleranced balls. In the sequel, we
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explain the two-stage process.

4.4.1 Allocating Occupancy Volumes

To begin with, we collect voxels in such a way that the volume covered by these voxels matches the estimated
volume of all instances, namely Vol,,r multiplied by the stoichiometry. For each instance, the set of voxels is
called the occupancy volume. These voxels are collected by a greedy region growing strategy [ADV " (7al
Caption of Figure 9, page 691]. More precisely, this strategy consists of incrementally enlarging a growing region
V by adding to it the neighboring voxels of V maximizing the density. Note that the number of collected voxels
depends on their volume, which is 1nm?> for the input maps. Note also that the greedy algorithm requires a
starting point for each protein instance p;, called its seed. We now explain how to select such seeds.

To describe the seed selection, we use the following terminology. The neighbors of a voxel in the map are the 26
adjacent neighbors—by a face, an edge or a vertex. Consider a connected component A of voxels with identical
density d. Any voxel of A is called a local maximum iff any voxel in the neighborhood of A has a density strictly
less than d. We call a candidate region a connected component of local maxima. Note that these definitions aims
at dealing with extended local maxima rather than local maxima reducing to an isolated voxel.

We apply a greedy strategy which consists of iteratively selecting the candidate regions with top priority, and of
updating the priorities of the remaining candidates. To define the priority and the update, denote S; the set of
regions selected after i steps. To define the priority of a candidate region r at step i, consider the two ingredients:

e the density dens(r) of the region;
e the minimum Hausdorff distanceEIfrom r to the regions already selected, namely H;(r) = minges, , H(r,s)

Given two candidate regions r and s, we say that s is dominated by r iff dens(s) < dens(r) and H;(r) < H;(s).
With these ingredients, the priority of a candidate region r is the number of candidate regions which are
dominated by r. The algorithm consists of iteratively selecting candidate region with top priority, and the update
step consists of updating the priorities of the remaining candidates.

This strategy calls for two comments:

e Maximizing the Hausdorff distance from a candidate to the regions already selected aims at privileging the
repartition and the symmetry of protein instances of the same type.

e The choice of the initial seed may or may not be problematic. For a map featuring a number of candidate
regions identical to the stoichiometry of the protein, the output is unique in any case. If the number of
candidate regions is larger than the stoichiometry, the placement of protein instances does not admit a
unique solution anyway.

4.4.2 Using Canonical Shapes
Creating Instances

Having allocating occupancy volumes, we compute a canonical representation involving 18 toleranced balls for
each instance. (In [ADV"(7al], at most 13 balls are used to represent a protein instance.) To see how a canonical
shape is assigned, consider an occupancy volume Oy to be covered with 18 toleranced balls of identical radius.
We perform a principal component analysis (PCA) of the centers of the voxels in Oy, from which we derive three
couples (eigen value, eigen vector): (vi(Oy),e1(Oy)), (v2(Ov),e2(Ov)) and (v3(Ov),e3(O0v)). Consider now the
three couples obtained from the PCA of the centers of a canonical configuration, denoted (v{(Cs),e1(Cs)),
(v2(Cs),e2(Cs)) and (v3(Cs),e3(Cs)). Let o be a permutation of the symmetric group of size 3—there are 6 such
permutations. We determine which canonical shape best represents the volume Oy by selecting the permutation
minimizing the following sum:

2= (vo() (Cs)eo(py (Cs) —vi(Oy )ei(0y))? 4.2)

An example of the three over four canonical shapes represented in the TOM of the NPC is given in Figure[d.3]

3The Hausdorff distance between two sets A and B is: max{sup,, infrepd(a,b),supycpinfacad(b,a)}



4.4. CONSTRUCTING TOLERANCED MODELS &3

isotropic a
e EEER
semi-linear # ’
A=0

Figure 4.5: Toleranced model of the whole NPC. (Left.) The three canonical configurations represented in the
toleranced model, 18 balls each, illustrated with protein types Nup120 (isotropic), Nup133 (flat) and Nup84 (semi-
linear). (Middle / Right.) Views of the inner balls (middle, A = 0), and outer balls (right, A = 1).

Setting Inner and Outer Radii

For a given protein type, the inner radius is set so that the volume of the union of the 18 inner balls matches the
estimated volume of the protein Vol,. . Since the probability density maps of large proteins tend to be more
accurate than those of small proteins, see Figure we set the outer radius such that the discrepancy ri+ —r; is
proportional to a/r; :

== (4.3)

Equation (4.3) provides a parametrization of the outer radius as a function of ¢ and r; . Consider a collection of
toleranced balls whose outer radii are set this way, that is {B;(c;; s =2

= % +r;)}. Under the assumption
ri = a/r; +r;, the equation (3.3) becomes

i =
Ti

A(Bi,x)zé(ﬂ ci—x || —r). 4.4)
If one equates two such equations to define a Voronoi bisector, that is A (B;,x) = A (B}, x), the o cancel out.
Phrased differently, the CW VD of the toleranced balls does not depend on «. Therefore, we arbitrarily set

o = 10 and compute the whole A-complex of the toleranced model.

Stopping the Growth Process

Stopping the growth process is naturally a critical issue. Given that our incentive is to account for the
uncertainties contained in the input data, the probability density maps for us, a natural strategy consists of
stopping the growth when the volume occupied by the grown proteins is too large. To this end, we define the
volume ratio of a protein in the toleranced model as the volume occupied by the restrictions of the balls defining
this protein in the compoundly weighted Voronoi diagram of the toleranced model, divided by the reference
volume Vol,.s(P) of that protein. (Practically, as computing the volume of restrictions in the compoundly
weighted Voronoi diagram is an open problem, we compute the volume of restrictions in the power diagram, see
[CKLII].) To examine models with decent geometric accuracy, we stop the growth process at A = Apax When the
smallest volume ratio of all instances is larger than the largest volume ratio observed for density maps in Section
Practically, we wet Aya.x = 1, which corresponds to a volume ratio of Vlmax >17.
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4.4.3 Assessing Toleranced Models
Definitions

We now wish to assess the geometric accuracy of the toleranced model of section[4.4.2] by comparing
sub-complexes with known crystal structures. To this end, given a crystal structure, term a sub-complex
encountered along the growth process of compliant provided that it contains protein instances of the types found
in the crystal structure. As seen from Table 4.1 we compare:

e Vol,.s The reference volume.

e V,_o,V,—1.4 Consider the Van der Waals model of a known crystal structure. We compute the volume V,—
of this model, and the volume V,_ 4 of the associated Solvent Accessible model, namely the model
obtained by expanding the VAW radii of 1.4A. These volumes are meant to provide references for the
volumes of toleranced models.

Ve first? Ve Ay, The volume of two compliant sub-complexes, namely the first one and the last one
encountered along the growth process, respectively encountered at A = lfim and A = A;,. Note that these
complexes are spotted from the Hasse diagram. Following the volume ratio of Eq. (5.1)), the volume of a
compliant sub-complex is computed as the sum of the volumes of its Voronoi restrictions in the power
diagram [[CKLI11]], using our software Vorlume, see http://cgal.inria.fr/abs/Vorlume/.

These volumes, expressed in nm?>, are denoted V., and V..

slfirst Mast*

Crystal Structures versus Reference Volumes

The upper left region of Table compares the reference volume to V,—p and V,— 4. Regarding Van der Waals
models, the ratio V,—o/Vol,. lies in the range 0.33 - 0.49, respectively for the Yy-edge and Nic96, showing that
Van der Walls volumes underestimate the volume of globular proteins. On the other hand, except for Nup133 and
the Yy-tail, the ratio V,—; 4/Vol,.s lies in the range 0.65 - 1.02, values respectively attained for the Yx-edge and
Nic96. Thus, Solvent Accessible models on a per-atom basis provide a relatively good approximation of reference
volumes estimated on a per-residue basis.

Reference Volumes versus Volumes of Compliant Sub-Complexes

As seen from the upper-right region of Table[4.T] except for three copies of Yx-long-arm, all compliant
sub-complexes appear at A = 0 with a volume ratio varying in the range 0.77 - 0.97 for the Yx-long-arm and the
Yx-short-arm. We note that these values are comparable to those of Solvent Accessible models. (As explained in
section[4.4] the inner radius is set such that the volume ratio of a compliant sub-complex of a protein for A = 0 is
equal to one. The values observed, which are less than one, are due to overlaps with other protein instances.)

The lower-right region of Table[d.T|reports these ratios for sub-complexes of ¥Y-complex and 7-complex with no
known crystal structure. All compliant sub-complexes of the Y -complex appear with a volume ratio in the range
0.83 - 2.22 for the Y-arms and the Y-main. For the T-complex, though, compliant sub-complexes have a volume
ratio in the range 0.17 - 1.49 for the T-leg and the T-core. The lower bound for the 7-leg corresponds to a copy
partially covered by the remaining toleranced proteins of the NPC, whence a considerably reduced volume.
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. . ° Ve—o Vi—14 “")'fir.\'l V"'llusr
Protein types ref. PDBid | Res (A) Volpe Vilyer Vol.f Afirst Volper Mast Vol,et
Yx-edge [NHDT09] | 3IKO 3.20 0.33 0.66 3243 ][0 0.83 0 0.87

BS09] 31RO 4.00 0.31 0.65 3243 ][0 0.83 0 0.87

[ Yx-long-arm [ [DMST08] [ 3F3F [ 290 [ 048 [097 [ 1533 [0 [077 017 [ 165 |

[ | IBLST08] [ 3EWE [ 350 [ 037 [ 079 [ 1533 ][0 [077 [ 017 | 165 |
Yy -short-arm [SMD™09] [ 3F7F 2.60 0.45 0.91 149.8 [ 0 0.89 0 0.97
[SMDT09] [ 3H7N [ 3.00 0.45 0.91 1498 [ 0 0.89 0 0.97
[LBS09] 3HXR | 3.00 0.41 0.85 1498 ][ 0 0.89 0 0.97

[ Yx-tail (homologous) [ [WS09] [ 3R [ 353 [023 [O051 [2099 [[0 TJ079 [0 T[08 |

| Nup133 (N-terminal) | [SMD'04] [ 1XKS [ 235 [ 020 [042 [1657 [0 [082 [0 [091 |

[ Nic96 [ [IS071 [2QX5 [250 045 [092 [1199 [[0 TJ077 [0 T[08 |

| Nic96 | ISSET08] [2RFO [ 260 [ 049 [ 1.02 [ 1199 [0 [077 [0 |08 |
Y-arms 3021 [ 0 0.83 0 0.93
Y-junction 434.6 ]| 0.04 | 1.14 0.58 | 2.07
Y-core 5388 [| 0 0.86 0.44 [ 218
Y-main 7045 ]| 0 0.86 044 | 222
Y-complex 7931 ][ 0.04 | L.11 021 | 1.85
Tleg 3548 J[ 0 0.17 0 0.27
T-core 2242 ][0 0.79 0.15 | 1.49
T-complex 579.0 0 0.48 0.15 | 0.78

Table 4.1: Comparison of volumes of selected proteins and sub-complexes : crystal structures versus toleranced
models. Top. Crystal structures versus toleranced models of sub-complexes of the Y-complex and the T-complex.
Bottom. Toleranced models of interesting sub-complexes of the NPC.

On the canonical shapes of protein instances

In [ADV ' 07a], a protein model consists of tangent balls, and up to nine representations of varying resolution (i.e.
number of balls) are used per protein type, at different stages of the reconstruction algorithm—see Fig. [T.5]in
Chapter[T] The number of balls for the finest resolution is determined by the nearest integer value of the axial ratio
of a prolate ellipsoid (a rugby ball) computed from the sedimentation coefficient of the protein. The details can be
found in [ADV™07a, Supplemental table 5, page 92], and the maximum number of balls is reproduced in the last
column of Table[d.2] We note in passing that n tangent balls positioned along a line-segment yield a maximum
elongation ratio of n : 1. The NPC reconstruction algorithm distorts i.e. folds these initials representations;
unfortunately, Sali et al. [ADV"07al] do not report any information of the final configurations of balls.

Comparing the finest representation of Alber et al against our four canonical configurations in the toleranced
model calls for the following comments. First, the linear configuration case is not found in the toleranced model.
Second, a number of mismatches are possibly observed, in particular when Alber et al use elongated models
while our instances are flat or roughly isotropic. (Here, possibly just means that the assessment is based on the
initial shapes of the proteins in Alber et al, not on the final ones—which we do not know.) To understand these
potential discrepancies, we examine three cases—see Table [4.2| for the number of instances of each type in the
toleranced model:

e Nupll6, see Figure@ Alber et al use 13 balls while we observe a repartition of (0,0,1,7) for the four
canonical shapes. This mismatch clearly comes from the quality of the density map. First, it is very
disconnected and the 25 connected components of the map do not account for a stoichiometry of eight.
Second, the eight sets of voxels selected to represent the eight instances are roughly isotropic.

e Nupl59, see Figure Alber et al use 11 balls while we observe a repartition of (0,0,4,4). Visual
inspection of the map shows that connected components are well resolved; yet the geometry of the
components do not support an elongation ratio of 11:1.

e Nupl00, see in Figure[d.24] Alber et al use 13 balls while we observe a repartition of (0,0,0,8). This case is
similarly to that of Nup159, as the well resolved-ness of the map contrasts with the 11:1 ratio.
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Protein type | Average Stoich. | #linear | #semi | #flat | #roughly | #balls in
Mol. Weight linear isotropic | [ADVT07b]
(x10%)
Nup192 191.5 16 0 0 0 16 2
Nup188 188.6 16 0 0 0 16 2
Nup170 169.5 16 0 0 7 9 2
Nup159* 158.9 8 0 0 4 4 11
Nup157 156.6 16 0 0 0 16 3
Pom152 151.7 16 0 6 8 2 10
Nup133 133.3 16 0 0 6 10 2
Nup120 120.4 16 0 0 2 14 2
Nupl16* 116.2 8 0 0 0 8 13
Nupl* 113.6 8 0 0 4 4 9
Nup100* 100.0 8 0 0 0 8 13
Nic96-1 96.2 16 0 0 0 16 2
Nic96-2 96.2 16 0 0 0 16 2
Nspl-1%* 86.5 16 0 0 10 6 12
Nspl1-2* 86.5 16 0 0 0 16 12
Nup85 84.9 16 0 0 0 16 3
Nup84 83.6 16 0 1 5 10 3
Nup82-1 82.1 8 0 0 1 7 2
Nup82-2 82.1 8 0 0 0 8 2
Nup145C 81.1 16 0 0 0 16 2
Ndcl 74.1 16 0 1 7 8 2
Nupl45N-1* | 64.6 8 0 0 0 8 6
Nupl45N-2* | 64.6 8 0 0 0 8 6
Nup60* 59.0 8 0 0 0 8 4
Nup59* 58.8 16 0 0 6 10 4
Nup57* 57.5 16 0 0 0 16 3
Nup53* 52.6 16 0 0 6 10 3
Nup49* 49.1 16 0 0 0 16 3
Nup42* 42.8 8 0 0 3 5 5
Gle2 40.5 16 0 0 1 15 1
Sehl 39.1 16 0 0 0 16 1
Pom34 34.2 16 0 1 13 2 3
Secl3 33.0 16 0 0 4 12 1
Total NA 448 0 9 86 353 NA

