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Abstract

This thesis is a contribution to the resolution of the reliability-based design optimization
problem. This probabilistic design approach is aimed at considering the uncertainty at-
tached to the system of interest in order to provide optimal and safe solutions. The safety
level is quantified in the form of a probability of failure. Then, the optimization prob-
lem consists in ensuring that this failure probability remains less than a threshold specified
by the stakeholders. The resolution of this problem requires a high number of calls to
the limit-state design function underlying the reliability analysis. Hence it becomes cum-
bersome when the limit-state function involves an expensive-to-evaluate numerical model
(e.g. a finite element model). In this context, this manuscript proposes a surrogate-based
strategy where the limit-state function is progressively replaced by a Kriging meta-model.
A special interest has been given to quantifying, reducing and eventually eliminating the
error introduced by the use of this meta-model instead of the original model. The proposed
methodology is applied to the design of geometrically imperfect shells prone to buckling.

Keywords: adaptive surrogate modelling • Kriging • Gaussian processes for regression
and probabilistic classification • reliability analysis • rare event probabilities • importance
sampling • reliability-based design optimization • probabilistic buckling • geometrically
imperfect shells

Résumé

Cette thèse est une contribution à la résolution du problème d’optimisation sous contrainte
de fiabilité. Cette méthode de dimensionnement probabiliste vise à prendre en compte les
incertitudes inhérentes au système à concevoir, en vue de proposer des solutions optimales
et sûres. Le niveau de sûreté est quantifié par une probabilité de défaillance. Le problème
d’optimisation consiste alors à s’assurer que cette probabilité reste inférieure à un seuil
fixé par les donneurs d’ordres. La résolution de ce problème nécessite un grand nombre
d’appels à la fonction d’état-limite caractérisant le problème de fiabilité sous-jacent. Ainsi,
cette méthodologie devient complexe à appliquer dès lors que le dimensionnement s’appuie
sur un modèle numérique coûteux à évaluer (e.g. un modèle aux éléments finis). Dans ce
contexte, ce manuscrit propose une stratégie basée sur la substitution adaptative de la
fonction d’état-limite par un méta-modèle par Krigeage. On s’est particulièrement employé
à quantifier, réduire et finalement éliminer l’erreur commise par l’utilisation de ce méta-
modèle en lieu et place du modèle original. La méthodologie proposée est appliquée au
dimensionnement des coques géométriquement imparfaites soumises au flambement.

Mots-clés: méta-modélisation adaptative • Krigeage • régression et classification proba-
biliste par processus Gaussiens • analyse de fiabilité • probabilités d’évènements rares •
échantillonnage préférentiel • optimisation sous contrainte de fiabilité • flambage proba-
biliste • coques géométriquement imparfaites
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Résumé étendu

Contexte

La simulation numérique est omniprésente dans l’ingénierie moderne. Son champ d’appli-
cation s’étend des sciences physiques à l’ingénierie financière. Il s’agit d’imiter le comporte-
ment d’un système physique ou abstrait à l’aide de modèles mathématiques. La fidélité de
ces modèles a été améliorée de façon significative au cours des dernières décennies. Néan-
moins, du fait de leur manque de représentativité, on observe encore des écarts entre les
comportements simulés et réels.

Par définition, ces modèles sont des idéalisations de la réalité et ils négligent par consé-
quent certains aspects du phénomène étudié. Une contribution majeure aux écarts observés
est liée à l’isolement du système étudié de son environnement. En effet, lorsque l’on étudie
un système, son environnement immédiat est réduit à un ensemble fini de configurations
idéalisées (ou nominales). Par exemple, en mécanique des structures, l’état initial d’une
structure, sa géométrie, les propriétés du matériau la constituant ainsi que les chargements
sont réduits à un ensemble fini de configurations qui peut manquer d’exhaustivité. Cette
réduction du monde réel à un modèle synthétique s’avère pourtant nécessaire à la bonne
résolution du problème (en l’état actuel de nos connaissances).

Dans ce contexte, un cadre probabiliste semble plus approprié puisqu’il permet de spé-
cifier un ensemble infini de configurations probables sous la forme d’une seule distribution
de probabilité. Cependant, une telle approche soulève des questions théoriques notamment
sur la construction de modèles probabilistes appropriés et sur les mesures de performance
associées, ces dernières étant la base de tout processus de prise de décision.

Heureusement, au cours des deux dernières décennies, un travail conséquent a été mené
en ingénierie probabiliste dans le but de formaliser ces problèmes et de former les ingénieurs
à leur résolution. En effet, la littérature scientifique fournit désormais une pléiade de tech-
niques pour la quantification des incertitudes, et les élèves-ingénieurs sont sensibilisés à la
théorie des probabilités ainsi qu’à ses applications potentielles aux problèmes industriels.
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Formulation du problème

Cette thèse s’intéresse plus particulièrement au problème du dimensionnement et de l’op-
timisation des structures en présence d’incertitudes tel que présenté dans le livre de Tsom-
panakis et al. (2008). Souvent réduit au terme de conception robuste dans l’industrie,
ce dernier problème est en fait plus général et peut se présenter sous plusieurs formes.
L’optimisation robuste cherche à minimiser l’influence des conditions environnementales
incertaines sur la performance du système à concevoir, tandis que l’optimisation sous

contrainte de fiabilité vise à concevoir pour la sûreté par rapport à des évènements ex-
trêmes (rares). Ce manuscrit se concentre sur la résolution de ce dernier problème basé sur
la fiabilité (reliability-based design optimization, RBDO).

On suppose que l’on dispose d’un modèle analytique ou numérique notéM permettant
de prédire une ou plusieurs grandeurs physiques caractérisant l’état du système par le biais
de fonctions dites de performance notées gl , l = 1, . . . , np. Ces fonctions sont construites de
telle manière que la défaillance du système suivant le l-ième scénario soit caractérisée par
les valeurs négatives de la l-ième fonction de performance gl . On a par ailleurs construit
un modèle probabiliste du système et des conditions environnementales dans lequel il évo-
lue, et on suppose que ce dernier se présente sous la forme d’un vecteur aléatoire X de
densité fX . De plus, on suppose que le vecteur aléatoire X est paramétré par des valeurs
caractéristiques maîtrisables regroupées dans le vecteur des variables de conception noté d.

Dans ce contexte, le degré de sûreté du système à concevoir est communément mesuré
par ses probabilités de défaillance définies comme suit :

p f l(d) = P
�
gl (X ,M (X))≤ 0 | d

�
=

∫

Fl

fX (x | d ) dx , l = 1, . . . , np, (1)

où Fl =
�
x ∈ X : gl (x ,M (x ))≤ 0

	
est le l-ième domaine de défaillance.

Ainsi, le dimensionnement optimal sous contrainte de fiabilité est celui qui minimise
une fonction objectif notée c (e.g. un coût de construction) et tel que ses probabilités de
défaillance n’excèdent pas les seuils prescrits par les donneurs d’ordres et notés p0

f l
, l =

1, . . . , np. Mathématiquement, ce problème prend la forme suivante :

d∗ = arg min
d ∈D

c(d) :

¨
fi (d)≤ 0, i = 1, . . . , nc

p f l(d)≤ p0
f l

, l = 1, . . . , np
, (2)

où apparaissent le domaine de conception admissible D et un ensemble de contraintes
déterministes auxiliaires fi, i = 1, . . . , nc visant à restreindre la recherche de l’optimum
recherché à des dimensionnements réalisables aux yeux des experts. Il est à noter que l’on
s’est limité ici au cas où les variables de conception d sont des paramètres de la distribution
de probabilité du vecteur X .
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Verrous scientifiques et objectifs

Un obstacle majeur à la résolution de l’Eq. (2) réside dans le nombre important de solli-
citations du modèleM pour l’analyse de fiabilité d’un seul choix de conception (i.e. pour
calculer l’intégrale de l’Eq. (1) pour une valeur donnée de d). Aussi, dans un contexte
industriel où le modèle M est coûteux à évaluer (e.g. un modèle aux éléments finis non
linéaire), on souhaiterait limiter le nombre total d’appels à ce modèle à quelques milliers.

Ainsi, pour se plier à cette contrainte, de nombreuses techniques de résolution proposées
dans la littérature sont basées sur la substitution des fonctions de performance par des méta-

modèles moins coûteux à évaluer. A titre d’exemple, la méthode FORM, largement utilisée
dans ce domaine, consiste à linéariser la surface d’état-limite S = {x ∈ X : g(x ) = 0} au
voisinage d’un point particulier baptisé point de défaillance le plus probable. Cependant,
l’hypothèse d’unicité de ce dernier point ou même la linéarité de l’état-limite au voisinage
de ce point peut s’avérer illicite, conduisant ainsi à une mauvaise estimation de la fiabilité.
De plus, il est impossible de quantifier (même grossièrement) l’erreur commise en ayant
substitué un hyperplan à l’état-limite réel.

!Dans cette thèse, on s’est particulièrement attaché à quantifier, réduire et finalement

éliminer l’erreur introduite par l’utilisation d’un méta-modèle en lieu et place du modèle

réel pour la résolution du problème d’optimisation sous contrainte de fiabilité.

Méthodologie

Apprentissage statistique

Dans le but de quantifier l’erreur de substitution, on propose de placer l’exercice de
construction du méta-modèle dans le cadre de la théorie de l’apprentissage statistique plutôt
que celle des développements limités traditionnellement utilisée dans la littérature RBDO.
La théorie de l’apprentissage statistique est présentée dans les ouvrages de références (voir
e.g. Vapnik, 1995; Santner et al., 2003; Rasmussen et Williams, 2006) et l’intérêt de son
application à la fiabilité des structures a été démontré par Hurtado (2004b).

De façon générale, cette théorie vise à construire un émulateur noté ÝM pour le simu-

lateur M à partir d’une base de données D =
¦
(x (i), yi), i = 1, . . . , m

©
composée de m

couples d’entrées x ∈ X ⊆ Rn et sorties y ∈ Y ⊆ R telles que yi =M (x (i)), i = 1, . . . , m.
Les techniques de construction de ces émulateurs dépendent principalement de la nature
de la variable de supervision y . Si elle prend des valeurs discrètes dans un ensemble fini
dénombrable, on parle de classification et si elle prend des valeurs continues dans un en-
semble indénombrable, on parle de régression. Dans le cadre de la fiabilité, on peut chercher
à approximer la surface d’état-limite S = {x ∈ X : g(x ) = 0} comme la frontière entre les
points sûrs et les points défaillants, ce qui revient à résoudre un exercice de classification
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binaire. Alternativement, on peut voir cet état-limite comme un contour particulier de la
fonction de performance g et ainsi résoudre un exercice de régression.

Dans cette thèse, on a choisi de maximiser l’information disponible en abordant le pro-
blème de méta-modélisation sous l’angle de la régression. Plus spécifiquement, la théorie
de la prédiction par processus gaussiens (également connue sous le nom de Krigeage) a été
retenue pour ses bonnes propriétés. Cette technique appartient aux méthodes de prédiction
bayésiennes telles que présentées dans le livre de Santner et al. (2003). Il s’agit de recons-
tituer la fonction M comme si elle était une réalisation d’un processus gaussien dont on
aurait collecté des observations sur un ensemble fini de points X =

¦
x (i), i = 1, . . . , m

©
.

Finalement, on montre que sous un certain nombre d’hypothèses raisonnables, on peut pré-
dire les valeurs prises par le modèle réel sous la forme d’une variable aléatoire gaussienne :

bY (x ) =
�
M (x )

��� yi =M
�

x (i)
�

, i = 1, . . . , m

�
∼N

�
µbY (x ),σ

2
bY (x )

�
, (3)

dont la moyenne µbY et la variance (de prédiction) σ2
bY sont connues analytiquement. Outre

son caractère interpolant et consistant, l’intérêt principal de cette prédiction est bien sa
nature probabiliste qui permet de calculer des intervalles de confiance sur les prédictions
fournies en général et sur la surface d’état-limite en particulier.

8 8
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8

x
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FIGURE 1 – Représentation 2D d’une prédiction par Krigeage d’un état-limite parabolique (ligne dis-
continue noire). La prédiction moyenne est représentée par la ligne continue noire tandis
que la borne inférieure (resp. supérieure) de la marge d’incertitude à 95% est représen-
tée par la ligne continue bleue (resp. rouge). Les points utilisés pour construire cette
prédiction sont représentés par les signes “plus” bleus et “moins” rouges suivant le signe
de la variable de supervision y associée. La fonction de classification probabiliste π vaut
environ 60% au point x 0 repéré par le triangle vert.
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Par exemple sur la Figure 1, on a représenté la prédiction moyenne de la surface d’état-
limite ainsi que les bornes inférieure et supérieure de l’intervalle de confiance à 95% sur
cette prédiction. Dans ce manuscrit, on appelle cet intervalle la marge d’incertitude et elle
est simplement définie comme suit :

M95% =
�
x ∈ X :−1.96σbY (x )≤ µbY (x )≤ 1.96σbY (x )

	
. (4)

On peut aussi calculer la probabilité que le modèle réel prenne une valeur négative en un
point x donné au moyen de la fonction de classification probabiliste suivante :

π(x ) =P
�bY (x )≤ 0

�
= Φ

�
0−µbY (x )
σbY (x )

�
, (5)

et dont on a représenté les valeurs en nuances de gris sur la Figure 1.

!Il est essentiel de distinguer la mesure de probabilité P dédiée à l’incertitude de méta-

modélisation, de la mesure de probabilité P associée au vecteur aléatoire X dont il n’est

pas encore question ici.

Â Cette partie est développée dans le Chapitre 1.

Plans d’expériences adaptatifs

Les techniques d’enrichissement adaptatif de plans d’expériences visent à réduire l’erreur
relative entre le méta-modèle et le modèle réel dans une région d’intérêt. Par exemple, en
optimisation globale, il s’agira de s’assurer que la fonction est précise au voisinage de tous
les minima locaux de la fonction substituée et au voisinage du minimum global recherché
en particulier. C’est d’ailleurs dans ce but que Mockus (1994) et Jones et al. (1998) ont mis
au point une technique d’enrichissement adaptatif de plans d’expériences pour localiser le
minimum global d’une fonction coûteuse à évaluer. Cette technique utilise le caractère pro-
babiliste de la prédiction par processus gaussien pour mesurer l’intérêt potentiel à explorer
certaines régions de l’espace X.

Depuis lors, l’idée générale a été étendue au problème d’approximation de contours
pour l’optimisation sous contrainte d’inégalité ou pour l’analyse de fiabilité (voir e.g. Oak-
ley, 2004; Picheny et al., 2010a). D’une façon générale, il s’agit de définir un critère qui
mesure la proximité d’un point à l’état-limite en tenant compte de l’incertitude de méta-
modélisation. Dans cette thèse, on propose d’utiliser la probabilité d’appartenir à la marge
d’incertitude M95% comme mesure de proximité à l’état-limite S = {x ∈ X : g(x ) = 0}.
Cette dernière est analytique grâce au caractère gaussien de la prédiction et se calcule
comme suit :

MP(x ) = P
�
−1.96σbY (x )≤ bY (x)≤ 1.96σbY (x )

�

= Φ

�
1.96σbY (x )−µbY (x )

σbY (x )

�
−Φ

�−1.96σbY (x )−µbY (x )
σbY (x )

�
. (6)
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Fort de cette mesure de proximité, la plupart des stratégies d’enrichissement proposées
dans la littérature consiste à trouver le point le plus proche de l’état-limite et qui permettra
ainsi de réduire l’étendue de la marge d’incertitude sur la prédiction de ce dernier. Dans
cette thèse, on soutient que ce sous-problème d’optimisation est relativement mal posé car
les critères d’enrichissement C (dont MP n’est qu’un exemple) sont souvent hautement
multi-modaux, ce qui signifie qu’il n’existe pas un seul meilleur point mais plutôt un en-
semble de points plus ou moins intéressants et d’intérêt éventuellement égal au sens du
critère C (surtout pour les critères d’approximation de contours).

Partant de ce constat, on propose d’interpréter les critères d’enrichissement (souvent
positifs) comme des densités de probabilité pour les candidats potentiels à l’amélioration
de la prédiction. Pour ce faire, il est nécessaire de s’assurer que leur intégrale sur X est finie.
C’est pourquoi on propose de pondérer C par une densité w, de sorte que l’on peut définir
le vecteur aléatoire “candidat à l’enrichissement” :

C ∼ fC(c)∝ C (c)w(c). (7)

On utilise ensuite des techniques d’échantillonnage par chaînes de Markov (Neal, 2003;
Robert et Casella, 2004) pour simuler une population de points candidats à partir de la
densité fC . Comme attendu, cette population se concentre principalement au voisinage de
l’état-limite identifié (i.e. dans la marge d’incertitudeM95%).

Cependant, on ne peut pas évaluer tous ces points du fait du budget de calcul limité.
C’est pour cette raison que l’on a recours au K-means clustering comme technique de réduc-
tion statistique d’échantillons. En effet, cette technique permet de localiser les K modes de
la densité fC (K étant donné). Ces K nouveaux points sont évalués pour venir enrichir la
base de données D et réajuster la prédiction par Krigeage bY . La Figure 2 illustre l’ensemble
de la stratégie proposée pas-à-pas. Cette procédure est répétée tant qu’un critère de préci-
sion n’est pas atteint. Ce critère dépend de l’usage de la prédiction et est évoqué dans la
section suivante.

Â Cette partie est développée dans le Chapitre 2.

Analyses de fiabilité basées sur l’apprentissage statistique

Dans le cadre d’une analyse de fiabilité, on vient classiquement évaluer la probabilité de
défaillance sur la prédiction moyenne du Krigeage par simulations. C’est ce que l’on appelle
une analyse de fiabilité par substitution. Dans le but de réduire encore le temps de calcul
total, on propose d’utiliser une technique de réduction de variance robuste connue sous
le nom de subset sampling (Au et Beck, 2001) en lieu et place des simulations de Monte
Carlo classiques qui s’avèrent trop coûteuses lorsque la probabilité à estimer est faible (i.e.

inférieure à 10−6).

Cependant, la probabilité de défaillance évaluée sur la prédiction moyenne par Krigeage
peut être biaisée par rapport à la probabilité de défaillance que l’on aurait pu estimer sur le
modèle réel. Ce biais s’avère difficile à estimer en pratique.
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FIGURE 2 – Etapes clés de la procédure d’approximation adaptative de contour. (a) On construit une
première prédiction par Krigeage à partir d’un plan d’expériences initial, ce qui permet
également de définir le critère d’enrichissement C (ici MP défini à l’Eq. (6)) représenté
en nuances de gris. (b) On échantillonne une population de taille N = 1 000 suivant le
critèreC pondéré par la densité de la distribution uniforme sur le cube X = [−8; 8]2 par
slice sampling (petits points bleus). (c) On réduit la population de taille N aux K = 10
centres de ses clusters par K-means clustering (gros points rouges). Le modèle M est
ensuite évalué en ces points pour enrichir la base de données D et la prédiction bY .

Analyse de fiabilité par substitution

En première approximation, on propose d’appréhender l’ordre de grandeur de ce biais à
l’aide de la variance de prédiction σ2

bY . Pour ce faire, on définit les trois approximations
suivantes du domaine de défaillance :

bF i
95% ≡

�
x ∈ X : µbY (x )≤ i 1.96σbY (x )

	
, i = −1, 0, +1 (8)

illustrées sur la Figure 3. Etant donné que l’écart-type de Krigeage est toujours positif, la
proposition suivante est valide :

F
−1
95% ⊆ F

0
95% ⊆ F

+1
95% ⇒ p−1

f 95% ≤ p 0
f 95% ≤ p+1

f 95%, (9)

où :
p i

f 95% = P
�

X ∈ F i
95%

�
, i = −1, 0, +1. (10)

Il est néanmoins important de signaler ici qu’il n’existe aucune preuve que la probabilité
de défaillance satisfasse cet encadrement de par les hypothèses faites jusqu’à présent. Pour-
tant, l’étendue de l’intervalle [p−1

f 95%; p+1
f 95%] s’avère être une bonne mesure pratique de la
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précision de l’estimation de la probabilité de défaillance sur la prédiction par Krigeage. Il
est donc proposé d’enrichir le méta-modèle tant que l’étendue logarithmique de l’intervalle
[p−1

f 95%; p+1
f 95%] est plus grande qu’un seuil de tolérance fixé. La condition d’arrêt pour la

procédure d’enrichissement itérative détaillée ci-avant s’écrit donc :

ǫp f
= log10

 
p+1

f 95%

p−1
f 95%

!
≤ ǫp f 0. (11)

En pratique, on visera des étendues logarithmiques ǫp f 0 inférieures à 1, ce qui signifie que
l’estimation de la probabilité de défaillance est au moins dans l’ordre de grandeur de la
probabilité réelle.
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FIGURE 3 – Domaines de défaillance approchés pour l’approximation de l’erreur sur la probabilité de
défaillance.

Quantification du biais par échantillonnage préférentiel

Afin de quantifier (et donc éliminer) le biais sur la probabilité de défaillance, on propose
une méthode de fiabilité hybride qui utilise une prédiction par Krigeage pour approcher une
estimation optimale de la probabilité de défaillance par échantillonnage préférentiel.

L’idée de l’échantillonnage préférentiel, pour l’analyse de fiabilité, est de favoriser
l’échantillonnage dans le domaine de défaillance de sorte que même si la probabilité de
défaillance est faible elle pourra être estimée précisément avec un nombre réduit de simu-
lations. Pour ce faire, on vient réécrire la probabilité de défaillance comme suit :

p f =

∫

X

✶F(x )
fX(x )

h(x )
h(x )dx , (12)
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où ✶F est la fonction indicatrice de défaillance et h est la densité dite instrumentale qui va
être utilisée pour estimer la probabilité de défaillance par simulations à la place de la den-
sité originale fX . La densité instrumentale optimale pour réduire la variance d’estimation à
zéro est donnée par Rubinstein et Kroese (2008) et s’écrit comme suit :

h∗(x ) =
✶F(x ) fX(x )∫
X
✶F(x ) fX(x )dx

=
✶F(x ) fX(x )

p f

. (13)

Cependant, elle est inutilisable en pratique car elle requiert la connaissance a priori de la
probabilité de défaillance p f (au dénominateur de l’Eq. (13)) que l’on cherche précisément
à estimer.

C’est pourquoi on propose ici d’approcher la densité instrumentale optimale par une
autre densité quasi-optimale (mais utilisable) définie comme suit :

bh∗(x ) = π(x ) fX(x )∫
X
π(x ) fX(x )dx

. (14)

Cette densité est construite à partir de la fonction de classification probabiliste π d’une
prédiction par Krigeage de la fonction de performance g (voir Eq. (5)). Les deux densités
sont comparées sur la Figure 4. La densité optimale revient à conditionner l’échantillonnage
par l’appartenance des individus simulés au domaine de défaillance. L’approximation, elle,
ne fait que favoriser cette appartenance.
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FIGURE 4 – Comparaison entre la densité instrumentale optimale (inutilisable) et son approximation
par Krigeage.

Finalement, en réinjectant la densité instrumentale proposée dans l’Eq. (12), on montre
que la probabilité de défaillance se réécrit comme suit :

p f = p f ǫ αcorr, (15)

où p f ǫ est la probabilité de défaillance augmentée estimée sur la prédiction par Krigeage
uniquement, et αcorr est le terme correctif qui vient quantifier le biais recherché. Le terme



xviii

correctif nécessite d’effectuer des simulations à la fois sur la prédiction par Krigeage et sur
le modèle réel. Néanmoins, s’il est proche de 1 (absence de biais), il est très peu coûteux à
estimer. On peut ainsi construire un estimateur non biaisé de la probabilité de défaillance
basé sur une prédiction par Krigeage. On propose également une autre métrique que celle
formulée à l’Eq. (11) pour stopper l’enrichissement adaptatif lorsque αcorr est proche de 1
et ainsi s’assurer de la quasi-optimalité de bh∗.
Â Cette partie est développée dans le Chapitre 3.

Optimisation sous contrainte de fiabilité utilisant Krigeage adaptatif et
subset sampling

Pour résoudre le problème d’optimisation sous contrainte de fiabilité formulé initialement à
l’Eq. (2), on se propose d’utiliser un algorithme issu de la programmation non-linéaire (Po-
lak, 1997). Plus spécifiquement, on a choisi d’utiliser l’algorithme de Polak-He qui utilise
une formulation de type min-max (i.e. qui consiste à minimiser la contrainte la moins res-
pectée). Cet algorithme procède itérativement en deux étapes en améliorant une solution
initiale d(0). Il s’agit de déterminer (i) la meilleure direction d’optimisation au voisinage de
la solution courante, et (ii) le meilleur pas à effectuer suivant cette direction. La direction
est déterminée en résolvant un sous-problème d’optimisation quadratique approché à par-
tir des gradients des fonctions objectif et contraintes. Le pas optimal est obtenu par une
recherche linéique approchée au moyen de la règle de Goldstein-Armijo.

Analyse de sensibilités fiabilistes par simulations

L’utilisation de l’algorithme de Polak-He requiert le calcul des gradients des fonctions ob-
jectif et contraintes et a fortiori ceux des contraintes de fiabilité. Le calcul des gradients
des probabilités de défaillance a donc fait l’objet de recherches bibliographiques. On a fina-
lement retenu une approche initialement proposée par Rubinstein (1986) (voir aussi Wu,
1994; Rubinstein et Kroese, 2008) s’appuyant sur le concept de l’échantillonnage préfé-
rentiel. Cette approche est avantageuse car elle permet de calculer les dérivées partielles
des probabilités à partir des résultats d’une analyse de fiabilité sans nécessiter de nouvelles
simulations. De plus, l’approche peut également être utilisée avec des techniques de simula-
tions par réduction de variance tel que l’échantillonnage préférentiel ou le subset sampling

(Song et al., 2009).

Méta-modèles adaptatifs dans l’espace augmenté

Afin de réduire le coût de calcul induit par les analyses de fiabilité répétées au sein de la
boucle d’optimisation, on remplace les fonctions de performance réelles par leurs prédic-
tions par Krigeage. Ces prédictions sont construites dans un espace global qui permet de les
réutiliser d’une itération d’optimisation à l’autre. Cet espace baptisé “espace augmenté” par
Taflanidis (2007) est obtenu en considérant que l’incertitude sur les choix de conception
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ne fait qu’augmenter l’étendue de la distribution des variables aléatoires sans changer la
dimension du vecteur x . En effet, en rappelant que les variables d définissent la densité
conjointe du vecteur aléatoire X , le vecteur aléatoire augmenté V a pour densité de proba-
bilité :

fV(v) =

∫

D

fX (x | d )π(d)dd, (16)

où π est la densité de probabilité uniforme sur le domaine de conception admissible D. En-
suite, il a fallu s’assurer que les prédictions par Krigeage des états-limites étaient suffisam-
ment précises sur une région de confiance suffisamment large de la densité augmentée fV .

Â Cette partie est développée dans le Chapitre 4.

Résultats

Validation sur des exemples académiques

Toutes les stratégies proposées ont fait l’objet d’applications numériques sur des exemples
simples issus de la littérature fiabiliste en mécanique de sorte que les calculs peuvent être
reconduits par le lecteur. Ces applications ont permis de démontrer les propriétés théoriques
énoncées ci-avant. On s’est notamment assuré que :

• la stratégie d’enrichissement adaptative par échantillonnage et clustering permet de
réduire l’erreur de substitution du méta-modèle dans une analyse de fiabilité ;

• l’étendue du pseudo-intervalle de confiance sur la probabilité de défaillance estimée
sur une prédiction par Krigeage permet une quantification suffisamment objective
pour déclencher ou stopper l’enrichissement adaptatif ;

• l’estimateur par échantillonnage préférentiel permet de quantifier et éliminer le biais
sur la probabilité de défaillance et permet également d’étendre le champ d’application
du Krigeage à des problèmes de fiabilité de dimension raisonnablement grande (i.e.

jusqu’à quelques dizaines de variables aléatoires) ;

• les sensibilités fiabilistes par simulation et les méta-modèles construits dans l’espace
augmenté ont permis de résoudre le problème d’optimisation sous contrainte de fia-
bilité en quelques centaines d’appels au(x) modèle(s) mécanique(s).

Application au dimensionnement au flambement des coques impar-
faites

Fort de ces applications académiques, la démarche de conception optimale sous contrainte
de fiabilité a été appliquée au dimensionnement de coques imparfaites sensibles au phéno-
mène de flambement. On s’est intéressé à la fiabilité d’un toit cylindrique dont les propriétés
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sont modélisées par des champs aléatoires, et au dimensionnement fiabiliste d’une maille
cylindrique raidie représentative d’une coque de sous-marin. La substitution d’un méta-
modèle au modèle numérique de prédiction de la charge critique de flambement s’avère
ici primordiale. Elle aura finalement permis de trouver des solutions de dimensionnement
optimales associées à un haut niveau de fiabilité (i.e. p f ≤ 10−9) tel que prescrit par les
donneurs d’ordres dans ce domaine, et ce en un nombre raisonnable d’appels au modèle
mécanique.

Â Les applications sont présentées dans les Chapitres 5 et 6.

Conclusions et perspectives

Finalement, on a pu résoudre des problèmes d’optimisation sous contrainte de fiabilité
faisant appel à des modèles numériques coûteux en un coût de calcul global raisonnable
(i.e. moins de 1 000 appels au(x) modèle(s)). On s’est de plus attaché à maîtriser les erreurs
induites par les hypothèses effectuées et notamment par la substitution d’un méta-modèle
au modèle réel.

Ce travail ouvre de multiples perspectives. D’abord, il s’agit d’appliquer la méthode
d’optimisation sous contrainte de fiabilité à de nouveaux cas de dimensionnement. Si la
dimension du vecteur aléatoire X devient trop importante pour simplement substituer les
prédictions par Krigeage aux fonctions de performance, il faudrait envisager l’utilisation
de la technique d’échantillonnage préférentiel quasi-optimal au sein de la boucle d’opti-
misation. On pourra aussi chercher à optimiser d’autres valeurs caractéristiques que des
valeurs moyennes. Par exemple, en tolérancement probabiliste, on chercherait plutôt à ré-
gler des coefficients de capabilité (proportionnels aux écarts-types des variables) de façon
à garantir un taux de conformité cible (i.e. une probabilité) tout en minimisant les coûts de
fabrication.

On pourrait également envisager d’appliquer la stratégie adaptative d’enrichissement
de plans d’expériences par échantillonnage et clustering à des problèmes d’optimisation
sous contraintes déterministes en se basant sur les critères d’enrichissement proposés par
Mockus (1994) ou Jones et al. (1998).
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Introduction

“As far as the laws of mathematics refer to reality, they are not certain;

and as far as they are certain, they do not refer to reality.” A. Einstein

Context

Simulation is the sound basis of modern engineering. Its application field ranges from phys-
ical sciences to financial engineering. It basically consists in imitating the behaviour of a
physical or abstract system using mathematical models. The fidelity of the latter models has
been significantly improved during the past few decades. However, due to their lingering
lack of comprehensiveness, discrepancies are still observed between simulation and reality.

By definition, models are idealizations of reality and thus neglect some aspects of the
phenomenon of interest. One major contribution to the discrepancies between simulation
and reality comes from the isolation of the system from its environment. Indeed, when
studying a system, the environment in which it evolves is often reduced to a set of idealized
(say nominal) configurations. For instance, in structural mechanics, the boundary condi-
tions, the initial state of the system, its geometry, the properties of its constitutive material
and the loads are reduced to a finite set of configurations (e.g. load cases) which may lack
exhaustiveness. The reason for proceeding this way is mostly a matter of model scale and
lack of knowledge. Indeed, for the sake of tractability, a model cannot account for the real
world as a whole, and it has to summarize the immediate environment surrounding the
system under study to a synthetic mathematical model.

In this context, the probabilistic framework seems more appropriate as it enables the
consideration of an infinite set of probable configurations in the form of a single probability
distribution. However, the probabilistic specification of a system also raises fundamental
issues about (i) the construction of appropriate probabilistic models and (ii) the metrics to
be used for assessing its performance, which is the basis of decision-making.

Fortunately, in the last two decades, a lot of work has been done in probabilistic engi-

neering in order to formalize these problems and educate engineers to apprehend them.
Indeed, the scientific literature now provides a large set of techniques for uncertainty quan-

tification, and engineering students1 are now made aware of probability theory and its
potential applications to industrial problems.

1As far as the author is concerned.
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Problem statement

This thesis is concerned with the problem of structural design optimization in the presence

of uncertainty such as introduced in the book by Tsompanakis et al. (2008). It is more
often referred to as robust engineering in the industry although this term refers to a specific
formulation of the latter more general problem. Indeed, there exists two main formulations
for the optimization of uncertain systems. Robust design optimization (RDO) primarily seeks
to minimize the influence of the uncertain environmental conditions on the performance of
a system. In contrast, the goal of reliability-based design optimization (RBDO) is to design
for safety with respect to extreme (rare) events.

This manuscript focuses on the reliability-based formulation. Reliability is typically mea-
sured by a failure probability and the optimization consists in ensuring that the latter re-
mains lower than a given threshold. The choice of this threshold depends on the system
to be designed. For instance, in the field of part tolerancing a commonly admitted unit for
assessing the non-conformity rates is the number of rejected parts per million (ppm). In
other fields directly impacting human lives (such as the nuclear industry), the selection of
an acceptable probability of failure is much more serious and beyond the technical scope of
this manuscript.

The present work is primarily aimed at setting up a methodology for solving the
reliability-based design optimization problem within a reasonable computational effort.
Indeed, the estimation of low (admissible) failure probabilities through Monte Carlo sim-
ulation requires a large number of model evaluations which is often incompatible with
the available computational resources. Nesting the estimation of such probabilities into
a design optimization process makes the RBDO problem intractable when fine numerical
models are used for assessing the performance of the system.

This remark motivated most of the work done in the past few years on RBDO, although
most approaches are limited by the use of restrictive assumptions such as the linearity of
the frontier (the limit-state surface) between safe and failed designs. The approach that is
investigated in this manuscript relies on the use of the statistical learning theory as recently
proposed by Hurtado (2004b). Statistical learning techniques aim at constructing emu-
lators (or meta-models) of the original physical models that are much faster to evaluate.
Nonetheless, the use of these emulators as surrogates for the original expensive-to-evaluate
physical models raises a new issue about the bias introduced in estimating the failure prob-
ability. Indeed, despite this bias can be reduced by the use of meta-model refinement
techniques, it remains hard to quantify.

Objectives and outline of the thesis

The reliability-based design optimization strategy developed in the sequel is aimed at satis-
fying the following three objectives:

(i) the computational procedure must be parsimonious with respect to the total number
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of simulations of the physical models (less than a few thousands would be appreci-
ated), for the sake of efficiency;

(ii) the use of emulators should be introduced in such a way that the potential bias on
the final quantities of interest (namely the design and its failure probability) can be
quantified, for the sake of safety;

(iii) the overall strategy is expected to remain applicable for admissible failure proba-
bilities ranging from 10−2 down to 10−12, for the sake of versatility with respect to
industrial concerns.

The first objective is addressed in Chapters 1 and 2, while the other two underlie the
reliability-based design methodologies developed in Chapters 3 and 4.

Chapter 1 intends to make the reader aware of a few elements of statistical learning the-
ory. This chapter is mostly devoted to the presentation of the Gaussian process prediction
(or Kriging) methodology such as presented in the related literature. A specific emphasis is
put on the interrelation of this supervised learning technique with the more conventional
least-squares regression methodology. This chapter does not feature any original contribu-
tion, although the author’s interpretation of the Gaussian process predictor matters for the
understanding of the methodologies developed in the subsequent chapters.

Chapter 2 is concerned with the selection of the experiments from which the Gaussian
process predictors are built. The purpose is to select the minimal design of experiments
for ensuring a good relative accuracy of the predictors with respect to the original models.
The recent literature features a large amount of papers dealing with this problem so that a
large part of Chapter 2 is devoted to a review of the so-called adaptive design of experiments

techniques. Building on this review a novel refinement strategy is proposed. It concentrates
on the use of the so-called refinement criteria (as a sampling density) rather than on the
development of new ones as typically addressed in the literature.

Chapter 3 is devoted to the presentation of structural reliability methods. The purpose
of these methods is to estimate the probability of failure of a structure given a probabilistic
model of the system and its environment, and a failure scenario. State-of-the-art reliability
methods are first being reviewed from an original point of view. Indeed, the stress is put on
their interrelation with the so-called importance sampling estimation technique. Since the
most robust of the latter techniques (namely subset sampling) still requires a few tens of
thousands of calls to the physical model, surrogate-based approaches are then investigated
for the sake of efficiency. As expected, these approaches reveal a lot more computationally
efficient but they might introduce a significant bias in the failure probability estimates.
Two heuristic error measures are thus proposed based on the variance of prediction of the
Gaussian process predictors. Eventually, a novel hybrid approach named meta-model-based

importance sampling is proposed in an attempt to get rid of the latter bias.

In Chapter 4, the reliability-based design optimization problem is explicitly formulated.
This formulation closely follows the one used in the literature and it is proposed to solve
it by means of a gradient-based optimization algorithm. After having introduced a few
elements of inequality constrained optimization, this chapter focuses on the computation
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of the gradient of the failure probability with respect to the design variables. The de-
sign variables being considered here as parameters (means) of the probabilistic model, this
computation is performed by means of the so-called score function approach. Thanks to
this importance-sampling-like trick, the computation reveals a simple post-processing of a
sampling-based reliability analysis. In order to circumvent the computational burden in-
duced by the nested reliability analyses, the physical models involved in the performance
probabilistic constraints are then replaced by adaptive Kriging surrogates. These surrogates
are built and refined in a so-called augmented reliability space that makes them reusable
from one optimization iteration to the other. The overall approach was named meta-model-

based RBDO.

Chapter 5 validates the three main contributions of this thesis on a chosen set of aca-
demic examples. Besides the meta-model-based importance sampling and RBDO strategies,
the performance of the proposed sampling-based approach to adaptive design of exper-
iments is also investigated. At last, Chapter 6 applies the overall reliability-based design
philosophy to the design of imperfect shells prone to buckling. This last application involves
the use of an expensive-to-evaluate nonlinear finite element model.

!Note that this manuscript is intended to be read in its chronological order as each chapter

features fundamental concepts that are constantly being referred to in the subsequent

ones. A deep understanding of Chapter 1 is not necessary though, even if it is important

to remember the fundamental results about Gaussian process (or Kriging) predictors.
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1.1 Introduction

1.1.1 Statistical learning

In this thesis, meta-modelling refers to the mathematical discipline that has interest in emu-
lating the statistical relationship between some input x ∈ X ⊆ Rn and some output y ∈ Y ⊆
R

d of some given mappingM from a set of observations D =
¦
(x (i), y (i)), i = 1, . . . , m

©
and

a limited set of prior assumptions. This is more often known as supervised learning in the
statistical learning related literature (Rasmussen and Williams, 2006) as opposed to the un-

supervised learning discipline which has interest in building models for a multivariate input
only, i.e. without any supervision variable y . Throughout this manuscript, the supervised
learning problem will be restricted to univariate (scalar) outputs meaning that d = 1. Con-
sequently, the observations in the dataset are gathered in a vector y = (yi, i = 1, . . . , m)T.
From now on, a meta-model (or emulator) will be denoted by ÝM .

The motivations for the construction of such meta-models mostly depend on the field
of application. In physics-oriented fields (which are in the scope of this manuscript), the
emulator can be used as a surrogate of an existing but expensive-to-evaluate high fidelity
physical model such as a finite element model. In this case, the emulator offers the interest
of being both much faster to evaluate than the original model, and usually costless: indeed
they are based on usual mathematical functions and do not require licensed software for
their evaluation. In other fields that lack models to explain some observed phenomenon
of interest (e.g. in medical imaging, pattern/speech recognition, Internet search engines,
etc.), emulators may constitute the sole empirical model available yet.

The supervised learning discipline is usually split into two other sub-disciplines known
as regression and classification. The distinction is based on the nature of the supervision
variable y . In a regression problem, y spans a continuous input space X ⊆ Rn as op-
posed to the classification problems where it takes its values in a discrete set of labels¦

L(ℓ),ℓ= 1, . . . , nlabels

©
. Note that in the context of reliability estimation, the classifica-

tion problem is restricted to the so-called binary case for which the number of labels is
nlabels = 2 since a design is either failed or safe.

1.1.2 A short state-of-the-art

There exists a wide variety of emulators in the supervised learning literature, amongst
which are: general linear models, support vector machines and Gaussian process predictors.
The work presented in this manuscript makes use of Gaussian process predictors so that this
chapter is mostly devoted to the presentation of this regression technique. However the two
other techniques are shortly reviewed and it is then argued why it has been decided to work
with Gaussian process predictors in the sequel.
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1.1.2.1 General linear models

The common assumption to general linear models is that they are defined as a linear combi-
nation of a finite set of p preselected functions f =

�
fi, i = 1, . . . , p

	
:

ÝM (x ) =
p∑

i=1

βi fi(x ) = β
T f (x ), (1.1)

where β =
�
βi, i = 1, . . . , p

�T ∈ Rp is a vector of weight coefficients to be determined from
the dataset D.

Note that such models sometimes feature a constant bias β0 as an additional term,
although this term can be incorporated in the functional set f by adding the constant
function equal to one for any x ∈ X. The adjective general means here that the proposed
model remains linear in the transformed input f (x ) for any functional set f . Commonly
used functional sets mostly include polynomial, Fourier and wavelet series. In Figure 1.1, a
polynomial basis is used to emulate the modelM (x) = x sin(x).
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k−1

D=
{
(xi , yi), i=1, , m

}

Figure 1.1: Two general linear models emulating the one-dimensional model M (x) = x sin(x).
They both use the full polynomial basis f =

¦
xk−1, k = 1, . . . , p

©
where the order p is

set equal to 8 for ÝM1 and 10 for ÝM2. The coefficients are computed by means of the
ordinary least squares technique.

There exists many techniques to determine the unknown weight coefficients β , the most
famous being the least-squares regression technique which will be reviewed in more details
in Section 1.2. However this technique requires that the size m of the dataset D is greater
than the size p of the functional set f . Moreover this size p conditions the capacity of the
linear model in Eq. (1.1) to capture the nonlinearity in the original modelM . Starting from
this premise, Efron et al. (2004) propose the least angle regression (LAR) procedure. This
procedure enables a selection of the most significant functions in f to emulate the original
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experimentM while avoiding the overfitting phenomenon which occurs as p approaches
m. The final general linear model that is fitted by this approach involves a reduced number
of non-zero regression coefficients {β j 6= 0, j = 1, . . . , pnon−zero} with pnon−zero≪ p, and the
corresponding functional set { f j, j = 1, . . . , pnon−zero} is said to be sparse.

Despite such models proved efficient on a large set of examples, including uncertainty
quantification examples, it is argued here that they are not well suited to the classification
problem underlying a reliability analysis. This is the reason why it has been decided to move
to kernel-based models such as support vector machines or Gaussian process predictors
because they allow a better local refinement for approximating the limit-state surface which
is defined as a specific contour at level t ∈ Y:

St = {x ∈ X :M (x ) = t} . (1.2)

1.1.2.2 Support vector machines

Support vector machines is certainly one of the most popular supervised learning techniques
in the last two decades literature thanks to its computational advantages. It is used in a
large field of applications ranging from Internet search engines to medical imaging, and
it was recently brought up to the structural reliability community by Hurtado (2004b).
The technique was initially designed to solve binary classification problems but it was then
extended to multi-class and regression problems, although it does not feature the same
efficiency for regression than for classification.

Consider a set of labeled observations D =
¦
(x (i), Li), i = 1, . . . , m

©
where Li = ±1.

Support vector binary classifiers assume that the two classes are linearly separable in some
transformed input space H(K) named the feature space. This feature space is obtained
through a transformation ϕ such that the inner product in that space can be computed by
means of its (given) associated kernel function K in the former input space X:

〈ϕ(x ), ϕ(x ′)〉H(K) ≡ K(x , x ′),
�
x , x ′

�
∈ X2. (1.3)

This relation is often referred to as the kernel trick due to the article by Aizerman et al.
(1964). Admissible kernel functions satisfy Mercer’s condition, meaning that they must
be positive definite alike the forthcoming autocovariance functions for Gaussian processes1

(Section 1.3). One widely used kernel function is the squared exponential kernel which is
defined as:

K(x , x ′) = exp
�
−γ
�
x ′− x

�2� ,
�
x , x ′

�
∈ X2, (1.4)

where γ ∈ R+∗ is its so-called hyper-parameter. Formally, in functional analysis, H(K) is the
reproducing kernel Hilbert space generated by the continuous real-valued kernel K .

The transformation ϕ features two essential properties for the classification problem at
hand. The first one is that its explicit knowledge is not required to compute distances in the
feature spaceH(K) thanks to Eq. (1.3). The other one is that the implicit mapping ϕ ensures
dimensionality explosion (Hurtado, 2004b), meaning that the number of components in the

1As opposed to autocovariance functions Mercer’s kernel may be non-symmetric though.
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feature space is greater than the one in the original input space and theoretically infinite for
some kernel functions (namely strictly positive definite kernel functions) like the squared
exponential kernel. This dimensionality explosion is used to facilitate the linear classification
in the feature space.

For the binary classification problem of interest, the linear boundary between the two
classes is the hyperplane (in the feature space) of equation:

S(x ) = 〈ϕ(w ), ϕ(x )〉H(K)+ b

= K(w , x ) + b. (1.5)

Hence, solving the classification problem again consists in finding the weight coefficients
w and the intercept b. Another key concept of support vector machines is the maximum

margin concept illustrated in Figure 1.2. The margin refers here to the distance (in the
feature space) between the two classes.

8 8

ϕ1 (x)

8

8

ϕ
2
(x
)

Support vectors

S ∗
(x) =0

S ∗
(x) =−1

S ∗
(x) =

+1

Margin

Figure 1.2: The optimal separating hyperplane in the feature space maximizes the margin (i.e. the
distance) between the two classes.

This distance is shown (see e.g. Gunn, 1998, pp. 6–7) to be proportional to the inverse
of the norm (in the feature space) of the weight coefficients K(w , w )−1/2. Minimizing
the half-quadratic norm K(w , w )/2 is thus equivalent to maximizing the margin but it
considerably simplifies the optimization. In addition to the maximum margin, one adds
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right classification constraints so that the points in the dataset are accurately classified. All
together, this lead to the establishment of the following constrained optimization problem:

w ∗ = argmin
w

K(w , w )

2
s.t. Li

�
K(w , x (i)) + b

�
≥ 1, i = 1, . . . , m, (1.6)

which is a linearly constrained quadratic optimization problem. As a matter of fact, it
admits a unique solution w ∗ which comes analytically by introducing its associated La-
grangian and solving its first-order optimality conditions (see e.g. the technical report by
Gunn, 1998).

In addition to their computational efficiency, one final interesting feature of support
vector classifiers is their sparsity meaning that the final optimal separating hyperplane S∗

is defined as a sum over a reduced dataset whose elements are referred to as the support

vectors. Such support vectors are circled in cyan in Figures 1.2 and 1.3.

8 8
x1

8

8

x
2

S
∗ (x) =

0

S
∗ (x)

=−1

S ∗
(x) = +1

Margin

(a) Hard margin

8 8
x1

8

8

x
2

Misclassified

S
∗ (x) =

0

S ∗ (x) =−1

S ∗
(x) = +1

Margin

(b) Soft margin

Figure 1.3: The soft margin classifier was obtained with a penalty coefficient C = 100 whereas
the “hard margin” classifier has indeed a soft margin except the penalty coefficient
C = 10, 000 is more severe. The hard margin does not contain any support vector
whereas the soft one does. As a matter of fact soft margin classifiers do not guarantee
the right classification of such points.

However, in the case of extremely nonlinear boundaries for which the dimensionality
explosion provided by the kernel trick does not capture a sufficient amount of nonlinearity,
one resorts to the so-called soft margin classifiers. It consists in authorizing a classification
error by means of slack variables

�
ξi, i = 1, . . . , m

	
and the optimization problem is recast

as follows:

w ∗ = argmin
w

K(w , w )

2
+C

m∑
i=1

ξi s.t. Li (K(w , x (i))+ b)≥ 1−ξi, i = 1, . . . , m, (1.7)

where C is a given constant whose purpose is to penalize classification errors. The resolu-
tion of this problem is somewhat complicated by the m additional slack variables although
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it can still be efficiently solved by means of the usual sequential quadratic programming al-
gorithm (SQP). Nevertheless, it is worth mentioning that the sparsity property of the final
separating hyperplane suffers from these additional soft constraints. Most practical appli-
cations of support vector classifiers use the latter more comprehensive formulation. Hard
and soft margin classifiers are opposed in Figure 1.3.

Support vector regressors, whose purpose is to approximate real-valued modelsM , use a
similar formulation with a different (tunable) penalty term though (see e.g. Schölkopf and
Smola, 2003; Smola and Schölkopf, 2006).

1.2 Generalized least-squares linear regression

The least-squares linear regression problem is certainly the most popular method for regres-
sion analysis due to its conceptual simplicity: it consists in minimizing the distance (in the
classical L2 sense) between a predictive model and experimental measurements. Thanks
to its computational efficiency, it arises as a subproblem in many disciplines. For instance:

• it is mainly used for model inference from in situ measurements;

• it has been widely used in the field of uncertainty quantification to fit surrogate mod-
els such as polynomial response surfaces (e.g. in Bucher and Bourgund, 1990) or
polynomial chaos expansions (e.g. in Berveiller et al., 2006; Sudret, 2007; Blatman
and Sudret, 2008b, 2010a).

In this section the problem is first reviewed from a frequentist viewpoint, and then from a
Bayesian viewpoint as an introduction to the forthcoming Section 1.4 where it is used as
the first stage of a two-stage prior model as in the book by Santner et al. (2003).

1.2.1 Elements of probability theory

As the vector of observed output y = (yi, i = 1, . . . , m)T will be considered uncertain, a
probabilistic framework is now introduced.

1.2.1.1 Random variables

Let (Ω, F ,P ) denote a probability space where Ω is the event space equipped with its σ-

algebra F and a probability measure P .

!Throughout this manuscript, the probability measure P is dedicated to the epistemic un-
certainty associated with the construction of the meta-model ÝM whereas the probability

measure P will later be devoted to the aleatoric uncertainty affecting the input vector x

in a reliability analysis context.
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A real-valued random variable Y is formally defined as an application that maps the
probability space (Ω, F ,P ) in the output space Y ⊆ R:

Y :

����
(Ω, F ,P ) 7→ Y

ω → y
, (1.8)

where y = Y (ω) denotes a realization. Y may either be discrete or continuous depending on
the nature of its output space Y. A random variable is completely defined by its cumulative

distribution function (CDF):
FY (y) =P

�
Y ≤ y

�
. (1.9)

Continuous random variables additionally admit a probability density function (PDF)
defined as follows:

fY (y) = lim
h→0
h>0

P
�

y ≤ Y ≤ y + h
�

h
, (1.10)

hence:

fY (y) =
dFY (y)

dy
. (1.11)

The mathematical expectation will be denoted by E, so that the mean value of the ran-
dom variable Y is defined as:

µY = E [Y ] =

∫

Y

y fY (y)dy. (1.12)

It is sometimes also denoted by EY to emphasize that the expectation is taken with respect
to the random variable Y only. The moments (resp. centred moments) of given order n> 1
are defined as:

E [Y n] =

∫

Y

yn fY (y)dy, (1.13)

E
�
(Y −µY )

n
�
=

∫

Y

(y −µ)n fY (y)dy, (1.14)

provided these integrals exist. In particular, the centred second-order moment denoted by
σ2

Y
= Var [Y ] is known as the variance and its square root σY is the standard deviation.

Provided the mean value is non-zero, the coefficient of variation is defined as the ratio
between the standard deviation and the absolute mean value δY ≡ σY/|µY |.

The covariance between two random variates X and Y is defined as follows:

Cov [X , Y ] = E
�
(X −µX ) (Y −µY )

�
, (1.15)

and the corresponding correlation coefficient is defined as:

ρX Y =
Cov [X , Y ]

σX σY

. (1.16)
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The vectorial space of second-order real-valued random variables is denoted by
L2 (Ω, F ,P ; R) and a real-valued random variable Y belongs to this space if and only
if it admits at least a finite second-order moment (E

�
Y 2� <∞). The expectation operator

defines an inner product on this space:

〈X , Y 〉= E [X Y ] , (X , Y ) ∈ L2 (Ω, F ,P ; R)2 , (1.17)

so that the vectorial spaceL2 (Ω, F ,P ; R) dotted with this inner product is a Hilbert space.
In particular, two random variables X and Y are said orthogonal if and only if E [X Y ] = 0.

Example 1.2.1. A Gaussian variable Y is a second-order random variate that will be denoted

by:

Y ∼N1(µ, σ2), (1.18)

where µ is its mean value and σ2 is its variance. The so-called standard Gaussian distribution

is obtained for µ = 0 and σ = 1. Standard Gaussian random variables are denoted by Ξ in

the sequel. The standard Gaussian PDF is defined as follows:

ϕ(ξ) =
1
p

2π
exp

�
−
ξ2

2

�
, (1.19)

and its CDF is given by:

Φ(ξ) =

∫ ξ

−∞

1
p

2π
exp

�
−

x2

2

�
dx , (1.20)

and can only be estimated numerically using the so-called complementary error function:

Φ(ξ) =
1

2
erfc

�
−
ξ
p

2

�
. (1.21)

Hence it can be proven with a simple change of variable that the PDF and CDF of any given

Gaussian variable Y ∼N1(µ, σ2) are equal to:

fY (y) =
1

σ
ϕ

�
y −µ
σ

�
and FY (y) = Φ

�
y −µ
σ

�
. (1.22)

1.2.1.2 Random vectors

A real-valued random vector Y is formally defined as an application that maps the proba-
bility space (Ω, F ,P ) in a d-dimensional output space Y ⊆ Rd:

Y :

����
(Ω, F ,P ) 7→ Y

ω → y
, (1.23)

where y = Y (ω) denotes a realization. Any of its d components
�

Y1, . . . , Yd

	
are themselves

random variables (the margin variables) such as previously defined. Continuous random
vectors are either defined by their joint PDF fY (y) or their joint CDF FY (y).
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Its expected value µY is the vector containing the expectation of each component:

µY =
�
E
�

Yi

�
, i = 1, . . . , d

�T (1.24)

and its (symmetric positive-definite) covariance and correlation matrices respectively de-
noted by C and R have their terms defined as follows:

Ci j = Cov
�

Yi, Yj

�
, i, j = 1, . . . , d (1.25)

Ri j =
Cov

�
Yi, Yj

�

σYi
σYj

, i, j = 1, . . . , d. (1.26)

Given a partitioned random vector Y = (YT

1 , YT

2 )
T, the marginal distribution of Y 1 is

given by the following integral:

fY1
(y1) =

∫

Y2

fY (y)dy2, (1.27)

while the conditional distribution of Y 1 given Y 2 is given by the following ratio:

fY1|Y2
(y1) =

fY (y)

fY2
(y2)

, (1.28)

in application of Bayes’ theorem.

Example 1.2.2. A Gaussian random vector Y is a second-order random vector that will be

denoted by:

Y ∼Nd(µ, Σ) (1.29)

where µ is the vector of means and Σ is its covariance matrix. The properties of this funda-

mental distribution are reviewed in more details in Appendix A and used in the sequel.

1.2.2 The least-squares linear regression model

The least-squares linear regression model plays a fundamental role in supervised learning
theory. It is defined as follows:

Yi =

p∑
j=1

β j f j(x
(i)) + Zi, i = 1, . . . , m (1.30)

where Y = (Yi, i = 1, . . . , m)T is the vector of observations, β = (β j, j = 1, . . . , p)T is
the vector of weights, f = { f j, j = 1, . . . , p} is a collection of regression functions (or
regressors) and Z = (Zi, i = 1, . . . , m)T is a Gaussian random vector. The number p of
regression functions is assumed less than or equal to the number m of observations so
that the problem is not under-determined (i.e. it does not lack equations to explain the
unknowns). The second-order moments of the Gaussian vector Z are:

E [Z] = 0 and Cov [Z, Z] = E
�

Z ZT
�
= σ2 R, (1.31)
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where the variance σ2 is to be determined. In this section the correlation matrix R is as-
sumed to be given depending on the context, and it is worth mentioning that it is reduced
to the identity matrix in most practical applications thus leading to the so-called ordinary

least-squares (OLS) problem. In the sequel the equations are derived for the more general
case of any symmetric positive definite correlation matrix R which is known as the general-

ized least-squares (GLS) problem. This formulation will be more relevant in Section 1.4.

Due to the general linear regression model in Eq. (1.30), the distribution of the obser-
vations is the multivariate normal distribution:

Y ∼Nm

�
Fβ , σ2 R

�
(1.32)

where the terms in the regression matrix F are defined as follows:

Fi j = f j(x
(i)), i = 1, . . . , m, j = 1, . . . , p. (1.33)

Note that if x = x is one-dimensional and f =
�
1, x , x2, . . . , x p

	
is the complete polyno-

mial basis up to order p, the corresponding matrix F is the Vandermonde matrix:

F=




1 x (1) x (1)2 . . . x (1) p

...
...

...
...

...
1 x (m) x (m)2 . . . x (m) p


 . (1.34)

The regression problem consists in finding the optimal set of parameters ( bβ , cσ2) ∈ Rp×R+∗
according to some metric to be defined.

1.2.3 The frequentist viewpoint

The frequentist approach to solve the regression problem in the least-squares sense con-
sists in maximizing the likelihood of both the weight vector β and the variance σ2 given a
realization y of the vector of (correlated) observations Y .

The likelihood is defined using the multivariate normal probability density function:

L

�
y | β , σ2

�
=

1

((2πσ2)m [detR])1/2
exp
�
−

1

2σ2 (y − Fβ)T R−1 (y − Fβ)

�
. (1.35)

Since maximizing this quantity is equivalent to minimizing its opposite natural logarithm,
the maximum likelihood estimation problem may be cast as follows:

( bβ , cσ2)≡ arg min
(β ,σ2)∈Rp×R+∗

− logL

�
y | β , σ2

�
. (1.36)

The first-order optimality conditions for this unconstrained optimization problem read:



∇β logL

�
y | β , σ2

�
= 0

∂ logL
�

y | β , σ2�
∂ σ2 = 0

, (1.37)
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and may be further expanded as follows:





1

σ2 (F
T R−1 y − FT R−1 Fβ) = 0, ∀σ2

−
m

2

1

σ2 +
1

2σ4 (y − Fβ)T R−1 (y − Fβ) = 0
. (1.38)

These two equations eventually lead to the so-called generalized least-squares estimate for
the vector of weights:

bβ = (FT R−1 F)−1 FT R−1 y , (1.39)

and the variance estimate is:

cσ2 =
1

m
(y − F bβ)T R−1 (y − F bβ). (1.40)

Note that the generalized least-squares solution reduces to the ordinary least-squares (OLS)
solution when the observations are uncorrelated:

R= I ⇒ bβOLS = (F
T F)−1 FT y . (1.41)

1.2.4 The Bayesian viewpoint

1.2.4.1 Non-informative prior distributions

Generally speaking, the Bayesian approach allows the user to specify a prior distribution
for the sought parameters (e.g. here [β , σ2]) and to derive a full posterior distribution
conditioned on both the prior and the observations. This posterior distribution models the
residual epistemic uncertainty due to the sparsity of the observations y . In order to derive
results in agreement with the frequentist approach, it is proposed to consider here a so-
called non-informative prior distribution so that the posterior distribution depends solely on
the observations.

As its name suggests, a non-informative prior distribution does not provide any prior
information on the probability density function of the unknown parameters. This degree
of information can be measured in rigorous mathematical terms thanks to the Fischer’s in-
formation matrix. Provided a set of Q observations

¦
y (1), . . . , y (Q)

©
of the inferred random

variable Y , this matrix is defined as follows:

I (θ ) = EX

�
∇θ ∇

T

θ logL

�¦
x (1), . . . , x (Q)

©
|θ
��

, (1.42)

where L denotes the likelihood, and θ is the unknown vector of parameters. This lead
Jeffreys (1946) to show that the non-informative prior distribution for the parameter of
any given parametric distribution satisfies:

p(θ )∝
p
[detI (θ )]. (1.43)
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In particular, the Jeffreys’ non-informative prior for the location parameters of the mul-
tivariate normal distribution in Eq. (1.32) is shown to be proportional to:

p(β)∝ 1, ∀β ∈ Rp. (1.44)

Indeed, this prior simply means that each component of the vector β has uniform density
on the whole real line a priori. It is also said to be improper because the integral of the
constant 1 over Rp is infinite, hence the proportionality (∝) in Eq. (1.44). Improper distri-
butions may cause difficulties in a frequentist approach. However, in a Bayesian context an
improper prior distribution may lead to a proper posterior and this will be the case in the
sequel.

The Jeffreys’ non-informative prior distribution for the variance of a Gaussian distribu-
tion is defined as follows:

p(σ2)∝
1

σ2 , ∀σ2 ∈ R+∗. (1.45)

To give some more insight about this prior on σ2, consider instead the prior distribution of
its natural logarithm logσ2. Indeed, if one chooses a uniform prior over the real line for
logσ2, then it results in the so-called logarithmic prior given in Eq. (1.45) for σ2 by means
of a simple change of variable:

p(logσ2)∝ 1 ⇒ p(σ2)∝
����
d logσ2

dσ2

����=
1

σ2 , ∀σ2 ∈ R+∗. (1.46)

Even though this prior distribution is again improper (because the integral of its PDF over
R
+∗ is not finite), it may result in a proper posterior distribution and it will be the case in

the sequel.

The proposed joint probability density function of the non-informative prior finally
reads:

p(β , σ2) = p(β) p(σ2)∝
1

σ2 . (1.47)

1.2.4.2 Generalized least-squares posterior distribution

According to Bayes’ theorem, the posterior distribution of the parameters given the obser-
vations is defined as follows:

p(β , σ2 | y)∝ L

�
y | β , σ2

�
p(β , σ2). (1.48)

This can be further elicited by replacing the likelihood in Eq. (1.35) and the prior distribu-
tion by their respective expressions:

p(β , σ2 | y)∝
1

((2πσ2)m [detR])1/2
exp
�
−

1

2σ2 Q

�
×

1

σ2 , (1.49)

where Q ≡ (y − Fβ)T R−1 (y − Fβ) has been introduced for the sake of brevity. This
quantity can be further simplified by introducing the generalized least-squares solution bβ
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in Eq. (1.39) in its expression:

Q ≡ (y − Fβ)T R−1 (y − Fβ)

=
�
(y − F bβ)− F (β − bβ)

�T

R−1
�
(y − F bβ)− F (β − bβ)

�

= (y − F bβ)R−1 (y − F bβ) + (β − bβ)T (FT R−1 F) (β − bβ)
−2 (y − F bβ)T R−1 F (β − bβ)︸ ︷︷ ︸

Q3

. (1.50)

At this point it can be seen that (i) the first term in this expression is proportional to the
generalized least-squares estimate of the variance cσ2 in Eq. (1.40) (ii) the second term is a
quadratic form centred on the generalized least-squares estimate of the regression weights
bβ while (iii) the third term is proven to be zero by replacing bβ by its expression:

Q3 ≡ (y − F bβ)T R−1 F (β − bβ)
= (y − F (FT R−1 F)−1 FT R−1 y)T R−1 F (β − bβ)
= (yT R−1 F− yT R−1 F (FT R−1 F)−1 (FT R−1 F)) (β − bβ)
= (yT R−1 F− yT R−1 F I) (β − bβ) = 0. (Q.E.D.)

Then,
Q = mcσ2+ (β − bβ)T (FT R−1 F)−1 (β − bβ). (1.51)

Substituting this new simplified expression for Q in the expression of the posterior distribu-
tion in Eq. (1.49), grouping the terms in β and σ2 and neglecting the constant terms that
do not depend on β nor σ2 leads to:

p(β , σ2 | y)∝
1

σm+2 exp
� −1

2σ2

�
mcσ2+ (β − bβ)T (FT R−1 F) (β − bβ)

��
. (1.52)

which is known as the Normal-Inverse-Gamma distribution.

