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Introduction

Context: The design of imperfect shells against buckling

Buckling is a structural instability phenomenon

• triggered by some excessive load (to be determined);

• whose magnitude depends on uncertain initial conditions
(e.g. geometry, material properties and boundary conditions);

• affecting slender structures.
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“Slenderness is the trademark of optimally designed structures.”

(Ramm &Wall, 2004)
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Introduction

Context: The design of imperfect shells against buckling

Buckling is the major failure scenario for submarines pressure hulls.
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Introduction

Design problem formulation

Deterministic design optimization

d∗ = arg min
d∈D

c(d) :

 fi (d) ≤ 0, i = 1, . . . , nc

gl (x, d) ≥ 0, l = 1, . . . , np
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Introduction

Design problem formulation

Reliability-based design optimization

d∗ = arg min
d∈D

c(d) :

 fi (d) ≤ 0, i = 1, . . . , nc

P
[
gl(X) ≤ 0 | d

]
≤ p0

f l, l = 1, . . . , np

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

x1 , d1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
2
,
d

2

d(0)

d ∗

1
(x

)
=

0

2 (x) =
0

1.5

4.5

7.5

10.5

13.5

16.5

19.5

22.5

25.5

28.5

Vincent Dubourg (Phimeca/LaMI) Ph. D. Defense, December 5, 2011 3 / 43



Introduction

Premise & objectives

• Structural stability models are computationally expensive (mostly
finite-element based).

⇒ Replace the original expensive model with a cheaper meta-model.

• Reliability approximation techniques (such as FORM) cannot guarantee the
safety level of their designs.

⇒ Develop a strategy that is able to guarantee the design’s safety.

• Stakeholders target highly reliable designs.

⇒ The overall strategy should be scalable to low failure probabilities.

A particular interest has been given to quantifying, reducing and
eliminating the error induced by the use of a surrogate.
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Meta-modelling

Meta-modelling techniques

• aim at constructing a predictor M̃
• that mimics the behaviour of an existing model M

x ∈ X ⊆ Rn M y ∈ Y ⊆ R

• from a collection of observations gathered in a dataset:

D =
{(
x(i), yi

)
, i = 1, . . . ,m

}
, yi =M

(
x(i)

)
, i = 1, . . . ,m

• and statistical considerations.

Interest for reliability-based design

Such predictors are much faster to evaluate than the original model M,
and come with a sort of confidence measure.
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Gaussian process meta-modelling
The Gaussian process prior model (Santner et al., 2003)

The function M is a sample path of a Gaussian process (GP) Y :

Y(x) = f (x)T β+ Z(x), x ∈ X

where:

• f (x)T β is a linear regression model;

• Z(x) is a zero-mean, stationary GP with covariance:

Cov
[
Y(x), Y(x′)

]
= σ2 R

(
x − x′, θ

)
,

(
x, x′

)
∈ X× X

Hence, given a vector of observations Y =
(
Yi = Y

(
x(i)

)
, i = 1, . . . ,m

)
and an

unobserved value Y(x), we have: Y(x)

Y

 ∼N1+m


 f (x)T β

Fβ

, σ2

 1 r(x)T

r(x) R




whose parameters F, r(x), R are inherited from the GP’s statistics (f and R).
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Gaussian process meta-modelling
Posterior ≡ The best linear unbiased predictor (BLUP) (Santner et al., 2003)

Here, we are interested in the posterior distribution of the unobserved value

given y =
(
yi =M

(
x(i)

)
, i = 1, . . . ,m

)
:

Ŷ (x) =
[
Y(x)

∣∣Y = y ]
The fundamental theorem of prediction (Santner et al., 2003)

Ŷ (x) is the best linear unbiased predictor w.r.t. the mean squared error:

Ŷ (x) = a∗(x)T Y

with:

a∗(x) = arg min
a(x)∈Rm

E
[(
Ŷ (x)− Y(x)

)2
]

: E
[(
Ŷ (x)− Y(x)

)]
= 0
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Ŷ (x)− Y(x)

)2
]

: E
[(
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Gaussian process meta-modelling
The universal Kriging predictor: an empirical BLUP (Santner et al., 2003)

The universal Kriging predictor is also Gaussian:

Ŷ (x) =
[
Y(x)

∣∣∣Y = y, σ2,θ
]
∼N1

(
µŶ (x), σ

2
Ŷ
(x)

