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Filtrage PHD multi
apteur ave
 appli
ation à la gestion de 
apteurRésuméLe �ltrage multiobjet est une te
hnique de résolution du problème de déte
tion et/ousuivi dans un 
ontexte multi
ible. Cette thèse s'intéresse au �ltre PHD (ProbabilityHypothesis Density), une 
élèbre approximation du �ltre RFS (Random Finite Set)adaptée au 
as où les observations sont le fruit d'un seul 
apteur. La première partiepropose une 
onstru
tion rigoureuse du �ltre PHD multi
apteur exa
t et son ex-pression simpli�ée, sans approximation, grâ
e à un partitionnement joint de l'espa
ed'état des 
ibles et des 
apteurs. Ave
 
ette nouvelle méthode, la solution exa
tedu �ltre PHD multi
apteur peut être propagée dans des s
énarios de surveillan
esimples. La deuxième partie aborde le problème de gestion des 
apteurs dans le
adre du PHD. A 
haque itération, le BET (Balan
ed Explorer and Tra
ker) 
on-struit une prédi
tion du PHD multi
apteur a posteriori grâ
e au PIMS (Predi
tedIdeal Measurement Set) et dé�nit un 
ontr�le multi
apteur en respe
tant quelques
ritères opérationnels simples adaptés aux missions de surveillan
e.Mots-
lés : �ltrage multiobjet, PHD multi
apteur, gestion de 
apteursMulti-sensor PHD �ltering with appli
ation to sensor managementAbstra
tThe aim of multi-obje
t �ltering is to address the multiple target dete
tion and/ortra
king problem. This thesis fo
uses on the Probability Hypothesis Density (PHD)�lter, a well-known tra
table approximation of the Random Finite Set (RFS) �lterwhen the observation pro
ess is realized by a single sensor. The �rst part proposesthe rigorous 
onstru
tion of the exa
t multi-sensor PHD �lter and its simpli�ed ex-pression, without approximation, through a joint partitioning of the target statespa
e and the sensors. With this new method, the exa
t multi-sensor PHD 
anbe propagated in simple surveillan
e s
enarii. The se
ond part deals with the sen-sor management problem in the PHD framework. At ea
h iteration, the Balan
edExplorer and Tra
ker (BET) builds a predi
tion of the posterior multi-sensor PHDthanks to the Predi
ted Ideal Measurement Set (PIMS) and produ
es a multi-sensor
ontrol a

ording to a few simple operational prin
iples adapted to surveillan
e a
-tivities.Keywords: multi-obje
t �ltering, multi-sensor PHD, sensor management
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Résumé
Les quatres se
tions de 
e résumé suivent les quatres 
hapitres de la thèse. Lapremière se
tion reprend les grandes lignes de la théorie des ensembles aléa-toires �nis et dé
rit les équations du �ltre PHD mono
apteur. La deuxième se
tionprésente une 
ontribution 
lé de la thèse, la 
onstru
tion du �ltre PHD multi
ap-teur et la simpli�
ation de son é
riture sans approximation grâ
e à une méthodede partitionnement joint de l'espa
e d'état des 
ibles et de l'ensemble des 
apteurs.La troisième se
tion résume la 
onstru
tion d'un gestionnaire de 
apteurs dans le
adre du PHD, le BET (Balan
ed Explorer and Tra
ker). En�n, la quatrième se
tionexpose brièvement l'implémentation parti
ulaire du �ltre PHD multi
apteur et du
ontr�leur BET, ainsi que les prin
ipaux résulats de simulation.La théorie des ensembles aléatoires �nisDans le 
ontexte de la déte
tion et du suivi de 
ibles, la théorie des ensembles aléa-toires �nis (Random Finite Sets) permet une représentation originale de la situationopérationelle ; autrement dit, du nombre et de l'état des di�érentes 
ibles évoluantdans la zone de surveillan
e. Contrairement aux te
hniques 
lassiques qui assignentune piste pour 
haque 
ible déte
tée et la maintiennent à jour ave
 les mesures su
-
essives, la théorie RFS dé
rit l'ensemble des 
ibles à un instant donné 
omme laréalisation d'un ensemble aléatoire �ni, 
'est à dire une unique variable aléatoiredont le nombre d'éléments - le nombre de 
ibles - et la valeur des éléments - l'étatdes 
ibles - sont aléatoires. Plus pré
isément, on dé�nit un RFS 
omme une fon
tionmesurable [Vo 08℄:

Ξ : Ω→ F(X )
ω 7→ X = Ξ(ω) (1)où (Ω, σ(Ω),P) est un espa
e probabilisé équipé de la topologie de Matheron, et

F(X ) l'espa
e des sous-ensembles �nis de l'espa
e d'état mono
ible X .7
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Le �ltrage RFS 
onsiste à propager au 
ours du temps des RFSs dé
rivant la 
on�g-uration multi
ible (nombre de 
ibles et état de 
es dernières) en fon
tion de l'arrivéedes nouvelles mesures. Au prix d'hypothèses relativement faibles sur la modélisationdes 
ibles et des 
apteurs, le �ltre RFS permet en théorie :
• de rassembler dans un seul objet aléatoire les mé
hanismes de naissan
e, évo-lution et disparition des 
ibles ;
• à 
haque itération, de faire évoluer 
et objet aléatoire selon le s
héma bayésien
lassique �prédi
tion → mise à jour�.Quatre RFSs interviennent à 
haque itération dans les équations bayésiennes :1. Le RFS (multi
ible) de transition ΞT

k,k+1(X), ave
 loi de probabilité pΞT
k,k+1

(.|X),dé
rit la 
on�guration multi
ible à l'instant k+1 
onditionnellement à un ensemblemulti
ible X à l'instant k.2. Le RFS (multi
ible) a priori Ξk+1|k, ave
 loi de probabilité pΞk+1|k
(.|Z1:k),dé
rit la 
on�guration multi
ible à l'instant k + 1 
onditionnellement aux mesuresproduites jusqu'à l'instant k.3. Le RFS (multimesure) d'observation Σk+1(X), ave
 loi de probabilité pΣk+1

(.|X),dé
rit la 
on�guration multimesure à l'instant k+1 
onditionnellement à un ensem-ble multi
ible X à l'instant k + 1.4. Le RFS (multi
ible) a posteriori Ξk+1|k+1, ave
 loi de probabilité pΞk+1|k+1
(.|Z1:k+1),dé
rit la 
on�guration multi
ible à l'instant k + 1 
onditionnellement aux mesuresproduites jusqu'à l'instant k + 1.Ces quatres RFSs sont liés par les équations du �ltre RFS [Mahl 02℄:

pΞk+1|k
(.|Z1:k) =

∫

F(X )

pΞT
k,k+1

(.|X)pΞk|k
(X|Z1:k)µ(dX) (2)

pΞk+1|k+1
(.|Z1:k+1) =

pΣk+1
(Zk+1|.)pΞk+1|k

(.|Z1:k)
∫

F(X )
pΣk+1

(Zk+1|X)pΞk+1|k
(X|Z1:k)µ(dX)

(3)Le prin
ipal avantage de 
ette méthode devant les te
hniques usuelles est qu'elle nené
essite ni heuristiques pour la 
réation et la destru
tion de pistes ni asso
iationexpli
ite entre mesures et pistes. En d'autres termes, il su�t d'implémenter leséquations bayésiennes de prédi
tion (2) et mise à jour (3) pour propager les RFSsdé
rivant la 
on�guration multi
ible.
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On peut remarquer que la stru
ture du �ltre RFS est similaire à 
elle du �ltre mono
i-ble 
lassique, les fon
tions monoobjet (fon
tion de transition, de vraisemblan
e, et
.)étant rempla
ées par leur �équivalent� multiobjet. Mais, si les fon
tions monoobjetpeuvent être 
onstruites expli
itement au prix d'hypothèses �raisonnables� sur le
omportement des 
ibles et le fon
tionnement interne des 
apteurs, leur équivalentmultiobjet sont en règle générale inexploitables. Par exemple, étant donné que leRFS de transition ΞT
k,k+1 
omprend le mé
hanisme de naissan
e, de disparition etd'évolution des 
ibles, la quantité pΞT

k,k+1
(X|Y ) doit être déterminée pour des ensem-bles X et Y quel
onques, et don
 en parti
ulier de taille quel
onque. Indépendam-ment de la 
omplexité des lois de probabilités, les intégrales sur F(X ), évidemmentplus 
omplexes à traiter que les intégrales sur X présentes dans les équations bayési-ennes mono
ible, sont imprati
ables sauf 
as bien parti
uliers - par exemple, si lenombre de 
ibles est �xe.Le �ltre PHD est une approximation du �ltre RFS qui restreint la propagationd'information sur le RFS a priori Ξk+1|k (resp. a posteriori Ξk+1|k+1) à son premiermoment ou PHD vΞk+1|k

(.|Z1:k) (resp. vΞk+1|k+1
(.|Z1:k+1)) plut�t qu'à sa loi de prob-abilité pΞk+1|k

(.|Z1:k) (resp. pΞk+1|k+1
(.|Z1:k+1)). Les équations du �ltre PHD, dans le
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as mono
apteur uniquement, sont les suivantes [Mahl 03a℄ :
vΞk+1|k

(.|Z1:k)

=

∫

X

(
psk,k+1(x)f

t
k,k+1(.|x) + λs

k,k+1(x)sk,k+1(.|x)
)
vΞk|k

(x|Z1:k)dx+ λb
k,k+1bk,k+1(.)(4)

vΞk+1|k+1
(.|Z1:k+1)

=



1− pdk+1(.) +
∑

z∈Zk+1

pdk+1(.)L
z
k+1(.)

λc
k+1ck+1(z) + vΞk+1|k

[pdk+1L
z
k+1]



 vΞk+1|k
(.|Z1:k) (5)ave
 vΞk+1|k

[pdk+1L
z
k+1]

def
=
∫

X
pdk+1(x)L

z
k+1(x)vΞk+1|k

(x|Z1:k)dx. Comparées à leuréquivalent RFS (2), (3), les équations (4), (5) sont plus simples à manipuler 
ar lesfon
tions multiobjet ont disparu au pro�t de fon
tions monoobjet plus 
lassiques.Par exemple, la loi de probabilité du RFS de transition pΞT
k,k+1

est rempla
ée parune fon
tion de transition f t
k,k+1, une probabilité de survie psk,k+1, une intensité despwaning λs

k,k+1sk,k+1 et de naissan
e spontanée λb
k,k+1bk,k+1, toutes mono
ible. De
ette façon, le �ltre PHD peut être implémenté ave
 des méthodes d'approximationsimilaires à 
elles employées dans le �ltre mono
ible (�ltrage parti
ulaire notam-ment, voir plus loin).Le passage du �ltre RFS à l'approximation que 
onstitue le �ltre PHD né
essiteplusieurs hypothèses ; 
ertaines sont usuelles dans les problèmes de déte
tion - in-dépendan
e des 
ibles, indépendan
e des mesures, et
. - d'autres plus spé
i�ques au
adre du RFS. En parti
ulier, l'hypothèse de Poisson suppose que les RFSs multi
ible

Ξk+1|k et Ξk+1|k+1 appartiennent à une 
lasse restreinte de RFS 
omplètement dé
ritspar leur PHD, les Poisson RFSs. C'est à dire, 
onnaissant le PHD vΞk+1|k
(.|Z1:k), leRFS Ξk+1|k est entièrement dé
rit par :

• la loi dé
rivant le nombre de 
ibles, Poisson de paramètre vΞk+1|k
[1] ;

• la loi dé
rivant la distribution des 
ibles dans X , 
haque 
ible étant indépen-damment et identiquement distribuée selon la densité vΞk+1|k
(.|Z1:k)

vΞk+1|k
[1]

.Dans la grande majorité des 
as d'utilisation d'un �ltre multi
ible, la donnée de sortiedu �ltre doit être un ensemble de 
ibles qu'il faut don
 extraire du PHD. Grâ
e auxpropriétés 
i-dessus, l'estimation du nombre de 
ible est donnée par l'intégrale duPHD sur l'ensemble de la zone - vΞk+1|k
[1] - et les 
ibles peuvent être pla
ées autourdes extrema lo
aux 
omme illustré 
i-après :
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A noter que d'autres pro
essus d'extra
tion sont possibles et 
ertains sont dé
ritsplus en détail dans la thèse. De façon générale, l'extra
tion est indépendante et n'estpas né
essaire à la propagation du PHD ; elle ne fait don
 pas partie intégrante du�ltre PHD.Filtrage PHD multi
apteurL'extension du �ltre PHD au 
as multi
apteur est une 
ontribution importante de
ette thèse. En reprenant le prin
ipe de la 
onstru
tion du �ltre mono
apteur eten supposant que le pro
essus d'observation de 
haque 
apteur est indépendant
onditionnellement à la 
on�guration des 
ibles, on peut obtenir l'expression exa
tede l'équation de mise à jour :
vΞk+1|k+1

(x|Z1:k+1) = β[δ∅, δx]K
−1
X +

∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X(6)où :

• Zk+1 =
⊔S

j=1Z
j
k+1 est l'ensemble de mesures des S 
apteurs;

• C(Zk+1) est l'ensemble des termes 
ombinatoires 
onstruit sur l'ensemble desmesures.L'asso
iation impli
ite entre mesures et 
ibles est illustrée par la présen
e des termes
ombinatoires, représentant l'ensemble des regroupements possibles entre mesuresde di�érents 
apteurs mais originaires de la même 
ible. Les 
ross-terms β sont desfon
tionnelles, 
ha
une pondérant l'asso
iation entre un regroupement de mesures etun point de l'espa
e d'état 
onditionnellement au PHD a priori vΞk+1|k
(.|Z1:k). Parexemple :
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• β[δ∅, δx] : une 
ible existe en x, et n'est pas déte
tée ;
• β[δ{z11 ,z32}, 1] : les mesures z11 et z32 proviennent de la même 
ible, dont l'état estin
onnu ;
• β[δ{z11 ,z32}, δx] : une 
ible existe en x, est à l'origine de la mesure z11 du 
apteur
1, à l'origine de la mesure z32 du 
apteur 3, n'est pas déte
tée par les autres
apteurs.A noter que le PHD a priori n'apparait pas expli
itement dans l'équation de mise àjour multi
apteur mais est utilisé dans la 
onstru
tion des 
ross-terms. L'équationde mise à jour multi
apteur est intéressante sur le plan théorique 
ar elle donnel'expression exa
te du PHD a posteriori ; en substituant (6) à (5), on 
onstruit un�ltre propageant le PHD multi
apteur sans approximation, une référen
e pré
ieusepour 
omparer et étudier les approximations multi
apteur usuelles (voir plus loin).Sur le plan pratique, le 
oût algorithmique de la 
onstru
tion de l'ensemble destermes 
ombinatoires explose ave
 l'augmentation du nombre de mesures et/ou de
apteurs, et le �ltre PHD multi
apteur exa
t n'est pas dire
tement exploitable dansun algorithme de poursuite en temps réel. Toutefois, l'expression de la mise à jourpeut être simpli�ée, sans approximation, en 
onsidérant un partitionnement jointde l'espa
e d'état et de l'ensemble des 
apteurs reposant sur la 
on�guration des
hamps de vue des 
apteurs.

Dans la �gure 
i-dessus, par exemple, l'équation de mise à jour peut-être utilisée troisfois sur des espa
es réduits - la zone bleue ave
 les mesures des 
apteurs 1 et 3, lazone verte ave
 les mesures du 
apteur 2, la zone rouge sans mesure - ave
 à 
haquefois un nombre de termes 
ombinatoires moins important ; le 
oût algorithmiqueglobal de la mise à jour est ainsi sensiblement réduit. Grâ
e à la méthode parpartitionnement, des s
énarios de surveillan
e modestes ave
 un nombre de 
apteurset un 
hevau
hement des 
hamps de vue limités peuvent être traités en temps réelave
 un �ltre PHD multi
apteur exa
t.
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Gestion de 
apteurA 
haque itération k, la gestion de 
apteurs se déroule en trois phases :1. prédi
tion : en fon
tion du PHD a priori vΞk+1|k

, 
onstruire le PHD prédi
tif
vuΞk+1|k

pour 
haque 
ontr�le possible u ;2. séle
tion : en fon
tion des PHDs prédi
tifs vuΞk+1|k
, déterminer le meilleur 
on-tr�le selon une fon
tion d'obje
tif ;3. 
ontr�le : soumettre les 
apteurs au 
ontr�le sele
tionné puis ré
upérer lesmesures 
ourantes Zk+1.Ce s
héma 
lassique de prédi
tion sur une itération se retrouve dans le 
ontr�leurPENT (Posterior Expe
ted Number of Targets), fruit des premiers travaux sur lagestion de 
apteur dans le 
adre du PHD réalisés par Mahler [Mahl 04℄.Une 
ontribution importante de 
ette thèse est l'extension de la 
onstru
tion duPHD prédi
tif que l'on retrouve dans le PENT au 
as multi
apteur. Le prin
ipe
onsiste à extraire du PHD a priori un ensemble de 
ibles (voir �gure plus haut pourune illustration), puis à 
onstruire un ensemble de mesures idéales à partir de 
es
ibles (en omettant les bruits sur l'observation et les fausses alarmes). En�n, le PHDa priori est mis à jour ave
 les mesures idéales en entrée mais pondérées par la prob-abilité de déte
tion de la 
ible asso
iée. En d'autres termes, le PHD prédi
if vuΞk+1|kest 
onstruit 
omme la mise à jour du PHD a priori vΞk+1|k

suivant un pro
essusd'observation simpli�é. Dans le 
as mono
apteur, Mahler obtient une équation deprédi
tion très pro
he de l'équation de mise à jour mono
apteur, et par 
onséquentaisément implémentable en temps réel. La 
onstru
tion du 
as multi
apteur suit lamême logique que l'extension de l'équation de mise à jour (6), et peut être simpli�éepar une méthode de partitionnement similaire. Pour les mêmes raisons que 
ellesévoquées en se
tion pré
édente, l'utilisation de l'équation de prédi
tion exa
te n'estenvisageable que dans des s
énarios modestes.Con
eptuellement, la fon
tion d'obje
tif proposée par Mahler pour le 
ontr�leurPENT [Mahl 04℄ est très simple : le 
ontr�le séle
tionné est 
elui maximisant laprédi
tion sur le nombre de 
ibles, 
'est à dire en
ore, par 
onstru
tion du PHD,l'intégrale du PHD prédi
tif vuΞk+1|k
[1]. Le prin
ipe de 
e 
ontr�leur est de favoriserl'observation des zones de l'espa
e d'état où le poids - 
'est à dire l'intégrale du PHD- est elevé, a�n de déte
ter et suivre un maximum de 
ibles. A travers plusieurs ex-emples, il est montré dans la thèse que le 
omportement du PENT n'est pas toujoursadapté et qu'il prend parfois de �mauvaises� dé
isions. Il y a deux raisons prin
ipalesà 
ela. Premièrement, la fon
tion d'obje
tif ignore par 
onstru
tion l'information
ontenue dans le PHD 
on
ernant la lo
alisation des 
ibles, puisqu'elle se limite à
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déterminer son intégrale sur l'ensemble de l'espa
e d'état. Elle ne di�éren
ie don
pas deux PHDs prédi
ifs ayant la même intégrale, alors que les 
ibles potentiellementextra
tibles de 
es deux PHDs peuvent être radi
alement di�érentes. Deuxièmement,le PENT pénalise les 
ontr�les 
onduisant à une rédu
tion du poids, 
e qui n'est pastoujours justi�é - par exemple, si le nombre de 
ible est surestimé dans une zoneet qu'une observation est su
eptible d'améliorer l'estimation en réduisant le PHD.Par 
onstru
tion, le PHD n'est pas modi�é par l'équation de mise à jour dans leszones qui ne sont 
ouvertes par au
un 
apteur, le PENT a don
 tendan
e à éloignerles 
apteurs des 
ibles et ainsi 
onserver un maximum de poids dans l'espa
e d'état,plut�t que de �risquer� que le poids ne diminue suite à une observation.Le 
ontr�leur BET (Balan
ed Explorer and Tra
ker) propose une autre appro
heà la gestion de 
apteurs, ave
 une vision plus �opérationnelle� reposant sur la notionde piste. Une piste 
orrespond à un 
ertain poids extrait dans une zone limitée del'espa
e d'état et peut être vue 
omme un indi
e de la présen
e d'une 
ible. Ondistingue trois niveaux de pistes, un niveau plus élevé indiquant une 
on
entrationde poids plus importante et don
 une plus grande 
ertitude sur la présen
e d'une
ible. Une piste de niveau moyen, par exemple, 
orrespond à un poids supérieur à
WM extrait dans une zone de rayon inférieur à ∆M :

Le prin
ipe général du BET est de 
on
entrer l'a
tion des 
apteurs sur les pistesd'intérêt, 
'est à dire 
elles de niveaux faibles, jusqu'à leur disparition - l'originede la piste est une fausse alarme et au
une nouvelle mesure n'est venue 
on�rmerl'indi
e de présen
e d'une 
ible - ou jusqu'à leur �promotion� vers des niveaux plusélevés - la piste est su�samment résolue et n'est plus prioriaire. Le seuil délimitantles pistes d'intérêt est �xé di�éremment pour les zones d'exploration et les zones depoursuite. Dans les zones d'exploration, où l'obje
tif est de déte
ter un maximum de
ibles, seules les 
ibles de niveau bas sont d'intérêt. Dans les zones de poursuite, oùla résolution des 
ibles est favorisée, les 
ibles de niveau bas et moyen sont d'intérêt.A 
e titre, les 
ontr�les sont évalués selon leur 
apa
ité à promouvoir des pistesd'intérêt extraites du PHD a priori vers des pistes sans intérêt extraites du PHD
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prédi
tif. Bien entendu, le paramétrage des seuils entre les trois niveaux de pistesest un point 
ritique de la 
on
eption du BET.Simulation et résultatsQue 
e soit dans le 
as mono
apteur ou multi
apteur, les intégrales dans les équationsdu �ltre PHD empê
hent leur exploitation dire
te. Deux te
hniques d'implémentationsemblent être populaires dans le 
adre du PHD, les mixtures de Gaussiennes (Gaus-sian Mixture PHD ou GMPHD) et les méthodes parti
ulaires (Sequential MonteCarlo PHD ou SMCPHD). Une 
omparaison des deux méthodes [Pa
e 11℄ semblemontrer que le GMPHD est généralement plus performant, mais son domaine de va-lidité est restreint par des hypothèses plus fortes. Notamment, le GMPHD né
essiteune probabilité de déte
tion uniforme sur l'ensemble de l'espa
e d'état, 
e qui est in-
ompatible ave
 le problème multi
apteur. Le �ltre PHD multi
apteur exa
t a don
été implémenté par une méthode parti
ulaire en suivant la 
onstru
tion proposéepar Vo et al. [Vo 05℄. Di�érents modèles de 
apteurs et de 
ibles ont égalementété 
onçus et adaptés à l'environnement parti
ulaire a�n de pouvoir générer diverss
énarios de surveillan
e.La première simulation 
ompare le �ltre PHD multi
apteur exa
t ave
 et sans laméthode de partitionnement. Le prin
ipe est simple : un même s
enario est traité enparallèle ave
 les �ltres résultant des deux méthodes, et une distan
e de Kullba
k-Leibler [Aoki 11℄ évalue la distan
e entre les deux PHDs obtenus. Les résultatsmontrent que l'ajout du partitionnement permet de réduire sensiblement le tempsd'exé
ution de la phase de mise à jour, notamment dans les situations 
ritiques -quand les 
ibles évoluent dans des zones où le re
ouvrement des 
hamps de vue estfort - où le temps est réduit d'un fa
teur 100, parfois davantage. Le PHD propagépar les deux méthodes peut être 
onsidéré 
omme identique - l'é
art entre les deuxrestant de l'ordre de 10−16 tout le long de la simulation - 
e qui 
on�rme que lepartitionnement simpli�e l'exé
ution de la phase de mise à jour sans pour autantintroduire d'erreur.La se
onde simulation 
ompare le �ltre PHD multi
apteur exa
t ave
 le �ltre ICA(Iterated-Corre
tor Approximation) une 
élèbre approximationmulti
apteur dévelop-pée par par Mahler [Mahl 03a, Mahl 10a℄. Le prin
ipe du ICA est de traiter lesdi�érents 
apteurs séquentiellement plut�t que simultanément ; 
'est à dire, utiliser
S fois de suite la mise à jour mono
apteur (5) plut�t qu'une fois la mise à jourmulti
apteur (6). La faiblesse de 
ette méthode, bien 
onnue, est la dépendan
e dela solution à l'ordre dans lequel les 
apteurs sont traités, même si il a été a�rmé[Mahl 10a℄ qu'elle peut être 
onsidérée 
omme négligeable. Un même s
énario esttesté ave
 deux 
on�gurations de 
apteurs, une 
omportant 10 
apteurs et l'autre
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20. Pour 
haque 
on�guration, le meilleur ordre et le pire ordre de traitement parle ICA ont été estimés, le 
ritère étant la distan
e OSPA moyenne [Vo 08℄ entre les
ibles extraites du PHD et les vraies 
ibles. On 
onstate d'une part que le �ltre exa
test de meilleure qualité que le ICA - quel que soit l'ordre - et que la performan
edu ICA se dégrade sensiblement ave
 le nombre de 
apteur. D'autre part, si l'é
artentre le meilleur ICA et le pire ICA est relativement faible pour la 
on�guration à
10 
apteurs, il augmente fortement ave
 le nombre de 
apteur. Ces résultats sontparti
ulièrement intéressants 
ar ils prouvent que, dans 
ertains s
énarios du moins,la dégradation de performan
e du ICA par rapport au PHD de référen
e est notableet, plus important en
ore, que l'ordre de traitement des 
apteurs de l'ICA est unfa
teur déterminant pour la qualité du �ltrage.La dernière simulation se 
on
entre sur le problème de la gestion de 
apteurs. Uns
énario plus �opérationnel� est généré, dans lequel des routes et des obsta
les in-�uen
ent le dépla
ement des 
ibles, et la 
ouverture des 
apteurs est su�sammentla
unaire pour qu'une gestion des 
apteurs soit né
essaire. L'estimation de la 
on-�guration des 
ibles est propagée par un �ltre PHD exa
t ave
 simpli�
ation parpartitionnement, tandis que la gestion des 
apteurs est réalisée en parallèle par un
ontr�leur PENT et un 
ontr�leur BET. La performan
e des deux 
ontr�leurs estévaluée en 
omparant la distan
e OSPA entre les 
ibles extraites des PHDs propagéset les vraies 
ibles. Le temps d'exé
ution de la phase de gestion est également 
al
ulépour les deux 
ontr�leurs à 
haque itération. Les résultats montrent 
lairement que,sur la qualité de l'approximation 
omme sur le temps d'exé
ution, le 
ontr�leur BETest nettement supérieur. Comme expliqué dans la se
tion pré
édente, le PENT a ten-dan
e à éloigner les 
apteurs des zones où le poids est important. Ce phénomène estparti
ulièrement néfaste dans le 
adre de l'implémentation parti
ulaire, par
e qu'un
ertain nombre de parti
ules ne sont (presque) jamais observées et se regroupent ennuages se déplaçant dans les zones qui ne peuvent être observées par au
un 
apteur.En 
onséquen
e, le poids augmente 
onsidérablement et l'estimation du nombre de
ible est largement surévaluée. D'autre part, le BET épargne la phase de prédi
tionpour 
ertains 
ontr�les potentiels (plus de détails sont donnés dans la thèse), 
e quiexplique l'amélioration notable du temps d'éxe
ution. Une autre 
omparaison ave
un 
ontr�le purement aléatoire semble toutefois indiquer que les avantages du BETsont limités. Il est très probable que l'implémentation parti
ulaire proposée soit enpartie inadéquate, notamment par
e que les parti
ules non 
ouvertes ont tendan
e àdisparaître rapidement à 
ause du réé
hantillonnage. En 
onséquen
e, les pistes quine sont plus d'intérêt par
e que trop résolues sont éliminées dès qu'elles ne sont plus
ouvertes par les 
apteurs, alors que leur niveau devraient baisser jusqu'à redeveniréventuellement des pistes d'intérêt et être de nouveau l'objet de nouvelles observa-tions. De façon plus générale, le BET semble in
apable d'anti
iper la disparitionde poids lors du réé
hantillonnage, 
e phénomène étant propre à l'implémentation
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parti
ulaire mais n'ayant pas de mé
anisme équivalent dans le 
adre théorique duPHD.OuverturesDe nombreuses pistes sont envisageables pour l'approfondissement de 
ette étude.Sur le plan théorique, le �ltre PHD multi
apteur exa
t sou�re d'un manque de trans-paren
e sur son 
oût algorithmique. Puisque le temps d'exé
ution de la phase demise à jour explose ave
 le nombre de mesures et/ou de 
apteurs, un 
al
ul du nom-bre de termes 
ombinatoires dans la phase de mise à jour (6) permettrait d'évaluera priori le temps d'exé
ution né
essaire pour une mise à jour exa
te. Cela pourrait
onduire à un �ltre hybride qui 
hoisirait, pour 
haque élément de partition, si lamise à jour exa
te est envisageable 
ompte tenu du nombre de 
apteurs et de mesures
on
ernés, ou si une approximation de type ICA s'impose.Sur le plan pratique, une amélioration de l'implémentation parti
ulaire semble né
es-saire, notamment pour un bonne exploitation du BET. Une première étape seraitd'empê
her la disparition trop rapide des pistes non 
ouvertes, peut être en 
onsid-érant un réé
hantillonnage non systématique [Dou
 05℄. Indépendamment de 
ela,le mé
hanisme de 
réation de parti
ules proposé dans 
ette thèse n'est pas satis-faisant sur le plan théorique et la re
her
he d'une fon
tion d'importan
e adaptéeau problème est une piste à envisager [Rist 10a℄. En�n, une implémentation duPHD multi
apteur ave
 des te
hniques dérivées du GMPHD relaxant l'hypothèsed'uniformité de la proabilité de déte
tion reste à explorer.En prenant davantage de re
ul, d'autres pistes relatives à l'extension du �ltre PHDmulti
apteur apparaissent. En premier lieu, on pourrait envisager l'extension du�ltre CPHD (Cardinalized PHD) mono
apteur [Mahl 07a℄ - lui-même une extensiondu PHD mono
apteur propageant la loi de 
ardinalité du RFS multi
ible en plus duPHD - au 
as multi
apteur en s'inspirant des travaux de 
ette thèse. Un autre sujetd'étude prometteur est la 
onstru
tion d'un �ltre propageant le se
ond moment desRFSs multi
ible, par
e que 
ela permettrait de dé
rire des systèmes plus 
omplexes
omprenant une intera
tion entre des paires de 
ibles là où les hypothèses du �ltrePHD imposent une stri
te indépendan
e entre 
ibles.L'hypothèse fondamentale sur laquelle repose la validité du PHD 
omme approx-imation du RFS, à savoir l'assimilation des RFSs multi
ible à des Poisson RFSs, estégalement un domaine d'étude intéressant. Aux yeux de l'auteur, les 
onséquen
esde 
ette hypothèse sur la délimitation de la 
lasse de problèmes pour lesquels le�ltrage PHD (ou une méthode dérivée) est valide sont en grande partie in
onnues etmériteraient d'être identi�ées.
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tion of measurements produ
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Introdu
tion
Curiosity killed the 
at...... satisfa
tion brought it ba
k.ProverbMotivationCuriosity may kill the 
at indeed, and yet venturing into the unknown - or at leastthe un
ertain - is all the more tempting. Consider Tom, waiting near a road
orner for the �rst 
y
lists 
ompeting in his favourite ra
e, his hands on his brandnew bino
ulars. Here 
omes the �rst peloton: Tom fo
uses his wat
h on them and
ounts �ve 
y
lists. He is partial to Roy, but sadly he is not in this �rst group - orso it seems. The franti
 
ries of other attendants must mean that another peloton isarriving. Tom is eager to swit
h his wat
h to this se
ond group, and yet he would liketo spend some more time on the �ve man leading peloton to be sure that they are in-deed �ve - maybe Roy was hidden among them? Tom qui
kly de
ides to fo
us on these
ond peloton. This one is more loose and is bound to break, a few se
onds are longenough to 
he
k that Roy is not there. Now Tom would like to look ba
k at the �rstpeloton: where should he fo
us his bino
ulars, that is, how mu
h farther have theyridden sin
e he stopped wat
hing them? Swit
hing his fo
us ba
k and forth betweendi�erent pelotons seems to be quite 
hallenging, fortunately for Tom the 
y
lists arebound to ride on the road. What if the 
y
lists were allowed to wander away fromthe road? Then Tom 
ould get help from a friend of his with his own bino
ulars, buthow 
ould they 
oordinate their wat
h in order to improve their 
han
es to �nd Roy?The situation above, albeit simple, arises the main 
hallenges in the multi-obje
tstate estimation problem. An observation and identi�
ation system (Tom) is inter-ested in the states (position in the ra
e, identity of the 
y
list) of some obje
ts (the
y
lists) evolving in a bounded region (the 
orner of the road next to Tom). The35
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state of ea
h obje
t is un
ertain - otherwise the ra
e would la
k any 
hallenge! -but the system 
an rely on measurements (a glan
e at the road through the bino
-ulars) produ
ed by sensors (the bino
ulars). These measurements are usually noisy(Tom 
annot see very well be
ause of the sun re�e
tion), yet sequential observationsallows the system to build an estimation of the true situation (the real position ofthe 
y
lists on the 
orner of the road), modi�ed dynami
ally following ea
h new ob-servation. The system 
an eventually make de
isions to 
ontrol the sensor's a
tion(Tom may 
hoose to fo
us his googles on another point of the road) a

ording to anobje
tive (spotting Roy among all the 
y
lists). The system may rely on measure-ments from several sensors (Tom's friend with his own bino
ulars), in this 
ase themeasurements must be shared (his friend thoroughly des
ribes what he sees to Tom)so that the system 
an produ
e a single estimation based on sequential multi-sensorobservations. Finally, the system must be able to produ
e multi-sensor 
ontrols(Tom should provide instru
tions to his friend in order to 
oordinate their wat
h).Many 
on
rete problems �t through the state estimation framework given above,or at least share some of its salient features, in various �elds su
h as e
onomet-ri
 [Yell 10℄, biomedi
al engineering [Juan 09℄, meteorology [Solt 11℄ and of 
oursetra
king [Gust 02℄. The best known is perhaps the target dete
tion and/or tra
kingproblem in surveillan
e a
tivities, whether 
ivilian or military, be
ause it shares allof the features above: the targets (i.e. the obje
ts) are usually moving in a region ofunknown topography and their number is time-varying, the sensor 
overage is la
k-ing (i.e. the sensors 
annot 
over all the surveillan
e region simultaneously) hen
ede
isions must be made by the sensor manager, the sensors 
an miss a target orprodu
e a false alarm, et
. In a world where both the targets and the sensors areof in
reasing 
omplexity, the improvement of the surveillan
e a
tivities is a growing
on
ern and a 
hallenging problem.The multi-sensor/multi-target �ltering problemThe s
ope of this thesis �ts in the general multi-sensor/multi-target �ltering problemwhose aim is to estimate the states of a varying number of targets through sequen-tial observations by several sensors. The surveillan
e region R ⊂ R

2 is a boundedground region - e.g. the whereabouts of a military base. The targets are groundobje
ts evolving in the surveillan
e region, their state x is a four-variable ve
tor,two for position and two for velo
ity 
oordinates, belonging to the target state spa
e
X ⊂ R

4 equipped with the Eu
lidian distan
e dX . For des
ription purposes, targetsmay be labeled in an arbitrary order. Likewise, their state may be labeled on a times
ale with an arbitrary origin. In the general 
ase, xi,t will denote the state of the
i-th target at time t, but the target label and/or time subs
ript may be omitted
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when irrelevant.The surveillan
e region is observed by S sensors. Ea
h sensor j has its own 
har-a
teristi
s (probability of dete
tion, false alarm rate, measuring a

ura
y, et
.) andprodu
es measurements zj belonging to its own observation spa
e Zj ⊂ R

dj equippedwith the eu
lidian distan
e dZj . As for the targets, zji,t will denote the i-th mea-surement produ
ed by the sensor j at time t, but the origin sensor supers
ript, themeasurement label and/or the time subs
ripts may be omitted when irrelevant. Ea
hsensor j has limited 
overage in the sense that it may not fo
us on the whole statespa
e simultaneously. Its �eld of view (FOV) F j
t ⊂ X is su
h that targets 
annotbe dete
ted by sensor j at time t unless they belong to its FOV F j

t . The FOV ofea
h sensor 
an be modi�ed to some extent by dynami
ally managing the sensor, i.e.providing instru
tions to the sensor on the region of the state spa
e it should fo
uson based on the 
urrent estimation of the target number and their lo
alization. Oneof the tri
kiest part of the multi-sensor/multi-target �ltering problem is to designa proper obje
tive for the surveillan
e a
tivity and be able to manage the sensorsa

ordingly.Be
ause the multi-target/multi-sensor �ltering problem is inherently dynami
, a
ommon time s
ale is required for the targets' model, the observation pro
ess andthe 
ontrol pro
ess. For simpli
ity's sake, the time is dis
retized in (time) steps.The data �ow over a time step 
an be depi
ted as follows:Figure 1 Data �ow of the �ltering pro
ess (time k)

where:
• Xk is the 
olle
tion of all target states at time (or step) k (the 'true situation');
• Zk is the 
olle
tion of all measurements produ
ed at time k, regardless of theirorigin sensor;
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• Fk|k (resp. Fk+1|k) is the �ltered state at time k (resp. k + 1) based on themeasurements produ
ed up to time k;
• uk+1 is the multi-sensor 
ontrol produ
ed at time k + 1.The data �ow (�gure 1) implies that several important assumptions about the systemare made:
• one 
an �nd a time step adapted to both target and sensor dynami
s;
• the sensor system is 
entralized and without delay ;
• the sensors are syn
hronized.Arguably, the �rst assumptions depends 
hie�y on the sensor 
hara
teristi
s. Sin
ethe s
ope of this thesis is limited to ground targets whose typi
al time step may lasta few se
onds, the assumption that the ground surveillan
e sensors (typi
ally, radarsor 
ameras) are able to produ
e measurements every time step seems reasonableenough.The sensor system being 
entralized is a valuable 
onvenien
e for the design of the�lter, be
ause it implies that all the measurements produ
ed in a given time step(say, k + 1) are immediately available for the data update (see �gure 1) o

uringduring the same step (Fk+1|k → Fk+1|k+1). Notably, this implies that there is delayin neither the observation nor the data transmission pro
esses. Likewise, as soon asthe sensor manager produ
es the sele
ted multi-sensor 
ontrol uk+1, the sensors are
ontrolled a

ordingly and the 
olle
tion of 
urrent measurement Zk+1 is availableinstantaneously.The assumption on the syn
hronization of the sensors is equally important, be
auseit has two major 
onsequen
es. The desirable e�e
t is that it signi�
antly simpli�esthe design of the sensor manager, whi
h 
an be syn
hronized on the same time stepas the targets (see �gure 1): the sensor manager sele
ts a single multi-sensor 
ontrol

uk+1 every time step, providing instru
tions to all the sensors simultaneously. Theother 
onsequen
e, though not visible on the data �ow, is the absen
e of temporalitybetween the elements in the 
urrent 
olle
tion of measurements Zk+1 - that is, theelement order in Zk+1 is arbitrary and 
annot be used to set an order of pre
eden
eamong the measurements produ
ed by a given sensor or among the sensors. This
onsequen
e is 
riti
al to the design of the data update step sin
e it implies thatone 
annot hope to update the �ltered state by pro
eeding sequentially with themeasurements from the di�erent sensors, rather, one must deal with the sensors allat on
e.
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Organization of the thesisThe thesis is organized as follows:Chapter 1 provides the main theoreti
al tools that are required for the designof the probability hypothesis density (PHD) �lter. The 
hapter fo
uses mainly onthe random �nite set (RFS) theory, but also introdu
es the single-sensor PHD �lterand some metri
s adapted to the RFS framework.Chapter 2 des
ribes thoroughly the 
onstru
tion of the multi-sensor PHD �lter.The �rst part provides an adaptation of Mahler's 
onstru
tion of the single-sensor
ase [Mahl 03a℄ whi
h is important to grasp the rigorous extension to the multi-sensor 
ase that follows. A joint partitioning of the state spa
e and the sensors isthen proposed in order to simplify the 
onstru
tion of the multi-sensor PHD �lterwithout approximation. Based on this new referen
e, 
ommon multi-sensor approx-imations are then dis
ussed. The extension to the multi-sensor 
ase as well as thepartition method are key 
ontributions of the thesis.Chapter 3 deals with the sensor management problem. The �rst part fo
uses on thetarget extra
tion pro
ess, then on the rigorous extension of Mahler's predi
ted idealmeasurement set (PIMS) [Mahl 04℄ to the multi-sensor 
ase and its simpli�
ationby a similar partitioning as in 
hapter 2. It then fo
uses on the design of a sensormanager. Mahler's posterior expe
ted number of targets (PENT) manager [Mahl 04℄is introdu
ed and analyzed through simple situations where it seems inadequate. Anew solution based on 'operational' obje
tive is then proposed, the balan
ed explorerand tra
ker (BET) manager. The extension to the multi-sensor 
ase, the partition-ing and the BET manager are other important 
ontributions of this thesis.Chapter 4 �rst des
ribes the modelization of surveillan
e s
enarii, then the im-plementation of the multi-sensor PHD �lter and sensor manager through sequentialMonte Carlo (SMC) te
hniques, and �nally the main results obtained on simulateddata.All the mathemati
al proofs pertaining to 
hapters 1, 2, and 3 may be found inappendix A, and a brief des
ription of the prin
iples of importan
e sampling (IS)and sequential importan
e sampling (SIS) is provided in appendix B.
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CHAPTER1Ba
kground
Mahler should take the 
redit for mu
h of the original work on the RFS theory[Mahl 02℄, sin
e he established grounds for the �rst rigorous Bayesian �lterin a multi-obje
t 
ontext with the �nite set statisti
s (FISST) approa
h. In laterworks, Mahler also proposed the 
onstru
tion of the PHD �lter [Mahl 03a℄, an ap-proximation of the more general multi-objet Bayesian �lter leading to a tra
tablesingle-sensor/multi-target �lter. Not surprinsingly, the new set-based approa
h tomulti-target tra
king arouse some interest in the tra
king 
ommunity and manyimplementations of PHD-based multi-target tra
king �lters have been proposed[Maeh 06, Pham 07, Juan 09℄. But, more generally, the random �nite sets and theirderivatives proved to be an ex
iting �eld of study and have been the topi
 of severalre
ent theses [Viho 04, Clar 06, Tobi 06, Pant 07, Vo 08℄. This 
hapter des
ribes thebasi
 notions about random set theory that were needed for the design of the PHD�lter in the single-sensor 
ase, and for its rigorous extension to the multi-sensor 
aseas well. The PHD �lter is also brie�y des
ribed, its 
onstru
tion being fully detailedin the next 
hapter.
1.1 Random �nite setsEven though the early work regarding the random �nite set theory 
an be foundin Mahler's work [Mahl 02, Mahl 03a℄, this se
tion is mainly an adaptation of Vo'sthesis [Vo 08℄ whi
h provides a well-written summary of the essential de�nitions andproperties pertaining to the RFS.
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1.1.1 De�nitionEssentially, as it will be formally established later in se
tion 1.2, the purpose ofthe set-based �ltering approa
h is to 
onsider the 
olle
tion of true targets Xk =
{x1,k, x2,k, . . . , xNk ,k)}) as the realization of a random variable and build a �lteredstate - that is, an estimation of this 'true situation' - upon the knowledge of thisrandom variable a
quired through su

essive observations rather than upon severalmaintained tra
ks. Be
ause the realization of this random variable must 
over everypossible number of targets and, for any target number, every possible 
ombinationof target states, ea
h realization belongs to F(X ), the set of all the �nite subsets ofthe state spa
e X .De�nition 1.1. A RFS Ξ de�ned on X is a measurable mapping [Vo 08℄:

Ξ : Ω→ F(X )
ω 7→ X = Ξ(ω) (1.1)where (Ω, σ(Ω),P) is a probability spa
e equipped with the Matheron topology.As usual in the study of random variables, one's fo
us shifts easily from the proba-bility measure P - de�ned on the sample spa
e Ω - to the more pra
ti
al probabilitydistribution of the RFS, i.e. the probability measure PΞ de�ned on F(X ) by [Vo 08℄:

PΞ(T ) def
= P({ω ∈ Ω : Ξ(ω) ∈ T }) = P({X ∈ T }) (1.2)for any Borel subset T of F(X ). Like any random variable, Ξ is 
ompletely des
ribedby its probability distribution PΞ. From now on, fun
tions, subsets and events areassumed to be measurable or Borel whenever appropriate.Intuitively, a RFS is well adapted to the des
ription of a pro
ess produ
ing dif-ferent point patterns with asso
iated probabilities. A
tually, RFSs 
an be seen asparti
ular 
ases of more general obje
ts 
alled point pro
esses and many results pre-sented in this se
tion 
an be found in their point pro
ess equivalent in [Sing 09℄.Although point pro
esses will not be referred to anymore later in this thesis, a briefdes
ription of the similarities between the two notions provides another approa
h tograsp the 
on
ept of RFS. The following de�nitions 
on
erning the point pro
ess aregiven in [Vo 08℄:1. a 
ounting measure n on X is a measure taking values in N ∪ {∞} su
h that

n(T ) is �nite for any bounded subset T of X ;2. a 
ounting measure n is simple if n({x}) ∈ {0, 1}, ∀x ∈ X ;3. a 
ounting measure n is �nite if n(X ) <∞;
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4. a point pro
ess N on X is a measureable mapping from a sample spa
e Ω,where (Ω, σ(Ω),P) is a probability spa
e, to the spa
e of 
ounting measures on
X ;5. a point pro
ess N is simple if N(ω) is simple almost surely;6. a point pro
ess N is �nite if N(ω) is �nite almost surely;7. a point pro
ess N is simple-�nite if it is simple and �nite.Any simple-�nite point pro
ess N on X may be asso
iated with an equivalent RFS

Ξ on X bound by the following relation:
∀T ⊆ X , N(ω)(T ) = |Ξ(ω) ∩ T | (1.3)where |.| is the 
ardinality fun
tion. This important relation shows that a RFS on

X 
an be 
ompletely des
ribed by 
ounting the o

uren
es of points falling intosubspa
es of X . A re
ent book of Streit [Stre 10℄ thoroughly des
ribes the dete
tionand tra
king problem from the point pro
esses' point of view; not surprisingly, manynotions are quite similar to those developed in the RFS framework.Example 1.1. One 
an de�ne a RFS Ξ, with the sample spa
e Ω = [0, 1] equippedwith the uniform probability, whose distribution probability is des
ribed by:
Ξ(ω) =







{x1, x2} if 0 6 ω <
1

2

{x2, x3} if
1

2
6 ω <

2

3

{x4} if
2

3
6 ω <

3

4

{∅} if
3

4
6 ω 6 1

(1.4)
This RFS may be depi
ted as follows:Figure 1.1 Illustration of a RFS
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Equivalently, one 
an de�ne a simple-�nite point pro
ess N , with the same probabilityspa
e, whose distribution probability is built as follows:

N(ω) =







n : n({x1}) = 1, n({x2}) = 1, n(X ) = 2 if 0 6 ω <
1

2

n : n({x2}) = 1, n({x3}) = 1, n(X ) = 2 if
1

2
6 ω <

2

3

n : n({x4}) = 1, n(X ) = 1 if
2

3
6 ω <

3

4

n : n(X ) = 0 if
3

4
6 ω 6 1

(1.5)
The point pro
ess formulation (1.5) also provides some insight on the 
onstru
tionof the PHD. Sin
e there is no addition operator de�ned on F(X ) - {x1, x2}+{x2, x3}has no mathemati
al sense, the �
lassi
al� expe
tation operator 
annot be appliedto the RFS - E[Ξ] has no sense either. However, additioning 
ounting measures hasa mathemati
al sense, and so does the expe
tation E[N ]. Applying this expe
tationon the point pro
ess des
ribed in equation (1.5) provides the following des
ription ofthe RFS Ξ: �on average, there are 0.5 targets lo
ated in x1, 0.66 targets in x2, 0.17targets in x3, 0.08 targets in x4 and none elsewhere�. Propagating this informationthrough time is, in a nutshell, the prin
iple of the PHD �lter.Note that a RFS is equivalent to a simple-�nite point pro
ess; the �simple� quali-�
ation hen
e pre
ludes the possibility of repeated elements in any realization of aRFS. In the multi-target tra
king framework, this implies that a RFS-based multi-target representation does not 
over the possibility that several targets share theexa
t same state. Given the usual nature of target states (position and/or velo
ity
oordinates in a �large� surveillan
e region), this restri
tion may seem to be of littleimportan
e, even though this 
ould have some undesirable e�e
ts in the tra
king ofwell organized targets moving together (in a 
onvoy for example). Note also that,sin
e the realization of a RFS is a set of points, these points are unordered and anylabelization is ne
essarily arbitrary. As it will be seen later in se
tion 1.2, this hasdire
t 
onsequen
es on the design of multi-target tra
king �lters.Yet another equivalent des
ription of a RFS Ξ is given by the following distribu-tions [Vo 08℄:
• a 
ardinality distribution ρΞ;
• a family of symmetri
 probability distributions {P (n)

Ξ }n∈N.where ρΞ des
ribes the distribution of the number of elements in any realization Xof the RFS and P
(n)
Ξ des
ribes the joint spatial distribution of these elements in thestate spa
e X . Note that the probability distributions P (n)

Ξ are symmetri
 sin
e the
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element order in a set is arbitrary.The union RFS of a �nite number of RFSs 
an be de�ned as follows (adaptedfrom [Vo 08℄):De�nition 1.2. For any n ∈ [1 N ], let Ξn : Ω→ F(X ) be a RFS. Then, the unionRFS ⋃N

n=1 Ξn is the RFS Ξ : ΩN → F(X ) given by:
∀ω = (ω1, ..., ωN) ∈ ΩN , Ξ(ω)

def
=

N⋃

n=1

Ξn(ωn) (1.6)Finally, an extension to the union RFS 
an be de�ned as follows:De�nition 1.3. For any n ∈ [1 N ], let Ξn : Ω→ F(Xn) be a RFS. Then, the jointRFS ⊔N
n=1 Ξn is the RFS Ξ : ΩN → ⊔N

n=1F(Xn) given by:
∀ω = (ω1, ..., ωN) ∈ ΩN , Ξ(ω)

def
=

N⊔

n=1

Ξn(ωn) (1.7)The joint RFS 
an be seen as a �disjoint union� of a �nite number of RFSs de�nedon di�erent spa
es. This de�nition was added by the author in order to des
ribethe multi-sensor observation pro
ess as the �union� of single-sensor pro
esses (see
hapter 2). In parti
ular, the following property will be useful in the 
onstru
tionof the multi-sensor PHD equations:Property 1.1. For any n ∈ [1 N ], let Ξn : Ω→ F(Xn) be a RFS on Xn. If the RFSs
Ξi are statisti
ally independent, then, for any family of subsets {Tn}Nn=1, Tn ⊆ F(Xn):

P⊔N
n=1 Ξn

(
N⊔

n=1

Tn
)

=

N∏

n=1

PΞn
(Tn) (1.8)The proof is given in appendix A.
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1.1.2 Probability densityThe notions of measure, integration and probability density are equally importantfor the 
onstru
tion of the RFS-based �lter. In RFS theory, the usual referen
emeasure on F(X ) is the dimensionless measure µ given by [Vo 05, Vo 08℄:

µ(T ) def
=

∞∑

n=0

λn(χ−1(T ) ∩ X n)

n!
(1.9)for any subset T of F(X ), where λn is the n-th produ
t dimensionless Lebesguemeasure on X n, and χ is a mapping on ve
tors de�ned on Cartesian produ
t spa
es

X n and n-element set spa
es de�ned by:
χ :

∞⋃

n=0

X n → F(X )

x1, ..., xn 7→ {x1, ..., xn} = χ(x1, ..., xn) (1.10)Intuitively, in order to measure a subset T , one must sta
k its elements by size,measure ea
h element with the proper dimensionless measure a

ording to its size,then sum them to obtain the size of T . Note that for ea
h n-element set belonging to
T , there is n! 
orresponding elements belonging to the Cartesian produ
t X n with thesame measure, hen
e the fa
torial on the denominator. Be
ause the hyper-volumein the state spa
e X may have unit (e.g. m4.s−2 for a 2D surveillan
e region withposition and velo
ity 
oordinates), a dimensionless measure on Cartesian produ
tsis required to keep the homogeneity between the measures of ve
tors belonging todi�erent Cartesian produ
t spa
es.Example 1.2. Consider the one-variable state spa
e X = [0 1] - the state of pointbeing, for example, its position on the real unit segment. Let us 
onsider the followingsubset T ⊂ F(X ):

T def
=

{

{{x} | x ∈ [0 1/2]}
{{x, y} | x ∈ [0 1/3], y ∈ [0 1]} (1.11)then χ−1(T ) 
an be de
omposed as follows:

χ−1(T ) :







χ−1(T ) ∩ X = [0 1/2]

χ−1(T ) ∩ X 2 = [0 1/3]× [0 1] ∪ [0 1]× [0 1/3]

χ−1(T ) ∩ X n = ∅, n /∈ {1, 2}
(1.12)thus we have: 





λ(χ−1(T ) ∩ X ) = 1/2

λ2(χ−1(T ) ∩ X 2)

2
= 1/3× 1

λn(χ−1(T ) ∩ X n)

n!
= 0, n /∈ {1, 2}

(1.13)
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whi
h leads to:

µ(T ) = λ(χ−1(T ) ∩ X ) + λ2(χ−1(T ) ∩ X 2)

2
=

5

6
(1.14)The 
onstru
tion of the measure on F(X ) is naturally followed by the de�nition ofthe integral of a fun
tion f : F(X )→ R over a subset T [Vo 05, Vo 08℄:

∫

T

f(X)µ(dX)
def
=

∞∑

n=0

1

n!

