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Filtrage PHD multicapteur avec application & la gestion de capteur

Résumé

Le filtrage multiobjet est une technique de résolution du probléme de détection et/ou
suivi dans un contexte multicible. Cette thése s’intéresse au filtre PHD (Probability
Hypothesis Density), une célébre approximation du filtre RFS (Random Finite Set)
adaptée au cas ol les observations sont le fruit d’un seul capteur. La premiére partie
propose une construction rigoureuse du filtre PHD multicapteur exact et son ex-
pression simplifiée, sans approximation, grace & un partitionnement joint de I'espace
d’état des cibles et des capteurs. Avec cette nouvelle méthode, la solution exacte
du filtre PHD multicapteur peut étre propagée dans des scénarios de surveillance
simples. La deuxiéme partie aborde le probléme de gestion des capteurs dans le
cadre du PHD. A chaque itération, le BET (Balanced Explorer and Tracker) con-
struit une prédiction du PHD multicapteur a posteriori grace au PIMS (Predicted
Ideal Measurement Set) et définit un controle multicapteur en respectant quelques
critéres opérationnels simples adaptés aux missions de surveillance.

Mots-clés : filtrage multiobjet, PHD multicapteur, gestion de capteurs

Multi-sensor PHD filtering with application to sensor management

Abstract

The aim of multi-object filtering is to address the multiple target detection and/or
tracking problem. This thesis focuses on the Probability Hypothesis Density (PHD)
filter, a well-known tractable approximation of the Random Finite Set (RFS) filter
when the observation process is realized by a single sensor. The first part proposes
the rigorous construction of the exact multi-sensor PHD filter and its simplified ex-
pression, without approximation, through a joint partitioning of the target state
space and the sensors. With this new method, the exact multi-sensor PHD can
be propagated in simple surveillance scenarii. The second part deals with the sen-
sor management problem in the PHD framework. At each iteration, the Balanced
Explorer and Tracker (BET) builds a prediction of the posterior multi-sensor PHD
thanks to the Predicted Ideal Measurement Set (PIMS) and produces a multi-sensor
control according to a few simple operational principles adapted to surveillance ac-
tivities.

Keywords: multi-object filtering, multi-sensor PHD, sensor management
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Résumé

Es quatres sections de ce résumé suivent les quatres chapitres de la thése. La
L premiére section reprend les grandes lignes de la théorie des ensembles aléa-
toires finis et décrit les équations du filtre PHD monocapteur. La deuxiéme section
présente une contribution clé de la thése, la construction du filtre PHD multicap-
teur et la simplification de son écriture sans approximation grace a une méthode
de partitionnement joint de I'espace d’état des cibles et de I’ensemble des capteurs.
La troisiéme section résume la construction d'un gestionnaire de capteurs dans le
cadre du PHD, le BET (Balanced Explorer and Tracker). Enfin, la quatriéme section
expose briévement l'implémentation particulaire du filtre PHD multicapteur et du
controleur BET, ainsi que les principaux résulats de simulation.

La théorie des ensembles aléatoires finis

Dans le contexte de la détection et du suivi de cibles, la théorie des ensembles aléa-
toires finis (Random Finite Sets) permet une représentation originale de la situation
opérationelle ; autrement dit, du nombre et de I’état des différentes cibles évoluant
dans la zone de surveillance. Contrairement aux techniques classiques qui assignent
une piste pour chaque cible détectée et la maintiennent a jour avec les mesures suc-
cessives, la théorie RFS décrit 1’ensemble des cibles a un instant donné comme la
réalisation d’un ensemble aléatoire fini, c’est a dire une wunique variable aléatoire
dont le nombre d’éléments - le nombre de cibles - et la valeur des éléments - I'état
des cibles - sont aléatoires. Plus précisément, on définit un RF'S comme une fonction
mesurable [Vo 08]:

= Q= FAX)
w— X =E(w) (1)

ou (Q,0(2),P) est un espace probabilisé équipé de la topologie de Matheron, et
F(X) lespace des sous-ensembles finis de I'espace d’état monocible X'.



8 Résumeée

Le filtrage RF'S consiste a propager au cours du temps des RFSs décrivant la config-
uration multicible (nombre de cibles et état de ces derniéres) en fonction de Parrivée
des nouvelles mesures. Au prix d’hypothéses relativement faibles sur la modélisation
des cibles et des capteurs, le filtre RF'S permet en théorie :

e de rassembler dans un seul objet aléatoire les méchanismes de naissance, évo-
lution et disparition des cibles ;

e A chaque itération, de faire évoluer cet objet aléatoire selon le schéma, bayésien
classique “prédiction — mise a jour”.

Quatre RFSs interviennent & chaque itération dans les équations bayésiennes :

1. Le RFS (multicible) de transition Zf, (X ), avec loi de probabilité = (.| X),
décrit la configuration multicible a I'instant k£ + 1 conditionnellement & un ensemble

multicible X a Pinstant k.

2. Le RFS (multicible) a priori Zj,qk, avec loi de probabilité p5k+1‘k(-|21:k),
décrit la configuration multicible a I'instant k£ 4+ 1 conditionnellement aux mesures
produites jusqu’a l'instant k.

3. Le RFS (multimesure) d’observation ¥y, (X), avec loi de probabilité ps, , , (.|X),
décrit la configuration multimesure a I'instant k£ 4 1 conditionnellement & un ensem-
ble multicible X & l'instant k + 1.

4. Le RFS (multicible) a posteriori Zgy1jk+1, avec loi de probabilité p=, .\ ([ Z15+1),
décrit la configuration multicible a I'instant k£ 4+ 1 conditionnellement aux mesures
produites jusqu’a l'instant k£ + 1.

Ces quatres RFSs sont liés par les équations du filtre RFS [Mahl 02]:

Zke,k+1

Pz (| Z0s) = /f P (0P (X1 ) 0) 2)

P (|z ) = p2k+1(Zk+1|.)p5k+1‘k(.|lek) @
= AL1kv1) =
kt1]k+1 + f}-(x) Psiis <Zk+1‘X>p5k+1‘k<X|Z1;k),u<dX)

Le principal avantage de cette méthode devant les techniques usuelles est qu’elle ne
nécessite ni heuristiques pour la création et la destruction de pistes ni association
explicite entre mesures et pistes. En d’autres termes, il suffit d’implémenter les
équations bayésiennes de prédiction (2) et mise a jour (3) pour propager les RFSs
décrivant la configuration multicible.



Xet1lk+1

H-1|k+1

Lit2,kA1k+1

X

N ? _ ?
Xk <> () Zgg1 < Zpt1(.)

o2 : ? =
Xitilk € Zpg1r(.) Xitilht1 < Epgrp+1 ()

On peut remarquer que la structure du filtre RES est similaire a celle du filtre monoci-
ble classique, les fonctions monoobjet (fonction de transition, de vraisemblance, etc.)
étant remplacées par leur “équivalent” multiobjet. Mais, si les fonctions monoobjet
peuvent étre construites explicitement au prix d’hypothéses “raisonnables” sur le
comportement des cibles et le fonctionnement interne des capteurs, leur équivalent
multiobjet sont en régle générale inexploitables. Par exemple, étant donné que le
RFS de transition E;‘gk 41 comprend le méchanisme de naissance, de disparition et
d’évolution des cibles, la quantité pgz’kﬂ(X |Y) doit étre déterminée pour des ensem-
bles X et Y quelconques, et donc en particulier de taille quelconque. Indépendam-
ment de la complexité des lois de probabilités, les intégrales sur F(X), évidemment
plus complexes a traiter que les intégrales sur X présentes dans les équations bayési-
ennes monocible, sont impraticables sauf cas bien particuliers - par exemple, si le
nombre de cibles est fixe.

Le filtre PHD est une approximation du filtre RFS qui restreint la propagation
d’information sur le RF'S a priori Zj (resp. a posteriori Ekﬂ‘k“) a son premier
moment ou PHD vz, |, (:[Z1x) (vesp. v, .., ([ Z1:k41)) plutot qu’a sa loi de prob-

abilité p=, ([ Z1x) (vesp. p=,., ., (| Z1441)). Les équations du filtre PHD, dans le
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cas monocapteur uniquement, sont les suivantes [Mahl 03a) :

U5k+1‘,€(-|lek)

= /X (Db ar () fhpa (1) + A3 s () sppa () vz, (2] Zr ) da + X g1 br e ()
(4)
UEk+1‘k+1(-|Zl:k+1)

ngrl(')Lerl(')
Aip1Ch+1(2) + VZp 1)k [PzﬂLZH]

=11 _p%ﬂ(-) +

2€2,41

v5k+l\k('|Z1:k) (5)

def . N
avec vz, ., [Ph 1 L7 ] = [y Pho (@) Li gy (2)vs, (2] Z1g)dz. Comparées a leur
équivalent RFS (2), (3), les équations (4), (5) sont plus simples & manipuler car les
fonctions multiobjet ont disparu au profit de fonctions monoobjet plus classiques.

Par exemple, la loi de probabilité du RFS de transition per, ., est remplacée par
une fonction de transition f; ., une probabilité de survie pj, ,, une intensité de
spwaning Aj ., Skk+1 et de naissance spontanée )\27k+1bk7k+1, toutes monocible. De
cette facon, le filtre PHD peut étre implémenté avec des méthodes d’approximation
similaires a celles employées dans le filtre monocible (filtrage particulaire notam-
ment, voir plus loin).