)
where the mean prediction µŶ (x) and the prediction variance σ2

Ŷ
(x) read:

µŶ (x) = f (x)
T β̂+ r(x)TR−1

(
y − F β̂

)
σ2
Ŷ
(x) = σ2

(
1− r(x)T R−1 r(x)+ u(x)T

(
FT R−1 F

)−1
u(x)

)
where:

β̂=
(
FT R−1 F

)−1
FT R−1y

is the generalized least squares estimate of β, and:

u(x) = FT R−1 r(x)− f (x)
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Gaussian process meta-modelling
Inference of the empirical BLUP parameters

Estimation techniques for
(
σ2, θ

)
include:

• Variogram estimation (Cressie, 1993; Chilès and Delfiner, 1999)

• Cross-validation (Dubrule, 1983)

• Bayesian predictors (Handcock and Stein, 1993; Santner et al., 2003)

• Maximum likelihood estimation (Welch et al., 1992; Marrel et al., 2008)

The most common practice in computer experiments is the maximum likelihood
estimation technique:(

σ2∗, θ∗
)
= arg max

(σ2,θ)
L
(
y | σ2, θ

)
,

L being the likelihood of the observations w.r.t. Y (Gaussian).
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Illustration on a one-dimensional regression exercise
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M(x) =x sin(x)

µŶ(x)

D=
{
(xi , yi), i=1, , m

}
95% confidence interval

Ŷ (x) ∼N1

(
µŶ (x), σ

2
Ŷ
(x)

)

Interesting properties

• interpolating;

• asymptotically consistent (provided
the correlation R is “compatible”
with the data y and the model M);

(Vazquez, 2005)

• Gaussian (consequence of the
prior).
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From regression to probabilistic classification

Regression

Classification (g ≤ 0 vs. g > 0)

8 8
8

8

(x
)
=

0 µ Ŷ
(x

) =
0

x2

g(
x
)

x1

x1

x
2

Ex: Let g denote a quadratic limit-state function.
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From regression to probabilistic classification
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(x
)
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0

̂0 95
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%

̂−1 95
% ̂ −

195%

• Let F̂−1
95%, F̂ 0

95%, F̂+1
95% denote the three

following approximate failure subsets:

F̂ i95% =
{
x ∈ X : µŶ (x) ≤ i1.96σŶ (x)

}
,

i = −1, 0, +1.

• In turns, this enables the definition of the
margin of uncertainty:

M95% = F̂+1
95% \ F̂−1

95%

• Let π denote the probabilistic classification
function:

π(x) = P
[
Ŷ (x) ≤ 0

]
= Φ

(
0− µŶ (x)
σŶ (x)

)
P(≠ P) denotes the probability measure w.r.t. the Kriging epistemic uncertainty.
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Designs of experiments

Designs of experiments

• A DOE is the input part of a dataset:

X =
{
x(i), i = 1, . . . ,m

}
• Its size m must be minimized for the sake of efficiency.

• Experiments must be selected carefully for the sake of accuracy
(space-filling DOEs, Franco, 2008).

Adaptive designs of experiments

• are built in an iterative manner;

• on purpose to refine the predictor locally (e.g. in the vicinity of a contour);

Sequential adaptive DOEs for GP predictors rely on the maximization of a
so-called refinement criterion.
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Sequential adaptive DOEs

Refinement criteria for contour approximation

• Simple criteria mostly apply the margin
shrinking concept for support vector
machines

(Hurtado, 2004b; Deheeger, 2008)

• Here, we propose the “margin probability”:

P
[
Ŷ (x) ∈M95%

]
= Φ

(
1.96σŶ (x)− µŶ (x)

σŶ (x)

)

−Φ
(−1.96σŶ (x)− µŶ (x)

σŶ (x)

)
(Dubourg et al., 2010a)

Limitation of sequential strategies

• The multiple modes of these criteria make
their maximization difficult;

• There does not exist a single best point;

• Availability of distributed computing
platforms for M.