∫

Xn

1T (χ(x1, ..., xn))f(χ(x1, ..., xn))λ
n(dx1...dxn)

=

∞∑

n=0

1

n!

∫

χ−1(T )∩Xn

f({x1, ..., xn})λn(dx1...dxn) (1.15)Note that the notation dx1 is used in standard integrals, hen
e dx1 may have unitdepending on the state spa
e X . However, re
all that λn(dx1...dxn) is dimensionless.If KX is the unit of the hyper-volume of X , then:
∀n ∈ N, dx1...dxn = λn(dx1...dxn)K

n
X (1.16)Then, the probability density pΞ of a RFS Ξ, if it exists, is given by the Radon-Nikodým derivative of the probability distribution PΞ with respe
t to the measure

µ [Nguy 06, Vo 08℄:
∀T ⊆ F(X ), PΞ(T ) =

∫

T

pΞ(X)µ(dX) (1.17)1.1.3 Janossy measures and Janossy densitiesThe measuring pro
ess on F(X ) is by no means trivial. Be
ause the di�erent ele-ments in F(X ) are sets of various size, the �tri
k� is to sta
k these elements by sizeand then, for ea
h size n, �go ba
k� in the well known asso
iated produ
t spa
e X n- using the χ fun
tion given by equation (1.10) - where standard Lebesgue measuresare available. Thus, its seems fairly natural to �split� the measure on F(X ) by afamily of measures on produ
t spa
es X n, n ∈ N, en
apsulating the more intuitivenotions of 
ardinality distribution ρΞ and spatial distribution P
(n)
Ξ de�ned in se
tion1.1.1. Indeed, one 
an de�ned the family of Janossy measures {J (n)

Ξ }n∈N [Vo 08℄:
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De�nition 1.4. The n-th order Janossy measure J

(n)
Ξ of a RFS Ξ is the measureon X n given by:

J
(n)
Ξ (.)

def
= n!ρΞ(n)P

(n)
Ξ (.) (1.18)where ρΞ is the 
ardinality distribution, P (n)

Ξ is the n-th order probability measure ofRFS Ξ.If J
(n)
Ξ admits a density (with respe
t to the standard Lesbegue measure on X n),then it is 
alled the n-th order Janossy density j

(n)
Ξ (j(0)Ξ KX = J

(0)
Ξ by 
onvention).Note that the Janossy densities vanish when evaluated on identi
al points (e.g.

j
(n)
Ξ (x1, x1, x2, ...) = 0), sin
e there is no repeated points in any realization of a RFS.One must be 
areful not to 
onfuse the probability density pΞ with the Janossy den-sities {j(n)Ξ }n∈N. While the probability density pΞ is de�ned on F(X ) and 
overs allthe possible realizations of the RFS Ξ, the Janossy density j

(n)
Ξ 
overs the possiblerealizations of the RFS Ξ among those with n elements only and is not a probabilitydensity sin
e ∫

Xn j
(n)
Ξ (X)dX 6= 1 in the general 
ase. Furthermore, pΞ is dimension-less sin
e it is de�ned with respe
t to the dimensionless measure µ on F(X ), while

j
(n)
Ξ has unit K−n

X sin
e it is de�ned with respe
t to the standard measure on X n.However, these densities are related through the following equality [Vo 08℄:
pΞ({x1, ..., xn}) = j

(n)
Ξ (x1, ..., xn)K

n
X (1.19)The proof is given in appendix A. Furthermore, sin
e the spatial distribution P

(n)
Ξ
an be re
overed with the relation P

(n)
Ξ (.) = J

(n)
Ξ (.)/J

(n)
Ξ (X n) and the 
ardinal dis-tribution ρΞ with the relation ρΞ(n) = J

(n)
Ξ (X n)/n!, the family of Janossy measures

{J (n)
Ξ }n∈N des
ribes 
ompletely the RFS Ξ. Clearly the 
ardinal and the spatial dis-tribution are more intuitive be
ause they embody the algorithmi
 pro
ess for thesampling of a RFS - �rst draw a number of element a

ording to ρΞ, then distributethe elements in state spa
e by sampling from the appropriate P

(n)
Ξ . However, theJanossy notations are better adapted to set-based 
al
ulus.1.1.4 Fa
torial momentsLike usual random variables, RFS 
an be 
hara
terized through their moments. The

n-th order fa
torial moment measure V
(n)
Ξ of a RFS Ξ 
an be de�ned as follows[Vo 08℄:De�nition 1.5. Let Ξ be a RFS, {Tn}n∈N a family of subsets of X. Then, the n-thorder fa
torial moment measure V

(n)
Ξ is de�ned by:

V
(n)
Ξ (T1 × ...× Tn)

def
= E




∑

x1 6=... 6=xn∈Ξ(ω)

1T1×...×Tn
((x1, ..., xn))



 (1.20)
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The �rst order fa
torial moment measure VΞ (V 0

Ξ by 
onvention) is 
ommonly knownas the intensity measure:
VΞ(T1)

def
= E [Ξ(ω) ∩ T1] (1.21)If it exists, the n-th order produ
t density is the fun
tion v

(n)
Ξ de�ned on X n su
hthat:

V
(n)
Ξ (T1 × ...× Tn) =

∫

T1

. . .

∫

Tn

v
(n)
Ξ (x1, , ..., xn)dx1...dxn (1.22)The �rst order fa
torial produ
t density vΞ (v0Ξ by 
onvention) is 
ommonly knownas the intensity (fun
tion):

VΞ(T1) =

∫

T1

vΞ(x)dx (1.23)The notion of moment of a RFS is perhaps more di�
ult to grasp as the notion ofprobability, espe
ially when the subsets Ti are not disjoints. Intuitively, the quantity
pΞ({x1, ..., xn})Kn

Xdx1...dxn 
an be seen as the probability that the realization X ofthe RFS has exa
tly n points, ea
h point in a di�erent neighborhood dxi. On theother hand, the quantity v
(n)
Ξ (x1, ..., xn)dx1...dxn 
an be seen as the probability that

X of the RFS has at least n points in the di�erent neighborhoods dxi [Vo 08℄. Formore details, a 
omparison between Janossy and fa
torial moment measures 
an befound in [Vere 88℄ (pp.133 - 134). Easily enough, the design of the PHD �lter fo
useson the �rst moment only, whose formulation given by (1.21) is rather suggestive: the�rst moment VΞ(T ) 
ounts the average number of points falling in the subset T ⊆ X .Note that if dx1, ..., dxN are in�nitesimal disjoint neighborhoods, then using de�-nitions 1.4 and 1.5 yields:
V

(N)
Ξ (dx1× ...× dxN) =

∞∑

n=0

1

n!

∫

· · ·
∫

︸ ︷︷ ︸

Xn

J
(n+N)
Ξ (dx1, ..dxN , dxN+1, ..., dxN+n) (1.24)Note also that the n-th order produ
t density v

(n)
Ξ , similarly to the n-th order Janossydensity j

(n)
Ξ , is de�ned on produ
t spa
e X n and has unit K−n

X . In fa
t, produ
t den-sities v
(n)
Ξ are �
loser� to the Janossy densities j

(n)
Ξ than to the probability density

pΞ in the sense that their family 
omes as a �toolbox�, ea
h tool being adapted ona standard produ
t spa
e X n, rather than as a single yet more 
ompli
ated tooladapted for the whole spa
e F(X ).Interestingly, Mahler proposed in [Mahl 03a℄ a dimensionless �multitarget momentdensity� DΞ, de�ned on F(X ) by:
∀X ∈ F(X ), DΞ(X)

def
=

∫

F(X )

pΞ(X ∪W )µ(dW ) (1.25)
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Table 1.1: Relations between di�erent densitiesSpa
e X n F(X )Probabilities (unit) j

(n)
Ξ (x1, ..., xn) (K−n

X ) pΞ({x1, ..., xn}) (none)Moments (unit) v
(n)
Ξ (x1, ..., xn) (K−n

X ) DΞ({x1, ..., xn}) (none)Equation (1.25) is perhaps more suggestive than those of the fa
torial moments:the moment DΞ({x1, ..., xn}) gives the probability that the realization of the RFS
ontains at least these points. In parallel to equation (1.19) we 
an write:
DΞ({x1, ..., xn}) = v

(n)
Ξ (x1, ..., xn)K

n
X (1.26)However, be
ause Mahler de�nes the PHD DΞ as the intensity (i.e. the �rst orderprodu
t density) rather than the multitarget moment density (see de�nition 1 in[Mahl 03a℄), the equivalen
e between the two notions - ∀x ∈ X , DΞ({x}) = DΞ(x)- must be expli
itely proven (see theorem 2 in [Mahl 03a℄).1.1.5 Probability generating fun
tionalsDe�nition and fundamental propertiesThe notion of probability generating fun
tional (PGFl) is 
entral to the 
onstru
tionof the PHD [Mahl 03a℄. Con
eptually, the PGFl may be seen as a generalization ofthe belief-mass fun
tional [Vo 08℄:De�nition 1.6. The belief-mass fun
tional βΞ of RFS Ξ is the fun
tion given by:

βΞ(T )
def
= P({Ξ(ω) ⊆ T}) = E[1

Ξ(ω)
T ] (1.27)where T is any subset of X , 1T (.) is the indi
ator fun
tion de�ned on X and, for anyrealization X = Ξ(ω), 1XT =

∏

x∈X 1T (x). Besides, if Ξ admits a probability density:
βΞ(T ) =

∫

F(X )

1XT pΞ(X)µ(dX) (1.28)Intuitively, the belief-mass fun
tional 
ounts the patterns, weighted with their prob-ability of o

uren
e, whose points fall all inside a subset T ⊆ X .The notion of PGFl is similar to the belief-mass but allows a broader range ofmembership fun
tions than the indi
ator fun
tion [Mahl 03a℄:De�nition 1.7. The PGFl GΞ of RFS Ξ is the fun
tional given by:
GΞ[h]

def
= E[hΞ(ω)] (1.29)
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where h : X → [0 1] is a dimensionless fun
tion and, for any fun
tion h, hX =
∏

x∈X h(x) (h∅ = 1 by 
onvention). Besides, if Ξ admits a probability density pΞ:
GΞ[h] =

∫

F(X )

hXpΞ(X)µ(dX) (1.30)The fun
tion hmust be dimensionless for the expe
tation in (1.29) to be well-de�ned.Unless otherwise stated, the argument fun
tion of a PGFl - or, more generally, ofany fun
tional des
ribed in this thesis - is assumed to be dimensionless. Note thesimilarity with the probability generating fun
tion (PGF):De�nition 1.8. The PGF GX of a random variable X on X is the fun
tion givenby:
GX(h)

def
= E[hX(ω)] (1.31)where h ∈ [0 1] is a real number.Comparing de�nitions 1.6 and 1.7 yields:

βΞ(T ) = GΞ[1T ] (1.32)that is, the PGFl equals the belief-mass fun
tional when the fun
tion h is a subsetindi
ator fun
tion. However, the PGFl admits �fuzzy� membership fun
tions as ar-guments [Mahl 03a℄. Suppose, for example, that sensor j has 
urrent FOV F j su
hthat any target x inside is dete
ted with probability pjd(.). Further assume that aRFS Ξ des
ribes the target 
on�guration at that 
urrent time. Then, while βΞ(F
j)is the probability that all the targets are inside the FOV, GΞ[p

j
d] is the probabilitythat all the targets are inside the FOV and are dete
ted by the sensor.The PGFl 
an be written with the Janossy measures (and Janossy densities if itadmits a density) as follows [Vo 08℄:Property 1.2. Let Ξ be a RFS with PGFl GΞ and Janossy measures {J (n)

Ξ }n∈N.Then:
GΞ[h] =

∞∑

n=0

1

n!
J
(n)
Ξ [h, ..., h] (1.33)where:

J
(n)
Ξ [h1, ..., hn]

def
=

∫

· · ·
∫

h1(x1)...hn(xn)J
(n)
Ξ (dx1, ..., dxn) (1.34)or, if the Janossy measures admit densities:

J
(n)
Ξ [h1, ..., hn] =

∫

· · ·
∫

h1(x1)...hn(xn)j
(n)
Ξ (x1, ..., xn)dx1...dxn (1.35)
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The proof is given in appendix A. The PGFl 
an be extended to the multivariate
ase; the following de�nition will be parti
ularly useful in the extension of the PHD�lter in the multi-sensor 
ase [Vo 08℄:De�nition 1.9. For any n ∈ [1 N ], let Ξn : Ω→ Xn be a RFS with PGFl GΞn

and
hn : Xn → [0 1]. Then, the joint PGFl GΞ1,...,ΞN

of RFSs Ξ1, ...,ΞN is de�ned by:
GΞ1,...,ΞN

[h1, ..., hN ]
def
= E

[

h
Ξ1(ω)
1 ...h

ΞN (ω)
N

] (1.36)All the notions su
h as probability measures and densities, fun
tional derivativesand su
h are easily extended to the multivariate 
ase. Intuitively, sin
e ea
h RFS
Ξn is de�ned on its own spa
e Xn, the multivariate PGFl 
an be easily built withthe (univariate) PGFl of ea
h RFS.The PGFl of a union RFS 
an be built through the PGFls of the base RFSs [Vo 08℄:Property 1.3. For any n ∈ [1 N ], let Ξn : Ω → X be a RFS with PGFl GΞn

.Then, if the base RFSs Ξn are statisti
ally independent, the PGFl of the union RFS
⋃N

n=1 Ξn is the produ
t of PGFls GΞi
:

GΞ1∪...∪ΞN
[.] =

N∏

n=1

GΞn
[.] (1.37)The independen
e between the base RFSs is important here. Intuitively, if they areindependent, the event that their realization have 
ommon points has probabilityzero and a realization of the union RFS 
an be de
omposed on pairwise disjointrealizations of ea
h RFS. A sket
h of the proof for N = 2 is given here:

GΞ1∪Ξ2 [h] =

∞∑

n=0

1

n!
J
(n)
Ξ1∪Ξ2

[h, ..., h]

=

∞∑

n=0

1

n!

n∑

p=0

(
n

p

)

J
(p)
Ξ1

[h, ..., h]J
(n−p)
Ξ2

[h, ..., h]

=

∞∑

n=0

n∑

p=0

1

p!(n− p)!
J
(p)
Ξ1

[h, ..., h]J
(n−p)
Ξ2

[h, ..., h]
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GΞ1∪Ξ2 [h] =

∞∑

p=0

∞∑

n=p

1

p!(n− p)!
J
(p)
Ξ1

[h, ..., h]J
(n−p)
Ξ2

[h, ..., h]

=

∞∑

p=0

1

p!
J
(p)
Ξ1

[h, ..., h]

(
∞∑

n=p

1

(n− p)!
J
(n−p)
Ξ2

[h, ..., h]

)

=

(
∞∑

p=0

1

p!
J
(p)
Ξ1

[h, ..., h]

)(
∞∑

n=0

1

n!
J
(n)
Ξ2

[h, ..., h]

)

= GΞ1[h]GΞ2 [h]One may suppose that, if RFSs Ξ1 and Ξ2 were not independent, the �split� of theJanossy measure of the union RFS would not have been simple and the expression ofthe joint PGFl would have been more 
ompli
ated. In the design of the PHD �lter,though, union RFS will always be built as union of independent RFSs (see 
hapter2). For simpli
ity's sake, property 1.3 is admitted in the general 
ase.Fun
tional derivativesThe notion of fun
tional derivative is fundamental in RFS theory. Working on PGFlsand their derivatives allows the 
omputation of probability densities, moment den-sities, Janossy densities and su
h; it is therefore possible to study the RFS from the�PGFl point of view� and deals with fun
tions de�ned on the state spa
e X ratherthan densities and measures de�ned on the mu
h �larger� spa
e F(X ).In this thesis the fun
tional derivatives are de�ned and studied with the notationsgiven by [Vo 08℄, but we will gradually 
hange to the mu
h lighter Mahler's notations[Mahl 03a℄, whi
h are very easy to manipulate in the 
onstru
tion of the PHD �lter(see 
hapter 2).De�nition 1.10. Let G be a fun
tional and h, {gn}n∈N real-valued fun
tions de�nedon X . The n-th order fun
tional derivatives, respe
tive to h and in dire
tions gi, arede�ned by:
G(1)[h; g1] = lim

ǫ→0+

G[h+ ǫg1]−G[h]

ǫ1
(1.38)and, re
ursively:

G(n)[h; g1, ..., gn] = lim
ǫ→0+

G(n−1)[h+ ǫgn; g1, ..., gn−1]−G(n−1)[h; g1, ..., gn−1]

ǫ
(1.39)Besides, G(0)[h] = G[h] by 
onvention.Pay attention to the fa
t that, unlike the argument fun
tion h, the dire
tions gineed not be dimensionless. If g1 has unit K−1

X , sin
e h + ǫg1 must be dimensionless
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in (1.38), ǫ has unit KX and thus G(1)[h; g1] has unit K−1

X . In this thesis, unlessotherwise spe
i�ed, the dire
tion fun
tions are assumed dimensionless in order tokeep the su

essive derivations of a PGFl dimensionless.The next result is fundamental be
ause it links the n-th order derivative of a PGFlwith the n-th order Janossy measure and the n-th order fa
torial moment. First, alemma is required:Lemma 1.1. Let Ξ be a RFS with PGFL GΞ and Janossy measures {J (n)
Ξ }n∈N. Let

{gn}n∈N be real-valued fun
tions de�ned on X in [0 1]. Then:
G

(n)
Ξ [h; g1, ..., gn] =

∞∑

p=0

1

p!
J
(n+p)
Ξ [g1, ..., gn, h, ...h

︸ ︷︷ ︸

p

] (1.40)The proof is given in appendix A. Then follows the main result, adapted from [Vo 08℄:Property 1.4. Let Ξ be a RFS with PGFL GΞ, Janossy measures {J (n)
Ξ }n∈N andfa
torial moments {V (n)

Ξ }n∈N. Let {gn}n∈N be a family of real-valued fun
tions de�nedon X in [0 1]. Then:
G

(n)
Ξ [0; g1, ..., gn] = J

(n)
Ξ [g1, ..., gn] (1.41)

G
(n)
Ξ [1; g1, ..., gn] = V

(n)
Ξ [g1, ..., gn] (1.42)If Ξ admits a probability density, then:

G
(n)
Ξ [0; δx1KX , ..., δxn

KX ] = j
(n)
Ξ (x1, ..., xn)K

n
X (1.43)

G
(n)
Ξ [1; δx1KX , ..., δxn

KX ] = v
(n)
Ξ (x1, ..., xn)K

n
X (1.44)where {xn}n∈N is a 
olle
tion of points in X and δx(.) is the Dira
 delta fun
tion.The proof is given in appendix A. Dira
 fun
tions in equations (1.43) and (1.44) aremerely a pra
ti
al notation allowing an easier writing of set derivations. For example,result (1.43) is easily re
overed with the Delta notations. Indeed, a

ording to (1.41):

G
(n)
Ξ [0; δy1KX , ..., δynKX ] = J

(n)
Ξ [δy1KX , ..., δynKX ]

=

∫

· · ·
∫

δy1(x1)KX ...δyn(xn)KXJ
(n)
Ξ (dx1, ..., dxn)

=

∫

· · ·
∫

δy1(x1)...δyn(xn)j
(n)
Ξ (x1, ..., xn)K

n
Xdx1...dxn

= j
(n)
Ξ (y1, ..., yn)K

n
X
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Sin
e the derivation in dimensionless dire
tions is favored in this thesis and the Dira
delta fun
tion has unit K−1

X , units terms are expli
it in equation (1.43) - unlike theequivalent form used by Vo [Vo 08℄:
G

(n)
Ξ [0; δx1, ..., δxn

] = j
(n)
Ξ (x1, ..., xn)In the PHD framework PGFls are derivated exlusively in the dire
tion of Dira
 deltafun
tions, thus the following notations:Notation 1.1. For any subset {x1, ..., xn} ⊂ X :

δn

δx1....δxn
GΞ[h]

not
= G

(n)
Ξ [h; δx1KX , ..., δxn

KX ] (1.45)
δ

δ{x1, ..., xn}
GΞ[h]

not
= G

(n)
Ξ [h; δx1KX , ..., δxn

KX ] (1.46)That is, the δ notation will be used for the �derivation� of fun
tionals in pointsfrom the state spa
e X (or observation spa
es Zj). The same notation will be usedon multivariate fun
tionals when there is no ambiguity on the fun
tion whi
h isderivated. For example, if G[g, h] is the fun
tional where g is de�ned on Z and his de�ned on X , then δ2

δxδz
G[g, h] - or, equivalently, δ2

δzδx
G[g, h] - is the fun
tionalderivative of G[g, h], respe
tive to g, in dire
tion δz(.)KZ and, respe
tive to h, indire
tion δx(.)KX .The 
lassi
al derivation rules being provided by the FISST 
al
ulus rules for fun
-tional derivations [Mahl 07b℄, the pseudo-derivation δ will be often 
onsidered as astandard derivation for 
al
ulus purposes, even though the underlying Dira
 deltafun
tion indu
es spe
i�
 properties as seen in the following paragraph. Note thatequation (1.43) implies that the point order in a derivation is arbitrary - i.e.

δ2

δx1δx2
GΞ[h] =

δ2

δx2δx1
GΞ[h] - and that any PGFl derivated twi
e on the same pointvanishes - i.e. δ2

δx1δx1
GΞ[h] = 0.
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Cal
ulus propertiesThe �rst property provides two useful rules for general 
al
ulus on fun
tionals[Mahl 03a, Mahl 07b℄:Property 1.5. Let G be a fun
tional, x0 a �xed point in X and p a real-valuedfun
tion on X . If, for any real-valued fun
tion h de�ned on X , G[h] = h(x0), then:

∀x ∈ X , δG

δx
[h] = δx0(x)KX (1.47)If, for any real-valued fun
tion h de�ned on X , G[h] =

∫

X
h(x)p(x)dx, then:

∀x ∈ X , δG

δx
[h] = p(x)KX (1.48)The proof is given in appendix A. Note that in the property 1.5 the fun
tional Gmay be seen as the PGFl of a very simple RFS Ξ whose Janossy densities are all zerobut the �rst order whi
h is j

(1)
Ξ (.) = δx0(.) in equation (1.47) and j

(1)
Ξ (.) = p(.) inequation (1.48). Not surprinsingly, the argument fun
tion h does not appear in anyof the two results: the asso
iated RFS having trivial 
ardinality distributions su
hthat ea
h realization has exa
tly one point, h appears in the zero order term (in ǫ) ofthe derivation pro
ess and is �killed� in the di�eren
e G[h+ǫδx]−G[h] (see the prooffor more details). Be
ause h 
an be arbitrary set at 0 or 1, it shows that the no-tions of �rst order Janossy density and intensity are identi
al for �one-element� RFSs.Using the fa
torial moments is sometimes an easy way to transform a set inte-gral over on F(X ) to a 
lassi
al integral de�ned on a �smaller� spa
e (adapted from[Mahl 03a℄):Property 1.6. Let Ξ be a RFS with probability density pΞ and intensity vΞ. Then,for any h : X → [0 1]:

∫

F(X )

hXpΞ(X)µ(dX) =

∫

X

h(x)vΞ(x)dx (1.49)where hX =
∑

x∈X h(x) (h∅ = 0). For any point x0 ∈ X , setting h(.) = δx0(.)KXgives: ∫

F(X )

δX(x0)pΞ(X)µ(dX) = vΞ(x0) (1.50)where δX(x0) =
∑

x∈X δx(x0) (δ∅ = 0).The proof is given in appendix A. The spirit of this property is the following. Ratherthan averaging the sum of a fun
tion h over ea
h point of every set, weighted withthe probability of o

uren
e of that set, one 
an average h over every point, weighted
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with the intensity of this point, i.e. the probability of o

uren
e of all sets 
ontainingthis point.Figure 1.2 Illustration of equation (1.50)

Note that result (1.49) 
an be extended to higher order of fa
torial moments. Forexample, the se
ond order equivalent would be:
∫

F(X )

hX,XpΞ(X)µ(dX) =

∫

X 2

h(x)h(y)v
(2)
Ξ (x, y)dxdy (1.51)where hX,X =

∑

xi,xj∈X
i<j

h(xi)h(xj).The last property is a �te
hni
al� result pertaining to the 
omposition of intensities(adapted from [Mahl 03a℄):Property 1.7. Let Φ[.] be a fun
tional transformation on the real-valued fun
tions
h : X → [0 1] su
h that for any h, Φ(h) : X → [0 1] and Φ[1] = 1. Let Ξ be a RFSwith PGFl GΞ, probability density pΞ and intensity vΞ. Assuming that there exist:
• a RFS ΞΦ with PGFl GΞΦ

[.] = GΞ[Φ[.]] and intensity vΞΦ
;

• for any x ∈ X , a RFS ΞΦ,x with PGFl GΞΦ,x
[.] = Φ[.](x) and intensity vΞΦ,x

.then:
∀x0 ∈ X , vΞΦ

(x0) =

∫

X

vΞΦ,x
(x0)vΞ(x)dx (1.52)The proof is given in appendix A.
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1.2 Multi-target �ltering within the RFS framework1.2.1 Prin
ipleThe RFS theory naturally applies to the modelization of a multi-target tra
kingproblem, sin
e there are a �nite number of points - the target states - whose 
on�g-uration in a spa
e - the target state spa
e - varies through time.Figure 1.3 Prin
iple of multi-target set-based representation

Easily enough, the states xi,k of the true targets at time k 
an be en
apsulated in asingle multi-obje
t state Xk ∈ F(X ) as shown in �gure 1.3:
Xk =

⋃

i∈T (k)

xi,k (1.53)where T (k) ∈ N is the label set of existing targets at time k (note that the labeling ofthe true targets is unique, i.e. even if a target dies its label will not be used for futuretargets). Likewise, the measurements zji,k produ
ed at time k 
an be en
apsulatedin a single multi-objet measurement Zk ∈
⊔S

j=1F(Zj):
Zk =

S⊔

j=1

Zj
k =

S⊔

j=1

mj
k⋃

i=1

zji,k (1.54)where mj
k ∈ N is the number of 
urrent measurements produ
ed by sensor j at time

k. Note that this set-based representation is valid under the assumptions that, atany time k, no targets may share the same state - as already stated in se
tion 1.1 -nor measurements from the same sensor share the same value.



1.2 Multi-target �ltering within the RFS framework 59
Figure 1.4 Prin
iple of RFS �ltering (time k + 1)

As indi
ated by the data �ow (�gure 1), the RFS-based �ltering pro
ess follows the
lassi
al Bayesian s
heme in whi
h one pro
eed with time update and data updatesteps sequentially (see �gure 1.4). In the �ltering pro
ess, there are four RFSs ofinterest at ea
h time step:De�nition 1.11. At any time k + 1, there are four multi-obje
t RFSs of interest:1. The (multi-target) transition RFS ΞT
k,k+1(X), with probability density

pΞT
k,k+1(X)(.) (or pΞT

k,k+1
(.|X)), des
ribes the target 
on�guration at time k + 1 
ondi-tionally on the (estimated) target 
on�guration X at time k.2. The (multi-target) predi
ted RFS Ξk+1|k, with probability density pΞk+1|k

(.|Z1:k),des
ribes the target 
on�guration at time k + 1 
onditionally on the measurementsprodu
ed up to time k.3. The (multi-measurement) observation RFS Σk+1(X), with probability density
pΣk+1(X)(.) (or pΣk+1

(.|X)), des
ribes the measurement 
on�guration at time k + 1
onditionally on the (estimated) target 
on�guration X at time k + 1.4. The (multi-target) posterior RFS Ξk+1|k+1, with probability density
pΞk+1|k+1

(.|Z1:k+1), des
ribes the target 
on�guration at time k + 1 
onditionally onthe measurements produ
ed up to time k + 1.
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The following proposition des
ribes the prin
iple of the RFS-based multi-target �lter[Mahl 02℄:Proposition 1.1. Assuming that:
• the transition densities {pΞT

k,k+1
}k>0 are known;

• the observation densities {pΣk+1
(.|X)}k>0 are known for any set X;

• for any k > 1, the set of 
urrent measurements Zk is available at time k;
• an initial posterior density pΞ1|0

is given.then the sequen
es of predi
ted and posterior densities are given by the time updateand data update equations:
pΞk+1|k

(.|Z1:k) =

∫

F(X )

pΞT
k,k+1

(.|X)pΞk|k
(X|Z1:k)µ(dX) (1.55)

pΞk+1|k+1
(.|Z1:k+1) =

pΣk+1
(Zk+1|.)pΞk+1|k

(.|Z1:k)
∫

F(X )
pΣk+1

(Zk+1|X)pΞk+1|k
(X|Z1:k)µ(dX)

(1.56)This result is the extension of the well-known Bayes equations to the RFS frame-work. Note that the required assumptions are usual in this 
ontext. Notably, thetransition densities are assumed to be known through the topography of the surveil-lan
e region, some heuristi
s about the typi
al behavior of targets, et
. Likewise,the observation densities are known through the well identi�ed 
hara
teristi
s of thesensors - probability of dete
tion, false alarm rate, statisti
al noise, et
.1.2.2 A tra
table approximation: the PHD �lterImplementing a multi-target �lter based on the Bayesian re
ursion provided byproposition 1.1 is quite 
hallenging and generally intra
table. The main sour
esof untra
tability are:
• the design of the transition and observation densities;
• the 
omputation of the set integrals in the update equations (1.55) and (1.56).Re
all from se
tion 1.2.1 that the transition densities {pΞT

k,k+1
}k60 are multi-targetdensities that empnody the pro
esses of target birth, motion, spawning - target
reation 
onditioned on the state of an origin target, for example in the splittingof a 
onvoy - and death. Therefore, in order to 
ompute the probability of tran-sition pΞT

k,k+1
(X1|X2), one must 
over all the possibilities that may lead from themulti-target set X1 to X2. Likewise, the observation densities {pΣk+1

(.|Xk+1|k)} are
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multi-measurement densities en
apsulating the pro
esses of target dete
tion, dataa
quisition and false alarm, and are ex
eedingly di�
ult to design in the general
ase.Figure 1.5 Transition from multi-target set X1 to X2 (target birth in green, targetdeath in red)

Additional assumptions on the target model (e.g. independen
e of targets) and/orthe observation pro
ess (e.g. independen
e of data a
quisition pro
esses, maximumnumber of measurement per dete
ted target, et
.) are usually ne
essary in order tosimplify the design of the transition and observation densities. The spe
i�
 assump-tions required for the design of the PHD �lter are fully detailed in 
hapter 2.The 
omputation of set integrals is inherently tedious, sin
e the µ measure (1.9)
overs all the possible number of elements. For example, evaluating the denom-inator in (1.56) requires the 
omputation of observation pΣk+1
(Z|.) and predi
ted

pΞk+1|k
(.|Z1:k) densities for every possible multi-target set X , whi
h 
overs any pos-sible target number and, for a given number, any possible target states.The main motivation behind the PHD �lter is to shift the problem from the 
umber-some �full spa
e� F(X ) to the �lighter spa
e� X by propagating intensities vΞ ratherthan the �full� densities pΞ (adapted from [Mahl 03a℄):De�nition 1.12. The PHD of a RFS Ξ, if it exists, is its intensity vΞ.Equation (1.44) with the delta notation (1.45) immediately yields an expression ofthe PHD as a set derivative:

∀x ∈ X, vΞ(x) =
δGΞ

δx
[1]K−1

X (1.57)
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Note that the unit term K−1

X does not appear in Vo's and Mahler's work where thederivated PGFl has already unit K−1
X .The PHD-based �lter in the single-sensor 
ase only is given by the following propo-sition (adapted from [Mahl 03a℄):Proposition 1.2. Under the PHD �ltering assumptions (tables 2.1 and 2.2), andassuming that there is only one sensor, the sequen
es of predi
ted and posterior PHDsare given by the time update and data update equations:

vΞk+1|k
(.|Z1:k)

=

∫

X

(
psk,k+1(x)f

t
k,k+1(.|x) + λs

k,k+1(x)sk,k+1(.|x)
)
vΞk|k

(x|Z1:k)dx+ λb
k,k+1bk,k+1(.)(1.58)

vΞk+1|k+1
(.|Z1:k+1)

=



1− pdk+1(.) +
∑

z∈Zk+1

pdk+1(.)L
z
k+1(.)

λc
k+1ck+1(z) + vΞk+1|k

[pdk+1L
z
k+1]



 vΞk+1|k
(.|Z1:k) (1.59)where:

• psk,k+1(.) is the (single-target) survival probability;
• f t

k,k+1(.|x) is the (single-target) transition density 
onditionally on target state
x;
• λs

k,k+1(x)sk,k+1(.|x) is the (single-target) spawning intensity 
onditionally ontarget state x;
• λb

k,k+1bk,k+1(.) is the (single-target) birth intensity;
• pdk+1(.) is the (single-target) dete
tion probability;
• Lz

k+1(.) is the (single-target) likelihood in measurement z;
• λc

k+1ck+1(.) is the (single-measurement) false alarm intensity;
• vΞk+1|k

[.] is the fun
tional vΞk+1|k
[h]

def
=
∫

X
h(x)vΞk+1|k

(x|Z1:k)dx.All these fun
tions will be spe
i�ed in 
hapter 2, devoted to the rigorous 
onstru
tionof the PHD. Nevertheless, the equations above show the main adavantage of thePHD �lter: all set-based equations and integrals have been repla
ed by 
lassi
alequivalents. In fa
t, many fun
tions appearing in equations (1.58) and (1.59) - su
h
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as likelihoods, probabilities of survival or single-target transition fun
tions - are
ommon in tra
king te
hniques based on single-target Bayes �lter. Other fun
tionssu
h as the birth density are more spe
i�
 to the RFS framework. Besides, underthe PHD �ltering assumptions (see 
hapter 2), the multi-target RFSs Ξ (predi
tedor posterior) are 
hara
terized by their PHDs:Proposition 1.3. Under the PHD �ltering assumptions (tables 2.1 and 2.2), at anytime k:
• the predi
ted (resp. posterior) estimated target number is
Nk+1|k =

∫

X
vΞk+1|k

(x|Z1:k)dx (resp. Nk+1|k+1 =
∫

X
vΞk+1|k+1

(x|Z1:k+1)dx);
• the predi
ted (resp. posterior) targets are i.i.d. a

ording to vΞk+1|k

(.|Z1:k)

Nk+1|k
(resp.

vΞk+1|k+1
(.|Z1:k+1)

Nk+1|k+1
).Propagating the PHD of the multi-target RFSs Ξ using proposition 1.2 then extra
t-ing the information on targets using proposition 1.3 is the essen
e of the PHD-based�lter in dete
tion and tra
king problems.Figure 1.6 Illustration of proposition (1.3)

Note that the PHD �lter is designed for the single-sensor 
ase only. Re
ent papersof Mahler [Mahl 09a, Mahl 09b℄ provide a generalization to the two-sensor 
ase, butto the author's knowledge no extension to the multi-sensor 
ase has been establishedyet.1.2.3 A brief 
omparison of multi-target �ltering te
hniquesThe topi
 of this se
tion is not a pra
ti
al 
omparison of �ltering te
hniques basedon performan
e results, but rather the des
ription of the di�erent te
hniques ona theoreti
al level in order to help the reader grasping the philosphy behind theRFS-based �lter with respe
t to more traditional approa
hes.
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Classi
al tra
k-based multi-target �ltersThe 
ommon point in the 
lassi
al tra
k-based tra
king te
hniques is that the �lteredstate is a 
olle
tion of tra
ks, i.e. random obje
ts whose behavior are as 
lose aspossible to the real targets' ones, su
h that ea
h tra
k is asso
iated to an eventual realtarget. A tra
k is usually 
omposed of an estimation of the asso
iated target's state,de�ned on the same spa
e X , and another obje
t that quanti�es the un
ertaintyregarding the estimation, usually a 
ovarian
e matrix. Any tra
k-based �lter mustdeal with the three following issues:
• the 
reation of new tra
ks;
• the data asso
iation and the update of existing tra
ks;
• the deletion of existing tra
ks.Arguably, the main di�
ulty arises in the data asso
iation pro
ess whi
h deals withthe asso
iation between living tra
ks and new measurements, espe
ially in a multi-target and/or 
luttered environment where the tra
k-to-measurement step may betedious. The methods mainly di�er through their data asso
iation pro
ess.The multiple hypothesis tra
ker (MHT) is a di�ered de
ision approa
h to the dataasso
iation problem whi
h fo
uses on updating the tra
ks a

ording to the most prob-able measurement-to-tra
k asso
iation [Blai 00, Vo 08℄. Whenever a new 
olle
tionof measurements is available, all measurement-to-tra
k hypotheses are 
onsidered(with living targets as well as new ones) and asso
iated to a probability denoting itslikelihood among other hypotheses. Previous hypotheses are also 
onsidered, theirprobilities being updated with the Bayes rule. Thus, at ea
h time step, a full treeof possible hypothesis is maintained, and the tra
ks are updated using a standardKalman �lter with the most probable asso
iation hypothesis. Keeping tra
e of thetree of all hypothesis allows the tra
ker to �
hange opinion� and to 
onsider an asso
i-ation that was previously dis
arded if its asso
iated hypothesis'probability in
reases.The main drawba
k of this method is its 
omputational 
ost, whi
h in
reases dra-mati
ally with the number of targets and/or the number of measurements. It 
anbe redu
ed by introdu
ing a gating pro
ess [Blai 00℄, in whi
h asso
iations betweenan estimated target state and any measurement whose distan
e with the target fallsabove a given treshold is immediately dis
arded. On a more pra
ti
al side, the dif-fered de
ision approa
h may be a sour
e of �dis
ontinuity� in the display of tra
kstates [Blai 00℄: if the tra
ker 
hanges the 
hain of previous asso
iations due to are
ent update of the asso
iated probabilities, the tra
k number and tra
k states may
hange dramati
ally from one time step to the next, indu
ing a �dis
ontinuous� dis-play that may appear errati
 to the operator.
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The joint probabilisti
 data asso
iation (JPDA) is another, more �
ontinuous� ap-proa
h [Blai 00℄. Similarly to the MHT approa
h, asso
iation between existing tra
ksand new measurements are given probabilities a

ording to their likelihood; then,ea
h tra
k is updated with a Kalman update using an average of all the new mea-surements weighted with their asso
iation probabilities. In 
ontrast to the MHTapproa
h, there is no �going ba
k� sin
e every possible asso
iation is 
onsidered inthe tra
k update; therefore, there is no need to maintain a full tree of hypotheses.Note that some gating may be used as well in order to dis
ard unlikely hypotheses inthe averaging pro
ess. Not surprisingly, the JPDA approa
h is signi�
antly lighterthat the MHT [Blai 00℄, but has poorer performan
es in 
lose targets environmentsbe
ause the averaging step tends to merge nearby tra
ks. Besides, the JPDA isdesigned to work with a known number of targets sin
e ea
h asso
iation hypothesis
onsiders that a measurement either originates from one of the existing tra
ks or isa false alarm. Note also that, unlike the MHT approa
h whi
h in
orporates targetbirth and target death pro
esses in the tree of possible hypotheses, the JPDA fo
useson the update on living tra
ks with new measurements and requires additionnal me-
hani
s for tra
k 
reation and deletion. In its most simpli�ed form, only the nearestmeasurement is taken into a

ount in the tra
k update and this method is known asthe nearest neighbor (NN-JPDA or NN) approa
h.The joint multi-target probability density �lterA more re
ent approa
h, the joint multi-target probability density (JMPD), aims atavoiding the 
ostly data asso
iation pro
edures by propagating joint multi-targetdensities of the form p(X, T |Z), where X = {x1, ..., xT} is a 
olle
tion of partitions,
T is the estimated target number and ea
h partition 
orresponds to an estimatedtarget's state [Kreu 05℄. This formulation seems quite 
lose to the RFS formulation;indeed, Kreu
her et al. explain in [Kreu 05℄ that the JMPD method 
an be expressedin the FISST framework. This 
laim was a
tually made made in earlier papers butwas 
ontested by Mahler [Mahl 03b℄. The JMPD framework looks promising be
auseit allows the representation of a broader range of multi-target 
on�guration than theRFS does, sin
e X = {x1, ..., xT } is a 
olle
tion in whi
h several partitions may sharethe same state. However, the parti
le implementation proposed by Kreu
her et al.[Kreu 04, Kreu 05℄ remains un
lear to the author. The prin
iple is to propagateweighted parti
les Xp = {xp,1, ..., xp,T (p)}, ea
h parti
le 
arrying its own estimationof the target number and the target states. The number of partitions in a parti
le
an vary in the time update step to a

ount for the birth and/or death of the targets,the weight of ea
h parti
le is updated in the data update step using an extendedBayes rule for joint densities. The problem lies in the joint estimation of the targetnumber and the target states. The estimated target number is the partition numberwhi
h is shared by the largest number of parti
les, their weight being taken intoa

ount. Then, ea
h estimated target state is 
omputed as the weighted average
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of partitions asso
iated to this target among all the parti
les. But, sin
e there isnot labeling among the partitions in a given parti
le, one must be sure that the
j-th partition in ea
h parti
le is the estimation of the same target. A K-meansalgorithm is proposed in order to ensure that the partitions are properly reorderedbefore the estimation step [Kreu 05℄, but it is un
lear if this work properly amongparti
les with di�erent size or among parti
les with the same size but with partitionsrepresenting di�erent targets. For example, 
onsider two true targets x1 and x2 attime k, two parti
les Xk

1 = {xk
1,1x

k
1,2} with weight wk

1 and Xk
2 = {xk

2,1x
k
2,2} withweight wk

2 . Further assume that xk
1,1 and xk

2,1 are estimations from target x1, xk
1,2and xk

2,2 estimations from target x2. In the time update step, xk
1,1 evolves to xk+1

1,1 ,
xk
1,2 evolves to xk+1

1,2 and xk
2,1 evolves to xk+1

2,1 a

ording to the target motion model,but xk
2,2 is deleted (to a

ount for the death of targets) and another partition xk+1

2,2is 
reated (to a

ount for the birth of targets). Then, a

ording to the author'sunderstanding of the JMPD me
hanisms, the K-means algorithm is likely to keepthe partition order identi
al in both parti
les and 
on
lude that partitions xk+1
1,1 and

xk+1
2,1 are estimations of the same target - whi
h is 
orre
t - and partitions xk+1

1,1 and
xk+1
2,1 as well - whi
h is in
orre
t.Comparison with the RFS-based �lterCompared to the tra
k-based �lters and the JMPD �lter (although to a lesser ex-tent), the greatest asset of the RFS-based �lter 1.1 seems to be its �
ompletedness�.Be
ause it is a well-built extension of the Bayes rule to rigorously de�ned randomobje
ts, the propagation of multi-target densities with the time and data updateequations (1.55) and (1.56) requires no heuristi
s inherent to the data asso
iationstep in the MHT and/or the JPDA, or the tra
k 
reation and deletion pro
essesin the JPDA. The RFS representation allows - at least in theory - the rigorousdes
ription of 
ompli
ated multi-target 
on�gurations, for example strong pairwiseintera
tion between targets, whether in birth, motion, spawning or death pro
esses.In other words, the RFS approa
h may appear more �rigorous� and �
omplete� thanother methods sin
e it is based on rigorously de�ned random obje
ts and mathe-mati
al 
on
epts that allows for the representation of a broad range of dete
tionand tra
king problems. Arguably, the PHD is more adapted than other methods forrepresenting the un
ertainty in the estimation of the target number. For example,if the integral of the PHD in a given subset T ∈ X yields 1.5 (see �gure 1.6 foran illustration of the PHD), then it means that the presen
e of one or two targetsinside T is likely, thereby �enti
ing� the sensor manager to fo
us some resour
es inthis region in order to re�ne the estimation of the target number.This main asset of the RFS method is perhaps also its greatest weakness: the
omplexity of the RFS theory makes the equations (1.55) and (1.56) intra
table,
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ex
ept in spe
ial 
ases - e.g. if the target number is �xed. The PHD approximation(see previous se
tion 1.2.2) enjoyed a wide popularity in the last years, notably be-
ause the �ltering equations (1.58) and (1.59) 
an be implemented with well-knownmethods su
h as Gaussian mixtures [Vo 06℄ or SMC methods [Vo 05℄. Moreover,the 
onstru
tion of the PHD �lter being rigorously derived from the RFS �lter asshown in the next 
hapter, the required assumptions in the PHD framework are
learly stated. Some of these assumptions are fairly 
ommon, as the independen
eof targets, others are more di�
ult to grasp, su
h as the Poisson assumption onthe predi
ted and posterior multi-target RFS. The 
onsequen
e is that it is perhapsmore di�
ult to de�ne the 
lass of multi-target tra
king problems for whi
h thePHD �lter is well-adapted than in the MHT or JPDA 
ases. A 
ommon di�
ultyfa
ed with a PHD-based tra
ker is the unstability of the target number estimation[Erdi 05℄. Another approximation of the RFS �lter has been re
ently proposed, the
ardinalized probability hypothesis density (CPHD) [Mahl 07a, Mahl 07
℄. Some ofthe assumptions of the PHD are relaxed, allowing a broader range of RFSs to �t forthe predi
ted and posterior RFS. Consequently, these multi-target RFSs 
annot be
hara
terized by their sole PHD (that is, the assumptions given in proposition 1.3do not hold anymore), and their 
ardinality distributions, in addition to their PHD,must be propagated. A rigorous 
onstru
tion of the CPHD 
an be found in Vo's the-sis [Vo 08℄ and a pra
ti
al implementation in [Vo 07℄. The CPHD �lter propagatesmore information than the PHD �lter at the 
ost of an in
reased 
omputational 
ost,but Mahler's re
ent work [Mahl 10b℄ fo
uses on an more tra
table approximation ofthe CPHD.It should also be noted that the RFS �lter (as well as the PHD or the CPHD �lters),by 
onstru
tion, su�ers some limitations that are not shared by the tra
k-based�ltering methods. Unlike tra
k-based methods that dire
tly provide a 
olle
tionof tra
ks, RFS-based �lters provide probability densities (RFS �lter) or intensities(PHD �lter) from whi
h tra
ks must be extra
ted, if only for display purposes. Figure1.6 illustrates the highest peak extra
tion method for the PHD �lter. Re
all fromproposition 1.3 that the expe
ted target number N of the multi-target RFS is givenby the integral of the PHD over the whole state spa
e (the grey area in pi
ture 1.6),the extra
ted target number N̂ is 
hosen as the 
losest integer to N , and the targetstates are extra
ted at the N̂ highest peaks of the PHD. Another method, based onthe extra
tion of �parts� of the PHD that are worth 1 in �target weight�, is givenin [Tobi 08℄; the extra
tion method used in this thesis will be based on the latterand presented in the 
hapter related to sensor management (see 
hapter 3). In any
ase the extra
tion step, although fairly independent from the �ltering pro
ess, isan important part of the whole pro
ess whi
h 
an shape the overall performan
e ofthe tra
ker.
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Another limitation of the RFS-based methods, on a more fundamental level, is theabsen
e of tra
k history. In tra
k-based methods, keeping previous �ltered statesnaturally provides an history for ea
h tra
k (see bla
k dotted lines on �gure 1.4).The equivalent 
on
ept in RFS-based methods is a set history but, sin
e the elementorder in sets is arbitrary, one 
annot extra
t histories for individual tra
ks from the
olle
tion of previous �ltered states (whether probability densities in the RFS �lteror intensities in the PHD �lter). Of 
ourse, tra
k histories may be inferred fromsu

essives sets in some 
ases. For example, given the sets X̂k|k and X̂k+1|k in thesituation illustrated in �gure 1.4, one may safely assume that x̂i+2,k+1|k is a new-born tra
k and that x̂i+1,k+1|k (resp. x̂i,k+1|k) denotes the same target as x̂i+1,k|k(resp. x̂i,k|k) be
ause the targets are away from ea
h other, but retra
ing historiesin the 
ase of 
losed tra
ks may be
ome in
reasingly 
ompli
ated. One must keep inmind that, unlike tra
k-based methods, RFS-based methods do not propagate tra
khistories. Provided that the partitions 
ould be 
orre
tly labeled in ea
h partition,the JMPD te
hnique should be able to propagate tra
k histories as well, but as ex-plained before this seems to be hardly the 
ase. A labelisation te
hnique adapted tothe PHD is proposed in [Lin 06℄.An interesting �eld of study is the design of hybrid �lters gathering the strengths ofdi�erent multi-target �ltering te
hniques. For example, re
ent work of Pollard et al.[Poll 09, Poll 10℄ fo
uses on an hybrid �lter 
ombining the CPHD �lter for its e�-
en
y in target dete
tion with the MHT �lter for its a

ura
y in target lo
alization.1.3 Performan
e metri
s1.3.1 Kullba
k-Leibler divergen
eThe Kullba
k-Leibler divergen
e is a measure of di�eren
e between two distributions[Aoki 11℄:

DKL(p||q) =
∫

p(x) log
p(x)

q(x)
dx (1.60)where per 
onvention log p(x)

q(x)
= 0 if p(x) = q(x) = 0 and log p(x)

q(x)
= ∞ if p(x) > 0and q(x) = 0.The KL divergen
e is 
losely linked to the information theory and has been usedas a way to estimate an information gain prior to real observations in sensor man-agement problems. Typi
ally, if q(.) denotes the 
urrent knowledge of the observedsystem, p1(.) (resp. p2(.)) the estimation of the future knowledge should sensor 1(resp. sensor 2) be used, DKL(p1||q) 6 DKL(p2||q) 
ould indi
ate that using sensor 2is likely to be the more informative. Exploiting the KL divergen
e as a dis
riminat-ing 
riteria in sensor management is not a re
ent idea; notably, a dis
retized version
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appears in Kastella's work [Kast 97℄. In more re
ent works [Kreu 05, Rist 11a℄, theattention seems to have shifted to its generalized version, the Rényi divergen
e, eventhough Aoki et al. [Aoki 11℄ argued that its proper parametrization requires a solidknowledge of its theoreti
al properties.In any 
ase, the KL divergen
e in this thesis is not used as a sensor managementtool, but solely as an o�ine metri
 in order to 
he
k a posteriori the equality betweentwo PHDs (see 
hapter 4).1.3.2 OSPA distan
eThe Optimal Subpattern Assignment (OSPA) is a distan
e whi
h aims at quantifyingthe distan
e between two �nite sets. It was spe
i�
ally 
reated by Vo for multi-obje
testimation purposes as an improvement of an previous distan
e on �nite sets, theWasserstein metri
 [Ho� 04℄, whi
h su�ers from several in
onsisten
ies (see Vo'sthesis [Vo 08℄ for more details). For any p 6 1 and c > 0, the OPSA distan
eof order p with 
ut-o� c is the fun
tion de�ned, for any subsets X = {x1, ..., xm},
Y = {y1, ..., yn} of X , by:

d̄(c)p (X, Y ) =







0 (m = n = 0)
(

1

n

(

min
π∈Πn

m∑

i=1

d(c)(xi, yπ(i))
p + cp(n−m)

))1/p

m 6 n

d̄(c)p (Y,X) m > n(1.61)where d
(c)
X (., .) = min(dX (., .), c) is the distan
e in X that is 
ut o� at c. The
onstru
tion of the OSPA distan
e is quite intuitive:1. Mat
h ea
h point of the smallest set to those of the largest set so that the totaldistan
e is minimized (minπ∈Πn

∑m
i=1 d

(c)(xi, yπ(i))
p);2. Penalize the di�eren
e in 
ardinality between the two sets (cp(n−m)).In other words, the OSPA metri
 �nds the best mat
h between the smallest set andthe same number of points in the largest set, and 
onsiders that the remaining pointsare �far away� - that is, their distan
e to any other point ex
eeds c.Example 1.3. Consider two �nite subsets of X , X = {x1, x2} and Y = {y1, y2, y3}with the following 
on�guration:
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Figure 1.7 Example of OSPA distan
e
Suppose that one is interested in the OSPA distan
e of order one. From the 
on�g-uration of points it seems 
lear that:
• y2 is the isolated point;
• dX (x2, y3) + dX (x1, y1) > dX (x1, y3) + dX (x2, y1).Thus, if the 
ut-o� parameter c is large enough:

d
(c)
X (x2, y3) + d

(c)
X (x1, y1) > d

(c)
X (x1, y3) + d

(c)
X (x2, y1) (1.62)That is, the OSPA mat
hes x1 with y3 and x2 with y1 (bla
k dotted lines on �gure1.7) and the distan
e is:

d̄
(c)
1 (X, Y ) =

1

3

(

d
(c)
X (x1, y3) + d

(c)
X (x2, y1) + c

) (1.63)However, depending on the distan
e values, there may exist 
ut-o� values dX (x1, y3) <
c′ < dX (x2, y3) su
h that:

c′ + d
(c′)
X (x1, y1) 6 d

(c′)
X (x1, y3) + d

(c′)
X (x2, y1) (1.64)That is, the OSPA parametrized as su
h mat
hes x1 with y1 but 
onsiders x2 and y3too far away to be mat
hed (red dotted line on �gure 1.7). The distan
e is then:

d̄(c
′)

p (X, Y ) =
1

3

(

d
(c′)
X (x1, y1) + 2c′

) (1.65)The OSPA metri
 is obviously appealing in the dete
tion and tra
king problems be-
ause it take into a

ount both lo
alization and 
ardinality errors, thus en
apsulatingthe di�eren
es between, say, the set of true targets and the set of estimated targetsinto a single parameter. However, exploiting this metri
 raises several questions:
• What are the �proper values� for the order p and the 
ut-o� distan
e c?;
• How should be interpreted the value of the OSPA distan
e?Vo [Vo 08℄ provides leads for the proper parametrization of the metri
. The p-thorder average is usual in the 
onstru
tion of distan
e and plays a similar role inthe OSPA distan
e: as p in
reases, d̄(c)p be
omes in
reasingly sensitive to isolatedpoints and thus penalizes more and more the �absurd� estimates. The value of the



1.4 Con
lusion 71

ut-o� parameter c is more di�
ult to grasp. As explained by Vo, smaller values of
c emphasize on the distan
e between asso
iated points, while larger values fo
us onthe di�eren
e in the number of points. That is, the 
ut-o� parameter c balan
es thepenalization between lo
alization and 
ardinality errors. In order to keep a balan
edmetri
, Vo advises to set the 
ut-o� parameter signi�
antly larger than a lo
alizationerror, but signi�
antly smaller than the maximum distan
e between obje
ts. In thisthesis, the typi
al OSPA parameters would be p = 2 and c = 100.Be
ause the OSPA metri
 aggregates all the di�eren
es between two sets in a singlevalue, it is somewhat di�
ult to analyze the OSPA distan
e without a referen
e.Moreover, it 
an be easily shown that:

∀X, ∀Y, ∀p, 0 6 d̄(c)p (X, Y ) 6 c (1.66)That is, unlike usual metri
s, the OSPA distan
e is 
apped by the 
ut-o� parameter.Thus, as suggested by Vo, the OSPA distan
e might as well be evaluated with itsmaximum value as a referen
e (�the 
loser to the 
ut-o� parameter c, the worst theestimation is�) rather than its minimum value (�the 
loser to zero, the better theestimation is�). In any 
ase, the author found it safer to exploit the OSPA distan
esolely as a 
omparison between di�erent estimations and not as an obje
tive evalu-ation of a single estimation.Although the OSPA distan
e is a powerful metri
, Vo et al. [Vo 05℄ argued thatit has an undesirable e�e
t when used in the PHD framework. Indeed, one must ex-tra
t targets from the PHD prior to its evaluation with the OSPA (or the Wassertein)distan
e sin
e a density 
annot be used as input. Thus, the evaluation of the PHDthrough the OSPA distan
e depends on the target extra
tion pro
ess, and this de-penden
e is generally seen as undesirable. Another limit of the OSPA distan
e isits inadequa
y for the evaluation of labeled set (i.e. set of tra
ks where ea
h tra
kis asso
iated to an eventual true target). That is, the OSPA will not penalize thefa
t that the i-th tra
k is mat
hed with the j-th true target at iteration k, butis later mat
hed with a di�erent true target. The extension of the OSPA so thatit penalizes labelisation errors has been the fo
us of re
ent papers by Risti
 et al.[Rist 10
, Rist 11b℄.1.4 Con
lusionIn this 
hapter, the main features of the RFS theory were presented, followed by the
onstru
tion of the general RFS-based �lter. This �lter being usually intra
table,the PHD �lter, a well-known approximation, was brie�y des
ribed. Designing atra
king �lter within the PHD framework has some advantages 
ompared to moretraditional approa
hes, but the RFS framework su�ers from some theoreti
al and
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pra
ti
al limitations that should be kept in mind. Finally, two useful metri
s thatwill be applied to evaluate the performan
e of PHD-based tra
kers were des
ribed.