Le passage du filtre RFS a 'approximation que constitue le filtre PHD nécessite
plusieurs hypothéses ; certaines sont usuelles dans les problémes de détection - in-
dépendance des cibles, indépendance des mesures, etc. - d’autres plus spécifiques au
cadre du RFS. En particulier, I'hypothése de Poisson suppose que les RF'Ss multicible
Ek+1jk €6 Zpp1jk+1 appartiennent a une classe restreinte de RFS complétement décrits
par leur PHD, les Poisson RFSs. C’est a dire, connaissant le PHD vz, | (.| Z1), le
RFS Zj 11 est entiérement décrit par :

1] ;

e la loi décrivant le nombre de cibles, Poisson de paramétre vz, N

e la loi décrivant la distribution des cibles dans &X', chaque cible étant indépen-

. . C e oo V5 (1 Z0k)
damment et identiquement distribuée selon la densité =
“k+1|k

Dans la grande majorité des cas d’utilisation d’un filtre multicible, la donnée de sortie
du filtre doit étre un ensemble de cibles qu’il faut donc extraire du PHD. Grace aux
propriétés ci-dessus, 1’estimation du nombre de cible est donnée par 'intégrale du
PHD sur 'ensemble de la zone - vz, [1] - et les cibles peuvent étre placées autour
des extrema locaux comme illustré ci-apres :
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=
(1]

N:/vg(x)dwz3.2:>](7:3
x

A noter que d’autres processus d’extraction sont possibles et certains sont décrits
plus en détail dans la thése. De facon générale, I’extraction est indépendante et n’est
pas nécessaire a la propagation du PHD ; elle ne fait donc pas partie intégrante du
filtre PHD.

Filtrage PHD multicapteur

L’extension du filtre PHD au cas multicapteur est une contribution importante de
cette thése. En reprenant le principe de la construction du filtre monocapteur et
en supposant que le processus d’observation de chaque capteur est indépendant
conditionnellement & la configuration des cibles, on peut obtenir I’expression ezxacte
de I’équation de mise a jour :

oo > | Bldedl) T Bloc, 1]

CeC(Zy41) CieC C;#C;

CeC(Zpy1) CieC

U5k+1\k+1 ('r‘Zlik‘Jrl) = 6[5(2)7 51][(/’;1 + K/;l

(6)

ou :
s
® Zyw1 =|1;_, Zi,, est 'ensemble de mesures des S capteurs;

e C(Zy41) est ensemble des termes combinatoires construit sur I’ensemble des
mesures.

L’association implicite entre mesures et cibles est illustrée par la présence des termes
combinatoires, représentant 1’ensemble des regroupements possibles entre mesures
de différents capteurs mais originaires de la méme cible. Les cross-terms (3 sont des
fonctionnelles, chacune pondérant ’association entre un regroupement de mesures et
un point de l'espace d’état conditionnellement au PHD a priori vs,,, (.[Z1). Par
exemple :
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e [(3[0p,0,] : une cible existe en x, et n’est pas détectée ;

® [B[0.1.23,1] : les mesures z{ et 23 proviennent de la méme cible, dont I'état est
inconnu ;

° 6[5{211,23}, d.] : une cible existe en x, est a l'origine de la mesure 2} du capteur
1, a Dorigine de la mesure z3 du capteur 3, n’est pas détectée par les autres
capteurs.

A noter que le PHD a priori n’apparait pas explicitement dans I’équation de mise a
jour multicapteur mais est utilisé dans la construction des cross-terms. L’équation
de mise a jour multicapteur est intéressante sur le plan théorique car elle donne
I'expression exacte du PHD a posteriori ; en substituant (6) a (5), on construit un
filtre propageant le PHD multicapteur sans approximation, une référence précieuse
pour comparer et étudier les approximations multicapteur usuelles (voir plus loin).

Sur le plan pratique, le cott algorithmique de la construction de l’ensemble des
termes combinatoires explose avec ’augmentation du nombre de mesures et/ou de
capteurs, et le filtre PHD multicapteur exact n’est pas directement exploitable dans
un algorithme de poursuite en temps réel. Toutefois, I’expression de la mise a jour
peut étre simplifiée, sans approximation, en considérant un partitionnement joint
de l'espace d’état et de I’ensemble des capteurs reposant sur la configuration des
champs de vue des capteurs.

F ) P=2
/// /// e "
e yw //// | T0)=2x\ Uj:1 e
( (\ /\/y\/ /// /I .7
i / S()={2} T()=p>
N\,
) (4 | So=0aTO=rue

Dans la figure ci-dessus, par exemple, I’équation de mise a jour peut-étre utilisée trois
fois sur des espaces réduits - la zone bleue avec les mesures des capteurs 1 et 3, la
zone verte avec les mesures du capteur 2, la zone rouge sans mesure - avec a chaque
fois un nombre de termes combinatoires moins important ; le cott algorithmique
global de la mise & jour est ainsi sensiblement réduit. Grace a la méthode par
partitionnement, des scénarios de surveillance modestes avec un nombre de capteurs
et un chevauchement des champs de vue limités peuvent étre traités en temps réel
avec un filtre PHD multicapteur exact.
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Gestion de capteur

A chaque itération k, la gestion de capteurs se déroule en trois phases :

1. prédiction : en fonction du PHD a priori vz construire le PHD prédictif

vgwk pour chaque controle possible wu ;

k+1|k?

2. sélection : en fonction des PHDs prédictifs v§k+”k, déterminer le meilleur con-
trole selon une fonction d’objectif ;

3. controle : soumettre les capteurs au controle selectionné puis récupérer les
mesures courantes Zy1.

Ce schéma classique de prédiction sur une itération se retrouve dans le controleur
PENT (Posterior Expected Number of Targets), fruit des premiers travaux sur la
gestion de capteur dans le cadre du PHD réalisés par Mahler [Mahl 04].

Une contribution importante de cette thése est I'extension de la construction du
PHD prédictif que 'on retrouve dans le PENT au cas multicapteur. Le principe
consiste a extraire du PHD a priori un ensemble de cibles (voir figure plus haut pour
une illustration), puis & construire un ensemble de mesures idéales a partir de ces
cibles (en omettant les bruits sur 'observation et les fausses alarmes). Enfin, le PHD
a priori est mis a jour avec les mesures idéales en entrée mais pondérées par la prob-
abilité de détection de la cible associée. En d’autres termes, le PHD prédicif vgwk
est construit comme la mise a jour du PHD a priori Uz,,,, Suivant un processus
d’observation simplifié. Dans le cas monocapteur, Mahler obtient une équation de
prédiction trés proche de I’équation de mise a jour monocapteur, et par conséquent
aisément implémentable en temps réel. La construction du cas multicapteur suit la
méme logique que 'extension de I’équation de mise a jour (6), et peut étre simplifiée
par une méthode de partitionnement similaire. Pour les mémes raisons que celles
évoquées en section précédente, 'utilisation de I’équation de prédiction exacte n’est
envisageable que dans des scénarios modestes.

Conceptuellement, la fonction d’objectif proposée par Mahler pour le controleur
PENT [Mahl 04] est trés simple : le controle sélectionné est celui maximisant la
prédiction sur le nombre de cibles, c’est a dire encore, par construction du PHD,
I'intégrale du PHD prédictif vgkﬂ‘k[l]. Le principe de ce controleur est de favoriser
I’observation des zones de I'espace d’état ot le poids - c¢’est a dire I'intégrale du PHD
- est elevé, afin de détecter et suivre un maximum de cibles. A travers plusieurs ex-
emples, il est montré dans la thése que le comportement du PENT n’est pas toujours
adapté et qu’il prend parfois de “mauvaises” décisions. Il y a deux raisons principales
a cela. Premiérement, la fonction d’objectif ignore par construction 'information
contenue dans le PHD concernant la localisation des cibles, puisqu’elle se limite a
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déterminer son intégrale sur ’ensemble de ’espace d’état. Elle ne différencie donc
pas deux PHDs prédicifs ayant la méme intégrale, alors que les cibles potentiellement,
extractibles de ces deux PHDs peuvent étre radicalement différentes. Deuxiémement,
le PENT pénalise les controles conduisant & une réduction du poids, ce qui n’est pas
toujours justifié - par exemple, si le nombre de cible est surestimé dans une zone
et qu’une observation est suceptible d’améliorer I'estimation en réduisant le PHD.
Par construction, le PHD n’est pas modifié¢ par ’équation de mise & jour dans les
zones qui ne sont couvertes par aucun capteur, le PENT a donc tendance a éloigner
les capteurs des cibles et ainsi conserver un maximum de poids dans ’espace d’état,
plutot que de “risquer” que le poids ne diminue suite a& une observation.

Le controleur BET (Balanced Explorer and Tracker) propose une autre approche
a la gestion de capteurs, avec une vision plus “opérationnelle” reposant sur la notion
de piste. Une piste correspond & un certain poids extrait dans une zone limitée de
I’espace d’état et peut étre vue comme un indice de la présence d’une cible. On
distingue trois niveaux de pistes, un niveau plus élevé indiquant une concentration
de poids plus importante et donc une plus grande certitude sur la présence d’une
cible. Une piste de niveau moyen, par exemple, correspond & un poids supérieur a
W extrait dans une zone de rayon inférieur a Ay, :

N > Wy

=
(1]

 SAw X
Ay, .