From this joint posterior distribution, it appears immediately that the posterior distribu-
tion of the regression weights conditional on the observations y and the variance σ2 is the
multivariate Gaussian distribution centred on the generalized least-squares estimate:

[β | y , σ2]∼Np

�
bβ , σ2 (FT R−1 F)−1

�
, (1.53)

The computation of the marginal posterior distributions of β and σ2 requires further
integration of the joint posterior in Eq. (1.52):

p(β | y) =
∫

R+∗
p(β , σ2 | y)dσ2, (1.54)

p(σ2 | y) =
∫

Rp

p(β , σ2 | y)dβ . (1.55)

Zellner (1971, p. 67) carried out these integrations analytically and identified the posterior
distributions of:
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• the regression weights conditional on the observations [β | y] as a shifted multivariate

Student distribution centred on the generalized least-squares estimate bβ ;

• the variance conditional on the observations [σ2 | y] as an Inverse-Gamma distribu-

tion (meaning the inverse of σ2 has Gamma distribution) centred on the unbiased

generalized least-squares estimate m

m−p
cσ2.

It is important to note that the posterior distribution for β involves a non-necessarily diago-
nal covariance matrix, meaning that the regression weights are not necessarily independent
although the non-informative prior assumed they were.

Finally, it is worth mentioning that analogous computations can be carried out with
more informative priors in a Bayesian updating context. For instance, the availability of
such informative priors may occur in an adaptive refinement procedure after a first gener-
alized least-squares fit on an initial dataset. In this case, a meaningful and natural second
stage prior when new data becomes available could be the posterior distribution (from a
non informative prior) of the previous stage. Surprisingly, it can be shown (e.g. in Zellner,
1971, p. 70) that the updating of β and σ2 from a joint Normal-Inverse-Gamma prior dis-
tribution leads again to a joint Normal-Inverse-Gamma distribution, thus meaning that the
family of the joint posterior distributions is invariant by multiple updates while its scattering
is expected to decrease.

1.3 Gaussian processes

1.3.1 Definition

Using the same formalism as in Section 1.2.1, a stochastic (or random) process is an ap-
plication that maps the probability space (Ω, F , P ) times an index space X in an output
space Y:

Y (x ) :

����
X× (Ω, F ,P ) 7→ Y

(x , ω) → y(x )
, (1.56)

where y(x ) ≡ Y (x , ω) denotes a realization (a sample path). In particular, Y (x , ω0) for
some given ω0 ∈ Ω is a function of x ∈ X, and Y (x (0), ω) for some given x (0) ∈ X is a
random variable over the probability space (Ω, F , P ).

Less formally, if a random vector Y can be seen as a random variable indexed by a finite
subset of natural integer indexes [[1; m]] then a random process Y (x ) is nothing but an
infinite-dimensional random vector because it is indexed by a continuous parameter x ∈ X.
Some other authors like Rasmussen and Williams (2006) view stochastic processes as a
mean to describe probability distributions over functions, so thatM can be considered as
one particular sample of that distribution.

In particular, Rasmussen and Williams (2006) define a Gaussian process as an infinite
collection of random variables, any finite number of which having a multivariate Gaussian
distribution such as defined in Appendix A. This relationship between Gaussian processes
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and jointly Gaussian random vectors is the sound basis of Gaussian process predictors such
as introduced in Section 1.4.

A Gaussian process is a second-order stochastic process and it is completely defined by
its first- and second-order statistics, namely:

• its mean function µ:
µ(x )≡ E [Y (x )] , x ∈ X, (1.57)

• and its autocovariance function C:

C
�
x , x ′

�
≡ E

��
Y (x )−µ(x )

� �
Y (x ′)−µ(x ′)

��
,
�
x , x ′

�
∈ X×X. (1.58)

Consequently, a Gaussian process Y (x ), x ∈ X, is denoted as follows:

Y (x )∼ GP
�
µ(x ), C

�
x , x ′

��
,

�
x , x ′

�
∈ X×X. (1.59)

As for the covariance matrix of random vectors (see Appendix A), the autocovariance
function must be symmetric and (non-strictly) positive definite. This means that admissible

autocovariance functions satisfy the following two relationships:

C
�
x , x ′

�
= C

�
x ′, x

�
, ∀

�
x , x ′

�
∈ X×X, (1.60)

and
m∑

i=1

m∑
j=1

wi w j C
�

x (i), x ( j)
�
≥ 0, (1.61)

for any subsetX =
¦

x (i), i = 1, . . . , m
©

of X and any vector w =
�
wi, i = 1, . . . , m

�T ∈ Rm.

The latter requirement can be understood by looking at the quantity on the left hand-
side of Eq. (1.61) as the variance of any given linear combination of a second-order stochas-
tic process Y observed on any finite subset X of X, indeed:

Var




m∑
i=1

wi Y
�

x (i)
� =

m∑
i=1

m∑
j=1

wi w j C
�

x (i), x ( j)
�

, (1.62)

and it is thus naturally required to be positive.

1.3.2 Simplifying assumptions

1.3.2.1 Stationarity

In a strict sense, stationarity refers to the property of a stochastic process which states that
it is invariant by translation. As a consequence:

• its mean function reduces to a constant:

µ(x ) = µ0, x ∈ X, (1.63)
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• its autocovariance function rewrites:

C
�
x , x ′

�
= σ2 R

�
x − x ′

�
,
�
x , x ′

�
∈ X×X, (1.64)

where σ2 is the constant variance and R is the so-called autocorrelation function
which solely depends on the shift x − x ′.

With slight abuse of language, one may sometimes refer to stationarity w.r.t. the mean, the
variance and/or the autocorrelation.

1.3.2.2 Componentwise anisotropy and composed correlation functions

A stochastic process indexed on an input space X of dimension n is said to be isotropic if it
is invariant by rotation. As a consequence, an isotropic stochastic process is stationary and,
in addition its autocorrelation function rewrites:

R
�
x − x ′

�
= R

�
‖x − x ′‖2

�
, (x , x ′) ∈ X×X (1.65)

where ‖ • ‖2 denotes the usual L2 norm in Rn.

A stochastic process is said to be componentwise anisotropic if its autocorrelation is de-
fined as the tensor product of one-dimensional autocorrelation functions:

R
�
x − x ′

�
=

n∏
i=1

Ri

�
x i − x ′

i

�
,
�
x , x ′

�
∈ X×X. (1.66)

In the present context of computer experiments, the isotropy assumption does not hold
because of the various physical meaning of the margin variables composing the input vector
x . For instance, in structural mechanics, one component of x may represent a dimension-
less Poisson’s ratio of some steel alloy whose order of magnitude is 0.3 whereas another
may represent its Young’s modulus expressed in MPa whose order of magnitude is 105.

In order to circumvent this problem, a common practice, which is systematically em-
ployed throughout this manuscript, consists in normalizing (whitening) the input data with
respect to the componentwise empirical means {mX i

, i = 1, . . . , n} and standard deviations
{sX i

, i = 1, . . . , n} estimated from the dataset X = {x (i), i = 1, . . . , m}. The mapped input
vectors read: ¨

x i =
x i −mX i

sX i

, i = 1, . . . , n

«
∈ X (1.67)

say, where X is the centred and normalized input space.

Nonetheless, accounting for componentwise anisotropy in the autocorrelation function
may reveal interesting in a computer experiment context where a functionM may not vary
equally in all directions even in the transformed input space X. Indeed, if some compo-
nents in x have small influence on the output y , it would be interesting to have a large-
range autocorrelation function that tends to generalize the model along that component
whereas short-range autocorrelations would be required in the other more fluctuating di-
rections. The distinction between short- and long-range autocorrelations is illustrated in
Section 1.3.4.
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1.3.3 Representation techniques

The representation of stochastic processes consists in building a mathematical expression
which enables the explicit computation of sample paths. There exists a wide variety of
representation techniques for stochastic processes, although most of them do not apply
when the processes are either non-Gaussian or non-stationary. Sudret and Der Kiureghian
(2002) provide an interesting review of such techniques together with an extended set of
examples and applications to structural reliability problems.

It is important to note here that the Karhunen-Loève representation (Loève, 1977;
Ghanem and Spanos, 2003) theoretically holds for both non-Gaussian and non-stationary
random fields. The so-called Karhunen-Loève expansion is defined as follows:

Y (x ) = µ(x ) +

∞∑
k=1

p
λkΞkϕk(x ), x ∈ X, (1.68)

where the infinite countable set of eigenvalues and eigenfunctions {
�
λk,ϕk

�
, k ∈ N+∗} are

solution of the following equation:
∫

X

C
�
x , x ′

�
ϕk(x

′)dx ′ = λkϕk(x ), k ∈ N+∗, x ∈ X, (1.69)

and
�
Ξk, k ∈ N+∗

	
is an infinite collection of zero-mean, unit-variance uncorrelated random

variables.

In practice the Karhunen-Loève expansion is truncated to the M terms associated with
the largest eigenvalues resulting in the following approximating expansion:

eY (x ) = µ(x ) +
M∑

k=1

p
λkΞkϕk(x ), x ∈ X, (1.70)

where {
�
λk,ϕk

�
, k ∈ N+∗} are ordered so that λ1 > . . .> λM > λM+1 > . . .> 0.

Practical implementation of the Karhunen-Loève expansion is not easy though because
it requires (i) the resolution of a complex Fredholm integral equation of the second kind
(Eq. (1.69)), and (ii) the determination of the distribution of the underlying random vari-
ables. The interested reader is referred to Sudret and Der Kiureghian (2002); Phoon et al.
(2002); Ghanem and Spanos (2003) for a numerical alternative to the resolution of the in-
tegral equation in Eq. (1.69), and to Ghanem and Doostan (2006); Desceliers et al. (2007);
Guilleminot et al. (2008); Dubourg et al. (2011f) for the identification of the distribution
of the underlying random variables from experimental measurements.

The most basic representation for Gaussian processes illustrates the above-alluded
relationship between Gaussian processes and jointly Gaussian vectors. Given a subset
X =

¦
x (i), i = 1, . . . , m

©
of X, one may evaluate the mean vector µ and covariance matrix

Σ of the associated finite collection of random variables
�

Yi, i = 1, . . . , m
	

whose terms
read:

µi = µ
�

x (i)
�

, i = 1, . . . , m (1.71)
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and

Σi j = C
�

x (i), x ( j)
�

, i, j = 1, . . . , m. (1.72)

The corresponding vector of random observations Y =
�
Yi, i = 1, . . . , m

�T is Gaussian by
definition:

Y ∼Nm

�
µ, Σ

�
, (1.73)

so that one may use the usual sampling algorithms for Gaussian random vectors (such as
the ones detailed in Section A.5 of Appendix A) in order to draw sample paths from the
Gaussian process Y (x ), x ∈ X.

1.3.4 Examples of stationary autocorrelation functions

All the stochastic processes illustrated in this section are strictly stationary with zero-mean
and unit-variance (i.e. µ(x ) = 0 and σ2(x ) = 1). Only the autocorrelation function is being
varied in order to illustrate its impact on the properties of the corresponding sample paths
(functions of x ). These sample paths were obtained by means of the previously introduced
most basic representation (see Section 1.3.3).

1.3.4.1 The nugget autocorrelation function

The nugget autocorrelation function is defined as follows:

R(x − x ′) = δ(x − x ′), (1.74)

where δ is the Dirac function which is equal to one if x = x ′ and zero otherwise. It is
parameter-free.
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Figure 1.4: The nugget autocorrelation function and a sample path of the corresponding zero-mean
unit-variance Gaussian process.
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It models the absence of any correlation (coherence in the sample paths) meaning that
all the observations of the associated stationary Gaussian process are independent and iden-

tically distributed. Such a Gaussian process is known as a white noise and its sample paths
are discontinuous (see Figure 1.4). In computer experiments, it is sometimes used as an
additive autocorrelation to account for noise in the dataset. It will also allow us to demon-
strate the interrelation between the previously introduced ordinary least-squares regression
procedure and the forthcoming Gaussian process regression methodology.

1.3.4.2 The linear autocorrelation function

The linear autocorrelation function is defined as follows (see Figure 1.5):

R(x − x ′) =

n∏
i=1

max

 
0, 1−

��x i − x ′
i

��
ℓi

!
, (1.75)

where
�
ℓi > 0, i = 1, . . . , n

	
are the so-called scale parameters.
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Figure 1.5: The linear autocorrelation function and some sample paths of the corresponding zero-
mean unit-variance Gaussian process depending on its scale parameter.

1.3.4.3 The exponential autocorrelation function

The anisotropic exponential autocorrelation function is defined as follows (see Figure 1.6):

R(x − x ′, ℓ) = exp

 
−

n∑
i=1

��x i − x ′
i

��
ℓi

!
, (1.76)

where
�
ℓi > 0, i = 1, . . . , n

	
are the so-called scale parameters.

This autocorrelation function corresponds to a specific Gaussian process known as the
Ornstein-Uhlenbeck process. Its sample paths are C 0 (continuous but non-differentiable).
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Figure 1.6: The exponential autocorrelation function and some sample paths of the corresponding
zero-mean unit-variance Gaussian process depending on its scale parameter.

1.3.4.4 The squared exponential autocorrelation function

The anisotropic squared exponential autocorrelation function is defined as follows (see
Figure 1.7):

R(x − x ′, ℓ) = exp

 
−

n∑
i=1

�
x i − x ′

i

ℓi

�2
!

, (1.77)

where
�
ℓi > 0, i = 1, . . . , n

	
are the so-called scale parameters.

This autocorrelation provides an infinite degree of differentiability for the associated
sample paths.
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Figure 1.7: The squared exponential autocorrelation function and some sample paths of the corre-
sponding zero-mean unit-variance Gaussian process depending on its scale parameter.
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1.3.4.5 The Matérn autocorrelation function

The Matérn autocorrelation function is defined as follows:

R(x − x ′, ℓ, ν) =
n∏

i=1

1

2ν−1 Γ (ν)

 
2
p
ν

��x i − x ′
i

��
ℓi

!ν
Kν

 
2
p
ν

��x i − x ′
i

��
ℓi

!
, (1.78)

where
�
ℓi > 0, i = 1, . . . , n

	
are the so-called scale parameters, ν ≥ 1/2 is the so-called

shape parameter, Γ is the Euler Gamma function, and Kν is the modified Bessel function of
the second kind (also known as the Bessel function of the third kind).

One interesting feature of this advanced autocorrelation function is that the sample
paths from the corresponding Gaussian process are ⌈ν − 1⌉ times differentiable (with ⌈•⌉
denoting the ceiling function). If ν = 1/2, the Matérn autocorrelation function coincides
with the exponential autocorrelation function which generates C 0 sample paths (continu-
ous but non-differentiable). On the contrary, as ν tends to infinity the Matérn autocorre-
lation function tends toward the squared exponential autocorrelation function which has
C∞ (infinitely differentiable) sample paths (see Figure 1.8).
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Figure 1.8: The Matérn autocorrelation function and some sample paths of the corresponding zero-
mean unit-variance Gaussian process depending on its scale and shape parameters.

1.4 Gaussian process predictors

1.4.1 Prediction basics

This section is concerned with the so-called Bayesian prediction methodology such as de-
fined in the book by Santner et al. (2003). It essentially consists in assuming that the

observations gathered in the vector y ≡
�
M (x (1)), . . . ,M (x (m))

�T

together with the un-
observed quantity of interest y0 ≡M (x (0)) is a realization of a random vector distributed
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according to a joint parametric distribution F ∈ F :
�

Y0

Y

�
∼ F ∈ F . (1.79)

The Bayesian prediction methodology aims at deriving a (random) predictor bY0 for the
unobserved quantity y0 by exploiting this statistical dependency.

Despite this general framework allows F to belong to a large class of distributions F ,
it will be restricted to the multivariate Gaussian distribution in the sequel due to its conve-
nient properties – see Appendix A for some of them.

Predictors bY0 may have a general functional form w.r.t. the observations although most
practical applications are reduced to linear predictors. A linear predictor bY0 is defined as a
linear combination of the observations Y =

�
Yi, i = 1, . . . , m

�T:

bY0 =

m∑
i=1

ai Yi = aT Y , (1.80)

where a is a weight vector of Rm.

In addition to that linear property, it is important to derive predictors that almost equal

the quantity of interest everywhere on the support of F . This property is expressed mathe-
matically by requiring bY0 to be unbiased. A predictor bY0 is unbiased with respect to F if and
only if:

EF

�bY0− Y0

�
= 0. (1.81)

Finally, a metric is required to compare the quality of competing predictors. In this
prediction context, it is proposed to resort to the well-known mean squared prediction error

(MSPE) which is defined with respect to F as follows:

MSPE(bY0, F) = EF

�
(bY0− Y0)

2
�

. (1.82)

The best MSPE predictor may now be defined as the predictor that minimizes the latter
quantity amongst all other predictors.

The fundamental theorem of prediction (Santner et al., 2003, Theorem 3.2.1, p. 52)
establishes a relationship between the conditional distribution of Y0 given the observations
Y and such best MSPE predictors. This link will be used in the subsequent sections to show
that both frequentist and Bayesian viewpoints lead somehow to the same predictor.

Theorem 1.4.1. The fundamental theorem of prediction

Suppose that (Y0, Y ) has a joint distribution F for which the conditional mean of Y0 given Y

exists. Then,
bY0 = E

�
Y0 | Y

�
(1.83)

is the best MSPE predictor of Y0.

The proof consists in showing that the mean squared prediction error of any other pre-
dictor Y ⋆0 is greater than that of the best MSPE predictor bY0. See the book by Santner et al.
(2003, p. 52) for the complete proof and its interpretation.



28 Chapter 1. Gaussian process meta-modelling

1.4.2 The two-stage Gaussian process prior model

The two-stage Gaussian process prior model assumes that the functional relationship M
between the input x and the scalar output y is a sample path from a Gaussian process Y to
be characterized. It means that the general linear model in Eq. (1.30) still holds for both
the unobserved value Y0 ≡ Y (x (0)) and the observations Y , except the additive Gaussian
noise Z is now assumed to depend on x . Indeed, the so-called two-stage Gaussian process
prior model reads:

Yi =

p∑
j=1

β j f j(x
(i)) + Z(x (i)), i = 0, . . . , m, (1.84)

where:

(i) the first stage consists in a linear combination on a given functional basis f =¦
f j, j = 1, . . . , p

©
with p ≤ m as for the generalized least-squares problem;

(ii) the second stage consists in the Gaussian process Z with zero mean:

E [Z(x )] = 0, ∀x ∈ X, (1.85)

and stationary autocovariance:

E
�

Z(x ), Z(x ′)
�
= σ2 R

�
x − x ′, θ

�
, ∀(x , x ′) ∈ X×X. (1.86)

In the latter expression σ2 denotes the (constant) variance of the Gaussian process while
R is its stationary autocorrelation which depends only on the difference x − x ′ and its so-
called hyperparameters grouped in θ . Examples of such autocorrelation functions and some
of their properties have been detailed in Section 1.3.

Thanks to the Gaussian assumption in Eq. (1.84), the vector gathering the prediction Y0

and the observations Y is normally distributed:
�

Y0

Y

�
∼N1+m

��
f T

0 β
Fβ

�
, σ2

�
1 r T

0
r 0 R

��
, (1.87)

where:

f 0 is the vector of regressors evaluated at x (0);

F is the regression matrix as in Eq. (1.33);

r 0 is the vector of cross-correlations between the point x (0) where the prediction is to be
performed and each one of the observations whose terms read:

r0 i = R(x (0)− x (i), θ ), i = 1, . . . , m; (1.88)

R is the correlation matrix of the observations whose terms read:

Ri j = R(x (i)− x ( j), θ ), i, j = 1, . . . , m. (1.89)
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1.4.3 The best linear unbiased predictor

In this section, it is assumed that the whole autocovariance σ2 R(•, θ ) is known, either be-
cause it was chosen and/or estimated from empirical data as detailed later in Section 1.4.5.

The following theorem gives the expression for the best linear unbiased predictor of the
unobserved quantity of interest Y0. It is also known as the universal Kriging predictor in the
geostatistics related literature. The name “Kriging” is due to Matheron (1962) who named
it after Krige (1951), a South-African mining engineer who is widely recognized as the first
person to have proposed this prediction methodology.

Theorem 1.4.2. The best linear unbiased (or universal Kriging) predictor

The best linear unbiased predictor of the unobserved quantity of interest y0 ≡M (x (0)) under

the two-stage prior model in Eq. (1.84) is the Gaussian random variate bY0 with mean:

µbY0
= E

�bY0

�
= E

�
Y0

�
= f T

0
bβ + r T

0 R−1
�

y − F bβ
�

, (1.90)

and minimal variance:

σ2
bY0
= E

�
(bY0− Y0)

2
�
= σ2

�
1− r T

0 R−1 r 0+ uT

0

�
FT R−1 F

�−1
u0

�
, (1.91)

where:
bβ =

�
FT R−1 F

�−1
FT R−1 y (1.92)

is the generalized least-squares estimate of the underlying regression problem (the first stage),

and:

u0 = FT R−1 r 0− f 0. (1.93)

Proof 1.4.1. By definition the so-called best linear unbiased predictor bY0 of Y0 ≡ Y (x (0)) has the

following properties. It is:

• linear, meaning that given a vector of weights a0 ≡ a(x (0)) ∈ Rm:

bY0 =

m∑
i=1

a0 i Yi = aT

0 Y , (1.94)

• unbiased:

E

�bY0− Y0

�
= 0, (1.95)

• the best (in a mean-square sense) amongst all linear unbiased predictors:

bY0 = arg min
Y ⋆0 linear unbiased

E

h�
Y ⋆0 − Y0

�2
i

. (1.96)

Note that the expectations in the two latter equations are taken with respect to the assumed joint

Gaussian distribution of
�
Y0, Y

�T
.

The problem thus consists in finding the optimal weight vector a∗0 that satisfies these three definitions

and which consequently reads:

a∗0 ≡ arg min
a0∈Rm
E

h�
aT

0 Y − Y0

�2
i

s.t. E
�

aT

0 Y − Y0

�
= 0. (1.97)
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The random deviation between Y0 and its linear prediction can be further elicited by replacing Y

and Y0 by their assumed expressions from the two-stage Gaussian process prior in Eq. (1.84):

bY0− Y0 = aT

0 Y − Y0 (1.98)

= aT

0 (Fβ + Z)− ( f T

0 β + Z0)) (1.99)

= aT

0 Z − Z0+ (a
T

0 F− f T

0 )β . (1.100)

The unbiasedness property requires that:

E

�bY0− Y0

�
= E

�
aT

0 Z − Z0+ (a
T

0 F− f T

0 )β
�

= E
�

aT

0 Z − Z0

�
+ (aT

0 F− f T

0 )β = 0, (1.101)

where the first expected term is zero because of the zero-mean assumption for the underlying Gaussian

process Z:

E

�
aT

0 Z − Z0

�
≡ 0, (1.102)

so that the non-bias constraint reduces to:

aT

0 F− f T

0 = 0. (1.103)

Using the above equation together with Eq. (1.100), the mean-squared prediction error further reads:

E

h�bY0− Y0

�2
i
= E

h�
aT

0 Z − Z0

�2
i

(1.104)

= E
�

aT

0 Z ZT a0+ Z2
0 − 2 aT

0 Z Z0

�
(1.105)

= aT

0 E
�

Z ZT
�

a0+E
�

Z2
0

�
− 2 aT

0 E
�

Z Z0
�

(1.106)

= aT

0 σ
2 R a0+σ

2− 2 aT

0 σ
2 r 0 (1.107)

since σ2 R ≡ E
�

Z ZT
�

, σ2 ≡ E
�

Z2
0

�
and σ2 r (x ) ≡ E

�
Z Z0

�
by definition. Thus the mean squared

prediction error eventually reads:

E

h�bY0− Y0

�2
i
= σ2

�
1+ aT

0

�
R a0− 2 r 0

��
. (1.108)

Eq. (1.97) states that the best linear unbiased predictor bY0 is the solution of an equality constrained

optimization problem. Let us introduce a vector of Lagrange multipliers λ0 ≡ λ(x (0)) to enforce the

simplified equality constraint in Eq. (1.103) during the minimization of the mean squared prediction

error in Eq. (1.108). The Lagrangian reads:

L(a0, λ0) = σ
2
�

1+ aT

0

�
R a0− 2 r 0

��
+λT

0

�
aT

0 F− f T

0

�
. (1.109)

Hence the associated Lagrange optimality conditions read as follows:

¨
∇a0

L = 2σ2 �R a0− r 0
�
+ Fλ0 = 0

∇λ0
L = FT a0− f 0 = 0

(1.110)

The latter equation is indeed a linear system in the unknowns a0 and λ0 so that it may be rewritten in

the following more convenient matrix form:

�
R F
FT 0

�¨
a0
eλ0

«
=

¨
r 0

f 0

«
with eλ0 =

λ0

2σ2 . (1.111)
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Multiplying the first line of this system by −FT R−1 on the left and adding the resulting quantity to the

second line turns out to give a new equation in eλ0 only whose solution reads:

eλ
∗
0 =
�

FT R−1F
�−1 �

FT R−1 r 0− f 0

�
. (1.112)

Substituting this solution in the first line of the linear system in Eq. (1.111) gives the sought optimal

vector of weights a∗0 which reads:

a∗0 = R−1
�

r 0− F
�

FTR−1 F
�−1 �

FT R−1 r 0− f 0

��
. (1.113)

Finally, the expression for the mean of the best linear unbiased predictor bY0 is obtained by replacing the

sought weight vector a0 by this above solution in Eq. (1.94) and by using the symmetry of R:

µbY0
= a∗0

T
y

= [r 0− F (FTR−1 F)−1 (FT R−1 r 0− f 0)]
T R−1 y

= rT

0 R−1 y − [(FT R−1 F)−1 FT R−1 r 0+ (F
T R−1 F)−1 f 0]

T FT R−1 y

= f T

0 (F
T R−1 F)−1 FT R−1 y︸ ︷︷ ︸
bβ

+rT

0 R−1(y − F (FT R−1 F)−1 FT R−1 y︸ ︷︷ ︸
bβ

).

The expression for its variance is similarly obtained by introducing u0 ≡ FT R−1 r 0− f 0 in Eq. (1.113)

for the sake of brevity, and by replacing the obtained expression for a∗0 in Eq. (1.108):

σ2
bY0
= σ2 [1+ a∗0

T
(R a∗0− 2 r 0)]

= σ2 [1+ (r 0− F (FTR−1 F)−1 u0)
T R−1 ((r 0− F (FTR−1 F)−1 u0)− 2 r 0)]

= σ2 [1− (r 0− F (FTR−1 F)−1 u0)
T R−1 (r 0+ F (FTR−1 F)−1 u0)︸ ︷︷ ︸

“(a− b)T K (a+ b) = aT K a− bT K b” because K is symmetric

]

= σ2 [1− (rT

0 R−1 r 0− (F (FT R−1 F)−1 u0)
T R−1 F (FTR−1 F)−1 u0)]

= σ2 [1− rT

0 R−1 r 0+ uT

0 (F
T R−1 F)−1 (FT R−1 F)︸ ︷︷ ︸

I

(FT R−1 F)−1 u0].

1.4.4 Properties of the best linear unbiased predictor

1.4.4.1 Interpolation

The best linear unbiased predictor interpolates the observations in the dataset such as illus-
trated in Figure 1.9.

To prove it, let choose some i ∈ [[1; m]] and define f i ≡ f (x (i)) which is also the i-th
row of the regression matrix F, and r i ≡ r

�
x (i)
�

which is also the i-th row of the correlation
matrix R. Let also point out that the following relationship holds:

R−1 r i = e i, (1.114)

where e i is the i-th basis vector of Rm which has all-zero components except its i-th compo-
nent equal to one, because the latter dot product is also the i-th column of R−1 R= I. Using
Eq. (1.90) with x (0) = x (i) and replacing R−1 r i with e i leads to:

µbYi
= f T

i
bβ + eT

i

�
y − F bβ

�
= yi, (1.115)
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which proves that the best linear unbiased predictor interpolates the observations in the
dataset.
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Figure 1.9: Interpolation property of the best linear unbiased predictor for the one-dimensional
functionM (x) = x sin(x).

1.4.4.2 Asymptotic consistency

Vazquez (2005, pp. 132–156) points out that the universal Kriging predictor is asymp-
totically consistent when the actual autocovariance σ2 R(•, θ ) of the underlying Gaussian
process is regular.

The proof consists in showing that the mean squared prediction error of the best linear
unbiased predictor tends to zero everywhere as the dataset D =

¦
(x (i), y i), i = 1, . . . , m

©

becomes dense in X (meaning that all x (i)’s are unique elements of X):

E

�
(bY0− Y0)

2
�
−→

m→∞
0 with x (i) 6= x ( j) ∀ (i, j) ∈ [[1; m]]

2. (1.116)

Indeed, when considering Eq. (1.91) for x (0) = x (i), one proves that the term u i defined in
Eq. (1.93) vanishes since:

u i = FT e i − f i = f i − f i = 0. (1.117)

Thus,
σ2
bYi
= σ2

�
1− r T

i
e i + 0

�
. (1.118)

This means that the Kriging variance is zero for all x (i)’s (which are assumed to be dense
in X) if and only if r i = e i which is only true for regular autocorrelation function for which
R(|x − x |) = R(0) = 1.
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As a consequence this consistency property might not hold in some practical applica-
tions where the degree of regularity is empirically chosen or estimated. As a matter of fact,
it makes the use of the forthcoming empirical best linear unbiased predictors as determinis-
tic surrogates for some experimentM a heuristic approach. It is worth mentioning though
that Vazquez (2005) also demonstrated through numerical experiments on a selected set
of examples that empirical best linear unbiased predictors tend to reach asymptotic consis-
tency when the regularity of the autocovariance is accurately estimated.

This property is illustrated in Figure 1.10. It can be seen that the predictor variance
reduces to zero at all observations so that it tends to be zero everywhere when the design
of experiments X =

¦
x (i), i = 1, . . . , m

©
becomes dense in X.
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Figure 1.10: Asymptotic consistency of the best linear unbiased predictor for the one-dimensional
function M (x) = x sin(x). The scale parameter ℓ in the chosen squared exponen-
tial autocovariance model has been estimated by means of the maximum likelihood
estimation technique (see Section 1.4.5.2) for each m.

1.4.4.3 Gaussianity

As opposed to its forthcoming Bayesian counterpart, the frequentist interpretation of the
Kriging prediction methodology does not necessarily require the Gaussian assumption for
the underlying stochastic process. Indeed, it only needs the assumptions regarding its sta-
tionary second-order statistics and the proof makes only use of the linearity property of the
expectation operator. However the Gaussian assumption is transmitted to the predictor bY0

because the Kriging predictor is a linear combination of the Gaussian observations Y :

bY0 = aT

0 Y ∼N1(µbY0
, σ2

bY0
). (1.119)
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Thus it is a convenient property to compute:

• exceedance probabilities:

P
�bY0 ≤ t

�
= Φ

�
t −µbY0

σbY0

�
, (1.120)

where Φ denotes the CDF of the standard normal distribution (see Eq. (1.20));

• confidence intervals:

Y0 ∈
�
µbY0
−Φ−1

�
1−

α

2

�
σbY0

; µbY0
+Φ−1

�
1−

α

2

�
σbY0

�
with prob. 1−α, (1.121)

where Φ−1 denotes the inverse CDF of the standard normal distribution. For instance,
the value α= 5% implies that Φ−1(1− 0.05/2) = 1.96, and corresponds to a 1−α=
95% confidence interval. This value will be widely used throughout this manuscript.

0 2 4 6 8 10
x

6

4

2

0

2

4

6

8

10

12

y

M(x) =x sin(x)
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Figure 1.11: Gaussianity of the best linear unbiased predictor for the one-dimensional function
M (x) = x sin(x).

1.4.5 Empirical best linear unbiased predictors

It was previously assumed, at the beginning of Section 1.4.3, that the autocovariance func-
tion σ2 R(•, θ ) was known. In the present context of computer experiments though it is
never the case, so that the user has to (i) choose a family of autocorrelation functions
e.g. amongst the one depicted in Section 1.3, and then (ii) estimate the unknown hyper-
parameters θ and the variance σ2 from the dataset D =

¦
(x (i), yi), i = 1, . . . , m

©
. The

resulting best linear unbiased predictors are called empirical best linear unbiased predictors

in the book by Santner et al. (2003) because they result of an empirical (although moti-
vated) choice. Some of these estimation techniques are reviewed in the sequel.
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1.4.5.1 Variogram estimation

The use of this technique is strictly limited to the field of geostatistics where it was ini-
tially proposed (see e.g. Cressie, 1993, for a review). It consists in computing an empirical
(binned) estimate of the autocovariance function from the dataset D assuming the under-
lying stationary Gaussian process Z is ergodic. Loosely speaking, the procedure is alike
the histogram estimation of probability density functions which is widely used in statistical
inference. However it is not applicable to computer experiments because it is hardly gen-
eralizable in dimensions greater than n= 3 when accounting for anisotropy in the autocor-
relation function, and it does not permit to account for the non-stationary trend f (x )Tβ .
The limitation with respect to the dimension is not a problem in geostatistics because the
Kriging prediction methodology is used to estimate the spatial variability of properties in a
2- or 3-dimensional space.

It is also important to note that the property of ergodicity for a stationary Gaussian pro-
cess is only true if the dataset D covers a domain X that is sufficiently large when compared
to its correlation lengths. According to the author’s experience, in a one-dimensional input
space X = [0; L], the true correlation length ℓ of the Gaussian process must be less than
L/30 on purpose to yield satisfactory estimates (provided the sample path is observed on
a sufficiently dense partition of X). This is rarely the case for smooth and slowly-varying
computer experiments. Strictly speaking, ergodicity is rigorously defined with respect to
the covariance integral range which depends on the autocorrelation function as a whole and
not only on the correlation length ℓ (see e.g. Chilès and Delfiner, 1999, Chapters 1 and 2).

1.4.5.2 Maximum likelihood estimation

The maximum likelihood estimation (MLE) technique is better suited to computer experi-
ments because it does not depend on the dimension n of the input space X.

Recall that the likelihood of the observations y is defined with respect to its multivariate
normal distribution:

L

�
y | β , σ2, θ

�
=

1

((2πσ2)m [detR(θ )])1/2
exp
�
−

1

2σ2 (y − Fβ)T R(θ )−1 (y − Fβ)

�
,

(1.122)

which depends on β , σ2 and θ (through the correlation matrix R).

The corresponding opposite log-likelihood then reads:

− logL

�
y | β , σ2, θ

�
=

1

2σ2 (y − Fβ)T R(θ )−1 (y − Fβ) +
m

2
log (2π)

+
m

2
log
�
σ2
�
+

1

2
log ([detR(θ )]) .

(1.123)
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The maximum likelihood estimates of β and σ2 were already derived in Section 1.2.3.
These two solutions are the so-called generalized least squares estimates and depend both
here on θ :

bβ(θ ) = (FT R(θ )−1 F)−1 FT R(θ )−1 y , (1.124)

cσ2(θ ) =
1

m
(y − F bβ)T R(θ )−1 (y − F bβ). (1.125)

Plugging these two solutions in Eq. (1.123) leads to a new expression that depends on
θ only:

− logL

�
y | β , σ2, θ

�
=

m

2
+

m

2
log (2π) +

m

2
log
�cσ2(θ )

�
+

1

2
log ([detR(θ )])

=
m

2
log(ψ(θ )) +

m

2

�
log(2π) + 1

�
, (1.126)

where the so-called reduced likelihood function has been introduced:

ψ(θ ) = cσ2(θ ) [detR(θ )]1/m . (1.127)

The maximum likelihood estimate of θ is eventually defined as the following global mini-
mizer:

bθ = argmin
θ

ψ(θ ). (1.128)

because minimizingψ is equivalent to minimizing the negative log-likelihood as the natural
logarithm and the affine functions are strictly increasing.

The global optimization problem in Eq. (1.128) cannot be solved analytically and one
usually resorts to numerical global optimization techniques. For instance, the DACE Matlab
toolbox by Lophaven et al. (2002) uses the BOXMIN algorithm which is a sort of multivari-
ate dichotomy algorithm while the DiceKriging R package by Roustant et al. (2010) resorts
to a gradient-based genetic algorithm by Sekhon and Mebane (2011).

It is worth mentioning here the work by Marrel (2005, 2008); Marrel et al. (2008)
who investigated the numerical difficulties related to this global optimization problem by
studying the properties of the reduced likelihood function depending on the chosen au-
tocorrelation function and the size m of the dataset D. The authors pointed out that the
problem is particularly ill-posed when both the squared exponential correlation function is
used and the dataset X =

¦
x (i), i = 1, . . . , m

©
becomes dense in X. The author explains

this phenomenon by observing that the squared exponential autocorrelation assumes infi-
nite regularity (degree of differentiability) for the experimentM so that the unavoidable
noise in the observations y raises some numerical inconsistencies with respect to that for-
mer assumption.

This observation is also mentioned by Vazquez (2005) who recommends the use of the
Matérn autocorrelation function instead of the squared-exponential because it allows one
to explicitly control the finite regularity of the experiment through one of its parameters
(see Section 1.3.4).
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Another workaround which is widely implemented in many Kriging softwares and pack-
ages consists in raising the diagonal of the correlation matrix R with a quantity ǫ that
is negligible in front of the variance of the underlying Gaussian process. This improves
the conditioning of the correlation matrix and makes its Cholesky decomposition possible.
However Vazquez (2005) warns that the interpolating and consistency properties enunci-
ated in Section 1.4.4 do not hold anymore when this technique is used, although it almost
holds when ǫ is sufficiently small. The quantity ǫ is often referred to as a nugget variance

because of its historical background: this technique was initially proposed by geostatisti-
cians that had to deal with in situ experiments containing irregularities often due to the
presence of singularities in the soil (nuggets).

The MLE algorithm used for the applications presented in this thesis is the one imple-
mented in the DACE toolbox by Lophaven et al. (2002) where the first guess is derived
under an isotropic assumption following the idea developed in Marrel et al. (2008) based
on the work by Welch et al. (1992).

1.4.5.3 Cross-validated empirical best linear unbiased predictors

The cross-validation technique is a very popular tool for model selection in the supervised
learning related literature. The practice is even so large that it is hard to say who proposed
it in the first place, although Allen (1971) and Stone (1974) are often cited as the earliest
references.

The general principle of cross-validation techniques consists in splitting the whole
dataset D in K mutually exclusive and collectively exhaustive subsets

�
Dk, k = 1, . . . , K

	
such that:

Di ∩D j = ; ∀(i, j) ∈ [[1; K]]
2 and

K⋃
k=1

Dk = D. (1.129)

The k-th (k ∈ [[1; K]]) set of cross-validated predictions is obtained by fitting the model
using all the subsets but the k-th one D \Dk and predicting it on that specific k-th fold that
was left apart. The leave-one-out cross-validation procedure corresponds to the special case
for which K = m.

Dubrule (1983) showed that leave-one-out predictions for the universal Kriging predic-
tor can be efficiently obtained by inverting the matrix involved in Eq. (1.111) only once as
for ordinary least-squares regression (see e.g. Saporta, 2006, Chapter 17). The i-th leave-
one-out Kriging prediction built from the reduced dataset D−i = D\(x (i), yi) and evaluated
at point x (i) is denoted by bY−i in the sequel.

Indeed, by introducing the matrix B whose terms read:

Bi j = S−1
i j

, i, j = 1, . . . , m, (1.130)

where S−1
i j

denotes the terms of the inverse of the matrix:

S=

�
σ2 R F
FT 0

�
, (1.131)
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Dubrule (1983) showed that the m leave-one-out predictions of the universal Kriging mean
and variance respectively read:

µbY−i
= −

m∑
j=1
j 6=i

Bi j

Bi i

y j, i = 1, . . . , m, (1.132)

and

σ2
bY−i
=

1

Bi i

, i = 1, . . . , m. (1.133)

The paper also generalizes the use of this technique to any K-folds cross-validation of the
universal Kriging predictor.

Then leave-one-out predictions allow one to estimate a meaningful coefficient of deter-
mination even when the model is interpolating as for the Kriging predictor:

Q2 = 1−
1

m

m∑
i=1

�
µbY−i
− yi

σbY−i

�2

, (1.134)

The definition of this generalization score varies in the Kriging-related literature depending
on the context. Some researchers use the prediction variance in the denominator as in the
latter equation while others use the empirical variance of the observations in the dataset.
As for the usual coefficient of determination, the higher the generalization score, the better
the predictor. The generalization score cannot exceed 1.

1.4.6 Bayesian predictors

It has already been shown in Section 1.2.4 that the Bayesian framework allows one to com-
pute posterior distributions for the unknown parameters of a given model and that this
posterior distribution is conditioned on both the prior knowledge (or belief) expressed in
terms of a prior distribution and the data. In the present context, Santner et al. (2003,
amongst others) show that it is possible to propagate the uncertainty carried by the poste-
rior distributions of the unknown parameters down to the final predictive distribution Y0 of
the quantity of interest. This section reviews the fundamental concepts of this prediction
methodology and some reference results available in the literature.

1.4.6.1 Outline of the Bayesian prediction methodology

First, let us group the unknown parameters of the two-stage Gaussian process model of
Section 1.4.2 in the vector:

ω ≡
�
βT, σ2, θT

�T

, (1.135)

and assume it has prior distribution p(ω). Note that practical priors often have the follow-
ing form (Santner et al., 2003):

p(ω) = p(β | σ2) p(σ2) p(θ ), (1.136)
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because it makes the approach tractable, and because it is reasonable to assume that the
parameters in the autocorrelation function are independent of [β , σ2] a priori.

Then, the posterior distribution of these unknown parameters (conditional on the data
y) can be obtained by applying Bayes’ theorem:

p(ω | y)∝ p(y |ω) p(ω), (1.137)

as in Section 1.2.4 for the specific case of a non-informative Jeffreys prior on β and σ2.
Deriving this posterior distribution for any given prior distribution is a first computational
challenge, even though the literature contains many reference analytical results (see e.g.

Zellner, 1971).

The joint posterior distribution of [Y0,ω | Y] is defined as follows:

p(y0, ω | y)≡ p(by0 | y , ω) p(ω | y), (1.138)

where the first term corresponds to the posterior distribution of the prediction given the
parameters ω. Deriving the posterior p(by0 | y , ω) for any given multivariate second-order
probability distribution is not straightforward.

For the multivariate Gaussian distribution though, Theorem A.4.2 of Appendix A states
that this conditional distribution is another Gaussian distribution:

[Y0 | Y , ω]∼N1

�
f T

0 β + r T

0 R−1(Y − Fβ), σ2 (1− r T

0 R−1 r 0)
�

. (1.139)

This theorem is the reason why the Gaussian process prior assumption formulated in Sec-
tion 1.4.2 is so popular in the literature on Bayesian prediction. Note that the mean of this
conditional distribution already corresponds to the best linear unbiased predictor µbY0

of
Theorem 1.4.2 while the variance lacks an additive term compared to Eq. (1.91). The rea-
son for this is that the posterior distribution in Eq. (1.139) assumes the location parameters
β are known whereas the distribution of the universal Kriging predictor of Theorem 1.4.2
sums up the uncertainty induced by a non-informative prior on the unknown parameters
β .

The last step of the Bayesian prediction methodology consists in marginalizing the joint
posterior distribution by integrating ω out. Indeed the posterior predictive distribution is
defined as follows:

p(by0)≡ p(y0 | y)≡
∫

p(y0, ω | y)dω. (1.140)

This very last step constitutes the second computational challenge.

1.4.6.2 Some reference results available in the literature on Gaussian process pre-
dictors

For instance, Santner et al. (2003, pp. 116–118) show that the universal Kriging predictor
of Theorem 1.4.2 corresponds to the case where no prior knowledge for β is available while
σ2 and θ are known. The corresponding non-informative prior distribution thus reads:

p(ω) = p(β)∝ 1, (1.141)



40 Chapter 1. Gaussian process meta-modelling

and the posterior predictive distribution is:

bY0 ∼N1

�
f T

0
bβ + r T

0 R−1(Y − F bβ), σ2 (1− r T

0 R−1 r 0+ uT

0 FT R−1 F u0)
�

, (1.142)

where bβ and u0 were already defined in Eq. (1.92) and Eq. (1.93), respectively.

Table 1.1 summarizes the results available in the literature for the posterior predictive
distribution bY0 depending on the available prior knowledge. From the first to the last
row, the computational complexity considerably increases, and so does the variance of the
posterior predictive distribution as reported by Handcock and Stein (1993).

Prior Posterior

[β | σ2] [σ2] [θ ] bY0 ≡ [Y0 | Y]
Known Known Known Gaussian as in Eq. (1.139)

Non-informative Known Known Gaussian as in Eq. (1.142)

Non-informative or
Gaussian

Non-informative or
Inv.-Gamma

Known Shifted Student

Non-informative or
Gaussian

Non-informative or
Inv.-Gamma

informative
Non-analytical posterior

distribution

Table 1.1: Nature of the predictive posterior distribution depending on the prior knowledge avail-
able expressed in terms of a joint prior distribution.

The first row is the simplest form of Bayesian Kriging. It could be referred to as simple

Kriging, even though the simple Kriging predictor does not involve any regression stage
(see e.g. Ginsbourger, 2009, pp. 75–77). The second row is the universal Kriging case
of Theorem 1.4.2. The third row corresponds to Theorem 4.1.2 in the book of Santner
et al. (2003). The authors point out that the number of degrees of freedom in the shifted
Student distribution interestingly increases with the quantity of prior knowledge available.
As a consequence, the variance of the posterior predictive distribution decreases and tends
towards the universal Kriging case.

The last row, which corresponds to the case where one wants to propagate the uncer-
tainty in all the parameters including θ , is greatly complicated by the way these parameters
enter in the likelihood (recall that θ defines r 0 and R). It involves the use of numerical
integration techniques to compute the posterior predictive distribution (see e.g. Handcock
and Stein, 1993), and/or Markov chain Monte Carlo (MCMC) to sample from the poste-
rior predictive distribution. Regarding the MCMC sampling of two-stage Gaussian process
models, the interested reader is referred to the PyMC Python package by Patil et al. (2010)
and its Gaussian process subpackage. The latter most comprehensive case is rather cumber-
some to implement and much more computationally expensive than the other cases which
are analytical.

As a conclusion, it has been considered that for the present application of Gaussian pro-
cess predictors as surrogates for expensive-to-evaluate black-box functions, the universal
Kriging model offers a sufficient degree of fidelity even if its variance underestimates the



1.5. Illustration 41

real one associated with our prior knowledge of σ2 and θ . In another identification con-
text though (such as the identification of random fields), the complete Bayesian approach
corresponding to the last row of Table 1.1 may provide more meaningful results.

1.5 Illustration

1.5.1 Least-squares linear regression

This illustration is provided so as to show the interrelation between Gaussian process re-
gression and ordinary least-squares regression through the use of the singular nugget au-
tocorrelation function which assumes spatial independence of the observations as ordinary
least-squares regression does. The proposed regression problem consists in fitting the slope
and the intercept of a line from the dataset D =

¦
(x (i), yi), i = 1, . . . , 20

©
where the x (i)’s

split the interval X = [−4; 4] in equal subintervals, and the yi ’s are computed from the
following noisy linear experiment:

M (x) = a x + b+ ǫ (1.143)

where a = 1, b = 3 and ǫ ∼N1(0, 1).

The fitted Gaussian process model assumes a linear trend f = {1, x}, and a parameter-
free nugget autocorrelation function (as defined in Eq. (1.74)). This means that the obser-
vations falls under the ordinary least-squares form:

Yi = β1+ β2 x (i)+ Zi, i = 1, . . . , 20 (1.144)

where Zi = Z(x (i)) assumes spatial independence of the observations. The problem is
reduced to the inference of the regression weights: the intercept β1 and the slope β2.

It can be seen from Figure 1.12 that the best linear unbiased predictor still interpolates
the data as the Dirac term from the nugget autocorrelation function forces the prediction
to fetch the observations. Practical implementation of the best linear unbiased predictor
consists in using an autocorrelation function that introduces a non-zero correlation length
to smooth the prediction.

The variance is assumed to be known even if it has been estimated from the observations
in the dataset using the maximum likelihood principle, so that the posterior distribution of
the regression weights is Gaussian and the final predictive distribution is also Gaussian (uni-
versal Kriging). The 95% confidence interval represented by the shaded area is computed
from this convenient assumption. In this particular case, the posterior distribution for the
intercept β1 and the slope β2 seem uncorrelated, and the uncertainty in the intercept is
greater than the one in the slope.
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Figure 1.12: Interrelation between Gaussian process regression and ordinary least-squares regres-
sion. Panel (a) shows the resulting best linear unbiased predictor with 95% confi-
dence intervals. Panel (b) shows the posterior predictive distribution of the regression
weights (assuming the variance σ2 is known) together with a few random samples
(the points), three of which (the “+”) are used to plot samples of the fitted linear
model on panel (a).

1.5.2 Gaussian process regression

This section provides an empirical comparison of different empirical best linear unbiased
predictors fitted to a unique sparse set of observations of the one-dimensional model
M (x) = x sin(x). All predictors assumed a regression model reduced to a constant (i.e.

f = {1} and β = β1), and only the autocorrelation functions are varied in order to illus-
trate their properties. The scale parameter ℓ of each correlation model is fitted using the
maximum likelihood principle which consists in finding the global minimum of the reduced
likelihood function ψ in Eq. (1.128). The reduced likelihood function ψ is plotted together
with the generalization score Q2 in Eq. (1.134) as functions of the inverse scale parameter
1/ℓ.

A first observation from this experimental study is that the interpolation and consistency
properties enunciated in Section 1.4.4 hold for all these usual regular autocorrelation func-
tions as illustrated on the left-hand panels of Figures 1.14 and 1.15. It is also important
to note that the prediction variance σ2

bY does not depend on the observations as it can be
seen from its definition in Eq. (1.91). However, it clearly depends on both the design of
experiment X and the autocorrelation function as illustrated in Figure 1.13.
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Figure 1.13: Prediction variance depending on the autocorrelation function for the approximation
of the modelM (x) = x sin(x).

Another important observation concerns the conditioning of the maximum likelihood
estimation problem. It can be seen from the right-hand panels of Figures 1.14 and 1.15
that the sharper the autocorrelation function, the easier the minimization of the reduced
likelihood function ψ. The linear correlation appears as an exception as it features several
local extrema although it has a clear global minimum. The squared exponential autocor-
relation is clearly the worst case for a tractable inference, because the reduced likelihood
function features several local extrema and a large plateau containing the sought optimal
solution. On the contrary, the more regular the autocorrelation function, the higher the
generalization score Q2. Eventually, it can be seen from Figure 1.15(a) and 1.15(b) that the
finite differentiable Matérn autocorrelation function offers an interesting trade-off between
inference complexity and prediction quality.
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(a) Linear autocorrelation function (Eq. (1.75))
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(b) Exponential autocorrelation function (Eq. (1.76))
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(c) Squared exponential autocorrelation function (Eq. (1.77))

Figure 1.14: Universal Kriging models forM (x) = x sin(x) and various autocorrelation functions.
The left-hand panels represent the observations and the probabilistic prediction as in
Figure 1.11. The right-hand panels depict the reduced likelihood function ψ and the
generalization score Q2 as functions of the inverse scale parameter (1/ℓ).
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(a) Once differentiable Matérn autocorrelation function (Eq. (1.78) with ν = 3/2)
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(b) Twice differentiable Matérn autocorrelation function (Eq. (1.78) with ν = 5/2)
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(c) Infinitely differentiable autocorrelation function (Eq. (1.78) with ν →∞)

Figure 1.15: (continued from Figure 1.14) Universal Kriging models forM (x) = x sin(x) and vari-
ous autocorrelation functions. The left-hand panels represent the observations and the
probabilistic prediction as in Figure 1.11. The right-hand panels depict the reduced
likelihood function ψ and the generalization score Q2 as functions of the inverse scale
parameter (1/ℓ).
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1.5.3 From Gaussian process regression to probabilistic classification

This last illustration is essential for the understanding of the ideas developed throughout
this manuscript. Let us consider the following two-dimensional limit-state function from
Der Kiureghian and Dakessian (1998):

g(x ) = b− x2− κ (x1− e)2 (1.145)

where b = 5, κ = 0.5 and e = 0.1. In a reliability analysis (or equivalently in a constrained
optimization problem), the purpose of such a limit-state function is to split the input space
X into two complementary subsets, namely:

• the failure domain canonically defined as:

F= {x ∈ X : g(x )≤ 0} , (1.146)

• the safe domain canonically defined as:

F= {x ∈ X : g(x )> 0} . (1.147)

In order to solve this classification problem, it is proposed to use a Gaussian process predic-
tor bY for the model g. It makes use of a constant regression trend ( f = {1} and β = β1)
and a squared exponential autocorrelation function. The two scale parameters in the auto-
correlation function are arbitrarily set to ℓ1 = ℓ2 = 2 rather than being estimated from the
data. The reason for this is that the Kriging predictor is already fully consistent when the
scale parameters are correctly estimated so that it does not deserve the present illustration
as discussed hereafter. Also, the experimental designX = {x (i), i = 1, . . . , 8} is deliberately
chosen sparse and not uniformly distributed over the square input space X = [−8; 8]2 for
the same reason.

In Figure 1.16, the original limit-state surface S0 = {x ∈ X : g(x ) = 0} is represented
by the dashed black line. The red “−” and the blue “+” represent the initial dataset D from
which the Kriging meta-model is built. The symbol is related to the sign of the real-valued
observations y used to fit the Kriging predictor bY . The mean prediction of the limit-state
surface, which is defined as cS0 =

�
x ∈ X : µbY (x ) = 0

	
, is represented by the solid black

line.

1.5.3.1 The probabilistic classification function

Using the Gaussianity of the Kriging predictor bY , the probabilistic classification function is
introduced:

π(x ) =P
�bY (x )≤ t

�

= Φ

�
t −µbY (x )
σbY (x )

�
, t ∈ Y. (1.148)
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Figure 1.16: Probabilistic classification function on a simple two-dimensional computer experiment
from Der Kiureghian and Dakessian (1998). The probabilistic classification function π
at x (0) approximately equals 0.6.

where Φ denotes the CDF of the standard normal distribution (see Eq. (1.20)).

In Figure 1.16, the grey shade represents the values of the probabilistic classification
function π. The red (resp. the blue) solid line corresponds to the contour of the probabilistic
classification function at level π(x ) = 0.975 (resp. π(x ) = 0.025). In other words, these
contours bound the 95% confidence region around the mean prediction of the limit-state
surface. The probabilistic classification equals one (resp. zero) at the red “−” (resp. at
the blue “+”) because the Kriging prediction is interpolating (µbY (x

(i)) = yi) and consistent
(σbY (x

(i)) = 0). Indeed, with slight abuse of notation:

π(x (i)) = Φ

�
t − yi

0

�
=

�
Φ (−∞) = 0 if yi > t

Φ (+∞) = 1 if yi ≤ t
, i = 1, . . . , m, t ∈ Y. (1.149)

The green triangle x 0 in Figure 1.16 is quite interesting because two different decisions
can be made depending on the decision function that is used. Indeed, the original limit-
state function g is positive at x 0 so that x 0 ∈ F. However, according to the mean prediction
µbY (x

0), which is predicted to be negative, x 0 would belong to F. This problem is referred to
as a classification error. Note that the previously defined probabilistic classification function,
represented in grey shade, allows a smoother decision. Indeed, g(x 0) is predicted to be
negative with a 60% probability w.r.t. the epistemic uncertainty in the random prediction
bY (x 0) ∼ N1(µbY (x

0), σ2
bY (x

0)). This probabilistic information is richer than the simpler
binary classification based on the sign of the mean prediction and might be exploited in a
reliability analysis.
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1.5.3.2 Approximate failure domains and margin of uncertainty

Let us introduce the following three approximate failure domains:

bF i
1−α ≡

�
x ∈ X : µbY (x )≤ t + i k1−ασbY (x )

	
, i = −1, 0, +1, t ∈ Y, (1.150)

where 1− α is the selected confidence-level so that k1−α = Φ
−1 (1−α/2). Recall that for

the applications in this manuscript 1− α = 95%, thus k1−α = 1.96. These three subsets
are equivalently bounded by the contour of the probabilistic classification function at level
0.975, 0.5 and 0.025 for bF−1

1−α, bF 0
1−α and bF+1

1−α, respectively. However, the definition in
Eq. (1.150) is easier to evaluate because it does not require the evaluation of the standard
normal CDF Φ.

The three approximate failure domains are such that:

• a point x ∈ bF 0
1−α has fifty percent chances to belong to the failure domain, making

bF 0
1−α the most uncertain prediction of the actual failure domain F;

• a point x ∈ bF−1
1−α belongs to the failure domain with high confidence 1−α/2, making

bF−1
1−α an optimistic prediction of the actual failure domain F;

• a point x ∈ bF+1
1−α belongs to the failure domain with (lower) confidence α/2, making

bF+1
1−α a pessimistic (conservative) prediction of the actual failure domain F.

In addition, thanks to the positiveness of the Kriging standard deviation σbY , these three
subsets satisfy the following property:

bF−1
1−α ⊆ bF 0

1−α ⊆ bF+1
1−α. (1.151)

These three approximate failure domains bF−1
1−α (red), bF 0

1−α (grey) and bF+1
1−α (blue) are illus-

trated in Figure 1.17 for the limit-state function in Eq. (1.145) and 1−α= 95%.

The margin of uncertainty at confidence level 1− α associated with a Kriging approxi-
mation of some contour St , t ∈ Y is defined as follows:

M1−α ≡ bF+1
1−α \ bF−1

1−α
=
�
x ∈ X : t − k1−ασbY (x )≤ µbY (x )≤ t + k1−ασbY (x )

	
. (1.152)

It is the relative complement of bF−1
1−α in bF+1

1−α.

In other words, M1−α is the (1 − α)-confidence region for the Kriging approximation
of the contour of interest. The real limit-state surface St has 1− α percent chances to be
located in this margin w.r.t. the Kriging epistemic uncertainty. In addition, the spread of
this margin turns out to be a useful indication on the quality of the approximation bF 0 for
F. The 95%-confidence margin of uncertainty in Figure 1.17 for the limit-state function in
Eq. (1.145) corresponds to the relative complement of the red set in the blue set.
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1.6 Conclusion

This chapter has reviewed some state-of-the-art meta-modelling techniques. Considering
that the kernel-based approaches are better suited to the classification problem underlying
a reliability analysis than other general linear models, it has been decided to use Gaus-
sian process predictors in order to circumvent the computational burden induced by the
resolution of the reliability-based design optimization problem.

Despite its Gaussianity may seem heuristic, the universal Kriging predictor turns out
to be an interesting tool to surrogate a computer experiment in the context of reliability
analysis because it allows one to genuinely quantify the error induced by this substitution
(up to the empirically chosen autocovariance model). This uncertainty is only due to the
sparsity of the dataset D and it is therefore reducible by adding new observations corre-
sponding to additional points in the experimental design X . Such a reducible uncertainty
is referred to as an epistemic uncertainty as opposed to the aleatoric uncertainty modelled
by the random distribution of the input X in an uncertainty quantification analysis. For a
further discussion about these two types of uncertainty and how they might be involved in
uncertainty quantification, the interested reader is referred to the article by Der Kiureghian
and Ditlevsen (2009).
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2.1 Introduction

In the previous chapter, supervised learning was presented as the discipline of statis-
tical learning that aims at building an emulator for a given model M from a dataset
D =

¦
(x (i), yi), i = 1, . . . , m

©
. This chapter is concerned with the problem of selecting the

best design of experiments (DOE) X =
¦

x (i), i = 1, . . . , m
©

in order to ensure the accuracy
of the emulator over the whole input space X or some part of it.

Such a DOE should be parsimonious (i.e. it should contain the least number m of exper-
iments) for two reasons. First, the emulator is built to surrogate an expensive-to-evaluate
computer modelM . The cost to build this emulator is expected to be far smaller than the
one induced by using the original computer model M to perform the analysis of interest
(e.g. global optimization, reliability analysis, global sensitivity analysis, or reliability-based
design optimization). Second, most emulators (including Gaussian processes) lose compu-
tational efficiency when the size m of the dataset tends to be large, and becomes intractable
above a certain level (say m> 104 for the present applications of Gaussian processes). Note
that this phenomenon gets even worse for anisotropic Gaussian process meta-models when
the dimension n of the input space X tends to be large.

This chapter contains three main sections. Section 2.2 reviews state-of-the-art methods
to choose a finite set of experiments in the continuous input space X from a fresh start
where no observations are available yet. It also proposes a heuristic shape-filling procedure
that was used in this manuscript. Sections 2.3 and 2.4 are concerned with the adaptive

refinement of an existing DOE for two different purposes, namely: global optimization or
contour approximation. Section 2.3 reviews state-of-the-art strategies which are based on
the resolution of a global optimization problem while Section 2.4 explores a sampling alter-

native.

2.2 Initial designs of experiments

In this section various state-of-the art techniques to select the experiments are reviewed.
These techniques may then be applied to construct an initial DOE before switching to an
adaptive refinement strategy as discussed in Section 2.3 if one can afford additional runs
of the computational modelM .

2.2.1 Space-filling designs of experiments

The so-called space-filling DOEs attempt to fill the input space X with a finite number m

of computer experiments in order to capture the largest amount of information to emulate
the modelM . The only information that is required in order to use these techniques is the
shape of the input space X (when it is bounded) and the size m of the sought experimental
design.
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2.2.1.1 State-of-the-art techniques

State-of-the art space-filling experimental designs attempt to fill the n-dimensional unit
hypercube [0; 1]n according to some metric.

Deterministic designs

Full factorial designs are certainly the most popular DOEs for in situ experiments (see
e.g. Montgomery, 2004). Indeed a full factorial design is simply defined as the nodes of an
L-level grid (L > 1) defined over the n margin input variables (or factors) composing the
input x = (x1, . . . , xn)

T. Formally, a full factorial design is obtained as the following tensor
product:

XFF =

�
i − 1

L − 1
, i = 1, . . . , L

�n

. (2.1)

Practical use of full factorial designs does not involve more than 2 or 3 qualitative levels
which makes them applicable. However they do not suit to the present purpose because
their size (m= Ln) drastically increases with both the dimension n and the number of levels
L which should be greater than 2 in the directions where the modelM is highly nonlinear.

Fractional factorial designs (see e.g. Montgomery, 2004) were designed to make sparser
designs as subset of full factorial designs. They are based on the sparsity-of-effect principle

according to which the model M is primarily driven by margin effects (functions of only
one factor x i, i ∈ [[1; n]]) and low-order interactions (functions of k < n factors only). As a
consequence, the experiments in a full factorial design involving the variation of more than
k variables at a time can be omitted thus resulting in a fractional factorial design. However
such designs are somewhat model-specific because they require some prior knowledge about
the interactions that can be omitted.

Random designs

Uniform Monte Carlo sampling is another technique that is rather easy to implement.
Indeed a uniform Monte Carlo sample is simply defined as:

XMCS =
¦

x
(i)

j , i = 1, . . . , m, j = 1, . . . , n
©

, (2.2)

where each x
(i)

j is a realization of a uniform random number in [0; 1]. However a high
number of experiments m is required to guarantee that any given sample truly fills the
hypercube and this does not suit the parsimony constraint.

Latin hypercube sampling (LHS, McKay et al., 1979) is an alternative to uniform Monte
Carlo sampling that ensures uniformity of the sample on the margin input variables¦

x j, j = 1, . . . , n
©

. In addition to that interesting property, it has a rather simple defini-
tion that makes it a very popular technique to build space-filling design of experiments.
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Figure 2.1: A two-dimensional Latin hypercube sample (LHS) with m = 10 elements compared to
a Monte Carlo sample (MCS) with identical size. The Monte Carlo sample does not
feature uniform margins whereas the Latin hypercube sample does.

A Latin hypercube sample of size m over the n-dimensional unit hypercube [0; 1]n is
defined as follows:

XLHS =



x

(i)

j =
π
(i)

j − 1+ u
(i)

j

m
, i = 1, . . . , m, j = 1, . . . , n



 , (2.3)

where:

π
(i)

j is the i-th element of the j-th random permutation of the sequence {1, . . . , m},

u
(i)

j is a realization of a random variable U that is uniformly distributed over [0; 1].

