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Abstract 
 
 
 
 
 
 
   The ITER Cable-In-Conduit Conductors (CICC) are composed of an assembly of pure 
copper wires and composite superconducting strands (with embedded brittle Nb3Sn 
microfilaments) cabled together and inserted in a stainless steel jacket. If the current carrying 
capacities of individual ITER strand are clearly identified by a dependence of the critical 
current on the applied strain and by a statistical quantification of possible microfilaments 
breakage, the characterization of cable-in-conduit is not yet fully achieved. 

In order to assess the local strains at the scale of the strands responsible for the degradations 
of the electrical performances, a global modeling of the mechanical behavior of CICCs from 
their initial forming to the application of magnetic loading is proposed by means of finite 
element simulation. The simulation code, Multifil, dedicated to the modeling of entangled 
media is adapted to handle with the specific loadings of CICCs operating conditions. 

In the proposed approach, each wire or strand of the studied conductor sample is modelled 
using a kinematically enriched beam model and contact-friction interactions between wires 
are detected and accounted for. During this thesis, particular pseudo-periodic conditions have 
been developed to prescribe appropriate boundary conditions at the ends of the cable. Contact 
conditions with moving rigid tools are considered to model the initial forming of the 
conductor and the presence of the jacket during the application of loadings. The global 
problem is solved using an implicit solver. 

The simulation is used first to determine the initial geometry of the conductor. A theoretical 
configuration where all wires are described by helicoidal functions corresponding to the 
different cabling stages is deformed and compacted by rigid tools into a cylindrical or petal-
shape form to get the initial configuration. An elastoplastic behavior is considered in the axial 
direction of strands. A transverse orthotropic elastic model is used in the transverse directions 
to attempt to reproduce the plastic deformation due to the pinching of the strand. The material 
properties are identified upon experimental data from the tests of single Nb3Sn strands and 
OFHC copper wires. The validation of the cable model in both the axial and the transverse 
directions will be presented with comparison of the loading curves to experimental 
measurements. 

The different stages experienced by CICCs during their service life, namely the annealing 
induced by the heat treatment, the axial compression generated during cool-down by the 
differential of thermal expansion with the jacket and the application of magnetic Lorentz 
forces are successively simulated on the ITER CS and TF conductors (considering one petal). 
Analysis of the local axial strains demonstrates a high non-uniformity, with combination of 
bending and axial compression at the local scale. At last, the outputs of the model are feeding 
two electromagnetic codes in order to retrieve the electrical properties of the conductors. 

 

Key words: ITER, cable-in-conduit conductor, Multifil, finite element, simulation, 
mechanical behavior, contact/friction interaction, strain, bending 
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Chapter I: Strain effect assessment in Cable-in-Conduit 
Conductors 

1 Introduction to the ITER project and the superconducting 
cables for magnets 

1.1 The International Thermonuclear Experimental Reactor 

The International Thermonuclear Experimental Reactor ITER is the future experimental 
fusion reactor that is currently built in Cadarache, south of France. The construction has 
started in 2007 after the international agreement officially signed on 21 November 2006 by 
the involved nations (Europe, Japan, China, Russia, USA, the republic of Korea and India). 
ITER, “the way” in Latin, is the essential next step in the development of fusion and will be 
the world’s biggest fusion energy research project. ITER main objective is to demonstrate the 
scientific and technological feasibility of steady-state fusion power production. 

 

 
Fig. 1.1. The International Thermonuclear Experimental Reactor. 

The main challenge in fusion is to be able to create a medium of sufficient energy to initiate 
the fusion reaction between deuterium and tritium. The needed energy is around 10 keV 
which can be attained in plasma with high ionic temperature of about 108

 K during several 
hundred seconds. The ITER reactor will create and maintain the fusion plasma by the 
magnetic confinement technique. The magnetic confinement uses the so-called tokamak 
machines. Tokamaks are specific devices able to create and maintain high temperature plasma 
enclosed inside a magnetic bottle. The plasma is trapped or confined inside a torus shape 
magnetic field. The enclosure of the field asks for the field lines to run helicoidally around the 
torus centre. This magnetic shape is achieved by the superposition of a vertical and a 
horizontal magnetic field. Tokamaks make use of toroidal coils to generate horizontal field 
lines and a transformer coil, the central solenoid, to induce pulse current in the plasma 
(acceleration of the charged particles) [Libeyre 2009][Mitchell 2009]. The current flowing in 
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the plasma creates the vertical field lines. At last, the poloidal coils help fixing the vertical 
position of the plasma inside the container, the vacuum vessel. The current in the plasma 
should be 15MA to reach the fusion ignition point. 

  
Fig.1.2. Magnetic confinement technique for plasma fusion. 

http://www.euronuclear.org/info/encyclopedia/t/tokamak.htm

1.1.1 ITER coils 

For the fusion plasma confinement, ITER needs the creation of a stable 5.3 T toroidal 
magnetic field. The ITER toroidal magnetic field (840m3 and 6.2m major radius) is created by 
a complex of magnets composed of 48 superconducting coils: 

� 18 Toroidal Field (TF) coils 

�   1 Central Solenoid (CS) with 6 pancakes around modules 

�   6 Poloidal Field (PF) coils 

�   9 pairs of Correction Coils (CC) 

 

a)            b) 

Fig. 1.3. a) The four kinds of magnets of the ITER magnetic system. b) The TF coil equatorial cross-

section with the array of round conductors (11x13) [Mitchell 2009]. 
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Inside the coils, arrays of round conductors (11x13) are carrying their current in parallel 
creating the required magnetic field. The operating currents are 40–45 kA for the conductors 

of the CS, 68 kA for the TF coils, 45–55 kA for the PF coils, and 16kA for the CC coils. In 

order to reach these high currents, superconducting materials are used for the conductor of the 

coils. The Niobium-Titanium, NbTi superconductor is used for the poloidal and correcting 

coils whereas the niobium-tin, Nb3Sn is used for the toroidal and coils and the central 

solenoid. The choice of Nb3Sn superconductor is mandatory to maintain the superconducting 

state in high magnetic field that can reach 14T where the critical current density of NbTi 

material is not sufficient. The superconducting properties of the material only appear at 

cryogenics temperature 15K. But the external magnetic field asks to decrease the temperature 

down to 4.5K to maintain the superconducting state [Wilson 1986], [Tixador 1995]. The 

conductors are cooled down to cryogenic temperature by the circulation of supercritical 

helium at the vicinity of the conductors. 

1.1.2 Cable-in-conduit conductors  

To face up large temperature and field variations, the ITER conductor relies on the Cable-In-

Conduit Conductor technology [Dresner 1995]. The conductors are composed of thousand of 

superconducting wires of a diameter of 0.8 mm cabled together around a central spiral and 

inserted inside a metallic jacket. For stability concern, the cable can also include some pure 

copper wire. The conductor is cooled down by superfluid Helium that flows through the 

interstices in-between the strands and through the central channel. CICCs offer excellent 

stability in regard with temperature and field variations and appear to be the only technical 

way to design conductors fulfilling ITER qualifications [Duchateau 2002]. The plasma can 

show instability that would eventually lead to its termination with abrupt temperature drops. 

The energy that was stored in the plasma suddenly dumps into the rest of the tokamak 

(vacumm vessel and coils). The energy deposits on the conductors in the form of temperature 

increase should be actively removed not to lose the superconducting state. The acceptable 

temperature for the cool down of the superconductor is defined by the ITER specification and 

should not exceed 5.7K [Mitchell 2001]. The heat exchange area (or wet surface) between 

strands and helium flow is large enough (typically N*!*d*l ~3m per section) to ensure the 

required heat exchange rate. 

 

     

Fig. 1.4. ITER TF and CS cable-in-conduit conductors. Thousand of strands are cable together and 

inserted in a Stainless Steel conduit. Six petals surround the central spiral. (Courtesy of A. Devred). 
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1.1.3 Composite strands 

The ITER superconducting strands are composite structure made of twisted Nb3Sn micro 

filaments bundles embedded in a metallic matrix surrounded by a tantalum anti-diffusion barrier 

4µm thick and by an outer copper shell that is 140µm thick [Lee 2000 - 01]. The decomposition 

of the superconducting materials into micro-filaments embedded in stabilizing high conductivity 

(high Residual Resistivity Ratio) matrix along and their twisting are mandatory for the stability of 

the superconducting properties [Ekin 1978][Ciazynski 1985]. Two different manufacturing 

processes are used for the production of ITER Nb3Sn strands: the Bronze route (Br) and the 

Internal Tin (IT) processes. In Fig. 1.5 a) and b), examples of the two kind of strands used for 

ITER are presented, from [Jewell 2010]. The principal difference lies in the organization of Nb3Sn 

micro-filaments and in their size that may vary from 4µm for the Br to few tens of µm for IT. The 

bronze route and internal tin processes differ in the location of the tin source for the creation of the 

Nb3Sn superconducting material. Regarding the bronze route, the tin source is the bronze 

(D�CuSn) matrix in which the hexagonal bundles of Nb filaments are embedded whereas for the 

internal tin, pure tin cores are surrounded by filaments arranged in crown of typically four rows 

[Lee 2003-05]. Originally, the strands are delivered ‘un-reacted’, the niobium and the tin are not 

alloyed and physically separated. In order to form the Nb3Sn alloy a heat treatment up to ~650°C 

for few hundred hours is performed. The heat treatment aims at diffusing the tin into the niobium 

across the distance of the filament radius in order to form the Nb3Sn superconducting material 

[Lee 2005 a b], [Fisher 2003], [Naus 2002]. In the mean time, the tantalum diffusion barrier 

prevents the tin to alloy with the pure copper shell whereas the chromium plate prevents strand-to-

strand sintering during the heat treatment reaction [Hibbs 1995]. The strands are coated by a 2µm 

chromium plate in order to increase the inter-strands contact resistance [Nijhuis 1999]. The 

ternary Nb3Sn strands also include Ti-stabilizing filaments so as to strengthen the Nb3Sn filaments 

[Cheggour 2010]. During the heat treatment, the temperature rate of change should be accurately 

controlled so as to obtain the proper stoichiometry of tin in the Nb3Sn filaments [Kasaba 2001], 

[Markiewicz 2002], [Godeke 2005], [Jewell 2005-08], [Chaowu 2009]. Micro-scale analysis of 

ITER strands is of high concern for qualifications. State-of-the-art microscopic observation 

techniques are carried on at the Applied Superconductivity Center under the guidance of David 

Larbalestier and Peter Lee The Scanning Electron Microscopy (SEM) method is used to measure 

the dimensions of the different parts of the composite and to analyze the chemical compositions of 

the different material such as the tin concentration in the Nb3Sn or the Ti alloying (ternary Cu-Nb-

Sn system) for instance. The uniformity of the filaments and the material composition can be 

accurately quantified [Lee 2003 - 2008]. 

          

a)          b) 

Fig. 1.5. SEM views of the composite superconducting strands for ITER. a) EAS Br and b) OST IT strand 

[Jewell 2008]. 

Ta barrier

Cu stabilizer

Nb3Sn filaments

Tin source

D CuSn matrix

Cr plate�
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a)          b) 

Fig. 1.6. Detailed SEM views of the Nb Sn filam ith indications on the sizes. a) EAS and b) OST

anical loading applied to the strands in cable-in-conductors  

 to 

coefficient of thermal expansion of the 

- 
lly to the strands [Duchateau 2004]. 

During th

electromagnetic cycles and hundred warm up cool down. These loadings applied to cable 

ents w  3

strands [Jewell 2008]. 

1.1.4 The mech

Due to the typical operating conditions of CICCs, the cable inside the jacket is submitted

three different loadings from three different origins: 

- First, during the cool down from the heat treatment temperature to the cryogenic 

temperature, the mismatch between the 

cable and the jacket causes an axial compression of the cable. The amplitude of the 

compression may reach from -0.3 to -0.7% depending on the jacket thickness and 

material, see for instance [Martovetski 2005]. 

Second, the combination of high current and high magnetic field creates a Lorentz 

force of around 1kN/m that is acting orthogona

- Third, the combination of the background magnetic field and the transport current 

produce a loading that tends to spread the coils in its outward direction (radially). 

Under operating conditions, this bursting effect, typical of large scale coils, 

stresses the mechanical part of the magnets that in turn put the cable-in-conduit 

under tension. This generated the so-called tensile "hoop strain” assessed around 
+0.15% [Zanino 2005]. 

eir service life, the ITER conductors should undergo several thousand 

create some local strains at the scale of the strands that deform the embedded microfilaments 
in return [Mitchell 2003]. For several decades, experiments have shown that the potential of 
the Nb3Sn strands is not fully utilised in CICC due to high strains that develop in the strands 
of loaded cable. Occurrence of strain appears to be an intrinsic limitation of cable-in-conduit 
technology. For the estimation of the structural, the thermal and the electromagnetic effects on 
the cable-in-conduit conductors, one may refer to [Salpietro et Al 1999], [Kato et Al 2001], 
[Zanino et Al 2003], [Martovetsky 2004], [Mitchell 2006]. In the next paragraph, it is shown 
that the superconducting properties of the Nb3Sn material are highly sensitive to the 
deformation. 
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1.2 Dependence of the conductivity properties on the strains for 
strands and conductors 

1.2.1 The Nb3Sn strands characterization 

a. Nb3Sn superconducting properties 

x The critical current  

The main parameter regarding the superconducting properties of the strand is the critical 

current density Jc [A/mm²] that is defined as the maximum possible current Ic [A] that can 

flow through the superconducting material Snon Cu [mm²] without transition to the resistive 

state [Wilson 1986]: 

  eqn. 1.1 non Cucc  / SIJ  
If the current density exceeds the critical value the material no longer stands in its 

superconducting state. The current then leaves the filaments that have become resistive 

toward the copper shell stabilizer that exhibits lower resistivity. As long as the 

superconducting state is not recovered, some heat is generated in the material. If the current 

density further increases a thermal run-way occurs indicating the quench of the conductor. 

The transition between superconducting and resistive state is observed through the 

development of an electric field across the conductor that can be detected by voltage drop 

measurement [Ekin 1978], [Ciazynski 1985]. The transition is classically investigated by 

probing the strand with voltage taps placed at different locations along the strands. The 

measurement of the critical current, the Ic test, consists to gradually ramp up the current at 

constant temperature and to measure the voltage drop. In the superconducting state, there is 

no resistance and no electric field develops: the measured voltage is null. As the current 

increases to certain extend a voltage starts to be measured preceding a sudden voltage run 

away typical of the loss of superconducting state. Since the transition to the resistive state can 

be smooth, a criterion on the detected electric field should be set to define the critical current. 

The common value in the literature is 10µV/m which is also used in ITER requirements. For 

an electric field criterion Ec= 10µV/m, the measured critical current Ic goes up to several 

hundred Amperes at the ITER operating conditions (4.2 K and 12 T), see for instance [Ilyin 

2007]. 

x The n-index 

An important point concerns the gradual transition to the resistive state of Nb3Sn-based 

strands. The evolution of the electric field with the transport current I during the transition to 

the resistive state can be expressed using the n-power law of the current I divided by the 

critical current Ic [Wilson 1986]: 

 

n

c

c
I

I
EE »¼

º«¬
ª 

 eqn. 1.2 

The exponent n is basically retrieved from the slope of the double logarithm scale of the 

relation. It basically reflects the sharpness of the transition with lower n-index corresponding 

to broader resistive transition. The n-index of single strand is usually measured at 4.2K and 
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12T and is typically 20-30 for internal tin and 30-50 for bronze route [Bruzzone 2004]. 

Various authors suggest that the n-index mostly depends on the critical current Ic with 

increasing value for higher current and propose the following formulation, e.g. [Taylor 2005 

c]: 

  eqn. 1.3 � �> @ 41.0
41 B,T,In c�� 

As the different laboratories and various papers specify, the n-index of single strand can be 

considered as a quality factor for the performances as low values tend to indicate non-uniform 

current distribution, non-uniform material properties or broken filaments, [Taylor 2002], 

[Bruzzone 2003], [Nijhuis 2005], [Godeke 2006]. 

b. The strain dependence of the properties 

x Reversible losses due to strains 

Since the 1980’s and the work of Jack Ekin, it is well established that the current carrying 

capacity of Nb3Sn depends on the external magnetic field B, the temperature T and the strain H 
sustained by the filament [Ekin 1980-2010]. For the Nb3Sn strand, it is possible to define a 

four-dimensional surface that states the performance boundaries between the resistive and the 

superconducting state:  

 � �H,,TBfJc   eqn. 1.4 

For fusion application, the field may typically vary from 7 to 13 T, the temperature from 4.2 

K to 15 K and the strain from -1.0 % to +0.3 %. Within these ranges, the critical current 

density is of the order of hundreds A/mm². As an example, the evolution of the critical current 

Ic as function of the temperature T(K), the field B(T) and the strain H�(%) is presented in Fig. 

1.7, from [Ilyin 2007 a]. From these curves, it can be stated that the critical current of OST 

Nb3Sn strand at T = 4.2 K, B=11 T and�H�= 0% is Ic=300 A. For the same field and 

temperature but a strain of -0.6%, the critical current drops in a reversible way by 50% down 

to 150 A. At these external conditions, no current superior to 150 A can flow through the 

superconducting filaments without transition to the resistive state. An axial strain greater than 

0.2 % causes irreversible degradations of the critical current. At such tensile strain, the brittle 

Nb3Sn filaments are expected to gradually be damaged through the formation of micro-cracks 

as exposed in the next paragraphs. 

 

Fig. 1.7. Characterization of the dependence of the critical current Ic of Nb3Sn strand on the external 

magnetic field, temperature and axial strain. Strand from OST [Ilyin 2007 a]. 
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x Irreversible losses due to the micro-cracks of the Nb3Sn filaments 

A major work on the microfilament fracture analysis of ITER strands has been done by M.C. 

Jewell at the Applied Superconductivity Center and latter by Y. Miyoshi at the University of 

Twente [Jewell 2003], [Jewell 2008], [Miyoshi 2009]. Observing the presence of cracks at the 

nano-scale requires advanced polishing techniques to prepare the surface that will later be 

probed by Scanning Electron Microscopic method. In Fig. 1.8, the SEM views of polished 

and etched longitudinal cross-section are shown for bronze route EAS and internal tin OST 

strands after Ic test for a maximum axial tensile strain greater than 1 % (Ic ~ 0.1 Ic max). The 

pictures illustrate the Nb3Sn filament breakage due to applied strain. Jewell and Miyoshi 

emphasize the different fracture mechanisms that take place between the two strand 

architectures. The internal tin strands with twice larger filament diameter than bronze route 

(6.3µm for OST and 3.5µm for EAS) and smaller filament spacing (1.4µm for OST and 1µm 

for EAS) exhibit collective cracking that even crosses the tin core region. Unlike IT, the 

bronze route presents dispersed cracks with wider spatial distribution. 

 

    

a)         b) 

Fig. 1.8. Occurrence of dispersed and collective cracks in bronze route and internal tin strands [Jewell 

2008]. 

For both strand types, intensive SEM observations attempt to correlate the density of cracks 

found in longitudinal cross-sections with the degradation of the critical current and the n-

index of the strands. As an example in Fig. 1.9 a) from [Miyoshi 2009], the evolution of the 

number of cracks per millimeter with the applied strain is presented. Miyoshi’s results 

complete the observations made by Jewell on the onset of crack initiation Hc for bronze route 

and internal tin strands, respectively 0.8 % and 0.3 %. Fig. 1.9 b) shows the concordance of 

the SEM method with the irreversible degradation of the superconducting properties from 

[Nijhuis 2008 a]. The variations of the critical current and the n-index are given as function of 

the applied axial strain (with regular unloading of the sample). From an initial Ic = 300 A, the 

performances of the strand are irreversibly degraded for strain greater than +0.25%. For a 

tensile strain of 0.5%, the Ic decreases down to 125A with partial recovery after strain release 

(220 A). The n-index irreversibly dramatically drops after 0.3% from 29 to 10. 
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a)  b)  
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Fig. 1.9. a) Observation of the crack onset at an applied strain of 0.3% for OST internal tin strand 

[Miyoshi 2009]. b) Measurement of the irreversible degradations of the critical current and the n-index of 

OST internal tin strand (at 4.2 K and 12 T), [Nijhuis 2008 a]. 

c. The strand characterization by the Ekin’s model 

The experimental curves representative of the superconducting critical state of Nb3Sn-based 

strands have been used to derive what is now called the Universal Scaling Law of the critical 

current Ic [Ekin 1980-2010]. This scaling law allows representing the global superconducting 

behavior for a given range of temperature, field and strain. Ekin has defined the scaling law 

for the pinning force density Fp discovering that it can be written in separable form. The 

respective contributions of the temperature, magnetic field and strain on the pinning force 

density can be expressed by three separable functions with direct relation between the pinning 

force density and the critical current of the strands. This decomposition relies on analytical 

model developed by J.Ekin and later by A.Godeke based on the Maki-De Gennes relation to 

approximate the critical field dependence on temperature and strain and the dependence of the 

normalized Ginzburg-Landau parameter on temperature and strain [Godeke 1999-2008]. The 

development relies on the shape invariance of the pinning force density. According to Ekin, 

the unified scaling law for the flux-pinning force per unit conductor length in practical high-

field superconductors is expressed in its separable form by: 

 � � � � � � � �bfthsCBB,T,IF pcp H �   eqn. 1.5 

Different laboratories have proposed various formulations for the s(H�), h(t) and fp(b) functions 

supported by intensive experimental measurements. After consensus, ITER has fixed the 

scaling law as follows [Bottura 2008]: 

 
� � � � � � � �bfths

B

C
B,T,I pc H 

 eqn. 1.6 

The separable temperature and magnetic field functions are characterized as follows: 

 � � � �� �     11 252.1 ttth ��  eqn. 1.7 

  eqn. 1.8 � � � �      1
25.0 bbbf p � 

With the reduced temperature t and the reduced field b defined as follows: 
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 eqn. 1.9 
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 eqn. 1.10 

The effective critical temperature T
*

c0 and the effective upper critical field B
*

c20 depends on 

the strain using the earlier s(H) function as follows:  

  eqn. 1.11 � 52.1*
max02c

*
2c

3/1*
max0c

*
0c
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� 
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The parameters B
*

c20 max and T
*

c0 max are respectively the maximum critical field at zero 

temperature and zero intrinsic strain and the maximum critical temperature at zero field and 

zero intrinsic strain. To characterize the function s(H�), the parameter Hmax is defined as the 

tensile strain needed to reach the maximum critical current during the stretching test. Then, 

the effective strain H to take into account in the formulation reads: 

 maxHHH � applied   eqn. 1.12 

The hydrostatic and deviatoric invariants are considered in the theory on the superconducting 

state. Comparison of hydrostatic pressure and axial strain experiments on the critical 

properties of A15 materials have shown that the influence of the deviatoric strain (the change 

of shape proportional to equivalent strain) is much stronger that the influence of the 

hydrostatic strain (the change in volume) and hence the deviatoric strain invariant is chosen to 

describe the influence of deformations on the critical parameters. The chosen formulation of 

the dimensionless strain part s(H) is based on the deviatoric strain model developed by the 

complementary works of [ten Haken 1999] [A.Godeke 1999-2009], [Cheggour 2002], 

[Markiewicz 2004-06], [Arbelaez 2009]. 

 
� � � � »»¼
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 eqn. 1.13 
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,02

aa

aa

sh

CC

C

� HH
 eqn. 1.14 

The terms H0,a ,Ca1 and Ca2 are respectively the non-axial residual strain and two fitting 

constants. The parameter H0,a is actually corrected by the factor expressed in eqn. 1.14 that 

shifts its value to Hsh. The parameterization needs the identification of the seven parameters of 

the law that necessitates limited experimental data [Nijhuis 2006]. The advantage of the 

scaling law is that it remains valid for the typical strain range expected in ITER conductors, 

saying between -1% and +0.5%. In Fig. 1.10, the parameters for the OST internal tin strand 

are listed in the table and the Ic (H�) is plotted for T = 4.2 K and B = 12 T. 

 

 14



 

Ca1 37.22 

Ca2 0.0 

H0,a(%) 0.21 

Hm(%) 0.13 

B*C2max(T) 29.76 

T*C0max(K) 16.21 

C(AT) 17390 

Fig. 1.10. Example of the use of the deviatoric strain model to compute the critical current as function of 

the axial strain . 

1.2.2 The Cable-in-conduit conductors characterization 

a. Critical current  

The critical current of CICC can be determined in the same way as for the single strands. 

However, the measurements give an average Ic that is not necessarily equal for different 

strands of the cable considering the possible redistribution of the current between the strands. 

Besides, the n-index that is found for the CICC V-I curves is usually lower than the single 

strand value 

b. Current sharing temperature 

Regarding the CICC characterization, another important parameter is measured which is the 

same as for single strands, the current sharing temperature Tcs (K) which is defined at E=Ec 

when all but the temperature parameters are fixed in the above relation. In CICC, the 

transition to resistive state is not as sharp as it is in single strand when the temperature 

increases at constant field and current. The Nb3Sn filaments and strands do not experimence 

transition simultaneously everywhere in the cable. A sharing of the current between filaments 

or between strands rather occurs that causes the observed smooth collective behavior.  In 

order to measure the Tcs of a conductor, the temperature of the helium flow is slowly 

increased at constant current and constant external magnetic field. As the temperature evolves 

the electric field is measured, the voltage is then plotted against the temperature. According to 

ITER design rules, the current sharing temperature Tcs (K) of a CICC is defined as the 

temperature at which an electric field of 10µV/m is detected. An example, of Tcs measurement 

is given in Fig. 1.17, from [Mitchell 2003 b]. 

1.3 The degradation of the superconducting performance in cable-in-
conduit conductors 

1.3.1 The test results on the ITER model coils 

In 2000–2002, the first step on the ITER development has been carried on with the 

construction and the tests of two ITER full size model coils, the Central Solenoid Model Coils 

and the Toroidal Field Model Coil [Salpietro 1999], [Kato 2001], [Mizoguchi 2001], 
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[Mitchell 2001]. The cable-in-conduit conductors inside coils are respectively composed of 

1152 strands and 720 strands for the CSMC and the TFMC. The designs of the conductor are 

indicated in Table 1.1, from [Mitchell 2002]. For the estimation of the current sharing 

temperature of the two model coil, the maximum magnetic fields and current sustained by the 

conductor are also indicated. The temperature of current sharing, Tcs of the model coils using 

an electric field criterion Ec= 0.1mV are estimated – see Fig. 1.17 and reported in Table 1.1. 

 

 TFMC CSMC 

Pattern (2 sc + 1 Cu) x 3 x 5 x 4 x 6 3 x 4 x 4 x 4 x 6 

TP (mm) 45-85-125-160-400 45-74-123-160-380 

VF (%) 36 36 

External magnetic field 5.1-11.8T   8.5-13T       

Operating current kA 80 46 

Measured Tcs (K) 8.5 6.5 

Table 1.1. The ITER model coils design parameters and operating conditions. The estimation of the 

current sharing temperature is also shown. 

In his “Review of Nb3Sn conductors for ITER”, Daniel Ciazynski summarizes the results of 

the tests of the two model coils. First, the Tcs decreases with the intensity of the 

electromagnetic loading. Second Tcs drops with the number of loading cycles and/or quench 

of the conductor. Third, the final n-index of the strands is found to be half of the initial value 

[Ciazynski 2007].    

1.3.2 The results of CICCs tested at SULTAN facility 

After the test of the model coils, further investigations on Cable-In-Conduit Conductors have 

been performed at the SULTAN facility. The facility allows several meters long conductors to 

be tested in ITER operating conditions (significantly higher than for the model coils). 

Sophisticated measurement techniques are used for the measurement of the current sharing 

temperature. In 2006, four ITER-like CICCs have been tested at SULTAN [Ciazynski 2007], 

[Bruzzone 2007]. The conductors are all identical except that the Nb3Sn strands are from 

different suppliers. Compared to those of the model coils, these strands are called “advanced” 

with higher critical current (1000 A/mm
2
 at 4.2 K and 12T) – see for instance [Vostner 2006].  

In Fig. 1.11, the result of the Tcs measurement is shown for the four tested conductors. The 

figure illustrates the continuous degradation of the Tcs with the number of Lorentz loading 

cycles with Tcs below the ITER specification (5.7 K with the TF conductor). The numerous 

papers dedicated to the study of the model coils and other CICCs attribute the Tcs degradations 

with cycles to the effects of the deformations at the scale of the strands. The cabled strands 

undergo severe bending due to the Lorentz forces with possible consecutive filament 

breakages. [Mitchell 2003-10], [Ciazynski 2007-08], [Martovetski 2004-05], [Bruzzone 2003-

04-09 a]. 
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Fig. 1.11. Observation of the Tcs degradation with the number of Lorentz loadings. The field is 11 T and 

the current is 68 kA to be shared between 720 strands in the OST and OKSC and 1080 strands in the EAS 

and OCSI, i.e. respectively 94 A and 62 A per strand. 

2 Investigations on the detrimental effects of the strain in cable-
in-conduit conductor 

2.1 Variation of the single strand properties for different mechanical 
loadings 

In order to understand the cable-in-conduit conductor, a first approach is to characterize the 

behavior of a single strand submitted to different loadings. Three types of loading can be 

applied to the strands to produce pure uniaxial strain, pure bending strain and pure transverse 

stress. The experimental procedures to test the strands have been published in the works of 

J.Ekin since 1980’s and later by Nijhuis and Godeke, Hampshire and Taylor or Nunoya. 