Le principe général du BET est de concentrer ’action des capteurs sur les pistes
d’intérét, c’est a dire celles de niveaux faibles, jusqu’a leur disparition - 'origine
de la piste est une fausse alarme et aucune nouvelle mesure n’est venue confirmer
I'indice de présence d'une cible - ou jusqu’a leur “promotion” vers des niveaux plus
élevés - la piste est suffisamment résolue et n’est plus prioriaire. Le seuil délimitant
les pistes d’intérét est fixé différemment pour les zones d’ezploration et les zones de
poursuite. Dans les zones d’exploration, ol I'objectif est de détecter un maximum de
cibles, seules les cibles de niveau bas sont d’intérét. Dans les zones de poursuite, ot
la résolution des cibles est favorisée, les cibles de niveau bas et moyen sont d’intérét.
A ce titre, les controles sont évalués selon leur capacité a promouvoir des pistes
d’intérét extraites du PHD a priori vers des pistes sans intérét extraites du PHD
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prédictif. Bien entendu, le paramétrage des seuils entre les trois niveaux de pistes
est un point critique de la conception du BET.

Simulation et résultats

Que ce soit dans le cas monocapteur ou multicapteur, les intégrales dans les équations
du filtre PHD empéchent leur exploitation directe. Deux techniques d’implémentation
semblent étre populaires dans le cadre du PHD, les mixtures de Gaussiennes (Gaus-
sian Mixture PHD ou GMPHD) et les méthodes particulaires (Sequential Monte
Carlo PHD ou SMCPHD). Une comparaison des deux méthodes [Pace 11| semble
montrer que le GMPHD est généralement plus performant, mais son domaine de va-
lidité est restreint par des hypothéses plus fortes. Notamment, le GMPHD nécessite
une probabilité de détection uniforme sur ’ensemble de ’espace d’état, ce qui est in-
compatible avec le probléme multicapteur. Le filtre PHD multicapteur exact a donc
été implémenté par une méthode particulaire en suivant la construction proposée
par Vo et al. [Vo 05|. Différents modéles de capteurs et de cibles ont également
été concus et adaptés a 'environnement particulaire afin de pouvoir générer divers
scénarios de surveillance.

La premiére simulation compare le filtre PHD multicapteur exact avec et sans la
méthode de partitionnement. Le principe est simple : un méme scenario est traité en
paralléle avec les filtres résultant des deux méthodes, et une distance de Kullback-
Leibler [Aoki 11] évalue la distance entre les deux PHDs obtenus. Les résultats
montrent que 1’ajout du partitionnement permet de réduire sensiblement le temps
d’exécution de la phase de mise a jour, notamment dans les situations critiques -
quand les cibles évoluent dans des zones ou le recouvrement des champs de vue est
fort - ou le temps est réduit d’'un facteur 100, parfois davantage. LLe PHD propagé
par les deux méthodes peut étre considéré comme identique - I’écart entre les deux
restant de l'ordre de 107! tout le long de la simulation - ce qui confirme que le
partitionnement simplifie ’exécution de la phase de mise & jour sans pour autant
introduire d’erreur.

La seconde simulation compare le filtre PHD multicapteur exact avec le filtre ICA
(Iterated-Corrector Approximation) une célébre approximation multicapteur dévelop-
pée par par Mahler [Mahl 03a, Mahl 10a|. Le principe du ICA est de traiter les
différents capteurs séquentiellement plutot que simultanément ; c’est a dire, utiliser
S fois de suite la mise & jour monocapteur (5) plutot qu'une fois la mise a jour
multicapteur (6). La faiblesse de cette méthode, bien connue, est la dépendance de
la solution a l'ordre dans lequel les capteurs sont traités, méme si il a été affirmé
[Mahl 10a] qu’elle peut étre considérée comme négligeable. Un méme scénario est
testé avec deux configurations de capteurs, une comportant 10 capteurs et I'autre
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20. Pour chaque configuration, le meilleur ordre et le pire ordre de traitement par
le ICA ont été estimés, le critére étant la distance OSPA moyenne [Vo 08] entre les
cibles extraites du PHD et les vraies cibles. On constate d'une part que le filtre exact
est de meilleure qualité que le ICA - quel que soit 'ordre - et que la performance
du ICA se dégrade sensiblement avec le nombre de capteur. D’autre part, si 'écart
entre le meilleur ICA et le pire ICA est relativement faible pour la configuration a
10 capteurs, il augmente fortement avec le nombre de capteur. Ces résultats sont
particuliérement intéressants car ils prouvent que, dans certains scénarios du moins,
la dégradation de performance du ICA par rapport au PHD de référence est notable
et, plus important encore, que 'ordre de traitement des capteurs de 'TCA est un
facteur déterminant pour la qualité du filtrage.

La derniére simulation se concentre sur le probléme de la gestion de capteurs. Un
scénario plus “opérationnel” est généré, dans lequel des routes et des obstacles in-
fluencent le déplacement des cibles, et la couverture des capteurs est suffisamment
lacunaire pour qu'une gestion des capteurs soit nécessaire. L’estimation de la con-
figuration des cibles est propagée par un filtre PHD exact avec simplification par
partitionnement, tandis que la gestion des capteurs est réalisée en paralléle par un
controleur PENT et un controleur BET. La performance des deux controleurs est
évaluée en comparant la distance OSPA entre les cibles extraites des PHDs propagés
et les vraies cibles. Le temps d’exécution de la phase de gestion est également calculé
pour les deux controleurs a chaque itération. Les résultats montrent clairement que,
sur la qualité de ’approximation comme sur le temps d’exécution, le controleur BET
est nettement supérieur. Comme expliqué dans la section précédente, le PENT a ten-
dance a éloigner les capteurs des zones ot le poids est important. Ce phénoméne est
particulierement néfaste dans le cadre de 'implémentation particulaire, parce qu’un
certain nombre de particules ne sont (presque) jamais observées et se regroupent en
nuages se déplacant dans les zones qui ne peuvent étre observées par aucun capteur.
En conséquence, le poids augmente considérablement et ’estimation du nombre de
cible est largement surévaluée. D’autre part, le BET épargne la phase de prédiction
pour certains controles potentiels (plus de détails sont donnés dans la thése), ce qui
explique ’amélioration notable du temps d’éxecution. Une autre comparaison avec
un controle purement aléatoire semble toutefois indiquer que les avantages du BET
sont, limités. Il est trés probable que I'implémentation particulaire proposée soit en
partie inadéquate, notamment parce que les particules non couvertes ont tendance a
disparaitre rapidement a cause du rééchantillonnage. En conséquence, les pistes qui
ne sont plus d’intérét parce que trop résolues sont éliminées dés qu’elles ne sont plus
couvertes par les capteurs, alors que leur niveau devraient baisser jusqu’a redevenir
éventuellement des pistes d’intérét et étre de nouveau l'objet de nouvelles observa-
tions. De fagon plus générale, le BET semble incapable d’anticiper la disparition
de poids lors du rééchantillonnage, ce phénomeéne étant propre a 'implémentation
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particulaire mais n’ayant pas de mécanisme équivalent dans le cadre théorique du
PHD.

Ouvertures

De nombreuses pistes sont envisageables pour ’approfondissement de cette étude.
Sur le plan théorique, le filtre PHD multicapteur exact souffre d’un manque de trans-
parence sur son colit algorithmique. Puisque le temps d’exécution de la phase de
mise & jour explose avec le nombre de mesures et/ou de capteurs, un calcul du nom-
bre de termes combinatoires dans la phase de mise a jour (6) permettrait d’évaluer
a priori le temps d’exécution nécessaire pour une mise a jour exacte. Cela pourrait
conduire a un filtre hybride qui choisirait, pour chaque élément de partition, si la
mise a jour exacte est envisageable compte tenu du nombre de capteurs et de mesures
concernés, ou si une approximation de type ICA s’impose.

Sur le plan pratique, une amélioration de 'implémentation particulaire semble néces-
saire, notamment pour un bonne exploitation du BET. Une premiére étape serait
d’empécher la disparition trop rapide des pistes non couvertes, peut étre en consid-
érant un rééchantillonnage non systématique [Douc 05]. Indépendamment de cela,
le méchanisme de création de particules proposé dans cette thése n’est pas satis-
faisant sur le plan théorique et la recherche d’une fonction d’importance adaptée
au probléme est une piste a envisager |Rist 10al. Enfin, une implémentation du
PHD multicapteur avec des techniques dérivées du GMPHD relaxant ’hypothése
d’uniformité de la proabilité de détection reste a explorer.

En prenant davantage de recul, d’autres pistes relatives a I’extension du filtre PHD
multicapteur apparaissent. En premier lieu, on pourrait envisager ’extension du
filtre CPHD (Cardinalized PHD) monocapteur [Mahl 07a] - lui-méme une extension
du PHD monocapteur propageant la loi de cardinalité du RFS multicible en plus du
PHD - au cas multicapteur en s’inspirant des travaux de cette thése. Un autre sujet
d’étude prometteur est la construction d’un filtre propageant le second moment des
RFSs multicible, parce que cela permettrait de décrire des systémes plus complexes
comprenant une interaction entre des paires de cibles 1a ou les hypothéses du filtre
PHD imposent une stricte indépendance entre cibles.

