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General introduction
It is widely recognized that the optimization approach plays a key role in modeling and
solving real-life problems in different fields of applied sciences.

A general optimization problem is of the form

(P ) min{f(x) : x ∈ S ⊂ Rn}.

Convex programming corresponds to both convexity of the objective function f and the
constraint set S. Convex programs are featured by the fact that local and global optimal
solutions are identical. As a crucial result, optimality conditions (the famous KKT condi-
tions) are available and they serve to devise (iterative) convex optimization algorithms for
solving these problems. The golden age of modern convex analysis and convex programming
is situated in the period 1960-1985, where a powerful arsenal of theoretical and algorithmic
tools was developed. This period is followed by extensive works on interior point methods
and their applications in semidefinite programming (SDP) [94, 142, 201], during the past
fifteen years. Under usual precautions, especially for the large-scale setting, one can say, at
the present time, that convex programs can be solved by well suitable algorithms.

The passage to nonconvex programming generates enormous difficulty, due to the following
fact:

• Distinction between local and global optimal solutions: there is no verifiable global
optimality conditions, and consequently there is no iterative algorithms converging to
global solutions.

• Computing a global solution of a high-dimensional nonconvex program then is a grail
request for mathematicians, especially optimizers.

• The last twenty-five years have seen the development of extensive research in nonconvex
programming and global optimization. The reason is quite simple: most real-world
optimization problems are of nonconvex nature. Moreover, industrialists have begun to
replace convex models by nonconvex ones, which are more complex but more reliable
and especially more economic.

However, several approaches for solving nonconvex optimization problems have been proposed
in the literature. We can classify them in two main categories:

1. The heuristic methods: they are developed to find acceptably good solutions but ignore
whether the solutions can be proven to be optimal. For instance: the method of
simulated annealing (S. Kirkpatrick et al. in 1983 [93], and by Vlado Cerný in 1985 [36]),
genetic algorithm (J.H. Holland in 1975 [81]), tabu search (F. Glover [67]), the method
of variable neighborhood search (P. Hansen and N. Mladenovic in 1997 [130]), the
cross-entropy algorithm (R.Y. Rubinstein [176–178]), etc.
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2. The deterministic methods: there are two types of different but complementary ap-
proaches for nonconvex programming.

(a) The global approaches: the approaches are developed according to the spirit of
the combinatorial optimization, but with the difference that one works in the con-
tinuous framework. In these approaches, optimal solutions are located by using the
approximation methods, for instance, cutting techniques, decomposition methods,
branch and bound, etc. It was Hoang Tuy who has incidentally put forward by his
pioneering paper in 1964 [75]: the new global optimization concerning convex max-
imization over a polyhedral convex set. Among the most important contributions
to these approaches, it is worth citing the ones by Hoang Tuy, R. Horst, H. Konno,
P. Pardalos, Le Dung Muu, Le Thi Hoai An, Nguyen Van Thoai, Phan Thien
Thach and Pham Dinh Tao [76–78, 84, 85, 95, 115, 116, 119, 133, 134, 154, 160–162].
Although these approaches are known to be heavy and costly to implement, espe-
cially in very large-scale settings, they have successfully established some standard
methodologies for global optimization, which are the foundation for many other
researches.

(b) The convex approaches: they are based on convex analysis tools, the
DC duality and the local optimal conditions in DC programming. Here
the DC programming (Difference of two convex functions) and DCA (DC
Algorithms) play the central role because most of nonconvex optimization
problems are formulated/reformulated as DC. They are introduced by Pham
Dinh Tao in 1985 in their preliminary form and extensively developed by Le
Thi Hoai An and Pham Dinh Tao since 1994 to become now classic, and
widely used by researchers and practitioners in various fields of applied sciences
(see [2, 33,90,110–114,124,152–157,163,185,194,209,211]).

DC programming and DCA aim to solve a general DC program that takes the
form

α = inf{f(x) := g(x)− h(x) : x ∈ IRp} (Pdc) (1)

where g, h are lower semicontinuous proper convex functions on IRp. Such a func-
tion f is called DC function, and g− h, DC decomposition of f while g and h are
DC components of f. The construction of DCA involves DC components g and h
but not the function f itself: each iteration k of DCA consists of computing

yk ∈ ∂h(xk), xk+1 ∈ arg min{g(x)− h(xk)− 〈x− xk, yk〉 : x ∈ IRp} (Pk).

Hence, for a DC program, each DC decomposition corresponds to a different ver-
sion of DCA. Since a DC function f has an infinite number of DC decompositions
which have crucial impacts on the qualities (speed of convergence, robustness, ef-
ficiency, globality of computed solutions,...) of DCA, the search for a “good” DC
decomposition is important from algorithmic point of views. Moreover, despite its
local character, DCA with a good initial point can converge to global solutions.
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Finding a “good” initial point is then also an important stage of DCA. How to
develop an efficient algorithm based on the generic DCA scheme for a practical
problem is thus a judicious question to be studied, and the answer depends on the
specific structure of the problem being considered.

In this thesis, we consider some optimization problems in Search Theory, Assignment and
Portfolio Management: the problem of planning a multisensor multizone search for a (moving)
target, the Nonlinear UAV (Unmanned Aerial Vehicles) Task Assignment Problem, the Value-
at-Risk constrained Optimization problem and the Multidimensional Assignment Problem
(MAP). They are large-scale nonconvex optimization problems. We focus on developing
deterministic and heuristic approaches for their solution:

• The deterministic approaches are based on DC programming and DCA. Our mo-
tivation is due to their robustness and efficiency compared to existing methods, their
adaptation to the structures of treated problems and their ability to solve large-scale
real world nonconvex programs, such as Transport-Logistics, Telecommunication, Fi-
nance, Data Mining and Machine Learning, Cryptology, Mechanics, Image Processing,
Robotic & Computer Vision, Petrochemistry, Optimal Control, etc.

• The heuristic approaches are based on the Cross-Entropy (CE) method. The CE
method was originally developed in [176] for an adaptive networks, where an adaptive
variance minimization algorithm for estimating probabilities of rare events for stochastic
networks was presented. It was modified in [177, 178] to solve optimization problems.
It has been demonstrated that this method is particularly relevant for solving both
continuous multi-extremal and combinatorial optimization problems. Several recent
publications demonstrate the power of the CE method as simple and efficient approach
for many applications such as Telecommunication Systems, Buffer Allocation, Vehicle
Routing, DNA Sequence Alignment, Machine Learning, etc. In fact, when deterministic
methods failed to find the optimal solution within a reasonable time, in most cases the
CE method finds a fairly good solution more quickly. This motivates us to investigate
the CE method for our considered problems.

However, to apply the Cross-Entropy method, the most important point is how to
construct a family of distributions on the feasible set of the optimization problem such
that updating the parameters could be done as easily as possible. Depending on the
structure of feasible sets of our considered problems, we design appropriate families of
distributions such that the Cross-Entropy method could be applied efficiently.

The main contributions of the thesis:

• We develop a deterministic continuous optimization approach based on DC program-
ming and DCA for solving the problem of planning a multisensor multizone search
for a target.
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• When the target is moving (Markovian), the above problem becomes very compli-
cated because of the huge number of possible target trajectories. We use the forward-
backward split technique (FAB) introduced by Brown [29] to split the problem into
the sub-problems with the “static” target, then treat the sub-problems via the DC pro-
gramming and DCA as above. Finally, we obtain a combination of the FAB and the
DCA to the case of moving target.

• We propose two approaches for solving the Nonlinear UAV (Unmanned Aerial
Vehicles) Task Assignment Problem. The first approach is the Cross-Entropy
(CE) method, in which we present a family of discrete distributions characterized by
probability matrices on the feasible sets of this problem. The second one is the Branch
and Bound algorithm, where the DCA is used to compute the lower bounds.

• We develop both deterministic and heuristic approaches for solving the Value-at-
Risk constrained Optimization problem. In the first approach, we reformulate
the problem as a polyhedral DC program by using an exact penalty technique and
propose DCA for its solution. In the second one, we introduce an appropriate family of
continuous distributions based on the family of exponential distributions on the feasible
sets of this problem to apply the Cross-Entropy method. The ability of these methods
to solve large scale problems is showed by firstly testing on the 1304 daily returns
for 43 assets of the Eurostoxx50 index (from January 1, 2003 to December 31, 2007).
Then, they are tested on the empirical distribution of 11 years (from January 1, 2000
to December 31, 2010) of daily data, i.e., 2759 scenarios of the 87 assets comprising the
NYSE US 100 index.

• We propose a Cross-Entropy (CE) algorithm for solving the Multidimensional As-
signment Problem (MAP), where a family of discrete distributions on the feasible
set of MAP was designed. The efficiency of this method has been shown by testing
for the large-scale problems, for instance, the MAP with 5 dimensions and there are
20 elements in each dimension, which is equivalent to a 0-1 linear program with 3.2
millions binary variables and 100 constraints.

• After developing mathematical approaches, we implement the proposed algorithms in
C/C++, Matlab, etc., to give numerical simulations:

– The DCA for the problem of planning a multisensor in multizone search for a
target.

– The combination of the forward-backward split technique and DCA for the above
problem but in the case of moving target.

– A Branch and Bound algorithm for the nonlinear UAV Task Assignment Problem.

– The cross-entropy algorithm for the Nonlinear UAV Task Assignment Problem.

– The cross-entropy algorithm for the Value-at-Risk constrained Optimization prob-
lem.

12



– The DCA for the Value-at-Risk constrained Optimization problem.

– The cross-entropy algorithm for the Multidimensional Assignment Problem.

The thesis is divided in two parts:

1. The first one consists of three Chapters 1 & 2 & 3. In the first chapter, we introduce
some optimization problems in Search Theory, Assignment and Portfolio Management,
which we study in this thesis. The background of DC programming and DCA is briefly
presented in the second one, while the methodology of the Cross-Entropy method is
given in the third one.

2. Part 2 is devoted to the resolutions of our considered problems in Search Theory,
Assignment and Portfolio Management.
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Chapter 1

Introduction to some classes of
nonconvex programs in Search Theory,
Assignment and Portfolio Management

The purpose of this chapter is to introduce some classes of nonconvex programs in Search
Theory, Assignment and Portfolio Management, which will be considered in this thesis. The
importance, the difficulties encountered when solving them and the related researches in the
literature will also be presented.

1.1 Search Theory

Search theory is defined by Cadre and Soiris [32] as a discipline that treats the problem of
how a missing object can be searched optimally, when the amount of searching time is limited
and only probabilities of the possible position of the missing object are given. The theory of
how to search for missing objects has been a subject of serious scientific research for more
than 50 years. It is a branch of the broader applied science known as operations research [59].

In fact, Search theory was first established during World War II by the work of B. O.
Koopman and his colleagues [101] in the Antisubmarine Warfare Operations Research Group
(ASWORG). The applications of search theory were firstly made on military operations [191].
Koopman [100] stated that the principles of search theory could be applied effectively to
any situation where the objective is to find a person or object contained in some restricted
geographic area. After military applications, it was also applied to different problems such
as surveillance, explorations, medicine, industry and search and rescue operations [72]. The
aim of searching in the context of Aeronautical Search and Rescue (ASAR), for instance,
is to find the missing aircraft effectively and as quickly as possible with the available
resources [190].

In this thesis, we consider two problems in Search Theory. The first one is a bi-level problem:
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planning a multi-sensor multi-zone search for a target. It can be described as follows:
suppose that a space of search is partitioned into zones of reasonable size. A unique sensor
must be able to explore efficiently a whole zone. Each zone is itself partitioned into cells. A
cell is an area in which every points have the same properties, according to the difficulty of
detection (altitude, vegetation, etc.). Each sensor has its own coefficient of visibility over
a cell. The visibility coefficients depend also on the kind of the target that is searched.
Here, there is a unique target to detect. The objective is alloting sensors to search zones
and finding the search resources sharing of multisensor in multizone so as to maximize the
probability of detection of a target.

The optimization model of this problem is hierarchical:

• At upper level: finding the best allotment of sensors to search zones (a sensor is allotted
to a unique zone);

• At lower level: determining the best resource sharing for every sensor, in order to have
an optimal surveillance over the allotted zone.

At the upper level, the objective function can be nonconvex or implicitly defined via an
algorithm applied to the lower level. This makes the problem very hard. In [186], Simonin
et al. have proposed a hierarchical approach for solving this problem where a cross-entropy
(CE) algorithm [28, 41, 180] has been developed for the upper level while an optimization
method based on the algorithm of de Guenin [70] for detecting a stationary target has
been used in the lower level. Besides this paper, we do not find in the literature the works
considering this problem.

The second one is an extension of the first one, where the target is moving (Markovian).
We consider a multi period search of a moving target. This means that information about
the sensors and the target will be now indexed by time (the period index). The target prior
is now trajectorial and we shall consider here a Markovian (target) prior. Furthermore,
assuming that sensors act independently at the cell level. The target is said undetected for
this multiperiod search if it has not been detected at any period of the search. The objective
is alloting sensors to search zones and finding the search resources sharing of multisensor in
multizone at each time period so as to mimimize the probability of non-detection of a target.

This problem, in general, is very complicated because of the huge number of possible target
trajectories. For a unique sensor, the problem has been theoretically solved in [189, 193];
while extensions to double layered constraints have been considered in [80]. In practice, all
feasible algorithms are based on a forward-backward split introduced by Brown [29]. Similar
procedures are also much employed in order to estimate Hidden Markov Models parameters
(see e.g. [57]).
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1.2 Assignment Problem

1.2.1 Nonlinear Unmanned Aerial Vehicles (UAVs) Task Assign-
ment Problem

A growing number of applications require the coordination of multiple autonomous agents to
accomplish a team goal. Many of these efforts utilize unmanned aerial vehicles (UAVs) due
to the unique capabilities they provide. In a growing number of these applications, agents
must make both tactical and practical decisions autonomously. This is particularly true of
systems involving teams of agents which are too complicated to be controlled or efficiently
monitored by a human operator.

In fact, the prospect of building unmanned aerial vehicles is not new by any standard [66].
For most of the twentieth century, one has investigated the feasibility of building unmanned
aerial vehicles and their potential value in military operations. A principal reason for the
interest in UAVs was the desire to reduce the risk to humans in combat, but it also was to
perform military missions in a more efficient and less costly fashion than has historically
been the case with manned vehicles. Recently, unmanned aerial vehicles (UAVs) can be used
for various civilian and military tasks. There has been considerable interest in making these
unmanned vehicles completely autonomous, giving rise to the research area of unmanned
autonomous vehicles. These are usually seen as rather simple vehicles, acting cooperatively
in teams to accomplish difficult missions in dynamic, poorly known or hazardous environ-
ments [4, 14–16,18,25,43–46,48,87,89,123,127,129,131,146,164,165,183,184,210].

The mission to be accomplished by a group of UAVs usually involves completing a set of
tasks spread over an extended region. The UAVs must reach each task location -possibly
under temporal order constraints- and accomplish it while avoiding a spatially distributed
set of threats or obstacles. For instance, in a military search-and-destroy mission, the
tasks may correspond to targets to be attacked, and the threats may be enemy radar or
anti-aircraft batteries. One of the primary challenges, then, is to assign the UAVs to the
known tasks/targets and to plan paths for all UAVs such that the overall mission completion
time is minimized and the UAVs are exposed to as little threat as possible. This is, in fact,
a very complex optimization problem known to be NP-complete. It is very similar to the
well-known vehicle routing problem (VRP), for which several heuristic methods have been
presented [182,195].

Typically, a UAV coordination problem includes three sub-problems [18], which are all com-
putationally intensive optimization problems:

1. Determining the team composition: teams are formed and group goals are assigned to
each team.

2. Performing the task assignment: tasks that achieve the group goals are assigned to
each team member.
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3. UAV trajectory optimization: a path is designed for each team member that achieves
their tasks while adhering to spatial constraints, timing constraints, and the dynamic
capabilities of the aircraft.

The coordination plan is designed to minimize some cost, such as the completion time or
the probability of mission failure. The overall control system then monitors the execution
of the coordinated plan, and reacts to changes in the operation, the environment, or the goals.

Several previous studies have investigated methods of trajectory planning for coordination
and control. Trajectory generation methods include the use of Voronoi diagrams [128],
adaptive random search algorithms [106], model predictive control [187], mixed-integer
linear programming [17,171], and the approximate method that yields a fast estimate of the
finishing times for the UAV trajectories [18].

The task assignment problem, which is a decision-making process, is normally solved by using
integer (or mixed-integer linear) programming techniques [47, 141, 171]. In this approach,
the problem is solved as a deterministic optimization problem with known parameters.
Since the MILP is NP-hard, it suffers from poor scalability although the solutions preserve
global optimality. Recently, uncertainty is taken into account in terms of optimization
parameters. The uncertainty in this data can come from many sources, and it is well
known that it can have a significant impact on the performance of an optimization-based
planner. Mitigating the effect of the uncertainty in this type of optimization problem has
recently been addressed by numerous researchers [19,22–24,104,104,136,139]. For example,
Ben-Tal and Nemirovski [19] discuss the issue of robust feasibility of linear programs, and
Bertsimas et al. [23] consider the problem of finding robust solutions to linear programs
under more general norms, which extends the research of [139]. In [136], Mulvey et al.
introduce general robust optimization techniques that embed higher order statistics from the
uncertainty model. In [22,24], the authors develop techniques that hedge against worst-case
performance loss and maintain robust feasibility in the presence of uncertainty in integer
optimizations. Solutions are presented with both ellipsoidal and polyhedral uncertainty sets,
and the authors show that the robust equivalent of some uncertain integer programs can be
found by solving a finite number of new deterministic integer programs. In [104, 105], the
authors introduce Conditional Value at Risk (CVaR) as a scenario-based resource allocation
problems solved by generating a finite (but possibly large) number of realizations, and
finding the assignment that minimizes the conditional expectation of performance loss.

In this thesis, we consider a task allocation model where we seek to assign a set of m UAVs to
a set of n tasks in an optimal way. The optimality is quantified by target scores. The mission
is to maximize the target score while satisfying capacity constraints of both the UAVs and
the tasks. The scoring scheme defining effectiveness in our work is a nonlinear function. More
precisely, this problem is an integer nonlinear programming problem for which the classical
solution method can not be used.
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1.2.2 The Multidimensional Assignment Problem (MAP)

The multidimensional assignment problem (MAP) is a higher dimensional version of the
linear assignment problem, where we find tuples of elements from given sets, such that the
total cost of the tuples is minimal. Denoting nk the number of elements in dimension k of d
dimensions, n1 ≤ nk, k = 2, ..., d, the MAP can be expressed as an integer program as follows





min
n1∑
i1=1

...
nd∑
id=1

ci1...idxi1...id

s.t.
n2∑
i2=1

...
nd∑
id=1

xi1...id = 1, i1 = 1, 2, ..., n1,

n1∑
i1=1

...
nk−1∑
ik−1=1

nk+1∑
ik+1=1

...
nd∑
id=1

xi1...id ≤ 1, ik = 1, 2, ..., nk, k = 2, ..., d− 1,

n1∑
i1=1

...
nd−1∑
id−1=1

xi1...id ≤ 1, id = 1, 2, ..., nd,

xi1...id ∈ {0, 1}.

(1.1)

An equivalent formulation of this problem, which offers us several approaches to find an
optimal assignment is injection formulation





min
n1∑
i=1

ci,π1(i),...,πd−1(i)

s.t. πk : {1, 2, ..., n1} → {1, 2, ..., nk+1} is injective,∀k = 1, 2, .., d− 1.
(1.2)

The MAP was first introduced by Pierskalla (1968) [147], and since then has found numerous
applications in the areas of data association [7], image recognition [202], multisensor
multitarget tracking [132, 167], tracking of elementary particles [169], etc. For a survey of
the MAP and its applications, see [30,31,35,61,143,188].

It is worth to note that while the linear assignment problem is solvable in polynomial time,
the MAP is known to be NP-hard. The computational time to find an optimal solution of an
MAP grows exponentially with the number of dimensions and factorially with the dimension
size [145]. Indeed, the total number cost coefficients, and the number of feasible solutions for
a fully dense problem are given by the following expressions [39]:

Total number cost coefficients =
d∏

k=1

nk.

Number of feasible solutions =
d∏

k=2

nk!

(nk − n1)!
·

In the literature, several exact and heuristic algorithms have been proposed for solving this
problem [1, 12, 13, 39, 71, 107, 138, 144, 145, 147, 166, 168, 192]. Most of them are heuristic
approaches, such as the GRASP (greedy randomized adaptive search procedure) with Path
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Relinking for Three-Index Assignment [1], the Simulated Annealing [39], the Local Search
Heuristics [71], Local Search Neighborhoods [145], etc. The exact solution methods are the
Branch and Bound procedures [69, 144, 147], the Lagrangian Relaxation Based Algorithms
[166,168].

1.3 Value-at-Risk constrained optimization problem
The optimal stock selection is a classic financial problem since the seminal work of
Markowitz [125]. It attempts to maximize portfolio expected return for a given amount
of portfolio risk, or equivalently minimize risk for a given level of expected return. In the
Markowitz approach, asset returns are random variables that can be controlled by two
parameters: the portfolio efficiency is measured by the expectation, while risk is calculated
by the standard deviation. There are several assumptions and consequences behind the
Markovitz mean/variance model, such as returns are normally distributed, so that mean
and variance are sufficient to fully describe the portfolio return distribution function. But
in fact, it is frequently observed that returns in equity and other markets are not normally
distributed. Another assumption that can assure the use the mean-variance approach is the
quadratic shape of the decision maker utility function. But in this case one must accept
that the utility function is decreasing with respect to wealth when a threshold is overcome.
These observations lead to new research directions on portfolio models.

In the last years, some scholars developed new models for the optimal portfolio problem,
taking into account the return non-normality. The simplest models are direct extensions of
the Markowitz model. It is commonly accepted that efficiency is measured by the portfolio
return expectation, but variance is now replaced by other risk measures.

Value-at-Risk, denoted V aR, is a new risk measure that most prominently imposed itself
within the financial community in the last 10 years, especially due to regulatory reasons in
the context of Basel-II for the banking sector, as well as Solvency-II for the insurance sector.
In financial mathematics and financial risk management, Value-at-Risk is an estimate of
the maximum potential loss with a certain confidence level, which a dealer or an end-user
of financial instruments would experience during a standardized period (e.g. day, week, or
year). In other words, with a certain probability, losses will not exceed V aR [109].

Mathematically, let X be the anticipated random returns, then the Value-at-Risk of X is
defined as

V aRα(X) = inf{u : FX(u) ≥ α} = F−1X (α), 0 < α < 1,

where FX is the distribution function of X. V aRα is said to be an acceptability func-
tional [150].

If X follows a discrete distribution taking the values x1, ..., xS with equal probability, then

V aRα(X) = xσ(k),
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where xσ(1) ≤ xσ(2) ≤ ... ≤ xσ(s) is the set of ordered values of X (σ is a permutation of the
set {1, 2, ..., S}) and k = bαSc. See [58] for the properties of this estimator. In the financial
jargon, when no assumption is explicitly made about FX(.), then we say that V aRα(X) has
been estimated through “historical simulation” [40].

Let Θ be a linear space of measurable functions, defined on an appropriate probability space.

Definition 1.1 A functional ρ : Θ → R ∪ {+∞} is said to be coherent risk measure if it
satisfies the following properties:

1. Normalized
ρ(0) = 0.

2. Monotonicity
If X, Y ∈ Θ and X ≤ Y then ρ(X) ≤ ρ(Y ).

3. Sub-additivity
If X, Y ∈ Θ then ρ(X + Y ) ≥ ρ(X) + ρ(Y ).

4. Positive homogeneity
If λ ≥ 0 and X ∈ Θ, then ρ(λX) = λρ(X).

5. Translation invariance
If a ∈ R and X ∈ Θ, then ρ(X + a) = ρ(X) + a.

Definition 1.2 A functional ρ : Θ → R ∪ {+∞} is said to be concave risk measure if
λ ∈ [0, 1], X, Y ∈ Θ then

ρ(λX + (1− λ)Y ) ≥ λρ(X) + (1− λ)ρ(Y ).

Although popular, V aR -being the quantile of the return distribution- has some serious
limitations, such as a lack of subadditivity and concavity [8, 9]. V aR is coherent only when
it is based on the standard deviation of normal distribution (for a normal distribution
V aR is proportional to the standard distribution) [9]. In the case of a finite number of
scenarios, V aR is a non-smooth, non-concave, and multi-extreme function with respect to
positions [126].

Now, we introduce the two optimization models concerning Value-at-Risk, which are
frequently considered in portfolio management.

Consider a finite set of arbitrary financial assets i = 1, 2, ..., n. Within a given observation
period these assets generate returns

ξ = (ξ1, ξ2, ..., ξn)
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measured as the relative increase (or decrease) of the asset prices during the period under
consideration. These returns are unknown at the time of portfolio allocation and are treated
as random variables. The investor has a budget of 1 unit (without loss of generality). He/she
may decide on the positions

x = (x1, x2, ..., xn)

in these assets, such that xi ≥ 0 (no short sales permitted) and
m∑
i=1

xi = 1 (budget constraint).

The return of the portfolio at the end of the observation period is

X = xT ξ =
m∑

i=1

xiξi.

It is a random variable with distribution function F , i.e., F (u) = P [X ≤ u] = P [xT ξ ≤ u].
Of course, F depends on x. The expected return of portfolio x is

E(X) = E(xT ξ) = xTE(ξ).

The first model (Value-at-Risk constrained optimization) is




max E(xT ξ)

s.t.
n∑
i=1

xi = 1,

xi ∈ [ai, bi], 1 ≤ i ≤ n,
V aRα(xT ξ) ≥ a,

(1.3)

where a is a lower bound of Value-at-Risk. This is model which we will study in this thesis.

For a given lower bound expectation C, the second one is




max V aRα(xT ξ)

s.t.
n∑
i=1

xi = 1,

xi ∈ [ai, bi], 1 ≤ i ≤ n,
E(xT ξ) ≥ C.

(1.4)

Because of the non-concavity of Value-at-Risk, both Problem (1.3) and Problem (1.4) are
nonconvex programs and are known to be NP-hard [20]. In practice, in order to reduce the
difficulty of these problems, V aR is often replaced by the Average Value-at-Risk (AV aR, also
called Conditional Value-at-Risk, CV aR), which is defined as

AV aRα(X) =
1

α

α∫

0

F−1X (t)dt =
1

α

α∫

0

V aR(t)dt, 0 < α ≤ 1.

An important reason for this replacement is that AV aR is a coherent risk measure [149].
It is thus relatively easy to incorporate into optimization problems above, especially in the
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case of discrete random variables, linear programming formulations exist [6, 174, 199]. Some
other reasons justifying the use of AV aR instead of V aR can be found in [208].

However, due to regulatory frameworks such as Basel II and Solvency II, Value-at-Risk
remains to be an industry standard and is widely used in portfolio planning. Therefore,
numerous approaches to solve either Problem (1.3) or Problem (1.4) have been proposed in the
literature [20,34,37,62,63,79,109,140,208]. For instance, in [20], Benati and Rizzi reformulate
them as mixed-integer programs which allow us to use solvers, for instance CPLEX, to obtain
their solution. Some heuristic solution schemes have been designed, such as random search
with threshold acceptance [62, 63], or evolutionary computation techniques [79]. In [34]
complete enumeration on the risk-return grid is used to find near optimal portfolios for the
V aR portfolio optimization problem. Pang and Leyffer [140] formulate the problem (1.4) as
a linear program with equilibrium constraints (LPEC) to derive lower and upper bounds for
a Branch-and-Bound solution. Cheon et al. [37] propose a solution technique for the more
general class of probabilistically constrained linear programs which is based on a Branch-
Reduced-Cut algorithm. Larsen et al. [109] have developed two algorithms performing well
even on large datasets for the optimization of V aR. Recently, Wozabal et al. [208] gave a
representation of the V aR as a DC function (Difference of Convex functions) in the case
finite scenarios, and proposed a conical Branch-and-Bound algorithm to find global optima
of (1.3). Later, Wozabal [209] introduced a DC Algorithm (DCA) [120, 156, 157] to the DC
formulation of the problem (1.3).

1.4 Conclusion
In this chapter we have introduced some optimization problems in Search Theory, Assignment
and Portfolio Management, which we study in this thesis. They are generally nonconvex, non-
differentiable problems. Therefore, among the methods for solving optimization problems, we
choose two powerful tools to develop solution methods. They are the DC programming&DCA
and the Cross-Entropy (CE) method. The methodologies of these methods will be presented
in the two next chapters.
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Chapter 2

DC programming and DC Algorithm
(DCA)

Let X be an Euclidean space Rn, equipped with an inner product 〈x, y〉 =
∑n

i=1 xiyi = xTy,
and the corresponding Euclidean norm ‖x‖2 =

√
〈x, x〉. The dual space of X, denoted

Y , is thus identified with X itself. One notes R̄ = R ∪ {±∞}, and uses the convention
(+∞)− (+∞) = +∞.

2.1 Convex analysis
In this section, we review some definitions and theorems in convex analysis, which are the
basis of DC programming. For more details, we could refer some books of Rockafellar [173]
and Hiriart-Urruty [74].

Definition 2.1 (Convex Set) A set C ⊂ X is convex if the line segment joining any two
points x and y in C is contained in C, i.e.,

∀λ ∈ [0, 1], λx+ (1− λ)y ∈ C.

Definition 2.2 (Convex Hull) Given a set S ⊂ X, the convex hull of S, denoted co(S), is
the smallest convex set containing S.

It is not difficult to show that co(S) is the set of all convex combination of elements in S,
i.e.,

co(S) =

{
m∑

i=1

λix
i|xi ∈ S, λi ≥ 0, i = 1, ...,m,

m∑

i=1

λi = 1

}
.

Definition 2.3 (Affine hull) Given a convex set C, the affine hull of C, denoted aff(C), is
defined by:

aff(C) =

{
m∑

i=1

λix
i|xi ∈ C, λi ∈ R, i = 1, ...,m,

m∑

i=1

λi = 1

}
.
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The affine hull is the smallest affine set that contains C in the following sense: if S is any
affine set such that C ⊂ S, then aff(C) ⊂ S.

Definition 2.4 (The relative interior) The relative interior of a convex set C in X, denoted
ri(C), is its interior within its affine hull, i.e.,

ri(C) = {x ∈ C : ∃r > 0, B(x, r) ∩ aff(C) ⊂ C},

where B(x, r) is the ball with center x and radius r.

Remark 2.5 Any nonempty convex set in Rn has nonempty relative interior.

Given a function f : C → (−∞,+∞] on a convex set C. The domain of the function f is
the set:

dom(f) = {x ∈ C, f(x) < +∞}.
We say f is proper if its domain is nonempty.

Definition 2.6 (Convex function) f is convex if for all x, y in C and for all λ ∈ [0, 1], we
have :

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (2.1)

f is strictly convex if strict inequality holds in (2.1) whenever x 6= y, and 0 < λ < 1.

Definition 2.7 (Epigraph) The epigraph of the function f , denoted epi(f), is defined by

epi(f) = {(x, α) ∈ C × R : f(x) ≤ α}.

The link between convex sets and convex functions is via epigraph: a function is convex if
and only if its epigraph is a convex set in X × R.

Definition 2.8 (Strongly convex function) The function f is called strongly convex with
modulus ρ on the convex set C (also called ρ-convex) if there exists ρ > 0 such that for all x,
y in C, and for all λ ∈ [0, 1], we have :

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− λ(1− λ)
ρ

2
‖x− y‖2.

It means that the function f − ρ

2
‖.‖ is convex on C.

The modulus of strongly convex of f on C, denoted ρ(f, C), is defined by

ρ(f, C) = sup{ρ > 0 : f − ρ

2
‖.‖ is convex on C}.

Clearly, f is convex on C if and only if ρ(f, C) ≥ 0. One says that f is strongly convex on
C if ρ(f, C) > 0.
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Remark 2.9 Every strongly convex function is strictly convex and every strictly convex func-
tion is convex.

Definition 2.10 (Subgradient) Let f be a proper convex function on X, a vector y in Y is
called subgradient of f at x0 ∈ dom(f) if for all x ∈ X, we have:

〈y, x− x0〉 ≤ f(x)− f(x0).

We denote the set of subgradients (called the subdifferential) by ∂f(x0), defining ∂f(x) = ∅
for x not in dom(f). The domain of subdifferential of f is defined as

dom(∂f) = {x : ∂f(x) 6= ∅}.

Proposition 2.11 Given x ∈ dom(∂f), then ∂f(x) is a nonempty closed convex set in Y .

Definition 2.12 (ε-subgradient) Let ε be a positive, a vector y ∈ Y is called ε-subgradient of
f at x0 if

〈y, x− x0〉 ≤ f(x)− f(x0) + ε,∀x ∈ X.
We denote ∂εf(x0) the set of all ε-subgradients of f at x0.

Definition 2.13 We say that f is lower semi-continuous (l.s.c.) at x0 ∈ C if

lim
y→x0

inf f(y) = f(x0).

The set of all lower semi-continuous proper convex functions on X is denoted by Γ0(X).

Definition 2.14 (Conjugate function) The Fenchel conjugate of a function f : X →
[−∞,+∞] is the function f ∗ : Y → [−∞,+∞], defined by

f ∗(y) = sup{〈x, y〉 − f(x) : x ∈ X}.

Proposition 2.15 Given f : X → R̄, thus:

• f ∗ is convex.

• f ∈ Γ0(X)⇔ f ∗ ∈ Γ0(Y ) and (f ∗)∗ = f.

• f ∈ Γ0(X), thus y ∈ ∂f(x)⇔ x ∈ ∂f ∗(y).

• y ∈ ∂f(x)⇔ f(x) + f ∗(y) = 〈x, y〉.

• x0 ∈ argmin{f(x) : x ∈ X} ⇔ 0 ∈ ∂f(x0).