2.1.1 The axial loading of the strand  

For the application of pure axial strain (tensile and compressive), the Twente University uses 

the so-called Pacman device [Godeke 2004] while the Durham University and the NIST 

laboratories prefer the Walters spring [Taylor 2005]. The Japan Atomic Energy Agency 

proposes to use the horseshoe-shape ring [Nunoya 2007], [Yoshihiko 2007]. Fig. 1.12 from 

[Nijhuis 2008] summarizes the dependence of the critical current (Ic / Ic max) on the axial 

strains for various Nb3Sn strands. The applied strain ranges from compressive (-1%) to tensile 

strain (> +0.6 %). The temperature and the background field are 4.2 K and 12 T. The 

dependence on the strain is very similar for the various strands which can be related to Ekin’s 

universal model of Nb3Sn strand earlier described. 
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Fig. 1.12. Illustration of the conductivity loss due to applied axial strain to the strand. [Nijhuis 2008 a]. 

2.1.2 Bending loading  

a. Mechanical behavior 

Inside a cable-in-conduit, the strands are expected to deform by bending in addition to pure 

compression. The Twente Laboratory has proposed a specific device that allows prescribing a 

bending strain to single strands (TARSIS) [Nijhuis 2006 a]. The bending is created by placing 

a strand at the circumference of a barrel between two jaws that present some bulges around. 

The vertical displacement of the upper cap produces the desired bending strain on the sample. 

The strand is assumed not bounded at its ends so that only pure bending is applied. The 

pinching that may occur between the strand and the bulges is of a second order. In Fig. 1.13 

a), a picture of the device is shown and the result of the force-displacement plot measured by 

the loading cell and extensometers is exposed. The applied load goes up to 6 kN/m while the 

vertical deflection mounts up to 140 µm. The sample can be cyclically loaded to reveal 

occurrence of plastic deformation – see Fig. 1.13 b). The accurate measurement of the loading 

curves could later help any numerical model of strands. 
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a)                b) 

Fig. 1.13. Bending TARSIS device and an example of the force-displacement characteristic of MIT strand 

at 4.2 K (Courtesy of Nijhuis). 
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b. Degradation of the electrical properties due to bending 

In Fig. 1.14 a), the critical current is plotted against the applied load and in b) against the 

corresponding peak bending strain. This strain is calculated from the measured deflection and 

corresponds to the maximum axial strain at the outer radius of the filament region. For the 

range of applied load, the peak bending strain sustained by the filament goes from zero to 1.7 

%. Direct comparison between both graphs of Fig. 1.14 allows relating the applied vertical 

load to the strain, e.g. 3 kN/m corresponds to 0.7 %. The property of the strand reversibly 

degrades for loads lower than 1.5 kN/m then partially recovers as the load is released. A drop 

of more than 50 % of the critical current is measured for loads greater than 4.5 kN/m that is 

not recovered after the release. The irreversible behavior that is observed can be interpreted as 

the effect of the yielding of the copper and bronze matrix on the strain state of the Nb3Sn 

filament or as filament breakage. 

a)

MIT

Bending

Lw=7 mm

0

0.2

0.4

0.6

0.8

1

0 1,000 2,000 3,000 4,000 5,000 6,000

load [N/m]

Ic
 [
A

]

IcV1

IcV1/Ic0

 b)  

Fig. 1.14. Critical current irreversible degradation with bending and comparison with models [Nijhuis 

2008 a]. 

c. The question of the inter-filament current redistribution 

The properties of Nb3Sn strand are not only affected by the applied bending strain but also by 

the inter-filament electrical resistivity. It indicated that some redistribution of current from 

filament to filament effectively occurs within the strands when bending is involved [Nijhuis 

2004 a- 09][Ciazynski 1985 - 10][Mitchell 2004]. In 2004, Mitchell proposed two models to 

describe the evolution of the critical current with bending strain noting that it depends on the 

twist pitch of the filament and on the internal resistance of the strands. The first model allows 

the current to transfer at low voltage level and is written LRL for Low Resistance Limit. The 

second model corresponds to the extreme case where the interstrand resistivity is so high that 

no current transfer is possible. The model is referred to as the High Resistance Limit HRL. In 

Fig. 1.14 b), the LRL match the curve up to a peak bending strain up to 1%. But then the 

experience tends toward the HRL. In 2010, Ciazynski and Torre propose an analytical 

formulation to compute the critical current of strands submitted to bending [Ciazynski 2010]. 

So far the effects of the bending on the Nb3Sn strand electrical properties are not clearly 

modelled. 

2.1.3 Pinching loading 

a. Mechanical behavior 

Another experiment is performed at Twente University realizes to test the effect of pure 

contact load between crossing strands [Nijhuis 2006 b]. Radial strands are pressed against a 
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strand that runs around a barrel by an upper cap. The strands are crossing at 90° - see Fig. 

1.15 a). In Fig. 1.15 b), the transverse stress-strain loading curve is presented. The curve is 

non linear at the beginning and then linear up to 275MPa (10%). The transverse stress is 

calculated by the applied force divided by the square of the strand diameter (Vt=F/d²). The 

strain is defined as the ratio of the measured displacement (extensometer) to the strand 

diameter (Ht=u/d). After the test, the strand is plastically deformed (surface imprint). 
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a)         b) 

Fig. 1.15. TARSIS crossing strands probe and an example of the stress-strain characteristic of HT strand 

at 4.2K [Nijhuis 2006 b]. 

b. Degradation of the electrical properties due to bending 

In Fig. 1.16 a), the variation of the critical current Ic with the transverse stress (successively 

applied and released) show that irreversible degradation occurs for contact stresses greater 

than 100 MPa. The critical current degrades up to 30% for a contact stress of 250MPa and is 

not recovered after load release (60%). The n-index also decreases with the contact from 34 

down to 10 at 250MPa. Nonetheless these are high values of stress that correspond to 

transverse deformation of about 8% of the strand diameter. 

 

a) b)  

Fig. 1.16. Reversible and irreversible impact of the contact stress on the critical current and the n-index at 

4.2K (HIT strand) [Nijhuis 2009 a]. 
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2.2 Assessment of the average strain developing in the strands of 
CICC  

Supported by extended studies of the single strand properties, an important work has been 

done to characterize full size cable-in-conduit conductors. For the characterization of the 

critical current and the current sharing temperature, the strain locally sustained by the Nb3Sn 

strands has to be estimated. Unlike the test of single strand, no direct measurement is possible 

in CICCs. However, from the thermo-electric measurements, the average axial strain in the 

Nb3Sn filaments can indirectly be assessed. The assessments rely on the so-called smeared 

model briefly presented here. For more details, one can refer to [Mitchell 2003 a b], [Mitchell 

2004-05-08], [Ciazynski 2000-07-08], [Martovetsky 2005 a], [Bruzzone 2009 a b], [Zanino 

2003 a b c]. 

2.2.1 Presentation of the smeared model 

The smeared model considers an average strand in the cable with respect to Nb3Sn strain 

state, effective superconducting area and n-index. The average electric field along the 

conductor is then computed by averaging the electric field in a conductor cross-section, taking 

into account the background magnetic field and the temperature profile. The critical current of 

the CICC and its current sharing temperature can then be computed relative to the expected 

average strain. The open parameters are the average strain and n-index of the strands. In 

common interpretation of model coil experimental results, the effective average strain in the 

Nb3Sn filaments is separated in three components that have respectively thermal, mechanical 

and electromagnetic origins: 

 BIoptheff HHHH ��  eqn. 1.15 

In 2005, Zanino, Ciazynski and Mitchell have published a paper that present an advanced 

numerical method that attempts to take into account the mechanical, electromagnetic and 

thermal–hydraulic considerations of the CICC problems. The loading related to the structural 

aspect of the problem is simulated by the ANSYS Finite Element code that give Hop. The 

Multiconductor Mithrandir (M&M) code deals with the thermo-hydraulic part of the problem 

[Zanino 2000-08] and provides for the temperature profile of the conductor, see also [Bottura 

1995]. The ENSIC code treated the electromagnetic part of the problem introducing for 

instance the scaling law Jc (B, T, Heff) [Zanino 2005]. The value of Hth and HBI have to be 

assessed so as to best fit the measured V-I and V-T curves. Moreover the value of the n-index 

of the strand should also be assessed. 

More recently, important works have been done by Van Lanen and Nijhuis on the modelling 

of the transient electromagnetic behavior of conductors due to the presence the joints or other 

heterogeneities [van Lanen 2010]. The question of the redistribution of the current between 

the strands is as important of the transfer between the filaments down the microscopic scale 

[Mitchell 2000 a b], [Ilyin 2007 b], [Bruzzone 2006]. 

2.2.2 Indirect assessment of the average strain in CICC from thermo-electric 

experiment results 

In 2003, Mitchell published the fitting of the experimental Tcs measurements using the 

smeared model for both the CSMC and the TFMC – see Fig. 1.17 [Mitchell 2003 a]. In this 

first approach, the current is assumed uniformly distributed among the strands. Fig. 1.17 b) 
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also shows the result for different set of parameters. In order to fit the V-T curves, the author 

estimates the n-index equal to 7 and the following thermal strains: 

 Hth
CSMC

 = - 0.32%   

 Hth
TFMC

 = - 0.66% 

The difference comes from the different shape and the different material of the jacket of the 

CICC of the two coils (round-in-square INCOLOY for CSMC and circular Stainless Steel for 

TFMC) that lead to two different induced thermal strain. For the operating strain, Mitchell 

estimates the following values: 

 Hop
CSMC

 = + 0.2%   

 Hop
TFMC

 = + 0.1% 

The strain due to local electromagnetic effects is expressed by a compressive strain that 

depends on the magnitude of the Lorentz force BI sustained by the strands but also change 

with the jacket material:  

 HBI
CSMC

 = - 0.0004*BI = - 0.275 % (low CTE jacket)  

 HBI
TFMC

 = - 0.00023*BI = -0.12  %  (high CTE jacket).  

The approach proposed by Mitchell in 2003 seems to give a relevant reproduction of the Tcs 

test curve but is not able to a priori predict the amplitude of the strain. However, the 

interpretation gives indications on the average value for the strains and the n-index of the 

strands. 

a)  b)   

Fig. 1.17. Example of the current sharing temperature Tcs test results of the ITER model coils conductor. 

a) CSMC and b) TFMC. The plots show the identification of Tcs test using the strand scaling law and the 

smeared model, [Mitchell 2003 b]. 

2.2.3 Degradations induced by the Lorentz force loading 

The extra strain introduce in the smeared model attempts to depict the effect of the Lorentz 

loading on the conductor behavior. In Fig. 1.18, the assessment of the average strain is plotted 

against the applied Lorentz loading for the CSMC [Zanino 2003 c] and the TFMC [Zanino 

2005]. The results of two full size conductors, the TFMC-FSJS samples tested at the 

SULTAN facilities, are also shown. The analyses confirm that the strain is related to the 

electromagnetic loading, the BI (kAT) product and the average linearly scale with it. For these 

results, the n-index of the cable is between 5 and 8 to be compared with the 15-20 measured 

for LMI strands. 
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a)   b)  

Fig. 1.18. Interpretation by the smear model of the degradation of the Tcs and Ic with the Lorentz loading 

by the mean of the compressive strains HBI���here�Hextra). The estimations of the average strain are done for, 

a) the CSMC and b) the TFMC conductors, [Zanino 2003 c -05]. 

2.3 The influence of the conductor design on the performances 

2.3.1 New design for the ITER TF conductor 

In order to overcome these degradations, ITER TF conductors have been redesigned and new 

CICCs samples have been tested at SULTAN. In 2008, Ciazynski published the test results of 

the six CICCs that use advanced strands (EAS bronze route or OST internal tin) [Ciazynski 

2008].The design of the six conductors differ in their cable layout, void fraction, twist pitches 

with or without the inclusion of segregated copper strands. Table 1.2 summarizes the design 

parameters of the conductors. The jacket thickness is always 1.6mm. 

 

Table 1.2. Design parameters of the SULTAN tested advanced conductor. Between the various samples, 

the cabling pattern may change (blue border), the twist pitches (red border) and the void fraction (green 

border). The main variation in the design is for the TFPRO2 OST2 (pink border) with longer twist pitches 

and reduced void fraction. [Ciazynski 2008]. 

2.3.2 Improvement of performances with the new designs  

Ciazynski published the interpretation and assessment of the average strain sustained by the 

stands for six cable-in-conduit samples tested at the SULTAN facility.  
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Fig. 1.19. Current sharing temperature for six different cable-in-conduit conductors. Only the TFAS1-

EAS0 stays below the ITER specification. The Tcs degrades with the loading cycles (thousand Lorentz 

loading cycles) for all conductors but the TFPRO2 OST2 [Ciazynski 2008]. 

According to Ciazynski, the new four European TF conductors for ITER tested in 2007 have shown 

much better performance than the previous conductors tested in 2005-2006, see Fig. 1.11, particularly 

with a current sharing temperature Tcs above the ITER specification. Since the same Nb3Sn strands 

were used in the old and the new conductors this improvement of performance has to be related only 

to the change in the cable structure. The main variation is related to the inclusion of copper core in the 

cable layout (blue border) a reduction of the void fraction (green border) and an increase of the last 

cable stage twist pitches (red border) in Table 1.1. The best conductor in term of Tcs values and 

degradation with cycles is the TFPRO2-OST2 which globally gets twice longer twist pitches and 

lowest void fraction. It is to be mentioned that this high performance was predicted by Nijhuis from 

the Twente University before the SULTAN testing of the CICC [Nijhuis 2005 b-06 c-08 b]. 

2.3.3 Assessments of the average strains from the smeared model 

Table 1.3 exposes the assessment of the thermal strain Hth and the extra strain HBI�= JBI needed to 

describe the V-T and V-I curves for the six conductors [Ciazynski 2008]. This is the first model (m1) 

in the table. A second model (m2) uses a reduction of the effective superconducting area (Deff) 

representative of the possible filament cracking instead of the extra strain. In SULTAN test, the 

conductors are straight and the hoop stress is null, thus Hop is equal zero. The data in Table 1.3 

provide valuable information on the average strains sustained by the strands in well characterized 

cable-in-conduit conductors. 

 

Table 1.3. Assessment of the strain parameters from the smeared model for six CICCs tested at the 

SULTAN facilities [Ciazynski 2008]. 
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2.3.4 Concluding remark on the uncertainties of the smeared model 

The various authors mentioned that the use of the smeared model is a way to fit the 

experimental V-I and V-T curves but is not a predictive model. The mechanical phenomenon 

expected to degrade the superconducting performance is the local bending of the strands. In 

that sense, the use of an extra compressive strain to describe the occurrence of bending due to 

the Lorentz loading might be misleading. In addition, the account of the complex situation of 

the strands in cable by a single value of effective strain is not sufficient. As the model (m2) 

tends to show, the bending is likely responsible for the cracking of the Nb3Sn filaments. The 

low n-value of the strands also points at some possible damages [Bruzzone 2003], [Ciazynski 

2007]. Advanced electrical models that use networks of contact resistance and 

superconducting relation would now need a more precise description of the trajectories of the 

strands and ideally the axial strains along and across the strands everywhere in the cable [Zani 

2009], [van Lanen 2010], [Torre 2010]. 

3 The mechanical models related to cable-in-conduit conductor 

3.1 The models of single strands 

3.1.1 Simulation of axial loading 

a. Finite element simulations of elasto-plastic processes in Nb3Sn strands  

In 2003 and 2005, Mitchell proposed a standard finite element simulation of composite 

Nb3Sn-based strands. The numerical model is able to reproduce the effect of both the heat 

treatment and the cool down through a thermo-mechanical approach. The model is based on 

ANSYS FE code and considers the different components of the strands using 3D spar 

elements with three degrees of freedom at each node: translations in the nodal x, y, and z 

directions (LINK8). The material properties needed to describe the ITER strand are given in 

this paper. The axial stress-strain curves and the coefficients of thermal expansion are 

reported for the copper, tantalum, bronze, tin, niobium, Nb3Sn and steel over a temperature 

range from 4 K to 900 K. The copper and the bronze are described by an elasto-plastic model 

with multilinear isotropic hardening model whereas the other materials (Tantalum barrier and 

filaments) are considered aspurely elastic. The model includes the temperature dependent 

stress-strain curves. The material properties of the filaments are switched from Nb to Nb3Sn 

for the filament during the heat treatment to depict the alloying, [Mitchell 2003-2005 a b]. 

The internal stresses relative to each component of the strand are computed for different 

temperature variations. The calculated thermal shrinkage of the strand from 900K to 4K is -

0.47% for Bronze route and -0.61% for Internal Tin. The Nb3Sn intrinsic strain after cool 

down is found to vary from -0.25% to -0.38%. A tensile test of the strand has been simulated 

that shows small impact of the temperature on the axial stress-strain curve. This interesting 

result is also experimentally observed for strand tested at room, nitrogen and helium 

temperature as presented in [van den Eijnden 2005]. It is also reported that the mixture law is 

sufficient to describe the stress-strain curve of composite strands as long as appropriate 

volume fractions and relevant material properties are used for the materials. 
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b. Homogenization techniques 

In 2005 and 2009, D. Boso et al. have proposed two approaches to model the thermo-

mechanical problem of the composite strands. One uses a hierarchical homogenization 

method [Boso 2005 a b], the other the generalized self-consistent-like homogenization method 

[Boso 2009]. The models consider separately the different sub-elements of the strands with 

simplified geometry and solve the equation of the thermo-mechanics by homogenization 

techniques. The models are able to simulate the thermal pre-stresses induced by the matrix to 

the Nb3Sn filaments due to the cool down with plasticity consideration. The approach remains 

limited to the strands level of the conductor problem. 

3.1.2 Bending strain simulation 

Mitchell has proposed an analytical model based on the beam theory to describe the bending 

of the strands inside a loaded cable [Mitchell 2002], [Mitchell 2003 a b]. The model considers 

the axial loading and the bending of a curved beam (sinusoid of length L) fully clamped at 

each end, except in the longitudinal direction for the axial loading. The beam is subjected on 

the one hand to Lorentz force or longitudinal compression, and on the other hand to contact 

reactions due to the neighbouring beams. The author gives the equation relative to the theory 

of straight indeterminate beams which is solved to calculate the deflection. The estimations of 

the maximum axial strains predicted by these models suffer from the lack of knowledge 

regarding the loads to apply and are limited by their simplicity. However, the analytical model 

points at the occurrence of important bending due to the application of the axial and 

transverse loading.  

To complete the analytical approach, Mitchell also presents the results of a finite element 

code regarding the bending of composite strands. The strand is modelled using 3D solid 

elements. Three materials are represented (copper, bronze, Nb3Sn) with isotropic elasto-

plastic properties. The various elements are twisted around the axis to reproduce the twist of 

the filaments. The twist pitch is 10 mm and 10 mm of strand is modelled. The strand can be 

curved so as to reflect its situation in cable and two different axial compressions (-0.3 % and -

0.7 %) are applied that would correspond to the effect of Stainless Steel or Incoloy jacket. The 

strand is then bent by a load applied to the middle of the strand. Assessments of the axial 

strain in the filament are proposed. The model shows that the expected loadings of cable-in-

conduit conductors are able to produce sufficient tensile strain to suppose filament damages 

during the bending of the strands inside loaded conductor. In 2004, the modelling of bending 

was carried on with the derivation of the electrical performance of the strand [Mitchell 2004]. 

3.1.3 Transverse loading simulation 

In 2005, J.L. Schultz & al. have proposed a finite element simulation of the pinching of a 

strand between two 1mm² rigid plates. The copper shell and the filaments are modelled – see 

Fig. 1.20 from [Schultz 2005]. However, neither the number of filaments nor the material 

properties are given in the paper. The model predicts that an applied transverse load of 121N 

can cause tensile strain up to +0.6 % on the filaments. It also states that an axial 

precompression of the filaments prevent the occurrence of high tensile strain – see Fig. 1.20.  
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a)         b) 

Fig. 1.20. a) Finite element simulation of the transverse contact stress (Von Mises stress). b) Equivalent 

strain distributions among the filaments when different thermal compressions and contact loads are 

applied, [Schultz 2005]. 

3.2 The simulation of cable mechanical behavior using semi-analytical 
model 

The simulations of the single strands have emphasized the need to know what are the 

amplitudes of the loadings effectively applied to the strand in CICC. In 2005, Mitchell 

proposed a simple approach to describe the mechanical behavior of cable [Mitchell 2005 c] 

that has been later completed Nijhuis with the Transverse Electro-Magnetic Load 

Optimisation (TEMLOP) model [Nijhuis 2006 c], [Nijhuis 2008 b]. The purpose of the 

TEMLOP model is to derive the bending strain due to the transverse Lorentz force along 

every strands of conductors using a simplified model of cable that use the standard beam 

equation.  

First of all, the geometry of the cable is simplified considering arrays of beam sections 

uniformly distributed with regular spacing inside a square section that represents the 

conductor cross-section. The cable is then depicted by rows of beam sections that can move in 

the vertical direction – see Fig. 1.21. The initial size of the square, i.e. its edge, is defined as 

follows: 
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where, Ns is the number of beams, ds their diameter, vf the cable void fraction and (cos T) the 

average twist pitch angle. The beams of each layer are assumed to be supported by lower 

layers, through contact points distant from each other by a length Lw, depending on the 

considered layer. Secondly, for the Lorentz force loading, the model consists to apply a load F 

to the first layer of this geometry and to compute the induced deflection. Increasing F, this 

deflection will reach the maximum space for bending (fsb) defined by the distance with the 

second layer. Once the contact is made between the two layers due to the deflection, the load 

supported by the first beam is partially transmitted through this new contact, and partially 

through the pillars already considered between the two layers. For the new layer, the distance 

between the pillars is half the distance relative to the above layer and the applied load is also 

half the previous values – see Fig. 1.21 b). The bending deflection of this second layer is then 

computed. The process is repeated for the successive layers to depict the accumulation of the 

Lorentz force. The bending for each layer of the cable is finally computed. To complete the 

model, the deformation of the pillars is considered using specific assumptions exposed in the 

various papers. 
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a)              b) 

Fig. 1.21. a) Simplified geometry of cable using a square cross-section containing array of beams sections. 

The geometry is used to derive the initial free deflection of the beam before reaching the row below, 

[Nijhuis 2006 c]. b) Corresponding model of indeterminate beam submitted to periodic bending. The 

Lorentz force load F is transmitted from layer to layer, [Zhai 2008 a].   

To solve the problem, the equation of a circular beam submitted to periodic bending is used. 

The distance between the pillars is referred to as the “bending wave length” Lw of the model. 

The equations for the bending are solved for a load F imposed at the middle of the pillars. The 

deflection fsb and the corresponding bending strain Hb reads: 
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where, E// is the Young modulus, Ia is the moment of inertia and Wb=�S rs
3
/4 is the section 

factor. In TEMLOP, the load F comes from the following estimation using the square root of 

the total number of strands, Ns: 

 , eqn. 1.19 ]/[5.0 mNNBIF ss 
where Is is the current per strand, B the magnetic field.  

The main issue of the model is first to properly set the maximum deflection that defines the 

maximum bending for the layers and second the bending wavelength LW that should be 

relative to the twist pitches of the cable. In TEMLOP, LW is empirically estimated according 

to observation of real un-jacketed conductor and is about 6 mm for classical conductor design. 

The TEMLOP semi-empirical model takes advantage of the TARSIS measurements to define 

the Young’s modulus and the transverse modulus of the strands and to derive an estimation of 

the conductor electrical performances. Parametric study of the influence of Lw and fsb on the 

bending strain predicted the beneficial effects of the increase of the twist pitches of the cable 

stages and the lowering of the void fraction, [Nijhuis 2008 b], [Nijhuis 2009 a]. 
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In 2008 and 2010, Zhai has improved the TEMLOP model including the effect of the axial 

compression to the periodic bending beam model. The model refers now as the FEMCAM 

model. An axial displacement is applied to the curved beam and the deflection is derived 

using the Timoshenko beam–column theory for a given applied axial strain. Regarding the 

model of cable, it is assumed that all strands experience the same thermal bending effects. 

With the TEMLOP approach for the effect of Lorentz force loading, the effective axial strain 

in the Nb3Sn strands can be estimated. The FEMCAM model, predicts for LW=6mm, axial 

strain ranging from -1.7% to +1% and contact stress up to 50 MPa. The critical current of 

various conductors have then be derived [Zhai 2008 a b]. However, the analysis of the 

numerous cable-in-conduit conductors has proved that the model was not able to predict the 

observed degradation of the critical current. 

3.3 Finite element approaches with general purpose codes 

In 2009, A.S. Nemov et al. exposed their approach to simulate the mechanical behavior of 

cable using standard finite element codes [Nemov 2010]. The study focuses on sub-cables, 

from triplet to 3x3, 3x3x5 and the last cable stage of ITER conductor: the petal 

(3x3x5x5+3x4). This paragraph is devoted to introduce and discuss this approach. 

3.3.1 Presentation of the different models  

a. Different numerical codes 

The authors mention the numerical issues usually faced up by the different codes to consider 

the contact interactions between a great number of beams. For this reason, three different 

finite element codes are used so as to cross check their results. These are: LS-DYNA, 

ABAQUS/Explicit and MSC.Marc. Three types of finite element are used by the model to 

represent the wires and the contacts between them:  

- 3D linear solid elements (eight nodes per element, four element per strand radius) 

and contact elements (surface-surface, the contact is checked pointwise, at the 

positions of the nodes), 

- beam elements (two nodes per beam and 6 degrees of freedom per node) and gap 

contact elements (situated on the nodal positions), 

- beam elements surrounded by shell elements representing the surface of the 

strands, and dedicated to support contact interactions, where connections between 

beam and shell nodes are modelled by so-called “tie constrained” elements in 

Abaqus. 

The models take into account large strains and large displacements. The material properties 

correspond to the isotropic case with elastic or elasto-plastic material constitutive law. 

b. Two different integration schemes to solve the problem 

The codes may use two kinds of time integration schemes to solve the mechanical problem: 

the explicit or the implicit scheme. MSC. Abaqus can use either implicit or explicit solver, 

while LS-Dyna has only explicit solver and Marc is based on implicit solver. 
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3.3.2 Numerical issues with standard finite element method 

a. Convergence problem of the code 

On the one hand, the low computational cost of explicit time integration approach allows the 

use of a great number of solid elements – few hundred thousands. The explicit integration 

scheme does not automatically insure the convergence to the equilibrated solution in case of 

non linear problem e.g. contact problem or non linear constitutive law. The optimal speed of 

loading during the tensile test has to be found out. The loading speed should be slow enough 

not to produce unexpected dynamic effects but fast enough to limit the number of time 

integration steps and the error accumulation. On the other hand, the implicit algorithm 

guarantees the mechanical equilibrium is satisfied but results in a rapid increase in both 

computation power and memory requirements as the number of degrees of freedom increases. 

Besides, regarding the beam – gap element approach, implicit solvers are found to often face 

convergence problems when used in the large displacement framework, with a high number 

of contacts. The implicit approach was limited to the triplet and the 3x3 sub-cable. For larger 

cables, the use of the beam-shell elements is needed because it requires less computational 

time than the solid elements approach. However, the beam and shell model cannot take into 

account the transverse deformation of the strand cross-section during cable loading. 

b. The issues with boundary conditions of the cable  

The boundary conditions applied at the ends of the strands are presented. Along the axial 

direction, the strands are fully bounded at one side and free at the other. A tensile force can be 

applied to one side of the strands. In that case, the strand ends are free to move along the 

radial direction so as to allow the compaction but are locked along the circumferential 

direction in order to avoid the detwisting effect.  

c. The issues of the initial geometry 

Since the trajectories of the strands inside a tight cable are a priori not known, the model 

should compute it at first. The difficulties come from the high degree of compaction of the 

cable that should be considered (void fraction of ~32%). Regarding triplet and 3x3 cable, 

analytical formulations describe the initial geometry. But for larger cable, the theoretical 

configuration leads to work with highly loose structures that are not representative of cable 

inside the conduit. To compute the initial tight geometry, a tensile force is applied to the 

strand ends. After the tensile loading, the cable compacts itself in its radial direction. The 

compacted cable defines the new initial cable geometry for a second tensile test.  

3.3.3 The numerical results  

Regarding the axial behavior of the triplet, the results of the models correspond to the 

expectation from analytical formulation (elastic, without friction consideration). For the 

triplet, the different models and integration schemes are producing very similar results. For 

the test of the 3x3, the results start to differ from one method to another. Eventually for larger 

cable, there is no more analytical formulation and there is large discrepancy between the axial 

force-displacement curves of the open and tighter cable. The authors emphasize the large 

effect of the initial compaction of the cable on the tensile test result. The tensile test of 3x3x4 

cable is performed using beam and gap model with good agreement with experimental data. 

However, only monotonic loading is performed. 
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3.3.4 Main problems of the simulation 

For cables composed of more than 3 stages, the result of the tensile test largely depends on the 

initial compaction of the cable. The models of cable presented here control the void fraction 

until a certain point but do not reach the required void fraction. All approaches face issues 

regarding the modelling of the contact interactions. 

3.4 Finite element approach with Multifil code 

Another approach for the simulation of the mechanical behavior of cabled structures by means 

of finite element simulation has been proposed with Multifil software. Initially developed for 

simulating the mechanical behaviour of metallic wire ropes, the software has been extended to 

consider different kinds of entangled media. Using an implicit solver, Multifil models each 

fibre or wire in the studied structure by means of a kinematically enriched beam model. The 

methods and algorithms which have been developed to account for contact-friction 

interactions between wires allow assemblies of wires made of few hundred fibres to be 

handled, [Durville 2004-05]. Preliminary studies demonstrated Multifil's ability to deal with 

the assessment of local strains in ITER conductors subjected to different loading cases. The 

work of the present thesis is aimed at developing new features to improve the capabilities of 

the code to simulate more realistic cases and to help to better understand and optimize the 

performances of the ITER conductors. 
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Chapter II: Multifil modelling of Cable-in-Conduit Conductor 

   This chapter aims at introducing the main features of the Multifil code as well as its 

application to the modelling of cable-in-conduit conductors. The different steps of the 

modelling, from the shaping of the cable to the simulation of the operating conditions of the 

conductor are here presented. The work done in this thesis to develop the transverse boundary 

conditions dedicated to the conductor modelling are also described, supported by the analysis 

of their effects on the results of the cable shaping. 

