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Formation de molécules dans des gaz atomiques ultra froids par des champs quasi 

résonnants. 
 

 

 
 

 Nous montrons que dans le cas d’une forte interaction non linéaire entre un système atome-

molécule ultra froid et un champ électromagnétique quasi résonnant, le processus de formation 

moléculaire peut évoluer suivant deux scénarios en fonction des caractéristiques du  champ 

électromagnétique : champ : régime faiblement oscillatoire ou régime fortement oscillatoire.  Dans 

le cas du régime faiblement oscillatoire, le nombre de molécules augmente sans oscillations 

prononcées des populations atomiques et moléculaires alors que de fortes oscillations de Rabi 

apparaissent dans le second cas.  

 

 

 Une solution approchée « d’ordre zéro » est présentée. Elle décrit la dynamique temporelle du  

régime faiblement oscillatoire dans le cas limite d’une forte non linéarité d’un problème à deux 

états couplés. Cette solution approchée est obtenue essentiellement en tant que solution d’une 

équation différentielle non linéaire d’ordre 1 et contient un paramètre libre qui dépend des 

caractéristiques du champ électromagnétique. Plusieurs interprétations quantitatives et 

significatives peuvent être alors déduites à partir de cette solution analytique.  En particulier, nous 

montrons que l’application d’un champ laser intense à des condensats de Bose-Einstein atomiques 

n’est pas le procédé le plus favorable à l’obtention de condensats moléculaires. Toujours dans le 

même régime, nous montrons qu’on peut au plus convertir 1/3 des atomes initiaux en molécules si 

le champ extérieur appliqué est sans croisement. 

 

 Nous avons aussi déterminé une solution générale, extrêmement précise, rendant compte de la 

dynamique temporelle de l’interaction non linéaire entre un système atome-molécule et le champ 

appliqué dans le cas du régime fortement oscillatoire. La solution s’exprime à l’aide de la fonction 

sinus elliptique de Jacobi et contient un paramètre libre. En fonction de la configuration du champ 

externe, seul l’argument de la fonction change et la dépendance fonctionnelle du paramètre libre 

varie.  

 

 Une analyse approfondie, dans la limite fortement non linéaire, pour le problème à deux états 

couplés est présentée  dans le cas d’un champ extérieur représenté par le modèle sans croisement 



de Rosen-Zener. Des relations analytiques décrivant la dynamique temporelle du système sont 

construites pour tous les deux régimes oscillatoires, faible et fort, dans la limite de la très forte non 

linéarité.  
 

 

 Une étude précise de l’influence de la diffusion élastique entre particules, atome-atome, 

atome-molécule et molécule-molécule, sur la dynamique de formation cohérente de molécules 

molécules sous l’action d’un champ extérieur représenté par le modèle de Landau-Zener, montre 

que, dans la limite de la très forte non linéarité, le processus de formation moléculaire est 

principalement décrit par une équation différentielle non linéaire. Cependant les oscillations de 

population atome-molécule, qui apparaissent immédiatement après que le système soit passé par la 

résonance, sont essentiellement gouvernées par une équation linéaire. 
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  Introduction 

 

 Atom trapping and cooling [1-3] paved the way for the observation of Bose-Einstein 

condensation of dilute atomic gases [4-5]. Nowadays, physics of ultracold gases, in general, and 

Bose-Einstein condensates (BEC), in particular, has developed into a very exciting field of research 

at the boundary between atomic physics and condensed-matter physics allowing one to observe a 

whole series of unusual quantum phenomena (for reviews see, e.g., [6-8]). Previously, it was 

recognized that Bose-Einstein condensation lies at the heart of such phenomena as superfluidity and 

superconductivity. But since these phenomena had been observed in systems in which the 

interactions between the constituent particles play an important role, it was of considerable interest 

to realize Bose-Einstein condensation in an “ideal gas.” 

 The signature of a Bose-Einstein condensation is a macroscopic occupation of a single 

quantum mechanical state which describes the atomic motion. Using a method applied by Satyendra 

Nath Bose to derive the black-body spectrum [9], Albert Einstein predicted the phenomenon of 

Bose-Einstein condensation in 1925 [10]. When a gas of bosonic atoms is cooled below a critical 

temperature cT , a large fraction of the atoms condenses in the lowest quantum state. Atoms at 

temperature T  and with mass m  can be regarded as quantum-mechanical wave packets that have a 

spatial extent of the order of a thermal de Broglie wavelength )/(2 2 TmkBdB   . The value of 

dB  is the position uncertainty associated with the thermal momentum distribution and increases 

with decreasing temperature. When atoms are cooled to the point where dB  is comparable to the 

interatomic separation, the atomic wave packets “overlap” and the gas starts to become a “quantum 

soup” of indistinguishable particles. Bosonic atoms undergo a quantum-mechanical phase transition 

and form a BEC, a cloud of atoms all occupying the same quantum-mechanical state at a precise 

temperature (which, for an ideal gas, is related to the peak atomic density n  by 612.23 dBn ). 

 Bose-Einstein condensation was observed in 1995 in a remarkable series of experiments on 

vapors of rubidium [5] and sodium [4] in which the atoms were confined in magnetic traps and 

cooled down to extremely low temperatures, of the order of fractions of microkelvins. The first 
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evidence for condensation emerged from time-of-flight measurements. The atoms were left to 

expand by switching off the confining trap and then imaged with optical methods. A sharp peak in 

the velocity distribution was then observed below a certain critical temperature, providing a clear 

signature for Bose-Einstein condensation. 

 After the realization of the atomic BECs, the next challenge was to create a BEC of 

molecules [11-13]. This prospect was perhaps even more appealing since molecules due to their 

complex internal structure offer a vast range of properties not available to atoms. For example, 

ultracold molecules are of vast interest due to important applications, such as ultra-precise 

molecular spectroscopy and low Doppler width studies of collision processes [14-15], 

“superchemical” reactions [16], precision measurements of an electron’s electric dipole moment 

(with certain polar molecules) [17-18], and quantum computing [19-20]. Another important 

application that ultracold molecules could suggest is a molecular clock which would complement 

the existing atomic clocks in the quest for constraints on time variation of fundamental constants 

[21]. 

 But standard laser cooling techniques [1-3] that had been developed and realized for atoms 

are unsuitable for molecules due to their rich and complex level structure. Hence, in order to obtain 

ultracold molecules, different approaches should be applied. Two major techniques currently widely 

used for molecule production from cold atoms are the magnetic Feshbach resonance [22-26] and 

optical laser photoassociation [27-29]. 

A Feshbach resonance is a scattering resonance for which the total energy of two colliding 

atoms is equal to the energy of a bound molecular state, and atom-molecule transitions can occur 

during a collision. The energy difference of the free atoms and bound molecules can be controlled 

via a magnetic field when the corresponding magnetic moments are different. To describe a 

magnetically tuned Feshbach resonance, a simple expression for the s-wave scattering length has 

been introduced [24]: 

  
0

1bg

B
a a

B B

 
  

 
. (I.1) 
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The parameter 0B  indicates the Feshbach resonance position, where the scattering length a  

becomes infinite. The value of the magnetic field 0B B B    corresponds to the zero scattering 

length, and the parameter B  is referred to as the resonance width. If we tend B  then 

bga a , hence, the background scattering length bga  represents the off-resonat value of a . The 

parameter bga  can be both negative and positive, that corresponds to off-resonant attractive and 

repulsive interactions, respectively. 

 Nowadays, Feshbach resonances are a routinely used tool to control the interaction between 

atoms in ultracold quantum gases. In the experiment [30], due to coherent Feshbach resonance in a 

BEC of 
85

Rb atoms, a mixture of atomic and molecular states has been created and probed by 

sudden changes in the magnetic field in the vicinity but not across the Feshbach resonance.  In this 

experiment, the variation of the magnetic field gave a rise to oscillations in the number of atoms 

that remain in the condensate. By measuring the oscillation frequency, for a large range of magnetic 

fields, it has first been proved that a quantum superposition of atoms and diatomic molecules has 

been created. In further experiments, ultracold molecules have been formed in degenerate Fermi 

gases of Li atoms [31-32] and afterwards a Bose-Einstein condensation has been realized in the 

obtained ensemble of molecules [11-13]. For comprehensive reviews, covering various aspects and 

applications of Feshbach resonances in ultracold gases, see Refs. [33-34]. 

 As it has been mentioned above, another technique applied for cold molecule production is 

photoassociation. Photoassociation is the process in which two colliding atoms interact with a laser 

field to form an excited molecule. Photoassociation has been used to produce ultracold molecules 

(not in a BEC state) from atomic BECs [35-36]. While Feshbach resonances have been efficient for 

realization of molecular condensates, photoassociation has been widely used to study long range 

molecular interactions and to probe ultracold gases [37].  Finally, we would like to mention that 

both Feshbach-resonance and photoassociation usually lead to molecules in highly excited states, 

and one of the hot topics of the field is formation of “real” ultracold molecules, i.e. those in deeply 

bound levels. To stabilize the molecules in their ground potentials several schemes have been 
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suggested, such as two-colour photoassociation [38-39] and a Feshbach optimized photoassociation 

[40]. 

The theoretical basis to describe the presented experimental advance was first developed by 

Juha Javanainen and coworkers [41-44], who proposed a simple one-color photoassociation scheme 

based on a two-state phenomenological Hamiltonian, and Peter Drummond et al. [45], who 

introduced a quantum field theory, describing coherent dynamics of coupled atomic and molecular 

BECs, produced either through one-color photoassociation  or Feshbach resonance. 

For what follows, it is important that, basically speaking, the coherent photoassociation and 

coherent Feshbach resonance theories are mathematically rather similar. Under certain conditions 

(justified for most of the current experiments), these two theories are described by the same system 

of nonlinear differential equations of first order [41-45] obtained within the framework of the 

semiclassical mean-field Gross-Pitaevskii theory [46-49]. This system of equations is of 

fundamental importance for all classical and bosonic field theories with a generic cubic 

nonlinearity: generally, it comes up in the theories where the interaction terms of the Hamiltonian 

are of the form b a a . The same system can be used for the description of bosonic molecule 

formation in degenerate Fermi gases. Indeed, in Ref. [50] it has been noted that, within the mean-

field approximation, association of diatomic molecules from degenerate Fermi gases is 

mathematically equivalent to dissociation of a molecular condensate into bosonic atoms, and vice 

versa, dissociation of a molecular condensate into degenerate Fermi atoms is equivalent to 

association of diatomic molecules starting from ultracold bosonic atoms. Moreover, the same set of 

equations comes up when analyzing the second-harmonic generation in a lossless quadratic medium 

[51-54]. 

It should be noted that the model considered here takes into account neither spatial structure 

of the condensate and laser field nor trapping potential effects so that it is applicable, strictly 

speaking, to the infinite homogeneous condensates only. However, it has been previously shown 

that this zero-dimensional model can be considered as an approximation to a one-dimensional 

condensate in the limit where the kinetic-energy term in the Hamiltonian can be ignored. By 

comparison with a full numerical treatment, it has been shown that this turns out to be a good 
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approximation as long as the applied fields are of short duration [55-57]. Under the Thomas-Fermi 

approximation of large enough particle numbers [58], the spatial inhomogeneity caused by the 

trapping potential may then be approximated by averaging over the density distribution [41-45, 55-

57]. 

In the present work we both qualitatively and quantitatively study temporal dynamics of 

diatomic molecule formation at coherent photo- and magneto-association (Feshbach-association) of 

ultracold atoms. Our mathematical analysis is based on the mentioned nonlinear system of two 

coupled equations which defines a nonlinear two-state problem. The nonlinear two-state problem 

has been discussed in numerous papers and elucidated from different points of view (see, e.g., Refs. 

[59-71]). Most of the present developments are devoted to the analysis of the case when the external 

field configuration is given by the resonance-crossing Landau-Zener model [72]. This particular 

choice of the external field configuration is justified by the fact that the Landau-Zener model serves 

as a prototype of all level-crossing models; hence, deep understanding of the Landau-Zener model 

will be an essential step towards intuitive perception of all level-crossing processes in general. 

However, previously it has already been observed that Landau-Zener-based predictions may be 

substantially altered when more realistic models are discussed [71]. Hence, in the present work we 

examine the level crossing as well as non-crossing processes in general, i.e., we assume arbitrary 

external field configurations and compare the derived results with those for the basic Landau-Zener 

model. Here we mainly focus at an analytical description of the temporal dynamics of cold 

molecule formation. 

 In Chapter 1 we discuss general properties of the governing set of equations and discuss 

various external field configurations. We derive an exact nonlinear differential equation of third 

order for the molecular state probability; this equation will play a central role in our analysis. We 

show that the phases of the condensates are explicitly expressed in terms of the molecular state 

probability and explicitly write the corresponding equations. We define a linear two-state problem 

associated with the nonlinear one under consideration. And finally, we present various external field 

configurations and discuss their relevance to contemporary physical experiments. 

 In Chapter 2 we analyze the system’s dynamics by using the Hamiltonian formulation of the 
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nonlinear two-state problem under consideration. We consider the case when the external field 

configuration is defined by the Landau-Zener model. Due to the structure of the corresponding 

classical phase space, the adiabatic theorem breaks down even at very small sweep rates, and the 

adiabatic approximation diverges because of the crossing of a separatrix. First, by introducing a 

complex term into the Hamiltonian of the system, we eliminate this divergence and construct a valid 

zero-order approximation. Further, taking into account that the molecular conversion efficiency and 

the change of the classical adiabatic invariant at the separatrix crossing are related quantities, we 

calculate the change of the action for the situation when the system starts from the all-atomic state 

that corresponds to the case of zero initial action. The absolute error of the presented formula for the 

change in the action is of the order of or less than
410

. 

In Chapter 3 we show that two distinct strongly nonlinear scenarios of molecule formation 

in an atomic Bose-Einstein condensate are available: the association process in the first case is 

almost non-oscillatory in time while in the second case the evolution of the system displays strongly 

pronounced Rabi-type oscillations. By analyzing the exact differential equation for the molecular 

state probability, we construct highly accurate approximate solutions for both interaction regimes. 

Investigation of the constructed analytical solutions leads to several qualitative conclusions of 

practical significance. In particular, we show that in the almost non-oscillatory regime of the strong 

nonlinearity limit, the non-crossing models are able to provide conversion of no more than one third 

of the initial atomic population. 

 In Chapter 4 we study the strong coupling limit of the nonlinear Landau-Zener problem for 

coherent photo- and magneto-association of cold atoms taking into account the atom-atom, atom-

molecule, and molecule-molecule elastic scattering. Using an exact third-order nonlinear 

differential equation for the molecular state probability in this generalized case, we develop a 

variational approach which enables us to construct a highly accurate and simple analytic 

approximation describing the temporal dynamics of the coupled atom-molecule system. We show 

that the approximation describing the time evolution of the molecular state probability can be 

written as a sum of two distinct terms; the first one, being a solution of a limit first-order nonlinear 

equation, effectively describes the process of the molecule formation while the second one, being a 
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scaled solution to the linear Landau-Zener problem [72] [but now with negative effective Landau-

Zener parameter (see below) as long as the strong coupling regime is considered], corresponds to 

the remaining oscillations which come up when the process of molecule formation is over. 

 The main results of this dissertation have been published as 6 articles in peer reviewed 

journals, 4 conference proceedings and 2 conference abstract books [73-78]. 
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Chapter 1 

 

Basic Mathematical Formulations and Tools 

 

In the present chapter we discuss general properties of the governing set of equations and present 

various external field configurations. First, we derive an exact equation for the molecular state 

probability and define the linear two-state problem associated with the nonlinear one under 

consideration. Further, we present the class property theorem of the exactly solvable models to 

indicate that the set of exactly solvable models can be split into a number of independent classes. 

We show that the phases of the condensates are explicitly expressed in terms of the molecular state 

probability. Finally, we discuss various external field configurations and show their relevance to 

contemporary physical experiments. 

 

 

1.1. The physical model and governing set of equations 

 Under the assumption that all the atoms and molecules existing in the system belong to 

condensates of zero-momentum atoms and molecules, respectively, the coherent conversion of 

bosonic atoms into diatomic molecules can be described by the following phenomenological 

momentum-representation two-mode Hamiltonian [43]: 

  )(
2

ˆ

00000000 baaaab
N

U
bb

H
t

  


, (1.1)

  

where   is Planck's constant devided by 2 , )( 00
aa  and )( 00

bb  are boson annihilation (creation) 

operators for zero-momentum atoms and molecules, respectively. The detuning t  defines the 

difference in energy between a stationary molecule and two stationary atoms dressed by the field 

which can be adjusted by tuning the laser field frequency in the case of photoassociation or by 

variation of the magnetic field in the case of Feshbach resonance. In the case of photoassociation 
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the atom-molecule coupling U  can be controlled by variation of the laser field intensity, while in 

the case of Feshbach resonance it is a fixed constant (if the particle density is supposed not to vary). 

The commutativity of the Hamiltonian (1.1) with the operator 0000 2ˆ bbaaN   , 0]ˆ,ˆ[ NH , 

reflects the conservation of the total number of particles N , that is, the number of atoms plus twice 

the number of molecules. 

 In the case of Feshbach association of utracold bosonic atoms the atom-molecule coupling is 

given as /gnU  , where 11 /~8 mBag     [79-80] [recall Eq. (I.1)]. In this expression 

B  is the width of the resonance,   is the difference in magnetic momentum between the atomic 

and the bound molecular states. The parameter n  denotes the mean density of particles: VNn / , 

where V  is the volume of trapped particles. The detuning t  is given as /])([ 0BtBt   , 

where )(tB  is the external magnetic field, 0B  denotes the position of the Feshbach resonance. 

 A possible way to derive the mean-field equations of motion for the system defined by the 

Hamiltonian (1.1) is to write the Heisenberg equations of motion for the operators 0 /a a N  and  

0 /b b N  and then replace them by their expectation values. It has been proven that many-body 

calculations converge to the mean field theory as the number of the constituent  particles is 

increased: for short enough interaction times the mean-filed theory is already applicable at 10N   

[65]. Thus, application of the mean-field approximation results in the following coupled set of 

equations [41-45]: 

  
2

( ) ,

( )
( ) .

2

t

t t

i a U t ba

U t
ib a t b



 
 (1.2)

  

Hereafter the lower-case alphabetical subscript denotes differentiation with respect to corresponding 

variable. The first integral is fixed as 2 2| | 2 | | 1J a b   . The function a  is interpreted as the 

atomic state probability amplitude and the function b  is, conventionally, interpreted as the 

molecular state probability amplitude. The quantities 
2|| a  and 

2||2 b  are the fractions of atoms and 
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molecules, respectively, with respect to the total number of “atomic particles” N  (each molecule is 

considered as two “atomic particles”). Hence, we refer to 
2

1 || ap   as the atomic state probability 

and to 
2|| bp  , conventionally, as the molecular state probability (note that ]1,0[1 p  whereas 

]2/1,0[p ). We will consider a condensate being initially in all-atomic state: 1|)(| a , 

0)( b . 

 Further, we apply a unitary transformation to the basic set of equations (1.2) and represent 

the atomic and molecular probability amplitudes as 

    ,1aa      
 dti t

eab


2  (1.3) 

that reduces the system (1.2) to the following canonic form: 

  

( )1
1 2

( )2
1 1

( ) ,

( )
,

2

i t

i t

da
i U t e a a

dt

da U t
i e a a

dt









 (1.4) 

that will be further used in the present chapter. Taking account the value of the first integral J ,  it 

can be readily seen that 1a  and 2a  that satisfy the normalization condition 

  1||2|| 2
2

2
1  Jaa . (1.5) 

Nevertheless the transformation (1.3) has been applied, the functions 1a  and 2a  will be referred to 

as the atomic and molecular states’ probability amplitudes, respectively. 

  

1.2. Exact equation for the molecular state probability 

 In the present section we discuss general properties of the initial system (1.4) and derive 

equations which will play an essential role in subsequent developments. First, by eliminating from 

the initial system (1.4) one of the dependent variables, we obtain the following nonlinear 

differential equations of second order for the atomic and molecular states’ probability amplitudes 

1a  and 2a : 

  
2

2

1 1 1 1(1 2 | | ) 0
2

t
t t t t

U U
a i a a a

U


 
     
 

, (1.6)
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0)||21( 2
2

2
2

22 







 aaUa

U

U
ia t

t
ttt  . (1.7) 

Hence, instead of dealing with two coupled first-order equations (1.4) one may work with one 

second-order equation, either Eq. (1.6) or Eq. (1.7). Note that the normalization condition (1.5) is 

incorporated in these equations. 

 However, it is not convenient to deal with complex amplitudes since, as numerical 

simulations show, they differ from their linear analogs (see below) stronger than the modules of 

amplitudes do. On the other hand, the exact equation for the molecular state probability  
2

2ap 
 

has been successfully used for the analytical treatment of the problem under consideration (see e.g. 

[81,70-71,60-62]). Since this equation also plays a central role in the present development, we 

describe its derivation. First, by direct differentiation we show that the molecular state probability 

p  satisfies the following relations: 

  2 ( ) 2 ( )
2 2 2 2 1 2 1 2( )

2

i t i t
t t t

U
p a a a a i a a e a a e      , (1.8) 
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Further, again by straightforward differentiation it can be checked that the quantity 

  
2 ( ) 2 ( )
1 2 1 2

i t i tZ a a e a a e   , (1.10) 

which comes up in Eq. (1.9), satisfies the relation 

  
U

p
Z t

tt

2
 . (1.11) 

Finally, the differentiation of equation (1.9) followed by some algebra yields the following 

nonlinear ordinary differential equation of third order for the molecular state probability p : 
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Similarly to the case of equations for the probability amplitudes 1a  and 2a , the normalization 

condition (1.5) is also incorporated in this equation. 

