Adaptive surrogate models for reliability analysis and reliability-based design optimization

Vincent Dubourg

Phimeca Engineering SA Laboratoire de Mécanique & Ingénieries

Context: The design of imperfect shells against buckling

Buckling is a structural instability phenomenon

- triggered by some excessive load (to be determined);
- whose magnitude depends on *uncertain* initial conditions (*e.g.* geometry, material properties and boundary conditions);
- affecting *slender* structures.

Axially compressed beam

Railway track

Silo

(Ramm & Wall, 2004)

"Slenderness is the trademark of optimally designed structures."

Context: The design of imperfect shells against buckling

Buckling is the major failure scenario for submarines pressure hulls.

Vincent Dubourg (Phimeca/LaMI) Ph. D. Defense, December 5, 2011

Design problem formulation

Deterministic design optimization

æ

Design problem formulation

Reliability-based design optimization

▶ ★ 臣 ▶ …

æ

Premise & objectives

- Structural stability models are *computationally expensive* (mostly finite-element based).
- ⇒ Replace the original expensive model with a *cheaper meta-model*.
- *Reliability approximation techniques* (such as FORM) cannot guarantee the safety level of their designs.
- ⇒ Develop a strategy that is able to *guarantee the design's safety*.
- Stakeholders target highly reliable designs.
- ⇒ The overall strategy should be scalable to *low failure probabilities*.

A particular interest has been given to *quantifying*, *reducing* and *eliminating* the error induced by the use of a surrogate.

イロト イヨト イヨト イヨト

Premise & objectives

- Structural stability models are *computationally expensive* (mostly finite-element based).
- ⇒ Replace the original expensive model with a *cheaper meta-model*.
- *Reliability approximation techniques* (such as FORM) cannot guarantee the safety level of their designs.
- ⇒ Develop a strategy that is able to *guarantee the design's safety*.
- Stakeholders target highly reliable designs.
- ⇒ The overall strategy should be scalable to *low failure probabilities*.

A particular interest has been given to *quantifying*, *reducing* and *eliminating* the error induced by the use of a surrogate.

Outline

Adaptive designs of experiments

- Reliability analysis
- Reliability-based design optimization

ヘロン 人間 とくほとくほとう

臣

Gaussian process meta-modelling

Adaptive designs of experiments Reliability analysis Reliability-based design optimization

Outline

Meta-modelling Gaussian process meta-modelling Illustration on a one-dimensional regression exercise From regression to probabilistic classification

Gaussian process meta-modelling

- Meta-modelling
- Gaussian process meta-modelling
- Illustration on a one-dimensional regression exercise
- From regression to probabilistic classification

2 Adaptive designs of experiments

3 Reliability analysis

4 Reliability-based design optimization

Meta-modelling

Meta-modelling

Gaussian process meta-modelling Illustration on a one-dimensional regression exercise From regression to probabilistic classification

Meta-modelling techniques

- aim at constructing a *predictor* $\widetilde{\mathcal{M}}$
- that $\underline{\textit{mimics}}$ the behaviour of an existing model $\mathcal M$

$$\boldsymbol{x} \in \mathbb{X} \subseteq \mathbb{R}^n \longrightarrow \mathcal{M} \longrightarrow \mathcal{Y} \in \mathbb{Y} \subseteq \mathbb{R}$$

• from a collection of observations gathered in a *dataset*:

$$\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(i)}, \, \boldsymbol{y}_i \right), \, i = 1, \dots, m \right\}, \quad \boldsymbol{y}_i = \mathcal{M} \left(\boldsymbol{x}^{(i)} \right), \, i = 1, \dots, m$$

and statistical considerations.

Interest for reliability-based design

Such predictors are *much faster to evaluate* than the original model \mathcal{M} , and come with a sort of *confidence measure*.

Meta-modelling

Meta-modelling

Gaussian process meta-modelling Illustration on a one-dimensional regression exercise From regression to probabilistic classification

イロト イポト イヨト イヨト

Meta-modelling techniques

- aim at constructing a *predictor* $\widetilde{\mathcal{M}}$
- that $\underline{\textit{mimics}}$ the behaviour of an existing model $\mathcal M$

$$\boldsymbol{x} \in \mathbb{X} \subseteq \mathbb{R}^n \longrightarrow \mathcal{M} \longrightarrow \mathcal{Y} \in \mathbb{Y} \subseteq \mathbb{R}$$

• from a collection of observations gathered in a *dataset*:

$$\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(i)}, \, \boldsymbol{y}_i \right), \, i = 1, \dots, m \right\}, \quad \boldsymbol{y}_i = \mathcal{M} \left(\boldsymbol{x}^{(i)} \right), \, i = 1, \dots, m$$

• and statistical considerations.

Interest for reliability-based design

Such predictors are *much faster to evaluate* than the original model \mathcal{M} , and come with a sort of *confidence measure*.

Meta-modelling Gaussian process meta-modelling Illustration on a one-dimensional regression exercise From regression to probabilistic classification

Gaussian process meta-modelling The Gaussian process prior model

(Santner et al., 2003)

The function \mathcal{M} is a sample path of a Gaussian process (GP) Y:

$$Y(\boldsymbol{x}) = \boldsymbol{f}(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{\beta} + Z(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathbb{X}$$

where:

- $f(\mathbf{x})^{\mathsf{T}} \boldsymbol{\beta}$ is a linear regression model;
- $Z(\mathbf{x})$ is a zero-mean, stationary GP with covariance:

$$\operatorname{Cov}[Y(\boldsymbol{x}), Y(\boldsymbol{x}')] = \boldsymbol{\sigma}^2 R(\boldsymbol{x} - \boldsymbol{x}', \boldsymbol{\theta}), \quad (\boldsymbol{x}, \boldsymbol{x}') \in \mathbb{X} \times \mathbb{X}$$

Hence, given a vector of *observations* $Y = (Y_i = Y(\mathbf{x}^{(i)}), i = 1, ..., m)$ and an unobserved value $Y(\mathbf{x})$, we have:

$$\left\{ \begin{array}{c} Y(\boldsymbol{x}) \\ \boldsymbol{Y} \end{array} \right\} \sim \mathcal{N}_{1+m} \left(\left\{ \begin{array}{c} \boldsymbol{f}(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{\beta} \\ \boldsymbol{\mathsf{F}} \boldsymbol{\beta} \end{array} \right\}, \, \sigma^{2} \left[\begin{array}{c} 1 & \boldsymbol{r}(\boldsymbol{x})^{\mathsf{T}} \\ \boldsymbol{r}(\boldsymbol{x}) & \mathsf{R} \end{array} \right] \right)$$

whose parameters \mathbf{F} , $\mathbf{r}(\mathbf{x})$, \mathbf{R} are inherited from the GP's statistics (f and R).

Meta-modelling Gaussian process meta-modelling Illustration on a one-dimensional regression exercise From regression to probabilistic classification

Gaussian process meta-modelling The Gaussian process prior model

(Santner et al., 2003)

The function \mathcal{M} is a sample path of a Gaussian process (GP) Y:

$$Y(\boldsymbol{x}) = \boldsymbol{f}(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{\beta} + Z(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathbb{X}$$

where:

- $f(\mathbf{x})^{\mathsf{T}} \boldsymbol{\beta}$ is a linear regression model;
- $Z(\mathbf{x})$ is a zero-mean, stationary GP with covariance:

$$\operatorname{Cov}[Y(\boldsymbol{x}), Y(\boldsymbol{x}')] = \boldsymbol{\sigma}^2 R(\boldsymbol{x} - \boldsymbol{x}', \boldsymbol{\theta}), \quad (\boldsymbol{x}, \boldsymbol{x}') \in \mathbb{X} \times \mathbb{X}$$

Hence, given a vector of *observations* $\mathbf{Y} = (Y_i = Y(\mathbf{x}^{(i)}), i = 1, ..., m)$ and an unobserved value $Y(\mathbf{x})$, we have:

$$\left\{\begin{array}{c} Y(\boldsymbol{x}) \\ \boldsymbol{Y} \end{array}\right\} \sim \mathcal{N}_{1+m} \left(\left\{\begin{array}{c} \boldsymbol{f}(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{\beta} \\ \boldsymbol{F} \boldsymbol{\beta} \end{array}\right\}, \sigma^{2} \left[\begin{array}{cc} 1 & \boldsymbol{r}(\boldsymbol{x})^{\mathsf{T}} \\ \boldsymbol{r}(\boldsymbol{x}) & \mathsf{R} \end{array}\right] \right)$$

whose parameters **F**, r(x), **R** are inherited from the GP's statistics (f and R).