(Ginsbourger et al., 2010)
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]

Vincent Dubourg (Phimeca/LaMI) Ph. D. Defense, December 5, 2011 17 / 43



Gaussian process meta-modelling
Adaptive designs of experiments

Reliability analysis
Reliability-based design optimization

Designs of experiments
Sequential adaptive DOEs
Sampling-based adaptive DOEs
Illustration

Sequential adaptive DOEs

Refinement criteria for contour approximation

• Simple criteria mostly apply the margin
shrinking concept for support vector
machines

(Hurtado, 2004b; Deheeger, 2008)

• Here, we propose the “margin probability”:

P
[
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Sampling-based adaptive DOEs

Given an initial dataset D
and a pseudo-PDF w:

1 Fit a Kriging predictor Ŷ (x)
2 Define a weighted refinement criterion

C(x) = P
[
Ŷ (x) ∈M95%

]
w(x)

3 Sample N candidates from C
(MCMC slice sampler, Neal, 2003)

4 Reduce the N candidates to K points
(K-means clustering, Lloyd, 1982)

5 Enrich the dataset D with{(
x(m+k),M

(
x(m+k)

))
, k = 1, . . . , K

}
6 Loop back to step 1

8 8
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8

8

x
2

x0

g(
x
)
=

0

π
(x

)
=

2.
5%

π
(x) =

50%µ Ŷ
(x

) =
0

π
(x

)
=

97
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%

π
(x)

=
97.5%
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1 Fit a Kriging predictor Ŷ (x)
2 Define a weighted refinement criterion

C(x) = P
[
Ŷ (x) ∈M95%

]
w(x)

3 Sample N candidates from C
(MCMC slice sampler, Neal, 2003)

4 Reduce the N candidates to K points
(K-means clustering, Lloyd, 1982)

5 Enrich the dataset D with{(
x(m+k),M

(
x(m+k)

))
, k = 1, . . . , K

}
6 Loop back to step 1

8 8
x1

8

8

x
2

M
(x

)
=

0

µ Ŷ
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N is given (say 10,000)
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A four-branch series system (Waarts, 2000)
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Sampled & clustered refinement criterion

Iteration #1

Convergence criteria depend on the application...

C(x) = P
[
Ŷ (x) ∈M95%

]
ϕ2(x) K = 10

Vincent Dubourg (Phimeca/LaMI) Ph. D. Defense, December 5, 2011 19 / 43



Gaussian process meta-modelling
Adaptive designs of experiments

Reliability analysis
Reliability-based design optimization

Designs of experiments
Sequential adaptive DOEs
Sampling-based adaptive DOEs
Illustration

Illustration
A four-branch series system (Waarts, 2000)

8 8
x1

8

8

x
2

0.0

0.2

0.4

0.6

0.8

P[
Ŷ
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Sampled & clustered refinement criterion

Iteration #2

Convergence criteria depend on the application...

C(x) = P
[
Ŷ (x) ∈M95%

]
ϕ2(x) K = 10
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Sampled & clustered refinement criterion

Iteration #3

Convergence criteria depend on the application...

C(x) = P
[
Ŷ (x) ∈M95%

]
ϕ2(x) K = 10
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Sampled & clustered refinement criterion

Iteration #4

Convergence criteria depend on the application...

C(x) = P
[
Ŷ (x) ∈M95%

]
ϕ2(x) K = 10
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A four-branch series system (Waarts, 2000)
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Ŷ
(x

)
∈

9
5%

]
ϕ

2
(x

)

Sampled & clustered refinement criterion

Iteration #5

Convergence criteria depend on the application...

C(x) = P
[
Ŷ (x) ∈M95%

]
ϕ2(x) K = 10
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A four-branch series system (Waarts, 2000)
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Sampled & clustered refinement criterion

Iteration #6

Convergence criteria depend on the application...

C(x) = P
[
Ŷ (x) ∈M95%

]
ϕ2(x) K = 10
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A four-branch series system (Waarts, 2000)
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Sampled & clustered refinement criterion

Iteration #7

Convergence criteria depend on the application...

C(x) = P
[
Ŷ (x) ∈M95%

]
ϕ2(x) K = 10

Vincent Dubourg (Phimeca/LaMI) Ph. D. Defense, December 5, 2011 19 / 43



Gaussian process meta-modelling
Adaptive designs of experiments

Reliability analysis
Reliability-based design optimization

Designs of experiments
Sequential adaptive DOEs
Sampling-based adaptive DOEs
Illustration

Illustration
A four-branch series system (Waarts, 2000)

8 8
x1

8

8

x
2

0.0

0.2

0.4

0.6

0.8

1.0

P[
Ŷ
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Sampled & clustered refinement criterion

Iteration #8

Convergence criteria depend on the application...