 The derived equation for the molecular state probability is considerably simplified for the 

models with constant field amplitude: 0)( UtU  . In this case we arrive at the equation 

  

2
2 2 20

04 (1 3 ) (1 8 12 ) 0
2

tt tt
ttt tt t t

t t

U
p p U p p p p

 


 
          . (1.13) 

 An important observation is that for any external field configuration with time dependent 

coupling )(tU  the basic set of equations (1.4) can be reduced to an equivalent system with constant 

coupling. This is achieved via the following transformation of the independent variable 

  td
U

tU
tz

t

t




 
0 0

)(
)(  (1.14) 

(usually we make the choice )]([Max0 tUU  ). Note that this transformation changes equation 

(1.12) to the following much simpler form: 
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where the effective detuning 
*
z  is defined as 

  * 0( ( )) ( )
( )

z t

U
z t t

U t
  . (1.16) 

The transformed equation for the molecular state probability (1.15) can be represented in the 

following factorized form: 
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This equation will be used in the developments presented below. 

 

1.3. The linear two-state problem associated with the nonlinear one and the class property 

theorem of exactly solvable models 

 Usually, when trying to construct approximate solutions of nonlinear equations, it is 

important to know the solutions of the corresponding linear equations. In the present case even the 
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identification of a linear set associated with the nonlinear one (1.4) is not a trivial task since the 

Hamiltonian (1.1) is essentially nonlinear. To resolve this issue, we address the equation for the 

molecular state probability (1.12) [or (1.15)]. First, by removing the nonlinear terms from this 

equation and denoting Lp  the new dependent variable we arrive at a linear one: 
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 (1.18)

 

 

Further, we directly verify that the obtained linear equation is obeyed by the function 
2

2LL ap  , 

where La2  is a solution of the linear set 
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 (1.19) 

with the following normalization constraint: 

  
2 2 (1/4)

1 2 1/ 4L L La a J   . (1.20) 

Hence, the linear set of equations (1.19) can be considered as a linear system associated with the 

nonlinear system (1.4). From the quantum optics point of view this linear system describes coherent 

interaction of an isolated atom with optical laser radiation [82]. Note that, within the context of 

quantum optics, the normalization constraint 

  

2 2 (1)
1 2 1L L La a J    (1.21) 

is usually applied, since in this case the quantities 
2

1La  and 
2

2La  are interpreted as the first and 

second states’ probabilities, respectively. If instead of applying specific normalizations (1.20) and 

(1.21), we choose an arbitrary normalization for the functions 1La  and 2La , namely, 

  

2 2

1 2L L La a J  , (1.22) 

then the function 
2

2L Lp a
 
will satisfy the following equation: 



17 

 

  

2 2

2

2 4

(4 8 ) 0.
2

tt t t t tt t
Lttt Ltt t Lt

t tt

tt t
L L

t

U U U U
p p U p

U U U U

UU
J p

U

 


 





     
            

      

 
   

 

 (1.23) 

 Denote the solutions of the linear set of equations (1.19) normalized to unity ( 1LJ  ) and 

4/1  ( 1/ 4LJ  ) by },{
)1(

2
)1(

1 LL aa  and },{
)4/1(

2
)4/1(

1 LL aa , respectively. From Eq. (1.23) it can easily be 

seen that the functions 
(1) (1) 2

2| |L Lp a  and 
(1/4) (1/4) 2

2| |L Lp a  are related as follows: 
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From here it follows that up to a phase factor the following relations hold: 
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These relations are of use for future developments. 

 Now, we would like to point out an interesting property of the basic set of equations (1.4), 

the class property theorem of exactly solvable models. Consider the formal solution of the system 

(1.4) depending on, generally speaking, the complex variable x , i.e. we make the formal change 

xt   in the system (1.4) and rewrite it as follows:  
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Assume that we managed to find a solution )(*

2,1 xa  of this system for some functions )(* xU  and 

)(* x . Then for the external field configuration characterized by the Rabi frequency 

  
dt

dx
xUtU )()( * , (1.27) 

and detuning 

  
dt

dx
xt xt )()( *  , (1.28) 

the solution of the system (1.4) can be written as ))((*

2,1 txa , where )(tx  is an arbitrary complex-
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valued  function. We refer to this statement as to the class property theorem of exactly solvable 

models [83,59]. It can easily be proved by direct substitution. The only constraint imposed on the 

function )(tx , when considering physical models, is that the coupling )(tU  and the detuning )(tt  

must be real functions. Thus the class property permits one to split the set of exactly solvable 

models )}(),({ ttU t  into a number of independent classes. Each of these classes will contain an 

infinite number of exactly solvable models. This theorem was first proven for the linear set of 

equations (1.19) in Ref. [83] and later on generalized to the case of nonlinear system (1.4)  [59]. 

 

1.4. Polar coordinates 

 In sections 1.3 and 1.4 it has been pointed out that the exact equation for the molecular state 

probability (1.12) [or, equivalently, (1.15)] is a helpful tool for tackling the problem under 

consideration. If we succeed in finding an exact or approximate solution of this equation then we 

will be able to indicate the number of molecules existing in the system at arbitrary points of time. 

However, within the framework of the considered approach, the state of the system is characterized 

by complex-valued functions 1a  and 2a . If an approximate solution of the equation for the 

molecular state probability (1.12) is found, then one easily can define the absolute values of these 

functions: pa || 2  and, due to the normalization condition (1.5), pa 21|| 1  . However, the 

phases of the complex-valued functions 1a  and 2a  still will be unknown. 

 In the present section we show that the phases of the condensates can be explicitly expressed 

in terms of the molecular state probability p . To this end, in the initial set of equations for the 

probability amplitudes (1.4) we pass to polar coordinates: 
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In polar coordinates the set of equations (1.4) takes the following form: 
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By separating real and imaginary parts in this system we arrive at the following set of four 

equations for the real functions 1r , 2r , 1 , and 2 : 

  
1 1 1 2 1 1 2

2 2

2 2 1 2 1

cos( ) , sin( ) ,
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2 2

t t

t t

r Urr r Urr θ

U U
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  
 (1.31) 

where the following notation has been introduced: 

  212)(   t . (1.32) 

The first and third equations of (1.31) and the normalization constraint (1.5) yield the following 

equation for the function  : 
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Further, from the first equation of the system (1.31), we obtain 

  tUr
t

t


0

)dcos(21  . (1.34) 

Finally, from the normalization condition (1.5) and definition 
2

2rp  , it immediately follows that 

pr 212
1  . Taking into account these relations and the equations for the phases (1.32)-(1.34), we 

conclude that the phases 1  and 2  are unambiguously defined by the function p . Thus, 

summarizing the results of the present section, we conclude that the initial problem for the 

determination of the four real functions 1 , 2 , 1r  and 2r  is effectively reduced to the problem of 

determination of the single function 2r  or, equivalently, the molecular state probability 2
2rp  . 

 

1.5. Discussion of different models and their relevance to physical experiments 

 The main goal of the present work is to analyze the dynamics of coherent molecule 

formation for different external field configurations. The choice of these specific external field 

configurations  is not accidental: they represent essentially different physical situations which are of 

practical and fundamental interest. In what follows we list the models which will be discussed in the 

present work and describe their main characteristics. A unifying feature of the listed models is that 
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for them the linear set of equations (1.19) is exactly solvable. Hence, in the present work we extend 

some of the standard, well-developed, linear two-state level-crossing and avoided-crossing models 

to the nonlinear case. 

 The simplest possible model is the Rabi model [84] (Fig. 2.1) for which the Rabi frequency 

and detuning are constant: 

  0UU  ,   0 t . (1.35)

   

The Rabi model can be exactly solved both in the linear and nonlinear cases. That’s why by 

analyzing the Rabi model one can explicitly examine the qualitative changes that the nonlinearity 

introduces in the behavior of the system [70]. It can be easily verified that in the case of the linear 

Rabi problem the probability to occupy a certain state is an oscillatory periodic function of time.   

 

 

 

Fig. 2.1. The Rabi model. Solid line - the Rabi frequency, dashed line - the detuning. 

 

But in the nonlinear case the situation drastically changes: for certain initial conditions this 

probability increases monotonically.  

 One of the most important models, which also has numerous practical applications, is the 

Landau-Zener model [72] (Fig. 2.2): 

  0)( UtU  ,   tt 02  . (1.36)
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This particular model is one of the most used approximations in resonance physics due to its 

specific features. First of all, the detuning is a linear function of time, which is a realistic 

assumption near a resonance crossing. Second, the coupling is constant; near the crossing this is a 

relatively good approximation if the actual coupling changes slowly in time compared to the 

detuning, which is the usual situation. The Landau-Zener model is considered as the prototype of all 

the level-crossing models applied so far in the theory of quantum non-adiabatic transitions, thus 

being a basic tool for understanding the physics underlying such processes. For this reason, it serves 

as a standard reference to be compared with while discussing all other models. 

 Further, we notice that one of the parameters involved in the definition of the Landau-Zener 

model can be eliminated from the equations of motion (1.4) via rescaling of time. This can be 

achieved, e.g., by applying the transformation 

  
0t t   (1.37) 

and introducing the Landau-Zener parameter as 

   
2

0 0/U  . (1.38)

  

Due to this transformation the sweep rate through the resonance is scaled to 2| 0ttt  and the 

effective coupling is given as  . However, in the case of the Feshbach resonance the coupling is 

constant hence it would be convenient to scale the coupling to unity. This can be achieved via the 

scaling transformation 

  tUt 0 . (1.39)

  

In this case the effective sweep rate through the resonance will be given as /2 . Both the scaling 

(1.37) and (1.39) will be used in what follows. 

 Note that the Landau-Zener parameter   is inversely proportional to the sweep rate through 

the resonance 02 . Taking into account that the equations of motion contain only one combined 

parameter   to characterize the external field, one can make an important conclusion: e.g., in the 

case of photoassociation, applying high laser field intensities 
2
0U  and large sweep rates 02  or 
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applying small laser field intensities 2
0U  and small sweep rates 02  will result in the same final (for 

t ) molecular population if the ratio 2
00 / U   remains unchanged. 

 It should be noted, however, that the Landau-Zener model suffers from a substantial 

shortcoming: the adopted assumption of a detuning diverging at infinity and, hence, a diverging 

energy, is unphysical. Mathematically, this also leads to considerable complications compared with 

other models. Nevertheless, for the cases when the transitions take place in a narrow time interval 

around the resonance point, the time dependence of the actual coupling and detuning far from the 

 

 

 

Fig. 2.2. Solid curves - the first Demkov-Kunike model: )(sech0 tUU  , )(tanh2 0 tt   , dotted 

lines - the Landau-Zener model: 0UU  , tt 02  . 

 

 

crossing does not considerably affect the dynamics of the system and thus the model provides an 

accurate description of physical processes. The exact solution of the linear system (1.19) for the 

Landau-Zener model is given in terms of confluent hypergeometric functions 11 F  [85]. 

 There exists a model that has all the virtues of the Landau-Zener model and is free from its 

shortcomings. Such a model is the first Demkov-Kunike quasi-linear level-crossing model of a bell-

shaped coupling [86] (Fig. 2.2): 
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  )/(sech0 tUU  ,   )/(tanh2 0  tt  ,    ).0(   (1.40) 

The first Demkov-Kunike model is a straightforward generalization of the Landau-Zener model. For 

seeing this we fix t , take  00

~
  and let the parameter   go to infinity; as a result, the Demkov-

Kunike model (1.40) is reduced to the Landau-Zener model (1.36). 

 Another model we would like to address here is the Rosen-Zener model [87] (Fig. 2.4) for 

which the amplitude and detuning are defined as 

  )/(sech0 tUU  ,   02 t     ).0(   (1.41)

  

In the case of photoassociation, this model can be considered as a physical generalization of the 

Rabi model. This can be seen by considering the limit of   going to infinity. The Rosen-Zener 

model serves as a prototype for all the non-crossing models. 

  

 

 

Fig. 2.4. The Rosen-Zener model. Solid line - Rabi frequency, dashed line - detuning. 

 

 For the Demkov-Kunike and Rosen-Zener models the exact solution of the linear system 

(1.19) is given in terms of the Gauss hypergeometric functions 12 F  [85]. These two models are 

unified by the circumstance that they originate from the same integrable class [88]. 

 Another model that we are interested in is the exponential level-crossing model by Nikitin 

[89] (sometimes referred to as ''anti Demkov'' model) defined as follows: 
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  0)( UtU  ,  )1( at
t e . (1.42) 

One should also distinguish this model from the well-known second Nikitin-exponential model [90] 

since in that model the field amplitude is also an exponential function: ateUU  0 . Obviously, two 

different cases should be distinguished: the so-called positive Nikitin model (Fig. 2.5) when 0a  

and the negative Nikitin model (Fig. 2.6) when 0a . In Eq. (1.42) the crossing point is adjusted to 

coincide with the origin. In the vicinity of this point the detuning modulation function behaves as 

the Landau-Zener linear detuning, att   [see (1.42)]. On the other hand, at at /1  when 

0a  (the positive Nikitin model) and at at /1  when 0a  (the negative Nikitin model) the 

detuning is practically constant. Hence, it is expected that this model will incorporate the  

 

 

Fig. 2.5. The positive Nikitin model. Solid line - the Rabi frequency, dashed line - the detuning. 

 

 

Fig. 2.6. The negative Nikitin model. Solid line - the Rabi frequency, dashed line - the detuning. 
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characteristics of both Landau-Zener and Rabi models. 

 To conclude this section, we discuss the relation of the described external field 

configurations to contemporary physical experiments. Recall that in the case of photoassociation 

both coupling U  and detuning t  can vary in time while in the case of magneto-association the 

coupling is constant. However, generally speaking, this does not imply that the models with 

coupling varying in time, such as the Rosen-Zener and Demkov-Kunike models, are not applicable 

to the description of the experiments on Feshbach association of atoms. Indeed, one can reduce 

these models to a constant-amplitude one via transformation of the independent variable (1.14) and 

consider the variable z  as time. In what follows we demonstrate such an example. 

As it has been mentioned above, the ramping of an external magnetic field across a 

Feshbach resonance is the most commonly adopted scheme to form Feshbach molecules. A typical 

example is the 
85Rb  experiment performed by Hodby and co-workers in JILA [91], where coherent 

formation of 2Rb  molecules via sweep of the magnetic field across the Feshbach resonance is 

realized. The magnetic field is changed at a given linear sweep rate B , and the molecule conversion 

efficiency is measured as a function of the inverse sweep rate. Thus, the external field configuration 

applied in this experiment corresponds to the Landau-Zener model. 

 

1.7. Summary 

 In the present chapter we have presented basic mathematical tools and important notions 

which will play a central role in what follows. We have shown that the molecular state probability 

p  obeys a nonlinear differential equation of third order (1.12). Moreover, we have proven that 

atomic and molecular condensates’ phases, 1  and 2 , respectively, are unambiguously defined by 

the molecular state probability p  [see Eqs. (1.32)-(1.34)]. Hence, the problem of the definition of 

complex-valued probability amplitudes 1a  and 2a  has been reduced to a problem of determination 

of the real function p . We have defined a linear set of equations (1.19) associated to the governing 

nonlinear system (1.4). Further, we have described various external field configurations and 

presented a preliminary qualitative analysis of the system’s behavior for each of them. Importantly, 
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we have shown that for any model with varying in time coupling )(tU , the basic set of equations 

(1.4) can be reduced to an equivalent system with constant coupling; this is achieved by applying 

the transformation of independent variable (1.14). Finally, we have discussed the relevance of the 

described external field configurations to contemporary physical experiments. 
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Chapter 2 

Change in the adiabatic invariant in a nonlinear Landau-Zener 

problem 

 

 

In the present chapter we analyze the system’s dynamcis by using the Hamiltonian formulation of 

the nonlinear two-state problem under consideration. Due to the structure of the corresponding 

classical phase space, the adiabatic theorem breaks down even at very small sweep rates, and the 

adiabatic approximation diverges because of the crossing of a separatrix. First, by introducing a 

complex term into the Hamiltonian of the system, we eliminate this divergence and construct a valid 

zero-order approximation. Further, taking into account that the molecular conversion efficiency 

and the change of the classical adiabatic invariant at the separatrix crossing are related quantities, 

we calculate the change of the action for the situation when the system starts from the all-atomic 

state that corresponds to the case of zero initial action. The absolute error of the presented formula 

for the change in the action is of the order of or less than
410

. 

 

 

2.1. Introduction 

 The theory of approximate conservation of adiabatic invariants [92] plays an important role 

in many domains of physics. According to this theory, the action is an approximately conserved 

quantity of Hamiltonian systems that contain a slowly varying parameter. This result is based on 

averaging over the fast motion of a time-independent version of the system (i.e., the same system 

for which the varying parameter is taken as a constant). The theory states that the change in the 

action during a time-dependent process is usually on the order of the variation rate of the mentioned 

slow varying parameter. Moreover, there exists an adiabatic invariant, which is conserved to all 

orders of the parameter variation rate within time periods no longer than the inverse value of this 

rate. However, the theory also says that this situation can drastically change if the time-independent 
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version of the system contains separatrices in its phase portrait. In this case the exact phase 

trajectory of the system may cross the separatrix of the time-independent version of the system. 

Since the period of the motion along the separatrix is equal to infinity one cannot consider the 

motion of the time-independent version of the system as a fast one. This results in a breakdown of 

the averaging method. To describe this case, a rigorous separatrix crossing theory [93-96] has been 

developed.  It has been shown that at the separatrix crossing a jump in the value of the adiabatic 

invariant occurs, and an asymptotic expression for the value of this jump has been obtained. The 

separatrix crossing theory has proven to be useful in various problems of plasma physics, 

hydrodynamics, classical and celestial mechanics, cold molecule formation, etc. (e.g., see Refs. [93-

100]). 

 In the present paper we discuss the coherent formation of ultracold molecules (in particular, 

molecular condensates) by laser photoassociation or magnetic Feshbach resonance. The situation 

we discuss in detail is the coherent association of ultracold bosonic atoms for the case when the 

external field configuration is defined by the resonance-crossing Landau-Zener model. 

 In the present chapter we consider a nonlinear Landau-Zener problem, defined by Eqs. (1.4) 

and (1.36)  to describe the coherent formation of ultracold molecules (in particular, molecular 

condensates) by laser photoassociation or magnetic Feshbach resonance. Long ago, the Landau-

Zener model which is well known from the linear theory of nonadiabatic transitions became a 

standard tool in quantum physics. It describes a situation when two quantum states are coupled by 

an external field of constant amplitude and a variable frequency, the latter being linearly changed in 

time. When generalizing the Landau-Zener process to those associated with the mean-field 

dynamics of interacting many-body systems one obtains nonlinear Landau-Zener processes for 

which the simple physical intuition based on the linear Landau-Zener model may no longer be 

valid. The nonlinear version of the Landau-Zener crossing problem under consideration has been 

analyzed in numerous papers (see, e.g., Refs. [59-69,99-100]). In particular, it has been shown that, 

within the framework of the considered model, the change in the action at the resonance passage is 

a power-law function of the sweep rate through the resonance, as opposed to the exponential law of 

the linear Landau-Zener problem. 
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Landau-Zener dynamics of diatomic molecule formation from degenerate Fermi-gases has 

been discussed in Refs. [63-68,99-100]. In particular, in Refs. [99-100] the separatrix crossing 

theory has been employed. One of the main outcomes of Refs. [99-100] is a formula giving the 

value of the action jump at the separatrix crossing. This formula contains a parameter referred to as 

the pseudophase, which strongly depends on the initial conditions. Supposing that the pseudophase 

is a random variable equally distributed over the open segment [1,0] , the authors have succeeded in 

presenting the dispersion law of the action jump at separatrix crossing. 

 However, it should be noted that the separatrix crossing theory is not applicable in the case 

of small initial actions. This kind of situation comes up, e.g., when one considers mean-field 

dynamics of diatomic molecules formation from ultracold bosonic atoms, if the initial number of 

molecules is very small or equal to zero. In this case, for the calculation of the action change at a 

separatrix crossing, a different method has been developed [69] which is based on mapping of the 

governing equations to a Painlevé equation. Using this method, an asymptotic expression for the 

action change at the separatrix crossing has been calculated for very slow sweep rates. The 

mentioned method is also fruitful for the description of diatomic molecules formation from 

degenerate Fermi-gases [68]; it allows one to generalize and improve the results of Refs. [99-100]. 

 In the present chapter we first discuss the classical phase space of the time-independent 

version of the problem (for analogous discussions, see, e.g., Refs. [67-68]) and show that the phase 

trajectory of the time-dependent system will necessarily cross the separatrix of the “frozen” system 

resulting in the divergence of the adiabatic approximation. Further, we show that it is possible to 

eliminate this divergence by introducing a complex term into the Hamiltonian of the system, 

constructing in such a way a valid zero-order approximation. Finally, taking into account that the 

molecular conversion efficiency is coupled with the change of the action during the whole 

interaction process we calculate this change in the case when the system starts from the all-atoms 

state. For arbitrary rates of sweep through the resonance, the absolute error of the presented formula 

is of the order of or less than 
410

. 
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2.2. The basic notions and starting equations 

 In the present chapter, the starting point is the momentum-representation two-mode 

Hamiltonian (1.1): 

  )(
2

ˆ

00000000 baaaab
N

U
bb

H
t

   . (2.1)

  

As it has been mentioned in Section 1.1, the mean-field equations of motion could be derived by 

writing the Heisenberg equations of motion for the operators involved and then replacing them by 

their expectation values. From this approach one can reconstruct the classical Hamiltonian 

corresponding to the derived set of equations. However, in what follows we apply a different 

approach: first we define a classical Hamiltonian, corresponding to the second quantization 

Hamiltonian (1.1), construct the Poisson brackets for the variables involved and then write the 

classical equations of motion. 

