N

N

Parallelism and robustness in hybrid solvers for large
linear systems: Application to design optimization in
fluid dynamics

Désiré Nuentsa Wakam

» To cite this version:

Désiré Nuentsa Wakam. Parallelism and robustness in hybrid solvers for large linear systems: Appli-
cation to design optimization in fluid dynamics. Distributed, Parallel, and Cluster Computing [cs.DC].
Université Rennes 1, 2011. English. NNT: . tel-00690965

HAL Id: tel-00690965
https://theses.hal.science/tel-00690965

Submitted on 25 Apr 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00690965
https://hal.archives-ouvertes.fr

N¢ d’ordre : 4464

UNIVERSITE DE

RENNES 1

ANNEE 2011

ueh

N

THESE / UNIVERSITE DE RENNES 1
sous le sceau de I’Université Européenne de Bretagne

pour le grade de
DOCTEUR DE L’UNIVERSITE DE RENNES 1

Mention : Informatique

Ecole doctorale MATISSE

présentée par

Désiré NUENTSA WAKAM

préparée & I'unité de recherche INRIA
Institut National de Recherche en Informatique et Automatique
Composante universitaire ISTIC

Parallélisme et Robustesse

dans les solveurs hybrides

pour grands systémes linéaires :

Application & 'optimisation

en dynamique des fluides

Thése soutenue & Rennes
le 07 decembre 2011

devant le jury composé de :

Luc GIRAUD
Directeur de recherche, INRIA, Bordeaux / rapporteur

Francois-Xavier ROUX

Professeur associé, UPMC, Paris / rapporteur
Stéphane AUBERT
PDG, FLUOREM S.A, Lyon / examinateur

Laura GRIGORI
Chargée de recherche, INRIA, Saclay / examinateur

Bernard PHILIPPE

Directeur de recherche émérite, INRIA / examinateur

Jocelyne ERHEL
Directrice de recherche, INRIA / directrice de thése

Edouard CANOT
Chargé de recherche, CNRS-IRISA /co-directeur de thése

“A mon arriére grand-meére, ma grand-mére et
ma maman, ces trois magnifiques femmes qui
m’ont appris qu’en toutes choses, il faut des
principes, de l'effort et de la persévérance”
Meres, puissiez-vous retrouver entre les lignes de
ce rapport les prémices de votre éducation.

Remerciements

Et maintenant que le temps des récoltes est arrivé dans le bassin rennais, il me vient un
grand plaisir de remercier vivement et sincérement ceux qui ont contribué & ce que la graine
puisse porter du fruit:

Ma profonde gratitude va en premier & Mme Jocelyne Erhel mon encadreur. Merci Jo-
celyne d’avoir guidé mes pas au cours de ces travaux de thése, de m’avoir appris & travailler
de facon autonome sans pour autant m’éparpiller. Merci pour toutes les corrections que tu
as proposées aux premieres versions de ce manuscrit. Merci surtout pour ta disponibilité,
ton encouragement et pour tous tes conseils par rapport a la poursuite de ma carriére
professionnelle.

Je remercie M. Edouard Canot qui m’a encadré au debut de ma thése et qui a été
ensuite trés disponible & apporter des éclaircissements chaque fois que j’ai eu recours a lui.
Au dela de la recherche, j’aimerais te remercier, Edouard, pour ta constante sollicitude
durant ces trois années, pour les repas en famille et pour les sorties & Lyon, Vannes et
ailleurs.

Merci & M. Luc Giraud et M. Frangois-Xavier Roux d’avoir accepté la charge d’évaluer
cette thése. J’ai toujours été trés heureux d’échanger avec Luc a chaque fois lors de nos
rencontres pendant les conférences et workshops et je lui en suis trés reconnaissant. Merci
& Francois-Xavier pour toutes les suggestions pour la suite de ce travail.

Merci & Mme Laura Grigori et M. Stéphane Aubert d’avoir accepté d’examiner cette
thése. Laura m’a beaucoup encouragé durant ma thése & nouer des collaborations avec les
autres chercheurs et je la remercie de tout coeur ici.

Je suis trés reconnaissant envers M. Bernard Philippe avec qui j’ai eu beaucoup d’échan-
ges durant ma thése. Merci pour toutes les remarques qui m’ont aidé & mieux cerner certains
aspects de mon travail. Au-deld de ses grandes qualités pédagogiques et de recherche,
Bernard est une personne trés simple et trés aimable qui n’a pas hésité & venir vers moi
chaque fois qu’il en avait I'occasion.

I would like to thank M. Bill Gropp for his welcome during my visit at NCSA and for
suggesting many improvements in this work.

Un merci tout particulier & Frangois Pacull de FLUOREM avec qui j’ai eu une collabo-
ration intensive & la fin de cette thése: merci Francois d’avoir pris tout le temps necessaire
pour m’expliquer les problémes liés & vos matrices, merci pour les nombreuses suggestions
a Pamélioration de mon schéma hybride et merci pour tout le temps que tu as pris pour
rédiger et améliorer une partie de notre article.

Merci & M. Emmanuel Kamgnia qui m’a donné ’occasion de faire de la recherche dans

il

ce domaine, merci d’avoir eu confiance en moi. J'espére avoir été & la hauteur de tes
attentes.

Je tiens a remercier toute I’équipe SAGE au sein de laquelle j’ai fait cette thése. Ceux
que j’ai connu en premier: Fabienne et Cécile, Caroline, Noha, Amine, Guy et Mohamad,
et tous les autres : Géraldine, Nadir, Baptiste, Denis, Sinda, Souhila, Julia et Mestapha.
Je remercie tout particulierement Nadir pour toute son aide technique et pour sa bonne
humeur légendaire qui a meublé mon passage dans 1’équipe, Baptiste pour les nombreuses
discussions qu’on a eu pendant notre fin de thése et bien sir sa serie quotidienne d’histoires
droles, Julia ma collégue de bureau pour I’ambiance et les fous rires qu’on a partagé durant
ces trois années, et bien str Mestapha dont les précieux conseils de marathonien m’ont
permis d’améliorer mes piétres performances.

J’aimerais exprimer toute ma gratitude envers ma famille qui m’a toujours soutenu
sur tous les plans durant tout mon parcours académique. D’abord je rends un vibrant
hommage & ces trois femmes de ma vie, ces étoiles du matin : mon arriére grand-maman,
ma grand-mére et ma maman qui m’ont montré le prix de 'effort et qui ont da faire des
choix difficiles pour assurer notre éducation. Je pense ensuite & Basile Kuate mon oncle et
tuteur, Luc Kamgue mon oncle et conseiller, Pascal Wafo mon oncle et ami : retrouvez ici
toute ma reconnaissance pour tous vos sacrifices, merci.

Merci & toi Carole pour ton soutien au cours de ces derniéres années et surtout pen-
dant ma traversée du désert et merci pour ton oreille attentive & mes ’élucubrations
philosophiques’.

J’adresse aussi mes remerciements & la communauté camerounaise pour son accueil
a Rennes: merci & Mme Frangoise Yamachui notre meére, Roméo Tatsambon et Guy
Atenekeng pour leurs nombreux conseils au début de ma thése et René PEMHA pour
les conseils de vie qu’il n’a cessé de m’apporter. Les camerounais de Rennes étant nom-
breux, je ne pourrais pas tous les citer ici et je remercie sincérement tous ceux que j’ai
connus & ’ACR et qui ont su mettre la bonne ambiance lors de nos réunions.

Un merci spécial & tous ceux qui m’ont permis de m’évader de la recherche et plus
particulierement a tous ceux qui n’ont jamais cessé de multiplier les coups tordus’ pour
m’éloigner de mon PC le week-end. Je pense spécialement & mon triplet 'favori’ : Olivier,
Jean Michel et Stéphane et mes deux jeunes ’filles’: Nadége et Houdat. J'espére que les
distances géographiques qui se creusent ne changeront rien & notre amitié. Je pense bien
sir a tous ceux avec qui on a organisé les differentes sorties et soirées ’jeux de société’:
Laure, Alain, Liliane, Achy, Belinda, Mauclére, Christophe, Francis et Cyrille. Un merci
tout particulier 8 Romuald et Merlin : il n’y a pas si longtemps qu’on se connait mais c’est
comme si on a toujours été des fréres; continuez de partager votre bonne humeur, votre
sincérité et votre joie de vivre.

Je remercie ici tous mes amis du club de Ngoa : Christiane, Agnés, Merline, Simplice,
Rodrigue, Innocent, Dieudonné, Bernard. Bien que géographiquement séparés, vous avez
pu rendre nos liens encore plus forts a travers les visites (super speed), toutes nos confe-
rences téléphoniques, et bien sir toutes les séries de blagues et d’histoires rocambolesques.

Le club des six : Marcel et Emma, Fadi, Oumoul et Mariette. Merci pour toutes les
soirées studieuses et bien siir les fous rires, gaffes et autres coups tordus qui ont meublé
notre parcours académique aussi bien & Ngaoundéré qu’a Yaoundé.

Si éloignés et pourtant si présents : merci & David, Eugéne, Danielle, Arlette, Désiré,
Mariette et Ulrich de m’avoir montré que la distance ne compte pas dans une vraie amitié.

The last but not the least : my friend April Warren, thank you for your warm welcome
during my stay in Urbana, it has been a pleasure getting to know you. You are a great
person.

iii

CONTENTS

[Abstract] vii
Résumél viii
1__Introductionl 1
1.1 Description générale du probleme| L. 1
[1.2 Résolution de systémes linéaires et tacteurs de performance| 2
[1.2.1 Méthodes directes paralléles| 3

[1.2.2 Méthodes itératives paralleles| 7

[1.2.3 Approches hybrides basées sur une décomposition de domaine al- |

| gébriquel e 9
[.3__Positionnement de Ia thése et contributions 11
[1.3.1 Etude comparative de solveurs pour les systemes issus de la dy- |

| namique des fluideg|.o 12
[1.3.2 GMRES paralléle avec un préconditionneur Schwarz multiplicatiff . . 12

[1.3.3 Préconditionnement de GMRES par déflation et Schwarz additif] 13

[1.3.4 Reduction de la mémoire dans les solveurs hybrides pour les systemes |

| ssus de CEDI .. . o 0o 13
IL.3.5 Parallélisme et robustesse dans GMRES avec une base de Newton |

| augmentee] Lo 13
[1.3.6 Analyse globale du parallélisme et de la robustesse dans les schémas |

| hybrides| 14
|2 A comparative study of some distributed linear solvers on systems arising |
| from fluid dynamics simulations | 15
2.1 Problem Defimitionlo o 15
2.2 Distributed Linear Solvers| Lo oo 16
2.3 Enwvironment of Tests|. 17
2.4 Experimental Comparisons| 17
2.4.1 Test Matrices| 17

[2.4.2 Numerical Behavior, Parallel Efficiency and Fill-in with Direct Solvers| 18

2.4.3 Parallel Behavior of Preconditioners 20

2.5 Concluding Remarks| oo oo 21

iv

CONTENTS

|13 Parallel GMRES with a multiplicative Schwarz preconditioner| 23
3.1 Introduction|.o 23
3.2 A parallel version of GMRES preconditioned by multiplicative Schwarz | . . 25

13.2.1 Explicit formulation of the multiplicative Schwarz preconditioner| . . 25

13.2.2 Background on GMRES with the Newton basis| 26

[3.3 Enhancing the parallelism in subdomamns| 31
[3.3.1 Motivations for two levels of parallelism| 31

[3.3.2 Practical implementation| L. 33

[3.4 Numerical experiments| oo 34
3.4.1 Software and hardware frameworkl 34

342 Test matrices 35

3.4.3 Numerical robustness of GPREMS|. 36

[3.4.4 Benefits of two levels of parallelism| 36

3.5 Concluding remarks| oL 38

|4 Parallel Adaptive Deflated GMRES| 40
4.1 Introduction|. 40
1.2 Adaptive preconditioner for the deflated GMRES(m)| 41
4.3 Implementation notes| L 42
4.4 Numerical experiments| 43
4.4.1 Benefits of the deflated restarting| 43

4.4.2 Adaptive DGMRES and Full GMRES| 44

A5 conclusionl 45

[Memory Efficient Hybrid Algebraic Solvers for Large CFD Linear Sys- |
[_femsd 46
b1 Introduction|.o 46
B2 Confextl o oo o 47
[5.2.1 The Family of Linear Systems|. 47

b.2.2 The Hybrid Algebraic Solver| 48

6.2.3 The Memory Issue| L 50

6.3 Some Key Elements in Memory Usage| 50
0.3.1 Scalar vs Block Data Formatl 50

5.3.2 The Partitioning| L 51

[6.3.3 Splitting the Fields| 52

.34 Deflationl 53

BA Resultd. oo 55
41 The Test Casesl 56

0.4.2 'The plattorm ot tests|. 96

[5.4.3 ParMETIS Edge Weights| 57

[5.4.4 The Aerodynamic/Turbulent FieldSplit| 57
................................. 58

B.5 Conclusionl. 61

6 Paralleli [Tol T CMRES with the N basi 1 |
| deflation of eigenvalues| 62
6.1 Introduction|. 62
6.2 Restarted GMRES accelerated by deflation| 64
0.3 Deflated GMRES 1n the Newton basigl 65
6.3.1 Augmenting the Newton basis|. 66

CONTENTS

6.3.2 AGMRES : Augmented Newton-basis GMRES| 69

6.4 Numerical experiments| o 74
[6.4.1 Test routines and implementation notes| 74

6.4.2 Test problems|. L L 75

643 Platform ot tests] 76

[6.4.4 Analysis of convergence| Lo 76

[6.4.5 Analysis of the CPU time| 82

[6.4.6 Analysis of parallelism| oo 00000 83

6.5 Concluding remarks| o Lo 86

7 Overview of the parallelism and robustness in Krylov subspace methods |
| with Schwarz preconditioners| 87
[[.1 Introduction|. L 87
(7.2 Graph Partitioning in iterative methods| 88
[7.2.1 Non overlapping partitioning and matrix-vector product| 88

[7.2.2 Overlapping partitions| 89

[7.2.3 Weighted partitions| 89

7.3 Formulation of algebraical Schwarz preconditioners| 90
[t.3.1 Additive Schwarzl 90

[[.3.2 Restricted Additive Schwarz 91

[7.3.3 Multiplicative Schwarz| 91

(.34 Subdomain solverl. o 93

[7.3.5 Scalable Schwarz preconditioners| 94

7.4 Krylov subspaces accelerators|. 0oL 95
[7.5 Numerical behavior of Schwarz preconditioners with GMRES| 96
(o1 Additive Schwarz and Restricted additive Schwarzl 96

[7.5.2 Restricted additive Schwarz and Multiplicative Schwarzl 98

[7.6 Improving the parallelism| 0. 101
[7.6.1 Deriving the Krylov basisf 101

[7.6.2 Illustration of data dependency between the Krylov basis vectors| . . 103

[7.6.3 Illustration of data dependency with the multiplicative Schwarz| . . . 104

[7.6.4 Improving the parallelism through the subdomain solvers| 105

[7.6.5 Illustration of two levels of parallelism with multiplicative Schwarz . 107

[7.7 Improving robustness with deflation| 108
[7.7.1 Deflation by preconditioning|. 109

[7.7.2 Deflation by augmenting the basis| 110

[7.7.3 Benefits of the deflation in GMRES with Schwarz preconditioners|. . 111

[(.8 Conclusionl. 114

8 Conclusion| 115
[A_TTest cases| 117

vi

Abstract

This thesis presents a set of numerical schemes that aim at solving large linear systems
on parallel computers. The proposed approaches are part of a hybrid scheme where the
direct and iterative methods are combined through domain decomposition techniques. The
initial problem is first divided into subproblems by partitioning the coefficient graph of the
system. The Schwarz-based methods are then used as preconditioners for GMRES-based
Krylov methods.

We first consider a hybrid scheme using an explicit formulation of the multiplicative
Schwarz preconditioner. We define two levels of data parallelism : the first level has been
used to parallelize the GMRES method at the global level; we introduce the second level
to solve the subsystems induced by the Schwarz preconditioner through a parallel direct
method. We show that this splitting guarantee a certain robustness in the global hybrid
approach by reducing the total number of partitions. Moreover, this approach enables a
better usage of CPU resources allocated inside a compute node.

Then we study the convergence and the parallelism in the GMRES method which is
used as the global accelerator in the hybrid method. The general observation is that the
number of iterations in that method increases very fast with the number of partitions in
the hybrid solver, and so the total CPU time. To limit this effect, we propose several
implementations of the GMRES method with the deflation methods. These approaches
formulate a deflation process either as an adaptive preconditioner or an augmented subspace
basis technique. We show the usefulness of these approaches in their ability to limit the
influence of the right choice of the Krylov basis size, and thus to avoid the stagnation of the
global hybrid solver. Moreover, these approaches are very efficient to reduce the memory
usage as well as the global CPU time and also the exchanged MPI messages between the
working processors.

The benefits are given throughout this thesis on moderate to large linear systems arising
from several applications fields, and mainly from design optimisation in computational fluid
dynamics.

Mots-clés : algebraic domain decomposition, hybrid direct/iterative methods, parallel
multiplicative Schwarz, GMRES, adaptive deflation, fluid dynamics systems.

vii

Résumé

Cette thése présente un ensemble de routines pour la résolution des grands systémes
linéaires creuses sur des architectures paralléles. Les approches proposées s’inscrivent dans
un schéma hybride combinant les méthodes directes et itératives & travers 'utilisation des
techniques de décomposition de domaine. Dans un tel schéma, le probléme initial est divisé
en sous-problémes en effectuant un partitionnement du graphe de la matrice coefficient du
systéme. Les méthodes de Schwarz sont ensuite utilisées comme outils de précondition-
nements des méthodes de Krylov basées sur GMRES.

Nous nous intéressons tout d’abord au schéma utilisant un préconditionneur de Schwarz
multiplicatif. Nous définissons deux niveaux de parallélisme: le premier est associé a
GMRES préconditionné sur le systéme global et le second est utilisé pour résoudre les
sous-systémes a ’aide d’une méthode directe paralléle. Nous montrons que ce découpage
permet de garantir une certaine robustesse & la méthode en limitant le nombre total de sous-
domaines. De plus, cette approche permet d’utiliser plus efficacement tous les processeurs
alloués sur un noeud de calcul.

Nous nous intéressons ensuite a la convergence et au parallélisme de GMRES qui est
utilisée comme accélerateur global dans ’approche hybride. L’observation générale est que
le nombre global d’itérations, et donc le temps de calcul global, augmente avec le nombre
de partitions. Pour réduire cet effet, nous proposons plusieurs versions de GMRES basés
sur la déflation. Les techniques de déflation proposées utilisent soit un préconditionnement
adaptatif soit une base augmentée. Nous montrons 'utilité de ces approches dans leur
capacité & limiter I'influence du choix d’une taille de base de Krylov adaptée, et donc a
éviter une stagnation de la méthode hybride globale. De plus, elles permettent de réduire
considérablement le cotit mémoire, le temps de calcul ainsi que le nombre de messages
échangés par les différents processeurs.

Les performances de ces méthodes sont démontrées numériquement sur des systémes
linéaires de grande taille provenant de plusieurs champs d’application, et principalement
de 'optimisation de certains parameétres de conception en dynamique des fluides.

Mots-clés : Décomposition de domaine algébrique, méthodes hybrides directes/iteratives,
Schwarz multiplicatif paralléle, GMRES, Déflation adaptative, Calcul en dynamique des
fluides.

viii

CHAPTER 1

Introduction

Le point de départ de ce travail se situe dans le cadre du projet LIBRAERO, financé par
I’Agence Nationale de la Recherche et regroupant des partenaires industriels et académiques.
L’un des objectifs de ce projet est I’amélioration d’un outil de paramétrisation dans la simu-
lation numérique des écoulements (ou CFD pour Computational Fluid Dynamics) par la
societé FLUOREM, S.A. Cette amélioration passe par la résolution des systémes linéaires
issus des équations de Navier-Stokes moyennées (ou RANS pour Reynolds-Averaged Navier-
Stokes). Les matrices-coefficients sont non symétriques, creuses et de grande taille (typ-
iquement plus d'un million d’inconnues). Le but de cette thése est donc d’étudier et
d’améliorer des techniques existantes et aussi de développer de nouvelles approches pour
résoudre efficacement ces systémes linéaires sur des architectures paralléles. Dans cette
thése, plusieurs méthodes ont été proposées allant dans ce sens. De fagon générale, ces
méthodes s’appliquent & tout systéme linéaire creux. Une partie de cette thése a donc
été consacrée & fournir une implémentation standard des différentes approches dans des
bibliothéques de type ’open-source’ et & effectuer de nombreux essais numériques sur la
grille de calcul Grid5 et sur les supercalculateurs de 'IDRIS m

Cette introduction générale donne tout d’abord un apercu des différents critéres de
performance lors de la résolution sur des architectures paralléles de ces grands systémes
linéaires. Dans la littérature, il existe plusieurs méthodes qui remplissent certains de ces
critéres; nous en donnons quelques références. Pour d’autres critéres, nous proposons ici
plusieurs solutions pour les satisfaire. Cette thése contient donc plusieurs parties qui sont
plus ou moins connectés au travers de ces critéres. Nous avons en effet choisi de construire
chaque partie de fagon indépendante. Ceci induit par conséquent que nous n’ayons pas pu
éviter quelques répétitions dans ’assemblage du présent manuscrit. A la fin de ce chapitre,
nous donnons un apercu des differentes contributions relatifs & chaque partie de cette thése.

1.1 Description générale du probléme
Le probléme & résoudre est formulé comme un systéme d’équations algébriques

Az =1b (1.1)

*http://www.grid5000.fr
Thttp: / /www.idris.fr

Résolution de systémes linéaires et facteurs de performance

La matrice A du systéme , fournie par FLUOREM correspond & la matrice jacobi-
enne résultant des dérivées partielles de premier ordre de I’équation des fluides newtoniens
pour des écoulements compressibles. Les dérivées sont calculées par rapport aux variables
conservatives (p, pu, pv, pw, pE, pk, pw) ou p est la densité, (u, v, w) les composantes en 3D
du champ de vitesse, E I’énergie totale, k et w les facteurs de turbulence. Une présenta-
tion compléte du probléme physique ainsi que du schéma de discrétisation est présentée
par Aubert el al [I5]. Au cours de ce travail, le maillage physique n’étant pas fourni,
nous n’avons tenu compte que des informations algébriques extraites de la matrice A. En-
tre autres caractéristiques, il est important de noter que A est non symétrique, sa partie
symétrique (A + AT)/2 n’est pas définie positive, ses éléments sont trés hétérogénes a
cause des différents niveaux de grandeur entre les variables du flux. Plusieurs autres car-
actéristiques relatives aux matrices utilisées dans ce document sont données en Annexe
[A]l Celles-ci incluent notamment le conditionnement, le taux de remplissage et le degré de
symétrie. Notons enfin que bien que la matrice A soit non symétrique (en valeurs), sa
structure est symétrique en considérant le graphe-quotient de la matrice décrite comme
suit

Al,l ALQ e Al,N
W Ay Ago | Ao N (1.2)
AN71 AN72 . AN,N

ou Ary € R pour 1 < I,J,< N, et N = n/b. Selon que 'on est en 3D ou en 2D, la
taille des blocs vaut respectivement 7 ou 5.

Bien que nous nous soyons concentrés davantage sur ces systémes qui viennent d’étre
décrits, il est important de souligner que les méthodes proposées s’appliquent a tout systéme
linéaire & coefficients réels. Dans la suite du document, nous considérons donc de facon
générale, et sauf indication contraire, un systéme tel qu’énoncé dans I’équation (|1.1)).

1.2 Reésolution de systémes linéaires et facteurs de perfor-
mance

Au cours du temps, plusieurs techniques ont été proposées pour résoudre de plus en plus
rapidement des systémes linéaires de plus en plus grands. Elles peuvent étre classées en
deux catégories distinctes et extrémes: les méthodes & usage général de type ’boite noire’
qui ne requiérent pas ou alors peu de connaissances sur le probléme physique. Dans cette
catégorie se trouvent les méthodes directes [45] et les méthodes itératives généralement
basées sur les sous-espaces de Krylov [I13], I31]. Dans l'autre catégorie, on retrouve les
méthodes spécialisées pour certains classes de problémes ayant des ’bonnes propriétés’
physiques (Transformés de Fourier rapides|36], méthodes multipoles rapides [95], méthodes
multigrilles [25],...). Nous nous concentrons ici sur les méthodes générales de la premiére
catégorie.

De facon assez simple, ces méthodes sont performantes si elles permettent d’obtenir la
solution du systéme avec un bon rapport ’qualité/prix’; la qualité étant prise ici comme
I'erreur dans la solution x; le colit quant a lui représentant la quantité de ressources de calcul
utilisées (temps de calcul, nombre de processeurs, charge d’utilisation des processeurs,
mémoire requise, ...). De facon concréte, nous mesurons d’abord la qualité de la méthode
par rapport a sa stabilité numérique; elle définit la capacité de la méthode & fournir une
solution dont I'erreur est proportionnelle aux erreurs dans les données en entrée (backward
stability). L’erreur relative dans la solution calculée & est bornée par (k(A)-||b— Az||/||b]])

Résolution de systémes linéaires et facteurs de performance

ou k(A) est le conditionnement de A. Puisque k(A) est inhérent au systéme, on utilise
généralement le résidu ||b — AZ|| pour déterminer U'erreur dans la solution. Les méthodes
directes sont généralement utilisées du fait de leur stabilité numérique. Cependant, les
cofits mémoire requis par ces méthodes feront que 'on préfére les méthodes itératives pour
les systémes de trés grandes tailles. Ces derniéres en effet, requiérent moins de ressources
mémoire et permettent d’obtenir, & partir d’itérations successives construites a faible coit,
une solution approchée du systéme . Cependant, il est difficile de prédire a 'avance
le nombre d’étapes nécessaires. Nous mesurons donc la qualité d’'une méthode itérative
d’abord par rapport a sa capacité & converger vers la solution (c’est-a-dire a fournir un
petit résidu) en un nombre fini d’opérations : c’est ce que nous appelons dans la suite
la robustesse. 1l est aussi requis que la vitesse de convergence soit bonne. On cherche
généralement & satisfaire & ces deux critéres de qualité en préconditionnant la matrice
A. Plusieurs approches hybrides ont donc été développées en prenant des variantes des
méthodes directes comme préconditionneurs pour les approches itératives. Les approches
plus récentes utilisent des techniques de décomposition de domaines pour combiner le direct
et I'itératif et mieux exploiter I'architecture multi-niveaux des ordinateurs paralléles de plus
en plus performants.

Dans cette section, nous rappelons, de facon succincte, quelques développements récents
dans les méthodes directes et itératives, avec un accent sur leur implémentation paralléle et
une restriction pour le cas des matrices non symétriques. A partir de ces deux approches,
nous introduisons ’approche hybride qui est utilisée tout au long de cette these.

1.2.1 Meéthodes directes paralléles

En 1801, Carl Friedrich Gauss se servit de la méthode d’élimination qui porte son nom
pour déterminer l'orbite d'une cométe [67]. Cette méthode est restée un standard dans
les méthodes directes pour systémes a coefficients non symétriques. L’idée principale est
d’écrire la matrice A comme un produit A = LU ou L est triangulaire inférieure et U
triangulaire supérieure. L’élimination de Gauss peut s’écrire récursivement comme

T T
A= { az Ag] N [lor Tn—1] [0 A 0 I, (13)

N a1 . n . <)
ou ly; = P si ap # 0, uﬂ = alT2 et A= Ay — lglulTQ. La matrice A est le complément

de Schur (ié aq1 par rapport a A. La factorisation LU de A est obtenue en répétant
le processus sur le bloc A. Lorsque la matrice A est dense, la factorisation se fait sur
une matrice PAQ ol P et @ sont choisis de fagon & garantir la stabilité numérique, en
évitant que des valeurs nulles ou trop petites se retrouvent sur la diagonale. Lorsque A est
creuse, outre la stabilité, P et () permettent de conserver au mieux la structure creuse de
la matrice. En effet, lors de I’élimination de Gauss, des entrées qui étaient nulles peuvent
devenir non nulles. Par exemple, dans I'opération A = Agy — lojuly, si on suppose que
(A22)ij = 0, alors flij # 0si (I21); # 0 et (u12); # 0. C’est le phénoméne de remplissage,
qui dépend de la structure creuse de la matrice. Un des enjeux des méthodes directes
est de concevoir des algorithmes de renumérotation pour limiter le remplissage dans les
facteurs L et U tout en garantissant une bonne stabilité numérique. C’est un probléme
NP-complet [I35]. Les approches existantes sont donc basées sur des heuristiques locales
94, 3], globales [63], [85] ou hybrides [10} [75]. Lorsque la matrice A est non-symétrique,
la plupart de ces méthodes utilisent plutot la structure creuse de la matrice A + AT ou
AT A pour obtenir une renumérotation symétrique. Les approches récentes proposent des

Résolution de systémes linéaires et facteurs de performance

méthodes de renumérotation non symétrique en n’utilisant que la structure creuse de la
matrice A [8, 38, [69].

De facon classique, la résolution du systéme par une méthode de factorisation LU
contient les principales étapes suivantes :

1. Phase d’analyse ou phase de renumérotation et factorisation symbolique : la ma-
trice est renumérotée pour réduire le remplissage dans les facteurs L et U. Dans cette
étape aussi sont déterminés les emplacements des nouveaux éléments qui seront créés
lors de la factorisation. Les structures de données sont donc préparées a 1’avance pour
recevoir ces valeurs. Une tache importante & cette étape est de calculer un graphe
de dépendances dans le processus d’élimination. Les noeuds du graphe représentent
I’élimination d’une ou de plusieurs colonnes. Les arcs du graphe représentent les
dépendances entre les taches d’élimination.

2. Factorisation numérique : Calcul des facteurs L et U. Cette étape n’est pas
vraiment décorrélée de I'étape précedente. En effet, outre la permutation (dépendante
de la structure) pour réduire le remplissage, il est necessaire ici de faire une autre
permutation, qui dépend des valeurs au cours de la factorisation, pour assurer la
stabilité numérique de la méthode.

3. Phase de résolution : a cette étape, la solution du systéme est calculée grace a
une substitution avant avec la matrice L et une substitution arriére avec la matrice

U.

Derriére cette présentation basique se cachent en réalité une expertise et une littérature
abondante relatives a chacune de ces différentes étapes. De facon globale, I’ensemble des
techniques disponibles cherchent d’une part, (a l'exemple des méthodes pour matrices
denses) a tirer profit de larchitecture des machines en permettant un acces régulier des
données en mémoire, et d’autre part & accroitre le parallélisme grace & une répartition
équilibrée de charges et une réduction des communications entre différents processeurs.
Ces objectifs sont généralement difficiles & atteindre en méme temps, en y associant aussi
le souci d’obtenir une factorisation stable. Nous présentons ici de facon succincte deux
solveurs proposant deux approches différentes et qui représentent, a notre avis, une bonne
partie des progrés récents dans les méthodes directes paralléles, voir |5, [72] pour de plus
amples détails :

SuperLU _DIST et la factorisation sur des supernceuds [91]. Cette approche
est basée sur une factorisation de type m’ght—lookingﬂ et est particuliérement appropriée
pour des matrices ayant une forte structure non symétrique. Dans la phase de factori-
sation symbolique, la matrice est partitionnée en utilisant la notion de supernceuds non
symétriques|43] et distribuée aux processeurs organisés de facon bloc-cyclique sur une grille
2D. Le parallélisme & cette étape repose sur cette distribution bloc-cyclique et sur le parti-
tionnement paralléle du graphe de la matrice |A| 4 |A|T [70]. A la sortie de cette phase est
produit ['arbre des séparateurs qui donne la dépendance dans I’élimination des colonnes et
qui permet aussi d’identifier les colonnes ayant la méme structure creuse et pouvant étre
regroupées ensemble (supernceuds). Dans la phase de factorisation numérique, les opéra-
tions d’élimination et de mise & jour sont faites sur les supernceuds. Ceci permet de réduire
les adressages indirects en mémoire et de mieux exploiter la hiérarchie des caches-mémoires

tAussitot qu'une colonne est éliminée, les colonnes suivantes de la matrice sont mises & jour. Dans la
version left-looking, la mise & jour d’une colonne est retardée jusqu’au moment ot elle doit étre éliminée.

Résolution de systémes linéaires et facteurs de performance

(grace a des noyaux d’opérations de type BLAS-2 et BLAS-3). Le parallélisme dans cette
phase repose sur la structure de I’arbre des séparateurs. En effet, & chaque étape de la fac-
torisation, les colonnes qui ne sont pas dépendantes peuvent étre éliminées en méme temps.
L’une des principales fonctionnalités dans cette méthode est I’amélioration du parallélisme
a travers 'utilisation du pivot statique. En effet, lorsque le pivot partiel est effectué pendant
la factorisation numérique, les processeurs ont besoin de communiquer pour rechercher le
pivot adéquat. Dans ’approche par pivot statique, il n’y a pas de permutation pendant la
factorisation et la séquence d’élimination est connue a ’avance. Cela permet d’attribuer
a Pavance et de fagon statique les taches aux differents processeurs. Le pivot statique
requiert les principales étapes suivantes :

1. Lors de la phase d’analyse, les lignes et les colonnes de la matrice sont d’abord
équilibrées et la matrice résultante est permutée pour avoir des éléments diagonaux
assez grands par rapport aux éléments non diagonaux. Cette phase équivaut & trouver
une matrice de permutation P,, des matrices diagonales D, et D. et de faire la
transformation P, - D, AD,

2. Lors de la factorisation numérique, les pivots inférieurs & un certain seuil sont rem-
placés. Plus précisement, étant donné un seuil ¢, si un pivot ay; < /e ||Al|1 alors ay;
est remplacée par /e - ||A]|1.

3. Dans la phase de résolution, un raffinement itératif est effectué si la solution n’est
pas assez précise. Typiquement, il s’agit & partir de ’approximation x de calculer

r =b— Ax
A-dx =rif berr > ¢ (1.4)
r =x+dx
ol € est la précision voulue et berr = max; L
(IA] - || + [b])s

Dans le chapitre [2| nous donnons quelques résultats numériques avec cette approche.

MUMPS et ’approche multifrontale [46, 4, [7]. Cette factorisation LU, basée sur
une approche multifrontale, est particuliérement adaptée aux matrices a structure presque
symétrique [5]. La phase d’analyse produit une séquence d’élimination sous forme de
graphe de dépendances appelée arbre d’assemblage. Chaque nceud de I’arbre représente une
factorisation d’une sous-matrice dense appelée matrice frontale. Par exemple, la matrice
A ayant la structure suivante ot X désigne des éléments non nuls

11X 0 0 X X
2 0 X X 0 0
A= 3 0 X X X 0 (1.5)
4 | X 0 X X 0
5 X 0 0 0 X
produit une factorisation ayant la structure
17X 0 0 X X
2 0 X X 0 0
L+U= 3 0 X X X 0 (1.6)
41X 0 X X X
51X 0 0 X X

Résolution de systémes linéaires et facteurs de performance

ou X représente le remplissage. Les matrices frontales sont définies comme suit

1 X X X

=4 |X U U F?Zé[ﬁg] (1.7)
5 | X U U

31X X 4 | X X

ot U designe la mise & jour nécessaire pour les variables dépendantes. La figure donne
le graphe de dépendance de ces matrices frontales.

Figure 1.2.1: Graphe de dépendance dans une approche multifrontale

En pratique, lorsqu’une rangée de colonnes dans la matrice factorisée contient une méme
structure non nulle, elles peuvent étre regroupées pour former des supernceuds. Dans ce
cas, la matrice frontale ne contient plus une seule variable comme dans 'exemple de la
figure ,mais un ensemble de variables & éliminer.

Dans la phase de factorisation numérique, le parallélisme est exploité a deux niveaux:
le premier se situe dans la structure du graphe d’élimination, deux branches de l'arbre
peuvent étre éliminées en méme temps. Dans ce cas, les processeurs sont associés aux
neeuds de arbre de facon statique aprés la phase d’analyse. Le deuxiéme se situe au
niveau des opérations sur les matrices frontales denses associées & chaque nceud de I'arbre.
En fonction de la taille de ces matrices, plusieurs processeurs sont affectés a son calcul. Vu
que la taille de ces matrices frontales n’est pas toujours disponible & ’avance, le nombre
de processeurs est défini de facon dynamique & 'exécution. Cela produit au final un
ordonnancement hybride des processeurs : statique (au moins un processeur alloué par
nceud apres la phase d’analyse) et dynamique (& Uintérieur de chaque nceud).

Notons qu’a la difference de SuperLu DIST, MUMPS utilise une stratégie de piv-
otage dynamique avec seuil & Uintérieur des matrices frontales. Lorsquun pivot accept-
able (supérieur au seuil) ne peut pas étre trouvée, l’élimination de la variable est affectée
au neeud parent. L’avantage de cette approche est de produire une factorisation stable.
L’inconvénient est ’espace mémoire requis pour stocker, non seulement la matrice frontale
contenant les variables & éliminer, mais aussi les matrices de mise & jour transmises par
les neeuds inférieurs de 'arbre. De plus, en présence du pivot dynamique, il est difficile
d’avoir une bonne estimation de la mémoire & utiliser dans la phase de factorisation. Les
développements récents ont introduit une fonctionnalité qui permet de stocker une par-
tie des facteurs sur le disque lors de la factorisation [2]: c’est la factorisation out-of-core.

Résolution de systémes linéaires et facteurs de performance

Cette approche procure 'avantage de travailler sur de trés grandes matrices mais le débit
de lecture/écriture du processeur vers le disque augmente considérablement le temps de
factorisation.

La complexité des méthodes directes et leur demande croissante de mémoire ont conduit
naturellement au développement des méthodes itératives.

1.2.2 Meéthodes itératives paralléles

L’idée basique dans les méthodes itératives est de partir d’'une estimation initiale o de la
solution au systéme et de construire une suite d’itérés successifs xx, k = 0,1,2,...
qui converge vers la solution exacte x*. L’équation présente un exemple de méthode
itérative pour améliorer la solution initiale fournie par la méthode directe. Les méthodes
itératives présentent plusieurs avantages par rapport aux méthodes directes : elles sont en
général plus faciles & implémenter car le noyau de calcul principal est basé sur le produit
matrice-vecteur creux y «— A-x. Puisque la matrice A n’est pas transformeée, elles requiérent
par conséquent moins de mémoire.

Cependant, le principal inconvénient dans les méthodes itératives est que leur con-
vergence n’est pas garantie. Ce critére dépend du rayon spectral de la matrice utilisée
pour formuler les itérées. Par exemple, les méthodes itératives "basiques’ de type Jacobi,
Gauss-Seidel, SOR s’écrivent comme un schéma de point fixe

Mzgi1 = Nxg + ¢ (1.9)

ol M est une matrice inversible et A = M — N. Pour tout xg, La suite d’itérées x, k =
0,1,2,... converge vers la solution du systéme si le rayon spectral p de la matrice
M™IN est inférieur a 1 [I13]. Quand bien méme la méthode itérative converge, il est
important de savoir quelle est sa vitesse de convergence et surtout le nombre maximum
d’étapes requises.

Les développements récents utilisent des approximations polynomiales de la forme

r = x0 + pr—1(A)ro (1.10)

ou z¢ est 'approximation initiale, 7o = b— Axg le résidu initial et px_1(A) est un polynome
de degré au plus k£ — 1. La motivation pour ces méthodes vient du résultat suivant :

Proposition 1.2.1. Il existe un polynome q de degré au plus n — 1 tel que A~ = q(A).

Voir [52] 113] pour la preuve. La difficulté réside alors dans la recherche du polynéome
q(A). La plupart des méthodes polynomiales se basent sur des projections dans le sous-
espaces de Krylov Ki(A,rg) pour approcher le polynéme g(A), ou Kr(A,79) est défini
comme

Kir(A,r0) = span{rg, Arg, ..., A¥ 1rg} (1.11)

Etant donnée Vj, une base de K, chaque itéré peut donc étre exprimé sous la forme
ap =20+ Vi, yx €R” (1.12)

Les méthodes de Krylov difféerent dans la facon de determiner le vecteur yy.

Résolution de systémes linéaires et facteurs de performance

La méthode GMRES : Dans le cas des matrices non-symétriques, en utilisant la rela-
tion (1.10)) et en imposant la condition de Petrov-Galerkin b — Azy, L AKy, on obtient la
méthode de GMRES [114] qui minimise a chaque itération la norme du résidu rg, i.e

Irllo=__ min b~ Aa, (113)
La plus grande partie de nos contributions dans cette thése est liée & cette méthode.
Pour une description des autres méthodes de Krylov, voir par exemple [24], 52, 96| 1T3]
121]. Une particularité de GMRES est sa convergence monotone : la suite des normes
de résidus est décroissante. De facon générale, I'avantage des méthodes de Krylov, et
donc de GMRES, repose sur le fait que leur convergence est garantie, en arithmétique
exacte, aprés n itérations. Il y a cependant intérét, et cela pour plusieurs raisons, a ce
que la méthode converge bien avant d’atteindre n itérations. En effet, le noyau de la
méthode réside a chaque itération k, dans la détermination d’une base V. Génerer la

base Vi = [vo,...,vx] requiert de construire une suite de puissances itérées a partir de
la matrice A et du vecteur résidu initial rg. Une base naturelle est donnée par la suite
vg = 10,01 = Avg,...,vp = Avg_1. Cependant, elle n’est pas stable numériquement.

Pour pallier ce probléme, on utilise généralement un procédé d’orthonormalisation pour
produire la base Vi. De ce fait, en terme de stockage et de temps CPU, le cott de la
méthode croit avec le nombre de vecteurs dans la base. Le cotit de 'orthogonalisation
augmente & chaque itération, ainsi que le nombre de vecteurs & stocker. De plus, dans
une implémentation paralléle, il y aussi un intérét a limiter le nombre de produits scalaires
découlants du procédé d’orthonormalisation.