Table 4.2: Protein types sorted by decreasing average molecular weights (no dimension, first column), their stoi-
chiometry (2nd column), the number of instances for the four canonical shapes in the toleranced model of the NPC
(columns 3-6), and the number of beads used at the finest representation level by Alber et al
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4.5 Supplemental

4.5.1 Probability Density Map Pictures

Figure 4.6: Secl3 (Vol,.; = 40.7nm?) Top. Probability density map with all no null voxels (left) and with all
voxels with a density larger than the half of the maximum density (right). There are 32 c.c. Bottom. Toleranced
proteins of Sec13 with their outer balls (left) and their inner balls (right).
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Figure 4.7: Pom34 (Vol,.;y = 42.627nm>) Top. Probability density map with all no null voxels (left) and with all
voxels with a density larger than the half of the maximum density (right). There are 32 c.c. Bottom. Toleranced
proteins of Pom34 with their outer balls (left) and their inner balls (right).
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Figure 4.8: Sehl (Vol,.;r = 47.892nm*) Top. Probability density map with all no null voxels (left) and with all
voxels with a density larger than the half of the maximum density (right). There are 16 c.c. Bottom. Toleranced
proteins of Seh1 with their outer balls (left) and their inner balls (right).
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Figure 4.9: Gle2 (Vol,.y = 49.6nm>) Top. Probability density map with all no null voxels (left) and with all voxels
with a density larger than the half of the maximum density (right). There are 25 c.c. Bottom. Toleranced proteins
of Gle2 with their outer balls (left) and their inner balls (right).
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Figure 4.10: Nup42 (Vol,.r = 51.853nm>) Top. Probability density map with all no null voxels (left) and with all
voxels with a density larger than the half of the maximum density (right). There are 13 c.c. Bottom. Toleranced
proteins of Nup42 with their outer balls (left) and their inner balls (right).
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Figure 4.11: Nup49 (Vol,.r = 60. 199nm*) Top. Probability density map with all no null voxels (left) and with all
voxels with a density larger than the half of the maximum density (right). There are 16 c.c. Bottom. Toleranced
proteins of Nup49 with their outer balls (left) and their inner balls (right).
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Figure 4.12: Nup53 (Vol,.r = 64.695nm>) Top. Probability density map with all no null voxels (left) and with all
voxels with a density larger than the half of the maximum density (right). There are 18 c.c. Bottom. Toleranced
proteins of Nup53 with their outer balls (left) and their inner balls (right).

Figure 4.13: Nup57 (Vol,.r = 70.401nm>) Top. Probability density map with all no null voxels (left) and with all
voxels with a density larger than the half of the maximum density (right). There are 16 c.c. Bottom. Toleranced
proteins of Nup57 with their outer balls (left) and their inner balls (right).
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Figure 4.14: Nup59 (Vol,.r = 71.3nm>) Top. Probability density map with all no null voxels (left) and with all
voxels with a density larger than the half of the maximum density (right). There are 20 c.c. Bottom. Toleranced
proteins of Nup59 with their outer balls (left) and their inner balls (right).

‘..‘ ‘. ‘@ &

Figure 4.15: Nup60 (Vol,.r = 72.133nm>) Top. Probability density map with all no null voxels (left) and with all
voxels with a density larger than the half of the maximum density (right). There are 16 c.c. Bottom. Toleranced
proteins of Nup60 with their outer balls (left) and their inner balls (right).
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Figure 4.16: Nupl45N (Vol,.; = 179.4nm3) Top. Combined probability density maps of Nupl45N-1 and
Nupl45N-2 with all no null voxels. Nup145N-1 : probability density map with all no null voxels (top left),
and with voxels having density larger than the half of maximal density (top right), and toleranced proteins with
outer balls (bottom left) and inner balls (bottom right). There are 16 c.c. Nup145N-2: probability density map
with all no null voxels (top left), and with voxels having density larger than the half of maximal density (top
right), and toleranced proteins with outer balls (bottom left) and inner balls (bottom right) There are 13 c.c.
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Figure 4.17: Ndcl (Vol,.r = 92.760nm>) Top. Probability density map with all no null voxels (left) and with all
voxels with a density larger than the half of the maximum density (right). There are 14 c.c. Bottom. Toleranced
proteins of Ndc1 with their outer balls (left) and their inner balls (right).

Figure 4.18: Nup145C (Vol,.r = 179.373nm>) Top. Probability density map with all no null voxels (left) and with
all voxels with a density larger than the half of the maximum density (right). There are 16 c.c. Bottom. Toleranced
proteins of Nup145C with their outer balls (left) and their inner balls (right).
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Figure 4.19: Nup82 (Vol,.; = 101.9nm3) Top. Combined probability density maps of Nup82-1 and Nup82-2 with
all no null voxels. Nup82-1: probability density map with all no null voxels (top left), and with voxels having
density larger than the half of maximal density (top right), and toleranced proteins with outer balls (bottom left)
and inner balls (bottom right). There are 8 c.c. Nup82-2: probability density map with all no null voxels (top
left), and with voxels having density larger than the half of maximal density (top right), and toleranced proteins
with outer balls (bottom left) and inner balls (bottom right) There are 8 c.c.
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Figure 4.20: Nup84 (Vol,.r = 104. 171nm>) Top. Probability density map with all no null voxels (left) and with all
voxels with a density larger than the half of the maximum density (right). There are 16 c.c. Bottom. Toleranced
proteins of Nup84 with their outer balls (left) and their inner balls (right).
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Figure 4.21: Nup85 (Vol,.r = 105.416nm>) Top. Probability density map with all no null voxels (left) and with all
voxels with a density larger than the half of the maximum density (right). There are 16 c.c. Bottom. Toleranced
proteins of Nup85 with their outer balls (left) and their inner balls (right).
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Figure 4.22: Nspl (Vol,.y = 104.4nm>) Top. Combined probability density maps of Nsp1-1 and Nsp1-2 with all
no null voxels. Nsp1-1: probability density map with all no null voxels (top left), and with voxels having density
larger than the half of maximal density(top right), and toleranced proteins with outer balls (bottom left) and inner
balls (bottom right). There are 12 c.c. Nsp1-2: probability density map with all no null voxels (top left), and with
voxels having density larger than the half of maximal density (top right), and toleranced proteins with outer balls
(bottom left) and inner balls (bottom right) There are 16 c.c.
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Figure 4.23: Nic96 (Vol,.r = 119.9nm3) Top. Combined probability density maps of Nic96-1 and Nic96-2 with
all no null voxels. Nic96-1: probability density map with all no null voxels (top left), and with voxels having
density larger than the half of maximal density (top right), and toleranced proteins with outer balls (bottom left)
and inner balls (bottom right). There are 16 c.c. Nic96-2: probability density map with all no null voxels (top
left), and with voxels having density larger than the half of maximal density (top right), and toleranced proteins
with outer balls (bottom left) and inner balls (bottom right) There are 16 c.c.
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Figure 4.24: Nup100 (Vol,.; = 121.039nm>) Top. Probability density map with all no null voxels (left) and with
all voxels with a density larger than the half of the maximum density (right). There are 8 c.c. Bottom. Toleranced
proteins of Nup100 with their outer balls (left) and their inner balls (right).
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Figure 4.25: Nupl (Vol,.r = 138.103nm>) Top. Probability density map with all no null voxels (left) and with all
voxels with a density larger than the half of the maximum density (right). There are 8§ c.c. Bottom. Toleranced
proteins of Nupl with their outer balls (left) and their inner balls (right).
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Figure 4.26: Nup116 (Vol,.; = 141.053nm>) Top. Probability density map with all no null voxels (left) and with
all voxels with a density larger than the half of the maximum density (right). There are 25 c.c. Bottom. Toleranced
proteins of Nup116 with their outer balls (left) and their inner balls (right).

Figure 4.27: Nup120 (Vol,.r = 149.8nm>) Top. Probability density map with all no null voxels (left) and with all
voxels with a density larger than the half of the maximum density (right). There are 16 c.c. Bottom. Toleranced
proteins of Nup120 with their outer balls (left) and their inner balls (right).
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Figure 4.28: Nup133 (Vol,.; = 165.734nm>) Top. Probability density map with all no null voxels (left) and with
all voxels with a density larger than the half of the maximum density (right). There are 16 c.c. Bottom. Toleranced
proteins of Nup133 with their outer balls (left) and their inner balls (right).

-

== N

Figure 4.29: Pom152 (Vol,.r = 188.354nm>) Top. Probability density map with all no null voxels (left) and with
all voxels with a density larger than the half of the maximum density (right). There is 1 c.c. Bottom. Toleranced
proteins of Pom152 with their outer balls (left) and their inner balls (right).
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Figure 4.30: Nup157 (Vol,.r = 194.7nm?) Top. Probability density map with all no null voxels (left) and with all
voxels with a density larger than the half of the maximum density (right). There are 8 c.c. Bottom. Toleranced
proteins of Nup157 with their outer balls (left) and their inner balls (right).

Figure 4.31: Nup159 (Vol,.r = 193.902nm>) Top. Probability density map with all no null voxels (left) and with
all voxels with a density larger than the half of the maximum density (right). There are 8 c.c. Bottom. Toleranced
proteins of Nup159 with their outer balls (left) and their inner balls (right).
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Figure 4.32: Nup170 (Vol,.r = 210.930nm*) Top. Probability density map with all no null voxels (left) and with
all voxels with a density larger than the half of the maximum density (right). There are 16 c.c. Bottom. Toleranced
proteins of Nup170 with their outer balls (left) and their inner balls (right).
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Figure 4.33: Nup188 (Vol,.r = 237.054nm*) Top. Probability density map with all no null voxels (left) and with
all voxels with a density larger than the half of the maximum density (right). There are 16 c.c. Bottom. Toleranced
proteins of Nup188 with their outer balls (left) and their inner balls (right).
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Figure 4.34: Nup192 (Vol,.; = 239.604nm>) Top. Probability density map with all no null voxels (left) and with
all voxels with a density larger than the half of the maximum density (right). There are 10 c.c. Bottom. Toleranced
proteins of Nup192 with their outer balls (left) and their inner balls (right).
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Chapter 5

Assessing the Reconstruction of
Macro-Molecular Assemblies: Contact
Probabilities and Sub-complexes

5.1 Introduction - Rationale

In molecular modeling, facing uncertainties on the shape of proteins and/or on their positions is commonplace.
The case of interest in this thesis is that of probability density maps, namely those computed from the
reconstructions of the NPC. In section[4.4} we have seen how to construct a toleranced model for such maps, so as
to take into account high and low confidence regions. This chapter makes three contributions.

First, we describe in Section[5.2]a panoply of tools to analyze the toleranced model of a macro-molecular
assembly. Second, we present in Section[5.3]an analysis of the contacts between protein types, and show that our
contact probabilities go beyond the frequencies defined by Sali et al. Third, we develop our analysis over three
sub-complexes of the NPC: the Y-complex in Section the T-complex in Section[5.3]and the Nup82-complex
in Section

5.2 Analysis Tools for Toleranced Models of Proteins and Assemblies

5.2.1 Tracking Contacts Between Proteins in Toleranced Models

Toleranced proteins and assemblies. We define a toleranced protein (denoted p; as for protein instances) as a
collection of toleranced balls, and a toleranced assembly as a collection of toleranced proteins. For a given value
of A, a protein of intermediate size is denoted p;[A], and %, denotes the domain corresponding to the union of
growing balls, that is .7, = U;B;[A] = U;p;[A]. For a fixed A, the topology of the domain .%; is of utmost
interest: a connected component of this domain is called a complex; the domain is called a mixture if it involves

several complexes.

This terminology clearly holds when all the protein types are equivalent. Because a number of experiments are
conserved with a set of specific protein types, we may also segregate all the protein types into blue and red types.
In this bicolor setting, we shall focus on connected components involving red proteins only. Again, this setting is
meant to deal with models of large assemblies, where the red group will refer to the protein types involved in a
TAP experiment or to those seen in a sub-complex. These notions are illustrated on Figure

Curved Voronoi diagrams. To compute complexes and mixtures in the bicolor setting, we resort to the theory
of curved Voronoi diagrams and o-shapes presented in Chapter 3] Intuitively, the growth process of Eq. (3.3)
allows one partition the three-dimensional space of into so-called Voronoi regions, with one region V; for each
toleranced ball B;: a point x belongs to V; if the growing ball B;[A] reaches point x before any ball B;[A] # B;[A].
A region V; is bounded by curved bisectors defined by B; and neighboring balls.

105
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For a given ball B;[A], consider its restriction to its Voronoi region, that is the intersection B;[1] NV;. These
restrictions naturally partition the domain .%,, and their connected components correspond to the aforementioned
complexes. Moreover, we use the pairwise intersections between the restrictions involved in a complex C to
define its skeleton graph Gc: its nodes are the toleranced proteins of C; an edge links p; and p; provided that there
exists two intersecting restrictions, one from p; and one from p;.

Remark 15. The pairs of balls reported correspond to balls whose restrictions intersect, and these pairs form a
subset of all pairs of intersecting balls. In line with this comment, if ones keeps growing balls all the way to

A = oo, one does not end up with all pairs of intersecting balls, but the pairs giving rise to a bisector in the
Voronoi diagram defined by the balls. For a large enough value of A, the pairs obtained are the abstract simplices
of the dual complex of the Voronoi diagram.