C(x) = P
[
Ŷ (x) ∈M95%

]
ϕ2(x) K = 10
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Sampled & clustered refinement criterion

Iteration #9

Convergence criteria depend on the application...

C(x) = P
[
Ŷ (x) ∈M95%

]
ϕ2(x) K = 10
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Iteration #9

Convergence criteria depend on the application...
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Reliability analysis
Introduction (Ditlevsen & Madsen, 1996; Lemaire, 2009)

Problem formulation

• Given a failure domain:

F =
{
x ∈ X : g(x) ≤ 0

}
• and a random vector X with known distribution:

FX(x) = C
(
FXi(xi), i = 1, . . . , n

)
(Lebrun & Dutfoy, 2009a,b,c)

• the purpose is to quantify the reliability of a
design in the form of a failure probability:

pf = P [X ∈ F] =
∫
F
fX(x)dx 8 6 4 2 0 2 4 6 8

x1

8

6

4

2

0

2

4

6

8

x
2 O

fX(x)

=
{
x∈ 2 . (x) 0

}

(x
)
=

0

P(≠ P) denotes the probability measure w.r.t. the random vector X.
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Reliability analysis
Monte Carlo sampling as a motivation for the structural reliability methods

Monte Carlo sampling

• The failure probability rewrites:

pf =
∫
X
1F(x) fX(x)dx = E [1F(X)]

• Hence, the central limit theorem ensures that:

p̂f =
1
N

N∑
i=1

1F

(
X(i)

)
↩N1

(
pf ,

pf (1− pf )
N

)

• provided N is sufficiently large!

• In order to involve p̂f in an optimization loop:

pf ≈ 10−k ⇒ N ≥ 10k+2

• Structural reliability methods aim at reducing N
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2 O

fX(x)

=
{
x∈ 2 . (x) 0
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(x
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Vincent Dubourg (Phimeca/LaMI) Ph. D. Defense, December 5, 2011 22 / 43



Gaussian process meta-modelling
Adaptive designs of experiments

Reliability analysis
Reliability-based design optimization

Structural reliability methods
Surrogate-based reliability analysis
Meta-model-based importance sampling
Illustrations

Surrogate-based reliability analysis

Principle

• A surrogate-based estimator:

p̃f =
∫
F̃
fX(x)dx

• where:
F̃ =

{
x ∈ X : g̃(x) ≤ 0

}
≈ F

and g̃ is a meta-model of g.

• g̃ is built from m� N runs of g.

Error (bias) quantification?

• Provided g̃ is a Kriging predictor:

F̂−1
95% ⊆ F̂ 0

95% ⊆ F̂+1
95% ⇒ p−1

f 95% ≤ p
0
f 95% ≤ p

+1
f 95%

• Hence the following empirical error:

∆pf 95% = log10

p+1
f 95%

p−1
f 95%


8 6 4 2 0 2 4 6 8

x1

8

6

4

2

0

2

4

6

8

x
2 O

fX(x)

˜=
{
x∈ 2 . ˜(x) 0

}

(x
)
=

0

˜(x)
=

0

∆pf 95% ≤ ∆0

For the sake of efficiency

low probabilities can be handled by

subset sampling (Au & Beck, 2001)

Vincent Dubourg (Phimeca/LaMI) Ph. D. Defense, December 5, 2011 23 / 43



Gaussian process meta-modelling
Adaptive designs of experiments

Reliability analysis
Reliability-based design optimization

Structural reliability methods
Surrogate-based reliability analysis
Meta-model-based importance sampling
Illustrations

Surrogate-based reliability analysis

Principle

• A surrogate-based estimator:

p̃f =
∫
F̃
fX(x)dx

• where:
F̃ =

{
x ∈ X : g̃(x) ≤ 0

}
≈ F

and g̃ is a meta-model of g.

• g̃ is built from m� N runs of g.

Error (bias) quantification?