Gaussian process meta-modelling

Gaussian process meta-modelling

Gaussian process meta-modelling Posterior \equiv The best linear unbiased predictor (BLUP)

(Santner et al., 2003)

Here, we are interested in the *posterior* distribution of the unobserved value given $y = (y_i = \mathcal{M}(x^{(i)}), i = 1, ..., m)$: $\hat{Y}(\boldsymbol{x}) = [Y(\boldsymbol{x}) \mid \boldsymbol{Y} = \boldsymbol{y}]$

$$\widehat{Y}(\boldsymbol{x}) = \boldsymbol{a}^*(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{Y}$$

$$\boldsymbol{a}^{*}(\boldsymbol{x}) = \arg\min_{\boldsymbol{a}(\boldsymbol{x}) \in \mathbb{R}^{m}} \mathbb{E}\left[\left(\hat{Y}(\boldsymbol{x}) - Y(\boldsymbol{x})\right)^{2}\right] : \mathbb{E}\left[\left(\hat{Y}(\boldsymbol{x}) - Y(\boldsymbol{x})\right)\right] = 0$$

ヘロン 人間 とくほとくほとう

Meta-modelling Gaussian process meta-modelling Illustration on a one-dimensional regression exercise From regression to probabilistic classification

Gaussian process meta-modelling Posterior = The best linear unbiased predictor (BLUP)

(Santner et al., 2003)

Here, we are interested in the *posterior* distribution of the unobserved value given $\boldsymbol{y} = (y_i = \mathcal{M}(\boldsymbol{x}^{(i)}), i = 1, ..., m)$:

 $\hat{Y}(\boldsymbol{x}) = \begin{bmatrix} Y(\boldsymbol{x}) \mid \boldsymbol{Y} = \boldsymbol{y} \end{bmatrix}$

The fundamental theorem of prediction

(Santner et al., 2003)

イロン イヨン イヨン イヨン

 $\hat{Y}(\boldsymbol{x})$ is the *best linear unbiased predictor* w.r.t. the mean squared error:

 $\hat{Y}(\boldsymbol{x}) = \boldsymbol{a}^*(\boldsymbol{x})^\mathsf{T} \boldsymbol{Y}$

with:

$$\boldsymbol{a}^{*}(\boldsymbol{x}) = \arg\min_{\boldsymbol{a}(\boldsymbol{x}) \in \mathbb{R}^{m}} \mathbb{E}\left[\left(\hat{Y}(\boldsymbol{x}) - Y(\boldsymbol{x})\right)^{2}\right] \colon \mathbb{E}\left[\left(\hat{Y}(\boldsymbol{x}) - Y(\boldsymbol{x})\right)\right] = 0$$

Meta-modelling Gaussian process meta-modelling Illustration on a one-dimensional regression exercise From regression to probabilistic classification

Gaussian process meta-modelling The universal Kriging predictor: *an* empirical BLUP

(Santner et al., 2003)

The universal Kriging predictor is also Gaussian:

$$\hat{Y}(\boldsymbol{x}) = \left[Y(\boldsymbol{x}) \mid \boldsymbol{Y} = \boldsymbol{y}, \boldsymbol{\sigma}^2, \boldsymbol{\theta}\right] \sim \mathcal{N}_1\left(\mu_{\hat{Y}}(\boldsymbol{x}), \, \sigma_{\hat{Y}}^2(\boldsymbol{x})\right)$$

where the *mean prediction* $\mu_{\hat{Y}}(\mathbf{x})$ and the *prediction variance* $\sigma_{\hat{Y}}^2(\mathbf{x})$ read:

$$\mu_{\hat{Y}}(\boldsymbol{x}) = \boldsymbol{f}(\boldsymbol{x})^{\mathsf{T}} \hat{\boldsymbol{\beta}} + \boldsymbol{r}(\boldsymbol{x})^{\mathsf{T}} \mathbf{R}^{-1} \left(\boldsymbol{y} - \mathbf{F} \hat{\boldsymbol{\beta}} \right)$$

$$\sigma_{\hat{Y}}^{2}(\boldsymbol{x}) = \sigma^{2} \left(1 - \boldsymbol{r}(\boldsymbol{x})^{\mathsf{T}} \mathbf{R}^{-1} \boldsymbol{r}(\boldsymbol{x}) + \boldsymbol{u}(\boldsymbol{x})^{\mathsf{T}} \left(\mathbf{F}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{F} \right)^{-1} \boldsymbol{u}(\boldsymbol{x}) \right)$$

where:

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{F}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{F} \right)^{-1} \mathbf{F}^{\mathsf{T}} \mathbf{R}^{-1} \boldsymbol{\gamma}$$

is the generalized least squares estimate of β , and:

$$\boldsymbol{u}(\boldsymbol{x}) = \boldsymbol{F}^{\mathsf{T}} \boldsymbol{R}^{-1} \boldsymbol{r}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{x})$$

Meta-modelling Gaussian process meta-modelling Illustration on a one-dimensional regression exercise From regression to probabilistic classification

Gaussian process meta-modelling Inference of the empirical BLUP parameters

Estimation techniques for (σ^2, θ) include:

- Variogram estimation
- Cross-validation
- Bayesian predictors
- Maximum likelihood estimation

(Cressie, 1993; Chilès and Delfiner, 1999)

(Dubrule, 1983)

(Handcock and Stein, 1993; Santner et al., 2003)

イロト イヨト イヨト イヨト

(Welch et al., 1992; Marrel et al., 2008)

The most common practice in computer experiments is the *maximum likelihood estimation* technique:

$$(\sigma^{2*}, \theta^{*}) = \arg \max_{(\sigma^{2}, \theta)} L(y | \sigma^{2}, \theta),$$

L being the *likelihood* of the observations w.r.t. Y (Gaussian).

Meta-modelling Gaussian process meta-modelling Illustration on a one-dimensional regression exercise From regression to probabilistic classification

Illustration on a one-dimensional regression exercise

$$\hat{Y}(\boldsymbol{x}) \sim \mathcal{N}_1\left(\boldsymbol{\mu}_{\hat{Y}}(\boldsymbol{x}), \, \sigma_{\hat{Y}}^2(\boldsymbol{x})\right)$$

Interesting properties

- interpolating;
- asymptotically consistent (provided the correlation *R* is "compatible" with the data *y* and the model *M*);

イロト イヨト イヨト イヨト

(Vazquez, 2005)

• *Gaussian* (consequence of the prior).

Meta-modelling Gaussian process meta-modelling Illustration on a one-dimensional regression exercise From regression to probabilistic classification

From regression to probabilistic classification

Ex: Let g denote a quadratic limit-state function.

