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Let F = {[a1, b1], . . . , [an, bn]} be a family of intervals in R.

Let s be the first interval to end: bs = mini bi.

Let t be the last interval to start: at = maxi ai.
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Let F = {[a1, b1], . . . , [an, bn]} be a family of intervals in R.

Let s be the first interval to end: bs = mini bi.

? If bs < at then [as, bs] ∩ [at, bt] is empty.
bs at

Let t be the last interval to start: at = maxi ai.
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Let F = {[a1, b1], . . . , [an, bn]} be a family of intervals in R.

Let s be the first interval to end: bs = mini bi.

? If bs ≥ at then
⋂
F is nonempty.

? If bs < at then [as, bs] ∩ [at, bt] is empty.

If F has empty intersection then two of its members already have empty intersection.

bs at

bsat

This is what Helly numbers capture:

Let t be the last interval to start: at = maxi ai.

situations where empty intersection of arbitrary large families
can be traced back to constant-size sub-families.
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The Helly number of a family of sets with empty intersection is

the maximum size of an inclusion-minimal sub-family with empty intersection.
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the maximum size of an inclusion-minimal sub-family with empty intersection.

(maximum size of G ⊆ F such that
⋂
G = ∅ and

⋂
A 6= ∅ for any A ( G)
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The Helly number of a family of sets with empty intersection is
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? there exists a finite family of pairs of segments in R with Helly number 4.
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The Helly number of a family of sets with empty intersection is

the maximum size of an inclusion-minimal sub-family with empty intersection.

? any finite family of segments in R has Helly number 2.

? any finite family of segments in R2 has Helly number at most 3.

? there exists a finite family of pairs of segments in R with Helly number 4.

(maximum size of G ⊆ F such that
⋂
G = ∅ and

⋂
A 6= ∅ for any A ( G)
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In general, Helly numbers may be arbitrarily large...

[n] = {1, . . . , n} and F = {[n] \ {1}, [n] \ {2}, . . . , [n] \ {n}}.
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In general, Helly numbers may be arbitrarily large...

... but can be bounded in certain geometric settings:

Helly’s theorem (1913). Any finite family of convex sets in Rd

has Helly number at most d+ 1.

[n] = {1, . . . , n} and F = {[n] \ {1}, [n] \ {2}, . . . , [n] \ {n}}.
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In general, Helly numbers may be arbitrarily large...

... but can be bounded in certain geometric settings:
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A good cover is a family of subsets of a topological space where
the intersection of every subfamily is empty or contractible.

Helly’s theorem (1913). Any finite family of convex sets in Rd

has Helly number at most d+ 1.

Helly’s topological theorem (1930). Any finite good cover in Rd

has Helly number at most d+ 1.
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Helly numbers can be used to bound the size of critical subsets in algorithmic questions.
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Convex minimization: compute the min. of a convex function f : Rd → R
over an intersection

⋂
1≤i≤n Ci of convex regions.



5-3

Helly numbers can be used to bound the size of critical subsets in algorithmic questions.

Consider level-sets: put Ci(t) = Ci ∩ f−1(]−∞, t]) for t ∈ R.

The minimum of f is the smallest t such that
⋂

1≤i≤n Ci(t) is nonempty.

Convex minimization: compute the min. of a convex function f : Rd → R
over an intersection

⋂
1≤i≤n Ci of convex regions.



5-4

Helly numbers can be used to bound the size of critical subsets in algorithmic questions.

Consider level-sets: put Ci(t) = Ci ∩ f−1(]−∞, t]) for t ∈ R.

The minimum of f is the smallest t such that
⋂

1≤i≤n Ci(t) is nonempty.

For all i and all t the set Ci(t) is convex.

Convex minimization: compute the min. of a convex function f : Rd → R
over an intersection

⋂
1≤i≤n Ci of convex regions.



5-5

Helly numbers can be used to bound the size of critical subsets in algorithmic questions.

Consider level-sets: put Ci(t) = Ci ∩ f−1(]−∞, t]) for t ∈ R.
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1≤i≤n Ci of convex regions.
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Helly numbers can be used to bound the size of critical subsets in algorithmic questions.

Consider level-sets: put Ci(t) = Ci ∩ f−1(]−∞, t]) for t ∈ R.

The minimum of f is the smallest t such that
⋂

1≤i≤n Ci(t) is nonempty.

For all i and all t the set Ci(t) is convex.

Convex minimization: compute the min. of a convex function f : Rd → R
over an intersection

⋂
1≤i≤n Ci of convex regions.

⇒ there exist Ci1 , . . . , Cih (h ≤ d+ 1) such that
⋂
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Helly numbers can be used to bound the size of critical subsets in algorithmic questions.

Consider level-sets: put Ci(t) = Ci ∩ f−1(]−∞, t]) for t ∈ R.

The minimum of f is the smallest t such that
⋂

1≤i≤n Ci(t) is nonempty.

For all i and all t the set Ci(t) is convex.

Convex minimization: compute the min. of a convex function f : Rd → R
over an intersection

⋂
1≤i≤n Ci of convex regions.

⇒ the minimum of f over
⋂

1≤i≤n Ci equals the minimum of f over
⋂

1≤j≤h Cij .

Helly numbers ' notion of combinatorial dimension in generalized linear programming.