L’hypothése fondamentale sur laquelle repose la validité du PHD comme approx-
imation du RFS, a savoir I'assimilation des RFSs multicible & des Poisson RFSs, est
également un domaine d’étude intéressant. Aux yeux de l'auteur, les conséquences
de cette hypothése sur la délimitation de la classe de problémes pour lesquels le
filtrage PHD (ou une méthode dérivée) est valide sont en grande partie inconnues et
mériteraient d’étre identifiées.
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Introduction

Curiosity killed the cat...
. satisfaction brought it back.

Proverb

Motivation

Uriosity may kill the cat indeed, and yet venturing into the unknown - or at least

the uncertain - is all the more tempting. Consider Tom, waiting near a road
corner for the first cyclists competing in his favourite race, his hands on his brand
new binoculars. Here comes the first peloton: Tom focuses his watch on them and
counts five cyclists. He is partial to Roy, but sadly he is not in this first group - or
so it seems. The frantic cries of other attendants must mean that another peloton is
arriving. Tom is eager to switch his watch to this second group, and yet he would like
to spend some more time on the five man leading peloton to be sure that they are in-
deed five - maybe Roy was hidden among them? Tom quickly decides to focus on the
second peloton. This one is more loose and is bound to break, a few seconds are long
enough to check that Roy is not there. Now Tom would like to look back at the first
peloton: where should he focus his binoculars, that is, how much farther have they
ridden since he stopped watching them? Switching his focus back and forth between
different pelotons seems to be quite challenging, fortunately for Tom the cyclists are
bound to ride on the road. What if the cyclists were allowed to wander away from
the road? Then Tom could get help from a friend of his with his own binoculars, but
how could they coordinate their watch in order to improve their chances to find Roy?

The situation above, albeit simple, arises the main challenges in the multi-object
state estimation problem. An observation and identification system (Tom) is inter-
ested in the states (position in the race, identity of the cyclist) of some objects (the
cyclists) evolving in a bounded region (the corner of the road next to Tom). The
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state of each object is uncertain - otherwise the race would lack any challenge! -
but the system can rely on measurements (a glance at the road through the binoc-
ulars) produced by sensors (the binoculars). These measurements are usually noisy
(Tom cannot see very well because of the sun reflection), yet sequential observations
allows the system to build an estimation of the true situation (the real position of
the cyclists on the corner of the road), modified dynamically following each new ob-
servation. The system can eventually make decisions to control the sensor’s action
(Tom may choose to focus his googles on another point of the road) according to an
objective (spotting Roy among all the cyclists). The system may rely on measure-
ments from several sensors (Tom’s friend with his own binoculars), in this case the
measurements must be shared (his friend thoroughly describes what he sees to Tom)
so that the system can produce a single estimation based on sequential multi-sensor
observations. Finally, the system must be able to produce multi-sensor controls
(Tom should provide instructions to his friend in order to coordinate their watch).

Many concrete problems fit through the state estimation framework given above,
or at least share some of its salient features, in various fields such as economet-
ric [Yell 10|, biomedical engineering [Juan 09|, meteorology [Solt 11] and of course
tracking [Gust 02]. The best known is perhaps the target detection and/or tracking
problem in surveillance activities, whether civilian or military, because it shares all
of the features above: the targets (i.e. the objects) are usually moving in a region of
unknown topography and their number is time-varying, the sensor coverage is lack-
ing (i.e. the sensors cannot cover all the surveillance region simultaneously) hence
decisions must be made by the sensor manager, the sensors can miss a target or
produce a false alarm, etc. In a world where both the targets and the sensors are
of increasing complexity, the improvement of the surveillance activities is a growing
concern and a challenging problem.

The multi-sensor /multi-target filtering problem

The scope of this thesis fits in the general multi-sensor/multi-target filtering problem
whose aim is to estimate the states of a varying number of targets through sequen-
tial observations by several sensors. The surveillance region R C R? is a bounded
ground region - e.g. the whereabouts of a military base. The targets are ground
objects evolving in the surveillance region, their state x is a four-variable vector,
two for position and two for velocity coordinates, belonging to the target state space
X C R* equipped with the Euclidian distance dy. For description purposes, targets
may be labeled in an arbitrary order. Likewise, their state may be labeled on a time
scale with an arbitrary origin. In the general case, z;; will denote the state of the
i-th target at time ¢, but the target label and/or time subscript may be omitted
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when irrelevant.

The surveillance region is observed by S sensors. Each sensor j has its own char-
acteristics (probability of detection, false alarm rate, measuring accuracy, etc.) and
produces measurements 27 belonging to its own observation space Z7 C R% equipped
with the euclidian distance dz;. As for the targets, sz,t will denote the i-th mea-
surement produced by the sensor j at time ¢, but the origin sensor superscript, the
measurement label and /or the time subscripts may be omitted when irrelevant. Each
sensor j has limited coverage in the sense that it may not focus on the whole state
space simultaneously. Tts field of view (FOV) F} C X is such that targets cannot
be detected by sensor j at time t unless they belong to its FOV th The FOV of
each sensor can be modified to some extent by dynamically managing the sensor, i.e.
providing instructions to the sensor on the region of the state space it should focus
on based on the current estimation of the target number and their localization. One
of the trickiest part of the multi-sensor/multi-target filtering problem is to design
a proper objective for the surveillance activity and be able to manage the sensors
accordingly.

Because the multi-target/multi-sensor filtering problem is inherently dynamic, a
common time scale is required for the targets’ model, the observation process and
the control process. For simplicity’s sake, the time is discretized in (time) steps.
The data flow over a time step can be depicted as follows:

Figure 1 Data flow of the filtering process (time k)

target
. _— : — X
= X motlion k1
3
y
k1
l
sensor 7
manager k+1
3
T
time data
= B — update | Frgapn — update | Frappeer — -

where:
e X is the collection of all target states at time (or step) k (the 'true situation’);

e 7, is the collection of all measurements produced at time k, regardless of their
origin sensor;
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® [ (resp. Fiyipk) is the filtered state at time & (resp. k + 1) based on the
measurements produced up to time k;

® Uy, is the multi-sensor control produced at time k + 1.

The data flow (figure 1) implies that several important assumptions about the system
are made:

e one can find a time step adapted to both target and sensor dynamics;
e the sensor system is centralized and without delay;
e the sensors are synchronized.

Arguably, the first assumptions depends chiefly on the sensor characteristics. Since
the scope of this thesis is limited to ground targets whose typical time step may last
a few seconds, the assumption that the ground surveillance sensors (typically, radars
or cameras) are able to produce measurements every time step seems reasonable
enough.

The sensor system being centralized is a valuable convenience for the design of the
filter, because it implies that all the measurements produced in a given time step
(say, k + 1) are immediately available for the data update (see figure 1) occuring
during the same step (Fyy1x — Fry1jk41)- Notably, this implies that there is delay
in neither the observation nor the data transmission processes. Likewise, as soon as
the sensor manager produces the selected multi-sensor control w1, the sensors are
controlled accordingly and the collection of current measurement 7., is available
instantaneously.

The assumption on the synchronization of the sensors is equally important, because
it has two major consequences. The desirable effect is that it significantly simplifies
the design of the sensor manager, which can be synchronized on the same time step
as the targets (see figure 1): the sensor manager selects a single multi-sensor control
U1 every time step, providing instructions to all the sensors simultaneously. The
other consequence, though not visible on the data flow, is the absence of temporality
between the elements in the current collection of measurements Z;,; - that is, the
element order in Zj,, is arbitrary and cannot be used to set an order of precedence
among the measurements produced by a given sensor or among the sensors. This
consequence is critical to the design of the data update step since it implies that
one cannot hope to update the filtered state by proceeding sequentially with the
measurements from the different sensors, rather, one must deal with the sensors all
at once.
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Organization of the thesis

The thesis is organized as follows:

Chapter 1 provides the main theoretical tools that are required for the design
of the probability hypothesis density (PHD) filter. The chapter focuses mainly on
the random finite set (RFS) theory, but also introduces the single-sensor PHD filter
and some metrics adapted to the RFS framework.

Chapter 2 describes thoroughly the construction of the multi-sensor PHD filter.
The first part provides an adaptation of Mahler’s construction of the single-sensor
case [Mahl 03a] which is important to grasp the rigorous extension to the multi-
sensor case that follows. A joint partitioning of the state space and the sensors is
then proposed in order to simplify the construction of the multi-sensor PHD filter
without approximation. Based on this new reference, common multi-sensor approx-
imations are then discussed. The extension to the multi-sensor case as well as the
partition method are key contributions of the thesis.

Chapter 3 deals with the sensor management problem. The first part focuses on the
target extraction process, then on the rigorous extension of Mahler’s predicted ideal
measurement set (PIMS) [Mahl 04] to the multi-sensor case and its simplification
by a similar partitioning as in chapter 2. It then focuses on the design of a sensor
manager. Mahler’s posterior expected number of targets (PENT) manager [Mahl 04]
is introduced and analyzed through simple situations where it seems inadequate. A
new solution based on 'operational’ objective is then proposed, the balanced explorer
and tracker (BET) manager. The extension to the multi-sensor case, the partition-
ing and the BET manager are other important contributions of this thesis.

Chapter 4 first describes the modelization of surveillance scenarii, then the im-
plementation of the multi-sensor PHD filter and sensor manager through sequential
Monte Carlo (SMC) techniques, and finally the main results obtained on simulated
data.