 Rescaling the boson operators as Naa 0  and Nbb 0 , we rewrite the Hamiltonian in 

new notations: 

  )(
2

ˆ
baaaab

U
bb

N

H
t

   . (2.2)

  

It can easily be seen that the rescaled boson operators a  and b  obey the following commutation 

relations: 

  Nbbaa /1],[],[   ,     0],[],[  baba . (2.3)

  

For large N  )1( N  our problem approaches a well-defined classical limit in which the operators 

can be treated as classical objects. Thus, we replace the operators a , a , b , and b  by c-numbers, 

and the commutators by classical Poisson brackets. This procedure leads to the classical 

Hamiltonian 

  2 2[ ( ) ]
2

t

U
H b b b a a b    (2.4)



31 

 

  

and the following expressions for the classical Poisson brackets of the functions a  and b : 

  { , ( )} 1a ia  ,  { , ( )} 1b ib  ,  { , } { , } 0a b a b  . (2.5)

  

(the asterisk denotes the complex conjugation). The particle conservation property of the 

Hamiltonian is now expressed by the following relation: 

  0},{ JH , (2.6)

  

where 22 ||2|| baJ  . Equations (2.5) indicate that the variables a  and ( )ia  are canonically 

conjugate, hence, the Hamiltonian equations of motion in the complex notations are readily written 

as [101] 

  /
da

i H a
dt

   , /
da

i H a
dt

        and    /
db

i H b
dt

   , /
db

i H b
dt

     (2.7)

  

( t  is time). As it can easily be seen, only two of these four equations are independent. Substituting 

the Hamiltonian (2.4) into (2.7), we arrive at the equations of motion within the framework of the 

mean field approximation (1.2): 

  
2

( ) ,

( )
( ) .

2

t

t t

i a U t ba

U t
ib a t b



 
 (2.8) 

with the first integral J  which is fixed as 1||2|| 22  Jba . Recall that we consider a condensate 

being initially in all-atoms state: 1|)(| a , 0)( b . 

 The Hamiltonian (2.4) is defined in a four-dimensional phase space. However, the 

dimensionality of the phase space can be reduced. To this end, we take into account that 

pp 211   and pass to the polar coordinates, thus, representing the probability amplitudes a  and 

b  as 

  21  , )21( 2/12/1  ii
epbepa  , (2.9)
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where 1  and 2  are the corresponding phases. Further, we rewrite the Hamiltonian (2.4) as 

follows: 

  p tqtUpppqtH t )(cos )( )21(),,(  , (2.10)

  

where 212  q .  It can be shown by direct verification that the introduced transformation is 

canonical, with q  and p  being the generalized coordinate and the generalized momentum, 

respectively. Thus, Hamilton’s canonical equations, 

  ),,(),,,( pqtH
qdt

dp
pqtH

pdt

dq









 , (2.11)

  

take the following form: 

   

.sin )()21(

,)(cos )(3
2

1

2/1

2/1

qtUpp
dt

dp

tqtUpp
dt

dq
t











  

 (2.12) 

In Refs. [67,68] variables analogous to the pair of canonically conjugate variables },{ pq  have been 

used for the description of the system’s dynamics. However, these variables are not well-defined at 

0p  and 2/1p . Since the imposed initial conditions imply that in the beginning of the process 

)( t  should be 0p , it would be more convenient to work with coordinates free of this 

shortcoming.  To this end, we define the following pair of canonically conjugate variables: 

   
1

,
2

a a
q b b

a ai

 
   

 
    

1

2

a a
p b b

a a

 
   

 
. (2.13)

  

Note that the variables },{ pq   are related to },{ pq  as follows: 

  qppqpq cos 2,sin 2  , (2.14) 

hence, 
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   
2222

22

)()(
cos,

)()(
sin,)()(

2

1

qp

p
q

qp

q
qqpp









 . (2.15) 

The variables },{ pq   are equal to zero at 0p  but they are not defined at 2/1p  [see Eq. (2.9)]. 

In the new coordinates the Hamiltonian is written as 

  ])()[(
2

)(
])()(1[  )( 

2

1
),,( 2222 qp

t
qpptUpqtH t 


 (2.16) 

leading to the following equations of motion for the generalized coordinate q  and generalized 

momentum p : 

  

.)()(2

,)(])()(31)[(
2

1 22

qtqptU
dt

pd

ptqptU
dt

qd

t

t











 (2.17) 

As we see, the new Hamiltonian (2.16) is a polynomial in terms of q  and p . Note that the 

function p  satisfies the following nonlinear differential equation of the second order: 
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
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
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 (2.18) 

As it is immediately seen, the times for which 

  0
2


U

p t  (2.19) 

are singular points for this equation. By analyzing the initial set of equations (1.2) it can be shown 

that this condition is equivalent to the following one: 12 C   , where C  is a constant. 

 

2.3. The example of the Landau-Zener model and the phase space of the Hamiltonian 

  As a fundamentally important example of the external field configuration we choose the 

Landau-Zener model which is defined by Eq. (1.36): 

  0UU  ,   tt 02  . (2.20) 

Recall that one of the parameters involved in the definition of the model can be eliminated from the 
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equations of motion via rescaling of time (see Section 1.5). This can be achieved, e.g., by applying 

the transformation 0t U t  to the set of equations (2.17) and introducing the Landau-Zener 

parameter 0
2
0 / U . In what follows for simplicity of notations we omit the tilde over t . The 

corresponding Hamiltonian is written as follows: 

     2222 )()(
2

)()(1 
2

1
qpqppH 


, t  , and  /2 . (2.21) 

 

  

 

         a) 20                                     b) 2                                  c) 1  

    

      p  

         d) 7.0                                     e) 2                                  f) 20  

Fig 2.1. The level lines of the Hamiltonian (2.21) for different values of the parameter  . The dots 

situated within the phase space represent the two elliptic fixed points (2.24). The bounding circle of 

the phase space and the vertical dashed lines of Figs. c) and d) represent the separatrices (2.27). The 

vertical dashed line passes through the two saddle fixed points (2.25) which are situated on the 
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limiting circle of the phase space. The arrows placed along the phase trajectories represent the 

direction of motion in time. 

 

Note that the Hamiltonian (2.21) contains only one combined parameter   to characterize the 

external field. 

 Considering   as a constant, in Fig. 2.1 we plot the level lines of the Hamiltonian 

constH . The level lines represent the phase trajectories of the system for the case when the 

parameter   is fixed. If the Landau-Zener parameter   is large (i.e. the parameter   is small), the 

parameter   changes slowly in time. In this case we can expect that the system for some time 

follows a phase trajectory and then slowly passes to another one. Thus, one can imagine that with 

time the system slowly drifts from one trajectory to another. 

To understand the structure of the phase space, we analyze the fixed points of the 

Hamiltonian system under consideration which are defined by equations 

  0




q

H
,    0





p

H
, (2.22) 

that is,  

.0)2(

,0])()(31[
2

1 22









pq

pqp
 (2.23) 

Solving this set of equations we obtain the following four fixed points: 

     002,01 q ,   
23

6 2

02,01

 
p , (2.24) 

  2/1 2
04,03 q ,  2/04,03 p .    (2.25) 

The two points },{ 0101 pq   and },{ 0202 pq   are elliptic, while },{ 0303 pq   and },{ 0404 pq   are saddle 

points. The molecular state probability values taken at the considered four fixed points, 

2/)(
2

0
2

0 iii pqp   )4...1( i , 

  2 2

1,2

1
[ 3 6]

18
p          and    2/14,3 p , (2.26) 

 are shown in Fig. 2.2 as functions of  . 
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 Since ]2/1,0[p , the phase space domain for the variables p  and q  is a disc of  

 

 

Fig. 2.2. The values of the transition probabilities (2.26) at the fixed points (2.24) },{ 2,12,1 pq  and 

(2.25) },{ 4,34,3 pq . 

 

 

radius 1. The bounding circle with unit radius of unity corresponds to the all-molecules states, and 

the center of the circle, )0,0(),(  qp , to the initial all-atoms state (see Fig. 2.1). For  , the 

fixed point },{ 0101 pq   is situated in the centre of the phase space circle; it moves to the right with 

increasing   to stay within the phase space when 2 .  The fixed point },{ 0202 pq   appears in 

the phase space at 2  to asymptotically approach the center of the phase space when 

 . As to the saddle points, },{ 0303 pq   and },{ 0404 pq  , they also appear in the phase space at 

2  and leave the phase space at 2 . Hence, the points 2  are bifurcation points of 

the equations of motion corresponding to the Hamiltonian (2.21). 

 We remark that the coordinate transformation (2.13) is singular for 0a  . However, the set 

{ , | 0, | | 1/ 2}a b a b   can be identified by continuity with the circle 2 2{ 1}q p   , since (2.13) 

implies 
22 2 2q p b   . One can check directly that  0, (1/ 2) ti dt

a b e
   

 
 is a solution of the 
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equations of motion (1.2), for any choice of the time dependent functions ( )U t  and ( )t t . Thus 

{ , | 0, | | 1/ 2}a b a b   is an invariant set of the dynamics. The circle  2 2{ 1}q p    is in turn 

invariant with respect to the time evolution of the variables q , p .  

 The trajectory connecting the two saddle points },{ 0303 pq   and },{ 0404 pq   separates the 

types of motion and is called a separatrix. Taking into account the value of the Hamiltonian at the 

saddle points, we see that the separatrices correspond to the following trajectories: 

  2/p    and   122  qp . 

 (2.27) 

An important property of the separatrix is that the period along it is equal to infinity. In Figs. 1 c) 

and d) the separatrices correspond to the vertical dashed line and the phase space limiting circle 

2/1p . An interesting observation is that the singular point of the exact equation for p  (2.18) 

coincides with the separatrix. 

 

 Properties of the constant-amplitude and constant-detuning Rabi model 

 The phase portraits of Fig. 2.1 describe the dynamics of the system in the case when the 

external field is defined by the constant-amplitude and constant-detuning Rabi model (1.35): 

  0UU  ,   02 t . (2.28) 

The nonlinear Rabi problem has been discussed in detail in Ref. [70]. Considering the case when 

the system starts from the all-atoms state, an exact solution to the problem has been obtained. It has 

been shown that the molecular state probability p  is given in terms of the Jacobi elliptic functions 

which are periodic in time for arbitrary finite 0U  and 0 , except the case of exact resonance 

00  . In this case, the Jacobi elliptic function becomes the hyperbolic tangent, and the molecule 

formation dynamics displays a non-oscillatory behavior approaching the all-molecule state at 

t . By analyzing the phase portraits of the system (see Fig. 2.1), we can generalize this result 

to the case of arbitrary initial conditions. Indeed, if the initial conditions are on the separatrix, [i.e., 

if they satisfy one of the relations (2.27)] then the exact solution to the problem will not be a 
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periodic function of time, and the molecular state probability will asymptotically go to 2/1  at 

t . 

 Finally, we find the exact shape of the phase trajectories at   (  is still time-

independent). To this end, we consider the asymptotic behavior of the Hamiltonian (2.21) at 

 . The Hamiltonian is then approximated by 2/)( 22 q pH   . Solving Hamilton’s 

equations for this asymptotic Hamiltonian we obtain that for   

  )cos()(2 tpp   ,    )sin()(2 tpq   .  (2.29) 

 Note that the exact phase trajectories of the system at t  in the case of the Landau-

Zener model ( t  ) are written as follows: 

  )2/cos()(2 0  ttpp , )2/sin()(2 0  ttpq , (2.30) 

where 0  is an integration constant. Interestingly, the phase trajectories (2.29) and (2.30) bound the 

same area in the phase space (we imply the area inside the phase trajectory circle). Note that in the 

case of constant   the directions of rotation for 0  and 0  are opposite. In the case of the 

Landau-Zener model, the directions of rotation for t  and t  are also opposite. 

 

 Properties of the linear two-state problem 

 To understand how the nonlinearity affects the dynamics of the system, we analyze the 

phase space of the linear system  

  
LtLtL

LtL

btatUbi

btUai

)()(

,)(




 (2.31) 

associated with the nonlinear one under consideration (the question how Eqs. (2.31) and (1.2) are 

related is discussed in detail in Ref. [102]). From the quantum optics point of view this linear 

system describes coherent interaction of an isolated atom with optical laser radiation [82].  

This system has the following first integral: 

  LLL Jba  const|||| 22  (2.32) 

which we normalize to unity: 1LJ . Reconstructing the classical Hamiltonian corresponding to 
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the set of equations (2.31), we arrive at the following result: 

  ][ ***
LLLLLLtL baabUbbH    (2.33) 

 

 

Fig. 2.3. The values of the transition probability at the fixed points (2.37) 1 1{ , }L Lq p and 2 2{ , }L Lq p . 

 

 

with 

  1})(,{ * LL iaa ,  1})(,{ * LL ibb ,  0},{},{ *  LLLL baba . (2.34) 

In this case, the representation of Hamilton’s equations of motion in complex notation (2.7) results 

in the set of equations (2.31). Further, representing La  and Lb  as 

   Li
LL eba 12||1


  and Li

LL ebb 2||


  (2.35) 

we rewrite the Hamiltonian (2.33) as follows: 

  LtLLLLLL ptqpptUpqtH )(cos  )1()(2),,(  , (2.36) 

where 2|| LL bp   and LLLq 21   . Further, we write corresponding Hamilton’s equations of 

motion, pass to dimensionless parameters via application of the transformation 0t U t  to this set of 

equation, and find the fixed points of the obtained equations. This results in the following two 

elliptic fixed points: 
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







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
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2,1

4
1

2

1




Lp , (2.37) 

where, as before, t  ,  /2 , and for simplicity of notations the tilde over t  is omitted. 

The fixed points (2.37) stay within the phase space for arbitrary values of   (see Fig. 2.3). Note that 

the phase space of the time-independent version of the linear system does not contain separatrices. 

From the set of equations (2.31) it can be easily seen that in the case of the Rabi model the exact 

solution to the problem is given in terms of harmonic functions. Hence, non-oscillatory behavior of 

the second state probability, observed under certain initial conditions in the nonlinear case, is 

excluded in the linear case. 

 

 The non-linear Landau-Zener problem 

 Now, we again address the nonlinear Landau-Zener problem [see Eqs. (2.20)-(2.21)]. 

Consider that   slowly changes in time. In this case the phase portrait of the system evolves as it is 

shown in Fig. 2.1. In the beginning of the process )( t  the phase portrait contains only one 

elliptic fixed point },{ 0101 pq   situated in the center of the phase space. At 2  bifurcation 

takes place: another elliptic and two saddle points, },{ 0202 pq   and },{ 04,0304,03 pq  ,  

respectively, enter the phase space at the point )1,0(),(  pq . The separatrix moves across the 

phase space from the left to the right while the elliptic fixed point moves towards the center of the 

phase space. At 2  another bifurcation takes place: the elliptic fixed point },{ 0101 pq   and the 

two saddle points },{ 04,0304,03 pq   reach the edge of the phase space and merge at the point 

)1,0(),(  pq . When 2  the phase space again contains only one elliptic fixed point which 

asymptotically approaches the center of the phase space with t . The presented analysis 

shows that, irrespective of the imposed initial conditions, in the case of the Landau-Zener model the 

exact phase trajectory will cross the separatrix at a value of ]2,2[ . 
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2.4. Adiabatic invariance and the nonlinear Landau-Zener problem 

 In the present section, we construct an approximate solution to the problem using the theory 

of adiabatic invariants. First, consider the Hamiltonian (2.21), assuming that   does not vary in 

time. In this case the action variable, generally defined as 

  qdpI  2

1
, (2.38) 

where the integral is taken over a closed trajectory is a conserved quantity of the Hamiltonian 

system (e.g., see Ref. [92]). Now, suppose that the parameter   slowly varies in time: t  , 

where   is a small parameter. In this case, according to the adiabatic theorem [92], the action (2.38) 

is an adiabatic invariant of the system unless the characteristic period of the system is infinity 

anywhere. Adiabatic invariance implies that for every 0  there exists 0)(0   such that if 

00    and /10  t , then 

   |)0()(| ItI . (2.39) 

The proof of the adiabatic theorem is based on an averaging over the fast motion a time-

independent version of the system (i.e., the same system but with const ). Hence, it is intuitively 

clear that the parameter   should not change noticeably during a characteristic period of system’s 

motion: 

   dtTd / . (2.40) 

 On the separatrix the characteristic period goes to infinity )( T ; as a result, when the phase 

trajectory of the exact system moves across the separatrix of the “frozen” system, the adiabatic 

theorem is not valid any more, and the action changes its initial value. However, once the system’s 

exact phase trajectory has crossed the separatrix, the adiabatic theorem becomes applicable again 

and the action again becomes an adiabatic invariant of the system. 

 If the phase trajectory is closed then the action (2.38) is nothing else than the area of the 

phase space region bounded by the phase trajectory divided by 2 . But this geometrical definition 

is not unambiguous. A closed trajectory divides the phase space into two domains and one should 

specify which domain area should be taken. We define the action as the area such that the domain 
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(whether outer or inner) should always be observed to the right from the path-tracing direction. The 

action defined in this way will be a continuous function of the parameter  . Taking into account 

that in the case of the Landau-Zener model the exact phase trajectories at t  are given by Eq. 

(2.30), we can easily calculate the exact value of the action I  at t . Indeed, we notice that at 

t  the exact phase trajectory of the system is a circle with an area equal to )(2 tp . 

Hence, )()(  tptI . Further, taking into account the direction of the phase trajectory 

motion we obtain )(2/1)(  tptI . Thus, we conclude that the change in the action 

during the whole interaction process, )()(  tItI , can be expressed in terms of the initial 

)( t  and final )( t  molecular state probabilities: 

  )()(2/1)()(  tptptItI . (2.41) 

Taking into account the imposed initial condition, 0)( tp , we have 0)( tI  and thus 

  )(2/1)(  tptI . (2.42) 

If in the phase space domains, where the exact phase trajectory is away from the separatrix, the 

action change is neglected then Eq. (2.41) can be interpreted as the action change at the separatrix 

crossing written in terms of the initial )( t  and final )( t  molecular state probabilities. 

 Now, we construct the solution to the problem within the adiabatic approximation and 

determine its applicability range: this will enable us to find an analytical estimate for the time when 

the exact phase trajectory crosses the separatrix of the “frozen” system.  Recall, that in the 

beginning of the process )( t  we have 0)( tI . Since for 2  the phase portrait of 

the “frozen” system does not contain separatrices, the action variable I  is an adiabatic invariant of 

motion, 0)()(  tItI . The action of a trajectory is zero if the trajectory is a fixed point of 

the system. Hence, in our case the phase trajectory of the system within the adiabatic approximation 

coincides with the first fixed point of Eq. (2.24). Thus, Eq. (2.24) defines a solution of the problem 

within adiabatic approximation while the exact phase trajectory approaches the separatrix. 
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Fig. 2.4. Numerical graph of the molecular state probability p  and adiabatic approximation (2.26) 

1p  versus time t  for 30 [where tt 0  with t  being time used in the initial set of equations 

(1.2)]. Two vertical lines mark the points where the exact phase trajectory and the adiabatic 

approximation cross the separatrix, 3.535 
crosst  and 3.873 2/  approxt , respectively. 

 

 

It can be seen that the adiabatic trajectory (2.24)  and the separatrix (2.27) intersect when 2 . 

This gives an analytical estimate for the crossing time of the exact phase trajectory and the 

separatrix of the “frozen” system. In fact, this crossing takes place at a value of   which is smaller 

than 2 . This statement is well confirmed by numerical simulations. In Fig. 2.4 we plot the 

numerical graph of the molecular state probability p  and the adiabatic approximation (2.26) as 

functions of time; two vertical lines mark the points where the numerical solution and the adiabatic 

approximation cross the separatrix of the “frozen” system. As was expected, the adiabatic 

approximation starts deviating from the numerical solution in the vicinity of the separatrix crossing 

point. Note that at 2 , 2/11 p . 

 Finally, for comparison, we apply the presented approach to the linear set of equations 

(2.31). In the case when the system starts from the first state, ,1)( taL  0)( tbL , the  
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Fig. 2.5. The numerical solutions to the linear problem (2.31) Lp  (the solid curve) and the adiabatic 

approximation (2.37) (the dotted curve) as functions of time t  for 7.1  [where tt 0  with t  

being time used in the linear set of equations (2.31)]. 

 

 

phase trajectory of the system in the adiabatic approximation is given by the fixed point },{ 11 LL pq  

[see Eq. (2.37)]. The numerical solutions to the linear problem Lp  and the adiabatic approximation 

(2.37) are shown in Fig. 2.5. As we see, in the linear case the application of the adiabatic 

approximation does not lead to a divergent result. The small-amplitude oscillations emerging after 

the system has passed through the resonance considerably diminish at larger values of the Landau-

Zener parameter  ; for 5.3  these oscillations are negligibly small, and the whole temporal 

dynamics of the system is well described by the adiabatic approximation. In the case of the Landau-

Zener model the nonadiabatic corrections for the final transitions probability are exponentially 

small. 