[Amenta, 1996]

Helly numbers also arise naturally in discrete geometry, topology, algebra...

⇒ there exist Ci1 , . . . , Cih (h ≤ d+ 1) such that
⋂

1≤j≤h Cij (t) is empty for all t < min f .

⇒ ∀t the family {C1(t), . . . , Cn(t)} has Helly number at most d+ 1.



6-1

This presentation discusses Helly numbers of sets of line transversals.
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Given a set X ⊆ Rd we let T (X) denote the set of lines intersecting X.

X T (X) X T (X)

This presentation discusses Helly numbers of sets of line transversals.
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Given a set X ⊆ Rd we let T (X) denote the set of lines intersecting X.

X T (X) X T (X)

”if any Hd balls in a family can be stabbed by a line, the
whole family can be stabbed by one and the same line.”

Conjecture (Danzer, 1957). For any d ≥ 2 there exists Hd ∈ N such that the
following holds: for any n ∈ N, for any family {B1, . . . , Bn} of pairwise disjoint
unit balls in Rd, the Helly number of {T (B1), . . . , T (Bn)} is at most Hd.

This presentation discusses Helly numbers of sets of line transversals.
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In this presentation...

An overview of a proof of Danzer’s conjecture

A follow-up: a new homological conditions for bounding Helly numbers

Show how ”everything fits together” (high-level).

Show a ”nice machinery in motion” (more in-depth).
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In this presentation...

An overview of a proof of Danzer’s conjecture

A follow-up: a new homological conditions for bounding Helly numbers

Quick panorama of my research activity of these last years

Some research perspectives

Show how ”everything fits together” (high-level).

Show a ”nice machinery in motion” (more in-depth).
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Panorama of research activities

At the interface between computer science and mathematics.
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Line geometry for visibility and imaging

How can line geometry help understand light propagation and models of imaging systems?
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? Shadow boundaries & topological visual event surfaces.

? Unified model of imaging systems based on linear line congruences

[PhD Demouth], [Msc Batog], [PhD Batog], [Msc Jang]

[CVPR 2010], software prototype
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Collaboration with J. Ponce and B. Levy
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Geometric transversal theory

How does the geometry of an object determine the structure of its geometric transversals?

? Geometric permutations & topology of sets of line transversals
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? Proof of Danzer’s conjecture

? Pinning theorems

[SoCG 2005], [SoCG 2007], [DCG]x4, [IJM]

Collaboration with O. Cheong, A. Holmsen, S. Petitjean, C. Borcea, B. Aronov, G. Rote

[∼Msc Koenig], ([PhD Ha])
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Combinatorics of geometric structures

How does the geometry shape the combinatorial structure underlying geometric objects?

? Helly numbers for approximate covering

? asymptotic of shatter functions of hypergraphs and families of permutations

? Helly numbers from generalized nerve theorems

[SoCG 2008]

Collaboration with O. Devillers, M. Glisse, O. Cheong, C. Nicaud, E. Colin de Verdière, G. Ginot

[PhD Demouth]
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Complexity of random geometric structures

How can probabilistic analysis help refine overly pessimistic worst-case analysis?

? Delaunay triangulation of random samples of a surface

? Smoothed complexity of convex hulls

[SODA 2008]

Collaboration with O. Devillers, J. Erickson, M. Glisse, D. Attali

[ANR ”Projet Blanc” 2012-2016 with stochastic geometers]
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rö

n
n

im
an

n
et

al
,

2
0

0
7

? Proof of Danzer’s conjecture

? Pinning theorems

[SoCG 2005], [SoCG 2007], [DCG]x4, [IJM]

Collaboration with O. Cheong, A. Holmsen, S. Petitjean, C. Borcea, B. Aronov, G. Rote

[∼Msc Koenig], ([PhD Ha])

Combinatorics of geometric structures

How does the geometry shape the combinatorial structure underlying geometric objects?

? Helly numbers for approximate covering

? asymptotic of shatter functions of hypergraphs and families of permutations

? Helly numbers from generalized nerve theorems

[SoCG 2008]

Collaboration with O. Devillers, M. Glisse, O. Cheong, C. Nicaud, E. Colin de Verdière, G. Ginot

[PhD Demouth]

Complexity of random geometric structures

How can probabilistic analysis help refine overly pessimistic worst-case analysis?

? Delaunay triangulation of random samples of a surface

? Smoothed complexity of convex hulls

[SODA 2008]

Collaboration with O. Devillers, J. Erickson, M. Glisse, D. Attali

[ANR ”Projet Blanc” 2012-2016 with stochastic geometers]



14-1

An overview of the proof of Danzer’s conjecture



15-1

Where does Danzer’s conjecture come from?

Helly’s theorem reformulates as

”The Helly number of sets of point transversals to convex sets is at most d+ 1.”
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Theorem (Danzer, 1957). For any n ∈ N, for any family {B1, . . . , Bn} of pairwise
disjoint unit discs in R2, the Helly number of {T (B1), . . . , T (Bn)} is at most 5.
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Results on Danzer’s conjecture up to 2004. (1/2)

? True for collections of thinly distributed balls in Rd.

[Hadwiger 1959] and [Grünbaum 1960]

Thinly distributed means that the distance between any two
balls is at least the sum of their radii.
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Results on Danzer’s conjecture up to 2004. (1/2)

? True for collections of thinly distributed balls in Rd.