CHAPTER2The multi-sensor PHD �lter
This 
hapter deals with the rigorous 
onstru
tion of the PHD �lter as an approxi-mation of the RFS �lter, �rst in the single-sensor 
ase (se
tion 2.2), then in themulti-sensor 
ase (se
tion 2.3). The single-sensor 
ase is an adaptation of Mahler'searly work on the PHD [Mahl 03a, Mahl 03b℄ introdu
ing the author's own nota-tions; rewriting the single-sensor 
ase seemed ne
essary in order to understand theproposed extension to the multi-sensor 
ase, whi
h is the main 
ontribution of this
hapter. To the author's knowledge, this is the �rst attempt to build the exa
tmulti-sensor PHD �lter in the general 
ase, although the two-sensor 
ase has al-ready been 
overed by Mahler in re
ent works [Mahl 09a, Mahl 09b℄ but 
ame laterto the author's attention. Mahler's �rst attempts to design a tra
table approxima-tion of the multi-sensor 
ase for pra
ti
al purposes almost followed the dis
overy ofthe single-sensor 
ase [Mahl 03b℄, several of these approximations will be presentedin se
tion 2.4. In a very re
ent paper [Liu 11℄, another multi-sensor extension wasproposed, altough limited to linear sensor systems. Note that this 
hapter is in mostpart a 
lari�ed version of an earlier report [Dela 10℄.2.1 Some useful RFSsSin
e the RFS �lter (proposition 1.1) is intra
table in the general 
ase, some assump-tions on the targets and sensors must be made - that is, on the multi-obje
t RFSinvolved in the RFS �lter (de�nition 1.11 - in order to redu
e to the RFS equationsto tra
table approximations. These de�nitions are adapted from [Vo 08℄.

73
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2.1.1 Poisson RFSDe�nition 2.1. A Poisson RFS Ξ is des
ribed by:1. its 
ardinality distribution ρΞ(.), Poisson with parameter λΞ: ρΞ(n) def

= e−λΞ
λn
Ξ

n!
;2. its spatial intensity IΞ(.)

def
= λΞiΞ(.), su
h that ∫

X
iΞ(x)dx = 1 and the pointsare i.i.d. a

ording to iΞ(.).This de�nition is given by Vo in [Vo 08℄. The Poisson RFS is one of the simplest
lasses of RFSs and is 
hara
terized by its spatial intensity IΞ(.), even though itis more 
onveniently des
ribed with the 2-tuple (λΞ, IΞ(.)). It a

urately des
ribes
louds of points with no parti
ular spatial 
orrelation between the di�erent points.Note that the parameter λΞ is not required to be an integer. The following propertyis adapted from [Vo 08℄:Property 2.1. Let Ξ be a Poisson RFS with spatial intensity IΞ and parameter

λΞ. Then it admits Janossy and produ
t densities su
h that, for any set X =
{x1, ..., xn} ⊂ X :

j
(n)
Ξ (x1, ..., xn) = e−λΞ

n∏

i=1

IΞ(xi) (2.1)
v
(n)
Ξ (x1, ..., xn) =

n∏

i=1

IΞ(xi) (2.2)Besides, its PGFl GΞ is given by:
GΞ[.] = eIΞ[.]−λΞ (2.3)where IΞ[.] is the fun
tional IΞ[h] def
=
∫

X
h(x)IΞ(x)dx.The proof is given in appendix A. Note that the PHD (or intensity) vΞ of a PoissonRFS exists and equals its spatial intensity IΞ, that is, a Poisson RFS is 
ompletelydes
ribed by its PHD.2.1.2 Independent Identi
ally Distributed Cluster RFSDe�nition 2.2. A (i.i.d) 
luster RFS Ξ is des
ribed by:1. its 
ardinality distribution ρΞ(.) with mean λΞ: λΞ

def
=
∑∞

n=0 nρΞ(n);2. its spatial intensity IΞ
def
= λΞiΞ(.), su
h that ∫

X
iΞ(x)dx = 1 and the points arei.i.d. a

ording to iΞ(.).
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This de�nition is given by Vo in [Vo 08℄. The 
luster RFS is a generalization ofthe Poisson RFS whi
h allows a broader range of 
ardinality distributions. It is
hara
terized by its spatial intensity IΞ(.) and its 
ardinality distribution ρΞ(.), eventhough it is more 
onveniently des
ribed by the 3-tuple (ρΞ(.), λΞ, IΞ(.)). It is well-adapted to the des
ription of a false alarm pro
ess, sin
e its spatial distributionis �evenly distributed� as the Poisson RFS, but allows a greater �exibility on thenumber of false alarms per s
an. The following property is adapted from [Vo 08℄:Property 2.2. Let Ξ be a 
luster RFS with 
ardinality distribution ρΞ(.), mean λΞand spatial intensity IΞ. Then it admits Janossy densities su
h that, for any set
X = {x1, ..., xn} ⊂ X :

j
(n)
Ξ (x1, ..., xn) =

n!ρΞ(n)

λn
Ξ

n∏

i=1

IΞ(xi) (2.4)Besides, its PGFl GΞ is given by:
GΞ[.] = G|Ξ|

(
IΞ[.]

λΞ

) (2.5)where IΞ[.] is the fun
tional IΞ[h] def
=
∫

X
h(x)IΞ(x)dx, and G|Ξ| is the PGF of randomvariable |Ξ| : ω 7→ |Ξ(ω)|.The proof is given in appendix A. Note that, unlike the Poisson RFS (proposition2.1), there is no easy expression of the fa
torial moments, and in the general 
ase a
luster RFS is not 
ompletely des
ribed by its PHD.2.1.3 Bernoulli RFSDe�nition 2.3. A Bernoulli RFS Ξ is 
hara
terized by:1. its 
ardinality distribution ρΞ(.) with parameter bΞ su
h that ρΞ(0) = 1 − bΞ,

ρΞ(1) = bΞ, ρΞ(n) = 0 otherwise;2. its spatial distribution iΞ(.), su
h that the eventual point is distributed a

ordingto iΞ(.).This de�nition is given by Vo in [Vo 08℄. The Bernoulli RFS is 
ompletely des
ribedby its spatial distribution iΞ(.) and its parameter bΞ. Clearly, it is well adapted to themodelization of the evolution of a target with state x: either it dies with probability
1 − bΞ(x) or it moves to a new state a

ording to probability distribution iΞ(x)(.).Likewise, it naturally des
ribes a single-sensor/single-target dete
tion pro
ess: atarget in x is either undete
ted with probability 1 − bΞ(x), or it is dete
ted and thesensor produ
es a new measurement a

ording to probability distribution iΞ(x)(.).Note that it 
an be seen as a parti
ular 
ase of 
luster RFS. The following propertyis adapted from [Vo 08℄:
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Property 2.3. Let Ξ be a Bernoulli RFS with spatial distribution iΞ and parameter
bΞ. Then it admits Janossy densities su
h that, for any set X = {x1, ..., xn} ⊂ X :

j
(n)
Ξ (x1, ..., xn) =







1− bΞ n = 0

bΞiΞ(x1) n = 1

0 otherwise

(2.6)Besides, its PGFl GΞ is given by:
GΞ[.] = 1− bΞ + bΞiΞ[.] (2.7)where iΞ[.] is the fun
tional iΞ[h] def

=
∫

X
h(x)iΞ(x)dx.The proof is given in appendix A. Be
ause the Bernoulli RFSs are designed for thedes
ription of single-obje
t behaviors (either new target or new measurement), it isinteresting to de�ne the notion of multi-Bernoulli RFS [Vo 08℄:De�nition 2.4. A multi-Bernoulli RFS is the union RFS of statisti
ally independentBernoulli RFSs .A multi-Bernoulli RFS is naturally 
hara
terized by the spatial intensities and pa-rameters of the Bernoulli RFS it is built upon and its PGFl 
an be written as follows(adapted from [Vo 08℄):Property 2.4. Let {Ξn}n∈[1 N ] be a family of independent Bernoulli RFS with spatialdistributions {iΞn

}n∈[1 N ] and parameters {bΞn
}n∈[1 N ], and Ξ the resulting multi-Bernoulli RFS. Then, its PGFl GΞ is given by:

GΞ[.] =
N∏

n=1

(1− bΞn
+ bΞn

iΞn
[.]) (2.8)where iΞn

[.] is the fun
tional iΞn
[h]

def
=
∫

X
h(x)iΞn

(x)dx.The proof is straightforward using property 1.3.2.2 Single-sensor PHD �lter2.2.1 Time update equationThe 
hallenge is to �nd a tra
table form of the Bayes time update equation (1.55):
pΞk+1|k

(.|Z1:k) =

∫

F(X )

pΞT
k,k+1

(.|X)pΞk|k
(X|Z1:k)µ(dX) (2.9)where:
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• Ξk|k is the posterior (multi-target) RFS at time k;
• ΞT

k,k+1 is the transition (multi-target) RFS at time k + 1;
• Ξk+1|k is the predi
ted (multi-target) RFS at time k + 1;In this general form, the transition RFS may 
over a broad range of targets' behav-iors; however the PHD 
onstru
tion requires some restri
tions through the followingassumptions (adatpted from [Mahl 03a℄):Proposition 2.1. Assuming that, at time k:
• a living target with state xi,k dies with probability 1− psk,k+1(xi,k);
• a surviving target with state xi,k evolves a

ording to probability distribution
f t
k,k+1(.|xi,k);

• from a living target with state xi,k, a set of spawned targets XS
i,k+1 is borna

ording to probability distribution pSk,k+1(.|xi,k);

• a set of targets XB
k+1 is born spontaneously a

ording to probability distribution

pBk,k+1(.);
• the evolution, spawning and birth pro
esses are statisti
ally independent 
on-ditionally on the set Xk of living targets.then the transition RFS ΞT

k,k+1 is the union RFS:
ΞT
k,k+1(X)

def
=

(
⋃

x∈X

ΞE
k,k+1(x)

)

︸ ︷︷ ︸

ΞE
k,k+1(X)

∪
(
⋃

x∈X

ΞS
k,k+1(x)

)

︸ ︷︷ ︸

ΞS
k,k+1(X)

∪ ΞB
k,k+1 (2.10)where:

• ΞE
k,k+1(x) is the (single-target) evolution Bernoulli RFS in state x with spatialdistribution f t

k,k+1(.|x) and parameter psk,k+1(x);
• ΞE

k,k+1(X) =
⋃

x∈X ΞE
k,k+1(x) is the (multi-target) evolution Multi-BernoulliRFS in set X;

• ΞS
k,k+1(x) is the (single-target) spawning RFS in state x with probability distri-bution pSk,k+1(.|x);

• ΞS
k,k+1(X) =

⋃

x∈X ΞS
k,k+1(x) is the (multi-target) spawning RFS in set X;

• ΞB
k,k+1 is the (multi-target) birth RFS with probability distribution pBk,k+1(.).
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Besides, the PGFl of the transition RFS ΞT

k,k+1 is given by:
GΞT

k,k+1(X)[h] = (1− psk,k+1(.) + psk,k+1(.)f
t
k,k+1[h|.])X(GΞS

k,k+1(.)
[h])XGΞB

k,k+1
[h] (2.11)where:

• f t
k,k+1[h|x] is the fun
tional f t

k,k+1[h|x]
def
=
∫

X
h(y)f t

k,k+1(y|x)dy;
• GΞS

k,k+1(x)
is the PGFl of the spawning RFS ΞS

k,k+1(x);
• GΞB

k,k+1
is the PGFl of the birth RFS ΞB

k,k+1.The proof is given in appendix A. Note that no assumption on the spawning andbirth models are required so far but their mutual independen
e. Pay attention tothe fa
t that probability distributions pSk,k+1(.|x) and pBk,k+1(.) are dimensionless andset-based (i.e. de�ned on F(X )), while f t
k,k+1(.|x) has unit K−1

X and is state-based(i.e. de�ned on X ).Figure 2.1 Example of transition RFS (evolution in red, spontaneous birth in green,spawning in blue)

Figure 2.1 shows an example of transition RFS based on a given set Xk. Note thattarget x dies but spawns two new targets (e.g. a 
onvoy splits in two parts), target
y evolves and spawns a new target (e.g. a target leaves a 
onvoy), while target zevolves without spawning any new target. Besides, two targets are born indepen-dently of x, y or z.On
e the transition RFS is expli
itly stated, the PHD equivalent of the time up-date equation (2.9) 
an be built as follows (adatpted from [Mahl 03a℄):
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Theorem 2.1. Under assumptions given in proposition 2.1, the time update equationof the PHD �lter is given by:

vΞk+1|k
(.|Z1:k)

=

∫

X

(

psk,k+1(x)f
t
k,k+1(.|x) + vΞS

k+1|k
(x)(.)

)

vΞk|k
(x|Z1:k)dx+ vΞB

k+1|k
(.) (2.12)Besides, the estimated target number Nk+1|k is given by:

Nk+1|k

=

∫

X

[(

psk,k+1(x) +

∫

X

vΞS
k+1|k

(x)(y)dy

)

vΞk|k
(x|Z1:k)

]

dx+

∫

X

vΞS
k+1|k

(x)(x)dx(2.13)The proof is given in appendix A. Sin
e no assumptions on the spawning and birthmodels are made, equations (2.12) and (2.13) are still intra
table if PHD vΞS
k+1|k

(x)(.)and vΞB
k+1|k

(.) 
annot be 
onstru
ted expli
itly. It is therefore 
ommon pra
ti
e to
onsider the spawning and birth RFSs to be Poisson, whi
h gives the mu
h moreuseful result (adatpted from [Mahl 03a℄):Corollary 2.1. Under the same assumptions as theorem 2.1 and the additionnalassumptions that:
• spawning RFSs ΞS

k,k+1(x) are Poisson with intensities λs
k,k+1(x)sk,k+1(.|x);

• the birth RFS ΞB
k,k+1 is Poisson with intensity λb

k,k+1bk,k+1(.).the time update equation of the PHD �lter is given by:
vΞk+1|k

(.|Z1:k)

=

∫

X

(
psk,k+1(x)f

t
k,k+1(.|x) + λs

k,k+1(x)sk,k+1(.|x)
)
vΞk|k

(x|Z1:k)dx+ λb
k,k+1bk,k+1(.)(2.14)Besides, the predi
ted target number Nk+1|k is given by:

Nk+1|k

=

∫

X

(
psk,k+1(x) + λs

k,k+1(x)
)
vΞk|k

(x|Z1:k)dx+ λb
k,k+1 (2.15)
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Table 2.1: PHD �lter: assumptions for the time update equationObje
t modelization RFS 
onstru
tionEvolution pro
essEvolution of target x: ΞE

k,k+1(x): Bernoulli with:1. dies with prob. 1− psk,k+1(x); 1. parameter psk,k+1(x);2. if alive, moves a

. to f t
k,k+1(.|x). 2. spatial distribution f t

k,k+1(.|x).Single-target evolutions: independent ΞE
k,k+1(X): multi-BernoulliSpawning pro
essSpawning from target x: ΞS
k,k+1(x): Poisson with:1. target #: Poisson, param. λs

k,k+1(x); 1. parameter λs
k,k+1(x);2. targets i.i.d. a

. to sk,k+1(.|x). 2. spatial intensity λs

k,k+1(x)sk,k+1(.|x).Single-target spawnings: independent ΞS
k,k+1(X): union of independent RFSsSpontaneous birth pro
essSpontaneous birth: ΞB
k,k+1: Poisson with:1. target #: Poisson, param. λb

k,k+1; 1. parameter λb
k,k+1;2. targets i.i.d. a

. to bk,k+1(.). 2. spatial intensity λb

k,k+1sk,k+1(.).Transition pro
essEvolution, spawning and birth: independent ΞT
k,k+1(X): union of independent RFSs2.2.2 Data update equationConstru
tionThe 
hallenge is to �nd a tra
table form of the Bayes data update equation (1.56)in the single-sensor 
ase:

pΞk+1|k+1
(.|Z1:k+1) =

pΣk+1
(Zk+1|.)pΞk+1|k

(.|Z1:k)
∫

F(X )
pΣk+1

(Zk+1|X)pΞk+1|k
(X|Z1:k)µ(dX)

(2.16)where:
• Ξk+1|k is the predi
ted (multi-target) RFS at time k + 1;
• Σk+1 is the observation (multi-measurement) RFS at time k + 1;
• Ξk+1|k+1 is the posterior (multi-target) RFS at time k + 1;
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• Zk+1 is the multi-measurement set produ
ed by the only sensor available attime k + 1.In this general form, the observation RFS may 
over a broad range of sensors' behav-iors; however the PHD 
onstru
tion requires some restri
tions through the followingassumptions (adatpted from [Mahl 03a℄):Proposition 2.2. Assuming that, at time k + 1:
• a living target with state xi,k+1 is dete
ted with probability pdk+1(xi,k+1);
• a dete
ted target with state xi,k+1 is the origin of a single true measurementa

ording to probability distribution f o

k+1(.|xi,k+1) = L
.

k+1(xi,k+1);
• a set of false alarm measurements (or false alarms) ZC

k+1 are 
reated a

ordingto a false alarm (or 
lutter) pro
ess, assumed Poisson with parameter λc
k+1 andintensity λc

k+1ck+1(.);
• the dete
tion and false alarm pro
esses are statisti
ally independent 
ondition-ally on the set Xk+1 of living targets.then the observation RFS Σk+1 is the union RFS:

Σk+1(X)
def
=

(
⋃

x∈X

ΣD
k+1(x)

)

︸ ︷︷ ︸

ΣD
k+1(X)

∪ ΣC
k+1 (2.17)where:

• ΣD
k+1(x) is the (single-measurement) dete
tion Bernoulli RFS in state x withspatial distribution f o

k+1(.|x) and parameter pdk+1(x);
• ΣD

k+1(X) =
⋃

x∈X ΣD
k+1(x) is the (multi-measurement) dete
tion Multi-BernoulliRFS in set X;

• ΣC
k+1 is the (multi-measurement) false alarm Poisson RFS with parameter λc

k+1and intensity λc
k+1ck+1(.).Besides, the PGFl of the observation RFS Σk+1 is given by:

GΣk+1(X)[g] = (1− pdk+1(.) + pdk+1(.)f
o
k+1[g|.])Xeλ

c
k+1ck+1[g]−λc

k+1 (2.18)where:
• f o

k+1[g|x] is the fun
tional f o
k+1[g|x]

def
=
∫

Z
g(z)f o

k+1(z|x)dz;
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• ck+1[g] is the fun
tional ck+1[g]

def
=
∫

Z
g(z)ck+1(z)dz.The proof is given in appendix A. Pay attention to the fa
t that spatial distribution

f o
k+1(.|x) and intensity λc

k+1ck+1(.) have unit K−1
Z and are state-based (i.e. de�nedon Z).Figure 2.2 Example of observation RFS (true measurements in green, false alarmsin red)

Figure 2.2 shows an example of observation RFS based on a given set Xk+1. Notethat targets y and z are dete
ted and the origin of one true measurement ea
h, whiletarget x remains undete
ted. Besides, three false alarms are produ
ed independentlyof x, y and z.The next step is the de�nition of 
ross-term fun
tionals (or 
ross-terms) β[.], whoseextension to the multi-sensor 
ase will be most useful for the 
onstru
tion of dataupdate equation. Nonetheless, they are introdu
ed here sin
e they provide an in-tuitive representation of the data update equation in the single-sensor as well asthe multi-sensor 
ase. The notion of 
ross-term was introdu
ed by the author in[Dela 10℄.De�nition 2.5. Under the same assumptions as proposition 2.2, the single-sensor
ross-term βk+1|k is the fun
tional de�ned, for any real-valued fun
tions h (resp. g)de�ned on X (resp. Z) in [0 1], by:
βk+1|k[g, h]

def
= λc

k+1ck+1[g]− λc
k+1 + vΞk+1|k

[
h(1− pdk+1 + pdk+1f

o
k+1[g|.])

]
− vΞk+1|k

[1](2.19)where vΞk+1|k
[h] is the fun
tional vΞk+1|k

[h]
def
=
∫

X
h(x)vΞk+1|k

(x|Z1:k)dx.
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For simpli
ity's sake, the time subs
ripts on 
ross-terms will be omitted when thereis no ambiguity. The 
ross-term is a joint fun
tional whose fun
tional derivative (seede�nition 1.10) 
an be 
omputed in fun
tions de�ned on X or Z. The followingnotations will be used from now on:Notation 2.1. For any x ∈ X and z ∈ Z:

β[., δx]
not
=

δ

δx
β[., h] (2.20)

β[δz, .]
not
=

δ

δz
β[g, .] (2.21)The derivated 
ross-terms 
an be expressed as follows:Proposition 2.3. For any x ∈ X and z ∈ Z:

β[g, δx] = (1− pdk+1(x) + pdk+1(x)f
o
k+1[g|x])vΞk+1|k

(x|Z1:k)KX (2.22)
β[δz, h] = λc

k+1ck+1(z)KZ + vΞk+1|k
[hpdk+1L

z
k+1]KZ (2.23)

β[δz, δx] = pdk+1(x)L
z
k+1(x)vΞk+1|k

(x|Z1:k)KXKZ (2.24)Besides, setting g = 0, h = 1 gives:
β[0, δx] = (1− pdk+1(x))vΞk+1|k

(x|Z1:k)KX (2.25)
β[δz, 1] = λc

k+1ck+1(z)KZ + vΞk+1|k
[pdk+1L

z
k+1]KZ (2.26)The proof is given in appendix A. As for the PGFl, the fun
tions g (resp. h) 
an beseen as a �fuzzy� membership fun
tion on measurement spa
e Z (resp. target spa
e

X ). Derivated 
ross-terms 
an therefore be seen as �likelihoods�, 
onditonnally onthe predi
ted PHD vΞk+1|k
, that:

• β[0, δx]: a target is in state x and is undete
ted;
• β[δz, 1]: a measurement, whose origin is unknown, is produ
ed in point z;
• β[δz, δx]: a target is in state x, is dete
ted and the origin of true measurement
z.The term �likelihood� in the intepretation of the derivated 
ross-terms is an abuseof notation; more a

urately they weight events asso
iating points in target andobservation spa
es based on the information known on the system so far, hen
e theirname (see �gure 2.3 for an illustration).
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Figure 2.3 Illustration of the single-sensor 
ross-term

Note that β[δz, 1] 
overs both possible origins for measurement z, either a false alarm- λc
k+1ck+1(z)KZ - or a true measurement - vΞk+1|k

[pdk+1L
z
k+1]KZ , whi
h 
an be seen asan �expe
tation� over target spa
e X 
onsidering every possible state x as the poten-tial origin of z. Note also that a 
ross-term derivated in several measurements (e.g.

δ2

δz2δz1
β[g, h] = δ

δz2
β[δz1, h]) and/or in several targets (e.g. δ2

δx2δx1
β[g, h] = δ

δx2
β[g, δx1])vanishes. This is 
onsistent with the observation model (proposition 2.2) sin
e a sin-gle true measurement 
annot stem from several targets, nor 
an several true mea-surements stem from a single target.On
e the observation RFS is expli
itly stated and the 
ross-term properly de�ned,the PHD equivalent of the date update equation (2.16) - in the single-sensor 
aseonly - 
an be built as follows:Theorem 2.2. Under the assumptions given in proposition 2.2 and the additionalassumption that the predi
ted RFS Ξk+1|k is Poisson, the data update equation of thesingle-sensor PHD �lter is given by:

vΞk+1|k+1
(.|Z1:k+1) =

[
δ
δx

(
δ

δZk+1
eβ[g,h]

)]

g=0,h=1
[

δ
δZk+1

eβ[g,h]
]

g=0,h=1

K−1
X (2.27)

=



β[δ∅, δx] +
∑

z∈Zk+1

β[δz, δx]

β[δz, 1]



K−1
X (2.28)

=



1− pdk+1(x) +
∑

z∈Zk+1

pdk+1(x)L
z
k+1(x)

λc
k+1ck+1(z) + vΞk+1|k

[pdk+1L
z
k+1]



 vΞk+1|k
(.|Z1:k) (2.29)where Zk+1 is the set of 
urrent measurements.
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The proof is given in appendix A. This last result (2.29) is the well-known tra
tableexpression of the single-sensor PHD data equation [Mahl 03a, Mahl 03b℄.Table 2.2: PHD �lter: assumptions for the data update equation (single-sensor)Obje
t modelization RFS 
onstru
tionDete
tion pro
essObservation of target x: ΣD

k+1(x): Bernoulli with:1. dete
ted with prob. pdk+1(x); 1. parameter pdk+1(x);2. if dete
ted, meas. a

. to f o
k+1(.|x). 2. spatial distribution f o

k+1(.|x).Single-target observations: independent ΣD
k+1(X): multi-BernoulliFalse alarm pro
essFalse alarm: ΣC
k+1: Poisson with:1. measurement #: Poisson, param. λc

k+1; 1. parameter λc
k+1;2. measurements i.i.d. a

. to ck+1(.). 2. spatial intensity λc

k+1ck+1(.).Observation pro
essDete
tion and false alarm: independent Σk+1(X): union of independent RFSsTarget modelPredi
ted 
on�guration: Ξk+1|k: Poisson with:1. target #: Poisson, param. vΞk+1|k
[1]; 1. parameter vΞk+1|k

[1];2. targets i.i.d. a

. to vΞk+1|k
(.)

vΞk+1|k
[1]
. 2. spatial intensity vΞk+1|k

(.).Qualitative analysisThe key to theorem 2.2 is the 
riti
al assumption that the predi
ted RFS Ξk+1|kis Poisson, whi
h greatly simpli�es the derivation of the PGFl (see the proof formore details). It is somewhat di�
ult to evaluate its validity in pra
ti
al dete
tionand tra
king problems, be
ause the Poisson 
hara
terization of an RFS is not eas-ily linked to single-obje
t behavioral patterns. However, pay attention to the fa
tthat the prin
iple of RFS �ltering is not to �nd a stati
 multi-target RFS whose se-quential realizations mat
hes best the su

essive target 
on�gurations, but rather tomodify dynami
ally a multi-target RFS so that ea
h sequential realization mat
hesbest the 
urrent target 
on�guration. In that sense, a great variability in the targetnumber between two su

essive time steps 
an be �a

epted� by the PHD �lter andthe Poisson assumption might be less restri
tive than it seems o�hand.
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Theorem 2.2 provides an insight on the shape of the posterior PHD. An importantfa
t is that ea
h measurement 
ontributes �linearly� to the value of the posteriorPHD. The ratio β[δz,δx]

β[δz ,1]
embodies the lo
al 
ontribution of measurement z to theshape of the posterior PHD in point x, while ∫X β[δz ,δx]dx

β[δz,1]
is the global 
ontribution ofmeasurement z to the PHD, i.e. its 
ontribution to the posterior estimated numberof targets. It is easy to see the in�uen
e of the false alarm term on the 
ontributionby 
onsidering the two following extreme 
ases:1. If z is �
learly� a false alarm, i.e. λc

k+1ck+1(z) ≫ vΞk+1|k
[pdk+1L

z
k+1], thenby 
onstru
tion (proposition 2.3) β[δz, 1] ≃ λc

k+1ck+1(z)KZ , thus the global 
ontri-bution of measurement z tends to be negligible ( ∫X β[δz ,δx]dx

β[δz ,1]
≃

∫

X β[δz ,δx]dx

λc
k+1ck+1(z)KZ

≪ 1
).2. Conversely, if z is �
learly� a true measurement, i.e.

λc
k+1ck+1(z)≪ vΞk+1|k

[pdk+1L
z
k+1], then β[δz, 1] ≃ vΞk+1|k

[pdk+1L
z
k+1]KZ =

∫

X
β[δz, δx]dx,thus the global 
ontribution of measurement z tends to one (∫X β[δz ,δx]dx

β[δz ,1]
≃ 1
).More generally, the global 
ontribution ∫

X β[δz,δx]dx

β[δz ,1]
is a real number between 0 and

1, in
reasing with the �
redit� that 
an be granted to the measurement. If z is likelyto be a false alarm measurement, its global 
ontribution is modest; the more themeasurement 
an be �trusted�, the higher its 
ontribution is. In other words, thehigher λc
k+1ck+1(z) is, the more measurement z is impli
itely 
onsidered as a falsealarm.The in�uen
e of the dete
tion probability on the 
ontribution is 
lear in the extreme
ase where a target lies outside the FOV, i.e. pdk+1(x) = 0. In this 
ase, propo-sition 2.2 redu
es to vΞk+1|k+1

(.|Z1:k+1) = vΞk+1|k
(.|Z1:k). This is expe
ted: sin
e atarget in x 
annot be dete
ted, no measurements 
an possibly stem from this tar-get and the data update step does not provide new information in x; thus, theposterior PHD equals the predi
ted PHD. In any other 
ase, though, the in�uen
eof the probability dete
tion pdk+1 on the posterior PHD is less obvious. The gen-eral form of the lo
al 
ontribution pd

k+1(x)L
z
k+1(x)

λc
k+1ck+1(z)+vΞk+1|k

[pd
k+1L

z
k+1]

vΞk+1|k
(.|Z1:k) suggeststhat a measurement in z will sharpen the PHD around the highest probable origin

xo = argmaxx p
d
k+1(x)L

z
k+1(x), provided that the likelihood fun
tion is dis
riminat-ing enough (whi
h is the 
ase in pra
ti
al situations, see 
hapter 4). It may be safelyassumed that the dete
tion probability fun
tion is mu
h less dis
riminating thanthe likelihood fun
tion for usual sensors: that is, the lo
al variation of the dete
tionprobability, aside from the edges of the FOV, is likely to be mu
h slower than thevariation of the likelihood fun
tion. In that sense, the in�uen
e of pdk+1(.) on thelo
al 
ontribution is likely to be modest.
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The in�uen
e of the dete
tion probability on the global 
ontribution should be stud-ied in parallel with the 
ontribution of the predi
ted PHD - that is, the past infor-mation on the target 
on�guration. Consider a 
urrent measurement z, appearingin an region R of the state spa
e. If z is in
onsistent with past information on thetargets (vΞk+1|k

is 
lose to zero in R) and/or with the 
urrent FOV 
on�guration(pdk+1 is 
lose to zero in R), then vΞk+1|k
[pdk+1L

z
k+1] ≃ 0 and thus the global 
on-tribution of z is likely to be negligible. Conversely, if z is 
onsistent with knowninformation regarding the targets and the sensors (typi
ally, z is 
lose to a �largeamount of PHD�), then vΞk+1|k

[pdk+1L
z
k+1] is likely do be dominant 
ompared to thefalse alarm term, and the global 
ontribution of z tends to one (∫X β[δz,δx]dx

β[δz,1]
≃ 1
).Consequently, measurements appearing �out of nowhere� are likely to be dis
ardedbefore measurements appearing in the vi
inity of previously dete
ted targets. This�self-gating property� [Mahl 07b℄ is somewhat reassuring, although it has undesirable
onsequen
es for the exploration of unkown region of the state spa
e.2.3 Multi-sensor PHD �lterThis se
tion deals with the extension of the PHD �lter data update equation tothe multi-sensor 
ase (theorem 2.2). Note that the time update equation does notinvolve any new measurements and therefore remains un
hanged in the multi-sensor
ase. Note that the sensor order is arbitrary and need not be the same at ea
h timestep, nor does the sensor number. For 
larity's sake, however, the sensor number isfrom now on assumed 
onstant and equal to S.2.3.1 Data update equationConstru
tionThe 
hallenge is to �nd a tra
table form of the Bayes data update equation (1.56)in the multi-sensor 
ase:

pΞk+1|k+1
(.|Z1:k+1) =

pΣk+1
(Zk+1|.)pΞk+1|k

(.|Z1:k)
∫

F(X )
pΣk+1

(Zk+1|X)pΞk+1|k
(X|Z1:k)µ(dX)

(2.30)where:
• Ξk+1|k is the (multi-target) predi
ted RFS at time k + 1;
• Σk+1 is the (multi-measurement) observation RFS at time k + 1;
• Ξk+1|k+1 is the (multi-target) posterior RFS at time k + 1;
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• Zk+1 =

⊔S
j=1Z

j
k+1 is the (multi-sensor) measurement set produ
ed by all thesensors at time k + 1.Figure 2.4 Example of multi-sensor observation RFS

The 
onstru
tion of the single-sensor observation RFS 
an be naturally extended tothe multi-sensor 
ase:Proposition 2.4. Assuming that, at time k + 1:
• the observation pro
ess of ea
h sensor is as des
ribed in proposition 2.2;
• the observation pro
esses are statisti
ally independent 
onditionally on the set
Xk+1 of living targets.then the observation RFS Σk+1 is the joint RFS:

Σk+1(X)
def
=

S⊔

j=1

Σj
k+1(X) (2.31)where Σj

k+1(X) are the independent single-target observation RFSs. Besides, theprobability distribution of the multi-sensor observation RFS exists and, for any multi-sensor measurement set Z =
⊔S

j=1Z
j:

pΣk+1(X)(Z) =

S∏

j=1

pΣj
k+1(X)(Z

j) (2.32)
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The proof is straightforward by 
ombining the equivalent result in the single-sensor
ase (proposition 2.2) and the property of joint RFSs (1.8).Figure 2.4 shows an example of observation RFS based on a given set Xk+1. Notethat target z is missed by sensor 1 but dete
ted by sensor S. Besides, three falsealarms are produ
ed by sensor 1 and two by sensor S.The next step is the extension of the 
ross-term de�ntion to the multi-sensor 
ase:De�nition 2.6. Under the same assumptions as proposition 2.4, the multi-sensor
ross-term βk+1 is the fun
tional de�ned, for any real-valued fun
tions h (resp. gj,
j ∈ [1 S]) de�ned on X (resp. Zj, j ∈ [1 S]) in [0 1], by:
βk+1[g

1, ..., gS, h]
def
=

S∑

j=1

(λc,j
k+1c

j
k+1[g

j]− λc,j
k+1)

+ vΞk+1|k

[

h

(
S∏

j=1

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])
)]

− vΞk+1|k
[1] (2.33)where vΞk+1|k

[h] is the fun
tional vΞk+1|k
[h]

def
=
∫

X
h(x)vΞk+1|k

(x|Z1:k)dx.For simpli
ity's sake, the time subs
ripts on 
ross-terms will be omitted when thereis no ambiguity. The 
ross-term is a joint fun
tional whose fun
tional derivative (seede�nition 1.10) 
an be 
omputed in fun
tions de�ned on X or any Zj . In addition tothe still valid notations (2.20) and (2.21) provided for the single-sensor 
ross-term,the following notations will be used from now on:Notation 2.2. For any x ∈ X , any family of measurements {zj}Sj=1, zj ∈ Zj, anysubset Z ⊆ {zj}Sj=1:
β[δZ , ḡ, .]

not
=

δ

δZ
β[g1, ..., gS, .] (2.34)

β[δZ , .]
not
= [β[δZ , ḡ, .]]g1...S=0 (2.35)And, by 
onvention:

β[δ∅, ḡ, .]
not
= β[g1, ..., gS, .] (2.36)

β[δ∅, .]
not
= β[0, ..., 0, .] (2.37)
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Example 2.1. Suppose that there are S = 3 sensors. For j ∈ [1 3], let zj ∈ Zjbe any measurement from sensor sj, and let x ∈ X be any target state. Then, forexample:

β[δ{z1,z3}, ḡ, h] = β[δz1, g
2, δz3, h]

β[δ{z2}, δx] = β[0, δz2, 0, δx]

β[δ∅, ḡ, 1] = β[g1, g2, g3, 1]Proposition 2.5. For any x ∈ X , any family of measurements {zj}Sj=1, zj ∈ Zj,any subset Z ⊆ {zj}Sj=1:
β[δ∅, ḡ, δx] =

S∏

j=1

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)KX (2.38)

β[δZ , ḡ, h] =







λc,j0
k+1c

j0
k+1(z

j0)KZj0

+ vΞk+1|k
[hpd,j0k+1L

zj0 ,j0
k+1 KZj0

∏

zj 6=zj0

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])]

(Z = {zj0})
vΞk+1|k

[h
∏

zj∈Z

(pd,jk+1L
zj ,j
k+1KZj )

∏

zj /∈Z

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])]

(|Z| > 2)(2.39)
β[δZ , ḡ, δx] =

∏

zj∈Z

(pd,jk+1(x)L
zj ,j
k+1(x)KZj )

×
∏

zj /∈Z

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)KX (2.40)Besides, setting g1 = 0, ..., gS = 0, h = 1 gives:

β[δ∅, δx] =

S∏

j=1

(1− pd,jk+1(x))vΞk+1|k
(x|Z1:k)KX (2.41)

β[δZ , 1] =







λc,j0
k+1c

j0
k+1(z

j0)KZj0 + vΞk+1|k
[pd,j0k+1L

zj0 ,j0
k+1 KZj0

∏

zj 6=zj0

(1− pd,jk+1)]

(Z = {zj0})
vΞk+1|k

[
∏

zj∈Z

(pd,jk+1L
zj ,j
k+1KZj )

∏

zj /∈Z

(1− pd,jk+1)] (|Z| > 2)(2.42)
β[δZ , δx] =

∏

zj∈Z

(pd,jk+1(x)L
zj ,j
k+1(x)KZj )

∏

zj /∈Z

(1− pd,jk+1(x))vΞk+1|k
(x|Z1:k)KX (2.43)
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The proof is given in appendix A. Similarly to the single-sensor 
ross 
ase, thefun
tions gj (resp. h) 
an be seen as a �fuzzy� membership fun
tion on measurementspa
e Zj (resp. target spa
e X ). Multi-sensor derivated 
ross-terms 
an be seen as�likelihoods� as well, 
onditonally on the predi
ted PHD vΞk+1|k

, that:
• β[δ∅, δx]: a target is in state x and is undete
ted;
• β[δZ , 1]: a 
olle
tion of measurements, whose single origin is unknown, areprodu
ed in points given by Z;
• β[δZ , δx]: a target is in state x, is the origin of measurements in Z and isundete
ted by the remaining sensors;As in the single-sensor 
ase, pay attention to the fa
t that the term �likelihood� isan abuse of notation here.Note that the false alarm terms vanish in β[δZ , h] if Z 
ontains at least two mea-surements. This is 
onsistent with the observation model (proposition 2.4): thesingle-sensor observation pro
esses being independent 
onditionally on the states ofthe true targets, there is no statisti
al link between the o

uren
e of a false alarm in

zi by sensor i and the o

uren
e of a false alarm in zj by sensor j. For example:1. β[δ{zi}, 1] 
an be seen as the �likelihood� that a sour
e, whether a target in anunknown state or a false alarm produ
ed by sensor i, is the origin of measurement zi.2. β[δ{zi,zj}, 1] 
an be seen as the �likelihood� that a single sour
e, ne
essar-ily a target in an unknown state, is the origin of both measurements zi and zj .3. β[δ{zi}, 1]β[δ{zj}, 1] 
an be seen as the �likelihood� that a sour
e, whethera target in an unknown state or a false alarm produ
ed by sensor i, is the origin ofmeasurement zi, while another sour
e, whether a target in an unknown state or afalse alarm produ
ed by sensor j, is the origin of measurement zj .As in the single-sensor 
ase, a 
ross-term derivated in several measurements fromthe same sensor (e.g. δ2

δzi2δz
i
1
β[g1, ..., gS, h]) and/or in several targets(e.g. δ2

δx2δx1
β[g1, ..., gS, h]) vanishes. This is also 
onsistent with the observationmodel (prop. 2.4) sin
e a single true measurement 
annot stem from several tar-gets, nor 
an several true measurements from the same sensor stem from a singletarget.
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Figure 2.5 Illustration of the multi-sensor 
ross-term

On
e the observation RFS and the 
ross-term are properly extended, the PHD equiv-alent of the date update equation (2.16) in the multi-sensor 
ase 
an be built asfollows:Theorem 2.3. Under the assumptions given in proposition 2.4 and the additionalassumption that the predi
ted RFS Ξk+1|k is Poisson, the PHD �lter data updateequation is given by:
vΞk+1|k+1

(x|Z1:k+1) =

[
δ
δx

(
δ

δZk+1
eβ[δ∅,ḡ,h]

)]

g1...S=0,h=1
[

δ
δZk+1

eβ[δ∅,ḡ,h]
]

g1...S=0,h=1

K−1
X (2.44)

=

[
δ
δx

(
δ

δZ1
k+1

(

...
(

δ
δZS

k+1
eβ[g

1,...,gS,h]
)

...
))]

g1...S=0,h=1
[

δ
δZ1

k+1

(

...
(

δ
δZS

k+1
eβ[g1,...,gS,h]

)

...
)]

g1...S=0,h=1

K−1
X (2.45)where:
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• Zj

k+1 is the single-sensor set of 
urrent measurements produ
ed by sensor j;
• Zk+1 =

⊔S
j=1Z

j
k+1 is the multi-sensor set of 
urrent measurements.The proof is given in appendix A. Unfortunately, unlike the single-sensor 
ase, thereis no elegant analyti
al expression equivalent to the derivative forms (2.44) or (2.45).The exponential terms in (2.44) 
an be expanded by resolving the fun
tional deriva-tives, but the resulting formula is of in
reasing 
omplexity with the sensor numberand/or the number of 
urrent measurements per sensor.Example 2.2. Suppose that there are S = 3 sensors. At 
urrent time - time sub-s
ripts are omitted for simpli
ity's sake - sensor 1 produ
es one measurement z11,sensor 2 does not produ
e any measurement, sensor 3 produ
es two measurements

z31 and z32. Applying theorem 2.3 gives:
vΞk+1|k+1

(x|Z1:k+1) =

[
δ
δx

(
δ

δz11

(
δ

δ{z31 ,z
3
2}
eβ[g

1,g2,g3,h]
))]

gj=0,h=1
[

δ
δz11

(
δ

δ{z31 ,z
3
2}
eβ[g1,g2,g3,h]

)]

gj=0,h=1

K−1
XA 
loser look at the denominator gives:

δ

δz11

(
δ

δ{z31 , z32}
eβ[g

1,g2,g3,h]

)

=
δ

δz11

(
δ

δz31

(

eβ[g
1,g2,g3,h]β[g1, g2, δz32 , h]

))

=
δ

δz11

(

eβ[g
1,g2,g3,h](β[g1, g2, δz31 , h]β[g

1, g2, δz32 , h])
)

= eβ[g
1,g2,g3,h]

(

β[δz11 , g
2, δz31 , h]β[g

1, g2, δz32 , h] + β[g1, g2, δz31 , h]β[δz11 , g
2, δz32 , h]

+ β[δz11 , g
2, g3, h]β[g1, g2, δz31 , h]β[g

1, g2, δz32 , h]
)Thus:

[
δ

δz11

(
δ

δ{z31 , z32}
eβ[g

1,g2,g3,h]

)]

gj=0,h=1

= eβ[δ∅,1]
(

β[δ{z11 ,z31}, 1]β[δz32 , 1] + β[δz31 , 1]β[δ{z11 ,z32}, 1] + β[δz11 , 1]β[δz31 , 1]β[δz32 , 1]
)
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Likewise, the numerator equals:
[
δ

δx

(
δ

δz11

(
δ

δ{z31 , z32}
eβ[g

1,g2,g3,h]

))]

gj=0,h=1

= eβ[δ∅,1]
(

β[δ{z11 ,z31}, δx]β[δz32 , 1] + β[δ{z11 ,z31}, 1]β[δz32 , δx] + β[δz31 , δx]β[δ{z11 ,z32}, 1]

+ β[δz31 , 1]β[δ{z11 ,z32}, δx] + β[δz11 , δx]β[δz31 , 1]β[δz32 , 1]

+ β[δz11 , δx]β[δz31 , δx]β[δz32 , 1] + β[δz11 , δx]β[δz31 , 1]β[δz32 , δx]
)

+ β[δ∅, δx]

[
δ

δz11

(
δ

δ{z31 , z32}
eβ[g

1,g2,g3,h]

)]

gj=0,h=1Thus:
vΞk+1|k+1

(x|Z1:k+1) = β[δ∅, δx]K
−1
X

+
β[δ{z11 ,z31}, δx]β[δz32 , 1] + ... + β[δz11 , 1]β[δz31 , 1]β[δz32 , δx]

β[δ{z11 ,z31}, 1]β[δz32 , 1] + β[δz31 , 1]β[δ{z11 ,z32}, 1] + β[δz11 , 1]β[δz31 , 1]β[δz32 , 1]
K−1

X(2.46)Example 2.2 
learly shows how tedious the 
omputation of the data update 
an bewhen the number of sensors and/or measurements is large enough. It also providesa more intuitive interpretation of the data update me
hanism. The �rst 
ross-term�β[δ∅, δx]� weighs the event that a target lies in x but is 
urrently undete
ted, whilethe ratio a

ounts for the fa
t that a target lies in x and is dete
ted, that is, the originof at least one 
urrent measurement. The numerators explores all the possible asso
i-ations between x and the 
urrent measurements; for example, �β[δ{z11 ,z31}, δx]β[δz32 , 1]�weighs the event that a target lies in x, whose dete
tion by both sensors 1 and 3produ
es the measurements z11 and z31 , while the last measurement z32 stems fromanother sour
e (whether a target or a false alarm). The denominator is a normaliz-ing term and weighs the joint o

uren
e of these three measurements.Moreover, equation (2.46) provides an insight of the expanded expression of equa-tion (2.44) - or, equivalently, (2.45) - in the general 
ase. Similarly to the JPDAte
hnique, a state point x ∈ X is updated as a weighted average of every possi-ble measurement-to-target asso
iation, ea
h derivated 
ross-term denoting one su
hasso
iation. The next paragraph fo
uses on the 
onstru
tion of the expanded expres-sion - or 
ombinational form - of the derivative form (2.44), be
ause it is easier tomanipulate for pra
ti
al purposes and for the 
omparison with usual approximationsof the multi-sensor PHD (see se
tion 2.4).
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Combinational formFirst of all, one must 
hara
terize the 
ombination of measurement sets Z on whi
hthe 
ross-terms β[δZ , .] appearing in the 
ombinational form are derivated:De�nition 2.7. For any subset J ⊆ [1 S], any family {Zj}j∈J of �nite subsets
Zj ⊂ Zj:1. The (multi-measurement) term setM(Zj∈J) ⊂ P

(
⊔

j∈J Z
j
) is given by:

M(Zj∈J)
def
=
⋃

I⊆J

χ

(
∏

i∈I

Z i

) (2.47)That is, a (multi-measurement) term M ∈M(Zj∈J) is a set 
ontaining at most onemeasurement from ea
h Zj.2. The signature ϕZj∈J (.) is the fun
tion given by:
ϕZj∈J : P

(

P
(
⊔

j∈J

Zj

))

→ N

P 7→
∏

z∈
⊔

j∈J Zj

(
∑

Pi∈P

1Pi
(z)

) (2.48)Besides, ϕZj∈J (∅) def
= 0 by 
onvention. That is, ϕZj∈J (P ) = 1 if and only if ea
hmeasurement in ⊔j∈J Z

j appears on
e and only on
e among all the sets Pi in P .3. The 
ombinational term set C(Zj∈J) is given by:
C(Zj∈J)

def
=
{
C ⊆M(Zj∈J) | ϕZj∈J (C) = 1

} (2.49)That is, a 
ombinational term C ∈ C(Zj∈J) is a set of terms Ci su
h that ea
h mea-surement in ⊔j∈J Z
j appears on
e and only on
e among all the terms Ci.Besides, if Z =

⊔

j∈J Z
j,M(Z) (resp. ϕZ(.), C(Z)) will denoteM(Z1, .., ZJ) (resp.