1 Introduction to the Multifil code 

1.1 Introduction to the mechanical problem 

Multifil code solves the mechanical equilibrium of assemblies of fibers submitted to large 

transformations, modelling each individual fiber. The code can handle up to few hundreds of 

fibers that interact with each other by contact and friction interactions. The behavior of the 

fibers and their contact/friction relations rely on mechanical models and related material 

constitutive laws. The assembly of beams is loaded by means of proper boundary conditions 

applied to each strand end or by moving rigid tools interacting by contact with the strands. 

The application of body force is also available to simulate the magnetic loading. The 

mechanical problem is formalized using the Virtual Work Principle in the framework of the 

large transformations and solved using the finite element method with an implicit resolution 

scheme [Durville 2003], [Durville 2004], [Durville 2005]. 

1.2 Formalisms of the mechanical problem 

1.2.1 Beams domain 

The assembly of beams that is concerned by the modelling is composed of N beams. In the 

reference configuration, the domain :R
(i)

 of a beam i is characterized by its radius r and its 

length L. A material particle [ in this domain is defined by its coordinates ([�� [��, [����in a 

direct orthogonal basis (0, e1, e2, e3): 
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The contact domain 
)(

,
i
jc*  is the union of two parts of beams about to interact. For a beam i 

and j for instance such domain is noted:  
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In this domain
),( ji

c* , the contact-friction interaction that occurs between two material 

particles [��i� and [��j� of the beams i and j is assumed to result into two opposite forces: 
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1.2.2 Virtual work principle 

For each beam i of the assembly, the classical strong formulation of the mechanical 

equilibrium in the deformed configuration is expressed using the Cauchy stress tensor V and 

the external unit normal n as follows: 
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The variational formulation applied to the first equation leads to the Virtual Work Principle 

expressed in the current configurations with v a virtual displacement. 
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The application of the Green theorem on this relation makes appear the contributions of the 

different parts of the domain. After arrangement, it comes: 
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From this relation, the problem is then to find the kinematically admissible displacement u so 

that for all corresponding virtual displacement v, the virtual work of the internal forces 

balances the virtual work of the external forces.  

In the large transformation framework, the internal forces are described according to the 

deformation gradient tensor F, the Green-Lagrange strain tensor E, the second Piola-

Kirchhoff stress tensor s and the Jacobian determinant J of F that read: 
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The relation between the tensors s and E is described by the Lamé equation that involves the 

Lamé coefficients P and O relative to the material properties: 
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It can also be expressed using the so-called stiffness tensor C as follows: 

 � � � � � �uE:uCus   eqn. 2.10 

The stiffness tensor can be written using the Lamé coefficients with the Kronecker delta: 
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Modifying the first term of the eqn 2.7 in order to make appear the tensor s and E and express 

it in the initial configuration yields: 
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This equation in the variational formulation of one beam i. The global formulation for the 

assembly consists of a summation over every beam as follows: 
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The non-linear eqn. 2.13 is numerically solved using the finite element method with an 

implicit scheme of resolution (Newton-Raphson) to approach the solution. 

1.3 Enriched kinematic beam model 

In Multifil, a fiber is represented by a specific beam model that makes use of enriched 

kinematics. In the domain defined by eqn. 2.1, the placement x([) of any material particles [ 

identified by its curvilinear abscissa along the beam axis [3 and its transverse coordinates ([� 
and�[� ) in the cross-section is expressed as a first order Taylor expansion with respect to 

transverse coordinates and reads: 
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In this expression, � �t,3[0x  is the placement of the centroid of the cross-section and gD are the 

directors of the cross-section. The displacement of a material particle [ is defined by: 
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The kinematics of each cross section is described by the means of three vectors (nine degrees 

of freedom): the translation vector u0 and the vectors h1 and h2 standing for the variations of 

the two cross section directors. This kinematic is used for the determination of the Green-

Lagrange strain tensor. 

 

Fig. 2.1. Enriched beam model, [Durville 2005]. 

This enriched kinematical beam model allows considering a full three dimensional strain 

tensor at any point of the fibers. The standard beam deformations, namely the axial, bending 

and shear strains are accounted for by the beam model. The enriched kinematic also allows to 

take into account plane transverse deformations of the beam cross-section. Under contact 

loads, an initially circular beam cross-section can deform into an ellipse, while remaining 

plane. Several types of constitutive laws can be used with this beam model. As far as the 

elastic behavior is concerned, either an isotropic or a transverse isotropic constitutive law, 

with two different Young's moduli in longitudinal and transverse directions, can be 

considered. For the consideration of plasticity, due to the limits of the kinematical beam 

model, it has been chosen to restrict the modelling of plastic effects to longitudinal 

components of strain and stress tensors. The reason is that, accordingly to the kinematical 

beam model, all components of the strain tensor do not have the same polynomial degree with 

respect to transverse coordinates. In particular, transverse strains EDE ((D,E) � {1,2}) are 

assumed to be constant throughout the cross-sections, whereas longitudinal strains E33 express 

quadratically as function of transverse coordinates. The taking into account the 

incompressibility of plastic flow, which involves these components of different orders with 

respect to transverse coordinates, would lead to a locking that would drastically limit the axial 

strains. 

1.4 Contact modelling 

1.4.1 The contact detection 

As exposed in the 1.1.2, there are specific issues in modelling contact between a large number 

of beams. Modelling contact is a twofold problem. First the positions of the contacts have to 

be detected and then the interaction forces developed at these locations have to be computed 

through appropriate models. Regarding contact detection, the Multifil original method is 

presented hereafter. 
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1.4.2 Definition of a proximity zone  

The proximity zones of the contact model aim at defining intermediate geometries in the 

regions where contact is likely to occur. A proximity zone is made of a pair of parts of beam 

centerlines that are stated to be close enough to each other. The proximity zones are 

determined by the computation of the distance between beams.  For each pair of beams (i,j), 

the neutral axis of the first beam I, taken under its interpolated form by finite element shape 

functions, is first coarsely discretized to define control points from which the distance 

between beams is next calculated. For each of these control points, the distance to the closest 

point on the opposite beam is computed; the closest point being either an extreme node of a 

finite element or an orthogonal projection of the initial control point onto a finite element. A 

proximity zone is then defined by two intervals on beams i and j bordered by successive pairs 

of close points. Once all pairs of beams have been treated, one gets a set proximity zones PZ 

delimited by their extreme points a and b relative to each pair of beams parts: 

 > @ > @)()()()()( ,, jjiik babaPZ u  eqn. 2.16 

Where, [a
(i)

,b
(i)

] and [a
(j)

,b
(j)

] are two intervals of curvilinear abscissa defined on beams i and j 

that are close enough. 

 

 

Fig. 2.2. Definition of the proximity zones [Durville 2005]. 

1.4.3 Definition of the intermediate geometry 

Once the proximity zones have been generated, intermediate geometries that aim at 

approximating the unknown actual geometry of contact are created. For a proximity zone an 

intermediate geometry *g is defined as the average of the centerlines of two close parts of 

beam [a
(i)

,b
(i)

] and [a
(j)

,b
(j)

] associated in the proximity zone – see Fig. 2.3. The position c(s) 

of any point on *g identified by its relative curvilinear abscissa s, is defined as the middle 

point between the two points at the same relative abscissa on both parts of beams: 
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The tangent to the intermediate geometry at the relative abscissa s, Tc(s), is obtained by 

derivating the above expression. 
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Fig. 2.3. Definition of the intermediate geometry. [Durville 2005] 

1.4.4 Beam sections candidates to contact  

The contact elements are created with respect to the intermediate geometries. The contact is 

chosen to be checked at some discrete points distributed on the intermediate geometry. If 

quadratic elements are used for the beams, the discretisation size between two contact 

elements is taken equal to the half of the smaller element size on both beams. Each check 

point denoted xc is defined by its relative abscissa sc on the intermediate geometry relative to 

a contact zone: 
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Where k is the number of the point within the zone and Nc the total number of contact 

elements to be generated for this zone. The question is to find out the particles, i.e. the 

locations of the contact points that may be predicted to come to contact at the check points xc. 

These particles are situated at the border of two sections of contacting beams that should be 

determined now. The pairs of cross-sections are assumed located at the intersections between 

the normal plane at the point xc to the intermediate geometry and the beam centerlines. These 

intersections define the two centroids of the beam cross-sections candidate to contact – see 

Fig. 2.4. The next issue is now to determine where the particles of the contact elements are 

situated on these sections. 

 

 

Fig. 2.4. Cross-sections candidate to contact [Durville 2005]. 
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1.4.5 Contact particles determination 

The contact elements are dedicated to point out the two particles of interacting beams that are 

predicted to come into contact at a given point of the intermediate geometry. The contact 

particles [��and [� are situated on the border of the beam cross-sections – see Fig. 2.4 and Fig. 

2.5. In an equilibrium configuration, contact particles should have the same position on the 

intermediate geometry. 

 cxxx   )()( 21 [[  eqn. 2.19 

However, as contact elements have to be defined in out-of-equilibrium configurations, the 

positions of the contact particles can no longer be characterized by their identical positions, 

but must be predicted through appropriate geometric constructions. In the model, the particles 

of contact elements are chosen to be located on the contour of each cross-section candidate to 

contact, at the intersection with the projection of the direction between the two centroids on 

the cross-section, as shown in Fig. 2.5. 

 

Fig. 2.5. Particle candidates to contact. [Durville 2004] 

1.4.6 Normal contact direction and kinematical contact condition 

A normal contact direction, denoted N12, standing for the direction along which the distance 

between particles will be measured, has to be defined and attached to each contact element. 

The role of this normal direction is to prevent beams to cross through each other. If the local 

angle between beams is large enough, the cross product between the tangent vectors to the 

centerlines of beams provides with a good normal contact direction. As the angle between 

beams gets smaller, the cross product between tangent vectors is less relevant, and the 

direction between the centroids of cross-sections candidate to contact can be used instead. The 

normal contact direction is used to set the kinematical contact condition to be prescribed to 

contact elements. This condition requires that the gap between contact particles, defined as the 

distance between these particles measured along the normal contact direction N12 must remain 

positive. This condition is expressed as follows: 

 � 0)(,)()()( 12 t�� cc xxg 12Nxx [[  eqn. 2.20 

According to this condition, contact particles are not allowed to cross a plane orthogonal to 

the direction N12. 
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1.4.7 The mechanical models for contact and friction 

a. Regularized penalization with contact stiffness adaptation for the normal 

direction of the contact 

A mechanical model is required to transform the kinematical contact conditions into 

interaction forces whose role is prevent interpenetration between beams when contact 

conditions are violated. A penalty method is used in Multifil to model contact interactions. 

Two improvements are made to the standard penalty method: a regularization at the origin by 

a quadratic function, and an adaptation of the penalty coefficient. In standard penalty 

methods, the contact reaction is taken proportional to the normal gap, with a penalty 

coefficient k. But the transition between contact and non contact status induces a discontinuity 

in the normal contact stiffness that may deteriorate the convergence of contact algorithms. 

The solution is brought by the introduction of a regularization of the linear contact reaction 

for small penetrations. For the penetrations of magnitude lower than a regularization depth grg 

, the contact reaction is taken quadratic with respect to the gap. The amplitude of the normal 

reaction is calculated as follows using the contact stiffness coefficient k – see Fig. 2.6. 
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Fig. 2.6 . Regularized penalization model for the normal direction of the contact to prevent the beams to 

interpenetrate. 

This regularization ensures a continuity of the derivative of the normal reaction at the origin. 

Despite of the expected variation of the contact loads magnitude, a stability of the 

penetrations is sought. For this reason, instead of a contact model where the penalty 

coefficient would be fixed, a control of the maximum penetration within each proximity zone 

is chosen. The idea is to adapt the penalty coefficient k so as to control the maximum 

penetration registered on each proximity zone. For each proximity zone, the maximum 

penetration measured by the contact elements should not exceed a given penetration defined 

by the maximal allowable penetration gmax of the model. The value of gmax should be 

sufficiently small compared to the radius of the beam so that the errors made on the contact 

geometry do not impact the global behavior of the system. For a given zone, the adaptation of 
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k relies on the maximum penetration measured by the contact elements. The procedure is first 

to measure the maximum penetration, denoted gm , for each proximity zone. The coefficient k 

is then adapted so that gm tends toward gmax as follows: 

 

nmn k
g

g
k

max

1  �
 

eqn. 2.22
 

For gmax, a value of 5 times the regularization depth grg seems to be relevant value when grg is 

set below 1% of the beam radius. The adaptation of the local contact penalty coefficient is 

performed regularly at the end of each loop on the determination of the normal contact 

directions. 

b. Regularized Coulomb model for the tangential direction of the contact 

The tangential behavior of contact depends on the tangential relative displacements between 

the two particles. This displacement is defined according to the contact normal as follows: 

 > @ � � � �� �12c12c12 uuxNxNIu ��� )()()( c
T x  eqn. 2.23 

Where, u ([1) and u ([2) are the displacements of the contact particles. A regularized 

Coulomb model is used to simulate the stick and slip behavior: a short reversible elastic 

displacement (few microns) is considered before gross slipping occurs. The friction model 

involves two parameters, the maximum allowed reversible tangential displacement and the 

coefficient of friction – see Fig. 2.7. 
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Fig. 2.7 . Regularized Coulomb model for the tangential direction to simulate the friction effects. 

1.4.8 Consideration of contact with rigid tools 

Multifil code offers the possibility to model rigid surfaces that can interact by contact with the 

beams. These surfaces are referred as the tools of the model. The tools are defined as plane or 

cylindrical analytical surfaces. Unlike the contact determination between beams, the contacts 

with the tools are here taken into account at the nodes of the beam elements. The contact 
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reaction between beams and tools follow the regularized penalty method in the normal 

direction, with an adaptation of the penalty coefficient for each proximity zone. Because the 

surface of analytical tools may change from one step to the next, it is not possible to keep 

track of the material particle of the tool in contact with a given node of a beam. For this 

reason the increment of relative tangential displacement between a beam node and a tool 

cannot be computed, and friction effects cannot be directly considered. Instead of that, to limit 

tangential displacements at the interface with the tools, it has been chosen to implement a 

tangential stiffness acting on increments of tangential displacements. t1 and t2 being two unit 

tangent vectors to the tool surface at the location of contact, a tangential reaction force FT,tool 

is computed as follows: 

 � �22, )()( ttuttu 11 �'��'� nn
TtoolT kF  eqn. 2.25 

Where, 'u
n 

is the increment of displacement of the node and kT is the tangential stiffness. This 

tangential stiffness is taken to half the normal contact stiffness. 

1.5 Algorithm 

The major issue is to find out an algorithm that allows converging toward the solution. The 

computation algorithm is composed of three nested  loops that are respectively dedicated to 

the determination of contact elements, then the determination of contact normal directions and 

finally to the solving of the nonlinear problem with fixed contact conditions: 

1. Contact positions determination 

  2. Contact normal determination 

   3. Newton-Raphson solving 

This iterative process is used to approximate, step by step, the mechanical equilibrium of the 

whole structure for a given loading step until the solution converges. The number of loops for 

the three parts of the resolution may vary from one structure to another and depends on the 

loading increment size. 

2 Multifil simulation of superconducting cable-in-conduit 
conductors 

2.1 The different phases to be simulated with Multifil 

2.1.1 The initial configuration of cables inside the conduit 

The trajectories of the strands inside cable-in-conduits cannot be known a priori and thus 

need to be calculated in a way. The first part of the modelling is then dedicated to the 

computation of a geometry of cable relevant to ITER conductor design. In the real process, the 

different stages sub-cables are produced by successive cabling machines. The triplets are first 

cabled and then spooled. The same procedure is used for the next stages: the triplet strands 

form the second stages and so on. The final assembly is inserted inside the jacket by pulling 

the cable inside. Eventually the cable-in-conduit is compacted to its final cable void fraction 

by passing through a die. Since it is not conceivable to reproduce with the code the whole 

cabling, jacketing and hammering processes, an equivalent route is proposed to shape a cable. 

This shaping part of the simulation is presented in 2.2.1. 
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2.1.2 The effect of the heat treatment 

The real manufacturing process induces important deformation of the cabled strands with the 

occurrence of permanent pinching at the contacts and plastic strains. During the heat 

treatment, the temperature is sufficient to cause the annealing of the different materials. The 

annealing implies the relief of the internal stresses accumulated in the various materials 

(mainly copper and bronze) during the manufacturing. The heat treatment aims at creating the 

Nb3Sn superconducting phase in the filaments of the strands. The alloying reaction and the 

annealing of the material imply a change of the properties of the materials, from unreacted to 

reacted strands and from copper to Oxygen-free high thermal conductivity, OFHC copper 

wires. After the heat treatment and before the cool-down, all stresses in the strands of the 

conductor are assumed to be zero. In Multifil, a part of the modelling aims at setting such 

virgin state to a shaped cable as explained in 2.2.2. 

2.1.3 The different loadings of conductors along its service life 

a. The thermal compression 

During the cool-down of the conductor, from the heat treatment temperature of 900 K to 

operating temperature of 5 K, the differential of thermal shrinkage between the jacket and the 

cable is assumed to result in a compression applied to the cable. The simulation of the cable 

axial compression is developed in 2.2.3. 

b. The cyclic magnetic loading 

In ITER conductors, the current that flows in the superconducting strands combined with the 

presence of an external magnetic field produces a Lorentz force that acts orthogonally to the 

strands. The Lorentz forces are classically calculated by the cross product of the field B by the 

current Is along the strands, e.g. with a current of Is = 100 A per strands in the B = 11 T 

background magnetic field, the local Lorentz FL is 1.1 N/mm. During their service life, the 

conductors are submitted to several thousand Lorentz loading cycles. The simulation of the 

magnetic effect by Multifil is exposed in 2.2.4. 

2.2 The different steps of the simulation 

2.2.1 The shaping 

a. Definition of the initial beam assembly 

The first part of ITER conductor modelling is about the definition of an initial configuration 

for the beam assembly. The idea is to have a geometrical description of an assembly that 

fulfills the arrangement according to successive stages with different twist pitches. In the 

proposed model of cable, the initial configuration is theoretically described by helices 

recursively defined on helices to represent the different cabling stages. A standard helix is 

parameterized by its curvilinear abscissa s, and defined by its radius rh and its twist pitch ph. 

The recursive formulation for the successive stages of a cable made of N stages can be 

parameterized as follows: 
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The variable rh
i
 I0

i
 stands for the helix radius and initial angle for the helices of each stage. As 

an example, Fig. 2.8 illustrates the result obtained for a 100 mm long sample containing three 

stages with a 3x3x5 cabling pattern and the following twist pitche sequence 

{45x85x125x180} (mm). 

 

Fig. 2.8. Theoretical initial configuration of a 3x3x5 cable 100mm long. 

 

Fig. 2.9 . Theoretical initial configuration of a 3x3x5x4 cable 150mm long. 
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b. Use of rigid tool to shape the initial assembly 

The available tools of Multifil can be used in order to shape the assembly of beams and to 

model the presence of the outer conductor’s jacket. The driving of the tools motion allows 

deforming the assembly through the contact conditions. Regarding cable-in-conduit 

modelling, the idea is to deform the theoretical initial configuration of the cable by the means 

of cylindrical and plane tools. In order to get a round cable, the tool can be a cylinder around 

the assembly. The loading of the structure then consists in the decreasing of the diameter of 

this cylinder. The induced displacement aims at compacting the assembly until a given void 

fraction. 

 

Fig. 2.10 . Illustration of cylindrical tool around initial strand assembly (3x3x5). 

In the same way, a square cable can be obtained using four plane tools as the four faces of a 

parallelepiped. The lateral displacements of the tools deform the structure. 

  

Fig. 2.11 . Illustration of square tool around initial strand assembly (3x3x4x4). 

The combination of cylindrical and plane tools allows deforming the structure into a petal-like 

shape. 

  

Fig. 2.12 . Illustration of petal tool around initial strand assembly (3x3x5x4). 
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c. Gradual compaction of the initial assembly 

The Multifil procedure, referred to as the shaping process, performs the compaction of the 

initial cable configuration by the means of rigid tools and proper boundary conditions. The 

transverse stiffness of the assembly increases as the cable gets more compact. Constant 

increments of displacement for the tools during the compaction do not seem convenient, 

because the convergence deteriorates as the compaction progresses. To have a more constant 

evolution of internal stresses in the cable, it has been chosen to decrease the increment of 

displacement applied to the tool according to a geometric progression. Starting from an initial 

increment 'ur
0
, the increment 'ur

n
 for the step n is calculated as: 

 
0
r

nn
r uwu ' '  eqn. 2.27 

Where w is taken lower than 1. As an example, for initial and final radius Ri = 5.2mm, Rf = 

3.0mm, w = 0.97 and 'ur
0
 = 0.04 mm, the evolution of the tool’s radius is illustrated in Fig. 

2.13. 

 

Fig. 2.13. Driving of the tool's radius during the shaping. 

The void fraction VF of the cable can simply be derived with the tool’s radius Rt, the radius of 

the strands rs , the number of strand N. 
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 eqn. 2.28 

where cos(T� is the average angle between the axis of the beams with the cable axis e3. 
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Fig. 2.14 . Example of the shaping of a round cable (3x3x5) up to VF=32%. 

For simplicity, during the compaction, the material constitutive law corresponds to the elastic 

case (but rigorously, it should be plastic) with the Young’s modulus equal to 100 GPa without 

considering the transverse deformation of the beams. The friction coefficient is taken equal to 

0.05. 

2.2.2 The stress reset 

In the model, the material annealing effect is simulated by a reset of the local stresses that 

have been generated during the shaping process. The procedure consists in considering the 

last configuration at the end of the shaping as the new initial configuration at rest. Doing so, 

all stresses are reset to zero. After the reset of internal stresses, normal contact reactions 

vanish. Even if small penetrations induced by the efforts during the shaping process still exist, 

the adaptation of the contact stiffness is no longer relevant. The values of these contact 

stiffnesses, stored for each proximity zone, need however to be changed, since they 

correspond to the high interaction efforts exerted between beams at the end of the shaping. 

Going on with these values after the stress reset makes the contact algorithm very unstable. 

To solve this problem, at the same time of the stress reset, the contact stiffnesses are reset for 

all proximity zones to uniform value which should be low enough not to introduce artificial 

contact stiffness (induced by the remaining small penetration) but high enough to prevent 

large penetrations that would not be counteracted by the adaptation of the coefficients. The 

coefficients of the zones would not converge if the algorithm starts from too low value. The 

initial value of the coefficients after the reset is set to a few tens N/mm. At this stage of the 

modeling, the material properties are switched. Whereas the constitutive law for the strands 

was elastic during the shaping part of the modelling, the plastic behavior is introduced for the 
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rest of the modelling. The constitutive laws used for the superconducting strand and the pure 

copper wire are described in the Chapter 3. 

2.2.3 Application of the axial loadings 

Multifil can not address for the moment the thermo-mechanical problem of the determination 

of the thermal compression, since it does not take into account either the thermal expansion of 

the strands or the presence of a deformable jacket. In the model, the thermal effects are simply 

simulated by the application of an axial compression to the cable inside its conduit. More 

generally, the axial loading of cable is simulated imposing some axial displacements to the 

ends of the strands via the axial boundary conditions of the model. The tools simulate the 

presence of the jacket around the conductor. In real conductor, the cable and the jacket are 

assumed to be fully bonded during the cool down. For this reason, the tangential 

displacements of the nodes contacting the tools are penalized.– see 2.3. The amplitude of the 

compression that is used for the simulation of the ITER conductor comes from admitted 

results published in various papers [Mitchell 2003 a b], [Ciazynski 2007]. The conductor is 

loaded up to about -0.6~0.7% axial strain. The main advantage of the simulation is that it 

allows the effect of various applied compressions to be quickly checked. 

2.2.4 Application of the Lorentz forces 

The Lorentz loading is simulated by the application of loads along the strands. These loads 

point at one of the transverse directions (e1 or e2). In the model, an increment of force 'FL is 

applied at each step of the computation and is about 0.01 N/mm. The assumptions made by 

the simulation are here discussed. First, the model assumes uniformly distributed current 

among the strands of the conductors: the local forces are taken to be equal everywhere in the 

cable. But non-uniform currents may exist due to the presence of the joints that induce a 

transient zone before the currents balance between the strands. The variations of strain along 

the strands are also responsible for some current non-uniformity [Mitchell 2000 a], [Mitchell 

2003 b]. In the SULTAN test facility, the magnetic field is not uniform, either along or across 

the conductors [Ilyin 2007 b]. In that sense, the model simplifies the problem by taking a 

constant Lorentz force everywhere in the cable. At last, the Lorentz forces are applied in a 

single direction, whereas they should theoretically act orthogonally to the strand axis, which is 

another simplification of the model. However, the approximation should be proportional to 

(1-cosT ) which should not bring much difference. During the application of the Lorentz force 

loading, the thermal compression is maintained to its reference value. In that sense, the axial 

displacements of the strands are locked in the axial direction by the boundary conditions 

while the Lorentz forces are applied. 

2.3 Issues related to the boundary conditions of the model 

This paragraph presents the issues related to the modelling of the boundary conditions of the 

model. The main concepts relative to the boundary conditions are first illustrated for what 

regards the shaping part of the modelling. These concepts can then be extended to the other 

loading cases (axial and transverse). 
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2.3.1 Introduction of the boundary condition issues 

In the proposed model of cable, Multifil considers samples of limited size due to the 

computation time. The model focuses on cables of few tens centimeters length using relevant 

kinematical conditions at the boundaries. The boundary conditions are needed so that the 

problem is well posed. The issue is then to define proper conditions that would simulate the 

effect of the non modelled parts at both sides of the cable model. The idea is that the strands 

at the ends behave as if the cable was running further. The boundary conditions aim to control 

the displacements of the nodes situated at the ends of the strands, in regards with the 

transverse (e1, e2) and the axial (e3) directions. The formalism relative to the boundary 

conditions of the Multifil cable model is exposed hereafter. 

2.3.2 First approach of the boundary conditions 

a. Along the longitudinal direction 

Along the axial direction, the extreme nodes can be fully bonded, free or submitted to a 

displacement. To prescribe a given displacement G along the axial direction 3 to a node N, the 

following kinematical condition is set: 

 
G � 3eu

n
N ,

 
eqn. 2.29 

where  u
n

N is the displacement of node N. In the following, for simplicity, the reference to the 

node N is assumed implicit and it is now omitted. Prescribing the value of the increment of 

displacement instead of the displacement itself comes to set the following condition: 
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which is equivalent to the eq 2.26. replacing G�by (u
n-1

,e3) +G. This condition is accounted for 

using a standard penalty method, consisting in adding to the energy of the system a binding 

energy W expressed as: 
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eqn. 2.31 

The corresponding virtual work writes: 
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 eqn. 2.32 

And the corresponding axial reaction force acting on the node is expressed as: 

 33 )( eeuFax G��� nk  eqn. 2.33 

During the shaping, the strand ends are locked along the axial direction at one side of the 

cable whereas the other extremities are free along this direction. One of the cable sides is let 

free to prevent the buckling of the structure as the radial compaction is performed. A tensile 

loading could also be applied during the shaping even though this possibility has not been 
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explored during this thesis. This could help to reproduce the pulling of the cable during the 

manufacturing. 

b. Along the transverse directions 

The displacement of the strand ends are also controlled along the transverse direction (e1, e2). 

But it is obviously not possible to either fully lock extremities or let them completely free as it 

is for the axial direction. On the one hand, since the cable is compacted by the tool during the 

shaping, it would be meaningless to block the displacements in the transverse directions. On 

the other hand, if the extremities are let free then the cable tends to unwind itself during the 

shaping, and the initial coherence of the cable stages tends to be lost as the cable is 

compacted. This de-twisting effect is natural since the configuration of minimal energy 

corresponds to the case where the strands are straight and parallel. The strands tend to align to 

each other while the assembly is compacted if the transverse displacements are not 

constrained. To stop the unwinding, a first approach for the transverse boundary condition is 

to penalize the radial and the orthoradial displacements with the same method as for the axial 

direction. First, the radial and orthoradial directions, er and eT, relative to the node N are 

defined. Assuming the axis of the cable is identical to the third global axis, the unit radial 

vector er and the unit orthoradial vector eT are calculated as: 
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Penalizing the increments of displacements along these two directions amounts to apply the 

following forces with two different penalty stiffnesses kr and kT.: 
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The coefficients of penalization for the two directions need to be adjusted, as they define the 

stiffness with which the nodes are maintained. The main drawback of the method is that the 

induced stiffness counteracts the displacement induced by the shaping. For this reason, the 

coefficient relative to the orthoradial direction is set higher than the coefficient for the radial 

direction. At the beginning of the thesis, the transverse boundary conditions were proved to 

cause a peripheral densification of the strands during the shaping. Moreover the results of the 

shaping were highly dependent on the value set for the penalty coefficient. For these reasons, 

an important part of this thesis was dedicated to the development and the implementation in 

the code of a new kind of boundary conditions for the transverse direction. 

c. Penalization of the increment of displacement or the total displacement  

Regarding the boundary conditions, either increment of displacements or total displacements 

have been introduced so far. Since the penalization of the boundary conditions allows a small 

gap to the exact condition, considering the total displacement or the increment of 

displacement does not lead exactly to the same solution. The interest of the penalization is 

precisely to allow this gap to the exact condition, and to enable the strand ends to move a little 

to rearrange, even if the kinematical condition would aim at prescribing zero displacements. 

