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Abstract 
 
 

The dynamics and mobility of macromolecular particles in colloidal suspensions in fluids 

flowing inside mesopores, and the diffusive collisions and possible adsorption of theses 

particle at the solid boundaries of the pores, is a subject of fundamental physical and 

biological interest. The analysis of these effects is necessary to understand a variety of 

complex phenomena, and towards technical applications which involve the flow of such 

colloidal suspensions.  

 

The purpose of this thesis is to develop a comprehensive model analysis in a three-

dimensional spatial frame for the dynamics of molecular particles in dilute colloidal 

suspensions in solutions flowing inside pores of variable width, using numerical simulations. 

The approach by simulations is necessary because it is extremely complex to use analytical 

tools at present to deal with the problem of diffusive collisions of the particles at the solid 

pore boundaries. The algorithms which we have developed and the corresponding simulations 

are sufficiently general and refined to be directly applied to the study of the dynamics of a 

wide variety of polymer and biological particles in dilute solutions under diverse physical and 

applicable hydrodynamic conditions inside pores.  

 

The thesis contains a general introduction in Chapter I, and contains the conclusions and 

perspectives for future work in Chapter VI. The intermediate four chapters present the bulk of 

the research results carried out toward this thesis. 

 

In Chapter II, simulations are carried out, in a two-dimensional spatial frame, to analyze the 

dynamics of dilute colloidal suspensions of molecular particles inside pores, subject to 

hydrodynamic forces, Brownian motion and diffusive collisions at the rough pore boundaries. 

A theoretical model is developed and intensively analyzed for the treatment of the mechanical 

restitution of the particles due to collisions at the boundaries. In particular we are able to 

calculate the Probability Distribution Functions (PDF) for the spatial positions and for the 

orientations of rigid rod-like particles in colloidal suspensions in Poiseuille flow inside the 

pores. The results are calculated for a variety of pore channel widths referenced to the size of 

a rod-like particle. These simulations are general in the sense that they are developed for 

confining and open pore channels, with rough boundaries at the nano scale, and are presented 

for different segments in the space of the pores and the depletion layer next to the solid 

boundary, and for a range of several orders of magnitude of the rotational Peclet number. We 

show that rough surface boundaries induce characteristic PDF properties quite different from 

those for ideally flat boundaries. The simulations yield also the nematic order parameter for 
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the colloidal suspensions. In particular, the model calculations are applied for carbon 

nanotubes in an aqueous DNA solutions flowing inside pores of different sizes. Our 

calculated results for the nematic order parameter for particles of known lengths permit in 

principle, when coupled to birefringence and dichroism experimental results, precise 

estimates for the pore widths of these systems. 

 

We develop in Chapter III the algorithms and simulations necessary to analyze the dynamics 

of the particles in a three-dimensional spatial frame. In particular we study in this case an 

open channel pore for which we calculate the PDF distributions in the bulk and in the 

depletion layer next to a solid boundary. We develop a theoretical model based in this case on 

the equations of Jeffrey for the dynamics of solid particles in fluids and the molecular 

dynamics by mechanical restitution for the diffusive collisions of the particles at the solid 

boundaries. Simulations are carried out to calculate the equilibrium PDF distributions for 

ellipsoidal molecular particles in suspension in a fluid under hydrodynamic flow. The 

simulation results for the PDF distributions for the spatial positions and the orientations of 

ellipsoidal particles are calculated for the bulk liquid and in the depletion layers next to an 

atomically flat solid surface boundary. They are calculated over several orders of magnitude 

of the rotational Peclet number, and for variable aspect ratios characteristic of the ellipsoidal 

particles under study. They demonstrate the importance and significance of modeling in a 

three-dimensional spatial frame as compared to the simulation results based in the Boeder 

approach over a two-dimensional spatial frame. In particular we are able to produce a 

complete topography for the PDF distributions segmented as a hierarchy in the depletion 

layer, covering a complete range of orientations in 3D space. The simulations permit to 

calculate, for the colloidal suspension, the nematic order parameter over its tensorial 

representation, for a variety of forms of ellipsoidal particles selected to correspond to real 

polymer particles. Our results for the nematic order parameter which may be calculated 

locally inside the space of the depletion layer are innovating and represent a new input as 

regards these systems. 

 

We derive in Chapter IV the algorithms for the dynamics of a special class of molecular 

particles, namely rigid rod-like particles, for which the aspect ratio is much greater than unity. 

This type of molecular particle is of particular interest, it is often found in nature, as the TMV 

tobacco virus, and may also be produced synthetically for a wide range of technological 

exploitation, such as the carbon nanotubes. The simulations to calculate the PDF distributions 

and the nematic order parameters are carried out for two types of solid boundaries, the ideal 

atomically flat and the rough surface boundaries. To accomplish this we have investigated in 

this chapter in particular the influence of the roughness on the choice of the hydrodynamic 

boundary conditions. 
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The mechanisms leading to the adhesion of particles of nano sizes in the depletion layer under 

what would be non-equilibrium conditions, due to the conflicting influence of the mechanical 

diffusive collisions and the attractive Hamaker forces at the boundaries, are of major interest. 

We have hence investigated in Chapter V a theoretical model to calculate the restitution 

coefficient from basic physical principles. The objective is to quantify the energy balance 

during the process of a diffusive collision of a nano particle under the influence of the 

repulsive forces due to the Pauli principle via mechanical bounce on one hand, and the 

attractive Hamaker forces acting on the nano particle on the other. This is done by developing 

a model, based on the JKR and Hertz theories, to account for the energy losses during 

collisions, and for the energy gains due to the Hamaker interactions. Adhesion becomes an 

outcome if the energy balance permits this. Our theoretical model is developed by proposing a 

special analytic approach based on the Hamaker potential. We derive from the theoretical 

analysis a characteristic nonlinear equation for the restitution coefficient, and analyze its 

properties which determine under given physical conditions the outcome for adhesion or not.  

 

The conclusions and the perspective are presented in Chapter VI. Indeed, the main scope of 

this thesis aims at investigating the equilibrium dynamics of biological and macromolecular 

particles of nano dimensions, in colloidal suspensions in fluids inside pore systems, for a wide 

range of particle forms, for ideally flat and rough surface pore boundaries on the scale of the 

particles, and under a realistic range of physical conditions (system temperature, solution 

viscosity, Peclet number, pore width, particle length, particle form and aspect ratio, …). The 

simulation results such as for the nematic order parameter may also be compared with 

experimental data whenever these are available. One of the major perspectives of this work is 

to use our theoretical model for the adhesion and corresponding mobility under non-

equilibrium conditions to produce numerical simulations for the adhesion profiles, for 

different species of particles flowing in colloidal suspensions through pore networks. Such 

profiles should lead to technical applications as regards the filtering capacities by pore 

networks for diverse species of biological and macromolecular particles. 
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Chapter I 

 

General introduction 

 

“The beginning of knowledge is the discovery  of  
Something we do not understand.” 

— F rank H erbert 

 

Understanding the complex dynamics of macromolecular and nano particles in 

colloidal suspensions in flowing liquids is necessary to be able to understand natural 

effects and industrial applications in the domain of nano-fluidics. This understanding is 

also necessary to solve technical and scientific problems in a variety of domains such 

as public health (atmospheric pollution, mobility of blood cells,..), sedimentation in 

waterways (estuaries, deltas,..), and industrial products and applications (cosmetics, 

inks and paints, waste matter treatment, the processing of fiber composites,..). The 

dynamics of dilute colloidal suspensions of rigid macromolecular and nano particles is 

the main focus of the present work.  

 

1.1 Basic objectives for modelling the dynamics of colloidal particles in flowing 

liquids 

The dynamics of particles in colloidal suspensions in fluids flowing inside pores, 

and the diffusive collisions and possible adsorption (sticking) of these particles at the 

solid boundaries of the pores, is a subject of fundamental physical and biological 

interest. The study and analysis of these effects is necessary towards technical 

applications which involve the flow of such colloidal suspensions. 

 

There is a great amount of research work which has investigated the dynamics of 

colloidal particles suspended in a flowing solution at different scales (Stover and 

Cohen 1990; Iso, Cohen et al. 1996; Moses, Advani et al. 2001; Pozrikidis 2005; 

Altenbach. H 2007; Satoh 2008; Jayageeth, Sharma et al. 2009; San, eacute et al. 2009; 

Atwi, Khater et al. 2010; Choi and Kim 2010; Mueller, Llewellin et al. 2010). This is 

motivated by the biological and engineering applications which involve the flow of a 

suspension of particles in the fluid (GOLDSMITH 1972; CARO, PEDLEY et al. 1978) 
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(Crochet, Dupret et al. 1994; Osswald and Tseng 1994); (Nitsche and Roy 1996; 

Adams and Fraden 1998; Butler and Shaqfeh 2002; Sepehr, Ausias et al. 2004; 

Subramanian and Koch 2005; Carlsson, Lundell et al. 2007; Tang and Advani 2007; 

Rose, Hoffman et al. 2009; Zhang, Donev et al. 2009; Park, Metzger et al. 2010);  

 

Previous research work using experimental and numerical simulations to study the 

dynamics of suspensions of colloidal particles has concentrated on the study of 

colloidal suspensions of microscopic fibers and their applications, justifiably 

neglecting their Brownian motion in this case. Also, since fibers present an industrial 

interest mostly in the bulk, the question of the interactions of such fibers with 

boundary conditions at the inner surfaces of a container is not of special importance. If 

and when this question is addressed, the assumption has been often to assume an 

ideally flat surface. Furthermore, when numerical simulations are available, it is often 

observed that algorithm conditions at the surface boundary for diffusive collisions are 

difficult to clarify and in some cases are simply incorrect. 

 

In this thesis we are interested in the study of the dynamics of dilute colloidal 

suspensions of macromolecular particles and nano particles flowing inside 

submicroscopic pores. The frame of reference for our study, with particle lengths from 

20 nm to 800 nm, implies a scale much smaller than the microscopic. Under these nano 

fluidic conditions the dynamics of the colloidal particles is subject to a variety of 

effects, notably the hydrodynamic forces in the flow, the stochastic Brownian motion 

and the diffusive collisions at the pore boundaries. Since analytical methods are 

unavailable at present to deal with the problem of the collisions of these particles at the 

pore solid boundaries, an approach by numerical simulations is necessary. 

 

Our objective consequently is to develop appropriate numerical simulations for the 

dynamics of colloidal particles in confining pores. Contrary to previous work, we shall 

investigate to that end the joint influence of all three types of forces, namely 

hydrodynamic, thermal Brownian, and due to diffusive collisions. Furthermore we 

shall study the consequences of realistic rough inner pore surface boundaries, on the 

considered scale, towards the equilibrium dynamics of the particles, by developing 

appropriate algorithms for such rough surfaces. To do so, the conditions at the surface 

boundary for diffusive collisions are also clarified with the use of the notion of 

mechanical restitution, which presents a closed measure, to develop unambiguous 

algorithms for the molecular dynamics of the diffusive collisions, and hence 

unambiguous numerical simulations. 
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This thesis aims to develop a novel model analysis by numerical simulations for the 

equilibrium dynamics of dilute colloidal suspensions of particles in the two- and three-

dimensional spatial frame, for a wide variety of polymer and nano particles in dilute 

colloidal suspensions in solutions flowing inside sub-microscopic pores of variable 

widths, and under diverse physical and applicable hydrodynamic conditions. 

 

We consider explicitly the hydrodynamic and Brownian interactions at rough surface 

boundaries, where the roughness is characterized at an appropriate scale to be 

commensurable with the dimensions of the pores. We calculate in particular the 

probability distribution functions (PDF) for the positions of the centres of mass and for 

the orientations of these particles, and equally the resultant nematic order tensors, 

throughout the space inside the pore channels, from their confining rough surface 

boundaries to the bulk limit in the median of open pores. 

 

Since the notion of Newtonian restitution is of significant interest to our calculations, 

we have developed a theoretical model to quantify this effect in terms of the diverse 

energy components (kinetic, potential, deformation and adhesive), that contribute to 

the determination of the energy loss in a collision. In this manner we have derived 

nonlinear identities for the restitution coefficient for different forms of macromolecular 

and nano particles, which serve to calculate the restitution coefficient under a wide 

range of material and physical conditions for the collision of a given particle form. The 

purpose is to be able to calculate the sticking probability and consequent mobility of a 

given particle form during its passage through a pore, under the non-equilibrium 

conditions of the flow. 

 

It is recognised that 2D profile analysis of surfaces has been widely carried out in 

science and engineering, and has been widely used in industry and academic research 

for more than half a century. Recently (Wehbi, Clerc et al. 1986; Davis, P.J. et al. 

1988; Stout, Sullivan et al. 1991; You and Ehmann 1991; Boudreau and Raja 1992; 

Stout and Blunt 2000; Zhong and Lu 2002; Fischer, Karius et al. 2008; Sakarya, 

Leloglu et al. 2008; Uchidate, Yanagi et al. 2011) have emphasised the importance of 

3D surface topography in science and engineering applications,  this importance arises 

partially as a result of the realisation within both industry and academia that all 

surfaces interact in three, instead of two, dimensions. In some cases 2D parameters are 

insufficient to give a comprehensive description and hence unable to meet the needs of 

a wide variety of applications. In addition, vast growth in modern computing power 
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and numerical analysis and processing capabilities has also served as an important 

motivation for the wide acceptance and adoption of the 3D approach to surface 

topography analysis. 

 

In this work the sub-microscopic pores is modelled as two infinite solid plates which 

confine the flow along a Cartesian direction parallel to the plates in two and three 

spatial frame. Specific algorithms are developed for this purpose based on (Boeder 

1932) approach for two dimensional spatial frame Chapter 2 and Jeffrey equations 

(Jeffery 1922) for three dimensional spatial frame Chapter 3 and Chapter 4.  

 

Brownian motion, schematically presented in Fig1.1, is a phenomenon where small 

colloidal particles suspended in a fluid tend to move in relatively random or stochastic 

paths. The effect was discovered by Robert Brown in 1827, and is called Brownian 

motion after him. There are two possible Brownian movements for the colloidal 

particles, translational and rotational diffusion (Annexe I). 

 
Fig1.1 Brownian motion: a small colloidal particle moves from point A to B in random steps due to the 

thermal impacts of the liquid molecules surrounding it. 
 

Our simulations consider the hydrodynamic flow to be consistently laminar. The 

subject of turbulent flow is hence neglected in our work. The laminar flow is assumed 

to be horizontal, steady state, incompressible and isothermal.  The velocity, pressure, 

and viscosity at each point in the fluid remain constant independent of time.  The 

dimensionless Reynolds number is an important parameter and depends on a number 

of factors, in particular the average velocity, the characteristic linear dimension, 

(travelled length of the fluid), density and viscosity of the fluid flow Reynolds numbers 

of less than 2100 are generally considered to be of a laminar type. Despite the fact that 

hydrodynamic flow will carry the colloidal suspension in the direction of the flow, we 

assume the system to be ergodic under equilibrium dynamics, from one cross section 

of the pore to another, and our calculations are hence independent of the lateral 

position. 
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1.2   Model elements for rough surface boundaries of pores   

Pores have huge surface areas, providing a vast number of sites where sorption 

processes can occur. These materials have been recently intensively studied owing to 

their potential for practical applications, as in catalysis, adsorption, separation, sensing, 

medical usage, ecology, and nanotechnology (Raman, Anderson et al. 1996; Sayari 

1996; Corma 1997; Moller and Bein 1998; Ciesla and Schüth 1999; Ying, Mehnert et 

al. 1999; Stein, Melde et al. 2000; Sanchez, Soler-Illia et al. 2001; Davis 2002; Vinu, 

Murugesan et al. 2003; Okabe, Fukushima et al. 2004; Taguchi and Schüth 2005; 

Vinu, Hossain et al. 2005). Colloidal suspensions of macromolecular and nano 

particles may be allowed to transit by these pores under hydrodynamic flow. The 

question then arises as to their interactions with the inner surface boundaries of pores. 

 

The collision of colloidal particles with the surface boundaries of pores is relevant to 

practical applications. Examples are the nano-particle collection after they are 

synthesized in chemical reactors or emitted from mobile/stationary combustion 

sources, micro-contamination control in semiconductor processes, and worker 

protection in industrial hygiene. These aspects and others motivate the present study. 

 

The physics of surfaces and interfaces is a vast domain in condensed matter physics. 

From a sub microscopic view point, one can propose dividing surfaces into two major 

categories: ideal or atomically flat surfaces, and uneven surfaces. 

 

Atomically flat surfaces are an idealized concept. Even if nano-areas may be prepared 

initially as atomically flat, such surfaces cannot survive for lengthy periods. The 

fatigue is the general tendency for material surfaces to lose their order at all scales, and 

well prepared surfaces will suffer in time different forms of fatigue, presenting an 

increasing surface disorder. Corrosion is another process by which surfaces, especially 

metal surfaces, lose their order. Fig 1.2 for example presents an optical mage of 

atmospheric corrosion. Fabricated surfaces are also never perfect. 

 

Uneven surfaces are hence evidently more realistic. Furthermore, uneven surfaces may 

be divided into basically two broad classes or types of surfaces, namely uneven but 

periodic and random rough.  

 

Since the machining processes have invariably certain technical limits, regardless of 

the quality and attention in their use, surface irregularities and roughness are 



6 
 

unavoidable on some scale. The uneven but periodic surfaces are usually machine 

made. During the process of carving a surface (metal, hoses, etc.) some seeds of dust, 

or other substance, fall under the machine blade, and this produces a periodic damage 

to the surface while it is applied to make the surface. In Fig 1.3 is a representative 

example. Though imperfect these surfaces can be important for a variety of 

applications (Chang, Heilmann et al. 2003; Vass, Osvay et al. 2006).  

 

 
Fig1.2 Optical image of atmospheric corrosion sample (Ni–Cu–Pd) (Liang, Sowards et al. 2010) 

 

Fig 1.3 periodic uneven surface 
 
 

The class of uneven yet periodic surfaces does not have a particular incidence on the 

research work proposed in this thesis. In contrast, the class of random rough surfaces, 

is of particular interest is. This stems from the fact that the interior surface boundaries 

of pores are unlikely to be machine prepared, and as a consequence would probably a 

random nano rough quality (Reiss, Schneider et al. 1990; Zhao, Yang et al. 1996; 

Pignataro, Bonis et al. 2000; Angelsky, Maksimyak et al. 2006), as compared to the 

pores diameters and on the scale of the length of colloidal particles (20 nm to 800 nm) 

of interest in the present work. 

 

It is our objective to model random rough surfaces as an integral component of our 

algorithms, which we shall use to simulate the dynamics of diffusive collisions for 

macromolecular and nano particles at the surface boundaries of pores in which the 

colloidal suspensions flow.  
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The most common model for randomly rough surfaces is the Gaussian representation 

which treats the random rough surface as a Gaussian distribution of heights and step 

levels of the surface topography. The Gaussian distribution is characterized by two 

parameters, the average height and the variance. For an isotropic Gaussian surface, 

these parameters are statistically the same along the two directions of the surface. 

(Chen and Huang 2004) simulated such roughness, as in Fig1.4 (left), measured on the 

nano scale using AFM microscopy, with a numerical model for the tip. The results are 

represented by a Gaussian distribution of nano-metric heights as in Fig1.4 (right). 

 
Fig 1.4 Gaussian surface topography and  histogram of heights distribution (Chen and Huang 2004) 

 
 

1.3 Macromolecular particles and their forms 

The geometry of the macromolecules is complex and takes several forms and 

shapes. To facilitate the study of the macromolecules, research scientists have modeled 

the macromolecules particles by basic and simple geometric shapes: spheres, discs, 

rods, ellipsoidal, and rod- like particles, and others compound shapes. 

 

Compared to suspensions of spherical particles, suspensions of rigid rod-like and 

ellipsoidal particles, exhibit a much larger range of behavior since the orientation of  

these particles makes its configuration more likely to be affected by flow fields than 

that of a spherical particle. The colloidal suspensions of rod-like and ellipsoidal 

particles are also important in the non-Newtonian fluid effects (shear thinning and 

thickening), (Larson 1999).  

 

Our thesis will be focused on two types of macromolecules, namely rod-like and 

ellipsoidal forms for the colloidal particles. 

 

In recent years, much work has been done on the investigation of non spherical nano-

particles for pharmaceutical and medical applications. The potential of these nano-

particles materials as drug delivery vehicles is considered to be enormous. Many nano-

particle with rod and ellipsoidal shapes based drug formulations and diagnostic agents 
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have already been developed, e.g., for the treatment of cancer, pain, and infections 

(Kawasaki and Player 2005; Farokhzad and Langer 2006). Moreover, (Daum, Tscheka 

et al. 2012) worked on the effect of shape of nano-particle materials on the body and 

related physiological mechanisms, they found that non-spherical shapes, such as rods, 

discs and ellipsoidal particles, clearly shows the firm binding to the target tissue. 

 

Rod and ellipsoidal -like macromolecules, polymers and particles can be found in 

many areas of common existing and new emerging technologies. Many 

macromolecules of biological origin have rod-like structure: a short DNA fragment 

less than 100 base pairs (50nm) (Newman, Swinney et al. 1974; Tirado, Martinez et al. 

1984; Wang, Garner et al. 1991; Tinland, Plen et al. 1997), Xantham gum (Davidson 

1980) a helical polysaccharide which roughly forms a cylinder, is used to enhance 

viscosity of many food products. Other types of polysaccharides, peptides, and 

polynucleotides also form rigid linear structures. Even micro-organisms, such as FD 

bacteriophages and tobacco mosaic viruses, have rod-like structure (Caspar 1963; 

Chen, Koopmans et al. 1980; Tracy and Pecora 1992; Cush and Russo 2002) Fig 1.5. 

 

Fig 1.5 an electron micrograph picture of tobacco mosaic virus (TMV) illustrating its rod-like 
characteristics (Adams, Eby et al. 1989) 

 

Synthetic rigid polymers or nano-tubes are used for improvement of material 

properties (Adams, Eby et al. 1989) Composites of Kevlar and carbon fiber greatly 

increase tensile strength and stiffness (Gustin, Joneson et al. 2005), Fig 1.6. In one 

experiment performed by (Huynh, Dittmer et al. 2002) semiconductor CdSe nano-rods 

have been cast into a film to make solar cells. By controlling the diameter and length 

of the nano-rods, as well as the microstructure, (Huynh, Dittmer et al. 2002), were able 

to improve the performance of the solar cells. A picture of these nano-rods taken by a 

transmission electron microscope (TEM) is seen in Fig 1.7.  

 

On the other hand, various molecules of natural origin have  Ellipsoidal structure: 

polymethyl methacrylate (PMMA) and polystyrene (PS) (Han, Alsayed et al. 2009). 

Even some simple micro-organisms have an elongated, ellipsoidal configuration, a 
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rigid structure actin (Schmidt, Ziemann et al. 1996) and collagen (Oh and Park 1992; 

Claire and Pecora 1997) Fig 1.8 

 
Fig 1.6 Pictures of fabrics made up of carbon fibers (a), Kevlar fibers (b), and 

a composite of both (c) after they have been subjected to impact and compression testing in the work of 
(Gustin, Joneson et al. 2005) 

 

 
Fig 1.7 Transmission electron microscope images of CdSe nanorods produced in experiments (Huynh, 

Dittmer et al. 2002) in order to improve the efficiency of hybrid solar cells. 
 

Ellipsoidal particles are important because their colloidal behavior such as Brownian 

motion, (Grzelczak, Vermant et al. 2010),  maximum packing, (Nie, Petukhova et al. 

2010) as well as crystal structure (Yang, Kim et al. 2008) can be tuned systematically 

by changing the aspect ratio of their axes. Moreover, ellipsoidal particles can be an 

excellent model system in condensed matter physics (Chong and Götze 2002) and drug 

delivery vehicle design (Gratton, Ropp et al. 2008). Moreover, (Singh, Lele et al. 

2009) showed that ellipsoids can be organized into both the translational and 

orientational order through electric field assembly, leading to new structures that are 

otherwise unattainable using spherical particles, such ordered structures may have new 

mechanical properties (Mittal and Furst 2009), Fig 1.9. 

Fig1.8TEM images at low and high (insets) magnifications of ellipsoidal hollow silica particles (Zhao, 

Lang et al. 2009) 
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Most theories that treat these macromolecules in dilute solution, considered that the 

rigid rod-like macromolecule, being a cylinder with surfaces perfectly smooth 

immersed completely in a continuous hydrodynamics.  

 

 
Fig 1.9 A scanning electron microscopy (SEM) image of the titanium dioxide particles; with an aspect 

ratio of 4.19 (Mittal and Furst 2009). 
 

 

In this work, rigid rod-like particles are modeled as a long cylinder slender-body Fig 

1.10C, this model is popular because distributed resistance along the length(Batchelor 

1970; Cox 1970). There have been many similar approaches such as in the works by 

(Broersma 1960a; Broersma 1960b; Moran 1963; Happel and Brenner 1965). 

 

 
Fig 1.10 Physical models for a rigid rod-like particle: A) rigid-dumbbell, B) prolate Spheroid, C) 

slender-body, and D) shish-kebab model. 
 

 

Moreover in this thesis, the ellipsoidal particles are modeled as the prolate spheroid of 

arbitrary aspect ratio as in Fig 1.10B. Note that (Kim and Karrila 1991; Claeys and 

Brady 1993a) show by numerical simulation, the efficiency and accuracy to take 

prolate spheroids in particular by comparison with other numerical methods for flow. 
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Other models for particles are illustrated in Fig 1.10. The rigid dumbbell model is 

simple (Fixman 1985a; Fixman 1985b; Bitsanis, Davis et al. 1988; Bitsanis, Davis et 

al. 1990) but improper distribution of resistance results in different diffusivities 

compared to other models (Cobb and Butler 2005). The shish-kebab' model by (Doi 

and Edwards 1986) , which considers the macromolecule as N pearls, or spheres, of d 

diameter, N=L/d, that composes the macromolecule tip to  tip asin Fig1.10D. 

 
 

1.4. Adhesion between solid bodies  

Adhesion has been studied intensively over the past 40 years. The problem of 

determining the adhesion between solid bodies in contact is important for 

understanding friction, wear, the agglomeration and dispersion of colloidal particles, 

and many other phenomena (R.G. Horn, Israelachvili et al. 1987) As a complex, 

multifaceted phenomenon, adhesion involves factors such as surface chemistry, 

thermodynamics, polymer chemistry and physics, hydrodynamics, and contact 

mechanics (G.Y. Choi, Zurawsky et al. 1999). 

(Mittal 1975) dealt with the term adhesion by dividing it into three categories: (i) basic 

or fundamental adhesion, (ii) thermodynamic or reversible adhesion, and (iii) 

experimental or practical adhesion. Basic or fundamental adhesion is defined as the 

summation of all interfacial intermolecular interactions, such as ionic, covalent, 

metallic, hydrogen bonding and van der Waals forces, between the contacting 

materials. Thermodynamic or reversible adhesion signifies the change in Gibbs (or 

Helmholz) free energy per unit area when an interface is formed (or separated). The 

practical adhesion (experimental) signifies the force or the work required to remove or 

detach a solid from another. The measured practical adhesion is strongly influenced by 

many factors, such as the surface chemistry, mechanical properties and surface 

roughness, etc.. . This value can also be significantly different when different adhesion 

measurement techniques, parameters of technique and measuring conditions are used 

(Mittal 1975). 

 

The adhesiveness of nano-particles on pores depends on the loss of the center-of-mass 

energy of the incident particles due to the collision. The energy loss mechanisms 

include the transfer of incident kinetic energy into different new modes such as heat 

energy, elastic deformation, particle rotation, and others. The significance of these 

mechanisms is thought to depend on parameters, such as the incident energy, particle-

surface interaction, and elastic properties of particle and surface. Several models have 

been proposed to explain energy loss mechanisms upon the collision (Bitter 1963; 
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Rogers and Reed 1984; Reed 1989; Wall, John et al. 1989; Tsai, Pui et al. 1990; Wall, 

John et al. 1990; Xu and Willeke 1993; Andres 1995).  

 

The fundamentals of molecular attraction potentials and the mechanics of adhesion are 

treated for example by (Krupp 1967), by (Israelachvili and Tabor 1973), (Maugis 

1999) and (Kendall 2001). The basic models for elastic behavior were derived by 

(Hertz 1882) and for constant adhesion by (Johnson, Kendall et al. 1971),  and by 

(B.V. Derjaguin, Muller et al. 1975). 

 

In this work we develop a new model to quantify the energy balance during the process 

of a diffusive collision of macromolecular and nano particles under the influence of the 

repulsive and attractive Hamaker forces acting on them in the vicinity of the rough 

solid surface boundary. This is done by developing a model to account for the energy 

gains due to the attractive Hamaker interactions and energy losses in the collision. 

These theories will be presented in detail in Chapter V. 

 

1.6 Overview for the present work 

In Chapter 2, simulations will be carry out, in a two-dimensional spatial frame, to 

analyze the dynamics of dilute colloidal suspensions of molecular particles inside 

pores, subject to hydrodynamic forces, Brownian motion and diffusive collisions at the 

rough pore boundaries. A theoretical model is developed and intensively analyzed for 

the treatment of the mechanical restitution of the particles due to collisions at the 

boundaries. In particular we are able to calculate the Probability Distribution Functions 

(PDF) for the spatial positions and for the orientations of rigid rod-like particles in 

colloidal suspensions in Poiseuille flow inside the pores. The simulations yield also the 

nematic order parameter for the colloidal suspensions.  

 

We will develop in Chapter 3 the algorithms and simulations necessary to analyze the 

dynamics of the particles in a three-dimensional spatial frame. In particular we will 

study in this case an open channel pore for which we calculate the PDF distributions in 

the bulk and in the depletion layer next to a solid boundary. We will develop a 

theoretical model based in this case on the equations of Jeffrey for the dynamics of 

solid particles in fluids and the molecular dynamics by mechanical restitution for the 

diffusive collisions of the particles at the solid boundaries. Simulations are carried out 

to calculate the equilibrium PDF distributions for ellipsoidal molecular particles in 

suspension in a fluid under hydrodynamic flow. The simulations will permit us to 
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calculate, for the colloidal suspension, the nematic order parameter over its tensorial 

representation, for a variety of forms of ellipsoidal particles selected to correspond to 

real polymer particles.  

 

We will derive in Chapter 4 the algorithms for the dynamics of a special class of 

molecular particles, namely rigid rod-like particles, for which the aspect ratio is much 

greater than unity. This type of molecular particle is of particular interest, it is often 

found in nature, as the TMV tobacco virus, and may also be produced synthetically for 

a wide range of technological exploitation, such as the carbon nano-tubes. The 

simulations to calculate the PDF distributions and the nematic order parameters will 

carry out for two types of solid boundaries, the ideal atomically flat and the rough 

surface boundaries. To accomplish this we have investigated in this chapter in 

particular the influence of the roughness on the choice of the hydrodynamic boundary 

conditions. 

 

The mechanisms leading to the adhesion of particles of nano sizes in the depletion 

layer under what would be non-equilibrium conditions, due to the conflicting influence 

of the mechanical diffusive collisions and the attractive Hamaker forces at the 

boundaries, are of major interest. We have will investigate in Chapter 5 for a 

theoretical model to calculate the restitution coefficient from basic physical principles. 

The objective of this chapter is to quantify the energy balance during the process of a 

diffusive collision of a nano particle under the influence of the repulsive forces due to 

the Pauli principle, and the attractive Hamaker forces acting on the nano particle on the 

other. This will done by developing a model, based on the JKR and Hertz theories, to 

account for the energy losses during collisions, and for the energy gains due to the 

Hamaker interactions.  

 

The conclusions and the perspective will be presented in Chapter 6.  
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Chapter 2 

 

Simulations for the dynamics and nematic order of dilute colloidal suspensions of 

rod-like particles flowing in 2D-spatial frames of open and confining pores with 

rough solid boundaries 

 

Abstract: Simulations have been carried out to analyze the dynamics of dilute colloidal 

suspensions of macromolecular particles in solutions flowing in pores, subject to 

hydrodynamic forces, Brownian motion and stochastic collisions at rough pore boundaries in 

a two-dimensional spatial frame. A theoretical model is developed and intensively analyzed 

for the treatment of the mechanical restitution of the particles due to dynamic collisions at 

these boundaries. In particular we are able to calculate the Probability Distribution Functions 

(PDF) for the spatial positions and the orientations of rod-like particles for Poiseuille flow 

inside the pores. The results are presented for different widths of pore channels referenced to 

the size of a rod-like particle. These simulations are general in the sense that they are 

developed for confining and open pore channels, rough at the nano scale, and are valid 

throughout the space of the pores and in the boundary depletion layers, over several orders of 

magnitude of the rotational Peclet number. We show that rough surface boundaries induce 

characteristic PDF properties that are quite different from those for ideally flat ones. The 

simulations also permit calculating the nematic order parameters for colloidal suspensions; the 

model calculation is applied for dilute colloidal suspensions of carbon nanotubes 750 nm long 

in an aqueous single-stranded DNA solution flowing inside pores of different sizes. Our 

calculated nematic order results for dilute suspensions of particles of known lengths flowing 

inside porous systems should indicate, when coupled to birefringence and dichroism 

experimental results, the possibility to estimate the pore widths for these systems. 
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2.1 Introduction 

The dynamics of macromolecules particles in dilute colloidal suspensions in liquid 

solutions flowing near solid boundary surfaces or inside confined geometries such as pores of 

variable submicron sizes are long-standing research topics that continue to pose many 

outstanding questions. Aside from their importance for traditional applications such as 

lubrication, adhesion, polymer processing, and oil recovery, the topic of the flow of such 

particle suspensions in porous media, has recently taken on renewed importance with the 

emergence of the micro-fluidic approach to chemical and biological analyses, particle 

synthesis, and reaction engineering. To cite just one specific example, we note that the 

emerging technologies for single-molecule analysis of DNA in micron and nanometer scale 

devices (Andersen 1999; Chou, Austin et al. 2000; Lim, Dimalanta et al. 2001; Tegenfeldt, 

Prinz et al. 2004)  have fueled substantial interest in the structure and dynamics of confined 

solutions of DNA (Chopra and Larson 2002; Jendrejack, Schwartz et al. 2004). 

Experimental tools, such as the surface forces apparatus and light scattering dichroism (Fry, 

Langhorst et al. 2006), permit to investigating the confinement effects from the submicron 

scale down to the nano scale. Indeed the refinements in fabrication technology allow the 

construction of nano-fluidic devices with dimensions in the sub-100-nm regime. 