Plusieurs améliorations ont été proposées pour cette méthode, voir par exemple [121]
pour un apercu assez détaillé :

o Leredémarrage permet de limiter les cotits sus-cités. Il s’agit, aprés un certain nombre
d’itérations, de se débarrasser de la base courante, et de prendre l'approximation
courante comme point de départ pour un nouveau cycle. Bien que limitant les cofits,
la conséquence immédiate est que la condition optimale de convergence (aprés n
itérations) n’est plus garantie, car on ne minimise la norme du résidu que dans une
petite partie du sous-espace de Krylov. Cette approche empéche aussi la convergence
superlinéaire généralement observée [132]. Les méthodes de déflation [16] 28] 53]
87, 98] gardent des informations utiles pendant le rédemarrage pour améliorer la
robustesse de cette approche. Au chapitre [] et [5] nous montrons l'efficacité de ces
approches sur notre probléme.

e Dans I'implémentation du procédé d’Arnoldi généralement utilisé pour produire la
base orthonormale V., les opérations essentielles sont les produits matrice-vecteur,
les produits scalaires et les mises & jour des vecteurs par les coefficients d’orthogonali-
sation. Sur des architectures & mémoire distribuée, les produits scalaires induisent
des communications globales qui peuvent avoir un effet important sur la scalabilité de
la méthode. De plus, les opérations vecteur-vecteur dans ce procédé ne permettent
pas d’exploiter efficacement la hiérarchie mémoire et la localité des données. Des
implémentations alternatives ont été proposées [17, 41l 50, 1), 79, 83, 118, 107].
Elles diminuent la quantité de messages et offrent un meilleur noyau de calcul en
dissociant la génération des vecteurs de la base de leur orthogonalisation. Cependant,
leur stabilité numérique est un autre point de préoccupation. Au chapitre [6 nous
utilisons une de ces approches ot la base est construite avec des polynéomes de Newton
et nous utilisons les méthodes de déflation pour améliorer leur robustesse.

Résolution de systémes linéaires et facteurs de performance

Préconditionnement: De fagon pratique, on a recours aux méthodes de précondition-
nement pour accélérer les méthodes de Krylov; c’est-a-dire que le systéme ((1.1)) est trans-
formé pour obtenir

MpAMg(My'z) = Mpb, (1.14)

ot My, et Mg sont des matrices inversibles et * = Mpgy. My est appelé précondition-
neur gauche et Mp est le préconditionneur droit. Le choix de My et Mp doit réaliser
un compromis entre le fait que M AMp ~ I et que Mg et My ne soient pas trop co-
teuses & appliquer. Le développement des préconditionneurs est en soi un grand axe de
recherche dans la résolution des systémes linéaires, voir par exemple [21I] pour un apercu
assez large des approches récentes. Une grande partie des approches récentes utilisent les
techniques empruntées aux méthodes directes pour construire des préconditionneurs adap-
tés aux méthodes itératives, produisant ainsi des méthodes hybrides. La premiére approche
a été de produire une factorisation incompléte de la matrice A = LU + R en limitant le
remplissage dans les facteurs L et U. Ces facteurs sont ensuite utilisés pour formuler le
préconditionneur. La robustesse d’un tel préconditionneur dépend du critére pour inclure
les nouveaux éléments créés lors de la factorisation. Les deux critéres utilisés se basent sur
le niveau de remplissage (ILU(k)) et/ou la valeur numérique des éléments créés (ILUT).
Voir par exemple [I13] pour une présentation détaillée de ces méthodes. De plus, il est
difficile d’obtenir des méthodes de factorisation incompléte performantes au méme titre
que les factorisations ’complétes’, et particuliérement sur des architectures paralléles. Les
méthodes de décomposition de domaine ont permis naturellement de définir une nouvelle
classe de méthodes hybrides exploitant au mieux ces architectures.

1.2.3 Approches hybrides basées sur une décomposition de domaine al-
gébrique

Le terme hybride renvoie & la combinaison de plusieurs techniques, principalement les
approches directes et itératives. Ce terme n’est pas nouveau. Par exemple dans [61],
Gallivan, Sameh et Zlatev proposent en 1990 une méthode hybride adaptative qui utilise
une factorisation incompléte comme préconditionneur & une méthode de Krylov et, si cette
méthode hybride ne converge pas assez vite, ils passent a une factorisation compléte.

Les méthodes hybrides actuelles cherchent a exploiter au maximum les avantages des
méthodes directes et des méthodes itératives tout en exploitant au mieux les architectures
paralléles. Elles sont basées sur des techniques de décomposition de domaine. En ’absence
du graphe du maillage physique, la décomposition est faite de fagon algébrique, c¢’est-a-
dire que le graphe de la matrice est décomposée en sous-graphes et chaque sous-graphe
correspond & un sous-domaine. Il existe un grand nombre de techniques permettant de
produire une telle décomposition. Les logiciels comme METIS [84] et SCOTCH [35] sont
des partitionneurs de graphe. L’objectif général est d’obtenir & peu prés le méme nombre
de nceuds dans chaque sous-graphe. De plus, le nombre d’arcs qui relient les sous-graphes
différents doit étre minimal. A partir de la décomposition de la matrice en sous-domaines,
on va ensuite distinguer deux grands types de méthodes de décomposition de domaine,
selon que 'on autorise les sous-domaines & se recouvrir ou non :

Décomposition de domaine sans recouvrement: Les méthodes de cette classe sont
dites d’interface. A partir du découpage en p sous-graphes, le systéme (1.14)) est réordonné

Résolution de systémes linéaires et facteurs de performance

de facon & avoir un systéme bloc de la forme suivante :

[Cl El 171 I i i b1 i
Cy Es €2 bo
: S e (1.15)
C, E, Tp by
A B ... F, B ||lag]| |bg]

Les blocs C; correspondent aux variables intérieures a chaque sous-domaine, B est le bloc
des séparateurs, les blocs E; et F; sont les variables d’interface entre C; et B. Une élimi-
nation des blocs F; produit

Cl E1 I bl
Cy Es T2 by
s =] (116)
Cp Ep Zp by
L S 1 L Yy | L bE |

ot S=B~-3"? FC'E; et bp = by — SP FC;7 ;. Le bloc S est le complément de
Schur. Le systéme (|1.15)) peut donc étre résolu en suivant les principales étapes :

1. Résoudre les systémes C;z; = b; pour z;.
2. Résoudre le systeme Sy = bp — > ¥ Fiz; pour y.
3. Résoudre Cix; = b; — E;y pour x;.

Ces trois étapes offrent plusieurs possibilités de résolution donnant lieu & plusieurs implé-
mentations [60} 73, 93]. De fagon globale, les systémes a ’étape 1 sont indépendants et
peuvent donc étre résolus en paralléle. La principale difficulté réside dans la résolution
du systéme avec le complément de Schur a ’étape 2. Ceci est généralement fait avec une
méthode itérative, puisqu’elle ne nécessite pas d’assembler la matrice S. Cependant, ce
systéme requiert en général un préconditionneur pour que la méthode globale soit robuste.
Et dans ce cas, il peut étre utile d’avoir explicitement S ou du moins une approximation.
Parmi les differentes approches, on distingue plusieurs cas: (1) On calcule une factorisation
incompléte de S et on l'utilise comme préconditionneur; (2) On calcule une approxima-
tion de S et ensuite on effectue soit une factorisation LU, soit une factorisation ILU de
I'approximation; Les facteurs produits sont donc utilisés comme préconditionneur pour le
systéeme a Pétape 2; (3) On construit des préconditionneurs de type Neumann-Neumann
ou de type Schwarz a partir des compléments de Schur locaux.

En terme de parallélisme, ces approches sont efficaces si la taille des matrices Cj, et
donc des variables indépendantes, est assez grande. Il peut arriver en effet, qu’a cause de
plusieurs contraintes liées au partitionnement, qu’il existe une trés grande interface entre
les sous-domaines. De ce fait, la taille de S sera trés grande et le parallélisme induit
sera réduit. Les approches proposées dans [93] [71] définissent des versions récursives du
complément de Schur.

Décomposition de domaine avec recouvrement: La deuxiéme catégorie des métho-
des hybrides est basée sur une décomposition avec recouvrement et sont dites de Schwarz
[113] 123, 127]. A Vorigine, la motivation de ces approches était de résoudre en domaine
continu des équations aux dérivées partielles (EDP) sur les domaines irréguliers [117].

10

Positionnement de la thése et contributions

Tout comme dans le cas des méthodes de Schur, le principe est de diviser le probléme
en sous-problémes, ensuite de résoudre chacun des sous-problémes et utiliser les solutions
pour mettre & jour les interfaces entre ces sous-problémes. Cette technique a été ensuite
généralisée aux EDPs discretisés, ou la matrice A (issue d’un schéma quelconque de dis-
crétisation) est découpée en plusieurs sous-matrices, chaque sous-matrice correspondant
directement & une partie du probléme original.

L’approche utilisée ici et dans beaucoup d’approches récentes est algébrique. Au lieu
de partir d’'un domaine discret et de générer les sous-domaines, nous partons du graphe de
la matrice et nous effectuons une décomposition en sous-graphes sur celle-ci. Ceci signifie
que la décomposition peut ne pas correspondre & quelque chose de connu en terme de sous-
probléme physique. De fagon expérimentale, ces approches sont viables et ont permis de
développer des méthodes de résolution & usage général. Vu que la convergence de ces méth-
odes de Schwarz n’est prouvée que pour une classe de problémes, ’approche habituelle est
de les utiliser comme des préconditionneurs pour les méthodes de Krylov. On distingue la
méthode de Schwarz additive et la méthode de Schwarz multiplicative. Elles correspondent
respectivement a une formulation par blocs des méthodes de relaxation de type Jacobi et
Gauss-Seidel. De ce fait, Schwarz multiplicatif offre un préconditionneur plus robuste que
Schwarz additif, ceci pour le méme schéma de découpage en sous-domaines. En environ-
nement paralléle cependant, le préconditionneur de Schwarz additif est bien plus efficace
que Schwarz multiplicatif. Nous ’'utilisons donc comme méthode de préconditionnement
dans les chapitres [[f] et [6]

Les travaux récents [13] [12] ont cependant exhibé une formulation de Schwarz multipli-
catif qui offre un bon parallélisme lorsqu’elle est utilisée comme préconditionneur pour une
version de GMRES. Une partie de ce travail a donc été consacrée a améliorer le parallélisme
et la robustesse dans cette approche. Nous en discutons dans les chapitres [3] et [7]

Il est aussi important de noter qu’il existe une classe de méthodes de Schwarz dites op-
timisées qui permettent d’accroitre la robustesse des méthodes de Schwarz [62, [128]. Dans
le cadre du projet LIBRAERQO, les possibilités de ces classes de méthodes sont explorées
dans la thése de Thomas Dufaud, voir par exemple [44]. Nous nous concentrons donc ici
sur la version restrictive de Schwarz additif et la forme explicite de Schwarz multiplicatif.

Dans la section suivante, nous présentons de fagon plus détaillée les méthodes qui ont
été développées en se basant sur ces deux préconditionneurs.

1.3 Positionnement de la thése et contributions

Les méthodes hybrides directes/iteratives basées sur une approche de type Schwarz ou
Schur permettent de trouver un compromis entre les critéres de performance recherchés :
la robustesse, le parallélisme et 1'utilisation mémoire, entre autres. Elles permettent dans
les deux variantes d’utiliser une méthode itérative de type Krylov sur un systéme de méme
taille que le systéme global et d’utiliser les méthodes directes dans les sous-systémes issus
de la décomposition en sous-domaines. Dans cette thése, notre approche est basée sur une
décomposition avec recouvrement. Les méthodes développées s’appliquent dans certains
cas sur des approches de type Schur.

Notre contribution dans cette thése est d’accroitre la robustesse tout en utilisant au
maximum les opérations paralléles dans le schéma hybride; un accent est mis aussi sur la
consommation mémoire. De facon succinte :

e Nous avons amélioré le parallélisme dans le préconditionneur de Schwarz en définis-
sant deux niveaux d’opérations paralléles. Le premier niveau de parallélisme est

11

Positionnement de la thése et contributions

défini & travers tous les sous-domaines et est utilisé pour les operations & travers
tous les sous-domaines. Le deuxiéme niveau est défini & l'intérieur de chaque sous-
domaine et permet d’utiliser les méthodes directes paralléles pour les systémes asso-
ciées aux sous-domaines. Nous avons montré efficacité de cette approche avec des
essais numeériques utilisant Schwarz multiplicatif.

e Nous avons accru la robustesse et le parallélisme dans la méthode GMRES utilisée
comme accélérateur global pour le schéma hybride. Dans cette partie, nous avons
défini des versions adaptatives de la méthode de déflation pour accélérer la conver-
gence de la méthode itérative tout en limitant la consommation mémoire et les points
de synchronisations entre les processeurs. Un accent particulier a été mis sur I’analyse
de plusieurs expériences numériques avec différents types de matrices.

e Nous avons pris soin de fournir des implémentations de ces méthodes qui permettent
leur réutilisation en tant que modules pour les autres schémas hybrides. Ainsi, bien
que nous nous soyons limités dans la présentation aux méthodes basées sur Schwarz,
les versions robustes et paralléles de GMRES proposées ici peuvent étre utilisées
comme accélérateurs pour les méthodes de Schur. Outre ces modules de GMRES,
nous avons amelioré 'interopérabilité du solveur GPREMS implémentant ’approche
hybride basée sur la forme explicite de Schwarz multiplicatif.

Nous présentons maintenant le contenu des chapitres qui composent ce manuscrit:

1.3.1 Etude comparative de solveurs pour les systémes issus de la dy-
namique des fluides

Dans le chapitre [2, nous effectuons une étude comparative de plusieurs solveurs linéaires
dans un environnement de calcul distribué. L’objectif est de voir l'efficacité de certaines
techniques existantes sur les systémes issus du probléme décrit en section [I.I] Plusieurs
méthodes ont été testées notamment les méthodes directes tel que implementées par Su-
perLU_DIST et MUMPS (précédemment décrits). Nous avons aussi montré les limites,
en terme de robustesse, des approches hybrides utilisant un préconditionnement de type
ILU. L’instabilité de cette factorisation incompléte sur les systémes soumis a ’étude a été
explorée plus tard par Pacull et al. [106]. Plusieurs résultats n’ont pas été mentionnés dans
cette partie, principalement ceux concernant I’approche multiniveaux basés sur une décom-
position multigrille. La difficulté de ces approches réside dans la définition des différents
niveaux de noceuds grossiers a partir du graphe de la matrice, et bien str les opérations
d’interpolation et de restriction entre les différents niveaux de grille. Nous avons testé les
différentes opérations proposées dans 'implémentation BoomerAMG de la suite HYPRE
[54] et les résultats n’ont pas été concluants.

Ce chapitre a fait 'objet de I’article suivant : D. Nuentsa Wakam, J. Erhel, E. Canot,
G.-A. Atenekeng-Kahou, A comparative study of some distributed linear solvers on systems
arising from fluid-dynamics simulations, B. Chapman; F. Desprez; G. Joubert; A. Lich-
newsky; F. Peters & T. Priol, (ed.) Parallel Computing: from Multicores and GPU’s to
Petascale (Proceedings of PARCO’09) 10S Press, pp. 51-58, 2010.

1.3.2 GMRES paralléle avec un préconditionneur Schwarz multiplicatif

L’objectif premier du chapitre|3|est de présenter les opérations paralléles présentes dans un
schéma hybride formulé avec Schwarz multiplicatif. L’autre objectif est aussi d’accroitre
I'efficacité de la forme explicite du préconditionneur de Schwarz multiplicatif. En effet,

12

Positionnement de la thése et contributions

tout part de 'observation, assez classique d’ailleurs dans les méthodes de décomposition
de domaine, qu’en augmentant le nombre de sous-domaines, la méthode hybride devient
de moins en moins robuste. Puisque 'approche habituelle est d’associer un ou plusieurs
sous-domaines & un processeur, le parallélisme est alors limité. Nous définissons donc dans
ce travail un second niveau de découpage dans les sous-matrices induits pour permettre
d’utiliser plus d’opérations paralléles. Cette approche a ’avantage d’associer les solveurs
directs paralléles dans chaque sous-domaine avec une méthode itérative paralléle au niveau
global. De plus, en limitant le nombre de sous-domaines, la convergence de la méthode
globale est en général rapide. Cette approche s’applique aussi & Schwarz additif.

Ce chapitre a fait ’objet de I'article suivant : D. Nuentsa Wakam, G.-A. Atenekeng-
Kahou, Parallel GMRES with a multiplicative Schwarz preconditioner, Revue Africaine de
Recherche en Informatique et Mathématiques Appliquées., 2011, (& paraitre).

Une version courte de cet article est apparu dans : D. Nuentsa Wakam, J. Erhel,
E. Canot, Parallélisme & deur niveaur dans GMRES avec un préconditionneur Schwarz

multiplicatif, E. Badouel; A. Sbihi & I. Lokpo,(ed.), Actes du CARI, pp. 189-196. 2010.

1.3.3 Préconditionnement de GMRES par déflation et Schwarz additif

Dans le chapitre [d] nous améliorons la robustesse de ’algorithme GMRES utilisé comme
accélérateur dans le schéma hybride avec un préconditionneur de type Schwarz. La con-
tribution premiére est basée sur une déflation adaptative et permet de réduire les effets
négatifs du redémarrage dans GMRES. Cette approche a 'avantage de s’adapter de fagon
automatique lorsque la vitesse de convergence décroit. Elle permet donc, pour une taille
de base fixée, de pourvoir augmenter le nombre de sous-domaines (et donc de processeurs)
sans perte de robustesse dans la méthode hybride globale. Des essais numériques ont été
effectués avec Schwarz additif. Ce chapitre a fait l’'objet de ’article suivant :

D. Nuentsa Wakam, J. Erhel, W. D. Gropp, Parallel adaptive deflated GMRES, Lecture
Notes in Computational Science and Engineering, Springer-Verlag, 2011 (in revision for the
proceedings of the 20th international conference on Domain Decomposition).

1.3.4 Reduction de la mémoire dans les solveurs hybrides pour les sys-
témes issus de CFD

L’objectif du chapitre [5| est de valider la méthode précédente sur de grands cas tests. Pour
cela, nous avons travaillé en étroite collaboration avec le partenaire industriel. La déflation
permet de facon globale d’avoir un compromis entre GMRES avec ou sans redémarrage.
Nous avons surtout montré ’avantage de cette approche en terme de réduction de cofits
mémoire. Une particularité de cette méthode est qu’elle permet également d’accélérer la
résolution de systémes ayant plusieurs second membres. Ce chapitre est issu de larticle
suivant :

D. Nuentsa Wakam, F. Pacull, Memory Efficient Hybrid Algebraic Solvers for Large
CFD Linear Systems, Computer & Fluids, submitted, 2011 (special issue of the 23rd in-
ternation conference on Parallel Computational Fluid dynamics).

1.3.5 Parallélisme et robustesse dans GMRES avec une base de Newton
augmentée

Dans le chapitre [6] nous proposons une implémentation de GMRES qui accroit a la fois
le parallélisme et la robustesse en utilisant une base augmentée. La base de Krylov est
construite avec des polynémes de Newton, ce qui permet de réduire les synchronisations

13

Positionnement de la thése et contributions

et les communications entre les processeurs. La déflation accroit la robustesse en limitant
les effets d’une base trop petite et en permettant d’utiliser un grand nombre de sous-
domaines. Une version adaptative de la déflation est également proposée ici dans le but
principal d’éviter une stagnation de la méthode itérative. Les résultats sont obtenus, non
seulement avec des systémes issus du probléme a I’étude, mais également des équations de
convection-diffusion. Ce chapitre est issu de ’article suivant :

D. Nuentsa Wakam, J. Erhel, Parallelism and robustness in GMRES with the New-
ton basis and the deflation of eigenvalues, Electronic Transactions on Numerical Analysis,
submitted, 2011.

1.3.6 Analyse globale du parallélisme et de la robustesse dans les sché-
mas hybrides

L’objectif du chapitre [7| est de donner une vue d’ensemble du schéma hybride avec ses
composantes algorithmiques. Nous donnons quelques critéres pour le partitionnement de
graphe, la formulation des préconditionneurs de Schwarz associés et leur implémentation
paralléle et enfin les différentes versions de 'accélérateur basé sur GMRES. L’objectif est
aussi de montrer, avec des cas tests pratiques, les améliorations qui ont été proposées a
chaque étape.

14

CHAPTER 2

A comparative study of some distributed
linear solvers on systems arising from fluid
dynamics simulations

Joint work with

Jocelyne ERHEL, Edouard CANOT, Guy-Antoine ATENEKENG-KAHOU

Abstract: This paper presents a comparative study of some distributed
solvers on a set of linear systems arising from Navier-Stokes equations and
provided by an industrial software. Solvers under consideration implement di-
rect, iterative or domain decomposition methods and most of them are freely
available packages. Numerical tests with various parameters are made easier
by developing a unified toolbox that links with interface functions provided by
these libraries. The intensive numerical tests performed on various sets of pro-
cessors reveal the good performance results achieved by the recently proposed
parallel preconditioner for Krylov methods based on an explicit formulation of
multiplicative Schwarz [14].

Keywords : Fluid dynamics simulation, large linear systems, distributed
solvers, parallel preconditioning, Multiplicative Schwarz, Additive Schwarz.

2.1 Problem Definition

In this paper, we are interested in finding a good solver for a class of large linear systems
Az =10 (2.1)

where A € R™ "™ is a real and unsymmetric sparse matrix, z, b € R™ are respectively
solution and right-hand side vectors. The matrix A corresponds to the global Jacobian
matrix resulting from the partial first-order derivatives of the Reynolds-averaged Navier-
Stokes equations. The derivatives are done with respect to the conservative fluid variables.
There are various linear solvers libraries freely available and a task of finding a good one

15

Distributed Linear Solvers

among them (for our set of linear systems) is not easy by itself. Although a theoretical
analysis of the problem can suggest a class of solver, it is necessary to consider numerical
comparisons on the problem being solved. These comparisons include, but are not limited
to, memory usage, reliability, parallel efficiency, CPU time and accuracy in the final solu-
tion. So in this work, we present a comparative study of some distributed linear solvers
on the above-mentioned set of linear systems. We do not have the pretension to consider
all existing distributed solvers in this short study neither all aspects in the solvers as in
[5,72]. At least, we expect this numerical study to suggest which method is appropriate for
this problem. This study is also motivated by the performance achieved on these systems
using the parallel preconditioned GMRES with the explicit formulation of multiplicative
Schwarz [11]. As this kind of study needs many tests with various parameters, we have
found useful to design a unified interface that helps us to link uniformly to the interfaces
provided by the solvers. However, we should stress on the fact that our main goal in this
work is not to offer a generic framework such as Trilinos [77] or Numerical Platon [126] but
to test and compare each method suitable for our set of linear problems; so the toolbox is
designed primarily to switch between all the solvers under study in some easy and uniform
way. The paper is organized as follows. In the next section, the distributed solvers we used
in this study are listed. The third part gives an overview of the toolbox. The section
is the major part of this work: it is devoted to the experimental comparisons. Concluding
remarks are given at the end.

2.2 Distributed Linear Solvers

Traditionally speaking, the solvers suitable for the system are based either on sparse
direct or iterative methods. But with the actual state-of-art, the separation between these
two classes is tight. Presently, techniques from the first class are used as preconditioners
into the second class. Even in the second class, there are a variety of techniques based
on Krylov subspace methods or multilevel methods (Multigrid, Domain decomposition).
We first consider the solution with two distributed direct solvers, namely SuperLU DIST
[0T] and MUMPS [4]. They are representative of two widely-used techniques in this class.
Almost all aspects in both packages have been thoroughly compared [5] using a collec-
tion of matrices of reasonable size. Our guess is that the need of memory will become a
bottleneck with our present collection of matrices. In fact, this memory usage can be re-
duced significantly when direct methods are used in incomplete form as preconditioner for
iterative methods. So, in this work, we consider EUCLID [8(], the recommended ILU pre-
conditioner in HYPRE [54] library. Secondly, we focus on domain decomposition methods.
Acting as preconditioners for the Krylov subspace methods (essentially GMRES method),
they make use of previous methods to solve (more or less) the local problems induced by
the decomposition.

When using Domain Decomposition methods to solve PDE equations, a classical scheme
is to consider the splitting from the computational domain. Here, we consider rather a load
balancing partitioning based on the adjacency graph of the matrix. Schur complement ap-
proaches use a partitioning without overlap while Schwarz methods are applied to partitions
that are allowed to overlap. First, we consider the pARMS [93] package based on the first
group. In the second group, we use the additive Schwarz preconditioner in the PETSc
package [18].

The convergence of the Schwarz methods is better with a successive correction of the
residual vector over the subdomains. This is the case in the Multiplicative Schwarz. How-
ever, it leads to an inefficient preconditioner in parallel environment due to the high de-

16

Environment of Tests

pendencies of data between the subdomains. In a recent work [14], the authors proposed
an explicit formulation of this preconditioner in order to dissociate the computation of
the residual vector from the preconditioner application. This explicit form is used in con-
junction with the parallel version of GMRES proposed in [50]. Hence, the preconditioned
Newton-basis is first constructed in a pipeline over all processors [11]; then, a parallel ver-
sion of QR factorization [118] is called to get an orthogonal basis. In this study, we use
the result of that work which is expressed in the PETSc format and available in a library
named as GPREMS (Gmres PREconditioned by Multiplicative Schwarz)|

2.3 Environment of Tests

Our main goal here is to build a ready-to-use interface toolbox such that we can uniformly
test any method presented above. The PETSc installer tool is used to build compatible
libraries of some of the solvers under study. Figure 2.3.1] gives a simplified overview of this
architecture. The routines for sparse matriz format are provided to read data of systems
from files (matrices and right-hand sides). These data can be in compressed Harwell
Boeing format, in Coordinate Matrix Market format, or in compressed block sparse row.
The parameter routines define classes that are used to select options for solvers as well
as other parameters either from XML files or PETSc-style database options. At the top
level, the test routines define interface functions to all solvers under consideration. So, we
need only to choose a solver, edit or generate parameter file and give it to the test routine
along with matrix and right-hand side file. At the end of execution, the main statistics
are returned in html (XML) or text file via the statistics routines. As our toolkit has a
capability to switch between solvers transparently, it can be used to select automatically
a particular solver given some properties of the linear system being solved such as the size
of the matrix or its structural symmetry. However, as we shall see shortly with the results,
this decision making is not easy.

2.4 Experimental Comparisons

Tests are carried out using the Grid’5000 experimental testbed, on paradent cluster in the
Rennes site. Each compute node is a dual-cpu and each cpu is a quadricore Carri System
CS-5393B (Intel Xeon L5420 at 2.5GHz) with a 32 GB shared memory. In the following,
only one cpu is working in each node as no shared-memory programming paradigm was
used. All nodes are connected through a Gigabyte Ethernet switch.

2.4.1 Test Matrices

All the matrices presented here are freely available upon request at [55]. In table we
list the characteristics of some of them. Integers n and nnz are respectively the size and

Table 2.1: Matrices of test
Idx Matrix n nnz origin

CASE_05 | 161,070 | 5,066,996 2D linear cascade turbine
CASE 07 | 233,786 | 11,762,405 | 2D linear cascade compressor
CASE 10 | 261,465 | 26,872,530 3D hydraulic gate case
CASE 17 | 381,689 | 37,464,962 3D jet engine compressor

= o N =

*This library will be soon available for public use

17

Experimental Comparisons

Tests Routines

Parameters routines Sparse matrix format Statistics routines
(XML Input) routines (XML Output)
GPREMS pARMS SuperLU_DIST MUMPS HYPRE PETSc
BLAS BLACS LAPACK SCALAPACK MPI

Figure 2.3.1: Architecture of our toolbox

the number of the nonzeros of the matrix.

2.4.2 Numerical Behavior, Parallel Efficiency and Fill-in with Direct
Solvers

We consider the minimum degree (MD) and the nested dissection (ND) ordering. As
the two direct packages (MUMPS and SuperLU_ DIST) accept any pivotal sequence, any
ordering method can be used. So we have used METIS as nested dissection ordering in
both solvers. With approximate minimum degree (AMD) in SuperLU_DIST, we have
observed that the fill-in produced was less than that in multiple minimum degree (MMD);
however the factorization time is larger. So we have preferred to use the default ordering
provided, i.e. MMD in SuperLU DIST and AMD in MUMPS.

First, the accuracy in the computed solution is considered. In table we give the
relative residual norm in the solution, i.e. ||b — Ax||/||b||. Tests are done on 4 processors
but the results are roughly the same on 8 or 16 processors. We have observed that in some
cases, depending on the use of HSL-MC64 routine to permute large elements on diagonal,
the computed solution could be wrong. With CASE 05 for instance, when MC64 is used
after a nested dissection ordering, both methods do not achieve a good accuracy. With
CASE 07, the situation is more complicated. Either with minimum degree or nested
dissection ordering, the solution produced with SuperLU_ DIST is not accurate. On the
other side, without MC64 permutation, all systems are solved somehow accurately with
both methods.

After the accuracy, we look at the increasing of memory needed during the factoriza-
tion. So in table [2.3] the ratio of fill-in in factored matrices is given with respect to the
nonzeros in the initial matrix i.e fill = nnz(L + U — I)/nnz(A). The fill-in is larger
when the permutation is performed to obtain large diagonal elements, particularly with
the nested dissection ordering. As a result, it takes much more time to factorize the ma-
trix, particularly for the largest case. In table this preordering effect is shown for

18

Experimental Comparisons

Table 2.2: Numerical behavior : Relative residual norm (4 processors)

Matrix Ordering SuperlL.U_DIST MUMPS
No MC64 | MC64 | No MC64 | MC64
CASE_05 1\1\%) gjgiﬁ :1))22(1);1 513251 299'%91;1041
CASE_07 11\\143 ;?Eii 79,695eéf)011 ggg}g é?gig
CASE_10 |15 5016 T 55013 | Toets | Tdets
CASE 17 |5 T 115 | 82013 | 2500

the overall CPU time on 16 processors. Observe that it takes twice CPU time with MC64
preordering in both methods. Surprisingly with METIS, the time in SuperLU _DIST is ten
times larger when this preordering step is performed despite the fact that the fill-in is not
so large as shown in table 2.3] For the MUMPS solver, these results confirm the advices
that the maximum transversal should not be applied on matrices with nearly symmetry
structure|5]

Table 2.3: Ratio of fill-in (fill = nnz(L + U — I)/nnz(A)) : 4 processors

Matrix Ordering SuperLU DIST MUMPS

No MC64 | MC64 | No MC64 | MC64
CASE_05 51— 6 |10 13
CASE_O7 |5 |
cwe | b Aeme e
CASE 17 1\1\/I[]]§ 16115 17348 15080 17179

Table 2.4: CASE _17: Effect of preprocessing on the CPU time (16 processors)

SuperLU_DIST MUMPS
Ordering No MC64 | MC64 | No MC64 | MC64

MMD/AMD 3050 4045 4228 8229
METIS 1098 17342 1960 3605

The last aspects of interest are the overall time and the parallel efficiency. In table
we consider these aspects on the matrix CASE _17. T is the time in seconds while Acc and
Eff are respectively the acceleration and the efficiency with respect to the time on 4 nodes.
In this part, all tests are done without the permutation by MC64 as it leads in some cases to
huge fill-in and consequently, large CPU factorization time. Note that MUMPS is slightly
better than SuperLU_ DIST on 4 processors. However, SuperLU DIST performs better
when we increase the number of processors. Moreover, it scales better than MUMPS.
This result may come from the relatively slow network interconnecting the nodes [31].
Also in SuperLU DIST, the amount of communication is reduced during the numerical

19

Experimental Comparisons

factorization by using the static pivoting.

Table 2.5: Parallel efficiency with CASE 17

Ordering Solver P=4 D=8 P=16
T T Acc | Eff T Acc | Eff
METIS SuperLU_DIST | 3923 | 2073 | 1.89 | 0.94 | 1098 | 3.57 | 0.89
MUMPS 3598 | 2969 | 1.21 | 0.6 | 1960 | 1.83 | 0.45

2.4.3 Parallel Behavior of Preconditioners

In the following, we strike to see the convergence of GMRES with the preconditioners
mentioned in section 2.2} namely the parallel ILU preconditioner (EUCLID) in HYPRE, the
restricted additive Schwarz(ASM) available in PETSc, the Explicit Form of Multiplicative
Schwarz(EFMS) used in GPREMS and the left Schur complement (SC) associated with
the flexible GMRES in pARMS. To solve the local systems, we have used MUMPS in
the case of ASM and EFMS while ILUK is used as approximate solver in the case of
SC. The maximum number of iterations allowed is 4000 and the relative tolerance for the
convergence is 107°. The size of the Krylov basis is 64 for the CASE 05 and CASE_ 07
cases and 128 for the largest ones.

30007

2500

2000

Iterations
(SN
o
o
o

CASE_05 n=161070 nnz=5066996

->-ASM
o EFMS

1000¢ ——EUCLID
500’ o= - o
0 — ; ;
5 10 15
Processors
CASE_10 n=261455 nnz=26872530
1000
-e- ASM
800! o EFMS
L0
2 oot ;
Rl
@
2 400;
200¢
b mim i <’
G L L L L L
4 6 8 10 12 14
Processors

16

CASE_07 n=233786 nnz=11762405

16

30007
> ASM
2500y = EFMS
---SC
2000¢ ——EUCLID
2
k=]
% 1500
g
~ 1000t
5000 o I
é’ ————— o
0 ‘ : : ; : L)
4 6 8 10 12 14 16
Processors
CASE_17 n=381689 nnz=37464962
1000
-o-ASM
o EFM
800f .
2
© 600f N
T
g
400—> ___________ Y-
200¢
4 6 8 10 12 14
Processors

Figure 2.4.1: Number of iterations of GMRES

In figure the number of iterations is given as a function of the computing nodes. On
small systems (CASE 05, CASE_07) with all preconditioners, this number of iterations
grows very fast with the number of processors. In many cases, the maximum number of

20

Concluding Remarks

iterations is reached before convergence. See for instance the CASE 07 with EUCLID on
8 nodes or more. For the largest cases, CASE 10 and CASE 17, GMRES with SC or
EUCLID does not converge, whatever the number of nodes used. Thus, only ASM and
EFMS are taken into account. On a small number of processors, with all cases but the
CASE 10, EFMS gives less number of iterations than ASM. With the CASE 10, ASM
performs better than EFMS. However, for more than 8 processors, the number of iterations
increases very fast.

Figure gives the time needed to converge to the right solution with respect to
the number of processors. For the smallest case and the largest case, we compare direct
solvers to preconditioned GMRES. METIS ordering is used in the two direct solvers with-
out MC64 ordering. For the CASE 05, SuperLU DIST and MUMPS are clearly faster
than preconditioned GMRES. Also, the CPU time with ASM and EFMS tends to increase
in CASE 05 and CASE_10. For the largest case, GMRES with ASM or EFMS performs
better than direct solvers. However, ASM is better than EFMS with more than 4 pro-
cessors. The main reason is that in EFMS, the residual vector is corrected in a pipeline
through the subdomains whereas this correction is done almost simultaneously in ASM.
On the other side, GPREMS do perform well regarding the number of iterations as shown

in fig.

CASE._ 05 n=161070 nnz=5066996 CASE_07 n=233786 nnz=11762405

140
80r [-o-ASM+GMRES .0
o EFMS+GMRES Pt o -o-ASM+GMRES
——MUMPS LT 120¢ o o EFMS+GMRES
60l |~~~ SuperLU_DIST L .
P o 100t
o ° g ° o
E 40t £
8o -
<
20: ______________ 60
------------------ o-
L L L L L Il 4 L L L
04 6 8 10 12 14 16 0 5 10 15
Processors Processors
CASE_10 n=261455 nnz=26872530 CASE_17 n=381689 nnz=37464962
700¢ 4000¢, <= ASM+GMRES
-0-ASM+GMRES X o EFMS+GMRES|
600r o EFMS+GMRES —-—MUMPS
3000¢ ---SuperLU_DIST
500¢ 8
(O] o (0]
€ 400; € 2000¢
= =
300 .0 B sy
10000 Tvealoo .
200r o
LT T e o
100> _____ e o7 ; ; ' ' 0 . : ; ; ' ’
4 6 8 10 12 14 16 4 6 8 10 12 14 16
Processors Processors

Figure 2.4.2: CPU time

2.5 Concluding Remarks

In this paper, we are interested in the numerical solution of some sparse linear systems
issued from actual industrial CFD cases. The distributed solvers we have used are based ei-

21

Concluding Remarks

ther on direct, iterative or hybrid techniques. Usually direct solvers are robust, but we have
observed here that they could fail to solve some of these systems with some non-obvious
parameters. However, on small cases, they are markedly more efficient than other methods
used in this study. Also, we have tested the ILU-EUCLID and the left Schur Complement
preconditioner in pARMS library but on our set of linear systems, Schwarz-based precon-
ditioners should be preferred. So, in this last category, the restricted additive Schwarz
preconditioner performs well when it is associated with a direct solver on subdomains.
However, we still need to take a very large Krylov basis which could be a bottleneck in
the case of larger systems. Finally, one motivation in this work was to show the significant
performance achieved by the parallel GMRES when it is preconditioned by one iteration
of the multiplicative Schwarz method. The results prove that this preconditioner is com-
petitive among other domain decomposition methods. However, it still suffers from poor
scalability. So we are investigating ways to improve this aspect by using some multilevel
techniques.

Acknowledgment This work was supported by ANR-RNTL under the LIBRAERO con-
tract. Experiments were carried out using the Grid’5000 experimental testbedﬂ

Thttps:/ /www.grid5000.fr

22

CHAPTER 3

Parallel GMRES with a multiplicative
Schwarz preconditioner

Joint work with
Guy-Antoine ATENEKENG-KAHOU

Abstract: This paper presents a robust hybrid solver for linear systems that
combines a Krylov subspace method as accelerator with a Schwarz-based pre-
conditioner. This preconditioner uses an explicit formulation associated with
one iteration of the multiplicative Schwarz method. The Newton-basis GM-
RES, which aim at expressing a good data parallelism between subdomains
is used as accelerator. In the first part of this paper, we present the pipeline
parallelism that is obtained when the multiplicative Schwarz preconditioner is
used to build the Krylov basis for the GMRES method. This is referred as
the first level of parallelism. In the second part, we introduce a second level
of parallelism inside the subdomains. For Schwarz-based preconditioners, the
number of subdommains are kept small to provide a robust solver. There-
fore, the linear systems associated with subdomains are solved efficiently with
this approach. Numerical experiments are performed on several problems to
demonstrate the benefits of using these two levels of parallelism in the solver,
mainly in terms of numerical robustness and global efficiency.

Keywords: domain decomposition, preconditioning, multiplicative Schwarz,
Parallel GMRES, Newton basis, multilevel parallelism

3.1 Introduction

In this paper, we are interested in the parallel computation of the solution of the linear

system (3.1)
Az =10 (3.1)

with A € R™" z,b € R". Over the two past decades, the GMRES iterative method
proposed by Saad and Schultz [114] has been proved very successful for this type of systems,
particularly when A is a large sparse nonsymmetric matrix. Usually, to be robust, the

23

Introduction

method solves a preconditioned system ((3.2))
M YAz =M1 or AM'(Mz)=b (3.2)

where M~ is a preconditioner operator that accelerates the convergence of the iterative
method.

On computing environments with a distributed architecture, preconditioners based on
domain decomposition are of natural use. Their formulation reduces the global problem
to several subproblems, where each subproblem is associated with a subdomain; therefore,
one or more subdomains are associated with a node of the parallel computer and the global
system is solved by exchanging informations between neighboring subdomains. Generally,
in domain decomposition methods, there are two ways of deriving the subdomains : (i)
from the underlying physical domain and (ii) from the adjacency graph of the coefficient
matrix A. In any of these partitioning techniques, subdomains may overlap. Overlapping
domain decomposition approaches are known as Schwarz methods while non-overlapping
approaches refer to Schur complement techniques. Here, we are interested in precondition-
ers based on the first class. Depending on how the global solution is obtained, the Schwarz
method is additive or multiplicative [123] Ch. 1]. The former approach computes the
solution of subproblems simultaneously in all subdomains. It is akin to the block Jacobi
method; therefore, the additive Schwarz method has a straightforward implementation
in a parallel environment [29]. Furthermore, it is often used in conjunction with Schur
complement techniques to produce hybrid preconditioners [32), 66, 115].

The multiplicative Schwarz method builds a solution of the global system by alternating
successively through all the subdomains; it is therefore similar to the block Gauss-Seidel
method on an extended system; Thus, compared to the additive approach, it will theoreti-
cally require fewer iterations to converge. However, good efficiency is difficult to obtain in
a parallel environment due to the high data dependencies between the subdomains. The
traditional approach to overcome this is through graph coloring by associating different
colors to neighboring subdomains. Hence, the solution in subdomains of the same color
could be updated in parallel [123] Ch. 1|. Recently, a different approach has been proposed
[11, 14]. In that work, the authors proposed an explicit formulation associated with one
iteration of the multiplicative Schwarz method. This formulation requires that the matrix
is partitioned in block diagonal form [I2] such that each block has a maximum of two
neighbors; from this explicit formula, the residual vector is determined out of the compu-
tation of the new approximate global solution, and therefore could be parallelized through
sequences of matrix-vector products and local solutions in subdomains.

The first purpose of this paper is to present the parallelism that is obtained while using
this explicit formulation to build the preconditioned Krylov basis for the GMRES method.
This is achieved through the Newton basis implementation proposed in [I7] and applied
in [50], 1I8]. The usual inner products and global synchronizations are avoided across all
the subdomains and the resulted algorithm leads to a pipeline parallelism. We will refer
to this as a first-level of parallelism in GMRES. The second and main purpose of our
work here is to further use parallel operations when dealing with subdomains. Generally,
for Schwarz-based preconditioners, the number of subdomains are kept small to guarantee
the convergence and consequently, the linear systems associated with subdomains can be
very large. It is therefore natural to introduce a second-level of parallelismn when solving
those subsystems. This approach is further motivated by the architecture of the current
parallel computers made from several interconnected nodes and multi-core processors inside
each node. Indeed, these two levels of parallelism use efficiently the compute resources by
dividing tasks across and inside all the allocated nodes of the parallel computer. A similar

24

A parallel version of GMRES preconditioned by multiplicative Schwarz

approach has been recently used to enhance scalability of hybrid preconditioners based on
the additive Schwarz preconditioner for the Schur complement techniques [65].

The remaining part of this paper is organized as follows. Section recalls the explicit
formulation of the Multiplicative Schwarz preconditioner. After that, a parallel imple-
mentation of the preconditioned Newton-basis GMRES is given. Section provides the
second level of parallelism introduced to solve linear systems in subdomains. As those
systems should be solved several times with different right-hand sides, the natural way is
to use a parallel third-party solver based on LU factorization. In section we provide
intensive numerical results that reveal good performance of this parallel hybrid solver. The
matrices of tests are taken either from public academic repositories or from industrial test
cases. Concluding remarks and future directions of this work are given at the end of the

paper.

3.2 A parallel version of GMRES preconditioned by multi-
plicative Schwarz

In this section, the explicit formulation of the multiplicative Schwarz method is introduced.
Then we show how to use it efficiently as a parallel preconditioner for the GMRES method.
A good parallelism is obtained due to the use of the Newton-Krylov basis.