As a drawback, if boundary conditions are applied to increments of displacement, if an 
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approximately constant resultant force acts on an end node, it would induce roughly the same 

increment of displacement for each loading step, which means the total displacement for this 

node would depend on the number of loading steps used to simulate a given stage. Applying 

boundary conditions to the increments of displacements introduces consequently a 

dependence on the followed path, and especially on the number of loading steps. Along the 

shaping of the cable, the current positions of the strands ends notably differ from their initial 

position. For this reason, a penalization relative to the increments of displacement is 

preferred, despite the dependence on the increment. For the other loadings applied to shaped 

the cable, the penalizations are relative to the total displacements, so that the result does not 

depend on the increments of loading. 

3 Development of transverse pseudo-periodic boundary 
conditions 

3.1 Pseudo-periodicity or the notion of longitudinal invariance 

In order to simulate the continuity of the cable beyond its ends, an invariance of the 

phenomena is assumed along its axial direction. This assumption supposes that the 

displacements in all sections of the cable are globally identical in the transverse directions. 

Since the cable model is not a periodic structure, there is no direct correspondence between 

the positions of the nodes from opposite sections. As a result, it is not possible to exactly 

prescribe any equality between the displacements of the extreme nodes. This is the reason 

why the boundary conditions are described as pseudo-periodic. 

3.2 Implementation of the boundary conditions in the code 

3.2.1 Specific coupling of the extreme nodes 

The question is now to define a criterion to determine which nodes are coupled. It is chosen to 

link the node from one side of the cable to the two nodes on the opposite side which are the 

closest according to transverse directions. This coupling is done as follows: 

� The extreme nodes at the right and left hand sides of the strands are denoted Ni
L
 and Nj

R
  

� The distances between the nodes Ni
R
 and Nj

L
 along the transverse directions e1 and e2 are 
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� Each node Ni L is associated with two nodes Nj,1 R and Nj,2 R that are the closest along 

the transverse directions. 

3.2.2 Bounding condition between the coupled nodes 

In order to bind the coupled nodes, the kinematical condition is expressed as follows: 
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The penalization term that sets the transverse binding of the coupled nodes corresponds to the 

energy Wbind: 
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The minimization of W yields the term that should be added to the virtual work: 
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It comes to apply to the nodes Ni
L
 and Nj,1

R
 the opposite interaction forces Fbind and – Fbind 

defined by: 
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The binding condition can be applied either according to the total displacement or to the 

increment of displacement of the current step. For the same reasons as developed in 2.3.2.c, 

the pseudo-periodic conditions are relative to the increments of displacements for the shaping 

part of the modelling and to the total displacements for the other loadings (which guarantees 

by the way the reversibility in case of cycling loading). 

3.2.3 Artefacts induced by the pseudo-periodic boundary conditions 

The non-periodicity of the cable does not allow Multifil to fully respect the kinematical 

condition. For this reason, the coefficient kbind that sets the intensity of the interactions cannot 

be arbitraryly high. It needs to be adjusted in order to tolerate some deviations. Besides, the 

various couplings established between the nodes are not independent, since one node can be 

involved in several interactions. As a result, an interacting network is produced between all 

nodes of each extreme section of the cable, which introduces a transversal stiffness for these 

sections. The stiffness of this framework depends on the values of kbind which is the topic of 

the paragraph 5.2. 

4 Adaptation of the initial lengths of the strands to insure plane 
sections of cable 

4.1 Issue 

Initially the strand ends have the same axial coordinates z=Lm, with Lm the length of the 

sample. But after the shaping, the free section of the cable is not flat anymore because the 

trajectories of the strands have extended during the compaction. This effect may cause 

problems during the application of the Lorentz Loading. In fact, if some strands are longer 

than others, the parts of strands that exceed the average length of the cable are not supported. 

The effect is reported in Fig. 2.15 where the strands at the periphery are longer than at the 

core of the cable. The application of a magnetic force to these unsupported parts will cause a 

local high bending having no physical sense, which may deteriorate the convergence of the 

solution algorithm and induce an overestimation of damage. 
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Fig. 2.15 . Result of the first shaping of the 3x3x5x4 cable. The free section is not flat because during the 

shaping, some strands have stretched more than others. 

4.2 Proposed solution 

The method is simple. A first shaping is performed. The initial and final lengths of the strands 

are then measured. A second shaping is realized, but now the initial configuration is adapted 

according to the result of the first shaping. For the second shaping, the initial lengths Li are 

increased by the amount 'Li needed to get flat cable sections aligned with the maximum 

length measured during the first shaping: 

 i
ini
ji LLL � ' )max(  eqn. 2.41 

  

a)      b) 

Fig. 2.16. Illustration of the adaptation of the strand initial lengths. a) Initial and b) modified right hand 

sides of the cable. According to the result of the first shaping, the strands for the second shaping are now 

longer at the core of the cable.  
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4.3 Verification of the method 

In this paragraph, the method developed to get plane extreme sections at both cable sides is 

checked. The result of the first shaping of a 3x3x5x4 cable is shown in Fig. 2.15. From this 

result, the initial lengths of the strands are adapted. The new strand geometry is shown in Fig. 

2.16. Finally, the result of the second shaping is presented in Fig. 2.17. It can be concluded 

that the shaping result is in agreement with the objective of having plane extreme sections. 

The main drawback is the need to perform two successive shapings, which is time consuming. 

 

Fig. 2.17. Cable extreme sections after second shaping: both free and constrained sections are now flat. It 

shows that the adaptation of the initial length is a relevant method to obtain flat sections. 

5 Parametric study of the influence of the pseudo-periodic 
boundary conditions 

5.1 Verification of the longitudinal invariance 

The assumption on which the transverse pseudo-periodic conditions relies presumes the 

invariance of the displacement along the cable axis. The detwisting effect is expected to 

induce orthoradial displacements at the strand ends. In order to validate the assumption of 

invariance and to observe a possible detwisting effect, the average of the norm of orthoradial 

displacement calculated within some sections of cable is plotted against the cable axis. The 

results for four different steps (32, 34, 36, 38, 40) of the shaping of a 100 mm and 200mm 

long cable are presented in Fig. 2.18. The curves present some oscillations extending over few 

tens millimeters but their amplitudes do not much differ. The orthoradial behavior is not truly 

invariant but the variations are of comparable orders, both all along each of the two samples, 

and compared from one sample to the other. Moreover, on these curves, no peculiar end effect 

is noticeable.  From this study it can be concluded that the application of pseudo-periodic 

boundary conditions does not seem to induce noticeable end effects. 
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Fig. 2.18. Plot of the mean orthoradial displacements of the nodes along the cable axis. The invariance of 

the behavior along the cable axis is checked. 

5.2 Parametric study of the length of the modelled sample 

5.2.1 Effect of large variation of the length 

After having shown the absence of noticeable end effects induced by the pseudo-periodic 

conditions, it is interesting to study the influence of the length of the modelled sample. For 

this purpose, the same plot is presented in Fig. 2.19. for 25, 50, 75 and 150mm long samples 

compared with the reference 200mm long cable. For the shortest samples (25 & 50mm), the 

behavior substantially differs from the reference, whereas longer samples better match it. 

 

a) 25 mm          b) 50 mm  
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c) 75 mm          d) 150 mm  

Fig. 2.19. Plot of the mean orthoradial displacements of the nodes along the cable axis. Different cable 

lengths are: 25, 50, 75 and 150mm long. The boundary conditions seem not well adapted to short samples, 

say smaller that 75mm. 

Other quantities can be analyzed to study the influence of the length of the modelled sample. 

We choose to study here the evolution of mean curvature with the compaction of the assembly 

(void fraction). Samples of different sizes have been shaped. The different cable lengths are 

respectively 25, 50, 75, 100, 150, 200 and 400 mm. In Fig. 2.20, the results are compared to 

each other in terms of their distribution, mean and standard deviation calculated for the local 

curvatures. These graphics are plotted for the different steps of the compaction. 

 

Fig. 2.20. Comparison of the curvature distribution for three steps of the compaction and different cable 

length. 

  

Fig. 2.21. Evolution of the mean curvature along the compaction and error made compared with the 

reference sample 400mm long. 
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Compared with the reference sample, the discrepancy of the mean curvature is above 30% for 

the shortest sample and below 5% for the longest. The distributions of the different samples 

get closer to each other when the length of the sample is greater than 75mm. From these 

results it seems that beyond a value of 75mm, the length of the sample does not influence the 

obtained results. 

5.2.2 Effect of small variation of the length 

The boundary conditions set a coupling between the closest extreme nodes according to the 

transverse directions. If the length of the cable slightly increases, the positions of the extreme 

nodes change. As a result the coupling network relative to the transverse boundary conditions 

varies as well – see Fig. 2.22. The boundary conditions may then produce in turn different 

effects and the result may change when the modelled length varies. 

 

Fig. 2.22. Extreme sections for three different modelled lengths. According to the cable length, the strand 

ends are coupled in a different way by the boundary condition.  

   

Fig. 2.23. Distribution of the local curvatures for the three different lengths. 

Curves in Fig. 2.23 show that the results are not significantly influenced by the changes in the 

couplings between extreme nodes induced by small variations of the length. 

5.3 Parametric study of the penalty coefficient 

In order to check the influence of the binding coefficient kbind on the results of the shaping, 

different values are assigned to 100mm long samples. The tested values range over four 

orders of magnitude: 0.1, 1, 10, 50, 100, 500, 1000 and 5000 N/mm. Fig. 2.24 shows the 

evolution of the mean curvature along the step of the shaping for the different samples. These 

curves are compared with a reference behavior. The reference corresponds to the 200mm long 

sample assumed long enough to be independent of any end effects. Its shaping is performed 
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using kbind =200 N/mm. Compared to the reference, low values of kbind ( < 50N/mm) produces 

underestimations of the curvatures whereas high values of kbind ( < 100N/mm) overestimate 

them. The case kbind =100N/mm gives the closest result: the mean and the distribution match 

the reference behavior. Are these discrepancies in the results due to peculiar behavior at the 

cable ends that eventually perturb the statistic? 

 

a)               b) 

Fig. 2.24. Observation of the effect of the penalty coefficient. a) Evolution of the mean curvatures along 

the steps of the shaping. b) Distribution of the curvatures for a given step of the shaping. 

The local curvature of the beams, along the cable axis can be illustrated by the detwisting of 

the sub-bundles along the compaction or other ends effect. The next set of graphics in Fig. 

2.25 shows the evolution of the mean curvature per cable sections for the different step of the 

compaction for the different values of kbind. Low values of kbind (< 50 N/mm) may be not 

sufficient to produce the desired coupling of the extreme nodes. It seems that for low value of 

kbind the cable unwinds itself. The detwisting is illustrated by low curvature at the strand ends. 

High values of k (> 500 N/mm) are expected to cause the stiffening of the cable extreme 

sections because of the artificial transverse rigidity introduced by the pseudo-periodic 

boundary conditions. It appears that the curvatures are too high at the extremities of the cable 

– see last graphics in Fig. 2.25. The end effects extend over 10mm at both cable sides. For 

average values of k (between 50 and 500N/mm) there are limited end effects with low 

discrepancy between the behavior at ends and the rest of the cable. 
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Fig. 2.25. Illustration of the effect of the binding intensity relative to the pseudo-periodic condition on the 

average behavior relative to the curvatures.  
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For a given void fraction of 32%, the mean curvatures along the cable axis are compared with 

the reference behavior. Fig. 2.26 and Fig. 2.27 show the comparison for the different kbind. It 

seems that to reproduce the result of the reference sample for a void fraction of 32%, the 

value of k should range between 50 and 500N/mm. 

 

Fig. 2.26. Influence of the parameter k on the mean curvature per section and comparison with the 

reference sample. 

a)  b)  

Fig. 2.27. Mean curvature per cable section compared with the reference behavior and estimation of the 

discrepancy. 
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5.4 Final result regarding the shaping of four cable stage conductor 

This last paragraph concludes the work done on the boundary conditions and their influence during 

the shaping by presenting the results obtained regarding sub-size conductors. The models presented 

in Fig. 2.28 are composed of either one hundred and forty four or one hundred and eighty strands 

built upon four cabling stages. The different designs have been chosen in accordance with existing 

conductors that have been experimentally tested at SULTAN or FBI facilities under ITER relevant 

operating temperature and field conditions. The design parameters of the four conductors are listed 

in the Table 2.1. They all get the same twist pitch sequence TP {51-79-136-166} and the same 

length L=160 mm. Except for the petal, the void fraction of the cable inside its conduit is chosen 

equal to 33% (41.4% for the petal). The dimensions of the cross-sections correspond to the cable 

radius for the round cable, the edges for the square and the outer diameter of the central spiral and 

inner diameter of the jacket for the petal. 

Cabling 

 pattern 

Number  

of strands 

Shape  

& Dimension [mm] 

Void 

Fraction  

[%] 

Twist Pitches  

[mm] 

L 

[mm]

  Round square petal  51-79-136-166 160 

3x3x4x4 144 6.01 10.7 x 33 51-79-136-166 160 

3x3x5x4 180 6.72 x 6-18.6 33 – 41.4 51-79-136-166 160 

Table 2.1. The design parameters of the four-stage cable-in-conduit conductor simulated by Multifil. 

 

   

b) a) 

   
c) d) 

Fig. 2.28. Final result of the shaping down to a void fraction of VF=32%. a) Circular 3x3x4x4. b) Circular 

3x3x5x4. c) Petal 3x3x5x4. d) Square 3x3x4x4. 
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Chapter III: Validations of the model for the axial loading 

   The goal of this chapter is to validate the Multifil model of cable for the axial loading tests 

with comparison with available experimental data. For this purpose, the material constitutive 

laws of the cable components, the copper wires and the composite strands, have been 

experimentally identified, by carrying out uniaxial cyclic tensile tests on individual wires. In 

the first part of this chapter, the experimental method that allows the axial loading curves of 

wires to be obtained is introduced. The results of the tensile tests, performed at room 

temperature, are here presented and discussed. In addition to this macroscopic approach, 

Scanning Electron Microscopy observations of the tested strands complete the strand 

characterization. These microscopic observations aim at identifying a strain criterion for the 

initiation of micro-cracks in Nb3Sn filaments. In the second part of this chapter, the model for 

longitudinal elasto-plastic behavior used Multifil code is introduced. Different functions are 

fitted to reproduce the evolution of hardening observed on the experimentally obtained stress-

strain curves. The results of the simulation of low cyclic tensile on single wires are compared 

with experimental curves. In the last part, the model of axial plasticity is put to good use in 

the simulation of the tensile test of a 36 strand cable. The cable stress-strain curve that is 

calculated is directly compared with the experimental results obtained at the Twente 

University [Ilyin 2006]. The agreement between experimental data and simulation results 

provides a first validation of the model for a tensile test performed on a real cable, with no 

other free parameters than the fitting of the constitutive behavior of individual wires. 

1 Tensile test of strands at room temperature 

1.1 Experimental procedure 

1.1.1 Presentation of the materials 

The strands provided by CEA were from the EAS Bronze route and the Alstom Internal Tin 

process production, whereas the OFHC copper strands were extracted from conductor. Fig. 

3.1 illustrates the different samples, typically 100 mm long, that have been tested. These 

samples have been mechanically tested to derive their axial stress-strain characteristics. 
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a)    b)  

Fig. 3.1. a) Straight reacted Nb3Sn-based strands and OFHC copper wires and b) mounted samples to be 

used with the capstan device. All materials were delivered after heat treatment by CEA. 

1.1.2 Measurement process 

The axial stress-strain curves of the wires are measured using a standard tensile machine 

equipped with a load cell that measures the force applied to the sample (maximum loading of 

the cell is 5kN). The axial deformation of the sample is probed by clip-on extensometer – see 

Fig. 3.2. The distance between the two blades of the extensometer is 12.5mm and the length 

of the samples is 100mm. The test is performed at room temperature with a rate of applied 

displacement of 0.5mm/min. The unloading/loading of the sample can be performed to 

produce cyclic loading. Regarding the stress-strain loading curve, the stress V is defined by 

the force F divided by the cross section of the strand and the strain H by the displacement 'L 

measured by the extensometer divided by its gauge length Lg. 

 
gs L

L

r

F '  HSV  and 
2   eqn. 3.1 

 

Fig. 3.2. View of the two blades clip-on extensometer mounted of strand sample. 
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1.1.3 The issue of the wire tightening  

The main issue of the tensile test experiment is to grip the sample at its ends in a way that 

would not cause damage or stress concentration that would lead to the early breakage of the 

sample. Different devices have been tried to get the most accurate and reproducible results. 

The first attempt was to use classic jaw - Fig. 3.3 a) to hold the sample. But the samples 

systematically broke inside the jaws even when the samples were put inside thin copper 

sleeves at their ends to protect them against the pressure of the jaws. The device was then 

discarded. The second attempt was to grip the sample using four jaws mandrel - Fig. 3.3 b). In 

order to withstand the tightening at their extremities, the samples were plated with silver over 

one centimetre. It appeared that the samples were eventually sliding out of the mandrel and 

the device was discarded. 

a)          b)  

Fig. 3.3. a) First attempt to grip the strand inserted in copper sleeve at the extremities. b) Second attempt 

with four jaws mandrel with silver plated extremities. 

Facing these difficulties, a third device was specifically designed so as to introduce no 

pinching of the strand at their ends by the use of two capstans – see Fig. 3.5 a). For this new 

montage, the Nb3Sn strands should have been reacted on a Titanium stand in the desired 

shape – see Fig. 3.1 a). This montage however has proved to produce unexpected result when 

the sample was cyclically loaded. The interpretation was that the strand slides against the 

capstans when the load is released. Nonetheless, for monotonic loading the result were 

correct. Fig. 3.4 illustrates as an example the reason why the capstan device has been 

discarded. When the strain is released, the stress abruptly drops. The same phenomenon 

appears when the strain increases again. This was interpreted as stick-slip behavior of the 

strand against the capstan. 
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Fig. 3.4. Illustration of the issue related to the capstan device regarding the unloading and loading of non 

reacted strand. 

The fourth and last device uses gripping jaws especially dedicated to test small diameter wires 

– see Fig. 3.5 b). The jaws maintain tightening of the sample by a gripping force that 

automatically increases with the applied load (so-called key-less clamp). Using this device, 

the tests have produced reproducible results where the sample always breaks at its middle (far 

from the clamps) which proved that no detrimental effects (slipping or pinching) were caused 

by the jaws. This device was finally chosen for it to avoid the issue induced by the capstan– 

see Fig. 3.6. 

a)          b)              

Fig. 3.5. a) Third attempt with double capstan device. b) Fourth attempt using keyless clamp specially 

dedicated to millimetre size wires. 
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Fig. 3.6. Validation of the wire testing dedicated keyless clamp device for the investigation of the axial 

stress-strain behavior. 

To conclude, the issues faced to obtain relevant and reproducible results have been overcome 

and an experimental procedure has been found out. In the next part the results of the 

measurements are presented. 

1.2 Analysis of the uniaxial loading curves 

1.2.1 Monotonic loading 

For the OFHC copper wires and the EAS reacted strands the results of the most representative 

measurements are exposed in Fig. 3.7 and Fig. 3.8. The measurements between the three 

samples are well reproduced. The unloading-loading of the samples are done to measure their 

effective axial stiffnesses defined as the slope of the curves for the unloading. These are 80 

GPa for the copper and 115 GPa for the composite. The tests are run until the rupture of the 

sample that occurs for strains beyond 2% for the copper and around 0.7 ~ 0.8% for the 

composite. The measurements are in agreement with expectation from the literature [van den 

Eijnden 2005], [Mitchell 2005 a b]. The stress-strain curves exhibit non-linear behavior 

typical of plasticity. The annealing of the copper in both pure and composite wires that occurs 

during the heat treatment is the cause of the small elastic domain of the samples. The OFHC 

wires have almost no elastic domain whereas the yield stress and strain for EAS reads Vy = 

50MPa and Hy = 0.045% which are quite low. The slope of the stress-strain curve in the plastic 

domain of the Nb3Sn composite strand is quasi-linear. 
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Fig. 3.7. Measurement of the axial stress-strain curves of OFHC copper wire. The first unloading allows 

the axial stiffness to be retrieved. 
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Fig. 3.8. Measurement of the axial stress-strain curves of EAS reacted strands and comparison with result 

from [van den Eijnden 2005]. 
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1.2.2 Application of the law of mixtures 

In order to better understand the stress-strain characteristic of the composite strand, it is 

proposed to apply the law of mixtures to derive a homogenized stress-strain curve. 

The law of mixtures states that the stiffness of the composite is the sum of the contribution of 

the different materials which are the Tantalum, the Bronze, the Nb3Sn and the OFHC copper. 

The law of mixtures simply reads for the total stress: 

 � � � � � � � � � �HVQHVQHVQHVQHV CuCuSnNbSnNbCuSnCuSnTaTaT ������� 
33

  eqn. 3.2 

Where the terms Q�stand for the volume ratio of the different materials, from [van den Eijnden 

2005]: 

 

 

 

Table 3.1. Volume ratios of the various components present in composite superconducting strand 

The elasto-plastic characteristics of the different materials at room temperature come from 

[Mitchell 2005 a]. Fig. 3.9 presents the stress-strain curves for the different materials, the 

result of the mixture law and the experimental result. The behavior of the composite strand is 

correctly modelled by the law of mixtures even though the volume ratios could be more 

accurately measured to get more accurate model. 
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Fig. 3.9. Illustration of the use of the law of mixtures to model the behavior of composite material. 

Now that the monotonic stress-strain curve is analysed, some cyclic loading can be 

performed. 

1.2.3 Plastic cyclic loading 

The strands in operating conductor are cyclically loaded, it then appeared important to 

perform plastic cyclic loadings of the materials. Two kinds of Nb3Sn strand have been tested: 

 67



the bronze route from EAS and the internal tin from Alstom. The obtained stress-strain curves 

from the tests are presented in Fig. 3.10.  
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Fig. 3.10. Tensile cyclic loading stress-strain curves of two kinds of Nb3Sn reacted strand, EAS Bronze 

Route and Alstom Internal Tin. 

The results indicate similar behavior for both kinds of strands. The most striking feature of 

these curves is the non-linear behavior when the stress is released which is characteristic of 

the Bauschinger effect where the yield strength decreases when the direction of the strain is 

changed [Lemaître Chaboche 1988]. 

1.2.4 Evolution of the Young’s modulus with the strain 

An additional question has risen from the cyclic curves. It is wondering if gradual damage of 

the Nb3Sn filaments might occurs during the tensile test which could be measured through the 

gradual decrease of the axial stiffness of the strands with loading. As earlier mentioned, the 

stiffness is measured by the slope of the linear part of the unloading curve. The linear fits of 

these are illustrated in Fig. 3.11. 
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b) 
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Fig. 3.11. Measurement of the axial stiffness by the slope of the unloading curve. a) EAS Bronze Route 

strand. b) Alstom Internal Tin strand. 

The plot of the stiffness against the applied strain is then shown in Fig. 3.12. The variation at 

the beginning of the curves is likely due to the settlement of the machine. Then a slight 

decrease is measured that does not exceed 3%. It would be adventurous to draw a conclusion 

about any correlation with filament breakage. 
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Fig. 3.12. Illustration of the evolution of the axial stiffness of the strands with the strain. 

1.2.5 Isotropic and kinematic hardening measurement 

At this stage, it is interesting to determine the isotropic and the kinematic hardenings of the 

material. They respectively stand for the evolution with the strain of the radius of the elastic 

domain and of the position of its centre. They are commonly written R and X [Lemaître 

Chaboche 1988]. In uniaxial loading, these are calculated as: 

 2
   and   

2

baba XR
VVVV � � ,

  
eqn. 3.3 
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where Va is the envelope of the curve and Vb  is the limit of the linear part of the unloading 

path as it is illustrated on Fig. 3.13, the initial the elastic domain is defined by the yield stress V0 and strain H0. 
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Fig. 3.13. Determination of the elastic domain and the stresses needed to derive the hardening variables. 

The hardening variables can then be plotted as illustrated in Fig. 3.14 that shows the evolution 

of R and X with the strain (H�- H0). The measurement shows that there is no isotropic 

hardening, whereas the displacement of the yield surface is significant. These curves will be 

useful for the next paragraph that deals with the modelling of the elasto-plastic behavior. 
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Fig. 3.14. Plot of the evolution of the isotropic hardening and the kinematic hardening as function of the 

plastic strain. 

1.2.6 Evidence of a racheting effect after few loading cycles 

The Racheting effect is a phenomenon that occurs as materials are cyclically loaded between 

constant stresses with a non-zero mean stress for a certain number of cycles. It reflects the 

accumulation of plastic deformation with cycling. Only fifteen loading cycles have been 
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performed on the bronze route and on the internal tin. The results are shown in Fig. 3.15 with 

a zoom on the strain accumulation in Fig. 3.16. The plots clearly show the occurrence of a 

ratcheting effect that causes additional irreversible deformation that mounts�up to 0.017% 

after 15 cycles for the EAS strand. It seems that there is a stabilisation of the maximum strain 

after 15 cycles. A better way to show the ratcheting effect would be to perform hundred 

cycles and plot the maximum strain versus the number of cycles and see if there is 

stabilisation at a limit, as it seems in figure 3.16. 
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Fig. 3.15. Investigation of the Ratcheting effect for Bronze route and Internal tin Nb3Sn strands. 15 cyclic 

loadings are performed. 
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Ratcheting effect 'HR = 0.017% after 15 cycles 

Fig. 3.16. Zoom on the accumulation of plastic deformation with the number of cyclic loading. 

One remaining question is to determine whether the cyclic behavior stabilizes or not ('HR 

does not evolve anymore). In order to conclude on the influence of the Racheting effect 

produced by the cyclic Lorentz loadings during the ITER conductors’ service life, it would be 

interesting to perform several hundred cycles on the strands. 
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1.3 Microscopic observation of the determination of crack occurrences 

The application of the mixture law suggests that the mechanical behavior of composite strand 

could be better understood looking at the details of the composite structure of strands. 

Moreover, the question of the presence of micro-cracks in the Nb3Sn filaments after the 

tensile tests of the strands is still to be answered. In this purpose, microscopic observations 

have been carried out down the scale of the microfilament. The Scanning Electron 

Microscopy technique has been used to determine the composition of the strand and to 

measure the dimensions of the different components. SEM method asks to work on highly 

clean surface in order to get the most detailed microscopic depiction. In the next paragraph, 

the specific procedure that is needed to prepare samples is briefly reminded (for more details, 

one should refer to the work of [Jewell 2008]). The observations of reacted internal tin and 

bronze route strands that have revealed some interesting features are presented. The author 

wishes to deeply thank the members of the ASC laboratory of NHMFL that welcome him for 

internship, especially Peter Lee for his great advices in sample preparation for SEM 

observation. 

1.3.1 Sample preparation for SEM observation 

The samples to be observed should be prepared by careful polishing so as to get good SEM 

images. The first step of the procedure is about the impregnation of the sample into a 

cylindrical puck made of EPOXY. The impregnated material is then gradually ground on 

successive polishing papers of decreasing size of grain (from 40 to 8µm ,Grit P320, P3500) 

during few minutes and then by diamond suspension paste (grain of 3 or 1µm) on a soft cloth 

for few tens of minutes. The final polishing step is performed using the automatic Vibromet 

polisher that reduces the depth of the polishing scratches below 0.06µm (the size of the grain 

in the SiO2 colloidal liquid) after twenty four hours of its use. The polishing quality brought 

by the Vibromet is mandatory to avoid generating any cracks of the filaments in samples 

virgin of any loading. By the way, it produces highly clean surface as presented in the 

following. 

1.3.2 Validation of the polishing techniques 

In order to determine the presence of cracks in the strands after their tensile test, the first step 

is to be sure that the polishing procedure did not cause any breakage of the initially crack-free 

filaments. The results of the SEM observation of the polished samples are presented hereafter. 

a. Internal Tin strand observation 

Fig. 3.17 a) & b) and Fig. 3.18 a) & b) present what could be a damaged and a clean strand 

after polishing when the longitudinal and transverse cross-sections are observed. 
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a)   b)  

Fig. 3.17. a) Longitudinal cross-section of the internal tin strand. Observation of the damages due to bad 

polishing. b) Example of clean polishing with filaments free of cracks. The filament (diameter: 8µm) of the 

row is seen through a Kirkendall void. 

a)   b)  

Fig. 3.18. a) Transverse cross-section of the internal tin strand. Illustration of the filament bundles and the 

overlap of Tantalum diffusion barrier. Observation of damage due to polishing greater near the voids in-

between the filaments where these are not supported. b) Example of etched zone where the Nb3Sn 

filaments and Nb3Sn -Ti enriched filaments are crack-free over tens of micrometers after good polishing. 

It has also been observed that ALSTOM reacted strands shows some microfilament with a 

high Titanium content – see Fig. 3.18 b). Their aspects are quite specific. For this thesis, it has 

been asked to measure the Nb3Sn area of strands in order to better characterise their critical 

current. The analysis gives: 

- Number of filament bundles: 19 

- Number of filaments per bundle: 140 

- Total number of filaments: 2660 

- Mean filament diameter: ~6µm 

For one filament bundle, roughly 10 {Nb3Sn+Ti} filaments over 140 filaments are observed. 

If the filaments sections are assumed to be circular, the total cross-sectional area is: 

 SNb3Sn= 75200 µm² 

b. Bronze route strand observation 

Fig. 3.19 a) & b) show that the polishing method is now well carried out. In Fig. 3.20 a) & b) 

the different materials are depicted. In particular, it has been asked during this thesis to 
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measure the width of the Chromium coating for quality control. The measurement is in 

agreement with procurement. 

 ecoating  2µm    

a)   b)   

Fig. 3.19. a) Longitudinal cross-section of the bronze route strand. The Tantalum diffusion barrier and 

the twisted filament bundles are visible. b) Zoom in the filament with evidence of voids of few microns 

between the filaments (diameter: 4µm). 

a)   b)  

Fig. 3.20. a) Transverse cross-section of the bronze route strand. The filament architecture is shown as 

well as the Ta barrier, the OFHC copper ring and the Chromium coating. b) Zoom on the 2 micron Cr 

coating with asperities at its outer surface. 