All the mathematical proofs pertaining to chapters 1, 2, and 3 may be found in
appendix A, and a brief description of the principles of importance sampling (IS)
and sequential importance sampling (SIS) is provided in appendix B.
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CHAPTER

Background

Ahler should take the credit for much of the original work on the RFS theory
M [Mahl 02|, since he established grounds for the first rigorous Bayesian filter
in a multi-object context with the finite set statistics (FISST) approach. In later
works, Mahler also proposed the construction of the PHD filter [Mahl 03a], an ap-
proximation of the more general multi-objet Bayesian filter leading to a tractable
single-sensor/multi-target filter. Not surprinsingly, the new set-based approach to
multi-target tracking arouse some interest in the tracking community and many
implementations of PHD-based multi-target tracking filters have been proposed
[Maeh 06, Pham 07, Juan 09]. But, more generally, the random finite sets and their
derivatives proved to be an exciting field of study and have been the topic of several
recent theses [Viho 04, Clar 06, Tobi 06, Pant 07, Vo 08|. This chapter describes the
basic notions about random set theory that were needed for the design of the PHD
filter in the single-sensor case, and for its rigorous extension to the multi-sensor case
as well. The PHD filter is also briefly described, its construction being fully detailed
in the next chapter.

1.1 Random finite sets

Even though the early work regarding the random finite set theory can be found
in Mahler’s work [Mahl 02, Mahl 03a], this section is mainly an adaptation of Vo's
thesis [Vo 08] which provides a well-written summary of the essential definitions and
properties pertaining to the RFS.
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1.1.1 Definition

Essentially, as it will be formally established later in section 1.2, the purpose of
the set-based filtering approach is to consider the collection of true targets X, =
{1k, Tok, ..., TN, k)}) as the realization of a random variable and build a filtered
state - that is, an estimation of this ’true situation’ - upon the knowledge of this
random variable acquired through successive observations rather than upon several
maintained tracks. Because the realization of this random variable must cover every
possible number of targets and, for any target number, every possible combination
of target states, each realization belongs to F(&X'), the set of all the finite subsets of
the state space X.

Definition 1.1. A RFS = defined on X is a measurable mapping [Vo 08]:

= Q- FA)
w—= X =Z(w) (1.1)

where (2, 0(2),P) is a probability space equipped with the Matheron topology.

As usual in the study of random variables, one’s focus shifts easily from the proba-
bility measure P - defined on the sample space €2 - to the more practical probability
distribution of the RFS, i.e. the probability measure Pz defined on F(X') by [Vo 08]:

AT Y Pweq: ZweThH=P{XeT)) (1.2)

for any Borel subset 7 of F(X'). Like any random variable, = is completely described
by its probability distribution Pz. From now on, functions, subsets and events are
assumed to be measurable or Borel whenever appropriate.

Intuitively, a RFS is well adapted to the description of a process producing dif-
ferent point patterns with associated probabilities. Actually, RFSs can be seen as
particular cases of more general objects called point processes and many results pre-
sented in this section can be found in their point process equivalent in [Sing 09].
Although point processes will not be referred to anymore later in this thesis, a brief
description of the similarities between the two notions provides another approach to
grasp the concept of RFS. The following definitions concerning the point process are
given in [Vo 08|:

1. a counting measure n on X is a measure taking values in N U {oo} such that
n(7) is finite for any bounded subset 7 of X’;

2. a counting measure n is simple if n({z}) € {0,1},Vz € X;

3. a counting measure n is finite if n(X’) < oc;
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4. a point process N on X is a measureable mapping from a sample space (2,

where (2, 0(Q2),P) is a probability space, to the space of counting measures on
X

5. a point process N is simple if N(w) is simple almost surely;
6. a point process N is finite if N(w) is finite almost surely;
7. a point process N is simple-finite if it is simple and finite.

Any simple-finite point process N on X may be associated with an equivalent RFS
= on X bound by the following relation:

VT C X, Nw)(T) = |Ew) N T] (1.3)

where |.| is the cardinality function. This important relation shows that a RFS on
X can be completely described by counting the occurences of points falling into
subspaces of X'. A recent book of Streit [Stre 10] thoroughly describes the detection
and tracking problem from the point processes’ point of view; not surprisingly, many
notions are quite similar to those developed in the RFS framework.

Example 1.1. One can define a RFS =, with the sample space Q = [0, 1] equipped
with the uniform probability, whose distribution probability is described by:

( 1
{l‘l,l‘g} ’Lf 0<w< 5
1 2
{@g, 23} if B Sw< 3
{.T4} ’lf g < w < 1

3
{0y if - <w<l

\ 4

This RFS may be depicted as follows:

Figure 1.1 Illustration of a RFS

.xl

- 23 -T2

A

(1] (1] [1] [1]
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Equivalently, one can define a simple-finite point process N, with the same probability
space, whose distribution probability is built as follows:

(02 a(e) =La(fm) = 1n(@) =2 if 0<w<,
neonlm)) = Ln(las) = Ln(¥) =2 if J<w<:

N(w) = 5 5 (19)
n: n({xs}) =1,n(X)=1 if §<w<1
|7 n(X)=0 if z\w\l

The point process formulation (1.5) also provides some insight on the construction
of the PHD. Since there is no addition operator defined on F(X) - {x1, zo} + {22, 23}
has no mathematical sense, the “classical” expectation operator cannot be applied
to the RFS - E[Z] has no sense either. However, additioning counting measures has
a mathematical sense, and so does the expectation E[N]|. Applying this expectation
on the point process described in equation (1.5) provides the following description of
the RFS =: “on average, there are 0.5 targets located in zy, 0.66 targets in zo, 0.17
targets in x3, 0.08 targets in x; and none elsewhere”. Propagating this information
through time is, in a nutshell, the principle of the PHD filter.

Note that a RFS is equivalent to a simple-finite point process; the “simple” quali-
fication hence precludes the possibility of repeated elements in any realization of a
RFS. In the multi-target tracking framework, this implies that a RF'S-based multi-
target representation does not cover the possibility that several targets share the
eract same state. Given the usual nature of target states (position and/or velocity
coordinates in a “large” surveillance region), this restriction may seem to be of little
importance, even though this could have some undesirable effects in the tracking of
well organized targets moving together (in a convoy for example). Note also that,
since the realization of a RFS is a set of points, these points are unordered and any
labelization is necessarily arbitrary. As it will be seen later in section 1.2, this has
direct consequences on the design of multi-target tracking filters.

Yet another equivalent description of a RFS = is given by the following distribu-
tions [Vo 08]:

e a cardinality distribution p=;
e a family of symmetric probability distributions {PE(n)}neN.

where p= describes the distribution of the number of elements in any realization X
of the RFS and PE(") describes the joint spatial distribution of these elements in the

state space X. Note that the probability distributions P are symmetric since the
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element order in a set is arbitrary.

The union RFS of a finite number of RFSs can be defined as follows (adapted
from [Vo 08]):

Definition 1.2. For anyn € [1 N|, let =, : Q@ — F(X) be a RFS. Then, the union
RFS Y, E, is the RFSZ: QN — F(X) given by:

N
Yw = (w1, ..., wy) € OV, Z(w) Y UE (1.6)

Finally, an extension to the union RF'S can be defined as follows:

Definition 1.3. For anyn € [1L NJ, let Z,, : Q — F(X,) be a RFS. Then, the joint
RFS |_|7]:7:1 =, is the RFS = : QN — |_|7]:7:1 F(X,) given by:

N
Yw = (w1, ..., wy) € OV, S(w) Y |_|E (1.7)

The joint RFS can be seen as a “disjoint union” of a finite number of RFSs defined
on different spaces. This definition was added by the author in order to describe
the multi-sensor observation process as the “union” of single-sensor processes (see
chapter 2). In particular, the following property will be useful in the construction
of the multi-sensor PHD equations:

Property 1.1. Foranyn € [l N|, let =, : Q — F(X,) be a RFS on X,,. If the RFSs
Z; are statistically independent, then, for any family of subsets {T,}\_,, T, C F(X,):

Lyp=1Zn <|_|T> = HPEn(,ﬁz) (18)

The proof is given in appendix A.
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1.1.2 Probability density

The notions of measure, integration and probability density are equally important
for the construction of the RFS-based filter. In RFS theory, the usual reference
measure on F(X') is the dimensionless measure p given by [Vo 05, Vo 08]:

w(T) < ZAH(XI(Z!) nx) (1.9)

for any subset 7 of F(X), where A" is the n-th product dimensionless Lebesgue
measure on X", and x is a mapping on vectors defined on Cartesian product spaces
X™ and n-element set spaces defined by:

X DX" — F(X)
n=0

Ty ooy Ty = {21, o, T} = X(T1, o, ) (1.10)

Intuitively, in order to measure a subset 7, one must stack its elements by size,
measure each element with the proper dimensionless measure according to its size,
then sum them to obtain the size of 7. Note that for each n-element set belonging to
T, there is n! corresponding elements belonging to the Cartesian product X™ with the
same measure, hence the factorial on the denominator. Because the hyper-volume
in the state space X may have unit (e.g. m?*.s72 for a 2D surveillance region with
position and velocity coordinates), a dimensionless measure on Cartesian products
is required to keep the homogeneity between the measures of vectors belonging to
different Cartesian product spaces.