Definition 2.16 (Polyhedral convex set) A convex set C is called polyhedral convex if it is
a finite intersection of closed half-spaces in Rn,i.e.,

C =
m⋂

i=1

{x ∈ Rn : 〈ai, x〉 − bi ≤ 0, ai ∈ Rn, bi ∈ R}.
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Definition 2.17 (Polyhedral function) A function f : Rn → R ∪ {+∞} is called polyhedral
if its epigraph is polyhedral in Rn+1.

Note that a polyhedral function is convex, proper and l.s.c.

Proposition 2.18 Let f : Rn → R ∪ {+∞} be a convex function. Thus, f is polyhedral if
and only if dom(f) is polyhedral convex set and

f(x) = max{〈ai, x〉 − bi : i = 1, ..., l}+ χdom(f)(x).

Proposition 2.19 The polyhedral convex functions have the following properties:

• If f1 and f2 are polyhedral convex, then f1 + f2 , max{f1, f2} are polyhedral convex.

• If f is polyhedral convex then f ∗ is also polyhedral convex and dom(∂f) = dom(f).
Moreover, if f is finite everywhere then

dom(f ∗) = co{ai : i = 1, ..., l},

f ∗(y) = min{
l∑

i=1

λibi : y =
l∑

i=1

λiai,
l∑

i=1

λi = 1, λi ≥ 0, i = 1, ..., l}.

• If f is polyhedral convex then ∂f(x) is non-empty polyhedral convex set for all x ∈
dom(f).

• Let f1, ..., fm be the polyhedral convex functions on X such that the convex sets
dom(fi), i = 1, ...,m have a common point. Then,

∂(f1 + ...+ fm)(x) = ∂f1(x) + ...+ ∂fm(x),∀x ∈ X

2.2 The DC function class
In this section, we introduce the definition of DC functions and their properties. For more
details, see [3, 73,85,110,158].

Definition 2.20 (DC function) Let C be a convex set in X. A function f : C → R∪{+∞}
is called DC on C if it can be expressed as the difference of two convex functions on C, i.e.,

f(x) = g(x)− h(x),∀x ∈ C,

where g and h are convex functions on C. One says that g − h is a DC decomposition of f .

Remark 2.21 If f = g − h is a DC function on C then for all finite convex function p on
C, f = (g+ p)− (h+ p) is also a DC decomposition of f . Thus, a DC function has infinitely
many DC decompositions.
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Let Conv(C) be the set of convex functions on C. The set of DC functions on C, denoted
DC(C), is the vector space spanned by Conv(C) defined by

DC(C) = Conv(C)− Conv(C).

The DC functions were considered in years 50 by Aleksandrov [3], and Hartman [73], etc.,
who proved several important properties of these functions. It is worth noting the richness of
DC(X): it contains almost realistic objective functions and is closed under all the operations
usually considered in optimization.

Proposition 2.22 If f ∈ DC(C) and f = g − h then

• |f | ∈ DC(C), because
|f | = 2 max(g, h)− (g + h).

• f+, f− ∈ DC(C), where f+(x) = max(0, f(x)), f−(x) = min(0, f(x)) because

f+ = max(g, h)− h, f− = g −max(g, h).

Proposition 2.23 If fi = gi − hi, i = 1, ...,m are functions in DC(C) then

• A linear combination of DC functions is a DC function, i.e.,

m∑

i=1

λifi ∈ DC(C),∀λi ∈ R.

• max
1≤i≤m

fi ∈ DC(C) and min
1≤i≤m

fi ∈ DC(C) because

max
1≤i≤m

fi ∈ DC(C) = max
1≤i≤m

(gi +
∑

j 6=i
hj)− max

1≤i≤m
hi ∈ DC(C).

• ∏m
i=1 fi ∈ DC(C).

Definition 2.24 (Locally DC function) A function f : C → R defined on an open convex
set C ⊂ X is said to be locally DC if for every x0 ∈ C, there exist a convex neighborhood of
x0 where it is DC.

Let C be an open convex set in X, we denote by C1,1(C) ⊂ C1(C) the set of functions, whose
gradients are locally Lipschitzian on C. C1,1(C) is contained in the convex cone LC2(C)
(also called functions of sub-C2) - the set of functions being locally lower hull of a family
of functions in class C2(C). The following theorem shows the richness of the class of DC
functions:

Theorem 2.25 • A convex function of Conv(C) is a function of sub-C2 on C.
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• A function sub−C2 on C is a locally DC function on C.

• A locally DC function on C is a DC function on C. Finally, we have:

C2(C) ∪ C1,1(C) ∪ C1(C) ∪ Conv(C) ∪ LC2(C) ⊂ DC(C).

Moreover, if C is compact, then DC(C) is a dense vector subspace in the set of con-
tinuous functions on C equipped with the norm of uniform convergence on C.

2.3 DC Programming
In recent years, there has been very active researches in the following classes of nonconvex
and non-differentiable optimization problems:

(1) sup{f(x) : x ∈ C}, f and C are convex.
(2) inf{g(x)− h(x) : x ∈ Rn}, g, h are convex.
(3) inf{g(x)− h(x) : x ∈ C, f1(x)− f2(x) ≤ 0}, g, h, f1, f2 and C are convex.

Problem (1) is a special case of Problem (2) with g = χC , the indicator function of C and
h = f , while the latter (resp. Problem (3)) can be equivalently transformed into the form of
(1) (resp. (2)) by introducing an additional scalar variable (resp. via exact penalty relative
to the d.c. constraint f1(x) − f2(x) ≤ 0, see [115, 117]). Clearly the complexity increases
from (1) to (3), the solution of one of them implies the solution of the two others. Problem
(2) is called a DC program whose particular structure has been permitting a good deal of
development both in qualitative and quantitative studies.

2.4 DC duality
The concept of duality is a fundamental concept in mathematics. In convex analysis,
duality theory has been given for several decades [173]. More recently, the duality has been
proposed and developed in nonconvex analysis. Firstly, in Quasi-convex programming and
Anti-convex programming [11, 148]. Then the DC duality introduced by Toland [198] is
a generalization of the work of Pham Dinh Tao on convex maximization [151]. For more
details on DC duality, we refer to the work of Le Thi Hoai An [110]. In this section we will
present the main results about DC duality.

Consider the following DC program:

(Pdc) α = inf{f(x) = g(x)− h(x) : x ∈ X},

where g, h ∈ Γ0(X). We use a convention (+∞)− (+∞) = (+∞) as in convex optimization.
Since h ∈ Γ0(X), we have h∗∗ = h and

h(x) = (h∗)∗(x) = sup{〈x, y〉 − h∗(y) : y ∈ Y }.
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With this relationship, we find that

α = inf{g(x)− sup{〈x, y〉 − h∗(y) : y ∈ Y } : x ∈ X}
= inf{inf{g(x)− (〈x, y〉 − h∗(y)) : x ∈ X} : y ∈ Y }
= inf{β(y) : y ∈ Y },

where

β(y) = inf{g(x)− [〈x, y〉 − h∗(y)] : x ∈ X}

=

{
h∗(y)− g∗(y) if y ∈ dom(h∗),
+∞ otherwise.

With the convention (+∞) − (+∞) = (+∞), we obtain finally the dual problem of (Pdc),
denoted (Ddc) :

(Ddc) α = inf{h∗(y)− g∗(y) : y ∈ Y }.
The (Ddc) is also a DC program because h∗ et g∗ are two convex functions in Γ0(Y ).

Note that there are cases, where the dual problem (Ddc) is a convex problem, although the
primal problem (Pdc) is not convex (see [137]). In the following theorem, we observe the
perfect symmetry between the primal and dual problems.

Theorem 2.26 Given g, h ∈ Γ0(X), then

1. inf{g(x)− h(x) : x ∈ X} = inf{h∗(y)− g∗(y) : y ∈ Y }.

2. If y0 is a minimum of h∗ − g∗ on Y then each x0 ∈ ∂g∗(y0) is a minimum of g − h on
X.

3. If x0 is a minimum of g − h on X then each y0 ∈ ∂h(x0) is a minimum of h∗ − g∗ on
Y .

2.5 Optimality conditions in DC optimization
Let P and D be the solution sets of problems (Pdc) and (Ddc), a point x∗ is called critical
point of problem (Ddc) if ∂g(x∗) ∩ ∂h(x∗) 6= ∅ (A general KKT point).

In convex optimization, x∗ is a minimum of convex function f if and only if 0 ∈ ∂f(x∗). In
DC optimization, the optimal condition is formulated by using ε-sub-differential of g and h.

Theorem 2.27 (Global optimality condition) If g, h ∈ Γ0(X) and f = g − h, then x∗ is a
global minimum of g − h on X if and only if

∂εh(x∗) ⊂ ∂εg(x∗),∀ε > 0.
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Remark 2.28

1. If f ∈ Γ0(X), we can write g = f et h = 0. In this case the global optimality condition in
DC programming is identical to that in convex programming 0 ∈ ∂f(x∗), since ∂εh(x∗) =
∂h(x∗) = 0,∀ε > 0.

2. More generally, we consider the DC decompositions of f ∈ Γ0(X) in the form f = g−h
with g = f + h and h ∈ Γ0(X) everywhere on X. The corresponding DC problem is
a “false” DC problem because it is a convex optimization problem. In this case, the
optimality condition 0 ∈ ∂f(x∗) is equivalent to ∂h(x∗) ⊂ ∂g(x∗).

Definition 2.29 Let g and h be two functions in Γ0(X). A point x ∈ dom(g)∩ dom(h) is a
local minimum of g − h on X if and only if

g(x∗)− h(x∗) ≤ g(x)− h(x), ∀x ∈ Vx∗ ,

where Vx∗ denotes a neighborhood of x∗.

Theorem 2.30 (Necessary condition for local optimality) If x∗ is a local minimum of g− h
then ∂h(x∗) ⊂ ∂g(x∗).

Remark 2.31 If h is polyhedral convex, the necessary condition for local optimality is also
sufficient.

Corollary 2.32 If h ∈ Γ0(X) is polyhedral convex then a necessary and sufficient such that
x∗ ∈ X is a local minimum of g − h is

∂h(x∗) ⊂ int(∂g(x∗)).

Theorem 2.33 (Sufficient condition for local optimality) If x∗ admits a neighborhood V such
that

∂h(x) ∩ ∂g(x∗) 6= ∅,∀x ∈ V ∩ dom(g),

then x∗ is a local minimum of g − h.

Corollary 2.34 If x∗ ∈ int(dom(h)) satisfies

∂h(x∗) ⊂ int(∂g(x∗)),

then x∗ is a local minimum of g − h.

Theorem 2.35

1. ∂h(x) ⊂ ∂g(x),∀x ∈ P , and ∂g∗(y) ⊂ ∂h∗(y), ∀y ∈ D,
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2. Transport of global minima :
⋃

x∈P
∂h(x) ⊆ D ⊂ dom(h∗).

The first inclusion becomes equality if g∗ is sub-differentiable in D (especially if D ⊂
ri(dom(g∗)) or if g∗ is sub-differentiable in dom(h∗)). In this case D ⊂ (dom(∂g∗) ∩
dom(∂h∗)).

⋃

y∈D
∂g∗(y) ⊆ P ⊂ dom(g).

The first inclusion becomes equality if h is sub-differentiable in P (especially if P ⊂
ri(dom(h)) or if h is sub-differentiable in dom(g)). In this case P ⊂ (dom(∂g) ∩
dom(∂h)).

3. Transport of local minima : Let x∗ ∈ dom(∂h) be a local minimum of g−h, y∗ ∈ ∂h(x∗),
and Vx∗ is a neighborhood of x∗ such that g(x)−h(x) ≥ g(x∗)−h(x∗),∀x ∈ Vx∗∩dom(g).
If

x∗ ∈ int(dom(g∗)), ∂g∗(y∗) ⊂ Vx∗ ,

then y∗ is a local minimum of h∗ − g∗.

2.6 DCA (DC Algorithm)
The DCA was introduced by Pham Dinh Tao in 1985 as an extension of his subgradient
algorithms (for convex maximization programming) to DC programming, and the ex-
tensively developed by Le Thi Hoai An and Pham Dinh Tao since 1994 to become now
classic, and widely used by researchers and practitioners in various fields of applied sciences
(see [110–113,152–157]).

The idea of the DCA (also called the simplified DCA) is to construct two sequences {xk}
and {yk} (candidates for being optimal solutions of primal and dual programs, respectively),
which are easy to calculate and satisfy the following conditions:

1. The sequences {g(xk)− h(xk)} and {h∗(yk)− g∗(yk)} are decreasing.

2. Every limit point x∗ of the sequence {xk} (resp. y∗ of the sequence {yk}) is a critical
point of g − h (resp. h∗ − g∗).

Starting x0 ∈ dom(g), these two sequences {xk} and {yk} are determined in the following
way

xk → yk ∈ ∂h(xk) = argmin{h∗(y)− g∗(yk−1)− 〈y − yk−1, xk〉 : y ∈ Y } (Dk)

yk → xk+1 ∈ ∂g∗(yk) = argmin{g(x)− h(xk)− 〈x− xk, yk〉 : x ∈ X} (Pk)
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Problem (Pk) is a convex program obtained from (Pdc) by replacing h with its affine
minorization defined by yk ∈ ∂h(xk). Similarly, the convex problem (Dk) is obtained from
(Ddc) by using the affine minorization of g∗ defined by xk ∈ ∂g∗(yk−1). Here we can see the
complete symmetry between problems (Pk) and (Dk), and between the sequences {xk} and
{yk} relatively to the duality of DC optimization.

Implement the algorithm that consists of two steps:

1. Choose x0 ∈ X.

2. Repeat

• Compute yk ∈ ∂h(xk).

• Set xk+1 ∈ ∂g∗(yk) that leads to solving the convex program

inf{g(x)− h(xk) + 〈x− xk, yk〉 : x ∈ X}.

Until a stopping criterion is met.

Lemma 2.36 (Existence of the sequences) The following statements are equivalent

1. The sequences {xk} and {yk} are well defined

2. dom(∂g) ⊂ dom(∂h) and dom(∂h∗) ⊂ dom(∂g∗)

The following proposition establishes the conditions of boundedness for the sequences gener-
ated by DCA.

Lemma 2.37 (Boundedness of the sequences) If g − h is coercive, then

1. The sequence {xk} is bounded.

2. If {xk} ∈ int(dom(h)) then the sequence {yk} is also bounded.

If h∗ − g∗ is coercive, then

1. The sequence {yk} is bounded.

2. If {yk} ∈ int(dom(g∗)) then the sequence {xk} is also bounded.

The convergence of the DCA is given by the following theorem:

Theorem 2.38 (Convergence of DCA) Assume that the sequences {xk} et {yk} are well
defined

1. The sequences {g(xk)− h(xk)} and {h∗(yk)− g∗(yk)} are decreasing and
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• g(xk+1) − h(xk+1) = g(xk) − h(xk) if and only if yk ∈ ∂g(xk) ∩ ∂h(xk), yk ∈
∂g(xk+1) ∩ ∂h(xk+1) and [ρ(g) + ρ(h)]‖xk+1 − xk‖ = 0. Moreover, if g and h are
strictly convex on X, then xk = xk+1. In this case, DCA will terminate in a finite
iterations. xk and xk+1 are critical points of the function g − h.
(ρ(g) = ρ(g,X) is the modulus of strong convexity of g on X.)

• h∗(yk+1)− g∗(yk+1) = h∗(yk)− g∗(yk) if and only if xk+1 ∈ ∂g∗(yk)∩∂h∗(yk), xk ∈
∂g∗(xk+1) ∩ ∂h∗(xk+1) and [ρ(g∗, D) + ρ(h∗, D)]‖yk+1 − yk‖ = 0. Moreover, if
g∗ and h∗ are strictly convex on Y , then yk = yk+1. In this case, DCA will
terminate in a finite iterations. yk et yk+1 are critical points of the function h∗−g∗.

2. If ρ(g, C)+ρ(h,C) > 0 (resp. ρ(g∗, D)+ρ(h∗, D) > 0), then the sequence {‖xk+1−xk‖}
(resp. {‖yk+1 − yk‖}) converges.

3. If the optimal value of the problem (Pdc) is finite and if the sequences {xk} and {yk}
are bounded, then every limit point x∗ (resp. y∗) of {xk} (resp. {yk}) is a critical point
of g − h (resp. h∗ − g∗).

4. If DCA converges to a point x∗ that admits a convex neighbourhood in which the ob-
jective function f is finite and convex (i.e., the function f is locally convex at x∗) and
if the second DC component h is differentiable at x∗, then x∗ is a local minimizer for
(Pdc).

In general, to apply DCA, we have to answer the following two questions:

1. How to find a “good” DC decomposition?

2. How to find a “good” starting point?

From the theoretical point of view, the question of optimal DC decompositions is still open.
Of course, this depends strongly on the very specific structure of the problem being consid-
ered. In order to tackle the large scale setting, one tries in practice to choose g and h such
that sequences {xk} and {yk} can be easily calculated, i.e., either they are in explicit form
or their computations are inexpensive. Normally, we try to ensure that:

• The function h allows us to compute easily ∂h.

• The convex program inf{g(x) − 〈x, yk〉 : x ∈ X} is easy to solve, this is particularly
important for a large problem.

• The initial point x0 is as close as possible to a global solution.

39



2.7 Polyhedral DC optimization
Definition 2.39 (Polyhedral DC optimization) A DC program is called polyhedral if one
convex component (g and h) of the function f = g − h is a polyhedral convex function.

It can be shown that for solving a polyhedral DC program, DCA has a finite convergence.
Denoting by hk the affine minorization of the convex function h at xk, we will construct hk,
polyhedral convex function generated by {hk}.

hk = h(xk) + 〈x− xk, yk〉 = 〈x, yk〉 − h∗(yk), x ∈ X

hk(x) = sup{hi(x) : i = 0, ..., k} = sup{〈x, yk〉 − h∗(yk) : i = 0, ..., k}, x ∈ X,
where the sequences {xk} et {yk} are obtained through the DCA procedure.
We define similarly the dual function g∗k (resp. (g∗)k)

g∗k = g∗(xk−1) + 〈y − yk−1, xk〉 = 〈y, xk〉 − g(xk), y ∈ Y

(g∗)k(x) = sup{g∗i (x) : i = 0, ..., k} = sup{〈y, xk〉 − g(xk) : i = 0, ..., k}, x ∈ X
Note that a proper, l.s.c., convex function is characterized as the supremum of its affine
minorizations. Therefore, it is judicious to use hk (resp. (g∗)k) as a polyhedral convex
minorization of the convex function h (resp. g∗) on X (resp. Y ), instead of the affine
minorization hk (resp. (g∗)k). We then obtain the following program:

(P k) inf{g(x)− hk(x) : x ∈ X}

(Dk) inf{h∗(x)− (g∗)k(x) : x ∈ X}
The problems (P k) and (Dk) are nonconvex DC problems. But the sub-problems (Pk) and
(Dk) are convex. We have the following theorem:

Theorem 2.40

1. g(xk+1)− h(xk+1) = h∗(yk)− g∗(yk) if and only if hk(xk+1) = h(xk+1).

2. h∗(yk)− g∗(yk) = g(xk)− h(xk) if and only if g∗(yk) = (g∗)k(yk).

3. g(xk+1) − h(xk+1) = g(xk) − h(xk) if and only if hk(xk+1) = h(xk+1) and g∗(yk) =
(g∗)k(yk).

Therefore, if g(xk+1)− h(xk+1) = g(xk)− h(xk) = h∗(yk)− g∗(yk) then the following propo-
sitions are true:

• xk+1 (resp. yk) is an optimal solution of the problem (P k) (resp. (Dk)).

• If h and hk coincide with a solution of (Pdc) or/and g∗ and (g∗)k coincide at some
solution to (Ddc), then xk+1 (resp. yk) is also a solution to (Pdc) (resp. (Ddc)), and
hk(xk+1) = h(xk+1).
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Suppose that the optimal value of problem (Pdc) is finite and the sequence {xk} generated
by DCA is bounded, then for each limit point x∞ we have

g(x∞)− h∞(x∞) = inf{g(xi+1)− hi(xi+1)i = 0, 1, ...,∞},

where h∞ is the affine minorization of h at x∞ defined by

h∞ = h(x∞) + 〈x− x∞, y∞〉 = 〈x, y∞〉 − h∗(y∞), x ∈ X,

with y∞ ∈ ∂h(x∞) a limit point of {yk}. The point x∞ is therefore a solution of the DC
program

(P∞) inf{g(x)− h∞(x) : x ∈ X}.
Similarly, the point y∞ is a solution of the DC program

(D∞) inf{h∗(x)− (g∗)∞(x) : y ∈ Y }.

We have the following theorem:

Theorem 2.41 If the optimal value of the problem (Pdc) (resp. (Ddc)) is finite and the
sequence {xk}(resp. {yk}) is bounded, then for every limit point x∞ (resp. y∞) of {xk}(resp.
{yk}) is a solution to the problem (P∞) (resp. (D∞)). Moreover, the optimal values are
equal, i.e.,

g(x∞)− h∞(x∞) = h∗(y∞)− (g∗)∞(y∞).

If one of the following conditions is true:

• The functions h and h∞ coincide at some optimal solution to (Pdc)

• The functions g∗ and (g∗)∞ coincide at some optimal solution to (Ddc) then x∞ and
y∞ are also optimal solutions to (Pdc) and (Ddc), respectively.

2.8 Exact penalty
The exact penalty techniques are often very useful to transform a DC problem with
anti-convex constraints into a DC problem with convex constraints. The latter problem can
be solved by DCA. For more details on the exact penalty techniques for DC programming
we can refer to [115,122].

Consider an optimization problem

(P ) α = inf{f(x) : x ∈ C, p(x) ≤ 0},

where C is a non-empty, bounded and convex polyhedron in Rn, f, g are finite concave func-
tions on C, and p is a function of positive values or zero on C. The problem (P ) is a
nonconvex program. The nonconvexity of the problem is due to the fact that the objective
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function f is concave and the constraint p(x) ≤ 0 is non convex. A constraint p(x) ≤ 0 with
p(x) concave is called anti-convex. The objective of the problem (P ) is to minimize a concave
function f with polyhedral convex constraint and anti-convex constraint. Suppose that the
problem (P ), whose solution set is denoted by P is feasible. Given a parameter t > 0, we
can define the penalty problem by:

(Pt) α(t) = inf{f(x) + tp(x) : x ∈ C}.
The solution set is denoted by Pt. We obtain the following theorem:

Theorem 2.42 (Exact penalty theorem) Let C be a non-empty, bounded and convex polyhe-
dron; f and p are two finite concave functions on C, and p is a function of positive values
or zero on C. Then, there exists a finite number t0 ≥ 0 such that for all t ≥ t0, the problem
(P ) and (Pt) are equivalent in the sense that Pt = P and α(t) = α. The parameter t0 can be
determined as follows:

• If the set of vertices V (C) of C is contained in the set {x ∈ C : p(x) ≤ 0}, then t0 = 0
and α(0) = α.

• If α(0) < α then t0 = max{α− f(x)

p(x)
: x ∈ V (C), p(x) > 0}

We also have the following properties:

• α(t) = α if and only if t ≥ t0

• Pt ∩ {x ∈ C : p(x) ≤ 0} 6= ∅ ⇔ Pt ⊂ P ⇔ t ≥ t0

• Pt = P ⇔ t > t0

The class of Problem (P ) satisfying the assumption of Theorem 2.42 contains many
important real-life ones (see [115]): Convex maximization over the Perato set, bilevel linear
programs, linear programs with mixed linear complementarity constraints, mixed zero-one
concave minimization programming, etc.

Recently, Le Thi et al. (see [122]) have proved the following result:
We consider the two nonconvex optimization problems

α = inf{f(x) : x ∈ C, g(x) = 0} (Q)

α(τ) = inf{f(x) + τg(x) : x ∈ C, g(x) ≥ 0} (Qτ )

Theorem 2.43 (Le Thi et al. [122])
Let C be a non-empty bounded polyhedral convex set in Rn and let f, g be finite concave
function on C. Suppose that the feasible set of (Q) is not empty. Then there exists τ0 ≥ 0
such that for all τ > τ0, the problems (Q) and (Qτ ) are identical. Furthermore, we can take
τ0 = f(x0)−α(0)

m
, with m = inf{g(x) : x ∈ V (C), g(x) > 0} and any x0 ∈ C, g(x0) = 0. Here,

the convention inf
∅
g(x) = +∞ is used.
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It is easy to see that Theorem 2.42 is a special case of Theorem 2.43 when g is a function of
positive values or zero on C. Indeed, if g is a function of positive values or zero on C, we
have

α = inf{f(x) : x ∈ C, g(x) ≤ 0} = inf{f(x) : x ∈ C, g(x) = 0},
and

α(τ) = inf{f(x) + τg(x) : x ∈ C, g(x) ≥ 0} = inf{f(x) + τg(x) : x ∈ C}.
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Chapter 3

Cross-Entropy Method

3.1 Introduction

Importance sampling

Importance sampling (see e.g. [181], Section 5.6) involves choosing a sampling distribution
that favors important samples. Let

` = Ef (H(X)) =

∫
H(x)f(x)dx, (3.1)

be some expected performance measure of a computer simulation model, where X is the
input random vector with a probability density function f and H is the sample performance
measure.

Let g be another probability density such that H.f is dominated by g. That is, if g(x) = 0
then H(x)f(x) = 0. Using the density g, we can represent ` as

` =

∫
H(x)

f(x)

g(x)
g(x)dx = Eg

(
H(X)

f(x)

g(x)

)
, (3.2)

where the subscript g means that the expectation is taken with respect to g. Such a density
is called the importance sampling density, proposal density, or instrumental density (as we
use g as an instrument to obtain information about `). Consequently, if X1, X2, ..., XN is
random sample from g, that is, X1, X2, ..., XN are independent and identically distributed
(iid) random vectors with density g, then

̂̀=
1

N

N∑

i=1

H(X i)
f(X i)

g(X i)
(3.3)

is an unbiased estimator of `. This estimator is called the importance sampling estimator.
The ratio of densities

W (x) =
f(x)

g(x)
(3.4)
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is called the likelihood ratio. For this reason the importance sampling estimator is also called
the likelihood ratio estimator. In particular case where there is no change of measure, that
is, g = f , we have W = 1, and the likelihood ratio estimator in (3.3) reduces to the usual
crude Monte Carlo (CMC) estimator.

The Cross-Entropy method

The Cross-Entropy (CE) method is a Monte Carlo simulation method. It takes its name from
the Kullback-Leiber distance, also called cross-entropy, an information measure widely used
in various engineering fields including artificial intelligence, for instance, neural networks, etc.

The CE method is introduced by D. Lieber, R. Rubinstein, and D. Elmakis in order to
evaluate the probability of rare events. In fact, the evaluation of such probabilities is a
crucial, difficult problem for many stochastic systems. In addition, there are few problems
for which it is possible to evaluate directly. In most cases, using a simulation method is
needed. However, if the law to evaluate is used directly for the rare event, a simple Monte
Carlo becomes quickly unusable because of the large number of samples. A better way to
estimate this probability is to use importance sampling (IS), which is well-known variance
reduction technique in which the system is simulated under a different set of parameters
-or, more generally, a different probability distribution- so as to make the occurrence of the
rare event more likely. A major drawback of the IS technique is that the optimal reference
(also called tilting) parameters to be used in IS are usually very difficult to obtain. The
advantage of the CE method is that it provides a simple adaptive procedure for estimating
the optimal reference parameters. Recently the CE method has been successfully applied
to the estimation of rare event in dynamic models, in particular queueing models involving
both light and heavy tail input distribution [26,27,102].

Also, it has been demonstrated that the CE is particularly suitable for solving “hard”
optimization problems, especially combinatorial problems. Indeed, these problems are often
solved by Branch and Bound. But when the problem is too complex, exhaustive methods
are not able to be applied. On the other hand, obtaining near-optimal solution, in practice,
is often satisfactory. Thus, when deterministic methods failed to find the optimal solution
within a reasonable amount of computation, the CE can find optimal or near optimal
solution in reasonable time.

Unlike most of the stochastic algorithms for optimization which are based on local search, the
CE method is a global random search procedure. The CE method was successfully applied to
various problems such as the traveling salesman problem [177], the bipartition problem [177],
the maximal cut problem [179], the image matching [55], the image segmentation [56], etc.
To use the CE method for solving a deterministic optimization problem, this problem must
be first translated into a stochastic one. The set of feasible solutions is then regarded as a
set of events subjected to an importance density. Thus, the rare event simulation technique
is applied.
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In the two next sections, we present the methodology of the CE method for the rare event
simulation, and for optimization. For a comprehensive overview and history of the CE
method, the reader is referred to [28,180,181].

3.2 The CE for the rare event simulation

In this section we review the main ideas behind the CE algorithm for rare event simulation
(for more details, see [28,180,181]).

Let X = (X1, ..., Xn) be the random vector taking values in the space X . Let {f(·; v)} be
the family of probability density functions (pdfs) on X , with respect to some base measure
ν. Here v is a real-valued parameter (vector). Thus,

EH(X) =

∫

X
H(x)f(x; v)ν(dx),

for any mesurable function H. In most (or all) application ν is either a counting measure or
Lebesgue measure. In the former case f is often called a probability mass function, but in
this thesis we use the generic terms density or pdf. For the rest of this section, we take for
simplicity ν(dx) = dx.

Let S be some real-valued function on X . Suppose that we are interested in the probability
that S(x) is greater than or equal to some real number γ, under f(·;u). This probability can
be expressed as

` = Pu(S(X) ≥ γ) = EuI{S(X)≥γ}.

If this probability is small, say smaller than 10−5, we call {S(X) ≥ γ} a rare event.

A direct way to estimate ` is to use crude Monte-Carlo simulation: Draw a N samples
X1, X2, ..., XN from f(·;u), then

1

N

N∑

i=1

I{S(Xi)≥γ}

is a unbiased estimator of `. However, this poses serious problem when {S(X i) ≥ γ} is a rare
event. In that case, a large simulation effort is required in order to estimate ` accurately,
i.e., with small relative error or a narrow confidence interval.

An alternative is based on importance sampling: take a random sample X1, X2, ..., XN from
an importance sampling (different) density g on X , and evaluate ` using likelihood ratio
estimator:

̂̀=
1

N

N∑

i=1

I{S(Xi)≥γ}
f(X i;u)

g(X i)
· (3.5)
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It is well known that the best way to estimate ` is to use the change of measure with density

g∗(x) =
I{S(X)≥γ}f(x;u)

`
·

Namely, by using this change of measure we have in (3.5)

I{S(X)≥γ}
f(X i;u)

g(X i)
= `, (3.6)

for all i. In other words, the estimator (3.5) has zero variance, and we need to produce only
N = 1 sample.

The obvious difficulty is of course that this g∗ depends on the unknown parameter `. More-
over, it is often convenient to choose a g in the family of densities {f(·; v)}. The idea now is
to choose the parameter vector, called the reference parameter (sometimes called tilting pa-
rameter) v such that the distance between the density g∗ and f(·; v) is minimal. A particular
convenient measure of distance between two densities g and h is Kullback-Leibler distance,
which is also termed the cross-entropy between g and h. The Kullback-Leibler distance is
defined as:

D(g, h) = Eg ln
g(X)

h(X)
=

∫
g(x) ln g(x)dx−

∫
g(x) lnh(x)dx.

We note that D is not “distance” in the formal sense, for instance, it is not symmetric.

Minimizing the Kullback-Leibler distance between g∗ in (3.6) and f(·; v) is equivalent to
choosing v such that −

∫
g∗(x) ln f(x; v)dx is minimized, which is equivalent to solving the

maximization problem

max
v

∫
g∗(x) ln f(x; v)dx. (3.7)

Substituting g∗ from (3.6) into (3.7) we obtain the maximization program

max
v

∫
I{S(x)≥γ}f(x;u)

`
ln f(x; v)dx, (3.8)

which is equivalent to the program

max
v
D(v) := EuI{S(X)≥γ} ln f(X; v). (3.9)

Using again importance sampling, with a change of measure f(·;w), we can rewrite (3.9) as

max
v
D(v) = max

v
EwI{S(X)≥γ}W (X;u,w) ln f(X; v), (3.10)

for any reference parameter w, where

W (x;u,w) =
f(x;u)

f(x;w)
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is the likelihood ratio, at x, between f(·;u) and f(·;w). The optimal solution of (3.10) can
be written as

v∗ ∈ argmax
v

EwI{S(X)≥γ}W (X;u,w) ln f(X; v), (3.11)

We may estimate v∗ by solving the following stochastic program (also called stochastic coun-
terpart of (3.10))

max
v
D̂(v) = max

v

1

N

N∑

i=1

I{S(Xi)≥γ}W (X i;u,w) ln f(X i; v), (3.12)

where X1, X2, ..., XN is a random sample from f(·;w). In typical applications, the function
D̂ in (3.12) is concave and differentiable with respect to v (see [175]), and thus, the solution
of (3.12) may be readily obtained by solving (with respect to v) the following system of
equation

1

N

N∑

i=1

I{S(Xi)≥γ}W (X i;u,w)∇ ln f(X i; v) = 0, (3.13)

where the gradient is with respect to v.

The advantage of this approach is that the solution of (3.13) can be calculated analytically.
In particular, this happens if the distributions of the random variables belong to a natural
exponential family (NEF). For further details, see [180].

It is important to note that the stochastic program (3.12) is useful only in the case where
the probability of the “target event” {S(X) ≥ γ} is not too small, say ` ≥ 10−5. For rare
event probabilities, however (when, say, ` < 10−5), the program (3.12) is difficult to carry
out. Namely, due to the rareness of the events {S(X) ≥ γ}, most of the indicator random
variables I{S(Xi)≥γ}, i = 1, ..., N will be zero, for moderate N . The same holds for the
derivatives of D̂(v) as given in the left-hand side of (3.13).