1.3.3 Micro-crack observations of tensile tested strands 

Now that the polishing techniques are validated, the next step of the microscopic analysis was 

about the observation of micro-cracks at the scale of the filaments. Two different samples 

have been strained up to 0.7% and up to the global failure at 0.8%, their longitudinal and their 

transverse cross-sections have been observed. The main result is that the sample is essentially 

crack-free after a tensile loading of 0.7% - see Fig. 3.21. However, when cracks are observed 

they can lie either along the longitudinal or the transverse direction (regarding the current 

transverse crack are more detrimental than longitudinal) – see Fig. 3.22. The radial cracks are 

arising from voids in Fig. 3.22 b). As far as transverse cross-section is concerned, it seems 

that the cracks propagate from the non-reacted cores to the outside of the filaments – see Fig. 

3.23. Finally, when the same analysis is performed on the second sample, cracks are found for 

almost all filaments – see Fig. 3.24. The rupture modes are not unique and cracks propagate in 

different directions – see Fig. 3.25. Finally, too few samples have been tested (at different 

loading) to conclude about an accurate determination of a crack initiation criterion but the 

presented result seems to point toa an axial strain greater than 0.7%. The main issue relative 
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to SEM observation of the strands comes from the twisting of the filament (going in and out 

the surface) and the small area that is covered by the observation. Besides it clearly appears 

that the size of the crack opening is about a few hundred nanometres, which is small enough 

that is also reduces the ability to detect or count the number of cracks. 

 

a)   b)   

Fig. 3.21. After a tensile loading up to 0.7%, the sample is essentially crack-free. 

a)   b)   

Fig. 3.22. After a tensile loading up to 0.7%, few cracks have been observed in both the filaments 

longitudinal a) and the transverse directions b). 

a)   b)  

Fig. 3.23. a) After a tensile loading up to 0.7%. Detailed view of a filament bundles with presence of radial 

cracks. b) Zoom of the Nb3Sn filaments with non-reacted core from which cracks are coming out. 
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a)   b)  

Fig. 3.24. After a tensile loading up to the global failure, most of the filaments are now damaged. 

a)   b)   

Fig. 3.25. After a tensile loading up to the global failure, a great number of damaged filaments are found 

in the sample. 

2 Multifil axial material constitutive law 

2.1 The axial elasto-plastic model 

2.1.1 Assumptions of the model 

In the light of the experimental results, it appears mandatory to be able to simulate plastic 

behavior in Multifil. An important task during this thesis has been dedicated to the 

modification of the Multifil material constitutive law for axial plasticity to take into account 

the experimentally characterized behavior. Modelling the axial plastic behavior asks to be 

able to reproduce the non-linearities of the stress-strain curves with the induced irreversible 

deformations. However, the kinematical beam model does not pretend to depict the complex 

three dimensional phenomenon of plasticity. Whereas plastic deformations could be very 

localized within a strand, particularly in case of deformations induced by a pinching contact, 

the beam model in Multifil is not rich enough to represent the three-dimensional aspect of 

such localized plastic deformations. Considering the components of the Green-Lagrange 

strain tensor derived from the employed kinematical beam model, and expressed in a local 

framework relative to the beam (the third axis standing for the longitudinal direction) one can 

remark that all components of this tensor do not evolve the same way through the beam cross-

section as function of the transverse coordinates. In particular the components EDE are 

constant through the section, the components ED3 are linear and the components E33 evolve 
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quadratically with respect to the transverse coordinates. Therefore, it is considered that only 

the axial components E33 of the strain tensor are described with sufficient fineness to be 

consistent with a localization of plasticity in the cross-section of a strand. For this reason, it is 

assumed that the plastic behavior affects only the longitudinal components of the strain and 

stress tensors. The second Piola-Kirchhoff stress tensor s is expressed s as follows in function 

of the Green-Lagrange strain tensor E: 

 s = C
*
: E + s33

 
(E��) e� � e����,  eqn. 3.4 

where the components of adapted stiffness tensor C* are calculated as follows in function of 

the standard elasticity stiffness tensor C: 

 C
*
ijkl = Cijkl for (i,j) z (3,3) eqn. 3.4 

 C
*
33kl = 0 

This expression means that the consideration of the elastoplastic behavior is limited to the 

relation between the longitudinal stress s33 and the longitudinal strain E33. This limitation of 

the consideration of plastic effect to the axial components is also related to the difficulty to 

identify and describe the actual behavior of strands in transverse directions. Indeed, since 

strands are constituted of a complex assembly of twisted Nb3Sn filaments within a copper 

matrix, plastic deformations occurring in the transverse directions involve phenomena taking 

place at the microscopic scale of filaments which would be very hard to homogenize at the 

scale of the strands. As measurements coming from traction experiments are usually the only 

available data concerning the strains, it appeared consistent in a first stage to limit the 

accounting of plastic effects only to longitudinal components. 

2.1.2 Model of hardening 

The elastoplastic model finally leads to consider a mono-dimensional model which can be 

written with the stress V, the strain H and f a non linear function: 

 � �HV f , eqn. 3.5 

where f (H) is a unique function that fits the experimental curves.  

In order to model irreversible deformation, the axial stress should depend on two other scalar 

variables. Their introduction aims at reproducing the different loading paths while unloading-

loading (cycle) and the accumulation of plastic deformation with the loadings. In classical 

elasto-plastic formulation, these two variables are referred to the isotropic and the kinematical 

hardening of the material (R and X). Their evolution with the strains depicts the hardening of 

the material. The evolution of R reflects the increase of the yield strength with strain. The 

evolution of X is associated with the Bauschinger effect. With the initial elastic limit k, both 

the isotropic and kinematic hardenings define the domain of plasticity of the material. In a 

monodimentional model, the criterion of plasticity simply reads (limit of the plastic domain): 

 0d�� RXV   eqn. 3.6 

The variables R and X evolves with the strain according to the following relation: 

  eqn. 3.7 
)(

)(

hX

hR

fX

fR

HD
H
� 
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where H0 is the yield strength, E is the Young modulus, Hh is the strain hardening since the last 

yielding, fR and fX are non linear functions of Hh representative of the hardenings and D 

indicates the direction of the loading, tensile or compressive (1 or -1). Chaboche’s proposal is 

to use exponential functions for the hardening functions so as to be valid over a broad range 

of strain and to be continuously differentiable. However, other functions can be used 

depending on the experimental stress-strain properties. The issue is to find out the proper law. 

2.1.3 Numerical integration through beam cross-sections 

Since the terms coming from the expression of virtual works are not linear with respect to 

transverse coordinates (due to the presence of quadratic terms in the strain tensor, and 

especially to the nonlinearities introduced by the plastic behavior), the integration of these 

terms cannot be performed analytically. The integration is thus performed numerically, using 

a grid of 24 integration points distributed on the cross-sections of beams which are located at 

Gauss integration points of the centroid line of the beam elements. The history variables that 

are required to describe the plastic behavior are stored at each of these integration points. 

2.1.4 Identification of the longitudinal plastic behavior for the different 

components of the cable 

For the simulation of superconducting conductors, at least three kinds of material behavior 

should be considered: the copper wires and the composite strands (reacted or unreacted). The 

issue is now about the determination of the hardening functions fR and fX to be used in the 

model. As exposed in 1.2.5, the functions are determined by the proper fit of both the 

envelope and the cyclic curves. Three kinds of function are used to fit the stress-strain 

characteristic of the OFHC copper wire, the non reacted strand and the reacted strand. The 

functions are based on polynomial function or a combination of exponential and affine 

functions identified on experimental result. It is also shown that the axial behavior of copper 

wire and unreacted composite wires can be described using a unique function to represent the 

hardening which is not possible for the reacted strand. 

a. Unreacted strand 

The experimental stress-strain of unreacted strand measured at 4.2K is presented in Fig. 3.26 

from [Ilyin 2006]. The function used to fit the curve is a fifth order polynomial function. For 

the identification of the coefficients, the elastic domain is removed out of the curve (offset 

defined by {V0, H0 } ) – see Fig. 3.27. The identification is: 
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6
, 

a5= 7.77 e
4
, 

Table 3.2. Identification of the parameters for the unreacted strand. 
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Fig. 3.26. Stress-strain characteristic of the unreacted wire measured at 4.2K. 
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Fig. 3.27. Identification of the envelope curve (plastic domain) of the unreacted wire measured at 4.2K. A 

polynomial function is sufficient to fit the curve up to 2%. 

b. Copper OFHC 

Regarding the identification of OFHC copper wires, polynomial functions are not able to 

reproduce the envelope of the curve (green curve in Fig. 3.28). A sum of exponentials with 

offset is then preferred. The identification is:  
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Table 3.3. Identification of the parameters for the OFHC copper 

Using this relation and the proper coefficient, it is possible to fit the experimental stress-strain 

curve and so for two different temperatures: 300K and 4.2K – see Fig. 3.28. The experimental 

data are from [Mitchell 2005]. 
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Fig. 3.28. Stress-strain characteristic (without the elastic domain) of the OFHC copper wire measured at 

room temperature and 4.2K [Mitchell 2005]. The curves are fitted using exponential functions. 

c. Reacted wire 

For the reacted strands, investigations have failed to find a unique hardening function able to 

reproduce both the behavior of the envelope curve and the behavior of unloading/loading 

cycles. The Nb3Sn filaments in the reacted composite strand have an elastic behavior until 

breakage – see Fig. 3.9. However, even subtracting this linear part from the stress/strain 

curve, the method fails to identify the function. Therefore, it was decided to describe the 

behavior using two different functions. The first represent the kinematic hardening related to 

the envelope curve fenv and the second the unloading/loading cycles fcyc. The use of two 

different hardening functions should be considered only as a means to reproduce the 

experimental curve rather than as a rendering of the real mechanisms inherent to the 

composite nature of the strand. The identification starts with the determination of the elastic 

domain. Then, the envelope and the cyclic curves are selected – see Fig. 3.29. The slope of 

the linear part of the envelope is determined (here 27 GPa). The linear contribution is 

removed from the envelope and from the cyclic curve – see Fig. 3.30. Two noteworthy points 

here are that the unloading and the loading curves all match but the envelope curve differs – 

see Fig. 3.31, Fig. 3.32 and Fig. 3.33. As a result, a single relation can be used for every 

loading cycles and a second for the envelope. Chaboche’s formulation plus the linear function 

is used for the envelope. For the cyclic curves, Chaboche’s model is multiply by an 

exponential. The identifications are: 
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Table 3.4. Identification of the parameters for the reacted strand. 
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Fig. 3.29. Selection of the parts of the curve to be identified, the envelope and the cyclic curves. The elastic 

domain of the envelope has been removed. 
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Fig. 3.30. Illustration of the envelope curve from which the elastic domain has been removed. The two 

curves are for the cases with or without the linear contribution of the Nb3Sn. 
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Fig. 3.31. Illustration of the overlapping of the five unloading curves from which the elastic part and the 

linear contribution of Nb3Sn have been removed. 
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Fig. 3.32. The five loading curves match (the Nb3Sn linear contribution has been removed). The parts of 

the curves that differ from the main part are corresponding to the return to the envelope after cycling. 
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Fig. 3.33. Illustration of the overlapping of the cyclic curves (unloading and loading). The envelope curve 

is different from the cyclic curves. 
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Fig. 3.34. Identification of the envelope curve and the cyclic curve for the reacted wire at room 

temperature. The functions are based on exponentials so as to properly fit the curves. 

2.2 Elasto-plastic simulation of the axial behavior 

The elastoplastic model is now applied to describe the cyclic behavior of the three kinds of 

wires. The hardening functions fR and fX to be used in the model are set according to the fitting 

function earlier defined. According to the material that is considered, one or two of the 

hardenings (R or X) are used. For the unreacted strand, R is constant and X evolves according 

to the fitting function. For the copper wire, both hardening function are activated. Their 

respective contributions are taken proportional to half on the fitting function. At last, for the 

reacted strands, the isotropic hardening is constant and two kinematical hardening functions 
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are used for the envelope and the cyclic curve. This method requires storing the maximum 

strain that have been ever reached during the loading history and determining whether the 

loading path is the envelope or the cycles. The issue regarding the ending of the cycles is only 

partially solved. The loading path effectively goes back to the envelope as sought but still in a 

discontinuous way. Fig. 3.35 presents the result obtained by the developed model of axial 

plasticity that show the relevance of the approach. 

a)  

strain [%] 
 

b) 

Fig. 3.35. Axial stress-strain curve relative to non reacted and reacted strand calculated with the axial 

plastic model from the fit of the experimental data. 
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The next figure presents the result for OFHC wire and reacted strand when the loading starts 

either with compression or with tension. It is important that the model is valid for any 

direction in order to properly describe the bending solicitation as it is found in the cable. The 

behavior in Fig. 3.36 b), relative to the reacted wire, is not symmetric, as it is for the copper. It 

indicates the remaining issues relative to the reacted strand behavior and the difficulties to get 

homogenized behavior [Mitchell 2005 b], [Boso 2005 a], [Boso 2009]. 

 

a) b)  

Fig. 3.36. Axial stress-strain curve relative to OFHC wire and reacted strand calculated with the axial 

plastic model. The model remains valid for both the compressive and the tensile part. 

3 Validation of the cable model for the axial loading 

3.1 Tensile test of 36 strand cable 

3.1.1 Procedure of the test 

The axial elastoplastic model is now defined and will be used for the simulation of the 

uniaxial tensile test of a 36 unreacted strand cable. The strand mechanical properties are 

identified from data reported in Fig. 3.35 a). The cable design is 3x3x4 with the twist pitches 

of 26-70-110 mm and a void fraction of 32% [Ilyin 2006]. The global axial stress-strain curve 

of the cable is derived as follows: 

 
0
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L
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, 

eqn. 3.8 

with, L and L0 the length of the cable calculated by the difference of the axial position of the 

extreme nodes Nr and Nl at the left and right end sides of one of the stand: 
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eqn. 3.9 

The global stress is defined as the sum of the reaction forces F measured by the nodes Nr from 

one side of the cable divided by the cross-sections of the strands. With Nb the number of 

strand and rb the strand radius, it reads: 
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eqn. 3.10 

Before presenting the final result of the cable tensile test, the effects of the boundary 

condition are presented. 

3.1.2 Boundary condition effects 

Regarding the transverse boundary condition, the issues with the axial loading are less severe 

than for the shaping part of the modeling, when large transverse displacements are involved – 

see Chapter II 3.2. However, two important points must be mentioned. First, the transverse 

displacements cannot be penalized according to the increment of displacement anymore but 

according to the increment of displacement instead. In the second case, the result depends in 

deed on the loading increment. Second, the transverse stiffness of the cable, i.e. the ability of 

the strand to move along the transverse direction during the tensile test is ruled by the penalty 

coefficient, kbind. Its impact must be checked. 

a. Dependence on the loading increment  

A tensile test is performed on a 50mm long sample using either the increment of displacement 

or the total displacement. In both cases, the penalty coefficient kbind is 200N/mm. For both 

cases, the test consists to apply various increments of displacement (GU = 0.1, 0.05, 0.02, 

0.01, 0.007 and 0.005 mm) and to observe the stress-strain curve – see Fig. 3.37 a) & b). It 

clearly appears that when the increment of displacement is used, the results vary. But this is 

no more the case when the boundary conditions are relative to the total displacement. For this 

reason, the second approach will be used now each time the simulation concerns shaped 

cable. 

 

a)  b)   

Fig. 3.37. Influence of the pseudo-periodic boundary conditions is case of a) condition relative to the 

increment of displacement and b) relative to the total displacement. 

b. Dependence on the penalty coefficient 

The test consists to perform the tensile loading on the 50mm and 200mm long samples using 

different values of kbind that range over three orders of magnitude. In Fig. 3.38, the various 

results are compared to each other. The experimental curve is also reported on the graphic. It 
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can be concluded that the influence of the penalty coefficient is rather limited and the curves 

are close. The dependence is more pronounced for the shortest 50mm long sample with larger 

dependence on the value of kbind. The effect of the boundary conditions is stronger for short 

samples. For the following, the coefficient kbind will be 50N/mm. 

 

 

Fig. 3.38. Check of the effect of the penalty coefficient kbind used in the transverse pseudo-periodic 

boundary conditions. Two different cable lengths are considered. The influence of kbind is light with stiffer 

cable corresponding to higher kbind. The result is more sensitive to the value of kbind for the shortest sample. 

3.1.3 Comparison with experimental results  

Now that the boundary condition issues are solved, the final simulation is on a sample 100mm 

long with kbind = 50N/mm. The numerical stress-strain curve is shown in Fig. 3.39 and is 

compared with the experimental result from [Ilyin 2006]. Just as the experiment, some 

unloading/loadings of the sample are realized at different applied strains. The non linearities 

of the curve are well represented. Both the computation of the initial geometry of the cable 

and the consideration of an elasto-plastic model for strands may explain the agreement 

observed between experimental and numerical results. This result partially validates the 

relevance of the proposed cable model regarding the axial loading. 
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Fig. 3.39. Multifil 36 strand cable model on which the axial tensile test is performed. The calculated and 

experimental axial stress-strain characteristics are plotted together [Bajas 2010]. 

3.2 Axial compression/tension low cyclic loading 

This paragraph presents the results predicted by the model regarding the axial compressive 

and tensile loading of 45 reacted strand cable with or without inclusion of copper wire in the 

triplet. For this test, the material constitutive laws are relative to the reacted strand and the 

copper wire at 4.2K. The purpose of the computation is to prove that the inclusion of copper 

does not cause any new issues. Moreover, the successive axial compression and tension is 

representative of the loading endured by the conductor during the SAMAN experiment 

[Weiss 2007], [Bajas 2010]. 

 

Fig. 3.40. Stress-strain characteristics of 45 reacted strand cable with or without the inclusion of copper 

wires. The loading path would reproduce the cool down and the consecutive tensile strain endured by the 

conductors during the SAMAN experiment [Weiss 2007]. 
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Chapter IV: Validation of the model for transverse loadings 

This chapter is devoted to the modeling of the transverse behavior of conductors, which 

corresponds to the loading induced by the magnetic Lorentz forces. Dealing with loadings in 

transverse directions introduces a new difficulty, since we are faced with the limits of the 

current beam model used in Multifil. This beam model is indeed well suited as long as 

transverse loadings applied to the conductors result mainly in bending deformations at the 

scale of strands. Nevertheless, the adopted kinematical beam model appears inconsistent to 

reproduce significant transverse deformations of cross-sections, since it can only account for a 

uniform transverse strain for each cross-section, and since plastic effects are considered only 

in the longitudinal direction. Some means are yet carried out to circumvent this difficulty. By 

chance, as shown by experiments of transverse compression performed on two crossing wires, 

the force-displacement curve corresponding to the plastic pinching of wires turns out to be 

almost linear. This quasi-linear stress-strain relation can be approximated for monotonic 

loadings with a transverse isotropic elastic model. The first part of this chapter presents the 

transverse compression experiments performed at CEA and their results. Complementary 

experiments have then been carried out to study the pinching between two crossing wires with 

various angles, in order to identify the mechanical response in transverse directions. 

Simulations using Multifil are then proposed to try to reproduce these experiments between 

crossing wires, and to fit the transverse stiffness for the transverse isotropic model. The 

relatively good agreement that is obtained allows this identified apparent transverse stiffness 

to be used to account for transverse deformations of cross-sections. The simulation of the 

transverse compression experiment for a 45 strand conductor is then addressed. The influence 

of various parameters is tested. It is shown that it appears necessary to take into account an 

initial pinching of wires induced by the forming process to get results consistent with 

experimental data. This initial pinching of wires is simulated using an appropriate transverse 

stiffness. Eventually, the cyclic transverse compression experiment is reproduced by Multifil 

with a rather good agreement. 

1 The cable transverse press experiment for conductors 

1.1 Description of the experiment 

The transverse compressive loading of two different cables has been performed at CEA 

Cadarache during this thesis. The press experiment consists in compressing a cable in its 

transverse direction between two jaws (half cylinders). The force is applied to the jaws by a 

hydraulic actuator and measured by the load cell. The displacement is measured by four 

sensors placed in-between the jaws. The force-displacement curve can then be drawn. The 

pictures in Fig. 4.1 present the CEA transverse press devices. 
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F(N/m) 

U(mm) 

 

Fig. 4.1. Experimental set up for the transverse compressive tests 

For both cables (initially virgin from mechanical loading), the applied transverse loading 

corresponds to what could have been the total Lorentz force on a conductor under operating 

condition. For instance, in an external field of 12 T and for a current of 50 A flowing in the 

strand, the Lorentz force per strand is about 600 N/m. For the 180 strand cable, the total line 

force would then be about 100 kN/m. The first experiment has been carried out by P.Decool 

& al. in December 2007 on a 180 strand cable. The cable was 150mm long with 3x3x4x5 

cabling scheme and was composed of one third of superconducting strand (reacted Internal 

Tin LMI) strands and two thirds of OFHC copper wires. The twist pitch sequence of this 

sample is: {48-100-150-165} mm. The sample was cyclically loaded up to the ITER nominal 

peak loading (3 cycles at 100 kN/m), then up to twice this loading (3 cycles at 200 kN/m) and 

finally up to 2.7 times this loading (3 cycles at 270 kN/m). The second experiment has been 

performed by M.Nannini & al. in May 2009 on a 45 strand reacted cable. The cable was 

150mm long with 3x3x5 cabling scheme and only composed of superconducting strands 

(reacted Internal Tin OST2). The twist pitch sequence of this sample is: {45-85-125} mm. 

The sample was cyclically loaded up to 25 kN/m (20 cycles) then up to 50 kN/m (10 cycles) 

and finally up to 100 kN/m (10 cycles). For both experiments, the results are presented in Fig. 

4.2 and Fig. 4.3 in term of their force-displacement characteristic with the force expressed in 

kN/m and the displacement in mm. The diagram in the bottom left corner presents the 

chronology of the loading paths. 
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Fig. 4.2. Transverse compression of a 180 strand cable (1 sc + 2 Cu)x3x4x5 | {48-100-150-165}mm | 150mm. 
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Fig. 4.3. Transverse compression of a 45 strand cable (3 sc + 0 Cu)x3x5 | {45-85-125} mm | 150 mm. 
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Permanent deformation 

When inserted in the jacket both cables have an estimated void fraction of 32%. This void 

fraction corresponds to diameters of respectively 13.18mm and 6.6mm for the 180 and 45 

strand samples. But after the jacket removal, the diameters are respectively 13.2mm and 

6.7mm. The void fractions then increase up to 32.2% for the 180 strand cable and 34.2% for 

the 45 strand cable. It means that a possible radial springback effect is occurring after jacket 

removal that is more important for the 45 strand cable than for the 180 strand cable. The 

interpretation could be that the presence of pure copper wire influences the effect compared 

with superconductors only because of the low yield strain of annealed copper. In Fig. 4.4, the 

comparison of the 180 and 45 strand cables is shown. To be compared, the 180’s curve is 

scaled by a factor 2 since the diameter of the cable is twice the 45 strand cables. Under this 

scaling assumption, a clear difference appears between both behaviors. The 180 strand cable 

seems to be stiffer than the 45 strand cable since, for the same force, the displacement is 4 

times lower in the 180 than in the 45 cable. The slopes of the linear part (unloading) may give 

the apparent transverse stiffness of the cables and are respectively 7.7GPa for the 180 cable 

and 4.7 GPa for the 45 cable.  
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Fig. 4.4. Transverse compression: 45 strand cable vs. scaled 180 strand cable  

The uncertainty in the effective initial cable diameter due to possible springback effect, the 

inclusion of copper wires and the difference in the cabling scheme (and twist pitches) make 

difficult the comparison between both samples. Nevertheless, the discrepancy in the results is 

quite important. It seems to indicate that the way the experiment is carried out is crucial, 

especially in term of initial cable diameter definition.  

1.2 Discussion of the force-displacement curve 

The transverse characteristics exhibit several specific features that are here described. The 

curves are highly non-linear and basically present cyclic behaviors (points 2-3-4-5 of the 

diagram) situated along an envelope curve (1-6). The cycles present a hysteretic pattern 

defined by the surface between loading and unloading paths. After few loading cycles, the 

behavior of the cycles is not stabilized. The slope of the envelope is not constant as the tool’s 

displacement increases and significantly differs from the slope of the cycles with a factor of 

10. The transitions between the cycle and the envelope show discontinuities quite similar with 

what is observed in the axial stress-strain characteristic in Chapter III. The tool does not go 

back to its initial position at the zero applied load which indicates a permanent deformation of 

the cable in its transverse direction due to the loading. The permanent deformation is more 

pronounced for the 45 strand cable than the 180 strand cable. After the third peak load 

(100kN/m), the irreversible displacement is about 0.18mm (dashed blue line) for the 45 strand 

cable (4% of the cable diameter), whereas it is only 0.05mm (0.38% of the cable diameter) for 

the 180 strand cable. 

The permanent deformation (between two peak loads) and the hysteretic behavior (cycles) are 

likely due to both plastic behavior and friction effects between strands. Plasticity could have 

two different origins: transverse and axial plasticity due to either pinching or bending strains 

of the strands. The transverse cable loading behavior may then be driven by the respective 

contributions of friction, pinching and bending effects at the scale of the strands with expected 

plastic behavior. Nevertheless the competition between these effects is not clear. The 

simulation of these experiments could help to understand the mechanisms which drive the 

transverse cable behavior by testing the different mechanical effects separately. The cables 

tested in the experiment are made of reacted strands that are assumed to behave as the internal 

tin strand earlier presented (ALSTOM). In order to reproduce the cable transverse behavior 

 92



with Multifil, the axial plastic model developed in Chapter II will be used. The transverse 

compression is expected to cause transverse deformation of the strand due to pinching. An 

attempt to model this plastic effect with the Multifil beam model is proposed. 

2 Experimental approach to the transverse compression between 
two crossing wires 

Since the transverse compression experiment involves local phenomena between wires, it has 

been chosen to try to identify the mechanical behavior of two crossing wires subjected to a 

transverse compression. The goal of these experiments is first to identify the apparent 

transverse stiffness of wires, in order to set this parameter for Multifil simulations. The 

second objective of this study is to better understand phenomena taking place at the crossing 

between wires and their influence on the possible breakages of Nb3Sn filaments, in order to 

try to determine a damage criterion depending on the local transverse loading.  

2.1 Transverse compression experiment of two crossing strands 

2.1.1 Experimental process 

The following analysis exposes the method to identify the transverse stiffness Et to be used in 

the orthotropic model of Multifil. This stiffness is defined by the relation between the applied 

contact force and the induced transverse deformation. The transverse force-displacement 

curves of OFHC copper wire and Nb3Sn-based strand have been measured during this thesis. 

The basic experiment consists in placing two wires, three centimeter long, that cross each 

other with a given angle. The standard tensile testing machine is used to apply a compressive 

loading to a steel cylinder (anvil head of one centimeter diameter) that compresses the 

samples at the contact– see Fig. 4.5. The force F(N) is measured by the load cell of the 

machine. Unlike the uni-axial test described in Chapter II, it appeared delicate to place any 

extensometer to measure the transverse displacement. The internal displacement sensor of the 

machine is used instead. The main difficulty was about the proper alignment of the system so 

as to apply a pure transverse loading at the contact. To prevent the samples from moving 

during the test, they are gently held by modelling clay. 

 

a)    b)      

Fig. 4.5. a) View of two strands crossing at a 90 degree angle. The lower sample is held by adhesive tape 

and the upper sample lies on two soft supports made of modelling clay. b) Scheme of the transverse 

crossing strand experiment. 
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2.1.2 Transverse force-displacement curves of the OFHC copper wire and the 

reacted strand 

In Fig. 4.6, the force-displacement curves of eight different runs are presented. These first 

results allow conclusions about the reproducibility of the method with a matching of the eight 

most representative tests. The main feature to notice here is the striking linearity of the force-

displacement characteristics. However, this linear behavior corresponds to a plastic behavior 

as it will be shown by loading-unloading curves. 
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Fig. 4.6. Measurements of the transverse force-displacement characteristics of OFHC copper wires 

crossing at an angle of 90°.  

It is assumed that the deformation of the two samples at the contact is equal. As a result, for 

the slopes of the force-displacement curves, half of the displacement is considered. The slope 

defines the apparent transverse stiffness of the wires. The mechanical response of some 

materials is known to be dependent on the rate of applied displacements due to visco-elastic 

effects. To test this effect, two different rates have been used: 0.5 mm/min and 0.1 mm/min. 

The values for the different runs are summarized in Fig. 4.7. The error bar corresponds to the 

standard deviation, whereas the dark blue line stands for the mean value. The visco-elastic 

effect exists but keeps limited to a variation of 10% on the mean value of the slopes, from 660 

N/mm to 600 N/mm. 
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Fig. 4.7. Measurements for two rates of applied displacement of the apparent transverse stiffness E* of 

OFHC copper wires crossing with an angle of 90°. 