 

2.5. Super-adiabatic sequence and the nonlinear Landau-Zener problem 

 The adiabatic approximation can be improved by using a general scheme referred to as 

super-adiabatic approximations [103]. According to this scheme the n-th order adiabatic 
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approximation is defined by the recurrence relations 

  

 
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,)()(31
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nnn
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qqp
dt
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



 (2.43) 

 Consider, e.g., the functions },{ 0101 qp   as a zero-order approximation and, according to the 

recurrence relations (2.43), construct the first adiabatic approximation: 
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

 (2.44) 

Elimination of 1q  from this system shows that the function 1p  satisfies a polynomial equation of 

the fourth order: 
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. (2.45) 

Studying now the asymptotic behavior of variables },{ 11 pq   at t  (  ) for the Landau-

Zener model, we see that, at large time values, the roots of equation (2.45) behave as 

  
2

~1,1


bap ,    

3

2
~1cp ,   and  

2

1
~1dp , (2.46) 

while the function 1q  always tends to zero at t  as /~1 Cq , where C  is a constant, 

depending on choice of the root of (2.45). Besides, by taking the derivative of Eq. (2.45) with 

respect to time it can be shown that there are points of time at which the derivative of 1p  becomes 

infinite. Finally, as can be seen from Fig. 2.6, the transition probability in the first adiabatic 

approximation is not a single-valued function. 

 As we see, application of the super-adiabatic sequence improves the adiabatic 

approximation but does not avoid the divergence at the crossing of the separatrix. Hence, alternative 

approaches are needed. We will show below that introduction of an imaginary  
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Fig. 2.6. The transition probability given by the first adiabatic approximation, 2/)(~ 2
1

2
11 pqp  , 

versus time  t  )( 0 tt  .  

 

 

term in the Hamiltonian (2.16) suggests a possibility to construct a zero-order approximation valid 

for all time. 

 

2.6. Modification of the adiabatic approximation 

 In the present section we describe a method which allows us to construct a zero-order 

approximation valid in the whole time domain. To do this, we analyze the divergence of the 

adiabatic approximation from the point of view of the theory of ordinary differential equations. 

From this point of view, when constructing an approximate solution to the set of equations (2.17), 

we have neglected the two higher order derivative terms. Thus, the divergence of the approximate 

solution is due to the singular procedure we have applied to construct it. From this we conclude that, 

when constructing a zero-order approximation, the higher order derivatives cannot be simply 

neglected: they should necessarily be taken into account, at least to some extent. We present an 

approach in which instead of neglecting the derivative dtpd /  in (2.17), we replace it by some 

constant A
~

, and define a zero-order approximation to the problem under consideration as a function  
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Fig. 2.7. The approximate expression for the molecular state probability ])()[(2/1~ 2
0

2
00 pqp   in 

the improved adiabatic approximation (2.47) versus time t  )( 0 tt  , for different values of an 

imaginary parameter A
~

 )0|
~

|2/(  A  and fixed 4 . 

 

obeying the following set of equations: 

  

.)()(2
~

,)(])()(31)[(
2
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000
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qtqptUA

ptqptU

t

t








 (2.47) 

 Studying the solution of these equations, we arrive at an interesting result: the approximate 

expression for the molecular state probability ])()[(2/1~ 2
0

2
00 pqp   is a bounded step-like  

function starting from zero at t , if and only if A
~

 is a pure imaginary constant, i.e., 0)
~

Re( A  

(see Fig. 2.7). This result is quite unexpected since the quantity dtpd / , which we have tried to 

approximate by the constant A
~

, never takes imaginary values. This statement has been verified for 

several level crossing models, such as the Landau-Zener and Demkov-Kunike models. 

 One can look at the emergence of the constant A
~

 from a different angle. Let’s consider an 

effective system described by the following complex Hamiltonian: 

  qAqp
t

qpp
tU

pqtH t 
~

])()[(
2

)(
])()(1[

2

)(
),,( 2222 

. (2.48) 

If we now write Hamilton’s equations of motion for it and neglect the higher order derivatives, we 

will again arrive at the set of equations (2.47). Hence, the valid zero-order approximation (2.47) has 
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been constructed by introducing a complex term into the Hamiltonian (2.16). 

 Note that the precise value of the parameter A
~

 has not been specified yet: it plays a role of a 

variational parameter. 

 

2.7. Review of the results by Ishkhanyan et al. [62] 

 In what follows we juxtapose the presented developments with the results obtained in Refs. 

[61-62], where a completely different approach has been implemented. We show how the results of 

these works and the presented developments are related and complement each other. 

 First of all we compare the notations used in the present chapter with those of Refs. [61-62]. 

In these references the unitary transformation (1.3) to the basic set of equations (1.2) has been 

applied, thus the canonic form (1.4) of the governing set of equations has been used. 

The approach presented in those works is based on the exact equation for the molecular state 

probability (1.12). When considering the Landau-Zener model (2.20) in Refs. [61-62] time has been 

rescaled as tt 0  and the dimensionless Landau-Zener parameter 0
2
0 / U  has been 

introduced. Thus, for the Landau-Zener model, the equation for the molecular state probability 

(1.12) takes the following form: 

    ,0)1281()31(44 22  pp
t

ppt
t

p
p t

tt
ttt


  (2.49) 

where the prime of t  has been omitted. 

 In Ref. [62], a highly accurate approximate solution of Eq. (2.49) has been constructed; this 

approximation is written as a sum of two terms: 

  
),(

),(
),(

1

1

10







LZ

LZ

p

tp
CtApp . (2.50) 

The first term, ),(0 tAp , is defined as a solution of an augmented limit equation : 

    ,0)1281()31(44 2
0000

2 
t

A
pp

t
ppt

t


  (2.51) 

such that 0),(0 tAp  while the second term, ),( 1 tpLZ  , is the solution of the linear Landau-

Zener problem [72] for an effective Landau-Zener parameter 1 : 
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The solution LZp  should satisfy the following initial conditions: 

   0)( 
tLZ tp ,  0

t

LZ

dt

dp
. (2.53) 

In the case of the Landau-Zener problem, the initial conditions imposed on the molecular state 

probability and its first derivative [see Eq. (2.53)] unambiguously define the solution of equation 

(2.52). The function ),( 1 tpLZ   can be written explicitly in terms of the confluent hypergeometric 

functions: 

  
2

202101)( FCFCtpLZ   (2.54) 

with  
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 , (2.55) 

and 

  );2/1;4/( 2
1111 tiiFF  ,    );2/3;4/2/1( 2

1112 tiiFtF  , (2.56) 

where   is the Euler gamma-function [85] and 11 F  is the Kummer confluent hypergeometric 

function [85]. The limits of LZp  for 0t  and t  are written as 
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)0(

2/1


e
pLZ ,    11)(


 epLZ . (2.57) 

 Regarding the limit solution ),(0 tAp , integration of Eq. (2.51) via transformation of the 

independent variable followed by interchange of dependent and independent variables results in a 

quartic polynomial equation for 0p : 
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where 0C  is an integration constant and the involved parameters 2,12,1 ,   are defined as 
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For the initial condition 0)(0 p  one obtains 00 C . For a positive A , such that 02/  A , 

the solution of the equation (2.58) defines a bounded, monotonically increasing function which 

tends to a finite value less than 2/1  when t  (Fig. 2.7). In Ref. [61] it has been shown that 

   10 )( p . (2.60) 

By combining Eqs. (2.50), (2.59), and (2.60), it is readily seen that the approximate expression for 

the final transition probability can be written as follows: 

  1
22

1
)( C

A
tp 


. (2.61) 

In Ref. [62] the following analytic expressions for the variational parameters )(A , )(1 C , and 

)(1   have been obtained: 
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, (2.63) 

and 

  ))(31()331( 111  pC  , (2.64) 

where 12 F  is the Gauss hypergeometric function [85]. We would like to note that because of a 

misprint, the third parameter of the hypergeometric function 12 F  in the expression for 1C  (2.63) 

differs from that presented in the original paper [62]. For all the variation range of the input 

Landau-Zener parameter  , the deviation of the formulae (2.62)-(2.64) from the numerical results 

is of the order of or less than 
410

. Moreover, it has been shown that the absolute error of the 

analytical formula for the final transition probability with the fitting parameters A , 1C , and 1  

defined by Eqs. (2.62)-(2.64) is also of the order of or less than 
410

. 

 

2.8. Interrelation between the two approaches 

 Note that if we now take 0A , Eq. (2.58) will degenerate to a quadratic one because in this 
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case three of four parameters 2,1 , 2,1  become equal, 2/1212   . An interesting 

observation is that the solutions of this quadratic equation identically coincide with the function 

(2.26) derived within the adiabatic approximation. Thus, application of the adiabatic approximation 

is equivalent to removing the two higher order derivative terms from the exact equation for the 

molecular state probability (2.49). In this connection it would be interesting to find out whether 

there exists an analogous interrelation between the function ),(0 tAp  [see Eq. (2.58)] and the 

improved zero-order approximation for the molecular state probability ])()[(2/1~ 2
0

2
0 pqp  , 

where the functions },{ 00 pq   are defined as a solution of the set (2.47) with the initial condition 

0)(~ p . 

 To clarify this issue, we rewrite the complex Hamiltonian (2.48) in terms of the coordinates 

},{ pq  [see Eqs. (2.14)-(2.15)] and derive the corresponding equations of motion. This results in the 

following set of equations for the variables q  and p : 
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 (2.65)

  

To construct an improved adiabatic approximation, equivalent to that given by the set of equations 

(2.47), we neglect the derivatives of q  and p  in the system (2.65). To compare the obtained set of 

equations with the solution of the augmented limit equation (2.58), we eliminate the coordinate q  

from this set. This immediately yields an equation for the determination of the molecular state 

probability. In the case of the Landau-Zener model the improved adiabatic approximation is written 

as follows: 
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where 
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If we now choose A
~

 as AiA 
~

, the molecular state probability calculated in the improved 

adiabatic approximation will identically coincide with the solution of the augmented limit equation 

),(0 tAp . If the negative sign is chosen then 2,12,1

~
  ; otherwise 1,22,1

~
  . 

 Further, taking into account the fact that the change in the action is coupled with the initial 

(at t ) and final (at t ) probabilities of the molecular state [see Eqs. (2.41)-(2.42)], we 

use formulae (2.61)-(2.64) to obtain the following asymptotic expression for the action variable at 

t . 

  
2 2

2 1 2 1

( , )1
( ) 1,2;1.385; 1,2;1.2767; .

2 2 4 2.75

LZP
I t F F

    
        

   
 (2.68) 

The absolute error of this formula does not exceed 
410

, and it is applicable without any limitations 

on the value of the Landau-Zener parameter  . Note that this formula is explicitly expressed in 

terms of the input parameters of the problem. To write Eq. (2.68) in terms of elementary functions, 

we apply the asymptotic expansion for 1  to each of the hypergeometric functions in (2.68), 

thus reducing it to the following form: 

  
3

0.22067 1
( ) (0.10589 ln 0.24181).I t 

 
      (2.69) 

The asymptotically exact expression for the action variable at t , ( )I t   , for very slow 

resonance sweep rates has been derived in Ref. [69]: 

  
ln 2 1 0.220636

( )I t
  

     (2.70) 

(recall that   is inversely proportional to the resonance sweep rate). As it has been mentioned in 

Ref. [69], for 20   numerical calculations reproduce the coefficient ln2 / 0.220636   with 5-

digit accuracy; for larger values of  , the absolute error of formula (2.70) will be even smaller. 

Thus, as compared to formulas (2.68) and (2.69), formula (2.70) is more precise in the case of very 

slow sweep rates, but both formulas (2.68) and even (2.69) have wider applicability range. For 

example, the analysis of Eq. (73) indicates that, within the applicability range of the presented 
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formula, the total change in the action, )()(  tItI , in the case of large values of the 

Landau-Zener parameter ( 1 ) can be written as a power-law function of the sweep rate through 

the resonance. However, Eqs. (2.68) and (2.69) clearly show that in the case of arbitrary values of 

the Landau-Zener parameter the total change in the action is not given by a power-law function of 

the sweep rate. Moreover, the total change of the action is not given by a power law function of the 

sweep rate also in the case of the strong nonlinearity limit which corresponds to 1  (for a 

detailed discussion of the strong and weak nonlinearity limits see Ref. [62]). 

 Finally, we conclude this section with some qualitative observations. The exact equation for 

the molecular state probability (1.12) indicates that the passage of the system through the resonance 

can increase the number of the singularities of the equation: if 0tt  at the resonance crossing then 

the logarithmic derivative of the detuning ttt  /  necessarily becomes infinite at this point. Hence, 

the resonance crossing strongly affects the dynamics of molecule formation. However, the phase 

space of the time-independent version of the system does not provide a straightforward evidence for 

the relevance of the resonance crossing. Instead, when studying the phase space of the system, we 

arrived at a conclusion that the crossing point of the system’s exact phase trajectory with the 

separatrix of the “frozen” system is the essential concept. Indeed, at the separatrix crossing the 

action substantially changes its value, and due to this crossing the system changes the type of 

motion. The separatrix crossing point is the singular point of the exact equation for p  (2.18). A 

natural conclusion is that the separatrix crossing plays an important role in emergence of the small-

amplitude oscillations in the molecular state probability which come up after the separatrix crossing 

(see Fig. 2.4). 

 While studying the linear set of equations (2.31) we have shown that the corresponding 

classical phase space does not contain separatrices. However, as it is in the nonlinear case, in the 

linear case also, certain time after the system has crossed the resonance, small-amplitude 

oscillations in the molecular state probability appear. In the parameter variation domain, where the 

adiabatic approximation is applicable (approximately 5.3 ), the amplitude of these oscillations is 

negligibly small, and the function )(tpL  can be regarded as an almost monotonic one. But if we 
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consider the values of the Landau-Zener parameter such that the adiabatic approximation is not 

applicable (approximately 5.3 ), the small amplitude oscillations cannot be neglected (see Fig. 

2.5). By comparing this situation with the one we have in the nonlinear case we see that in the 

nonlinear case the small-amplitude oscillations cannot be neglected for any values of the Landau-

Zener parameter  . Hence, we arrive at a conclusion that in the nonlinear case these small-

amplitude oscillations are more persistent due to the crossing of the separatrix. 

 

2.9. Conclusion 

 We have studied the nonlinear mean-field dynamics of molecule formation at coherent 

photo- and magneto-association of an atomic Bose-Einstein condensate focusing on the case when 

the external field configuration is defined by the constant-coupling linear resonance-crossing 

Landau-Zener model. We have studied a condensate initially being in all-atomic state since under 

contemporary experimental conditions one faces this case most frequently. 

 Assuming that the sweeping rate through the resonance is small, we have applied the theory 

of adiabatic invariants. First, we have discussed the classical phase space of the time-independent 

version of the problem in terms of the canonically conjugate variables },{ pq   [see Eq. (2.13)]. 

Taking into account that the considered initial condition corresponds to the case of zero initial 

action we have constructed an expression for the molecular state probability within the adiabatic 

approximation [see Eq. (2.26)]. The constructed solution quite accurately describes the temporal 

dynamics of the coupled atom-molecular system up to the point of time where the approximation, 

deviating from the numerical solution, starts to go to infinity. Thus, the adiabatic approximation 

fails to provide a prediction for the final number of the formed molecules. 

 The reason for the divergence of the adiabatic approximation is that the exact phase 

trajectory of the system inevitably crosses the separatrix of the system’s time-independent version. 

Hence, the necessary conditions of the adiabatic theorem are not satisfied in this case. However, we 

have managed to construct a valid zero-order approximation by introducing an imaginary term in 

the Hamiltonian, writing equations of motion for this augmented Hamiltonian and neglecting the 

higher order derivative terms. This procedure results in a step-like bounded function that starts from 
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zero. Thus, the introduced complex term has enabled us to eliminate the divergence of the adiabatic 

approximation. 

 Further, we have compared the developments of the present paper with those presented in 

Ref. [62]. We have shown that the application of the adiabatic approximation is equivalent to 

removing the two higher order derivative terms from the exact equation for the molecular state 

probability (2.49) while the constructed zero-order approximation is identical with the solution of 

the augmented limit equation (2.51). Taking into account that the molecular conversion efficiency is 

coupled with the total change of the action )]()([  tItI , we have calculated this change 

[see Eq. (2.68)] using a highly accurate approximate formula for the final transition probability 

presented in Ref. [62]. The absolute error of the presented formula for the action change is on the 

order of or less than 
410

. Interestingly, the total change of the action is not given as a power-law 

function of the sweep rate through the resonance. 

 Finally, we recall that the Hamiltonian we have studied is not restricted to the description of 

the coupled dynamics of the atomic and molecular condensates only. As it has been mentioned 

above, it can be mapped to the Hamiltonian describing the formation of ultracold molecules at 

magneto-association in degenerate Fermi gases [50]. Moreover, it is shown to be equivalent to the 

time-dependent Dicke model [104]. (Detailed discussion on the correspondence of various quantum 

models is presented in Ref. [67]). Thus, the results of this paper are equally applicable to all these 

cases. 
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Chapter 3 

Strong nonlinearity limits: two distinct scenarios 

 

 In the present chapter we show that two distinct strongly nonlinear scenarios of molecule 

formation in an atomic Bose-Einstein condensate are available: the association process in the first 

case is almost non-oscillatory in time, while in the second case the evolution of the system displays 

strongly pronounced Rabi-type oscillations. By analyzing the exact differential equation for the 

molecular state probability, we construct highly accurate approximate solutions for both 

interaction regimes. Investigation of the constructed analytical solutions leads to several qualitative 

conclusions of practical significance. In particular, we show that, in the almost non-oscillatory 

regime of the strong nonlinearity limit, the non-crossing models are able to provide conversion of 

no more than one third of the initial atomic population. 

 

3.1. Introduction 

 As it has been mentioned above, the two major routes leading to creation of ultracold 

molecules are the Raman photoassociation and Feshbach association of degenerate atomic gases. In 

this context, it is commonly believed that large coupling is favorable for molecule formation. In 

particular, it is expected that in the case of photoassociation, application of higher laser field 

intensities will result in larger molecular population. This supposition originates from the analysis 

of the Landau-Zener model (1.36) [72] which is typically employed when treating the level crossing 

processes. However, the knowledge accumulated from the analysis of quantum nonadiabatic 

transitions in linear systems (see, e.g., Refs. [86-87,89-90]) suggests that the Landau-Zener-based 

predictions are substantially altered when more realistic models are discussed. Therefore, one may 

expect that in the nonlinear case, when the formation of mesoscopic or macroscopic numbers of 

molecules are discussed, the changes in the interaction picture caused by the deviation of the 

coupling and detuning shapes from those defined by the Landau-Zener model may even be more 

essential. 
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 To address this topic systematically, we examine the level crossing as well as non-crossing 

processes in general, i.e., we assume arbitrary coupling-shape and energy-detuning configurations. 

Discussing possible scenarios of molecule formation in the case of the strong coupling limit, we 

show that two qualitatively distinct interaction regimes may occur. In the first interaction regime, 

which, e.g., for the Rosen-Zener model (1.41) corresponds to the large detuning and large values of 

the peak coupling, the transition of atoms into the molecular state takes place almost non-oscillatory 

in time (only weakly pronounced oscillations between the two population modes are observed). On 

the contrary, in the second interaction regime, which, e.g. for the Rosen-Zener model, corresponds 

to the small detuning and large values of the peak coupling, the hybrid atomic-molecular system 

displays large-amplitude Rabi-type oscillations between the populations. We illustrate the 

peculiarities of these two regimes using several models with distinct properties, such as the first 

Nikitin exponential-crossing model (1.42) that differs from the Landau-Zener case mainly in the 

finite final detuning at t , the first Demkov-Kunike quasi-linear level-crossing model (1.40) 

with a finite pulse and finite detuning, and the Rosen-Zener finite-pulse constant-detuning, hence, 

non-crossing model (1.41). Multiple level-crossing models are not considered. 

 First we present a thorough analysis of the system’s dynamics for the case when the external 

field configuration is defined by the Rosen-Zener model. For completeness of the analysis, we treat 

both strong and weak coupling limits for this model. Further, we generalize the developed 

mathematical approach to the case of arbitrary time-dependent coupling and detuning. We construct 

an approximate solution to describe temporal dynamics of molecule formation in this general case. 

Our analysis leads to some important results. For example, we show that in the case of the almost 

non-oscillatory regime of the strong nonlinearity limit, a non-crossing model is not capable of 

converting into molecules more than 1/ 3  of atoms. Thus, in this interaction regime, tuning through 

the resonance is crucial for molecule production efficiency. However, it should be noted that the 

constructed approximate solution suffers from essential shortcomings. For example, in the case of 

the Landau-Zener and Demkov-Kunike models, it does not provide a sufficiently accurate 

prediction for the final (at t  ) transition probability to the molecular state and does not contain 

an adjustable parameter. To conclude this chapter, we present a general prescription for 
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modification of the mentioned approximate solution and illustrate its virtues on the example of the 

Demkov-Kunike and Landau-Zener models. Importantly, the resultant approximation is a smooth 

bounded step-wise function which contains an adjustable fitting parameter. 

 

3.2. General overview of the Rosen-Zener model 

For the non-crossing models next, after the basic constant-amplitude Rabi one (1.35), comes 

the Rosen-Zener model (1.41) for which the detuning is supposed constant while the coupling varies 

in time according to the hyperbolic secant law. Though the governing set of equations (1.4) 

analyzed in this work is relevant to the cold molecule formation processes via both photo- and 

magneto-association, this field configuration is directly applicable to the photoassociation only. 

This is due to the fact that, in the case of Feshbach association of molecules, the coupling is 

constant: it cannot be adjusted by variation of the external field. On the contrary, in the case of 

photoassociation the pulse duration cannot be infinite (this would mean infinite energy). Hence, 

finite pulse duration should necessarily be discussed if experimental realization is considered. 

Finally, the knowledge accumulated from the linear theory suggests that one should be careful with 

the optical pulse start-up and shutdown scenarios – the particular form of the time variation of the 

field amplitude plays a substantial role. A well discussed shape of such a time-variable pulse in the 

linear theory is the Rosen-Zener hyperbolic-secant model. This is a motivation to explore the 

Rosen-Zener field-configuration for the photoassociation technique. 