A multi-level algorithm can be used to overcome this difficulty. The idea is to construct a
sequence of reference parameters {vt, t ≥ 0} and a sequence of levels γt, t ≥ 1, and iterate in
both γt and vt (see Algorithm 1 below).

We initialize by choosing a not very small ρ, say ρ = 10−2 and by defining v0 = u. Next, we let
γ1(γ1 < γ) be such that, under the original density f(x;u), the probability `1 = Eu{S(X) ≥
γ1} is at least ρ. We then let v1 be the optimal CE reference parameter for estimating the
pair {l, v∗}. In other words, each iteration of the algorithm consist of two main phases. In
the first phase, γt is updated, in the second vt is updated. Specially, starting with v0 = u,
we obtain the subsequent γt and vt as follows:

1. Adaptive updating of γt. For a fixed vt−1, let γt be the (1 − ρ)-quantile of S(X)
under vt−1. That is, γt satisfies

Pvt−1(S(X) ≥ γt) ≥ ρ, (3.14)
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Pvt−1(S(X) ≤ γt) ≥ 1− ρ, (3.15)

where X ∼ f(·; vt−1).
A simple estimator of γt, denote γ̂t can be obtained by drawing a random sample
X1, X2, ..., XN from f(·; vt−1). Suppose that S(Xσ(1)) ≤ S(Xσ(2)) ≤ ... ≤ S(Xσ(N)),
where σ is a permutation of the set {1, ..., N}. Evaluating the (1− ρ)-quantile of S(X)
as

γ̂t = Sb(1−ρ)Nc. (3.16)

2. Adaptive updating of vt. For a fixed γt and vt−1, derive vt by minimizing the
Kullback-Leibler distance, or equivalent to solving the following program

max
v

Evt−1I{S(X)≥γt}W (X;u, vt−1) ln f(X; v), (3.17)

where
W (x;u, vt−1) =

f(x;u)

f(x; vt−1)
·

The stochastic counterpart of (3.28) is as follows: for fixed γ̂t and v̂t−1 (the estimate of
vt−1), derive v̂t from the following program

max
v
D(v) :=

1

N

N∑

i=1

I{S(Xi)≥γt}W (X i;u, vt−1) ln f(X i; v). (3.18)

Thus, at the first iteration, starting with v̂0 = u, to get a good estimate for v̂1, the target
event is artificially made less rare by (temporarily) using a level γ̂1 which is chosen smaller
than γ. The value for v̂1 obtained in this way will (hopefully) make the event {S(X) ≥ γ}
less rare in the next iteration, so in the next iteration a value γ̂2 can be used which is closer
to γ itself. The algorithm terminates when at some iteration t a level is reached which is at
least γ and thus the original value of γ can be used without getting too few samples.
As mentioned before, the optimal solutions of (3.17) and (3.18) can often be obtained
analytically, in particular when f(x; v) belongs to a NEF.

The above rationale results in the following algorithm.
Algorithm 1: Main CE Algorithm for rare event simulation

1. Defin v̂0 = u, and 0 < ρ < 1. Set t = 1.

2. GenerateN samplesX1, X2, ..., XN according to f(·; v̂t−1), and compute (1−θ)-quantile
γ̂t of S according to (3.16).

3. Using the same samples X1, X2, ..., XN to solve the stochastic programming (3.17).
Denote the solution by ṽt.

4. If ṽt < γ, set t = t+ 1, and iterate from step 2. Else proceed with step 5.
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5. Estimate the rare-event probability ` using likelihood ratio estimate

̂̀=
1

N1

N1∑

i=1

I{S(Xi)≥γt}W (X i;u, v̂T ), (3.19)

where T denotes the final number of iterations.

We have intentionally used the notation γ̃t and ṽt in Algorithm 1 above, rather than the
more obvious γt and vt, in order to distinguish it from its deterministic counterpart, which
is obtained by replacing sample means and sample quantiles by expectations and quantiles.

Remark 3.1 (Static Simulation) The above method has been formulated for finite-
dimensional random vector only. This is sometimes referred to as static simulation. For
infinite-dimensional random vectors or stochastic processes we need a more subtle treatment.

We will not go into detail here, but the main point is that Algorithm 1 holds true without
much alteration and can be readily applied to estimation problems involving both light and
heavy tail distribution [10,27,180]

Remark 3.2 (Variance minimization) An alternative way to obtain a good reference pa-
rameter is to choose v such that the variance, or equivalently, the second moment, of the
importance sampling estimator is minimal. In other words we wish to find

∗v = argmin
v

Ev[I{S(X)≥γ}W (X;u, v)]2. (3.20)

More generally, using again the principe of importance sampling, this is equivalent to finding

∗v = argmin
v

EwI{S(X)≥γ}W (X;u, v)W (X;u,w) (3.21)

for any reference parameter vt. As in (3.11), we can estimate ∗v as the solution to the
stochastic program

min
v
V̂ (v) = min

v

1

N

N∑

i=1

I{S(Xi)≥γ}W (X i;u, v)W (X i;u,w), (3.22)

where X1, X2, ..., XN is a random sample from f(·;w). However, the evaluation of (3.22) in
general involves complicated numerical optimization, and it is much more convenient to use
the closed-form updating formulas that follow from CE minimization.

3.3 The Cross-Entropy method for optimization
The generic CE scheme for optimization problems can be described as follows (for more
detail, see [28,180,181]).
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Suppose that we wish to maximize a real-valued performance function S over a set X . Denote
the maximum by γ∗, thus

γ∗ = max
x∈X

S(x). (3.23)

The starting point in the methodology of the CE method is to associate an estimation prob-
lem with the optimization problem (3.23). To this end one defines a collection of indicator
functions I{S(x)≥γ} on X for various thresholds or levels γ ∈ R. Next, let {f(·; v), v ∈ V }
be a family of (discrete) probability density functions (pdfs) on X , parameterized by a
real-valued (vector) v.

For some u ∈ V , we consider the associated stochastic problem (ASP):

`(γ) = Pu(S(x) ≥ γ) =
∑

x∈X
I{S(x)≥γ}f(x;u)

= EuI{S(x)≥γ}, (3.24)

where Pu is the probability measure under which the random state X has the pdf f(·;u), and
Eu denotes the corresponding expectation operator. The idea of CE method is to construct
simultaneously a sequence of levels γ̂1, γ̂2, ..., γ̂T and parameters (vectors) v̂1, v̂2, ..., v̂T such
that γ̂T is close to the optimal γ∗ and v̂T is such that the corresponding density assigns
high probability mass to the collection of states that give a high value. More specifically, we
initialize by setting v0 = u, choosing a not very small quantity θ, and then we proceed as
follows:

1. Adaptive updating of γt. For a fixed vt−1, let γt be the (1 − θ)-quantile of S(X)
under vt−1. That is, γt satisfies

Pvt−1(S(X) ≥ γt) ≥ θ, (3.25)

Pvt−1(S(X) ≤ γt) ≥ 1− θ, (3.26)

where X ∼ f(·; vt−1).
A simple estimator of γt, denote γ̂t can be obtained by drawing a random sample
X1, X2, ..., XN from f(·; vt−1). Suppose that S(Xσ(1)) ≤ S(Xσ(2)) ≤ ... ≤ S(Xσ(N)),
where σ is a permutation of the set {1, ..., N}. Evaluating the (1− θ)-quantile of S(X)
as

γ̂t = Sb(1−θ)Nc. (3.27)

2. Adaptive updating of vt. For a fixed γt and vt−1, derive vt by minimizing the
Kullback-Leibler distance, or equivalent to solving the next program

max
v

Evt−1I{S(X)≥γt}W (X i;u, vt−1) ln f(X; v), (3.28)

where
W (x;u, vt−1) =

f(x;u)

f(x; vt−1)
·
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The stochastic counterpart of (3.28) is as follows: for fixed γ̂t and v̂t−1 (the estimate of
vt−1), derive v̂t from following program

max
v
D(v) :=

1

N

N∑

i=1

I{S(Xi)≥γt}W (X i;u, vt−1) ln f(X i; v). (3.29)

In typical applications, the function D is concave and differentiable with respect to v,
and thus the updating equation (3.29) is equivalent to solving the following system of
equations:

1

N

N∑

i=1

I{S(Xi)≥γt}W (X i;u, vt−1)∇ ln f(X i; v) = 0, (3.30)

where the gradient is with respect to v.

Remark (smoothed updating): Instead of updating the parameter v directly via the
solution of (3.29) we use the following smoothed version

v̂t = αṽt + (1− α)v̂t−1, t = 1, 2, ..., (3.31)

where ṽt is the parameter vector from the solution of (3.29), and α is called the smoothing
parameter, with 0.7 ≤ α ≤ 1. The reason for using this smoothed is: (a) to smooth out the
value of v̂t, (b) to reduce the probability that some component v̂t,i of v̂t will be zero or one
at the first few iterations. This is particularly important when v̂t is a vector or matrix of
probabilities.

CE Algorithm for Optimization

1. Choose v̂0, and 0 < θ < 1. Set t = 1.

2. GenerateN samplesX1, X2, ..., XN according to f(·; v̂t−1), and compute (1−θ)-quantile
γ̂t of S according to (3.27).

3. Using the same samples X1, X2, ..., XN to solve the stochastic programming (3.29).
Denote the solution by ṽt.

4. Applying (3.31) to smooth out the vector ṽt.

5. Repeat step 2-4 until a pre-precified stopping criterion is met.

To apply the Cross-Entropy method for an optimization problem, the most important point
is how to find an appropriate family of pdfs, say {f(·; v), v ∈ V }, on the feasible set of this
optimization problem such that updating the parameters could be done as easily as possible.
In fact, it seems that there is no common way to do that, since it depends strongly on the
structure of the feasible set. In this thesis, when using the Cross-Entropy method, we will
propose such families of pdfs for the considered problems.
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Abstract

In this paper, we consider a well-known problem in the general area of search
theory: planning a multisensor in multizone search so as to maximize the
probability of detection of a target under a given resource effort to be shared.
We propose a new optimization model that is a nonlinear mixed 0-1 pro-
gramming problem. This problem is then reformulated as a DC (Difference
of Convex functions) program via a penalty technique. DC programming
and DCA (DC algorithm) have been investigated for solving the resulting
DC program. Numerical experiments demonstrate the efficiency and the su-
periority of the proposed algorithm in comparison with the existing method.

Keywords: Search theory, Hierarchical optimization, Combinatorial
optimization, DC programming and DCA, nonlinear mixed 0-1
programming, exact penalty

1. Introduction

Search theory is defined by Cadre and Soiris [3] as a discipline that treats
the problem of how a missing object can be searched optimally, when the
amount of searching time is limited and only probabilities of the possible
position of the missing object are given. The theory of how to search for
missing objects has been a subject of serious scientific research for more than
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50 years. It is a branch of the broader applied science known as operations
research [6].

In fact, Search theory was first established during World War II by the
work of B. O. Koopman and his colleagues [12] in the Antisubmarine Warfare
Operations Research Group (ASWORG). The applications of search theory
were first made on military operations [19]. Koopman [11] stated that the
principles of search theory could be applied effectively to any situation where
the objective is to find a person or object contained in some restricted ge-
ographic area. After military applications, it was also applied to different
problems such as surveillance, explorations, medicine, industry and search
and rescue operations [8]. The aim of searching in the context of Aeronau-
tical Search and Rescue (ASAR), for instance, is to find the missing aircraft
effectively and as quickly as possible with the available resources [18].

A search theory problem, in general, is characterized by three pieces of
data ([3]):

• the probabilities of the searched object (the “target”) being in various
possible locations;

• the local detection probability that a particular amount of local search
effort could detect the target;

• the total amount of searching effort available.

The problem is to find the optimal distribution of this total effort that
maximizes the probability of detection.

Stone [18] summarized major steps in the development of search the-
ory, for instance, stationary target problems, moving target problems, op-
timal searcher path algorithms, and dynamic search games. The last item
(search games) is the primary focus of recent research, including numerous
sub-domains such as mobile evaders, avoiding target, ambush games, in-
spection games, and tactical games. For moving target problems, decisive
progress has been made in developing search strategies that maximize the
probability of detecting the (moving) target within a fixed amount of time.
In particular, Brown [2] and Washburn [21] have proposed an iterative algo-
rithm in which the motion space and the time frame have been discretized,
and the search effort available in each period is infinitely divisible between
the grid cells of the target motion space. In this approach, the search effort
available in each period is bounded above by a constant that does not depend
on the allocations made during any other periods.
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In the “classical” search theory, the target is said to be detected if a
detection occurs any time during the measurement epoch. Here, the target
track will be said to be detected if (multiple) elementary detections occur
at various times, and this is the fundamental difference. Thus, there is a
test for acceptance (or detection) of a target track [5, 20]. Track detection is
also associated with a spatio-temporal modeling of the target track. A quite
common hypothesis in classical search theory is that the objective function,
which is generally the non-detection probability, is a convex functional rel-
atively to the search efforts. This is quite a reasonable assumption in this
context, which ensures convergence of the iterative algorithms.

In this paper we consider an instance of search theory problems that can
be described as follows: suppose that a space of search is partitioned into
zones of reasonable size. A unique sensor must be able to explore efficiently
a whole zone. Each zone is itself partitioned into cells. A cell is an area
in which all points have the same properties, according to the difficulty of
detection (altitude, vegetation, etc.). Each sensor has its own coefficient of
visibility over a cell. The visibility coefficients depend also on the kind of
the target that is searched. Here, there is a unique target to detect. The
objective is to allot sensors to search zones and to find the best resource
sharing for every sensor so as to maximize the probability of detection of a
target.

The optimization model of this problem is hierarchical:

• At upper level: finding the best allotment of sensors to search zones (a
sensor is allotted to a unique zone);

• At lower level: determining the best resource sharing for every sensor,
in order to have an optimal surveillance over the allotted zone.

At the upper level, the objective function can be non-convex or implicitly
defined via an algorithm applied to the lower level. This makes the problem
very hard. In [17], Simonin et al. have proposed a hierarchical approach
for solving this problem where a cross-entropy (CE) algorithm [1, 4, 16] has
been developed for the upper level while an optimization method based on
the algorithm of de Guenin [7] for detecting a stationary target has been used
in the lower level. Besides this paper, we do not find in the literature any
other work considering this problem. We can say that, up to now, there are
no deterministic models and methods for solving this problem.
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In this work we develop a deterministic continuous optimization approach
based on DC (Difference of Convex functions) programming and DCA (DC op-
timization Algorithms). The contribution of the paper is 3-fold:

Firstly, we propose in this paper an original deterministic mathematical
model for the problem. By introducing the binary variables (the assignment
variables) we formulate this hierarchical optimization problem as a mixed
0− 1 nonlinear program. Due to the very large dimension of this problem in
practice and the non-linearity of the objective function, the standard methods
in combinatorial optimization such as branch and bound, branch and cut,
cutting plan cannot be applied. Attempting to develop robust numerical
solution approaches, we try to reformulate the problem as a DC program.

Secondly, we investigate an exact penalty technique to reformulate the
mixed 0− 1 nonlinear program into a continuous optimization problem that
is in fact a DC program. We prove also that a penalty parameter can be
computed explicitly.

Thirdly, we investigate DC programming and DCA for solving the related
DC program.

DC programming and DCA ([13–15] and references therein) aim to solve
a general DC program that takes the form

α = inf{f(x) := g(x)− h(x) : x ∈ IRp} (Pdc) (1)

where g, h are lower semicontinuous proper convex functions on IRp. Such a
function f is called a DC function, and g−h, a DC decomposition of f while
g and h are the DC components of f. The construction of DCA involves DC
components g and h but not the function f itself: each iteration k of DCA
consists of computing

yk ∈ ∂h(xk), xk+1 ∈ argmin{g(x)− h(xk)− 〈x− xk, yk〉 : x ∈ IRp} (Pk).

Hence, for a DC program, each DC decomposition corresponds to a different
version of DCA. Since a DC function f has an infinite number of DC decom-
positions which have crucial impacts on the qualities (speed of convergence,
robustness, efficiency, globality of computed solutions,...) of DCA, the search
for a “good” DC decomposition is important from an algorithmic point of
view. Moreover, despite its local character, DCA with a good initial point
can converge to global solutions. Finding a “good” initial point is then also
an important stage of DCA. How to develop an efficient algorithm based on
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the generic DCA scheme for a practical problem is thus a judicious ques-
tion to be studied, and the answer depends on the specific structure of the
problem being considered. In the current work, using an appropriate DC
decomposition we propose a DCA scheme that is very inexpensive in term of
CPU time thanks to the rapidity of the algorithm for solving the subproblem
(Pk).

The paper is organized as follows. The problem statement is presented
in Section 2. Section 3 is devoted to the reformulation of the considered
problem in terms of a deterministic continuous optimization problem. The
solution method via DC programming and DCA is investigated in Section 4.
The numerical results are reported in Section 5 while some conclusions and
perspectives are discussed in Section 6.

2. Problem statement

First, let us introduce the notation employed in the paper.
E : space of search, Z : number of zones, S : number of sensors
z : zone index
i : cell index
s : sensor index
α : prior on the initial location of the target
Φs : quantity of resource available for sensor s to search the space
wi,z,s : coefficient that characterizes the acuity of sensor s over cell i of the
zone z (visibility coefficient).

We state below the problem as described in [17] (see [17] for more details):
The space of search: the search space, named E, is a large space with

spatially variable search characteristics. The search space E is divided into
Z search zones, denoted Ez, z = 1, 2, ..., Z, each of them is partitioned into
Cz cells, denoted {ci,z}Cz

i=1 so that:

E =
Z⋃

z=1

Ez, Ez ∩ Ez′ = ∅,∀z 6= z′,

Ez =
Cz⋃

i=1

ci,z, ci,z ∩ cj,z = ∅,∀i 6= j.

A cell ci,z represents the smallest search area in which the search parameters
are constant. For example, it can be a part of land with constant character-
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istics (latitude, landscape). Each zone must have a reasonable size in order
to be explored by a sensor within a fixed time interval.

The target : the target is hidden in one unit of the search space. Its
location is characterized by a prior αi,z. Thus, we have

Z∑

z=1

Cz∑

i=1

αi,z = 1.

The means of search: means of search can be passive (e.g. IRST, ESM)
or active sensors (radars). We will consider that searching the target will
be carried out by S sensors. Due to operational constraints, each sensor
s ∈ S must be allotted to a unique search zone. For example, it could be the
exploration time to share between units of a zone. At the lower level, for the
sensor s allotted to the zone Ez, the amount of search resource allocated to
the cell ci,z is denoted xi,z,s. It can represent the time spent on searching the
cell ci,z (passive sensor), the intensity of emissions or the number of pulses
(active sensors), etc. Furthermore, each sensor s has a search amount Φs, it
means that if the sensor s is allotted to the zone Ez then:

Cz∑

i=1

xi,z,s ≤ Φs.

To characterize the effectiveness of the search at the cell level, we consider the
conditional non-detection probability P̄s(xi,z,s) which represents the proba-
bility of not detecting the target given that the target is hidden in ci,z and
that we apply an elementary search effort xi,z,s on ci,z. Some assumptioms
are made to model P̄s(xi,z,s). For all sensors, the function xi,z,s 7→ P̄s(xi,z,s) is
convex and non-increasing (law of diminishing return). Assuming indepen-
dence of elementary detections, a usual model is P̄s(xi,z,s) = exp(−wi,z,sxi,z,s),
where wi,z,s is a (visibility) coefficient which characterizes the reward for the
search effort put in ci,z by the sensor s.

An additional assumption is that sensors act independently at the cell
level. This means that if S sensors are allotted to ci,z the probability of not

detecting a target hidden in ci,z is simply
S∏

s=1

P̄s(xi,z,s).

Let m : {1, 2, ..., S} → {1, 2, ..., Z} be a mapping allotting sensors to
search zones. Our aim is to find both the optimal mapping m (i.e., the best
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sensor-to-zone allotment) and the optimal local distributions x in order to
minimize the non-detection probability. The objective function is then

f(m,x) =
Z∑

z=1

Cz∑

i=1

αi,z

∏

s∈m−1(z)

P̄s(xi,z,s),

which leads to the following problem [17]:





min
m,x

f(m,x) =
Z∑

z=1

Cz∑
i=1

αi,z

∏
s∈m−1(z)

P̄s(xi,z,s)

s.t.
Cz∑
i=1

xi,z,s ≤ Φs,∀z, ∀s ∈ m−1(z),

xi,z,s ≥ 0,∀i ∈ Cz, ∀s = 1, ..., S, ∀z = 1, ..., Z,
m mapping : {1, 2, ..., S} → {1, 2, ..., Z}.

(2)

This problem is hierarchical:

• At upper level: finding the best allotment of sensors to search zones (a
sensor is allotted to a unique zone);

• At lower level: determining the best resource sharing for every sensor.

3. A deterministic formulation of Problem (2)

Let us introduce the allocation variable uz,s defined by

uz,s =

{
1 if the sensor s is allotted to the zone z,
0 otherwise.

Let variable xi,z,s be the quantity of resource of the sensor s allotted to the
cell ci,z in the zone z. We can rewrite (2) in the following form:





min
x,u

(f(x, u) =
Z∑

z=1

Cz∑
i=1

αi,z

S∏
s=1

P̄s(xi,z,suz,s))

s.t.
Cz∑
i=1

xi,z,s ≤ Φs, z = 1, ..., Z, s = 1, ..., S,

Z∑
z=1

uz,s = 1, s = 1, ..., S,

uz,s ∈ {0, 1}, xi,z,s ≥ 0, s = 1, ..., S, z = 1, ..., Z, i = 1, ..., Cz.

(3)
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The constraints
Z∑

z=1

uz,s = 1, ∀s = 1, 2, ..., S mean that each sensor s ∈ S

must be allotted to a unique search zone.
With the usual model P̄s [10]:

P̄s(xi,z,s) = exp(−wi,z,sxi,z,s),

the objective function f becomes:

f(x, u) =
Z∑

z=1

Cz∑

i=1

αi,z exp(−
S∑

s=1

wi,z,sxi,z,suz,s).

Set
d = S.(C1 + C2 + ...+ Cz), n = Z.S.

Let

D = {x = (xi,z,s) ∈ Rd
+ :

Cz∑

i=1

xi,z,s ≤ Φs, z = 1, ..., Z, s = 1, ..., S}

and

M = {u = (uz,s) ∈ {0, 1}Z.S :
Z∑

z=1

uz,s = 1, s = 1, ..., S},

then we can write the problem (3) in the form:

(P )





min
x,u

Z∑
z=1

Cz∑
i=1

αi,z exp(−
S∑

s=1

wi,z,sxi,z,suz,s)

s.t. x ∈ D, u ∈ M,

which is a nonlinear mixed 0-1 programming problem. It is easy to see
that the objective function of (P ), say f , is convex in x for each fixed u,
and similarly, it is convex in u for each fixed x. Moreover, f is infinitely
differentiable.

4. Solution Method

We first reformulate (P) as a DC program by using a penalty technique.
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4.1. DC Reformulation

Consider the function p and the bounded polyhedral convex setK defined,
respectively, by:

p(u) =
Z∑

z=1

S∑

s=1

uz,s(1− uz,s),

and

K = {u = (uz,s) ∈ [0, 1]Z.S :
Z∑

z=1

uz,s = 1, s = 1, ..., S}.

We notice that p is finite and concave on RZ.S, non-negative on K and

M = {u ∈ K : p(u) ≤ 0} .

Hence Problem (P ) can be rewritten as

α = min{f(x, u) : x ∈ D, u ∈ K, p(u) ≤ 0}.

The exact penalty result is given by the following theorem.

Theorem 1. (i) Let

t0 = max{||∇2
u(f(x, u))|| : u ∈ [0, 1]n, x ∈ D},

then ∀t > t0 the problem (P)

min{f(x, u) : x ∈ D, u ∈ M} (P )

is equivalent to the problem

min{f(x, u) + tp(u) : x ∈ D, u ∈ K}. (Pt)

in the following sense: they have the same optimal value of the objective
function and the same optimal solution set.

(ii) If (x∗, u∗) is a local minimum to problem (Pt) then (x∗, u∗) is a feasible
solution to the problem (P ).

Proof. Let ϕ(u) := min
x∈D

(f(x, u) + tp(u)). By definition of t0, for each

fixed x in D, the function f(x, u) + t0p(u) is concave in u, thus the function
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min
x∈D

(f(x, u) + t0p(u)) is concave in u, and consequently, for any t > t0, ϕ is

strongly concave in u.
If (x∗, u∗) is an optimal solution to the problem (P ), then p(u∗) = 0 and

f(x, u) ≥ f(x∗, u∗),∀x ∈ D,∀u ∈ M. (4)

Hence

f(x, u) + tp(u) ≥ f(x, u) ≥ f(x∗, u∗) + tp(u∗),∀x ∈ D,∀u ∈ M (5)

which implies that
ϕ(u) ≥ ϕ(u∗), ∀u ∈ M.

Since extr(K) = M (see Lemma 2 below), and ϕ is concave, we have

min {ϕ(u) : u ∈ K} = min {ϕ(u) : u ∈ M} . (6)

Combining (5) and (6) we obtain

f(x, u) + tp(u) ≥ f(x∗, u∗) + tp(u∗),∀x ∈ D,∀u ∈ K. (7)

So (x∗, u∗) is also an optimal solution to the problem (Pt).
Conversely, suppose that (x∗, u∗) is an optimal solution of the problem

(Pt), i.e. (7) holds. Thus ϕ(u) ≥ ϕ(u∗),∀u ∈ K. Since ϕ is strongly concave,
u∗ is an extreme point of K and therefore u∗ ∈ M . It means that (x∗, u∗) is
a feasible solution of the problem (P ). This and (7) imply (4), i.e., (x∗, u∗)
is an optimal solution to (P ).

(ii) If (x∗, u∗) is a local minimum of problem (Pt), then there exist a
neighbourhood V of x∗, U of u∗, with U is convex and compact such that
f(x, u) + tp(u) ≥ f(x∗, u∗) + tp(u∗),∀x ∈ D ∩ V, ∀u ∈ K ∩ U . Let ψ be the
function defined by

ψ(u) = min
x∈D∩V

(f(x, u) + tp(u)).

It is clear that ψ is strongly concave in u ∈ K ∩ U , and ψ(u) ≥ ψ(u∗), ∀u ∈
K ∩ U . So u∗ is an extreme point of the convex set K ∩ U , thus u∗ is an
extreme point of the convex setK, say u∗ ∈ M. Therefore (x∗, u∗) is a feasible
solution to the problem (P ). ¤

Note that the part (ii) in this theorem is very useful for DCA applied to
(Pt) because DCA usually produces a local minimum.
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Lemma 2. We have extr(K) = M, where extr(K) is the set of extreme
points of K. Hence co(M) = K.

Proof. The set K can be expressed as the product of S simplex ∆, say

K = ∆×∆× ...×∆ with ∆ :=

{
us = (uz,s)z ∈ [0, 1]Z :

Z∑

z=1

uz,s = 1

}
.

It is easy to see that

extr(∆) =

{
us = (uz,s)z ∈ {0, 1}Z :

Z∑

z=1

uz,s = 1

}
.

Hence

extr(K) = extr(∆)× extr(∆)× ...× extr(∆) = M.

Since D is compact and f ∈ C∞, max{||∇2
u(f(x, u))|| : u ∈ [0, 1]n, x ∈

D} exists. The following proposition gives an estimation of t0 :

Proposition 3. We have

t0 := max{||∇2
u(f(x, u))|| : u ∈ [0, 1]n, x ∈ D} ≤ Φαw2

S∑

s=1

Φs,

where

α = max{αi,z : z = 1, ..., Z, i = 1, ..., Cz},Φ = max{Φs : 1, ..., S},

w = max{wi,z,s : z = 1, ..., Z, i = 1, ..., Cz, s = 1, ..., S}.

Proof. see appendix.

In the following sections we will investigate DCA for solving problem (Pt)

with t0 = Φαw2
S∑

s=1

Φs.
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4.2. DC Algorithm (DCA)

4.2.1. Outline of DC Programming and DCA

Pham Dinh Tao in 1985 introduced DC programming and DCA, which
constitute the backbone of (smooth or nonsmooth) nonconvex programming
and global optimization. Le Thi Hoai An and Pham Dinh Tao since 1994
extensively developed them. And now DCA is a classic and increasingly
popular approach (see [13–15] and references therein). DC programming and
DCA address the problem of minimizing a function f which is a difference
of convex functions on the whole space IRp or on a convex set C ⊂ IRp.
Generally speaking, a DC program takes the form

α = inf{f(x) := g(x)− h(x) : x ∈ IRp} (Pdc) (8)

where g, h are lower semicontinuous proper convex functions on IRp. Such a
function f is called DC function, and g − h, DC decomposition of f while
g and h are DC components of f. The convex constraint x ∈ C can be
incorporated in the objective function of (Pdc) by using the indicator function
on C denoted χC which is defined by

χC(x) =

{
0 if x ∈ C
+∞, otherwise.

If either g or h is a polyhedral convex function then (Pdc) is called a polyhe-
dral DC program.

Let
g∗(y) := sup{〈x, y〉 − g(x) : x ∈ IRp}

be the conjugate function of g. Then, the following program is called the
dual program of (Pdc):

αD = inf{h∗(y)− g∗(y) : y ∈ IRp}. (Ddc) (9)

One can prove that α = αD, (see e.g. [13, 14]) and there is the perfect
symmetry between primal and dual DC programs: the dual to (Ddc) is exactly
(Pdc).

DCA is based on the local optimality conditions of (Pdc), namely

∂h(x∗) ∩ ∂g(x∗) 6= ∅ (10)

(such a point x∗ is called a critical point of g − h), and

∅ 6= ∂h(x∗) ⊂ ∂g(x∗). (11)
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The condition (11) is necessary for local optimality of (Pdc) (or the generalized
KKT condition). It is also sufficient for many classes of DC programs that
include some cases quite often encountered in practice (see e.g. [13, 14]).

The idea of DCA is simple: each iteration of DCA approximates the
concave part −h by its affine majorization (that corresponds to taking yk ∈
∂h(xk)) and minimizes the resulting convex function (that is equivalent to
determining xk+1 ∈ ∂g∗(yk)).
Generic DCA scheme
Initialization: Let x0 ∈ IRp be a best guess, 0 ← k.
Repeat

Calculate yk ∈ ∂h(xk)
Calculate xk+1 ∈ argmin{g(x)− h(xk)− 〈x− xk, yk〉 : x ∈ IRp} (Pk)
k + 1 ← k

Until convergence of xk.
It is important to mention the following main convergence properties of

DCA:

• DCA is a descent method (the sequences {g(xk)−h(xk)} and {h∗(yk)−
g∗(yk)} are decreasing) without linesearch;

• If the optimal value α of the problem (Pdc) is finite and the infinite
sequences {xk} and {yk} are bounded then every limit point x∗ (resp.
y∗) of the sequence {xk} (resp. {yk}) is a critical point of g − h (resp.
h∗ − g∗).

• DCA has a linear convergence for general DC programs.

• DCA has a finite convergence for polyhedral DC programs.

The solution of a practical nonconvex program by DCA must have two stages:
the search of an appropriate DC decomposition and the search of a good
initial point. An appropriate DC decomposition, in our sense, is the one that
corresponds to a DCA which is not expensive and has interesting convergence
properties.

In the next subsection we will develop an instance of DCA to solve the
problem (Pt), and study the convergence properties of the proposed algo-
rithm.
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4.2.2. Description of the DCA applied to (Pt)

From the computations in the Appendix we have

||H(f)||∞ ≤ max{Sαw2 + Sαw2Φ + αw, 2Φαw2

S∑

s=1

Φs +Nwα}.

where
N = max{Cz : z = 1, ..., Z}.

Hence, let ρ := max{Sαw2 + Sαw2Φ + αw, 2Φαw2
S∑

s=1

Φs + Nwα}, a DC

formulation of (Pt) can be

min {g(x, u)− h(x, u) : (x, u) ∈ D ×K} , (12)

where

g(x, u) :=
ρ

2
||(x, u)||2 and h(x, u) :=

ρ

2
||(x, u)||2 − f(x, u)− tp(u).

DCA applied to DC program (12) consists of computing, at each iteration k,
the two sequences

{
(yk, vk)

}
and

{
(xk, uk)

}
such that (yk, vk) ∈ ∂h(xk, uk)

and (xk+1, yk+1) is an optimal solution of the following convex quadratic
program:

min
{ρ

2
||(x, u)||2 − 〈(x, u), (yk, vk)〉 : (x, u) ∈ D ×K

}

which can be decomposed into two subproblems

min
{ρ

2
||x||2 − 〈x, yk〉 : x ∈ D

}
(13)

and
min

{ρ

2
||u||2 − 〈u, vk〉 : u ∈ K

}
. (14)

We are now in a position to summarize the DCA for solving Problem (Pt)

Step 1. Initialization: let (x0, u0) satisfy the constraints of the problem.
Choose ε1 > 0, ε2 > 0 and k = 0.
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Step 2. Compute (yk, vk) = ∇h(xk, uk), with

yk = ρxk −∇xf(x
k, uk), vk = ρuk −∇uf(x

k, uk) + t(2uk − e).

Step 3. Compute (xk+1, uk+1) by solving the two convex quadratic prob-
lems (13) and (14)

Step 4. Iterate Step 2 and 3 until

|f(xk+1, uk+1)− f(xk, uk)| ≤ ε1(1 + |f(xk+1, uk+1)|)
or ||(xk+1, uk+1)− (xk, uk)||∞ ≤ ε2(1 + ||(xk+1, uk+1)||∞).