3.2.1 Explicit formulation of the multiplicative Schwarz preconditioner

From the equation (3.1)), we consider a permutation of the matrix A into p overlapping par-
titions A;. We denote by C; the overlapping matrix between A; and 4,41 (i =1,...,p—1).
Here, each diagonal block has a maximum of two neighbors (see Figure a). Assuming
that there is no full line (or column) in the sparse matrix A, such partitioning can be
obtained from the adjacency graph of A by means of profile reduction and level sets [12].
We define A; (resp. C;) the matrix A; (resp. C;) completed by identity to the size of A

(see Figure [3.2.1]b).

A

Ci

Ak:

Ay

Ay

(a) : block-diagonal form of A (b): Completed submatrix

Figure 3.2.1: Partitioning of A into four subdomains

If A; and C; are nonsingular matrices, then the matrix associated with one iteration of
the classical multiplicative Schwarz method is defined [14] as :

M= A0, 1A Gy AT CLATT (3.3)

This explicit formulation is very useful to provide stand-alone algorithm for the essential
operation y «— M ™'z used in iterative methods. However, since dependencies between

25

A parallel version of GMRES preconditioned by multiplicative Schwarz

subdomains are still present in this expression, no efficient parallel algorithm could be
obtained for this single operation. Now, if a sequence of vectors v; should be generated
such that v; « M~'Av;_1, then a pipeline computation can be setup between all the v;’s
and between all the subdomains for each single vector. This is described in Section [3.2.2.1]
For the preconditioned Krylov method, the v;’s are simply the vectors basis of the Krylov
subspace. If the classical Arnoldi process is used to generate those basis vectors, then the
presence of global communication would destroy the pipelined computation. We therefore
rely on the Newton basis implementation described in the next section.

3.2.2 Background on GMRES with the Newton basis

A left preconditioned restarted GMRES(m) method minimizes the residual vector r,, =
M~Y(b— Az,,) in the Krylov subspace zg + K,, where xg is the initial approximation and
Ty, the current iterate. If rg is the initial residual vector, then IC,, is defined as

span{ro, M~ Arq, ..., (M~TA)™ 1y}, (3.4)

The new approximation is of the form x,, = g + Vi ¥, where y,, minimizes the euclidian
norm ||rpy|l2. The most time consuming part in this method is the construction of the
orthonormal basis V,, of IC,,; the Arnoldi process is generally used for this purpose [113].
It constructs the basis and orthogonalizes it in the same time. The effect of this is the
presence of global communication between all the processes. Hence, no parallelism could
be obtained across the subdomains with this approach. However, synchronisation points
can be avoided by decoupling the construction of V,,, into two independent phases: first
the basis is generated a priori then it is orthogonalized.

Many authors proposed different ways to generate this a priori basis [17, 133],[40]. With
shifts \; and scaling factors p1; (j = 1,...,n), Bai and Reichel [I7] define the Newton basis
as :

Vi1 = oo, p1 (M~ A = M I)ro, ..., i H(MAA = Ajl)ro]. (3.5)
j=1

The values A; are chosen as approximate eigenvalues of M ~1A and ordered with the
modified Leja ordering [I7] to get a well-conditioned basis. From a chosen initial vec-

tor vg = r9/||r0||, a sequence of vectors vy, va, ..., vy, is generated as follows: If \; € R:
vj = O']‘(MilA - /\jI)Uj_l (36)
If)\j e C:
’Uj = Uj(M_lA — Re()\j)I)vj_l (37)

Vjr1 = Uj+1(M_1A —)\j[)(M_lA — j\jI)’Uj_l

where
-1
o5 = /I(M~ A=\ Dywy]l. (3.9)
To avoid global communication, the vectors v; are normalized at the end of the process.
Hence, the scalars p; from the equation (3.5]) are easily computed as the product of scalars

oj. These steps are explained in detail in sections [3.2.2.1] and [3.2.2.2] At this point, we
get a normalized basis V,,, such that

M YAV, = Vi1 T, (3.10)

26

A parallel version of GMRES preconditioned by multiplicative Schwarz

where T, is a rectangular matrix formed with the scalars 1/0; and A;. Vj,,41 is be orthog-
onalized using a QR factorization :

Vm+1 = Qm—l—lRm—l-l- (311)

As we show in section and following the distribution of vectors in Figure [3.2.2}(b),
the v;8 are distributed in blocks of consecutive rows between all the processors; However,
their overlapped regions are not duplicated between neighboring processors. Thus, to
perform the QR factorization, we use an algorithm introduced by Sameh [116] with a
parallel implementation provided by Sidje [118]. Recently, a new approach called TSQR
has been proposed by Demmel et al. [42] which aims to minimize the communications and
better use the BLAS kernel operations. Their current algorithm used in [97] is implemented
with POSIX threads and is used when a whole matrix V,, is available in the memory of
one SMP node.

So far, at the end of the factorization, we get an orthogonal basis Q41 implicitly
represented as a set of orthogonal reflectors. The matrix R,,41 is available in the memory
of the last processor. To perform the minimization step in GMRES, we derive an Arnoldi-
like relation [113, Section 6.3] using equations (3.10]) and (3.11))

M AV, = Qui1Rmi1 T = Qi1 Gm. (3.12)

Hence the matrix Gy, is in Hessenberg form and the new approximate solution is given by
Tm = o + VimYm where the vector y minimizes the function J defined by

J(y) = ||Be1 — Gmyll, B=Ilroll e =11,0,...,0]" e R™. (3.13)

The matrix G,, is in the memory of the last processor. Since m << n, this least-square
problem is sequentially and easily solved using a QR factorization of G,,. More details on
the form of T, and the algorithm to compute G,, can be found in [I7, [T18]. The outline
of the GMRES algorithm with the Newton basis is in [50].

3.2.2.1 Parallel processing of the preconditioned Newton basis

In this section, we generate the Krylov vectors v;, (j =0, ..., m) of Vj,41 from the equation
. Consider the partitioning of the Figure with a total of p subdomains. At this
point, we assume that the number of processes is equal to the number of subdomains. Thus,
each process computes the sequence of vectors Uj(.k) =(M1tA- /\jI)UJ(.]i)l where vj(k) is the
set of block rows from the vector v; owned by process Pj;. The kernel computation reduces
to some extent to two major operations z = Az and y = M~ 'z. For these operations,
we consider the matrices and vector distribution on Figure [3.2.2] On each process Py, the
overlapping submatrix with the process Py is zeroed to yield a matrix By, for the matrix-
vector multiplication. In Figure [3.2.2(b), the distribution for the vector z is plotted. The
overlapping parts are repeated on all processes. Hence, for each subvector z®) on process
Py, 2" and 2™ denote respectively the overlapping parts with z* =1 and 2+ The
pseudocode for the matrix-vector product z = Ax follows then in Algorithm

Now we consider the matrix distribution in Figure [3.2.2](a) for the second operation
y = M~'z. According to relation , each process k solves locally the linear system
Apt® = 20 for t*) followed by a product y(k)d = C’kt(k)d with the overlapped matrix
Cr. However, the process Py should receive first the overlapping part of y(kfl)d from
the process P,_;. Algorithm [2| describes the application of the preconditioner M~ to a
vector z. The form of the M ~! operator produces a data dependency between neighboring

27

A parallel version of GMRES preconditioned by multiplicative Schwarz

A

Ch ¢ Y

Ay

Figure 3.2.2: Distribution of the matrices and vectors for the operation y « M ~'x

Algorithm 1 2z = Az

1: /* Process Py holds By, zk) */

2: k — myrank()

3: 2 — Brz®; /* local matriz-vector product */
4: if k < p then

5. Send 27 to process Py

6: end if

7. if k > 1 then

8 Receive 2=V from process Pr_1

9. LB)" 4 (k=1)?

10: end if

11: /* Communication for the consistency of overlapped regions */
12: if £ > 1 then

13: Send 2" to process Py_1

14: Receive z**D" from process Pyy1

15 2R kDY

16: end if

17: return z()

processes. Hence the computation of a single vector v; = (M—tA - Ajl)vj_1 is sequential
overall the processses. However since the v; are computed one after another, a process can
start to compute its own part of the vector v; even if the whole previous vector v;_1 is not
available. We refer to this as a pipeline parallelism since the vectors v; are computed across
all the processes as in a pipeline. This would not be possible with the Arnoldi process as all

28

A parallel version of GMRES preconditioned by multiplicative Schwarz

the global communications introduce synchronizations points between the processes and
prevent the use of the pipeline; see for instance the data dependencies implied by this
process in Erhel [50].

Algorithm 2 y=M"'z

1: /* Process Py, holds Ay, 2% */

2: k «— myrank()

3: if k > 1 then

4: Receive y(k_l)d from process Pi_1

5. LB y(k—l)d

6: end if

7: Solve local system Apy®) = 2 for y(*)
8: if £ < p then

9: y(k)d = Cky(k‘)d

10: Send y(’“)d to process Py

11: end if

12: /* Communication for the consistency of overlapped regions */
13: if £ > 1 then

14: Send y®" to process Py_;

15: end if

16: if k£ < p then

17: Receive y 1" from process Py

18: y(k)d _ y(k+1)“

19: end if

20: return y(k)

To better understand the actual pipeline parallelism, we recall here all the dependencies
presented in [125]. For the parallel matrix-vector product in Algorithm |1} if we set z =
h(z) = Az, then z%) = hy (=D 2(®) 2(E+D) and the Figure (a) illustrates these
dependencies. For the preconditioner application y «+— M ~1z as written in Algorithm [2| we
set y = g(z) = M1z, then y*®) = g, (y*=1, 28 2(++D) and dependencies are depicted on
Figure (b). Finally, for the operation y « M ~!Az, if y = f(z) = AM 'z = hog(z),
then y® = fi.(y*=1, 2% z*+1) 2(+:+2)) and we combine the two graphs to have the
dependencies on Figure .a. Hence the dependency z* =1 ig combined with that of
y*=1_ In the pipeline flow computation vj = f(vj—1), the dependency z*+2) in Figure
3.2.41b delays the computation of the U](-k) until the subvector vj(-]f{z) is available. If there
is a good load balancing between all the subdomains and if 7 denotes a time to compute a
subvector z(®) including the time of all the required MPI communications, then the time
to compute one vector is

t(1) =pr (3.14)
and the time to compute m vectors of the basis follows
t(m) =pr +3(m — 1)T. (3.15)

Finally, the first vector is available after pr and then, a new vector is produced every 37
(see Figure [3.2.5)). The efficiency e, of the overall algorithm is therefore computed as :

~omit(l) prm B m
v pt(m) p(pr+3(m—1)7) p+3(m—1) (3.16)

29

A parallel version of GMRES preconditioned by multiplicative Schwarz

Hence, the efficiency grows with the value of m but is limited by the Amdhal law to 1/3
when m tends to the infinity.

G Y ¢ 2(1) y@
z(22 2 e
z3 23 ¥
" L@ L@ Y@
(a): Graph for the matrix-vector (b): Graph for applying M '

Figure 3.2.3: Dependency graphs

JC Y ¢

y» 20 -

:>< - /y@) a® y@
23 (3 1(3) 23 :1(3)
24 -4 /9(4) 2@ y(4)

(@) (b)

Figure 3.2.4: Dependency graph for y = M~ Ax

3.2.2.2 Computation of shifts and scaling factors

So far, we have not yet explained how to compute the shifts \; and the scaling factors o;
of the equation and (3.9).

In order to get a well-conditioned Krylov basis, Reichel [I09] and Bai and Reichel [17]
suggest the use of approximate eigenvalues of M 1A as the shifts \; in the Newton basis
polynomials. After one cycle of the classical GMRES(m) with the Arnoldi process, these
shifts are obtained cheaply by computing the m eigenvalues of the leading m x m principal
submatrix of the output Hessenberg matrix. These values, known as the Ritz values of
M~YA, are sorted using the modified Leja ordering [I09] grouping together the complex
conjugate pairs. Recently, Philippe and Reichel [107] proved that, in some cases, roots of
the Chebychev polynomials can also be used efficiently as shifts for this Newton basis.

The scalars o; used to normalize the vectors of 17m+1 are determined without using
global reduction operations. Indeed, such operations introduce synchronisation points be-
tween all the processes and consequently destroy the pipeline parallelism. The Algorithms

30

Enhancing the parallelism in subdomains.

1)(2)
o) = |[us"])S
2 2 2 1
o = oI5 + o}
3 3)((2 2
ot = P15 + o
of = [11§ + of”
P, o)
3

Vo

v = (M71A = \)

<+-——+ Communications for Az -----= Communications for M~y
--= Communications for the consistency of the computed vector in the overlapped region

Figure 3.2.5: Double recursion during the computation of the Krylov basis

and [2] compute in some extent the sequence v; = (M~1A — X\;I)v;_;. We are interested
(

in the scalars o = ||v;||2. For this purpose, on process Py, we define by ﬁjk) the subvector

Uj(-k) without the overlapping part. In the Algorithm after the line , an instruction is

therefore added to compute the local sum aj(k) = H’f)](k)H% The result is sent to the process
P11 at the same time as the overlapping subvector at line 10. The next process P41

receives the result and adds it to its own contribution. This is repeated until the last

process P,. At the end, the scalar JJ(.p) gives the 2-norm of v;. An illustration is given
in the Figure during the computation of the vector vs.

3.3 Enhancing the parallelism in subdomains.

In this section, we propose two levels of parallelism to enhance the robustness and the
efficiency of the method.

3.3.1 Motivations for two levels of parallelism

Preconditioners based on domain decomposition do no scale very well, particularly when
the coefficient matrix of the linear system is nonsymmetric or symmetric indefinite or when
the underlying PDE is far from elliptic. In those cases generally, the number of iterations
of the preconditioned GMRES increases very fast with the number of subdomains and
consequently the total time to converge is also increased. It becomes essential to keep
constant and small the global number of subdomains in order to provide a robust iterative
method.

In the particular case of the multiplicative Schwarz preconditioner, the startup time pr
of the pipeline parallelism introduced in section and the identity shows that

31

Enhancing the parallelism in subdomains.

the efficiency is limited by p, the number of subdomains. Thus the method should be more
efficient if the number of vectors m to compute is large enough to annihilate this startup
time. In other words, p should not be very large compared to m. Figure gives a

theoretical efficiency of the method with different values of p and m. It can be seen that
the more the subdomains are, the more m should be large in order to get a significant
efficiency; usually, no assumption should be made on the value of m as it depends on the
problem difficulty. It is therefore essential to act more on p in order to enhance the parallel

efficiency of the method.

0.35
- S SR IR S B8 0 S S
03 { . " e
T
025+ ” —~—1/3
> ."::&l/ -=-D=4
LC>; 0.2 - :': -+ D=16
3015 | - Bfgi
i, -
0.1 & |~ D=96
0.05 i
% 50 100 150 200 250 300
Restart parameter
0.35 ¢
0.3 | e N
025 & et R
S/ . _,»—”'_>
2 0.2+ ,I'nl ’V”V_—V’
S ; e —1/3
50.15 | | -=-D=32
m ',' ">' - D=128
01!, + D=256
R D=512
0.05 |/ ~D=1024
0 50 100 150 200 250 300
Restart parameter

Figure 3.3.1: Theoretical efficiency of GPREMS 1

If one subdomain is assigned to only one processor on modern supercomputers, then

32

Enhancing the parallelism in subdomains.

using a small number of subdomains as suggested by the above discussion could be a
limitation of the method. If there are more processors than subdomains then a logical
approach is to assign one subdomain to several processors and then to define several groups
of processors, one for each subdomain. This distribution of data follow naturally the
architecture of present parallel computers made with several interconnected nodes and
with several processors inside one node. Hence all processors in one node deal with data
inside the memory of this node. The next section shows how this second level of parallelism
is used within the subdomains.

3.3.2 Practical implementation

Tasks to parallelize inside the subdomain are mainly the solution of linear systems induced
by the application of the preconditioner M ~'. As those systems should be solved several
times with the same coefficient matrix, it is natural to use a direct method. This approach is
usually known as hybrid direct/iterative technique. The parallelism inside the subdomains
relies on the message passing paradigm instead of a shared-memory model. The motivation
for this choice is that many high-performant and public domain solvers are based on MPI [4]
70, 9T]. Note that with the message passing model, a subdomain can be distributed on
more than one node if the physical memory is small on that node.

So far with the two levels of data distribution on compute units, the solver goes through
all the following steps

1. Initialization : During the first step, the global matrix A is permuted in block
diagonal form by the host process (see Figure . After that, the local matrices
A and C} should be distributed to other processes. If a distributed solver is used in
subdomains, then the processors are dispatched in multiple communicators. Figure
shows a distribution of four nodes with four processes each around two levels
of MPI communicators. The first level is intended for the communication across
the subdomains. Hence in this communicator, the submatrices are distributed to the
level 0 processes (i.e P, where k = 0...p—1 and p the number of subdomains). For
each subdomain k, a second communicator is created between the level 1 processes
to manage communications inside the subdomains (i.e Py ; where j =0...p;—1 and
pr. the number of processes in the subdomain k).

2. Setup : In this phase, the symbolic and numerical factorization are performed on
submatrices A by the underlying local solver. This step is purely parallel across all
the subdomains. At the end of this phase, the factors L; and Uy reside in the pro-
cessors responsible for the subdomain k. This is totally managed by the local solver.
Prior to this phase, a preprocessing step can be performed to scale the elements of
the matrix.

3. Solve : This is the iterative phase of the solver. With an initial guess zq, the solver
computes all the equations (3.63.13)) as outlined here:

(a) Perform one cycle of GMRES with the Arnoldi process to compute the shifts
Aj.

(b) Pipeline computation of V11

Parallel QR factorization V411 = Q1 Rm+1

—
o
~

(d) Sequential computation of G, such that M~1AV,, = Q,,11G,, on the process
Pp,170.

33

Numerical experiments

Do Foo Fo,1 o2 Pos | oo >/\

D Po P P o P 3 """"" =
"" . Level 1
VV . MPI COMMs.

D3 | Pao | | Pea Py Py | T =

Dy | Pso | 1| Psa Py Pys | T v

Figure 3.3.2: MPI communicators for the two levels of parallelism

(e) Sequential solution of least-square problem ({3.13]) for y,, on the process P,_1.
(f) Broadcast the vector y,, to processes Py o

(g) Paralle computation of x,, = g + Vinym

The convergence is reached when ||b— Azx|| < €||b|| otherwise the process restarts with
o = Tm. When two levels of parallelism are used during the computation of Vi,
level 1 processors perform multiple backward and forward sweeps in parallel to solve
local systems. After the parallel QR factorization in step [Bc] the explicit @ factor
is never formed explicitly. Indeed, only the unfactored basis V is used to apply the
new correction as shown in step [3g Nevertheless, a routine to form this factor is
provided in the solver with the courtesy of Sidje [118].

3.4 Numerical experiments

In this section, we perform several experiments to give the numerical robustness of GPREMS
and the benefits of using two levels of data distribution. We start by giving the software
architecture of the solver in subsection [3.4.1] and the test cases in subsection [3.4.2]

3.4.1 Software and hardware framework

The solver is named GPREMS|(GMRES PRECONDITIONED BY MULTIPICATIVE SCHWARZ).
It is intended to be deployed on distributed memory computers that communicate through
message passing (MPI). The parallelism in subdomains is based either on message passing
or threads model depending on the underlying solver. The whole library is built on top of
PETSc (Portable, Extensible Toolkit for Scientific Computation) [I8 19]. The motivation
of this choice is the uniform access to a wide range of external packages for the linear
systems in subdomain. Moreover, the PETSc package provides several optimized functions

*A public license will be released soon

34

Numerical experiments

and data structures to manipulate the distributed matrices and vectors. Figure gives

GPREMS APPLICATIONS CODES

=2
= KSP PC ®
Q (Krylov Subspace Methods) (Preconditioners) 9
0 [5
'(7) : 445
Q \ MUMPS \ ‘SuperLU_DIST‘ ‘HYPRE \ ‘PaStiX \ 2
. e
ol ;
— x
W} IMATRICES| | VECTORS INDEX SETS -

4
BLAS || LAPACK | SCALAPACK || BLACS MPI

Figure 3.4.1: GPREMS library in PETSc

the position of GPREMS in the abstraction layer of PETSc. We give only the components
that are used by GPREMS. For a complete reference on PETSc environment, please refer
o [18]. Although GPREMS uses the PETSc environment, it is not distributed as a part
of PETSc libraries. Nevertheless, the library is configured easily once a usable version of
PETSc is available on the targeted architecture.

All the tests in this paper are performed on the IBM p575 SMP nodes connected
through the Infiniband DDR network. Each node is composed of 32 Power6 processors
sharing the same global memory. A Power6 processor is a dual-core 2-way SMT with a
peak frequency at 4.7 GHz. A total of 128 nodes is available in this supercomputer named
Vargaslﬂ which is part of the French CNRS-IDRIS supercomputing facility.

3.4.2 Test matrices

Table 3.1: General properties of the four test matrices

PARA 04 153,226 2,930,882 UFL

CASE 04 7,980 2,930,882 FLUOREM
CASE 07 233,786 11,762,405 FLUOREM
CASE_09 277,095 30,000,952 FLUOREM
CASE 17 381,680 37,464,962 FLUOREM

In Table the main characteristics of the test cases are listed. The first matrix
PARA-4 arises from 2D semiconductor device simulations and is taken from the University
of Florida (UFL) Sparse Matrix Collection [39]. The remaining test cases are provided
by FLUOREM [55], a software editor in fluid dynamics simulations. They correspond to
linearized Navier-Stokes equations.

Thttp: / /www.idris.fr/su/Scalaire/vargas/hw-vargas.html

35

Numerical experiments

. CASE_04
10
107 ¢ - GPREMS(16)+LU
Lo -~ GPREMS (32)+LU
= Yo — ASM+LU +GMRES(16)
S10741 ---ASM+LU+GMRES(32)
Z Lo .
0 \ Tl
(O] v
D: _6 \‘ i--~\
10 " - \ \
(O] v
o : .
107 - T
0 50 100 150 200 250 300
iterations

Figure 3.4.2: The multiplicative Schwarz approach (GPREMS) compared to the restricted
additive Schwarz (ASM) on CASE_004; 16 and 32 vectors in the Krylov subspace at each
restart; 4 subdomains (block diagonal partitioning in GPREMS and Parmetis for ASM);
LU factorization on local matrices with MUMPS package

3.4.3 Numerical robustness of GPREMS

The main motivation of using the multiplicative Schwarz method is its robustness compared
to the additive Schwarz implementation. There are some cases where the latter fails. In
this case, the former can be a good alternative. We illustrate such situation on FLUOREM
problem CASE 04. It is worth to note that previous work has been done to test similar
problems on other hybrid solvers based on Schur complement techniques. Here we com-
pare the multiplicative Schwarz in GPREMS with the restricted additive Schwarz (ASM)
method used as a preconditioner for GMRES. The implementation provided in PETSc
release 3.0.0-p2. In the latter, the Krylov basis is built with the modified Gram-Schmidt
(MGS) method and the input matrix is partitioned in 4 subdomains using ParMETIS.
With ASM, we note in Figure that GMRES(16) stagnates from the first restart (the
plain line). Tt is necessary to form 32 Krylov vectors at each restart in order to achieve a
fair accuracy (dash curve). For GMRES(m), the size m of the Krylov subspace is critical.
Generally, it is a trial and error process to get a good value of m. When GPREMS is used,
a stagnation is less likely to occur. In this test case, a good convergence is obtained in a
few number of iterations with the two values of m. For instance, the relative residual norm
drops to 1078 in less than 100 iterations (dot and dash-dot lines).

3.4.4 Benefits of two levels of parallelism

In this part, we give the gain of using two levels of data distribution. We first consider
the problem CASE_ 017 listed in Table [3.I] The geometry of this 3D case is a jet engine
compressor. This test case is difficult to solve as shown in a short comparative study in-
volving some distributed linear solvers [103]. From this study, solvers based on overlapping
Schwarz decomposition provide an efficient way to deal with such problems. However, the

36

Numerical experiments

number of subdomains should be kept small to provide a good convergence. In Table
we keep 4 and 8 subdomains and we increase the total number of processors. As a result,
almost all the steps in GPREMS get a noticeable speedup. Typically, with 4 subdomains,
when only one processor is active, the time to setup the block matrices is almost 203 s.
and the time spent in the iterative loop (under Time/Iter) is 622 s. Moving to 8 active
processors decreases these times to 59 s. and 181 s. respectively. The same observation
can be done when using 8 subdomains, in which case the overall time drops from 540 s.
to 238 s. Note that the overall time includes the first sequential step that permutes the
matrix in block-diagonal form and distributes the block matrices to all active processors.
Intranode speedup and efficiency are reported in the last two columns of Table . This
is different from the ones computed with only one level of parallelism. The main objective
here is to evaluate if it is worthy to add more processors in a subdomain. If d is the number
of subdomains, s, = Ty/T), and e, = s,/p where T}, is the CPU time on p processors. For 4
subdomains, using 8 processors in each subdomain gives a speedup of 2.88. This speedup
is 2.28 when 8 subdomains and 64 processors are used. The major speedup is observed for
the setup phase thanks to the direct solver MUMPS [4]. The solve phase shows a noticeable
speedup as well. The overall efficiency is decreasing very fast due to the fact that all the
processors in one subdomain are scheduled in one SMP node. During the computations, all
the processors share the same memory bandwith and access irregularly data in the global
memory. With the low granularity and the irregular access of data in sparse matrix com-
putations, the efficiency is determined mostly by the size of the memory bandwith rather
than the clock rate of processors. Nevertheless, the two levels of parallelism help to keep
busy the processors in the SMP node as they would be idle otherwise.

Table 3.2: Benefits of the two-levels of parallelism for various phases of GPREMS on
CASE 17 with a restart of 64 and MUMPS direct solver in subdomains

Init Setup Solve Time/Iter Total s, 2y

4 4 128 70.78 203.67 622.94 4.87 897.39 - -
8 128 70.77 125.77 411.42 3.21 607.96 1.48 0.74
16 128 69.79 73.15 280.41 2.19 42335 2.12 0.53
32 128 70.77 59.44 181.45 1.42 311.66 2.88 0.36

8 8 256 69.91 71.73 399.34 1.56 540.98 - -
16 256 70.36 4299 343.25 1.34 456.59 1.18 0.59
32 256 71.61 28.72 206.7 0.81 307.02 1.76 0.44
64 256 71.85 20.85 144.79 0.57 23749 228 0.28

We further point out the benefits of adding several processors in each subdomain for
the problems PARA 4, CASE 07 and CASE 09. The CPU times for the main phases
in the solver are reported in Table [3.3] and the setup time, the Iterative loop time
(under Solve), the mean time spent in each iteration (under Time/Iter). The total time
includes the time for the preprocessing step which is not reported. The size of the Krylov
basis is 32 for PARA 4, and 40 for CASE 07 and CASE_09. MUMPS[] is used as
direct solver in each subdomain. The iterative process stops when the relative residual
norm ||b — Az||/||b|| is less than 1078. The statistics show a good improvement with two
levels of parallelism. As noted before, the major improvement is in the setup phase but
the iterative phase benefits from this approach as well. It is worth to note the time spent
for each single iteration. Indeed, this time decreases, although not fast, as more processors
are added in subdomains.

37

Concluding remarks

Table 3.3: CPU Time of GPREMS on PARA 4

Setup Solve Time/Iter Total

4 4 11.75 58.31 0.40 72.84
8 4 8.28 58.68 0.41 69.74
8 3.79 46.40 0.24 52.97

16 4 0.79 40.55 0.28 49.11
8 2.86 31.64 0.16 37.26

16 1.12 41.85 0.17 46.09

32 4 4.57 33.80 0.23 41.15
8 1.78 20.94 0.11 25.47

16 0.86 31.10 0.13 35.09

64 8 1.61 1797 0.09 22.25

Table 3.4: Setup and solve phase of GPREMS on CASE 07 and CASE 09

Setup Solve Time/Iter | Setup Solve Time/Iter
4 4 19.05 77.38 0.64 57.00 121.85 1.52
16 4 10.27 47.86 0.40 2494 60.18 0.75
48 12 1.95 28.49 0.09 4.72 51.99 0.22
96 12 1.67 21.75 0.07 3.45 38.08 0.16

3.5 Concluding remarks

In this paper, we give an implementation of a parallel solver for the solution of linear
systems on distributed-memory computers. This implementation is based on an hybrid
technique that combines a multiplicative Schwarz preconditioner with a GMRES accel-
erator. It is known that the multiplicative formulation of the Schwarz method does not
have a natural parallelism. Thanks to the Newton basis GMRES implementation, a good
pipeline parallelism can be obtained through the subdomains. It is also admitted that
Schwarz-based preconditioners do not scale very well with the number of subdomains. In
this work, we implement two levels of data distribution to limit the number of subdomains.
To this end, we define two levels of parallelism during the computation of the orthonormal
basis needed by GMRES : The first level is expressed through pipeline operations across
all the subdomains. The second level uses a parallelism inside third-party solvers to build
the solution of subsystems induced by the domain decomposition. It is obvious that even
with these two levels of parallelism, the proposed approach cannot compete with multilevel
methods based on Schur complement techniques. Nevertheless, there are some problems
where Schwarz preconditioners offer more robustness.

The experimental tests have pointed out this robustness on tests cases arising from
linearized Navier Stokes equations. This robustness is enhanced with a direct solver for
linear systems in subdomains. We have shown that the gain of using a parallel solver inside
the subdomains is two-fold: the convergence is guaranteed when the number of processors
grows as the number of subdomains remains the same. The global efficiency increases as we
add more processors in subdomains. For large block matrices, the use of a direct solver in
subdomains implies to access the whole memory of a SMP node. Therefore, this approach
keeps busy all the processors of the SMP node and enables a good usage of allocated
computing resources.

38

Concluding remarks

However, more work needs to be done to achieve very good scalability on massively
parallel computers. Presently, an attempt to increase the number of subdomains up to 32
increases the number of iterations as well. So we are investigating ways to maintain the
latter as small as possible. A first attempt is to use more than two levels of splitting but the
efficiency of such approach is not always guaranteed, specifically if the linear system arises
from non-elliptic partial differential equations. An ongoing work is to keep the two-levels
of splitting for the preconditioner operator and then to further accelerate the GMRES
method with spectral informations gathered during the iterative process.

Acknowledgments

The authors wish to thank Jocelyne ERHEL and Bernard PHILIPPE from INRIA-Rennes
for helpful discussions on this work. This work was performed using HPC resources from
GENCI-IDRIS (Grand Equipement National de Calcul Intensif - Institut du Développe-
ment et des Ressources en Informatique Scientifique). Early experiments were carried out
using the Grid’5000 experimental testbed (https://www.grid5000.fr).

A short version of this paper appeared in the proceedings of the CARI conference, see
[102].

39

CHAPTER 4

4.1

The GMRES method due to [114] is widely used, thanks to its monotonic convergence
properties, as a Krylov subspace method for solving large and sparse linear systems. Due
to memory and computational requirements, the restarted GMRES (noted as GMRES(m))
is generally used. At the time of restart, information from the previous Krylov subspace is
discarded and the orthogonality between successive Krylov subspaces is not preserved. The
worst case is when the successive generated Krylov subspaces are very close. As a result,
there is no significant reduction in the residual norm and the iterative process may stagnate.
Deflation techniques are a class of acceleration strategies that collects useful information
at the time of restart mainly to avoid this stagnation and improve the convergence rate.
The main idea behind these methods is to remove the smallest eigencomponents from the

Parallel Adaptive Deflated GMRES

Joint work with

Jocelyne ERHEL and William D. GROPP

Abstract: Many scientific libraries are currently based on the GMRES
method as a Krylov subspace iterative method for solving large linear sys-
tems. The restarted formulation known as GMRES(m) has been extensively
studied and several approaches have been proposed to reduce the negative ef-
fects due to the restarting procedure. A common effect in GMRES(m) is a slow
convergence rate or a stagnation in the iterative process. In this situation, it
is less attractive as a general solver in industrial applications. In this work, we
propose an adaptive deflation strategy which retains useful information at at
time of restart to avoid stagnation in GMRES(m) and improve its convergence
rate. We give a parallel implementation in the PETSc package. The provided
numerical results show that this approach can be effectively used in the hybrid
direct /iterative methods to solve large-scale systems.

Keywords: Hybrid Solver, Adaptive GMRES, Deflated Restarting, Parallel
Preconditioning

Introduction

residual vector as they are known to slow down the convergence of GMRES.

40

Adaptive preconditioner for the deflated GMRES(m)

In a practical use of a deflation strategy, it is necessary to define the number of eigen-
values to deflate. As the deflation process induces additional operations to GMRES(m),
it is interesting as well to know a priori if the deflation will be beneficial. In this work,
we propose an adaptive deflated GMRES(m) which aims at enhancing the convergence
of GMRES(m) by adaptively extracting the spectral information needed to speedup the
convergence. The adaptive strategy is based on a (near) stagnation test which defines if the
deflation process is needed or not and if more accurate spectral information are required.
Although we use a stagnation test similar to that in [124], our approach is different since
we assume that the restart length m is fixed. This work is motivated by the convergence
behavior of GMRES when it is used with a Schwarz preconditioner. As the number of sub-
domains increases, the eigenvalues are less and less clustered. The restarting may have the
disadvantage to discard the smallest eigenvalues before their convergence. The proposed
adaptive strategy will thus keep these spectral values in the Krylov subspace until their
convergernce.

The remaining part of this report is organized as follows: in Section we first recall
the basis of the deflation technique applied as a preconditioner and we derive the adaptive
strategy. In Section [4.3], we discuss on the parallel implementation. Section is focused
on numerical experiments to show the benefits of this scheme on a real industrial CFD test
case.

4.2 Adaptive preconditioner for the deflated GMRES(m)

We are interested in the solution of the linear system
Az =1 (4.1)

The GMRLES method is among the best methods to solve this system when the coefficient
matrix A is nonsingular and nonsymmetric. For large linear systems, the restarted version
should always be used to reduce the memory and computational requirements. The deflated
GMRES has been proposed to reduce the negative effects of the restarting procedure. The
general idea behind these methods is to add to the Krylov subspace an approximation of
the invariant subspace associated to the smallest eigenvalues. In [53], this is carried out
by defining a preconditioner that is equal to the projected matrix onto the approximated
invariant subspace and is taken as the identity on the orthogonal subspace. Hence, given
U = lui, ...,u] € R"™" the r-dimensional basis of the invariant subspace associated to
the eigenvalues to deflate, the preconditioner is defined as

Myl'=1L,+U(NIT - 1)U, T=U"BU, (4.2)

where A, is the largest eigenvalue in magnitude, I, and I, are the identity matrices and
B the initial preconditioned matrix. Since M 51 is nonsingular, the eigenvalues of the
resulted matrix MBIB or BMB1 are Apii, ..., An,|Ap| with a multiplicity at least r. It
is therefore expected to get a faster convergence rate with this preconditioner since the
r smallest eigencomponents that slow down the convergence are deflated. This assumes
that U is a good approximation of the basis of the selected invariant subspace. For large
matrices however, the cost of accurately computing U (as suggested in [53] and later in
[28]) may induce a significant overhead. This process should be carried out only when it
is necessary, for instance to avoid stagnation.

We thus propose here an adaptive strategy that detects a near-stagnation in the iterative
process or a slow reduction in the residual norm. This approach is based upon the work by

41

Implementation notes

Algorithm 3 DGMRES(m, k,r): Restarted GMRES with adaptive deflation

1: input (m, itmaz, €, k, smv, bgv, rmazx);
2: Set B= AM~!, M~!is any external preconditioner
Bro=b—Axy; U=][]; Mp=1I; it=0; r=0;
4: while (||ro]| > €)
5: Arnoldi process on B to get BMBlvm = Vins1Hp,. See [114]
6: x,, =T0+]WBIJW_Imem, Ym solution of min||Be; — HpmYym||2;
70 Ty =b— Az, it — it +m;
8 If (||rm]| > € and it < itmaz) then
| e il
9 Iter = m * log(T)/log(7ol);
10: If((Iter > smo x (itmax — it) and r < rmax) then
11: Compute k Schur vectors of B noted X. See [53]
12: Orthogonalize X against U . .
13: Compute T=[U X |"B[U X]z(g,ng.)U(Tgig)
14: Increase U by X; r «— r+ k;
15: If (Iter > bgv * (itmax — it)) then
16: Improve U as indicated in [28, section 3]
17: EndIf
18: Factorize T Set Mp' = I, + U(|\,|T7! — 1)UT
19: End If
20: End If

21: To=Tm, To=Tm
22: end while

[124] in which the Krylov subspace is adaptively increased along the cycles of GMRES(m);
Here, we find it natural to enrich the subspace with the eigencomponents that slow down
the convergence. The main steps are given in Algorithm [3] First, m steps of the Arnoldi
process are performed to compute the orthonormal basis V,,. It also creates an upper
Hessenberg matrix H,, = Vn:f BV, which is the restriction of B onto the m—dimensional
Krylov subspace. Then, a least-squares problem is solved to minimize the residual norm in
the Krylov subspace. At the time of restart, if the desired residual norm is not achieved,
a stagnation test is computed to determine if a deflation process could be beneficial to
accelerate the convergence. This test considers the convergence rate over the previous
restart cycles and evaluates the number of iterations (Iter) needed to achieve the desired
accuracy. If Iter is greater than the remaining number of steps (bounded by a small
multiple smv of the number of iterations allowed), then data are computed to update the
preconditioner associated to the deflation process. This test is therefore used to reduce the
iteration counts in GMRES(m). To detect a near-stagnation, we use another test which
considers a large multiple bgv of the remaining number of steps. In this case, a harmonic
projection is carried out to accurately compute the eigenvalues and continuously update
the previous estimation of U.

4.3 Implementation notes

We now give some details about the implementation of Algorithm [3|on distributed-memory
computers. The programming model is SPMD (Single Program Multiple Data) and com-
munications are done using the message-passing interface (MPI). The adjacency graph of
the input sparse matrix is first built. PARMETIS is then used to partition the vertices of
the graph into D disjoint vertices. From this partitioning, the matrix is distributed such

42

Numerical experiments

that each processor holds a contiguous chunk of rows corresponding to the vertices it owns.
The right hand side and all other vectors (Krylov basis, invariant basis) are distributed ac-
cordingly. Note that the goal of this data distribution is to get a good load balance and to
minimize communication during matrix-vector multiply and preconditioning steps. When
the additive Schwarz preconditioner is used, an overlapping partitioning can be defined by
taking recursively adjacent vertices from the initial disjoint partitions.

The main parallel operations in Algorithm [3|so far are the matrix-vector multiply, scalar
products, and the application of M~ and M D L M~ can be any parallel preconditioner as
long as it implements the basic operation v; «+ M ~Ly;. In our tests, the restricted additive
Schwarz has been used as defined in [30]. It is then necessary in the setup phase to factorize
in each process the block matrices A, corresponding to the restriction of A onto the defined
subdomains. M, ! is applied to a distributed vector v; in a straightforward manner given
the data distribution described above. This implies r all-to-all communications to compute
the projection onto the invariant subspace. There is no additional communication for the
other terms since the r X r dense matrix 7" is owned by each process.

We provide an implementation of this method using the PETSc package (see [1§]).
The original implementation of the built-in KSP GMRES has been modified to provide
the data needed for the deflation and to apply the resulting preconditioner to generate
the Krylov basis. Although the current presentation does not discuss the choice of side
of preconditioning, the implementation does define left and right preconditioning. Note
that the current adaptive preconditioning can be associated with any other preconditioner
available in the package or defined by the end user since we provide generic interface similar
to the other Krylov subspace methods in the package. The resulted KSP module (named
as DGMRES) is available in PETSc release 3.2.

4.4 Numerical experiments

This section presents some numerical results to prove the efficiency of the proposed ap-
proaches. The test problem arises from design optimization in computational fluid dy-
namics. The physical model is a 3D flow simulation in a jet engine compressor rotor.
The physical equations are the Reynolds-Averaged Navier-Stokes for compressible flows,
discretized using the finite volume method as presented by [15]. The matrices have been
extracted from the software Turb’Opty?™ designed by the FLUOREM company. They
are also available in the University of Florida sparse matrix collection (see [39]) under the
name RMO7R in the FLUOREM group. The matrix is nonsymmetric and indefinite with
a size 272,635 and 37,355,908 nonzero entries. Other test cases can be found in [105].

With this test case so far, previous studies have shown the limits of some existing solvers
in terms of memory usage and numerical accuracy (see [103]). [106] have proved as well
the instability of the ILU factorization to approximate the solution of linear subsystems.
In our hybrid approach, we therefore rely on a direct solver within each subdomain, such
as MUMPS [4].

4.4.1 Benefits of the deflated restarting

We now give the main benefits of using the deflated GMRES with the additive Schwarz
method (ASM). It is known that one level ASM is a weak preconditioner when the number
of subdomains D gets large. The size of the Krylov subspace m could then be increased
to enhance the robustness of the global method. However, choosing a good size m of
the Krylov subspace is a trial-and-error process. With the adaptive deflation, we show

43

Numerical experiments

experimentally that the method is robust for various values of m and D. Moreover, using
a large number of subdomains reduces the memory required to handle the submatrices by
the direct solver. Hence it is expected that the time to factorize these matrices and the
memory required will get smaller as D increases. This is reported in the last column of
Table We also report the number of matrix-vector multiplies and the global CPU
time with respect to the number of subdomains D. We then compare the restarted version
(GMRES(m)) with the deflated version (DGMRES(m, k)), where m = 48 and 64. A
dash in a field means that the relative residual norm of 10~ is not reached after 2500
iterations. It can be observed that DGMRES provides reliable and faster convergence
than the classical restarted GMRES. It also gives a faster method since significantly fewer
iterations are needed. Furthermore, the method reveals a substantial acceleration as the
number of processors increases. Note that without the deflation, this acceleration will
not be obtained since the number of matrix-vector multiplies increases hugely with the
subdomains. For instance, this behavior can be seen with GMRES(64) when using D = 16
and D = 32.

Table 4.1: RMOT7R : Benefits of using DGMRES with an additive Schwarz preconditioner
and an overlap of 1. The deflation process reduces the total number of iterations and helps
to use a large number of subdomains and thus a large number of processors. Here, the
number of processors is indeed equal to the number of subdomains.

