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Filtrage PHD multiapteur ave appliation à la gestion de apteurRésuméLe �ltrage multiobjet est une tehnique de résolution du problème de détetion et/ousuivi dans un ontexte multiible. Cette thèse s'intéresse au �ltre PHD (ProbabilityHypothesis Density), une élèbre approximation du �ltre RFS (Random Finite Set)adaptée au as où les observations sont le fruit d'un seul apteur. La première partiepropose une onstrution rigoureuse du �ltre PHD multiapteur exat et son ex-pression simpli�ée, sans approximation, grâe à un partitionnement joint de l'espaed'état des ibles et des apteurs. Ave ette nouvelle méthode, la solution exatedu �ltre PHD multiapteur peut être propagée dans des sénarios de surveillanesimples. La deuxième partie aborde le problème de gestion des apteurs dans leadre du PHD. A haque itération, le BET (Balaned Explorer and Traker) on-struit une prédition du PHD multiapteur a posteriori grâe au PIMS (PreditedIdeal Measurement Set) et dé�nit un ontr�le multiapteur en respetant quelquesritères opérationnels simples adaptés aux missions de surveillane.Mots-lés : �ltrage multiobjet, PHD multiapteur, gestion de apteursMulti-sensor PHD �ltering with appliation to sensor managementAbstratThe aim of multi-objet �ltering is to address the multiple target detetion and/ortraking problem. This thesis fouses on the Probability Hypothesis Density (PHD)�lter, a well-known tratable approximation of the Random Finite Set (RFS) �lterwhen the observation proess is realized by a single sensor. The �rst part proposesthe rigorous onstrution of the exat multi-sensor PHD �lter and its simpli�ed ex-pression, without approximation, through a joint partitioning of the target statespae and the sensors. With this new method, the exat multi-sensor PHD anbe propagated in simple surveillane senarii. The seond part deals with the sen-sor management problem in the PHD framework. At eah iteration, the BalanedExplorer and Traker (BET) builds a predition of the posterior multi-sensor PHDthanks to the Predited Ideal Measurement Set (PIMS) and produes a multi-sensorontrol aording to a few simple operational priniples adapted to surveillane a-tivities.Keywords: multi-objet �ltering, multi-sensor PHD, sensor management
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Résumé
Les quatres setions de e résumé suivent les quatres hapitres de la thèse. Lapremière setion reprend les grandes lignes de la théorie des ensembles aléa-toires �nis et dérit les équations du �ltre PHD monoapteur. La deuxième setionprésente une ontribution lé de la thèse, la onstrution du �ltre PHD multiap-teur et la simpli�ation de son ériture sans approximation grâe à une méthodede partitionnement joint de l'espae d'état des ibles et de l'ensemble des apteurs.La troisième setion résume la onstrution d'un gestionnaire de apteurs dans leadre du PHD, le BET (Balaned Explorer and Traker). En�n, la quatrième setionexpose brièvement l'implémentation partiulaire du �ltre PHD multiapteur et duontr�leur BET, ainsi que les prinipaux résulats de simulation.La théorie des ensembles aléatoires �nisDans le ontexte de la détetion et du suivi de ibles, la théorie des ensembles aléa-toires �nis (Random Finite Sets) permet une représentation originale de la situationopérationelle ; autrement dit, du nombre et de l'état des di�érentes ibles évoluantdans la zone de surveillane. Contrairement aux tehniques lassiques qui assignentune piste pour haque ible détetée et la maintiennent à jour ave les mesures su-essives, la théorie RFS dérit l'ensemble des ibles à un instant donné omme laréalisation d'un ensemble aléatoire �ni, 'est à dire une unique variable aléatoiredont le nombre d'éléments - le nombre de ibles - et la valeur des éléments - l'étatdes ibles - sont aléatoires. Plus préisément, on dé�nit un RFS omme une fontionmesurable [Vo 08℄:

Ξ : Ω→ F(X )
ω 7→ X = Ξ(ω) (1)où (Ω, σ(Ω),P) est un espae probabilisé équipé de la topologie de Matheron, et

F(X ) l'espae des sous-ensembles �nis de l'espae d'état monoible X .7
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Le �ltrage RFS onsiste à propager au ours du temps des RFSs dérivant la on�g-uration multiible (nombre de ibles et état de es dernières) en fontion de l'arrivéedes nouvelles mesures. Au prix d'hypothèses relativement faibles sur la modélisationdes ibles et des apteurs, le �ltre RFS permet en théorie :
• de rassembler dans un seul objet aléatoire les méhanismes de naissane, évo-lution et disparition des ibles ;
• à haque itération, de faire évoluer et objet aléatoire selon le shéma bayésienlassique �prédition → mise à jour�.Quatre RFSs interviennent à haque itération dans les équations bayésiennes :1. Le RFS (multiible) de transition ΞT

k,k+1(X), ave loi de probabilité pΞT
k,k+1

(.|X),dérit la on�guration multiible à l'instant k+1 onditionnellement à un ensemblemultiible X à l'instant k.2. Le RFS (multiible) a priori Ξk+1|k, ave loi de probabilité pΞk+1|k
(.|Z1:k),dérit la on�guration multiible à l'instant k + 1 onditionnellement aux mesuresproduites jusqu'à l'instant k.3. Le RFS (multimesure) d'observation Σk+1(X), ave loi de probabilité pΣk+1

(.|X),dérit la on�guration multimesure à l'instant k+1 onditionnellement à un ensem-ble multiible X à l'instant k + 1.4. Le RFS (multiible) a posteriori Ξk+1|k+1, ave loi de probabilité pΞk+1|k+1
(.|Z1:k+1),dérit la on�guration multiible à l'instant k + 1 onditionnellement aux mesuresproduites jusqu'à l'instant k + 1.Ces quatres RFSs sont liés par les équations du �ltre RFS [Mahl 02℄:

pΞk+1|k
(.|Z1:k) =

∫

F(X )

pΞT
k,k+1

(.|X)pΞk|k
(X|Z1:k)µ(dX) (2)

pΞk+1|k+1
(.|Z1:k+1) =

pΣk+1
(Zk+1|.)pΞk+1|k

(.|Z1:k)
∫

F(X )
pΣk+1

(Zk+1|X)pΞk+1|k
(X|Z1:k)µ(dX)

(3)Le prinipal avantage de ette méthode devant les tehniques usuelles est qu'elle nenéessite ni heuristiques pour la réation et la destrution de pistes ni assoiationexpliite entre mesures et pistes. En d'autres termes, il su�t d'implémenter leséquations bayésiennes de prédition (2) et mise à jour (3) pour propager les RFSsdérivant la on�guration multiible.
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On peut remarquer que la struture du �ltre RFS est similaire à elle du �ltre monoi-ble lassique, les fontions monoobjet (fontion de transition, de vraisemblane, et.)étant remplaées par leur �équivalent� multiobjet. Mais, si les fontions monoobjetpeuvent être onstruites expliitement au prix d'hypothèses �raisonnables� sur leomportement des ibles et le fontionnement interne des apteurs, leur équivalentmultiobjet sont en règle générale inexploitables. Par exemple, étant donné que leRFS de transition ΞT
k,k+1 omprend le méhanisme de naissane, de disparition etd'évolution des ibles, la quantité pΞT

k,k+1
(X|Y ) doit être déterminée pour des ensem-bles X et Y quelonques, et don en partiulier de taille quelonque. Indépendam-ment de la omplexité des lois de probabilités, les intégrales sur F(X ), évidemmentplus omplexes à traiter que les intégrales sur X présentes dans les équations bayési-ennes monoible, sont impratiables sauf as bien partiuliers - par exemple, si lenombre de ibles est �xe.Le �ltre PHD est une approximation du �ltre RFS qui restreint la propagationd'information sur le RFS a priori Ξk+1|k (resp. a posteriori Ξk+1|k+1) à son premiermoment ou PHD vΞk+1|k

(.|Z1:k) (resp. vΞk+1|k+1
(.|Z1:k+1)) plut�t qu'à sa loi de prob-abilité pΞk+1|k

(.|Z1:k) (resp. pΞk+1|k+1
(.|Z1:k+1)). Les équations du �ltre PHD, dans le
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as monoapteur uniquement, sont les suivantes [Mahl 03a℄ :
vΞk+1|k

(.|Z1:k)

=

∫

X

(
psk,k+1(x)f

t
k,k+1(.|x) + λs

k,k+1(x)sk,k+1(.|x)
)
vΞk|k

(x|Z1:k)dx+ λb
k,k+1bk,k+1(.)(4)

vΞk+1|k+1
(.|Z1:k+1)

=



1− pdk+1(.) +
∑

z∈Zk+1

pdk+1(.)L
z
k+1(.)

λc
k+1ck+1(z) + vΞk+1|k

[pdk+1L
z
k+1]



 vΞk+1|k
(.|Z1:k) (5)ave vΞk+1|k

[pdk+1L
z
k+1]

def
=
∫

X
pdk+1(x)L

z
k+1(x)vΞk+1|k

(x|Z1:k)dx. Comparées à leuréquivalent RFS (2), (3), les équations (4), (5) sont plus simples à manipuler ar lesfontions multiobjet ont disparu au pro�t de fontions monoobjet plus lassiques.Par exemple, la loi de probabilité du RFS de transition pΞT
k,k+1

est remplaée parune fontion de transition f t
k,k+1, une probabilité de survie psk,k+1, une intensité despwaning λs

k,k+1sk,k+1 et de naissane spontanée λb
k,k+1bk,k+1, toutes monoible. Deette façon, le �ltre PHD peut être implémenté ave des méthodes d'approximationsimilaires à elles employées dans le �ltre monoible (�ltrage partiulaire notam-ment, voir plus loin).Le passage du �ltre RFS à l'approximation que onstitue le �ltre PHD néessiteplusieurs hypothèses ; ertaines sont usuelles dans les problèmes de détetion - in-dépendane des ibles, indépendane des mesures, et. - d'autres plus spéi�ques auadre du RFS. En partiulier, l'hypothèse de Poisson suppose que les RFSs multiible

Ξk+1|k et Ξk+1|k+1 appartiennent à une lasse restreinte de RFS omplètement déritspar leur PHD, les Poisson RFSs. C'est à dire, onnaissant le PHD vΞk+1|k
(.|Z1:k), leRFS Ξk+1|k est entièrement dérit par :

• la loi dérivant le nombre de ibles, Poisson de paramètre vΞk+1|k
[1] ;

• la loi dérivant la distribution des ibles dans X , haque ible étant indépen-damment et identiquement distribuée selon la densité vΞk+1|k
(.|Z1:k)

vΞk+1|k
[1]

.Dans la grande majorité des as d'utilisation d'un �ltre multiible, la donnée de sortiedu �ltre doit être un ensemble de ibles qu'il faut don extraire du PHD. Grâe auxpropriétés i-dessus, l'estimation du nombre de ible est donnée par l'intégrale duPHD sur l'ensemble de la zone - vΞk+1|k
[1] - et les ibles peuvent être plaées autourdes extrema loaux omme illustré i-après :
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A noter que d'autres proessus d'extration sont possibles et ertains sont déritsplus en détail dans la thèse. De façon générale, l'extration est indépendante et n'estpas néessaire à la propagation du PHD ; elle ne fait don pas partie intégrante du�ltre PHD.Filtrage PHD multiapteurL'extension du �ltre PHD au as multiapteur est une ontribution importante deette thèse. En reprenant le prinipe de la onstrution du �ltre monoapteur eten supposant que le proessus d'observation de haque apteur est indépendantonditionnellement à la on�guration des ibles, on peut obtenir l'expression exatede l'équation de mise à jour :
vΞk+1|k+1

(x|Z1:k+1) = β[δ∅, δx]K
−1
X +

∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X(6)où :

• Zk+1 =
⊔S

j=1Z
j
k+1 est l'ensemble de mesures des S apteurs;

• C(Zk+1) est l'ensemble des termes ombinatoires onstruit sur l'ensemble desmesures.L'assoiation impliite entre mesures et ibles est illustrée par la présene des termesombinatoires, représentant l'ensemble des regroupements possibles entre mesuresde di�érents apteurs mais originaires de la même ible. Les ross-terms β sont desfontionnelles, haune pondérant l'assoiation entre un regroupement de mesures etun point de l'espae d'état onditionnellement au PHD a priori vΞk+1|k
(.|Z1:k). Parexemple :
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• β[δ∅, δx] : une ible existe en x, et n'est pas détetée ;
• β[δ{z11 ,z32}, 1] : les mesures z11 et z32 proviennent de la même ible, dont l'état estinonnu ;
• β[δ{z11 ,z32}, δx] : une ible existe en x, est à l'origine de la mesure z11 du apteur
1, à l'origine de la mesure z32 du apteur 3, n'est pas détetée par les autresapteurs.A noter que le PHD a priori n'apparait pas expliitement dans l'équation de mise àjour multiapteur mais est utilisé dans la onstrution des ross-terms. L'équationde mise à jour multiapteur est intéressante sur le plan théorique ar elle donnel'expression exate du PHD a posteriori ; en substituant (6) à (5), on onstruit un�ltre propageant le PHD multiapteur sans approximation, une référene préieusepour omparer et étudier les approximations multiapteur usuelles (voir plus loin).Sur le plan pratique, le oût algorithmique de la onstrution de l'ensemble destermes ombinatoires explose ave l'augmentation du nombre de mesures et/ou deapteurs, et le �ltre PHD multiapteur exat n'est pas diretement exploitable dansun algorithme de poursuite en temps réel. Toutefois, l'expression de la mise à jourpeut être simpli�ée, sans approximation, en onsidérant un partitionnement jointde l'espae d'état et de l'ensemble des apteurs reposant sur la on�guration deshamps de vue des apteurs.

Dans la �gure i-dessus, par exemple, l'équation de mise à jour peut-être utilisée troisfois sur des espaes réduits - la zone bleue ave les mesures des apteurs 1 et 3, lazone verte ave les mesures du apteur 2, la zone rouge sans mesure - ave à haquefois un nombre de termes ombinatoires moins important ; le oût algorithmiqueglobal de la mise à jour est ainsi sensiblement réduit. Grâe à la méthode parpartitionnement, des sénarios de surveillane modestes ave un nombre de apteurset un hevauhement des hamps de vue limités peuvent être traités en temps réelave un �ltre PHD multiapteur exat.
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Gestion de apteurA haque itération k, la gestion de apteurs se déroule en trois phases :1. prédition : en fontion du PHD a priori vΞk+1|k

, onstruire le PHD préditif
vuΞk+1|k

pour haque ontr�le possible u ;2. séletion : en fontion des PHDs préditifs vuΞk+1|k
, déterminer le meilleur on-tr�le selon une fontion d'objetif ;3. ontr�le : soumettre les apteurs au ontr�le seletionné puis réupérer lesmesures ourantes Zk+1.Ce shéma lassique de prédition sur une itération se retrouve dans le ontr�leurPENT (Posterior Expeted Number of Targets), fruit des premiers travaux sur lagestion de apteur dans le adre du PHD réalisés par Mahler [Mahl 04℄.Une ontribution importante de ette thèse est l'extension de la onstrution duPHD préditif que l'on retrouve dans le PENT au as multiapteur. Le prinipeonsiste à extraire du PHD a priori un ensemble de ibles (voir �gure plus haut pourune illustration), puis à onstruire un ensemble de mesures idéales à partir de esibles (en omettant les bruits sur l'observation et les fausses alarmes). En�n, le PHDa priori est mis à jour ave les mesures idéales en entrée mais pondérées par la prob-abilité de détetion de la ible assoiée. En d'autres termes, le PHD prédiif vuΞk+1|kest onstruit omme la mise à jour du PHD a priori vΞk+1|k

suivant un proessusd'observation simpli�é. Dans le as monoapteur, Mahler obtient une équation deprédition très prohe de l'équation de mise à jour monoapteur, et par onséquentaisément implémentable en temps réel. La onstrution du as multiapteur suit lamême logique que l'extension de l'équation de mise à jour (6), et peut être simpli�éepar une méthode de partitionnement similaire. Pour les mêmes raisons que ellesévoquées en setion préédente, l'utilisation de l'équation de prédition exate n'estenvisageable que dans des sénarios modestes.Coneptuellement, la fontion d'objetif proposée par Mahler pour le ontr�leurPENT [Mahl 04℄ est très simple : le ontr�le séletionné est elui maximisant laprédition sur le nombre de ibles, 'est à dire enore, par onstrution du PHD,l'intégrale du PHD préditif vuΞk+1|k
[1]. Le prinipe de e ontr�leur est de favoriserl'observation des zones de l'espae d'état où le poids - 'est à dire l'intégrale du PHD- est elevé, a�n de déteter et suivre un maximum de ibles. A travers plusieurs ex-emples, il est montré dans la thèse que le omportement du PENT n'est pas toujoursadapté et qu'il prend parfois de �mauvaises� déisions. Il y a deux raisons prinipalesà ela. Premièrement, la fontion d'objetif ignore par onstrution l'informationontenue dans le PHD onernant la loalisation des ibles, puisqu'elle se limite à
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déterminer son intégrale sur l'ensemble de l'espae d'état. Elle ne di�érenie donpas deux PHDs prédiifs ayant la même intégrale, alors que les ibles potentiellementextratibles de es deux PHDs peuvent être radialement di�érentes. Deuxièmement,le PENT pénalise les ontr�les onduisant à une rédution du poids, e qui n'est pastoujours justi�é - par exemple, si le nombre de ible est surestimé dans une zoneet qu'une observation est sueptible d'améliorer l'estimation en réduisant le PHD.Par onstrution, le PHD n'est pas modi�é par l'équation de mise à jour dans leszones qui ne sont ouvertes par auun apteur, le PENT a don tendane à éloignerles apteurs des ibles et ainsi onserver un maximum de poids dans l'espae d'état,plut�t que de �risquer� que le poids ne diminue suite à une observation.Le ontr�leur BET (Balaned Explorer and Traker) propose une autre approheà la gestion de apteurs, ave une vision plus �opérationnelle� reposant sur la notionde piste. Une piste orrespond à un ertain poids extrait dans une zone limitée del'espae d'état et peut être vue omme un indie de la présene d'une ible. Ondistingue trois niveaux de pistes, un niveau plus élevé indiquant une onentrationde poids plus importante et don une plus grande ertitude sur la présene d'uneible. Une piste de niveau moyen, par exemple, orrespond à un poids supérieur à
WM extrait dans une zone de rayon inférieur à ∆M :

Le prinipe général du BET est de onentrer l'ation des apteurs sur les pistesd'intérêt, 'est à dire elles de niveaux faibles, jusqu'à leur disparition - l'originede la piste est une fausse alarme et auune nouvelle mesure n'est venue on�rmerl'indie de présene d'une ible - ou jusqu'à leur �promotion� vers des niveaux plusélevés - la piste est su�samment résolue et n'est plus prioriaire. Le seuil délimitantles pistes d'intérêt est �xé di�éremment pour les zones d'exploration et les zones depoursuite. Dans les zones d'exploration, où l'objetif est de déteter un maximum deibles, seules les ibles de niveau bas sont d'intérêt. Dans les zones de poursuite, oùla résolution des ibles est favorisée, les ibles de niveau bas et moyen sont d'intérêt.A e titre, les ontr�les sont évalués selon leur apaité à promouvoir des pistesd'intérêt extraites du PHD a priori vers des pistes sans intérêt extraites du PHD
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préditif. Bien entendu, le paramétrage des seuils entre les trois niveaux de pistesest un point ritique de la oneption du BET.Simulation et résultatsQue e soit dans le as monoapteur ou multiapteur, les intégrales dans les équationsdu �ltre PHD empêhent leur exploitation direte. Deux tehniques d'implémentationsemblent être populaires dans le adre du PHD, les mixtures de Gaussiennes (Gaus-sian Mixture PHD ou GMPHD) et les méthodes partiulaires (Sequential MonteCarlo PHD ou SMCPHD). Une omparaison des deux méthodes [Pae 11℄ semblemontrer que le GMPHD est généralement plus performant, mais son domaine de va-lidité est restreint par des hypothèses plus fortes. Notamment, le GMPHD néessiteune probabilité de détetion uniforme sur l'ensemble de l'espae d'état, e qui est in-ompatible ave le problème multiapteur. Le �ltre PHD multiapteur exat a donété implémenté par une méthode partiulaire en suivant la onstrution proposéepar Vo et al. [Vo 05℄. Di�érents modèles de apteurs et de ibles ont égalementété onçus et adaptés à l'environnement partiulaire a�n de pouvoir générer diverssénarios de surveillane.La première simulation ompare le �ltre PHD multiapteur exat ave et sans laméthode de partitionnement. Le prinipe est simple : un même senario est traité enparallèle ave les �ltres résultant des deux méthodes, et une distane de Kullbak-Leibler [Aoki 11℄ évalue la distane entre les deux PHDs obtenus. Les résultatsmontrent que l'ajout du partitionnement permet de réduire sensiblement le tempsd'exéution de la phase de mise à jour, notamment dans les situations ritiques -quand les ibles évoluent dans des zones où le reouvrement des hamps de vue estfort - où le temps est réduit d'un fateur 100, parfois davantage. Le PHD propagépar les deux méthodes peut être onsidéré omme identique - l'éart entre les deuxrestant de l'ordre de 10−16 tout le long de la simulation - e qui on�rme que lepartitionnement simpli�e l'exéution de la phase de mise à jour sans pour autantintroduire d'erreur.La seonde simulation ompare le �ltre PHD multiapteur exat ave le �ltre ICA(Iterated-Corretor Approximation) une élèbre approximationmultiapteur dévelop-pée par par Mahler [Mahl 03a, Mahl 10a℄. Le prinipe du ICA est de traiter lesdi�érents apteurs séquentiellement plut�t que simultanément ; 'est à dire, utiliser
S fois de suite la mise à jour monoapteur (5) plut�t qu'une fois la mise à jourmultiapteur (6). La faiblesse de ette méthode, bien onnue, est la dépendane dela solution à l'ordre dans lequel les apteurs sont traités, même si il a été a�rmé[Mahl 10a℄ qu'elle peut être onsidérée omme négligeable. Un même sénario esttesté ave deux on�gurations de apteurs, une omportant 10 apteurs et l'autre



16 Résumé
20. Pour haque on�guration, le meilleur ordre et le pire ordre de traitement parle ICA ont été estimés, le ritère étant la distane OSPA moyenne [Vo 08℄ entre lesibles extraites du PHD et les vraies ibles. On onstate d'une part que le �ltre exatest de meilleure qualité que le ICA - quel que soit l'ordre - et que la performanedu ICA se dégrade sensiblement ave le nombre de apteur. D'autre part, si l'éartentre le meilleur ICA et le pire ICA est relativement faible pour la on�guration à
10 apteurs, il augmente fortement ave le nombre de apteur. Ces résultats sontpartiulièrement intéressants ar ils prouvent que, dans ertains sénarios du moins,la dégradation de performane du ICA par rapport au PHD de référene est notableet, plus important enore, que l'ordre de traitement des apteurs de l'ICA est unfateur déterminant pour la qualité du �ltrage.La dernière simulation se onentre sur le problème de la gestion de apteurs. Unsénario plus �opérationnel� est généré, dans lequel des routes et des obstales in-�uenent le déplaement des ibles, et la ouverture des apteurs est su�sammentlaunaire pour qu'une gestion des apteurs soit néessaire. L'estimation de la on-�guration des ibles est propagée par un �ltre PHD exat ave simpli�ation parpartitionnement, tandis que la gestion des apteurs est réalisée en parallèle par unontr�leur PENT et un ontr�leur BET. La performane des deux ontr�leurs estévaluée en omparant la distane OSPA entre les ibles extraites des PHDs propagéset les vraies ibles. Le temps d'exéution de la phase de gestion est également alulépour les deux ontr�leurs à haque itération. Les résultats montrent lairement que,sur la qualité de l'approximation omme sur le temps d'exéution, le ontr�leur BETest nettement supérieur. Comme expliqué dans la setion préédente, le PENT a ten-dane à éloigner les apteurs des zones où le poids est important. Ce phénomène estpartiulièrement néfaste dans le adre de l'implémentation partiulaire, pare qu'unertain nombre de partiules ne sont (presque) jamais observées et se regroupent ennuages se déplaçant dans les zones qui ne peuvent être observées par auun apteur.En onséquene, le poids augmente onsidérablement et l'estimation du nombre deible est largement surévaluée. D'autre part, le BET épargne la phase de préditionpour ertains ontr�les potentiels (plus de détails sont donnés dans la thèse), e quiexplique l'amélioration notable du temps d'éxeution. Une autre omparaison aveun ontr�le purement aléatoire semble toutefois indiquer que les avantages du BETsont limités. Il est très probable que l'implémentation partiulaire proposée soit enpartie inadéquate, notamment pare que les partiules non ouvertes ont tendane àdisparaître rapidement à ause du rééhantillonnage. En onséquene, les pistes quine sont plus d'intérêt pare que trop résolues sont éliminées dès qu'elles ne sont plusouvertes par les apteurs, alors que leur niveau devraient baisser jusqu'à redeveniréventuellement des pistes d'intérêt et être de nouveau l'objet de nouvelles observa-tions. De façon plus générale, le BET semble inapable d'antiiper la disparitionde poids lors du rééhantillonnage, e phénomène étant propre à l'implémentation
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partiulaire mais n'ayant pas de méanisme équivalent dans le adre théorique duPHD.OuverturesDe nombreuses pistes sont envisageables pour l'approfondissement de ette étude.Sur le plan théorique, le �ltre PHD multiapteur exat sou�re d'un manque de trans-parene sur son oût algorithmique. Puisque le temps d'exéution de la phase demise à jour explose ave le nombre de mesures et/ou de apteurs, un alul du nom-bre de termes ombinatoires dans la phase de mise à jour (6) permettrait d'évaluera priori le temps d'exéution néessaire pour une mise à jour exate. Cela pourraitonduire à un �ltre hybride qui hoisirait, pour haque élément de partition, si lamise à jour exate est envisageable ompte tenu du nombre de apteurs et de mesuresonernés, ou si une approximation de type ICA s'impose.Sur le plan pratique, une amélioration de l'implémentation partiulaire semble nées-saire, notamment pour un bonne exploitation du BET. Une première étape seraitd'empêher la disparition trop rapide des pistes non ouvertes, peut être en onsid-érant un rééhantillonnage non systématique [Dou 05℄. Indépendamment de ela,le méhanisme de réation de partiules proposé dans ette thèse n'est pas satis-faisant sur le plan théorique et la reherhe d'une fontion d'importane adaptéeau problème est une piste à envisager [Rist 10a℄. En�n, une implémentation duPHD multiapteur ave des tehniques dérivées du GMPHD relaxant l'hypothèsed'uniformité de la proabilité de détetion reste à explorer.En prenant davantage de reul, d'autres pistes relatives à l'extension du �ltre PHDmultiapteur apparaissent. En premier lieu, on pourrait envisager l'extension du�ltre CPHD (Cardinalized PHD) monoapteur [Mahl 07a℄ - lui-même une extensiondu PHD monoapteur propageant la loi de ardinalité du RFS multiible en plus duPHD - au as multiapteur en s'inspirant des travaux de ette thèse. Un autre sujetd'étude prometteur est la onstrution d'un �ltre propageant le seond moment desRFSs multiible, pare que ela permettrait de dérire des systèmes plus omplexesomprenant une interation entre des paires de ibles là où les hypothèses du �ltrePHD imposent une strite indépendane entre ibles.L'hypothèse fondamentale sur laquelle repose la validité du PHD omme approx-imation du RFS, à savoir l'assimilation des RFSs multiible à des Poisson RFSs, estégalement un domaine d'étude intéressant. Aux yeux de l'auteur, les onséquenesde ette hypothèse sur la délimitation de la lasse de problèmes pour lesquels le�ltrage PHD (ou une méthode dérivée) est valide sont en grande partie inonnues etmériteraient d'être identi�ées.
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S sensor number
T f
u family of fous traks overed by ontrol u

T nf
u family of non-fous traks promoted by ontrol u

Uk set of available (multi-sensor) ontrols (time k)
uk seleted (multi-sensor) ontrol (time k)
vuΞk+1|k

(multi-target) preditive PHD for ontrol u (time k + 1)
V

(n)
Ξ n-th order fatorial moment measure of RFS Ξ

v
(n)
Ξ n-th order produt density of RFS Ξ

vΞk+1|k+1
(multi-target) posterior PHD (time k + 1)

vΞk+1|k
(multi-target) predited PHD (time k + 1)

VΞ intensity measure of RFS Ξ

vΞ intensity (funtion) of RFS Ξ

Xk set of true targets (time k)
xi,k i-th true target state (time k)
Zj

k set of urrent measurements produed by sensor j (time k)
zji,k i-th measurement produed by sensor j (time k)
Zk set of urrent measurements (time k)
Z1:k olletion of measurements produed up to time k
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Introdution
Curiosity killed the at...... satisfation brought it bak.ProverbMotivationCuriosity may kill the at indeed, and yet venturing into the unknown - or at leastthe unertain - is all the more tempting. Consider Tom, waiting near a roadorner for the �rst ylists ompeting in his favourite rae, his hands on his brandnew binoulars. Here omes the �rst peloton: Tom fouses his wath on them andounts �ve ylists. He is partial to Roy, but sadly he is not in this �rst group - orso it seems. The franti ries of other attendants must mean that another peloton isarriving. Tom is eager to swith his wath to this seond group, and yet he would liketo spend some more time on the �ve man leading peloton to be sure that they are in-deed �ve - maybe Roy was hidden among them? Tom quikly deides to fous on theseond peloton. This one is more loose and is bound to break, a few seonds are longenough to hek that Roy is not there. Now Tom would like to look bak at the �rstpeloton: where should he fous his binoulars, that is, how muh farther have theyridden sine he stopped wathing them? Swithing his fous bak and forth betweendi�erent pelotons seems to be quite hallenging, fortunately for Tom the ylists arebound to ride on the road. What if the ylists were allowed to wander away fromthe road? Then Tom ould get help from a friend of his with his own binoulars, buthow ould they oordinate their wath in order to improve their hanes to �nd Roy?The situation above, albeit simple, arises the main hallenges in the multi-objetstate estimation problem. An observation and identi�ation system (Tom) is inter-ested in the states (position in the rae, identity of the ylist) of some objets (theylists) evolving in a bounded region (the orner of the road next to Tom). The35
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state of eah objet is unertain - otherwise the rae would lak any hallenge! -but the system an rely on measurements (a glane at the road through the bino-ulars) produed by sensors (the binoulars). These measurements are usually noisy(Tom annot see very well beause of the sun re�etion), yet sequential observationsallows the system to build an estimation of the true situation (the real position ofthe ylists on the orner of the road), modi�ed dynamially following eah new ob-servation. The system an eventually make deisions to ontrol the sensor's ation(Tom may hoose to fous his googles on another point of the road) aording to anobjetive (spotting Roy among all the ylists). The system may rely on measure-ments from several sensors (Tom's friend with his own binoulars), in this ase themeasurements must be shared (his friend thoroughly desribes what he sees to Tom)so that the system an produe a single estimation based on sequential multi-sensorobservations. Finally, the system must be able to produe multi-sensor ontrols(Tom should provide instrutions to his friend in order to oordinate their wath).Many onrete problems �t through the state estimation framework given above,or at least share some of its salient features, in various �elds suh as eonomet-ri [Yell 10℄, biomedial engineering [Juan 09℄, meteorology [Solt 11℄ and of oursetraking [Gust 02℄. The best known is perhaps the target detetion and/or trakingproblem in surveillane ativities, whether ivilian or military, beause it shares allof the features above: the targets (i.e. the objets) are usually moving in a region ofunknown topography and their number is time-varying, the sensor overage is lak-ing (i.e. the sensors annot over all the surveillane region simultaneously) henedeisions must be made by the sensor manager, the sensors an miss a target orprodue a false alarm, et. In a world where both the targets and the sensors areof inreasing omplexity, the improvement of the surveillane ativities is a growingonern and a hallenging problem.The multi-sensor/multi-target �ltering problemThe sope of this thesis �ts in the general multi-sensor/multi-target �ltering problemwhose aim is to estimate the states of a varying number of targets through sequen-tial observations by several sensors. The surveillane region R ⊂ R

2 is a boundedground region - e.g. the whereabouts of a military base. The targets are groundobjets evolving in the surveillane region, their state x is a four-variable vetor,two for position and two for veloity oordinates, belonging to the target state spae
X ⊂ R

4 equipped with the Eulidian distane dX . For desription purposes, targetsmay be labeled in an arbitrary order. Likewise, their state may be labeled on a timesale with an arbitrary origin. In the general ase, xi,t will denote the state of the
i-th target at time t, but the target label and/or time subsript may be omitted
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when irrelevant.The surveillane region is observed by S sensors. Eah sensor j has its own har-ateristis (probability of detetion, false alarm rate, measuring auray, et.) andprodues measurements zj belonging to its own observation spae Zj ⊂ R

dj equippedwith the eulidian distane dZj . As for the targets, zji,t will denote the i-th mea-surement produed by the sensor j at time t, but the origin sensor supersript, themeasurement label and/or the time subsripts may be omitted when irrelevant. Eahsensor j has limited overage in the sense that it may not fous on the whole statespae simultaneously. Its �eld of view (FOV) F j
t ⊂ X is suh that targets annotbe deteted by sensor j at time t unless they belong to its FOV F j

t . The FOV ofeah sensor an be modi�ed to some extent by dynamially managing the sensor, i.e.providing instrutions to the sensor on the region of the state spae it should fouson based on the urrent estimation of the target number and their loalization. Oneof the trikiest part of the multi-sensor/multi-target �ltering problem is to designa proper objetive for the surveillane ativity and be able to manage the sensorsaordingly.Beause the multi-target/multi-sensor �ltering problem is inherently dynami, aommon time sale is required for the targets' model, the observation proess andthe ontrol proess. For simpliity's sake, the time is disretized in (time) steps.The data �ow over a time step an be depited as follows:Figure 1 Data �ow of the �ltering proess (time k)

where:
• Xk is the olletion of all target states at time (or step) k (the 'true situation');
• Zk is the olletion of all measurements produed at time k, regardless of theirorigin sensor;
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• Fk|k (resp. Fk+1|k) is the �ltered state at time k (resp. k + 1) based on themeasurements produed up to time k;
• uk+1 is the multi-sensor ontrol produed at time k + 1.The data �ow (�gure 1) implies that several important assumptions about the systemare made:
• one an �nd a time step adapted to both target and sensor dynamis;
• the sensor system is entralized and without delay ;
• the sensors are synhronized.Arguably, the �rst assumptions depends hie�y on the sensor harateristis. Sinethe sope of this thesis is limited to ground targets whose typial time step may lasta few seonds, the assumption that the ground surveillane sensors (typially, radarsor ameras) are able to produe measurements every time step seems reasonableenough.The sensor system being entralized is a valuable onveniene for the design of the�lter, beause it implies that all the measurements produed in a given time step(say, k + 1) are immediately available for the data update (see �gure 1) ouringduring the same step (Fk+1|k → Fk+1|k+1). Notably, this implies that there is delayin neither the observation nor the data transmission proesses. Likewise, as soon asthe sensor manager produes the seleted multi-sensor ontrol uk+1, the sensors areontrolled aordingly and the olletion of urrent measurement Zk+1 is availableinstantaneously.The assumption on the synhronization of the sensors is equally important, beauseit has two major onsequenes. The desirable e�et is that it signi�antly simpli�esthe design of the sensor manager, whih an be synhronized on the same time stepas the targets (see �gure 1): the sensor manager selets a single multi-sensor ontrol

uk+1 every time step, providing instrutions to all the sensors simultaneously. Theother onsequene, though not visible on the data �ow, is the absene of temporalitybetween the elements in the urrent olletion of measurements Zk+1 - that is, theelement order in Zk+1 is arbitrary and annot be used to set an order of preedeneamong the measurements produed by a given sensor or among the sensors. Thisonsequene is ritial to the design of the data update step sine it implies thatone annot hope to update the �ltered state by proeeding sequentially with themeasurements from the di�erent sensors, rather, one must deal with the sensors allat one.
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Organization of the thesisThe thesis is organized as follows:Chapter 1 provides the main theoretial tools that are required for the designof the probability hypothesis density (PHD) �lter. The hapter fouses mainly onthe random �nite set (RFS) theory, but also introdues the single-sensor PHD �lterand some metris adapted to the RFS framework.Chapter 2 desribes thoroughly the onstrution of the multi-sensor PHD �lter.The �rst part provides an adaptation of Mahler's onstrution of the single-sensorase [Mahl 03a℄ whih is important to grasp the rigorous extension to the multi-sensor ase that follows. A joint partitioning of the state spae and the sensors isthen proposed in order to simplify the onstrution of the multi-sensor PHD �lterwithout approximation. Based on this new referene, ommon multi-sensor approx-imations are then disussed. The extension to the multi-sensor ase as well as thepartition method are key ontributions of the thesis.Chapter 3 deals with the sensor management problem. The �rst part fouses on thetarget extration proess, then on the rigorous extension of Mahler's predited idealmeasurement set (PIMS) [Mahl 04℄ to the multi-sensor ase and its simpli�ationby a similar partitioning as in hapter 2. It then fouses on the design of a sensormanager. Mahler's posterior expeted number of targets (PENT) manager [Mahl 04℄is introdued and analyzed through simple situations where it seems inadequate. Anew solution based on 'operational' objetive is then proposed, the balaned explorerand traker (BET) manager. The extension to the multi-sensor ase, the partition-ing and the BET manager are other important ontributions of this thesis.Chapter 4 �rst desribes the modelization of surveillane senarii, then the im-plementation of the multi-sensor PHD �lter and sensor manager through sequentialMonte Carlo (SMC) tehniques, and �nally the main results obtained on simulateddata.All the mathematial proofs pertaining to hapters 1, 2, and 3 may be found inappendix A, and a brief desription of the priniples of importane sampling (IS)and sequential importane sampling (SIS) is provided in appendix B.
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CHAPTER1Bakground
Mahler should take the redit for muh of the original work on the RFS theory[Mahl 02℄, sine he established grounds for the �rst rigorous Bayesian �lterin a multi-objet ontext with the �nite set statistis (FISST) approah. In laterworks, Mahler also proposed the onstrution of the PHD �lter [Mahl 03a℄, an ap-proximation of the more general multi-objet Bayesian �lter leading to a tratablesingle-sensor/multi-target �lter. Not surprinsingly, the new set-based approah tomulti-target traking arouse some interest in the traking ommunity and manyimplementations of PHD-based multi-target traking �lters have been proposed[Maeh 06, Pham 07, Juan 09℄. But, more generally, the random �nite sets and theirderivatives proved to be an exiting �eld of study and have been the topi of severalreent theses [Viho 04, Clar 06, Tobi 06, Pant 07, Vo 08℄. This hapter desribes thebasi notions about random set theory that were needed for the design of the PHD�lter in the single-sensor ase, and for its rigorous extension to the multi-sensor aseas well. The PHD �lter is also brie�y desribed, its onstrution being fully detailedin the next hapter.
1.1 Random �nite setsEven though the early work regarding the random �nite set theory an be foundin Mahler's work [Mahl 02, Mahl 03a℄, this setion is mainly an adaptation of Vo'sthesis [Vo 08℄ whih provides a well-written summary of the essential de�nitions andproperties pertaining to the RFS.
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1.1.1 De�nitionEssentially, as it will be formally established later in setion 1.2, the purpose ofthe set-based �ltering approah is to onsider the olletion of true targets Xk =
{x1,k, x2,k, . . . , xNk ,k)}) as the realization of a random variable and build a �lteredstate - that is, an estimation of this 'true situation' - upon the knowledge of thisrandom variable aquired through suessive observations rather than upon severalmaintained traks. Beause the realization of this random variable must over everypossible number of targets and, for any target number, every possible ombinationof target states, eah realization belongs to F(X ), the set of all the �nite subsets ofthe state spae X .De�nition 1.1. A RFS Ξ de�ned on X is a measurable mapping [Vo 08℄:

Ξ : Ω→ F(X )
ω 7→ X = Ξ(ω) (1.1)where (Ω, σ(Ω),P) is a probability spae equipped with the Matheron topology.As usual in the study of random variables, one's fous shifts easily from the proba-bility measure P - de�ned on the sample spae Ω - to the more pratial probabilitydistribution of the RFS, i.e. the probability measure PΞ de�ned on F(X ) by [Vo 08℄:

PΞ(T ) def
= P({ω ∈ Ω : Ξ(ω) ∈ T }) = P({X ∈ T }) (1.2)for any Borel subset T of F(X ). Like any random variable, Ξ is ompletely desribedby its probability distribution PΞ. From now on, funtions, subsets and events areassumed to be measurable or Borel whenever appropriate.Intuitively, a RFS is well adapted to the desription of a proess produing dif-ferent point patterns with assoiated probabilities. Atually, RFSs an be seen aspartiular ases of more general objets alled point proesses and many results pre-sented in this setion an be found in their point proess equivalent in [Sing 09℄.Although point proesses will not be referred to anymore later in this thesis, a briefdesription of the similarities between the two notions provides another approah tograsp the onept of RFS. The following de�nitions onerning the point proess aregiven in [Vo 08℄:1. a ounting measure n on X is a measure taking values in N ∪ {∞} suh that

n(T ) is �nite for any bounded subset T of X ;2. a ounting measure n is simple if n({x}) ∈ {0, 1}, ∀x ∈ X ;3. a ounting measure n is �nite if n(X ) <∞;
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4. a point proess N on X is a measureable mapping from a sample spae Ω,where (Ω, σ(Ω),P) is a probability spae, to the spae of ounting measures on
X ;5. a point proess N is simple if N(ω) is simple almost surely;6. a point proess N is �nite if N(ω) is �nite almost surely;7. a point proess N is simple-�nite if it is simple and �nite.Any simple-�nite point proess N on X may be assoiated with an equivalent RFS

Ξ on X bound by the following relation:
∀T ⊆ X , N(ω)(T ) = |Ξ(ω) ∩ T | (1.3)where |.| is the ardinality funtion. This important relation shows that a RFS on

X an be ompletely desribed by ounting the ourenes of points falling intosubspaes of X . A reent book of Streit [Stre 10℄ thoroughly desribes the detetionand traking problem from the point proesses' point of view; not surprisingly, manynotions are quite similar to those developed in the RFS framework.Example 1.1. One an de�ne a RFS Ξ, with the sample spae Ω = [0, 1] equippedwith the uniform probability, whose distribution probability is desribed by:
Ξ(ω) =







{x1, x2} if 0 6 ω <
1

2

{x2, x3} if
1

2
6 ω <

2

3

{x4} if
2

3
6 ω <

3

4

{∅} if
3

4
6 ω 6 1

(1.4)
This RFS may be depited as follows:Figure 1.1 Illustration of a RFS
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Equivalently, one an de�ne a simple-�nite point proess N , with the same probabilityspae, whose distribution probability is built as follows:

N(ω) =







n : n({x1}) = 1, n({x2}) = 1, n(X ) = 2 if 0 6 ω <
1

2

n : n({x2}) = 1, n({x3}) = 1, n(X ) = 2 if
1

2
6 ω <

2

3

n : n({x4}) = 1, n(X ) = 1 if
2

3
6 ω <

3

4

n : n(X ) = 0 if
3

4
6 ω 6 1

(1.5)
The point proess formulation (1.5) also provides some insight on the onstrutionof the PHD. Sine there is no addition operator de�ned on F(X ) - {x1, x2}+{x2, x3}has no mathematial sense, the �lassial� expetation operator annot be appliedto the RFS - E[Ξ] has no sense either. However, additioning ounting measures hasa mathematial sense, and so does the expetation E[N ]. Applying this expetationon the point proess desribed in equation (1.5) provides the following desription ofthe RFS Ξ: �on average, there are 0.5 targets loated in x1, 0.66 targets in x2, 0.17targets in x3, 0.08 targets in x4 and none elsewhere�. Propagating this informationthrough time is, in a nutshell, the priniple of the PHD �lter.Note that a RFS is equivalent to a simple-�nite point proess; the �simple� quali-�ation hene preludes the possibility of repeated elements in any realization of aRFS. In the multi-target traking framework, this implies that a RFS-based multi-target representation does not over the possibility that several targets share theexat same state. Given the usual nature of target states (position and/or veloityoordinates in a �large� surveillane region), this restrition may seem to be of littleimportane, even though this ould have some undesirable e�ets in the traking ofwell organized targets moving together (in a onvoy for example). Note also that,sine the realization of a RFS is a set of points, these points are unordered and anylabelization is neessarily arbitrary. As it will be seen later in setion 1.2, this hasdiret onsequenes on the design of multi-target traking �lters.Yet another equivalent desription of a RFS Ξ is given by the following distribu-tions [Vo 08℄:
• a ardinality distribution ρΞ;
• a family of symmetri probability distributions {P (n)

Ξ }n∈N.where ρΞ desribes the distribution of the number of elements in any realization Xof the RFS and P
(n)
Ξ desribes the joint spatial distribution of these elements in thestate spae X . Note that the probability distributions P (n)

Ξ are symmetri sine the



1.1 Random �nite sets 45
element order in a set is arbitrary.The union RFS of a �nite number of RFSs an be de�ned as follows (adaptedfrom [Vo 08℄):De�nition 1.2. For any n ∈ [1 N ], let Ξn : Ω→ F(X ) be a RFS. Then, the unionRFS ⋃N

n=1 Ξn is the RFS Ξ : ΩN → F(X ) given by:
∀ω = (ω1, ..., ωN) ∈ ΩN , Ξ(ω)

def
=

N⋃

n=1

Ξn(ωn) (1.6)Finally, an extension to the union RFS an be de�ned as follows:De�nition 1.3. For any n ∈ [1 N ], let Ξn : Ω→ F(Xn) be a RFS. Then, the jointRFS ⊔N
n=1 Ξn is the RFS Ξ : ΩN → ⊔N

n=1F(Xn) given by:
∀ω = (ω1, ..., ωN) ∈ ΩN , Ξ(ω)

def
=

N⊔

n=1

Ξn(ωn) (1.7)The joint RFS an be seen as a �disjoint union� of a �nite number of RFSs de�nedon di�erent spaes. This de�nition was added by the author in order to desribethe multi-sensor observation proess as the �union� of single-sensor proesses (seehapter 2). In partiular, the following property will be useful in the onstrutionof the multi-sensor PHD equations:Property 1.1. For any n ∈ [1 N ], let Ξn : Ω→ F(Xn) be a RFS on Xn. If the RFSs
Ξi are statistially independent, then, for any family of subsets {Tn}Nn=1, Tn ⊆ F(Xn):

P⊔N
n=1 Ξn

(
N⊔

n=1

Tn
)

=

N∏

n=1

PΞn
(Tn) (1.8)The proof is given in appendix A.
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1.1.2 Probability densityThe notions of measure, integration and probability density are equally importantfor the onstrution of the RFS-based �lter. In RFS theory, the usual referenemeasure on F(X ) is the dimensionless measure µ given by [Vo 05, Vo 08℄:

µ(T ) def
=

∞∑

n=0

λn(χ−1(T ) ∩ X n)

n!
(1.9)for any subset T of F(X ), where λn is the n-th produt dimensionless Lebesguemeasure on X n, and χ is a mapping on vetors de�ned on Cartesian produt spaes

X n and n-element set spaes de�ned by:
χ :

∞⋃

n=0

X n → F(X )

x1, ..., xn 7→ {x1, ..., xn} = χ(x1, ..., xn) (1.10)Intuitively, in order to measure a subset T , one must stak its elements by size,measure eah element with the proper dimensionless measure aording to its size,then sum them to obtain the size of T . Note that for eah n-element set belonging to
T , there is n! orresponding elements belonging to the Cartesian produt X n with thesame measure, hene the fatorial on the denominator. Beause the hyper-volumein the state spae X may have unit (e.g. m4.s−2 for a 2D surveillane region withposition and veloity oordinates), a dimensionless measure on Cartesian produtsis required to keep the homogeneity between the measures of vetors belonging todi�erent Cartesian produt spaes.Example 1.2. Consider the one-variable state spae X = [0 1] - the state of pointbeing, for example, its position on the real unit segment. Let us onsider the followingsubset T ⊂ F(X ):

T def
=

{

{{x} | x ∈ [0 1/2]}
{{x, y} | x ∈ [0 1/3], y ∈ [0 1]} (1.11)then χ−1(T ) an be deomposed as follows:

χ−1(T ) :







χ−1(T ) ∩ X = [0 1/2]

χ−1(T ) ∩ X 2 = [0 1/3]× [0 1] ∪ [0 1]× [0 1/3]

χ−1(T ) ∩ X n = ∅, n /∈ {1, 2}
(1.12)thus we have: 





λ(χ−1(T ) ∩ X ) = 1/2

λ2(χ−1(T ) ∩ X 2)

2
= 1/3× 1

λn(χ−1(T ) ∩ X n)

n!
= 0, n /∈ {1, 2}

(1.13)
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whih leads to:

µ(T ) = λ(χ−1(T ) ∩ X ) + λ2(χ−1(T ) ∩ X 2)

2
=

5

6
(1.14)The onstrution of the measure on F(X ) is naturally followed by the de�nition ofthe integral of a funtion f : F(X )→ R over a subset T [Vo 05, Vo 08℄:

∫

T

f(X)µ(dX)
def
=

∞∑

n=0

1

n!