Example 1.2. Consider the one-variable state space X = [0 1] - the state of point
being, for example, its position on the real unit segment. Let us consider the following

subset T C F(X):

@{{ {z} v €0 1/2]} L11)

"7 () 1z e 018y 0 1)
then x~X(T) can be decomposed as follows:
X H(T)NX =[01/2]
X HT) X HT)NA?=[01/3] x [0 1]U[0 1] x [0 1/3] (1.12)
X HT)NX"=0,n¢{1,2}

thus we have:
AT N &) =1/2
N(x TN &2
(x <2>ﬂ/‘f>:1/3x1 (1.13)

VOTINAY

n!
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which leads to:

W(T) = Ay )+ YO 5 (1.14)

The construction of the measure on F(X') is naturally followed by the definition of
the integral of a function f : F(X) — R over a subset T [Vo 05, Vo 08|:

FXOu(dx) Zi! / (0 (1, s 2)) F (1 oy ) N (dr i)

o 1 "
-y /X_I(T)ﬂxnf({xl,...,xn}))\ (dzy...dzy) (1.15)

Note that the notation dz; is used in standard integrals, hence dx; may have unit
depending on the state space X'. However, recall that A"(dz;...dx,) is dimensionless.
If Ky is the unit of the hyper-volume of X, then:

Vn e N, dxy...dz, = \"(dzy...dx,) Ky (1.16)

Then, the probability density p= of a RFS =, if it exists, is given by the Radon-
Nikodym derivative of the probability distribution Pz with respect to the measure
i [Nguy 06, Vo 08]:

T C F(X), P=(T) = /r p=(X)u(dX) (1.17)

1.1.3 Janossy measures and Janossy densities

The measuring process on F(X) is by no means trivial. Because the different ele-
ments in F(X) are sets of various size, the “trick” is to stack these elements by size
and then, for each size n, “go back” in the well known associated product space X"
- using the y function given by equation (1.10) - where standard Lebesgue measures
are available. Thus, its seems fairly natural to “split” the measure on F(X') by a
family of measures on product spaces X, n € N, encapsulating the more intuitive
notions of cardinality distribution pz and spatial distribution PE") defined in section

1.1.1. Indeed, one can defined the family of Janossy measures {Jé")}neN [Vo 08]:
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Definition 1.4. The n-th order Janossy measure Jén) of a RFS = s the measure
on X™ given by:
I8 nlp=(n)PL() (1.18)

where p=z s the cardinality distribution, PE(n)
RFS =.

is the n-th order probability measure of

If Jé") admits a density (with respect to the standard Lesbegue measure on X"),
then it is called the n-th order Janossy density jé") (jéO)KX = Jéo) by convention).

Note that the Janossy densities vanish when evaluated on identical points (e.g.
jé") (21,21, x9,...) = 0), since there is no repeated points in any realization of a RFS.
One must be careful not to confuse the probability density p= with the Janossy den-
sities { jé")}neN. While the probability density p= is defined on F(X) and covers all
the possible realizations of the RFS =, the Janossy density jé") covers the possible
realizations of the RF'S = among those with n elements only and is not a probability
density since [, jé") (X)dX # 1 in the general case. Furthermore, pz is dimension-
less since it is defined with respect to the dimensionless measure p on F(X), while
jé") has unit K" since it is defined with respect to the standard measure on X™.

However, these densities are related through the following equality [Vo 08]:

p=({ar, .o wn}) = i@y, oo ) KD (1.19)

The proof is given in appendix A. Furthermore, since the spatial distribution PE(")
can be recovered with the relation P () = JI(.)/J(X™) and the cardinal dis-
tribution p= with the relation pz(n) = Jé")(?(")/n!, the family of Janossy measures
{Jé")}neN describes completely the RFS =. Clearly the cardinal and the spatial dis-
tribution are more intuitive because they embody the algorithmic process for the
sampling of a RFS - first draw a number of element according to p=, then distribute
the elements in state space by sampling from the appropriate PE("). However, the
Janossy notations are better adapted to set-based calculus.

1.1.4 Factorial moments

Like usual random variables, RFS can be characterized through their moments. The
n-th order factorial moment measure VE(") of a RFS = can be defined as follows

[Vo 08]:
Definition 1.5. Let = be a RFS, {T,}nen a family of subsets of X. Then, the n-th
order factorial moment measure VE(") is defined by:

n de
VAT x . x T) @ E ST Inesn (@ 7)) (1.20)

T1F#... FTn€E(w)
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The first order factorial moment measure V= (VL by convention) is commonly known
as the intensity measure:

V=(Ty) “ E[E(w) N TY] (1.21)

If it exists, the n-th order product density is the function U(E") defined on X™ such
that:

V:(n)(Tl X ... xT,) = / / U(En)(fﬂh7---axn>dx1-"dx" (1.22)
Ty n

The first order factorial product density v= (v by convention) is commonly known
as the intensity (function):

Va(T) = /T ve(e)da (1.23)

The notion of moment of a RFS is perhaps more difficult to grasp as the notion of
probability, especially when the subsets T; are not disjoints. Intuitively, the quantity
p=({x1, ...,z }) K% dzy...dx, can be seen as the probability that the realization X of
the RFS has ezactly n points, each point in a different neighborhood dz;. On the
other hand, the quantity U(E") (21, ..., Ty )dxy...dz, can be seen as the probability that
X of the RFS has at least n points in the different neighborhoods dx; [Vo 08]. For
more details, a comparison between Janossy and factorial moment measures can be
found in [Vere 88| (pp.133 - 134). Easily enough, the design of the PHD filter focuses
on the first moment only, whose formulation given by (1.21) is rather suggestive: the
first moment Vz(7') counts the average number of points falling in the subset 7' C X.

Note that if dxq,...,dry are infinitesimal disjoint neighborhoods, then using defi-
nitions 1.4 and 1.5 yields:

1
VAV (dy x ... x dey) = Z—'// U (g, day, deygy, o doyg,) (1.24)
n=0 n ——
Xn

(n)

Note also that the n-th order product density vz, similarly to the n-th order Janossy

density jé"), is defined on product space X" and has unit K,". In fact, product den-
sities v(E") are “closer” to the Janossy densities jé") than to the probability density

= in the sense that their family comes as a “toolbox”, each tool being adapted on
a standard product space X", rather than as a single yet more complicated tool

adapted for the whole space F(X).

Interestingly, Mahler proposed in [Mahl 03a] a dimensionless “multitarget moment
density” Dz, defined on F(X) by:

VX € F(X), D=(X)™ / p=(X UW)pu(dW) (1.25)
F(x)
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Table 1.1: Relations between different densities
Space xm F(X)
Probabilities (unit) | 58 (z1, ..., 2) (K3") | p=({z1, ..., 22}) (none)
21, ) (K" | D=({z1, ..., 2 }) (none)

—

[1]

[1 =

Moments (unit) | v

Equation (1.25) is perhaps more suggestive than those of the factorial moments:
the moment Dz({x,...,x,}) gives the probability that the realization of the RFS
contains at least these points. In parallel to equation (1.19) we can write:

Dz({z1, ... zn}) = v (a1, ... 2, KD (1.26)

However, because Mahler defines the PHD Dz as the intensity (i.e. the first order
product density) rather than the multitarget moment density (see definition 1 in
[Mahl 03al), the equivalence between the two notions - Vo € X', D=z({z}) = D=(x)
- must be explicitely proven (see theorem 2 in [Mahl 03a]).

1.1.5 Probability generating functionals
Definition and fundamental properties

The notion of probability generating functional (PGF1) is central to the construction
of the PHD [Mahl 03al. Conceptually, the PGFI may be seen as a generalization of
the belief-mass functional [Vo 08]:

Definition 1.6. The belief-mass functional B= of RFS = is the function given by:
def —_ =(w
B=(T) < P({E(w) € T}) = ENF*] (1.27)

where T is any subset of X, 17(.) is the indicator function defined on X and, for any
realization X = Z(w), 15 = [L,ex 1r(x). Besides, if = admits a probability density:

B=(T) = /f | ECOu(ax) (1.28)

Intuitively, the belief-mass functional counts the patterns, weighted with their prob-
ability of occurence, whose points fall all inside a subset T" C X.

The notion of PGFI is similar to the belief-mass but allows a broader range of
membership functions than the indicator function [Mahl 03al:

Definition 1.7. The PGFIl Gz of RFS = is the functional given by:

G=[h] & E[pE@) (1.29)
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where h : X — [0 1] is a dimensionless function and, for any function h, hX =
[Lex h(z) (h" =1 by convention). Besides, if = admits a probability density p=:

Gzl = | P Xn(X) (1.30)

The function A must be dimensionless for the expectation in (1.29) to be well-defined.
Unless otherwise stated, the argument function of a PGFI - or, more generally, of
any functional described in this thesis - is assumed to be dimensionless. Note the
similarity with the probability generating function (PGF):

Definition 1.8. The PGF Gx of a random variable X on X is the function given
by:
Gy (h) @ E[p¥@) (1.31)

where h € [0 1] is a real number.

Comparing definitions 1.6 and 1.7 yields:
B=(T) = G=[17] (1.32)

that is, the PGFI equals the belief-mass functional when the function h is a subset
indicator function. However, the PGF1 admits “fuzzy” membership functions as ar-
guments [Mahl 03a]. Suppose, for example, that sensor j has current FOV F7 such
that any target z inside is detected with probability pﬁl() Further assume that a
RFS Z describes the target configuration at that current time. Then, while 3= (F7)
is the probability that all the targets are inside the FOV, Gz[p’] is the probability
that all the targets are inside the FOV and are detected by the sensor.