One should note, however, that this model is applied, though indirectly, to the Feshbach 

resonance as well. This is achieved by applying a transformation of the independent variable (1.14) 

that changes the governing equations to a constant-amplitude form. Changing to the constant-

amplitude form turns the model into a variable-detuning field configuration. Yet, strictly speaking, 

the model remains non-crossing. However, this constant-amplitude form reveals a prominent 

property of the model, namely, a hidden singularity due to the field rise rate at t . It is this 

singularity that makes the major difference of this model from the Rabi one, which does not reveal 

the different evolution scenarios inherent in the Rosen-Zener model as discussed below. The 

mentioned singularity effectively acts as a resonance-touching. Finally, it should be noted that the 
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constant-amplitude form of the model makes it relevant to the experiment [30]. Thus, the model is 

equally useful for the magneto-association via Feshbach resonances. 

In the present chapter we explore both the weak and strong coupling regimes for the Rosen-

Zener field configuration and compare the results with those for the linear Rosen-Zener model [87] 

and the nonlinear Rabi problem [70]. Our starting point is the nonlinear coupled set of equations 

(1.4): 

  11
)(2

12
)(1

2

)(
,)( aae

tU

dt

da
iaaetU

dt

da
i titi    . (3.1) 

The probability amplitudes 1a  and 2a  are normalized as: 
2 2

1 22 1a a  . Since we consider a 

condensate initially being in all-atoms state, the initial conditions imposed are 

0)(,1)( 21  aa . The external field configuration of the Rosen-Zener model is given as 

  tttUtU 00 2)(),(sech)(    (3.2) 

[compare with Eq. (1.41); recall that ( )t  is the integral of the detuning ( )t t ]. We also rewrite 

here the linear system (1.19) associated with the nonlinear one (3.1) 

  ( ) ( )1 2
2 1( ) , ( )i t i tL L

L L

da da
i U t e a i U t e a

dt dt

    

 (3.3) 

with the same functions )(),( ttU  . Following the prescription of Section 1.4 we choose the motion 

integral of the linear system as 
2 2

1 2 1/ 4L La a 
 
and impose the following initial  

 conditions: 2/1)(1 La , 0)(2 La . This choice ensures the coincidence of the solutions of 

nonlinear and linear systems (3.1) and (3.3), respectively, in the vicinity of t . The solution of 

system (3.3) for 1LI  is written as [87] 
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


 (3.4) 

where 2/))(tanh1( tx  , and );;,(12 xF   is the Gauss hypergeometric function [85]. Hence, 

up to a phase factor, the solution of system (3.3) satisfying the normalization 4/1LI  is 
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2/11 RZL aa  , 2/22 RZL aa   (for a detailed discussion on the correspondence between the linear 

and nonlinear systems (3.1) and (3.3), respectively, see Section 1.4). 

 The final (at t ) probability of transition to the second level is given by the Rosen-

Zener's formula: 

  2
0

2
0 )]([sech)][sin(   UPRZ . (3.5) 

This formula states the well-known  -theorem [87] according to which the system returns to the 

initial state 1 2( , ) (1,0)RZ RZa a   if nU 0  with 0,1, 2...n  , and reaches the highest transition 

probability possible for the given fixed detuning at nU  2/10  (
2

0
max )](sech[ RZP ). Note that 

the system may completely be inverted at exact resonance only. 

 In Fig.3.1 we show the numerical plots of the final transition probability to the molecular 

state in the nonlinear case and final transition probability to the second state in the linear case as 

functions of the peak value of the coupling 0U  and the detuning parameter 0 . As it can be seen, 

the nonlinear behavior displays considerable deviations from the linear one. First, at exact 

resonance the dependence of the final transition probability on the Rabi frequency in the nonlinear 

case is monotonic. Second, though at non-zero detuning atom/molecule oscillations are always 

observed in the p  versus 0U  graph, the  -theorem is no longer valid. However, at fixed detuning 

the final transition probability depends periodically on the field amplitude and approximately 

periodic returns to the initial state are observed. (Therefore, it is likely that a modified form of the 

 -theorem holds in this nonlinear case as well.) This is demonstrated in Fig.3.2. Furthermore, 

examining the graphs in this figure, we see that the oscillation shape, amplitude and frequency are 

changed depending on the detuning. Clearly, the oscillation nature is close to that of the nonlinear 

Rabi-solution (see, e.g., [70]). Finally, we note that in the nonlinear case the transition probability 

decreases considerably faster as the detuning is increasing, and becomes negligible already at 

10  . 

 Our study is based on two different exact nonlinear equations written for the molecular state 

probability 
2

2ap  : a Volterra integral equation and a third-order differential equation. Being 
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equivalent in general, these two equations are efficient if applied to opposite limits: the first 

equation is useful at weak nonlinearity while the second one will be applied in the strong 

nonlinearity limit. 
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Fig. 3.1. Final transition probability as a function of the peak value of the coupling 0U  and the 

detuning parameter 0 : a) nonlinear problem; b) linear problem. 

 

 

 

Fig. 3.2. Nonlinear Rosen-Zener model. At fixed non-zero detuning the transition probability 

depends periodically on the field amplitude. The oscillation shape, amplitude and frequency 

undergo changes analogous to those observed for the nonlinear Rabi-problem. 
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 We start from the weak nonlinearity limit, corresponding to the small values of the peak 

coupling 0U  0( 1)U  , that is a commonly encountered situation under current experimental 

conditions. Using the nonlinear Volterra integral equation, we show that, applying Picard’s 

successive approximations for this limit, an accurate approximate solution in terms of the solution 

to the linear quantum-optics problem can be constructed. We determine the final molecule 

conversion probability and show that, because of the inherent properties of the Rosen-Zener model 

under consideration, the strict limit of weak nonlinearity (when no essential deviations from the 

linear evolution are observed) corresponds to smaller field intensities as compared with the Landau-

Zener case. We discuss the specific reasons for such a behavior and construct an approximation that 

is valid also for the intermediate regime of moderate coupling strength. 

 Further, we pass to the strong nonlinearity limit corresponding to large values of the peak 

coupling 0U  0( 1)U   and show that the system reveals two different time-evolution pictures 

depending on the detuning 02  of the associating field. At large detuning 0( 1)   the molecule 

formation process occurs almost non-oscillatory in time. In contrast to the large detuning regime of 

the strong nonlinearity limit, at small detuning 0( 1)   the evolution of the system displays 

strongly pronounced large-amplitude Rabi-type oscillations. The third-order differential equation in 

each case is reduced to a limit equation of a lower order. In the case of large detuning this equation 

is of the first order, while in the small detuning case it is an effective Rabi-equation of the second 

order. Using these limit equations, we derive two accurate approximate formulas for the molecular 

state probability applicable to the two mentioned regimes. The results show that in the large 

detuning regime the system always returns to the initial all-atomic state independently of the field 

intensity, hence, the final molecule formation efficiency in this case is nearly zero. In the small 

detuning regime, because of large-amplitude oscillations, the peak Rabi frequency (or, equivalently, 

the Rosen-Zener pulse area) should be adjusted in order to achieve efficient conversion, if the 

photoassociation terminology is used. 
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3.3. Weak coupling limit for the Rosen-Zener model 

 Consider the transformation of the independent variable )sech(/ tdtdz   [see Eq. (1.14)] 

that changes system (3.1) to the following constant-amplitude form 

  )()(
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dz
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 To treat the weak coupling limit of such problems with arbitrary detuning and constant 

coupling 0U , we have earlier developed an adapted mathematical approach based on the reduction 

of system (3.6) to the following nonlinear Volterra integral equation [105] for the molecular state 

probability 
2

2 )()( zazp   [59]: 
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
, (3.8) 

where 
2
0U  and the kernel, ),( zK , and the forcing function, )(zf , are given as 

      ))(sin()()())(cos()()(),(   SzSCzCzK  , (3.9) 

   
zz

dzSdzCzSzCzf
00

22 ))(sin()(,))(cos()(),()()(   . (3.10) 

Note that if the term proportional to 2p  is discarded, Eq. (3.8) turns into an exact equation 

equivalent to the linear system (3.3). In the case of weak coupling ( 12
0 U ), a series solution of the 

problem is constructed by means of Picard’s successive approximations [105] to equation (3.8). 

Furthermore, noting that the first three terms of this expansion and that of the corresponding linear 

integral equation coincide, it is possible to construct a faster converging series using the substitution 

upp L   where 
2

2LL ap  . For the function )(zu  we get a new integral equation of the 

Hammerstein type [105]: 
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It is not difficult to see that it is sufficient to take only the first term on the right-hand side of 

Eq. (3.11). Thereby, the approximate solution of the nonlinear system (3.6) is expressed via the 

solution of the linear system (3.3): 

  2

0

( ) ( ) 6 ( , )

z

L Lp z p z K z p d     . (3.12) 

This formula is checked to be pretty accurate for an appropriate variation range of 
2
0U . Now, let 

us calculate the integral of Eq. (3.12). Note that, to achieve a preset accuracy in powers of  , the 

approximation of Lp  by a finite number of terms of its Picard’s series can be used. Restricting to 

the accuracy up to )( 4O  (the first order of the expansion), one may put 4/)()( zfzpL   [see 

Eq. (3.8)]. To improve this approximation, a correction factor can be introduced, thereby applying 

an approximation of the form )()( zfAzpL  . Furthermore, the functions C  and S are explicitly 

determined by considering an auxiliary integral: 

  )2/1,2/1()( 00
)( 

 iiBdeSiCzF y
i   ,    )2/(sin2 zy  , (3.13) 

where 
yB  is an incomplete Beta function [85]. Hence, 

  .)]2/1,2/1(Im[,)]2/1,2/1(Re[ 0000   iiBSiiBC yy   (3.14) 

These functions are shown in Fig.3.3. 

 Then, the correction term u  at z  ( t ) is readily calculated. The result reads 

2 3( ) 6u A C   ,  where )(sech 0C . Hence, for A  chosen as 4/A , the solution of 

nonlinear problem (3.1), accurate to )( 4O , is given by the following formula: 

  
3

3

8

3

4
)(   C

P
zpp RZ 

 . (3.15) 

 This formula works quite well up to 3.00 U  ( 1.0 ). As for 0 0.3U  , significant 

deviations of the prediction (3.15) from the numerical result is observed. To understand the reason 

for this deviation to occur, we investigate the structure of formula (3.15). Since 1RZP  and C  
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does not depend on 0U , p  defined by formula (3.15) grows infinitely as 0U  increases, 

exceeding, already at 53.00 U  (for 00  ), the maximum value 1/2 allowed by the 

normalization. 

 However, the derived formula can be modified to essentially improve the result. This can be 

done by noting that Lp  at small non-zero   is much better approximated by a formula of the form 

2( / 4)( [ ( )] / [ ( )] / (4 )L RZ RZp P f z t f z t P f C   . This corresponds to the choice )4/( 2
 CPA LZ  

that leads to a formula of significantly better structure: 
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



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







RZRZ P

C

P
p


. (3.16) 

 

       

Fig. 3.3. The functions )(tC  and )(tS , 5.00  . 

 

 

Indeed, unlike formula (3.15), the transition probability p  defined by the given formula remains 

less than 1/2 under 1 , i.e., in the whole range where it makes sense to confine ourselves only to 

the first term of Picard’s series expansion for u . However, the obtained formula gives a 

numerically satisfactory approximation only up to 15.0 . Reasons for the latter additional 

restriction deserve special discussion and we will return to this a little later. But before, we will 

show that there is a non-trivial way to improve this result even more. Note first that, with up to a 

constant factor, )/(lim)( 2
2/

0



RZ

i aezF


 . This observation suggests replacing the functions C  
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and S  in (3.11) by /)(Im- 2RZa  and /)(Re 2RZa , respectively, ))(cos( z  and ))(sin( z  by 

the corresponding derivatives. As is easily seen, this is nearly equivalent to the substitution 

/PRZC  in formula (3.16). As a result, we have 

  

2/3

4
3

4










RZRZ PP
p  . (3.17) 

More accurate calculations taking into account the properties of RZa2  show that 

  

2/3

4
)21(3

4








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RZRZ PP
p  . (3.18) 

The derived formula gives a very good approximation up to 25.0  ( 5.00 U ), the relative error 

being of the order of fractions of a percent, see Fig. 3.4. 

 

 

  

Fig. 3.4. Final probability of the transition to the molecular state as a function of 0U :  

solid line - numerical result, dashed line - Eq. (3.18). 

 

 

 Let us now discuss the applicability range for the obtained formulas and the origin of the 

restriction imposed on  . The calculations presented above rest upon the presumption of smallness 

of Picard’s successive approximations for u  as compared to the first term of Picard’s series. As 

follows from Eq. (3.11), the second Picard term has the form 
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   









z

L duupzKu
0

2
001

2

3
)31(),(4  . (3.19) 

As it can be easily seen, whenever at 1 , the condition ~0u  [ )(OpL  ] is fulfilled, and the 

assumption 01 uu   will be the case. Of course, this takes place under 1.0  and, as was 

mentioned above, it is this fact that defines the applicability range of formulas (3.15) and (3.16). 

The situation, however, is drastically changed already at 3.02.0  . First, one should no longer 

consider   as being much less than unity, and, second, what is more important, the linear transition 

probability Lp  is not any longer much less than unity. The latter is already seen from Rosen-Zener 

formula (3.5): the final probability of the linear transition 4/)( RZL Ptp   at 00   is about 

0.25. Thus, the nonlinear Rosen-Zener problem can be treated as a weakly nonlinear one, when the 

dimensionless amplitude obeys the condition 3.00 U  ( 1.0 ). Recall that in the weakly 

nonlinear cases, a zero-order approximation can be chosen as a solution of the corresponding linear 

problem. Note that this conclusion is not a priori evident. For instance, in the case of the Landau-

Zener model, the weak nonlinearity limit corresponds to the values of 1  [59-60,62]. Thus, fields 

with 3.00 U  ( 1.0 ) belong to the intermediate type, between the strong nonlinear and weak 

nonlinear ones. It is for this reason that modifications (3.17) and (3.18) applicable up to 5.00 U  

( 25.0 ) are of substantial importance. One might hope that the latter formula will be applicable 

for a little larger   if  0 , since then, due to the presence of the factor 
2

0 )](sech[   in formula 

(3.5), 1)( tpL . To some extent, this assumption is valid. However in this parameter 

variation domain the relative error is significantly greater; already at 7.00 U
 
it is of the order of 

several percents. The reason for this lies in the fact that in the vicinity of the point 0t  the linear 

solution )(2 tp RZ  [see (3.4)] reaches values of the order of unity, irrespective of value of 0  (at 

moderate and large values of 0 , there is a pronounced maximum). The mentioned property can be 

demonstrated by studying, e.g., the behavior of the linear solution at 10 U . In this case, the 

hypergeometric series in solution (3.4) are terminated, which results in an elementary solution, 
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  )41/()(sech 2
0

2
2  tp RZ . As it can be seen, at moderate 5.00   we have 5.0)0(2 RZp . Thus, 

the general conclusion is that under 6.05.00 U , one may not confine himself only to the first 

term of Picard’s series for u  since the successive terms play an important role. Therefore, the given 

regime should be viewed as a strongly nonlinear one. 

 

3.4. Strong coupling limit for the Rosen-Zener model 

 In the strong coupling limit of high field intensities, 12
0 U , the nonlinearity is well 

pronounced. In this case, however, the Volterra equation (3.8) is of little help, because the 

successive Picard’s approximation terms become larger and larger. Instead, we use the exact 

nonlinear differential equation of third order (1.12). For the Rosen-Zener model under consideration 

the frequency detuning is constant, and the equation is considerably simplified: 

 
.0)1281)((tanh)(sech

2
)]31)((sech4)14[(

)(tanh2

22
2
022

0
2
0 



pptt
U

pptU

ptp

t

ttttt


 (3.20) 

 To construct an approximate solution of this equation,  we compare the magnitudes of 

involved terms keeping in mind that we suppose 12
0 U . It can be then immediately seen that 

there are two basic possibilities depending on the magnitude of the detuning, 10   and 10  . 

This conclusion is also guessed from Fig.3.1. Indeed, as has already been noted above, at small 

detuning, the final conversion probability (i.e., the molecular state probability at t ) reveals 

large amplitude oscillatory dependence on the peak coupling 0U . In the meanwhile, the probability 

rapidly decreases as the detuning is increased; the molecular state probability becomes practically 

negligible at 10  . These observations are further confirmed by examining the temporal evolution 

of the transition probability (Fig.3.5). We see that at 5.00   strong temporal oscillations of the 

atom-molecule populations occur (see the detailed picture in Fig.3.6), while at larger detuning the 

oscillations are highly suppressed (Fig.3.7); they can be neglected already at 20  . 
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Fig. 3.5. Molecule formation probability versus time and detuning ( 100 U ). 

 

 

     

 

Fig. 3.6. Temporal evolution of the molecular state probability at small detuning: a) 05.00  , b) 

2.00   ( 100 U ). 

Solid line - numerical solution, dashed line - limit solution (3.27). 
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Fig. 3.7. Molecular state probability vs. time at large detuning: a) 10  , b) 20   ( 100 U ). 

Solid line - numerical solution, dashed line - limit solution (3.27). 

 

 

 Large detuning case: 10  . 

 Since both  0U  and 0  are large parameters, the leading terms in Eq. (3.20) are the last two. 

By retaining only these terms and denoting the constructed solution by 0p , we obtain the following 

limit equation: 

  0)1281)((tanh
2

)]31(4)(cosh)14[( 2
00

2
0

00
2
0

22
0  ppt

U
ppUt t . (3.21) 

This equation is solved by a change of the independent variable followed by interchange of the roles 

of the independent and dependent variables. Indeed, the transformation 

  
ds

d
st

dt

d
 )(tanh       /1

0
2
0 )(cosh14 sCt   (3.22) 

changes Eq. (3.21) to the form 
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Choosing now 2  and 00 UC   we arrive at an equation 
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that can further be solved by considering s  as a dependent variable since in this case the differential 
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equation (3.24) becomes linear with respect to s . The result reads 
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0
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001
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
. (3.25) 

For the initial condition 0)(0 p  considered here, we obtain 01 C , hence the polynomial 

equation (3.25) is considerably simplified reducing to a quadratic equation for 0p : 
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
, (3.26) 

whereby we arrive at the following principal result: 
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This is a highly accurate approximation. For 50 U  and 20   the probability calculated by this 

formula and the numerical result are practically indistinguishable (Fig.3.7b). Besides, it allows one 

to linearize the exact equation for the molecular state probability (3.20) (by substitution 

upp  0 ) thereby covering the whole range { 10 U , 10  }. Two immediate conclusions 

follow from this formula. First, since 0)(0 tp , the final molecular state probability at 

strong coupling is nearly zero if the detuning is large, i.e., the system subjected  to a large-detuning 

Rosen-Zener pulse returns to its initial all-atomic state. Second, )(0 tp  is a bell-shaped non-

oscillatory function of time and its maximum is achieved at 0t : 
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For 1)14/(6 2
0

2
0 U  this is close to 6/1 . However, 

max
0p  is always less than 6/1 . Hence, at 

large detuning a Rosen-Zener pulse is not able to associate more than one third of atoms 

( 6/1molecule p  corresponds to 3/1  of atoms). This limitation for the conversion efficiency has 

been noted to be the case in the adiabatic limit (which is equivalent to the discussed case of high 

field intensities and large detuning) for other non-crossing models too (see, e.g., [106]).  

 Finally, it is of interest to compare the above nonlinear behavior under strong coupling and 
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large detuning conditions with the linear Rosen-Zener counterpart. In the linear case, instead of Eq. 

(3.21), we have the following linear limit equation (here, the normalization 4/1LI  is adopted) 

  0)81)((tanh
2

]4)(cosh)14[( 0

2
0

0
2
0

22
0  LLt pt
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pUt . (3.29) 

The solution to this equation reads 
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This formula displays the same qualitative features as the nonlinear solution, Eq. (3.27); i.e., in the 

linear case again a return to the initial state is observed if the applied Rosen-Zener pulse is of a large 

detuning, and there is a maximum possible transition probability achieved at 0t . This time, this 

probability is 8/1  (i.e., 2/1  for the normalization 1LI ). 

 

 Small detuning case: 10  .  

 To treat this regime we first rewrite Eq. (3.20) in the following factorized form 
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. (3.31) 

The arguments now are as follows. Though the detuning is supposed to be small, one cannot 

completely neglect the term tp2
04 . Indeed, putting 00   results in a monotonically increasing 

solution: 

  
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2
tanh
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1 02 zU
p , (3.32) 

where 

   / 2 2arctan tanh( / 2)z t  ,   ],0[ z . (3.33) 

However, the numerical simulations reveal that for any non-zero small 0  the solution is oscillatory 

(this is well seen from Figs. 3.5 and 3.6). Hence, in a sense, the exact resonance case 00   is 

degenerate. This degeneracy can be resolved by introducing a small perturbation when constructing 

the initial approximation. Intuitively, in order to get an approximation that would be close to the 
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real solution as much as possible, one should try to introduce a perturbation as small as possible. On 

the other hand, one should choose a form of this perturbation that allows construction of an analytic 

solution. From this point of view, the form of Eq. (3.31) suggests introducing the perturbation 

inside the square brackets since then the truncated equation, that remains after disregarding the term 

tp2
04 , can be immediately integrated once. One may further try to choose a specific form of the 

perturbation that allows the complete integration of the reduced equation. The listed requirements 

are satisfied by introducing a trial term of the form )(sech2 tA   with some constant A  (depending, 

in general, on 0  and 0U ) in the square brackets of Eq. (3.31). We suppose that A  is small (say, of 

the order of 2
0  as 0  goes to zero). The value of this constant is then defined by requiring the 

resulting approximation to be as close to the exact solution as possible with the chosen form of the 

introduced perturbation. 