A-complex versus partial A-complex. In Chapter we have introduced the partial A-complex, see remark
The underlying motivation is of computational nature: the only known algorithm to compute the A-complex has
O(n’) complexity, while a naive scan of all pairs of toleranced balls yields a computation of Gabriel edges in
O(n?) time—with n the number of toleranced balls.

From a practical standpoint, recall that our model of a half-spoke contains 33 x 18 = 594 toleranced balls for 33
protein instances, so that the whole toleranced model of the NPC contains 594 x 16 = 9504 toleranced balls.
These sizes and complexities explain why the A-complex can be computed on a half-spoke, but not on the whole
NPC, which we processed with the partial A-complex. However, as explained in supplemental Section the
difference between both complexes is not significant.

5.2.2 Analyzing Proteins and Contacts during the Growth Process

Stability analysis. Growing A results in merges between complexes. The set of finite topologies[ﬂ
corresponding to this evolution can be represented in a directed acyclic graph called Hasse diagram, a special
graph whose nodes are the complexes, with an edge joining (generically) two nodes when the complexes merge
along the growth process. The origin (endpoint) of an edge therefore represents the birth (resp. death) of a
complex C: at A = A,(C), the complex gets formed by a merge of two or more complexes; at A = A,4(C), the
complex dies by merging with at least another complex. Thus, the lifetime [(C) = 44(C) — A,(C) provides a
measure of the topological stability of the complex C. Also, the ancestors and successors of C are the complexes
contained into and containing, respectively, the complex C. See Figure[5.I(Bottom right) for an illustration.

In the bicolor setting, let T be the list of red protein types. A complex C of the Hasse diagram is made of
instances whose types are in 7. If each type of T is present exactly once in C, the complex C is termed an isolated
copy. The number and the lifetime of isolated copies give a measure of the separability of the different copies of a
complex involving all the types of 7. Note that the intersection of the lifetime intervals of the different isolated
copies may be empty.

Volume ratio. Estimating the volume Vol,.¢(p;) of a protein instance p; from its sequence [HGC94], let
Volyef(C) = ¥ p,cc Volrer(pi) the reference volume of the complex C, estimated from its constituting instances.
On the other hand, for a fixed A, let VoI, (C) be the volume of the complex C, defined as the sum of the volumes
of the Voronoi restrictions E] of its toleranced proteins. The following ratio, which should ideally be close to one,
is used to make a geometric assessment:

V(C) =Vol; (C)/Vols(C). (5.1

Mining contacts. At the local level, the complexes encountered in the Hasse diagram can be used to evaluate
protein contacts with respect to 3D templates known at atomic resolution. To quantitatively characterize pairwise
contacts between instances of two protein types (P, P;), we define a contact probability depending on the

'We track the evolution of connected components, but not that of higher order homology generators.
2In the bicolor setting, the volume of a red complex is defined from its constituting red restrictions in the CW Voronoi diagram. Practically,
however, we add up the volumes of the restrictions in the power diagram, as explained in [CKL11].
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stoechiometry k of the interaction between these two proteins by pgf) =1—A(P,,Pj)/ Amax, With A (P;, P;) the first
value of A for which k contacts are established between instances of two protein types (P, P;), and with Amax the A
value where the growth process stops. As explained in Section[.4] Ay is set to retain acceptable volume ratios.
The variation of pl(? as a function of k, called the contact curve, is a key feature to assess whether an
unambiguous stoichiometry exists for the contact between instances of two types. We use contact curves to define:

()

® (1) kign, the largest stoichiometry observed for the probability p;;";

*)

e (ii) kjo, as the largest stoichiometry for which p; ;> 0;

e (iii) kgyop, the stoichiometry maximizing the probability drop ) pgf) = pE;f) — p§f+l>;

()

o (iv) s(kgrop) = pl(}) /6 pgfhigl’) the significance of the largest variation with respect to p;;”.

Two prototypical contact curves illustrating these notions are presented on Fig. [5.2] The first one, for (Nup84,
Nup145C), is the ideal case since pgo takes only two values: 1 or 0. The second one, that of (Nup84, Nup85)

poses interpretation problems, since it does not contain any significant plateau.

5.2.3 Combining the Geometric, Topological and Biochemical Assessments

Assume that the red proteins are instances of types prescribed in a set 7', typically corresponding to a TAP
pulldown. The following parameters can be assessed.

Stoichiometry. Analyzing the complexes of the Hasse diagram has several interests: first, one sees whether the
set T corresponds to a single complex or to a mixture of complexes; second, one can spot the isolated copies
associated to the set T — see Section third, if T corresponds to a TAP experiment, one can check whether
each complex contains the tagged protein.

Symmetry. For an assembly with symmetries, one can compare the number of complexes with the expected
number. For example, in the NPC, the multiplicity of selected complexes is expected to be 16.

Topological stability. In Section[5.2.2] the stability of a complex has been defined as the difference between its
birth and death dates. This information is particularly relevant to know when a given complex collides with
another one to form a larger complex. For an assembly involving a prescribed number of complexes, one expects
the variation of the number of complexes as a function of 4 to exhibit a plateau. Also, for an assembly with
symmetries, the homogeneity of the model can be inferred from the stability of complexes featuring the same
types, but located in different places.

Geometric accuracy. A complex may involve the correct protein instances, but may have a loose geometry.
Comparing its volume to that occupied by its constituting instances is the goal of the volume ratio of Eq. (5.1).

Contact probabilities. A contact between two toleranced proteins is relevant if it appears early during the
growth process. Comparing the contact probabilities of all contacts between toleranced proteins of two given
types P; and P; gives: (i) an assessment on the significance of the interaction between protein instances of types P;
and P}, and (ii) an estimation of the stoichiometry of the interaction between P; and P;.

5.3 Results: Contact Probabilities of All Pairs of Protein Types
5.3.1 Contact Probabilities versus Contact Frequencies

ij

For k = 1, we compare the probability p(!) to the contact frequency f;;—refer to section for the definition of
fij- As discussed in Section@ there are 29 protein types and 435 possible contacts, including homotipic ones.
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Using the two probabilities 0 < a < b < 1, the 435 contact frequencies f;; are sorted into three classes in
[ADV*07al:
Fi:fij<a Fa:a<fij<b; F3:b< fij.

Similarly, we segregate the contacts observed from the Hasse diagram into the three classes

Pl(l) : l(jl) <a; Pz(l) ra< p,(;) < b, P3(1) b < pS}).

For a = 0.25, b = 0.65 and Ay, = 1, the sizes of the classes are | F} |= 325, | F» |= 79 and | F3 |= 31. Moreover,
93.5% of the contacts in F3 belong to P3(1), and 60.5% of the contacts in F; belong to P1<1>. The contact probability
is more discriminative than the contact frequency since the maximum number of contacts in Pz(l) and F; are
respectively of 53 and 79. For the more stringent values ¢ = 0.1, b = 0.9 and Ap,x = 1, one has

| Fi |=220,| F; |= 196 and | F5 |= 19 contacts. Then, 79% of contacts in F3 belong to P3(1), 73% of contacts in F

belong to le, while the maximum number of contacts in PZ(1> is 95—to be compared to 196 contacts in F>. See

Figures[5.3]and [5.4]

We also use the values a = 0.1, b = 0.9 to report mismatches. A pair of types belonging to F; but P3(1) is called
over-represented in the toleranced model. Table[5.1]lists the 23 over-represented pairs. Note that all these
contacts are over-represented for Ayax > 0.21, which clearly indicates that the corresponding contacts appear

early in the growth process. Similarly, a pair belonging to F3 but Pfl) is termed under-represented in the
toleranced model. Table lists such cases, which are under-represented for Ayax < 0.28. The illustrations
presented on Figures [5.5] and[5.6]clearly support our contact probability.

Contact fij pi}) Amax
Nup59 Nup59 0 1 0
Pom34 Pom34 0.02 | 1 0
Nspl Nspl 0.02 |1 0
Nup60 Nup145N | 0.03 | 1 0
Nup60 Pom34 003 |1 0
Nupl145N Nup49 | 0.04 | 1 0
Nupl Nupl45N | 0.05 | 1 0
Nup60 Ndcl 0.06 | 1 0
Nup84 Nup60 0.07 | 1 0
Nspl Nupl145N 0.07 | 1 0
Nup145C Nup60 | 0.08 | 1 0
Sec13 Nup159 0.08 | 1 0
Nspl Nup60 0.08 | 1 0
Nup49 Nupl16 0.08 | 1 0
Nup57 Nupl145N | 0.08 | 1 0
Nspl Nup42 0.09 | 1 0
Nup60 Nup59 0.09 | 1 0
Nup42 Nupl16 0.09 | 1 0
Nup57 Nupl16 0.09 | 1 0
Sec13 Nupl45N | 0.1 1 0
Nup59 Pom34 0.03 | 09 | 0.15
Seh1 Nup60 0.06 | 0.9 | 0.18
Gle2 Nup57 0.08 | 0.9 | 0.21

Table 5.1: Over-represented pairs of types in the toleranced model for a = 0.1 and b = 0.9—that is pairs in P3(1>
and Fj. The last column is the smallest Ay, value for which the contact is over-represented—the smaller the value
the more significant the contact.
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Contacts fij p,( j] ) Amax
Nup192 Pom152 | 0.98 | O 1

Nup170 Ndcl 091 | 0.1 | 0.35
Nup188 Nic96 1 0.1 | 0.32
Pom152 Pom34 1 0.1 0.28

Table 5.2: Under-represented pairs of types fora = 0.1 and b = 0.9, i.e. pairs in Pl(l) and F3. The last column is the
largest Amax value for which the contact is under-represented—the larger the value the less significant the contact.

5.3.2 Contact Probabilities with Prescribed Stoichiometry &

To leverage the previous information, we now focus on pairs of types making a prescribed number of contacts.
For Amax = 1, e observe 183 contacts (over 435) with p!}) > 0.65, but only 36 with p{}® > 0.65.

Inspecting all pairs. We inspect how the number of contacts such that pl@ > 0.65 decreases with k. For a given

Amax and two fixed probabilities 0 < a < b < 1, the contacts observed in the Hasse diagram are partitioned into
the classes Pl-(k) ,i =1,2,3. The variation of the cardinality of these classes with Ayax and & is displayed on Figure
We note that the curves are just shifted when A, varies, showing the consistency of contact probabilities
with respect to Apmax. In the following, we consider Ayax = 1 (solid lines).

The red and blue curves show that the contact probability to have k instances of the contacts between two protein
types decreases when k increases. The green curves show the discriminant property of the contact probability

(1)

since less than 40 pairs of protein types are in P, ', and green curves tend to decrease when k increases.

Grouping proteins in sub-complexes. Consider the graph G whose edges correspond to types displaying at
least 11 contacts. Term a sub-graph H of G a complete sub-graph if there exists an edge between every pair of
nodes of H. In addition, a sub-graph H of G is termed a quasi-complex sub-graph if by adding one edge, it
becomes a complete sub-graph. Computing the cliques and quasi-cliques of size four, as seen from Fig. [5.8]
uncovers sub-complexes of the NPC, including two sub-units of the Y-complex (one containing Nup120, Nup85
and Seh1, the other one containing Nup133, Nup84, Nup145C and Sec13), the T-complex and the
Nup82-complex.

5.4 Results: Y-complex Analysis

5.4.1 Contact probabilities

We have seen in Section[d.2.1| that the current model proposed for the ¥ -complex involves six contacts between
the seven protein instances.

At the local level, previously established contact frequencies f;; between the various types present in the
Y-complex were not discriminative [ADV " 07al], see Table In contrast, contact probability analysis revealed
that out of the six expected binary contacts within the NPC, four had a high probability to occur 16 times as
expected (kgr,p = 16) and one was slightly less consistent (k;,,, = 12). However only two contacts was observed
between Nup120 and Nup145C whereas additional pairs had an unexpected high contact probability, indicating
that these proteins are poorly positioned with respect to each other in the current model. While [SMD™09]
previously suggested that interaction between Nup133 and Nup120 was required for ring closure, contact analysis
only revealed 1 significant contact between these two proteins with however 6 additional contacts between
Nup133 and Nup85.

5.4.2 Stoichiometry, symmetry, stability

We have described in section[d.2.1] the two competing models for the embedding of the ¥-complex in the NPC.
These two models imply that different copies of the Y-complex interact, and question the prominence of contacts
within a Y-complex, and in-between Y -complexes.
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Protein types fis khigh | Kdrop pl(-fdm”) $(kdrop) | min VAkhigh max VAkdmp
(Nup133, Nup84) 0.571 | 16 16 1.00 1.00 0.77 0.91
(Nup145C, Nup84) 1.000 | 16 16 1.00 1.00 0.77 0.88
(Nup120, Sehl) 0.837 | 16 16 1.00 1.00 0.82 0.92
(Nup133, Nup145C) | 0.589 | 16 16 1.00 1.00 0.82 0.90
(Nup120, Nup85) 0.569 | 16 16 1.00 1.00 0.88 0.98
(Nup85, Sehl) 1.000 | 12 16 0.93 1.07 0.77 1.27
(Nup120, Secl3) 0284 |5 16 | 064 | 1.56 0.82 410
(Nup133, Secl3) 0.381 | 11 14 0.69 1.45 0.80 3.91
(Nup84, Secl3) 0.66 8 14 0.54 1.85 0.70 4.49
(Nup85, Secl3) 0.227 | 4 13 0.57 1.76 0.77 8.57
(Nup145C, Secl3) 0.503 | 12 12 1.00 1.00 0.79 0.86
(Sec13, Sehl) 0.233 | 4 9 0.65 1.55 0.57 6.88
(Nup120, Nup8&4) 0.487 | 1 8 0.60 1.68 0.91 3.26
(Nup84, Sehl) 0.376 | 1 7 0.49 2.06 0.79 3.89
(Nup145C, Sehl) 0.359 |1 4 0.34 2.98 2.19 3.04
(Nup120, Nup145C) | 0.498 | 1 2 0.86 2.21 1.02 1.49
(Nup120, Nup133) 0.465 | 1 1 1.00 2.18 0.92 0.92
(Nup®4, Nups5) 0543 | 1 1 1.00 | 2.71 0.89 0.89

Table 5.3: Contact probabilities versus contact frequencies for the Y-complex. Out of 21 pairs of the 7 protein
types, 19 pair yield at least one binary complex—pairs with no contact in the TOM are not represented. The grey
column displays the contact frequencies f;; of [ADVT07a]. Pairs are sorted by decreasing karop, and are color-
coded as follows: green: contacts of the skeleton of the Y-complex; red: putative contact accounting for the closure
of the two rings [SMDT09]); orange: predominant contact accounting for the closure of the two rings in the TOM.
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The evolution of complexes involving the seven types of the Y-complex is provided by the Hasse diagram on
Figure (Top). Out of 16 expected copies of the Y-complex, 11 are observed in the range A =0 (V; = 0.86)
and A = 0.31 (V, = 2.14). These correspond to the green nodes on the Hasse diagram, one of them being singled
out on Figure [5.9] (Bottom-left). The stability of these 11 complexes is heterogeneous as their lifetimes span the
range [(C) = 0.01 (AV; = 0.06) and [(C) = 0.44 (AV; = 2.47). Also, they do not coexists since the intersection
of their lifetime intervals is empty. These observations show that contacts between protein instances belonging to
several copies of the Y-complex can prevail over contacts within the isolated copies.