The diffusion of particles near a surface boundary is determined experimentally by optical 

microscopy (Banerjee and Kihm 2005; Carbajal-Tinoco, Lopez-Fernandez et al. 2007), total 

internal reflection microscopy (Bevan and Prieve 2000; Huang and Breuer 2007) and 

evanescent wave dynamic light scattering (EWDLS) (Holmqvist, Dhont et al. 2006; 

Holmqvist, Dhont et al. 2007). 

There is a certain amount of research work which has investigated the dynamics of dilute 

colloidal particles suspended in a flowing solution at different scales, using analytical theory 

and especially numerical simulations. It has been shown that the dynamics of suspended rigid 

molecular rod-like particles can differ remarkably in a confined domain from that in the 

unbounded solution (Hijazi and Khater 2001; Khater, Hijazi et al. 2003) owing to the 

stochastic dynamic collisions of the particles at the confining solid surface boundaries.  

More recent numerical simulations and theoretical analysis confirm that rigid polymers and 

Brownian rods within strong shearing flows migrate away from bounding walls due to 

hydrodynamic interactions (Sintillan, Shaqfeh et al. 2006; Park, Bricker et al. 2007). This 

result is consistent with experiments on semi-rigid xanthan molecules in pressure-driven flow, 

which indicate the migration away from a wall (Ausserré, Edwards et al. 1991), and give 
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evidence for the depletion layers in flowing solutions. Models for rigid polymers have 

focused on steric exclusion with the walls (De Pablo, Öttinger et al. 1992; Schiek and Shaqfeh 

1995). While neglecting surface boundary hydrodynamic interactions, these studies were 

reasonably successful at explaining experimental observations, including the thickening of the 

depletion in strong flows, which may be a result of more frequent collisions with the 

boundaries, owing to an increased rate of molecular tumbling. Further, previous research 

work has mostly considered the surface boundaries to be ideally smooth. 

Previous research work has mostly considered the boundary surfaces to be ideally smooth. In 

the present work these boundary surfaces will be considered as rough at an appropriate scale 

commensurable with the dimensions of the pores. In particular a Gaussian profile of heights is 

considered, in any given direction in the 2D solid surface, without loss of generality since the 

simulation algorithm can be applied for other profiles. The dynamic effects due to the 

stochastic Brownian and causal hydrodynamic forces acting on the particles, as well as those 

due to the diffusive mechanical collisions of the particles with the solid boundary rough 

Gaussian surface are integrated in the simulations. An algorithm is developed for this purpose 

based on the Boeder Differential equation (Boeder 1932) for the dynamics of macromolecular 

rod like particles in bulk fluids, and on the mechanism of the restitution of the particles from 

the diffusive collisions at the solid boundaries. 

The present Chapter is focused on the study of the equilibrium dynamics of dilute colloidal 

suspensions of rod-like molecular particles flowing inside mesopores, and the extent to which 

the diffusive collisions on the rough surface boundaries of the pores may be important to their 

equilibrium dynamics. In the present work we consider hence explicitly the hydrodynamic 

and Brownian interactions at rough surface boundaries, where the roughness at any 

appropriate scale is commensurable with the dimensions of the pores. We calculate hence the 

probability distribution functions (PDF) for the positions of the centres of mass and  

orientations of these particles in flowing solutions inside mesopore channels throughout the 

space of the solution from the confining rough boundaries to the bulk limit. We also 

determine the nematic order parameter for the colloidal suspensions in this space over several 

orders of magnitude of the Peclet number which characterizes the hydrodynamic conditions.  

Since there are no analytical methods available to calculate the PDF functions for the pores 

due to the difficulty of modelling of the diffusive collisions at the solid boundaries, it is 

necessary to develop other means for this problem. Our approach is to create appropriate 

numerical simulations under the conditions of laminar flow.  To fix the range of physical 

dimensions, the pore systems are considered to have diameters in the range of 101 to 103 nm, 

but the simulations are otherwise quite general. 
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The two forces which act on the particles inside the pore system are the hydrodynamic force 

stemming from shear flow, and another of thermodynamic origin giving rise to Brownian 

motion. The dynamic effects due to the stochastic Brownian and the hydrodynamic forces, 

and due to the collisions of the particles at the solid surface boundaries, are modelled by 

appropriate simulation algorithms. These are developed in the present work in a 2D Cartesian 

reference, based on the Boeder equation (Boeder 1932) for the dynamics of rod-like particles 

in fluids, and on the restitution mechanism for the diffusive collisions of the particles at the 

solid boundaries. In particular a Gaussian distribution of terrace heights with reference to an 

atomically flat surface is considered for the solid 1D boundary without any loss of generality 

since the simulation algorithm can be applied for other roughness profiles. 

This chapter is focused on the determination of the probability distributions for the positions 

and the orientations of macromolecular rod-like particles inside mesopores channels in 

flowing fluid solutions with rough surface boundaries, the two forces that acts on the 

macromolecular rod like particles inside the pores systems are the hydrodynamic force 

stemming from shear flow and the other thermal originating from Brownian rotational 

diffusion. 

This Chapter is as follows in section 2.2; we present a general introduction to the problem and 

to the dynamics of molecular rod-like particles in colloidal suspensions liquid bulk molecular 

under Brownian and hydrodynamic motion. Section 2.3 presents the developed algorithm for 

diffusive collisions at rough surface boundaries of pores. 2.4 presents simulation results for 

the spatial and orientation distributions under a variety of hydrodynamic and Brownian 

conditions, and particularly for low and high hydrodynamic flow conditions in the confining 

channel while in section.2.5 presents the simulation results in the open channel. The Nematic 

order calculation presented in Section 2.6. The conclusions are presented in section 2.7. 

 

2.2 Colloidal particle model dynamics in bulk liquids 

The dynamics and orientations of colloidal macromolecular particles in suspension in 

dilute concentrations in the bulk of a flowing liquid are determined by two competing forces, 

the first stemming from hydrodynamic shear, and the second, of thermal origin, from 

Brownian diffusion. (Boeder 1932) is the first to have studied this problem from the 

theoretical point of view, for rod-like macromolecular particles. Boeder derived initially, 

without the use of formalisms such as the Langevin equation and the Fokker-Planck equation, 

(Bird, Curtiss et al. 1987; Gardiner 1990; De Pablo, Öttinger et al. 1992), an ordinary 

differential equation that governs the probability distribution P = P() of finding a particle in a 

two dimensional (2D) flow with an orientation with respect to the direction of the flow 
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ௗ²ௗఏ²
ܲ +

ௗௗఏ [ܲ(ߠ)²݊݅ݏ ߙ] = 0       (1) 

The Peclet number  for the flow in Eq.1 is a dimensionless ratio that characterises the 

relative strengths of hydrodynamic and Brownian effects 

  = ߛ′/Drot          (2) ߛ′ is the flow shear rate,  ߛ′ =  ߲ /௫ݒ  ௫ along the x axis may vary inݒ where the velocity , ݕ߲

value  along  the y axis. The shear rate is hence a measure of the velocity profile perpendicular 

to the flow direction, and it is constant for a laminar flow as in Fig II.1. The rotational 

Brownian diffusion coefficient for the rod, Drot, is sufficient to describe the equilibrium 

dynamics in the bulk solution far from solid boundary surfaces. Throughout this study  is 

considered to be outside the turbulence regime. The positive and negative angles correspond 

respectively to backward and forward orientations. 

 
 

Fig II.1 Schematic representation of the linear or Couette laminar hydrodynamic flow, that shows the 
shear flow and a rod-like particle of length L of orientation  with respect to the flow direction. 

 

The shear rate of the hydrodynamic flow, organized in an experiment, provides consequently 

a rotational couple acting about the center of mass of the rod-like particle. In contrast the 

Brownian diffusion is thermodynamic and is uncontrolled mechanically. Drot has been 

calculated,(Broersma 1960a; Broersma 1960b), and may be expressed by the relation. 

rot =
3

3
[ln( / ) 0.8].Bk T

D L d
L        (3) 

kB is the Boltzmann constant, T  the temperature of the system, L and d  are respectively the 

length and diameter of the macromolecule, L >> d, and   is the viscosity of the flowing 

liquid. Different colloidal particles in their solvents have hence quite different Drot as a 

function of their size and of the temperature, (Tanford 1961; Berne and Pecora 1976). For 

dilute solutions, for which 
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 n d L
2 << 1         n L3 < 1       (4) 

 

n being the particle density, the assumption of non-interacting particles is quite valid.  

 

As has been pointed out, (Boeder 1932) a solution in closed form cannot be obtained for Eq.1 

Boeder gave a series of solutions valid for only small values of . Some improvements have 

also been made to remove restrictions on the cross-sectional areas of such macromolecules, 

and to be able to consider their rotational diffusion in three dimensions, (Peterlin 1938; Doi 

and Edwards 1986), where these efforts have been associated to small values . 

 

The analytical solutions for the Boeder differential equation in the bulk has been obtained 

recently for a wide range of , (Khater, Tannous et al. 2000). In this work special analytical 

as well as numerical methods are developed in order to calculate accurately the PDF P() 

distributions in the bulk liquid for arbitrary values of the Peclet flow . 

 

It is difficult, however, to extend this analytical approach to calculate the PDF distributions in 

the neighbourhood of solid boundaries and inside pores owing to the difficulty to account 

analytically for the contributions of the stochastic diffusive collisions of the particles at the 

boundaries. The consequent approach has hence been to develop appropriate numerical 

simulations for the neighbourhood of solid boundary surfaces which are adapted from those in 

the bulk. The simulations are tested to be in agreement with the analytical solutions of the 

Boeder differential equation, (Hijazi and Khater 2001) for arbitrary values of the rotational 

Peclet numbers . This is a necessary requirement for the numerical simulations in the 

neighbourhood of solid boundary surfaces, as in Fig II.2. 

 
Fig II.2 Calculated PDF orientation distributions for macromolecular rod-like particles in a hydrodynamic flow, 
for a high Peclet flow =100. The solution of the Boeder differential equation (continuous curve) is compared to 

the Monte Carlo simulation (black dots with error bars), for the same , after (Khater, Tannous et al. 2000). 
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The numerical simulations for the PDF distributions which we construct in the present work 

for the equilibrium dynamics are determined by the Brownian and hydrodynamic forces at all 

points in the space of the pores, and by additional dynamics due to the stochastic diffusive 

collisions at and in the neighbourhood of the solid surface boundary.  The calculated PDF 

distribution in equilibrium dynamics determines the statistical probability that a particle is in 

an accessible state, for all possible accessible states. The PDF distributions are presented 

systematically as normalized with respect to unity. The particles are considered to be in dilute 

colloidal suspensions, and we neglect particle–particle interactions. 

 

In the simulations using the Boeder equations, the hydrodynamic force tends to align the 

macromolecular rod-like particles in the direction of the shear flow with an average angular 

speed . This is first given by (Boeder 1932) as 

 ߱ =  (5)                                                                                       (ߠ)²݊݅ݏᇱߛ

 

is taken as positive or negative in the trigonometric sense, where  parallel to the flow 

direction which is parallel to the boundary walls as in Fig II.1. To simulate the hydrodynamic 

effects in a time interval t between two successive simulation events, labelled  s and s +1, 

we compute hyd (s +1; s), the hydrodynamic rotation about the centre of mass of the 

particles, using the following algorithm 

 Δߠ௛௬ௗ(ݏ + 1; (ݏ = (௦ାଵݐ)ߠ − (௦ݐ)ߠ =  (6)                              ݐΔ(ߠ)²݊݅ݏᇱߛ

 

For linear laminar hydrodynamic flow, this rotation hyd is effectively a negative increment 

since the rods always follow the direction of the hydrodynamic flow.

In contrast the Brownian dynamical effects create a diffusive rotational motion of the 

particles. The selection of random rot simulation events is done to avoid cumulative errors 

in time, encountered in the algorithm of reference, (Press, Teukolsky et al. 1992). In this 

procedure the simulation time interval t is related to an effective variable for the Brownian 

rotation diffusion by the following equation 

 Δθ୰୭୲ଶ =  (7)                                                                                      ݐ௥௢௧ Δܦ2

 

The random variable rot(s +1; s) can then be simplified in the algorithm to 
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Δߠ௥௢௧(ݏ + 1; (ݏ =  ±  ௥௢௧                                                                       (8)ߠ∆

 

The rotations - rot and + rot are respectively clockwise and anticlockwise, and conform to 

the required symmetry. Other symmetric generating random functions may be used but we 

find that the square function is quite adequate. 

 

The simulation time interval t may be eliminated from the algorithm, with Eq.6 and 7 to 

yield the random variable hyd  towards the hydrodynamic algorithm 

  Δߠ௛௬ௗ = ߙ sin(ߠ) ቈΔθ୰୭୲ଶ
2ൗ ቉                                                                    (9) 

 

In a numerical simulation the choice of a value for rot is dictated by technical criteria that 

aim to establish efficient simulation runs and negligible scatter. This choice determines 

effectively a simulation time interval t which is inversely proportional to the diffusion 

coefficient from Eq.7. For the purpose of the present simulations, we typically take rot  

0.003 radians for a wide range of the Peclet number . This value for rot may however be 

varied for different experimental conditions and different Peclet numbers. 

 

2.3 Simulation algorithms for pore channels 

 

In this section, the simulation algorithms are constructed to yield the joint distributions 

PDF, P(), as a function of  and of the normalised distance = zc / L, where zc defined as 

the real space distance of the centre of mass of the macromolecular rod like particles from a 

given boundary surface, (Hijazi and Khater 2001). It is expected that the distributions P(), 

vary inside a depletion solution layer near the solid surface boundary distinctively from their 

behaviour in the bulk of the solution. This is due to the importance of diffusive collisions of 

the extremities of the macromolecular particles at the surface boundaries for the equilibrium 

dynamics of the system of the non interacting macromolecular particles. 

 

The simulations are quite general for pores and rod-like particles provided the prepared 

algorithms are valid under the selected physical conditions. Typically, we consider the size of 

pore channels to be in the range of ~ 10 nm to ~ 1000 nm. The word pores is used often to 

characterize pores of diameters of ~ 10 nm to ~ 100 nm. The choice of given species of 

colloidal particles in liquids flowing inside a given pore channel, dictates the nature of the 

problem and whether there is confinement or not. 
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2.3.1 Simulations algorithm for particle dynamics at a solid surface boundary 

The detailed nature of a diffusive collisions between the extremity of a macromolecular 

particle and real uneven solid surfaces at the atomic scale, is quite complex and varies with 

the topography of the surface (Khater 1989), and also with the nature of the macromolecular 

particles. To develop the appropriate simulation algorithm at the solid boundary we introduce 

a simplifying working assumption based on two coefficients of nano-mechanical restitution, e 

and é. These denote the restitution of the macromolecules away from the solid surface due to 

a diffusive collision, for respectively the Brownian and hydrodynamic collisions. 

 

If the translation diffusive motion is neglected in the bulk owing to translation invariance, this 

is not the case near a solid surface. The mechanism for molecular dynamics restitution owing 

to Brownian translation collisions at a solid surface is now schematically presented following 

(Hijazi and Khater 2001), in Fig II.3. Two limiting situations are considered. Let N denote the 

event just before collision, and N+1 the event after collision. Note furthermore that EL and ER 

denote the two classically identifiable extremities of the rod-like particles. The upper array in 

Fig II.3 details one of the limiting situations, namely that when a rod-like particle touches the 

surface after N and stays in this touching configuration for N+1, until the next simulation 

event. This upper array corresponds to e = 0 for the algorithm Brownian restitution 

coefficient. The lower array, in contrast, details the second limiting situation, namely that 

when a particle touches the surface after the N event due to a Brownian translation, and comes 

back to its initial configuration for N+1, then awaits the next simulation event. This lower 

array corresponds to e = 1 for the algorithm Brownian restitution coefficient. 

 

 
Fig II.3 Schematic representation of the restitution mechanism for a rod like particle – surface collision due to 

Brownian translations near a solid surface 
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The component of the algorithm for Brownian rotation may also be given for this restitution 

near the surface. Since Brownian movements whether of a translation or rotational nature are 

intrinsically similar, we use the same coefficient, e, to construct the algorithms for both cases. 

The uniform distribution interval ݁ ∈ [0,1] accounts consequently in this description for all 

possible outcomes following a Brownian collision, for all surfaces and macromolecules. 

 

The nano-mechanical restitution is also exploited to describe the algorithm for the molecular 

dynamics of collisions caused by the hydrodynamic flow near a solid surface. This type of 

collision is characterized in terms of a different restitution coefficient, é.  

 

The mechanism for this restitution in the neighbourhood of the surface is schematically 

presented in Fig II.4. As previously, two limiting situations are considered for the collision of 

the extremity of the rod-like particle with a solid surface under hydrodynamic flow. The upper 

array in Fig II.4 details one of the limiting situations, namely that when a macromolecular 

particle touches the surface after the N event, it slides and stays in this sliding configuration 

for N+1, until the next event. This upper array corresponds to a value of é = 0. 

 

 
Fig II.4 Schematic representation of the restitution mechanism for a macromolecule–surface collision due to 

hydrodynamic rotations near a solid surface 
 

The lower array details the other limiting situation namely that when a particle touches the 

surface after N, at any approach angle, and turns in the flow about its pivot extremity at the 

surface. The lower array in Fig II.4 corresponds hence to é = 1 for hydrodynamic restitution. 

In theory the rotation should take the rod-like particle into /2 until the N+1 event, and then 

awaits the next simulation event. However, recent optical experiments that access the 

hydrodynamic collisions of microscopic rod like particles, (Hijazi, Ben Yahia et al. 2003), 

show that a rod-like particles may rotate about their pivot beyond this to a total angle of 3/4. 
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We shall hence use this experimentally observed value systematically in this work. The 

uniform distribution interval é ∈ [0,1] in this model accounts consequently for all possible 

outcomes following a hydrodynamic collision, for all surfaces and macromolecules.  

 

2.3.2 Box-Muller method to generate the algorithm for Gaussian rough surfaces  

In the present work we are concerned with confined pore channels with rough boundary 

surfaces at an appropriate scale with respect to the size of the colloidal particles. The flow is 

considered in a 2D reference framework in real space, spanned by the xy-plane as in Fig II.5.  

 

In this section an algorithm to simulate rough boundary surfaces is developed which is 

general, which leads to the algorithm for an atomically flat surface as a limiting case. The 

uneven solid surfaces may be classified into different types, depending on the scale and type 

of surface Chapter 1. We shall, however, in this work select a Gaussian rough surface as an 

appropriate approximation for many solid surfaces. This does not limit the generality of the   

numerical simulations which indeed may be carried out for any solid surface profile.  

 

A Gaussian representation for the topography of a rough surface may be defined with 

reference to the Gaussian function, with two parameters, the average height of the terraces 

that statistically make up the roughness at a given scale, and their variance. For an isotropic 

Gaussian surface, these parameters are considered as statistically the same along any direction 

in the plane of the solid surface.  

 

 

Fig II.5 Confining pore channel presenting a Gaussian rough boundary surfaces. 2D is the maximum available 
distance between the two uneven surfaces. 

 

Generating normal random numbers is an old and important problem for statistical analysis.  

Several algorithms are available to generate normal random numbers (Box and Muller 1958), 

(Marsaglia and Bray 1964), (Neumann 1951), and others. The book of (Johnson, Kotz et al. 

1995) provides an extensive list of references for the different algorithms available today.  

 

Among the several available methods, the most popular is the Box-Muller transformation 

method with the improvement suggested by (Marsaglia and Bray 1964). 

y

z
  

x
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Fig II.6 Schematic representation of a cross sectional cut for a rough surface with a statistical distribution for 

terrace heights. 
 

 

At the first step we indicate the following well known relation  

 

  ∫ ݁ିೣమమ ஶିஶݔ݀ =                                            (10)        ߨ2√ 

It is easy hence to show that 

 

 1 =
ଵଶగ ∫ ݁ିೣమశ೤మమ ஶିஶݔ݀            (11)        ݕ݀

                 

In the case that x is distributed on probability measure (or mass probability) (ݔ)݌ =
ଵ√ଶ஠ eି౮మమ , 

stochastic variable is called Gaussian random variable. The Box-Muller method may be 

resumed as follows. Providing with the law of large numbers or centre limit theorem, the 

Gaussian random variable has played an important role and one may make useful hypothesis 

and test data science. We define a new function as 

 ܷ(ܴ) =
ଵଶగ ∫ ݁ିೣమశ೤మమ௫మା௬మஸோమ  ݀ ݀ ݔ  (12)       ݕ

 

This integral interval is in xଶ + yଶ ≤ Rଶ . We calculate then 

 

                                                 ܷ(ܴ) =
ଵଶగ ∫ ߠ݀ ∫ ݁ ݎ ݎ݀ ିೝమమோ଴ଶగ଴ ,  

Such that    

 

 ܷ(ܴ) = 1− ݁ିೃమమ         (13) 

 

U(R) is a non-decreasing function which satisfies the following conditions 

 

limୖ→଴ ܷ(ܴ) = 0  

limୖ→ஶ ܷ(ܴ) = 1        (14) 
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Moreover, by Eq.13 the integral interval is replaced using 0 ≤ r ≤ R and sine cosine equations. 

Using p ∈ [0, 1] and Eq.(12), the variable R of U(R) = p is determined as 

 

U(R) = p    R = ඥ−2 log(1− (݌       (15) 

 

In setting s = 1 − p ∈ [0, 1] and t ∈ [0, 1], one obtains 

 

x = ቊඥ−2log (s) cos (2πt)  ඥ−2log (s) sin (2πt) 
      (16) 

 

This analysis yields hence the scheme to generate a Gaussian random variable distributed on 

N (0,1) using the uniform distribution on [0, 1]. This Box-Muller method, furthermore, may 

be generalized to a stochastic variable z ∼ N (μ, σ²), with the mean μ and the variance σ², as 

either of  

ݖ  =   + (ݏ) ඥ−2logߪ  cos(2ݐߨ) ݖ    =   + (ݏ) ඥ−2logߪ  sin(2ݐߨ)       (17) 

 

2.3.3 Simulation algorithm for particle boundary collisions in pore channels 

Our algorithm contains components that simulate the hydrodynamic and Brownian 

movements in the bulk when the ends of the macromolecular rod like particles do not come 

into contact with the solid boundaries. The algorithm chooses randomly between 

hydrodynamic and Brownian events.  

 

It is necessary, however, in this novel situation to develop the algorithm to account for the 

molecular dynamics of the diffusive collisions when they occur on the two uneven boundary 

surfaces, as shown schematically in Fig II.7, and to test the sequence of collisions, and their 

consequences, that follow. Throughout this work the coefficients of the restitution, e and é, 

are randomly chosen over the uniform distribution interval [0, 1], which procedure accounts 

for all possible mechanical restitutions during the collisions at solid boundaries, due to 

Brownian rotation and translation, and to hydrodynamics. 

 

It is possible to distinguish different types of possible boundary surface collisions, named 

henceforth Ai, Bi and Ci, where i = 1, 2 correspond, respectively, to the upper and lower 

uneven solid surface boundaries (with respect to the channel centre Fig II.7). The following 

cases need to be distinguished to account for all possible events in the modified algorithm. 
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Fig II.7 Schematic representation for a rod-like particle-surface collision on the upper and lower boundary 
surfaces of a pore channel, due, respectively to hydrodynamic (first row) and Brownian dynamics (second row). 

 

 

The A1 case corresponds to the situation when the collision is due to hydrodynamic rotation, 

where zc > D in the upper half at the event N. The rod-like macromolecular particle in this 

situation turns about a contact point in the upper boundary surface with a anticlockwise 

rotation. The algorithm parameters at N+1, after collision, may vary between zc(N) and zmax 

for the position, and between the contact angle collision and max for the orientation. The 

values zmax and max correspond to complete contact of the extremities of the rod-like 

macromolecule with the lower and upper surface boundaries. We introduce in general the 

term bgauss(0;1) which corresponds to a random number generator that has the specific role 

of modelling appropriately the different accessible terrace heights of the uneven solid 

boundary surface. The letter b corresponds in this case to the maximum height on the scale of 

the system, encountered in the collisions of the rod-like particles with the surface. We may 

then write that 

 

zc(N+1) = zc+é (zmax -zc) 

(N+1) = Arcsin (2zc/L)                                                              (18) 

 

The A2 case corresponds to when the collision is due to hydrodynamic rotation for zc < D in 

the lower half at the event N. So in this case when we have a hydrodynamic diffusion event 

brings one of the ends of the rod into collision with the uneven surface. In this case the 
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algorithm collision is identical to that of A1 except that the rotation takes place here about a 

contact point on the lower boundary surface. 

 

The B1 case corresponds to when the collision is due to Brownian rotation for zc > D in the 

upper half at the event N. It follows that in the simple geometrical form we may write the 

following formulas: 

 

collision = |Arcsin (2zc(N) bgauss(0;1))/L| 

(N+1) = collision+e |(N) collision|                                                          (19) 

zc(N+1) = zc 

 

In this situation the rod-like macromolecule takes up a configuration at N+1 identical to that 

encountered when colliding with a single boundary surface. For the limit value e = 0, the rod 

stays in contact with the uneven solid surfaces, whereas for the other limit value e = 1, the rod 

goes elastically back to its initial configuration. The orientationN +1) after collision is 

calculated with respect to the upper surface boundary. During the Brownian rotation, zc rests 

unchanged with respect to the upper and lower surface boundaries, whereas the limits of 

N+1) vary between the contact angle collision (for e = 0) and (N) the orientation before 

collision (for e = 1). 

 

The B2 case corresponds to when for zc < D in the lower half at the event N. In this case the 

algorithm collision is identical to that of B1 with a rotation that takes place about a contact 

point on the lower surface boundary. 

 

The C1 case corresponds to when the collision is due to Brownian translation for zc > D in 

the upper half at the event N. Then the relation between zc and zc collision of the form: 

 

zc collision = L/2 |sin(N)| + bgauss(0;1) 

zc(N+1) = zc collison+ e [zc(N)zc collision]                                              (20)  

(N+1) = (N)  

 

In this situation the rod-like macromolecule takes up a configuration at N+1 identical to that 

encountered when the collision is due to Brownian rotation. During the Brownian translation 

the orientation remains unchanged, whereas the limits of the position after collision vary 

between zc collision (for e = 0), and 2D  zc(N) directly (for e = 1). 
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The C2 case corresponds to when the collision is due to Brownian translation for zc < D in 

the lower half at the event N. In this case the algorithm collision is identical to that of C1 

except that the translation takes place now about a contact point on the lower surface 

boundary.  

 

Note that the base reference plane for all uneven surfaces is that for which b is equal to zero. 

The algorithm for the uneven surface presented above yields the flat surface algorithm by 

taking b to the limit of zero for all simulation events. 

 

2.3.4 Simulation algorithm for the Poiseuille flow conditions in confining pore channels 

The linear or Couette flow is the name given to laminar steady flow between two parallel 

plates where the bottom plate is stationary, and the top one is moving relative to the other. In 

contrast the flow between two parallel plates which are both stationary and separated by a 

fixed distance is called the Poiseuille flow. In this latter case the velocity profile is parabolic. 

The rotational Peclet number identified by (Boeder 1932), is defined in general for the 

laminar Couette flow. To prepare an algorithm for this reason we need to recalculate the 

Peclet number , inside confined channel and under Poiseuille flow, in a way that;  first we 

don’t adjust the Boeder differential equation and secondly to keep the analytical work given 

by (Khater, Tannous et al. 2000) applicable.  

 

The Peclet number  gives uniquely the ratio of the shear differential change for the 

hydrodynamic flow across the pore channel, in comparison with the Brownian rotational 

diffusion constant. Increasing  under otherwise constant thermal conditions, and hence 

constant Drot, implies effectively increasing the flow.  

 

Inside the pore channel of width 2D the flow profile is parabolic (Poiseuille Flow) Fig II.8, 

under the effect of this profile the rotational Peclet number depends on the positions of the 

extremities of the rod like particle namely EL and ER inside the pores, and we can distinguish 

three basic locations of the particles: 

 

 
Fig II.8 Poiseuille flow.  
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1
st
 case: The two extremities EL and ER of the macromolecular particle are located below the 

half line or median of the width of the confined channel in zone A as in Fig II.9a. 

 

2
nd

 case: The two extremities EL and ER of the macromolecular particle are located above the 

half line of the width of the confined channel in zone B as in Fig II.9b.  

 

                       
Fig II.9a       Fig II.9b 

 

For both of the above two cases the rotational Peclet number  is that of the bulk flow. 

 

3
rd

 case: The extremities EL and ER of the macromolecular do not belong to the same zone as 

in Fig II.9c. In this case: 

 

- if the particle extremity EL belongs to zone B, ܦ < ாಽݕ   < ாಽݒ  and hence ,ܦ2  = ܦ2).ߛ − ாಽݕ )  

- the particle extremity ER belongs to zone A, 0 < ாೃݕ   < ாೃݒ and hence ,ܦ  = ߛ ாೃݕ.        (21) 

 

 
Fig II.9c 

 

Then we calculate a ratio R
                                                                               ܴఈ =

 ௩ಶಽି௩ಶೃ ௬ಶಽି௬ಶೃ  

 ܴఈ =
ாಽݒ  − ாಽݕ ாೃݒ − ாೃݕ =  

ߛ .൫2ܦ − ாಽ൯ݕ − ாೃݕ.ߛ ாಽݕ   − ாೃݕ  
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                                                                                 ܴఈ = .ߛ ൤ଶ஽ି(௬ಶಽା௬ಶೃ )௬ಶಽି௬ಶೃ ൨ 
ாೃݕ  = ௖ݖ −  

L
2

sin(θ) ாಽݕ  = ௖ݖ +  
L
2

sin(θ)  

 

Where ݖ௖ is distance of the centre of mass of the macromolecular rod-like particle from a 

surface boundary terrace reference level, and θ is its orientation with the flow direction. 

Therefore 

 ܴఈ = .ߛ ቈଶୈି(୸ౙା ైమ ୱ୧୬(஘)ା୸ౙି ైమ ୱ୧୬(஘))୸ౙା ైమ ୱ୧୬(஘)ି୸ౙା ైమ ୱ୧୬(஘)
቉ = ߛ . ቂ ଶୈିଶ୸ౙ

 ୐ ୱ୧୬(஘) 
ቃ                      (22) 

 

This yields an effective Peclet flow number eff for the purpose of the simulations for the pore 

channels under the third case 

 αୣ୤୤ =
ୈ౨౥౪ߙܴ =  α ቂ2D−2zc

 Lsin(θ) 
ቃ      (23) 

 

Throughout this work, we normalize the width of the pore channel as a function of the particle 

length L, such that 2D = n L, where 2D is the width of the pore channel as in Fig II.5, and n is 

a given number. 

 

Consider the surface profile roughness to be modelled in any direction by a statistical 

distribution Q(h) of terrace heights with a given mean  and variance 2. Also that the 

maximum terrace level height in the rough boundary is hmax= 0.1L with reference to a base 

spatial line hmin= 0, for both the upper and lower surface boundaries of the pore channel. The 

average terrace level height is hmax= 0.05L. Other characteristic statistical parameters for the 

terrace height distributions may also be given as a function of the particle length. Throughout 

this work, we normalize the width of the pore channel as a function of the particle length L, 

such that 2D = n L, where 2D is the width of the pore channel and n is a given number. The 

ideal atomically flat surface is retrieved in the numerical simulations by taking hmax= 0. 

 

It is useful next to identify the different angles ijthat may occur when the rod-like particle 

extremities are in contact with characteristic terrace level heights, habove,i and hbelow,j, or the 

inverse, on the rough upper and lower surface boundaries. We have in general 
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above, i below, j
ij

2D ( )
θ arcsin

L

h h        (24) 

 

The simulations follow the behaviour of the macromolecular particles over N = 108 events per 

simulation run, which we have found to represent a sufficient number of elementary dynamic 

events, in the bulk and at the boundaries, for all the Brownian, boundary diffusive, and causal 

hydrodynamic events, for a simulation run. Our numerical simulations are applied for a wide 

range of Peclet flow conditions, and for Gaussian rough surfaces characterized in general by b 

= 0.1L to satisfy the algorithm condition b << L. The simulation results describe in general 

the spatial, P( and orientation, P(), PDF distributions for respectively the positions of the 

centres of mass and orientations of the particles, under equilibrium dynamics engendered by 

bulk hydrodynamic and Brownian dynamics, and  the boundary molecular dynamics. 

 

2.4 Simulation results for confining pore channels 

The aim in this section is to calculate the relevant spatial and orientation PDF 

distributions, P(), and P(), for the dilute suspensions of macromolecular particles in flowing 

liquids inside pore channels whose widths satisfy the condition 

 

2D < L 

 

where the mesopore width 2D is smaller than the size L of the macromolecular particles.  

 

Since we are ignorant of the detailed restitution dynamics at the boundaries we chose to 

investigate the simulation results for prefixed, and for randomly generated hydrodynamic and 

Brownian restitution coefficients, respectively é and e. The objective is to determine whether 

the choice of such parameters is biased or not, and to elaborate definite criteria for their use. 

 

2.4.1 PDF simulation results for pore channels for prefixed hydrodynamic and Brownian 

restitution coefficients é and e 

Throughout this section the restitution coefficients e and é are assigned prefixed values for the 

purpose of the numerical simulations, over the physical range of accessible restitution 

coefficients, ݁ ∈ [0,1] and é ∈ [0,1]. Only a selected number of figures are presented to 

illustrate the results from a much larger number of results. 

 

As we shall see the spatial and orientation PDF distributions, P() and P(), for all systems, 

are symmetric about the median med0.4 of the pore channels, which is physically expected.  
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In Fig II.10, we present the simulation results for the distributions P() and P(), as a function 

of the normalized positions of their centers of mass, = zc / L,and their orientation angles 

with respect to the flow direction inside a pore channel of width 2D = 0.8L. These are for 

low hydrodynamic flow characterized by the Peclet number  = 1, for the Brownian e = 0.5, 

and hydrodynamic é = 0, 0.5, and 1. 