• Provided g̃ is a Kriging predictor:

F̂−1
95% ⊆ F̂ 0

95% ⊆ F̂+1
95% ⇒ p−1

f 95% ≤ p
0
f 95% ≤ p

+1
f 95%

• Hence the following empirical error:

∆pf 95% = log10

p+1
f 95%

p−1
f 95%


8 6 4 2 0 2 4 6 8

x1

8

6

4

2

0

2

4

6

8

x
2 O

fX(x)

˜=
{
x∈ 2 . ˜(x) 0

}

(x
)
=

0

˜(x)
=

0

∆pf 95% ≤ ∆0

For the sake of efficiency

low probabilities can be handled by

subset sampling (Au & Beck, 2001)

Vincent Dubourg (Phimeca/LaMI) Ph. D. Defense, December 5, 2011 23 / 43



Gaussian process meta-modelling
Adaptive designs of experiments

Reliability analysis
Reliability-based design optimization

Structural reliability methods
Surrogate-based reliability analysis
Meta-model-based importance sampling
Illustrations

Surrogate-based reliability analysis

Principle

• A surrogate-based estimator:

p̃f =
∫
F̃
fX(x)dx

• where:
F̃ =

{
x ∈ X : g̃(x) ≤ 0

}
≈ F

and g̃ is a meta-model of g.

• g̃ is built from m� N runs of g.

Error (bias) quantification?

• Provided g̃ is a Kriging predictor:

F̂−1
95% ⊆ F̂ 0

95% ⊆ F̂+1
95% ⇒ p−1

f 95% ≤ p
0
f 95% ≤ p

+1
f 95%

• Hence the following empirical error:

∆pf 95% = log10

p+1
f 95%

p−1
f 95%


8 8

x1

8

8

x
2

(x
)
=

0

̂0 95
%

̂+1 95
%

̂−1 95
% ̂ −

195%

∆pf 95% ≤ ∆0

For the sake of efficiency

low probabilities can be handled by

subset sampling (Au & Beck, 2001)

Vincent Dubourg (Phimeca/LaMI) Ph. D. Defense, December 5, 2011 23 / 43



Gaussian process meta-modelling
Adaptive designs of experiments

Reliability analysis
Reliability-based design optimization

Structural reliability methods
Surrogate-based reliability analysis
Meta-model-based importance sampling
Illustrations

Surrogate-based reliability analysis

Principle

• A surrogate-based estimator:

p̃f =
∫
F̃
fX(x)dx

• where:
F̃ =

{
x ∈ X : g̃(x) ≤ 0

}
≈ F

and g̃ is a meta-model of g.

• g̃ is built from m� N runs of g.

Error (bias) quantification?

• Provided g̃ is a Kriging predictor:

F̂−1
95% ⊆ F̂ 0

95% ⊆ F̂+1
95% ⇒ p−1

f 95% ≤ p
0
f 95% ≤ p

+1
f 95%

• Hence the following empirical error:

∆pf 95% = log10

p+1
f 95%

p−1
f 95%


8 8

x1

8

8

x
2

(x
)
=

0

̂0 95
%

̂+1 95
%

̂−1 95
% ̂ −

195%

∆pf 95% ≤ ∆0

For the sake of efficiency

low probabilities can be handled by

subset sampling (Au & Beck, 2001)

Vincent Dubourg (Phimeca/LaMI) Ph. D. Defense, December 5, 2011 23 / 43



Gaussian process meta-modelling
Adaptive designs of experiments

Reliability analysis
Reliability-based design optimization

Structural reliability methods
Surrogate-based reliability analysis
Meta-model-based importance sampling
Illustrations

Meta-model-based importance sampling
Importance sampling (Rubinstein & Kroese, 1981, 2008)

Principle

• Premise: fX(x)dx is inappropriate!

• Given an admissible instrumental PDF h,
the failure probability rewrites:

pf =
∫
{x∈X: h(x)>0}

1F(x)
fX(x)
h(x)

h(x)dx

= EZ
[
1F(Z)

fX(Z)
h(Z)

]
where Z ∼ h.

Optimal importance sampling

h∗(x) = 1F(x) fX(x)

reduces the variance of estimation to zero!

8 6 4 2 0 2 4 6 8
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8

6

4

2

0

2

4

6

8

x
2 O

fX(x)

=
{
x∈ 2 . (x) 0

}

(x
)
=

0

h∗ is impracticable!

Find another h close to h∗
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Meta-model-based importance sampling
Importance sampling (Rubinstein & Kroese, 1981, 2008)

Principle

• Premise: fX(x)dx is inappropriate!