Note that the j-th random permutation of the sequence {1, . . . , m} can simply be obtained
as the list of integers that sorts an m-sample

�
ei, i = 1, . . . , m

	
of a uniformly distributed

random variable E over [0; 1] in its ascending order:

π j = arg sort
�

ei, i = 1, . . . , m
	

. (2.4)

In order to understand this definition, consider that each axis is divided into m subin-
tervals of equal width 1/m. By making a tensor product of the n meshed axes, one obtains
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the grid illustrated in Figure 2.1 (for n = 2 and m = 10). Note that the nodes (edges) of
this grid constitute an m-level full factorial design. Then, m cells are picked at random in
the grid so as to ensure uniformity on the axes. This is achieved by computing the n per-
mutations of the sequence {1, . . . , m}. Indeed, by doing so each margin cell is only picked
once thus ensuring uniformity on the axes as illustrated in Figure 2.1. Eventually, a vector
is picked randomly in each selected cell by adding a uniform random number in [0; 1/m]
to each lower bound of each selected cell.

Even if Latin hypercube sampling ensures uniformity on the axes, it does not ensure the
uniformity in the higher-dimensional projections and this may lead to inaccurate results
when emulating models involving strong interactions. Post-processing techniques of Latin
hypercube samples have been proposed in an attempt to solve this problem, one of which
consists in maximizing the minimum Euclidean distance (in Rn) between each couple of
points (maximin LHS, see e.g. Stein, 1987; Johnson et al., 1990).

Quasi-random designs

Niederreiter (1992) introduces the concept of discrepancy which is defined as the devi-
ation of a given sequence X from the uniform distribution in the unit hypercube [0; 1]n.
The discrepancy is defined as follows:

Dm(X ) = sup
J ∈J
∆(J ,X ), (2.5)

where J is one subset amongst all the rectangular subsets J of [0; 1]n, and:

∆(J ,X ) =
Card

��
x ∈ X ∩J

	�
m

−V (J ) (2.6)

where Card (•) denotes the number of elements in •, and V (•) denotes its volume. The
definition varies depending on how J is defined (see Franco, 2008, for a deeper review).

In order to provide a deeper insight on this abstract definition, Franco (2008) points
out that in one dimension, the discrepancy is nothing but the statistic of a Kolmogorov
goodness-of-fit test applied to the uniform distribution over [0; 1]:

Dm(X ) = sup
x∈[0; 1]

��bFm(x)− x
�� , (2.7)

where bFm(x) is the empirical cumulative distribution of the sequenceX defined as follows:

bFm(x) =
1

m

m∑
i=1

✶(x (i) ≤ x). (2.8)

Its explicit computation in dimensions higher than 2 becomes intractable so that one
resorts to computationally expensive approximations (see e.g. Franco, 2008). As a reference
however, one may remember the following results.
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• A sequence of points in the hypercube is uniformly distributed if its discrepancy D(m)

tends to zero as m tends to infinity.

• The discrepancy of a uniform Monte Carlo sample in the hypercube [0; 1]n of size m

equals 1/
p

m.

These results motivated the use of the so-called low-discrepancy sequences (Niederreiter,
1992) to build experimental designs because they feature lower discrepancies than a uni-
form Monte Carlo sample and thus ensure a better coverage of the unit hypercube. It can
also be proven that despite their conceptual simplicity, full factorial designs yield a higher
discrepancy (1/m) than the uniform random sequence (Franco, 2008) thus making uniform
Monte Carlo sampling more efficient with respect to that metric. In addition to their nice
space-filling property low-discrepancy sequences enables to augment the size of the exper-
imental design to refine the emulator without altering the discrepancy of the augmented
sequence (see e.g. Blatman et al., 2007, for such an application of Sobol’ sequences).

The so-called Halton, Faure and Sobol’ low-discrepancy sequences are indeed specific
n-dimensional generalizations of a reference one-dimensional sequence known as the van

der Corput (VDC) sequence. The latter sequence is defined as follows:

XVDC =

(
x (i) =

d∑
k=0

bk

2k+1
, i = 1, . . . , m

)
(2.9)

where bk is the k-th digit in the base 2 (or binary) representation of the integer i (e.g. if
i = (12)base 10, then i = (1×23+1×22+0×21+0×20)base 10 = (1100)base 2 meaning that
d = 3, b3 = 1, b2 = 1, b1 = 0 and b0 = 0). Halton’s sequence is obtained by incrementing
the base for each dimension (starting from 2). The way the other two sequences are built
is beyond the scope of this thesis and the interested reader is referred to the reference book
by Niederreiter (1992) or the Ph.D. thesis of Franco (2008). These two references also
present a larger set of space-filling DOE classes including distance-based (e.g. maximin and
minimax designs) and entropy-based designs.

2.2.1.2 A heuristic hypersphere-filling design of experiments

State-of-the-art space-filling experimental designs are preliminary designed to fill the unit
hypercube. Their use may possibly be extended to the simulation of any random vector
with independent margins by means of the usual inverse transform technique:

X =
n

x
(i)

j = F−1
X j
(u
(i)

j ), i = 1, . . . , m, j = 1, . . . , n
o

, (2.10)

where F−1
X j

denotes the inverse cumulative density function for the j-th random margin, and

{u(i), i = 1, . . . , m} is a DOE that fills the unit hypercube [0; 1]n. However, to the author’s
knowledge, the literature provides few techniques to sample in an hypersphere (Nie and
Ellingwood, 2000, 2004).
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Nevertheless sampling in an hypersphere might be relevant when the importance of the
behaviour of the original simulatorM vanishes with the distance to the origin. This section
reviews an original technique that was initially proposed by Deheeger (2008); Bourinet
et al. (2011) and that was used to construct the Kriging predictors in this thesis.

First the inverse transform method formulated in Eq. (2.10) is not applicable there be-
cause one does not know the marginal distributions for a random vector that is uniformly
distributed in the hypersphere. One first intuitive approach would thus consist in sampling
in the smallest hypercube containing the hypersphere using any of the previously intro-
duced state-of-the-art techniques and reject the points that are not inside the hypersphere.
In practice though, this approach becomes intractable for dimensions higher than say n= 5
because the rejection rate dramatically increases with the dimension. The reason for this is
that the ratio between the volume of an hypersphere and the volume of its circumscribed
hypercube is shrinking exponentially with the dimension. Instead, it is proposed to use
a direct Monte Carlo method to generate random vectors in the hypersphere without any
rejection. This direct sampling technique is based on the following theorem (see e.g. Ru-
binstein and Kroese, 2008, p. 69).

Theorem 2.2.1. Uniform random sampling within the unit hypersphere

Let Y be a multivariate normal random vector with n independent margins, zero mean and

unit variance, let ‖Y‖2 denote its L2 norm in Rn and U be another random variable that is

uniformly distributed over [0; 1], then the random vector:

X ≡ U1/n Y

‖Y‖2
(2.11)

is uniformly distributed within the unit-hypersphere.

The proof of this theorem is two-fold.

(i) First consider the random vector Y/‖Y‖2. The random vector Y is uniformly dis-
tributed in direction because the multivariate normal density is spherically symmet-
rical so that it does not favor any direction. Uniformity on the surface of the hyper-
sphere is guaranteed by the bijective nature of the projection Y/‖Y‖2. For a more
rigorous elaboration of these intuitions see e.g. Rubinstein (1982).

(ii) Then one can prove (see e.g. Cumbus et al., 1996) that the distribution of the norm
R of a random vector that is uniformly distributed over the unit hypersphere satisfies
P[R ≤ r] = rn, r ∈ [0; 1]. So, using the usual inverse transform technique, the
random radius R can be efficiently simulated as U1/n with U uniformly distributed
over [0; 1].

A uniform random sample in the unit 2-dimensional hypersphere (i.e. the unit disk)
is illustrated in Figure 2.2 (blue dots). It can be seen that the required uniformity of the
sample within the disk is fulfilled although a large sample size is required to guarantee that
it is truly space-filling (here m= 1, 000).
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Figure 2.2: A heuristic hypersphere-filling experimental design. The blue dots constitute a uniform
sample within the unit disk while the red points form the proposed hypersphere-filling
experimental design with size m= 20 obtained by K-means clustering.

However, the problem is that one cannot afford such a large sample size in the present
context. It is thus proposed to reduce this large population to its K cluster centres using
K-means clustering where K = m is the size of the experimental design. The basic idea un-
derlying K-means clustering is presented in Section 2.2.1.3. An example of a hypersphere-
filling experimental design obtained by this heuristic approach is illustrated in Figure 2.2
(red points) for the unit disk. The m= 20 cluster centres of the larger candidate population
(blue points) uniformly span the hypersphere as desired.

2.2.1.3 K-means clustering

The clustering problem is an unsupervised classification problem. Considering a sample C

with size N as well as a given number of classes K > 1, the clustering problem consists in
allocating a class (a label) amongst {k, k = 1, . . . , K} to the individuals in C based on some
metric to be defined. Here the samples in C are points of the Euclidean space Rn so that the
Euclidean distance seems to be an appropriate metric, but the clustering problem can also
be considered for a collection of functions (see e.g. Auder, 2011).

The K-means clustering problem (Steinhaus, 1956; MacQueen, 1967; Lloyd, 1982)
makes use of the usual L2 distance in Rn (denoted by ‖ • ‖2) in order to assign each point
in C to their closest cluster centre (or centroid). More specifically, it relies on the so-called
inertia which is defined as follows:

IK (O , C)≡
N∑

i=1

min
k=1, ... ,K



o(k)− c(i)


2

2
, (2.12)
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where O = {o(k) ∈ Rn, k = 1, . . . , K} is the set of centres of each class. The best set of
centres O ∗ is then defined as the following minimizer:

O ∗ = arg min
O∈O(Rn,K)

IK (O , C) , (2.13)

where O(Rn, K) denotes all the subsets of Rn with size K .

The solution of the optimization problem in Eq. (2.13) is not analytical so that practical
implementations of the K-means clustering resorts to dedicated iterative procedures. For
instance the so-called expectation-maximization (EM) algorithm starts from a set of initial

centroids O [0] and proceeds iteratively on [ j] in two steps:

(E) Compute the inertia IK(O [ j], C) for the current set of centroids O [ j]. This computation
requires the allocation of a label to each point in the sample C and is defined as
follows:

l(i)[ j] = arg min
k=1, ... ,K



o(k)[ j]− c(i)


2

2
, i = 1, . . . , N . (2.14)

(M) Define the next set of centroids O [ j+1] as the barycentre of each subset obtained from
the expectation step. These K subsets are defined as follows:

C(k)[ j] =
¦

c(t) ∈ C : l(t)[ j] = k
©

, k = 1, . . . , K , (2.15)

yielding the following expression for the k-th barycentre:

o(k)[ j+1] =
1

Card
�
C(k)[ j]

�
∑

c(t) ∈C(k)[ j]
c(t), (2.16)

where Card (•) denotes the number of elements in •.

The algorithm stops when the latest improvement brought by the maximization step in
terms of inertia is below a given threshold ε0. For instance it stops at iteration i if:

0<

���IK

�
O (i−1), C

�
− IK

�
O (i), C

����
IK

�
O (i−1), C

� ≤ ε0. (2.17)

However it is worth mentioning that the K-means problem does not have a unique so-
lution, so that the EM algorithm should be restarted from different initial centroids. For the
sake of numerical efficiency though, it rather resorts to heuristic initialization procedures
like the K-means++ procedure proposed by Arthur and Vassilvitskii (2007) which yields
satisfying results in practice (at least for the present purpose of reducing C to a smaller
population with similar statistical properties).

2.2.2 Model-specific designs of experiments

Model-specific DOEs differ from the previously introduced space-filling experimental de-
signs in the sense that one already knows what kind of emulator will be used and may
incorporate this additional information to construct the best-suited experimental design.
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2.2.2.1 Experimental designs for general linear models

In Chapter 1, it has been shown that general linear models are solely determined from the
choice of the functional basis f =

�
fi, i = 1, . . . , p

	
, p < m. The optimal designs reviewed

in the sequel are constructed from this additional information by deriving specific criteria
ensuring various properties. All these criteria are implementable from a very fresh start as
they do not depend on the observations y (unavailable yet).

A-optimal designs attempt to minimize the averaged variance of the posterior distri-
bution of the regression weights bβ . Recalling that F denotes the regression matrix (see
Eq. (1.33)), A-optimality is achieved by minimizing the sum of the diagonal elements of
the regression weights’ covariance matrix (i.e. its trace) defined as σ2 (FT R−1 F)−1 (see
Eq. (1.53)). Since the variance σ2 depends on the observations and is thus not available
yet, the minimization is performed on (FT R−1 F)−1 only, leading to the following definition:

XA = arg min
X∈X

trace
�

FT R−1 F
�−1

. (2.18)

In a similar fashion D-optimal designs attempt to minimize the determinant of the co-
variance matrix which is another invariant summary statistic for square matrices. To avoid
the inversion though one maximizes the determinant of the information matrix FT R−1 F,
neglecting the unavailable multiplicative variance σ2 and thus leading to the following
definition:

XD = argmax
X∈X

det
�

FT R−1 F
�

. (2.19)

Eventually G-optimal designs try to minimize the maximum variance of the predicted
value so as to augment the leave-one-out estimate of the coefficient of determination previ-
ously defined in Section 1.4.5.3 for the Kriging predictor and denoted by Q2. The interested
reader may refer to the thesis by Micol (2007) who uses the G-criterion to build and enrich
a DOE to perform a reliability analysis with a polynomial model. Note however that all
these optimal designs require the resolution of non-trivial and high dimensional optimiza-
tion problems (find the m× n scalar values composing X ).

2.2.2.2 Experimental designs for Gaussian process predictors

Inspired by the optimal designs for general linear models, Sacks et al. (1989a) proposed
to extend their use to Gaussian process predictors by exploiting their interrelation with
generalized least-squares models. This extension is essentially based on the fact that the
prediction variance of the best linear unbiased predictor previously denoted by σ2

bY does not
depend on the observations y so that it can be computed a priori alike the other A- D- or
G-criteria.

The integrated mean-squared error (IMSE) criterion is defined as the following weighted
integral of the mean-squared prediction error associated to the best linear unbiased predic-
tor:

IMSE(X ) =
∫

X

σ2
bY (x )w(x )dx , (2.20)
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where w is a probability density function, meaning it has unit integral over X. Note that
Sacks et al. (1989a,b) provide simplified expression for this integral when both the regres-
sion and autocorrelation model are tensor products of one-dimensional models, and when
w is the uniform density over some bounded subset of X. I -optimal designs for Gaussian
process predictors aim at minimizing this new criterion and are consequently defined as
follows:

XI = argmin
X∈X

IMSE(X ). (2.21)

The maximum mean-squared error (MMSE) criterion is defined as the maximum value
of the mean-squared prediction error over the input space:

MMSE(X ) = argmax
x∈X

σ2
bY (x ). (2.22)

The latter should also be minimized, thus leading to the following definition for M -optimal
designs:

XM = argmin
X∈X

MMSE(X ). (2.23)

However a practical implementation of these criteria raises a fundamental problem to
construct DOEs from scratch. The reason for this is that best linear unbiased predictors
cannot be used in practice due to the unknown autocorrelation function R(•, θ ). Empir-
ical best linear unbiased predictors are used instead, as introduced in Section 1.4.5. The
parameters θ must be estimated from the unavailable observations y thus making I - and
M -optimal designs non-implementable from an empty dataset D. However Sacks et al.
(1989a,b), among others, propose a heuristic approach to circumvent this problem.

2.3 Adaptive designs of experiments for Gaussian process
predictors

In this section it is now assumed that the initial experimental design X = {x (i), i =

1, . . . , m} was built and that a first Gaussian process predictor bY (x ) ∼ N1(µbY (x ), σ
2
bY (x ))

is available. It is also assumed that one can afford new evaluations of the original model
M in order to enrich the prediction. The refinement of the prediction may now rely on the
mean prediction µbY based on the available observations y . This additional information is
of utmost importance in global optimization or for the present problem of refining an initial
contour approximation.

Alike model-specific DOEs, state-of-the-art adaptive DOEs for Gaussian process predic-
tors all rely on the definition of a criterion that depends on the input x and which is maxi-
mum or minimum in a region of interest: the neighbourhood of the global optimum of the
emulated modelM or of a specific contour of interest. Given such a criterion, they attempt
to find the best next point x (m+1) that will significantly improve the prediction by solving a
global optimization subproblem on the inexpensive predictor. The required accuracy about
the quantity of interest is achieved by involving this global optimization subproblem into
an iterative scheme.
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2.3.1 Historical premise: efficient global optimization

Adaptive designs of experiments for Gaussian process predictors first became popular in
the 90’s due to the work by Mockus (1994) and Jones et al. (1998). Their purpose was to
solve a global optimization problem involving an expensive-to-evaluate objective function
M . The global optimization problem takes the following canonical form:

x ∗ = argmin
x∈X

M (x ). (2.24)

While most conventional optimization algorithms use the local information provided by
the partial derivatives of the function M with respect to x , the so-called efficient global

optimization (EGO) algorithm exploits the probabilistic information provided by a Gaus-
sian process predictor built from a more global experimental design X to select the next
evaluation point x (m+1).

2.3.1.1 The expected improvement

Considering the initial dataset D = {(x (i), yi), i = 1, . . . , m} and an initial Gaussian process
predictor bY , Jones et al. (1998) defines the so-called improvement as follows:

I(x )≡
¨

ymin− bY (x ) if bY (x )≤ ymin

0 otherwise
=max

¦
ymin− bY (x ), 0

©
, (2.25)

where ymin = min
�

yi, i = 1, . . . , m
	

is the minimum value of M in the available dataset
D. As it depends on the Gaussian prediction bY (x ), the improvement at x is also a Gaussian
variable truncated to positive values only (as a negative improvement is a decline).

So as to summarize this random variable, Jones et al. (1998) propose to use its expec-
tation thus leading to the so-called expected improvement:

EI(x )≡ E [I(x )] =
∫ ymin

−∞

�
ymin− by

�
ϕ

�by −µbY (x )
σbY (x )

�
dby (2.26)

which turns out after integrating by parts (see e.g. Bichon, 2010, p. 143–145) to the fol-
lowing closed-form expression:

EI(x ) =
�

ymin−µbY (x )
�
Φ

�
ymin−µbY (x )
σbY (x )

�
+σbY (x )ϕ

�
ymin−µbY (x )
σbY (x )

�
, (2.27)

where ϕ and Φ denotes the standard Gaussian PDF and CDF respectively. Note that this
definition still holds for the points in the DOE by taking the limit value and leads to a zero
expected improvement as intuited.

The next point that should be added to the DOE is defined as the maximizer of the
expected improvement, and leads to the elaboration of the following iteration rule:

x (m+1) = arg max
x∈X

EI(x ). (2.28)
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Figure 2.3: Implementation of the efficient global optimization technique for the minimization of
M (x) = x sin(x) on the interval X = [0; 15]. The upper panel illustrates the original
function (dotted line) together with its Gaussian process approximation (continuous
line) built from the available dataset D (red points). The lower panel illustrates the
expected improvement and its maximizer which corresponds to the next evaluation
required by EGO.

The expected improvement is depicted in Figure 2.3 for the one-dimensional objective
function M (x) = x sin(x) used in Section 1.5.2. This figure illustrates the state of the
efficient global optimizer at some point where the DOE contains m = 8 points (in red). The
maximizer of the expected improvement is represented as the green square and corresponds
to the best current guess about the location of the global minimizer ofM on the bounded
interval X = [0; 15]. Note that the “best guess” is wrong in this case although the second
EI-extremum was right. This remark partly motivates the approach proposed in Section 2.4.

2.3.1.2 The efficient global optimizer

Eventually, based on the expected improvement, Jones et al. (1998) came up with the
efficient global optimizer detailed in Algorithm 2.1.

The algorithm requires a bounded admissible input space X, an initial space-filling ex-
perimental design X as well as the ability to sequentially ask for new evaluations of the
original modelM at most mmax times. It begins with the computation of the model response
on the initial DOE. Then it fits a Gaussian process model using e.g. maximum likelihood
estimation as detailed in Section 1.4.5.2. The next point x (m+1) is the global maximizer
of the expected improvement computed from the available Gaussian process predictor bY .
Note that any brute force optimization algorithm (e.g. sampling-based algorithms) can be
used here because the expected improvement is based on the inexpensive predictor bY .
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Algorithm 2.1 Efficient Global Optimizer

X Bounded input space
X Space-filling DOE
M Simulator

EImax 0 Stopping criterion

m= 0

Evaluate the simulatorM
(at new input only)

Update the dataset D

Fit a Gaussian process predictor bY
(from the updated dataset)

Find the best expected improvement point:
x (m+1) = arg max

x∈X
EI(x )

Is EI(x (m+1)) ≤ EImax 0

or m > mmax?

Return the minimizer:
x ∗ = argmin

x∈X

�
yi , i = 1, . . . , m

	

m= m+ 1 no

yes

The overall procedure is repeated until the maximum expected improvement falls under
some given threshold EImax 0 unless the model evaluation budget mmax is exceeded before
convergence. Jones et al. (1998) recommends EImax 0 = 10−2, although this value should
be carefully selected with respect to the order of magnitude of the model response y . The
algorithm eventually returns the best minimizer in the final DOE.

The convergence of this optimizer is not proved though and mostly depends on the
ability of the Gaussian process model to capture the behaviour of the original functionM .
In an attempt to improve its convergence properties, various modifications were brought
to that pioneering algorithm, most of them concentrating on its criterion: the expected

improvement. For instance, Schonlau (1997) proposed the generalized expected improvement

criterion which features an additional parameter to allow a more global search than its
standard counterpart. Villemonteix et al. (2009) uses an entropy criterion summarizing the
amount of uncertainty about the location of the sought minimizer x ∗ expressed in the form
of a probability distribution. The latter interpretation of these criteria will be developed
later on in Section 2.4.
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2.3.2 Refinement criteria for contour approximation

Another local refinement of particular interest throughout this manuscript concerns the ac-
curate approximation of a specific contour of the original computational modelM . Recall
that a contour at level t ∈ Y is defined as St = {x ∈ X :M (x ) = t}. The correct ap-
proximation of this contour is of utmost importance in at least two kinds of problems: for
constrained optimization and for reliability analysis where the constraint or the limit-state
function (respectively) is approximated with a Gaussian process predictor. This section re-
views state-of-the-art criteria available in the literature in order to adapt the efficient global
optimization meta-heuristic to the contour refinement problem.

2.3.2.1 Simple criteria

The simplest criteria presented in this section are based on the following premise. In Sec-
tion 1.5.3, it was emphasized that the class (failed or safe) of the points x located in the
margin of uncertainty M1−α (see Eq. (1.152)) is not predicted with a sufficient confidence
level. Its sign is indeed guaranteed at a lesser probability level than 1− α/2. It is argued
here that the refinement of the contour of interest can be achieved by reducing the width
of this margin of uncertainty. Indeed, adding points in M1−α will significantly improve the
prediction and reduce its spread thanks to the consistency of the Kriging predictor (see
Section 1.4.4).

Note that a similar idea for support vector classifiers is referred to as the margin shrinking

concept in the book by Hurtado (2004b). According to that concept, only the points located
in the margin of the classifier can correct its shape because they are most likely to become
support vectors. This concept was successfully applied to structural reliability problems by
Deheeger (2008); Bourinet et al. (2011) and Basudhar and Missoum (2010).

The margin indicator function

This idea eventually leads to the elaboration of the first simplest statistic named the
margin indicator function defined as:

✶M1−α(x ) =

�
1 if µbY (x ) ∈M1−α
0 otherwise

. (2.29)

The deviation number function

Echard et al. (2011) proposed an equivalent criterion measuring how close is the mean
prediction µbY to the contour of interest in terms of number of Kriging standard deviations
σbY . This lead to the definition of the following deviation number function:

U(x ) =

��t −µbY (x )
��

σbY (x )
, (2.30)
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t ∈ Y being the level of interest. Echard et al. (2011) also state that a point x for which
U(x )> 2 is classified with a sufficient confidence level. Actually, this arbitrary value comes
from a confidence level close to 95% (remember k95% = 1.96) so as to compare with the
margin of uncertainty M1−α. This comparison is illustrated in Figure 2.4. In Figure 2.4(b),
only the values of the deviation number function less than 2 were represented because its
gradient is then too large.
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(d) Bichon et al.’s expected feasibility function

Figure 2.4: Representation of the four simple criteria on the example from Section 1.5.3. They all
have their extrema in the vicinity of the identified contour.

The margin probability function

The smoother margin probability function which is used in this thesis is defined as fol-
lows:

MP(x )≡P
�bY (x ) ∈M1−α

�
=P

�bY (x ) ∈
�bF+1

1−α \ bF−1
1−α

��
. (2.31)
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It further simplifies in application of the inclusion in Eq. (1.151). Indeed:

MP(x ) =P
�bY (x ) ∈ bF+1

1−α

�
−P

�bY (x ) ∈ bF−1
1−α

�

=P
�bY (x )≤ t + k1−ασbY (x )

�
−P

�bY (x )≤ t − k1−ασbY (x )
�

= Φ

�
t + k1−ασbY (x )−µbY (x )

σbY (x )

�
−Φ

�
t − k1−ασbY (x )−µbY (x )

σbY (x )

�
. (2.32)

This statistic was already mentioned by Picheny et al. (2010a), although it is used in a more
elaborated one-step-look-ahead strategy as evoked hereafter.

In this manuscript, it is defended that this criterion is sufficiently objective to efficiently
apply the margin shrinking concept for the refinement of a contour approximated by a Krig-
ing prediction. It has a spread comparable with the margin of uncertaintyMα and vanishes
far from the contour of interest.

The expected feasibility function

Eventually, based on the expected improvement statistic, Bichon et al. (2008) proposed
the expected feasibility function which measures the expected proximity of the Kriging pre-
diction to the threshold t of interest. The name “feasibility” is actually due to its opti-
mization background: it was first conceived to deal with equality constrained optimization
problems for which a feasible solution lies on a specific contour. The definition of the so-
called feasibility function requires the choice of a proximity parameter ǫ ∈ Y and is as
follows:

F(x )≡





0 if bY (x )≤ t − ǫ
ǫ−
��bY (x )− t

�� if t − ǫ ≤ bY (x )≤ t + ǫ

0 if t + ǫ ≤ bY (x )
=max

¦
ǫ−
��bY (x )− t

�� , 0
©

. (2.33)

Its relationship with the improvement in Eq. (2.25) is clear from its definition. Indeed,
the feasibility is nothing but a bilateral extension of the improvement because the progress
now consists in finding a point x ∈ X for which the Gaussian prediction bY (x ) is closer to
threshold t than the given proximity ǫ ∈ Y. Although that proximity could be set to the
smallest deviation in the experimental design, Bichon et al. (2008) propose instead to make
it vary in the input space X by setting it proportional to the Kriging standard deviation:
ǫ(x ) ∝ σbY (x ). This somehow results in measuring the spread of the margin of uncertainty
M1−α.

As for the improvement I(x ), the feasibility is a truncated Gaussian random variate so
that it has to be summarized with a constant value to be used as a refinement statistic. This
lead Bichon et al. (2008) to propose the expected feasibility function defined as:

EF(x )≡ E [F(x )] =
∫ t+ǫ(x )

t−ǫ(x )

�
ǫ(x )−

��by − t
��� ϕ

�by −µbY (x )
σbY (x )

�
dby , (2.34)
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which they show (see Bichon, 2010, p. 145–147) to have the following closed-form expres-
sion:

EF(x ) =
�
µbY (x )− t

� �
2Φ
�

z 0(x )
�
−Φ

�
z−1(x )

�
−Φ

�
z+1(x )

��

+σbY (x )
�

2ϕ
�

z 0(x )
�
−ϕ

�
z−1(x )

�
−ϕ

�
z+1(x )

��

+ ǫ(x )
�
Φ
�

z+1(x )
�
−Φ

�
z−1(x )

��
,

(2.35)

where we have introduced:

z i(x ) =
t + i ǫ(x )−µbY (x )

σbY (x )
, i = −1, 0, +1. (2.36)

The expected feasibility function is always positive and it vanishes (at the limit) for the
points in the DOEX alike the margin probability and the expected improvement functions.

Illustration and conclusion

These simple contour refinement criteria are represented in Figure 2.4 on the example
from Section 1.5.3. It can be seen that they all have their extrema in the vicinity of the
identified limit-state (the margin of uncertainty) where the sign of the prediction is the
most uncertain. From that premise the criterion maximization principle of the efficient
global optimization algorithm still holds, so that the next best point to add to the DOE is:

x (m+1) = arg max
x∈X

C (x ) (2.37)

where C might be set equal to either the margin indicator function in Eq. (2.29), the
margin probability function in Eq. (2.32) or the expected feasibility function in Eq. (2.35).
The deviation number function excepts this rule as it should be minimized, so that:

x (m+1) = arg min
x∈X

U(x ) (2.38)

It can be seen from Figures 2.4(c) and 2.4(d) that the other two criteria are highly
multi-modal – as the expected improvement is in Figure 2.3, so that the global optimiza-
tion problem in Eq. (2.37) is still non-trivial to solve. This partly motivates the sampling
alternative introduced in Section 2.4.

The criteria presented here are qualified as simple because they all have closed-form
expressions and are thus both easy to implement and fast to evaluate in contrast with the
others forthcoming one-step-look-ahead criteria.

2.3.2.2 One-step-look-ahead criteria

The one-step-look-ahead criteria introduced in this section attempts to quantify the im-
provement of the Kriging approximation one could expect when adding a specific point
x̃ (m+1) ∈ X in the DOE X . In other words, they try to anticipate the state of the refinement
procedure one step ahead. Therefore the strategies implementing such criteria were named
one-step-look-ahead strategies by Bect et al. (2011).
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The weighted integrated mean-squared error

Picheny et al.’s weighted integrated mean-squared error (2010a) is an extension of Sacks
et al.’s integrated mean-squared error (1989a) for the contour refinement problem. It con-
sists in integrating the prediction variance σ2

Ỹ
of a virtual Kriging predictor Ỹ built from the

augmented DOEX ∪
¦

x̃ (m+1)
©

over a vicinity of the available approximation of the contour

of interest
�
x ∈ X : µbY (x ) = t

	
where µbY is the mean of the Kriging predictor bY built from

the available dataset D.

More specifically, its definition is the same as the integrated mean-squared error in
Eq. (2.20):

W-IMSE(X ∪ {x̃ (m+1)})≡
∫

X

σ2
Ỹ
(x )w

�bY (x )
�

dx , (2.39)

except that the weighting density w(bY (•)) is selected so as to emphasize the mean-squared
error of the closest points to the identified contour. For instance Picheny et al. (2010a)
proposes to use the margin indicator statistic in Eq. (2.29) or the margin probability statistic
in Eq. (2.32) as such weighting densities.

Unlike the integrated mean-squared error statistic evoked earlier in Section 2.2.2, the
weighted integrated mean-squared error proposed here is practically implementable be-
cause the m first elements of the dataset D are available and thus allow one to compute:

• the prediction variance σ2
Ỹ

of the virtual Kriging predictor Ỹ , because it does not
depend on the unavailable observation ym+1 =M (x (m+1)) and because the autocor-
relation R(•, θ ) was already determined from the available observations y;

• and, the weighting density w(bY (•)) solely depends on the available observations y .

The best candidate point that should be added to the DOE according to that novel metric
is defined so as to minimize it:

x (m+1) = arg min
x̃ (m+1)∈X

W-IMSE(x̃ (m+1)). (2.40)

However the repeated estimations of the integral in Eq. (2.39) require a larger computa-
tional effort than the other simpler criteria because they resort to numerical integration
techniques. Picheny (2009, pp. 97–98) provides more computational details on both the
integration and optimization problems, as well as heuristic approximations to speed up the
decision process.

Stepwise uncertainty reduction strategies

The stepwise uncertainty reduction criteria from Bect et al. (2011) are specifically de-
signed for the estimation of rare event probabilities, so that we need to introduce a few
more facts about the surrogate-based probability estimation problem. These facts will be
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made short here and discussed into more details in Chapter 3. Consider that the input x

is the realization of a random vector X with known PDF fX (and probability measure P).
The probability estimation problem that is being dealt with by Bect et al. (2011) consists in
estimating the following failure probability defined as:

p f ≡ P [M (X)≤ t] =

∫

F={x∈X:M (x )≤t}
fX(x )dx = E fX

�
✶F(X)

�
, (2.41)

where we have introduced the failure indicator function ✶F which is equal to one if x ∈ F
and 0 otherwise.

Starting from the usual premise thatM is too expensive-to-evaluate to accurately esti-
mate the integral defining p f onM , Bect et al. (2011) resort to a Kriging approximation bY
forM , and the failure indicator function ✶F is approximated with the probabilistic classifi-

cation function π already defined in Eq. (1.148). Eventually, they propose to estimate the
probability in Eq. (2.41) with the following plug-in estimator:

p̃ f ≡ P
�
P [bY (X)≤ t]

�
=

∫

X

π(x ) fX(x )dx = E fX
[π(X)] . (2.42)

This surrogate-based estimator being defined, the purpose of Bect et al. (2011) is to
design a refinement criterion that will summarize the improvement brought by a new ob-
servation at the candidate location x̃ (m+1) on the final probability of interest. They propose
the following mean-squared error metric:

JSUR(x̃
(m+1)) = EỸ

�
(p f − p̃ f )

2
�

, (2.43)

where EỸ [•] denotes (with slight abuse of notation) the mathematical expectation with re-
spect to the virtual Kriging predictor Ỹ built from the augmented dataset D∪(x̃ (m+1), ỹm+1).

However, once again, this statistic is impractical because one does not know the sought
failure probability p f and the future observation ỹm+1. As a matter of fact, Bect et al.
(2011) derived two upper bounds for this statistic using Minkowski and Cauchy-Schwartz
inequalities that fortunately do not depend on the former unavailable quantities.

The evaluation of these upper bounds require a double numerical integration over X×Y
which is admitted to be quite expensive. The inner integration over Y resorts to Gauss
quadrature while the outer one resorts to Monte Carlo simulation. The next best point
to add to the DOE minimizes the upper bound JSUR of the stepwise uncertainty reduction

statistic:
x (m+1) = arg min

x̃ (m+1)∈X
JSUR(x̃

(m+1)). (2.44)

To conclude, it is worth pointing out that Bect et al. (2011) benchmarked most of the
statistics introduced in this section and concluded that they all asymptotically lead to a
good refinement of the contour of interest even though their stepwise uncertainty reduction

statistics perform even better (according to the metric and the examples used to assess this
performance). It is argued here that the margin shrinking concept is a sufficient heuristic to
achieve an accurate contour approximation at a more reasonable computational expense.
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2.3.3 Standard adaptive refinement strategy

The standard refinement strategy is based on the efficient global optimization meta-
heuristic. It is summarized in Algorithm 2.2. The procedure requires an initial dataset
D and assumes that one can afford new evaluations of the computational modelM . First,
a Gaussian process predictor bY is fitted to the dataset. The selected refinement criterion is
defined from this first prediction and a global optimization algorithm is used to find its opti-
mizer x (m+1). The response value of the simulator is evaluated at x (m+1), and the dataset D
is updated. The procedure is repeated until some accuracy criteria are met. These accuracy
criteria depends on the context and on the refinement criterion which is used.

Algorithm 2.2 Standard adaptive refinement strategy

X Bounded input space
X Space-filling DOE
C Refinement criterion
M Simulator

m = 0

Evaluate the simulatorM
(at new input only)

Update the dataset D

Fit a Gaussian process predictor bY
(from the updated dataset)

Find the best next point:
x (m+1) = arg maxC (x )

Accurate? Done!m= m+ 1 no yes

It should be pointed out that the strategy proposed by Echard et al. (2011) is slightly
different. Before applying the refinement procedure, the input space X is discretized with
a large sample X of size N = 105−6 and their purpose is to ensure that the points in this
sample are accurately classified. Thus they apply the same procedure as in Algorithm 2.2
except that the optimization is discrete. The discrete optimization problem is solved by
means of an exhaustive search amongst the N − m points in the initial sample X that are
not in the experimental design X . The procedure stops when there is no more points x in
X such that their statistic U(x ) is less than 2. As a result, all the points in the initial sample
X are accurately classified with a confidence level equal to Φ(2) > 97% w.r.t. the Kriging
epistemic uncertainty.
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2.4 Sampling-based adaptive designs of experiments

2.4.1 Motivation

It has been shown in the previous section (see Figures 2.3 and 2.4) that the refinement
criteria proposed in the literature are all highly multi-modal and sometimes even feature
a large plateau. The existence of such plateau is especially true for the contour refinement
criteria as the approximate contour cSt = {x ∈ X : bY (x ) = t} is composed with an infinity
of points.

This multi-modality thus makes the global optimization problem involved in Algo-
rithm 2.2 rather difficult to solve. Moreover if it is hard to solve, then it is most probably
ill-posed. This would mean that there does not exist one single best point or at least that
one does not have enough knowledge yet to say that such a point even exists. Neverthe-
less, this refinement strategy usually ends up giving an accurate contour approximation
after a sufficient number of iterations. Mockus (1994) explains that “there is no need for
exact minimization of the risk function1” because the global optimization of the criterion is
involved in an iterative procedure.

On the other hand, the margin shrinking concept (Hurtado, 2004b) which consists in
adding points located in the margin of a support vector classifier does not benefit from a
real-valued refinement criterion. Indeed, the refinement statistic is alike the margin indica-
tor function ✶M1−α defined in Eq. (2.29) and only takes binary values. Global optimization of
such a criterion is definitely ill-posed and most authors involved in the adaptive refinement
of such classifiers came up with the conclusion that any point in the margin significantly
improves the prediction.

Points in the margin are classically obtained by means of an accept-reject Monte Carlo
simulation in the input space X. However, it can be seen from Figure 2.5 that a large
number of points is required to ensure that the Monte Carlo sample truly fills the margin.
Again, in the present context such a high number is not affordable so that Deheeger (2008);
Bourinet et al. (2011) proposed to reduce this large candidate population to its K > 1
cluster centres. Such centres are obtained by means of a state-of-the-art K-means clustering
algorithm reviewed in Section 2.2.1.3. The overall procedure is illustrated in Figure 2.5.
It can be seen that 4 out of the 5 support vectors (circled in cyan in Figure 2.5(b)) are
amongst the K = 10 cluster centres proposed by the margin shrinking procedure. This is
the key argument of the margin shrinking concept: only the points located in the margin can
significantly change the shape of the contour and make it tend toward the real separator,
i.e. here S0 = {x ∈ X : M (x ) = 0}.

As opposed to the standard refinement strategy for Gaussian process predictors, the
margin shrinking concept delivers a set of points instead of a single one. This interesting
feature enables the use of distributed computing platforms, i.e. the simulator M may
possibly be evaluated in parallel on a set of available CPUs.

1Mockus’ refinement criterion.
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Figure 2.5: Application of the margin shrinking concept to a support vector classifier. The K = 10
points (red dots in the left-hand panel) selected for the refinement were clustered from
a larger population of size N = 1 000 (blue points) generated by an accept-reject Monte
Carlo simulation in the input space X = [−8; 8].

It is also worth mentioning that this limitation of Gaussian process refinement strate-
gies has already been investigated by Ginsbourger et al. (2010) in a global optimization
context. To achieve the parallelization of the efficient global optimizer on a cluster of PCs,
Ginsbourger et al. (2010) uses a modification of the expected improvement in Eq. (2.27)
that attempts to account for the joint improvement of q points picked simultaneously. The
so-called q-point expected improvement is defined as follows:

EI(x (m+1), . . . , x (m+q))≡ E
�

max
i=1, ... ,q

�
max

�bY (x (m+i))− ymin, 0
���

. (2.45)

The motivation for picking the maximum of the q marginal improvements is not clear
though. The full closed-form expression for the 2-points expected improvement is derived
in the original book chapter as well as in Ginsbourger’s Ph.D. thesis (2009). It involves
the CDF of the bivariate Gaussian distribution Φ2. Ginsbourger et al. (2010) show on an
example that the two points yielded by this criterion approximately correspond to the two
main modes of the usual 1-point expected improvement (see e.g. Figure 2.3 for a bi-modal
expected improvement). However Ginsbourger et al. (2010) also admit that “this is not
a general fact” . Higher order q-point expected improvements involve the CDF of the q-
variate (q > 2) Gaussian distribution Φq which can be approximated numerically (see e.g.

Genz, 1992, 1993).

From the above remarks it has been decided to propose an adaptive improvement that
is based on sampling instead of the optimization of a specific refinement criterion.
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2.4.2 Proposed adaptive refinement strategy

The proposed adaptive refinement strategy is inspired by the margin shrinking concept for
support vector classifiers applied here to Gaussian process predictors. It consists in two key
steps which are reviewed in the sequel: a sampling step and a clustering step.

2.4.2.1 Sampling of the refinement criterion

Let C denote any of the criteria introduced in the previous section. Let us additionally
require that (i) the “best” points maximize this quantity, and that (ii) C is positive (possibly
zero) everywhere in the input space X. Note that even if all the criteria available in the
literature are positive, a negative criterion might be translated up to the positive real line
by means of the following mapping:

C +(x ) = exp (±C (x )) , x ∈ X, (2.46)

which is commonly used in the simulated annealing optimization meta-heuristic. The ex-
ponential function is strictly increasing so that it does not change the sense of variation of
the original criterion. However the sign in the exponential possibly allows one to alter the
change of variation to match the first requirement (i).

The proposed refinement procedure relies on the interpretation of the refinement cri-
terion C as a probability density function for the “best” points. In other words, the “best”
point is indeed a random vector C with PDF:

fC(c)∝ C (c), c ∈ Rn. (2.47)

Such an interpretation raises a fundamental problem though. Indeed, all the refinement
criteria are based on the Kriging prediction variance which is known to increase “far” from
the experimental design X . Thus, the refinement criteria does not have a finite integral on
R

n: ∫

Rn

C (c)dc→∞. (2.48)

A simple workaround to the latter problem is considered. Recall that in the standard
refinement strategy, the global optimization algorithm usually requires that the input space
X is bounded so that the optimization does not get lost far from the DOE X . A direct
consequence for the PDF of C is that the criterion might indeed be weighted as follows:

fC(c)∝ C (c)w(c), c ∈ Rn. (2.49)

where w is the weighting pseudo-PDF (not necessarily normalized) that might either be set
to a simple input space indicator function:

✶X(c) =

�
1 if c ∈ X
0 otherwise

, c ∈ Rn. (2.50)
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or a real PDF fX for the input x when appropriate, e.g. in an uncertainty quantification
context. Note that a real PDF fX may also be used to express a prior belief about the
location of the global optimizer in a global optimization context.

Thanks to that weighting function w, the PDF of the “best” point is now proper since:
∫

Rn

C (c)w(c)dc <∞, (2.51)

and it is thus well-suited to sample from. Sampling from fC is not direct though. It resorts
to Markov chain Monte Carlo (MCMC, see Appendix B) techniques which are specifically
designed to sample from distributions that are only defined with a PDF (possibly non-
normalized). Let us denote by C= {c(i), i = 1, . . . , N} the sample of “candidates” generated
from fC .

According to the author’s experience the slice sampling technique proposed by Neal
(2003) and shortly reviewed in Section B.3.3 of Appendix B outperforms the other more
conventional Metropolis-Hastings algorithm in this context because of the high number of
modes featured by fC . Indeed it can be seen from Figure 2.4 that the refinement statistics
are all narrow-banded in the vicinity of the approximated contour. Moreover this spread
will vanish along with the refinement of the contour of interest resulting in highly skewed
multimodals PDFs for which slice sampling performs much better than Metropolis-Hastings.

Note that MCMC techniques require a first point that is distributed according to the
targeted PDF (here fC). Such a point is referred to as a seed denoted by c(0) and it is such
that:

fC(c
(0))> 0. (2.52)

Such a seed may easily be obtained by an accept-reject Monte Carlo simulation using the
weighting PDF w as a proposal PDF. This method may prove inefficient though as the PDF fC

gets skewed in the vicinity of the approximate contour cSt (in M1−α) along with the refine-
ment procedure. But if the problem of finding the seed becomes difficult, then it certainly
means that the approximate contour cSt is sufficiently accurate (and that the refinement
should stop).

Figure 2.6 illustrates one sample generated according to the weighted margin probabil-
ity function in Eq. (2.32). Sampling is restricted to the bounded input space X = [−8; 8]2

by means of the indicator function in Eq. (2.50). It can be seen that the samples are denser
in the vicinity of the modes of fC than anywhere else as requested.

2.4.2.2 Statistical reduction of the candidates

As for the margin shrinking concept, a large sample size is required in order to ensure that
the N -sample C truly fills the region of interest (say N = 103−4). Again, one cannot afford
evaluating a few thousand points with respect to the limited computational budget (i.e.

limited number of calls to the simulator M ). Hence, it is proposed to reduce the large
sample C to a smaller subset that exhibits the same statistical properties, i.e. it uniformly
spans the region of interest. As proposed by Deheeger (2008); Bourinet et al. (2011) such
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Figure 2.6: A few candidates distributed according to the weighted margin probability function
defined in Eq. (2.32). The samples are denser in the vicinity of the identified contour
as expected.

a reduction may be carried out by means of the K-means clustering algorithm detailed in
Section 2.2.1.3.

However, since the final set of cluster centres O ∗ does not belong to the initial sample
C and that some of the proposed centres may be associated with low values of fC , it is
proposed to pick the closest points in C to the cluster centres provided by the K-means EM
algorithm detailed in Section 2.2.1.3. The new set of points yielded by this procedure is
thus defined as follows:

x (m+k) = arg min
c∈C\{x (m+i), i=1, ... ,k}

‖o∗ (k)− c‖22, k = 1, . . . , K , (2.53)

where each point is picked iteratively one after the other. The uniqueness of each point is
ensured by successively removing them from the initial sample C.

The points obtained with this heuristic procedure are illustrated as the red dots in Fig-
ure 2.7. It can be seen that they uniformly span the candidate population and thus the
region of interest as required.

Note that the present section has not provided any rule to choose the number of cluster
centres K yet. There are mainly two reasons for this. First, from a pragmatic viewpoint,
K is set equal to the number of available CPUs (to runM in parallel) for the applications
presented in this manuscript. Second, choosing K objectively is a non-trivial problem. A
common practice consists in comparing the different minimal inertia yielded by the EM pro-
cedure, and picking the centres associated with the optimum optimorum but this technique
is more a rule of thumb than a real criterion.
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Figure 2.7: Cluster centres obtained by K-means clustering (K = 10) of the candidate population
distributed according to the weighted margin probability function defined in Eq. (2.32).

2.4.2.3 Implementation

The overall sampling-based refinement procedure proposed in this manuscript is summa-
rized in Algorithm 2.3. It requires the choice of a refinement criterion C together with
a weighting PDF w and assumes that one can afford evaluating K new points in parallel
within a finite number of runs mmax. The procedure interestingly extends to the initial-
ization from an empty DOE by considering that the criterion C is proportional to one
everywhere in the bounded input space X for this first iteration. Accuracy criteria depends
on the context and will be discussed later in this manuscript along with the application of
this procedure. Recall that if the seed becomes hard to find, then it certainly means that
the approximate contour cSt is sufficiently accurate.

2.5 Illustration

In this section, the proposed adaptive refinement strategy is illustrated on a structural reli-
ability example from Waarts (2000). The limit-state function is defined as follows:

g(x ) =min




3+ (x1− x2)
2/10− (x1+ x2)/

p
2

3+ (x1− x2)
2/10+ (x1+ x2)/

p
2

x1− x2+ 7/
p

2
x2− x1+ 7/

p
2


 , x ∈ X, (2.54)
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Algorithm 2.3 Proposed adaptive refinement strategy

X Bounded input space
w Weighting density
C Refinement criterion
M Simulator

K Number of available CPUs

m= 0

Evaluate the simulatorM
(at new input only)

Update the dataset D

Fit a Gaussian process predictor bY
(from the updated dataset)

Find seed using accept-reject sampling:
c(0) ∼ w(c) : fC (c

(0)) > 0

Sample N candidates:
C =

¦
c(i), i = 1, . . . , N

©
∼ fC

Cluster K points out of C
using the EM K-means algorithm

Accurate? Done!m= m+ 1 no yes

and the associated limit-state (i.e. the contour of interest) is defined as S0 = {x ∈ X :
g(x ) = 0}. It is illustrated in Figures 2.8 and 2.9 as the dotted black line. The input space
X = {x : ‖x‖2 ≤ 8} is the disk of radius R = 8 centred at the origin. This contour features
4 sharp corners which are difficult to approximate from a single space-filling DOE, so that
it deserves the illustration of the proposed refinement strategy.

The Gaussian process predictor is fitted using maximum likelihood estimation at each
refinement iteration assuming a constant regression trend and a squared exponential au-
tocorrelation function. The refinement criterion C is chosen as the margin probability
function in Eq. (2.32) as for all the other applications presented in this manuscript. The
refinement procedure was ran two times assuming different weighting PDFs w. The first
run whose iterations are illustrated in Figure 2.8 uses the input space indicator function in
Eq. (2.50), i.e. w(c)∝ ✶‖c‖2≤8(c).
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The second run, whose iterations are illustrated in Figure 2.9, uses the standard bi-
variate normal PDF (i.e. w(c) ∝ e−‖c‖

2
2/2) as appropriate in an uncertainty quantification

context. In both cases K is set equal to 10.

The second run results in a more conservative experimental design which is dense near
the origin in the first iterations and which tend to explore further in the “tails” of the
weighting normal PDF along with the increasing confidence provided by the refined Kriging
approximation. However it will hardly reach the four sharp corners because the standard
bivariate normal PDF vanishes in this area assuming that a classification error in this area
is less significant than a classification error closer to the origin. It is argued that in an
uncertainty quantification context where the PDF fX of the random input X is known, fX is
a more relevant choice for the weighting PDF as it ensures conservative predictions scaled
with the relative importance of the input realizations x .

2.6 Conclusion

This chapter has reviewed state-of-the-art techniques to build experimental designs for com-
putational models. A first part was devoted to space-filling DOEs whose common purpose
is to initialize the refinement procedure from an empty dataset. In particular, a heuristic
hypersphere-filling DOE was presented and will be widely used in the application presented
in this manuscript.

The other two sections focused on the iterative refinement of an initial Kriging approxi-
mation for two different purposes, namely: global optimization and contour approximation.
Starting from the premise that most of these heuristics involve an ill-posed optimization
problem, a sampling-based alternative is proposed. It basically consists in interpreting the
usual refinement criteria as a PDF for the location of the points that will significantly im-
prove the Kriging approximation. A MCMC algorithm is used to sample a large candidate
population from these refinement criteria which is then reduced to a smaller one using
K-means clustering for the sake of parsimony. The K cluster centres obtained with this ap-
proach are expected to uniformly span the vicinity of the modes of the refinement criteria.
The number of cluster centres K is set equal to the number of available CPUs to run the
simulatorM in parallel. Note that one may also pick the best point in the large candidate
population if the simulator can only be run sequentially.
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(a) Iteration #3 – 3× 10 points in the DOE
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(b) Iteration #6 – 6× 10 points in the DOE
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(c) Iteration #9 – 9× 10 points in the DOE

Figure 2.8: A few iterations of the refinement procedure applied to the limit-state surface defined
in Eq. (2.54) using a uniform weighting PDF on the disk of radius R = 8. The left-hand
panels illustrate the current approximation as in Figure 1.16 whereas the right hand-
panel depicts the cluster centres (red dots) of the candidate population (blue dots) that
will be evaluated at the next iteration.
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Ŷ
(x
)
∈

95
%
]
ϕ

2
(x
)

(c) Iteration #9 – 9× 10 points in the DOE

Figure 2.9: A few iterations of the refinement procedure applied to the limit-state surface defined
in Eq. (2.54) using the standard multivariate normal as weighting PDF. The left-hand
panels illustrate the current approximation as in Figure 1.16 whereas the right hand-
panel depicts the cluster centres (red dots) of the candidate population (blue dots) that
will be evaluated at the next iteration.
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3.1 Introduction

Uncertainties arise in many engineering disciplines thus giving much importance to their
quantification for the sake of safety and/or optimal performance. The sources of uncertainty
in a physical system are multiple but they are often classified into two basic categories.

First, aleatoric uncertainty is associated with natural variability of a quantity at a large
scale of observation. For instance, in fatigue design, the number of cycles before a compo-
nent fails is random from a macroscopic point of view, although it could be (theoretically)
deterministically predicted from a fine description of the part’s micro-structure. Hence, at
a large scale of observation, the components’ properties can only be modelled in the form
of probability distributions.

Second, epistemic uncertainty is an artificial source of uncertainty which is caused by
a lack of knowledge and which is deliberately introduced as an assumption for computa-
tional reasons. For instance, most models arising in physical sciences rely on simplifying
assumptions such as the discretization of a set of partial differential equations (i.e. the finite
element method) or the choice for the boundary conditions. Such uncertainties are gener-
ally not considered though because they are hard to model in a probabilistic framework and
negligible with respect to the other aleatoric uncertainties. However, other non-negligible
sources of epistemic uncertainty will arise along with the forthcoming presentation of the
so-called reliability methods. For example, in this manuscript, the uncertainty induced
by the Gaussian process meta-modelling of an expensive-to-evaluate computational model
(see Chapter 1) will be propagated down to the final quantity of interest.

From now on, it is assumed that a physical system (at least at its design stage) can be
reduced to a deterministic model describing its performance. This performance is mathemat-
ically represented by a scalar function denoted by g. It takes n inputs grouped in the vector
x which is assumed to be a realization of a random vector X with probability measure
P(dx ) = fX(x )dx and support X.

!Recall that P denotes the probability measure associated with the meta-modelling epis-
temic uncertainty, whereas P denotes the one corresponding to the aleatoric uncertainty

in the random input X .

In this context, a reliability analysis aims at estimating the probability of failure of the
system. Such a probability is conveniently defined as follows:

p f ≡ P [G ≤ 0] = P [g (X)≤ 0] , (3.1)

where G ≡ g(X) is the performance variable now random, and 0 is the critical threshold

yielding failure. Thanks to the orientation of the inequality, this first definition implies that:

p f = FG(0), (3.2)

where FG is the cumulative distribution function of G.
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Eventually, since FG is generally unknown, the computational definition of the failure
probability takes the form of the following integral:

p f =

∫

F={x ∈X: g(x )≤0}
fX(x )dx , (3.3)

where F = {x ∈ X : g(x ) ≤ 0} is the failure domain and S0 = {x ∈ X : g(x ) = 0} is the
limit-state surface.

This chapter is concerned with the estimation of the failure probability in an industrial
context. This means that the estimation should be possible within a reasonable compu-
tational time when both g is expensive-to-evaluate and p f has a low order of magnitude.
Failure is indeed an undesired event, so that the failure probability is often required to
be as low as possible, or at least lower than a prescribed acceptable level chosen by the
stakeholders.

Section 3.2 introduces the basics of the joint probabilistic modelling of X that is adopted
in this thesis. It also presents the so-called isoprobabilistic transform. In Section 3.3 the best
established techniques for estimating such low failure probabilities are revisited from an im-
portance sampling viewpoint. This original interpretation matters for the understanding of
the contributions introduced in the next two sections. Section 3.4 examines the substitution
of a meta-model for the performance function g in order to speed up the estimation of the
failure probability. An important part of this section is devoted to the efficient quantification
of the substitution error. At last, an original reliability estimation technique is proposed in
Section 3.5. The purpose of the latter contribution is to extend the use of meta-modelling
techniques to reliability problems featuring a large number n of random variables.

3.2 Joint probabilistic modelling

3.2.1 The copula formalism

In this thesis, it is assumed that the probability distribution of X is completely known
and described as follows. It is composed with n parametric marginal distributions, and
a stochastic dependence structure expressed in the form of a copula.

The formal definition of a copula C is given in the book by Nelsen (1999). It is not
given in this thesis for the reason that it does not provide any insight about what it is used
for. Instead, it is informally defined as what remains of a joint probability distribution once

the effect of the marginal distributions has been removed. In other words, it is a probability
distribution defined on the n following uniform margins:

ui = FX i
(x i), i = 1, . . . , n. (3.4)

This less formal definition becomes clearer from the application of the following theorem
due to Sklar (1959).
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Theorem 3.2.1. Sklar’s theorem (see e.g. Nelsen, 1999, p. 41)

Let FX be a joint CDF with margins {FX i
, i = 1, . . . , n}. Then there exists a copula C such that:

FX(x ) = C
�

FX1
(x1), . . . , FXn

(xn)
�

. (3.5)

In addition, if the margins are continuous, then C is unique.

Corollary 3.2.1. (see e.g. Nelsen, 1999, p. 41)

Let FX , {FX i
, i = 1, . . . , n} and C be as in Theorem 3.2.1, and let {F−1

X i
, i = 1, . . . , n} be the

inverse CDFs of the n margins. Then for any u ∈ [0; 1]n:

C(u1, . . . , un) = FX

�
F−1

X1
(u1), . . . , F−1

Xn
(un)

�
. (3.6)

This theorem justifies the use of copulas to specify a joint probability distribution. Its
corollary provides a first mean to construct copulas from the joint and marginal CDFs of
a given probability distribution. In addition, in the present case of continuous margin
distributions, this theorem enables the explicit computation of the joint PDF fX which is as
follows:

fX(x ) =
∂ nFX(x1, . . . , xn)

∂ x1 . . .∂ xn

=
∂ nC(u1, . . . , un)

∂ u1 . . .∂ un

n∏
i=1

∂ FX i
(x i)

∂ x i

= c
�

F1(x1), . . . , Fn(xn)
� n∏

i=1

fX i
(x i), (3.7)

where the density of the copula c and the PDFs of the margins { fX i
, i = 1, . . . , n} have been

introduced.

In particular, it can be seen from Eq. (3.5) (resp. Eq. (3.7)) that this formalism extends
to the classical case of independence through the use of the so-called independent copula

whose CDF (resp. PDF) reads:

CId(u1, . . . , un) =

n∏
i=1

ui, u ∈ [0; 1]n , (3.8)

cId(u1, . . . , un) = 1, u ∈ [0; 1]n . (3.9)

3.2.2 The Nataf distribution and the normal copula

There exists a large variety of copulas dictating various types of dependence, although only
the normal copula is considered in this manuscript. The reader is referred to the thesis by
Charpentier (2006) for a more comprehensive review of joint stochastic modelling using
copulas (from the theoretical background to the practical problem of inference from data).

The so-called Nataf distribution (1962) is widely used in the structural reliability liter-
ature due to the pioneering article by Liu and Der Kiureghian (1986). The reason why it
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became popular in this field (at least in the two decades following this article) is that it was
the first proposition in the reliability engineering literature to define a joint probabilistic
model in the form of a collection of marginal distributions and a correlation structure ex-
pressed in the form of a (Pearson) correlation matrix. This particular joint distribution was
recently reviewed and criticized by Lebrun and Dutfoy (2009b,a,c). In particular Lebrun
and Dutfoy warn the probabilistic model builders about the assumptions underlying the
choice for the Nataf distribution by pointing out that it implicitly assumes a normal copula
which is not all-purpose. The Nataf distribution is now reviewed from the (normal) cop-
ula viewpoint as a particular and convenient means to describe a joint probabilistic model
assuming that the normal copula fits to the description of the input X .

The normal copula is defined from the standard multivariate Gaussian distribution by
means of Corollary 3.2.1. Indeed, its copula reads:

CΦ(u1, . . . , un; R0) = Φn

�
Φ−1(u1), . . . ,Φ−1(un); R0

�
, u ∈ [0; 1]n , (3.10)

where Φn is the standard multivariate Gaussian CDF:

Φn(x1, . . . , xn) =

∫

[−∞; x1]×...×[−∞; xn]

(2π)−n/2 exp
�
−

1

2
t T R−1

0 t

�
dt , (3.11)

and Φ−1 is the inverse of the standard univariate Gaussian CDF (see Eq. (1.20)). Both
Φn and Φ−1 and therefore CΦ can only be approximated numerically (see e.g. Genz, 1992,
1993, for the numerical evaluation of Φn).

Moreover, the PDF associated with this copula can be elaborated from Eq. (3.10) as
follows:

cΦ(u1, . . . , un; R0) =
∂ nΦn

�
Φ−1(u1), . . . ,Φ−1(un); R0

�
∂ u1 . . .∂ un

=
∂ nΦn

�
z1, . . . , zn; R0

�
∂ z1 . . .∂ zn

����
zi=Φ

−1(ui)

n∏
i=1

∂Φ−1(ui)

∂ ui

=
ϕn

�
Φ−1(u1), . . . ,Φ−1(un); R0

�
n∏

i=1
ϕ
�
Φ−1(ui)

� . (3.12)

This first definition further simplifies by introducing z = (Φ−1(ui), i = 1, . . . , n)T and by
replacing the multivariate and univariate Gaussian PDFs ϕn and ϕ with their respective
expressions (see Eq. (A.6) and (1.19)):

cΦ(u1, . . . , un; R0) =
(2π)−n/2 �detR0

�−1/2 exp
�
−1

2
zT R−1

0 z
�

(2π)−n/2 exp
�
−1

2
zT z

�

=
�

detR0

�−1/2 exp
�
−

1

2
zT
�

R−1
0 − I

�
z

�
. (3.13)

It can be seen from Eq. (3.10) that the copula CΦ is simply defined by a symmetric
positive definite matrix R0 = [ρ0 i j, i, j = 1, . . . , n]. Even though the off-diagonal terms in
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this matrix are comprised in ]− 1; 1[ and its diagonal terms are equal to 1, it shall not be
confused with the more usual linear correlation matrix R = [ρi j, i, j = 1, . . . , n]. It should
instead be remembered that their terms are related by the following integral:

ρi j =
1

σiσ j

∫

R

∫

R

�
F−1

X i

�
Φ(zi)

�
−µX i

� �
F−1

X j

�
Φ(z j)

�
−µX j

�
× . . .

. . .×ϕ2(zi, z j; ρ0 i j)dzi dz j, i, j = 1, . . . , n,

(3.14)

provided it exists. Indeed, Bourinet and Lemaire (2008) and Lebrun and Dutfoy (2009a)
pointed out that a high Pearson correlation coefficient is incompatible with highly het-
eroscedastic marginal distributions (i.e. if σ1 = 1 and σ2 →∞ then the admissible range
for ρ12 vanishes to a short interval around 0). However, when the Pearson correlation
coefficient is reasonably low (in magnitude), the integral in Eq. (3.14) can be inverted
numerically using Gaussian quadrature and an optimization algorithm.

More importantly, Lebrun and Dutfoy (2009a) also point out that the Spearman (or
rank) correlation coefficient is better suited to parametrize a copula because it leads to a
simpler closed-form expression for ρi j. This simpler expression is due to the fact that Spear-
man’s correlation coefficient is independent of the marginal distributions1. More specifi-
cally, denoting by RS = [ρS i j, i, j = 1, . . . , n] the given symmetric positive definite matrix
of Spearman correlation coefficients, Lebrun and Dutfoy prove that:

ρ0 i j = 2 sin
�π

6
ρS i j

�
, i, j = 1, . . . , n, (3.15)

This expression is by far simpler than Eq. (3.14). Hence, it is argued that Spearman’s
correlation coefficient should be preferred to Pearson’s when building a probabilistic model
from experimental data.

Eventually, note that the independent copula is obtained from the normal copula when
the parameters matrix R0 reduces to the identity matrix I, indeed:

CΦ(u1, . . . , un; I) =
n∏

i=1

Φ(Φ−1(ui)) =

n∏
i=1

ui, u ∈ [0; 1]n , (3.16)

cΦ(u1, . . . , un; I) =
1

[det I]1/2
exp
�
−

1

2
zT (I−1− I) z

�
= 1, u ∈ [0; 1]n . (3.17)

3.2.3 Isoprobabilistic transforms

The transform T exposed in this section is a one-to-one differentiable and bijective mapping
(i.e. a diffeomorphism), such that the probability distribution of U = T (X) is invariant by
rotation. It was named isoprobabilistic transform because it also conserves probabilities:

FX(x ) = FU(u). (3.18)

1It is defined as the usual linear correlation coefficient of the transformed variables {FX i
(X i), i = 1, . . . , n}.
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Its use is widely spread in the structural reliability literature. The historical motivation
for this transform is that it allows tractable analytical approximations of the failure prob-
ability when the first- or second- order reliability method is used (see Section 3.3.4.2). In
addition, it then revealed a fundamental prior step to many methods arising in the field of
uncertainty quantification. For instance, this transform eases the choice of the polynomial
basis in a polynomial chaos expansion (see e.g. Berveiller et al., 2006) and it makes the
tuning of the reliability methods evoked in this chapter robust to the possible heterogeneity
of scale in the components of X .