ϕZ1,...,ZJ(.), C(Z1, ..., ZJ)) without ambiguity.
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Example 2.3. Continuing example 2.2, in whi
h S = 3, Z1 = {z11}, Z2 = ∅ and
Z3 = {z31 , z32}, gives:

Z1 ⊔ Z2 ⊔ Z3 = {z11 , z31 , z32}

P(Z1 ⊔ Z2 ⊔ Z3) =
{
∅, {z11}, {z31}, {z32}, {z11 , z31}, {z11 , z32}, {z31, z32}, {z11 , z31 , z32}

}

M(Z1, Z2, Z3) =
{
{z11}, {z31}, {z32}, {z11, z31}, {z11, z32}

}

C(Z1, Z2, Z3) =
{{
{z11}, {z31}, {z32}

}
,
{
{z11 , z31}, {z32}

}
,
{
{z11 , z32}, {z31}

}}Note that, in the ratio in (2.46):
• ea
h 
ross-term is derivated in a multi-measurement term ofM(Z1, Z2, Z3);
• the 
ross-terms of a given produ
t are derivated in the sets of a given 
ombi-national term of C(Z1, Z2, Z3).that is:

vΞk+1|k+1
(x|Z1:k+1) = β[δ∅, δx]K

−1
X +

∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Ci

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X(2.50)The proof of result (2.50) in the general 
ase requires the following lemma:Lemma 2.1. For any sensor index s < S, any family {Zj}s+1

j=1 of �nite subsets
Zj ⊂ Zj, with Zs+1 = {zs+1

i }m
s+1

i=1 :
C(Z1:s+1) =

⋃

C∈C(Z1:s)

min(|C|,ms+1)
⋃

n=0

⋃

I⊆[1 ms+1]
J⊆[1 |C|]
|I|=|J |=n

⋃

σ∈Bij(I,J)

Uσ
I,J(Z

s+1, C) (2.51)where Bij(I, J) is the set of bije
tive fun
tions from I in J and Uσ
I,J(Z

s+1, C) ∈
C(Z1:s+1) is the 
ombinational term given by:
Uσ
I,J(Z

s+1, C)
def
=

(
⋃

j /∈J

{Cj}
)

∪
(
⋃

i∈I

{
{zs+1

i } ∪ Cσ(i)

}

)

∪
(
⋃

i/∈I

{
{zs+1

i }
}

) (2.52)
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The proof is given in appendix A. Note that this lemma is useful for pra
ti
al pur-poses be
ause it shows that the 
ombinational terms 
an be built re
ursively.Example 2.4. Continuing example 2.3 with s = 1, sin
e m1 = |Z1| = 1, C(Z1) isredu
ed to a single 
ombinational term:

C(Z1) = {C} =
{{
{z11}

}}Now with s = 2, sin
e m2 = |Z2| = 0, min(|C|, m2) = 0 and thus:
C(Z1, Z2) = U Id

∅,∅(∅, C) = {C1} =
{{
{z11}

}}Now with s = 3, sin
e m3 = |Z3| = 2, min(|C|, m3) = 1 and thus:
C(Z1, Z2, Z3) = U Id

∅,∅(Z
3, C) ∪ U1↔1

{1},{1}(Z
3, C) ∪ U2↔1

{2},{1}(Z
3, C)with:

U Id
∅,∅(Z

3, C) = {C1} ∪
{
{z31}

}
∪
{
{z32}

}
=
{
{z11}, {z31}, {z32}

}

U1↔1
{1},{1}(Z

3, C) =
{
{C1 ∪ {z31}

}
∪
{
{z32}

}
=
{
{z11 , z31}, {z32}

}

U2↔1
{2},{1}(Z

3, C) =
{
{C1 ∪ {z32}

}
∪
{
{z31}

}
=
{
{z11 , z32}, {z31}

}Theorem 2.4. Under the assumptions given in proposition 2.4 and the additionalassumption that the predi
ted RFS Ξk+1|k is Poisson, the PHD �lter data updateequation is given by:
vΞk+1|k+1

(x|Z1:k+1) = β[δ∅, δx]K
−1
X +

∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X(2.53)where:

• Zk+1 =
⊔S

j=1Z
j
k+1 is the multi-sensor set of 
urrent measurements;

• C(Zk+1) is the set of 
ombinational terms given by (2.49).The proof is given in appendix A.
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Qualitative analysisAs for the single-sensor 
ase, equation (2.53) provides some insight on the 
ontri-bution of the 
urrent measurements in Zk+1 to the posterior PHD. The notabledi�eren
e with the single-sensor is that the 
ontribution 
annot be de
oupled by in-dividual measurements nor by individual sensors, keeping tra
k of the 
ontributionsof the di�erent measurements is therefore mu
h more di�
ult. The in�uen
e of thefalse alarm terms 
an still be studied through the expression of the 
ross-terms sin
e,a

ording to proposition 2.5:







∫

X

β[δ{zj0}, δx]K
−1
X dx+ λc,j0

k+1c
j0
k+1(z

j0)KZj0 = β[δ{zj0}, 1] (Ci = {zj0})
∫

X

β[δCi
, δx]K

−1
X dx = β[δCi

, 1] (|Ci| > 2)(2.54)With the results above, it is easy to see that the global 
ontribution of a measurement
zj0 tends to zero if it is a false alarm, exa
tly as in the single-sensor 
ase. Indeed
λc,j0
k+1c

j0
k+1(z

j0)≫ 1 and thus, a

ording to the results above:






∫

X

β[δ{zj0}, δx]K
−1
X dx≪ β[δ{zj0}, 1]

β[δCi
, 1]≪ β[δ{zj0}, 1] ({zj0} ∈ Ci, |Ci| > 2)

(2.55)Thus, by dividing both numerator and denominator of the ratio in equation (2.53)by β[δ{zj0}, 1] and integrating the result over X , all the 
ombinational terms tendto zero but those where measurement zj0 is isolated, i.e. the 
ombinational terms
C ∈ C(Zk+1) of the form C = {{zj0}} ∪ C ′ where C ′ ∈ C(Zk+1 \ zj0). And thus:

∫

X











∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X











dx

≃
∫

X











∑

C∈C(Zk+1\z
j0 )

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1\z
j0 )

∏

Ci∈C

β[δCi
, 1]

K−1
X











dx

This result is 
onsistent with the observation model. If sensor j produ
es a 
learfalse alarm measurement z, then the in�uen
e of z on the posterior PHD must be
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minimal, but this must not pre
lude measurements from other sensors, even if theystem from a 
lose point in state spa
e, to be taken into a

ount. In other words, if
z1 and z2 fall in a region of the state spa
e where 1 is known to produ
e a lot of falsealarms, then the global 
ontribution of z1 on the posterior PHD should be dis
ardedwithout 
ompromising the 
ontribution of z2.Intuitively, one may expe
t the opposite in 
ase of true measurements. If z1 and
z2 fall in a region of the state spa
e where sensors 1 and 2 do not produ
e falsemeasurements and do no miss dete
tions, then the joint 
ontribution of z1 and z2should be around one, be
ause z1 and z2 are almost surely two measurements fromthe same target. That is, the 
ontribution of both z1 and z2 should be 1

2
rather than

1, otherwise the target number would be overestimated. Results (2.54) yield:
∫

X











∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X











dx

=

∑

C∈C(Zk+1)

∑

Ci∈C





∫

X

β[δCi
, δx]K

−1
X dx

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

6

∑

C∈C(Zk+1)

|C]
∏

Cj∈C

β[δCj
, 1]

∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

6 max
C
|C]

6 |Zk+1|As in the single-sensor 
ase, the global 
ontribution of a measurement z never ex-
eeds one. Now, 
onsider the extreme 
ase where there are no false alarms - λc,j0
k+1 = 0- and there are no missed dete
tions - pd,jk+1 = 1 inside the FOV F j

k+1. Then the �rstinequality above is an equality sin
e ∫
X
β[δCi

, δx]K
−1
X dx = β[δCi

, 1]. Moreover:1. If the FOVs are pairwise disjoint, a

ording to the expression of the 
ross-terms (proposition 2.5) and provided that the likelihood fun
tions are stri
tly posi-tive, β[δCi
, δx] = 0 if |Ci| > 2. Thus, the only remaining 
ombinational term in the
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global 
ontribution is C0 =

⋃

j∈S

⋃

i∈Zj
k+1

{
{zji }

} and therefore:
∫

X











∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X











dx

=

|C0]
∏

Cj∈C0

β[δCj
, 1]

∏

Ci∈C0

β[δCi
, 1]

= |C0]

= |Zk+1|2. Conversely, if the FOVs are all equal, then every true target is dete
ted by ea
hsensor, i.e. |Zj
k+1] = N where N is the number of true targets. Besides, a

ording tothe expression of the 
ross-terms (proposition 2.5), β[δCi

, δx] = 0 if |Ci| < S. Thus,the only remaining 
ombinational terms in the global 
ontribution are those with Nmulti-measurement terms Ci with S measurements ea
h - re
all from de�nition 2.7that ea
h one of the |Zk+1| = NS measurements appears on
e and only on
e in ea
h
ombinational term C. Thus:
∫

X











∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X











dx

=

∑

C∈C(Zk+1)
|C|=N

|C]
∏

Cj∈C

β[δCj
, 1]

∑

C∈C(Zk+1)
|C|=N

∏

Ci∈C

β[δCi
, 1]

= N

=
|Zk+1|
SThese results were expe
ted and are 
onsistent with the observation model. If theFOV are pairwise disjoints, the |Zk+1| true measurements ne
essarily stem from
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|Zk+1| true di�erent targets, and the global 
ontribution of Zk+1 to the posteriorPHD is |Zk+1|, des
ribing a

urately the number of true targets. Conversely, if theFOVs are identi
al, ea
h true target is the origin of S true measurements - one persensor - and the global 
ontribution of Zk+1 to the posterior PHD is on
e more thea

urate number of true targets, i.e. |Zk+1|

S
. In 
on
lusion, the global 
ontribution ofa measurement z to the posterior PHD 
an be summarized as follows:

• if z tends to be a false alarm, its global 
ontribution tends to 0 regardless ofthe FOV 
on�guration;
• if z tends to be a true measurement, its global 
ontribution tends to an upperbound equal to 1

S
if the FOVs are identi
al and in
reasing up to 1 with theseperation of the FOVs.There is not mu
h to add regarding the in�uen
e of the dete
tion probability onthe posterior PHD that was not already dis
ussed in the single-sensor 
ase. If xis outside all the FOVs, theorem 2.4 redu
es to vΞk+1|k+1

(.|Z1:k+1) = vΞk+1|k
(.|Z1:k),as expe
ted. As in the single-sensor 
ase, the posterior is likely to sharpen aroundthe measurement if the likelihood fun
tions are dis
riminating enough. Two 
losemeasurements from two di�erent sensors will �mutualize� their lo
al 
ontribution toa 
ertain extent - i.e. the joint �sharpening e�e
t� of the two measurement is likelyto be more a
ute than the individual �sharpening e�e
t� of ea
h measurement - butwith a limited e�e
t on the global 
ontribution as explained before.2.3.2 Simpli�
ation by joint partitioningClearly, the 
omputational 
ost of the data update equation (2.53) stems fromthe generation of the 
ombinational terms C(Zk+1). Indeed, on
e these terms areknown, 
omputing ea
h derivated 
ross-term is simple enough sin
e they are expli
-itly 
onstru
ted with 
ommon fun
tions su
h as dete
tion probabilities or single-target/single-measurement likelihood fun
tions (see proposition 2.3). Is is also 
learfrom lemma 2.1 that the 
omputational 
ost of C(Zk+1) in
reases dramati
ally withthe sensor number S and/or the number of 
urrent measurements. This se
tionproposes a partitioning method in order to simplify the data update equation (2.53)without approximation, in fa
t a simple rewriting of the data update equation su
hthat the number of required 
ombinational terms is signi�
antly redu
ed.The partitioning method is based on the FOVs 
on�guration and is e�
ient in pra
ti-
al situations where the overlapping among the di�erent FOVs is limited, for examplewhen 
ameras are widely spread in the surveillan
e spa
e su
h that the overlappingof more than three FOVs in a single point of the state spa
e is unlikely at any time.It is based on the fa
t that many derivated 
ross-terms in C(Zk+1) are bound tovanish based on the FOV 
on�guration, and therefore should not be 
omputed.
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The FOVs are properly de�ned as follows:De�nition 2.8. For any sensor j, j ∈ [1 S], its �eld of view at time k is the subset
F j
k ⊆ X de�ned as:

∀x ∈ X , x ∈ F j
k ⇔ pd,jk (x) > 0 (2.56)From now, it is assumed that F j

k 6= ∅ for any sensor j, at any time k. In the unlikely
ase that a sensor j is to be �shut down� during a time step k (F j
k = ∅), this sensoris simply ignored for the time being and the remaining S − 1 sensors are relabeleda

ordingly. Sin
e the sensor number and the sensor order are arbitrary, there is noloss of generality.Consider the following example:Example 2.5. Assuming that there are S = 3 sensors with 
urrent FOV 
on�gura-tion illustrated as follows (time subs
ripts are omitted for 
larity's sake):Figure 2.6 Simpli�
ation of some 
ross-terms based on the FOV 
on�guration

then some 
ross-terms are likely to simplify, for example:Sin
e x1 /∈ F 1, a target in state x1 
annot be dete
ted by sensor 1, and thus
β[δ{z1}, δx1] should vanish.Sin
e x2 /∈ F 2, a target in state x2 
annot be dete
ted by sensor 2, and thus
β[δ{z2}, δx2] should vanish. More generally, any 
ross-term derivated in x2 but β[δ∅, δx2]should vanish.Sin
e F 1 ∩ F 2 = ∅, no target may be dete
ted by both sensors 1 and 2 andtherefore no single sour
e may be the origin of z1 and z2, thus β[δ{z1,z2}, 1] shouldvanish.
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Any single sour
e at the origin of z1 and z3 must be dete
ted by both sensors

s1 and s3, thus β[δ{z1,z3}, 1] should equal β[δ{z1,z3}, 1F 1∩F 3].This leads to the joint partitioning of sensor indi
es [1 S] and state spa
e X :De�nition 2.9. Let the 
ross relation Rk be the re�exive, symmetri
 binary relationon sensors indi
es [1 S] de�ned by:
∀i, j ∈ [1 S], iRkj ⇔ (F i

k ∩ F j
k 6= ∅) (2.57)and let R+

k be its transitive 
losure.Then, let (Sk(p))
Pk

p=1 be the sensor partition at time k, where Sk(i) are the equiv-alen
e 
lasses of R+
k , and (Tk(p))

Pk

p=0 be the target spa
e partition at time k de�nedby:
Tk(p)

def
=







S⋃

j=1

F j
k (p = 0)

⋃

j∈Sk(p)

F j
k (p 6= 0)

(2.58)Note that the element order in (Sk(p))
Pk

p=1 is arbitrary but identi
al to the elementorder in (Tk(p))
Pk

p=0. For simpli
ity's sake, (Sk(p))
Pk

p=1 (resp. (Tk(p))
Pk

p=0) will be 
on-sidered a partition of [1 S] (resp. X ), whi
h is an abuse of notation sin
e the elementsare ordered and Tk(0) may be empty if all points in the state spa
e are 
overed byat least one FOV.Example 2.6. Continuing with example 2.5 leads to the following partitioning:Figure 2.7 Illustration of the joint partitioning
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The redu
ed 
ross-term fun
tionals βp are de�ned as follows:De�nition 2.10. Let (Sk+1(p))

Pk+1

p=1 , (Tk+1(p))
Pk+1

p=0 be the joint partitioning at time
k + 1 a

ording to de�nition 2.9. Then, under the the same assumptions of propo-sition 2.4, the redu
ed 
ross-term βk+1,p, 1 6 p 6 Pk+1 is the fun
tional de�ned,for any real-valued fun
tions h (resp. gj, j ∈ Sk+1(p)) de�ned on X (resp. Zj,
j ∈ Sk+1(p)) in [0 1], by:
βk+1,p[g

j∈Sk+1(p), h]
def
=

∑

j∈Sk+1(p)

(λc,j
k+1c

j
k+1[g

j]− λc,j
k+1)

+ vΞk+1|k



h



1Tk+1(p)

∏

j∈Sk+1(p)

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])







− vΞk+1|k
[1Tk+1(p)](2.59)where vΞk+1|k

[h] is the fun
tional vΞk+1|k
[h]

def
=
∫

X
h(x)vΞk+1|k

(x|Z1:k)dx.In other words, the redu
ed 
ross-term βk+1,p is the usual 
ross-term βk+1 whereonly sensors in Sk+1(p) and target states in Tk+1(p) are 
onsidered. Clearly, all theexpressions given in notation 2.2 and in proposition 2.5 are valid for βk+1,p on
eredu
ed to sensors in Sk+1(p) and target states in Tk+1(p). Likewise, de�nition 2.7on 
ombinational terms and the 
onstru
tion lemma 2.1 are valid when restri
tedto sensors in Sk+1(p). As usual, time subs
ripts in the redu
ed 
ross-term will beomitted when there is no ambiguity.The following proposition formalizes what was suggested in example 2.5:Proposition 2.6. Let (Sk+1(p))
Pk+1

p=1 , (Tk+1(p))
Pk+1

p=0 be the joint partitioning at time
k + 1. For any x ∈ X , any family of measurements {zj}Sj=1, zj ∈ Zj, any subset
J ⊆ [1 S]:

β[δ∅, ḡ, δx] =

{

βp[δ∅, ḡ, δx]

vΞk+1|k
(x)KX

(∃p ∈ [1 Pk+1], x ∈ Tk+1(p))

(x ∈ Tk+1(0)) (2.60)
β[δ{zj ,j∈J}, ḡ, h] =

{

βp[δ{zj ,j∈J}, ḡ, h]

0

(∃p ∈ [1 Pk+1], J ⊆ Sk+1(p))

(otherwise) (2.61)
β[δ{zj ,j∈J}, ḡ, δx] =

{

βp[δ{zj ,j∈J}, ḡ, δx]

0

(∃p ∈ [1 Pk+1], J ⊆ Sk+1(p), x ∈ Tk+1(p))

(otherwise) (2.62)
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The proof is given in appendix A. The results of proposition 2.6 are quite intuitiveand already illustrated in examples 2.5 and 2.6.Equation (2.60): if a target x belongs to the partition element Tk+1(p), p 6= 0,then only (some) sensors in Tk+1(p) may dete
t x. Thus, the �likelihood� that xis undete
ted by all sensors - �β[δ∅, δx]� is the �likelihood� that x is undete
ted bysensors from Tk+1(p) - �βp[δ∅, δx]�. If x is in Tk+1(0) (the red area in �gure 2.7),then the target is undete
ted with probability one and the 
ross-term redu
es to thepredi
ted PHD in x - �vΞk+1|k

(x)KX �.Equation (2.61): sin
e the 
ross-term β[δ{zj ,j∈J}, 1] weighs the asso
iation of mea-surements zj , j ∈ J to an unknown single sour
e, it vanishes if sensors j ∈ J donot all belong to the same partition element Sk+1(p). If this is the 
ase, then thesingle sour
e either either lies in the 
ombined FOV of these sensors, i.e. Tk+1(p), ormay eventually be a false alarm if there is only measurement, this joint event beingweighted by βp[δ{zj ,j∈J}, 1] by 
onstru
tion.Equation (2.62): sin
e the 
ross-term β[δ{zj ,j∈J}, δx] weighs the asso
iation ofmeasurements zj , j ∈ J to a single target, it vanishes if sensors j ∈ J do not allbelong to the same partition element Sk+1(p) - i.e. no single sour
e is �
andidate�for this asso
iation, or if this the 
ase but x does not belong to the 
orrespondingpartition element Tk+1(p) - i.e. there are �
andidates� for this asso
iation, but x isnot. If x does belong to Tk+1(p), sin
e all other �
andidates� ne
essarily belong to
Tk+1(p) as well, β[δ{zj ,j∈J}, δx] redu
es to βp[δ{zj ,j∈J}, δx].
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Considering the results of proposition 2.6, theorem 2.4 
an then be simpli�ed asfollows:Theorem 2.5. Under the assumptions given in proposition 2.4 and the additionalassumption that the predi
ted RFS Ξk+1|k is Poisson, the PHD �lter data updateequation is given by:
vΞk+1|k+1

(x|Z1:k+1)

=







vΞk+1|k
(x|Z1:k)

(x ∈ Tk+1(0))

βp[δ∅, δx]K
−1
X +

∑

C∈C(Z
(p)
k+1)

∑

Ci∈C



βp[δCi
, δx]

∏

Cj 6=Cj

βp[δCj
, 1]





∑

C∈C(Z
(p)
k+1)

∏

Ci∈C

βp[δCi
, 1]

K−1
X

(x ∈ Tk+1(p), p 6= 0)(2.63)where:
• (Sk+1(p))

Pk+1

p=1 , (Tk+1(p))
Pk+1

p=0 is the 
urrent joint partitioning given by de�nition2.9;
• Z

(p)
k+1 =

⊔

j∈Sk+1(p)
Zj

k+1 is the set of 
urrent measurements produ
ed by sensorsin Sk+1(p);
• C(Z(p)

k+1) is the set of 
ombinational terms given by (2.49).The proof is given in appendix A. From theorem 2.5 immediately follows the equiv-alent derivative form:Corollary 2.2. Under the assumptions given in proposition 2.4 and the additionalassumption that the predi
ted RFS Ξk+1|k is Poisson, the PHD �lter data updateequation is given by:
vΞk+1|k+1

(x|Z1:k+1) =







vΞk+1|k
(x|Z1:k) (x ∈ Tk+1(0))

[

δ
δx

(

δ

δZ
(p)
k+1

eβp[δ∅,ḡ,h]

)]

gj∈Sk+1(p)=0,h=1
[

δ

δZ
(p)
k+1

eβp[δ∅,ḡ,h]

]

gj∈Sk+1(p)=0,h=1

K−1
X

(x ∈ Tk+1(p), p 6= 0)(2.64)where:
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• (Sk+1(p))

Pk+1

p=1 , (Tk+1(p))
Pk+1

p=0 is the 
urrent joint partitioning given by de�nition2.9;
• Z

(p)
k+1 =

⊔

j∈Sk+1(p)
Zj

k+1 is the set of 
urrent measurements produ
ed by sensorsin Sk+1(p).Even though the simpli�ed data update equation (2.63) looks similar to the general
ase (2.53), it is 
onsiderably more pra
ti
al when the FOV 
on�guration is favor-able enough for a partitioning. The following example shows that the gain 
an besigni�
ant, even in simple situations:Example 2.7. Assuming that the sensor number is S = 3 and that the 
urrentFOVs 
on�guration and 
urrent measurements are as follows:Figure 2.8 A FOV 
on�guration favorable for partitioning

then the sensor partition is ({1, 3}, {2}) and the 
ombinational terms are:
• C(Z1, Z3) =

{{
{z11}, {z12}, {z31}

}
,
{
{z11 , z31}, {z12}

}
,
{
{z11}, {z12 , z31}

}};
• C(Z2) =

{{
{z21}, {z22}

}}.That is, the simpli�ed data update equation (2.63) requires the 
omputation of
|C(Z1, Z3)|+ |C(Z2)| = 4 
ombinational terms.On the other hand, without partitioning, the 
ombinational terms are C(Z1, Z2, Z3) =
{{
{z11}, {z12}, {z21}, {z22}, {z31}

}
,
{
{z11 , z21, }, {z12}, {z22}, {z31}

}
, ...
}. That is, the gen-eral data update equation (2.53) requires the 
omputation of |C(Z1, Z2, Z3)| = 27
ombinational terms.In the worst 
ase, that is if the partitioning method des
ribed in de�nition 2.9 failsto split the sensors in more that one partition element, the 
omputational 
ost of
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(2.63) is a
tually slightly worse than (2.53) be
ause it requires the 
omputation ofthe partitioning itself in any 
ase. However, as it will be shown later in 
hapter 4,the 
omputational 
ost of the partitioning is light enough.Regardless ot the 
omputational gain given by the partitioning method, theorem 2.5shows that the PHD 
an be updated independently on subparts of the state spa
e -namely, the state partition elements Tk+1(p). This is an important result, be
ause itprovides grounds for the design of hybrid PHD �lters as trade-o� between the 
ostlybut exa
t �lter based on the 
ombinational form (2.63) and usual approximations,su
h as the well-known iterated-
orre
tor approximation (see se
tion 2.4.2). Ratherthan using the iterated-
orre
tor approximation on X with all the sensors, one 
an
ompute the joint partitioning and then de
ide, independently on ea
h partition el-ement, whether to use the exa
t data update equation or the iterated-
orre
tor. It
an be shown that the resulting hybrid �lter performs at least as well as the iterated
orre
tor; and the tweaking of the 
riteria allows a dynami
al optimization of the�lter's performan
e under the 
onstraint of available 
omputational power. Thismethod, however, requires that one is able to estimate a priori the 
omputational
ost of the exa
t data update on a given partition element, presumably based onthe element �size� (number of sensors and/or measurements). This will be dis
ussedfurther in 
on
lusion.2.4 Common multi-sensor approximationsThis se
tion brie�y des
ribes several approximations of the multi-sensor PHD. Theaim is not to 
ompare of the �lters on simulated data but rather to expose theirstrengths and weaknesses on a more theoreti
al level. Be
ause the iterated 
orre
tor(see subse
tion 2.4.2 has already been implemented and seems to have good per-forman
es in dete
tion and tra
king problems [Mahl 10a℄, it will be 
ompared onsimulated data with the exa
t �lter in 
hapter 4, while the other approximationsare presented in this se
tion for information purposes only and will not be studiedfurther. An interesting study 
omparing the exa
t PHD �lter - in the two-sensor
ase - and several approximation te
hniques on simulated data 
an be found in twore
ent papers (see [Naga 11b, Naga 11a℄ for more details).2.4.1 Pseudo-sensor approximationArguably, the simplest way to fa
e the multi-sensor issue is the pseudo-sensor ap-proximation, in whi
h all the sensors are en
apsulated in a single �pseudo-sensor�.That is, at every time step k, the single-sensor data update equation (2.28) is used
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with the whole set of measurements Zk+1 =

⊔S
j=1Z

j
k+1 as input:

ṽΞk+1|k+1
(.|Z1:k+1)

def
=




1− p̃dk+1(x) +

S∑

j=1

∑

zj∈Zj
k+1

p̃d,jk+1(x)L̃
zj ,j
k+1(x)

λ̃c,j
k+1c̃

j
k+1(z) + vΞk+1|k

[p̃d,jk+1L̃
z,j
k+1]




 vΞk+1|k

(.|Z1:k)(2.65)where p̃dk+1, p̃d,jk+1, λ̃c,j
k+1c̃

j
k+1 L̃

.,j
k+1 are the pseudo-fun
tions des
ribing the me
hanismsof the pseudo-sensor. Mahler [Mahl 03b, Mahl 03
℄ proposed su
h an approximationwhere the pseudo-fun
tions are de�ned as follows:

• p̃dk+1(.)
def
= 1−∏S

j=1(1− pd,jk+1(.));
• p̃d,jk+1(.)

def
= pd,jk+1(.)

p̃d
k+1(.)

∑S
j=1 p

d,j
k+1(.)

;
• λ̃c,j

k+1c̃
j
k+1(.)

def
= λc,j

k+1c
j
k+1(.);

• L̃.,j
k+1

def
= L.,j

k+1(.).Another pseudo-sensor approximation leads from the exa
t data update equation(2.44) with the additional assumption that a target x is the sour
e of at most onemeasurement among all the measurement sets Zj
k+1, i.e. β[δZ , .] = 0 if |Z| > 1.Indeed, with this new assumption:

ṽΞk+1|k+1
(x|Z1:k+1) =

[
δ
δx

(
δ

δZk+1
eβ[δ∅,ḡ,h]

)]

g1...S=0,h=1
[

δ
δZk+1

eβ[δ∅,ḡ,h]
]

g1...S=0,h=1

K−1
X (β[δZ , .] = 0, |Z| > 1)

=

[
δ
δx

(

eβ[δ∅,ḡ,h]
∏S

j=1

∏

z∈Zj
k+1

(
β[δ{z}, ḡ, h]

))]

g1...S=0,h=1
[

eβ[δ∅,ḡ,h]
∏S

j=1

∏

z∈Zj
k+1

(
β[δ{z}, ḡ, h]

)]

g1...S=0,,h=1

K−1
X

=
β[δ∅, δx]e

β[δ∅,1]
∏S

j=1

∏

z∈Zj
k+1

(
β[δ{z}, 1]

)

eβ[δ∅,1]
∏S

j=1

∏

z∈Zj
k+1

(
β[δ{z}, 1]

) K−1
X

+
eβ[δ∅,1]

(
∏S

j=1

∏

z∈Zj
k+1

(
β[δ{z}, 1]

))∑S
j=1

∑

z∈Zj
k+1

(
β[δ{z},δx]

β[δ{z},1]

)

eβ[δ∅,1]
∏S

j=1

∏

z∈Zj
k+1

(
β[δ{z}, 1]

) K−1
X

= β[δ∅, δx]K
−1
X +

S∑

j=1

∑

z∈Zj
k+1

β[δ{z}, δx]

β[δ{z}, 1]
K−1

X
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Whi
h gives, using proposition 2.5:
ṽΞk+1|k+1

(x|Z1:k+1)

=

(
N∏

j=1

(1− pd,jk+1(x))

+

S∑

j=1

∑

z∈Zj
k+1

(
∏

i 6=j(1− pd,ik+1(x))
)

pd,jk+1(x)L
z,j
k+1(x)

λc,j
k+1c

j
k+1(z) + vΞk+1|k

[(
∏

i 6=j(1− pd,ik+1)
)

pd,jk+1L
z,j
k+1

]

)

vΞk+1|k
(x|Z1:k)This leads to another pseudo-sensor approximation, quite similar to Mahler's:

• p̃dk+1(.)
def
= 1−∏S

j=1(1− pd,jk+1(.));
• p̃d,jk+1(.)

def
= pd,jk+1(.)

∏

i 6=j(1− pd,ik+1(.));
• λ̃c,j

k+1c̃
j
k+1(.)

def
= λc,j

k+1c
j
k+1(.);

• L̃.,j
k+1

def
= L.,j

k+1(.).The obvious advantage of pseudo-sensor approximations are their simpli
ity. How-ever, whether it is by 
onstru
tion in Mahler's approximation or expli
ity statedby the additional assumption in the approximation above, the independen
e of thesingle-sensor pro
esses is violated sin
e it implies that a target may not be the originof more than one measurement. Thus, while the exa
t multi-sensor PHD 
orre
tlyasso
iates up to S measurements per target - one per sensor - at any time step, thelimited pseudo-sensor framework fails to do so and 
onsiders only single measure-ment to single target asso
iations, any additional measurements being 
onsidered asfalse alarms [Mahl 03b, Mahl 03
℄. Clearly, pseudo-sensor approximations are quite
onstraining and are likely to perform poorly in areas where FOVs are overlapping.2.4.2 Sequential approximationThe aim of the sequential approximation is to bypass the multi-sensor issue bydealing with ea
h sensor separately at ea
h time step; that is, using a sequen
e of
S single-sensor data update steps (2.27), namely on
e per sensor, rather than usingthe multi-sensor data update step (2.44) on
e. More pre
isely, the iterated-
orre
torapproximation (ICA) is given by (adapted from [Mahl 03a, Mahl 10a℄):
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De�nition 2.11. For any permutation σ : [1 S]→ [1 S], any 
urrent measurementsets (Zj

k+1)
S
j=1, Zj ⊂ Zj, any positive fun
tion v(.) on X , the 
orre
tor Cσ,j

k+1(., v),where j ∈ [1 S], is the fun
tion on X given by:
Cσ,j

k+1(., v)
def
= 1− p

d,σ(j)
k+1 (.) +

∑

z∈Z
σ(j)
k+1

p
d,σ(j)
k+1 (.)L

z,σ(j)
k+1 (.)

λ
c,σ(j)
k+1 c

σ(j)
k+1(z) + v[p

d,σ(j)
k+1 L

z,σ(j)
k+1 ]

(2.66)Then, the sequen
e of iterated approximations (vσ,jk+1|k)
S
j=0 is the sequen
e of positivefun
tions on X given by:

vσ,0k+1|k(.)
def
= vΞk+1|k

(.|Zk) (2.67)
∀j ∈ [1 S], vσ,jk+1|k(.)

def
= Cσ,j

k+1(., v
σ,j−1
k+1|k) (2.68)The iterated approximation of the multi-sensor data update equation, respe
tive tosensor order σ(1), .., σ(S), is given by:

ṽσΞk+1|k+1
(.|Z1:k+1)

def
= vσ,Sk+1|k(.) (2.69)In other words, the ICA pro
eeds with ea
h sensor in a given order, applying thesingle-sensor data udpate equation (2.29) with the density from the previous iterationas input. Although slightly more 
ompli
ated to implement than pseudo-sensorapproximations, the ICA is more faithful to the multi-sensor model assumptionsand, as it will be shown later on simulated data (see 
hapter 4), it seems to befairly a

urate (when 
ompared to the exa
t multi-sensor data update) in dete
tionand tra
king problems with a limited number of sensors. However, the ICA su�erssome �aws in its design [Mahl 09a℄. First, the validity of the approximated posteriorPHD ṽΞk+1|k+1

(.|Z1:k+1) in (2.69) is, by 
onstru
tion, based on the validity of thesequen
e of the S single-sensor data update steps whi
h, a

ording to theorem 2.2,requires that every intermediate approximation vσ,jk+1|k(.) 
an be seen as the PHD of aPoisson RFS, whi
h 
an be di�
ult to as
ertain in pra
ti
al situations. The se
ondissue, more obvious, is the asymmetry of the sensors in the ICA: in the general 
ase,
ṽσ1
Ξk+1|k+1

(.|Z1:k+1) 6= ṽσ2
Ξk+1|k+1

(.|Z1:k+1) if σ1 6= σ2. This 
an be easily illustrated asimple example:Example 2.8. Assuuming that the sensor number is S = 2 and that the 
urrentFOV 
on�guration and 
urrent measurements are as follows:
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Figure 2.9 The ICA on a simple example

Then, the exa
t posterior PHD given by theorem 2.4 is:
vΞk+1|k+1

(x|Z1:k+1)

= β[δ∅, δx] +
β[δ{z1}, δx]β[δ{z2}, 1] + β[δ{z1}, 1]β[δ{z2}, δx] + β[δ{z1,z2}, δx]

β[δ{z1}, 1]β[δ{z2}, 1] + β[δ{z1,z2}, 1]
(2.70)The approximation given by the ICA with sensor order 1→ 2 (σ = Id) is:

ṽIdΞk+1|k+1
(x|Z1:k+1) = β[δ∅, δx] +

β1[δ{z1}, δx]

β1[δ{z1}, 1]
+

β1[δ{z1}, 1]β[δ{z2}, δx] + β[δ{z1,z2}, δx]

β1[δ{z1}, 1]β[δ{z2}, 1] + β[δ{z1,z2}, 1](2.71)while the approximation given by the ICA with sensor order 2→ 1 (σ = τ12) is:
ṽτ12Ξk+1|k+1

(x|Z1:k+1) = β[δ∅, δx] +
β2[δ{z2}, δx]

β2[δ{z2}, 1]
+

β[δ{z1}, δx]β
2[δ{z2}, 1] + β[δ{z1,z2}, δx]

β[δ{z1}, 1]β2[δ{z2}, 1] + β[δ{z1,z2}, 1](2.72)where βj[gj, h]
def
= λc,j

k+1c
j
k+1[g

j]−λc,j
k+j+vΞk+1|k

[

h(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])
]

−vΞk+1|k
[1]is the 
ross-term restri
ted to sensor sj.Example 2.8 illustrates the approximation behind the ICA. With the sensor order

1→ 2, the 
orrre
tor updates the predi
ted PHD with measurements from sensor 1- namely, z1 - without 
onsidering the fa
t that another sensor 2 produ
ed measure-ments in the same time. Thus, the �rst ratio in equation (2.71) β1[δ{z1},δx]

β1[δ{z1},1]

ompletelyignores the se
ond sensor - re
all that β1[δ{z1}, δx] = pd,1k+1(x)L

z1,1
k+1(x)vΞk+1|k

(x|Z1:k)while β[δ{z1}, δx] = pd,1k+1(x)L
z1,1
k+1(x)(1−pd,2k+1(x))vΞk+1|k

(x|Z1:k). As shown in equation(2.71), the initial error propagates in the future ratios.
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Clearly, the ICA's quality is likely to de
rease with the number of sensors and/ormeasurements involved in the data update step, but quantifying the approximationwith respe
t to the exa
t multi-sensor data seems quite 
hallenging. Besides, thereis no easy way to sele
t, to the author's knowledge, the optimal sensor order forthe ICA. We detailed in [Dela 10℄ a more expli
it re
ursive expression of the ICA;it seems that the quality of the approximation in
reases with the sensor order, i.e.measurements from the last sensors are generally �better 
onsidered� than those fromthe �rst sensors. This suggests that a sound 
hoi
e for the sensor order is to orderthem by in
reasing �produ
tivity� (i.e. in
reasing number of 
urrent measurements),but no systemati
 rule 
ould be derived. This will be illustrated on simulated datain 
hapter 4.2.4.3 Produ
t approximationThe produ
t approximation (PA) aim at bypassing the asymmetry issue in the ICA byapproximating the multi-sensor data update as a produ
t of single-sensor 
orre
tors(adapted from [Mahl 09a℄):

ṽ
K

Z1
k+1

,...,ZS
k+1

Ξk+1|k+1
(.|Z1:k+1)

def
= KZ1

k+1,...,Z
S
k+1

S∏

j=1

(Cj
k+1(.|Zj

k+1))vΞk+1|k
(.|Z1:k) (2.73)where:

• Cj
k+1(.|Zj

k+1)
def
= 1− pd,jk+1(x) +

∑

z∈Zj
k+1

pd,jk+1(x)L
z,j
k+1(x)

λc,j
k+1c

j
k+1(z) + vΞk+1|k

[pd,jk+1L
z,j
k+1]

is the 
or-re
tor from sensor j;
• KZ1

k+1,...,Z
S
k+1

is a 
onstant, symmetri
 with respe
t to the sensors.In other words, the prin
iple of PAs is to en
apsulate all the 
oupling e�e
ts betweensensors in a single term. Clearly, the quality of a PA is based on the proper 
hoi
eof the 
oupling term. In [Mahl 09a℄ Mahler explains that this method is not welladapted to the PHD yet. In the 
onstru
tion of the 
oupling term he had to makean assumption on the densities pΞk+1|k
(.|Zj

k+1) and 
ame to the 
on
lusion that:
• if they are assumed to be PHDs from 
luster RFSs, the resulting 
oupling
onstant is intra
table;
• if they are assumed to be PHDs from Poisson RFSs, the resulting 
oupling
onstant is 1, but ṽ1Ξk+1|k+1

(.|Z1:k+1) is a poor approximation.The PA with the 
oupling term equal to one (that we mentioned as produ
t approx-imation in [Dela 10℄) 
an be 
ompared with the ICA in the following example:
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Example 2.9. With the same 
on�guration and notations as example 2.8, the prod-u
t approximation with KZ1

k+1,...,Z
S
k+1

= 1 is given by:
ṽ1Ξk+1|k+1

(x|Z1:k+1)

= β[δ∅, δx] +
β[δ{z1}, δx]β

2[δ{z2}, 1] + β1[δ{z1}, 1]β[δ{z2}, δx] + β[δ{z1,z2}, δx]

β1[δ{z1}, 1]β2[δ{z2}, 1]
(2.74)Example 2.9 shows the PA with K = 1 fails at 
onsidering 
ross-sensor measurementasso
iations (the 
ross-term β[δ{z1,z2}, δx] is a
tually a 
al
ulus �side-e�e
t�, what isimportant here is that the 
ross-term β[δ{z1,z2}, 1] does not appear in the denomi-nator). Mahler remarked [Mahl 09a℄ that the PA with K = 1 does not redu
e tothe multi-sensor/single-target Bayes �lter in the trivial 
ase where there are no falsealarm, no missed dete
tions and a single true target, while the ICA does. Indeed:Example 2.10. Continuing examples 2.8 and 2.9 with the additional assumptionsthat λc,1

k+1 = λc,2
k+1 = 0, pd,1k+1(.) = pd,2k+1(.) = 1:

• the exa
t posterior is vΞk+1|k+1
(x|Z1:k+1) =

β[δ{z1,z2},δx]

β[δ{z1,z2},1]
;

• the ICAs give ṽIdΞk+1|k+1
(x|Z1:k+1) = ṽτ12Ξk+1|k+1

(x|Z1:k+1) =
β[δ{z1,z2},δx]

β[δ{z1,z2},1]
;

• the PA with K = 1 gives ṽ1Ξk+1|k+1
(x|Z1:k+1) =

β[δ{z1,z2},δx]

β1[δ{z1},1]β2[δ{z2},1]
.It is not 
lear how worse this PA is 
ompared to the ICA but, based on a moreexpli
it expression of the PA we built in [Dela 10℄, it seems that the ICA is generallybetter, although 
omparisons on simulated data should be quite useful to answerthis question.2.5 Con
lusionIn this 
hapter, some simple RFSs were presented. The multi-target and multi-observation RFSs involved in the RFS �lter equations must be redu
ed to thesesimple RFFs (Poisson, 
luster, Bernouilli) in order to produ
e tra
table approxima-tions and be able to design the PHD �lter. The 
onstru
tion of the exa
t PHD �lter- in the single-sensor as well as the multi-sensor 
ase - was thoroughly des
ribed, andthe data update equations were analyzed qualitatively. The data update equationof the multi-sensor 
ase being ex
eedingly di�
ult to 
ompute in the general 
ase, ajoint partitioning method of the state spa
e and the sensors was presented in orderto simplify the data update without approximation. Finally, the usual multi-sensorapproximations were 
ompared to the exa
t solution on a theoreti
al level. The ICAlooked promising and should be studied further on simulated data.



CHAPTER3Multi-sensor management within the PHDframework
Previous work on the sensor management problem within the PHD frameworkremains, to the author's knowledge, s
ar
e. To be sure, Mahler introdu
ed in[Mahl 04℄ the PENT manager but, a

ording to the author's opinion, it seems tobe ill-adapted to a broad range of surveillan
e a
tivities. Quite re
ently, Risti
 etal. [Rist 10b, Rist 11a℄ worked on a more general RFS-based sensor manager, andtheir simulation results seem to reinfor
e the author's opinion regarding the PENTmanager. In this 
hapter, the goal is to design a multi-sensor manager within thePHD framework whose data �ow 
an be depi
ted as follows:Figure 3.1 Data �ow of the sensor management pro
ess

As illustrated in �gure 3.1, the stru
ture of the sensor manager is based on threedistin
tive features:1. the predi
tive update: 
ompute the predi
tive PHD vuΞk+1|k
, i.e. the PHD of theposterior RFS should the sensors be 
ontrolled a

ording to some u ∈ Uk+1;115
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2. the obje
tive fun
tion: determine a reward Ru

k+1 for ea
h predi
tive posterior
vuΞk+1|k

;3. the sele
tion step: sele
t the 
ontrol with the highest reward.The �rst part of this 
hapter (se
tion 3.1) fo
uses on the target extra
tion pro
esswhi
h will be ne
essary for the predi
tive update step (see �gure 3.1). Sin
e thePHD is a density, the PHD �lter does not dire
tly provides tra
ks as in more 
las-si
al tra
k-based �lters; thus, one must extra
t information about eventual targetsfrom the propagated density. Usual extra
tion pro
esses seem to be mainly based on
lustering te
hniques su
h as the k-mean algorithm [Clar 06℄. However, Tobias et al.argued [Tobi 08℄ that better extra
tion te
hniques 
ould be designed by removing atarget's worth of weight from the PHD N̂ times, where N̂ is the extra
ted numberof targets. Notably, this method is bound to produ
e better results in the extra
tionof 
lose targets, where the k-means algorithm would typi
ally extra
t a single targetaveraging the two true targets. The target extra
tor presented in this thesis follows
losely the solution Tobias et al. proposed. It should be noted that Tang et al.des
ribed [Tang 11℄ an improved extra
tion method, 
ombining traditional 
luster-ing te
hniques su
h as the k-means algorithm with the solution proposed by Tobiaset al., but this 
ame too late to the author's attention to be 
onsidered in this thesis.The se
ond part (se
tion 3.2) deals with the predi
tive update step, built as anextension of Mahler's work on the PIMS [Mahl 04℄ to the multi-sensor 
ase.The last part (se
tion 3.3) fo
uses on the design of a sensor manager. It 
oversthe des
ription of Mahler's PENT manager and its inadequa
y to some s
enarri insurveillan
e a
tivities. Consequently, the last part of se
tion 3.3 is devoted to the
onstru
tion of another sensor manager.3.1 Target extra
tionSin
e RFSs are random variables on �large� spa
es F(X ) where no sum operator isde�ned, the traditional expe
tation:
E[Ξ(ω)] =

∫

F(X )

pΞ(X)Xµ(dX) (3.1)has no mathemi
al sense even if the probability density pΞ is properly de�ned. Thus,usual estimators su
h as the Maximum A Posteriori 
annnot be applied on RFS.Rather, one should exploit the fa
t that, aside from its probability density, a RFS
an be des
ribed by its 
ardinality distribution ρΞ and its family of spatial distribu-tions {P (n)
Ξ }n∈N.
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In this thesis, a target extra
tor is de�ned as an estimator on RFSs that:1. estimates an extra
ted target number N̂ - an integer - based on the 
ardinalitydistribution ρΞ;2. estimates the target 
on�guration X̂ = {x1, ..., xN̂}, a �nite family on X , basedon the spatial distribution P

(N̂)
Ξ .Note that X̂ is built as a family and not a set, be
ause the extra
ted targets are (gen-erally) ordered. Target extra
tors are 
onsiderably easier to design when restri
tedto Poisson RFSs, sin
e they are 
hara
terized by their intensity or PHD (de�nition2.1). In this 
ase, a target extra
tor is an estimator on Poisson RFSs that:1. estimates an extra
ted target number N̂ - an integer - based on the Poissonparameter vΞ[1];2. estimates the target 
on�guration X̂ = (x1, ..., xN̂), a �nite family on X , basedon the PHD vΞ(.).In the s
ope of this thesis, targets need to be extra
ted from PHDs of Poisson RFSsonly, namely:

• predi
ted PHDs vΞk+1|k
(.|Z1:k);

• predi
tive PHDs vuΞk+1|k
(.|Z1:k);

• posterior PHDs vΞk+1|k+1
(.|Z1:k+1).For simpli
ity's sake, time subs
ripts and dependen
e on past measurements will beomitted in this se
tion and vΞ will denote indi�erently one of the PHDs above. Itwill also be assumed that vΞ is 
ontinuous on X .3.1.1 Highest peaks extra
torRe
all from proposition 1.3 that, given the multi-target PHD vΞ:

• the estimated target number is N = vΞ[1] =
∫

X
vΞ(x)dx;

• the targets are i.i.d. a

ording to the normalized PHD, i.e. the probabilitydistribution vΞ(.)
N

.Thus, a �naive� highest peaks extra
tor 
ould be de�ned as follows:



118 Chapter 3. Multi-sensor management within the PHD framework
De�nition 3.1. For any PHD vΞ on X , the set of extra
ted targets from vΞ, if itexists, is the 
olle
tion X̂HPE(vΞ) ∈ X de�ned by:

X̂HPE(vΞ)
def
= (x̂1, ..., x̂N̂) (3.2)where:

• N̂
def
= [vΞ[1]]nearest integer is the extra
ted number of targets;

• ∀n ∈ [1 N̂ ], x̂n is the n-th highest lo
al extremum of the PHD vΞ.Figure 3.2 Illustration of the HPE

3.1.2 Weighted peaks extra
torAlthough the HPE is remarkable by its simpli
ity, problems may arise in spe
i�
situations su
h as shown in the following example:Example 3.1. Consider the following situations:Figure 3.3 Improper target extra
tion by the HPE

On the left hand side, it seems that two targets are 
lose enough in the state spa
e.HPE extra
ts target x̂1 at the �rst peak, but 
annot extra
t a se
ond target be
ause
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there are no more peaks. However, a se
ond target is probably in the vi
inity of x̂1.On the right hand side, the HPE extra
ts the 
orre
t target number but the se
-ond target is extra
ted in the vi
inity of x̂1 while the shape of the PHD suggests thatthe se
ond target should be extra
ted around the third highest peak.Example 3.1 shows situations were the HPE does not performs as might be expe
tedwhen target are getting 
loser (left �gure) or when there are more than one peakthat are likely to a

ount for the same target (right �gure). It seems that the HPEmay fail be
ause it does not really exploit the lo
al distribution of the PHD. Thefollowing weight-based approa
h 
losely follows the solution proposed by Tobias etal. [Tobi 08℄ in whi
h targets are extra
ted in regions whose weight (i.e., the integralof the PHD) rea
hes a given target weight :De�nition 3.2. For any PHD vΞ on X , de�ne:
• the extra
ted target number as N̂ def

= [vΞ[1]]nearest integer;
• the target weight as Wt

def
=







0 (N̂ = 0)

vΞ[1]

N̂
(otherwise)

.Besides, for any positive fun
tion f(.) on X , any (stri
tly) positive real number r,any state point x0 ∈ X , de�ned as:
• Br(x0)

def
= {x ∈ X | dX (x0, x) 6 r} the 
losed ball 
entered on x0 with radius

r;
• W (., d, f)

def
=
∫

Bd(.)
f(x)dx the neighborhood weight fun
tion.Initialize the weight fun
tion with the PHD, i.e. w(1) = vΞ, and pro
eed as follows:

• Find new global maximum: x(n) = argmaxx w
(n)(x);

• Find new neighborhood span: d(n) = argmindW (x(n), d, v
(n)
Ξ ) > Wt;

• Set new neighborhood: N (n) = Bd(n)(x(n));
• Set new neighborhood weight: W (n) = W (x(n), d(n), w(n));
• Compute new target state: x̂n =

∫

N(n) x w
(n)
Ξ (x)dx

W (n) ;
• Compute new weight fun
tion w(n+1)(.) = w(n)(.)− 1N(n)(.) Wt

W (n) .The resulting family X̂WE(vΞ)
def
= (x̂1, ..., x̂N̂ ), if it exists, is the family of extra
tedtargets.
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For simpli
ity's sake, X̂WE(vΞ) will be shortened to X̂WE when there is no ambiguity.Intuitively, the WE 
omputes the smallest neighborhood around the highest pointof the PHD with weight Wt, extra
ts the �rst target as the weighted average ofthe neighborhood, removes the neighborhood weight from the PHD and pro
eedswith the next extra
tion. Note that the target weight a

ounts for the 
ommondis
repan
y between the expe
ted number of targets vΞ|1], whi
h is not an integerin general, and the expe
ted number of targets N̂ , an integer by 
onstru
tion. Forexample, if vΞ|1] = 2.2, then N̂ = 2 and the target weight is Wt =

2.2
2

= 1.1, su
hthat N̂Wt = vΞ|1]. Sin
e the WE removes exa
tly Wt of weight at ea
h iteration(see de�nition 3.2), ∫
X
w(n)(x)dx > 0, W (n) > 0 and thus the new target states x̂nare well-de�ned.Example 3.2. Continuing example 3.1, the WE 
an be illustrated as follows:Figure 3.4 Target extra
tion by the WE (1)

Figure 3.5 Target extra
tion by the WE (2)

It is important to note that the WE has its own issues. While the �nite family
X̂WE(vΞ) = (x̂n)n=[1 N̂ ] is well-de�ned, the �nite set X̂WE(vΞ) =

⋃N̂
n=1 x̂n may notif some states are identi
al. However, this event being highly unlikely, it will beassumed from now on that the set of extra
ted targets exists, regardless of theinitial weight distribution. Another issue is the dermination of the neighorhood
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span, parti
ularly for the last extra
ted target. By 
onstru
tion, ∫

X
w(N̂)(x)dw = Wt,whi
h means that the last neighborhood may span to the entire state spa
e, in whi
h
ase setting the last target as the the weighted average may be a poor 
hoi
e. In thepra
ti
al implementation of the WE (see 
hapter 4), the span of the neighborhoodswill be 
apped by a parameter.3.2 Multi-sensor predi
tive PHDIn the s
ope of the thesis, multi-sensor 
ontrols have limited in�uen
e on the obser-vation pro
ess. A 
ontrol u ∈ Uk aims at shaping the FOVs 
on�guration, but hasno e�e
t on the measurement and false alarm pro
ess. That is, a 
ontrol only shapesthe dete
tion probabilities (pd,jk (.))j∈[1 S]:Notation 3.1. If the sensors are under 
ontrol u ∈ Uk, the following notations areused:

(F j
u)j∈[1 S]

not
= (F j

k )j∈[1 S] (3.3)
(pd,ju (.))j∈[1 S]

not
= (pd,jk (.))j∈[1 S] (3.4)3.2.1 Predi
tive update equationThe aim of the predi
tive update step for 
ontrol u is to guess, without new measure-ments Zk+1, the shape of the predi
tive RFS Ξu

k+1|k+1, that is the expe
ted posteriorPHD should the sensors be under 
ontrol u. In the PHD framework, the 
hallengeis to 
ompute the predi
tive PHD vΞu
k+1|k+1

based on the predi
ted PHD vΞk+1|k
:De�nition 3.3. At any time step k+1 and for any 
ontrol u ∈ Uk+1, the predi
tivePHD vΞu

k+1|k+1
is given by:

vΞu
k+1|k+1

(.|Z1:k)
def
= E[vΞk+1|k+1

(.|Z1:k ∪ Σu(ω))] (3.5)where:
• Σu is a predi
tive multi-sensor observation RFS (yet to be de�ned);
• vΞk+1|k+1