< ロ > < 回 > < 回 > < 回 > < 回 >

Meta-modelling Gaussian process meta-modelling Illustration on a one-dimensional regression exercise From regression to probabilistic classification

From regression to probabilistic classification

Let \$\hftar{\mathbb{F}_{95\%}^{-1}\$, \$\hftar{\mathbb{F}_{95\%}^{0}\$, \$\hftar{\mathbb{F}_{95\%}^{+1}\$ denote the three following *approximate failure subsets*:

$$\widehat{\mathbb{F}}_{95\%}^{i} = \left\{ \boldsymbol{x} \in \mathbb{X} : \mu_{\widehat{Y}}(\boldsymbol{x}) \leq i \, 1.96 \, \sigma_{\widehat{Y}}(\boldsymbol{x}) \right\},\$$

i = -1, 0, +1.

In turns, this enables the definition of the margin of uncertainty:

$$\mathbb{M}_{95\%} = \widehat{\mathbb{F}}_{95\%}^{+1} \setminus \widehat{\mathbb{F}}_{95\%}^{-1}$$

• Let *π* denote the *probabilistic classification function*:

$$\pi(\boldsymbol{x}) = \mathcal{P}\left[\hat{Y}(\boldsymbol{x}) \le 0\right] = \Phi\left(\frac{0 - \mu_{\hat{Y}}(\boldsymbol{x})}{\sigma_{\hat{Y}}(\boldsymbol{x})}\right)$$

ヘロン 人間 とくほとくほとう

 $\mathcal{P}(\neq \mathbb{P})$ denotes the probability measure w.r.t. the Kriging epistemic uncertainty.

Meta-modelling Gaussian process meta-modelling Illustration on a one-dimensional regression exercise From regression to probabilistic classification

From regression to probabilistic classification

Let \$\bar{\mathbb{F}}_{95\%}^{-1}\$, \$\bar{\mathbb{F}}_{95\%}^{0}\$, \$\bar{\mathbb{F}}_{95\%}^{+1}\$ denote the three following *approximate failure subsets*:

$$\widehat{\mathbb{F}}_{95\%}^{i} = \left\{ \boldsymbol{x} \in \mathbb{X} : \mu_{\widehat{Y}}(\boldsymbol{x}) \leq i \, 1.96 \, \sigma_{\widehat{Y}}(\boldsymbol{x}) \right\},\$$

i = -1, 0, +1.

• In turns, this enables the definition of the *margin of uncertainty*:

$$\mathbb{M}_{95\%} = \widehat{\mathbb{F}}_{95\%}^{+1} \setminus \widehat{\mathbb{F}}_{95\%}^{-1}$$

 Let π denote the probabilistic classification function:

$$\pi(\boldsymbol{x}) = \mathcal{P}\left[\hat{Y}(\boldsymbol{x}) \le 0\right] = \Phi\left(\frac{0 - \mu_{\hat{Y}}(\boldsymbol{x})}{\sigma_{\hat{Y}}(\boldsymbol{x})}\right)$$

イロト イヨト イヨト イヨト

 $\mathscr{P}(
eq \mathbb{P})$ denotes the probability measure w.r.t. the Kriging epistemic uncertainty.

Meta-modelling Gaussian process meta-modelling Illustration on a one-dimensional regression exercise From regression to probabilistic classification

From regression to probabilistic classification

Let \$\bar{\mathbb{F}}_{95\%}^{-1}\$, \$\bar{\mathbb{F}}_{95\%}^{0}\$, \$\bar{\mathbb{F}}_{95\%}^{+1}\$ denote the three following *approximate failure subsets*:

$$\hat{\mathbb{F}}_{95\%}^{i} = \left\{ \boldsymbol{x} \in \mathbb{X} : \mu_{\hat{Y}}(\boldsymbol{x}) \leq i \, 1.96 \, \sigma_{\hat{Y}}(\boldsymbol{x}) \right\},\$$

i = -1, 0, +1.

 In turns, this enables the definition of the margin of uncertainty:

$$\mathbb{M}_{95\%} = \hat{\mathbb{F}}_{95\%}^{+1} \setminus \hat{\mathbb{F}}_{95\%}^{-1}$$

 Let π denote the probabilistic classification function:

$$\boldsymbol{\pi}(\boldsymbol{x}) = \mathcal{P}\left[\hat{Y}(\boldsymbol{x}) \le 0\right] = \Phi\left(\frac{0 - \mu_{\hat{Y}}(\boldsymbol{x})}{\sigma_{\hat{Y}}(\boldsymbol{x})}\right)$$

・ロト ・日ト ・ヨト ・ヨト

 $\mathcal{P}(\neq \mathbb{P})$ denotes the probability measure w.r.t. the Kriging epistemic uncertainty.

Designs of experiments Sequential adaptive DOEs Sampling-based adaptive DOEs Ilustration

Outline

Gaussian process meta-modelling

Adaptive designs of experiments

- Designs of experiments
- Sequential adaptive DOEs
- Sampling-based adaptive DOEs
- Illustration

3 Reliability analysis

4 Reliability-based design optimization

イロト イヨト イヨト イヨト

臣

Designs of experiments Sequential adaptive DOEs Sampling-based adaptive DOEs Illustration

Designs of experiments

Designs of experiments

• A DOE is the input part of a dataset:

$$\mathcal{X} = \left\{ \boldsymbol{x}^{(i)}, i = 1, \dots, m \right\}$$

- Its *size m* must be minimized for the sake of *efficiency*.
- Experiments must be *selected carefully* for the sake of *accuracy* (*space-filling DOEs, Franco, 2008*).

Adaptive designs of experiments

- are built in an *iterative* manner;
- on purpose to *refine the predictor locally* (e.g. in the vicinity of a contour);

Sequential adaptive DOEs for GP predictors rely on the *maximization* of a so-called *refinement criterion*.

イロト イポト イヨト イヨト

Adaptive designs of experiments

Sequential adaptive DOEs

Sequential adaptive DOEs

Refinement criteria for contour approximation

• Simple criteria mostly apply the margin shrinking concept for support vector machines

(Hurtado, 2004b: Deheeger, 2008)

Here, we propose the "*margin probability*": .

$$\mathcal{P}\left[\hat{Y}(\boldsymbol{x}) \in \mathbb{M}_{95\%}\right] = \Phi\left(\frac{1.96\sigma_{\hat{Y}}(\boldsymbol{x}) - \mu_{\hat{Y}}(\boldsymbol{x})}{\sigma_{\hat{Y}}(\boldsymbol{x})}\right) \\ -\Phi\left(\frac{-1.96\sigma_{\hat{Y}}(\boldsymbol{x}) - \mu_{\hat{Y}}(\boldsymbol{x})}{\sigma_{\hat{Y}}(\boldsymbol{x})}\right)$$

(Dubourg et al., 2010g)

The margin of uncertainty M95%

< ロ > < 回 > < 回 > < 回 > < 回 >

Vincent Dubourg (Phimeca/LaMI)

Designs of experiments Sequential adaptive DOEs Sampling-based adaptive DOEs Illustration

Sequential adaptive DOEs

Refinement criteria for contour approximation

 Simple criteria mostly apply the margin shrinking concept for support vector machines

(Hurtado, 2004b; Deheeger, 2008)

• Here, we propose the "margin probability":

$$\begin{split} \mathcal{P}\Big[\hat{Y}(\boldsymbol{x}) \in \mathbb{M}_{95\%}\Big] &= \Phi\left(\frac{1.96\,\sigma_{\hat{Y}}(\boldsymbol{x}) - \mu_{\hat{Y}}(\boldsymbol{x})}{\sigma_{\hat{Y}}(\boldsymbol{x})}\right) \\ &-\Phi\left(\frac{-1.96\,\sigma_{\hat{Y}}(\boldsymbol{x}) - \mu_{\hat{Y}}(\boldsymbol{x})}{\sigma_{\hat{Y}}(\boldsymbol{x})}\right) \end{split}$$

(Dubourg et al., 2010a)

Limitation of sequential strategies

- The multiple modes of these criteria make their *maximization difficult*;
- There does not exist a single best point;
- Availability of *distributed computing* platforms for \mathcal{M} .