3.2.3.1 The Nataf transform

In particular, the Nataf transform maps any random vector X having a Nataf distribution
(e.g. a normal copula) into a standard Gaussian random vector U (i.e. a random vector
whose components are independent and normally distributed with zero mean and unit
variance). It was first introduced in the structural reliability literature by Liu and Der
Kiureghian (1986) and it is explained in reference books (see e.g. Ditlevsen and Madsen,
1996; Lemaire, 2009).

It is defined as the following composed application:

T :

����
X 7→ Rn

x → u = (T3 ◦ T2 ◦ T1)(x )
, (3.19)

where each sub-transform is defined as follows:

T1 the margin variables are first mapped into uniform margins using their respective
CDFs:

T1 :

�����
X 7→ [0; 1]n

x → w =
�

FX i
(x i), i = 1, . . . , n

�T , (3.20)

T2 these uniform margins are then mapped into correlated standard Gaussian variables
using the inverse CDF of the Gaussian distribution:

T2 :

����
[0; 1]n 7→ Rn

w → v =
�
Φ−1(wi), i = 1, . . . , n

�T , (3.21)

T3 eventually, the correlated standard Gaussian variables are “de-correlated” through the
following linear transform:

T3 :

����
[0; 1]n 7→ Rn

v → u = L−1
0 v

, (3.22)

where L0 is the lower Cholesky decomposition of the matrix R0 that parametrizes the
normal copula (i.e. such that R0 = L0 L0

T).



90 Chapter 3. Reliability analysis

Since T is a one-to-one differentiable mapping, its Jacobian exists and is computed by
differentiating the composed application in Eq. (3.19):

Ju, x =

�
∂ ui

∂ x j

, i, j = 1, . . . , n

�
= L−1

0 Jv , x (3.23)

where Jv , x is a diagonal matrix whose terms are defined as follows:

Jvi , x i
=
∂Φ−1

�
FX i
(x i)
�

∂ x i

=
fX i
(x i)

ϕ(vi)
, i = 1, . . . , n, (3.24)

where vi = Φ
−1(FX i

(x i)). The latter equation further simplifies depending on the marginal
distributions.

Since T is a one-to-one bijective mapping, the Jacobian of the inverse mapping T−1

exists and is simply defined as follows:

Jx , u = J−1
u, x

. (3.25)

Moreover in the sequel, the performance function in the standard space is denoted by
g◦ and is defined as the following composed application:

g◦ ≡ (g ◦ T−1) :

����
R

n 7→ Y
u → g

�
T−1(u)

� , (3.26)

where Y ⊆ R is the original output space of g. Its gradient is related with that of g as the
gradient of a composed application and it reads:

∇ug
◦(u) = JT

x , u
∇xg(x ) = J−1

u, x

T

∇xg(x ). (3.27)

The transformed failure domain is denoted by F◦ ≡ {u ∈ Rn : g◦(u) ≤ 0}, and the trans-
formed limit-state by S ◦0 ≡ {u ∈ Rn : g◦(u) = 0}.

3.2.3.2 The Rosenblatt transform

This alternative transform can be applied to a larger class of multivariate probability dis-
tributions for mapping them into a standard Gaussian random vector. It basically consists
in applying a one-dimensional transform to each component of the random vector X recur-
sively. Namely, the Rosenblatt transform is defined as follows:

TRosenblatt :

������������

X 7→ Rn

x → u =





Φ−1
�

FX1
(x1)

�

Φ−1
�

FX2|X1
(x2)

�
...

Φ−1
�

FXn|X1, ... ,Xn
(xn)

�





, (3.28)
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This transform is more computationally involved than the Nataf transform as it requires the
evaluation of conditional CDFs of X . Nevertheless, when the joint distribution is defined
as a collection of margin distributions and a copula (possibly composed), this transform
is computationally tractable (Lebrun and Dutfoy, 2009b). Eventually, note that despite
this transform preserves the probability measure P, it is not unique as it depends on the
conditioning order. A direct consequence of this non-unicity is that the (exact) failure
probability in Eq. (3.3) is left unchanged although some of its (geometrical) approximations
reviewed in the sequel may change.

3.2.4 Illustration: capacity and demand

Let us consider the following basic reliability problem along with the methods reviewed in
this chapter. The performance function reads:

g(r, s) = r − s, (3.29)

where r is the outcome of the random capacity R, and s is the outcome of the random
demand S. Note that in this context, G ≡ g(R, S) is referred to as the safety margin for
obvious reasons. Capacity and demand are grouped in the input random vector X = (R, S)T

and a Nataf joint distribution is assumed. It is parametrized as follows.

• R is lognormally distributed with mean µR = 7 and standard deviation σR = 0.5;

• S is lognormally distributed with mean µS = 1 and standard deviation σS = 0.5;

• the underlying normal copula is parametrized with a Pearson’s correlation matrix R
whose off-diagonal term is set equal to ρ = 0.5.

The normal copula parameter defined in Eq. (3.14) can be computed analytically in this
specific case (Liu and Der Kiureghian, 1986):

ρ0 =
log
�
1+ρδRδS

�
Æ

log
�

1+ρδ2
R

�
log
�

1+ρδ2
S

� (3.30)

where δ• = σ•/µ• are the coefficients of variation. The latter formula leads to ρ0 ≈ 0.525.
The contours of the PDF of X , the limit-state surface as well as the failure domain are
illustrated in Figure 3.1.

The Nataf transform and its inverse also come analytically in this simple case, so that
the transformed performance function g◦ has a closed-form expression. Actually, the three
steps of the inverse Nataf transform are derived as follows.

T−1
3 The first step consists in “re-correlating” the standard Gaussian random vector u. The

normal copula parameters matrix admits the following Cholesky decomposition:

R0 =

�
1 ρ0

ρ0 1

�
=

�
1 0

ρ0

p
1−ρ2

0

�

︸ ︷︷ ︸
L0

�
1 ρ0

0
p

1−ρ2
0

�

︸ ︷︷ ︸
L0

T

. (3.31)
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Figure 3.1: Physical space spanned by X for the basic structural reliability problem defined in Sec-
tion 3.2.4.

Hence,

v = T−1
3 (u) = L0 u =

�
uR

ρ0 uR+
p

1−ρ2
0 uS

�
. (3.32)

T−1
2 Then, the correlated standard Gaussian random variates are mapped into uniform

margins by means of the standard Gaussian CDF:

w = T−1
2 (v) =

�
Φ(vR), Φ(vS)

�T
=

 
Φ
�
uR

�

Φ

�
ρ0 uR+

p
1−ρ2

0 uS

�
!

. (3.33)

T−1
1 Finally, recall that the lognormal distribution is parametrized with its scale and loca-

tion parameters respectively defined as follows:

ζ• =

q
log
�

1+δ2
•

�
, (3.34)

λ• = log(µ•)−
1

2
ζ2
•, (3.35)

where δ• = σ•/µ• is the coefficient of variation. Its inverse CDF reads:

F−1
• (p) = exp

�
λ•+ ζ•Φ

−1(p)
�

, i = 1, 2. (3.36)

Hence, the physical vector reads as follows:

x = T−1
1 (w ) =

�
F−1

R
(wR), F−1

S
(wS)

�T

=

 
exp
�
λR+ ζR uR

�

exp
�
λS + ζS

�
ρ0 uR+

p
1−ρ2

0 uS

��
!

. (3.37)
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This eventually yields the expression of the performance function in the standard space:

g◦(u) = exp
�
λR+ ζR uR

�
− exp

�
λS + ζS

�
ρ0 uR+

p
1−ρ2

0 uS

��
. (3.38)

Note that the transformed performance function is not linear anymore although the trans-
formed limit-state surface S ◦0 is still an hyperplane in the standard space for this very
particular example. This can be proved as follows:

S ◦0 =
¦

u ∈ R2 : g◦(u) = 0
©

=



u ∈ R2 : 1−

exp
�
λS + ζS

�
ρ0 uR+

p
1−ρ2

0 uS

��

exp
�
λR+ ζR uR

� = 0





=
n

u ∈ R2 :
�
ζR−ρ0 ζS

�
uR− ζS

p
1−ρ2

0 uS + (λR−λS) = 0
o

. (3.39)

The contours of the standard Gaussian PDF of U , the transformed limit-state surface as
well as the transformed failure domain are illustrated in Figure 3.2. Note that the origin
of the so-called standard space spanned by U is the image of the median of the physical
distribution (denoted by X50% in Figure 3.1) through the isoprobabilistic transform T .

8 6 4 2 0 2 4 6 8
u1

8

6

4

2

0

2

4

6

8

u
2 O

ϕ2(u)

◦ =
{
u∈ 2 . ◦ (u) 0

}

◦
(u) =0

Figure 3.2: Standard space spanned by U for the basic structural reliability problem defined in
Section 3.2.4.

The probability of failure p f = P [R≤ S] associated with this simple example will be
computed with the reliability methods reviewed in this chapter for the sake of illustration.
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3.3 State-of-the-art reliability methods

This section reviews some state-of-the-art methods for estimating the failure probability
defined in Eq. (3.3). Monte Carlo sampling is first reviewed as a motivation for introducing
more advanced techniques. Then specific emphasis is put on the central role of the so-called
importance sampling technique. A more conventional presentation of these methods can be
found in the reference books by Ditlevsen and Madsen (1996) and Lemaire (2009). The
example of Section 3.2.4 will be used for illustration purposes.

3.3.1 Monte Carlo sampling

3.3.1.1 Principle

First, let us define the failure indicator function as follows:

✶F(x ) =

�
1 if g(x )≤ 0
0 otherwise

. (3.40)

By introducing this failure indicator function in Eq. (3.3), the failure probability can be
recast as:

p f =

∫

X

✶F(x ) fX(x )dx ≡ E
�
✶F(X)

�
. (3.41)

Hence, this quantity can be estimated as follows:

bp f MCS ≡ bE
�
✶F(X)

�
=

1

N

N∑
i=1

✶F(X
(i)), (3.42)

where {X (i), i = 1, . . . , N} is a sample of N independent copies of the random vector X .

This estimator is itself a random variable since it is defined as the sum of N independent
and identically distributed Bernoulli random variables {✶F(X (i)), i = 1, . . . , N}. According
to the central limit theorem, provided N is sufficiently large, this estimator is unbiased and
normally distributed meaning that:

�
bp f MCS− p f

�
,→

N→∞
N1(0, σ2

MCS). (3.43)

Its variance is easily proved (see e.g. Lemaire, 2009, pp. 250–251) to read as follows:

σ2
MCS =

1

N
p f (1− p f ). (3.44)

It can be seen from the above equation that this variance decays with the number of samples
used for estimating the failure probability, meaning that the uncertainty in the estimation
is purely epistemic (reducible). This is often referred to as the statistical error.
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In order to assess the accuracy of a sampling run, when p f ≤ 50% one usually resorts
to the coefficient of variation defined as follows:

δMCS =
σMCS

p f

=

È
1− p f

N p f

. (3.45)

The lower δMCS the more confidence in bp f MCS with respect to the residual epistemic uncer-
tainty in the estimation.

3.3.1.2 Limitations and properties

The fundamental problem of this simple estimator is that the required sample size N to en-
sure that a failure probability is estimated with a given coefficient of variation dramatically
increases as the probability gets low. For instance, the estimation of a probability of 10−k

(with k < 2) and a 10% coefficient of variation requires about 10k+2 evaluations of the
performance function. Note that if p f is greater than 50% (close to 1), one should instead
compute the coefficient of variation of the complementary failure probability 1− p f which
exhibits the same property (the variance of 1− p f is indeed the same as p f ’s in Eq. (3.44)).
This premise motivates the forthcoming reliability methods.

Despite its computational cost, it is worth mentioning that Monte Carlo sampling is
highly distributable (i.e. the N independent calls to the performance function g can be run
in parallel). It is also robust with respect to both the input probabilistic model (its size
n = dim(X)) and the performance function (its regularity). Indeed, Monte Carlo sampling
simply requires the availability of a random generator for the random performance G.

Eventually, Monte Carlo sampling enables the computation of the full empirical CDF
of the random performance G which might also be of interest. This computation uses the
collected sample of g-values G = {g(x (i)), i = 1, . . . , n}. Indeed, the empirical CDF is a
staircase function whose usual definition closely resembles the Monte Carlo estimator in
Eq. (3.42):

bFG(g) =
1

N

N∑
i=1

✶

�
g
�

x (i)
�
≤ g
�

. (3.46)

Its estimation variance is defined by analogy with Eq. (3.44) and it reads as follows:

σ2
bFG
(g) =

1

N
bFG(g)

�
1− bFG(g)

�
. (3.47)

This variance in turns enables a fair approximation of the 95% confidence interval bounds
on the empirical CDF thanks to the central limit theorem, provided N is sufficiently large.
These two bounds read as follows:

bF±
G
(g) = bFG(g)± 1.96

q
σ2
bFG

(g). (3.48)



96 Chapter 3. Reliability analysis

3.3.1.3 Illustration

Monte Carlo sampling is applied to the basic structural reliability problem introduced in
Section 3.2.4. The computation is performed using a limited sample size set equal to 5×106.
A sub-sample containing 103 points is illustrated in both the standard and physical spaces
in Figure 3.3 (even if the isoprobabilistic transform is not a prerequisite for this simple
technique). The blue dots are such that g is positive (safe points) and the red crosses are
such that g is negative (failure points). Since failure is rare under the chosen probabilistic
model, it is hard to draw a sub-sample of size N = 103 containing at least one failure point.
The sub-sample plotted in Figure 3.3 has been specifically isolated during the sampling
procedure for the sake of illustration.
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(a) A batch sample in the physical space
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(b) A batch sample in the standard space

Figure 3.3: Monte Carlo sampling applied to the basic structural reliability problem defined in Sec-
tion 3.2.4.

Once the analysis is done, the empirical CDF is estimated from the sample G using
Eq. (3.46) and it is illustrated in Figure 3.4 as a staircase plot. The red and blue curves
represent the 95% confidence interval bounds computed from Eq. (3.48). In particular
the failure probability estimate can be read on the vertical axis of Figure 3.4 as bp f MCS =

bFG(0) ≈ 1.60× 10−6. The coefficient of variation is approximately equal to 35% and yields
the following 95% confidence interval: [5.02× 10−7; 2.70× 10−6]. Another Monte Carlo
sampling driven by a target coefficient of variation on p f equal to δ0 = 10% yields a finer
estimate bp f MCS ≈ 1.51×10−6 at the expense of approximately 108 calls to the performance
function.

3.3.2 Statistical inference of the output distribution

The methods reviewed in this section attempt to approximate the failure probability from a
set of assumptions regarding the unknown probability distribution of G.
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Figure 3.4: Empirical CDF of G ≡ g(X) = g◦(U) estimated by Monte Carlo sampling of the basic
structural reliability problem defined in Section 3.2.4.

3.3.2.1 The median value first-order second-moment method

The median value first-order second-moment method (MV-FOSM) consists in linearizing the
transformed performance function at the origin of the standard space (which is the image
of the median of the original distribution fX through the isoprobabilistic transform). The
first-order Taylor series expansion of the transformed performance function at the origin
reads as follows:

g◦(u) = g◦1,0(u) + o
�
‖u‖22

�
, (3.49)

where:
g◦1,0(u) = g◦(0) +∇ug

◦(0)T u. (3.50)

Thanks to the linearity of the approximation, the propagation of the standard Gaussian
random vector U through the latter first-order approximation yields a Gaussian variable:

G1,0 ∼N1

�
µG1,0

, σG1,0

�
, (3.51)

with mean (resp. standard deviation):

µG1,0
= E

�
g◦1,0(U)

�
= g◦(0), (3.52)

σG1,0
=

q
Var
�
g◦1,0(U)

�
=


∇ug

◦(0)




2
, (3.53)

(3.54)

where ‖ • ‖2 denotes the usual L2 norm in Rn.

This approximation of G yields the following estimate of the failure probability:

p f MV−FOSM = P
�

G1,0 ≤ 0
�
= FG1,0

(0) = Φ

�
0−µG1,0

σG1,0

�
. (3.55)
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Despite this method is rather inexpensive, it often yields inaccurate results due to the
strong nonlinearities in g◦. In addition, this approximation does not come with any error
measure so that it is impossible to check if the linear approximation is appropriate. It can be
seen from Figure 3.5 that the MV-FOSM approximation of the failure probability is strongly
inaccurate and that it does not provide any quantification of the error.
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Figure 3.5: Median value first-order second-moment approximation of the random performance
CDF for the basic structural reliability problem defined in Section 3.2.4.

3.3.2.2 Inference of the performance distribution

Another obvious technique consists in building a probabilistic distribution for the unknown
random variable G using the usual statistical inference techniques. Starting from a sample
G = {g(x (i)), i = 1, . . . , n} of reasonable size 30 ≤ N ≤ 100 (obtained by Monte Carlo
sampling), the empirical CDF bFG is computed using its definition in Eq. (3.46). Then, one
or several parametric probability distribution(s) FG θ G

may be proposed based on the shape
of the empirical CDF. The parameters θ G of these distributions are estimated from the sam-
ple G using e.g. maximum likelihood or Bayesian estimation (provided a prior distribution
p(θ G) for the parameters is available). Goodness-of-fit tests such as the one-sample Kol-
mogorov test may then be used to accept or reject the proposed distribution(s). Eventually,
the failure probability is computed using the CDF of the retained best-fit parametric distri-
bution.

Again, this technique is rather inexpensive but it is never used in practice for the follow-
ing reasons. First it might be difficult to find a parametric distribution that fits to G. More
importantly, the inference techniques and goodness-of-fit tests for parametric distributions
lack objectivity far in the tail where failure occurs.
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The technique is applied to the basic structural reliability problem defined in Sec-
tion 3.2.4 and illustrated in Figure 3.6. The left-hand panel illustrates the perfect fit of the
two proposed distributions (normal and logistic) that cannot be rejected by a Kolmogorov-
Smirnov test (at the limit risk of α = 5%). The shaded areas represent the 95% confidence
interval obtained by simulation when the epistemic uncertainty in the parameters θ G (built
from the Fisher information matrix and a Gaussian assumption) is propagated through the
CDF equations. Despite the central tendency seems perfectly fitted, the right-hand panel
demonstrate how bad these two inferred distributions are with respect to the reference so-
lution obtained by Monte Carlo sampling. It can also be seen that the solution strongly
depends on the proposed distribution and that the spread of the 95% confidence interval
on the CDF is not an objective error measure.
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(b) Lower tail

Figure 3.6: Attempts to infer the distribution of the random performance G for the basic structural
reliability problem defined in Section 3.2.4.

3.3.2.3 Inference of the tail of the performance distribution

The idea

Based on the premises exposed in the previous section, some authors proposed to infer
only the tail of the distribution using appropriate parametric models (see e.g. Bucher, 2009;
Naess et al., 2009; Nishijima et al., 2010; Sichani et al., 2011).

First, the empirical CDF is estimated using Eq. (3.46) and a Monte Carlo sample G of
G. The lower and upper bounds of the 95% confidence interval are also computed using
Eq. (3.48). These three empirical CDFs are then truncated to the tail of interest.

Assuming the lower tail is of interest, the empirical CDF is truncated to probability levels
that are less than p0 (say p0 = 10−2) by retaining only the samples that are less than the
p0-quantile, namely:

Gp0
=
¦

g ∈ G : g ≤ bGp0

©
, (3.56)
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where bGp0
is the p0-quantile approximated from the whole sample G using e.g. the follow-

ing estimate:
bGp0
= arg max

¦
g ∈ G : bFG(g)≤ p0

©
. (3.57)

The lower p0, the more samples N in G will be required so that the number of elements
Np0

in Gp0
enables an accurate estimate further in the tail (say up to 10−4 assuming a much

lower failure probability is sought).

Bucher (2009), Naess et al. (2009) and Nishijima et al. (2010) then propose different
parametric models FG,θ G

(• | g ≤ bGp0
) for the lower tail distribution. Naess et al. (2009)

determine the parameters θ G in this tail model using the following weighted least-squares
regression formulation:

θ ∗
G
= argmin

θ G

Np0∑
i=1

 
log FG,θ G

�
g(i); θ G

�� bGp0

�
− log bFG(g

(i))

log bF+G (g(i))− log bF−G (g(i))

!k

, (3.58)

where k = 1 or 2. The logarithmic spread of the 95% confidence interval is used in the
denominator so as to put more weight on the more confident estimates of the CDF and
less on the others. The logarithmic scale is used to ease the numerical resolution of this
nonlinear regression problem. According to the author’s experience, the most appropriate
numerical optimizer for this task is the Levenberg-Marquardt algorithm (Marquardt, 1963).

Illustration of the concept

The concept is now applied to the basic structural reliability example defined in Sec-
tion 3.2.4 for the sake of illustration. First, Monte Carlo sampling is used in order to gener-
ate a sample G of 105 performance function values. The probability level p0 delimiting the
tail is arbitrarily set to 10−2 and the corresponding quantile is found equal to bGp0

= 4.65.

For the present illustration, the generalized extreme value distribution is then proposed
as a parametric model for the CDF tail. It reads as follows:

FGEV

�
g; (µ, σ, ξ)T

�� bGp0

�
=

(
exp
h
−
�

1+ ξ
�

g−µ
σ

��−1/ξ
i

if g ≤ bGp0

0 otherwise
, (3.59)

where µ < bGp0
, σ > 0 and ξ ∈ R are the location, scale and shape parameters respectively.

Note that Bucher (2009), Naess et al. (2009) and Nishijima et al. (2010) resort to a differ-
ent parametric model that is inspired from the asymptotic approximation of the standard
Gaussian CDF originally proposed in the book by Abramowitz and Stegun (1970). However,
both models demonstrate a similar degree of freedom to fit most CDF tails.

The regression of the proposed model to the empirical CDF tail is truncated to the part
that is estimated with a coefficient of variation that is less than 40%. The resulting model
is illustrated in Figure 3.7. It can be seen that the predicted value for the failure probability
is in reasonable agreement with the reference solution obtained by Monte Carlo sampling.
The confidence bounds delimiting the shaded area in Figure 3.7 are obtained by fitting the
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boundaries bF−
G

and bF+
G

instead of the mean estimate bFG. The overall approach is more accu-
rate than the MV-FOSM method and the conventional inference of the overall distribution
at a greater computational expense though. However, it is clear from the spread of the
confidence bounds that the required sample size still depends on the order of magnitude
of the failure probability. As intuited from Figure 3.7 and the applications presented in
the original papers, interpolating the CDF tail too far from the empirical estimate does not
seem reasonable.
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Figure 3.7: Inference of the tail of the distribution of the random performance G for the basic
structural reliability problem defined in Section 3.2.4.

3.3.3 Importance sampling

In statistics, the so-called variance reduction techniques aim at deriving estimators of a quan-
tity of interest (such as the failure probability in Eq. (3.3)) featuring a variance of estima-
tion that is much less than that of the Monte Carlo estimator. The book by Rubinstein
and Kroese (2008) reviews a large number of such techniques amongst which are: control
variates, stratified sampling2, subset sampling and cross-entropy methods. In this thesis,
it is argued that most of these techniques (apart from stratified sampling) are provided as
practical approximations of an optimal although impracticable meta-technique known as
importance sampling.

2The Latin hypercube sampling technique exposed in Chapter 2 (Page 54) is a particular application of
stratified sampling. See the article by Owen (1992) for the properties of an LHS-based estimator.
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3.3.3.1 Principle

Let us first review this technique in a more general framework than the present reliability
analysis context. Assume the following integral has to be approximated by means of Monte
Carlo sampling:

φ =

∫

X

φ(x ) fX(x )dx = EX

�
φ(X)

�
, (3.60)

where φ is a real-valued function defined over X. Note that this integral is nothing but a
generalization of the definition of the failure probability given in Eq. (3.41) which can be
obtained by substituting the failure indicator function ✶F for φ and the failure probability
p f for φ.

Importance sampling starts from the premise that φ may be close to zero in regions
where the PDF fX is large whereas it may take more significant values in regions where
fX tends to zero so that it makes the averaging of φ by Monte Carlo sampling of X rather
inefficient. Hence, importance sampling consists in replacing the original PDF fX with
another PDF h to make the Monte Carlo approximation of Eq. (3.60) more efficient.

Let h denote such an instrumental PDF such that it dominates φ fX , meaning that:

h(x ) = 0 ⇒ φ(x ) fX(x ) = 0

⇔ φ(x ) fX(x ) 6= 0 ⇒ h(x ) 6= 0.
(3.61)

The quantity of interest φ rewrites as follows:

φ =

∫

X

φ(x ) fX(x )
h(x )

h(x )
dx

=

∫

X

φ(x ) fX(x )

h(x )
h(x )dx (3.62)

≡ EZ

�
φ(Z) fX(Z)

h(Z)

�
, (3.63)

where Z is the random vector distributed according to h. φ may then be approximated by
its Monte Carlo estimator which reads as follows:

b
φIS = bEZ

�
φ(Z) fX(Z)

h(Z)

�
=

1

N

N∑
i=1

φ(Z (i)) fX(Z
(i))

h(Z (i))
, (3.64)

where Z = {Z (i), i = 1, . . . , N} is a sample containing N independent copies of the random
vector Z with PDF h. Thanks to the central limit theorem, provided N is sufficiently large,
the latter quantity is an unbiased estimator of the quantity of interest:

�b
φIS−φ

�
,→

N→∞
N1(0, σ2

IS). (3.65)
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where the variance of estimation σ2
IS is derived as follows:

σ2
IS = VarZ

�b
φIS

�

=
1

N 2

N∑
i=1

VarZ(i)

�
φ(Z (i)) fX(Z

(i))

h(Z (i))

�

=
1

N 2 N VarZ

�
φ(Z) fX(Z)

h(Z)

�
,

since Z contains N independent copies of Z. At last, the variance further reduces to:

σ2
IS =

1

N

�
EZ

�
φ(Z)2 fX(Z)

2

h(Z)2

�
−EZ

�
φ(Z) fX(Z)

h(Z)

�2�

=
1

N



∫

X

φ(x )2 fX(x )
2

h(x )2
h(x )dx −

�∫

X

φ(x ) fX(x )

h(x )
h(x )dx

�2



=
1

N

�∫

X

φ(x )2 fX(x )
2

h(x )
dx −φ2

�
. (3.66)

The following theorem from the book by Rubinstein and Kroese (2008, Chapter 5) provides
the optimal instrumental density h∗ that minimizes the latter variance of estimation.

Theorem 3.3.1. Optimal instrumental PDF

The instrumental density that minimizes the variance of estimation in Eq. (3.66) reads:

h∗(x ) =

��φ(x )
�� fX(x )∫

X

��φ(x )
�� fX(x )dx

. (3.67)

In addition, provided φ(x )≥ 0 for all x ∈ X, the optimal variance of estimation is zero.

Proof 3.3.1. The proof is two-fold.

(i) Let us consider the variance of estimation yielded by any instrumental PDF h in Eq. (3.66). The

first term (in the brackets) of this equation rewrites as follows:

∫

X

φ(x )2 fX (x )
2

h(x )
dx =

∫

X

φ(x )2 fX (x )
2

h(x )
dx

∫

X

h(x )dx , (3.68)

since the new term on the right is equal to one by definition of a PDF. Then the Cauchy-Schwartz

inequality ensures that:

∫

X

φ(x )2 fX (x )
2

h(x )
dx

∫

X

h(x )dx ≥
 ∫

X

��φ(x )
�� fX (x )

h(x )1/2
h(x )1/2 dx

!2

. (3.69)

Hence the following lower bound holds for the variance of estimation in Eq. (3.66):

σ2
IS ≥ σ

2
IS, LB ≡

1

N



�∫

X

��φ(x )
�� fX (x )dx

�2

−φ2


 . (3.70)
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Yet, according to Eq. (3.66), the variance of estimation yielded by the optimal instrumental

density h∗ reads as follows:

VarZ∗

�b
φIS

�
=

1

N

�∫

X

φ(x )2 fX (x )
2

h∗(x )
dx −φ2

�
, (3.71)

and it can be further elicited by substituting the quantity in Eq. (3.67) for h∗:

VarZ∗

�b
φIS

�
=

1

N



∫

X

φ(x )2 fX (x )
2

|φ(x )| fX (x )∫
X
|φ(x )| fX (x )dx

dx −φ2




=
1

N



∫

X

φ(x )2 fX (x )
2

��φ(x )
�� fX (x )

dx

∫

X

��φ(x )
�� fX (x )dx −φ2




=
1

N



�∫

X

��φ(x )
�� fX (x )dx

�2

−φ2


 . (3.72)

By comparing Eq. (3.70) and Eq. (3.72), it appears that h∗ realizes the lower bound of the

variance of estimation, i.e. σ2
IS
∗
= σ2

IS, LB.

(ii) Now assume that φ takes only positive values, then the minimal variance of estimation in

Eq. (3.72) reduces to:

σ2
IS
∗
=

1

N



�∫

X

φ(x ) fX (x )dx

�2

−φ2


 = 1

N

h
φ

2−φ2i
= 0. (3.73)

3.3.3.2 Impracticality of optimal importance sampling

Applying Theorem 3.3.1 to the problem of estimating the failure probability from its defi-
nition in Eq. (3.41) yields the following optimal instrumental density:

h∗(x ) =

��✶F(x )
�� fX(x )∫

X

��✶F(x )
�� fX(x )dx

=
✶F(x ) fX(x )

p f

. (3.74)

In addition, it ensures that the variance of estimation is zero because the failure indicator
function takes only positive values (0 or 1). Equivalently, the optimal instrumental density
in the standard space reads:

h◦∗(u) =
✶F◦(u)ϕn(u)

p f

. (3.75)

Unfortunately, this optimal density is intractable because it involves the unknown quan-
tity of interest p f in its denominator. Figure 3.8 represents the unnormalized optimal PDFs
in both standard and physical spaces for the basic structural reliability problem defined in
Section 3.2.4 in order to provide some more insight on Theorem 3.3.1. It is clear from this
illustration that the optimal instrumental PDF is equal to the PDF of X (resp. U) truncated



3.3. State-of-the-art reliability methods 105

to the failure domain F (resp. F◦). In other words the optimal instrumental PDF is noth-
ing but the probability distribution for the failure points, and it is clear that such a perfect
knowledge of the failure region is not available in practice.

Thus the art of importance sampling consists in building a quasi-optimal instrumental
density that significantly reduces the variance of estimation without reducing it to zero
though. The remaining of this section explains how such a variance reduction can be
achieved by means of the conventional reliability methods.
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Figure 3.8: Optimal (although impracticable) instrumental PDFs for the basic structural reliability
problem defined in Section 3.2.4.

3.3.4 Most-probable-failure-point-based approaches

The approaches introduced in this section have been a reference in the structural reliability
literature for the past decades. Despite their limitations, they remain quite popular be-
cause they provide satisfactory results when the assumptions they are built on hold. They
also involve an optimization problem that yields interesting by-products in addition to the
failure probability approximation at a reasonable computational cost (see Lemaire, 2009,
Chapter 6).

3.3.4.1 The most probable failure point

It is clear from Figure 3.8 that a large amount of probability condensates in a region close
to the median point in the physical space or to the origin in the standard space. This remark
naturally leads to the definition of the most probable failure point (MPFP) as the maximizer
(or mode) of the optimal instrumental density in the standard space:

u∗ = arg max
u∈Rn

✶F◦(u)ϕn(u)

p f

. (3.76)
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The unknown normalizing constant p f does not alter the variations of the objective function
so that the initial definition rewrites as follows:

u∗ = arg max
u∈Rn

✶F◦(u)ϕn(u)

= arg max
u∈Rn

1

(2π)n/2
exp
�
−

1

2
uT u

�
s.t. u ∈ F◦

= arg min
u∈Rn

uT u s.t. g◦(u)≤ 0. (3.77)

This is the usual definition of the MPFP as defined within the context of the first order
reliability method (FORM). See the reference books by Ditlevsen and Madsen (1996) and
Lemaire (2009). The MPFP is the closest failure point to the origin of the standard space. It is
sometimes referred to as the design point as it corresponds to a sort of optimal deterministic
design under the non-linear constraint g◦(u)≤ 0.

The problem in Eq. (3.77) is a quadratic optimization problem under non-linear con-
straint. Thus it can be efficiently solved by means of the usual sequential quadratic pro-
gramming algorithm or other more specific algorithms such as the Abdo-Rackwitz algo-
rithm (Abdo and Rackwitz, 1990), or the improved Hasofer-Lind-Rackwitz-Fiessler algo-
rithm (iHLRF, Zhang and Der Kiureghian, 1995).

3.3.4.2 First-order reliability approximation

Assuming that the MPFP is unique, its coordinates enable an analytical approximation for
the failure probability. This approximation is obtained by linearizing the performance func-
tion in the vicinity of the latter point. The first-order Taylor series expansion at the MPFP
reads as follows:

g◦(u) = g◦1, u∗(u) + o
�
‖u − u∗‖22

�
, (3.78)

where:
g◦1, u∗(u) = g◦(u∗) +∇ug

◦(u∗)T (u − u∗) . (3.79)

Since u∗ is on the limit-state surface, g◦(u∗) is equal to zero. By introducing, the opposite
normalized gradient of the performance function at the MPFP:

α= −
∇ug

◦(u∗)

∇ug
◦(u∗)




2

, (3.80)

the expansion in Eq. (3.79) further reads after normalization:

g◦1, u∗(u) =


∇ug

◦(u∗)




2

�
αTu∗−αTu

�
(3.81)

Thus the first-order failure probability approximation is obtained as follows:

p f , 1 = P
�
g◦1, u∗(U)≤ 0

�
= P

�
−αT U ≤ −αTu∗

�
. (3.82)

Recall that α has its Euclidean norm equal to one by definition (see Eq. (3.80)) and that U is
a standard Gaussian random vector, so that αT U is a standard Gaussian random variate. In
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addition, let us introduce the so-called Hasofer-Lind reliability index defined as the following
algebraic (signed) distance in Rn:

βHL ≡ αTu∗. (3.83)

Eventually, the first-order failure probability approximation becomes:

p f , 1 = Φ(−βHL). (3.84)
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Figure 3.9: First-order reliability approximation for the basic structural reliability problem defined
in Section 3.2.4.

Both α and u∗ are illustrated in Figure 3.9 for the basic reliability example defined in
Section 3.2.4. Since the limit-state surface S0 is an hyperplane with closed-form expression
(see Eq. (3.39)), the Hasofer-Lind reliability index comes analytically as the distance from
the origin of the standard space to the latter hyperplane:

βHL = dist
�
O,S0

�
=

��λR−λS

��
Æ�
ζS ρ0− ζR

�2
+ ζ2

S

�
1−ρ2

0

� . (3.85)

The numerical evaluation gives βHL ≈ 4.68 which in turns leads to p f , 1 ≈ 1.44×10−6 as the
first-order approximation of the failure probability (see Eq. (3.84)). Since the limit-state
surface is linear, this first-order approximation is equal to the exact failure probability in
this simple example although this is not a general fact. Indeed the Hasofer-Lind reliability
index is usually estimated from Eq. (3.83) and p f , 1 is then only an approximation of the
exact failure probability.
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3.3.4.3 Corrections for non-linear limit-state surfaces

For limit-state surfaces featuring curvature at the design point, Breitung (1984) proposed
an analytical second-order approximation for the failure probability. The approximation
holds only asymptotically and is as follows:

p f , Breitung ∼
βHL→∞

Φ(−βHL)

n−1∏
i=1

1p
1+ βHLκi

, (3.86)

where {κi, i = 1, . . . , n− 1} are the principal curvatures of the limit-state surface (i.e. the
curvatures of the limit-state surface in the rotated basis that admits α as a principal axis).
The second-order approximation of a limit-state surface around the design point requires
computing the Hessian matrix∇2

u, u
g◦(u∗) (see Hohenbichler et al., 1987; Hohenbichler and

Rackwitz, 1988). This computation might be non-trivial though. It is especially true when
the performance function involves the output of a noisy computational model for which a
finite forward difference scheme is hard to tune. Der Kiureghian et al. (1987) propose to
use a composite experimental design centered at the design point in order to approximate
the limit-state surface with a quadratic response surface. This approach uses larger pertur-
bations and is thus more robust regarding the possible noise in the performance function.

For general non-linear limit-state surfaces, Melchers (1989) proposed to implement an
importance sampling scheme with the following instrumental PDF:

h◦
u∗(u) = ϕn (u − u∗) . (3.87)

Even if this instrumental PDF is not optimal, it may yield a significant variance reduction
with respect to the standard Monte Carlo estimator.

Melchers’ instrumental PDF is illustrated in Figure 3.10 for the basic reliability example
defined in Section 3.2.4. An importance sampling scheme using this instrumental PDF is
implemented. It is driven with a target coefficient of variation δ0 = 10% and the corre-
sponding probability estimate bp f u∗ IS ≈ 1.49× 10−6 is obtained at the expense of only 600
calls3 to the performance function.

3.3.4.4 Limitations

Despite all these MPFP-based approaches provide fairly accurate approximations of the
failure probability when the MPFP is unique, they may lead to very inaccurate results when
it is not.

To illustrate this point, Der Kiureghian and Dakessian (1998) provided the following
example. The performance function is directly defined in the standard space and it reads
as follows:

g◦(u) = b− u2− κ (u1− e)2 (3.88)

3Up to 50 runs because the sampling was run by batches of 50.
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Figure 3.10: MPFP-based importance sampling for the basic structural reliability problem defined
in Section 3.2.4.

where u is a realization of the standard Gaussian random vector U , b = 5, κ = 0.5 and
e = 0.1. The limit-state surface is the parabola shown in Figure 3.11. The curvature κ
and the eccentricity e control the severity of the example for MPFP-based approaches. The
true failure probability is sufficiently high to be estimated by means of crude Monte Carlo
sampling and it is found equal to bp f MCS ≈ 2.99× 10−3 (with a coefficient of variation that
is less than 1%).

The iHLRF algorithm (Zhang and Der Kiureghian, 1995) is used to find the MPFP. The
corresponding Hasofer-Lind reliability index is βHL ≈ 3.09 so that the first-order approxi-
mation of the failure probability is p f , 1 ≈ 9.87×10−4. Then, Melchers’ instrumental PDF is
used to check if the first-order reliability method assumptions hold. The importance sam-
pling procedure is driven with a target coefficient of variation δ0 = 10%, and it provides the
following failure probability estimate p f u∗ IS ≈ 1.06× 10−3 (with a coefficient of variation
that is less than 10%).

Despite all accuracy criteria seems fulfilled, both the first-order approximation p f , 1 and
the importance sampling estimate p f u∗ IS are biased with respect to the Monte Carlo refer-
ence estimate due to the existence of a second design point. Both points are illustrated in
Figure 3.11 together with Melchers’ instrumental PDF centered at the first design point.

This example also illustrates the dangers underlying the choice of the instrumental PDF.
The instrumental density expresses a sort of prior knowledge about the failure region. If this
information is strongly biased, then the central limit theorem and its asymptotic variance
of estimation do not hold. Note also that in this case, Melchers’ instrumental PDF barely
fulfils the domination requirement formulated in Eq. (3.61). Indeed, despite it has infinite
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Figure 3.11: Limitation of MPFP-based approaches on the example from Der Kiureghian and
Dakessian (1998).

support, Melchers’ instrumental PDF takes very low values in the vicinity of the second
design point and there is very little chance to sample in this area. As a consequence, the
true variance of estimation is greater than that provided by the central limit theorem.

3.3.4.5 Turnaround for multiple design points

For cases featuring multiple design points, Der Kiureghian and Dakessian (1998) proposed
the restarted iHLRF algorithm as a heuristic turnaround to find several design points. This
algorithm proceeds as follows. First, the usual iHLRF algorithm is used in order to find
a first design point u∗ (1). Once a design point is found, the algorithm is restarted from a
different starting point on a modified performance function that excludes an hypersphere
(a bulge) centred at the previous design point. The modified performance function reads as
follows:

g◦Bulge(u) = g◦(u) + s✶B (1) (u)
�

r(1)
2−


u∗ (1)



2

2

�2
, (3.89)

where ✶B (1) is the bulge indicator function defined as follows:

✶B (1) (u) =

¨
1 if



u − u∗ (1)




2
≤ r(1)

0 otherwise
. (3.90)

and s controls the height of the bulge. The approach is repeated incrementally by adding
new bulges centred on all the previously found design points so that the modified perfor-
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mance function excluding the Q already found design points reads as follows:

g◦Bulge(u) = g◦(u) +

Q∑
q=1

s✶B (q) (u)
�

r(q)
2−


u∗ (q)



2

2

�2
, (3.91)

where {✶B (q) , q = 1, . . . ,Q} are the bulge indicator functions for all the design points (de-
fined as in Eq. (3.90)).

If the algorithm converges to a point that is located on the foot of one of the bulges, it
is discarded. At this point, the algorithm requires an intervention from the user in order to
decide whether to perform a new search or not because the modified performance function
may feature too many bulges. In addition to this first limitation, the algorithm features
different parameters such as the bulges’ radii {r(i), i = 1, . . . , nMPFP} and their height s that
are rather hard to tune. A more detailed description and illustrations of this algorithm
can be found in the original article of Der Kiureghian and Dakessian (1998) as well as in
FERUM v4.0’s documentation (Bourinet et al., 2009).

A collection of approximating hyperplanes can then be built from the collection of de-
sign points {u∗ (i), i = 1, . . . , nMPFP} and unit normal vectors {α(i), i = 1, . . . , nMPFP}. The
linear approximations of the nMPFP failure domains read as follows:

eF◦ (i) =
n

u ∈ Rn : β (i)HL −α(i)
T

u ≤ 0
o

, i = 1, . . . , nMPFP. (3.92)

The corresponding multi-linear approximation of the overall failure region is defined as the
union of all these marginal failure domains:

eF◦ =
nMPFP⋃
i=1

eF◦ (i). (3.93)

It can then be proved (see e.g. Lemaire, 2009, Chapter 9) that the first-order approximation
of this series system failure probability is given by the centred (zero-mean) multivariate
Gaussian CDF:

p f 1Σ = P
�

U ∈ eF◦
�
= 1−ΦnMPFP

�
βHL

��0, ρ
�

, (3.94)

where βHL = (β
(i)

HL, i = 1, . . . , nMPFP)
T is the vector of Hasofer-Lind reliability indices for

each MPFP, and ρ is the correlation matrix between each linear approximation whose terms
read as follows:

ρi j = α
(i)Tα( j), i, j = 1, . . . , nMPFP. (3.95)

Before the work by Genz (1992, 1993) on the computation of the multivariate Gaussian
CDF ΦnMPFP

defined in Eq. (3.11), Ditlevsen (1979b) proposed the so-called bi-modal bounds
obtained by considering only the second-order interactions between each linear limit-state
which only involve the bivariate Gaussian CDF Φ2 (see e.g. Lemaire, 2009, Chapter 9).

The restarted iHLRF algorithm was applied to the multiple failure modes example from
Der Kiureghian and Dakessian (1998). The marginal Hasofer-Lind reliability indices β (1)HL ≈
3.09 and β (2)HL ≈ 2.91 are almost equivalent and the correlation between the two limit-state
hyperplanes ρ1, 2 ≈ −0.78 is quite significant. Indeed it can be seen on Figure 3.12 that
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Figure 3.12: First-order approximate of a serial system failure probability on the example from
Der Kiureghian and Dakessian (1998).

the two linear approximations are almost parallel and that the corresponding approximate
failure domains are facing each other. Eventually, the first-order approximation of the
serial system failure probability is p f 1Σ ≈ 2.82× 10−3. The latter approximation is fairly

more accurate than the marginal first-order approximation p
(1)
f , 1 ≈ 9.87× 10−4 and p

(2)
f , 1 ≈

1.83×10−3 even though it is still biased with respect to the Monte Carlo reference solution
bp f MCS ≈ 2.99× 10−3. Another more robust workaround that was not implemented in this
thesis would consist in using the importance sampling technique proposed by Cambier et al.
(2002, Section 3.5) which is the generalization of the work by Melchers (1989) to multiple
design points (i.e. Cambier et al.’s instrumental PDF is a mixture of Melchers’ unimodal
PDFs centred at each design point).

The pathological example proposed by Der Kiureghian and Dakessian (1998) may seem
quite artificial but it is not. For instance, multiple failure modes may occur if the limit-state
surface is defined from a black-box computer model featuring a built-in serial system (e.g.

with “if-then-else” statements). Structural reliability examples involving stochastic processes
(or random fields) are also known to feature several most probable failure configurations

(see e.g. Verhoosel and Gutiérrez, 2009; Dubourg et al., 2009b).

3.3.5 Subset sampling

Subset sampling is a well-known variance reduction technique amongst statisticians (see e.g.

Glasserman et al., 1999; Garnier and Del Moral, 2006; Cérou and Guyader, 2007; L’Ecuyer
et al., 2009). It was brought to the structural reliability community by Au and Beck (2001);
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Ching et al. (2005b,a); Au et al. (2007); Katafygiotis and Cheung (2005, 2007). It is
sometimes also referred to as splitting simulation for reasons that will become clearer in the
sequel.

3.3.5.1 Principle

In this section, the key idea of subset sampling is reviewed from the optimal importance
sampling viewpoint. For a more conventional introduction, the reader is referred to the
reference article by Au and Beck (2001).

First, recall that the optimal instrumental PDF for estimating the failure probability
reads as follows:

h∗(x ) =
✶F(x ) fX(x )∫
X
✶F(x ) fX(x )dx

=
✶F(x ) fX(x )

p f

. (3.96)

It was earlier argued that this instrumental PDF is impracticable because it involves the
unknown quantity of interest p f in its denominator. This argument is reconsidered here.
In fact, p f could be estimated using crude Monte Carlo sampling although this would be
rather inefficient if the failure probability is low. Hence, subset sampling aims at splitting

the optimal instrumental PDF in a collection of sub-optimal instrumental PDFs whose nor-
malizing constants are sufficiently high to be accurately estimated by means of crude Monte
Carlo sampling. This collection of sub-optimal instrumental PDFs is defined as follows.

Let us consider a sequence of s reals such that q1 > . . . > qs = 0. Since the performance
function g is assumed to take its values on the whole real line, this sequence may then be
used to define the following subsets:

Fi =
�
x ∈ Rn : g(x )≤ qi

	
, i = 1, . . . , s. (3.97)

A collection of such subsets is illustrated in Figure 3.13 on the example defined in Sec-
tion 3.2.4.

In addition, let us define their associated indicator functions:

✶Fi
(x ) =

�
1 if g(x )≤ qi

0 otherwise
, i = 1, . . . , s. (3.98)

Due to the required ordering of the sequence {qi, i = 1, . . . , s}, the following relation holds:

F= Fs ⊂ . . .⊂ F1. (3.99)

Hence, the corresponding indicator functions satisfy the following implications:

✶F1
(x ) = 0 ⇒ . . .⇒ ✶Fs−1

(x ) = 0 ⇒ ✶Fs
(x ) = ✶F(x ) = 0. (3.100)

The collection of sub-optimal instrumental PDFs is now defined as follows:

h∗
i
(x ) =

✶Fi−1
(x ) fX(x )

pi−1
, i = 2, . . . , s, (3.101)
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Figure 3.13: A collection of subsets defined from a strictly decreasing sequence of 6 positive reals in
the standard space for the basic structural reliability example defined in Section 3.2.4.

where their normalizing constants read:

pi−1 =

∫

X

✶Fi−1
(x ) fX(x )dx , i = 2, . . . , s. (3.102)

Note that Eq. (3.100) ensures that this collection of instrumental PDFs dominate each oth-
ers and eventually dominate ✶F fX :

h∗2(x ) = 0 ⇒ . . .⇒ h∗
s−1(x ) = 0 ⇒ h∗

s
(x ) = 0 ⇒ ✶F(x ) fX(x ) = 0. (3.103)

Let us now use the last instrumental PDF h∗
s

in order to rewrite the failure probability
defined in Eq. (3.41) as follows:

p f =

∫

{x ∈X: h∗s (x )>0}
✶Fs
(x ) fX(x )

h∗
s
(x )

h∗
s
(x )

dx

=

∫

{x ∈X: h∗s (x )>0}
✶Fs
(x ) fX(x )

ps−1

✶Fs−1
(x ) fX(x )

h∗
s
(x )dx

=

∫

{x ∈X: h∗s (x )>0}

✶Fs
(x )

✶Fs−1
(x )

h∗
s
(x )dx ps−1

= ps|s−1 ps−1, (3.104)

where:

ps|s−1 =

∫

{x ∈X: h∗s (x )>0}

✶Fs
(x )

✶Fs−1
(x )

h∗
s
(x )dx . (3.105)
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The first splitting of the optimal instrumental PDF is now completed. However, in order
to implement an importance sampling scheme that uses h∗

s
as instrumental PDF one first

needs to compute its normalizing constant ps−1 in Eq. (3.102) which is another possibly
low probability. Hence, a Monte Carlo estimation of ps−1 might again be rather inefficient.
This is the reason why it is proposed to substitute Eq. (3.102) for ps−1 in Eq. (3.104) so that
it comes:

p f = ps|s−1

∫

X

✶Fs−1
(x ) fX(x )dx

= ps|s−1

∫

{x ∈X: h∗
s−1(x )>0}

✶Fs−1
(x ) fX(x )

h∗
s−1(x )

h∗s−1(x )
dx

= ps|s−1

∫

{x ∈X: h∗
s−1(x )>0}

✶Fs−1
(x ) fX(x )

ps−2

✶Fs−2
(x ) fX(x )

h∗
s−1(x )dx

= ps|s−1

∫

{x ∈X: h∗
s−1(x )>0}

✶Fs−1
(x )

✶Fs−2
(x )

h∗
s−1(x )dx ps−2

= ps|s−1 ps−1|s−2 ps−2, (3.106)

where:

ps−1|s−2 =

∫

{x ∈X: h∗
s−1(x )>0}

✶Fs−1
(x )

✶Fs−2
(x )

h∗
s−1(x )dx . (3.107)

The normalizing constant ps−2 might again be too low to be efficiently estimated using
Monte Carlo sampling so that it should be split again. Thus after s−1 more splits the initial
failure probability rewrites as follows:

p f = p1

s∏
i=2

pi|i−1, (3.108)

where the intermediate probabilities read as follows:

p1 =

∫

X

✶F1
(x ) fX(x )dx ≡ P

�
X ∈ F1

�
, (3.109)

pi|i−1 =

∫

{x ∈X: h∗
i
(x )>0}

✶Fi
(x )

✶Fi−1
(x )

h∗
i
(x )dx , i = 2, . . . , s. (3.110)

The latter equation further reduces to the following simpler expression:

pi|i−1 =

∫

{x ∈X: h∗
i
(x )>0}

✶Fi
(x )h∗

i
(x )dx ≡ P

�
X ∈ Fi

��X ∈ Fi−1

�
, i = 2, . . . , s, (3.111)

by pointing out that:

h∗
i
(x ) 6= 0 ⇒ ✶Fi−1

(x ) 6= 0 ⇔ ✶Fi−1
(x ) = 1, i = 2, . . . , s, (3.112)

by definition (see Eq. (3.98) and (3.101)).
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3.3.5.2 Adaptive splitting

The initial problem of estimating the failure probability p f now consists in finding an opti-

mal sequence of positive reals q1 > . . .> qs = 0 such that the intermediate probabilities can
be efficiently estimated by means of Monte Carlo sampling. Note that the qi ’s are basically
quantiles of the random variable G. Even though these quantiles could be specified, a better
practice consists in estimating them by fixing the intermediate probabilities to a reasonably
high value p0 (e.g. p0 = 10%). Amongst statisticians, this technique is known as adaptive

splitting whereas it was called subset sampling in the structural reliability community. It
proceeds as follows.

First step

The first p0-quantile q1 is estimated from a sample of performance function values
G [1] = {g(X (k)), k = 1, . . . , N} computed from a sample X [1] = {X (k), k = 1, . . . , N} con-
taining N independent copies of the random vector X . To be more specific, it is the ⌈p0 N⌉-th
value of G [1] sorted in ascending order, where ⌈•⌉ denotes the ceiling function (i.e. ⌈x⌉ is
the smallest integer greater than or equal to x ∈ R). Once the first quantile q1 is estimated,
the corresponding probability and its coefficient of variation are computed as follows:

bp1 =
1

N

N∑
k=1

✶F1

�
X (k)
�

, E
�bp1

�
= p0, (3.113)

δ1 =

r
1− p1

N p1
. (3.114)

i-th step (i = 2, . . . , s)

The other p0-quantiles q2 > . . . > qs = 0 are estimated in a similar fashion from
conditional samples that are distributed according to the sub-optimal instrumental PDFs
{h∗

i
, i = 2, . . . , s}. Let X [i] denote the i-th random vector that is distributed according to

the i-th instrumental PDF h∗
i
, and X [i] = {X [i] (k), k = 1, . . . , N} denote a sample of N

copies of the random vector X [i].

Note that sampling from the i-th instrumental PDF h∗
i

is not straightforward due to its
definition. Indeed, recall that it is defined as follows:

h∗
i
(x )∝ ✶Fi−1

(x ) fX(x ), (3.115)

where the normalizing constant pi−1 is omitted as it is useless in the present sampling
context. Despite an accept-reject sampling technique could be considered with fX as a
proposal PDF, it would be particularly inefficient as there is little chance to draw a sample
from fX such that the i-th indicator function ✶Fi

is not zero. Chances even decrease along
with the steps of the algorithm as the subsets move towards regions with lesser probability
content.
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Thus Au and Beck (2001) propose instead to resort to a Markov Chain Monte Carlo
(MCMC) sampling technique. This technique, known as modified Metropolis-Hastings (Au
and Beck, 2001) is further detailed in Section B.3.2 of Appendix B. For now, assume that
a sample X [i] has been generated from a sample of seeds, i.e. from a sample that is dis-
tributed according to the target PDF h∗

i
. In practice, the MCMC sampler is initiated with

the ⌈p0 N⌉ seeds contained in the previous sample X [i−1] for which the indicator function
✶Fi−1

= 1, hence for which h∗
i

is not zero.

A set of performance function values G [i] = {g(X [i] (k)), k = 1, . . . , N} is computed from
the sample X [i]. Note that the performance function values are already available as they
were computed during the sampling of X [i] in order to evaluate the indicator function
✶Fi−1

defining the i-th instrumental PDF h∗
i
. The i-th quantile qi is then estimated as the

⌈p0 N⌉-th value of G [i] sorted in ascending order. The corresponding i-th probability and
its coefficient of variation are computed as follows:

bpi|i−1 =
1

N

N∑
k=1

✶Fi

�
X [i] (k)

�
, E

�
bpi|i−1

�
= p0, (3.116)

δi =

È
1− pi|i−1

N pi|i−1

�
1+ γi

�
. (3.117)

where γi is a coefficient that accounts for the correlation between the N random vectors
that constitute the i-th sample when it is generated by means of an MCMC sampler as
detailed in Section B.3.2 of Appendix B. The reader is referred to this appendix for the
expression of the coefficient γi together with the proof of the latter equation.

Last step

The last step is determined depending on the sign of the quantile obtained at the i-th
step (i = 1, . . . , s). Indeed the procedure is stopped when a quantile qi is negative, then
s = i and qs is replaced by the critical threshold: qs ≡ 0. The corresponding probability and
its coefficient of variation are computed as follows:

bps|s−1 =
1

N

N∑
k=1

✶Fs

�
X [s] (k)

�
, E

�
bps|s−1

�
≥ p0, (3.118)

δs|s−1 =

È
1− ps|s−1

N ps|s−1

�
1+ γs

�
. (3.119)

Final estimator

Eventually the estimator of the failure probability defined in Eq. (3.108) is obtained as
follows:

bp f SS = bp1

s∏
i=2

bpi|i−1. (3.120)
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Au and Beck (2001) point out that this estimator is biased for every N but asymptotically

unbiased. This bias comes from the way the modified Metropolis-Hastings algorithm is
seeded at each step. Indeed, the procedure resorts to the ⌈p0 N⌉ lowest values in the (i−1)-
th sampleX [i−1] in order to seed the next i-th sampleX [i] so that the successive conditional
samples are dependent. As a consequence, the intermediate probability estimators are also
dependent and the estimator in Eq. (3.120) is biased. However the longer the chains, the
smaller the bias.

In order to assess convergence (bias and variance reduction), Au and Beck (2001) pro-
vide the following bounds on the coefficient of variation:

s
s∑

i=1

δ2
i ≤ δSS ≤

s
s∑

i=1

s∑
j=1

δi δ j. (3.121)

The lower (resp. upper) bound is derived under the assumption that the intermediate
probability estimates are independent (resp. fully correlated). The reader is referred to the
original article by Au and Beck (2001) for the two propositions and the proof of Eq. (3.121).
It is worth mentioning here that Au et al. (2007) showed on several examples that the
empirical coefficient of variation4 is usually closer to the lower bound than the upper one.

Algorithm 3.1 is provided so as to summarize the adaptive splitting algorithm detailed
above. The computation of the coefficient of variation is not mentioned for the sake of
clarity.

3.3.5.3 Tuning of the parameters

The problem of tuning the parameters involved in the subset sampling technique was in-
vestigated by Au and Beck (2001) and Au et al. (2007).

Target probability level p0

First, the algorithm requires the choice of a target probability level p0 to define the con-
ditional quantiles. The optimal choice for this value is essentially a compromise between
the sample size per step N and the number of steps s. Indeed, if p0 is too low then the algo-
rithm will converge within a small number of steps s although it will require a large sample
size per step N to ensure that the intermediate coefficient of variations δi are sufficiently
low. On the contrary, if p0 is too large then the algorithm will require a smaller sample
size per step N but more steps to converge. Hence the lower bound on the coefficient of
variation in Eq. (3.121) will suffer from the total number of steps due to the correlation
between the intermediate probabilities. Au and Beck (2001) found that p0 = 0.1 yields
good efficiency in practice. As a conclusion, p0 = 0.1 is the value that is most currently
used in practice.

4The coefficient of variation estimated on a sample of failure probabilities obtained from several indepen-
dent runs of the present subset sampling algorithm.
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Algorithm 3.1 Adaptive splitting (or subset sampling)

p0 Target probability level
N Sample size per step

Sample N realizations from fX

X [1] =
¦

x (k), k = 1, . . . , N
©
∼ fX

Evaluate the performance function
G [1] =

¦
g
�

x (k)
�

, k = 1, . . . , N
©

Sort the sample G [1] in its ascending order
(sort X [1] as well to keep correspondance)

Estimate the first p0-quantile:
q1 = g[1] (⌈p0 N⌉)

Is q1 ≤ 0?

i = 2

Sample N realizations from h∗
i

starting from the ⌈p0 N⌉ first values in X [i−1]

X [i] =
¦

x [i] (k), k = 1, . . . , N
©
∼ h∗

i

,→ Use Algorithm B.2 on each seed.

(G [i] is computed along with the MCMC sampling)

Sort the sample G [i] in its ascending order
(sort X [i] as well to keep correspondance)

Estimate the i-th p0-quantile:
qi = g[i] (⌈p0 N⌉)

Is qi ≤ 0?

s = i

Estimate the last conditional probability:

bps|s−1 =
1

N

N∑
k=1

✶Fs

�
x (k)
� Estimate the failure probability:

bp f SS = bp1

s∏
i=2
bpi|i−1

i = i + 1

no

yes
no

yes
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Minimum sample size and optimal intermediate probabilities

The choice for the minimum sample size per step, say Nmin, is also non-trivial and it
actually depends on the target probability level p0. Assume that the value of the coefficients
{γi, i = 2, . . . , s} is equal to a constant value γ0. Thus the average lower bound on the
squared coefficient of variation becomes:

δ2
SS ≥

1− p0

N p0
+

s∑
i=2

�
1+ γ0

� 1− p0

N p0
=

1− p0

N p0

�
1+ (s− 1)

�
1+ γ0

��
. (3.122)

Hence, if a coefficient of variation δ0 is targeted, the minimum sample size per step is:

Nmin =
1− p0

δ2
0 p0

�
1+ (s− 1)

�
1+ γ0

��
. (3.123)

Assume also that the failure probability is equal to the product of s intermediate probabili-
ties all equal to p0, i.e. p f = ps

0 so that one can substitute log(p f )/ log(p0) for s in the latter
equation:

Nmin =
1− p0

δ2
0 p0

�
1+

�
log(p f )

log(p0)
− 1

� �
1+ γ0

��
. (3.124)

Using the common values p0 = 0.1, δ0 = 0.1 and γ0 = 3 yields a fair estimate of the mini-
mum sample size per step depending on the order of magnitude of the failure probability.

Figure 3.14 depicts the one-to-one relationship between the total number of simulations
Ntot = log(p f )/ log(p0)Nmin and p0 for different orders of magnitude of the failure proba-
bility (10−s, s = 3, . . . , 10) when γ0 = 3 and δ0 = 0.1. It is clear from this illustration that
p0 ∈ [0.1; 0.2] is a good compromise for efficiently estimating a wide range of low failure
probabilities.

MCMC sampler parameters

Finally, the MCMC sampler used to sample the sub-optimal instrumental PDFs also in-
volves a set of parameters that are rather difficult to tune in the physical space. Au and
Beck (2001) found out that the modified Metropolis-Hastings sampler is a lot simpler to
tune in the standard space. Indeed, the margin variables in the random vector U are iden-
tically distributed standard Gaussian random variates. Therefore they all have the same
order of magnitude so that it eases the choice of the proposal PDF (see Section B.3.2 of
Appendix B). Moreover, these variables are also independent. The independence of the
margins is actually the key feature of the so-called modified Metropolis-Hastings algorithm
which is nothing but a two-step componentwise Metropolis-Hastings algorithm.
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Figure 3.14: One-to-one relationship between the total number of simulations Ntot =

log(p f )/ log(p0)Nmin and the intermediate probability level p0 computed by means
of Eq. (3.124) for γ0 = 3 and δ0 = 0.1. The dots represent the minimum of each
curve. Note that all minima belong to the optimal range of p0 values provided by Au
and Beck (2001).

3.3.5.4 Illustration

For illustration purposes, the subset sampling technique is applied to the basic structural
reliability example defined in Section 3.2.4. Since the order of magnitude of the failure
probability is known from the previous reliability analyses (p f ≈ 10−6), Eq. (3.124) is used
to estimate the minimum sample size per step Nmin ≈ 20, 000.

Actually, the overall subset sampling procedure required only 112, 317 calls to the per-
formance function. It is less than the 6 × 20, 000 samples required due to the present
implementation of the MCMC sampler. It performs 20, 000 propositions per step, some
of which are rejected as they do not seem to be distributed according to fX (see Sec-
tion B.3.2 of Appendix B for further details). The failure probability estimate is finally
equal to bp f SS ≈ 1.45× 10−6 and the coefficient of variation is comprised between 10% and
22% (see Eq. (3.121)). Repeating the estimation 100 times with the same setup leads to
an empirical coefficient of variation bδSS ≈ 13% which is closer to the lower bound than
the upper one. Despite it cannot be formally proved (see e.g. Bourinet et al., 2011, for an
example where the empirical coefficient of variation is closer to the upper bound than the
lower one), the applications presented in this manuscript will always be justified with that
lower bound.

The variance reduction offered by subset sampling is really significant on this example.
Indeed, for the same coefficient of variation (10%), crude Monte Carlo sampling requires
1, 000 times more calls to the performance function (≈ 108) than subset sampling (≈ 105).
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It is more computationally demanding than the MPFP-based approaches, but it has a larger
field of application as it does not make any assumption regarding the properties of the
performance function g.

Figure 3.16 depicts the 6 conditional samples together with the intermediate limit-states
corresponding to the sequence of quantiles q1 > . . . > q6 = 0 in the standard space so as
to illustrate how subset sampling works. The sample size per step has been reduced to
N = 1, 000 for the sake of clarity. Note that h∗6 in Figure 3.16(f) is close (although not
equal) to the optimal instrumental PDF illustrated in Figure 3.8(b).