D GMRES(48) DGMRES(47,1) GMRES(64) DGMRES(63,1)
Matvecs | Time | Matvecs | Time | r | Matvecs | Time | Matvecs | Time | r
16 551 230 212 1734 | 3 355 193.8 208 168.9 | 2
32 - - 533 109.2 | 4 2217 244.6 455 946 | 7
64 - - 410 56.8 4 - - 453 50.8 | 7
128 - - 791 51.5 | 15 - - 638 44.3 | 8

4.4.2 Adaptive DGMRES and Full GMRES

From the robustness standpoint, the full GMRES approach is more reliable than the
restarted version even with the deflation process. However as the size of the basis grows,
it should be more sensitive to round-off errors. To illustrate this behavior, we consider
two formulations of the Arnoldi process, namely the classical Gram-Schmidt (CGS) and
the modified Gram-Schmidt (MGS) algorithms. The former is sometimes preferred since
it provides good kernel operations in parallel environments. In the PETSc package, for
instance, it is used by default in the GMRES implementation as the orthogonalization
method with a possible iterative refinement strategy. In Figure the residual history
is displayed with respect to the number of matrix-vector products. The method stops
when the relative residual norm is 107!, It can then be noticed that with CGS, stagna-
tion occurs in the full GMRES (in solid line) due to severe cancellation in the algorithm
and consequently a loss of orthogonality. This does not happen when the basis is small
since the round-off errors are not propagated very far and DGMRES (dash-dotted line)
converges at the desired accuracy even with CGS. Note that although good accuracy is
finally achieved in full GMRES with M GS (dashed line), it will require much more memory
to store all the vectors of the growing Krylov basis (265 vectors in this case). In DGMRES,
the Krylov basis is stored just for one cycle. Only the invariant basis U is stored over the
restart cycles together with vectors M ~'AU to reduce the matrix-vector counts. Thus in
this example, only 63 4+ 7 x 2 = 77 vectors are stored. Note also that this number can be
further reduced by using a smaller Krylov basis since convergence is still good, as shown

44

conclusion

RMO7R 32 subdomains

5
1071 —GMRES,
<es GMRES .
. GMRES(64)
‘‘‘‘‘ DGMRES(63;1;7)
g10° /
:Zs ',"./‘
Q "
@ -
2107
-‘ -~ —
0 100 200 300 200 500 600

Matrix—vectors

Figure 4.4.1: Convergence of full GMRES, GMRES(m) and DGMRES(m, k, r) with classi-
cal Gram-Schmidt(CGS) and modified Gram-Schmidt (M GS) orthogonalization scheme.
k is the number of eigenvalues to extract at each detected stagnation and r is the total
number of eigenvalues extracted at the convergence. 32 subdomains are used in the additive
Schwarz method with a 1-overlap.

in Table

4.5 conclusion

We have designed an adaptive deflation strategy that can be used for preconditioned GM-
RES. We show in this paper that the proposed algorithm can be used to improve the
robustness and reduce both CPU time and memory required by hybrid solvers based on a
one level additive Schwarz method. We have implemented this method in the new module
DGMRES of the PETSc library.

Acknowledgments : This work is funded by the French National Agency of Research under
the contract ANR-TLOGO07-011-03 LIBRAERO. The work of the first author was done while
visiting the NCSA at Urbana-Champaign in the context of the Joint laboratory INRIA-University
of Illinois. Experiments in this paper have been carried out using the parapide cluster in the
GRID’5000 experimental testbed (see https://www.grid5000.fr). We thank the referees for
providing many instructive comments.

45

https://www.grid5000.fr

CHAPTER 5

Memory Efficient Hybrid Algebraic Solvers
for Large CFD Linear Systems

Joint work with
Frangois PACULL,

Abstract: This paper deals with the solution of large and sparse linear systems
arising from design optimization in Computational Fluid Dynamics. From the
algebraic decomposition of the input matrix, a hybrid robust direct/iterative
solver is often defined with a Krylov subspace method as accelerator, a domain
decomposition method as preconditioner and a direct method as subdomain
solver. The goal of this paper is to reduce the memory requirements and
indirectly the computational cost at different steps of this scheme. To this
end, we use a grid-point induced block approach for the data storage and the
partitioning part, a Krylov subspace method based on the restarted GMRES
accelerated by deflation, a preconditioner formulated with the restricted addi-
tive Schwarz method and an the splitting of aerodynamic/turbulent fields at
the subdomain level. Numerical results are presented with industrial test cases
to show the benefits of these choices.

Keywords:Hybrid linear solvers ; Deflated GMRES ; Restricted additive
Schwarz preconditioner ; FieldSplit preconditioner ; Weighted graph partition-
ing ;PETSc ; CFD optimization ;Jacobian matriz

5.1 Introduction

This paper deals with sparse linear systems in CFD involving large Jacobian matrices.
Solving industrial problems of this type requires the implementation of efficient parallel
algorithms. The hybrid algebraic solvers consist in a global iterative solver on one side,
a local direct solver on the other, connected together through a preconditioner induced
by a domain decomposition method. Both types of solvers, i.e. iterative and direct, are
highly memory consuming when applied to these CFD matrices. The motivation of the
present work is to lower this memory usage, so as to increase the size of the systems solved
and meet the ever-growing demand for large meshes. The actual hybrid solver described

46

Context

in this paper is based on the GMRES algorithm [114], the Restricted Additive Schwarz
(RAS) method [30] as well as LU decomposition. We show that a significant reduction of
the demanded memory can be achieved by using some various techniques at every level of
the hybrid solver: the GMRES global level, the RAS domain decomposition one, and the
LU local one. Implementations are extensively based on the Portable Extensible Toolkit
for Scientific computations (PETSc) library [19] 18], 20].

The remainder of this paper is organized as follows. Section[5.2)is a general introduction
covering the linear systems, the linear solver as well as the memory aspect. Section
details the different approaches implemented in the present study. Section presents an
application of the points developed in section on a selection of test matrices. Finally,
we summarize some important results in section [5.5

5.2 Context

Before considering some numerical aspects related to the hybrid solver, it is important to
describe the category of CFD matrices addressed in this paper.

5.2.1 The Family of Linear Systems

Although CFD and parametrization are not the topics of this paper, we give in this sub-
section some information related to these fields that are relevant to the linear systems
presented in Section [5.4] We are dealing with the system:

Az =D (5.1)

where A is an n X n sparse matrix with real entries, representing the Jacobian of the dis-
cretized flow equations’ residual with respect to the fluid unknowns. In the current paper,
the linearized PDEs are the Reynolds-Averaged Navier-Stokes equations for compressible
flows of Newtonian fluids, discretized using the finite-volume method. The cases presented
in the following are all based on multi-block structured meshes, consisting of piecewise
structured arrays of hexahedra. These linear systems result from the parameterization soft-
ware Turb’Opty”™ relying on automatic differentiation, as first presented by S. Aubert et
al in [I5]. These Jacobian matrices are evaluated near enough from a stationary point of
the flow dynamical system, so as to have all of their eigenvalues featuring a strictly positive
real part. Since this equilibrium might be very close to unstable, some eigenvalues may
lay arbitrarily close to the imaginary axis, while the maximum imaginary-part magnitude
is rather linked to the Reynolds number of the flow.

The computational stencil being very small compared to the global number of grid
points, the matrix A presents a high degree of sparsity even if the reduced bandwidth
may still be relatively large in 3D, where the regular stencil uses 25 mesh nodes. Because
variables within a grid point are coupled by the equations in a tight and invariable manner,
the initial ordering of A is based on the grid-point approach: the values of the n, unknowns
at each grid point are stuck together as a n,-tuple, leading to a Jacobian matrix made of
tiny dense n, X n, blocks. For example, in a 3D case with the k¥ — w turbulence model
[134], we have the following 7-tuple of conservative variables: (p, pu, pv, pw, pE, pk, pw),
where variable p denotes the density, (u,v,w) the velocity, F the total internal energy, k
the turbulent kinetic energy and w the specific turbulent dissipation rate. So the matrix

47

Context

A is structured in the following way:

Aip A - Ain
A1 Agp Ag N

| (52)
An1 Ang - AnN

where Ay j € R™*™ for 1 < I,J < N and N = n/n,, is the number of mesh nodes. Note
that in this paper, we use the capital I, J letters for referring to the indices of these sub-
matrices of order n,. Another noteworthy feature of A is the high degree of heterogeneity
among the entries of the matrix even within these small sub-blocks, related to the different
levels of magnitude of the flow variables.

An important point about the discretization is that the second-order Jameson-Schmidt-
Turkel centered scheme [82] is used for the convective part, which induces the diagonal
blocks to be weak in magnitude compared to the extra-diagonal blocks, but generally
relatively well conditioned thanks to artificial dissipation terms. These extra-diagonal
block entries can have very large negative or positive values. Also, the symmetric part
(A+ AT)/2 of the Jacobian is not positive-definite.

Finally, matrix A is characterized by its anisotropy, which is twofold: the first kind
is due to the highly directionally-dependent convective and acoustic waves inherent to
compressible flows, and the second one to the large cell ratio in the boundary layers and
far field.

We now give a short overview of the solver implemented with the PETSc library.

5.2.2 The Hybrid Algebraic Solver

The system could be solved using a direct solver, but as the size of the matrix in-
creases, the number of fill-in elements in the L and U factors grows drastically, which
prohibits the use of these solvers on industrial problems that can easily make use of mil-
lions of mesh nodes. Also, basic iterative methods are found to be ineffective for the
targeted linear systems and multigrid methods, outrageously difficult to adapt. The group
of Krylov subspace methods is the only industrial option left. Matrix A being nonsym-
metric, the GMRES method [114] is appealing with its monotonic convergence behavior
resulting from an optimality condition indirectly imposed at each iteration. However, this
recurring minimization process does have arithmetic and memory costs, both increasing
with respect to the iteration steps, and mainly originating from the orthogonalization in
the Arnoldi process and the Krylov basis storage (see [I13] for more details). Restarting
the process after a given number of iterations is the way of limiting these costs compared
to the aforementioned full GMRES approach: the monotonicity property is kept but not
the global optimality condition, reduced to the local space built in-between the successive
restarts.

In order to aim a good convergence speed of the iterative solver, preconditioning is
always applied to A. The preconditioning of massive nonsymmetric matrices with large off-
diagonal elements still remains an active field of research and an a priori optimal strategy
is usually hard to guess. If we note M the preconditioner matrix and consider right-
preconditioning, the aim is to find a cheap approximate of A such that AM~! is not too
ill-conditioned, has its eigenvalues as much clustered as possible and is not at a too large
distance from normality. This kind of approximate is usually chosen within the family of
domain decomposition methods, in which the PDEs locality is fully exploited in order to
get independent problems on the subdomains and thus an induced preconditioner that is

48

Context

appropriate for parallel computing. The preconditioner used in the following is based on
the RAS method [30], which relies on overlapping subdomains.

We now consider the quotient graph of A, which is the block-wise adjacency graph
related to the physical mesh, and call W the set of vertices {1,2,...,N}. The graph
partitioning is performed using ParMETIS [86], splitting the domain into p non-overlapping
subdomains, thus leading to p disjoint sub-sets {W;}1<i<p, whose union is equal to W.
Given that W2 = W, for 1 < i < p, we can recursively define the d-overlap partition of W:

W =W U{J €W s.t. (I,J)is an edge of the quotient graph and I € W/}. (5.3)

Now we note nf the size of the vector sub-space spanned by the blocks with indices in Wi‘;,
for1 <i<pandd=0,1,2,... and so on. We call Rf € R™ " the restriction operator
from R™ to the i-th vector sub-space associated to Wf . Therefore, the local operators are:

A = RIA(R)", for 1<i<p. (5.4)

Then the Restricted Additive Schwarz (RAS) preconditioner is the following one:

M~ = i(R?)TM?)—lR?. (5.5)
=1

where R? € R™ %" is the restriction operator from R"™ to the i-th vector sub-space associated
to Wio, that is, without overlap. An important point is that M~! is never explicitly
constructed: given a vector v € R", the process with rank ¢ only deals with the local part
of the M~'v matrix-vector product, which is (A2)"'R? v.

Regarding the factorization of the Af’s, it is found that incomplete factorization suffers
from instability when applied to the matrices presented in the sub-section [106]. Since
this wide subject is beyond the scope of this paper and still under investigation, complete
LU factorization is always used in the following, which allows the qualitative evaluation of
the different methods without depending on the worth of a given incomplete factorization:
what works well with a LU factorization as a subdomain solver could also be useful with an
incomplete LU decomposition of good quality, associated or not to a local iterative solver if
ever an exact subdomain solve is required. The multifrontal sparse direct solver MUMPS
[4, [7] is used here to compute a LU decomposition of A2 = LIU? and apply the forward
and backward substitutions to a local vector.

The memory cost of a LU decomposition being very large, especially when the envelope
of A? cannot be substantially reduced as for the 3D cases, we limit the overlap to § = 1,
yielding the following preconditioner:

M= fj(R?)WU})—l(L})—lR}. (5.6)
=1

Lastly, we mention a few details about the solver: the modified Gram-Schmidt algo-
rithm is used to orthogonalize the Arnoldi vectors, the preconditioner is positioned on the
right side of the operator, the initial solution vector is null, and finally, the system is ini-
tially scaled with left and right diagonal matrices, such that the row and column norms
of A are roughly close to one. This last point appears to be beneficial to the GMRES
convergence behavior, as it condenses the distribution of the eigenvalues of A.

Having considered the main solver features, it is now possible to look in short into its
memory consumption.

49

Some Key Elements in Memory Usage

5.2.3 The Memory Issue

Whether the preconditioner is induced by a Schwarz or a Schur domain decomposition
method, the memory used by the hybrid solver is mainly composed of the L; and U;
subdomain factors on one side, and the Arnoldi vectors on the other.

As the GMRES iterations proceed, new basis vectors are computed and orthogonalized
against the previous vectors in the basis. When the method restarts after a fixed number
of iterations, say m, the number of vectors generated in one pass is bounded by m and the
memory complexity is O(n x m). In the full GMRES, this number of vectors is as high as
n since the method converges theoretically after n iterations in exact arithmetics or more
specifically after d iterations where d is the degree of the minimal polynomial of AM !
[114]. Hence the worst memory cost is O(n x d). Although the preconditioner M1 is
used to relax this bound, it is difficult to predict the number of steps needed to converge
as it depends both on the problem and preconditioner. Hence no assumption could be
made a priori for the memory required to store the Krylov basis. For large systems, a very
rough empirical rule when incomplete LU is used within the subdomains and when the
factorization is good enough to lead to convergence, is that about half of the memory is
dedicated to the factors’ storage while the other half is taken progressively by the Arnoldi
vectors of the full GMRES. We propose in the sub-section [5.3.4] an implementation of a
restarted GMRES based on deflation [53] and also an adaptive strategy to control the
memory usage. Compared to the full GMRES, the proposed strategy requires less memory
on the supplied test cases. This deflated GMRES is also likely to be more robust than
the restarted GMRES for the same basis length. In addition, edge weights are used in
the domain partitioning process in order to improve the convergence rate of the GMRES
process, and so, to reduce both Krylov basis and deflation subspace sizes. This will be
described in sub-section [(.3.2]

Finally, recall that the discretization 3D stencil involves 25 mesh nodes, which implies
that the average number of scalar entries per row is about 175 in the 7 unknowns per
node case. As a consequence, the memory required in 3D cases for storing the complete
factors for each subdomain solve is exorbitant. As proposed by the PETSc library, we can
reduce this memory burden by splitting each subdomain operator into two-by-two block
matrices and only factorize the diagonal blocks while using a multiplicative block strategy
to approach the subdomain inverse, as presented in the sub-section [5.3.3] This technique
belongs to the family of physics-based preconditioners.

We now present the proposed techniques aiming at the memory load alleviation.

5.3 Some Key Elements in Memory Usage

The first basic way to improve the solver is to use the specific storage data structures
offered by PETSc, in order to take advantage of the matrix block constitution as shown is
(5.2)), and possibly conjointly use point-block algorithms.

5.3.1 Scalar vs Block Data Format

If we note Bnnz4 the number of non-zero blocks in A, the block-CSR format corresponds to
three arrays: a {val(K), 1 < K < Bnnza} array pointing toward the stored dense blocks,
a {col(K), 1 < K < Bnnza} array containing the block column indices of the blocks
stored in val and a {row(J), 1 < J < N + 1} array of pointers toward the beginning of
each stored block row in val and col. If we assume that the val vector is made of 8 bytes

50

Some Key Elements in Memory Usage

scalars, using double precision floating point, while the two other vectors are made of 4
bytes integers, the required memory for the storage of A is:

Bnnza x n2 x 84 (Bnnzy + N + 1) x 4 bytes. (5.7)

The same matrix stored in a non-block scalar CSR format needs the following storage
memory:
Bnnza x n2 x 8 4+ (Bnnza x n2 +n+ 1) x 4 bytes. (5.8)

The size of the col array is thus multiplied by a factor n2 and the row one by a factor
close to ny. It is indeed advantageous to store matrix A as a block matrix as apposed
to a scalar matrix. Also, the data storage format of A may differ from the one used
for the preconditioner M !, which may be imposed by the software library used for the
factorization part, as it is the case with MUMPS, requiring a scalar storage. Such a
storage of A is also found to be more effective regarding the computational time: when
using blocks, the sparse matrix consisting in a collection of small dense matrices of constant
size, operations on an upper level than blocks are treated as scalar operations while lower
operations involving block entries may be optimized.

Given these advantages of using a block data format, it is also efficient to base the
partitioning on the quotient graph, which is the reduced graph adjacent to A based on
the blocks instead of the scalar entries position. This allow to save some memory and
computational time during the partitioning step. In addition, the quotient graph being
related to the physical mesh, partitions based on it are probably more natural since they
do not split the strongly coupled unknowns located at a same mesh node among different
processes.

We now look at the combinatorial problem of partitioning the quotient adjacent graph
of A.

5.3.2 The Partitioning

In the process of partitioning, ParMETIS divides the set W into p sub-parts {W?}1<i<p-
At first, the partitioner must be given weights assigned to each vertex in W and to each
edge (I,J) of the quotient graph. The default choice is to assign a unit weight to each
vertex and to each edge. The edge cut is the set of all edges that have one vertex in one
sub-part and the other vertex in another one, while the edge cut weight is the sum of all
these edge weights. While dividing the domain, the partitioner aims at minimizing the
edge cut weight, which purpose is the reduction of the total amount of communication in
the solver. The constraint of this minimization process is to build sub-parts with nearly
equal total vertex weight, for an homogeneous load balancing.

The idea implemented here is to take into account the coupling between the mesh
nodes, due to the physics or the mesh cell aspect. The graph given to the partitioner being
undirected, we use a symmetric definition for the weight Wy ; of unordered (1, .J) vertex

pairs:
1
Wis=5 (I[A7,.

where .|| denotes the Frobenius norm. This matrix norm is chosen for its computa-

tional simplicity and its evenness with respect to all the block entries. Given these edge
weights, ParMETIS is trying to avoid cutting the domain through strongly coupled edges.
This results in reducing the coupling between the subdomains while increasing the inner
subdomain coupling. The vertex weights are kept at one.

lr+ 1As1lF), (5.9)

51

Some Key Elements in Memory Usage

In Figure and Figure [5.3.2] a physical domain is partitioned by ParMETIS into
8 subdomaing with uniform weights or with weights based on the Frobenius norm. The
geometry is a RAE airfoil profile with a C-shaped mesh. The flow simulation is done with a
far-field Mach number of 0.3. The lines of strongest coupling follow the streamlines except
for two different area: in front of the leading edge and along the suction and pressure sides,
where the lines are perpendicular to the wing wall boundary, and in the wake of the wing,
where the lines are vertical. The partitioning on Figure exhibits numerous cuts across
the strongly coupled lines, for example in the sub-part located entirely in the suction side
boundary layer, or in the sub-part stretched all along the wing’s wake. The partitioning
on Figure does avoid these heavy weighted edge cuts. We remark on this last figure
that some subdomain may consist in non-connected region when using the Frobenius norm
edge weights.

Figure 5.3.1: Partitioning into 8 subdomains Figure 5.3.2: Partitioning into 8 subdomains
using uniform edge weights using Frobenius norm edge weights

Alternatively, we present in the next sub-section a significant way of reducing the
memory occupied by the LU factors, while having a relatively small impact on the effect
of the domain-decomposition induced preconditioner.

5.3.3 Splitting the Fields

The local operator for each subdomain of the preconditioner is Af, for 1 < ¢ < p. For the
purpose of reducing the number of decomposition factors, these local matrices can easily
be splitted by PETSc into a two-by-two block matrix form:

A A
s |41 Arz
A=y e (5.10)

Since the five aerodynamic variables (p, pu, pv, pw, pE) are mutually strongly coupled
and so are the two turbulent ones (pk, pw), we propose an aerodynamic/turbulent variable

52

Some Key Elements in Memory Usage

splitting, where A; 1 corresponds to the turbulent variables (block size equals 2), Ag9 corre-

sponds to the aerodynamic variables (block size equals 5), while Aj 9 and Ay carry one-way

information about the coupling between the aerodynamic and the turbulent variables.
We used in this paper the multiplicative approach, which is the following:

(491~ [0 b A7} 01_[r o I 0][47) o
v Ag1 Ago *A2721A21A1711 A;% 0 A2_21 —Asq I 0 Il
(5.11)

From (5.11)), we see that applying this operator is simple and only requires factorizing the
diagonal blocks:

I 0 I ol [urtL7r o
§\—1 1111
(4) [0 UQ‘;LQ‘%] [—Azl IH 0 I]' (5.12)

For all the cases tested so far, there was only a very little difference regarding the GMRES
convergence behavior between assigning the turbulent variables to Aj; and the aerody-
namic ones to As o or the converse situation. Also, in the majority of the cases, the conver-
gence penalty as compared to the full factorization of the subdomain block is reasonable as
we will see in the next section. However, the benefit of such a technique is multiple. First
of all, this represents roughly 40% less entries in the factorization matrices, since a matrix
based on 7 x 7 blocks is substituted by two matrices with the same structural pattern and
based respectively on 5 x 5 and 2 x 2 blocks. This allow the saving of computational time as
well, each time the preconditioner is applied, and improves the homogeneity of the entries
within the blocks that are factorized.

However, we believe that in some rare cases, this fieldsplit technique can deteriorate the
preconditioner. Inverting the two-by-two block matrix from requires that A;1 and
Ay are both nonsingular, but one of these two blocks might be close to singular, while the
global matrix is far from singular. From our experience, the turbulent variable block
is the one that might be, in some particular subdomains, at a close distance to singularity.

In the next sub-section, we describe a deflation technique, consisting in removing from
AM™! an invariant subspace that handicaps the restarted GMRES behavior.

5.3.4 Deflation

The Krylov subspace accelerator is based on the GMRES method proposed by Saad and
Schultz [114]. Its superlinear convergence has been related to the convergence of Ritz values
[132] which occurs automatically when the Krylov subspace is large enough. In a practical
implementation, the GMRES method restarts the iterative process after a given number
of iterations, say m and takes the last iterate of the previous cycle as the initial guess for
the current cycle. The main motivation of the restarting procedure is to reduce the cost
of storing the Krylov basis and to maintain its orthogonality. However, the accumulated
spectral information gathered from the Arnoldi iteration are lost at the time of restart.
As a result, the method could experience a slow convergence or even a stagnation if the
restart occurs too early.

The eigenvalue deflation has been proposed to enhance the convergence rate of the
restarted GMRES by keeping the Ritz values at the time of restart for the subsequent
restart cycles [16] 28], 53], [87, 98], 99]. This work is based on the approaches (DEFLATED-
GMRES(m,r) and DEFLATION(m)) developed in [53] 28] which build a preconditioner
from the basis of an invariant subspace associated with the eigenvalues to deflate. We
briefly present the key steps of this approach and we use the adaptive strategy proposed

93

Some Key Elements in Memory Usage

by Sosonkina et al [124] to bound the size of the invariant subspace associated to the
deflation.

Let P be an invariant subspace of dimension r corresponding to the r smallest eigen-
values A1, Aa,..., A\, of AM~!. Let the columns of U form an orthonormal basis for P.
The deflated GMRES proposed in [53] is based on the following theorem:

Theorem 5.3.1. If T = UTAM~'U and M = I, + U(|\|T — I,)UT, then M is nonsin-
gular and -
Mt =1, +U(\ |7 = L)UT, (5.13)

and the eigenvalues of AM~M are Art1s Art2s - -+ s Ay [Anl, the last term has a multiplicity
at least r.

This theorem is formulated for a preconditioned matrix AM 1. The proof in [53] is
still valid in this case because we still use the basis of an invariant subspace associated to
the smallest eigenvalues of the preconditioned matrix. Likewise, the result is valid for a
left preconditioned matrix M ~'A. Now, if M ! is used as preconditioner in the restarted
GMRES(m), we would likely have a better convergence than in the restarted version since
the r smallest eigencomponents that slow down the convergence are removed from the
system [53].

To build the preconditioner M ~1 new eigencomponents should be computed at each
restart to form the basis U. In the absence of the exact smallest eigenvalues of the precondi-
tioned matrix, the Ritz values from the Arnoldi iteration can be used as approximate values.
At step m, the Arnoldi process produces the Hessenberg matrix H,, and the basis vectors
Vins1 = [U1,02, . . ., Um, Umy1] such that AM =1V, = Vi, 1 Hy, = VmHm—kh{mH,m}vae;ﬁ.
Let (A, Vi,y) be an approximate eigenpair extracted from the subspace span{V,,} where y
is an m-dimensional vector. Using a standard orthogonal projection technique, we get:

VIAM™ = X Vy =0
= Hpy = \y. (5.14)

The eigenvalues of H,, are known as the Ritz values of AM~!. After each restart, a
Schur decomposition of H,, is computed and its eigenvalues are ordered in increasing
order. We extract k Schur vectors S corresponding to the smallest eigenvalues of H,,.
Therefore, U = V,,,S approximate the Schur vectors of AM~! corresponding to its smallest
eigenvalues. Instead of using the Ritz values,it appears from previous work [28, 34 [99]
that using the harmonic Ritz values yield better approximation of the smallest eigenvalues
of AM~!. Now, using the subspace span{AM~'V,,} for the orthogonality condition, the
Galerkin condition writes:

(AM~V,) T(AM ™ = A)V;y =0 (5.15)
= (Hm + hpmr1my Ho ' emer,)y = Ay. (5.16)

As before, the Schur vectors S corresponding to the smallest eigenvalues are extracted from
the harmonic-Ritz eigenvalue problem in Equation . At each restart of GMRES, the
DEFLATED-GMRES(m, k) will thus compute k Schur vectors noted X from the eigenvalue
problem in Equation . After that, the new vectors are orthogonalized against the
other vectors in U. At the beginning of the iterative process in GMRES, U does not
contain any vector. For multiple right-hand side systems with the same matrix, the basis
U may be kept at the convergence of the first system for subsequent solves. So far with
the new set of Schur vectors [U, X], the matrix T is updated using a block decomposition

54

Results

and a LU factorization. The new basis U is increased by X for the next restart cycles
and the subsequent applications of the preconditioner in Equation . We now analyze
the memory consumption of DEFLATED-GMRES(m, k) and we compare it to that of
GMRES(m) and full GMRES.

Asin GMRES(m), the number of basis vectors is bounded in DEFLATED-GMRES(m, k)
by m. At each restart, k new Schur vectors are added in the basis U. The matrix AM ~'U
is kept as well to save operations during the computation of 7. The memory cost is thus
2ngk for q restarts. As advised in [53], this cost can be bounded by stopping the deflation
after a fixed number of restarts. This is equivalent to bound the size of the basis U, say
r. Now the DEFLATED-GMRES(m, k) will require less memory than the full GMRES if
rk < d where d is the number of iterations in the full GMRES. Note that the computa-
tional cost of DEFLATED-GMRES(m,k) and the memory needed by U increase with r. To
limit these costs, we introduce an adaptive strategy which determines the convergence rate
before adding new Schur vectors in U. This strategy is based upon the work by Sosonkina
et al [124] in which the Krylov basis length is adaptively increased if the desired residual
norm cannot be met in the remaining number of steps allowed. Here, we rather increase
the basis U with more approximations of the smallest eigencomponents that slow down
the convergence. The main steps are given in Algorithm [As stated above, the method
starts with an empty basis U. At each restart, the convergence rate is computed and the
estimated number of remaining steps is derived (Iter). If the desired accuracy e cannot be
met during these steps, new Schur vectors are computed to update the basis U. Note that
M~ is never formed explicitly. Its expression is rather used when necessary.

Algorithm 4 DGMRES(m, k,rmaz) - Restarted GMRES with adaptive deflation
Require: m, itmax, €, k, r,smv,rmaz;

1: Set B=AM~', M~1'is the RAS preconditioner

2:2179=b—Bxoy; U=][]; M=1I; it=0;r=0;

3: while (HT()H > 6) do

4: Run a GMRES(m) cycle (m iterations) on BM™ to get xp, and ry, (See [117)])

5 it «— it + m;
6: if (||rm|| > € and it < itmax) then
. — _e [rmlly.
;. Iter—m*log(l‘rmu)/log(HTOH),
9 if (Iter > smu * (itmax — it) and r < rmax) then
10: Estimate k smallest eigenvalues of BM~' (See Equation or
11: Compute data for M~' (Theorem ; r=r+k;
12: end if
13: end if

14: o =Tm, TO=T"Tm
15: end while

In the next section, we present results of numerical experiments, illustrating on three
test cases the behavior that can be anticipated from the previous sub-sections.

5.4 Results

We start by briefly describing the test cases and the computational platform. Then the
results are organized into three parts: the edge weights, FieldSplit and deflation impact
studies.

95

Results

5.4.1 The Test Cases

Table introduces the three test cases discussed in the present paper, two of which
(RMO7R and HV15R) can be found in the University of Florida sparse matrix collec-
tion [39]. Figures [5.4.1} 5.4.2| and [5.4.3| display their respective structural pattern, which
are nearly symmetric.

Case n N | ng nnza
VVI11R 277095 | 39585 7| 30000952
RMO7R | 381689 | 54527 7| 37464962
HV15R | 2017169 | 288167 7 | 283073458

Table 5.1: matrix order (n), number of mesh nodes (IV), block size (n,) and number of
non-zero entries (nnz4) of the test cases

The RMO7R matrix is a 3D case of a jet engine compressor with frozen turbulence.
Hence the rows and columns associated to turbulence could be removed (block size would
be 5) from the original matrix. The VVI1IR matrix is a low Mach number case of an
axisymmetric vane: only a thin section of the vane is simulated, using some periodic
boundary conditions. The HV15R matrix is a 3D car engine fan case, the flow exhibits a
low Mach number. As for the RMO7R case, only one inter-blade channel is simulated in
association to some periodic boundary conditions. The periodicity as well as the structured
mesh sub-blocks coupling can be observed in the natural matrix structural pattern for the
three cases.

S N =\

S / TN |

TN A WONG N\ A\
NN VAL B
© N i . AN NN\

N N ~

" “\.\ SN ’ \ > ~N . \ -

__\\ &I e \ \

Figure 5.4.1: Structural pat- Figure 5.4.2: Structural pat- Figure 5.4.3: Structural pat-
tern of VV11R tern of RMO7R tern of HV15R

5.4.2 The platform of tests

Experiments are done on a distributed memory supercomputer Vargas| which has 3,584
Power6 CPUs. Each Power6 CPU is a dual-core 2-way SMT with a peak frequency at
4.7 GHz. The computer is made of 112 nodes connected through an Infiniband network.
Each node has 32 Power6 CPUs that access 128GB of local memory in a non-uniform way
(hardware NUMA nodes). The programming model is SPMD-like with a message passing
paradigm between the processes.

*http:/ /www.idris.fr/su/Scalaire /vargas/hw-vargas.html

96

Results

5.4.3 ParMETIS Edge Weights

The results given in this section evaluate the benefits of considering non-uniform edge
weights during the matrix graph partitioning, as described in sub-section [5.3.2] In order
to only assess one technique at a time, the full GMRES without FieldSplit is always used
in this sub-section.

RMO7R PARMETIS EDGE WEIGHTS HV15R PARMETIS EDGE WEIGHTS
1 - - - 1
RMO7R D32 No Weights = v,
o N, RMO7R D32 Weights B ——.
‘“s..\ RMO7R D64 No Weights e
0.01 N § RMO7R D64 Weights 0.01

0.0001 HV15R D32 No Weights ===

HV15R D32 Weights
HV15R D64 No Weights e
HV15R D64 Weights

0.0001 \
1e-06

1e-06 \

1e-08 \ 1e-08

1e-10 = 1e-10
0

50 100 150 200 250 300 0 100 200 300 400 500 600 700 800
Number of Iterations Number of Iterations S

Rel. Res. Norm
Rel. Res. Norm

Figure 5.4.4: RMO7R & HVI15R: Influence of the edge weights in the convergence of
the GMRES method, D32 indicates that 32 subdomains have been obtained from the
ParMETIS partitioning

The results shown in Figure 5.4.4]confirm that this approach produces a good partition-
ing for the RAS preconditioner. We consider indeed 32 and 64 partitions on the RMO7R
and IIV15R test cases and compare the GMRES convergence curves obtained with or with-
out edge weights. It can be seen indeed that the fastest convergences in the hybrid solver
are obtained when the edge weights are used during the partitioning. On RM0OT7R for in-
stance, the GMRES requires respectively 117 and 149 iterations for 32 and 64 subdomains.
Without edge weights, it requires almost 200 iterations for 32 subdomains and more than
250 iterations for 64 subdomains. The effect of this approach is even stronger for HV15R.
With uniform edge weights, the produced partitions do not contain enough relevant infor-
mation inside each subdomain. As a result, the preconditioned GMRES stagnates after a
few steps. Since no restart is done here in the GMRES, all the basis vectors are stored
until convergence. Hence, using the edge weights will not only reduce the number of itera-
tions but also the memory required to store those vectors. Sub-section show how this
memory can be further reduced.

5.4.4 The Aerodynamic/Turbulent FieldSplit

In this sub-section, we study the benefits of splitting the aerodynamic and turbulent fields
during the factorization process as described in sub-section[5.3.3] We consider the two test
cases VV11R and HV15R that contain turbulent variables. The full GMRES is always used
in this sub-section, along with the Frobenius norm based edge weights in the partitioning
process.

Table [5.4.4] reports the CPU time, the number of GMRES iterations as well as the
memory required to store the L; and U; matrices from the factorization of the subdomain
matrices. This memory size does not take into account any other part of the hybrid solver.

It can be seen, as expected, that the memory usage is saved about 40% by using the
FieldSplit in the RAS preconditioner, if only the factorization size is considered. On the

o7

Results

D With FieldSplit Without FieldSplit
Setup Time TI ITS MEM | Setup Time TI ITS MEM

VV1iR

8 4.40 46.25 0.45 94 2.58 8.92 4993 044 94 4.27

16 217 26.27 0.19 130 2.5 4.11 3433 024 127 4.18

32 1.09 19.34 0.11 171 2.47 1.99 23.73 0.13 168 4.08
HV15R

32 | 159.28 1464.0 2.13 612 78.58 | 401.41 1536.0 292 389 131.67

64 | 49.189 901.5 1.15 739 67.69 141.42 1024.0 1.79 494 115.21

Table 5.2: Benefits of the Fieldsplit for VV11R & HV15R; D: Number of subdomains and
number of MPI processes, Setup (s) : CPU time for the factorization phase, Time (s):
Maximum CPU time overall processes, TI (s) : Average time per iteration, ITS: Number
of iterations in GMRES (Matrix-vector product and preconditioning), MEM (GB): Total
memory overall processes used to store the preconditioner in GigaBytes

other side, for the HV15R case, the GMRES requires significantly more iterations when the
FieldSplit is used, e.g. 612 against 389 in the 32 subdomains case. Over a set of five different
matrices tested with the Fieldsplit, the HV15R case is the only case for which this behavior
is observed. The VV11R case is representative of the usual FieldSplit results, which are
that the convergence curves are almost the same with or without FieldSplit, e.g. 171
against 168 iterations in the 32 subdomains case. The HV15R behavior can be explained
by the fact that without FieldSplit, the inverse of the subdomain matrices provides a more
accurate expression of the RAS preconditioner. We suppose that either the aerodynamic
or the turbulent block in one of the subdomains, at least, might be ill-conditioned, or
that the extra-diagonal blocks in the FieldSplit two-by-two block decomposition are of
extreme importance. Nevertheless, the fieldsplit approach produces the best CPU time
at the different parts of the hybrid approach. The shorter setup time is explained by the
amount of fill-in in the factors L; and U;. The average time per GMRES iteration is mainly
depending on the time required to apply the preconditioner, which is also function of the
size of the factored submatrices. This explains why the average time per iteration is lower
when the FieldSplit is used.

5.4.5 DGMRES

The results presented in the previous sections use the non restarted version of GMRES.
Hence, no assumption could be made on the memory required during the iterative phase
to store the basis vectors. In this section, we present the benefits of using the adaptive
deflation to reduce this memory usage as presented in section [5.3.4 Table [5.4.5] compare
these strategies together with the classical restarted GMRES.

The results presented in the previous sub-sections use the non-restarted version of GM-
RES, without any consideration of the memory required to store the basis vectors during
the iterative phase. In this section, we present the benefits of using the adaptive deflation
to reduce this memory usage as presented in sub-section [5.3.4, Table compare these
strategies together with the classical restarted GMRES. The non-uniform edge weights are
always used in this sub-section, while the FieldSplit is discarded.

When determining the memory usage in this iterative phase, we only take into account
the vectors that have a size of n, the initial problem size. Let nvec be this number
of vectors. In the full GMRES (denoted as FULL-GMRES in the following), nvec is
equivalent to the number of iterations. In GMRES(m) it is equal to the basis length m.
In DGMRES(m, r,rmazx), nvec = m + 2r where r, bounded by rmaz, is the number of

o8

Results

VV11R
D FULL-GMRES GMRES(48) DGMRES(32,2,15)
ITS Time MEM ITS Time MEM | ITS Time r MEM
16 | 127 34 33.5 288 66 12.6 194 45 2 9.5
32 | 168 24 44 .4 670 72 12.6 318 37 2 9.5
RMO7R
D FULL-GMRES GMRES(48) DGMRES(32,2,15)
ITS Time MEM ITS Time MEM | ITS Time r MEM
16 92 214 23.9 169 297 12.4 115 250 9 13.0
32 | 117 103 30.4 355 260 124 160 139 11 14.0
64 | 149 66 38.7 860 166 12.4 206 53 12 14.6
HV15R
D FULL-GMRES GMRES(150) DGMRES(96,10,70)
ITS Time MEM ITS Time MEM | ITS Time r MEM
32 | 389 1536 5980.1 | (8.4E-08) 3,316 2304.0 | 510 2002 50 3010.5
64 | 494 1024 7598.08 | (6.8E-01) - - 635 1500 61 3624.9

Table 5.3: Benefits of Deflation for VV11R, RMO7R & HV15R; ITS: Number of GM-
RES iterations (or reduction in residual norm when the maximum number of iterations
is reached; Time (s) : Maximum CPU time overall processes to compute the solution.
MEM (MB): Total memory overlall processes to store the basis vectors and data needed
for the deflation; r : Size of the invariant basis U at the convergence.

extracted Harmonic Ritz vectors. In double precision, a scalar uses 8 bytes of memory.
Hence, the total memory required in this phase of the hybrid solver is equal to 8 x n X nvec
bytes. To show the benefits of using DGMRES, the restart length is choosen smaller than
that in GMRES(m), the goal being to have about the same memory bound for these two
restarted methods. Table[5.4.5|reports the memory usage, as just described, with respect to
the three test cases and various number of subdomains. As expected, it can be noticed that
for all configurations, DGMRES(m, r,rmax) and GMRES(m) require less memory than
FULL-GMRES. This is more noticeable with the largest test cases HV15R. Indeed, the
ratio of the memory required in FULL-GMRES as compared to GMRES and DGMRES is
close to 2. A second observation is that the FULL-GMRES memory usage increases with
the number of subdomains, which is induced by the increased number of iterations. In
DGMRES, only the size of the basis U increases.

The main empirical observation here is that DGMRES provide a trade-off between
FULL-GMRES and the restarted GMRES. Compared to FULL-GMRES, the main benefit
of DGMRES is that it bounds the memory required by the basis vectors. In FULL-GMRES,
no assumption could be made a priori for the memory required to save the basis vectors.
The immediate consequence is that the memory is allocated on the fly. In DGMRES, it is
always possible to estimate the memory that will be used and thus to allocate this memory
beforehand. Compared to the restarted GMRES, the provided numerical results as well
as numerous other experiments show that DGMRES is more robust and exhibits a better
convergence rate, which is illustrated in Figure[5.4.5} it can be seen that GMRES(m) tends
to stagnate after each restart. By increasing the restart length m, the convergence rate is
improved but the negative effects due to restarting remains. With DGMRES, only the size
of the invariant basis is adaptively increased.

Besides the memory aspect, there is another benefit to DGMRES; in the particular case
of a sequence of linear systems involving the same matrix and different Right-Hand Side
(RHS) vectors. Then the basis U may be kept from one system to another. We mention

99

Results

RMO7R D32 GMRES and Deflation HV15R D32 GMRES and Deflation
1k T T T 1 T T
FULL GMRES —— L ! FULL GMRES ——
GMRES(48) - | e o GMRES(150)
GMRES(64) -+ NG DGMRES(96;10;50) -
DGMRES(32:3:14) 001

0.01 \
0.0001

1le-06

0.0001

1e-06 \

1e-08 1e-08 \
\ 1e-10 \

1e-10 -
0 50 100 150 200 250 300 350 400 0 200 400 600 800 100C
Number of Iterations Number of Iterations

Rel. Res. Norm

Rel. Res. Norm

Figure 5.4.5: RMO7R & HV15R : Benefits of the Deflation in GMRES(m). 32 subdomains

are used.

here that multiple RHS cases are commun in the field of CFD optimization, each RHS
accounting for a given geometric parameter for example [15]. We give in Table the
benefits of such approach on the test problems RMO7R and HV15R, for which three and
two distinct RHS vectors are used respectively. In the hybrid solver, the partitioning of the
matrices and the factorization on the subdomain matrices are done only once. Thereafter,
the iterative phase is performed successively for the distinct RHS vectors. For the first
linear system, the initial U basis is empty. New vectors are then added adaptively within
the maximum size allowed during the first solve. For the subsequent solves, the basis U
is used at the first iteration to build the preconditioner associated to deflation, and is
continuously and adaptively increased until the maximum size is reached.

RMOTR
FULL-GMRES | DGMRES(32,2, 15) GMRES(48)
RHS#| 1 2 3 | 1T 2 3 1 2 3
ITS | 144 141 135 | 209 138 119 864 (3.4E-09) 368
HVI5R
FULL-GMRES | DGMRES(96, 10, 70) GMRES(150)
RHS # | 1 2 1 2 1 2
ITS | 494 529 664 445 (6.8E-01) -

Table 5.4: Number of iterations for multiple right-hand-side systems. In DGMRES, the
basis U is kept from one subdomain to another. 64 subdomains are used in the additive
Schwarz. Numbers in parentheses are the reduction in residual norm when the maximum
number of steps is reached.