(Ginsbourger et al., 2010)

The margin of uncertainty M95%

・ロト ・回ト ・ヨト ・ヨ

Designs of experiments Sequential adaptive DOEs Sampling-based adaptive DOEs Illustration

Sampling-based adaptive DOEs

Given an initial dataset \mathcal{D} and a pseudo-PDF w:

- **1** Fit a Kriging predictor $\hat{Y}(\boldsymbol{x})$
- Define a weighted refinement criterion

 $C(\boldsymbol{x}) = \mathcal{P}\left[\hat{Y}(\boldsymbol{x}) \in \mathbb{M}_{95\%}\right] w(\boldsymbol{x})$

 Sample N candidates from C (MCMC slice sampler, Neal, 2003)
 Reduce the N candidates to K points (K-means dustering Unit 1982)

G Enrich the dataset \mathcal{D} with $\left\{ \left(\boldsymbol{x}^{(m+k)}, \mathcal{M} \left(\boldsymbol{x}^{(m+k)} \right) \right), k = 1, \dots, K \right\}$

イロト イヨト イヨト イヨト

Designs of experiments Sequential adaptive DOEs Sampling-based adaptive DOEs Illustration

Sampling-based adaptive DOEs

Given an initial dataset \mathcal{D} and a pseudo-PDF w:

- Fit a Kriging predictor $\hat{Y}(\boldsymbol{x})$
- 2 Define a weighted refinement criterion

 $C(\boldsymbol{x}) = \mathcal{P}\left[\hat{Y}(\boldsymbol{x}) \in \mathbb{M}_{95\%}\right] w(\boldsymbol{x})$

 Sample N candidates from C (MCMC slice sampler, Neal, 2003)
 Reduce the N candidates to K points (K-means clustering, Lloyd, 1982)
 Enrich the dataset D with
 ((m+k) are((m+k))) are (m+k))

$$\left\{\left(\boldsymbol{x}^{(m+k)}, \mathcal{M}\left(\boldsymbol{x}^{(m+k)}\right)\right), k=1, \ldots, K\right\}$$

G Loop back to step I

< ロ > < 回 > < 回 > < 回 > < 回 >

Designs of experiments Sequential adaptive DOEs Sampling-based adaptive DOEs Illustration

Sampling-based adaptive DOEs

Given an initial dataset \mathcal{D} and a pseudo-PDF w:

- Fit a Kriging predictor $\hat{Y}(\boldsymbol{x})$
- 2 Define a weighted refinement criterion

 $C(\boldsymbol{x}) = \mathcal{P}\left[\hat{Y}(\boldsymbol{x}) \in \mathbb{M}_{95\%}\right] w(\boldsymbol{x})$

 Sample N candidates from C (MCMC slice sampler, Neal, 2003)
 Reduce the N candidates to K points (K-means clustering, Lloyd, 1982)
 Enrich the datacet (D with

Enrich the dataset D with $\left\{ \left(\mathbf{x}^{(m+k)}, \mathcal{M} \left(\mathbf{x}^{(m+k)} \right) \right), k = 1, \dots, K \right\}$

N is given (say 10,000)

イロト イヨト イヨト イヨト

Designs of experiments Sequential adaptive DOEs Sampling-based adaptive DOEs Illustration

Sampling-based adaptive DOEs

Given an initial dataset \mathcal{D} and a pseudo-PDF w:

- **1** Fit a Kriging predictor $\hat{Y}(\boldsymbol{x})$
- 2 Define a weighted refinement criterion

 $\mathcal{C}(\boldsymbol{x}) = \mathcal{P}\left[\hat{Y}(\boldsymbol{x}) \in \mathbb{M}_{95\%}\right] w(\boldsymbol{x})$

 Sample N candidates from C (MCMC slice sampler, Neal, 2003)
 Reduce the N candidates to K points (K-means clustering, Lloyd, 1982)
 Enrich the dataset D with {(x^(m+k), M(x^(m+k))), k = 1, ..., K}

K is given (say the number of CPUs)

< ロ > < 回 > < 回 > < 回 > < 回 >

Designs of experiments Sequential adaptive DOEs Sampling-based adaptive DOEs Illustration

Sampling-based adaptive DOEs

Given an initial dataset \mathcal{D} and a pseudo-PDF w:

- Fit a Kriging predictor $\hat{Y}(\boldsymbol{x})$
- 2 Define a weighted refinement criterion

 $C(\boldsymbol{x}) = \mathcal{P}\left[\hat{Y}(\boldsymbol{x}) \in \mathbb{M}_{95\%}\right] w(\boldsymbol{x})$

 Sample N candidates from C (MCMC slice sampler, Neal, 2003)
 Reduce the N candidates to K points (K-means clustering, Lloyd, 1982)

S Enrich the dataset
$$\mathcal{D}$$
 with $\left\{ \left(\boldsymbol{x}^{(m+k)}, \mathcal{M} \left(\boldsymbol{x}^{(m+k)} \right) \right), k = 1, \dots, K \right\}$
Coop back to step $\boldsymbol{0}$

イロト イヨト イヨト イヨト

Designs of experiments Sequential adaptive DOEs Sampling-based adaptive DOEs Illustration

Sampling-based adaptive DOEs

Given an initial dataset \mathcal{D} and a pseudo-PDF w:

- Fit a Kriging predictor $\hat{Y}(\boldsymbol{x})$
- 2 Define a weighted refinement criterion

 $C(\boldsymbol{x}) = \mathcal{P}\left[\hat{Y}(\boldsymbol{x}) \in \mathbb{M}_{95\%}\right] w(\boldsymbol{x})$

- Sample N candidates from C (MCMC slice sampler, Neal, 2003)
 Reduce the N candidates to K points
 - (K-means clustering, Lloyd, 1982)
- S Enrich the dataset \mathcal{D} with $\left\{ \left(\boldsymbol{x}^{(m+k)}, \mathcal{M} \left(\boldsymbol{x}^{(m+k)} \right) \right), k = 1, \dots, K \right\}$
- 6 Loop back to step 1

イロト イヨト イヨト イヨト

Designs of experiments Sequential adaptive DOEs Sampling-based adaptive DOEs Illustration

Illustration A four-branch series system

(Waarts, 2000)

Designs of experiments Sequential adaptive DOEs Sampling-based adaptive DOEs Illustration

Illustration A four-branch series system

(Waarts, 2000)

イロト イヨト イヨト イヨト

Adaptive designs of experiments

Illustration

Illustration A four-branch series system

(Waarts, 2000)

イロト イヨト イヨト イヨト

Adaptive designs of experiments

Illustration

Illustration A four-branch series system

(Waarts, 2000)

Adaptive designs of experiments

Illustration

Illustration A four-branch series system

(Waarts, 2000)

Designs of experiments Sequential adaptive DOEs Sampling-based adaptive DOEs Illustration

Illustration A four-branch series system

(Waarts, 2000)

Designs of experiments Sequential adaptive DOEs Sampling-based adaptive DOEs Illustration

Illustration A four-branch series system

(Waarts, 2000)

< ロ > < 回 > < 回 > < 回 > < 回 >

Designs of experiments Sequential adaptive DOEs Sampling-based adaptive DOEs Illustration

Illustration A four-branch series system

(Waarts, 2000)

(Waarts,

Adaptive designs of experiments

Illustration

Illustration A four-branch series system

(Waarts, 2000)

Vincent Dubourg (Phimeca/LaMI) Ph. D. Defense, December 5, 2011

Adaptive designs of experiments

Illustration

Illustration A four-branch series system

(Waarts, 2000)

structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

Outline

Gaussian process meta-modelling

2 Adaptive designs of experiments

- 3 Reliability analysis
 - Structural reliability methods
 - Surrogate-based reliability analysis
 - Meta-model-based importance sampling
 - Illustrations