 

Three spatial PDF distributions P() may be clearly distinguished for e = 0.5. The first is a 

very broad PDF when e′ = 0, and the other two are extremely peaked for e′ ≠ 0. This illustrates 

the sensitivity of the PDF distributions to hydrodynamic restitution under the given simulation 

conditions. When sliding is predominant, e
′ = 0, a broad PDF distribution appears which 

indicates that the particles are allowed to pass through the channel. The results for non-zero é 

= 0.5 and 1, bring into perspective the activated role of hydrodynamic collisions, which 

increase markedly the likelihood of multiple collision scattering of the extremities of the 

colloidal rod-like particles at the rough surface boundaries, sampling randomly different 

terrace heights. The hydrodynamic pivoting of the extremities for e
′ ≠ 0, give rise to PDF 

distributions P() which peak out, implying that the majority of rod-like particles are blocked 

with extremities touching the upper and lower surface boundaries, with their centers of mass 

situated at the median of the pore channel med0.4.  

 

Consider next the orientation PDF distributions P() in Fig II.10. In particular the first case 

for e′ = 0, corresponds to the complete absence of hydrodynamics effects. A very broad P() 

PDF distribution appears in this case, centered with a slight maximum at θ = 0. Since e′ = 0 

corresponds to sliding, the broad P(θ) distribution for this case implies that the rods are 

aligned mostly in the direction along the median med0.4 of the pore channels, and may 

travel freely down the flow lines for Peclet  = 1. We shall show later in section 2.5 that this 

is an unlikely event even for this relatively low Peclet flow. 

For e′ ≠ 0, the above broad distribution is modified strongly and narrowed down to mostly 

blocking effect which appear clearly in Fig II.10 for the orientation PDF distributions P(). 

For both é = 0.5 and é = 1 the strong spectral features at θ = ± 44.4° correspond effectively to 

blocking in the clock and anti clock senses at arcsin(0.7) using Eq.(22) for the average terrace 

level heights 0.05 L. Note that 0.1 L is the maximum terrace level height for the Gaussian 

rough surface on both boundaries, whereas 0.8 L is the maximum available distance between 

the minima terrace heights on the opposing rough boundaries.  

 

When pivoting of the particle extremities dominates for e′ ≠ 0, increasing é will increase the 

approach to blocking, and consequently the probability of blocked particles in the colloidal 
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suspension. The value of e = 1 corresponds to a maximum rotation measure of 2/3, as 

observed experimentally, (Hijazi, Ben Yahia et al. 2003). Note, however, that a part of the 

orientation PDF distributions P(), which  correspond to a significant sub-ensemble of the 

colloidal macromolecules, indicates nevertheless a certain alignment of particles with the 

flow, for the relative low Peclet flow  = 1. This implies that these rod-like particles may still 

pass freely inside the pore channel, which outcome is confirmed by the corresponding spatial 

PDF distributions P(), in Fig II.10. 

 

 
Fig II.10 Simulation results for the normalized spatial, P(), and orientation, P(θ), PDF distributions inside a 

confining pore channel of width 2D = 0.8L, for low hydrodynamic Peclet flow α = 1, Brownian restitution e = 
0.5, and for a range of hydrodynamic restitutions é. 
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We have then made simulations for a large number of medium and high Peclet flow in 

comparison with those for the low Peclet number α = 1. In Fig II.11, we present typical 

simulation results for the spatial, P(), and orientation, P(), PDF distributions inside the pore 

channel of width 2D = 0.8L, for the hydrodynamic flow Peclet α = 100. As may be seen by 

comparing Figs II.10 and II.11, the physical effects observed in Fig II.10 continue to be 

observed. However, they clearly show, (as other simulation results which are not presented 

here), that increasing accentuates the spectral features of the PDF distributions. 

 

In particular, the spatial PDF distributions P() increase and narrow progressively at =0° 

with increasing Peclet flow for e′ ≠ 0. This is a signature of the increasing number of particle 

blocked with their centre of mass at the median med0.4 of the pore channel. The orientation 

PDF distributions P() confirm this tendency with the spectral features at θ = ± 44.4° also 

increasing and narrowing with increasing Peclet flow for e
′ ≠ 0. We conclude that the 

hydrodynamic flow forces the particles away from the solid boundary surface, with increasing 

Peclet flow . This takes place in a configuration where the extremities are blocked at the 

opposing boundary surfaces and the centers of mass = zc / L are symmetrically at the 

median of the pores. In contrast the simulation results for the case é = 0 remains singular and 

quite different from all other results for e′ ≠ 0.  

 

 
Fig II.11 Simulation results for the normalized spatial, P(), and orientation, P(θ), PDF distributions inside a 

confining pore channel of width 2D = 0.8L, for high hydrodynamic Peclet flow α = 100, Brownian restitution e = 
0.5, and for a range of hydrodynamic restitutions é. 

 

Prefixed e = é 

The simulation results for the spatial and orientation PDF distributions, P() and P(θ), are 

presented next for a prefixed choice of e = é = 0.5, for very small hydrodynamic Peclet flow 

0.001, and  0.1, in Fig II.12,  and for low to high Peclet flow  1, 10, 50, 100, in Fig 

II.13, respectively. This deliberate average choice for e and é, and the wide choice for the 
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Peclet flow, are made to test the consequent simulation results in comparison with the 

previous simulation results in this section.  

 

 
Fig II.12 Simulation results for the normalized spatial, P(), and rotational, P(), PDF distributions inside a 

confining pore channel of width 2D = 0.8L, for very low Peclet hydrodynamic flow, respectively α = 0, 0.001, 
0.1, and for Brownian and hydrodynamic restitutions e = é = 0.5 

 

For Peclet  = 0 the liquid solution is at rest and the hydrodynamic diffusive surface boundary 

collisions are absent. The dominant mechanism for the equilibrium dynamics is the Brownian 

effect in the bulk and at the solid boundary surfaces, which drives the colloidal particles to a 

broad and homogeneous spatial distribution as may be seen in Fig II.12. The simulation 
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results for the corresponding orientation PDF distribution, P(), which is symmetric, broad 

based, and centered about the direction of the flow = 0°, confirms this. The rods are mostly 

aligned effectively in the direction of the flow.  

 

Increasing the hydrodynamic flow conditions for example to Peclet = 0.001 and  = 0.1, as 

in Fig II.12, brings into perspective the role of the now activated hydrodynamic diffusive 

collisions which increase the probability of the scattering for the particles’ extremities. This 

effect exposes the particles’ extremities to multiple collisions with the rough boundary 

surfaces sampling the different terrace heights. The symmetric spatial PDF distributions P() 

become increasingly peaked about the median med0.4. It is interesting to note, 

nevertheless, the existence of the symmetric distribution tails for this P() up to the 

boundaries at 0 and 0.8, which indicate significant probabilities of finding particles 

aligned with the pore channel boundaries at small orientations, their centers of mass lying 

physically in the neighborhood of the boundaries. This is confirmed by the corresponding 

PDF distribution P(), which is peaked at =0°, but which also presents tails up to the 

blocking angles at 44.4° with distribution tails stretching out to higher angles. Note that the 

positive and negative angles correspond respectively to backward and forward orientations. 

 

For Peclet flow = 0.1, we note the rise of the spectral features at the characteristic 

orientations ≃±44°.4° which correspond to blocking angles for the selected pore channel 

width 2D = 0.8L. The transformation of the spectral features of the results for the orientation 

PDF distribution P(), from = 0 to = 0.1, is clearly illustrated by the inflexion of the 

spectral features of the intermediate P() for = 0.001. In this latter case the simulation 

results are intermediate between those for Peclet = 0 and = 0.1, with growing 

intermediate spectral shoulders at ≃±37.4° which do not correspond to blocking but to the 

accumulation of the probability distribution at these angles under equilibrium dynamics due to 

multiple scattering of the particles’ extremities. 

 

The simulation results for Peclet flow for increasing  = 1, 10, 50, and 100, are presented in 

Fig II.13. It is clear that the characteristic spectral features of the spatial and orientation PDF 

distributions, P() and P(), are increasingly accentuated with increasing . The heights of 

the P() distributions at the median med0.4, and of the P() distributions at the 

characteristic blocking angles, increase with increasing . In contrast the P() distributions 

for accessible orientations outside the blocking angles decrease significantly with increasing 

; the laminar hydrodynamic flow at high Peclet  effectively evacuates the macromolecular 

particles from accessible states to those which correspond to blocking. 
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Fig II.13 Simulation results for the normalized spatial, P(), and rotational, P(), PDF distributions inside a 

confining pore channel of width 2D = 0.8L, for high Peclet hydrodynamic flow, α = 1, 10, 50, and 100, and for 
Brownian and hydrodynamic restitutions e = é = 0.5 

 

 

2.4.2 PDF simulation results for pore channels for randomly generated hydrodynamic 

and Brownian restitution coefficients e and é 

In this section the numerical simulations are carried out by treating the hydrodynamic 

and Brownian restitution coefficients, e and é, as random variables on  the complete uniform 

distribution [0, 1], to model the molecular dynamics of colloidal particles at the solid 

boundary surfaces. This choice is justified by the disordered topography of a rough surface 

which renders unrealistic to propose any fixed value for the restitution coefficients in what are 

generally random collision events. It is difficult to hazard any specific values for e and é per 

collision, and still difficult to propose a theoretical model for the diffusive collision of the 

particle extremity with the solid surface. 

 

We shall show in this section that the simulation results using the algorithm for randomly 

generated restitutions per stochastic diffusive collisions differ little in their details from those 

calculated using prefixed restitution values. Since the differences are not physically 

significant, this confirms our model choice for the molecular dynamics of the collisions. 

Furthermore, this novel algorithm accounts appropriately for previous experimental results 

(Khater, Hijazi et al. 2003) which show that whilst sliding is a possible state, the event is 

rather statistically rare on  the complete uniform distribution [0, 1] for e. 

 

In Fig II.14, three spatial PDF distributions, P (), for the centre of mass positions of the rod-

like particles, are clearly distinguished for solutions at rest with no hydrodynamic Peclet flow 

 = 0, and for very small hydrodynamic Peclet flow 0.001 and  = 0.1. Also presented in 

this figure are the three corresponding orientation PDF distributions, P (), for the particles. 
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Fig II.14 Simulation results for the normalized spatial, P(, and orientation, P(, PDF distribution inside a 

confining pore channel of width 2D = 0.8L, for very low Peclet flow α = 0, 0.001, 0.10, and randomly generated 
Brownian and hydrodynamic restitutions. 

 
 

For Peclet  = 0 in Fig II.14 the solution is at rest and the diffusive boundary collisions due to 

hydrodynamic flow are absent. In this case the dominant mechanism for the equilibrium 

dynamics is the Brownian effect in the bulk and at the surface boundaries, which drives the 

colloidal particles into a broad distribution. The calculated spatial PDF distribution P () is 

symmetric, about the median midof the pore channel, with a maximum at . This 
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spatial PDF compares qualitatively with that in Fig II.12 although some spectral differences 

are evident. The simulation results for the orientation PDF distributions P() confirm the 

character of the P(). The calculated P() in Fig II.14 is symmetric about = 00, with tails 

ends up to ≃44.4°. As in Fig II.12 this implies that the rods are mostly aligned in the 

direction of the flow for Peclet  = 0. Again this result illustrates the importance of the 

random stochastic Brownian movement, in particular for molecular dynamics at the solid 

boundary surfaces, towards establishing statistically homogeneous distributions for the 

equilibrium dynamics of the colloidal particles. A similar comparison can be made between 

the simulation results for Peclet flow = 0.001 and  = 0.1, in Fig II.14 and Fig II.12, leading 

to comparable conclusions. In particular we retrieve the detailed form and magnitude of the 

spectral features for Peclet = 0 and = 0.1, and those for the intermediate Peclet flow = 

0.001, including their spectral shoulders at ≃±37.4° which do not correspond to blocking 

but to the accumulation of the probability distribution at these angles due to multiple 

scattering of the particles’ extremities under equilibrium dynamics. 

 

A similar comparison can also be made between the simulation results of Fig II.15 and those 

in Fig II.13 leading to comparable conclusions, for Peclet flow = 1, 10, and 100. The strong 

peaks for these Peclet characteristics at the orientations = 44°.4° in Fig II.15, as in Fig 

II.13, are signatures of the blocking effect. 

 

The detailed comparison of the simulation results for the spatial and orientation particle 

distributions, calculated for randomly generated Brownian and hydrodynamic restitutions, on 

the one hand, with the simulation results for these same distributions, calculated for prefixed 

restitutions, on the other hand, where the restitutions model the molecular dynamics during 

the diffusive collisions of the particles at the solid boundaries, show basic similarities in their 

spectral features for a wide range of the Peclet flow. 

 

We present in in Fig II.16 the results for the peak heights and widths at half peaks (variance) 

for the spatial PDF distributions P() for Peclet flow ∈ [10-3, 102].  It is seen that the widths 

at half peaks decrease, while the peak heights increase with Peclet . The remarkable feature 

of Fig II.16 is that its two graphics represent the simulation results calculated with the 

algorithms using prefixed e = é = 0.5 restitutions, and those using randomly generated 

restitutions: there is only a small difference between the two sets of simulation results. The 

peak heights for prefixed restitutions are slightly greater than those for randomly generated 

restitutions, and the widths are slightly smaller, under normalized distributions. 
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Fig II.15 Simulation results for the normalized spatial, P(, and orientation, P(, PDF distributions inside a 

confining pore channel of width 2D = 0.8L, for low to high Peclet flow α = 1, 10, 100, and randomly generated 
Brownian and hydrodynamic restitutions. 

 
 

Finally, we present in Fig II.17 for Peclet flow  = 10, an example of the difference between 

simulation results for a rough surface and a flat surface at the same maximal width, namely 

2D = 0.8L. Only the results for the orientation PDF distribution P(), are presented. The 

forms distinguish themselves, notably by the difference in the blocking angles. They are 

approximately  = ± 53. 5° for the atomically flat surface, and as shown above approximately 
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 = ± 44. 4° for the Gaussian rough surface. The two corresponding spatial PDF distributions P 

(), are extremely peaked about the median med= 0.4, though the peak heights and broad 

bases are not equal.  

 
Fig II.16 Peak height and width at half peak (variance) of the spatial PDF distributions P(, as a function Peclet 
flow , for randomly generated Brownian and hydrodynamic restitutions. There is no significant difference with 

the same calculated variables using prefixed Brownian and hydrodynamic restitutions 
 

 
Fig II.17 Simulation results for the normalized spatial PDF, P(), inside a channel of width 2D= 0.8 L for Peclet  = 10, for two types of boundary surfaces, smooth and Gaussian rough 
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In conclusion, we have introduced two novel elements into the numerical simulations to 

calculate the spatial and orientation distributions of dilute solutions of colloidal particles 

flowing inside pores in equilibrium dynamics under Brownian and hydrodynamic effects: 
 
- In contrast with previous research work, which dealt with only atomically flat boundary 

surfaces, we have developed algorithms to treat boundary surfaces which are rough on the 

scale of the dimensions of the pores and the particles, and in particular using the realistic 

Gaussian model for rough surfaces. 

- We have tested a number of algorithms to treat the molecular dynamics of stochastic 

Brownian and hydrodynamic causal collisions at the solid boundaries, using the notion of 

nano-mechanical restitution, and found that the most realistic approach is to treat the 

random collisions as events with randomly generated restitutions.  

 

2.5 Simulation results for open pore channels 

The objective of this section is to calculate the PDF distributions for macromolecular 

rod-like particles in dilute liquid suspensions, flowing inside open pore channels with 

Gaussian rough boundary surfaces, for which the pore channel width satisfies the condition 

 

2D  L 

 

In particular we consider three different pore widths: 2D = L, 2D = 1.2L, and 2D =1.4L. The 

simulation results are presented in particular for the orientation PDF distributions, P(), which  

can be related to experimental measurements of the nematic order parameter of such colloidal 

suspensions (Fry, Langhorst et al. 2006) (Islam, Rojas et al. 2003), (Zheng, Jagota et al. 

2003). 

 

In Fig II.18, Fig II.19 and Fig II.20 are respectively presented the orientation PDF 

distributions, P(), for the rod-like particles in the pore channels with the above widths. The 

simulations are carried out using randomly generated restitutions. 

In Fig II.18 four orientation PDF distributions, P(), are calculated for the Peclet number = 

0.1, 1, 10, and 100, for a pore channel 2D = L. This choice implies that the rod-like particle 

can span the maximum possible width between the minima terrace levels on the opposing 

boundaries of the pore channel. PDF blocking, however, should be activated once the 

extremities are at an average terrace height on the opposing boundaries, subject to their 

random collision, where habove,i=av = hbelow,j=av =  0.05 L.
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Using Eq. 22 we obtain this onset for blocking at a theoretical  = arcsin(0.9) ≃ ± 64.2°, 

which indeed is observed in Fig II.18 for the low Peclet flow = 0.1 and 1. 

 
Fig II.18 Simulation results for the normalized orientation PDF, P (), inside pore channel of width 2D = 1L, for 

different hydrodynamics Peclet flow condition 
 

For increasing Peclet flow we expect the blocking angle to increase. The simulations yield a 

blocking  ≃ ± 71.8° which corresponds to the configuration where one extremity is at an 

average terrace level on one boundary and the second extremity is at a minimum terrace level 

on the other boundary. At higher Peclet numbers tin greater numbers from the neighbourhood 

of the solid boundaries into blocking configurations. 

 

The existence of finite though small PDF distributions at small angles for the relatively 

small Peclet flow  = 0.1 and 1, indicates that some of the colloidal particles are still aligned 

in the direction of the flow and pass freely inside the pore channels. These PDF distributions 

disappear gradually for the higher Peclet flow = 10 and 100, which is a signature of the 

evacuation of these particles into other accessible states due to the increasing flow. 

 

In Fig II.90 and Fig II.20 are presented the orientation PDF distributions, P(), for the rod-like 

colloidal particles for a series of Peclet flow = 0.1, 0.5, 1, 5, 10, 50, and 100, for pore 

channels with respective widths of 2D = 1.2L and 2D = 1.4L. Note that in both of these two 

cases the pore width is larger than the length L of the particle beyond the surface roughness. 
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Fig II.19 As in Fig II.18 for pore channel of width 2D = 1.2L 

  
Fig II.20 As in Fig II.18 for pore channel of width 2D = 1.4L 
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The simulation results yield two major zones with characteristic spectral features, as observed 

in Fig II.90 and Fig II.20. The first zone on the left shows P() features which are centered 

about large negative angles in the clockwise sense. The peak heights for the corresponding 

distributions decrease monotonically whereas their peak angles increase monotonically to 

larger negative values, with increasing Peclet flow. The second zone on the right shows in 

contrast P() features which are centered about smaller positive angles in the anti-clockwise 

sense. The peak heights for the corresponding distributions increase monotonically whereas 

their peak angles decrease monotonically to the limiting , with increasing Peclet flow.  

 

The P() spectral features under equilibrium dynamics in the right zone for the considered 

pore channels are comparable to the PDF features usually calculated for bulk liquid solutions 

distant from solid boundaries. They correspond hence to the free movement of the rod-like 

particles subject to the singular competition between Brownian and hydrodynamics forces. 

The PDF spectral features under equilibrium dynamics in the left zone for the considered pore 

channels are in contrast the signatures of the consequences of multiple collisions scattering of 

the extremities of the colloidal particles at the rough boundaries. Effectively the multiple 

scattering processes have a tendency to trap the particles in almost perpendicular 

configurations with respect to the flow direction. The conservation of the total probability 

unity measure is maintained for any one of the Peclet flow numbers over the two cited 

zones as well as other intermediate regions. 

 

The results illustrate the importance of the random stochastic Brownian movement under low 

hydrodynamic flow conditions, and in particular at the solid boundaries, towards establishing 

equilibrium dynamics. In contrast increasing the hydrodynamics flow offsets the importance 

of the stochastic Brownian dynamic events in the bulk and at the solid boundaries. 

 

This result illustrates the importance of the random stochastic Brownian movement under low 

hydrodynamic flow conditions, and in particular at the solid boundaries, towards establishing 

statistically random collisions. Increasing the hydrodynamic flow condition will decreases the 

Brownian movement and collisions with rough surface boundaries at large angle and 

evacuates the rods on the direction of the flow with small angle. 

 

2.6 Calculation of the nematic order parameter 

Rheo-optical methods – at least in the narrow sense of the word – were introduced in the 

rheological community in the 1950’s to determine the constitutive parameters that describe 

material measurements. The initial aim of the optical methods was the direct measurement of 

stresses in the material .In the last two decades, the applicability of the rheo-optical 
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methodology has broadened; it’s now regarded as an approach that is used to understand the 

often complex rheological behavior of a material. Rheo-optical methods have become an 

established technique in the study of structured fluids. We will concentrate on technique that 

uses visible light to investigate structural changes during flow. This method is based on 

changes in the properties of the transmitted light (polarimetry); Polarimetry measures 

properties of the transmitted light that is affected by phenomena that occur at all length scales 

present in the material. In this section, the basic principles of the method will be explained. In 

addition, some case studies will be presented to highlight the ability of this method. The 

fundamentals of birefringence and dichroism are briefly reviewed. In order to demonstrate the 

power of the technique, 

The relative ordering of colloidal particles in solutions is experimentally accessible by optical 

experiments (Srinivasarao and Berry 1991; Fry, Langhorst et al. 2006; Prasad and Das 2010). 

In theory a tensor order parameter S is used to describe the orientation order of colloidal 

particles. In the 2D frame of the present model the order parameter may be determined as the 

average of the second order Legendre polynomial 

ࡿ =  < (ࣂ ࢙࢕ࢉ)૛ࡼ >  =  <  
૜ ିࣂ ²࢙࢕࡯૚૛ >       (25) 

The <…> is a statistical average over the PDF distribution for orientations with respect to the 

flow direction,  and ଶܲ(ܿߠ ݏ݋) the order 2 Legendre Polynomial, for macromolecular rod-

like particles 

 

This definition is appropriate, since S = 0 for a randomly isotropic distribution of orientations 

(unaligned phase), whereas S = 1 corresponds to a perfectly aligned sample. For an arbitrary 

sample of colloidal molecular particles, one has S ∈ [0,1]. Furthermore, the order parameter 

can be measured experimentally, notably by optical birefringence and dichroism techniques. 

The results for colloidal suspensions in bulk solutions (Tannous 2011), distant from solid 

boundaries, find for a small rotational Peclet number , an isotropic distribution characterized 

by 0S  , whereas S approaches 1 for perfect alignment under the influence of the increasing 

Peclet hydrodynamic flow . 

 

Throughout this section we calculate the order parameter S as a function of the rotational 

Peclet number , for different widths of the pore systems that present Gaussian rough surface 

boundaries. The pore widths are 2D = 0.7 L, 0.8L, 1L, 1.2L, and 1.4L, where L is the length 

of molecular rod-like particles. The calculated results for S are presented in Fig II.21, using 

the numerical code established in this work, and hmax = 0.05 L for the Gaussian rough surface 
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boundaries. The results clearly show that the nematic order parameter S, as a function of 

can be grouped in two types. 

 

In Fig II.21 we have clearly three natures of nematic order S as Function of  corresponding 
to different pores spacious system. The first nature corresponds for a perfectly confined 

channel system with (2D < L) i.e. (2D = 0.7L and 2D =0.8L) the 2nd one corresponds to the 

situation where the width of the pores is slightly identical to the length of macromolecular rod 

like particles (2D = L), and the third nature corresponds to the unrestricted channel i.e. the 

pores spacious is slightly bigger than the rod particles (2D =1.2L and 2D = 1.4 L). 

 

The first type of the nematic order parameter corresponds to an effectively confining pore of 

channel width 2D < L (2D = 0.7L and 0.8L). S decreases monotonically in this case with 

increasing Peclet number . This is because increasing the hydrodynamic flow causes the 

evacuation of the particles from states aligned initially for small  with the flow to almost 

perpendicular orientations due to multiple scattering at the rough boundaries for large as 

discussed in section 2.4, and illustrated in particular in Figs II.14 and II.15. Furthermore, it is 

significant to note that S is greater in amplitude for narrower confining pore channels, for all 

Peclet numbers S being greater for 2D = 0.7L than for 0.8L. This happens because the 

range for the accessible orientation states narrows down with the decreasing pore width. The 

pore width 2D = 1.0L may also be placed in this confining group, although the corresponding 

nematic order parameter presents a particular behavior as may be seen in Fig II.18.  

 

 
Fig II.21 Variation of the nematic order parameter S as a function of the shear rate for different pore channels 
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The second type corresponds to open pore channels 2D > L where the pore widths are clearly 

greater than the length of the particle (2D = 1.2L and 1.4L). The nematic order parameter S 

for this type increases monotonically and presents common features which are clearly 

different from those for the confining pore channels. S shows for this case a relatively aligned 

orientation PDF distribution P(), as can be observed for different Peclet flow  from (Figs 

II.19  and II.20). 

 

The analysis of Fig II.21  implies that it is possible to estimate the widths of pore channels for 

a considered porous system by direct measurements of the behaviour of its corresponding 

nematic order parameter, using birefringence and dichroism techniques, (Fry, Langhorst et al. 

2006). This would be done using reference species of molecular rod-like particles in colloidal 

suspension inside the system, and the known physical parameters for the fluid (viscosity) and 

the particles (length and diameter). 

 

In this section we shall also calculate the nematic order parameter for a particular example of 

molecular rod-like particles which is discussed in the literature. Optical studies by (Fry, 

Langhorst et al. 2006) made on colloidal suspensions of carbon nanotubes in polyisobutylene 

and aqueous single-stranded DNA solutions show that the shear-induced birefringence and 

dichroism (SABD) Δn′, Δn" are both proportional to S as defined in Eq.25. 

 

 
Fig II.22 Variation of the nematic order parameter S as a function of the shear rate for different pore channels 
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Further, two different fluids with the nanotube suspensions are used in this work, an aqueous 

ionic surfactant solution (Islam, Rojas et al. 2003), and an aqueous single-stranded DNA 

solution (Zheng, Jagota et al. 2003). The resulting samples are denoted by S1 and S2, 

respectively. We will consider the physical parameters of sample S1, and apply our simulation 

calculations to it. The surfactant suspension S1 has a viscosity η = 9.5 × 10ିସ Pa.s at room 

temperature, and the resulting suspension contains individual SWCNTs. Atomic force 

microscopy AFM, analysis of dried films give a mean nanotube length L = 750 nm and mean 

diameter d = 13.5 nm, such that  L/d= 60. Using Eq.(2) we calculate the rotational diffusion 

coefficient for these rod-like nanotubes as  Drot= 39.43 s-1. The nematic order parameter S for 

different pore widths are presented Fig II.22  as a function of the shear rate variable for the 

constant rotational diffusion coefficient Drot = 39.43 s-1 which corresponds to S1. 

 

 

 
Fig II.22 Details of the nematic order parameter S in Fig II.23 as a function of shear rate for the open pore 

channels 

 

2.7 Conclusions 

 
We have developed algorithms and carried out numerical simulations to analyze the dynamics 

of dilute colloidal suspensions of macromolecular particles in solutions flowing inside a 

porous system. The pores are modeled in a two-dimensional frame of reference with 

boundaries. The colloidal particles are subject to hydrodynamic forces, Brownian motion and 
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random collisions at the solid surface boundaries of the pores. To treat the problem 

realistically we have considered the pores to present rough boundaries at the scale of the 

length of the particles, and have demonstrated that the assumption of ideally flat surface 

boundaries is unrealistic. The numerical simulations are carried out to calculate in particular 

the spatial and orientation statistical PDF distributions of the macromolecular rod-like 

particles in colloidal suspensions in a solution under equilibrium dynamics in a Poiseuille 

flow inside the pore channels. The results are presented for different widths of pore channels 

referenced to the size of a rod-like particle.  The simulations are general in the sense that they 

are developed for confining and open pore channels, and are valid throughout the space of the 

pores and in the boundary depletion layers, for a wide variety of hydrodynamic flow 

conditions, at low, intermediate, and high flow, characterised by the rotational Peclet number.  

 

Available experimental work does not access the detailed nature of collisions between 

Brownian macromolecular rod-like particles and solid surface boundaries, in a confined 

solution under hydrodynamic Poiseuille flow. However, some experiments, notably 

birefringence and dichroism can in principle measure the nematic order for dilute colloidal 

suspensions. Our simulations yield directly the nematic order parameter for colloidal 

suspensions in the two dimensional frame. It is therefore possible to use the theoretical results 

for the nematic order parameter together with experimental birefringence and dichroism to 

estimate the size of pore channels for a given porous system, given a particular reference 

colloidal suspension of rod-like particles of known length flowing inside the system.  
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Chapter 3 

 

 

Simulations for the dynamics and nematic order of dilute colloidal suspensions of 

ellipsoidal-like particles flowing in 3D space in the bulk and near solid 

boundaries 

 

Abstract: Numerical simulations and algorithms are developed to analyze the dynamics of 

the ellipsoidal-like particles in a three-dimensional spatial frame. In particular we study in this 

case of an open channel pore for which we calculate the PDF distributions in the bulk and in 

the depletion layer next to a solid boundary. We develop a theoretical model based in this 

case on the equations of Jeffrey for the dynamics of solid particles in fluids and the molecular 

dynamics by mechanical restitution for the diffusive collisions of the particles at the solid 

boundaries. Simulations are carried out to calculate the equilibrium PDF distributions for 

ellipsoidal molecular particles in suspension in a fluid under hydrodynamic flow. The 

simulation results for the PDF distributions for the spatial positions and the orientations of 

ellipsoidal particles are calculated for the bulk liquid and in the depletion layers next to an 

atomically flat solid surface boundary. They are calculated over several orders of magnitude 

of the rotational Peclet number, and for variable aspect ratios characteristic of the ellipsoidal 

particles under study. They demonstrate the importance and significance of modeling in a 

three-dimensional spatial frame as compared to the simulation results based in the Boeder 

approach over a two-dimensional spatial frame. In particular we are able to produce a 

complete topography for the PDF distributions segmented as a hierarchy in the depletion 

layer, covering a complete range of orientations in 3D space. The simulations permit to 

calculate, for the colloidal suspension, the nematic order parameter over its tensorial 

representation, for a variety of forms of ellipsoidal particles selected to correspond to real 

polymer particles. Our results for the nematic order parameter which may be calculated 

locally inside the space of the depletion layer are innovating and represent a new input as 

regards these systems. 
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3.1 Introduction 

Colloidal suspensions of particles in dilute liquid solutions flowing inside systems of  

mesopores, are of great importance in industrial processes, such as for example for coatings 

(Fuji, Fujimori et al. 1998; Bernard P 2002) and catalysis (Jia, Zhu et al. 2003), and in 

biological processes, such as for example in protein diffusion in membranes (Sokolov, 

Aranson et al. 2007) and in the circulation of red blood cells and platelets inside the human 

body.  

 

Colloidal particles have general forms, including the spherical one, and show rich Brownian 

dynamics. The origin for current models for the study of the dynamics of colloidal non-

spherical particles in a shear flow at low Reynolds numbers is historically the approach 

proposed some time ago (Jeffery 1922). This pioneering research work investigated the 

rotational behavior of a single ellipsoidal particle in a Newtonian fluid. Jeffery obtained a set 

of differential equations for the rotation of an ellipsoid, with analytic solutions depending on 

the initial conditions. This theoretical approach was confirmed experimentally (Trevelyan and 

Mason 1951), and has been studied and developed since by several groups and researchers,  

both theoretically and experimentally.  

 

The overall rotation of the colloidal particles in the bulk liquid is referred to as a Jeffery orbit, 

which will be discussed in detail in section 3.2.  In particular (Bretherton 1962) showed that 

Jeffery’s model could be applied to any axis-symmetric particle, provided that an equivalent 

aspect ratio was introduced. The equivalent aspect ratio was used to estimate the period of 

rotation for non-interacting particles far away from solid surface boundaries and from other 

colloidal particles.  

 

The study of the dynamics of spheroids has been carried out by a number of authors. In 

particular, the numerical simulation of the dynamics for spheroids moving near a solid surface 

boundary was carried out (Hsu and Ganatos 1994) using Jeffry’s equations. The authors 

concluded that hydrodynamic forces and torque depend strongly on the spheroid orientation 

and its position relative to a wall boundary; they reported tumbling of spheroids that resulted 

in motion towards the wall, since the spheroids were turned around the point closest to the 

wall. Other simulations using Jeffry’s equations (Gavze and Shapiro 1997) calculated the 

hydrodynamic forces on a fiber near a solid wall using a boundary integral equations model. 

They showed a lift force effect on the fiber due to the presence of the wall boundarey. In 

addition, they found that the wall retards the fiber motion. Their study confirmed that periodic 
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rotational motion was occurring in unbounded shear flow, and indicated that fibers close to 

the wall had longer periods between rotations.  

 

In contrast the experimental study of the fiber motion in a planar Couette shear flow apparatus 

was investigated (Moses, Advani et al. 2001). These authors introduced an effective shear rate 

to describe the wall boundary effect and showed a logarithmic decrease of this with increasing 

distance from the wall. Significantly, the results showed that a fiber centriod situated at a 

distance larger than its length from the wall verified Jeffery’s model. The authors reported 

that higher aspect ratio fibers rotate faster in the region near the wall than those with lower 

aspect ratios. Recently new experiments (Holm and Söderberg 2007) demonstrate the  

influence of shear close to a solid boundary for different planes parallel to the boundary for 

the fiber orientations with different fiber aspect ratios and concentrations. They show that as 

the aspect ratio increases the influence of the shear on the fiber orientations decreases for all 

the parallel planes. We show in this chapter that our recent numerical simulation results 

confirm this experimentally measured behavior. 

 

In the theoretical research work, cited above, the dynamic effects for colloidal particles due to 

their stochastic Brownian motion, and their diffusive collisions at the solid wall boundaries, 

are omitted. It is the purpose of the present work to treat these forces towards a 

comprehensive analysis of the dynamics of the colloidal particles, in a three-dimensional 

spatial frame (3D), in the bulk of the flowing fluid as well as near the surrounding solid 

surface boundaries. To that end we will develop in this chapter appropriate algorithms 

integrating these random forces, in addition to the effect of the hydrodynamic forces at the 

heart of Jeffery’s equations. Based on these algorithms we then carry out numerical 

simulations to analyze the dynamics of colloidal particles of general ellipsoidal forms, in 

dilute suspensions, in the bulk of the flowing liquid solution, and next to ideal atomically flat 

solid surface boundaries. 

 

Our study is focused on the determination of the PDF distributions, under equilibrium 

dynamics, for the positions and the orientations of macromolecular ellipsoidal particles. In 

particular we seek to understand the extent to which the Brownian dynamics and the diffusive 

collisions at the solid surface boundaries may be important to such equilibrium dynamics. 