[Hadwiger 1959] and [Grünbaum 1960]

Thinly distributed means that the distance between any two
balls is at least the sum of their radii.

Given F = {B1, . . . , Bn} put T (F) =
⋂
i T (Bi)

Let π map each line to its orientation in RPd−1

K(F) = π(T (F)) is the cone of directions.

If F is thinly distributed then K(F) is convex (Hadwiger).

Thus {T (B1), . . . , T (Bn)} form a good cover (Grünbaum).

Helly’s topological theorem ⇒ Helly number of {T (B1), . . . , T (Bn)} ≤ 2d− 1.
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Results on Danzer’s conjecture up to 2004. (2/2)

? True for collections of disjoint unit balls in R3.? True for collections of disjoint unit balls in R3.

[Holmsen-Katchalski-Lewis 2003]

If F = {B1, . . . , Bn} is a family of disjoint unit balls in R3

then each connected component of K(F) is convex.
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Results on Danzer’s conjecture up to 2004. (2/2)

? True for collections of disjoint unit balls in R3.? True for collections of disjoint unit balls in R3.

[Holmsen-Katchalski-Lewis 2003]

Connected components are in 1-to-1 correspondence with geometric permutations.

Combinatorial restrictions on geometric permutations of disjoint unit balls

If F = {B1, . . . , Bn} is a family of disjoint unit balls in R3

then each connected component of K(F) is convex.

⇒ Helly number of {T (B1), . . . , T (Bn)} ≤ 46.

1
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(1324, 4231)

(1234, 4321)
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Ingredients of our proof

? Generalized the convexity structure of cones of directions.

? Clarified the structure of sets of geometric permutations.

? Added a new ingredient: pinning theorems.

[SoCG 2007] [DCG]

Joint work with C. Borcea and S. Petitjean

[CGTA]

Joint work with O. Cheong and H.S. Na

[SoCG 2005] [DCG]

Joint work with O. Cheong and A. Holmsen
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F K(F)T (F)

What are cones of directions?

[SoCG 2007] [DCG]

Joint work with C. Borcea and S. Petitjean
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F K(F)T (F)

What are cones of directions?

How to prove that cones of directions are convex?

? we analyzed the geometry of the curves bounding K(F)

Arcs of conics and sextics.

Track the inflexion/singular points.

Characterization of the arcs of sextic on ∂K(F)

No inflexion/singular point on ∂K(F)

[SoCG 2007] [DCG]

Joint work with C. Borcea and S. Petitjean



21-1

1
2

3
4

(1324, 4231)

(1234, 4321)

Let F = {B1, . . . , Bn} be a family of disjoint balls in Rd.

An oriented line transversal to F
↪→ a permutation of {B1, . . . , Bn} ' {1, . . . , n}.

A line transversal to F
↪→ a pair of permutations of {1, . . . , n}, one reverse of the other.

The geometric permutations of F are the pairs of permutations realizable by a line transversal.

[CGTA]

Joint work with O. Cheong and H.S. Na
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1
2

3
4

(1324, 4231)

(1234, 4321)

Let F = {B1, . . . , Bn} be a family of disjoint balls in Rd.

An oriented line transversal to F
↪→ a permutation of {B1, . . . , Bn} ' {1, . . . , n}.

A line transversal to F
↪→ a pair of permutations of {1, . . . , n}, one reverse of the other.

The geometric permutations of F are the pairs of permutations realizable by a line transversal.

Theorem (Cheong-G-Na, 2004) Let F be a family of n disjoint unit balls in Rd. If
n ≥ 9 then F has at most 2 distinct geometric permutations that differ in the exchange
of 2 adjacent elements. If n ≤ 8 then F has at most 3 distinct geometric permutations.

[CGTA]

Joint work with O. Cheong and H.S. Na
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1
2

3
4

(1324, 4231)

(1234, 4321)

Let F = {B1, . . . , Bn} be a family of disjoint balls in Rd.

An oriented line transversal to F
↪→ a permutation of {B1, . . . , Bn} ' {1, . . . , n}.

A line transversal to F
↪→ a pair of permutations of {1, . . . , n}, one reverse of the other.

The geometric permutations of F are the pairs of permutations realizable by a line transversal.

Theorem (Cheong-G-Na, 2004) Let F be a family of n disjoint unit balls in Rd. If
n ≥ 9 then F has at most 2 distinct geometric permutations that differ in the exchange
of 2 adjacent elements. If n ≤ 8 then F has at most 3 distinct geometric permutations.

? geometry ⇒ excluded pairs of patterns (in the Stanley-Wilf sense).

? combinatorial extrapolation.

[CGTA]

Joint work with O. Cheong and H.S. Na
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[SoCG 2005] [DCG]

Joint work with O. Cheong and A. Holmsen

A family F = {B1, . . . , Bn} of sets in Rd pins a line `
⇔ ` is an isolated point in T (F).
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[SoCG 2005] [DCG]

Joint work with O. Cheong and A. Holmsen

Theorem (Cheong-G-Holmsen, 2005) If a family F of disjoint balls in Rd

pin a line ` some at most 2d− 1 members of F suffice to pin `.