4 Reliability-based design optimization

(日) (日) (日) (日) (日)

Reliability analysis

Structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

(Ditlevsen & Madsen, 1996; Lemaire, 2009)

Problem formulation

• Given a *failure domain*:

$$\mathbb{F} = \{ \boldsymbol{x} \in \mathbb{X} : \boldsymbol{\mathfrak{g}}(\boldsymbol{x}) \le 0 \}$$

• and a *random vector X* with known distribution:

$$F_{\boldsymbol{X}}(\boldsymbol{x}) = C\left(F_{X_i}(x_i), i = 1, \dots, n\right)$$

(Lebrun & Dutfoy, 2009a,b,c)

 the purpose is to quantify the reliability of a design in the form of a *failure probability*.

$$p_f = \mathbb{P}[X \in \mathbb{F}] = \int_{\mathbb{F}} f_X(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

 $\mathbb{P}(\neq \mathcal{P})$ denotes the probability measure w.r.t. the random vector *X*.

Structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

Reliability analysis

Monte Carlo sampling as a motivation for the structural reliability methods

Monte Carlo sampling

• The failure probability rewrites:

$$p_f = \int_{\mathbb{X}} \mathbb{1}_{\mathbb{F}}(\boldsymbol{x}) f_{\boldsymbol{X}}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \mathbb{E} \left[\mathbb{1}_{\mathbb{F}}(\boldsymbol{X}) \right]$$

· Hence, the central limit theorem ensures that:

$$\hat{p}_{f} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{\mathbb{F}} \left(\boldsymbol{X}^{(i)} \right) \hookrightarrow \mathcal{N}_{1} \left(\boldsymbol{p}_{f}, \frac{\boldsymbol{p}_{f} \left(1 - \boldsymbol{p}_{f} \right)}{N} \right)$$

- provided N is sufficiently large!
- In order to involve \hat{p}_f in an optimization loop:

$$p_f\approx 10^{-k} \Rightarrow N \geq 10^{k+2}$$

• Structural reliability methods aim at reducing N

Structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

Surrogate-based reliability analysis

Principle

• A surrogate-based estimator:

$$\widetilde{p}_f = \int_{\widetilde{\mathbb{F}}} f_X(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$$

• where:

$$\widetilde{\mathbb{F}} = \{ \boldsymbol{x} \in \mathbb{X} : \widetilde{\boldsymbol{\mathfrak{g}}}(\boldsymbol{x}) \leq 0 \} \approx \mathbb{F}$$

and $\widetilde{\mathfrak{g}}$ is a *meta-model* of g.

• $\tilde{\mathfrak{g}}$ is built from $m \ll N$ runs of g.

Error (bias) quantification?

Provided ğ is a Kriging predictor:

 $\widehat{\mathbb{F}}_{95\%}^{-1} \subseteq \widehat{\mathbb{F}}_{95\%}^{\,0} \subseteq \widehat{\mathbb{F}}_{95\%}^{+1} \Rightarrow p_{f\,95\%}^{-1} \le p_{f\,95\%}^{\,0} \le p_{f\,95\%}^{+1}$

Hence the following *empirical error*:

$$\Delta p_{f95\%} = \log_{10} \left(\frac{p_{f95\%}^{+1}}{p_{f95\%}^{-1}} \right)$$

For the sake of *efficiency* ow probabilities can be handled by subset sampling (Au & Beck, 2001)

Structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

Surrogate-based reliability analysis

Principle

• A surrogate-based estimator:

$$\widetilde{p}_f = \int_{\widetilde{\mathbb{F}}} f_X(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$$

• where:

$$\widetilde{\mathbb{F}} = \left\{ \boldsymbol{x} \in \mathbb{X} : \widetilde{\boldsymbol{\mathfrak{g}}}(\boldsymbol{x}) \leq 0 \right\} \approx \mathbb{F}$$

and $\widetilde{\mathfrak{g}}$ is a *meta-model* of g.

• $\widetilde{\mathfrak{g}}$ is built from $m \ll N$ runs of g.

Error (bias) quantification?

Provided ğ is a Kriging predictor:

 $\widehat{\mathbb{F}}_{95\%}^{-1} \subseteq \widehat{\mathbb{F}}_{95\%}^{\,0} \subseteq \widehat{\mathbb{F}}_{95\%}^{+1} \Rightarrow p_{f\,95\%}^{-1} \le p_{f\,95\%}^{\,0} \le p_{f\,95\%}^{+1}$

• Hence the following *empirical error*:

$$\Delta p_{f95\%} = \log_{10} \left(\frac{p_{f95\%}^{+1}}{p_{f95\%}^{-1}} \right)$$

For the sake of *efficiency low probabilities* can be handled by

subset sampling (Au & Beck, 2001)

Structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

Surrogate-based reliability analysis

Principle

• A surrogate-based estimator:

$$\widetilde{p}_f = \int_{\widetilde{\mathbb{F}}} f_X(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$$

• where:

$$\widetilde{\mathbb{F}} = \left\{ \boldsymbol{x} \in \mathbb{X} : \widetilde{\boldsymbol{\mathfrak{g}}}(\boldsymbol{x}) \leq 0 \right\} \approx \mathbb{F}$$

and \widetilde{g} is a *meta-model* of g.

• $\tilde{\mathfrak{g}}$ is built from $m \ll N$ runs of g.

Error (bias) quantification?

Provided g is a Kriging predictor:

$$\hat{\mathbb{F}}_{95\%}^{-1} \subseteq \hat{\mathbb{F}}_{95\%}^{\,0} \subseteq \hat{\mathbb{F}}_{95\%}^{+1} \Rightarrow p_{f\,95\%}^{-1} \le p_{f\,95\%}^{\,0} \le p_{f\,95\%}^{+1}$$

• Hence the following *empirical error*:

$$\Delta p_{f95\%} = \log_{10} \left(\frac{p_{f95\%}^{+1}}{p_{f95\%}^{-1}} \right)$$

For the sake of *efficiency low probabilities* can be handled by *subset sampling* (Au & Beck, 2001)

Structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

Surrogate-based reliability analysis

Principle

• A surrogate-based estimator:

$$\widetilde{p}_f = \int_{\widetilde{\mathbb{F}}} f_X(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$$

• where:

$$\widetilde{\mathbb{F}} = \left\{ \boldsymbol{x} \in \mathbb{X} : \widetilde{\boldsymbol{\mathfrak{g}}}(\boldsymbol{x}) \leq 0 \right\} \approx \mathbb{F}$$

and \tilde{g} is a *meta-model* of g.

- $\tilde{\mathfrak{g}}$ is built from $m \ll N$ runs of g.
- Error (bias) quantification?
 - Provided ğ is a Kriging predictor:

$$\hat{F}_{95\%}^{-1} \subseteq \hat{\mathbb{F}}_{95\%}^{0} \subseteq \hat{\mathbb{F}}_{95\%}^{+1} \Rightarrow p_{f\,95\%}^{-1} \le p_{f\,95\%}^{0} \le p_{f\,95\%}^{+1}$$

• Hence the following *empirical error*:

$$\Delta p_{f\,95\%} = \log_{10} \left(\frac{p_{f\,95\%}^{+1}}{p_{f\,95\%}^{-1}} \right)$$

For the sake of *efficiency low probabilities* can be handled by *subset sampling* (Au & Beck, 2001)

・ロト ・日ト ・ヨト ・ヨ

Structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

Meta-model-based importance sampling

Importance sampling

(Rubinstein & Kroese, 1981, 2008)

Principle

- Premise: $f_X(\mathbf{x}) d\mathbf{x}$ is *inappropriate*!
- Given an admissible *instrumental PDF h*, the failure probability rewrites:

$$p_f = \int_{\{\boldsymbol{x} \in \mathbb{X}: h(\boldsymbol{x}) > 0\}} \mathbb{1}_{\mathbb{F}}(\boldsymbol{x}) \frac{f_X(\boldsymbol{x})}{h(\boldsymbol{x})} h(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$$
$$= \mathbb{E}_{\boldsymbol{Z}} \left[\mathbb{1}_{\mathbb{F}}(\boldsymbol{Z}) \frac{f_X(\boldsymbol{Z})}{h(\boldsymbol{Z})} \right]$$

where $Z \sim h$.