Theorem 4. (Convergence properties of Algorithm DCA. For simplicity’s
sake, we omit the dual part of these properties).

i) DCA generates the sequence
{
(xk, uk)

}
such that the sequence

{
f(xk, uk)

}

is decreasing.
ii) The point

{
(xk, uk)

}
verifies the generalized condition of the problem

(12).

Proof. Direct consequences of the convergence properties of DCA for gen-
eral DC programs and the fact that the function h is differentiable.

Efficient ways for solving problems (13) and (14)
In fact, we can continuously divide the problems (13) and (14) into some

smaller problems with unique constraints (except positive constraints). By
denoting yk = (yi,z,s) ∈ Rd, vk = (vz,s) ∈ RZ.S, solving the problem (13) is
replaced by solving S.Z subproblems with unique inequality constraints





min
xi,z,s

Cz∑
i=1

(
x2
i,z,s −

2yki,z,s
ρ

xi,z,s

)

s.t.
Cz∑
i=1

xi,z,s ≤ Φs,

xi,z,s ≥ 0, ∀i = 1, 2, ..., Cz,

(15)

and solving the problem (14) is replaced by solving S subproblems with
unique equality constraints





min
uz,s

Z∑
z=1

(
u2
z,s −

2vkz,s
ρ

uz,s

)

s.t.
Z∑

z=1

uz,s = 1,

uz,s ≥ 0,∀z = 1, 2, ..., Z.

(16)
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The problem (16) can be solved efficiently by the Block Pivotal Principal
Pivoting Algorithm [9]. We develop below an efficient algorithm for solving
the problem (15).

An efficient algorithm for solving (15)
We consider the quadratic convex problem:





min
x

n∑
i=1

(
1

2
x2
i − aixi

)

s.t.
n∑

i=1

xi ≤ Φ,

xi ≥ 0,∀i = 1, 2, ..., n.

(17)

Set
I = {i ∈ {1, 2, ..., n} : ai > 0}.

We firstly see that if
∑
i∈I

ai ≤ Φ then x∗ = (x∗
1, ..., x

∗
n) with x∗

i = ai if i ∈ I

else x∗
i = 0, is an optimal solution for Problem (17).

In contrast, i.e., ∑

i∈I
ai > Φ, (18)

then there exists λ ≥ 0 such that

S(λ) :=
∑

i∈Iλ
(ai − λ) > Φ,

where
Iλ = {i ∈ I : ai > λ}.

Indeed, we can choose, for instance,

0 ≤ λ < min

{
1

|I|

(∑

i∈I
ai − Φ

)
, ai, i ∈ I

}
. (19)

We consider Karush-Kuhn-Tucker condition for Problem (17)

(KKT )





xi − ai + λ− ti = 0, i = 1, 2, ..., n,

λ(
n∑

i=1

xi − Φ) = 0,

tixi = 0, i = 1, 2, ..., n,
λ ≥ 0,
ti ≥ 0, i = 1, 2, ..., n.
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Suppose that x = (x1, ..., xn) and λ ≥ 0 is the solution for (KKT ) equations.
If xi > 0, by the first condition, then

xi − ai + λ = 0, i ∈ J, (20)

where
J = {i ∈ {1, 2, ..., n} : xi > 0}.

Thus
xi = ai − λ, ai > λ, i ∈ J.

With the condition (18), we have also λ > 0. The second condition of (KKT )
leads to: ∑

i∈J
xi = Φ, (21)

From (20) and (21), we have

λ =
1

|J |

(∑

i∈J
ai − Φ

)
.

In this case, we present the following algorithm to solve this problem:
Step 1. Initiation: let λ1 = max{ai, i ∈ I} + α, α > 0 arbitrary, λ2

satisfying the condition (19), and ε > 0.

Step 2. Iteration
Repeat

• Compute λ =
λ1 + λ2

2
,

• Set {
xi = ai − λ if i ∈ Iλ,
xi = 0 otherwise,

where
Iλ = {i ∈ I : ai > λ}.

• Compute S(λ) =
∑
i∈Iλ

xi.

• Compare S(λ) with Φ, and set
{

λ2 = λ if S(λ) > Φ + ε,
λ1 = λ if S(λ) < Φ− ε.
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Until (|S − Φ| ≤ ε).
Note that by choosing λ1, λ2 in Step 1, we have S(λ1) = 0 < Φ < S(λ2).

5. Numerical experimentation

The search space is the lake of Laouzas in France [17]. The number of
zones is Z = 4 and there are n = 30 cells in each zone. We have S = 6
sensors. All sensors have the same amount of resource Φ. The coefficients
are given in Table 1.

The program is written in C using Microsoft Visual C++ 2008, and im-
plemented on a notebook with chipset Intel(R) Core(TM) Duo CPU 2.0 GHz,
RAM 3GB.

Figure 1: An aerial photograph of the lake of Laouzas

Type of Cell Prior of target Visibility of sensors

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6

Forest 0.0085 0.4 0.5 0.6 0.8 0.5 0.1

Water 0.001 0.9 0.1 0.1 0.1 0.3 0.5

Plat land 0.0115 0.3 0.1 0.4 0.6 0.5 0.2

Rough land 0.013 0.2 0.7 0.8 0.2 0.4 0.6

Very rough land 0.014 0.1 0.6 0.7 0.1 0.3 0.5

Town 0 0.8 0.9 0.1 0.7 0.6 0.2

Table 1: Data

To find a starting point of DCA, we take (x0, u0), where x0 = (x0
i,z,s),
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Figure 2: Partition of the lake Laouzas

u0 = (u0
z,s) are as follows:

x0
i,z,s =

Φ

n
, u0

z,s =
1

Z
, s = 1, ..., S, z = 1, ..., Z, i = 1, ..., Cz,

and run DCA for solving (Pt) with the parameters ρ and penalty quite small
(depending on the parameters Φ). We will get a new pair (x1, u1) which
becomes the starting point of the main DCA. In the implementation of the
main DCA, we choose ε1 = ε2 = 10−7, and some values of parameters ρ and
penalty are given in Table 2. In Table 3 we compare the results obtained by

Amount of The first DCA The main DCA
resource Φ Rho Penalty Rho Penalty

Φ = 5 0.378 0.001701 3.78 1.701

Φ = 10 1.3986 0.006804 13.986 6.804

Φ = 15 1.5498 0.007655 30.996 15.309

Φ = 20 1.0962 0.013698 54.81 27.216

Φ = 25 0.85428 0.004253 85.428 42.525

Φ = 30 0.61425 0.006124 122.85 61.236

Φ = 35 0.83538 0.008335 167.076 83.349

Φ = 40 0.72702 0.010886 218.106 108.864

Table 2: Parameters
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DCA and the CE algorithm [17]. The main idea of CE algorithm is to gener-
ate particular allotments of sensors to search zones that will be evaluated and
then selected, in order to obtain a drawing law which will converge toward
the optimal allotment. The steps of this CE algorithm can be described as
follows:

Step 1. Initialize M = M0 = (pM0(z|s)) a uniform distribution, i.e.,

pM0(z|s) = 1

Z
, s = 1, ..., S, z = 1, ..., Z,

and choose θ ∈ (0, 1). (Note that p(z|s) represents the probability to assign
sensor s to zone z.)
Step 2. Generate N allotment mappings m1,m2, ...,mN according to M,
and compute f(mk) := min

x
f(mk, x), k = 1, 2, ..., N , where f(m,x) is objec-

tive function of (2). (In other words, we obtain f(mk) by solving Problem
(2) when mk is known.)
Step 3. Sort the sequence {f(mk)}Nk=1 in the increasing orders. Let f(mσ(1)) ≤
f(mσ(2)) ≤ ... ≤ f(mσ(N)), where σ is a permutation of the set {1, 2, ..., N}.
Set T = bθNc, then choose T best draws Xσ(1), Xσ(2), ..., Xσ(T ).
Step 4. Update M by the formula

pM(z|s) := card{k ∈ {σ(1), σ(2), ..., σ(T )} : x
σ(k)
s = z}

T
,

Step 5. Iterate step 2, 3, 4 until convergence.

Since CE is a heuristic method, for each parameter Φ we run the CE
algorithm 10 times and then take the average for the 10 results. The param-
eters for CE are as follows: for each iteration, number of samples is N = 50,
θ = 0.3, and the number of iterations is limited to 15. We observe that the
DCA produced better solutions than the CE while the CPU time is shorter.

Figure 3 shows the results (non-detection probability) obtained by DCA
when the amount of resource, Φ, varies. We can see that there is a negative
relationship between Φ and the non-detection probability. When Φ = 110,
the non-detection probability is 0.060488.

6. Conclusion

We have presented a new approach for solving the problem of planning a
multisensor multizone search for a target. This is the first time a determin-
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Amount of DCA method CE method
resource Φ Objective function Time Objective function Time

Φ = 5 0.818115 1.406s 0.818577 1.192s

Φ = 10 0.684478 1.281s 0.684701 1.427s

Φ = 15 0.579858 1.281s 0.580673 1.925s

Φ = 20 0.495232 2.500s 0.500550 2.284s

Φ = 25 0.426436 2.437s 0.428900 2.689s

Φ = 30 0.368320 2.265s 0.372219 2.620s

Φ = 35 0.322050 2.422s 0.327574 2.285s

Φ = 40 0.282366 2.421s 0.292742 3.688s

Table 3: Comparative results between DCA and CE
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Figure 3: Relation of non-detection probability given by DCA and amount
of resource
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istic optimization model is introduced in the literature for solving this prob-
lem. This constitutes an interesting contribution of the paper. For solving
the combinatorial optimization problem by DCA, an innovative continuous
approach in nonconvex programming framework, we first reformulated the
original problem in the form of a DC program. We prove an exact penalty
result in which the penalty parameter can be estimated. That is our second
important contribution. The third contribution deals with the development
of an efficient DCA scheme for solving the resulting problem. In this scheme,
the subconvex programs is decomposed on some simpler convex programs
that can be solved by fast algorithms. Numerical results show that our
approach can solve this problem more efficiently than the CE method, an
efficient algorithm for the problem. Whenever there is a good starting point,
we can get a better local solution or even a global solution. In future, we
will investigate DCA for solving the moving target case of this problem.

Appendix

Estimate the norm of Hessian matrix of function f(x, u) and
max{||∇2

u(f(x, u))||∞ : u ∈ [0, 1]n, x ∈ D}.

x = {xi,z,s}i,z,s = (x1,1,1, ..., xC1,1,1, x1,2,1, ..., xC2,2,1, ..., x1,Z,1, ..., xCZ ,Z,1, x1,1,2,
..., xC1,1,2, ..., x1,Z,2, ..., xCZ ,Z,2, ..., x1,1,S, ..., xC1,1,S, ..., x1,Z,2, ..., xCZ ,Z,S) ∈ Rp.

u = {uz,s}z,s = (u1,1, u2,1, ..., uZ,1, u1,2, u2,2, ..., uZ,2, u1,S, u2,S, ..., uZ,S) ∈
RZ.S.

We have
∂f

∂xi1,z1,s1

(x, u) = −αi1,z1wi1,z1,s1uz1,s1 exp(−
S∑

s=1

wi1,z1,sxi1,z1,suz1,s),

∂2f

∂xi1,z1,s1∂xi2,z2,s2

(x, u) =





0 if (i2, z2) 6= (i1, z1)

αi1,z1wi1,z1,s1uz1,s1wi1,z1,s2uz1,s2 exp(−
S∑

s=1

wi1,z1,sxi1,z1,suz1,s)

if (i2, z2) = (i1, z1)
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∂2f

∂xi1,z1,s1∂uz3,s3

(x, u) =





0 if z3 6= z1

αi1,z1wi1,z1,s1uz1,s1wi1,z1,s3xi1,z1,s3 exp(−
S∑

s=1

wi1,z1,sxi1,z1,suz1,s)

if z3 = z1, s3 6= s1

(−αi1,z1wi1,z1,s1 + αi1,z1w
2
i1,z1,s1

uz1,s1xi1,z1,s1) exp(−
S∑

s=1

wi1,z1,sxi1,z1,suz1,s)

if z3 = z1, s3 = s1.

On the line (i1, z1, s1) of the matrix Hessian of the function f , we have the
sum of absolute of all elements:

Si1,z1,s1 =
S∑

s2=1

|αi1,z1wi1,z1,s1uz1,s1wi1,z1,s2uz1,s2| exp(−
S∑

s=1

wi1,z1,sxi1,z1,suz1,s)+

S∑

s3=1

(|αi1,z1wi1,z1,s1uz1,s1wi1,z1,s3xi1,z1,s3|+ |αi1,z1wi1,z1,s1|) exp(−
S∑

s=1

wi1,z1,sxi1,z1,suz1,s)

= (
S∑

s2=1

|αi1,z1wi1,z1,s1uz1,s1wi1,z1,s2uz1,s2|+
S∑

s3=1

|αi1,z1wi1,z1,s1uz1,s1wi1,z1,s3xi1,z1,s3|+

|αi1,z1wi1,z1,s1|) exp(−
S∑

s=1

wi1,z1,sxi1,z1,suz1,s).

Let

α = max{αi,z : z = 1, 2, ..., Z, i = 1, 2, ..., Cz},Φ = max{Φs : 1, 2, ..., S},

w = max{wi,z,s : z = 1, 2, ..., Z, i = 1, 2, ..., Cz, s = 1, 2, ..., S},
N = max{Cz : z = 1, 2, ..., Z}.

Because 0 ≤ uz,s ≤ 1,∀s ∈ S, z ∈ Z, and exp(−
S∑

s=1

wi1,z1,sxi1,z1,suz1,s) ≤ 1,

we have

Si1,z1,s1 ≤ Sαw2 + Sαw2Φ + αw

= Sαw2(Φ + 1) + αw, ∀z1 = 1, 2, ..., Z, i1 = 1, 2, ..., Cz1 , s1 = 1, 2, ..., S.
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We have
∂f

∂uz1,s1

(x, u) = −
Cz1∑
i=1

αi,z1wi,z1,s1xi,z1,s1 exp(−
S∑

s=1

wi,z1,sxi,z1,suz1,s),

∂2f

∂uz1,s1∂uz2,s2

(x, u) =





0 if z2 6= z1,
Cz1∑
i=1

αi,z1wi,z1,s1xi,z1,s1wi,z1,s2xi,z1,s2 exp(−
S∑

s=1

wi,z1,sxi,z1,suz1,s) if z2 = z1.

∂2f

∂uz1,s1∂xi2,z2,s2

(x, u) =





0 if z2 6= z1,

αi2,z1wi2,z1,s1xi2,z1,s1wi2,z1,s2uz1,s2 exp(−
S∑

s=1

wi2,z1,sxi2,z1,suz1,s)

if z2 = z1, s2 6= s1, ∀i2 ∈ z1,

(−wi2,z1,s1αi2,z1 + αi2,z1wi2,z1,s1xi2,z1,s1wi2,z1,s1uz1,s1) exp(−
S∑

s=1

wi2,z1,sxi2,z1,suz1,s)

if z2 = z1, s2 = s1, ∀i2 ∈ z1.

On the line (z1, s1) of the Hessian matrix of the function f , we have the sum
of absolute of all elements:

Sz1,s1 =
S∑

s2=1

Cz1∑

i=1

|αi,z1wi,z1,s1xi,z1,s1wi,z1,s2xi,z1,s2| exp(−
S∑

s=1

wi2,z1,sxi2,z1,suz1,s) +

S∑

s2=1

Cz1∑

i2=1

|αi2,z1wi2,z1,s1xi2,z1,s1wi2,z1,s2xi2,z1,s2| exp(−
S∑

s=1

wi2,z1,sxi2,z1,suz1,s) +

Cz1∑

i2=1

|wi2,z1,s1αi2,z1| exp(−
S∑

s=1

wi2,z1,sxi2,z1,suz1,s)

≤
S∑

s2=1

Cz1∑

i=1

Φαw2xi,z1,s2 +
S∑

s2=1

Cz1∑

i2=1

Φαw2xi2,z1,s2 +Nwα

≤ 2Φαw2

S∑

s=1

Φs +Nwα.
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The infinity norm of Hessian matrix of function f satisfies

||H(f)||∞ ≤ max{Sαw2 + Sαw2Φ + αw, 2Φαw2

S∑

s=1

Φs +Nwα} = ρ.

On the line (z1, s1) of the Hessian matrix ∇uf(x, u) of the function f(x, .),
we have the sum of absolute of all elements

Tz1,s1 =
S∑

s2=1

Cz1∑

i=1

|αi,z1wi,z1,s1xi,z1,s1wi,z1,s2xi,z1,s2| exp(−
S∑

s=1

wi2,z1,sxi2,z1,suz1,s)

≤
S∑

s2=1

Cz1∑

i=1

Φαw2xi,z1,s2 ≤ Φαw2

S∑

s=1

Φs,∀x ∈ D,∀u ∈ [0, 1]n.

Thus, we have

sup{||∇2
u(f(x, u))|| : u ∈ [0, 1]n, x ∈ D} ≤ Φαw2

S∑

s=1

Φs.
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A deterministic optimization approach for planning a
multisensor multizone search for a moving target

LE THI Hoai An, NGUYEN Duc Manh and PHAM DINH Tao

Abstract

In this paper, we consider a well-known problem in the general area of search theory:
planning a multisensor in multizone search so as to minimize the probability of non-
detection of a moving target under a given resource effort to be shared. The solution
method is based on a combination of the forward-backward split technique and a de-
terministic resolution for the general subproblem. Numerical experiments demonstrate
the efficiency of the proposed algorithm in comparing with a standard method.

1 Introduction
Search theory is defined by Cadre and Soiris [3] as a discipline that treats the problem
of how a missing object can be searched optimally, when the amount of searching time is
limited and only probabilities of the possible position of the missing object are given. The
theory of how to search for missing objects has been a subject of serious scientific research
for more than 50 years. It is a branch of the broader applied science known as operations
research [6].

Search theory was first established during World War II by the work of B. O. Koopman and
his colleagues [13] in the Antisubmarine Warfare Operations Research Group (ASWORG).
The applications of search theory were firstly made on military operations [22]. Koopman
[12] stated that the principles of search theory could be applied effectively to any situation
where the objective is to find a person or object contained in some restricted geographic
area. After military applications, it was also applied to different problems such as; surveil-
lance, explorations, medicine, industry and search and rescue operations [9]. The aim of
searching in the context of Aeronautical Search and Rescue (ASAR), for instance, is to
find the missing aircraft effectively and as quickly as possible with the available resources [21].

Stone [21] summarized major steps in the development of search theory, for instance,
stationary target problems, moving target problems, optimal searcher path algorithms,
and dynamic search games. The last item (search games) is the primary focus of recent
researches, including numerous sub-domains such as mobile evaders, avoiding target, ambush
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games, inspection games, and tactical games.

A search theory problem, in general, is characterized by three pieces of data ([3]):

• the probabilities of the searched object (the “target”) being in various possible locations;

• the local detection probability that a particular amount of local search effort could
detect the target;

• the total amount of searching effort available.

The problem is to find the optimal distribution of this total effort that maximizes the
probability of detection.

In this paper we consider an instance of search theory problems that can be described as
follows: suppose that a space of search is partitioned into zones of reasonable size. A unique
sensor must be able to explore efficiently a whole zone. Each zone is itself partitioned into
cells. A cell is an area in which every points have the same properties, according to the
difficulty of detection (altitude, vegetation, etc.). Each sensor has its own coefficient of
visibility over a cell. The visibility coefficients depend also on the kind of target that is
searched. Here, there is a unique target to detect. This study considers a multi period
search of a moving target. This means that information about the sensors and the target
will be now indexed by time (the period index). The target prior is now trajectorial and
we shall consider here a Markovian (target) prior. Furthermore, assuming that sensors act
independently at the cell level. The target is said undetected for this multiperiod search if
it has not been detected at any period of the search. The objective is alloting sensors to
search zones and finding the search resources sharing of multisensor in multizone at each
time period so as to mimimize the probability of non-detection of a target.

This problem, in general, is very complicated because of the huge number of possible target
trajectories. For a unique sensor, the problem has been theoretically solved in [20, 23];
while extensions to double layered constraints have been considered in [8]. In practice, all
feasible algorithms are based on a forward-backward split introduced by Brown [2]. Similar
procedures are also much employed in order to estimate Hidden Markov Models parameters
(see e.g. [5]). In our case, although the forward-backward split technique allows us to simplify
the main problem, the obtained general subproblem is still very hard since it is hierarchical:

• At upper level: finding the best allotment of sensors to search zones (a sensor is allotted
to a unique zone);

• At lower level: determining the best resource sharing for every sensor, in order to have
an optimal surveillance over the allotted zone.

In [19], Simonin et al. have proposed a hierarchical approach for solving the general
subproblem, where a cross-entropy (CE) algorithm [1, 4, 18] has been developed for the
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upper level while an optimization method based on the algorithm of de Guenin [7] for
detecting a stationary target has been used in the lower level. Besides this paper, we do not
find in the literature the works considering the general subproblem. We can say that, up to
now, there is no deterministic models and methods for it.

In [15], we efficiently applied a new method for solving a problem, which has the same
structure as the general subproblem. In this method, we developed a deterministic continu-
ous optimization approach based on DC (Difference of Convex functions) programming and
DCA (DC optimization Algorithms). Specifically, we proposed a new optimization model
that is a nonlinear mixed 0-1 programming problem. This problem was then reformulated as
a DC (Difference of Convex functions) program via a penalty technique. DC programming
and DCA (DC algorithm) ([14, 16, 17]) have been investigated for solving the resulting DC
program. This motivates us to investigate the combination of the forward-backward split
technique and our proposed method for solving the considered problem.

The paper is organized as follows. In Section 2, the problem statement and the classic
“forward-backward split” are presented. In Section 3, we present our approach developed
in [15] for solving the general subproblem, then introduce a schema combining the forward-
backward split and DCA. The numerical results are reported in Section 4 while some con-
clusions and perspectives are discussed in Section 5.

2 Problem statement
First, let us introduce the notations employed in the remainder of the paper.
The search periods are indexed by t ∈ {1, 2, ..., T}
E : space of search, Z : number of zones, S : number of sensors
z : zone index
i : cell index
s : sensor index
α : prior on the initial location of the target
ϕt
s(ci,z) : quantity of resource of sensor s allotted to cell i of the zone z at the time t

Φt
s : quantity of resource available for sensor s to search the space at the time t

wi,z,s : coefficient that characterizes the acuity of sensor s over cell i of the zone z (visibility
coefficient)

We report below the problem statement described in [19] (see [19] for more details).
The space of search: the search space, named E, is a large space with spatially variable search
characteristics. The search space E is divided into Z search zones, denoted Ez, z = 1, 2, ..., Z,
each of them is partitioned into Cz cells, denoted {ci,z}Cz

i=1 so that:

E =
Z⋃

z=1

Ez, Ez ∩ Zz′ = ∅, ∀z 6= z′,
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Ez =
Cz⋃

i=1

ci,z, ci,z ∩ cj,z,∀i 6= j.

A cell ci,z represents the smallest search area in which the search parameters are constant.
For example, it can be a part of land with constant characteristics (latitude, landscape).
Each zone must have a reasonable size in order to be explored by a sensor within a fixed time
interval.
The target : the target is hidden in one unit of the search space. Its location is characterized
by a prior αi,z. Thus, we have

Z∑

z=1

Cz∑

i=1

αi,z = 1.

The means of search: means of search can be passive (e.g. IRST, ESM) or active sensors
(radars). We will consider that searching the target will be carried out by S sensors. Due
to operational constraints, each sensor s ∈ S must be allotted to a unique search zone. For
example, it could be the exploration time to share between units of a zone. At the lower level
the amount of search resource allocated to the cell ci,z for the sensor s at the time t -if sensor
s is allotted to zone Ez -is denoted ϕt

s(ci,z). It can represent the time spent on searching the
cell ci,z (passive sensor), the intensity of emissions or the number of pulses (active sensors),
etc. Furthermore, each sensor s has at the time t a search amount Φt

s, it means that if sensor
s is allotted to the zone Ez, we have the constraint:

Cz∑

i=1

ϕt
s(ci,z) ≤ Φt

s.

To characterize the effectiveness of the search at the cell level, we consider the conditional
non-detection probability P̄s(ϕ

t
s(ci,z)) which represents the probability of not detecting

the target given that the target is hidden in ci,z and that we apply an elementary search
effort ϕt

s(ci,z) on ci,z. Some hypotheses are made to model P̄s(ϕ
t
s(ci,z)). For all sensors,

ϕt
s(ci,z) 7→ P̄s(ϕ

t
s(ci,z)) is convex and non-increasing (law of diminishing return). Assuming

independence of elementary detections, a usual model is P̄s(ϕ
t
s(ci,z)) = exp(−wi,z,sϕ

t
s(ci,z)),

where wi,z,s is a (visibility) coefficient which characterizes the reward for the search effort
put in ci,z by sensor s.

An additional assumption is that sensors act independently at the cell level which means
that at the time period t if S sensors are allotted to ci,z the probability of not detecting a

target hidden in ci,z is simply
S∏

s=1

P̄s(ϕ
t
s(ci,z)).

At each time period t, let mt : {1, 2, ..., S} → {1, 2, ..., Z} be a mapping allotting sensors
to search zones. Our aim is to find both the optimal mappings mt and the optimal local
distributions ϕt

s in order to minimize the non-detection probability, i.e.,
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F ((mt, ϕ
t
s)

T
t=1) =

∑
−→ω ∈Ω

α(−→ω )
T∏

t=1

∏

s∈m−1
t (z)

P̄s

(
ϕt
s(
−→ω (t))

)
,

where Ω denotes the set of target trajectories, −→ω a target trajectory in Ω, and −→ω (t) is the
cell of the target trajectory −→ω at the time t. That leads to solve the following constrained
problem [19]: 




min
(mt,ϕt

s)
T
t=1

F ((mt, ϕ
t
s)

T
t=1)

s.t. ∀t, ∀z, ∀s ∈ m−1(z),
Cz∑
i=1

ϕt
s(ci,z) ≤ Φs,

∀i ∈ z, ϕt
s(ci,z) ≥ 0,

∀t,mt mapping : {1, 2, ..., S} → {1, 2, ..., Z}.

(1)

Forward-backward split
We can rewrite the objective function F as follows:

F ((mt, ϕ
t
s)

T
t=1) =

Z∑

z=1

Cz∑

i=1

βτ
i,z

∏

s∈m−1
τ (z)

P̄s(ϕ
τ
s(ci,z)),

where

βτ
i,z =

∑
−→ω ∈−→ω i,z,τ

α(−→ω )

t 6=τ∏

1≤t≤T

∏

s∈m−1
t (z)

P̄s

(
ϕt
s(cit,zt)

)
,

−→ω i,z,τ = {−→ω ∈ Ω : −→ω (τ) = ci,z},
−→ω = (ci1,z1 , ..., ciτ ,zτ , ..., ciT ,zT ),

α(−→ω ) = αi1,z1

T−1∏

t

αt,t+1(cit,zt , cit+1,zt+1).

Here, αt,t+1(cit,zt , cit+1,zt+1) is probability the target move from cell cit,zt to the cell cit+1,zt+1 .

It remains to have a mean to calculate efficiently the βτ
i,z. To that aim, the trajectory Markov

hypothesis is instrumental and we consider the following splitting of the βτ
i,z:

βτ
i,z = U τ

i,z.D
τ
i,z,

where U and D are recursively defined by

U τ (i, z) =
∑

j∈z̃
ατ−1,τ (j, i)

∏

s∈m−1
τ−1(z̃)

P̄s

(
ϕτ−1
s (cj,z̃)

)
U τ−1(j, z̃),

Dτ (i, z) =
∑

j∈z̃
ατ,τ+1(j, i)

∏

s∈m−1
τ+1(z̃)

P̄s

(
ϕτ+1
s (cj,z̃)

)
Dτ+1(j, z̃).
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In the above equation, we denote by z̃, the zones which can be attained condition-
ally to the hypothesis that the target is in the cell i of the zone z at the period τ and
that it has a Markovian prior α. Such a forward-backward split was introduced by Brown [2].

Now, for a given τ , and considering that the βτ
i,z are known, the multiperiod search problem

is put in the situation: the target is “static” with prior βτ
i,z. The general subproblem can be

written as follows:




min
{m,ϕs(ci,z)}

Z∑
z=1

Cz∑
i=1

βi,z

∏
s∈m−1(z)

P̄s(ϕs(ci,z))

s.t. ∀z, ∀s ∈ m−1(z),
Cz∑
i=1

ϕs(ci,z) ≤ Φs,

∀i ∈ z, ϕs(ci,z) ≥ 0,
m mapping : {1, 2, ..., S} → {1, 2, ..., Z}.

(2)

3 Solution Method

3.1 A deterministic formulation of Problem (2)

Let us introduce the allocation variable uz,s defined by

uz,s =

{
1 if the sensor s is allotted to the zone z,
0 otherwise.

Let variable xi,z,s = ϕs(ci,z) be the quantity of resource of the sensor s allotted to the cell ci,z
in the zone z. We can rewrite (2) in the following form:





min
x,u

(f(x, u) =
Z∑

z=1

Cz∑
i=1

βi,z

S∏
s=1

P̄s(xi,z,suz,s))

s.t.
Cz∑
i=1

xi,z,s ≤ Φs, z = 1, ..., Z, s = 1, ..., S,

Z∑
z=1

uz,s = 1, s = 1, ..., S,

uz,s ∈ {0, 1}, xi,z,s ≥ 0, s = 1, ..., S, z = 1, ..., Z, i = 1, ..., Cz.

(3)

The constraints
Z∑

z=1

uz,s = 1, ∀s = 1, 2, ..., S mean that each sensor s ∈ S must be allotted to

a unique search zone.
With the usual model P̄s [11]:

P̄s(xi,z,s) = exp(−wi,z,sxi,z,s),

the objective function f becomes:

f(x, u) =
Z∑

z=1

Cz∑

i=1

βi,z exp(−
S∑

s=1

wi,z,sxi,z,suz,s).
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Set
d = S.(C1 + C2 + ...+ Cz), n = Z.S.

Denoting by

D = {x = (xi,z,s) ∈ Rd
+ :

Cz∑

i=1

xi,z,s ≤ Φs, z = 1, ..., Z, s = 1, ..., S, }

M = {u = (uz,s) ∈ {0, 1}Z.S :
Z∑

z=1

uz,s = 1, s = 1, ..., S},

we can writte the problem (3) in the form:

(P )





min
x,u

Z∑
z=1

Cz∑
i=1

βi,z exp(−
S∑

s=1

wi,z,sxi,z,suz,s)

s.t. x ∈ D, u ∈ M,

which is a nonlinear mixed 0-1 programming problem. It is easy to see that the objective
function of (P ), say f , is convex in x for each fixed u, and similarly, it is convex in u for each
fixed x. Moreover, f is infinitely differentiable.

3.2 DC Reformulation

Consider the function p and the bounded polyhedral convex set K defined, respectively, by:

p(u) =
Z∑

z=1

S∑

s=1

uz,s(1− uz,s),

and

K = {u = (uz,s) ∈ [0, 1]Z.S :
Z∑

z=1

uz,s = 1, s = 1, ..., S}.

We notice that p is finite and concave on RZ.S, non-negative on K and

M = {u ∈ K : p(u) ≤ 0} .

Hence Problem (P ) can be rewritten as

α = min{f(x, u) : x ∈ D, u ∈ K, p(u) ≤ 0}.

The exact penalty result is given in the following theorem.

Theorem 1 (i) Let

t0 = max{||∇2
u(f(x, u))|| : u ∈ [0, 1]n, x ∈ D},
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then ∀t > t0 the problem (P)

min{f(x, u) : x ∈ D, u ∈ M} (P )

is equivalent to the next problem

min{f(x, u) + tp(u) : x ∈ D, u ∈ K}. (Pt)

(ii) If (x∗, u∗) is a local solution to problem (Pt) then (x∗, u∗) is a feasible solution to the
problem (P ).

Proof see [15].

Note that the part (ii) in this theorem is very useful for DCA applied to (Pt) because DCA
usually produces a local solution.

Since D is compact and f ∈ C∞, max{||∇2
u(f(x, u))|| : u ∈ [0, 1]n, x ∈ D} exists. The

following proposition gives an estimation of t0 :

Proposition 2 We have

t0 := max{||∇2
u(f(x, u))|| : u ∈ [0, 1]n, x ∈ D} ≤ Φβw2

S∑

s=1

Φs,

where
β = max{βi,z : z = 1, ..., Z, i = 1, ..., Cz},Φ = max{Φs : 1, ..., S},

w = max{wi,z,s : z = 1, ..., Z, i = 1, ..., Cz, s = 1, ..., S}.

Proof see [15].

In the sequel we will investigate DCA for solving problem (Pt) with t0 = Φβw2
S∑

s=1

Φs.

3.3 DC Algorithm (DCA)

3.3.1 Outline of DC Programming and DCA

DC programming and DCA, which constitute the backbone of smooth/nonsmooth nonconvex
programming and global optimization, have been introduced by Pham Dinh Tao in 1985 and
extensively developed by Le Thi Hoai An and Pham Dinh Tao since 1994 to become now
classic and increasingly popular ([14, 16, 17] and references therein). They address the
problem of minimizing a function f which is a difference of convex functions on the whole
space IRp or on a convex set C ⊂ IRp. Generally speaking, a DC program takes the form

α = inf{f(x) := g(x)− h(x) : x ∈ IRp} (Pdc) (4)
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where g, h are lower semicontinuous proper convex functions on IRp. Such a function f is
called DC function, and g − h, DC decomposition of f while g and h are DC components
of f. The convex constraint x ∈ C can be incorporated in the objective function of (Pdc) by
using the indicator function on C denoted χC which is defined by

χC(x) =

{
0 if x ∈ C
+∞, otherwise.