A family F = {B1, . . . , Bn} of sets in Rd pins a line `
⇔ ` is an isolated point in T (F).
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[SoCG 2005] [DCG]

Joint work with O. Cheong and A. Holmsen

Theorem (Cheong-G-Holmsen, 2005) If a family F of disjoint balls in Rd

pin a line ` some at most 2d− 1 members of F suffice to pin `.

A family F = {B1, . . . , Bn} of sets in Rd pins a line `
⇔ ` is an isolated point in T (F).

Pinning theorem, a local analogue of a Helly number.
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[SoCG 2005] [DCG]

Joint work with O. Cheong and A. Holmsen

Theorem (Cheong-G-Holmsen, 2005) If a family F of disjoint balls in Rd

pin a line ` some at most 2d− 1 members of F suffice to pin `.

A family F = {B1, . . . , Bn} of sets in Rd pins a line `
⇔ ` is an isolated point in T (F).

? Argue that locally near ` the T (Bi) form a good cover.

Pinning theorem, a local analogue of a Helly number.



22-5

[SoCG 2005] [DCG]

Joint work with O. Cheong and A. Holmsen

Theorem (Cheong-G-Holmsen, 2005) If a family F of disjoint balls in Rd

pin a line ` some at most 2d− 1 members of F suffice to pin `.

A family F = {B1, . . . , Bn} of sets in Rd pins a line `
⇔ ` is an isolated point in T (F).

? Argue that locally near ` the T (Bi) form a good cover.

? Conclude using Helly’s topological theorem.

Pinning theorem, a local analogue of a Helly number.
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Theorem (Cheong-G-Holmsen-Petitjean, 2006) If F = {B1, . . . , Bn} is a family of
disjoint unit balls in Rd the Helly number of {T (B1), . . . , T (Bn)} is at most 4d−1.

[DCG]

Joint work with O. Cheong, A. Holmsen and S. Petitjean
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Theorem (Cheong-G-Holmsen-Petitjean, 2006) If F = {B1, . . . , Bn} is a family of
disjoint unit balls in Rd the Helly number of {T (B1), . . . , T (Bn)} is at most 4d−1.

[DCG]

Joint work with O. Cheong, A. Holmsen and S. Petitjean

? Assume that any 4d− 1 members in F have a line transversal and
prove that F has a line transversal.
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Theorem (Cheong-G-Holmsen-Petitjean, 2006) If F = {B1, . . . , Bn} is a family of
disjoint unit balls in Rd the Helly number of {T (B1), . . . , T (Bn)} is at most 4d−1.

[DCG]

Joint work with O. Cheong, A. Holmsen and S. Petitjean

? Assume that any 4d− 1 members in F have a line transversal and
prove that F has a line transversal.

? Shrink the balls uniformly from the centers until some (4d− 1)-tuple
G ⊆ F is about to lose its last transversal.
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Theorem (Cheong-G-Holmsen-Petitjean, 2006) If F = {B1, . . . , Bn} is a family of
disjoint unit balls in Rd the Helly number of {T (B1), . . . , T (Bn)} is at most 4d−1.

[DCG]

Joint work with O. Cheong, A. Holmsen and S. Petitjean

? Assume that any 4d− 1 members in F have a line transversal and
prove that F has a line transversal.

? Shrink the balls uniformly from the centers until some (4d− 1)-tuple
G ⊆ F is about to lose its last transversal.
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Theorem (Cheong-G-Holmsen-Petitjean, 2006) If F = {B1, . . . , Bn} is a family of
disjoint unit balls in Rd the Helly number of {T (B1), . . . , T (Bn)} is at most 4d−1.

[DCG]

Joint work with O. Cheong, A. Holmsen and S. Petitjean

? Either G has a unique line transversal `, which it pins.

? Assume that any 4d− 1 members in F have a line transversal and
prove that F has a line transversal.

? Shrink the balls uniformly from the centers until some (4d− 1)-tuple
G ⊆ F is about to lose its last transversal.
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Theorem (Cheong-G-Holmsen-Petitjean, 2006) If F = {B1, . . . , Bn} is a family of
disjoint unit balls in Rd the Helly number of {T (B1), . . . , T (Bn)} is at most 4d−1.

[DCG]

Joint work with O. Cheong, A. Holmsen and S. Petitjean

? Either G has a unique line transversal `, which it pins.

? Assume that any 4d− 1 members in F have a line transversal and
prove that F has a line transversal.

? Shrink the balls uniformly from the centers until some (4d− 1)-tuple
G ⊆ F is about to lose its last transversal.

pinning theorem and considerations on geometric permutations
⇒ ` is pinned and the only transversal of G∗ ⊆ G of size at most 4d− 2.

∀B ∈ F , G∗ ∪ {B} still has a transversal; it can only be `.
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Theorem (Cheong-G-Holmsen-Petitjean, 2006) If F = {B1, . . . , Bn} is a family of
disjoint unit balls in Rd the Helly number of {T (B1), . . . , T (Bn)} is at most 4d−1.

[DCG]

Joint work with O. Cheong, A. Holmsen and S. Petitjean

? Either G has a unique line transversal `, which it pins.

? Assume that any 4d− 1 members in F have a line transversal and
prove that F has a line transversal.

? Shrink the balls uniformly from the centers until some (4d− 1)-tuple
G ⊆ F is about to lose its last transversal.

pinning theorem and considerations on geometric permutations
⇒ ` is pinned and the only transversal of G∗ ⊆ G of size at most 4d− 2.