As it was done during the uniaxial tensile test, some loading/unloading cycles have been 

performed on the sample. The result of this cyclic test is presented in Fig. 4.8. Five loading 

cycles are performed. When the load is released the loading path differs from what can be 

called an envelope curve (black line). When the load increases again up to the last peak 

loading, the path goes back to its envelope. The slope of the cycles is about ten times higher 

that the slope of the envelope from 650 N/mm to 7500 N/mm. These two apparent stiffnesses 

are now referred to Et
1
 and Et

2
. The interpretation of the result presented in Fig. 4.8 is that the 

behavior of the wire presents an elastoplastic behavior. The plastic response is quasi-linear 

(envelope curve), whereas unloadings are elastic. The initial elastic domain could be properly 

described by the Hertz analytical contact model of two crossing cylinders. However, since the 

yield stress of annealed copper is very low, plasticity occurs rapidly, and the Hertz model, 

only valid for elastic materials, can no longer be used. 
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Fig. 4.8. Measurements of the transverse force-displacement characteristics for the low cyclic loading of 

OFHC copper wires crossing at an angle of 90°. 
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In a cable, various angles between contacting strands can be encountered. The transverse 

compression of wires crossing at different angles is presented in Fig. 4.9. The main result is 

an increase of the slope of the curve with the decrease of the angle. This effect is expected 

since the surface of contact increase with decreasing angle.  
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Fig. 4.9. Measurements of the transverse force-displacement characteristics of OFHC copper wires 

crossing at various angles. 

The same work has been performed on nine samples of reacted Nb3Sn strands from EAS. As 

shown in Fig. 4.10, the loading curve of composite strands present a double slope that copper 

wires do not exhibit. This double slope is interpreted as a consequence of the composite 

nature of the strand. The slope of the first part is similar to the one obtained for pure copper. 

The change of slope for the second part could correspond to the loading of Nb3Sn filaments 

present in the composite. As an example, Fig. 4.11, shows the behavior during the unloading 

and loading cycles. The first linear part in Fig. 4.10 extends up to 25µm with a slope of 550 

N/mm. The second part shows a slope of about 1650 N/mm – see Fig. 4.12 and Fig. 4.13. 
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Fig. 4.10. Measurements of the transverse force-displacement characteristics of Nb3Sn strands crossing at 

an angle of 90°.  
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Fig. 4.11. Transverse low cyclic loading of Nb3Sn strands crossing at an angle of 90°. 
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Fig. 4.12. Measurements of the apparent transverse stiffness E* for the first part of the curve of Nb3Sn 

strands crossing at an angle of 90°. 
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Fig. 4.13. Measurements of the apparent transverse stiffness E* for the second part of the curve of Nb3Sn 

strands crossing at an angle of 90°. 

The transverse compressions of the composite strand have been stopped at different peak 

loads – see Fig. 4.10 in order to investigate the damage that could be caused by the transverse 

loading to the brittle Nb3Sn filaments. 

2.1.3 Measurement of indentation depths using confocal microscopy 

As earlier mentioned, no extensometer is used to measure the displacement. The intrinsic 

displacement sensor of the machine might be suffering of a lack of accuracy. In order to check 

the relevance of the measurements, the prints made on the sample after testing up to a given 

peak load have been observed. A confocal microscope was used which allows three-

dimensional reconstructions to estimate depth and surface of the prints for the tested samples 

corresponding to Fig. 4.6. The various runs correspond to various peak loads, saying 15, 20, 

25, 30, 40, 45, 60, 75 and 100 N at which the compression has been stopped. The different 

samples present prints of different depths that are calculated using the three dimensional 

reconstruction obtained by confocal microscopy, and compared to the displacements 

measured by the tensile machine. The next set of pictures in Fig. 4.14 shows the surface of the 

prints and their profile for the different peak loads. On each graphic the difference between 

the red and the green lines, i.e. the depth of the print, is written in the pink rectangle. In order 

to estimate the influence of the error made on the measurements of the transverse 

displacement on the calculation of the apparent transverse stiffness, the force/displacement 

and the force/measured depth are plotted on the same graphic in Fig. 4.15. It is to be noted 

that the possible elastic springback of the wires when the load is released is taken into account 

by the optical measurement. Despite a discrepancy between the measured displacement and 

the measured depth, the slopes of the two curves differ only by ~10% (variation of the slope 

calculated from linear regression). Calculating the apparent transverse stiffness using the 

transverse displacement measured by the tensile machine is therefore valid, even if a small 

error is committed on the displacement. 
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Fig. 4.14. Pictures of the plastic imprints due to the pinching of the strands at contact and measurement of 

the depth of the imprints using optical method. 
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Fig. 4.15. Measurements of the depth of the imprints after different transverse peak loads using either 

mechanical or optical measurement. The linear regressions of the plots are also shown. 

The new question that has risen from the tests is about the reason for the linearity observed in 

the transverse force-displacement characteristic. Since plastic deformations are involved, such 

linearity is intriguing. The surfaces of the contact prints can be estimated from the 3D 

reconstruction obtained by confocal microscopy. The method is simple: the contour of the 

print is drawn by hand, see Fig. 4.16 a) , the surface is automatically generated and its area is 

calculated, see Fig. 4.16 b). 

 

a)  b)   

Fig. 4.16. Example of contact surface measurement using optical analysis. 

For the various samples loaded up to different peak loads, the surfaces have been measured. 

In Fig. 4.17, the areas are plotted as function of the transverse load. The obtained curve 

appears to be rather linear. 
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Fig. 4.17. Measurement of the evolution of the contact surface as function of the applied load. The surface 

is here defined by the projected area of the print.  

2.2 Microscopic observation of cracks due to pinching 

The samples of Nb3Sn composite strands that have been beforehand transversally loaded are 

now analyzed at the microscopic scale. Using the polishing techniques developed in Chapter 

III, the samples have been polished in the longitudinal direction and the state of the filaments 

below the contact surface is observed by SEM method. The idea is to define a a breakage 

criterion for filaments as function of the transverse loading from 20 to 200 N. Unfortunately 

during this thesis only three samples have been observed using the SEM method: the samples 

loaded up to 80, 100 and 200 N. To save time regarding the polishing of the sample, these 

three loadings are applied at different locations on the same sample. 

 

 

Fig. 4.18. Illustration of the sample that was transversally tested at three different peak loads for the 

determination of a crack onset criterion due to pinching. 

After careful polishing, the print due to the loading in clearly visible – see Fig. 4.19. On the 

one hand, for the 100 N case, the filamentary region seems not impacted by the loading and 

only the copper matrix is deformed. On the other hand, for the 200 N case, the Tantalum tube 

and the filament inside get deformed by the loading. A global bending of the tube is visible on 

Fig. 4.19 b). 
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a)  b)   

Fig. 4.19. SEM observations of polished longitudinal cross sections of Nb3Sn sample submitted to 

transverse compression up to a) 100 N and b) 200 N.  

A careful survey of the filaments situated below the contact shows no visible damage after 

both loadings (100 and 200 N). However, after 200 N, an interesting phenomenon is 

observed. The filaments appear not broken below the contact but at the opposite side (solid 

red circle in Fig. 4.19 b) and Fig. 4.20). For the first zone (dotted line), the filaments are not 

damaged. For the two others (dashed and solid lines), the filaments are cracked and so for the 

different layers. The origin of this phenomenon is not obvious. The pinching seems to induce 

a global bending of the strand and the tantalum tube. Due to this bending, tensile axial strains 

are induced in the filament situated at the stretched zone opposite to the contact surface. 

However a compressive loading up to 200 N seems to be significantly higher than what is 

expected in cable-in-conduit conductors [Nijhuis 2008 b].   

 

Fig. 4.20. Zoom in the filament bundles situated at the opposite side regarding the contact print after an 

applied transverse compression up to 200 N. 
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Fig. 4.21. Zoom in the filaments situated at the opposite side regarding the contact print after an applied 

transverse compression up to 200 N. 

 

Fig. 4.22. Zoom in the filaments situated at the opposite side regarding the contact print after an applied 

transverse compression up to 100 N. 

In conclusion, the occurrence of crack due to pinching starts for an applied load between 100 

N and 200 N. Compressive loading lower that 100 N are not causing any damages of the 

filaments – see Fig. 4.22. At last, since these tests have been performed at an angle of 90° the 

results may be seen as the most pessimistic case regarding the contact loading.       

2.3 Comparison with a volumetric finite element model 

It has been proposed to simulate the transverse pinching experiment using Abaqus finite 

element code in order to better understand the experimental results. As shown in  
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Fig. 4.23, the model has been generated so as to be able to take into account three different 

materials (copper, tantalum and Nb3Sn) in the strands. However, in a first approach all 

materials are set to OFHC copper. The transverse compression is simulated by taking into 

account contact with two moving rigid planes. The total reaction force is derived summing the 

amplitude of the local forces measured by the contact elements of one of the rigid planes. The 

calculated force-displacement curve is shown in Fig. 4.24, and can be compared to the 

experimental one (Fig. 4.6). 

a) b)    

Fig. 4.23. Illustration of the finite element simulation of the transverse compression of two composite 

strands crossing at an angle of 90°. 

A quasi-linear global response is obtained, very similar to the one observed on the 

experimental curve. The apparent transverse stiffness is here 624 N/mm which is in 

agreement with the experimental result – see Fig. 4.7. For the composite model, the results are 

not yet relevant to be exposed. To conclude this model could be improved by considering 

separated bundles of filaments. The main motivation is to get deeper insight of the local 

strains on the scale of the filaments. Such an approach could complement the Multifil 

modelling that works at the scale of the strands.     

 

Fig. 4.24. a) Computed transverse force-displacement curve in case of pure copper. The linearity of the 

curve is depicted by the simulation. 
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3 Fitting of the transverse stiffness for the Multifil beam model 

3.1 Multifil simulation of the pinching experiment 

In Multifil, the transverse orthotropic behavior can be considered only elastically. The reason 

for this is that the kinematical beam model is not rich enough to be consistent with the 

consideration of real three-dimensional plastic deformations. Since transverse strains derived 

from this kinematical model are constant throughout the cross-section of the beam, taking into 

account the coupling between transverse strains (constant through the cross-section) and axial 

strains (quadratic through the cross-section) induced by the consideration of the 

incompressibility of the plastic flow would lead to a locking which would severely limit axial 

strains. It is however proposed to try to reproduce the pinching experiment running a 

simulation with Multifil. As the force-displacement curves from pinching experiments 

appeared to be linear, even reflecting a plastic behavior, it is possible to try to reproduce these 

experiments by considering an elastic orthotropic behavior with an elastic transverse stiffness 

fitted on the experimental data. This way of doing is nevertheless valid only for a monotonic 

loading, but not if any unloading or cycling is considered. The goal of the simulation of the 

pinching experiment by Multifil is to fit the transverse modulus to be used in the orthotropic 

model, by finding out which value of Et should be set in Multifil to reproduce the force-

displacement curve for the OFHC copper wire and the Nb3Sn strand. 

The pinching experiment is modelled by placing two beams that contact each other with a 

given angle and to use two plane rigid tools (above and below the beams) to apply a 

displacement to the beams. So that the beams do not slide away during the compression, two 

other beams are placed on each side of the tested beams. The transverse force is recovered by 

the summation of the local contact forces measured on the tool. The force-displacement curve 

can be plotted and compared with the experimental result. The orthotropic elastic model is 

used for the two tested beams whereas the other beams are in comparison non-deformable 

(setting high value to the Young’s modulus). The single open parameter is here the transverse 

stiffness modulus ET relative to the beam constitutive law that is wished to be identified. The 

axial stiffness is equal to 130 GPa – cf. Chapter III. 

 

 

Fig. 4.25. Multifil simulation of the pinching experiment. The strands are crossing at 90°. 
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3.2 Fitting of the transverse stiffnesses of OFHC copper wire and 
Nb3Sn strand 

The transverse stiffness ET  is first fitted on a compression between two wires forming a 90° 

angle– see Fig. 4.26. The found value for the OFHC copper wire is : 

 Et = 650 MPa  

and for the Nb3Sn strand, it is. 

 Et = 1700 MPa 

 

Fig. 4.26. Fitting of the transverse stiffness in Multifil in comparison with the experimental result 

In a second stage, keeping the same value for the transverse stiffness, different values for the 

angle between the two wires are considered, in order to check if the fitted value still provides 

a good agreement for these different angles. On the graphics in Fig. 4.28, the angle between 

the beams is changing and the loading curves are compared to the experimental results from 

Fig. 4.9. The results are sufficiently close to the experimental results in regard with the 

different assumptions and uncertainties inherent to the method. The results of model are 

globally stiffer than the experiment. 

 

Fig. 4.27. Multifil simulation of the pinching experiment for strands crossing at different angles (45°, 30°, 

20°, 15°, 10°, 5°). 
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Fig. 4.28. Check of the validity of the identification when the angle between the wires varies. For these test, 

the transverse stiffness remains the one identified for an angle of 90°. 

 

Fig. 4.29. Comparison between numerical and experimental results of the apparent transverse stiffness 

function of the angle between the wires. 
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The fitted value for the apparent transverse stiffness is valid only for the plastic domain on the 

loading path. In order to fit the curve for unloading (elastic), different values are found. For 

the OFHC copper wire, the fitted transverse stiffness for unloading is: 

 Et
2
 =   7700 MPa   (Et

1
 = 650 MPa) 

and for the Nb3Sn strand, 

 Et
2
 = 20000 MPa   (Et

1
 = 1700 MPa) 

In conclusion, although Multifil cannot consider plasticity in transverse directions, two 

apparent elastic transverse stiffnesses can be fitted in order to reproduce the linear relations 

between the force and the displacement which characterize the pinching experiment between 

two crossing wires. 

4 The issues related to the simulation of cable under transverse 
compression 

4.1 Simulation of the press experiment  

The method that has been implemented in the code in order to simulate the transverse press 

experiment is presented here. After its shaping, the cable is compressed between two 

cylindrical tools that gradually move in opposite directions – see Fig. 4.30. To simulate a 

transverse cyclic loading, the tools are moved in one direction until a given peak load is 

reached (expressed in kN/m) and are then moved in the other direction to unload the cable. 

For the following analysis of the transverse experiment, the study focuses on 3x3x5 cable, 75 

mm long, with a void fraction of 38% and twist pitches {45-85-125} mm. 

 

a) b)     

Ft 
u1 

 

Fig. 4.30. a) View of the 3x3x5 shaped cable. b) Cross-section of the cable surrounded by two cylindrical 

tools used to compress the cable transversally. 

Just as the experiment, the result of the test is represented by the plot of the global transverse 

reaction load Ft (kN/m) versus the transverse displacement Ut (mm) of the tools.  

   eqn. 4. 1 )( tt UfF  
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The total reaction load Ft is calculated summing the local vertical reaction forces at contacts 

with the tools. This reaction is then divided by the length of the cable to obtain lineic load. It 

reads: 

 
¦� 

toolbeam
elementscontact

c

c

t f
L

F

/

1

  
eqn. 4. 2 

The transverse displacement Ut is the sum of the displacements of two tools u1 and u2. Since 

the tools move in opposite direction, Ut reads: 

 21 uuU t �  eqn. 4. 3 

The real transverse experiment is a force-driven test – see Fig. 4.4. But in Multifil, the rigid 

tools can only be driven by displacements. The numerical experiment is then a displacement-

driven test. However, instead of prescribing constant increment of displacements to the tools 

until reaching a contact reaction force on the tools equivalent to the desired peak load, we 

want to adapt these increments of displacement so that the induced increments of reaction 

force are almost constant. To do this, the idea is to correct the increment of displacement to be 

applied to the tools for the next step depending on the increment of force obtained at the last 

step. For a given step n of the compaction, the increment of displacement 'Ut
n
 is adjusted 

according to the previous increment of force 'Ft 
n-1

 so that the new increment of force 'Ft 
n
 

has a value close to a given constant increment 'F0: 

   eqn. 4. 4 (kN/m)0
1 FFFF n
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The value of the increment of displacement 'Ut
 n

 for the next step is calculated in the 

following way, in function of the previous increment of displacement 'Ut 
n-1

 : 

 

1

1

0 �
� '�'

' ' n
tn

t

n
t

tt

U
F

F
U

  
eqn. 4. 5 

If 'Ft 
n-1 

> 'F0 then the next tool’s increment is larger, otherwise it should be smaller. With 

the proper values for 'F0 and 'Ut
0
 set by the user, the approach leads to stable increments of 

force 'Ft 
n
 after few steps. The increment 'F0 may go up to few kN/m depending on the 

convergence. 

4.2 Adjustment of the penalty coefficients for contact 

Since the available space around wires is explicitly controlled by the displacements prescribed 

to the two rigid cylindrical tools, contact interactions are much more constrained in the 

simulation of the transverse compression than in the simulation of the axial loading. As a 

consequence, the adjustment of the penalty coefficient for contact to control the maximum 

penetration within each proximity zone may become unstable. As the displacements of wires 

are limited in transverse directions by the rigid tools, the adjustment of the contact stiffness 

for one contact zone, which changes the allowed gap between wires, may have an important  

influence on neighboring zones in transverse directions, even if the variation of the allowed 

gap remains very small compared with the wire radius. To improve the adjustment of the 

penalty coefficient for contact, an extra criterion is set on the average of the variations of 

penalty coefficients on all proximity zones, and extra iterations on the contact determination 

are performed until this average variation is below a given value. The initial values set for the 
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resetting of contact stiffnesses at the stress reset stage (for the modelling of the annealing of 

materials induced by the heat treatment), play an important role regarding the convergence of 

the adjustment of these stiffnesses at the beginning of the transverse compression. These 

values need to be reset as the reset of internal stresses in wires makes contact interaction 

forces go to zero. A good guess for new initial values assigned to the contact stiffnesses at this 

stage is important to help the convergence of the adjustment for the first steps of the 

transverse compression. 

4.3 Setting of the maximum allowed penetration within proximity zones 

For the contact model, the maximum allowable penetration, pm must be defined. The 

maximum allowed penetration controls the regularization threshold for the penalty function 

which is fixed to one fifth of the maximum allowed penetration. The maximum allowed 

penetration is chosen as small as possible compared to the beam diameter. The influence of 

the parameter pm is tested for the transverse compression of the earlier described 45 strand 

cable. In Fig. 4.31, the force-displacement curves obtained for seven values of pm are 

presented. pm ranges from 0.6% to 10% of the beam radius (410µm), i.e. pm equal 2.5 to 40 

µm.  For this test, the parameter pm significantly influences the behavior of the cable. 

However, with smaller and smaller pm, the curves tend to converge. Moreover, it seems not 

possible to go below 0.6% of the beam radius because of convergence issues. 

 

Fig. 4.31. Force-displacement curves for seven samples with different values for the maximum allowable 

penetration. The behavior seems to converge with smaller and smaller values. 

5 Understanding of the mechanisms involved in the transverse 
compression of cable 

5.1 Analysis of the different mechanical effects 

In the following analysis, the basic mechanical effects likely involved in the transverse 

compression of cable are separately studied. The study consists in activating the different 

features of the code for different runs of transverse compression of a reference sample with a 

cable void fraction of 38 %. The transverse force-displacement curves of the samples for the 
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different runs are presented hereafter. The test is performed until a maximum load of either 25 

kN/m or 50 kN/m. Two loading cycles are simulated for each run.  

5.1.1 Isotropic elastic case 

For the first case the isotropic elastic behavior is used without considering either the friction 

between the beams (setting the friction coefficient to 0) or the pseudo-friction with the tools. 

The Young’s modulus is set to 100 GPa. The Ft ( Ut ) is presented in Fig. 4.32 a). The 

behavior of the cable is fully reversible after the loading cycles as it is expected. On the next 

run the pseudo-friction with the tools is introduced. The result of the loading curve is shown 

in Fig. 4.32 b). The behavior of the cable is no more reversible with slightly different path of 

the loading and the unloading. A resultant hysteresis appears on the loading curve. 

a)  b)   

Fig. 4.32. Transverse loading curves of the 3x3x5 reacted cable for the simplest case involving isotropic 

elastic model without friction consideration (a) and using the pseudo-friction between the tool and the 

beams (b).   

5.1.2 Influence of friction  

For the next case, a friction coefficient of 0.3 is chosen for the contact-friction model. The 

result presented in Fig. 4.33 shows a hysteretic behavior during cycles only due to friction. 

Two cycles are not enough to reach a stabilization of the cyclic curves, indicating strands still 

accommodate. 

 

Fig. 4.33. Case involving isotropic elastic model with friction consideration. 
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5.1.3 Influence of the axial plasticity 

The axial elasto-plastic model is now activated. The axial stress-strain behavior has been 

described in Chapter III. The loading curve is presented in Fig. 4.34 a). In order to test the 

effect of axial plasticity, the friction effects are removed. Compared with the elastic case – see 

Fig. 4.32 a), the cable does not exhibit fully reversible behavior: the loading and unloading 

paths do not overlap and a permanent deformation appears after the force is released to zero 

(about 0.3 mm after the two peak loadings). An envelope curve can be defined along with the 

loading cycles that present hysteresis. The modification of the loading curve is only due to the 

introduction of the axial plastic model. It indicates that the strands locally go to the axial 

plastic domain involving the hardening effects described in Chapter III. 

 

Fig. 4.34. Case involving isotropic and elasto-plastic model without friction consideration. 

The next step implies the use of different friction coefficients in order to check its effect. In 

Fig. 4.35, the coefficient is set to 0.1, 0.25 and 0.3. The higher the friction coefficient the 

steeper is the slope of the curve. 

 

Fig. 4.35. a) Test of the effect of friction in the case of isotropic elasto-plastic model. 

Fixing the friction coefficient to 0.25, different stiffnesses are now introduced for the axial 

and the transverse directions using the orthotropic model. The value of the transverse stiffness 

is the one earlier identified. The loading curve is presented in Fig. 4.36. The slopes of both the 

envelope and the cycles decrease due to the decrease of the transverse stiffness. The 

interpretation is that the applied transverse compression causes non negligible deformation of 

the cross-sections of the beams.   
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Fig. 4.36.  Case involving the orthotropic model and the elasto-plastic model with friction consideration. 

5.1.4 Influence of the penalty coefficient for the transverse boundary 

conditions  

Here, the effect of the transverse boundary conditions is checked. A fairly different value is 

chosen for the penalty coefficient, 50 and 300 N/mm. The impact of an increase from 50 to 

300 N/mm is not negligible on the force-displacement characteristic. 

 

Fig. 4.37. Dependence on the boundary condition. 

5.1.5 Influence of the initial void fraction 

The last tested parameter is the initial void fraction of the cable sample which is decreased  to 

32%. The results in Fig. 4.38 a) show that a tighter cable exhibits a stiffer behavior. The 

slopes of the envelopes calculated between 30 and 50 kN/m are respectively 330 MPa and 220 

MPa. At this stage the model seems realistic enough to attempt a comparison with 

experimental data for the first two transverse peak loads of 25 and 50kN/m. The curves in Fig. 

4.38 b) show encouraging result but it seems that some new elements need to be introduced to 

come closer to the experimental behavior. The experiment is situated between the two 

calculated results. By the way, a void fraction of 38% seems to be overestimated compared 

with the real cable and 32% would not consider the opening of the cable after the removal of 

the jacket. But as described in the next paragraphs, adjusting the void fraction of the cable is 

still not sufficient to describe the experimental curve. 

 113



a)  b)   

Fig. 4.38: a) Variation of the void fraction from 38% to 32% in the case of orthotropic elasto-plastic model 

with friction consideration. b) Comparison of the result with the experimental data.  

5.2 The introduction of an initial pinching  

The large influence of the void fraction parameter on the force-displacement curves indicates 

that the space left between strands must be one of the main factors that rule the transverse 

behavior. From Fig. 4.38, it seems that the void fraction of the cable should be situated 

between 32 and 38%. A void fraction of 34.5% is now considered that seems to be more 

realistic compared with the diameter of the cable measured after the jacket removal. Looking 

at the cross-section of a conductor (Fig. 4.39 a), one can notice that some of the wires are 

severely pinched. Deforming by pinching, the cross-section of some of the wires increases 

locally their density, and consequently leaves more space elsewhere between strands. From 

this observation, simulating somehow the initial pinching between wires induced by the 

shaping process can be a way to get more room between wires, and to approach better the 

experimental curve for transverse compression. This initial pinching of the strands at the 

contacts is the phenomenon that is attempted to be modelled by Multifil. The idea is to use the 

contact forces generated during the shaping part of the modelling to deform the beam cross-

sections. After the last step of the shaping, the tool is kept still and the transverse stiffness 

coefficient of the beam is gradually decreased. The cross-section progressively deform in 

return from circle to ellipse, as sketched in Fig. 4.39 b). The amplitude of the pinching is 

controlled by the value of the transverse stiffness, Et. Moreover, the transverse deformations 

are made permanent during the stress-strain reset part of the modelling.  

 

a)   b)         

Fig. 4.39. a) SEM observation of some transverse cross-sections found in cable-in-conduit conductor. 

There is strong plastic deformation. b) Modelling of the transverse deformation with Multifil. The cross-

sections deform from circle to ellipse, the deformation is constant across the section.   
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In Fig. 4.40, the transverse force-displacement curves of samples shaped using four different 

amplitudes of initial pinching are plotted. These four different initial pinching have been 

simulated using four values of Et, respectively 50, 10, 1 and 0.1 GPa (to be compared with the 

axial stiffness of 100GPa). From this result, it seems that fixing the transverse stiffness of the 

strands allows the non linear envelope of the experience to be reproduced. By the way, this 

approach has the advantage to keep a mechanical origin. Compared with the identified 

transverse stiffness of 1.7GPa, the modulus needed for the initial pinching is ten times lower. 

Since the real manufacturing process is not simulated, this difference is not unsettling. 

 

Fig. 4.40. Results for a void fraction of 34.5%, using the identified orthotropic model and axial elasto-

plastic model of the strand and a friction coefficient of 0.25. The variation of the initial pinching influences 

the transverse behavior and help to come closer to the experimental curve. 

Using this new sample that present initial pinching, two loading cycles are performed at 

25kN/m and 50kN/m as it is done during the experiment. In Fig. 4.41, the loading curve 

shows that although the envelope is well described, the behavior of the cable when the force is 

released is too soft. The reason for this comes from a new issue that is so far partially solved. 

 

Fig. 4.41. Case using the identified initial pinching, the orthotropic model and the elasto-plastic model and 

a friction coefficient of 0.25. 
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5.3 Modification of the transverse stiffness while cycling 

As exposed in the paragraph 3.2, the elastic orthotropic model is valid only for a monotonic 

loading. However, the pinching experiment showed that depending on the direction of the 

loading, the mechanical response of the strands is either plastic (on the main envelope 

loading) or elastic (for small unloadings) – see Fig. 4.8. The strand displays two different 

apparent stiffnesses: the real elastic stiffness for unloading, and an equivalent stiffness for the 

main loading path. The transverse stiffness identified for the elastic orthotropic models 

corresponds to the main loading path, and so to the plastic domain. When the cable is 

unloaded, the transverse response to the pinching of the strands is driven by elasticity, with a 

much higher stiffness. To try to reproduce this effect, the value of the transverse stiffness of 

the strands is switched to higher value from (1.7GPa to 20GPa) when the loading decreases. 

Due to this modification, the slope of the cycles gets steeper as described in Fig. 4.42. Such 

behavior seems more realistic compared with the experiment. However, this switch of the 

transverse stiffness is artificial. A possible solution would be to introduce a bi-dimensional 

plastic criterion on the transverse stresses of the beams. 

 

Fig. 4.42. The transverse stiffness of the strands is switched to higher value when the loading path leaves 

the envelope. 

6 Validation of the model for transverse loadings 

6.1 Comparison with experimental curve  

This paragraph concludes the works done to identify the proper transverse stiffnesses, to 

understand the cable behavior submitted to transverse compression and to finally validate the 

model of cable with comparison to experimental force-displacement curves. The latest result 

including the different features developed so far is presented in Fig. 4.43. The open 

parameters of the simulation that can be seen as fitting parameters are the initial void fraction 

of the cable, the transverse stiffness used to simulate the initial pinching and the friction 

coefficient. The model remains valid up to 100kN/m which is expected to be in the range of 

the loading induced by the Lorentz forces in conductor. In order to illustrate the loading curve 

of Fig. 4.43, some pictures of the loaded cable are described in Fig. 4.44 for the three peak 

transverse loads: 25, 50 and 100 kN/m. The axial strains range for -1% to +1%, i.e. far beyond 

the yield strain. In Fig. 4.45, the cross-sections of the cable at its middle are shown. The 
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occurrence of plastic deformation when the transverse load is released is illustrated (existence 

of non zero strains when Ft goes back to 0). 

 

Fig. 4.43. Final result of the modelling of cable submitted to transverse compression. The numerical and 

experimental result regarding the force-displacement loading curves are here compared. 

 

Fig. 4.44. Global view of the 3x3x5 cable submitted to transverse compression. The four pictures 

correspond to Ft= 0, 25, 50 and 100 kN/m. 
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Fig. 4.45. Transverse cross-section of the 3x3x5 cable submitted to transverse compression. The peak load 

is here Ft =50 kN/m which is then released to 0. Some permanent plastic deformations remain after the 

force is released due to the plasticity of the strands.  

In Fig. 4.46, the graphics shows that the transverse compression can still be carried on but the 

results starts to differ from the experiment. At such a loading, it is likely that the plastic 

deformation of the strands at contacts become a dominant phenomenon. The kinematic of the 

beam model is no more sufficient to completely describe realistic behavior.  

 

Fig. 4.46. Illustration of the extent of the domain of validity of the cable model submitted to transverse 

compression. As the picture on the right shows, the cable loaded at 200 kN/mm is severely deformed. 

6.2 The effect of the inclusion of pure copper wires 

To conclude with this chapter, the influence of the inclusion of copper has been checked. Four 

samples were transversally compressed using superconducting strands only, next one third, 

then two thirds of copper wires and eventually using copper wires only. Except for the wire 

materials, the cables are exactly the same. The global force-displacement curves are shown in 

Fig. 4.47. The transverse cross-sections (at the middle of the cable and at 60 mm) are shown 

in Fig. 4.48 when the applied loading is 100 kN/m. The same strands are loaded but with 
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different amplitude depending on the material of the wires. Increasing the number of copper 

wires leads to higher plastic strains. 