∫

Xn

1T (χ(x1, ..., xn))f(χ(x1, ..., xn))λ
n(dx1...dxn)

=

∞∑

n=0

1

n!

∫

χ−1(T )∩Xn

f({x1, ..., xn})λn(dx1...dxn) (1.15)Note that the notation dx1 is used in standard integrals, hene dx1 may have unitdepending on the state spae X . However, reall that λn(dx1...dxn) is dimensionless.If KX is the unit of the hyper-volume of X , then:
∀n ∈ N, dx1...dxn = λn(dx1...dxn)K

n
X (1.16)Then, the probability density pΞ of a RFS Ξ, if it exists, is given by the Radon-Nikodým derivative of the probability distribution PΞ with respet to the measure

µ [Nguy 06, Vo 08℄:
∀T ⊆ F(X ), PΞ(T ) =

∫

T

pΞ(X)µ(dX) (1.17)1.1.3 Janossy measures and Janossy densitiesThe measuring proess on F(X ) is by no means trivial. Beause the di�erent ele-ments in F(X ) are sets of various size, the �trik� is to stak these elements by sizeand then, for eah size n, �go bak� in the well known assoiated produt spae X n- using the χ funtion given by equation (1.10) - where standard Lebesgue measuresare available. Thus, its seems fairly natural to �split� the measure on F(X ) by afamily of measures on produt spaes X n, n ∈ N, enapsulating the more intuitivenotions of ardinality distribution ρΞ and spatial distribution P
(n)
Ξ de�ned in setion1.1.1. Indeed, one an de�ned the family of Janossy measures {J (n)

Ξ }n∈N [Vo 08℄:
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De�nition 1.4. The n-th order Janossy measure J

(n)
Ξ of a RFS Ξ is the measureon X n given by:

J
(n)
Ξ (.)

def
= n!ρΞ(n)P

(n)
Ξ (.) (1.18)where ρΞ is the ardinality distribution, P (n)

Ξ is the n-th order probability measure ofRFS Ξ.If J
(n)
Ξ admits a density (with respet to the standard Lesbegue measure on X n),then it is alled the n-th order Janossy density j

(n)
Ξ (j(0)Ξ KX = J

(0)
Ξ by onvention).Note that the Janossy densities vanish when evaluated on idential points (e.g.

j
(n)
Ξ (x1, x1, x2, ...) = 0), sine there is no repeated points in any realization of a RFS.One must be areful not to onfuse the probability density pΞ with the Janossy den-sities {j(n)Ξ }n∈N. While the probability density pΞ is de�ned on F(X ) and overs allthe possible realizations of the RFS Ξ, the Janossy density j

(n)
Ξ overs the possiblerealizations of the RFS Ξ among those with n elements only and is not a probabilitydensity sine ∫

Xn j
(n)
Ξ (X)dX 6= 1 in the general ase. Furthermore, pΞ is dimension-less sine it is de�ned with respet to the dimensionless measure µ on F(X ), while

j
(n)
Ξ has unit K−n

X sine it is de�ned with respet to the standard measure on X n.However, these densities are related through the following equality [Vo 08℄:
pΞ({x1, ..., xn}) = j

(n)
Ξ (x1, ..., xn)K

n
X (1.19)The proof is given in appendix A. Furthermore, sine the spatial distribution P

(n)
Ξan be reovered with the relation P

(n)
Ξ (.) = J

(n)
Ξ (.)/J

(n)
Ξ (X n) and the ardinal dis-tribution ρΞ with the relation ρΞ(n) = J

(n)
Ξ (X n)/n!, the family of Janossy measures

{J (n)
Ξ }n∈N desribes ompletely the RFS Ξ. Clearly the ardinal and the spatial dis-tribution are more intuitive beause they embody the algorithmi proess for thesampling of a RFS - �rst draw a number of element aording to ρΞ, then distributethe elements in state spae by sampling from the appropriate P

(n)
Ξ . However, theJanossy notations are better adapted to set-based alulus.1.1.4 Fatorial momentsLike usual random variables, RFS an be haraterized through their moments. The

n-th order fatorial moment measure V
(n)
Ξ of a RFS Ξ an be de�ned as follows[Vo 08℄:De�nition 1.5. Let Ξ be a RFS, {Tn}n∈N a family of subsets of X. Then, the n-thorder fatorial moment measure V

(n)
Ξ is de�ned by:

V
(n)
Ξ (T1 × ...× Tn)

def
= E




∑

x1 6=... 6=xn∈Ξ(ω)

1T1×...×Tn
((x1, ..., xn))



 (1.20)
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The �rst order fatorial moment measure VΞ (V 0

Ξ by onvention) is ommonly knownas the intensity measure:
VΞ(T1)

def
= E [Ξ(ω) ∩ T1] (1.21)If it exists, the n-th order produt density is the funtion v

(n)
Ξ de�ned on X n suhthat:

V
(n)
Ξ (T1 × ...× Tn) =

∫

T1

. . .

∫

Tn

v
(n)
Ξ (x1, , ..., xn)dx1...dxn (1.22)The �rst order fatorial produt density vΞ (v0Ξ by onvention) is ommonly knownas the intensity (funtion):

VΞ(T1) =

∫

T1

vΞ(x)dx (1.23)The notion of moment of a RFS is perhaps more di�ult to grasp as the notion ofprobability, espeially when the subsets Ti are not disjoints. Intuitively, the quantity
pΞ({x1, ..., xn})Kn

Xdx1...dxn an be seen as the probability that the realization X ofthe RFS has exatly n points, eah point in a di�erent neighborhood dxi. On theother hand, the quantity v
(n)
Ξ (x1, ..., xn)dx1...dxn an be seen as the probability that

X of the RFS has at least n points in the di�erent neighborhoods dxi [Vo 08℄. Formore details, a omparison between Janossy and fatorial moment measures an befound in [Vere 88℄ (pp.133 - 134). Easily enough, the design of the PHD �lter fouseson the �rst moment only, whose formulation given by (1.21) is rather suggestive: the�rst moment VΞ(T ) ounts the average number of points falling in the subset T ⊆ X .Note that if dx1, ..., dxN are in�nitesimal disjoint neighborhoods, then using de�-nitions 1.4 and 1.5 yields:
V

(N)
Ξ (dx1× ...× dxN) =

∞∑

n=0

1

n!

∫

· · ·
∫

︸ ︷︷ ︸

Xn

J
(n+N)
Ξ (dx1, ..dxN , dxN+1, ..., dxN+n) (1.24)Note also that the n-th order produt density v

(n)
Ξ , similarly to the n-th order Janossydensity j

(n)
Ξ , is de�ned on produt spae X n and has unit K−n

X . In fat, produt den-sities v
(n)
Ξ are �loser� to the Janossy densities j

(n)
Ξ than to the probability density

pΞ in the sense that their family omes as a �toolbox�, eah tool being adapted ona standard produt spae X n, rather than as a single yet more ompliated tooladapted for the whole spae F(X ).Interestingly, Mahler proposed in [Mahl 03a℄ a dimensionless �multitarget momentdensity� DΞ, de�ned on F(X ) by:
∀X ∈ F(X ), DΞ(X)

def
=

∫

F(X )

pΞ(X ∪W )µ(dW ) (1.25)
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Table 1.1: Relations between di�erent densitiesSpae X n F(X )Probabilities (unit) j

(n)
Ξ (x1, ..., xn) (K−n

X ) pΞ({x1, ..., xn}) (none)Moments (unit) v
(n)
Ξ (x1, ..., xn) (K−n

X ) DΞ({x1, ..., xn}) (none)Equation (1.25) is perhaps more suggestive than those of the fatorial moments:the moment DΞ({x1, ..., xn}) gives the probability that the realization of the RFSontains at least these points. In parallel to equation (1.19) we an write:
DΞ({x1, ..., xn}) = v

(n)
Ξ (x1, ..., xn)K

n
X (1.26)However, beause Mahler de�nes the PHD DΞ as the intensity (i.e. the �rst orderprodut density) rather than the multitarget moment density (see de�nition 1 in[Mahl 03a℄), the equivalene between the two notions - ∀x ∈ X , DΞ({x}) = DΞ(x)- must be expliitely proven (see theorem 2 in [Mahl 03a℄).1.1.5 Probability generating funtionalsDe�nition and fundamental propertiesThe notion of probability generating funtional (PGFl) is entral to the onstrutionof the PHD [Mahl 03a℄. Coneptually, the PGFl may be seen as a generalization ofthe belief-mass funtional [Vo 08℄:De�nition 1.6. The belief-mass funtional βΞ of RFS Ξ is the funtion given by:

βΞ(T )
def
= P({Ξ(ω) ⊆ T}) = E[1

Ξ(ω)
T ] (1.27)where T is any subset of X , 1T (.) is the indiator funtion de�ned on X and, for anyrealization X = Ξ(ω), 1XT =

∏

x∈X 1T (x). Besides, if Ξ admits a probability density:
βΞ(T ) =

∫

F(X )

1XT pΞ(X)µ(dX) (1.28)Intuitively, the belief-mass funtional ounts the patterns, weighted with their prob-ability of ourene, whose points fall all inside a subset T ⊆ X .The notion of PGFl is similar to the belief-mass but allows a broader range ofmembership funtions than the indiator funtion [Mahl 03a℄:De�nition 1.7. The PGFl GΞ of RFS Ξ is the funtional given by:
GΞ[h]

def
= E[hΞ(ω)] (1.29)
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where h : X → [0 1] is a dimensionless funtion and, for any funtion h, hX =
∏

x∈X h(x) (h∅ = 1 by onvention). Besides, if Ξ admits a probability density pΞ:
GΞ[h] =

∫

F(X )

hXpΞ(X)µ(dX) (1.30)The funtion hmust be dimensionless for the expetation in (1.29) to be well-de�ned.Unless otherwise stated, the argument funtion of a PGFl - or, more generally, ofany funtional desribed in this thesis - is assumed to be dimensionless. Note thesimilarity with the probability generating funtion (PGF):De�nition 1.8. The PGF GX of a random variable X on X is the funtion givenby:
GX(h)

def
= E[hX(ω)] (1.31)where h ∈ [0 1] is a real number.Comparing de�nitions 1.6 and 1.7 yields:

βΞ(T ) = GΞ[1T ] (1.32)that is, the PGFl equals the belief-mass funtional when the funtion h is a subsetindiator funtion. However, the PGFl admits �fuzzy� membership funtions as ar-guments [Mahl 03a℄. Suppose, for example, that sensor j has urrent FOV F j suhthat any target x inside is deteted with probability pjd(.). Further assume that aRFS Ξ desribes the target on�guration at that urrent time. Then, while βΞ(F
j)is the probability that all the targets are inside the FOV, GΞ[p

j
d] is the probabilitythat all the targets are inside the FOV and are deteted by the sensor.The PGFl an be written with the Janossy measures (and Janossy densities if itadmits a density) as follows [Vo 08℄:Property 1.2. Let Ξ be a RFS with PGFl GΞ and Janossy measures {J (n)

Ξ }n∈N.Then:
GΞ[h] =

∞∑

n=0

1

n!
J
(n)
Ξ [h, ..., h] (1.33)where:

J
(n)
Ξ [h1, ..., hn]

def
=

∫

· · ·
∫

h1(x1)...hn(xn)J
(n)
Ξ (dx1, ..., dxn) (1.34)or, if the Janossy measures admit densities:

J
(n)
Ξ [h1, ..., hn] =

∫

· · ·
∫

h1(x1)...hn(xn)j
(n)
Ξ (x1, ..., xn)dx1...dxn (1.35)
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The proof is given in appendix A. The PGFl an be extended to the multivariatease; the following de�nition will be partiularly useful in the extension of the PHD�lter in the multi-sensor ase [Vo 08℄:De�nition 1.9. For any n ∈ [1 N ], let Ξn : Ω→ Xn be a RFS with PGFl GΞn

and
hn : Xn → [0 1]. Then, the joint PGFl GΞ1,...,ΞN

of RFSs Ξ1, ...,ΞN is de�ned by:
GΞ1,...,ΞN

[h1, ..., hN ]
def
= E

[

h
Ξ1(ω)
1 ...h

ΞN (ω)
N

] (1.36)All the notions suh as probability measures and densities, funtional derivativesand suh are easily extended to the multivariate ase. Intuitively, sine eah RFS
Ξn is de�ned on its own spae Xn, the multivariate PGFl an be easily built withthe (univariate) PGFl of eah RFS.The PGFl of a union RFS an be built through the PGFls of the base RFSs [Vo 08℄:Property 1.3. For any n ∈ [1 N ], let Ξn : Ω → X be a RFS with PGFl GΞn

.Then, if the base RFSs Ξn are statistially independent, the PGFl of the union RFS
⋃N

n=1 Ξn is the produt of PGFls GΞi
:

GΞ1∪...∪ΞN
[.] =

N∏

n=1

GΞn
[.] (1.37)The independene between the base RFSs is important here. Intuitively, if they areindependent, the event that their realization have ommon points has probabilityzero and a realization of the union RFS an be deomposed on pairwise disjointrealizations of eah RFS. A sketh of the proof for N = 2 is given here:

GΞ1∪Ξ2 [h] =

∞∑

n=0

1

n!
J
(n)
Ξ1∪Ξ2

[h, ..., h]

=

∞∑

n=0

1

n!

n∑

p=0

(
n

p

)

J
(p)
Ξ1

[h, ..., h]J
(n−p)
Ξ2

[h, ..., h]

=

∞∑

n=0

n∑

p=0

1

p!(n− p)!
J
(p)
Ξ1

[h, ..., h]J
(n−p)
Ξ2

[h, ..., h]
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GΞ1∪Ξ2 [h] =

∞∑

p=0

∞∑

n=p

1

p!(n− p)!
J
(p)
Ξ1

[h, ..., h]J
(n−p)
Ξ2

[h, ..., h]

=

∞∑

p=0

1

p!
J
(p)
Ξ1

[h, ..., h]

(
∞∑

n=p

1

(n− p)!
J
(n−p)
Ξ2

[h, ..., h]

)

=

(
∞∑

p=0

1

p!
J
(p)
Ξ1

[h, ..., h]

)(
∞∑

n=0

1

n!
J
(n)
Ξ2

[h, ..., h]

)

= GΞ1[h]GΞ2 [h]One may suppose that, if RFSs Ξ1 and Ξ2 were not independent, the �split� of theJanossy measure of the union RFS would not have been simple and the expression ofthe joint PGFl would have been more ompliated. In the design of the PHD �lter,though, union RFS will always be built as union of independent RFSs (see hapter2). For simpliity's sake, property 1.3 is admitted in the general ase.Funtional derivativesThe notion of funtional derivative is fundamental in RFS theory. Working on PGFlsand their derivatives allows the omputation of probability densities, moment den-sities, Janossy densities and suh; it is therefore possible to study the RFS from the�PGFl point of view� and deals with funtions de�ned on the state spae X ratherthan densities and measures de�ned on the muh �larger� spae F(X ).In this thesis the funtional derivatives are de�ned and studied with the notationsgiven by [Vo 08℄, but we will gradually hange to the muh lighter Mahler's notations[Mahl 03a℄, whih are very easy to manipulate in the onstrution of the PHD �lter(see hapter 2).De�nition 1.10. Let G be a funtional and h, {gn}n∈N real-valued funtions de�nedon X . The n-th order funtional derivatives, respetive to h and in diretions gi, arede�ned by:
G(1)[h; g1] = lim

ǫ→0+

G[h+ ǫg1]−G[h]

ǫ1
(1.38)and, reursively:

G(n)[h; g1, ..., gn] = lim
ǫ→0+

G(n−1)[h+ ǫgn; g1, ..., gn−1]−G(n−1)[h; g1, ..., gn−1]

ǫ
(1.39)Besides, G(0)[h] = G[h] by onvention.Pay attention to the fat that, unlike the argument funtion h, the diretions gineed not be dimensionless. If g1 has unit K−1

X , sine h + ǫg1 must be dimensionless
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in (1.38), ǫ has unit KX and thus G(1)[h; g1] has unit K−1

X . In this thesis, unlessotherwise spei�ed, the diretion funtions are assumed dimensionless in order tokeep the suessive derivations of a PGFl dimensionless.The next result is fundamental beause it links the n-th order derivative of a PGFlwith the n-th order Janossy measure and the n-th order fatorial moment. First, alemma is required:Lemma 1.1. Let Ξ be a RFS with PGFL GΞ and Janossy measures {J (n)
Ξ }n∈N. Let

{gn}n∈N be real-valued funtions de�ned on X in [0 1]. Then:
G

(n)
Ξ [h; g1, ..., gn] =

∞∑

p=0

1

p!
J
(n+p)
Ξ [g1, ..., gn, h, ...h

︸ ︷︷ ︸

p

] (1.40)The proof is given in appendix A. Then follows the main result, adapted from [Vo 08℄:Property 1.4. Let Ξ be a RFS with PGFL GΞ, Janossy measures {J (n)
Ξ }n∈N andfatorial moments {V (n)

Ξ }n∈N. Let {gn}n∈N be a family of real-valued funtions de�nedon X in [0 1]. Then:
G

(n)
Ξ [0; g1, ..., gn] = J

(n)
Ξ [g1, ..., gn] (1.41)

G
(n)
Ξ [1; g1, ..., gn] = V

(n)
Ξ [g1, ..., gn] (1.42)If Ξ admits a probability density, then:

G
(n)
Ξ [0; δx1KX , ..., δxn

KX ] = j
(n)
Ξ (x1, ..., xn)K

n
X (1.43)

G
(n)
Ξ [1; δx1KX , ..., δxn

KX ] = v
(n)
Ξ (x1, ..., xn)K

n
X (1.44)where {xn}n∈N is a olletion of points in X and δx(.) is the Dira delta funtion.The proof is given in appendix A. Dira funtions in equations (1.43) and (1.44) aremerely a pratial notation allowing an easier writing of set derivations. For example,result (1.43) is easily reovered with the Delta notations. Indeed, aording to (1.41):

G
(n)
Ξ [0; δy1KX , ..., δynKX ] = J

(n)
Ξ [δy1KX , ..., δynKX ]

=

∫

· · ·
∫

δy1(x1)KX ...δyn(xn)KXJ
(n)
Ξ (dx1, ..., dxn)

=

∫

· · ·
∫

δy1(x1)...δyn(xn)j
(n)
Ξ (x1, ..., xn)K

n
Xdx1...dxn

= j
(n)
Ξ (y1, ..., yn)K

n
X
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Sine the derivation in dimensionless diretions is favored in this thesis and the Diradelta funtion has unit K−1

X , units terms are expliit in equation (1.43) - unlike theequivalent form used by Vo [Vo 08℄:
G

(n)
Ξ [0; δx1, ..., δxn

] = j
(n)
Ξ (x1, ..., xn)In the PHD framework PGFls are derivated exlusively in the diretion of Dira deltafuntions, thus the following notations:Notation 1.1. For any subset {x1, ..., xn} ⊂ X :

δn

δx1....δxn
GΞ[h]

not
= G

(n)
Ξ [h; δx1KX , ..., δxn

KX ] (1.45)
δ

δ{x1, ..., xn}
GΞ[h]

not
= G

(n)
Ξ [h; δx1KX , ..., δxn

KX ] (1.46)That is, the δ notation will be used for the �derivation� of funtionals in pointsfrom the state spae X (or observation spaes Zj). The same notation will be usedon multivariate funtionals when there is no ambiguity on the funtion whih isderivated. For example, if G[g, h] is the funtional where g is de�ned on Z and his de�ned on X , then δ2

δxδz
G[g, h] - or, equivalently, δ2

δzδx
G[g, h] - is the funtionalderivative of G[g, h], respetive to g, in diretion δz(.)KZ and, respetive to h, indiretion δx(.)KX .The lassial derivation rules being provided by the FISST alulus rules for fun-tional derivations [Mahl 07b℄, the pseudo-derivation δ will be often onsidered as astandard derivation for alulus purposes, even though the underlying Dira deltafuntion indues spei� properties as seen in the following paragraph. Note thatequation (1.43) implies that the point order in a derivation is arbitrary - i.e.

δ2

δx1δx2
GΞ[h] =

δ2

δx2δx1
GΞ[h] - and that any PGFl derivated twie on the same pointvanishes - i.e. δ2

δx1δx1
GΞ[h] = 0.
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Calulus propertiesThe �rst property provides two useful rules for general alulus on funtionals[Mahl 03a, Mahl 07b℄:Property 1.5. Let G be a funtional, x0 a �xed point in X and p a real-valuedfuntion on X . If, for any real-valued funtion h de�ned on X , G[h] = h(x0), then:

∀x ∈ X , δG

δx
[h] = δx0(x)KX (1.47)If, for any real-valued funtion h de�ned on X , G[h] =

∫

X
h(x)p(x)dx, then:

∀x ∈ X , δG

δx
[h] = p(x)KX (1.48)The proof is given in appendix A. Note that in the property 1.5 the funtional Gmay be seen as the PGFl of a very simple RFS Ξ whose Janossy densities are all zerobut the �rst order whih is j

(1)
Ξ (.) = δx0(.) in equation (1.47) and j

(1)
Ξ (.) = p(.) inequation (1.48). Not surprinsingly, the argument funtion h does not appear in anyof the two results: the assoiated RFS having trivial ardinality distributions suhthat eah realization has exatly one point, h appears in the zero order term (in ǫ) ofthe derivation proess and is �killed� in the di�erene G[h+ǫδx]−G[h] (see the prooffor more details). Beause h an be arbitrary set at 0 or 1, it shows that the no-tions of �rst order Janossy density and intensity are idential for �one-element� RFSs.Using the fatorial moments is sometimes an easy way to transform a set inte-gral over on F(X ) to a lassial integral de�ned on a �smaller� spae (adapted from[Mahl 03a℄):Property 1.6. Let Ξ be a RFS with probability density pΞ and intensity vΞ. Then,for any h : X → [0 1]:

∫

F(X )

hXpΞ(X)µ(dX) =

∫

X

h(x)vΞ(x)dx (1.49)where hX =
∑

x∈X h(x) (h∅ = 0). For any point x0 ∈ X , setting h(.) = δx0(.)KXgives: ∫

F(X )

δX(x0)pΞ(X)µ(dX) = vΞ(x0) (1.50)where δX(x0) =
∑

x∈X δx(x0) (δ∅ = 0).The proof is given in appendix A. The spirit of this property is the following. Ratherthan averaging the sum of a funtion h over eah point of every set, weighted withthe probability of ourene of that set, one an average h over every point, weighted
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with the intensity of this point, i.e. the probability of ourene of all sets ontainingthis point.Figure 1.2 Illustration of equation (1.50)

Note that result (1.49) an be extended to higher order of fatorial moments. Forexample, the seond order equivalent would be:
∫

F(X )

hX,XpΞ(X)µ(dX) =

∫

X 2

h(x)h(y)v
(2)
Ξ (x, y)dxdy (1.51)where hX,X =

∑

xi,xj∈X
i<j

h(xi)h(xj).The last property is a �tehnial� result pertaining to the omposition of intensities(adapted from [Mahl 03a℄):Property 1.7. Let Φ[.] be a funtional transformation on the real-valued funtions
h : X → [0 1] suh that for any h, Φ(h) : X → [0 1] and Φ[1] = 1. Let Ξ be a RFSwith PGFl GΞ, probability density pΞ and intensity vΞ. Assuming that there exist:
• a RFS ΞΦ with PGFl GΞΦ

[.] = GΞ[Φ[.]] and intensity vΞΦ
;

• for any x ∈ X , a RFS ΞΦ,x with PGFl GΞΦ,x
[.] = Φ[.](x) and intensity vΞΦ,x

.then:
∀x0 ∈ X , vΞΦ

(x0) =

∫

X

vΞΦ,x
(x0)vΞ(x)dx (1.52)The proof is given in appendix A.
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1.2 Multi-target �ltering within the RFS framework1.2.1 PrinipleThe RFS theory naturally applies to the modelization of a multi-target trakingproblem, sine there are a �nite number of points - the target states - whose on�g-uration in a spae - the target state spae - varies through time.Figure 1.3 Priniple of multi-target set-based representation

Easily enough, the states xi,k of the true targets at time k an be enapsulated in asingle multi-objet state Xk ∈ F(X ) as shown in �gure 1.3:
Xk =

⋃

i∈T (k)

xi,k (1.53)where T (k) ∈ N is the label set of existing targets at time k (note that the labeling ofthe true targets is unique, i.e. even if a target dies its label will not be used for futuretargets). Likewise, the measurements zji,k produed at time k an be enapsulatedin a single multi-objet measurement Zk ∈
⊔S

j=1F(Zj):
Zk =

S⊔

j=1

Zj
k =

S⊔

j=1

mj
k⋃

i=1

zji,k (1.54)where mj
k ∈ N is the number of urrent measurements produed by sensor j at time

k. Note that this set-based representation is valid under the assumptions that, atany time k, no targets may share the same state - as already stated in setion 1.1 -nor measurements from the same sensor share the same value.
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Figure 1.4 Priniple of RFS �ltering (time k + 1)

As indiated by the data �ow (�gure 1), the RFS-based �ltering proess follows thelassial Bayesian sheme in whih one proeed with time update and data updatesteps sequentially (see �gure 1.4). In the �ltering proess, there are four RFSs ofinterest at eah time step:De�nition 1.11. At any time k + 1, there are four multi-objet RFSs of interest:1. The (multi-target) transition RFS ΞT
k,k+1(X), with probability density

pΞT
k,k+1(X)(.) (or pΞT

k,k+1
(.|X)), desribes the target on�guration at time k + 1 ondi-tionally on the (estimated) target on�guration X at time k.2. The (multi-target) predited RFS Ξk+1|k, with probability density pΞk+1|k

(.|Z1:k),desribes the target on�guration at time k + 1 onditionally on the measurementsprodued up to time k.3. The (multi-measurement) observation RFS Σk+1(X), with probability density
pΣk+1(X)(.) (or pΣk+1

(.|X)), desribes the measurement on�guration at time k + 1onditionally on the (estimated) target on�guration X at time k + 1.4. The (multi-target) posterior RFS Ξk+1|k+1, with probability density
pΞk+1|k+1

(.|Z1:k+1), desribes the target on�guration at time k + 1 onditionally onthe measurements produed up to time k + 1.
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The following proposition desribes the priniple of the RFS-based multi-target �lter[Mahl 02℄:Proposition 1.1. Assuming that:
• the transition densities {pΞT

k,k+1
}k>0 are known;

• the observation densities {pΣk+1
(.|X)}k>0 are known for any set X;

• for any k > 1, the set of urrent measurements Zk is available at time k;
• an initial posterior density pΞ1|0

is given.then the sequenes of predited and posterior densities are given by the time updateand data update equations:
pΞk+1|k

(.|Z1:k) =

∫

F(X )

pΞT
k,k+1

(.|X)pΞk|k
(X|Z1:k)µ(dX) (1.55)

pΞk+1|k+1
(.|Z1:k+1) =

pΣk+1
(Zk+1|.)pΞk+1|k

(.|Z1:k)
∫

F(X )
pΣk+1

(Zk+1|X)pΞk+1|k
(X|Z1:k)µ(dX)

(1.56)This result is the extension of the well-known Bayes equations to the RFS frame-work. Note that the required assumptions are usual in this ontext. Notably, thetransition densities are assumed to be known through the topography of the surveil-lane region, some heuristis about the typial behavior of targets, et. Likewise,the observation densities are known through the well identi�ed harateristis of thesensors - probability of detetion, false alarm rate, statistial noise, et.1.2.2 A tratable approximation: the PHD �lterImplementing a multi-target �lter based on the Bayesian reursion provided byproposition 1.1 is quite hallenging and generally intratable. The main souresof untratability are:
• the design of the transition and observation densities;
• the omputation of the set integrals in the update equations (1.55) and (1.56).Reall from setion 1.2.1 that the transition densities {pΞT

k,k+1
}k60 are multi-targetdensities that empnody the proesses of target birth, motion, spawning - targetreation onditioned on the state of an origin target, for example in the splittingof a onvoy - and death. Therefore, in order to ompute the probability of tran-sition pΞT

k,k+1
(X1|X2), one must over all the possibilities that may lead from themulti-target set X1 to X2. Likewise, the observation densities {pΣk+1

(.|Xk+1|k)} are
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multi-measurement densities enapsulating the proesses of target detetion, dataaquisition and false alarm, and are exeedingly di�ult to design in the generalase.Figure 1.5 Transition from multi-target set X1 to X2 (target birth in green, targetdeath in red)

Additional assumptions on the target model (e.g. independene of targets) and/orthe observation proess (e.g. independene of data aquisition proesses, maximumnumber of measurement per deteted target, et.) are usually neessary in order tosimplify the design of the transition and observation densities. The spei� assump-tions required for the design of the PHD �lter are fully detailed in hapter 2.The omputation of set integrals is inherently tedious, sine the µ measure (1.9)overs all the possible number of elements. For example, evaluating the denom-inator in (1.56) requires the omputation of observation pΣk+1
(Z|.) and predited

pΞk+1|k
(.|Z1:k) densities for every possible multi-target set X , whih overs any pos-sible target number and, for a given number, any possible target states.The main motivation behind the PHD �lter is to shift the problem from the umber-some �full spae� F(X ) to the �lighter spae� X by propagating intensities vΞ ratherthan the �full� densities pΞ (adapted from [Mahl 03a℄):De�nition 1.12. The PHD of a RFS Ξ, if it exists, is its intensity vΞ.Equation (1.44) with the delta notation (1.45) immediately yields an expression ofthe PHD as a set derivative:

∀x ∈ X, vΞ(x) =
δGΞ

δx
[1]K−1

X (1.57)
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Note that the unit term K−1

X does not appear in Vo's and Mahler's work where thederivated PGFl has already unit K−1
X .The PHD-based �lter in the single-sensor ase only is given by the following propo-sition (adapted from [Mahl 03a℄):Proposition 1.2. Under the PHD �ltering assumptions (tables 2.1 and 2.2), andassuming that there is only one sensor, the sequenes of predited and posterior PHDsare given by the time update and data update equations:

vΞk+1|k
(.|Z1:k)

=

∫

X

(
psk,k+1(x)f

t
k,k+1(.|x) + λs

k,k+1(x)sk,k+1(.|x)
)
vΞk|k

(x|Z1:k)dx+ λb
k,k+1bk,k+1(.)(1.58)

vΞk+1|k+1
(.|Z1:k+1)

=



1− pdk+1(.) +
∑

z∈Zk+1

pdk+1(.)L
z
k+1(.)

λc
k+1ck+1(z) + vΞk+1|k

[pdk+1L
z
k+1]



 vΞk+1|k
(.|Z1:k) (1.59)where:

• psk,k+1(.) is the (single-target) survival probability;
• f t

k,k+1(.|x) is the (single-target) transition density onditionally on target state
x;
• λs

k,k+1(x)sk,k+1(.|x) is the (single-target) spawning intensity onditionally ontarget state x;
• λb

k,k+1bk,k+1(.) is the (single-target) birth intensity;
• pdk+1(.) is the (single-target) detetion probability;
• Lz

k+1(.) is the (single-target) likelihood in measurement z;
• λc

k+1ck+1(.) is the (single-measurement) false alarm intensity;
• vΞk+1|k

[.] is the funtional vΞk+1|k
[h]

def
=
∫

X
h(x)vΞk+1|k

(x|Z1:k)dx.All these funtions will be spei�ed in hapter 2, devoted to the rigorous onstrutionof the PHD. Nevertheless, the equations above show the main adavantage of thePHD �lter: all set-based equations and integrals have been replaed by lassialequivalents. In fat, many funtions appearing in equations (1.58) and (1.59) - suh
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as likelihoods, probabilities of survival or single-target transition funtions - areommon in traking tehniques based on single-target Bayes �lter. Other funtionssuh as the birth density are more spei� to the RFS framework. Besides, underthe PHD �ltering assumptions (see hapter 2), the multi-target RFSs Ξ (preditedor posterior) are haraterized by their PHDs:Proposition 1.3. Under the PHD �ltering assumptions (tables 2.1 and 2.2), at anytime k:
• the predited (resp. posterior) estimated target number is
Nk+1|k =

∫

X
vΞk+1|k

(x|Z1:k)dx (resp. Nk+1|k+1 =
∫

X
vΞk+1|k+1

(x|Z1:k+1)dx);
• the predited (resp. posterior) targets are i.i.d. aording to vΞk+1|k

(.|Z1:k)

Nk+1|k
(resp.

vΞk+1|k+1
(.|Z1:k+1)

Nk+1|k+1
).Propagating the PHD of the multi-target RFSs Ξ using proposition 1.2 then extrat-ing the information on targets using proposition 1.3 is the essene of the PHD-based�lter in detetion and traking problems.Figure 1.6 Illustration of proposition (1.3)

Note that the PHD �lter is designed for the single-sensor ase only. Reent papersof Mahler [Mahl 09a, Mahl 09b℄ provide a generalization to the two-sensor ase, butto the author's knowledge no extension to the multi-sensor ase has been establishedyet.1.2.3 A brief omparison of multi-target �ltering tehniquesThe topi of this setion is not a pratial omparison of �ltering tehniques basedon performane results, but rather the desription of the di�erent tehniques ona theoretial level in order to help the reader grasping the philosphy behind theRFS-based �lter with respet to more traditional approahes.
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Classial trak-based multi-target �ltersThe ommon point in the lassial trak-based traking tehniques is that the �lteredstate is a olletion of traks, i.e. random objets whose behavior are as lose aspossible to the real targets' ones, suh that eah trak is assoiated to an eventual realtarget. A trak is usually omposed of an estimation of the assoiated target's state,de�ned on the same spae X , and another objet that quanti�es the unertaintyregarding the estimation, usually a ovariane matrix. Any trak-based �lter mustdeal with the three following issues:
• the reation of new traks;
• the data assoiation and the update of existing traks;
• the deletion of existing traks.Arguably, the main di�ulty arises in the data assoiation proess whih deals withthe assoiation between living traks and new measurements, espeially in a multi-target and/or luttered environment where the trak-to-measurement step may betedious. The methods mainly di�er through their data assoiation proess.The multiple hypothesis traker (MHT) is a di�ered deision approah to the dataassoiation problem whih fouses on updating the traks aording to the most prob-able measurement-to-trak assoiation [Blai 00, Vo 08℄. Whenever a new olletionof measurements is available, all measurement-to-trak hypotheses are onsidered(with living targets as well as new ones) and assoiated to a probability denoting itslikelihood among other hypotheses. Previous hypotheses are also onsidered, theirprobilities being updated with the Bayes rule. Thus, at eah time step, a full treeof possible hypothesis is maintained, and the traks are updated using a standardKalman �lter with the most probable assoiation hypothesis. Keeping trae of thetree of all hypothesis allows the traker to �hange opinion� and to onsider an assoi-ation that was previously disarded if its assoiated hypothesis'probability inreases.The main drawbak of this method is its omputational ost, whih inreases dra-matially with the number of targets and/or the number of measurements. It anbe redued by introduing a gating proess [Blai 00℄, in whih assoiations betweenan estimated target state and any measurement whose distane with the target fallsabove a given treshold is immediately disarded. On a more pratial side, the dif-fered deision approah may be a soure of �disontinuity� in the display of trakstates [Blai 00℄: if the traker hanges the hain of previous assoiations due to areent update of the assoiated probabilities, the trak number and trak states mayhange dramatially from one time step to the next, induing a �disontinuous� dis-play that may appear errati to the operator.
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The joint probabilisti data assoiation (JPDA) is another, more �ontinuous� ap-proah [Blai 00℄. Similarly to the MHT approah, assoiation between existing traksand new measurements are given probabilities aording to their likelihood; then,eah trak is updated with a Kalman update using an average of all the new mea-surements weighted with their assoiation probabilities. In ontrast to the MHTapproah, there is no �going bak� sine every possible assoiation is onsidered inthe trak update; therefore, there is no need to maintain a full tree of hypotheses.Note that some gating may be used as well in order to disard unlikely hypotheses inthe averaging proess. Not surprisingly, the JPDA approah is signi�antly lighterthat the MHT [Blai 00℄, but has poorer performanes in lose targets environmentsbeause the averaging step tends to merge nearby traks. Besides, the JPDA isdesigned to work with a known number of targets sine eah assoiation hypothesisonsiders that a measurement either originates from one of the existing traks or isa false alarm. Note also that, unlike the MHT approah whih inorporates targetbirth and target death proesses in the tree of possible hypotheses, the JPDA fouseson the update on living traks with new measurements and requires additionnal me-hanis for trak reation and deletion. In its most simpli�ed form, only the nearestmeasurement is taken into aount in the trak update and this method is known asthe nearest neighbor (NN-JPDA or NN) approah.The joint multi-target probability density �lterA more reent approah, the joint multi-target probability density (JMPD), aims atavoiding the ostly data assoiation proedures by propagating joint multi-targetdensities of the form p(X, T |Z), where X = {x1, ..., xT} is a olletion of partitions,
T is the estimated target number and eah partition orresponds to an estimatedtarget's state [Kreu 05℄. This formulation seems quite lose to the RFS formulation;indeed, Kreuher et al. explain in [Kreu 05℄ that the JMPD method an be expressedin the FISST framework. This laim was atually made made in earlier papers butwas ontested by Mahler [Mahl 03b℄. The JMPD framework looks promising beauseit allows the representation of a broader range of multi-target on�guration than theRFS does, sine X = {x1, ..., xT } is a olletion in whih several partitions may sharethe same state. However, the partile implementation proposed by Kreuher et al.[Kreu 04, Kreu 05℄ remains unlear to the author. The priniple is to propagateweighted partiles Xp = {xp,1, ..., xp,T (p)}, eah partile arrying its own estimationof the target number and the target states. The number of partitions in a partilean vary in the time update step to aount for the birth and/or death of the targets,the weight of eah partile is updated in the data update step using an extendedBayes rule for joint densities. The problem lies in the joint estimation of the targetnumber and the target states. The estimated target number is the partition numberwhih is shared by the largest number of partiles, their weight being taken intoaount. Then, eah estimated target state is omputed as the weighted average
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of partitions assoiated to this target among all the partiles. But, sine there isnot labeling among the partitions in a given partile, one must be sure that the
j-th partition in eah partile is the estimation of the same target. A K-meansalgorithm is proposed in order to ensure that the partitions are properly reorderedbefore the estimation step [Kreu 05℄, but it is unlear if this work properly amongpartiles with di�erent size or among partiles with the same size but with partitionsrepresenting di�erent targets. For example, onsider two true targets x1 and x2 attime k, two partiles Xk

1 = {xk
1,1x

k
1,2} with weight wk

1 and Xk
2 = {xk

2,1x
k
2,2} withweight wk

2 . Further assume that xk
1,1 and xk

2,1 are estimations from target x1, xk
1,2and xk

2,2 estimations from target x2. In the time update step, xk
1,1 evolves to xk+1

1,1 ,
xk
1,2 evolves to xk+1

1,2 and xk
2,1 evolves to xk+1

2,1 aording to the target motion model,but xk
2,2 is deleted (to aount for the death of targets) and another partition xk+1

2,2is reated (to aount for the birth of targets). Then, aording to the author'sunderstanding of the JMPD mehanisms, the K-means algorithm is likely to keepthe partition order idential in both partiles and onlude that partitions xk+1
1,1 and

xk+1
2,1 are estimations of the same target - whih is orret - and partitions xk+1

1,1 and
xk+1
2,1 as well - whih is inorret.Comparison with the RFS-based �lterCompared to the trak-based �lters and the JMPD �lter (although to a lesser ex-tent), the greatest asset of the RFS-based �lter 1.1 seems to be its �ompletedness�.Beause it is a well-built extension of the Bayes rule to rigorously de�ned randomobjets, the propagation of multi-target densities with the time and data updateequations (1.55) and (1.56) requires no heuristis inherent to the data assoiationstep in the MHT and/or the JPDA, or the trak reation and deletion proessesin the JPDA. The RFS representation allows - at least in theory - the rigorousdesription of ompliated multi-target on�gurations, for example strong pairwiseinteration between targets, whether in birth, motion, spawning or death proesses.In other words, the RFS approah may appear more �rigorous� and �omplete� thanother methods sine it is based on rigorously de�ned random objets and mathe-matial onepts that allows for the representation of a broad range of detetionand traking problems. Arguably, the PHD is more adapted than other methods forrepresenting the unertainty in the estimation of the target number. For example,if the integral of the PHD in a given subset T ∈ X yields 1.5 (see �gure 1.6 foran illustration of the PHD), then it means that the presene of one or two targetsinside T is likely, thereby �entiing� the sensor manager to fous some resoures inthis region in order to re�ne the estimation of the target number.This main asset of the RFS method is perhaps also its greatest weakness: theomplexity of the RFS theory makes the equations (1.55) and (1.56) intratable,
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exept in speial ases - e.g. if the target number is �xed. The PHD approximation(see previous setion 1.2.2) enjoyed a wide popularity in the last years, notably be-ause the �ltering equations (1.58) and (1.59) an be implemented with well-knownmethods suh as Gaussian mixtures [Vo 06℄ or SMC methods [Vo 05℄. Moreover,the onstrution of the PHD �lter being rigorously derived from the RFS �lter asshown in the next hapter, the required assumptions in the PHD framework arelearly stated. Some of these assumptions are fairly ommon, as the independeneof targets, others are more di�ult to grasp, suh as the Poisson assumption onthe predited and posterior multi-target RFS. The onsequene is that it is perhapsmore di�ult to de�ne the lass of multi-target traking problems for whih thePHD �lter is well-adapted than in the MHT or JPDA ases. A ommon di�ultyfaed with a PHD-based traker is the unstability of the target number estimation[Erdi 05℄. Another approximation of the RFS �lter has been reently proposed, theardinalized probability hypothesis density (CPHD) [Mahl 07a, Mahl 07℄. Some ofthe assumptions of the PHD are relaxed, allowing a broader range of RFSs to �t forthe predited and posterior RFS. Consequently, these multi-target RFSs annot beharaterized by their sole PHD (that is, the assumptions given in proposition 1.3do not hold anymore), and their ardinality distributions, in addition to their PHD,must be propagated. A rigorous onstrution of the CPHD an be found in Vo's the-sis [Vo 08℄ and a pratial implementation in [Vo 07℄. The CPHD �lter propagatesmore information than the PHD �lter at the ost of an inreased omputational ost,but Mahler's reent work [Mahl 10b℄ fouses on an more tratable approximation ofthe CPHD.It should also be noted that the RFS �lter (as well as the PHD or the CPHD �lters),by onstrution, su�ers some limitations that are not shared by the trak-based�ltering methods. Unlike trak-based methods that diretly provide a olletionof traks, RFS-based �lters provide probability densities (RFS �lter) or intensities(PHD �lter) from whih traks must be extrated, if only for display purposes. Figure1.6 illustrates the highest peak extration method for the PHD �lter. Reall fromproposition 1.3 that the expeted target number N of the multi-target RFS is givenby the integral of the PHD over the whole state spae (the grey area in piture 1.6),the extrated target number N̂ is hosen as the losest integer to N , and the targetstates are extrated at the N̂ highest peaks of the PHD. Another method, based onthe extration of �parts� of the PHD that are worth 1 in �target weight�, is givenin [Tobi 08℄; the extration method used in this thesis will be based on the latterand presented in the hapter related to sensor management (see hapter 3). In anyase the extration step, although fairly independent from the �ltering proess, isan important part of the whole proess whih an shape the overall performane ofthe traker.
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Another limitation of the RFS-based methods, on a more fundamental level, is theabsene of trak history. In trak-based methods, keeping previous �ltered statesnaturally provides an history for eah trak (see blak dotted lines on �gure 1.4).The equivalent onept in RFS-based methods is a set history but, sine the elementorder in sets is arbitrary, one annot extrat histories for individual traks from theolletion of previous �ltered states (whether probability densities in the RFS �lteror intensities in the PHD �lter). Of ourse, trak histories may be inferred fromsuessives sets in some ases. For example, given the sets X̂k|k and X̂k+1|k in thesituation illustrated in �gure 1.4, one may safely assume that x̂i+2,k+1|k is a new-born trak and that x̂i+1,k+1|k (resp. x̂i,k+1|k) denotes the same target as x̂i+1,k|k(resp. x̂i,k|k) beause the targets are away from eah other, but retraing historiesin the ase of losed traks may beome inreasingly ompliated. One must keep inmind that, unlike trak-based methods, RFS-based methods do not propagate trakhistories. Provided that the partitions ould be orretly labeled in eah partition,the JMPD tehnique should be able to propagate trak histories as well, but as ex-plained before this seems to be hardly the ase. A labelisation tehnique adapted tothe PHD is proposed in [Lin 06℄.An interesting �eld of study is the design of hybrid �lters gathering the strengths ofdi�erent multi-target �ltering tehniques. For example, reent work of Pollard et al.[Poll 09, Poll 10℄ fouses on an hybrid �lter ombining the CPHD �lter for its e�-eny in target detetion with the MHT �lter for its auray in target loalization.1.3 Performane metris1.3.1 Kullbak-Leibler divergeneThe Kullbak-Leibler divergene is a measure of di�erene between two distributions[Aoki 11℄:

DKL(p||q) =
∫

p(x) log
p(x)

q(x)
dx (1.60)where per onvention log p(x)

q(x)
= 0 if p(x) = q(x) = 0 and log p(x)

q(x)
= ∞ if p(x) > 0and q(x) = 0.The KL divergene is losely linked to the information theory and has been usedas a way to estimate an information gain prior to real observations in sensor man-agement problems. Typially, if q(.) denotes the urrent knowledge of the observedsystem, p1(.) (resp. p2(.)) the estimation of the future knowledge should sensor 1(resp. sensor 2) be used, DKL(p1||q) 6 DKL(p2||q) ould indiate that using sensor 2is likely to be the more informative. Exploiting the KL divergene as a disriminat-ing riteria in sensor management is not a reent idea; notably, a disretized version
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appears in Kastella's work [Kast 97℄. In more reent works [Kreu 05, Rist 11a℄, theattention seems to have shifted to its generalized version, the Rényi divergene, eventhough Aoki et al. [Aoki 11℄ argued that its proper parametrization requires a solidknowledge of its theoretial properties.In any ase, the KL divergene in this thesis is not used as a sensor managementtool, but solely as an o�ine metri in order to hek a posteriori the equality betweentwo PHDs (see hapter 4).1.3.2 OSPA distaneThe Optimal Subpattern Assignment (OSPA) is a distane whih aims at quantifyingthe distane between two �nite sets. It was spei�ally reated by Vo for multi-objetestimation purposes as an improvement of an previous distane on �nite sets, theWasserstein metri [Ho� 04℄, whih su�ers from several inonsistenies (see Vo'sthesis [Vo 08℄ for more details). For any p 6 1 and c > 0, the OPSA distaneof order p with ut-o� c is the funtion de�ned, for any subsets X = {x1, ..., xm},
Y = {y1, ..., yn} of X , by:

d̄(c)p (X, Y ) =







0 (m = n = 0)
(

1

n

(

min
π∈Πn

m∑

i=1

d(c)(xi, yπ(i))
p + cp(n−m)

))1/p

m 6 n

d̄(c)p (Y,X) m > n(1.61)where d
(c)
X (., .) = min(dX (., .), c) is the distane in X that is ut o� at c. Theonstrution of the OSPA distane is quite intuitive:1. Math eah point of the smallest set to those of the largest set so that the totaldistane is minimized (minπ∈Πn

∑m
i=1 d

(c)(xi, yπ(i))
p);2. Penalize the di�erene in ardinality between the two sets (cp(n−m)).In other words, the OSPA metri �nds the best math between the smallest set andthe same number of points in the largest set, and onsiders that the remaining pointsare �far away� - that is, their distane to any other point exeeds c.Example 1.3. Consider two �nite subsets of X , X = {x1, x2} and Y = {y1, y2, y3}with the following on�guration:
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Figure 1.7 Example of OSPA distane
Suppose that one is interested in the OSPA distane of order one. From the on�g-uration of points it seems lear that:
• y2 is the isolated point;
• dX (x2, y3) + dX (x1, y1) > dX (x1, y3) + dX (x2, y1).Thus, if the ut-o� parameter c is large enough:

d
(c)
X (x2, y3) + d

(c)
X (x1, y1) > d

(c)
X (x1, y3) + d

(c)
X (x2, y1) (1.62)That is, the OSPA mathes x1 with y3 and x2 with y1 (blak dotted lines on �gure1.7) and the distane is:

d̄
(c)
1 (X, Y ) =

1

3

(

d
(c)
X (x1, y3) + d

(c)
X (x2, y1) + c

) (1.63)However, depending on the distane values, there may exist ut-o� values dX (x1, y3) <
c′ < dX (x2, y3) suh that:

c′ + d
(c′)
X (x1, y1) 6 d

(c′)
X (x1, y3) + d

(c′)
X (x2, y1) (1.64)That is, the OSPA parametrized as suh mathes x1 with y1 but onsiders x2 and y3too far away to be mathed (red dotted line on �gure 1.7). The distane is then:

d̄(c
′)

p (X, Y ) =
1

3

(

d
(c′)
X (x1, y1) + 2c′

) (1.65)The OSPA metri is obviously appealing in the detetion and traking problems be-ause it take into aount both loalization and ardinality errors, thus enapsulatingthe di�erenes between, say, the set of true targets and the set of estimated targetsinto a single parameter. However, exploiting this metri raises several questions:
• What are the �proper values� for the order p and the ut-o� distane c?;
• How should be interpreted the value of the OSPA distane?Vo [Vo 08℄ provides leads for the proper parametrization of the metri. The p-thorder average is usual in the onstrution of distane and plays a similar role inthe OSPA distane: as p inreases, d̄(c)p beomes inreasingly sensitive to isolatedpoints and thus penalizes more and more the �absurd� estimates. The value of the
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ut-o� parameter c is more di�ult to grasp. As explained by Vo, smaller values of
c emphasize on the distane between assoiated points, while larger values fous onthe di�erene in the number of points. That is, the ut-o� parameter c balanes thepenalization between loalization and ardinality errors. In order to keep a balanedmetri, Vo advises to set the ut-o� parameter signi�antly larger than a loalizationerror, but signi�antly smaller than the maximum distane between objets. In thisthesis, the typial OSPA parameters would be p = 2 and c = 100.Beause the OSPA metri aggregates all the di�erenes between two sets in a singlevalue, it is somewhat di�ult to analyze the OSPA distane without a referene.Moreover, it an be easily shown that:

∀X, ∀Y, ∀p, 0 6 d̄(c)p (X, Y ) 6 c (1.66)That is, unlike usual metris, the OSPA distane is apped by the ut-o� parameter.Thus, as suggested by Vo, the OSPA distane might as well be evaluated with itsmaximum value as a referene (�the loser to the ut-o� parameter c, the worst theestimation is�) rather than its minimum value (�the loser to zero, the better theestimation is�). In any ase, the author found it safer to exploit the OSPA distanesolely as a omparison between di�erent estimations and not as an objetive evalu-ation of a single estimation.Although the OSPA distane is a powerful metri, Vo et al. [Vo 05℄ argued thatit has an undesirable e�et when used in the PHD framework. Indeed, one must ex-trat targets from the PHD prior to its evaluation with the OSPA (or the Wassertein)distane sine a density annot be used as input. Thus, the evaluation of the PHDthrough the OSPA distane depends on the target extration proess, and this de-pendene is generally seen as undesirable. Another limit of the OSPA distane isits inadequay for the evaluation of labeled set (i.e. set of traks where eah trakis assoiated to an eventual true target). That is, the OSPA will not penalize thefat that the i-th trak is mathed with the j-th true target at iteration k, butis later mathed with a di�erent true target. The extension of the OSPA so thatit penalizes labelisation errors has been the fous of reent papers by Risti et al.[Rist 10, Rist 11b℄.1.4 ConlusionIn this hapter, the main features of the RFS theory were presented, followed by theonstrution of the general RFS-based �lter. This �lter being usually intratable,the PHD �lter, a well-known approximation, was brie�y desribed. Designing atraking �lter within the PHD framework has some advantages ompared to moretraditional approahes, but the RFS framework su�ers from some theoretial and
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pratial limitations that should be kept in mind. Finally, two useful metris thatwill be applied to evaluate the performane of PHD-based trakers were desribed.