? Or G has two line transversals `1 and `2, which it pins.

∀B ∈ F , G∗ ∪ {B} still has a transversal; it can only be `.

Similar (but slightly more complicated) arguments.
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Convexity of K(F)
for disjoint balls in Rd

Contractibility of the set of
transversals to disjoint balls

in Rd in a given order

=⇒
Vietoris-Begle

mapping
theorem

=⇒

Upper bound on the Helly
number of transversals to
disjoint unit balls in Rd

=⇒local
considerations

Helly’s
topological

theorem

Considerations
on geometric
permutations

Pinning theorem for
disjoint balls in Rd
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Convexity of K(F)
for disjoint balls in Rd

Contractibility of the set of
transversals to disjoint balls

in Rd in a given order

=⇒
Vietoris-Begle

mapping
theorem

=⇒

Upper bound on the Helly
number of transversals to
disjoint unit balls in Rd

=⇒local
considerations

Helly’s
topological

theorem

Considerations
on geometric
permutations

Pinning theorem for
disjoint balls in Rd

Pinning theorems for other shapes
(polytopes and ovaloids).

Stable pinning

? tight lower bound for the pinning theorem

? lower bound of 2d− 1 for the Helly number

? relation to transversality of intersection
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Application: computing a smallest enclosing cylinder (1/3)

Here a cylinder is the set of points within bounded distance from a given line (the axis).

Smallest enclosing cylinder (SEC) problem: given n points in Rd,
compute the cylinder with minimum radius that contains all the points.
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Application: computing a smallest enclosing cylinder (1/3)

Here a cylinder is the set of points within bounded distance from a given line (the axis).

In the Real RAM model:

Smallest enclosing cylinder (SEC) problem: given n points in Rd,
compute the cylinder with minimum radius that contains all the points.

For d = 2 the worst-case complexity of SEC is Θ(n logn).

[Avis-Robert-Wenger, 1989] and [Egyed-Wenger, 1989]

For d = 3, for any ε > 0 there is an algorithm that solves SEC in O(n3+ε).

[Agarwal-Aronov-Sharir, 1999]
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Application: computing a smallest enclosing cylinder (1/3)

Here a cylinder is the set of points within bounded distance from a given line (the axis).

In the Real RAM model:

Smallest enclosing cylinder (SEC) problem: given n points in Rd,
compute the cylinder with minimum radius that contains all the points.

For d = 2 the worst-case complexity of SEC is Θ(n logn).

[Avis-Robert-Wenger, 1989] and [Egyed-Wenger, 1989]

For d = 3, for any ε > 0 there is an algorithm that solves SEC in O(n3+ε).

[Agarwal-Aronov-Sharir, 1999]

In the Turing machine model:

SEC is NP-hard when the dimension d is part of the input.

[Meggido 1990]
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Application: computing a smallest enclosing cylinder (2/3)

Let P be a set of n points in Rd.

Let φ :


2P → R× N

Q 7→ (rQ, nQ) where

{
rQ = radius of the SEC of Q
nQ = #enclosing cylinders of Q of radius rQ
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Application: computing a smallest enclosing cylinder (2/3)

Let P be a set of n points in Rd.

Let φ :


2P → R× N

Q 7→ (rQ, nQ) where

{
rQ = radius of the SEC of Q
nQ = #enclosing cylinders of Q of radius rQ

Proposition. (P, φ) is a LP-type problem.
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Application: computing a smallest enclosing cylinder (2/3)

Let P be a set of n points in Rd.

Let φ :


2P → R× N

Q 7→ (rQ, nQ) where

{
rQ = radius of the SEC of Q
nQ = #enclosing cylinders of Q of radius rQ

Proposition. (P, φ) is a LP-type problem.

[Matoušek-Sharir-Welzl, 1992], [Seidel 1991], [Clarkson 1995]

For any LP-type problem (P, φ) with constant combinatorial dimension,
φ(P ) can be computed in randomized time linear in |P |.

The combinatorial dimension of (P, φ) is the maximum size of a subset Q ⊆ P
such that ∀x ∈ Q, φ(Q \ {x}) 6=φ(Q).
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Application: computing a smallest enclosing cylinder (3/3)

Q is enclosed by the cylinder
with axis ` and radius r

⇐⇒ The line ` is a transversal to the balls
of radius r centered in the points of Q.
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Application: computing a smallest enclosing cylinder (3/3)

Q is enclosed by the cylinder
with axis ` and radius r

⇐⇒ The line ` is a transversal to the balls
of radius r centered in the points of Q.
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Application: computing a smallest enclosing cylinder (3/3)

Q is enclosed by the cylinder
with axis ` and radius r

⇐⇒ The line ` is a transversal to the balls
of radius r centered in the points of Q.
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Application: computing a smallest enclosing cylinder (3/3)

A set S of points in Rd is sparse if the radius of the SEC of S is less than 1
2

minp,q∈S;p 6=q ‖pq‖.

Q is enclosed by the cylinder
with axis ` and radius r

⇐⇒ The line ` is a transversal to the balls
of radius r centered in the points of Q.
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Application: computing a smallest enclosing cylinder (3/3)

A set S of points in Rd is sparse if the radius of the SEC of S is less than 1
2

minp,q∈S;p 6=q ‖pq‖.