 

It is well known that it is intractable to study by the only analytical means the dynamics of the 

molecular particles in dilute colloidal suspensions near solid surfaces, because of the random 

nature of the Brownian motion and the equally random nature of diffusive collisions. The 

only viable alternative is to do this by numerical simulations with appropriate algorithms. 



67 

 

 

In section 3.2, we present a technical introduction to the problem and to liquid bulk 

macromolecular dynamics under Brownian and hydrodynamic motion. Section 3.3 presents 

the developed algorithm for diffusive collisions at the solid surface boundaries of open pore 

channels. Section 3.4 presents simulation results for the spatial and angular PDF distributions 

for colloidal suspensions, for a wide range of hydrodynamic conditions and for ellipsoidal 

particles with variable aspect ratios in bulk solution while section 3.5 near the depletion layer 

The calculation of the nematic order parameter S in 3D is presented in section 3.6. 

Cconclusions are presented in section 3.7.  

 

3.2 Colloidal Particle Model Dynamics in 3D-Spatial Frames 

Particles moving in a suspension tend to orient themselves in the direction of the shearing 

which can be quantified by fluid velocity gradients. As the macromolecular particle translates 

with the fluid, it is assumed that the velocity at that particle centroid is equal to the velocity of 

the fluid at this position. The macromolecular particle is affected by other particles or walls in 

close proximity. An ellipsoidal particle in simple shear flow spends most of its time aligned 

almost parallel to the streamlines but as the concentration of macromolecular particles in the 

suspension increase, the interaction of the particles with other particles and with the boundary 

solid surface leads to other induced ordinations. Particle-particle interaction have been the 

subject of study for many researchers (Folgar and Tucker 1984; Advani and Tucker 1990; 

Ranganathan and Advani 1991; Férec 2009). 

 

Our present research work deals with dilute suspensions of colloidal particles and hence does 

not consider the interaction effects between the particles; we focus instead on the particle - 

solid surface boundary interactions. 

 

The orientations of dilute concentrations of macromolecular particles in the bulk of a flowing 

fluid have been studied early by Boeder who introduced a differential equation (BDE) in a 

2D-spatial  frame (Boeder 1932), taking into account the dynamic effects due to the Brownian 

and hydrodynamic forces acting on the particles. The BDE governs the variations of the 

probability distribution functions (PDF), P (), of the particles as a function of their 

orientations in the bulk with respect to the direction of the shear flow. The BDE depends on 

the Peclet number α = γ' / Drot, where γ’ is the shear rate of flow and Drot is the rotational 

diffusion coefficient of the macromolecular particle about its centre of mass. The rotational 

Peclet number  is the dimensionless ratio that characterises the relative strengths of 

hydrodynamic and Brownian effects.  
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In this chapter we generalise the algorithm used previously for the 2D-spatial frame in 

Chapter 2, to establish an appropriate algorithm for a 3D-spatial frame. This is used to make 

numerical simulations for the 3D dimensional Cartesian space, in order to calculate the PDF 

distributions of ellipsoidal macromolecular particles in the bulk liquid solution and in the 

vicinity of solid surface boundaries. 

 

In particular, the mechanical restitution model at the solid boundaries is generalized to three 

dimensions, and combined with a fuller implementation of the Jeffery’s which govern the 

motion of ellipsoidal forms of the colloidal particle in an unbounded linear flow field. It is 

hence thi 

 

 s complete version which is used in the present model to calculate the PDF distributions for 

macromolecular ellipsoidal particles in the neighbourhood of solid surface boundaries.  

 

We consider a simple shear flow acting on an ellipsoidal particle, such that  

௫ݒ  = ܽ  ݕߛ̇ ௬ݒ  ݀݊ = ௭ݒ = 0  

 is the hydrodynamic shear rate. The motion of a solid ellipsoid particle, suspended in a ߛ̇ 

simple shear flow, was computed analytically (Jeffery 1922), neglecting the inertia of the 

fluid and the particle. The ellipsoidal orientation is defined by three angles (),which 

determine the Cartesian coordinates x, y, z. In contrast, a local coordinate system x’, y’, z’, 

translates and rotates with the ellipsoidal particle, see Fig III.1. In Jeffery’s theory it is 

assumed that the ellipsoidal center translates with the same linear velocity as that of the 

particle centriod. 

 
Fig III.1 Coardinate system for ellpsoidal particle centered at the origin  
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The angles and  are used to define the unit direction of the primary axis and  represents 

the rotational angle about the ellipsoidal particle. The differential equation governing the time 

evolution of  andare given by 

 

                                        φ̇ =
 ఊ̇ସ  ቀ௥೐మିଵ௥೐మାଵቁ ݊݅ݏ 2߮݊݅ݏ  (1)     ߠ2

ߠ̇                                       = ߛ̇− ቀ ଵ௥೐మାଵቁ ߠ ²݊݅ݏ ௘ଶݎ)  + (ߠ²ݏ݋ܿ     (2) 

 

In these equations, ߛᇱis the shear rate; ݎ௘  is the aspect ratio of the ellipsoidal particles, θ is 

defined as the angle of the particle with respect to flow direction, φ as the vorticity axis; φ =  
஠ଶ when the ellipsoidal particle lies in the plane of shear. It can be seen that the angular 

velocityߠᇱ is maximum when the ellipsoid is perpendicular to the flow direction (φ =  
஠ଶ) and 

minimum when it aligned to the flow direction(θ = 0). 

 

From Eqts.1 and 2, it is observed that the angular velocities depend linearly on the shear rate, 

if Eqts.1 and 2 are integrated with respect to time they may be re-written as 

 

(ݐ)ߠ                                           = tanିଵ(ݎ௘ tan
ఊ̇ ௧௥೐ ାଵ ௥೐ൗ )     (3) 

 

(ݐ)߮                                            = tanିଵ ஼௥೐ට௥೐మ ୡ୭ୱ² ఏା² ఏ      (4) 

 

While the rotational equation is 

  

(ݐ)߰                                                   = ∫ ቀఊ̇ଶ− ቁߠ̇ cos߮௧଴  (5)    ݐ݀

 

The constant C characterizes the eccentricity of the orbit executed by the particle, and takes 

the values between zero and infinity. C = 0 implies that the particle is aligned along the 

vorticity axis (φ =  0), while C  ∞ implies that the particle lies in the shear plane φ =  
஠ଶ , 

see Fig III.2 for details.  The orientation of the ellipsoidal particle can be described 

completely by the spherical coordinate system. The θ and  defined in a fixed Cartesian 

coordinate system, as shown in Fig. III.1, (−ߨ 2 ≤ ⁄ߠ ≤ ߨ+ 2  ܽ ݊݀ 0 ≤ ߮ ≤ ⁄ ߨ ), are 

sufficient because the problem is invariant under the transformation    
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Fig.III.2 Calculated example of Jeffery’s different orbit constants C for ݎ௘  ∞ 

 

Note that for large re = L/d (L and d are respectively the length and diameter of the 

macromolecular or nano particle), the ellipsoidal form turns into rod-like particles. This 

special class of particles is extensively discussed in Chapter 4. For L >> d, i.e. ݎ௘   >> 1, 

Jeffery’s equations become 

 

                       ቂௗఏௗ௧ ቃ =  −γ̇ ቀ ௥೐మ௥೐మାଵቁ ߠ ²݊݅ݏ −  γ̇ ቀ ଵ௥೐మାଵቁ cos² ≅ ߠ  − γ̇ ²݊݅ݏ ߮   (6a) 

 

                           ቂௗఝௗ௧ ቃ =  
 ఊ̇ସ  ቀ௥೐మିଵ௥೐మାଵቁ ݊݅ݏ  ݊݅ݏ 2߮ ߠ2 ≅  

 ఊ̇ସ ݊݅ݏ  ݊݅ݏ 2߮  (6b)   ߠ2

 

In the simulations using Jeffery’s equations, the hydrodynamic force tends to align the 

ellipsoidal macromolecular particles in the direction of the shear flow,   is taken as positive 

or negative in the trigonometric sense, where  = corresponds to the flow direction parallel 

to the boundary walls. To simulate the effects of hydrodynamic effects in a time interval t 

between two successive simulation events labelled s and s +1, we compute the hydrodynamic 

rotations about the centre of mass of the particles, ߠ߂௛௬ௗ(࢙ + 1; ݏ)௥௢௧߮߂ and ,(ݏ + 1; (ݏ , by 

using the following algorithm 

ݏ) ௛௬ௗߠ∆  + 1; (ݏ  = (௦ାଵݐ)ߠ − (௦ݐ)ߠ = −γ̇ ቀ ଵ ௥೐మ ା  ଵ ቁ (௦ݐ) ߠଶ݊݅ݏ௘ଶݎ ) + ݏ)௛௬ௗ߮߂ (7a)  ݐ∆ ( (௦ݐ) ߠଶݏ݋ܿ + 1; (ݏ  =  ߮ (௦ାଵݐ) (௦ݐ)߮− = γ̇( 
௥೐మ ା ଵ௥೐మ ି   ଵ)  

௦௜௡ଶఏ(௧ೞ)௦௜௡ଶఝ(௧ೞ)ସ  (7b)   ݐ∆  

 

In contrast the Brownian forces in the bulk liquid solution create a diffusive rotational motion 

of the particles, for which the rotation variables ߠ߂௥௢௧(ݏ + 1; ݏ)௥௢௧߮߂ and (ݏ + 1; (ݏ  can then 
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be assumed in the algorithm as previously for ߠ߂௥௢௧ in the form 

ݏ)௥௢௧߮߂  + 1; (ݏ = ± ݏ)௥௢௧ߠ߂  ௥௢௧                                                   (8a)߮߂ + 1; (ݏ = ±   ௥௢௧                                                    (8b)ߠ߂

 

The Brownian rotations, ± ± ௥௢௧ and߮߂  ௥௢௧, are clock and anticlockwise. In this procedureߠ߂

the simulation time interval t is related, as previously stated, to an effective variable for the 

Brownian rotation diffusion by the following equations 

 

௥௢௧ଶ߮߂  = ௥௢௧ଶߠ߂ (9a)                                                       ݐ߂  ఝ ௥௢௧ܦ2 =  (9b)                                                         ݐ߂  ఏ ௥௢௧ܦ2

 

For the small t simulation time intervals to be unique, at least for hydrodynamic events, they 

must satisfy  

ݐ߂  =
ଵଶ஽ഇ ೝ೚೟  

௥௢௧ଶߠ߂  =  
ଵଶ஽ക ೝ೚೟  ߮߂௥௢௧ଶ       (10) 

 

This leads to the simulation relationship 

௥௢௧ଶߠ߂  =  
ଶ஽ഇ ೝ೚೟ ଶ஽ക ೝ೚೟  ߮߂௥௢௧ଶ ≡ r஘,஦ ߮߂௥௢௧ଶ       (11)          

 

There are two ways to treat r஘,஦  in the numerical simulations, as follows 

 

r஘,஦ =  
஽ഇ ೝ೚೟  ஽ക ೝ೚೟ = 1        (12a) 

r஘,஦ =  (sin߮)  ି ଶ        (12b) 

 

Eq.12a is based on the assumption of independent and random Brownian simulation events, 

where the ellipsoidal symmetry cuts the same diffusion coefficient in whatever angular 

displacement it makes. See for details Annex AII. This underestimates somewhat the physical 

relation of ߠ߂௥௢௧ and ߮߂௥௢௧ for hydrodynamic events, which can be derived directly as in 

Eq.12b. However, Eq.12b would overestimate this relationship in the global simulation since 

random Brownian events may be viewed as disconnected. Eqs.12a and 12b yield respectively 

ݏ)௥௢௧ߠ߂  + 1; (ݏ = ± ݏ)௥௢௧߮߂ ௥௢௧       (13a)ߠ߂ + 1; (ݏ = ±  ௥௢௧      (13b)ߠ߂ ߮݊݅ݏ
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We have used both Eq.13a and Eq.13b to run our overall simulations, for a variety of 

hydrodynamic conditions and for a wide range of aspect ratios. The results do not differ in 

any significant manner, (see Annex AII). It is noticeable however that we gain on the 

calculation time when simplifying the simulation conditions, by considering r஘,஦ = 1. 

 

The time interval t can be now eliminated from the hydrodynamic algorithm using Eq.12a, 

so that equations Eq.7a and 7b become 

ݏ) ௛௬ௗߠ∆  + 1; (ݏ = −γ′ ቀ ଵ ௥೐మ ା  ଵ ቁ + ߠଶ݊݅ݏ௘ଶݎ ) (  ߠଶݏ݋ܿ
௱ఏೝ೚೟మଶ஽ഇ ೝ೚೟    (14a) ߮߂௛௬ௗ(ݏ + 1; (ݏ =  γ′( 

௥೐మ ା ଵ௥೐మ ି   ଵ)  
௦௜௡ଶఏ ௦௜௡ଶఝସ  

௱ఏೝ೚೟మଶ஽ഇ ೝ೚೟      (14b) 

 

Using Eq.2 in Chapter 2, the above equations become 

௛௬ௗߠ߂  = ߙ− ଵ௥೐మାଵ 
ߠ ²݊݅ݏ௘ଶݎ)   + ( ߠଶݏ݋ܿ    

∆ఏೝ೚೟మ   ଶ      (15a)          

௛௬ௗ߮߂  = ߙ (  ௥೐మା ଵ )଼(௥೐మି ଵ)
ߠ2 ݊݅ݏ)  sin ௥௢௧ଶߠ߂(2߮ .     (15b)      

 

In a numerical simulation the choice of a value for rot is dictated by technical criteria 

towards establishing efficient simulation runs and negligible scatter. This choice determines 

effectively a simulation time interval t which is inversely proportional to the diffusion 

coefficient from Eq.10 in this chapter. For the purpose of the present simulations we typically 

take rot  0.003 radians, for a wide range of the Peclet number . This value for rot may 

however be varied for different experimental conditions and different Peclet numbers. 

 

3.3 Colloidal Particle Algorithms in 3D-Spatial Frames for open Pore Channels 

In this section, we present the model for the numerical simulations for the dynamics and 

PDF distributions of ellipsoidal colloidal particles in open channels. The mesopore system is 

hence modelled b two infinite solid plates which confine the fluid flow along a Cartesian 

direction in the x-y plane parallel to the plates, but which are sufficiently apart to model an 

open channel as in FigIII.4. The separation D between the plates along the y axis is 

considered mesoscopic in its dimensions and greater than the length L of the ellipsoidal 

particle, D >> L. The particles have the liberty to move dynamically in the flow, in 

translational and rotational movements, in all directions in the 3D space, under the combined 
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influence of the Brownian and the hydrodynamic forces, and of the diffusive collisions at the 

solid surface boundary. 

 

 
Fig III.4 Schematic representaion of the ellpsiodal macromolecular particles in the depeltion layer next to the 

solid surface boundary of one of the two plates which confine the hydrodynamic flow of the fluid 

 

The notion of restitution is next developed to build up an algorithm for the diffusive collisions 

of the macromolecular particles with surface boundaries in a 3D-spatial frame. The joint PDF 

distributions for the macromolecular particles, namely P(, ), are calculated as a function of 

angular ordinations  and , and P() as a function of the  normalized distance of their center 

of mass  measured from a reference plane at the boundary surface. 

 

The detailed nature of a diffusive collision between a macromolecular particle and a given 

solid surface, is quite complex and varies with the topography of the surface (Khater 1989), it 

would also vary with the form and nature of the macromolecular specie. To develop an 

appropriate simulation algorithm at the solid boundaries, we characterize the dynamics of the 

collision using the same coefficients of mechanical restitution, namely e and é, introduced in 

Chapter 2. The algorithm however is modified to generalize to 3D space. 

 

Our algorithm contains components that simulate both the hydrodynamic and the Brownian 

movements in the bulk when the extremities of the ellipsoidal macromolecular particles do 

not come into contact with the solid boundaries. The algorithm chooses randomly between 

hydrodynamic and Brownian events. It is necessary, however, in this novel situation to 

develop the algorithm to account for the collisions when they occur at the boundary surfaces, 

to test the sequence of collisions that follow and their consequences. 

 

Different types of possible collisions may be distinguished, labelled here as A, B, C, and D, to 

account for all possible events in the modified algorithm. Furthermore, the boundary surface 

is considered as atomically flat for the purpose of our simulations in this chapter. 
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Case A: corresponds to the situation when a random translation diffusion event brings the 

particle extremities into contact with the surface because of the collision. We may then write 

 

௖௢௟௟௜௦௜௢௡ ݖ  =  
௅ଶ | sinߠ(ܰ)  sin߮(ܰ)|      (16)           

                                   

It is then possible to write the algorithm for a Brownian diffusion translation between the N 

and N+ 1 events, as 

ܰ)௖ݖ  + 1) = ௖௢௟௟௜௦௜௢௡ݖ  + (ܰ)௖ݖ ] ݁ − [ ௖௢௟௟௜௦௜௢௡ݖ       (17) 

 

For a given macromolecular species and given topography of a prepared surface, (Khater 

1989) the collision due to the random diffusive processes may be consequently characterized 

by a given e restitution coefficient as in Eq.17. The event following the arrival of the particle 

into N+1 moves the particles into other configurations. A comparable algorithm may be given 

for a collision arising due to the rotation diffusion around a solid angle determined from the 

angles  and , since these processes are considered intrinsically similar. 

 

Case B: The Brownian rotation diffusion about an angle  leaves constant the position of the 

centre of mass between the N and N+1 events, so that zc(N) = zc(N+1). One of the extremities 

of the particle however may go into collision with the solid surface boundary. It follows for 

this case that that the angle of collision can be written as   

௖௢௟௟௜௦௜௢௡ߠ  =  sinିଵ ቈ ୸ౙ(୒)

|ୱ୧୬ ఝ(ே)  | ∗ ಽ
  మ 
቉        (18a) 

 

The Brownian rotation algorithm between N and N+ 1 event, due to collisions, becomes then 

ܰ)ߠ  + 1) = ௖௢௟௟௜௦௜௢௡ߠ  +  ݁ (ܰ)ߠ ]  −  ௖௢௟௟௜௦௜௢௡ ]     (18b)ߠ 

 

Case C: corresponds to the Brownian rotation about the angle  that brings one of the particle 

extremities into collision with the solid surface boundary. In this situation we have a similar 

algorithm as for the random Brownian rotation, namely 

 ߮௖௢௟௟௜௦௜௢௡ =  sinିଵ  ቈ ୸ౙ (୒)ୱ୧୬ ఏ(  ே )  ∗ಽమ 
቉        (19a) ߮(ܰ + 1) =  ߮௖௢௟௟௜௦௜௢௡ +  ݁  [  ߮ (ܰ) −  ߮௖௢௟௟௜௦௜௢௡ ]    (19b) 
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The similarity of the sets of Eqs.18 and Eqs.19, for the Brownian events, is coherent with the 

choice of Eq.12a and Eq.13a for the Brownian algorithms. 

 

Case D: corresponds to the situation when the collision is due to hydrodynamic rotations in 

the vicinity of the solid surface boundary. The particle in this situation, between the 

successive N and N+ 1 event, turns about the contact point determined by the collision in-

between, into a solid angle described by the coordinate angles  and  

  ߮(ܰ + 1) = ߮(ܰ) +  ݁ ′ [  గଶ − ߮(ܰ) ]     (20a) ߠ(ܰ + 1) = (ܰ)ߠ +  ݁ ′ [ గସ −  (20b)     [ (ܰ)ߠ

 zୡ(ܰ + 1) =  
௅ଶ  [ |sinߠ(ܰ + 1) sin߮(ܰ + 1)|]    (20c) 

 

The restitution coefficient é characteristic of hydrodynamic events, is treated separately from 

that for Brownian events, e, although both will be treated as random variables, in the interval 

[0, 1], for the purpose of our simulations.  

 

In our simulations the dynamics for the possible collision events of the macromolecular 

ellipsoidal particles, as in cases A, B, C and D, are introduced through a special algorithm 

code. This allows us to follow the behaviour of the macromolecular particle over N = 108 

elementary events due to stochastic Brownian and causal hydrodynamic movements for a 

single simulation run. 

 

3.4 Simulation Results for Ellipsoidal Forms of Colloidal Particles in Bulk solution 

The simulation results are presented in bulk and for the depletion layer over the interval 0 

  = z/L  0.5 next to the solid surface boundary for different ellipsoidal particles with 

different aspect ratio re. As stated the simulations are carried out for an atomically flat surface 

boundary at  = 0, which is used as the reference plane corresponding to the lowest material 

levels that a particle extremity can touch in diffusive collisions.  

 

There are difficulties to create polymer particles with controlled ellipsoidal shapes with a 

required aspect ratio. A large and documented literature of research results however shows an 

extended range of different families of ellipsoidal shaped colloidal particles from industrial 

and natural production (Champion, Katare et al. 2007; Park, Saffari et al. 2010). Such 

particles can be found at the microscopic scale, as well as at the scales nano scale (as pointed 
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out in Chapter 1). The simulations may be run indifferently for both types of particles. 

Furthermore, (Han, Alsayed et al. 2009) used video-microscopy measurements to calculate 

the diffusion under different confinement conditions for polymethyl methacrylate (PMMA) 

and polystyrene (PS) ellipsoidal particles, which present microscopic features. For these latter 

particles the collected images are reproduced in Fig III.5 showing different aspect ratios, re, 

which renders them hence useful as a reference for our numerical simulations.  
 

 
Fig III.5 Microscopic images  of six ellipsoidal particles as a function of aspect ratio re , increasing from left to 

right (Han, Alsayed et al. 2009), as 2, 2.85, 2.92, 3.3, 3.55, and 8 

 

In particular we will consider simulating for particles in bulk solutions, distant from the 

surface boundary, with the following aspect ratios: re = 1.02, 1.2 and 2. The last aspect ratio 

corresponds to the first of the above series, which is interesting in itself in case of potential 

experimental results. The first and second, however, are outside the above series, but 

correspond to the interesting case of nearly spherical particles. 

 

We shall also consider the simulations for particles in the depletion layer in the vicinity of the 

surface boundary, for ellipsoidal particles with aspects ratios: re = 2, 2.85 and 3.55. 

 

3.4.1 PDF Simulation results for ellipsoidal forms of colloidal particles in bulk solution 

FigIII.6a, b and c, FigIII.7a, b and c and FigIII.8a, b and c, present the angular normalized 

PDF distributions, P (, ), as a 3D contour fill surface, over the plane (, ), for ellipsoidal 

macromolecular particle in the bulk solution, for different Peclet numbers . The results 

correspond to gradually increasing the Peclet number from a relatively low value, as in 

FigIII.6a, b and c, to a medium value in FigIII.7a, b and c, and then to a high value in 

FigIII.8a, b and c. This is done in each case for the aspect ratios: re = 1.02, 1.2, and 2 which 

correspond in each group respectively to a, b and c. The angles  and  represent the 

orientation angle for the ellipsoidal particles in the 3D-spatial frame. Note that we use a color 

scheme in these figures, where red corresponds to the highest probability for the PDF 

distributions, and black to the lowest. Note also that their absolute numerical values need not 

necessarily have the same value from one set of figures to another. 

 

In general, the simulation results, valid for the open interval  
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߮ =] 0°, 180° [ 

 indicate that for low flow conditions with a typically low Peclet number α = 1, the Brownian 

effect is dominant for the particles in comparison with the hydrodynamic motion. For 

relatively medium and high flow, which correspond to typically medium and high Peclet 

numbers α = 10 and 100, respectively, the influence of Brownian motion is less important 

compared to that due to the hydrodynamic motion. For the higher Peclet flow the 

macromolecular particle orients increasingly in the direction of the flow under the dynamic 

equilibrium conditions. Moreover, and regardless of the value of the aspect ratio value, the 

PDF probability around ߠ =  0 and  ߮ = /ߨ  2 increases with increasing α. 

 

FigIII.6a, 6b and 6c, present the simulation results for the normalized PDF distributions of the 

colloidal particles in the bulk solution, under the conditions of dynamic equilibrium, as a 

function of a fixed small Peclet number, α = 1, with increasing aspect ratios re = 1.02, 1.2 and 

2. The nearly spherical particles for aspect ratio re = 1.02, yield the results presented in 

FigIII.6a. These indicate, as expected, a relatively uniform distribution in the (ߠ,߮)  plane, 

with already some perceptible symmetry about the ߮ = /ߨ 2 direction. We find this symmetry 

for all the results of the numerical simulations since the Brownian motion dictates this. To 

understand FigIII.6a it is important to recall that a particle with spherical symmetry, for which 

the aspect ratio is strictly re = 1, has no preferential axis with respect to the flow direction or 

with respect to the vorticity axes. For such a perfect symmetry we expect that the PDF would 

be perfectly uniform in the (ߠ,߮)  plane. FigIII.6b shows next the normalized PDF 

distributions for the greater re = 1.2 aspect ratio. In this case the PDF distribution is visibly 

different from that for re = 1.02, for which the colloidal suspension acquires an orientation 

tendency, with a distribution that presents particle concentrations (orange colour) in the 

limited domain ߠ = [−20°,80°]  for all ߮ . This tendency to concentrate in a small partial 

domain is accentuated for the larger re = 2 aspect ratio, as can be observed in FigIII.6c, where 

the colloidal suspension tends to regroup in significant concentrations in the narrower solid 

angle window { ߠ ≈ [10°, 40°] , ߮ ≈ [30°, 150°] }. 

 

We have also carried out numerical simulations for colloidal particles in the bulk with aspect 

ratios re = 1.2 and 2, for the range of Peclet numbers, α = 1, 10, and 100, as above for re = 

1.02. The results are presented in the column figures of FigIII.7 and FigIII.8 respectively.  It 

is then possible to compare the PDF simulation results in another sense by comparing them at 

a fixed aspect ratio for a series of Peclet numbers. FigIII.7a and FigIII.8a give the normalized 

PDF distributions for colloidal particles in the bulk solution, with aspect ratio re = 1.02, for α 

= 10 and 100, and these are compared accordingly with the results in FigIII.6a. 
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Simulation results for the bulk at low Peclet number  for different aspect ratios

 

 
FigIII.6 Simulation results for normalized angular PDF, P (, ), in the bulk at law Peclet number  = 1 a): re = 

1.02; (b): re = 1.2; (c): re = 2
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Simulation results for the bulk at medium Peclet number  for different aspect ratios 

 
FigIII.7 Simulation results for normalized angular PDF, P (, ), in the bulk at medium Peclet number  = 10 a): 

re = 1.02; (b): re = 1.2; (c): re = 2 
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Simulation results for the bulk at high Peclet number  for different aspect ratios


FigIII.8 Simulation results for normalized angular PDF, P (, ), in the bulk at high Peclet number  = 100 a): re 

= 1.02; (b): re = 1.2; (c): re = 2 
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Comparing the PDF results of FigIII.6a, FigIII.7a and FigIII.8ait is evident that increasing 

the Peclet number for the fixed aspect ratio, re = 1.02does not change the overall aspect of 

the normalized PDF distributions. Increasing the strength of the hydrodynamics flow 

increases, however, the concentration of the particles in the direction of flow and reduces the 

importance of the contribution of the Brownian motion. 

 

Comparison of FigIII.6b, FigIII.7b, and FigIII.8b, shows next the simulation results for 

colloidal suspensions with aspect ratio re = 1.2, for the increasing Peclet number, α = 1, 10, 

and 100. It is again observed that increasing the flow will accentuate the PDF distributions 

into smaller windows in the (ߠ,߮)  plane. In  contrast with the calculated effects at small α, 

the results for medium and high hydrodynamic flow conditions show that the colloidal 

particles tend to regroup in significant concentrations, under the conditions of dynamic 

equilibrium, in the narrow solid angle window of { ߠ ≈ [−10°, 10°] , ߮ ≈ [60°, 120°] } for 

 = 10 as in FigIII.7b, and still narrower solid angle window { ߠ ≈ [−10°, 10°] , ߮ ≈ [70°,

110°] } for  = 100 in FigIII.8b. The simulation results results in FigIII.6c, FigIII.7c and 

FigIII.8c present the same tendency for the larger aspect ratio re = 2, presenting even narrower 

windows. 

 

3.5 PDF Simulation results for ellipsoidal particles in the depletion layer 

The simulation results for the normalized PDF distributions are presented for the colloidal 

particles with aspect ratios re = 1.02, 2 and 3.55, over the depletion layer 0    0.5, where  

= z/L defines the particle centre of mass with respect to the adjacent atomically flat solid 

surface boundary. To analyze the results for the depletion layer, we divide it into two regions: 

region I (0 ≤ ζ < 0.2) and region II (0.2 < ζ ≤ 0.5). These regions have typically nano-metric 

of thicknesses, for a variety of particles, region I being adjacent to the boundary. 

 

3.5.1 PDF Simulation results in region I (0 < ζ ≤ 0.2) of the depletion layer under 

different hydrodynamic flow conditions  

 

For aspect ratio 2.85, and 3.55 

 

FigIII.9a, b and c show results for the normalized PDF distributions P(θ , ), presented as a 

3D contour fill surface, with different Peclet numbers  which correspond to typically low, 

medium and high hydrodynamics flow conditions, for ellipsoidal particles with a small aspect 

ratio re = 2.85 in 3D space. The PDF distributions are observed to be presents significant 

probabilities for the orientation states in the solid angle window {ߠ ≈ [−2°, 2°] , ߮ ≈ [75°,
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105°] } for  = 1 as in FigIII.9a, the window { ߠ ≈ [−4°, 4°] , ߮ ≈ [70°, 110°] } for  = 10 

as in FigIII.9b, and still narrower solid angle window { ߠ ≈ [−10°, 10°] , ߮ ≈ [80°, 100°] } 

for  = 100 as in FigIII.9c. 

 

The calculated normalized PDF distributions for aspect ratio re = 3.55 are presented in 

FigIII.10a, b and c. They show significant probabilities in the narrow solid angle window ߠ ≈
[−1°, 1°] , ߮ ≈ [75°, 105°] } for  = 1 as in FigIII.10a, the window { ߠ ≈ [−2°, 2°] , ߮ ≈ [75°, 105°] } for  = 10 as in FigIII.10b, and still narrower solid angle window { ߠ ≈ [−2°, 4°] , ߮ ≈ [80°, 100°] } for  = 100 as in FigIII.10c. 

 

The figures FigIII.10a, b and c, for aspect ratio re = 3.55 in 3D, are quite similar to this for 

aspect ratio re = 2.85.  
 

The common features of the normalized PDF distributions for the two different aspect ratios, 

and for the various hydrodynamic flow conditions, going from low to high Peclet numbers, 

can be understood in terms of the influence of the solid surface boundary on the equilibrium 

dynamics of the colloidal particle suspensions. In particular, the extended and approximately 

equal bases for these distributions, ߮ ≈ [70°, 110°], running along  ߮, indicates that the 

ellipsoidal particles rotate in approximately the same set of families of closed orbits around 

the vorticity axis , regardless of the aspect ratio, and of the Peclet number  especially for 

low and medium flow conditions. 

However, the influence of the form of the ellipsoidal particles is detectible, it may be 

observed in the gradual changes of the PDF distributions from FigIII.9c to FigIII.10c, at the 

relatively high Peclet number  = 100. These changes are naturally related to the influence of 

the form of the particle, when they are increasingly evacuated by the diffusive collisions from 

region I of the depletion layer. 

 

The influence of the form of the ellipsoidal particle is further seen from the comparison of 

FigIII.9c, and FigIII.10c under high flow conditions 

 

As one increases the aspect ratio, it is seen in Fig III. 9c and FigIII.10c that the discontinuities 

disappear gradually, and that the normalized PDF distributions revert to the more general 

aspect observed in the other figures.  
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FigIII.9 Simulation results for normalized angular PDF, P (, ), in the 1st region of the depletion layer with 

aspect ratio re = 2.85 with Peclet number a):  = 1; (b):  = 10; (c):  = 100 presented as 3D contour fill surface 

 



84 

 

 

 

FigIII.10 Simulation results for normalized angular PDF, P (, ), in the 1st region of the depletion layer with 

aspect ratio re = 3.55 with Peclet number a):  = 1; (b):  = 10; (c):  = 100 presented as 3D contour fill surface 
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3.5.2 PDF Simulation results in region II (0.2 < ζ ≤ 0.5), of the depletion layer under 

different hydrodynamic flow conditions  

 

For aspect ratio 2, and 3.55 
 

This section presents the results for the normalized PDF distributions P (θ, ) in region II (0.2 

< ζ ≤ 0.5) of the depletion layer, near an atomically flat solid surface boundary, for low to 

high Peclet numbers as in the previous section. This is undertaken for different ellipsoidal 

particle aspect ratios re = 2 and 3.55 in the 3D-spatial frame. We shall see that the normalized 

PDF distributions in region II are quite different from those in region I. The results are 

presented as the 3D contour fill surface, and also as the 3D map surface. The simulation 

results indicate that the phase space (θ,) available to the particles in region II broadens out 

compared to that in region I. In region II there is effectively a much wider range of solid 

angles accessible for the dynamics of the particles. The major differences for the PDF 

distributions in regions I and II arise hence primarily due to a reshuffle of the contributions of 

the three principal forces acting on the particles, namely Brownian, hydrodynamic and due to 

diffusive collisions at the surface boundary. Together these forces determine for each region 

its characteristic equilibrium dynamics, and the PDF distributions constitute consequently the 

basic signatures of these equilibrium dynamics. 

 

In region II, the common features of the normalized PDF distributions shown below for the 

low hydrodynamic flow conditions, = 1, for the two aspect ratios, can be understood in 

terms of the predominating influence of the random Brownian motion and random collisions 

over that due to the hydrodynamic shear flow. The broad base of the distributions, for all three 

aspect ratios, indicates that the ellipsoidal particles rotate in a wide set of closed orbits around 

the vorticity axis under the combined influence of the three forces. 

 

At medium flow conditions α = 10, the normalized PDF distributions start to vary in an 

important manner with the choice of the aspect ratio re = and re = . This is a direct 

consequence of the rising influence in region II of the hydrodynamic flow coupled to the 

elongated form of the particles. 

 

The influence of the form of the ellipsoidal particles, for aspect ratio re  and 3.55 is 

detectible under high flow conditions as is visible in FigIII.11c, FigIII.12c, FigIII.14a and 

FigIII.14b. This influence may be observed in the gradual changes of the PDF distributions 

from FigIII.14a to FigIII.14b. These changes are naturally related to the influence of the 

elongated form of the particle, under the diffusive collisions, when they are increasingly 
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evacuated by these collisions under the hydrodynamic shear flow from region II towards the 

bulk. 