Figure 3.15 represents the empirical CDF of the random variable G reconstructed from
the 6 conditional samples (of size N = 20, 000) together with its confidence bounds at ±2
standard deviations. The computation of this empirical CDF is defined piecewise from the
empirical CDFs of all the 6 sub-samples. The first CDF is truncated below the first quantile
q1. The i-th empirical CDF is truncated above by the previous quantile q− 1 by definition.
It is weighted by the normalizing constant bpi−1 = bp1 bp2|1 . . . bpi−1|i−2 and truncated below
the next quantile qi. The last empirical CDF is not truncated below qs = 0. The availability
of this empirical CDF is another interesting feature of subset sampling.
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Figure 3.15: Empirical CDF reconstructed from all the sub-samples obtained by subset sampling for
the basic structural reliability example defined in Section 3.2.4.
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(d) Subset step #4
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(e) Subset step #5
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(f) Subset step #6

Figure 3.16: Subset sampling applied to the basic structural reliability example defined in Sec-
tion 3.2.4. Each panel represents a step of the algorithm. The very first step uses a
sample generated from the original PDF ϕ2. The other steps use the sub-optimal in-
strumental PDFs h∗i to generate more samples from the seeds obtained in the previous
step (red crosses). The procedure is stopped at the sixth step because the correspond-
ing quantile q6 is negative.
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3.3.6 Conclusion

Before concluding, it is worth mentioning that there exists many other techniques for es-
timating rare event probabilities in addition to the ones reviewed in this section such as
directional sampling (Bjerager, 1988), line sampling (Koutsourelakis et al., 2004; Schuëller
et al., 2004; Schuëller and Pradlwarter, 2007), cross-entropy methods (see e.g. Rubinstein
and Kroese, 2008, Chapter 8). Note also that the MPFP-based approaches as well as the
subset sampling technique have been revisited here from the importance sampling view-
point. This original interpretation inspired the techniques exposed in the two remaining
sections of this chapter.

3.4 Surrogate-based reliability analysis

In the previous section, it has been shown that MPFP-based strategies may lead to inac-
curate results in the case of multiple failure modes. It was also emphasized that these
strategies do not provide any self-quantification of the possible error. In addition, the
gradient-based optimization algorithm used to find the MPFP might be hard to tune when
the gradients are approximated by means of a finite difference scheme (due to the possible
noise in the performance function).

Despite the more robust variance reduction strategies (especially subset sampling) offer
a significant reduction of the computational cost induced by a reliability analysis, they still
require a few hundreds or thousands of calls to the performance function. Hence, sampling-
based reliability analyses remain intractable when the performance function involves the
output of an expensive-to-evaluate computational model.

Starting from these two observations, the so-called surrogate-based strategies are now
reviewed.

3.4.1 Principle

In essence, surrogate-based strategies consist in using a surrogate eg for the performance
function g that is much faster to evaluate. Such a surrogate might be the analytical counter-
part of a high-fidelity numerical model derived on simplifying assumptions. Nevertheless, it
is not always available or it may introduce arbitrarily large conservatism that would even-
tually lead to an overestimation of the actual failure probability. Hence, meta-modelling
(see Chapter 1) reveals a powerful tool in this context.

A surrogate-based estimator of the failure probability is simply defined as the following
plug-in estimator:

ep f ≡ P
�

X ∈ eF
�
=

∫

eF={x ∈X: eg(x )≤0}
fX(x )dx , (3.125)

where eF= {x ∈ X : eg(x )≤ 0} is the surrogate-based prediction of the actual failure domain
F.
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Meta-model-based reliability analysis has gained a large attention amongst researchers
in the past two decades. So far, the number of meta-model-based strategies is as large as
the number of meta-models and conventional reliability methods available in the literature
so that it is hard to make an exhaustive state-of-the-art. To cite a few though, Bucher and
Bourgund (1990); Kim and Na (1997); Das and Zheng (2000); Gayton et al. (2003); Micol
(2007) investigate the use of quadratic response surfaces whose coefficients are obtained by
a least-square fit as detailed in Chapter 1. Sparse polynomial chaos expansions were also
proved to provide significant results for reliability analysis (Blatman and Sudret, 2008a;
Blatman, 2009; Blatman and Sudret, 2010b).

Hurtado and Alvarez (2000); Papadrakakis and Lagaros (2002) resort to neural net-

works which is another sort of kernel-based meta-model that was not considered in this
thesis. Hurtado (2004a,b, 2007); Deheeger and Lemaire (2007); Deheeger (2008); Piera-
Martìnez et al. (2007); Piera-Martìnez (2008); Basudhar and Missoum (2010); Bourinet
et al. (2011) have recourse to support vector margin classifiers. Eventually, the use of Gaus-

sian process (or Kriging) predictors has been explored by Kaymaz (2005); Bichon et al.
(2008); Bichon (2010); Picheny (2009); Picheny et al. (2010a,b); Echard et al. (2011);
Bect et al. (2011) and is further dealt with in this manuscript.

A large majority of these contributions makes use of Monte Carlo sampling on the sur-
rogate in order to estimate the quantity in Eq. (3.125) although this can reveal rather
inefficient. Indeed, recall that if the failure probability is in the order of magnitude of 10−k

(2≤ k ≤ 12), then the minimum sample size for a 10% coefficient of variation using Monte
Carlo sampling is Nmin = 10k+2. Such a high number of evaluations, even on a supposedly
inexpensive-to-evaluate surrogate, is still quite computationally demanding. For this rea-
son, Gayton et al. (2003); Kaymaz (2005) resort to MPFP-based approaches. Bichon et al.
(2008); Bichon (2010) use an adaptive importance sampling scheme that accounts for mul-
tiple design points. Hurtado (2007); Piera-Martìnez et al. (2007); Piera-Martìnez (2008)
use a filtered importance sampling scheme that will be further discussed in Section 3.5.
Eventually, in this thesis as in Deheeger and Lemaire (2007); Deheeger (2008); Bourinet
et al. (2011) the estimation makes use of subset sampling in order to make it efficient when
dealing with low failure probabilities.

3.4.2 Error quantification

A fundamental problem of surrogate-based reliability analysis though is that it might in-
troduce a bias in the failure probability estimate when the surrogate is not sufficiently
accurate. Therefore, this section focuses on the specific problem of apprehending this bias
when a kernel-based predictor is used to surrogate the performance function.

In Chapter 1, it has been shown that kernel-based predictors (namely support vector

margin classifiers and Kriging) provide a measure of their local accuracy in addition to their
prediction. Indeed, recall that support vector margin classifiers provide the boundaries of
their margin while Kriging offers a full probabilistic prediction in the form of the probabilis-

tic classification function π.
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More specifically, the “confidence interval” measure provided by the margin of a support
vector classifier can be mapped into a full probabilistic prediction. Indeed, probabilistic
support vector margins (Platt, 1999) provides a probabilistic classification function that
has similar properties to its Kriging counterpart. Conversely, the probabilistic response
of the Kriging prediction can be used to construct confidence intervals on the limit-state
surface as introduced in Section 1.5.3 of Chapter 1. In particular, the margin of uncertainty

M1−α defined in Section 1.5.3 of Chapter 1 closely resembles the margin of a support vector
classifier.

From now on, it is assumed that a Kriging predictor is used to surrogate the performance
function g. It is denoted by bY (x )∼N1(µbY (x ),σ

2
bY (x )) and has probability measure P .

!Recall that P denotes the probability measure associated with the meta-modelling epis-
temic uncertainty, whereas P denotes the one corresponding to the aleatoric uncertainty

in the random input X .

Its probabilistic classification function is defined as in Section 1.5.3 of Chapter 1 and it
reads as follows:

π(x ) =P
�bY (x )≤ t

�
= Φ

�
t −µbY (x )
σbY (x )

�
, t ∈ Y. (3.126)

This definition is extended to the points in the dataset D = {(x (i), yi), i = 1, . . . , m} for
which the kriging variance equals zero by switching to the limit as follows:

π(x (i)) = Φ

�
t − yi

0

�
=

�
Φ (−∞) = 0 if yi > t

Φ (+∞) = 1 if yi ≤ t
, i = 1, . . . , m, t ∈ Y. (3.127)

The Kriging-based prediction of the failure domain is denoted by bF 0
1−α = {x ∈ X : µbY (x ) ≤

0} and the corresponding optimistic (resp. conservative) prediction of the failure domain at
confidence level 1−α are defined as follows:

bF−1
1−α =

�
x ∈ X : µbY (x )≤ t − k1−ασbY (x )

	
, (3.128)

bF+1
1−α =

�
x ∈ X : µbY (x )≤ t + k1−ασbY (x )

	
, t ∈ Y, (3.129)

where k1−α is the number of Kriging standard deviations corresponding to the selected
confidence level 1−α. Recall that 1−α is set to 95% in this manuscript so that k1−α = 1.96.

3.4.2.1 Augmented failure probability

Definition

Picheny (2009); Picheny et al. (2010a); Bect et al. (2011) propose to use the proba-
bilistic classification function π as a surrogate for the actual failure indicator function ✶F
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in Eq. (3.41). The corresponding plug-in estimator of the failure probability is therefore
defined as follows:

p f ǫ =

∫

X

π(x ) fX(x )dx ≡ EX [π(X)] . (3.130)

where the definition of the probabilistic classification function has been recalled in
Eq. (3.126). This estimator accounts for the residual uncertainty in the Kriging predic-
tion of the actual failure domain. However it condensates the whole information in a single
value. Indeed p f ǫ = P[P [bY (X) ≤ 0]] somehow sums up both types of uncertainties so
that it is hard to tell how far is this estimate from the real failure probability p f . This is the
reason why it will be referred to as the augmented failure probability in the sequel.

Estimation using crude Monte Carlo sampling

Picheny (2009); Picheny et al. (2010a); Bect et al. (2011) resort to Monte Carlo sam-
pling of X to provide a fair estimation of the augmented failure probability. Given a sample
X = {X (k), k = 1, . . . , N} of N independent copies of the random vector X , the Monte Carlo
estimator reads as follows:

bp f ǫMCS = bEX [π(X)] =
1

N

N∑
k=1

π
�

X (k)
�

. (3.131)

The central limit theorem ensures that this quantity is an unbiased Gaussian estimator of
the augmented failure probability whose variance can be approximated as follows:

σ2
ǫMCS ≈

1

N

 
1

N

N∑
k=1

π
�

X (k)
�2− p2

f ǫ

!
. (3.132)

Estimation using subset sampling

As previously stated in this chapter, crude Monte Carlo sampling may reveal rather
inefficient if the augmented failure probability is low. Instead, it is proposed to adapt the
subset sampling scheme reviewed earlier in Section 3.3.5 to the problem of estimating the
mathematical expectation of π under fX .

Recall that before the last simplification, the subset sampling definition of the failure
probability in Eq. (3.108) still holds for the augmented failure probability. Actually, pro-
vided a strictly decreasing sequence of quantiles q1 > . . . > qs = 0, Eq. (3.130) rewrites in
the following splitted form:

p f ǫ = p1ǫ

s∏
i=2

pi|i−1ǫ. (3.133)
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where the intermediate augmented probabilities read as follows:

p1ǫ =

∫

X

π1(x ) fX(x )dx , (3.134)

pi|i−1ǫ =

∫

X

πi(x )

πi−1(x )
h∗

i ǫ
(x )dx , i = 2, . . . , s. (3.135)

The latter expression involves the collection of approximate intermediate indicator func-
tions that are defined as follows:

πi(x ) =P
�bY (x )≤ qi

�
= Φ

�
qi −µbY (x )
σbY (x )

�
, i = 1, . . . , s, (3.136)

as well as the approximate sub-optimal instrumental PDFs that read:

h∗
i ǫ
(x ) =

πi−1(x ) fX(x )∫
X
πi−1(x ) fX(x )dx

, i = 2, . . . , s. (3.137)

Then, practical use of this splitting is as follows.

(i) The optimal decreasing sequence of quantiles q1 > . . . > qs = 0 is determined by
applying the adaptive splitting technique detailed in Section 3.3.5.2 on the mean
prediction µbY of the Kriging predictor with intermediate probabilities set to p0 (say
p0 = 10%).

(ii) The first step of subset sampling is then performed without determining the first
quantile q1. It rather uses the one determined in the preliminary step (i) to compute:

bp1ǫ =
1

N

N∑
k=1

π1

�
X (k)
�

, (3.138)

δ1ǫ =

r
1− p1ǫ

N p1ǫ
, (3.139)

whereX [1] = {X (k), k = 1, . . . , N} is a sample of N independent copies of the random
vector X .

(iii) The other s − 1 steps are eventually performed by sampling N copies of the ran-
dom vectors X [i]

ǫ
from their respective approximate sub-optimal instrumental PDFs

{h∗
i ǫ

, i = 2, . . . , s}. This sampling again resorts to the modified Metropolis-Hastings
algorithm (see Section B.3.2 of Appendix B). Note that the Markov chains can be
seeded with the points in the i-th sample generated in the preliminary step. Indeed,
these samples are such that h∗

i ǫ
is non-zero because of the following implication:

µbY (x )≤ qi−1 ⇒ πi−1(x ) = Φ

�
qi−1−µbY (x )
σbY (x )

�
≥ 0.5, i = 2, . . . , s. (3.140)
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The estimation of the intermediate augmented probabilities uses the quantiles {qi, i =

2, . . . , s} determined in the preliminary step (i). These probabilities (resp. their
coefficient of variation) are computed as follows:

bpi|i−1ǫ =
1

N

N∑
k=1

πi

�
X [i] (k)
ǫ

�

πi−1

�
X [i] (k)
ǫ

� , (3.141)

δi|i−1ǫ ≈
1

pi|i−1ǫ

√√√√√ 1

N


 1

N

N∑
k=1

πi

�
X [i] (k)
ǫ

�2

πi−1

�
X [i] (k)
ǫ

�2 − p2
i|i−1ǫ


 �1+ γi ǫ

�
, (3.142)

where {X [i] (k)
ǫ

, k = 1, . . . , N} is a sample of N copies of the i-th instrumental random
vector X [i], and γi ǫ is the coefficient that accounts for the correlation in the MCMC
sample (see Section B.2.3 of Appendix B).

Eventually, the subset sampling estimator of the augmented failure probability is evaluated
as follows:

bp f ǫ SS = bp1ǫ

s∏
i=2

bpi|i−1ǫ, (3.143)

and its coefficient of variation satisfies:
s

s∑
i=1

δ2
i ǫ ≤ δǫ SS ≤

s
s∑

i=1

s∑
j=1

δi ǫ δ j ǫ. (3.144)

3.4.2.2 Pseudo-confidence bounds

Definition

Another solution to quantify the error introduced by the use of a surrogate instead of
the real performance function is inspired from the work by Deheeger and Lemaire (2007);
Deheeger (2008) on support vector margin classifiers. It basically consists in estimating the
three following probabilities:

p i
f (1−α) = P

�
X ∈ bF i

1−α

�
, i = +1, 0, −1. (3.145)

Recall that thanks to the positiveness of the Kriging standard deviation σbY , the three ap-
proximate failure domains satisfy the following imbrication:

bF−1
1−α ⊆ bF 0

1−α ⊆ bF+1
1−α, (3.146)

which in turns ensures that:

p−1
f (1−α) ≤ p 0

f (1−α) ≤ p+1
f (1−α). (3.147)
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Therefore the spread of the interval [p−1
f (1−α); p+1

f (1−α)] reveals a useful measure for assessing
the accuracy of a Kriging surrogate in a reliability analysis.

However, it is worth mentioning here that there is no proof that the conservative failure
domain bF+1

1−α contains the actual failure domain F, nor that the latter contains the optimistic
failure domain bF−1

1−α. As a matter of fact, there is also no proof that the actual failure proba-
bility p f belongs to the interval [p−1

f (1−α); p+1
f (1−α)] even with 95% confidence. Nevertheless

the metric defined in Eq. (3.157) reveals a satisfactory error measure in practice.

Estimation using restarted subset sampling

For the sake of efficiency it is proposed to use a restarted subset sampling algorithm
for estimating the three probabilities in Eq. (3.147). Indeed provided the first (highest)
probability p+1

f (1−α) is known, Eq. (3.146) ensures that the other two probabilities rewrite as
follows:

p 0
f (1−α) = P

�
X ∈ F 0

1−α

��X ∈ F+1
1−α

�
p+1

f 1−α, (3.148)

p−1
f (1−α) = P

�
X ∈ F−1

1−α

��X ∈ F 0
1−α

�
p 0

f 1−α. (3.149)

Hence, the three probabilities can be efficiently estimated by means of three successive runs
of the adaptive splitting algorithm. The estimation proceeds as follows.

bp+1
f 1−α is estimated by means of an adaptive splitting procedure on the following conserva-

tive prediction of the performance function:

eg+1
1−α(x ) = µbY (x )− k1−ασbY (x ), (3.150)

where k1−α is the number of Kriging standard deviations corresponding to the selected
confidence level 1−α (see Eq. (3.129)).

bp 0
f 1−α is estimated by means of a restarted adaptive splitting procedure on the following

prediction of the performance function:

eg 0
1−α(x ) = µbY (x ). (3.151)

The restarted adaptive splitting algorithm starts from the last conditional sample: i.e.

X 0 [1] =X +1 [s]. The new performance function values are computed on this sample
in order to estimate a new quantile q 0

1 ≥ q+1
s
= 0. If this quantile is still positive the

adaptive splitting algorithm is applied until a negative quantile is found. The final
estimate of the quantity of interest is obtained as follows:

bp 0
f (1−α) = bp+1

cond

s∏
i=2

bp 0
i|i−1, (3.152)

where bp+1
cond is the second last probability estimate obtained in the latter estimation of

bp+1
f 1−α:

bp+1
cond = bp+1

1

s−1∏
i=2

bp+1
i|i−1. (3.153)
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bp−1
f 1−α is estimated in a similar fashion. The restarted adaptive splitting procedure is per-

formed on the following optimistic prediction of the performance function:

eg−1
1−α(x ) = µbY (x ) + k1−ασbY (x ), (3.154)

where k1−α is the same number of Kriging standard deviations chosen in the very
first step. The restarted adaptive splitting algorithm starts from the last conditional
sample: i.e. X −1 [1] =X 0 [s]. The new performance function values are computed on
this sample in order to estimate a new quantile q−1

1 ≥ q 0
s
= 0. If this quantile is still

positive the adaptive splitting algorithm is applied until a negative quantile is found.
The final estimate of the quantity of interest is obtained as follows:

bp−1
f (1−α) = bp 0

cond

s∏
i=2

bp−1
i|i−1, (3.155)

where bp 0
cond is the second last probability estimate obtained in the latter estimation of

bp 0
f 1−α:

bp 0
cond = bp+1

cond

s−1∏
i=2

bp 0
i|i−1. (3.156)

3.4.3 Stopping criterion for the refinement strategy

In Section 2.4 of Chapter 2, the proposed adaptive refinement strategy was left without
any convergence criterion as it was argued that such a criterion depends on the final use
of the Kriging surrogate. In the present context of surrogate-based reliability analysis, it is
proposed to use one of the two error measures introduced above.

More specifically, the spread between the pseudo-confidence bounds [p−1
f (1−α); p+1

f (1−α)]
defined in Section 3.4.2.2 can be used in the form of the following metric:

∆p f (1−α) = log10

 
p+1

f (1−α)

p−1
f (1−α)

!
≥ 0. (3.157)

Hence, the following criterion is used to stop the refinement strategy proposed in Sec-
tion 2.4 of Chapter 2:

∆p f (1−α) ≤∆0, (3.158)

where ∆0 is a specified threshold. Note that ∆0 = 1 is a minimum requirement to ensure
that the surrogate-based failure probability is at least in the order of magnitude of the exact
result.

3.4.4 Illustration

This section illustrates the behaviour of these heuristic error measures on the basic struc-
tural reliability example defined in Section 3.2.4. First, the performance function g◦ is
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replaced with a Kriging meta-model built in the standard space. The first DOE uses 8 points
obtained by the heuristic hypersphere-filling procedure detailed in Section 2.2.1.2 of Chap-
ter 2 where the radius of the hypersphere is set equal to R = 8 because the multivariate
standard Gaussian PDF mostly concentrates in this region.

This initial DOE is then enriched by means of the sampling-based refinement procedure
detailed in Section 2.4 of Chapter 2. The refinement makes use of the margin probability
refinement criterion which is weighted by the standard Gaussian PDF. The two heuristic
error measures introduced in this section are estimated at each refinement iteration.

The refinement procedure was run twice. The first run uses the usual state-of-the-art
refinement procedure where the points are added sequentially. In the second run, 4 points
were added at each iteration. The heuristic error measures are plotted as functions of the
total DOE size in Figure 3.17 for both runs. The algorithm is stopped when the logarithmic
deviation ∆p f (1−α) between the two confidence bounds bp−1

f (1−α) and bp+1
f (1−α) remains less

than ∆0 = 0.25 for three iterations.

It can be seen that the spread of the heuristic confidence interval [bp−1
f (1−α); bp+1

f (1−α)]
reduces as the DOE becomes denser in the vicinity of the limit-state surface and that
bp 0

f (1−α) tends towards the reference probability p f , 1 ≈ 1.44 × 10−6 given by FORM (see
Section 3.3.4.2). This empirically demonstrates the consistency of the adaptive refinement
strategies for reliability analysis. The successive estimates of the augmented failure prob-
ability bp f ǫ also converge towards the reference probability although it is impossible to
distinguish the surrogate error from the failure probability estimate. Finally, it should be
pointed out that the second run shows a smoother convergence than the first one for the
two error measures. This is because it adds several points in the DOE at each refinement
iteration. Indeed, each batch of points uniformly spans the margin of uncertainty. Then, the
spread of the latter decreases smoothly until it vanishes. The population-based refinement
strategy does not require significantly more experiments than its sequential counterpart.
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Figure 3.17: Convergence of various approximations of the failure probability for the basic struc-
tural reliability problem defined in Section 3.2.4.
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3.5 Meta-model-based importance sampling

In this section, a novel approach to surrogate-based reliability analysis is proposed. It com-
bines Kriging meta-modelling together with importance sampling. This work has been orig-
inally published in Dubourg et al. (2011b,c) based on similar ideas developped in Dubourg
and Deheeger (2010, in French).

3.5.1 Motivation

In the previous section, it was pointed out that the substitution error is rather hard to
quantify. It is sometimes even impossible when the surrogate does not provide any quan-
tification of its own accuracy (e.g. the Taylor expansion used in FORM does not provide
such an information). Moreover, experience has shown that most meta-modelling tech-
niques, including Kriging and support vector machines, lose efficiency in high dimension
(i.e. when n = dim(X) gets large). For such problems a larger number of experiments is
required in the DOE in order to ensure a significant reduction of the previously defined
pseudo-confidence bounds on the failure probability. On the other hand, in highly sensitive
applications such as in the nuclear industry, the use of surrogates for physical models is
often rejected by the stakeholders. These pitfalls motivate the use of hybrid approaches that
uses the information provided by a possibly coarse meta-model to sample smartly using
either conditional or importance sampling.

Such hybrid approaches have not been given much attention in the literature though.
Piera-Martìnez et al. (2007); Piera-Martìnez (2008) use the upper (conservative) bound of
a support vector margin classifier in order to implement an efficient conditional sampling
scheme on the original performance function g. Barbillon (2010, Chapter 6) exploits the
same idea with Gaussian process predictors. In a similar fashion, Hurtado (2007) proposes
a filtered importance sampling scheme, although the approach is limited to problems featur-
ing a unique MPFP because it makes use of Melchers’ instrumental PDF (see Section 3.3.3).

Cannamela et al. (2008) resort to a Gaussian process meta-model to implement three
reduced variance estimators for low quantiles. The approaches are respectively based on
importance sampling and two other fundamental concepts in the field of variance reduction
techniques known as control variates and stratified sampling (see e.g. Rubinstein and Kroese,
2008, Chapter 5). The parametric importance-sampling-based approach is shown to yield
the most accurate results. The strategy developed in the following sections explores the use
of a non-parametric quasi-optimal instrumental PDF.

3.5.2 Approximation of the optimal instrumental PDF

In the sequel, it is proposed to build an approximation of the optimal instrumental PDF for
the estimation of the failure probability in Eq. (3.3) based on a probabilistic classification

function π that might either come from a Kriging predictor (see Eq. (3.126)) or from a
probabilistic support vector margin classifier (Platt, 1999).
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First, recall from Chapter 1 that in the case of a Kriging predictor denoted by bY (x ) ∼
N1(µbY (x ),σ

2
bY (x )), the probabilistic classification function is defined as follows:

π(x ) =P
�bY (x )≤ 0

�
= Φ

�
0−µbY (x )
σbY (x )

�
. (3.159)

and that it can be extended to the points in the dataset for which the Kriging variance
equals zero by switching to the limit (see Eq. (3.127)).

The proposed approximation of the optimal instrumental PDF h∗ in Eq. (3.74) is ob-
tained by substituting the probabilistic classification function π for the failure indicator
function ✶F in its expression. Therefore, it reads as follows:

bh∗(x ) = π(x ) fX(x )∫
X
π(x ) fX(x )dx

=
π(x ) fX(x )

p f ǫ

, (3.160)

where the augmented failure probability p f ǫ defined in Eq. (3.130) has been introduced.
Such a quasi-optimal instrumental PDF is illustrated on the example from Der Kiureghian
and Dakessian (1998) introduced in Section 3.3.4.4 and already evoked in Section 1.5.3
of Chapter 1. It is compared to the optimal (although impracticable) instrumental PDF in
Figure 3.18. It can be seen that, on this simple example, the proposed instrumental PDF
is able to deal with multiple design points as opposed to Melchers’ instrumental PDF (see
Figure 3.10).
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Figure 3.18: Comparison of the optimal (although impracticable) instrumental PDF and its approx-
imation on the two-dimensional example from Der Kiureghian and Dakessian (1998).
The underlying Kriging predictor is built as described in Section 1.5.3 of Chapter 1.

By introducing the quasi-optimal instrumental PDF bh∗ into Eq. (3.3), the failure proba-
bility rewrites as follows:

p f =

∫

{x ∈X: bh∗(x )>0}
✶F(x ) fX(x )

bh∗(x )
bh∗(x ) dx . (3.161)
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This expression can be further simplified by replacing the instrumental PDF bh∗ in the de-
nominator on the right by its expression in Eq. (3.160):

p f =

∫

{x ∈X: bh∗(x )>0}
✶F(x ) fX(x )

p f ǫ

π(x ) fX(x )
bh∗(x )dx

=

∫

{x ∈X: bh∗(x )>0}

✶F(x )

π(x )
bh∗(x )dx p f ǫ

= αcorr p f ǫ, (3.162)

where the so-called correction factor:

αcorr ≡
∫

{x ∈X: bh∗(x )>0}

✶F(x )

π(x )
bh∗(x )dx (3.163)

has been introduced. Both terms in Eq. (3.162) correspond to the following mathematical
expectations:

p f ǫ =

∫

X

π(x ) fX(x )dx ≡ EX [π(X)] , (3.164)

αcorr =

∫

{x ∈X: bh∗(x )>0}

✶F(x )

π(x )
bh∗(x )dx ≡ EbZ

�
✶F(bZ)
π(bZ)

�
, (3.165)

where X (resp. bZ) is distributed according to fX (resp. bh∗).

The latter correction factor αcorr is thus defined as the expected ratio between the real
indicator function ✶F and the probabilistic classification function π. Thus, if the Kriging
prediction is fully accurate, the correction factor is equal to one and the failure probability
is equal to the augmented failure probability (optimality of the proposed estimator). On
the other hand, in the more general case where the Kriging prediction is not fully accu-
rate (since it is obtained from a DOE X of finite size m), the correction factor modifies
the augmented failure probability accounting for the residual epistemic uncertainty in the
prediction.

3.5.3 Proposed estimator

3.5.3.1 Estimator of the augmented failure probability

The estimation of the augmented failure probability p f ǫ was already addressed in Sec-
tion 3.4.2.1. Recall that this probability might be in the same order of magnitude than
the failure probability, so that the modified subset sampling procedure is better suited than
Monte Carlo sampling to provide an accurate estimate bp f ǫ within a reasonable number of
calls to the Kriging predictor, say Nǫ. The corresponding variance of estimation is denoted
by σ2

ǫ
. Note that it can be reduced to a negligible value because the augmented failure

probability is estimated by means of the Kriging predictor which is a lot cheaper to evaluate
than the original performance function g.
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3.5.3.2 Estimator of the correction factor

The estimation of the correction factor αcorr resorts to Monte Carlo sampling. It is computed
as follows:

bαcorr =
1

N

Ncorr∑
k=1

✶F

�
bZ (k)
�

π
�
bZ (k)
� , (3.166)

where bZ = {bZ (k), k = 1, . . . , Ncorr} is a sample of Ncorr samples of the random vector bZ
distributed according to bh∗. Such samples can be obtained by means of any MCMC sampling
algorithm such as the modified Metropolis-Hastings algorithm detailed in Section B.3.2 of
Appendix B. Hence, the variance of estimation of this quantity reads as follows:

σ2
corr =

1

Ncorr




1

Ncorr

Ncorr∑
k=1

✶F

�
bZ (k)
�2

π
�
bZ (k)
�2 − bα2

corr



�
1+ γcorr

�
, (3.167)

where γcorr is the coefficient that accounts for the correlation in the sample Z generated
by means of MCMC. The reader is referred to Section B.2.3 of Appendix B for the expres-
sion of the coefficient γcorr together with the proof of the latter equation. Note that the
coefficient γcorr can be significantly reduced by means of the so-called thinning procedure
detailed in Section B.2.4 of Appendix B because the instrumental PDF bh∗ does not depend
on the expensive-to-evaluate performance function g as opposed to what happens in subset
sampling. However, the estimation of the correction factor does depend on the performance
function g through the failure indicator function ✶F so that Ncorr should be as small as pos-
sible for the sake of efficiency. Ncorr depends on the order of magnitude of the correction
factor αcorr. Indeed, the closer αcorr is to unity (optimality of the proposed estimator), the
smaller Ncorr.

3.5.3.3 Estimator of the failure probability

The final estimator of the failure probability is eventually defined as follows:

bp f metaIS = bp f ǫ bαcorr. (3.168)

The two terms in this product can be estimated by means of two independent samples.
Thus, bp f ǫ and bαcorr are independent as well. Based on this consideration, the variance of
estimation of bp f metaIS can be derived as follows:

σ2
metaIS ≡ Var

�
bp f metaIS

�

= E
h
bp2

f ǫ
bα2

corr

i
−E

�
bp f ǫ bαcorr

�2

= E
h
bp2

f ǫ

i
E

�
bα2

corr

�
−
�
E

�
bp f ǫ

�
E
�bαcorr

��2
. (3.169)

The first term may be further elaborated using the König-Huyghens theorem:

σ2
metaIS =

�
E

�
bp f ǫ

�2
+σ2

ǫ

� �
E
�bαcorr

�2
+σ2

corr

�
−
�
E

�
bp f ǫ

�
E
�bαcorr

��2
. (3.170)
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Since the two estimators bp f ǫ and bαcorr are unbiased, the variance eventually reduces to:

σ2
metaIS =

�
p2

f ǫ
+σ2

ǫ

� �
α2

corr+σ
2
corr

�
−
�

p f ǫ αcorr

�2

= σ2
ǫ
σ2

corr+ p2
f ǫ
σ2

corr+α
2
corrσ

2
ǫ
. (3.171)

Finally, the coefficient of variation of the meta-model-based importance sampling esti-
mator in Eq. (3.168) reads as follows:

δmetaIS ≡
σmetaIS

p f ǫ αcorr
=
p
δ2
ǫ
+δ2

corr+δ
2
ǫ
δ2

corr, (3.172)

where δǫ = σǫ/p f ǫ (resp. δcorr = σcorr/αcorr) is the coefficient of variation of the augmented
failure probability (resp. of the correction factor). In practice usual target coefficients of
variation range from 1% to 10% so that:

δmetaIS ≈
δǫ ,δcorr≪1

p
δ2
ǫ
+δ2

corr (3.173)

is a fairly accurate approximation of the final coefficient of variation.

It is worth emphasizing again that the contribution of the coefficient of variation of the
augmented failure probability δǫ in that of the final estimator δmetaIS can be significantly
reduced at a low computational expense because the augmented failure probability p f ǫ is
estimated by means of the Kriging predictor only.

3.5.4 Adaptive refinement of the proposed instrumental PDF

The significance of the variance reduction introduced by the proposed meta-model-based
importance sampling technique mostly relies on the optimality of the proposed instrumental
PDF bh∗. Thus it is proposed here to adaptively refine the probabilistic classification function
π so that it tends toward the failure indicator function ✶F. Hence the quasi-optimal instru-
mental PDF bh∗ will converge toward its optimal counterpart h∗, the correction factor αcorr

will converge toward unity (σ2
corr will tend to zero), and the variance of the failure proba-

bility in Eq. (3.171) will eventually reduce to that of the augmented failure probability σ2
ǫ

which can be reduced at a negligible computational cost.

The refinement of the probabilistic classification function is achieved by means of the
sampling-based refinement procedure already detailed in Section 2.4 of Chapter 2. Indeed,
this refinement procedure only requires a stopping criterion in order to decide whether
the probabilistic classification function is sufficiently accurate for the proposed importance
sampling scheme or not. The most appropriate metric to measure the optimality of the
probabilistic classification function is nothing but the actual value of the correction factor
αcorr although it is still unknown so far. Of course, it could be estimated at each refine-
ment iteration. However this would be particularly inefficient because αcorr depends on
the expensive-to-evaluate performance function g so that it should be estimated only once,
when the quasi-optimal instrumental density has converged.
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As a matter of fact, it is proposed to resort to the following leave-one-out estimate of
the correction factor:

bαcorr LOO =
1

m

m∑
i=1

✶F(x
(i))

P
�bY−i ≤ 0

� , (3.174)

where bY−i ∼ N1(µbY−i
, σ2

bY−i

) is the i-th leave-one-out Kriging prediction of the performance

function g. The reader is referred to Section 1.4.5.3 of Chapter 1 for a more detailed
introduction of this cross-validation procedure together with the analytical expression of
the leave-one-out Kriging predictions {bY−i, i = 1, . . . , m}.

In practice, the iterative enrichment of the DOE X is stopped if its size is greater than
say Nmin and bαcorr LOO is in the order of magnitude of unity. Usually, the minimum size
Nmin for averaging a quantity is given by the central limit theorem and Nmin = 30 yields
satisfactory estimates. In the case of high dimensional and/or highly nonlinear problems,
the size of the DOE is also limited to mmax = 1 000. One may also measure the improvement
brought by the latest refinement iteration in terms of variation of bαcorr LOO in order to decide
whether to stop the refinement procedure or not.

Note that a leave-one-out estimate of the Kriging variance σ2
bY−i

might be rounded to
zero due to machine precision. This is problematic because the ratio in Eq. (3.174) might
not be defined in such cases. Indeed, if the corresponding mean prediction µbY−i

is positive,
then the probability in the denominator equals zero. Hence, if the failure indicator function
✶F is also zero it may cause an exception because 0/0 is undetermined. Recall that this
variance should never be exactly zero. Indeed, the Kriging variance equals zero only at the
points in the DOE (hereX \x (i)). So, it is proposed to bound the leave-one-out probabilistic
classification function in the denominator of Eq. (3.174) above a reasonably low value (say
the machine precision, ǫM ≈ 10−16).

3.5.5 Implementation

The proposed meta-model-based importance sampling scheme is sketched in Algorithm 3.2.
The algorithm only requires the choice of a maximum number of performance function
evaluations Nmax, a targeted coefficient of variation δtarget for the final estimate bp f metaIS and
the parameters of the sampling-based adaptive refinement strategy in Algorithm 2.3. It is
essentially divided in two main parts.

The first part concerns the adaptive contruction of the instrumental PDF bh∗ to make it
tend toward the optimal one h∗. This is achieved by applying the sampling-based refine-
ment algorithm introduced in Section 2.4 of Chapter 2 as long as the leave-one-out estimate
of the correction factor αcorr LOO is not sufficiently close to one. Once the probabilistic classi-
fication function is found sufficiently accurate, the definition of the instrumental PDF bh∗ is
completed by computing its normalizing constant p f ǫ. This resorts to the modified subset
sampling technique introduced in Section 3.4.2.1. The sample size per step Nǫ shall be
chosen as large as reasonably possible (say Nǫ = 104 − 105) so as to ensure a negligible
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coefficient of variation δǫ to minimize its contribution on the final coefficient of variation
δmetaIS (see Eq. (3.172)).

The second part consists in using the previously built instrumental PDF in a classical
adaptive importance sampling scheme driven by the target coefficient of variation δtarget.

This resorts to MCMC sampling of the instrumental PDF bh∗. The present implementation
resorts to the modified Metropolis-Hastings algorithm introduced in Section B.3.2 of Ap-
pendix B. It is seeded with the points contained in the last sample X [s] used to estimate
the augmented failure probability. In order to avoid the correlation between bp f ǫ and bαcorr

though it is proposed to burn the first samples (say the 10 first elements of each chain)
generated by the modified Metropolis-Hastings algorithm. Moreover, the MCMC sampler
may retain only one element of each chain every t increments (say t = 4) in order to re-
duce the γcorr coefficient involved in the variance of estimation of bαcorr. For a more detailed
introduction to these two techniques known as burn-in and thinning (respectively), the
reader is referred to Section B.2.4 of Appendix B. Note that rejecting samples is affordable
here because the instrumental PDF bh∗ depends only on the Kriging predictor as opposed to
what happens in subset sampling where each sub-optimal instrumental PDF involves the
expensive-to-evaluate performance function g (through the intermediate subset indicator
functions).
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Algorithm 3.2 Metamodel-based importance sampling

Nmax Maximum number of calls to g

δtarget Targeted coefficient of variation
K Number of available CPUs

m= 0

Refine the probabilistic classification function π
,→ Use the inner loop of Algorithm 2.3

Is (0.1 ≤ bαcorrLOO ≤ 10
and m ≥ 30) or m ≥ mmax?m= m+ K

Estimate the augmented failure probability bp f ǫ

,→ Use the modified subset sampling
technique (see Section 3.4.2.1)

Ncorr = 0

Draw a new batch sample from bZ
Zbatch =

¦bz(i), i = 1, . . . , K
©

,→ Use Algorithm B.2

Evaluate the performance function g
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3.5.6 Illustration

The meta-model-based importance sampling scheme is applied to the basic structural reli-
ability example defined in Section 3.2.4. All the operations are performed in the standard
space spanned by u. The first Kriging meta-model is built from a heuristic hypersphere-
filling DOE (see Section 2.2.1.2) containing 8 points in the ball of radius R = 8. It is then
refined by means of the sampling-based refinement technique based on the margin proba-
bility criterion weighted by the multivariate standard Gaussian PDF (i.e. w(c) ∝ e−‖c‖

2
2/2).

K = 4 points are added at each refinement iteration and the refinement is eventually
stopped when bαcorr LOO reaches a stable value sufficiently close to unity. The size of the
DOE at the end of the adaptive refinement procedure is equal to m = 8+ 9× 4 = 44. The
normalizing constant p f ǫ is estimated by means of the modified subset sampling technique
detailed in Section 3.4.2.1 (with Nǫ = 105 for the sample size per step), and it is found
equal to bp f ǫ ≈ 1.53× 10−6 up to a 4% coefficient of variation. Note that it is already in
good agreement with the reference solution p f , 1 ≈ 1.44× 10−6 given by FORM.

The adaptive importance sampling scheme is then triggered. A 10% coefficient of vari-
ation is targeted and the batch samples of bZ are generated from 50 independent chains.
Actually, on this simple example the Kriging predictor is fully accurate after the refinement
so that the theoretically impracticable optimal importance sampling scheme is achieved
( bh∗ = h∗). Then the first 50-sample allows a sufficient variance reduction with respect to
the targeted coefficient of variation. This sample is illustrated in Figure 3.19(a) together
with the proposed instrumental PDF bh∗. It is clear from this illustration that optimality is
reached. The correction factor is found equal to one with a zero variance of estimation so
that the final coefficient of variation is reduced to that of the augmented failure probability
δmetaIS = δǫ ≈ 4%.
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Figure 3.19: Application of the meta-model-based importance sampling scheme to the basic struc-
tural reliability example defined in Section 3.2.4.

The proposed hybrid approach is actually designed for more sophisticated reliability ex-
amples for which the optimal instrumental PDF can only be approximated (e.g. examples
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featuring a higher number of random variables and a limit-state surface whose nonlinearity
is hard to emulate). To illustrate such a quasi-optimality, the same problem is run again
except that the adaptive refinement is arbitrarily stopped at the third iteration. The corre-
sponding instrumental PDF is illustrated in Figure 3.19(b) together with a small sample. In
this case the importance sampling scheme yields a correction factor bαcorr ≈ 0.98 (up to a
9% coefficient of variation), an augmented failure probability bp f ǫ ≈ 1.64× 10−6 (up to a
4% coefficient of variation) and eventually the failure probability is bp f metaIS ≈ 1.60× 10−6

(up to a 10% coefficient of variation). Finally, this second hybrid reliability analysis used
m+ Ncorr = (8+ 2× 4) + 19× 50 = 966 calls to the performance function g which is less
optimal than the first run.

3.6 Conclusion

This chapter has reviewed several state-of-the-art reliability methods. First the isoproba-
bilistic transform was introduced as a mean to work within a convenient standard space

spanned by independent identically distributed Gaussian random variables. It has been
pointed out that the advanced reliability methods resorting to optimization, MCMC sam-
pling or meta-modelling are easier to tune in that standard space than in the original one.

Then a specific emphasis was put on the central role of the importance sampling tech-
nique whose concept underlies most state-of-the-art reliability methods (even the first-order
reliability method). Subset sampling reveals a particularly robust and efficient technique to
estimate low failure probabilities (up to 10−6−10−12) so that it should always be preferred
to any other technique. Despite it is theoretically biased for every N , it has proven to yield
fairly accurate results when N is sufficiently large (say N > 103).

However, when the performance function is expensive-to-evaluate, even the most effi-
cient variance reduction techniques (including subset sampling) may reveal impracticable.
This premise naturally lead to the introduction of the surrogate-based approaches. Such
approaches allow a significant reduction of the computational cost induced by the quantifi-
cation of rare event probabilities. In addition, it has been shown that the substitution error
(i.e. the error induced by the use of a surrogate instead of the real performance function)
can be apprehended when the meta-model provides a local measure of its own accuracy (as
Kriging does).

Eventually, a novel hybrid approach has been proposed. It uses the probabilistic classifi-
cation information provided by a Kriging predictor in order to build a fair approximation of
the optimal (although impracticable) instrumental PDF. Using elementary algebra the fail-
ure probability is recast as a product of two terms, namely the augmented failure probability

p f ǫ which is evaluated by means of the meta-model only, and a correction factor αcorr that
is computed from evaluations of the original limit-state function. This approach is not sig-
nificantly more computationally expensive than the usual surrogate-based approaches but
it yields an unbiased and convergent estimator of the quantity of interest. Moreover it has
a potentially larger field of application when the Kriging meta-modelling technique loses
efficiency (e.g. in high dimension).
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4.1 Introduction

In modern engineering, design optimization is the decision-making process that aims at find-
ing the best set of design variables which minimizes some cost model while satisfying some
performance requirements. Due to the inconsistency between these two objectives, the opti-
mal solutions often lie on the boundaries of the admissible space. Thus these solutions are
rather sensitive to uncertainty either in the parameters (aleatory) or in the models them-
selves (epistemic). Reliability-based design optimization (RBDO) is a concept that accounts
for this uncertainty all along the optimization process.

Basically, the deterministic performance model is transformed into a probabilistic con-

straint. Despite its attractive formulation, the application field of RBDO is still limited to
academic examples. This is mostly due to the fact that it is either based on simplifying
assumptions (e.g. FORM/SORM) that might not hold in practice; or in contrast, it requires
computationally intensive stochastic simulations that are not affordable for real industrial
problems (involving expensive-to-evaluate computational models).

This chapter proposes a meta-model-based strategy that would in fine bring the RBDO
application field to more sophisticated examples, closer to real engineering cases. It is es-
sentially based on the use of adaptive surrogate models (see Chapters 1 and 2), variance
reduction techniques (see Chapter 3) and reliability sensitivity analysis (introduced in this
chapter). The remaining of this section is devoted to the formulation of the RBDO problem.
A first introductory analytical example is provided for the sake of illustration. A state-of-
the-art is then proposed as a motivation for the RBDO resolution strategy proposed in this
manuscript. Section 4.2 recalls a few elements of constrained optimization and mathemat-
ical programming before focusing on the presentation of the Polak-He algorithm that was
used in this thesis. Section 4.3 is concerned with the computation of the gradient of the
failure probability (i.e. reliability sensitivity analysis) which is a fundamental ingredient
in order to embed a reliability analysis in a design optimization procedure. Section 4.4
eventually presents the proposed surrogate-based RBDO resolution strategy.

4.1.1 Problem formulation

Given a parametric model for the random vector X (as in Section 3.2 of Chapter 3) describ-
ing the system to be designed, the most basic formulation for RBDO reads as follows:

d∗ = argmin
d∈D

c (d) :

¨
fi (d)≤ 0, i = 1, . . . , nc

P
�
gl (X (d))≤ 0

�
≤ p0

f l
, l = 1, . . . , np

. (4.1)

In this formulation, c is the cost function to be minimized with respect to the design vari-
ables d = {di, i = 1, . . . , nd} ∈ D ⊂ Rnd , while satisfying to nc deterministic soft constraints
{fi, i = 1, . . . , nc} bounding the so-called admissible design space defined by the analyst.
Note that in most applications these soft constraints consists in simple analytical functions
that prevent the optimization algorithm from exploring regions of the design space that
have no physical meaning (e.g. negative or infinite dimensions), so that these constraints
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are inexpensive to evaluate. A deterministic design optimization (DDO) would simply re-
quire additional performance functions {gl , l = 1, . . . , np} describing system failures with
respect to the specific code of practice. As opposed to the previous soft constraints, these
functions often involve the output of an expensive-to-evaluate black-box functionM (e.g.

a finite element model).

RBDO differs from DDO in the sense that these constraints are transformed into np

probabilistic constraints {P
�
gl (X)≤ 0

�
≤ p0

f l
, l = 1, . . . , np}. p0

f l
is the minimum safety

requirement expressed here in the form of an acceptable probability of failure which may
be different for each performance function gl . DDO and RBDO are graphically opposed in
Figure 4.1. Basically, the reliability-based optimal solution steps away from the limit-state
surface for the sake of safety with respect to the uncertainty in the random design variables.
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Figure 4.1: Comparison of deterministic and reliability-based design optimization.

It should be noticed that the design vector d is a set of parameters defining the random
vector X (e.g. the mean for the example of Figure 4.1). In other words, in this thesis, design
variables are exclusively considered as parameters in the joint probability density function
fX of the random vector X because it will later simplify the computation of the derivatives
of the probabilistic constraints (i.e. reliability sensitivity). There is however no loss of
generality since deterministic design variables might possibly be considered as artificially
random (e.g. Gaussian) with small variance.

It might be argued that this formulation lacks full probabilistic consideration because
the cost function is defined in a deterministic manner as it only depends on the parameters
d of the random vector X . A more comprehensive formulation could account for the ran-
domness of the cost function possibly induced by the one in X but the present formulation
is extensively used in the RBDO literature for the sake of simplicity. Note however that
thanks to the rather low computational complexity of the usual cost models (at least in the
present context of structural mechanics), an accurate sampling-based estimation of a mean
cost, say c (d) = E [c (X (d))] would not require a large computational effort.
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Note that the np probabilistic constraints can equivalently be specified in terms of gen-

eralized reliability indices for the sake of normalization. The so-called generalized reliability

index was first introduced by Ditlevsen (1979a) (see also Ditlevsen and Madsen, 1996) and
it reads as follows:

β = −Φ−1
�

p f

�
, (4.2)

where the probability of failure p f can be estimated by means of any technique introduced
in Chapter 3. As its name suggests, it is a generalization of the relationship between the
Hasofer-Lind reliability index and the first-order approximation of a failure probability as
introduced in Section 3.3.4.2 of Chapter 3. Generally speaking, it is easier to work in terms
of generalized reliability indices that range from −8 to 8 than to work with probabilities
that equivalently range from 1− 10−15 to 10−15.

4.1.2 A first introductory analytical example

In order to provide a better understanding of the previously introduced RBDO formulation,
a first fully analytical example is presented and solved in the sequel.

4.1.2.1 Mechanical and probabilistic models

Let us consider a simply supported rectangular and perfectly straight column with cross-
section b×h subjected to a constant service axial load Fser. Provided h≤ b, its Euler critical
linear elastic buckling load is given by the following formula:

Fcr =
π2 E b h3

12 L2 . (4.3)

This allows one to formulate the performance function which will be involved in the prob-
abilistic constraint as:

g (x ) =
π2 E b h3

12 L2 − Fser. (4.4)

For this oversimplified problem, the stochastic model consists of 3 independent lognormal
random variables with parameters λ and ζ, namely: X = (E, b, h)T.

4.1.2.2 Computation of the failure probability

Under these considerations, the limit-state surface S0 = {x ∈ X : g(x ) = 0} can be trans-
formed into the standard space of independent normal random variables u with zero-mean
and unit-variance, and it has an explicit form. Indeed, the isoprobabilistic transform simply
reads:

x• = expλ•+ ζ• u•, •= {E, b, h} . (4.5)

Hence, recasting the limit-state surface equation as:

S0 =

¨
x ∈ X : ğ(x ) = log

�
π2 E b h3

12 L2

�
− log

�
Fser

�
= 0

«
, (4.6)
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one gets its expression in the standard normal space which turns out to read:

S ◦0 =
�

u ∈ R3 :ğ◦ (u) = ζE uE + ζb ub + 3ζh uh

+

�
log

�
π2

12 Fser L2

�
+λE +λb + 3λh

�
= 0
�

.
(4.7)

Since it is linear in u, the Hasofer-Lind reliability index can be calculated here in a fully
closed-form as the distance from the origin to the hyperplane S ◦0 = {u ∈ R3 : ğ◦(u) = 0}
and reads:

βHL =
log
�

π2

12 Fser L2

�
+λE +λb + 3λhp

ζ2
E
+ ζ2

b
+ 9ζ2

h

. (4.8)

Note that the reliability index is also a linear function of λb and λh and that the associated
probability of failure is exactly p f = p f , 1 = Φ

�
−βHL

�
since the limit-state surface is linear

in the standard space.

4.1.2.3 Reliability-based design optimization

The purpose of RBDO in this example is to minimize the structural weight which is propor-
tional to the cross section area c(d) = µb µh while satisfying to a deterministic constraint:

f (d) = µh−µb ≤ 0, (4.9)

and the probabilistic constraint (written here in terms of reliability indices):

β0 ≤ βHL(d), (4.10)

where β0 = 3 is the minimum target reliability index. The optimization is carried out with
a constant coefficient of variation δ for both b and h so that:

ζb = ζh =
p

log
�
1+δ2

�
≡ ζ. (4.11)

Noting that minimizing c with respect to the means µb and µh is equivalent to minimiz-
ing log c with respect to logµb = λb+

1
2
ζ2 and logµh = λh+

1
2
ζ2 (since ζ is a prescribed con-

stant), this RBDO problem turns out to be a linear optimization problem in d̆ = (λb, λh)
T:

d̆
∗
= arg min

(λb ,λh)
λb +λh+ ζ

2 :





λh−λb ≤ 0

β0−
log
�

π2

12 Fser L2

�
+λE +λb + 3λhp

ζ2
E
+ ζ2

b
+ 9ζ2

h

≤ 0
, (4.12)

whose solution consists in saturating both constraints. In other words, the optimal design
is the square section (λb = λh) with optimal width:

λ∗
b
= λ∗

h
=

1

4

�
β0

p
ζ2

E
+ ζ2

b
+ 9ζ2

h
− log

�
π2

12 Fser L2

�
−λE

�
. (4.13)
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Figure 4.2: Objective and constraint functions for the introductory RBDO analytical example in the�
λb, λh

�
-space.

4.1.2.4 Illustration

The concrete column is now assumed to have the following properties:

• a lognormal Young’s modulus E with mean µE = 10,000 MPa and coefficient of vari-
ation δE = 10%;

• lognormal width b and height h with constant and equal coefficients of variation
δ = δb = δh = 5%;

• and a deterministic length L = 3,000 mm;

It is subjected to a deterministic service load of magnitude:

Fser =
π2µE I0

L2 with I0 =
200× 2003

12
. (4.14)

Under such assumptions, the optimal mean design for a minimum reliability index β0 = 3
is µ∗

b
= µ∗

h
≈ 231 mm. Note that this is about 15% more than the optimal deterministic

design (µdet
b
= 200 mm).

The optimization problem formulated in Eq. (4.13) is illustrated in Figure 4.2. It is
clear from this illustration that the optimal solution lies at the intersection of the two linear
constraints (the green and red lines) independently of the objective function which is also
linear. Note that the linearity is specific to this simple example though.



4.1. Introduction 149

4.1.3 State-of-the-art and perspectives

The review introduced in this section is mostly based on the book by Tsompanakis et al.
(2008) (see the chapter by Chateauneuf and Aoues, 2008, in particular) and the review ar-
ticles by Eldred et al. (2002), Valdebenito and Schuëller (2010) and Aoues and Chateauneuf
(2010).

The most straightforward approach to solve the RBDO problem in Eq. (4.1) consists in
nesting a reliability analysis within a nonlinear constrained optimization loop. Such meth-
ods are referred to as double-loop or nested approaches. Despite their conceptual simplicity
and their undeniable accuracy these “brute-force” approaches are often argued to lack ef-
ficiency since they require too many evaluations of the performance functions that might
involve the output of a time-consuming computer code. However, for a broad range of ap-
plications where the performance functions are linear or weakly nonlinear – i.e. when the
first order reliability method is applicable, the nested approach is able to give results within
a reasonable number of performance functions evaluations (e.g. Enevoldsen and Sørensen
(1994) achieve convergence within a few thousands evaluations).

The formulation in Eq. (4.1) is known as the reliability index approach (RIA). Note that
RIA often refers to nested RBDO algorithm based on FORM despite the fact that the concept
can easily be extended to sampling-based reliability methods. Some authors, starting with
Tu et al. (1999), proposed an alternative formulation to the RBDO problem known as the
performance measure approach (PMA). The probabilistic constraints are transformed into
quantile constraints that are approximated using the first-order reliability theory. Accord-
ing to Youn and Choi (2004), PMA would be more stable and efficient than RIA because
the inner reliability algorithms used to solve the first-order quantile approximation (the
so-called Mean Value algorithms) are argued to be much more efficient than their proba-
bility approximation counterparts (e.g. the iHLRF algorithm evoked in Section 3.3.4.1 of
Chapter 3).

The nested approach becomes intractable in case of more complex performance func-
tions for which the nested reliability analysis must resort to sampling-based methods. For
such cases however, Royset and Polak (2004a,b) proposed the so-called sample average

approximation method which consists in gradually refining the sampling-based reliability
analysis as the optimization algorithm converges towards an optimal design. To do so, they
propose an empirical stepwise refinement criteria to define whether the sample size should
be raised or not. This can allow a quite significant reduction of the total number of sim-
ulation runs but it still requires too many performance functions evaluations to make the
approach applicable to real engineering cases. Nevertheless, the application field of this
approach is growing with the increasing availability of high performance computational
resources (e.g. interconnected clusters of PCs).

An alternative to double-loop approach consists in decoupling the optimization loop
from the reliability analyses so that both can be sequentially performed in an independent
manner. Such approaches are referred to as sequential approaches or decoupled approaches

(Royset et al., 2001; Du and Chen, 2004; Aoues and Chateauneuf, 2010). An advantage
of these approaches is that they do not require reliability sensitivity analysis since the op-
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timization is performed directly on the performance function. However, the decoupling
often relies on the most probable failure point (MPFP) assumptions and thus suffers from
the possible non-uniqueness of this point and the strong nonlinearities in the performance
functions.

Single-loop approaches (Kuschel and Rackwitz, 1997; Kirjner-Neto et al., 1998; Khar-
manda et al., 2002; Shan and Wang, 2008) attempt to fully reformulate the original RBDO
problem into an equivalent DDO problem that enables a simple and efficient resolution by
means of classical optimization algorithms. The approach is mainly based on concepts that
are closely related with the notion of partial safety factors. It is certainly the most com-
putationally efficient approach as soon as the assumptions under which the probabilistic-
deterministic equivalence is built hold. Once again, most of them are based upon the
assumption that the MPFP exists and that it is unique.

Stochastic subset optimization (SSO) is a sampling-based approach recently proposed by
Taflanidis (2007); Taflanidis and Beck (2008, 2009a,b) that consists in finding the region
of the admissible design space where the failure probability density function is minimal.
It is based on conditional sampling in a so-called augmented reliability space where the
design variables are artificially considered as random with uniform distribution. The range
of uncertainty in the design variables is reduced along with the identification of low failure
probability density regions. The overall concept is closely related with the subset sampling
reliability method proposed by Au and Beck (2001), and further explored by Au (2005)
for reliability-based design sensitivity analysis. In the end, the algorithm provides a set of
parameters that is likely to contain the optimal solution which can possibly be pinpointed
by means of a more refined stochastic search algorithm. However, the problem that SSO
attempts to solve is not a full RBDO problem in the sense that it is designed to minimize
the failure probability whereas the purpose of RBDO is to minimize a cost function under
some maximal failure probability constraint.

Finally, the approach that is investigated here is the surrogate-based (or meta-model-

based) approach. Since the performance function evaluation might involve a time-
consuming computational task, the approach consists in replacing this function by a surro-
gate that is much faster to evaluate (see Section 3.4 of Chapter 3). This approach is argued
here to be more flexible than the classical methods based on Taylor series expansions (i.e.

approaches using the first-order reliability theory) that are extensively used in the RBDO
literature. As for surrogate-based reliability analyses the number of different contributions
in this field is quite large as it depends on the meta-modelling strategy (type and refine-
ment), the reliability estimation technique, the constrained optimization solver and how
these three tools are used.

Eldred et al. (2002) provide a thorough review of the different fundamental principles
underlying surrogate-based RBDO (substitution of the performance functions only, substi-
tution of the failure probabilities only, or substitution of both). Papadrakakis and Lagaros
(2002) resort to neural network and Monte Carlo sampling. Eldred et al. (2008); Eldred
(2009); Coelho et al. (2011) describe the random performance G with a polynomial chaos
expansion. Coelho et al. (2011) additionally propose to interpret the coefficients in the
expansion as functions of the design parameters and then use Kriging meta-models to sur-
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rogate them. The strategy is applied to multi-objective optimization accounting for uncer-
tainty. Basudhar and Missoum (2008, 2009) investigate the use of support vector classifiers
in order to surrogate the limit-state surface. The approach is applied to structural reliability
examples involving random fields. Lee and Jung (2008); Bichon et al. (2009); Lee et al.
(2011a,b) make use of a Kriging-based reliability analysis nested in a constrained optimiza-
tion solver. The article by Bichon et al. (2009) presents different results depending on the
type of optimizer that is used.

The present manuscript focuses on the use of adaptive Kriging predictors for the resolu-
tion of the RBDO problem in order to be able to (i) apply the strategy to design problems
featuring expensive-to-evaluate performance functions and multiple MPFPs, and (ii) quan-
tify the substitution error on the reliability of the final design.

4.2 Elements of inequality constrained optimization

The problem in Eq. (4.1) is a nonlinear inequality constrained optimization problem of the
following form:

d∗ = arg min
d∈D

c(d) : fi(d)≤ 0, i = 1, . . . , nc, (4.15)

where D is the design space, c is the objective function and {fi, i = 1, . . . , nc} regroups
here all the constraints (deterministic and probabilistic) for the sake of clarity. The reso-
lution strategies for such problems fundamentally differ depending on whether the design
variables d are continuous or discrete. In this thesis, only continuous design variables are
considered. For such problems, the nonlinear programming methods seem to be the most
appropriate. This section shortly reviews the basic principle underlying these methods be-
fore focusing on the presentation of the Polak-He algorithm that is then used.

4.2.1 The Karush-Kuhn-Tucker optimality conditions

A wide range of constrained optimizers for continuous design variables is based on the
so-called Karush-Kuhn-Tucker (KKT) necessary optimality conditions. To implement these
optimality conditions, the objective and constraint functions are assumed to be continu-
ously once-differentiable at any local minimum d∗. Hence, it enables the computation of
their gradients and the KKT optimality conditions read as follows.

Theorem 4.2.1. The Karush-Kuhn-Tucker necessary optimality conditions

Let d∗ ∈ D denote a vector such that gi(d
∗) ≤ 0, for i = 1, . . . , nc. If d∗ is a local minimum

of the constrained optimization problem formulated in Eq. (4.15), then there exists a vector

λ∗ ∈ R+nc such that:

∇c
�
d∗
�
+

nc∑
i=1

λ∗
i
∇fi
�
d∗
�
= 0, (4.16)

λ∗
i
fi
�
d∗
�
= 0, i = 1, . . . , nc. (4.17)

where ∇ denotes the gradient with respect to d.
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Note that the KKT multipliers λ = (λi, i = 1, . . . , nc)
T might be equal to zero.

This means that not all constraints need to be activated at the local minimum d∗ (i.e.

{fi
�
d∗
�

, i = 1, . . . , nc} do not need to be all equal to zero) in order to satisfy Eq. (4.17).
This is the main difference with the Lagrange optimality conditions for equality constrained
optimization problems. Eq. (4.16) means that the gradient of the cost function is a linear
combination of the activated constraints at any local optimum (see Figure 4.3).

Example 4.2.1.

For instance, the problem of finding the best linear unbiased predictor in Section 1.4.3 of

Chapter 1 (see Proof 1.4.1 in particular) is an equality constrained optimization problem for

which the Lagrange optimality conditions apply. All constraints are activated at the optimal

solution.

Conversely, the problem involved in the determination of the coefficients of a soft support

vector classifier in Section 1.1.2.2 of Chapter 1 (see Eq. (1.6)) is an inequality constrained
optimization problem for which the abovementioned KKT conditions apply: only a few con-

straints are activated at the optimal solution (they correspond to the support vectors).

4.2.2 Dual methods

More specifically, the so-called dual methods aim at solving directly the latter optimality
conditions. Indeed, despite Theorem 4.2.1 introduces an additional set of unknown vari-
ables (the nc Karush-Kuhn-Tucker multipliers λ∗), it also yields a set of nd + nc equations
that enable the resolution of the system formed by Eqs. (4.16) and (4.17). However, these
equations might eventually be nonlinear and/or non-explicit so that the system formed by
the KKT conditions cannot be solved analytically. Hence, their resolution is approximated
numerically by finding the global optimum of an augmented optimization problem named
the dual problem.

Let us define the Lagrangian associated with the optimization problem in Eq. (4.15):

L (d, λ) = c (d) +

nc∑
i=1

λi fi (d) . (4.18)

The dual problem consists in finding the global minimizer of the Lagrangian:

�
d∗, λ∗

�
= arg min

(d,λ)∈D×R+nc
L (d, λ) , (4.19)

which is an unconstrained global optimization problem. The relation with the primal prob-
lem is clear from the first-order necessary optimality conditions obtained by cancelling the
partial derivatives of the Lagrangian:

∇c
�
d∗
�
+

nc∑
i=1

λ∗
i
∇fi
�
d∗
�
= 0, (4.20)

fi
�
d∗
�
= 0, i = 1, . . . , nc. (4.21)
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However, a fundamental drawback underlying the resolution of the dual problem in-
stead of the primal one is that it assumes that all the constraints are activated (see
Eq. (4.21)) at the optimum which is non-necessarily the case for inequality constrained
optimization. As a matter of fact, most implementations of the resolution of this dual
problem proceeds by testing all possible combinations of activated constraints (i.e. the con-
straints are sequentially removed and added). Hence, the combinatorial complexity of this
procedure rapidly increases with the number of constraints nc.

4.2.3 The Polak-He algorithm

The Polak-He algorithm (Polak, 1997, Section 2.6) attempts to circumvent the aforemen-
tioned combinatorial complexity by penalizing the most violated constraint. Indeed, Polak
(1997) showed under reasonable assumptions that solving the problem in Eq. (4.15) is
equivalent (in terms of Theorem 4.2.1) to solving the following min-max problem:

d∗ = argmin
d∈D

c(d) : f(d)+ ≤ 0, (4.22)

where f(d)+ = max(0; {fi(d), i = 1, . . . , nc}) denotes the most violated constraint at point
d.

Polak (1997) then came up with the resolution algorithm introduced in this section.
This algorithm proceeds iteratively on j starting from an initial point d(0). As many other
nonlinear programming algorithms, the improvement rule that defines the next point at
iteration j reads as follows:

d( j+1) = d( j)+ s( j) h( j), (4.23)

where h( j) is the descent direction, and s( j) is the step size along this direction.