Optimal importance sampling

$$h^*(\boldsymbol{x}) = \frac{\mathbb{1}_{\mathbb{F}}(\boldsymbol{x}) f_X(\boldsymbol{x})}{1 + 1}$$

reduces the variance of estimation to zero!

h* is impracticable!

Structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

Meta-model-based importance sampling

Importance sampling

(Rubinstein & Kroese, 1981, 2008)

Principle

- **Premise:** $f_X(x) dx$ is *inappropriate*!
- Given an admissible *instrumental PDF h*, the failure probability rewrites:

$$p_f = \int_{\{\mathbf{x} \in \mathbb{X}: h(\mathbf{x}) > 0\}} \mathbb{1}_{\mathbb{F}}(\mathbf{x}) \frac{f_X(\mathbf{x})}{h(\mathbf{x})} h(\mathbf{x}) d\mathbf{x}$$
$$= \mathbb{E}_{\mathbf{Z}} \left[\mathbb{1}_{\mathbb{F}}(\mathbf{Z}) \frac{f_X(\mathbf{Z})}{h(\mathbf{Z})} \right]$$

where $Z \sim h$.

Optimal importance sampling

$$h^*(\boldsymbol{x}) = \frac{\mathbb{1}_{\mathbb{F}}(\boldsymbol{x}) f_X(\boldsymbol{x})}{p_f}$$

reduces the variance of estimation to zero!

h* is impracticable!

Structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

Meta-model-based importance sampling

Importance sampling

(Rubinstein & Kroese, 1981, 2008)

Principle

- **Premise:** $f_X(x) dx$ is *inappropriate*!
- Given an admissible *instrumental PDF h*, the failure probability rewrites:

$$p_f = \int_{\{\mathbf{x} \in \mathbb{X}: h(\mathbf{x}) > 0\}} \mathbb{1}_{\mathbb{F}}(\mathbf{x}) \frac{f_X(\mathbf{x})}{h(\mathbf{x})} h(\mathbf{x}) d\mathbf{x}$$
$$= \mathbb{E}_{\mathbf{Z}} \left[\mathbb{1}_{\mathbb{F}}(\mathbf{Z}) \frac{f_X(\mathbf{Z})}{h(\mathbf{Z})} \right]$$

where $Z \sim h$.

Optimal importance sampling

$$h^*(\boldsymbol{x}) = \frac{\mathbb{1}_{\mathbb{F}}(\boldsymbol{x}) f_X(\boldsymbol{x})}{p_f}$$

reduces the variance of estimation to zero!

h^* is impracticable!

Structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

Meta-model-based importance sampling Approximation of the optimal instrumental PDF

 Given the probabilistic classification function of a Kriging predictor:

$$\pi(\boldsymbol{x}) = \mathcal{P}\left[\hat{Y}(\boldsymbol{x}) \le 0\right] = \Phi\left(\frac{0 - \mu_{\hat{Y}}(\boldsymbol{x})}{\sigma_{\hat{Y}}(\boldsymbol{x})}\right)$$

• We propose the following Kriging-based approximation:

$$\hat{h}^*(\boldsymbol{x}) = \frac{\pi(\boldsymbol{x}) f_X(\boldsymbol{x})}{p_{f\varepsilon}}$$

where:

$$p_{f\varepsilon} = \int_{\mathbb{X}} \pi(\mathbf{x}) f_X(\mathbf{x}) d\mathbf{x} = \mathbb{E}[\pi(\mathbf{X})]$$

is the *augmented failure probability* (" $\mathcal{P} + \mathbb{P}$ ").

Structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

Meta-model-based importance sampling Approximation of the optimal instrumental PDF

 Given the probabilistic classification function of a Kriging predictor:

$$\boldsymbol{\pi}(\boldsymbol{x}) = \mathcal{P}\left[\hat{Y}(\boldsymbol{x}) \le 0\right] = \Phi\left(\frac{0 - \mu_{\hat{Y}}(\boldsymbol{x})}{\sigma_{\hat{Y}}(\boldsymbol{x})}\right)$$

• We propose the following Kriging-based approximation:

$$\hat{h}^*(\boldsymbol{x}) = \frac{\pi(\boldsymbol{x}) f_X(\boldsymbol{x})}{p_{f\varepsilon}}$$

where:

$$p_{f\varepsilon} = \int_{\mathbb{X}} \pi(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} = \mathbb{E}[\pi(\mathbf{X})]$$

is the *augmented failure probability* (" $\mathcal{P} + \mathbb{P}$ ").

Structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

Meta-model-based importance sampling Proposed estimator

• Substituting $\widehat{h^*}$ for h, it turns out that:

 $p_f = p_{f \epsilon} \alpha_{\rm corr}$

where:

$$\alpha_{\rm corr} = \mathbb{E}_{Z}\left[\frac{\mathbb{1}_{\mathbb{F}}(Z)}{\pi(Z)}\right]$$

is the *correction factor*, with $Z \sim \widehat{h^*}$.

Optimal importance sampling can be reached as the "control variate":

$$\pi(X) \hookrightarrow \mathbb{1}_{\mathbb{F}}(X)$$

meaning that:

$$p_{f \epsilon} \rightarrow p_f$$

 $\alpha_{\rm corr} \rightarrow 1$

イロト イヨト イヨト イヨト

臣

Structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

Meta-model-based importance sampling Proposed estimator

• Substituting $\widehat{h^*}$ for h, it turns out that:

 $p_f = p_{f \epsilon} \alpha_{\text{corr}}$

where:

$$\alpha_{\rm corr} = \mathbb{E}_{Z}\left[\frac{\mathbb{1}_{\mathbb{F}}(Z)}{\pi(Z)}\right]$$

is the *correction factor*, with $Z \sim \widehat{h^*}$.

 Optimal importance sampling can be reached as the "control variate":

$$\pi(X) \hookrightarrow \mathbb{1}_{\mathbb{F}}(X)$$

meaning that:

$$\left[\begin{array}{c} p_{f\,\varepsilon} \to p_f \\ \alpha_{\rm corr} \to 1 \end{array}\right]$$

() < </p>

æ

Structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

Meta-model-based importance sampling Proposed estimator (cont')

• Eventually, the failure probability can be computed as:

$$\hat{p}_{f \text{ metals}} = \hat{p}_{f \epsilon} \hat{\alpha}_{\text{corr}}$$

where:

$$\hat{p}_{f \varepsilon} = \frac{1}{N_{\varepsilon}} \sum_{i=1}^{N_{\varepsilon}} \pi \left(X^{(i)} \right)$$
$$\hat{\alpha}_{\text{corr}} = \frac{1}{N_{\text{corr}}} \sum_{i=1}^{N_{\text{corr}}} \frac{\mathbb{1}_{\mathbb{F}} \left(Z^{(i)} \right)}{\pi \left(Z^{(i)} \right)}$$

• The final coefficient of variation is:

 $\delta_{\text{metalS}} = \sqrt{\delta_{\varepsilon}^{2} + \delta_{\text{corr}}^{2} + \delta_{\varepsilon}^{2} \delta_{\text{corr}}^{2}}$ $\approx \sqrt{\delta_{\varepsilon}^{2} + \delta_{\text{corr}}^{2}}$

Sampling from $\widehat{h^*}$ resorts to MCMC (Robert & Casella, 2004)

Vincent Dubourg (Phimeca/LaMI) Ph. D. Defense, December 5, 2011

Structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

Meta-model-based importance sampling Trade-off between *m* and *N*corr

• Optimality is reached if:

 $\alpha_{\rm corr} = 1$

- But α_{corr} is *expensive to evaluate* so that it should be estimated only *once*!
- Hence, we propose the following *leave-one-out estimate*:

$$\hat{\alpha}_{\text{corr LOO}} = \frac{1}{m} \sum_{i=1}^{m} \frac{\mathbb{1}_{\mathbb{F}} \left(\boldsymbol{x}^{(i)} \right)}{\mathcal{P} \left[Y \left(\boldsymbol{x}^{(i)} \right) \le 0 \mid \boldsymbol{Y}_{-i} = \boldsymbol{y}_{-i} \right]}$$

where y_{-i} denotes all the observations in the dataset D but the *i*-th one.

• The following condition is used to *stop* the sampling-based adaptive enrichment of the dataset D at the *k*-th iteration:

$$\left| \hat{\alpha}_{\text{corr LOO}}^{(k)} - 1 \right| \le \epsilon_{\alpha}^{1} \quad \text{and} \quad \frac{\left| \hat{\alpha}_{\text{corr LOO}}^{(k)} - \hat{\alpha}_{\text{corr LOO}}^{(k-1)} \right|}{\hat{\alpha}_{\text{corr LOO}}^{(k-1)}} \le \epsilon_{\alpha}^{2} \quad \text{or} \quad m > m_{\max}$$

• Then, the true value of α_{corr} is estimated by $\hat{\alpha}_{corr}$.

Illustration #1 Influence of the failure probability Structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

(Bourinet et al., 2011)

A two d.o.f. damped oscillator

• Let us consider the following *seismic control device*:

where *S* is a stationary Gaussian white noise (*ground motion*).

 The limit-state function for the secondary spring is:

$$g(\boldsymbol{x}) = \boldsymbol{F}_{\boldsymbol{S}} - k_{\boldsymbol{S}} \max_{t \in [0;T]} |\boldsymbol{x}_{\boldsymbol{S}}(t)|$$

(Igusa & Der Kiureghian, 1985)

Probabilistic model (8 RVs)

Variable	Distribution	Mean	C.o.V.
m_p	Lognormal	1.5	10%
m_S	Lognormal	0.01	10%
kp	Lognormal	1	20%
ks	Lognormal	0.01	20%
ζ_p	Lognormal	0.05	40%
ζ_S	Lognormal	0.02	50%
F_S	Lognormal	{15,21.5,27.5}	10%
S ₀	Lognormal	100	10%

(Der Kiureghian & De Stefano, 1990)

э

Structural reliability methods Surrogate-based reliability analysis Meta-model-based importance sampling Illustrations

Illustration #1 Influence of the failure probability (cont')

(Bourinet et al., 2011)

Results

μ_{Fs}	values	FORM ^a	Subset Sampling	Meta-IS	SVM + Subset ^a
	Ν	1,179	300,000	464 + 200	1,719
15	p_{f}	2.19×10^{-2}	4.63×10^{-3}	4.80×10^{-3}	4.78×10^{-3}
	C.o.V.	-	<3%	<5%	<4%
	Ν	2,520	500,000	336 + 400	2,865
21.5	p_f	$3.50 imes 10^{-4}$	4.75×10^{-5}	4.46×10^{-5}	4.42×10^{-5}
	C.o.V.	-	<4%	<5%	<7%
	Ν	2,727	700,000	480 + 200	4,011
27.5	p_{f}	$3.91 imes 10^{-6}$	3.47×10^{-7}	3.76×10^{-7}	3.66×10^{-7}
	C.o.V.	-	<5%	<5%	<10%

^aAs computed by *Bourinet* et al. (2011).

Chosen cuts of the failure domain

Ph. D. Defense, December 5, 2011

Reliability analysis

Illustration #2 Influence of the dimension n

Problem formulation

The limit-state function reads:

$$\mathfrak{g}(\boldsymbol{x}) = (n + 0.6\sqrt{n}) - \sum_{i=1}^n x_i$$

The probabilistic model is: •

 $X \sim \mathcal{LN}(1, 0.2 \operatorname{Id}_n)$

Illustrations

(Rackwitz, 2001)

Results

n	2	50	100	
Crude Monte Carlo sampling (ref.)				
\hat{p}_{fMC}	$4.78 imes 10^{-3}$	$1.91 imes 10^{-3}$	$1.73 imes 10^{-3}$	
$\delta_{\rm MC}$	≤ 2%	$\leq 2\%$	≤ 2%	
Ν	522,000	1,100,000	1,450,000	
Metamodel-based importance sampling				
m	6×2	6×50	6×100	
β _{fε}	4.85×10^{-3}	1.95×10^{-3}	$1.83 imes10^{-3}$	
$\delta_{\mathcal{E}}$	$\leq 1.41\%$	$\leq 1.41\%$	$\leq 1.41\%$	
Ncorr	100	1,500	2,100	
$\hat{\alpha}_{corr}$	1.00	0.99	0.93	
δ_{corr}	0%	≤ 1.41%	$\leq 1.41\%$	
$m + N_{\rm corr}$	112	1,800	2,700	
$\hat{p}_{f \text{ metals}}$	4.85×10^{-3}	1.93×10^{-3}	1.70×10^{-3}	
δ_{metaIS}	$\leq 1.41\%$	≤ 2%	≤ 2%	

イロト イヨト イヨト イヨト

Ph. D. Defense, December 5, 2011

æ

Vincent Dubourg (Phimeca/LaMI)

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

イロト イヨト イヨト イヨト

Outline

Gaussian process meta-modelling

2) Adaptive designs of experiments

B Reliability analysis

Reliability-based design optimization

- Introduction
- Surrogate-based RBDO
- Validation
- Application to the design of an imperfect submarine hull

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hul

Reliability-based design optimization

(Tsompanakis et al., 2008)

Problem formulation

$$\boldsymbol{d^*} = \arg\min_{\boldsymbol{d}\in\mathbb{D}} \quad \boldsymbol{c}(\boldsymbol{d}): \quad \begin{cases} f_i(\boldsymbol{d}) \leq 0, \quad i = 1, \dots, n_c \\ p_{fl}(\boldsymbol{d}) \leq p_{fl}^0, \quad l = 1, \dots, n_p \end{cases}$$

where d is exclusively involved in the definition of the random vector X (*e.g. mean values*).

Bottlenecks

- The *repeated* reliability estimations are *computationally expensive*;
- Most NLP constrained optimization algorithms require *the gradients of the failure probabilities*.

Solutions

 Nested approaches 	(Enevoldsen & Sørensen, 1994)	
 Sequential approaches 	(Du & Chen, 2004)	
 Surrogate-based approaches 	<i>(Eldred</i> et al., 2002)	
	<□> <@> <≧> <≧> <≧> <	

Surrogate-based RBDO The augmented reliability space Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

(Taflanidis & Beck, 2008, 2009a,b)

Motivation

Building the Kriging surrogates *from scratch* for each nested reliability analysis would be particularly inefficient.

Definition

 The admissible range D simply augments the spread of f_X:

 $h(\boldsymbol{x}) = \int_{\mathbb{D}} f_X(\boldsymbol{x} \mid \boldsymbol{d}) \,\boldsymbol{\pi}(\boldsymbol{d}) \, \mathrm{d}\boldsymbol{d}$

where π is the uniform distribution over \mathbb{D} .