 

 

 FigIII.11 Simulation results for normalized angular PDF, P (, ), in the 2nd region of the depletion layer with 

aspect ratio re = 2 with Peclet number a):  = 1; (b):  = 10; (c):  = 100 presented as 3D contour fill surface 
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FigIII.12 Simulation results for normalized angular PDF, P (, ), in the 2nd region of the depletion layer with 

aspect ratio re = 3.55 with Peclet number a):  = 1; (b):  = 10; (c):  = 100 presented as 3D contour fill surface 
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FigIII.13 Simulation results for normalized angular PDF, P (, ), in region II of the depletion layer with Peclet 

number  = 10; with aspect ratio a): re = 2; (b): re = 3.55, presented as 3D Map Surface 

 

 

FigIII.14 Simulation results for normalized angular PDF, P (, ), in region II of the depletion layer with Peclet 

number  = 100; with aspect ratio a): re = 2; (b): re = 3.55, presented as 3D Map Surface 
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3.6 The nematic order tensor S 

The nematic phase is characterized by long-range orientation order; i. e. the long axis of the 

ellipsoidal molecules tends to align along a preferred direction. The locally preferred direction 

may vary throughout the medium. The geometry and dynamics of the preferred axis, which is 

defined by a vector n(r), giving its local orientation as in FigIII.15, is called a director. The 

molecules appear to be able to rotate about their long axis, and also there seems to be no 

preferential arrangement of the two ends of the molecules if they differ. 

 

 
FigIII.15 Particles orientation in nematic phase; a unit vector u(i)  along the axis of ith molecule describes its 

orientation. The director n shows the average alignment 

 

The molecules are regarded as ellipsoidal rigid particles, such that we can introduce a unit 

vector u(i) along the axis of ith molecule which describes its orientation. Given the complexity 

of the colloidal suspension, it is necessary to consider a tensor description of their order which 

commonly called as the nematic phase order in the solution. A natural order parameter to 

describe the ordering, is the second rank tensor (Oswald and Pieranski 2005), as follows 

. 

S஑ஒ(ݎ) =
ଵே  ∑ ቀݑఈ(௜)ݑఉ(௜) − ଵଷߜఈఉቁ௜      (21) 

 

N is the number of ellipsoidal particles in the solution and the indices correspond to Cartesian 

directions  = (x, y, z), and  ߜఈఉ is second rank unit tensor  ߜఈఉ = ൜1 ݅ ߙ ݂ = ߚ 
0 ݅ ߙ ݂ ≠ ߚ   

 

The properties of the order parameter tensor as defined in Eq.21, may be resumed as 

 

1- Since ݑఈ(௜)ݑఉ(௜) = ఈ(௜)ݑఉ(௜)ݑ   and ߜఈఉ =   ఉఈ, it follows that Sαβ Is a symmetric tensorߜ 
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Sαβ =   Sஒ஑ 

 

2- Sαβ is traceless: ܶݎSαβ =  ෍ Sα஑ =  
1
N஑ୀ(୶,୷,୸)

 ෍൤ቀݑ௫(௜)ቁଶ + ቀ ݑ௬(௜)ቁଶ + ቀ ݑ௭(௜)ቁଶ − 1
3

 3൨୧ = 1− 1 

 

3-  The two previous properties reduce the number of independent components for the 

corresponding 3x3 tensor from 9 to 5. 

 

Transforming Eq.21 to spherical coordinate system 

௫ݑ  = ܿ ߮݊݅ݏ ௬ݑ ; ߠݏ݋ = ௭ݑ ; ߠ݊݅ݏ ߮݊݅ݏ =  ,߮ݏ݋ܿ

 

yields the form 

 ܵఈఉ = ∫ ∫ ݊݅ݏ ߮ ܲ (߮,ߠ)
గ଴గ ଶൗିగ ଶൗ ఉݑఈݑ)  − ଵଷ (ఈఉߜ ݀߮  ݀  (22)  ߠ

 

As previously, ܲ(ߠ,߮) is the probability to find the ellipsoidal particles with the orientation 

given by the angles  and , i.e.the PDF in the 3D-spatial frame Eqt.22 can hence be 

presented as
 

ܵ =  නන
⎝⎜
ܿ ²߮݊݅ݏ⎛⎜ ߠ²ݏ݋ − 1

3
ܿ ²߮݊݅ݏ ܿ ߮݊݅ݏ ߠ݊݅ݏ ߮ݏ݋ ܿ ߮ݏ݋ ܿ ²߮݊݅ݏ ߠݏ݋ ߠ²݊݅ݏ ²߮݊݅ݏ ߠ݊݅ݏ ߮ݏ݋ − 1

3
ܿ ߮݊݅ݏ ܿ ߮݊݅ݏߠ݊݅ݏ ߮ݏ݋ ܿ ߮ݏ݋ ܿ ߮݊݅ݏ ߠݏ݋ ߠ݊݅ݏ ߮ݏ݋ ²߮ݏ݋ܿ − 1

3 ⎠⎟
ܲ ߮݊݅ݏ⎞⎟ ݀ ߮݀(߮,ߠ) గߠ

଴
గଶ

ିగଶ
 

 

 

Following Eq.21 and Eq.22, the isotropic phase is characterized by S = 0, and he nematic 

phase by 0 < S < 1. The limit S = 1 corresponds to perfect alignment of all the molecules and, 

of course, is difficult to realize in practice. S can have a negative value which corresponds to a 

pancake-like (oblate) molecular distribution, while the positive values of S describe prolate-

like distributions. In general, it can be shown that the scalar order parameter S changes in the 

range from −1/2 to 1 (from perfect oblate to perfect prolate geometry via isotropic phase).  
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(Hand 1962) introduced another form for the order parameter tensor, with a  ܶݎSαβ = 1. In 

spherical coordinates this is expressed as 

 

ܵ =  නනቌ ܿ ²߮݊݅ݏ ߠ²ݏ݋ ܿ ²߮݊݅ݏ ܿ ߮݊݅ݏ ߠ݊݅ݏ ߮ݏ݋ ܿ ߮ݏ݋ ܿ ²߮݊݅ݏ ߠݏ݋ ߠ²݊݅ݏ ²߮݊݅ݏ ߠ݊݅ݏ ߮ݏ݋ ܿ ߮݊݅ݏ ܿ ߮݊݅ݏߠ݊݅ݏ ߮ݏ݋ ܿ ߮ݏ݋ ܿ ߮݊݅ݏ ߠݏ݋ ߠ݊݅ݏ ߮ݏ݋ ²߮ݏ݋ܿ ቍ߮݊݅ݏ ܲ ݀ ߮݀(߮,ߠ) గߠ
଴

గଶ
ିగଶ

 

           (23) 

This tensor form has been used extensively in the molecular theory for colloidal particles (Doi 

and Edwards 1978), for fiber-like charged particles (Advani 1987), and in recent research 

studies (Ausias 2007; Redjeb 2007). This latter Hand form is used henceforth for our purpose 

and throughout this work, to calculate the nematic order parameter tensor S for the colloidal 

particles in the bulk liquid and in the depletion layer adjacent to the surface boundaries. Note 

that the tensor formulation of the nematic order is a generalization of the approach adopted in 

Chapter 2 for the case of a 2D-spatail frame. 

 

3.6.1 Calculation of the nematic order tensor  

For Bulk solution  

In this part the order parameter tensor ܵఈ,௥೐  for ellipsoidal particles is calculated for different 

aspect ratios re, and Peclet numbers The sense of the indices (re, on S are evident. 

 

We give next, in matrix form following the Cartesian directions, the numerical results for the 

calculated    ܵ ఈ,௥೐ in bulk solution for (re,  and using 

the corresponding normalized PDF distributions ܲ(ߠ,߮) calculated previously in section 3.4 

                              

ଵܵ,ଵ.଴ଶ ൭0.422 0 0
0 0.409 0
0 0 0.201

൱      ଵܵ଴଴,ଵ.଴ଶ ൭0.429 0 0
0 0.403 0
0 0 0.21

൱ 

 

 

ଵܵ,ଶ ൭0.434 0 0
0 0.403 0
0 0 0.201

൱    ଵܵ଴଴,ଶ ൭0.609 0 0
0 0.243 0
0 0 0.204

൱ 

 

It should be clear from the above that ܵఈ,௥೐  varies with (re, . 
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The first row of results is for quasi-spherical particles with a small aspect ratio re =  for 

low and high Peclet numbers,  = 1 and 100, the results are not significantly modified despite 

the two orders of magnitude increase in the hydrodynamic flow. It is also noticeable that the 

preferred alignment in this case is along the X and Y directions in the plane of the flow, as in 

Fig.III.1, with a weaker component alignment along the Z direction normal to the flow. 

 

 
FigIII.16 Nematic order parameter Sxx in X-direction as a function of Peclet number a for different ellipsoidal 

particles in bulk 

 

Increasing the aspect ratio re from 1.02 

 to 2, under equivalent flow conditions is sufficient to introduce new effects. The favored 

alignment is visibly in the X direction with weaker component alignments along the Y and Z 

directions. Increasing the aspect ratio of the ellipsoidal particle gives it distinct and 

preferential behaviors along X, Y and Z. Indeed in this case it separates its Y behavior from 

its X behavior. The above results demonstrate that there is no perfect alignment and no 

isotropic distribution of orientations.  

 

For region II (0.2 < ζ ≤ 0.5) in depletion layer  

We give in matrix form following the Cartesian directions, the numerical results for the 

calculated    ܵ ఈ,௥೐ in tensor for ellipsoidal particles in region II (0.2 < ζ ≤ 0.5) of the depletion 

layer for (re,  and using the corresponding 

normalized PDF distributions ܲ(ߠ,߮) calculated previously in section 3.5 
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ଵܵ,ଶ ൭0.39 0 0
0 0.38 0
0 0 0.2

൱    ଵܵ଴଴,ଶ ൭0.61 0 0
0 0.26 0
0 0 0.14

൱ 

 

 

ଵܵ,ଷ.ହହ ൭0.4 0 0
0 0.35 0
0 0 0.23

൱      ଵܵ଴଴,ଷ.ହହ ൭0.76 0 0
0 0.21 0
0 0 0.1

൱ 

 

The first row of results is for aspect ratio re =  for low and high Peclet numbers,  = 1 and 

100, the results are not significantly modified despite the two orders of magnitude increase in 

the hydrodynamic flow. It is also noticeable that the preferred alignment in this case is along 

the X and Y directions in the plane of the flow, with a weaker component alignment along the 

Z direction normal to the flow. Increasing the aspect ratio re from 2 to 3.55, under equivalent 

flow conditions is sufficient to introduce new effects. The favored alignment is visibly in the 

X direction with weaker component alignments along the Y and Z directions. Increasing the 

aspect ratio of the ellipsoidal particle gives it distinct and preferential behaviors along X, Y 

and Z.  

 
FigIII.17 Nematic order parameter Sxx in X-direction as a function of Peclet number a for different ellipsoidal 

particles in 2nd region of the depletion layer  

 

The results in region II show that as we increase the aspect ratio re, the colloidal particles tend 

to approach the aligned state along the X direction at a greater rate with respect to , with the 

simultaneous decrease of order along the Y and Z directions. We interpret this as a 
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consequence of the novel equilibrium dynamics for the large aspect ratio particles. In region II 

there is effectively a much wider range of the accessible orientation states on (θ, ). 

 

The nematic order parameter Sxx along the flow direction as a function of Peclet number  for 

different ellipsoidal particles in region II of the depletion layer are presented in FigIII.17 

 

 
FigIII.18 Nematic order parameter Sxx in X-direction as a function of Peclet for the bulk and regions I and II of 

the depletion layer, for a flat surface boundary, for aspect ratio re = 3.55 

 

 

FigIII.18 presents our calculated results for the nematic order parameter Sxx for the dilute 

colloidal suspensions of the macromolecular ellipsoidal-like particles with aspect ratio re = 

3.55 , along the X-direction, as a function of an increasing Peclet number  from 0.1 to 120. 

The results illustrate the diverse behavior of the nematic order for the different regions of the 

solution, namely the bulk, and regions I and II of the depletion layer, over a significant range 

of the flow hydrodynamics. 

 

In particular the alignment goes to Sxx ~  0.8 for = 120 in the bulk solution, which 

corresponds to a nearly perfect order alignment at Sxx = 1 is attainable in this region for very 

high Peclet numbers. Given the nature of the diffusive and random interactions which the 

particles suffer at the solid surface boundaries, this perfect order is not possible for the 

colloidal suspensions in the depletion layer. At very high Peclet numbers, however, there is 

still a significant partial order in the depletion layers, greater in region II than in region I. 
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The analysis of the results obtained for ellipsoidal particles with a relatively big aspect ratio re 

= 3.55, in regions I and II of the depletion layer FigIII.10 and FigIII.12, explains why we do 

not attain the same behavior of the nematic order parameter for regions I and II. In region II 

there is a greater liberty for the ellipsoidal-like particles to move in real space than in region I, 

which is translated in terms of a lesser order alignment, for small to medium . Increasing the 

hydrodynamic flow at relatively larger  brings the colloidal suspension in region II to 

increasing alignment, whereas in region I there is a limit to such alignment imposed by the 

random diffusive collisions attained rather rapidly at ~ . 

 

3.6 Conclusions 

We have developed algorithms and carried out numerical simulations to analyze the dynamics 

of dilute colloidal suspensions of macromolecular particles in solutions flowing on open 

channel pore. The pores are modeled in a three-dimensional frame of reference with 

boundaries. The colloidal particles are subject to hydrodynamic forces, Brownian motion and 

random collisions at the solid surface boundaries of the pores. The numerical simulations are 

carried out to calculate in particular the spatial statistical PDF distributions for the spatial the 

orientations of ellipsoidal particles in colloidal suspensions in a solution under equilibrium 

dynamics for the bulk liquid and in the depletion layers next to an atomically flat solid surface 

boundary. The simulations are developed for and open pore channels, and are valid 

throughout the space of the pores and in the boundary depletion layers, for a wide variety of 

hydrodynamic flow conditions, at low, intermediate, and high flow, characterised by the 

rotational Peclet number and for variable aspect ratios characteristic of the ellipsoidal 

particles under study. 

Our simulations yield directly the nematic order parameter for colloidal suspensions in the 

over its tensorial representation, for a variety of forms of ellipsoidal particles selected to 

correspond to real polymer particles. 
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Chapter 4 

 

Simulations for the dynamics and nematic order of dilute colloidal suspensions of 

rod-like particles flowing in 3D space in the bulk and near solid boundaries 

 

Abstract:  Algorithms for the dynamics of a special class of molecular particles, namely rigid 

rod-like particles, for which the aspect ratio is much greater than unity, are developed. The 

simulations to calculate the equilibrium PDF distributions for rod-like particles in suspension 

in a fluid under hydrodynamic flow are carried out for two types of solid boundaries, the ideal 

atomically flat and the rough surface boundaries. To accomplish this we investigate in this 

chapter in particular the influence of the roughness on the choice of the hydrodynamic 

boundary conditions. The simulation results for the PDF distributions for the spatial positions 

and the orientations of rod-like particles are calculated. They are calculated over several 

orders of magnitude of the rotational Peclet number. They demonstrate the importance and 

significance of modeling in a three-dimensional spatial frame as compared to the simulation 

results based in the Boeder approach over a two-dimensional spatial frame. In particular we 

are able to produce a complete topography for the PDF distributions segmented as a hierarchy 

in the depletion layer, covering a complete range of orientations in 3D spatial frames. The 

simulations permit to calculate, for the colloidal suspension, the nematic order parameter over 

its tensorial representation, rod-like particles our results for the nematic order parameter 

which may be calculated locally inside the space of the depletion layer are innovating and 

represent a new input as regards these systems. 
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4.1 Introduction 

Interest in the dynamics and average orientations of macromolecules at dilute 

concentrations in the bulk and near solid surface boundaries of a flowing liquid in 3D, stems 

from the physical effects that may arise when these solutions flow, with their load of 

macromolecules, inside channels of mesoscopic dimensions (Storm, Chen et al. 2003). The 

statistics for the spatial positions of the centers of mass and for the orientations of such 

macromolecules, under equilibrium dynamics inside the flow, are then of particular interest. 

 

In Chapter 2 we presented the dynamic behavior of dilute colloidal suspensions of 

macromolecular rod-like particles in confining and open pores with rough surface boundaries 

modeled by the 2D-spatial frame. In contrast in Chapter 3 we presented the dynamic behavior 

of suspensions of ellipsoidal-like particles in the bulk solution and in the depletion layer, 

flowing inside pores modeled in the 3D-spatial frame, with flat surface boundaries. This 

illustrates the differences for the dynamics of such suspensions between confining channels 

and unbounded channels between two and one solid surface boundaries. 

 

This chapter deals with the modelling of a limiting case of ellipsoidal-like particles, namely 

the rod-like particles for which the aspect ratio is much greater than unity. This is treated 

separately because of its particular interest. The rod-like particles represent a wide class of 

polymer and naturally existing as the TMV tobacco virus, and may also be produced synthetically 

for a wide range of technological exploitation, such as the carbon nano-tube. 

 

Our study is focused on the determination of the PDF distributions and the corresponding 

nematic order for the positions and the orientations of the dilute colloidal suspensions of rod-

like particles in the bulk, and near surface boundaries, in the 3D-spatial frame. We have 

chosen also to calculate, by the available simulation codes, the interactions of these particles 

with two types of surfaces, namely the ideally flat and the rough surface. This permits to 

illustrate the difference between the equilibrium dynamics in the depletion layer next to both 

types of surfaces, and to compare their corresponding distributions. 

 

In section 4.2, we present a general introduction to the problem and to liquid bulk 

macromolecular dynamics under Brownian and hydrodynamic motion. Section 4.3 presents 

the developed algorithm for diffusive collisions at the surface boundaries of mesopores 

systems. Section 4.4 presents simulation results for the spatial and angular distributions under 

a variety of hydrodynamic and the particles centres of mass positions with respect to the solid 

surface boundary for rod-like particle, the conclusions are presented in section 4.5.  
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4.2 Bulk model dynamic for rod-like particles in 3D space   

In this chapter, we generalize the algorithm to numerical simulations in a 3D-spatial 

frame of Cartesian space, with a view to calculate the PDF distributions of rod-like 

macromolecular particles in dilute colloidal suspensions in the bulk solution and in the 

vicinity of solid surface pore boundaries. Furthermore, the surfaces are considered for two 

cases, namely as ideal atomically flat and as rough with a Gaussian profile.  

 

We apply Jeffery’s equations (Jeffery 1922) for the ellipsoidal particles chapter 3 to the 

motion of rigid rod-like cylindrical forms by extending the length L of the macromolecular 

particles (major axis) in comparison with its diameter d  (minor axis), so that the aspect ratio 

increases greatly re = L/d >>1. It is this version which is used in the present model to calculate 

the PDF distributions for the macromolecular rigid rod-like particles. Jeffery’s differential 

equations become for re >>1 in the form 

 

 ቂௗఏௗ௧ ቃ = ᇱߛ−  ቀ ௥೐మ௥೐మାଵቁ ߠ ²݊݅ݏ − ᇱߛ  ቀ ଵ௥೐మାଵቁ cos² ≅ ߠ  (1)   ߠ ²݊݅ݏᇱߛ− 

 ቂௗఝௗ௧ ቃ =  
 ఊᇱସ  ቀ௥೐మିଵ௥೐మାଵቁ ݊݅ݏ 2߮݊݅ݏ ߠ2 ≅  

 ఊᇱସ ݊݅ݏ  ݊݅ݏ 2߮  (2)    ߠ2

 

As previously ߛᇱis the shear rate, θ is defined as the angle of the particle with respect to flow 

direction, φ the vorticity axis. The rod-like particles lie in the plane of shear for φ =  
஠ଶ. It can 

be seen that the angular velocityߠᇱ is maximum when the rod-like particles is perpendicular 

to the flow direction (θ =  
஠ଶ) and minimum when it is aligned along the flow direction(θ =

0). 

 

In the simulations using the Jeffery’s equations, the hydrodynamic force tends to align the 

macromolecular rod-like particles in the direction of the shear flow, θ is taken as positive or 

negative in the trigonometric sense, where 0 parallel to the flow direction, is taken parallel 

to the boundary walls. To simulate the effects of hydrodynamic effects in a time interval t 

between two successive simulation events labelled s and s +1, we computeߠ߂௛௬ௗ(࢙ + 1;  ,(ݏ

and ߮߂௥௢௧(ݏ + 1; (ݏ , the hydrodynamic rotation about the centre of mass of the particles, 

using the following algorithm ∆ߠ௛௬ௗ (ݏ + 1; (ݏ  = (௦ାଵݐ)ߠ − (௦ݐ)ߠ ≅ ²݊݅ݏ′ߛ−  (3)                            ݐ∆ ߠ 

ݏ)௛௬ௗ߮߂  + 1; (ݏ  =  ߮ (௦ାଵݐ) (௦ݐ)߮− ≅ ′ߛ 
4

݊݅ݏ 2߮݊݅ݏ  ߠ2  (4)  ݐ∆  
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As above we can eliminate∆ݐ from the algorithm, therefore we get the following equations: 

 

௛௬ௗߠ߂  = − ଵଶ 
௥௢௧ଶ߮∆ ߠ²݊݅ݏ  ߙ ௛௬ௗ߮߂ (5)       =

ଵ଼ߠ2 ݊݅ݏ) ߙ sin 2߮) ∆߮௥௢௧ଶ      (6) 

 

For the purpose of the present simulations, we typically take   ∆߮௥௢௧  =  for a wide ,݀ܽݎ 0.003

range of the Peclet number . This value for ∆߮௥௢௧  may however be varied for different 

experimental conditions and different Peclet numbers. 

 

4.3 Simulation algorithms for pore channels with rough surface boundaries 

In this section, we present the model for numerical simulations. The joint PDF 

distributions, P(, ), are calculated as a function of angular ordinations  and , of the 

macromolecular rod-like particles and normalized distance of their center of mass  measured 

from a reference plane at the boundary surface.  

To develop an appropriate simulation algorithm at the solid boundaries for 3D spatial frames, 

we use the same coefficients of mechanical restitution, namely e and é, in Chapter 2, in the 

same time the same algorithm in Chapter 3 is modified and generalized to adequate the rod-

like particles in 3diminsional space. 

 

In this chapter we hence generalize our simulations and corresponding algorithms to 

investigate the influence of boundary roughness on the fluid flow.  

 

(Panzer, Liu et al. 1992) gave an analytical equation for calculating the effective boundary 

height heff for a gently rough surface modeled by small cosine-shaped surface variations, 

given by h(z) = hmax/2 + (hmax/2) x cos(qz), where q is the wave number. It is applicable for 

the analysis of hydrodynamic events in a solution flowing between parallel infinite planes 

separated by a distance 2D much greater than the roughness measure hmax. The corresponding 

heff length is found to be: 

 

hୣ୤୤ =  
௛೘ೌೣଶ ቆ1 + ݇ ଵିభర௞మାభవలర௞రାࣩ(௞ల)ଵା௞మቀଵିభమ௞మቁାࣩ(௞ల)

ቇ    (7) 
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Figure IV.1 (Kunert and Harting 2007). The effective boundary height heff is found between the deepest valley at 

hmin and the highest peak at hmax. For the utilized geometries the average roughness is equal to half the maximum 

height Ra = hmax/2 

 

Eqt (7) is valid only for ݇ =
௤௛೘ೌೣ ଶ ≪ 1, however, for realistic surfaces, k can become 

substantially larger than 1 causing this theoretical approach to fail. 

 

(Kunert and Harting 2007) showed by a combination of experimental measurements and 

numerical simulations as regards the above approach, that the position of the effective 

boundary height is dependent on the shape of the roughness elements, i.e. for strong surface 

distortions it is between 1.69 and 1.90 times the average height of the roughness Ra = hmax/2. 

These authors also simulate the flow over surfaces generated from Atomic Force Micrsocopy 

(AFM) data of gold-coated glass used in micro-flow experiments by (Vinogradova and 

Yakubov 2006), and found that the height distribution of such a surface is Gaussian and that a 

randomly arranged surface with a similar distribution gives the same result for the position of 

the effective boundary. Later (Harting and Kunert 2008) investigated Gaussian distributed 

heights with different widths ߪ, and found that the effective height heff can be fitted by: 

 ℎ௘௙௙ = (1 + /h୫ୟ୶(ߪ 3.1 2 

 

At this point, we generalize our algorithm and corresponding simulations, and we take ℎ௘௙௙ as 

defining a new reference boundary for the walls; and we suppose that the liquid is stationary 

(not moving) for ݕ < ℎ௘௙௙ . 

 

We can hence define a new variable ynew to specify the position of the centre of mass of the 

macromolecular rod-like particles from this reference surface 

 

௡௘௪ݕ  = ݕ − ℎ௘௙௙         (8) 

 

and  

(௡௘௪ݕ)ݒ  =  ᇱΛ        (9)ߛ+௡௘௪ݕᇱߛ
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Then we calculate a renormalized shear rate as: 

 

( ) ( 0) ' ' '

0
new new new

new

new new

v y v y y
R

y y

          

 

As may be observed, this leads to an unchanged shear ratio  

 

                                                    
'new

new

rot rot

R

D D

     

 

and the Peclet number  remains valid for this rough boundary. 

 

However, the effective width of the pore is modified from 2D to 2 2
eff

D h because of the new 

boundary conditions over the rough surface boundaries. This is duly taken account of in the 

numerical simulations, by admitting that the extremity may randomly touch different step 

levels in the rough surface boundary beyond . 

 

 
Fig IV.2 Schematic representaion of the rigid-like macromolecular particles in the depeltion layer next to the 

solid surface boundary of one of the two plates which confine the hydrodynamic flow of the fluid 

 

4.4 Simulation results for pore channels with rough / flat surface boundaries 

The simulation results are presented in bulk and for the depletion layer over the interval 0 

  = z/L  0.5 next to the solid surface boundary. The simulations in the depletion layer are 

made for atomically flat boundaries and Gaussian rough surface.  = 0 is the reference plane 

corresponding to the lowest material levels that a particle extremity can touch in diffusive 

collisions.  

 

4.4.1 PDF distribution results for rod-like particles in the bulk solution 

FigIV.3a, b and c, present the normalized PDF orientation distributions, P (, ), as a 3D 

contour fill surface, over the plane (, ), for rod-like macromolecular particle in the bulk of 

a flowing solution in the 3D-spatial frames, for different Peclet numbers , from a relatively 

low value, as in FigIV.3a, to a medium value in FigIV.3b, and then to a high value FigIV.3c. 
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The angles  and  represent the orientational angle in 3D space for the rod-like particles. 

Note that we use a color scheme in these figures: red corresponds to the highest probability 

for the PDF distributions, and black to the lowest. Note also that the absolute numerical 

values per color interval may vary from one set of PDF figures to another. 

The colloidal rod-like particles in dilute suspensions orient themselves in the bulk of the 

flowing solution under the influence of two primary forces, the Brownian and the 

hydrodynamic forces. The hydrodynamic force tends to act on the particle to turn it in the 

shear flow ( = 0˚). In general, the simulation results, valid for the open interval ߮ =] 0°, 180° [, 

Indicate that for low flow conditions, with a typically low Peclet number α = 1, the Brownian 

effect is dominant for the rod-like particles in comparison with the hydrodynamic motion. For 

relatively medium and high flow conditions, which correspond to typically medium and high 

Peclet numbers, α = 10 and 100, the influence of Brownian motion is less important. For the 

higher Peclet flow the particle orients increasingly in the direction of the flow under the 

dynamic equilibrium conditions. Moreover, the PDF probability around ߠ =  0 and  ߮ = /ߨ  2 

increases with increasing α. 

 

FigIV.3a Simulation results for normalized angular PDF, P (, ), in the bulk for Peclet number = 1 
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FigIV.3b Simulation results for normalized angular PDF, P (, ), in the bulk for Peclet number = 10 

 

FigIV.3c Simulation results for normalized angular PDF, P (, ), in the bulk for Peclet number = 100 

 

The PDF distribution for  = 1, FigIV.3a, shows a broad and symmetrical distribution about 

the vorticity axes߮ = ߨ  2 ൗ , with appreciable suspension concentration in the orientation solid 

angle frame { ߠ ≈ [10°, 50°], ߮ ≈ [60°, 120°] }. The existence of this broad distribution in 

the (, ) plane comes from the Brownian motion. Increasing the hydrodynamic flow to 

Peclet numbers  = 10, and 100, increases the tendency of the colloidal particles to regroup in 

significant concentrations, under equilibrium dynamics, in the narrow solid angle frames { ߠ ≈ [10°, 30°] , ߮ ≈ [80°, 100°] } for  = 10, as in FigIV.3b, and in the yet smaller frame { ߠ ≈ [5°, 10°] , ߮ ≈ [85°, 95°] } for  = 100, as in FigIV.3c. 

 

4.4.2 PDF distribution results for rod-like particles in the depletion layer 
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The simulation results are presented for the depletion layer next to the solid surface boundary, 

within the interval 0 ≤ ζ = z/L ≤ 0.5. The simulations are performed for two types of solid 
surface boundaries, namely the atomically flat and the rough on the scale of the particle 

length, for comparison. Note that the reference surface boundary plane is different for theses 

two types of surfaces. For the purpose of the simulations, we consider in particular a Gaussian 

distribution of step heights to model the rough surface. 

 

Our simulation results, based on the  Jeffry algorithm applied for the 3D-spatial frame, 

present novel and significant effects observable in the 3D-spatial frame (Atwi, Khater et al. 

2010), beyond those from previous calculations in the 2D-spatial frame (Hijazi and Khater 

2001; Hijazi and Khater 2008). 

 

PDF Simulation results in region I of the depletion layer, (0 < ζ ≤ 0.2), under variable 

hydrodynamic flow conditions 

 

FigIV.4 shows the calculated result for the normalized PDF distributions at Peclet number α = 
1, in the 3D-spatial frame, near an atomically flat surface boundary, as a function of the 

accessible orientation angles θ and in region I of the depletion layer, (0 <  ≤ 0.2) where 

= 0 defines the flat solid surface boundary In comparison the PDF distributions for a 

Gaussian rough surface are presented in FigIV.5, where = 0 corresponds to ℎ௘௙௙ in the 

rough boundary. 

 
FigIV.4 Simulation results for the normalized PDF distributions, P 0<  < 0.2 (, ), at Peclet number  = 1, in the 

depletion layer near an atomically flat solid surface boundary, presented as 3D contour fill surface 
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FigIV.5 Simulation results for the normalized PDF distributions, P 0<  < 0.2 (, ), at Peclet number  = 1, in the 
depletion layer near a Gaussian rough solid surface boundary.  

 

The calculated normalized PDF distributions of the colloidal suspension in region I, next to 

the flat surface boundary, present significant peak probabilities with an absolute value 

~ 2.2×10-4 (red) for the orientation states in the solid angle {ߠ ≈ [−2°, 2°] , ߮ ≈ [87°, 93°] 

}, as in FigIV.4,  while for the rough surface boundary the PDF distribution narrows down to 

the solid angle { ߠ ≈ [−4°, 4°]  , ߮ ≈ [80°, 100°] }with a comparable absolute value 

~ 2.2×10-4 as in FigIV.5.  

 

FigIV.6 Simulation results for the normalized PDF distributions, P 0<  < 0.2 (, ), at Peclet number  = 10, in the 
depletion layer near an atomically flat solid surface boundary.  
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FigIV.7 Simulation results for the normalized PDF distributions, P 0<  < 0.2 (, ), at Peclet number  = 10, in the 
depletion layer near a Gaussian rough solid surface boundary.  

 

The effects observed in FigIV.4 and FigIV.5 for  = 1, continue to be observed, for both the 

flat and the rough surface boundaries, for  = 10 as in FigIV.6 and FigIV.7, and for  = 100 

as in FigIV.8 and FigIV.9. However, they clearly show that increasing the Peclet number 

heightens and increases the PDF distributions of the colloidal particle suspensions in the plane 

of the shear flow  = /2. 

 

FigIV.8 Simulation results for the normalized PDF distributions, P 0<  < 0.2 (, ), at Peclet number  = 100, in 
the depletion layer near an atomically flat solid surface boundary.  
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 FigIV.9 Simulation results for the normalized PDF distributions, P 0<  < 0.2 (, ), at Peclet number  = 10, in the 
depletion layer near a Gaussian rough solid surface boundary.  

 

The roughness of the surface boundary seems to have a focusing effect with a heightened and 

précised probability distribution, compared to the PDF from the flat boundary, for an equal 

number of particles or of simulation events. Both distributions are broad based indicating that 

the rod-like particles rotate in a set of closed orbits around the vorticity axis . Such orbits are 

determined by two random forces, the Brownian diffusion movement and the diffusive 

collisions of the particle extremities at the solid surface boundaries, and from the 

hydrodynamic shear force, under their equilibrium dynamics.  

 

PDF Simulation results in region II of the depletion layer, (0.2 < ζ ≤ 0.5), under variable 

hydrodynamic flow conditions 

 

This section presents the results for the normalized PDF orientation distributions P (θ, ) for 

macromolecular rod-like particles in region II of the depletion layer (0.2 < ζ ≤ 0.5). The 

equilibrium dynamics are treated for two types of surface boundaries, namely the atomically 

flat surface and the Gaussian rough, for the medium and high Peclet numbers  in the 3D-

spatial frame. We shall see that the normalized PDF distributions in region II are quite 

different from those in region I. 

 

FigIV.10 and FigIV.11, for respectively flat and rough surface boundaries, present our 

calculated results for the normalized PDF distributions P (θ, ) for medium hydrodynamic 

flow condition  = 10. Equally, FigIV.12 and FigIV.13, present similar results for the high 

flow condition  = 100. The simulation results indicate in general that the part of the phase 

space (θ,) available to the particles in region II increases compared to that in region I, due to 
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the wider range of angles accessible to the dynamics of the particles when they move out from 

region I towards the bulk solution.  

 

In region II, the calculated normalized PDF distributions for the typically medium flow 

conditions  = 10, in the neighbourhood of the atomically flat surface boundary, present 

significant peak probabilities with a value ~ 1×10-4 (red) for the orientation states in the solid 

angle {ߠ ≈ [10°, 20°] , ߮ ≈ [80°, 100°] } as in FigIV.10, while in the neighbourhood of the 

Gaussian rough solid surface the PDF distribution narrows down to the solid angle {ߠ ≈ [10°,

20°] , ߮ ≈ [85°, 95°] } with a greater value ~ 1.8×10-4 as FigIV.11.  