 To proceed with the outlined approach, we rewrite Eq. (3.31) in the following equivalent 

form: 
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Now, supposing 1A , we make an attempt to construct a valid approximation via dropping the 

last term of this equation and the last term in the brackets, and integrating the remaining equation 

once. Taking into account the initial conditions applied here, we arrive at the following second 

order equation 
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which is easily turned into another one with constant parameters by the change of the independent 

variable given by Eq. (3.33): 
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Multiplying this equation by zp  and integrating once, we obtain an equation that is immediately 

identified as an equation for an effective Rabi problem with for some field parameters – an effective 
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field amplitude and an effective detuning (see, e.g., [70]). Correspondingly, the zero-order 

approximation is written in terms of the Jacobi elliptic sine function [85]: 

  ];[sn 02
2

10 mzUppp  , (3.37) 

where the parameters 21, pp  and m  are defined as 
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The period of the oscillations is given as 
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Comparing this solution with the exact resonant solution we first note that the solution given by Eq. 

(3.32) is also written in terms of the Jacobi sn -function if one takes 1m  ( ]1;sn[)tanh( zz  ). 

Furthermore we note that Eq. (3.37) is reduced to Eq. (3.32) for 0A . These observations clearly 

suggest that the performed procedure, the introduction of an A -term, should be equivalent to 

changing the parameters of the resonant solution (3.32) written in the Jacobi sn -function form. 

Hence, the approach we applied can be viewed as a modification of the well-known method of 

strained parameters [107]. 

 The obtained solution (3.37) presents an oscillatory function whose behavior displays all the 

qualitative features of the exact solution. Moreover, a few numerical simulations shortly reveal that 

for any small enough 0  one may always find such a value of the parameter A  for which this 

solution is practically indistinguishable from the numerical solution. To derive an analytic 

expression for this value of A , we examine the neglected terms with p  defined by this solution: 
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Here, the idea is to choose the parameter A  so that this remainder becomes as small as possible. 

Strictly speaking, one should look for such a value of A  for which the influence of the neglected 

terms is minimal. To address the latter question mathematically, one should examine the behavior 
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of the next approximation term constructed by using 0p  of Eq. (3.37) as zero-order approximation. 

However, it is difficult to proceed in this way because the analytic expression for the next 

approximation term is not known. For this reason, we look for indirect criteria. A possibility opens 

up when examining the behavior of the function )(sech/4 2
0

2
0 tp t . This is a step-like function that 

exponentially slowly decreases from a relatively large value 
2
0

2
0~ U  at t , then sharply goes 

to zero at some negative time and remains negligible in a large vicinity of the point 0t  where the 

field intensity is the highest. Noting now that a rather similar qualitative behavior is displayed by 

the term )tanh(tA , we see that the remainder R  will be essentially suppressed for a large time 

interval, covering the effective interaction region, i.e., the vicinity of the point 0t , if we require 

the term in the square brackets in Eq. (3.40) be vanishing at the beginning of the interaction, i.e. at 

t . Then, since 
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we immediately get 
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This is already a good approximation showing the order of the parameter A : 
2
0

2
0~ UA  . Indeed, 

the comparison with the numerical solution shows that the approximate solution (3.37) with this 

value of A  describes well the process for many oscillations (see Fig. 3.8a). 

 Nevertheless, it can be seen that the deviation from the exact solution slowly increases 

during time and eventually becomes rather noticable at the end of the interaction process. 

Fortunately, the result can be essentially improved by trying a perturbation with two fitting 

parameters, namely a perturbation of the form )(sech)( 2 tpBA . Since the parameters 1p  and 2p  

of Eq. (3.37) are then changed independently [compare with Eq. (3.38)], it is understood that this is 

more elaborate realization of the strained parameters method. Interestingly, it turns out that for high 

field intensities the result is effectively equivalent to the single-parameter A -perturbation approach 

with a slightly modified value of A  as compared with that of Eq. (3.42): 
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Fig. 3.8. Comparison of the approximation (3.37) (dashed line) with the numerical result (solid line) 

for 001.00  , 5.230 U : a) A  is given by Eq. (3.42) and b) A  is given by Eq. (3.43). 

 

 

The parameters 1p  and 2p  are finally given by simple formulas: 

  
22

1 0
2,1


p . (3.44) 

This is a really good approximation. The Jacobi sine solution (3.37) with these parameters produces 

graphs practically indistinguishable from the numerical solution as far as 0  is small enough and 

10 U  (Fig. 3.8b). If needed, one may further improve the results by linearization of the problem 

using this solution as an initial approximation. 

 Thus, we have seen that at small detuning the Rosen-Zener pulse causes large amplitude 

oscillations during the time evolution of the coupled atom-molecule ensemble which are described 

by the Jacobi sn -function. According to the properties of this function, the shape of the oscillations 

is defined by the parameter 21 / ppm  . Hence, we conclude from Eq. (3.44) that at small detuning 

the time shape of the atom-molecule oscillations is in first approximation defined by the detuning 

only. On the other hand, the number of the oscillations is mainly defined by the value of 
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tdtU )(sech0




 i.e., by the pulse area. 

 It is interesting to analyze the construction of the approximation for the small detuning 

regime of the Rosen-Zener model (3.37) from a different point of view. We have seen that the 

constant A , which determines both the qualitative and quantitative properties of the solution, has 

eventually been calculated by examining the behavior of the system at the beginning of the 

interaction. This observation leads to a notable speculation. Indeed, it seems rather unexpected that 

the vicinity of the point t , where the amplitude of the field is exponentially small, plays such 

an important role, a much more important role than that of the vicinity of point 0t , where the 

field amplitude is maximal. This clearly indicates that the time point t  actually presents a 

hidden singularity. The origin and the nature of this singularity are understood by rewriting Eq. 

(3.31) for the variable z  [see Eq. (1.17)]: 
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where dttz
t




 )sech(  and the effective detuning 
*

z  is given as 

  *

0( ) 2 / sin( )z z z   (3.46) 

so that 

  
*

*

cos( )

sin( )

zz

z

z

z




  . (3.47) 

It is then immediately seen from the last relation that the point 0z  corresponding to t  is 

indeed singular because the operator  
* */zz z   diverges at this point. Notably, this divergence does 

not depend on the parameter 0  which is the only characteristic of the detuning ( )t t . The 

divergence is of course caused by the transformation from t  to z , hence, exclusively by the form of 

the time evolution of the field amplitude, )(tU , more precisely, by the field rise rate. Naturally, this 

singularity can be viewed as an effective resonance touching (but not crossing) because the 

divergence of the operator 
* */zz z   at the crossing point is the main characteristic of the (constant-
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amplitude) crossing models (e.g., for the Landau-Zener case we have  tttt /1/  at 0t ). 

Strictly speaking, there is another singular point, z , however, this corresponds to t , 

where the interaction process ends. Since the interaction exponentially vanishes when we approach 

this point and there is no further time for this point to display its influence, the role of this point is in 

practice negligible. Note finally that the left-hand side of Eq. (3.25) which describes the other 

evolution regime corresponding to the large detuning case can be written as 
2 *2

04 / zU  . Since this 

term vanishes at 0z , thus leading to a zero integration constant 1C , we conclude that in this 

regime too the behavior of the system is essentially determined by the mentioned hidden singularity. 

  

  

3.5. Two strongly nonlinear distinct scenarios of cold molecule formation 

 In the present section we analyze the strong nonlinearity limit of the coherent molecule 

formation, assuming an arbitrary external field configuration. Two distinct strongly nonlinear 

scenarios of the system’s evolution are shown to be available – almost non-oscillatory and strongly 

oscillatory regimes [73]. By generalizing the mathematical approach used for the treatment of the 

nonlinear Rosen-Zener problem (see Sections 3.3-3.4), we construct simple analytical 

approximations for both interaction regimes. 

 First, to get a better intuitive understanding of the problem at hand, we examine the exact 

equation for the molecular state probability (1.12). The nonlinearity is determined by the current 

value of the transition probability p . Hence, one may expect that if p  remains small enough (note 

that, anyway, 2/1p ) the role of the nonlinearity will be rather restricted. In this case, neglecting 

the nonlinear terms in equation (1.15), we get the linear equation, satisfied by the function 

2

2LL ap 
 
[see Eq. (1.18)]. Studying now the solution of the linear two-state problem )(tpL  we 

see that, if the dimensionless peak Rabi frequency 0U  is small enough  ( 10 U ), or if it is much 

smaller compared to the sweep rate through the resonance ( 00 U ), then the function Lp  does 

not attain large values. From this, one can infer that in these cases the transition probability defined 
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by the nonlinear two-state problem is close to that defined by the linear two-state problem. 

 Now, let us define the coupling and detuning parameter variation range that corresponds to 

the strong nonlinearity limit. To this end, we again address the exact equation for the molecular 

state probability (1.15). It can easily be seen that the nonlinear terms in Eq. (1.15) are proportional 

to the peak coupling squared: 
2
0U . Hence, the strong nonlinearity regime corresponds to high field 

intensities, if the photoassociation terminology is used, and we thus suppose that 
2
0U  is a large 

parameter. Note now that the function 2*
z  may also adopt large values (e.g., in the Landau-Zener 

model 222* ~ tzz   diverges at t ). Furthermore, note that the nonlinearity is merely 

determined by the current value of )(tp . Hence, at strong coupling the probability )(tp  should 

reach large values during the evolution of the system (of course, relatively large, since the 

normalization constraint p  cannot exceed 2/1 ). Having these observations in mind, we suppose 

that the leading terms in the exact equation for the molecular state probability (1.15) are the last two 

so that we neglect, for the moment, the first two terms thus arriving at the following limit nonlinear 

equation of the first order: 
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This is a productive equation. In spite of the singular way it was derived (the higher-order 

derivatives have been disregarded) the equation works well due to its rich structure that incorporates 

all the principal features of the exact equation (1.15), i.e., the form of the nonlinearity, the interplay 

between the nonlinearity and the detuning modulation, etc.  

 This equation has two trivial constant solutions 2/10p  and 6/10p  that are also 

stationary solutions to the exact equation (1.15). These solutions play, as we will see below, a 

pronounced role in the determination of the asymptotes of the approximate solution. Furthermore, in 

spite of the complexity of the limit equation (3.48), its general solution can be found for arbitrary 

effective detuning *
z . To this end, we apply such a transformation of the independent variable 

sz   that reduces the nonlinear limit equation (3.48) to a linear one, if s  is considered as a 

dependent variable, 0p  serving then as an independent variable. This is achieved by applying the 



80 

 

transformation 
2*2

0 / zUs  . The resulting equation for s  is written as 
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After simple integration we arrive at the following main result: 
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This algebraic equation defines a limit solution )(0 tp
 
in terms of the effective detuning ))((* tzz . 

Already at this stage, Eq. (3.50) leads to several immediate conclusions. Indeed, note that if the 

effective detuning ))((* tzz  goes to zero at some point of time, the limit solution )(0 tp  should 

inevitably adopt 6/1  (or 1/ 2  if 00 C ) at this point. Hence, the molecular state probability is 

strictly equal [indeed, within the applicability limitations of the limit equation (3.48)] to 6/1  at the 

frequency resonance crossing point. It then follows that for non-crossing models the molecular state 

probability cannot exceed 6/1 , hence, the sweep through the resonance is a necessary condition for 

creation of a considerable molecular population (recall that we start from the all-atoms state). 

 A short examination shows that to define the constant 0C  in Eq. (3.50), the behavior of the 

function 
2*

z  at t  should be considered. It is not difficult to verify that for all the four 

particular models listed in Section 1.6, the Landau-Zener, the first Nikitin, the first Demkov-Kunike 

and Rosen-Zener models, holds 


*lim z
t

 . Imposing now the initial condition 0)(0 tp , 

we obtain that for these models 00 C . Hence, in these cases the quartic equation (3.50) is reduced 

to a quadratic one. As a result, we finally arrive at the following explicit expression for the limit 

solution 0p : 
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In the case of the Rosen-Zener model this expression exactly coincides with the previously derived 

approximation (3.27). The derived solution (3.51) is a rather accurate approximation. 
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This is demonstrated in Figs 3.7 and 3.9, where we compare the limit solution (3.51) with the 

numerical solution of the problem for different external field configurations. Note that the function 

(3.51) is not necessarily bounded: for example in the case of the Landau-Zener and Demkov-Kunike 

models it goes to infinity when t  . To eliminate this divergence and construct an 

approximation valid for all times, we combine the limit function (3.51) with the trivial solution 

0 1/ 2p  . Thus, generally speaking, if at some point ctt  , the limit solution (3.51) attains the 

maximal value 2/1  allowed by the normalization, it must be combined with the trivial solution 

2/10p  for ctt  . 

    

 

Fig. 3.9. Molecule formation probability vs. time for the Demkov-Kunike model ( 200 U , 

0 10  ).  

 

 

Fig. 3.10. Nikitin exponential model, 4/ 22
0 U . Monotonic curve represents the solution (3.51). 

 Furthermore, the limit solution (3.51) allows to draw several qualitative conclusions of 
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practical significance. First, suppose that the limit solution 0p  always remains less than 2/1  or, 

equivalently, 2/ Ut , if 1S , and 2/ Ut , if 1S . In this case if 

))((lim))((lim ** tztz z
t

z
t




 , then after the interaction the system will return to its initial, all-

atoms state. This happens, for instance, when the external field configuration is defined by the 

Rosen-Zener model (Fig. 3.7). Note that the maximum molecular population achieved at this non-

crossing process is less than 6/1 . Second, let 0p  always remain less than 2/1  and, in addition *
z  

remain restricted in the neighborhood of t  for any finite values of the detuning and coupling 

parameters. Then the final transition probability tends to 6/1 , when 0U  tends to infinity. This 

behavior is observed in the case of the Nikitin exponential model (Fig. 3.10). This curious result 

proves that the application of high field intensities (if the photoassociation terminology is used) is 

not always efficient to achieve large final molecular population. 

 The common feature of the limit solutions for the four considered models is their non-

oscillatory behavior. To find out the conditions under which the system displays almost non-

oscillatory behavior, we analyze the numerical solutions of the problem for the Rosen-Zener and 

first Demkov-Kunike models. Our analysis shows that for 0 1U  , the process of molecule 

formation is almost non-oscillatory if, in the case of the Rosen-Zener model, the detuning is large 

enough: 0 1  , and in the case of the Demkov-Kunike model, the sweep through the resonance is 

sufficiently fast: again, 0 1   (see Figs. 3.6, 3.7, and 3.11). Finally, we conclude that the limit 

solution (3.51) is a good approximation when 10 U  and 0 1  . 
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Fig. 3.11. The probability of the molecular state versus time for the DK model. a) The fast 

resonance sweep regime of the strong nonlinearity limit ( 80 U , 80  ). b) The slow resonance 

sweep regime of the strong nonlinearity limit ( 80 U , 1.00  ). 

 

 

 Thus, to construct an approximate solution for the parameter variation range 10 U  and 

0 1   a different approach should be developed. The numerical examination shows that in this case 

the behavior of the system is much more “unstable”: the time evolution of the molecular state 

probability reveals oscillations with large amplitude and varying frequency. These peculiarities of 

the solution suggest that for construction of an analytical approximation (in this interaction regime), 

the two higher order derivative terms in the exact equation for the molecular state probability (1.12) 

should necessarily be preserved. In Section 3.4, we have already managed to construct a highly 

accurate approximate solution of the problem, valid in the oscillatory regime of the strong 

nonlinearity limit. In the present section we generalize the presented mathematical approach. 

 Again, our starting point should be the exact equation for the molecular state probability 

written in the factorized form (1.17): 
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equation, it is impossible to construct a valid approximation, regardless of the smallness of *2
z zp . 

As it has been proved, putting *2 0z zp   results in a monotonically increasing solution that 

contradicts the numerically observed behavior. Thus, to construct a valid approximation, we not just 

simply remove the term *2
z zp , but simultaneously add a small perturbation, such that the solution 

of the constructed equation is an oscillatory function. The chosen perturbation should also be of 

such a form that the resulting equation is analytically solvable. Finally, we try to construct a valid 

approximation as a solution of the following differential equation: 
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where A  is an adjustable parameter. This equation is readily integrated, and the approximation 0p  

is readily given in terms of the Jacobi elliptic sine function [20]: 

  ];[sn 02
2

10 mzUppp  , (3.54) 

where parameters 21, pp , and m  are defined as 
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When analyzing the Rosen-Zener model, an analytical expression for the fitting parameter A  has 

been defined [see Eq. (3.43)].  

 The solution (3.54) is analogous to the nonlinear Rabi-solution. As it can immediately be 

seen, it is of a universal form for arbitrary pulse shape and detuning modulation functions; the 

change of the laser field configuration only affects the argument and the expression for the fitting 

parameter A  leaving the function itself unchanged. Hence, the qualitative behavior of the system in 

this regime is less sensitive to the concrete form of the laser excitation. Another interesting feature 

is the subtle dependence of the oscillation frequency of the atom-molecule mixture on the 

parameters of the laser field modulation. 
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3.5. Improvement of the approximation (3.51) for the weakly oscillatory regime of the strong 

nonlinearity limit   

 In the previous section we have shown that in the case of large values of the peak coupling 

0U , two strongly nonlinear distinct scenarios of the system’s evolution are  available – the highly 

oscillatory and the almost non-oscillatory interaction regimes. By neglecting two higher order 

derivative terms in the exact equation for the molecular state probability (1.15), we constructed an 

approximation (3.51) to describe the temporal dynamics of molecule formation in the almost non-

oscillatory regime of the strong nonlinearity limit. The presented approximation is valid for an 

arbitrary external field configuration. Though the approximation constructed in this way describes 

the association process quite well before the resonance crossing and not long after the crossing, it 

suffers from substantial shortcomings: it does not predict the correct value for the final transition 

probability and it has a derivative discontinuity at the point 0tt  . However, as it will be shown 

below, it is possible to modify the limit equation (3.48) in such a way that it will have a bounded 

step-like solution. 

  We first note that if one takes a non-zero value for the integration constant 0C  then, in 

general, the quartic equation (3.50) is not reduced to a quadratic one, and the function )(0 tp  does 

not diverge at t . But for non-zero 0C  the constructed approximate solution does not satisfy 

the initial condition 0)(0 p . This observation gives a hint that when constructing an 

approximation one should try to avoid the degeneracy of the quartic polynomial equation to a 

quadratic one. It is possible to resolve this issue via an appropriate modification of the limit 

equation (3.48) by introducing therein a term of the form ** / zzzA  , where A  is an adjustable 

parameter. In this way, we arrive at the following augmented limit equation: 
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which can be integrated using the same method as for solving Eq. (3.48). The integration leads to a 

remarkable result: 
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This relation defines a quartic algebraic equation for the determination of the function )(0 tp . The 

determination of the fitting parameter A  will be discussed later. 

 Now we analyze in detail the solution of the quartic equation (3.57) for the case of the DK 

model. First of all, we note that for the initial condition 0)(0 p , we obtain 00 C . Then we 

note that at t  the left-hand side of Eq. (3.57) tends to zero. Hence, )(0 p equals either 
1  

or 
2 . Since 2/12  , we conclude that 10 )( p . Furthermore, considering the behavior of 

0p  at 0t  we see that at 0t  the left-hand side of Eq. (3.57) diverges, hence, 
10 )0( p  

because 2/12  . Summarizing the results, we have: 
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Note that 6/1)0(0 p  and 2/1)(0 p . The limit solution 0 ( ( ), )p z t A  is a monotonically 

increasing function that starts from zero at t , reaches some value less than 6/1  at 0t , and 

tends to a finite positive value less than 2/1  for t  when 0 / 2A    (see Fig. 3.12). 

 To develop general principles from which the fitting parameter A  could be determined, we 

insert the approximate solution ),(0 Azp  into the exact equation for the molecular state probability 

(1.15) and consider the behavior of the remainder 
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It is intuitively understood that the better approximation 0p  is the smaller the remainder R  will 

become [it would identically be zero if 0p  were the exact solution of Eq. (1.15)]. Thus, we try to 

minimize the remainder via an appropriate choice of the fitting parameter A . The remainder R  is 
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not bounded at the resonance point 0z . To eliminate the divergence of the remainder at this point 

of singularity, we choose the parameter A  as a solution of the equation 

  0)0(0  Ap zz . (3.61) 

 

 

Fig. 3.12. The limit solution )(0 tp  [see Eq. (3.57)] versus time at 25   for 0A , 0.05A , 

0.9A , and 3A  . 

 

 

Taking into account the definition of 0p , i.e., Eqs. (3.57)-(3.58), one can try to obtain an analytical 

expression for the parameter A . For example, in the case of the strong nonlinearity limit of the 

Landau-Zener model ( 1 ), Eq. (3.61) provides the following value for the adjustable parameter 

A : 
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9
A


 . (3.62) 

Thus, in the strong nonlinearity limit of the Landau-Zener model, the fitting parameter A  is 

inversely proportional to the Landau-Zener parameter. Further, by analyzing the strong coupling 

( 1 , where 
2
0U  ) and moderate values of the sweep rate 0  (   01 ) of the Demkov-

Kunike model we obtain the following approximate expression for the parameter A : 
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It should be noted that a more accurate approximation for A  valid for a larger region of variation of 

0  and   is of the form )(/ 0 gA   with a complicated function )( 0g  vanishing at 0 . 

From the qualitative point of view, however, the approximation (3.63) reveals an important 

peculiarity that we would like to note here, namely, the linear dependence of A  on   in the strong 

coupling limit.  