5.4.3 Further In-Silico Experiments

On the closure of the two rings of the NPC. One of the models described in Section d.2.T| supports the
formation of two rings made of eight Y-complexes each.

Here, we investigate the implication of Nup133 in the ring closure. We establish the role of Nup133 by painting it
in blue, and by observing that one gets six instead of two connected components, see Figure[5.10] However, while
it had previously been suggested that the interaction between Nup133 and Nup120 was mandatory for the ring
closure [SMD™09], contact analysis only reveals 1 significant contact between these two proteins, with however 6
additional contacts between Nup133 and Nup85.

On the connectedness of copies of the Y-complex. As shown on Figure[5.T1] each copy of the Y-complex is
split into two components. That is, for each copy, there exists a value of the probability such that the level set
surfaces of the maps restricted to this copy have two connected components, one including Nup145C and the
other one Yx-short-arm. The graph of contacts of the Y-complex on Figure[5.8]clearly supports the split of the

Y-complex into two sub-units. Furthermore, the contact probabilities on Table show that (i) there are 16
(krlm )
ij "
= 1; (iii) except for one contact between Nup84 and Nup85, there

contacts between Nup133, Nup84 and Nup145C with a probability p = 1; (ii) there are 16 contacts between

(kdrop)
ij
is no other contact involving two of the five protein types with p
Y-complex into two sub-units observed on the density maps.

Nup85 and Nup120 with a probability p

(kdmp)

ij = 1. This results confirm the split of the

5.5 Results: T-complex Analysis

5.5.1 Contact probabilities

We have seen in Section[d.2.2] that the T-complex involves at least three contacts between the four protein
instances.

The contact probabilities related to the 7-complex are summarized in Table[5.4] Notice that Nsp1-1 and Nic96-1
do not make contacts with Nup49 or Nup57, strengthening the fact that Nsp1-2 and Nic96-2 likely represent the
populations of Nsp1 and Nic96 contributing to the T-complex. Note that unlike anticipated [SSF'08]], only one
contact is observed in the TOM between Nic96-2 and Nup57.

5.5.2 Stoichiometry, symmetry, stability

We have seen in Section[d.2.2]that the 16 copies of the T-complex are embedded symmetrically in the NPC,
without contact between different copies.

The bottom right Hasse diagram at Figure [5.12] shows that the 16 copies—the expected number—of the
T-complex get formed thanks to merges in-between A =0 (V; = 0.72) and A = 0.15 (V;, = 1.24). Their
lifetimes are rather homogeneous since they vary in-between [(C) = 0.10 (AV, = 0) and /(C) = 0.33

(AV,, = 1.29), and the copies coexist in-between A = 0.15 and A = 0.22. These results show that contacts inside
a copy of the T-complex prevail over contacts between different copies of the 7-complex.

5.5.3 Further In-Silico Experiments

Selecting ambiguous density maps. We have seen in Section 4.3 that there are 2 density maps for Nic96 (and
Nspl), each involving 16 instances. On the other hand, the stoichiometry of the T-complex is 16, which requires
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Protein types fii™ | Knigh | Karop pff””’ $(kdrop) | min kamgh max VMMP
(Nup49, Nuph7) 1 16 16 1.00 | 1.00 0.47 0.76
(Nspl-2, Nupd9) |l 16 (16 | 1.00 |1.00 0.5 0.83
(Nsp1-2, Nup57) 1 16 16 1.00 | 1.00 0.67 0.86
(Nic96-2, Nspl1-2) [ 6 15 0.86 | 1.16 0.77 1.82
(Nic96-1, Nspl-1) |1 7 15 0.82 | 1.22 0.83 3.66
(Nspl-1, Nspl-2) | 00211 |15 |063 |1.58 |0.99 163
(Nic96-1, Nspl-2) |1 6 11 0.93 | 1.08 0.77 1.51
(Nup57, Nup57) | 0005 | 1 |8 | 071 | 141 | 193 2.74
(Nspl-1, Nspl-1) | 0021 ]2 |7 027 |372 |08 8.08

Table 5.4: Contact probabilities versus contact frequencies for the 7-complex. Pairs with no contact in the TOM
are not represented. The grey column displays the contact frequencies f;; of [ADV'07a]. For contact frequencies
(grey column), the * denotes the fact that these frequencies did not discriminate between twin maps, i.e. Npsl-1
and Nspl-2 on the one hand, and Nic96-1 and Nic96-2 on the other hand. The green and orange rows correspond
to the six pairs involved in the 7-complex with Nsp1-2 and Nic96-2.

16 instances of Nic96 and Nspl.

Since each map contains one protein instance per half-spoke of the NPC, out of the four possible pairs, (two
options for Nic96 and two options for Nspl) we select the pair producing the best results i.e maximizing global
results. The four resulting Hasse diagrams are shown on Figure[5.12} Only the Hasse diagram at the Bottom
Right reveals 16 isolated copies of the T-complex, motivating the selection of the corresponding two density
maps. Note that a calculation with the four density maps would have required selecting the relevant instances of
Nic96 and Nsp1 within each half-spoke, an ill-posed problem.

5.6 Results: Nup82-complex Analysis

5.6.1 Contact probabilities

The Nup82-complex, as discussed in Section[d.2.3] involves at least two contacts between the three protein
instances.

Contact probabilities related to the Nup82-complex are summarized on Table[5.5] We first note that we observe
eight instances of the homo-dimer (Nup82-1, Nup82-2) with pf»f) = 1. Considering this homo-dimer as the central
piece of the Nup82-complex, we observe that eight instances of Nsp1-2 and eight instances of Nup159 are in

contact with the homo-dimer with pl(;;) > 0.84. Note that the contact frequencies do not allow to discriminate the
sub-populations of Nspl and Nup82 that are in contact.

5.6.2 Stoichiometry, symmetry, stability

As done for the Y-complex and the T-complex, we inspect the stability of contacts inter- and intra- copies of the
Nup82-complex.

The right Hasse diagram at Figure[5.13]shows that the 8 copies—the expected number—of the Nup82-complex
get formed thanks to merges at A = 0 (V; < 0.81). Their lifetimes are totally homogeneous since all the copies
coexist in-between A =0 and A = 1.

5.6.3 Further In-Silico Experiments

Selecting ambiguous density maps. Remind that there are only eight instances of the Nup82-complex located
on the cytoplasmic side.
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For contact frequencies (grey column), the * denotes the fact that these frequencies did not discriminate be-
tween twin maps, i.e. Npsl-1 and Nspl-2 on the one hand, and Nup82-1 and Nup82-2 on the other hand.

Protein types fii *| knigh | Karop pff”” §(kdrop) | Min Vg, . | max Vg, ..
(Nup159, Nup82-1) | 0.951 | 8 8 1.00 | 1.00 0.68 0.82
(Nup159, Nup82-2) | 0.951 | 8 8 1.00 | 1.00 0.65 0.80
(NupS2-1, Nups2-2) [ 0.284 | 8 |8 | 1.00 |1.00 | 0.44 0.68
(Nspl-2, Nups2-2) |1 6 |8 092 [1.09 060 0.90
(Nspl-1, Nup82-2) 1 6 8 0.96 | 1.04 0.67 0.89
(Nspl-2, Nups2-1) |1 |4 |8 [060 |1.66 | 0.66 3.26
(Nspl-1, Nup82-1) 1 1 5 0.72 | 1.39 0.83 3.68
(Nspl1-2, Nup159) 0.187 | 2 5 0.93 | 1.08 0.81 1.09
(Nspl-1, Nup159) [0.187|1 |1 097 |1.08 | 0.8 0.9%

Table 5.5: Contact frequencies f;; from [ADV"07a] and contact probabilities derived from the TOM for all possi-
ble pairs of protein types of the Nup82-complex (Nup82, Nspl, Nup159).

Since Nspl is divided in two sub-populations, the there are two possibilities of composition for the
Nup82-complex: with Nspl-1 or Nspl-2. Note that Nup82 is divided in two sub-populations too: each instance of
the Nup82-complex contains an instance of the homo-dimer (Nup82-1,Nup82-2). We computed the two possible
Hasse diagrams corresponding to the different possible Nup82-complex and compare them in Figure[5.13] Note
that while distinct fractions of Nsp1 are expected to interact with the 7-complex and the Nsp1-Nup82-Nup159
containing complex respectively [BBHO1], Hasse diagrams indicate that, as also observed for the 7-complex,
Nsp1-2 but not Nspl-1 leads to the formation of the expected eight isolated copies of this complex.



114CHAPTER 5. ASSESSING THE RECONSTRUCTION OF MACRO-MOLECULAR ASSEMBLIES: CONTACT PROBABILITIE

5.7 Artwork

PEE TN
/’ \\
’
’ = AN
N . .
’ \ \
LR \ i
pl 1, - .’\\, 1
P ]
-
2 b ., 1
. AR \*‘_f v,
" RN f V\ IR vy,
- < PRV i v
1s Q
~ .- '~ ! v 1 PSRy P 1
‘( R T
- N I v,
- ,’/ AN v \ 'y [ ] ~i1_-010 I'
N\ “ N 7 1
® 1m0 N TR r 7
1 ¢ ,II N ‘\‘-\-’ L’
PRRSEY B T VoS --7
—-_ A | NSNS .
- 1 I\ 7\, 1 R N
\ ’ ~7’f N /,/5-__*\\
Y - ¥ __Uv W
Sl -7 ”~=n [ ] n
~ -
=T sl .- WSS ¢>"/\'
- )I\\__fl\‘
no~==7,
n L] 1! pQ
“w ,"
A% Y s’
NP
1==2
Hasse Skeleton
p3[A] diagrams graphs
A
Ao~ .9
Ap ~ 2}

palAl

Figure 5.1: Tracking the interactions of three toleranced proteins of three toleranced balls each. (Top left) Three
conformations of three flexible molecules, and a probability density map whose color indicates the probability
of a given point to be covered by a random conformation of the ternary complex — from low (black pixels) to
high (gray pixels) probabilities. (Top right) The associated bicolor toleranced model, with one blue and two
red molecules. Each toleranced molecule consists of a set of pairs of concentric balls, the inner and outer balls.
(Bottom left) Sub-figures (i,ii,iii) respectively show grown balls B;[A] for A = 0,0.5,1. The region of the plane
consisting of points first reached by a growing toleranced ball is the Voronoi region of this ball, represented by
solid lines. Colored solid regions feature the restrictions i.e. the intersection of a growing ball and its Voronoi
region. Along the growth process, the restrictions intersect in three points i4,ip,ic, represented as black points.
(Bottom right) Hasse diagrams encoding contacts between the protein instances. Black tree: all instances; red
tree: red instances only.
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Figure 5.2: Example of two contact curves related to the Y-complex. Left. Contact curve of (Nup84, Nup145C):
16 contacts are observed at A = 0, and the contact probability is null for k = 17, which is the ideal situation since
both types have a stoichiometry of 16. With a value of one, the significance coefficient s(kgy,)) is also perfect.
Right. Contact curve of (Nup84, Nup85) The value s(kg,,p) = 2.71 shows that the largest probability drop is not

(1)

significant with respect to p;;

types.

. In short, it is not possible to unambiguously choose a stoichiometry & for these two
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Figure 5.3: Partitioning the pairs of protein types into three classes reveal that contact probabilities are more
discriminatory than contact frequencies from [ADV"07a]. The three classes in each picture are Pi(l),i =1,2,3,

represented respectively by a solid blue curve (Pfl)), a dashed green curve (Pz(l)) and dotted red curve (P3(1)).
The pairs of protein types were separated following their contact frequency f;;, from [ADVT07a]. Top: low
frequencies Fy ie. f;; < a; Middle: medium frequencies F; i.e. a < f;; < b; Bottom: high frequencies F3 i.e.
b < f;j. Following [ADV'07al, the thresholds are @ = 0.25 and b = 0.65.
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Figure 5.4: Partitioning the pairs of protein types into three classes reveal that contact probabilities are more
discriminatory than contact frequencies from [ADV'07al]. The three classes in each picture are Pi(l),i =1,2,3,
represented respectively by a solid blue curve (Pl(l)), a dashed green curve (Pz(l)) and dotted red curve (P3(1)).
The pairs of protein types were separated following their contact frequency f;;, from [ADVT07a]. Top: low
frequencies Fy i.e. f;; < a; Middle: medium frequencies F; i.e. a < f;; < b; Bottom: high frequencies F3 i.e.
b < f;;. Thresholds are a = 0.1 and b = 0.9.
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Figure 5.5: An example of over-represented pair in the toleranced model. The overlapping density maps of Nup84
(stoichiometry: 16) and Nup60 (stoichiometry: 8), fromhttp://salilab.org/npc/} visualized with VMD.
Their contact frequency from [ADV'07a] is f;; = 0.07 , while the contact probability from the toleranced model

is PE}) =1

Figure 5.6: An example of under-represented pair in the toleranced model. The disjoint density maps of Nup192
(stoichiometry: 16) and Pom152 (stoichiometry: 16), from http://salilab.org/npc/, visualized with
VMD. Their contact frequency from [ADV'07a] is f;; = 0.98 , while the contact probability from the toleranced

model is pg}) =0.
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Figure 5.8: Computing cliques and quasi-cliques in the graph of contacts with prescribed stoichiometry identifies
sub-systems of the NPC. The graph only involves edges corresponding to pairs of protein types (P;,P;) such that

pg-c>10> > 0.65 for Amax = 1. The red, blue and dark green sub-graphs respectively correspond to the Y-complex, T-
complex and Nup82-complex. The nodes contained in each of the five dashed regions define a complete sub-graph

i.e. a clique of size four.
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contacts between the types F; and P;. The contact probabilities are grouped in the three classes P](k) (blue curve),

Pz(k) (green curve) and P(k> (red curve). Dotted lines for A.x = 0, dashed lines for A;,,,x = 0.5 and solid lines for
Amax = 1. Following , the thresholds a = 0.25 and b = 0.65 have been used.