CHAPTER2The multi-sensor PHD �lter
This hapter deals with the rigorous onstrution of the PHD �lter as an approxi-mation of the RFS �lter, �rst in the single-sensor ase (setion 2.2), then in themulti-sensor ase (setion 2.3). The single-sensor ase is an adaptation of Mahler'searly work on the PHD [Mahl 03a, Mahl 03b℄ introduing the author's own nota-tions; rewriting the single-sensor ase seemed neessary in order to understand theproposed extension to the multi-sensor ase, whih is the main ontribution of thishapter. To the author's knowledge, this is the �rst attempt to build the exatmulti-sensor PHD �lter in the general ase, although the two-sensor ase has al-ready been overed by Mahler in reent works [Mahl 09a, Mahl 09b℄ but ame laterto the author's attention. Mahler's �rst attempts to design a tratable approxima-tion of the multi-sensor ase for pratial purposes almost followed the disovery ofthe single-sensor ase [Mahl 03b℄, several of these approximations will be presentedin setion 2.4. In a very reent paper [Liu 11℄, another multi-sensor extension wasproposed, altough limited to linear sensor systems. Note that this hapter is in mostpart a lari�ed version of an earlier report [Dela 10℄.2.1 Some useful RFSsSine the RFS �lter (proposition 1.1) is intratable in the general ase, some assump-tions on the targets and sensors must be made - that is, on the multi-objet RFSinvolved in the RFS �lter (de�nition 1.11 - in order to redue to the RFS equationsto tratable approximations. These de�nitions are adapted from [Vo 08℄.
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2.1.1 Poisson RFSDe�nition 2.1. A Poisson RFS Ξ is desribed by:1. its ardinality distribution ρΞ(.), Poisson with parameter λΞ: ρΞ(n) def

= e−λΞ
λn
Ξ

n!
;2. its spatial intensity IΞ(.)

def
= λΞiΞ(.), suh that ∫

X
iΞ(x)dx = 1 and the pointsare i.i.d. aording to iΞ(.).This de�nition is given by Vo in [Vo 08℄. The Poisson RFS is one of the simplestlasses of RFSs and is haraterized by its spatial intensity IΞ(.), even though itis more onveniently desribed with the 2-tuple (λΞ, IΞ(.)). It aurately desribeslouds of points with no partiular spatial orrelation between the di�erent points.Note that the parameter λΞ is not required to be an integer. The following propertyis adapted from [Vo 08℄:Property 2.1. Let Ξ be a Poisson RFS with spatial intensity IΞ and parameter

λΞ. Then it admits Janossy and produt densities suh that, for any set X =
{x1, ..., xn} ⊂ X :

j
(n)
Ξ (x1, ..., xn) = e−λΞ

n∏

i=1

IΞ(xi) (2.1)
v
(n)
Ξ (x1, ..., xn) =

n∏

i=1

IΞ(xi) (2.2)Besides, its PGFl GΞ is given by:
GΞ[.] = eIΞ[.]−λΞ (2.3)where IΞ[.] is the funtional IΞ[h] def
=
∫

X
h(x)IΞ(x)dx.The proof is given in appendix A. Note that the PHD (or intensity) vΞ of a PoissonRFS exists and equals its spatial intensity IΞ, that is, a Poisson RFS is ompletelydesribed by its PHD.2.1.2 Independent Identially Distributed Cluster RFSDe�nition 2.2. A (i.i.d) luster RFS Ξ is desribed by:1. its ardinality distribution ρΞ(.) with mean λΞ: λΞ

def
=
∑∞

n=0 nρΞ(n);2. its spatial intensity IΞ
def
= λΞiΞ(.), suh that ∫

X
iΞ(x)dx = 1 and the points arei.i.d. aording to iΞ(.).
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This de�nition is given by Vo in [Vo 08℄. The luster RFS is a generalization ofthe Poisson RFS whih allows a broader range of ardinality distributions. It isharaterized by its spatial intensity IΞ(.) and its ardinality distribution ρΞ(.), eventhough it is more onveniently desribed by the 3-tuple (ρΞ(.), λΞ, IΞ(.)). It is well-adapted to the desription of a false alarm proess, sine its spatial distributionis �evenly distributed� as the Poisson RFS, but allows a greater �exibility on thenumber of false alarms per san. The following property is adapted from [Vo 08℄:Property 2.2. Let Ξ be a luster RFS with ardinality distribution ρΞ(.), mean λΞand spatial intensity IΞ. Then it admits Janossy densities suh that, for any set
X = {x1, ..., xn} ⊂ X :

j
(n)
Ξ (x1, ..., xn) =

n!ρΞ(n)

λn
Ξ

n∏

i=1

IΞ(xi) (2.4)Besides, its PGFl GΞ is given by:
GΞ[.] = G|Ξ|

(
IΞ[.]

λΞ

) (2.5)where IΞ[.] is the funtional IΞ[h] def
=
∫

X
h(x)IΞ(x)dx, and G|Ξ| is the PGF of randomvariable |Ξ| : ω 7→ |Ξ(ω)|.The proof is given in appendix A. Note that, unlike the Poisson RFS (proposition2.1), there is no easy expression of the fatorial moments, and in the general ase aluster RFS is not ompletely desribed by its PHD.2.1.3 Bernoulli RFSDe�nition 2.3. A Bernoulli RFS Ξ is haraterized by:1. its ardinality distribution ρΞ(.) with parameter bΞ suh that ρΞ(0) = 1 − bΞ,

ρΞ(1) = bΞ, ρΞ(n) = 0 otherwise;2. its spatial distribution iΞ(.), suh that the eventual point is distributed aordingto iΞ(.).This de�nition is given by Vo in [Vo 08℄. The Bernoulli RFS is ompletely desribedby its spatial distribution iΞ(.) and its parameter bΞ. Clearly, it is well adapted to themodelization of the evolution of a target with state x: either it dies with probability
1 − bΞ(x) or it moves to a new state aording to probability distribution iΞ(x)(.).Likewise, it naturally desribes a single-sensor/single-target detetion proess: atarget in x is either undeteted with probability 1 − bΞ(x), or it is deteted and thesensor produes a new measurement aording to probability distribution iΞ(x)(.).Note that it an be seen as a partiular ase of luster RFS. The following propertyis adapted from [Vo 08℄:
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Property 2.3. Let Ξ be a Bernoulli RFS with spatial distribution iΞ and parameter
bΞ. Then it admits Janossy densities suh that, for any set X = {x1, ..., xn} ⊂ X :

j
(n)
Ξ (x1, ..., xn) =







1− bΞ n = 0

bΞiΞ(x1) n = 1

0 otherwise

(2.6)Besides, its PGFl GΞ is given by:
GΞ[.] = 1− bΞ + bΞiΞ[.] (2.7)where iΞ[.] is the funtional iΞ[h] def

=
∫

X
h(x)iΞ(x)dx.The proof is given in appendix A. Beause the Bernoulli RFSs are designed for thedesription of single-objet behaviors (either new target or new measurement), it isinteresting to de�ne the notion of multi-Bernoulli RFS [Vo 08℄:De�nition 2.4. A multi-Bernoulli RFS is the union RFS of statistially independentBernoulli RFSs .A multi-Bernoulli RFS is naturally haraterized by the spatial intensities and pa-rameters of the Bernoulli RFS it is built upon and its PGFl an be written as follows(adapted from [Vo 08℄):Property 2.4. Let {Ξn}n∈[1 N ] be a family of independent Bernoulli RFS with spatialdistributions {iΞn

}n∈[1 N ] and parameters {bΞn
}n∈[1 N ], and Ξ the resulting multi-Bernoulli RFS. Then, its PGFl GΞ is given by:

GΞ[.] =
N∏

n=1

(1− bΞn
+ bΞn

iΞn
[.]) (2.8)where iΞn

[.] is the funtional iΞn
[h]

def
=
∫

X
h(x)iΞn

(x)dx.The proof is straightforward using property 1.3.2.2 Single-sensor PHD �lter2.2.1 Time update equationThe hallenge is to �nd a tratable form of the Bayes time update equation (1.55):
pΞk+1|k

(.|Z1:k) =

∫

F(X )

pΞT
k,k+1

(.|X)pΞk|k
(X|Z1:k)µ(dX) (2.9)where:



2.2 Single-sensor PHD �lter 77
• Ξk|k is the posterior (multi-target) RFS at time k;
• ΞT

k,k+1 is the transition (multi-target) RFS at time k + 1;
• Ξk+1|k is the predited (multi-target) RFS at time k + 1;In this general form, the transition RFS may over a broad range of targets' behav-iors; however the PHD onstrution requires some restritions through the followingassumptions (adatpted from [Mahl 03a℄):Proposition 2.1. Assuming that, at time k:
• a living target with state xi,k dies with probability 1− psk,k+1(xi,k);
• a surviving target with state xi,k evolves aording to probability distribution
f t
k,k+1(.|xi,k);

• from a living target with state xi,k, a set of spawned targets XS
i,k+1 is bornaording to probability distribution pSk,k+1(.|xi,k);

• a set of targets XB
k+1 is born spontaneously aording to probability distribution

pBk,k+1(.);
• the evolution, spawning and birth proesses are statistially independent on-ditionally on the set Xk of living targets.then the transition RFS ΞT

k,k+1 is the union RFS:
ΞT
k,k+1(X)

def
=

(
⋃

x∈X

ΞE
k,k+1(x)

)

︸ ︷︷ ︸

ΞE
k,k+1(X)

∪
(
⋃

x∈X

ΞS
k,k+1(x)

)

︸ ︷︷ ︸

ΞS
k,k+1(X)

∪ ΞB
k,k+1 (2.10)where:

• ΞE
k,k+1(x) is the (single-target) evolution Bernoulli RFS in state x with spatialdistribution f t

k,k+1(.|x) and parameter psk,k+1(x);
• ΞE

k,k+1(X) =
⋃

x∈X ΞE
k,k+1(x) is the (multi-target) evolution Multi-BernoulliRFS in set X;

• ΞS
k,k+1(x) is the (single-target) spawning RFS in state x with probability distri-bution pSk,k+1(.|x);

• ΞS
k,k+1(X) =

⋃

x∈X ΞS
k,k+1(x) is the (multi-target) spawning RFS in set X;

• ΞB
k,k+1 is the (multi-target) birth RFS with probability distribution pBk,k+1(.).
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Besides, the PGFl of the transition RFS ΞT

k,k+1 is given by:
GΞT

k,k+1(X)[h] = (1− psk,k+1(.) + psk,k+1(.)f
t
k,k+1[h|.])X(GΞS

k,k+1(.)
[h])XGΞB

k,k+1
[h] (2.11)where:

• f t
k,k+1[h|x] is the funtional f t

k,k+1[h|x]
def
=
∫

X
h(y)f t

k,k+1(y|x)dy;
• GΞS

k,k+1(x)
is the PGFl of the spawning RFS ΞS

k,k+1(x);
• GΞB

k,k+1
is the PGFl of the birth RFS ΞB

k,k+1.The proof is given in appendix A. Note that no assumption on the spawning andbirth models are required so far but their mutual independene. Pay attention tothe fat that probability distributions pSk,k+1(.|x) and pBk,k+1(.) are dimensionless andset-based (i.e. de�ned on F(X )), while f t
k,k+1(.|x) has unit K−1

X and is state-based(i.e. de�ned on X ).Figure 2.1 Example of transition RFS (evolution in red, spontaneous birth in green,spawning in blue)

Figure 2.1 shows an example of transition RFS based on a given set Xk. Note thattarget x dies but spawns two new targets (e.g. a onvoy splits in two parts), target
y evolves and spawns a new target (e.g. a target leaves a onvoy), while target zevolves without spawning any new target. Besides, two targets are born indepen-dently of x, y or z.One the transition RFS is expliitly stated, the PHD equivalent of the time up-date equation (2.9) an be built as follows (adatpted from [Mahl 03a℄):
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Theorem 2.1. Under assumptions given in proposition 2.1, the time update equationof the PHD �lter is given by:

vΞk+1|k
(.|Z1:k)

=

∫

X

(

psk,k+1(x)f
t
k,k+1(.|x) + vΞS

k+1|k
(x)(.)

)

vΞk|k
(x|Z1:k)dx+ vΞB

k+1|k
(.) (2.12)Besides, the estimated target number Nk+1|k is given by:

Nk+1|k

=

∫

X

[(

psk,k+1(x) +

∫

X

vΞS
k+1|k

(x)(y)dy

)

vΞk|k
(x|Z1:k)

]

dx+

∫

X

vΞS
k+1|k

(x)(x)dx(2.13)The proof is given in appendix A. Sine no assumptions on the spawning and birthmodels are made, equations (2.12) and (2.13) are still intratable if PHD vΞS
k+1|k

(x)(.)and vΞB
k+1|k

(.) annot be onstruted expliitly. It is therefore ommon pratie toonsider the spawning and birth RFSs to be Poisson, whih gives the muh moreuseful result (adatpted from [Mahl 03a℄):Corollary 2.1. Under the same assumptions as theorem 2.1 and the additionnalassumptions that:
• spawning RFSs ΞS

k,k+1(x) are Poisson with intensities λs
k,k+1(x)sk,k+1(.|x);

• the birth RFS ΞB
k,k+1 is Poisson with intensity λb

k,k+1bk,k+1(.).the time update equation of the PHD �lter is given by:
vΞk+1|k

(.|Z1:k)

=

∫

X

(
psk,k+1(x)f

t
k,k+1(.|x) + λs

k,k+1(x)sk,k+1(.|x)
)
vΞk|k

(x|Z1:k)dx+ λb
k,k+1bk,k+1(.)(2.14)Besides, the predited target number Nk+1|k is given by:

Nk+1|k

=

∫

X

(
psk,k+1(x) + λs

k,k+1(x)
)
vΞk|k

(x|Z1:k)dx+ λb
k,k+1 (2.15)
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Table 2.1: PHD �lter: assumptions for the time update equationObjet modelization RFS onstrutionEvolution proessEvolution of target x: ΞE

k,k+1(x): Bernoulli with:1. dies with prob. 1− psk,k+1(x); 1. parameter psk,k+1(x);2. if alive, moves a. to f t
k,k+1(.|x). 2. spatial distribution f t

k,k+1(.|x).Single-target evolutions: independent ΞE
k,k+1(X): multi-BernoulliSpawning proessSpawning from target x: ΞS
k,k+1(x): Poisson with:1. target #: Poisson, param. λs

k,k+1(x); 1. parameter λs
k,k+1(x);2. targets i.i.d. a. to sk,k+1(.|x). 2. spatial intensity λs

k,k+1(x)sk,k+1(.|x).Single-target spawnings: independent ΞS
k,k+1(X): union of independent RFSsSpontaneous birth proessSpontaneous birth: ΞB
k,k+1: Poisson with:1. target #: Poisson, param. λb

k,k+1; 1. parameter λb
k,k+1;2. targets i.i.d. a. to bk,k+1(.). 2. spatial intensity λb

k,k+1sk,k+1(.).Transition proessEvolution, spawning and birth: independent ΞT
k,k+1(X): union of independent RFSs2.2.2 Data update equationConstrutionThe hallenge is to �nd a tratable form of the Bayes data update equation (1.56)in the single-sensor ase:

pΞk+1|k+1
(.|Z1:k+1) =

pΣk+1
(Zk+1|.)pΞk+1|k

(.|Z1:k)
∫

F(X )
pΣk+1

(Zk+1|X)pΞk+1|k
(X|Z1:k)µ(dX)

(2.16)where:
• Ξk+1|k is the predited (multi-target) RFS at time k + 1;
• Σk+1 is the observation (multi-measurement) RFS at time k + 1;
• Ξk+1|k+1 is the posterior (multi-target) RFS at time k + 1;
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• Zk+1 is the multi-measurement set produed by the only sensor available attime k + 1.In this general form, the observation RFS may over a broad range of sensors' behav-iors; however the PHD onstrution requires some restritions through the followingassumptions (adatpted from [Mahl 03a℄):Proposition 2.2. Assuming that, at time k + 1:
• a living target with state xi,k+1 is deteted with probability pdk+1(xi,k+1);
• a deteted target with state xi,k+1 is the origin of a single true measurementaording to probability distribution f o

k+1(.|xi,k+1) = L
.

k+1(xi,k+1);
• a set of false alarm measurements (or false alarms) ZC

k+1 are reated aordingto a false alarm (or lutter) proess, assumed Poisson with parameter λc
k+1 andintensity λc

k+1ck+1(.);
• the detetion and false alarm proesses are statistially independent ondition-ally on the set Xk+1 of living targets.then the observation RFS Σk+1 is the union RFS:

Σk+1(X)
def
=

(
⋃

x∈X

ΣD
k+1(x)

)

︸ ︷︷ ︸

ΣD
k+1(X)

∪ ΣC
k+1 (2.17)where:

• ΣD
k+1(x) is the (single-measurement) detetion Bernoulli RFS in state x withspatial distribution f o

k+1(.|x) and parameter pdk+1(x);
• ΣD

k+1(X) =
⋃

x∈X ΣD
k+1(x) is the (multi-measurement) detetion Multi-BernoulliRFS in set X;

• ΣC
k+1 is the (multi-measurement) false alarm Poisson RFS with parameter λc

k+1and intensity λc
k+1ck+1(.).Besides, the PGFl of the observation RFS Σk+1 is given by:

GΣk+1(X)[g] = (1− pdk+1(.) + pdk+1(.)f
o
k+1[g|.])Xeλ

c
k+1ck+1[g]−λc

k+1 (2.18)where:
• f o

k+1[g|x] is the funtional f o
k+1[g|x]

def
=
∫

Z
g(z)f o

k+1(z|x)dz;
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• ck+1[g] is the funtional ck+1[g]

def
=
∫

Z
g(z)ck+1(z)dz.The proof is given in appendix A. Pay attention to the fat that spatial distribution

f o
k+1(.|x) and intensity λc

k+1ck+1(.) have unit K−1
Z and are state-based (i.e. de�nedon Z).Figure 2.2 Example of observation RFS (true measurements in green, false alarmsin red)

Figure 2.2 shows an example of observation RFS based on a given set Xk+1. Notethat targets y and z are deteted and the origin of one true measurement eah, whiletarget x remains undeteted. Besides, three false alarms are produed independentlyof x, y and z.The next step is the de�nition of ross-term funtionals (or ross-terms) β[.], whoseextension to the multi-sensor ase will be most useful for the onstrution of dataupdate equation. Nonetheless, they are introdued here sine they provide an in-tuitive representation of the data update equation in the single-sensor as well asthe multi-sensor ase. The notion of ross-term was introdued by the author in[Dela 10℄.De�nition 2.5. Under the same assumptions as proposition 2.2, the single-sensorross-term βk+1|k is the funtional de�ned, for any real-valued funtions h (resp. g)de�ned on X (resp. Z) in [0 1], by:
βk+1|k[g, h]

def
= λc

k+1ck+1[g]− λc
k+1 + vΞk+1|k

[
h(1− pdk+1 + pdk+1f

o
k+1[g|.])

]
− vΞk+1|k

[1](2.19)where vΞk+1|k
[h] is the funtional vΞk+1|k

[h]
def
=
∫

X
h(x)vΞk+1|k

(x|Z1:k)dx.
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For simpliity's sake, the time subsripts on ross-terms will be omitted when thereis no ambiguity. The ross-term is a joint funtional whose funtional derivative (seede�nition 1.10) an be omputed in funtions de�ned on X or Z. The followingnotations will be used from now on:Notation 2.1. For any x ∈ X and z ∈ Z:

β[., δx]
not
=

δ

δx
β[., h] (2.20)

β[δz, .]
not
=

δ

δz
β[g, .] (2.21)The derivated ross-terms an be expressed as follows:Proposition 2.3. For any x ∈ X and z ∈ Z:

β[g, δx] = (1− pdk+1(x) + pdk+1(x)f
o
k+1[g|x])vΞk+1|k

(x|Z1:k)KX (2.22)
β[δz, h] = λc

k+1ck+1(z)KZ + vΞk+1|k
[hpdk+1L

z
k+1]KZ (2.23)

β[δz, δx] = pdk+1(x)L
z
k+1(x)vΞk+1|k

(x|Z1:k)KXKZ (2.24)Besides, setting g = 0, h = 1 gives:
β[0, δx] = (1− pdk+1(x))vΞk+1|k

(x|Z1:k)KX (2.25)
β[δz, 1] = λc

k+1ck+1(z)KZ + vΞk+1|k
[pdk+1L

z
k+1]KZ (2.26)The proof is given in appendix A. As for the PGFl, the funtions g (resp. h) an beseen as a �fuzzy� membership funtion on measurement spae Z (resp. target spae

X ). Derivated ross-terms an therefore be seen as �likelihoods�, onditonnally onthe predited PHD vΞk+1|k
, that:

• β[0, δx]: a target is in state x and is undeteted;
• β[δz, 1]: a measurement, whose origin is unknown, is produed in point z;
• β[δz, δx]: a target is in state x, is deteted and the origin of true measurement
z.The term �likelihood� in the intepretation of the derivated ross-terms is an abuseof notation; more aurately they weight events assoiating points in target andobservation spaes based on the information known on the system so far, hene theirname (see �gure 2.3 for an illustration).
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Figure 2.3 Illustration of the single-sensor ross-term

Note that β[δz, 1] overs both possible origins for measurement z, either a false alarm- λc
k+1ck+1(z)KZ - or a true measurement - vΞk+1|k

[pdk+1L
z
k+1]KZ , whih an be seen asan �expetation� over target spae X onsidering every possible state x as the poten-tial origin of z. Note also that a ross-term derivated in several measurements (e.g.

δ2

δz2δz1
β[g, h] = δ

δz2
β[δz1, h]) and/or in several targets (e.g. δ2

δx2δx1
β[g, h] = δ

δx2
β[g, δx1])vanishes. This is onsistent with the observation model (proposition 2.2) sine a sin-gle true measurement annot stem from several targets, nor an several true mea-surements stem from a single target.One the observation RFS is expliitly stated and the ross-term properly de�ned,the PHD equivalent of the date update equation (2.16) - in the single-sensor aseonly - an be built as follows:Theorem 2.2. Under the assumptions given in proposition 2.2 and the additionalassumption that the predited RFS Ξk+1|k is Poisson, the data update equation of thesingle-sensor PHD �lter is given by:

vΞk+1|k+1
(.|Z1:k+1) =

[
δ
δx

(
δ

δZk+1
eβ[g,h]

)]

g=0,h=1
[

δ
δZk+1

eβ[g,h]
]

g=0,h=1

K−1
X (2.27)

=



β[δ∅, δx] +
∑

z∈Zk+1

β[δz, δx]

β[δz, 1]



K−1
X (2.28)

=



1− pdk+1(x) +
∑

z∈Zk+1

pdk+1(x)L
z
k+1(x)

λc
k+1ck+1(z) + vΞk+1|k

[pdk+1L
z
k+1]



 vΞk+1|k
(.|Z1:k) (2.29)where Zk+1 is the set of urrent measurements.
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The proof is given in appendix A. This last result (2.29) is the well-known tratableexpression of the single-sensor PHD data equation [Mahl 03a, Mahl 03b℄.Table 2.2: PHD �lter: assumptions for the data update equation (single-sensor)Objet modelization RFS onstrutionDetetion proessObservation of target x: ΣD

k+1(x): Bernoulli with:1. deteted with prob. pdk+1(x); 1. parameter pdk+1(x);2. if deteted, meas. a. to f o
k+1(.|x). 2. spatial distribution f o

k+1(.|x).Single-target observations: independent ΣD
k+1(X): multi-BernoulliFalse alarm proessFalse alarm: ΣC
k+1: Poisson with:1. measurement #: Poisson, param. λc

k+1; 1. parameter λc
k+1;2. measurements i.i.d. a. to ck+1(.). 2. spatial intensity λc

k+1ck+1(.).Observation proessDetetion and false alarm: independent Σk+1(X): union of independent RFSsTarget modelPredited on�guration: Ξk+1|k: Poisson with:1. target #: Poisson, param. vΞk+1|k
[1]; 1. parameter vΞk+1|k

[1];2. targets i.i.d. a. to vΞk+1|k
(.)

vΞk+1|k
[1]
. 2. spatial intensity vΞk+1|k

(.).Qualitative analysisThe key to theorem 2.2 is the ritial assumption that the predited RFS Ξk+1|kis Poisson, whih greatly simpli�es the derivation of the PGFl (see the proof formore details). It is somewhat di�ult to evaluate its validity in pratial detetionand traking problems, beause the Poisson haraterization of an RFS is not eas-ily linked to single-objet behavioral patterns. However, pay attention to the fatthat the priniple of RFS �ltering is not to �nd a stati multi-target RFS whose se-quential realizations mathes best the suessive target on�gurations, but rather tomodify dynamially a multi-target RFS so that eah sequential realization mathesbest the urrent target on�guration. In that sense, a great variability in the targetnumber between two suessive time steps an be �aepted� by the PHD �lter andthe Poisson assumption might be less restritive than it seems o�hand.
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Theorem 2.2 provides an insight on the shape of the posterior PHD. An importantfat is that eah measurement ontributes �linearly� to the value of the posteriorPHD. The ratio β[δz,δx]

β[δz ,1]
embodies the loal ontribution of measurement z to theshape of the posterior PHD in point x, while ∫X β[δz ,δx]dx

β[δz,1]
is the global ontribution ofmeasurement z to the PHD, i.e. its ontribution to the posterior estimated numberof targets. It is easy to see the in�uene of the false alarm term on the ontributionby onsidering the two following extreme ases:1. If z is �learly� a false alarm, i.e. λc

k+1ck+1(z) ≫ vΞk+1|k
[pdk+1L

z
k+1], thenby onstrution (proposition 2.3) β[δz, 1] ≃ λc

k+1ck+1(z)KZ , thus the global ontri-bution of measurement z tends to be negligible ( ∫X β[δz ,δx]dx

β[δz ,1]
≃

∫

X β[δz ,δx]dx

λc
k+1ck+1(z)KZ

≪ 1
).2. Conversely, if z is �learly� a true measurement, i.e.

λc
k+1ck+1(z)≪ vΞk+1|k

[pdk+1L
z
k+1], then β[δz, 1] ≃ vΞk+1|k

[pdk+1L
z
k+1]KZ =

∫

X
β[δz, δx]dx,thus the global ontribution of measurement z tends to one (∫X β[δz ,δx]dx

β[δz ,1]
≃ 1
).More generally, the global ontribution ∫

X β[δz,δx]dx

β[δz ,1]
is a real number between 0 and

1, inreasing with the �redit� that an be granted to the measurement. If z is likelyto be a false alarm measurement, its global ontribution is modest; the more themeasurement an be �trusted�, the higher its ontribution is. In other words, thehigher λc
k+1ck+1(z) is, the more measurement z is impliitely onsidered as a falsealarm.The in�uene of the detetion probability on the ontribution is lear in the extremease where a target lies outside the FOV, i.e. pdk+1(x) = 0. In this ase, propo-sition 2.2 redues to vΞk+1|k+1

(.|Z1:k+1) = vΞk+1|k
(.|Z1:k). This is expeted: sine atarget in x annot be deteted, no measurements an possibly stem from this tar-get and the data update step does not provide new information in x; thus, theposterior PHD equals the predited PHD. In any other ase, though, the in�ueneof the probability detetion pdk+1 on the posterior PHD is less obvious. The gen-eral form of the loal ontribution pd

k+1(x)L
z
k+1(x)

λc
k+1ck+1(z)+vΞk+1|k

[pd
k+1L

z
k+1]

vΞk+1|k
(.|Z1:k) suggeststhat a measurement in z will sharpen the PHD around the highest probable origin

xo = argmaxx p
d
k+1(x)L

z
k+1(x), provided that the likelihood funtion is disriminat-ing enough (whih is the ase in pratial situations, see hapter 4). It may be safelyassumed that the detetion probability funtion is muh less disriminating thanthe likelihood funtion for usual sensors: that is, the loal variation of the detetionprobability, aside from the edges of the FOV, is likely to be muh slower than thevariation of the likelihood funtion. In that sense, the in�uene of pdk+1(.) on theloal ontribution is likely to be modest.
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The in�uene of the detetion probability on the global ontribution should be stud-ied in parallel with the ontribution of the predited PHD - that is, the past infor-mation on the target on�guration. Consider a urrent measurement z, appearingin an region R of the state spae. If z is inonsistent with past information on thetargets (vΞk+1|k

is lose to zero in R) and/or with the urrent FOV on�guration(pdk+1 is lose to zero in R), then vΞk+1|k
[pdk+1L

z
k+1] ≃ 0 and thus the global on-tribution of z is likely to be negligible. Conversely, if z is onsistent with knowninformation regarding the targets and the sensors (typially, z is lose to a �largeamount of PHD�), then vΞk+1|k

[pdk+1L
z
k+1] is likely do be dominant ompared to thefalse alarm term, and the global ontribution of z tends to one (∫X β[δz,δx]dx

β[δz,1]
≃ 1
).Consequently, measurements appearing �out of nowhere� are likely to be disardedbefore measurements appearing in the viinity of previously deteted targets. This�self-gating property� [Mahl 07b℄ is somewhat reassuring, although it has undesirableonsequenes for the exploration of unkown region of the state spae.2.3 Multi-sensor PHD �lterThis setion deals with the extension of the PHD �lter data update equation tothe multi-sensor ase (theorem 2.2). Note that the time update equation does notinvolve any new measurements and therefore remains unhanged in the multi-sensorase. Note that the sensor order is arbitrary and need not be the same at eah timestep, nor does the sensor number. For larity's sake, however, the sensor number isfrom now on assumed onstant and equal to S.2.3.1 Data update equationConstrutionThe hallenge is to �nd a tratable form of the Bayes data update equation (1.56)in the multi-sensor ase:

pΞk+1|k+1
(.|Z1:k+1) =

pΣk+1
(Zk+1|.)pΞk+1|k

(.|Z1:k)
∫

F(X )
pΣk+1

(Zk+1|X)pΞk+1|k
(X|Z1:k)µ(dX)

(2.30)where:
• Ξk+1|k is the (multi-target) predited RFS at time k + 1;
• Σk+1 is the (multi-measurement) observation RFS at time k + 1;
• Ξk+1|k+1 is the (multi-target) posterior RFS at time k + 1;
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• Zk+1 =

⊔S
j=1Z

j
k+1 is the (multi-sensor) measurement set produed by all thesensors at time k + 1.Figure 2.4 Example of multi-sensor observation RFS

The onstrution of the single-sensor observation RFS an be naturally extended tothe multi-sensor ase:Proposition 2.4. Assuming that, at time k + 1:
• the observation proess of eah sensor is as desribed in proposition 2.2;
• the observation proesses are statistially independent onditionally on the set
Xk+1 of living targets.then the observation RFS Σk+1 is the joint RFS:

Σk+1(X)
def
=

S⊔

j=1

Σj
k+1(X) (2.31)where Σj

k+1(X) are the independent single-target observation RFSs. Besides, theprobability distribution of the multi-sensor observation RFS exists and, for any multi-sensor measurement set Z =
⊔S

j=1Z
j:

pΣk+1(X)(Z) =

S∏

j=1

pΣj
k+1(X)(Z

j) (2.32)
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The proof is straightforward by ombining the equivalent result in the single-sensorase (proposition 2.2) and the property of joint RFSs (1.8).Figure 2.4 shows an example of observation RFS based on a given set Xk+1. Notethat target z is missed by sensor 1 but deteted by sensor S. Besides, three falsealarms are produed by sensor 1 and two by sensor S.The next step is the extension of the ross-term de�ntion to the multi-sensor ase:De�nition 2.6. Under the same assumptions as proposition 2.4, the multi-sensorross-term βk+1 is the funtional de�ned, for any real-valued funtions h (resp. gj,
j ∈ [1 S]) de�ned on X (resp. Zj, j ∈ [1 S]) in [0 1], by:
βk+1[g

1, ..., gS, h]
def
=

S∑

j=1

(λc,j
k+1c

j
k+1[g

j]− λc,j
k+1)

+ vΞk+1|k

[

h

(
S∏

j=1

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])
)]

− vΞk+1|k
[1] (2.33)where vΞk+1|k

[h] is the funtional vΞk+1|k
[h]

def
=
∫

X
h(x)vΞk+1|k

(x|Z1:k)dx.For simpliity's sake, the time subsripts on ross-terms will be omitted when thereis no ambiguity. The ross-term is a joint funtional whose funtional derivative (seede�nition 1.10) an be omputed in funtions de�ned on X or any Zj . In addition tothe still valid notations (2.20) and (2.21) provided for the single-sensor ross-term,the following notations will be used from now on:Notation 2.2. For any x ∈ X , any family of measurements {zj}Sj=1, zj ∈ Zj, anysubset Z ⊆ {zj}Sj=1:
β[δZ , ḡ, .]

not
=

δ

δZ
β[g1, ..., gS, .] (2.34)

β[δZ , .]
not
= [β[δZ , ḡ, .]]g1...S=0 (2.35)And, by onvention:

β[δ∅, ḡ, .]
not
= β[g1, ..., gS, .] (2.36)

β[δ∅, .]
not
= β[0, ..., 0, .] (2.37)
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Example 2.1. Suppose that there are S = 3 sensors. For j ∈ [1 3], let zj ∈ Zjbe any measurement from sensor sj, and let x ∈ X be any target state. Then, forexample:

β[δ{z1,z3}, ḡ, h] = β[δz1, g
2, δz3, h]

β[δ{z2}, δx] = β[0, δz2, 0, δx]

β[δ∅, ḡ, 1] = β[g1, g2, g3, 1]Proposition 2.5. For any x ∈ X , any family of measurements {zj}Sj=1, zj ∈ Zj,any subset Z ⊆ {zj}Sj=1:
β[δ∅, ḡ, δx] =

S∏

j=1

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)KX (2.38)

β[δZ , ḡ, h] =







λc,j0
k+1c

j0
k+1(z

j0)KZj0

+ vΞk+1|k
[hpd,j0k+1L

zj0 ,j0
k+1 KZj0

∏

zj 6=zj0

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])]

(Z = {zj0})
vΞk+1|k

[h
∏

zj∈Z

(pd,jk+1L
zj ,j
k+1KZj )

∏

zj /∈Z

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])]

(|Z| > 2)(2.39)
β[δZ , ḡ, δx] =

∏

zj∈Z

(pd,jk+1(x)L
zj ,j
k+1(x)KZj )

×
∏

zj /∈Z

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)KX (2.40)Besides, setting g1 = 0, ..., gS = 0, h = 1 gives:

β[δ∅, δx] =

S∏

j=1

(1− pd,jk+1(x))vΞk+1|k
(x|Z1:k)KX (2.41)

β[δZ , 1] =







λc,j0
k+1c

j0
k+1(z

j0)KZj0 + vΞk+1|k
[pd,j0k+1L

zj0 ,j0
k+1 KZj0

∏

zj 6=zj0

(1− pd,jk+1)]

(Z = {zj0})
vΞk+1|k

[
∏

zj∈Z

(pd,jk+1L
zj ,j
k+1KZj )

∏

zj /∈Z

(1− pd,jk+1)] (|Z| > 2)(2.42)
β[δZ , δx] =

∏

zj∈Z

(pd,jk+1(x)L
zj ,j
k+1(x)KZj )

∏

zj /∈Z

(1− pd,jk+1(x))vΞk+1|k
(x|Z1:k)KX (2.43)



2.3 Multi-sensor PHD �lter 91
The proof is given in appendix A. Similarly to the single-sensor ross ase, thefuntions gj (resp. h) an be seen as a �fuzzy� membership funtion on measurementspae Zj (resp. target spae X ). Multi-sensor derivated ross-terms an be seen as�likelihoods� as well, onditonally on the predited PHD vΞk+1|k

, that:
• β[δ∅, δx]: a target is in state x and is undeteted;
• β[δZ , 1]: a olletion of measurements, whose single origin is unknown, areprodued in points given by Z;
• β[δZ , δx]: a target is in state x, is the origin of measurements in Z and isundeteted by the remaining sensors;As in the single-sensor ase, pay attention to the fat that the term �likelihood� isan abuse of notation here.Note that the false alarm terms vanish in β[δZ , h] if Z ontains at least two mea-surements. This is onsistent with the observation model (proposition 2.4): thesingle-sensor observation proesses being independent onditionally on the states ofthe true targets, there is no statistial link between the ourene of a false alarm in

zi by sensor i and the ourene of a false alarm in zj by sensor j. For example:1. β[δ{zi}, 1] an be seen as the �likelihood� that a soure, whether a target in anunknown state or a false alarm produed by sensor i, is the origin of measurement zi.2. β[δ{zi,zj}, 1] an be seen as the �likelihood� that a single soure, neessar-ily a target in an unknown state, is the origin of both measurements zi and zj .3. β[δ{zi}, 1]β[δ{zj}, 1] an be seen as the �likelihood� that a soure, whethera target in an unknown state or a false alarm produed by sensor i, is the origin ofmeasurement zi, while another soure, whether a target in an unknown state or afalse alarm produed by sensor j, is the origin of measurement zj .As in the single-sensor ase, a ross-term derivated in several measurements fromthe same sensor (e.g. δ2

δzi2δz
i
1
β[g1, ..., gS, h]) and/or in several targets(e.g. δ2

δx2δx1
β[g1, ..., gS, h]) vanishes. This is also onsistent with the observationmodel (prop. 2.4) sine a single true measurement annot stem from several tar-gets, nor an several true measurements from the same sensor stem from a singletarget.
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Figure 2.5 Illustration of the multi-sensor ross-term

One the observation RFS and the ross-term are properly extended, the PHD equiv-alent of the date update equation (2.16) in the multi-sensor ase an be built asfollows:Theorem 2.3. Under the assumptions given in proposition 2.4 and the additionalassumption that the predited RFS Ξk+1|k is Poisson, the PHD �lter data updateequation is given by:
vΞk+1|k+1

(x|Z1:k+1) =

[
δ
δx

(
δ

δZk+1
eβ[δ∅,ḡ,h]

)]

g1...S=0,h=1
[

δ
δZk+1

eβ[δ∅,ḡ,h]
]

g1...S=0,h=1

K−1
X (2.44)

=

[
δ
δx

(
δ

δZ1
k+1

(

...
(

δ
δZS

k+1
eβ[g

1,...,gS,h]
)

...
))]

g1...S=0,h=1
[

δ
δZ1

k+1

(

...
(

δ
δZS

k+1
eβ[g1,...,gS,h]

)

...
)]

g1...S=0,h=1

K−1
X (2.45)where:
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• Zj

k+1 is the single-sensor set of urrent measurements produed by sensor j;
• Zk+1 =

⊔S
j=1Z

j
k+1 is the multi-sensor set of urrent measurements.The proof is given in appendix A. Unfortunately, unlike the single-sensor ase, thereis no elegant analytial expression equivalent to the derivative forms (2.44) or (2.45).The exponential terms in (2.44) an be expanded by resolving the funtional deriva-tives, but the resulting formula is of inreasing omplexity with the sensor numberand/or the number of urrent measurements per sensor.Example 2.2. Suppose that there are S = 3 sensors. At urrent time - time sub-sripts are omitted for simpliity's sake - sensor 1 produes one measurement z11,sensor 2 does not produe any measurement, sensor 3 produes two measurements

z31 and z32. Applying theorem 2.3 gives:
vΞk+1|k+1

(x|Z1:k+1) =

[
δ
δx

(
δ

δz11

(
δ

δ{z31 ,z
3
2}
eβ[g

1,g2,g3,h]
))]

gj=0,h=1
[

δ
δz11

(
δ

δ{z31 ,z
3
2}
eβ[g1,g2,g3,h]

)]

gj=0,h=1

K−1
XA loser look at the denominator gives:

δ

δz11

(
δ

δ{z31 , z32}
eβ[g

1,g2,g3,h]

)

=
δ

δz11

(
δ

δz31

(

eβ[g
1,g2,g3,h]β[g1, g2, δz32 , h]

))

=
δ

δz11

(

eβ[g
1,g2,g3,h](β[g1, g2, δz31 , h]β[g

1, g2, δz32 , h])
)

= eβ[g
1,g2,g3,h]

(

β[δz11 , g
2, δz31 , h]β[g

1, g2, δz32 , h] + β[g1, g2, δz31 , h]β[δz11 , g
2, δz32 , h]

+ β[δz11 , g
2, g3, h]β[g1, g2, δz31 , h]β[g

1, g2, δz32 , h]
)Thus:

[
δ

δz11

(
δ

δ{z31 , z32}
eβ[g

1,g2,g3,h]

)]

gj=0,h=1

= eβ[δ∅,1]
(

β[δ{z11 ,z31}, 1]β[δz32 , 1] + β[δz31 , 1]β[δ{z11 ,z32}, 1] + β[δz11 , 1]β[δz31 , 1]β[δz32 , 1]
)
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Likewise, the numerator equals:
[
δ

δx

(
δ

δz11

(
δ

δ{z31 , z32}
eβ[g

1,g2,g3,h]

))]

gj=0,h=1

= eβ[δ∅,1]
(

β[δ{z11 ,z31}, δx]β[δz32 , 1] + β[δ{z11 ,z31}, 1]β[δz32 , δx] + β[δz31 , δx]β[δ{z11 ,z32}, 1]

+ β[δz31 , 1]β[δ{z11 ,z32}, δx] + β[δz11 , δx]β[δz31 , 1]β[δz32 , 1]

+ β[δz11 , δx]β[δz31 , δx]β[δz32 , 1] + β[δz11 , δx]β[δz31 , 1]β[δz32 , δx]
)

+ β[δ∅, δx]

[
δ

δz11

(
δ

δ{z31 , z32}
eβ[g

1,g2,g3,h]

)]

gj=0,h=1Thus:
vΞk+1|k+1

(x|Z1:k+1) = β[δ∅, δx]K
−1
X

+
β[δ{z11 ,z31}, δx]β[δz32 , 1] + ... + β[δz11 , 1]β[δz31 , 1]β[δz32 , δx]

β[δ{z11 ,z31}, 1]β[δz32 , 1] + β[δz31 , 1]β[δ{z11 ,z32}, 1] + β[δz11 , 1]β[δz31 , 1]β[δz32 , 1]
K−1

X(2.46)Example 2.2 learly shows how tedious the omputation of the data update an bewhen the number of sensors and/or measurements is large enough. It also providesa more intuitive interpretation of the data update mehanism. The �rst ross-term�β[δ∅, δx]� weighs the event that a target lies in x but is urrently undeteted, whilethe ratio aounts for the fat that a target lies in x and is deteted, that is, the originof at least one urrent measurement. The numerators explores all the possible assoi-ations between x and the urrent measurements; for example, �β[δ{z11 ,z31}, δx]β[δz32 , 1]�weighs the event that a target lies in x, whose detetion by both sensors 1 and 3produes the measurements z11 and z31 , while the last measurement z32 stems fromanother soure (whether a target or a false alarm). The denominator is a normaliz-ing term and weighs the joint ourene of these three measurements.Moreover, equation (2.46) provides an insight of the expanded expression of equa-tion (2.44) - or, equivalently, (2.45) - in the general ase. Similarly to the JPDAtehnique, a state point x ∈ X is updated as a weighted average of every possi-ble measurement-to-target assoiation, eah derivated ross-term denoting one suhassoiation. The next paragraph fouses on the onstrution of the expanded expres-sion - or ombinational form - of the derivative form (2.44), beause it is easier tomanipulate for pratial purposes and for the omparison with usual approximationsof the multi-sensor PHD (see setion 2.4).
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Combinational formFirst of all, one must haraterize the ombination of measurement sets Z on whihthe ross-terms β[δZ , .] appearing in the ombinational form are derivated:De�nition 2.7. For any subset J ⊆ [1 S], any family {Zj}j∈J of �nite subsets
Zj ⊂ Zj:1. The (multi-measurement) term setM(Zj∈J) ⊂ P

(
⊔

j∈J Z
j
) is given by:

M(Zj∈J)
def
=
⋃

I⊆J

χ

(
∏

i∈I

Z i

) (2.47)That is, a (multi-measurement) term M ∈M(Zj∈J) is a set ontaining at most onemeasurement from eah Zj.2. The signature ϕZj∈J (.) is the funtion given by:
ϕZj∈J : P

(

P
(
⊔

j∈J

Zj

))

→ N

P 7→
∏

z∈
⊔

j∈J Zj

(
∑

Pi∈P

1Pi
(z)

) (2.48)Besides, ϕZj∈J (∅) def
= 0 by onvention. That is, ϕZj∈J (P ) = 1 if and only if eahmeasurement in ⊔j∈J Z

j appears one and only one among all the sets Pi in P .3. The ombinational term set C(Zj∈J) is given by:
C(Zj∈J)

def
=
{
C ⊆M(Zj∈J) | ϕZj∈J (C) = 1

} (2.49)That is, a ombinational term C ∈ C(Zj∈J) is a set of terms Ci suh that eah mea-surement in ⊔j∈J Z
j appears one and only one among all the terms Ci.Besides, if Z =

⊔

j∈J Z
j,M(Z) (resp. ϕZ(.), C(Z)) will denoteM(Z1, .., ZJ) (resp.