• The idea is to work on a *sufficiently large confidence region* of *h*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Reliability sensitivity analysis

Motivations

- NLP optimization algorithms require the gradient of the failure probabilities;
- How to compute these derivatives with Monte Carlo techniques?

The score function approach	(Rubinstein, 1976, 1986)
Given a random vector X with parameter d, provided its depend on d: $\frac{\partial p_f(d)}{\partial d} = \mathbb{E}_X \left[\mathbb{1}_{\mathbb{F}}(X) \; \frac{\partial \log f_X(X \mid d)}{\partial d} \right]$	s support % does not $\frac{d)}{2}$

Interesting properties

- A simple post-processing of a reliability analysis!
- The score function comes *analytically* when the copula formalism is used.

(Lee et al., 2011a,b)

- The approach extends to reduction variance techniques such as:
 - subset sampling
 - (meta-model-based) importance sampling.

(Song et al., 2009)

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

Compute $\hat{p}_{corr}^{0}(\boldsymbol{d}^{(i)})$ and its aradie

- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform approximate line-search using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

Loop back to step 2 until the optimizer converges.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

イロン イヨン イヨン イヨン

э

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

Compute $\hat{p}_{forge}^{0}(\boldsymbol{d}^{(i)})$ and its gradient

- Compute *search direction* h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

Loop back to step 2 until the optimizer converges.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- **()** Compute $\hat{p}_{f\,95\%}^{\ 0}(m{d}^{(i)})$ and its gradient;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

Loop back to step a until the optimizer converges.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- S Compute $\hat{p}_{f95\%}^{0}(\mathbf{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

Loop back to step 2 until the optimizer converges.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- S Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

Loop back to step 2 until the optimizer converges.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- S Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

Loop back to step 2 until the optimizer converges.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- S Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Ocompute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the optimizer converges.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- S Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- S Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Ocompute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- S Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- S Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Ocompute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- S Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- S Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Ocompute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- (a) Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the optimizer converges.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- (a) Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the optimizer converges.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- (a) Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- (a) Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- (a) Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- (a) Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- (a) Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- (a) Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- (a) Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the optimizer converges.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- (a) Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- (a) Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- (a) Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- (a) Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- (a) Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- **(3)** Compute $\hat{p}_{f95\%}^{0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the optimizer converges.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- (a) Compute $\hat{p}_{f\,95\%}^{\ 0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the optimizer converges.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

 x_1, d_1 Shrink \mathbb{D} and decrease Δ_0

 x_2, d_2

Surrogate-based RBDO Overview of the proposed algorithm

Given an initial design $d^{(0)} \in \mathbb{D}$ (*bounded*):

- Determine the *augmented reliability* space;
- Fit an *adaptive Kriging surrogate* with target local accuracy:

 $\Delta p_{f\,95\%}\left(\boldsymbol{d}^{(i)}\right) \leq \Delta_0$

- **③** Compute $\hat{p}_{f\,95\%}^{\ 0}(\boldsymbol{d}^{(i)})$ and *its gradient*;
- Compute search direction h⁽ⁱ⁾ using min-max formulation;
- Perform *approximate line-search* using Goldstein-Armijo step size rule;

$$d^{(i+1)} = d^{(i)} + s^{(i)} h^{(i)}$$

6 Loop back to step 2 until the *optimizer converges*.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Introduction Surrogate-based RBDO V**alidation** Application to the design of an imperfect submarine hull

Validation

The approach has been *validated* over a chosen set of *6 academic examples*.

Example	п	n _d	n_p	Ν	Features
Euler buckling of a straight column	3	2	1	20	Reference analytical solution
A highly nonlinear limit-state (Lee & Jung, 2008)	2	2	2	80/10	Strong nonlinearity
Three nonlinear limit-states (Shan & Wang, 2008)	2	2	3	20/10/10	Multiple limit-states
A short column under oblique bending <i>(Royset</i> et al., 2001)	2	2	1	70	Benchmark $c(d) = c_0(d) + c_f(d) p_f(d)$
A bracket structure (Chateauneuf & Aoues, 2008)	8	2	2	160/90	Influence of the dimension Benchmark
A 23-member plane truss bridge (Blatman & Sudret, 2008b)	10	2	1	350	Influence of the dimension A first simplistic FE-based example

 $n = \dim(X)$, $n_d = \dim(d)$, n_p is the number of probabilistic constraints, N is the number of evaluations for each limit-state function.

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Application to the design of an imperfect submarine hull Problem formulation

Single bay reference structure

Design objectives

• The design should minimize the following *weight ratio*:

$$c(d) = \frac{\rho_{\text{sea water}} \mathcal{V}_{\text{sea water}}(d)}{\rho_{\text{steel}} \mathcal{V}_{\text{steel}}(d)}$$

• while ensuring structural integrity for an *accidental depth charge*:

$$g(\mathbf{x}) = p_{\text{collapse}}(\mathbf{x}) - p_{\text{acc}}$$

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Application to the design of an imperfect submarine hull

Mechanical and probabilistic modelling

Mechanical modelling (Noirfalise, 2009)

- Nonlinear finite element model (geometry, material and load);
- Shape imperfections distributed according to two critical buckling patterns

Probabilistic model

Var	riable	Distribution	Mean	C.o.V.
Ε	(MPa)	Lognormal	200,000	5%
$\sigma_{\mathcal{Y}}$	(MPa)	Lognormal	390	5%
σ_{u}	(MPa)	Lognormal	570	3%
е	(mm)	Lognormal	μe	3%
h_W	(mm)	Lognormal	μ_{hw}	3%
e_W	(mm)	Lognormal	µew	3%
w_f	(mm)	Lognormal	μw_f	3%
e_f	(mm)	Lognormal	μef	3%
A_2	(mm)	Lognormal	$\frac{1}{3} \frac{5R}{1,000}$	50%
A14	(mm)	Lognormal	$\frac{1}{3} \frac{L_S}{100}$	50%

Probabilistic constraint

$$\mathbb{P}\left[p_{\text{collapse}}(\boldsymbol{X}) \le p_{\text{acc}} \mid \boldsymbol{d}\right] \le 10^{-9}$$

イロト イポト イヨト イヨト

Ph. D. Defense, December 5, 2011

Introduction Surrogate-based RBDO Validation Application to the design of an imperfect submarine hull

Application to the design of an imperfect submarine hull Results

Conclusion

Conclusions

Adaptive Kriging surrogates

- Universal Kriging enable an objective quantification of the substitution error;
- Sampling-based adaptive DOEs enabled a reduction of this error, while making the use of distributed computing platforms possible.

Meta-model-based importance sampling

- extends the use of Kriging predictors to more complex problems (dimension and degree of non-linearity);
- enables an *elimination of the error* induced by the use of a surrogate.

Surrogate-based RBDO

- The augmented reliability space ensures the coupling "optimization-reliability-surrogates" is efficient;
- The score function approach revealed efficient for *reliability sensitivity* analysis;

The overall strategy answered the original problem: the design of imperfect shells against buckling

イロト イヨト イヨト イヨト

Future work

RBDO using meta-model-based importance sampling

- The failure probability gradient is *already available*;
- How to recycle the DOE efficiently?

Sampling-based adaptive DOEs for global (constrained) optimization

• This could use state-of-the-art refinement criteria

(Jones et al., 1998)

イロン イヨン イヨン イヨン

• This would possibly allow to formulate *prior belief about the location of the optimizer* through the weighting PDF *w*...

Bayesian model updating featuring expensive-to-evaluate likelihood functions

- When should the surrogate be *refined*?
- Which error measure?

Conclusion

Thank you for your attention!

Meta-model-based importance sampling

Sampling-based adaptive DOEs

Surrogate-based RBDO

æ