 To conclude this section, we note that the limit solution 0p  still misses several essential 

features of the association process. Indeed, for instance, the coherent oscillations between atomic 

and molecular populations which arise after the system has passed through the resonance are not 

contained in this solution [see Figs. 3.11(a) and 3.12]. Furthermore, the final transition probability 

at t  predicted by 0p , with the parameter A  defined by Eq. (3.63), is always lower than what 

is shown by the numerical solution of the exact equation. 

 A natural conclusion is that the shortcomings of the suggested limit solution are due to the 

singular procedure we have employed to derive it. Indeed, we have constructed 0p  by neglecting 

the two higher order derivative terms in Eq. (1.15). Of course, these terms played a role in 

determination of the appropriate value of A , hence, to some extent, they have been taken into 

account. However, for a considerable improvement of the obtained result, we need the next 

correction term that accounts for the second and third order derivatives of p . One can use the 

presented solution 0p  as a zero-order approximation to construct the next approximation term to the 

problem. The presented developments are not restricted to the case of the Demkov-Kunike or 

Landau-Zener models only: they are equally applicable to other level-crossing models. 

 

3.6. Summary 

 Thus, we have examined the temporal dynamics of molecule formation in a Bose-Einstein 

condensate of atoms, assuming arbitrary coupling-shape and energy-detuning configurations. First, 

we have presented a thorough analysis of the system’s dynamics in the case when the external field 

is defined by the non-crossing Rosen-Zener model. For completeness of the analysis, we have 

treated both strong and weak nonlinearity limits for this model. 
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 Using an exact nonlinear Volterra integral equation, we have shown that in the weak 

nonlinearity limit the solution of the nonlinear Rosen-Zener problem is written in terms of the 

solution to an auxiliary linear Rosen-Zener problem. We have derived a simple expression for the 

final transition probability. We have found that for the Rosen-Zener model the strict limit of weak 

nonlinearity corresponds to smaller field intensities than for other known models such as the 

Landau-Zener and Nikitin-exponential ones. We have shown that this is due to the inherent 

properties of the particular hyperbolic secant pulse shape under consideration. 

 Further, we have treated the strong coupling limit of the nonlinear Rosen-Zener problem 

when the nonlinearity is most pronounced in the molecule formation process. We have shown that 

here there are two different regimes of the time evolution of the coupled atom-molecule system 

corresponding to large and small detuning of the associating field. In the first case the behavior of 

the system is almost non-oscillatory while in the second case large amplitude coherent oscillations 

in the population dynamics are observed. 

 Discussing the large detuning regime, we have shown that the conversion process is 

effectively described by a limit first-order nonlinear equation for the molecular state probability. 

Using the exact solution of this equation, we have shown that in this regime the molecular fraction 

qualitatively follows the field amplitude time variation, i.e., the probability of the molecular state 

first monotonically increases, reaches its maximum at the time when the field intensity is maximal, 

and then decreases as the field amplitude decreases. Eventually, the system returns to the initial all-

atoms state. The maximal possible molecular fraction is found to be 6/1 , i.e., in this regime a 

Rosen-Zener pulse is capable of capturing no more than the third of the initial atomic population 

(this is an argument why for high molecule production efficiency a resonance-crossing is needed). 

In accordance with this prediction, the JILA experiment [30] have shown a maximum molecular 

conversion of about 16%. 

 Furthermore, discussing the small detuning limit, we have shown that in this case the system 

is well described by a second order nonlinear equation that is shown to be the equation of an 

effective Rabi problem with changed parameters. We have derived accurate approximations for the 

parameters of the corresponding Rabi-solution written in terms of the Jacobi elliptic sine function. 
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We have seen that the number of oscillations, as in the linear case, is mainly defined by the pulse 

area. In the meantime, we have shown that the oscillation shape is mostly defined by the field 

detuning; the influence of the field intensity here presents a small correction of higher order. 

 Importantly, we have indicated an inherent singularity of the Rosen-Zener model, a hidden 

singularity that stands for many of the qualitative and quantitative properties of the model. This 

singularity, which is shown to be due to the time-variation law of the field amplitude in the 

beginning of the interaction, can be viewed as an effective resonance-touching. 

 Further, we have analyzed the strong nonlinearity limit of the coherent molecule formation, 

assuming an arbitrary external field configuration. We have shown that, as in the Rosen-Zener case, 

there are two distinct strongly nonlinear scenarios of the system evolution – almost non-oscillatory 

and strongly oscillatory interaction regimes. By generalizing the mathematical approach used for 

the treatment of the nonlinear Rosen-Zener problem (see Sections 3.3-3.4), we have constructed 

simple analytical approximations for both interaction regimes 

 The approximation for the problem in the almost non-oscillatory regime of the strong 

interaction limit has been defined as a solution of the first-order nonlinear equation (3.48). The 

exact solution (3.51) of this equation satisfying the considered initial conditions is given as a 

solution of the polynomial equation of second order. Though the approximation constructed in this 

way describes the association process quite well before the resonance crossing and not long after the 

crossing, it suffers from substantial shortcomings: it does not predict the correct value for the final 

transition probability and it has a derivative discontinuity. We have constructed a zero-order 

approximation for the problem which has been defined as a solution of the augmented limit 

equation  (3.56). We have shown that the exact solution of this equation is given as a solution of the 

polynomial equation of fourth order [see Eq. (3.57)]. The constructed approximation contains a 

fitting parameter which has been determined through a variational procedure. Being a step-like 

bounded smooth function (see Fig. 3.12), 0p  can be used as a zero-order approximation to 

construct the next approximation term. 

 The approximate solution of the problem in the strongly oscillatory interaction regime is 

expressed in terms of the Jacobi sn-function (3.54), thus having a universal form for arbitrary pulse 
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shape and detuning modulation functions; the change of the external field configuration only affects 

the argument and the expression for the fitting parameter A  leaving the function itself unchanged. 

The origin of the oscillations observed in this interaction regime is qualitatively understood by 

examining the effective interaction time. Consider the example of the Demkov-Kunike model, 

assuming that the peak coupling is larger than unity ( 0 1U  ). If the resonance sweep rate and final 

detuning are large ( 0 1  )
 
then in the regions relatively far from the crossing point, the interaction 

is rather weak since the coupling is small there, and the system does not change its state 

considerably. However, in the case of small detuning the effective interaction time is large, hence, 

during this time period the system will considerably change its state despite the smallness of the 

Rabi frequency: large-amplitude Rabi oscillations start. 
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Chapter 4 

Landau-Zener model with inter-particle elastic scattering included 

  

In the present chapter we study the strong coupling limit of a quadratic-nonlinear Landau-Zener 

problem for coherent photo- and magneto-association of cold atoms taking into account the atom-

atom, atom-molecule, and molecule-molecule elastic scattering. Using an exact third-order 

nonlinear differential equation for the molecular state probability, we develop a variational 

approach which enables us to construct a highly accurate and simple analytic approximation 

describing the time dynamics of the coupled atom-molecule system. We show that the 

approximation describing time evolution of the molecular state probability can be written as a sum 

of two distinct terms; the first one, being a solution to a limit first-order nonlinear equation, 

effectively describes the process of the molecule formation while the second one, being a scaled 

solution to the linear Landau-Zener problem (but now with a negative effective Landau-Zener 

parameter as long as the strong coupling regime is considered), corresponds to the remaining 

oscillations which arise when the process of molecule formation is over 

 

4.1. Introduction 

 In the present chapter we investigate the influence of atom-atom, atom-molecule, and 

molecule-molecule elastic scattering on the dynamics of coherent molecule formation subject to an 

external field configuration of the resonance-crossing Landau-Zener model. The basic version of the 

nonlinear Landau-Zener problem [defined by Eqs. (1.4) and (1.36)] has extensively been analyzed, 

e.g., in Refs. [60-69]. In these references, the quartic nonlinear terms are not included in the 

Hamiltonian that, for the case of the cold molecule formation, describe inter-particle elastic 

scattering. One of the main conclusions one gains from the obtained results is that in the strong 

coupling limit the non-transition probability turns to be proportional to the inverse sweep rate, in 

contrast to the linear two-state case when the dependence is exponential [72]. Further, by 

juxtaposing the results of Refs. [60-69], we see that, in contrast to the other listed works, Refs. 
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[61,62] not only provide a prediction for the final transition probability but also suggest highly 

accurate analytical formulas to describe the whole temporal dynamics of the system. In particular, 

the absolute error of the analytical formula for the number of the associated molecules, presented in 

Ref. [62], does not exceed 
410

 at the end of the interaction )( t  while for particular time 

points it may increase up to 
310 . The mentioned formula provides the same accuracy at arbitrary 

values of the problem’s input parameters. 

 The role of inter-particle interactions in the cold atom coherent association dynamics has 

already been discussed, e.g., in Refs. [108-111,55,99]. It has been shown that these interactions 

strongly affect the process of molecule formation. In particular, it has been shown that, in the case 

when the external field configuration is defined by the Landau-Zener model, inter-particle elastic 

scattering is described by a sole combined parameter [111]. Moreover, it has been revealed that 

depending on the sign of this parameter the molecule conversion efficiency can both diminish or 

increase. In the present chapter, by analyzing both molecule conversion efficiency and temporal 

dynamics of the atom association, we first define favorable conditions for formation of molecules. 

Further, we develop a version of the variational method [112] which not only enables one to predict 

the final transition probability to the molecular state but also provides a highly accurate and simple 

analytical formula describing the temporal dynamics of the coupled atom-molecular system for the 

case when the inter-particle elastic scattering is included in the basic version of the nonlinear 

Landau-Zener problem. The constructed analytical approximation is valid in the strong coupling 

limit and moderate values of the mentioned combined parameter which describes inter-particle 

elastic scattering. We also show that inter-particle elastic scattering results in a nonlinear shift of the 

effective resonance point and find an analytical expression for the effective resonance crossing time 

point (applicable in the strong coupling limit) written in terms of the input parameters of the 

problem. It should be emphasized that our approach gives an accurate analytical description of the 

whole temporal dynamics of the molecule formation process. 

 

 4.2. General observations 

 We consider the following nonlinear system of mean-field coupled Gross-Pitaevskii-type 
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equations describing atomic and molecular condensates as classical fields [41-45]: 
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 (4.1) 

where, again, 1a
 and 2a

 are the atomic and molecular state probability amplitudes, respectively. In 

the set of equations (4.1), the cubic nonlinearities describe the inter-particle elastic scattering 

processes. The coefficients kj  )2,1,( kj  in the diagonal case kj   are given by 

jjjj man /~4  , where a~  is the background off-resonant s-wave scattering length and 
jm  is 

the mass of a single particle for the jth species, respectively, while the nondiagonal terms are given 

by 
kjkjjkkj an  /~2  , where 

kja~  is the interspecies background off-resonant s-wave 

scattering length and )/( kjkjkj mmmm   are the reduced masses. The parameter n  denotes the 

mean density of particles: VNn / , where N  is the number of “atomic particles” and V  is the 

volume of trapped particles (each molecule is being considered as two “atomic particles”), and   is 

Planck’s constant divided by 2 . In the case of Feshbach association of utracold bosonic atoms the 

atom-molecule coupling is given as /gnU  , where 11 /~8 mBag     [79-80] (see 

Section 1.1). In this expression B  is the width of the resonance,   is the difference in magnetic 

momentum between the atomic and the bound molecular states. The detuning t  is given as 

/])([ 0BtBt   , where )(tB  is the external magnetic field, 0B  denotes the position of the 

Feshbach resonance. System (4.1) describes a lossless process, i.e., it preserves the total number of 

particles that we normalize to unity: 1const2
2

2

2

1  aa . We consider the basic situation when 

the system starts from the all-atomic state: 1)(1 a , 0)(2 a . In the present paper we 

discuss the case of the LZ model hence hereafter we put const)( 0 UtU  and tt 02  . 

 It can be shown that the dynamics of the molecular state probability 
2

2ap   is described 

by the following nonlinear ordinary differential equation of third order: 
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    0)1281(
2

)31(4 22  pp
G

G
ppGp

G

G
p t

ttt
t

ttt


 , (4.2) 

where  ptG sa  22 , (4.3) 

  21112  a ,   )2(
2

1
1222  as

, (4.4) 

12 21( )  
 
and   is the standard Landau-Zener parameter: 0

2
0 / U . In Eqs. (4.2)-(4.4)the 

independent variable and the parameters involved have been scaled as follows: tt 0  and 

0/ kjkj 
 
 )2,1,( kj  and, for simplicity of notations, the primes have been omitted. Note 

that the variation range of the function p  is ]2/1,0[p . However, since the quantity )(tpN  

defines the number of molecules existing in the system at the time t , we conventionally refer to 2a  

as to molecular sate probability amplitude, and to 
2

2ap   as the molecular sate probability. 

 If the cubic nonlinearities are not taken into account, i.e., if we put 0 kj
 )2,1,( kj , 

then the function G  coincides with the Landau-Zener detuning t2 . Hence, in a sense, the function 

G  plays the role of the effective (nonlinear) detuning and the point restt   defined from the 

condition 0)( restG  is the point of the effective resonance. Thus, we conclude that the introduction 

of the cubic nonlinearities results in a nonlinear shift of the resonance. Moreover, the structure of 

the effective detuning G  suggests that at sufficiently large absolute values of the variable t , when 

the condition pt sa  22  holds, the role of the terms proportional to the parameter s  

becomes negligible. 

 Further we notice that the parameter a  merely leads to a constant shift in the detuning 

which can be eliminated by the following change of the time variable: 2/att  . This change 

does not affect the initial conditions since they are imposed at infinity ( t ). Again, for 

simplicity of notation, we omit the double prime in what follows. [This is formally equivalent to 

removing the summand a  in Eq. (4.3)]. Hence the inter-particle elastic scattering is now described 

by a sole combined parameter s . As it can be seen from Eq. (4.2), there exist some nonzero 
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parameters 
jk  for which the inter-particle elastic interactions merely result in the shift of the 

detuning by a constant which can be eliminated by the above mentioned change of the time 

variable. This occurs when the parameter s  is equal to zero. 

 We start our discussion by outlining some observations gained from numerical simulations. 

The dependence of the final transition probability to the molecular state )(p  on the parameters 

  and s  is shown in Fig. 4.1. As it is immediately seen, for a fixed s , the final transition 

probability is a monotonic function of   (see also Fig. 4.2a). Furthermore, )( p  is also a 

monotonic function of s  for fixed   (see Fig. 4.2b). This is an important conclusion gained from 

the 3-dimensional plot. Compared with the case when no inter-particle interactions are included 

( 0 s ), the transition probability is always higher for negative s  and it is lower when s  is 

positive (Figs. 4.2a, 4.2b). Physically, this implies that atom-atom and molecule-molecule repulsive 

interactions diminish the molecule conversion efficiency while atom-molecule repulsion results in 

its increase. Thus, we conclude that the atom-atom, molecule-molecule attractive and atom-

molecule repulsive interactions are favorable for molecule conversion efficiency. Time-dynamics of 

molecule formation also exhibits remarkable differences depending on whether the value of the 

parameter s  is negative or positive (see Fig. 4.3). Compared to the case when 0 s , at 0 s , 

the passage through the effective resonance occurs later, the transition to the molecular state takes 

place more slowly, and the amplitude and the frequency of the emerging oscillations are smaller. At 

0 s  one observes the opposite behavior of these features. Hence, the general conclusion is that 

for the Landau-Zener model higher laser field intensities and large negative effective interactions 

s  are the favorable conditions for the formation of molecules. 

 Figure 4.3 also indicates that besides the time of the effective resonance crossing restt  , 

there exists another important time characterizing the association process – the point osctt   at 

which the nonoscillatory evolution of the molecular state probability changes to an oscillatory 

behavior. Analyzing the system (4.1) from the point of view of classical Hamiltonian mechanics, 

one can see that the observed oscillations appear after the exact phase trajectory of the system 
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crosses the separatrix in the phase space of the time-independent version of the system (see Chapter 

2). 
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Fig. 4.1. Final transition probability to the molecular state versus   and s . It is seen that the 

probability is a monotonic function of   for a fixed s  and it is also a monotonic function of s  

for fixed  . 

 

 

 

Fig. 4.2a. Final transition probability to the molecular state versus   for different values of s . 
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Fig. 4.2b. Final transition probability to the molecular state versus s  for different values of  . 

 

 

 

 

Fig. 4.3. The molecular state probability as a function of time at 9 . Dotted line corresponds to 

the case 0 s  while the solid lines correspond to the cases 4 s  and 4 s . 

 

4.3. Mathematical treatment 

 To describe the presented features of the association process quantitatively, we proceed to 

the analysis of the equation for the molecular state probability (4.2). We consider the strong 

nonlinearity regime corresponding to high field intensities and we thus suppose that   is a large 
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equation (4.2) are the last two. Hence, we make an attempt to construct an approximation by 

neglecting the two higher order derivative terms in the exact equation (4.2) and adding to the 

obtained truncated equation a term of the form GAGt / : 

    0)1281(
2

)31(4 2
0000

2 
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G
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G

G
ppG tt

t


 , (4.5) 

where A  is a fitting parameter that will be specified afterwards. Applying the method presented in 

[73], we find the general solution to the limit equation (4.5): 
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where  



A6

1
6

1

3

1
2,1   ,    




22

1
2,1

A
  (4.7) 

and 0C  is the integration constant. This relation defines a quintic algebraic equation for the 

determination of the function )(0 tp . First of all, we note that the initial condition 0)(0 p  

implies that 00 C . Further, we see that at t  the left-hand side of Eq. (4.6). tends to zero 

and hence )(0 p  must be either 1  or 2 . But since 2/12   and the probability function 0p  

cannot exceed 2/1 , we conclude that 

  10 )( p . (4.8) 

Thus, the approximate value of the final probability for the molecular state equals to 1 . 

Furthermore, one can determine a time restt   such that 0)( restG , i.e., a time at which the 

effective detuning G  passes through the effective resonance: 

  0)(22 0  ressres tpt . (4.9) 

From Eq. (4.6) it is clear that either 10 )( restp  or 20 )( restp . However, since 2/12  , it 

must be 

  10 )( restp . (4.10) 

Thus, the parameter 1  defines the approximate value of the molecular state probability at the 

effective resonance-crossing point. From Eqs. (4.9)-(4.10) it follows that 
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1srest  . (4.11) 

In order to develop general principles from which the fitting parameter A  can be determined, we 

insert the approximate solution ),(0 Atp  into the exact equation for the molecular state probability 

(4.2) and consider the behavior of the remainder 

  
G

G
Ap

G

G
pR tt  00 . (4.12) 

It is intuitively clear that a better approximation 0p  should yield a smaller remainder [the latter 

would be identically zero if 0p  is the exact solution to Eq. (4.2)]. Thus, we try to minimize the 

remainder via appropriate choice of the fitting parameter A . We choose the fitting parameter A  by 

the condition that the remainder should not diverge at the effective resonance crossing rest . This 

condition leads to the equation 

  0)(0  Atp res . (4.13) 

The analysis of Eq. (4.13) then yields 
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If the condition  s  holds then the following approximation can be used: 
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 Comparison of the limit solution 0p  with the numerical solution shows that 0p
 
still misses 

several essential features of the association process (see Fig. 4.4). Indeed, for instance, the coherent 

oscillations between atomic and molecular populations which come up after the system passes 

through the resonance point are not contained in this approximation. The shortcomings of the limit 

solution 0p  are caused by the singular procedure used to obtain it. Indeed, we have constructed 0p  

by neglecting the two highest order derivative terms in Eq. (4.2). Of course, when determining the 

optimal value of A  we have afterwards taken into account these terms, to some extent. 

 To improve the result, we need a next correction term that takes into account the second and 

third order derivatives of p . However, it turns out that this is not a simple task because the equation 
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obeyed by the exact correction term 0ppu   is still an essentially non-linear one. 

 

 

Fig. 4.4. Molecular state probability )(tp , the limit solution 0p  determined from Eq. (4.6), and the 

scaled solution to the linear Landau-Zener problem with modified parameters [Eq. (4.18)]. 

 

 

To develop an appropriate approach, we first consider the Landau-Zener crossing in the relatively 

simple case when the cubic nonlinearities are neglected, i.e., we take 0 s . Now, by introducing 

in Eq. (4.2) the change of dependent variable 

  upp  0 , (4.16) 

we obtain an exact nonlinear differential equation for the correction u  which we write in the 

following factorized form: 
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Since the function 0p  is already a good first approximation, the correction u  is supposed to be 

small. Further we notice that if in (4.17) we neglect the nonlinear term 26 u  and consider 0p  as 

a constant then the solution of the equation can be written as a scaled solution of the linear Landau-

Zener problem with a modified Landau-Zener parameter. This observation gives an argument to 

make the conjecture that the exact solution of Eq. (4.17) can be approximated as 
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where ),( * tPLZ   is the solution of the linear Landau-Zener model [see Eqs. (2.54)-(2.56)], which 

can be expressed in terms of confluent hypergeometric functions, and 
*C  and 

*  are fitting 

parameters which will be determined afterwards. This conjecture is well confirmed by numerical 

analysis; the numerical simulations show that one can always find 
*C  and 

*  such that the function 

(4.18) accurately fits the numerical solution of the exact equation (4.17). 

 To obtain analytical expressions for the fitting parameters 
*C  and 

* , we substitute the trial 

function (4.18) into the exact equation (4.17) and aim at minimization of the remainder 
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via appropriate choice of 
*C  and 

* . 

 The analysis of the behavior of the first term in the curly brackets suggests that the 

remainder is strongly suppressed if one chooses 

  ))(31( 0
*  p . (4.20) 

Taking into account the value of )(0 p  [defined by Eq. (4.8)], we rewrite Eq. (4.20) as follows: 

  
2

3
2

* 


A
 . (4.21) 

Hence, for 1 , 
*  is a large negative parameter. This choice of 

*  leads to an important 

observation. It is known that [see Eq. (2.57)] 

   


 etPLZ

t
1),(lim , (4.22) 

hence, in the case of negative 
*  the function ),( * LZP  grows exponentially with 

* . 