 

The results for high flow conditions  = 100, show comparable effects as above, regrouping 

the colloidal suspension at significant peak probabilities with a value ~ 6×10-4 in the solid 

angle { ߠ ≈ [7°, 14°] , ߮ ≈ [85°, 95°] in the neighbourhood of the flat surface boundary as 

in FigIV.12, and  with a value ~ 7×10-4  in the solid angle {ߠ ≈ [5°, 10°] , ߮ ≈ [87°, 93°] } 

in the neighbourhood of the Gaussian rough solid, as in FigIV.13. 

 
FigIV.10 Simulation results for the normalized PDF distributions, P 0.2<  < 0.5 (, ), at Peclet number  = 10, in 

the depletion layer near an atomically flat solid surface boundary.  

 

The simulation results for region II indicate that the part of the phase space (θ,) available to 

the rod-like particles in region II is greater than that available for region I. Effectively, there is 

a much wider range of solid angles in region II accessible for the dynamics of the particles 

including those available when touching the solid boundary. The major differences for the 

PDF distributions in regions I and II arise hence primarily due to the reorganization of the 

contributions of the three principal forces acting on the particles, under equilibrium dynamics, 

namely Brownian, hydrodynamic and by diffusive collisions at the surface boundary. 
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Together these forces determine for each region its characteristic equilibrium dynamics, and 

the PDF distributions constitute consequently the signature of such equilibrium dynamics. It 

is again observed that increasing the flow will accentuate the PDF distributions into smaller 

solid angle frames in the (ߠ,߮)  plane. 

 

 
FigIV.11 Simulation results for the normalized PDF distributions, P 0.2<  < 0.5 (, ), at Peclet number  = 10, in 

the depletion layer near a Gaussian rough solid surface boundary.  

 

 
FigIV.12 Simulation results for the normalized PDF distributions, P 0.2<  < 0.5 (, ), at Peclet number  = 100, in 

the depletion layer near an atomically flat solid surface boundary.  
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FigIV.13 Simulation results for the normalized PDF distributions, P 0.2<  < 0.5 (, ), at Peclet number  = 100, in 

the depletion layer near a Gaussian rough solid surface boundary.  

 

 

4.5 Nematic order parameter Sxx for rod-like particles 

The order parameter Sxx for rod-like particles in the bulk solution and in the two regions I and 

II of the depletion layer, next to two types of surface boundaries, the atomically flat and the 

Gaussian rough, are calculated thanks to our present simulation results and using Eq.23 of 

Chapter 3. These results are presented in FigIV.14, FigIV.15 and FigIV.16. 
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FigIV.14 Nematic order parameter Sxx in X-direction as a function of Peclet number for the bulk, and regions I 

and II of the depletion layer, for a flat surface boundary. 

 
 

FigIV.14 presents our calculated results for the nematic order parameter Sxx for the dilute 

colloidal suspensions of the macromolecular rod-like particles, along the X-direction, as a 

function of an increasing Peclet number  from 0.1 to 200. The results illustrate the diverse 

behavior of the nematic order for the different regions of the solution, namely the bulk, and 

regions I and II of the depletion layer, over a significant range of the flow hydrodynamics. 

 

In particular the alignment goes to Sxx ~  0.9 for = 200 in the bulk solution, which suggests 

that a perfect order alignment at Sxx = 1 is attainable in this region for very high Peclet 

numbers. Given the nature of the diffusive and random interactions which the particles suffer 

at the solid surface boundaries, whether flat or rough, this perfect order is not attainable for 

the colloidal suspensions in the depletion layer. At very high Peclet numbers, however, there 

is still a significant partial order in the depletion layers, greater in region II than in region I. 

 

Although not presented here, the normalized PDF orientation distributions P (θ, ) for rod-

like particles have been calculated for the low Peclet number  = 1, in regions I and II of the 

depletion layer for the two types of surface boundaries, atomically flat surface and Gaussian 

rough. Those for a flat surface boundary are comparable to those in FigIII.11 and FigIII.14 for 

ellipsoidal particles with a relatively big aspect ratio re = 3.55, in regions I and II of the 

depletion layer. An analysis of these results explains why we do not attain the same behavior 

of the nematic order parameter for regions I and II. In region II there is a greater liberty for 

the rod-like particles to move in real space than in region I, which is translated in terms of a 

lesser order alignment, for small to medium . Increasing the hydrodynamic flow at relatively 

larger  brings the colloidal suspension in region II to increasing alignment, whereas in 

region I there is a limit to such alignment imposed by the random diffusive collisions attained 

rather rapidly at ~ . 

 

It is also interesting to investigate the influence of the nature of the surface boundary on the 

behavior of the nematic order parameter for both regions I and II in the depletion layer. The 

corresponding results for Sxx along the direction X of the hydrodynamic flow are presented in 

FigIV.15 and FigIV.16.  

 

The influence of the nature of the surface boundary on the nematic order parameter Sxx; is 

small on the regions I, while for the region II is the difference is approximately null, in 

particular for small .  
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FigIV.15 Nematic order parameter Sxx along the direction of the flow X as a function of Peclet number, in region 

I of the depletion layer, with flat and rough surface boundaries. 

 
FigIV.16 Nematic order parameter Sxx along the direction of the flow X as a function of Peclet number, in region 

II of the depletion layer, with flat and rough surface boundaries. 

 

 

It is observed in FigIV.15 that Sxx in region I is monotonically greater for a flat surface 

boundary than for a rough one. The analysis for the normalized PDF orientation distributions 

P (θ, ), for FigIV.4, FigIV.5, FigIV.6, FigIV.7, FigIV.8 and FigIV.9, explain why they attain 

such a behavior, for example, at high Peclet number  = 100, the peak probabilities with a 
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value ~  7×10-4 in the neighbourhood of the flat surface boundary is greater than the peak 

probabilities with a value ~ 5×10-4 in the neighbourhood of the Gaussian rough solid. 

 

In contrary to the result obtains in the region I; the nematic order in region II FigIV.16, is 

monotonically greater for a rough surface boundary than for a flat one. 

 

4.6 Conclusions 

We have developed algorithms and carried out numerical simulations to analyze the dynamics 

of dilute colloidal suspensions of a special class of molecular particles, namely rigid rod-like 

particles, for which the aspect ratio is much greater than unity in solutions flowing on open 

channel pore. The pores are modeled in a three-dimensional frame of reference with 

boundaries. The colloidal particles are subject to hydrodynamic forces, Brownian motion and 

random collisions at the solid surface boundaries of the pores. The numerical simulations are 

carried out to calculate in particular the spatial statistical PDF distributions for the spatial the 

orientations of rod-likel particles in colloidal suspensions in a solution under equilibrium 

dynamics for the bulk liquid and in the depletion layers next two types of solid boundaries, 

the ideal atomically flat and the rough surface boundaries, to accomplish this we investigated 

in particular the influence of the roughness on the choice of the hydrodynamic boundary 

conditions. The simulations are developed for and open pore channels, and are valid 

throughout the space of the pores and in the boundary depletion layers, for a wide variety of 

hydrodynamic flow conditions, at low, intermediate, and high flow, characterised by the 

rotational Peclet number. 

Our simulations yield directly the nematic order parameter for colloidal suspensions in the 

over its tensorial representation, for two types of surface boundaries namely atomically flat 

sand rough surface boundaries. 
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Chapter 5 

 

Modelling adhesion at pore boundaries under diffusive collisions  

 

Abstract: The mechanisms leading to the adhesion of particles of nano sizes in the depletion 

layer under what would be non-equilibrium conditions, due to the conflicting influence of the 

mechanical diffusive collisions and the attractive Hamaker forces at the boundaries, are of 

major interest. We have hence investigated in this chapter a theoretical model to calculate the 

restitution coefficient from basic physical principles. The objective is to quantify the energy 

balance during the process of a diffusive collision of a nano particle under the influence of the 

repulsive forces due to the Pauli principle via mechanical bounce on one hand, and the 

attractive Hamaker forces acting on the nano particle on the other. This is done by developing 

a model, based on the JKR and Hertz theories, to account for the energy losses during 

collisions, and for the energy gains due to the Hamaker interactions. Adhesion becomes an 

outcome if the energy balance permits this. Our theoretical model is developed by proposing a 

special analytic approach based on the Hamaker potential. We derive from the theoretical 

analysis a characteristic nonlinear equation for the restitution coefficient, and analyze its 

properties which determine under given physical conditions the outcome for adhesion or not.  
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5.1 Introduction 

Adhesion science describes how material particles of diverse sizes may adhere on solid 

boundaries. Adhesion phenomena are important in areas such as chemistry, engineering, and 

biology. The adhesion phenomenon has been extensively used, even in the prehistoric age, 

when bitumen and natural resins were used as adhesives for manufacturing weapons and 

tools, and to repair broken pottery (Eckersley and Rudin 1990), and to make the oldest known 

paintings which are still adhering on their rock substrate at the Chauvet-Pont-d'Arc cave, in 

southern France, dated at about 32,000 years ago (Dobler and Holl 1996). 

 

Though daily experience does not directly teach us about adhesion, (the structural design for 

the oldest cathedrals was based on the assumption that stones do not stick together (Gordon 

1978) but are simply held in place by gravity), yet it is obvious that the atoms and molecules, 

stick together extremely well. At least in the microscopic world almost everything sticks well 

(Kendall 2001). Nevertheless something hinders the consciousness of universal adhesion in 

our macroscopic world.  A first hint is that clean surfaces in vacuum adhere much better than 

the same surfaces under typical environmental conditions which render such surfaces dirty or 

oxygen covered. We now know that almost any surface contamination reduces adhesion.  

Secondly macroscopic bodies apparently in contact to the human eye, are in fact not truly 

touching over the whole nominal contact area due to their surface roughness (Greenwood 

1966). Thus only a small fraction of the contact area is in intimate contact and therefore close 

enough for molecular interactions (Fuller and Tabor 1975). Further, the bodies will be 

elastically deformed near those contacts, storing elastic energy (Persson 2002). In summary 

the adhesion paradox is tributary to two important aspects of molecular contact formation, 

namely contamination and roughness. 

 

Length scales encountered in adhesion effects cover a wide range from the macroscopic 

(powder particles, cell adhesion, paint coating of metals...) to the nano scale (molecular...). 

Adhesion forces between particles and surfaces, i.e. the forces necessary to detach a particle 

from a surface, is of interest in several industrial applications such as particle filtration 

(Maynard and Pui 2007), and petroleum production (Aspenes, Dieker et al. 2010). For 

biological systems such as cells or viruses (Kendall, Kendall et al. 2011), adhesion to surfaces 

is important for processes like bio-film formation or infection. 

 

In this chapter we are interested in the adhesion of nano-particles and macromolecules. 

Recent developments on particle adhesion models are well known (Tsai, Pui et al. 1990), 

(Maugis 1992; Rimai, DeMejo et al. 1992).  Additional related articles on particle adhesion 
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may be found in the books edited by (Mittal 2002, 2003, and 2006) , and (King and Gee 

2010). 

 

The possible adhesion (stickiness) of metallic and macromolecular nano-particles during a 

collision with a solid surface depends on the loss of energy of the incident particle owing to 

the collision. Adhesion should take place if this loss is so great that the particle has not  

enough kinetic energy left to free itself away from the adhesive forces which act to keep it 

adhered to the solid surface boundary. The adhesion or non-adhesion may be summarized by 

a basic relation over the Newtonian restitution coefficient,  ݁   determined by  

௙ܧ.ܭ  = ݁ଶܧ.ܭ௜ 
 ௙ represent the kinetic energy of the particle before and after collision with the solidܧ.ܭ ௜ andܧ.ܭ 

surface boundary, so that  

 

Adhesion occurs if    ܧ.ܭ௙  <   ௉ܧ  

No Adhesion if   ܧ.ܭ௙ >  . ௉ܧ  

 ௉ is the energy cost to liberate the particle during its collision rebound from the attractive Hamakerܧ 

potential ௉ܸ binding the particle to solid surface boundary. ௉ܸ, which has a strong local character, 

depends on diverse factors, such as the material nature of the particle and the topography of the 

surface boundary. This loss of energy depends on a number of factors, in particular the 

material nature of the particle and the solid surface, the form of the particle, the rough surface 

topography on the scale of the incident particle, and the Hamaker forces (Israelachvili 2011) 

that intervene between the particles and the solid surfaces. The energy loss mechanisms 

include the transfer of the particle incident kinetic energy into other modes such as in rotation, 

elastic deformation, and heat dissipation to the impacted surface (Sato, Chen et al. 2007). 

 

It is the objective and motivation of this chapter to derive a general relation for the Newtonian 

restitution coefficient, ݁ , to be able to quantify the possibility of mechanical adhesion of 

macromolecular and metallic nano particles on the surface boundaries of pores through which 

the colloidal suspensions are flowing. This would take place under the non-equilibrium 

conditions of the flow, and supplements the known thermodynamic adhesion processes. 

 

Our starting point is the scientific literature which analyzes the contact dynamics of 

microscopic particles with solid surfaces. In this respect several theories have been advanced 

to describe the elastic deformation of particles, which have given rise to a family of slightly 

different expressions for the relations between the applied load force and the contact area or 
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surface deformation of the particle. These theories were initially developed by Hertz, 

neglecting the  adhesion (Hertz 1882), and subsequently by other groups, in particular 

(Johnson, Kendall et al. 1971), and (B.V. Derjaguin, Muller et al. 1975). These subsequent 

works, widely cited as the JKR and DMT theories, will be presented in detail in section 5.2 of 

the present chapter. 

 

5.2 Theoretical models for surface contact forces 

A particle suffers surface forces when sufficiently close to a solid surface. These forces 

may be electrostatic or mechanical in nature. Electrostatic forces depend on the distribution of 

electrical charges on the particle and at the surface. Among the many contributions to the 

interaction between surfaces and particles, however, one type predominates, namely the van 

der Waals interaction. 

 

A full understanding of the van der Waals forces came with the development of quantum 

theory, which accounts for the charge fluctuations present in atoms and molecules. Extensive 

reviews on particle adhesion at solid surface boundaries due to van der Waals forces have 

been given (Krupp 1967; Visser 1976; Tabor 1977; Bowling 1985). The van der Waals force is 

the result of three main forces (Lennart 1997), namely the Keesom force (Keesom 1921), the Debye, 

and the London or dispersion force (London 1937). Since all three vary as ିݎ଺ where r is the distance 

between the two bodies, the van der Waals interaction energy can be written (Israelachvili 1991) as ௏ܷௗௐ(ݎ) = − ஼మ௥ల        (1) 

This is an attractive potential, where ܥଶ is a constant that depends on the properties of the 

interacting bodies and of those of the intermediate medium (Butt, Graf et al. 2003). At very 

small distances separating the bodies, repulsive forces based in the quantum Pauli Exclusion 

Principle, come to dominate. The corresponding potential is usually modeled by the Born 

Mayer expression ܷ஻(ݎ) =
஼భ௥భమ         (2) ܥଵ is a constant. Adding the attractive and repulsive potentials, yields the so called Lennard 

Jones potential ܷ(ݎ) =
஼భ௥భమ −  

஼మ௥ల = ߝ4 ൤ቀ௭బ௥ ቁଵଶ − ൬ቀ௭బ௥ ቁ଺൰൨     (3) 

z0 is the finite distance at which the inter-particle potential is zero, and ε is the depth of the 

potential well in the equilibrium state, and represents the distance of closest approach when 

two molecules collide. This equation may also be written in a reduced form (Hirschfelder, 

Curtiss et al. 1964): ܷ(ݖ) =
஼భ௭భమ −  

஼మ௭ల = ߝ4 ൤ቀ௭బ௥ ቁଵଶ − ൬ቀ௭బ௥ ቁ଺൰൨ = ଵଶିݖଶߚ  −  ଺.  (4)ିݖଵߚ
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The terms represent respectively the repulsive and attractive contributions. ݖ ≡  in Eq.4  is ݎ

the distance between the centers of two molecules. The maximum energy of attraction for 

such two molecules occurs at the separationݖ =  2
భల ݖ଴. The empirical values of ݖ଴ for 

different materials range from 0.7 to 2 Å. Note that ߚଵ = 4ݖߝ଴଺ is called the London- van der 

Waals constant, ߚଶ = 4ݖߝ଴ଵଶ represents the repulsive energy, and ߚଶ =   .଴଺ݖଵߚ 

 

The molecular potential in Eq.4 is usually used by researchers in the literature to derive 

expressions for forces acting between two microscopic bodies at small separations between 

their mass centers. For example, Eq.4 yields the attractive force between two spherical bodies, 

by integrating the molecular contributions over the spherical forms. (Bradley 1932) and 

(Hamaker 1937) do this additively. They integrated Eq.4 over all pairs of molecules for two 

spheres with radii R1 and R2, to calculate the resultant van der Waals attractive force in a 

simple mathematical form as follows  ܨ௔ =  +
஺భୖ∗଺௭మ          (5) 

The + sign represents by convention an attractive force.  ܣଵ =  ଵ , related toߚ ଶ݊ଵ݊ଶߨ 

London’s constant, is called the Hamaker constant, where ݊ଵ and ݊ ଶ  are the number densities 

per unit volume of molecules in spheres 1 and 2 respectively. R∗ = RଵRଶ/ [Rଵ + Rଶ]  is a 

parametric radius for the combined system, and z is the minimum separation between their 

spherical surfaces along a line that joins their centers. If one takes R2 to infinity, Eq.5 

becomes the expression for the attractive force between a sphere of radius Rଵ and a plane. 

 

To understand the contact forces between bodies, one has to take into account the elastic 

deformation due to the contact. This deformation may be due to external forces, but even in 

absence of external force, the surface forces will lead to a contact deformation. In the 

following we will shortly review the most common elastic contact models. 

 

5.2.1 Hertz model 

(Hertz 1882) described his contact theory between a sphere and a planar surface. The sphere 

with radius R is assumed smooth and elastic, while the planar surface is assumed ideally flat 

and rigid. Since the Hertz theory does not take into account surface forces, the radius of the 

contact area between the particle and the surface is zero in the absence of an external load, 

and no deformation is observed FigV.1a. This is because Hertz neglects attractive molecular 

forces between the particle and the surface. When a mechanical force F is applied as a load on 

the particle, this latter is squeezed against the rigid plane, and deforms consequently, as in 

FigV.2a. The deformation presents the so called contact radius, a, and the penetration depth δ. 

Hertz determined the contact radius and the penetration depth as follows: 
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ܽଷ =  
ୖ∗ி௄ ߜ (6)          =  
௔మୖ∗ =  

ி௄௔        (7) 

In these equations, K is the so-called composite Young's modulus and is given by: ଵ௄ =  
ଷସ ቀଵିఔభమ௒భ +

ଵିఔమమ௒మ ቁ       (8) ߥ௜ and ܻ ௜ are respectively Poisson's ratio and Young's modulus for the materials i ( i = 1 or 2), 

of which the particle and the planar surface are made. 

 
FigV.1An elastic deformation of spherical particle on surface sample following Hertz theory: (a) without force, 

(b) with force F 

 

Combining Eq.6 and Eq.7, the penetration depth δ may be written as ߜ =  
ܽଶ
R∗ =  ൤ /R∗ଵܭܨ ଶ൨ଶ/ ଷ

 

In 1971 the Hertz model was extended by Johnson, Kendall and Roberts (JKR) to take the 

attractive molecular forces between contact bodies into account. 

 

5.2.2 Johnson-Kendall-Roberts (JKR) model 

The JKR theory (Johnson, Kendall et al. 1971) were the first to determine a relationship for 

the contact deformation of an elastic sphere at a rigid surface, taking the attractive molecular 

forces between the contact surfaces into account. They considered the change in energy that 

arises from the formation of a contact surface area between the bodies. Molecular interactions 

outside the contact are neglected, FigV.2. 

 

The JKR contact radius a and the JKR indentation depth δ are given as a function of the 

externally applied load F for an elastic sphere in contact with a surface (elastic half space) as ܽ =  ቀோ∗௄  ቂܨ + ߛܴߨ 3  +  ඥ6ܨߛܴߨ + = ߜ ଶቃቁభయ   (9)(ߛܴߨ3)   
௔మோ − ටଶగ௔ఊ௄         (10) 
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 is the effective surface energy of adhesion for both surfaces (Dupré energy of adhesion) ߛ

(Harkins 1919).  In the absence of surface forces (ߛ = 0)  equations Eq.9 and Eq.10 reduce to 

the classical equations Eq.6 and Eq.7 from the Hertz model.  

 

 
FigV.2: JKR model for a rigid sphere (S) in contact with surface sample.  

 

The adhesion force considered in the JKR theory can be understood as an additional Hertzian 

force. Under zero load conditions when a particle adheres with zero kinetic energy, a finite 

contact radius exists and it can be calculated as: ܽ଴ଷ =
଺గோమఊ௄          (11) 

According to the JKR theory, a finite force called the pull-off force is necessary to separate 

the two surfaces, and is calculated as: ܨ௣.௢ =
ଷଶ(12)         ߛܴߨ 

At the moment of separation a finite contact area persists, and its radius ܽ௣.௢ may be 

calculated as: ܽ௣.௢ =  
௔బସభ/ య         (13) 

 

5.2.3 Derjaguin-Muller-Toporov (DMT) Model 

The DMT model (Derjaguin, Muller et al. 1975) extends the molecular interactions to the 

domain of the whole spherical particle, in comparison with the JKR model which limits these 

interactions to the contact surface. This leads to a larger effective contact area, and modified 

results for the contact radius and the indentation depth. For a sphere in contact mechanics 

with a falat surface, we have from DMT: ܽ =  ቂቀோ∗௄ ቁ ܨ) +  ቃభయ        (14)(∗ܴߛߨ2

ߜ  =
௔మோ∗          (15) 

Also, the contact area and the pull-off force are given by the modified expressions:  ܣோ = ଶܽߨ = ቂቀగோ∗௄ ቁ ܨ) + ௣.௢஽ெ்ܨ ቃమయ       (16)(∗ܴߛߨ2 =  (17)         ߛ∗ܴߨ2
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To compare the models described above (Hertz, JKR, DMT) it is useful to introduce 

normalized parameters. Hence the normalized variables of contact radius ܽത, force ܨത and 

penetration depth ߜ ഥbecome: തܽ = ܽ ቀ ௄గఊோ∗మቁଵ/ ଷ
തܨ , =

ிగఊோ∗ , ߜ ഥ = ߜ ቀ ௄మగమ ோ∗ ఊమቁ ଵ/ ଷ 

In Table 1 the assumptions of the three theories with the corresponding normalized equations 

are presented for quick and easy comparison. 
 

Model Assumptions 
Normalized 

equations 

Hertz 

 

Linear elasticity 

No attractive surface forces 

തܨ = തܽଷ ̅ߜ = തܽଶ = /തଶܨ  ଷ 

JKR 

 

Short-range attractive surface forces 

acting within the contact area 

തܨ = തܽଷ − തܽ√6 തܽ ̅ߜ = തܽଶ − 2
3
√6 തܽ 

DMT 

 

Long-range attractive surface forces 

acting outside the contact area  

തܨ = തܽଷ − ̅ߜ 2 = തܽଶ 

 

Table 1: Model assumptions of the Hertz, JKR and DMT theories at a glance with the corresponding normalized 

equations. 

 

5.3 Elastic forces and energies for a flattened spherical particle at a surface 

(Tsai, Pui et al. 1990) investigated the elastic indentation of the particle in contact 

mechanics with a flat surface, and derived in their (TPL) mode the modified attractive and 

repulsive Hamaker potentials for a flattened sphere-surface system. They used this as a 

starting point for an analysis based on the energy conservation principle and force balance, to 

obtain analytical expressions that describe the relationship between the deformation elastic 

flattening and Hamaker adhesion. 

 

We detail and explain the derivation of the attractive force and its corresponding potential 

energy, Fa, Ea, and of the repulsive force and its corresponding potential energy, Fr , Er, as 

obtained (Tsai, Pui et al. 1990), in Annex AIII. They are as follows: ܨ௔ = +
஺భோ଺௭మ ቄ1 +

ఋ௭ቅ        (18a) ܨ௥ = − ஺మோଵ଼଴௭ఴ ቄ1 +
ସఋ௭ ቅ       (18b) ܧ௔ = − ஺భோ଺௭ ቄ1 +
ఋଶ௭ቅ        (19a) ܧ௥ = +

஺మோଵଶ଺଴௭ళ ቄ1 +
଻ఋଶ௭ቅ       (19b) 
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ଵܣ  = ଶܣ ଵandߚ ଶ݊ଵ݊ଶߨ  =  ଶ, are the Hamaker constants for the attraction andߚ ଶ݊ଵ݊ଶߨ 

repulsion terms. Since ߚଶ = ଶܣ ଴଺, one can deduce thatݖଵߚ  =  ଴଺. In this model (Tsai, Puiݖଵܣ 

et al. 1990) introduced a force constant Ka where ܣଶ =  ଴଺, to obtain a force balance; itݖଵܣ௔ܭ 

is shown that without Ka the force balance cannot be otherwise satisfied.  

 

In what follows, we analyze the Tsai et al model, taking a slightly different value for the 

elastic deformation energy into account, than the one used by these authors. 

 

Consider the energy conservation principle which may be written in general in closed system 

as: ܳ + ܹ =  (20)        ܧ∆

Q is the heat input to the system, W is the work done on the system, and ∆ܧ  is the total 

energy change of the system. If no heat transfer is required, the work done on the system must 

be equal to an increase in the total energy of the system. Total energies include elastic energy 

Ee and potential energy Ep, which cover the Tsai et al terms Ea and Er. Other contributions to 

total energies such as gravitational and electrostatic effects are not considered here. It follows 

that Eq.20 may be rewritten as:  ܹ = ௘ܧ∆ + ௔ܧ∆ +  ௥       (21a)ܧ∆

Considering force balance for an isolated particle in the particle-surface system the Newton's 

third law can be written as ∑ܨ = ௘௫௧ܨ + ௔ܨ + ௥ܨ = 0        (21b) ܨ௘௫௧, (assumed to be normal to the surface), represent the external forces applied to the 

particle, and ܨ௔and ܨ௥ are the Tsai et al terms. In the absence of external forces, the sum of 

attractive and repulsive forces must be zero. 

 

The elastic energy Ee is a necessary component to ensure the application of the energy 

conservation principle in this model. In the Hertzian contact theory, the contact force can be 

calculated (Popov 2010) as  
ଶଷKRଵ/ ଶδଷ/ ଶ. We calculate hence the elastic energy Ee as ܧ௘ =  

ସଵହܴܭଵ/ ଶߜହ/ ଶ        (22)  

Tsai et al give a slightly different numerical coefficient, namely 
ଶହܴܭଵ/ ଶߜହ/ ଶ. 

 

Consider the case when a particle is at static equilibrium in contact with the surface; in this 

case one assumes the total energy Et to be zero. By substituting Eqs.18a, 18b, 19a, 19b, and 

22, into the Eqs.21a and 21b, the energy conservation and force balance at this equilibrium 

condition become: 
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஺మோଵଶ଺଴௭బళ ቄ1 +
଻ఋబଶ௭బቅ − ஺భோ଺௭బ ቄ1 +

ఋబଶ௭బቅ +
ସଵହܴܭଵ/ ଶߜ଴ହ/ ଶ = 0   (23a) ஺భோ଺௭బమ ቄ1 +

ఋబ௭బቅ − ஺మோଵ଼଴௭బఴ ቄ1 +
ସఋబ௭బ ቅ = 0     (23b) 

The subscript “0” represents the equilibrium condition. By introducing the following 

constants ܭଶ௢ = /଴ߜ   ଴ as a deformation parameter, we determine a so called adhesionݖ

parameter ∏ =  ቀଶଶହோ ஺భమହ଻଺௭బళ௄మቁଵ/ ଷ
. 

Our adhesion parameter differs from that ∏୘୔୐ =  ቀ ଶହோ ஺భమଵସସ௭బళ௄మቁଵ/ ଷ
 given by Tsai et al, such that 

their ratio is ∏/∏୘୔୐ = 1.3104. The difference is important because of the sensitivity of the 

results to the value of this parameter, see FigV.3. 

 

Using the previously defined force constant ܭ௔ =
஺మ஺భ௭బల, and Eq.23a, the deformation and 

adhesion parameters may be derived as follows: 

ଶܴܣ 
଴଻ݖ1260 ൜1 +

଴ߜ7
଴ൠݖ2 − ଴ݖଵܴ6ܣ ൜1 +

଴ߜ
଴ൠݖ2 +

4
15
/ଵܴܭ ଶߜ଴ହ/ ଶ = 0 

⟹ ଵܴܣ
଴ݖ6 ൤൜1 +

1
2

ଶ௢ൠܭ  − ௔ܭ
210

൜1 +
7
2

ଶ௢ൠ൨ܭ  =
4
15
/ଵܴܭ ଶߜ଴ହ/ ଶ 

 

Squaring both sides  ⟹ ଵଶܴଶܣ
଴ଶݖ36 ൤൜1 +

1
2

ଶ௢ൠܭ  − ௔ܭ
210

൜1 +
7
2

ଶ௢ൠ൨ଶܭ  = ൬ 4
15
൰ଶܭଶܴଶߜ଴ହ 

 

Multiplying both sides by ∏ =  
ହ଻଺௭బళ௄మଶଶହோ ஺భమ   we obtain: 

⟹ ଴ହܴݖ16
225

൤൜1 +
1
2

ଶ௢ൠܭ  − ௔ܭ
210

൜1 +
7
2

ଶ௢ൠ൨ଶܭ  = ൬ 4
15
൰ଶ ଴ହܴߜ 1∏ଷ 

 

Dividing by R, and eliminating the denominators we finally we derive the following Tsai et al 

equation from considerations of the conservation of energy: 

ଶ௢ହܭ  = ∏ଷ  ቂቄ1 +
ଵଶ ଶ௢ቅܭ  − ௄ೌଶଵ଴ ቄ1 +

଻ଶ  ଶ௢ቅቃଶ    (24a)ܭ 
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FigV.3 Equilibrium deformation parameter ܭଶ௢ versus adhesion parameter ∏ 

 

In contrast Eq. 23b derived from the force balance at static equilibrium ݖ = ଵܴܣ :଴, yieldsݖ
଴ଶݖ6 ൜1 +

଴ൠݖ଴ߜ − ଶܴܣ
଴଼ݖ180 ൜1 +

଴ݖ଴ߜ4 ൠ = 0 

⟹ ଵܴܣ
଴ଶݖ6 {1 + {ଶ௢ܭ  − ௔ܴܭଵܣ

଴ଶݖ180 {1 + {ଶ௢ܭ 4 = 0 

 

Dividing both sides by 
஺భோ଺௭బమ  ⟹ {1 + {ଶ௢ܭ  =

௄ೌଷ଴ {1 +  ଶ௢}      (24b)ܭ 4

 

Putting together Eq.24a and Eq.24b, we finally derive 

ଶ௢ହܭ  = ∏ଷ  ቂቄ1 +
ଵଶ ଶ௢ቅܭ  − ଵ଻ ቄ ଵା ௄మ೚ଵାସ ௄మ೚ቅ ቄ1 +

଻ଶ  ଶ௢ቅቃଶ   (24c)ܭ 

For given particle and solid surface materials, this equation yields the required deformation 

parameters as a function of their elastic properties.   This equation is graphically represented 

in FigV.3. In particular it yields  ܭଶ௢ = /଴ߜ   .∏ ଴ as a function of the adhesion parameterݖ

 

 

5.4 Collision restitution for nano-particles at a solid surface: 1
st
 model 

Motivated by the diffusive collisions of macromolecular particles and by nanoparticles in 

colloidal suspensions flowing inside mesopores, we are interested to analyze in this chapter 

the detailed mechanical dynamics of these particles during their collisions the solid 

boundaries of the mesopores.  
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Consider a spherical nano particle in contact mechanics at static equilibrium with a surface 

(no external force are applied and total particle energy Et = 0). The displacement of the center 

of mass of the particle under deformation is at ∆଴= z୭ −  ଴ with respect to an ideal positionߜ

that corresponds to the undeformed spherical particle form just touching the flat surface. z୭ is 

the equilibrium distance between the flattened particle surface and the plane surface, and ߜ ଴ is 

the minimum penetration, as in FigV.4a. When a particle comes into the contact with a 

surface arriving with a specific kinetic energy Ei ≠ 0, the particle deforms beyond the 

deformation at static equilibrium. The above displacement of the particle center of mass is 

modified to ∆ = ∆଴ − − ௠ݖ) ( ௠ߜ   = ௠ߜ − ଴ߜ + z୭ − > ௠ݖ ௠ , whereݖ  ଴  is the newݖ 

distance between the flattened particle surface and the plane surface, while ߜ௠ >  ଴ is theߜ

maximum penetration at ܧ௜ ≠ 0, as in FigV.4b. We interpret the load in this case as the 

applied Newtonian force normal to the surface, generated by the changing particle momentum 

on its inward trajectory, from its initial value position (z୭, ߜ଴ ) to the new one (ݖ௠ ,ߜ௠). 

 
FigV.4: a) Spherical nano-particle initially at equilibrium with a surface. b) Spherical nano-particle with a 

specific kinetic energy 

 

The load ܨ may hence be written as ܨ =
୼௣୼ఛ from the rate of change of the momentum. This 

gives: ܨ =
௣೔ି଴୼ఛ          (25) 

Given the nano scale of distances involved in this analysis, we can approximate Δ߬ by the 

relation Δ߬ =
∆௏ , where v is average speed of the particle on its trajectory between (z୭, ߜ଴ ) 

and (ݖ௠ ,ߜ௠). 