In Table [5.4] we give the number of iterations obtained for each linear system. It is
clearly seen that DGMRES requires more iterations for the first system. However, for the
second system, DGMRES performs better. It is worth to note that more sophisticated
Krylov methods are available to solve sequences of linear systems by treating all the RHS
at once [113], [100], however, the adaptive approach presented here does not require all the
RHSs to be available at the same time. This could be used, for example, to design memory-
efficient iterative solvers within the subdomains, associated to incomplete factorization.
However, we leave it as future work as it requires more investigation.

60

Conclusion

5.5 Conclusion

It is found that within the framework of hybrid linear solvers, the association of the DGM-
RES algorithm, the FieldSplit technique and the weighted edge partitioning is efficient
regarding memory requirements for the systems involving compressible flow Jacobian ma-
trices. In this paper, the type of linear systems as well as the numerical methods and
the associated results on different test cases have been presented. To summarize, the edge
weights based on the block norm are found to produce a partitioning that greatly improves
the RAS preconditioner. The drawback is an increase of the process communication due
to a larger edge cut set. Then, the aerodynamic/turbulent FieldSplit allows a substantial
saving of the factorization memory size, while also decreasing the CPU time per itera-
tion. The penalty of this technique is a lower convergence rate in some ill-conditioned
cases as compared to the non-split version. Finally, the DGMRES algorithm provides a
good trade-off between the FULL-GMRES and the restarted GMRES, by bounding the
memory required for the basis vectors and exhibiting a better convergence rate than the
restarted GMRES. A future work direction involves using a robust incomplete instead of
the complete LU factorization as a subdomain preconditioner, associated with the DGM-
RES algorithm with a deflation basis recycled over the global iterations, as a subdomain
solver. The global method would be the FGMRES-DR [64] preconditioned by RAS.

Acknowledgement: This work was funded by the French National Agency of Research
under the contract ANR-TLOGO07-011-03 LIBRAERO. Numerical experiments have been
done on the VARGAS supercomputer from GENCI-IDRIS (Grand Equipement National
de Calcul Intensif - Institut du Développement et des Ressources en Informatique Scien-
tifique). Preliminary tests have been carried out using the GRID’5000 experimental testbed
(https://www.grid5000.1r).

61

CHAPTER 6

Parallelism and robustness in GMRES
with the Newton basis and the deflation of
eigenvalues

Joint work with
Jocelyne ERHEL,

Abstract: The GMRES iterative method is widely used as Krylov subspace
accelerator for solving sparse linear systems when the coefficient matrix is
nonsymmetric and indefinite. The Newton basis implementation has been
proposed on distributed memory computers as an alternative to the classical
approach with the Arnoldi process. The aim of our work here is to intro-
duce a modification based on deflation techniques. This approach builds an
augmented subspace in an adaptive way to accelerate the convergence of the
restarted formulation. In our numerical experiments, we show the benefits of
using this implementation with hybrid direct/iterative methods to solve large
linear systems.

Keywords: Augmented Krylov subspaces, Adaptive Deflated GMRES, Newton
basis, Hybrid linear solvers

6.1 Introduction
In this paper, we are interested in the solution of large systems of linear algebraic equations
Az =0, (6.1)

where A is a nxn real nonsingular matrix, b and z are n-dimensional real vectors. Practical
algorithms transform the original problem (6.1)) to the following

M;'AMG s = M 'b, &= Mgz (6.2)

where M, Dand M = I are the action of preconditioning the system at left (Mg = I), at
right (M = I) or both. On parallel computers, we assume that these preconditioners are

62

Introduction

formulated from some algebraic decomposition of the input matrix. However, they can be
any approximation of the inverse of the matrix A and we refer the reader to the survey
on the preconditioning techniques [21]. These preconditioners are generally combined with
Krylov subspace methods as accelerators. The GMRES method [114] is widely used in
this context. From this method, many improvements have been proposed to enhance its
robustness and parallel efficiency; see for instance [I7, 28, B34, 50, B3, H1, 08, 118, 79,
107]. In this work, we propose a new formulation of the method which combines two
main approaches, namely the Newton basis GMRES [17] and the augmented basis for the
restarted GMRES [98]. Our approach benefits from the enhanced parallelism in the former
and the robustness in the latter. For the sake of clarity, we give here the formulation of
the GMRES algorithm as first proposed by Saad and Schultz [114].

We consider in this paper the right preconditioned matrix B = AM~'. The proposed
algorithms can be derived with less effort for the left preconditioned matrix. Given an
initial guess xg, the GMRES method finds the j approximate solution x; of the form

x5 € $0+ch(B?T0)7 (63)

where 79 = b— Bz is the initial residual vector and IC;(B,r¢) is the k-th Krylov subspace
defined as ‘
K;(B,r0) = span{rg, Bro, ..., B 'ro}. (6.4)

The goal behind GMRES is to minimize at each step the Euclidian norm of the residual,
i.e

|b— Bz;|| = min |b — Bul|. (6.5)
u€zo+K;(B,ro)
An orthonormal basis Vji1 = [vo, ..., v;[]of Kj11(B, 7o) is generated such that
w=ro/B, B=lroll, BVj=VjriHjr; = Vil +hyavies (6.6)

It is therefore proved [113] that (6.5) reduces to
1Ber — Hjt1,4y;] = min [|fer — Hji 5yl (6.7)
yEeRJ

and the approximate solution z; can be written as
zj =z + M~ 'Vjy;. (6.8)

Our work combines two improvements of this method. In GMRES(m), the method
restarts at some step m to save the storage and the computational requirements as the
iterations proceed. The deflated and augmented approaches [16] 28] 53| 87, O8] keep some
useful information at the time of the restart to enhance robustness. We briefly review these
methods in Section The second improvement builds the orthonormal basis with a par-
allel algorithm and reduces the number of exchanged MPI messages on distributed-memory
computers. In the original formulation indeed, the basis V' is built and orthogonalized by
the modified Gram-Schmidt implementation (MGS) of the Arnoldi process (Vj is referred to
as Arnoldi basis). This process induces a high communication overhead due to the numer-
ous inner products. For instance a GMRES cycle of m iterations requires approximately
%(m2 + 3m) global communications for the inner products. On high latency networks, the
start-up time due to these collective communication can easily dominate. Moreover, the
kernel operations in MGS have a very low granularity which does not fully benefit from

*Throughout this paper, we use a zero-based numbering for all the vectors in the basis

63

Restarted GMRES accelerated by deflation

the computer architecture. In the classical Gram-Schmidt implementation (CGS) of the
Arnoldi process, the communication time can be reduced by accumulating and broadcast-
ing multiple inner products together. However the low granularity of the kernel operations
in the orthogonalization procedure remains because of the sequential form of the Arnoldi
process. Moreover, CGS is more sensitive to rounding errors than MGS [81]. Alternative
implementations [I7, A1), 50} 51, [79] 3], 118, 107] have been proposed. They divide the
process into two main phases : first, a nonorthogonal basis of the Krylov subspace is gen-
erated and orthogonalized as a group of vectors in the second phase. As first proposed by
Bai, Hu and Reichel [17], the a priori basis is built with the aid of Newton polynomials.
We will refer to this as the Newton-basis GMRES. Later on, the orthogonalization is done
by replacing the vector-vector operations of the MGS method by the task of computing a
QR factorization of a dense method. De Sturler [41] analyzes the parallel implementation
of the second phase and suggests a distributed MGS factorization to overlap communica-
tion with computation. Sidje and Philippe [I119], Erhel [50] and Sidje [118] use a different
orthogonalization strategy called RODDEC which combines the Householder factorization
with Givens rotations and requires only point-to-point communication. Demmel et al [42]
propose a different QR factorization called Tall Skinny QR (TSQR) which reorganizes the
computation to reduce the memory access and exploit the data locality.

Our proposal in this work is to combine the Newton-basis GMRES with the augmented
and deflated GMRES. The new approach is simple and can be used together with any of
the previous orthogonalization strategies once the augmented a prior: basis is built. The
motivation of our work is two-fold: previous studies [107] have shown that when the size
of the Newton basis grows, the vectors become increasingly dependent. As a result, the
method may experience a slow convergence rate. With the new approach, the basis is kept
small and augmented with some useful approximate eigenvectors. The second motivation
is related to GMRES(m) preconditioned by domain decomposition methods. Indeed, with
Schwarz-based preconditioners, when the number of subdomains increases, the precondi-
tioner becomes less and less robust and the method requires more iterations to converge.
In this situation, the basis length is usually increased to prevent the stagnation. In the
proposed approach, we show that by adding adaptively more approximate eigenvectors, the
convergence rate is improved. Recently, Mohiyuddin et al [97] and Hoemmen [79] propose a
new formulation in their communication avoiding GMRES which do not require the Krylov
basis length to be equal to the number of vectors generated a priori. Their formulation
builds the Krylov basis with several steps of the Arnoldi process where each step builds a
set of vectors with the Newton polynomials. Our proposed approach can be used as well
with their formulation for the problems that are very sensitive to the restarting procedure
in GMRES. We show indeed in Section how the augmented basis can be formulated
in their proposed approach. The remaining part of this paper is organized as follows :
in section [6.2] we review briefly how the deflation of eigenvalues is used in the restarted
GMRES. In section we derive the new approach combining deflation to the Newton
basis GMRES and we discuss on the parallel implementation. Section is focused on
numerical experiments to show the benefits of the proposed approach.

6.2 Restarted GMRES accelerated by deflation

A practical implementation of GMRES is based on restarting a minimum residual iteration
when the correction space reaches a given dimension m. At the time of restart, information
from the previous Krylov subspace is discarded and the orthogonality between successive
Krylov subspaces is not preserved. The worst case is when the successive generated Krylov

64

Deflated GMRES in the Newton basis

subspaces are very close. As a result, there is no significant reduction in the residual norm
and the iterative process stagnates. Deflation techniques are a class of acceleration strate-
gies that collects useful information at the time of restart mainly to avoid this stagnation
and improve the convergence rate. The main idea behind these methods is to remove the
smallest eigencomponents from the residual vector as they are known to slow down the
convergence of GMRES [132]. For a general analysis of acceleration strategies in the min-
imal residual methods, we refer the reader to Eirman, Ernst, and Schneider [48]. For the
general Krylov subspace methods, the recent reviews in [52], 121 are also of great interest.

In deflation techniques, the Krylov subspaces are enriched by some approximation of
invariant subspaces associated to a selected group of eigenvalues (generally the smallest
ones). Two strategies are often used, namely by preconditioning the linear system [28], 50|
87| or by augmenting the Krylov subspace [98], [99].

Consider U the basis of a nearly invariant subspace spanned by r (approximated)
eigenvectors computed from the previous Krylov subspaces, the preconditioner used to
deflate the corresponding eigenvalues is given by [53] :

Mt =1, +U(M|T7' = I)UT (6.9)

where T'= UTBU and), approximates the largest eigenvalue. When U is an exact B-
invariant basis, the eigenvalues of the preconditioned matrix BM ™! are i1, ..., An, [An]
with a multiplicity at least . It is therefore expected that GMRES(m) will converge faster
since the smallest eigencomponents that slow down the convergence are deflated. The
actual implementation in [53] and the improvements in [28] rely on the approximation of
U which is updated at each restart by computing the Ritz values from the Arnoldi relation
in Equation to yield a more accurate basis. In [16], U is computed by the Implicit-
Restarted Arnoldi (IRA) process and the result is used to form a left preconditioner.
The adaptive preconditioner by Kharchenko and Yeremin [87] is built such that the Ritz
values (which approximate the largest eigenvalues of B) are translated to a cluster around
one. With a large number of processors, the communication overhead may dominate when
applying the preconditioner in Equation to form the basis vectors. As we express the
goal to reduce the global communications, we rather rely on the augmented approaches
[98], [99].

The augmented approaches, form the new approximation with a projection onto a
subspace C = K,,(B,rg) + W, where W = span{ug,...,u,—1}. Minimal changes are
required to the existing kernel operations as the vectors are directly added to the existing
Krylov basis. Moreover, when the vectors wug,...,u,—1 are the harmonic Ritz vectors,
Morgan [99] shows that the new searching subspace C is itself a Krylov subspace and
writes

C=Km(B,r0) + W = Kpsr(B, qm(B)ro) (6.10)

where ¢,,(B) is a polynomial of degree at most m.

6.3 Deflated GMRES in the Newton basis

In this section, We derive the new implementation of the GMRES algorithm where the
Krylov subspace is spanned by the Newton polynomials and augmented with eigenvectors.
Regarding the previous Newton basis implementations [17), 50} 118, [79], the new approach
uses the deflation strategies to recover the information that are lost at the time of restart.
Hence for the problems that are sensitive to the restarting procedure, our implementation
should converge faster than the previous approaches for the same basis length. Regarding

65

Deflated GMRES in the Newton basis

the GMRES-E by Morgan [98], our approach communicates less and should produce better
computational kernels. Compared to the GMRESDR of Morgan [99] however, we have not
investigated whether the proposed augmented basis is itself a Krylov basis and we left it
as future work.

6.3.1 Augmenting the Newton basis

We now derive the proposed approach. Our motivation is to get a Arnoldi-like relation for
the augmented basis when the eigenvectors are added at the end of the Newton basis. Let
B be the preconditioned matrix, zg an initial guess and 7o the initial residual vector. A
m-dimensional Krylov subspace is spanned by the Newton polynomials applied to ry of the

form

Pj+1(B) = Uj+1(B*>\j+1I)Pj(B), j:0,1,2,..., (611)
where Py(B) := 1, 0j and \j € R (See |17, [107]). We discuss later on the choice of these
scalars. Let W = spanfug,u1,...,ur—1] be an approximate basis of an invariant subspace

associated to r selected eigenvalues, let s = m+1r and Cs4; the augmented subspace defined
by

Cs+1 = span{ro, (B — A\)rg, ..., H(B —NDro} +W. (6.12)
j=1

Proposition 6.3.1. There exists a rectangular matrix Wy € R™* basis of Cs, a matriz
Ver1 € R+ “ywhose columns form an orthogonal set of vectors, such that

BWs = Vg Hy = VHs + hyyp s0s 1€l (6.13)
where fy € RETVXS s o upper Hessenberg matriz. Moreover, the vector xs € R™ given by
Ty = 20 + M Ways, (6.14)
where ys € R™ solves the least-square problem Js(y) defined by
Js(y) = [|Ber — Hsyll2, B = [|roll2 (6.15)
minimizes the residual norm ||b — Ax|| over xo + M~1Cs.
Proof. From ko = ro/||rol|2, a set of vectors k; can be generated such that

(B—A]+1I)kj if Ogjgm—l
Oj+1kjr1 = (6.16)
Buj_m, if m<j<s—1.
where A\; and o0j, (j = 1,2,...) are user-specified scalars. We discuss in sections [6.3.2.1
and [6.3.2.2) on their optimal choice. In matrix form, the relation (6.16]) writes

BK,, = m+1Tm
{ e (6.17)
with Km+1 = kg, kl, ey km; KT = km—i—h ey]CS and
By .
o1 A2
09 A3
T, = e Rm+1)xm. (6.18)
)\m—l
Om—1 Am
- O—m -

66

Deflated GMRES in the Newton basis

and D, = diag{om+1,...,0s} € R"™*".
A QR factorization on K1 yields

Kyi1 = Vei1Ropr. (6.19)

Defining W, = [K, U] and using equations (]6.17[) and QG.19[), we get

Tm O
BW, = Vg 1Repq [6” D,] : (6.20)
The first part is thus proved (Equation [6.13]) by defining
_ Tm O Hy
= = . 21
N I P (6.21)

The second part of the proposition is similar to the optimality property in the aug-
mented GMRES [34, Algorithm 2.1]. Consider an arbitrary vector xs = g + M Wy in
the affine space 29 + M ~'C,, the corresponding residual vector can be expressed as:

b— Az, =b— Az + M W,y) (6.22)
=ro — Vsr1Hsy
= fko — Vep1Hgy
= Vs11(Be1 — Hsy) (6.23)

where 3 = ||ro|| and e; = [1,0,...,0]7. If we denote by Js(y) the function
Ts(y) = [Ib — Alzo + Mgy l2,
it comes from Equation and the fact that Vs is orthogonal that

Js(y) = [|Ber — Hy2. (6.24)

Thus by taking the vector ys € R™ which minimizes the function Js(y), the approximate
solution x4 = xg + M Wy, will have the smallest residual in zg + M ~'C,. O

We refer to the matrix Wy as the augmented Newton basis of the subspace Cs and the
induced GMRES is the augmented Newton basis GMRES.

This proof assumes that the basis vectors kj,j = 0,...,s are generated through one
pass in the kernel computation of Equation [6.16] There are some situations where m is
too large to guarantee a good robustness (ill-conditioned basis) or good performance (best
value for data locality in multicore nodes). In a recent work, Hoemmen [79] uses the pu-
step Arnoldi of Kim and Chronopoulos [88]@ in his Arnoldi(p,t) to build the basis vectors
through multiple passes of the kernel computation in Equation [6.16] Hence the process of
computing s basis vectors is divided into ¢ steps where each step generates u basis vectors
with the Newton polynomials. The restart length is thus s = p-t. We show in the following
that the proposition holds in the case of a u-step basis. We explain the basis idea
with ¢ = 2.

Let kg be the starting vector and s = p-t+1r = m + r. As from the first part of
Equation we generate the sequence of vectors

O'j+1k‘j+1 == (B - >\j+11)kj70 gj S m— 1. (625)

"The original method is referred to as s-step Arnoldi instead of p-step Arnoldi but we choose yu here
to differentiate with the size s of our augmented basis.

67

Deflated GMRES in the Newton basis

It comes that

0) =
BK{") = K\, TV (6.26)
where K\ = [ko,k1,... k] € RO#H T € RHIH s a bidiagonal matrix. A QR
factorization of K ;(321 gives
©0) _ 1/(0) p(0)
Ku+1 - Vu+1Ru+1 (6'27)
and thus
0) 5 0
BK® = VIO RD = VORO + b1,V epel, (6.28)
where ITIELO) = Rl(to_zlﬂso)and e, is the p!" unit vector. This first step is just the derivation

of the Arnoldi-like relation for the (non-augmented) Newton basis. Note that we don’t
have a mathematically equivalent Arnoldi relation as in Equation ITIS?_l is not equal in
exact arithmetics to the Hessenberg matrix H of that equation as we avoid dealing with the
term (Rg)ll)_l. However, the columns of V;g)l form an orthogonal basis of a p-dimensional
Krylov basis. From its last column as a starting vector, we can thus build the second u-
step basis. At this step, we add the eigenvectors in the subspace by augmenting the p-step

basis.

Let k, = Vﬁ’l ey, a p-step augmented basis is generated as follows:
(B = Au—jpal)kj if p<j<m-—1
ojtr1kjt1 = (6.29)
Buj_ i1 if m<j<s—1.
In matrix form, we get
(1) (1) T;Sl) 0
Bk v | =Kl |) (6.30)
T
The matrices T,Sl) and D, are similar to the matrices in Equation At this point,
to avoid loss of orthogonality, the vectors KSJZTH = [k kut1s - -+ kugymer] should be

orthogonalized against the previous vectors ‘/;EO). This can be done with a block Gram-
Schmidt method which is equivalent to writd]

(1) 0) (17 (O\T 1
K}L+7‘+1 = (I - Vu()<Vp()))K;(L-zr—&-l (6.31)
The vectors K /(i,zr are now orthogonal to the basis vectors but it remains to orthogononalize

them between each other. This can be done with a dense QR factorization to produce

(1) _ M (1)
Ku+r+1 - Vu+r+1Ru+r+1’ (632)

From Equations and we get

B[K@ KV U }:[v“” K.Y] i ! (6-33)
iz Iz T H ptr+l hu+17uele£ C;H—r
where
7(1)
= T, 0
Ciir = r
pt 0 DT]

!Note that the first vector k, is already orthogonal to V,EO) but we choose to orthogonalize it again.

68

Deflated GMRES in the Newton basis

Knowing that a QR factorization update have been perfomed on KW

ptr+1o
Equations and that,

we get from

I (V(O))TK(l)
(0) (1) — (0) ¢y H +r+1
[VM Ku+7“+1 } - |: Vu VM+T+1] 0 R 1) ® . (6.34)
ptr+1
Substituting in [6.33] we get
BWs = Vi H, (6.35)

where W, = [K,SO) K,(f) U, }, Vsy1 = [V;fo) VM(JIF),,] and

B 0
0 R(l) h,u—‘,—l,,uelez; C;H—T

0 1
H = [Ly (V!))TK,L(L-‘ZT-FI
ptr+1

From the fact that K/(LI_QTHQ is orthogonal to VPEO) and that Rl(}lrﬂel = e, we get

s =

(0) (0) ORS
i [H, (Vuu)TK;L+7;+ICN+T (6.36)

T 1
th'L#ele,u R;H—H-ICFH'T

which is an Hessenberg matrix. The first part of the proposition is thus proved and
the second part is similar to the previous proof.

The GMRES with the p-step Newton basis is useful to control the conditioning of
the basis generated with the Newton polynomials by choosing a suitable value of p. On
multicore nodes, a well chosen value of p will also improve the data locality during the
computation of the kernel computations (Generation of the basis and orthogonalization)
[42, [79]. The drawback with this formulation is that when the new set of basis vectors
is orthogonalized against all the previous vectors already computed, it is important to
perform a good QR factorization update. Sometimes when a block Gram-Schmidt process
is used, a reorthogonalization strategy should be performed to avoid loss of orthogonality,
see for instance [81]. This process induces more computational cost as the number ¢ of
steps increases. As for the scalar formulation, the augmented basis will thus help to reduce
this cost by reducing the number of steps t. We do not further investigate in this direction
and we focus in this paper to the basic implementation of a (u+7)-step augmented Newton
basis.

6.3.2 AGMRES : Augmented Newton-basis GMRES

This section discuss the parallel implementation of the GMRES method where the Newton
basis is augmented with a few selection of approximate eigenvectors. The main steps are
outlined in Algorithm [6.3.2]

If we compare AGMRES with the previous related implementations of the GMRES
method, we can make the following observations :

e Compared to the standard GMRES method, AGMRES produces efficient kernel com-
putations during the generation of the orthogonal Krylov basis in steps[5]and [6] How-
ever, in addition to the basis W, it keeps the orthogonal system V; for computing
the eigenvectors.

e The GMRES-E of Morgan [98] keeps a second basis as well. However its implemen-
tation is based on the Arnoldi process. It will thus communicate more for the same
convergence behaviour. Our implementation includes an adaptive strategy that will
allow to increase the number of extracted eigvenvectors if necessary.

69

Deflated GMRES in the Newton basis

Algorithm 5 AGMRES(m,r,l) : Augmented Newton-basis GMRES
Require: xg, m,itmax, e, r, 1, rpaz, sSmu, bgu;
1: Perform one cycle of GMRES(m) [114], Algorithm 4] to find a new approximation z,,
the residual rp, and the matrices H,, and V,, satisfying Equation [6.6] if(||rm| < €)

return

2: Set 29 « Ty, and 79 ;B = [0l

3: Compute m Ritz values {\;}Z]" of AM~! from H,, and order them with the Leja
ordering [I7]; If (r > 0) extract r Ritz vectors U for the augmented basis.

4: while (||ro] > €) do

5. Compute K1 from Equation together with T, and D, and derive W,

6: Compute the QR factorization K11 = Vsy1Rs11

7. Compute the (s + 1) x s Hessenberg matrix Hy from Equation

8: Solve y; = min||fer — Hsyll2

9: Compute z, = 20+ M Wy, ry = b — Axg, it — it + s

10: if(||rs|| < € or it > itmax) return
11: Set zg < x5 and rg < rg;
12: if r > 0 then

13: Iter = sx*log (m)/log (”:;H)

14: if (Iter > smuv * (itmaz — it)) then

15: if ((Iter > bgv * (itmax — it)) and (r < rme) and (I > 0)) then

16: r «— 7 + [/*Increase the number of eigenvalues to deflate®

17 end if

18: Update the r eigenvectors uy, ug, . .., u, from the harmonic Ritz values of B =
M—1A

19: end if

20: end if

21: end while

e Compared to CA-GMRES of Hoemmen [79], our implementation is limited to one
u-step Newton basis. However, we show in the previous section how an augmented
basis can be defined for more than one u-step basis. For the same restart length, CA-
GMRES(,t) and GMRES(p-t) produce the same convergence behaviour. AGMRES(p-
t,r) is more likely to produce a faster convergence than these two approaches when
the convergence rate is affected by the restarting procedure.

So far, the algorithm starts with an initial approximation of the solution vector zg (in
practice, we use a zero vector), the size m of the Krylov basis, the maximum number of
iterations itmax allowed and the desired accuracy €. The remaining input values are used
for the augmented basis: the number of eigenvectors r that are added at each step; the
parameters [, 7pqq, smv and bgv for the adaptive strategy, see section [6.3.2.6] The main
steps of the algorithm are the computation of the shifts (steps [I| and , the generation
of the augmented Newton basis at step [5] and its orthogonolization in section [} The
approximated solution is updated at step [9] At step we update the eigenvectors to be
added in the Newton basis. The adaptive strategy is implemented in steps All these
steps are explained in the next sections.

70

Deflated GMRES in the Newton basis

6.3.2.1 Computation of the shifts

The generation of the Krylov subspace with the Newton polynomials uses the scalars A;,
j=1,...,m to produce a stable basis. Bai et al [I7] show that an optimal choice would
be to use the eigenvalues of B numbered according to the following modified Leja order
(see [109]):

{ [A1] = maxj=1,__m Al

A _ 6.37
L N — Ml =max—1_m [y N —Xel, j=1,....m—1 (6:37)

In practice, the spectrum of B is not available and very expensive to compute. In this
situation, the Ritz values of B which are the eigenvalues of the Hessenberg matrix H,, in
Equation[6.6)are used. This implies that m steps of the Arnoldi process should be performed
to get these values. At step[I], we perform one cycle of the Arnoldi-GMRES method. From
this step, we get an approximation of the solution x,, and the associated residual 7.
This vector is used as the initial search direction for the Newton basis GMRES from step
At step |3l each process computes the eigenvalues of its own copy of the Hessenberg
matrix H,, and order them with the Leja ordering. This step uses so far the parallelism
inside the matrix-vector product and the preconditioning operation. But it requires global
communication as pointed out in section [6.I] Note that when m gets large, it may be
expensive to perform this step of the Arnoldi-GMRES method. The cost here is compared
to one step of the Newton basis GMRES mainly in terms of granularity and MPI messages
volume. In practice, we use a small value of m to show the benefits of augmenting the
basis. Nevertheless, if a large basis should be used, a solution could be to use a u-step
basis as explained in the previous section. Another solution, as advised by Philippe and
Reichel [107] is to perform a Arnoldi-GMRES with a smaller basis to get a subset of these
values. From this subset, a convex hull is defined and continuously updated with new
values collected during the Newton-basis GMRES iterations.

6.3.2.2 Computation of the Newton basis with scaling factors

The first m + 1 vectors of K, 41 can be generated using Algorithm 1.1 in [118]; then it is
easy to generate the last r vectors from U,. Note that when a particular A\;1 is complex,
and assuming that Im(\;41) > 0 (This is always possible from the complex conjugate
pairs and the modified Leja ordering), the complex arithmetic is avoided by writing the
first part of Equation as

kjt1=1/0j11(B — Re(Aj111)k;
O‘j+2k7j+2 = (B —)\j+1[)(B — 5\j+1[)k‘j = (B — R€(>\j+11)k‘j+1 + 1/0j+1lm()\j+1)2k:j‘

In this case, the matrix T € RH1X$ of Equations and is tridiagonal. So far,
the scalars oj,j = 1,...,m in Equation are used to control the growth of the vectors
{k; ?Zﬂ The common choice is to take o; = ||k;||. The parallelism inside this step is
through the preconditioning and the parallel matrix-vector operations (AM~! — Xk =
A(M™Yk) — X\jk. When o; = ||k;||, then there are (m + r) global communications, which
are far less than the %(m2 +3m) global communications in the Arnoldi process. With some
particular cases, this norm can be computed distributedly. When using for instance the
explicit formulation of multiplicative Schwarz, the basis vectors are computed in a pipeline
accross all the subdomains. Each process is thus able to compute its own contribution to
the norm and the basis vectors are normalized a posteriori [11, [I0I]. When the size of
the basis is small enough, the rows and columns of the matrix can be equilibrated and no

71

Deflated GMRES in the Newton basis

scaling, thus no global communication, should be needed during the computation of the
basis vectors [79)].

6.3.2.3 Orthogonalization of the basis

After the basis vectors are computed, they should be orthogonalized between each other at
step [6] of Algorithm to produce the orthogonal system V1. At the end of the step
the vectors Ky are distributed on all processors as a contiguous blocks of rows which
is equivalent to the classical 1D rowwise partitioning for the matrix-vector products. Any
algorithm for the parallel dense QR factorization can now be used to orthogonalize the
system K i1. In our implementation, we use the RODDEC algorithm described in [118]
section 4.2|. This method performs first a Householder orthogonalization on each block of
rows. This is done in a perfect parallel phase by all the processes having the rows. After
that, the Givens rotations are used to annihilate the blocks below the first one. During
this second step, the processors are placed on a ring topology and each process sends the
required data on this ring. This step requires O(m?) point-to-point messages and the
average message length is (m + 1)/2 double precision number. The TSQR algorithm of
Demmel et al [42], which is a divide-and-conquer approach, can be used as well at this
step. It requires O(log(P)) MPI messages where P is the total number of MPI processes
sharing the system K 1.

6.3.2.4 Updating the current approximation

At the end of the QR factorization, the triangular matrix Rgy of Equation is usually
available on one process. In the RODDEC algorithm, it is available in the last process. It
can be broadcasted to all other processes such that the steps|7] and [§| are done by all the
processes. When the number of MPI processes gets large, it is more efficient to perform
these steps on the last process and to broadcast only the result of the least-squares problem
at step[8] In our implementation, we choose to send a copy of the matrix since it is required
by all processes to update the eigenvectors, see section So far, the Hessenberg
matrix Hy is assembled from Rs and T} using a modification of Algorithm 1.2 in [TI8]. The
modification allows to take into account the scaling factors of the augmented vectors in
the basis. A QR factorization is perfomed on the output Hessenberg matrix to solve the
least-squares problem in the minimization step. The LAPACK routine dgegrf is used for
this purpose. The output solution is used to compute the new approximate solution at
step [9l Note that since we are using a right preconditioning, we can obtain an estimate of
the true residual norm without explicitly computing the residual vector r;. Nevertheless,
at the time of restart, we need rg for the new search direction.

6.3.2.5 Updating the eigenvectors

When the iterative process starts at lineof Algorithm , the eigencomponents (u;, A;)
of B = AM~! are approximated from the first GMRES(m) cycle with a standard projection
technique as follows :

V(B = X\ Vpg =0 (6.38)

leading to the eigenvalue problem
Himgj = Ajg;- (6.39)

The Ritz values A\j,7 = 1,...,m are used as shifts for the Newton basis and the vectors
uj = Vingj,j = 1,...,r corresponding to the r smallest eigenvalues are used to augment the

72

Deflated GMRES in the Newton basis

Newton basis. Then to update the vectors U, at step[18], we use a Rayleigh-Ritz procedure.
Indeed, as advised by the previous studies [34], O8], this procedure does better at finding
eigenvalues nearest zero.

Using the augmented subspace Cs, each extracted eigenvector u is thus expressed as
u = Wgg;. Using the bases BW; and Wy, the Galerkin condition writes :

(BWy)T (B — \;IWsg; = 0. (6.40)

It comes with the relation that,

o't o'y T
HS Hg g; =)‘j HS Vs+1w5 gj- (64:1)
~—— ———

Gs Fs

We thus obtain a dense generalized eigenvalue problem of size s x s where (\;,Wg;) gives
a Ritz pair of B. Multiplying F, and G, by H; T, we get

-7 -7 H
H76, =17 [B ae, | [-]
=H,+h2, H; "eel (6.42)
H;TFo= [I, nep1 87 e, VI W, (6.43)

The drawback here is the computational work required to form Fy as it induces s scalar
products of size n. Nevertheless, the numerical experiments show in most test cases that
when the convergence is accelerated by deflation, the time to update the eigenvectors is
negligible compared to the total time saved without the deflation. Moreover, the adaptive
strategy proposed next sets off deflation only if convergence is too slow.

6.3.2.6 Adaptive strategy

When the desired accuracy is not achieved, the method restarts and r new approxi-
mate eigenvectors (corresponding to the eigenvalues to deflate) are extracted from the
s-dimensional subspace Cs. This process may become expensive and not beneficial if the
convergence rate is not improved enough. We thus propose an adaptive strategy which
detects if the deflation process will be beneficial to speedup the convergence or to avoid
stagnation. This approach is based upon the work by Sosonkina et al. [124] which has been
used successfully in another formulation of deflated GMRES[I04]. At lines [13] based on
the convergence rate already achieved, we estimate the remaining number of steps (Iter)
needed to reach the desired accuracy e. We use a small multiple (smuv) of the remaining
number of steps to detect some insufficient reduction in the residual norm. If it is greater
than a small multiple (smv) of the number of steps allowed (itmax), then we switch to
the deflation. We use a large multiple (bgv) of itmax to detect a near-stagnation in the
iterative process. In this case, the number of eigenvectors to augment is increased by a
fixed (small) value. Clearly with the parameters r, [, Iter, smv, bgv, the adaptive strategy
can be sketched as follows :

o If Iter < smw * itmax, the convergence rate is good enough and no more update
should be done on the eigenvectors already computed.

o If smuxitmax < Iter < bgv*itmazx, there is an insufficient reduction in the residual
norm and the r eigenvectors are updated for the next cycles of AGMRES.

73

Numerical experiments

e [f its > bgv x itmax, a stagnation may have occurred and we increase the number of
eigenvalues to extract/update by a fixed number [. Typically, [= 1 in all our test
cases.

Note that there are more sophisticated methods to ensure that for some given values of m,
GMRES(m) (and thus AGMRES(m)) will not stagnate; see for instance [120], 122]. Our
current stagnation test is computed a posteriori and should be mostly used to detect a
very slow reduction in the residual norm. Although the proposed parameters are problem-
dependent, they can be useful to avoid the stagnation if there are some previous knowledge
in the convergence behaviour for the problems under study. Some numerical results are
given in this sense in the next section.

6.4 Numerical experiments

This section presents some numerical results to show the parallel efficiency and the nu-
merical robustness of the proposed approach. We first present the template for all the
numerical tests in section [£.4.1] and the test cases in section [(.4.21

6.4.1 Test routines and implementation notes

Implementations are done using the PETSc routines and data structures [I8), 19]. The
algorithm has been implemented by a KSP module called AGMRES using a locally
modified version of PETSc revision 3.1.p8. It uses the routines for matrix-vector product,
the application of the preconditioner and the other parallel linear algebra functions. It
can be used transparently with any preconditioner implemented in the package including
the domain decomposition preconditioners. We use so far the Restricted Additive Schwarz
(RAS) method [30] applied as a right preconditioner in all our tests. The main steps are
outlined in Algorithm [6] Note from the step [7] of our test routine that we compare AGM-

Algorithm 6 Test routine for the parallel computation of the system using restricted

additive Schwarz method and GMRES-based accelerator.
1: Read the matrix from a binary file and store it in a distributed CSR format. Read the

right-hand side vector and store it accordingly.

2: Perform a parallel iterative row and column scaling on the matrix and the right-hand
side vector [6].

3: Partition the weighted graph of the matrix in parallel with PARMETIS.

4: Redistribute the matrix and right-hand-side according to the PARMETIS partitioning.

5: Define the overlap between the submatrices for the additive Schwarz preconditioner.

6: Setup the submatrices (ILU or LU factorization using MUMPS [4]).

7: Solve iteratively the system using either the KSP AGMRES (Algorithm or the
PETSc built-in KSP GMRES [114], Algorithm 4].

8: Write the solution vector to a binary file.

RES with the classical implementation of GMRES. As stated earlier, either the classical
Gram-Schmidt or the modified Gram-Schmidt can be used for the Arnoldi process. The
main advantage of CGS over MGS is the number of MPI messages, the amount of MPI
reductions and the granularity in the computational kernel. However, a practical imple-
mentation of CGS includes a possible refinement strategy to be as stable as MGS. During
our numerical experiments however, this refinement has not be used in CGS and we did not

74

Numerical experiments

notice any difference between GMRES-MGS and GMRES-CGS. We therefore give the re-
sults of GMRES with CGS. Unless stated, the stopping criterion of GMRES and AGMRES

—A
is]be|:c| < 10719 and the maximum number of iterations is 1,000. In AGMRES, the

residual norm is computed only at each outer iteration. In GMRES, it is available during
each inner iteration. Note that since we are using a right preconditioner, this residual norm
is obtained cheaply from the Givens rotations that are used to transform the Hessenberg
matrix in Equation into a triangular matrix.

In the following, since the right preconditioning is used, the number of iterations is
understood as the total number of matrix-vectors products and preconditioning steps.
Hence in GMRES(m), it is equivalent to the counts of A(M~1k). In AGMRES, it is equal
to the size of the augmented basis times the restart cycles. So far, AGMRES(m) refers to
the algorithm without the deflation (i.e » = 0,1 = 0); In AGMRES(m,r), r vectors
corresponding to the smallest harmonic Ritz values are added to the basis and updated at
each restart; In AGMRES(m, r,1), r is adaptively increased by [until 7,4, at each restart.

6.4.2 Test problems

The matrices of tests arise from industrial applications in fluid dynamics and from convection-
diffusion problems. The main characteristics are listed in Table

Table 6.1: Characteristics of test matrices, N:Number of rows/columns, NNZ:Nonzero
entries

’ Matrix N NNZ ‘ geometry ‘
IMO7R 261,465 26,872,530 3D
VV11R 277,095 30,000,952 3D
RMO7TR 272,635 37,355,908 3D

3DCONSKY 121 | 1,7771,561 | 50,178,241 3D
3DCONSKY 161 | 4,173,281 | 118,645,121 3D

The problems IMO7R, VV11R and RMO7R arise from design optimization in computa-
tional fluid dynamics simulations. They are provided by the FLUOREM company, a CFD
software editolfll Table [6.1] lists the coefficient matrices with their main characteristics.
The physical equations are the Reynolds-Averaged Navier-Stokes for compressible flows
discretized using the finite volume methods as presented by [106]. The resulting matrix
is formed of b x b blocks where b is the number of fluid conservative variables (density,
velocity, energy and turbulent variables). The matrix RMOT7R is available online in the
University of Florida sparse matrix collection (see [39]) in the FLUOREM directory. The
matrix is structurally symmetric in blocks. Regarding the values, the matrix is nonsym-
metric and indefinite. In [I03] [106], preliminary studies show that hybrid solvers based
on GMRES and Schwarz-based preconditioners offer robust approaches to solve efficiently
these systems. As pointed in [106], we avoid the ILU factorization in the subdomain matri-
ces because of its unpredictable behavior. We therefore rely on a direct solver (MUMPS)
within each subdomain.

The test cases SDCONSKY 121 and 3DCONSKY 161 correspond to the convective
SkyScraper problem in [I, 89]. The physical equation is given by the boundary value

$www.fluorem.com/en /softwares/optimization /turb-opty-cfd

75

Numerical experiments

problem
n(z)u + div(a(z)u) — div(k(x)Vu) = fin p (6.44)
u=0on dup (6.45)
0
a% =0 on duy (6.46)

where u = [0,1]3, duny = Ou\Oup. The tensor s is isotropic and discontinuous. The
domain contains many zones of high permeability which are isolated from each other. Let
[z] denote the integer value of x then & is given in 3D by

3 x * X { * ;] = 0 mo 1=
H(x){l() ([10 % 2] + 1), if [10* 23] = 0 mod(2),i = 1,2, 3, (6.47)

)1, otherwise

The velocity field a = (1000, 1000,1000)” and f = 2? + 23 + 22. The discretization is
done using P2-type finite element methods in the Freefm++ﬂ] package. We consider a
uniform grid with n x n x n nodes and we choose n = 121 and 161. During our numerical
experiments, we rely on the ILU(1) factorization to approximate the solutions on the
subdomains induced by the additive Schwarz method.

6.4.3 Platform of tests

Experiments are done on a distributed memory supercomputer Vargasm which has 3,584
Power6 CPUs. Each Power6 CPU is a dual-core 2-way SMT with a peak frequency at
4.7 GHz. The computer is made of 112 nodes connected through an Infiniband network.
Each node has 32 Power6 CPUs that access 128GB of local memory in a non-uniform way
(hardware NUMA nodes). The memory accessed by a single MPI process is limited to
3.2GB for the data and 0.5GB for the stack.

6.4.4 Analysis of convergence

In this section, we first compare GMRES and AGMRES without deflation. The goal is to
confirm that the two methods have the same convergence behavior for a reasonable restart
length. After that, we show the benefits of using the deflation when the restart length in
AGMRES is small and when the number of subdomains increase. We finish this section
by giving the benefits of using an adaptive strategy.

We consider the large test case RMO7R from the FLUOREM collection. In Figure
we give the convergence of GMRES(m) and AGMRES(m) with three restart lengths,
m = 32,48 and 64. The number of subdomains is 32 and the LU factorization is used within
the subdomains. The first remark from Figure [6.4.1] is that there is no real difference
between the residual norm obtained from the two strategies. Secondly, the convergence
curve of GMRES(m) indicates a periodic stagnation in the iterative process. These ticks
occur at the time of restart and are more visible when m is small, hence the larger number
of iterations. These ticks suggest that some information is lost at the time of restart and
that the augmented basis could be beneficial to improve the convergence rate on these
cases. The other test cases give similar behaviours.

Now we show the impact of deflation by augmenting the basis. In Figure[6.4.2] we give
the convergence history of GMRES(m) and AGMRES(m,) with m = 32,48 and r = 2,

Thttp://www.freefem.org/ff+-+ /index.htm
Ihttp:/ /www.idris.fr/su/Scalaire/vargas/hw-vargas.html

76

Numerical experiments

RMO7R-AGMRES(m)-GMRES(m)

1 T T T T T) T T
| | | | | AGMRES(32) e
%ﬁc l\ AGMRES(48) I
0 01 . i"f‘ 77777 '\(77777 [[(S GMRES(48) .
. !‘ E 4\(AGMRES(64) EEEEE
= ; Q«\,\‘ GMRES(64) LN
c ey N
5 0.0001f Yo ‘——rk—\% ————— s o e R
z PO ‘ K, i i |
| < ; ; ; i i
g v % B N : : :
@ £ % : :'\% : : :
= 1e-06 p— . W e B : b g R SRS R .
& vy N
N o ; ; ; ; ;
: L - i ; ; ; N ;
PORT X : : : ! :
1e-08 [: !!;‘: """ ‘2 """ e :\'\;”f” 7
N L T R €
; [} Y i i i i i
: 2 Loz : : : : :
1e-10 1 T 1 Z 1 1 1 1 1 \
0 100 200 300 400

500 600 700 800 900
Number of lterations

Figure 6.4.1: RMOT7R : Influence of the restart length in AGMRES and GMRES, 32 sub-
domains

that is we compute two approximate eigenvectors at each restart and we use a basis of
size s = m + 2. The number of subdomains is still 32. The adaptive strategy is not used
at this point. It can be clearly noticed that adding only two eigenvectors in the basis is
sufficient to speedup the convergence in AGMRES. For instance, GMRES(32) requires 886
iterations while AGMRES(32,2) needs almost 272 iterations. When we increase the restart

length to 48, GMRES benefits greatly from that and requires almost 355 iterations to reach

the desired accuracy while AGMRES(48,2) needs 250 iterations. The general notice here

is that AGMRES(32,2) and AGMRES(48,2) give close convergence rate while GMRES is

more sensitive to the restart length. This is more visible when the number of subdomains
vary.