4.2.3.1 Descent direction

The j-th descent direction h( j) is computed as follows:

h( j) = −
1

δ

 
µ∗0∇c(d

( j)) +

nc∑
i=1

µ∗
i
∇fi(d

( j))

!
, (4.24)

where (µ∗0, µ∗T)T is any solution of the following linearly constrained quadratic program-

ming subproblem:

�
µ∗0, µ∗T

�T

= arg min
(µ0,µT)T∈Rnc+1

θ ( j)
�
µ0, µ

�
:





0≤ µi ≤ 1, i = 0, . . . , nc
nc∑

i=0
µi = 1

, (4.25)

whose (quadratic) objective function reads:

θ ( j)
�
µ0, µ

�
= µ0 γ f(d)++

nc∑
i=1

µi fi(d) +
1

2δ






µ
∗
0∇c(d

( j)) +

nc∑
i=1

µ∗
i
∇fi(d

( j))







2

. (4.26)
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In the latter expression, γ > 0 and δ > 0 are two of the four tuning parameters of the
Polak-He algorithm (the two others being used for the step size calculation). Polak (1997)
guarantees convergence for any admissible values of these two parameters but warns about
their influence on the convergence rate.

4.2.3.2 Step size

The step size is determined by means of the Goldstein-Armijo approximate line search rule.
Given 0< α < 1 and 0< β < 1, the rule consists in finding s( j) such that:

s( j) =max
k∈N

¦
β k : M

�
d( j), d( j)+ β k h( j)

�
≤ −β k αθ ( j)

�
µ∗0, µ∗

�©
, (4.27)

where the merit function M measures the improvement brought by the step size and is
defined here as:

M
�

d( j), d( j)+ β k h( j)
�
=max

 
c
�

d( j)+ β k h( j)
�
− c
�

d( j)
�
− γ f

�
d( j)
�
+n

fi
�

d( j)
�
− f
�

d( j)
�
+

, i = 1, . . . , nc

o
!

. (4.28)

Again, Polak (1997) points out that the two tuning parameters α and β may alter the
convergence rate of the algorithm.

4.2.3.3 Implementation

Algorithm 4.1 is provided so as to summarize this section. The algorithm requires an ini-
tial point d(0) and the values of the four tuning parameters of the Polak-He algorithm.
The present implementation involves the normalization of the design variables d, the cost
function c, the constraint functions {fi, i = 1, . . . , nc} and their respective gradients. More
specifically, the cost and constraint functions and their gradients are normalized with re-
spect to their initial value (provided it is not zero), and the design variables are normalized
with respect to their value at the previous iteration (provided it is not zero) in order to
make the step along the improvement direction significant. Thanks to this normalization,
the following set of parameters:

α= 0.5, β = 0.6, γ= 2, δ = 1 (4.29)

yields satisfactory convergence rates independently of the order of magnitudes of the dif-
ferent variables and functions involved in the problem at hand. This set of parameters was
initially recommended by Royset and Polak (2004a,b), without pointing out the conver-
gence issues that may occur if the aforementioned normalizations are not applied though.

The algorithm iterates on j starting from the provided initial design d(0). First, the
cost function, the constraint functions and their respective gradients are evaluated at the
current design. The function values are normalized with respect to their absolute initial
values c(0) and { f (0)i , i = 1, . . . , nc} (provided they are not equal to zero). The gradients
are also normalized with respect to these initial values.
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Algorithm 4.1 The Polak-He algorithm

d(0) Initial design
α, β Step size parameters
γ, δ Descent direction parameters

j = 0

Evaluate the cost and constraint functions
c( j) = c(d( j)) and f

( j)

i
= fi(d

( j)), i = 1, . . . , nc

and their gradients
dc( j) = ∇c(d( j)) and d f

( j)

i
= ∇fi(d

( j)), i = 1, . . . , nc

Normalize the cost and constraint functions

c
( j)
=

c( j)

|c(0)|
and f

( j)

i
=

f
( j)

i

| f (0)
i
|
, i = 1, . . . , nc ,

and their gradients

dc
( j)
=

dc( j)

|c(0)|
and d f

( j)

i
=

d f
( j)

i

| f (0)
i
|
, i = 1, . . . , nc

Solve the normalized QP subproblem in Eq. (4.25)

Compute the descent direction with Eq. (4.24)

k = 0

Propose a new candidate design

d⋆ =
�

d
( j)

i
+ β k h

( j)

i
|d( j)

i
|, i = 1, . . . , nc

�T

Evaluate the cost and constraint functions
c⋆ = c(d⋆) and f ⋆

i
= fi(d

⋆), i = 1, . . . , nc

Normalize the cost and constraint functions

c
⋆
=

c⋆

|c(0)|
and f

⋆

i
=

f ⋆
i

| f (0)
i
|
, i = 1, . . . , nc

Is M(d( j), d⋆) ≤ −β k αθ
( j)
(µ∗0, µ∗)

or k = K ?

Accept d⋆ as d( j+1)

k = k+ 1
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Then the j-th descent direction h( j) in Eq. (4.24) is computed by resolving the normal-

ized QP subproblem. This problem reads as in Eq. (4.25) except that the cost and constraint
functions values as well as their gradients in Eq. (4.26) are replaced with their normalized
counterparts. In the present implementation, the QP subproblem is solved by means of the
quadprog function available in Matlab’s Optimization toolbox. It also proceeds iteratively
from a starting vector (µ0, µT)T which is presently initialized at random in the admissible
space defined in Eq. (4.25).

The second step of the j-th iteration consists in finding the power of β that will deter-
mine the j-th step size s( j). The power is initialized at k = 0 and a first point is proposed
by means of the improvement rule in Eq. (4.23). Note that a slight variant of this im-
provement rule is proposed in Algorithm 4.1 in order to account for the different orders
of magnitude of each design variable in d. This normalization greatly improves the ver-
satility of the algorithm in terms of convergence rates. The merit function in Eq. (4.28)
also makes use of normalized values for the cost and constraint functions. Polak (1997)
ensures that there exists a k ∈ N such that the merit function ends up being satisfied. In
practice though, the approximate line-search is aborted after K increments (say K = 10 so
that s( j) ≤ βK = 6× 10−3 in the present implementation).

The algorithm then repeats the steps detailed in the previous paragraphs until it con-
verges. Convergence is detected by means of the usual criteria, namely:

(i) if the latest improvement brought to the objective function is insignificant with respect
to the starting value: �����

c
�

d( j)
�
− c
�

d( j+1)
�

c
�

d(0)
�

�����≤ ǫc, (4.30)

where ǫc controls the quality of the optimal solution;

(ii) and if all the feasibility constraints are fulfilled:

fi(d
( j+1))≤ 0, i = 1, . . . , nc. (4.31)

4.2.4 Illustration

The Polak-He algorithm is applied to a (deterministic) inequality constrained optimization
problem inspired from the article by Lee and Jung (2008, Example 1). The problem consists
in finding the optimal design d∗ defined as follows:

d∗ = argmin
d∈D

c(d) :
�

f1(d)≤ 0
f2(d)≤ 0

, (4.32)

where:

D is the admissible domain that is set here equal to:

D = [0; 3.7]× [0; 4] ; (4.33)
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c is the objective function defined as:

c(d) = (d1− 3.7)2+ (d2− 4)2; (4.34)

f are the constraint functions defined as:

f1(d) = d1 sin(4 d1) + 1.1 d2 sin(2 d2), (4.35)

f2(d) = 3− d1− d2. (4.36)
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Figure 4.3: Convergence of the Polak-He algorithm for the two-dimensional constrained optimiza-
tion problem defined in Eq. (4.32).

This problem is illustrated in Figure 4.3. The contours of the objective function are
represented in gray. It is easy to show that the quadratic objective function is minimum for
d1 = 3.7 and d2 = 4 (i.e. in the upper right corner of Figure 4.3). However, this optimal
solution is not admissible with respect to the first constraint f1 (in red) as illustrated in
Figure 4.3. The optimization problem involves 6 constraints: the two constraints explicitly
formulated in Eqs (4.35) and (4.36) and the 4 constraints used for limiting the search to the
rectangular domain D. The initial design is set equal to d(0) = (1, 2.5)T and the algorithm
converges at d∗ = (3.01, 3.35)T for εc = 10−4 after 14 iterations. The latter point is clearly
the best trade-off between the minimization of the objective function and the fulfillment
of the constraints. It should also be noticed that the first constraint is activated at the
optimum so that this optimal solution is rather sensitive to the possible uncertainty in d or
in the constraint f1(d) as it lies on the boundary of the admissible space.

In addition, it can be checked that d∗ satisfies the KKT first-order necessary optimality
conditions. Since f1 is the only constraint activated at the optimum, the first KKT multi-
plier λ1 is the only nonzero multiplier. Hence, ∇c(d∗) and ∇f1(d

∗) should satisfy the first
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condition of Theorem 4.2.1 which reduces here to:

∇c(d∗) +λ1∇f1(d
∗) = 0. (4.37)

The latter relation is almost checked for λ1 ≈ 0.15. The two gradients are indeed not
fully collinear due to the numerical resolution of the problem. The second condition of
Theorem 4.2.1 is also verified because f1(d

∗) ≈ 0 (again the approximation is due to the
numerical resolution of the problem).

4.2.5 Conclusion

This section has reviewed the basic principles underlying the resolution of nonlinear in-
equality constrained optimization problem. Thanks to its min-max-based formulation, the
Polak-He algorithm is able to deal with heavily constrained optimization problems such as
the RBDO problem of interest in this chapter. Nonetheless, the use of such an algorithm
requires the knowledge of the gradients of the objective and constraint functions, including
that of the probabilistic constraint. This remark naturally motivates the next section.

4.3 Reliability sensitivity analysis

Sensitivity of the failure probability p f to the parameters in the joint probability density

function (PDF) fX is of major importance in reliability-based engineering as it gives crucial
information on the decisions to be made. In essence, it answers the fundamental question
that follows a reliability analysis:

“How should I change the design variables in the probabilistic model in order to achieve a

chosen reliability level?”.

In addition, it is a key ingredient for the implementation of a gradient-based optimization
algorithm (such as Algorithm 4.1) for the resolution of the RBDO problem formulated in
Eq. (4.1).

4.3.1 Problem statement

4.3.1.1 Definition

First, recall from Chapter 3 that the failure probability p f is defined as follows:

p f (d) =

∫

X

✶F(x ) fX(x , d)dx ≡ E
�
✶F(X)

�
. (4.38)

where ✶F is the failure indicator function indicating whether a realization x lies in the
failure domain F or not, and fX is the joint PDF of X parametrized by d. According to this
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setup, the gradient of the failure probability p f with respect to the vector of parameters d

in the probability density function fX is defined as follows:

∇p f (d) =

�
∂ p f

∂ dk

, k = 1, . . . , nd

�T

, (4.39)

where the partial derivative with respect to the k-th design variable reads:

∂ p f (d)

∂ dk

= lim
ǫ→0
ǫ>0

p f (d + ǫ ek)− p f (d)

ǫ
. (4.40)

where ek is the k-th canonical basis vector of Rnd that has all its components equal to zero
except the k-th one which is equal to one.

4.3.1.2 Common random numbers

The computational procedure that consists in a direct use of Eq. (4.40) for a sufficiently
small ǫ is known as the finite forward differences technique and its use is widespread in
numerical optimization. In the present uncertain context though, this technique has two
fundamental drawbacks. First, it can be seen that it requires nd+1 estimations of the failure
probability for a vector d of size nd . Second, if each term in the numerator of the partial
derivative in Eq. (4.39) is estimated by means of Monte Carlo sampling then its variance of
estimation is proportional to:

Var
�
bp f N2
(d + ǫ ek)− bp f N1

(d)
�
= Var

�
bp f N2
(d + ǫ ek)

�
+ Var

�
bp f N1
(d)
�

− 2 Cov
�
bp f N2
(d + ǫ ek), bp f N1

(d)
�

,
(4.41)

where bp f N1
(resp. bp f N2

) denotes an unbiased Monte Carlo estimator computed from an
N1-sampleX [1] (resp. N2-sampleX [2]) of independent copies of the random vector X . The
variances of estimation simply sum each others in the most basic case where the two terms
are estimated independently.

Hence for the sake of variance reduction, Royset and Polak (2004a,b) and Taflanidis
(2007), amongst others, propose to use common random numbers (CRN). This procedure
essentially consists in using the same seed for generating both samples X [1] and X [2].
Indeed, CRN introduces dependence in the estimation of the two probabilities (provided ǫ
is small) so that the third covariance term in Eq. (4.41) reduces the variance of estimation of
the quantity of interest. However, since CRN is still computationally demanding (it requires
nd + 1 reliability analyses for a single evaluation of the gradient ∇p f ) and since it is not
applicable to more advanced Monte Carlo sampling techniques such as subset sampling, it
was not further considered in this thesis.

4.3.1.3 Other approaches

Reliability sensitivity analysis has been extensively used in the specific context of first- and
second-order reliability methods. For instance, Bjerager and Krenk (1989) computed the
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gradient of the Hasofer-Lind reliability index βHL (see also Ditlevsen and Madsen, 1996,
Chapter 8) which in turns gives the gradient of the first-order approximation of the failure
probability. However, the approach is limited to structural reliability problems for which
the assumption that the MPFP is unique holds.

More recently, Garnier et al. (2009) provided asymptotic formulæ for the estimation of
the first- and second-order derivatives of a probability estimated by means of Monte Carlo
sampling or quadrature. However, their investigations are limited to the multivariate Gaus-
sian distribution under the assumption of small variance. The sensitivities are then applied
to chance-constrained optimization which is another name for the problem formulated in
Eq. (4.1).

4.3.2 The score function approach

The approach that is used in this thesis was originally proposed by Rubinstein (1976). It
was later named the score function (SF) approach in Rubinstein (1986) (see also Rubinstein
and Kroese, 2008, Chapter 7) and recently brought to the structural reliability community
by Wu (1994).

First, the partial derivative of the failure probability in Eq. (4.38) with respect to the
k-th design variable reads:

∂ p f (d)

∂ dk

=
∂

∂ dk

∫

X

✶F(x ) fX(x , d)dx . (4.42)

Assuming that (i) the joint PDF fX is continuously differentiable with respect to dk and that
(ii) the integration range X does not depend on dk, the partial derivative of the failure
probability recasts as follows:

∂ p f (d)

∂ dk

=

∫

X

✶F(x )
∂ fX(x , d)

∂ dk

dx . (4.43)

!Note that the latter equation does not hold for the uniform distribution as the bounds of

its integration range depends on its statistical moments (Lee et al., 2011a,b). This remark

unfortunately holds for most truncated distributions.

Then, in order to compute this integral as an expectation with respect to the same prob-
ability measure as the one used for estimating the failure probability itself, it is genuinely
proposed to use an importance sampling trick (see Section 3.3.3 of Chapter 3). It proceeds
as follows:

∂ p f (d)

∂ dk

=

∫

X

✶F(x )
∂ fX(x , d)/∂ dk

fX(x , d)
fX(x , d)dx

=

∫

X

✶F(x )
∂ log fX(x , d)

∂ dk

fX(x , d)dx

= E
�
✶F(X)κk(X , d)

�
, (4.44)
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where the so-called score function:

κk(X , d) =
∂ log fX(x , d)

∂ dk

(4.45)

has been introduced.

Thus, given a sample X = {X (i), i = 1, . . . , N} of N independent copies of the random
vector X , the following estimator:

Û∂ p f (d)

∂ dk MCS

=
1

N

N∑
i=1

✶F

�
X (i)
�
κk

�
X (i), d

�
(4.46)

is unbiased and asymptotically convergent according to the central limit theorem. In ad-
dition to these first convenient properties, it can also be seen that the estimation of the
failure probability and that of its gradient can be done with the same N -sample. Hence, re-
liability sensitivity analysis through the score function approach is a simple post-processing

of a Monte-Carlo-sampling-based reliability analysis. It does not require any additional
simulation of the indicator function ✶F.

It should also be noticed that the approach extends to both higher order derivatives,
provided the joint PDF is sufficiently differentiable (Rubinstein and Kroese, 2008; Millwa-
ter, 2009), and statistical moments of any order and of any variable (i.e. not only indicator
functions).

4.3.3 Estimation using subset sampling

Another interesting feature of this importance sampling trick is that it applies to other esti-
mation techniques such as subset sampling. The following presentation closely follows the
one given in the article by Song et al. (2009).

First, recall from Section 3.3.5 of Chapter 3 that provided a strictly decreasing sequence
of positive reals q1 > . . .> qs = 0, the splitted form of the failure probability is as follows:

p f (d) = p1(d)

s∏
i=2

pi|i−1(d), (4.47)

where the intermediate probabilities are:

p1(d) =

∫

X

✶F1
(x ) fX(x , d)dx , (4.48)

pi|i−1(d) =

∫

X

✶Fi
(x )h∗

i
(x , d)dx , i = 2, . . . , s. (4.49)

In the latter expression, it is also recalled that the i-th instrumental PDF reads:

h∗
i
(x , d) =

✶Fi−1
(x ) fX(x , d)

pi−1(d)
, (4.50)
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with its normalizing constant equal to:

pi−1(d) =

∫

X

✶Fi−1
(x ) fX(x , d)dx . (4.51)

Song et al. (2009) showed that the partial derivative of the failure probability in
Eq. (4.47) with respect to the k-th design variable reads:

∂ p f (d)

∂ dk

=
p f (d)

p1(d)

∂ p1(d)

∂ dk

+

s∑
i=2

p f (d)

pi|i−1(d)

∂ pi|i−1(d)

∂ dk

, (4.52)

where the partial derivatives of the intermediate probabilities are defined by recurrence:

∂ p1(d)

∂ dk

= E
�
✶F1
(X)κk(X , d)

�
, (4.53)

∂ pi|i−1(d)

∂ dk

= EX[i]

�
✶Fi
(X [i])

�
κk(X

[i], d)−
1

p1(d)

∂ p1(d)

∂ dk

−
i−1∑
j=2

1

p j| j−1(d)

∂ p j| j−1(d)

∂ dk

��
, i = 2, . . . , s, (4.54)

where κk denotes the score function defined in Eq. (4.45) and X [i] is the random vector
that is distributed according to the i-th suboptimal instrumental PDF h∗

i
.

Proof 4.3.1. The proof proceeds in three steps:

(i) The expression in Eq. (4.52) can easily be derived from Eq. (4.47) as the derivative of a product

of s terms.

(ii) The expression for the partial derivative of the first probability p1 can easily be computed as in

Eq. (4.44).

(iii) The computation of the partial derivatives of the other s− 1 intermediate probabilities is some-

what more involved and is as follows. Let us substitute the i-th instrumental PDF h∗i for its

expression in Eq. (4.49):

pi|i−1(d) =

∫

X

✶Fi
(x )

✶Fi−1
(x ) fX (x , d)

pi−1(d)
dx . (4.55)

Assuming the two conditions formulated above Eq. (4.43) apply, the partial derivative of the

latter integral with respect to the k-th design variable rewrites as follows:

∂ pi|i−1(d)

∂ dk

=

∫

X

✶Fi
(x )

∂

∂ dk

�
✶Fi−1

(x ) fX (x , d)

pi−1(d)

�
dx

=

∫

X

✶Fi
(x )✶Fi−1

(x )



∂ fX (x ,d)
∂ dk

pi−1− fX (x , d)
∂ pi−1(d)

∂ dk

pi−1(d)
2


 dx . (4.56)
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Using the same importance sampling trick as in Eq. (4.44), it comes that:

∂ pi|i−1(d)

∂ dk

=

∫

X

✶Fi
(x )✶Fi−1

(x )



∂ fX (x ,d)
∂ dk

pi−1− fX (x , d)
∂ pi−1(d)

∂ dk

pi−1(d)
2


 h∗i (x , d)

h∗
i
(x , d)

dx . (4.57)

This expression can be further elaborated by substituting again the i-th instrumental PDF h∗i for

its expression in the denominator on the right:

∂ pi|i−1(d)

∂ dk

=

∫

X

✶Fi
(x )

✶Fi−1
(x ) pi−1(d)

✶Fi−1
(x ) fX (x , d)



∂ fX (x ,d)
∂ dk

pi−1− fX (x , d)
∂ pi−1(d)

∂ dk

pi−1(d)
2


 h∗i (x , d)dx

=

∫

X

✶Fi
(x )

1

fX (x , d)



∂ fX (x ,d)
∂ dk

pi−1− fX (x , d)
∂ pi−1(d)

∂ dk

pi−1(d)


 h∗i (x , d)dx

=

∫

X

✶Fi
(x )

�
κk(x , d)−

1

pi−1(d)

∂ pi−1(d)

∂ dk

�
h∗i (x , d)dx , (4.58)

where κk(x , d) is the score function defined in Eq. (4.45). Since the normalizing constant of the

i-th instrumental PDF is equal to:

pi−1(d) = p1(d)

i−1∏
j=2

p j| j−1(d), (4.59)

its partial derivative with respect to the k-th design variable comes again as the derivative of a

product of i terms and it reads as follows:

∂ pi−1(d)

∂ dk

=
pi−1(d)

p1(d)

∂ p1(d)

∂ dk

+

i−1∑
j=2

pi−1(d)

p j| j−1(d)

∂ p j| j−1(d)

∂ dk

. (4.60)

Hence, the partial derivative of the i-th intermediate probability with respect to the k-th design

variable finally recasts as the following expectation:

∂ pi|i−1(d)

∂ dk

= EX[i]

�
✶Fi
(X [i])

�
κk(X

[i], d)−
1

p1(d)

∂ p1(d)

∂ dk

−
i−1∑
j=2

1

p j| j−1(d)

∂ p j| j−1(d)

∂ dk

�� (4.61)

with respect to X [i] distributed according to the i-th suboptimal instrumental PDF h∗i .

Hence, the gradient of the failure probability can be estimated along with the failure
probability itself in a subset sampling scheme using the same intermediate samples as the
ones used to compute bp1 and {bpi|i−1, i = 2, . . . , s}.

4.3.4 Estimation using meta-model-based importance sampling

The score function approach can also be applied to the original meta-model-based impor-
tance sampling estimator proposed in Section 3.5 of Chapter 3.
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First, recall that the failure probability was recast as the product of two terms:

p f (d) = αcorr(d) p f ǫ(d), (4.62)

where the correction factor (resp. the augmented failure probability) reads:

αcorr(d) =

∫

X

✶F(x )

π(x )
bh∗(x , d)dx , (4.63)

p f ǫ(d) =

∫

X

π(x ) fX(x , d)dx . (4.64)

In these expressions, π denotes the probabilistic classification function that does not depend
on d and bh∗ denotes the proposed meta-model-based instrumental PDF which reads:

bh∗(x , d) =
π(x ) fX(x , d)

p f ǫ(d)
. (4.65)

Then, the partial derivative of the failure probability in Eq. (4.62) with respect to the
k-th design variable can easily be derived as that of a product of two terms:

∂ p f (d)

∂ dk

=
∂ αcorr(d)

∂ dk

p f ǫ(d) +αcorr(d)
∂ p f ǫ(d)

∂ dk

, (4.66)

where the partial derivative of the augmented failure probability (resp. that of the correc-
tion factor) reads as follows:

∂ p f ǫ(d)

∂ dk

= E
�
π(X)κk(X , d)

�
, (4.67)

∂ αcorr(d)

∂ dk

= EZ

�
✶F(Z)

π(Z)

�
κk(Z, d)−

1

p f ǫ(d)

∂ p f ǫ(d)

∂ dk

��
, (4.68)

where κk denotes the score function defined in Eq. (4.45) and Z is the random vector that
is distributed according to bh∗.
Proof 4.3.2. The proof for the expression of the partial derivative in Eq. (4.66) closely resembles

Proof 4.3.1 for subset sampling except that it reduces here to the differentiation of a product of two

terms only.

Again, the gradient of the failure probability can be estimated along with the failure
probability itself in a meta-model-based importance sampling scheme using the same sam-
ples as the ones used to compute bαcorr and bp f ǫ.

4.3.5 Evaluation of the score function

The analytical computation of the score function in Eq. (4.45) is available for most paramet-
ric univariate distributions as well as in the multivariate case provided the joint distribution
is defined using the copula formalism as introduced in Section 3.2 of Chapter 3.
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Indeed, recall that if the probabilistic model X is specified in terms of parametric
marginal PDFs { fX i

, i = 1, . . . , n} and a copula density function c, then according to Theo-
rem 3.2.1 of Chapter 3, its joint PDF reads as follows:

fX

�
x1, . . . , xn; d

�
= c
�

FX1
(x1, d), . . . , FXn

(xn, d)
� n∏

i=1

fX i
(x i, d). (4.69)

Note that in the latter equation, it was assumed that the vector of design variables is ex-
clusively involved in the marginal distributions and not in the copula c. Indeed, in this
manuscript as well as in most applications of these sensitivities to reliability-based de-
sign optimization, the design variables d are means of the marginal distributions (see e.g.

Dubourg et al., 2011d; Lee et al., 2011a,b).

Assuming that the k-th design variable in vector d is involved in the k-th marginal
distribution only, the k-th score function reads:

κk (x , d) =
∂ log fX(x , d)

∂ dk

=
∂ log c

�
FX1
(x1, d), . . . , FXk

(xk, d), . . . , FXn
(xn, d)

�

∂ dk

+
∂ log fXk

(xk, d)

∂ dk

=
∂ log c(u1, . . . , uk, . . . , un)

∂ uk

∂ FXk
(xk, d)

∂ dk

+
∂ log fXk

(xk, d)

∂ dk

. (4.70)

Further analytical developments obviously depend on the copula and the marginal distri-
butions.

Lee et al. (2011a,b) provides the expression for the log-derivatives of most parametric
copulas in two dimensions. In this thesis, only the normal copula has been considered. The
partial derivative of the logarithm of the normal copula with respect to the k-th uniform
margin easily comes from Eq. (3.13), and it reads as follows:

∂ log cΦ(u1, . . . , uk, . . . , un; R0)

∂ uk

= −dz(u)T
�

R−1
0 − I

�
z(u), (4.71)

where z(u) = (Φ−1(ui), i = 1, . . . , n)T, dz(u) has its n components equal to zero except
the k-th one equal to 1/ϕ(Φ−1(uk)), and R0 is the positive definite matrix of parameters.

Note that if the probabilistic model assumes independence of the marginal distributions
(or equivalently if R0 = I in the previous equation), then it easily comes that the score
function reduces to that of the k-th marginal distribution:

κk (x , d) =
∂ log fXk

(xk, d)

∂ dk

. (4.72)

The expressions for the PDFs and the CDFs of the normal, lognormal, and Gumbel dis-
tributions that are used in this thesis are given in Table 4.1. Table 4.2 gives the expressions
for the partial derivative of their CDFs with respect to their mean µ, and the corresponding
marginal score functions.
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Distribution Parameters PDF fX (x , µ) CDF FX (x , µ)

Normal µ, σ
1

σ
ϕ

�
x −µ
σ

�
Φ

�
x −µ
σ

�

ζ =

s
log

�
1+

σ2

µ2

�

Lognormal

λ = logµ−
1

2
ζ2

1

ζ
ϕ

�
log x −λ

ζ

�
Φ

�
log x −λ

ζ

�

α=
π

σ
p

6Gumbel

β = µ−
γσ
p

6

π

α e−α (x−β)−e−α (x−β) e−e−α (x−β)

Table 4.1: Probability density functions (PDF) and cumulative distribution functions (CDF) for the
normal, lognormal and Gumbel distributions. γ≈ 0.577 is the Euler constant.

4.3.6 Conclusion

Thanks to the score function approach, the gradient of the failure probability with respect
to the parameters in the PDF of the input random variables is now available. It is worth
retaining that this approach is applicable to a wide range of sampling-based estimation
techniques and that it consists in a simple post-processing of a reliability analysis. Lastly,
this section completes the required technical details for implementing a double-loop RBDO
algorithm where the optimization problem is solved by means of the Polak-He algorithm
based on accurate sampling-based reliability and reliability sensitivity analyses.

4.4 Metamodel-based RBDO

In order to reduce the computational cost induced by the use of a double-loop approach for
the resolution of the RBDO problem in Eq. (4.1), it is proposed to use the Gaussian process
meta-modelling technique (see Chapter 1). More specifically, it is proposed to substitute
a Kriging surrogate {bYl , l = 1, . . . , np} for each performance function {gl , l = 1, . . . , np}.
The work introduced in this section has been published in Dubourg et al. (2011d) based on
similar ideas developped in Dubourg et al. (2010a,b).
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CDF derivatives Score functions
Distribution Parameters derivatives

∂ FX (x , µ)

∂ µ

∂ log fX (x , µ)

∂ µ

Normal
∂ µ

∂ µ
= 1,

∂ σ

∂ µ
= 0 −

1

σ
ϕ

�
x −µ
σ

�
x −µ
σ2

∂ ζ

∂ µ
=

−σ2

ζµ (µ2+σ2)Lognormal
∂ λ

∂ µ
=

µ2+ 2σ2

µ
�
µ2+σ2

�
−

1

ζ

�
∂ λ

∂ µ
+

log x −λ
ζ

∂ ζ

∂ µ

�
ϕ

�
log x −λ

ζ

�
−

1

ζ

∂ ζ

∂ µ
+

log x −λ
ζ2

�
∂ λ

∂ µ
+

log x −λ
ζ

∂ ζ

∂ µ

�

∂ α

∂ µ
= 0

Gumbel
∂ β

∂ µ
= 1

−α e−α (x−β)−e−α (x−β) α2
�

1− e−α (x−β)
�

e−α (x−β)−e−α (x−β)

Table 4.2: Partial derivative of the CDFs with respect to their mean µ and corresponding score functions for the normal, lognormal and Gumbel
distributions.
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4.4.1 The augmented reliability space

In this section, we describe the space where the Kriging surrogates are built and refined.
Indeed, observing that building the Kriging surrogates from scratch for each nested reliabil-
ity analysis (e.g. in the standard space) would be particularly inefficient, it is proposed to
build and refine one unique global Kriging surrogate for all the nested reliability analyses
(and for each performance function {gl , l = 1, . . . , np}).

4.4.1.1 Definition

Such a global approach can be achieved by working in a so-called augmented reliability

space. This term has been used in different meaning in the literature. Thus a clarification is
required.

Kharmanda et al. (2002) defined the augmented reliability space as the tensor product
between the space of the standardized normal random variables and the design space U×D.
However, the dimension of this space (n + nd) is needlessly increased by the number of
design variables nd . It is also argued here that using this space may cause some loss of
information since the performance functions are not in bijection with that augmented space.
Indeed, a point x ∈ X can usually be described by an infinity of couples (u, d) ∈ U×D.

In contrast, in the work by Taflanidis (2007); Taflanidis and Beck (2008, 2009a,b) and
in the present approach, the dimension of the augmented reliability space is kept equal to
n by considering that the design vector d simply augments the uncertainty in the random
vector X . Indeed, the augmented random vector V = X (D) has a PDF h which accounts
for both an instrumental uncertainty in the design choices D and the aleatory uncertainty in
the random vector X . Under such considerations, the augmented PDF h reads as follows:

h(x ) =

∫

D

fX (x |d ) π (d) dd, (4.73)

where fX is the PDF of X given the parameters d and π is a pseudo PDF for D which is
naturally assumed uniform over the design space D. An illustration of the definition of this
augmented PDF is provided in Figure 4.4 for the case of a normal distribution with mean
value uniformly distributed over D. The augmented reliability space is spanned by the axis
V on the left in this simple case.

4.4.1.2 Confidence region

The DOEs from which the Kriging surrogates are built and refined should uniformly cover
a sufficiently large confidence region of the augmented PDF h in order to make the sur-
rogate limit-state surfaces accurate wherever they can potentially be evaluated along the
optimization process. More precisely, the surrogates should be accurate for extreme design
choices d (i.e. located onto the boundaries of the design space D) and extreme values of
the random vector X (to be able to compute reliability indices as large as e.g. β0 = 8).
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Real uncertainty

Augmented uncertainty Design range
Confidence interval

Figure 4.4: The augmented probability density function of a Gaussian random variate with uniform
mean.

Such a confidence region is essentially the multivariate extension of the univariate concept
of confidence interval. More specifically, a confidence region X f0

for a probability density f

is delimited by a chosen contour f0 and it is defined as the following slice:

X f0
=
�
x ∈ X : f (x )> f0

	
. (4.74)

However, under the previous general assumptions, it is hard to derive an analytical equation
for this confidence region so that it is proposed to use an approximation instead.

Before proceeding to the presentation of this approximate confidence region, we should
distinguish two types of random variables in the RBDO problem:

• the design random variables X d whose distributions are defined by the design variables
d;

• the basic random variables X p whose distributions are independent of the design vari-
ables.

Hence, the original complete random vector is X = (X d , X p) and the corresponding aug-
mented vector is V = (Vd , V p). Despite the potential dependence between these two com-
ponents (as dictated by the copula), it is proposed to approximate the confidence region Vβ0

of the complete augmented vector V as a tensor product between the marginal confidence
regions Vβ0, d for Vd and Vβ0, p for V p.

Hyperrectangular approximate confidence region for the design random variables

The confidence region for the augmented design random variables Vd is approxi-
mated by an hyperrectangular region bVβ0, d . Such an hyperrectangular region is sim-
ply defined as the tensor product of the confidence intervals on the augmented margins
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{Vd i, i = 1, . . . , nd} bounded below by a collection of lower quantiles {q−
Vd i

, i = 1, . . . , nd}
and above by a collection of upper quantiles {q+

Vd i
, i = 1, . . . , nd}.

For each margin, the lower quantiles at probability level 1− Φ
�
β0

�
= Φ

�
−β0

�
(resp.

the upper quantiles at probability level Φ
�
+β0

�
) are solution of the following optimization

problems:

q−
Vd i
= min

d∈D
F−1

Xd i

�
Φ(−β0) |d

�
, i = 1, . . . , nd , (4.75)

q+
Vd i
= max

d∈D
F−1

Xd i

�
Φ(+β0) |d

�
, i = 1, . . . , nd , (4.76)

where {F−1
Xd i

, i = 1, . . . , nd} are the quantile functions of the margins in X d . If the domain D
is rectangular and if one is able to derive analytical expressions for these quantile functions
and their derivatives with respect to the parameters, then these optimization problems
might be solved analytically. However assuming a more general setup where the quantile
functions can only be evaluated numerically, these problems can be solved numerically by
means of a simple gradient-based algorithm. Finally, the sought hyperrectangle can be
easily defined as the following tensor product:

bVβ0, d =

nd∏
i=1

h
q−

Vd i
; q+

Vd i

i
. (4.77)

Example 4.4.1.

Consider a Gaussian random variable Xd ∼ N1(µ, σ2) whose mean is comprised in�
µ−; µ+

�
. In this simple case, the lower (resp. upper) quantile is given by:

q−
Vd
= µ−−σβ0, (4.78)

q+
Vd
= µ++σβ0. (4.79)

Actual confidence region for the basic random variables

The actual confidence region for the basic random variables is easier to derive thanks
to the isoprobabilistic transform T . Indeed, recall from Section 3.2.3 of Chapter 3 that
the isoprobabilistic transform T transforms the original random vector X p into a standard
Gaussian random vector U p with independent components. In this standard space, the
contours of the multivariate standard Gaussian PDF ϕnp

are spherical. Hence, in order to
define the confidence region of X p, it is proposed to first map the realizations x p to the
standard space u p and then check for the distance of this vector to the origin. As a result,
the sought confidence region for a given radius β0 reads as follows:

Vβ0, p =
¦

x p ∈ Xp :


T (x p)




2
≤ β0

©
. (4.80)

Such a confidence region is illustrated in Figure 4.5 for the basic example defined in Sec-
tion 3.2.4 of Chapter 3.



4.4. Metamodel-based RBDO 171

8 6 4 2 0 2 4 6 8
up 1

8

6

4

2

0

2

4

6

8

u
p
2 O

ϕ2(u)

B(0, β0 ) =
{
up ∈ np . ||up ||2 β0

}

(a) Confidence region in the standard space
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Figure 4.5: Confidence regions for the basic random vector defined in Section 3.2.4 of Chapter 3.
Panel (a) illustrates the confidence region in the standard space (an hypersphere of
radius β0 = 5) whereas Panel (b) illustrates the confidence region in the original space
spanned by X p. The latter is an image of the former through the inverse isoprobabilistic
transform T−1.
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4.4.1.3 Weighting density for the refinement criterion

At last, the proposed approximate confidence region for the augmented random vector V

reads as follows:
bVβ0
= bVβ0, d ×Vβ0, p. (4.81)

Consequently, in order to implement the sampling-based refinement strategy exposed in
Section 2.4 of Chapter 2, it is proposed to resort to the following indicator function:

✶bVβ0
(v) =

¨
1 if v ∈ bVβ0

0 otherwise
, (4.82)

as a weighting pseudo-density for bounding the sampling of the refinement criterion (e.g.

the margin probability function) to the region of interest.

4.4.2 Implementation

The proposed surrogate-based RBDO strategy is sketched in Algorithm 4.2. The algorithm
requires an initial design d(0), a rectangular admissible design space D and an accuracy
criterion ∆0 for the Kriging surrogates. The initial design d(0) is required by the Polak-He
optimization algorithm which proceeds iteratively by a sequence of improvements. The
rectangular admissible space is used in order to define the approximate confidence region
where the Kriging surrogates are built and refined. The accuracy criterion is required by the
refinement procedure in order to decide whether a Kriging surrogate is accurate enough for
reliability analysis or not.

The preliminary step of this algorithm consists in finding the bounded approximate
confidence region bVβ0

and the associated indicator function in Eq. (4.82). Provided this
region is determined, the algorithm then iterates on j.

First, an initial Kriging surrogate {bYl , l = 1, . . . , np} is built for each performance func-
tion {gl , l = 1, . . . , np} using a space-filling DOE in bVβ0

. This initial DOE contains K0 points
(say 50 ≤ K0 ≤ 100 depending on the dimension of the space bVβ0

). If the l-th Kriging
surrogate already exists (from a preliminary analysis or if j > 0) then it is refined by means
of the sampling-based refinement strategy introduced in Section 2.4 of Chapter 2. More
specifically, Algorithm 2.3 is tuned as follows:

• the refinement criterion C is the margin probability function;

• the weighting density function w is set here to the approximate confidence region
indicator function in Eq. (4.82);

• the number of points K added at each refinement iteration is set equal to the number
of available CPUs to evaluate the l-th performance function {gl , l = 1, . . . , np}.
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Algorithm 4.2 Proposed surrogate-based RBDO strategy

d(0) Initial design
D Rectangular domain
∆0 Accuracy criterion for the

Kriging surrogates

j = 0

Find the approximate confidence
region bVβ0

in Eq. (4.81)
(Use one iteration of Algorithm 2.3)

l = 1

Fit/Refine the Kriging surrogate bYl for
the l-th performance function gl in bVβ0

(Use one iteration of Algorithm 2.3)

Estimate the two pseudo-confidence bounds
on the failure probability bp+1

f (1−α) and bp−1
f (1−α)

at the current design d( j)

(Use the restarted subset sampling technique

presented in Section 3.4.2.2 of Chapter 3)

Is log10

 bp+1
f (1−α)

bp−1
f (1−α)

!
≤∆0?

Is l = np? l = l + 1

Improve the current design
by means of Algorithm 4.1
d( j+1) = Polak-He

�
d( j)
�

(Perform reliability and reliability sensitivity analyses

using subset sampling on the Kriging surrogates)

Estimate the two pseudo-confidence bounds
on the failure probability bp+1

f (1−α) and bp−1
f (1−α)

at the improved design d( j+1)

(Use the restarted subset sampling technique

presented in Section 3.4.2.2 of Chapter 3)

Is log10

 bp+1
f (1−α)

bp−1
f (1−α)

!
≤∆0?

and optim. converged?

j = j + 1 Done!

yes

yes

no

no

no yes
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The two extreme approximate failure probabilities p+1
f (1−α) and p−1

f (1−α) are computed
at each refinement iteration. These two approximate probabilities are estimated on the
upper (resp. lower) bound of the 95% confidence interval on the surrogate limit-state
surfaces. The reader is referred back to Section 3.4.2.2 of Chapter 3 for the definition
of these probabilities and for the presentation of the restarted subset sampling technique
which is used here to estimate them. Based on these two estimates, the corresponding
convergence metric is computed and the adaptive refinement is stopped if:

log10

 bp+1
f (1−α)

bp−1
f (1−α)

!
≤∆0. (4.83)

Once all the Kriging surrogates are fitted with a sufficient level of accuracy for the
current design d( j), the algorithm resorts to one iteration of the Polak-He optimization al-
gorithm (see Algorithm 4.1) in order to improve the current design. The required reliability
and reliability sensitivity analyses are performed onto the surrogates using the subset sam-
pling technique exposed in Section 3.3.5 of Chapter 3. Reliability sensitivity analysis resorts
to the score function approach as previously detailed in Section 4.3.

The accuracy of the Kriging surrogates is estimated at the new design in order to check if
the new design can be accepted. If the required accuracy is reached and if the optimization
has converged (see Section 4.2 for the convergence criteria), then the algorithm returns the
sought optimal design d∗ = d( j+1). Otherwise, the algorithm loops again starting with the
adaptive refinement of the Kriging surrogates.

4.4.3 Tricks of the trade for an efficient coupling

4.4.3.1 Nested reliability and reliability sensitivity analyses

During the optimization, the Polak-He algorithm may explore extremely safe regions of the
design space so that the failure probabilities may become too low to be accurately estimated
by subset sampling. Pointing out that most RBDO applications will target reliability indices
between 2 (i.e. p f ≈ 10−2) and 6 (i.e. p f ≈ 10−9), the accurate estimation of reliability
indices greater than 8 (i.e. p f ≈ 10−15) is utterly useless. On the other hand, it should
be remarked that the subset sampling technique provides a strictly decreasing sequence
of intermediate probability estimates that converges toward the actual failure probability.
In other words, this means that all the intermediate failure probabilities estimated during
the adaptive splitting is a consistent upper bound for the actual failure probability. Hence,
it is proposed to abort the adaptive splitting algorithm when the intermediate probability
estimate at some step becomes less than 10−15 (i.e. β > 8). If this lower bound is reached
when the Polak-He algorithm requires the gradient of the failure probability, then the latter
is replaced by that of the upper bound as well.
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4.4.3.2 Refining the accuracy criteria

For the sake of efficiency and accuracy, Algorithm 4.2 is run several times with decreasing
accuracy criteria for the Kriging surrogates. The algorithm is first used to perform a coarse
search with ∆0 = 1. Then, the algorithm is run again from the first coarse optimal design
but the accuracy criterion is divided by two in order to refine the former optimal design.
The initial design space D specified by the user is also reduced on purpose to make this
refinement more efficient (and the DOE is recycled). More specifically, the new design
space is re-centred onto the first coarse optimal design and its spread is divided by two
along each dimension of the design space. The new reduced design space is also required to
remain in the initial user-specified design space. This refinement procedure is repeated until
the optimal solution d∗ stabilizes between two successive runs of the algorithm. Practice
shows that the optimal solution is not much sensitive to the accuracy criterion so that the
algorithm is run two or three times only.

4.4.4 Illustration

The proposed surrogate-based RBDO strategy is applied to the introductory analytical ex-
ample in order to (i) validate its ability to converge to the reference analytical solution
provided in Section 4.1.2 and (ii) introduce the convergence diagnostics (plots) that are
extensively used in the other forthcoming examples.

4.4.4.1 Problem statement

Recall that the performance function involved in the probabilistic constraint is defined as
follows:

g (x ) =
π2 E b h3

12 L2 − Fser. (4.84)

where X = (E, b, h)T is modelled as a random vector. The corresponding probabilistic
model consists of the 3 independent random variables defined in Table 4.3. It is also re-
called that the service load Fser was determined so that the initial deterministic design
µ
(0)
b
= µ

(0)
h
= 200 mm satisfies the limit-state equation g(x ) = 0, namely:

Fser =
π2µE µ

(0)
b
µ
(0)3
h

12 L2 . (4.85)

The reliability-based design problem consists in finding the optimal mean values µb and
µh of the random width b and height h. The optimal design is the one that minimizes the
average cross-section area which is approximated as follows:

c(d) = µb µh. (4.86)

It should also satisfy the following deterministic constraint:

f (d) = µh−µb ≤ 0, (4.87)
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Variable Distribution Mean C.o.V.
E (MPa) Lognormal 10, 000 15%
b (mm) Lognormal µb 5%
h (mm) Lognormal µh 5%
L (mm) Deterministic 3, 000 –

Table 4.3: Probabilistic model for the Euler buckling of a straight column.

in order to ensure that the Euler formula is applicable, as well as the following probabilistic
constraint:

P [g (X)≤ 0]≤ Φ(−β0), (4.88)

where β0 = 3 is the minimum generalized reliability index (note that Φ(−3)≈ 10−3).

4.4.4.2 Stepwise run of the proposed algorithm

The proposed strategy is applied in order to solve the RBDO problem numerically. The
refinement procedure of the Kriging limit-state surface is initialized with an initial space-
filling DOE of K0 = 10 points and K = 10 points are sequentially added to the DOE if
it is not accurate enough for reliability estimation. The optimization is performed on the
location parameter of the lognormal distributions λb and λh, and the scale parameters ζ
are kept constant so that their initial coefficient of variation δ = 5% also remains constant
along the optimization (as for the analytical solution in Section 4.1.2).

The convergence of the algorithm is depicted in Figures 4.6 and 4.7 for two runs start-
ing from different initial designs. The first run is initiated with the optimal deterministic
design µb = µh = b∗ = h∗ = 200 mm whereas the second run is initiated with a slight
overdesign µb = 200 mm and µh = 300 mm. Convergence is achieved in both cases as all
the constraints (deterministic and probabilistic) are satisfied and both the cost and design
variables have reached a stable value. The algorithm converges to the exact solution com-
puted in Section 4.1.2 which is the squared section with width µ∗

b
≈ 231 mm. It can be

seen that the probabilistic constraint is activated at the optimal solution. This is generally
the case in the RBDO examples that are being dealt with in the literature and it justifies the
probabilistic reformulation of the underlying deterministic design rule.

Figures 4.6 and 4.7 features four diagnostic plots that are used throughout this
manuscript in order to assess convergence. The upper left panel illustrates the conver-
gence of the design variables. The lower left one illustrates that of the objective function.
The lower right panel depicts the convergence of the three generalized reliability indices:

β i
1−α = −Φ

−1
�

p i
f (1−α)

�
, i = −1, 0, +1, (4.89)

where the corresponding failure probabilities are estimated on the three approximate fail-
ure subsets {F i

1−α, i = −1, 0, +1} defined from the Kriging surrogates (see Section 3.4.2.2
of Chapter 3). The spread between the two extreme generalized reliability indices indicates
how accurate the reliability estimates are.
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Figure 4.6: Elastic buckling of a straight column. Convergence for run #1, starting from the optimal
deterministic design.
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Figure 4.7: Elastic buckling of a straight column. Convergence for run #2, starting from a conser-
vative design.
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The reduction of the latter spread should be opposed to the upper right panel which
illustrates the cumulative number of evaluations of the performance function that are used
in order to refine the Kriging surrogates. It can be seen that for both runs, the optimal
design is reached using only 20 evaluations of the performance function. Indeed, the DOE
used for building the Kriging predictor is enriched only once and it is then accurate enough
for all the remaining design configurations including the optimal design. In order to shed
some light on the computational gain brought by the proposed surrogate-based strategy,
the latter number of evaluations should be compared with that required by a nested RBDO
algorithm resorting to subset sampling on the original performance function. Such a brute-
force strategy indeed requires about 4× 106 evaluations of the performance function for
the same number of iterations of the optimizer and converges to the same optimal design.
This brute-force strategy will be used in the sequel in order to obtain a reference solution
when there does not exist any analytical reference.

4.5 Conclusion

This chapter has presented a surrogate-based approach to reliability-based design opti-
mization. State-of-the-art techniques for resolving this “chance-constrained” optimization
problem were first shortly reviewed as a motivation for the use of adaptive surrogate mod-
els in the usual nested formulation. A specific emphasis was put on the predominance of
most-probable-failure-point-based approaches in the literature and their associated dangers
when the MPFP uniqueness assumption does not hold. The reason for this predominance
is that sampling-based approaches are clearly not affordable when the performance models
are expensive to evaluate. Hence, the use of analytical surrogates appears unavoidable at
some point.

Rather than using a collection of linear approximations of the limit-state surfaces in the
standard spaces associated to each design (i.e. using nested FORM analyses), it is proposed
to use one unique global surrogate for each performance function on a sufficiently large
domain spanned by their input variables. Thanks to these global surrogates, the reliability
analysis is decoupled from the optimization loop and it thus enables a significant reduction
of the overall computational cost induced by the resolution of the RBDO problem.

However, the Kriging representation that is used to surrogate the performance functions
does not yield analytical estimates of the failure probability as FORM does. So, it is pro-
posed to resort to subset sampling in order to compute the failure probability and its partial
derivatives with respect to the design variables. The partial derivatives are computed by
means of the so-called score function approach. Thanks to this smart importance-sampling-
like technique, the partial derivatives of interest can be obtained with no additional calls to
the performance functions. Actually, their estimation resorts to the same sample than the
one used to estimate the failure probability itself. This approach extends to most sampling-
based reliability techniques such as subset sampling or meta-model-based importance sam-
pling.
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5.1 Meta-model-based importance sampling

5.1.1 Introduction

This section presents and comments a selected set of examples that have been investigated
in order to validate the meta-model-based importance sampling technique proposed in Sec-
tion 3.5 of Chapter 3. The purpose is to estimate the failure probability p f of a physical
system given its mathematical performance model g and a probabilistic model fX for its
random parameters X . It is recalled that the failure domain is canonically defined as:

F= {x ∈ X : g(x )≤ 0} , (5.1)

and that the corresponding failure probability reads as follows:

p f = P [X ∈ F] . (5.2)

The Kriging surrogates are initially built from an hypersphere-filling DOE of size K0

using the procedure detailed in Section 2.2.1.2 of Chapter 2. The radius of the hypersphere
is set equal to 8. They are then refined by means of the sampling-based refinement strategy
introduced in Section 2.4 of Chapter 2. K cluster centres are added per refinement iteration.
Both K0 and K are given in the sequel depending on the example. The Kriging surrogates are
always built using a constant regression model f = {1} and a squared exponential covariance

model (see Eq. (1.77) in Chapter 1).

5.1.2 A simple concave failure domain

This mathematical example was originally proposed in Rackwitz (2001). It is presently
used for illustrating that the proposed importance sampling estimator remains unbiased
and convergent when the dimension n of the input x gets large.

5.1.2.1 Problem definition

The problem involves n independent lognormal random variates with mean value µ = 1
and standard deviation σ = 0.2. The performance function reads as follows:

g(x ) =
�

n+ aσ
p

n
�
−

n∑
i=1

x i, (5.3)

where a is set equal to 3 for the present application. The dimension of the problem is
successively set equal to n = {2, 50, 100} in order to assess the influence of the dimension
on the proposed estimator. The problem is represented in Figure 5.1. It can be seen that
the limit-state surface features a single MPFP and a quite significant curvature that makes
the FORM approximation non-conservative (i.e. p f 1 < p f ). It should also be noticed that
this example was first built to show that even the second-order asymptotic approximations
(SORM) are mislead by the strong curvature (see Rackwitz, 2001, for the details).
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Figure 5.1: Rackwitz’ limit-state surface in the standard space (black solid line). The contours
represent the proposed instrumental PDF. It is optimal here for n = 2. Note that the
surrogate limit-state surface (dashed black line) is also relatively accurate.

5.1.2.2 Results

The results are given in Table 5.1. The first block provides the reference results obtained
by crude Monte Carlo sampling whereas the second block provides the results yielded by
the proposed importance sampling scheme. For both methods a 2% coefficient of variation
on the failure probability estimates is targeted. First, it can be observed that the proposed
estimator is in good agreement with the reference Monte Carlo estimates. The estimates of
both the augmented failure probability bp f ǫ and the correction factor bαcorr are also provided.
Note that the correction factor decreases with the dimension. In low dimension (n= 2) the
Kriging limit-state surface almost exactly fits its exact counterpart (see Figure 5.1) hence
bαcorr = 1 and bp f metaIS = bp f ǫ (no misclassification). In larger dimensions the surrogate loses
accuracy, and the correction factor becomes more influent.

The size of the DOE from which the Kriging predictor is built is given as the product be-
tween the number of refinement iterations and the number K of cluster centres added per it-
eration. K is chosen equal to the number of input random variables (K = n= {2, 50, 100})
so that the cost for the definition of the instrumental PDF is equivalent to the cost induced
by a gradient-based design point search algorithm (when the gradient is approximated us-
ing a finite forward differentiation technique). In all cases 6 iterations are required (see
Table 5.1). Note that the total number of calls to the real performance function g for the
proposed importance sampling scheme (m+ Ncorr) is much less than the number of calls
induced by Monte Carlo simulation (N) for the same targeted coefficient of variation.
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n 2 50 100
Crude Monte Carlo sampling (ref.)
bp f MC 4.78× 10−3 1.91× 10−3 1.73× 10−3

δMC ≤ 2% ≤ 2% ≤ 2%
N 522,000 1,100,000 1,450,000

Metamodel-based importance sampling
m 6× 2 6× 50 6× 100
bp f ǫ 4.85× 10−3 1.95× 10−3 1.83× 10−3

δǫ ≤ 1.41% ≤ 1.41% ≤ 1.41%
Ncorr 100 1,500 2,100
bαcorr 1.00 0.99 0.93
δcorr 0% ≤ 1.41% ≤ 1.41%

m+ Ncorr 112 1,800 2,700
bp f metaIS 4.85× 10−3 1.93× 10−3 1.70× 10−3

δmetaIS ≤ 1.41% ≤ 2% ≤ 2%

Table 5.1: Results for the reliability example from Rackwitz (2001).

5.1.3 A two-dimensional four-branch serial system

This mathematical example was originally proposed by Waarts (2000, AE12). It is used here
for demonstrating the ability of the proposed instrumental PDF to fit to multiple MPFPs. In
addition, thanks to the low computational complexity of the performance function, the
sampling-based reliability analyses are repeated 30 times on purpose to check the required
properties of the estimators, their unbiasedness and their respective variance of estimation.

5.1.3.1 Problem definition

The performance function consists in a set of 4 functions whose minimum defines the failure
domain F. It reads as follows:

g(x ) =min




3+ (x1− x2)
2/10− (x1+ x2)/

p
2

3+ (x1− x2)
2/10+ (x1+ x2)/

p
2

x1− x2+ 7/
p

2
x2− x1+ 7/

p
2


 , x ∈ X. (5.4)

The random vector X is composed with two independent standard normal random variates.
The problem is illustrated in Figure 5.2, where the failure domain corresponds to the outer
region of the star-shaped limit-state (shaded in red).
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Figure 5.2: Waarts’ limit-state surface in the standard space (black solid line). The contours repre-
sent the proposed instrumental PDF. It can be seen that despite the surrogate limit-state
surface (dashed black line) is not fully accurate, the corresponding instrumental PDF is
close to be optimal and covers the four MPFPs.

5.1.3.2 Results

The sampling-based adaptive refinement procedure is tuned as follows. The initial DOE fills
the hypersphere of radius β0 = 8 with K0 = 8 points and K = 4 points are added at each
refinement iteration. The procedure is stopped according to the leave-one-out estimate of
the correction factor as detailed in Section 3.5.4 of Chapter 3. The adaptive importance
sampling scheme targets a 5% coefficient of variation, and the sampling resorts to 100
Markov chains incremented in parallel.

For the sake of validation, the results yielded by the proposed approach are compared
with the ones obtained by means of crude Monte Carlo sampling and subset sampling.
Crude Monte Carlo sampling is ran by batches (of size 1, 000) until the coefficient of varia-
tion is less than 5%. Subset sampling uses 100, 000 Markov chain increments per step.

Monte Carlo Subset Sampling Meta-ISa

N 172,000 284,195 40 + 200
bp f 2.26× 10−3 2.28× 10−3 2.38× 10−3

C.o.V. <5% <3% <5%
Averaged bp f (×30) 2.24× 10−3 2.23× 10−3 2.25× 10−3

Empirical C.o.V. <5% <3% <5%
aN = m+ Ncorr.

Table 5.2: Results for the reliability example from Waarts (2000).
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The results are given in Table 5.2. The first block of rows gives the number of func-
tion evaluations, the value of the failure probability and that of the coefficient of variation
estimated by means of a single run of each sampling algorithm. The second block vali-
dates the respective estimators of the failure probability and of the variance of estimation
by empirically averaging the results over a set of 30 independent runs of each algorithm.
More specifically, the probability values (resp. that of their coefficients of variation) are the
means (resp. the coefficients of variation) of 30 independent failure probability estimates.
It can be seen that the empirical estimates are in reasonable agreement with the results
yielded by a single run.

To conclude, this example confirmed two aspects of the proposed strategy. First, it
demonstrates its ability to deal with multiple most probable failure points (note that there
are four of them here). Second, it empirically validates the properties of the associated esti-
mator enunciated in Section 3.5 of Chapter 3. It is unbiased and the formula for computing
its coefficient of variation is in agreement with the empirical estimator.

5.1.4 A two-degree-of-freedom damped oscillator

This structural reliability example was first proposed in the report by Der Kiureghian and
De Stefano (1990). It was then used for benchmark purposes in the recent article by
Bourinet et al. (2011). It is used here for demonstrating the robustness of the proposed
approach for estimating low failure probabilities and their gradients.

mp ms

kp

ζpζp

ks

ζsζs

S(t) xp xs

Figure 5.3: A two-d.o.f. damped oscillator under a white-noise base acceleration.

5.1.4.1 Problem definition

Let us consider the two-degree-of-freedom primary-secondary system sketched in Fig-
ure 5.3. This system is characterized by the masses mp and ms, spring stiffnesses kp and
ks, natural frequencies ωp = (kp/mp)

1/2 and ωs = (ks/ms)
1/2, and damping ratios ζp and

ζs, where the subscript p and s respectively refer to the primary and secondary oscilla-
tor. It has been shown by Igusa and Der Kiureghian (1985) that the mean-square relative
displacement of the secondary spring under a white noise base acceleration S is given by:

ES

�
x2

s

�
= π

S0

4ζsω
3
s

ζa ζs

ζp ζs (4ζ2
a
+ θ 2) + γζ2

a

(ζpω
3
p
+ ζsω

3
s
)ωp

4ζaω
4
a

, (5.5)
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where S0 is the intensity of the white noise, γ= ms/mp, ωa = (ωp+ωs)/2, ζa = (ζp+ζs)/2
and θ = (ωp −ωs)/ωa is the tuning parameter.

Let Fs denote the force capacity of the secondary spring. The reliability of the system
can be reduced to that of the secondary spring in the form of the following performance
function:

g(x ) = Fs − ks max
t∈[0; τ]

|xs(t)|, (5.6)

where τ denotes the duration of the excitation. Der Kiureghian and De Stefano (1990) then
remarked that the uncertainty in the peak response is usually small so that the maximum
can be replaced by its mean amplitude. Hence, the performance function recasts as follows:

g(x ) = Fs − p ks

q
ES

�
x2

s

�
, (5.7)

where p denotes the so-called peak factor set here equal to 3 as in the original report.

The probabilistic model for the random vector X is given in Table 5.3. All random vari-
ables are independent. The mean of the secondary spring force capacity µFs

is successively
set equal to 15, 21.5 and 27.5 in order to decrease the failure probability.

Variable Distribution Mean C.o.V.

mp Lognormal 1.5 10%
ms Lognormal 0.01 10%
kp Lognormal 1 20%
ks Lognormal 0.01 20%
ζp Lognormal 0.05 40%
ζs Lognormal 0.02 50%
FS Lognormal {15, 21.5, 27.5} 10%
S0 Lognormal 100 10%

Table 5.3: Probabilistic model for the two-d.o.f. damped oscillator from Der Kiureghian and De Ste-
fano (1990).

5.1.4.2 Results

The adaptive refinement of the Kriging surrogate is initialized with K0 = 32 points and
K = 16 new points are sequentially added until the leave-one-out estimate of the correc-
tion factor reaches a stable value between 0.1 and 10. The adaptive importance sampling
scheme uses 100 Markov chains incremented in parallel and a 5% coefficient of variation is
targeted.

Table 5.4 presents the results obtained on this example for the three values of µFs
. For

the sake of validation, the results yielded by the proposed meta-model-based importance
sampling technique are compared with those obtained by subset sampling (using a sample
size per step of 105) which is considered here as reference. The FORM results were obtained
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by Der Kiureghian and De Stefano (1990) and confirmed by Bourinet et al. (2011) using
the iHLRF algorithm (Zhang and Der Kiureghian, 1995) with a small and constant step
size of 0.025. It can be seen that the bias yielded by the FORM approximation is rather
significant.

The results yielded by the proposed strategy are finally compared to those obtained by
Bourinet et al.’s surrogate-based approach. To make it short here, this approach consists
in using a subset sampling scheme where each subset is (adaptively) approximated by
a support vector classifier in order to limit the total number of calls to the performance
function g. The reader is referred to the original article or the Ph. D. thesis by Deheeger
(2008) for more details. From the computational cost point of view, it can be seen that:

(i) the total number of calls to the original performance function for the proposed strat-
egy is comparable with that required by their substitution approach,

(ii) both approaches yield unbiased estimates of the quantity of interest.

µFs
values FORMa Subset Samplingb Meta-ISc SVM + Subseta

N 1,179 300,000 464 + 200 1,719
p f 2.19× 10−2 4.63× 10−3 4.80× 10−3 4.78× 10−315

C.o.V. – <3% <5% <4%
N 2,520 500,000 336 + 400 2,865
p f 3.50× 10−4 4.75× 10−5 4.46× 10−5 4.42× 10−521.5

C.o.V. – <4% <5% <7%
N 2,727 700,000 480 + 200 4,011
p f 3.91× 10−6 3.47× 10−7 3.76× 10−7 3.66× 10−727.5

C.o.V. – <5% <5% <10%
aAs computed by Bourinet et al. (2011).
bReference results.
cN = m+ Ncorr.

Table 5.4: Results for the two-d.o.f. damped oscillator from Der Kiureghian and De Stefano (1990).

The topology of the failure domain and the instrumental PDF for the case where µFs
=

27.5 are illustrated in Figures 5.4 and 5.5. The figures are composed with the 4 most
significant cuts centred at the MPFP in the standard space. It can be seen that the failure
region has the shape of a needle pointing towards the centre of the standard space. This
shape confirms that the SORM results provided in the article by Bourinet et al. (2011) are
reasonably accurate. As a final remark, it should be noticed that the proposed instrumental
PDF is close to be optimal so that it justifies the variance reduction yielded by the associated
importance sampling scheme. Actually for the three values of µFs

= {15, 21.5, 27.5}, the
correction factor estimates are respectively equal to bαcorr = {0.94, 0.92, 0.93}.



5.1. Meta-model-based importance sampling 187

8 6 4 2 0 2 4 6 8
u1

8

6

4

2

0

2

4

6

8
u
2

O
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Figure 5.4: Topology of the failure domain in the standard space using cuts centred at the MPFP
(green dot). The original (resp. surrogate) limit-state is represented as the black solid
(resp. dashed) line. The contours represent the proposed instrumental PDF which is
again close to be optimal.
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Figure 5.5: (continued from Figure 5.4) Topology of the failure domain in the standard space using
cuts centred at the MPFP (green dot). The original (resp. surrogate) limit-state is
represented as the black solid (resp. dashed) line. The contours represent the proposed
instrumental PDF which is again close to be optimal.



5.1. Meta-model-based importance sampling 189

mp ms kp ks ζp ζs Fs S0

25

20

15

10

5

0

5

10

p
f µ

µ p
f

Meta-IS

Subset sampling

FORM

(a) Mean force capacity: µFs
= 15

mp ms kp ks ζp ζs Fs S0

30

25

20

15

10

5

0

5

10

15

p
f µ

µ p
f

Meta-IS

Subset sampling

FORM

(b) Mean force capacity: µFs
= 21.5

mp ms kp ks ζp ζs Fs S0

30

25

20

15

10

5

0

5

10

15

p
f µ

µ p
f

Meta-IS

Subset sampling

FORM

(c) Mean force capacity: µFs
= 27.5

Figure 5.6: Elasticity of the failure probability with respect to the mean of each variable e =
∂ p f

∂ µ

µ

p f
.