Figure 5.7: Evolution of low, medium and high contact probabilities p..’ as a function of the stoichiometry of
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A =0.66

0&:&&

Figure 5.9: The Hasse diagram of the Y-complex reveals 11 isolated copies, and evidences the closure of the two
rings involving each 8 copies of the Y-complex. Top. Hasse diagrams of the Y-complex with its seven types
painted in red. The green nodes correspond to isolated copies, and the two red ones correspond to the colored
complexes represented on the bottom. Bottom. Snapshot of the toleranced model at A = 0 (bottom left), with an
isolated copy shown as inset, and at A = 0.66 (bottom right), when the upper ring appears. The protein instances
highlighted with the color code of Figure[d.T|correspond to the complexes in the red fat nodes of the Hasse diagram
(top)

A =0.64

Figure 5.10: Painting Nup133 in blue evidences its role in the closure of the two rings. Top. The Hasse diagram
with Nup133 painted in blue involves six connected components as opposed to two—compare with Fig. [5.9]
Bottom. The corresponding toleranced model at A = 0.64. The colored complex corresponds to the red node in
the Hasse diagram.
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Figure 5.11: All copies of the Y-complex are split in two pieces in the probability density maps of [ADV ' 07al.
The union of the level-set surfaces from the probability density maps of protein types of ¥Y-main are shown—the
intensity used to contour a map is half of the maximum value observed for that map. The color codes are those of
Figure[d.T] The circled region illustrates the split of a Y-complex into two pieces (Nup133, Nup84, Nup145C) and

(Nup120, Nup85).
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Figure 5.12: The Hasse diagrams of the T-complex reveal that the Nic96-2 and Nspl-2 sub-populations form
privileged contacts. The four Hasse diagrams associated to the four density maps of Nic96 and Nsp1 are shown—
these two protein types define the T-core of the T-complex. Green nodes correspond to isolated copies. The
associated toleranced models in each case are shown as inset. The two protein types selected for our study are

those of the Bottom-Right Figure.
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Nup159, Nup82-1, Nup82-2 Nup159, Nup82-1, Nup82-2

(Nsp1-1) B B (Nsp1-2)

Figure 5.13: The Hasse diagrams of the Nup82-complex reveal that the same instances of Nspl are used in the
T-complex and the Nup82 complex. The two possible hasse diagrams of Nup82-complex and their associated
toleranced model are shown: with Nspl-1 on the left and with Nsp1-2 on the right. The fat green nodes on
the Hasse diagrams are the isolated copies. The corresponding protein complexes on the toleranced model are
in-circles for the left case.
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5.8 Supplemental

5.8.1 Partial Computation of the A-Complex

A-complex versus partial A-complex. As discussed in Section depending on the number of its
constituting toleranced balls, a system may be investigated using the A-complex or the partial A-complex. Both
algorithms were developed in C++, as discussed in Chapter[7} and the software was run on a dual core Intel
Extreme CPU X7900 2.80GHz with RAM size of 8Go, under Fedora Core 14. The following running times were
observed:

e The computation of the A-complex on a complete half-spoke took about 15 hours. This computation for the
whole NPC model halted after 6 days, due to a memory allocation failure.

e The computation of the partial A-complex of the half-spoke and full NPC model respectively took less than
one second and about 1 minute.

To assess the incidence of using the partial A-complex rather then the A-complex, recall that a contact between
two proteins p; and p, corresponds to an edge of the A-complex involving one ball of p; and one ball of p;, and
that such an edge has a status (Gabriel or not Gabriel). Using the partial complex may yield one of the following
two discrepancies between p; and p, (Figure[5.14):

e No edge connecting balls of p; and p; is Gabriel. In that case, the connexion between p; and p, is absent
from the Hasse diagram derived from the partial A-complex.

e There is at least one edge which is Gabriel, but this edge is encountered at Ag > Ayg, with Ay the value of
A corresponding to the first non Gabriel edge between balls of the two proteins. In that case, p; and p, are
connected in the Hasse diagram derived from the partial A-complex, but at A.

P Hasse Skeleton
= ' ' 3 diagrams graphs
A
A=1

ic: Ag~ 6]
ing: ANGg ~ 5|

p2[A]

Figure 5.14: A-complex versus partial A-complex. Left. A toleranced model of three proteins pp, py, p3 instanti-
ated at A = 1. Its associated compoundly weighted Voronoi diagram is drawn in solid black lines. The green points
correspond to the first non Gabriel (iyg) and first Gabriel (i) contact between the red proteins (pi, p3). Right.
The Hasse diagram from the A-complex (red solid lines) and the partial A-complex (red dashed lines) restricted to
the red proteins (p1, p3). For the A-complex, the red proteins are connected at Ay ~ 0.5 at (iyg). For the partial
A-complex, the red proteins are connected at Ag ~ 0.6 at (ig).

Missed protein contacts: global snalysis. Table[5.6|compares the number of edges and contacts for a
half-spoke, from which it is seen that using the partial A-complex yields a decrease of the number of edges and
contacts of 62% and 31% percents, respectively. Moreover, as shown on Figure[5.13] the number of missed
contacts increases slowly when A increases, with only eight missing protein contacts for A < 0.5.
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#edges | # contacts
Whole A-complex | 5947 193
Partial A-complex | 2227 133

Table 5.6: A-complex versus partial A-complex: comparison of the number of edges connecting toleranced balls,
and of the number of contacts between protein instances.
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T T T T
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Figure 5.15: Evolution of the number of missed contacts between protein instances when using the partial A-
complex, as a function of A.

Missed protein contacts: sub-complexes analyzed in this study. Regarding the protein contacts involved in
the Y-complex, three differences between the two computations are observed at the level of one half-spoke :

— one contact (Nup85, Sec13) appears earlier, namely at Ay = 0.39 instead of A = 0.44.

— two contacts are missed in the partial A-complex: (Nup84, Seh1) at A = 0.88 and (Nup120, Nup84) at

A =0.90. Since the closure of the two rings is done at A = 0.64, these two events are not relevant.

Concerning the T-complex and the Nup82-complex, there is no difference between protein contacts in both
computations.

To conclude, using the partial A-complex has no incidence on the results presented in this study, and makes the
calculations tractable.



Chapter 6

Probing a Continuum of Macro-molecular
Assembly Models with Graph Templates
of Sub-complexes

6.1 Introduction - Rationale

Growing a toleranced model yields merges of complexes. Each such complex corresponds to a set of protein
instances forming a connected domain, and the contacts between these instances can be represented by a graph. In
this chapter, we aim at comparing this graph against a template, that is a model graph encoding the pairwise
contacts between the same protein instances.

We first introduce in Section [6.2]theory and tools for comparing a protein complex of the Hasse diagram to a
given template. Then, we assess templates defined in Chapter 4] for the Y-complex in Section[6.3} and for the
T-complex in Section [6.4] with respect to the Hasse diagram computed in Chapter [3]

6.2 Analysis Tools for Protein Complex in a Hasse Diagram

6.2.1 Comparing a Protein Complex to a Template

Search of protein complexes similar to a template. From a topological standpoint, a protein complex C
associated to a node of the Hasse diagram is characterized by its skeleton graph, see Figure We want to
compare the skeleton graph of a complex C against that of a template 7 of C. Practically, T shall be a
co-crystallized complex or a high-resolution model built in-silico, and the protein types in 7 identify the red
proteins of the bicolor setting. We formalize this comparison in terms of graph theory.

The skeleton graph G¢ corresponds to a complex C whose nodes are protein instances i.e. each instance carries a
unique identifying label.

On the one hand, the nodes of G, are protein types, so that a node of G¢ (a protein instance) can be uniquely
mapped to a node of G, (a protein type). This latter assumption is warranted by the fact that the templates of the
NPC to be analyzed have at most one instance of each protein type, since we actually deal with isolated copies.
We assume that all the types of the instances present in the protein complex C are present in the template skeleton
graph 7. But the complex C may not feature instances of all the types found in the template 7. We therefore
denote Gr|c the restricted template i.e. the graph obtained by removing from G;, all the nodes whose protein types
are not found in the protein instances of G¢, and the edges incident on these nodes. To compare the graphs Gr|c
and G¢, we use the concept of matching.

Maximal Common Sub-graphs. Computing matchings is tantamount to computing maximal cliques [CKO3]],
and of particular interests are the matchings associated to the so-called Maximal Common Induced Sub-graph
(MCIS) and Maximal Common Edge Sub-graph (MCES) of Gr|c and Gc.

125
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Let G| = (V1,E}) and G, = (V», E») be two undirected labelled graphs.

Definition. 6. A Maximal Common Edge Sub-graph (MCES) of G| and G, is a graph H that is isomorphic to
sub-graphs G of G and G, of G, such that there is no other Common Edge Sub-graph H' of G and G,
containing H.

Definition. 7. An induced sub-graph G’ of G is a sub-graph of G such that for all pairs of vertices (u,v) of G,
(u,v) is an edge of G’ iff it is an edge of G.

Definition. 8. A Maximal Common Induced Sub-graph (MCIS) of G| and G, is a graph H that is isomorphic
to induced sub-graphs G| of Gi and G}, of Gy, such that there is no other Common Induced Sub-graph H' of G,
and G, containing H.

These notions are illustrated on Figure [.1] Notice in particular that a MCES or MCIS calculation yields in
general several matchings.

6.2.2 Analyzing Perfect and Alternate Matching

Signature of a matching. A matching from Gr|c to C maps vertices of Gr|c (protein types of the template) to
vertices of G¢ (protein instances of the complex), and edges of G7|c (contacts within the template) to edges of G;
(contacts within the complex). Taking the template as reference, we assess a matching with its signature,
illustrated on Figure 6.2}

e Maiching protein type(s): a protein type of Gr|c with a corresponding instance in C. This set is denoted V™.
e Missing protein type(s): a protein type of Gr|c with no corresponding instance in C. This set is denoted V™.
® Matching contact(s): a contact in Gy|c with a counterpart in C. This set is denoted E™.

e Missing contact(s): a contact in Gr|c with no counterpart in C. This set is denoted E™.

e Extra contact(s): a contact in C with no counterpart in Gr|c. This set is denoted E™T.

Using these sets, the signature of the matching A is defined by:
S(Gric:Ge:A) ={V~, V" ,E~E" E*}. (6.1)

Note in particular that the matching is called perfect provided that the three sets V~,E~,E™ are empty, in which
case Gr|c is isomorphic to an induced sub-graph of Gc.

6.2.3 Assessing a Template in a Hasse Diagram

Perfect matching. Along the growth process, we are interested in the complexes C which exhibit a perfect
matching with the associated restricted template Grc, and which are maximal—there exists no perfect matching
for the successors of C. Such complexes are easily obtained from the matchings provided by a MCIS calculation
between the graphs G¢ and Gr ¢ in each node of the Hasse diagram. Note that a perfect matching contains at
most one pair of nodes (one from Grc, one from G¢) per protein type in C since Gr|c has at most one node per
protein type in C.

Alternate matching. Consider a complex C such that there is no perfect matching for C or any of its successors.
In that case, we are interested in maximizing the number of common contacts between G¢ and Gr|c, which
corresponds to a MCES calculation. To report such matchings, we proceed as follows. First, for each complex C
which is a root of the Hasse diagram, we compute the MCES between G¢ and Gr|c. Second, let A be a matching
returned by the MCES calculation. We search the ancestor D of C involving the protein instances and contacts of
C matched by A, and minimizing the number of extra contacts. Note that, as for the perfect matching, an alternate
matching contains at most one pair of nodes (one from Gr|c, one from Gc¢) per protein type in C.
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6.3 Results: Y-complex Analysis

In this section, we present matching results, based on the templates presented in Chapter 4]

6.3.1 Perfect Matching

Perfect matchings reflect the largest sub-complexes of the Y-complex without any missing or extra contact w.r.t.
the model—see the rows tagged with G,(Y) in the Table

We first classify the matchings following their similarity with known sub-complexes of the Y-complex: 16 copies
of the Yx-tail (Mp(1),Mp(2)), 12 of the Yx-edge (five split in two subunits (Mp(3),Mp(4)); seven entire units cf
Mp(5)), 12 of the Yx-short-arm (Mp(6),Mp(7)) and 16 of the Yx-long-arm (Mp(8)). In addition, we have four
perfect matchings corresponding to the Y-core (Mp(9)). The four remaining perfect matchings (Mp(10)) have one
matching protein type i.e. Secl3. Let us inspect these perfect matchings.

The sixteen perfect matchings involving the Yx-tail (Mp(1),Mp(2)) show that Nup133 and Nup84 are well
positioned w.r.t. one another. But the absence of larger perfect matching shows that in the fourteen complexes
under investigation in Mp(1), Nup133 makes an erroneous contact with Nup145C.

The 12 perfect matchings involving parts of the Yx-edge show that there is an additional contact between Sec13
and Nup84 in the model for at least five copies of the Yx-edge (Mp(3),Mp(4)).

The contact between Yx-short-arm and Nup85 appears in 16 perfect matchings (Mp(6),Mp(7),Mp(9)), while the
one between Yy-short-arm and Nup145C appears in only five matchings (Mp(7),Mp(9)). As illustrated by the
Figure[5.11] each copy of the Y-complex are split into two pieces. The 16 perfect matchings of the Yx-long-arm
(Mp(8)) show a good relative position between Seh1 and Nup85. The same holds for the four protein of ¥ -core
(Mp(9)), as evidenced by the four matchings.