If either g or h is polyhedral convex function then (Pdc) is called a polyhedral DC program.
Let

g∗(y) := sup{〈x, y〉 − g(x) : x ∈ IRp}
be the conjugate function of g. Then, the following program is called the dual program of
(Pdc):

αD = inf{h∗(y)− g∗(y) : y ∈ IRp}. (Ddc) (5)

One can prove that α = αD, (see e.g. [14, 16]) and there is the perfect symmetry between
primal and dual DC programs: the dual to (Ddc) is exactly (Pdc).
DCA is based on the local optimality conditions of (Pdc), namely

∂h(x∗) ∩ ∂g(x∗) 6= ∅ (6)

(such a point x∗ is called critical point of g − h), and

∅ 6= ∂h(x∗) ⊂ ∂g(x∗). (7)

The condition (7) is necessary local optimality of (Pdc) (or the generalized KKT condition).
It is also sufficient for many classes of DC programs. In particular it is sufficient for the next
cases quite often encountered in practice (see e.g. [14, 16]):
The idea of DCA is simple: each iteration of DCA approximates the concave part −h by
its affine majorization (that corresponds to taking yk ∈ ∂h(xk)) and minimizes the resulting
convex function (that is equivalent to determining xk+1 ∈ ∂g∗(yk)).
Generic DCA scheme
Initialization: Let x0 ∈ IRp be a best guess, 0 ← k.
Repeat
Calculate yk ∈ ∂h(xk)
Calculate xk+1 ∈ argmin{g(x)− h(xk)− 〈x− xk, yk〉 : x ∈ IRp} (Pk)
k + 1 ← k
Until convergence of xk.
It is important to mention the following main convergence properties of DCA:

• DCA is a descent method (the sequences {g(xk) − h(xk)} and {h∗(yk) − g∗(yk)} are
decreasing) without linesearch;

• If the optimal value α of the problem (Pdc) is finite and the infinite sequences {xk} and
{yk} are bounded then every limit point x∗ (resp. y∗) of the sequence {xk} (resp.
{yk}) is a critical point of g − h (resp. h∗ − g∗).
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• DCA has a linear convergence for general DC programs.

• DCA has a finite convergence for polyhedral DC programs.

Moreover, it is worth noting that the construction of DCA involves DC components g and h
but not the function f itself. Hence, for a DC program, each DC decomposition corresponds
to a different version of DCA. Since a DC function f has an infinite number of DC decomposi-
tions which have crucial impacts on the qualities (speed of convergence, robustness, efficiency,
globality of computed solutions,...) of DCA, the search for a “good” DC decomposition is
important from algorithmic point of views. Furthemover, despite its local character, DCA
with a good initial point can converge to global solutions. Finding a “good” initial point is
then also an important stage of DCA. How to develop an efficient algorithm based on the
generic DCA scheme for a practical problem is thus a judicious question to be studied, and
the answer depends on the specific structure of the problem being considered. The solution
of a practical nonconvex program by DCA must be composed of two stages: the search of
an appropriate DC decomposition and the search of a good initial point. An appropriate DC
decomposition, in our sense, is the one that corresponds to a DCA which is not expensive
and has interesting convergence properties.
In the next subsection we will develop an instance of DCA to solve the problem (Pt), and
study the convergence properties of the proposed algorithm.

3.3.2 Description of the DCA applied to (Pt)

From the computations, we have

||H(f)||∞ ≤ max{Sβw2 + Sβw2Φ + βw, 2Φβw2

S∑

s=1

Φs +Nwβ}.

where
N = max{Cz : z = 1, ..., Z}.

Hence, let ρ := max{Sβw2 + Sβw2Φ+ βw, 2Φβw2
S∑

s=1

Φs +Nwβ}, a DC formulation of (Pt)

can be
min {g(x, u)− h(x, u) : (x, u) ∈ D ×K} , (8)

where
g(x, u) :=

ρ

2
||(x, u)||2 and h(x, u) :=

ρ

2
||(x, u)||2 − f(x, u)− tp(u).

DCA applied to DC program (8) consists of computing, at each iteration k, the two sequences{
(yk, vk)

}
and

{
(xk, uk)

}
such that (yk, vk) ∈ ∂h(xk, uk) and (xk+1, yk+1) is an optimal

solution of the next convex quadratic program

min
{ρ

2
||(x, u)||2 − 〈(x, u), (yk, vk)〉 : (x, u) ∈ D ×K

}

10



which can be decomposed into two subproblems

min
{ρ

2
||x||2 − 〈x, yk〉 : x ∈ D

}
(9)

and
min

{ρ

2
||u||2 − 〈u, vk〉 : u ∈ K

}
. (10)

We are now in a position to summarize the DCA for solving Problem (Pt)

Algorithm 1:
Step 1. Initialization: let (x0, u0) satisfy the constraints of the problem. Choose
ε1 > 0, ε2 > 0 and k = 0.

Step 2. Compute (yk, vk) = ∇h(xk, uk), with

yk = ρxk −∇xf(x
k, uk), vk = ρuk −∇uf(x

k, uk) + t(2uk − e).

Step 3. Compute (xk+1, uk+1) by solving the two convex quadratic problems (9) and (10)
Step 4. Iterate Step 2 and 3 until

|f(xk+1, uk+1)− f(xk, uk)| ≤ ε1(1 + |f(xk+1, uk+1)|)

or ||(xk+1, uk+1)− (xk, uk)||∞ ≤ ε2(1 + ||(xk+1, uk+1)||∞).

Theorem 3 (Convergence properties of Algorithm DCA, for simplicity’s sake, we omit here
the dual part of these properties)
i) DCA generates the sequence

{
(xk, uk)

}
such that the sequence

{
f(xk, uk)

}
is decreasing.

ii) The point
{
(xk, uk)

}
verifies the generalized condition of the problem (8).

Proof Direct consequences of the convergence properties of DCA for general DC programs
and the fact that the function h is differentiable.

In order to speed up DCA, we proposed an efficient way for computing (xk+1, uk+1) in [15].

3.4 Combining forward-backward split technique and DCA
(FAB&DCA)

The multisensor multizone moving target algorithm takes the following form:
Algorithm 3:

1. Initialization:

∀τ, ∀z, ∀i,Dτ
1(i, z) = 1,

∀k, ∀z, ∀i, Uk
1 (i, z) = αi,z.

11



2. Iteration (k index):

Iteration(τ index)

- ∀z, ∀i, compute the optimal allotment and resource sharing by DCA with
prior

βτ
i,z = U τ

k (i, z).D
τ
k(i, z);

- ∀z, ∀i, compute U τ+1
k (i, z);

∀z, ∀i, compute Dk+1(τ)(i, z);

Stop: when the search plan is no more improved.

4 Numerical result
Suppose that the search space is the lake of Laouzas in France [19]. Number of zone is
Z = 4 and there are n = 30 cells in each zone. We assume that the target is Markovian
and moves south east direction. The transition matrix describing the target motion is
given in Fig. 3 and is assumed to be constant over time. The search is carried out
over four time periods by means of the six sensors. All sensors has the same amount of
resource Φ for all time period. The coefficients are given in Table 1. We take five search plans.

The program is written by language C on Microsoft Visual C++ 2008, and the implementa-
tion takes place on a notebook with chipset Intel(R) Core(TM) Duo CPU 2.0 GHz, RAM
3GB.

To find a starting point of DCA, we firstly apply DCA on (Pt) with the parameters ρ and
penalty quite small (depending on the parameters Φ) form the starting point (x0, u0), where
x0 = (x0

i,z,s) and u0 = (u0
z,s) is determined as follows:

x0
i,z,s = Φ/n, ∀i, z, s; u0

z,s = 1/Z, ∀z, s.

Then we get a new pair (x1, u1) which is chosen as the starting point of the main algorithm.
In two stages of DCA, we choose ε1 = ε2 = 10−7.

In Table 2, we compare the result obtained by FAB&DCA and the method of combining
the forward-backward split technique and the Cross-Entropy method (FAB&CE)[19].
We choose Φ = 5. The parameters for CE as follows: for each iteration, number of
samples is N = 50, θ = 0.3 and the number of iteration is limited to 15. We observe
that the FAB&DCA produced the better solutions than the FAB&CE while the CPU is
shorter. Moreover, although we only care of the results at the time 4 of the last search plan

12



(iteration k = 5), FAB&DCA works better than FAB&CE does in all time of this search plan.

Table 3 presents additional results with Φ = 10 and Φ = 15. FAB&DCA produced once again
the better solutions than the FAB&CE while CPU time is shorter. Here, there is a negative
relationship between Φ and the non-detection probability. When Φ = 15, the probability of
non-detection obtained by FAB&DCA is 0.078225.

Figure 1: An aerial photograph of the lake of Laouzas

Figure 2: Partition of the lake Laouzas

5 Conclusion
We have presented a new approach for solving the problem planning a multisensor multizone
search for a moving target. Actually, this is an extension of our developed approach in
the case “static” target. In other words, that is combination of the forward-backward split

13



Figure 3: The target transition probability

Type of Cell Prior of target Visibility of sensors
Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6

Forest 0.0085 0.4 0.5 0.6 0.8 0.5 0.1

Water 0.001 0.9 0.1 0.1 0.1 0.3 0.5

Plat Plan 0.0115 0.3 0.1 0.4 0.6 0.5 0.2

Rough plan 0.013 0.2 0.7 0.8 0.2 0.4 0.6

Very rough plan 0.014 0.1 0.6 0.7 0.1 0.3 0.5

Town 0 0.8 0.9 0.1 0.7 0.6 0.2

Table 1: Parameters

14



Table 2: Non-detection probability with Φ = 5.

Table 3: Relation of non-detection probability and amount of resource.
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technique and DCA. The table 2 and 3 show that our approach can solve this problem more
effectively than the FAB&CE method, an efficient algorithm for the considered problem.

References
[1] P.-T. de Boer, D. P. Kroese, S. Mannor, and R.Y. Rubinstein, A Tutorial on The

Cross-Entropy Method, Annals of Operations Research 134, 19-67, 2005.

[2] S.S. Brown, Optimal search for a moving target in discrete time and space, Operations
Research 32 (5), pp. 1107-1115, 1979.

[3] J.P. Cadre, and G. Souris, Searching Tracks, IEEE Transactions on Aerospace and
Electronic systems, Vol. 36, No.4, 1149-1166, 2000.

[4] A. Costa, O.D. Jones, and D. Kroese, Convergence properties of the cross-entropy
method for discrete optimization, Operations Research Letters 35(5): 573-580, 2007.

[5] Y. Ephraim and N. Merhav, Hidden Markov processes, IEEE Transactionson Infor-
mation Theory 48(2002), pp.1518-1569

[6] J.R. Frost (1999c). Principles of search theory, part III: Probability density distribu-
tions, Response, 17(3), pp. 1-10.

[7] J. de Guenin, Optimum distribution of effort: an extension of the Koopman theory,
Operations Research 9 (1), pp. 1-7, 1961.

[8] R. Hohzaki and K. Iida, A concave minimization problem with double layers of con-
straints on the total amount of resources, Journal of the Operations Research Society
of Japan 43(1)(2000), pp.109-127.

[9] K.B. Haley, and L.D. Stone (Eds.), Search Theory and Applications, New York:
Plenum Press, 1980.

[10] J. Júdice, M. Raydan, et al., On the solution of the symmetric eigenvalue complemen-
tarity problem by the spectral projected gradient algorithm. Numerical Algorithms
47(4): 391-407, 2008.

[11] B.O. Koopman, Search and its optimization, Mathematical Monthly 7, pp. 527-540,
1979.

[12] B.O. Koopman, Search and Screening: General Principles with Historical Applica-
tions, Pergamon Press, New York, 1980.

[13] B.O. Koopman, Search and Screening: General Principle with Historical Applica-
tions. Alexandria, VA: MORS Heritage Series, 1999.

16



[14] H.A. Le Thi, and T. Pham Dinh, The DC (difference of convex functions) Pro-
gramming and DCA revisited with DC models of real world nonconvex optimization
problems, Annals of Operations Research, Vol 133, pp. 23-46, 2005.

[15] H.A. Le Thi, D.M. Nguyen, and T. Pham Dinh, A deterministic optimization ap-
proach for planning a multisensor multizone search for a target, submitted in Com-
puters & Operations Research (2011).

[16] T. Pham Dinh, and H.A. Le Thi, Convex analysis approach to DC programming:
Theory, Algorithms and Applications (dedicated to Professor Hoang Tuy on the oc-
casion of his 70th birthday), Acta Mathematica Vietnamica, 22, pp. 289-355, 1997.

[17] T. Pham Dinh and H.A. Le Thi, DC optimization algorihms for solving the trust
region subproblem, SIAM J.Optimization 8 (1998), 476-505.

[18] R.Y. Rubinstein, and D. Kroese, The cross-entropy method: a unified approach to
combinatorial optimization, Monté Carlo simulation, and machine learning, Berlin:
Springer, 2004.

[19] C. Simonin, J.P. Le Cadre, and F. Dambreville, A hierarchical approach for plan-
ning a multisensor multizone search for a moving target, Computers and Operations
Research 36(7): 2179-2192.

[20] L.D. Stone, Necessary and suffcient conditions for optimal search plans for moving
targets, Mathematics of Operations Research4 (4)(1979), pp. 431-440. MathSciNet.

[21] L.D. Stone, What’s happened in search theory since the 1975 Lanchester prize? Op-
erations Research, 37, 3 (May-June 1989), 501-506.

[22] L.D. Stone, Theory of Optimal Search (2nd ed.). Arlington, VA: Operations Research
Society of America, ORSA Books, 1989.

[23] W.R. Stromquist and L.D. Stone, Constrained optimization of functionals with search
theory applications, Mathematics of Operations Research 6(4)(1981), pp. 518-527.

17



102



Assignment Problem

103



Optim Lett (2012) 6:315–329
DOI 10.1007/s11590-010-0259-x

ORIGINAL PAPER

Globally solving a nonlinear UAV task assignment
problem by stochastic and deterministic optimization
approaches

Hoai An Le Thi · Duc Manh Nguyen ·
Tao Pham Dinh

Received: 11 October 2010 / Accepted: 25 October 2010 / Published online: 25 November 2010
© Springer-Verlag 2010

Abstract In this paper, we consider a task allocation model that consists of assigning
a set of m unmanned aerial vehicles (UAVs) to a set of n tasks in an optimal way. The
optimality is quantified by target scores. The mission is to maximize the target score
while satisfying capacity constraints of both the UAVs and the tasks. This problem
is known to be NP-hard. Existing algorithms are not suitable for the large scale set-
ting. Scalability and robustness are recognized as two main issues. We deal with these
issues by two optimization approaches. The first approach is the Cross-Entropy (CE)
method, a generic and practical tool of stochastic optimization for solving NP-hard
problem. The second one is Branch and Bound algorithm, an efficient classical tool
of global deterministic optimization. The numerical results show the efficiency of our
approaches, in particular the CE method for very large scale setting.

Keywords UAV · Task assignment problem · Stochastic programming ·
Binary nonlinear programming · Cross-entropy (CE) method ·
Brand and bound algorithm

H. A. Le Thi (B)
Laboratory of Theoretical and Applied Computer Science, UFR MIM,
Paul Verlaine University, Metz, Ile du Saulcy, 57045 Metz, France
e-mail: lethi@univ-metz.fr

D. M. Nguyen · T. Pham Dinh
Laboratory of Modelling, Optimization and Operations Research,
National Institute for Applied Sciences, Rouen, 76801 Saint-Etienne-du-Rouvray, France
e-mail: duc.nguyen@insa-rouen.fr

T. Pham Dinh
e-mail: pham@insa-rouen.fr

123



316 H. A. Le Thi et al.

1 Introduction

The use of unmanned aerial vehicles (UAVs) for various military missions has received
growing attention in the past years. Apart from the obvious advantage of not placing
human life at risk, the lack of a human pilot enables considerable weight savings
and lower costs. On the other hand, UAVs provide an opportunity for new opera-
tional paradigms. However, to realize these advantages, UAVs must have a high level
of autonomy and capacity to work cooperatively in groups. In this context, several
algorithms dealing with the problem of commanding multiple UAVs to cooperatively
perform multiple tasks have been developed. The aim is to assign specific tasks and
flyable trajectories to each vehicle to maximize the group performance. The intrinsic
uncertainty imbedded in military operations makes the problem more challenging.
Scalability and robustness are recognized as two main issues. Also, to allow imple-
mentation, the developed algorithms must be solved in real time.

Extensive research has been done recently in this field [4,7,9,12–18,20,21,27–30].
In [4,17,20], task allocation has been formulated in the form of Mixed-Integer Lin-
ear Programming (MILP). In this approach, the problem is solved as a deterministic
optimization problem with known parameters. Since the MILP is NP-hard, it suffers
from poor scalability although the solutions preserve global optimality [19]. Moreover,
military situations are in general dynamic and uncertain because of the UAV’s sens-
ing limitation and adversarial strategies. Thus, replanning is necessary whenever the
information is updated. Heuristics and ad-hoc methods have been considered during
replanning in [14,17]. On the other hand, uncertainty is considered via optimization
parameters, and risk management techniques in finance are utilized (see e.g. [21,28]).
In [21], a nonlinear integer programming problem is formulated where a risk measure
by conditional value-at-risk is considered as constraint. In [28], a robust approach
using the Soyster formulation on the expectation of the target scores is investigated.
These approaches are based on solving hard combinatorial optimization problems and
then scalability is still a big issue. An alternative approach dealing with uncertainties
consists of formulating a stochastic optimal control problem by using the method of
Model Predictive Control (MPC) [6,27].

In this paper, we are interested in task allocation models where we seek to assign
a set of m UAVs to a set of n tasks in an optimal way. The optimality is quantified by
target scores. The mission is to maximize the target score while satisfying capacity
constraints of both the UAVs and the tasks.

The scoring scheme defining effectiveness in our work is a nonlinear function.
More precisely, our considered problem is a mixed integer nonlinear programming
problem for which the classical MILP solution method can not be used. We propose
two approaches to tackle it. The first approach is the Cross-Entropy (CE) method, a
simple generic and practical tool of stochastic optimization for solving NP-hard prob-
lem. The second one is the Branch and Bound algorithm, an efficient classical tool of
global deterministic optimization.

The CE method was originally developed in [22] for an adaptive networks, where
an adaptive variance minimization algorithm for estimating probabilities of rare events
for stochastic networks was presented. It was modified in [23,24] to solve optimiza-
tion problems. Several recent publications demonstrate the power of the CE method
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as simple and efficient approach for many applications such as telecommunication
systems, buffer allocation, vehicle routing, DNA sequence alignment, Machine Learn-
ing, etc. It has been proved that this method is particularly relevant for solving “hard”
combinatorial optimization problems. In fact, when deterministic methods failed to
find the optimal solution within a reasonable time, in most cases the CE method allows
to find a fairly good solution more quickly. This motivates us to investigate the CE
method for large scale UAV Task Assignment Problem. For measuring the efficiency
of the CE method and globally solving the considered problem, we develop a Brand
and Bound (B&B) algorithm and compare the two methods.

The rest of paper is organized as follows. In Sect. 2, we describe the problem and
give its mathematical formulation. Section 3 is dedicated to the description of CE
method and its application for solving the considered problem. The B&B is presented
in Sect. 4 while the numerical experiments are reported in Sect. 5. Finally we conclude
the paper by Sect. 6.

2 Problem statement

Let V and T be the sets of m UAVs and n targets, respectively. The scoring scheme
defining effectiveness is based on the definition of target score. Each target j has an
associated score based on the task success probability r j and a weight w j measuring
the importance of the target. The probability that the task will be successfully carried
out for that target depends on y j , the number of UAVs which have been assigned to
the target j , in the following way:

1− (1− r j )
y j .

A target score is computed as the product of the success probability and its weight:

g j (y j ) = w j (1− (1− r j )
y j ), (1)

and the UAVs group effectiveness is simply the sum of all individual target scores:∑
j∈T g j (y j ). Then the goal is to maximize the UAVs group effectiveness.
Let zi j , for i ∈ V = {1, . . . , m} and j ∈ T = {1, . . . , n}, be the decision variable

defined by: zi j is equal to 1 when the UAV i is assigned to the target j, and 0 otherwise.
An entry of m × n adjacency matrix A, ai j , indicates which target each UAV can be
assigned. So, the number y j can be computed as y j =∑i∈V ai j zi j , j ∈ T .

The mathematical model of this problem can be written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
z ,y

∑

j∈T
w j (1− (1− r j )

y j )

s.t. y j = ∑

i∈V
ai j zi j , j ∈ T,

∑

j∈T
zi j = 1, i ∈ V,

zi j ∈ {0, 1}, i ∈ V, j ∈ T .

(2)
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The second constraints ensure that each UAV i is used for only one task. This problem
is an integer nonlinear programming which is known to be very hard.

3 A Cross-Entropy algorithm for solving the UAV task assignment problem (2)

3.1 An introduction to Cross-Entropy method

The CE method is a relatively new method for solving both continuous multi-extremal
and combinatorial optimization problems. It was originally developed in the rare-event
estimation framework [22] as an adaptive importance sampling scheme for estimat-
ing rare event probabilities via simulation. This approach was afterward modified in
[23,24] for solving both continuous multi-extremal and combinatorial optimization
problems. The main idea of the CE method is the construction of a random sequence
of solutions which converges probabilistically to the optimal or near-optimal solution.
It involves the following two iterative phases:

1. Generation of a sample of random data (trajectories, vectors, etc.) according to a
specified random mechanism.

2. Updating the parameters of the random mechanism, typically parameters of pdfs
(probability density functions), on the basis of the data, to produce a “better”
sample in the next iteration.

Unlike most of the stochastic algorithms for optimization which are based on local
search, the CE method is a global random search procedure. The CE method was
successfully applied to various problems such as the traveling salesman problem [23],
the bipartition problem [23], the maximal cut problem [25], the image matching [10],
the image segmentation [11], etc.

For a comprehensive overview and history of the CE method, the reader is referred
to [26]. For the sake of completion we present below the generic CE scheme for
combinatorial optimization problems.

Consider the problem of minimizing the function S over a finite set X , say

γ ∗ = min
x∈X

S(x). (3)

The starting point in the methodology of the CE method applied to (3) is to associate
an estimation problem with the optimization problem (3). To this end one defines a col-
lection of indicator functions I{S(x)≤γ } on X for various thresholds or levels γ ∈ R.
Next, let { f (·; v), v ∈ V } be a family of (discrete) probability density functions (pdfs)
on X , parameterized by a real-valued (vector) v.

For some u ∈ V , we consider the Associated Stochastic Problem (ASP):

�(γ ) = Pu(S(x) ≤ γ ) =
∑

x∈X
I{S(x)≤γ } f (x; u) = Eu I{S(x)≤γ }, (4)

where Pu is the probability measure under which the random state X has the pdf
f (·; u), and Eu denotes the corresponding expectation operator. The idea of CE method
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is to construct simultaneously two sequences of levels γ̂1, γ̂2, . . . , γ̂T and parameters
(vectors) v̂1, v̂2, . . . , v̂T such that γ̂T is close to the optimal γ ∗, and v̂T is such that
the corresponding density assigns high probability mass to the collection of states that
give a low value. More specifically, one initializes by setting v0 = u and choosing a
not very small quantity θ , and then proceeds as follows:

1. Adaptive updating of γt . For a fixed vt , let γt be the θ -quantile of S(X) under
vt−1. That is, γt satisfies

Pvt−1(S(X) ≥ γt ) ≥ 1− θ, (5)

Pvt−1(S(X) ≤ γt ) ≥ θ, (6)

where X ∼ f (·; vt−1).

A simple estimator of γt , denotes γ̂t , can be obtained by drawing a random sample
X1, X2, . . . , X N from f (·; vt−1). Suppose that S(Xσ(1)) ≤ S(Xσ(2)) ≤ · · · ≤
S(Xσ(N )), where σ is a permutation of the set {1, . . . , N }. Estimate the θ -quantile
of S(X) as

γ̂t = S�θ N�. (7)

2. Adaptive updating of vt . For a fixed γt and vt−1, derive vt by minimizing the
Kullback-Leibler distance, or equivalent to solving the program

max
v

Evt−1 I{S(X)≤γt } ln f (X; v). (8)

The stochastic counterpart of (8) is as follows: for fixed γ̂t and v̂t−1 the estimate
of vt−1, derive v̂t from the solution of following program

max
v

D(v) := 1

N

N∑

i=1

I{S(Xi )≤γt } ln f (Xi ; v). (9)

In typical applications, the function D is concave and differentiable with respect
to v, and thus updating Eq. (9) is equivalent to solving the following system of
equations:

1

N

N∑

i=1

I{S(Xi )≤γt }∇ ln f (Xi ; v) = 0, (10)

where the gradient is with respect to v.

CE Algorithm for combinatorial optimization

1. Choose v̂0, and 0 < θ < 1. Set t = 1.

2. Generate N samples X1, X2, . . . , X N according to f (·; v̂t−1), and compute
θ -quantile γ̂t of S according to (7).
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3. Use the same samples X1, X2, . . . , X N to solve the stochastic programming prob-
lem (9). Denote the solution by v̂t .

4. If for some t ≥ d, say d = 5 such that

γ̂t = γ̂t−1 = · · · = γ̂t−d ,

then stop; otherwise set t = t + 1, reiterate from step 2.

For the convergence analysis of the CE method we refer to [5,8,26].

3.2 A Cross-Entropy method for solving problem (2)

We first rewrite the problem (2) in the form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
z

f (z) := ∑

j∈T
w j
(
1− r j

)∑
i∈V ai j zi j

s.t.
∑

j∈T
zi j = 1, ∀i ∈ V,

zi j ∈ {0, 1}, ∀i ∈ V, j ∈ T .

(11)

Denote by Z the feasible set of (11), say

Z :=
⎧
⎨

⎩
z = (zi j ) ∈ {0, 1}mn :

∑

j∈T

zi j = 1, i ∈ V

⎫
⎬

⎭
.

It is clear that each variable z ∈ Z is identical to an assignment mapping mz :
{1, . . . , m} 
−→ {1, . . . , n}, i.e., mz(i) = j iff zi j = 1. Then, the set Z is identical
to the set:

X = {x = (x1, . . . , xm) : xi ∈ {1, . . . , n} is the target assigned to UAV i}. (12)

The CE algorithm draws particular assignment of UAVs to targets that will be eval-
uated and then selected, in order to obtain a drawing law which will converge toward
the optimal assignment. First, we must choose a family of pdf, f (·; v), describing a
probability choice of x .

A discrete probability law p( j |i) is associated to each UAV i . It represents the
probability to assign the UAV i to the target j . These probabilities are summarized by
the matrix M :

M =

⎛

⎜
⎜
⎝

p(1|1) p(2|1) · · · p(n|1)

p(1|2) p(2|2) · · · p(n|2)

· · ·
p(1|m) p(2|m) · · · p(n|m)

⎞

⎟
⎟
⎠.
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Note that, we must have

n∑

j=1

pM ( j |i) = 1.

Let X = (x1, x2, . . . , xm) be the random assignment vector of UAVs to targets, xi

is the target assigned to UAV i for the draw. The probability of drawing the vector
according to M is

p(X) =
m∏

i=1

p(xi |i),

where p(xi |i) is the coefficient in the column xi and the row i of matrix M .
In each iteration, suppose that Xk, Xk = (xk

1 , . . . , xk
i , . . . , xk

m), k = 1, 2, . . . , N
are the samples drawn. The H = �θ N� best samples, according to the objective func-
tion f , are selected to update M . Denoting {X1, X2, . . . , X H } as the H “best” vectors
among the draws {X1, X2, . . . , X N }. Minimizing the Kullback–Leibler distance leads
to the following optimization problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
p( j |i) K :=

H∑

h=1
ln

(
m∏

i=1
p(xh

i |i)
)

s.t.
n∑

j=1
p( j |i) = 1, i = 1, . . . , m,

p( j |i) ≥ 0, i = 1, . . . , m, j = 1, . . . , n.

(13)

We first rewrite the objective function as follows

K =
H∑

h=1

ln

(
m∏

i=1

p
(

xh
i |i
)
)

=
m∑

i=1

H∑

h=1

ln
(

p
(

xh
i |i
))

=
m∑

i=1

n∑

j=1

card{h ∈ {1, . . . , H} : xh
i = j} ln(p( j |i))

Denoting

u ji = p( j |i), b ji = card{h ∈ {1, . . . , H} : xh
i = j}.

The program (13) is equivalent to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
u ji

(

−
m∑

i=1

n∑

j=1
b ji ln(u ji )

)

s.t.
n∑

j=1
u ji = 1, i = 1, . . . , m,

u ji ≥ 0, i = 1, . . . , m, j = 1, . . . , n.

(14)
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Since it is a convex programming problem, we consider the Karusk–Kuhn-Tucker
(KKT) condition of the program (14):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− b ji
u ji
+ λi − μ j i = 0, i = 1, . . . , m, j = 1, . . . , n,

λi

(
n∑

j=1
u ji − 1

)

= 0, i = 1, . . . , m,

μ j i u ji = 0, i = 1, . . . , m, j = 1, . . . , n,

λi ≥ 0, i = 1, . . . , m,

μ j i ≥ 0, i = 1, . . . , m, j = 1, . . . , n.

Then by solving the KKT condition, we get the updating formula of matrix M as
follows

p( j |i) := card{h ∈ {1, . . . , H} : xh
i = j}

H
·

The CE algorithm for solving the Problem (11):

Step 1. Initialize M = M0 = (p0( j |i))m×n a uniform distribution, i. e.,

p0( j |i) = 1

n
, i = 1, . . . , m, j = 1, . . . , n,

and choose θ ∈ (0, 1),
Step 2. Draw N samples X1, X2, . . . , X N according to M . Compute f (Xk),

k = 1, 2, . . . , N ,
Step 3. Sort the sequence { f (Xk)}Nk=1 in the increasing orders. Let f (Xσ(1)) ≤

f (Xσ(2)) ≤· · ·≤ f (Xσ(N )), where σ is a permutation of the set {1, 2, . . . , N }.
Set H = �θ N�, then choose H best draws Xσ(1), Xσ(2), . . . , Xσ(H),

Step 4. Update M by the formula

p( j |i) := card{h ∈ {1, 2, . . . , H} : xσ(h)
i = j}

H
,

Step 5. Iterate step 2, 3, 4 until convergence.
In practice, we should choose M0 in the Step 1 as follows:

p0( j |i) =
⎧
⎨

⎩

1
ni

if ai j = 1,

0 if ai j = 0,

where ni =∑n
j=1 ai j , i = 1, . . . , m.
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4 A Branch and Bound algorithm

For globally solving the considered problem, and for measuring the quality of our
CE algorithm, we develop a global approach based on classical Branch and Bound
(B&B) scheme. The lower bounds are computed by solving the relaxed problem:

min

⎧
⎨

⎩
f (z) =

n∑

j=1

w j (1− r j )

m∑

i=1
ai j zi j : z ∈ K

⎫
⎬

⎭
, (15)

where K is nonempty bounded polyhedral convex set in Rmn .
Since this problem is convex, it can be solved by standard solvers for convex pro-

gramming. Here, we use DCA [1–3] to solve it. DCA is an efficient approach for
DC (Difference of Convex functions) programming problems. It addresses a general
DC program of the form

α := inf
{

f (z) := g(z)− h(z) : z ∈ Rn} (Pdc)

where g and h are convex, lower semicontinuous proper functions. DC programs with
closed convex set constraints C can be cast into (Pdc) by adding χC , the indicator
function on C , with g. (χC (z) = 0 if z ∈ C,+∞ otherwise).

The DC (Difference of Convex functions) programming and DCA (DC Algorithms)
constitute the backbone of Nonconvex Programming and Global Optimization. They
were introduced by Tao in 1985 and extensively developed by An and Tao since 1994
to become now classic and increasingly popular. It is clear that convex programs are
false DC programs for which DCA can be used. On the other hand, with suitable
DC decompositions, DCA applied to convex programs permits to find again standard
optimization methods for convex programming.

The idea of DCA is quite simple: each iteration k one linearizes the concave part
−h and then solve the resulting convex program. More precisely, DCA consists of
computing at each iteration k

yk ∈ ∂h(zk), zk+1 ∈ arg min
z∈Rn

{
g(z)− h(zk)− 〈z − zk, yk〉

}
(Pk).

For solving (15) we use the following DC decomposition:

f (z) =
n∑

j=1

w j (1− r j )

m∑

i=1
ai j zi j = g(z)− h(z), (16)

where

g(z) := λ

2
‖z‖2; h(z) := λ

2
‖z‖2 −

n∑

j=1

w j (1− r j )

m∑

i=1
ai j zi j

. (17)
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Here, λ takes the associated value such that h is convex.
Description of the DCA for problem (15)

Step 1. Initialization: Choose z0 ∈ K , ε1 > 0, and ε2 > 0. Set k = 0.

Step 2. Compute yk = ∇h(zk), with

yk
i j = λzk

i j − w j log(1− r j )ai j (1− r j )

m∑

i=1
ai j zk

i j

for i = 1, . . . , m, j = 1, . . . , n.
Step 3. Compute zk+1 by solving the convex quadratic problem

{
min

z

(
g(z )− 〈z, yk〉)

s.t. z ∈ K .

Step 4. Iterate Step 2 and 3 until

∣
∣
∣ f
(

zk+1
)
− f (zk)

∣
∣
∣ ≤ ε1

(
1+

∣
∣
∣ f
(

zk+1
)∣
∣
∣
)

or
∥
∥
∥zk+1 − zk

∥
∥
∥ ≤ ε2

(
1+

∥
∥
∥zk+1

∥
∥
∥
)
.

Let � be the set defined by

� :=
⎧
⎨

⎩
z = (zi j ) ∈ [0, 1]mn :

∑

j∈T

zi j = 1, i ∈ V

⎫
⎬

⎭
.