 

Fig. 4.47. Influence of the inclusion of copper wires inclusion on the transverse behavior of the conductor. 

 L = 37 mm 

 

2 Sc. | 1 Cu 1 Sc. | 2 Cu 3 Cu 3 Sc. 

L = 60 mm 

Fig. 4.48. Transverse cross-sections (at L = 37 & L = 60 mm) of the 3x3x5 cable with superconducting 

strand only, with one third, two thirds of copper wires and with copper wires only. The applied transverse 

loading is 100 kN/m. 
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Chapter V: Simulation of ITER Cable-In-Conduit Conductor 
under operating conditions 

1 Main purposes of the simulations 

1.1 Objectives of the simulation 

As described in Chapter I, the degradation of superconducting performance in cable-in-

conduit conductors comes from the local deformations of the strands that are axially and 

transversally loaded due to thermal and electromagnetic effects. These deformations induce 

some axial compression, bending or pinching to the strands which prevent good transport 

current down the level of the Nb3Sn filament. Moreover, the tensile strain arising from the 

bending or even pinching can cause the microscopic breakages of the brittle filaments. In this 

chapter, the purpose of the work is to understand the mechanical effects involved in loaded 

cable-in-conduit conductor and the origin of the deformation by means of the simulation. 

Starting from a shaped conductor, the axial compression and the local Lorentz forces will be 

applied and the local axial strains that are created at the scale of the strands will be analyzed. 

The analysis of the simulation results has allowed some specific behaviors to be highlighted 

that seem to be typical of the mechanics of loaded cable-in-conduit conductor. In particular, 

the developed model tends to show that the local strains are highly non uniform along and 

across the conductor with a broad range of possible amplitudes. In addition, the proposed 

analysis aims to quantify and localize the critical axial strains within the conductor which 

provides an estimate of what could be the damaged areas relative to the Nb3Sn filamentary 

region. The simulation also allows different conductor designs to be tested that will be 

compared one another. At last, the information relative to the local scale of the strands might 

be used to feed existing electrical codes. The presented work will focus on four stage cables, 

presented in Chapter II 5.3.2. 

1.2 Complete simulation of conductors under operating conditions 

1.2.1 The different tested conductors 

The complete simulation has been performed on four stage cable, from the shaping to the 

Lorentz loading. In Chapter II 5.3.2, the designs of the four samples have been described. 

These are summarized in Table 5.1. The reasons for choosing these designs are explained 

presently. 

Cabling 

 pattern 

Number  

of strands 

Shape  

& Dimension [mm] 

Void Fraction 

[%] 

Twist Pitches  

[mm] 

L 

[mm] 

  Round square petal  51-79-136-166 160 

3x3x4x4 144 6.01 10.7 x 33 51-79-136-166 160 

3x3x5x4 180 6.72 x 6-18.6 33 – 41.4 51-79-136-166 160 

Table 5.1. The different designs of conductors that have been simulated. 
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a. 144 strand round cable 

In 2004, N. Martovetsky et al. published the SULTAN test results (Ic and Tcs measurements) 

of two CICCs composed of 144 superconducting strands (from the excess strand of the CSMC 

strand production) [Martovetsky 2004]. These two CICCs are identical except that the jacket 

(1.0 mm thick) is either made of titanium or stainless steel. The use of two different jacket 

materials on two identical conductors allows getting indication of the effects of two different 

applied thermal strains on the electrical behavior. The effect can be quickly tested by the 

simulation which is also the reason why these conductors have been chosen to be simulated. 

Their void fraction and the twist pitches are taken as the reference for the four simulated 

conductors. 

b. 180 strand petal and round cable 

In 2008, D. Ciazynski published the test results of the ITER-like CICC: the “TFAS1 EAS0” 

composed of 1080 strands in a 1.6mm thick stainless steel jacket. The cabling pattern of the 

conductor is 3x3x5x4 with a void fraction of 33% and the following twist pitches: {45-87-

126-166} mm [Ciazynski 2008]. The void fraction and pitches are very similar to those of the 

earlier 144 strand CICCs. For this reason, the TFAS1 EAS0 conductor has been selected to be 

simulated. One petal of this conductor is simulated. In 2007, K.P. Weiss et al. have published 

the final results of the ITER sub-size conductors SAMAN task performed at the FBI facility 

[Weiss 2007]. Among the numerous tested CICCs, the simulation of the 180 round conductor 

could be put together with the SAMAN 8 (0.8mm thick SS jacket). The cabling scheme is the 

same: 3x3x5x4, the pitches and void fraction of the actual conductor faintly change (45-85-

125-160 mm and 32%). No copper wire is introduced in the simulation (unlike the PITSAM 2 

and the SAMAN 8 which include copper wires in their triplet, respectively 1/3 and 2/3). 

c. 144 square cable 

In 2008, P. Bruzzone presented the SULTAN test results of a 108 strand CICC enclosed 

inside a square jacket, the conductor PITSAM2 [Bruzzone 2008]. This CICC gets a 1.75mm 

thick SS jacket square jacket with a 30% void fraction. The cabling pattern differs from the 

model (3x3x4x4 against 3x3x3x4) but pitches are similar {58-95-139-213} mm. The design 

of the model is different because only the influence of the jacket shape is sought to be tested 

here. In the simulation, though the 144 round conductor can be directly compared with the 

square conductor. 

To conclude, the models of conductor do not aim at exactly reproducing the actual 

conductors. The goal is rather to draw some tendencies regarding the mechanical behavior of 

the cables of different designs. For the sake of the parametric study, only one parameter varies 

from sample to sample. The main purpose of the following study is two-fold. First, the effect 

of a change in the cabling pattern from 3x3x4x4 to 3x3x5x4 is investigated. Second, the 

influence of the conductor’s shape is examined with round, square and petal-like cross-

sections. 

1.2.2 Application of the loadings 

a. Amplitude of the thermal strain 

The amplitude of the axial compression to apply to the conductors comes from the assessment 

of the thermal strain Hth of the smeared model – see Chapter I. In [Mitchell 2003], the author 

emphasizes that the true fully bonded model would give a strain of about -0.8 % to -0.85 % 
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with steel. But due to curvature of the strands, the strain would be relaxed by up to 0.2%. 

Regarding the 180 strand petal cable, D. Ciazynski [Ciazynski 2008] suggests from the 

smeared mode a value of -0.6% for TFAS1 EAS0 conductor or -0.558% using the reduced 

superconducting area model. Weiss and Duchateau [Weiss 2007] expect thermal strains 

between -0.55% and -0.6% from their analytical model of the 180 strand Saman conductor 

whereas for the square conductor, it is close to -0.62% [Bruzzone 2008]. Martovetsky 

[Martovetsky 2004] provided for values of two identical 144 strand cables inside either 

stainless steel or titanium jacket. Using the smeared model, the thermal strains for these two 

CICCs are respectively -0.458 % and -0.6 %. Regarding the titanium jacket, the assessed Hth is 

higher than the expected value. The authors indicate that the thermal strain is expected to be 

around -0.2 ~ -0.3% for the titanium jacket so that the occurrence of cracks could explain the 

need of an arbitrary high thermal strain by the smear model to match the degradation of the 

critical current with Lorentz force cycling. Mitchell [Mitchell 2003 b] proposes a value of -

0.38% for the thin jacket of TFI cable-in-conduits. For the Multifil computations, it has finally 

been decided to use two different thermal strains that range within expectations. The reference 

axial compressions that are applied to the conductors are: 

� Hth = -0.38%   or   Hth = -0.66% 

b. Amplitude of the Lorentz force loading 

For the determination of the Lorentz force loading to be applied in the Multifil model, the 

magnetic field B and the current Is are assumed uniform across and along the conductor, and 

their respective values are directly taken from experimental measurements. In Fig. 5.1 for 

instance, the 144 strand SS round CICC is carrying a maximal current Ic =13.5 kA (~100 A 

per strands) in a background magnetic field B = 11 T at a temperature of T=4.5 K 

[Martovetsky 2004]. In that case, the Lorentz force loading that would be:  

 FL = 13500*11/144 = 1031 N/m = 1.031 N/mm 

For the conductor with the titanium jacket, with lower induced thermal strain, the critical 

current is higher, Ic =18.5 kA so that FL would have been higher 1.375 N/mm. Regarding the 

Multifil simulation, the reference amplitude of the Lorentz force loading at which the 

different conductors would be compared is: 

 FL = 1.35 N/mm 

In the model, like in the experiment, the applied thermal strain is assumed to maintain its 

effect during the Lorentz force loading. Therefore, the axial displacements of the strands are 

fully locked by the boundary conditions of the model while the Lorentz forces are applied. 
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Fig. 5.1. Evolution of the critical current with the number of cyclic loadings (at constant operating 

condition B&T) of two 144 round CICCs that only differ by their jacket’s materials, namely stainless steel 

(SS) and titanium (Ti). [Martovetsky et al. 2004]. 

c. Loading increments 

In the Multifil model, both the final thermal strain Hth and the final Lorentz loadings FL are 

incrementally reached. The corresponding loading increments are, for the strain, 'Hth and for 

the Lorentz force, 'FL. Just as for the shaping part of the modelling, the idea is to use a large 

enough increment not to be over time-consuming but small enough to insure the convergence. 

Some rules of thumb are here presented regarding the amplitude of 'Hth and 'FL. As far as the 

cable model is only composed of superconducting strands, it is delineated that the simulation 

may start with 'Hth = -0.01 % which can be increased up to -0.025 % after Hth ~ -0.2 %. As a 

matter of fact, the elastoplastic model induces some convergence issues that limit the size of 

the loading increment. Regarding the Lorentz loading, 'FL should be gradually decreased as 

the loading increases. The user should take care to control the size of 'FL as the cable gets 

compressed. For the various computations, it appeared that the loading may start with 'FL = 

2.10
-2

 N/mm and ends with 3.10
-3

 N/mm. Yet, the size of the increment can likely be 

optimized. 

1.2.3 Numerical parameters of the simulation 

The loadings applied to shaped conductors are performed using the developed elasto-plastic 

behavior with transverse deformation of the beams and friction between the beams as 

presented in Chapter III and IV. For the rest of the study, the material properties are identified 

at room temperature and not at 4.2K. The effect of the change of material properties at low 

temperature is not tested here. The initial pinching has been realized as well. The penalty 

coefficient of the transverse boundary condition is kbind = 300 N/mm, the maximum allowable 

penetration is pm = 2.10
-3

 mm and the reversible displacement is 'uirr = 7.10
-3

 mm. 

1.3 Post-treatment of the axial strains 

1.3.1 Axial strain across the beam section 

Since the work focuses on the axial strain, this paragraph presents how the axial strains are 

defined. In the output of the model, the axial strains are given for each node, at the neutral 
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axis of the beams, H0 and at eight points distributed on the periphery of the cross-section at 

eight different angles, Hperi (Ti ) where  i=1,8. For the post-treatment, a linear variation of the 

axial strain is assumed through the beam cross-section. For each cross-section, knowing the 

axial strain Hperi (T ) for a given angle T at the periphery of the section, the axial strain H0 at the 

center of the cross-section, the axial strain is interpolated at a point of the cross-section 

identified by its relative radius U (varying from 0 to 1) and its angle T in the following way: 

  )- (    0peri0 HTHUHTUH )(),( �  eqn. 5.1 

The term U�(Hperi (T ) -�H0) in this expression corresponds to the contribution due to the 

bending. For this reason, this term is defined as bending strain, denoted Hb (U,T ): 

 )- ( 0perib HTHUTUH )(),(   eqn. 5.2 

Regarding the post-treatment, the strains are measured at the center of the section and at 24 

points in each cross-section that correspond to three values of relative radius (U = {1/3, 2/3, 

1}) and the same values of angle as those provided in outputs (Ti with i = {1:8}). In Fig. 5.2, 

the beam’s section is typical of a bent strand as found in cable. It shows the strain gradient 

across the section with compression in blue color and tension in red. However, the behavior in 

Fig. 5.2 is not pure bending since H0 is here -0.25 %, i.e. a larger area of the section is under 

compression. 

 

Fig. 5.2. The 25 discretisation points across the strand section where the axial strains are measured. The 

axial strain linearly varies across the section. On this example, the bending is illustrated by the strain 

gradient across the section. The colors depict the amplitudes of axial strain H [%]. 

Only the filament region inside the strand is concerned by the degradation of conductivity 

properties. For this reason, the analysis focuses on the strains of this filament region, 

considering the maximum relative radius: 

 
s

f

max
r

r 
, eqn. 5.3 

where rf and rs, are respectively the radius of the filament region and the radius of the strand 

with the typical following values: 

 rf = 225 µm and rs = 405 µm. 

H0

Hi

rs
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An interesting value to analyze is the maximum strain for the filament region, called the peak 

strain Hp, defined as the maximal strain found around the perimeter of the filamentary region: 

 ¸̧¹
·¨̈©

§ �� )- (
r

r
 0iperi

s

f

0p HTHHH )(max
 eqn. 5.4 

The peak strain Hp appears to be a relevant figure to depict the critical tensile strain that would 

cause filament damage. 

1.3.2 Statistical tools 

Some statistics can be performed on the Multifil output data. In a first approach, the data can 

be represented by the distribution. A distribution represents the probability to locally measure 

a given strain somewhere in the conductor. It presents the advantage to show every value of 

strain with a single curve representative of the conductor strain state at a given step of the 

computation. The mean <H�> and the standard deviation std(H�) are also interesting data to be 

analyzed. In a second approach, the axial strains can be plotted for each strand along its 

length. Among the available quantities, Hp is chosen, because it is representative of the most 

critical points. The various strands can be compared against one another. In a third approach, 

a method has been developed that helps in locating the zones in the conductor where the peak 

strains are statistically the greatest. The idea is to represent average or maximum strains along 

the cable axis in order to observe the variations of these quantities in the transverse directions 

of the conductor. The method aims to draw a map of the strain across a typical cable cross-

section. The three statistical approaches are complementary and useful tools to analyze the 

Multifil output data. 

2 The mechanisms involved in cable-in-conduit conductor 

2.1 The cable effects during the loadings 

2.1.1 General observations  

Once the computation is over, the first step of the analysis is the visualization of the post-

treated results. The pictures in Fig. 5.3 a) and b) present the results of the model for the 

3x3x5x4 round conductor after the application of the reference thermal strain (Hth = -0.66 %) 

and after the reference Lorentz force loading (FL = 1.35 N/mm along the x direction). The 

colors stand for the axial strains locally sustained by the strands expressed in percent. These 

pictures indicate non-uniform deformation of the strand in the cable with some localized areas 

of high strain (red color). These red spots are in greater numbers after the Lorentz loading. 
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a) b)  

Fig. 5.3. Global view of the simulation results for 3x3x5x4 conductor, a) after the axial compression  Hth = -0.66% and b) after the Lorentz loading FL = 1.35 N/mm. 

In Fig. 5.4, the cross sections of the conductors at the middle (L=80mm) are shown before and 

after the Lorentz force loading. The axial strains are not uniform across the conductor section 

with clear occurrence of bending (non-uniformly deformed strand sections) but also almost 

some pure compression (uniformly blue sections) at the periphery of the cable. The Lorentz 

force loading impacts the amplitudes of the local strains and causes a migration of the strands 

towards the direction of the force. The model shows that there are many possible bending 

orientations which add to the complexity of the behavior. 

a) b)  

Fig. 5.4. Cut view at the middle of the 3x3x5x4 round conductor a) after axial compression Hth = -0.66% 

and b) after the Lorentz loading FL = 1.35 N/mm. 

2.1.2 Peripheral densification of the strands during the axial compression 

An interesting phenomenon has been highlighted by the simulation of the axial compression. 

It seems that some cable cross-sections ‘open’ in a significant way. These peculiar cross-

sections are localized by the longitudinal cut view as exposed in a)   

      b)            c) 
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Fig. 5.5.  

 

a)         b)            c) 

Fig. 5.5. Longitudinal cut view (at the median plane) of the 3x3x5x4 round conductor a) after the shaping, 

b) after the axial compression Hth = -0.66% and c) after the Lorentz loading FL = 1.35 N/mm. 

The black lines in the first picture point at these open cable sections. It is proposed to look at 

the conductor’s sections at the precise abscissa of these sections, at z = 20mm and 145mm. 

The corresponding cross-sections are shown in Fig. 5.6. There is a clear migration of the 

strands towards the periphery of the cable that leaves voids at the centre of the structure and 

induces a consecutive peripheral densification of the strand. The density of strands increases 

from the centre to the outer surface of the cable where the displacements are stopped by the 

surrounding jacket. Consequently, the strands contacting the jacket get no chance to bend. In 

the core of the cable, the strands may take advantage of the available space to bend. At the 

core, the lower density of strands after the axial compression means more available room for 

the strands to move there. As a matter of fact, the strands that pass through the core of the 

conductor are showing more tensile strain than those passing by the periphery. 
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Fig. 5.6. Peculiar open cross-sections in the 3x3x5x4 round conductors after the shaping, after the axial 

compression Hth = -0.66%. 

2.1.3 Crush of the conductor due to the Lorentz forces 

a. Formation of the gap between the cable and the jacket 

During the Lorentz force loading, the cable is deformed in the direction of the forces. The top 

surface of the cable (with respect to the direction of the loading) tends to flatten in the 

direction of the forces – see Fig. 5.7. This effect is experimentally well known in cable-in-

conduit conductor. In fact, the pressure drop in the Helium flow is observed as the Lorentz 

loading increases. The effect is usually explained by the creation of a ‘channel’ at the upper 

part of the CICC from which the strands have migrated. The Helium flows through the 

channel causing the pressure variation. The simulation allows this gap to be directly estimated 

at about 1mm in the 180 strand round conductor – see Fig. 5.8. Due to the flattening of the 

surface, some local bending appears at the borders of the flatten zone. 

a) b)  

Fig. 5.7. Evidence of the Lorentz loading impact on the geometry of the conductor with a flattening of the 

surface in the direction of the forces. 
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a)  b)  

Fig. 5.8. Illustration of the creation of a gap of about one strand diameter (~1mm) between the cable and 

the jacket due to the Lorentz loading application. 

b. Displacement of the strands due to the Lorentz forces  

The effects of the Lorentz force loading on some conductor cross-section are presented in Fig. 

5.9 and 

 

Fig. 5.10. Although the relation between displacement and bending of the strand inside the 

conductor is not obvious, it seems that the Lorentz force is effectively generating more 

bending. The strands situated at the center of the cable seem to be preferentially deformed by 

bending, whereas the strands at the periphery are rather purely compressed (uniform blue 

color). 
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Fig. 5.9. Conductor cross-sections at L = 30 mm in the 3x3x5x4 round conductors after the axial 

compression Hth = -0.66 % and after the Lorentz loading FL = 1.35 N/mm. 

 

Fig. 5.10. Conductor cross-sections at L = 140 mm in the 3x3x5x4 round conductors after the axial 

compression Hth = -0.66% and after the Lorentz loading FL = 1.35 N/mm. 

2.1.4 Heterogeneity of the strains in loaded conductor 

a. Distributions of axial strains produced by the axial compression 

Fig. 5.11 presents the distributions of the axial strain H for ten different steps of the axial 

compression of the conductor (from 0 to -0.66 % applied strain). The colors stand for the 

successive steps of the computation. The most striking feature is the broadness of the 
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distributions. There is a great variability of possible strain due to the single axial compression 

of the cable. Moreover, the variability increases as the compression increases. For the 

reference thermal strain Ha = -0.66 %, the distribution shows that the strands can locally 

sustain more that -1 % of compression and up to +0.3 % of tension, whereas the mean is equal 

to -0.41 %. This great variation result may lead to a reconsideration of the relevance of the 

smeared model for the description of the thermal induced strain of conductor by a single 

compressive value of strain. The broadness of the distributions shows that such description 

cannot be appropriate. 

 

 

Fig. 5.11. Evolution of the axial strain distributions along the axial compression. The distributions become 

broader and broader as the axial compression increases. 

b. Broadening of the axial strain distribution with the Lorentz loading 

In the same way, the distributions corresponding to the application of the Lorentz forces from 

0 to 1.7 N/mm at the reference thermal strain Ha = -0.66 % are analyzed. In Fig. 5.12 a), the 

distributions are shown for 13 different steps of the computation. In b), a zoom on the highest 

positive strains, the tails of the distributions are shown. Unlike the axial compression, the 

Lorentz force loading does not affect much the aspect of the distributions. However, it 

induces an extra compression to the strands as illustrated by the progressive broadening of the 

distributions towards the negative and positive strains. In Fig. 5.12 b), it can be seen that the 

distribution tails, (for strains ranging from 0.3 % to 1.3 %), are remarkably impacted by the 

Lorentz loading. The percentage of values represented by these tails is rather low, with 0.34 

% before and 1 % after FL = 1.35 N/mm, but it already represents an increase of the number 

of points of factor 3 from 1539 to 4558 points. The question of the location of these critical 

tensile strains will be treated later. 
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a) b)  

Fig. 5.12. a) Evolution of the distribution of the local axial strains H and their mean along the Lorentz 

loading (from 0 to 1.7 N/mm). The Lorentz forces cause extra compression of the strands. b) Evolution of 

the tails of the distributions (H greater than 0.3%). The Lorentz forces raise the tensile strain on the 

strands by up to +1.3 % and induce extra compression by up to – 1.7 %. 

c. Competition between pure compression and bending 

During the axial compression of the cable inside the jacket, the strands can either compress or 

bend. As a result, the axial stiffness of the cable is logically lower than the strand material. 

Fig. 5.13 shows the computed global axial stress-strain curves of the conductor compared to 

the single strand behavior. 

 

Fig. 5.13. Axial stress-strain curves of the 3x3x5x4 conductor and comparison with the single strand 

behavior. The axial stiffness of the cable is lower than the single strand due to the bending of the strands. 

Fig. 5.14 a) illustrates the evolution of the mean axial strain < H��> as a function of the applied strain. In 

order to quantify the competition between pure compression and bending, the mean value of the pure 

axial strains < H0 > and the mean absolute value of the bending strains  

< |Hb| > are analyzed in the same way –see Fig. 5.14 b). The absolute value for the bending component 

is chosen since the mean is zero. On these two graphics, the standard deviation is plotted as the error 

bar. In Fig. 5.14 a), < H� > =  f ( Hth ) can be fitted by a linear function  

< H� > = 0.62 Hth. It indicates that, on average, only 62% of the applied compression is transmitted into 

pure compression to the strands. The rest is transmitted either into bending of the strands or into their 

transverse deformation by contact. In Fig. 5.14 b), the pink curve shows the increase of the bending 

with the loading. From the curves and for the reference axial compression Hth = -0.66%, one gets: 

 < H� > =   - 0.41%  

 < |Hb| > =   0.11% 
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a)  b)   

Fig. 5.14. a) Evolution of the average axial strain value (< H�>) along the thermal axial compression for the 

3x3x5x4 round conductor. A linear fit of the curve is shown with a slope of 0.62. b) Evolution of the 

average pure axial strains (< H0 >) and the average absolute value of the bending (Hb). The error bars stand 

for the standard deviation. 

In the same way, Fig. 5.15 a) and b) show the evolution of the mean strains as a function of 

the applied Lorentz force FL. Unlike the axial compression, the evolution are not monotonic 

along the loading. If the mean axial strains are stable at the beginning, they suddenly decrease 

after FL = 0.6 N/mm. In average, the Lorentz loading produces an extra axial compression of 

the strands – see < H0 > in Fig. 5.15 b). This effect can be understood by the fact that the axial 

displacements of the strands are locked at their ends by the boundary conditions. As a result, 

the strands cannot stretch themselves along the axial direction of the conductor as the forces 

globally push the cable in its transverse directions. The transverse displacements induced by 

the Lorentz loading are partly transmitted into local axial compression and partly into bending 

– see < |Hb| > increases in Fig. 5.15 b). 

a)  b)   

Fig. 5.15. a) Evolution of < H�> along the Lorentz loading in the case of the 3x3x5x4 round conductor. b) 

Corresponding evolution of < H0 > and of <|Hb|>. 

In Fig. 5.16, the evolutions of the distributions of H0 and Hb are observed along the axial 

compression. In Fig. 5.17, their evolutions along the Lorentz loading are presented. The H0 

values are always negative and the distribution tails relative to H0 extends up to -1 %. In other 

words, a large part of the beam sections is sustaining compression. The bending strain can 

reach ± 0.6 % due to the sole -0.66 % applied axial compression. As already discussed, the 

Lorentz loading causes an extra compression of the strands and an increase of the bending. 
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a) b)  

Fig. 5.16. Evolution of a) H0 and b) Hb along the steps of the axial compression up to -0.66%. 

a) b)  

Fig. 5.17. a) Evolution of a) H0 and b) Hb along the steps of the Lorentz loading (from FL = 0 to 1.7 N/mm). 

2.2 Localization of the axial strains across the conductor section 

2.2.1 The highest tensile strains are located at the core 

The visualizations and the distributions have shown that the strains are not uniform in the 

conductor and that some points may present some critical tensile strain or high compression. 

However, it is still not clear where are the worse places for the strands to be in a cable in 

terms of these excessive strains. To answer this question, the strain maps representing either 

the average or the maximum of the axial strain quantities H0, Hb, or Hp, are used. These strain 

maps are obtained first by interpolating these quantities over cross-sections regularly 

distributed along the studied sample of conductor, and then by computing either the average 

or the maximum of these interpolated data along the axial directions. As result, 2D 

representations displaying the evolutions of maximum or average quantities in transverse 

directions are derived. The peak axial strain Hp is the most representative strain regarding the 

filament breakage. For this reason the study will first focus on it. On the next four maps, the 

mean and the maximum of Hp are presented before and after Lorentz loading. In Fig. 5.18, the 

mean values range from -0.7 % to +0.3 % (the zero is the orange color). In Fig. 5.19, the 

maximum values range from -0.3 % to +0.9 % (the zero is the light blue color). 
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a) b)  

'x 

Fig. 5.18. Map of the mean peak strain Hp. a) For Hth = -0.66 %. b) For FL=1.35 N/mm. The average peak 

strains calculated along the conductor axis are plotted at the interpolated positions (x, y) in the conductor 

cross-section. 

a) b)  

Fig. 5.19. Map of the max peak strain Hp. a) For Hth = -0.66 %. b) For FL=1.35 N/mm. The maximum peak 

strains found along the conductor axis are plotted at their positions (x,y) in the cross-section. 

The most important feature revealed by the plots is the non uniformity of the conductor’s 

strain state across its section. The mean and the maximum peak strains increase from the outer 

periphery of the cable to its core. The maps prove that the strands are statistically sustaining 

more tensile strains at the core of the cable than at the periphery. At the core some points 

exhibit maximum peak strain greater than +0.6 %. The effect of the Lorentz loading causes a 

significant increase of the peak strains over the cross-section with amplified effect at the core. 

Some points of the strands can reach a maximum strain up to +0.9 %. 

2.2.2 Maps of the pure compressive strain and the bending 

In Fig. 5.20 and Fig. 5.21, the mean of the pure axial and bending components H0 and Hb are 

presented. The compression, here H0, is higher at the periphery and gradually decreases toward 

the core of the conductor. But what was not obvious in Fig. 5.18 is the important influence of 

the Lorentz force loading on the strain state. The loading modifies the strain state introducing 

extra bending to the strands, as shown in Fig. 5.21 a) and b). The bending hardly exceeds 

+0.3% after the thermal compression in a very limited zone which greatly expands after the 

Lorentz force loading. 
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a) b)  

Fig. 5.20. Map of the mean H0. a) For Hth = -0.66 %. b) For FL = 1.35 N/mm. The strands are sustaining 

higher compression at the periphery compared to the core. The Lorentz forces increase the axial 

compression. 

a) b)  

Fig. 5.21. Map of the mean Hb. a) For Hth = -0.66%. b) For FL=1.35 N/mm. The strands show more bending 

at the core and the Lorentz force creates more bending. 

In conclusion, the maps tend to show that the strands passing by the periphery of the cable are 

more likely sustaining pure compression whereas they probably experience more bending 

passing by the core. In anyway, the strain is not uniform through out the conductor section 

which could likely cause some current unbalance between the strands and thus possible 

current redistribution. 

3 Evaluation of the critical strains along the strands 

3.1 Evolution of the local peak strains along the strands 

A complementary approach to the distribution of the axial strains and the strain maps is the 

plot of the peak strain along their curvilinear abscissa. 

3.1.1 Effect of the Lorentz loading on the peak strains 

In Fig. 5.22 a) and b), the maximum strains Hp along the hundred and eighty strands of the 

conductor are shown before and after the Lorentz loading. The colors, all different, stand for 
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the strand number. Some peaks clearly pop out the average behavior both compressive and 

tensile. In that sense, there is an important effect of the Lorentz loading on the strains. 

Comparing Fig. 5.22 a) and b), it is visible that the number of strands seeing tensile strain 

greater than Hc = 0.3 % is much greater after the Lorentz loading. 

  

Hc 

a)     b) 

Fig. 5.22. Peak strain Hp along the strand for every strand. a) After the axial compression. b) After the 

Lorentz loading (FL = 1.35 N/mm at Hth = -0.66 %). Evidence of the effect of the Lorentz loading on the 

amplitude of the maximum strain. 

Fig. 5.23 a) and b) show a zoom on the strains that range between 0.25 % and 0.9 %. After the 

sole thermal axial compression, some part of the filament region already presents strains 

greater than 0.3%.  The Lorentz force generates both an increase of the maximum strains and 

a significant increase of the number of strands experiencing such strains. Along some strand, Hp reach values greater than +0.9% for several different strands. 

a) b)  

Fig. 5.23. Evidence of the increase of the peak strains before (a) and after (b) the loading (FL = 1.35 N/mm Ha = - 0.66%). The variety of colors in b) indicates that numerous strands are seeing Hp>0.3%. 