Corollary. If P is sparse then (P, φ) has combinatorial dimension at most 4d− 1
and the SEC of P can be computed in randomized linear time.

(in any fixed dimension d)

Q is enclosed by the cylinder
with axis ` and radius r

⇐⇒ The line ` is a transversal to the balls
of radius r centered in the points of Q.
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Summary

Complete proof of Danzer’s conjecture.

Algorithmic consequences.

The proof uses a combination of techniques from...

? convex and euclidean geometry

? topology

? (classical) algebraic geometry

? combinatorics

... and opens new perspectives

? Topology of K(F) for disjoint convex sets in Rd.

? Pinning theorems for disjoint convex sets in R3.
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Helly numbers from homological conditions
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An interesting pattern...

Disjoint translates of a convex figure in R2 [Tverberg, 1989]

Disjoint unit balls

Sets of line transversals with bounded Helly number...

Sets of line transversals with unbounded Helly number...

Disjoint translates of a convex figure in Rd for d ≥ 3 [Holmsen-Matoušek, 2004]

Disjoint balls
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An interesting pattern...

Disjoint translates of a convex figure in R2 [Tverberg, 1989]

Disjoint unit balls
bounded number of contractible connected components
of line transversals.

Sets of line transversals with bounded Helly number...

Sets of line transversals with unbounded Helly number...

Disjoint translates of a convex figure in Rd for d ≥ 3 [Holmsen-Matoušek, 2004]

Disjoint balls
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An interesting pattern...

Disjoint translates of a convex figure in R2 [Tverberg, 1989]

Disjoint unit balls
bounded number of contractible connected components
of line transversals.

examples relies on the fact that the number of connected
components of line transversals is unbounded .

Sets of line transversals with bounded Helly number...

Sets of line transversals with unbounded Helly number...

Disjoint translates of a convex figure in Rd for d ≥ 3 [Holmsen-Matoušek, 2004]

Disjoint balls
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An interesting pattern...

Disjoint translates of a convex figure in R2 [Tverberg, 1989]

Disjoint unit balls
bounded number of contractible connected components
of line transversals.

examples relies on the fact that the number of connected
components of line transversals is unbounded .

Sets of line transversals with bounded Helly number...

Sets of line transversals with unbounded Helly number...

Disjoint translates of a convex figure in Rd for d ≥ 3 [Holmsen-Matoušek, 2004]

Disjoint balls

The proofs all rely on ad hoc geometric arguments

Can we bring them under the same (topological) umbrella?
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There are two topological Helly-type theorems for non-connected sets.
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There are two topological Helly-type theorems for non-connected sets.

The topological condition ressemble what we are looking for but...

? Very large bound.

? Does not extend trivially to other topological spaces (relies on non-embeddability results).

Theorem (Matoušek, 1999). For any d ≥ 2 and r ≥ 1 there exists a constant h(d, r) such
that the following holds: any finite family of subsets of Rd such that the intersection of
every subfamily has at most r connected components, each d d

2
e-connected, has Helly

number at most h(d, r).
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There are two topological Helly-type theorems for non-connected sets.

The topological condition ressemble what we are looking for but...

? Very large bound.

? Does not extend trivially to other topological spaces (relies on non-embeddability results).

The bound look like what we’d like to have but...

? Not the kind of topological conditions we have. 1
2

3
4

T
(3) ∩

T
(4)T

(1
) ∩
T
(2

)

Theorem (Matoušek, 1999). For any d ≥ 2 and r ≥ 1 there exists a constant h(d, r) such
that the following holds: any finite family of subsets of Rd such that the intersection of
every subfamily has at most r connected components, each d d

2
e-connected, has Helly

number at most h(d, r).

Theorem (Kalai-Meshulam, 2008). Let G be an open good cover in Rd. Any family F
such that the intersection of every subfamily is a disjoint union of at most r elements of G
has Helly number at most r(d+ 1).
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Theorem (Colin de Verdière-Ginot-G, 2011). If F is a finite family of open
subsets of Rd such that the intersection of every subfamily has at most r connected
components, each a homology cell, then F has Helly number at most r(d+ 1).
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In fact, we prove a more general statement where:

? the ambient space is any (locally connected) topological space Γ,

? only families of cardinality at least t need to intersect in at most r connected components,

? the homology of
⋂
G only vanishes in dimension ≥ s− |G|.

Theorem (Colin de Verdière-Ginot-G, 2011). If F is a finite family of open
subsets of Rd such that the intersection of every subfamily has at most r connected
components, each a homology cell, then F has Helly number at most r(d+ 1).

d is replaced by dΓ, the minimum dimension from which all open sets of Γ
have trivial homology.

? the bound becomes r(max(dΓ, s, t) + 1).
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In fact, we prove a more general statement where:

? the ambient space is any (locally connected) topological space Γ,

? only families of cardinality at least t need to intersect in at most r connected components,

? the homology of
⋂
G only vanishes in dimension ≥ s− |G|.

Theorem (Colin de Verdière-Ginot-G, 2011). If F is a finite family of open
subsets of Rd such that the intersection of every subfamily has at most r connected
components, each a homology cell, then F has Helly number at most r(d+ 1).

d is replaced by dΓ, the minimum dimension from which all open sets of Γ
have trivial homology.