B&B Algorithm
Let R0 := [0, 1]m.n and ε be a sufficiently small positive number. Set restart := true;
Solve the convex problem (15) with K ← K R0 = � ∩ R0 to obtain a solution zR0

and the first lower bound β0 := β(R0);
If zR0 is feasible to (11) then

set γ0 := f (zR0), z0 := zR0 , restart := false else γ0 := +∞;
Endif
If (γ0 − β0) ≤ ε|γ0|) then STOP, z0 is an ε-optimal solution of (11) else set � ←
{R0}, k ← 0;
Endif
While (STOP= false) do

Select a rectangle Rk such that βk = β(Rk) = min{β(R) : R ∈ �}.
Let j∗ ∈ {1, . . . , m.n} be the index such that zRk

j∗ /∈ {0, 1}. Divide Rk into two
sub-rectangles Rk0 and Rk1 via the index j∗:

Rki = {z ∈ Rk : z j∗ = i; i = 0, 1}. (18)
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Solve the subproblems (Pki ) to obtain β(Rki ) and (zRki ):

(Pki ) β(Rki ) = min{ f (z) : z ∈ �, z ∈ Rki }. (19)

For i = 0, 1
If zRki is feasible to (11) then

update γk and the best feasible solution zk ;
Endif

Endfor
Set � ← �∪ {Rki : β(Rki ) < γk − ε, i = 0, 1} \ Rk .
If � = ∅ then STOP, zk is an ε-optimal solution else set k ← k + 1.

Endwhile

5 Numerical results

The algorithms are written in language C on Microsoft Visual C++ 2008. The imple-
mentation takes place on a notebook with chipset Intel(R) Core(TM) Duo CPU 2.0
GHz, RAM 3GB. The commercial software CPLEX 11.2 is used as a convex quadratic
programming solver.

The following notations are used in these tables:

– Pb: Problem,
– Bin: number of the binary variables,
– Ctrs: number of the constraints,
– Obj : value of the objective function obtained by each algorithm,
– T ime: CPU time in seconds of each algorithm,
– Gap% = Obj−Lastlowerbound

Obj ,

– GapCE% = Obj−Firstlowerbound
Obj .

In Table 1, we give a comparison between CE and B&B. The results have dem-
onstrated that with small dimension, CE gives good solutions as the same as B&B
does, but CPU time in our approach is very better. The ratio of time consumed varies
from 114 to 10,218. Especially, for Problem 4, B&B runs for more than one hour and
does not produce a solution, whereas CE gives a good solution. In this problem, we
compute GapCE by using the first lower bound. Figures 1 and 2 show the result for
nine out of ten problems. In Table 2, we continue to compare in larger dimension, with
m = 20, n = 10. We can see that CE still works very well while B&B runs for more
than one hour and does not produce a solution, for all problems. In these experiments
CE was run with number of samples, N = 50, and θ = 0.4. The number of iterations
is limited to 20.

Table 3  gives   the   results   with  10   instances  with  large  dimensions  having
50 × 30 = 1,500 binary variables. The weights {w j } are random integers chosen
uniformly from 1 to 10, and the task success probabilities {r j } are random numbers
chosen uniformly in interval [0, 1]. The parameters are chosen as follows: number of
samples is N = 100, θ = 0.4. Table 4 presents the results for very large dimensions.
In this case we take θ = 0.04. The maximum of number of iterations is 50.
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Table 1 CE compares with B&B, m = 10, n = 10

Data CE method B&B

Pb Bin Ctrs Obj Time(s) Gap Obj Time(s) Gap

1 100 10 29.425828 0.078 0.1999 29.425858 170.890 0.2

2 100 10 40.899408 1.156 0.5556 40.790448 1919.812 0.29

3 100 10 30.256247 0.078 1.2553 29.927309 776.766 0.17

4 100 10 26.001069 1.140 2.85 NA >1 h NA

5 100 10 34.964398 0.078 0.06 34.964398 8.937 0.06

6 100 10 28.286803 2.890 1.03 28.286803 2887.265 1.03

7 100 10 35.185966 0.078 0.3965 35.454166 47.859 1.15

8 100 10 29.528116 0.078 0.33 29.528116 23.110 0.33

9 100 10 19.188199 0.078 0.46 19.188199 38.578 0.46

10 100 10 15.761578 0.078 2.08 15.761578 797.063 2.08

1 2 3 4 5 6 7 8 9
15

20

25

30

35

40

45

O
bj

ec
tiv

e 
va

lu
e

CE
B&B

Fig. 1 Objective function, m = 10, n = 10
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Fig. 2 CPU time, m = 10, n = 10

123



Globally solving a nonlinear UAV task assignment problem by stochastic and deterministic 327

Table 2 CE compares with
B&B, m = 20, n = 10

Data CE method B&B

Pb Bin Ctrs Obj Time(s) GapCE Obj Time (h)

1 200 20 23.765072 0.203 0.2 NA >1

2 200 20 21.351345 0.218 0.56 NA >1

3 200 20 22.799311 0.187 1.26 NA >1

4 200 20 23.388861 0.203 2.85 NA >1

5 200 20 18.416153 0.187 0.06 NA >1

6 200 20 25.096867 0.203 1.03 NA >1

7 200 20 22.698760 0.187 0.4 NA >1

8 200 20 19.459113 0.218 0.33 NA >1

9 200 20 13.077463 0.187 0.46 NA >1

10 200 20 23.539310 0.203 2.08 NA >1

Table 3 Results with large
dimensions: m = 50, n = 30

Instance Bin Ctrs Time(s) GapCE

1 1,500 50 4.766 2.562583

2 1,500 50 4.750 3.315747

3 1,500 50 4.797 2.816054

4 1,500 50 4.797 1.868424

5 1,500 50 5.047 3.784732

6 1,500 50 4.875 2.093580

7 1,500 50 4.968 3.010455

8 1,500 50 4.797 1.401817

9 1,500 50 4.937 3.711038

10 1,500 50 4.860 2.658826

Table 4 Results with very large
dimensions

Instance m n Bin Ctrs Time (s) GapCE Samples

1 300 100 30,000 300 141.078 1.270807 1,000

2 500 100 50,000 500 229.593 1.829299 1,000

3 500 300 150,000 500 1190.437 3.139713 2,000

4 700 500 350,000 700 2306.141 4.031592 2,000

5 1,000 500 500,000 1,000 3649.781 5.114315 2,000

6 Conclusion

In this work, we have firstly proposed an approach based on the CE method for solving
UAV Task Assignment problem, and then presented a global approach based on B&B
algorithm for measuring the quality of our CE algorithm. The results have shown the
efficiency of this approach not only with small dimensions but also with very large
dimensions. This approach can overcome very well the barrier of binary variables, that
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the standard methods are usually very difficult for treating. Other non-linear models
of task assignment problem will be studied in our future work.
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ily of discrete distributions on the feasible set of the MAP and apply CE method.
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Let xij be decision variable defined as

xij =

{
1 if worker j is assigned job i,
0 otherwise,

The 0-1 linear program formulation of this problem is described as follows




min
n1∑
i=1

n2∑
j=1

cijxij

s.t.
n2∑
j=1

xij = 1, i = 1, 2, ..., n1,

n1∑
i=1

xij ≤ 1, j = 1, 2, ..., n2,

xij ∈ {0, 1}.

The constraints guarantee that each worker performs at most one job, and that all jobs
are accomplished.

The multidimensional assignment problem (MAP) is simply a higher dimensional
version of the linear assignment problem. Denoting nk the number of elements in
dimension k of d dimensions, n1 ≤ nk, k = 2, ..., d, the MAP can be expressed as an
integer program as follows




min
n1∑
i1=1

...
nd∑
id=1

ci1...idxi1...id

s.t.
n2∑
i2=1

...
nd∑
id=1

xi1...id = 1, i1 = 1, 2, ..., n1,

n1∑
i1=1

...
nk−1∑
ik−1=1

nk+1∑
ik+1=1

...
nd∑
id=1

xi1...id ≤ 1, ik = 1, 2, ..., nk, k = 2, ..., d− 1,

n1∑
i1=1

...
nd−1∑
id−1=1

xi1...id ≤ 1, id = 1, 2, ..., nd,

xi1...id ∈ {0, 1}.

(1)

An equivalent formulation of this problem, which offers us several approaches to find
an optimal assignment is injection formulation





min
n1∑
i=1

ci,π1(i),...,πd−1(i)

s.t. πk : {1, 2, ..., n1} → {1, 2, ..., nk+1} is injective, ∀k = 1, 2, .., d− 1.
(2)

The MAP was first introduced by Pierskalla (1968) [24], and since then has found
numerous applications in the areas of data association [2], image recognition [36], mul-
tisensor multitarget tracking [19,26], tracking of elementary particles [28], etc. For a
survey of the MAP and its applications, see [5,6,8,14,21,34].

It is worth to note that while the linear assignment problem is solvable in poly-
nomial time, the MAP is known to be NP-hard. The computational time to find an
optimal solution of an MAP grows exponentially with the number of dimensions and
factorially with the dimension size [23]. Indeed, the total number cost coefficients, and
the number of feasible solutions for a fully dense problem are given by the following
expressions [9]:

Total number cost coefficients =
d∏

k=1

nk;
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Number of feasible solutions =
d∏

k=2

nk!

(nk − n1)!
·

Despite its inherent difficulty, several exact and heuristic algorithms have been
proposed in the literature [1,3,4,9,17,18,20,22–25,27,35]. Most of them are heuristic
approaches, such as the GRASP (greedy randomized adaptive search procedure) with
Path Relinking for Three-Index Assignment [1], the Simulated Annealing [9], the Lo-
cal Search Heuristics [17], Local Search Neighborhoods [23], etc. The exact solution
methods are the Branch and Bound procedures [16,22,24], the Lagrangian Relaxation
Based Algorithms [25,27].

In this paper, we propose a new approach based on the Cross-Entropy (CE) method
to tackle the problem (2). The CE method was originally developed in [29] for an
adaptive networks, where an adaptive variance minimization algorithm for estimat-
ing probabilities of rare events for stochastic networks was presented. It was modi-
fied in [30,31] to solve optimization problems. Several recent publications demonstrate
the power of the CE method as simple and efficient approach for many applications
such as telecommunication systems, buffer allocation, vehicle routing, DNA sequence
alignment, Machine Learning, etc. It has been proved that this method is particularly
relevant for solving “hard” combinatorial optimization problems. In fact, when deter-
ministic methods failed to find the optimal solution within a reasonable time, in most
cases the CE method allows to find a fairly good solution more quickly. This motivates
us to investigate the CE method for the MAP.

To apply CE method, the difficulty is how to find an appropriate family of distribu-
tions on the feasible set of the optimization problem such that updating the parameters
could be done as easily as possible. Due to the formulation (2) of the MAP, we con-
struct a family of discrete distributions, that allows us to apply CE method. It is the
main contribution in this paper.

The rest of paper is organized as follows. In section 2, we give a short presen-
tation of the CE method. In Section 3, we propose a CE algorithm for solving our
problem. Numerical experiments are reported in Section 4 while some conclusions and
perspectives are discussed in Section 5.

2 The Cross-Entropy method

The CE method is a relatively new method for solving both continuous multi-extremal
and combinatorial optimization problems. It was originally developed in the rare-event
estimation framework [29] as an adaptive importance sampling scheme for estimating
rare event probabilities via simulation. This approach was afterward modified in [30,31]
for solving both continuous multi-extremal and combinatorial optimization problems.
The main idea of the CE method is the construction of a random sequence of solutions
which converges probabilistically to the optimal or near-optimal solution. It involves
the following two iterative phases:

1. Generation of a sample of random data (trajectories, vectors, etc.) according to a
specified random mechanism.

2. Updating the parameters of the random mechanism, typically parameters of pdfs
(probability density functions), on the basis of the data, to produce a “better”
sample in the next iteration.



4 Nguyen Duc Manh et al.

Unlike most of the stochastic algorithms for optimization which are based on local
search, the CE method is a global random search procedure. The CE method was
successfully applied to various problems such as the traveling salesman problem [30],
the bipartition problem [30], the maximal cut problem [32], the image matching [12],
the image segmentation [13], etc.

For a comprehensive overview and history of the CE method, the reader is re-
ferred to [33]. For the sake of completion we present below the generic CE scheme for
combinatorial optimization problems.

Consider the problem of minimizing the function S over a finite set X , say

γ∗ = min
x∈X

S(x). (3)

The starting point in the methodology of the CE method applied to (3) is to
associate an estimation problem with the optimization problem (3). To this end one
defines a collection of indicator functions I{S(x)≤γ} on X for various thresholds or
levels γ ∈ R. Next, let {f(·; v), v ∈ V } be a family of (discrete) probability density
functions (pdfs) on X , parameterized by a real-valued (vector) v.

For some u ∈ V , we consider the Associated Stochastic Problem (ASP):

`(γ) = Pu(S(x) ≤ γ) =
∑

x∈X
I{S(x)≤γ}f(x;u) = EuI{S(x)≤γ}, (4)

where Pu is the probability measure under which the random state X has the pdf
f(·;u), and Eu denotes the corresponding expectation operator. The idea of CE method
is to construct simultaneously two sequences of levels γ̂1, γ̂2, ..., γ̂T and parameters
(vectors) v̂1, v̂2, ..., v̂T such that γ̂T is close to the optimal γ∗, and v̂T is such that the
corresponding density assigns high probability mass to the collection of states that give
a low value. More specifically, one initializes by setting v0 = u and choosing a not very
small quantity θ, and then proceeds as follows:

1. Adaptive updating of γt. For a fixed vt−1, let γt be the θ-quantile of S(X)
under vt−1. That is, γt satisfies

Pvt−1(S(X) ≥ γt) ≥ 1− θ, (5)

Pvt−1(S(X) ≤ γt) ≥ θ, (6)

where X ∼ f(·; vt−1).
A simple estimator of γt, denotes γ̂t, can be obtained by drawing a random sam-
ple X1, X2, ..., XN from f(·; vt−1). Suppose that S(Xσ(1)) ≤ S(Xσ(2)) ≤ ... ≤
S(Xσ(N)), where σ is a permutation of the set {1, ..., N}. Estimate the θ-quantile
of S(X) as

γ̂t = SbθNc. (7)

2. Adaptive updating of vt. For a fixed γt and vt−1, derive vt by minimizing the
Kullback-Leibler distance, or equivalent to solving the program

max
v

Evt−1I{S(X)≤γt} ln f(X; v). (8)

The stochastic counterpart of (8) is as follows: for fixed γ̂t and v̂t−1 the estimate
of vt−1, derive v̂t from the solution of following program

max
v

D(v) :=
1

N

N∑

i=1

I{S(Xi)≤γ̂t} ln f(X
i; v). (9)



Solving the Multidimentional Assignment Problem via the Cross-Entropy method 5

In typical applications, the function D is concave and differentiable with respect
to v, and thus updating equation (9) is equivalent to solving the following system
of equations:

1

N

N∑

i=1

I{S(Xi)≤γt}∇ ln f(Xi; v) = 0, (10)

where the gradient is with respect to v.

For the convergence analysis of the CE method we refer to [10,11,33].

Remark 1 (smooth parameter): Instead of updating the parameter v directly via
the solution of (9) we use the following smooth version

v̂t = αṽt + (1− α)v̂t−1, t = 1, 2, ..., (11)

where ṽt is the parameter vector from the solution of (9), and α is called the smoothing
parameter, with 0.7 ≤ α ≤ 1. The reason for using this smooth is: (a) to smooth out
the value of v̂t, (b) to reduce the probability that some component v̂t,i of v̂t will be
zero or one at the first few iterations. This is particularly important when v̂t is a vector
or matrix of probabilities.

CE Algorithm for Combinatorial Optimization

1. Choose v̂0, and 0 < θ < 1. Set t = 1.
2. GenerateN samplesX1, X2, ..., XN according to f(·; v̂t−1), and compute θ-quantile

γ̂t of S according to (7).
3. Use the same samples X1, X2, ..., XN to solve the stochastic programming problem

(9). Denote the solution by ṽt.
4. Applying (11) to smooth out the vector ṽt.
5. If for some t ≥ d, say d = 5 such that

γ̂t = γ̂t−1 = ... = γ̂t−d,

then stop; otherwise set t = t+ 1, reiterate from step 2.

3 Application CE method to Problem (2)

We denote by X the set of the sequences of injections π = (π1, π2, ..., πd−1), where
πk : {1, 2, ..., n1} → {1, 2, ..., nk+1} is an injection, k = 1, 2, ..., d − 1. The objective
function of the MAP is computed by:

S(π) =

n1∑

i=1

ci,π1(i),...,πd−1(i).

Due to the special structure of X, it is very hard to directly construct a family of
discrete distributions on X. We consider an extending set of X, denoted X̃, that is
the set of the sequences of mappings π̃ = (π̃1, π̃2, ..., π̃d−1), where π̃k : {1, 2, ..., n1} →
{1, 2, ..., nk+1}, k = 1, 2, ..., d− 1. We define a function S̃ on X̃ as follows

S̃(π̃) =

{
S(π̃) if π̃ ∈ X,
+∞ otherwise.
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Therefore
min
π∈X

S(π) = min
π̃∈X̃

S̃(π̃).

To construct a family of discrete distribution on X̃, we choose a sequence of probability
matrices M = (M1,M2, ...,Md−1), where

Mk =




pk(1|1) pk(1|2) · · · pk(1|nk+1)
pk(2|1) pk(2|2) · · · pk(2|nk+1)

· · ·
pk(n1|1) pk(n1|2) · · · pk(n1|nk+1)


 ,

and pk(i|j) represents the probability to assign the element i of dimension 1 to the
element j of dimension k + 1, for all k = 1, ..., d− 1.

We have
nk+1∑

j=1

pk(i|j) = 1.

For each π̃ = (π̃1, π̃2, ..., π̃d−1) ∈ X̃. The probability of drawing this sequence of
mappings according to M is

p(π̃) =
d−1∏

k=1

n1∏

i=1

pk(i|π̃k(i)).

In each iteration, suppose that π̃l = (π̃l1, π̃
l
2, ..., π̃

l
d−1), l = 1, 2, ..., N are the sam-

ples drawn. The H = bθNc best samples, according to the objective function S̃, are
selected to update M . Denoting {π̃1, π̃2, ..., π̃H} as the H “best” samples among the
draws {π̃1, π̃2, ..., π̃N}, minimizing the Kullback-Leibler distance leads to the following
optimization problem:





max
pk(i|j)

K :=
H∑
h=1

ln(
d−1∏
k=1

n1∏
i=1

pk(i|π̃hk (i)))

s.t.
nk+1∑
j=1

pk(i|j) = 1, i = 1, ..., n1, k = 1, ..., d− 1,

pk(i|j) ≥ 0, i = 1, ..., n1, j = 1, .., nk+1, k = 1, ..., d− 1.

(12)

Solving this program is equivalent to solving (d− 1) following programs




max
pk(i|j)

Kk :=
H∑
h=1

ln(
n1∏
i=1

pk(i|π̃hk (i)))

s.t.
nk+1∑
j=1

pk(i|j) = 1, i = 1, ..., n1,

pk(i|j) ≥ 0, i = 1, ..., n1, j = 1, .., nk+1.

(13)

We first rewrite the objective function of (13) as follows

Kk =
H∑

h=1

ln(

n1∏

i=1

pk(i|π̃hk (i)) =
n1∑

i=1

H∑

h=1

ln pk(i|π̃hk (i))

=

n1∑

i=1

nk+1∑

j=1

card{h ∈ {1, ..., H} : π̃hk (i) = j} ln(p(i|j)).
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Denoting
uij = p(i|j), bij = card{h ∈ {1, ..., H} : π̃hk (i) = j}.

The program (13) is equivalent to





min
uij

(−
n1∑
i=1

nk+1∑
j=1

bij ln(uij))

s.t.
nk+1∑
j=1

uij = 1, i = 1, ..., n1,

uij ≥ 0, i = 1, ..., n1, j = 1, .., nk+1.

(14)

The Karusk-Kuhn-Tucker (KKT) condition of the convex program (14) is:




− bij
uij

+ λi − µij = 0, i = 1, ..., n1, j = 1, ..., nk+1,

λi(
nk+1∑
j=1

uij − 1) = 0, i = 1, ..., n1,

µijuij = 0, i = 1, ..., n1, j = 1, ..., nk+1,

λi ≥ 0, i = 1, ..., n1,
µij ≥ 0, i = 1, ..., n1, j = 1, ..., nk+1.

(15)

Then by solving (15), we get the updating formula of matrix Mk, k = 1, ..., d − 1 as
follows

pk(i|j) :=
card{h ∈ {1, ..., H} : π̃hk (i) = j}

H
·

The CE algorithm for solving the Problem (2):
Step 1. Initialize M = (M1,M2, ...,Md−1), where Mk = (pk(i|j))n1×nk+1

, k =
1, ..., d− 1, are a uniform distribution, i.e.,

pk(i|j) =
1

nk+1
, i = 1, ..., n1, j = 1, ..., nk+1,

and choose θ ∈]0, 1[.
Step 2. Draw N samples π̃1, π̃2, ..., π̃N according toM . Compute S̃(π̃l), l = 1, 2, ..., N .
Step 3. Sort the sequence S̃(π̃l)Nl=1 in the increasing orders. Let S̃(π̃σ(1)) ≤ S̃(π̃σ(2)) ≤
... ≤ S̃(π̃σ(N)), where σ is a permutation of the set {1, 2, ..., N}. Set H = bθNc, then
choose H best draws π̃σ(1), π̃σ(2), ..., π̃σ(H).
Step 4. Update M by the formula

pk(i|j) :=
card{h ∈ {1, 2, ..., H} : π̃

σ(h)
k (i) = j}

H
,

i = 1, ..., n1, j = 1, ..., nk+1, k = 1, ..., d− 1.

Step 5. Applying (11) to smooth out M .
Step 6. Iterate step 2-5 until convergence.

Remark 2 : In Step 2, if we use the sequence of matrices M = (M1, ...,Md−1) to
generate directly the sequence of mappings π̃ = (π̃1, ..., π̃d−1), then the generated
mapping π̃k may not be an injection, in this case S̃(π̃) would be +∞. For avoiding the
generation of irrelevant mappings, we propose the following procedure.
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Generation of sequence of injections in the MAP

For k = 1, ..., d− 1:
1. Set M̂k =Mk, i.e., p̂k(i|j) = pk(i|j). Let r = 1.
2. Generate a value of random variable X from the following distribution

Prob{X = j} = p̂k(r|j), j = 1, ..., nk+1.

Assume that X receives value j∗. Define

πk(r) = j∗.

3. If (r < n1) update M
(r)
k

for i = r + 1 to n1
p̂k(i|j∗) = 0;
sum = 0;
for j = 1 to nk+1

sum = sum+ p̂k(i|j);
end for
for j = 1 to nk+1

p̂k(i|j) := p̂k(i|j)/sum;
end for

end for
Set r = r + 1, go to 2.

else stop

4 Numerical Results

In this section, we test our CE algorithm on a set of 58 MAPs. In the first experiment,
we use the procedure given in [16] to generate the data. By this procedure, we know
a priori optimal solution of MAP that allows us to evaluate the efficiency of our CE
algorithm. The problems are fully dense and the cost variables for individual problems
are approximately normally distributed [9,16].

The CE algorithm is written in language C of Microsoft Visual C++ 2008, and
is tested on a notebook with chipset Intel(R) Core(TM) Duo CPU 2.0 GHz, 3GB of
RAM.

The following notations are used in these tables:

- Prob: the problem,
- Samples: the number of the samples N ,
- Smooth: the smooth parameter α,
- MaxIter: the maximal number of iteration of CE algorithm,
- V ars: the number of the binary variables,
- Ctrs: the number of the constraints,
- Average: the average for the 10 results,
- Best: the best result among the 10 results,
- T ime: the average time of 10 tests,
- Objective value: the objective value given by the CE algorithm,
- Gap % = Objective value - Optimal value

Optimal value ·
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Table 1 gives the value of parameters of the CE algorithm for each problem. In the
“Prob” column, we list the structure of test problems. For instance, n5d3 represents
the MAP with dimension d = 3, and each dimension has n = 5 elements.

Prob Samples θ Smooth MaxIter
n5d3 500 0.1 0.3 10
n8d3 2000 0.01 0.3 10
n10d3 5000 0.01 0.3 15
n15d3 8000 0.01 0.3 30
n20d3 8000 0.01 0.3 30
n8d5 3000 0.01 0.3 20
n10d5 5000 0.01 0.3 20
n12d5 5000 0.01 0.3 30
n15d5 8000 0.01 0.3 30
n20d5 8000 0.01 0.3 30

Table 1 Parameters.

Prob Vars Ctrs Optimal Objective value Gap Time (s)

Average Best Average Best
1 125 15 29 29.9 29 3.10 0.00 0.21

2 125 15 24 24.4 24 1.67 0.00 0.20

3 125 15 17 19.8 17 16.47 0.00 0.20

4 125 15 18 18.9 18 5.00 0.00 0.20

5 125 15 14 16.0 14 14.29 0.00 0.22

6 125 15 24 25.8 24 7.50 0.00 0.20

7 125 15 23 25.4 23 10.43 0.00 0.20

8 125 15 24 24.0 24 0.00 0.00 0.21

9 125 15 31 31.0 31 0.00 0.00 0.21

10 125 15 30 30.0 30 0.00 0.00 0.21

Table 2 Results with d = 3, n = 5.

For each test problem in these tables, we run CE algorithm 10 times, then take the
average result (“Average”) and the best result (“Best”) in term of objective value and
gap.

Table 2, 3, 4, 5, 6 present the results with d = 3, and n = 5, 8, 10, 15, 20.
From the Table 2 and 3, the best run of the CE method found an optimal solution

in almost problems, except the two last problems in the case n = 3, d = 8. Moreover,
the CE algorithm is fast: CPU time is less than 0.22 (resp. 4.5) seconds in the case
n = 5 (resp. n = 8).

In Table 4, 5, 6, the CE algorithm also produced good solutions. The best gap
varies from 0.00% to 11.63% (resp. from 7.87% to 12.82%, from 11.71% to 17.78%) in
the case n = 10 (resp. n = 15, n = 20).

In the second experiment, we consider the data given on the website [37] corre-
sponding to [16], where the optimal value and the optimal assignment are furnished.
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Prob Vars Ctrs Optimal Objective value Gap Time (s)

Average Best Average Best
1 512 24 57 63.6 57 11.58 0.00 3.03

2 512 24 40 44.7 40 11.75 0.00 3.27

3 512 24 49 54.3 49 10.82 0.00 3.20

4 512 24 41 45.3 41 10.49 0.00 3.87

5 512 24 36 41.0 36 13.89 0.00 4.25

6 512 24 40 45.1 40 12.75 0.00 4.38

7 512 24 43 46.9 43 9.07 0.00 4.39

8 512 24 62 65.9 62 6.29 0.00 4.42

9 512 24 45 50.2 49 11.56 8.89 4.18

10 512 24 47 52.2 48 11.06 2.13 2.05

Table 3 Results with d = 3, n = 8.

Prob Vars Ctrs Optimal Objective value Gap Time (s)

Average Best Average Best
1 1000 30 54 61.1 58 13.15 7.41 10.92

2 1000 30 47 53.6 51 14.04 8.51 11.55

3 1000 30 70 76.0 72 8.57 2.86 10.92

4 1000 30 66 73.9 71 11.97 7.58 11.45

5 1000 30 43 50.4 48 17.21 11.63 10.98

6 1000 30 59 66.0 64 11.86 8.47 12.94

7 1000 30 42 49.2 46 17.14 9.52 10.97

8 1000 30 56 64.5 61 15.18 8.93 13.22

9 1000 30 51 56.6 51 10.98 0.00 11.41

10 1000 30 51 58.5 56 14.71 9.80 11.78

Table 4 Results with d = 3, n = 10.

Prob Vars Ctrs Optimal Objective value Gap Time (s)

Average Best Average Best
1 3375 45 68 79.6 75 17.06 10.29 195.03

2 3375 45 79 92.6 89 17.22 12.66 201.44

3 3375 45 89 99.8 96 12.13 7.87 201.97

4 3375 45 81 93.8 90 15.80 11.11 197.92

5 3375 45 79 92.5 89 17.09 12.66 208.25

6 3375 45 71 85.4 80 20.28 12.68 214.77

7 3375 45 86 99.2 96 15.35 11.63 211.83

8 3375 45 78 92.4 88 18.46 12.82 214.14

9 3375 45 83 96.1 92 15.78 10.84 213.78

10 3375 45 72 85.7 79 19.03 9.72 190.41

Table 5 Results with d = 3, n = 15.
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Prob Vars Ctrs Optimal Objective value Gap Time (s)

Average Best Average Best
1 8000 60 109 131.2 127 20.37 16.51 315.08

2 8000 60 118 140.2 135 18.81 14.41 315.08

3 8000 60 97 117.1 112 20.72 15.46 334.59

4 8000 60 103 123.6 119 20.00 15.53 341.13

5 8000 60 119 139.4 134 17.14 12.61 324.33

6 8000 60 111 129.1 124 16.31 11.71 335.38

7 8000 60 90 108.4 106 20.44 17.78 339.08

8 8000 60 107 126.7 122 18.41 14.02 356.17

9 8000 60 113 134.9 131 19.38 15.93 346.45

10 8000 60 100 120.0 116 20.00 16.00 226.31

Table 6 Results with d = 3, n = 20.

The results are reported in Table 7 with d = 5, and n = 8, 10, 12, 15, 20 respectively.
We use the same notations as in the previous tables.

We observe from the numerical results that the CE algorithm produced the good
solutions in acceptable time. The best gap varies from 3.23% to 11.54%. On the other
hand, the difference between the best gap and the average gap is from 3.83% to 6.73%,
that shows the stability of our CE method.

Prob Vars Ctrs Optimal Objective value Gap Time (s)

Average Best Average Best
n8d5prob1 32768 40 31 33.6 32 8.39 3.23 10.66

n8d5prob2 32768 40 38 41.8 40 10.00 5.26 11.03

n10d5prob1 100000 50 47 52.8 51 12.34 8.51 42.20

n10d5prob2 100000 50 52 57.2 55 9.81 5.77 60.63

n12d5prob1 248832 60 56 62.4 60 11.43 7.14 118.39

n12d5prob2 248832 60 53 61.1 59 15.28 11.32 127.55

n15d5prob1 759375 75 64 74.1 70 15.78 9.38 340.66

n20d5prob1 3200000 100 104 123 116 18.27 11.54 718.04

Table 7 Results with d = 5.

5 Conclusion

In this paper, we have proposed a new and efficient approach based on the CE method
for solving the Multidimensional Assignment Problem. Exploiting the formulation (2)
of the MAP, we constructed a family of discrete distributions such that the CE method
could be applied. The computational results have shown the efficiency of our proposed
approach. It found a near-optimal solution within an acceptable time for even large-
scale problems. Our CE algorithm solves the MAP up to 3.2 millions binary variables
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and 100 constraints, while the existing methods, for instance the GRASP with Path
Relinking [1] and the simulated annealing [9], the maximal numbers of binary variables
of the MAP are 287,496 and 1.0 million respectively. In the future work, we plan to
combine our CE algorithm with a local method to improve the result.
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Abstract In this paper, we consider a portfolio selection problem that consists of maxi-
mizing a return distribution under a Value-at-Risk constraint. It is a nonconvex nonsmooth
optimization problem which is very hard to solve. We propose an approach based on the
Cross-Entropy (CE) method to tackle it. The numerical results show the efficiency of our
approach
Keywords: Portfolio Optimization, Risk Management, Value at Risk, Cross-Entropy.

1 Introduction

Value-at-Risk, denotedVaR, is an important and popular risk measure that has been used
extensively in recent years in portfolio selection and in risk analysis (see e.g. [12]). LetX
be the anticipated random returns, then the Value-at-Risk ofX is defined as

VaRα (X) = inf{u : FX (u) ≥ α} = F−1
X (α ), 0 < α < 1,

whereFX is the distribution function ofX . VaRα is said to be an acceptability functional
[15].

TheVaR has the undesirable mathematical characteristics such as a lack of subadditivity
and concavity [2,3]. Due to the non-concavity ofVaR, the problem of maximizing Value-at-
Risk or maximizing the return under a Value-at-Risk constrain is nonconvex. That is why, in
practiceVaR is often replaced by the Average Value-at-Risk (AVaR, also called Conditional
Value-at-Risk,CVaR). Some reasons justifying the use ofCVaR instead ofVaR can be found
in [25]. However, due to regulatory frameworks such as Basel II and Solvency II, Value-at-
Risk remains to be widely used in portfolio management in most notably banks.
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In this paper, we consider the following non-convex portfolio selection under the Value-
at-Risk constraint: 




max E(xT ξ )

s.t.
n
∑

i=1
xi = 1,

xi ≥ 0,1 ≤ i ≤ n,
VaRα (xT ξ ) ≥ a,

(1)

wherexi denotes the relative weight of asseti in portfolio, ξi is the random return of asseti,
andn is the number of assets. Because of the non-convexity of Value-at-Risk constrain, this
problem is NP-hard (NP-complete in the strong sense) [4].

There are several approaches including deterministic and heuristic to solve the problem
(1) in the literature (see e.g. [4–6,9–11,14]or [24] for an overview). Recently, Wozabal et al.
[24] gave a representation of theVaR as a DC function (Difference of Convex functions) in
the case finite scenarios, and proposed a conical Branch-and-Bound algorithm to find global
optima of (1). Later, Wozabal [25] introduced a DC Algorithm (DCA) to the DC formulation
of the problem (1). To obtain this DC formulation, the author used a penalty technique that is
not exact. In [25] it has been not proved that the DC formulation is equivalent to the original
problem.