1Δ߬ =
v∆ =

v୧(୧୬୲୧ୟ୪) − 0( ϐ୧୬ୟ୪)ߜ௠ − ଴ߜ + z୭ −  ௠ݖ
 

so that ଵ୼ఛ =
ଵ௠ ௠୴౟ఋ೘ିఋబା୸౥ି௭೘ 

=
మమౣ୫୴౟ఋ೘ିఋబା୸౥ି௭೘ 

=
ଶ ೛೔మ೘∆     (26) 

Hence  ܨ௜ =
௜Δ߬݌ =  

ଶ(௜݌)2
2݉ ௠ߜ1 − ଴ߜ + z୭ −  ௠ݖ
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and ܨ = 2
[ா೔ି(ா೐(ఋ೘)ିா೐(ఋబ)) ]ఋ೘ିఋబା୸౥ି௭೘ 

       (27) 

 

From the JKR Eq.9, we have the contact radius a as a function of the applied loading force: 

ܽ =  ൬ܴܭ  ቂܨ + ߛܴߨ3  +  ඥ6ܨߛܴߨ +  ଶቃ൰ଵଷ(ߛܴߨ3) 

Therefore ௔య௄ோ = ܨ + ߛܴߨ3  + ܨߛܴߨ6} + /ଶ} ଵ(ߛܴߨ3)  ଶ    (28) 

 

Let ݕ(ܽ) =
௔య௄ோ , and ܩ =  :so Eq.28 becomes as ߛܴߨ3

(ܽ)ݕ  = ܨ + ܩ + ܨܩ2} + /ଶ} ଵܩ  ଶ ⇒ ଶܨ − ܨݕ2 + ଶݕ − ܩݕ2 = 0 

So ܨ =
+ ݕ2 ± ඥ8ܩݕ

2
 

 

Hence ܨ =  
ܽଷܴܭ

± ඥ6ܽߛߨଷܭ 

 

Also from Eq.11, ܽ଴ଷ =
଺గோమఊ௄ . It follows that:  

ܨ  =  
௄ோ ൫ܽଷ ± ඥܽ଴ଷܽଷ൯       (29) 

 

Eq.29 yields two equations, and we must find the unique solution. Since Eq.9 and E.q11, 

yield ܽ =  ܽ଴  for ܨ = 0, one deduces the physical solution as: 

ܨ  =  
௄ோ ൫ܽଷ − ඥܽ଴ଷܽଷ൯       (30) 

 

On the other hand according to the Chord theorem (Israelachvili 1991), see also Annex AIII, 

one can calculate the value of the contact radius a , now function of the incident energy, as: 

 ܽ௠(ܧ௜) = ට2ܴߜ௠(ܧ௜) − (௜ܧ)௠ଶߜ  ≅  (31)    (௜ܧ)௠ߜ2ܴ
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By Combining Eq.27 and Eq.30, we get the following expression  

 ௄ோ ൫ܽ௠ଷ −ඥܽ଴ଷܽ௠ଷ൯ = 2
[ா೔ି(ா೐(ఋ೘)ିா೐(ఋబ)) ]ఋ೘ିఋబା୸౥ି௭೘ 

    (32) 

Hence  

        
௄ோ ൫ܽ௠ଷ −ඥܽ଴ଷܽ௠ଷ൯(ߜ௠ − ଴ߜ + z୭ − ( ௠ݖ = 2൫ܧ௜ + (଴ߜ)௘ܧ −           ൯(௠ߜ)௘ܧ

(33) 

By using Eq.31 and Eq.33 then we get: 

 

       
ଶቆா೔ା రభఱ௄ோభమఋబఱమି రభఱ௄ோభమఋ೘ఱమቇ

(ఋ೘ିఋబା୸౥ି௭೘ )      
=  

௄ோ ൤൫2ܴߜ௠ − /௠ଶ൯ଷߜ ଶ − ቀܽ଴ଷ൫2ܴߜ௠ − /௠ଶ൯ଷߜ ଶቁଵ/ ଶ൨ 
(34) 

To solve the nonlinear Eq.34, for a given incident energy ܧ௜, to yield ߜ௠ as a function of ݖ௠ /  it is necessary to know the numerical values for a number of necessary input ,0ݖ

parameters:   ܭଶ௢ = /଴ߜ    .This is illustrated in the following example .ܴ ,ܭ , ଴ݖ

 

Consider a spherical polystyrene particle with radius R = 25 A° incident onto a copper rough 

surface, for two separate kinetic energies,  ܧ௜ = 0.9 × 10ିଶଵJ and ܧ௜ = 1.8 × 10ିଶଵJ. Cu has 

the Poisson's ratio ߥ = 0.34 (Wang and John 1988) and the young modulus ܻ = 130 ×

10ଽNmିଶ  (Dahneke 1972; Yia, Kima et al. 2005), while for polystyrene, we have the 

Poisson's ratio ߥ = 0.37 (Rimai, Demejo et al. 1994) and the young modulus ܻ = 3 ×

10ଽNmିଶ (Van Krevelen and Te Nijenhuis 2009). Using Eq.8 the effective system ܭ =

 4.52 × 10ଽNmିଶ.  

 

The second main subject next is how to deal with the rough surface boundary. For this 

purpose we introduce an effective Hamaker constant in the depletion layer adjacent to a rough 

pore surface boundary. A model calculation is given in detail in Annex IV to this end; we 

calculate for example for the above system of a copper rough surface, water liquid solution in 

the pore, and incident polystyrene particle the effective system Hamaker constant as ܣ௦௬௦௧௘௠ = ඥܣଶଶ௘௙௙ܣଵଵ = 6.012 × 10ିଶ଴ J. This value is a necessary input in the generating equation  

 ∏ =  ቆ225ܴ ܣ௦௬௦௧௘௠ଶ
ଶܭ଴଻ݖ576 ቇଵ/ ଷ

 

 

 

A major difficulty at this stage, evident in all the literature on this subject, is the assignment of 

a credible value for ݖ଴ for a given system. The literature values for ݖ଴  vary in general from 0.2 
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nm to 0.4 nm which is an important range since  ݖ଴  appears to the seventh power in the ∏ 

expression. In the present example we take  ݖ଴  = 0.2 nm. Using this value and either FigV.3 

or FigV.5, we can calculate ߜ଴ . 

 
FigV.5 Adhesion and deformation parameter ∏and ܭଶ௢  as function of  ݖ଴  

 

 
FigV.6 ߜ௠ as a function of ݖ௠ / ଴ݖ ଴  forݖ =  at two different incident kinetic energies ,°ܣ 2

 

 

The previous analysis permits us to calculate next the penetration distance  ߜ௠ under kinetic 

conditions, as a function of ݖ௠ /  ଴, and the numerical results for the above material exampleݖ

are plotted in FigV.6. Unfortunately these results are unphysical, which implies that the model 

leading to the nonlinear Eq.34 is spurious. It is for this reason that we have adopted a different 

approach for this problem, which is presented in the following section. 
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5.5 Collision restitution for nano-particles at a solid surface: improved model 

As pointed out earlier predicting the so-called sticking efficiency for macromolecular 

particles is of interest when colloidal suspensions flow inside confining pores. There are two 

manners for this sticking to take place, via thermodynamic equilibrium exchange, and via 

mechanical sticking under non-equilibrium conditions. It is the second of these mechanisms 

which is of interest her. The coefficient of restitution is hence an important parameter for the 

mechanical sticking mode. 

 

Consider an uncharged particle with kinetic energy  ܧ.ܭ௜ incident onto a surface as in FigV.7. 

The potential energy ௣ܸ,௜ between the particle and the surface is activated at relatively short 

separations, and goes to an equilibrium which corresponds to the minimum ܸ ௣,௢. On a 

classical trajectory the particle penetrates into the surface to a classical turning point 

characterized by the potential ܸ ௣,௧. The particle is repulsed at this distance in the opposite 

sense until it reaches a final position with potential energy ܸ ௣,௙. 

 

 
FigV.7 Potential energy versus the separation distance between the particle and surface atoms where ௣ܸ,௢,  ௣ܸ,௧ 
and  ܸ ௣,௙ represent respectively the potential energies at equilibrium, classical turning point and final position 

 

Form energy conservation 

௜ܧ.ܭ  = ௣ܸ,௧ − ௣ܸ,௜ + ௘ܧ         (35) 

௘ܧ   is the elastic deformation energy. We can write Eq.35 on another form: 

௜ܧ.ܭ  = ( ௣ܸ,௧ − ௣ܸ,଴ ) + ( ௣ܸ,଴ − ௣ܸ,௜) +  ௘     (36)ܧ
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We consider ( ௣ܸ,଴ − ௣ܸ,௜)  in Eq.36 as the surface energy ܧ௦,௧ in contact mechanics (van Beek 

2001) on the way in for the particle, so that ܧ௦,௧ = ( ௣ܸ,଴ − ௉ܸ,௜). Hence 

௜ܧ.ܭ  = ൫ ௣ܸ,଴ − ௣ܸ,௜൯ + ௦,௧ܧ + ௘ܧ                                             (37) 

 

Similarly we can define the final kinetic energy ܧ.ܭ௙  on the way out for the particle (van 

Beek 2001), as: 

௙ܧ.ܭ  = ( ௣ܸ,଴ − ௣ܸ,௙ ) + ௦,௣ܧ + ௘ܧ       (38) 

 

  Therefore  

௙ܧ.ܭ– ௜ܧ.ܭ  =  − ௉ܸ,௜ + ௉ܸ,௙ + ௦,௧ܧ −  ௦,௣     (39)ܧ

 

The energy loss ൫ܧ௦,௧ −  .௦,௣൯ is a complex term which depends on a variety of factorsܧ

(Johnson 1976) derives an equation for this as a function of the work adhesion γ, the 

composite Young's modulus K, and particle radius R, as:  

௦,௧ܧ  − ௦,௣ܧ = 7.09(
ோర  ஓఱ௄మ  )

భయ       (40) 

 

Here we have 2 cases to consider which depend on the potential energies ܸ ௣,௜  ܽ ݊݀ ܸ ௣,௙: 

 

 1st case: 

If   ࢏,࢖ࢂ = ࢌ,࢖ࢂ = ஶ,࢖ࢂ = ૙ ܧ.ܭ௜ –ܧ.ܭ௙ = ௦,௧ܧ  −  ௦,௣       (41)ܧ

௙ܧ.ܭ                                                    = ௜ܧ.ܭ − ௦,௧ܧ ) −                                                                                   (௦,௣ܧ

                                                ݁ଶܧ.ܭ௜ = ௜ܧ.ܭ − ௦,௧ܧ ) − (௦,௣ܧ                                                                                  

Therefore  ݁ଶ  = 1− ாೞ,೟ିாೞ,೛௄.ா೔         (42) 

 

 2nd case  

If   ࢏,࢖ࢂ ≠  ࢌ,࢖ࢂ
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In this case the positions of the particle before and after the collision are different. If we 

suppose that ݖ௜ is the initial position of the particle before the collision hence we can get the 

position of the particle after the collision ݖ௙ by: 

௙ݖ  =  ௜         (43)ݖ ݁

 

where e is the unknown restitution coefficient for the collision. We shall make numerical 

applications for this model later in this section. 

 

To solve for ݁ , we need to express ܧ௦,௧ −  ௦,௣ from Eq.40 explicitly. (Fowkes 1968) gives γ inܧ

contact surface mechanics for microscopic particles as γ = 2√γଵγଶ, a function of the surface 

free energies of the two surfaces 1 and 2. We tried and neglected this because it gave spurious 

results. In contrast (Tabor 1977) developed a theoretical model to calculate γ at the molecular 

scale for surfaces in contact mechanics, as 

 γ =
୅ଵଶ஠୸బమ         (44) 

 

Using this last equation we obtain an explicit expression for ܧ௦,௧ −  ,௦,௣ at the molecular scaleܧ

as 

௦,௧ܧ  − ௦,௣ܧ = 7.09[
ோర  (

ఽభమಘ౰బమ)ఱ௄మ  ]
భయ      (46) 

 

5.5.1 Hamaker potential ࢖ࢂ for a cylindrical particle with hemispherical extremities 

The interaction Hamaker energy  ܸ ௉ for a cylindrical particle with hemispherical extremities 

that is parallel to a solid surface is given by (Popov 2010) 

 

௉ܸ(Sphere) = - 
஺଺ ோ௓   

 

A is the Hamaker constant for the interaction, 2R is the diameter of the hemispherical 

extremities. For a cylindrical particle of the same diameter 2R and of length L near a flat 

surface, the interaction energy is given by (Mullins, Michaels et al. 1992): 

 

௣ܸ(Cylinder) = - 
஺௅ √ோ଺√ଶ௭య 
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This yields Hamaker energy  ܸ ௉ for the cylindrical particle with hemispherical extremities, 

when entirely parallel to the surface as: 

  ௉ܸ(Sphero- Cylindrical) =  ܸ ௉(Sphere) +  ܸ ௉(Cylinder) 

 

= − 
ܣ
6

 ቈܴݖ +  
 ଷ቉ݖ2√ܴ√ ܮ

 

For such a system at an arbitrary angle with respect to the surface, as in FigV.8, the 

potential can be approximated by the following general form 

 
 

௉ܸ = −  
ܣ
12

[ ݖܴ ߠଶ݊݅ݏ  + ቆ2ܴݖ +  
ଷቇݖ2√ܴ√ܮ2 [ߠଶݏ݋ܿ  

  ௜ is the distance between the nearest point of the surface particle to the surfaceݖ 

 
FigV.8 Sphero-Cylindrical particle 

 

 

We calculate − ௣ܸ,௜ + ௣ܸ,௙ , using Eq.43 to replace  ݖ௙ by ݖ௜, to get 

 − ௉ܸ,௜ + ௉ܸ,௙ = ܣ 
12 ⎣⎢⎢
௜ݖܴ⎡ ߠଶ݊݅ݏ  + ௜ݖ2ܴ⎛⎝ +  

⎥⎥⎦ߠଶݏ݋ܿ⎞⎠௜ଷݖට2ܴ√ܮ2
⎤ −   

ܣ
12

[
௜ݖܴ݁ ߠଶ݊݅ݏ  + ௜ݖ2ܴ݁⎛⎝ +  

 [ߠଶݏ݋ܿ⎞⎠௜ଷݖට2݁ଷܴ√ܮ2

=
ܣ
12

[ ௜ݖܴ −1)ߠଶ݊݅ݏ ݁ିଵ) + ߠ²ݏ݋ܿ ⎣⎢⎢
⎡
௜ݖ2ܴ (1− ݁ିଵ) +

௜ଷݖට2ܴ√ܮ2 (1− ݁ିଷ ଶൗ )⎦⎥⎥
⎤
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 − ௉ܸ,௜ + ௉ܸ,௙ =
஺ଵଶ௭೔ −1)ߠଶ݊݅ݏ} ݁ିଵ) + ቎(1− ݁ିଵ) +

ଶ௅√ோටଶ௭೔య ቀ1− ݁ିଷ ଶൗ ቁ቏          (47)             {ߠଶݏ݋ܿ

 

Therefore Eq.39 becomes  

 

௙ܧ.ܭ– ௜ܧ.ܭ =  
ܣ

௜ݖ12 ⎩⎨
−1)ߠଶ݊݅ݏ⎧ ݁ିଵ) + ⎣⎢⎢

⎡
(1− ݁ିଵ) +

௜ଷݖට2ܴ√ܮ2 ቀ1− ݁ିଷ ଶൗ ቁ⎦⎥⎥
⎤ ⎬⎭ߠଶݏ݋ܿ

⎫
+ ௦,௧ܧ

−  ௦,௣ܧ

 ௜ܧ.ܭ௜ –݁ଷܧ.ܭ݁ 
=  − ܣ

௜ݖ12 ⎩⎨
݁)ߠଶ݊݅ݏ⎧ − 1) + ⎣⎢⎢

⎡
(݁ − 1) +

௜ଷݖට2ܴ√ܮ2 ቆ݁ଶ − √݁݁ ቇ⎦⎥⎥
⎤ ⎬⎭ߠଶݏ݋ܿ

⎫
+ ௦,௧ܧ)݁

− (௦,௣ܧ  

 

This procedure yields finally the generating function for the restitution coefficient from 

Eq.39, as 

 

     ݁ଶ(1 –݁ଶ)ܧ.ܭ௜ +
஺ଵଶ௭೔ ቐ݁(݁ − 1) + ቎ଶ௅√ோටଶ௭೔య (݁ଶ −ඥ݁)቏ ቑߠଶݏ݋ܿ = ݁ଶ (ܧ௦,௧ − (௦,௣ܧ         

                                                                                                                      (48a)  

For the limit value ݁ = 1, the energy loss ൫ܧ௦,௧ − ௦,௣൯ܧ = 0 (i.e. no loss of energy) which is 

what should be expected. For the other limit value ݁ = 0, the above equation behaves as an 

identity, which is what should also be expected. 

 

Substituting for (ܧ௦,௧ − (௦,௣ܧ  , one gets  

 

݁ଶ(1 –݁ଶ)ܧ.ܭ௜ +
஺ଵଶ௭೔ ቐ݁(݁ − 1) + ቎ଶ௅√ோටଶ௭೔య (݁ଶ −ඥ݁)቏ ቑߠଶݏ݋ܿ = ݁ଶ 7.09 ൥ோర  (

ఽభమಘ౰బమ)ఱ௄మ ൩ଵ/ ଷ
      

          (48b)  

Eq.48b may be solved in general for ݁ ≠ 0, for the collision scattering of a particle, as in 

FigV.8, with the rough surface boundary. 
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Consider a specific example of a polystyrene rod-like particle, presenting hemispherical 

extremities of radius R = 2.5 nm, and an overall length L = 40 nm, with a kinetic energy equal 

to thermal energy ܧ.ܭ௜ =  
1
2
݇஻ܶ = 2.07 × 10ିଶଵ ܬ 

at room temperature. This choice evokes effectively a random Brownian displacement of a 

particle in the depletion layer bringing it into collision with a rough copper surface boundary. 

The energy loss in scattering൫ܧ௦,௧ − ௦,௣൯ܧ = 4.203 × 10ିଶଵ J, is calculated using Eq.46, and 

the equilibrium position is taken as z0 = 0.4 nm between the hemispherical particle surface at 

its incoming extremity and the ℎ௘௙௙ level of the rough surface (see Chapter 4 for a definition 

of this rough surface level). 

 

Using Eq.48 we solve for ݁ for different zi and . This nonlinear equation has seven roots of 

which six are complex imaginary, and one is real. We plot the real solutions of e for the above 

kinetic energy, as a function of the variable initial positions ݖ௜ and angles in FigV.9. Since 

Eq.48 is quite complex it is useful to give a best-fit analytical expression for the real roots of e 

as a function of ݖ௜ and variable . This is given as follows  

 ݁ = 0.321− /ߠ²݊݅ݏ] 15] + 0.708 × ݌ݔܧ ቂ− ௭೔ଵଷଵ.ଽ଴ଶି(଴.଼ ହ×ఏ)
ቃ  (49) 

 
FigV.9 Restitution coefficient e as a function of particle extremity position from the surface, and at different 

angles of collision 
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5.5.2 Hamaker potential ࢖ࢂ for shish-kebab and spherical particles 

Shish-kebab particles  

In this section we simply give the Hamaker potentials for the two types of particles above. 

Consider macromolecular particles to have a shish-kebab form (Doi and Edwards 1986). This 

consists in considering the macromolecule as N pearls, or spheres, of equal d = 2R diameters, 

and N=L/d, where L is the length of this macromolecular from tip to tip as in FigV.10.                                          

 
FigV.10 macromolecular rod like particles has a shish-kebab' model 

 

The nearest distances to the plane surface of the different beads may be written successively 

as ݖଵ = ߠ݊݅ݏ 2ܴ + ௜ݖ = (ߠ݊݅ݏ 2ܴ)1 + ଶݖ ௜ݖ = ߠ݊݅ݏ 2ܴ + ଵݖ = (ߠ݊݅ݏ 2ܴ)2 + ଷݖ ௜ݖ = ߠ݊݅ݏ 2ܴ + ଶݖ = (ߠ݊݅ݏ 2ܴ)3 +  ௜ݖ
. 
௡ݖ . = ߠ݊݅ݏ 2ܴ + ௡ିଵݖ = (ߠ݊݅ݏ 2ܴ)݊ +  ௜ݖ

 
It follows that the successive Hamaker potentials are  
 

଴ܸ = ܣ−
6ܴ
൤ 1ݖ௜  +  

௜ݖ2ܴ + 2ܴ൨ 
ଵܸ = ܣ−

6ܴ
൤ 1ݖଵ  +  

ଵݖ2ܴ + 2ܴ൨ = ܣ−
6ܴ
൤ 1

ߠ݊݅ݏ2ܴ + ௜ݖ  +  
2ܴ

ߠ݊݅ݏ2ܴ +   ௜2ܴ൨ݖ
 

ଶܸ = ܣ−
6ܴ
൤ 1ݖଶ  +  

ଶݖ2ܴ + 2ܴ൨ = ܣ−
6ܴ
൤ 1

(ߠ݊݅ݏ2ܴ)2 + ௜ݖ  +  
2ܴ

(ߠ݊݅ݏ2ܴ)2 + ௜ݖ + 2ܴ൨ 
. 
. 

௡ܸ = ܣ−
6ܴ
൤ 1ݖ௡ିଵ  +  

௡ିଵݖ2ܴ + 2ܴ൨ = ܣ−
6ܴ
൤ 1݊(2ܴߠ݊݅ݏ) + ௜ݖ  +  

(ߠ݊݅ݏ2ܴ)2ܴ݊ + ௜௔ݖ + 2ܴ൨ 
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Hence the Hamaker sum for the shish-kebab particle is   
 

௉ܸ = ܣ−
6ܴ
෍൜ 1݊(2ܴߠ݊݅ݏ) + ௜ݖ  +  

(ߠ݊݅ݏ2ܴ)2ܴ݊ + ௜ݖ + 2ܴൠ௡
௡ୀ଴  

 

It follows that 

 − ௣ܸ,௜ + ௣ܸ,௙ =

 − ஺ோ଺ ∑ ቄ ିଵ௡(ଶோ௦௜௡ఏ)ା௭೔  +  
ିଵ௡(ଶோ௦௜௡ఏ)ା௭೔ାଶோ +

ଵ௡(ଶோ௦௜௡ఏ)ା௘௭೔ +  
ଵ௡(ଶோ௦௜௡ఏ)ା௘௭೔ାଶோቅ௡௡ୀ଴            (50) 

 

This procedure yields finally the generating function for the restitution coefficient from 

Eq.39, as 

     

(1− ݁ଶ)ܧ.ܭ௜ +஺ோ଺ ∑ ቄ ିଵ௡(ଶோ௦௜௡ఏ)ା௭೔  +  
ିଵ௡(ଶோ௦௜௡ఏ)ା௭೔ାଶோ +

ଵ௡(ଶோ௦௜௡ఏ)ା௘௭೔ +  
ଵ௡(ଶோ௦௜௡ఏ)ା௘௭೔ାଶோቅ௡௡ୀ଴ = ௦,௧ܧ) −        (௦,௣ܧ

            (51)  

 

Eq.51 may be solved in general for ݁ ≠ 0, for the collision scattering of this particle form, as 

in FigV.10, with the rough surface boundary. 

 

Spherical particles  

 

We consider the simplest case when the particle is a sphere, with an attractive Hamaker 

potential 

௉ܸ = − ܣ
12
൤ 2ܴܼ ൨  

 

We take the 1st approximation for the attractive Hamaker potential therefore as 

 

௣ܸ ≈ − ஺ோ଺௭ = − 
஻௭  , Where ܤ =

஺ோ଺  

௉ܸ,௜ =  −  
஻௭೔ and ௉ܸ,௙ =  − 

஻௭೑ =
஻௘௭೔ 

Hence we get  

 

 − ௉ܸ,௜ + ௉ܸ,௙ = +
஻௭೔ − ஻௘௭೔ =

஻௭೔ (1− ݁ିଵ ) = Φ௜(1− ݁ିଵ )  ;  Φ௜ =  
஻௭೔                            (52) 

 

Therefore Eq.39 becomes  
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௙ܧ.ܭ– ௜ܧ.ܭ =  Φ௜(1− ݁ିଵ ) + ௦,௧ܧ) − + ௜ܧ.ܭ௦,௣) ݁ଷܧ  ൣΦ௜ + ൫ܧ௦,௧ − ௦,௣൯ܧ − ௜ ൧݁ −Φ௜ܧ.ܭ = 0 

 

This procedure yields finally the generating function for the restitution coefficient from 

Eq.39, as 

 ݁ଷ −  
[௄.ா೔ ି ஍೔ି ൫ாೞ,೟ିாೞ,೛൯]௘௄.ா೔  −  

஍೔௄.ா೔ = 0     (53a) 

 

Eq.53 may be solved in general for ݁ ≠ 0, for the collision scattering of this particle form, 

with the rough surface boundary. 

 

5.6 Adhesion sticking algorithms  

The possible adhesion (stickiness) of metallic and macromolecular nano-particles during 

a collision with a solid surface depends on the loss of energy of the incident particle owing to 

the collision.  

 

If and when the particle comes near the solid surface boundaries, as is the case in particular in 

region I of the depletion layer, due to hydrodynamic and Brownian events preceding this 

latest position, the simulation algorithm can be switched on to analyse whether or not the 

particle is in a position to submit to the consequences of the Hamaker attraction. In this case 

the program algorithm between the Nth and the (N+1)th events will decide whether or not the 

particle will collide with the surface boundary, and calculate its restitution coefficient using 

an equation such as Eq.48 (Eq.49), and consequently whether or not it loses sufficient energy 

to stick – adhere at the surface. 

 

The adhesion or non-adhesion may be summarized by a basic relation over the Newtonian 

restitution coefficient  ݁   as  ܧ.ܭ௙ = ݁ଶܧ.ܭ௜ 
 ௙ represent the kinetic energy of the particle before and after collision with the solidܧ.ܭ ௜ andܧ.ܭ 

surface boundary, so that  

 

Adhesion occurs if    ܧ.ܭ௙  <   ௉ܧ  

No Adhesion if   ܧ.ܭ௙ >  . ௉ܧ  
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Adhesion should take place if the final kinetic energy of the particle is not enough to free it 

from the adhesive forces which act to keep it at the solid surface boundary. ܧ௉ =  |  ܸ ܲ(ܰ)| is 

the energy necessary to liberate the particle during its collision rebound from the attractive Hamaker 

potential ௉ܸ binding the particle to solid surface boundary. 

 

Using this procedure it is possible to chart the probabilities for the adhesion of different forms 

of particles at surface boundaries in mesopores, and to design an algorithm to calculate by 

numerical simulations the effective mobility for such particles during their flow inside 

mesopores under non-equilibrium conditions. 

 

Note that under these conditions the ergodic assumption of equilibrium dynamics ceases to be 

valid and that an initial colloidal suspension will change its character and in concentration as 

the flow takes its deeper down the pore. 
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Chapter 6 

 
Conclusions and directions for future work 
 
 
 
The main scope of this thesis aims at investigating the equilibrium dynamics of biological and 

macromolecular particles of nano dimensions, in colloidal suspensions in fluids inside pore 

systems, for a wide range of particle forms, for ideally flat and rough surface pore boundaries 

on the scale of the particles, and under a realistic range of physical conditions (system 

temperature, solution viscosity, Peclet number, pore width, particle length, particle form and 

aspect ratio, …). The simulation results such as for the nematic order parameter may also be 

compared with experimental data whenever these are available. 

In Chapter II, we have developed algorithms and carried out numerical simulations to 

investigate the dynamics of dilute colloidal suspensions of macromolecular particles in 

solutions flowing inside a porous system, in this chapter the pores are modeled in a two-

dimensional frame of reference with boundaries. The colloidal particles are subject to 

hydrodynamic forces, Brownian stochastic motion and random collisions at the solid surface 

boundaries of the pores. The numerical simulations are carried out to calculate in particular 

the spatial and orientation statistical PDF distributions of the macromolecular rod-like 

particles in colloidal suspensions in a solution under equilibrium dynamics in a Poiseuille 

flow inside the pore channels. The results are presented for different widths of pore channels 

referenced to the size of a rod-like particle and for a wide variety of hydrodynamic flow 

conditions, at low, intermediate, and high flow, characterised by the rotational Peclet number. 

Our simulations yield directly the nematic order parameter for colloidal suspensions in the 

two dimensional frame. 

Chapter III has focused on the theoretical and numerical modeling for the dynamics of 

particle in the bulk and their diffusive collisions at the solid surface boundary in real 3D 

spatial frames. The considered particles are taken ellipsoidal like macromolecular particles 

flowing in dilute solution. We developed a theoretical model based in this case on the 

equations of Jeffrey for the dynamics of solid particles in fluids and the molecular dynamics 

by mechanical restitution for the diffusive collisions of the particles at the solid boundaries. 

Equilibrium PDF distributions are calculated over several orders of magnitude of the 

rotational Peclet number, and for variable aspect ratios characteristic of the ellipsoidal 

particles under study. Results demonstrate the importance and significance of modeling in a 

three-dimensional spatial frame as compared to the simulation results based in the Boeder 
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approach over a two-dimensional spatial frame Chapter II. The nematic order parameter over 

its tensorial representation also calculated for a variety of forms of ellipsoidal particles 

selected to correspond to real polymer particles.  

The special class of molecular particles namely rigid rod-like particles for which the aspect 

ratio is much greater than unity are considered in Chapter IV. We have developed algorithms 

and carried out numerical simulations to investigate the dynamics of dilute colloidal 

suspensions of rod like particles in solutions flowing in bulk and near two types of solid 

boundaries the ideal atomically flat and the rough surface boundaries, for this reason of the 

hydrodynamic boundary conditions are considered to investigate in particular the influence of 

the roughness on the shear flow and on the diffusive collision. 

Finally in Chapter V, We investigated  for a  theoretical model to calculate the restitution 

coefficient of particles of nano sizes in the depletion layer due to the conflicting influence of 

the mechanical diffusive collisions and the attractive Hamaker forces at the boundaries, the 

theoretical analysis for the restitution coefficient determine under given physical conditions 

the outcome for adhesion or not.  For this reason, a theoretical model is developed, based on 

the JKR and Hertz theories, to account for the energy losses during collisions and for the 

energy gains due to the Hamaker interactions and we have shown that adhesion becomes an 

outcome if the energy balance permits this 

For all of these problems, numerical simulations have proven a remarkable ally for the 

modeling the complex effects arising from dynamics of dilute colloidal suspensions of 

macromolecular particles in solutions flowing inside a porous system (closed or open pores) 

to the diffusive collisions of the nano particles at the solid surface boundary in 2D spatial 

frames to a real 3D spatial frame. However: much work remains to be done as we attempt to 

simulate yet larger and more complex systems. 

Several areas like mobility, adhesion and complex fluid dynamics, are yet to be fully 

understood, and we describe a few of these below. 

One of the major perspectives of this work is to use our theoretical model for the adhesion and 

corresponding mobility under non-equilibrium conditions to produce numerical simulations 

for the adhesion profiles, for different species of particles flowing in colloidal suspensions 

through pore networks. Such profiles should lead to technical applications as regards the 

filtering capacities by pore networks for diverse species of biological and macromolecular 

particles. 
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The problems described in this work all involved suspensions that were dilute; in many 

instances more concentrated suspensions are important (Semi dilute and concentration 

regime). The modeling of these effects is typically quite difficult, for this reason the 

numerical simulation in these regimes offer new challenges to count up the large number of 

the collisions between the particles and the boundary solid surface and between the particles 

themselves. 

Complex physics: The greatest challenge of complex fluid dynamics today may exist in in the 

description of systems involving multiple physical phenomena, such as electric, thermal, 

chemical or mechanical phenomena. Such systems arise commonly in micro- and nano-fluidic 

devices, and also in the case for numerous biophysical systems. The difficulty in tackling 

these problems is double. On the one hand, a precise understanding of the basic physical 

phenomena and their coupling is in most cases still absent. On the other hand, the numerical 

simulation of these phenomena offers new challenges owing to the large number of degrees of 

freedom and of the highly nonlinear coupling between the various effects. 
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Annex AI 

 

Brownian motion 

 

Brownian motion is a phenomenon where small colloidal particles suspended in a fluid tend 

to move in relatively random or stochastic paths. The effect was discovered by Robert Brown 

in 1827, and is called Brownian motion after him. In 1905, Albert Einstein published a theory 

to explain Brown’s observations, and showed that the so-called Brownian motion becomes 

more rapid and the colloidal particles move farther in a given time interval, when the 

temperature of the water is raised, when the viscosity of the fluid is lowered, and when the 

size of the colloidal particles is reduced 

 

The atoms or molecules that make up a liquid or gas are in continuous thermal motion. This 

motion causes the molecules to strike the suspended colloidal particles at random. The 

consequent impacts force a colloidal particle to move in an erratic and random manner 

through the fluid. This phenomenon gives rise to what is called translational Brownian 

diffusion. The impacts of liquid molecules can also force the suspended particle to rotate. This 

phenomenon gives rise to what is called rotational Brownian diffusion. 

 
The first approach of Einstein's theory is based on an argument of thermodynamic 

equilibrium. Suppose that x (t) - x (0) = X (t) is the translation diffusion distance of a 

colloidal particle, between an initial time t = 0 and a later time t. The average value at 

thermodynamics equilibrium of the statistical parameter < ܺଶ >  can be written in Einstein's 

work as: 

< ܺଶ >  =  (A1.1)        ݐܦ2

 

Where D is the diffusion coefficient of the colloidal particle, and is given by Einstein's theory 
as: 
ܦ  =

௄ಳ் 

ς
          (A1.2) 

 
In Eq. A1.2, T is absolute temperature, KB is Boltzmann's constant =1.38 10 -23 J K-1, and  ߣ is 

a friction coefficient of the particle in the fluid. To give an example, the friction coefficient ߣ 

for a sphere of radius R is given according to Stokes theorem by ς =  is ߟ where ,ߟܴߨ6

viscosity of the fluid. 
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AI.1 Langevin solution for Brownian motion 

Consider a single isolated colloidal particle suspended in a liquid, and undergoing random 

motion caused by its collisions and the surrounding liquid molecules. The colloidal particle 

has no preferred direction and at any instant it is not possible to predict in what direction it is 

going to move after such collisions. 

We may nevertheless write down the equation of motion of such a particle under the action of 

two forces: a viscous force f = - ς v, where v is velocity of the particleand ς is the friction 

coefficient, and a fluctuating random forces F (t) owing to the collisions. 