The PGFI can be written with the Janossy measures (and Janossy densities if it
admits a density) as follows [Vo 08]:

Property 1.2. Let = be a RFS with PGFl G= and Janossy measures {Jé")}neN.

Then:
=1
Gz[h] = ﬁJé”)[h,...,h] (1.33)
n=0
where:
Ty, bl déf/-.-/m(xl)...hn(xn) iy, de) (134)

or, if the Janossy measures admit densities:

Jén)[hl,...,hn] :/---/hl(:pl)...hn(xn)jg)(xl,...,xn)d:pl...dxn (1.35)
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The proof is given in appendix A. The PGFI can be extended to the multivariate
case; the following definition will be particularly useful in the extension of the PHD
filter in the multi-sensor case [Vo 08]:

Definition 1.9. For any n € [1 N|, let =, : Q@ — X, be a RFS with PGFl Gz, and
hyp @ X, — [0 1]. Then, the joint PGFl G=, . =, of RFSs Z1,...,Zy is defined by:

7777 =N

Gz, =ulhns o hy] 2 E [h?W)...hENN(“’ (1.36)

All the notions such as probability measures and densities, functional derivatives
and such are easily extended to the multivariate case. Intuitively, since each RFS
=, is defined on its own space A, the multivariate PGFI can be easily built with
the (univariate) PGFI of each RFS.

The PGF1 of a union RFS can be built through the PGFls of the base RFSs [Vo 08]:
Property 1.3. For any n € [1 NJ, let 2, : Q — X be a RFS with PGFI G=,.

Then, if the base RFSs =,, are statistically independent, the PGFI of the union RFS
UnN:1 =, 18 the product of PGFls Gz, :

Gz,u..uen] = H Gz, ] (1.37)

The independence between the base RFSs is important here. Intuitively, if they are
independent, the event that their realization have common points has probability
zero and a realization of the union RFS can be decomposed on pairwise disjoint
realizations of each RFS. A sketch of the proof for N = 2 is given here:

[e.9] 1 .
Gz 0z, [h] = Z EJéJJEz [h, ey h]

n=0

RSN I AR (n—p)
_Zmz(p)le[h, NP AN
n=0 p=0
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Geimalt] = 33 st I e I e
=3 I (Z (n_lp), 0, ,m)
_ (i L, ..,m) (fj% n ,m)
= “1[h]GE2[h]

One may suppose that, if RFSs Z; and =, were not independent, the “split” of the
Janossy measure of the union RF'S would not have been simple and the expression of
the joint PGF1 would have been more complicated. In the design of the PHD filter,
though, union RFS will always be built as union of independent RFSs (see chapter
2). For simplicity’s sake, property 1.3 is admitted in the general case.

Functional derivatives

The notion of functional derivative is fundamental in RFS theory. Working on PGFIs
and their derivatives allows the computation of probability densities, moment den-
sities, Janossy densities and such; it is therefore possible to study the RFS from the
“PGFI point of view” and deals with functions defined on the state space X rather
than densities and measures defined on the much “larger” space F(X).

In this thesis the functional derivatives are defined and studied with the notations
given by [Vo 08], but we will gradually change to the much lighter Mahler’s notations
[Mahl 03a], which are very easy to manipulate in the construction of the PHD filter
(see chapter 2).

Definition 1.10. Let G be a functional and h, {g, }nen real-valued functions defined
on X. The n-th order functional derivatives, respective to h and in directions g;, are
defined by:

G[h + eg1] — G[h]

WTh; g1] = 1i 1.38
GUlh; gi] = lim . (1.38)
and, recursively:
G VR + €gn; g1y wos Gu1] — G V[R5 91, .y G
G™[h; g1, ..., gn] = lim [+ €93 91, s g 591, s g (1.39)

e—0t €
Besides, G [h] = G[h] by convention.

Pay attention to the fact that, unlike the argument function A, the directions g;
need not be dimensionless. If g; has unit K', since h + eg; must be dimensionless
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n (1.38), € has unit Ky and thus GM[h; g;] has unit K3'. In this thesis, unless
otherwise specified, the direction functions are assumed dimensionless in order to
keep the successive derivations of a PGFI dimensionless.

The next result is fundamental because it links the n-th order derivative of a PGFI
with the n-th order Janossy measure and the n-th order factorial moment. First, a
lemma is required:

Lemma 1.1. Let = be a RFS with PGFL Gz and Janossy measures {Jén)}neN. Let
{gn}nen be real-valued functions defined on X in [0 1]. Then:

o0

n 1 n
G(E )[h; g1,y Gn) = Z Hjé +p)[gl, s Gy ey (1.40)

p=0 p
The proof is given in appendix A. Then follows the main result, adapted from [Vo 08|:

Property 1.4. Let = be a RFS with PGFL G=, Janossy measures {Jén)}neN and

factorial moments {VE(")}neN. Let {gn }nen be a family of real-valued functions defined
on X in [0 1]. Then:

GL105 g1, -, ga) = I (g1, ... 9] (1.41)
G g1, s gu] = VA" (01, -, 9] (1.42)

If = admits a probability density, then:

Ge'
Ge'

0:00, K, .., 00, K] = 58 (w1, oo ) KB (1.43)
1560, Ky ooy 00, K] = 00 (w1, ) K2 (1.44)

[l] = [l] =

where {xy, tnen is a collection of points in X and ,(.) is the Dirac delta function.

The proof is given in appendix A. Dirac functions in equations (1.43) and (1.44) are
merely a practical notation allowing an easier writing of set derivations. For example,
result (1.43) is easily recovered with the Delta notations. Indeed, according to (1.41):

GU0;6, K, ... 5, Kx] = JE[5, Kx, ... 0, Kx]
:/---/5y1(xl)KX...éyn(xn)KXJé")(dxl,...,dxn)

/ /5y1 x1)...0y, ( :L‘n)j( )(:El,...,xn)Kf,}dxl...dxn

(yla . 7yn)KX
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Since the derivation in dimensionless directions is favored in this thesis and the Dirac
delta function has unit K ', units terms are explicit in equation (1.43) - unlike the
equivalent form used by Vo [Vo 08|:

GE0; 00y, ey 00) = GE0 (1, oy )
In the PHD framework PGFls are derivated exlusively in the direction of Dirac delta
functions, thus the following notations:

Notation 1.1. For any subset {1, ...,z,} C X:

571 not (n)
—————G=[h] = GLh; 6, K, ., 60, K 1.4
5.1’151’” G“ [h] G: [h'7 5:1:1 Xy 5:1:n X] ( 5)

0 not ~(n) (|
5{%_“’%}%%} 2 G2V [h; 60, K, ooy 6, K 3] (1.46)

That is, the § notation will be used for the “derivation” of functionals in points
from the state space X (or observation spaces Z7). The same notation will be used
on multivariate functionals when there is no ambiguity on the function which is
derivated. For example, if G[g, h| is the functional where g is defined on Z and h
is defined on X, then %G[g,h] - or, equivalently, %G[g, h] - is the functional
derivative of G[g, h], respective to g, in direction 0,(.)Kz and, respective to h, in

direction 0, (.)Kx.

The classical derivation rules being provided by the FISST calculus rules for func-
tional derivations [Mahl 07b], the pseudo-derivation ¢ will be often considered as a
standard derivation for calculus purposes, even though the underlying Dirac delta
function induces specific properties as seen in the following paragraph. Note that
equation (1.43) implies that the point order in a derivation is arbitrary - i.e.

¥ _Gz[h] = =£—Gz[h] - and that any PGFI derivated twice on the same point

dx10T2 = dx2dx =

vanishes - i.e. 5:)3(15—5:131G5[h] = 0.
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Calculus properties

The first property provides two useful rules for general calculus on functionals
[Mahl 03a, Mahl 07b]:

Property 1.5. Let G be a functional, xq a fixed point in X and p a real-valued
function on X. If, for any real-valued function h defined on X, G[h] = h(xq), then:

Vi € X, %[h] = 5, () Kx (1.47)

If, for any real-valued function h defined on X, G[h] = [, h(z)p(x)dz, then:

Ve e X, i—i[h] =p(r)Kx (1.48)
The proof is given in appendix A. Note that in the property 1.5 the functional G
may be seen as the PGFI of a very simple RFS = whose Janossy densities are all zero
but the first order which is jg)(.) = 0y, (.) in equation (1.47) and jg)(.) = p(.) in
equation (1.48). Not surprinsingly, the argument function i does not appear in any
of the two results: the associated RF'S having trivial cardinality distributions such
that each realization has exactly one point, h appears in the zero order term (in €) of
the derivation process and is “killed” in the difference G[h+ €d,| — G[h] (see the proof
for more details). Because h can be arbitrary set at 0 or 1, it shows that the no-
tions of first order Janossy density and intensity are identical for “one-element” RF'Ss.

Using the factorial moments is sometimes an easy way to transform a set inte-

gral over on F(X) to a classical integral defined on a “smaller” space (adapted from
[Mahl 03a):

Property 1.6. Let = be a RFS with probability density p= and intensity v=. Then,
for any h: X — [0 1]:

X

/ thE(X)/,L(dX):/h(az)vg(:c)d:c (1.49)
F(X)

where hx = > . h(x) (hy = 0). For any point xg € X, setting h(.) = 0z,(.)Kx
gives:

/F XX )(aX) = et (1.50)

where 6x (o) = Y cx 0x(T0) (09 =0).