This hammer implies Tverberg’s theorem and Danzer’s conjecture.

? the bound becomes r(max(dΓ, s, t) + 1).
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N(F ) = {G | G ⊆ F and
⋂

G 6= ∅}

The nerve N(F ) of a family F of sets is:

F N(F )

1

2

3

{∅, {1}, {2}, {3}}
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N(F ) = {G | G ⊆ F and
⋂

G 6= ∅}

The nerve N(F ) of a family F of sets is:

F N(F )

1

2

3

{∅, {1}, {2}, {3}, {1, 2}}



33-3

N(F ) = {G | G ⊆ F and
⋂

G 6= ∅}

The nerve N(F ) of a family F of sets is:

F N(F )

1

2

3

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}



33-4

N(F ) = {G | G ⊆ F and
⋂

G 6= ∅}

The nerve N(F ) of a family F of sets is:

F N(F )

1

2

3
{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
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N(F ) = {G | G ⊆ F and
⋂

G 6= ∅}

The nerve N(F ) of a family F of sets is:

It is an abstract simplicial complex.

(= a family of finite sets closed under taking subsets).

(= a monotone hypergraph / set system).

F N(F )

1

2

3
{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
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Geometric realization of an abstract simplicial complex.

k-tuple 7→ (k − 1)-dim. ball (with boundary conditions).

Can be done linearly in sufficiently high dimension.
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Geometric realization of an abstract simplicial complex.

k-tuple 7→ (k − 1)-dim. ball (with boundary conditions).

Can be done linearly in sufficiently high dimension.
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Geometric realization of an abstract simplicial complex.

k-tuple 7→ (k − 1)-dim. ball (with boundary conditions).

Can be done linearly in sufficiently high dimension.
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Geometric realization of an abstract simplicial complex.

k-tuple 7→ (k − 1)-dim. ball (with boundary conditions).

Can be done linearly in sufficiently high dimension.
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Geometric realization of an abstract simplicial complex.

k-tuple 7→ (k − 1)-dim. ball (with boundary conditions).

Can be done linearly in sufficiently high dimension.
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Nerve Theorem (Borsuk, 1948). If F is a good cover in Rd then (the geometric
realization of) N(F) is homotopy-equivalent to

⋃
F .
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'

Nerve Theorem (Borsuk, 1948). If F is a good cover in Rd then (the geometric
realization of) N(F) is homotopy-equivalent to

⋃
F .

6'
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Open subsets of Rd have vanishing homology in dimension ≥ d.

and G ⊆ F an inclusion-minimal subfamily with empty intersection.

Let F be an open good cover in Rd,

Minimality ⇒ N(G) = 2G \ {G} ' S|G|−2

Nerve Theorem ⇒
⋃
G ' N(G).

⋃
G must have non-vanishing homology in dimension |G| − 2.

Nerve Theorem ⇒ Helly’s topological theorem

|G| − 2 < d⇒ |G| ≤ d+ 1.

'

Nerve Theorem (Borsuk, 1948). If F is a good cover in Rd then (the geometric
realization of) N(F) is homotopy-equivalent to

⋃
F .

6'
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We want to apply the same idea to non-connected sets.
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Leray’s acyclic cover theorem is a generalization of the Nerve Theorem (in homology)
that applies to acyclic families in fairly general topological spaces.

We want to apply the same idea to non-connected sets.
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Leray’s acyclic cover theorem is a generalization of the Nerve Theorem (in homology)
that applies to acyclic families in fairly general topological spaces.

Leray’s theorem uses Čech complexes, hard to relate to Helly numbers.

We want to apply the same idea to non-connected sets.

(Here I mean ”Čech complex” in the sense of algebraic topology, which is different
from what is called ”Čech complex” in computational topology.)
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Leray’s acyclic cover theorem is a generalization of the Nerve Theorem (in homology)
that applies to acyclic families in fairly general topological spaces.

Leray’s theorem uses Čech complexes, hard to relate to Helly numbers.

We want to apply the same idea to non-connected sets.

We introduce a combinatorial structure that...

? is close enough to a simplicial complex that Helly numbers are ”within sight”,

? retains ”enough” of the Čech complex that its homology is controlled by the union.

(Here I mean ”Čech complex” in the sense of algebraic topology, which is different
from what is called ”Čech complex” in computational topology.)
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M(F) = {(G,X) | G ⊆ F , X is a connected component of
⋂

G}
ordered by (G,X) ≺ (G′, X ′) iff G ⊂ G′ and X ⊃ X ′.

The multinerve M(F) of F is the poset

Let F be a family of subsets of a topological space.
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M(F) = {(G,X) | G ⊆ F , X is a connected component of
⋂

G}
ordered by (G,X) ≺ (G′, X ′) iff G ⊂ G′ and X ⊃ X ′.

The multinerve M(F) of F is the poset

Let F be a family of subsets of a topological space.

(∅,
⋃
F )
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M(F) = {(G,X) | G ⊆ F , X is a connected component of
⋂

G}
ordered by (G,X) ≺ (G′, X ′) iff G ⊂ G′ and X ⊃ X ′.

The multinerve M(F) of F is the poset

Let F be a family of subsets of a topological space.