In this paper, we propose an algorithm based on the Cross-Entropy (CE) method to
tackle Problem (1). The CE method was motivated by an adaptive algorithm for estimating
probabilities of rare events in complex stochastic networks [19], which involves variance
minimization. It was soon realized [20,21] that a simple cross-entropy modification of [19]
could be used not only for estimating probabilities of rare event but for solving difficult
combinatorial optimization problems as well. This is done by translating the “determinis-
tic” optimization problem into a related “stochastic” optimization problem and then using
rare event simulation technique similar to [19]. Several recent applications demonstrate the
power of the CE method as a generic and practical tool for solving NP-hard problems. The
crucial point in applying CE method is how to find a family of pdfs (probability density
functions) on the feasible set of the optimization problem such that updating the parame-
ters could be done as easily as possible. Due to the special structure of the feasible set of
problem (1), we will construct a family of pdfs based on a family of exponential pdfs for
our CE algorithm. The numerical results demonstrate that our proposed algorithm finds a
near-optimal solution. It is a fast and scalable algorithm.

The rest of paper is organized as follows. In Section 2, we give a short presentation of
the CE method. In Section 3, we propose an application of CE for our problem based on a
family of exponential pdfs. Results of numerical experiments are reported in Section 4 while
some conclusions and perspectives are discussed in Section 5.

2 The Cross-Entropy method

The Cross - Entropy (CE) method [7,17,19–21] has been developed by Rubinstein initially
for evaluating rare events probabilities, for which a direct computation by usual methods
would be unreliable. The only way to evaluate them is then to resort to a simulation method
based on importance sampling. The CE method allows to tilt proposed densities in order to
favor sampling of rare events. It has been demonstrated that this method is particularly rel-
evant for solving ”hard” optimization problems like combinatorial optimization problems.
Indeed, when deterministic methods failed to find the optimal solution within a reason-
able amount of computation, in most cases the CE method allows to find a fairly good one
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more quickly. To use the CE method for solving a deterministic optimization problem, this
problem must be first translated into a stochastic one. The set of feasible solutions is then
regarded as a set of events subjected to an importance density. Thus, we use rare event
simulation technique.

Suppose that we wish to maximize a real-valued performance functionS over a setX .
Let us denote the maximum byγ∗

γ∗ = max
x∈X

S(x). (2)

The starting point in CE method is to associate an estimation problem with the optimization
problem (2). To this end we define a collection of indicator functionsI{S(x)≤γ} on X for
family of (discrete) probability density functions (pdfs) onX , parameterized by a real-
valued (vector)v.

For a certainu ∈ V , we consider theassociated stochastic problem (ASP):

`(γ) = Pu(S(x) ≥ γ) = ∑
x∈X

I{S(x)≥γ} f (x;u) = EuI{S(x)≥γ},

wherePu is the probability measure under which the random stateX has the pdff (·;u), and
Eu denotes the corresponding expectation operator. The idea of CE method is to construct
simultaneously a sequence of levelsγ̂1, γ̂2, ..., γ̂T and parameters (vectors)v̂1, v̂2, ..., v̂T such
that γ̂T is close to the optimalγ∗ andv̂T is such that the corresponding density assigns high
probability mass to the collection of states that give a high value. More specifically, we
initialize by settingv0 = u, choosing a not very small quantityθ , and then we proceed as
follows:

1. Adaptive updating of γt . For a fixedvt−1, let γt be the(1−θ)-quantile ofS(X) under
vt−1. That is,γt satisfies

Pvt−1(S(X) ≥ γt ) ≥ θ , (3)

Pvt−1(S(X) ≤ γt) ≥ 1−θ , (4)

whereX ∼ f (·;vt−1).
A simple estimator ofγt , denotêγt can be obtained by drawing a random sampleX1,X2, ...,XN

from f (·;vt−1). Suppose thatS(Xσ(1)) ≤ S(Xσ(2)) ≤ ... ≤ S(Xσ(N)), whereσ is a per-
mutation of the set{1, ...,N}. Evaluating the(1−θ)-quantile ofS(X) as

γ̂t = Sb(1−θ)Nc. (5)

2. Adaptive updating of vt . For a fixedγt andvt−1, derivevt by minimizing the Kullback-
Leibler distance, or equivalent to solving the following program:

max
v

Evt−1I{S(X)≥γt }W(X ;u,vt−1) ln f (X ;v), (6)

where

W (x;u,vt−1) =
f (x;u)

f (x;vt−1)
·

The stochastic counterpart of (6) is as follows: for fixedγ̂t and v̂t−1 (the estimate of
vt−1), derivev̂t from the following program:

max
v

D(v) :=
1
N

N

∑
i=1

I{S(Xi)≥γt }W (Xi;u,vt−1) ln f (Xi;v). (7)
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In typical applications, the functionD is concave and differentiablewith respect tov, and
thus the updating equation (7) is equivalent to solving the following system of equations:

1
N

N

∑
i=1

I{S(Xi)≥γt }W (Xi;u,vt−1)∇ ln f (Xi;v) = 0, (8)

where the gradient is with respect tov.

Remark 1 (Smoothing parameter): instead of updating the parameterv directly via the
solution of (7) we use the following smoothed version

v̂t = β ṽt +(1−β)v̂t−1,t = 1,2, ..., (9)

whereṽt is the parameter vector from the solution of (7), andβ is called the smoothing
parameter, with 0.7 ≤ β ≤ 1.

Generic CE Algorithm for Optimization

1. Choosêv0, and 0< θ < 1. Sett = 1.
2. GenerateN samplesX1,X2, ...,XN according tof (·; v̂t−1), and compute(1−θ)-quantile

γ̂t of S according to (5).
3. Using the same samplesX1,X2, ...,XN solve the stochastic programming problem (7).

Denote the solution bỹvt .
4. Apply (9) to smooth out the vector̃vt .
5. Repeat step 2-4 until a pre-specified stopping criterion is met.

3 A CE algorithm for solving Problem (1)

Let X be the set defined by

X = {x = (x1,x2, ...,xn) ∈ Rn :
n

∑
i=1

xi = 1, xi ≥ 0, i = 1,2, ...,n}.

To apply CE, we will construct a family of pdfs{ f (·;v),v ∈ V} onX and then use the penalty
technique to treat the Value-at-Risk constraint of Problem (1) as follows

if x ∈ X ,VaRα (xT ξ ) < a thenS(x) = 0,

whereS(x) = E(xT ξ ) is the objective function of (1). Here, we assume that the distribution
of ξ allows us to computeS(x) andVaRα (xT ξ ) uncomplicatedly, (for instance, in the case
of finite scenario - a very common case in practice).

A direct construction of a “natural” family of pdfs{ f (·;v),v ∈ V} on X is in general
difficult. Thus, instead of the setX , we consider the following set

Ω = {x = (x1,x2, ...,xn−1) ∈ Rn−1 :
n−1

∑
i=1

xi ≤ 1, xi ≥ 0, i = 1,2, ...,n−1}.

There exists a diffeomorphismP from X to Ω as follows

x = (x1,x2, ...,xn) ∈ X 7→ P(x) = (x1,x2, ...,xn−1) ∈ Ω . (10)
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Therefore, having a family of pdfs{ f (·;v),v ∈ V} onΩ is equivalent to having a family
of pdfs onX . The reason to chooseΩ is that we have a rich choice of the ”natural” family
of pdfs on it. In this paper, we choose a family of pdfs as follows.

Firstly, we consider the exponential distribution onRn
+

f (x;v) = exp(−
n

∑
i=1

xi

vi
)

n

∏
i=1

1
vi

, x ∈ Rn
+,

wherev = (v1,v2, ...,vn) ∈ Rn
+ is the parameter. Thus, we have

∫

Rn
+

f (x;v)dx = 1, ∀v ∈ Rn
+.

By considering the diffeomorphismH from Ω × (0,+∞) to Rn
+

H : Ω × (0,+∞) → Rn
+

(y1, ...,yn−1,t) 7→ (x1,x2, ...,xn),{
xi = tyi, i = 1,2, ...,n−1,
xn = t(1−y1 − ...−yn−1),

we have a transformation of variables for the above integral.

The Jacobian matrix of the functionH is given by

JH(y,t) =




t 0 0 . . . 0 y1

0 t 0 . . . 0 y2

. ..
0 0 0 . . . t yn−1

−t −t −t . . . −t 1−
n−1
∑

i=1
yi




.

It is clear to see that det(JH(y,t)) = tn−1. Thus, we have

1 =
∫

Rn
+

f (x;v)dx =
∫

Ω




+∞∫

0

f ((y,t);v)tn−1dt


dy

=
1

n
∏
i=1

vi

∫

Ω




+∞∫

0

exp

(
−t

n−1

∑
i=1

yi

vi
− t(1−y1 − ...−yn−1)

vn

)
tn−1dt


dy

=
∫

Ω

1
n
∏
i=1

vi

· (n−1)!(
n−1
∑

i=1

yi

vi
− (1−y1 − ...−yn−1)

vn

)n dy·

Now, we get a family of probability measures onΩ with the pdfs

g(x;v) =
1

n
∏
i=1

vi

· (n−1)!(
n−1
∑

i=1

xi

vi
− (1−x1 − ...−xn−1)

vn

)n , x = (x1, ...,xn−1). (11)
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Therefore, by using the mapP, we have a family of pdfs onX as follows

g(x;v) =
1

n
∏
i=1

vi

· (n−1)!(
x1

v1
+

x2

v2
+ . . .+

xn

vn

)n , x = (x1, ...,xn−1,xn) ∈ X . (12)

Updating the parameter vt

We have

lng(x;v) =
n−1

∑
i=1

ln i−n ln(
n

∑
i=1

xi

vi
)−

n

∑
i=1

lnvi.

Thus

∂
∂v j

lng(x;v) =
1
v2

j




nx j
n
∑

i=1

xi

vi

−v j


 j = 1,2, ...,n.

In our case, we can solve the system of equation (8) to update the parameterv:

N

∑
i=1

I{S(Xi)≥γ}W (Xi;u,vt−1)




nx j
n
∑

i=1

xi

vi

−v j


= 0, j = 1,2, ...,n,

therefore

v j =

N
∑

i=1
I{S(Xi)≥γ}W (Xi;u,vt−1).n.Xi j

N
∑

i=1
I{S(Xi)≥γ}W(Xi;u,vt−1).

n
∑

i=1

Xi j

v j

, (13)

where
Xi = (Xi1,Xi2, ...,Xin) ∈ X , i = 1,2, ...,N.

Set

a j =
N

∑
i=1

I{S(Xi)≥γ}W (Xi;u,vt−1)Xi j, j = 1,2, ...,n.

The system of equations (13) becomes

v j =
na j
n
∑
j=1

a j

v j

, j = 1,2, ...,n,

therefore
n

∑
j=1

a j

v j
= n

a j

v j
, j = 1,2, ...,n.

Thus
a1

v1
=

a2

v2
= ... =

an

vn
= c = const ,

or
v j =

a j

c
, j = 1,2, ...,n.
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We only considerv = (v1,v2, ...,vn) satisfying

v j > 0, j = 1,2, ...,n and
n

∑
j=1

v j = 1.

Thus

c =
n

∑
j=1

a j =
n

∑
j=1

N

∑
i=1

I{S(Xi)≥γ}W(Xi;u,vt−1)Xi j

=
N

∑
i=1

I{S(Xi)≥γ}W(Xi;u,vt−1)
n

∑
j=1

Xi j

=
N

∑
i=1

I{S(Xi)≥γ}W(Xi;u,vt−1).

Hence, we get the formula to updatev:

ṽt
j =

N
∑

i=1
I{S(Xi)≥γ}W(Xi;u,vt−1)Xi j

N
∑

i=1
I{S(Xi)≥γ}W (Xi;u,vt−1)

, j = 1,2, ...,n. (14)

In practice, we can generate the samples onX by g(·;v) as follows:

1. Generate the samplex = (x1,x2, ...,xn) ∈ Rn
+ by f (·;v).

2. If x1 +x2 + ...+xn > 0 then takey = (y1,y2, ...,yn) ∈ X , where

yi =
xi

x1+x2 + ...+xn
, i = 1,2, ...,n.

Finally our CE algorithm for solving Problem (1) can be described as follows.

The CE algorithm for solving Problem (1):

Step 1. Initialize v0 = u = ( 1
n , 1

n , ..., 1
n ), andθ ∈ (0,1), V M = [ /0], ε > 0.

Step 2. DrawN samplesX1,X2, ...,XN according tog(x;vt). ComputeS(Xk),k = 1,2, ...,N.
Sort the sequence{S(Xk)}N

k=1 in the increasing order. Suppose thatS(Xσ(1)) ≤ S(Xσ(2)) ≤
... ≤ S(Xσ(N)), whereσ is a permutation of the set{1,2, ...,N}. SetH = b(1−θ)Nc, then
chooseH best drawsXσ(H),Xσ(H+1), ...,Xσ(N).
Step 3. Updatevt+1 by the formula (14) and the smoothed updating (9).

Step 4. Set M = 1
N−H+1

N
∑

i=H
S(Xσ(i)),V M = [V M;M],∆t = std(V M), wherestd(V ) com-

putes the sample standard deviation of the data inV .
Step 5. Iterate step 2-5 until∆t < ε.

Here,M is the average of the best values{S(Xk)}N
k=H , andV M in iterationk is a vector

which containsM at all iterations less or equalk. In practice, in each iteration we should
store the “best” value of the sequence{S(Xk)}N

k=1, i.e., S(Xσ(N)), to get the “best” value
when the algorithm stops.
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4 Numerical experiments

The algorithm described above is tested on real-world financial market data. The code is
written in MATLAB 2007a, and is tested on a notebook with chipset Intel(R) Core(TM)
Duo CPU 2.0 GHz, 3GB of RAM.

Our experiment is composed of two parts. In the first part we study the globality of the
CE algorithm by comparing the solutions given by the CE with an optimal solution furnished
by the software CPLEX 12.1 applied to the mixed-integer formulation of the problem (1)
(see [4]). In the second experiment we consider large datasets (for which CPLEX can not
find global solutions) and compare our method with a heuristic algorithm developed in [13].

4.1 The globality of the CE algorithm: comparison with global optima

We used the empirical distribution of two years of weekly data, i.e.,S = 104 scenarios of the
following 5 indices: CAC 40, Standard&Poors 100, Nasdaq 100, FTSE 100, and Hang Seng.
We takeα = 0.045. Different values ofa are considered in the dataset (a is incremented by
0.0005). It is easy to see that ifa is smaller than theVaR of the portfolio that consists only
of the asset with the highest return, then the problem is trivial. Hence, in our test problems,
a is greater than thatVaR.

Name Average Return Variance VaR0.045 AVaR0.045

CAC 40 1.0027144 0.000217647 0.9742 0.9694

Standard&Poors100 1.0004326 0.000179629 0.9755 0.9717

Nasdaq 100 1.0013597 0.000471718 0.9653 0.9504

FTSE 100 1.0021901 0.000151213 0.9824 0.9797

Hang Seng 1.0016546 0.000421260 0.9624 0.9561

Table 1 Time frame: 2004-2005, weekly data

The parameters in the CE method are taken as follows: the number of samplesN = 2000,
θ = 0.01, the parameter smoothβ = 0.8, and the number of iterations is limited to 20.

The results are presented in Table (2) where we compare the objective value (say, the
expected return) obtained by our CE algorithm and the optimal value given by CPLEX
software.

The Figure 2 shows the efficient frontier traced by each algorithm that illustrates the
globality of the CE algorithm in almost all cases. We observe from the numerical results
that the CE algorithms furnished anε-optimal solution withε between 7.52∗ 10−08 and
6.26∗10−05. Moreover the CE algorithm is fast: CPU time is less than 2.5 seconds.

4.2 The scability of the CE algorithm

To study the scability of the CE method we first test on the 1304 daily returns for 43 assets
of the Eurostoxx50 index from January 1, 2003 to December 31, 2007, which gave positive
returns. Then, we test on the empirical distribution of 11 years (from January 1, 2000 to



9

a CE method Optimal solution Error

Expected Return VaR0.045 Time(s) Delta Expected Return VaR0.045 Time (s)

0.9745 1.00270419 0.974502 2.26 7.13E-06 1.00270427 0.974500 0.49 7.52E-08

0.9750 1.00268620 0.975001 2.39 3.13E-07 1.00268702 0.975000 0.58 8.19E-07

0.9755 1.00266935 0.975500 2.26 6.04E-07 1.00266978 0.975500 0.41 4.27E-07

0.9760 1.00265231 0.976002 2.31 6.09E-07 1.00265254 0.976000 0.47 2.33E-07

0.9765 1.00263104 0.976528 2.37 1.51E-06 1.00263307 0.976500 0.39 2.03E-06

0.9770 1.00260890 0.977058 2.29 1.77E-06 1.00261218 0.977000 0.39 3.28E-06

0.9775 1.00258806 0.977524 2.36 1.56E-06 1.00259129 0.977500 0.42 3.23E-06

0.9780 1.00256581 0.978067 2.42 2.15E-06 1.00257040 0.978000 0.38 4.59E-06

0.9785 1.00254669 0.978545 2.39 2.01E-06 1.00254951 0.978500 0.34 2.82E-06

0.9790 1.00252463 0.979010 2.25 2.27E-06 1.00252862 0.979000 0.36 3.98E-06

0.9795 1.00250197 0.979522 2.23 1.28E-05 1.00250773 0.979500 0.36 5.76E-06

0.9800 1.00242424 0.980006 2.33 2.06E-05 1.00248684 0.980000 0.34 6.26E-05

0.9805 1.00230423 0.980501 2.26 9.05E-07 1.00230464 0.980500 0.38 4.15E-07

0.9810 1.00228115 0.981023 2.25 3.10E-06 1.00228322 0.981000 0.50 2.07E-06

0.9815 1.00226396 0.981501 2.31 1.82E-06 1.00226662 0.981500 0.53 2.66E-06

0.9820 1.00224391 0.982037 2.19 2.78E-06 1.00224655 0.982000 0.53 2.64E-06

0.9825 1.00222225 0.982528 2.34 4.53E-06 1.00222647 0.982500 0.59 4.21E-06

0.9830 1.00167853 0.983036 2.31 0.239363 1.00173056 0.983000 0.70 5.20E-05

0.9835 1.00155414 0.983539 2.22 0.015037 1.00160072 0.983500 0.89 4.66E-05

Table 2 The performance of the CE algorithm compared with CPLEX solver

0.975 0.976 0.977 0.978 0.979 0.98 0.981 0.982 0.983 0.984
1.0014

1.0016
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Fig. 1 The efficient frontier: the CE method and Optima
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December 31, 2010) of daily data, i.e., 2759 scenarios of the 87 assets comprising the NYSE
US 100 index.

For these datasets, CPLEX furnished only a feasible solution which is not a global so-
lution. We then compare our CE algorithm with an efficient existing method developed in
[13], called Algorithm A1. This method is widely used in the industry for the Value-at-Risk
portfolio selection. It solves the following problem:





min VaR1−α (xT ξ )

s.t. x ∈ [0,1]n,
n
∑

i=1
xi = 1

E(xT ξ ) ≥ C,

(15)

whereC is a given lower bound expectation.
Note that in [13]X represents the random losses. Hence minimizingVaR1−α amounts to

maximizingVaRα . The main idea of Algorithm A1 is the approximationof theVaR byCVaR
and iterative application of discarding scenarios with large losses. This algorithm performs
well even on large datasets. Algorithm A1 from [13] adapted to our problem is described as
follows ([25]):

1. Fix C as a lower bound on expectation, a parameter for the Value-at-Riskα and a pa-
rameter for the heuristic 0< ζ < 1.

2. Setα0 = α , i0 = 0, andk = 0.
3. Solve the problem 




max
x

AVaRαk(∑
S
i=ik xT ξ i)

s.t.
n
∑

i=1
xi = 1,

E(xT ξ ) ≥ C,
xT ξ i ≤ γ, i ≤ ik,
xT ξ i ≥ γ, i > ik,
xi ≥ 0, 1 ≤ i ≤ n.

(16)

4. Call the solution of the above problemxk and sort the scenariosξ i according to their
returnsri = xT

k ξ i.

5. Setk = k +1,bk = α +(1−α )(1−ζ )k , ik = bS(1−bk)c, andαk = 1− 1−α
bk

·

6. If ik ≤ bS/αc goto step 3, otherwise exit.

The comparison between our CE algorithm and the A1 algorithm has proceeded as fol-
lows: for each valuea, we solve the problem (1) by the CE algorithm and obtain an expected
return and the corresponding Value-at-Risk. That expected return becomes lower bound ex-
pectation (say, the value ofC) for the A1 algorithm. The A1 algorithm will produce a new
Value-at-Risk, and then we compare the Value-at-Risk obtained by the two methods.

We run the CE method with the number of samplesN = 2000,θ = 0.1, the smoothing
parameterβ = 0.8 and the number of iteration is limited to 50. We choose the parameter
ζ = 0.5 for the A1 algorithm.

Table 3 represents the results corresponding to Eurostoxx50 data, whena varies from
0.972 to 0.985. The lower bound fora is theVaR0.05 of the portfolio that consists only of
the asset with the highest return (i.e., AXA withVaR0.05 of 0.9713956 and expected daily
return 1.002344), and the upper bound is 0.985, because the CE algorithm does not work
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a CE method A1 algorithm Difference

Expected Return VaR0.05(CE) Time(s) VaR0.05(A1) Time(s) VaR

0.972 1.00230523 0.972034 31.76 0.972112 57.89 0.000078

0.973 1.00224968 0.973001 30.81 0.973372 57.80 0.000372

0.974 1.00217375 0.974043 30.64 0.974555 57.97 0.000512

0.975 1.00205663 0.975048 30.43 0.976237 58.45 0.001189

0.976 1.00190228 0.976163 31.07 0.978605 62.20 0.002442

0.977 1.00178848 0.977255 30.79 0.979443 62.44 0.002188

0.978 1.00174446 0.978191 33.94 0.980305 68.31 0.002114

0.979 1.00161818 0.979144 34.94 0.981539 88.55 0.002395

0.980 1.00151780 0.980039 35.67 0.982554 69.74 0.002515

0.981 1.00144481 0.981269 38.65 0.983351 85.02 0.002082

0.982 1.00139708 0.982213 37.45 0.984068 62.45 0.001855

0.983 1.00137637 0.983122 42.65 0.983897 76.00 0.000775

0.984 1.00131175 0.984109 30.42 0.984358 67.00 0.000249

0.985 1.00091841 0.985104 44.35 0.988501 57.00 0.003397

Table 3 The performance of CE algorithm compared with the A1 algorithm, Eurostoxx50 daily data

anymore for a greater value. In this table, for each valuea, we solve the problem (1) by the
CE to get an objective value that becomes lower bound expectation for the A1 algorithm.

The Figure 2 shows the efficient frontier traced by each algorithm while the Figure 3
shows their CPU times.

From the Table 3 and the Figure 2 we see that the difference ofVaR0.05 of solutions
between two methods is small, it varies from 0.000078 to 0.002515. Additionally, the CE
algorithm still runs very fast: CPU time varies from 30 to 44 seconds. It is much faster than
the A1 algorithm. The ratio of CPU time between the two algorithms varies from 1.3 to 2.24

Tables 4 and 5 represent, respectively, the results (objective function and CPU time) of
the CE algorithm and the A1 algorithm in caseα = 0.05 andα = 0.1, for the data of NYSE
US 100. Also, the curves in figures 4 and 5 (resp. figures 6 and 7) show the efficient frontier
and CPU time of each algorithm in caseα = 0.05 (resp.α = 0.1).

Here, a varies from 0.953 to 0.983 whenα = 0.05, and from 0.971 to 0.988 when
α = 0.1. The lower bound fora is theVaR of the portfolio that consists only of the asset
with the highest return (i.e., AIG withVaR0.05 of 0.95263158,VaR0.1 of 0.97037850, and
expected daily return 1.00518861).

We observe from the numerical results that the difference ofVaR0.05 (resp.VaR0.1) given
by the two methods varies from 0.000039 to 0.004869 (resp. from 0.000352 to 0.003048).
On the other hand, the proposed CE is much faster than the A1 algorithm: the ratio of CPU
time between the two algorithms varies from 2.75 to 3.78 in Table 4 and from 2.53 to 3.29
in Table 5. Moreover, the larger the sample sizeN we use, the better the solution we obtain,
and the more stable the CE algorithm works.



12

1.0008 1.001 1.0012 1.0014 1.0016 1.0018 1.002 1.0022 1.0024
0.97

0.975

0.98

0.985

0.99

0.995

Expected Return

V
al

ue
−

at
−

R
is

k

A1
CE

Fig. 2 Efficient frontier for Eurostoxx50 data

1.0008 1.001 1.0012 1.0014 1.0016 1.0018 1.002 1.0022 1.0024 1.0026
20

30

40

50

60

70

80

90

100

Expected Returns

C
P

U
 ti

m
e 

(s
)

A1
CE

Fig. 3 CPU time: Eurostoxx50 data



13

a CE method A1 algorithm Difference

Expected Return VaR0.05(CE) Time(s) VaR0.05(A1) Time(s)

0.953 1.00516360 0.953000 191.16 0.953039 646.13 0.000039

0.955 1.00494747 0.955093 229.84 0.955462 727.56 0.000368

0.957 1.00468419 0.957047 249.14 0.957465 862.25 0.000418

0.959 1.00430391 0.959184 242.67 0.960987 710.94 0.001802

0.961 1.00398844 0.961062 258.80 0.963480 736.92 0.002419

0.963 1.00377939 0.963250 234.31 0.965365 735.95 0.002115

0.965 1.00354935 0.965161 234.33 0.968078 862.31 0.002917

0.967 1.00327660 0.967272 233.41 0.969814 747.13 0.002542

0.969 1.00304977 0.969002 233.14 0.971765 745.59 0.002763

0.971 1.00264867 0.971137 231.77 0.975143 874.66 0.004006

0.973 1.00227647 0.973088 230.47 0.977629 755.27 0.004541

0.975 1.00192505 0.975047 229.78 0.979916 765.66 0.004869

0.977 1.00168743 0.977045 240.27 0.981061 670.20 0.004015

0.979 1.00149955 0.979033 230.66 0.982378 770.92 0.003346

0.981 1.00121198 0.981043 229.72 0.983926 773.48 0.002882

0.983 1.00088400 0.983163 226.50 0.985883 779.64 0.002720

Table 4 NYSE US 100 daily data withα = 0.05.
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Fig. 4 Efficient frontier: NYSE US 100 daily data withα = 0.05.
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Fig. 5 CPU time: NYSE US 100 daily data withα = 0.05.

a CE method A1 algorithm Difference

Expected Return VaR0.1(CE) Time(s) VaR0.1(A1) Time (s)

0.971 1.00505703 0.971038 249.45 0.971390 819.36 0.000352

0.972 1.00489083 0.972007 258.28 0.972466 878.23 0.000459

0.973 1.00470412 0.973110 264.47 0.973609 769.77 0.000500

0.974 1.00447797 0.974020 274.28 0.975321 761.50 0.001301

0.975 1.00424399 0.975024 254.22 0.976104 996.36 0.001080

0.976 1.00401883 0.976018 267.45 0.977502 737.53 0.001484

0.977 1.00378923 0.977045 260.13 0.978636 853.59 0.001591

0.978 1.00352334 0.978022 268.81 0.979688 849.47 0.001665

0.979 1.00333735 0.979009 257.64 0.980898 698.95 0.001890

0.980 1.00307247 0.980060 272.19 0.982067 620.45 0.002007

0.981 1.00284515 0.981052 275.66 0.983053 701.24 0.002001

0.982 1.00251888 0.982145 273.27 0.984617 691.67 0.002471

0.983 1.00223072 0.983015 256.48 0.985813 711.09 0.002798

0.984 1.00186933 0.984177 270.23 0.987225 766.99 0.003048

0.985 1.00167539 0.985171 252.91 0.987890 772.53 0.002719

0.986 1.00156141 0.986435 267.56 0.988408 776.99 0.001973

0.987 1.00138666 0.987110 248.14 0.988752 703.80 0.001642

0.988 1.00118943 0.988237 259.52 0.989365 687.17 0.001128

Table 5 NYSE US 100 daily data withα = 0.1.
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Fig. 6 Efficient frontier: NYSE US 100 daily data withα = 0.1.
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Fig. 7 CPU time: NYSE US 100 daily data withα = 0.1.
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5 Conclusion

In this paper, we have proposed a new and efficient heuristic approach based on the Cross-
Entropy method for solving a Value-at-Risk constrained optimization problem. Due to the
special structure of the feasible set of problem (1), we have introduced an appropriate family
of exponential pdfs, and developed a fast and scalable CE algorithm. Although the theoreti-
cal convergence properties of the CE method are not yet fully understood, the computational
results in Table 2 and 3 show the efficiencyof the proposed approach. It found a near-optimal
solution within an acceptable time for large scale problems. We plan to combine our CE al-
gorithm with other approaches for globally solving Problem (1), where CE can be used to
find good feasible solutions.
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A new method for Value-at-Risk constrained
Optimization using the DC programming and DCA

LE THI Hoai An, PHAM DINH Tao, NGUYEN Duc Manh

Abstract

In this paper, we consider a portfolio optimization problem with a Value-at-Risk
constraint. It is a nonconvex nonsmooth optimization problem, which is very hard to
solve. We firstly reformulate this problem as a polyhedral DC program by using an
exact penalty technique, and then propose DCA (DC algorithm) for its solution. The
numerical results show the efficiency of our approach, especially in large scale setting.

Keywords: Portfolio Optimization, Risk Management, Value at Risk, DC pro-
gramming and DCA.

1 Introduction
Value-at-Risk, denoted VaR, is an important and popular risk measure that has been used
extensively in recent years in portfolio selection and in risk analysis (see e.g. [9]). Let X be
the anticipated random returns, then the Value-at-Risk of X is defined as

V aRα(X) = inf{u : FX(u) ≥ α} = F−1
X (α), 0 < α < 1,

where FX is the distribution function ofX. V aRα is said to be an acceptability functional [15].

The VaR has the undesirable mathematical characteristics such as a lack of subadditivity and
concavity [1, 2]. Due to the non-concavity of VaR, the problem of maximizing Value-at-Risk
or maximizing the return under a Value-at-Risk constrain is nonconvex. That is why, in
practice VaR is often replaced by the Average Value-at-Risk (AVaR, also called Conditional
Value-at-Risk, CVaR), which is defined as

AV aRα(X) =
1

α

α∫

0

F−1
X (t)dt =

1

α

α∫

0

V aR(t)dt, 0 < α ≤ 1.

Some reasons justifying the use of CVaR instead of VaR can be found in [21]. However,
due to regulatory frameworks such as Basel II and Solvency II, Value-at-Risk remains to be
widely used in portfolio management in most notably banks.
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In this paper, we consider the following non-convex portfolio selection under the Value-at-
Risk constraint: 




max E(wT ξ)

s.t.
m∑
i=1

wi = 1,

wi ∈ [ai, bi], 1 ≤ i ≤ m,
V aRα(w

T ξ) ≥ a,

(1)

where wi denotes the relative weight of asset i in the portfolio, ξi the random return of
asset i, wT ξ =

∑m
i=1wiξi, and m is the number of assets. Because of the non-convexity of

Value-at-Risk constraint, this problem is NP-hard (NP-complete in the strong sense) [3].

There are several approaches including deterministic and heuristic to solve the problem (1)
in the literature (see e.g. [3, 4, 5, 6, 7, 8, 14] or [21] for an overview). Recently, Wozabal et
al. [21] gave a representation of the V aR as a DC function (Difference of Convex functions)
in the case finite scenarios, and proposed a conical Branch-and-Bound algorithm to find
global optima of (1). Later, Wozabal [22] introduced a DC Algorithm (DCA) [11, 17, 18] to
the DC formulation of the problem (1). To obtain this DC formulation, the author used a
penalty technique that is not exact. In [22] it has been not proved that the DC formulation
is equivalent to the original problem.

In this work we propose a new approach based on DC programming and DCA for solving
this problem. DC programming and DCA ([11, 17, 18] and references therein) aim to solve
a general DC program that takes the form

α = inf{f(x) := g(x)− h(x) : x ∈ IRp} (Pdc) (2)

where g, h are lower semicontinuous proper convex functions on IRp. Such a function f is
called DC function, and g − h, DC decomposition of f while g and h are DC components of
f. The construction of DCA involves DC components g and h but not the function f itself:
each iteration k of DCA consists of computing

yk ∈ ∂h(xk), xk+1 ∈ argmin{g(x)− h(xk)− 〈x− xk, yk〉 : x ∈ IRp} (Pk).

Hence, for a DC program, each DC decomposition corresponds to a different version of
DCA. Since a DC function f has an infinite number of DC decompositions which have
crucial impacts on the qualities (speed of convergence, robustness, efficiency, globality of
computed solutions,...) of DCA, the search for a “good” DC decomposition is important
from algorithmic point of views. Moreover, despite its local character, DCA with a good
initial point could converge to global solutions. Finding a “good” initial point is then also an
important stage of DCA. How to develop an efficient algorithm based on the generic DCA
scheme for a practical problem is thus a judicious question to be studied, and the answer
depends on the specific structure of the problem being considered. Due to the representation
of the V aR as a DC function [21], we reformulate the problem (1) as a polyhedral DC
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program based on an exact penalty technique and apply DCA to find its solution.

This paper is organized as follows. In Section 2, we reformulate the problem (1) as a poly-
hedral DC program. In Sections 3, we propose an application of DCA to the problem.
Numerical experiments are reported in Section 4 while some conclusions and perspectives are
discussed in Section 5.

2 Reformulation of the problem (1)

2.1 Reformulation of V aRα as a DC function.

In this part, we recall how to reformulate V aRα as a DC function (see [21] for more details).
Let m be number of available budget. We need the two following assumptions.

Assumption 1 The distribution of the random asset returns ξ = (ξ1, ..., ξm) is discrete
with finite atoms, i.e. there are S ∈ N scenarios for the joint realizations of the random
variables ξi. The (m× 1) vector of realizations of ξs in scenario s will be denoted by ξs and
the probability of the scenario will be denoted by ps.