Finally, the matchings involving Sec13 involve protein instances without any valid contact. Their positioning
appears as uncertain, a fact likely related to the small size of Sec13. (With a molecular weight of 41 kDa, Sec13 is
the smallest one of the NPC.) As a matter of fact, no available data for the position of Sec13 is found in

[ADV 074, supplemental Table 7]. Interestingly, the volume ratios associated with these results are bounded by
2.57 (Mp(9)).

| Template; tag [ # [V~ | minV, [ maxV,
G, (Y):Mp(1) | 14 | Yy-tail 077 ] 090
G,(Y):Mp(2) | 2 | (Yx-tailNupl45C) 085 | 088
G.(Y):Mp(3) |5 | (NupldSC.Nup84) | 0.81 | 0.88
G.(Y):Mp(4) | 5 | (Nupl45C,Secl3) 081 | 086
G/ (Y);Mp(5) |7 | Yx-edge 0.78 0.88
G;(Y);Mp(6) | 11 | (Yx-short-arm,Nup85) | 0.88 0.91
G((Y);Mp(7) | 1 | Y-junction 1.78 1.78
[ Gi(Y):Mp(8) [ 16 | (Yx-long-arm) 1077 [1.63 |
| G,(Y):Mp(9) [4 [ Y-core [ 115 257 |
[ G/(Y):Mp(10) [ 4 [ Secl3 1058 [0.69 |

Table 6.1: Perfect matchings for the templates G;(Y). Each matching is identified by a tag (Mp(i)) referenced
in the text. The columns read as follows: V™: protein types involved in the matching; #: number of identical
matchings; minV (C) and max V (C): min and max volume ratios amidst identical matchings.

6.3.2 Alternate Matching

Alternate matchings aim at maximizing the number of common contacts, and involve largest sub-complexes of
the ¥-complex. We first computed matchings with G, (Y), see the Table We get 11 for (Yx-tail,Yx-edge)
(Ma(1),M4(2)), and 11 for (Yx-short-arm,Yx-long-arm) (M4 (3)). These matchings correspond to eleven copies of
the Y-complex split in two sub-complexes. Together with the five matchings for the whole Y-complex

(M4 (4),M4(5)), we get an overall stoichiometry of 16, as expected.
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The number of extra contacts observed is bounded by seven for a maximum of fifteen. (Seven proteins make at
most twenty one pairwise contacts, out of which six belong to the template.) Note that the only missing protein
type in the five matchings involving Y -main is restricted to Sec13 in three of them. Note also that the volume ratio
does not exceed 4.71 (M4 (3)).

Template; tag | # | V™ [V=| | |E~|||E" || min | max | minV, | maxV,
[ET| | |E"]
G(Y):MA(1) | T | (Yx-tail,Nupl45C) | 4 2 0 I I 343 | 343
G/(Y):Ma(2) | 10 | (Yx-tail.Yy-edge) | 3 3 0 3 3 361 | 432
[G.(Y):Ma(3) | 11 | Y-arms (4 [2 [0 [1 [t [09% |47 |
G/(Y):MA(4) | 3 | (Y-main,Sehl) 1 5 0 2 6 L13 | 2.96
G;(Y);Ma(5) | 2 | Y-complex 0 6 0 7 7 3.37 3.47

Table 6.2: Alternate matchings for the template G,(Y). Each matching is identified by a tag (M, (i)) referenced
in the text. The columns read as follows: #: number of identical matchings; V™ protein types involved in the
matching; |V~ |,|E~|,|E” |,min|E™ |,max | E™ |: size of the sets involved in the signature of the matching—min
and max taken amidst all identical matchings; minV; and maxV: min and max volume ratios amidst identical
matchings.

6.3.3 Further In-silico Experiments

Removing Sec13 from the toleranced model. Due to the poor location of Sec13 in the assembly, we remove it
from the toleranced model and compute the new matching. The perfect matchings of Table[6.3]do not reveal a
significant improvement: the perfect matchings observed involve more protein types (e.g Y-core in Mp(9)), but
require a larger volume ratio. The same holds for alternate matchings, see Table[6.4]

Template; tag # | V™ minr, | maxry
G/(Y);:P, 13 | Yx-tail 0.77 0.90
G(Y);P 3 | (Yx-tail,Nupl45C) 0.85 0.87

| G/(Y);P5,P,,P5 | 7 | (Nupl45C,Nup84) [ 081 [0.88 |
G,(Y);Ps 9 | (Yx-short-arm,Nup85) | 0.88 0.91
G(Y);P 1 | Y-junction 2.26 2.26

[ Gi/(Y):Ps | 16 [ (Yx-long-arm) 1077 [ 154 |

[ G/(Y):P | 6 | Y-core | .10 [3.05 |

Table 6.3: Perfect matchings of G,(Y). Secl3 was removed from the toleranced model. The tags Mp(i) match
those used in Table

Template; tag | # | V™ [VZ I | |EY|||E"| | max|ET| | min|ET | | minry, | maxr,
G/(Y):A,Ay | 9 | (Yx-tail Nup145C) | 4 2 0 1 1 303 [382
| G/(Y):A3 [ 9 [ (Y-arms) 4 ]2 Jo 1 | 1 1094 [479 |
[ Gi(Y);A4,As | 7 | (Y-mainSehl)  [1 |5 Jo ]2 | 6 | 1L.09 [345 |

Table 6.4: Alternate matchings of G;(Y). Secl3 was removed from the toleranced model. The tags My (i) match
those used in Table

6.4 Results: T-complex Analysis

As opposed to the Y-complex, no (sub-)complex of the T-complex has been crystallized. In the following, we
therefore investigate the coherence between putative pairwise contacts in the 7-complex, and the copies of the
T-complex embedded in the toleranced model of the NPC.
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6.4.1 Perfect Matching

As summarized in the Table we computed the perfect matchings w.r.t. the skeleton graph G, (T) for all nodes
of the Hasse diagram. One gets sixteen perfect matchings corresponding to the 7-leg (Mp(11),Mp(12)), fourteen
to the T-core (Mp(13)) and two to the entire T-complex (Mp(14)). A careful inspection shows that all contacts of
G;(T) are found in all copies of the T-complex. The low number of perfect matchings (2) owes to extra contacts,
namely (Nup49 and Nsp1) and/or (Nup49 and Nic96) and/or (Nup57 and Nic96). Yet, we found Nup57 and

Nic96 in 16 different perfect matchings (Mp(13),Mp(14)), showing that these two types do not make any contact.

Template; tag # |V~ minV; | maxV,
G.(T):Mp(11) 10 | T-leg 057 | 075
G(T);Mp(12) (T-leg,Nspl) 0.61 0.72

| Gi(T):Mp(13) | 14 [ (T-core,Nup57) [ 0.74 [ 137 |

| Gi(T):Mp(14) | 2 [ T-complex | 179 [228 |

’ G;(T-comp);Mp(15) ‘ 2 ‘ T-leg ‘ 2.42 ‘ 2.79 |
G;(T-comp);Mp(16) | 16 | (T-leg,Nspl) 0.61 0.81
G;(T-comp);Mp(17) | 5 | T-core 0.79 1.46
G,(T-comp);Mp(18) | 10 | (T-core,Nup49) | 0.97 1.76
G;(T-comp);Mp(19) | 1 | (T-core,Nup57) | 1.91 1.91

’ G,(T-new);Mp(20) ‘ 6 ‘ (T-leg,Nspl) ‘ 0.61 ‘ 0.81 |
G;(T-new);Mp(21) | 2 | (T-leg,Nic96) 2.13 2.25

| G/(T-new);Mp(22) | 6 | (T-core,Nup57) [ 078 [ 137 |

| Gi(T-new);Mp(23) [ 10 | T-complex 1098 [1.73 |

Table 6.5: Perfect matchings for the templates G;(T'), G;(T-comp) and G;(T-new). Each matching is identified by
a tag (Mp(i)) referenced in the text. The columns read as follows: V™': protein types involved in the matching; #:
number of identical matchings; minV; (C) and max V; (C): min and max volume ratios amidst identical matchings.

6.4.2 Alternate Matching

As seen from the Table[6.6] 18 alternate matchings of the entire 7-complex are found (M (6)), for a volume ratio
less than 2.36. Further investigation shows two instances of Nup49, each interacting with two instances of Nup57
belonging to two copies of the 7-complex, contribute to two extra matchings—whence 18 matchings and not 16.
These spurious matching tough, are easily ruled out from the A value for which contacts between Nup49 and
Nup57 appear, since the second contact appears at A = 0.38, after the last merge of complexes at A = 0.33. The
analysis of alternate matchings also exhibits at most two extra contacts between Nup49 and Nsp1, and between
Nup49 and Nic96.
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Template; tag # |V~ [V=| [ |E~| | |E" || min | max | minV, | maxV,
E* || 1B
G;(T);M4(6) 18 | T-complex | 0 3 0 0 2 0.83 2.36
G;(T-comp);M4(7) | 11 | T-complex | 0 5 1 0 0 0.98 1.85
G,(T-comp);Ms(8) | 7 | T-complex | 0 4 2 0 0 1.17 2.22
G;(T-comp);Ma(9) | 4 | T-complex | O 3 3 0 0 1.80 2.28
G;(T-new);M4(10) | 10 | T-complex | 0 5 0 0 0 0.98 1.73
G;(T-new);Ms(11) | 8 | T-complex | 0 4 1 0 1 1.17 2.26
G;(T-new);M4(12) | 4 | T-complex | 0 3 2 0 0 1.79 2.29

Table 6.6: Alternate matchings for the templates G;(T'),G;(T-comp) and G;(T-new). Each matching is identified
by a tag (My (i) referenced in the text. The columns read as follows: #: number of identical matchings; V"': protein
types involved in the matching; |V~ |,|E~|,|E~ |,min|E" |,max|E™ |: size of the sets involved in the signature
of the matching—min and max taken amidst all identical matchings; minV,; and maxV;: min and max volume
ratios amidst identical matchings.

6.4.3 Further In-Silico Experiments

Testing new templates of the 7-complex. To single out frequent contacts not present in G;(T), we consider the
complete skeleton graph G,(T-comp). We obtain 18 perfect matchings corresponding to the 7-leg
(Mp(15),Mp(16)) and 16 to the T-core (Mp(17),Mp(18),Mp(19)). These matchings highlight two relevant
contacts absent from the skeleton G,(7): Nup49 and Nsp1 obtained 16 times (Mp(16)), and Nup49 and Nic96
obtained ten times (Mp(18)). Adding these contacts to the skeleton graph G;(T') yields G;(T-new). This new
graph yields eight perfect matchings with T-leg (Mp(20),Mp(21)), six to the T-core (Mp(22),Mp(23)) and ten to
the entire T-complex (Mp(23)). We note that the number of perfect matchings with the entire 7-complex node set
moves from two for G,(T) to ten for G,(T-new).

In terms of alternate matchings, G,(T-new) yields 22 alternate matchings, containing in particular the ten perfect
matchings already discussed—the matchings counted in the lines Mp(23) and M, (10) are in one-to-one
correspondence. The extra 12 matchings owe again to contacts between protein instances of different copies of
the T-complex. These extra matchings involve at most two missing contacts corresponding to the contacts added
w.r.t. G,(T). Also, these matchings do not have any extra contact, except one corresponding to the a contact
between Nup57 and Nic96, see line M4 (11).
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6.5 Artwork

G1 GQ
Y
X z

MCES: 6 graphs MCIS: 12 graphs
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Figure 6.1: Comparing graphs with matchings: illustration of the Maximal Common Edge Sub-graph (MCES) and
Maximal Common Induced Sub-graph (MCIS) constructions. Top. Two labelled graphs G; and G,. Bottom Left.
The 6 MCES of G| and G, Bottom Right.: The 12 MCIS of G| and G,. If we impose a correspondence between
labels ((a,x), (b,y),(c,z)), there is one MCES and there are two MCIS, namely the circled graphs.
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Figure 6.2: Signature of a matching between the skeleton graphs G¢ of a complex C and Gr|c of a template T
restricted to C. The match between a protein instance of G¢ and a type of Gr|c is materialized by an identical
geometric shape (disk, square, triangle, hourglass). Matched contacts corresponds to bold edges. The adjectives
matching/missing/extra qualify G¢ w.r.t. Gr|c. (Left.) A Maximal Common Induced Sub-graph calculation yields
two perfect matchings. (Middle.) A Maximal Common Edge Sub-graph calculation yields a matching with one
missing protein type. (Right.) A Maximal Common Edge Sub-graph calculation yields a matching with missing

and extra contacts.
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6.6 Supplemental

6.6.1 Algorithms

The calculation of all maximal common sub-graphs of two graphs G and G, is equivalent to the enumeration of
all maximal cliques of a so-called product graph [Koc01]], a problem for which exact algorithms were proposed in
[CKOS]. In fact, there are two kind of product graphs:

o the edge product graph, from which we generate Maximal Common Edge Sub-graphs (MCES). Each node
of the edge product graph is associated to a pair of edges (e; € E[G1],e2 € E[G3]), and there is an edge
between two nodes (e1,e2) and (f1, f>) iff (e1, f1) and (e, f>) are incident together to a same vertex, or are
not incident together to a same vertex.

o the vertex product graph, from which we generate Maximal Common Induced Sub-graphs (MCIS). Each
node of the vertex product graph is associated to a pair of vertices (] € V[G1],us € V[G]), and there is an
edge between two nodes (u1,uz) and (vy,vo) iff (u1,v1) and (up,v;) are neighbors together, or are not
neighbors together.

Note that the definition of product graphs is purely topological. But in our setting, a protein type is associated to
each vertex of graphs G| and G, and we only match two vertices provided that they carry the same protein type.
Similarly, matching two edges requires the agreement of their vertices. As an example, consider Figure [6.3]and
assume that a matches x, that b matches y and that ¢ matches z. Under these hypothesis, there is a single MCES
and two MCIS.
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Figure 6.3: Two illustrations of MCS resolution via Maximum clique problem. (i). Input are two labelled graphs
G| and G,. Vertices are drawn in blue and edges in red. (ii). Product Graphs of G| and G;. Nodes of Edge (resp.
Vertex) Product Graph represent pair of edges (resp. vertices) of G| and G,. Two nodes in the product graph are
linked by a solid edge if they are incident in G| and G;. Two nodes in the product graph are linked by a dashed
edge if they are not incident in Gy and G,. (iii). Examples of maximum cliques from the product graphs. Left
example: There are 2 maximum cliques for the Edge Product Graph and 2 maximum cliques for the Vertex Product
Graph. Right example: There are 6 maximum cliques for the Edge Product Graph and 12 maximum cliques for

the Vertex Product Graph.(iv). Conversion from Product Graphs to MCS of G| and G».