The robustness of Schwarz preconditioners decreases as the number of subdomains
increases. GMRES will thus require more and more iterations, particularly if the restart
length is fixed. We show this behaviour in Figure [6.4.3] where the restart length is fixed
and the number of subdomains is increased. Clearly, as expected, the number of iterations
in GMRES increases as we add more subdomains. For instance, GMRES(32) requires 886
iterations with 32 subdomains. With 64 subdomains, this number reaches 1000 iterations
without reaching the prescribed tolerance of 1071%. In AGMRES(m,), there is no such
difference. As we increase the number of subdomains, we observe that the convergence rates
remain quite close. Indeed, AGMRES(32,2) requires respectively 272 and 311 iterations
for 32 and 64 subdomains. The fact that the number of iterations increases only slightly
when increasing D has a great impact to the scalability of AGMRES. We give the timing

results in the next section.
In GMRES, a better convergence rate can be obtained if the restart length is increased

as a function of the number of subdomains. We show in Table that in such case, it is
still beneficial to have an augmented basis in AGMRES. These results can be divided into

7

Numerical experiments

RMO7R-AGMRES(m,2)-GMRES(m)

1e¢g T T T T T T T T
Y : : : : GMRES(32) =
o AGMRES(32,2)
:_— GMRES(48) I
0.01 =

0.0001

le-06

Rel. Res. Norm

le-08

0 100 200 300 400 500 600 700 800 900
Number of Iterations

Figure 6.4.2: RMO7R: Influence of the augmented basis in AGMRES over GMRES, 32
subdomains

RMO7R-GMRES(m)-AGMRES(m,2)-D32-64

1 E- T T T T

; | GMRES(32)-D32 s
\ | | AGMRES(32,2)-D32
|u|:llu|,|"""“”""“" GMRES(SZ)_D64 o

0.01

0.0001

le-06

Rel. Res. Norm

le-08

le-10
0 200 400 600 800 100C

Number of Iterations
Figure 6.4.3: RMO7R: Influence of the number of subdomains in the convergence of GM-

RES. The restart length is fixed and the benefits of the augmented basis in AGMRES is
given.

78

Numerical experiments

KSP GMRES(m) | AGMRES(m,2) | AGMRES(m, 4)
32 48 64 | 32 48 64 | 32 48 64

| 8 [93 70 57 [100 98 57 | 105 100 57 |
| 16 | 254 169 123 [169 148 130 | 177 153 132 |

32 886 355 220 | 272 250 196 | 212 205 200
64 - 702 445 | 311 303 265 | 287 258 270

Table 6.2: RMO7R: Number of iterations in GMRES(m), AGMRES(m,2) and
AGMRES(m,4) as a function of the number of subdomains in the restricted additive
Schwarz

three parts:

1. With 8 subdomains, GMRES needs less iterations than AGMRES for all values of the
restart length. Note that this difference is mainly due to the fact that the stopping
test is computed only at each outer cycle in AGMRES. The accuracy achieved in
AGMRES for these cases is always better. Typically, AGMRES gives an accuracy of
10~ in the computed residual while it is 10~'' in GMRES.

2. For the same reasons, AGMRES needs more iterations than GMRES for 16 subdo-
mains and large value of m. However for small values of m, AGMRES is cleary better
than GMRES.

3. From 32 subdomains, AGMRES needs less iterations than GMRES for all restart
lengths. The dash in GMRES(32) for 64 subdomains denotes that the desired ac-
curacy has not be reached within the 1,000 iterations allowed. On the contrary, it
requires almost 300 iterations with AGMRES(m, r) to converge.

Thus, the main empirical conclusion from these experiments and others not reported
here is that AGMRES is less sensitive to the restart length and the number of subdo-
mains than GMRES. On the other hand, AGMRES is rather sensitive to the number
of extracted eigenvectors. As for the basis length, it is difficult indeed to know how
many vectors should be added to the basis to improve the convergence. If r is very
large, the process of updating the eigenvectors could add more overhead. If r is
small, the deflation could not be beneficial. The proposed adaptive strategy provides
a trade-off between these two bounds.

If some information about the convergence behaviour has been collected before, then
it can be used to define the smv and bgv parameters in the adaptive strategy. Our goal
is to show that this technique can be used to speedup the convergence by adaptively
adjusting the frequency and the number of extracted eigenvalues. We take the smallest
restart length m = 32, the largest number of subdomains and the smallest number of
eigenvectors r = 1. Yet, we know from D = 16 that GMRES(32) and thus AGMRES(32)
needs roughly 254 iterations. From the adaptive strategy, we still set the maximum number
of iterations itmax = 1,000 but now we set smv = 0.1 and bgv = 0.2. As explained in
section smv x itmax defines the lower bound below which it is not beneficial to
use an augmented basis, and bgv X itmax defines the upper bound beyond which a slow
convergence rate is expected and some action should be done. In this last case, we increase
r by a fixed value [. We take | = 2 in this case. Figure gives the convergence history
of AGMRES(m, 1) with m = 24 and m = 32. It can be seen that when r = 1 and without

79

Numerical experiments

adaptive strategy, the augmented basis does not contain enough spectral information to
speed up the convergence. When r is adaptively increased, the basis recovers more and
more spectral information and the convergence rate gets better. The actual limitation of
the proposed adaptive strategy is the choice of the right values of smv and bgv. It is
heuristic and problem-dependent. Nevertheless, if there are some experimental knowledge
about the convergence of GMRES on similar problems, a good interval can be set with
smuv and bgv around ttmax to detect a near-stagnation and switch to the augmented basis.

RMO7R-ADAPT-AGMRES(m,k)-D32

0.01 .

£ 0.0001 | | |
2 ' | "AGMRES(24,1)-Adaptive"
&% ., "AGMRES(24,1)-Non-Adaptive" s
& ““AGMRES(32,1)-Non-Adaptive"
< 1le-06 F . "',,"AGMRES(32'1)'Adaptlve]
o "o'j : :

16-10 | | | :”'o Il

0 200 400 600 800 1000 120C
Number of Iterations

Figure 6.4.4: RMO7R : Benefits of the adaptive deflation strategy, Restart=24 and 32, 32
subdomains

We end this section by reporting the number of iterations for the remaining test cases.
In Table[6.3] we consider the best value of which gives the smallest number of iterations
for the test cases IMO7R and VV11R. This value is typically less than 3. As noted before,
we see that for a fixed value of m, the number of iterations increases as D increases. It
increases faster in GMRES than AGMRES. We note here again that deflation is needed
to reach a good accuracy for a large D. With IMO7R test case for instance and for 32
sudomains in the additive Schwarz, neither GMRES(32) nor GMRES(48) can produce the
desired accuracy while AGMRES(32) requires 724 iterations to converge. In Table
we give the number of matrix-vectors for the convection-diffusion problems. Unlike the
previous test cases, GMRES here is less sensitive to the restart parameter and the variation
of subdomains. Hence the augmented basis is not as beneficial to the convergence as in
the previous cases. Nevertheless, AGMRES is still faster than GMRES if we consider the
parallel efficiency. This is the aim of the next sections.

80

Numerical experiments

KSP GMRES(m) | AGMRES(m,r)
m

b 24 32 48 | 24 32 48
VVIIR

8 251 101 147 | 248 172 146

16 199 458 288 | 492 304 207

32 ~ 957 670 | 641 541 516
TMOTR

8 240 235 189 | 249 203 195

16 695 623 521 | 378 370 316

24 927 913 759 | 492 444 408

32 ~ - 833|724 629 579

Table 6.3: VV11R & IMO7R: Number of iterations in GMRES(m), AGMRES(m,r) as a
function of the number of subdomains in the restricted additive Schwarz, r is the best value

of < 3 which gives the smallest number of iterations in AGMRES

Matrix | 3DCONSKY _121 | 3DCONSKY _ 161 |
m
D GMRES(16) AGMRES(16,1) || GMRES(16) AGMRES(16,1)
16 158 169 229 177
32 164 141 251 177
64 170 141 261 177
128 180 141 262 177
256 202 159 266 195
Table 6.4: Number of matrix-vector products in GMRES and AGMRES for the test

problems 3DCONSKY 121 and 3DCONSKY 161

81

Numerical experiments

6.4.5 Analysis of the CPU time

To better show the benefits of using an augmented subspace approach with the Newton
basis, we analyze in this section the timing results. The paramount goal when showing
these results is that, as we increase the number of subdomains, we should be able to get a
decreasing time during the iterative time. In GMRES(m) and AGMRES(m), the best way
is undoubtedly to increase the restart length as well. Even then, the time will not decrease
efficiently because of the negative effects of the restarting procedure and the weakness of
one-level Schwarz preconditioner. In AGMRES(m,r), only a few extracted Ritz vectors
are sufficient to get a decreasing time and obtain a significant efficiency.

D Algo. Total Time Iter. Time Time/Iter MSG (x10%)
8 | GMRES(32) 1273 327.33 352 1.74
GMRES(48) 386.1 291.64 4.166 1.41
GMRES(64) 358.1 264.58 4.64 1.03
AGMRES(32) 358.5 263.08 2.74 1.3
AGMRES(48) 369.1 271.9 2.832 1.45
AGMRES(64) 329.4 236.76 4.228 1.23
AGMRES(32,r) 3474 25711 2.624 1.32
AGMRES(48,r) 373.1 277.98 2.837 1.48
AGMRES(64,r) 329.4 236.76 4.228 1.23
16 GMRES(32) 379.3 349.97 1.378 13.1
GMRES(48) 333.1 302.66 1.791 9.05
GMRES(64) 286.8 257.03 2.09 6.88
AGMRES(32) 305.8 276.1 1.079 8.1
AGMRES(48) 263.0 230.5 1.201 6.78
AGMRES(64) 256.8 227.82 1.78 5.56
AGMRES(32,r) 224.1 193.39 1.316 9.84
AGMRES(48,r) 240.9 210.56 1.376 10.01
AGMRES(64,r) 2314 201.05 1.547 5.66
32 GMRES(32) 573.4 557.13 0.629 96.25
GMRES(48) 239.5 223.54 0.63 39.74
GMRES(64) 158.4 139.2 0.633 25.38
AGMRES(32) 273.0 256.91 0.287 54.97
AGMRES(48) 167.1 150.84 0.393 25.93
AGMRES(64) 131.4 114.83 0.449 19.42
AGMRES(32,r) 91.41 75.23 0.357 31.83
AGMRES(48,r) 94.79 79.028 0.38 33.9
AGMRES(64,r) 99.45 83.148 0.406 32.24
64 | GMRES(32) - - - -
GMRES(48) 214.8 204.16 0.291 227.02
GMRES(64) 165.6 156.44 0.352 145.69
AGMRES(32) - - - -
AGMRES(48) 167.0 157.72 0.219 132.42
AGMRES(64) 97.87 86.066 0.192 88.67
AGMRES(32,r) 62.39 52.839 0.202 101.53
AGMRES(48,r) 67.0 57.733 0.22 110.99
AGMRES(64,r) 63.15 53.788 0.203 116.08

Table 6.5: Timing statistics for RMO7R; D: Number of subdomains and number of MPI
processes. Total Time: CPU elapsed time in seconds, Iter. Time: CPU time in the
iterative phase. Time/Iter : average time spent in each iteration (matrix-vector product
and preconditioning step). MSG: MPI messages and reductions. r : best value between 2
and 6 which gives the minimum number of iterations in AGMRES(m,r).

82

Numerical experiments

In Table We compare GMRES(m), AGMRES(m) and AGMRES(m,r) on the test
case RMO7R by varying the number of subdomains D, the restart length and we choose
a best value of r between 2 and 6. The number of MPI processes is equal to the number
of subdomains. The total time is the CPU time required to perform all the steps in
Algorithm [6] The iterative time is the time spent in the step [/} The setup time is the
difference between the two times. It is independent of the method and of m. It decreases
when D increases because the subdomains become smaller and the LU factorizations are
faster. Thus, we concentrate from now on the iterative time. The time per iteration is the
time of one cycle divided by the number of matrix-vectors products in the cycle, which is
m or m—+r. It includes the time to compute the orthonormal basis (with Arnoldi GMRES
or the QR factorization for AGMRES) and the time to update the eigenvectors U for
AGMRES(m,r). The iterative time is thus the product of the time per iteration by the
number of iterations. The behaviours of both GMRES(m) and AGMRES(m) are similar.
Increasing m has two opposite effects: it decreases the number of iterations (in some cases,
the number of cycles remain the same for AGMRES) and increases the time per iteration,
because of the orthogonalization steps. Thus, in most cases, there is an optimal value of
m, which depends on D, with a minimal iterative time. Increasing D has also two opposite
effects, but in the reverse way: it increases the number of iterations and decreases the time
per iteration, thus there is in general an optimal value of D, which depends on m. Even
though their behavior are similar, AGMRES(m) clearly performs faster than GMRES(m),
for all but one configurations. This is mainly due to a faster time per iteration thanks to
a more efficient parallel algorithm . This is explored in the next section by analyzing the
communication volume.

The objective of deflation in AGMRES(m, r) is two-fold: to get an algorithm less sen-
sitive to m and to increase the number of subdomains (thus the number of MPI processes).
For D fixed, there is still an optimal value of m but it is smaller. The iterative time
decreases from D = 8 until D = 64. Thus our method allows to choose a small value
of m and to reduce the CPU time with a large number of subdomains. We get indeed
a more efficient parallelism because the number of iterations does not inflate. Clearly,
AGMRES(m,r) gives the smallest CPU time. These results are confirmed with other test
cases as shown in Table [6.6] and Figures and

It is better for GMRES(m) to choose a small number of subdomains D and a large
restart m. On the contrary, it is more efficient to choose a large number of subdomains D
and a small restart m with our method AGMRES(m, r). Clearly, AGMRES(m, r) is faster
than GMRES(m). In order to compare the methods with similar memory requirements,
we choose m = 24 for AGMRES and m = 48 for GMRES, since AGMRES needs to store
the two systems Wy and V. For all but one values of D, AGMRES(24,r) is faster than
GMRES(48), for both matrices VV11R and IMO7R. It is also true for AGMRES(32,r)
compared with GMRES(64) for the matrix RMOTR.

6.4.6 Analysis of parallelism

The other advantage of AGMRES over GMRES is the communication volume. In Tables
and [6.6] and in Figure[6.4.7] we have reported the number of MPI messages exchanged.
The counts are done on the Send /receive routines as well as the collective communications
(Reduce and broadcast). We do not take into account the MPI message lengths. It appears
first that the number of messages is a function of the number of subdomains. This is
generally reduced by allowing many subdomains to be assigned to a unique CPU. In the
problems under study, this is not feasible in practise as it will induce more iterations as

83

Numerical experiments

m
D 24 32 48
Iter. Time MSG | Iter. Time MSG | Iter. Time MSG
GMRES(m)
8 92.84 2.05 68.95 1.69 7.7 1.47
16 101.1 12.27 89.37 11.47 63.2 7.66
32 - - 31.2 22.5 29.7 18.54 ~
AGMRES(m, r) -
8 52.8 1.28 38.5 1.02 40.5 1.05 ;
16 51.8 7.4 34.5 4.91 28.08 3.87
32 38.3 25.6 31.2 22.5 29.7 18.5
GMRES(m)
8 76.219 2.6 73.3 2.63 63.669 2.31
16 111.74 20.06 96.246 18.25 83.583 15.76
32 - - - - 77.066 59.87 -
AGMRES(m, r) b
8 45.781 1.65 40.905 5.48 40.85 1.52 E
16 36.492 21.65 34.803 24.12 33.65 23.64
32 33.262 94.54 27.837 93.27 27.109 105.35

Table 6.6: Timing statistics in GMRES and AGMRES for test cases VVIIR and IMO7R.
D: Number of subdomains and number of MPI processes. Iter. Time : time spent in the
iterative phase. MSG: MPI messages and reductions. r : best value between 2 and 6 which
gives the minimum number of iterations in AGMRES(m, r)

3DCONSKY_121

40+
[IGMRES(16)
35] BMAGMRES(16,1)
30
() 25 [
£ .
— L
5 20
o
O15; -
10+
57 I H
O | | | \. H\-
16 32 4 128 256

Subdomains

Figure 6.4.5: CPU Time in the iterative phase for the 3D 121 x 121 x 121 convective
SkyScraper problem (Matrix size 1,771,561; Nonzeros 50,178,241);16 to 256 subdomains,
ILU(1) in subdomains; m = 16; r = 1

84

Numerical experiments

3DCONSKY_161

[IGMRES(16)
BAGMRES(16,1)

=

(@)

o
T

e
=
N
o

T

N
o
T

H%l H. ;e

128 256

20| H
0 ‘ 2 6I
S

16 3 4
ubdomains

Figure 6.4.6: CPU Time in the iterative phase of GMRES and AGMRES for the 3D 161 x
161 x 161 convective SkyScraper problem (Matrix size 4,173,281; Nonzeros 118,645,121);
16 to 256 subdomains, ILU(1) in subdomains; m = 16; r = 1

the subdomains increase. The communication volume is obviously proportional to the
number of iterations as well. The second observation is that AGMRES communicates
less than GMRES for the same number of subdomains and the same basis length. As
more subdomains are used, the gap between the two methods increase. For instance, in
Table 6.5, GMRES on 64 subdomains produces nearly a ratio of 1.5 more messages than
AGMRES. In the augmented basis, the situation is different. At each cycle, AGMRES(m, 1)
communicates more than AGMRES(m) because of the computation of the eigenvectors.
However, since a substantial number of iterations is saved by using the augmented basis,
we observe actually a better communication in AGMRES(m, 7). Now between GMRES
and AGMRES(m,), the previous analysis holds as well but there are two situations: when
the restart length is very close to the number of subdomains, then the communication for
the computation of eigenvectors may dominate if there is no substantial acceleration in
the convergence rate of AGMRES(m,r). This is observed in Table for VVI1IR and
IMO7R. With a substantial gain in the convergence rate as in Table , AGMRES(m, r)
benefits from that and the communication volume decreases proportionally to the number
of iterations. The second situation is when the number of subdomains is very large with
respect to the basis length. Even if there is no substantial acceleration in AGMRES(m, k),
the kernel computations of AGMRES will produce less communication volume than that
in GMRES. This is observed in Figure As the number of subdomains increase,
the difference between the two methods are more and more distincts. Between the two
situations, a fine-tuned adaptive strategy is still required to determine whether or not to
augment the basis.

85

Concluding remarks

Q10 3DCONSKY 121 10 5 3DCONSKY_161
1 [— [—_—
9 [IGMRES(16)
WAGMRES(16,1) [IGMRES(16)
8 WAGMRES(16,1)
ol 210/
2O :
]]
g 4 T .
23 595
2,
i Hl ﬂl
—3 64 18 0 2 64 128
Subdomains Subdomains

Figure 6.4.7: Amount of MPI Messages in the iterative phase of GMRES and AGMRES
for the convective skyscraper problems on the 3D 121 x 121 x 121 and 161 x 161 x 161
grids

6.5 Concluding remarks

We have proposed the AGMRES(m, k,l) implementation, which combines the Newton
basis GMRES implementation with the augmented subspace technique. This approach
benefits from the high level of parallelism during the kernel computation of the Krylov
basis. The proposed augmented basis reduces the negative effects due to restarting and to
a large number of subdomains.

The numerical results on the VARGAS supercomputer (IBM Power 6 processors) con-
firm that AGMRES communicates less than GMRES and produces a faster solution of
large linear systems. Moreover, on the proposed test cases, AGMRES gives a fairly good
convergence rate when few eigenvectors are added to the Krylov basis. The proposed im-
plementation is done in the PETSc package. It thus benefits from the optimized routines
for the usual linear algebra operations on matrices and vectors. Its object-oriented inter-
face allows to use transparently any parallel preconditioner implemented in the package,
based on algebraic domain decomposition methods or multilevel methods. It can be used
indeed as a smoother for algebraic multigrid methods [49].

Although the proposed augmented basis behaves well on the proposed test cases, there
are some cases where it may not be useful and thus expensive to use. Hence a good analysis
is still needed in the adaptive strategy to avoid the computation of eigenvectors on such
cases.

Acknowledgments

This work was funded by the French National Agency of Research under the contract ANR-TLOGO07-011-
03 LIBRAERO. Numerical experiments have been done on the VARGAS supercomputer from GENCI-
IDRIS (Grand Equipement National de Calcul Intensif - Institut du Développement et des Ressources en
Informatique Scientifique). Preliminary tests have been carried out using the GRID’5000 experimental
testbed (https://www.grid5000.fr). We are very grateful to Bernard PHILIPPE and Frangois PACULL for
many suggestions and helpful discussions during this work. We would like to thank Guy A. Atenekeng for
providing us the test matrices of the Convection-diffusion equation. We are grateful to Roger B. Sidje for
giving us the implementation of the RODDEC method.

86

CHAPTER 7

Overview of the parallelism and robustness
in Krylov subspace methods with Schwarz
preconditioners

7.1 Introduction

In this chapter, we give an overview of the main steps of the hybrid direct/iterative solver
that have been used throughout this report. The goal is to present in a unified way some
improvements that have been proposed at different steps. The focus is made on the parallel
performance aspects and on the numerical robustness. The study is more experimental
than theoretical, thus we give many illustrations with various linear systems arising from
different applications.

The hybrid direct/iterative approaches used in this report are based on the following
steps :

1. Perform a partitioning from the adjacency graph of the input sparse matrix.
2. Define the subdomains by dividing the variables into overlapping sets.
3. Setup the submatrices associated to each subdomain.

4. Solve iteratively the system using a Krylov subspace method with a Schwarz precon-
ditioner.

We assume that a distributed-memory computer is used with a message passing pro-
gramming model. The goal of the matrix partitioning is to distribute efficiently the data
to different compute nodes and to define suitable subdomains for the Schwarz method. In
section we begin by showing how the partitioning of the input matrix is derived. From
the matrix graph divided into (overlapping) subgraphs to form the subdomains, we show
in section how a preconditioner is formulated for the initial linear system. This pre-
conditioner is based on the algebraic Schwarz methods. We describe especially the case of
Restricted Additive Schwarz [30] and the explicit formulation of the Multiplicative Schwarz
method [14]. We study the impact of the number of subdomains on the convergence. We
also analyze the impact of the size of overlap on the convergence and the MPI commu-
nication. Schwarz methods are barely used as stand-alone solvers as their convergence is

87

Graph Partitioning in iterative methods

guaranteed only for a class of matrices such as M-matrices. They are therefore always
accelerated by Krylov subspace methods. This part is the heart of our study. In section
we review some ways to improve the parallelism of the global scheme. Section
presents especially the potential parallelism that is obtained by defining multiple levels
of communications accross and inside the subdomains. We show in Section how the
restarted version of GMRES is accelerated by deflating eigenvalues in the preconditioned
operator.

7.2 Graph Partitioning in iterative methods

Let A be a n x n sparse matrix with a structural symmetric pattern and let G = (V, E)
be its adjacency graph where V' = {v1,...,v,} is the list of vertices and E = {(vg, v;),1 <
k,j < m,ap; # 0} is the list of edges. When the structure of A is nonsymmetric, we
consider the graph of the matrix A + AT. G is thus a non-oriented graph.

7.2.1 Non overlapping partitioning and matrix-vector product

A graph partitioning algorithm divides V' in D non overlapping sets Vi, k= 1,..., D such
that V = Ur_, Vi and Vi V; = 0,1 <k < J < D.

A graph partitioning algorithm should produce partitions that have equal number of
vertices i.e. |Vi| = |Vj|,k # J. Moreover, on distributed memory computers, the number
of edges cut between different subdomains should be small i.e each set VJE 1 <3< D
defined by

E={v, €V, 30, € Vi, 1 <k<D,k#j/(vj,u) €E},j=1,...,D (7.1)

is minimal. When data are distributed to computers from this partitioning, these two goals
ensure that the computational load is well balanced and that the volume of data exchanged
is minimized. Note that the problem of finding balanced partitions that minimize edge cut
is NP-complete, see [26]. Heuristics are often applied to obtain good sub-optimal solutions.
Many public software tools are available to obtain such partitions, see for instance METIS
[84], Scotch [35] and their parallel implementations PARMETIS and PT-SCOTCH.

From such partitioning, a parallel implementation of a parallel matrix-vector product
y = Az is derived as in Algorithm [7] see [50, 113]. A single Program Multiple Data
(SPMD) programming model is used. Each block is assigned to a unique process and the
total number of processes P is equal to D. Based on the partitioning of equation [7.I} the
matrix is reordered as a stride of rows such that each stride Ay, is formed of a diagonal block
matrix Ai corresponding to the nodes Vi and off-diagonal matrices AE corresponding to
nodes VkE . Each block row is then assigned to a process k. This is known as 1D rowwise
partitioning. The vectors = and y are partitioned accordingly, that is the process k owns
the block vector x. The steps allow communication and computation to be overlapped.

Algorithm 7 Matrix-vector product kernel y = Ax

Require: zy, Ak, Pr = processes that hold AE
. Scatter xj to processes Pg

Compute yi = Ak:ck

Gather ZL'kE from processes Pg

Compute yi = y,ﬁ + AkExkE

return vy

88

Graph Partitioning in iterative methods

So far, the computational complexity is O(n - nzr/P) where nzr is the average number of
non-zero elements in each row. Since the entire row is assigned to a process, the bound of
the number of MPI messages exchanged is P - (P — 1). The total communication volume
in this worst case is thus n - (P — 1). This happens when there is at least one non-zero
entry in the off-diagonal blocks AkE for each process. Note that this bound is reduced by
assigning more than one block to a single process. It is further reduced if the matrix is
permuted such that the off-diagonal non-zero entries in AE are column-aligned. This is
achieved using hypergraph partitioning algorithms such as PATOH, see [33].

7.2.2 Overlapping partitions

Until now, we have dealt with the effect of the partitioning on the matrix-vector product.
A chosen partitioning algorithm should be able to produce a partitioning for the precondi-
tioning operation as well. Given the right-preconditioned step y «+ AM 'z of an iterative
method, it is therefore expected that there is as little data movement as possible. This is
known as the bipartite graph partitioning in [74] or the simultaneous partitioning problem
in [129]; If the partitioning for z « M 'z is different to that of y < Az, then a reordering
should occur in between the two operations. For many problems such as those arising from
partial differential equations, the same algorithm is used efficiently for the two tasks. For
the matrix-vector products, the partitioning algorithm should preserve the locality of data
on structured computational domains such that the communication occur only between
neighboring processes. In addition, the Schwarz preconditioners, which are the focus of
this study, should require to have overlapping blocks to improve the convergence of the
iterative method; see the discussion in [23] in the case of elliptic problems.

From the disjoint partitions Vi, k = 1,..., D described above, a J-overlap partition
(§ > 0) is defined recursively such that W = Vj, and W,f“ O WP. A partition W,f“ is
defined from W,f by adding a well-defined set of vertices O,‘z :

W,f“ =W U0} where O) = {vy, € V/(vj,vy) € E,v; € W}}. (7.2)

Various partitioning algorithms for Schwarz methods differ in the way of building the initial
partitions Vi and the recursive overlapping partitions W,? . The common case is to take the
partitioning V; for the matrix-vector product. Later on, the sets O,‘i are defined by taking
recursively the vertices that are adjacent to the partitions W,f , see Equation 1’

The drawback when taking all the adjacent nodes to grow a partition is that, the new
overlapping partitions may be very large. Moreover, depending on some criteria, not all
adjacent nodes are 'good’ nodes. In [37|, Fritzsche, Frommer and Szyld propose, from
any initial non-overlapping partition (produced by METIS or SCOTCH for instance), to
combine several criteria for selecting nodes to be included in the existing non overlapping
partitions. These criteria are formulated for instance by adding some weights to the nodes
and/or the edges of the matrices. They are chosen for instance such that the new partitions
produce well-conditioned subdomain matrices.

7.2.3 Weighted partitions

The weights can also be used for the non-overlapping partitioning. In this case, a multi-
constrained partitioning algorithm should be used with the goals of minimizing the commu-
nication (the edgecuts) for the matrix-vector product and to equally distribute the weights
among the subdomains. For instance, the PARMETIS [84] package which is used through-
out this report includes a multi-constrained multilevel recursive partitioning algorithm.

89

Formulation of algebraical Schwarz preconditioners

We use for instance this functionnality in the multi-coupled system-matrix as given by
the FLUOREM company (see Appendix . The matrix is written as

A171 A172 e Al,N
Ag1 Agp Ag N

A= _ (7.3)
Ang Ano ... AnN

where A7y € R*® for 1 <1,J,< N, and N = n/b. b is the number of physical variables
at each grid point. Now, the partitioning is done on the mesh points (represented by
the blocks Ay instead of the variables). In this case, each weight is computed as the
Frobenius norm of the block matrix Ajy; this constraint keeps the underlying coupling
between the variables and ensures that the strongly connected mesh points are kept in the
same subdomain. The advantages of such partitioning is presented in chapter 5]

7.3 Formulation of algebraical Schwarz preconditioners

From this point on, we assume that a partitioning algorithm has been applied to a sparse
matrix A to produce overlapping blocks defined by the sets of vertices ng and Wlf , 1<k <
D. Let Rg (resp. Ri) be the restriction operator from R™ to the vector subspace spanned
by the indices in W (resp. WP). Their transpose (RY)T and (R$)T are the respective
prolongation operators. Therefore, the matrix associated to each subdomain k is defined
as

A = ROA(R))T. (7.4)

Note that there is no guarantee that Ai is nonsingular even if A is, except if A is an M-
matrix. In this situation, if some gaussiam elimination should be use to invert the matrix
Ai, the diagonal entries can be modified such that the block becomes diagonally dominant
[11] and [58].

7.3.1 Additive Schwarz

With the restriction operator Ri and the submatrices Ai, (k =1,...,D) in mind, the
preconditioner associated to the additive Schwarz method (ASM) is written as (see [59,
123, 127])

D

Mgy =w Y (R)T(AY)'R] (7.5)

i=1
where w > 0 is a damping factor. We assign the block matrices Az and A% to a process
Pi.. We assume that the non-overlapping blocks Ag are used for the matrix-vector product.
Hence each vector follows the partitioning described in Section[7.2.1] Algorithm [§computes
one step of the preconditioned iterative method y = M ~'x. As previously stated, the code
is executed by the process which owns the subdomain k. In a practical implementation,
the operator Ri is an index set which says for each row the process having that element.
Thus the restriction operation at line [1|is a MPI send /receive where each process receives
the off-process values and sends the local values needed by the other processes. The length
of MPI messages is thus proportional to the size of the overlap. After that, a linear system
is solved with the subdomain matrices. We discuss about this step in Section [7.3.4] Then,
the updated off-process values are sent back to the neighboring processes.

90

Formulation of algebraical Schwarz preconditioners

Algorithm 8 Tterative step y = M~z with ASM (Subdomain k)
Require: Ai, x and Ri
1: Compute z = R0z (Full Restriction).
2: Solve A%ty = z for t, (Local solution with the subdomain matriz)
3: Compute uy = (R$)Tty (Full interpolation)
4: return y =w 21?:1 ug,

7.3.2 Restricted Additive Schwarz

While working with ASM, Cai and Sarkis [30] found that if the interpolation step in
Algorithm [§] is removed, then the 'new’” ASM method converges faster. Moreover, the
communication is reduced by half. Tt is formulated as follows.

D
Mpis=wy (R)T(AD) 'R (7.6)
i=1
This is known as the Restricted Additive Schwarz (RAS). It is used as the default precon-
ditioner in many parallel libraries [18]. A convergence theory can be found in [47]. We give
in Algorithm [9] the procedure to compute one step of a preconditioned iterative method.
It is very similar to that in Algorithm [§| The only difference is at step |3 It requires only
local data movements if the ordering of the output vector z,(:’) given by the local solver is
different from the one required by the routine for the matrix-vector product.

Algorithm 9 Iterative step y = M~ 'x with RAS (Subdomain k)
Require: Ai, x and Ri

Compute z = R0z (Full restriction).

Solve A%ty = z for tj, (Local solution with the subdomain matriz)
Compute ug = (Rt (Local interpolation)

return y=w Zszl ug,

7.3.3 Multiplicative Schwarz
7.3.3.1 Classical formulation

The classical way to introduce the multiplicative Schwarz method is at the continuous level
from the classical alternating Schwarz method; At the discrete level, it is equivalent to the
block Gauss-Seidel relaxation method on an extended system (without overlap). Let the
matrix A be partitioned in D subdomains with overlap as given in Section and let
y = M1z where M~ is the action of applying one iteration of this method. Starting
with y(© = 0, the methods writes (see [123} 22]):

o) — g Ag(h—1)
{ (o) (7.7)

yk) =y + (Ri)TAk_,lRir(k), k=1,...,D
and thus y = y(P). Tt follows that the matrix iterating on r(®) is given by
D
H (1 AR A7 135) (7.8)

91

Formulation of algebraical Schwarz preconditioners

It thus comes from 7(P) = Br(® and r(P) = r(O) — Ay(D) that yP?) = A=1(I — B)r(©.
An explicit form of the preconditioner associated to the multiplicative Schwarz method is
given by

M7= A7 (1= (1= A(RD)TAD'RD) - (I - AR)TAT'RY)) (7.9)

Note that this formulation cannot be used in practise. The procedure in Algorithm [10] is
used instead. The vector y is corrected through all the subdomains. Compared to the

Algorithm 10 Iterative step y = M~z with MSM (Subdomain k)
Require: D,Ai, A, x and Ri
.y < zero vector
if £ > 0 then
Receive y*=1) from the process with rank k — 1
end if
rk) = ¢ — Ay(—1)
yB) = y(k=1) 4 RiA_lRir(k)
if myrank < D then
Send y¥) to process with rank & + 1
else
return y = y(D)
: end if

[
= O

additive version, it is thus less used in a parallel iterative method.

A good parallelism can be extracted from the algorithm through the coloring of sub-
domains (see [123]). For each subdomain, a color is associated such that neighboring
subdomains have different colors. Let @) be the number of colors arranged in increasing
order, let Cy = {k, colori, = q} be the set of processes having the color ¢,1 < ¢ < Q. Algo-
rithm [10] is rewritten as in Algorithm [II] Now the size of the recursion is the number @
of colors. For each color, the current residual is corrected additively. Hence the fewer the
number of colors, the better is the parallelism.

Algorithm 11 Iterative step y = M ~'2 with MSM through coloring of subdomains
Require: Ai, A, r and Ri,q,Cq7
Y < zero vector
: if ¢ > 0 then
Receive y 9=V from, the processes with color (q — 1)
end if
r@) = ¢ — Ayle=D)
20 = RRAARD k€ Oy
@) =gl 4 Zkecq 2B (Gather 2 %) from processes k € Cy)
: if ¢ < @ then
Send y(@ to processes k € Cy+1
else
return y(Q)
: end if

SR BN R

—_ = =
N = O

The drawback with the multiplicative Schwarz preconditioner as presented here is that
when the vector y is corrected, a residual vector r = x — Ay is build at the same time wich

92

Formulation of algebraical Schwarz preconditioners

add an extra cost because of the product with the matrix A. Moreover, the parallelism
is limited by the number of colors that can be extracted from the domain decomposition.
The next section presents an explicit formulation of this preconditioner. It has several
advantages over the previous formulations: there is no product with A; the explicit formu-
lation can be easily used in an existing iterative method; there is also a more substantial
parallelism; it requires however a specific partitioning.

7.3.3.2 Explicit formulation with a block diagonal partitioning

Here, the input matrix A is partitioned in a block-diagonal form as in Figure (a)
Such partitioning is obtained from the adjacency graph of the matrix by means of level
sets and iterative refinement of partitions (see [12]). The main difference with other graph
partitioning algorithms is that each subdomain should share its elements with at most two
other subdomains. It is equivalent to say that when [i — j| > 1 then W; UW, = (. With
the matrices Ay and Cy completed by the identity matrix to the size of A (see Figure
7.3.1L(b)), the multiplicative Schwarz preconditioner is explicitly formulated as (see [14]) :

M];I{SYM = AD—léD_lleBl_léD_g .. .142_101/{1_1 (7.10)

where C} is completed as Ay by the identity matrix to the size of A.

: |
A, 1 |
: |

G

Ay

Cy : AK =

Ay

(b): Completed submatrix

(a) : block-diagonal form of A
Figure 7.3.1: Block diagonal partitioning of a matrix

The algorithm to compute the preconditioning step y = M 'z is derived as in Algo-
rithm In a practical implementation, the whole vector y need not be exchanged between
the neighboring processes. Only the overlapped regions are needed. In the linear system
to be solved at step [f] only the local matrix Ay is needed as well. A more detailed parallel
algorithm is given in Algorithm [2]of chapter [3] Compared to the previous formulation, this
explicit formulation do not require to compute the residual vector during the operation
y — M~'z. Moreover, it provides a less expensive procedure that is applied to a sequence
of vectors, for instance the preconditioned vectors of the Krylov basis (see the section .

7.3.4 Subdomain solver

During each application of the Schwarz preconditioner, a linear system is solved at the
subdomain level. As a general linear system, its solution can be found using any of state-
of-the-art solver. We discuss here on the general issues when choosing the type of the

93

Formulation of algebraical Schwarz preconditioners

Algorithm 12 Iterative step y = M 2 with the explicit formulation of MSM
Require: Ck,fl‘,i, x, Ry and Oy
cy® — g
if £ > 0 then
Recewe y*=V from the process with rank k — 1
end if
Solve Az = y*~1 for z
if MyRank < D then
yh) = Chz
Send y*) to process (k + 1)
else
return y(D) as y.
. end if

—_ =
= o

solvers at the subdomain level. The sparse linear systems at the subdomain level are in
the scope of the preconditioner operator M ~!. Therefore, the solutions of these systems
are obtained more or less accurately:

1. An accurate solution, with a complete gaussian elimination for instance, leads to
a robust preconditioner, thus accelerating the convergence of the global iterative
method. The drawback here is the significant memory needed in each subdomain.
Indeed, not only the local submatrix should be stored but also the L and U matrices
from its LU factorization. With the presence of fill-in during numerical factorization,
the size of those factors will also increase significantly with respect to the size of the
original submatrix.

2. The problem of memory is overcome by using an incomplete (I LU) factorization of
local matrices, thus producing fast solutions in subdomains with fair accuracy. In
this case, the preconditioner looses its robustness and the global iterative method is
more likely to stagnate.

3. A third alternative is to use an iterative method inside each subdomain. This ap-
proach could be useful if the GMRES method is used with deflation. In this case,
the spectral information is retained from one linear system to another. Some promis-
ing results have been given in this sense with the DGMRES method presented in
chapter p] Note that when the local systems are solved this way, the expression of
the preconditioner changes from one iteration to another. In this situation, a flexible
variant of the Krylov methods such as FGMRES [112] should be used at the global
level to guarantee a decreasing residual norm.

7.3.5 Scalable Schwarz preconditioners

In general, one-level Schwarz preconditioners tend to be weak as the number of subdomains
increase. The construction of optimal parallel preconditioners which are independent of
the number of subdomains require to build coarse-space approximations of the matrix.
This is the basis of the multilevel domain decomposition preconditioners. As one-level
Schwarz methods act locally on each subdomain to remove the low frequencies in the error
solution, it may take longer to propagate the information from one subdomain to another.
The multilevel preconditioners provide smoothers at the coarsest level that act globally
on all subdomains to remove the high frequencies in the error solution. The main step

94

Krylov subspaces accelerators

in multilevel Schwarz methods is to build successive coarse spaces that will carry global
information to all the subdomains. Such spaces are obtained with less effort when the
coefficient matrix arises from a structured PDE discretization [123]. If the matrix only is
available, theory from algebraic multigrid technique is used to build the interpolation and
the restriction operators between the different spaces. We refer the reader to [110] as an
introductory material on these techniques. As an alternative to the multilevel methods, we
propose in section the deflation-based krylov methods to enhance the robustness in the
Schwarz preconditioners. We first give in the next section a brief overview of the Krylov
methods.

7.4 Krylov subspaces accelerators

The Krylov subspace methods compute the approximate solutions of the preconditioned
system
Bz = b with AM ™! (7.11)

as
Tm = VinYm, Vip € R™™ 4, € R™ (7.12)

where V,,, = [v1, ..., vy form a basis of the Krylov subspace K, = span(b, Bb, ..., B™'b).
The basis is constructed using the Arnoldi or the Lanczos process. The Arnoldi process
builds the basis V;,, together with a Hessenberg matrix H,, € R™1*™ guch that

BV = Vipe1Hy, (7.13)

In the GMRES method [114], the vector yp, is computed such that the norm of the residual
vector
Tm =b— Azy = Vippi1(er — Hnym) (7.14)
is minimized, e; is the first canonical vector. The Lanczos process works with short rec-
currences to compute a basis V,, of I, with respect to B and a second basis W,, =
[w1, ..., wy,] with respect to BT such that
Wr AV = Dy Hy, (7.15)

m

where H,, is a block tridiagonal matrix. The Lanczos vectors v; and w; satisfy a biorthogo-
nality condition related to the diagonal matrix D,,. The BiCG method [90] is derived using
the Galerkin condition which requires the residual vector to be orthogonal to the subspace
spanned by W,,. The FOM method [111] is derived as well from the Galerkin condition
using the Arnoldi process and the subspace spanned by V,,,. The QMR method [57] uses
the Lanczos process and the minimal residual condition to compute the vector y,,. GM-
RES/FOM and QMR/BiCG differ in their storage requirements and the amount of work
at each iteration. BiCG and QMR require matrix-vector product by B and B” but require
minimal storage requirements. BICGSTAB(m) [130] is based upon BiCG and GMRES(m)
and TFQMR [56] is based upon QMR. BiCGSTAB and TFQMR are transpose-free. They
do not require the product with BT. GMRES and FOM access all the previously-generated
Arnoldi at each iteration but require only B. GMRES(m) uses the restarting procedure
to limit the storage and the computational work required at each iteration. In GMRES,
the recursions can break down only if at some stage & of the Arnoldi process, hyt1 1 = 0
which means that the exact solution is found, see [113], Proposition 5.6]. This is called a
happy breakdown. In BiCG, the recursions break down if a term w’v = 0 for some w # 0
and v # 0. This means that for some £k, f%rk = 0 but fg # 0 and rg # 0 where 7“',{ is the

95

Numerical behavior of Schwarz preconditioners with GMRES

residual row vector associated to BT. See [24, [52] [113], 06| 121] for an overview of these
methods and [78] for a unified analysis on the error and residual bounds.