• Given an admissible instrumental PDF h,
the failure probability rewrites:

pf =
∫
{x∈X: h(x)>0}

1F(x)
fX(x)
h(x)

h(x)dx

= EZ
[
1F(Z)

fX(Z)
h(Z)

]
where Z ∼ h.

Optimal importance sampling

h∗(x) = 1F(x) fX(x)
pf

reduces the variance of estimation to zero!
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Meta-model-based importance sampling
Importance sampling (Rubinstein & Kroese, 1981, 2008)
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Meta-model-based importance sampling
Approximation of the optimal instrumental PDF

• Given the probabilistic classification function
of a Kriging predictor:

π(x) = P
[
Ŷ (x) ≤ 0

]
= Φ

(
0− µŶ (x)
σŶ (x)

)

• We propose the following Kriging-based
approximation:

ĥ∗(x) = π(x) fX(x)
pf ε

where:

pf ε =
∫
X
π(x) fX(x)dx = E [π(X)]

is the augmented failure probability (“P + P”).

8 8
x1

8

8

x
2

x0

g(
x
)
=

0

π
(x

)
=

2.
5%

π
(x) =

50%µ Ŷ
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Meta-model-based importance sampling
Proposed estimator

• Substituting ĥ∗ for h, it turns out that:

pf = pf ε αcorr

where:

αcorr = EZ
[
1F(Z)
π(Z)

]
is the correction factor, with Z ∼ ĥ∗.

• Optimal importance sampling can be
reached as the “control variate”:

π(X)↩ 1F(X)

meaning that:  pf ε -→ pf
αcorr -→ 1
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Meta-model-based importance sampling
Proposed estimator (cont’)

• Eventually, the failure probability can be
computed as:

p̂f metaIS = p̂f ε α̂corr

where:

p̂f ε=
1
Nε

Nε∑
i=1

π
(
X(i)

)

α̂corr=
1

Ncorr

Ncorr∑
i=1

1F

(
Z(i)

)
π
(
Z(i)

)

• The final coefficient of variation is:

δmetaIS =
√
δε2 + δcorr

2 + δε2 δcorr
2

≈
δε , δcorr�1

√
δε2 + δcorr

2
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Sampling from ĥ∗ resorts to MCMC
(Robert & Casella, 2004)
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Meta-model-based importance sampling
Trade-off between m and Ncorr

• Optimality is reached if:

αcorr = 1

• But αcorr is expensive to evaluate so that it should be estimated only once!

• Hence, we propose the following leave-one-out estimate:

α̂corr LOO =
1
m

m∑
i=1

1F

(
x(i)

)
P
[
Y
(
x(i)

)
≤ 0 | Y−i = y−i

]
where y−i denotes all the observations in the dataset D but the i-th one.

• The following condition is used to stop the sampling-based adaptive
enrichment of the dataset D at the k-th iteration:

∣∣∣α̂(k)corr LOO − 1
∣∣∣ ≤ ε1

α and

∣∣∣α̂(k)corr LOO − α̂
(k−1)
corr LOO

∣∣∣
α̂(k−1)

corr LOO

≤ ε2
α or m >mmax

• Then, the true value of αcorr is estimated by α̂corr.
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Illustration #1
Influence of the failure probability (Bourinet et al., 2011)

A two d.o.f. damped oscillator

• Let us consider the following
seismic control device:

where S is a stationary Gaussian
white noise (ground motion).

• The limit-state function for the
secondary spring is:

g(x) = Fs − ks max
t∈[0;T]

|xs(t)|

(Igusa & Der Kiureghian, 1985)

Probabilistic model (8 RVs)

Variable Distribution Mean C.o.V.

mp Lognormal 1.5 10%

ms Lognormal 0.01 10%

kp Lognormal 1 20%

ks Lognormal 0.01 20%

ζp Lognormal 0.05 40%

ζs Lognormal 0.02 50%

FS Lognormal
{
15, 21.5, 27.5

}
10%

S0 Lognormal 100 10%

(Der Kiureghian & De Stefano, 1990)
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Illustration #1
Influence of the failure probability (cont’) (Bourinet et al., 2011)

Results

µFs values FORMa Subset Sampling Meta-IS SVM + Subseta

N 1,179 300,000 464 + 200 1,719

pf 2.19× 10−2 4.63× 10−3 4.80× 10−3 4.78× 10−315

C.o.V. – <3% <5% <4%

N 2,520 500,000 336 + 400 2,865

pf 3.50× 10−4 4.75× 10−5 4.46× 10−5 4.42× 10−521.5

C.o.V. – <4% <5% <7%

N 2,727 700,000 480 + 200 4,011

pf 3.91× 10−6 3.47× 10−7 3.76× 10−7 3.66× 10−727.5

C.o.V. – <5% <5% <10%

aAs computed by Bourinet et al.(2011).