Consequently, for this choice of 
*  the second term in the curly brackets in Eq. (4.19) is also 

essentially suppressed. Regarding the two last terms in Eq. (4.19), one should minimize them with 

respect to the parameter 
*C . This implies the condition  
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Since the last term is proportional to (large)   and ),( * tPLZ   is an increasing function of time the 

“worst” point is t . Hence, we look for minimization at t . This immediately leads to the 

following value for 
*C : 

  
6

* A
C  . (4.24) 

 

 

 

 

Fig. 4.5. Molecular state probability )(tp  and the approximate solution given by Eqs. (16) and (18) 

as functions of time for a) 15  and b) 36 . The fitting parameters are taken as )9/(4 A , 

)6/(* AC  , and 2/*   . The analytical formula slightly overestimates the final transition 

probability. 

 

 

 The comparison of the constructed approximation with the numerical solution shows that 

formulas (4.21) and (4.24) define a quite good approximation which describes the dynamics of the 

system qualitatively well (see Fig. 4.5). Taking into account Eqs. (4.8), (4.16), and (4.18), it can 

easily be seen that the final )( t  transition probability to the molecular state is given by the 
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following relation: 

  *

22

1
)( C

A
p 


. (4.25)

  

This relation shows that the final transition probability does not depend on the parameter 
* . 

Obviously, it is changed with variation of A  and 
*C  (note that variation of A  inevitably leads to 

variation of 
*C ) . By analyzing the structure of the constructed approximate equation [see Eqs. 

(4.16) and (4.18)], we see that the first term of the constructed two-term solution is a step-like 

function while the second one describes the oscillations which come up after the system has passed 

through the resonance (see Fig. 4.4). The frequency of these oscillations is defined by the value of 

the parameter 
*  only. Variation of the parameter 

*C  is not able to change the frequency of the 

oscillations since 
*C  is just the scaling parameter in Eq. (4.18). Summing up these observations we 

arrive at a conclusion that the introduced parameters 
*  and 

*C  characterize qualitatively different 

physical processes; the parameter 
*C  describes the final transition probability to the molecular 

state, whereas the parameter 
*  determines the frequency of the oscillations, emerging some time 

after the system has passed through the resonance. Though to construct an approximate solution we 

use a solution of a linear equation ),( * tPLZ  , the parameters involved in the constructed 

approximation (4.18), 
*  and 

*C , are essentially determined by the nonlinear terms involved. Note 

that the values of the parameters 
*  and 

*C  depend on the value of the fitting parameter A . 

 The analytical expressions (4.21) and (4.24) have been obtained when attempting to 

suppress the remainder (4.19) as much as possible. However, from the mathematical point of view, 

to obtain an accurate approximation, one should minimize the next approximation term 

uppw  0  and not the remainder itself. It can be seen that the remainder (4.19) serves as the 

inhomogeneous term of the exact equation obeyed by w . Thus, we try to minimize the next 

approximation term w  via appropriate variation of the remainder. By applying the described 

approach we arrive at a conclusion that the result given by Eqs. (4.21) and (4.24) can be 
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considerably improved if we redefine the fitting parameters as follows: 
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* Cp   . (4.26) 

The comparison of the refined approximation with the numerical solution shows that it is a very 

good approximation at 2 . 

 Now, we return to the general case with 0 s . Based on the experience gained for 

0 s , we make the conjecture that the approximate solution in this general case has an analogous 

structure: 
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where the parameters 
*  and 

*C  are still defined by formula (4.26) and 
pht  is the newly introduced 

fitting parameter. Eq. (4.27) along with expressions (4.14) and (4.26) for the involved fitting 

parameters is the main result of the present paper. The first summand of Eq. (4.27), 0p , is a step-

like function while the second one monotonically increases until the small-amplitude oscillations 

appear (see Fig. 4.4). When presenting general observations, we have already mentioned that inter-

particle elastic scattering results in the shift of both the  effective resonance point, restt  , and the 

point where the small-amplitude oscillations start, osctt  , as compared to the case when the inter-

particle elastic scattering is neglected. Hence, the fitting parameter pht  introduced in the 

approximation (4.27) is supposed to describe the shift of the point where the small-amplitude 

oscillations start. Supposing that the fitting parameter pht  is related to the effective resonance 

crossing point )( resphph ttt   we further try to derive an analytical expression for this dependence. 

To this end, assuming that pht  is proportional to rest , we determine the coefficient of 

proportionality numerically: resph tt 8.2 . The physical processes emerging due to inter-particle 

scattering are described via the dependence of the parameters A  and rest  on s . Comparison of the 

approximation (4.27) with the numerical solution shows that it is a very good approximation for 
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2  and 25.0/5.0  s ; it accurately describes the association process for almost all the 

time range. 

 To analyze the behavior of the final transition probability, we substitute the values of the 

fitting parameters A , 
*  and 

*C  determined by Eqs. (4.14) and (4.26) into expression for the final 

probability of transition to the molecular state (4.25). This results in the following relation: 
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Formula (4.28) is one of the most relevant results of the present chapter. This formula agrees well 

with the results of numerical simulations (Fig. 4.6); it also confirms the statement that negative 

effective scattering 0 s  is favorable for molecule formation (within the applicability range of 

the formula). Indeed, if 0 s  then 0 , hence, the final transition probability increases. 

Obviously, when 0 s  the final transition probability decreases. The maximum discrepancy 

between numerical and analytical solutions shown in Fig. 4.6 corresponds to 5 , 7.0 s  and 

equals 0.001540. In the case 0 s  expression (4.28) takes the following form: 

  


0.2178 

2

1

9

6

54

1

3

21

2

1
)( 














p . (4.30) 

This formula confirms the result of Refs. [61-62] stating that in the strong coupling limit, the final 

probability for non-transition to the molecular state is inversely proportional to the Landau–Zener 

parameter [in contrast to the linear two-state case when the dependence is exponential (2.57)]. 
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Fig. 4.6. Final transition probability versus s  for 5 , 10 , and 16 . 

Solid line - analytical solution (4.28), dashed line – numerical solution. 

 

 

 The method we apply in the present paper to tackle the problem is analogous to that 

presented in Refs [61-62], where the basic nonlinear version of the nonlinear Landau-Zener 

problem has been considered. In these papers the inter-particle elastic scattering has not been taken 

into account. It has been shown that the approximate solution of the problem can be written as a 

sum of two distinct terms, a solution of a limit first-order nonlinear equation and a scaled solution 

of the linear Landau-Zener problem with modified parameters. In this case the solution of the limit 

equation has been shown to be determined as a solution of a polynomial equation of fourth order. 

However, as we have seen above, the inclusion of the cubic-nonlinear terms describing inter-

particle elastic scattering results in the modification of the limit equation [see Eq. (4.5)]: now, the 

solution of this equation is given as a solution of a polynomial equation of fifth order (4.6). Note 

that if we put 0 s  the polynomial equation of fifth order will reduce to a polynomial equation of 

fourth order used in Refs. [61-62]. 

 Finally, we would like to mention that the physical situation we have been discussing is 

realized under current experiments (for a comprehensive review see Ref. [34]). A typical example is 

the 85Rb experiment performed by Hodby and co-workers in JILA [91], where coherent formation 

of Rb2 molecules via sweep of the magnetic field through the Feshbach resonance located at G155  
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is implemented. The magnetic field is changed at a given linear sweep rate B , and the molecule 

conversion efficiency is measured as a function of the inverse sweep rate. Thus, the external field 

configuration applied in this experiment corresponds to the Landau-Zener model. The initial density 

of the atomic cloud n  is of the order of 
-311cm10 , the background scattering length of atoms is 

01 443~ aa  , where 0a  is the Bohr radius, the resonance width is GB 71.10 , the difference in 

magnetic moment  between the atomic and the bound molecular channels is B 33.2 , where 

B  is the Bohr magneton. The Landau-Zener parameter is written as )/(~16 11 mBBan    . At 

the small enough sweep rates and high enough atomic densities applied at this experiment the 

molecule formation is described by the strong interaction regime 1  discussed here; indeed, for 

the sweep rate GsB /1000/1   and 
-311cm105 n  one has 5 . Furthermore, estimating the 

value of the dimensionless parameter s , we see that in this particular experiment 

 210s . Hence, the presented theory is helpful for interpretation of the mentioned 

experiment. 

 

4.4. Summary 

 We have presented a nonlinear version of the Landau-Zener problem that arises in the theory 

of coherent photoassociation or Feshbach resonances in atomic Bose-Einstein condensates, focusing 

on the role of the atom-atom, atom-molecule, and molecule-molecule scattering which are described 

by the cubic nonlinear terms in the system (4.1). We have shown that the interparticle interactions 

strongly affect the dynamics of the molecule formation in the vicinity of the resonance, resulting in 

the nonlinear shift of the resonance point [see Eqs. (4.3)-(4.4)]. We have proven that in the case of 

the Landau-Zener model the inter-particle elastic scattering is described by a sole combined 

parameter s  (this fact has already been noticed in Ref. [111]). By studying both the final 

)( t  transition probability to the molecular state and the temporal dynamics of molecule 

formation, we have arrived at a general conclusion that for large values of the Landau-Zener 

parameter   and large negative effective interactions s  are the most favorable conditions for the 
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formation of molecules. 

 Further, we have undertaken a variational treatment to the nonlinear Landau-Zener problem 

in the strong coupling limit. Using the third-order nonlinear differential equation for the molecular 

state probability (4.2), we have constructed an approximate solution of the problem in three steps. 

 1. Neglecting two higher order derivative terms in the exact equation for the molecular state 

probability (4.2), we define the nonlinear limit equation (4.5) in which we introduce an adjustable 

parameter A . We explicitly solve the limit equation (4.5) and further determine A  from the 

condition of minimization of the remainder (4.19). Note that the obtained value of A  depends on 

s . 

 2. Then, we consider the case 0 s . We insert upp  0 , into the exact equation (4.2) 

and make a conjecture that the correction u  can be represented as a scaled solution of the linear 

Landau-Zener problem, containing some effective Landau-Zener parameter 
*  [see Eq. (4.18)]. 

Again, the fitting parameters 
*  and 

*C  are determined via minimization of the remainder (4.19). 

This defines 
*  and 

*C  in terms of the parameter A  [see Eq. (4.26)]. 

 3. To construct an appropriate approximation in the general case when 0 s , we make a 

conjecture that in this case the approximate solution has the same structure as for the case 0 s  

and the parameters 
*C  and 

*  are still determined from Eq. (4.26) but now the function (4.27) 

takes into account the interparticle elastic scattering due to the dependence of the parameter A  on 

s  and the introduced shift in the argument of the function. 

 The described approach can be viewed as a variational method. It enables one to construct a 

highly accurate and simple analytic approximation describing the time dynamics of the coupled 

atom-molecular system at 2  and 25.0/5.0  s  (Fig. 4.6). Moreover, the 

decomposition (4.27) shows that the solution can be separated into two distinct parts: 0p , 

describing the process of molecule formation, and u , describing the remaining oscillations which 

come up after the system has passed through the effective resonance. This decomposition clearly 

indicates that the process of molecule formation is mainly governed by the nonlinear limit equation 
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(4.5). It should be stressed that the derived approximate solution for the first time describes the 

whole temporal dynamics of the nonlinear Landau-Zener problem with inter-particle elastic 

interactions included. 

 Finally, we note that the presented approach is not restricted to the particular Landau-Zener 

problem treated here. It can be easily generalized to other time-dependent models. Hence, the 

developed method is a general strategy for attacking analogous nonlinear two-state problems. 
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Conclusion 

 We have studied the nonlinear mean-field dynamics of diatomic molecule formation at 

coherent photo- and magneto-association of ultracold atoms focusing on the case when the system 

is initially in all-atomic state. 

  First, we have considered the case when the external field configuration is defined by the 

constant-coupling linear resonance-crossing Landau-Zener model. Assuming that the sweeping rate 

through the resonance is small, we have applied the theory of adiabatic invariants. First, we have 

discussed the classical phase space of the time-independent version of the problem. Taking into 

account that the considered initial condition corresponds to the case of zero initial action we have 

constructed an expression for the molecular state probability within the adiabatic approximation. 

The constructed solution quite accurately describes the temporal dynamics of the coupled atom-

molecular system up to the point of time where the approximation, deviating from the numerical 

solution, starts to go to infinity. Thus, the adiabatic approximation fails to provide a prediction for 

the final number of the formed molecules. 

 The reason for the divergence of the adiabatic approximation is that the exact phase 

trajectory of the system inevitably crosses the separatrix of the system’s time-independent version. 

Hence, the necessary conditions of the adiabatic theorem are not satisfied in this case. However, we 

have managed to construct a valid zero-order approximation by introducing an imaginary term in 

the Hamiltonian, writing equations of motion for this augmented Hamiltonian and neglecting the 

higher order derivative terms. This procedure results in a step-like bounded function that starts from 

zero. Thus, the introduced complex term has enabled us to eliminate the divergence of the adiabatic 

approximation. 

 Further, we have compared the developments of the present paper with those presented in 

Ref. [62]. We have shown that the application of the adiabatic approximation is equivalent to 

removing the two higher order derivative terms from the exact equation for the molecular state 

probability (2.49) while the constructed zero-order approximation is identical with the solution of 

the augmented limit equation (2.51). Taking into account that the molecular conversion efficiency is 
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coupled with the total change of the action, we have calculated this change [see Eq. (2.68)] using a 

highly accurate approximate formula for the final transition probability presented in Ref. [62]. The 

absolute error of the presented formula for the action change is on the order of or less than 
410

. 

Interestingly, the total change of the action is not given as a power-law function of the sweep rate 

through the resonance. 

 Further, we have examined temporal dynamics of ultracold molecule formation, assuming 

arbitrary coupling-shape and energy-detuning configurations. As a first step, we have presented a 

thorough analysis of the system’s dynamics in the case when the external field is defined by the 

non-crossing Rosen-Zener model. For completeness of the analysis, we have treated both strong and 

weak interaction limits for this model. 

 Using an exact nonlinear Volterra integral equation, we have shown that in weak interaction 

limit the solution to the nonlinear Rosen-Zener problem is written in terms of the solution of an 

auxiliary linear Rosen-Zener problem. We have derived a simple expression for the final transition 

probability. We have found that for the Rosen-Zener model the strict limit of weak nonlinearity 

corresponds to smaller values of the peak coupling than for other known models such as the 

Landau-Zener and Nikitin-exponential ones. We have shown that this is due to the inherent 

properties of the particular hyperbolic secant pulse shape under consideration. 

 Further, we have treated the strong nonlinearity limit of the nonlinear Rosen-Zener problem 

when the nonlinearity is most pronounced in the molecule formation process. We have shown that, 

in the strong nonlinearty limit, there are two different regimes of the time evolution of the coupled 

atom-molecule system corresponding to large and small detuning of the associating field. In the first 

case the behavior of the system is almost non-oscillatory while in the second case large amplitude 

coherent oscillations in the population dynamics are observed. 

 Discussing the large detuning regime, we have shown that the conversion process is 

effectively described by a limit first-order nonlinear equation for the molecular state probability. 

Using the exact solution of this equation, we have shown that in this regime the molecular fraction 

qualitatively follows the field amplitude time-variation, i.e., the probability of the molecular state 

first increases monotonically, reaches a maximum at the time when the field intensity is maximal, 
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and then decreases as the field amplitude decreases. Eventually, the system returns to the initial all-

atomic state. The maximal possible molecular fraction is found to be 6/1 , i.e., in this regime a 

Rosen-Zener pulse is capable to capture no more than the third of the initial atomic population (this 

is an argument why a resonance-crossing is needed for molecule production efficiency). In 

accordance with this prediction, the JILA experiments [30] have shown a maximum molecular 

conversion of about 16%. 

 Furthermore, discussing the small detuning limit, we have shown that in this case the system 

is well described by a second order nonlinear equation that is shown to be the equation for an 

effective Rabi problem with changed parameters. We have derived accurate approximations for the 

parameters of the corresponding Rabi-solution written in terms of the Jacobi elliptic sine function. 

We have seen that the number of the oscillations, as in the linear case, is mainly defined by the 

pulse area. In the meantime, we have shown that the oscillation shape is mostly defined by the field 

detuning; the influence of the field intensity here presents a small correction of higher order. 

 We have indicated an inherent singularity of the Rosen-Zener model, a hidden singularity 

that stands for many of the qualitative and quantitative properties of the model. This singularity, 

which is shown to be due to the time-variation law of the field amplitude at  the beginning of the 

interaction, can be viewed as an effective resonance-touching. 

 Next, we have analyzed the strong nonolinearity limit of the coherent molecule formation, 

assuming arbitrary external field configuration. We have shown that, like in the Rosen-Zener case, 

there are two distinct strongly nonlinear scenarios of the evolution of the system – almost non-

oscillatory and strongly oscillatory interaction regimes. By generalizing the mathematical approach 

used for the treatment of the nonlinear Rosen-Zener problem we have constructed simple analytical 

approximations for both interaction regimes. 

 The approximation to the problem in the almost non-oscillatory regime of the strong 

interaction limit has been defined as a solution of the first-order nonlinear limit equation (3.48), and 

as it has been mentioned above, coincides with the adiabatic approximation. The exact solution 

(3.51) of this equation satisfying the considered initial conditions is given as a solution of a 

polynomial equation of second order. Though the approximation constructed in this way describes 
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quite well the association process before the resonance crossing and not long after the crossing, it 

suffers from substantial shortcomings: it does not predict the correct value for the final transition 

probability and it has a derivative discontinuity. However, by modifying the mentioned first-order 

nonlinear limit equation (3.48), we have constructed a zero-order approximation to the problem 

which has been defined as a solution of the augmented limit equation (3.56). We have shown that 

the exact solution of this equation is given as a solution of the polynomial equation of fourth order 

[see Eq. (3.57)]. The constructed approximation contains a fitting parameter which has been 

determined through a variational procedure. Being a step-like bounded smooth function, 0p  can be 

used as a zero-order approximation to construct the next approximation term to the problem.  

 The approximate solution of the problem in the strongly oscillatory interaction regime is 

expressed in terms of the Jacobi sn-function (3.54), thus having a universal form for arbitrary pulse 

shape and detuning modulation functions; the change of the external field configuration only affects 

the argument and the expression for the fitting parameter A  leaving the function itself unchanged. 

The origin of the oscillations observed in this interaction regime can be qualitatively understood by 

examining the effective interaction time. Consider the example of the Demkov-Kunike model, 

assuming that the peak coupling is larger than unity ( 0 1U  ). If the resonance sweep rate and final 

detuning are large ( 0 1  )
 
then in the regions relatively far from the crossing point, where the 

coupling is small, the interaction is rather weak, and the system does not change its state 

considerably. However, in the case of small detuning the effective interaction time is large, hence, 

during this time interval the system will considerably change its state despite the smallness of the 

coupling: large-amplitude Rabi oscillations start. 

 Finally, we investigate the influence of atom-atom, atom-molecule, and molecule-molecule 

elastic scattering on the dynamics of coherent molecule formation subject to an external field 

configuration defined by the resonance-crossing Landau-Zener model. We have shown that the 

interparticle interactions strongly affect the dynamics of the molecule formation in the vicinity of 

the resonance, resulting in the nonlinear shift of the resonance point. We have proven that in the 

case of the Landau-Zener model the inter-particle elastic scattering is described by a sole combined 
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parameter s  (this fact has already been noticed in Ref. [111]). By studying both the final 

)( t  transition probability to the molecular state and the temporal dynamics of molecule 

formation, we have arrived at a general conclusion that the large values of the Landau-Zener 

parameter   and large negative effective interactions s  are the most favorable conditions for the 

formation of molecules. 

 Further, we have undertaken a variational treatment to the nonlinear Landau-Zener problem 

in the strong coupling limit. Using the third-order nonlinear differential equation for the molecular 

state probability, we have constructed a highly accurate and simple analytic approximation 

describing the temporal dynamics of the coupled atomic-molecular system in the case of strong 

coupling and weak interparticle elastic scattering ( 2  and 25.0/5.0  s ). The 

constructed approximation can be written as a sum of two distinct terms; the first one, being a 

solution to a limit first-order nonlinear equation, effectively describes the process of the molecule 

formation while the second one, being the scaled solution to the linear Landau-Zener problem (but 

now with negative effective Landau-Zener parameter when the strong coupling regime is 

considered), corresponds to the oscillations which come up after the system has passed through the 

effective resonance. This decomposition of the approximate solutionclearly indicates that the 

process of molecule formation is mainly governed by the nonlinear limit equation. The derived 

approximate solution for the first time describes the whole temporal dynamics of the nonlinear 

Landau-Zener problem with inter-particle elastic interactions included. 
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coherent photo- and magneto-association of ultracold atoms focusing on the case when the 
system is initially in the all-atomic state. We show that in the limit of strongly nonlinear 
interaction between an ultra-cold atomic-molecular system and a quasi-resonant electromagnetic 
field, the molecule formation process, depending on the characteristics of the associating field, 
may evolve according two different scenarios, namely, weak- and strong-oscillatory regimes. In 
the first case the number of molecules increases without pronounced oscillations of atom-
molecule populations, while in the second case high-amplitude Rabi-type oscillations arise. 
Assuming an arbitrary external field configuration, we construct analytical solutions to describe 
the system’s temporal dynamics in the both interaction regimes. Further, we investigate the 
influence of inter-particle elastic scattering on the dynamics of coherent molecule formation 
subject to an external field configuration of the resonance-crossing Landau-Zener model. We 
derive an approximate solution which for the first time describes the whole temporal dynamics 
of the molecule formation in this general case. 
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