ϕZ1,...,ZJ(.), C(Z1, ..., ZJ)) without ambiguity.



96 Chapter 2. The multi-sensor PHD �lter
Example 2.3. Continuing example 2.2, in whih S = 3, Z1 = {z11}, Z2 = ∅ and
Z3 = {z31 , z32}, gives:

Z1 ⊔ Z2 ⊔ Z3 = {z11 , z31 , z32}

P(Z1 ⊔ Z2 ⊔ Z3) =
{
∅, {z11}, {z31}, {z32}, {z11 , z31}, {z11 , z32}, {z31, z32}, {z11 , z31 , z32}

}

M(Z1, Z2, Z3) =
{
{z11}, {z31}, {z32}, {z11, z31}, {z11, z32}

}

C(Z1, Z2, Z3) =
{{
{z11}, {z31}, {z32}

}
,
{
{z11 , z31}, {z32}

}
,
{
{z11 , z32}, {z31}

}}Note that, in the ratio in (2.46):
• eah ross-term is derivated in a multi-measurement term ofM(Z1, Z2, Z3);
• the ross-terms of a given produt are derivated in the sets of a given ombi-national term of C(Z1, Z2, Z3).that is:

vΞk+1|k+1
(x|Z1:k+1) = β[δ∅, δx]K

−1
X +

∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Ci

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X(2.50)The proof of result (2.50) in the general ase requires the following lemma:Lemma 2.1. For any sensor index s < S, any family {Zj}s+1

j=1 of �nite subsets
Zj ⊂ Zj, with Zs+1 = {zs+1

i }m
s+1

i=1 :
C(Z1:s+1) =

⋃

C∈C(Z1:s)

min(|C|,ms+1)
⋃

n=0

⋃

I⊆[1 ms+1]
J⊆[1 |C|]
|I|=|J |=n

⋃

σ∈Bij(I,J)

Uσ
I,J(Z

s+1, C) (2.51)where Bij(I, J) is the set of bijetive funtions from I in J and Uσ
I,J(Z

s+1, C) ∈
C(Z1:s+1) is the ombinational term given by:
Uσ
I,J(Z

s+1, C)
def
=

(
⋃

j /∈J

{Cj}
)

∪
(
⋃

i∈I

{
{zs+1

i } ∪ Cσ(i)

}

)

∪
(
⋃

i/∈I

{
{zs+1

i }
}

) (2.52)
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The proof is given in appendix A. Note that this lemma is useful for pratial pur-poses beause it shows that the ombinational terms an be built reursively.Example 2.4. Continuing example 2.3 with s = 1, sine m1 = |Z1| = 1, C(Z1) isredued to a single ombinational term:

C(Z1) = {C} =
{{
{z11}

}}Now with s = 2, sine m2 = |Z2| = 0, min(|C|, m2) = 0 and thus:
C(Z1, Z2) = U Id

∅,∅(∅, C) = {C1} =
{{
{z11}

}}Now with s = 3, sine m3 = |Z3| = 2, min(|C|, m3) = 1 and thus:
C(Z1, Z2, Z3) = U Id

∅,∅(Z
3, C) ∪ U1↔1

{1},{1}(Z
3, C) ∪ U2↔1

{2},{1}(Z
3, C)with:

U Id
∅,∅(Z

3, C) = {C1} ∪
{
{z31}

}
∪
{
{z32}

}
=
{
{z11}, {z31}, {z32}

}

U1↔1
{1},{1}(Z

3, C) =
{
{C1 ∪ {z31}

}
∪
{
{z32}

}
=
{
{z11 , z31}, {z32}

}

U2↔1
{2},{1}(Z

3, C) =
{
{C1 ∪ {z32}

}
∪
{
{z31}

}
=
{
{z11 , z32}, {z31}

}Theorem 2.4. Under the assumptions given in proposition 2.4 and the additionalassumption that the predited RFS Ξk+1|k is Poisson, the PHD �lter data updateequation is given by:
vΞk+1|k+1

(x|Z1:k+1) = β[δ∅, δx]K
−1
X +

∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X(2.53)where:

• Zk+1 =
⊔S

j=1Z
j
k+1 is the multi-sensor set of urrent measurements;

• C(Zk+1) is the set of ombinational terms given by (2.49).The proof is given in appendix A.
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Qualitative analysisAs for the single-sensor ase, equation (2.53) provides some insight on the ontri-bution of the urrent measurements in Zk+1 to the posterior PHD. The notabledi�erene with the single-sensor is that the ontribution annot be deoupled by in-dividual measurements nor by individual sensors, keeping trak of the ontributionsof the di�erent measurements is therefore muh more di�ult. The in�uene of thefalse alarm terms an still be studied through the expression of the ross-terms sine,aording to proposition 2.5:







∫

X

β[δ{zj0}, δx]K
−1
X dx+ λc,j0

k+1c
j0
k+1(z

j0)KZj0 = β[δ{zj0}, 1] (Ci = {zj0})
∫

X

β[δCi
, δx]K

−1
X dx = β[δCi

, 1] (|Ci| > 2)(2.54)With the results above, it is easy to see that the global ontribution of a measurement
zj0 tends to zero if it is a false alarm, exatly as in the single-sensor ase. Indeed
λc,j0
k+1c

j0
k+1(z

j0)≫ 1 and thus, aording to the results above:






∫

X

β[δ{zj0}, δx]K
−1
X dx≪ β[δ{zj0}, 1]

β[δCi
, 1]≪ β[δ{zj0}, 1] ({zj0} ∈ Ci, |Ci| > 2)

(2.55)Thus, by dividing both numerator and denominator of the ratio in equation (2.53)by β[δ{zj0}, 1] and integrating the result over X , all the ombinational terms tendto zero but those where measurement zj0 is isolated, i.e. the ombinational terms
C ∈ C(Zk+1) of the form C = {{zj0}} ∪ C ′ where C ′ ∈ C(Zk+1 \ zj0). And thus:

∫

X











∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X











dx

≃
∫

X











∑

C∈C(Zk+1\z
j0 )

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1\z
j0 )

∏

Ci∈C

β[δCi
, 1]

K−1
X











dx

This result is onsistent with the observation model. If sensor j produes a learfalse alarm measurement z, then the in�uene of z on the posterior PHD must be
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minimal, but this must not prelude measurements from other sensors, even if theystem from a lose point in state spae, to be taken into aount. In other words, if
z1 and z2 fall in a region of the state spae where 1 is known to produe a lot of falsealarms, then the global ontribution of z1 on the posterior PHD should be disardedwithout ompromising the ontribution of z2.Intuitively, one may expet the opposite in ase of true measurements. If z1 and
z2 fall in a region of the state spae where sensors 1 and 2 do not produe falsemeasurements and do no miss detetions, then the joint ontribution of z1 and z2should be around one, beause z1 and z2 are almost surely two measurements fromthe same target. That is, the ontribution of both z1 and z2 should be 1

2
rather than

1, otherwise the target number would be overestimated. Results (2.54) yield:
∫

X











∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X











dx

=

∑

C∈C(Zk+1)

∑

Ci∈C





∫

X

β[δCi
, δx]K

−1
X dx

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

6

∑

C∈C(Zk+1)

|C]
∏

Cj∈C

β[δCj
, 1]

∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

6 max
C
|C]

6 |Zk+1|As in the single-sensor ase, the global ontribution of a measurement z never ex-eeds one. Now, onsider the extreme ase where there are no false alarms - λc,j0
k+1 = 0- and there are no missed detetions - pd,jk+1 = 1 inside the FOV F j

k+1. Then the �rstinequality above is an equality sine ∫
X
β[δCi

, δx]K
−1
X dx = β[δCi

, 1]. Moreover:1. If the FOVs are pairwise disjoint, aording to the expression of the ross-terms (proposition 2.5) and provided that the likelihood funtions are stritly posi-tive, β[δCi
, δx] = 0 if |Ci| > 2. Thus, the only remaining ombinational term in the
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global ontribution is C0 =

⋃

j∈S

⋃

i∈Zj
k+1

{
{zji }

} and therefore:
∫

X











∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X











dx

=

|C0]
∏

Cj∈C0

β[δCj
, 1]

∏

Ci∈C0

β[δCi
, 1]

= |C0]

= |Zk+1|2. Conversely, if the FOVs are all equal, then every true target is deteted by eahsensor, i.e. |Zj
k+1] = N where N is the number of true targets. Besides, aording tothe expression of the ross-terms (proposition 2.5), β[δCi

, δx] = 0 if |Ci| < S. Thus,the only remaining ombinational terms in the global ontribution are those with Nmulti-measurement terms Ci with S measurements eah - reall from de�nition 2.7that eah one of the |Zk+1| = NS measurements appears one and only one in eahombinational term C. Thus:
∫

X











∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X











dx

=

∑

C∈C(Zk+1)
|C|=N

|C]
∏

Cj∈C

β[δCj
, 1]

∑

C∈C(Zk+1)
|C|=N

∏

Ci∈C

β[δCi
, 1]

= N

=
|Zk+1|
SThese results were expeted and are onsistent with the observation model. If theFOV are pairwise disjoints, the |Zk+1| true measurements neessarily stem from
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|Zk+1| true di�erent targets, and the global ontribution of Zk+1 to the posteriorPHD is |Zk+1|, desribing aurately the number of true targets. Conversely, if theFOVs are idential, eah true target is the origin of S true measurements - one persensor - and the global ontribution of Zk+1 to the posterior PHD is one more theaurate number of true targets, i.e. |Zk+1|

S
. In onlusion, the global ontribution ofa measurement z to the posterior PHD an be summarized as follows:

• if z tends to be a false alarm, its global ontribution tends to 0 regardless ofthe FOV on�guration;
• if z tends to be a true measurement, its global ontribution tends to an upperbound equal to 1

S
if the FOVs are idential and inreasing up to 1 with theseperation of the FOVs.There is not muh to add regarding the in�uene of the detetion probability onthe posterior PHD that was not already disussed in the single-sensor ase. If xis outside all the FOVs, theorem 2.4 redues to vΞk+1|k+1

(.|Z1:k+1) = vΞk+1|k
(.|Z1:k),as expeted. As in the single-sensor ase, the posterior is likely to sharpen aroundthe measurement if the likelihood funtions are disriminating enough. Two losemeasurements from two di�erent sensors will �mutualize� their loal ontribution toa ertain extent - i.e. the joint �sharpening e�et� of the two measurement is likelyto be more aute than the individual �sharpening e�et� of eah measurement - butwith a limited e�et on the global ontribution as explained before.2.3.2 Simpli�ation by joint partitioningClearly, the omputational ost of the data update equation (2.53) stems fromthe generation of the ombinational terms C(Zk+1). Indeed, one these terms areknown, omputing eah derivated ross-term is simple enough sine they are expli-itly onstruted with ommon funtions suh as detetion probabilities or single-target/single-measurement likelihood funtions (see proposition 2.3). Is is also learfrom lemma 2.1 that the omputational ost of C(Zk+1) inreases dramatially withthe sensor number S and/or the number of urrent measurements. This setionproposes a partitioning method in order to simplify the data update equation (2.53)without approximation, in fat a simple rewriting of the data update equation suhthat the number of required ombinational terms is signi�antly redued.The partitioning method is based on the FOVs on�guration and is e�ient in prati-al situations where the overlapping among the di�erent FOVs is limited, for examplewhen ameras are widely spread in the surveillane spae suh that the overlappingof more than three FOVs in a single point of the state spae is unlikely at any time.It is based on the fat that many derivated ross-terms in C(Zk+1) are bound tovanish based on the FOV on�guration, and therefore should not be omputed.
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The FOVs are properly de�ned as follows:De�nition 2.8. For any sensor j, j ∈ [1 S], its �eld of view at time k is the subset
F j
k ⊆ X de�ned as:

∀x ∈ X , x ∈ F j
k ⇔ pd,jk (x) > 0 (2.56)From now, it is assumed that F j

k 6= ∅ for any sensor j, at any time k. In the unlikelyase that a sensor j is to be �shut down� during a time step k (F j
k = ∅), this sensoris simply ignored for the time being and the remaining S − 1 sensors are relabeledaordingly. Sine the sensor number and the sensor order are arbitrary, there is noloss of generality.Consider the following example:Example 2.5. Assuming that there are S = 3 sensors with urrent FOV on�gura-tion illustrated as follows (time subsripts are omitted for larity's sake):Figure 2.6 Simpli�ation of some ross-terms based on the FOV on�guration

then some ross-terms are likely to simplify, for example:Sine x1 /∈ F 1, a target in state x1 annot be deteted by sensor 1, and thus
β[δ{z1}, δx1] should vanish.Sine x2 /∈ F 2, a target in state x2 annot be deteted by sensor 2, and thus
β[δ{z2}, δx2] should vanish. More generally, any ross-term derivated in x2 but β[δ∅, δx2]should vanish.Sine F 1 ∩ F 2 = ∅, no target may be deteted by both sensors 1 and 2 andtherefore no single soure may be the origin of z1 and z2, thus β[δ{z1,z2}, 1] shouldvanish.
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Any single soure at the origin of z1 and z3 must be deteted by both sensors

s1 and s3, thus β[δ{z1,z3}, 1] should equal β[δ{z1,z3}, 1F 1∩F 3].This leads to the joint partitioning of sensor indies [1 S] and state spae X :De�nition 2.9. Let the ross relation Rk be the re�exive, symmetri binary relationon sensors indies [1 S] de�ned by:
∀i, j ∈ [1 S], iRkj ⇔ (F i

k ∩ F j
k 6= ∅) (2.57)and let R+

k be its transitive losure.Then, let (Sk(p))
Pk

p=1 be the sensor partition at time k, where Sk(i) are the equiv-alene lasses of R+
k , and (Tk(p))

Pk

p=0 be the target spae partition at time k de�nedby:
Tk(p)

def
=







S⋃

j=1

F j
k (p = 0)

⋃

j∈Sk(p)

F j
k (p 6= 0)

(2.58)Note that the element order in (Sk(p))
Pk

p=1 is arbitrary but idential to the elementorder in (Tk(p))
Pk

p=0. For simpliity's sake, (Sk(p))
Pk

p=1 (resp. (Tk(p))
Pk

p=0) will be on-sidered a partition of [1 S] (resp. X ), whih is an abuse of notation sine the elementsare ordered and Tk(0) may be empty if all points in the state spae are overed byat least one FOV.Example 2.6. Continuing with example 2.5 leads to the following partitioning:Figure 2.7 Illustration of the joint partitioning
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The redued ross-term funtionals βp are de�ned as follows:De�nition 2.10. Let (Sk+1(p))

Pk+1

p=1 , (Tk+1(p))
Pk+1

p=0 be the joint partitioning at time
k + 1 aording to de�nition 2.9. Then, under the the same assumptions of propo-sition 2.4, the redued ross-term βk+1,p, 1 6 p 6 Pk+1 is the funtional de�ned,for any real-valued funtions h (resp. gj, j ∈ Sk+1(p)) de�ned on X (resp. Zj,
j ∈ Sk+1(p)) in [0 1], by:
βk+1,p[g

j∈Sk+1(p), h]
def
=

∑

j∈Sk+1(p)

(λc,j
k+1c

j
k+1[g

j]− λc,j
k+1)

+ vΞk+1|k



h



1Tk+1(p)

∏

j∈Sk+1(p)

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])







− vΞk+1|k
[1Tk+1(p)](2.59)where vΞk+1|k

[h] is the funtional vΞk+1|k
[h]

def
=
∫

X
h(x)vΞk+1|k

(x|Z1:k)dx.In other words, the redued ross-term βk+1,p is the usual ross-term βk+1 whereonly sensors in Sk+1(p) and target states in Tk+1(p) are onsidered. Clearly, all theexpressions given in notation 2.2 and in proposition 2.5 are valid for βk+1,p oneredued to sensors in Sk+1(p) and target states in Tk+1(p). Likewise, de�nition 2.7on ombinational terms and the onstrution lemma 2.1 are valid when restritedto sensors in Sk+1(p). As usual, time subsripts in the redued ross-term will beomitted when there is no ambiguity.The following proposition formalizes what was suggested in example 2.5:Proposition 2.6. Let (Sk+1(p))
Pk+1

p=1 , (Tk+1(p))
Pk+1

p=0 be the joint partitioning at time
k + 1. For any x ∈ X , any family of measurements {zj}Sj=1, zj ∈ Zj, any subset
J ⊆ [1 S]:

β[δ∅, ḡ, δx] =

{

βp[δ∅, ḡ, δx]

vΞk+1|k
(x)KX

(∃p ∈ [1 Pk+1], x ∈ Tk+1(p))

(x ∈ Tk+1(0)) (2.60)
β[δ{zj ,j∈J}, ḡ, h] =

{

βp[δ{zj ,j∈J}, ḡ, h]

0

(∃p ∈ [1 Pk+1], J ⊆ Sk+1(p))

(otherwise) (2.61)
β[δ{zj ,j∈J}, ḡ, δx] =

{

βp[δ{zj ,j∈J}, ḡ, δx]

0

(∃p ∈ [1 Pk+1], J ⊆ Sk+1(p), x ∈ Tk+1(p))

(otherwise) (2.62)
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The proof is given in appendix A. The results of proposition 2.6 are quite intuitiveand already illustrated in examples 2.5 and 2.6.Equation (2.60): if a target x belongs to the partition element Tk+1(p), p 6= 0,then only (some) sensors in Tk+1(p) may detet x. Thus, the �likelihood� that xis undeteted by all sensors - �β[δ∅, δx]� is the �likelihood� that x is undeteted bysensors from Tk+1(p) - �βp[δ∅, δx]�. If x is in Tk+1(0) (the red area in �gure 2.7),then the target is undeteted with probability one and the ross-term redues to thepredited PHD in x - �vΞk+1|k

(x)KX �.Equation (2.61): sine the ross-term β[δ{zj ,j∈J}, 1] weighs the assoiation of mea-surements zj , j ∈ J to an unknown single soure, it vanishes if sensors j ∈ J donot all belong to the same partition element Sk+1(p). If this is the ase, then thesingle soure either either lies in the ombined FOV of these sensors, i.e. Tk+1(p), ormay eventually be a false alarm if there is only measurement, this joint event beingweighted by βp[δ{zj ,j∈J}, 1] by onstrution.Equation (2.62): sine the ross-term β[δ{zj ,j∈J}, δx] weighs the assoiation ofmeasurements zj , j ∈ J to a single target, it vanishes if sensors j ∈ J do not allbelong to the same partition element Sk+1(p) - i.e. no single soure is �andidate�for this assoiation, or if this the ase but x does not belong to the orrespondingpartition element Tk+1(p) - i.e. there are �andidates� for this assoiation, but x isnot. If x does belong to Tk+1(p), sine all other �andidates� neessarily belong to
Tk+1(p) as well, β[δ{zj ,j∈J}, δx] redues to βp[δ{zj ,j∈J}, δx].
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Considering the results of proposition 2.6, theorem 2.4 an then be simpli�ed asfollows:Theorem 2.5. Under the assumptions given in proposition 2.4 and the additionalassumption that the predited RFS Ξk+1|k is Poisson, the PHD �lter data updateequation is given by:
vΞk+1|k+1

(x|Z1:k+1)

=







vΞk+1|k
(x|Z1:k)

(x ∈ Tk+1(0))

βp[δ∅, δx]K
−1
X +

∑

C∈C(Z
(p)
k+1)

∑

Ci∈C



βp[δCi
, δx]

∏

Cj 6=Cj

βp[δCj
, 1]





∑

C∈C(Z
(p)
k+1)

∏

Ci∈C

βp[δCi
, 1]

K−1
X

(x ∈ Tk+1(p), p 6= 0)(2.63)where:
• (Sk+1(p))

Pk+1

p=1 , (Tk+1(p))
Pk+1

p=0 is the urrent joint partitioning given by de�nition2.9;
• Z

(p)
k+1 =

⊔

j∈Sk+1(p)
Zj

k+1 is the set of urrent measurements produed by sensorsin Sk+1(p);
• C(Z(p)

k+1) is the set of ombinational terms given by (2.49).The proof is given in appendix A. From theorem 2.5 immediately follows the equiv-alent derivative form:Corollary 2.2. Under the assumptions given in proposition 2.4 and the additionalassumption that the predited RFS Ξk+1|k is Poisson, the PHD �lter data updateequation is given by:
vΞk+1|k+1

(x|Z1:k+1) =







vΞk+1|k
(x|Z1:k) (x ∈ Tk+1(0))

[

δ
δx

(

δ

δZ
(p)
k+1

eβp[δ∅,ḡ,h]

)]

gj∈Sk+1(p)=0,h=1
[

δ

δZ
(p)
k+1

eβp[δ∅,ḡ,h]

]

gj∈Sk+1(p)=0,h=1

K−1
X

(x ∈ Tk+1(p), p 6= 0)(2.64)where:
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• (Sk+1(p))

Pk+1

p=1 , (Tk+1(p))
Pk+1

p=0 is the urrent joint partitioning given by de�nition2.9;
• Z

(p)
k+1 =

⊔

j∈Sk+1(p)
Zj

k+1 is the set of urrent measurements produed by sensorsin Sk+1(p).Even though the simpli�ed data update equation (2.63) looks similar to the generalase (2.53), it is onsiderably more pratial when the FOV on�guration is favor-able enough for a partitioning. The following example shows that the gain an besigni�ant, even in simple situations:Example 2.7. Assuming that the sensor number is S = 3 and that the urrentFOVs on�guration and urrent measurements are as follows:Figure 2.8 A FOV on�guration favorable for partitioning

then the sensor partition is ({1, 3}, {2}) and the ombinational terms are:
• C(Z1, Z3) =

{{
{z11}, {z12}, {z31}

}
,
{
{z11 , z31}, {z12}

}
,
{
{z11}, {z12 , z31}

}};
• C(Z2) =

{{
{z21}, {z22}

}}.That is, the simpli�ed data update equation (2.63) requires the omputation of
|C(Z1, Z3)|+ |C(Z2)| = 4 ombinational terms.On the other hand, without partitioning, the ombinational terms are C(Z1, Z2, Z3) =
{{
{z11}, {z12}, {z21}, {z22}, {z31}

}
,
{
{z11 , z21, }, {z12}, {z22}, {z31}

}
, ...
}. That is, the gen-eral data update equation (2.53) requires the omputation of |C(Z1, Z2, Z3)| = 27ombinational terms.In the worst ase, that is if the partitioning method desribed in de�nition 2.9 failsto split the sensors in more that one partition element, the omputational ost of
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(2.63) is atually slightly worse than (2.53) beause it requires the omputation ofthe partitioning itself in any ase. However, as it will be shown later in hapter 4,the omputational ost of the partitioning is light enough.Regardless ot the omputational gain given by the partitioning method, theorem 2.5shows that the PHD an be updated independently on subparts of the state spae -namely, the state partition elements Tk+1(p). This is an important result, beause itprovides grounds for the design of hybrid PHD �lters as trade-o� between the ostlybut exat �lter based on the ombinational form (2.63) and usual approximations,suh as the well-known iterated-orretor approximation (see setion 2.4.2). Ratherthan using the iterated-orretor approximation on X with all the sensors, one anompute the joint partitioning and then deide, independently on eah partition el-ement, whether to use the exat data update equation or the iterated-orretor. Itan be shown that the resulting hybrid �lter performs at least as well as the iteratedorretor; and the tweaking of the riteria allows a dynamial optimization of the�lter's performane under the onstraint of available omputational power. Thismethod, however, requires that one is able to estimate a priori the omputationalost of the exat data update on a given partition element, presumably based onthe element �size� (number of sensors and/or measurements). This will be disussedfurther in onlusion.2.4 Common multi-sensor approximationsThis setion brie�y desribes several approximations of the multi-sensor PHD. Theaim is not to ompare of the �lters on simulated data but rather to expose theirstrengths and weaknesses on a more theoretial level. Beause the iterated orretor(see subsetion 2.4.2 has already been implemented and seems to have good per-formanes in detetion and traking problems [Mahl 10a℄, it will be ompared onsimulated data with the exat �lter in hapter 4, while the other approximationsare presented in this setion for information purposes only and will not be studiedfurther. An interesting study omparing the exat PHD �lter - in the two-sensorase - and several approximation tehniques on simulated data an be found in tworeent papers (see [Naga 11b, Naga 11a℄ for more details).2.4.1 Pseudo-sensor approximationArguably, the simplest way to fae the multi-sensor issue is the pseudo-sensor ap-proximation, in whih all the sensors are enapsulated in a single �pseudo-sensor�.That is, at every time step k, the single-sensor data update equation (2.28) is used
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with the whole set of measurements Zk+1 =

⊔S
j=1Z

j
k+1 as input:

ṽΞk+1|k+1
(.|Z1:k+1)

def
=




1− p̃dk+1(x) +

S∑

j=1

∑

zj∈Zj
k+1

p̃d,jk+1(x)L̃
zj ,j
k+1(x)

λ̃c,j
k+1c̃

j
k+1(z) + vΞk+1|k

[p̃d,jk+1L̃
z,j
k+1]




 vΞk+1|k

(.|Z1:k)(2.65)where p̃dk+1, p̃d,jk+1, λ̃c,j
k+1c̃

j
k+1 L̃

.,j
k+1 are the pseudo-funtions desribing the mehanismsof the pseudo-sensor. Mahler [Mahl 03b, Mahl 03℄ proposed suh an approximationwhere the pseudo-funtions are de�ned as follows:

• p̃dk+1(.)
def
= 1−∏S

j=1(1− pd,jk+1(.));
• p̃d,jk+1(.)

def
= pd,jk+1(.)

p̃d
k+1(.)

∑S
j=1 p

d,j
k+1(.)

;
• λ̃c,j

k+1c̃
j
k+1(.)

def
= λc,j

k+1c
j
k+1(.);

• L̃.,j
k+1

def
= L.,j

k+1(.).Another pseudo-sensor approximation leads from the exat data update equation(2.44) with the additional assumption that a target x is the soure of at most onemeasurement among all the measurement sets Zj
k+1, i.e. β[δZ , .] = 0 if |Z| > 1.Indeed, with this new assumption:
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Whih gives, using proposition 2.5:
ṽΞk+1|k+1

(x|Z1:k+1)

=

(
N∏

j=1

(1− pd,jk+1(x))

+

S∑

j=1

∑

z∈Zj
k+1

(
∏

i 6=j(1− pd,ik+1(x))
)

pd,jk+1(x)L
z,j
k+1(x)
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i 6=j(1− pd,ik+1)
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pd,jk+1L
z,j
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]

)

vΞk+1|k
(x|Z1:k)This leads to another pseudo-sensor approximation, quite similar to Mahler's:

• p̃dk+1(.)
def
= 1−∏S

j=1(1− pd,jk+1(.));
• p̃d,jk+1(.)

def
= pd,jk+1(.)

∏

i 6=j(1− pd,ik+1(.));
• λ̃c,j

k+1c̃
j
k+1(.)

def
= λc,j

k+1c
j
k+1(.);

• L̃.,j
k+1

def
= L.,j

k+1(.).The obvious advantage of pseudo-sensor approximations are their simpliity. How-ever, whether it is by onstrution in Mahler's approximation or expliity statedby the additional assumption in the approximation above, the independene of thesingle-sensor proesses is violated sine it implies that a target may not be the originof more than one measurement. Thus, while the exat multi-sensor PHD orretlyassoiates up to S measurements per target - one per sensor - at any time step, thelimited pseudo-sensor framework fails to do so and onsiders only single measure-ment to single target assoiations, any additional measurements being onsidered asfalse alarms [Mahl 03b, Mahl 03℄. Clearly, pseudo-sensor approximations are quiteonstraining and are likely to perform poorly in areas where FOVs are overlapping.2.4.2 Sequential approximationThe aim of the sequential approximation is to bypass the multi-sensor issue bydealing with eah sensor separately at eah time step; that is, using a sequene of
S single-sensor data update steps (2.27), namely one per sensor, rather than usingthe multi-sensor data update step (2.44) one. More preisely, the iterated-orretorapproximation (ICA) is given by (adapted from [Mahl 03a, Mahl 10a℄):
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De�nition 2.11. For any permutation σ : [1 S]→ [1 S], any urrent measurementsets (Zj

k+1)
S
j=1, Zj ⊂ Zj, any positive funtion v(.) on X , the orretor Cσ,j

k+1(., v),where j ∈ [1 S], is the funtion on X given by:
Cσ,j

k+1(., v)
def
= 1− p

d,σ(j)
k+1 (.) +

∑

z∈Z
σ(j)
k+1

p
d,σ(j)
k+1 (.)L

z,σ(j)
k+1 (.)

λ
c,σ(j)
k+1 c

σ(j)
k+1(z) + v[p

d,σ(j)
k+1 L

z,σ(j)
k+1 ]

(2.66)Then, the sequene of iterated approximations (vσ,jk+1|k)
S
j=0 is the sequene of positivefuntions on X given by:

vσ,0k+1|k(.)
def
= vΞk+1|k

(.|Zk) (2.67)
∀j ∈ [1 S], vσ,jk+1|k(.)

def
= Cσ,j

k+1(., v
σ,j−1
k+1|k) (2.68)The iterated approximation of the multi-sensor data update equation, respetive tosensor order σ(1), .., σ(S), is given by:

ṽσΞk+1|k+1
(.|Z1:k+1)

def
= vσ,Sk+1|k(.) (2.69)In other words, the ICA proeeds with eah sensor in a given order, applying thesingle-sensor data udpate equation (2.29) with the density from the previous iterationas input. Although slightly more ompliated to implement than pseudo-sensorapproximations, the ICA is more faithful to the multi-sensor model assumptionsand, as it will be shown later on simulated data (see hapter 4), it seems to befairly aurate (when ompared to the exat multi-sensor data update) in detetionand traking problems with a limited number of sensors. However, the ICA su�erssome �aws in its design [Mahl 09a℄. First, the validity of the approximated posteriorPHD ṽΞk+1|k+1

(.|Z1:k+1) in (2.69) is, by onstrution, based on the validity of thesequene of the S single-sensor data update steps whih, aording to theorem 2.2,requires that every intermediate approximation vσ,jk+1|k(.) an be seen as the PHD of aPoisson RFS, whih an be di�ult to asertain in pratial situations. The seondissue, more obvious, is the asymmetry of the sensors in the ICA: in the general ase,
ṽσ1
Ξk+1|k+1

(.|Z1:k+1) 6= ṽσ2
Ξk+1|k+1

(.|Z1:k+1) if σ1 6= σ2. This an be easily illustrated asimple example:Example 2.8. Assuuming that the sensor number is S = 2 and that the urrentFOV on�guration and urrent measurements are as follows:
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Figure 2.9 The ICA on a simple example

Then, the exat posterior PHD given by theorem 2.4 is:
vΞk+1|k+1

(x|Z1:k+1)

= β[δ∅, δx] +
β[δ{z1}, δx]β[δ{z2}, 1] + β[δ{z1}, 1]β[δ{z2}, δx] + β[δ{z1,z2}, δx]

β[δ{z1}, 1]β[δ{z2}, 1] + β[δ{z1,z2}, 1]
(2.70)The approximation given by the ICA with sensor order 1→ 2 (σ = Id) is:

ṽIdΞk+1|k+1
(x|Z1:k+1) = β[δ∅, δx] +

β1[δ{z1}, δx]

β1[δ{z1}, 1]
+

β1[δ{z1}, 1]β[δ{z2}, δx] + β[δ{z1,z2}, δx]

β1[δ{z1}, 1]β[δ{z2}, 1] + β[δ{z1,z2}, 1](2.71)while the approximation given by the ICA with sensor order 2→ 1 (σ = τ12) is:
ṽτ12Ξk+1|k+1

(x|Z1:k+1) = β[δ∅, δx] +
β2[δ{z2}, δx]

β2[δ{z2}, 1]
+

β[δ{z1}, δx]β
2[δ{z2}, 1] + β[δ{z1,z2}, δx]

β[δ{z1}, 1]β2[δ{z2}, 1] + β[δ{z1,z2}, 1](2.72)where βj[gj, h]
def
= λc,j

k+1c
j
k+1[g

j]−λc,j
k+j+vΞk+1|k

[

h(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])
]

−vΞk+1|k
[1]is the ross-term restrited to sensor sj.Example 2.8 illustrates the approximation behind the ICA. With the sensor order

1→ 2, the orrretor updates the predited PHD with measurements from sensor 1- namely, z1 - without onsidering the fat that another sensor 2 produed measure-ments in the same time. Thus, the �rst ratio in equation (2.71) β1[δ{z1},δx]

β1[δ{z1},1]
ompletelyignores the seond sensor - reall that β1[δ{z1}, δx] = pd,1k+1(x)L

z1,1
k+1(x)vΞk+1|k

(x|Z1:k)while β[δ{z1}, δx] = pd,1k+1(x)L
z1,1
k+1(x)(1−pd,2k+1(x))vΞk+1|k

(x|Z1:k). As shown in equation(2.71), the initial error propagates in the future ratios.
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Clearly, the ICA's quality is likely to derease with the number of sensors and/ormeasurements involved in the data update step, but quantifying the approximationwith respet to the exat multi-sensor data seems quite hallenging. Besides, thereis no easy way to selet, to the author's knowledge, the optimal sensor order forthe ICA. We detailed in [Dela 10℄ a more expliit reursive expression of the ICA;it seems that the quality of the approximation inreases with the sensor order, i.e.measurements from the last sensors are generally �better onsidered� than those fromthe �rst sensors. This suggests that a sound hoie for the sensor order is to orderthem by inreasing �produtivity� (i.e. inreasing number of urrent measurements),but no systemati rule ould be derived. This will be illustrated on simulated datain hapter 4.2.4.3 Produt approximationThe produt approximation (PA) aim at bypassing the asymmetry issue in the ICA byapproximating the multi-sensor data update as a produt of single-sensor orretors(adapted from [Mahl 09a℄):

ṽ
K

Z1
k+1

,...,ZS
k+1

Ξk+1|k+1
(.|Z1:k+1)

def
= KZ1

k+1,...,Z
S
k+1

S∏

j=1

(Cj
k+1(.|Zj

k+1))vΞk+1|k
(.|Z1:k) (2.73)where:

• Cj
k+1(.|Zj

k+1)
def
= 1− pd,jk+1(x) +

∑

z∈Zj
k+1

pd,jk+1(x)L
z,j
k+1(x)

λc,j
k+1c

j
k+1(z) + vΞk+1|k

[pd,jk+1L
z,j
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is the or-retor from sensor j;
• KZ1

k+1,...,Z
S
k+1

is a onstant, symmetri with respet to the sensors.In other words, the priniple of PAs is to enapsulate all the oupling e�ets betweensensors in a single term. Clearly, the quality of a PA is based on the proper hoieof the oupling term. In [Mahl 09a℄ Mahler explains that this method is not welladapted to the PHD yet. In the onstrution of the oupling term he had to makean assumption on the densities pΞk+1|k
(.|Zj

k+1) and ame to the onlusion that:
• if they are assumed to be PHDs from luster RFSs, the resulting ouplingonstant is intratable;
• if they are assumed to be PHDs from Poisson RFSs, the resulting ouplingonstant is 1, but ṽ1Ξk+1|k+1

(.|Z1:k+1) is a poor approximation.The PA with the oupling term equal to one (that we mentioned as produt approx-imation in [Dela 10℄) an be ompared with the ICA in the following example:
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Example 2.9. With the same on�guration and notations as example 2.8, the prod-ut approximation with KZ1

k+1,...,Z
S
k+1

= 1 is given by:
ṽ1Ξk+1|k+1

(x|Z1:k+1)

= β[δ∅, δx] +
β[δ{z1}, δx]β

2[δ{z2}, 1] + β1[δ{z1}, 1]β[δ{z2}, δx] + β[δ{z1,z2}, δx]

β1[δ{z1}, 1]β2[δ{z2}, 1]
(2.74)Example 2.9 shows the PA with K = 1 fails at onsidering ross-sensor measurementassoiations (the ross-term β[δ{z1,z2}, δx] is atually a alulus �side-e�et�, what isimportant here is that the ross-term β[δ{z1,z2}, 1] does not appear in the denomi-nator). Mahler remarked [Mahl 09a℄ that the PA with K = 1 does not redue tothe multi-sensor/single-target Bayes �lter in the trivial ase where there are no falsealarm, no missed detetions and a single true target, while the ICA does. Indeed:Example 2.10. Continuing examples 2.8 and 2.9 with the additional assumptionsthat λc,1

k+1 = λc,2
k+1 = 0, pd,1k+1(.) = pd,2k+1(.) = 1:

• the exat posterior is vΞk+1|k+1
(x|Z1:k+1) =

β[δ{z1,z2},δx]

β[δ{z1,z2},1]
;

• the ICAs give ṽIdΞk+1|k+1
(x|Z1:k+1) = ṽτ12Ξk+1|k+1

(x|Z1:k+1) =
β[δ{z1,z2},δx]

β[δ{z1,z2},1]
;

• the PA with K = 1 gives ṽ1Ξk+1|k+1
(x|Z1:k+1) =

β[δ{z1,z2},δx]

β1[δ{z1},1]β2[δ{z2},1]
.It is not lear how worse this PA is ompared to the ICA but, based on a moreexpliit expression of the PA we built in [Dela 10℄, it seems that the ICA is generallybetter, although omparisons on simulated data should be quite useful to answerthis question.2.5 ConlusionIn this hapter, some simple RFSs were presented. The multi-target and multi-observation RFSs involved in the RFS �lter equations must be redued to thesesimple RFFs (Poisson, luster, Bernouilli) in order to produe tratable approxima-tions and be able to design the PHD �lter. The onstrution of the exat PHD �lter- in the single-sensor as well as the multi-sensor ase - was thoroughly desribed, andthe data update equations were analyzed qualitatively. The data update equationof the multi-sensor ase being exeedingly di�ult to ompute in the general ase, ajoint partitioning method of the state spae and the sensors was presented in orderto simplify the data update without approximation. Finally, the usual multi-sensorapproximations were ompared to the exat solution on a theoretial level. The ICAlooked promising and should be studied further on simulated data.



CHAPTER3Multi-sensor management within the PHDframework
Previous work on the sensor management problem within the PHD frameworkremains, to the author's knowledge, sare. To be sure, Mahler introdued in[Mahl 04℄ the PENT manager but, aording to the author's opinion, it seems tobe ill-adapted to a broad range of surveillane ativities. Quite reently, Risti etal. [Rist 10b, Rist 11a℄ worked on a more general RFS-based sensor manager, andtheir simulation results seem to reinfore the author's opinion regarding the PENTmanager. In this hapter, the goal is to design a multi-sensor manager within thePHD framework whose data �ow an be depited as follows:Figure 3.1 Data �ow of the sensor management proess

As illustrated in �gure 3.1, the struture of the sensor manager is based on threedistintive features:1. the preditive update: ompute the preditive PHD vuΞk+1|k
, i.e. the PHD of theposterior RFS should the sensors be ontrolled aording to some u ∈ Uk+1;115
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2. the objetive funtion: determine a reward Ru

k+1 for eah preditive posterior
vuΞk+1|k

;3. the seletion step: selet the ontrol with the highest reward.The �rst part of this hapter (setion 3.1) fouses on the target extration proesswhih will be neessary for the preditive update step (see �gure 3.1). Sine thePHD is a density, the PHD �lter does not diretly provides traks as in more las-sial trak-based �lters; thus, one must extrat information about eventual targetsfrom the propagated density. Usual extration proesses seem to be mainly based onlustering tehniques suh as the k-mean algorithm [Clar 06℄. However, Tobias et al.argued [Tobi 08℄ that better extration tehniques ould be designed by removing atarget's worth of weight from the PHD N̂ times, where N̂ is the extrated numberof targets. Notably, this method is bound to produe better results in the extrationof lose targets, where the k-means algorithm would typially extrat a single targetaveraging the two true targets. The target extrator presented in this thesis followslosely the solution Tobias et al. proposed. It should be noted that Tang et al.desribed [Tang 11℄ an improved extration method, ombining traditional luster-ing tehniques suh as the k-means algorithm with the solution proposed by Tobiaset al., but this ame too late to the author's attention to be onsidered in this thesis.The seond part (setion 3.2) deals with the preditive update step, built as anextension of Mahler's work on the PIMS [Mahl 04℄ to the multi-sensor ase.The last part (setion 3.3) fouses on the design of a sensor manager. It oversthe desription of Mahler's PENT manager and its inadequay to some senarri insurveillane ativities. Consequently, the last part of setion 3.3 is devoted to theonstrution of another sensor manager.3.1 Target extrationSine RFSs are random variables on �large� spaes F(X ) where no sum operator isde�ned, the traditional expetation:
E[Ξ(ω)] =

∫

F(X )

pΞ(X)Xµ(dX) (3.1)has no mathemial sense even if the probability density pΞ is properly de�ned. Thus,usual estimators suh as the Maximum A Posteriori annnot be applied on RFS.Rather, one should exploit the fat that, aside from its probability density, a RFSan be desribed by its ardinality distribution ρΞ and its family of spatial distribu-tions {P (n)
Ξ }n∈N.
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In this thesis, a target extrator is de�ned as an estimator on RFSs that:1. estimates an extrated target number N̂ - an integer - based on the ardinalitydistribution ρΞ;2. estimates the target on�guration X̂ = {x1, ..., xN̂}, a �nite family on X , basedon the spatial distribution P

(N̂)
Ξ .Note that X̂ is built as a family and not a set, beause the extrated targets are (gen-erally) ordered. Target extrators are onsiderably easier to design when restritedto Poisson RFSs, sine they are haraterized by their intensity or PHD (de�nition2.1). In this ase, a target extrator is an estimator on Poisson RFSs that:1. estimates an extrated target number N̂ - an integer - based on the Poissonparameter vΞ[1];2. estimates the target on�guration X̂ = (x1, ..., xN̂), a �nite family on X , basedon the PHD vΞ(.).In the sope of this thesis, targets need to be extrated from PHDs of Poisson RFSsonly, namely:

• predited PHDs vΞk+1|k
(.|Z1:k);

• preditive PHDs vuΞk+1|k
(.|Z1:k);

• posterior PHDs vΞk+1|k+1
(.|Z1:k+1).For simpliity's sake, time subsripts and dependene on past measurements will beomitted in this setion and vΞ will denote indi�erently one of the PHDs above. Itwill also be assumed that vΞ is ontinuous on X .3.1.1 Highest peaks extratorReall from proposition 1.3 that, given the multi-target PHD vΞ:

• the estimated target number is N = vΞ[1] =
∫

X
vΞ(x)dx;

• the targets are i.i.d. aording to the normalized PHD, i.e. the probabilitydistribution vΞ(.)
N

.Thus, a �naive� highest peaks extrator ould be de�ned as follows:
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De�nition 3.1. For any PHD vΞ on X , the set of extrated targets from vΞ, if itexists, is the olletion X̂HPE(vΞ) ∈ X de�ned by:

X̂HPE(vΞ)
def
= (x̂1, ..., x̂N̂) (3.2)where:

• N̂
def
= [vΞ[1]]nearest integer is the extrated number of targets;

• ∀n ∈ [1 N̂ ], x̂n is the n-th highest loal extremum of the PHD vΞ.Figure 3.2 Illustration of the HPE

3.1.2 Weighted peaks extratorAlthough the HPE is remarkable by its simpliity, problems may arise in spei�situations suh as shown in the following example:Example 3.1. Consider the following situations:Figure 3.3 Improper target extration by the HPE

On the left hand side, it seems that two targets are lose enough in the state spae.HPE extrats target x̂1 at the �rst peak, but annot extrat a seond target beause
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there are no more peaks. However, a seond target is probably in the viinity of x̂1.On the right hand side, the HPE extrats the orret target number but the se-ond target is extrated in the viinity of x̂1 while the shape of the PHD suggests thatthe seond target should be extrated around the third highest peak.Example 3.1 shows situations were the HPE does not performs as might be expetedwhen target are getting loser (left �gure) or when there are more than one peakthat are likely to aount for the same target (right �gure). It seems that the HPEmay fail beause it does not really exploit the loal distribution of the PHD. Thefollowing weight-based approah losely follows the solution proposed by Tobias etal. [Tobi 08℄ in whih targets are extrated in regions whose weight (i.e., the integralof the PHD) reahes a given target weight :De�nition 3.2. For any PHD vΞ on X , de�ne:
• the extrated target number as N̂ def

= [vΞ[1]]nearest integer;
• the target weight as Wt

def
=







0 (N̂ = 0)

vΞ[1]

N̂
(otherwise)

.Besides, for any positive funtion f(.) on X , any (stritly) positive real number r,any state point x0 ∈ X , de�ned as:
• Br(x0)

def
= {x ∈ X | dX (x0, x) 6 r} the losed ball entered on x0 with radius

r;
• W (., d, f)

def
=
∫

Bd(.)
f(x)dx the neighborhood weight funtion.Initialize the weight funtion with the PHD, i.e. w(1) = vΞ, and proeed as follows:

• Find new global maximum: x(n) = argmaxx w
(n)(x);

• Find new neighborhood span: d(n) = argmindW (x(n), d, v
(n)
Ξ ) > Wt;

• Set new neighborhood: N (n) = Bd(n)(x(n));
• Set new neighborhood weight: W (n) = W (x(n), d(n), w(n));
• Compute new target state: x̂n =

∫

N(n) x w
(n)
Ξ (x)dx

W (n) ;
• Compute new weight funtion w(n+1)(.) = w(n)(.)− 1N(n)(.) Wt

W (n) .The resulting family X̂WE(vΞ)
def
= (x̂1, ..., x̂N̂ ), if it exists, is the family of extratedtargets.
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For simpliity's sake, X̂WE(vΞ) will be shortened to X̂WE when there is no ambiguity.Intuitively, the WE omputes the smallest neighborhood around the highest pointof the PHD with weight Wt, extrats the �rst target as the weighted average ofthe neighborhood, removes the neighborhood weight from the PHD and proeedswith the next extration. Note that the target weight aounts for the ommondisrepany between the expeted number of targets vΞ|1], whih is not an integerin general, and the expeted number of targets N̂ , an integer by onstrution. Forexample, if vΞ|1] = 2.2, then N̂ = 2 and the target weight is Wt =