(∅,
⋃
F )

(∅,
⋃
F )
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M(F) = {(G,X) | G ⊆ F , X is a connected component of
⋂

G}
ordered by (G,X) ≺ (G′, X ′) iff G ⊂ G′ and X ⊃ X ′.

The multinerve M(F) of F is the poset

Let F be a family of subsets of a topological space.

M(F) is a simplicial poset:
Unique minimum element.

Every lower interval is isomorphic to the face lattice of a simplex.{
Geometric realizations, homology... extend to simplicial posets.

(∅,
⋃
F )

(∅,
⋃
F )
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Theorem (Colin de Verdière-Ginot-G). If F is a family of open sets such that the
connected components of the intersection of any subfamily is a homology cell then
M(F) and

⋃
F have isomorphic (reduced) homology groups (over Q).
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Nerve(F) = {G | G ⊆ F and
⋂

G 6= ∅}

M(F) = {(G,X) | G ⊆ F , X is a c. c. of
⋂

G}

(G,X) ≺ (G′, X ′) iff G ⊂ G′ and X ⊃ X ′.

Theorem (Colin de Verdière-Ginot-G). If F is a family of open sets such that the
connected components of the intersection of any subfamily is a homology cell then
M(F) and

⋃
F have isomorphic (reduced) homology groups (over Q).
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Let F be a finite family of open subsets of Rd such that the intersection of
every subfamily has at most r connected components, each a homology cell.

Goal: ”induced subcomplexes of N(F) have trivial homology in dimension ≥ h”
(would imply that the Helly number of F ≤ h+ 1).
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H2 = 0 H2 6= 0

? Projecting an abstract simplicial complex can create
homology in the geometric realizations.
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Let F be a finite family of open subsets of Rd such that the intersection of
every subfamily has at most r connected components, each a homology cell.

? the projection preserves dimension and is at most r-to-one
⇒ induced subcomplexes of N(F) have trivial homology in dimension ≥ rd+ r − 1.

Goal: ”induced subcomplexes of N(F) have trivial homology in dimension ≥ h”
(would imply that the Helly number of F ≤ h+ 1).

? Multinerve theorem ⇒ induced subcomplexes of M(F ) have trivial homology in dimension ≥ d.

? Project M(F) onto N(F) via (G,X) 7→ G and ”keep track” of the homology.

H2 = 0 H2 6= 0

? Projecting an abstract simplicial complex can create
homology in the geometric realizations.
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Coming back to Danzer’s conjecture...

The ambient space Γ is a compact subset of RG2,d+1 which is of dimension 2d− 2.

If F = {B1, . . . , Bn} is a family of disjoint balls in Rd and G ⊆ F then...

T (Bi) ' RPd−1,

T (G) has contractible connected components if |G| ≥ 2,

The number of connected components of T (G) is at most 3 in general
and at most 2 if |G| ≥ 9.

Applying our homological Helly-type theorem we obtain:

For d ≥ 6 the Helly number of {T (B1), . . . , T (Bn)} is at most 2(2d− 1).

(to use r = 2 in our bound we need 2d− 2 ≥ 9, hence the condition d ≥ 6).
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Refinement of the classical nerve that enjoys a similar ”Nerve Theorem”.

”Combinatorial interface” to Leray’s acyclic cover theorem.

Homological Helly-type theorem that

essentially generalizes those of Matoušek and Kalai-Meshulam,

(re)proves in a unified manner Helly numbers in geometric transversal theory.

Raises questions on the combinatorics of simplicial complexes and posets.

dimension-preserving projections

Summary
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Some perspectives
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Short/medium term

? Efficient computation of SEC, from sparse to general point sets.

? Other uses of multinerves for Hadwiger-type theorems, Stanley-Riesner ideals...

Apply...

Simplify...

? projection of simplicial complexes

? Topology of sets of k-dimensional transversals to convex sets in Rd.

? Tangents to convex sets and transversality

Generalize...
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In a more distant future

? Geometric permutations of disjoint convex sets in Rd.

? Pinning theorem for disjoint convex sets in R3? Rd?

? Does a ”recursively” bounded sum of Betti numbers imply a bounded Helly number?

? Algorithmic applications of bounded ”local combinatorial dimension”?

More territory to map...

And some ”hard nuts” to break...
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Other directions

? Combinatorics of geometric structures

Shatter functions, VC-dimension & excluded patterns for geometric permutations.

Topological combinatorics (inclusion-exclusion formulas...)

Random generation of combinatorial structures underlying geometric objects (order-types...).

? Complexity of random geometric structures

Average-case analysis (random polytopes, Delaunay of points on a surface).

Smoothed complexity (convex hull, Delaunay triangulation...).
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Éric Colin de Verdière (CNRS)
Grégory Ginot (U. Paris 6)

Cyril Nicaud (U. Marne la Vallée)

..
.

..
.

And also... Mark de Berg (TU Eindhoven), Veronique Cortier (CNRS), Hyo-Sil Kim
(KAIST), Jan Kratochvil (Charles U.), Sylvain Lazard (INRIA), Mira Lee (KAIST),
Hyeon-Suk Na (Soongsil U.), Yoshio Okamoto (JAIST), Chan-Su Shin (HUFS), Frank
Van der Stappen (Utrecht U.), Alexander Wolff (U. Würzburg).