Chapter 7

Software

7.1 Introduction - Rationale

The VORATOMsoftware suite, for Voronoi Analysis of Toleranced Models, is a set of tools meant to design and
analyze toleranced models of macro-molecular assemblies. The suite consists of the programs presented on
Figure[7.T} which are all encapsulated within on main executable, also called VORATOM. These executables are
presented in section while section [/.3|comments on the underlying C++ design. All can be downloaded from
http://cgal.inria.fr/abs/voratom.

Density map Occupancy volumes Toleranced model
Analysis Analysis Analysis

Density map Occupancy volume Toleranced model

file: *.pdm file: *.pil file: *.tbl
Matching | | Template skeleton graph Hasse diagram Protein contact history Pullout
file: *.mat file: * shd file: *.pch ,/file: *.tap

HD_ENGINE
lxlat(ljhmg Template skeleton graph Hazse (liiagram Protein contact history Pullout

LLYSIS Analysis WEIEIS Analysis Analysis

file: *.mata file: *.tapa file: *.shda file: *.pcha file: *.tapa

Figure 7.1: Overview of the applications: ellipsis represent executable programs; unfilled rectangles represent the
main objects; gray rectangles represent the analysis associated to instances of the main objects.

7.2 Overview: Applications and File Formats

7.2.1 Opverall application

Given a set of maps, the VORATOM building blocks, which are also made available on a stand-alone basis,
perform the segmentation of the maps into occupancy volumes (section[7.2.2), create a toleranced model from
these occupancy volumes (section[7.2.3)), and compute the Hasse diagram associated to the toleranced model

(section[7.2.4)).

135


http://cgal.inria.fr/abs/voratom

136 CHAPTER 7. SOFTWARE

In presenting the executables, we also report the running times obtained on a dual core Intel Extreme CPU X7900
2.80GHz with RAM size of 8Go, running Fedora Core 14. We also note that our programs, written in C++, were
compiled with g++ at the optimization level -O3.

o DMAP_SEGMENTER
The computation of the occupancy volumes of all the 33 maps was done in 28.3 seconds (18 seconds for
loading all the maps and 10.3 seconds for the computations). A total of 448 protein instances were reported.

e TOM_DESIGNER
The computation of the toleranced model of the NPC from the 448 occupancy volumes was done in less
than one second. A total of 8064 toleranced balls were reported.

e HD_ENGINE
The computation of the protein contact history from the 8064 toleranced balls with Ayax = 1 failed. We
used the partial A-complex that ran in 72.5 seconds. 2507 protein contacts were reported. The computation
of the Hasse diagram from this protein contact history was done in 9.9 seconds.

e GRAPH_MATCHER
The computations of all perfect and alternate matching of a template skeleton graph with complexes in a
Hasse diagram required less than one second. For G;(Y) (respectively G;(T'), G;(T-comp) and G;(T-new)),
a total of 69 (32, 34 and 24) perfect matching and 27 (18, 22 and 22) alternate matching were reported.

7.2.2 Density map segmenter

Consider a map, namely a 3D matrix with one number € [0, 1] per voxel.
The map segmenter, named DMAP_SEGMENTERIn the sequel, selects from the map a prescribed set of connected
regions called occupancy volumes. The algorithm is described in Section[4.4]

Input. The main argument is a map. See the .pdm file format on Figure

QOutput. The main output is a list of occupancy volumes, one per protein instance. A given occupancy volume
is represented by the (x,y,z) coordinates of the voxels allocated to this instance, and the density of each voxel is
also reported. See the .ovl file format on Figure

Analysis. There are two analysis. The first one, at the protein instance level, compares the occupancy volume
against the protein reference volume (the volume estimated from its sequence). The second one, at the map level,
compares the number of occupancy volumes created versus the stoichiometry of the protein. (Typically, if the
stoichiometry of the protein is larger than the number of connected components of voxels with a non null
probability, it may not be possible to create the desired number of instances.)

# Global attributes of the map: name of the protein type,

# stoichiometry, number nv of voxels along the x y and z directions
Nup84 16 100

# Cartesian coordinates of the bottom-left corner

Xy z

# Densities: nv * nv * nv real numbers, each in the range 0..1
0 0O0O...

Figure 7.2: The .pdm file format to represent a cubic map—the number of voxels is the same along each direction.
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# Global attribute: total number of occupancy volumes

448

# Then, we find the list of occupancy volumes. Here is one example,
# namely an instance of the protein type Nupl92:

# Nupl92: protein type; 0: instance index; 240: number of voxels of
# the occupancy volume attributes to this instance

Nupl92 0 240

# Then, a list of 240 voxels; for each, the Cartesian coordinates
# xyz, and the probability density value

45 41 17 1

Figure 7.3: The .ovl file format to represent the occupancy volumes of a list of protein instances.

7.2.3 Toleranced Model Designer

The Toleranced Model Designer, called TOM_DESIGNERIn the sequel, computes a toleranced model from a list
of occupancy volumes. Note that each toleranced protein consists of a list of toleranced balls. The algorithm used
to compute the canonical shapes of the proteins is presented in Section[#.4.2}

Input. The main argument is a list of occupancy volumes, each corresponding to one protein instance. (See the
.ovl file format.)

Output. The output is the toleranced model. See the .tbl file format on Figure

Analysis. Given a A value and a list of protein instances, the analysis of a toleranced model consists of
computing the volume ratios of Eq. (3.1)). Note that the volumes of these instances are computed amidst the
whole NPC. Also, the volume calculation is carried out using affine o-shapes [[CKL11]], as computing the volume
of restrictions in the compoundly weighted Voronoi diagram is an open problem.

# Global attribute: total number of toleranced balls
8064

# Then, a list of toleranced balls. Here is an example toleranced

# ball, represented by the Cartesian coordinates of the center, the

# inner radius, the outer radius, and the index of the protein instance
# this ball belongs to

42.4916 39.2358 16.4461 1.4702 4.19091 O

Figure 7.4: The .tbl file format to represent the toleranced balls of a list of protein instances.

7.2.4 Hasse Diagram Engine

The Hasse Diagram engine, called HD_ENGINEin the sequel, computes the Hasse diagram of a toleranced
model, as explained in Section[5.2.2]

This computation requires two steps, namely the computation of the A-complex of the toleranced model, and that
of the Hasse diagram of the protein complexes. While computing the Hasse diagram, we also store the list of
merges between pairs of protein instances, which we call the protein contact history. In fact, we successively
compute (i) the A-complex, (ii) the protein contact history, (iii) the Hasse diagram.
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The file formats for the Hasse diagram and the protein contact history are presented on Figures. [7.6]and[7.7].

Input. While the main argument is the toleranced model, the following options are available:
e One can specify a list of pulldowns; if so, the toleranced model manipulated falls into the bicolor setting.

e If a protein contact history is provided, the Hasse diagram is directly derived from it, without computing the
A complex.

e A value Ap,x can be specified to bound the growth process of the toleranced model. Recall that this value
should be set in accordance with the uncertainties observed on the input data, measured by volume ratios.

e Since the computation of the whole A complex may be time consuming, the partial A-complex, which
consists of the Gabriel simplices of dimension zero and one, may be resorted to. One option is provided to
resort to this subset of the A-complex [CDI10].

Output. If no protein contact history is provided, the one computed from the (partial) A-complex one is
reported. In any case, we report the Hasse diagram involving all protein instances. Furthermore, one finds one
Hasse diagram per pulldown specified, if any.

Analysis. The following pieces of information are reported:

e The lifetime of the complexes found in the Hasse diagram, and the number of complexes as a function of 1.

e The isolated copies found in the Hasse diagram. (Recall that a pulldown is mandatory to define isolated
copies.)

e The contact probabilities of protein type pairs, as defined in Section[5.2.2] Note that the contact
probabilities requires a value for A,x. If such a value has not been specified, Ay = 1 is used.

e The volume ratio of each complex found in the Hasse diagram is computed, for the A corresponding to its
birth date.

# An example pulldown.

# A pulldown is represented by a triple namely
#(1) pulldown index

#(ii) the number of protein types in the pulldown

#(iii) the list of protein types, the first one being the tagged
# protein
#
#
5

As an example, here is the pulldown of the Y-complex in Sali et al:
4 7 Nup84 Sehl Nup85 Nupl20 Nupl45C Secl3 Nupl33

Figure 7.5: The .tap file format to represent a pulldown i.e. a list of protein types.

# An example protein contact history.

# An element is represented by a triple namely

#(1) protein instance pl (type + index)

#(1ii) protein instance p2 (type + index)

#(iii) the weight for which pl and p2 are connected.
Nup84 55 Nupl33 89 0.515

Figure 7.6: The .pch file format to represent a protein contact history.
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# Global attribute: pulldown, see .tap file format
54 7 Nup84 Sehl Nup85 Nupl20 Nupl45C Secl3 Nupl33

# total number of vertices and edges in the diagram
495 493

# Vertex description: vertex index and weight of the vertex
66 —-0.289302

# Then, description of the protein complex of the vertex:

# number of vertices and edges in

2 1

# list of vertices of the protein complex: pair (type name,
# instance index) of the protein instance in the vertex
Nupl33 73

Nup84 114

# list of edges of C: two pairs (type name, instance index) following
by the weight of the edge linking the instances

Nupl33 73 Nup84 114 -0.289302

# Edge description: vertex indices of the ancester and the son
66 52

Figure 7.7: The .shd file format to represent a Hasse diagram. In the example, the protein complex of the vertex
number 52 (not shown) has one protein instance (Nup84, 114).

7.2.5 Graph Matcher

This application compares the skeleton graphs of nodes of a Hasse diagram to a template graph involving the
same protein types, typically corresponding to an atomic resolution model of the corresponding
sub-complex—see Section [6.2.3]

Input. The two main arguments are a (list of) Hasse diagrams (.shd file format) and a (list of) template skeleton
graph(s) (.tsg file format). A .tsg file describes a graph whose nodes are protein types (Figure[7.8).

Output. The main output is a list of (alternate and perfect) matching recorded in a .mat file (Figure[7.9).

Analysis. The analysis on perfect and alternate matchings essentially consists of computing their signature as
defined in Section[6.2.2] A table summarizing the signatures is dumped into the analysis file (.mata).

# Global attribute: number of edges
6

# list of edges
Nupl33 Nup84

Figure 7.8: The .tsg file format to represent a template skeleton graph.
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#Global attribute: template skeleton graph
1
Nupl33 Nup84

#Global attribute: protein complex graph

21
Nupl33 73
Nup84 114

Nupl33 73 Nup84 114 -0.289302

#Global attribute: matching type (perfect or alternate)
Alternate Matching

#Global attribute: number of matching of this type
1

#list of all matching of this type: number of edges following by the
list of edges

1

Nupl33 73 Nup84 114 -0.289302

Figure 7.9: The .mat file format to represent a matching between a template skeleton graph and a protein complex
graph.
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7.3 Design of the Packages

7.3.1 Overview

Packages. The code has been written in generic C++, in the spirit of the Computational Geometry Algorithms
Library, see http://www.cgal.orgl A particular care has been taken in separating the numerical operations
(the so-called predicates and constructions) from the combinatorial ones.

Each of the aforementioned application corresponds to one package, that is to a set of C++ classes addressing a
specific problem. We have developed the following packages, each one with its own C++ namespace:

e package Geometry;,

o package Graph_theory;

e package Biochemical,

e package Density_map_segmenter;

o package Toleranced_model_designer;
e package Hasse_diagram_engine;

o package Graph_matcher.

Type of classes within a package. The classes within a package are divided into three groups, as seen from

Figure

o A kernel class contains constant size objects, predicates and constructions. Constant size objects are C++
classes providing representations and basic operations (comparison, input from a stream, output into a
stream), and are grouped within the Kernel_base class. Predicates, grouped in the Kernel_predicates class,
are C++ structures providing functors i.e. function objects answering a query and returning an output
within a finite set, typically true or false. Constructions are C++ structures providing functors building
constant size objects, and are grouped in the Kernel_constructions class.

o A data structure class defines a combinatorial object used in the package. The specification of a data
structure typically requires a kernel defining the objects of constant size stored, and a container storing
these objects. Following the spirit of the Standard Template Library, the data structures have particular
methods for filling or visiting them.

e An algorithm class implements a particular task, and directly depends upon the kernel for the geometric
objects manipulated—and the related predicates and constructions. In practice, an algorithm is represented
by a C++ class providing one ore more functor(s) whose arguments are inputs and outputs of the algorithm.
When the output is a data structure, it is represented by a special iterator from which the data structure can
be filled, making the algorithm independent from the data structure. When the input is a set of objects, it is
represented by an iterator visiting this set.

Each class in a package is implemented so as to be generic, i.e to support different kinds of kernels, data
structures or algorithms. We emphasize the fact that genericity provides flexibility, in the sense where the
packages can be used in different contexts, for example with or without exact calculation, with different input
format, or with different algorithms.

Categories of classes within a package. The classes of a package are grouped into categories, each defining
types corresponding to a particular task:

o the Input category groups the input data structures of the algorithms;
o the Output category groups the output data structures of the algorithms;

o the Engine category groups the algorithms creating the output from the input;


http://www.cgal.org

142 CHAPTER 7. SOFTWARE

e the Analysis category groups the algorithms analyzing the output computed by the algorithms.

Practically, a category is a C++ class encapsulating a number of C++ t ypede £ instructions. That is, a category
corresponds to a so-called C++ traits class. Note again that this design is meant to make the software suite very
generic by abstracting and decoupling the types.

Kernel
* . .
Data Structures K>——————— constant size objects
) constructions
LI A — predicates
Lo ! i
E : Algorlthms*__________________I
L A |
OO OOU U SO SOOTOOOSSRTROOS Y SRS
Input Types Output Types Engine Types Analysis Types

Figure 7.10: Dependence diagram of the C++ classes involved in a package, depicted using the UML formalism.
A dashed arrow refers to a dependency relationship, while a solid arrow with a white diamond stands for the
aggregation relationship. In the latter case, the * denotes that the concept on the diamond side contains many
instances of the pointed concept. The dotted lines separate the types of classes and the categories of classes.