2.2
2

= 1.1, suhthat N̂Wt = vΞ|1]. Sine the WE removes exatly Wt of weight at eah iteration(see de�nition 3.2), ∫
X
w(n)(x)dx > 0, W (n) > 0 and thus the new target states x̂nare well-de�ned.Example 3.2. Continuing example 3.1, the WE an be illustrated as follows:Figure 3.4 Target extration by the WE (1)

Figure 3.5 Target extration by the WE (2)

It is important to note that the WE has its own issues. While the �nite family
X̂WE(vΞ) = (x̂n)n=[1 N̂ ] is well-de�ned, the �nite set X̂WE(vΞ) =

⋃N̂
n=1 x̂n may notif some states are idential. However, this event being highly unlikely, it will beassumed from now on that the set of extrated targets exists, regardless of theinitial weight distribution. Another issue is the dermination of the neighorhood
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span, partiularly for the last extrated target. By onstrution, ∫

X
w(N̂)(x)dw = Wt,whih means that the last neighborhood may span to the entire state spae, in whihase setting the last target as the the weighted average may be a poor hoie. In thepratial implementation of the WE (see hapter 4), the span of the neighborhoodswill be apped by a parameter.3.2 Multi-sensor preditive PHDIn the sope of the thesis, multi-sensor ontrols have limited in�uene on the obser-vation proess. A ontrol u ∈ Uk aims at shaping the FOVs on�guration, but hasno e�et on the measurement and false alarm proess. That is, a ontrol only shapesthe detetion probabilities (pd,jk (.))j∈[1 S]:Notation 3.1. If the sensors are under ontrol u ∈ Uk, the following notations areused:

(F j
u)j∈[1 S]

not
= (F j

k )j∈[1 S] (3.3)
(pd,ju (.))j∈[1 S]

not
= (pd,jk (.))j∈[1 S] (3.4)3.2.1 Preditive update equationThe aim of the preditive update step for ontrol u is to guess, without new measure-ments Zk+1, the shape of the preditive RFS Ξu

k+1|k+1, that is the expeted posteriorPHD should the sensors be under ontrol u. In the PHD framework, the hallengeis to ompute the preditive PHD vΞu
k+1|k+1

based on the predited PHD vΞk+1|k
:De�nition 3.3. At any time step k+1 and for any ontrol u ∈ Uk+1, the preditivePHD vΞu

k+1|k+1
is given by:

vΞu
k+1|k+1

(.|Z1:k)
def
= E[vΞk+1|k+1

(.|Z1:k ∪ Σu(ω))] (3.5)where:
• Σu is a preditive multi-sensor observation RFS (yet to be de�ned);
• vΞk+1|k+1

(.|Z1:k∪Σu(ω)) is the posterior multi-target RFS given by theorem 2.3.In de�nition 3.3, Σu desribes the multi-sensor observation proess based on theknown information about the urrent living targets Xk+1, i.e. based on the preditedPHD vΞk+1|k
. Beause the multi-sensor data update equation - either exat ((2.44)or (2.53)) or approximated ((2.65), (2.69) or (2.73)) - requires a multi-sensor mea-surement set in input, de�nition 3.3 is unexploitable unless the number of possible
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realizations of RFS Σu is �nite - and, if possible, small enough - and its probabil-ity distribution pΣu

(.) is known expliitly. In the RFS framework, this probabilitydistribution is given by:
pΣu

(.) =

∫

F(X )

pΞk+1|k
(X)pΣu(X)(.)µ(dX) (3.6)where Σu(X) is the preditive observation RFS onditionally on target set X . Ofourse, equation (3.6) is widely impratial sine:

• aording to the multi-sensor observation model (see proposition 2.4), for agiven set X , Σu(X) is a ompliated RFS involving missed detetions, falsealarms and noise measurement proesses;
• the set integral preludes a tratable implementation of pΣu

.First of all, one must �disretize� RFS Σu(X), i.e. provide an approximation with a�nite number of realizations. In the general ase, the single-sensor observation spaes
Zj are unountable and thus the single-sensor observation RFSs Σj

k+1(X) have valuesin unountable spaes F(Zj). The �rst step is to disretize the observation spaes(adapted from [Mahl 04℄):De�nition 3.4. At any time step k, for any sensor j, the (ideal) measurementfuntion ρjk(.) is the mapping de�ned as:
ρjk : X → Zj

x 7→ z = ρjk(x) (3.7)where z is the noiseless measurement produed by sensor j from a deteted targetwith state x.For any �nite set X = {x1, ..., xN} ⊂ X , assuming that the funtions ρjk(.) areinjetive, the multi-sensor ideal measurement set ZId
k is the disjoint union:

ZId
k (X)

def
=

S⊔

j=1

ZId,j
k (X) =

S⊔

j=1

ρjk(X) (3.8)where ZId,j
k (X) = ρjk(X) is the single-sensor ideal measurement set of sensor j.Note that the injetivity of the measurement funtions is required for the idealmeasurement sets to be well-de�ned, even though this will not be the ase in pratialimplementations (see hapter 4). In this hapter, the measurement funtions will beonsidered bijetive. The (multi-sensor) preditive observation RFS Σu

k+1(X) anthen be onstruted as follows:
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Proposition 3.1. For any �nite set X = {x1, ..., xN} ⊂ X , any sensor j, any ontrol
u ∈ Uk+1, the (single-sensor) preditive observation RFS of sensor j, onditionallyon target set X, is the RFS Σj

u(X) with values in F(ZId,j
k+1(X)) haraterized by itsprobability density:

pΣj
u(X)(Z)

def
=
∏

z∈Z

(
pd,ju ((ρjk+1)

−1(z))
) ∏

z∈ZId,j
k+1(X)\Z

(
1− pd,ju ((ρjk+1)

−1(z))
) (3.9)where ZId,j

k+1(X) is the ideal measurement set given by de�nition 3.4.The preditive observation RFS, onditionally on target set X, is the joint RFS:
Σu(X)

def
=

S⊔

j=1

Σj
u(X) (3.10)Then, the probability distribution of the preditive observation RFS exists and, forany set Z =

⊔S
j=1Z

j ∈ ⊔S
j=1F(ZId,j

k+1(X)):
pΣu(X)(Z) =

S∏

j=1

pΣj
u(X)(Z

j) (3.11)The proof is straightforward using the property of joint RFSs (1.8).Example 3.3. Consider the multi-target set X = {x1, x2, x3} and the ideal mea-surement sets illustrated as follows:Figure 3.6 Example of ideal measurement sets

In addition, let u be an available multi-sensor ontrol suh that:
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• pd,1u (x1) = 0, pd,1u (x2) =

2
3
, pd,1u (x3) =

2
3
;

• pd,2u (x1) =
1
3
, pd,2u (x2) =

1
2
, pd,2u (x3) =

2
3
.Then, the probability distribution of the preditive RFS Σ1

u(X) is given by:






pΣ1
u(X)(∅) =

1

9

pΣ1
u(X)({z12}) = pΣ1

u(X)({z13}) =
2

9

pΣ1
u(X)({z12 , z13}) =

4

9

(3.12)Likewise, the probability distribution of the preditive RFS Σ2
u(X) is given by:







pΣ2
u(X)({z21}) = pΣ2

u(X)({z21 , z22}) =
1

18

pΣ2
u(X)(∅) = pΣ2

u(X)({z22}) =
1

9

pΣ2
u(X)({z23}) = pΣ2

u(X)({z22 , z23}) =
2

9

pΣ2
u(X)({z21 , z23}) = pΣ2

u(X)({z21 , z22 , z23}) =
1

9

(3.13)
As illustrated by example 3.3, the preditive RFS Σu(X) overs all the possiblemeasurements on�guration - onditionally on the target set X - provided that, foreah sensor:
• the measurement proess is noiseless;
• there are no false alarms.However, the preditive RFS does take into aount the missed detetions.Now that the preditive RFS Σu(X) is properly de�ned and that its probabilitydistribution is known expliitly thanks to proposition 3.1, the set integral in (3.6) isbypassed by onsidering a unique target set (inspired by [Mahl 04℄):De�nition 3.5. At any time step k + 1, ZWE

k+1 is the partiular ideal measurementset ZId
k+1(X) given by:

ZWE
k+1

def
= ZId

k+1

(

χ(X̂WE)
) (3.14)Likewise, for any ontrol u ∈ Uk+1, the PIMS ΣWE

u is the partiular preditive RFS
Σu(X) given by:

ΣWE
u

def
= Σu

(

χ(X̂WE)
) (3.15)
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that is, ΣWE

u is an approximation of Σu haraterized by the probability distribution:
pΣWE

u
(.) = pΣu(χ(X̂WE))(.) ≃

∫

F(X )

pΞk+1|k
(X)pΣu(X)(.)µ(dX) = pΣu

(.) (3.16)Note that de�nition 3.5 ould be easily extended to other target extrators, leadingto di�erent PIMSs - e.g. ΣHPE
u .Thanks to proposition 3.1 and de�nition 3.5, the omputation of the preditivePHD (3.5) is tratable and, ombined with previous result (2.53), yields:Proposition 3.2. Under the assumptions given in theorem 2.4, for any ontrol

u ∈ Uk+1, the preditive PHD vΞu
k+1|k+1

(.|Z1:k) is given by:
vΞu

k+1|k+1
(x|Z1:k)

= β[δ∅, δx]K
−1
X +

∑

Z⊆ZWE
k+1

pΣWE
u

(Z)

∑

C∈C(Z)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Z)

∏

Ci∈C

β[δCi
, 1]

K−1
X(3.17)or, equivalently:

vuΞk+1|k+1
(x|Z1:k) =

∑

Z⊆ZWE
k+1

pΣWE
u

(Z)

[
δ
δx

(
δ
δZ
eβ[δ∅,ḡ,h]

)]

g1...S=0,h=1
[

δ
δZ
eβ[δ∅,ḡ,h]

]

g1...S=0,h=1

K−1
X (3.18)where the ideal measurement set ZWE

k+1 and the PIMS ΣWE
u are given by de�nition3.5.The proof is given in appendix A. Note that the ross-terms in equations (3.17) and(3.18) implitly depend on the ontrol u through the detetion probability funtions

pd,ju (.) (see notation (3.4)).As expeted, proposition 3.2 is simpli�ed in the single-sensor ase and yields Mahler'sresult [Mahl 04℄:
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Corollary 3.1. Under the assumptions given in theorem 2.2, for any ontrol u ∈
Uk+1, the preditive PHD vΞu

k+1|k+1
(.|Z1:k) is given by:

vΞu
k+1|k+1

(.|Z1:k)

=



1− pdu(.) +
∑

z∈ZWE
k+1

pdu((ρk+1)
−1(z))

pdu(.)L
z
k+1(.)

λc
k+1ck+1(z) + vΞk+1|k

[pduL
z
k+1]



 vΞk+1|k
(.|Z1:k)(3.19)where the ideal measurement set ZWE

k+1 is given by de�nition 3.5.The proof is given in appendix A.3.2.2 Simpli�ation by joint partitioningResult (3.19) is instrutive beause it shows that in the single-sensor ase, the ostsfor the omputation of the preditive PHD vΞu
k+1|k+1

and the posterior PHD vΞk+1|k+1(equation (2.29)) are similar - linear respetive to the measurement number. Theonstrution of the preditive single-sensor PHD is quite intuitive. The urrent mea-surements being deoupled in the single-sensor ase, the sum in equation (2.29) anbe seen as the unweighted sum of the inlfuene of eah produed measurement onthe posterior PHD. The onstrution of the preditive PHD is similar, exept thatno urrent measurements have been produed yet and one must weight the in�ueneof eah ideal measurement with its probability of ourene, whih is exatly theprobability of detetion of the assoiated target.Unfortunately, this interpretation does not hold in the general ase, beause the ef-fet of eah urrent measurement annot be isolated in (2.53). Thus, the preditivePHD equation (3.17) requires the omputation of an exat multi-sensor data updatestep (2.53) for every possible subset Z of the ideal measurement set ZWE
k+1 . However,proposition 3.2 an be signi�antly simpli�ed without approximation by using theprevious joint partitioning (see hapter 2). More preisely, the ideal measurementset ZWE

k+1 an be partitioned as follows:De�nition 3.6. For any ontrol u ∈ Uk+1, let (Su(p))
Pu

p=1, (Tu(p))
Pu

p=0 be the jointpartition as given by de�nition 2.9. Then, the set of extrated targets X̂WE an bepartitioned as follows:
∀p ∈ [0 Pu], X̂WE

u,p

def
= X̂WE ∩ Tu(p) (3.20)Then, the ideal measurement set ZWE

k+1 an be redued as follows:
∀p ∈ [1 Pu], ZWE

u,p

def
=

⊔

j∈Su(p)

ZWE,j
u,p =

⊔

j∈Su(p)

ρjk+1(X̂
WE
u,p ) (3.21)
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Finally, for any p ∈ [1 Pu], ΣWE

u,p is the redution of the PIMS ΣWE
u to partition ele-ment p, i.e. the RFS with values in F(ZWE

u,p ) suh that, for any set Z =
⊔

j∈Su(p)
Zj ∈

⊔

j∈Su(p)
F(ZWE,j

u,p ):
pΣWE

u,p
(Z)

def
=

∏

j∈Su(p)




∏

z∈Zj

(
pd,ju ((ρjk+1)

−1(z))
) ∏

z∈ZWE,j
u,p \Zj

(
1− pd,ju ((ρjk+1)

−1(z))
)



(3.22)
Example 3.4. Consider the set of extrated targets X̂WE = {x̂1, x̂2, x̂2} and theFOVs F 1

u , F 2
u , F 3

u illustrated as follows:Figure 3.7 Joint partitioning of X̂WE and ZWE
k+1 (p = 0 in blue, p = 1 in green, p= 2 in red)

First of all, sine F 2
u ∩ F 3

u 6= ∅, the joint partitioning is, aording to de�nition 2.9:
• sensors: Su(1) = {1} and Su(2) = {2, 3};
• state spae: Tu(1) = F 1

u , Tu(2) = F 2
u ∪ F 3

u and Tu(0) = X \ (F 1
u ∪ F 2

u ∪ F 3
u ).Then, the extrated targets X̂WE are partitioned and the ideal measurements ZWE

k+1are redued aording to de�nition 3.6:
• extrated targets: X̂WE

u,0 = {x̂2}, X̂WE
u,1 = {x̂1} and X̂WE

u,2 = {x̂3};
• ideal measurements: ZWE

u,1 = {z11}, and ZWE
u,2 = {z23 , z33}.
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Note that ideal measurement z21 is disarded beause, under ontrol u, pd,2u ((ρ2k+1)

−1(z21)) =
pd,2u (x̂1) = 0 sine x̂1 /∈ F 2

u . Likewise, measurements z31, z12 , z22, z32 and z13 are dis-arded.With this joint partitioning, proposition 3.2 is simpli�ed in a similar manner astheorem 2.4:Proposition 3.3. Under the assumptions given in proposition 3.2, for any ontrol
u ∈ Uk+1, the preditive PHD vΞu

k+1|k+1
(.|Z1:k) is given by:

vΞu
k+1|k+1

(x|Z1:k)

=







vΞk+1|k
(x|Z1:k)

(x ∈ Tu(0))

βp[δ∅, δx]K
−1
X +

∑

Z⊆ZWE
u,p

pΣWE
u,p

(Z)

∑

C∈C(Z)

∑

Ci∈C



βp[δCi
, δx]

∏

Cj 6=Cj

βp[δCj
, 1]





∑

C∈C(Z)

∏

Ci∈C

βp[δCi
, 1]

K−1
X

(x ∈ Tu(p), p 6= 0)(3.23)where (ZWE
u,p )Pu

p=1 and (ΣWE
u,p )Pu

p=1 are given by de�nition 3.6.The proof is given in appendix A.Example 3.5. Continuing with example 3.4, assuming that the preditive PHD mustbe omputed in three target states a, b, c as shown in the followwing piture:Figure 3.8 Computation of the preditive PHDs in points a, b, c
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Sine a ∈ Tu(2), using proposition 3.3 gives:
vΞu

k+1|k+1
(a|Z1:k) = β2[δ∅, δa]K

−1
X + pd,2u (x̂3)(1− pd,3u (x̂3))

β2[δ{z23}, δa]

β2[δ{z23}, 1]
K−1

X

+ (1− pd,2u (x̂3))p
d,3
u (x̂3)

β2[δ{z33}, δa]

β2[δ{z33}, 1]
K−1

X

+ pd,2u (x̂3)p
d,3
u (x̂3)

β2[δ{z23}, δa]β2[δ{z33}, 1] + β2[δ{z23}, 1]β2[δ{z33}, δa] + β2[δ{z23 ,z33}, δa]

β2[δ{z23}, 1]β2[δ{z33}, 1] + β2[δ{z23 ,z33}, 1]
K−1

XThen, sine b ∈ Tu(0):
vΞu

k+1|k+1
(b|Z1:k) = vΞk+1|k

(b|Z1:k)Finally, sine c ∈ Tu(1):
vΞu

k+1|k+1
(c|Z1:k) = β1[δ∅, δc]K

−1
X + pd,1u (x̂1)

β1[δ{z11}, δc]

β1[δ{z11}, 1]
K−1

XNote that, without the joint partitioning, using proposition 3.2 requires the ompu-tation of 2|ΣWE
k+1| = 29 = 512 ratios for eah point a, b, c.As usual, from proposition 3.3 immediately follows the equivalent derivative form:Corollary 3.2. Under the assumptions given in proposition 3.3, for any ontrol

u ∈ Uk+1, the preditive PHD vΞu
k+1|k+1

(.|Z1:k) is given by:
vΞu

k+1|k+1
(x|Z1:k)

=







vΞk+1|k
(x|Z1:k) (x ∈ Tu(0))

∑

Z⊆ZWE
u,p

pΣWE
u,p

(Z)

[
δ
δx

(
δ
δZ
eβp[δ∅,ḡ,h]

)]

gj∈Su(p)=0,h=1
[

δ
δZ
eβp[δ∅,ḡ,h]

]

gj∈Su(p)=0,h=1

K−1
X (x ∈ Tu(p), p 6= 0)(3.24)where (ZWE

u,p )Pu

p=1 and (ΣWE
u,p )Pu

p=1 are given by de�nition 3.6.3.2.3 A few leads for approximationsArguably, using proposition 3.3 is still omputationally intensive if the FOVs on-�guration is unfavorable. There are at least two leads, whih an eventually beombined, mayt provide approximations with lighter omputation osts.
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First, sine the onstrution of the preditive PHD is based on the data updateequation (2.53), the approximations desribed in setion 2.4 are still valid in thisontext. Of ourse, the resulting preditive PHDs will share the same limitationsas the posterior PHD - e.g. the dependene on the sensor order if the ICA is used,although it may have less onsequenes in this ase sine the preditive PHD is usedto evaluate a multi-sensor ontrol rather than propagate the �ltered state. Presum-ably, using an approximation suh as the ICA would sometimes produe errors inthe evaluation of the preditive PHDs large enough for the sensor manager to seleta suboptimal ontrol.Another possible approximation of proposition 3.3 is to simplify the preditive RFSs
(ΣWE

u,p )Pu

p=1. Reall from proposition 3.1 that ΣWE
u is built as an approximation of themulti-sensor observation RFS in whih the false alarms proess and the noise in themeasurement proess of eah sensor is disarded, but the missed detetions are stillonsidered. Thus, an easy way to further approximate the multi-observation RFS isto redue the preditive RFS ΣWE

u to the following:
∀p ∈ [1 Pu], pΣWE

u,p
(Z)

def
=

{

1

0

(Z = ZWE
u,p )

(otherwise)
(3.25)that is, to assume a full detetion of the extrated targets. In this situation, the sumin proposition 3.3 and the preditive step redues to a single data update step withthe ideal measurement set ZWE

u,p as input.3.3 Sensor managerThis setion fouses on the design of a sensor manager and is divided in two parts.First, the PENT manager developed by Mahler is desribed and its inonsisteny isshown on simple examples. Based on the �aws of the PENT, another approah isproposed for the �rst time - the BET manager.3.3.1 The PENT managerThe PENT(-based) objetive funtion was developed by Mahler following the PIMSonstrution, it is indeed a very simple objetive funtion that naturally �ows fromthe PIMS (adapted from [Mahl 04℄):De�nition 3.7. At any time k + 1, the posterior expeted target number (PENT)objetive funtion is de�ned by:
Rk+1 : Uk+1 → R

+

u 7→ Rk+1(u) = vΞu
k+1|k+1

[1] (3.26)
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The data �ow of the PENT manager is thus very simple and follows losely thegeneri �ow given in �gure 3.1:Figure 3.9 Data �ow of the PENT manager

In other words, the PENT(-based) manager omputes the preditive PHD for eahpossible ontrol, and selets the ontrol with the highest PENT. De�nition 3.7,however, gives no insight on the shape of the FOVs on�guration provided by theseleted ontrol. Proposition 3.3 does help a little on this point. Considering a on-trol u ∈ Uk+1 with partitions (Tu(p))p∈[0 Pu] and (Su(p))p∈[1 Pu]:1. If x ∈ Tu(0), then vΞu
k+1|k+1

(x|Z1:k) = vΞk+1|k
(x|Z1:k). Thus, vΞu

k+1|k+1
[1Tu(0)] =

vΞk+1|k
[1Tu(0)]: the expeted target number in areas without any sensor overage willremain idential.2. If x ∈ Tu(p), p 6= 0, suh that ZWE

u,p = ∅, then vΞu
k+1|k+1

(x|Z1:k) = βp[δ∅, δx]K
−1
X =

∏

j∈Su(p)

(
1− pd,ju (x)

)
vΞk+1|k

(x|Z1:k). Thus, vΞu
k+1|k+1

[1Tu(p)] 6 vΞk+1|k
[1Tu(p)]: the ex-peted target number in areas overed by at least one FOV but without any extratedtarget will derease.3. In partition elements p with at least one assoiated ideal measurement (ZWE

u,p 6= ∅)or, equivalently, at least one extrated target (X̂WE
u,p 6= ∅), the analysis on the ontri-bution of eah measurement on the posterior PHD in setion 2.3.1 suggests that theexpeted target number will evolve toward the number of extrated targets |X̂WE

u,p |.This quik analysis suggests that the PENT manager is unlikely to dissipate thesensors' e�ort in unexplored areas of the state spae, but rather to fous on previ-ously deteted targets. Yet the PENT objetive funtion is not entirely satisfyingbeause it shares the same default as the HPE: the PENT being a global riteriawhih is based on the ardinality distribution of the preditive RFSs Ξu
k+1|k+1 only,the information given by the preditive PHDs on the target distribution is ompletelydisarded. For this reason, Risti et al. [Rist 11a℄ argued that the PENT manager



132 Chapter 3. Multi-sensor management within the PHD framework
is expeted to perform poorly in target loalization problems and illustrated theirpoint on simulated data. The following example shows some situations in whih thePENT manager may appear ill-adapted for traking purposes:Example 3.6. Consider the two following preditive PHDs, for available ontrols
u1, u2 ∈ Uk+1:Figure 3.10 Comparison of preditive PHDs (1)

Controls u1 and u2 are equivalent regarding the PENT (Nu1 = Nu2), thus neither u1nor u2 is favored by the PENT manager. However, ontrol u1 provides more infor-mation than u2 regarding the loalization of the estimated targets.Then, onsider the two following preditive PHDs, for available ontrols u3, u4 ∈
Uk+1:Figure 3.11 Comparison of preditive PHDs (2)

Controls u3 and u4 are equivalent regarding the loalization of expeted targets (vΞu3 (.)

Nu3
=

vΞu4 (.)

Nu4
), but ontrol u4 is favored over ontrol u3 sine its PENT is higher (Nu4 >

Nu3). However, either the WE or the HPE would extrat the same information fromthe two preditive PHDs.The examples above are instrutive beause they illustrate a situation in whih thePENT objetive funtion does not disriminate two ontrols while one may want to
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do so (�gure 3.10) and, onversely, a situation in whih the PENT manager makesa deision that may appear irrelevant (�gure 3.11). The next example is perhapsmore suggestive, beause it shows a simple situation in whih the PENT managermakes the wrong deision:Example 3.7. Consider the following predited PHD vΞk+1|k

at time k + 1:Figure 3.12 Predited PHD vΞk+1|k

That is, there is probably one target in the state spae, whose state is estimated at
x̂1 by the WPE. Assume that there is urrently only one available sensor, produingtrue measurements only (λc

k+1 = 0) and with no missed detetion (pdk+1 = 1 insidethe FOV). Further assume that two ontrols are available:
• ontrol u1: the FOV overs all the state spae, i.e. pdu1

(.) = 1;
• ontrol u2: the sensor is �shut down�, i.e. pdu2

(.) = 0.The ideal measurement set ZWE
k+1 being redued to a single element z1 = ρk+1(x̂1),omputing the preditive PHD is straightforward in both ases with orollary 3.1:

vΞu1
k+1|k+1

(.|Z1:k)

=







1− pdu1

(.)
︸ ︷︷ ︸

=1

+ pdu1
(x̂1)

︸ ︷︷ ︸

=1

=1
︷ ︸︸ ︷

pdu1
(.)Lz1

k+1(.)

λc
k+1ck+1(z1)
︸ ︷︷ ︸

=0

+vΞk+1|k
[ pdu1
︸︷︷︸

=1

Lz1
k+1]








vΞk+1|k
(.|Z1:k)

=
Lz1
k+1(.)vΞk+1|k

(.|Z1:k)

vΞk+1|k
[Lz1

k+1]
(3.27)
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Sine pdu2

(x̂1) = 0, vΞu2
k+1|k+1

(.|Z1:k) has an even simpler expression:
vΞu2

k+1|k+1
(.|Z1:k)

=



1− pdu2
(.)

︸ ︷︷ ︸

=0

+ pdu2
(x̂1)

︸ ︷︷ ︸

=0

pdu2
(.)Lz1

k+1(.)

λc
k+1ck+1(z1) + vΞk+1|k

[pdu2
Lz1
k+1]



 vΞk+1|k
(.|Z1:k)

= vΞk+1|k
(.|Z1:k) (3.28)Then, the PENT objetive funtion gives:






Rk+1(u1) = vΞu1
k+1|k+1

[1] =
vΞk+1|k

[Lz1
k+1]

vΞk+1|k
[Lz1

k+1]
= 1

Rk+1(u2) = vΞu2
k+1|k+1

[1] = vΞk+1|k
[1] = Nk+1|k = 1.1

(3.29)Thus, regardless of the sensor measurement auray (that is, the shape of the like-lihood funtion L
.

k+1), the PENT manager selets ontrol u2 and shuts down thesensor for the urrent time step.Let Xk+1 = {x1, ..., xN} be the true multi-target set. Sine there is no false alarmand no missed detetions, should u1 be seleted, the urrent measurement set Zk+1would nessarily have the same size N and equation (2.29) yields:
vΞk+1|k+1

(.|Z1:k+1)
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︸ ︷︷ ︸
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vΞk+1|k
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vΞk+1|k
[Lz

k+1]Thus:
Nk+1|k+1 = vΞk+1|k+1

[1] =
∑

z∈Zk+1

vΞk+1|k
[Lz

k+1]

vΞk+1|k
[Lz

k+1]
= |Zk+1| = NLikewise, should u2 be seleted, the urrent measurement set Zk+1 would neessarilybe empty and thus:

vΞk+1|k+1
(.|Z1:k+1) =



1− pdu2
(x)

︸ ︷︷ ︸
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 vΞk+1|k
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3.3 Sensor manager 135
Thus:

Nk+1|k+1 = vΞk+1|k+1
[1] = vΞk+1|k

[1] = Nk+1|k = 1.1That is, ontrol u1 will neessarily provide a better estimation of the target numberthan u2. Moreover, depending on the likelihood funtion, u1 is likely to provide abetter estimation of the target distribution as well, as illustrated in the following�gures:Figure 3.13 Posterior PHDs vΞk+1|k+1
(single true target)

In onlusion, the PENT manager will selet ontrol u2 even if ontrol u1 provides:
• a better estimation of the target number, with ertainty;
• a better estimation of the target distribution, with high probability.To be sure, these examples do not prove that the PENT is un�t in every situations;atually, it has been used in previous works. Wei et al. [Wei 08a, Wei 08b℄ designedan interesting two-level sensors arhiteture in whih the date update step is syn-hronised for the sensors belonging to a given luster, but sequential between eahluster. The main �lter is trak-based, but the PHD formulation and the PENTobjetive funtion are implemented in a preditive step designed to selet the orderin whih the lusters are to be proessed at eah data update step. In other works[El F 08, Zate 08℄, a PHD-based �lter is implemented for a spae objet traker andthe sensor manager is built on the posterior expeted number of targets of inter-est (PENTI), an extension of the PENT [Mahl 07℄ in whih the state points areweighted aording to an interest funtion (i.e. the value of the PHD in all the statespae does not ontribute equally to the PENT).Note that the PENT manager is spei�ally designed for ontrols shaping the FOVon�guration, beause the value of the PENT is muh more sensible to the varia-tion of the number of ideal measurements than, say, the variation in the shape of
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the likelihood funtions (see the analysis on the ontribution of measurements onthe posterior PHD in setion 2.3.1). This point was addressed and illustrated insimulated date in a reent paper by Risti et al. [Rist 10b℄.3.3.2 A new approah: the BET managerPrinipleThe onstrution of the objetive funtion based on the sole PENT seems to havetwo major �aws:
• Coneptually, the PENT is di�ult to translate in an �operational� objetive;
• Theoretially, its model su�ers from several inonsistenies (see setion 3.3.1).In onsequene, the PENT manager performs poorly in ertain situations as illus-trated on simulated data in hapter 4.The BET manager embodies a di�erent approah than the PENT and aims at pro-viding an e�ient sensor management in situations where the sensor overage islaking, i.e. the ombined FOVs annot over the whole state spae simultaneously.The idea is to fous the sensors on a few points of the state spae alled traks. Theterm �trak� should not be interpreted in the lassial sense sine the PHD �lterdoes not maintain suh traks, but rather as the presene of a target based on theloal value of the PHD. The traks are extrated in areas of the state spae wherethe loal weight exeeds a given threshold in a similar way as the weighted extratordoes (see setion 3.1.2). More preisely, three kind of traks may be extrated in aPHD:1. First, high traks are extrated when at least WH worth of weight an beextrated in a region entered around a peak with a radius smaller than ∆H ;2. Then, medium traks are extrated when at least WM worth of weight an beextrated in a region entered around a peak with a radius smaller than ∆M ;3. Finally, low traks are extrated when at least WL worth of weight an beextrated in a region entered around a peak with a radius smaller than ∆L.Sine the loal value of the PHD provides information on the target number andloalization (if any), the traks an be exploited just the same way. A low trakindiates the existene of a target with low probability and with unertain loaliza-tion, both the probability of existene and the preision of the loalization inreas-ing with the trak level. The values of the weight WH > WM > WL and distane

∆H < ∆M < ∆L parameters are, of ourse, ritial to the proper design of the sensormanager. This point will be disussed later in this setion.
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Figure 3.14 High, medium and low traks

All the traks are not neessarily worth being foused on. Depending on the ontextof the surveillane ativity and the geographial features of the ground, it is assumedthat the state spae an be deomposed in exploration and traking zones, in whihthe main objetive is respetively target detetion and target loalization. Thus, thefous traks are de�ned as follows:Table 3.1: Fous traksZone Trak levelLow Medium HighExploration Yes No NoTraking Yes Yes NoThe qualitative analysis in setion 2.3.1 suggests that, if a fous trak is overed byat least one sensor:
• If there is a true target behind the trak, the weight of the trak will eventuallyinrease and the loal shape of the PHD will sharpen; thus, the level of thetrak will inrease as well;
• Conversely, if the trak is a false alarm, its weight will eventually derease andthe trak will disappear.Thus, a �rst objetive of the surveillane an be stated as follows:Priniple 1: in exploration as well as traking zones, the sensors should over asmany fous traks as possible, until they either disappear or beome non-fous traks.The di�erene between the exploration and traking zones being, as indiated by
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table 3.1, the threshold between �unertain targets� (fous traks) and �ertain tar-gets� (non-fous traks). Besides, if a non-fous trak is not overed by any sensors,the loal shape of the PHD should ��atten� during the suessive time update stepsas the unertainty about the loalization of the target grows. That is, the level ofthe trak should eventually derease and the trak should be granted the �fous�status again.Yet this priniple is not su�ient, beause it does not priorize the ations of thesensors if the number of fous traks exeeds the overing apaities of the sensors.In order to avoid the sensors from wasting their resoures on too many traks, it wasdeided that the sensors should fous on the �most promising� traks, that is, thosewhose level should inrease were they overed by at least on sensor. This leads tothe seond general objetive:Priniple 2: the best ontrols are those whih are likely to promote the highestnumber of fous traks to the non-fous status.Depending on the quality of the sensors, though, a fous trak ould require a sensoroverage during several suessive iterations before being promoted to the non-fousstatus. Hene the last priniple:Priniple 3: among the ontrols that are likely to promote the same numberof fous traks to the non-fous status, the best ones are those overing the highestnumber of fous traks.Figure 3.15 Data �ow of the BET manager

The data �ow of the BET manager an be summarized as follows:1. The non-fous traks are extrated from the time udpated PHD vΞk+1|k
, and
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the orresponding weight is removed from the PHD. The resulting PHD vfΞk+1|k

hasthus been removed from �ertain targets�.2. The fous traks T f are extrated from vfΞk+1|k
, but the orresponding weightis kept in the PHD.3. For eah available ontrol u ∈ Uk+1, the traks among T f that are overed bythe sensors under ontrol u are stored in T f

u .4. For eah available ontrol u ∈ Uk+1, the PIMS is onstruted aording tode�nition 3.5 with T f
u as input. Then, the preditive PHD is omputed aording toproposition 3.3, with the redued vfΞk+1|k

as input. The resulting PHD is vfΞu
k+1|k+1

.5. For eah available ontrol u ∈ Uk+1, the non-fous traks are extrated from
vfΞu

k+1|k+1
and stored in T nf

u .6. The ontrol with the highest number of non-fous traks |T nf
u | is seleted.If there are ties, the ontrol whih overed the highest number of fous traks |T f

u |is seleted. If there are still ties, the ontrol is hosen at random.The BET manager share the same basi features as the PENT manager (see �g-ures 3.9 and 3.15) by following the pattern �objet extration → preditive update
→ evaluation of the preditive PHD�. The key di�erene lies in the nature of theextrated objets. While the PENT onsiders the estimated targets that an beextrated from the time updated PHD, the BET ignores the well-extrated targetsand direts the sensors toward unknown regions by arti�ially reating traks whihan be seen as �weaker� versions of targets.Computational ost: qualitative analysisIn the PENT as well as in the BET manager, the omputational ost lies mainlyin the preditive update. Clearly, the omputational ost of the exat preditivemulti-sensor PHD (proposition 3.3) inreases dramatially with the number of idealmeasurements, thus with the number of extrated targets/traks and the overlap-ping of the FOV on�guration (reall that a target/trak will produe one idealmeasurement per sensor whose FOV overs its position). Thus, it is almost always�safer� to approximate the preditive update with the muh lighter ICA (orollary3.1).In any ase, the omputational ost of the BET manager an be signi�antly re-dued by disarding some ontrols u ∈ Uk+1 before the preditive update. Indeed,
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reall from the seond priniple before and the data �ow (�gure 3.15) that the �rstseletion riteria is the number of non-fous traks in the preditive update vfΞu

k+1|k+1
.These non-fous traks must neessarily stem from some inrease in the value of thePHD during the preditive step, sine by onstrution the input PHD vfΞk+1|k

hasbeen removed from its non-fous traks. Consider an available ontrol u ∈ Uk+1 thatovers no fous traks (T f
u = ∅). Then, the ideal measurement set will be empty aswell and proposition 3.2 with ZWE

k+1 = ∅ gives:
vfΞu

k+1|k+1
(x|Z1:k) = β[δ∅, δx]K

−1
X

=
S∏

j=1

(1− pd,ju (x))vfΞk+1|k
(x|Z1:k)

6 vfΞk+1|k
(x|Z1:k)Thus, no non-fous traks will be extrated from the preditive PHD vfΞu

k+1|k+1
, thatis, |T nf

u | = 0 with probability one. Consequently, the available ontrols that oversno fous traks an be disarded without loss of performane for the BET manager.Arguably, the ontrol that is likely to produe the highest number of non-fous traksis among the ontrols that overs a large number of fous traks. Thus, the omputa-tional ost of the BET manager ould be further redued by proessing the availableontrols by dereasing number of overed fous traks, and stop whenever the om-puting time or the number of proessed ontrols exeeds a given limit. However,there is no guarantee that the ontrol produing the highest number of non-foustraks will eventually be proessed and therefore be seleted.Design hallengesThe BET manager is a �rst approah in sensor management and was mainly designedupon the author's understanding of the mehanis and �aws of the PENT manager.Arguably, the oneption of the BET manager brings two major issues:
• the preditive update equation depends on some extration proess that fallsoutside the PHD framework;
• the values of weight WH , WM WL and distane ∆H , ∆M , ∆L parameters areritial to the BET peformane.The �rst issue is shared with the PENT manager and does atually exeed the sen-sor management framework. As disussed previously, the preditive PHD is builtas an expetation (de�nition 3.3) that requires an extreme simpli�ation to beometratable (see setion 3.2 for a detailed explanation). An interesting lead for further
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work ould be the design of a preditive PHD in an entirely di�erent manner, butthis point is beyond the sope in this thesis.The seond issue, however, is spei� to the BET manager. The problem lies inthe fat that the trak thresholds depend on many parameters of the system, no-tably the target motion model and the sensor parameters. Consider, for example,the task of setting the parameters (WH ,∆H). Suppose that a high trak lies in atraking zone with no geographial elements. Sine the trak is high, it is a non-foustrak; thus it will be ignored by the sensors. The trak motion is relatively free ofonstraints, thus the loal shape of the PHD should �atten signi�antly during thesuessive iterations when the trak is not overed. Thus, one may think of settingrestritive values for the high level (say, WH = 0.9, ∆H = 10) to ensure that an un-observed high trak is quikly demoted to the medium level and therefore beomes afous trak again. Consider now a medium trak moving along a road in a trakingzone. With the values above, the sensors will waste resoures trying to raise thelevel of this fous trak, even if, the motion of the trak being relatively onstrained,exessive use of sensors in this region may be super�uous. This partiular situationwould require a lower thereshold for high level traks (say, WH = 0.8, ∆H = 30).Not surprisingly, the parametrization of the threshold for the medium trak is evenmore ritial, sine it in�uenes the sensor management in both exploration andtraking zones. A solution may be to make the thresholds dependent on the trakposition in the surveillane region (or, more generally, on the trak state), but thishas not been explored yet.3.4 ConlusionThis hapter overed all the elements pertaining to the design of a simple sensormanager within the PHD framework. First of all, the target extration proesswas disussed and a solution based on the extration of weight in the PHD wasimplemented. Then followed the rigorous onstrution of the preditive PHD, basedon the PIMS proposed by Mahler. Similarly to the data update step in hapter 2, thepreditive step was simpli�ed without approximation thanks to a joint partitioningmethod. The last part was devoted to a disussion about Mahler's PENT managerand its inonsistenies on simple examples, followed by the proposition of a newsensor manager - the BET manager - based on a di�erent and more �operational�approah to the sensor management problem.
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CHAPTER4Implementation and results
This hapter deals with the pratial implementation of a multi-sensor PHD �lter(hapter 2) and a BET manager (hapter 3) in a detetion and traking prob-lem. The algorithms were implemented in Matlab for the most part, some routineswere written in embedded C ode. The �rst setion deals with the modelizationof a surveillane senario. The next setion desribes the SMC implementation ofthe PHD �lter and the BET manager. Finally, the last setion provides the mainsimulation results.4.1 Senario modelizationIn this hapter, the sensors are assumed to be fast enough ompared to the targetsso that the time step in the �ltering �ow (see �gure 1) is driven by the target motionmodel. The duration between two time steps is arbitrarily set at ∆t = 1 s.4.1.1 Target modelizationState spaeA target state x ∈ X has two position variables and two veloity variables. Thestate spae X ⊂ R

4 is the bounded subset suh that x = [xc, yc, ẋc, ẏc]T ∈ X if andonly if:
{

(xc, yc) ∈ R def
= [xc

min xc
max]× [ycmin ycmax]

√

(ẋc)2 + (ẏc)2 6 vmax

(4.1)where xc
min, x

c
max, y

c
min, y

c
max, vmax are given boundaries. Their values should beadapted to the underlying physial problem. In this thesis, (xc, yc) are oordi-143
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nates in meters and R is arbitrarily set as an area of 1 square kilometer, i.e.
R = [0 1000] × [0 1000] m2). Besides, sine the targets are ground-based and
∆t = 1 s, one may safely assume that a target will not move more than 10 metersbetween suessive time steps, thus the maximum veloity is set at vmax = 10 m.s−1.Note that a true target has an impliit �fth state variable, namely its label. Alabel is uniquely attributed to eah target when it is reated for the whole durationof the simulation - i.e. a label is unavailable if it has already been granted to aprevious target, even if this target has already died. The true targets at time step
x are gathered in the set Xk = {xi

k}i∈I(k) where I(k) ⊂ N
∗ is the set of urrent truetarget indies.Free modelThis �rst target model is �generi� in the sense that the target motion is not in-�uened by the loal topography of the surveillane region. This simple modelwas spei�ally designed for omparison purpose between �ltering tehniques and isbased on the following assumptions:

• the number of newborn targets at eah time step is Poisson;
• the newborn targets are uniformly distributed in the state spae;
• the target motion model is the near-onstant veloity (NCV) model [Li R 03℄;
• a living targets die when (and only when) it leaves the surveillane region.The pseudo-ode of the free model is given in algorithm 1.Note that the parameters of the model, the birth intensity λb

k−1,k and the stan-dard deviations σx
k , σy

k , are independent of the target state but may depend on thetime step. It is interesting to have a large variation in the target number during thesimulation, one way to ahieve this is to set a periodi birth intensity as follows:
λb
k−1,k = λ cos

(

2π
k

Tλ

) (4.2)Typial values of the parameters are λ = 1
15
, Tλ = 80.
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Algorithm 1 Free target model (time k)input: Target set from previous iteration: {xi}i∈I(k−1)output: Target set from urrent iteration: {xi}i∈I(k)Target evolutionfor i ∈ I(k − 1) doTarget motionCompute white noise aeleration: a ∼ N ([0

0

]

,

[
σx
k

σy
k

]2
)Compute new target state:

xi,k ←







1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1






xi,k−1 +







(∆t)
2/2 0
0 (∆t)

2/2
∆t 0
0 ∆t






aVeloity normalizationif √(ẋc

i,k)
2 + (ẏci,k)

2 > vmax then
ẋc
i,k ← ẋc

i,k
vmax√

(ẋc
i,k

)2+(ẏc
i,k

)2

ẏci,k ← ẏci,k
vmax√

(ẋc
i,k

)2+(ẏc
i,k

)2end ifTarget survivalif xc
i,k /∈ [xc

min xc
max] and yci,k /∈ [ycmin ycmax] thenDisard target i: I(k − 1)← I(k − 1) \ iend ifend forTarget birthCompute newborn target number: Nb ∼ Poisson(λb

k−1,k)Selet next Nb available labels: Ib(k)for i ∈ Ib(k) doCompute new position oordinates:
xc
i,k ∼ U([xc

min xc
max]), yci,k ∼ U([ycmin ycmax])Compute new veloity oordinates:

θ ∼ U([−π π]), v ∼ U([0 vmax])
ẋc
i,k ← v cos(θ), ẏci,k ← v sin(θ)end forUpdate set of living target labels: I(k)← I(k − 1) ∪ Ib(k)
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For simpliity's sake, the standard deviations σx

k and σy
k are �xed, the typial valuesare σx

k = σy
k = 1. A free senario of 400 time steps looks as follows:Figure 4.1 Example of free senario

Ground-based modelThis seond target model was designed for the spei� purpose of sensor managementevaluation on more �realisti� senarii than those based on the free model above. Thestruture of the ground-based model is similar to the free model, but the birth andevolution of the targets are in�uened by geographial elements in the surveillaneregion.The in�uene of nearby elements on the target evolution is enapsulated in thein�uene vetor and in�uene parameter :
(aI , αI) : X → R

2 × [0 1]

x 7→ (aI(x), αI(x)) (4.3)The in�uene vetor aI(x) has the same unit as a aeleration and indiates the�favored motion� of a target in state x given the nearby elements suh as:
• roads: targets getting loser to a road tend to follow the road as a generaldiretion;
• obstales: targets annot reah these �forbidden zones�.A target xk evolves aording to the NCV model in algorithm 1 exept that the ael-eration is drawn with mean aI(xk) and with redued variane [αI(x)σ

x
k+1 αI(x)σ

y
k+1]

T :
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Figure 4.2 Groud-based in�uene on target xk

The in�uene parameter is tuned suh that it dereases when the target beomeslose to geographial elements, that is, a target is less likely to �wander around� inthe viinity of roads or obstales.Besides, after a target has moved or has been reated, one must hek that thetarget is not inside an obstale. In this ase, its position is moved to the nearestpoint outside the obstale, and its veloity vetor is modi�ed so that the targetmoves along the obstale rather than bump into it in the next iterations.The number of newborn targets is still Poisson, but the targets are not neessar-ily drawn uniformly in the state spae. For example, the newborn targets may bereated along the edges of the surveillane region, with a veloity vetor pointinginward. In the following senario (�gure 4.3) the newborn targets are distributedaording to:






xc
k+1 = 0

yck+1 ∼ N (800, 100) (ycmin 6 yck+1 6 ycmax)

ẋc
i,k+1 = v cos(θ)

ẏci,k+1 = v sin(θ) (θ ∼ U
([

−π
2

π

2

])

, v ∼ U ([0 vmax]))that is, the targets are oming from the left and presumably from the road. Theother parameters λ, Tλ, σx
k+1 and σy

k+1 have the same values as in the free senariopresented before.