We focus here on the GMRES(m) method. It is generally used for its monotonic
convergence property. In the next section, we give some illustrations of this method as
accelerator to Schwarz methods. In Section [7.6] we analyze different strategies to derive
the Krylov basis needed in GMRES(m) and we discuss on the data dependency with
Schwarz preconditioners. In Section [7.7] we show how the deflation of eigenvalues is used
to improve the convergence and the robustness of the method.

7.5 Numerical behavior of Schwarz preconditioners with GM-
RES

The aim of this section is to give some illustrations on the difference between the Schwarz
methods as preconditioners for the GMRES(m) method.

7.5.1 Additive Schwarz and Restricted additive Schwarz

For a given number of subdomains, the convergence of an iterative algorithm depends
heavily on the size of the overlap. When it increases, it is expected to have a better
convergence since the preconditioner gives a better approximation of the inverse of A. The
trivial case is for two subdomains. We can notice indeed from Equation that for a
maximum value of ¢, VVl‘S = VVQ‘S = V. In this section, we first analyze the effect of the
overlap in the additive Schwarz preconditioner, then we compare the additive Schwarz to
the restricted variant in terms of the number of iterations and the MPI messages exchanged.

We consider the test problem IJO2R from our database test where n = 7,000 and nnz =
753,500. The matrix is partitioned into 4 submatrices using the PARMETIS package. The
PETSc [I8] 19] implementation of the additive Schwarz is used for all tests. The Krylov
basis is built with the Arnoldi process using the modified Gram-Schmidt orthogonalization;
The size of the Krylov basis is 32 (restart parameter m). The influence of this parameter
is analyzed in section [7.7 The relative norm of the residual vector (i.e ||b — Az||/[[b]|) at
the convergence is less than 1078, A right preconditioning is used and the local solutions
are solved at the machine precision using a direct solver (MUMPS [4] in this case). The
0-overlap corresponds to a block Jacobi. As explained in Section [7.2] a §-overlap is defined
by taking recursively the adjacent rows/columns of a given subdomain; adjacency is given
here in terms of the graph of the sparse matrix.

From the convergence history in Figure [7.5.1} we note that the method converges very
fast as the overlap increases. This has a cost. We see in Table[7.I|that the size of subdomain
matrices Ag increases very fast with the overlap. When the overlap is 5, the maximum
size overall subdomain matrices is almost equal to that of the global matrix. Moreover,
The volume of exhanged MPI messages will increase as well. This is reduced using the
restricted additive Schwarz.

Now, we give in Table[7.2]the MPI messages and the number of GMRES iterations when
the restricted Additive Schwarz (RAS) is used. As expected, the number of iterations is
better than that in ASM. Moreover, the number of MPI messages is divided by two since
there is no communication for the local interpolation at step [3] of Algorithm [9] Note that
the statistics related to the MPI messages are given only for the preconditioning step i.e.
the operation z «— M lz.

96

Numerical behavior of Schwarz preconditioners with GMRES

1J02R: Effect of the Overlap in ASM

Overllap 0o+
33 Overlap 1]
W Overlap 3 -
ﬁ%%& Overlap 5 &3
T
£ g
2 M
4 X
@ X
& i i
%
* M%
1e-07 f-th
I i
1le-08 ¥ -
ua|
1le-09
0 20 40 60 80 100 120 140 160 180
Iterations
Figure 7.5.1: Effect of the overlap in the additive Schware preconditioner with four sub-

domains

Table 7.1: IJO2R : Statistics of the ASM preconditioner with respect to the overlap;
NLoc: Maximum size overall subdomain matrices ; ITS: Number of GMRES iterations;
MPI Messages for z «— M~'z: Counts and Length: Average length of MPI messages;
Counts/ITS : Number of MPI Messages per GMRES iteration

Overlap NLoc NNZ ITS MPI Messages
Counts Length Counts/ITS
0 1775 186,250 171 0 0 0
1 2900 313,300 42 900 2700 21.4
3 5225 565,575 24 520 8300 21.6
5 6475 696,727 13 280 12000 21.5

Table 7.2: 1JO2R (size=7,000, entries=753,500): Statistics of the RAS preconditioner with
respect to the overlap; NLoc and NNZ: Maximum size and entries overall subdomain
matrices; ITS: Number of GMRES iterations; MPI Messages for z « M™'z; Length:
Average length of MPI messages; Counts/ITS : Number of MPI Messages per GMRES

1teration

Overlap NLoc NNZ ITS MPI Messages
Counts Length Counts/ITS
0 1775 186,250 171 0 0 0.00
1 2900 313,300 34 370 2700 10.88
3 5225 565,575 11 120 8300 10.91
) 6475 696,725 9 100 12000 11.11

97

Numerical behavior of Schwarz preconditioners with GMRES

7.5.2 Restricted additive Schwarz and Multiplicative Schwarz

As a well-known theory, the multiplicative Schwarz method should converge faster than
the additive variant for the same partitioning. To illustrate this property, we consider the
same matrix [JO2R. A block-diagonal permutation is performed to produce 4 partitions.
The main characteristics are given in Table [7.3] In Figure [7.5.2] we give the convergence

Table 7.3: Block diagonal partitioning of [JO2R size = 7,000, entries = 753, 500

Block # 1 2 3 4
Size 2,155 2,170 2,125 2,130
Entries 220,900 | 253,675 | 241,000 | 214,925
Size of overlap 925 250 805 0

of GMRES(16) and we note that ASM requires twice iterations than MSM. Here the same

MSM
01 F\ ASM -

0.01 \
0.001 |\
0.0001
1le-05
1e-06
1e-07 N
1le-08 X .
1e-09 \
1e-10

Rel. Res. Norm

0 20 40 60 80 100 120
Iterations

Figure 7.5.2: 1J02R:GMRES(16) with Multiplicative Schwarz and additive Schwarz on a
block diagonal partitioning

partitioning is used to formulate the two Schwarz preconditioners. In this case, the additive
Schwarz method is formulated as follows :

D
Mydy =2> Al (7.16)
k=1

© is a (n x n) diagonal matrix where the coefficients are the damping factors for the
overlapping regions. In a more general situation, the block-diagonal partitioning is not
required to formulate the additive Schwarz method. We therefore consider in the following
experiments the additive Schwarz method with the nested dissection partitioning from the
PARMETIS package as provided by the PETSc library.

To better understand the robustness of the multiplicative Schwarz preconditioner over
the restricted additive Schwarz (RAS) method in an algebraic point of view, we consider
an ill-conditioned Helmholtz problem on a 2D cartesian grid as presented in [44]. The

98

Numerical behavior of Schwarz preconditioners with GMRES

partitioning is not done on the physical grid but on the adjacency graph of the input matrix,
either with the PARMETIS package for the RAS preconditioner or the block diagonal
partitioning with overlap (BDO) for MSM. The main characteristics of the subdomain
matrices with 4 and 8 subdomains are presented in Tables and In BDO, the
partitioning is done so that to equilibrate the size of the submatrices and the overlap
between neighboring subdomains. In PARMETIS, disjoint partitions are created such that
to minimize the edge cuts. After that, overlapping submatrices are created by including the
connected rows/columns. This is equivalent to an overlap of length 1. It can be seen from
Tables[7.4] and that the two partitioning schemes produce submatrices with similar size
and number of nonzero entries.

Block # 1 2 3 4 Total
Block Diagonal Partitioning with Overlap

Size 6,899 6,744 6,746 6,905 27,294
Entries 33,579 33,336 33,338 33585 133,838
Overlap 117 164 117 0
PARMETIS partitioning and extended Overlap of size 1.

Size 6924 7154 6967 6962 28,007
Entries 33095 34669 33543 33682 134,989

Table 7.4: Block diagonal partitioning and PARMETIS partitioning on an 2D Helmholtz
problem into 4 overlapped subdomains. initial global size = 26,896, initial number of
nonzeros entries = 131,872

Block # 1 2 3 4 5 6 7 8
Block Diagonal Partitioning with Overlap
Size 3,482 3,383 3,483 3,519 3,521 3,482 3,383 3,488
Entries 16,766 16,643 17,199 17,411 17,413 17,199 16,643 16,772
Overlap 83 116 142 164 142 116 83 0
PARMETIS partitioning and extended Overlap of size 1.

Size 3,589 3,517 3,501 3,500 3,744 3,602 3,625 3,637
Entries 17,099 16,552 17,030 16,568 17,986 17,363 17,631 17,374

Table 7.5: Block diagonal partitioning and PARMETIS partitioning on an 2D Helmholtz
problem into 8 overlapped subdomains; size = 26,896, entries = 131,872

Now we consider the GMRES method preconditioned by the restricted additive Schwarz
or the explicit formulation of the multiplicative Schwarz (MSM). Two types of solvers are
used to compute the solution in the subdomains. We first consider an approximate solver
based on an incomplete gaussian elimination in the subdomain matrices. Figure gives
the reduction in the norm of the residual vector as a function of the number of iterations
in GMRES. 1t is seen that either with 4 or 8 subdomains, GMRES(16)+MSM requires less
than 200 iterations to reach the accuracy of 1078, With RAS however, GMRES starts to
converge but after almost 32 iterations, the method experiences a slow reduction in the
residual norm and the desired accuracy could not be reached after 500 iterations. In Figure
now, we consider an exact solver based on the LU factorization of the submatrices.
As an immediate effect of the solver in the subdomains, RAS performs better than in the
previous case. MSM performs better as well in the case of 4 subdomains. Surprisingly with
8 subdomains, MSM+GMRES requires more iterations than that in the previous case. We

99

Numerical behavior of Schwarz preconditioners with GMRES

note a periodic stagnation in the convergence curve. This is mainly due to the restarting
procedure as explained in section

164x164 HELMHOLTZ, GMRES(16)+ILU

0.1

0.01

0.001 |
MSM D=4 ILU ——
RAS D=4 ILU
0.0001 MM D8 ILU o]
RAS D=8 ILU
1le-05 \
1e-06 \
1e-07 \
1e-08
0 100 200 300 400 500

Figure 7.5.3: 2D Helmholtz problem on a 164x164 grid : Comparing the restricted additive
Schwarz (with ParMETIS partitioning) and multiplicative Schwarz (with block diagonal
partitioning). GMRES(16) as the Krylov accelerator, ILU solver in subdomains

1 : :
MSM D=4 LU ——
RAS D=4 LU
0.1 MSM D=8 LU - 7
RAS D=8 LU
0.01
0.001 f %
0.0001 \\
1e-05
1e-06
1le-07
\
1e-08
0 100 200 300 400 500

Figure 7.5.4: 2D Helmholtz problem on a 164x164 grid : Comparing the restricted additive
Schwarz (with ParMETIS partitioning) and multiplicative Schwarz (with block diagonal
partitioning). GMRES(16) as the Krylov accelerator, LU solver in subdomains

A general observation from these test cases and others is that MSM is more robust

100

Improving the parallelism

than ASM for all number of subdomains. However, since MSM is less parallel than RAS; it
will require more CPU time. In the next section, we give the parallelism that is exploited
in the explicit formulation of the multiplicative Schwarz and we show in section how
this parallelism can be enhanced.

7.6 Improving the parallelism

In this section, we analyze some ways to improve the parallelism in the GMRES method
with Schwarz-based preconditioners. We start by showing how to compute the Krylov
basis, then we illustrate the effect of the data dependency during the construction of this
basis. We end this section by showing how to improve the parallelism at the subdomain
level of the Schwarz preconditioners.

7.6.1 Deriving the Krylov basis

As stated in section the formulation of the GMRES method relies on the computation
of an orthogonal basis V,,, of a m-dimensional Krylov subspace. It is a two-steps process:

1. Computation of the basis vectors.
2. Orthogonalization of the basis vectors.

These two steps can be interleaved or separated to give different performance in terms of
communication volume, data dependency and robustness. The first strategy is based on
the Arnoldi process which compute the basis vectors and orthogonalized them at the same
time. The second strategy generate first the basis vectors with the Newton polynomials
for instance and orthogonalize them with a dense QR factorization. We refer to the second
strategy as the Newton basis process. In the Arnoldi process, the subspace is spanned by
the following vectors

K,, = [b,Bb,...,B™b] (7.17)

while the Krylov subspace obtained from the Newton basis process is spanned by the

vectors
m

K= |b,(B=MDb,..., [[(B— D] . (7.18)
k=1

where the scalars {\;};_, are used to get a well-conditioned basis, see [I7]. The two
processes generate a basis for the same Krylov subspace ICpy,.

A practical parallel implementation of the Arnoldi process uses the Gram-Schmidt
method. For references purposes, we give in Algorithm the classical Gram-Schmidt
(CGS) and the modified Gram-Schmidt (MGS) as found in [I13]. The Newton basis process
to build and orthogonalize the basis vectors is given in Algorithms[14]and [15] as respectively
found in [I7] and [I18]. The communication volum for the Arnoldi-MGS is O(m?log(P)
messages to compute the (m? + 3m)/2 inner products where P is the total number of
MPI processes. The maximum message length here is 1 double precision number plus
the overhead. In CGS, the reduce-scatter operation of MPI is used on a group of vectors
during the computation of the inner products to limit the number of MPI messages. Hence
the communication volume for CGS is O(m.log(P)) with an average message length of
m/2 double precision numbers. In the implementation of the Newton basis process, the

“Here, we do not consider the MPI communication during the matrix-vector product and the application
of the preconditioner

101

Improving the parallelism

Algorithm 13 Arnoldi process to compute the Krylov basis V,,, at left is the classical
Gram-Schmidt(CGS), at right is the modified Gram-Schmidt(MGS)

Require: m, A,b

1:
2:
3:

10:
11:

vy < b/[|bll2
for j=1:m do
wj — AMflvj
fori=1:7do
hz’,j — U;‘ij
end for '
wj = wj = 35y hijvi
hjv1y = llwj
vjt1 = wi/hjia
end for
return V., € RwmHl
orthonormal basis of IC,y,,
H,, € R™TXXm ypper Hes-
senberg matrix.

Require: m, A,b

1:
2:
3:

11:

v1 < b/[|bll2
for j=1:m do
wj — AMflvj
fori=1:7do
hm’ — U;‘ij
Wy < Wj — hijvi
end for
hjv1y = llwsl
vjt1 = wj/hjt1
end for
return V., € RwmHl
orthonormal basis of IC,,,
H,, € R™TXXm ypper Hes-
senberg matrix.

Algorithm 14 Newton basis process to compute the Krylov basis Wiy, 41

—_ = =
N = O

13:
14:

m, A, b, Shifts {\;};-, ordered with the modified Leja ordering [17].

wy < b/|[b]]
dy = 1/[Jwill2, j =1
while j <m do
if Im()\;) = 0 then
wj1 = d;(AM ™" = N Hw;
djy1 = 1/[lwjt]2
else if Im()\; > 0) then
wj1 = dj(AM ™~ — Re(\;)w;

wjr2 = (AM~1 — Re(\j) Dwjs1 + diIm(\;)*w;

dyi1 =1/ s
djr2 = 1/||lwjs2||
end if
end while

15: return W, 1 € R™™+! (non orthogonal) basis of K,,, D1 € R™*™ diagonal

matrix

102

Improving the parallelism

Algorithm 15 RODDEC algorithm to compute the QR factorization of Wy, 1
Require: m, nbproc, myproc, myle ft, myright, Wr,. Local part of the basis W41
1: Woa RLoc = QR(WLOC)
2: for j=1:m+1do
3: if myproc = 0 then

4: Send row Rroc(j,j: m+ 1) to myright

5. else

6: Receive row(d : m + 1) from myleft

7: Compute the Givens rotation to annihilate element Ry,.(1,d)
8: if myproc # nbproc — 1 then

9: send the updated row row(d : m) to myright

10: end if

11: Create rotations to annihilate the dt" diagonal of Ry .

12: end if

13: end for

14: return Vo1, R € RO"HDX(m+1D) triangular matrix.

computation of the basis requires O(m.log(P)) messages for the m inner products and
O(m?) point-to-point messages during the orthogonalization. The average message length
is (m+1)/2 double precision number. Other parallel optimal strategies exist to perform a
dense QR on the Newton basis vectors while producing less communication volume. The
recently proposed tall skinny QR (TSQR) of Demmel et al[42] requires O(log(P)) MPI
messages with an average message length of (m + 1)/2. The communication volume is
not the only point of concern when choosing how to build the basis. The efficiency in the
computation of the basis is also determined by the data dependency between the processes
sharing the computation of the basis vectors. We illustrate next two types of dependencies.

7.6.2 Illustration of data dependency between the Krylov basis vectors

The first dependency is between the computation of the successive basis vectors. It is
mostly determined by the strategy to generate those vectors. With the Arnoldi process,
one basis vector should be entirely computed before the next vector starts. As presented
in Algorithm [14] the Newton basis process has the same effect because of the presence
of the inner products which introduce global synchronizations between all the processes.
These inner products can be removed in the case of the Newton basis process for a mod-
erate size of the basis. It is equivalent in Algorithm toset dj = 1,1 < 75 < m. We
refer to this version as Newton-NoNorm. To avoid the rapid growth of the basis vectors,
the rows and columns of the matrix are equilibrated using the parallel iterative algorithm
presented in [6]. Now, we have four strategies : the classical Gram-Schmidt (CGS), the
modified Gram-Schmidt(MGS), the Newton basis process (Newton) of Algorithm [14] to-
gether with the orthogonalization in Algorithm [I5] and the Newton basis process without
global communications Newton-NoNorm.

To illustrate the effect of these dependencies in the GMRES method, we consider a
simple 2D Poisson problem discretized in a 512 x 512 unit square with finite difference
methods. The restricted additive Schwarz method is used with a 1-overlap; the incomplete
LU (ILU(0)) is used as the local solver. Figure gives the CPU time with respect to
the number of processes for the parallel iterative time of GMRES(12) and GMRES(24).
We note globally that either with CGS or MGS, the Arnoldi process requires more CPU
time than the Newton basis process. As we expected, there is a huge difference between

103

Improving the parallelism

POISSON-512 POISSON-512
3 T 2.4 T
MGS MGS mmm
CGS m== 22+ CGS mm=m -
25 Newton mmmmm | Newton
: NewtonNoNorm s 2r NewtonNoNorm s -
1.8
: =
= = 16
2 2 14
(@] O
12
1 L
0.8 |
0.6
16 48 128 256 16 48 128 256
MPI Processes MPI Processes

Figure 7.6.1: POISSON problem on a 512x512 unit grid: CPU Time of the parallel iterative
loop of GMRES(12) (left figure) and GMRES (24) (right figure), RAS preconditioner

the four strategies if we consider the total number of MPI reductions as plotted in Figure
[7.6.2l However, this does not affect the CPU time between CGS and MGS and between
Newton and Newton-NoNorm. The main reason is because the processes are connected
through an Infiniband network which has a very low latency. On Gigabit ethernet cluster,
we would see a difference as the number of processes increase. For a broader analysis of
the efficiency of the Newton basis process over the standard parallel Arnoldi process, see
the chapter [6] and [50].

POISSON-512 POISSON-512
le+07 T T 16000
MGS

9e+06 CGS m== 1 14000 -
86406 | Newton]
NewtonNoNorm s 12000 -

7e+06
6e+06
5e+06
4e+06
3e+06
2e+06
1e+06

10000
8000

MPI Messages

6000 -

MPI REDUCTIONS

4000
2000 -

16 48 128 256 16 48 128 256
MPI Processes MPI Processes

Figure 7.6.2: POISSON problem on a 512 x 512 unit grid: MPI messages (left figure) and
reductions (right figure) in the parallel iterative time of GMRES

7.6.3 Illustration of data dependency with the multiplicative Schwarz

The second type of dependency arises when the Schwarz preconditioner is applied to build
a single basis vector. In either the additive or the multiplicative Schwarz, this data de-
pendency is between the processes having neighboring subdomains. However, the multi-
plicative Schwarz produces more synchronizations because of the recursive update of the
basis vector through all the subdomains. For instance, when the explicit formulation of the
Multiplicative Schwarz as presented in section[7.3.3.2]is applied to a basis vector and if one
subdomain is assigned to one process, then only one process is working at a time. Thus the
two dependencies (between the basis vectors and between the subvectors owned by each
process) would produce a sequential algorithm across the subdomains if the Arnoldi process
is used to build the basis vectors. This is caused by the global communications needed to
orthogonalize the basis vectors. In [I1), 125], the authors use the Newton basis process to

104

Improving the parallelism

produce a substantial parallelism during the construction of the basis vectors. Althoug the
dependency between the subvectors are not avoided, the sequence of basis vectors can be
computed as in a pipeline. We show for instance in Figure [7.6.3]a MPI profiling during the
computation of the basis vectors by 8 processes. It is seen that the Newton basis process
relax the dependencies between the successive basis vectors by allowing next vectors to be
computed before the previous are available.

Do Do
AR} D1
bz b2
Os B
B D4
Os Os
B
- | - e

(Arnoldi process) (Newton basis process)

Figure 7.6.3: Parallelism in the construction of the Krylov basis with the multiplicative
Schwarz

In [I0T], we have investigated on the efficiency that are obtained with this process and
we have shown that it is limited by the number of subdomains and the number of basis
vectors that are built at once. In theory, increasing the length of the basis vectors built
in one pass should enhance the efficiency of the approach. In practise, the basis vectors
grow very fast as the length increases and the condition number of the basis increases as
well. The extreme case is when the basis is rank-deficient. A first solution is to equilibrate
the rows and the columns of the input matrix. This is efficient until some size of the
basis. A second solution is to incrementally estimate the rank of the basis and discard
the other vectors in the basis [II]. This affects the performance since the time to build
the discarded search directions is wasted. In chapter [6] we suggests to use the augmented
subspace approaches to limit the basis length. In section [7.7] we show that it can be
applied to produce more stable Krylov basis for GMRES with the multiplicative Schwarz
preconditioner.

7.6.4 Improving the parallelism through the subdomain solvers

Until now, we have assumed that one or several subdomains to a unique process. In terms
of numerical convergence and parallel performance, we have seen that this approach has
some limitations. For instance, the number of iterations tends to increase with the number
of subdomains. It is therefore essential to keep this number of subdomains small in order
to provide a robust iterative method. Depending on the initial size of the matrix, the
subdomain linear systems are getting large and cannot be solved efficiently with only one
process in a subdomain. It has been found natural [65, 92] 10T, 102] to use a parallel linear
solver to solve these subdomain systems. On today’s supercomputers with hierarchical
architectures from SMT cores to nodes and from nodes to clusters, this approach exploit
efficiently the available compute ressources. Assume for instance a SMP node as depicted

105

Improving the parallelism

in Figure a. When the subdomain matrix is very large, the available memory per core

Memor stem
| y sy | A,
Socket #0 Socket #1
\ L2 |] L2 \
o~
L oLaf [raffjl rif| L1 P | P | P P
Py P Py Py A P A
WORKING IDLE
(@) : SMP Node (b) : One subdomain/SM P Node
P() P2 P1 P3 ~=Node O
~ N A4 A
Ay . ,
A 1A
y oy A\ N
Py | P | P | Ps S S W \
T ! ! P || P | P3| ~Node1l
=WORKING
(¢) : One subdomain/SMP Node (d) : One subdomain/two SM P Nodes

Figure 7.6.4: Distribution of subdomains on a dual-socket dual-CPU SMP node : This
figure assume that all processes have equal access to the global memory, however, most of
the computers are rather based on a non-uniform access strategy (NUMA architectures).

may not be large enough to store this matrix hence the whole cores of the node should be
scheduled for a unique subdomain. In this situation, with the one level of parallelism, only
one processor will be working (the processor Py for instance in Figure .b). However,
if a new level of parallelism is introduced inside each scheduled node, all the processors
could contribute to the treatment of the data stored into the memory of the node(Figure
c). Moreover, with this approach, data associated to a particular subdomain could
be distributed on more than one SMP node; In this case, the new level of parallelism is
defined across all the nodes responsible for a subdomain (Figure [7.6.4]d).

Now, with a parallelism across and inside the subdomains, a discussion on the underly-
ing parallel programming paradigm is of order. In the previous discussion, we assume that
we use MPI everywhere, that is MPI for the parallelism across and inside the subdomains
communications. The main motivation of this approach is the availability of performant
intranode communication channels in many MPI implementation; see for instance [27]. If
the intranode MPI processes do not communicate very much and if the exchanged messages
are of small size, a good data transfer is obtained from these channels, see for instance the
analysis in [I08]. In a general case, the speed of the computation will mostly be deter-
mined by the per-CPU memory bandwith. The common advise is therefore to use fewer
MPI processes than available cores and then to bind processes to separate sockets. Hence,
each process use its own memory bus. Now, if the LU factorization should be performed,
a multithreaded BLAS implementation can be used to keep busy the remaining cores of
the socket. This could lead however to weird performance if the threads are not correctly
binded to the corresponding cores. Indeed, although current MPI implementations provide
interfaces to bind MPI processes to cores, it is not straightforward from the end-user view
to manage at the same time a process-to-core and thread-to-core binding. We thus stick in
this work to MPI everywhere or threads everywhere inside the subdomains’ computations.

106

Improving the parallelism

7.6.5 Illustration of two levels of parallelism with multiplicative Schwarz

In Table we give the benefits of these two levels of parallelism on a public matrix
ATMOSMODL taken from the UFL collection [39]. The size is 1,489,752 and the number
of nonzero entries is 10,319,760. The solution is computed with the Newton basis GM-
RES preconditioned by the multiplicative Schwarz preconditioner. The size of the basis
is 16 and the relative residual norm at the convergence is 107%. We give the CPU time
of the most-consuming time steps in this algorithm, that is the time to perform the nu-
merical factorization of the subdomain matrices and the time in the iterative phase. We
first assign one subdomain to one computing node and we consider two types of paral-
lelism inside the subdomains/nodes. In the distributed LU, we use a parallel version of
the LU factorization as implemented in the MUMPS [4] package; hence Pr indicates the
number of MPI processes assigned to a subdomain times the number of subdomains. In
the threaded BLAS LU, a sequential MUMPS is linked to the multithreaded implemen-
tation of the BLAS operations as provided by the GotoBLAS [68] package. In this case,
Pr gives the number of subdomains times the number of concurrent threads to be used
during the calls to BLAS functions. The compute nodes are part of the parapide cluster

D Pr Distributed LU Threaded BLAS LU
Setup Solve Time/Iter | Setup Solve Time/Iter
4 4 78.7 148.2 4.6 78.7 148.2 4.6
8 55.2 111.7 3.4 45.9 170.7 5.3
16 30.0 60.8 1.9 29.1 156.1 4.8
32 21.0 48.6 1.5
8 8 23.9 107.3 3.3 23.9 107.3 3.3
16 16.9 79.1 2.4 14.8 146.4 4.5
32 11.1 43.2 1.3 10.1 141.1 4.4
64 6.8 33.0 1.0 10.2 140.6 4.3
16 16 7.1 130.1 2.7 7.1 130.1 2.7
32 4.5 94.9 1.9 4.8 203.2 4.2
64 3.3 56.56 1.1 3.7 202.6 4.2
128 2.4 38.9 0.8 3.6 200.9 4.1

Table 7.6: ATMOSMODL N=1,489,752, NNZ=10,319,760: Using two levels of parallelism
in the Newton basis GMRES with a multiplicative Schwarz, MUMPS is used as a local
solver with GotoBLAS, D: Number of subdomains, Pr: Total Number of processes (MPI
processes or MPI+Pthreads processes), setup: time in the factorization phase, solve: Time
in the iterative phase, Time/Iter : Average time spent in each iteration.

of the Grid’5000 testbedﬂ Each node is composed of dual-sockets where each socket has a
quad-core Intel Nehalem with a frequency at 2.93GHz. As a general observation, we note
for all number of subdomains that the CPU time in the setup phase decreases as we add
more processes/threads. This is true with the two types of parallelism. With 8 subdomains
for instance, the setup time goes from 23 s. with one process/thread per subdomain to
6.8s. and 10.2s respectively with 8 MPI processes and 8 threads per subdomain. Note
however that in this last case, the setup does not decrease significantly when the number
of active threads is beyond 4 processes. This could be explained by the overhead to create
and destroy the threads compared to the real amount of computation. In a general point of
view, the overall performance in this phase is explained by the good kernel of computations.
Indeed, the numerical factorization involves many calls to BLAS-3 operations. The situa-
tion is different in the iterative phase. Now we see that the threaded BLAS gives a poor

Thttps:/ /www.grid5000.fr

107

Improving robustness with deflation

performance which is probably due to the low-grained computation in this phase. Indeed
the forward and backward substitution with the L and U triangular factors obtained from
the previous phase will involve at most BLAS-2 operations. Moreover, the performance
of these operations are determined by the size of the small dense matrices in the factors
(frontal matrices). It is thus necessary to have a trade-off between the time to create the
concurrent threads and the acceleration obtained from these parallelized kernels. With
MPI inside the nodes, the tradeoff should be found between the computation and the time
to communicate. Since the MPI processes are scheduled inside the same physical node, the
communications are not very expensive. We thus observe a substantial acceleration in the
iterative phase as we add more processes inside the node. This acceleration is noticeable
with all number of subdomains. Although the efficiency of this approach is not very high,
it helps to keep busy all the cores inside the subdomains, because these cores would be idle
otherwise. Lastly, it is also worth mentioning the availability of direct solvers that fully use
the threads model to parallelize the factorization. Spooles [9] and PaStiX [76] are among
these categories. Due to the configuration problems, we did not use these solvers in our
hybrid approach.

7.7 Improving robustness with deflation

In the previous chapters, we have shown the benefits of deflating the eigenvalues in a
GMRES method. The main motivation of these approaches is to reduce the effects of the
restarting and in some extent to choose an appropriate restart length. Indeed, it has been
proved that in some situations, the convergence of Ritz and Harmonic Ritz values exhibit
the potential of a superlinear convergence in the GMRES method [I32]. Restarting may
thus have the disadvantage to discard the associated Ritz vectors that form the approximate
solution before their convergence [28]. A major difficulty in the restarted GMRES is thus
how to choose the appropriate restart length m. If it is too small, then a stagnation may
occur. When m is too large, the cost of storing the basis vectors may become prohibitive.
In the case of the Newton basis GMRES, a large restart length may also produce a non
exploitable basis, in terms of stability. On another side, when the Schwarz methods are used
as preconditioners for GMRES, the Krylov basis length is also a function of the number of
subdomains. With a fixed value of m, the contribution we have done in this part resides
in the ability of the proposed algorithms to work well when the number of subdomains
increase in the Schwarz preconditioners whereas the restarted GMRES fails to converge.
Two strategies have been considered : either by building a second preconditioner for the
deflation or by augmenting the Krylov basis. Now with the two strategies to generate the
basis, namely the Arnoldi process and the Newton basis process, we thus have four variants
of the deflated GMRES.

Preconditioning Augmenting
Arnoldi basis DGMRES GMRES-E
Newton basis PGMRES AGMRES

Table 7.7: Different strategies to build the Krylov basis and to deflate the eigenvalues

We give in the next sections the main algorithmic differences between these methods.
The strategy behind DGMRES has been introduced by Erhel et al [53] and Burrage and
Erhel [28]. A parallel implementation with an adaptive strategy has been described in
chapters [and [l A similar approach can be formulated in the case of the Newton basis
process. We call this strateggy PGMRES. A short algorithm has been outlined for this

108

Improving robustness with deflation

strategy in [51]. We give in section[7.7.1]a brief derivation. GMRES-E has been proposed by
Morgan[98]. AGMRES is described in chapter[6] We give in section[7.7.2)a short description
and the benefits of using AGMRES with the explicit formulation of the multiplicative
Schwarz method.

7.7.1 Deflation by preconditioning

Here a preconditioner Mp is built from some basis U of the invariant subspace associated to
the eigenvalues to deflate. Hence, instead of solving the system [7.11] the following system
is considered for the right preconditioning:

AM™*Mp'z=b, =M 'M;'s. (7.19)

Here M~ is a Schwarz preconditioner but it can be any type of preconditioning. Starting
with MBI =lTand U =[], MBI is built along the restart cycles of GMRES as

Myt =1+ U(\| T HUT, T = U AM U (7.20)

At the beginning of GMRES, U contains no vector and M 51 = I. At each restart, U is
updated with new values collected from the current cycle of GMRES. r is the size of U at
a certain stage and |A,| is an estimation of the largest eigenvalue of B. So far, the basis U
is approximated differently depending on how the Krylov basis is generated.

The Arnoldi process produces orthogonal basis vectors V41 = [v1,v2,...,Un41] and a
Hessenberg matrix H,, at each cycle of GMRES such that

BV = Vi1 Hin = Vi Hu + Wit m) Um0y (7.21)

where B = AM‘IMgl. A simple orthogonal projection with the basis V;, produces the
following eigenvalue problem
Hyy = \y (7.22)

(A, Viny) is thus an approximate eigenpair of B where y € R™. Assuming that the Schur
form of H,, has been computed with the eigenvalues ordered in increasing order and X is
the set of Schur vectors corresponding to the selected eigenvalues to deflate (usually the
smallest ones), then V,, X is used to increase the approximate basis U of the invariant
subspace associated to the selected eigenvalues.
In the Newton basis process, the orthogonal basis V,, for the m-dimensional subspace
is derived such that :
BWy, = W1 Thm (7.23)

and
Wint1 = Vinr1 Rt (7.24)

where the columns of W, € R™*" span the Krylov subspace K,,. They are generated by
a three-term reccurence which produces the coefficients for the tridiagonal matrix 7}, €
R(m+Dxm A dense QR factorization is then performed to give the orthogonal matrix
Vi1 € R+ and the triangular matrix R,y € RTDx0m+1) - A relation similar to

that in Equation follows :
BV = Vini1 Ry 1 Tin R (7.25)
Multiplying the two terms of the equation by V.1 we get
VI BV = (RnTm + Rins1ems1en 1 Tn) Ryt (7.26)

Cm

109

Improving robustness with deflation

The standard orthogonal projection technique produces the eigenvalue problem C,, R, 'y =
Ay which can be rewritten as a generalized eigenvalue problem

Hence the approximated eigenvectors of B extracted from span{V,,} are given by
u="Vny=VnRng =Wng (7.28)

To sum up, estimating the Schur vectors of B requires a generalized eigenvalue problem
in the Newton basis process; the basis V,, is not needed, the basis W,,, can be used instead.
In the Arnoldi process, a standard eigenvalue problem is solved; In the two approaches so
far, U is stored and BU should be kept as well to reduce the matrix-vector products.

We call DGMRES (m, k, rmax) the parallel implementation of this strategy of deflation
with the Arnoldi process. At each restart cycle of GMRES, k Schur vectors are extracted
to augment the basis U. When the size of U reaches rmax, there is no more estimation.
It is however possible to update the Schur vectors in U by solving a generalized eigenvalue
problem [28] but it has a cost. In Chaptersand , we introduce an adaptive strategy which
implements a deflation on demand. It is based on the same approach but the estimation
or the update of the Schur vectors are done only if there is a slow convergence in GMRES.
This approach has been used to solve large systems from CFD applications.

We call PGMRES the parallel implementation of the deflation by preconditioning in the
Newton basis process as just derived. It is not used in practise considering that one of the
motivation of the Newton basis process is to limit the synchronizations points. Indeed, the
application of the preconditioner M, ! for the deflation involves the products such as Uz
where the vector z is distributed between all processes, hence the global communications.
Using for instance PGMRES with the multiplicative Schwarz will not produce the pipeline
parallelism as presented in section[7.6.3] We therefore rely on the augmented basis approach
which is presented next.

7.7.2 Deflation by augmenting the basis

In this strategy, the smallest eigenvalues that slow down the convergence of GMRES are
approximated from the harmonic Ritz values of the preconditioned matrix and the asso-
ciated eigenvectors are used to augment the basis. Hence at each cycle of GMRES, the
residual vector is minimized by using a projection onto the augmented subspace defined as

Co = K (B, 70) + Uy (7.29)

where U, is a r-dimensional invariant subspace associated to the eigenvalues that should
be deflated and s = m + r. Just as in the previous section, the basis of K,,(B,rg) can
be generated with the Arnoldi process or the Newton basis process; Let W, be the basis
of that subspace then Wy = [Wpn U] is the basis of the augmented subspace C;. Any
approximate eigenvector can be used to augment the Krylov basis. It has been noted
[34] that the augmented basis approach works much better with harmonic Ritz vectors
than regular Ritz vectors. This is because the augmented Krylov subspace has certain
properties; in the case of deflation with thick restarting [99], the generated subspace is
itself a Krylov subspace.
So far, the estimation of the (harmonic) ritz vectors rely on the following relation

BW, = Vi1 H,. (7.30)

110

Improving robustness with deflation

When the Arnoldi process is used, the whole basis Wy need not be saved since Wy, = V;,,
only U and Vi1 are needed. In the Newton basis process however, W, should be stored.
Now, using a projection technique onto the subspace span{BW}, one gets

(BW)T(B = X)Wy =0 (7.31)
which produces the following generalized eigenvalue problem
HIH,y = ATV, \Wyy. (7.32)

In GMRES-E(m, k) proposed by Morgan [98], k vectors are extracted from the augmented
subspace span{Ws}. These vectors give better and better approximation of the harmonic
Ritz vectors extracted from the previous restart cycle of GMRES. The basis is built with the
Arnoldi process. In AGMRES(m, k, [) as proposed in chapter @, k vectors are still computed
at each restart but an adaptive strategy is used to increase k by [if the convergence rate
is not ’good enough’. Compared to GMRES-E(m, k), AGMRES(m, k,1) will thus require
more memory to store the increasing basis W,. Nevertheless, AGMRES benefits from a
better parallelism during the generation of the basis vectors through the Newton basis
process. Moreover, with the adaptive strategy, the convergence rate is less sensitive to the
basis length, particularly when this basis length is fixed and the number of subdomains in
the Schwarz preconditioners increases. We provide a brief illustration in the next section.
Another benefit of formulating the deflation with the Newton basis process is that the
pipeline parallelism is kept when the multiplicative Schwarz preconditioner is used. We
briefly give as well a benefit of this approach in the next section.

7.7.3 Benefits of the deflation in GMRES with Schwarz preconditioners

We consider the test case RMO7R from the FLUOREM matrix collection (see Appendix
[A] We first compare DGMRES and AGMRES over GMRES in terms of the numerical
convergence. The restricted additive Schwarz preconditioner is used with a LU factorization
of subdomain matrices.

Figure presents the convergence history of GMRES where a restart length m is
fixed at 32 and the number of subdomains is 16. In DGMRES(m, k, rmax), k Schur vectors
corresponding to the smallest eigenvalues of B are extracted at each restart. rmax gives
the size of the basis U at the convergence, that is the number of vectors extracted so far.
This is different in AGMRES(m, k) where k Schur vectors are computed and updated at
each restart. Hence the number of vectors extracted are different in the two approaches.
This may explain the difference in the number of GMRES iterations as shown in Figure
However, when k is increased in AGMRES, the convergence rate is greatly improved.
The general observation is still that the two strategies perform better than the approach
with no deflation. This is more noticeable when the number of subdomains increases.

We consider indeed the same test case with 32 subdomains in the restricted additive
Schwarz preconditioner. Now, an adaptive strategy is used in DGMRES and AGMRES.
From Figure we have an estimation of the number of iterations when D = 16.
When increasing D to 32, we want to be able to have the same convergence behavior. We
thus use an adaptive strategy in AGMRES and DGMRES. We fix a maximum number of
iterations maxit at 1000 and we use two relaxation parameters smv = 0.2 and bgv = 0.4.
As explained in chapters [4] and [6] the adaptive strategy computes the convergence rate
between two restart cycles and estimates the remaining number of iterations to reach the
desired accuracy. If it is greater than a certain maximum number of iterations smv-maxit,
then a deflation is carried out. In AGMRES, when this bound is greater than bgv - maxit,

111

Improving robustness with deflation

0.01
IS

S 0.0001
pd
@
(0]
24

° 1e-06
24

1e-08

le-10

RMO7R D=16

GMRES(32) s
AGMRES(32;1)
AGMRES(sZ,Z) LN ATIT

DGMRES(32;1;5)

8
o\
W

50 100 150 200 250 300
Number of Iterations

Figure 7.7.1: RMO7R, 16 subdomains : Comparing different strategies for deflation in GM-
RES; AGMRES : GMRES With Newton basis and augmented bagis; DGMRES: GMRES
with Arnoldi process and deflation as preconditioner

0.01

0.0001

1e-06

Rel. Res. Norm

1e-08

le-10

RMO7R D=32

"GMRES(32) ==
— AGMRES(32;2;1)
-\\ DGMRES(32;2;12)

L

“

\

™

0 100 200 300 400 500 600 700 800 900

Number of Iterations

Figure 7.7.2: RMOTR, 32 subdomains : Comparing the adaptive deflation in GMRES;
AGMRES : GMRES With Newton basis and augmented basis; DGMRES: GMRES with
Arnoldi process and deflation as preconditioner

112

Improving robustness with deflation

then a slow convergence is declared and the number k of extracted vectors is increased
by [. Figure gives the convergence curve of GMRES with these approaches. It can
be seen that the number of iterations in GMRES is almost 900 iterations which is very
large compared to that with 16 subdomains. The deflation in DGMRES and AGMRES
is very effective to reduce this number of iterations. The adaptive strategy gives close
efficiency in the two strategies in terms of the number of iterations. Regarding the memory
requirements, DGMRES(m = 32, k = 2, rmax = 12) stores the basis U and also BU which
size are 12. AGMRES(m = 32,k = 2,1 = 1) stores the basis W,. At the beginning, k = 2
but this is increased by [in the adaptive strategy. In this case, k is 6 at the convergence.
Hence the size of Wy is s = m + k = 38. In practise, AGMRES will store more basis
vectors than DGMRES but the parallelism is different in the two methods. AGMRES has
the same computational kernel in the generation of the basis vectors and the augmentation
step, hence the motivation of using it with the multplicative Schwarz.

RMO7R GPREMS DEFLATION

Lg— ! ! j j
O Mmoo
| 'Illllllll||||||||!|||||||||“||||||||||:|
g i : : : : :
S 0.001 f et e DBLGPREMS(32) s
y : D8-GPREMS(32,2)
&] ; ; ; ; ; D16-GPREMS(32) s
E 00001 f B NG 4 D16-GPREMS(32,5)
& - : : : : :
e L— i %05

0 100 200 300 400 500 600
Number of Iterations

Figure 7.7.3: RMO7R, 8 & 16 subdomains: Benefits of the deflation in the GMRES with
the Newton basis and the multiplicative Schwarz preconditioner.