Assumption 2 Assume that all the scenarios have equal probabilities, i.e.,

ps =
1

S
, 1 ≤ s ≤ S.

Assumption 2 is made for the sake of simplicity of presentation. In fact, the V aR functional
can be represented as a DC function even in the case of unequal weights [21].

Given the above assumptions, the problem (1) becomes




max
w

1

S

S∑
s=1

(wT ξs)

s.t.
m∑
i=1

wi = 1,

wi ∈ [ai, bi], 1 ≤ i ≤ m,
V aRα(w

T ξ) ≥ a.

(3)

It is easy to see that if X follows a discrete distribution taking the values x1, ..., xS with equal
probability (in our case X represents the anticipated random returns of the portfolio, i.e.,
X = wT ξ ), then

AV aR k
S
(X) =

S

k

k∑

i=1

xσ(i)
1

S
=

1

k

k∑

i=1

xσ(i),

where xσ(1) ≤ xσ(2) ≤ ... ≤ xσ(S) is the set of ordered values of X (σ is a permutation of the
set {1, 2, ..., S}). Therefore

V aRα(X) = xσ(k) = kAV aR k
S
(X)− (k − 1)AV aR k−1

S
(X),
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with k = bαSc. Hence under the above assumptions, V aRα(X) can be written as the
difference of the two concave functions

kAV aR k
S
(X) and (k − 1)AV aR k−1

S
(X).

Therefore, the problem (3) becomes




max
w

1

S

S∑
s=1

(wT ξs)

s.t.
m∑
i=1

wi = 1,

wi ∈ [ai, bi], 1 ≤ i ≤ m,
kAV aR k

S
(wT ξ)− (k − 1)AV aR k−1

S
(wT ξ) ≥ a,

(4)

or equivalently can be written as a minimization problem with a DC constraint:




max
w

− 1

S

S∑
s=1

(wT ξs)

s.t.
m∑
i=1

wi = 1,

wi ∈ [ai, bi], 1 ≤ i ≤ m,
(−kAV aR k

S
(wT ξ))− (−(k − 1)AV aR k−1

S
(wT ξ)) ≤ −a.

(5)

2.2 An exact penalty technique

We consider the following nonconvex optimization problems

α = min{f(x) : x ∈ K, g(x) = 0} (P )

α(τ) = min{f(x) + τg(x) : x ∈ K, g(x) ≥ 0} (Pτ )

Theorem 2.1 (H.A. Le Thi et al. [12])
Let K be a non-empty bounded polyhedral convex set in Rn and let f, g be finite concave
function on K. Suppose that the feasible set of (P ) is not empty. Then there exists τ0 ≥ 0
such that for all τ > τ0, the problems (P ) and (Pτ ) are identical. Furthermore, we can take
τ0 =

f(x0)−α(0)
m

, with m = min{g(x) : x ∈ V (K), g(x) > 0} and any x0 ∈ K, g(x0) = 0. Here,
the convention min

∅
g(x) = +∞ is used.

Due to this theorem, we could transform problem (5) to polyhedral DC program as follows.

Set

C = {w ∈ Rm :
m∑

i=1

wi = 1, wi ∈ [ai, bi], 1 ≤ i ≤ m}.
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It is clear to see that (−kAV aR k
S
(wT ξ)) and (−(k−1)AV aR k−1

S
(wT ξ)) are polyhedral convex

functions in w since

kAV aR k
S
(wT ξ) = min

{∑

s∈I
wT ξs : I ∈ Sk

}
,

(k − 1)AV aR k−1
S
(wT ξ) = min

{∑

s∈J
wT ξs : J ∈ Sk−1

}
,

where

Sk = {I ⊂ {1, 2, ..., S} : |I| = k}, Sk−1 = {J ⊂ {1, 2, ..., S} : |J | = k − 1}.

Let

f(w) = − 1

S

S∑

s=1

(wT ξs),

g(w) = −kAV aR k
S
(wT ξ) + a,

h(w) = −(k − 1)AV aR k−1
S
(wT ξ).

The problem (5) can be written in the form:




min f(w)
s.t. w ∈ C,

g(w)− h(w) ≤ 0.
(6)

We have
g(w)− h(w) ≤ 0 ⇔ g(w) ≤ h(w) ⇔ g(w) ≤ t ≤ h(w)

⇔ g(w)− t ≤ 0, t− h(w) ≤ 0.

Thus, the problem (6) becomes




min f(w)
s.t. (w, t) ∈ C × [t1, t2],

g(w)− t ≤ 0,
t− h(w) ≤ 0,

(7)

where
t1 ≤ min

w∈C
g(w), t2 ≥ max

w∈C
h(w).

This problem is equivalent to




min f(w)
s.t. (w, t, s) ∈ C × [t1, t2]× [0, β],

g(w)− t ≤ 0,
t+ s− h(w) = 0,

(8)
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where

β = max{h(w)− t : w ∈ C, t ∈ [t1, t2]}
= t2 − t1.

Since g is polyhedral convex in w, the set {(w, t) ∈ Rm+1 : w ∈ C, g(w) − t ≤ 0} is also
polyhedral convex. Due to Theorem 2.1, the problem (8) is equivalent to





min f(w) + τ(t+ s− h(w))
s.t. (w, t, s) ∈ C × [t1, t2]× [0, β],

g(w)− t ≤ 0,
h(w)− t− s ≤ 0.

(9)

Because −[f(w)+τ(t+s−h(w))] is polyhedral convex and the constraints display a bounded
polyhedral convex set. The problem (9) is a polyhedral DC program.

3 Application of DCA to problem (9)

3.1 Outline of DC Programming and DCA

DC Programming and DCA [11, 17, 18] constitute the backbone of smooth/nonsmooth
nonconvex programming and global optimization. They are introduced by Pham Dinh Tao
in 1985 in their preliminary form and extensively developed by Le Thi Hoai An and Pham
Dinh Tao since 1994 to become now classic and more and more popular.

We consider the DC (difference of convex functions) program:

α = inf{f(x) := g(x)− h(x) : x ∈ X} (Pdc)

where X = Rn is the usual Euclidean space and g, h are lower semicontinuous proper convex
functions on X.

We are interested in local and global optimality conditions, relationships between local and
global solutions to primal DC programs and their dual

α = inf{h∗(y)− g∗(y) : y ∈ Y } (Ddc)

where Y is the dual space of X, which can be identified with X it self, and g∗, h∗ denote the
conjugate functions of g and h, respectively and solution algorithms.

The transportation of global solutions between (Pdc) and (Ddc) is expressed as:

• If x∗ is an optimal solution of (Pdc), then y∗ ∈ ∂h(x∗) is an optimal solution of (Ddc),

• If y∗ is an optimal solution of (Ddc), then x∗ ∈ ∂g∗(y∗) is an optimal solution of (Pdc).
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Under technical conditions, this transportation holds also for local solutions of (Pdc) and
(Ddc).

DC programming investigates the structure of the vector space DC(X), DC duality and
optimality conditions for DC programs. The complexity of DC programs resides, of course, in
the lack of practical optimal global conditions. We developed instead the following necessary
local optimality conditions for DC programs in their primal part, (by symmetry their dual
part is trivial):

∂g(x∗) ∩ ∂h(y∗) 6= ∅ (i)

such a point x is called critical point of g − h or for (Pdc), and

∂g(x∗) ⊂ ∂h(y∗) (ii)

The condition (ii) is also sufficient for many important classes of DC programs. In particular
it is sufficient for the next cases quite often encountered in practice:

• In polyhedral DC programs with h being a polyhedral convex function. In this case, if
h is differentiable at a critical point x, then x is actually a local minimizer for (Pdc).
Since a convex function is differentiable everywhere except for a set of measure zero,
one can say that a critical point x is almost always a local minimizer for (Pdc).

• In case the function f is locally convex at x.
Based on local optimality conditions and duality in DC programming, the DCA consists in
the construction of two sequences {xk} and {yk}, candidates to be optimal solutions of primal
and dual programs respectively, such that the sequences {g(xk)−h(xk)} and {h∗(yk)−g∗(yk)}
are decreasing, and {xk} (resp. {yk}) converges to a primal feasible solution x∗ (resp. a dual
feasible solution y∗) verifying local optimality conditions and

x∗ ∈ ∂g∗(y∗), y∗ ∈ ∂h(x∗).

Starting x0 ∈ dom(g), these two sequences xk and yk are determined in the way following

xk ∈ ∂g∗(yk−1) → yk ∈ ∂h(xk) = argmin{h∗(y)− g∗(yk−1)− 〈y − yk−1, xk〉 : y ∈ Rn} (Dk)

yk ∈ ∂h(xk) → xk+1 ∈ ∂g∗(yk) = argmin{g(x)− h(xk)− 〈x− xk, yk〉 : x ∈ Rn} (Pk)

Problem (Pk) is a convex program obtained from (P ) by replacing h with its affine
minorization defined by yk ∈ ∂h(xk). Similarly, the convex problem (Dk) is obtained from
(D) by using the affine minorization of g∗ defined by xk ∈ ∂(yk−1).

Implement the algorithm that consists of three steps:
1. Choose x0 ∈ Rn.

2. Set yk ∈ ∂h(xk).

3. Set xk+1 ∈ ∂g∗(yk) that leads to solving the convex program

inf{g(x)− h(xk) + 〈x− xk, yk〉 : x ∈ Rn}.
Until the convergence.
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3.2 Application DCA for solving Problem (9)

For applying DCA to Problem (9), we need to compute ∂h(w) for each w ∈ C. Because

h(w) = −(k − 1)AV aR k−1
S
(wT ξ) = −

k−1∑

i=1

ri:S(w),

where the ri:S(w) are the ordered returns depending on the portfolio w. Suppose that we
have wp, therefore ri:S(w

p) for i = 1, 2, ...,m, we will compute yp = ∂h(wp) as follows:

• If r1:S ≤ ... ≤ r(k−1):S < rk:S ≤ ... ≤ rS:S then

∂h(wp) = ∇h(wp) = −
k−1∑

i=1

ξi:S.

• If r1:S ≤ ... ≤ r(s−1):S < rs:S = ... = r(k−1):S = rk:S = ... = rt:S < r(t+1):S ≤ ... ≤ rS:S
then ∂h(wp) can be written as the convex hull of the following vectors

V =

{
s−1∑

i=1

∇ri:S(w
p) +

∑

j∈J
∇rj:S(w

p) : J ⊂ {s, s+ 1, ..., t}, |J | = k − s− 2

}

=

{
−

s−1∑

i=1

ξi:S −
∑

j∈J
ξj:S : J ⊂ {s, s+ 1, ..., t}, |J | = k − s− 2

}
.

Algorithm 1: The DCA for solving the problem (9)

Step 1. Initialization: Let w0 ∈ C, ε1 > 0, ε2 > 0, and p = 0.

Step 2. Compute yp = ∂h(wp) by the above formulas.

Step 3. Compute wp+1 by solving the linear program




min (f(w) + τ(t+ s)− τ〈w, yp〉)
s.t. (w, t, s) ∈ C × [t1, t2]× [0, β],

g(w)− t ≤ 0,
h(w)− t− s ≤ 0.

(10)

Step 4. Iterate Step 2 and 3 until

|f(w(p+1))− f(wp)| ≤ ε1(1 + |f(w(p+1))|)
or ||wp+1 − wp||∞ ≤ ε2(1 + ||wp+1||∞).

In practice, to solve the problem (10), we use an useful linear reformulation for constraints,
which is presented in [19, 20]. Because the problem (9) is polyhedral DC program, we have
the following convergence theorem:
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Theorem 3.1 The discrete sequence {(wp, tp, sp)} (i.e., it has only finitely many different
elements) generated by Algorithm 1 verifies:

1. The sequence {f(wp) + τ(tp + sp − h(wp))} is decreasing.

2. The sequence {(wp, tp, sp)} is convergent.

Proof see [11, 17].

4 Numerical Experiment
The algorithm described above is tested on real-world financial market data. The code is
written in C++, and is tested on a notebook with chipset Intel(R) Core(TM) Duo CPU 2.0
GHz, 3GB of RAM. We use CPLEX 12.1 for solving linear programming.

Our experiment is composed of two parts. In the first part, we study the globality of the
DCA by comparing the solutions given by the DCA with an optimal solution furnished by
the software CPLEX 12.1 applied to the mixed-integer formulation of the problem (1) (see
[3]). In the second experiment, we consider large datasets (for which CPLEX can not find
global solutions) and compare our method with a heuristic algorithm developed in [10]. In
the following tests, we choose ai = 0, bi = 1, i = 1, ...,m.

4.1 Comparison with global optima: DCA gives a good near-
optimal solution

We used the empirical distribution of two years of weekly data, i.e., S = 104 scenarios of the
following 5 indices: CAC 40, Standard&Poors 100, Nasdaq 100, FTSE 100, and Hang Seng.
We take α = 0.045. Different values of a are considered in the dataset (a is incremented by
0.0005). It is easy to see that if a is smaller than the V aR of the portfolio that consists only
of the asset with the highest return, then the problem is trivial. Hence, in our test problems,
a is greater than that V aR.

The results are presented in Table 2, where we compare the objective value (say, the expected
return) obtained by our DCA and the optimal value given by CPLEX software. The Figure
2 shows the efficient frontier traced by each algorithm that illustrates the globality of the
DCA in almost all cases.

We observe from the numerical results that in almost cases the results given by DCA the
same as the global solutions, except the cases a = 0.9805 and a = 0.9825. Moreover the DCA
is fast: CPU time is approximately 0.5 seconds.
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Name Average Return Variance V aR0.045 AV aR0.045

CAC 40 1.0027144 0.000217647 0.9742 0.9694

Standard&Poors100 1.0004326 0.000179629 0.9755 0.9717

Nasdaq 100 1.0013597 0.000471718 0.9653 0.9504

FTSE 100 1.0021901 0.000151213 0.9824 0.9797

Hang Seng 1.0016546 0.000421260 0.9624 0.9561

Table 1: Time frame: 2004-2005, weekly data

a DCA Optimal solution

Expected Return V aR0.045 Time(s) Expected Return V aR0.045 Time(s)
0.9745 1.00270427 0.974500 0.47 1.00270427 0.974500 0.49

0.9750 1.00268702 0.975000 0.47 1.00268702 0.975000 0.58

0.9755 1.00266978 0.975500 0.47 1.00266978 0.975500 0.41

0.9760 1.00265254 0.976000 0.48 1.00265254 0.976000 0.47

0.9765 1.00263307 0.976500 0.45 1.00263307 0.976500 0.39

0.9770 1.00261218 0.977000 0.47 1.00261218 0.977000 0.39

0.9775 1.00259129 0.977500 0.50 1.00259129 0.977500 0.42

0.9780 1.00257040 0.978000 0.47 1.00257040 0.978000 0.38

0.9785 1.00254951 0.978500 0.52 1.00254951 0.978500 0.34

0.9790 1.00252862 0.979000 0.50 1.00252862 0.979000 0.36

0.9795 1.00250773 0.979500 0.47 1.00250773 0.979500 0.36

0.9800 1.00248684 0.980000 0.47 1.00248684 0.980000 0.34

0.9805 1.00229933 0.980500 0.47 1.00230464 0.980500 0.38

0.9810 1.00228322 0.981000 0.47 1.00228322 0.981000 0.50

0.9815 1.00226662 0.981500 0.47 1.00226662 0.981500 0.53

0.9820 1.00224655 0.982000 0.47 1.00224655 0.982000 0.53

0.9825 1.00186039 0.982500 0.45 1.00222647 0.982500 0.59

0.9830 1.00173056 0.983000 0.47 1.00173056 0.983000 0.70

0.9835 1.00160072 0.983500 0.47 1.00160072 0.983500 0.89

0.984 1.00146105 0.984000 0.46 1.00146105 0.984000 0.72

Table 2: DCA compares with global optima
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Figure 1: Efficient frontier: DCA and Optima

4.2 Large scale problem: DCA is a scalable approach

To study the scability of the DCA we first test on the 1304 daily returns for 43 assets of
of the Eurostoxx50 index in year from January 1, 2003 to December 31, 2007, which give
positive returns. Then, we test on the empirical distribution of 11 years (from January 1,
2000 to December 31, 2010) of daily data, i.e., 2759 scenarios of the 87 assets comprising
the NYSE US 100 index.

For these datasets, CPLEX furnished only a feasible solution which is not a global solu-
tion. We then compare our DCA with an efficient existing method developed in [10], called
Algorithm A1. This method is widely used in the industry for the Value-at-Risk portfolio
selection. It solves the following problem:





min
w

V aR1−α(w
T ξ)

s.t. w ∈ [0, 1],
n∑

i=1

wi = 1,

E(wT ξ) ≥ C,

(11)

where C is a given lower bound expectation.
Note that in [10] X represents the random losses. Hence minimizing V aR1−α amounts to
maximizing V aRα. The main idea of Algorithm A1 is the approximation of the V aR by
CV aR and iterative application of discarding scenarios with large losses. This algorithm
performs well even on large datasets. Algorithm A1 from [10] adapted to our problem is
described as follows ([22]):

1. Fix C as a lower bound on expectation, a parameter for the Value-at-Risk α and a
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parameter for the heuristic 0 < ζ < 1.

2. Set α0 = α, i0 = 0, and k = 0.

3. Solve the problem 



max
w

AV aRαk
(
∑S

i=ik
wT ξi)

s.t.
n∑

i=1

wi = 1,

E(wT ξ) ≥ C,
wT ξi ≤ γ, i ≤ ik,
wT ξi ≥ γ, i > ik,
wi ≥ 0, 1 ≤ i ≤ n.

(12)

4. Call the solution of the above problem wk and sort the scenarios ξi according to their
returns ri = wT

k ξ
i.

5. Set k = k + 1, bk = α + (1− α)(1− ζ)k, ik = bS(1− bk)c, and αk = 1− 1− α

bk
·

6. If ik ≤ bS/αc goto step 3, otherwise exit.

The comparison between DCA and A1 algorithm has proceeded as follows: for each value
a, we solve the problem (1) by DCA to get an expected return and the corresponding
Value-at-Risk. That expected return becomes lower bound expectation (say, the value of
C) for A1 algorithm. The A1 algorithm will produce a new Value-at-Risk, and then we
compare the Value-at-Risk obtained by the two methods. In the two numerical comparisons
below, we choose the parameter ζ = 0.5 for A1 algorithm.

Table 3 represents the results corresponding to Eurostoxx50 data, while the Figure 2 shows
the efficient frontier traced by each algorithm. The lower bound for a is the V aR of the
portfolio that consists only of the asset with the highest return (i.e., AXA with V aR0.05 of
0.9713956 and expected daily return 1.002344), and the upper bound is 0.983, because DCA
does not work anymore for a greater value.

From Table 3 and 2 we can see that the difference of V aR0.05 between two methods is small, it
varies from 7.85E-04 to 3.95E-03. Additionally, the number of active assets, i.e., the number
of assets whose portfolio contributions are different from 0, in solution obtained by DCA in
most cases is greater. It means that the portfolio given by DCA is more diversified.

Table 4 presents the results corresponding to NYSE US 100 daily data, with α = 0.05. Also,
the curve in figure 3 shows the efficient frontier each algorithm. Here, a varies from 0.953
to 0.983. The lower bound for a is the V aR of the portfolio that consists only of the asset
with the highest return (i.e., AIG with V aR0.05 of 0.95263158 and expected daily return
1.00518861).
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a DCA A1 algorithm Difference

Expected Return V aR0.05(CE) Active Time(s) V aR0.05(A1) Active Time(s)
0.972 1.002214 0.973127 5 31.59 0.974010 6 138.28 0.000883

0.973 1.002172 0.973544 6 31.86 0.974329 9 156.09 0.000785

0.974 1.002038 0.974685 8 163.67 0.976597 8 143.40 0.001912

0.975 1.001877 0.975563 10 93.64 0.978440 11 163.28 0.002877

0.976 1.001839 0.976539 11 79.38 0.978823 11 169.12 0.002284

0.977 1.001702 0.977581 14 78.50 0.980512 11 145.23 0.002931

0.978 1.001535 0.978353 15 78.22 0.982240 10 168.01 0.003887

0.979 1.001535 0.980599 16 211.88 0.982240 10 166.75 0.001641

0.980 1.001369 0.980145 17 238.14 0.983807 15 165.43 0.003662

0.981 1.001338 0.982272 19 295.49 0.984424 11 167.48 0.002152

0.982 1.001338 0.982272 19 203.11 0.984424 11 166.37 0.002152

0.983 1.000976 0.983827 20 205.00 0.987778 14 166.57 0.003951

Table 3: The performance of CE algorithm compared with the A1 algorithm, Eurostoxx50
daily data
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Figure 2: Efficient frontier: Eurostoxx50 data
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a DCA A1 algorithm Difference

Expected Return V aR0.05(CE) Active Time(s) V aR0.05(A1) Active Time(s)
0.953 1.005061 0.953390 6 959.63 0.953819 5 546.218 0.000429

0.955 1.004888 0.955019 6 379.09 0.955824 7 686.235 0.000805

0.957 1.004705 0.957126 8 697.45 0.957619 10 658.171 0.000493

0.959 1.004429 0.959168 8 863.77 0.958908 11 666.422 0.000260

0.961 1.004007 0.961210 10 765.27 0.963695 10 658.188 0.002485

0.963 1.003834 0.963117 14 954.78 0.965239 14 657.718 0.002122

0.965 1.003576 0.965158 15 980.16 0.967907 13 579.469 0.002749

0.967 1.003248 0.967065 14 980.75 0.970413 15 758.078 0.003348

0.969 1.003061 0.969107 13 967.88 0.971647 17 666.156 0.002540

0.971 1.002784 0.971149 22 1520.00 0.973388 22 656.734 0.002239

0.973 1.002317 0.973059 36 164.03 0.976911 24 830.688 0.003852

0.975 1.002174 0.975101 37 328.45 0.977981 22 681.609 0.002880

0.977 1.002042 0.977007 36 347.08 0.979110 24 687.922 0.002103

0.979 1.001789 0.979047 32 521.23 0.980465 20 705.547 0.001418

0.981 1.001271 0.981192 45 288.92 0.983466 27 693.766 0.002274

0.983 1.001064 0.983097 44 354.47 0.984695 21 596.891 0.001598

Table 4: NYSE US 100 daily data with α = 0.05.
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Figure 3: Efficient frontier: NYSE US 100 daily data
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We observe from the numerical results that the difference of V aR0.05 given by the two methods
varies from 2.60E-04 to 3.85E-03. Moreover, for a from 0.973 to 0.983, the number of active
assets in solution obtained by DCA is greater.

5 Conclusion
In this paper, we have proposed a new reformulation of the problem (1) based on an exact
penalty technique, and DCA for solving locally the polyhedral DC program (9). Some nu-
merical experiments have shown the efficiency of our approach. In fact, the quality of the
solution obtained by DCA, as well as the CPU time in running DCA depend on strongly the
starting point. Whenever having a good starting point, we can get a better local solution or
even a global solution within a shorter time. Therefore, how to find a good starting point
for DCA is an interesting work in the future.
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Conclusion and Perspective

Conclusion
In this thesis, we have studied some optimization problems in Search Information, Assignment
and Portfolio Management. Our methodologies are based on DC programming& DCA and
the Cross-Entropy method, which are known to be powerful tools in optimization. Due to
the techniques of formulation/reformulation, we have given the DC formulation of considered
problems such that we can use DCA to obtain their solutions. Also, depending on the
structure of feasible sets of considered problems, we have designed appropriate families of
distributions such that the Cross-Entropy method could be applied. The main contribution
is to develop new approaches for efficiently solving these problems, especially in very large
dimension. Specifically:

• We have presented a new approach for solving the problem of planning a multisensor
multizone search for a target. This is the first time a deterministic optimization model
is introduced in the literature. This constitues an interesting contribution of the paper.
For solving the combinatorial optimization problem by DCA, an innovative continu-
ous approach in nonconvex programming framework we first reformulated the original
problem in the form of DC program by proving an exact penalty result in which the
penalty parameter can be estimated. That is our second important contribution. The
third contribution deals with the development of an efficient DCA scheme for solving
the resulting problem.

• In the case of moving (Markovian) target, although the above problem becomes very
complicated, we have successfully combined the forward-backward split technique and
the DCA for its solution.

• We proposed two approaches to tackle the Nonlinear UAV Task Assignment Problem.
We first developed an heuristic method based on the Cross-Entropy (CE) method.
Here, we have chosen an appropriate family of discrete distributions characterized by
probability matrices on the feasible sets of this problem. The second one is the Branch
and Bound algorithm for measuring the efficiency of the CE method and globally solving
the considered problem.

• A new heuristic approach based on Cross-Entropy method for solving the Multidimen-
sional Assignment Problem (MAP) is introduced. Due to the special structure of the
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MAP, we designed an appropriate family of discrete distributions on the feasible set of
the MAP, which allows us to apply the Cross-Entropy method efficiently.

• We developed both deterministic and heuristic approaches for solving the Value-at-Risk
constrained optimization problem. In the first approach, we introduced an appropriate
family of continuous distributions based on the family of exponential distributions on
the feasible sets of this problem to apply the Cross-Entropy method. In the second one,
we reformulated the problem as a polyhedral DC program by using an exact penalty
technique and proposed DCA for its solution.

Moreover, to demonstrate the efficiency of our approaches, we implemented optimization
algorithms in MATLAB, C/C++:

• The DCA for the problem of planning a multisensor in multizone search for a target.

• The combination of the forward-backward split technique and DCA (FAB&DCA) for
the case of moving target.

• BB&DCA for the Nonlinear UAV Task Assignment Problem.

• The CE algorithm for the Nonlinear UAV Task Assignment Problem.

• The CE algorithm for the Multidimensional Assignment Problem.

• The DCA for the Value-at-Risk constrained Optimization problem.

• The CE algorithm for the Value-at-Risk constrained Optimization problem.

Perspective
Some questions are posed in this thesis:

• Although DCA showed good performances in applications, the quality of the solution
obtained by DCA, as well as the CPU time in running DCA strongly depend on the
starting point. Whenever having a good starting point, we can get a better local
solution or even a global solution within a shorter time. Thus, how to find a good
starting point for DCA in our considered problems is an interesting work in the future.

• The approach for solving the problem of planning a multisensor multizone search for a
target is a local method. With the obtained DC formulation of problem, how can we
develop global approaches for solving this problem?

• The Nonlinear UAV Task Assignment Problem is only a sub-problem of UAV coordi-
nation problem. In the future, we plan to deeply study UAV coordination problems.
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• The Cross-Entropy algorithm provided good solutions for the Value-at-Risk constrained
optimization problem. But if the constraints become more complex, how we can use
the CE method? And can we apply this approach for the other optimization problems
in portfolio management.

• In this thesis, we used the CE method and DCA separately. They both showed good
performances. How we could combine them is also an attractive job?

• From our experiences in performing the CE algorithms, there is a positive relationship
between the quality of solutions and the number of samples N . However, when N
increases, so does the CPU time. How to parallelize the CE algorithms to save time?

• In the future, we intend to apply our proposed approaches in some industrial appli-
cations. For instance, application of the MAP to data association, image recognition,
multisensor multitarget tracking, etc. Also, we continuously apply the cross-entropy
for the other problems.
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Abstract: In this thesis we focus on developing deterministic and heuristic approaches
for solving some classes of optimization problems in Finance, Assignment and Search
Theory. They are large-scale nonconvex optimization problems. Our approaches are based
on DC programming & DCA and the Cross-Entropy method. Due to the techniques of
formulation/reformulation, we have given the DC formulation of considered problems such
that we can use DCA to obtain their solutions. Also, depending on the structure of feasible
sets of considered problems, we have designed appropriate families of distributions such that
the Cross-Entropy method could be applied efficiently. This thesis is divided into two parts:

In the part 1, besides the introduction to some classes of nonconvex programs in Finance, As-
signment and Search Information, we present the methodologies of DC programming&DCA
and the CE method. They are two main tools, which we use to investigate solution methods
for our considered problems.

Part 2 is devoted to the resolutions of our considered problems. It contains three sections:

In the first section, we propose a deterministic continuous optimization approach based on
DC programming and DCA for solving the problem of planning a multisensor multizone
search for a target. Then, we extend the obtained result to the case of moving (Markovian)
target by combining the forward-backward split technique and DCA.

In the second one, we apply the CE method for solving the UAV (Unmanned Aerial
Vehicles) Task Assignment Problem and the Multidimensional Assignment Problem. We
construct appropriate families of discrete distributions on the feasible sets of the problems
such that the CE method could be applied efficiently. Particularly, for the UAV Task
Assignment Problem, we also give a global approach based on Branch and Bound algorithm
for measuring the quality of our CE algorithm.

In the last one, we study both deterministic and heuristic approaches for solving the
Value-at-Risk constrained optimization problem. On the one hand, we introduce a new
and efficient heuristic approach based on the Cross-Entropy method for its solution,
where an appropriate family of continuous distributions on the feasible set of this problem
is designed. On the other hand, we reformulate this problem as a polyhedral DC pro-
gram based on an exact penalty technique, and then apply the DCA for solving this problem.

All these proposed approaches have been implemented by using MATLAB, C/C++. They
show very good performance even in very large dimension, for instance, up to 500,000 binary
variables and 1000 constraints in the UAV (Unmanned Aerial Vehicles) Task Assignment
Problem, up to 3.2 millions binary variables and 100 constraints in the Multidimensional
Assignment Problem, or the testing on the daily data of 11 years (from January 1, 2000 to
December 31, 2010), i.e., 2759 scenarios of the 87 assets comprising the NYSE US 100 index
in the Value-at-Risk constrained optimization problem, etc.
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Key words: Search Theory, Hierarchical Optimization, Combinatorial Optimization, DC
programming and DCA, Nonlinear Mixed 0-1 Programming, Exact Penalty, UAV, Assign-
ment Problem, Stochastic Programming, Binary Nonlinear Programming, Cross-Entropy
(CE) method, Brand and Bound, Portfolio Management, Risk Management, Value-at-Risk,
Multidimensional Assignment Problem.

Résumé: La présente thèse a pour objectif principal de développer des approches déter-
ministes et heuristiques pour résoudre certaines classes de problèmes d’optimisation en
Finance, Affectation et Recherche d’Informations. Il s’agit des problèmes d’optimisation non
convexe de grande dimension. Nos approches sont basées sur la programmation DC & DCA
et la méthode Cross-Entropy (CE). Grâce aux techniques de formulation/reformulation,
nous avons donné la formulation DC des problèmes considérés afin d’obtenir leurs solutions
en utilisant DCA. En outre, selon la structure des ensembles réalisables de problèmes
considérés, nous avons conçu des familles appropriées de distributions pour que la méthode
Cross-Entropy puisse être appliquées efficacement. Cette thèse est divisée en deux parties:

Dans la partie 1, en plus de certaines classes de problèmes d’optimisation en Finance,
Affectation et Recherche d’informations, nous présentons la méthodologie de la programma-
tion DC&DCA et la méthode Cross-Entropy. Ce sont les deux outils principaux que nous
utilisons pour résoudre des problèmes considérés.

La partie 2 est consacrée à la résolution des problèmes considérés. Elle comprend trois
sections:

Dans la première section, nous proposons une approche d’optimisation déterministe continue
basée sur la programmation DC et DCA pour résoudre le problème de planification multi-
capteurs multizones pour la recherche d’une cible. Puis, nous étendons notre résultat obtenu
au cas de la cible mobile (markovienne) en combinant la technique FAB et l’algorithme DCA.

Dans la seconde section, nous appliquons la méthode Cross-Entropy pour résoudre le
problème d’affectation des tâches d’UAVs, et le problème d’affectation multi-dimensionnelle.
Nous construisons les familles appropriées de distributions discrètes sur des ensembles
réalisables des problèmes afin que la méthode CE puisse être appliquée efficacement.
Particulièrement, pour le problème d’affectation des tâches d’UAVs, nous présentons aussi
une approche globale basée sur l’algorithme de séparation et d’évaluation pour mesurer la
qualité de notre algorithme CE.

Dans la dernière section, nous étudions des approches déterministes et heuristiques pour
résoudre le problème d’optimisation de portefeuille sous la contrainte de Value-at-Risk.
Pour résoudre ce problème, d’une part nous introduisons une approche heuristique nouvelle
et efficace basée sur la méthode Cross-Entropy pour, où nous construisons une famille
appropriée de distributions continues sur l’ensemble réalisable de ce problème. D’autre part,
nous reformulons ce problème comme une programmation DC polyédrale basée sur une
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technique de pénalité exacte, et puis nous utilisons DCA.

Les simulations numériques de nos différentes approches ont été réalisées en utilisant Matlab,
C/C++. Elles montrent de très bonnes performances même en très grande dimension, par
exemple, jusqu’à 500.000 variables binaires et 1000 contraintes dans le problème d’affectation
des tâches d’UAVs, jusqu’à 3,2 millions variables binaires et 100 contraintes dans le problème
d’affectation multi-dimensionnelle, ou les tests sur les données quotidiennes de 11 ans (du
1 janvier 2000 au 31 décembre 2010), c’est à dire 2759 scénarios des 87 actifs composant
l’indice NYSE US 100 dans le problème d’optimisation de portefeuille sous la contrainte de
Value-at-Risk, etc.

Mots clés: Recherche d’Informations, Optimisation Hiérarchique, Optimisation Combina-
toire, Programmation DC et DCA, Programmation non linéaire Mixte 0-1, Pénalité Exacte,
Problème d’affectation, Programmation Stochastique, Programmation non linéaire binaire,
Méthode Cross-Entropy, Algorithme de séparation et évaluation, Gestion de portefeuille,
Gestion des risques, Value-at-Risk, Problème d’affectation multidimensionnelle.
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