148 Chapter 4. Implementation and results
Figure 4.3 Example of ground-based senario (roads in blak, obstales in gray)

The main interest of this model is its ability to simulate a broad range of ground-based target behaviors with a limited omputational ost. Compared to the freemodel, the ground-based model requires the additional omputation of the in�uenevetor for eah target. This step, however, an have a signi�ant ost in regionswith several elements (e.g. road rossings). The �eld of in�uene vetors beingstati, it an be approximated by an o�ine evaluation of the �eld on a grid-baseddisretization of the state spae. A relatively oarse grid is su�ient for a properimplementation of the model (respetively 200 and 10 knots in the position andveloity dimensions).4.1.2 Sensor modelizationIn this thesis, the sensors are ground-based and their position in the surveillaneregion is �xed. The FOV F j
u ⊆ X is determined by the diretion of fous uj

k:Figure 4.4 Shape of sensor FOV F j
u in the surveillane region (gray area)
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where θj , rj and Rj are onstant parameters of sensor j. Note that the FOV shapemay be signi�antly trunated in examples suh as the following:Figure 4.5 Example of trunated FOVs

It is important to note that the FOVs are de�ned in the position subspae only, i.e.the detetion probability for a target x does not depend of its veloity (ẋc, ẏc). Thedetetion probability is onsidered uniform inside the FOV and, for any availablediretion uj
k:

pd,ju (.) = pd,j1F j
u
(.) (4.4)where pd,j is a onstant parameter of sensor j, typially around 0.9.The dimension of the observation spae Zj depends on the lass of the sensor,the ideal measurement (see de�nition 3.4) is built as follows:Figure 4.6 Ideal measurement ρjk(xi,k)
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Clearly, the measurement funtions are not bijetive. Reall from hapter 3 thatthe injetivity is needed for the theoretial onstrution of ideal measurement sets(equation (3.8)), while the bijetivity is needed for the onstrution of the predi-tive observation RFSs (equation (3.9)). However, these issues are hardly relevantin pratial implementations. First, an ideal measurement set would be ill-de�nedif two di�erent targets x1, x2 shared the same ideal measurement (ρjk(x1) = ρjk(x2))this would imply (�gure 4.6) that they shared the same position oordinates in thesurveillane region (xc

1 = xc
2 and yc1 = yc2) whih is unlikely sine there is no spawn-ing and the targets evolve independently from eah other. Then, the onstrutionof preditive RFSs requires only that, for any ideal measurement z, the quantity

pd,ju ((ρjk+1)
−1(z)) is properly de�ned. On the one hand the measurement funtionsrestrited to the position oordinates in X and orestrited to the polar oordinatesin Zj are learly bijetive, on the other hand the detetion probability pd,ju (x) doesnot depend on the veloity oordinates (ẋc, ẏc), thus pd,ju ((ρjk+1)

−1(z)) is well-de�ned.The noise in the measurement proess is assumed to be additive white Gaussiannoise on eah dimension. If measurement zjm,k = [r̂jm,k, θ̂
j
m,k,

ˆ̇rjm,k]
T stems from xi,kthen: 





r̂jm,k ∼ N (rji,k, (σ
j
r)

2)

θ̂jm,k ∼ N (θji,k, (σ
j
θ)

2)

ˆ̇rjm,k ∼ N (ṙji,k, (σ
j
ṙ)

2)

(4.5)where parameters σj
r , σj

θ and σj
ṙ (if 2nd lass sensor) are assumed onstant. Note thatthere is no orrespondane between measurement subsripts m and target subsripts

i sine the mapping between measurements and true targets is unknown.The speial ase where the drawn measurement falls �outside the FOV� (i.e. zjk /∈
ρjk(F

j
k )) must be addressed in order to avoid inonsistenies in the measurementproess. Two leads were followed:
• resample the measurement;
• �move� the measurement to the losest point in ρjk(F

j
k ).The �rst method is very simple sine it does not require any additional algorithm,yet it may never onverge if the FOV is very small (typially when the whole FOV isheavily trunated, see �gure 4.5). The seond method brings a stronger bias in thedistribution of the sampled measurement, espeially when the origin target is loseto the FOV's edges. However, it is omputationally safer and therefore was seleted.
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The likelihood funtion L

.,j
k (.) is given by:
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(4.6)
The false alarm proess is a lassial model for radar sensors. The redution of theFOV to the position subspae (the gray area in �gure 4.4) is partitioned in elementaryells (one degree of ar wide and one meter long) suh that the ourene of a falsealarm in eah ell is an independent Bernouilli proess with the probability of falsealarm pfa,jk as parameter. Sine the number of ells is very large and the probabilityof false alarm very low (usually around 10−5), the number of false alarms is auratelyapproximated as Poisson with intensity:

λc,j
k = pfa,jk

180.θj

π
(Rj − rj) (4.7)and eah false alarm is drawn uniformly in ρjk(F

j
k ). The easiest way to deal with thetrunated FOVs is to ignore them in the drawing proess (i.e. draw the false alarmnumber aording to (4.7) and distribute the false alarm measurements uniformlyin the FOV shape), then disard the false alarms that falls outside the surveillaneregion. Note that the false alarm term in the expression of the ross-terms (seeproposition 2.5) is independent of the measurement itself thanks to the uniformdraw:

∀z ∈ ρjk(F
j
k ), λc,j

k cjk(z)KZj = pfa,jk (4.8)
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Algorithm 2 Measurement proess from 2nd lass sensor j (time k)input: Target set from urrent iteration: {xi}i∈I(k)output: Measurement set from sensor j: Zj

k = {zjm}m∈[1 mj
k
]True measurementsInitialize measurement ounter: m← 0for i ∈ I(k) doDraw random variable: p ∼ U([0 1])if xi,k ∈ F j

u and p 6 pd,j thenComputation of a true measurementInrement measurement ounter: m← m+ 1Compute ideal measurement: ρjk(xi,k)← [rji,k, θ
j
i,k, ṙ

j
i,k]

TCompute noisy polar oordinates:
r̂ ∼ N (rji,k, (σ

j
r)

2), θ̂ ∼ N (θji,k, (σ
j
θ)

2)Compute noisy radial veloity: ˆ̇r ∼ N (ṙji,k, (σ
j
ṙ)

2)Store true measurement: zjm,k ← [r̂, θ̂, ˆ̇r]TValidity hek of the true measurementif zjm,k /∈ ρjk(F
j
u) thenMove to losest valid measurement: zjm,k ← argminz∈ρj

k
(F j

u)
dZj(z, zjm,k)end ifend ifUpdate measurement number: mj

k ← mend forFalse alarmsCompute false alarm parameter: λc,j
k ← pfa,jk

180.θj

π
(Rj − rj)Compute false alarm number: mfa ∼ Poisson(λc,j

k )for m = 1 to mfa doComputation of a false alarm measurementCompute random polar oordinates:
r̂ ∼ U([rj Rj ]), θ̂ ∼ U([uj

k − θj

2
uj
k +

θj

2
])Compute random radial veloity: ˆ̇r ∼ U([−vmax vmax])Store temporary measurement: z ← [r̂, θ̂, ˆ̇r]TValidity hek of the false alarm measurementif z ∈ ρjk(F

j
u) thenUpdate measurement number: mj

k ← mj
k + 1Store false alarm measurement: zj

mj
k
,k
← zend ifend for
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4.2 Implementation of the multi-sensor PHD �lter4.2.1 GM vs. SMC methodsThe equations of the PHD �lter (2.14), (2.53), (2.63) and the preditive PHD (3.17),(3.23) have no losed-form expression in the general ase, notably beause of the pres-ene of integrals over the state spae X . The integral appears expliitely in (2.14), inother equations through the ross-terms that are not derivated in a state point (e.g.
β[δ∅, 1] or β[δ{z1,z2}, 1]). Sine the beginning of the PHD �lter, two di�erent imple-mentation tehniques have been enjoying a wide popularity: the Gaussian mixturePHD (GMPHD) and the sequential Monte Carlo PHD (SMCPHD) .The GMPHD �lter is a losed form expression of the PHD equations in the par-tiular ase where the target dynamis and measurement model are linear Gaussian,although it an be adapted to a broader range of situations by replaing the Kalman�lter equations in the GMPHD by their linearization as in the extended Kalmal �l-ter, or their approximation as in the unsented Kalman �lter [Pae 11℄. This modelassumes that the intensities of the birth and spawning RFS are Gaussian mixtures,and that the probabilities of target detetion and target survival do not depend onthe target state. Then, it an be shown that the time and data updated PHDs arealso Gaussian mixtures with a losed form expression. The GMPHD has been usedin numerous reent traking algorithms [Pant 09, Lee 10, Lund 11℄ and an imple-mentation of the GMCPHD, the extension of the GMPHD to the CPHD �lter, isgiven in [Ulmk 10℄.The SMCPHD �lter has been �rst implemented by Vo et al. in [Vo 03, Vo 05℄.As its name suggests, this method aims to apply SMC methods for Bayesian �lter-ing [Dou 00℄ to PHDs rather than usual probability densities. Sine the PHD isa �rst-order moment density, it is unnormalized and do not follow the usual Bayesreursion; Johansen et al. [Joha 05℄ studied and proved the onvergene of the SMCimplementation of the PHD under reasonable assumptions. The SMC implementa-tion is spei�ally designed for highly nonlinear systems, but requires �ne-tuning tobe e�ient. In the SMCPHD framework, the hoie of importane funtions for thepredition and the birth of partiles is known to be a di�ult task and an ativeresearh topi [Rist 10a℄. Besides, the auray and the omputational ost of theSMC implementation both inreasing with the number of partiles, its tuning is alsoritial to the quality of the SMC implementation.Pae [Pae 11℄ ompared the GMPHD and SMCPHD �lters on senarii with aonstant number of targets evolving aording to an interating multiple modelomposed by a onstant veloity model and a onstant-turn model perturbed withrandom aelerations. The results show that the GMPHD �lter outperforms the
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SMCPHD �lter in both estimate quality and omputational ost. To be sure, thequality of the SMCPHD �lter inreases with the number of partiles, but the ompu-tational ost also inreases (linearly) and is not adapted to a large number of targets.In the sope of this thesis, however, the SMC implementation seemed more naturalsine the ground-based evolution model (see setion 4.1.1) is highly nonlinear and theindependene of the survival and detetion probabilities with the target state seemsinompatible with the FOV-oriented sensor management. The SMC implementationpresented in the next setion is largely based on the SMCPHD �lter given in [Vo 05℄.4.2.2 SMC implementationThe priniple of the SMCPHD is to propagate a set of weighted partiles approxi-mating the suessive predited vΞk+1|k

and posterior vΞk+1|k+1
PHDs rather than thefull PHDs. At eah time k:

vΞk+1|k
(.|Z1:k) ≃

Lk+1|k
∑

l=1

w
(l)
k+1|kδx(l)

k+1|k

(.) (4.9)
vΞk+1|k+1

(.|Z1:k+1) ≃
Lk+1∑

l=1

w
(l)
k+1δx(l)

k+1
(.) (4.10)This setion desribes the suessive operations of the SMCPHD at time k+1, whosegoal is to modify the set of weighted partiles as follows:

{x(l)
k , w

(l)
k }l∈[1 Lk] −→ {x

(l)
k+1, w

(l)
k+1}l∈[1 Lk+1] (4.11)The di�erent operations an be summarized as follows:1. Evolution: {x(l)

k , w
(l)
k }l∈[1 Lk] → {x

(l)
k+1|k, w

(l)
k+1|k}l∈[1 L′

k
];2. Model-based birth: {x(l)
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(l)
k+1|k}l∈[1 L′

k
] → {x(l)

k+1|k, w
(l)
k+1|k}l∈[1 L′

k
+Jk+1];3. Seletion of ontrol uopt

k+1 ∈ Uk+1 and prodution of measurement set Zk+1;4. Measurement-based birth:
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(l)
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k
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Note the presene of two partile birth steps. The �rst step follows the target re-ation model and adds the appropriate weight in the �lter. It should be su�ientin theory, but the �lter was impratial as too few newborn partiles appeared inthe viinity ot the measurements. Thus, additional partiles are reated around themeasurements to ensure that at least a few partiles remain around after the re-sampling. This solution is somewhat unsatisfying and should be orreted in futureimprovements of the �lter.For simpliity's sake, the operations are desribed assuming that the targets followthe free motion model. Should the opposite our, one must modify the preditionand birth steps to aount for the in�uene parameters and the obstales as ex-plained in setion 4.1.1.
Partile evolutionThis operation aims to approximate the evolution proess desribed by the integralpart in the time update equation (2.14), that is, the evolution of surviving targetsfrom the previous iteration. Assuming that there is no spawning, the new partilesshould be drawn as follows [Vo 05℄:

∀l ∈ [1 Lk−1], x
(l)
k+1|k ∼ qk+1(.|x(l)

k , Zk+1) (4.12)
∀l ∈ [1 Lk−1], w

(l)
k+1|k =

psk,k+1(x
(l)
k )f t

k,k+1(x
(l)
k+1|k|x

(l)
k )

qk+1(x
(l)
k+1|k|x

(l)
k , Zk+1)

w
(l)
k (4.13)

where qk+1(.|x(l)
k , Zk+1) is an appropriate importane funtion (see appendix B for ageneral desription of importane sampling). The target motion model (espeiallythe ground-based one) proved to be too hallenging to design a proper importanefuntion; besides, the urrent measurement set Zk+1 is not available sine the sensormanager has not hosen the multi-ontrol yet. Thus the partiles are drawn aord-ing to the target motion model itself.
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Algorithm 3 Partile evolution (time k + 1)input: Partile set from previous iteration: {x(l)

k , w
(l)
k }l∈[1 Lk ]output: Evolved partile set from urrent iteration: {x(l)

k+1|k, w
(l)
k+1|k}l∈[1 L′

k
]Partile evolutionfor l = 1 to Lk doPartile motionCompute white noise aeleration
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)Compute new partile state:
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k+1|k /∈ [ycmin ycmax] thenDisard partile lend ifend forReorder remaining partile labels: [1 Lk]→ [1 L′

k]Model-based birthThis operation aims to approximate the birth proess desribed by the non-integralpart in the time update equation (2.14). The newborn partiles should be drawn asfollows [Vo 05℄:
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∀l ∈ [L′
k + 1 L′

k + Jk+1], w
(l)
k+1|k =

1

Jk+1

λb
k,k+1bk,k+1(x

(l)
k+1|k)

pk+1(x
(l)
k+1|k|Zk+1)

(4.15)



4.2 Implementation of the multi-sensor PHD �lter 157
where pk+1(.|Zk+1) is an appropriate importane funtion. The urrent measure-ment set Zk+1 is not available sine the sensor manager has not hosen the multi-ontrol yet. Thus, the partiles are drawn aording to the normalized birth intensity
bk,k+1(.). A sound hoie in the partile number is to keep the ratio of partiles pertarget as onstant as possible [Vo 05℄, thus the number of newborn partiles is setas proportional to the expeted number of newborn targets:

Jk+1 = round(ρTλ
b
k,k+1) (4.16)where ρT is the desired partile-per-target ratio. Note that the total weight broughtby the newborn partiles is the expeted number of newborn targets:

L′
k
+Jk+1∑

l=L′
k
+1

1

Jk+1

λb
k,k+1bk,k+1(x

(l)
k+1|k)

bk,k+1(x
(l)
k+1|k)

=

L′
k
+Jk+1∑

l=L′
k
+1

λb
k,k+1

Jk+1
= λb

k,k+1 (4.17)
Algorithm 4 Model-based partile birth (time k + 1)input: Noneoutput: Newborn partile set: {x(l)

k+1|k, w
(l)
k+1|k}l∈[L′

k
+1 L′

k
+Jk+1]Target birthCompute newborn partile number: Jk+1 ← round(ρTλ
b
k,k+1)for l = L′

k + 1 to L′
k + Jk+1 doCompute partile position:

x
(l),c
k+1|k ∼ U([xc

min xc
max]), y(l),ck+1|k ∼ U([ycmin ycmax])Compute partile veloity:

θ ∼ U([−π π]), v ∼ U([0 vmax])

ẋ
(l),c
k+1|k ← v cos(θ), ẏ(l),ck+1|k ← v sin(θ)Set partile weight: x(l)

k+1|k ←
λb
k,k+1

Jk+1end forSensor managementAs illustrated in the PENT (�gure 3.9) and BET (�gure 3.15) data �ows, thesesensor managers are omposed of the following proesses:
• a preditive update step;
• a target extrator (PENT only);
• a trak extrator (BET only).
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The preditive equation (proposition 3.3) is essentially the ombination of the on-strution of ideal measurements (see algorithm 2) with a data update step, desribedby algorithms 8 and 9 below. Thus, its implementation need not be detailed here.The SMC implementation of the weighted peaks extrator (de�nition 3.2) is straight-forward, the only real issue lies in the researh of a global maximum at the beginningof an extration. Indeed, if the partiles have just been resampled, all the weightsare equal. In this ase, the extration of a new target should be started in areas withthe highest onentration of partiles. This problem was solved with a grid-basedapproah: the state state is disretized in knots and the weight of eah partileontributes to the weight of the losest knot. Beause the partile from whih theextration is started is not ritial, a relatively oarse grid is su�ient (respetively
200 and 10 knots in the position and veloity dimensions). Note that the targetextrator may be used at any moment during an iteration, thus the time subsriptshave been omitted in the pseudo-ode (algorithm 5).Note that the peak enlargement proess has been disretized. The inremental step
δ must be properly tuned: a smaller value inreases the omputational ost of theextration proess, while a larger value dereases the auray of the extration (theneighborhood weight Wn may signi�antly exeed the target weight Wt). Besides,the radius of the peak upon whih the target extration is based is apped by ∆maxin order to avoid extrated targets with exessive ovarianes. In the simulationspresented in this hapter, these parameters are set at values δ = 2, ∆max = 200.The trak extrator is very lose to the weighted peak extrator but for the fatthat:
• the former extrats as many traks as possible while the latter extrats anumber of targets �xed beforehand;
• the former provides a redued PHD as output (see setion 3.3.2).As for algorithm 5, time subsripts are omitted for larity's sake in algorithm 6.
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Algorithm 5 Target extratorinput: Copy of the urrent partile set: {x(l), w(l)}l∈Loutput: Set of extrated targets: X̂WETarget number and target weightCompute estimated target number: N ←∑L

l=1w
(l)Compute extrated target number: N̂ ← round(N)Compute target weight: Wt ← N

N̂Grid initializationGet grid knots: {xg, wg ← 0}g∈Gfor l = 1 to L doFind losest knot: gc ← argming dX (xg, x
(l))Update knot weight: wgc ← wgc + w(l)end forTarget extrationfor n = 1 to N̂ doPeak extrationCompute heaviest knot: gh ← argmaxg wgCompute peak: lp = argminl dX (xgh, x

(l))for l = 1 to L doInitialize distane-to-peak vetor: D(l)← dX (x
(l), x(lp)end forTarget extrationInitialize distane: ∆← 0Initialize neighborhood weight: Wn ← 0Initialize neighborhood set: Ln ← ∅while Wn < Wt and ∆ < ∆max doUpdate neighborhood set: Ln ← {l ∈ L | D(l) 6 ∆}Update neighborhood weight: Wn ←

∑

l∈Ln
w(l)Update distane: ∆← ∆+ δend whileExtrat new target: x̂n ←

∑

l∈Ln

w(l)

Wn
x(l)Weight removalCompute redution fator: α← min(1, Wt

Wn
)for l ∈ Ln doFind losest knot: gc ← argming dX (xg, x

(l))Update knot weight: wgc ← wgc − αw(l)Update partile weight: w(l) ← (1− α)w(l)end forend for
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Algorithm 6 Trak extratorinput: Copy of the urrent partile set: {x(l), w(l)}l∈Linput: Exploration zone: XE ⊆ Xinput: Traking zone: XT ⊆ Xoutput: Set of fous traks: T foutput: Set of non-fous traks: T foutput: Redued partile set: {x(l), w̃(l)}l∈LInitializationfor l = 1 to L doInitialize redued weight: w̃(l) ← w(l)end forInitialize grid (alg. 5)Initialize trak sets: T f ← ∅, T nf ← ∅Trak extrationInitialize extration �ag: fe ← 0while fe = 0 doPeak extrationSee alg. 5: lp, D(:)Target extrationInitialize distane: ∆← 0Initialize neighborhood weight: Wn ← 0Initialize neighborhood set: Ln ← ∅Initialize enlargement �ag: fl ← 0while fl = 0 doUpdate neighborhood set: Ln ← {l ∈ L | Dl 6 ∆}Update neighborhood weight: Wn ←

∑

l∈Ln
w(l)if ∆ 6 ∆H thenif Wn > WH thenExtrat trak from input partile set {x(l), w(l)} (alg. 5): x̂Compute redution fator: α← WH

Wnfor l ∈ Ln doUpdate redued weight: w̃(l) ← (1− α)w̃(l)end forif x̂ ∈ XE ∪ XT thenUpdate non-fous trak set: T nf ← T nf ∪ {x̂}end ifWeight removal (alg. 5)Update enlargement �ag: fl ← 1end if



4.2 Implementation of the multi-sensor PHD �lter 161
else if ∆ > ∆M thenif Wn > WM thenExtrat trak from input partile set {x(l), w(l)} (alg. 5): x̂Compute redution fator: α← WM

Wnif x̂ ∈ XT thenUpdate fous trak set: T f ← T f ∪ {x̂}elsefor l ∈ Ln doUpdate redued weight: w̃(l) ← (1− α)w̃(l)end forif x̂ ∈ XE thenUpdate non-fous trak set: T nf ← T nf ∪ {x̂}end ifend ifWeight removal (alg. 5)Update enlargement �ag: fl ← 1end ifelse if ∆ > ∆L thenif Wn > WL thenExtrat trak from input partile set {x(l), w(l)} (alg. 5): x̂Compute redution fator: α← WL

Wnif x̂ ∈ XE ∪ XT thenUpdate fous trak set: T f ← T f ∪ {x̂}elsefor l ∈ Ln doUpdate redued weight: w̃(l) ← (1− α)w̃(l)end forend ifWeight removal (alg. 5)Update enlargement �ag: fl ← 1end ifelseUpdate enlargement �ag: fl ← 1Update extration �ag: fe ← 1end ifUpdate distane: ∆← ∆+ δend whileend while
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Measurement-based birthThe birth of partiles aording to the target reation model only proved to be in-e�ent, beause the number of partiles around new measurement was usually toosmall to maintain a presene to the next iteration. Thus, it seemed neessary to addpartiles around the new measurements. These partiles must be granted an initialweight large enough so that they do not disappear in the �rst resampling step follow-ing their reation, but small enough to limit the bias. The undesired onsequene isthat false alarm measurement will more often than not be seen as true targets, butthese partiles usally disappear after a few iterations if they are not on�rmed bya new measurement. This solution is obviously unsatisfying and suggests that the�lter is likely to fail in low SNR senarii.A �xed number of partiles are assigned to eah new measurement, this number
ρM may be hosen somewhat smaller than the number of partiles per target ρT .This redues the omputational load of eah measurement, and the number of parti-le will inrease in future iterations if new measurements inrease the weight in theviinity. The new partiles are spread around the new measurement in the positionsubspae aording to the sensor parameters, and spread uniformly in the veloitysubspae.It was deided that, sine only targets inside the FOV F j

u may be deteted bysensor j, all the newborn partiles reated following new measurements by sensor
j must fall inside F j

u or be moved to the losest point inside. One may simplifythe implementation, supposedly with little e�et, by either disarding any partilereated outside the FOV, or even ignoring the validity hek. In this latter ase,though, one must still hek that the newborn partiles belong to the state spae.
Weight updateThis operation aims to approximate the data update step given by equation (2.63)with the urrent measurement set Zk+1 as input. The �rst step is to implementthe joint partitioning (de�nition 2.9). Note that, in the SMC framework, the rossrelation (2.57) between two sensors must be adapted. Assuming that the seletedontrol is u ∈ Uk+1:

∀i, j ∈ [1 S], iRuj ⇔ (∃l ∈ [1 Lk+1|k], x
(l)
k|k+1 ∈ F i

u ∩ F j
u) (4.18)
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Algorithm 7 Measurement-based partile birth (time k + 1)input: Current measurement set: Zk+1output: Newborn partile set: {x(l)

k+1|k, w
(l)
k+1|k}l∈[L′

k
+Jk+1+1 Lk+1|k]Partile birthInitialize partile ounter: L← L′

k + Jk+1for j = 1 to S dofor m = 1 to mk+1
j doGet polar oordinates of measurement: zjm,k+1: (r̂, θ̂)for l = L+ 1 to L+ ρM doComputation of new partile stateCompute noisy polar oordinates: r ∼ N (r̂, (σj

r)
2), θ ∼ N (θ̂, (σj

θ)
2)Compute partile position: x(l),c

k+1|k ← xc
j+r cos(θ), y(l),ck+1|k ← ycj+r sin(θ)Compute partile veloity:

θ ∼ U([−π π]), v ∼ U([0 vmax])

ẋ
(l),c
k+1|k ← v cos(θ), ẏ(l),ck+1|k ← v sin(θ)Set partile weight: x(l)

k+1|k ← wM

ρMValidity hek of the partileif x(l)
k+1|k /∈ F j

u thenMove to losest valid state point: x(l)
k+1|k ← argminx∈F j

u
dX (x, x

(l)
k+1|k)end ifend forUpdate partile ounter: L← L+ ρMend forend forUpdate total number of partile number: Lk+1|k ← L′

k + Jk+1 + LLikewise, the target state partition (2.58) is instead a partile label partition:
Tk(p) =












l ∈ [1 Lk+1|k], x

(l)
k|k+1 ∈

S⋃

j=1

F j
k






(p = 0)






l ∈ [1 Lk+1|k], x

(l)
k|k+1 ∈

⋃

j∈Sk(p)

F j
k






(p 6= 0)

(4.19)
This result is interesting, beause it shows that the SMC partitions are atually �nerthan the theoretial partitions. This suggests that the joint partitioning method isat least as e�ient in the SMCPHD as in the theoretial PHD �lter.
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Algorithm 8 Joint partitioning (time k + 1)input: Current multi-sensor ontrol: uinput: Current measurement set: Zk+1input: Current partile set: {x(l)

k+1|k, w
(l)
k+1|k}l∈[1 Lk+1|k]output: Assoiation matrix: mk+1 × Lk+1|k real matrix Auoutput: Missed detetion matrix: S × Lk+1|k real matrix Duoutput: Sensor partition matrix: P × S binary matrix Suoutput: Partile partition matrix: P × Lk+1|k binary matrix TuComputation of assoiation and detetion matriesfor m = 1 to mk+1 doGet origin sensor of measurement zjk+1: jfor l = 1 to Lk+1|k do

Au(m, l)← pju(x
(l)
k+1|k)L

j,zj
k+1

k+1 (x
(l)
k+1|k)

Du(j, l)← 1− pju(x
(l)
k+1|k)end forend forComputation of adjaeny matrixInitialize S × S adjaeny matrix: A← ((1−Du)(1−Du)

T > 0)Initialize S × S temporary matrix: T ← (A2 > 0)while A 6= T do
A← T
T ← (A2 > 0)end whileJoint partitioningInitialize partition number: p← 0Initialize sensor partition matrix: Su ← 0for j = 1 to S doif A(j, :) 6= 0 and S(:, j) = 0 thenUpdate partition number: p← p+ 1Update sensor partition matrix: Su(p, :)← A(j, :)end ifend forCompute partile partition matrix: Tu ← (Su(1−Du) > 0)The omputational ost of the partitioning is reasonable enough. The ostly part isthe omputation of the assoiation and detetion matries, yet these variables arerequired for the weight update regardless of the joint partitioning. The adjaeny
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matrix is a S × S binary matrix whose proessing is independent of the partilenumber, and the only operations depending on the partile number are the produts
(1−Du)(1−Du)

T > 0 and Su(1−Du) > 0.The next step is the weight update using equation (2.63). The ross-terms needto be derivated in partile states x
(l)
k+1|k only and an be easily built with the as-soiation Au and detetion Du matries already omputed with algorithm 8. Morepreisely, for any multi-measurement term Ci =

⋃

j∈J{zjmj}, where J ⊆ Su(p) (seede�nition 2.7) and any partile l ∈ Tu(p):
β[δ∅, δx(l)

k+1|k

] =




∏

j∈Su(p)

Du(j, l)



w
(l)
k+1|k (4.20)

β[δCi
, δ

x
(l)
k+1|k

] =




∏

j∈J

Au(m
j, l)

∏

j∈Su(p)\J

Du(j, l)



w
(l)
k+1|k (4.21)

β[δ
z
j0

mj0

, 1] ≃
Lk+1|k
∑

l=1

β[δ
z
j0

mj0

, δ
x
(l)
k+1|k

] + pfa,j0k (Ci = {zj0mj0
}) (4.22)

β[δCi
, 1] ≃

Lk+1|k
∑

l=1

β[δCi
, δ

x
(l)
k+1|k

] ([Ci| > 1) (4.23)Clearly, the omputational ost omes mainly from the reursive omputation of theombinational terms aording to lemma 2.1, but it is quite hallenging to evaluatein the general ase. This will be disussed further in onlusion.ResamplingThis operation is ommon in SMC methods in order to limit [Vo 05℄:
• partile degeneray, i.e. the onentration of the total weight in a small numberof partiles;
• a growing number of partiles regardless of the estimated target number.The resampling implemented in this thesis is very simple. It is systemati (i.e.proessed at eah time step) and the number of representatives (in the resampledset) of eah partile follows a multinomial distribution with parameters proportionalto the partile weights [Joha 05℄.
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Algorithm 9 Weight update (time k + 1)input: Current measurement set: Zk+1input: Time updated partile set: {x(l)

k+1|k, w
(l)
k+1|k}l∈[1 Lk+1|k]input: Assoiation matrix: Auinput: Detetion matrix: Duinput: Sensor partition matrix: Suoutput: Partile partition matrix: Tuoutput: Reweighted partile set: {x(l)

k+1|k, w̃
(l)
k+1|k}l∈[1 Lk+1|k]for p = 1 to P doGet sensors from urrent partition: Su(p)← {j ∈ S | Su(p, j) = 1}Get partiles from urrent partition: Tu(p)← {l ∈ [1 Lk+1|k | Tu(p, l) = 1}Computation of β[δ∅, .]for l ∈ Tu(p) do

β[δ∅, δx(l)
k+1|k

]←
(
∏

j∈Su(p)
Du(j, l)

)

w
(l)
k+1|kend forComputation of remaining ross-termsCompute ombinational terms aording to lemma 2.1: C(Z(p)

k+1)for C ∈ C(Z(p)
k+1) dofor Ci ∈ C doGet measurements in Ci: (zjmj )j∈Jfor l ∈ Tu(p) do

β[δCi
, δ

x
(l)
k+1|k

]←
(
∏

j∈J Au(m
j , l)

∏

j∈Su(p)\J
Du(j, l)

)

w
(l)
k+1|kend for

β[δCi
, 1]←∑

l∈Tu(p)
β[δCi

, δ
x
(l)
k+1|k

]if J = j0 then
β[δCi

, 1]← β[δCi
, 1] + pfa,jkend ifend forend forWeight updatefor l ∈ Tu(p) doUpdate weight w(l)

k+1|k using equation (2.63)end forend for
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That is, the number of representatives ζ (l)k+1 of partile x(l)

k+1|k in the resampled set israndom and follows the onditions [Vo 05℄:
• ∑Lk+1|k

l=1 ζ
(l)
k+1 = Lk+1|k+1;

• E[ζ
(l)
k+1] = Lk+1|k+1

w̃
(l)
k+1|k

∑
Lk+1|k

l′=1
w̃

(l′)
k+1|k

.The number of partiles in the resampled set is deterministi and hosen suh thatthe ratio of partiles per target is as lose as possible to the desired ratio ρT :
Lk+1|k+1 = round(ρT

Lk+1|k
∑

l=1

w̃
(l)
k+1|k) (4.24)Algorithm 10 Resampling (time k + 1)input: Reweighted partile set: {x(l)

k+1|k, w̃
(l)
k+1|k}l∈[1 Lk+1|k]output: Resampled partile set: {x(l)

k+1|k+1, w
(l)
k+1|k+1}l∈[1 Lk+1|k+1]Computation of the new partile numberCompute expeted target number: Nk+1 ←
∑Lk+1|k

l=1 w̃
(l)
k+1|kCompute new partile number: Lk+1|k+1 ← round(ρTNk+1)Resamplingfor l = 1 to Lk+1|k doCompute multinomial parameter: p(l) ← w̃

(l)
k+1|k

Nk+1end forSample Lk+1|k+1 partiles from {x(l)
k+1|k}

Lk+1|k

l=1 with parameters {p(l)}Lk+1|k

l=1 :
{x(l)

k+1|k+1}
Lk+1|k+1

l=1for l = 1 to Lk+1|k+1 doSet weight: w(l)
k+1|k+1← 1

Lk+1|k+1end for
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4.3 Simulation resultsThis setion provides the main simulation results illustrating the onepts devel-oped in the hapters before. The di�erent sensors in the simulations have beenparametrized with various values. Their position in the surveillane region, theirFOV shape and their (eventual) ontrol onstraints are ritial and will be statedexpliitely. The lass of sensor will be also depited with a olor (green squares are
1st lass, blue squares are 2nd). The standard deviation parameters σj

r , σj
θ and σj

ṙare widely distributed among the sensors, spanning respetively from 2 m to 10 m,
2◦ to 7◦ and 1 m.s−1 to 5 m.s−1. The detetion probabilities pj,d and the false alarmprobabilities pj,fa are distributed as well, spanning respetively from 0.8 to 0.98 andfrom 0.5 × 10−6 to 1 × 10−5. The ratios ρT , ρM are �xed and equal to 100 and 50respetively. The senarii beginning with no targets, the �lters are also initializedwith no partiles.Unless otherwise stated, the �gures depiting the simulation results are based onthe average of several Monte Carlo runs. The target displaement patterns are de-terministi and idential, eah run di�ers from others through the random proessesinvolved in the simulation (target detetions, false alarms, true measurements, par-tile evolution, et.). Whenever several methods are ompared on a same senario,the seed of the random funtions in the i-th run of eah method are initialized atthe same value in order to limit bias.4.3.1 Brute Fore vs. PartitionThe aim of this simulation is to illustrate the advantage of using the joint parti-tioning (theorem 2.5) rather than the �brute fore� approah (theorem 2.4) for theomputation of the data update step. The following results are an updated versionof those in the onferene paper [Dela 11b℄.The surveillane region is free of geographial elements and the targets behave a-ording to the free model (see setion 4.1.1). Sine this simulation emphasizes onthe data update step there is no sensor management and the FOVs are �xed in thesurveillane region. The target trajetories and the FOV on�guration are illustratedin �gure 4.7.Note that the FOV on�guration is favorable for a partitioning, sinethe sensor partition should not be oarser than {1, 2, 3, 4}− {5}− {6, 7, 8}− {9, 10}at any time during the simulation.At every iteration, the data update step is omputed in parallel with the brutefore approah and the partition method. Then the two posterior PHDs are om-pared, and �nally the �brute fore� posterior is kept as input for the next iteration.The results were averaged on 5 Monte Carlo runs.
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Figure 4.7 Target trajetories and FOV on�guration

Figure 4.8 Target trajetories (detail)

Figure 4.9 Target number
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Figure 4.10 Computing time and Kullbak-Leibler divergene
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Time stepFigure 4.10 (left) shows that the omputational ost of the brute fore approahinreases dramatially around time steps 250 and 480. Clearly, the �rst peak isexplained by the relatively large number of targets in the surveillane region at thistime (�gure 4.9). The trajetories (�gure 4.8) show that target 12 is in the FOVof sensors 2, 3 and 4 around time step 480. This situation is likely to produean relatively large number of measurements, thus inreasing the omplexity of thedata update step. As expeted, the omputational ost of the data update stepwith partitioning is signi�antly redued, while the updated PHDs with the twomethods remain idential (�gure 4.10). Note also that the omputational ost ofthe partition method sometimes exeeds the brute fore's, typially when the targetnumber is very low and the ost of the partitioning itself does not ompensate theomputational gain in the data update step. Even in these situations, however, theomputational ost of the partition method remains reasonable enough.4.3.2 Partition method vs. ICAIt is well known that the approximation produed by the ICA (de�nition 2.11) de-pends on the sensor order, even though simulations seem to show that it does notresult in notieable di�erenes in performane [Mahl 10a℄. To the author's knowl-edge, the partition method (theorem 2.5) provides the �rst opportunity to evaluatethe performane of the ICA with respet to the exat multi-sensor PHD. The fol-lowing results are an updated version of those in the onferene paper [Dela 11a℄.The surveillane region is free of geographial elements and the targets behave a-ording to the free model (see setion 4.1.1). Sine this simulation emphasizes onthe data update step there is no sensor management and the FOVs are �xed in thesurveillane region. As explained in the analysis of the ICA (setion 2.4.2), the dis-
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repanies between the exat multi-sensor PHD and the approximation given by theICA are likely to inrease with the number of sensors. To illustrate this, the samesenario has been tested with two di�erent sets of sensors:Figure 4.11 Target trajetories and FOV on�guration

The �rst FOV on�guration (�gure 4.11, left) is idential to setion 4.3.1, that is,the sensor partition should not be oarser than {1, 2, 3, 4}− {5}−{6, 7, 8}−{9, 10}at any time during the simulation. Ten sensors have been added in the seond FOVon�guration (�gure 4.11, right) in whih the oarsest sensor partition should be
{1, 2, 3, 4, 11, 12, 13}− {5, 14, 15} − {6, 7, 8, 16, 17} − {9, 10, 18, 19, 20}.Figure 4.12 Target trajetories (detail)
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In order to illustrate the dependene of the ICA to the sensor order, the sensororders that were likely to produe the best and worst estimations were estimated -the riteria being the OSPA distane between the sets of true and extrated targetsaveraged over the whole simulation (400 iterations) and over 20 Monte Carlo runs.Simulating the senario with eah possible sensor order was learly out of reah in the
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10-sensor on�guration, let alone in the 20-sensor on�guration. It is easy to provethat, provided that the sensors are partitioned aording to the method explained inhapter 2, the ICA is sensitive to the sensor order within its partition element only.Consider for example a 4-sensor system suh that, at time k, the sensor partition is
{1, 2} − {3, 4}. Then, using the ICA with orders 1 → 2→ 3 → 4, 3 → 4 → 1→ 2,
3 → 1 → 2 → 4, et. would produe the exat same posterior PHD. Thus, sinethe 10-sensor on�guration has a oarsest partition by onstrution, it is su�ientto onsider the permutations inside these four elements.The resulting proess being still exeedingly di�ult to solve, it was approximatedby deoupling the four elements from the oarset partition. First, all the permuta-tions of {1, 2, 3, 4} were ombined to a �xed order for the other sensors (typially
5 → · · · → 10). The 24 permutations were tested and the order that provided thebest ICA was stored, and so on for the partition elements {6, 7, 8} and {9, 10}. Theworst ICA has been approximated with the same method. This researh of the bestand worst ICA in the 20-sensor on�guration was further simpli�ed by keeping thebest and worst order that were found in the 10-sensor on�guration.The best and worst ICA were then ompared with the exat PHD (provided bythe partition method) over the same 20 Monte Carlo runs.Figure 4.13 Target number

Figure 4.13 shows that, regardless of the on�guration, the estimation of the targetnumber is fairly similar with the partition method and both ICAs. The estimationof the worst ICA seems a bit more spikier than the best ICA's in the 10-sensor on-�guration, and the disrepanies grow larger in the 20-sensor on�guration. Notethat the estimation of both ICAs deteriorate in the last quarter of the simulation.The target trajetories (�gure 4.12) show that this period roughly mathes the lifespan of target 8, whih is evolving in the �ritial spot� of the surveillane region
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where a large number of sensors are present. As expeted, the quality of the ICAdereases in areas where the sensor FOVs are overlapping.Figure 4.14 OSPA distane (c = 100, p = 2)

The OSPA distanes (�gure 4.14) are more suggestive and learly shows the disrep-anies between the two ICAs, learly growing in the 20-sensor ase. The partitionmethod provides a better estimation overall, espeially during the last quarter ofthe simulation (on�rmed by table 4.1). It also shows that, during the �rst half ofthe simulation, the ICAs are sometimes better than the partition method. This is alear reminder that, even though the partition method is by onstrution the bestpossible method �PHD-wise�, it does not neessarily implies that the estimation isbetter than those provided by approximation methods.Table 4.1: Partition vs. ICA: average OSPA
10-sensor on�gurationPartition Best ICA (est.) Worst ICA (est.)Avg. OSPA (overall) 35.4 36.3 40.1Avg. OSPA (last quarter) 40.0 42.0 44.8
20-sensor on�gurationPartition Best ICA (est.) Worst ICA (est.)Avg. OSPA (overall) 20.8 26.2 36.0Avg. OSPA (last quarter) 20.7 31.4 40.3
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These results are hardly su�ient to draw any general onlusion on the advantage ofthe partition method ompared to the ICA. However, they are su�ient to onludethat, on some senarii and with some FOV on�gurations, the performane of theICA depends signi�antly on the sensor order. This e�et is obviously undesirable,all the more beause there is no easy way, to the author's knowledge, to determinea priori the �best� sensor order. It was suggested in setion 2.4.2 that orderingthe sensor by inreasing number of urrent measurements ould be a sound hoie.The average number of measurements per sensor and per iteration was omputedin this senario, but table 4.2 shows that there is no lear orrelation between the�produtivity� rank of the sensors and the orders estimated as �best� and �worst�:Table 4.2: ICA orders and average number of measurements

10-sensor on�gurationCriteria Sensor rank
1st part. elem. 2nd 3rd 4th1 2 3 4 5 6 7 8 9 10Avg. meas. 2 4 3 1 1 2 1 3 1 2ICA (best) 4 1 3 2 1 2 1 3 1 2ICA (worst) 2 4 1 3 1 2 3 1 2 1Pay attention to the fat that the sensors are ranked in table 4.2 with respet to theorder in their element of the oarsest partition. This hypothesis ould be furthertested by designing an ICA-based �lter whose sensor order is hanged dynamiallyaording to the rank in produtivity given by the urrent number of measurements.Figure 4.15 Computing time (data update)
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As expeted, the omputational ost of the partition method inreases dramatiallywith the additional sensors. The ost is light enough in the 10-sensor on�gurationto onsider an online implementation on a real-time traker, but this is hardly thease in the 20-sensor on�guration (�gure 4.15). This result shows that, to the veryleast, a riteria based on the FOV on�guration that would help deide a prioriwhether the partition method is tratable enough would be quite valuable. This willbe disussed further in the onlusion.4.3.3 PENT vs. BETThe last simulation aims at omparing the PENT and BET managers on a typialsurveillane senario. These results are presented for the �rst time.The surveillane region and the target model are idential to the examples providedin the desription of the ground-based model in setion 4.1.1. The surveillane zoneis partially overed by six sensors, some management is thus needed in order to fousthe sensors on the valuable regions of the state spae. The available ontrols are �xedfor the simulation; at every time step, eah sensor may be ontrolled aording to 5�xed diretions of fous. Figure 4.16 depits in blak lines one of the �ve possibleFOVs for eah sensor, and in blak dotted lines the areas that an be eventuallyovered by eah sensor - a.k.a. the �total FOVs�.Figure 4.16 Target trajetories and FOV on�guration

Sine the targets are bound to ome from the left side of the surveillane region,presumably on the road, the exploration zone was set as the left part of the surveil-lane region (�gure 4.20). Sensors 1 and 2 (�gure 4.16) are mainly devoted to theexploration along the road, sensor 3 to the exploration on the lower road, sensor 4to the traking in the area between the obstales, and sensor 5 and 6 to the fork inthe upper road.
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Note that the �total FOV� on�guration is favorable to partitioning. Beause theombined �total FOVs� of sensors 1 and 2, sensors 3 and 4, and sensor 5 and 6 do notoverlap, the oarsest partition of the sensors should be {1, 2}−{3, 4}−{5, 6} at anytime during the simulation. The spei� on�guration of the �total FOVs� simpli�esthe task of the sensor manager as well. Indeed, sine eah sensor has �ve possibleontrols, the number of available multi-sensor ontrols is 56 = 15625. But, the totalFOVs being partitioned into three elements, the independent management of parti-tion elements {1, 2}, {3, 4}, {5, 6} is bound to have little e�et on the managementbut shrinks the number of available ontrols to 3 × 52 = 75. This is still a lot toproess for the PENT manager whih requires a preditive step for every possibleontrol (�gure 3.9); thus, the preditive update equation (3.23) was approximatedby six sequential updates through the single-sensor ICA (3.19) with an arbitrarysensor order. For omparison purposes, the BET manager was implemented withthe ICA too. The data update step of the PHD �lter (�gure 1), on the other hand,was easily implemented with the exat partition method (2.63).Figure 4.17 Target trajetories (detail)

This senario is quite hallenging for the sensor managers. Figures 4.16 and 4.17show that six targets are rossing the surveillane region during the simulation.Target 1 should be quite easy to follow beause it stays in the viinity of the roads.Target 2 should be more di�ult to follow, notably beause it hanges diretion inan area unovered by the sensors. Moreover, it losely follows target 4 in the lasttime steps. Target 5 hanges diretion in an unovered area as well, but then joinstarget 6 along the lower road where it should be easy to spot. Target 3 has a similarbehavior as target 1 and should be quite easy to follow as well. The e�et of the�indeisive� targets that enter and leave the surveillane region almost immediatelyshould not be negleted as they are prone to disperse the fous of sensors 1, 2 and
3 at various moments during the simulation.
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The ritial parameters of the trak extration proess (�gure 3.14) are set as follows:Table 4.3: Trak parametersParameter Trak levelLow Medium HighWeight 0.3 0.5 0.95Radius (m) 160 120 40The following results are averaged over 10Monte Carlo runs. A sensor manager witha purely random strategy is added for omparison purposes.Figure 4.18 Target number and OSPA distane (c = 100, p = 2)

Figure 4.19 Computing time (sensor manager)
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Figure 4.18 learly shows the failure of the PENT manager on this senario, no-tably beause the target number is overestimated. This result is onsistent withthe analysis of the PENT provided in setion 3.3.1 and, more preisely, in example3.7: the sensors tend to ��ee� regions with a signi�ant amount of weight but noextrated targets in order to avoid a weight redution in the data update. Thisbehavior is expeted and onsistent with the PENT objetive - inreasing as muhas possible the estimated number of targets, thus the total weight of the partiles.Presumably, the failure of the PENT is deepened in the SMC framework. Indeed,the PENT manager leaves the regions with the highest onentration of partilesunheked where things grow out of ontrol, espeially if the partile loud movesin an unovered area of the state spae - for example, the enter of the surveillanezone in �gure 4.16. Arguably, the main onlusion that an be drawn from thiusfailure is not the performane of the PENT itself, but the fat that the partilesmust be heked periodially by the sensors in order to avoid an explosion of thetarget number estimation.Table 4.4: PENT vs. BET: average OSPAPENT Random BETAvg. OSPA (overall) 90.8 66.3 61.2The performane of the random strategy is unexpetedly good ompared to the BETmanager. The estimation of the target number is fairly aurate in both ases (�g-ure 4.18) and the OSPA error seems only slightly larger with the random method(on�rmed by table 4.4). The two following points may be possible explanations ofthese results:1. The �rst explanation pertains to the struture of this partiular senario. TheFOV on�guration (�gure 4.16) shows that the sensors are �ramped� in a �small�surveillane region and, during the simulation, only a few diretions of fous ouldbe quali�ed as �bad deisions�. To be sure, the performane of the PENT showsthat a string of bad deisions ould lead to a poor estimation; the ritial advantageof the random strategy is that it guarantees at least a periodi exploration of thearea overed by the �total FOVs�, thus preventing the partiles from growing outof ontrol. Presumably, the di�erene between the random strategy and the BETmanager would grow if the surveillane region were larger and ontained �useless�areas never reahed by the targets.2. The seond explanation is more pratial and losely related to the SMCimplementation. Reall from setion 3.3.2 that the BET manager was designed onthe priniple of a periodi hek of the traks based on their level. When overed
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by a sensor, a trak is indeed prone to disappear if there is no new mesurementssupporting the presene of a true target, and to have its level inreased otherwise.Conversely, a trak should ��atten� over time if unheked and its level should de-rease until it beomes a objet of interest - i.e. a fous trak - for the sensors.This latter priniple hardly survives in the SMC implementation beause unhekedpartiles quikly disappear in the resampling step, even if the high trak level is veryrestritive (see table 4.3). This phenomenon is learly visible in the traking zone(�gure 4.20) where the presene of a non-fous trak - indiating that the sensorshave followed the underlying target long enough and should fous on other objets- is usually followed by an absene of extrated targets - indiating that the sensorshave just stopped fousing on this point and that the partiles disappeared almostimmediately. This undesirable e�et does not ompensate a posteriori the long-termtraking of targets; to the ontrary, it may overompensate pure exploration-basedstrategies suh as the random method. Other resampling methods are urrently ex-plored [Dou 00, Dou 05℄ and a modi�ed resampling based on the e�etive samplesize [Arul 02℄ has been implemented, so far to no avail.Figure 4.20 Illustration of the BET manager on a single run (true targets in blue,extrated targets in red, fous traks in magenta, non-fous traks in green)
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Finally, as on�rmed by �gure 4.19, the BET manager is signi�antly lighter than thePENT, notably beause it disards many super�uous preditive updates as explainedin 3.3.2. An online implementation of the BET, however, is somewhat restrited tomodest senarii with a limited number of targets and, above all, a limited numberof sensors.4.4 ConlusionThis hapter overed the desription of a few sensor and target models that allowthe simulation of simple yet various surveillane senarii. A SMC implementationof the exat multi-sensor PHD �lter provided by hapter 2 and the BET managergiven in hapter 3 was then proposed and thoroughly desribed. The advantage ofthe partition method was learly shown on a �rst senario, leading to the onlu-sion that the partitioning should always be favored over the �brute fore� approah.A seond senario highlighted the in�uene of the sensor order on the ICA perfor-mane. The best and worst sensor orders were estimated, and the results showedthat the disrepanies between the two ICAs an grow signi�antly with the numberof sensors if the overlapping in the FOV on�guration is strong enough. Besides,the approximation of both ICAs deteriorated with the inreasing number of sensorsompared to the exat multi-PHD �tler provided by the partition method. Finally,a third senario showed that the BET manager an signi�antly outperform thePENT when the sensor overage is limited , but also pointed out the fragility of theproposed SMC implementation.