(.|Z1:k∪Σu(ω)) is the posterior multi-target RFS given by theorem 2.3.In de�nition 3.3, Σu des
ribes the multi-sensor observation pro
ess based on theknown information about the 
urrent living targets Xk+1, i.e. based on the predi
tedPHD vΞk+1|k
. Be
ause the multi-sensor data update equation - either exa
t ((2.44)or (2.53)) or approximated ((2.65), (2.69) or (2.73)) - requires a multi-sensor mea-surement set in input, de�nition 3.3 is unexploitable unless the number of possible
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realizations of RFS Σu is �nite - and, if possible, small enough - and its probabil-ity distribution pΣu

(.) is known expli
itly. In the RFS framework, this probabilitydistribution is given by:
pΣu

(.) =

∫

F(X )

pΞk+1|k
(X)pΣu(X)(.)µ(dX) (3.6)where Σu(X) is the predi
tive observation RFS 
onditionally on target set X . Of
ourse, equation (3.6) is widely impra
ti
al sin
e:

• a

ording to the multi-sensor observation model (see proposition 2.4), for agiven set X , Σu(X) is a 
ompli
ated RFS involving missed dete
tions, falsealarms and noise measurement pro
esses;
• the set integral pre
ludes a tra
table implementation of pΣu

.First of all, one must �dis
retize� RFS Σu(X), i.e. provide an approximation with a�nite number of realizations. In the general 
ase, the single-sensor observation spa
es
Zj are un
ountable and thus the single-sensor observation RFSs Σj

k+1(X) have valuesin un
ountable spa
es F(Zj). The �rst step is to dis
retize the observation spa
es(adapted from [Mahl 04℄):De�nition 3.4. At any time step k, for any sensor j, the (ideal) measurementfun
tion ρjk(.) is the mapping de�ned as:
ρjk : X → Zj

x 7→ z = ρjk(x) (3.7)where z is the noiseless measurement produ
ed by sensor j from a dete
ted targetwith state x.For any �nite set X = {x1, ..., xN} ⊂ X , assuming that the fun
tions ρjk(.) areinje
tive, the multi-sensor ideal measurement set ZId
k is the disjoint union:

ZId
k (X)

def
=

S⊔

j=1

ZId,j
k (X) =

S⊔

j=1

ρjk(X) (3.8)where ZId,j
k (X) = ρjk(X) is the single-sensor ideal measurement set of sensor j.Note that the inje
tivity of the measurement fun
tions is required for the idealmeasurement sets to be well-de�ned, even though this will not be the 
ase in pra
ti
alimplementations (see 
hapter 4). In this 
hapter, the measurement fun
tions will be
onsidered bije
tive. The (multi-sensor) predi
tive observation RFS Σu

k+1(X) 
anthen be 
onstru
ted as follows:
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Proposition 3.1. For any �nite set X = {x1, ..., xN} ⊂ X , any sensor j, any 
ontrol
u ∈ Uk+1, the (single-sensor) predi
tive observation RFS of sensor j, 
onditionallyon target set X, is the RFS Σj

u(X) with values in F(ZId,j
k+1(X)) 
hara
terized by itsprobability density:

pΣj
u(X)(Z)

def
=
∏

z∈Z

(
pd,ju ((ρjk+1)

−1(z))
) ∏

z∈ZId,j
k+1(X)\Z

(
1− pd,ju ((ρjk+1)

−1(z))
) (3.9)where ZId,j

k+1(X) is the ideal measurement set given by de�nition 3.4.The predi
tive observation RFS, 
onditionally on target set X, is the joint RFS:
Σu(X)

def
=

S⊔

j=1

Σj
u(X) (3.10)Then, the probability distribution of the predi
tive observation RFS exists and, forany set Z =

⊔S
j=1Z

j ∈ ⊔S
j=1F(ZId,j

k+1(X)):
pΣu(X)(Z) =

S∏

j=1

pΣj
u(X)(Z

j) (3.11)The proof is straightforward using the property of joint RFSs (1.8).Example 3.3. Consider the multi-target set X = {x1, x2, x3} and the ideal mea-surement sets illustrated as follows:Figure 3.6 Example of ideal measurement sets

In addition, let u be an available multi-sensor 
ontrol su
h that:
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• pd,1u (x1) = 0, pd,1u (x2) =

2
3
, pd,1u (x3) =

2
3
;

• pd,2u (x1) =
1
3
, pd,2u (x2) =

1
2
, pd,2u (x3) =

2
3
.Then, the probability distribution of the predi
tive RFS Σ1

u(X) is given by:






pΣ1
u(X)(∅) =

1

9

pΣ1
u(X)({z12}) = pΣ1

u(X)({z13}) =
2

9

pΣ1
u(X)({z12 , z13}) =

4

9

(3.12)Likewise, the probability distribution of the predi
tive RFS Σ2
u(X) is given by:







pΣ2
u(X)({z21}) = pΣ2

u(X)({z21 , z22}) =
1

18

pΣ2
u(X)(∅) = pΣ2

u(X)({z22}) =
1

9

pΣ2
u(X)({z23}) = pΣ2

u(X)({z22 , z23}) =
2

9

pΣ2
u(X)({z21 , z23}) = pΣ2

u(X)({z21 , z22 , z23}) =
1

9

(3.13)
As illustrated by example 3.3, the predi
tive RFS Σu(X) 
overs all the possiblemeasurements 
on�guration - 
onditionally on the target set X - provided that, forea
h sensor:
• the measurement pro
ess is noiseless;
• there are no false alarms.However, the predi
tive RFS does take into a

ount the missed dete
tions.Now that the predi
tive RFS Σu(X) is properly de�ned and that its probabilitydistribution is known expli
itly thanks to proposition 3.1, the set integral in (3.6) isbypassed by 
onsidering a unique target set (inspired by [Mahl 04℄):De�nition 3.5. At any time step k + 1, ZWE

k+1 is the parti
ular ideal measurementset ZId
k+1(X) given by:

ZWE
k+1

def
= ZId

k+1

(

χ(X̂WE)
) (3.14)Likewise, for any 
ontrol u ∈ Uk+1, the PIMS ΣWE

u is the parti
ular predi
tive RFS
Σu(X) given by:

ΣWE
u

def
= Σu

(

χ(X̂WE)
) (3.15)
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that is, ΣWE

u is an approximation of Σu 
hara
terized by the probability distribution:
pΣWE

u
(.) = pΣu(χ(X̂WE))(.) ≃

∫

F(X )

pΞk+1|k
(X)pΣu(X)(.)µ(dX) = pΣu

(.) (3.16)Note that de�nition 3.5 
ould be easily extended to other target extra
tors, leadingto di�erent PIMSs - e.g. ΣHPE
u .Thanks to proposition 3.1 and de�nition 3.5, the 
omputation of the predi
tivePHD (3.5) is tra
table and, 
ombined with previous result (2.53), yields:Proposition 3.2. Under the assumptions given in theorem 2.4, for any 
ontrol

u ∈ Uk+1, the predi
tive PHD vΞu
k+1|k+1

(.|Z1:k) is given by:
vΞu

k+1|k+1
(x|Z1:k)

= β[δ∅, δx]K
−1
X +

∑

Z⊆ZWE
k+1

pΣWE
u

(Z)

∑

C∈C(Z)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Z)

∏

Ci∈C

β[δCi
, 1]

K−1
X(3.17)or, equivalently:

vuΞk+1|k+1
(x|Z1:k) =

∑

Z⊆ZWE
k+1

pΣWE
u

(Z)

[
δ
δx

(
δ
δZ
eβ[δ∅,ḡ,h]

)]

g1...S=0,h=1
[

δ
δZ
eβ[δ∅,ḡ,h]

]

g1...S=0,h=1

K−1
X (3.18)where the ideal measurement set ZWE

k+1 and the PIMS ΣWE
u are given by de�nition3.5.The proof is given in appendix A. Note that the 
ross-terms in equations (3.17) and(3.18) impli
tly depend on the 
ontrol u through the dete
tion probability fun
tions

pd,ju (.) (see notation (3.4)).As expe
ted, proposition 3.2 is simpli�ed in the single-sensor 
ase and yields Mahler'sresult [Mahl 04℄:
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Corollary 3.1. Under the assumptions given in theorem 2.2, for any 
ontrol u ∈
Uk+1, the predi
tive PHD vΞu

k+1|k+1
(.|Z1:k) is given by:

vΞu
k+1|k+1

(.|Z1:k)

=



1− pdu(.) +
∑

z∈ZWE
k+1

pdu((ρk+1)
−1(z))

pdu(.)L
z
k+1(.)

λc
k+1ck+1(z) + vΞk+1|k

[pduL
z
k+1]



 vΞk+1|k
(.|Z1:k)(3.19)where the ideal measurement set ZWE

k+1 is given by de�nition 3.5.The proof is given in appendix A.3.2.2 Simpli�
ation by joint partitioningResult (3.19) is instru
tive be
ause it shows that in the single-sensor 
ase, the 
ostsfor the 
omputation of the predi
tive PHD vΞu
k+1|k+1

and the posterior PHD vΞk+1|k+1(equation (2.29)) are similar - linear respe
tive to the measurement number. The
onstru
tion of the predi
tive single-sensor PHD is quite intuitive. The 
urrent mea-surements being de
oupled in the single-sensor 
ase, the sum in equation (2.29) 
anbe seen as the unweighted sum of the inlfuen
e of ea
h produ
ed measurement onthe posterior PHD. The 
onstru
tion of the predi
tive PHD is similar, ex
ept thatno 
urrent measurements have been produ
ed yet and one must weight the in�uen
eof ea
h ideal measurement with its probability of o

uren
e, whi
h is exa
tly theprobability of dete
tion of the asso
iated target.Unfortunately, this interpretation does not hold in the general 
ase, be
ause the ef-fe
t of ea
h 
urrent measurement 
annot be isolated in (2.53). Thus, the predi
tivePHD equation (3.17) requires the 
omputation of an exa
t multi-sensor data updatestep (2.53) for every possible subset Z of the ideal measurement set ZWE
k+1 . However,proposition 3.2 
an be signi�
antly simpli�ed without approximation by using theprevious joint partitioning (see 
hapter 2). More pre
isely, the ideal measurementset ZWE

k+1 
an be partitioned as follows:De�nition 3.6. For any 
ontrol u ∈ Uk+1, let (Su(p))
Pu

p=1, (Tu(p))
Pu

p=0 be the jointpartition as given by de�nition 2.9. Then, the set of extra
ted targets X̂WE 
an bepartitioned as follows:
∀p ∈ [0 Pu], X̂WE

u,p

def
= X̂WE ∩ Tu(p) (3.20)Then, the ideal measurement set ZWE

k+1 
an be redu
ed as follows:
∀p ∈ [1 Pu], ZWE

u,p

def
=

⊔

j∈Su(p)

ZWE,j
u,p =

⊔

j∈Su(p)

ρjk+1(X̂
WE
u,p ) (3.21)
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Finally, for any p ∈ [1 Pu], ΣWE

u,p is the redu
tion of the PIMS ΣWE
u to partition ele-ment p, i.e. the RFS with values in F(ZWE

u,p ) su
h that, for any set Z =
⊔

j∈Su(p)
Zj ∈

⊔

j∈Su(p)
F(ZWE,j

u,p ):
pΣWE

u,p
(Z)

def
=

∏

j∈Su(p)




∏

z∈Zj

(
pd,ju ((ρjk+1)

−1(z))
) ∏

z∈ZWE,j
u,p \Zj

(
1− pd,ju ((ρjk+1)

−1(z))
)



(3.22)
Example 3.4. Consider the set of extra
ted targets X̂WE = {x̂1, x̂2, x̂2} and theFOVs F 1

u , F 2
u , F 3

u illustrated as follows:Figure 3.7 Joint partitioning of X̂WE and ZWE
k+1 (p = 0 in blue, p = 1 in green, p= 2 in red)

First of all, sin
e F 2
u ∩ F 3

u 6= ∅, the joint partitioning is, a

ording to de�nition 2.9:
• sensors: Su(1) = {1} and Su(2) = {2, 3};
• state spa
e: Tu(1) = F 1

u , Tu(2) = F 2
u ∪ F 3

u and Tu(0) = X \ (F 1
u ∪ F 2

u ∪ F 3
u ).Then, the extra
ted targets X̂WE are partitioned and the ideal measurements ZWE

k+1are redu
ed a

ording to de�nition 3.6:
• extra
ted targets: X̂WE

u,0 = {x̂2}, X̂WE
u,1 = {x̂1} and X̂WE

u,2 = {x̂3};
• ideal measurements: ZWE

u,1 = {z11}, and ZWE
u,2 = {z23 , z33}.
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Note that ideal measurement z21 is dis
arded be
ause, under 
ontrol u, pd,2u ((ρ2k+1)

−1(z21)) =
pd,2u (x̂1) = 0 sin
e x̂1 /∈ F 2

u . Likewise, measurements z31, z12 , z22, z32 and z13 are dis-
arded.With this joint partitioning, proposition 3.2 is simpli�ed in a similar manner astheorem 2.4:Proposition 3.3. Under the assumptions given in proposition 3.2, for any 
ontrol
u ∈ Uk+1, the predi
tive PHD vΞu

k+1|k+1
(.|Z1:k) is given by:

vΞu
k+1|k+1

(x|Z1:k)

=







vΞk+1|k
(x|Z1:k)

(x ∈ Tu(0))

βp[δ∅, δx]K
−1
X +

∑

Z⊆ZWE
u,p

pΣWE
u,p

(Z)

∑

C∈C(Z)

∑

Ci∈C



βp[δCi
, δx]

∏

Cj 6=Cj

βp[δCj
, 1]





∑

C∈C(Z)

∏

Ci∈C

βp[δCi
, 1]

K−1
X

(x ∈ Tu(p), p 6= 0)(3.23)where (ZWE
u,p )Pu

p=1 and (ΣWE
u,p )Pu

p=1 are given by de�nition 3.6.The proof is given in appendix A.Example 3.5. Continuing with example 3.4, assuming that the predi
tive PHD mustbe 
omputed in three target states a, b, c as shown in the followwing pi
ture:Figure 3.8 Computation of the predi
tive PHDs in points a, b, c
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Sin
e a ∈ Tu(2), using proposition 3.3 gives:
vΞu

k+1|k+1
(a|Z1:k) = β2[δ∅, δa]K

−1
X + pd,2u (x̂3)(1− pd,3u (x̂3))

β2[δ{z23}, δa]

β2[δ{z23}, 1]
K−1

X

+ (1− pd,2u (x̂3))p
d,3
u (x̂3)

β2[δ{z33}, δa]

β2[δ{z33}, 1]
K−1

X

+ pd,2u (x̂3)p
d,3
u (x̂3)

β2[δ{z23}, δa]β2[δ{z33}, 1] + β2[δ{z23}, 1]β2[δ{z33}, δa] + β2[δ{z23 ,z33}, δa]

β2[δ{z23}, 1]β2[δ{z33}, 1] + β2[δ{z23 ,z33}, 1]
K−1

XThen, sin
e b ∈ Tu(0):
vΞu

k+1|k+1
(b|Z1:k) = vΞk+1|k

(b|Z1:k)Finally, sin
e c ∈ Tu(1):
vΞu

k+1|k+1
(c|Z1:k) = β1[δ∅, δc]K

−1
X + pd,1u (x̂1)

β1[δ{z11}, δc]

β1[δ{z11}, 1]
K−1

XNote that, without the joint partitioning, using proposition 3.2 requires the 
ompu-tation of 2|ΣWE
k+1| = 29 = 512 ratios for ea
h point a, b, c.As usual, from proposition 3.3 immediately follows the equivalent derivative form:Corollary 3.2. Under the assumptions given in proposition 3.3, for any 
ontrol

u ∈ Uk+1, the predi
tive PHD vΞu
k+1|k+1

(.|Z1:k) is given by:
vΞu

k+1|k+1
(x|Z1:k)

=







vΞk+1|k
(x|Z1:k) (x ∈ Tu(0))

∑

Z⊆ZWE
u,p

pΣWE
u,p

(Z)

[
δ
δx

(
δ
δZ
eβp[δ∅,ḡ,h]

)]

gj∈Su(p)=0,h=1
[

δ
δZ
eβp[δ∅,ḡ,h]

]

gj∈Su(p)=0,h=1

K−1
X (x ∈ Tu(p), p 6= 0)(3.24)where (ZWE

u,p )Pu

p=1 and (ΣWE
u,p )Pu

p=1 are given by de�nition 3.6.3.2.3 A few leads for approximationsArguably, using proposition 3.3 is still 
omputationally intensive if the FOVs 
on-�guration is unfavorable. There are at least two leads, whi
h 
an eventually be
ombined, mayt provide approximations with lighter 
omputation 
osts.
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First, sin
e the 
onstru
tion of the predi
tive PHD is based on the data updateequation (2.53), the approximations des
ribed in se
tion 2.4 are still valid in this
ontext. Of 
ourse, the resulting predi
tive PHDs will share the same limitationsas the posterior PHD - e.g. the dependen
e on the sensor order if the ICA is used,although it may have less 
onsequen
es in this 
ase sin
e the predi
tive PHD is usedto evaluate a multi-sensor 
ontrol rather than propagate the �ltered state. Presum-ably, using an approximation su
h as the ICA would sometimes produ
e errors inthe evaluation of the predi
tive PHDs large enough for the sensor manager to sele
ta suboptimal 
ontrol.Another possible approximation of proposition 3.3 is to simplify the predi
tive RFSs
(ΣWE

u,p )Pu

p=1. Re
all from proposition 3.1 that ΣWE
u is built as an approximation of themulti-sensor observation RFS in whi
h the false alarms pro
ess and the noise in themeasurement pro
ess of ea
h sensor is dis
arded, but the missed dete
tions are still
onsidered. Thus, an easy way to further approximate the multi-observation RFS isto redu
e the predi
tive RFS ΣWE

u to the following:
∀p ∈ [1 Pu], pΣWE

u,p
(Z)

def
=

{

1

0

(Z = ZWE
u,p )

(otherwise)
(3.25)that is, to assume a full dete
tion of the extra
ted targets. In this situation, the sumin proposition 3.3 and the predi
tive step redu
es to a single data update step withthe ideal measurement set ZWE

u,p as input.3.3 Sensor managerThis se
tion fo
uses on the design of a sensor manager and is divided in two parts.First, the PENT manager developed by Mahler is des
ribed and its in
onsisten
y isshown on simple examples. Based on the �aws of the PENT, another approa
h isproposed for the �rst time - the BET manager.3.3.1 The PENT managerThe PENT(-based) obje
tive fun
tion was developed by Mahler following the PIMS
onstru
tion, it is indeed a very simple obje
tive fun
tion that naturally �ows fromthe PIMS (adapted from [Mahl 04℄):De�nition 3.7. At any time k + 1, the posterior expe
ted target number (PENT)obje
tive fun
tion is de�ned by:
Rk+1 : Uk+1 → R

+

u 7→ Rk+1(u) = vΞu
k+1|k+1

[1] (3.26)
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The data �ow of the PENT manager is thus very simple and follows 
losely thegeneri
 �ow given in �gure 3.1:Figure 3.9 Data �ow of the PENT manager

In other words, the PENT(-based) manager 
omputes the predi
tive PHD for ea
hpossible 
ontrol, and sele
ts the 
ontrol with the highest PENT. De�nition 3.7,however, gives no insight on the shape of the FOVs 
on�guration provided by thesele
ted 
ontrol. Proposition 3.3 does help a little on this point. Considering a 
on-trol u ∈ Uk+1 with partitions (Tu(p))p∈[0 Pu] and (Su(p))p∈[1 Pu]:1. If x ∈ Tu(0), then vΞu
k+1|k+1

(x|Z1:k) = vΞk+1|k
(x|Z1:k). Thus, vΞu

k+1|k+1
[1Tu(0)] =

vΞk+1|k
[1Tu(0)]: the expe
ted target number in areas without any sensor 
overage willremain identi
al.2. If x ∈ Tu(p), p 6= 0, su
h that ZWE

u,p = ∅, then vΞu
k+1|k+1

(x|Z1:k) = βp[δ∅, δx]K
−1
X =

∏

j∈Su(p)

(
1− pd,ju (x)

)
vΞk+1|k

(x|Z1:k). Thus, vΞu
k+1|k+1

[1Tu(p)] 6 vΞk+1|k
[1Tu(p)]: the ex-pe
ted target number in areas 
overed by at least one FOV but without any extra
tedtarget will de
rease.3. In partition elements p with at least one asso
iated ideal measurement (ZWE

u,p 6= ∅)or, equivalently, at least one extra
ted target (X̂WE
u,p 6= ∅), the analysis on the 
ontri-bution of ea
h measurement on the posterior PHD in se
tion 2.3.1 suggests that theexpe
ted target number will evolve toward the number of extra
ted targets |X̂WE

u,p |.This qui
k analysis suggests that the PENT manager is unlikely to dissipate thesensors' e�ort in unexplored areas of the state spa
e, but rather to fo
us on previ-ously dete
ted targets. Yet the PENT obje
tive fun
tion is not entirely satisfyingbe
ause it shares the same default as the HPE: the PENT being a global 
riteriawhi
h is based on the 
ardinality distribution of the predi
tive RFSs Ξu
k+1|k+1 only,the information given by the predi
tive PHDs on the target distribution is 
ompletelydis
arded. For this reason, Risti
 et al. [Rist 11a℄ argued that the PENT manager
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is expe
ted to perform poorly in target lo
alization problems and illustrated theirpoint on simulated data. The following example shows some situations in whi
h thePENT manager may appear ill-adapted for tra
king purposes:Example 3.6. Consider the two following predi
tive PHDs, for available 
ontrols
u1, u2 ∈ Uk+1:Figure 3.10 Comparison of predi
tive PHDs (1)

Controls u1 and u2 are equivalent regarding the PENT (Nu1 = Nu2), thus neither u1nor u2 is favored by the PENT manager. However, 
ontrol u1 provides more infor-mation than u2 regarding the lo
alization of the estimated targets.Then, 
onsider the two following predi
tive PHDs, for available 
ontrols u3, u4 ∈
Uk+1:Figure 3.11 Comparison of predi
tive PHDs (2)

Controls u3 and u4 are equivalent regarding the lo
alization of expe
ted targets (vΞu3 (.)

Nu3
=

vΞu4 (.)

Nu4
), but 
ontrol u4 is favored over 
ontrol u3 sin
e its PENT is higher (Nu4 >

Nu3). However, either the WE or the HPE would extra
t the same information fromthe two predi
tive PHDs.The examples above are instru
tive be
ause they illustrate a situation in whi
h thePENT obje
tive fun
tion does not dis
riminate two 
ontrols while one may want to
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do so (�gure 3.10) and, 
onversely, a situation in whi
h the PENT manager makesa de
ision that may appear irrelevant (�gure 3.11). The next example is perhapsmore suggestive, be
ause it shows a simple situation in whi
h the PENT managermakes the wrong de
ision:Example 3.7. Consider the following predi
ted PHD vΞk+1|k

at time k + 1:Figure 3.12 Predi
ted PHD vΞk+1|k

That is, there is probably one target in the state spa
e, whose state is estimated at
x̂1 by the WPE. Assume that there is 
urrently only one available sensor, produ
ingtrue measurements only (λc

k+1 = 0) and with no missed dete
tion (pdk+1 = 1 insidethe FOV). Further assume that two 
ontrols are available:
• 
ontrol u1: the FOV 
overs all the state spa
e, i.e. pdu1

(.) = 1;
• 
ontrol u2: the sensor is �shut down�, i.e. pdu2

(.) = 0.The ideal measurement set ZWE
k+1 being redu
ed to a single element z1 = ρk+1(x̂1),
omputing the predi
tive PHD is straightforward in both 
ases with 
orollary 3.1:

vΞu1
k+1|k+1

(.|Z1:k)

=







1− pdu1

(.)
︸ ︷︷ ︸

=1

+ pdu1
(x̂1)

︸ ︷︷ ︸

=1

=1
︷ ︸︸ ︷

pdu1
(.)Lz1

k+1(.)

λc
k+1ck+1(z1)
︸ ︷︷ ︸

=0

+vΞk+1|k
[ pdu1
︸︷︷︸

=1

Lz1
k+1]








vΞk+1|k
(.|Z1:k)

=
Lz1
k+1(.)vΞk+1|k

(.|Z1:k)

vΞk+1|k
[Lz1

k+1]
(3.27)
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Sin
e pdu2

(x̂1) = 0, vΞu2
k+1|k+1

(.|Z1:k) has an even simpler expression:
vΞu2

k+1|k+1
(.|Z1:k)

=



1− pdu2
(.)

︸ ︷︷ ︸

=0

+ pdu2
(x̂1)

︸ ︷︷ ︸

=0

pdu2
(.)Lz1

k+1(.)

λc
k+1ck+1(z1) + vΞk+1|k

[pdu2
Lz1
k+1]



 vΞk+1|k
(.|Z1:k)

= vΞk+1|k
(.|Z1:k) (3.28)Then, the PENT obje
tive fun
tion gives:






Rk+1(u1) = vΞu1
k+1|k+1

[1] =
vΞk+1|k

[Lz1
k+1]

vΞk+1|k
[Lz1

k+1]
= 1

Rk+1(u2) = vΞu2
k+1|k+1

[1] = vΞk+1|k
[1] = Nk+1|k = 1.1

(3.29)Thus, regardless of the sensor measurement a

ura
y (that is, the shape of the like-lihood fun
tion L
.

k+1), the PENT manager sele
ts 
ontrol u2 and shuts down thesensor for the 
urrent time step.Let Xk+1 = {x1, ..., xN} be the true multi-target set. Sin
e there is no false alarmand no missed dete
tions, should u1 be sele
ted, the 
urrent measurement set Zk+1would nessarily have the same size N and equation (2.29) yields:
vΞk+1|k+1

(.|Z1:k+1)

=







1− pdu1

(x)
︸ ︷︷ ︸

=1

+
∑

z∈Zk+1

=1
︷ ︸︸ ︷

pdu1
(.)Lz

k+1(.)

λc
k+1ck+1(z)
︸ ︷︷ ︸

=0

+vΞk+1|k
[ pdu1
︸︷︷︸

=1

Lz
k+1]








vΞk+1|k
(.|Z1:k)

=
∑

z∈Zk+1

Lz
k+1(.)vΞk+1|k

(.|Z1:k)

vΞk+1|k
[Lz

k+1]Thus:
Nk+1|k+1 = vΞk+1|k+1

[1] =
∑

z∈Zk+1

vΞk+1|k
[Lz

k+1]

vΞk+1|k
[Lz

k+1]
= |Zk+1| = NLikewise, should u2 be sele
ted, the 
urrent measurement set Zk+1 would ne
essarilybe empty and thus:

vΞk+1|k+1
(.|Z1:k+1) =



1− pdu2
(x)

︸ ︷︷ ︸

=0



 vΞk+1|k
(.|Z1:k) = vΞk+1|k

(.|Z1:k)
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Thus:

Nk+1|k+1 = vΞk+1|k+1
[1] = vΞk+1|k

[1] = Nk+1|k = 1.1That is, 
ontrol u1 will ne
essarily provide a better estimation of the target numberthan u2. Moreover, depending on the likelihood fun
tion, u1 is likely to provide abetter estimation of the target distribution as well, as illustrated in the following�gures:Figure 3.13 Posterior PHDs vΞk+1|k+1
(single true target)

In 
on
lusion, the PENT manager will sele
t 
ontrol u2 even if 
ontrol u1 provides:
• a better estimation of the target number, with 
ertainty;
• a better estimation of the target distribution, with high probability.To be sure, these examples do not prove that the PENT is un�t in every situations;a
tually, it has been used in previous works. Wei et al. [Wei 08a, Wei 08b℄ designedan interesting two-level sensors ar
hite
ture in whi
h the date update step is syn-
hronised for the sensors belonging to a given 
luster, but sequential between ea
h
luster. The main �lter is tra
k-based, but the PHD formulation and the PENTobje
tive fun
tion are implemented in a predi
tive step designed to sele
t the orderin whi
h the 
lusters are to be pro
essed at ea
h data update step. In other works[El F 08, Zate 08℄, a PHD-based �lter is implemented for a spa
e obje
t tra
ker andthe sensor manager is built on the posterior expe
ted number of targets of inter-est (PENTI), an extension of the PENT [Mahl 07
℄ in whi
h the state points areweighted a

ording to an interest fun
tion (i.e. the value of the PHD in all the statespa
e does not 
ontribute equally to the PENT).Note that the PENT manager is spe
i�
ally designed for 
ontrols shaping the FOV
on�guration, be
ause the value of the PENT is mu
h more sensible to the varia-tion of the number of ideal measurements than, say, the variation in the shape of
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the likelihood fun
tions (see the analysis on the 
ontribution of measurements onthe posterior PHD in se
tion 2.3.1). This point was addressed and illustrated insimulated date in a re
ent paper by Risti
 et al. [Rist 10b℄.3.3.2 A new approa
h: the BET managerPrin
ipleThe 
onstru
tion of the obje
tive fun
tion based on the sole PENT seems to havetwo major �aws:
• Con
eptually, the PENT is di�
ult to translate in an �operational� obje
tive;
• Theoreti
ally, its model su�ers from several in
onsisten
ies (see se
tion 3.3.1).In 
onsequen
e, the PENT manager performs poorly in 
ertain situations as illus-trated on simulated data in 
hapter 4.The BET manager embodies a di�erent approa
h than the PENT and aims at pro-viding an e�
ient sensor management in situations where the sensor 
overage isla
king, i.e. the 
ombined FOVs 
annot 
over the whole state spa
e simultaneously.The idea is to fo
us the sensors on a few points of the state spa
e 
alled tra
ks. Theterm �tra
k� should not be interpreted in the 
lassi
al sense sin
e the PHD �lterdoes not maintain su
h tra
ks, but rather as the presen
e of a target based on thelo
al value of the PHD. The tra
ks are extra
ted in areas of the state spa
e wherethe lo
al weight ex
eeds a given threshold in a similar way as the weighted extra
tordoes (see se
tion 3.1.2). More pre
isely, three kind of tra
ks may be extra
ted in aPHD:1. First, high tra
ks are extra
ted when at least WH worth of weight 
an beextra
ted in a region 
entered around a peak with a radius smaller than ∆H ;2. Then, medium tra
ks are extra
ted when at least WM worth of weight 
an beextra
ted in a region 
entered around a peak with a radius smaller than ∆M ;3. Finally, low tra
ks are extra
ted when at least WL worth of weight 
an beextra
ted in a region 
entered around a peak with a radius smaller than ∆L.Sin
e the lo
al value of the PHD provides information on the target number andlo
alization (if any), the tra
ks 
an be exploited just the same way. A low tra
kindi
ates the existen
e of a target with low probability and with un
ertain lo
aliza-tion, both the probability of existen
e and the pre
ision of the lo
alization in
reas-ing with the tra
k level. The values of the weight WH > WM > WL and distan
e

∆H < ∆M < ∆L parameters are, of 
ourse, 
riti
al to the proper design of the sensormanager. This point will be dis
ussed later in this se
tion.
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Figure 3.14 High, medium and low tra
ks

All the tra
ks are not ne
essarily worth being fo
used on. Depending on the 
ontextof the surveillan
e a
tivity and the geographi
al features of the ground, it is assumedthat the state spa
e 
an be de
omposed in exploration and tra
king zones, in whi
hthe main obje
tive is respe
tively target dete
tion and target lo
alization. Thus, thefo
us tra
ks are de�ned as follows:Table 3.1: Fo
us tra
ksZone Tra
k levelLow Medium HighExploration Yes No NoTra
king Yes Yes NoThe qualitative analysis in se
tion 2.3.1 suggests that, if a fo
us tra
k is 
overed byat least one sensor:
• If there is a true target behind the tra
k, the weight of the tra
k will eventuallyin
rease and the lo
al shape of the PHD will sharpen; thus, the level of thetra
k will in
rease as well;
• Conversely, if the tra
k is a false alarm, its weight will eventually de
rease andthe tra
k will disappear.Thus, a �rst obje
tive of the surveillan
e 
an be stated as follows:Prin
iple 1: in exploration as well as tra
king zones, the sensors should 
over asmany fo
us tra
ks as possible, until they either disappear or be
ome non-fo
us tra
ks.The di�eren
e between the exploration and tra
king zones being, as indi
ated by
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table 3.1, the threshold between �un
ertain targets� (fo
us tra
ks) and �
ertain tar-gets� (non-fo
us tra
ks). Besides, if a non-fo
us tra
k is not 
overed by any sensors,the lo
al shape of the PHD should ��atten� during the su

essive time update stepsas the un
ertainty about the lo
alization of the target grows. That is, the level ofthe tra
k should eventually de
rease and the tra
k should be granted the �fo
us�status again.Yet this prin
iple is not su�
ient, be
ause it does not priorize the a
tions of thesensors if the number of fo
us tra
ks ex
eeds the 
overing 
apa
ities of the sensors.In order to avoid the sensors from wasting their resour
es on too many tra
ks, it wasde
ided that the sensors should fo
us on the �most promising� tra
ks, that is, thosewhose level should in
rease were they 
overed by at least on sensor. This leads tothe se
ond general obje
tive:Prin
iple 2: the best 
ontrols are those whi
h are likely to promote the highestnumber of fo
us tra
ks to the non-fo
us status.Depending on the quality of the sensors, though, a fo
us tra
k 
ould require a sensor
overage during several su

essive iterations before being promoted to the non-fo
usstatus. Hen
e the last prin
iple:Prin
iple 3: among the 
ontrols that are likely to promote the same numberof fo
us tra
ks to the non-fo
us status, the best ones are those 
overing the highestnumber of fo
us tra
ks.Figure 3.15 Data �ow of the BET manager

The data �ow of the BET manager 
an be summarized as follows:1. The non-fo
us tra
ks are extra
ted from the time udpated PHD vΞk+1|k
, and
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the 
orresponding weight is removed from the PHD. The resulting PHD vfΞk+1|k

hasthus been removed from �
ertain targets�.2. The fo
us tra
ks T f are extra
ted from vfΞk+1|k
, but the 
orresponding weightis kept in the PHD.3. For ea
h available 
ontrol u ∈ Uk+1, the tra
ks among T f that are 
overed bythe sensors under 
ontrol u are stored in T f

u .4. For ea
h available 
ontrol u ∈ Uk+1, the PIMS is 
onstru
ted a

ording tode�nition 3.5 with T f
u as input. Then, the predi
tive PHD is 
omputed a

ording toproposition 3.3, with the redu
ed vfΞk+1|k

as input. The resulting PHD is vfΞu
k+1|k+1

.5. For ea
h available 
ontrol u ∈ Uk+1, the non-fo
us tra
ks are extra
ted from
vfΞu

k+1|k+1
and stored in T nf

u .6. The 
ontrol with the highest number of non-fo
us tra
ks |T nf
u | is sele
ted.If there are ties, the 
ontrol whi
h 
overed the highest number of fo
us tra
ks |T f

u |is sele
ted. If there are still ties, the 
ontrol is 
hosen at random.The BET manager share the same basi
 features as the PENT manager (see �g-ures 3.9 and 3.15) by following the pattern �obje
t extra
tion → predi
tive update
→ evaluation of the predi
tive PHD�. The key di�eren
e lies in the nature of theextra
ted obje
ts. While the PENT 
onsiders the estimated targets that 
an beextra
ted from the time updated PHD, the BET ignores the well-extra
ted targetsand dire
ts the sensors toward unknown regions by arti�
ially 
reating tra
ks whi
h
an be seen as �weaker� versions of targets.Computational 
ost: qualitative analysisIn the PENT as well as in the BET manager, the 
omputational 
ost lies mainlyin the predi
tive update. Clearly, the 
omputational 
ost of the exa
t predi
tivemulti-sensor PHD (proposition 3.3) in
reases dramati
ally with the number of idealmeasurements, thus with the number of extra
ted targets/tra
ks and the overlap-ping of the FOV 
on�guration (re
all that a target/tra
k will produ
e one idealmeasurement per sensor whose FOV 
overs its position). Thus, it is almost always�safer� to approximate the predi
tive update with the mu
h lighter ICA (
orollary3.1).In any 
ase, the 
omputational 
ost of the BET manager 
an be signi�
antly re-du
ed by dis
arding some 
ontrols u ∈ Uk+1 before the predi
tive update. Indeed,
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re
all from the se
ond prin
iple before and the data �ow (�gure 3.15) that the �rstsele
tion 
riteria is the number of non-fo
us tra
ks in the predi
tive update vfΞu

k+1|k+1
.These non-fo
us tra
ks must ne
essarily stem from some in
rease in the value of thePHD during the predi
tive step, sin
e by 
onstru
tion the input PHD vfΞk+1|k

hasbeen removed from its non-fo
us tra
ks. Consider an available 
ontrol u ∈ Uk+1 that
overs no fo
us tra
ks (T f
u = ∅). Then, the ideal measurement set will be empty aswell and proposition 3.2 with ZWE

k+1 = ∅ gives:
vfΞu

k+1|k+1
(x|Z1:k) = β[δ∅, δx]K

−1
X

=
S∏

j=1

(1− pd,ju (x))vfΞk+1|k
(x|Z1:k)

6 vfΞk+1|k
(x|Z1:k)Thus, no non-fo
us tra
ks will be extra
ted from the predi
tive PHD vfΞu

k+1|k+1
, thatis, |T nf

u | = 0 with probability one. Consequently, the available 
ontrols that 
oversno fo
us tra
ks 
an be dis
arded without loss of performan
e for the BET manager.Arguably, the 
ontrol that is likely to produ
e the highest number of non-fo
us tra
ksis among the 
ontrols that 
overs a large number of fo
us tra
ks. Thus, the 
omputa-tional 
ost of the BET manager 
ould be further redu
ed by pro
essing the available
ontrols by de
reasing number of 
overed fo
us tra
ks, and stop whenever the 
om-puting time or the number of pro
essed 
ontrols ex
eeds a given limit. However,there is no guarantee that the 
ontrol produ
ing the highest number of non-fo
ustra
ks will eventually be pro
essed and therefore be sele
ted.Design 
hallengesThe BET manager is a �rst approa
h in sensor management and was mainly designedupon the author's understanding of the me
hani
s and �aws of the PENT manager.Arguably, the 
on
eption of the BET manager brings two major issues:
• the predi
tive update equation depends on some extra
tion pro
ess that fallsoutside the PHD framework;
• the values of weight WH , WM WL and distan
e ∆H , ∆M , ∆L parameters are
riti
al to the BET peforman
e.The �rst issue is shared with the PENT manager and does a
tually ex
eed the sen-sor management framework. As dis
ussed previously, the predi
tive PHD is builtas an expe
tation (de�nition 3.3) that requires an extreme simpli�
ation to be
ometra
table (see se
tion 3.2 for a detailed explanation). An interesting lead for further
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work 
ould be the design of a predi
tive PHD in an entirely di�erent manner, butthis point is beyond the s
ope in this thesis.The se
ond issue, however, is spe
i�
 to the BET manager. The problem lies inthe fa
t that the tra
k thresholds depend on many parameters of the system, no-tably the target motion model and the sensor parameters. Consider, for example,the task of setting the parameters (WH ,∆H). Suppose that a high tra
k lies in atra
king zone with no geographi
al elements. Sin
e the tra
k is high, it is a non-fo
ustra
k; thus it will be ignored by the sensors. The tra
k motion is relatively free of
onstraints, thus the lo
al shape of the PHD should �atten signi�
antly during thesu

essive iterations when the tra
k is not 
overed. Thus, one may think of settingrestri
tive values for the high level (say, WH = 0.9, ∆H = 10) to ensure that an un-observed high tra
k is qui
kly demoted to the medium level and therefore be
omes afo
us tra
k again. Consider now a medium tra
k moving along a road in a tra
kingzone. With the values above, the sensors will waste resour
es trying to raise thelevel of this fo
us tra
k, even if, the motion of the tra
k being relatively 
onstrained,ex
essive use of sensors in this region may be super�uous. This parti
ular situationwould require a lower thereshold for high level tra
ks (say, WH = 0.8, ∆H = 30).Not surprisingly, the parametrization of the threshold for the medium tra
k is evenmore 
riti
al, sin
e it in�uen
es the sensor management in both exploration andtra
king zones. A solution may be to make the thresholds dependent on the tra
kposition in the surveillan
e region (or, more generally, on the tra
k state), but thishas not been explored yet.3.4 Con
lusionThis 
hapter 
overed all the elements pertaining to the design of a simple sensormanager within the PHD framework. First of all, the target extra
tion pro
esswas dis
ussed and a solution based on the extra
tion of weight in the PHD wasimplemented. Then followed the rigorous 
onstru
tion of the predi
tive PHD, basedon the PIMS proposed by Mahler. Similarly to the data update step in 
hapter 2, thepredi
tive step was simpli�ed without approximation thanks to a joint partitioningmethod. The last part was devoted to a dis
ussion about Mahler's PENT managerand its in
onsisten
ies on simple examples, followed by the proposition of a newsensor manager - the BET manager - based on a di�erent and more �operational�approa
h to the sensor management problem.
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CHAPTER4Implementation and results
This 
hapter deals with the pra
ti
al implementation of a multi-sensor PHD �lter(
hapter 2) and a BET manager (
hapter 3) in a dete
tion and tra
king prob-lem. The algorithms were implemented in Matlab for the most part, some routineswere written in embedded C 
ode. The �rst se
tion deals with the modelizationof a surveillan
e s
enario. The next se
tion des
ribes the SMC implementation ofthe PHD �lter and the BET manager. Finally, the last se
tion provides the mainsimulation results.4.1 S
enario modelizationIn this 
hapter, the sensors are assumed to be fast enough 
ompared to the targetsso that the time step in the �ltering �ow (see �gure 1) is driven by the target motionmodel. The duration between two time steps is arbitrarily set at ∆t = 1 s.4.1.1 Target modelizationState spa
eA target state x ∈ X has two position variables and two velo
ity variables. Thestate spa
e X ⊂ R

4 is the bounded subset su
h that x = [xc, yc, ẋc, ẏc]T ∈ X if andonly if:
{

(xc, yc) ∈ R def
= [xc

min xc
max]× [ycmin ycmax]

√

(ẋc)2 + (ẏc)2 6 vmax

(4.1)where xc
min, x

c
max, y

c
min, y

c
max, vmax are given boundaries. Their values should beadapted to the underlying physi
al problem. In this thesis, (xc, yc) are 
oordi-143
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nates in meters and R is arbitrarily set as an area of 1 square kilometer, i.e.
R = [0 1000] × [0 1000] m2). Besides, sin
e the targets are ground-based and
∆t = 1 s, one may safely assume that a target will not move more than 10 metersbetween su

essive time steps, thus the maximum velo
ity is set at vmax = 10 m.s−1.Note that a true target has an impli
it �fth state variable, namely its label. Alabel is uniquely attributed to ea
h target when it is 
reated for the whole durationof the simulation - i.e. a label is unavailable if it has already been granted to aprevious target, even if this target has already died. The true targets at time step
x are gathered in the set Xk = {xi

k}i∈I(k) where I(k) ⊂ N
∗ is the set of 
urrent truetarget indi
es.Free modelThis �rst target model is �generi
� in the sense that the target motion is not in-�uen
ed by the lo
al topography of the surveillan
e region. This simple modelwas spe
i�
ally designed for 
omparison purpose between �ltering te
hniques and isbased on the following assumptions:

• the number of newborn targets at ea
h time step is Poisson;
• the newborn targets are uniformly distributed in the state spa
e;
• the target motion model is the near-
onstant velo
ity (NCV) model [Li R 03℄;
• a living targets die when (and only when) it leaves the surveillan
e region.The pseudo-
ode of the free model is given in algorithm 1.Note that the parameters of the model, the birth intensity λb

k−1,k and the stan-dard deviations σx
k , σy

k , are independent of the target state but may depend on thetime step. It is interesting to have a large variation in the target number during thesimulation, one way to a
hieve this is to set a periodi
 birth intensity as follows:
λb
k−1,k = λ cos

(

2π
k

Tλ

) (4.2)Typi
al values of the parameters are λ = 1
15
, Tλ = 80.
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Algorithm 1 Free target model (time k)input: Target set from previous iteration: {xi}i∈I(k−1)output: Target set from 
urrent iteration: {xi}i∈I(k)Target evolutionfor i ∈ I(k − 1) doTarget motionCompute white noise a

eleration: a ∼ N ([0

0

]

,

[
σx
k

σy
k

]2
)Compute new target state:

xi,k ←







1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1






xi,k−1 +







(∆t)
2/2 0
0 (∆t)

2/2
∆t 0
0 ∆t






aVelo
ity normalizationif √(ẋc

i,k)
2 + (ẏci,k)

2 > vmax then
ẋc
i,k ← ẋc

i,k
vmax√

(ẋc
i,k

)2+(ẏc
i,k

)2

ẏci,k ← ẏci,k
vmax√

(ẋc
i,k

)2+(ẏc
i,k

)2end ifTarget survivalif xc
i,k /∈ [xc

min xc
max] and yci,k /∈ [ycmin ycmax] thenDis
ard target i: I(k − 1)← I(k − 1) \ iend ifend forTarget birthCompute newborn target number: Nb ∼ Poisson(λb

k−1,k)Sele
t next Nb available labels: Ib(k)for i ∈ Ib(k) doCompute new position 
oordinates:
xc
i,k ∼ U([xc

min xc
max]), yci,k ∼ U([ycmin ycmax])Compute new velo
ity 
oordinates:

θ ∼ U([−π π]), v ∼ U([0 vmax])
ẋc
i,k ← v cos(θ), ẏci,k ← v sin(θ)end forUpdate set of living target labels: I(k)← I(k − 1) ∪ Ib(k)
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For simpli
ity's sake, the standard deviations σx

k and σy
k are �xed, the typi
al valuesare σx

k = σy
k = 1. A free s
enario of 400 time steps looks as follows:Figure 4.1 Example of free s
enario

Ground-based modelThis se
ond target model was designed for the spe
i�
 purpose of sensor managementevaluation on more �realisti
� s
enarii than those based on the free model above. Thestru
ture of the ground-based model is similar to the free model, but the birth andevolution of the targets are in�uen
ed by geographi
al elements in the surveillan
eregion.The in�uen
e of nearby elements on the target evolution is en
apsulated in thein�uen
e ve
tor and in�uen
e parameter :
(aI , αI) : X → R

2 × [0 1]

x 7→ (aI(x), αI(x)) (4.3)The in�uen
e ve
tor aI(x) has the same unit as a a

eleration and indi
ates the�favored motion� of a target in state x given the nearby elements su
h as:
• roads: targets getting 
loser to a road tend to follow the road as a generaldire
tion;
• obsta
les: targets 
annot rea
h these �forbidden zones�.A target xk evolves a

ording to the NCV model in algorithm 1 ex
ept that the a

el-eration is drawn with mean aI(xk) and with redu
ed varian
e [αI(x)σ

x
k+1 αI(x)σ

y
k+1]

T :
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Figure 4.2 Groud-based in�uen
e on target xk

The in�uen
e parameter is tuned su
h that it de
reases when the target be
omes
lose to geographi
al elements, that is, a target is less likely to �wander around� inthe vi
inity of roads or obsta
les.Besides, after a target has moved or has been 
reated, one must 
he
k that thetarget is not inside an obsta
le. In this 
ase, its position is moved to the nearestpoint outside the obsta
le, and its velo
ity ve
tor is modi�ed so that the targetmoves along the obsta
le rather than bump into it in the next iterations.The number of newborn targets is still Poisson, but the targets are not ne
essar-ily drawn uniformly in the state spa
e. For example, the newborn targets may be
reated along the edges of the surveillan
e region, with a velo
ity ve
tor pointinginward. In the following s
enario (�gure 4.3) the newborn targets are distributeda

ording to:






xc
k+1 = 0

yck+1 ∼ N (800, 100) (ycmin 6 yck+1 6 ycmax)

ẋc
i,k+1 = v cos(θ)

ẏci,k+1 = v sin(θ) (θ ∼ U
([

−π
2

π

2

])

, v ∼ U ([0 vmax]))that is, the targets are 
oming from the left and presumably from the road. Theother parameters λ, Tλ, σx
k+1 and σy

k+1 have the same values as in the free s
enariopresented before.
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Figure 4.3 Example of ground-based s
enario (roads in bla
k, obsta
les in gray)

The main interest of this model is its ability to simulate a broad range of ground-based target behaviors with a limited 
omputational 
ost. Compared to the freemodel, the ground-based model requires the additional 
omputation of the in�uen
eve
tor for ea
h target. This step, however, 
an have a signi�
ant 
ost in regionswith several elements (e.g. road 
rossings). The �eld of in�uen
e ve
tors beingstati
, it 
an be approximated by an o�ine evaluation of the �eld on a grid-baseddis
retization of the state spa
e. A relatively 
oarse grid is su�
ient for a properimplementation of the model (respe
tively 200 and 10 knots in the position andvelo
ity dimensions).4.1.2 Sensor modelizationIn this thesis, the sensors are ground-based and their position in the surveillan
eregion is �xed. The FOV F j
u ⊆ X is determined by the dire
tion of fo
us uj

k:Figure 4.4 Shape of sensor FOV F j
u in the surveillan
e region (gray area)
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where θj , rj and Rj are 
onstant parameters of sensor j. Note that the FOV shapemay be signi�
antly trun
ated in examples su
h as the following:Figure 4.5 Example of trun
ated FOVs

It is important to note that the FOVs are de�ned in the position subspa
e only, i.e.the dete
tion probability for a target x does not depend of its velo
ity (ẋc, ẏc). Thedete
tion probability is 
onsidered uniform inside the FOV and, for any availabledire
tion uj
k:

pd,ju (.) = pd,j1F j
u
(.) (4.4)where pd,j is a 
onstant parameter of sensor j, typi
ally around 0.9.The dimension of the observation spa
e Zj depends on the 
lass of the sensor,the ideal measurement (see de�nition 3.4) is built as follows:Figure 4.6 Ideal measurement ρjk(xi,k)
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Clearly, the measurement fun
tions are not bije
tive. Re
all from 
hapter 3 thatthe inje
tivity is needed for the theoreti
al 
onstru
tion of ideal measurement sets(equation (3.8)), while the bije
tivity is needed for the 
onstru
tion of the predi
-tive observation RFSs (equation (3.9)). However, these issues are hardly relevantin pra
ti
al implementations. First, an ideal measurement set would be ill-de�nedif two di�erent targets x1, x2 shared the same ideal measurement (ρjk(x1) = ρjk(x2))this would imply (�gure 4.6) that they shared the same position 
oordinates in thesurveillan
e region (xc

1 = xc
2 and yc1 = yc2) whi
h is unlikely sin
e there is no spawn-ing and the targets evolve independently from ea
h other. Then, the 
onstru
tionof predi
tive RFSs requires only that, for any ideal measurement z, the quantity

pd,ju ((ρjk+1)
−1(z)) is properly de�ned. On the one hand the measurement fun
tionsrestri
ted to the position 
oordinates in X and 
orestri
ted to the polar 
oordinatesin Zj are 
learly bije
tive, on the other hand the dete
tion probability pd,ju (x) doesnot depend on the velo
ity 
oordinates (ẋc, ẏc), thus pd,ju ((ρjk+1)

−1(z)) is well-de�ned.The noise in the measurement pro
ess is assumed to be additive white Gaussiannoise on ea
h dimension. If measurement zjm,k = [r̂jm,k, θ̂
j
m,k,

ˆ̇rjm,k]
T stems from xi,kthen: 





r̂jm,k ∼ N (rji,k, (σ
j
r)

2)

θ̂jm,k ∼ N (θji,k, (σ
j
θ)

2)

ˆ̇rjm,k ∼ N (ṙji,k, (σ
j
ṙ)

2)

(4.5)where parameters σj
r , σj

θ and σj
ṙ (if 2nd 
lass sensor) are assumed 
onstant. Note thatthere is no 
orrespondan
e between measurement subs
ripts m and target subs
ripts

i sin
e the mapping between measurements and true targets is unknown.The spe
ial 
ase where the drawn measurement falls �outside the FOV� (i.e. zjk /∈
ρjk(F

j
k )) must be addressed in order to avoid in
onsisten
ies in the measurementpro
ess. Two leads were followed:
• resample the measurement;
• �move� the measurement to the 
losest point in ρjk(F

j
k ).The �rst method is very simple sin
e it does not require any additional algorithm,yet it may never 
onverge if the FOV is very small (typi
ally when the whole FOV isheavily trun
ated, see �gure 4.5). The se
ond method brings a stronger bias in thedistribution of the sampled measurement, espe
ially when the origin target is 
loseto the FOV's edges. However, it is 
omputationally safer and therefore was sele
ted.
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The likelihood fun
tion L

.,j
k (.) is given by:







L
zj
m,k

,j

k (xi,k) =
e
− 1

2





(

r
j
i,k

−r̂
j
m,k

σ
j
r

)2

+

(

θ
j
i,k

−θ̂
j
m,k

σ
j
θ

)2




2πσj
rσ

j
θ

(1st class)

L
zj
m,k

,j

k (xi,k) =
e
− 1

2





(

r
j
i,k

−r̂
j
m,k

σ
j
r

)2

+

(

θ
j
i,k

−θ̂
j
m,k

σ
j
θ

)2

+

(

ṙ
j
i,k

−ˆ̇r
j
m,k

σ
j
ṙ

)2




(2π)
3
2σj

rσ
j
θσ

j
ṙ

(2nd class)