The equation of the motion of the particle is then given by Newton's law 

 ௗ௩
 ௗ௧ = ݒߛ− +

ி(௧)௠        (AI.3)     

        

Where ߛ =
చ௠               

F (t) is also called the Langevin force; it represents the unceasing impacts of the molecules of 

the fluid on the Brownian particles. Eq.AI.3 is called the Langevin equation, (Langevin 1908) 

It is a stochastic differential equation, and contains a fluctuating term F (t). This term is a 

stationary random force, since 〈(ݐ)ܨ〉 = 0         (AI.4a) 〈ݐ)ܨ(ݐ)ܨ ′)〉 = ݐ)ߜ ௩݉ଶܦ2 − ݐ ′)      (AI.4b)                

Putting v = v0 at time t = 0, the general solution of the Langevin equation may be written 

formally as follows (ݐ)ݒ = ଴݁ష೟ഓݒ +
௘ష೟ഓ௠ ∫ ݐ)ܨ ′)

௧଴ ݁ష೟′ഓ  ݀ ݐ ′     (AI.5) 

Where ߬ =
ଵఊ =

௠చ  is the relaxation time of the velocity auto-correlation function and ߛ  is 

friction coefficient per unit time. 

Eq. AI.5 shows that the particle velocity is a random quantity and that it is a function of time. 

As the average fluctuating force F (t) is zero, we may readily show that: 

〈(ݐ)ݒ〉 = ଴݁ష೟ഓݒ         (AI.6) 

         

Physically, the colloidal particle will come to equilibrium in the fluid when its average 

velocity goes to zero after a time t >> ߬   where ߬ is a characteristic diffusion time .Further; we 
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can define an auto-correlation function, between the instants t and t + ߬ ௩, using the Eq. AI.3 

and AI.4. ܥ௩(߬௩) = ݐ)ܸ(ݐ)ܸ〉 + ߬௩)〉       (AI.7a) 

௩(߬௩)ܥ                                                                                                         = ష(మ೟శഓೡ)ഓ݁〈଴ଶݒ〉  + ௩߬(݁షഓೡഓܦ  − ݁ష(మ೟శഓೡ)ഓ  )    (AI.4b) 
 

Under this condition (ݐ/  ߬  >> 1), the previous relation is simplified and take the following 

form ܥ௩(߬௩) = ݐ)ܸ(ݐ)ܸ〉 + ߬௩)〉 ≅ ௩߬݁షഓೡഓܦ      (AI.8) 

 

Fig AI.1 velocity auto-correlation function 

 

For ߬ ௩  = 0, we find a relation according to the thermal energy 〈ݒଶ(ݐ)〉 ≅ D୴τ =
ୈ౬ఊ =

୏ా୘୫        (AI.9) 

Then we can deduce the expression of the diffusion coefficient constant in term of  , m ,T and 

Boltzman's constant KB  : 

= ௩ܦ 
௄ಳ்௠  (AI.10)          ߛ 

 

The position of the particle is a random variable, and it is a function of time; we will calculate 

the average position in terms of time to obtain the necessary information on the behaviour of 

the Brownian particles in the fluid.  

 

  We Assume that at time t = 0, x0 = 0; from Eq. AI.5, we conclude that: 
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(ݐ)ݔ = ଴߬ݒ ቀ1− ݁ష೟ഓ ቁ +
ଵ௠ ∫ ݐ݀ ′ ∫ ݐ)ܨ ′′)݁ష(೟′ష೟′′)ഓ ݐ݀ ′′௧′଴௧଴    (AI.11) 

   

The average value of x (t) is 〈(ݐ)ݔ〉 
〈(ݐ)ݔ〉  = −଴߬(1ݒ ݁ష೟ഓ )       (AI.12) 

 

Since the auto-correlation function of velocity is difficult to derive, it is preferable to calculate 

the square displacement,. Putting at instant t = 0, x = x0 , one obtains  

(ݐ)ݔ)〉  − 〈଴)ଶݔ = 〈(∫ ݐ)ݒ ′)௧଴ ݐ݀ ′)ଶ〉 = ∫  ଵݐ݀
௧଴ ∫ ଶ௧଴ݐ݀  (AI.13)  〈(ଶݐ)ݒ(ଵݐ)ݒ〉

 

Using the Eq. AI.8 and t >> ߬ we obtain: 
(ݐ)ݔ)〉  − 〈଴)ଶݔ ≅ ଶ஽ೡఊమ ݐ =  (AI.14)                                                                  ݐ௫ܦ2

   With   ࢞ࡰ =
૛ࢽ࢜ࡰ   is the spatial diffusion coefficient. 

AI.2 Translation and Rotational Diffusion Coefficients for Rod-like Particles  

For the rod, the translation diffusion, parallel and perpendicular to its axis may be treated 

separately Fig A1.2; we assign by D∥ and Dୄ  the diffusion coefficients parallel and normal to 

the rod. The distances R∥ and Rୄ, moved by the rod respectively parallel and normal to its 

symmetry axis, during a short instant t=t2-t1, are then: 

 〈|Rୄ(tଶ − tଵ)|ଶ〉 = 2DୄΔt    

         (AI.15) 〈หR∥(tଶ − tଵ)หଶ〉 = 2D∥Δt 

Fig A1-2: D// and D Translation diffusion of the rod 
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(Riseman and Kirkwood 1950), have calculated the values of the diffusion coefficients, D// , 

D┴, and Dr  from the hydrodynamics and using the model of shish-kebab, and here their 

results: 

 D∥ =
௄ಳ்ద∥ =

௄ಳ்௟௡(
ಽ೏)ଶగఎ௅  

Dୄ =
௄ಳ்ద఼ =

௄ಳ்௟௡(
ಽ೏)ସగఎ௅        (AI.16) 

 D୰ =
௄ಳ்దೝ =

௄ಳ்௟௡(
ಽ೏)ଶగఎ௅య  

The rod diffuses more readily parallel to its symmetry axis than perpendicular to it, as 

D∥ = 2Dୄ an effective translational diffusion coefficient is defined in the literature as: 

 

௧ܦ  =
ଵଷ (D∥ + Dୄ)        (AI.20) 

(Broersma 1960; Broersma 1960) rewrote the previous inequalities by introducing a 

correction factor , taking into account the hydrodynamic behaviour for a smooth cylinder 

and combining the theoretical and experimental approaches: 

 

௥ܦ  = ቀଷ௄ಳ்గఎ௅యቁ (Ω−  (ߚ

ߚ  = 1.45− 7.51(
ଵ
Ω
− 0.27)ଶ 

௧ܦ  = ቀ௄ಳ்ଷగఎ௅ቁ (Ω− ଵଶ ∥ߣ) − ((ୄߣ ∥ܦ  = ቀ௄ಳ்ଶగఎ௅ቁ (Ω − (∥ߣ                                                                                   (AI.21) 

ୄܦ  = ቀ௄ಳ்ସగఎ௅ቁ (Ω− (ୄߣ  

∥ߣ  = 1.27− 7.4(
ଵ
Ω
− 0.34)ଶ 

ୄߣ  = 0.19− 4.2(
ଵ
Ω
− 0.39)ଶ 

 Ω = ln(
ଶ୐ୢ

) 

 

AI.3 Translation and Rotational Diffusion Coefficients for Ellipsoidal-like Particles  

The Brownian diffusion coefficient for a spheroid particle with long axis of length L and two 

short axes of length R = d/2, translational diffusion is anisotropic and is described by 
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diffusion coefficients  ܦ௅ =
୏ಳ் 

ςಽ   along the long axis and  ܦோ =
୏ಳ் 

ςೃ along the short axes. The 

rotationnel diffusion coefficient of the spheroid about its short axes is ܦఏ =
୏ಳ் 

ςഇ . Generally, 

the drag coefficients ς௅, ςோ and ςఏ depend on the shape and size of the ellipsoid.  

 

Brownian motion of anisotropic particles was first seriously considered by F. Perrin (Perrin 

1934; Perrin 1936) who computed these drag coefficients analytically for a spheroid diffusing 

in three dimensions space. When a ellipsoidal particle with semi-axes (L/2, R, R), moves 

along one of its principle axes with velocity v, through an unbounded quiescent fluid with 

viscosity  at low Reynolds number, then the translational and rotational drag coefficients 

affecting the ellipsoidal are:  

 

  ς =  (AI.22a)           ܩ݀ߟߨ6

  ςఏ =  ఏ         (AI.22b)ܩܸߟߨ6

 

Where V is the volume of the spheroid and G is the geometric factor that renders the ellipsoid 

different relative to the case of a sphere. The geometric factors for spheroids diffusing in 3D 

are analytically derived from Perrin’s equations (Happel and Brenner 1991) 

௅ܩ  =  ଷ଼ ଵ቎ మೝ೐భషೝ೐మା మೝ೐మషభ൫ೝ೐మషభ൯య/ మ௟௡ቌೝ೐శටೝ೐మషభೝ೐షටೝ೐మషభቍ቏
                                       (AI.23a) 

ோܩ =  ଷ଼ ଵቈ ೝ೐ೝ೐మషభା మೝ೐మషయ൫ೝ೐మషభ൯య/ మ௟௡ቀ௥೐ାඥ௥೐మିଵቁ቉         (AI.23b) 

 

and (Perrin 1934; Koenig 1975) 

ఏܩ  =  
ଶଷ ௥೐రିଵ቎మೝ೐మషభටೝ೐మషభ௟௡ቀ௥೐ାඥ௥೐మିଵቁି௥೐቏

        (AI.23c) 

 

Here re = Ld is the ellipsoid aspect ratio. When re = 1, then G = ܩఏ =1 and Eq. AI.22 reduces 

to the translational and rotational Stokes laws for a sphere. Note also that Eqs. AI.22 and 

AI.23 are obtained using stick boundary conditions. 
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Annex AII 

 

 

Rotational Brownian motion relation in 3D spatial frames  

 

 

The Brownian forces in the bulk create a diffusive rotational motion of the particles.   The 

Brownian rotation variables between two successive simulation events labelled s and s +1 ߠ߂௥௢௧(ݏ; ݏ + 1)and ߮߂௥௢௧(ݏ; ݏ + 1)  can then be simplified in the algorithm to 

;ݏ)௥௢௧߮߂  ݏ + 1) = ± ;ݏ)௥௢௧ߠ߂  ௥௢௧                                                   (AII.1a)߮߂ ݏ + 1) = ±   ௥௢௧                                                    (AII.1b)ߠ߂

 

The notationݏ ± ± ௥௢௧ and߮߂  ௥௢௧ is clock and anticlockwise Brownian rotation.  In thisߠ߂

procedure the simulation time interval t is related to an effective variable for the Brownian 

rotation diffusion by the following equation. 

 

௥௢௧ଶ߮߂  = ௥௢௧ଶߠ߂ (AII.2a)                                                       ݐ߂  ఝ ௥௢௧ܦ2 =  (AII.2b)                                                         ݐ߂  ఏ ௥௢௧ܦ2

 

For the small simulation time intervals t to be unique, they must satisfy  

ݐ߂  =
ଵଶ஽ഇ ೝ೚೟  

௥௢௧ଶߠ߂  =  
ଵଶ஽ക ೝ೚೟  ߮߂௥௢௧ଶ       (AII.3) 

 

This leads to the simulation relationship that  

௥௢௧ଶߠ߂  =  
ଶ஽ഇ ೝ೚೟ ଶ஽ക ೝ೚೟  ߮߂௥௢௧ଶ ≡ r஘,஦ ߮߂௥௢௧ଶ       (AII.4)          

 

There are two ways to treat r஘,஦  in the numerical simulations as follows 

 

r஘,஦ =  
஽ഇ ೝ೚೟  ஽ക ೝ೚೟ = 1        (AII.5a) 

r஘,஦ =  (sin߮)  ି ଶ        (AII.5b) 

Eq. AII.5a is based on the assumption of independent and random Brownian simulation 

events, where the ellipsoidal symmetry cuts the same diffusion coefficient in whatever 

angular displacement it makes.  
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Relation between ࢚࢕࢘ࣂࢤ and ࢚࢕࣐࢘ࢤ in Eq. AII.5b  

 

Consider rod-like particle with length OP = r; the particle orientation is defined by two angles (, 

); the spherical angles θ and  defined in a fixed Cartesian coordinate x, y, z in three 

dimensional spatial frames Fig AII.1; θ is defined as the angle of the particle with respect to flow 

direction, φ as the vorticity axis. 

 
Fig AII.1 Coordinate system for rod-like OP and subject to a simple shear flow  in xy plane. 

 

Geometrical study  

OP’ =  is the projection of OP = r in xy plane   

OP’ = r sin         (AII.6)
OQ = r corresponds to the rotation of OP by small angle ܱܲ෣ܳ
OQ’ =  is the projection of OQ in xy plane, the small angle between OP’ and OQ’ is ܲ’ܱܳ’෣ = 


We have  

 ܲܳതതതത = ܲ′ܳ′തതതതതത          (AII.7)
For small angle we have  

 ܲ෢ܳ = ܲܳതതതത         (AII.8) 

thus 
 ܲ෢ܳ = ܲ′ܳ′෣         (AII.9)

In the same we can calculate   ܲ෢ܳ  and ܲ′ܳ′෣ as following: 

  ܲ෢ܳ = ߮  ∆ ݎ , and  ܲ′ܳ′෣ =   ߠ  ∆ߩ

 

Hence  ܲ෢ܳ = ܲ′ܳ′෣ = ߮  ∆ ݎ =  ߠ  ∆ߩ



 

160 

 

Using Eq. AII.6 ݎ ∆  ߮ = ݊݅ݏ ݎ  ∆  ߠ 

Therefore  

  ∆  ߮ = ݊݅ݏ   ߮  (AII.10)         ߠ  ∆ 

On the other hand  

r஘,஦ =  
 ఏ ௥௢௧ܦ2
= ఝ ௥௢௧ܦ2

௥௢௧ଶ߮߂௥௢௧ଶߠ߂ =  
௥௢௧ଶߠ߂

݊݅ݏ)   ߮ ଶ (ߠ  ∆  =
݊݅ݏ1   ߮  ଶ 

Therefore Eq. AII.5b is proved  

r஘,஦ =  (sin߮)  ି ଶ 

 

Comparison Between the results obtained for different ܚી,૎  

Fig AII.2a and b, and Fig AII.3a will present the angular PDF distributions, P (, ), for 

ellipsoidal macromolecular; while Fig AII.4a and b will present the angular PDF distributions, 

P (, ), for rod-like macromolecular particles in 3 dimensional spatial frames in bulk system, 

at different ratio rθ,φ and at medium Peclet number  = 10;  The angles  and  represent the 

orientational angle of the particles in the 3D system, θ is defined as the angle of the particle 

with respect to flow direction, φ as the vorticity axis, for the ellipsoidal particles we define 

also the aspect ratio which corresponds to the ratio of the length of the ellipsoid to its width. 

The maximum probability in these Figs corresponds to the red color which decreases to attain 

the minimum value (black color).  

 

The PDF distribution in Fig AII.2a and b at medium hydrodynamic flow  = 10, and for small 

aspect ratio re = 1.02, show a uniform distribution of the particles all over the bulk region with 

no preferred axes of rotation This wide range of distribution comes from the small aspect ratio 

of the ellipsoidal particle . The ratio r஘,஦ between the two figures is not the same which means 

that the total stochastic Brownian motion of particles is not the same; this gives two kind of 

Brownian activation. Indeed it’s important to mention that the physical distributions for the 

two figures are the same. Similarly the physical distributions Fig AII.3a and b and Fig AII.4a 

and b are the same  
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Fig AII.2 Simulation results for normalized angular PDF, P (, ), in the bulk at medium Peclet number  = 10 

and at small aspect ratio re = 1.02 a): rθ,φ =  (sin߮)  
−2

 (b): r஘,஦ =  1 
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Fig AII.3 Simulation results for normalized angular PDF, P (, ), in the bulk at medium Peclet number  = 10 

and at aspect ratio re = 1.2 a): rθ,φ =  (sin߮)  
−2

 (b): r஘,஦ =  1 
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Fig AII.4 Simulation results for normalized angular PDF, P (, ), in the bulk at medium Peclet number  = 10 

for rod-like particles a): rθ,φ =  (sin߮)  
−2

 (b): r஘,஦ =  1 
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Annex AIII 

 

 

Particles interaction  

 

AIII.1 Tsai derivation for Attractive and Repulsive Forces and Energies for a Flattened 

Spherical Particle on the Surface (Tsai, Pui et al. 1991) 

 

Both the attractive and repulsive molecular contributions are integrated based on the 

additive assumption for a flattened sphere on the plane Fig AIII.1. Consider the interaction 

force between a molecule P in the flattened surface and a molecule in the plane, this 

interaction can be integrated as follows: 

 

௉ି௉௟௔௡௘ܨ  = ݊)ߨ2 − 1)݊ଵߣ∫ ଵஶ௖ݔ ଵݔ݀ ∫ ௬భ൫௫భమା௬భమ൯(೙శభ)మஶ଴  ݀ ଵݕ =
ଶగ௡భఒ

(௡ିଷ)஼೙షయ    (AIII.1) 

 ݊ = ߣ,7 = ݊  ଵ For attractive forceߚ  = ߣ,13 =   ଶ For repulsive forceߚ− 

The constant term ߚଵ is equal 4ݖߝ଴଺ and it’s called the London- van der Waals constant, and 

the constant term ߚଶ is equal 4ݖߝ଴ଵଶ, and represents the repulsive components. ߚଵ and ߚଶ are 

related as ߚଶ =   ଴଺. Chapter 5ݖଵߚ 

 

Fig AIII.1 

Because of the symmetry ܨ௉ି௉௟௔௡௘ , of every point in the area dA of the flattened sphere and 

the plane can be calculated using the same expression. Hence the interaction force between 

the flattened sphere and the plane can be integrated as: 
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ܨ =  
ଶగమ௡భ௡మఒ

(௡ିଷ)
∫ (ோమି௫మ)

(ோᇲି௫)೙షయ =
ସగమ௡భ௡మఒோ

(௡ିଷ)(௡ିସ)(௡ିହ)௭೙షఱோିఋିோ ቄ1 +
(௡ିହ)ఋ௭ ቅ +  (AIII.2) ܦ

In the above equations, n1 and n2 are the numbers of the molecules in the plane and the 

flattened sphere respectively ܴ ᇱ = ܴ + ݖ −  represents the amount of deformation and is ߜ ,ߜ

the relative approach between the particle and surface;  the constant D are due to the deformed 

contact profile. They depend on n value and can be shown to be: 

For n = 7 

ܦ =  − గమ௡భ௡మఒோ଺௭మ ఋ௭ ቊ ଵቀଵିଶ೥ഃቁఱቋ ൤1− 12
௭ఋ + 72 ቀ௭ఋቁଶ +  ⋯൨   (AIII.3a) 

For n = 13 

ܦ  =  − గమ௡భ௡మఒோଵ଼଴௭ఴ ସఋ௭ ቊ ଵቀଵିଶ೥ഃቁభభቋ ൤1− ସହଶ ௭ఋ +
ଵ଺ଶ଴଻ ቀ௭ఋቁଶ +  ⋯൨  (AIII.3b) 

By adding the constant D into Eq. AIII.2 and neglecting high order terms, the attractive force ܨ௔(݊ = 7)  and repulsive force ܨ௥(݊ = 13)  can be written as: 

௔ܨ  = +
஺భோ଺௭మ ቄ1 +

ఋ௭ቅ        (AIII.4a) 

௥ܨ = − ஺మோଵ଼଴௭ఴ ቄ1 +
ସఋ௭ ቅ       (AIII.4b) 

Where ܣଵ = ଶܣ ଵandߚ ଶ݊ଵ݊ଶߨ  =  ଶ, are the Hamaker constant for attraction andߚ ଶ݊ଵ݊ଶߨ 

repulsion respectively. If the concept of molecular- molecular interaction is used, it can be 

shown  ܣଶ =  ଴଺ (Tsai, Pui et al. 1991) found that a force constant Ka must be added suchݖଵܣ 

that ܣଶ =   .଴଺, Without this force constant, force balance cannot be otherwise satisfiedݖଵܣ௔ܭ 

The attractive (Ea) and repulsive (Er) interaction energies can be obtained in the same way as 

follows 

௔ܧ  = − ஺భோ଺௭ ቄ1 +
ఋଶ௭ቅ        (AIII.5a) 

௥ܧ  = +
஺మோଵଶ଺଴௭ళ ቄ1 +

଻ఋଶ௭ቅ       (AIII.5b) 
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AIII.2 Interaction Potentials between Macroscopic Bodies 

 
In this section we shall relate the pair potentials between small molecules to those between 

molecules and surfaces, and between large particles of different geometries.  

 

AIII.2.1 Molecule-Surface Interaction 

Let us assume that the pair potential between two atoms or small molecules is purely 

attractive and of the form (ݎ)ݓ = −  
஼௥೙. Then, with the further assumption of additives, the 

net interaction energy of a molecule and the planar surface of a solid made up of like 

molecules (AIII.2) will be the sum of its interactions with all the molecules in the body. For 

molecules in a circular ring of cross-sectional area dxdz and radius x, the ring volume is 

2xdxdz, and the number of molecules in the ring will be 2xdxdz, where  is the number 

density of molecules in the solid. The net interaction energy for a molecule at a distance D 

away from the surface will therefore be: 

(ܦ)ܹ  = ߩܥߨ2−  ∫ ݖ݀ ∫ ௑ௗ௫
(௭మା௫మ)೙/ మ = − ଶగ஼ఘ

(௡ିଶ)

௫ୀஶ௫ୀ଴௓ୀஶ௭ୀ஽ ∫ ௗ௭௭೙షమஶ஽ (ܦ)ܹ     = ߩܥߨ2−  (݊ − 2)(݊ − ⁄௡ିଷܦ(3  For n > 3   (AIII.6) 

 
Fig AIII.2 Methods of summing (integrating) the interaction energies between molecules in condensed phases to 

Molecule near a flat surface or “wall 
 

 
For n = 6 (van der Waals forces) becomes 
 

(ܦ)ܹ  = ߩܥߨ−  ⁄ଷܦ6        (AIII.7) 

The corresponding force, (ܦ)ܨ =  − ௗ௪(஽)ௗ஽ = − − గ஼ఘଶ஽ర, could, of course, have been derived in 

a similar way by summing (integrating) all the pair forces resolved along the z-axis. 

 

AIII.2.2 Sphere-Surface and Sphere-Sphere Interaction 
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We can now calculate the interaction energy of a large sphere of radius R and a flat surface 

(Fig AIII.3). From the chord theorem, for the circle:ݔଶ = (2ܴ −  The volume of a thin  ;ݖ(ݖ

circular section of area x
2 and thickness dz is therefore ݔߨଶ݀2ܴ)ߨ = ݖ −  so that the ,ݖ݀ ݖ(ݖ

number of molecules contained within this section is 2ܴ) ߩߨ −  where  is the number  ;ݖ݀ݖ(ݖ

density of molecules in the sphere. Since all these molecules are at a distance (D+ z) from the 

planar surface, the net interaction energy is, using Eq. AIII.6  

 

Fig AIII.3 Methods of summing the interaction energies between spherical particle near a wall (R » D) 
 

 

(ܦ)ܹ  =
ଶగమ஼ఘమ

(௡ିଶ)(௡ିଷ)
 ∫ (ଶோି௭)௭ௗ௭

(஽ା௭)೙షయ௭ୀଶோ௭ୀ଴      (AIII.8) 

 

For ܦ ≪ ܴ only the small values of z (ܦ~ݖ)contribute to the integral, and we obtain 

(ܦ)ܹ  =
ଶగమ஼ఘమ

(௡ିଶ)(௡ିଷ)
 ∫ ଶோ௭ௗ௭

(஽ା௭)೙షయ௭ୀଶோ௭ୀ଴ =
ସగమ஼ఘమோ

(௡ିଶ) (௡ିଷ)(௡ିସ)(௡ିହ)஽೙షఱ  (AIII.9) 

 

For n = 6 (van der Waals forces) becomes 

 
(ܦ)ܹ  = ଶߩܥߨ−  ⁄ܦ6        (AIII.10) 

 

Note that the interaction energy is proportional to the radius of the sphere and that it decays as 

1/D, very much slower than the 1/   .଺ dependence of the intermolecular pair interactionݎ

For D » R, we may replace (D + z) in the denominator of Eq. AIII.8 by D, and we then obtain 

(ܦ)ܹ  =
ଶగమ஼ఘమ

(௡ିଶ)(௡ିଷ)
 ∫ (ଶோି௭)௭ௗ௭

(஽ା௭)೙షయଶோ଴ =
ଶగమ஼ఘ(ସగோయఘ/ ଷ)

(௡ିଶ)(௡ିଷ)஽೙షయ    (AIII.11) 

 

Since (4ܴߨଷߩ/ 3)  is simply the number of molecules in the sphere, the preceding is 

essentially the same as Eq. AIII.6 for the interaction of a molecule (or small sphere) with a 

surface.  
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AIII.3 chord theorem 

 

Two rigid macroscopic spheres of radius R are in adhesive contact as in Fig AIII.4, the 

effective contact area can be calculated by what called chord theorem.  

 
Fig AIII.4 

 
Referring to Fig AIII.4 (left), we need to determine the area that excludes solvent molecules, 

of radius a, between the surfaces. That is, we need to determine ݎߨଶ in terms of R and a. From 

the geometric construction of Fig AIII.4 (right) we apply Pythagoras’s theorem: 

ଶܥܣ  = ଶܤܣ + ଶܥܤ = ଶܦܣ + ଶܦܤ +  ଶܥܦ

Thus: 
 

4ܴଶ = ܽଶ + ଶݎ2 + (2ܴ − ܽ)ଶ 
 
This simplifies to 
ଶݎ  = (2ܴ − ܽ)ܽ ≈ 2ܴܽ  ݂ ܴ ݎ݋ ≫ ܽ     (AIII.12) 
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Annex AIV 

 

Effective Hamaker constant at a rough surface boundary  

The most notable research work for developing rough surface boundaries is the study of 

(Greenwood and Williamson 1966) (GW). GW is a statistically based approach. The GW 

theory makes the following assumptions: i) all asperities in contact were spherical with the 

same radius of curvature, ii) asperity heights follow a Gaussian distribution, and iii) there is 

no interaction between contacting asperities. (Fuller and Tabor 1975) made use of the 

statistical framework developed by GW and used it to create an adhesive solution for JKR 

contact types. The two rough surface contact theories mentioned above and of course many 

others (Maugis 1992; Kim, McMeeking et al. 1998; Morrow, Lovell et al. 2003) are based 

upon conventional statistical parameters such as standard deviation of asperity heights, slope 

and radius of curvature. In this work we will solve the problem of an effective Hamaker 

constant for the rough surface boundary of a pore with a liquid solution that fills it, by 

extending the GW analysis. 

                    

Fig AIV.1 Gaussian rough surface, (a) Topography and (b) height distribution 

 

Consider a Gaussian rough surface Fig AIV.1 a with statistical distribution Q(y), as in Fig 

AIV.1 b, over terrace heights y with a given mean μ and standard deviation σ. Further, we 

consider, the maximum height of surface profile roughness to be y = hmax= 1 unit and other 

characteristic statistical parameters for the terrace height distributions,(hmax=1 unit , havgrage = 

0.5 unit hmin=0.0 unit). The Gaussian function can be written in the following form: 

(ݕ)ܳ =
ଵ√ଶగఙమ ݁ି(೤షഋ)మమ഑మ        (AIV.1) 

Now we take a square sample of the Gaussian rough surface presented in Fig AIV.1, with 

N*N boxes and each box has its own height. The length and width of this sample is ܮ =  as ߪ9

in Fig AIV.2. 
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Fig AIV.2 N*N Square Gaussian Rough Surface Sample 

 

Consider now 1 row element from this sample with length ܮ =  = this row consists of N ,ߪ9

100 small boxes each box has length and width b Therefore: 

ܮ = ܾܰ ⇒ ܾ =
ܮܰ

=
ߪ9
100

=  ߪ0.09

Each box has specific height h by using Eq. AIV.1 with μ= 0.5 and σ=0.12, we get typically 

the following results: 

20 boxes 0.4375 < ℎ < 0.5 ; 20 boxes  0.5 < ℎ < 0.5625 

15 boxes  0.375 < ℎ < 0.4375 ; 15 boxes  0.5625 < ℎ < 0.625 

8 boxes  0.3125 < ℎ < 0.375 ; 8 boxes  0.625 < ℎ < 0.6875 

4 boxes  0.25 < ℎ < 0.3125 ; 4 boxes  0.6875 < ℎ < 0.75 

1 box 0.1875 < ℎ < 0.25 ; 1 box  0.75 < ℎ < 0.8125 

1 box 0.125 < ℎ < 0.1875 ; 1 box  0.8125  < ℎ < 0.875 

1 box 0.0625 < ℎ < 0.125 ; 1 box  0.875  < ℎ < 0.9375 

 

From the above information we can calculate the volume governed by this roughness of one 

row element by multiplying the height by the area of each box  

௘ܸ௟௘ = 40.90625 × ܾଶ ௘ܸ௟௘ = 40.90625 × (0.09 × 0.12)ଶ ⇒ ௘ܸ௟௘ = 4.77 × 10ିଷ݁݉ݑ݈݋ݒ ݐ݅݊ݑ ⇒ ௦ܸ௨௥ = ௘ܸ௟௘  × 100 =  ݁݉ݑ݈݋ݒ ݐ݅݊ݑ 0.477
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Fig AIV.3 polystyrene particle with radius R in water medium collide with a copper rough surface.  

On the other hand the total volume of the surface with same height all over the surface 

௧ܸ௢௧ =  ݁݉ݑ݈݋ݒ ݐ݅݊ݑ 1

Consider a particle with radius R in fluid medium collides with a Gaussian rough surface Fig 

AIV.3. We assume that the liquid solution inside the pore fills up the region between the 

occupies the empty space of the rough surface, equivalent to 0.523 ×  ௧ܸ௢௧ , and the material 

roughness of the surface has a volume 0.477 ×  ௧ܸ௢௧  . 
These results permit to calculate an effective Hamaker constant, by combining the appropriate 

configurations of the Hamaker constants of the particle, the solution as an intermediate 

medium, and the solid surface (Israelachvili 1972; Israelachvili 2011), in the depletion layer 

above the rough surface. 

Taking the following Hamaker constants for the considered system with water as the liquid 

solution in the pores (Israelachvili 2011),  ܣ௣௢௟௬ = ଵଵܣ = 6.5 × 10ିଶ଴ J ܣுమ௢ = ଶଶܣ = 3.7 × 10ିଶ଴ J ܣ஼௨ = ଷଷܣ = 7.6 × 10ିଶ଴ J, 
 

the Hamaker constant for the copper rough surface with water is: 

ଶଶ௘௙௙ܣ                                = ଷଷܣ0.477 + ଶଶܣ0.5237 = 5.56 × 10ିଶ଴ J  
Hence the effective system Hamaker constant for copper rough surface, water liquid solution 

and incident polystyrene particle is:  

ܣ = ௧௢௧ܣ = ටܣଶଶ௘௙௙ܣଵଵ = 6.012 × 10ିଶ଴ J 
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Abstract: The purpose of this thesis is to develop a comprehensive model analysis in a three-dimensional 

spatial frame for the dynamics of molecular particles in dilute colloidal suspensions in solutions flowing 

inside pores of variable width, subject to hydrodynamic forces, Brownian motion and diffusive collisions at 

the rough pore boundaries, by using numerical simulations. The approach by simulations is necessary 

because it is extremely complex to use analytical tools at present to deal with the problem of diffusive 

collisions of the particles at the solid pore boundaries. The algorithms which we have developed and the 

corresponding simulations are sufficiently general and refined to be directly applied to the study of the 

dynamics of a wide variety of polymer and biological particles in dilute solutions under diverse physical 

and applicable hydrodynamic conditions inside pores.  

 

Moreover, the mechanisms leading to the adhesion of particles of nano sizes under what would be non-

equilibrium conditions, due to the conflicting influence of the mechanical diffusive collisions and the 

attractive Hamaker forces at the boundaries, are of major interest. We have hence investigated a theoretical 

model to calculate the restitution coefficient from basic physical principles. The objective is to quantify the 

energy balance during the process of a diffusive collision of a nano particle under the influence of the 

repulsive forces on one hand, and the attractive Hamaker forces acting on the nano particle on the other. 

This is done by developing a model, based on the JKR and Hertz theories, to account for the energy losses 

during collisions, and for the energy gains due to the Hamaker interactions. Adhesion becomes an outcome 

if the energy balance permits this. Our theoretical model is developed by proposing a special analytic 

approach based on the Hamaker potential. We derive from the theoretical analysis a characteristic nonlinear 

equation for the restitution coefficient, and analyze its properties which determine under given physical 

conditions the outcome for adhesion or not.  

 

 

Résumé : Les objectifs de cette thèse visent le développement d’un traitement inédit dans un repère 

spatiale tridimensionnel, pour le problème de la dynamique de collisions diffusives d’objets 

macromoléculaires en solution en écoulement hydrodynamique à l'intérieur des pores de largeur variable, 

soumis aux forces hydrodynamiques, du mouvement brownien et des collisions diffusifs aux parois des 

pores, en utilisant la modélisation théorique et les simulations numériques. L’approche par simulation 

numérique est nécessaire car il est extrêmement complexe d’utiliser des outils analytiques à présent pour 

traiter le problème de ces collisions diffusives aux parois solides. Les algorithmes que nous avons 

développés et les simulations correspondantes sont suffisamment généraux et avancés pour être directement 

appliquée à l'étude de la dynamique d'une grande variété de polymère et des particules biologiques dans des 

solutions diluées sous diverses conditions physiques et hydrodynamiques à l'intérieur des pores.  

 

Par ailleurs, les mécanismes conduisant à l'adhésion de nano particules et de particules 

macromoléculaires sous conditions de non-équilibre, en raison de l'influence contradictoire des collisions 

mécaniques diffusifs et les forces attractives de Hamaker aux parois solides, sont d'un intérêt majeur. Nous 

avons donc développé un modèle théorique pour calculer le coefficient de restitution. L'objectif est de 

quantifier le bilan énergétique pendant le processus de collision diffusive de ces particules aux parois, sous 

l'influence des forces de répulsion d'une part et les forces attractives de Hamaker. Cela se fait par 

l'élaboration d'un modèle, basé sur le JKR et les théories d’Hertz, pour tenir compte des pertes d'énergie 

lors des collisions et des gains d'énergie en raison des interactions Hamaker. L’adhésion arrive si le bilan 

énergétique le permet. Notre modèle théorique est développé en proposant une approche particulière basée 

sur le potentiel Hamaker. Nous démontrons ce bilan par le biais d'une équation caractéristique non linéaire 

pour le coefficient de restitution, et analysons ses propriétés qui déterminent l'adhésion ou non pour 

diverses conditions physiques initiales. 