Conlusion and further work
SummaryThis thesis addressed the exiting �eld of multi-objet �ltering within the PHDframework.The �rst part foused on the extension of the PHD �lter to the multi-sensor ase.Based on previous works on the RFS theory and the single-sensor PHD, a rigorousonstrution of the exat multi-sensor PHD was proposed. The result was a om-binatorial expression that did not provide grounds for a pratial implementation.Based on the FOV on�guration, a joint partitioning of the target state spae andsensor indies was then proposed in order to simplify the expression of the exatmulti-sensor PHD without approximation. The exat PHD was then used as a ref-erene to ompare and disuss the usual multi-sensor approximations of the PHD�lter on a theoretial level.The seond part was devoted to the sensor management problem in PHD �lter-ing. First, a rigorous extension of Mahler's PIMS to the multi-sensor ase allowedthe onstrution of the exat multi-sensor preditive PHD. Thanks to an adaptatedversion of the joint partitioning method, the expression of the exat preditive PHDwas simpli�ed without approximation. Then, the sensor manager introdued byMahler - the PENT - was analyzed and its theoretial inonsistenies were shown onsimple examples. Finally, the BET manager was proposed as an alternative to thePENT, but designed on more operational priniples related to surveillane ativities.The last part foused on the pratial implementation of the multi-sensor PHD �lterand the BET manager. First, a simulation framework was built upon simple targetand sensor models in order to generate various surveillane senarii. Then, a SMCimplementation of the PHD �lter and the sensor manager was proposed. Finally, themain results of this thesis were illustrated on three senarii. As expeted, the �rst181
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senario showed that the partition method redues signi�antly the omputationalost of the exat multi-sensor PHD, thus allowing the tratable propagation of avaluable referene PHD in senarii with a limited number of sensors. The seondsenario tested the performane of the ICA method, a well-known multi-sensor ap-proximation. As expeted, the results showed that the disrepanies between ICAswith a di�erent sensor order in input inrease with the number of sensors and aresigni�ant when the sensor number is large enough. Besides, they showed that theapproximation given by the ICA detoriates, ompared to the exat multi-sensorPHD, when the number of sensors inreases. The third senario aimed at omparingthe PENT and BET managers on a typial surveillane senario where the sensoroverage is limited. The BET learly outperformed the PENT, in auray as wellas in omputational load. However, the results also pointed out the �aws of theproposed SMC implementation.Future workIn the sope of this thesis, the �rst lead that ould be followed is a quantitative anal-ysis of the omputational ost of the exat multi-sensor PHD �lter. It is well knownthat the single-sensor PHD �lter has omputational omplexity O(m), where m isthe number of measurements, although Mahler argued [Mahl 07b℄ that the omputa-tional omplexity of a PHD-based traker is more aurately O(mn), where n is thenumber of targets. In any ase, an similar result for the exat multi-sensor PHD �l-ter would be quite valuable beause it ould provide grounds for the design of hybrid�lters where, for eah element of the joint partitioning, one ould evaluate a priorithe omputational ost of the exat data update and deide whether it is worththe trouble. The entral issue in the implementation the exat data update is theomputation of the ombinational terms with lemma 2.1. Clearly, its omputationalomplexity depends on the number of sensors and the number of measurements, butit also depends on the measurement distribution among the sensors - for example
|C({z11}, {z21 , z22, z23})| = 4, while |C({z11 , z12}, {z21, z22})| = 7. The relation betweenthe measurement distribution and the omputational omplexity is, to the author'sknowledge, unknown.Another natural lead ould be the improvement of the pratial implementationpresented in this thesis. Arguably, the proposed SMC implementation ould be en-rihed with an importane sampling step well-adapted to the target model. Theauthor's understanding of the partile �ltering mehanisms suggests that the ritialpoint is the sampling of newborn partiles, whih must be somewhat driven by boththe target birth model and the measurements. For sensor management purposes, itis indeed important to reate partiles in areas where targets are prone to enter inorder to fous the exploration and, on the other hand, newborn partiles are needed
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in the viinity of isolated measurements for the data update step to work properly[Rist 10a℄. The systemati resampling step, too, would need improvement and ouldbe replaed by other approahes [Dou 05℄. Aside from the SMC framework, otherimplementations based on Gaussian mixtures ould be envisaged. The assumptionon the independene of the target detetion an target survival probabilities with thetarget state [Pae 11℄ seems to prelude a diret implementation of the GMPHD inFOV-oriented sensor management problems, but this point ould be further explored.The BET manager was a �rst approah that leaves room for improvement, and there�nement of the trak management ould be the topi of future studies. Notably, inorder to prevent exessively frequent hanges in trak levels - leading sometimes toexessively frequent hanges in sensor diretion of fous - a new mehanism, basedon asending and desending thresholds for eah trak level, ould be envisaged. Atrak history must be maintained for this purpose, yet it is unavailable within thestrit PHD framework. Consequently, labelisation tehniques [Lin 06℄ must be ex-plored beforehand. Another �eld of study that ould be promising is the extensionof the preditive PHD so that it an provides preditions several step ahead in thefuture, thus leading to more potent sensor managers based on lookahead poliies[Bert 05℄. A �rst solution ould be built upon a sequential use of the simple predi-tive step, whose ost is reasonable when approximated by the ICA.On a more theoretial level, another exiting lead for future work would be theextension of the PHD �ltering priniple within the RFS framework. The well-knownCPHD is one suh extension in whih the ardinality distribution of the multi-targetRFS - no longer assumed Poisson - is propagated in addition to the PHD. Anotherextension ould be envisaged, where the seond order produt density would bepropagated in addition to the �rst order produt density- namely the PHD. Indeed,it seems that the fatorial moments enapsulate the notion of simultaneity in thedistribution of points, and thus the propagation of the �rst and the seond orderprodut densities ould provide grounds for the design of a more ompliated �lter,yet able to desribe pairwise interation between targets while the PHD is limitedto independent targets.In his book [Mahl 07b℄ p. 595, Mahler makes an insightful remark onerning thePHD when speaking about the limited sensitivity of the ICA to the sensor order:�This may be beause the PHD approximation itself loses so muh informationthat any information loss due to heuristi multisensor fusion is essentially irrelevant�Aside from the fat that this thesis tried to emphasize some situations in whihthis information loss ould hardly be quali�ed as irrelevant, this remark is a lear
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reminder that the PHD - although a formidable tool for multi-objet �ltering - is�rst and last an approximation within the RFS framework. Arguably, the key of thePHD approximation is the Poisson assumption but, to the author's knowledge, itsonsequenes on the validity of the PHD �lter for various traking problems is stillunlear. Studying this relation is perhaps the most fundamental and hallengingprospet that remains to be explored.
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Appendix A: Mathematial proofs
Chapter 1: BakgroundProperty 1.1This proof is straightforward using the measure theoreti formulation given in [Vo 05℄.Proof. For any n ∈ [1 N ], let Tn be any subset of F(Xn). Using equation (1.2) givesimmediately:

P∏N
n=1 Ξn

(
N⋃

n=1

Tn
)

= P

({(
N∏

n=1

Ξn

)

(ω1, ..., ωN) ∈
N⋃

n=1

Tn
})

= P

({
N∏

n=1

Ξn(ωn) ∈
N⋃

n=1

Tn
})Sine the RFSs Ξn are independent:

P∏N
n=1 Ξn

(
N⋃

n=1

Tn
)

=

N∏

n=1

P

({

Ξn(ω) ∈
N⋃

n=1

Tn
})

=
N∏

n=1

PΞn
(Tn)

Equation (1.19)This proof is drawn from the measure theoreti formulation given in [Vo 05℄.Proof. Let T be any subset of F(X ). Using equation (1.17) then (1.15) gives:
PΞ(T ) =

∫

T

pΞ(X)µ(dX)

=
∞∑

n=0

1

n!

∫

χ−1(T )∩Xn

pΞ({x1, ..., xn})λn(dx1...dxn) (25)
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On the other hand, using equation (1.2) gives:

PΞ(T ) = P({X ∈ T })

=

∞∑

n=0

ρΞ(n)P({X ∈ T | |X| = n})

=

∞∑

n=0

ρΞ(n)P({X = χ(x1, ...xn) | (x1, ...xn) ∈ χ−1(T ) ∩ X n})

=

∞∑

n=0

ρΞ(n)P
(n)
Ξ (x1, ...xn | (x1, ...xn) ∈ χ−1(T ) ∩ X n)

=
∞∑

n=0

ρΞ(n)P
(n)
Ξ (χ−1(T ) ∩ X n)Whih gives, using the de�nition of Janossy measures (1.18):

PΞ(T ) =
∞∑

n=0

J
(n)
Ξ (χ−1(T ) ∩ X n)

n!Assuming that the Janossy measures admit densities:
PΞ(T ) =

∞∑

n=0

1

n!

∫

χ−1(T )∩Xn

j
(n)
Ξ ({x1, ..., xn})dx1...dxn

=
∞∑

n=0

1

n!

∫

χ−1(T )∩Xn

j
(n)
Ξ ({x1, ..., xn})Kn

Xλ
n(dx1...dxn) (26)Using results (25) and (26) yields:

pΞ({x1, ..., xn}) = j
(n)
Ξ (x1, ..., xn)K

n
X

Property 1.2This proof is straightforward using the de�nition of PGFls provided in [Vo 08℄. Notethat the same result is given in Moyal's earlier work on stohasti population pro-esses (see [Moya 62℄ for more details).
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Proof. Let Ξ be a RFS. We have immediately:

GΞ[h] = E[hΞ(ω)]

=

∞∑

n=0

ρΞ(n)

∫

· · ·
∫

h{x1,...,xn}P
(n)
Ξ (dx1, ..., dxn)

=

∞∑

n=0

1

n!

∫

· · ·
∫

h(x1)...h(xn)J
(n)
Ξ (dx1, ..., dxn)

=

∞∑

n=0

1

n!
J
(n)
Ξ [h, ..., h]

Lemma 1.1Even though the following proof was produed by the author based on the de�nitionsand notations given in [Vo 08℄, a muh more elegant proof is provided by Moyal in[Moya 62℄. An earlier version of this result may be found in Volterra's work (see[Volt 59℄, p.29, for more details).Proof. Let Ξ be a RFS. First, let us prove by indution on N that, for all N ∈ N:
G

(N)
Ξ [h + ǫN+1gN+1; g1, ..., gN ]−G

(N)
Ξ [h; g1, ..., gN ]

=
∞∑

n=1

1

n!

n∑

p=1

(
n

p

)

ǫpN+1J
(n+N)
Ξ [ h

︸︷︷︸

n−p

, gN+1
︸︷︷︸

p

, gN , ..., g1] (27)De�nition 1.10 of funtional derivatives gives the result for step 0. Assuming that(27) is true for step N and using de�nition 1.10 again gives:
G

(N+1)
Ξ [h+ ǫN+2gN+2; g1, ..., gN+1]−G

(N+1)
Ξ [h; g1, ..., gN+1]

= lim
ǫ→0+

1

ǫ

(

G
(N)
Ξ [h+ ǫN+2gN+2 + ǫgN+1; g1, ..., gN ]−G

(N)
Ξ [h + ǫN+2gN+2; g1, ..., gN ]

)

︸ ︷︷ ︸

=A

− lim
ǫ→0+

1

ǫ

(

G
(N)
Ξ [h+ ǫgN+1; g1, ..., gN ]−G

(N)
Ξ [h; g1, ..., gN ]

)

︸ ︷︷ ︸

=B
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Using (27) at step N gives:
A = lim

ǫ→0+

1

ǫ





∞∑

n=1

1

n!

n∑
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(
n

p

)

ǫpJ
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Thus, (27) is true for allN . Now, using de�nition 1.10 and (27) gives, for any N ∈ N:
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Property 1.4This proof is adapted from Moyal's early work on stohasti population proesses(see [Moya 62℄ for more details).Proof. Using lemma 1.1 and setting h = 0 yields immediately:
G

(N)
Ξ [0; g1, ..., gN ] = J

(N)
Ξ [g1, ..., gN ]Then, using lemma 1.1 and setting h = 1 gives:
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Whih gives, using equation (1.24):

G
(N)
Ξ [1; g1, ..., gN ] =

∫

· · ·
∫

︸ ︷︷ ︸

N

g1(x1)...gN(xN )V
(N)
Ξ (dx1 × ...× dxN)

= V
(N)
Ξ [g1, ..., gN ]

Property 1.5This proof is given by Mahler in [Mahl 03a℄.Proof. AssumingG[h] = h(x0) and using the de�nition 1.10 of a funtional derivativegives immediately:
δG

δx
[h] = lim

ǫ→0+

G[h+ ǫδxKX ]−G[h]

ǫ

= lim
ǫ→0+

h(x0) + ǫδx(x0)KX − h(x0)

ǫ

= δx(x0)KXLikewise, assuming G[h] =
∫
h(x)p(x)dx and using the de�nition 1.10 of a funtionalderivative gives immediately:

δG

δx
[h] = lim

ǫ→0+

G[h+ ǫδxKX ]−G[h]

ǫ

= lim
ǫ→0+

∫

X
(h(y) + ǫδx(y)KX )p(y)dy −

∫

X
h(y)p(y)dy

ǫ

= lim
ǫ→0+

∫

X
ǫδx(y)KXp(y)λ(dy)

ǫ

= p(x)KX

Property 1.6This proof is given by Mahler in [Mahl 03a℄. Note that the equivalent result withthe point proess formulation was given earlier in [Vere 88℄ (see �Campbell theorem�,eq. (6.4.11) p. 188).
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Proof. We have immediately:
∫

F(X )
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∫

X

h(x)vΞ(x)dx

Property 1.7This proof is given by Mahler in [Mahl 03a℄.Proof. Let x0 be an arbitrary point in X . Using equation (1.44), we an write:
vΞΦ

(x0)KX =

[
δ

δx0
GΞΦ

[h]

]

h=1

=

[
δ

δx0
GΞ[Φ[h]]

]

h=1

=

∫

F(X )

[
δ

δx0

(
Φ[h]X

)
]

h=1

pΞ(X)µ(dX)

=

∫

F(X )

[
∑

x∈X

(
δ

δx0
Φ[h](x)

)

Φ[h]X\{x}

]

h=1

pΞ(X)µ(dX)

=

∫

F(X )

[
∑

x∈X

(
δ

δx0

GΞΦ,x
[h]

)

Φ[h]X\{x}

]

h=1

pΞ(X)µ(dX)

=

∫

F(X )

(
∑

x∈X

[
δ

δx0
GΞΦ,x

[h]

]

h=1

)

pΞ(X)µ(dX)
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That is, using equation (1.44) again:

vΞΦ
(x0)KX =

∫

F(X )

(
∑

x∈X

vΞΦ,x
(x0)KX

)

pΞ(X)µ(dX)

=

∫

F(X )

(
∑

x∈X

hx0(x)

)

pΞ(X)µ(dX)where hx0 : x 7→ vΞΦ,x
(x0)KX . Then, equation (1.49) yields:

vΞΦ
(x0)KX =

∫

X

hx0(x)vΞ(x)dx

=

∫

X

vΞΦ,x
(x0)KX vΞ(x)dxThus:

vΞΦ
(x0) =

∫

X

vΞΦ,x
(x0)vΞ(x)dx
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Chapter 2: The multi-sensor PHDProperty 2.1This proof is drawn from Mahler's study of the Poisson RFS in [Mahl 03a℄.Proof. Let Y = {y1, ..., yn} be any set of points in X , and {Ti}i∈[1 n] a family ofsubsets of X . Then, using the de�nition of Janossy measures (1.18):
J
(n)
Ξ (T1 × ...× Tn) = n!ρΞ(n)P

(n)
Ξ (T1 × ...× Tn)Sine Ξ is Poisson with parameter λΞ and spatial intensity IΞ:

J
(n)
Ξ (T1 × ...× Tn) = n!e−λΞ

λn
Ξ

n!

∫

T1

. . .

∫

Tn

n∏

i=1

IΞ(xi)

λΞ

dx1...dxn

= e−λΞ

∫

T1

. . .

∫

Tn

n∏

i=1

IΞ(xi)dx1...dxn (28)Thus:
j
(n)
Ξ (y1, ..., yn) = e−λΞ

n∏

i=1

IΞ(yi)Then, using (1.24) gives:
v
(n)
Ξ (y1, ..., yn) =

∞∑

m=0

1

m!

∫

Xm

j
(m+n)
Ξ (y1, ..yn, xn+1, ..., xn+m)dxn+1...dxn+m

=
∞∑

m=0

1

m!

∫

Xm

(
n∏

i=1

IΞ(yi)

)

j
(m)
Ξ (xn+1, ..., xn+m)dxn+1...dxn+m

=

(
n∏

i=1

IΞ(yi)

)
∞∑

m=0

1

m!

∫

Xm

j
(m)
Ξ (xn+1, ..., xn+m)dxn+1...dxn+m

︸ ︷︷ ︸

=1

=
n∏

i=1

IΞ(yi)Besides, the haraterization of the PGFl (1.33) gives:
GΞ[h] =

∞∑

m=0

1

m!
J
(m)
Ξ [h, ..., h]
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That is, using (28):

GΞ[h] =

∞∑

m=0

1

m!
e−λΞ

∫

Xm

m∏

i=1

h(xi)IΞ(xi)dx1...dxm

= e−λΞ

∞∑

m=0

1

m!

(∫

X

h(x)IΞ(x)dx

)m

= e−λΞ

∞∑

m=0

1

m!
(IΞ[h])

m

= eIΞ[h]−λΞ

Property 2.2This proof is an adaptation of Mahler's study of the Poisson RFS in [Mahl 03a℄.Proof. Let Y = {y1, ..., yn} be any set of points in X , and {Ti}i∈[1 n] a family ofsubsets of X . Then, using the de�nition of Janossy measures (1.18):
J
(n)
Ξ (T1 × ...× Tn) = n!ρΞ(n)P

(n)
Ξ (T1 × ...× Tn)Sine Ξ is i.i.d luster with mean λΞ and spatial intensity IΞ:

J
(n)
Ξ (T1 × ...× Tn) = n!ρΞ(n)

∫

T1

. . .

∫

Tn

n∏

i=1

IΞ(xi)

λΞ

dx1...dxn

=
n!ρΞ(n)

λn
Ξ

∫

T1

. . .

∫

Tn

n∏

i=1

IΞ(xi)dx1...dxn (29)Thus:
j
(n)
Ξ (y1, ..., yn) =

n!ρΞ(n)

λn
Ξ

n∏

i=1

IΞ(yi)Besides, the haraterization of the PGFl (1.33) gives:
GΞ[h] =

∞∑

m=0

1

m!
J
(m)
Ξ [h, ..., h]



203
That is, using (29):

GΞ[h] =
∞∑

m=0

1

m!

m!ρΞ(m)

λm
Ξ

∫

Xm

m∏

i=1

h(xi)IΞ(xi)dx1...dxm

=
∞∑

m=0

ρΞ(m)

(∫

X

h(x)IΞ(x)

λΞ
dx

)m

=

∞∑

m=0

ρΞ(m)

(
IΞ[h]

λΞ

)m

= G|Ξ|

(
IΞ[h]

λΞ

)

Property 2.3This proof is drawn from Mahler's onstrution of the single-sensor PHD �lter in[Mahl 03a℄.Proof. Let Y = {y1, ..., yn} be any set of points in X , and {Ti}i∈[1 n] a family ofsubsets of X . Then, using the de�nition of Janossy measures (1.18):
J
(n)
Ξ (T1 × ...× Tn) = n!ρΞ(n)P

(n)
Ξ (T1 × ...× Tn)Sine Ξ is Bernoulli with parameter bΞ and spatial dsitribution IΞ:

J
(n)
Ξ (T1 × ...× Tn) =







1− bΞ n = 0

bΞ

∫

T1

IΞ(x1)dx1 n = 1

0 otherwiseThus:
j
(n)
Ξ (y1, ..., yn) =







1− bΞ n = 0

bΞIΞ(y1) n = 1

0 otherwiseBesides, the haraterization of the PGFl (1.33) gives:
GΞ[h] =

∞∑

m=0

1

m!
J
(m)
Ξ [h, ..., h]
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Thus:

GΞ[h] = 1− bΞ + bΞ

∫

X

h(x)IΞ(x)dx

= 1− bΞ + bΞIΞ[.]

Proposition 2.1This proof is drawn from Mahler's onstrution of the single-sensor PHD �lter in[Mahl 03a℄.Proof. Let ΞE
k,k+1(X) be the Multi-Bernoulli RFS ⋃x∈X ΞE

k,k+1(x). Then, usingproposition 2.4 on Multi-Bernoulli RFS gives:
GΞE

k,k+1(X)[h] =
∏

x∈X

(
(1− psk,k+1(x) + psk,k+1(x)p

t
k,k+1[h|x])

)

= (1− psk,k+1(.) + psk,k+1(.)p
t
k,k+1[h|.])XLet ΞS

k,k+1(X) be the union RFS ⋃x∈X ΞS
k,k+1(x). Sine the spawning RFS are inde-pendent, using property 1.3 on union RFS yields:

GΞS
k,k+1(X)[h] =

∏

x∈X

GΞS
k,k+1(x)

[h]

= (GΞS
k,k+1(.)

[h])XBy onstrution, the transition RFS ΞT
k,k+1(X) is the union RFS of independent RFS

ΞE
k,k+1(X), ΞS

k,k+1(X) and ΞB
k,k+1. Thus, using property 1.3 gives:

GΞT
k,k+1(X)[h] = GΞE

k,k+1(X)[h]GΞE
k,k+1(X)[h]GΞB

k,k+1
[h]

= (1− psk,k+1(.) + psk,k+1(.)p
t
k,k+1[h|.])X(GΞS

k,k+1(.)
[h])XGΞB

k,k+1
[h]

Theorem 2.1This is proof is a key element from Mahler's onstrution of the single-sensor PHD�lter (see [Mahl 03a℄). An earlier aount of a similar onstrution may be found inMoyal's work (see [Moya 62℄ for more details).
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Proof. Let h be any real-valued funtion in [0 1]. Using the de�nition of the PGFl(1.29) on predited RFS Ξk+1|k gives:
GΞk+1|k

[h] =

∫

F(X )

hY pΞk+1|k
(Y |Z1:k)µ(dY )That is, thanks to the RFS �lter equation (1.55):

GΞk+1|k
[h] =

∫

F(X )

hY

(∫

F(X )

pΞT
k,k+1

(Y |X)pΞk|k
(X|Z1:k)µ(dX)

)

µ(dY )

=

∫

F(X )

(∫

F(X )

hY pΞT
k,k+1

(Y |X)µ(dY )

)

pΞk|k
(X|Z1:k)µ(dX)Using the de�nition of the PGFl (1.29) again gives:

GΞk+1|k
[h] =

∫

F(X )

GΞT
k,k+1(X)[h]pΞk|k

(X|Z1:k)µ(dX)With the assumptions of proposition 2.1:
GΞk+1|k

[h]

=

∫

F(X )

(1− psk,k+1(.) + psk,k+1(.)f
t
k,k+1[h|.])X(GΞS

k,k+1(.)
[h])XGΞB

k,k+1
[h]pΞk|k

(X|Z1:k)µ(dX)

= GΞB
k,k+1

[h]

∫

F(X )

(

(1− psk,k+1(.) + psk,k+1(.)f
t
k,k+1[h|.])GΞS

k,k+1(.)
[h]
)X

pΞk|k
(X|Z1:k)µ(dX)Let Φ : h 7→ Φ[h] be suh that Φ[h](.) = (1−psk,k+1(.)+psk,k+1(.)f

t
k,k+1[h|.])GΞS

k,k+1(.)
[h].Then:

GΞk+1|k
[h] = GΞB

k,k+1
[h]

∫

F(X )

(Φ[h](.))XpΞk|k
(X|Z1:k)µ(dX)Using the de�nition of the PGFl (1.29) again gives:

GΞk+1|k
[h] = GΞB

k,k+1
[h]GΞk|k

[Φ[h]]Then, using the derivation property of the PGFl (1.44) yields, for any x ∈ X :
vΞk+1|k

(x|Z1:k)KX =

[
δGΞk+1|k

δx
[h]

]

h=1

=

[
δGΞB

k,k+1

δx
[h]

]

h=1
︸ ︷︷ ︸

A

GΞk|k
[Φ[1]]

︸ ︷︷ ︸

B

+GΞB
k,k+1

[1]
︸ ︷︷ ︸

C

[
δGΞk|k

δx
[Φ[h]]

]

h=1
︸ ︷︷ ︸

D



206 Appendix A: Mathematial proofs
Using the derivation property of the PGFl (1.44) again gives:
A =

[
δGΞB

k,k+1

δx
[h]

]

h=1

= vΞB
k+1|k

(x)KXOne an note that, for all x ∈ X :
Φ[1](x) = (1− psk,k+1(x) + psk,k+1(x)f

t
k,k+1[1|x])GΞS

k,k+1(x)
[1]Using the de�nition of the PGFl (1.29) again gives:

Φ[1](x)

=






1− psk,k+1(x) + psk,k+1(x)

∫

X

1(y)f t
k,k+1(y|x)dy

︸ ︷︷ ︸

=1














∫

F(X )

1Y pSk,k+1(Y |x)µ(dY )

︸ ︷︷ ︸

=1








= 1− psk,k+1(x) + psk,k+1(x)

= 1Then, sine Φ[1] = 1:
B = GΞk|k

[Φ[1]]

= GΞk|k
[1]Using the de�nition of the PGFl (1.29) again gives:

B =

∫

F(X )

1XpΞk|k
(X|Z1:k)µ(dX)

= 1Using the de�nition of the PGFl (1.29) one more gives:
C = GΞB

k,k+1
[1]

=

∫

F(X )

1XpBk,k+1(X)µ(dX)

= 1
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Next, using the de�nition of the PGFl (1.29) on D yields:
D =

[
δGΞk|k

δx
[Φ[h]]

]

h=1

= vΞΦ
(x)KXwhere ΞΦ denotes the RFS with the PGFl GΞk|k

[Φ[.]]. Denote by ΞΦ,y the RFS withPGFl GΞΦ,y
[.] = Φ[.](y). Then, sine Φ[1] = 1, property 1.7 applies and thus:

D =

∫

X

vΞΦ,y
(x)vΞk|k

(y|Z1:k)dy KX

=

∫

X

(vΞΦ,y
(x)KX )vΞk|k

(y|Z1:k)dyUsing the de�nition of the PGFl (1.29) again gives:
D =

∫

X

[
δGΞΦ,y

δx
[h]

]

h=1

vΞk|k
(y|Z1:k)dyBut:

δGΞΦ,y

δx
[h] =

δΦ[h](y)

δx

=
δ

δx

[

(1− psk,k+1(y) + psk,k+1(y)f
t
k,k+1[h|y])GΞS

k,k+1(y)
[h]
]

= psk,k+1(y)

(
δ

δx
f t
k,k+1[h|y]

)

GΞS
k,k+1(y)

[h]

+ (1− psk,k+1(y) + psk,k+1(y)f
t
k,k+1[h|y])

(
δ

δx
GΞS

k,k+1(y)
[h]

)Sine f t
k,k+1[h|y] =

∫

X
h(z)f t

k,k+1(z|y)dz, using alulus property (1.48) gives:
δGΞΦ,x

δx
[h] = psk,k+1(y)

(
f t
k,k+1(x|y)KX

)
GΞS

k,k+1(y)
[h]

+ (1− psk,k+1(y) + psk,k+1(y)f
t
k,k+1[h|y])

(
δ

δx
GΞS

k,k+1(y)
[h]

)Therefore, by setting h = 1:
[
δGΞΦ,y

δx
[h]

]

h=1

= psk,k+1(y)f
t
k,k+1(x|y)GΞS

k,k+1(y)
[1]

︸ ︷︷ ︸

=1

KX

+ (1− psk,k+1(y) + psk,k+1(y) f
t
k,k+1[1|y]
︸ ︷︷ ︸

=1

)

[
δ

δx
GΞS

k,k+1(y)
[h]

]

h=1
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That is, using the de�nition of the PGFl (1.29):
δGΞΦ,y

δx
[h] = psk,k+1(y)f

t
k,k+1(x|y)KX + (1− psk,k+1(y) + psk,k+1(y))vΞS

k,k+1(y)
(x)KX

= psk,k+1(y)f
t
k,k+1(x|y)KX + vΞS

k,k+1(y)
(x)KXHene:

D =

∫

X

(

psk,k+1(y)f
t
k,k+1(x|y) + vΞS

k,k+1(y)
(x)
)

vΞk|k
(y|Z1:k)dy KXThus:

vΞk+1|k
(x|Z1:k)KX = AB + CD

= vΞB
k+1|k

(x|Z1:k)KX +

∫

X

(

psk,k+1(y)f
t
k,k+1(x|y) + vΞS

k,k+1(y)
(x)
)

vΞk|k
(y|Z1:k)dy KXFinally:

vΞk+1|k
(x|Z1:k) = vΞB

k+1|k
(x) +

∫

X

(

psk,k+1(y)f
t
k,k+1(x|y) + vΞS

k,k+1(y)
(x)
)

vΞk|k
(y|Z1:k)dyProposition 2.2This proof is drawn from Mahler's onstrution of the single-sensor PHD �lter in[Mahl 03a℄.Proof. Let ΣD

k+1(X) be the Multi-Bernoulli RFS ⋃x∈X ΣD
k+1(x). Then, using propo-sition 2.4 on Multi-Bernoulli RFS gives:

GΣD
k+1(X)[g] =

∏

x∈X

(
1− pdk+1(x) + pdk+1(x)f

o
k+1[g|x]

)

= (1− pdk+1(.) + pdk+1(.)f
o
k+1[g|.])XLet ΣC

k+1 be the false alarm RFS. Sine is its assumed Poisson with parameter λc
k+1and intensity λc

k+1ck+1(.), using equation (2.3) yields:
GΣC

k+1
[g] = eλ

c
k+1ck+1[g]−λc

k+1By onstrution, the observation RFS Σ0
k+1(X) is the union RFS of independentRFSs ΣD

k+1(X) and ΣC
k+1. Thus, using property 1.3 gives:

GΣO
k+1(X)[g] = GΣD

k+1(X)[g]GΣC
k+1

[g]

= (1− pdk+1(.) + pdk+1(.)f
o
k+1[g|.])Xeλ

c
k+1ck+1[g]−λc

k+1
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Proposition 2.3Proof. Let x ∈ X be any target state and z ∈ Z any measurement state.
β[g, δx] =

δ

δx
β[g, h]

=
δ

δx

(

λc
k+1ck+1[g]− λc

k+1 + vΞk+1|k

[
h(1− pdk+1 + pdk+1f

o
k+1[g|.])

]
− vΞk+1|k

[1]
)

=
δ

δx

(∫

X

h(y)(1− pdk+1(y) + pdk+1(y)f
o
k+1[g|y])vΞk+1|k

(y|Z1:k)dy

)Using property (1.48) gives:
β[g, δx] = (1− pdk+1(x) + pdk+1(x)f

o
k+1[g|x])vΞk+1|k

(x|Z1:k)KXLikewise:
β[δz, h] =

δ

δz
β[g, h]

=
δ

δz

(

λc
k+1ck+1[g]− λc

k+1 + vΞk+1|k

[
h(1− pdk+1)

]
+ vΞk+1|k

[
pdk+1f

o
k+1[g|.]

]
− vΞk+1|k

[1]
)

= λc
k+1

δ

δz

(∫

Z

g(u)ck+1(u)du

)

+

∫

X

h(y)pdk+1(y)
δ

δz

(∫

Z

g(u)f o
k+1(u|y)du

)

vΞk+1|k
(y|Z1:k)dyUsing property (1.48) gives:

β[δz, h] = λc
k+1ck+1(z)KZ +

∫

X

h(y)pdk+1(y) f
o
k+1(z|y)
︸ ︷︷ ︸

=Lz
k+1(y)

vΞk+1|k
(y|Z1:k)dy KZ

= λc
k+1ck+1(z)KZ+vΞk+1|k

[hpdk+1L
z
k+1]KZFinally:

β[δz, δx] =
δ

δx
β[δz, h]

=
δ

δx

(

λc
k+1ck+1(z)KZ + vΞk+1|k

[hpdk+1L
z
k+1]KZ

)

=
δ

δx

(∫

X

h(y)pdk+1(y)L
z
k+1(y)vΞk+1|k

(y|Z1:k)dy

)

KZUsing property (1.48) gives:
β[δz, δx] = pdk+1(x)L

z
k+1(x)vΞk+1|k

(x|Z1:k)KXKZ
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Theorem 2.2This proof is adapted from one of Mahler's key theorems in the onstrution of thesingle-sensor PHD �lter (see [Mahl 03a℄).Proof. Let Zk+1 be the is the set mk+1 urrent measurements, h (resp. g) be a real-valued funtion de�ned on X (resp. Z) in [0 1], and x0 any point in X . Then, let
F [g, h] be the joint PGFl of PGFls
GΣk+1(X)[g] and GΞk+1|k

[h]. Then:
F [g, h] =

∫

F(Z)

∫

F(X )

hXpΣk+1(X)(Z)pΞk+1|k
(X|Z1:k)µ(dX)µ(dZ)

=

∫

F(X )

hXgZ
(∫

F(Z)

gZpΣk+1(X)(Z)µ(dZ)

)

pΞk+1|k
(X|Z1:k)µ(dX)Whih gives, using the de�nition of the PGFl (1.29):

F [g, h] =

∫

F(X )

hXGΣk+1(X)[g]pΞk+1|k
(X|Z1:k)µ(dX) (30)On the �rst hand, proposition 2.2 yields:

F [g, h] =

∫

F(X )

hX(1− pdk+1(.) + pdk+1(.)f
o
k+1[g|.])Xeλ

c
k+1ck+1[g]−λc

k+1pΞk+1|k
(X|Z1:k)µ(dX)

= eλ
c
k+1ck+1[g]−λc

k+1

∫

F(X )

(
h(1− pdk+1(.) + pdk+1(.)f

o
k+1[g|.])

)X
pΞk+1|k

(X|Z1:k)µ(dX)

= eλ
c
k+1ck+1[g]−λc

k+1GΞk+1|k
[h(1− pdk+1(.) + pdk+1(.)f

o
k+1[g|.])]Sine Ξk+1|k is assumed Poisson, using (2.3) further simpli�es the expression of

F [g, h]:
F [g, h] = eλ

c
k+1ck+1[g]−λc

k+1e
vΞk+1|k

[h(1−pd
k+1+pd

k+1f
o
k+1[g|.])]−vΞk+1|k

[1]

= e
λc
k+1ck+1[g]−λc

k+1+vΞk+1|k
[h(1−pd

k+1+pd
k+1f

o
k+1[g|.])]−vΞk+1|k

[1]That is, using the de�nition of the ross-term (2.19):
F [g, h] = eβ[g,h] (31)On the other hand, derivating (30) in the urrent measurement set Zk+1 gives:
[

δ

δZk+1

F [g, h]

]

g=0

=

∫

F(X )

hX

[
δ

δZk+1

GΣk+1(X)[g]

]

g=0

pΞk+1|k
(X|Z1:k)µ(dX)
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Whih gives, using the derivative property of PGFl (1.43):
[

δ

δZk+1
F [g, h]

]

g=0

=

∫

F(X )

hXpΣk+1
(Zk+1|X)pΞk+1|k

(X|Z1:k)µ(dX) (32)But, the PGFl GΞk+1|k+1
of the posterior RFS Ξk+1|k+1 is by de�nition (1.29):

GΞk+1|k+1
[h] =

∫

F(X )

hXpΞk+1|k+1
(X|Z1:k+1)µ(dX)Whih gives, aording to the data update equation of the RFS �lter (1.55):

GΞk+1|k+1
[h] =

∫

F(X )

hX

(

pΣk+1
(Zk+1|X)pΞk+1|k

(X|Z1:k)
∫

F(X )
pΣk+1

(Zk+1|Y )pΞk+1|k
(Y |Z1:k))µ(dY )

)

µ(dX)Using previous result (32) then (31) yields:
GΞk+1|k+1

[h] =

[
δ

δZk+1
eβ[g,h]

]

g=0
[

δ
δZk+1

eβ[g,h]
]

g=0,h=1Thus, using the derivative property of PGFl (1.44) gives:
vΞk+1|k+1

(x0) =

[
δ

δx0

(
δ

δZk+1
eβ[g,h]

)]

g=0,h=1
[

δ
δZk+1

eβ[g,h]
]

g=0,h=1

K−1
X (33)Thus, the posterior PHD vΞk+1|k+1

(.) an be omputed exlusively with derivativesof the ross-term β[g, h]. Equation (33) an be further simpli�ed as follows:
vΞk+1|k+1

(x0) =

[
δ

δx0

(
δ

δZk+1
eβ[g,h]

)]

g=0,h=1
[

δ
δZk+1

eβ[g,h]
]

g=0,h=1

K−1
X
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Reall that ross-terms vanish when derivated in more than one measurement. Thus:
vΞk+1|k+1

(x0) =

[
δ

δx0

(
eβ[g,h]

∏mk+1

i=1 β[δzi,k+1
, h]
)]

g=0,h=1
[
eβ[g,h]

∏mk+1

i=1 β[δzi,k+1
, h]
]

g=0,h=1

K−1
X

=

[
β[g, δx]e

β[g,h]
∏mk+1

i=1 β[δzi,k+1
, h]
]

g=0,h=1
[
eβ[g,h]

∏mk+1

i=1 β[δzi,k+1
, h]
]

g=0,h=1

K−1
X (34)

+

[

eβ[g,h]
∑mk+1

i=1

(

β[δzi,k+1
, δx]

∏

j 6=i β[δzi,k+1
, h]
)]

g=0,h=1
[
eβ[g,h]

∏mk+1

i=1 β[δzi,k+1
, h]
]

g=0,h=1

K−1
X

=



β[δ∅, δx] +
∑

z∈Zk+1

β[δz, δx]

β[δz, 1]



K−1
X

That is, using the de�nition of the ross-term (2.19):
vΞk+1|k+1

(x0)

=

(

(1− pdk+1(x))vΞk+1|k
(x|Z1:k)KX (35)

+
∑

z∈Zk+1

pdk+1(x)L
z
k+1(x)vΞk+1|k

(x|Z1:k)KXKZ

λc
k+1ck+1(z)KZ + vΞk+1|k

[pdk+1L
z
k+1]KZ

)

K−1
X

=



1− pdk+1(x) +
∑

z∈Zk+1

pdk+1(x)L
z
k+1(x)

λc
k+1ck+1(z) + vΞk+1|k

[pdk+1L
z
k+1]



 vΞk+1|k
(x|Z1:k)
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Proposition 2.5Proof. Let x0 ∈ X be any target state, {zj}Sj=1 be any measurement family where
zj ∈ Zj , and Z any subset of {zj}Sj=1. First:

β[δ∅, ḡ, δx0 ] =
δ

δx0
β[g1, ..., gS, h]

=
δ

δx0

(
S∑

j=1

(λc,j
k+1c

j
k+1[g

j]− λc,j
k+1)

+vΞk+1|k

[

h

(
S∏

j=1

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])
)]

− vΞk+1|k
[1]

)

=
δ

δx0

(
∫

X

h(x)
S∏

j=1

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)dx

)Using alulus property (1.48) gives:
β[δ∅, ḡ, δx0 ] =

S∏

j=1

(1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x])vΞk+1|k
(x0|Z1:k)KXThen:

β[δZ , ḡ, h] =
δ

δZ
β[g1, ..., gS, h]

=
δ

δZ

(
S∑

j=1

(λc,j
k+1c

j
k+1[g

j]− λc,j
k+1)

+vΞk+1|k

[

h

(
S∏

j=1

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])
)]

− vΞk+1|k
[1]

)

=







δ

δzj0

(∫

Zj0

λc,j0
k+1c

j0
k+1(z)dz

)

+

∫

X

h(x)
δ

δzj0

(∫

Zj0

pd,j0k+1(x)f
o,j0
k+1[g

j0|x])dz
)

×
∏

zj 6=zj0

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)dx

(Z = {zj0})
∫

X

h(x)
∏

zj∈Z

(
δ

δzj

(∫

Zj

pd,jk+1(x)f
o,j
k+1[g

j|x])dz
))

×
∏

zj /∈Z

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)dx

(|Z| > 2)
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Using alulus property (1.48) gives:

β[δZ , ḡ, h]

=







λc,j0
k+1c

j0
k+1(z

j0)KZj0 +

∫

X

h(x)pd,j0k+1(x) f
o,j0
k+1(z

j0 |x)
︸ ︷︷ ︸

=L
zj0 ,j0
k+1 (x)

KZj0

×
∏

zj 6=zj0

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)dx

(Z = {zj0})
∫

X

h(x)
∏

zj∈Z

(pd,jk+1(x) f
o,j
k+1(z

j |x)
︸ ︷︷ ︸

=Lzj,j
k+1(x)

KZj )

×
∏

zj /∈Z

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)dx

(|Z| > 2)

=







λc,j0
k+1c

j0
k+1(z

j0)KZj0

+ vΞk+1|k
[hpd,j0k+1L

zj0 ,j0
k+1 KZj0

∏

zj 6=zj0

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])]

(Z = {zj0})
vΞk+1|k

[h
∏

zj∈Z

(pd,jk+1L
zj ,j
k+1KZj )

∏

zj /∈Z

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])]

(|Z| > 2)
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Finally:

β[δZ , ḡ, δx0] =
δ

δx0
β[δZ , ḡ, h]

=







δ

δx0

(
∫

X

h(x)pd,j0k+1(x)L
zj0 ,j0
k+1 (x)KZj0

×
∏

zj 6=zj0

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)dx

)

(Z = {zj0})
δ

δx0

(
∫

X

h(x)
∏

zj∈Z

(pd,jk+1(x)L
zj ,j
k+1(x)KZj )

×
∏

zj /∈Z

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)dx

)

(|Z| > 2)

=
δ

δx0

(
∫

X

h(x)
∏

zj∈Z

(pd,jk+1(x)L
zj ,j
k+1(x)KZj )

×
∏

zj /∈Z

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)dx

)

Using alulus property (1.48) gives:
β[δZ , ḡ, δx0] =

∏

zj∈Z

(pd,jk+1(x0)L
zj ,j
k+1(x0)KZj )

×
∏

zj /∈Z

(1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0])vΞk+1|k
(x0|Z1:k)KX

Theorem 2.3This proof is an extension of Mahler's proof in the single-sensor ase (see [Mahl 03a℄).Note that a onstrution of the two-sensor ase is also provided by Mahler in[Mahl 09a℄.Proof. Let Zk+1 =
⊔S

j=1Z
j
k+1 be the set of mk+1 =

∑S
j=1m

j
k+1 urrent measure-ments, h (resp. gj) be a real-valued funtion de�ned on X (resp. Zj) in [0 1], and x0
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any point in X . Then, let F [g1, ...gS, h] be the joint PGFl of PGFls GΣ1

k+1(X)[g],...,
GΣS

k+1(X)[g] and GΞk+1|k
[h]. Then:

F [g1, ...gS, h]

=

∫

F(Z1)

...