(4.6)
The false alarm pro
ess is a 
lassi
al model for radar sensors. The redu
tion of theFOV to the position subspa
e (the gray area in �gure 4.4) is partitioned in elementary
ells (one degree of ar
 wide and one meter long) su
h that the o

uren
e of a falsealarm in ea
h 
ell is an independent Bernouilli pro
ess with the probability of falsealarm pfa,jk as parameter. Sin
e the number of 
ells is very large and the probabilityof false alarm very low (usually around 10−5), the number of false alarms is a

uratelyapproximated as Poisson with intensity:

λc,j
k = pfa,jk

180.θj

π
(Rj − rj) (4.7)and ea
h false alarm is drawn uniformly in ρjk(F

j
k ). The easiest way to deal with thetrun
ated FOVs is to ignore them in the drawing pro
ess (i.e. draw the false alarmnumber a

ording to (4.7) and distribute the false alarm measurements uniformlyin the FOV shape), then dis
ard the false alarms that falls outside the surveillan
eregion. Note that the false alarm term in the expression of the 
ross-terms (seeproposition 2.5) is independent of the measurement itself thanks to the uniformdraw:

∀z ∈ ρjk(F
j
k ), λc,j

k cjk(z)KZj = pfa,jk (4.8)
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Algorithm 2 Measurement pro
ess from 2nd 
lass sensor j (time k)input: Target set from 
urrent iteration: {xi}i∈I(k)output: Measurement set from sensor j: Zj

k = {zjm}m∈[1 mj
k
]True measurementsInitialize measurement 
ounter: m← 0for i ∈ I(k) doDraw random variable: p ∼ U([0 1])if xi,k ∈ F j

u and p 6 pd,j thenComputation of a true measurementIn
rement measurement 
ounter: m← m+ 1Compute ideal measurement: ρjk(xi,k)← [rji,k, θ
j
i,k, ṙ

j
i,k]

TCompute noisy polar 
oordinates:
r̂ ∼ N (rji,k, (σ

j
r)

2), θ̂ ∼ N (θji,k, (σ
j
θ)

2)Compute noisy radial velo
ity: ˆ̇r ∼ N (ṙji,k, (σ
j
ṙ)

2)Store true measurement: zjm,k ← [r̂, θ̂, ˆ̇r]TValidity 
he
k of the true measurementif zjm,k /∈ ρjk(F
j
u) thenMove to 
losest valid measurement: zjm,k ← argminz∈ρj

k
(F j

u)
dZj(z, zjm,k)end ifend ifUpdate measurement number: mj

k ← mend forFalse alarmsCompute false alarm parameter: λc,j
k ← pfa,jk

180.θj

π
(Rj − rj)Compute false alarm number: mfa ∼ Poisson(λc,j

k )for m = 1 to mfa doComputation of a false alarm measurementCompute random polar 
oordinates:
r̂ ∼ U([rj Rj ]), θ̂ ∼ U([uj

k − θj

2
uj
k +

θj

2
])Compute random radial velo
ity: ˆ̇r ∼ U([−vmax vmax])Store temporary measurement: z ← [r̂, θ̂, ˆ̇r]TValidity 
he
k of the false alarm measurementif z ∈ ρjk(F

j
u) thenUpdate measurement number: mj

k ← mj
k + 1Store false alarm measurement: zj

mj
k
,k
← zend ifend for



4.2 Implementation of the multi-sensor PHD �lter 153
4.2 Implementation of the multi-sensor PHD �lter4.2.1 GM vs. SMC methodsThe equations of the PHD �lter (2.14), (2.53), (2.63) and the predi
tive PHD (3.17),(3.23) have no 
losed-form expression in the general 
ase, notably be
ause of the pres-en
e of integrals over the state spa
e X . The integral appears expli
itely in (2.14), inother equations through the 
ross-terms that are not derivated in a state point (e.g.
β[δ∅, 1] or β[δ{z1,z2}, 1]). Sin
e the beginning of the PHD �lter, two di�erent imple-mentation te
hniques have been enjoying a wide popularity: the Gaussian mixturePHD (GMPHD) and the sequential Monte Carlo PHD (SMCPHD) .The GMPHD �lter is a 
losed form expression of the PHD equations in the par-ti
ular 
ase where the target dynami
s and measurement model are linear Gaussian,although it 
an be adapted to a broader range of situations by repla
ing the Kalman�lter equations in the GMPHD by their linearization as in the extended Kalmal �l-ter, or their approximation as in the uns
ented Kalman �lter [Pa
e 11℄. This modelassumes that the intensities of the birth and spawning RFS are Gaussian mixtures,and that the probabilities of target dete
tion and target survival do not depend onthe target state. Then, it 
an be shown that the time and data updated PHDs arealso Gaussian mixtures with a 
losed form expression. The GMPHD has been usedin numerous re
ent tra
king algorithms [Pant 09, Lee 10, Lund 11℄ and an imple-mentation of the GMCPHD, the extension of the GMPHD to the CPHD �lter, isgiven in [Ulmk 10℄.The SMCPHD �lter has been �rst implemented by Vo et al. in [Vo 03, Vo 05℄.As its name suggests, this method aims to apply SMC methods for Bayesian �lter-ing [Dou
 00℄ to PHDs rather than usual probability densities. Sin
e the PHD isa �rst-order moment density, it is unnormalized and do not follow the usual Bayesre
ursion; Johansen et al. [Joha 05℄ studied and proved the 
onvergen
e of the SMCimplementation of the PHD under reasonable assumptions. The SMC implementa-tion is spe
i�
ally designed for highly nonlinear systems, but requires �ne-tuning tobe e�
ient. In the SMCPHD framework, the 
hoi
e of importan
e fun
tions for thepredi
tion and the birth of parti
les is known to be a di�
ult task and an a
tiveresear
h topi
 [Rist 10a℄. Besides, the a

ura
y and the 
omputational 
ost of theSMC implementation both in
reasing with the number of parti
les, its tuning is also
riti
al to the quality of the SMC implementation.Pa
e [Pa
e 11℄ 
ompared the GMPHD and SMCPHD �lters on s
enarii with a
onstant number of targets evolving a

ording to an intera
ting multiple model
omposed by a 
onstant velo
ity model and a 
onstant-turn model perturbed withrandom a

elerations. The results show that the GMPHD �lter outperforms the
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SMCPHD �lter in both estimate quality and 
omputational 
ost. To be sure, thequality of the SMCPHD �lter in
reases with the number of parti
les, but the 
ompu-tational 
ost also in
reases (linearly) and is not adapted to a large number of targets.In the s
ope of this thesis, however, the SMC implementation seemed more naturalsin
e the ground-based evolution model (see se
tion 4.1.1) is highly nonlinear and theindependen
e of the survival and dete
tion probabilities with the target state seemsin
ompatible with the FOV-oriented sensor management. The SMC implementationpresented in the next se
tion is largely based on the SMCPHD �lter given in [Vo 05℄.4.2.2 SMC implementationThe prin
iple of the SMCPHD is to propagate a set of weighted parti
les approxi-mating the su

essive predi
ted vΞk+1|k

and posterior vΞk+1|k+1
PHDs rather than thefull PHDs. At ea
h time k:

vΞk+1|k
(.|Z1:k) ≃

Lk+1|k
∑

l=1

w
(l)
k+1|kδx(l)

k+1|k

(.) (4.9)
vΞk+1|k+1

(.|Z1:k+1) ≃
Lk+1∑

l=1

w
(l)
k+1δx(l)

k+1
(.) (4.10)This se
tion des
ribes the su

essive operations of the SMCPHD at time k+1, whosegoal is to modify the set of weighted parti
les as follows:

{x(l)
k , w

(l)
k }l∈[1 Lk] −→ {x

(l)
k+1, w

(l)
k+1}l∈[1 Lk+1] (4.11)The di�erent operations 
an be summarized as follows:1. Evolution: {x(l)

k , w
(l)
k }l∈[1 Lk] → {x

(l)
k+1|k, w

(l)
k+1|k}l∈[1 L′

k
];2. Model-based birth: {x(l)

k+1|k, w
(l)
k+1|k}l∈[1 L′

k
] → {x(l)

k+1|k, w
(l)
k+1|k}l∈[1 L′

k
+Jk+1];3. Sele
tion of 
ontrol uopt

k+1 ∈ Uk+1 and produ
tion of measurement set Zk+1;4. Measurement-based birth:
{x(l)

k+1|k, w
(l)
k+1|k}l∈[1 L′

k
+Jk+1] → {x

(l)
k+1|k, w

(l)
k+1|k}l∈[1 Lk+1|k];5. Weight update: {x(l)

k+1|k, w
(l)
k+1|k}l∈[1 Lk+1|k] → {x

(l)
k+1|k, w̃

(l)
k+1|k}l∈[1 Lk+1|k];6. Resampling: {x(l)

k+1|k, w̃
(l)
k+1|k}l∈[1 Lk+1|k] → {x

(l)
k+1, w

(l)
k+1}l∈[1 Lk+1];
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Note the presen
e of two parti
le birth steps. The �rst step follows the target 
re-ation model and adds the appropriate weight in the �lter. It should be su�
ientin theory, but the �lter was impra
ti
al as too few newborn parti
les appeared inthe vi
inity ot the measurements. Thus, additional parti
les are 
reated around themeasurements to ensure that at least a few parti
les remain around after the re-sampling. This solution is somewhat unsatisfying and should be 
orre
ted in futureimprovements of the �lter.For simpli
ity's sake, the operations are des
ribed assuming that the targets followthe free motion model. Should the opposite o

ur, one must modify the predi
tionand birth steps to a

ount for the in�uen
e parameters and the obsta
les as ex-plained in se
tion 4.1.1.
Parti
le evolutionThis operation aims to approximate the evolution pro
ess des
ribed by the integralpart in the time update equation (2.14), that is, the evolution of surviving targetsfrom the previous iteration. Assuming that there is no spawning, the new parti
lesshould be drawn as follows [Vo 05℄:

∀l ∈ [1 Lk−1], x
(l)
k+1|k ∼ qk+1(.|x(l)

k , Zk+1) (4.12)
∀l ∈ [1 Lk−1], w

(l)
k+1|k =

psk,k+1(x
(l)
k )f t

k,k+1(x
(l)
k+1|k|x

(l)
k )

qk+1(x
(l)
k+1|k|x

(l)
k , Zk+1)

w
(l)
k (4.13)

where qk+1(.|x(l)
k , Zk+1) is an appropriate importan
e fun
tion (see appendix B for ageneral des
ription of importan
e sampling). The target motion model (espe
iallythe ground-based one) proved to be too 
hallenging to design a proper importan
efun
tion; besides, the 
urrent measurement set Zk+1 is not available sin
e the sensormanager has not 
hosen the multi-
ontrol yet. Thus the parti
les are drawn a

ord-ing to the target motion model itself.
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Algorithm 3 Parti
le evolution (time k + 1)input: Parti
le set from previous iteration: {x(l)

k , w
(l)
k }l∈[1 Lk ]output: Evolved parti
le set from 
urrent iteration: {x(l)

k+1|k, w
(l)
k+1|k}l∈[1 L′

k
]Parti
le evolutionfor l = 1 to Lk doParti
le motionCompute white noise a

eleration

a ∼ N
([

0
0

]

,

[
σx
k+1

σy
k+1

]2
)Compute new parti
le state:

x
(l)
k+1|k ←







1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1






x
(l)
k +







(∆t)
2/2 0
0 (∆t)

2/2
∆t 0
0 ∆t






aVelo
ity normalizationif √(ẋ

(l),c
k+1|k)

2 + (ẏ
(l),c
k+1|k)

2 > vmax then
ẋ
(l),c
k+1|k ← ẋ

(l),c
k+1|k

vmax
√

(ẋ
(l),c
k+1|k

)2+(ẏ
(l),c
k+1|k

)2

ẏ
(l),c
k+1|k ← ẏ

(l),c
k+1|k

vmax
√

(ẋc
i,k

)2+(ẏ
(l),c
k+1|k

)2end ifParti
le survivalif x(l),c
k+1|k /∈ [xc

min xc
max] and y

(l),c
k+1|k /∈ [ycmin ycmax] thenDis
ard parti
le lend ifend forReorder remaining parti
le labels: [1 Lk]→ [1 L′

k]Model-based birthThis operation aims to approximate the birth pro
ess des
ribed by the non-integralpart in the time update equation (2.14). The newborn parti
les should be drawn asfollows [Vo 05℄:
∀l ∈ [L′

k + 1 L′
k + Jk+1], x

(l)
k+1|k ∼ pk+1(.|Zk+1) (4.14)

∀l ∈ [L′
k + 1 L′

k + Jk+1], w
(l)
k+1|k =

1

Jk+1

λb
k,k+1bk,k+1(x

(l)
k+1|k)

pk+1(x
(l)
k+1|k|Zk+1)

(4.15)
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where pk+1(.|Zk+1) is an appropriate importan
e fun
tion. The 
urrent measure-ment set Zk+1 is not available sin
e the sensor manager has not 
hosen the multi-
ontrol yet. Thus, the parti
les are drawn a

ording to the normalized birth intensity
bk,k+1(.). A sound 
hoi
e in the parti
le number is to keep the ratio of parti
les pertarget as 
onstant as possible [Vo 05℄, thus the number of newborn parti
les is setas proportional to the expe
ted number of newborn targets:

Jk+1 = round(ρTλ
b
k,k+1) (4.16)where ρT is the desired parti
le-per-target ratio. Note that the total weight broughtby the newborn parti
les is the expe
ted number of newborn targets:

L′
k
+Jk+1∑

l=L′
k
+1

1

Jk+1

λb
k,k+1bk,k+1(x

(l)
k+1|k)

bk,k+1(x
(l)
k+1|k)

=

L′
k
+Jk+1∑

l=L′
k
+1

λb
k,k+1

Jk+1
= λb

k,k+1 (4.17)
Algorithm 4 Model-based parti
le birth (time k + 1)input: Noneoutput: Newborn parti
le set: {x(l)

k+1|k, w
(l)
k+1|k}l∈[L′

k
+1 L′

k
+Jk+1]Target birthCompute newborn parti
le number: Jk+1 ← round(ρTλ
b
k,k+1)for l = L′

k + 1 to L′
k + Jk+1 doCompute parti
le position:

x
(l),c
k+1|k ∼ U([xc

min xc
max]), y(l),ck+1|k ∼ U([ycmin ycmax])Compute parti
le velo
ity:

θ ∼ U([−π π]), v ∼ U([0 vmax])

ẋ
(l),c
k+1|k ← v cos(θ), ẏ(l),ck+1|k ← v sin(θ)Set parti
le weight: x(l)

k+1|k ←
λb
k,k+1

Jk+1end forSensor managementAs illustrated in the PENT (�gure 3.9) and BET (�gure 3.15) data �ows, thesesensor managers are 
omposed of the following pro
esses:
• a predi
tive update step;
• a target extra
tor (PENT only);
• a tra
k extra
tor (BET only).
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The predi
tive equation (proposition 3.3) is essentially the 
ombination of the 
on-stru
tion of ideal measurements (see algorithm 2) with a data update step, des
ribedby algorithms 8 and 9 below. Thus, its implementation need not be detailed here.The SMC implementation of the weighted peaks extra
tor (de�nition 3.2) is straight-forward, the only real issue lies in the resear
h of a global maximum at the beginningof an extra
tion. Indeed, if the parti
les have just been resampled, all the weightsare equal. In this 
ase, the extra
tion of a new target should be started in areas withthe highest 
on
entration of parti
les. This problem was solved with a grid-basedapproa
h: the state state is dis
retized in knots and the weight of ea
h parti
le
ontributes to the weight of the 
losest knot. Be
ause the parti
le from whi
h theextra
tion is started is not 
riti
al, a relatively 
oarse grid is su�
ient (respe
tively
200 and 10 knots in the position and velo
ity dimensions). Note that the targetextra
tor may be used at any moment during an iteration, thus the time subs
riptshave been omitted in the pseudo-
ode (algorithm 5).Note that the peak enlargement pro
ess has been dis
retized. The in
remental step
δ must be properly tuned: a smaller value in
reases the 
omputational 
ost of theextra
tion pro
ess, while a larger value de
reases the a

ura
y of the extra
tion (theneighborhood weight Wn may signi�
antly ex
eed the target weight Wt). Besides,the radius of the peak upon whi
h the target extra
tion is based is 
apped by ∆maxin order to avoid extra
ted targets with ex
essive 
ovarian
es. In the simulationspresented in this 
hapter, these parameters are set at values δ = 2, ∆max = 200.The tra
k extra
tor is very 
lose to the weighted peak extra
tor but for the fa
tthat:
• the former extra
ts as many tra
ks as possible while the latter extra
ts anumber of targets �xed beforehand;
• the former provides a redu
ed PHD as output (see se
tion 3.3.2).As for algorithm 5, time subs
ripts are omitted for 
larity's sake in algorithm 6.
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Algorithm 5 Target extra
torinput: Copy of the 
urrent parti
le set: {x(l), w(l)}l∈Loutput: Set of extra
ted targets: X̂WETarget number and target weightCompute estimated target number: N ←∑L

l=1w
(l)Compute extra
ted target number: N̂ ← round(N)Compute target weight: Wt ← N

N̂Grid initializationGet grid knots: {xg, wg ← 0}g∈Gfor l = 1 to L doFind 
losest knot: gc ← argming dX (xg, x
(l))Update knot weight: wgc ← wgc + w(l)end forTarget extra
tionfor n = 1 to N̂ doPeak extra
tionCompute heaviest knot: gh ← argmaxg wgCompute peak: lp = argminl dX (xgh, x

(l))for l = 1 to L doInitialize distan
e-to-peak ve
tor: D(l)← dX (x
(l), x(lp)end forTarget extra
tionInitialize distan
e: ∆← 0Initialize neighborhood weight: Wn ← 0Initialize neighborhood set: Ln ← ∅while Wn < Wt and ∆ < ∆max doUpdate neighborhood set: Ln ← {l ∈ L | D(l) 6 ∆}Update neighborhood weight: Wn ←

∑

l∈Ln
w(l)Update distan
e: ∆← ∆+ δend whileExtra
t new target: x̂n ←

∑

l∈Ln

w(l)

Wn
x(l)Weight removalCompute redu
tion fa
tor: α← min(1, Wt

Wn
)for l ∈ Ln doFind 
losest knot: gc ← argming dX (xg, x

(l))Update knot weight: wgc ← wgc − αw(l)Update parti
le weight: w(l) ← (1− α)w(l)end forend for



160 Chapter 4. Implementation and results
Algorithm 6 Tra
k extra
torinput: Copy of the 
urrent parti
le set: {x(l), w(l)}l∈Linput: Exploration zone: XE ⊆ Xinput: Tra
king zone: XT ⊆ Xoutput: Set of fo
us tra
ks: T foutput: Set of non-fo
us tra
ks: T foutput: Redu
ed parti
le set: {x(l), w̃(l)}l∈LInitializationfor l = 1 to L doInitialize redu
ed weight: w̃(l) ← w(l)end forInitialize grid (alg. 5)Initialize tra
k sets: T f ← ∅, T nf ← ∅Tra
k extra
tionInitialize extra
tion �ag: fe ← 0while fe = 0 doPeak extra
tionSee alg. 5: lp, D(:)Target extra
tionInitialize distan
e: ∆← 0Initialize neighborhood weight: Wn ← 0Initialize neighborhood set: Ln ← ∅Initialize enlargement �ag: fl ← 0while fl = 0 doUpdate neighborhood set: Ln ← {l ∈ L | Dl 6 ∆}Update neighborhood weight: Wn ←

∑

l∈Ln
w(l)if ∆ 6 ∆H thenif Wn > WH thenExtra
t tra
k from input parti
le set {x(l), w(l)} (alg. 5): x̂Compute redu
tion fa
tor: α← WH

Wnfor l ∈ Ln doUpdate redu
ed weight: w̃(l) ← (1− α)w̃(l)end forif x̂ ∈ XE ∪ XT thenUpdate non-fo
us tra
k set: T nf ← T nf ∪ {x̂}end ifWeight removal (alg. 5)Update enlargement �ag: fl ← 1end if
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else if ∆ > ∆M thenif Wn > WM thenExtra
t tra
k from input parti
le set {x(l), w(l)} (alg. 5): x̂Compute redu
tion fa
tor: α← WM

Wnif x̂ ∈ XT thenUpdate fo
us tra
k set: T f ← T f ∪ {x̂}elsefor l ∈ Ln doUpdate redu
ed weight: w̃(l) ← (1− α)w̃(l)end forif x̂ ∈ XE thenUpdate non-fo
us tra
k set: T nf ← T nf ∪ {x̂}end ifend ifWeight removal (alg. 5)Update enlargement �ag: fl ← 1end ifelse if ∆ > ∆L thenif Wn > WL thenExtra
t tra
k from input parti
le set {x(l), w(l)} (alg. 5): x̂Compute redu
tion fa
tor: α← WL

Wnif x̂ ∈ XE ∪ XT thenUpdate fo
us tra
k set: T f ← T f ∪ {x̂}elsefor l ∈ Ln doUpdate redu
ed weight: w̃(l) ← (1− α)w̃(l)end forend ifWeight removal (alg. 5)Update enlargement �ag: fl ← 1end ifelseUpdate enlargement �ag: fl ← 1Update extra
tion �ag: fe ← 1end ifUpdate distan
e: ∆← ∆+ δend whileend while



162 Chapter 4. Implementation and results
Measurement-based birthThe birth of parti
les a

ording to the target 
reation model only proved to be in-e�
ent, be
ause the number of parti
les around new measurement was usually toosmall to maintain a presen
e to the next iteration. Thus, it seemed ne
essary to addparti
les around the new measurements. These parti
les must be granted an initialweight large enough so that they do not disappear in the �rst resampling step follow-ing their 
reation, but small enough to limit the bias. The undesired 
onsequen
e isthat false alarm measurement will more often than not be seen as true targets, butthese parti
les usally disappear after a few iterations if they are not 
on�rmed bya new measurement. This solution is obviously unsatisfying and suggests that the�lter is likely to fail in low SNR s
enarii.A �xed number of parti
les are assigned to ea
h new measurement, this number
ρM may be 
hosen somewhat smaller than the number of parti
les per target ρT .This redu
es the 
omputational load of ea
h measurement, and the number of parti-
le will in
rease in future iterations if new measurements in
rease the weight in thevi
inity. The new parti
les are spread around the new measurement in the positionsubspa
e a

ording to the sensor parameters, and spread uniformly in the velo
itysubspa
e.It was de
ided that, sin
e only targets inside the FOV F j

u may be dete
ted bysensor j, all the newborn parti
les 
reated following new measurements by sensor
j must fall inside F j

u or be moved to the 
losest point inside. One may simplifythe implementation, supposedly with little e�e
t, by either dis
arding any parti
le
reated outside the FOV, or even ignoring the validity 
he
k. In this latter 
ase,though, one must still 
he
k that the newborn parti
les belong to the state spa
e.
Weight updateThis operation aims to approximate the data update step given by equation (2.63)with the 
urrent measurement set Zk+1 as input. The �rst step is to implementthe joint partitioning (de�nition 2.9). Note that, in the SMC framework, the 
rossrelation (2.57) between two sensors must be adapted. Assuming that the sele
ted
ontrol is u ∈ Uk+1:

∀i, j ∈ [1 S], iRuj ⇔ (∃l ∈ [1 Lk+1|k], x
(l)
k|k+1 ∈ F i

u ∩ F j
u) (4.18)
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Algorithm 7 Measurement-based parti
le birth (time k + 1)input: Current measurement set: Zk+1output: Newborn parti
le set: {x(l)

k+1|k, w
(l)
k+1|k}l∈[L′

k
+Jk+1+1 Lk+1|k]Parti
le birthInitialize parti
le 
ounter: L← L′

k + Jk+1for j = 1 to S dofor m = 1 to mk+1
j doGet polar 
oordinates of measurement: zjm,k+1: (r̂, θ̂)for l = L+ 1 to L+ ρM doComputation of new parti
le stateCompute noisy polar 
oordinates: r ∼ N (r̂, (σj

r)
2), θ ∼ N (θ̂, (σj

θ)
2)Compute parti
le position: x(l),c

k+1|k ← xc
j+r cos(θ), y(l),ck+1|k ← ycj+r sin(θ)Compute parti
le velo
ity:

θ ∼ U([−π π]), v ∼ U([0 vmax])

ẋ
(l),c
k+1|k ← v cos(θ), ẏ(l),ck+1|k ← v sin(θ)Set parti
le weight: x(l)

k+1|k ← wM

ρMValidity 
he
k of the parti
leif x(l)
k+1|k /∈ F j

u thenMove to 
losest valid state point: x(l)
k+1|k ← argminx∈F j

u
dX (x, x

(l)
k+1|k)end ifend forUpdate parti
le 
ounter: L← L+ ρMend forend forUpdate total number of parti
le number: Lk+1|k ← L′

k + Jk+1 + LLikewise, the target state partition (2.58) is instead a parti
le label partition:
Tk(p) =












l ∈ [1 Lk+1|k], x

(l)
k|k+1 ∈

S⋃

j=1

F j
k






(p = 0)






l ∈ [1 Lk+1|k], x

(l)
k|k+1 ∈

⋃

j∈Sk(p)

F j
k






(p 6= 0)

(4.19)
This result is interesting, be
ause it shows that the SMC partitions are a
tually �nerthan the theoreti
al partitions. This suggests that the joint partitioning method isat least as e�
ient in the SMCPHD as in the theoreti
al PHD �lter.
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Algorithm 8 Joint partitioning (time k + 1)input: Current multi-sensor 
ontrol: uinput: Current measurement set: Zk+1input: Current parti
le set: {x(l)

k+1|k, w
(l)
k+1|k}l∈[1 Lk+1|k]output: Asso
iation matrix: mk+1 × Lk+1|k real matrix Auoutput: Missed dete
tion matrix: S × Lk+1|k real matrix Duoutput: Sensor partition matrix: P × S binary matrix Suoutput: Parti
le partition matrix: P × Lk+1|k binary matrix TuComputation of asso
iation and dete
tion matri
esfor m = 1 to mk+1 doGet origin sensor of measurement zjk+1: jfor l = 1 to Lk+1|k do

Au(m, l)← pju(x
(l)
k+1|k)L

j,zj
k+1

k+1 (x
(l)
k+1|k)

Du(j, l)← 1− pju(x
(l)
k+1|k)end forend forComputation of adja
en
y matrixInitialize S × S adja
en
y matrix: A← ((1−Du)(1−Du)

T > 0)Initialize S × S temporary matrix: T ← (A2 > 0)while A 6= T do
A← T
T ← (A2 > 0)end whileJoint partitioningInitialize partition number: p← 0Initialize sensor partition matrix: Su ← 0for j = 1 to S doif A(j, :) 6= 0 and S(:, j) = 0 thenUpdate partition number: p← p+ 1Update sensor partition matrix: Su(p, :)← A(j, :)end ifend forCompute parti
le partition matrix: Tu ← (Su(1−Du) > 0)The 
omputational 
ost of the partitioning is reasonable enough. The 
ostly part isthe 
omputation of the asso
iation and dete
tion matri
es, yet these variables arerequired for the weight update regardless of the joint partitioning. The adja
en
y
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matrix is a S × S binary matrix whose pro
essing is independent of the parti
lenumber, and the only operations depending on the parti
le number are the produ
ts
(1−Du)(1−Du)

T > 0 and Su(1−Du) > 0.The next step is the weight update using equation (2.63). The 
ross-terms needto be derivated in parti
le states x
(l)
k+1|k only and 
an be easily built with the as-so
iation Au and dete
tion Du matri
es already 
omputed with algorithm 8. Morepre
isely, for any multi-measurement term Ci =

⋃

j∈J{zjmj}, where J ⊆ Su(p) (seede�nition 2.7) and any parti
le l ∈ Tu(p):
β[δ∅, δx(l)

k+1|k

] =




∏

j∈Su(p)

Du(j, l)



w
(l)
k+1|k (4.20)

β[δCi
, δ

x
(l)
k+1|k

] =




∏

j∈J

Au(m
j, l)

∏

j∈Su(p)\J

Du(j, l)



w
(l)
k+1|k (4.21)

β[δ
z
j0

mj0

, 1] ≃
Lk+1|k
∑

l=1

β[δ
z
j0

mj0

, δ
x
(l)
k+1|k

] + pfa,j0k (Ci = {zj0mj0
}) (4.22)

β[δCi
, 1] ≃

Lk+1|k
∑

l=1

β[δCi
, δ

x
(l)
k+1|k

] ([Ci| > 1) (4.23)Clearly, the 
omputational 
ost 
omes mainly from the re
ursive 
omputation of the
ombinational terms a

ording to lemma 2.1, but it is quite 
hallenging to evaluatein the general 
ase. This will be dis
ussed further in 
on
lusion.ResamplingThis operation is 
ommon in SMC methods in order to limit [Vo 05℄:
• parti
le degenera
y, i.e. the 
on
entration of the total weight in a small numberof parti
les;
• a growing number of parti
les regardless of the estimated target number.The resampling implemented in this thesis is very simple. It is systemati
 (i.e.pro
essed at ea
h time step) and the number of representatives (in the resampledset) of ea
h parti
le follows a multinomial distribution with parameters proportionalto the parti
le weights [Joha 05℄.
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Algorithm 9 Weight update (time k + 1)input: Current measurement set: Zk+1input: Time updated parti
le set: {x(l)

k+1|k, w
(l)
k+1|k}l∈[1 Lk+1|k]input: Asso
iation matrix: Auinput: Dete
tion matrix: Duinput: Sensor partition matrix: Suoutput: Parti
le partition matrix: Tuoutput: Reweighted parti
le set: {x(l)

k+1|k, w̃
(l)
k+1|k}l∈[1 Lk+1|k]for p = 1 to P doGet sensors from 
urrent partition: Su(p)← {j ∈ S | Su(p, j) = 1}Get parti
les from 
urrent partition: Tu(p)← {l ∈ [1 Lk+1|k | Tu(p, l) = 1}Computation of β[δ∅, .]for l ∈ Tu(p) do

β[δ∅, δx(l)
k+1|k

]←
(
∏

j∈Su(p)
Du(j, l)

)

w
(l)
k+1|kend forComputation of remaining 
ross-termsCompute 
ombinational terms a

ording to lemma 2.1: C(Z(p)

k+1)for C ∈ C(Z(p)
k+1) dofor Ci ∈ C doGet measurements in Ci: (zjmj )j∈Jfor l ∈ Tu(p) do

β[δCi
, δ

x
(l)
k+1|k

]←
(
∏

j∈J Au(m
j , l)

∏

j∈Su(p)\J
Du(j, l)

)

w
(l)
k+1|kend for

β[δCi
, 1]←∑

l∈Tu(p)
β[δCi

, δ
x
(l)
k+1|k

]if J = j0 then
β[δCi

, 1]← β[δCi
, 1] + pfa,jkend ifend forend forWeight updatefor l ∈ Tu(p) doUpdate weight w(l)

k+1|k using equation (2.63)end forend for
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That is, the number of representatives ζ (l)k+1 of parti
le x(l)

k+1|k in the resampled set israndom and follows the 
onditions [Vo 05℄:
• ∑Lk+1|k

l=1 ζ
(l)
k+1 = Lk+1|k+1;

• E[ζ
(l)
k+1] = Lk+1|k+1

w̃
(l)
k+1|k

∑
Lk+1|k

l′=1
w̃

(l′)
k+1|k

.The number of parti
les in the resampled set is deterministi
 and 
hosen su
h thatthe ratio of parti
les per target is as 
lose as possible to the desired ratio ρT :
Lk+1|k+1 = round(ρT

Lk+1|k
∑

l=1

w̃
(l)
k+1|k) (4.24)Algorithm 10 Resampling (time k + 1)input: Reweighted parti
le set: {x(l)

k+1|k, w̃
(l)
k+1|k}l∈[1 Lk+1|k]output: Resampled parti
le set: {x(l)

k+1|k+1, w
(l)
k+1|k+1}l∈[1 Lk+1|k+1]Computation of the new parti
le numberCompute expe
ted target number: Nk+1 ←
∑Lk+1|k

l=1 w̃
(l)
k+1|kCompute new parti
le number: Lk+1|k+1 ← round(ρTNk+1)Resamplingfor l = 1 to Lk+1|k doCompute multinomial parameter: p(l) ← w̃

(l)
k+1|k

Nk+1end forSample Lk+1|k+1 parti
les from {x(l)
k+1|k}

Lk+1|k

l=1 with parameters {p(l)}Lk+1|k

l=1 :
{x(l)

k+1|k+1}
Lk+1|k+1

l=1for l = 1 to Lk+1|k+1 doSet weight: w(l)
k+1|k+1← 1

Lk+1|k+1end for
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4.3 Simulation resultsThis se
tion provides the main simulation results illustrating the 
on
epts devel-oped in the 
hapters before. The di�erent sensors in the simulations have beenparametrized with various values. Their position in the surveillan
e region, theirFOV shape and their (eventual) 
ontrol 
onstraints are 
riti
al and will be statedexpli
itely. The 
lass of sensor will be also depi
ted with a 
olor (green squares are
1st 
lass, blue squares are 2nd). The standard deviation parameters σj

r , σj
θ and σj

ṙare widely distributed among the sensors, spanning respe
tively from 2 m to 10 m,
2◦ to 7◦ and 1 m.s−1 to 5 m.s−1. The dete
tion probabilities pj,d and the false alarmprobabilities pj,fa are distributed as well, spanning respe
tively from 0.8 to 0.98 andfrom 0.5 × 10−6 to 1 × 10−5. The ratios ρT , ρM are �xed and equal to 100 and 50respe
tively. The s
enarii beginning with no targets, the �lters are also initializedwith no parti
les.Unless otherwise stated, the �gures depi
ting the simulation results are based onthe average of several Monte Carlo runs. The target displa
ement patterns are de-terministi
 and identi
al, ea
h run di�ers from others through the random pro
essesinvolved in the simulation (target dete
tions, false alarms, true measurements, par-ti
le evolution, et
.). Whenever several methods are 
ompared on a same s
enario,the seed of the random fun
tions in the i-th run of ea
h method are initialized atthe same value in order to limit bias.4.3.1 Brute For
e vs. PartitionThe aim of this simulation is to illustrate the advantage of using the joint parti-tioning (theorem 2.5) rather than the �brute for
e� approa
h (theorem 2.4) for the
omputation of the data update step. The following results are an updated versionof those in the 
onferen
e paper [Dela 11b℄.The surveillan
e region is free of geographi
al elements and the targets behave a
-
ording to the free model (see se
tion 4.1.1). Sin
e this simulation emphasizes onthe data update step there is no sensor management and the FOVs are �xed in thesurveillan
e region. The target traje
tories and the FOV 
on�guration are illustratedin �gure 4.7.Note that the FOV 
on�guration is favorable for a partitioning, sin
ethe sensor partition should not be 
oarser than {1, 2, 3, 4}− {5}− {6, 7, 8}− {9, 10}at any time during the simulation.At every iteration, the data update step is 
omputed in parallel with the brutefor
e approa
h and the partition method. Then the two posterior PHDs are 
om-pared, and �nally the �brute for
e� posterior is kept as input for the next iteration.The results were averaged on 5 Monte Carlo runs.
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Figure 4.7 Target traje
tories and FOV 
on�guration

Figure 4.8 Target traje
tories (detail)

Figure 4.9 Target number
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Figure 4.10 Computing time and Kullba
k-Leibler divergen
e
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Time stepFigure 4.10 (left) shows that the 
omputational 
ost of the brute for
e approa
hin
reases dramati
ally around time steps 250 and 480. Clearly, the �rst peak isexplained by the relatively large number of targets in the surveillan
e region at thistime (�gure 4.9). The traje
tories (�gure 4.8) show that target 12 is in the FOVof sensors 2, 3 and 4 around time step 480. This situation is likely to produ
ean relatively large number of measurements, thus in
reasing the 
omplexity of thedata update step. As expe
ted, the 
omputational 
ost of the data update stepwith partitioning is signi�
antly redu
ed, while the updated PHDs with the twomethods remain identi
al (�gure 4.10). Note also that the 
omputational 
ost ofthe partition method sometimes ex
eeds the brute for
e's, typi
ally when the targetnumber is very low and the 
ost of the partitioning itself does not 
ompensate the
omputational gain in the data update step. Even in these situations, however, the
omputational 
ost of the partition method remains reasonable enough.4.3.2 Partition method vs. ICAIt is well known that the approximation produ
ed by the ICA (de�nition 2.11) de-pends on the sensor order, even though simulations seem to show that it does notresult in noti
eable di�eren
es in performan
e [Mahl 10a℄. To the author's knowl-edge, the partition method (theorem 2.5) provides the �rst opportunity to evaluatethe performan
e of the ICA with respe
t to the exa
t multi-sensor PHD. The fol-lowing results are an updated version of those in the 
onferen
e paper [Dela 11a℄.The surveillan
e region is free of geographi
al elements and the targets behave a
-
ording to the free model (see se
tion 4.1.1). Sin
e this simulation emphasizes onthe data update step there is no sensor management and the FOVs are �xed in thesurveillan
e region. As explained in the analysis of the ICA (se
tion 2.4.2), the dis-
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repan
ies between the exa
t multi-sensor PHD and the approximation given by theICA are likely to in
rease with the number of sensors. To illustrate this, the sames
enario has been tested with two di�erent sets of sensors:Figure 4.11 Target traje
tories and FOV 
on�guration

The �rst FOV 
on�guration (�gure 4.11, left) is identi
al to se
tion 4.3.1, that is,the sensor partition should not be 
oarser than {1, 2, 3, 4}− {5}−{6, 7, 8}−{9, 10}at any time during the simulation. Ten sensors have been added in the se
ond FOV
on�guration (�gure 4.11, right) in whi
h the 
oarsest sensor partition should be
{1, 2, 3, 4, 11, 12, 13}− {5, 14, 15} − {6, 7, 8, 16, 17} − {9, 10, 18, 19, 20}.Figure 4.12 Target traje
tories (detail)
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In order to illustrate the dependen
e of the ICA to the sensor order, the sensororders that were likely to produ
e the best and worst estimations were estimated -the 
riteria being the OSPA distan
e between the sets of true and extra
ted targetsaveraged over the whole simulation (400 iterations) and over 20 Monte Carlo runs.Simulating the s
enario with ea
h possible sensor order was 
learly out of rea
h in the
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10-sensor 
on�guration, let alone in the 20-sensor 
on�guration. It is easy to provethat, provided that the sensors are partitioned a

ording to the method explained in
hapter 2, the ICA is sensitive to the sensor order within its partition element only.Consider for example a 4-sensor system su
h that, at time k, the sensor partition is
{1, 2} − {3, 4}. Then, using the ICA with orders 1 → 2→ 3 → 4, 3 → 4 → 1→ 2,
3 → 1 → 2 → 4, et
. would produ
e the exa
t same posterior PHD. Thus, sin
ethe 10-sensor 
on�guration has a 
oarsest partition by 
onstru
tion, it is su�
ientto 
onsider the permutations inside these four elements.The resulting pro
ess being still ex
eedingly di�
ult to solve, it was approximatedby de
oupling the four elements from the 
oarset partition. First, all the permuta-tions of {1, 2, 3, 4} were 
ombined to a �xed order for the other sensors (typi
ally
5 → · · · → 10). The 24 permutations were tested and the order that provided thebest ICA was stored, and so on for the partition elements {6, 7, 8} and {9, 10}. Theworst ICA has been approximated with the same method. This resear
h of the bestand worst ICA in the 20-sensor 
on�guration was further simpli�ed by keeping thebest and worst order that were found in the 10-sensor 
on�guration.The best and worst ICA were then 
ompared with the exa
t PHD (provided bythe partition method) over the same 20 Monte Carlo runs.Figure 4.13 Target number

Figure 4.13 shows that, regardless of the 
on�guration, the estimation of the targetnumber is fairly similar with the partition method and both ICAs. The estimationof the worst ICA seems a bit more spikier than the best ICA's in the 10-sensor 
on-�guration, and the dis
repan
ies grow larger in the 20-sensor 
on�guration. Notethat the estimation of both ICAs deteriorate in the last quarter of the simulation.The target traje
tories (�gure 4.12) show that this period roughly mat
hes the lifespan of target 8, whi
h is evolving in the �
riti
al spot� of the surveillan
e region
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where a large number of sensors are present. As expe
ted, the quality of the ICAde
reases in areas where the sensor FOVs are overlapping.Figure 4.14 OSPA distan
e (c = 100, p = 2)

The OSPA distan
es (�gure 4.14) are more suggestive and 
learly shows the dis
rep-an
ies between the two ICAs, 
learly growing in the 20-sensor 
ase. The partitionmethod provides a better estimation overall, espe
ially during the last quarter ofthe simulation (
on�rmed by table 4.1). It also shows that, during the �rst half ofthe simulation, the ICAs are sometimes better than the partition method. This is a
lear reminder that, even though the partition method is by 
onstru
tion the bestpossible method �PHD-wise�, it does not ne
essarily implies that the estimation isbetter than those provided by approximation methods.Table 4.1: Partition vs. ICA: average OSPA
10-sensor 
on�gurationPartition Best ICA (est.) Worst ICA (est.)Avg. OSPA (overall) 35.4 36.3 40.1Avg. OSPA (last quarter) 40.0 42.0 44.8
20-sensor 
on�gurationPartition Best ICA (est.) Worst ICA (est.)Avg. OSPA (overall) 20.8 26.2 36.0Avg. OSPA (last quarter) 20.7 31.4 40.3
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These results are hardly su�
ient to draw any general 
on
lusion on the advantage ofthe partition method 
ompared to the ICA. However, they are su�
ient to 
on
ludethat, on some s
enarii and with some FOV 
on�gurations, the performan
e of theICA depends signi�
antly on the sensor order. This e�e
t is obviously undesirable,all the more be
ause there is no easy way, to the author's knowledge, to determinea priori the �best� sensor order. It was suggested in se
tion 2.4.2 that orderingthe sensor by in
reasing number of 
urrent measurements 
ould be a sound 
hoi
e.The average number of measurements per sensor and per iteration was 
omputedin this s
enario, but table 4.2 shows that there is no 
lear 
orrelation between the�produ
tivity� rank of the sensors and the orders estimated as �best� and �worst�:Table 4.2: ICA orders and average number of measurements

10-sensor 
on�gurationCriteria Sensor rank
1st part. elem. 2nd 3rd 4th1 2 3 4 5 6 7 8 9 10Avg. meas. 2 4 3 1 1 2 1 3 1 2ICA (best) 4 1 3 2 1 2 1 3 1 2ICA (worst) 2 4 1 3 1 2 3 1 2 1Pay attention to the fa
t that the sensors are ranked in table 4.2 with respe
t to theorder in their element of the 
oarsest partition. This hypothesis 
ould be furthertested by designing an ICA-based �lter whose sensor order is 
hanged dynami
allya

ording to the rank in produ
tivity given by the 
urrent number of measurements.Figure 4.15 Computing time (data update)
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As expe
ted, the 
omputational 
ost of the partition method in
reases dramati
allywith the additional sensors. The 
ost is light enough in the 10-sensor 
on�gurationto 
onsider an online implementation on a real-time tra
ker, but this is hardly the
ase in the 20-sensor 
on�guration (�gure 4.15). This result shows that, to the veryleast, a 
riteria based on the FOV 
on�guration that would help de
ide a prioriwhether the partition method is tra
table enough would be quite valuable. This willbe dis
ussed further in the 
on
lusion.4.3.3 PENT vs. BETThe last simulation aims at 
omparing the PENT and BET managers on a typi
alsurveillan
e s
enario. These results are presented for the �rst time.The surveillan
e region and the target model are identi
al to the examples providedin the des
ription of the ground-based model in se
tion 4.1.1. The surveillan
e zoneis partially 
overed by six sensors, some management is thus needed in order to fo
usthe sensors on the valuable regions of the state spa
e. The available 
ontrols are �xedfor the simulation; at every time step, ea
h sensor may be 
ontrolled a

ording to 5�xed dire
tions of fo
us. Figure 4.16 depi
ts in bla
k lines one of the �ve possibleFOVs for ea
h sensor, and in bla
k dotted lines the areas that 
an be eventually
overed by ea
h sensor - a.k.a. the �total FOVs�.Figure 4.16 Target traje
tories and FOV 
on�guration

Sin
e the targets are bound to 
ome from the left side of the surveillan
e region,presumably on the road, the exploration zone was set as the left part of the surveil-lan
e region (�gure 4.20). Sensors 1 and 2 (�gure 4.16) are mainly devoted to theexploration along the road, sensor 3 to the exploration on the lower road, sensor 4to the tra
king in the area between the obsta
les, and sensor 5 and 6 to the fork inthe upper road.
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Note that the �total FOV� 
on�guration is favorable to partitioning. Be
ause the
ombined �total FOVs� of sensors 1 and 2, sensors 3 and 4, and sensor 5 and 6 do notoverlap, the 
oarsest partition of the sensors should be {1, 2}−{3, 4}−{5, 6} at anytime during the simulation. The spe
i�
 
on�guration of the �total FOVs� simpli�esthe task of the sensor manager as well. Indeed, sin
e ea
h sensor has �ve possible
ontrols, the number of available multi-sensor 
ontrols is 56 = 15625. But, the totalFOVs being partitioned into three elements, the independent management of parti-tion elements {1, 2}, {3, 4}, {5, 6} is bound to have little e�e
t on the managementbut shrinks the number of available 
ontrols to 3 × 52 = 75. This is still a lot topro
ess for the PENT manager whi
h requires a predi
tive step for every possible
ontrol (�gure 3.9); thus, the predi
tive update equation (3.23) was approximatedby six sequential updates through the single-sensor ICA (3.19) with an arbitrarysensor order. For 
omparison purposes, the BET manager was implemented withthe ICA too. The data update step of the PHD �lter (�gure 1), on the other hand,was easily implemented with the exa
t partition method (2.63).Figure 4.17 Target traje
tories (detail)

This s
enario is quite 
hallenging for the sensor managers. Figures 4.16 and 4.17show that six targets are 
rossing the surveillan
e region during the simulation.Target 1 should be quite easy to follow be
ause it stays in the vi
inity of the roads.Target 2 should be more di�
ult to follow, notably be
ause it 
hanges dire
tion inan area un
overed by the sensors. Moreover, it 
losely follows target 4 in the lasttime steps. Target 5 
hanges dire
tion in an un
overed area as well, but then joinstarget 6 along the lower road where it should be easy to spot. Target 3 has a similarbehavior as target 1 and should be quite easy to follow as well. The e�et of the�inde
isive� targets that enter and leave the surveillan
e region almost immediatelyshould not be negle
ted as they are prone to disperse the fo
us of sensors 1, 2 and
3 at various moments during the simulation.
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The 
riti
al parameters of the tra
k extra
tion pro
ess (�gure 3.14) are set as follows:Table 4.3: Tra
k parametersParameter Tra
k levelLow Medium HighWeight 0.3 0.5 0.95Radius (m) 160 120 40The following results are averaged over 10Monte Carlo runs. A sensor manager witha purely random strategy is added for 
omparison purposes.Figure 4.18 Target number and OSPA distan
e (c = 100, p = 2)

Figure 4.19 Computing time (sensor manager)
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Figure 4.18 
learly shows the failure of the PENT manager on this s
enario, no-tably be
ause the target number is overestimated. This result is 
onsistent withthe analysis of the PENT provided in se
tion 3.3.1 and, more pre
isely, in example3.7: the sensors tend to ��ee� regions with a signi�
ant amount of weight but noextra
ted targets in order to avoid a weight redu
tion in the data update. Thisbehavior is expe
ted and 
onsistent with the PENT obje
tive - in
reasing as mu
has possible the estimated number of targets, thus the total weight of the parti
les.Presumably, the failure of the PENT is deepened in the SMC framework. Indeed,the PENT manager leaves the regions with the highest 
on
entration of parti
lesun
he
ked where things grow out of 
ontrol, espe
ially if the parti
le 
loud movesin an un
overed area of the state spa
e - for example, the 
enter of the surveillan
ezone in �gure 4.16. Arguably, the main 
on
lusion that 
an be drawn from thiusfailure is not the performan
e of the PENT itself, but the fa
t that the parti
lesmust be 
he
ked periodi
ally by the sensors in order to avoid an explosion of thetarget number estimation.Table 4.4: PENT vs. BET: average OSPAPENT Random BETAvg. OSPA (overall) 90.8 66.3 61.2The performan
e of the random strategy is unexpe
tedly good 
ompared to the BETmanager. The estimation of the target number is fairly a

urate in both 
ases (�g-ure 4.18) and the OSPA error seems only slightly larger with the random method(
on�rmed by table 4.4). The two following points may be possible explanations ofthese results:1. The �rst explanation pertains to the stru
ture of this parti
ular s
enario. TheFOV 
on�guration (�gure 4.16) shows that the sensors are �
ramped� in a �small�surveillan
e region and, during the simulation, only a few dire
tions of fo
us 
ouldbe quali�ed as �bad de
isions�. To be sure, the performan
e of the PENT showsthat a string of bad de
isions 
ould lead to a poor estimation; the 
riti
al advantageof the random strategy is that it guarantees at least a periodi
 exploration of thearea 
overed by the �total FOVs�, thus preventing the parti
les from growing outof 
ontrol. Presumably, the di�eren
e between the random strategy and the BETmanager would grow if the surveillan
e region were larger and 
ontained �useless�areas never rea
hed by the targets.2. The se
ond explanation is more pra
ti
al and 
losely related to the SMCimplementation. Re
all from se
tion 3.3.2 that the BET manager was designed onthe prin
iple of a periodi
 
he
k of the tra
ks based on their level. When 
overed



4.3 Simulation results 179
by a sensor, a tra
k is indeed prone to disappear if there is no new mesurementssupporting the presen
e of a true target, and to have its level in
reased otherwise.Conversely, a tra
k should ��atten� over time if un
he
ked and its level should de-
rease until it be
omes a obje
t of interest - i.e. a fo
us tra
k - for the sensors.This latter prin
iple hardly survives in the SMC implementation be
ause un
he
kedparti
les qui
kly disappear in the resampling step, even if the high tra
k level is veryrestri
tive (see table 4.3). This phenomenon is 
learly visible in the tra
king zone(�gure 4.20) where the presen
e of a non-fo
us tra
k - indi
ating that the sensorshave followed the underlying target long enough and should fo
us on other obje
ts- is usually followed by an absen
e of extra
ted targets - indi
ating that the sensorshave just stopped fo
using on this point and that the parti
les disappeared almostimmediately. This undesirable e�e
t does not 
ompensate a posteriori the long-termtra
king of targets; to the 
ontrary, it may over
ompensate pure exploration-basedstrategies su
h as the random method. Other resampling methods are 
urrently ex-plored [Dou
 00, Dou
 05℄ and a modi�ed resampling based on the e�e
tive samplesize [Arul 02℄ has been implemented, so far to no avail.Figure 4.20 Illustration of the BET manager on a single run (true targets in blue,extra
ted targets in red, fo
us tra
ks in magenta, non-fo
us tra
ks in green)
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Finally, as 
on�rmed by �gure 4.19, the BET manager is signi�
antly lighter than thePENT, notably be
ause it dis
ards many super�uous predi
tive updates as explainedin 3.3.2. An online implementation of the BET, however, is somewhat restri
ted tomodest s
enarii with a limited number of targets and, above all, a limited numberof sensors.4.4 Con
lusionThis 
hapter 
overed the des
ription of a few sensor and target models that allowthe simulation of simple yet various surveillan
e s
enarii. A SMC implementationof the exa
t multi-sensor PHD �lter provided by 
hapter 2 and the BET managergiven in 
hapter 3 was then proposed and thoroughly des
ribed. The advantage ofthe partition method was 
learly shown on a �rst s
enario, leading to the 
on
lu-sion that the partitioning should always be favored over the �brute for
e� approa
h.A se
ond s
enario highlighted the in�uen
e of the sensor order on the ICA perfor-man
e. The best and worst sensor orders were estimated, and the results showedthat the dis
repan
ies between the two ICAs 
an grow signi�
antly with the numberof sensors if the overlapping in the FOV 
on�guration is strong enough. Besides,the approximation of both ICAs deteriorated with the in
reasing number of sensors
ompared to the exa
t multi-PHD �tler provided by the partition method. Finally,a third s
enario showed that the BET manager 
an signi�
antly outperform thePENT when the sensor 
overage is limited , but also pointed out the fragility of theproposed SMC implementation.