Chosen cuts of the failure domain
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Illustration #2
Influence of the dimension n (Rackwitz, 2001)

Problem formulation

• The limit-state function reads:

g(x) = (n+ 0.6
√
n)−

n∑
i=1

xi

• The probabilistic model is:

X ∼ LN (1, 0.2 Idn)
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ĥ ∗ (u)∝π(u) ϕ2 (u)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ϕ
2
(u

)

Results

n 2 50 100

Crude Monte Carlo sampling (ref.)

p̂f MC 4.78× 10−3 1.91× 10−3 1.73× 10−3

δMC ≤ 2% ≤ 2% ≤ 2%

N 522,000 1,100,000 1,450,000

Metamodel-based importance sampling

m 6× 2 6× 50 6× 100

p̂f ε 4.85× 10−3 1.95× 10−3 1.83× 10−3

δε ≤ 1.41% ≤ 1.41% ≤ 1.41%

Ncorr 100 1,500 2,100

α̂corr 1.00 0.99 0.93

δcorr 0% ≤ 1.41% ≤ 1.41%

m+Ncorr 112 1,800 2,700

p̂f metaIS 4.85× 10−3 1.93× 10−3 1.70× 10−3

δmetaIS ≤ 1.41% ≤ 2% ≤ 2%
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Reliability-based design optimization
Introduction (Tsompanakis et al., 2008)

Problem formulation

d∗ = arg min
d∈D

c(d) :

 fi(d) ≤ 0, i = 1, . . . , nc

pf l(d) ≤ p0
f l, l = 1, . . . , np

where d is exclusively involved in the definition of the random vector X (e.g.
mean values).

Bottlenecks

• The repeated reliability estimations are computationally expensive;

• Most NLP constrained optimization algorithms require the gradients of the
failure probabilities.

Solutions

• Nested approaches (Enevoldsen & Sørensen, 1994)

• Sequential approaches (Du & Chen, 2004)

• Surrogate-based approaches (Eldred et al., 2002)
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Surrogate-based RBDO
The augmented reliability space (Taflanidis & Beck, 2008, 2009a,b)

Motivation

Building the Kriging surrogates from scratch for each nested reliability
analysis would be particularly inefficient.

Definition

• The admissible range D simply
augments the spread of fX :

h(x) =
∫
D
fX (x | d)π(d)dd

where π is the uniform distribution
over D.

• The idea is to work on a sufficiently
large confidence region of h. Real uncertainty

Augmented uncertainty Design range
Confidence interval
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Surrogate-based RBDO
Reliability sensitivity analysis

Motivations

• NLP optimization algorithms require the gradient of the failure probabilities;

• How to compute these derivatives with Monte Carlo techniques?

The score function approach (Rubinstein, 1976, 1986)

Given a random vector X with parameter d, provided its support X does not
depend on d:

∂pf (d)
∂d

= EX
[
1F(X)

∂ log fX(X | d)
∂d

]

Interesting properties

• A simple post-processing of a reliability analysis!

• The score function comes analytically when the copula formalism is used.
(Lee et al., 2011a,b)

• The approach extends to reduction variance techniques such as:
• subset sampling (Song et al., 2009)
• (meta-model-based) importance sampling.
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Surrogate-based RBDO
Overview of the proposed algorithm

Given an initial design d(0) ∈ D (bounded):

1 Determine the augmented reliability
space;

2 Fit an adaptive Kriging surrogate
with target local accuracy:

∆pf 95%

(
d(i)

)
≤ ∆0

3 Compute p̂ 0
f 95%(d

(i)) and its gradient;

4 Compute search direction h(i) using
min-max formulation;

5 Perform approximate line-search using
Goldstein-Armijo step size rule;

d(i+1) = d(i) + s(i) h(i)

6 Loop back to step 2 until the optimizer
converges.

0 2 4
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2

4

x
2
,
d

2

d(0)

1
(x

)
=
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Validation

The approach has been validated over a chosen set of 6 academic examples.