∫

F(ZS)

∫

F(X )

hX

S∏

j=1

(

gZ
j

pΣj
k+1(X)(Z

j)
)

pΞk+1|k
(X|Z1:k)µ(dX)µ(dZ1)...µ(dZS)

=

∫

F(X )

hX

S∏

j=1

(∫

F(Zj)

gZpΣj
k+1(X)(Z)µ(dZ)

)

pΞk+1|k
(X|Z1:k)µ(dX)Whih gives, using the de�nition of the PGFl (1.29):

F [g1, ...gS, h] =

∫

F(X )

hX

S∏

j=1

(GΣj
k+1(X)[g

j])pΞk+1|k
(X|Z1:k)µ(dX) (36)On the �rst hand, proposition 2.4 yields:

F [g1, ...gS, h]

=

∫

F(X )

hX
S∏

j=1

(

(1− pd,jk+1(.) + pd,jk+1(.)f
o,j
k+1[g

j|.])Xeλc,j
k+1c

j
k+1[g

j ]−λc,j
k+1

)

pΞk+1|k
(X|Z1:k)µ(dX)

=

S∏

j=1

(

eλ
c,j
k+1c

j
k+1[g

j ]−λc,j
k+1

)

×
∫

F(X )

(

h
S∏

j=1

(

1− pd,jk+1(.) + pd,jk+1(.)f
o,j
k+1[g

j|.]
)
)X

pΞk+1|k
(X|Z1:k)µ(dX)

=
S∏

j=1

(

eλ
c,j
k+1c

j
k+1[g

j ]−λc,j
k+1

)

GΞk+1|k

[

h
S∏

j=1

(

1− pd,jk+1(.) + pd,jk+1(.)f
o,j
k+1[g

j|.]
)
]Sine Ξk+1|k is assumed Poisson, using (2.3) further simpli�es the expression of

F [g1, ...gS, h]:
F [g1, ...gS, h] =

S∏

j=1

(

eλ
c,j
k+1c

j
k+1[g

j ]−λc,j
k+1

)

e
vΞk+1|k

[h
∏S

j=1(1−pd,j
k+1(.)+pd,j

k+1(.)f
o,j
k+1[g

j |.])]−vΞk+1|k
[1]

= e
∑S

j=1(λ
c,j
k+1c

j
k+1[g

j ]−λc,j
k+1)+vΞk+1|k

[h
∏S

j=1(1−pd,j
k+1(.)+pd,j

k+1(.)f
o,j
k+1[g

j |.])]−vΞk+1|k
[1]That is, using the de�nition of the ross-term (2.33):

F [g1, ...gS, h] = eβ[g
1,...gS,h] (37)
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On the other hand, derivating (36) in the urrent measurement set Zk+1 gives:
[

δ

δZk+1
F [g1, ...gS, h]

]

g1...S=0

=

∫

F(X )

hX
S∏

j=1

[

δ

δZj
k+1

GΣj
k+1(X)[g

j]

]

gj=0

pΞk+1|k
(X|Z1:k)µ(dX)Whih gives, using the derivative property of PGFl (1.43):

[
δ

δZk+1
F [g1, ...gS, h]

]

g1...S=0

=

∫

F(X )

hX
S∏

j=1

(pΣj
k+1

(Zj
k+1|X))pΞk+1|k

(X|Z1:k)µ(dX)That is, using the independene of the single-sensor observation proesses (2.32):
[

δ

δZk+1
F [g1, ...gS, h]

]

g1...S=0

=

∫

F(X )

hXpΣk+1
(Zk+1|X))pΞk+1|k

(X|Z1:k)µ(dX) (38)But, the PGFl GΞk+1|k+1
of the posterior RFS Ξk+1|k+1 is by de�nition (1.29):

GΞk+1|k+1
[h] =

∫

F(X )

hXpΞk+1|k+1
(X|Z1:k+1)µ(dX)Whih gives, aording to the data update equation of the RFS �lter (1.55):

GΞk+1|k+1
[h] =

∫

F(X )

hX

(

pΣk+1
(Zk+1|X)pΞk+1|k

(X|Z1:k)
∫

F(X )
pΣk+1

(Zk+1|Y )pΞk+1|k
(Y |Z1:k))µ(dY )

)

µ(dX)Using previous result (38) then (37) yields:
GΞk+1|k+1

[h] =

[
δ

δZk+1
eβ[g

1,...,gS,h]
]

g1...S=0
[

δ
δZk+1

eβ[g1,...,gS,h]
]

g1...S=0,h=1Thus, using the derivative property of PGFl (1.44) gives:
vΞk+1|k+1

(x0) =

[
δ

δx0

(
δ

δZk+1
eβ[g

1,...,gS,h]
)]

g1...S=0,h=1
[

δ
δZk+1

eβ[g1,...,gS,h]
]

g1...S=0,h=1

K−1
X
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Lemma 2.1Proof. Let s be any integer s < S, {Zj}s+1

j=1 be any family of �nite subsets Zj ⊂ Zjwith Zs+1 = {zs+1
i }m

s+1

i=1 . First, let us show that:
C(Z1, ..., Zs+1)

= {C ∪M(Z) | Z ⊆ Zs+1, C ∈ C(Z1, ..., Zs, Zs+1 \ Z), C ∩M(Zs+1) = ∅} (39)That is, any ombinational term based on all the measurements in Zs+1 an beuniquely deomposed as the union of:
• all the singletons of measurements from some Z ⊆ Zs+1 (�M(Z)�);
• a ombinational term based on the remaining terms in Zs+1(�C ∈ C(Z1, ..., Zs, Zs+1 \ Z), C ∩M(Zs+1) = ∅�).Let A ∈ C(Z1, ..., Zs+1) be any ombinational term. Denote by ZA ⊆ Zs+1 thesubset ZA = {z ∈ Zs+1 | {z} ∈ A}. Using the de�nition of the term set (2.47) gives

M(ZA) = χ(ZA) = {{z} | z ∈ ZA} and thus A = M(ZA) ∪ CA where CA = A \
M(ZA). By onstrution, CA ⊆M(Z1, ..., Zs, Zs+1\ZA) and CA∩M(Zs+1) = ∅. Be-sides, ϕZ1,...,Zs+1(A) = 1 and ϕZ(M(ZA)) = 1 imply that ϕZ1,...,Zs,Zs+1\ZA

(CA) = 1,that is, CA ∈ C(Z1, ..., Zs, Zs+1 \ZA). By onstrution, the deomposition ZA, CA isunique: if A = CA ∪M(ZA) = CB ∪M(ZB), the onditions CA ∩M(Zs+1) = ∅ and
CB ∩M(Zs+1) = ∅ imply thatM(ZA) =M(ZB), thus ZA = ZB and CA = CB.Conversely, let Z ⊆ Zs+1 be any subset of Zs+1, and C ∈ C(Z1, ..., Zs, Zs+1 \Z) anyombinational term suh that C∩M(Zs+1) = ∅. Then, C ⊆M(Z1, ..., Zs, Zs+1\Z)and therefore (C ∪ M(Z)) ⊆ M(Z1, ..., Zs, Zs+1). Besides, ϕZ(M(Z)) = 1 and
ϕZ1,...,Zs,Zs+1\Z(C) = 1, thus ϕZ1,...,Zs,Zs+1(C ∪M(Z)) = 1.Therefore, equality (39) is true. Thus we an write:
C(Z1:s+1)

= {C ∪M(Z) | Z ⊆ Zs+1, C ∈ C(Z1...s, Zs+1 \ Z), C ∩M(Zs+1) = ∅}
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=

⋃

Z⊆Zs+1

{
C ∪M(Z) | C ⊆M(Z1...s, Zs+1 \ Z), ϕZ1...s,Zs+1\Z(C) = 1

}

=
ms+1
⋃

n=0

⋃

I⊆[1 ms+1]
|I|=ns

{

Ca ∪
(
⋃

i∈I

{
{zs+1

i } ∪ Cb
i

}

)

∪
(
⋃

i/∈I

{
{zs+1

i }
}

)

| Ca, Cb ⊆M(Z1:s), |Cb| = n, ϕZ1:s(Ca ∪ Cb) = 1

}

=

ms+1
⋃

n=0

⋃

C⊆M(Z1:s)
|C|>n

ϕ
Z1:s (C)=1

⋃

I⊆[1 ms+1]
J⊆[1 |C|]
|I|=|J |=n

⋃

σ∈Bij(I,J)

(
⋃

j /∈J

{Ca
j }
)

∪
(
⋃

i∈I

{
{zs+1

i } ∪ Cb
σ(i)

}

)

∪
(
⋃

i/∈I

{
{zs+1

i }
}

)

That is, using the de�nition of ombinational terms (2.49):
C(Z1:s+1)

=

ms+1
⋃

n=0

⋃

C∈C(Z1:s)
|C|>n

⋃

I⊆[1 ms+1]
J⊆[1 |C|]
|I|=|J |=n

⋃

σ∈Bij(I,J)

Uσ
I,J(Z

s+1, C)

=
⋃

C∈C(Z1:s)

min(|C|,ms+1)
⋃

n=0

⋃

I⊆[1 ms+1]
J⊆[1 |C|]
|I|=|J |=n

⋃

σ∈Bij(I,J)

Uσ
I,J(Z

s+1, C)

Theorem 2.4Proof. Let Zk+1 =
⊔S

j=1Z
j
k+1 be the set of mk+1 =

∑S
j=1m

j
k+1 urrent measure-ments, h (resp. gj) be a real-valued funtion de�ned on X (resp. Zj) in [0 1], and

x0 any point in X . First, let us prove by indution on 1 6 s 6 S that:
δs

δZ1
k+1...δZ

s
k+1

eβ[g
1,...,gS,h] = eβ[δ∅,ḡ,h]

∑

C∈C(Z1...s
k+1 )

∏

Ci∈C

β[δCi
, ḡ, h] (40)
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Let us onsider the basis ase s = 1. Reall from proposition 2.5 that a ross-termsvanishes when derivated in two points from the same observation spae. Thus:

δ

δZ1
k+1

eβ[δ∅,ḡ,h] = eβ[δ∅,ḡ,h]
∏

z∈Z1
k+1

β[δ{z}, ḡ, h]

= eβ[δ∅,ḡ,h]
∏

Z∈M(Z1
k+1)

β[δZ , ḡ, h]

= eβ[δ∅,ḡ,h]
∑

C∈C(Z1
k+1)

∏

Z∈C

β[δZ , ḡ, h]Therefore, the ase holds for s = 1. Assuming that the ase holds for s, s < S, letus prove that it holds for s+ 1. We an write:
δs+1

δZ1
k+1...δZ

s
k+1δZ

s+1
k+1

eβ[δ∅,ḡ,h] =
δ

δZs+1
k+1

(
δs

δZ1
k+1...δZ

s
k+1

eβ[g
1,...,gS,h]

)

Thus, by using the ase at step s:
δs+1

δZ1
k+1...δZ

s
k+1δZ

s+1
k+1

eβ[δ∅,ḡ,h] =
δ

δZs+1
k+1



eβ[δ∅,ḡ,h]
∑

C∈C(Z1...s
k+1 )

∏

Z∈C

β[δZ , ḡ, h]





=

ms+1
k+1∑

n=0

∑

I⊆[1 ms+1
k+1]

|I|=n




δ

δ{zs+1
i,k+1}i/∈I

eβ[δ∅,ḡ,h]
δ

δ{zs+1
i,k+1}i∈I




∑

C∈C(Z1...s
k+1 )

∏

Z∈C

β[δZ , ḡ, h]









=

ms+1
k+1∑

n=0

∑

I⊆[1 ms+1
k+1]

|I|=n



eβ[δ∅,ḡ,h]

(
∏

i/∈I

β[δ{zs+1
i,k+1}

, ḡ, h]

)
∑

C∈C(Z1...s
k+1 )

(

δn

δ{zs+1
i,k+1}i∈I

∏

Z∈C

β[δZ , ḡ, h]

︸ ︷︷ ︸

=A

)



Reall from proposition 2.5 that a ross-term vanishes when derivated in two pointsfrom the same observation spae. Thus, A an be expanded as follows:
A =







0 (n > |C|)
∑

J⊆[1 |C|]
|J |=n

∑

σ∈Bij(I,J)

∏

j /∈J

β[δCj
, ḡ, h]

∏

i∈I

β[δ{zs+1
i,k+1}∪Cσ(i)

, ḡ, h] (n 6 |C|)
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And therefore:

δs+1

δZ1
k+1...δZ

s
k+1δZ

s+1
k+1

eβ[δ∅,ḡ,h]

= eβ[δ∅,ḡ,h]
ms+1

k+1∑

n=0

∑

I⊆[1 ms+1
k+1]

|I|=n

∑

C∈C(Z1...s
k+1 )

|C|>n

∑

J⊆[1 |C|]
|J |=n

∑

σ∈Bij(I,J)

(
∏

i/∈I

β[δ{zs+1
i,k+1}

, ḡ, h]

)(
∏

j /∈J

β[δCj
, ḡ, h]

)(
∏

i∈I

β[δ{zs+1
i,k+1}∪Cσ(i)

, ḡ, h]

)

= eβ[δ∅,ḡ,h]
∑

C∈C(Z1...s
k+1 )

min(|C|,ms+1
k+1)∑

n=0

∑

I⊆[1 ms+1
k+1]

J⊆[1 |C|]
|I|=|J |=n

∑

σ∈Bij(I,J)

(
∏

i/∈I

β[δ{zs+1
i,k+1}

, ḡ, h]

)(
∏

j /∈J

β[δCj
, ḡ, h]

)(
∏

i∈I

β[δ{zs+1
i,k+1}∪Cσ(i)

, ḡ, h]

)

That is, using lemma 2.1:
δs+1

δZ1
k+1...δZ

s
k+1δZ

s+1
k+1

eβ[δ∅,ḡ,h] = eβ[δ∅,ḡ,h]
∑

C∈C(Z1...s+1
k+1 )

∏

Ci∈C

β[δCi
, ḡ, h]Therefore, the ase holds true for eah s 6 S and for s = S equation (40) beomes:

δ

δZk+1
eβ[δ∅,ḡ,h] = eβ[δ∅,ḡ,h]

∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, ḡ, h]Using the derivative form (2.44), we an �nally write:

vΞk+1|k+1
(x0|Z1:k+1) =

[
δ

δx0

(
δ

δZk+1
eβ[δ∅,ḡ,h]

)]

g1...S=0,h=1
[

δ
δZk+1

eβ[δ∅,ḡ,h]
]

g1...S=0,h=1

K−1
X

=



 δ
δx0



eβ[δ∅,ḡ,h]
∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, ḡ, h]









g1...S=0,h=1

eβ[δ∅,1]
∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X
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Reall from proposition 2.5 that a ross-term vanishes when derivated in two pointsfrom the target spae. Thus:

vΞk+1|k+1
(x0|Z1:k+1)

=



eβ[δ∅,ḡ,h]β[δ∅, ḡ, δx0]
∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, ḡ, h]





g1...S=0,h=1

eβ[δ∅,1]
∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X

+



eβ[δ∅,ḡ,h]
∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, ḡ, δx0]

∏

Cj 6=Cj

β[δCj
, ḡ, h]









g1...S=0,h=1

eβ[δ∅,1]
∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X

= β[δ∅, δx0]K
−1
X +

∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx0]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X

Proposition 2.6Proof. Let x0 ∈ X be any target state, {zj}Sj=1, zj ∈ Zj be any family of measure-ments, J ⊆ [1 S]. Let (Sk+1(p))
Pk+1

p=1 , (Tk+1(p))
Pk+1

p=0 be the joint partitioning at time
k + 1. Then, using equation (2.38) gives:

β[δ∅, ḡ, δx0] =

S∏

j=1

(1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0])vΞk+1|k
(x0|Z1:k)KX

=

Pk+1∏

q=1




∏

j∈Sk+1(q)

(1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0])



 vΞk+1|k
(x0|Z1:k)KX
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If ∃p ∈ [1 P ], x0 ∈ Tk+1(p) then:

β[δ∅, ḡ, δx0]

=




∏

j∈Sk+1(p)

(1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0])





×
∏

q 6=p




∏

j∈Sk+1(q)

(1− pd,jk+1(x0)
︸ ︷︷ ︸

=0

+ pd,jk+1(x0)
︸ ︷︷ ︸

=0

f o,j
k+1[g

j|x0])



 vΞk+1|k
(x0|Z1:k)KX

=
∏

j∈Sk+1(p)

(1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0])vΞk+1|k
(x0|Z1:k)KX

= βp[δ∅, ḡ, δx0]Otherwise, x0 ∈ Tk+1(0) and therefore:
β[δ∅, ḡ, δx0]

=

Pk+1∏

q=1




∏

j∈Sk+1(q)

(1− pd,jk+1(x0)
︸ ︷︷ ︸

=0

+ pd,jk+1(x0)
︸ ︷︷ ︸

=0

f o,j
k+1[g

j|x0])



 vΞk+1|k
(x0|Z1:k)KX

= vΞk+1|k
(x0|Z1:k)KXLikewise, using equation (2.39) gives:

β[δ{zj ,j∈J}, ḡ, h]

=







λc,j0
k+1c

j0
k+1(z

j0)KZj0 + vΞk+1|k
[hpd,j0k+1L

zj0 ,j0
k+1 KZj0

∏

j 6=j0

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])]

(J = {j0})
vΞk+1|k

[h
∏

j∈J

(pd,jk+1L
zj ,j
k+1KZj )

∏

j /∈J

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])]

(|J | > 2)
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=







λc,j0
k+1c

j0
k+1(z

j0)KZj0 +

(
Pk+1∑

q=0

∫

Tk+1(q)

h(x)pd,j0k+1(x)L
zj0 ,j0
k+1 (x)KZj0

×
∏

j 6=j0

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])]
)

vΞk+1|k
(x|Z1:k)dx

(J = {j0})
(

Pk+1∑

q=0

∫

Tk+1(q)

h(x)
∏

j∈J

(pd,jk+1(x)L
zj ,j
k+1(x)KZj )

×
∏

j /∈J

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])
)

vΞk+1|k
(x|Z1:k)dx

(|J | > 2)
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If ∃p ∈ [1 Pk+1], J ⊆ Sk+1(p) then:

β[δ{zj ,j∈J}, ḡ, h]

=







λc,j0
k+1c

j0
k+1(z

j0)KZj0

+

(
∫

Tk+1(p)

h(x)pd,j0k+1(x)L
zj0 ,j0
k+1 (x)KZj0

∏

j∈Sk+1(p)
j 6=j0

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])

×
∏

j /∈Sk+1(p)

(1− pd,jk+1(x)
︸ ︷︷ ︸

=0

+ pd,jk+1(x)
︸ ︷︷ ︸

=0

f o,j
k+1[g

j|x])
)

vΞk+1|k
(x|Z1:k)dx

+




∑

q 6=p

∫

Tk+1(q)

h(x) pd,j0k+1(x)
︸ ︷︷ ︸

=0

Lzj0 ,j0
k+1 (x)KZj0

×
∏

j 6=j0

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])
)

vΞk+1|k
(x|Z1:k)dx

(J = {j0})
(
∫

Tk+1(p)

h(x)
∏

j∈J

(pd,jk+1(x)L
zj ,j
k+1(x)KZj )

∏

j∈Sk+1(p)
j /∈J

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])

×
∏

j /∈Sk+1(p)

(1− pd,jk+1(x)
︸ ︷︷ ︸

=0

+ pd,jk+1(x)
︸ ︷︷ ︸

=0

f o,j
k+1[g

j|x])
)

vΞk+1|k
(x|Z1:k)dx

+

(
∑

q 6=p

∫

Tk+1(q)

h(x)
∏

j∈J

(pd,jk+1(x)
︸ ︷︷ ︸

=0

Lzj ,j
k+1(x)KZj )

×
∏

j /∈J

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])
)

vΞk+1|k
(x|Z1:k)dx

(|J | > 2)
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=







λc,j0
k+1c

j0
k+1(z

j0)KZj0 +

(
∫

Tk+1(p)

h(x)pd,j0k+1(x)L
zj0 ,j0
k+1 (x)KZj0

×
∏

j∈Sk+1(p)
j 6=j0

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])]
)

vΞk+1|k
(x|Z1:k)dx

(J = {j0})
(
∫

Tk+1(p)

h(x)
∏

j∈J

(pd,jk+1(x)L
zj ,j
k+1(x)KZj )

×
∏

j∈Sk+1(p)
j /∈J

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])
)

vΞk+1|k
(x|Z1:k)dx

(|J | > 2)

=







λc,j0
k+1c

j0
k+1(z

j0)KZj0

+ vΞk+1|k
[h1Tk+1(p)p

d,j0
k+1L

zj0 ,j0
k+1 KZj0

∏

j∈Sk+1(p)
j 6=j0

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])]

(J = {j0})
vΞk+1|k

[h1Tk+1(p)

∏

j∈J

(pd,jk+1L
zj ,j
k+1KZj)

∏

j∈Sk+1(p)
j /∈J

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])]

(|J | > 2)

= βp[δ{zj ,j∈J}, ḡ, h]
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Otherwise ∃p1, p2 ∈ [1 Pk+1], p1 6= p2, ∃j1, j2 ∈ J, j1 6= j2, j1 ∈ Sk+1(p1), j2 ∈ Sk+1(p2)and therefore:
β[δ{zj ,j∈J}, ḡ, h]

=

(
∫

Tk+1(p1)

h(x) pd,j2k+1(x)
︸ ︷︷ ︸

=0

Lzj2 ,j2
k+1 (x)

∏

j∈J
j 6=j2

(

pd,jk+1(x)L
zj ,j
k+1(x)

)

∏

j /∈J

(

1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x]
)
)

vΞk+1|k
(x|Z1:k)dx

+

(
∫

Tk+1(q)
q 6=p1

h(x) pd,j1k+1(x)
︸ ︷︷ ︸

=0

Lzj1 ,j1
k+1 (x)

∏

j∈J
j 6=j1

(

pd,jk+1(x)L
zj ,j
k+1(x)

)

∏

j /∈J

(

1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x]
)
)

vΞk+1|k
(x|Z1:k)dx

= 0Likewise, using equation (2.40) gives:
β[δ{zj ,j∈J}, ḡ, δx0]

=

(
∏

j∈J

(

pd,jk+1(x0)L
zj ,j
k+1(x0)

)∏

j /∈J

(

1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0]
)
)

vΞk+1|k
(x0|Z1:k)KXIf ∃p ∈ [1 Pk+1], J ⊆ Sk+1(p), x0 ∈ Tk+1(p) then:

β[δ{zj ,j∈J}, ḡ, δx0]

=

(
∏

j∈J

(

pd,jk+1(x0)L
zj ,j
k+1(x0)

) ∏

j∈Sk+1(p)
j /∈J

(

1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0]
)

∏

j∈Sk+1(p)
j /∈J

(

1− pd,jk+1(x0)
︸ ︷︷ ︸

= 0 + pd,jk+1(x0)
︸ ︷︷ ︸

= 0f o,j
k+1[g

j|x0]

))

vΞk+1|k
(x0|Z1:k)KX

=

(
∏

j∈J

(

pd,jk+1(x0)L
zj ,j
k+1(x0)

) ∏

j∈Sk+1(p)
j /∈J

(

1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0]
)
)

vΞk+1|k
(x0|Z1:k)KX

= βp[δ{zj ,j∈J}, ḡ, δx0 ]
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Otherwise, either x0 ∈ Tk+1(0) or ∃p1, p2 ∈ [1 Pk+1], p1 6= p2, ∃j0 ∈ J, x ∈ Tk+1(p1), j0 ∈
Sk+1(p2) and in both ases pd,j0k+1(x0) so that:
β[δ{zj ,j∈J}, ḡ, δx0]

=

(

pd,j0k+1(x0)
︸ ︷︷ ︸

=0

Lzj0 ,j0
k+1 (x0)

∏

j∈J
j 6=j0

(

pd,jk+1(x0)L
zj ,j
k+1(x0)

)

∏

j /∈J

(

1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0]
)
)

vΞk+1|k
(x0|Z1:k)KX

= 0Theorem 2.5Proof. Let (Sk+1(p))
Pk+1

p=1 , (Tk+1(p))
Pk+1

p=0 be the urrent joint partitioning given byde�nition 2.9, and x ∈ X any target state. The �rst ase to over is when x ∈
Tk+1(0), i.e. x is outside every FOV. Using theorem 2.4 and proposition 2.6 givesimmediately:

vΞk+1|k+1
(x|Z1:k+1)

= β[δ∅, δx]
︸ ︷︷ ︸

=vΞk+1|k
(x|Z1:k)KX

K−1
X +

∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

︸ ︷︷ ︸

=0

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X

= vΞk+1|k
(x|Z1:k)Now, assume that x ∈ Tk+1(p), p 6= 0. We must show that:

vΞk+1|k
(x|Z1:k) = βp[δ∅, δx]K

−1
X +

∑

C∈C(Z
(p)
k+1)

∑

Ci∈C



βp[δCi
, δx]

∏

Cj 6=Cj

βp[δCj
, 1]





∑

C∈C(Z
(p)
k+1)

∏

Ci∈C

βp[δCi
, 1]

K−1
X(41)Note that we need to prove equation (41) for Pk+1 = 1 and Pk+1 = 2 only. In-deed, results from proposition 2.6 learly hold for any sensor partition oarser than

(Sk+1(p))
Pk+1

p=1 . Thus, if Pk+1 > 2, applying result (41) to any oarser partition of
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(Sk+1(p))

Pk+1

p=1 with two elements, namely (Sc
k+1(1), S

c
k+1(2)), and using (41) twie,one on the restrition of X to T c

k+1(1) with a two-element partition of Sc
k+1(1) andone on the restrition of X to T c

k+1(2) with a two-element partition of Sc
k+1(2), andproeeding with �ner and �ner partitions up to (Sk+1(p))

Pk+1

p=1 yields the result forany partition size Pk+1.The ase Pk+1 = 1 is straightforward using theorem 2.4. Assume that Pk+1 = 2, ei-ther x ∈ Tk+1(1) or x ∈ Tk+1(2). Without loss of generality, assume that x ∈ Tk+1(1).For any C ∈ C(Zk+1) and any Ci ∈ C, aording to proposition 2.6:
β[δCi

, ḡ, h] =







β1[δCi
, ḡ, h] (Ci ∈M(Z

(1)
k+1))

β2[δCi
, ḡ, h] (Ci ∈M(Z

(2)
k+1))

0 (otherwise)Therefore we an write:
∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1] =

∑

C∈C(Zk+1)

C=C(1)∪C(2)

C(1)⊆M(Z
(1)
k+1)

C(2)⊆M(Z
(2)
k+1)




∏

Ci∈C(1)

β1[δCi
, 1]








∏

Ci∈C(2)

β2[δCi
, 1]





Sine Zk+1 = Z
(1)
k+1 ⊔ Z

(2)
k+1, using equation (2.49) gives:

∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1] =

∑

C=C(1)∪C(2)

C(1)∈C(Z
(1)
k+1)

C(2)∈C(Z
(2)
k+1)




∏

Ci∈C(1)

β1[δCi
, 1]








∏

Ci∈C(2)

β2[δCi
, 1]





=






∑

C∈C(Z
(1)
k+1)

∏

Ci∈C

β1[δCi
, 1]











∑

C∈C(Z
(2)
k+1)

∏

Ci∈C

β2[δCi
, 1]




 (42)
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Likewise, the numerator in data update equation (2.53) an be simpli�ed:

∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





=
∑

C∈C(Zk+1)

C=C(1)∪C(2)

C(1)⊆M(Z
(1)
k+1)

C(2)⊆M(Z
(2)
k+1)

∑

Ci∈C(1)







β[δCi

, δx]








∏

Cj∈C
(1)

Cj 6=Ci

β1[δCj
, 1]














∏

Ck∈C
(2)

Ck 6=Ci

β2[δCk
, 1]














=
∑

C=C(1)∪C(2)

C(1)∈C(Z
(1)
k+1)

C(2)∈C(Z
(2)
k+1)

∑

Ci∈C(1)







β1[δCi

, 1]
∏

Cj∈C
(1)

Cj 6=Ci

β1[δCj
, 1]











∏

Ck∈C(2)

β2[δCk
, 1]





+
∑

C=C(1)∪C(2)

C(1)∈C(Z
(1)
k+1)

C(2)∈C(Z
(2)
k+1)

∑

Ci∈C(2)




∏

Ck∈C(1)

β1[δCk
, 1]











β2[δC1 , δx]
︸ ︷︷ ︸

=0

∏

Cj∈C(2)

Cj 6=Ci

β2[δCj
, 1]








=






∑

C∈C(Z
(1)
k+1)

∑

Ci∈C



β1[δCi
, δx]

∏

Cj 6=Ci

β1[δCj
, 1]















∑

C∈C(Z
(2)
k+1)

∏

Ci∈C

β2[δCi
, 1]




 (43)Thus, substituting the simpli�ed expressions of the numerator (43) and denominator(42) in equation (2.53) yields:

vΞk+1|k+1
(x|Z1:k+1)

= β[δ∅, δx]K
−1
X

+






∑

C∈C(Z
(1)
k+1)

∑

Ci∈C



β1[δCi
, δx]

∏

Cj 6=Ci

β1[δCj
, 1]















∑

C∈C(Z
(2)
k+1)

∏

Ci∈C

β2[δCi
, 1]











∑

C∈C(Z
(1)
k+1)

∏

Ci∈C

β1[δCi
, 1]











∑

C∈C(Z
(2)
k+1)

∏

Ci∈C

β2[δCi
, 1]






K−1
X
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Aording to equation (2.60), sine x ∈ Tk+1(1), β[δ∅, δx] = β1[δ∅, δx] and therefore:
vΞk+1|k+1

(x|Z1:k+1) = β1[δ∅, δx]K
−1
X +

∑

C∈C(Z
(1)
k+1)

∑

Ci∈C



β1[δCi
, δx]

∏

Cj 6=Ci

β1[δCj
, 1]





∑

C∈C(Z
(1)
k+1)

∏

Ci∈C

β1[δCi
, 1]

K−1
X
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Chapter 3: Multi-sensor management within PHDframeworkProposition 3.2This proof is an extension of Mahler's in the single-sensor ase (see [Mahl 04℄).Proof. Let u ∈ Uk+1 be any available ontrol and x ∈ X any target state. Usingthe de�nition of the preditive PHD (de�nition 3.3) with the PIMS as the preditiveobservation RFS gives:
vΞu

k+1|k+1
(x|Z1:k) = Eω[vΞk+1|k+1

(.|Z1:k ∪ ΣWE
u (ω))]Whih simpli�es, by onstrution of the PIMS (proposition 3.1 and de�nition 3.5):

vΞu
k+1|k+1

(x|Z1:k) =
∑

Z⊆ZWE
k+1

pΣWE
u

(Z)vΞk+1|k+1
(.|Z1:k ∪ Z)Whih gives, using the data update equation (2.53):

vΞu
k+1|k+1

(x|Z1:k)

=
∑

Z⊆ZWE
k+1

pΣWE
u

(Z)











β[δ∅, δx]K
−1
X +

∑

C∈C(Z)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Z)

∏

Ci∈C

β[δCi
, 1]

K−1
X











=




∑

Z⊆ZWE
k+1

pΣWE
u

(Z)





︸ ︷︷ ︸

=1

β[δ∅, δx]K
−1
X

+
∑

Z⊆ZWE
k+1

pΣWE
u

(Z)

∑

C∈C(Z)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Z)

∏

Ci∈C

β[δCi
, 1]

K−1
X

= β[δ∅, δx]K
−1
X +

∑

Z⊆ZWE
k+1

pΣWE
u

(Z)

∑

C∈C(Z)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Z)

∏

Ci∈C

β[δCi
, 1]

K−1
X
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Corollary 3.1Proof. Let u ∈ UK+1 be any available ontrol and x ∈ X any target state. In thesame way as in the proof of theorem 2.2, the data update equation (3.17) is simpli�edin the single-sensor as follows:

vΞu
k+1|k+1

(x|Z1:k) = β[δ∅, δx]K
−1
X +

∑

Z⊆ZWE
k+1

pΣWE
u

(Z)
∑

z∈Z

β[δ{z}, δx]

β[δ{z}, 1]
K−1

X (44)Let {z1, ..., zM} = ZWE
k+1 be the ideal measurements. For any 1 6 m 6 M , let pmbe the restrition of pΣWE

u
to the �rst m measurements in ZWE

k+1 . That is, pm is thefuntion de�ned on any subset Z ⊆ {z1, ..., zm} by:
pm(Z) =

∏

z∈Z

pdu((ρk+1)
−1(z))

∏

z∈{z1,...,zm}\Z

(
1− pdu((ρk+1)

−1(z))
)Then, let us prove by indution on m that:

∑

Z⊆{z1,...,zm}

pm(Z)
∑

z∈Z

β[δ{z}, δx]

β[δ{z}, 1]
=

∑

z∈{z1,...,zM}

pdu((ρk+1)
−1(z))

β[δ{z}, δx]

β[δ{z}, 1]
(45)Let us onsider the base ase m = 1:

∑

Z⊆{z1}

p1(Z)
∑

z∈Z

β[δ{z}, δx]

β[δ{z}, 1]
= p1(∅)×0+p1({z1})

β[δ{z}, δx]

β[(δ{z}, 1]
= pdu((ρk+1)

−1(z1))
β[δ{z}, δx]

β[δ{z}, 1]Assuming that ase m < M is true, let us prove that ase m+ 1 is true:
∑

Z⊆{z1,...,zm+1}

pm+1(Z)
∑

z∈Z

β[δ{z}), δx]

β[δ{z}, 1]

=
∑

Z⊆{z1,...,zm}

pm+1(Z)
∑

z∈Z

β[δ{z}, δx]

β[δ{z}, 1]
+

∑

Z′=Z∪{zm+1}
Z⊆{z1,...,zm}

pm+1(Z ′)
∑

z∈Z′

β[δ{z}, δx]

β[δ{z}, 1]

=
∑

Z⊆{z1,...,zm}

pm(Z)
(
1− pdu((ρk+1)

−1(zm+1))
)∑

z∈Z

β[δ{z}, δx]

β[δ{z}, 1]

+
∑

Z⊆{z1,...,zm}

pm(Z)pdu((ρk+1)
−1(zm+1))

(
∑

z∈Z

β[δ{z}, δx]

β[δ{z}, 1]
+

β[δ{zm+1}, δx]

β[δ{zm+1}, 1]

)

=
∑

Z⊆{z1,...,zm}

pm(Z)
(
1− pdu((ρk+1)

−1(zm+1)) + pdu((ρk+1)
−1(zm+1))

)

︸ ︷︷ ︸

=1

∑

z∈Z

β[δ{z}, δx]

β[δ{z}, 1]

+




∑

Z⊆{z1,...,zm}

pm(Z)





︸ ︷︷ ︸

=1

pdu((ρk+1)
−1(zm+1))

β[δ{zm+1}, δx]

β[δ{zm+1}, 1]
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Whih gives, using (45) at step m:

∑

Z⊆{z1,...,zm+1}

pm+1(Z)
∑

z∈Z

β[δ{z}, δx]

β[δ{z}, 1]

=
∑

z∈{z1,...,zm}

pdu((ρk+1)
−1(z))

β[δ{z}, δx]

β[δ{z}, 1]
+ pdu((ρk+1)

−1(zm+1))
β[δ{zm+1}, δx]

β[δ{zm+1}, 1]

=
∑

z∈{z1,...,zm+1}

pdu((ρk+1)
−1(z))

β[δ{z}, δx]

β[δ{z}, 1]Therefore, the ase holds at step m + 1 and the indution is true for any m 6 M .Combining the ase at �nal step M and expression (44) above yields:
vΞu

k+1|k+1
(x|Z1:k) = β[δ∅, δx]K

−1
X +

∑

z∈ZWE
k+1

pdu((ρk+1)
−1(z))

β[δ{z}, δx]

β[δ{z}, 1]
K−1

XThat is, using the expressions of the derivated ross-terms given in proposition 2.3:
vΞu

k+1|k+1
(x|Z1:k)

=



1− pdu(x) +
∑

z∈ZWE
k+1

pdu((ρk+1)
−1(z))

pdu(x)L
z
k+1(x)

λc
k+1ck+1(z) + vΞk+1|k

[pduL
z
k+1]



 vΞk+1|k
(x|Z1:k)

Proposition 3.3Proof. Let u ∈ UK+1 be any available ontrol and x ∈ X any target state. Usingthe de�nition of the preditive PHD (de�nition 3.3) with the PIMS as the preditiveobservation RFS gives:
vΞu

k+1|k+1
(x|Z1:k) = Eω[vΞk+1|k+1

(.|Z1:k ∪ ΣWE
u (ω))]Whih simpli�es, by onstrution of the PIMS (proposition 3.1 and de�nition 3.5):

vΞu
k+1|k+1

(x|Z1:k) =
∑

Z⊆ZWE
k+1

pΣWE
u

(Z)vΞk+1|k+1
(.|Z1:k ∪ Z)
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Whih gives, using the data update equation (2.53):
vΞu

k+1|k+1
(x|Z1:k)

=
∑

Z⊆ZWE
k+1

pΣWE
u

(Z)







vΞk+1|k
(x|Z1:k)

(x ∈ Tu(0))

βp[δ∅, δx]K
−1
X +

∑

C∈C(Z(p))

∑

Ci∈C



βp[δCi
, δx]

∏

Cj 6=Cj

βp[δCj
, 1]





∑

C∈C(Z
(p)
k+1)

∏

Ci∈C

βp[δCi
, 1]

K−1
X

(x ∈ Tu(p), p 6= 0)

=










∑

Z⊆ZWE
k+1

pΣWE
u

(Z)





︸ ︷︷ ︸

=1

vΞk+1|k
(x|Z1:k)

(x ∈ Tu(0))



∑

Z⊆ZWE
k+1

pΣWE
u

(Z)





︸ ︷︷ ︸

=1

βp[δ∅, δx]K
−1
X

+
∑

Z⊆ZWE
k+1

pΣWE
u

(Z)

∑

C∈C(Z(p))

∑

Ci∈C



βp[δCi
, δx]

∏

Cj 6=Cj

βp[δCj
, 1]





∑

C∈C(Z
(p)
k+1)

∏

Ci∈C

βp[δCi
, 1]

︸ ︷︷ ︸

=f(Z,p)
︸ ︷︷ ︸

=T

K−1
X

(x ∈ Tu(p), p 6= 0)Let Z be any subset of the ideal measurement set ZWE
k+1 . Then, aording to de�nition3.6:

Z ∩
(
ZWE

k+1 \ ZWE
u

)
6= ∅

⇒ Z ∩
(

ZWE
k+1 \

Pu⋃

q=1

ZWE
u,q

)

6= ∅

⇒ ∃z ∈ Z | ∃j ∈ [1 S], j ∈ Su(q), z ∈ Zj , (ρjk+1)
−1(z) ∈ Tu(r), q 6= r

⇒ ∃z ∈ Z | ∃j ∈ [1 S], pd,ju ((ρjk+1)
−1(z)) = 0
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Whih implies, aording to the onstrution of the PIMS (proposition 3.1):

⇒ pΣWE
u

(Z) = 0Therefore, we an write:
T =

∑

Z⊆⊔Pu
q=1Z

WE
u,q

pΣWE
u

(Z)f(Z, p)

=
∑

Z=A⊔B
A⊆ZWE

u,p

B⊆
⊔

q 6=p ZWE
u,q

pΣWE
u

(Z)f(Z, p)Sine C(Z(p)) is the set of ombinational terms based on measurements produed bysensors from partition element Su(p) only, f(Z, p) equals f(A, p) and thus:
T =

∑

Z=A⊔B
A⊆ZWE

u,p

B⊆
⊔

q 6=p Z
WE
u,q

pΣWE
u

(Z)f(A, p)That is, aording to the onstrution of the PIMS (proposition 3.1) with A =
⊔

j∈Su(p)
Aj

p and B =
⊔

q 6=p

⊔

j∈Su(q)
Bj

q :
T =

∑

Z=A⊔B
A⊆ZWE

u,p

B⊆⊔q 6=pZ
WE
u,q

f(A, p)

×
∏

j∈Su(p)




∏

z∈Aj

(
pd,ju ((ρjk+1)

−1(z))
) ∏

z∈ZWE,j
u,p \Aj

(
1− pd,ju ((ρjk+1)

−1(z))
)





︸ ︷︷ ︸

=p
ΣWE
u,p

(A)

×
∏

q 6=p




∏

j∈Su(q)




∏

z∈Bj

(
pd,ju ((ρjk+1)

−1(z))
) ∏

z∈ZWE,j
u,q \Bj

(
1− pd,ju ((ρjk+1)

−1(z))
)









︸ ︷︷ ︸

=p
ΣWE
u,q

(Bq)

=




∑

A⊆ZWE
u,p

pΣWE
u,p

(A)f(A, p)













∏

q 6=p




∑

Bq⊆ZWE
u,q

pΣWE
u,q

(Bq)





︸ ︷︷ ︸

=1









=
∑

A⊆ZWE
u,p

pΣWE
u,p

(A)f(A, p)
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Substituting the new expression of T in vΞu

k+1|k+1
(x) gives:

vΞu
k+1|k+1

(x|Z1:k)

=







vΞk+1|k
(x|Z1:k)

(x ∈ Tu(0))

βp[δ∅, δx]K
−1
X +

∑

Z⊆ZWE
u,p

pΣWE
u,p

(Z)

∑

C∈C(Z)

∑

Ci∈C



βp[δCi
, δx]

∏

Cj 6=Cj

βp[δCj
, 1]





∑

C∈C(Z)

∏

Ci∈C

βp[δCi
, 1]

K−1
X

(x ∈ Tu(p), p 6= 0)
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Appendix B: Importane sampling
This appendix fouses on the SMC implementation of a single-target trakingproblem in a Bayesian framework. It is mainly based on two papers [Gewe 89,Dou 00℄ on sequential Monte Carlo sampling tehniques.General desription of the traking problemAssume that there is a single target evolving through time in the state spae X , whosestate (position, veloity, et.) is of interest. The sequene of target states {xk, k ∈
N}, xk ∈ X , is assumed to be an hidden Markov proess with an initial distribution
t(x0) (or t(x0|x−1) for notational onveniene). The sequential observation of thetarget produes a sequene of measurements {zk, k ∈ N}, zk ∈ Z, assumed to beonditionally independent given the sequene of target states {xk, k ∈ N}. The targetand measurement proesses are ompletely desribed by the sequenes of probabilitydensities:

{t(xk|xk−1), k ∈ N} (46)
{g(zk|xk), k ∈ N} (47)The observation proess is enapsulated in a single pseudo-sensor produing a sin-gle measurement zk at eah time step. Likewise, any false alarm, detetion ormeasurement-to-data issue is enapsulated in the likelihood funtion g.Denote by x0:k (resp. z0:k) the sequene of target states (resp. measurements) up toa given time step k, also alled the the target (resp. measurement) trajetory up to

k. In its most general form, the �ltering problem aims at estimating quantities suhas:
• the posterior density p(x0:k|z0:k);
• expetations of integrable funtions I(fk) = ∫Xk fk(x0:k)p(x0:k|z0:k)dx0:k.given the olletion of measurement z0:k, usually under the assumptions that, at eahtime step k, one an: 239
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• sample from transition density t(.|xk−1);
• evaluate transition density t(xk|xk−1) a posteriori;
• sample from likelihood g(.|xk);
• evaluate likelihood g(zk|xk) a posteriori.The Bayes rule provides another expression of the quantities to be estimated:







p(x0:k|z0:k) ∝ p̃(x0:k) = p(z0:k|x0:k)p(x0:k)

I(fk) =

∫

Xk fk(x0:k)p̃(x0:k)dx0:k
∫

Xk p̃(x0:k)dx0:k

(48)The pratial implementation of an estimator based on (48) may arise several well-known di�ulties:
• one annot sample from the posterior density p(.|z0:k);
• the posterior density p(.|z0:k) annot be evaluated a posteriori;
• the integral in the expetation I(fk) annot be evaluated.Importane sampling (IS)The IS method is based on the pratial assumption that, even if one annot sam-ple diretly from the posterior density p(.|z0:k), one an still design an importanesampling density π(.|z0:k) whih is �lose enough� to the posterior density p(x0:k|z0:k)and yet easier to sample from. The priniple of the method is based on the followingtheorem [Gewe 89℄:Theorem 1. Under the following assumptions:1. p̃(.) is proportional to a proper density on X k;2. {x(i)

0:k}∞i=1 is a olletion of sequenes of k target states, i.i.d. aording to
π(.|z0:k);3. The support of π(.|z0:k) inludes X k;4. I(fk) exists and is �nite.then:

ÎN(fk) =

∑N
i=1 fk(x

(i)
0:k)p̃(x

(i)
0:k)/π(x

(i)
0:k|z0:k)

∑N
i=1 p̃(x

(i)
0:k)/π(x

(i)
0:k|z0:k)

D−→ I(fk) (49)
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The theoretial assumptions in theorem 1 are quite mild, thus one an expet toapproximate I(fk) properly provided that the partile number N is large enough. Inits algorithmi version, theorem 1 is often written with the more onvenient impor-tane weights notation:Algorithm 11 Importane Sampling (time k)input: Measurement sequene up to urrent time: z0:koutput: Weighted partiles: {x(i)

0:k, w
(i)
0:k}i∈[1 N ]Samplingfor i = 1 to N doSample target state sequene: x(i)

0:k ∼ π(.|z0:k)Compute weight: w̃(i)
0:k ∝

p(z0:k|x
(i)
0:k)p(x

(i)
0:k)

π(x
(i)
0:k|z0:k)end forNormalizationfor i = 1 to N doNormalize weight: w(i)

0:k ←
w̃

(i)
0:k

∑N
j=1 w̃

(j)
0:kend forEstimationApproximate posterior distribution: p(.|z0:k) ≃∑N

i=1w
(i)
0:kδx(i)

0:k
(.)Approximate expetation: I(fk) ≃∑N

i=1w
(i)
0:kfk(x

(i)
0:k)An important remark onerning algorithm 11 is that, besides the theoretial as-sumptions given in theorem 1, it requires the following pratial assumptions:

• one an sample from the importane density π(.|z0:k);
• one an evaluate the ratio p(x0:k|z0:k)

π(x0:k|z0:k)
a posteriori.In other words, the importane sampling bypasses the sampling from the posteriordensity p(.|z0:k) by onsidering an �nier� importane density.
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Sequential Importane Sampling (SIS)The IS method su�ers from a major drawbak that may hinder both its tratabilityand/or its omputational e�eny. By onstrution, the IS method (algorithm 11)is not reursive. At every time step k, newly drawn samples x

(i)
0:k belongs to the"enlarged" state spae X k and are independent from the previous samples x(i)

0:k−1 -onditionally on the sequene of measurements z0:k. Likewise, the new weights w(i)
0:kare independent from the previous weights w

(i)
0:k−1. That is, one must �start fromsrath� at eah iteration. Besides, the design of the importane sampling is quitehallenging without additional assumptions. Indeed, being able to sample from andevaluate a posteriori the one-step transition t(.|xk−1) and the likelihood g(.|xk) seemshardly su�ient to be able to:

• draw a target trajetory from π(.|z0:k);
• evaluate the probability of ourene of any k-step trajetory x0:k through
π(x0:k|z0:k), let alone p(x0:k|z0:k).Design of the iterative methodThe salient feature of the SIS method is to propose a reursive sampling and weight-ing of the target trajetories by onsidering importane densities suh that [Dou 00℄:

π(x0:k|z0:k) = q(x0|z0)
k∏

j=1

q(xk|x0:k−1, z0:k) (50)where q(.|x0:k−1, z0:k) is the importane funtion. Thus, the importane weight w(i)
0:kan be built reursively as follows:
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Clearly these assumptions are weaker that those required for the IS algorithm (seealgorithm 11) as only one-step densities are involved, all the more sine transition
t(.|x(i)

k−1) and likelihood g(.|x(i)
k ) densities are supposed to be easy to sample fromand evaluate a posteriori. Understandably, the design of the importane funtion

q(.|x(i)
k−1, z0:k) is ritial to the quality of the approximation.Note that the trajetory samples x(i)

0:k are no longer drawn "from srath" as in theIS algorithm, but rather updated from the previous trajetory sample with the samelabel (i.e. the tail of x(i)
0:k is preisely x

(i)
0:k−1). Therefore, to the author's knowledge,it is unlear if the seond assumption from the fundamental theorem (see theorem 1)still hold in this ase, and thus if the onvergene in distribution is still guaranteed.Choie of the importane funtionAn exessive variane in the distribution of the importane weights (known as "par-tile degeneray") is often onsidered unsatisfying beause it means that omputingresoures are likely to be wasted on the update of partiles with negligible weightand thus negligible e�et in the approximation (see algorithm 12). Therefore, theoptimal importane funtion is de�ned as the one that minimizes the variane amongthe importane weights [Dou 00℄:Theorem .1. The optimal importane funtion is de�ned as:
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= 0With the optimal importane funtion, the importane weights update in algorithm12 is simpli�ed:
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k−1) (53)The optimal solution is often impratial beause the optimal importane funtion(52) annot be sampled from and/or the quantity p(zk|x(i)

k−1) in the weight update(53) annot be evaluated a posteriori - reall from the general desription that theonly densities that an be easily handled are the one-step transition t(.|xk−1) andlikelihood g(.|xk). The simplest solution is to use the one-step transition as impor-tane funtion, in this ase the importane weights update in algorithm 12 is furthersimpli�ed:
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Using the one-step transition as importane funtion requires being able to:
• sample from transition density t(.|xk−1);
• sample from likelihood g(.|xk);
• evaluate likelihood g(zk|xk) a posteriori.The key aspet of this solution is that it does not need to evaluate the transitiondensity a posteriori but only to sample from it, whih makes this solution tratablein almost every situation. By onstrution, one must be able to sample from thetransition density to simulate the evolution of true targets; using the same methodfor the evolution of the partiles is usually possible provided that the omputationalost of the transition and/or the partition number is not too large. The evaluationa posteriori, however, is usually muh more di�ult. The is rather lear for thefree target model (algorithm 1), and even learer for the ground-based target model(algorithm 1 and �gure 4.2). The assumptions on the likelihood funtion are not sorestritive in the single-sensor ase. Indeed, the noise on the measurement proessis typially Gaussian with zero mean and known variane, thus it is quite easy tosample from g(.|xk) and to evaluate g(zk|xk) a posteriori (reall the losed-formexpression of the likelihood Lj,.

k (.) in setion 4.1.2).
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Filtrage PHD multiapteur ave appliation à la gestion de apteurRésuméLe �ltrage multiobjet est une tehnique de résolution du problème de détetion et/ousuivi dans un ontexte multiible. Cette thèse s'intéresse au �ltre PHD (ProbabilityHypothesis Density), une élèbre approximation du �ltre RFS (Random Finite Set)adaptée au as où les observations sont le fruit d'un seul apteur. La première partiepropose une onstrution rigoureuse du �ltre PHD multiapteur exat et son ex-pression simpli�ée, sans approximation, grâe à un partitionnement joint de l'espaed'état des ibles et des apteurs. Ave ette nouvelle méthode, la solution exatedu �ltre PHD multiapteur peut être propagée dans des sénarios de surveillanesimples. La deuxième partie aborde le problème de gestion des apteurs dans leadre du PHD. A haque itération, le BET (Balaned Explorer and Traker) on-struit une prédition du PHD multiapteur a posteriori grâe au PIMS (PreditedIdeal Measurement Set) et dé�nit un ontr�le multiapteur en respetant quelquesritères opérationnels simples adaptés aux missions de surveillane.Mots-lés : �ltrage multiobjet, PHD multiapteur, gestion de apteursMulti-sensor PHD �ltering with appliation to sensor managementAbstratThe aim of multi-objet �ltering is to address the multiple target detetion and/ortraking problem. This thesis fouses on the Probability Hypothesis Density (PHD)�lter, a well-known tratable approximation of the Random Finite Set (RFS) �lterwhen the observation proess is realized by a single sensor. The �rst part proposesthe rigorous onstrution of the exat multi-sensor PHD �lter and its simpli�ed ex-pression, without approximation, through a joint partitioning of the target statespae and the sensors. With this new method, the exat multi-sensor PHD anbe propagated in simple surveillane senarii. The seond part deals with the sen-sor management problem in the PHD framework. At eah iteration, the BalanedExplorer and Traker (BET) builds a predition of the posterior multi-sensor PHDthanks to the Predited Ideal Measurement Set (PIMS) and produes a multi-sensorontrol aording to a few simple operational priniples adapted to surveillane a-tivities.Keywords: multi-objet �ltering, multi-sensor PHD, sensor management