Con
lusion and further work
SummaryThis thesis addressed the ex
iting �eld of multi-obje
t �ltering within the PHDframework.The �rst part fo
used on the extension of the PHD �lter to the multi-sensor 
ase.Based on previous works on the RFS theory and the single-sensor PHD, a rigorous
onstru
tion of the exa
t multi-sensor PHD was proposed. The result was a 
om-binatorial expression that did not provide grounds for a pra
ti
al implementation.Based on the FOV 
on�guration, a joint partitioning of the target state spa
e andsensor indi
es was then proposed in order to simplify the expression of the exa
tmulti-sensor PHD without approximation. The exa
t PHD was then used as a ref-eren
e to 
ompare and dis
uss the usual multi-sensor approximations of the PHD�lter on a theoreti
al level.The se
ond part was devoted to the sensor management problem in PHD �lter-ing. First, a rigorous extension of Mahler's PIMS to the multi-sensor 
ase allowedthe 
onstru
tion of the exa
t multi-sensor predi
tive PHD. Thanks to an adaptatedversion of the joint partitioning method, the expression of the exa
t predi
tive PHDwas simpli�ed without approximation. Then, the sensor manager introdu
ed byMahler - the PENT - was analyzed and its theoreti
al in
onsisten
ies were shown onsimple examples. Finally, the BET manager was proposed as an alternative to thePENT, but designed on more operational prin
iples related to surveillan
e a
tivities.The last part fo
used on the pra
ti
al implementation of the multi-sensor PHD �lterand the BET manager. First, a simulation framework was built upon simple targetand sensor models in order to generate various surveillan
e s
enarii. Then, a SMCimplementation of the PHD �lter and the sensor manager was proposed. Finally, themain results of this thesis were illustrated on three s
enarii. As expe
ted, the �rst181
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s
enario showed that the partition method redu
es signi�
antly the 
omputational
ost of the exa
t multi-sensor PHD, thus allowing the tra
table propagation of avaluable referen
e PHD in s
enarii with a limited number of sensors. The se
onds
enario tested the performan
e of the ICA method, a well-known multi-sensor ap-proximation. As expe
ted, the results showed that the dis
repan
ies between ICAswith a di�erent sensor order in input in
rease with the number of sensors and aresigni�
ant when the sensor number is large enough. Besides, they showed that theapproximation given by the ICA detoriates, 
ompared to the exa
t multi-sensorPHD, when the number of sensors in
reases. The third s
enario aimed at 
omparingthe PENT and BET managers on a typi
al surveillan
e s
enario where the sensor
overage is limited. The BET 
learly outperformed the PENT, in a

ura
y as wellas in 
omputational load. However, the results also pointed out the �aws of theproposed SMC implementation.Future workIn the s
ope of this thesis, the �rst lead that 
ould be followed is a quantitative anal-ysis of the 
omputational 
ost of the exa
t multi-sensor PHD �lter. It is well knownthat the single-sensor PHD �lter has 
omputational 
omplexity O(m), where m isthe number of measurements, although Mahler argued [Mahl 07b℄ that the 
omputa-tional 
omplexity of a PHD-based tra
ker is more a

urately O(mn), where n is thenumber of targets. In any 
ase, an similar result for the exa
t multi-sensor PHD �l-ter would be quite valuable be
ause it 
ould provide grounds for the design of hybrid�lters where, for ea
h element of the joint partitioning, one 
ould evaluate a priorithe 
omputational 
ost of the exa
t data update and de
ide whether it is worththe trouble. The 
entral issue in the implementation the exa
t data update is the
omputation of the 
ombinational terms with lemma 2.1. Clearly, its 
omputational
omplexity depends on the number of sensors and the number of measurements, butit also depends on the measurement distribution among the sensors - for example
|C({z11}, {z21 , z22, z23})| = 4, while |C({z11 , z12}, {z21, z22})| = 7. The relation betweenthe measurement distribution and the 
omputational 
omplexity is, to the author'sknowledge, unknown.Another natural lead 
ould be the improvement of the pra
ti
al implementationpresented in this thesis. Arguably, the proposed SMC implementation 
ould be en-ri
hed with an importan
e sampling step well-adapted to the target model. Theauthor's understanding of the parti
le �ltering me
hanisms suggests that the 
riti
alpoint is the sampling of newborn parti
les, whi
h must be somewhat driven by boththe target birth model and the measurements. For sensor management purposes, itis indeed important to 
reate parti
les in areas where targets are prone to enter inorder to fo
us the exploration and, on the other hand, newborn parti
les are needed
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in the vi
inity of isolated measurements for the data update step to work properly[Rist 10a℄. The systemati
 resampling step, too, would need improvement and 
ouldbe repla
ed by other approa
hes [Dou
 05℄. Aside from the SMC framework, otherimplementations based on Gaussian mixtures 
ould be envisaged. The assumptionon the independen
e of the target dete
tion an target survival probabilities with thetarget state [Pa
e 11℄ seems to pre
lude a dire
t implementation of the GMPHD inFOV-oriented sensor management problems, but this point 
ould be further explored.The BET manager was a �rst approa
h that leaves room for improvement, and there�nement of the tra
k management 
ould be the topi
 of future studies. Notably, inorder to prevent ex
essively frequent 
hanges in tra
k levels - leading sometimes toex
essively frequent 
hanges in sensor dire
tion of fo
us - a new me
hanism, basedon as
ending and des
ending thresholds for ea
h tra
k level, 
ould be envisaged. Atra
k history must be maintained for this purpose, yet it is unavailable within thestri
t PHD framework. Consequently, labelisation te
hniques [Lin 06℄ must be ex-plored beforehand. Another �eld of study that 
ould be promising is the extensionof the predi
tive PHD so that it 
an provides predi
tions several step ahead in thefuture, thus leading to more potent sensor managers based on lookahead poli
ies[Bert 05℄. A �rst solution 
ould be built upon a sequential use of the simple predi
-tive step, whose 
ost is reasonable when approximated by the ICA.On a more theoreti
al level, another ex
iting lead for future work would be theextension of the PHD �ltering prin
iple within the RFS framework. The well-knownCPHD is one su
h extension in whi
h the 
ardinality distribution of the multi-targetRFS - no longer assumed Poisson - is propagated in addition to the PHD. Anotherextension 
ould be envisaged, where the se
ond order produ
t density would bepropagated in addition to the �rst order produ
t density- namely the PHD. Indeed,it seems that the fa
torial moments en
apsulate the notion of simultaneity in thedistribution of points, and thus the propagation of the �rst and the se
ond orderprodu
t densities 
ould provide grounds for the design of a more 
ompli
ated �lter,yet able to des
ribe pairwise intera
tion between targets while the PHD is limitedto independent targets.In his book [Mahl 07b℄ p. 595, Mahler makes an insightful remark 
on
erning thePHD when speaking about the limited sensitivity of the ICA to the sensor order:�This may be be
ause the PHD approximation itself loses so mu
h informationthat any information loss due to heuristi
 multisensor fusion is essentially irrelevant�Aside from the fa
t that this thesis tried to emphasize some situations in whi
hthis information loss 
ould hardly be quali�ed as irrelevant, this remark is a 
lear
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lusion
reminder that the PHD - although a formidable tool for multi-obje
t �ltering - is�rst and last an approximation within the RFS framework. Arguably, the key of thePHD approximation is the Poisson assumption but, to the author's knowledge, its
onsequen
es on the validity of the PHD �lter for various tra
king problems is stillun
lear. Studying this relation is perhaps the most fundamental and 
hallengingprospe
t that remains to be explored.
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Appendix A: Mathemati
al proofs
Chapter 1: Ba
kgroundProperty 1.1This proof is straightforward using the measure theoreti
 formulation given in [Vo 05℄.Proof. For any n ∈ [1 N ], let Tn be any subset of F(Xn). Using equation (1.2) givesimmediately:

P∏N
n=1 Ξn

(
N⋃

n=1

Tn
)

= P

({(
N∏

n=1

Ξn

)

(ω1, ..., ωN) ∈
N⋃

n=1

Tn
})

= P

({
N∏

n=1

Ξn(ωn) ∈
N⋃

n=1

Tn
})Sin
e the RFSs Ξn are independent:

P∏N
n=1 Ξn

(
N⋃

n=1

Tn
)

=

N∏

n=1

P

({

Ξn(ω) ∈
N⋃

n=1

Tn
})

=
N∏

n=1

PΞn
(Tn)

Equation (1.19)This proof is drawn from the measure theoreti
 formulation given in [Vo 05℄.Proof. Let T be any subset of F(X ). Using equation (1.17) then (1.15) gives:
PΞ(T ) =

∫

T

pΞ(X)µ(dX)

=
∞∑

n=0

1

n!

∫

χ−1(T )∩Xn

pΞ({x1, ..., xn})λn(dx1...dxn) (25)
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al proofs
On the other hand, using equation (1.2) gives:

PΞ(T ) = P({X ∈ T })

=

∞∑

n=0

ρΞ(n)P({X ∈ T | |X| = n})

=

∞∑

n=0

ρΞ(n)P({X = χ(x1, ...xn) | (x1, ...xn) ∈ χ−1(T ) ∩ X n})

=

∞∑

n=0

ρΞ(n)P
(n)
Ξ (x1, ...xn | (x1, ...xn) ∈ χ−1(T ) ∩ X n)

=
∞∑

n=0

ρΞ(n)P
(n)
Ξ (χ−1(T ) ∩ X n)Whi
h gives, using the de�nition of Janossy measures (1.18):

PΞ(T ) =
∞∑

n=0

J
(n)
Ξ (χ−1(T ) ∩ X n)

n!Assuming that the Janossy measures admit densities:
PΞ(T ) =

∞∑

n=0

1

n!

∫

χ−1(T )∩Xn

j
(n)
Ξ ({x1, ..., xn})dx1...dxn

=
∞∑

n=0

1

n!

∫

χ−1(T )∩Xn

j
(n)
Ξ ({x1, ..., xn})Kn

Xλ
n(dx1...dxn) (26)Using results (25) and (26) yields:

pΞ({x1, ..., xn}) = j
(n)
Ξ (x1, ..., xn)K

n
X

Property 1.2This proof is straightforward using the de�nition of PGFls provided in [Vo 08℄. Notethat the same result is given in Moyal's earlier work on sto
hasti
 population pro-
esses (see [Moya 62℄ for more details).
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Proof. Let Ξ be a RFS. We have immediately:

GΞ[h] = E[hΞ(ω)]

=

∞∑

n=0

ρΞ(n)

∫

· · ·
∫

h{x1,...,xn}P
(n)
Ξ (dx1, ..., dxn)

=

∞∑

n=0

1

n!

∫

· · ·
∫

h(x1)...h(xn)J
(n)
Ξ (dx1, ..., dxn)

=

∞∑

n=0

1

n!
J
(n)
Ξ [h, ..., h]

Lemma 1.1Even though the following proof was produ
ed by the author based on the de�nitionsand notations given in [Vo 08℄, a mu
h more elegant proof is provided by Moyal in[Moya 62℄. An earlier version of this result may be found in Volterra's work (see[Volt 59℄, p.29, for more details).Proof. Let Ξ be a RFS. First, let us prove by indu
tion on N that, for all N ∈ N:
G

(N)
Ξ [h + ǫN+1gN+1; g1, ..., gN ]−G

(N)
Ξ [h; g1, ..., gN ]

=
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n=1

1
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n∑
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p

)

ǫpN+1J
(n+N)
Ξ [ h

︸︷︷︸

n−p

, gN+1
︸︷︷︸

p

, gN , ..., g1] (27)De�nition 1.10 of fun
tional derivatives gives the result for step 0. Assuming that(27) is true for step N and using de�nition 1.10 again gives:
G
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Ξ [h+ ǫN+2gN+2; g1, ..., gN+1]−G

(N+1)
Ξ [h; g1, ..., gN+1]

= lim
ǫ→0+

1

ǫ

(

G
(N)
Ξ [h+ ǫN+2gN+2 + ǫgN+1; g1, ..., gN ]−G

(N)
Ξ [h + ǫN+2gN+2; g1, ..., gN ]

)

︸ ︷︷ ︸

=A

− lim
ǫ→0+

1

ǫ

(

G
(N)
Ξ [h+ ǫgN+1; g1, ..., gN ]−G

(N)
Ξ [h; g1, ..., gN ]

)

︸ ︷︷ ︸

=B
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Using (27) at step N gives:
A = lim

ǫ→0+

1

ǫ





∞∑

n=1

1

n!

n∑

p=1

(
n

p

)

ǫpJ
(n+N)
Ξ [h+ ǫN+2gN+2

︸ ︷︷ ︸

n−p

, gN+1
︸︷︷︸

p

, gN , ..., g1]





= lim
ǫ→0+



J
(1+N)
Ξ [gN+1, ..., g1] +

∞∑

n=2

1

n!

(
n

1

)

J
(n+N)
Ξ [h+ ǫN+2gN+2

︸ ︷︷ ︸

n−1

, gN+1, gN , ..., g1]

+

∞∑

n=2

1

n!

n∑

p=2

(
n

p

)

ǫp−1J
(n+N)
Ξ [h+ ǫN+2gN+2

︸ ︷︷ ︸

n−p

, gN+1
︸︷︷︸

p

, gN , ..., g1]

︸ ︷︷ ︸

=O(ǫ)





= J
(1+N)
Ξ [gN+1, ..., g1] +

∞∑

n=2

1

(n− 1)!
J
(n+N)
Ξ [h + ǫN+2gN+2

︸ ︷︷ ︸

n−1

, gN+1, gN , ..., g1]Likewise:
B = J

(1+N)
Ξ [gN+1, ..., g1] +

∞∑

n=2

1

(n− 1)!
J
(n+N)
Ξ [ h

︸︷︷︸

n−1

, gN+1, gN , ..., g1]Thus:
G

(N+1)
Ξ [h + ǫN+2gN+2; g1, ..., gN+1]−G

(N+1)
Ξ [h; g1, ..., gN+1]

=
∞∑

n=2

1

(n− 1)!
J
(n+N)
Ξ [h + ǫN+2gN+2

︸ ︷︷ ︸

n−1

, gN+1, ..., g1]

−
∞∑

n=2

1

(n− 1)!
J
(n+N)
Ξ [ h

︸︷︷︸

n−1

, gN+1, ..., g1]

=

∞∑

n=2

1

(n− 1)!

n−1∑

p=0

(
n− 1

p

)

J
(n+N)
Ξ [ h

︸︷︷︸

n−1−p

, ǫN+2gN+2
︸ ︷︷ ︸

p

, gN+1, ...g1]

−
∞∑

n=2

1

(n− 1)!
J
(n+N)
Ξ [ h

︸︷︷︸

n−1

, gN+1, ..., g1]

=
∞∑

n=2

1

(n− 1)!

n−1∑

p=1

(
n− 1

p

)

J
(n+N)
Ξ [ h

︸︷︷︸

n−1−p

, ǫN+2gN+2
︸ ︷︷ ︸

p

, gN+1, ..., g1]

=

∞∑

n=1

1

n!

n∑

p=1

(
n

p

)

ǫpN+2J
(n+N+1)
Ξ [ h

︸︷︷︸

n−p

, gN+2
︸︷︷︸

p

, gN+1, ..., g1]
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Thus, (27) is true for allN . Now, using de�nition 1.10 and (27) gives, for any N ∈ N:
G

(N)
Ξ [h; g1, ..., gN ]

= lim
ǫ→0+

ǫ





∞∑

n=1

1

n!

n∑

p=1

(
n

p

)

ǫpJ
(n+N−1)
Ξ [ h

︸︷︷︸

n−p

, gN
︸︷︷︸

p

, gN−1, ..., g1]





= lim
ǫ→0+

(

J
(N)
Ξ [gN , ..., g1] +

∞∑

n=2

1

n!

(
n

1

)

J
(n+N−1)
Ξ [ h

︸︷︷︸

n−1

, gN , ..., g1]

+
∞∑

n=2

1

n!

n∑

p=2

(
n

p

)

ǫp−1J
(n+N−1)
Ξ [ h

︸︷︷︸

n−p

, gN
︸︷︷︸

p

, gN−1, ..., g1]

︸ ︷︷ ︸

=O(ǫ)





= J
(N)
Ξ [gN , ..., g1] +

∞∑

n=1

1

n!
J
(n+N)
Ξ [ h

︸︷︷︸

n

, gN , ..., g1]

=

∞∑

n=0

1

n!
J
(n+N)
Ξ [ h

︸︷︷︸

n

, gN , ..., g1]

Property 1.4This proof is adapted from Moyal's early work on sto
hasti
 population pro
esses(see [Moya 62℄ for more details).Proof. Using lemma 1.1 and setting h = 0 yields immediately:
G

(N)
Ξ [0; g1, ..., gN ] = J

(N)
Ξ [g1, ..., gN ]Then, using lemma 1.1 and setting h = 1 gives:

G
(N)
Ξ [1; g1, ..., gN ] =

∞∑

n=0

1

n!
J
(N+n)
Ξ [g1, ..., gN , 1

︸︷︷︸

n

]

=

∞∑

n=0

1

n!

∫

· · ·
∫

︸ ︷︷ ︸

N+n

g1(x1)...gN(xN )1(xN+1)...1(xN+n)J
(N+n)
Ξ (dx1, ..., dxN+n)

=

∫

· · ·
∫

︸ ︷︷ ︸

N

g1(x1)...gN(xN )







∞∑

n=0

1

n!

∫

· · ·
∫

︸ ︷︷ ︸

n

J
(N+n)
Ξ (dx1, ..., dxN+n)






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Whi
h gives, using equation (1.24):

G
(N)
Ξ [1; g1, ..., gN ] =

∫

· · ·
∫

︸ ︷︷ ︸

N

g1(x1)...gN(xN )V
(N)
Ξ (dx1 × ...× dxN)

= V
(N)
Ξ [g1, ..., gN ]

Property 1.5This proof is given by Mahler in [Mahl 03a℄.Proof. AssumingG[h] = h(x0) and using the de�nition 1.10 of a fun
tional derivativegives immediately:
δG

δx
[h] = lim

ǫ→0+

G[h+ ǫδxKX ]−G[h]

ǫ

= lim
ǫ→0+

h(x0) + ǫδx(x0)KX − h(x0)

ǫ

= δx(x0)KXLikewise, assuming G[h] =
∫
h(x)p(x)dx and using the de�nition 1.10 of a fun
tionalderivative gives immediately:

δG

δx
[h] = lim

ǫ→0+

G[h+ ǫδxKX ]−G[h]

ǫ

= lim
ǫ→0+

∫

X
(h(y) + ǫδx(y)KX )p(y)dy −

∫

X
h(y)p(y)dy

ǫ

= lim
ǫ→0+

∫

X
ǫδx(y)KXp(y)λ(dy)

ǫ

= p(x)KX

Property 1.6This proof is given by Mahler in [Mahl 03a℄. Note that the equivalent result withthe point pro
ess formulation was given earlier in [Vere 88℄ (see �Campbell theorem�,eq. (6.4.11) p. 188).
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Proof. We have immediately:
∫

F(X )

hXpΞ(X)µ(dX) =

∞∑

n=1

1

n!

∫

Xn

(
n∑

i=1

h(xi)

)

j
(n)
Ξ (x1, ..., xn)dx1...dxn

=
∞∑

n=1

1

n!

n∑

i=1

∫

Xn

h(xi)j
(n)
Ξ (x1, ..., xn)dx1...dxn

=

∞∑

n=1

1

(n− 1)!

∫

Xn

h(x1)j
(n)
Ξ (x1, ..., xn)dx1...dxn

=

∫

X

h(x1)

(
∞∑

n=1

1

(n− 1)!

∫

Xn−1

j
(n)
Ξ (x1, ..., xn)dx2...dxn

)

dx1

=

∫

X

h(x)

(
∞∑

n=0

1

n!

∫

Xn

j
(n+1)
Ξ (x, x1, ..., xn)dx1...dxn

)

dx

=

∫

X

h(x)vΞ(x)dx

Property 1.7This proof is given by Mahler in [Mahl 03a℄.Proof. Let x0 be an arbitrary point in X . Using equation (1.44), we 
an write:
vΞΦ

(x0)KX =

[
δ

δx0
GΞΦ

[h]

]

h=1

=

[
δ

δx0
GΞ[Φ[h]]

]

h=1

=

∫

F(X )

[
δ

δx0

(
Φ[h]X

)
]

h=1

pΞ(X)µ(dX)

=

∫

F(X )

[
∑

x∈X

(
δ

δx0
Φ[h](x)

)

Φ[h]X\{x}

]

h=1

pΞ(X)µ(dX)

=

∫

F(X )

[
∑

x∈X

(
δ

δx0

GΞΦ,x
[h]

)

Φ[h]X\{x}

]

h=1

pΞ(X)µ(dX)

=

∫

F(X )

(
∑

x∈X

[
δ

δx0
GΞΦ,x

[h]

]

h=1

)

pΞ(X)µ(dX)
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That is, using equation (1.44) again:

vΞΦ
(x0)KX =

∫

F(X )

(
∑

x∈X

vΞΦ,x
(x0)KX

)

pΞ(X)µ(dX)

=

∫

F(X )

(
∑

x∈X

hx0(x)

)

pΞ(X)µ(dX)where hx0 : x 7→ vΞΦ,x
(x0)KX . Then, equation (1.49) yields:

vΞΦ
(x0)KX =

∫

X

hx0(x)vΞ(x)dx

=

∫

X

vΞΦ,x
(x0)KX vΞ(x)dxThus:

vΞΦ
(x0) =

∫

X

vΞΦ,x
(x0)vΞ(x)dx
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Chapter 2: The multi-sensor PHDProperty 2.1This proof is drawn from Mahler's study of the Poisson RFS in [Mahl 03a℄.Proof. Let Y = {y1, ..., yn} be any set of points in X , and {Ti}i∈[1 n] a family ofsubsets of X . Then, using the de�nition of Janossy measures (1.18):
J
(n)
Ξ (T1 × ...× Tn) = n!ρΞ(n)P

(n)
Ξ (T1 × ...× Tn)Sin
e Ξ is Poisson with parameter λΞ and spatial intensity IΞ:

J
(n)
Ξ (T1 × ...× Tn) = n!e−λΞ

λn
Ξ

n!

∫

T1

. . .

∫

Tn

n∏

i=1

IΞ(xi)

λΞ

dx1...dxn

= e−λΞ

∫

T1

. . .

∫

Tn

n∏

i=1

IΞ(xi)dx1...dxn (28)Thus:
j
(n)
Ξ (y1, ..., yn) = e−λΞ

n∏

i=1

IΞ(yi)Then, using (1.24) gives:
v
(n)
Ξ (y1, ..., yn) =

∞∑

m=0

1

m!

∫

Xm

j
(m+n)
Ξ (y1, ..yn, xn+1, ..., xn+m)dxn+1...dxn+m

=
∞∑

m=0

1

m!

∫

Xm

(
n∏

i=1

IΞ(yi)

)

j
(m)
Ξ (xn+1, ..., xn+m)dxn+1...dxn+m

=

(
n∏

i=1

IΞ(yi)

)
∞∑

m=0

1

m!

∫

Xm

j
(m)
Ξ (xn+1, ..., xn+m)dxn+1...dxn+m

︸ ︷︷ ︸

=1

=
n∏

i=1

IΞ(yi)Besides, the 
hara
terization of the PGFl (1.33) gives:
GΞ[h] =

∞∑

m=0

1

m!
J
(m)
Ξ [h, ..., h]
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That is, using (28):

GΞ[h] =

∞∑

m=0

1

m!
e−λΞ

∫

Xm

m∏

i=1

h(xi)IΞ(xi)dx1...dxm

= e−λΞ

∞∑

m=0

1

m!

(∫

X

h(x)IΞ(x)dx

)m

= e−λΞ

∞∑

m=0

1

m!
(IΞ[h])

m

= eIΞ[h]−λΞ

Property 2.2This proof is an adaptation of Mahler's study of the Poisson RFS in [Mahl 03a℄.Proof. Let Y = {y1, ..., yn} be any set of points in X , and {Ti}i∈[1 n] a family ofsubsets of X . Then, using the de�nition of Janossy measures (1.18):
J
(n)
Ξ (T1 × ...× Tn) = n!ρΞ(n)P

(n)
Ξ (T1 × ...× Tn)Sin
e Ξ is i.i.d 
luster with mean λΞ and spatial intensity IΞ:

J
(n)
Ξ (T1 × ...× Tn) = n!ρΞ(n)

∫

T1

. . .

∫

Tn

n∏

i=1

IΞ(xi)

λΞ

dx1...dxn

=
n!ρΞ(n)

λn
Ξ

∫

T1

. . .

∫

Tn

n∏

i=1

IΞ(xi)dx1...dxn (29)Thus:
j
(n)
Ξ (y1, ..., yn) =

n!ρΞ(n)

λn
Ξ

n∏

i=1

IΞ(yi)Besides, the 
hara
terization of the PGFl (1.33) gives:
GΞ[h] =

∞∑

m=0

1

m!
J
(m)
Ξ [h, ..., h]
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That is, using (29):

GΞ[h] =
∞∑

m=0

1

m!

m!ρΞ(m)

λm
Ξ

∫

Xm

m∏

i=1

h(xi)IΞ(xi)dx1...dxm

=
∞∑

m=0

ρΞ(m)

(∫

X

h(x)IΞ(x)

λΞ
dx

)m

=

∞∑

m=0

ρΞ(m)

(
IΞ[h]

λΞ

)m

= G|Ξ|

(
IΞ[h]

λΞ

)

Property 2.3This proof is drawn from Mahler's 
onstru
tion of the single-sensor PHD �lter in[Mahl 03a℄.Proof. Let Y = {y1, ..., yn} be any set of points in X , and {Ti}i∈[1 n] a family ofsubsets of X . Then, using the de�nition of Janossy measures (1.18):
J
(n)
Ξ (T1 × ...× Tn) = n!ρΞ(n)P

(n)
Ξ (T1 × ...× Tn)Sin
e Ξ is Bernoulli with parameter bΞ and spatial dsitribution IΞ:

J
(n)
Ξ (T1 × ...× Tn) =







1− bΞ n = 0

bΞ

∫

T1

IΞ(x1)dx1 n = 1

0 otherwiseThus:
j
(n)
Ξ (y1, ..., yn) =







1− bΞ n = 0

bΞIΞ(y1) n = 1

0 otherwiseBesides, the 
hara
terization of the PGFl (1.33) gives:
GΞ[h] =

∞∑

m=0

1

m!
J
(m)
Ξ [h, ..., h]
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Thus:

GΞ[h] = 1− bΞ + bΞ

∫

X

h(x)IΞ(x)dx

= 1− bΞ + bΞIΞ[.]

Proposition 2.1This proof is drawn from Mahler's 
onstru
tion of the single-sensor PHD �lter in[Mahl 03a℄.Proof. Let ΞE
k,k+1(X) be the Multi-Bernoulli RFS ⋃x∈X ΞE

k,k+1(x). Then, usingproposition 2.4 on Multi-Bernoulli RFS gives:
GΞE

k,k+1(X)[h] =
∏

x∈X

(
(1− psk,k+1(x) + psk,k+1(x)p

t
k,k+1[h|x])

)

= (1− psk,k+1(.) + psk,k+1(.)p
t
k,k+1[h|.])XLet ΞS

k,k+1(X) be the union RFS ⋃x∈X ΞS
k,k+1(x). Sin
e the spawning RFS are inde-pendent, using property 1.3 on union RFS yields:

GΞS
k,k+1(X)[h] =

∏

x∈X

GΞS
k,k+1(x)

[h]

= (GΞS
k,k+1(.)

[h])XBy 
onstru
tion, the transition RFS ΞT
k,k+1(X) is the union RFS of independent RFS

ΞE
k,k+1(X), ΞS

k,k+1(X) and ΞB
k,k+1. Thus, using property 1.3 gives:

GΞT
k,k+1(X)[h] = GΞE

k,k+1(X)[h]GΞE
k,k+1(X)[h]GΞB

k,k+1
[h]

= (1− psk,k+1(.) + psk,k+1(.)p
t
k,k+1[h|.])X(GΞS

k,k+1(.)
[h])XGΞB

k,k+1
[h]

Theorem 2.1This is proof is a key element from Mahler's 
onstru
tion of the single-sensor PHD�lter (see [Mahl 03a℄). An earlier a

ount of a similar 
onstru
tion may be found inMoyal's work (see [Moya 62℄ for more details).
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Proof. Let h be any real-valued fun
tion in [0 1]. Using the de�nition of the PGFl(1.29) on predi
ted RFS Ξk+1|k gives:
GΞk+1|k

[h] =

∫

F(X )

hY pΞk+1|k
(Y |Z1:k)µ(dY )That is, thanks to the RFS �lter equation (1.55):

GΞk+1|k
[h] =

∫

F(X )

hY

(∫

F(X )

pΞT
k,k+1

(Y |X)pΞk|k
(X|Z1:k)µ(dX)

)

µ(dY )

=

∫

F(X )

(∫

F(X )

hY pΞT
k,k+1

(Y |X)µ(dY )

)

pΞk|k
(X|Z1:k)µ(dX)Using the de�nition of the PGFl (1.29) again gives:

GΞk+1|k
[h] =

∫

F(X )

GΞT
k,k+1(X)[h]pΞk|k

(X|Z1:k)µ(dX)With the assumptions of proposition 2.1:
GΞk+1|k

[h]

=

∫

F(X )

(1− psk,k+1(.) + psk,k+1(.)f
t
k,k+1[h|.])X(GΞS

k,k+1(.)
[h])XGΞB

k,k+1
[h]pΞk|k

(X|Z1:k)µ(dX)

= GΞB
k,k+1

[h]

∫

F(X )

(

(1− psk,k+1(.) + psk,k+1(.)f
t
k,k+1[h|.])GΞS

k,k+1(.)
[h]
)X

pΞk|k
(X|Z1:k)µ(dX)Let Φ : h 7→ Φ[h] be su
h that Φ[h](.) = (1−psk,k+1(.)+psk,k+1(.)f

t
k,k+1[h|.])GΞS

k,k+1(.)
[h].Then:

GΞk+1|k
[h] = GΞB

k,k+1
[h]

∫

F(X )

(Φ[h](.))XpΞk|k
(X|Z1:k)µ(dX)Using the de�nition of the PGFl (1.29) again gives:

GΞk+1|k
[h] = GΞB

k,k+1
[h]GΞk|k

[Φ[h]]Then, using the derivation property of the PGFl (1.44) yields, for any x ∈ X :
vΞk+1|k

(x|Z1:k)KX =

[
δGΞk+1|k

δx
[h]

]

h=1

=

[
δGΞB

k,k+1

δx
[h]

]

h=1
︸ ︷︷ ︸

A

GΞk|k
[Φ[1]]

︸ ︷︷ ︸

B

+GΞB
k,k+1

[1]
︸ ︷︷ ︸

C

[
δGΞk|k

δx
[Φ[h]]

]

h=1
︸ ︷︷ ︸

D
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Using the derivation property of the PGFl (1.44) again gives:
A =

[
δGΞB

k,k+1

δx
[h]

]

h=1

= vΞB
k+1|k

(x)KXOne 
an note that, for all x ∈ X :
Φ[1](x) = (1− psk,k+1(x) + psk,k+1(x)f

t
k,k+1[1|x])GΞS

k,k+1(x)
[1]Using the de�nition of the PGFl (1.29) again gives:

Φ[1](x)

=






1− psk,k+1(x) + psk,k+1(x)

∫

X

1(y)f t
k,k+1(y|x)dy

︸ ︷︷ ︸

=1














∫

F(X )

1Y pSk,k+1(Y |x)µ(dY )

︸ ︷︷ ︸

=1








= 1− psk,k+1(x) + psk,k+1(x)

= 1Then, sin
e Φ[1] = 1:
B = GΞk|k

[Φ[1]]

= GΞk|k
[1]Using the de�nition of the PGFl (1.29) again gives:

B =

∫

F(X )

1XpΞk|k
(X|Z1:k)µ(dX)

= 1Using the de�nition of the PGFl (1.29) on
e more gives:
C = GΞB

k,k+1
[1]

=

∫

F(X )

1XpBk,k+1(X)µ(dX)

= 1
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Next, using the de�nition of the PGFl (1.29) on D yields:
D =

[
δGΞk|k

δx
[Φ[h]]

]

h=1

= vΞΦ
(x)KXwhere ΞΦ denotes the RFS with the PGFl GΞk|k

[Φ[.]]. Denote by ΞΦ,y the RFS withPGFl GΞΦ,y
[.] = Φ[.](y). Then, sin
e Φ[1] = 1, property 1.7 applies and thus:

D =

∫

X

vΞΦ,y
(x)vΞk|k

(y|Z1:k)dy KX

=

∫

X

(vΞΦ,y
(x)KX )vΞk|k

(y|Z1:k)dyUsing the de�nition of the PGFl (1.29) again gives:
D =

∫

X

[
δGΞΦ,y

δx
[h]

]

h=1

vΞk|k
(y|Z1:k)dyBut:

δGΞΦ,y

δx
[h] =

δΦ[h](y)

δx

=
δ

δx

[

(1− psk,k+1(y) + psk,k+1(y)f
t
k,k+1[h|y])GΞS

k,k+1(y)
[h]
]

= psk,k+1(y)

(
δ

δx
f t
k,k+1[h|y]

)

GΞS
k,k+1(y)

[h]

+ (1− psk,k+1(y) + psk,k+1(y)f
t
k,k+1[h|y])

(
δ

δx
GΞS

k,k+1(y)
[h]

)Sin
e f t
k,k+1[h|y] =

∫

X
h(z)f t

k,k+1(z|y)dz, using 
al
ulus property (1.48) gives:
δGΞΦ,x

δx
[h] = psk,k+1(y)

(
f t
k,k+1(x|y)KX

)
GΞS

k,k+1(y)
[h]

+ (1− psk,k+1(y) + psk,k+1(y)f
t
k,k+1[h|y])

(
δ

δx
GΞS

k,k+1(y)
[h]

)Therefore, by setting h = 1:
[
δGΞΦ,y

δx
[h]

]

h=1

= psk,k+1(y)f
t
k,k+1(x|y)GΞS

k,k+1(y)
[1]

︸ ︷︷ ︸

=1

KX

+ (1− psk,k+1(y) + psk,k+1(y) f
t
k,k+1[1|y]
︸ ︷︷ ︸

=1

)

[
δ

δx
GΞS

k,k+1(y)
[h]

]

h=1
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That is, using the de�nition of the PGFl (1.29):
δGΞΦ,y

δx
[h] = psk,k+1(y)f

t
k,k+1(x|y)KX + (1− psk,k+1(y) + psk,k+1(y))vΞS

k,k+1(y)
(x)KX

= psk,k+1(y)f
t
k,k+1(x|y)KX + vΞS

k,k+1(y)
(x)KXHen
e:

D =

∫

X

(

psk,k+1(y)f
t
k,k+1(x|y) + vΞS

k,k+1(y)
(x)
)

vΞk|k
(y|Z1:k)dy KXThus:

vΞk+1|k
(x|Z1:k)KX = AB + CD

= vΞB
k+1|k

(x|Z1:k)KX +

∫

X

(

psk,k+1(y)f
t
k,k+1(x|y) + vΞS

k,k+1(y)
(x)
)

vΞk|k
(y|Z1:k)dy KXFinally:

vΞk+1|k
(x|Z1:k) = vΞB

k+1|k
(x) +

∫

X

(

psk,k+1(y)f
t
k,k+1(x|y) + vΞS

k,k+1(y)
(x)
)

vΞk|k
(y|Z1:k)dyProposition 2.2This proof is drawn from Mahler's 
onstru
tion of the single-sensor PHD �lter in[Mahl 03a℄.Proof. Let ΣD

k+1(X) be the Multi-Bernoulli RFS ⋃x∈X ΣD
k+1(x). Then, using propo-sition 2.4 on Multi-Bernoulli RFS gives:

GΣD
k+1(X)[g] =

∏

x∈X

(
1− pdk+1(x) + pdk+1(x)f

o
k+1[g|x]

)

= (1− pdk+1(.) + pdk+1(.)f
o
k+1[g|.])XLet ΣC

k+1 be the false alarm RFS. Sin
e is its assumed Poisson with parameter λc
k+1and intensity λc

k+1ck+1(.), using equation (2.3) yields:
GΣC

k+1
[g] = eλ

c
k+1ck+1[g]−λc

k+1By 
onstru
tion, the observation RFS Σ0
k+1(X) is the union RFS of independentRFSs ΣD

k+1(X) and ΣC
k+1. Thus, using property 1.3 gives:

GΣO
k+1(X)[g] = GΣD

k+1(X)[g]GΣC
k+1

[g]

= (1− pdk+1(.) + pdk+1(.)f
o
k+1[g|.])Xeλ

c
k+1ck+1[g]−λc

k+1
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Proposition 2.3Proof. Let x ∈ X be any target state and z ∈ Z any measurement state.
β[g, δx] =

δ

δx
β[g, h]

=
δ

δx

(

λc
k+1ck+1[g]− λc

k+1 + vΞk+1|k

[
h(1− pdk+1 + pdk+1f

o
k+1[g|.])

]
− vΞk+1|k

[1]
)

=
δ

δx

(∫

X

h(y)(1− pdk+1(y) + pdk+1(y)f
o
k+1[g|y])vΞk+1|k

(y|Z1:k)dy

)Using property (1.48) gives:
β[g, δx] = (1− pdk+1(x) + pdk+1(x)f

o
k+1[g|x])vΞk+1|k

(x|Z1:k)KXLikewise:
β[δz, h] =

δ

δz
β[g, h]

=
δ

δz

(

λc
k+1ck+1[g]− λc

k+1 + vΞk+1|k

[
h(1− pdk+1)

]
+ vΞk+1|k

[
pdk+1f

o
k+1[g|.]

]
− vΞk+1|k

[1]
)

= λc
k+1

δ

δz

(∫

Z

g(u)ck+1(u)du

)

+

∫

X

h(y)pdk+1(y)
δ

δz

(∫

Z

g(u)f o
k+1(u|y)du

)

vΞk+1|k
(y|Z1:k)dyUsing property (1.48) gives:

β[δz, h] = λc
k+1ck+1(z)KZ +

∫

X

h(y)pdk+1(y) f
o
k+1(z|y)
︸ ︷︷ ︸

=Lz
k+1(y)

vΞk+1|k
(y|Z1:k)dy KZ

= λc
k+1ck+1(z)KZ+vΞk+1|k

[hpdk+1L
z
k+1]KZFinally:

β[δz, δx] =
δ

δx
β[δz, h]

=
δ

δx

(

λc
k+1ck+1(z)KZ + vΞk+1|k

[hpdk+1L
z
k+1]KZ

)

=
δ

δx

(∫

X

h(y)pdk+1(y)L
z
k+1(y)vΞk+1|k

(y|Z1:k)dy

)

KZUsing property (1.48) gives:
β[δz, δx] = pdk+1(x)L

z
k+1(x)vΞk+1|k

(x|Z1:k)KXKZ
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Theorem 2.2This proof is adapted from one of Mahler's key theorems in the 
onstru
tion of thesingle-sensor PHD �lter (see [Mahl 03a℄).Proof. Let Zk+1 be the is the set mk+1 
urrent measurements, h (resp. g) be a real-valued fun
tion de�ned on X (resp. Z) in [0 1], and x0 any point in X . Then, let
F [g, h] be the joint PGFl of PGFls
GΣk+1(X)[g] and GΞk+1|k

[h]. Then:
F [g, h] =

∫

F(Z)

∫

F(X )

hXpΣk+1(X)(Z)pΞk+1|k
(X|Z1:k)µ(dX)µ(dZ)

=

∫

F(X )

hXgZ
(∫

F(Z)

gZpΣk+1(X)(Z)µ(dZ)

)

pΞk+1|k
(X|Z1:k)µ(dX)Whi
h gives, using the de�nition of the PGFl (1.29):

F [g, h] =

∫

F(X )

hXGΣk+1(X)[g]pΞk+1|k
(X|Z1:k)µ(dX) (30)On the �rst hand, proposition 2.2 yields:

F [g, h] =

∫

F(X )

hX(1− pdk+1(.) + pdk+1(.)f
o
k+1[g|.])Xeλ

c
k+1ck+1[g]−λc

k+1pΞk+1|k
(X|Z1:k)µ(dX)

= eλ
c
k+1ck+1[g]−λc

k+1

∫

F(X )

(
h(1− pdk+1(.) + pdk+1(.)f

o
k+1[g|.])

)X
pΞk+1|k

(X|Z1:k)µ(dX)

= eλ
c
k+1ck+1[g]−λc

k+1GΞk+1|k
[h(1− pdk+1(.) + pdk+1(.)f

o
k+1[g|.])]Sin
e Ξk+1|k is assumed Poisson, using (2.3) further simpli�es the expression of

F [g, h]:
F [g, h] = eλ

c
k+1ck+1[g]−λc

k+1e
vΞk+1|k

[h(1−pd
k+1+pd

k+1f
o
k+1[g|.])]−vΞk+1|k

[1]

= e
λc
k+1ck+1[g]−λc

k+1+vΞk+1|k
[h(1−pd

k+1+pd
k+1f

o
k+1[g|.])]−vΞk+1|k

[1]That is, using the de�nition of the 
ross-term (2.19):
F [g, h] = eβ[g,h] (31)On the other hand, derivating (30) in the 
urrent measurement set Zk+1 gives:
[

δ

δZk+1

F [g, h]

]

g=0

=

∫

F(X )

hX

[
δ

δZk+1

GΣk+1(X)[g]

]

g=0

pΞk+1|k
(X|Z1:k)µ(dX)
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Whi
h gives, using the derivative property of PGFl (1.43):
[

δ

δZk+1
F [g, h]

]

g=0

=

∫

F(X )

hXpΣk+1
(Zk+1|X)pΞk+1|k

(X|Z1:k)µ(dX) (32)But, the PGFl GΞk+1|k+1
of the posterior RFS Ξk+1|k+1 is by de�nition (1.29):

GΞk+1|k+1
[h] =

∫

F(X )

hXpΞk+1|k+1
(X|Z1:k+1)µ(dX)Whi
h gives, a

ording to the data update equation of the RFS �lter (1.55):

GΞk+1|k+1
[h] =

∫

F(X )

hX

(

pΣk+1
(Zk+1|X)pΞk+1|k

(X|Z1:k)
∫

F(X )
pΣk+1

(Zk+1|Y )pΞk+1|k
(Y |Z1:k))µ(dY )

)

µ(dX)Using previous result (32) then (31) yields:
GΞk+1|k+1

[h] =

[
δ

δZk+1
eβ[g,h]

]

g=0
[

δ
δZk+1

eβ[g,h]
]

g=0,h=1Thus, using the derivative property of PGFl (1.44) gives:
vΞk+1|k+1

(x0) =

[
δ

δx0

(
δ

δZk+1
eβ[g,h]

)]

g=0,h=1
[

δ
δZk+1

eβ[g,h]
]

g=0,h=1

K−1
X (33)Thus, the posterior PHD vΞk+1|k+1

(.) 
an be 
omputed ex
lusively with derivativesof the 
ross-term β[g, h]. Equation (33) 
an be further simpli�ed as follows:
vΞk+1|k+1

(x0) =

[
δ

δx0

(
δ

δZk+1
eβ[g,h]

)]

g=0,h=1
[

δ
δZk+1

eβ[g,h]
]

g=0,h=1

K−1
X



212 Appendix A: Mathemati
al proofs
Re
all that 
ross-terms vanish when derivated in more than one measurement. Thus:
vΞk+1|k+1

(x0) =

[
δ

δx0

(
eβ[g,h]

∏mk+1

i=1 β[δzi,k+1
, h]
)]

g=0,h=1
[
eβ[g,h]

∏mk+1

i=1 β[δzi,k+1
, h]
]

g=0,h=1

K−1
X

=

[
β[g, δx]e

β[g,h]
∏mk+1

i=1 β[δzi,k+1
, h]
]

g=0,h=1
[
eβ[g,h]

∏mk+1

i=1 β[δzi,k+1
, h]
]

g=0,h=1

K−1
X (34)

+

[

eβ[g,h]
∑mk+1

i=1

(

β[δzi,k+1
, δx]

∏

j 6=i β[δzi,k+1
, h]
)]

g=0,h=1
[
eβ[g,h]

∏mk+1

i=1 β[δzi,k+1
, h]
]

g=0,h=1

K−1
X

=



β[δ∅, δx] +
∑

z∈Zk+1

β[δz, δx]

β[δz, 1]



K−1
X

That is, using the de�nition of the 
ross-term (2.19):
vΞk+1|k+1

(x0)

=

(

(1− pdk+1(x))vΞk+1|k
(x|Z1:k)KX (35)

+
∑

z∈Zk+1

pdk+1(x)L
z
k+1(x)vΞk+1|k

(x|Z1:k)KXKZ

λc
k+1ck+1(z)KZ + vΞk+1|k

[pdk+1L
z
k+1]KZ

)

K−1
X

=



1− pdk+1(x) +
∑

z∈Zk+1

pdk+1(x)L
z
k+1(x)

λc
k+1ck+1(z) + vΞk+1|k

[pdk+1L
z
k+1]



 vΞk+1|k
(x|Z1:k)
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Proposition 2.5Proof. Let x0 ∈ X be any target state, {zj}Sj=1 be any measurement family where
zj ∈ Zj , and Z any subset of {zj}Sj=1. First:

β[δ∅, ḡ, δx0 ] =
δ

δx0
β[g1, ..., gS, h]

=
δ

δx0

(
S∑

j=1

(λc,j
k+1c

j
k+1[g

j]− λc,j
k+1)

+vΞk+1|k

[

h

(
S∏

j=1

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])
)]

− vΞk+1|k
[1]

)

=
δ

δx0

(
∫

X

h(x)
S∏

j=1

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)dx

)Using 
al
ulus property (1.48) gives:
β[δ∅, ḡ, δx0 ] =

S∏

j=1

(1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x])vΞk+1|k
(x0|Z1:k)KXThen:

β[δZ , ḡ, h] =
δ

δZ
β[g1, ..., gS, h]

=
δ

δZ

(
S∑

j=1

(λc,j
k+1c

j
k+1[g

j]− λc,j
k+1)

+vΞk+1|k

[

h

(
S∏

j=1

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])
)]

− vΞk+1|k
[1]

)

=







δ

δzj0

(∫

Zj0

λc,j0
k+1c

j0
k+1(z)dz

)

+

∫

X

h(x)
δ

δzj0

(∫

Zj0

pd,j0k+1(x)f
o,j0
k+1[g

j0|x])dz
)

×
∏

zj 6=zj0

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)dx

(Z = {zj0})
∫

X

h(x)
∏

zj∈Z

(
δ

δzj

(∫

Zj

pd,jk+1(x)f
o,j
k+1[g

j|x])dz
))

×
∏

zj /∈Z

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)dx

(|Z| > 2)
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Using 
al
ulus property (1.48) gives:

β[δZ , ḡ, h]

=







λc,j0
k+1c

j0
k+1(z

j0)KZj0 +

∫

X

h(x)pd,j0k+1(x) f
o,j0
k+1(z

j0 |x)
︸ ︷︷ ︸

=L
zj0 ,j0
k+1 (x)

KZj0

×
∏

zj 6=zj0

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)dx

(Z = {zj0})
∫

X

h(x)
∏

zj∈Z

(pd,jk+1(x) f
o,j
k+1(z

j |x)
︸ ︷︷ ︸

=Lzj,j
k+1(x)

KZj )

×
∏

zj /∈Z

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)dx

(|Z| > 2)

=







λc,j0
k+1c

j0
k+1(z

j0)KZj0

+ vΞk+1|k
[hpd,j0k+1L

zj0 ,j0
k+1 KZj0

∏

zj 6=zj0

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])]

(Z = {zj0})
vΞk+1|k

[h
∏

zj∈Z

(pd,jk+1L
zj ,j
k+1KZj )

∏

zj /∈Z

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])]

(|Z| > 2)
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Finally:

β[δZ , ḡ, δx0] =
δ

δx0
β[δZ , ḡ, h]

=







δ

δx0

(
∫

X

h(x)pd,j0k+1(x)L
zj0 ,j0
k+1 (x)KZj0

×
∏

zj 6=zj0

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)dx

)

(Z = {zj0})
δ

δx0

(
∫

X

h(x)
∏

zj∈Z

(pd,jk+1(x)L
zj ,j
k+1(x)KZj )

×
∏

zj /∈Z

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)dx

)

(|Z| > 2)

=
δ

δx0

(
∫

X

h(x)
∏

zj∈Z

(pd,jk+1(x)L
zj ,j
k+1(x)KZj )

×
∏

zj /∈Z

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])vΞk+1|k
(x|Z1:k)dx

)

Using 
al
ulus property (1.48) gives:
β[δZ , ḡ, δx0] =

∏

zj∈Z

(pd,jk+1(x0)L
zj ,j
k+1(x0)KZj )

×
∏

zj /∈Z

(1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0])vΞk+1|k
(x0|Z1:k)KX

Theorem 2.3This proof is an extension of Mahler's proof in the single-sensor 
ase (see [Mahl 03a℄).Note that a 
onstru
tion of the two-sensor 
ase is also provided by Mahler in[Mahl 09a℄.Proof. Let Zk+1 =
⊔S

j=1Z
j
k+1 be the set of mk+1 =

∑S
j=1m

j
k+1 
urrent measure-ments, h (resp. gj) be a real-valued fun
tion de�ned on X (resp. Zj) in [0 1], and x0



216 Appendix A: Mathemati
al proofs
any point in X . Then, let F [g1, ...gS, h] be the joint PGFl of PGFls GΣ1

k+1(X)[g],...,
GΣS

k+1(X)[g] and GΞk+1|k
[h]. Then:

F [g1, ...gS, h]

=

∫

F(Z1)

...