We consider indeed the GMRES with multiplicative Schwarz on 8 and 16 subdomains.
Unlike the previous section where the partitioning is done with a nested dissection tech-
nique, the subdomain matrices are obtained here from a block-diagonal partitioning ap-
prach; as noticed before, DGMRES is not considered here because of the product by U”
which induces global synchronizations points between all the processes sharing the compu-
tation of the basis vectors. In Figure[7.7.3|thus, GPREMS(m, k) stands for AGMRES(m, k)
with the multiplicative Schwarz. A general notice is that either with 8 and 16 subdomains
and without deflation, GPREMS(32) converges slowly. It tends to stagnate when the num-
ber of subdomains increases. Deflation helps to keep suitable information at each restart

113

Conclusion

and to improve convergence rate.

7.8 Conclusion

In this chapter, we have presented the main steps of a hybrid direct /iterative solver based
on the Schwarz methods as preconditioners for the Krylov subspace accelerators. Our
presentation include the improvements that have been proposed throughout this work to
enhance the parallelism and the robustness of the overall algorithm. In terms of robustness,
we have proposed to deflate few eigenvalues along the iterations of the hybrid solver. One
other approach presented in this chapter is related to the Newton basis GMRES with
the explicit formulation of the multiplicative Schwarz preconditioner. In this part, we
have shown that using two levels of parallelism improve the efficiency of the method and
enable a good usage of the allocated ressources. More work need to be done however to
provide a fully robust and efficient general solver. The main weakness of this approach is
the partitioning algorithm to obtain the matrix in block diagonal form. An improvement
could be to introduce the weights in the adjacency graph and to use the recent technique
proposed in [58] to define equally distributed and well-conditioned partitions with minimal
overlap.

114

CHAPTER 8

Conclusion

Les systémes linéaires suviennent fréquemment dans plusieurs disciplines scientifiques et
d’ingénierie. Leur résolution est généralement dans la boucle la plus interne des simulations
a grande échelle de plusieurs phénomeénes physiques. Notre objectif dans cette thése était de
proposer un ensemble de méthodes robustes pour des systémes de grande taille provenant
de la dynamique des fluides.

De fagon globale, les approches que nous avons proposées sont basées sur un schéma
hybride direct/iteratif utilisant une décomposition de domaine algébrique. Tel que don-
nées par I'étude comparative au chapitre[2], les motivations de ce choix partent de plusieurs
constats : les méthodes directes requierent de plus en plus de mémoire lorsque la taille
du systéme croit; de plus leur implémentation paralléle ne permet pas dans certains cas
d’obtenir la méme robustesse qui fait leur atout. Pour les systémes de trés grande taille, les
méthodes itératives sont préferées; elle sont moins sujettes au probléme de mémoire mais
ont neanmoins besoin de préconditionneurs paralléles pour étre robustes; Les précondition-
neurs utilisant les techniques de décomposition de domaine permettent donc naturellement
d’allier les points positifs des méthodes directes et itératives. Nous nous sommes attelés
& ameliorer la robustesse, la consommation mémoire et le parallélisme dans une telle ap-
proche.

Nous avons tout d’abord revisité le parallélisme dans une approche hybride utilisant
un préconditionneur basé sur Schwarz multiplicatif. Nous avons proposé de définir deux
niveaux d’opérations paralléles dans le but de dissocier le nombre de sous-domaines du
nombre total de processeurs & utiliser. En plus des opérations paralléles liées a la méthode
itérative globale, nous avons fait appel & un solveur direct paralléle pour des sous-systémes
liés & ’application du préconditionneur. Notre motivation aussi était de mieux utiliser les
differentes unités de calcul disponible sur les noeuds SMP (symmetric multiprocessing).
Ces deux niveaux de parallélisme s’adaptent donc naturellement a ces architectures.

Nous nous sommes ensuite interessés a la convergence de GMRES utilisé comme méth-
ode itérative globale dans le schéma hybride. Le réel challenge dans cette méthode est
souvent la sélection d’une valeur appropriée de la taille de la base de Krylov. Nous avons
étudié leffet de ce paramétre sur la convergence et nous avons montré experimentale-
ment qu’il était difficile, lorsque le nombre de sous-domaines varie dans le schéma hybride,
d’obtenir une valeur appropriée. Nous avons proposé d’utiliser des techniques adaptatives
de déflation pour limiter l'effet de cette taille de la base de Krylov sur la convergence.
Les résultats sur plusieurs cas-tests ont montré que ces méthodes de déflation, non seule-

115

ment réduisent considérablement la mémoire, mais permettent d’obtenir un bon taux de
convergence.

Concernant le parallélisme dans ’accélérateur GMRES, nous avons aussi proposés une
implémentation qui combine une base de Newton avec la déflation. Nous avons montré,
avec des cas-tests de taille variable, que cette implémentation est efficace en terme de temps
CPU, et de trafic de données (entre les processeurs et la mémoire et entre les différents
processeurs). De plus, Papproche de sous-espace augmentée reprend la robustesse liée aux
techniques de déflation et permet & la méthode d’étre moins influencée par la taille du
redemarrage dans GMRES.

De fagon générale, on est partagé entre plusieurs critéres de performances lors du choix
d’un solveur adequat pour les méthodes de résolution des systémes linéaires. Les critéres
qui nous ont le plus interessés ici sont 1'efficacité paralléle et la robustesse, et dans une non
moindre mesure, la consommation mémoire et le mouvement de données entre differents
unités de calcul. Au final, il est important pour nous de noter ici le réel challenge qu’il y
a & atteindre ces critéres en méme temps:

e Le preconditionneur de Schwarz multiplicatif est connu pour sa robustesse par rapport
a Schwarz additif; nous avons illustré cet aspect sur certains cas-tests aux chapitres
et [7] Cependant, il resssort de 'implémentation paralléle que son efficacité est
limitée, eu égard & celle obtenue par une approche additive. Les deux niveaux de
parallélisme essaient donc dans un certain sens d’améliorer de réduire cet ecart.

e Les deux méthodes de déflation proposées, en I'occurence AGMRES et DGMRES,
sont basées sur deux techniques différentes pour la construction de la base de Krylov.
DGMRES utilise une base d’Arnoldi qui est plus stable numériquement que AGMRES
qui, elle, utilise une base de Newton. Cependant, AGMRES requiert moins de trafic
de données que DGMRES et ceci peut avoir un effet si 'architecture ne permet pas
un échange rapide de données (fréquence du bus d’accés mémoire, latence du réseau);
L’une ou l'autre approche peut donc étre préférée pour un meilleur parallélisme ou
une meilleure robustesse.

Dans le developpement des solveurs & usage général, les implémentations proposées four-
nissent cependant des modules réutilisables destinés & ameliorer la robustesse ou le paral-
lelisme dans d’autres schémas: DGMRES ou AGMRES par exemple peuvent étre utilisés
comme accélérateurs pour les méthodes basées sur le complément de Schur, ou comme
des lisseurs pour les méthodes multigrilles; DGMRES peut étre tout aussi utilisé comme
solveur pour les sous-systémes produits par la décomposition de domaine en exploitant le
fait que la méme matrice est utilisée plusieurs fois dans un systéme avec plusieurs second
membres. Nous avons donc mis un accent particulier & proposer des implémentations dans
une suite logicielle largement utilisée, en 'occurence PETSc [18], 19].

Il y a cependant plusieurs améliorations possibles & ce travail: la robustesse du pré-
conditionneur de Schwarz multiplicatif est fortement liée au partitionnement bloc-diagonal
produit. Un tel partitionnement peut étre amélioré en ajoutant des poids au graphe de la
matrice comme dans le cas de PARMETIS décrit au chapitre . A partir de ces poids, des
critéres peuvent donc étre définis comme dans [37]. Dans le cas de AGMRES, la robustesse
peut étre améliorée en générant la base de Newton en plusieurs étapes [79] et en associant
la déflation. Nous avons proposé une étape de dérivation de cette combinaison au chapitre
6]

116

APPENDIX A

Test cases
Name 1 Name 2 Physical Info General Info
Nvar NPts Nb Blocs Total Entries Size Explicit Nonzeros
CASE_02 1J02R 5 1,400 30,140 753,500 7,000 359,223
CASE_04 GTO1R 5 1,596 20,622 14,575,246 7,980 430,909
CASE_05 FRO2R 7 23,010 297,454 14,575,246 161,070 5,066,996
CASE_07 GCI13R 7 33,398 459,920 22,536,080 233,786 11,762,405
CASE 09 VVI1IR 7 39,585 848,719 41,587,231 277,095 30,000,952
CASE_10 IMO7R 5 52,293 1,090,477 27,261,925 261,465 26,872,530
CASE 17 RMO7R 7 54,527 1,623,991 79,575,559 381,689 37,464,962
CASE 18 HVI5R 7 288,167 8,064,431 395,157,119 | 2,017,169 283,073,458

Table A.1: FLUOREM matrix collection

117

Name Conditioning Row Density Values
1-Norm F-Norm I-Norm | MinNnz MaxNnz AvgNnz Min Max
CASE_02 | 8.25e+04 1.28406 1.46e+05 1 118 ol -4.75e+04 5.13e+04
CASE_04 | 1.97e+05 5.85e+05 3.90e+05 1 90 53 -1.30e+05 1.30e+05
CASE_05 | 5.51E+5 3.79E+6 5.43E+5 1 72 31 -1.15E+5 1.89E+5
CASE 07 | 7.79E4+2 3.31E+3 1.28E+3 1 145 50 -2.714E+4+2 3.87E+2
CASE 09 | 3.34E+3 541E+3 3.59E+3 1 300 108 -2.92E+4+3 4.81E+2
CASE 10 | 5.29E4+4 7.56E+5 5.45E+4 50 230 102 -3.46E+4 3.58E+4
CASE_17 | 3.21E+6 6.26E+6 3.29E+6 1 295 98 -8.67E+5 7.25E+5
CASE_18 | 1.24E+5 1.71E4+6 1.70E+5 1 484 140 -6.02E+4 3.85E+4

811

Table A.2: Additional Characteristics of the FLUOREM matrices; F-Norm: Frobenius Norm; I-Norm: Infinity Norm, MinNnz: Minimum nnz
per row, MaxNnz: Maximum nnz per row, AvgNnz: Average nnz per row

1]

2]

[10]

BIBLIOGRAPHY

Y. ACHDOU AND F. NATAF, Low frequency tangential filtering decomposition, Nu-
merical Linear Algebra with Applications, 14 (2007), pp. 129-147.

E. AqurLo, A. GUERMOUCHE, AND J.-Y. L’EXCELLENT, A parallel out-of-core
multifrontal method: storage of factors on disk and analysis of models for an out-of-
core active memory, Parallel Comput., 34 (2008), pp. 296-317.

P. R. AMEsTOY, T. A. Davis, AND 1. S. DUFF, An approzimate minimum degree
ordering algorithm, STAM J. Matrix Anal. Appl., 17 (1996), pp. 886-905.

P. R. AMESTOY, I. S. DUFF, J.-Y. L’EXCELLENT, AND J. KOSTER, A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling, STAM Journal on
Matrix Analysis and Applications, 23 (2001), pp. 15-41.

P. R. AMEsTOY, 1. S. DUFF, J.-Y. L’EXCELLENT, AND X. S. LI, Analysis and
comparison of two general sparse solvers for distributed memory computers, ACM
Transactions on Mathematical Software, 27 (2000), p. 2001.

P. R. AmEsToy, I. S. DUurr, D. Ruiz, AND B. UGAR, A parallel matriz scaling
algorithm, in High Performance Computing for Computational Science - VECPAR
2008, J. M. Palma, P. R. Amestoy, M. Daydé, M. Mattoso, and J. a. C. Lopes, eds.,
Berlin, Heidelberg, 2008, Springer-Verlag, pp. 301-313.

P. R. AMESTOY, A. GUERMOUCHE, J.-Y. L’EXCELLENT, AND S. PRALET, Hybrid
scheduling for the parallel solution of linear systems, Parallel Computing, 32 (2006),

pp- 136-156.

P. R. AMEsTOY, X. S. L1, AND E. G. NaG, Diagonal Markowitz scheme with local
symmetrization, SIAM J. Matrix Anal. Appl., 29 (2006/07), pp. 228-244 (electronic).

C. ASHCRAFT AND R. GRIMES, Spooles: An object-oriented sparse matrix library, in
Proceedings of the 9th STAM Conference on Parallel Processing for Scientific Com-
puting, 1999.

C. AsHCRAFT AND J. W. H. Liu, Using domain decomposition to find graph bisec-
tors, BIT, 37 (1997), pp. 506-534. Direct methods, linear algebra in optimization,
iterative methods (Toulouse, 1995/1996).

119

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

G.-A. ATENEKENG-KAHOU, Parallélisation de GMRES préconditionné par une

itération de Schwarz multiplicatif, PhD thesis, University of Rennes 1 and University
of Yaounde 1, 2008. ftp://ftp.irisa.fr/techreports/theses/2008 /atenekeng.pdf.

G.-A. ATENEKENG-KAHOU, L. GRIGORI, AND M. SOSONKINA, A partitioning al-

gorithm for block-diagonal matrices with overlap, Parallel Computing, 34 (2008),
pp- 332-344.

G.-A. ATENEKENG-KAHOU, E. KAMGNIA, AND B. PHILIPPE, Parallel implementa-
tion of an explicit formulation of the multiplicative schwarz preconditioner, in CDroms

Proceedings of IMACS05, 2005.

— An explicit formulation of the multiplicative Schwarz preconditioner, Applied
Numerical Mathematics, 57 (2007), pp. 1197 — 1213.

S. AUBERT, J. TOURNIER, M. ROCHETTE, J. BLANCHE, M. NDIAYE, S. MELEN,
M. TiLL, AND P. FERRAND, Optimisation of a gas mizer using a new parametric
flow solver, in Proceedings of the European Conference on Computational Fluid
Dynamics ECCOMAS CFD, Swansea, Wales, UK, The Institute of Mathematics
and its Applications, ed., September 2001.

J. BacrLaMA, D. CAVETTI, G. H. GOoLUB, AND L. REICHEL, Adaptively precon-
ditioned GMRES algorithms, STAM J. Sci. Comput., 20 (1998), pp. 243-269.

Z. Ba1, D. Hu, AND L. REICHEL, A Newton basis GMRES implementation, IMA J
Numer Anal, 14 (1994), pp. 563-581.

S. Baray, J. BrowN, , K. BuscHELMAN, V. Eukuoutr, W. D. GROFPP,
D. Kauvusuik, M. G. KNEPLEY, L. C. McCINNES, B. F. SMITH, AND H. ZHANG,
PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.2.0, Argonne National
Laboratory, 2011.

S. Baray, K. BuscHeLMAN, W. D. Grorp, D. KausHik, M. G. KNEP-
LEY, L. C. McInNES, B. F. SMITH, AND H. ZHANG, PETSc Web page, 2011.
http://www.mcs.anl.gov/petsc.

S. Baray, W. D. Grorp, L. C. McINNES, AND B. F. SMITH, Efficient manage-
ment of parallelism in object oriented numerical software libraries, in Modern Soft-
ware Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen,
eds., Birkh&user Press, 1997, pp. 163-202.

M. BENZI, Preconditioning techniques for large linear systems: a survey, J. Comput.
Phys., 182 (2002), pp. 418-477.

M. BEnzZI, A. FROMMER, R. NABBEN, AND D. B. SzYLD, Algebraic theory of
multiplicative Schwarz methods, Numer. Math., 89 (2001), pp. 605-639.

P. E. BigrsTAD AND O. B. WIDLUND, To overlap or not to overlap: a note on a
domain decomposition method for elliptic problems, STAM J. Sci. Statist. Comput.,
10 (1989), pp. 1053-1061.

C. BREZINSKI AND H. SADOK, Lanczos-type algorithms for solving systems of linear
equations, Appl. Numer. Math., 11 (1993), pp. 443-473.

120

BIBLIOGRAPHY

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

W. L. BriGcGs, V. E. HENSON, AND S. F. MCCORMICK, A multigrid tutorial, So-
ciety for Industrial and Applied Mathematics (STAM), Philadelphia, PA, second ed.,
2000.

R. A. BRUALDI, Introductory Combinatorics, Prentice Hall, 5th ed., 2009.

D. BunTiNAS, G. MERCIER, AND W. GROPP, Implementation and evaluation of
shared-memory commaunication and synchronization operations in mpich2 using the
nemesis communication subsystem, Parallel Computing, 33 (2007), pp. 634 — 644.
Selected Papers from EuroPVM/MPI 2006.

K. BURRAGE AND J. ERHEL, On the performance of various adaptive preconditioned
GMRES strategies, Numerical Linear Algebra with Applications, 5 (1998), pp. 101-
121.

X.-C. CAL AND Y. SAAD, Overlapping domain decomposition algorithms for general
sparse matrices, Numerical Linear Algebra with Applications, 3 (1996), pp. 221-237.

X.-C. CA1 AND M. SARKIS, A restricted additive Schwarz preconditioner for general
sparse linear systems, SIAM J. Sci. Comput., 21 (1999), pp. 792-797 (electronic).

E. CanoT, C. DE DIEULEVEULT, AND J. ERHEL, A parallel software for a saltwater

intrusion problem, vol. 33 of Parallel Computing: Current and Future Issues of High-
End Computing, NIC, 2006, pp. 399-406.

L. CARVALHO, L. GIRAUD, AND G. MEURANT, Local preconditioners for two-level
non-overlapping domain decomposition methods, Numerical Linear Algebra with Ap-

plications, 8 (2001), pp. 207-227.

U. CATALYUREK AND C. AYKANAT, Hypergraph-partitioning-based decomposition
for parallel sparse-matriz vector multiplication, IEEE Trans. Parallel Distrib. Syst.,

10 (1999), pp. 673-693.

A. CHAPMAN AND Y. SAAD, Deflated and augmented Krylov subspace techniques,
Numerical Linear Algebra with Applications, 4 (1997), pp. 43-66.

C. CHEVALIER AND F. PELLEGRINI, PT-Scotch: a tool for efficient parallel graph
ordering, Parallel Comput., 34 (2008), pp. 318-331.

J. W. CooLeEYy AND J. W. TUKEY, An algorithm for the machine calculation of
complex Fourier series, Math. Comp., 19 (1965), pp. 297-301.

A. F. DaviD FRITZSCHE AND D. B. SzyLD, Querlapping blocks by growing a parti-
tion with applications to preconditioning, Tech. Rep. 10-07-26, Department of Math-
ematics, Temple University, July 2010.

T. A. Davis, J. R. GILBERT, S. [. LARIMORE, AND K. G. Na, Algorithm 856:
COLAMD, a column approzimate minimum degree ordering algorithm, ACM Trans.
Math. Software, 30 (2004), pp. 377-380.

T. A. Davis AND Y. Hu, The Unwversity of Florida Sparse Matriz Collection, ACM
Transactions on Mathematical Software, 38 (2011).

121

BIBLIOGRAPHY

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

E. DE STURLER, A parallel variant of GMRES(m), in Proceedings of the 13th IMACS
World Congress on Computation and Applied Mathematics, Dublin, Ireland, J. J. H.
Miller and R. Vichnevetsky, eds., Criterion Press, 1991.

E. DE STURLER, [lterative Methods on Distributed Memory Computers, PhD thesis,
Delft University of Technology, Delft, The Netherlands, October 1994.

J. DEMMEL, L. GRIGORI, M. F. HOEMMEN, AND J. LANGOU, Communication-
optimal parallel and sequential QR and LU factorizations, STAM journal on Scientific
Computing (to appear), (2011).

J. W. DEmMEL, S. C. EiseNnsTAT, J. R. GILBERT, X. S. L1, AND J. W. H. Liu,
A supernodal approach to sparse partial pivoting, STAM J. Matrix Anal. Appl., 20
(1999), pp. 720-755.

T. DUFAUD AND D. TROMEUR-DERVOUT, Aitken’s acceleration of the restricted ad-

ditive schwarz preconditioning using coarse approzimations on the interface, Comptes
Rendus Mathematique, 348 (2010), pp. 821 — 824.

I. S. DUFF, A. M. ERISMAN, AND J. K. REID, Direct methods for sparse matrices,
Monographs on Numerical Analysis, The Clarendon Press Oxford University Press,
New York, second ed., 1989. Oxford Science Publications.

[. S. Durr AND J. K. REID, The multifrontal solution of unsymmetric sets of linear
equations, STAM J. Sci. Statist. Comput., 5 (1984), pp. 633—641.

E. ErstaTHIOU AND M. GANDER, Why restricted additive schwarz converges
faster than additive schwarz, BIT Numerical Mathematics, 43 (2003), pp. 945-959.
10.1023/B:BITN.0000014563.33622.1d.

M. EIERMANN, O. G. ERNST, AND O. SCHNEIDER, Analysis of acceleration strate-
gies for restarted minimal residual methods, J. Comput. Appl. Math., 123 (2000),
pp- 261-292. Numerical analysis 2000, Vol. III. Linear algebra.

H. C. ELMAN, O. G. ERNST, AND D. P. O’LEARY, A multigrid method enhanced

by Krylov subspace iteration for discrete Helmhotz equations, SIAM J. Sci. Comput.,
23 (2001), pp. 1291-1315 (electronic).

J. ERHEL, A parallel GMRES version for general sparse matrices, Electronic Trans-
action on Numerical Analysis, 3 (1995), pp. 160-176.

——, A parallel preconditioned GMRES algorithm for sparse matrices, in The math-
ematics of numerical analysis, vol. 32 of Lectures in Appl. Math., AMS, Providence,
RI, 1996, pp. 345-355.

J. ERHEL, Some properties of Krylov projection methods for large linear systems,
vol. 3 of Computational Technology Reviews, Saxe-Coburg Publications, 2011,
pp- 41-70.

J. ERHEL, K. BURRAGE, AND B. POHL, Restarted GMRES preconditioned by defla-
tion, Journal of Computational and Applied Mathematics, 69 (1996), pp. 303-318.

R. FaALcoUuT AND U. YANG, Hypre: a library of high performance preconditioners.,
in Lectures Notes in Computer Science, vol. 2331, Springer-Verlag, 2002, pp. 632-641.

122

BIBLIOGRAPHY

[53]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

FLUOREM, The FLUOREM matriz collection, 2009. LIB0721 2.0 / FP-SA
http://www.fluorem.com.

R. W. FREUND, A transpose-free quasi-minimal residual algorithm for non-
Hermitian linear systems, STAM J. Sci. Comput., 14 (1993), pp. 470-482.

R. W. FREUND AND N. M. NACHTIGAL, QMR: a quasi-minimal residual method
for non-Hermitian linear systems, Numer. Math., 60 (1991), pp. 315-339.

D. FrITZSCHE, A. FROMMER, AND D. B. SzYLD, Ertensions of certain graph-based
algorithms for preconditioning, SIAM J. Sci. Comput., 29 (2007), pp. 2144-2161
(electronic).

A. FROMMER AND D. B. SzyLD, Weighted maz norms, splittings, and overlapping
additive Schwarz iterations, Numer. Math., 83 (1999), pp. 259-278.

J. GAIDAMOUR, Conception d’un solveur linéaire creux paralléle hybride direct-
itératif, PhD thesis, Universite de Bordeaux I, 2009.

K. GALLIVAN, A. SAMEH, AND Z. ZLATEV, A parallel hybrid sparse linear system
solver, Computing Systems in Engineering, 1 (1990), pp. 183 — 195. Computational
Technology for Flight Vehicles.

M. J. GANDER, Optimized Schwarz methods, STAM J. Numer. Anal., 44 (2006),
pp. 699-731 (electronic).

A. GEORGE, Nested dissection of a regular finite element mesh, SIAM J. Numer.
Anal.; 10 (1973), pp. 345-363. Collection of articles dedicated to the memory of
George E. Forsythe.

L. GIrAUD, S. GRATTON, X. PINEL, AND X. VASSEUR, Flexible GMRES with
deflated restarting, SITAM Journal on Scientific Computing, 32 (2010), pp. 1858-1878.

L. GIRAUD, A. HAIDAR, AND S. PRALET, Using multiple levels of parallelism to

enhance the performance of domain decomposition solvers, Parallel Computing, In
Press (2010).

L. GirauD, A. HAIDAR, AND L. T. WATSON, Parallel scalability study of hybrid
preconditioners in three dimensions, Parallel Comput., 34 (2008), pp. 363-379.

H. H. GOLDSTINE, A history of numerical analysis from the 16th through the 19th
century, Springer-Verlag, New York, 1977. Studies in the History of Mathematics
and Physical Sciences, Vol. 2.

K. GoTo AND R. VAN DE GEUN, High-performance implementation of the level-3
BLAS, ACM Trans. Math. Softw., 35 (2008), pp. 4:1-4:14.

L. Gricori, E. G. BoMAN, S. DONFACK, AND T. A. Davis, Hypergraph-based

unsymmetric nested dissection ordering for sparse LU factorization, SITAM J. Sci.
Comput., 32 (2010), pp. 3426-3446.

L. Gricori, J. W. DEMMEL, AND X. S. L1, Parallel symbolic factorization for
sparse LU with static pivoting, SIAM J. Sci. Comput., 29 (2007), pp. 1289-1314
(electronic).

123

BIBLIOGRAPHY

[71]

[72]

[73]

[74]

[75]

[76]

771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

L. GrIGORI, P. KuMAR, F. NATAF, AND K. WANG, A class of multilevel parallel
preconditioning strategies, Rapport de recherche RR-7410, INRIA, Oct. 2010.

A. GUPTA, Recent advances in direct methods for solving unsymmetric sparse systems
of linear equations, ACM Trans. Math. Software, 28 (2002), pp. 301-324.

A. HAIDAR, On the parallel scalability of hybrid linear solvers for large 8D problems,
PhD thesis, Institut National Polytechnique de Toulouse, 2008.

B. HENDRICKSON AND T. G. KOLDA, Partitioning rectangular and structurally un-

symmetric sparse matrices for parallel processing, STAM J. Sci. Comput., 21 (2000),
pp- 2048-2072.

B. HENDRICKSON AND E. ROTHBERG, Effective sparse matriz ordering: just around
the BEND, in Proceedings of the Eighth SIAM Conference on Parallel Processing for
Scientific Computing (Minneapolis, MN, 1997), Philadelphia, PA, 1997, STAM, p. 8
pp. (electronic).

P. HENON, F. PELLECGRINI, P. RAMET, J. ROMAN, AND Y. SAAD, High Perfor-
mance Complete and Incomplete Factorizations for Very Large Sparse Systems by
using Scotch and PaStiX softwares, in Eleventh STAM Conference on Parallel Pro-
cessing for Scientific Computing, 2004.

M. A. HErOUX, R. A. BARTLETT, V. E. HOWLE, R. J. HOEKSTRA, J. J. HU,
T. G. KoLba, R. B. LEnoucq, K. R. LoNng, R. P. PawLowski, E. T. PHIPPS,
A. G. SALINGER, H. K. THORNQUIST, R. S. TUMINARO, J. M. WILLENBRING,
A. WiLL1aMS, AND K. S. STANLEY, An overview of the Trilinos Project, ACM
Trans. Math. Software, 31 (2005), pp. 397-423.

M. HOCHBRUCK AND C. LUBICH, Error analysis of Krylov methods in a nutshell,
SIAM J. Sci. Comput., 19 (1998), pp. 695-701.

M. HOEMMEN, Communication-avoiding Krylov subspace methods, PhD thesis
UCB/EECS-2010-37, UC Berkeley, 2010.

D. HysoM AND A. POTHEN, A scalable parallel algorithm for incomplete factor
preconditioning, STAM Journal on Scientific Computing, 22 (2000), pp. 2194-2215.

W. JALBY AND B. PHILIPPE, Stability analysis and improvement of the block Gram-
Schmidt algorithm, STAM J. Sci. Statist. Comput., 12 (1991), pp. 1058-1073.

A. JAMESON, W. SCHMIDT, AND E. TURKEL, Numerical solutions of the euler

equations by finite volume methods using runge-kutta time-stepping schemes, AIAA
Paper 81-1259, (1981).

W. JOUBERT AND G. CAREY, Parallelizable restarted iterative methods for nonsym-
metric linear systems. part II: Parallel implementation, Intern. J. Computer Math.,

44 (1992), pp. 269-290.

G. KARyPis AND V. KUMAR, Multilevel k-way partitioning scheme for irregular
graphs, J. Parallel Distrib. Comput., 48 (1998), pp. 96-129.

— Parallel multilevel k-way partitioning scheme for irreqular graphs, STAM Rev.,
41 (1999), pp. 278-300 (electronic).

124

BIBLIOGRAPHY

[86] G. KARYPIs, K. SCHLOEGEL, AND V. KUMAR, ParMETIS: Parallel graph parti-
tioning and sparse matrix ordering library, tech. rep., Technical report, University of
Minnesota, Department of Computer Science and Engineering, 1997.

[87] S. A. KHARCHENKO AND A. Y. YEREMIN, Figenvalue translation based precondi-
tioners for the GMRES(k) method, Numer. Linear Algebra Appl., 2 (1995), pp. 51-77.

[88] S. KiM AND A. CHRONOPOULOS, An efficient parallel algorithm for extreme eigen-
values of sparse nonsymmetric matrices, International Journal of High Performance
Computing Applications, 6 (1992), pp. 407-420.

[89] P. KumAR, L. GRIGORI, F. NATAF, AND Q. Ni1u, Combinative preconditioning
based on Relazed Nested Factorization and Tangential Filtering preconditioner, Re-

search Report RR-6955, INRIA, 2009.

[90] C. LANcz0s, Solution of systems of linear equations by minimized-iterations, J. Re-
search Nat. Bur. Standards, 49 (1952), pp. 33-53.

[91] X. S. L1 anD J. W. DEMMEL, SuperLU DIST: A scalable distributed-memory sparse
direct solver for unsymmetric linear systems, ACM Trans. Mathematical Software,
29 (2003), pp. 110-140.

[92] X.S. L1, M. SuAO, I. YAMAZAKI, AND E. G. NG, Factorization-based sparse solvers
and preconditioners, Journal of Physics: Conference Series, 180 (2009), p. 012015.

[93] Z. L1, Y. SAAD, AND M. SOSONKINA, pARMS: a parallel version of the algebraic
recursive multilevel solver, Numer. Linear Algebra Appl., 10 (2003), pp. 485-509.
Preconditioning, 2001 (Tahoe City, CA).

[94] J. W. H. Liu, Modification of the minimum-degree algorithm by multiple elimination,
ACM Trans. Math. Software, 11 (1985), pp. 141-153.

[95] Y. Liu, Cambridge University Press, 2009.

[96] G. MEURANT, Computer solution of large linear systems, vol. 28 of Studies in Math-
ematics and its Applications, North-Holland Publishing Co., Amsterdam, 1999.

[97] M. MoHIYuDpDIN, M. HOEMMEN, J. DEMMEL, AND K. YELICK, Minimizing com-
munication in sparse matriz solvers, in SC '09: Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis, New York, NY,
USA, 2009, ACM, pp. 1-12.

[98] R. B. MORGAN, A restarted GMRES method augmented with eigenvectors, SIAM J.
Matrix Anal. Appl., 16 (1995), pp. 1154-1171.

[99] ——, GMRES with deflated restarting, STAM J. Sci. Comput., 24 (2002), pp. 20-37
(electronic).
[100] ——, Restarted block-GMRES with deflation of eigenvalues, Appl. Numer. Math., 54

(2005), pp. 222-236.

[101] D. NUENTSA WAKAM AND G.-A. ATENEKENG KAHOU, Parallel GMRES with a
multiplicative Schwarz preconditioner, ARIMA Rev. Afr. Rech. Inform. Math. Appl.
(to appear), (2010). Also Research report INRIA RR-7342.

125

BIBLIOGRAPHY

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

D. NUENTSA WAKAM, J. ERHEL, AND E. CANOT, Parallélisme & deur niveauz
dans GMRES avec un préconditionneur Schwarz multiplicatif, in CARI 2010 Actes
du 10éme Colloque Africain sur la Recherche en Informatique et Mathématiques
Appliquées, E. Badouel, A. Sbihi, and I. Lopko, eds., Yamoussoukro, Cote D’Ivoire,
10 2010, INRIA, pp. 189-196.

D. NUENTSA WAkAM, J. ERHEL, E. CANOT, AND G.-A. ATENEKENG KAHOU,
A comparative study of some distributed linear solvers on systems arising from fluid
dynamics simulations, in Parallel Computing: From Multicores and GPU’s to Petas-
cale, vol. 19 of Advances in Parallel Computing, IOS Press, 2010, pp. 51-58.

D. NUENTSA WAKAM, J. ERHEL, AND W. D. GROPP, Parallel adaptive deflated
GMRES, in Proceedings of DD’20, UC San Diego, in revision, 2011.

D. NUENTSA WAKAM AND F. PACULL, Memory efficient and robust hybrid algebraic

solvers for large CFD linear systems, Computer and Fluids, submitted (2011). special
issue of ParCFD2011.

F. PAacurLL, S. AUBERT, AND M. BUISSON, Study of ILU factorization for schwarz
preconditioners with application to computational fluid dynamics, in Proceedings of
the Second International Conference on Parallel, Distributed, Grid and Cloud Com-
puting for Engineering, Civil-Comp Press, Stirlingshire, UK, 2011.

B. PHILIPPE AND L. REICHEL, On the generation of Krylov subspace bases, Applied
Numerical Mathematics, In Press (2011).

R. RABENSEIFNER, G. HAGER, AND G. JOST, Hybrid mpi/openmp parallel program-
ming on clusters of multi-core smp nodes, Parallel, Distributed, and Network-Based
Processing, Euromicro Conference on, 0 (2009), pp. 427-436.

L. REICHEL, Newton interpolation at Leja points, BIT Numerical Mathematics, 30
(1990), pp. 332-346. 10.1007/BF02017352.

J. W. RUGE AND K. STUBEN, Algebraic multigrid, in Multigrid methods, vol. 3 of
Frontiers Appl. Math., STAM, Philadelphia, PA, 1987, pp. 73-130.

Y. SaAD, Krylov subspace methods for solving large unsymmetric linear systems,
Math. Comp., 37 (1981), pp. 105-126.

Y. SAAD, A flexible inner-outer preconditioned GMRES algorithm, STAM Journal on
Scientific Computing, 14 (1993), pp. 461-469.

Y. SAAD, lterative methods for sparse linear systems, Society for Industrial and
Applied Mathematics, Philadelphia, PA, second ed., 2003.

Y. SAAD AND M. H. ScHULTZ, GMRES: A generalized minimal residual algorithm

for solving nonsymmetric linear systems, STAM Journal on Scientific and Statistical
Computing, 7 (1986), pp. 856-869.

Y. SAAD AND M. SOSONKINA, Distributed Schur complement techniques for general
sparse linear systems, SIAM Journal on Scientific Computing, 21 (1999), pp. 1337
1356.

126

BIBLIOGRAPHY

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

A. SAMEH, Solving the linear leastsquares problem on a linear array of processors, in
High Speed Computer and Algorithm Organization, D. L. D. Kuck and A. Sameh,
eds., Academic Press, 1977, pp. 207-228.

H. A. ScuwAaRrz, Gesammelte mathematische Abhandlungen. Band I, II, Chelsea
Publishing Co., Bronx, N.Y., 1972. Nachdruck in einem Band der Auflage von 1890.

R. B. SIDJE, Alternatives for parallel Krylov subspace basis computation, Numerical
Linear Algebra with Applications, 4 (1997), pp. 305-331.

R. B. SipJE AND B. PHILIPPE, parallel krylov subspace basis computation, in
CARI'94, 2éme colloque africain sur la recherche en Informatique, 1994.

V. SIMONCINI, On a non-stagnation condition for GMRES and application to saddle
point matrices, Electron. Trans. Numer. Anal., 37 (2010), pp. 202-213.

V. SIMONCINT AND D. B. SzYLD, Recent computational developments in Krylov
subspace methods for linear systems, Numer. Linear Algebra Appl., 14 (2007), pp. 1-
59.

—, New conditions for non-stagnation of minimal residual methods, Numer. Math.,
109 (2008), pp. 477-487.

B. SmiTH, P. BJ¢RSTAD, AND W. GROPP, Domain Decomposition, Parallel Multi-
level Methods for Elliptic Partial Differential Equations, Cambridge University Press,
1996.

M. SOSONKINA, L. T. WATSON, R. K. KAPANIA, AND H. F. WALKER, A new adap-

tive GMRES algorithm for achieving high accuracy, Numer. Linear Algebra Appl., 5
(1998), pp. 275-297.

I. Sovoraul, Parallélisation d’une double recurrence dans GMRES, Master’s thesis,
University of Yaounde 1, 2005.

B. SECHER, M. BELLIARD, AND C. CALVIN, Numerical platon: A unified linear

equation solver interface by cea for solving open foe scientific applications, Nuclear
Engineering and Design, 239 (2009), pp. 87 — 95.

A. ToseLLt AND O. WIDLUND, Domain decomposition methods—algorithms and
theory, vol. 34 of Springer Series in Computational Mathematics, Springer-Verlag,
Berlin, 2005.

D. TROMEUR-DERVOUT, Aitken-Schwarz method: acceleration of the convergence of

the Schwarz method, in Domain decomposition methods: theory and applications,
vol. 25 of GAKUTO Internat. Ser. Math. Sci. Appl., Gakkotosho, Tokyo, 2006,
pp. 37-64.

B. UgAr AND C. AYKANAT, Partitioning sparse matrices for parallel preconditioned
iterative methods, STAM J. Sci. Comput., 29 (2007), pp. 1683-1709 (electronic).

H. A. VAN DER VORST, Bi-CGSTAB: a fast and smoothly converging variant of Bi-
CG@ for the solution of nonsymmetric linear systems, STAM J. Sci. Statist. Comput.,
13 (1992), pp. 631-644.

127

BIBLIOGRAPHY

[131]

[132]

[133)]

[134]

[135]

H. A. VAN DER VORST, lterative Krylov methods for large linear systems, vol. 13
of Cambridge Monographs on Applied and Computational Mathematics, Cambridge
University Press, Cambridge, 2009. Reprint of the 2003 original.

H. A. vAN DER VORST AND C. VUIK, The superlinear convergence behaviour of
GMRES, J. Comput. Appl. Math., 48 (1993), pp. 327-341.

H. F. WALKER, Implementation of the GMRES method using Householder transfor-
mations, STAM Journal on Scientific and Statistical Computing, 9 (1988), pp. 152
163.

D. C. WILcOX, Reassessment of the scale-determining equation for advanced turbu-
lence models, ATAA Journal, 26 (1988), pp. 1299-1310.

M. YANNAKAKIS, Computing the minimum fill-in is NP-complete, STAM J. Algebraic
Discrete Methods, 2 (1981), pp. 77-79.

128

	Abstract
	Résumé
	Introduction
	Description générale du problème
	Résolution de systèmes linéaires et facteurs de performance
	Méthodes directes parallèles
	Méthodes itératives parallèles
	Approches hybrides basées sur une décomposition de domaine algébrique

	Positionnement de la thèse et contributions
	Etude comparative de solveurs pour les systèmes issus de la dynamique des fluides
	GMRES parallèle avec un préconditionneur Schwarz multiplicatif
	Préconditionnement de GMRES par déflation et Schwarz additif
	Reduction de la mémoire dans les solveurs hybrides pour les systèmes issus de CFD
	Parallélisme et robustesse dans GMRES avec une base de Newton augmentée
	Analyse globale du parallélisme et de la robustesse dans les schémas hybrides

	A comparative study of some distributed linear solvers on systems arising from fluid dynamics simulations
	Problem Definition
	Distributed Linear Solvers
	Environment of Tests
	Experimental Comparisons
	Test Matrices
	Numerical Behavior, Parallel Efficiency and Fill-in with Direct Solvers
	Parallel Behavior of Preconditioners

	Concluding Remarks

	Parallel GMRES with a multiplicative Schwarz preconditioner
	Introduction
	 A parallel version of GMRES preconditioned by multiplicative Schwarz
	Explicit formulation of the multiplicative Schwarz preconditioner
	Background on GMRES with the Newton basis

	Enhancing the parallelism in subdomains.
	Motivations for two levels of parallelism
	Practical implementation

	Numerical experiments
	Software and hardware framework
	Test matrices
	 Numerical robustness of GPREMS
	 Benefits of two levels of parallelism

	Concluding remarks

	Parallel Adaptive Deflated GMRES
	Introduction
	Adaptive preconditioner for the deflated GMRES(m)
	Implementation notes
	Numerical experiments
	Benefits of the deflated restarting
	Adaptive DGMRES and Full GMRES

	conclusion

	Memory Efficient Hybrid Algebraic Solvers for Large CFD Linear Systems
	Introduction
	Context
	The Family of Linear Systems
	The Hybrid Algebraic Solver
	The Memory Issue

	Some Key Elements in Memory Usage
	Scalar vs Block Data Format
	The Partitioning
	Splitting the Fields
	Deflation

	Results
	The Test Cases
	The platform of tests
	ParMETIS Edge Weights
	The Aerodynamic/Turbulent FieldSplit
	DGMRES

	Conclusion

	Parallelism and robustness in GMRES with the Newton basis and the deflation of eigenvalues
	Introduction
	Restarted GMRES accelerated by deflation
	Deflated GMRES in the Newton basis
	Augmenting the Newton basis
	AGMRES : Augmented Newton-basis GMRES

	Numerical experiments
	Test routines and implementation notes
	Test problems
	Platform of tests
	Analysis of convergence
	Analysis of the CPU time
	Analysis of parallelism

	Concluding remarks

	Overview of the parallelism and robustness in Krylov subspace methods with Schwarz preconditioners
	Introduction
	 Graph Partitioning in iterative methods
	Non overlapping partitioning and matrix-vector product
	Overlapping partitions
	Weighted partitions

	Formulation of algebraical Schwarz preconditioners
	Additive Schwarz
	Restricted Additive Schwarz
	Multiplicative Schwarz
	Subdomain solver
	Scalable Schwarz preconditioners

	 Krylov subspaces accelerators
	Numerical behavior of Schwarz preconditioners with GMRES
	Additive Schwarz and Restricted additive Schwarz
	Restricted additive Schwarz and Multiplicative Schwarz

	Improving the parallelism
	Deriving the Krylov basis
	Illustration of data dependency between the Krylov basis vectors
	Illustration of data dependency with the multiplicative Schwarz
	Improving the parallelism through the subdomain solvers
	Illustration of two levels of parallelism with multiplicative Schwarz

	Improving robustness with deflation
	Deflation by preconditioning
	Deflation by augmenting the basis
	Benefits of the deflation in GMRES with Schwarz preconditioners

	Conclusion

	Conclusion
	Test cases