3.1.2 Detailed analysis of selected strands 

Fig. 5.24 a) and b) show the results for two strands that have been selected among others 

because they present particularly high peak strains. These are the strands 74 and 147. The blue 

curve represents Hp (s) before the Lorentz force loading and the red one after. The curves show 

that the strain can be either released or amplified by the application of the Lorentz loading. On 

the one hand, for the strand #74, the strain located between 85 and 95 mm is Hp = +0.2 % 

before but decrease to 0% after loading. On the other hand, between 115 and 155mm (black 

arrows), Hp dramatically increases up to +0.9 %. The same remark can be made for the strand 

147 which sees several times a critical strain along its length (at 60, 85, 110 and 147 mm). 

The evolution of the strain along the strands do not present regular pattern and it would be 

hard to derive an ‘average’ bending wave length as assumed by some other models  
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[Nijhuis 2008], [Zhai 2008]. The evolution should be now linked with the current transfer 

typical length in later work. 

a)   b)  

Fig. 5.24. Peak strain along the strands 74 and 147 before and after the Lorentz loading. The Lorentz 

loading amplifies the peak strains. Hp can reach +0.3% at several points along the strands (indicated by the 

black arrows). 

With the help of the H�(s) curve and the visualization, it is possible to quickly target the part of 

strands concerned by the critical events. As an example, the set of pictures in Fig. 5.25 and 

Fig. 5.26 exposes the state of the strands #74 and #147 before any loading, after the thermal 

compression and after the Lorentz loading. For clarity, the strand cross sections are shown. 

There is an apparent rotation of the location of the maximum strains reflecting the variety of 

possible bending orientations. The impacted parts of strand can extend over few millimeters 

The bending phenomenon is three dimensional which is of great concern since the filaments 

inside are twisted. 

 

Fig. 5.25. Visualization of the strand 74 in between 115 and 155 mm along the cable axis. 

        

Fig. 5.26. Visualization of the strand 147 in between 15 and 40 mm along the cable axis. 

3.1.3 The strands passing by the core of the conductor 

In order to understand why the events seem to go wrong at these precise places, it is proposed 

to look at the strand bundles composed of the strands 73-74-75 at the abscissa comprised 
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between 115 and 155 – see Fig. 5.27. The simulation shows that the conductor cross-section 

particularly ‘opens’ there after the thermal compression. 

      

Fig. 5.27. Evidence of important bending at the "open" sections for the bundle that contains the strand 73-

74-75. 

In the same way, the strands 145 and 147 are more carefully observed at s=30mm. The 

pictures in Fig. 5.28 show that the strands pass by the core the conductors at this abscissa but 

the cable section is not particularly open there. The comparison between strands #74 and #147 

indicates that high bending strains produced at the core of the conductor are not necessarily 

related to a local opening of strands. 

 

Fig. 5.28. Evidence of important bending of strands passing by the core of the conductor for the bundle 

that contains the strands 145-147(section at L=30mm). 

3.2 Critical strains and number of damaged strands 

3.2.1 Introduction of a crack criterion 

Using dedicated Matlab routines, it is possible to select the strands of interest that have at 

least once along their length a maximum strain greater than a critical value Hc. These precise 

strands are referred to now as the ‘impacted strands’ whereas the others are referred to as the 

‘clean strands’. The parameter Hc may be a crack criterion set by the user. For this analysis, 

the reference Hc is set to 0.3% in accordance to micrographic measurement on OST2 

superconducting strand at 4.2 K [Jewell 2008]. 

3.2.2 Evolution of the number of damaged strands 

In Fig. 5.29 a) and b), the colored lines are relative to the impacted strands and the grey lines 

to the clean ones. Their maximum strains are plotted before a) and after b) the Lorentz 

loading. The impacted strands are counted. 17.8 percent of the strands display at least one 

maximum strain greater than Hc on the studied length after the thermal compression, and this 

proportion increases to 55.6 percent after the Lorentz loading. This means that after FL = 1.35 
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N/mm, more than half of the strands are sustaining a critical strain at at least one point of their 

filament region. 

a)   b)  

Fig. 5.29. a) After the thermal strain 17.8% of the strands see at least one time along their length a critical 

strain greater than 0.3%. b) It concerns 55.6% of the strands after the Lorentz loading. 

If the Hc is switched to +0.5 % and if a new condition is set, stating that at least two 

consecutive critical events should be registered along the length to be ‘impacted’, then one 

gets only one impacted strand after the thermal strain and 23 strands (12.8 %) after the 

Lorentz loading. The graphics in Fig. 5.30 present the result. 

a)   b)  

147 

145 151

Fig. 5.30. a) After the thermal strain, only one strand see at least two times along its length a critical 

strain, saying greater than 0.5 %. b) These are 12.8 % of the strands after the Lorentz loading. 

In order to clarify the situation, another graphic is used. By the means of stem representation, 

the number of critical events per strand is plotted. The clean strands get 0 in ordinate whereas 

the impacted strands get the number of times Hp overrun Hc. The results are presented in Fig. 

5.31, with Hc = +0.3%. The increase of the critical strain occurrence is clearly observed (from 

17 to 55% of the strands are impacted after FL = 1.35 N/mm). 
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Fig. 5.31. Evolution of the number of critical events (Hp > 0.3 %) before and after the application of the 

Lorentz loading. 

The plot shows that some strand bundles are almost not impacted by any critical events. This 

is the case for example for the strands 48 to 57 or the strands 117 to 124. By the way, there 

are also bundles that are more particularly critical, e.g. the strands 15 to 35, 72 to 99 and 138 

to 152. The reason of this is later discussed. Fig. 5.32 presents the percentage of impacted 

strands that increases with the Lorentz loading (FL from 0 to 1.7 N/mm). 

 

Fig. 5.32. Linear evolution of the number of impacted strands (Hp > +0.3 %) as a function of the Lorentz 

force loading. 

3.3 A determination of the cracked area   

In this paragraph, a method to evaluate the damaged area of the Nb3Sn filament region is 

presented. Depending on the value of the local strains (H0 and Hp) measured at each beam 

section and according to a crack initiation criterion, here chosen equal to Hc = +0.3 %, the area 

of the damaged zone can be derived. 
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a)  b)  

Fig. 5.33. a) View of the cross-section of the strand 147 at L=31mm. Illustration on the filament region 

(light gray) of the critical strain limit and the damaged zone (hatched area). b) Parameters for the 

determination of the damaged area. 

In order to calculate the damaged area Sd illustrated by the hatched area in Fig. 5.33, the 

parameter rc should be calculated knowing the critical strain Hc, the strain measured at the 

neutral axis H0 and at the maximum strain found around the outer filament perimeter Hp. It 

reads: 
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The relation should be modified in case the strain H0 is greater than Hc. In that case, more than 

a half of the section is damaged and it is easier to just remove the clean area instead. It yields: 
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The procedure can be repeated for all strand sections. The corresponding distributions relative 

to the impacted section of the strands, before and after Lorentz loading, are presented in Fig. 

5.34. This graphics shows a significant increase of the damaged area with the Lorentz loading. 

The damaged areas extend up to 29 % of the total filament region with an average of 4 %. 

However, the twist of the filaments inside the strands may imply a more complex approach to 

estimate the loss of the superconducting area. 
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Fig. 5.34. Distribution of the ratio damaged area / filament region area. The damaged area goes up to 

28.5% with a mean of 4.1% after the Lorentz loading. 

4 Influence of the conductor design and operating conditions 

The computations show that the model of conductors is able to handle various configurations 

of cable even using the orthotropic elasto-plastic behavior with friction consideration. The 

results of the complete simulation of the conductors described in Chapter II are presented in 

the next set of pictures – see Fig. 5.35. The following work proposes to compare those cables 

to one another. 
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a)  

b)  

c)  

d)  

Fig. 5.35. Global visualisation of the simulation results for the four modelled conductors after the axial 

compression Hth = -0.66 % and after the Lorentz loading FL = 1.35 N/mm. 
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4.1 The cabling pattern 

The purpose of the comparison of the 144 strand with the 180 strand cable is more about 

quantifying the effect of a change in the cabling pattern from 3x3x4x4 to 3x3x5x4 than a 

simple increase of the number of strands. For these two samples, the axial strain distributions 

are shown in Fig. 5.36. On these curves, notable effect is already visible. On the one hand, the 

3x3x5x4 cabling pattern tends to exhibit extra compression compared with the 3x3x4x4 

pattern and the mean values are respectively -0.49 % and -0.42 %. On the other hand, the 

tensile part is lower in the 3x3x5x4. The percentage of points in the structure that exhibit axial 

strain greater than 0.3 % is 0.15 % in the 3x3x5x4 conductor and 0.2 % in the 3x3x4x4 

conductor. 

 

  

Fig. 5.36. Comparison between the 3x3x4x4 conductor and the 3x3x5x4 conductor. Distribution of the 

axial strain H after both thermal and Lorentz loadings (Hth = -0.66 % & FL = 1.35 N/mm).  

The different map relative to the peak strain, Hp, the strain at the neutral axis H0 and the 

bending strain Hb are presented in Fig. 5.37 to Fig. 5.39. After the axial loading, the 

compression at the periphery of the cable and the tension at its core are both amplified in the 

3x3x5x4 compared to 3x3x4x4. After the Lorentz loading, FL = 1.35 N/mm, the occurrence of 

the gap at the low pressure zone is almost non-existent for the 3x3x4x4 whereas reaches about 

1mm in the 3x3x5x4 conductor. The maps of the maximum peak strain indicate that the 

highest strains are found in the 144 strand cable with almost only positive maximum strains. 

The highest strains localize at the low pressure zone and at the core in the 3x3x4x4 whereas 

only at the core in the 3x3x5x4.The Lorentz force increases the pure compression at the low 

pressure side in the 3x3x5x4 but decreases it in the 3x3x4x4. For the rest of the cross-section, 

the Lorentz force lowers the pure axial strains in both cases. The pure bending strains Hb are 

lower in the 3x3x5x4 conductor than in the 3x3x4x4 after both the axial strain and the Lorentz 

loading. To conclude, it seems that a change in the cabling pattern produces non negligible 

effect on the strain state of the conductors. The different plots show that the 3x3x4x4 pattern 

allows more bending than the 3x3x5x4 and produces less homogeneous local strain maps. The 

highest peripheral compression in the 3x3x5x4 seems to protect against the effect of the 

Lorentz loading on the occurrence of tensile strain at the low pressure zone. It would be 

delicate to determine which of these two patterns is mechanically the best. Regarding the 

criterion of critical tensile strains, the 180 strand cable appears better than the 144 strand. 
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a) b)  

Fig. 5.37. Map of the mean peak strain Hp after the reference thermal strain Hth = -0.66 %.  

a) 3x3x4x4. b) 3x3x5x4. 

a) b)  

Fig. 5.38. Map of the mean peak strain Hp after the reference Lorentz loading FL=1.35 N/mm.  

a) 3x3x4x4. b) 3x3x5x4. 

a) b)  

Fig. 5.39. Map of the max peak strain Hp after the reference thermal strain Hth = -0.66 %.  

a) 3x3x4x4. b) 3x3x5x4. 
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a) b)  

Fig. 5.40. Map of the max peak strain Hp after the reference Lorentz loading FL=1.35 N/mm. 

 a) 3x3x4x4. b) 3x3x5x4. 

a) b)  

Fig. 5.41. Map of the mean pure axial strain H0 after the reference thermal strain Hth = -0.66 %.  

a) 3x3x4x4. b) 3x3x5x4. 

a) b)  

Fig. 5.42. Map of the mean pure axial strain H0 after the reference Lorentz loading FL=1.35 N/mm.  

a) 3x3x4x4. b) 3x3x5x4. 
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a) b)  

Fig. 5.43. Map of the mean pure bending strain Hb after the reference thermal strain Hth = -0.66 %.  

a) 3x3x4x4. b) 3x3x5x4. 

a) b)  

Fig. 5.44. Map of the mean pure bending strain Hb after the reference Lorentz loading FL=1.35 N/mm.  

a) 3x3x4x4. b) 3x3x5x4. 

4.2 The shape of the conductor 

4.2.1 Round versus petal 

In this paragraph, the round and petal conductor are compared. It is reminded that the petal-

like conductor gets slightly higher void fraction so that not only the shape is here tested. The 

distributions are presented in Fig. 5.45 and the corresponding mean values are respectively -

0.49 % and -0.38 %. The percentage of values greater than 0.3 % are 0.15 % and 0.24 %. 
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Fig. 5.45. Comparison between the 180 round conductor and the 180 petal conductor. Distribution of the 

axial strain H after both thermal and Lorentz loadings (Hth = -0.66 % & FL = 1.35 N/mm).  

In Fig. 5.46 to Fig. 5.49, the maps of the local strains tend to show that the strands are locally 

more compressed in the round conductor. Due to higher void fraction, the strands have more 

room to move and the strains in the petal conductor are in average higher than in the round 

conductor. Moreover, the interesting feature with the petal conductor is the localization of 

high bending strain at the corners. 

a) b)  

Fig. 5.46. Map of the mean peak strain Hp after the reference thermal strain Hth = -0.66 %.  

a) Round (3x3x5x4). b) Petal (3x3x5x4). 

a) b)  

Fig. 5.47. Map of the mean peak strain Hp after the reference Lorentz loading FL=1.35 N/mm  

a) Round (3x3x5x4). b) Petal (3x3x5x4). 
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a) b)  

Fig. 5.48. Map of the max peak strain Hp after the reference thermal strain Hth = -0.66 %.  

a) Round (3x3x5x4). b) Petal (3x3x5x4). 

a) b)  

Fig. 5.49. Map of the max peak strain Hp after the reference Lorentz loading FL=1.35 N/mm along the x 

direction. a) Round (3x3x5x4). b) Petal (3x3x5x4). 

4.2.2 Round versus square 

In this paragraph, two conductors are compared that only differ by their shape from round to 

square cross-section. The distributions in Fig. 5.50 are similar and the means are respectively 

-0.42 % and -0.43 % for the round and the square conductor. However, the tails point at 

highest tensile strains in the case of the round conductor. The percentage of points in the 

structure that exhibits axial strain greater than 0.3 % is 0.2 % in the case of the round 

conductor and 0.06 % in the case of the square conductor. That is to say a factor 3 between 

both. 
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Fig. 5.50. Distribution of the axial strain H after both thermal and Lorentz loadings (Hth = -0.66 % & FL = 

1.35 N/mm). Comparison between the 144 round conductor and the 144 square conductor. 

In Fig. 5.51 to Fig. 5.52, the different maps show that the square conductor tends to exhibit a 

localization of the strain at the corners and at the core. The effects of the Lorentz forces are 

very limited in this conductor compared to the round conductor. The square conductor 

displays much less critical strains than the round conductor. From a mechanical standpoint, 

the different graphics tend to show that square aspect ratio is more beneficial than round one 

when same twist pitch and void fraction are used. This is a noteworthy result that corroborates 

the actual good electrical behavior of existing square CICC compared with round one that 

seems not to degrade with electromagnetic cycles [Bruzzone 2006], [Miller 2003]. 

a) b)  

Fig. 5.51. Map of the mean peak strain Hp after the reference Lorentz loading FL = 1.35 N/mm  

a) Round (3x3x4x4). b) Square (3x3x4x4). 

a) b)  

Fig. 5.52. Map of the max peak strain Hp after the reference Lorentz loading FL = 1.35 N/mm 

a) Round (3x3x4x4). b) Square (3x3x4x4). 
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4.3 The effect of two different axial compressions 

In this paragraph, the same conductor is tested with two different axial compressions of  Hth = -0.38 % and Hth = -0.66% before the Lorentz force loading. The purpose here is to 

determine whether the initial strain state of the strands influences the mechanical behavior of 

the cable. The distributions are presented in Fig. 5.53 and the corresponding mean values are 

respectively -0.42 % and -0.29 %. The most striking effect that is here observed is that the 

distribution queues are very similar. In fact, the percentage of values greater than 0.3 % is 

0.21 % in both cases. 

 

Fig. 5.53. Distribution of the axial strain H for two different thermal loading, Hth = -0.38 % vs. Hth = -0.66 % 

but equal Lorentz loading (FL = 1.35 N/mm). The conductors are both 3x3x4x4. 

Regarding the peak strain map of the two conductors, Fig. 5.54 and Fig. 5.55 shows again that 

the highest strains are situated at the low pressure zone. It appears that the conductor that is 

the less axially compressed display the highest strain. This is interesting to note that the gap 

created by the Lorentz loading is greater for the cable which is the less axially compressed. 

The axial compression protects the cable against the occurrence of tensile strains. As far as 

the maximum strains are looked at, there is no much difference between the two conductors. 

The highest strains localize at the low pressure zone and at the core of the cable. 

a) b)  

Fig. 5.54. Map of the mean peak strain Hp after thermal strain.  

a) 3x3x4x4 (Ha = -0.66%). b) 3x3x4x4 (Ha = -0.38%). 
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a) b)  

Fig. 5.55. Map of the mean peak strain Hp after the reference Lorentz loading FL=1.35 N/mm along the x 

direction. a) 3x3x4x4 (Ha = -0.66 %). b) 3x3x4x4 (Ha = -0.38 %). 

a) b)  

Fig. 5.56. Map of the max peak strain Hp after the reference Lorentz loading FL=1.35 N/mm along the x 

direction. a) 3x3x4x4 (Hth = -0.66 %). b) 3x3x4x4 (Hth = -0.38 %). 

Fig. 5.57 shows the estimation of the damaged area in the case the crack criterion is  Hc = +0.3%. The conductor that is the most damaged is definitely the one which gets the 

lowest thermal axial compression with two cross-sections that are entirely broken and four 

sections that are damaged by more than half. It can be concluded that the pre-compression 

influences the impact of the Lorenz loading on the local strain state of the strands. Lower 

compression is detrimental in regard with the generation of critical strains. 
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Fig. 5.57. Comparison of distributions of the damaged area for two identical conductor submitted to 

different axial compression. Both conductor are sustaining identical Lorentz loading FL = 1.35 N/mm. 

4.4 Global comparison of the four tested designs 

To conclude about the different tested conductors, Fig. 5.58 displays the computation of the 

damaged area in the case the crack criterion is Hc = +0.3 %. None of the conductor sees more 

than half of the strands cross-section that is damaged. Regarding the percentage of damaged 

area? the worst conductor would be the petal conductor and the best would be the square 

conductor. 

 

Fig. 5.58. Comparison of the four different conductors regarding the estimation of the damaged area 

distributions. The distribution shows that the petal conductor exhibits the greatest number of impacted 

sections whereas the square conductor gets the lowest number. At maximum, 30 % of the beam section 

can be damaged. 
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5 Question about the impact of the pinching   

In this part, the amplitudes of the contact loads are analyzed. The purpose is to determine 

whether the contact loads that are generated by the thermal axial compression and the Lorentz 

loading are sufficient to cause any electrical loss. In Chapter I 1.3.2, it is indicated that from 

the TARSIS crossing strand experiment, a contact pressure greater than 100 MPa is causing 

irreversible current degradation. In this experiment, the strands are crossing at an angle of 

90°. Such an angle is a limit case in the sense that in a cable the angles between strands are 

generally much lower. 

5.1 Directions of the contact forces 

The plots in Fig. 5.59 illustrate the various possible orientations of the contact loads in the 

conductor after the reference thermal strain and after the Lorentz loading. Their amplitudes 

may differ, but greater loads are found at the so-called high pressure zone. 

 

Fig. 5.59. Plot of the contact loads vectors across the conductor sections. a) After the reference thermal 

strain Hth = -0.66%. b) After the reference Lorentz loading FL=1.35 N/mm along the x direction. 

5.2 Map of the contact forces 

For the generation of the contact amplitude map of the conductor, the contact load can be 

post-treated using the same method as the one developed for the axial strains. It is possible to 

produce a map of the contact load across a typical conductor cross-section. Instead of using 

the finite element nodes (x, y, z, Hp) as input of the Matlab routine, the contact points are 

chosen (x, y, z, fc). In that case, fc is taken as the norm of the contact force vectors. Fig. 5.60 

shows the result right after the axial compression and after two different Lorentz loading, 

saying FL = 0.89 & 1.35 N/mm. The plot indicates the accumulation of the contact loads in 

the direction of the Lorentz loading. 
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Fig. 5.60. Conductor map of the contact loads for three different Lorentz loadings: 0, 0.89 and 1.35 N/mm. 

The amplitudes of the forces (N) linearly vary across the conductor section. 

5.3 Distributions of contact pressures 

The contact loads measured by the contact elements of a proximity zone can be summed and 

divided by the length of the zone to get an equivalent line force. To get a pressure, it would be 

necessary to have access to the local width of the contact zone. Since the simulation does not 

allow this width to be computed, the diameter of the strand is taken as an arbitrary dimension 

to calculate the pressure. The presented pressures are thus obtained by dividing the lineic 

contact force by the strand diameter. The distributions of the contact pressureS are shown in 

Fig. 5.61 for four different applied Lorentz loadings (0, 0.89, 1.35 and 1.71 N/mm) in the case 

of the 3x3x5x4 round conductor. The plots indicate that most of the values lie between 0 and 

40 MPa. However, the distribution tails are broad and reach up to 140 MPa which exceed the 

critical 100 MPa assigned by the TARSIS experiment. 

 

Fig. 5.61. Evolution of the contact pressure along the Lorentz loading. 

6 Coupling with electromagnetic codes 

During this thesis, the Multifil mechanical approach of conductor has been interfaced with 

two different electromagnetical codes These two dedicated codes, CARMEN (Coupled 

Algorithm for Resistive Modeling of Electrical Networks) and JackPot (Jacket Potential) are 

presented in detail in [Zani 2007-09], [van Lanen 2010]. The codes are able to simulate the V-

I and the V-T tests of sub-size and full-size conductors. Both models consider the conductor as 
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a three dimensional network of electrical resistances of two kinds, respectively standing for 

the contact resistances between the strands (that follows the ohmic law) and the 

superconducting behavior of the Nb3Sn strand (that follow the Ic(B,T,H) law). The system is 

then solved using the Kirchoff laws. The magnetic and temperature fields are known from 

measurements but the strain should be assessed. Since the variations of the axial strain along 

and across the strands are not known, an average axial strain was only considered, as 

computed from the smeared model. The models suffer from the approximations made on the 

trajectories of the strands and the positions of the contact points. The contribution of Multifil 

to the electromagnetic codes is then simple. The Multifil output data gives the trajectories of 

strands within the conductor, the strains across the sections of the strands and the positions of 

the contacts points with their corresponding contact loads. The data are ordered in 

exchangeable files for the interface with the other codes.  

The coupled simulations of CARMEN and Multifil have been performed on 45 strand cables 

with encouraging results published in [Torre 2010]. The simulation corresponds to the Saman 

experiment that is dedicated to measure the overall critical current of ITER sub-size 

conductors (triplet, 3x3, 3x3x5, 3x3x4x5) as a function of a tensile loading, described in 

[Vostner 2005], [Weiss 2007]. The stretching of the conductor aims to determine the Ic (H ) 
curve as it is usually done for single strand – see Fig. 1.13. The Multifil simulation consists to 

submit the conductor to an axial compression (the cool-down) that is followed by the tensile 

test (the stretching) with regular applications and releases of the Lorentz force loading. Since 

the current evolves along the stretching, the Lorentz force loading should also increase. The 

amplitude of the force to apply in Multifil comes from the experimental measurements of the 

current for a constant field of 12T. Two models of cables are considered that correspond to 

the Saman n°11 which is entirely superconducting whereas the Saman n°14 contains one third 

of copper wire. The cables are 75mm long which is the length of the high field zone in the 

Saman test facility. The result of the simulation in terms of the evolution of the axial strain 

distributions with the loadings in presented in Fig. 5.62, from [Torre 2010]. The CARMEN 

computation of the critical current along the loading is presented in Fig. 5.63. 

The Multifil results have allowed the experimental curves Ic (H ) to be rescaled according to 

the mean axial strain <H�> and no more on the applied axial strain. This rescaling highlights 

why the critical current of the conductor could exceed the Ic (H ) of the single strands in the 

previous Saman results interpretation. However, the present models are still not explaining the 

large degradation of the properties of the Saman 11, even though the behavior of the Saman 

14 (with much less degraded properties) is quite close to the experimental curve when low 

transverse resistivity (LTP) is used to depict the effect of the bending on the current transfer. 
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Fig. 5.62. Distributions of the local axial strains in the strands of the 3x3x5 conductor (Saman n11). The 

conductor is initially axial compressed up to -0.8 % and then stretched up to a total strain of 1.2%. The 

Lorentz force loading is applied and released every 0.2 %, according to the experimentally measured 

current critical current for a magnetic field of 12 T. 
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Fig. 5.63. Results of the CARMEN electrical code for the computation of critical current of the 3x3x5 

conductor using the Multifil mechanical results for the axial strains along the strands of the cable. The 

cable Ic ( < H�> ) curves are compared with the single strand behavior. 
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Conclusion 

 

The objectives for the thesis were to provide for an accurate description of the deformations 

occurring at the scale of the strands that may be responsible for degradation of conductivity 

properties in superconducting cable-in-conduit conductor subjected to the various loadings. 

Different approaches have been carried out to meet these objectives, both from an 

experimental and a numerical viewpoint. Two kinds of experimental investigations have been 

conducted during this thesis. The first ones were directed to identify the mechanical behavior 

of various wires that compose the conductors, in response to the loadings in the longitudinal 

and transverse directions. Experimental tests in longitudinal direction identified the cyclic 

constitutive laws of the considered materials and described cyclic hardening with proper 

functions. Transverse compression tests performed on two crossing wires showed an apparent 

linearity of the response on the loading path, even though large plastic strains of cross-

sections were induced in the crossing zone.  

In parallel, investigations through SEM microscopy have been conducted to observe breakage 

at the scale of microfilaments inside the strands caused by the applied loadings. These 

investigations confirmed previously established criteria for crack initiation, but also revealed 

interesting bending mechanisms at the scale of the strand that could be at the origin of 

degradations in the case of pinching loading. 

Most of the effort focused on the improvement of the simulation code and the development of 

simulations with more realistic loadings, on a wide variety of cases, to better analyze and 

understand the underlying mechanisms responsible for electrical property degradation. 

New transverse boundary conditions, referred to as the pseudo-periodic conditions have been 

developed and implemented in the code to tackle the problem of considering only a portion of 

limited length of the conductor and to limit the influence of the end effects, even if the layout 

of the conductor is not periodic. A parametric study about the influence of the penalty 

parameter used to account for this condition and about the length of the considered sample 

shows that these new boundary conditions have a satisfactory domain of validity. These new 

boundary conditions allow the initial forming to be simulated for a wide range of conductors 

in order to compute their a priori unknown initial configuration. 

New constitutive laws, describing in particular the evolution of hardening identified on cyclic 

tensile tests, have been implemented to reproduce the axial behavior of the different materials 

constituting the wires of the conductors. The simulation of the mechanical response of a real 

conductor to cyclic axial loading was made possible by these new constitutive laws, with a 

good agreement between experimental data. 

Additional difficulties arose regarding the transverse behavior of conductors. The limits of the 

current beam model employed in Multifil are reached as soon as the loading is likely to cause 

pinching of strands because only uniform transverse deformations of cross-sections can be 

considered. Nevertheless, transverse deformations of cross-sections could be taken into 

account using an elastic transverse isotropic model, with a transverse stiffness corresponding 

to the apparent transverse stiffness identified upon the transverse compression experiment 

between crossing wires. To reproduce the results of the transverse experiment performed on a 

45 strand conductor, it appeared necessary to consider an initial pinching of wires caused by 

the forming process. With the help of the apparent transverse stiffness and the consideration 

of the initial pinching, the obtained numerical results are in good agreement with 
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experimental data, accounting for the complex mechanisms involved in the cyclic transverse 

compression experiment. 

Complete simulations of the successive loadings encountered during the conductor service-

life, from the initial shaping to the application of the magnetic loading forces, have been 

finally conducted for different conductors. Post-treatment tools have been developed to 

analyze the Multifil output data in order to characterize the occurrence of critical strains 

possibly responsible for conductivity losses. The quantification of these critical strains may 

help to discriminate different conductor designs.  

The analysis of axial strains in terms of pure axial and bending strain brings a better 

understanding of the global behavior of conductors. It can be seen, in particular, that the 

global axial compression caused by the thermal loading, results in an inhomogeneous 

distribution of strains in conductor cross-sections, with the conversion of a part of the global 

compression into bending strains at the scale of strands. This inhomogeneous distribution and 

the conversion of part of the global compression into local bending are two important results 

of the presented simulations that question some of the previously accepted assumptions. 

The trajectories of the strands in the conductor, the description of the contact interactions 

between strands and the determination of the axial strains at any point of the strands are 

standard results from Multifil. These data can be easily retrieved by the electrical simulation 

codes to model the distribution of current in the loaded strands of the conductor, taking into 

account the dependence of local conductivity on the local strains. This coupling between the 

mechanical behavior computed by Multifil with the simulation of the electrical behavior is a 

first step to assess the conductivity of cable-in-conduit conductors subjected to a wide range 

of loadings. 

During this thesis, the conducted studies have also emphasized some limits of the models 

currently used in Multifil, particularly regarding the representation of the transverse 

mechanical behavior of the beam model. An enrichment of the kinematical beam model, with 

a corresponding increase of the computational cost, could be envisaged to describe in more 

details the actual deformations of cross-sections, and to make the model able to account for 

plastic effects in transverse directions. 

Even though improvements are still needed on particular points, the model provides a large 

amount of data that are still to be analyzed to get a deeper understanding of mechanisms 

responsible for conductivity losses in conductors. Parametric studies on design parameters 

should help optimizing the conductors’ electrical performances. 
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