7.4 Packages: Details

In the following, for each package, we describe the main classes corresponding to the kernel, data structure,
algorithm types mentioned above.

7.4.1 Geometry

This package provides generic C++ classes for representing and computing the compoundly weighted Voronoi
diagram and its associated A-complex. The reader is referred to Section for a more detailed presentation.

Kernel. It defines types for:

— the numbers (coordinates, radii of spheres);

— the algebraic numbers (roots of degree four polynomials);

— the toleranced balls;

— the simplices of the dual structure.

Note that numbers are predefined in a geometric kernel of the CGAL library, and algebraic numbers are
predefined in an algebraic kernel of the CGAL library — see Chapter II and IV in
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/contents.html for more
details. In addition, the kernel defines three important predicates and constructions:

— the conflict-free predicate;

— the toleranced tangent predicate;

— the toleranced tangent balls construction.
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Data structures. The data structures are:

— the compoundly weighted dual structure, that is a Hasse diagram of simplices representing the dual of a CW
VD, see Section[3.3.2}

— the A-complex, as defined in Sectionm

Algorithms. There are three algorithms: one computing the dual structure of the compoundly weighted Voronoi
diagram, one for computing its associated A-complex, and one computing directly the partial A-complex.

7.4.2 Graph Theory

This package provides generic C++ classes for computing the Maximal Common Sub-graphs of two graphs, see
Section[6.6.1] Since constant size objects, predicates and constructions are provided by external packages, this
package provides only data structures and algorithms.

Data structures. The data structures are:

— a vertex labeled graph, represented by an adjacency graph from the Boost Graph Library, see
http://www.boost.org/doc/1libs/1_47_0/1libs/graph/doc/index.html.

— a vertex product graph, that is a graph whose nodes are pairs of nodes of two vertex labeled graphs G, G, and
edges are tagged by a binary value (c or d, see [CKOS]).

— a edge product graph, that is a graph whose nodes are pairs of edges of two vertex labeled graphs G, G, and
edges are tagged by a binary value (c or d, see [CKOS]).

Algorithms. There are three algorithms: one computing the so-called maximal c-cliques of a graph whose
edges are tagged by a binary value, one computing the Maximal Common Edge Sub-graph of two vertex labeled
graphs, and one computing the Maximal Common Induced Sub-graph of two vertex labeled graphs [CKOS].

7.4.3 Biochemical

This package provides tools for representing and analyzing biochemical data of the VORATOM suite.

Kernel. It defines types for:

— the protein types;

— the protein instances;

— numbers (coordinates, density values, etc);
— the voxel of a density map.

Data structures. The data structures are containers for the previous types:

— the TAP pulldown, that is an ordered set of protein types;

— the template skeleton graph, that is a graph whose nodes are protein types;

— the protein assembly, that is a list of protein instances;

— the probability density maps, that is a 3D matrix of voxels represented by a vector.

Algorithms. There is only one algorithm analyzing the probability density maps: the analysis computes the
number of local maxima, the number of connected components of non null voxels, and compares the volume of
each connected component to the reference volume Vol .

7.4.4 Density Map Segmenter

This package provides algorithms segmenting a probability density map of a protein type P in n connected
components of size at most Vol ¢(P). In particular, it implements the two algorithms described in Section

Kernel. The constant size objects defined in this kernel are identical to those of the biochemical kernel.
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Data structures. The main data structure is the occupancy volume, that is a list of connected voxels with an
attached protein instance.

Algorithms. There are three algorithms, two for computing the occupancy volumes from a probability density
map, and one for analyzing the output occupancy volumes. The analysis computes from an occupancy volume ov
the ratio between ov and the reference volume of its protein instance. If a list of occupancy volumes of the same
protein type is provided, it also computes basic statistics over the volume ratio (minimum, mean and maximum)

7.4.5 Toleranced Model Designer

This package implements the construction of the toleranced model described in Section[4.4.2]

Kernel. The constant size objects defined in this kernel are identical to those of the biochemical kernel. It also
defines the toleranced ball (see Section [3.2).

Data structures. The two main data structures are the toleranced protein, that is a list of toleranced balls with
an attached protein instance, and the toleranced model, that is a list of toleranced proteins.

Algorithms. There are two algorithms. The first one computes a toleranced protein from an occupancy volume
of a protein instance. The second one analyzes a set of toleranced proteins: given a A value and a set of toleranced
proteins C, the analysis computes for each protein the volume ratio V; (C) defined in Section Note that this
computation requires computation of the volume of a union of balls, which is done using the Vorlume software,
see http://cgal.inria.fr/abs/Vorlume/, based upon the algorithm described in [CKL11].

7.4.6 Hasse Diagram Engine

This package implements the construction and the analysis of the Hasse diagram described in Section[5.2}

Kernel. The constant size objects defined in this kernel are identical to those of the toleranced model designer
kernel.

Data structures. There are three main data structures:

— the protein contact history, that is an ordered set of triples (protein instance, protein instance, A-value);

— the protein complex, that is a connected weighted edge graph whose nodes are protein instances, the weight of
an edge being the A-value corresponding to the contact between two proteins. — the Hasse diagram, that is a
directed acyclic graph whose nodes are protein complexes.

Algorithms. There are six algorithms: three for computing the Hasse diagram associated to a toleranced model,
and three for analyzing the output. The former three compute:

— the protein contact history of a toleranced model from its (partial) A-complex;

— the filtered protein contact history that is the subset of an input protein contact history containing only triples
with protein instances of types in a prescribed set T';

— the Hasse diagram associated to a protein contact history.

The latter three:

— compute the contact probabilities of all pairs of represented protein types, see Section[5.2.2] based on the
protein contact history;

— report the number of protein complexes as a function of the parameter A, see Section based on the Hasse
diagram;

— count the number of isolated copies, see Section[5.2.2] based on the Hasse diagram.

7.4.7 Graph Matcher

This package implements the construction and analysis of the matchings described in Section[6.2.3]
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Kernel. The constant size objects defined in this kernel are identical to those of the biochemical kernel.

Data structures. The two main data structures are the template skeleton graphs and the protein complexes.
Algorithms. There are three algorithms: two for computing the alternate and perfect matchings of a protein

complex and a template skeleton graph, and one for analyzing the output matchings. The analysis constructs the
signature of all the matchings.
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Chapter 8

Conclusion

This thesis makes three contributions, namely the study and the computation of compoundly weighted Voronoi
diagram (Chapter [3)), the assessment of ambiguous macro-molecular models (Chapter 4| and [5), and the
comparison of protein interactions graphs in the context of macro-molecular assemblies (Chapter [6).

From an algorithmic standpoint (Chapter[3), we work out selected properties of the so-called compoundly
weighted Voronoi diagram, a curved Voronoi diagram for which little was previously known. The fact that the
bisectors are degree four algebraic surfaces creates topological complications more pronounced than those faced
for other curved diagrams, such as the Apollonius or the Mobius diagram. Also, using a representation of the dual
as a directed acyclic graph whose nodes are abstract (i.e. non embedded) simplices, we design a naive yet non
trivial algorithm for the construction of such a diagram. Finally, we generalize the o-complex for the case of the
compoundly weighted Voronoi diagram, a construction which we call the A-complex.

As far as the assessment of macro-molecular assemblies is concerned, we provide novel methods for the analysis
of ambiguous assemblies (Chapters 4] and[5)). We introduce the notion of toleranced model, which allows
representing shapes with uncertain contours with a continuum of models. We show that a multi-scale analysis of a
toleranced model can be encapsulated in a Hasse diagram summarizing the evolution of contacts between
proteins, from which global and local assessments can be inferred. At the assembly level, we introduce contact
probability curves, which provide a stoichiometry dependent notion of contact between protein species. At the
local level, we introduce a number of statistics summarizing the properties of protein complexes appearing in the
Hasse diagram.

Applying these tools to the Nuclear Pore Complex, we confirm the disputed ring model of the Y-complex, by
emphasizing the importance of the nucleoporin Nup85 in inter-complex interactions. Furthermore, we hint at the
role of the nucleoporin Nspl, since instances of this protein type are involved both in copies of the T-complex
and copies of the Nup82-complex.

In order to complete these analysis, we also propose tools aiming at comparing two graphs encoding protein
contacts, typically one graph coding the contacts in a complex of the toleranced model, and one graph
corresponding to an atomic resolution model of this complex (Chapter[6)). We formalize this problem as a
Maximal Common Sub-graphs problem, and rephrase it in terms of so-called perfect and alternate matchings.
Using this machinery for the NPC, we show that despite the wrong location of Sec13 in the toleranced model, it
remains possible to recover the totality of contacts foreseen by the atomic resolution model of the Y-complex,
except (Nup120, Nup145C) and (Sec13, Nup145C). Our analysis also reveals that ten out of 16 copies of the
T-complex found in the toleranced model include the contact (Nic96, Nup49), but not the contact (Nic96,
Nup57). This asymmetry has not been noted in biochemistry so far.

From a software standpoint, these analysis were conducted using the VORATOM library, developed during this
thesis (see Chapter|[7). This C++ library consists of a set of independent tools, aiming at creating and assessing
toleranced models from (probability) density maps of protein assemblies. In particular, the computation of
compoundly weighted Voronoi diagrams, the analysis of Hasse diagrams and the computation of common
sub-graphs can be used in a more general context. Furthermore, the generic design of the C++ classes offers
maximal flexibility, since one can change the algorithms or the input/output formats independently from the other
components.
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Despite these contributions, a number of open questions deserve further work.

First, we have used as input the probability density maps of the individual protein species of the NPC. It would be
beneficial to employ density maps from cryo-electron microscopy. The problem of partitioning a map involving a
prescribed number of protein instances is a key problem, which could be tackled using information on the shapes
and possibly the (relative) position of the proteins. This problem is in general difficult and ill-posed one. A novel
approach could consist of using information of the local maxima (and more generally all the critical points) of the
map, resorting to Morse theory. But designing noise resilient algorithms in this context is a challenge. Another
approach could be to use geometric covering algorithms, to cover selected regions of the map with a prescribed
budget of pseudo-atoms.

Second, our construction of toleranced models is based on canonical configurations of molecules. This is a rather
elementary strategy which needs to be improved. Given an envelope contoured within a map, approximating this
envelope using (toleranced) balls is a possible route. But it is also reminiscent from geometric covering, and thus
hard.

Third, the choice of a linear growth process is questionable, since the gradient vector field in a density maps does
not generally comply with such a model. Using different growth processes, possibly coupled to anisotropic
Voronoi diagrams seems interesting. But the compoundly weighted Voronoi diagram is already quite difficult to
handle, and even more elaborate growth processes might be intractable—at least from the symbolic point of view.
An alternative could be to use of a linear growth process with respect to the square radii, tantamount to the
Mobius diagram, where bisectors are hyper-spheres. But the semantics of such a growth process in the context of
a density map remains unclear.

Finally, designing an incremental and output sensitive algorithm for the compoundly weighted Voronoi diagram is
a problem which needs to be addressed. This would allow calculations on models of the order of tens of
thousands of balls, which are currently beyond reach.
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RESUME

La génomique structurale a donnée acces a un nombre remarquable d’informations sur le protéome. De nature
essentiellement combinatoire—il apparait que certaines protéines interagissent en complexe, elles gagnent a étre
complémentées par des modeles tridimensionnels pour étendre la connaissance jusqu’au niveau structural.
Récemment, de tels modeles ont été reconstruits pour le pore nucléaire, en intégrant diverses données
biophysiques et biochimiques. Cependant, la nature qualitative de ces modeles empéche une compléte synergie
entre ceux-ci et les données expérimentales. Cette these propose trois développements répondant a ces
limitations.

Premierement, nous introduisons les modeles tolérancés pour représenter des formes aux contours incertains par
un continuum de modeles. Nous montrons qu’un modele tolérancé est équivalent a un diagramme de Voronoi
additif multiplicatif, et nous développons le A-complexe, I’équivalent de 1’ o-complexe, pour un tel diagramme.
Deuxieémement, nous utilisons les modeles tolérancés pour représenter des assemblages protéiques. Nous
expliquons comment un modele tolérancé peut étre utilisé pour évaluer la stabilité des contacts entre les protéines
et pour valider la cohérence d’un tel modele vis a vis de données expérimentales.

Troisiemement, nous proposons des outils pour comparer des graphes de contact entre protéines, issus d’ une part
d’un modele tolérancé, et d’autre part d’un modele connu a résolution atomique.

L’ensemble de ces concepts et outils est utilisé pour sonder les reconstructions du pore nucléaire mentionnées
ci-dessus.

Mots-clés. Diagramme de Voronoi courbe; Complexe de Delaunay; o.-complexe; Modélisation avec
incertitudes; Complexes protéiques; Assemblages macromoléculaires; Pore nucléaire; Evaluation de modeles

ABSTRACT

Structural genomics projects have revealed remarkable features of proteomes. But these are essentially of
combinatorial nature—selected proteins interact within a complex, so that extending them to the structural level
requires building 3D models of these complexes. Such models have recently been reconstructed for the Nuclear
Pore Complex (NPC), based on the integration of diverse biophysical and biochemical data. Yet, a full synergy
between them and the experimental data is not at play because the reconstructions are qualitative. This thesis
makes three contributions addressing these limitations.

First, we introduce toleranced models (TOM) to inherently represent uncertain shapes as a continuum of models.
We show that a TOM is equivalent to a compoundly weighted Voronoi diagram, and develop the A-complex, the
equivalent of the o-complex for such a diagram.

Second, we use toleranced models to represent protein assemblies. We explain how a toleranced model can be
used to assess stable contacts between proteins and to check the coherence between such a model and
experimental data.

Third, we propose tools to compare graphs encoding contacts within proteins, such graphs coming from a
toleranced model on the one hand, and from atomic-resolution models on the other hand.

All these concepts and tools are used to probe the aforementioned reconstructions of the NPC.
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Key-words. Curved Voronoi diagram; Delaunay complex; a.-complex; Uncertain models; Protein complexes;
Macromolecular assemblies; Nuclear pore complex; Model assessment
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