190 Chapter 5. Academic validation examples

At last, Figure 5.6 illustrates the results of the reliability sensitivity analysis carried out
on this example for each value of µFs

. The bars represent the elasticities of the failure
probability with respect to the mean of each variable. Such “elasticities” are defined in the
book by Lemaire (2009) as the partial derivatives of the failure probability with respect to
the mean of each variable multiplied by the means and divided by the failure probability
estimate (of each reliablity method):

e =
∂ p f

∂ µ

µ

p f

. (5.8)

Thanks to the latter normalization, it clearly appears that the FORM approximations of the
gradient of the failure probability (see Bjerager and Krenk, 1989, for the expression) are
consistent with those obtained by the sampling-based approaches even if FORM is inaccu-
rate here. It should be noticed that failure is most sensitive to the mean force capacity of the
secondary spring µFs

. Hence, it justifies the decrease of the failure probability in Table 5.4
when µFs

augments. These latest results validate the score function approach for reliability
sensitivity analysis (see Section 4.3 of Chapter 4).

5.1.5 An 8-hole plate under tension

This structural reliability example was first proposed in the Ph. D. thesis of Deheeger
(2008). It was also used in Dubourg et al. (2011c) as an application example. It is a pre-
liminary step for studying the applicability of the proposed meta-model-based importance
sampling technique to structural reliability examples involving spatially varying material
properties.

5.1.5.1 Problem definition

Mechanical model

The structure under consideration is depicted in Figure 5.7(a). It is a rectangular plate
of size 200× 100 mm with 8 10-mm-diameter-holes. The left end of the plate is clamped
(horizontally and vertically) and a distributed line load with magnitude q = 100 MPa/mm
is applied onto its right end. Plain stress, linear elasticity and a nonzero Poisson’s ratio
ν = 0.3 are assumed. The probabilistic model for the spatially varying Young’s modulus E

is described in the sequel. The Von Mises equivalent stress field on the plate P is computed
with Code_Aster v101 for each realization of the Young’s modulus. The limit-state surface
is defined with respect to the following performance function:

g(x ) = σy −max
p∈P

�
σeq, Von Mises(p)

�
, (5.9)

where σy = 450 MPa is the yield strength of the plate’s constitutive material and p denotes
the position in the plate P.

1EDF finite element code, see http://www.codeaster.org.

http://www.codeaster.org
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Figure 5.7: A clamped 8-hole plate under tension assuming plain stress linear elasticity, a nonzero
Poisson’s ratio and a randomly and spatially varying Young’s modulus.

Probabilistic model

The Young’s modulus
�

E(p), p ∈P
	

is modelled by a lognormal random field whose
mean (resp. coefficient of variation) is set equal to µE = 200, 000 MPa (resp. δE = 25%).
The realizations of this random field are represented by a translated Karhunen-Loève ex-
pansion. More specifically, the representation resorts to the simulation of a Gaussian ran-
dom field

�
U(p), p ∈P

	
with zero mean and unit variance and the realizations of the

corresponding lognormal random field are obtained by means of the following so-called
translation (see Grigoriu, 1998):

E(p) = exp
�
λE + ζE U(p)

�
, p ∈P, (5.10)

where ζE and λE are the parameters of the lognormal distribution respectively defined as
follows:

ζE =

q
log
�

1+δ2
E

�
, (5.11)

λE = log(µE)−
1

2
ζ2

E
. (5.12)

The definition of the Gaussian random field is completed with that of its autocorrelation
function which reads as follows:

R(p, p ′) = exp





p − p ′



2

2

ℓ2


 ,

�
p, p ′

�
∈P×P, (5.13)
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where ℓ =
p

20 mm. The standard Gaussian random field is represented by means of its
truncated Karhunen-Loève expansion which reads as follows:

U(p) =

M∑
k=1

Ξk

p
λkϕk(p), p ∈P, (5.14)

where Ξ = (Ξk, k = 1, . . . , M) is a vector of independent standard normal random variates.
It is recalled that the M couples

��
λk, ϕk

�
, k = 1, . . . , M

	
are the elements of the spectral

decomposition of the correlation function corresponding to the greatest eigenvalues λk (see
Eq. (1.69) in Chapter 1). The latter spectral decomposition is performed here numerically
using the wavelet-Galerkin scheme proposed by Phoon et al. (2002). The expansion in
Eq. (5.14) involves here M = 20 terms.

A realization of the Young’s modulus random field described above is illustrated in Fig-
ure 5.7(b). The Von Mises equivalent stress field and the performance function g are then
computed for each realization of the random field

�
E(p), p ∈P

	
using Code_Aster on a

cluster of PCs with 56 cores in a distributed manner (i.e. one core per realization). The
realizations of the Young’s modulus random field are evaluated at the centroid of the ele-
ments (the red “+” in Figure 5.7(a)). Each Von Mises equivalent stress field is extrapolated
at the nodes of the finite element mesh illustrated in Figure 5.7(a) before its maximum
value is picked in order to compute the associated limit-state function value.

5.1.5.2 Results

The Kriging surrogates are built from an initial DOE of size K0 = 100 and sequentially
refined by adding K = 50 cluster centres at each iteration. The procedure is stopped here
when the DOE size reaches m= 1,000.

The results for this structural reliability example are given in Table 5.5. The meta-model-
based importance sampling failure probability estimate is confirmed by subset sampling at
a lesser computational expense though. The multiple FORM analysis resorted here to the
restarted iHLRF algorithm proposed by Der Kiureghian and Dakessian (1998), but it failed
here in finding all the MPFPs. As a result, the multi-FORM approximation is inaccurate.

Multi-FORM Subset Sampling Meta-ISa

N 1,168 25,000 1,000 + 250
bp f 6.50× 10−6 1.70× 10−5 1.41× 10−5

C.o.V. – <15% <10%
aN = m+ Ncorr.

Table 5.5: Results of the reliability analyses for the 8-hole plate under tension.

5.1.6 Conclusion

The collection of examples presented above demonstrates the applicability of meta-model-

based importance sampling to a wide variety of structural reliability examples featuring
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(i) a reasonably large number of random variates (up to 100), (ii) reasonably nonlinear
performance functions, (iii) low failure probabilities, and (iv) multiple design points.

The properties of the estimator were empirically validated. It is unbiased and the expres-
sion for its variance of estimation is confirmed empirically by simulation. Since it takes ad-
vantage of the information provided by the Kriging surrogate, it offers a significant variance
reduction that makes it competitive with respect to the other reliability methods (including
the surrogate-based approaches). However, it is worth remembering that the adaptive re-
finement step is of utmost importance for ensuring a high fidelity of the Kriging surrogate
with respect to the actual performance function. The finer the surrogate, the greater the

variance reduction.

Note that in the light of the previous selected set of examples (amongst others not
exposed here), the following rule of thumb can be proposed for tuning the number of
points added per refinement iteration:

K =min {2 n; 50} and K0 = 2 K . (5.15)

Eventually, the score function approach was successfully applied to the computation of
the gradient of the failure probability with respect to the means of the random variables in
the probabilistic model. In addition to the fact that it is computationally efficient (it does
not require any additional evaluation of the performance function) it was shown to yield
meaningful unbiased estimates of the sensitivities of interest.

5.2 Meta-model-based RBDO

5.2.1 Introduction

The purpose of this section is to validate the meta-model-based RBDO strategy exposed in
Section 4.4 of Chapter 4. All the problems that are being dealt with in the sequel consists
in finding the following probabilistically constrained optimizer:

d∗ = argmin
d∈D

c(d) :

¨
fi (d)≤ 0, i = 1, . . . , nc

P
�
gl (X (d))≤ 0

�
≤ p0

f l
, l = 1, . . . , np

, (5.16)

where d are mean values of some components of the random vector X .

For the sake of benchmarking, the results are compared with the ones obtained in the
original papers from which the examples are inspired. However, the reliability indices ob-
tained at the optimum that are provided in the original papers are systematically checked
using subset sampling. The validation of the proposed approach is performed with respect
to a so-called brute force technique that consists in nesting a subset sampling scheme (using
N = 104 samples per step) in the optimization loop without substituting the performance
functions. For obvious reasons, the latter validation can only be performed when the per-
formance functions are inexpensive to evaluate.
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The Kriging surrogates assume a constant regression model f = {1} and a squared ex-

ponential covariance model (see Eq. (1.77) in Chapter 1). The K0 points in the initial DOE
are obtained by means of the sampling-clustering approach so that they uniformly span the
approximated confidence region of the augmented reliability space. The sampling-based
adaptive refinement strategy is then applied using the margin probability criterion bounded
to the approximated confidence region as introduced in Section 4.4.1 of Chapter 4. Both
K0 and K are given in the sequel depending on the example. The surrogate-based reliabil-
ity analyses are performed by means of the restarted subset sampling algorithm in order to
compute the three probabilities {p i

f (1−α), i = −1, 0, +1} and the corresponding general-
ized reliability indices. This makes use of 105 Markov chain increments per subset step.

5.2.2 A highly nonlinear limit-state surface

This two-dimensional mathematical example was first proposed in the article by Lee and
Jung (2008). It is used here for illustration purposes and it can be reused for validating
implementations of the proposed strategy.

5.2.2.1 Problem definition

In essence this problem is the probabilistic counterpart of the deterministic design optimiza-
tion problem already exposed in Section 4.2 of Chapter 4. The two performance functions
read as follows:

g1(x ) = −x1 sin(4 x1)− 1.1 x2 sin(2 x2), (5.17)

g2(x ) = x1+ x2− 3, (5.18)

where x is the realization of the random vector X composed with two independent nor-
mal variables with the same standard deviation σ = 0.1. The optimization is performed
with respect to the mean of the latter random variables in order to minimize the following
quadratic objective function:

c(d) = (µ1− 3.7)2+ (µ2− 4)2. (5.19)

The search is restrained to the following hyperrectangular design space:

D = [0; 3.7]× [0; 4] . (5.20)

The optimum must satisfy the following two probabilistic constraints:

P
�
gl (X(d))≤ 0

�
≤ Φ(−β), l = 1, 2, (5.21)

where the generalized reliability index β is set here equal to 2 for both constraints.
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5.2.2.2 Results

All results are presented in Table 5.6. The first line gives the results obtained when the
problem is solved in a deterministic fashion. Note that the generalized reliability index of
the first active constraint is close to zero, meaning that the corresponding failure probability
is close to Φ(0) = 50%. The second constraint is far from being activated as illustrated in
Figure 5.8. The computation of the true reliability index β2 was actually aborted because it
is greater than 8 (p f 2 < Φ(−8)≈ 10−15).

Method µ1 µ2 Cost β1
a β2

a g1/g2-calls Opt. iter.

DDO 2.97 3.41 0.89 −0.10 > 8.00b 70/70 10
RBDO (βl ≥ 2, l = 1, 2)
Brute force 2.84 3.23 1.33 2.00 > 8.00b ≈ 107/107 10
PMAc 2.82 3.30 1.26 1.67 > 8.00b 296 7
PMA w/ krigingc 2.82 3.30 1.26 1.67 > 8.00b 90 7
Meta-RBDO 2.81 3.25 1.35 2.00 > 8.00b 80/10 10
aComputed using subset sampling on the original performance function g.
bSubset sampling is aborted if the failure probability is less than Φ(−8).
cOptimal solution computed by Lee and Jung (2008).

Table 5.6: Comparative results for the example by Lee and Jung (2008).

The other lines compare the RBDO results obtained with different approaches. The
first line corresponds to the reference solution computed with the brute force technique
(a nested formulation resorting to subset sampling on the original performance functions).
The lines involving “PMA” refer to the results of Lee and Jung (2008) except that the reli-
ability indices were checked using subset sampling at the optimal solution provided in the
original paper. It can be seen that the PMA (FORM-based) approximation overestimated the
actual reliability index. This is due to the concave shape of the failure domain in the vicinity
of the optimal solution that makes the FORM approach non-conservative. The “PMA with
Kriging” approach of Lee and Jung (2008) is mistaken as well as it makes use of a FORM
approximation on the Kriging surrogates.

At last, the adaptive-Kriging-based RBDO strategy is applied using K0 = 10 points for
the initial design and K = 10 points for the subsequent refinement iterations if they are
required. The surrogate of the first (strongly nonlinear) limit-state surface is refined 7
times while the other linear limit-state surface is accurately estimated from the very first
DOE. It can be seen from Table 5.6 that the proposed strategy yields accurate results with
respect to the reference brute force solution.

Convergence is illustrated here in the two-dimensional space spanned by the random de-
sign variables in Figure 5.8. It can be seen that the optimal probabilistically constrained de-
sign has been found. Both the surrogate-based and the brute force RBDO strategy stepped
away from the limit-state surface in order to guarantee the required level of safety (β = 2).
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Figure 5.8: Convergence of the meta-model-based RBDO algorithm for the mathematical example
by Lee and Jung (2008) in the two-dimensional random design space.

5.2.3 Three nonlinear limit-states

This mathematical example is taken from the paper by Shan and Wang (2008, Example 1).
It was also dealt with by Du and Chen (2004).

5.2.3.1 Problem definition

The problem involves the three following two-dimensional analytical performance func-
tions:

g1 (x ) = x2
1

x2

20
− 1, (5.22)

g2 (x ) =

�
x1+ x2− 5

�2

30
+

�
x1− x2− 12

�2

120
− 1, (5.23)

gini
3 (x ) =

80

x2
1 + 8 x2+ 5

− 1, (5.24)

where x1 and x2 are the realizations of two independent Normal random variates X1 and
X2 with mean value d1 and d2 and with the same constant standard deviation σ1 = σ2 =

σ = 0.3.

Noting that the third performance function is incompatible with the probabilistic model
(i.e. the two normal random variates in its denominator makes it undefined for x2

1 +8 x2+
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Figure 5.9: Convergence of the meta-model-based RBDO algorithm for the mathematical example
by Shan and Wang (2008).

5 = 0), it is slightly modified so that G3 = g3(X) is a second-order random variate. Indeed,
the failure domain of interest is equivalently defined as follows:

F3 =
¦

x ∈ X : g3 (x ) = 80−
�

x2
1 + 8 x2+ 5

�
≤ 0
©

. (5.25)

The RBDO problem consists in finding the optimal mean vector d∗ which reads as follows:

d∗ = arg min
d∈D

d1+ d2 : P
�
gl (X (d))≤ 0

�
≤ Φ

�
−β0

�
, l = 1, . . . , 3, (5.26)

where β0 = 3 is the minimum generalized reliability index and D = [0; 10]2 is the admissi-
ble design space. The low dimension of the problem enables a graphical illustration given
in Figure 5.9.

5.2.3.2 Results

Table 5.7 shows the benchmark results obtained on this mathematical example. The refer-
ence results were taken from Shan and Wang (2008). The original article does not indicate
whether the number of function calls is the sum of the evaluations on the three perfor-
mance functions, or the evaluations per performance function. For the proposed algorithm
the number of function calls are provided separately. Deterministic design optimization
(DDO) leads to an unreliable design onto the limit-state surfaces (i.e. g1(x ) = g2(x ) = 0)
as it does not account for the uncertainty in X . Note that the third constraint is not acti-
vated at the optimum as illustrated in Figure 5.9. The equivalent reliability indices obtained
by subset sampling are given here to check if the first order reliability theory assumptions
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hold in this case since all the RBDO strategies but the proposed one are FORM-based. All
the underlying failure probabilities were accurately estimated with a coefficient of varia-
tion less than 5%. For this simple example, the curvature of the limit-state surfaces are low
enough to be neglected and the more flexible Kriging surrogate seems useless with respect
to the first-order approximation, but it can be seen that it is at least as efficient as the best
FORM-based method.

Method d1 d2 Cost β1 β2 β3 g-calls Opt. iter.

DDOa 3.11 2.06 5.18 -0.04 0.08 > 8.00b 27 6
RBDO (βi ≥ 3, i = 1, 2, 3)
Brute force 3.45 3.27 6.72 2.98 3.07 > 8.00b ≈ 106/106/106 4
PMAa 3.44 3.29 6.73 2.96 3.06 > 8.00b 1,566 4
SORAc 3.44 3.29 6.73 2.97 3.06 > 8.00b 151 4
SLAa 3.44 3.29 6.73 2.96 3.05 > 8.00b 19 4
RDSa 3.44 3.28 6.72 2.96 3.02 > 8.00b 27 6
Meta-RBDO 3.46 3.27 6.74 3.04 2.98 > 8.00b 20/10/10 11
aAs computed by Shan and Wang (2008).
bSubset sampling is aborted if the failure probability is less than Φ(−8).
cAs computed by Du and Chen (2004).

Table 5.7: Comparative results for the mathematical example by Shan and Wang (2008).
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The proposed meta-model-based RBDO algorithm is initialized with K0 = 10 simulation
runs for each limit-state surface and the first surrogate required one update with K =

10 new evaluations at initialization. The surrogates are then accurate enough for all the
subsequent iterations of the optimization loop.

The convergence of the proposed algorithm is depicted in Figure 5.10. In the reliability
indices panel, the solid lines represent the evolution of the equivalent reliability indices
estimated by subset sampling onto the kriging surrogates, and the dashed lines represent
their pseudo-confidence interval estimated by means of the restarted subset sampling ap-
proach detailed in Section 3.4.2.2 of Chapter 3. It is hard to distinguish the dashed lines
from the solid lines which shows how narrow these confidence intervals are in this case.

5.2.4 A short column under oblique bending

This structural reliability example is extensively used in the RBDO literature. It is inspired
by the article by Royset et al. (2001).
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Figure 5.11: A short column under oblique bending.

5.2.4.1 Problem definition

Mechanical model

The structure under consideration is a short column with rectangular cross-section b×h.
It is subjected to an axial load F and two bending moments M1 and M2 whose axes are
defined with respect to the two principal axes of inertia of the cross-section. Such a load
is referred to as oblique bending due to the rotation of the neutral axis as illustrated in
Figure 5.11. According to the original reference, the performance function describing the
ultimate serviceability of the column with respect to its yield stress σy reads as follows:

g(x ) = 1−
4 M1

b h2σy

−
4 M2

b2 hσy

−
�

F

b hσy

�2

. (5.27)
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It is obtained by assuming that the constitutive material has an elastic perfectly plastic
behaviour, and it results from the superposition of the 3 ultimate forces in the cross-section
under oblique bending which are defined as:

Nu =

∫ h/2

−h/2

∫ b/2

−b/2

σu

�
t1, t2

�
dt1 dt2, (5.28)

M1 u =

∫ h/2

−h/2

∫ b/2

−b/2

σu

�
t1, t2

�
t1 dt1 dt2, (5.29)

M2 u =

∫ h/2

−h/2

∫ b/2

−b/2

σu

�
t1, t2

�
t2 dt1 dt2, (5.30)

where σu

�
t1, t2

�
is the ultimate stress distribution under oblique bending defined as:

σu

�
t1, t2

�
=

�
+σy if t2 > α t1+ β

−σy otherwise
, (5.31)

and illustrated in Figure 5.11.

Probabilistic model and RBDO problem

The stochastic model originally involves three independent random variables whose
distributions are given in Table 5.8. Note that in the original paper, the design variables b

and h are considered as deterministic. Since the present approach only deals with design
variables that define the joint PDF of the random vector X , they are considered here as
normally distributed with a small coefficient of variation (1%), and the optimization is
performed with respect to their mean µb and µh.

The objective function is formulated as follows:

c(d) = c0(d) + p f (d) c f (d)

= c0(d)
�

1+ 100 p f (d)
�

= µb µh

�
1+ 100 p f (d)

�
, (5.32)

where p f c f is the expected failure cost which is chosen here to be proportional to the
construction cost c0. The search for the optimal design is limited to the designs that satisfy
the following geometrical constraints: 1/2 ≤ µb/µh ≤ 2 with 100 ≤ µb, µh ≤ 1,000, and
the minimum reliability index is set equal to β0 = 3.

5.2.4.2 Results

The results are given in Table 5.9. In this table, βHL denotes the Hasofer-Lind reliability
index (FORM-based), and βSS denotes the generalized reliability index estimated by subset
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Variable Distribution Mean C.o.V.

M1 (N.mm) Lognormal 250× 106 30%
M2 (N.mm) Lognormal 125× 106 30%
P (N) Lognormal 2.5× 106 20%
σy (MPa) Lognormal 40 10%
b (mm) Normal µb 1%a

h (mm) Normal µh 1%a

aArtificial uncertainty introduced for the reliability sensitivity analyses.

Table 5.8: Probabilistic model for the short column under oblique bending.

sampling (the coefficient of variation is less than 5%). The deterministic design optimiza-
tion (DDO) was performed using the mean values of all the variables in Table 5.8 without
considering any uncertainty and it thus yields a 50% probability of failure. Note that the
optimal deterministic cost does not account for the expected failure cost in this case (i.e. it
only accounts for the construction cost c0).

The other lines of Table 5.9 shows the results of the RBDO problem. The first row
gives the reference results obtained by Royset et al. (2001). The number of calls to the
performance functions was not given in the original paper. It has thus been estimated given
the methodology the authors used and assuming they targeted a 5% coefficient of variation
on the failure probability that they appeared to estimate by crude Monte Carlo sampling.
The second row provides the results from a FORM-based nested RBDO algorithm. It can be
seen that the first-order reliability theory assumptions are not conservative in this case since
βSS = 3.19< βHL = 3.38. The third row gives the results obtained by the same nested RBDO
algorithm, using however the subset sampling technique instead of FORM. Finally, the last
row gives the results obtained when Kriging is used to surrogate the limit-state surface. The
Kriging surrogate was initialized with a 50-point-DOE and sequentially refined with K = 10
points per refinement iteration.

Method Opt. design (mm) Cost (mm2) g-calls Reliability

DDO b = 258 h= 500 1.29× 105 50 βSS ≈ 0.01
RBDO (β ≥ 3)
DSA b = 372 h= 559 2.15× 105 ≈ 4× 106 βSS ≈ 3.38
Nested FORM b = 399 h= 513 2.12× 105 9,472 βHL = 3.38

Check of FORM assumptions 2.20× 105 4× 105 βSS ≈ 3.19
Brute force b = 369 h= 560 2.16× 105 19× 106 βSS ≈ 3.35
Meta-RBDO b = 358 h= 580 2.15× 105 70 βSS ≈ 3.32

Table 5.9: Comparative results for the short column under oblique bending.

Another interesting fact about this example is that the reliability constraint is not ac-
tivated at the optimum. Indeed, the algorithm converges at a higher reliability level as
illustrated in Figure 5.12. This is due to the specific formulation of the cost function in
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Eq. (5.32) that accounts for a failure cost that is depending on the failure probability. Ac-
tually, the cost function behaves itself as a constraint and the optimal reliability level is
formulated in terms of an acceptable risk p f c f instead of an acceptable reliability index β0.
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Figure 5.12: Convergence of the proposed meta-model-based approach for the short column under
oblique bending. The design variables have been normalized with respect to the initial
design (µ(0)

b
= 300 mm and µ(0)

h
= 600 mm) in order to emphasize the improvement

brought by the algorithm.

In the end, it is worth noting that the proposed strategy allowed to save a significant
number of calls to the performance function with respect to both the FORM-based and the
brute force approaches.

5.2.5 A bracket structure

This section deals with the bracket structure considered by Chateauneuf and Aoues in the
book by Tsompanakis et al. (2008).
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A
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θ = 60°

Figure 5.13: The bracket structure proposed by Chateauneuf and Aoues (2008).

5.2.5.1 Problem definition

Mechanical model

Let us consider the bracket structure sketched in Figure 5.13. It is loaded by its own
dead load and by a vertical load applied at its right tip. The two failure modes under
consideration are as follows.

F1: The maximum bending stress in the horizontal beam (CD, at point B) should not
exceed the yield strength of the constitutive material, so that the first performance
function reads as follows:

g1 (x ) = σy −σB(x ), (5.33)

where the maximum bending stress reads:

σB(x ) =
6 MB

wCD t2 with: MB =
P L

3
+
ρ g wCD t L2

18
. (5.34)

F2: The maximum axial load in the inclined member (AB) should not exceed the Euler
critical buckling load (neglecting its own weight), so that the second performance
function reads as follows:

g2(x ) = Fbuckling(x )− FAB(x ), (5.35)

where the critical Euler buckling load Fbuckling is defined as:

Fbuckling(x ) =
π2 E I

L2
AB

=
π2 E t w3

AB 9 sin2 θ

48 L2 , (5.36)

and the resultant of axial forces in member AB reads (neglecting its own weight):

FAB(x ) =
1

cosθ

�
3 P

2
+

3ρ g wCD t L

4

�
. (5.37)

Both members have the same thickness t but different widths wAB and wCD.
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Probabilistic model and RBDO problem

The probabilistic model for this example is the collection of independent random vari-
ables given in Table 5.10. Note that the coefficients of variation of the random design
variables are kept constant along the optimization as in the original paper.

Variable Distribution Mean C.o.V.

P (kN) Gumbel 100 15%
E (GPa) Gumbel 200 8%
σy (MPa) Lognormal 225 8%
ρ (kg/m3) Weibull 7,860 10%
L (m) Normal 5 5%
wAB (mm) Normal µwAB

5%
wCD (mm) Normal µwCD

5%
t (mm) Normal µt 5%

Table 5.10: Probabilistic model for the bracket structure proposed by Chateauneuf and Aoues
(2008).

The RBDO problem consists in finding the rectangular cross-sections of the two struc-
tural members that minimize the expected overall structural weight which is computed as
follows:

c
�
µwAB

, µwCD
, µt

�
= µρ µt µL

�
4
p

3

9
µwAB

+µwCD

�
. (5.38)

The optimal design should satisfy a minimum reliability requirement equal to β0 = 2 with
respect to the two performance functions defined in Eq. (5.33) and Eq. (5.35). The two
failure modes are considered independently (i.e. the reliability of the series system made
of the two failure modes is not considered). The search for the optimal design is bounded
to a reasonable hyperrectangle: 50≤ µwAB

, µwCD
, µt ≤ 300 (mm).

5.2.5.2 Results

The comparative results for this example are provided in Table 5.11 considering the ones
obtained by the brute force approach as a reference. The first row gives the deterministic
optimal design that was obtained by Chateauneuf and Aoues (2008) using partial safety

factors (PSF). It can be seen from the reliability indices that these PSF provide a significant
safety level. However, one could potentially argue that the design is over-reliable. Hence,
RBDO is used here in order to find an even lighter design allowing for a lower safety level
β0 = 2. All the RBDO designs presented in Table 5.11 were obtained by taking the PSF-
based design as the initial design.

Chateauneuf and Aoues (2008) resorted to the sequential optimization and reliability

approach (SORA, Du and Chen, 2004) which is a decoupled FORM-based approach. The
reliability indices at the optimal design were checked by means of the subset sampling
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technique (the coefficient of variation is less than 5%) and revealed that the first-order ap-
proximation is fairly accurate in this case. The nested FORM approach provides the same
solution but it is less computationally efficient. The brute force approach (nested subset
sampling) converges to the same results but clearly proves that crude-sampling-based ap-
proaches are not tractable for RBDO. At last, the meta-model-based approach converged to
the same design using only a few dozens of runs. The Kriging surrogates were initialized
with K0 = 50 points and K = 10 points are added at each refinement iteration if required.
The convergence of the algorithm is depicted in Figure 5.14.

Method Opt. design (mm) Cost (kg) g-calls Reliability

DDO w/ PSFa

wAB = 61
wCD = 202

t = 269
2,632 40

βSS1 ≈ 4.83
βSS2 ≈ 2.83

RBDO (βl ≥ 2, l = 1, 2)

Brute force
wAB = 58
wCD = 119

t = 241
1,550

5× 106

5× 106

βSS1 ≈ 1.99
βSS2 ≈ 2.00

SORAa

wAB = 61
wCD = 157

t = 209
1,675 1,340

βSS1 ≈ 1.96
βSS2 ≈ 1.98

Nested FORMa

wAB = 61
wCD = 157

t = 209
1,675 2,340

βSS1 ≈ 1.96
βSS2 ≈ 1.98

Meta-RBDO
wAB = 58
wCD = 128

t = 233
1,584

160
90

βSS1 ≈ 1.98
βSS2 ≈ 1.94

aAs computed by Chateauneuf and Aoues (2008).

Table 5.11: Comparative results for the bracket structure proposed by Chateauneuf and Aoues
(2008).

Again, the proposed strategy saved a significant number of calls to the performance
function and it revealed even more computationally efficient than its FORM-based counter-
parts.
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Figure 5.14: Convergence of the meta-model-based RBDO strategy for the bracket structure pro-
posed by Chateauneuf and Aoues (2008). The design variables have been normalized
with respect to the initial design chosen here as the PSF-based design of Table 5.11
(first row).

5.2.6 A 23-member plane truss bridge

The mechanical and probabilistic models for this example come from the article by Blatman
and Sudret (2008b) and the RBDO problem was originally formulated in Dubourg et al.
(2011e).

5.2.6.1 Problem definition

Mechanical model

This example addresses the design of the truss structure illustrated in Figure 5.15. It is
composed of 11 horizontal bars and 12 inclined bars. The nodes in the upper horizontal
bars are submitted to a vertical load. The maximum vertical displacement of the struc-
ture (denoted by V1 in Figure 5.15) is provided by a two-dimensional bar finite element
model. The model comprises 23 bar elements and 13 nodes with 2 degrees of freedom
before applying the boundary conditions. The lower left node is clamped horizontally and
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vertically while the lower right node is simply clamped vertically in order to get a statically
determined structure.

Figure 5.15: A 23-member plane truss bridge.

The maximum vertical displacement of the structure is equal to 7.78 cm when all the
variables in the probabilistic model of Table 5.12 are set to their mean values. The design
rule is such that the maximum vertical displacement of the structure should not exceed
Vmax = 10 cm, so that the performance function reads as follows:

g(x ) = Vmax−
��V1(x )

�� . (5.39)

Note that it is assumed here that the maximum displacement always occurs at the mid-
dle node of the lower part of the bridge, although it may not hold for all the realizations of
the stochastic model.

Probabilistic model and RBDO problem

Variable Distribution Mean Standard deviation

E1, E2 (Pa) Lognormal 2.10× 1011 2.10× 1010

A1 (m2) Lognormal µA1
2× 10−4

A2 (m2) Lognormal µA2
1× 10−4

P1, . . . , P6 (N) Gumbel 5× 104 7.5× 103

Table 5.12: Probabilistic model for the 23-member plane truss bridge.

The initial probabilistic model used by Blatman and Sudret (2008b) is given in Ta-
ble 5.12. It features 10 independent random variables modelling the Young’s modulus and
the cross-sections of the two groups of bars (resp. horizontal and inclined), as well as
the 6 vertical loads applied to the nodes of the upper horizontal bars. The initial mean
cross-sections are respectively set to µA1

= 2× 10−3 m2 and µA2
= 1× 10−3 m2.
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The design optimization problem consists in finding the two cross-sections that mini-
mize the volume of the structure while ensuring a minimal reliability index β0 set equal to
3. This reads as follows:

d∗ = argmin
d∈D

L1µA1
+ L2µA2

: P [g(X(d))≤ 0]≤ Φ(−β0), (5.40)

where L1 (resp. L2) is the cumulative length of all horizontal members (resp. inclined
members). The search for the optimal solution is bounded to the following hyperrectangle
D =

�
6× 10−4; 6× 10−3�× �3× 10−4; 3× 10−3�.

5.2.6.2 Results

The results are presented in Table 5.13. For the sake of validation the results yielded by
the proposed meta-model-based RBDO strategy are opposed to that obtained by two nested
approaches. The first one is the brute force strategy resorting to subset sampling and the
other one resorts to FORM. The provided reliability indices were computed by means of
the subset sampling technique in order to check the FORM assumptions (the coefficient
of variation is less than 5%). It should be noticed that the results of the nested FORM
approach are a bit more optimal because the reliability index was slightly overestimated
by the first order approximation. In addition, it can be seen that the use of the Kriging
surrogate enables a significant reduction of the computational cost without altering the
quality of the reliability index estimation. For this example, the Kriging surrogates were
initialized with K0 = 100 points and K = 50 points were sequentially added if required.
The convergence of the algorithm is depicted in Figure 5.16.

Method Opt. design (m2) Cost (m3) g-calls Reliability

DDO
A1 = 1.59× 10−3

A2 = 6.95× 10−4 0.0939 30 −0.08

RBDO (β ≥ 3)

Brute force
µA1
= 2.53× 10−3

µA2
= 7.98× 10−4 0.1383 3× 105 3.05

Nested FORM
µA1
= 2.43× 10−3

µA2
= 7.99× 10−4 0.1341 1,621 2.74

Meta-RBDO
µA1
= 2.53× 10−3

µA2
= 8.13× 10−4 0.1388 350 3.05

Table 5.13: Results for the 23-members plane truss bridge.
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Figure 5.16: Convergence of the meta-model-based RBDO strategy for the 23-member plane truss
bridge.

5.2.7 Conclusion

This section validated the proposed global surrogate-based RBDO strategy on a set of
structural reliability examples featuring: (i) a reasonable dimension (up to 10 variables),
(ii) reasonably nonlinear performance functions, (iii) starting from empirically over- (resp.
under-) reliable initial designs.

It has been shown that the use of global Kriging surrogates enables a significant re-
duction of the computational cost while conserving the good properties of sampling-based
estimators for both the reliability indices and their gradients with respect to the design vari-
ables. The confidence-bounds-based refinement rule was also proved to be objective as the
final surrogate-based reliability indices were all found to be reasonably close to the actual
reliability indices estimated on the original performance functions.

Besides the use of Kriging surrogates, it is worth remembering that the subset sampling
procedure is of utmost importance in an RBDO context. Indeed, the use of crude Monte
Carlo sampling for the nested reliability and reliability sensitivity analyses is not conceivable
even on the surrogates due to the possibly low failure probabilities encountered during
the optimization. It should also be noted that the score function approach turned out to
be a very efficient tool for estimating the gradients of the reliability indices without any
additional call to the Kriging predictors.
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Finally, it has to be admitted that the use of Kriging predictors as simple plug-in esti-
mators for the performance functions may fail for structural reliability examples featuring
a much larger number of variables (say n > 20). Hence, for such cases, it is of the au-
thor’s belief that hybrid approaches such as meta-model-based importance sampling could
be used for estimating the failure probability in the very last iterations of the optimization
(i.e. once the location of the optimal solution has been spotted). Actually, in higher dimen-
sion the margin of uncertainty of the Kriging predictors will not shrink so that the proposed
confidence bound metric will stall for a large number of refinement iterations. Thus, the
meta-model-based importance sampling scheme could be triggered at this point for check-
ing the reliability indices and for refining the optimal design based on the sensitivities that
are also available for this estimator.
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6.1 Introduction

Shell structures occupy a predominant part of our landscape (see the article by Ramm and
Wall, 2004, for a review of their applications). They owe this predominance to their cur-
vature which allow them to withstand large transverse loading by a membrane-dominated
stress state. As a result, they can be used to form large-span shelters such as roofs, fuselages
or boat and submarine hulls without requiring too many intermediate supports such as stiff-
ening beams or rims. Nonetheless, as many optimized structures, thin shells also exhibit a
significant sensitivity with respect to their geometrical, material and other environmental
conditions which are typically unknown to some extent.

Early work on the stability analysis of slender structures (such as beams or shells) is
often attributed to Euler (1744), although most of the theoretical concepts in practice to-
day are due to Lagrange (1788), Timoshenko (1936) and Von Mises (1914). Timoshenko
(resp. Von Mises) is known for having derived an analytical expression for the critical buck-
ling load of a cylindrical shell under axial load (resp. external pressure) amongst other
related work in structural mechanics. However, parallel experimental studies revealed em-
barrassing discrepancies between their theory and practice. Koiter (1945) was certainly the
first researcher to point out that these discrepancies are mostly explained by the imperfect
geometry and boundary conditions of the experimental specimens. This premise is now
fully acknowledged by the whole community of engineers and scientists in structural me-
chanics in the light of other studies by Arbocz and Babcock (1969); Singer et al. (1971);
Singer and Abramovich (1995) amongst others.

A key aspect of these imperfections though is that they are extremely varying in terms
of shape and amplitude. Hence, for the sake of designing safe structures, designers have
to account for extreme (although likely) imperfections in their calculations and then resort
to advanced numerical schemes in order to justify their design since the aforementioned
analytical formulæ do not hold for imperfect structures. However, this approach, referred
to as the worst case approach in the sequel, introduces an unknown degree of conservatism
which may not suit the safety requirements fixed by the stakeholders.

In this thesis as in previous work by Faulkner and Das (1990); Groen and Kaminski
(1996); Bourinet et al. (2000); Schenk and Schuëller (2003, 2007); Noirfalise (2009), it is
argued that a more comprehensive approach to the design of imperfect shells necessarily
falls under a probabilistic formulation. A specific emphasis is put on the probabilistic de-
scription of shape and material imperfections. This work does not consider the uncertainty
in the boundary conditions (see the work by Schenk and Schuëller, 2003, 2007).

This chapter is organized as follows. Section 6.2 first introduces the fundamental con-
cepts of nonlinear stability analysis in solid mechanics. It also defines the assumptions that
are accounted for in the subsequent probabilistic buckling analyses. The remaining sec-
tions are devoted to the analysis and the design of two thin-shell structures. Section 6.3
is concerned with the computation of the buckling probability of an imperfect cylindrical
shell roof featuring spatially varying random properties. In Section 6.4, the reliability-based
design optimization methodology is applied to an imperfect submarine pressure hull. This
probabilistic design philosophy is opposed to the state-of-the-art worst case approach.
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6.2 Elements of shell nonlinear stability analysis

Buckling is a structural instability problem triggered by some excessive load that needs to
be identified. This load will be referred to as the critical buckling (or collapse) load in the
sequel. In practice, it is determined by applying a so-called load proportionality factor (LPF)
which is initialized to zero and then incrementally increased until collapse is observed.

This section shortly formalizes the mechanical problem at hand and presents an original
perturbation method proposed by Damil and Potier-Ferry (1990) to solve it in an efficient
manner: the asymptotic numerical method. The interested reader is referred to the Ph. D.
theses by Zahrouni (1998), Baguet (2001) and Noirfalise (2009) and the articles by Coche-
lin (1994); Cochelin et al. (1994) for a deeper introduction to these advanced concepts of
structural mechanics.

6.2.1 Equilibrium path

In continuum mechanics, the equilibrium state of a conservative mechanical system is basi-
cally characterized in terms of a zero elementary variation of its total energy denoted by E.
This fundamental principle leads to the establishment of the following so-called variational

formulation of equilibrium states:

δE = E,u(λ, u)δu = 0, (6.1)

where u denotes any admissible displacement of the structure and E,u(λ, u) is the first-
order functional derivative of the potential energy which depends on the LPF λ.

q

F

F

q

stable

stable

unstable

unstable

Figure 6.1: Elastic stability of a straight column.

Hence, the purpose of nonlinear mechanics is to solve the latter equation for any value
of λ in order to characterize all the equilibrium states of the structure. This infinite set of
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equilibrium states is usually referred to as the equilibrium path of the structure. It is often
represented as a graph opposing a local displacement in some direction to the values of the
LPF (see e.g. Figure 6.1). For stable structures, the equilibrium state associated with the
value λ = 1 is the only state of interest, although it is obtained incrementally by increasing
λ from zero (reference state of the free structure) or from any other known equilibrium
state (λ0, u0).

6.2.2 Equilibrium stability

Unstable (resp. stable) equilibrium states of a mechanical system are characterized by a
negative (resp. strictly positive) second-order functional derivative of the total energy E,u u ,
meaning that they correspond to local maxima (resp. minima) of the the total energy as
illustrated in Figure 6.2(a).

Stable UnstableNeutral

(a) Characterization of stability

Regular point

Bifurcation

Limit load point

u

(b) Limit and bifurcation points

Figure 6.2: Equilibrium stability.

There are basically two kinds of instabilities in nonlinear shell analyses, both poten-
tially leading to buckling and/or plastic collapse: bifurcation points and limit points, see
Figure 6.2(b) for illustration. Regarding bifurcation points, the structure may lose its sta-
bility along the equilibrium path, resulting in sudden and large displacements which often
lead to collapse. Regarding limit points, this occurs when the structure is no longer able to
withstand loads, due to nonlinear geometrical and/or material effects. For shell structures,
these two kinds of points interact in a rather joint manner, one triggering the other and
conversely.

Practical detection of these instability is a rather non-trivial task and it involves the
resolution of a perturbed equilibrium problem along with the resolution of Eq. (6.1). The
present study focuses on imperfect structures which are commonly assumed to fail at their
limit load. Indeed, Koiter (1945) showed that the presence of initial imperfections in the
structure1 smooths the equilibrium paths. As a result, imperfect structures regularly feature

1The initial study was carried out on cylinders under a compressive axial load with modal imperfections,
but this generalizes to other imperfect structures.
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smooth limit load points rather than sharp bifurcation points which are only observed on
perfect structures (see Figure 6.3). Therefore, in the sequel the detection of singular points
along the equilibrium path will be restricted to limit points characterized by horizontal

tangents.

u

Perfect structure

Imperfect structure

Figure 6.3: Influence of initial imperfections on the equilibrium path.

6.2.3 General formulation of the static equilibrium equations

In static analysis, the total energy of a structure of volume V is given by:

E(λ, u) =

∫

V
Wint(ǫ)dv −λWext(u), (6.2)

where Wint is the strain energy density in the structure and Wext is the virtual work of
external forces. ǫ denotes the Green-Lagrange strain tensor which is defined as:

ǫ(u) =
1

2

�
∇u +∇Tu

�
︸ ︷︷ ︸

ǫ l(u)

+
1

2

�
∇u∇Tu

�
︸ ︷︷ ︸
ǫnl(u, u)

, (6.3)

where ǫ l(u) (resp. ǫnl(u, u)) denotes the linear (resp. symmetric quadratic bilinear) term
of ǫ. Assuming elastic small displacements, the strain energy density Wint reduces to the
following quadratic form:

Wint(ǫ) =
1

2
ǫ : D : ǫ, (6.4)

where D is the tensor of elasticity modelling the material behaviour.

Differentiating the latter relation with respect to the strain yields the second Piola-
Kirchhoff stress tensor:

Π =Wint,ǫ = D : ǫ, (6.5)

and the equilibrium equation (see Eq. (6.1)) rewrites as the following set of equations:


δE =

∫

V
Π : δǫ dv −λWext(u) = 0, (equilibrium)

Π = D : ǫ (stress-strain relationship)
, (6.6)
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where:

δǫ(u) = ǫ l(δu) +
1

2
ǫnl(u, δu). (6.7)

6.2.4 Sources of nonlinearity

6.2.4.1 Large displacements

Accounting for large displacement in buckling analysis is of utmost importance for study-
ing the influence of small imperfections on the critical load. Indeed, the linear buckling
eigenproblem which is obtained by approximating the second quadratic term in the Green-
Lagrange strain tensor ǫnl reveals a poor approximation for the modelling of imperfect
(actual) structures. Therefore, the present imperfection-based analysis accounts for large
displacements.

6.2.4.2 Large rotations and shear strain of shells

In order to account for the large rotations and shear strains (i.e. a virtual deformation
through the thickness) of thin-walled shell structures, the present analyses resort to a three-
dimensional seven-parameter shell formulation proposed by Büchter et al. (1994). This
formulation, based on the enhanced assumed strain (EAS) concept, disables the usual lock-
ing problems featured by shell elements. However, it introduces another set of nonlinear
compatibility equations (see e.g. Baguet, 2001, pp. 43–48).

6.2.4.3 Follower forces

The concept of follower forces refers to the property of loads to follow the deformed shape
of the structure. A typical example of a follower force field is the hydrostatic pressure
exerted on a submarine hull. Indeed, such a pressure is exerted along the normal to the
boundary surface of the structure whatever its shape is. From a computational viewpoint,
this additional assumption introduces a dependence of the virtual work of external forces
on the LPF (see e.g. Noirfalise, 2009, pp. 81–86).

6.2.4.4 Material properties

All the structures considered in the sequel are assumed to be made of the same steel which
is supposed to behave according to a nonlinear elastic Ramberg-Osgood constitutive law
(also known as the power law). It is characterized by the following nonlinear stress-strain
relationship:

ǫ =
σ

E
+α

σ

E

�
|σ|
σy

�n−1

, (6.8)
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where ǫ is the strain, σ is the stress, α and n are the two Ramberg-Osgood parameters, E

is the Young’s modulus and σy is the yield strength.

Note that plasticity cannot be taken into account within the FE code that is used here.
Even though, it is argued that the two structures under concern in this chapter do not
present any significant local unloading until the collapse load of interest is reached. In this
case, nonlinear elasticity is a fairly accurate model for the constitutive laws.

6.2.5 The asymptotic numerical method

The problem in Eq. (6.6) is usually solved by means of the so-called incremental iterative
methods such as the Newton-Raphson algorithm. The present work is based on an origi-
nal alternative known as the asymptotic numerical method (ANM) proposed by Damil and
Potier-Ferry (1990) and Cochelin (1994).

6.2.5.1 The idea

It is first proposed to rewrite the problem in Eq. (6.6) into the following convenient
quadratic form:

R(Y , λ) = L(Y ) +Q(Y , Y )−λ F = 0, (6.9)

where R is a vector of residuals, L is a linear operator, Q is a bilinear quadratic operator, F

is a constant vector, and Y = (uT,ST)T regroups the unknowns of the problem.

A key idea of the ANM then consists in expanding the unknowns Y and λ over a unique
parameter noted a in the form of the following polynomial series expansions:

�
Y (a) = Y 0+ a Y 1+ a2 Y 2+ . . .+ aN Y N

λ(a) = λ0+ aλ1+ a2λ2+ . . .+ aN λN

, (6.10)

where (λ0, Y 0) describes the initial state of the system, supposedly known. In this study,
the polynomial expansions are truncated after N = 30 terms.

Introducing these expansions into Eq. (6.9) and grouping the terms with the same
power of a then yield the following succession of linear systems for orders p = 1, . . . , N :





Lt(Y 1) = λ1 F

Lt(Y 2) = λ2 F −Q(Y 1, Y 1)
...

Lt(Y N) = λN F −
N−1∑
p=1

Q(Y p, Y N−p)

, (6.11)

where Lt(•) = L(•) + 2Q(Y 0, •) is the tangent operator, which is the same at all orders.

At this stage, the problem involves one too many unknown, namely the parameter a. As
in the classical incremental iterative methods, the ANM uses a pseudo arc-length technique
by setting:

a = (Y − Y 0)Y 1+ (λ−λ0)λ1, (6.12)
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which completes the system of equations in Eq. (6.11).

Hence, it can be seen that the initial nonlinear problem in Eq. (6.9) has been genuinely
transformed into a set of N linear systems by rejecting all nonlinearities to the right-hand
side of Eq. (6.11). In addition, the N linear systems composing Eq. (6.11) feature a single
linear operator Lt which is the same at all order. When switching to the discrete form of
the problem (by means of a classical finite element method), the resolution of the N linear
systems require only one decomposition of the tangent stiffness matrix Kt which is the
discrete counterpart of Lt . This latter remark makes the ANM very efficient as the tangent
stiffness matrix Kt may be large in practice.

Eventually, the ANM provides a continuous representation of the equilibrium path for
any value of λ thanks to the series expansion in a. This is an interesting property with
respect to the incremental iterative methods that need to solve the problem for each value
of λ.

6.2.5.2 Validity of the expansion

However, due to the use of finite expansions in Eq. (6.10), the solution becomes invalid for
large values of a. Thus, it is proposed to truncate the solution below a maximum value of
a denoted by amax. This maximum value is based on a study of the residual’s norm ‖R‖.

Cochelin (1994) proved that it is reasonable to approximate the norm of the residual by
that of the first omitted term in the expansion, so that:

‖R(a)‖ ≈


aN+1 RN+1



 . (6.13)

Based on this approximation, Cochelin then came up with the following expression for amax:

amax =

 
ε
‖F‖

RN+1





! 1
N+1

, (6.14)

where ε is the maximum tolerance on the norm of the residual. This tolerance is usually set
equal to a small value (here 10−8) thanks to the normalization of the residual with respect
to the right hand-side ‖F‖ of Eq. (6.9).

The description of the whole equilibrium path is therefore made piecewise by repeat-
ing the procedure incrementally (i.e. by resetting the initial state of the system (λ0, Y 0) to
(λ(amax), Y (amax)). Even though, the ANM remains more computationally efficient than its
incremental iterative counterparts because it is incremental only. Indeed, incremental iter-
ative methods need to iterate within the increments in order to remain on the equilibrium
path, each iteration involving an expensive decomposition of the tangent stiffness matrix.

6.2.5.3 Determination of the limit-load carrying capacity

The determination of the limit-load carrying capacity exploits the parametric approxima-
tion of the load proportionality factor. Indeed, limit points are characterized by horizontal
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tangents on the equilibrium path thus meaning that the derivative of the load proportion-
ality factor with respect to a equals zero at the critical limit-load. This naturally lead to the
following definition:

λlimit = λ(alimit), with alimit =

�
a ∈
�

0; amax

�
:

dλ

da
= 0
�

. (6.15)

Thanks to the chosen polynomial series expansion for the LPF, finding the the limit load
simply consists in finding the roots of a polynomial of order N −1 and retaining the lowest
positive root that is less than amax, provided it exists.

6.2.6 The EVE finite element code

The asymptotic numerical method has been coupled to a finite element model within the
EVE code whose development was initiated by Cochelin (1994) and Baguet (2001). The
present studies resorts to a more recent version developed by Noirfalise (2009) who imple-
mented the follower forces and some other functionalities that are used in the sequel (such
as local boundary conditions for the Büchter-Ramm shell element).

6.3 Reliability analysis of the Scordelis-Lo shell roof

This section is concerned with the reliability analysis of the cylindrical shell roof illustrated
in Figure 6.4. This mechanical example is inspired from the article by Scordelis and Lo
(1961) (see also Ramm and Wall, 2004, pp. 405–406), but the load case and the material
properties have been modified as in Dubourg et al. (2009a, 2011b).
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Figure 6.4: A shell roof under a uniformly distributed vertical load (Scordelis and Lo, 1961).
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6.3.1 The Scordelis-Lo shell roof

The dimensions of the cylindrical shell roof under consideration are given in Figure 6.4.
Its longitudinal edges are free while its circumferential edges are simply supported by rigid
diaphragms, meaning that the radial displacement is fixed equal to zero. It is subjected to
a distributed (non-follower) vertical load q = 1 MPa (over the whole roof upper face). This
load emulates the dead load of the structure plus an additional load due to a snow layer so
that the force field is exerted vertically whatever the shape of the deformed structure.

The constitutive material is assumed to follow a nonlinear elastic Ramberg-Osgood law
as described in Section 6.2.4.4. The problem is discretized with a mesh containing 30× 30
8-node Büchter-Ramm shell elements, thus featuring 2,821 nodes and 16,926 degrees of
freedom before applying the boundary conditions. The limit load is computed by differen-
tiating the piecewise polynomial series expansion of the equilibrium path as explained in
Section 6.2.5.3. Figure 6.5(a) illustrates the amplified deformed shape of the perfect struc-
ture (i.e. the one corresponding to the mean of the forthcoming probabilistic model) at its
limit load capacity which is found equal to qlimit = 0.2676 MPa. Figure 6.5(b) represents
the equilibrium path for the vertical displacement of the node located at midspan of the
roof.

(a) Deformed shape at limit load

−250 −200 −150 −100 −50 0 50
0

0.05

0.1

0.15

0.2

0.25

Vertical displacement of the middle node (mm)

λ
q
(M

P
a
)

(b) Equilibrium path

Figure 6.5: Nonlinear stability analysis of the perfect shell roof.

6.3.2 Spatially varying random properties

The probabilistic model for this structure resorts to random fields for modelling the spatial
variability of the shell properties. More specifically, the material properties (the Young’s
modulus E and the yield strengthσy) and the shell thickness h are modelled by independent
lognormal random fields represented by translated Karhunen-Loève expansions, and the
shape imperfection is represented by a random linear combination of the three most critical
Euler buckling modes of the shell roof.
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The probabilistic model described in the sequel features 93 independent Gaussian ran-
dom variables grouped in the vector Ξ = (ΞE, Ξσy

, Ξh, Ξζ). A random realization of the
four random fields is illustrated in Figure 6.6.

 

(a) Young’s modulus E

 

(b) Shell thickness h

 

(c) Yield strength σy

 

(d) Shape imperfection ζ

Figure 6.6: A random realization of the four random fields.

6.3.2.1 Representation of the lognormal random fields

The three lognormal random fields E, σy and h are obtained by transforming the realiza-
tions of three independent standard Gaussian random fields UE, Uσy

and Uh through the
following translation:

F (x , θ ) = exp
�
λF + ζF UF(p)

�
, F = E, σy , h, (6.16)

where λF and ζF are the location and scale parameters of the lognormal distributions whose
mean and coefficient of variation are given in Table 6.1.

Variable Distribution Mean C.o.V.

E (MPa) Lognormal 200, 000 3%
σy (MPa) Lognormal 390 7%
h (mm) Lognormal 76 5%

Table 6.1: Parameters of the lognormal random fields for the material properties of the shell roof.
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The three underlying Gaussian random fields are assumed to have a zero mean, a unit
variance and the following isotropic squared exponential covariance function:

C
�

x − x ′, θ − θ ′
�
= exp

�
(x − x ′)2

ℓ2 +
R2 (θ − θ ′)2

ℓ2

�
, (6.17)

where the correlation length ℓ is set equal to 3 500 mm. These random fields are repre-
sented by means of their truncated Karhunen-Loève expansion:

UF(x ,θ ) =
M∑

k=1

ΞF k

p
λkϕk(x , θ ), F = E, σy , h, (6.18)

where ΞF = (ΞF k, k = 1, . . . , M) is a vector of independent standard normal random vari-
ates. It is recalled that the M couples

��
λk, ϕk

�
, k = 1, . . . , M

	
are the elements of the

spectral decomposition of the correlation function corresponding to the greatest eigenval-
ues λk (see Eq. (1.69) in Chapter 1). The latter spectral decomposition is performed here
numerically using the wavelet-Galerkin scheme proposed by Phoon et al. (2002). The size
M of the expansion is the same for the three fields and it is equal to M = 30 so that the
relative mean squared error with respect to the non-truncated expansion is less than 3.70%.
The Haar wavelet family used for discretizing the Fredholm integral equation is truncated
at level 7.

6.3.2.2 Representation of the shape imperfection

The modelling of the shape imperfection is based on mechanical considerations. It is pro-
posed to model the shape imperfection as a random combination of its most critical buckling
patterns. Such patterns are obtained by means of a linear buckling analysis of the perfect
structure. They are illustrated in Figure 6.7. The shape imperfection being modelled as a
linear combination of these three modes, it will conserve their symmetry properties with
respect to both the longitudinal and transversal axes.

Hence, the realizations of the shape imperfection vector field are given by:

ζ (x , θ ) =
3∑

k=1

Ξζ k Uk (x , θ ) , (6.19)

where
�
Uk, k = 1, 2, 3

	
are the displacement vector fields between the three first buckling

modes and the perfect reference structure. The three Gaussian variables (Ξζ k, k = 1, 2, 3)T

are independent, zero-mean and their standard deviation is set equal to σζ = 9.5 mm. This
empirical moments were determined with the two following objectives.

(i) The mean shape should match the perfect structure, hence µζ = 0.

(ii) The maximum amplitude of the shape imperfection should not exceed a fraction of
the mean thickness for the sake of validity of the chosen shell formulation. Hence the
standard deviation has been adjusted by Monte Carlo sampling so that the maximum
amplitude at ±2 standard deviations matches the half of the roof mean thickness
µh/2= 38 mm. Such a criterion is met for σζ = 9.5 mm.
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(a) Mode 1

 

 

(b) Mode 2

 

 

(c) Mode 3

Figure 6.7: The three most critical buckling patterns of the shell roof.

6.3.3 Reliability analysis

The present reliability analysis follows the classical formulation used in the probabilistic
buckling literature. It consists in estimating the following failure probability:

P [Ξ ∈ F] = P
�

qlimit(Ξ)≤ qser

�
, (6.20)

where the service load is arbitrarily set equal to qser = 0.18 MPa in order to make the failure
probability sufficiently low. Recall that Ξ denotes here the 93-component random vector
which is used to sample the four random fields.

Three different reliability methods have been used on this example on purpose to in-
vestigate the features of the failure domain F. First, the subset sampling approach is used
in order to provide a sound reference solution. Then, the meta-model-based importance
sampling strategy is applied so as to prove its scalability to advanced structural reliabil-
ity problems featuring a reasonably large stochastic model and a nonlinear performance
model. Eventually, the restarted iHLRF algorithm (Der Kiureghian and Dakessian, 1998) is
used in an attempt to shed some light on the most probable configurations of the proba-
bilistic model that lead to failure.

The three failure probability estimates are given in Table 6.2. Note that the meta-model-
based importance sampling required a quite significant number of finite element runs al-
though it is still less computationally expensive than subset sampling. For this example,
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the correction factor equals αcorr ≈ 0.641. This is significantly far from unity with respect
to the other examples introduced in Chapter 5. This is because the Kriging surrogate does
not accurately fit the limit-state surface

�
ξ ∈ R93 : qlimit(ξ) = qser

	
in this case due to its sig-

nificant nonlinearity and the important dimension of the input space. Even though, this
example truly reveals the interest of the proposed meta-model-based importance sampling
scheme as it yields unbiased estimates of the probability of interest.

Method Subset sampling Multi-FORM Meta-IS

# of FE-runs 20,000 ≈ 10,000 6× 93+ 9 500
Probability 1.27× 10−4 1.22× 10−4 1.32× 10−4

C.o.V. <13% – <14%

Table 6.2: Results of the reliability analysis of the shell roof.

The multiple FORM approximation was computed by means of the Φn approach on the
series system composed with the Taylor series expansion of the limit-state surface in the
vicinity of the four most probable failure points (see Section 3.3.4.2 of Chapter 3). These
four points were found by means of the restarted algorithm iHLRF algorithm tuned as in
the original paper by Der Kiureghian and Dakessian (1998).

Besides the fact that the Multi-FORM approximation of the failure probability is in rea-
sonable agreement with the other sampling-based approach, the coordinates of the four
most probable failure configurations are proved to be physically meaningful as illustrated
in Figures 6.8–6.11. Actually, these four configurations feature locally low capacities (i.e.

low values of the Young’s modulus, the shell thickness and the yield strength) and high
demand (i.e. a high shape imperfection). Due to the symmetry of the three buckling pat-
terns used to build the random shape imperfection, there exists four most probable failure
configurations located at the four corners of the roof. Note that the consideration of the
four failure modes in a series system is of utmost importance for the FORM approximation
because each component has a failure probability of 3× 10−5 only.
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(a) Young’s modulus E (b) Shell thickness h

(c) Yield strength σy (d) Shape imperfection ζ

Figure 6.8: Most probable failure configuration #1.

(a) Young’s modulus E (b) Shell thickness h

(c) Yield strength σy (d) Shape imperfection ζ

Figure 6.9: Most probable failure configuration #2.
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(a) Young’s modulus E (b) Shell thickness h

(c) Yield strength σy (d) Shape imperfection ζ

Figure 6.10: Most probable failure configuration #3.

(a) Young’s modulus E (b) Shell thickness h

(c) Yield strength σy (d) Shape imperfection ζ

Figure 6.11: Most probable failure configuration #4.
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Eventually, it is worth mentioning that subset sampling interestingly provides the full
CDF of the critical buckling load as illustrated in Figure 6.12. This curve is interesting in
probabilistic buckling analysis as it gives a relationship between the serviceability threshold
qser and the associated failure probability.
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Figure 6.12: Cumulative distribution function of the critical buckling load estimated by subset sam-
pling and its ±2σ confidence interval.

6.3.4 Conclusion

The buckling collapse of the Scordelis-Lo shell roof has been investigated by means of
a probabilistic approach. This comprehensive modelling has accounted for spatially and
randomly varying shell properties described by random fields. The Gaussian shape im-
perfection modelling has been based on a combination of the most critical linear elastic
buckling modes as typically considered in engineering practice. The other three lognormal
random fields were represented with translated Karhunen-Loève expansions. The resulting
probabilistic model is driven by 93 random variables.

Three different reliability methods have been applied. The subset sampling technique
was first used to provide a sound reference solution. It also enables the reconstitution of
the CDF of the critical buckling load which is an interesting by-product for probabilistic
buckling analyses. The restarted iHLRF of Der Kiureghian and Dakessian (1998) was then
applied in order to perform an exhaustive search of the most probable failure configura-
tions. Fortunately, the original tuning of the algorithm allowed to find 4 configurations
whose interpretation reveals in good agreement with the physical intuition.

At last, despite the strong nonlinearity and the high dimensionality of the problem,
the meta-model-based importance sampling scheme provided an unbiased estimate of the
failure probability. This example confirms the interest one should have in using such an
hybrid approach as it enables the use of a coarse meta-model for accurately estimating
failure probabilities in a reasonably high dimension.
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6.4 Reliability-based design of a submarine pressure hull

Submarine pressure hulls such as the one illustrated in Figure 6.13 are mainly composed
of a combination of ring-stiffened cylinders, cones, elliptical or spherical ends, internal
diaphragms, bulkheads and deep frames. When immersed, these structures are subjected
to an external hydrostatic pressure that is proportional to the diving depth I :

p = ρwater g I , (6.21)

where ρwater is the sea water density (set here equal to 1,000 kg/m3), and g ≈ 10 m/s2

is the gravitational constant. Such a load induces a compression stress state that is mostly
membrane dominated. Design against buckling therefore constitutes a key point for sub-
marines.

Shielding
Pressure hull

Elliptical end with cone Single bay reference structure

Rigid diaphragm Elliptical bulkhead

Figure 6.13: Composition of a typical submarine pressure hull.

The design practice is usually based on specific standards and design codes such as the
British standard 5500 (BS5500) or the more recent Eurocode 3, possibly along with finite-
element-based simulations. It makes often use of long-term-experience-based safety factors
at various design stages, which eventually implies an unknown degree of conservatism.
Hence, structural reliability methods reveal a promising tool for investigating the safety
margins attached to the current submarine design practices (see e.g. Faulkner and Das,
1990; Groen and Kaminski, 1996; Bourinet et al., 2000).

Another major challenge for the designer consists in finding an optimal ratio between
the volume of the resistant structure and the boarding capacity of the submersible. The
latter point falls under the reliability-based design optimization (RBDO) formulation. The
work presented in the sequel is based on preliminary studies published in Dubourg et al.
(2008, 2011a).

!Note that for the sake of confidentiality, the submarine design study exposed in the sequel

does not make use of DCNS design criteria nor data, and the final design does not actually

meet the requirements imposed by the architect. This work is based on elements that are

publicly available in the literature (Bourinet et al., 2000; Gayton et al., 2003; Dubourg

et al., 2008).
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6.4.1 The single bay reference structure

6.4.1.1 A ring-stiffened shell cylinder

The present study does not consider the submarine hull as a whole. It focuses instead
on a single bay reference structure which consists in a ring-stiffened shell cylinder. The
dimensions of this elementary structure are shown in Figure 6.14. The outer cylinder, the
ring and the inner cylinder are respectively referred to as the shell plating, the web and
the flange. This simplified modelling makes sense for the bays that are located far from the
bulkheads and the other singularities exhibited by actual submarine hulls.
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(a) Ring-stiffened shell cylinder

Variable Value

R (mm) 2,488
Ls (mm) 600
e (mm) 24
hw (mm) 156
ew (mm) 10
w f (mm) 120
e f (mm) 24

(b) Initial design

Figure 6.14: Single bay reference structure and initial design.

The linear elastic stability analysis of this ring-stiffened shell exhibits some typical buck-
ling patterns. The three most critical kinds of buckling patterns are known as overall buck-
ling, interframe buckling and frame tripping and they are illustrated in Figure 6.15. Actual
structures exhibit some unavoidable shape imperfections due to the manufacturing pro-
cess (mostly cold-bending- and welding-based) and heavy loads connected to the hull (e.g.

the nuclear reactor). These initial imperfections may trigger buckling or premature plastic
collapse at pressure far below those corresponding to elastic buckling, even if these imper-
fections are of moderate amplitude due to the stringent tolerances used in fabrication.

Predicting the collapse pressure for any given imperfect geometry is not straightforward
though because the structure may feature a considerable degree of interaction between the
aforementioned buckling modes. For solving the buckling problem at hand, the designer
may resort to closed-form solutions or other semi-numerical methods available in the codes
of practice (e.g. the BS5500). Another alternative that is investigated here consists in using
an appropriate finite-element-based simulation.
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(a) Overall mode (b) Interframe mode (c) Frame tripping mode

Figure 6.15: Most critical buckling patterns of a ring-stiffened shell cylinder.