∫

F(ZS)

∫

F(X )

hX

S∏

j=1

(

gZ
j

pΣj
k+1(X)(Z

j)
)

pΞk+1|k
(X|Z1:k)µ(dX)µ(dZ1)...µ(dZS)

=

∫

F(X )

hX

S∏

j=1

(∫

F(Zj)

gZpΣj
k+1(X)(Z)µ(dZ)

)

pΞk+1|k
(X|Z1:k)µ(dX)Whi
h gives, using the de�nition of the PGFl (1.29):

F [g1, ...gS, h] =

∫

F(X )

hX

S∏

j=1

(GΣj
k+1(X)[g

j])pΞk+1|k
(X|Z1:k)µ(dX) (36)On the �rst hand, proposition 2.4 yields:

F [g1, ...gS, h]

=

∫

F(X )

hX
S∏

j=1

(

(1− pd,jk+1(.) + pd,jk+1(.)f
o,j
k+1[g

j|.])Xeλc,j
k+1c

j
k+1[g

j ]−λc,j
k+1

)

pΞk+1|k
(X|Z1:k)µ(dX)

=

S∏

j=1

(

eλ
c,j
k+1c

j
k+1[g

j ]−λc,j
k+1

)

×
∫

F(X )

(

h
S∏

j=1

(

1− pd,jk+1(.) + pd,jk+1(.)f
o,j
k+1[g

j|.]
)
)X

pΞk+1|k
(X|Z1:k)µ(dX)

=
S∏

j=1

(

eλ
c,j
k+1c

j
k+1[g

j ]−λc,j
k+1

)

GΞk+1|k

[

h
S∏

j=1

(

1− pd,jk+1(.) + pd,jk+1(.)f
o,j
k+1[g

j|.]
)
]Sin
e Ξk+1|k is assumed Poisson, using (2.3) further simpli�es the expression of

F [g1, ...gS, h]:
F [g1, ...gS, h] =

S∏

j=1

(

eλ
c,j
k+1c

j
k+1[g

j ]−λc,j
k+1

)

e
vΞk+1|k

[h
∏S

j=1(1−pd,j
k+1(.)+pd,j

k+1(.)f
o,j
k+1[g

j |.])]−vΞk+1|k
[1]

= e
∑S

j=1(λ
c,j
k+1c

j
k+1[g

j ]−λc,j
k+1)+vΞk+1|k

[h
∏S

j=1(1−pd,j
k+1(.)+pd,j

k+1(.)f
o,j
k+1[g

j |.])]−vΞk+1|k
[1]That is, using the de�nition of the 
ross-term (2.33):

F [g1, ...gS, h] = eβ[g
1,...gS,h] (37)
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On the other hand, derivating (36) in the 
urrent measurement set Zk+1 gives:
[

δ

δZk+1
F [g1, ...gS, h]

]

g1...S=0

=

∫

F(X )

hX
S∏

j=1

[

δ

δZj
k+1

GΣj
k+1(X)[g

j]

]

gj=0

pΞk+1|k
(X|Z1:k)µ(dX)Whi
h gives, using the derivative property of PGFl (1.43):

[
δ

δZk+1
F [g1, ...gS, h]

]

g1...S=0

=

∫

F(X )

hX
S∏

j=1

(pΣj
k+1

(Zj
k+1|X))pΞk+1|k

(X|Z1:k)µ(dX)That is, using the independen
e of the single-sensor observation pro
esses (2.32):
[

δ

δZk+1
F [g1, ...gS, h]

]

g1...S=0

=

∫

F(X )

hXpΣk+1
(Zk+1|X))pΞk+1|k

(X|Z1:k)µ(dX) (38)But, the PGFl GΞk+1|k+1
of the posterior RFS Ξk+1|k+1 is by de�nition (1.29):

GΞk+1|k+1
[h] =

∫

F(X )

hXpΞk+1|k+1
(X|Z1:k+1)µ(dX)Whi
h gives, a

ording to the data update equation of the RFS �lter (1.55):

GΞk+1|k+1
[h] =

∫

F(X )

hX

(

pΣk+1
(Zk+1|X)pΞk+1|k

(X|Z1:k)
∫

F(X )
pΣk+1

(Zk+1|Y )pΞk+1|k
(Y |Z1:k))µ(dY )

)

µ(dX)Using previous result (38) then (37) yields:
GΞk+1|k+1

[h] =

[
δ

δZk+1
eβ[g

1,...,gS,h]
]

g1...S=0
[

δ
δZk+1

eβ[g1,...,gS,h]
]

g1...S=0,h=1Thus, using the derivative property of PGFl (1.44) gives:
vΞk+1|k+1

(x0) =

[
δ

δx0

(
δ

δZk+1
eβ[g

1,...,gS,h]
)]

g1...S=0,h=1
[

δ
δZk+1

eβ[g1,...,gS,h]
]

g1...S=0,h=1

K−1
X
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Lemma 2.1Proof. Let s be any integer s < S, {Zj}s+1

j=1 be any family of �nite subsets Zj ⊂ Zjwith Zs+1 = {zs+1
i }m

s+1

i=1 . First, let us show that:
C(Z1, ..., Zs+1)

= {C ∪M(Z) | Z ⊆ Zs+1, C ∈ C(Z1, ..., Zs, Zs+1 \ Z), C ∩M(Zs+1) = ∅} (39)That is, any 
ombinational term based on all the measurements in Zs+1 
an beuniquely de
omposed as the union of:
• all the singletons of measurements from some Z ⊆ Zs+1 (�M(Z)�);
• a 
ombinational term based on the remaining terms in Zs+1(�C ∈ C(Z1, ..., Zs, Zs+1 \ Z), C ∩M(Zs+1) = ∅�).Let A ∈ C(Z1, ..., Zs+1) be any 
ombinational term. Denote by ZA ⊆ Zs+1 thesubset ZA = {z ∈ Zs+1 | {z} ∈ A}. Using the de�nition of the term set (2.47) gives

M(ZA) = χ(ZA) = {{z} | z ∈ ZA} and thus A = M(ZA) ∪ CA where CA = A \
M(ZA). By 
onstru
tion, CA ⊆M(Z1, ..., Zs, Zs+1\ZA) and CA∩M(Zs+1) = ∅. Be-sides, ϕZ1,...,Zs+1(A) = 1 and ϕZ(M(ZA)) = 1 imply that ϕZ1,...,Zs,Zs+1\ZA

(CA) = 1,that is, CA ∈ C(Z1, ..., Zs, Zs+1 \ZA). By 
onstru
tion, the de
omposition ZA, CA isunique: if A = CA ∪M(ZA) = CB ∪M(ZB), the 
onditions CA ∩M(Zs+1) = ∅ and
CB ∩M(Zs+1) = ∅ imply thatM(ZA) =M(ZB), thus ZA = ZB and CA = CB.Conversely, let Z ⊆ Zs+1 be any subset of Zs+1, and C ∈ C(Z1, ..., Zs, Zs+1 \Z) any
ombinational term su
h that C∩M(Zs+1) = ∅. Then, C ⊆M(Z1, ..., Zs, Zs+1\Z)and therefore (C ∪ M(Z)) ⊆ M(Z1, ..., Zs, Zs+1). Besides, ϕZ(M(Z)) = 1 and
ϕZ1,...,Zs,Zs+1\Z(C) = 1, thus ϕZ1,...,Zs,Zs+1(C ∪M(Z)) = 1.Therefore, equality (39) is true. Thus we 
an write:
C(Z1:s+1)

= {C ∪M(Z) | Z ⊆ Zs+1, C ∈ C(Z1...s, Zs+1 \ Z), C ∩M(Zs+1) = ∅}
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=

⋃

Z⊆Zs+1

{
C ∪M(Z) | C ⊆M(Z1...s, Zs+1 \ Z), ϕZ1...s,Zs+1\Z(C) = 1

}

=
ms+1
⋃

n=0

⋃

I⊆[1 ms+1]
|I|=ns

{

Ca ∪
(
⋃

i∈I

{
{zs+1

i } ∪ Cb
i

}

)

∪
(
⋃

i/∈I

{
{zs+1

i }
}

)

| Ca, Cb ⊆M(Z1:s), |Cb| = n, ϕZ1:s(Ca ∪ Cb) = 1

}

=

ms+1
⋃

n=0

⋃

C⊆M(Z1:s)
|C|>n

ϕ
Z1:s (C)=1

⋃

I⊆[1 ms+1]
J⊆[1 |C|]
|I|=|J |=n

⋃

σ∈Bij(I,J)

(
⋃

j /∈J

{Ca
j }
)

∪
(
⋃

i∈I

{
{zs+1

i } ∪ Cb
σ(i)

}

)

∪
(
⋃

i/∈I

{
{zs+1

i }
}

)

That is, using the de�nition of 
ombinational terms (2.49):
C(Z1:s+1)

=

ms+1
⋃

n=0

⋃

C∈C(Z1:s)
|C|>n

⋃

I⊆[1 ms+1]
J⊆[1 |C|]
|I|=|J |=n

⋃

σ∈Bij(I,J)

Uσ
I,J(Z

s+1, C)

=
⋃

C∈C(Z1:s)

min(|C|,ms+1)
⋃

n=0

⋃

I⊆[1 ms+1]
J⊆[1 |C|]
|I|=|J |=n

⋃

σ∈Bij(I,J)

Uσ
I,J(Z

s+1, C)

Theorem 2.4Proof. Let Zk+1 =
⊔S

j=1Z
j
k+1 be the set of mk+1 =

∑S
j=1m

j
k+1 
urrent measure-ments, h (resp. gj) be a real-valued fun
tion de�ned on X (resp. Zj) in [0 1], and

x0 any point in X . First, let us prove by indu
tion on 1 6 s 6 S that:
δs

δZ1
k+1...δZ

s
k+1

eβ[g
1,...,gS,h] = eβ[δ∅,ḡ,h]

∑

C∈C(Z1...s
k+1 )

∏

Ci∈C

β[δCi
, ḡ, h] (40)
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Let us 
onsider the basis 
ase s = 1. Re
all from proposition 2.5 that a 
ross-termsvanishes when derivated in two points from the same observation spa
e. Thus:

δ

δZ1
k+1

eβ[δ∅,ḡ,h] = eβ[δ∅,ḡ,h]
∏

z∈Z1
k+1

β[δ{z}, ḡ, h]

= eβ[δ∅,ḡ,h]
∏

Z∈M(Z1
k+1)

β[δZ , ḡ, h]

= eβ[δ∅,ḡ,h]
∑

C∈C(Z1
k+1)

∏

Z∈C

β[δZ , ḡ, h]Therefore, the 
ase holds for s = 1. Assuming that the 
ase holds for s, s < S, letus prove that it holds for s+ 1. We 
an write:
δs+1

δZ1
k+1...δZ

s
k+1δZ

s+1
k+1

eβ[δ∅,ḡ,h] =
δ

δZs+1
k+1

(
δs

δZ1
k+1...δZ

s
k+1

eβ[g
1,...,gS,h]

)

Thus, by using the 
ase at step s:
δs+1

δZ1
k+1...δZ

s
k+1δZ

s+1
k+1

eβ[δ∅,ḡ,h] =
δ

δZs+1
k+1



eβ[δ∅,ḡ,h]
∑

C∈C(Z1...s
k+1 )

∏

Z∈C

β[δZ , ḡ, h]





=

ms+1
k+1∑

n=0

∑

I⊆[1 ms+1
k+1]

|I|=n




δ

δ{zs+1
i,k+1}i/∈I

eβ[δ∅,ḡ,h]
δ

δ{zs+1
i,k+1}i∈I




∑

C∈C(Z1...s
k+1 )

∏

Z∈C

β[δZ , ḡ, h]









=

ms+1
k+1∑

n=0

∑

I⊆[1 ms+1
k+1]

|I|=n



eβ[δ∅,ḡ,h]

(
∏

i/∈I

β[δ{zs+1
i,k+1}

, ḡ, h]

)
∑

C∈C(Z1...s
k+1 )

(

δn

δ{zs+1
i,k+1}i∈I

∏

Z∈C

β[δZ , ḡ, h]

︸ ︷︷ ︸

=A

)



Re
all from proposition 2.5 that a 
ross-term vanishes when derivated in two pointsfrom the same observation spa
e. Thus, A 
an be expanded as follows:
A =







0 (n > |C|)
∑

J⊆[1 |C|]
|J |=n

∑

σ∈Bij(I,J)

∏

j /∈J

β[δCj
, ḡ, h]

∏

i∈I

β[δ{zs+1
i,k+1}∪Cσ(i)

, ḡ, h] (n 6 |C|)
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And therefore:

δs+1

δZ1
k+1...δZ

s
k+1δZ

s+1
k+1

eβ[δ∅,ḡ,h]

= eβ[δ∅,ḡ,h]
ms+1

k+1∑

n=0

∑

I⊆[1 ms+1
k+1]

|I|=n

∑

C∈C(Z1...s
k+1 )

|C|>n

∑

J⊆[1 |C|]
|J |=n

∑

σ∈Bij(I,J)

(
∏

i/∈I

β[δ{zs+1
i,k+1}

, ḡ, h]

)(
∏

j /∈J

β[δCj
, ḡ, h]

)(
∏

i∈I

β[δ{zs+1
i,k+1}∪Cσ(i)

, ḡ, h]

)

= eβ[δ∅,ḡ,h]
∑

C∈C(Z1...s
k+1 )

min(|C|,ms+1
k+1)∑

n=0

∑

I⊆[1 ms+1
k+1]

J⊆[1 |C|]
|I|=|J |=n

∑

σ∈Bij(I,J)

(
∏

i/∈I

β[δ{zs+1
i,k+1}

, ḡ, h]

)(
∏

j /∈J

β[δCj
, ḡ, h]

)(
∏

i∈I

β[δ{zs+1
i,k+1}∪Cσ(i)

, ḡ, h]

)

That is, using lemma 2.1:
δs+1

δZ1
k+1...δZ

s
k+1δZ

s+1
k+1

eβ[δ∅,ḡ,h] = eβ[δ∅,ḡ,h]
∑

C∈C(Z1...s+1
k+1 )

∏

Ci∈C

β[δCi
, ḡ, h]Therefore, the 
ase holds true for ea
h s 6 S and for s = S equation (40) be
omes:

δ

δZk+1
eβ[δ∅,ḡ,h] = eβ[δ∅,ḡ,h]

∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, ḡ, h]Using the derivative form (2.44), we 
an �nally write:

vΞk+1|k+1
(x0|Z1:k+1) =

[
δ

δx0

(
δ

δZk+1
eβ[δ∅,ḡ,h]

)]

g1...S=0,h=1
[

δ
δZk+1

eβ[δ∅,ḡ,h]
]

g1...S=0,h=1

K−1
X

=



 δ
δx0



eβ[δ∅,ḡ,h]
∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, ḡ, h]









g1...S=0,h=1

eβ[δ∅,1]
∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X



222 Appendix A: Mathemati
al proofs
Re
all from proposition 2.5 that a 
ross-term vanishes when derivated in two pointsfrom the target spa
e. Thus:

vΞk+1|k+1
(x0|Z1:k+1)

=



eβ[δ∅,ḡ,h]β[δ∅, ḡ, δx0]
∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, ḡ, h]





g1...S=0,h=1

eβ[δ∅,1]
∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X

+



eβ[δ∅,ḡ,h]
∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, ḡ, δx0]

∏

Cj 6=Cj

β[δCj
, ḡ, h]









g1...S=0,h=1

eβ[δ∅,1]
∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X

= β[δ∅, δx0]K
−1
X +

∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx0]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X

Proposition 2.6Proof. Let x0 ∈ X be any target state, {zj}Sj=1, zj ∈ Zj be any family of measure-ments, J ⊆ [1 S]. Let (Sk+1(p))
Pk+1

p=1 , (Tk+1(p))
Pk+1

p=0 be the joint partitioning at time
k + 1. Then, using equation (2.38) gives:

β[δ∅, ḡ, δx0] =

S∏

j=1

(1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0])vΞk+1|k
(x0|Z1:k)KX

=

Pk+1∏

q=1




∏

j∈Sk+1(q)

(1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0])



 vΞk+1|k
(x0|Z1:k)KX
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If ∃p ∈ [1 P ], x0 ∈ Tk+1(p) then:

β[δ∅, ḡ, δx0]

=




∏

j∈Sk+1(p)

(1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0])





×
∏

q 6=p




∏

j∈Sk+1(q)

(1− pd,jk+1(x0)
︸ ︷︷ ︸

=0

+ pd,jk+1(x0)
︸ ︷︷ ︸

=0

f o,j
k+1[g

j|x0])



 vΞk+1|k
(x0|Z1:k)KX

=
∏

j∈Sk+1(p)

(1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0])vΞk+1|k
(x0|Z1:k)KX

= βp[δ∅, ḡ, δx0]Otherwise, x0 ∈ Tk+1(0) and therefore:
β[δ∅, ḡ, δx0]

=

Pk+1∏

q=1




∏

j∈Sk+1(q)

(1− pd,jk+1(x0)
︸ ︷︷ ︸

=0

+ pd,jk+1(x0)
︸ ︷︷ ︸

=0

f o,j
k+1[g

j|x0])



 vΞk+1|k
(x0|Z1:k)KX

= vΞk+1|k
(x0|Z1:k)KXLikewise, using equation (2.39) gives:

β[δ{zj ,j∈J}, ḡ, h]

=







λc,j0
k+1c

j0
k+1(z

j0)KZj0 + vΞk+1|k
[hpd,j0k+1L

zj0 ,j0
k+1 KZj0

∏

j 6=j0

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])]

(J = {j0})
vΞk+1|k

[h
∏

j∈J

(pd,jk+1L
zj ,j
k+1KZj )

∏

j /∈J

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])]

(|J | > 2)
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=







λc,j0
k+1c

j0
k+1(z

j0)KZj0 +

(
Pk+1∑

q=0

∫

Tk+1(q)

h(x)pd,j0k+1(x)L
zj0 ,j0
k+1 (x)KZj0

×
∏

j 6=j0

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])]
)

vΞk+1|k
(x|Z1:k)dx

(J = {j0})
(

Pk+1∑

q=0

∫

Tk+1(q)

h(x)
∏

j∈J

(pd,jk+1(x)L
zj ,j
k+1(x)KZj )

×
∏

j /∈J

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])
)

vΞk+1|k
(x|Z1:k)dx

(|J | > 2)
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If ∃p ∈ [1 Pk+1], J ⊆ Sk+1(p) then:

β[δ{zj ,j∈J}, ḡ, h]

=







λc,j0
k+1c

j0
k+1(z

j0)KZj0

+

(
∫

Tk+1(p)

h(x)pd,j0k+1(x)L
zj0 ,j0
k+1 (x)KZj0

∏

j∈Sk+1(p)
j 6=j0

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])

×
∏

j /∈Sk+1(p)

(1− pd,jk+1(x)
︸ ︷︷ ︸

=0

+ pd,jk+1(x)
︸ ︷︷ ︸

=0

f o,j
k+1[g

j|x])
)

vΞk+1|k
(x|Z1:k)dx

+




∑

q 6=p

∫

Tk+1(q)

h(x) pd,j0k+1(x)
︸ ︷︷ ︸

=0

Lzj0 ,j0
k+1 (x)KZj0

×
∏

j 6=j0

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])
)

vΞk+1|k
(x|Z1:k)dx

(J = {j0})
(
∫

Tk+1(p)

h(x)
∏

j∈J

(pd,jk+1(x)L
zj ,j
k+1(x)KZj )

∏

j∈Sk+1(p)
j /∈J

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])

×
∏

j /∈Sk+1(p)

(1− pd,jk+1(x)
︸ ︷︷ ︸

=0

+ pd,jk+1(x)
︸ ︷︷ ︸

=0

f o,j
k+1[g

j|x])
)

vΞk+1|k
(x|Z1:k)dx

+

(
∑

q 6=p

∫

Tk+1(q)

h(x)
∏

j∈J

(pd,jk+1(x)
︸ ︷︷ ︸

=0

Lzj ,j
k+1(x)KZj )

×
∏

j /∈J

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])
)

vΞk+1|k
(x|Z1:k)dx

(|J | > 2)
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=







λc,j0
k+1c

j0
k+1(z

j0)KZj0 +

(
∫

Tk+1(p)

h(x)pd,j0k+1(x)L
zj0 ,j0
k+1 (x)KZj0

×
∏

j∈Sk+1(p)
j 6=j0

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])]
)

vΞk+1|k
(x|Z1:k)dx

(J = {j0})
(
∫

Tk+1(p)

h(x)
∏

j∈J

(pd,jk+1(x)L
zj ,j
k+1(x)KZj )

×
∏

j∈Sk+1(p)
j /∈J

(1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x])
)

vΞk+1|k
(x|Z1:k)dx

(|J | > 2)

=







λc,j0
k+1c

j0
k+1(z

j0)KZj0

+ vΞk+1|k
[h1Tk+1(p)p

d,j0
k+1L

zj0 ,j0
k+1 KZj0

∏

j∈Sk+1(p)
j 6=j0

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])]

(J = {j0})
vΞk+1|k

[h1Tk+1(p)

∏

j∈J

(pd,jk+1L
zj ,j
k+1KZj)

∏

j∈Sk+1(p)
j /∈J

(1− pd,jk+1 + pd,jk+1f
o,j
k+1[g

j|.])]

(|J | > 2)

= βp[δ{zj ,j∈J}, ḡ, h]
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Otherwise ∃p1, p2 ∈ [1 Pk+1], p1 6= p2, ∃j1, j2 ∈ J, j1 6= j2, j1 ∈ Sk+1(p1), j2 ∈ Sk+1(p2)and therefore:
β[δ{zj ,j∈J}, ḡ, h]

=

(
∫

Tk+1(p1)

h(x) pd,j2k+1(x)
︸ ︷︷ ︸

=0

Lzj2 ,j2
k+1 (x)

∏

j∈J
j 6=j2

(

pd,jk+1(x)L
zj ,j
k+1(x)

)

∏

j /∈J

(

1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x]
)
)

vΞk+1|k
(x|Z1:k)dx

+

(
∫

Tk+1(q)
q 6=p1

h(x) pd,j1k+1(x)
︸ ︷︷ ︸

=0

Lzj1 ,j1
k+1 (x)

∏

j∈J
j 6=j1

(

pd,jk+1(x)L
zj ,j
k+1(x)

)

∏

j /∈J

(

1− pd,jk+1(x) + pd,jk+1(x)f
o,j
k+1[g

j|x]
)
)

vΞk+1|k
(x|Z1:k)dx

= 0Likewise, using equation (2.40) gives:
β[δ{zj ,j∈J}, ḡ, δx0]

=

(
∏

j∈J

(

pd,jk+1(x0)L
zj ,j
k+1(x0)

)∏

j /∈J

(

1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0]
)
)

vΞk+1|k
(x0|Z1:k)KXIf ∃p ∈ [1 Pk+1], J ⊆ Sk+1(p), x0 ∈ Tk+1(p) then:

β[δ{zj ,j∈J}, ḡ, δx0]

=

(
∏

j∈J

(

pd,jk+1(x0)L
zj ,j
k+1(x0)

) ∏

j∈Sk+1(p)
j /∈J

(

1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0]
)

∏

j∈Sk+1(p)
j /∈J

(

1− pd,jk+1(x0)
︸ ︷︷ ︸

= 0 + pd,jk+1(x0)
︸ ︷︷ ︸

= 0f o,j
k+1[g

j|x0]

))

vΞk+1|k
(x0|Z1:k)KX

=

(
∏

j∈J

(

pd,jk+1(x0)L
zj ,j
k+1(x0)

) ∏

j∈Sk+1(p)
j /∈J

(

1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0]
)
)

vΞk+1|k
(x0|Z1:k)KX

= βp[δ{zj ,j∈J}, ḡ, δx0 ]
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Otherwise, either x0 ∈ Tk+1(0) or ∃p1, p2 ∈ [1 Pk+1], p1 6= p2, ∃j0 ∈ J, x ∈ Tk+1(p1), j0 ∈
Sk+1(p2) and in both 
ases pd,j0k+1(x0) so that:
β[δ{zj ,j∈J}, ḡ, δx0]

=

(

pd,j0k+1(x0)
︸ ︷︷ ︸

=0

Lzj0 ,j0
k+1 (x0)

∏

j∈J
j 6=j0

(

pd,jk+1(x0)L
zj ,j
k+1(x0)

)

∏

j /∈J

(

1− pd,jk+1(x0) + pd,jk+1(x0)f
o,j
k+1[g

j|x0]
)
)

vΞk+1|k
(x0|Z1:k)KX

= 0Theorem 2.5Proof. Let (Sk+1(p))
Pk+1

p=1 , (Tk+1(p))
Pk+1

p=0 be the 
urrent joint partitioning given byde�nition 2.9, and x ∈ X any target state. The �rst 
ase to 
over is when x ∈
Tk+1(0), i.e. x is outside every FOV. Using theorem 2.4 and proposition 2.6 givesimmediately:

vΞk+1|k+1
(x|Z1:k+1)

= β[δ∅, δx]
︸ ︷︷ ︸

=vΞk+1|k
(x|Z1:k)KX

K−1
X +

∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

︸ ︷︷ ︸

=0

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1]

K−1
X

= vΞk+1|k
(x|Z1:k)Now, assume that x ∈ Tk+1(p), p 6= 0. We must show that:

vΞk+1|k
(x|Z1:k) = βp[δ∅, δx]K

−1
X +

∑

C∈C(Z
(p)
k+1)

∑

Ci∈C



βp[δCi
, δx]

∏

Cj 6=Cj

βp[δCj
, 1]





∑

C∈C(Z
(p)
k+1)

∏

Ci∈C

βp[δCi
, 1]

K−1
X(41)Note that we need to prove equation (41) for Pk+1 = 1 and Pk+1 = 2 only. In-deed, results from proposition 2.6 
learly hold for any sensor partition 
oarser than

(Sk+1(p))
Pk+1

p=1 . Thus, if Pk+1 > 2, applying result (41) to any 
oarser partition of
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(Sk+1(p))

Pk+1

p=1 with two elements, namely (Sc
k+1(1), S

c
k+1(2)), and using (41) twi
e,on
e on the restri
tion of X to T c

k+1(1) with a two-element partition of Sc
k+1(1) andon
e on the restri
tion of X to T c

k+1(2) with a two-element partition of Sc
k+1(2), andpro
eeding with �ner and �ner partitions up to (Sk+1(p))

Pk+1

p=1 yields the result forany partition size Pk+1.The 
ase Pk+1 = 1 is straightforward using theorem 2.4. Assume that Pk+1 = 2, ei-ther x ∈ Tk+1(1) or x ∈ Tk+1(2). Without loss of generality, assume that x ∈ Tk+1(1).For any C ∈ C(Zk+1) and any Ci ∈ C, a

ording to proposition 2.6:
β[δCi

, ḡ, h] =







β1[δCi
, ḡ, h] (Ci ∈M(Z

(1)
k+1))

β2[δCi
, ḡ, h] (Ci ∈M(Z

(2)
k+1))

0 (otherwise)Therefore we 
an write:
∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1] =

∑

C∈C(Zk+1)

C=C(1)∪C(2)

C(1)⊆M(Z
(1)
k+1)

C(2)⊆M(Z
(2)
k+1)




∏

Ci∈C(1)

β1[δCi
, 1]








∏

Ci∈C(2)

β2[δCi
, 1]





Sin
e Zk+1 = Z
(1)
k+1 ⊔ Z

(2)
k+1, using equation (2.49) gives:

∑

C∈C(Zk+1)

∏

Ci∈C

β[δCi
, 1] =

∑

C=C(1)∪C(2)

C(1)∈C(Z
(1)
k+1)

C(2)∈C(Z
(2)
k+1)




∏

Ci∈C(1)

β1[δCi
, 1]








∏

Ci∈C(2)

β2[δCi
, 1]





=






∑

C∈C(Z
(1)
k+1)

∏

Ci∈C

β1[δCi
, 1]











∑

C∈C(Z
(2)
k+1)

∏

Ci∈C

β2[δCi
, 1]




 (42)
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Likewise, the numerator in data update equation (2.53) 
an be simpli�ed:

∑

C∈C(Zk+1)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





=
∑

C∈C(Zk+1)

C=C(1)∪C(2)

C(1)⊆M(Z
(1)
k+1)

C(2)⊆M(Z
(2)
k+1)

∑

Ci∈C(1)







β[δCi

, δx]








∏

Cj∈C
(1)

Cj 6=Ci

β1[δCj
, 1]














∏

Ck∈C
(2)

Ck 6=Ci

β2[δCk
, 1]














=
∑

C=C(1)∪C(2)

C(1)∈C(Z
(1)
k+1)

C(2)∈C(Z
(2)
k+1)

∑

Ci∈C(1)







β1[δCi

, 1]
∏

Cj∈C
(1)

Cj 6=Ci

β1[δCj
, 1]











∏

Ck∈C(2)

β2[δCk
, 1]





+
∑

C=C(1)∪C(2)

C(1)∈C(Z
(1)
k+1)

C(2)∈C(Z
(2)
k+1)

∑

Ci∈C(2)




∏

Ck∈C(1)

β1[δCk
, 1]











β2[δC1 , δx]
︸ ︷︷ ︸

=0

∏

Cj∈C(2)

Cj 6=Ci

β2[δCj
, 1]








=






∑

C∈C(Z
(1)
k+1)

∑

Ci∈C



β1[δCi
, δx]

∏

Cj 6=Ci

β1[δCj
, 1]















∑

C∈C(Z
(2)
k+1)

∏

Ci∈C

β2[δCi
, 1]




 (43)Thus, substituting the simpli�ed expressions of the numerator (43) and denominator(42) in equation (2.53) yields:

vΞk+1|k+1
(x|Z1:k+1)

= β[δ∅, δx]K
−1
X

+






∑

C∈C(Z
(1)
k+1)

∑

Ci∈C



β1[δCi
, δx]

∏

Cj 6=Ci

β1[δCj
, 1]















∑

C∈C(Z
(2)
k+1)

∏

Ci∈C

β2[δCi
, 1]











∑

C∈C(Z
(1)
k+1)

∏

Ci∈C

β1[δCi
, 1]











∑

C∈C(Z
(2)
k+1)

∏

Ci∈C

β2[δCi
, 1]






K−1
X
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A

ording to equation (2.60), sin
e x ∈ Tk+1(1), β[δ∅, δx] = β1[δ∅, δx] and therefore:
vΞk+1|k+1

(x|Z1:k+1) = β1[δ∅, δx]K
−1
X +

∑

C∈C(Z
(1)
k+1)

∑

Ci∈C



β1[δCi
, δx]

∏

Cj 6=Ci

β1[δCj
, 1]





∑

C∈C(Z
(1)
k+1)

∏

Ci∈C

β1[δCi
, 1]

K−1
X
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Chapter 3: Multi-sensor management within PHDframeworkProposition 3.2This proof is an extension of Mahler's in the single-sensor 
ase (see [Mahl 04℄).Proof. Let u ∈ Uk+1 be any available 
ontrol and x ∈ X any target state. Usingthe de�nition of the predi
tive PHD (de�nition 3.3) with the PIMS as the predi
tiveobservation RFS gives:
vΞu

k+1|k+1
(x|Z1:k) = Eω[vΞk+1|k+1

(.|Z1:k ∪ ΣWE
u (ω))]Whi
h simpli�es, by 
onstru
tion of the PIMS (proposition 3.1 and de�nition 3.5):

vΞu
k+1|k+1

(x|Z1:k) =
∑

Z⊆ZWE
k+1

pΣWE
u

(Z)vΞk+1|k+1
(.|Z1:k ∪ Z)Whi
h gives, using the data update equation (2.53):

vΞu
k+1|k+1

(x|Z1:k)

=
∑

Z⊆ZWE
k+1

pΣWE
u

(Z)











β[δ∅, δx]K
−1
X +

∑

C∈C(Z)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Z)

∏

Ci∈C

β[δCi
, 1]

K−1
X











=




∑

Z⊆ZWE
k+1

pΣWE
u

(Z)





︸ ︷︷ ︸

=1

β[δ∅, δx]K
−1
X

+
∑

Z⊆ZWE
k+1

pΣWE
u

(Z)

∑

C∈C(Z)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Z)

∏

Ci∈C

β[δCi
, 1]

K−1
X

= β[δ∅, δx]K
−1
X +

∑

Z⊆ZWE
k+1

pΣWE
u

(Z)

∑

C∈C(Z)

∑

Ci∈C



β[δCi
, δx]

∏

Cj 6=Cj

β[δCj
, 1]





∑

C∈C(Z)

∏

Ci∈C

β[δCi
, 1]

K−1
X
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Corollary 3.1Proof. Let u ∈ UK+1 be any available 
ontrol and x ∈ X any target state. In thesame way as in the proof of theorem 2.2, the data update equation (3.17) is simpli�edin the single-sensor as follows:

vΞu
k+1|k+1

(x|Z1:k) = β[δ∅, δx]K
−1
X +

∑

Z⊆ZWE
k+1

pΣWE
u

(Z)
∑

z∈Z

β[δ{z}, δx]

β[δ{z}, 1]
K−1

X (44)Let {z1, ..., zM} = ZWE
k+1 be the ideal measurements. For any 1 6 m 6 M , let pmbe the restri
tion of pΣWE

u
to the �rst m measurements in ZWE

k+1 . That is, pm is thefun
tion de�ned on any subset Z ⊆ {z1, ..., zm} by:
pm(Z) =

∏

z∈Z

pdu((ρk+1)
−1(z))

∏

z∈{z1,...,zm}\Z

(
1− pdu((ρk+1)

−1(z))
)Then, let us prove by indu
tion on m that:

∑

Z⊆{z1,...,zm}

pm(Z)
∑

z∈Z

β[δ{z}, δx]

β[δ{z}, 1]
=

∑

z∈{z1,...,zM}

pdu((ρk+1)
−1(z))

β[δ{z}, δx]

β[δ{z}, 1]
(45)Let us 
onsider the base 
ase m = 1:

∑

Z⊆{z1}

p1(Z)
∑

z∈Z

β[δ{z}, δx]

β[δ{z}, 1]
= p1(∅)×0+p1({z1})

β[δ{z}, δx]

β[(δ{z}, 1]
= pdu((ρk+1)

−1(z1))
β[δ{z}, δx]

β[δ{z}, 1]Assuming that 
ase m < M is true, let us prove that 
ase m+ 1 is true:
∑

Z⊆{z1,...,zm+1}

pm+1(Z)
∑

z∈Z

β[δ{z}), δx]

β[δ{z}, 1]

=
∑

Z⊆{z1,...,zm}

pm+1(Z)
∑

z∈Z

β[δ{z}, δx]

β[δ{z}, 1]
+

∑

Z′=Z∪{zm+1}
Z⊆{z1,...,zm}

pm+1(Z ′)
∑

z∈Z′

β[δ{z}, δx]

β[δ{z}, 1]

=
∑

Z⊆{z1,...,zm}

pm(Z)
(
1− pdu((ρk+1)

−1(zm+1))
)∑

z∈Z

β[δ{z}, δx]

β[δ{z}, 1]

+
∑

Z⊆{z1,...,zm}

pm(Z)pdu((ρk+1)
−1(zm+1))

(
∑

z∈Z

β[δ{z}, δx]

β[δ{z}, 1]
+

β[δ{zm+1}, δx]

β[δ{zm+1}, 1]

)

=
∑

Z⊆{z1,...,zm}

pm(Z)
(
1− pdu((ρk+1)

−1(zm+1)) + pdu((ρk+1)
−1(zm+1))

)

︸ ︷︷ ︸

=1

∑

z∈Z

β[δ{z}, δx]

β[δ{z}, 1]

+




∑

Z⊆{z1,...,zm}

pm(Z)





︸ ︷︷ ︸

=1

pdu((ρk+1)
−1(zm+1))

β[δ{zm+1}, δx]

β[δ{zm+1}, 1]
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Whi
h gives, using (45) at step m:

∑

Z⊆{z1,...,zm+1}

pm+1(Z)
∑

z∈Z

β[δ{z}, δx]

β[δ{z}, 1]

=
∑

z∈{z1,...,zm}

pdu((ρk+1)
−1(z))

β[δ{z}, δx]

β[δ{z}, 1]
+ pdu((ρk+1)

−1(zm+1))
β[δ{zm+1}, δx]

β[δ{zm+1}, 1]

=
∑

z∈{z1,...,zm+1}

pdu((ρk+1)
−1(z))

β[δ{z}, δx]

β[δ{z}, 1]Therefore, the 
ase holds at step m + 1 and the indu
tion is true for any m 6 M .Combining the 
ase at �nal step M and expression (44) above yields:
vΞu

k+1|k+1
(x|Z1:k) = β[δ∅, δx]K

−1
X +

∑

z∈ZWE
k+1

pdu((ρk+1)
−1(z))

β[δ{z}, δx]

β[δ{z}, 1]
K−1

XThat is, using the expressions of the derivated 
ross-terms given in proposition 2.3:
vΞu

k+1|k+1
(x|Z1:k)

=



1− pdu(x) +
∑

z∈ZWE
k+1

pdu((ρk+1)
−1(z))

pdu(x)L
z
k+1(x)

λc
k+1ck+1(z) + vΞk+1|k

[pduL
z
k+1]



 vΞk+1|k
(x|Z1:k)

Proposition 3.3Proof. Let u ∈ UK+1 be any available 
ontrol and x ∈ X any target state. Usingthe de�nition of the predi
tive PHD (de�nition 3.3) with the PIMS as the predi
tiveobservation RFS gives:
vΞu

k+1|k+1
(x|Z1:k) = Eω[vΞk+1|k+1

(.|Z1:k ∪ ΣWE
u (ω))]Whi
h simpli�es, by 
onstru
tion of the PIMS (proposition 3.1 and de�nition 3.5):

vΞu
k+1|k+1

(x|Z1:k) =
∑

Z⊆ZWE
k+1

pΣWE
u

(Z)vΞk+1|k+1
(.|Z1:k ∪ Z)
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Whi
h gives, using the data update equation (2.53):
vΞu

k+1|k+1
(x|Z1:k)

=
∑

Z⊆ZWE
k+1

pΣWE
u

(Z)







vΞk+1|k
(x|Z1:k)

(x ∈ Tu(0))

βp[δ∅, δx]K
−1
X +

∑

C∈C(Z(p))

∑

Ci∈C



βp[δCi
, δx]

∏

Cj 6=Cj

βp[δCj
, 1]





∑

C∈C(Z
(p)
k+1)

∏

Ci∈C

βp[δCi
, 1]

K−1
X

(x ∈ Tu(p), p 6= 0)

=










∑

Z⊆ZWE
k+1

pΣWE
u

(Z)





︸ ︷︷ ︸

=1

vΞk+1|k
(x|Z1:k)

(x ∈ Tu(0))



∑

Z⊆ZWE
k+1

pΣWE
u

(Z)





︸ ︷︷ ︸

=1

βp[δ∅, δx]K
−1
X

+
∑

Z⊆ZWE
k+1

pΣWE
u

(Z)

∑

C∈C(Z(p))

∑

Ci∈C



βp[δCi
, δx]

∏

Cj 6=Cj

βp[δCj
, 1]





∑

C∈C(Z
(p)
k+1)

∏

Ci∈C

βp[δCi
, 1]

︸ ︷︷ ︸

=f(Z,p)
︸ ︷︷ ︸

=T

K−1
X

(x ∈ Tu(p), p 6= 0)Let Z be any subset of the ideal measurement set ZWE
k+1 . Then, a

ording to de�nition3.6:

Z ∩
(
ZWE

k+1 \ ZWE
u

)
6= ∅

⇒ Z ∩
(

ZWE
k+1 \

Pu⋃

q=1

ZWE
u,q

)

6= ∅

⇒ ∃z ∈ Z | ∃j ∈ [1 S], j ∈ Su(q), z ∈ Zj , (ρjk+1)
−1(z) ∈ Tu(r), q 6= r

⇒ ∃z ∈ Z | ∃j ∈ [1 S], pd,ju ((ρjk+1)
−1(z)) = 0
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Whi
h implies, a

ording to the 
onstru
tion of the PIMS (proposition 3.1):

⇒ pΣWE
u

(Z) = 0Therefore, we 
an write:
T =

∑

Z⊆⊔Pu
q=1Z

WE
u,q

pΣWE
u

(Z)f(Z, p)

=
∑

Z=A⊔B
A⊆ZWE

u,p

B⊆
⊔

q 6=p ZWE
u,q

pΣWE
u

(Z)f(Z, p)Sin
e C(Z(p)) is the set of 
ombinational terms based on measurements produ
ed bysensors from partition element Su(p) only, f(Z, p) equals f(A, p) and thus:
T =

∑

Z=A⊔B
A⊆ZWE

u,p

B⊆
⊔

q 6=p Z
WE
u,q

pΣWE
u

(Z)f(A, p)That is, a

ording to the 
onstru
tion of the PIMS (proposition 3.1) with A =
⊔

j∈Su(p)
Aj

p and B =
⊔

q 6=p

⊔

j∈Su(q)
Bj

q :
T =

∑

Z=A⊔B
A⊆ZWE

u,p

B⊆⊔q 6=pZ
WE
u,q

f(A, p)

×
∏

j∈Su(p)




∏

z∈Aj

(
pd,ju ((ρjk+1)

−1(z))
) ∏

z∈ZWE,j
u,p \Aj

(
1− pd,ju ((ρjk+1)

−1(z))
)





︸ ︷︷ ︸

=p
ΣWE
u,p

(A)

×
∏

q 6=p




∏

j∈Su(q)




∏

z∈Bj

(
pd,ju ((ρjk+1)

−1(z))
) ∏

z∈ZWE,j
u,q \Bj

(
1− pd,ju ((ρjk+1)

−1(z))
)









︸ ︷︷ ︸

=p
ΣWE
u,q

(Bq)

=




∑

A⊆ZWE
u,p

pΣWE
u,p

(A)f(A, p)













∏

q 6=p




∑

Bq⊆ZWE
u,q

pΣWE
u,q

(Bq)





︸ ︷︷ ︸

=1









=
∑

A⊆ZWE
u,p

pΣWE
u,p

(A)f(A, p)
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Substituting the new expression of T in vΞu

k+1|k+1
(x) gives:

vΞu
k+1|k+1

(x|Z1:k)

=







vΞk+1|k
(x|Z1:k)

(x ∈ Tu(0))

βp[δ∅, δx]K
−1
X +

∑

Z⊆ZWE
u,p

pΣWE
u,p

(Z)

∑

C∈C(Z)

∑

Ci∈C



βp[δCi
, δx]

∏

Cj 6=Cj

βp[δCj
, 1]





∑

C∈C(Z)

∏

Ci∈C

βp[δCi
, 1]

K−1
X

(x ∈ Tu(p), p 6= 0)
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Appendix B: Importan
e sampling
This appendix fo
uses on the SMC implementation of a single-target tra
kingproblem in a Bayesian framework. It is mainly based on two papers [Gewe 89,Dou
 00℄ on sequential Monte Carlo sampling te
hniques.General des
ription of the tra
king problemAssume that there is a single target evolving through time in the state spa
e X , whosestate (position, velo
ity, et
.) is of interest. The sequen
e of target states {xk, k ∈
N}, xk ∈ X , is assumed to be an hidden Markov pro
ess with an initial distribution
t(x0) (or t(x0|x−1) for notational 
onvenien
e). The sequential observation of thetarget produ
es a sequen
e of measurements {zk, k ∈ N}, zk ∈ Z, assumed to be
onditionally independent given the sequen
e of target states {xk, k ∈ N}. The targetand measurement pro
esses are 
ompletely des
ribed by the sequen
es of probabilitydensities:

{t(xk|xk−1), k ∈ N} (46)
{g(zk|xk), k ∈ N} (47)The observation pro
ess is en
apsulated in a single pseudo-sensor produ
ing a sin-gle measurement zk at ea
h time step. Likewise, any false alarm, dete
tion ormeasurement-to-data issue is en
apsulated in the likelihood fun
tion g.Denote by x0:k (resp. z0:k) the sequen
e of target states (resp. measurements) up toa given time step k, also 
alled the the target (resp. measurement) traje
tory up to

k. In its most general form, the �ltering problem aims at estimating quantities su
has:
• the posterior density p(x0:k|z0:k);
• expe
tations of integrable fun
tions I(fk) = ∫Xk fk(x0:k)p(x0:k|z0:k)dx0:k.given the 
olle
tion of measurement z0:k, usually under the assumptions that, at ea
htime step k, one 
an: 239
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e sampling
• sample from transition density t(.|xk−1);
• evaluate transition density t(xk|xk−1) a posteriori;
• sample from likelihood g(.|xk);
• evaluate likelihood g(zk|xk) a posteriori.The Bayes rule provides another expression of the quantities to be estimated:







p(x0:k|z0:k) ∝ p̃(x0:k) = p(z0:k|x0:k)p(x0:k)

I(fk) =

∫

Xk fk(x0:k)p̃(x0:k)dx0:k
∫

Xk p̃(x0:k)dx0:k

(48)The pra
ti
al implementation of an estimator based on (48) may arise several well-known di�
ulties:
• one 
annot sample from the posterior density p(.|z0:k);
• the posterior density p(.|z0:k) 
annot be evaluated a posteriori;
• the integral in the expe
tation I(fk) 
annot be evaluated.Importan
e sampling (IS)The IS method is based on the pra
ti
al assumption that, even if one 
annot sam-ple dire
tly from the posterior density p(.|z0:k), one 
an still design an importan
esampling density π(.|z0:k) whi
h is �
lose enough� to the posterior density p(x0:k|z0:k)and yet easier to sample from. The prin
iple of the method is based on the followingtheorem [Gewe 89℄:Theorem 1. Under the following assumptions:1. p̃(.) is proportional to a proper density on X k;2. {x(i)

0:k}∞i=1 is a 
olle
tion of sequen
es of k target states, i.i.d. a

ording to
π(.|z0:k);3. The support of π(.|z0:k) in
ludes X k;4. I(fk) exists and is �nite.then:

ÎN(fk) =

∑N
i=1 fk(x

(i)
0:k)p̃(x

(i)
0:k)/π(x

(i)
0:k|z0:k)

∑N
i=1 p̃(x

(i)
0:k)/π(x

(i)
0:k|z0:k)

D−→ I(fk) (49)
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The theoreti
al assumptions in theorem 1 are quite mild, thus one 
an expe
t toapproximate I(fk) properly provided that the parti
le number N is large enough. Inits algorithmi
 version, theorem 1 is often written with the more 
onvenient impor-tan
e weights notation:Algorithm 11 Importan
e Sampling (time k)input: Measurement sequen
e up to 
urrent time: z0:koutput: Weighted parti
les: {x(i)

0:k, w
(i)
0:k}i∈[1 N ]Samplingfor i = 1 to N doSample target state sequen
e: x(i)

0:k ∼ π(.|z0:k)Compute weight: w̃(i)
0:k ∝

p(z0:k|x
(i)
0:k)p(x

(i)
0:k)

π(x
(i)
0:k|z0:k)end forNormalizationfor i = 1 to N doNormalize weight: w(i)

0:k ←
w̃

(i)
0:k

∑N
j=1 w̃

(j)
0:kend forEstimationApproximate posterior distribution: p(.|z0:k) ≃∑N

i=1w
(i)
0:kδx(i)

0:k
(.)Approximate expe
tation: I(fk) ≃∑N

i=1w
(i)
0:kfk(x

(i)
0:k)An important remark 
on
erning algorithm 11 is that, besides the theoreti
al as-sumptions given in theorem 1, it requires the following pra
ti
al assumptions:

• one 
an sample from the importan
e density π(.|z0:k);
• one 
an evaluate the ratio p(x0:k|z0:k)

π(x0:k|z0:k)
a posteriori.In other words, the importan
e sampling bypasses the sampling from the posteriordensity p(.|z0:k) by 
onsidering an �ni
er� importan
e density.
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Sequential Importan
e Sampling (SIS)The IS method su�ers from a major drawba
k that may hinder both its tra
tabilityand/or its 
omputational e�
en
y. By 
onstru
tion, the IS method (algorithm 11)is not re
ursive. At every time step k, newly drawn samples x

(i)
0:k belongs to the"enlarged" state spa
e X k and are independent from the previous samples x(i)

0:k−1 -
onditionally on the sequen
e of measurements z0:k. Likewise, the new weights w(i)
0:kare independent from the previous weights w

(i)
0:k−1. That is, one must �start froms
rat
h� at ea
h iteration. Besides, the design of the importan
e sampling is quite
hallenging without additional assumptions. Indeed, being able to sample from andevaluate a posteriori the one-step transition t(.|xk−1) and the likelihood g(.|xk) seemshardly su�
ient to be able to:

• draw a target traje
tory from π(.|z0:k);
• evaluate the probability of o

uren
e of any k-step traje
tory x0:k through
π(x0:k|z0:k), let alone p(x0:k|z0:k).Design of the iterative methodThe salient feature of the SIS method is to propose a re
ursive sampling and weight-ing of the target traje
tories by 
onsidering importan
e densities su
h that [Dou
 00℄:

π(x0:k|z0:k) = q(x0|z0)
k∏

j=1

q(xk|x0:k−1, z0:k) (50)where q(.|x0:k−1, z0:k) is the importan
e fun
tion. Thus, the importan
e weight w(i)
0:k
an be built re
ursively as follows:

w
(i)
0:k ∝

p(z0:k|x(i)
0:k)p(x

(i)
0:k)

π(x
(i)
0:k|z0:k)

∝ p(z0:k|x(i)
0:k)p(x

(i)
0:k)

π(x
(i)
0:k−1|z0:k−1)q(x

(i)
k |x

(i)
0:k−1, z0:k)
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w

(i)
0:k ∝

=p(z0:k−1|x
(i)
0:k−1)

︷ ︸︸ ︷

p(z0:k−1|x(i)
0:k, zk)

=g(zk|x
(i)
k

)
︷ ︸︸ ︷

p(zk|x(i)
0:k)

=t(x
(i)
k

|x
(i)
k−1)

︷ ︸︸ ︷

p(x
(i)
k |x

(i)
0:k−1) p(x

(i)
0:k−1)

π(x
(i)
0:k−1|z0:k−1)q(x

(i)
k |x
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0:k−1, z0:k)Algorithm 12 Sequential Importan
e Sampling (time k)input: Measurement sequen
e up to 
urrent time: z0:koutput: Previous weighted parti
les: {x(i)

0:k−1, w
(i)
0:k−1}i∈[1 N ]output: Current weighted parti
les: {x(i)

0:k, w
(i)
0:k}i∈[1 N ]Samplingfor i = 1 to N doSample new target state: x(i)

k ∼ q(.|x(i)
k−1, z0:k)Update target sequen
e: x(i)

0:k ← (x
(i)
0:k−1, x
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k )Compute weight: w̃(i)

k ∝ w
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0:k−1,z0:k)end forNormalizationfor i = 1 to N doNormalize weight: w(i)
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kend forEstimationApproximate posterior distribution: p(.|z0:k) ≃∑N
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k δ

x
(i)
0:k
(.)Approximate expe
tation: I(fk) ≃∑N

i=1w
(i)
k fk(x

(i)
0:k)The pra
ti
al assumptions of the SIS algorithm are the following:

• one 
an sample from the importan
e fun
tion q(.|x(i)
k−1, z0:k);

• one 
an evaluate the ratio g(zk|x
(i)
k

)t(x
(i)
k

|x
(i)
k−1)

q(x
(i)
k

|x
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e sampling
Clearly these assumptions are weaker that those required for the IS algorithm (seealgorithm 11) as only one-step densities are involved, all the more sin
e transition
t(.|x(i)

k−1) and likelihood g(.|x(i)
k ) densities are supposed to be easy to sample fromand evaluate a posteriori. Understandably, the design of the importan
e fun
tion

q(.|x(i)
k−1, z0:k) is 
riti
al to the quality of the approximation.Note that the traje
tory samples x(i)

0:k are no longer drawn "from s
rat
h" as in theIS algorithm, but rather updated from the previous traje
tory sample with the samelabel (i.e. the tail of x(i)
0:k is pre
isely x

(i)
0:k−1). Therefore, to the author's knowledge,it is un
lear if the se
ond assumption from the fundamental theorem (see theorem 1)still hold in this 
ase, and thus if the 
onvergen
e in distribution is still guaranteed.Choi
e of the importan
e fun
tionAn ex
essive varian
e in the distribution of the importan
e weights (known as "par-ti
le degenera
y") is often 
onsidered unsatisfying be
ause it means that 
omputingresour
es are likely to be wasted on the update of parti
les with negligible weightand thus negligible e�e
t in the approximation (see algorithm 12). Therefore, theoptimal importan
e fun
tion is de�ned as the one that minimizes the varian
e amongthe importan
e weights [Dou
 00℄:Theorem .1. The optimal importan
e fun
tion is de�ned as:

qopt(.|x(i)
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Thus, with q(x|x(i)
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= 0With the optimal importan
e fun
tion, the importan
e weights update in algorithm12 is simpli�ed:
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k−1) (53)The optimal solution is often impra
ti
al be
ause the optimal importan
e fun
tion(52) 
annot be sampled from and/or the quantity p(zk|x(i)

k−1) in the weight update(53) 
annot be evaluated a posteriori - re
all from the general des
ription that theonly densities that 
an be easily handled are the one-step transition t(.|xk−1) andlikelihood g(.|xk). The simplest solution is to use the one-step transition as impor-tan
e fun
tion, in this 
ase the importan
e weights update in algorithm 12 is furthersimpli�ed:
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Using the one-step transition as importan
e fun
tion requires being able to:
• sample from transition density t(.|xk−1);
• sample from likelihood g(.|xk);
• evaluate likelihood g(zk|xk) a posteriori.The key aspe
t of this solution is that it does not need to evaluate the transitiondensity a posteriori but only to sample from it, whi
h makes this solution tra
tablein almost every situation. By 
onstru
tion, one must be able to sample from thetransition density to simulate the evolution of true targets; using the same methodfor the evolution of the parti
les is usually possible provided that the 
omputational
ost of the transition and/or the partition number is not too large. The evaluationa posteriori, however, is usually mu
h more di�
ult. The is rather 
lear for thefree target model (algorithm 1), and even 
learer for the ground-based target model(algorithm 1 and �gure 4.2). The assumptions on the likelihood fun
tion are not sorestri
tive in the single-sensor 
ase. Indeed, the noise on the measurement pro
essis typi
ally Gaussian with zero mean and known varian
e, thus it is quite easy tosample from g(.|xk) and to evaluate g(zk|xk) a posteriori (re
all the 
losed-formexpression of the likelihood Lj,.

k (.) in se
tion 4.1.2).
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Filtrage PHD multi
apteur ave
 appli
ation à la gestion de 
apteurRésuméLe �ltrage multiobjet est une te
hnique de résolution du problème de déte
tion et/ousuivi dans un 
ontexte multi
ible. Cette thèse s'intéresse au �ltre PHD (ProbabilityHypothesis Density), une 
élèbre approximation du �ltre RFS (Random Finite Set)adaptée au 
as où les observations sont le fruit d'un seul 
apteur. La première partiepropose une 
onstru
tion rigoureuse du �ltre PHD multi
apteur exa
t et son ex-pression simpli�ée, sans approximation, grâ
e à un partitionnement joint de l'espa
ed'état des 
ibles et des 
apteurs. Ave
 
ette nouvelle méthode, la solution exa
tedu �ltre PHD multi
apteur peut être propagée dans des s
énarios de surveillan
esimples. La deuxième partie aborde le problème de gestion des 
apteurs dans le
adre du PHD. A 
haque itération, le BET (Balan
ed Explorer and Tra
ker) 
on-struit une prédi
tion du PHD multi
apteur a posteriori grâ
e au PIMS (Predi
tedIdeal Measurement Set) et dé�nit un 
ontr�le multi
apteur en respe
tant quelques
ritères opérationnels simples adaptés aux missions de surveillan
e.Mots-
lés : �ltrage multiobjet, PHD multi
apteur, gestion de 
apteursMulti-sensor PHD �ltering with appli
ation to sensor managementAbstra
tThe aim of multi-obje
t �ltering is to address the multiple target dete
tion and/ortra
king problem. This thesis fo
uses on the Probability Hypothesis Density (PHD)�lter, a well-known tra
table approximation of the Random Finite Set (RFS) �lterwhen the observation pro
ess is realized by a single sensor. The �rst part proposesthe rigorous 
onstru
tion of the exa
t multi-sensor PHD �lter and its simpli�ed ex-pression, without approximation, through a joint partitioning of the target statespa
e and the sensors. With this new method, the exa
t multi-sensor PHD 
anbe propagated in simple surveillan
e s
enarii. The se
ond part deals with the sen-sor management problem in the PHD framework. At ea
h iteration, the Balan
edExplorer and Tra
ker (BET) builds a predi
tion of the posterior multi-sensor PHDthanks to the Predi
ted Ideal Measurement Set (PIMS) and produ
es a multi-sensor
ontrol a

ording to a few simple operational prin
iples adapted to surveillan
e a
-tivities.Keywords: multi-obje
t �ltering, multi-sensor PHD, sensor management