Example n nd np N Features

Euler buckling of a straight column 3 2 1 20 Reference analytical solution

A highly nonlinear limit-state
(Lee & Jung, 2008) 2 2 2 80/10 Strong nonlinearity

Three nonlinear limit-states
(Shan & Wang, 2008) 2 2 3 20/10/10 Multiple limit-states

A short column under oblique bending
(Royset et al., 2001) 2 2 1 70

Benchmark
c(d) = c0(d)+ cf (d)pf (d)

A bracket structure
(Chateauneuf & Aoues, 2008) 8 2 2 160/90 Influence of the dimension

Benchmark

A 23-member plane truss bridge
(Blatman & Sudret, 2008b) 10 2 1 350

Influence of the dimension
A first simplistic FE-based example

n = dim(X), nd = dim(d), np is the number of probabilistic constraints,
N is the number of evaluations for each limit-state function.
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Application to the design of an imperfect submarine hull
Problem formulation

Shielding
Pressure hull

Elliptical end with cone Single bay reference structure

Rigid diaphragm Elliptical bulkhead

Single bay reference structure

uz

p  R²

p
Ls

ew
hw

ef

e

R

ur

u

Design objectives

• The design should minimize the
following weight ratio:

c(d) = ρsea waterVsea water(d)
ρsteelVsteel(d)

• while ensuring structural integrity
for an accidental depth charge:

g(x) = pcollapse(x)− pacc
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Application to the design of an imperfect submarine hull
Mechanical and probabilistic modelling

Mechanical modelling (Noirfalise, 2009)

• Nonlinear finite element model
(geometry, material and load);

• Shape imperfections distributed
according to two critical buckling
patterns

Probabilistic model

Variable Distribution Mean C.o.V.

E (MPa) Lognormal 200,000 5%

σy (MPa) Lognormal 390 5%

σu (MPa) Lognormal 570 3%

e (mm) Lognormal µe 3%

hw (mm) Lognormal µhw 3%

ew (mm) Lognormal µew 3%

wf (mm) Lognormal µwf 3%

ef (mm) Lognormal µef 3%

A2 (mm) Lognormal 1
3

5R
1,000 50%

A14 (mm) Lognormal 1
3
Ls
100 50%

Probabilistic constraint

P
[
pcollapse(X) ≤ pacc | d

]
≤ 10−9

ε

σ

σ
y

0 ε
p

E

σ
u

Linear elasticity

Nonlinear elasticity

Plasticity

E

λ
1
P(V

1
)

λ
2
P(V

2
)

V
1

V
2

Nonlinear elasticity Follower forces

Mode 2 (A2) Mode 14 (A14)
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• +25% on the weight ratio

• but the failure probability was
drastically reduced (10−3 → 10−9):

p̂f metaIS(d
∗) = 10−9

with a C.o.V. δmetaIS < 5%

• The whole procedure required
about 1,000 FE runs.
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Conclusion

Conclusions

Adaptive Kriging surrogates

• Universal Kriging enable an objective quantification of the substitution error;

• Sampling-based adaptive DOEs enabled a reduction of this error,
while making the use of distributed computing platforms possible.

Meta-model-based importance sampling

• extends the use of Kriging predictors to more complex problems
(dimension and degree of non-linearity);

• enables an elimination of the error induced by the use of a surrogate.

Surrogate-based RBDO

• The augmented reliability space ensures the coupling
“optimization–reliability–surrogates” is efficient;

• The score function approach revealed efficient for reliability sensitivity
analysis;

The overall strategy answered the original problem:
the design of imperfect shells against buckling
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Conclusion

Future work

RBDO using meta-model-based importance sampling

• The failure probability gradient is already available;

• How to recycle the DOE efficiently?

Sampling-based adaptive DOEs for global (constrained) optimization

• This could use state-of-the-art refinement criteria (Jones et al., 1998)

• This would possibly allow to formulate prior belief about the location of the
optimizer through the weighting PDF w...

Bayesian model updating featuring expensive-to-evaluate likelihood
functions

• When should the surrogate be refined?

• Which error measure?
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Conclusion

Thank you for your attention!
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