6.4.1.2 Modelling of the shape imperfections

Note that the present analysis is restricted to the effects of overall and interframe shape
imperfections. The frame tripping mode is avoided here by checking for conservative safety
constraints (from the BS5500) regarding the proportions of the stiffener’s web and flange
during the optimization. The overall (resp. interframe) radial imperfection is given by:

ζn(z, θ ) = An cos (nθ ) , (6.22)

ζm(z, θ ) = Am cos
�
π

Ls

z

�
cos (mθ ) , (6.23)

where n (resp. m) is the number of circumferential waves that typically ranges from 2 to
6 (resp. 10 to 20), and An (resp. Am) denotes the amplitude of the radial imperfection.
The origin of the z axis is located at the left end of the bay in its vertical position. In the
present application, only two modes are considered: n = 2 and m = 14. The two modes
correspond to the most critical buckling patterns of the initial design. A finer study would
consist in considering a larger spectrum of imperfections depending on the design.

6.4.1.3 Nonlinear finite element model

It is proposed to compute the collapse pressure by means of the asymptotic numerial
method. Material and geometric nonlinearities are taken into account. The steel that con-
stitutes the hull is assumed to follow a nonlinear elastic Ramberg-Osgood constitutive law
as described in Section 6.2.4.4. Plasticity is neglected here as it can be reasonably assumed
that there is no significant unloading anywhere in the structure until collapse is reached.
Follower forces are taken into account for the hydrostatic pressure field p so that it is always
exerted normally with respect to the deformed structure.

Rigid body modes are eliminated in three points as illustrated in Figure 6.16(a) in such
a way that it does not modify the shape of the deformed structure, namely:

• in A, the three degrees of translation are set equal to zero;

• in B, the degree of translation along the x-axis is set equal to zero;

• in C, the degrees of translation along the x- and y-axes are set equal to zero;
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The orthoradial rotations of the two circumferential ends are set equal to zero and the
longitudinal displacements of each end are assigned equal to the longitudinal displacement
of one node (for each end) in order to account for the presence of repeated adjacent bays.
As a result, each circumferential end remain in a (moving) plane and the deformed plating
is tangent to the normal of this plane. In addition, a membrane compressive stress of
amplitude pπR2 is exerted as indicated in Figure 6.14. This additional load emulates the
background effect (i.e. the hydrostatic pressure exerted on the two ends of the cylindrical
hull).

The structure is meshed with 1,540 Büchter-Ramm elements featuring about 40,000
degrees of freedom. The hull is meshed with 70× 10 elements, 70× 8 elements for the
stiffener’s web and 70 × 4 elements for the stiffener’s flange. The collapse pressure was
shown to stabilize for a coarser mesh featuring 15,000 degrees of freedom although it has
been raised here in order to accurately represent the highest modal imperfection featur-
ing 14 waves along the circumference (one wave being represented here with 70/14 = 5
elements). Since the Büchter-Ramm element is quadratic, this yields a fair number of 11
nodes to represent one wave. Amplified superpositions of the two imperfections considered
here are illustrated in Figure 6.17.
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(a) Nodes for the elimination of rigid body moves (b) Perfect mesh

Figure 6.16: Finite element modelling of the ring-stiffened shell cylinder.

6.4.1.4 Semi-numerical model

In the sequel the designs obtained with the finite element model are compared with the
ones based on approximate semi-numerical solutions available in the shell design codes
of practice (see Dubourg et al., 2008, for a review). These approximations are not able
to account for the possible interactions between the buckling modes. Indeed, the model
for predicting the overall (resp. interframe) plastic collapse pressure pn pl (resp. pm pl)
depends on the amplitude of an overall (resp. interframe) imperfection An (resp. Am) only.
pn pl is determined here according to the Bryant formula embedded in the BS5500, and pm pl

resorts to an interpolated table of finite element solutions derived by the Krylov shipbuilding

research institute (KSRI).
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(a) Overall imperfection (b) Interframe imperfection

(c) Both imperfections

Figure 6.17: Meshed ring-stiffened shell cylinder with amplified imperfections.

The final semi-numerical model yielding the plastic collapse pressure for the two modes
is approximated as follows:

pcritical

�
An, Am

�
=min

�
pn pl(An), pm pl(Am)

�
. (6.24)

6.4.2 Formulations of the design optimization problem

In this section two design philosophies are opposed. The first one resorts to the so-called
worst case approach that consists in designing for an extreme configuration specified by the
experts. The other one uses a more comprehensive probabilistic model and eventually falls
under the RBDO formulation.

6.4.2.1 Objective and constraints

First, the objective of the design optimization is to find the set of parameters ruling the
stiffness of the structure d = (e, hw, ew, w f , e f )

T that minimizes the ratio between the
structural weight and the weight of water displaced by the structure. The latter ratio reads
as follows:

c(d) =
ρsteelVsteel(d)

ρwaterπ (R+ e/2)2 Ls

. (6.25)
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The admissible design space is bounded with the following constraints.

(i) Since the semi-numerical model lacks consideration of the frame tripping mode, it
is proposed to resort to the following conservative safety criteria prescribed in the
BS5500:

hw ≤ 1.1

È
E

σy

ew, (6.26)

w f ≤
È

E

σy

e f . (6.27)

These two constraints actually bound the slenderness ratios of the stiffener.

(ii) The stiffener’s flange should not be too large with respect to the interframe distance
in order to be able to place sufficiently large openings through the hull:

445 mm≤ Ls − w f . (6.28)

(iii) The design space is bounded with the following reasonable boundaries:

p R

σy

≤ e ≤ 50 mm, (6.29)

w f ≤ hw ≤ 2 w f , (6.30)

5 mm≤ ew ≤ 25 mm, (6.31)

70 mm≤ w f ≤ 150 mm, (6.32)

15 mm≤ e f ≤ 50 mm. (6.33)

The first lower constraint on the hull thickness e means that the circumferential stress
in the equivalent non-stiffened cylinder should not exceed the yield strength σy .

At last, the predictive models for the collapse pressure (namely the finite element model
and the semi-numerical solutions) are used for guaranteeing that collapse does not occur at
some prescribed diving depth Iacc. Therefore, it leads to the establishment of the following
last constraint:

Iaccρwater g ≤ pcritical(d). (6.34)

It is assumed that the present submarine is designed for an accidental diving depth Iacc of
250 m.

6.4.2.2 The worst case approach

The worst case approach basically consists in setting all the demand (resp. capacity) vari-
ables to their highest (resp. lowest) possible values and to find the optimal design for this
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worst scenario. In the present context of shell design, this resorts to (i) prescribed maxi-
mum imperfection amplitudes and (ii) a destruction diving depth Ides that is significantly
larger than the accidental diving depth Iacc.

Here, the maximum imperfection amplitudes are taken from the BS5500 recommenda-
tions and are set equal to A2 max = 5 R/1,000 and A14 max = Ls/100. The destruction diving
depth is arbitrarily fixed to 340 m.

6.4.2.3 The probabilistic approach

Arguing that the previous worst case approach introduces an unknown degree of conser-
vatism, it is proposed to resort to a more comprehensive probabilistic model for describing
the possible configurations of the hull. This probabilistic model is specified in Table 6.3.

Variable Distribution Mean C.o.V.

E (MPa) Lognormal 200, 000 5%
σy (MPa) Lognormal 390 5%
σu (MPa) Lognormal 570 3%
e (mm) Lognormal µe 3%
hw (mm) Lognormal µhw

3%
ew (mm) Lognormal µew

3%
w f (mm) Lognormal µw f

3%

e f (mm) Lognormal µe f
3%

A2 (mm) Lognormal 1
3

5 R

1,000
50%

A14 (mm) Lognormal 1
3

Ls

100
50%

Table 6.3: Probabilistic model for the ring-stiffened shell cylinder.

Since no data is available, the probabilistic model for the material properties is built
from the recommendations available in the JCSS probabilistic modelling code2 (Vrouwen-
velder, 1997). This code also prescribes a linear correlation between the yield strength σy

and the ultimate stress σu in the form of a Pearson correlation coefficient ρ = 0.75, which
is taken into account in the present analysis. The right-skewed probabilistic model for the
amplitudes of the imperfections was built with an empirical coefficient of variation of 50%
and the mean is such that the previous worst imperfections A2 max and A14 max matches the
99.5%-quantile of the present probabilistic model. This thus leads approximately to set the
mean value equal to one third of the latter worst imperfection amplitudes as indicated in
Table 6.3.

Given this probabilistic model, the original deterministic design optimization problem
is transformed into a reliability-based design problem where safety is measured by means

2See http://www.jcss.ethz.ch/publications/publications_pmc.html.

http://www.jcss.ethz.ch/publications/publications_pmc.html
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of the following probability of failure:

p f (d) = P
�

pcritical(d, X)≤ Iaccρwater g
�

. (6.35)

where X is the random vector that collects all the random variables of the probabilistic
model. The optimization is performed with respect to the means of the random design
variables e, hw, ew, w f and e f . The probabilistic constraint reads as follows:

p f (d)≤ Φ(−β0), (6.36)

where β0 = 6 in the present application (i.e. p f 0 ≤ 10−9).

6.4.2.4 Resolution strategies

The deterministic design optimization problem underlying the worst case approach is
solved here by means of the Polak-He gradient-based optimizer (see Algorithm 4.1 in Chap-
ter 4). It uses the two mechanical models for the buckling strength of the structure, namely
the semi-numerical (SN) and the finite element (FE) models.

The reliability-based design optimization problem underlying the probabilistic approach
is solved with the meta-model-based RBDO strategy. Again, two designs are computed with
either of the mechanical models.

Once the four optimal designs are found, a reliability analysis is performed in order to
compute the safety level of the optimally designed structures at both the accidental and the
destruction diving depth using the probabilistic model of Table 6.3. Since the finite element
model is expensive to evaluate, this resorts to the proposed meta-model-based importance
sampling technique with a 5% target coefficient of variation on the failure probability. For
the less expensive semi-numerical model, it is proposed to resort to direct subset sampling
in order to compute the whole CDF of the critical pressure which yields a relationship
between the failure probability and the diving depth in a single run for each design.

6.4.3 Results

The results are given in Table 6.4 and the corresponding designs are illustrated in Fig-
ure 6.18. First, it should be noticed that the FE-based (finite element) design is always
more cost-optimal than its SN (semi-numerical) counterpart. Actually, this confirm the ini-
tial intuition as the semi-numerical solutions involve a set of built-in safety factors that
eventually lead to an important (although unknown) degree of conservatism. In the worst
case approach, the gain in using a finite element model is only 4%, whereas it reaches 17%
in the RBDO approach.

It should also be noticed that the SN-based design always features a more slender stiff-
ener web than the FE-based designs. This is because the SN-solution lacks an explicit
consideration of the frame tripping buckling mode. This lack is such that in the determin-
istic worst case approach, the BS5500 safety constraint regarding this mode is active at the
optimal design (see Eq. (6.26)). Indeed, in this case, the stiffener web is clearly too slender
as illustrated in Figure 6.18(a).
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Worst case approach RBDO (β = 6)
Method

FE-based SN-based FE-based SN-based
e (mm) 21.99 26.56 28.65 35.85
hw (mm) 186.01 a202.38 181.37 201.66
ew (mm) 19.47 a8.14 14.44 12.11
w f (mm) 119.57 101.22 130.62 146.18
e f (mm) 23.97 24.53 29.68 32.77
Cost (%) 19.60 20.04 23.56 28.47
β(Iacc) 4.99 3.81 6.06 6.11
β(Ides) 1.40 2.00 4.42 4.99

aThe frame tripping safety constraint is active.

Table 6.4: Results for the design optimization of the imperfect ring-stiffened shell cylinder.

FE-based

SN-based

(a) Worst case optimal designs

FE-based

SN-based

(b) RBDO (β = 6) optimal designs

Figure 6.18: Comparison of the optimal designs for the imperfect ring-stiffened shell cylinder.
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Figure 6.19: Relation between the diving depth and the failure probability for the imperfect ring-
stiffened shell cylinder.
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As expected, the worst case approach offers a significant degree of safety at the acciden-
tal diving depth and it even remains a little margin at the destruction diving depth although
the failure probability is much greater there (p f = Φ(−β) ≈ 10−2). The probabilistic ap-
proach enables an explicit control of the safety level at the accidental diving depth. Due to
the important targeted level of safety (p f < 10−9), the reliability-based optimal designs are
of course less optimal than their worst case counterparts.

The relationship between the diving depth and the failure probability is illustrated in
Figure 6.19. The subset sampling technique applied with the semi-numerical model enables
a reconstruction of the full CDF. The meta-model-based importance sampling applied on
the expensive-to-evaluate finite-element model only yields the failure probability estimates
at the two diving depths of interest. It can be seen from Figure 6.19(b) that the failure
probability matches the maximum tolerance set here equal to p f = Φ(−6)< 10−9.

6.4.3.1 Computational details

Convergence of the meta-model-based RBDO strategy is obtained within 850 calls to the
buckling strength models. Note that it is of utmost importance for the FE-based application
due to the important numerical effort required by a single finite element analysis (about 10
minutes of CPU time). For the sake of completeness, the convergence of the algorithm is
depicted in Figure 6.20 and Figure 6.21 for each buckling strength model.

The complementary meta-model-based importance sampling analyses on the FE-based
designs revealed that the Kriging surrogates accurately fit the limit-state surfaces as the
correction factor is always close to unity. Hence, the required coefficient of variation of 5%
is obtained within a few hundred calls to the finite element model.

6.4.4 Conclusion

This section applied the reliability-based design philosophy to the design of an imperfect
submarine pressure hull prone to buckling.

First, the safety margin associated with the current worst case design methodology has
been quantified in the form of a failure probability. It reveals that this common practice
yields a significant level of safety although it is not truly mastered.

Second, in order to address this latter remark it is proposed to explicitly account for the
uncertainties in the optimization problem. This eventually falls under the so-called RBDO
formulation which is commonly identified to be too computationally demanding for being
applied to industrial problems. In this context, the proposed meta-model-based RBDO
strategy truly reveals interesting to come up with a solution within less than a thousand
runs of the finite element code.
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Figure 6.20: Convergence of the meta-model-based RBDO algorithm for the FE-based analysis.
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Figure 6.21: Convergence of the meta-model-based RBDO algorithm for the SN-based analysis.



Conclusion

Summary and main contributions

The work presented in this thesis was aimed at solving the reliability-based design problem
when the limit-state function involves an expensive-to-evaluate numerical model. This
seems to be achieved in the light of the examples presented in Chapters 5 and 6.

Probabilistic surrogate modelling

To achieve this objective it has been decided to resort to adaptive surrogates for the limit-
state function. In Chapter 1, the Gaussian process (or Kriging) prediction methodology
has revealed a useful tool for performing such a substitution. Indeed, it provides a local
measure of its own accuracy in the convenient form of a probabilistic measure that allows
multiple post-processing operations such as:

(i) the formulation of confidence intervals on the prediction;

(ii) probabilistic classification with respect to a specific contour (e.g. a limit-state sur-
face);

(iii) the adaptive refinement of an initial coarse meta-model for different purposes such
as global optimization or contour approximation.

Sampling-clustering-based adaptive designs of experiments

Building on a quite exhaustive review of the existing techniques for building adaptive de-
signs of experiments with a Kriging meta-model, an alternative strategy is proposed in
Chapter 2. It focuses on the use of the so-called refinement criteria rather than on the
development of new ones as typically addressed in the literature. More specifically, it is
proposed to interpret the refinement criteria as probability density functions for the im-
provement points. This vision naturally leads to a sampling-based approach. Sampling of
this criteria resorts to Markov chain Monte Carlo samplers such as the slice sampler which
revealed robust with respect to the high multi-modality of the contour refinement criteria.



240 Conclusion

As expected, the sampled population mainly occupies the vicinity of the region of interest
(i.e. the limit-state surface). Clustering is then employed on purpose to find a subset of
points that best represents the latter population. This sampling-clustering approach solves
the problem of multiple best improvement points and enables the use of a distributed com-
puting platform.

Meta-model-based importance sampling for reliability analysis

The quantification of failure probabilities is a key step of the reliability-based design
methodology. Hence, Chapter 3 has reviewed a subset of probability estimation techniques
available in the literature along with comments on their pros and cons. It was concluded
that the subset sampling approach offers the best trade-off between versatility and computa-
tional effort (with respect to the order of magnitude of the failure probability in particular).
Nonetheless, it remains inapplicable when the limit-state function involves an expensive-
to-evaluate numerical model.

For this reason, a whole section of Chapter 3 has been devoted to the presentation of the
so-called surrogate-based reliability analyses that became quite popular in the last decade.
They basically consists in using a meta-model instead of the original model. However, it was
pointed out that this substitution unavoidably introduces a bias in the failure probability
estimate. Thus, in order to apprehend this bias, two different metrics have been presented.
The augmented failure probability is defined as the sum of the aleatory uncertainty in the
probabilistic model and the epistemic uncertainty induced by the Kriging prediction of the
failure domain. The second metric is a pseudo-confidence interval on the failure probability
whose lower (resp. upper) bound is computed on the lower (resp. upper) confidence
bound of the Kriging-predicted limit-state surface. None of these two metrics constitutes a
real measure of the bias though. They only provide an intuition.

Hence, an hybrid strategy is proposed in an attempt to quantify the actual bias. This
strategy uses the probabilistic classification function from a Gaussian process predictor for
approximating the optimal instrumental PDF in an importance sampling scheme. After ba-
sic algebra, it turned out that the failure probability recasts as the product of the augmented
failure probability and a correction factor. This correction factor measures the bias of inter-
est. The estimation of this correction factor ineluctably resorts to cross-sampling between
the Kriging meta-model and the original model. However, it is worth remembering that this
sampling is optimal when the Kriging meta-model is accurate, so that it is not necessarily
less efficient than the usual plug-in estimators (see the examples in Chapter 5).

Reliability-based design optimization using Kriging surrogates and sub-
set sampling

Chapter 4 eventually tackled the main topic of this research work which is concerned with
the efficient resolution of the reliability-based design optimization problem. It is presented
as a classical design optimization problem for which the hard inequality constraints are
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simply replaced by their probabilistic counterparts. Hence, a first part of Chapter 4 con-
centrates on a few elements of inequality constrained optimization and eventually come up
with the need for the gradient of the failure probability with respect to the design variables.

The estimation of this quantity is commonly identified as a reliability sensitivity analysis
in the associated literature. The strategy that is used here takes advantage of the specific
formulation of the RBDO problem considered in this thesis where the design variables are
exclusively involved in the definition of the probabilistic model (i.e. they are means of
random variables). Indeed, this enables the use of the so-called score function approach

which is shown to yield the gradient of interest as a by-product of a reliability analysis. In
addition, it can be applied to crude Monte Carlo, subset and importance sampling.

Then, in order to make the nested surrogate-based reliability analyses more efficient, it
is proposed to construct the Kriging predictors of the limit-state surfaces in a global space.
This space is referred to as the augmented reliability space and it is obtained by considering
that the design parameters are uniformly distributed over the admissible design space. As
a result, this augments the uncertainty in the probabilistic model and the range on which
the Kriging meta-model should be accurate.

The final RBDO algorithm resorts to subset sampling on the Kriging surrogates for the
nested reliability and reliability sensitivity analyses. It may ask for a refinement of the
Kriging surrogates based on the spread of the pseudo-confidence interval on the failure
probability previously introduced in Chapter 3. This somewhat empirical metric revealed
appropriate for the RBDO examples that have been dealt with in Chapters 5 and 6.

Probabilistic design of imperfect shells prone to buckling

The reliability analysis and reliability-based design of imperfect shells prone to buckling is
then provided so as to illustrate the applicability of the proposed approaches. First, it has
been shown that the prediction of the critical buckling load involves a significant number of
fine assumptions that makes the resulting numerical model expensive-to-evaluate. Besides,
the probabilistic representation of the spatially varying random shell properties requires a
fairly large number of random variables. In this context, the application of meta-model-
based strategies is quite challenging.

The meta-model-based importance sampling technique has been able to yield an unbi-
ased estimate of the failure probability even though the underlying Kriging predictor does
not accurately fit the actual limit-state surface. This example truly reveals the interest one
should have in such hybrid approaches when using meta-models for such challenging reli-
ability analyses.

The meta-model-based RBDO strategy has been applied to the design of an imperfect
submarine pressure hull and it was able to provide an optimal design within less than
a thousand runs of the finite element model. A complementary meta-model-based impor-
tance sampling analysis at the optimal design showed that the Kriging surrogates accurately
fit the actual limit-state surface.
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Future work

The use of adaptive surrogate models is inescapable at some point when decision-making
analyses such as risk analysis or design optimization are based on expensive-to-evaluate
numerical models. Even though this thesis contributed to the resolution of the specific
problem of reliability-based design optimization, some elementary tools and concepts might
be reused to address a broader range of problems.

RBDO using meta-model-based importance sampling

First, it has been admitted that the proposed surrogate-based RBDO strategy may lose ef-
ficiency when both the number of random variables is greater than 20 and the limit-state
function features a high degree of nonlinearity. For such cases, hybrid approaches such as
meta-model-based importance sampling could be used for estimating the failure probability
and its gradient within the optimization loop. Complementary studies are required though
in order to choose (i) when to use meta-model-based importance sampling (i.e. for comput-
ing the direction and (or not) during the approximate line-search) and (ii) how to recycle
the design of experiments.

Application to a broader range of RBDO problems

Second, the design optimization problems considered in this thesis exclusively aimed at tun-
ing the means of the random design variables. Further investigations are required in order
to apply the proposed methodology to the optimal tolerancing of manufactured products.
This problem essentially consists in balancing products quality with cost-effective produc-
tion capabilities by specifying adequate conformity tolerances (i.e. by tuning the variances
of the random design variables). Such an application obviously requires the development
of real cost models (functions of the so-called capability coefficients) as well as an extended
test of the proposed surrogate-based strategy.

Sampling-clustering-based efficient global optimization

The sampling-clustering approach to the construction of adaptive designs of experiments
has only been applied to the contour refinement problem. It is the author’s belief that it
can easily be extended to the resolution of both constrained and unconstrained global opti-
mization problems. Indeed, the positive-valued expected improvement criterion featured in
the efficient global optimization algorithm can also be interpreted as a probability density
function for the location of the minimizer of interest. Hence, it can potentially be sampled
from.

This approach would additionally allow one to tackle the convergence criterion problem
for the EGO algorithm. Indeed, scrutinizing the maximum value of the expected improve-
ment as originally proposed by Jones et al. (1998) does not reveal particularly appropriate
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as the search for this maximum might be mislead due to the significant number of modes
featured by this criterion. It could instead be proposed to look at the spread of the candi-
date population at the sampling stage to compute confidence intervals on the location of
the minimizer. Convergence would then be based on a comparison of the latter spread to
the width of the initial admissible space.

In addition, such a sampling-based approach enables the use of informative prior densi-
ties for the location of the minimizer as weighting densities of the expected improvement.
This would ultimately turn the optimization problem into a fully Bayesian inverse problem.

Bayesian updating featuring expensive-to-evaluate likelihood functions

Besides decision-making problems, inverse parametric identification has also gained a large
interest in the past decade. The purpose of such problems is to find the environmental con-
ditions in which a system has evolved based on indirect measurements of its performance
(e.g. find the initial geometry of a structure given its deformed shape and an uncertain
description of its load). This typically resorts to a numerical model that is able to predict
the measured data and which is a function of the sought environmental conditions. Then
the so-called Bayesian updating formalism consists in inverting the model on purpose to
find the distribution of its input parameters given that of its output. The output distribution
is based on the data measurements and is referred to as the likelihood function.

Such an inversion typically resorts to Markov chain Monte Carlo samplers which are
known to be rather computationally demanding due to their possibly long tuning period and
high rejection rates (Perrin, 2008; Berveiller et al., 2011). Then the idea already followed
by Taflanidis and Cheung (2011) would consist in replacing the expensive-to-evaluate like-
lihood function by a meta-model. This research work obviously requires the definition of
new metrics for assessing and reducing the loss of accuracy induced by this substitution.
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A.1 Introduction

The multivariate Gaussian distribution is widely used in probability and statistics due to its
convenient properties. Some of them are reviewed in this Appendix because they are used
in the text of Chapter 1. The reason why they do not appear in the text is that they might
be admitted in a first time. The following definitions and theorems presented here come
from the book by Santner et al. (2003).

A.2 The multivariate Gaussian distribution

Definition A.2.1. An n-component vector X is said to have a multivariate Gaussian distribu-
tion if it expresses as the following linear form of r independent standard Gaussian random

variates Ξ = (Ξi ∼N (0, 1), i = 1, . . . , r)T:

X = (X1, . . . , Xn)
T = LΞ +m, (A.1)

where L is an n× r matrix and m is an n-component vector, both with real coefficients.

The two first second-order moments of the multivariate distribution come easily from
this definition. First, its mean vector reads:

µ ≡ E [X] = E [LΞ +m] =m, (A.2)

and its covariance matrix reads:

Σ ≡ Cov [X] = E
�
(LΞ +m −µ) (LΞ +m −µ)T

�
= LLT. (A.3)

It is clear from this definition that the covariance matrix is always symmetric and positive

definite. The symmetry comes from the fact that it is defined as the product of a real matrix
by its transposed matrix; positive definiteness holds because:

zTΣ z = zT LLT z = ‖LT z‖22, (A.4)

where ‖•‖2 denotes the usual L2 norm in Rn. Provided z 6= 0, one gets:

zTΣ z ≥ 0, (A.5)

which is the definition of a (non-strictly) positive definite matrix. A strictly positive definite
matrix is obtained if and only if L is full rank, namely if r = rank(L) = n, meaning that it
cannot be reduced to a lower dimensional matrix due to the presence of lines in L which
would be linear combinations of the others.

A multivariate Gaussian distribution defined with respect to a non full rank matrix L is
said to be degenerate, and this can be checked by computing the condition number of Σ
which is defined as the ratio between its lower and higher singular values from its singular

value decomposition (SVD). If this condition number is zero, this means X is degenerate.
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Theorem A.2.1. Multivariate normal probability density function

Provided L has full rank (i.e. r = n), the multivariate Gaussian distribution has the following

probability density function:

ϕn(x ) =
1

(2π)n/2 [detΣ]1/2
exp
�
−

1

2
(x −µ)TΣ−1 (x −µ)

�
, x ∈ Rn, (A.6)

where [detΣ] denotes the determinant of the covariance matrix.

Proof A.2.1. Let Ξ denote a random vector whose n components are independent and identically dis-

tributed standard Gaussian random variates. Then, the joint PDF of this vector is simply obtained as

the product of the n marginal PDFs:

fΞ(ξ) =
n∏

i=1

1

(2π)1/2
exp
�
−

1

2
ξ2

i

�
=

1

(2π)n/2
exp


−1

2

n∑
i=1

ξ2
i


 = 1

(2π)n/2
exp
�
−

1

2
ξT ξ

�
. (A.7)

Recall from Definition A.2.1 that a Gaussian random vector is defined as the following linear combina-

tion of Ξ:

X = LΞ +µ, (A.8)

where L = Σ1/2 is additionally assumed to be full rank here. Then since the linear application is

monotone, the joint PDF of X can be simply obtained by applying the change of variable theorem:

ϕn(x ) = fΞ
�

L−1 �x −µ�
�
[detJ] (A.9)

where J is the Jacobian (square) matrix of the one-to-one mapping ξ 7→ X with terms:

Ji j =
∂ ξi

∂ x j

, i, j = 1, . . . , n. (A.10)

The final formula for the joint PDF results from the fact that:

J= L−1 = Σ−1/2 ⇒ [detJ] =
�

detL−1
�
=
�

detΣ−1/2
�
=

1

[detΣ]1/2
. (A.11)

A.3 Linear form of Gaussian random vectors

Theorem A.3.1. Linear form of a Gaussian random vector

Assume X is distributed according to a multivariate Gaussian distribution X ∼Nn(µ, Σ), A is

a real matrix and b is a real vector, then:

A X + b ∼Nm

�
Aµ+ b, AΣAT

�
. (A.12)

Proof A.3.1. First, the fact that A X + b is still Gaussian is due to Definition A.2.1. Indeed, considering

a random vector U whose components are uncorrelated standard Gaussian random variates:

X = LU +µ, (A.13)

where L is such that Σ = LLT, one may further write:

A X + b = A (LU +µ) + b = ALU + (Aµ+ b), (A.14)
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which is nothing but another linear form of n uncorrelated standard Gaussian random variates for

which Definition A.2.1 still holds. Second-order moments come again easily. Its mean vector reads

E [A X + b] = Aµ+ b, (A.15)

and its covariance matrix reads:

Cov [A X + b] = E
�

ALU (ALU)T
�
= AΣAT. (A.16)

A.4 Marginal and conditional distributions

In this section, we consider a Gaussian random vector X of size n divided into two sub-
vectors X1 and X2 of respective sizes n1 and n2. It is also assumed that X has its parameters
partitioned as follows:

X =

�
X1

X2

�
∼Nn

��
µ1

µ2

�
,
�
Σ11 Σ12

Σ21 Σ22

��
, (A.17)

requiring only that Σ12 = Σ
T

21 so that the overall covariance matrix remains symmetric.

Theorem A.4.1. Marginal distributions of a Gaussian random vector

The marginal distribution of X1 is also Gaussian with parameters:

X1 ∼Nn1

�
µ1, Σ11

�
. (A.18)

This can be proved by elaborating the required probability density function from its
definition. The marginal distribution of X1 is defined as follows:

fX1
(x 1) =

∫

Rn2

fX(x 1, x 2)dx 2, (A.19)

The explicit computations involve advanced linear algebra operations among which the
computations of the inverse and the determinant of a partitioned symmetric matrix.

A simple interpretation of this theorem is that to marginalize a partitioned Gaussian
random vector, one may only retain those terms corresponding to the part of interest and
omit the cross-covariance matrices Σ12 = Σ

T

21.

Theorem A.4.2. Conditional distributions of a Gaussian random vector

The conditional distributions of X1 | X2 is also Gaussian,

X1 | X2 ∼Nn1

�
µ1|2, Σ1|2

�
, (A.20)

with mean:

µ1|2 = µ1+Σ
T

12Σ
−1
22 (x 2−µ2), (A.21)

and covariance:

Σ1|2 = Σ11−ΣT

12Σ
−1
22 Σ21. (A.22)
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Again, this can be proved by elaborating the required probability density function from
its definition. The conditional distribution of X1 | X2 and X2 | X1 is defined as follows:

fX1|X2
(x 1) =

fX(x 1, x 2)

fX2
(x 2)

. (A.23)

As for the proof of Theorem A.4.1, the explicit computations involve advanced linear alge-
bra operations among which the computations of the inverse and the determinant of a par-
titioned symmetric matrix. In addition, it requires the prior computations of the marginal
distribution fX2

(x 2).

This theorem is used in Section 1.4.6 to derive the posterior distribution of a Bayesian
predictor under a Gaussian process prior model.

A.5 Simulation of a Gaussian random vector

A.5.1 The Cholesky decomposition method

The simulation of a non-degenerate Gaussian random vector X of size n given its parameters
µ and Σ requires the computation of the Cholesky decomposition of its covariance matrix:

Σ = LLT, (A.24)

From that decomposition, realizations of X may be simulated from its definition:

X = LΞ +µ, (A.25)

where Ξ = (Ξi ∼ N (0, 1), i = 1, . . . , m)T. Algorithm A.1 summarizes the simulation
procedure.

Algorithm A.1 Simulation of N samples from a non-degenerate Gaussian random vector.

1: Input: µ, Σ
2: L := Cholesky(Σ) If it fails use Algorithm A.2 instead.

3: X = ;
4: for i = 1→ N do
5: ξ := StandardGaussianRandomNumbers(m)
6: x (i) := µ+ Lξ
7: X =

¦
X , x (i)

©
8: end for
9: return X

A.5.2 The spectral representation method

This procedure is more robust as it applies to both degenerate and non-degenerate Gaussian
random vectors, but it requires the computation of the eigenvalue decomposition (EVD) of
its covariance matrix instead of its unavailable Cholesky decomposition.
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The EVD problem consists in finding the m couples
�
(λi, φ i), i = 1, . . . , m

�
that are

solution of:
Σφ i = λiφ i, i = 1, . . . , m. (A.26)

Retaining the r couples associated with the non-zero singular values in the r × r diag-
onal matrix Λ and their associated singular vectors grouped in the m × r matrix Φ =�
φ i, i = 1, . . . , r

�
, finally gives the following decomposition:

Σ = ΦΛΦT = (ΦΛ1/2) (ΦΛ1/2)T. (A.27)

In practice, one neglects small singular values that are negligible in front of the largest
singular value, say smaller than ǫ = 10−10×max

�
λi, i = 1, . . . , m

	
. Hence, another repre-

sentation of X is proposed:
X = µ+ΦΛ1/2Ξ. (A.28)

This new representation may then be used in Algorithm A.2 to sample realizations from
any Gaussian random vector. This representation only needs the realizations of r ≤ m

independent random variates Ξ = 〈Ξi ∼N (0, 1), i = 1, . . . , r〉T.

Algorithm A.2 Simulation of N samples from any Gaussian random vector.

1: Input: µ, Σ, ǫ
2: {(λi, φ i), i = 1, . . . , m} := SingularValueDecomposition(Σ)
3: {(λi, φ i), i = 1, . . . , m} := SortInDescendingOrder({λi, i = 1, . . . , m})
4: r := Card

�
{λi > ǫ, i = 1, . . . , m}

�
5: Λ1/2 := DiagonalMatrix

�np
λi, i = 1, . . . , r

o�

6: Φ :=
�
φ i, i = 1, . . . , r

�
7: X = ;
8: for i = 1→ N do
9: ξ := StandardGaussianRandomNumbers(r)

10: x (i) := µ+ΦΛ1/2 ξ

11: X =
¦
X , x (i)

©
12: end for
13: return X

This spectral representation does not introduce any underestimation of the true spread
of the degenerate random vector X , because the spectral content of the covariance matrix
is conserved. However, it is worth pointing out here that Li and Der Kiureghian (1993)
extend this technique to the simulation of highly correlated random vectors resulting from
the discretization of a stationary Gaussian process. They propose to neglect a larger set of
the smallest singular values (possibly significantly positive) in order to minimize the num-
ber r of random variables and thus ease structural reliability analyses. This variant does
introduce a relative mean-squared error that can be quantified as the amount of neglected
spectral content:

RMSE(r) =

m∑
i=r

λi

m∑
i=1
λi

< 1. (A.29)
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B.1 Introduction

Markov chain Monte Carlo (MCMC) techniques arise in many application fields ranging
from numerical optimization (e.g. simulated annealing) to statistical learning (see e.g. the
Bayesian predictors in Chapter 1). The reader is referred to the article by Andrieu et al.
(2003) which provides a short but quite exhaustive review of these applications.

In this manuscript they are used for two distinct purposes. First, they are used in Sec-
tion 2.4 of Chapter 2 as a tool to sample from pseudo-PDFs in order to build an adaptive
experimental design which concentrates in a specific region of interest. Second, it is used
at the end of Chapter 3 for a proper statistical purpose: i.e. estimating a mathematical ex-
pectation from non-parametric instrumental PDFs. In both cases, the target distribution p

is jointly defined up to an unknown but finite normalizing constant. In this setup, MCMC
techniques should be seen as the only alternative to sample from p since the more con-
ventional Monte Carlo methods such as the inverse transform technique are inapplicable
there. The reader is referred to the reference books by Robert and Casella (2004) and
Rubinstein and Kroese (2008) for a thorough review of these modern sampling techniques
that appeared in the late 40’s (Metropolis and Ulam, 1949; Metropolis, 1987).

B.2 Essentials for MCMC

This section summarizes the basic notions of MCMC sampling algorithms based on the
reference book by Robert and Casella (2004) and the article by Andrieu et al. (2003).

B.2.1 Markov chains

First, let us define a stochastic process
¦

X (i), i ∈ N
©

indexed by the infinite countable set of
positive integers N that takes its values in an n-dimensional continuous state space X. This
stochastic process is a first-order Markov chain if and only if its PDF reduces to:

p
�

x (i+1)
��x (i), . . . , x (0)

�
= K

�
x (i+1)

��x (i)
�

, i ∈ N, (B.1)

where K is the transition kernel of the chain. The latter transition kernel is a (conditional)
PDF, therefore it satisfies:

∫

X

K
�

x (i+1)
��x (i)

�
dx (i+1) = 1, i ∈ N. (B.2)

Example B.2.1. The random walk process is the most intuitive example of first-order Markov

chain. It is defined as follows:

X (i+1) = X (i)+ ε, i ∈ N, (B.3)

provided the first element X (0) is given. This first element is referred to as a seed in the MCMC

technical jargon. ε is a random vector of size n whose probability distribution is independent
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of the previous states of the chains
¦

X ( j), j = 0, . . . , i
©

. In addition, if ε is symmetric about

zero, then the random walk process is a symmetrical random walk process.

B.2.2 Required properties for MCMC

A Markov chain is said to reach a stationary (or invariant) probability distribution p if and
only if there exists a finite number of increments n0 such that:

X (i) ∼ p ⇒ X (i+1) ∼ p, ∀i > n0, n0 ∈ N \∞. (B.4)

Such a stationary distribution can be reached if and only if the transition kernel K allows for
free moves all over the state space X. The latter property is referred to as the irreducibility

of the chain. It is a fundamental property required by MCMC algorithms because the chains
are initialized from arbitrary seeds in practice. Hence, this arbitrary choice should not
affect the ability of the chain to converge. It is also said aperiodic if it does not get trapped
in cycles. These important properties are hard to check in practice, although some empirical
convergence diagnostics are available (Robert and Casella, 2004).

i

0
1000

2000
3000

4000
5000

x

5
0

5
10

15
20

25

p
(x

)

Figure B.1: A Markov chain whose transition kernel K is built so that the chain reaches p(x) ∝
0.7 exp(−0.2 x2) + 0.3 exp(−0.2 (x − 10)2) as stationary distribution. This illustration
is inspired from the article by Andrieu et al. (2003).

MCMC algorithms aim at constructing Markov chains from a transition kernel K such
that the chain eventually reaches a targeted probability distribution p. A non-necessary but
sufficient condition on K to insure that a given p is the desired stationary distribution is the
following reversibility (or detailed balance) condition:

p
�

x (i+1)
�

K
�

x (i)
��x (i+1)

�
= p

�
x (i)
�

K
�

x (i+1)
��x (i)

�
, ∀i > n0, n0 ∈ N \∞. (B.5)
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Indeed, integrating both sides over x (i) yields:

p
�

x (i+1)
�
=

∫

X

p
�

x (i)
�

K
�

x (i+1)
��x (i)

�
dx (i), ∀i > n0, n0 ∈ N \∞, (B.6)

which means that p is the stationary distribution of the chain with kernel K . MCMC al-
gorithms such as the Metropolis-Hastings sampler are specifically designed to satisfy this
reversibility condition.

B.2.3 Central limit theorem for stationary Markov chains

B.2.3.1 Statement

It can be proved under some additional conditions that are beyond the author’s reach, that
a central limit theorem holds for irreducible, aperiodic and reversible Markov chains.

Theorem B.2.1. Central limit theorem for stationary Markov chains (see e.g. Robert and

Casella, 2004, p. 244)

Let φ denote a real-valued function, and let {{φ(X [k] (i)), i = 1, . . . , N/K}, k = 1, . . . , K}
be a collection of K irreducible, aperiodic, reversible Markov chains with p as invariant
distribution. Then, provided the chains have reached stationarity, the following average:

b
φ =

1

N

K∑
k=1

N/K∑
i=1

φ
�

X [k] (i)
�

(B.7)

converges towards the following mathematical expectation:

φ = E
�
φ (X)

�
=

∫

X

φ (x ) p (x ) dx , (B.8)

and the convergence is as follows:�b
φ −φ

�
a.s.−→

N→∞
N1

�
0, σ2

φ

�
, (B.9)

where σ2
φ

is the variance of estimation.

This theorem is of utmost importance for the methods introduced in Chapter 3. The
convergence can be measured in terms of the variance of estimation which is proved to
decay in N in the sequel as for ordinary Monte Carlo methods.

The variance of estimation σ2
φ

in Theorem B.2.1 is derived as follows:

σ2
φ
= Var

�b
φ

�

= E

��b
φ −φ

�2
�

= E



 

1

N

K∑
k=1

N/K∑
i=1

φ
�

X [k] (i)
�
−φ

!2

 . (B.10)
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Since the chains are assumed to be generated with the same MCMC mechanism, they
are independent and identically distributed according to a unique Markov chain denoted
by {φ(X (i)), i = 1, . . . , N}, and the variance of estimation further reads:

σ2
φ
= K E



 

1

N

N/K∑
i=1

�
φ
�

X (i)
�
−φ

�!2



=
K

N 2 E




N/K∑
i=1

N/K∑
j=1

�
φ
�

X (i)
�
−φ

� �
φ
�

X ( j)
�
−φ

� . (B.11)

Thanks to the linearity of the mathematical expectation, one gets:

σ2
φ
=

K

N 2

N/K∑
i=1

N/K∑
j=1

E

��
φ
�

X (i)
�
−φ

� �
φ
�

X ( j)
�
−φ

��

=
K

N 2

N/K∑
i=1

N/K∑
j=1

Cov
�
φ
�

X (i)
�

, φ
�

X ( j)
��

, (B.12)

by definition of the chains autocovariance. Provided the chains have reached stationarity,
their autocovariance (the same for all chains) is a function of the lag ℓ = i − j and their
variance (the same for all chains) is constant, so that it recasts as follows:

Cov
�
φ
�

X (i)
�

, φ
�

X ( j)
��
= σ2

φ
R(i − j), (B.13)

where the variance σ2
φ
= Var

�
φ(X)

�
and the stationary autocorrelation R of the chain

have been introduced. Substituting the latter simplified expression for the covariance in
Eq. (B.12) yields:

σ2
φ
=

K

N 2

N/K∑
i=1

N/K∑
j=1

σ2
φ

R(i − j). (B.14)

Noting that the autocorrelation R is symmetric about zero where it is equal to one by
definition, one eventually gets:

σ2
φ
=

K σ2
φ

N 2




N/K∑
i=1

R(0) +
N/K∑
i=1

N/K∑
j=1
j 6=i

R(i − j)




=
K σ2

φ

N 2


N

K
+ 2

N/K∑
i=1

N/K−i∑
ℓ=1

R(ℓ)




=
K σ2

φ

N 2


N

K
+ 2

N/K−1∑
ℓ=1

�
N

K
− ℓ
�

R(ℓ)




=
σ2
φ

N

�
1+ γ

�
, (B.15)
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where the following coefficient has been introduced:

γ≡ 2
N/K−1∑
ℓ=1

�
1−

ℓK

N

�
R(ℓ). (B.16)

B.2.3.2 Numerical approximation of the variance of estimation

In practice, the computation of the variance of estimation in Eq. (B.15) requires the es-
timation of the chains’ variance σ2

φ
and that of the chains’ autocorrelation R at lags

ℓ = 1, . . . , N/K − 1. They can usually be estimated by averaging on both the K Markov
chains and their elements with equivalent lags using ergodicity. The variance (resp. the
autocorrelation) is computed as follows:

σ2
φ
≈

1

N

K∑
k=1

N/K∑
i=1

φ
�

X [k] (i)
�2−φ2

, (B.17)

R(ℓ) ≈
1

σ2
φ
(N − ℓK)

K∑
k=1

N/K−ℓ∑
i=1

�
φ
�

X (i)
�
−φ

� �
φ
�

X (i+ℓ)
�
−φ

�
. (B.18)
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Figure B.2: Autocorrelation of the Markov chain illustrated in Figure B.1.

Example B.2.2. The autocorrelation of the chain illustrated in Figure B.1 has been estimated

from the single chain available (i.e. K = 1) using Eq. (B.18). Its illustration in Figure B.2 is

truncated after the thirtieth lag. In this case, the estimator of the mean x = E [X ] is bx ≈ 6.77.

The correlation coefficient γ ≈ 0.99 and the variance of X σ2
X
≈ 25.47 eventually yields a

fair approximation of the variance of estimation σx ≈ 0.01. The MCMC-based estimator is

approximately (1+ γ) ≈ 2 times less efficient than an ordinary-Monte-Carlo-based estimator.
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To reduce this inefficiency, a common practice (used for the implementation of the reliability

methods at the end of Chapter 3) consists in using several independent Markov chains in

parallel (i.e. K > 1).

B.2.3.3 Remark for binary-valued functions

Note that in the particular case where φ is a binary-valued function (equal to 0 or 1),
φ(X) is a Bernoulli variable. Hence, the variance of the chains comes analytically (see e.g.

Lemaire, 2009, pp. 250–251):

σ2
φ
= Var

�
φ(X)

�
= p (1− p), (B.19)

where p = E
�
φ(X)

�
is the rate parameter of the Bernoulli variable φ(X). Thus, the

variance of estimation reduces to:

σ2
bp =

p (1− p)

N

�
1+ γ

�
. (B.20)

This eventually proves the following expression for the coefficient of variation:

δ =
σbp
p
=

r
1− p

N p

�
1+ γ

�
, (B.21)

which is used in Section 3.3.5 of Chapter 3.

B.2.4 Burn-in and thinning

In practice, the chains are initialized with arbitrary seeds {x [k] (0), k = 1, . . . , K}, so that
they may require a few iterations before they reach stationarity. Burn-in is an empirical
technique that consists in rejecting (burning) the n0 first values of the chain in order to
remove their non-stationary part. However, finding an objective value for n0 is rather non-
trivial as it depends on both the seed and how the MCMC sampler performs on the target
distribution p. In addition, this technique is quite computationally demanding if the target
distribution is expensive-to-evaluate. For instance, in Chapter 3, the sub-optimal instrumen-
tal PDFs used for subset sampling involve the performance function g in their definition (see
Section 3.3.5). On the contrary, burn-in is conceivable for estimating the augmented failure
probability in Section 3.4.2.1 as it only involves the Kriging predictor.

In the light of Eq. (B.15), it is clear that the variance of estimation of an average es-
timated from K stationary Markov chains is (1+ γ) times greater than that of an average
that would be estimated by ordinary Monte Carlo sampling due to the non-zero positive
γ coefficient. Note that this coefficient depends on the autocorrelation of the chain which
might be large when the MCMC sampler does not perform well (e.g. on highly multimodal
target distributions). For such cases, there exists another simple procedure known as thin-

ning which consists in retaining one element of each chain every t states (t ∈ N∗). Again
the parameter t is rather non-trivial to tune as it is case-dependent, and it considerably
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augments the total number of increments of the chain. Indeed, if both burn-in and thin-
ning are applied, and if an N -sample is required, then the total number of increments is
Ntot = n0+ t N .

0 20 40 60 80 100

i

5

0

5

10

15

x
(i
)

Figure B.3: Burnt and thinned Markov chain. The n0 = 20 first increments are burnt, and then one
element is kept every t = 3 states.

Finally, it is worth mentioning that the variance of estimation in Eq. (B.15) assumed
that the K chains were generated in parallel from different seeds but according to a same

MCMC mechanism. Hence, the burn-in and thinning procedures should be identical for all
the chains in an estimation context.

B.3 Markov chain samplers

This section shortly describes some state-of-the-art Markov chain samplers that were used
in this thesis. All the procedures are detailed for one chain only for the sake of clarity. They
may of course be used from a collection of seeds {x [k] (0), k = 1, . . . , K} in order to generate
a collection of chains {{X [k] (i), i = 1, . . . , N/K}, k = 1, . . . , K} in parallel.

B.3.1 The Metropolis-Hastings sampler

The Metropolis-Hastings sampler (Metropolis et al., 1953; Hastings, 1970) is built in order
to satisfy the reversibility condition formulated earlier in Eq. (B.5). It proceeds as detailed
in Algorithm B.1.
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Algorithm B.1 Metropolis-Hastings sampler

q Proposal PDF
p Target PDF

x (0) Seed (p(x (0))> 0)

i = 0

Propose a new candidate
x ⋆ ∼ q

�
•
��x (i)

�

Compute the probability of acceptance

r(i+1) = min

¨
p(x ⋆)q(x (i) | x ⋆)
p(x (i))q(x ⋆ | x (i))

; 1

«

Draw a uniform random number
z ∼ U ([0; 1])

Is z ≤ r(i+1)?

x (i+1) = x ⋆ x (i+1) = x (i)

i = i + 1

Is i = N/K? Done!

yes no

no yes

“A
cc

ep
t

x
⋆

w
it

h
pr

ob
.

r(
i+

1)
”

It requires a target PDF p, a proposal PDF q and a seed x (0) that is distributed according
to p, meaning that p(x (0))> 0. The algorithm then iterates on i until it has performed N/K

increments.

At each increment, the algorithm draws a random candidate according to the proposal
PDF q(• | x (i)). Hence, it is important to choose a proposal distribution which is easy to
sample from. Then the algorithm computes the acceptance probability which is defined as
follows:

r(i+1) =min

¨
p(x ⋆)q(x (i) | x ⋆)
p(x (i))q(x ⋆ | x (i))

; 1

«
, i = 0, . . . , N/K − 1 (B.22)

In fact, this transition probability was specifically defined to ensure that the associated
kernel satisfies the reversibility condition in Eq. (B.5) (see e.g. Andrieu et al., 2003, p. 16–
17). The candidate is then accepted with probability r(i+1) as detailed in Algorithm B.1.
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One advantage of this algorithm is that it does not require the knowledge of the nor-
malizing constant of the target PDF p. Indeed p only needs to be defined up to an unknown
(but finite) normalizing constant as it simplifies in the computation of the acceptance prob-
ability in Eq. (B.22). This is indeed a basic property for most MCMC samplers.

There exists many variant of this algorithm (see Robert and Casella, 2004, Chapter 7).
The most widely used is the symmetric Metropolis-Hastings sampler which resorts to a sym-
metric proposal PDF q such that:

q
�

x ⋆
��x (i)

�
= q
�

x (i)
�� x ⋆
�

, i = 0, . . . , N/K − 1, (B.23)

which in turns simplifies the expression of the acceptance probability in Eq. (B.22):

r(i+1) =min
�

p(x ⋆)

p(x (i))
; 1
�

, i = 0, . . . , N/K − 1. (B.24)

Another variant is the independent sampler whose proposal PDF q does not depend on the
current state of the chain.

According to Andrieu et al. (2003), this algorithm is proved to converge to the target
probability distribution p provided that the support of q includes the support of p. Even
though, Au and Beck (2001) recommend the use of a uniform proposal PDF q to sample
from a PDF with infinite support and obtain accurate results for their purpose.

Example B.3.1. The chain illustrated in Figure B.1 was indeed generated with the Metropolis-

Hastings sampler with the target PDF defined in the legend of Figure B.1. The proposal PDF q

is a symmetrical Gaussian distribution with variance 100.

B.3.2 The modified Metropolis-Hastings sampler

The modified Metropolis-Hastings sampler refers to the algorithm proposed by Au and Beck
(2001) to sample from the sub-optimal instrumental PDFs in a subset sampling scheme.
Recall from Section 3.3.5 of Chapter 3 that these targeted PDFs are defined as follows:

hi(x )∝ ✶Fi−1
(x ) fX(x ), i = 2, . . . , s, (B.25)

where fX is the original PDF of the random vector X and ✶Fi−1
is the (i−1)-th intermediate

subset indicator function which is equal to 1 if x ∈ Fi−1 and 0 otherwise. The algorithm is
introduced here for a slightly more general case where the target PDF expresses as follows:

p(x )∝ φ(x ) fX(x ), (B.26)

to match the need of the reliability methods proposed at the end of Chapter 3. Actually,
in the setup of Sections 3.4.2.1 and 3.5, φ is a probabilistic classification function π which
takes real values on [0; 1].

The main motivation underlying the proposition of this modified algorithm is that the
usual Metropolis-Hastings algorithm becomes inefficient in large dimension. Indeed, expe-
rience proves that the rejection rate dramatically increases with the number of components
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n in X . As a result, the Markov chains are constituted with many repeated elements and in
turn, the γ coefficient significantly increases.

The modified Metropolis-Hastings algorithm takes advantage of the availability of an
isoprobabilistic transform T that allows one to map the initial random vector X to a stan-
dard Gaussian random vector U with independent components (see Section 3.2.3 of Chap-
ter 3). Indeed, sampling in that standard space is a lot more efficient for the following
reason. Since the variables are independent, the target PDF in the standard space recasts
as the following product:

p(u)∝ φ(u)
n∏

j=1

ϕ(u j). (B.27)

Hence, the Metropolis-Hastings algorithm can be run sequentially on each term of this
product without altering its convergence properties. In addition, the transformation ease
the choice for the proposal PDF q which is itself expressed as a product of independent PDFs
{q j, j = 1, . . . , n}. Au and Beck (2001) propose to use centred uniform PDFs with width 2
because all standard random variables {U j, j = 1, . . . , n} concentrate in intervals of width
≈ 16 centred about zero. This choice yields accurate results in many examples arising in
structural reliability (see the references at the beginning of Section 3.3.5 in Chapter 3).

Algorithm B.2 summarizes this modified sampler. The algorithm requires that the orig-
inal random vector X can be transformed to a standard Gaussian random vector through
an isoprobabilistic transform T (whose inverse T−1 is also available). The algorithm then
proceeds iteratively on each term of the transformed target PDF in Eq. (B.27) from a given
seed in the standard space u(0) (or u(0) = T (x (0))). This seed must be distributed according
to the transformed target PDF, meaning that p(u(0)) is not zero.

First, Algorithm B.1 is applied on each component of the seed. The present implementa-
tion from the article by Au and Beck (2001) uses a built-in uniform proposal PDF q centred
on the current state with width 2. Noting that this proposal PDF is symmetrical, the first
acceptance probability at the i-th increment for the j-th component simplifies as follows:

r1 j =min




ϕ

�
u⋆

j

�

ϕ
�

u
(i)

j

� ; 1



 =min

�
exp
�

1

2

�
u
(i)

j

2− u⋆
j

2
��

; 1
�

. (B.28)

Second, the i-th candidate state u⋆ proposed by the latter componentwise Metropolis
sampler is accepted with a new probability:

r
(i+1)
2 =min

¨
φ (u⋆)

φ
�
u(i)
� ; 1

«
. (B.29)

Note that in the specific case of subset sampling, φ is reduced to a binary-valued indicator
function. Hence, the second acceptance with probability r

(i+1)
2 reduces to a deterministic

decision depending on the value of φ. Even though, Algorithm B.2 is presented here for
the more general case where φ is real-valued as for the reliability methods introduced at
the end of Chapter 3 (see Sections 3.4.2.1 and 3.5).
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This algorithm is a lot more efficient than the usual Metropolis-Hastings algorithm ap-
plied to the original target PDF p as a block. However, it requires the availability of an iso-
probabilistic transform to split the target PDF in a product of independent one-dimensional
PDFs times another joint PDF for the conditioning term φ so that it recasts as in Eq. (B.27).

Algorithm B.2 Modified Metropolis-Hastings sampler

φϕn Target PDF in the standard space
T−1 Inverse isoprobabilistic transform
u(0) Seed (p(u(0))> 0)

i = 0

j = 1

Propose a new candidate for the j-th component

u⋆ ∼ U
�h

u
(i)

j
− 1; u

(i)

j
+ 1
i�

Accept u⋆
j

with probability

r1 j = min
�

exp
�

1

2

�
u
(i)

j

2 − u⋆
j

2
��

; 1
�

(Reject it otherwise, i.e. u⋆
j
= u

(i)

j
)

Is j = n? j = j + 1

Accept u⋆ as u(i+1) with probability

r
(i+1)
2 = min

(
φ (u⋆)

φ
�

u(i)
� ; 1

)

(Reject it otherwise, i.e. u(i+1) = u(i))

j = j + 1

Transform back to the original distribution
x (i+1) = T−1

�
u(i+1)

�

i = i + 1

Is i = N/K? Done!

no
yes

no yes

ϕ
n
(u
)
=

n ∏ j=
1

ϕ
(u

j)
φ
(u
)
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B.3.3 The slice sampler

B.3.3.1 Motivations

One major difficulty underlying the Metropolis-Hastings sampler lies in the choice of a
well-suited proposal PDF q that will ensure fast convergence. Indeed, it was previously
stated that convergence is ensured if and only if the chain is irreducible. This means that
any admissible state with respect to the target PDF (any x such that p(x ) > 0) can be
reached from any arbitrary point x (0) (such that p(x (0)) > 0) within a finite number of
increments. Andrieu et al. (2003) pointed out that the Metropolis-Hastings sampler is
proved to converge provided the proposal PDF q dominates the target PDF p. Despite
this might theoretically hold, experience shows that a narrow-banded proposal PDF (even
with theoretically infinite support) does not yield convergence if the target PDF is highly
multi-modal with large zero-probability regions in between the modes such as illustrated
in Figure B.4.
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Figure B.4: A bimodal target PDF featuring two distinct modes: p(x) ∝ 0.7 exp(−0.2 x2) +

0.3 exp(−0.2 (x − 20)2). This pathological case illustrates the fundamental difficulty
underlying the optimal choice of a proposal PDF for the Metropolis-Hastings sampler.
Here, the proposal PDF is a standard Gaussian distribution.

A workaround consists in using a larger-banded proposal PDF, but it will results in higher
rejection rates (therefore slow convergence). Note also that the probability to jump from
one mode to another is rather low, so that thinning should definitely be considered to
reduce the variance of estimation in Eq. (B.15) if the samples are generated for averaging
purposes.



280 Appendix B. Markov chain Monte Carlo

Such pathological cases are not very frequent in structural reliability, so that Au and
Beck’s modified Metropolis-Hastings sampler performs well for the specific subset sampling
application (see Section 3.3.5 of Chapter 3). Another reason for the global performance of
the subset sampling algorithm is that it resorts to several Markov chains initialized from all
the modes of the target PDF, so that the overall sample constituted by the K Markov chains
covers the whole target PDF.

However, it has been pointed out that the refinement criteria introduced in Chap-
ter 2 feature a large number of modes separated by large zero-probability region, so that
Metropolis-Hastings samplers yield very poor performance. For such cases, the so-called
slice sampler proposed by Neal (2003) offers a better performance. Indeed, it adaptively
tunes the proposal PDF at each increment of the chain so that it may jump from one mode
to the other even when they are separated by large zero-probability regions.

B.3.3.2 Principle

This simulation technique consists in introducing an auxiliary scalar random variate U such
that the joint PDF of the augmented vector (U , X) reads:

J(u, x ) =

�
1 if 0≤ u≤ p(x )

0 otherwise
. (B.30)

Note that this definition is nothing but a translation of the fundamental theorem of sim-
ulation (see Robert and Casella, 2004, Theorem 2.15) whose key idea is to sample the
augmented vector “under” the density curve (or surface) p(x ).

It is easy to show that the marginalization of J(u, x ) w.r.t. u results in the target PDF p:

∫

R

J(u, x )du=

∫ p(x )

0

1 du= p(x ). (B.31)

Hence, sampling X from p is equivalent to sampling (U , X) from J and then ignoring U .

The slice sampling procedure relies on the conditional distributions derived from J

which are easily shown to read as follows:

U | X = x ∼ U
�
[0; p(x )]

�
, (B.32)

X | U = u ∼ U
�
S=

�
x ∈ Rn : p(x )≥ u

	�
. (B.33)

Algorithm B.3 summarizes the key steps of the slice sampler. As for the other Metropolis-
Hastings algorithm the target PDF may only be defined up to an unknown but finite nor-
malizing constant. It does not require any proposal PDF.

The procedure is illustrated in Figure B.5 on the bimodal target PDF of Figure B.4. It
can be seen that the stationary distribution of the chain represented by the histogram is
closer to the target PDF than in Figure B.4. One increment is also illustrated in order to
provide some more insight on Algorithm B.3.
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Algorithm B.3 Slice sampler

p Target PDF
x (0) Seed (p(x (0))> 0)

i = 0

Sample a new value for the auxiliary variable U

u(i+1) ∼ U
��

0; p(x (i))
��

Sample a new value for the vector X

x (i+1) ∼ U
�
S
(i+1) =

¦
x ∈ Rn : p(x )≥ u(i+1)

©�

i = i + 1

Is i = N/K? Done!no yes
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Figure B.5: A bimodal target PDF featuring two distinct modes: p(x) ∝ 0.7 exp(−0.2 x2) +

0.3 exp(−0.2 (x − 20)2). This pathological case illustrates the efficiency of the slice
sampler described in Algorithm B.3 with respect to the Metropolis-Hastings sampler.
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B.3.3.3 Implementation

The actual slice S(i+1) is not easy to identify in practice, because the problem of finding its
boundaries is a non-trivial root finding problem. Although, Neal (2003) came up with a
heuristic procedure which makes the approach scalable to a wide variety of target PDFs.

To make it short, his heuristic consists in approximating the slice S with an hyperrect-
angle whose widths are first expanded by unit increments w from the current state of the
chain x (i). Note that this procedure, called step-out, might fail if the actual slice is narrower
than the chosen increment w. Then it simply draws a point x ⋆ at random (uniformly) in
the previously built hyperrectangle. If the proposed candidate does not lie in the actual
slice (i.e. if p(x ⋆)< u), then the hyperrectangle bounds is reset with the coordinates of the
(rejected) candidate point. This second procedure, called shrink-in, might also fail if the
target PDF is too nasty (highly multimodal) so that Neal’s heuristic is usually aborted as it
reaches a maximum number of shrink-in iterations (say 100).

The interested reader is referred the original article by Neal (2003) and the book by
Robert and Casella (2004, Chapter 8) for a more detailed review of this technique together
with a discussion on its convergence properties. In this thesis, slice sampling was only used
for sampling from the so-called refinement criteria defined in Chapter 2 on purpose to fill
a region of interest with candidate points. Hence, the applicability of Theorem B.2.1 on
Markov chains generated with this sampler is beyond the scope of this thesis.





Abstract

This thesis is a contribution to the resolution of the reliability-based design optimization
problem. This probabilistic design approach is aimed at considering the uncertainty at-
tached to the system of interest in order to provide optimal and safe solutions. The safety
level is quantified in the form of a probability of failure. Then, the optimization prob-
lem consists in ensuring that this failure probability remains less than a threshold specified
by the stakeholders. The resolution of this problem requires a high number of calls to
the limit-state design function underlying the reliability analysis. Hence it becomes cum-
bersome when the limit-state function involves an expensive-to-evaluate numerical model
(e.g. a finite element model). In this context, this manuscript proposes a surrogate-based
strategy where the limit-state function is progressively replaced by a Kriging meta-model.
A special interest has been given to quantifying, reducing and eventually eliminating the
error introduced by the use of this meta-model instead of the original model. The proposed
methodology is applied to the design of geometrically imperfect shells prone to buckling.

Keywords: adaptive surrogate modelling • Kriging • Gaussian processes for regression
and probabilistic classification • reliability analysis • rare event probabilities • importance
sampling • reliability-based design optimization • probabilistic buckling • geometrically
imperfect shells

Résumé

Cette thèse est une contribution à la résolution du problème d’optimisation sous contrainte
de fiabilité. Cette méthode de dimensionnement probabiliste vise à prendre en compte les
incertitudes inhérentes au système à concevoir, en vue de proposer des solutions optimales
et sûres. Le niveau de sûreté est quantifié par une probabilité de défaillance. Le problème
d’optimisation consiste alors à s’assurer que cette probabilité reste inférieure à un seuil
fixé par les donneurs d’ordres. La résolution de ce problème nécessite un grand nombre
d’appels à la fonction d’état-limite caractérisant le problème de fiabilité sous-jacent. Ainsi,
cette méthodologie devient complexe à appliquer dès lors que le dimensionnement s’appuie
sur un modèle numérique coûteux à évaluer (e.g. un modèle aux éléments finis). Dans ce
contexte, ce manuscrit propose une stratégie basée sur la substitution adaptative de la
fonction d’état-limite par un méta-modèle par Krigeage. On s’est particulièrement employé
à quantifier, réduire et finalement éliminer l’erreur commise par l’utilisation de ce méta-
modèle en lieu et place du modèle original. La méthodologie proposée est appliquée au
dimensionnement des coques géométriquement imparfaites soumises au flambement.

Mots-clés: méta-modélisation adaptative • Krigeage • régression et classification proba-
biliste par processus Gaussiens • analyse de fiabilité • probabilités d’évènements rares •
échantillonnage préférentiel • optimisation sous contrainte de fiabilité • flambage proba-
biliste • coques géométriquement imparfaites
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