The proof is given in appendix A. The spirit of this property is the following. Rather
than averaging the sum of a function h over each point of every set, weighted with
the probability of occurence of that set, one can average h over every point, weighted
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with the intensity of this point, i.e. the probability of occurence of all sets containing
this point.

Figure 1.2 Illustration of equation (1.50)

/Xl\‘~-______?_x9—’ 1XpE(X1)

* +
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Note that result (1.49) can be extended to higher order of factorial moments. For
example, the second order equivalent would be:

| hsr=0uax) = [ @b (o, g)dody (151)
F(X)

XQ

where hy x = Z h(z;)h(z;).
zi,r;€X
i<j
The last property is a “technical” result pertaining to the composition of intensities
(adapted from |[Mahl 03al):

Property 1.7. Let ®[.| be a functional transformation on the real-valued functions
h: X — [0 1] such that for any h, ®(h) : X — [0 1] and ®[1] = 1. Let = be a RFS
with PGFIl Gz, probability density p= and intensity v=. Assuming that there exist:

e a RFS =4 with PGFl Gz,|.| = G=[®[.]] and intensity v=,;

o for any v € X, a RFS Z¢, with PGFI Gz, [.] = ®[.](z) and intensity v=, .
then:

Vg € X, v=,(20) = / vz, , (10)v=(7)d (1.52)
X

The proof is given in appendix A.
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1.2 Multi-target filtering within the RF'S framework

1.2.1 Principle

The RFS theory naturally applies to the modelization of a multi-target tracking
problem, since there are a finite number of points - the target states - whose config-
uration in a space - the target state space - varies through time.

Figure 1.3 Principle of multi-target set-based representation
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Easily enough, the states x; of the true targets at time k can be encapsulated in a
single multi-object state X € F(X') as shown in figure 1.3:

Xp= | win (1.53)
ic€T (k)

where T'(k) € Nis the label set of existing targets at time k (note that the labeling of
the true targets is unique, i.e. even if a target dies its label will not be used for future
targets). Likewise, the measurements z;, produced at time k can be encapsulated

in a single multi-objet measurement Z € |_|f:1 F(Z29):

J

s s mi
Zv=| 2= Lj 2 (1.54)
j=1 j=li=1

where mi € N is the number of current measurements produced by sensor j at time
k. Note that this set-based representation is valid under the assumptions that, at
any time k, no targets may share the same state - as already stated in section 1.1 -
nor measurements from the same sensor share the same value.



1.2 Multi-target filtering within the RFS framework 59

Figure 1.4 Principle of RFS filtering (time k + 1)
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As indicated by the data flow (figure 1), the RFS-based filtering process follows the
classical Bayesian scheme in which one proceed with time update and data update
steps sequentially (see figure 1.4). In the filtering process, there are four RFSs of
interest at each time step:

Definition 1.11. At any time k + 1, there are four multi-object RFSs of interest:

1. The (multi-target) transition RFS 2, (X), with probability density
pif,kH(X)(') (or pag’k+1(.|X)), describes the target configuration at time k+ 1 condi-
tionally on the (estimated) target configuration X at time k.

2. The (multi-target) predicted RFS Zg 1k, with probability density p=, ., (:| Z1.1),
describes the target configuration at time k 4+ 1 conditionally on the measurements
produced up to time k.

3. The (multi-measurement) observation RFS Yy 11(X), with probability density
P x) (o) (or ps,,, (.| X)), describes the measurement configuration at time k + 1
conditionally on the (estimated) target configuration X at time k + 1.

4. The (multi-target) posterior RFS Eji1jk+1, with probability density
Pt (1 Z1k41), describes the target configuration at time k + 1 conditionally on
the measurements produced up to time k + 1.
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The following proposition describes the principle of the RFS-based multi-target filter
[Mahl 02]:

Proposition 1.1. Assuming that:

e the transition densities {ngk 1}k>0 are known;
— s + =

e the observation densities {ps, , (.| X)}r=0 are known for any set X;
e for any k > 1, the set of current measurements Z, is available at time k;
e an initial posterior density pz,, is given.

then the sequences of predicted and posterior densities are given by the time update
and data update equations:

1220 = [ g, (130 (X1 Zu(0) (1.55)

) (1 Zias) = Psiir (Zital)pz, 0 (1 Z1) (1.56)
= . 1:k+1) — .

ket 1[k+1 + f}-(X) kaH(Zk+1|X)p5k+1\k(X|Zlik)u(dX)

This result is the extension of the well-known Bayes equations to the RFS frame-
work. Note that the required assumptions are usual in this context. Notably, the
transition densities are assumed to be known through the topography of the surveil-
lance region, some heuristics about the typical behavior of targets, etc. Likewise,
the observation densities are known through the well identified characteristics of the
sensors - probability of detection, false alarm rate, statistical noise, etc.

1.2.2 A tractable approximation: the PHD filter

Implementing a multi-target filter based on the Bayesian recursion provided by
proposition 1.1 is quite challenging and generally intractable. The main sources
of untractability are:

e the design of the transition and observation densities;
e the computation of the set integrals in the update equations (1.55) and (1.56).

Recall from section 1.2.1 that the transition densities {pgakﬂ}kgo are multi-target
densities that empnody the processes of target birth, motion, spawning - target
creation conditioned on the state of an origin target, for example in the splitting
of a convoy - and death. Therefore, in order to compute the probability of tran-
sition pzr, (X1]X3), one must cover all the possibilities that may lead from the

+1
multi-target set X; to X,. Likewise, the observation densities {ps, ., (.[Xx41jx)} are
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multi-measurement densities encapsulating the processes of target detection, data
acquisition and false alarm, and are exceedingly difficult to design in the general
case.

Figure 1.5 Transition from multi-target set X; to X5 (target birth in green, target
death in red)

X X X X X X

Additional assumptions on the target model (e.g. independence of targets) and/or
the observation process (e.g. independence of data acquisition processes, maximum
number of measurement per detected target, etc.) are usually necessary in order to
simplify the design of the transition and observation densities. The specific assump-
tions required for the design of the PHD filter are fully detailed in chapter 2.

The computation of set integrals is inherently tedious, since the p measure (1.9)
covers all the possible number of elements. For example, evaluating the denom-
inator in (1.56) requires the computation of observation ps,  (Z|.) and predicted
Py (| Z1:4) densities for every possible multi-target set X, which covers any pos-
sible target number and, for a given number, any possible target states.

The main motivation behind the PHD filter is to shift the problem from the cumber-
some “full space” F(X) to the “lighter space” X by propagating intensities v rather
than the “full” densities p= (adapted from [Mahl 03a]):

Definition 1.12. The PHD of a RFS =, if it exists, is ils intensity v=.

Equation (1.44) with the delta notation (1.45) immediately yields an expression of
the PHD as a set derivative:

0G=

Ve e X, ve(z) = 5
x

(1] K (1.57)
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Note that the unit term K;(l does not appear in Vo’s and Mahler’s work where the
derivated PGFI has already unit K"

The PHD-based filter in the single-sensor case only is given by the following propo-
sition (adapted from [Mahl 03a]):

Proposition 1.2. Under the PHD filtering assumptions (tables 2.1 and 2.2), and
assuming that there is only one sensor, the sequences of predicted and posterior PHDs
are given by the time update and data update equations:

ka+Hk<¢£ZLk)

= /X (Pt (@) fi g (1) + A pa (@)1 ([2)) vz, (@] Z1a)de + AL i ()
(1.58)
UEk+1‘k+1(-|Zl:k+1)

pg-{—l(')[’z-i-l(')

c | Yz ([ Z1)
As1Crr1(2) + VZky1ik [ngLkH] e

=|1- pg-{-l(') +

2€ 241

(1.59)

where:
® pirii(-) is the (single-target) survival probability;

o fir1(|z) is the (single-target) transition density conditionally on target state
x;

® A pi1(7)skpy1(-|w) is the (single-target) spawning intensity conditionally on
target state x;

© N pirbrir1(.) is the (single-target) birth intensity;
o pl.1(.) is the (single-target) detection probability;
o Li (.) is the (single-target) likelihood in measurement z;

o A ci1(.) is the (single-measurement) false alarm intensity;

o vs, . [.] is the functional vs, (7] = Jx M@)oz, (2] 21k ) da.

Sk+1k

All these functions will be specified in chapter 2, devoted to the rigorous construction
of the PHD. Nevertheless, the equations above show the main adavantage of the
PHD filter: all set-based equations and integrals have been replaced by classical
equivalents. In fact, many functions appearing in equations (1.58) and (1.59) - such
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as likelihoods, probabilities of survival or single-target transition functions - are
common in tracking techniques based on single-target Bayes filter. Other functions
such as the birth density are more specific to the RFS framework. Besides, under
the PHD filtering assumptions (see chapter 2), the multi-target RFSs = (predicted
or posterior) are characterized by their PHDs:

Proposition 1.3. Under the PHD filtering assumptions (tables 2.1 and 2.2), at any
time k:

e the predicted (resp. posterior) estimated target number is
Nk = [y Vg (] 21k ) de (resp. Niesipprr = [y U5k+1‘k+l($|Z1:k+1)d$);

UEk+1‘k('|Z1:k

e the predicted (resp. posterior) targets are i.i.d. according to Mo ) (resp.

LTI (-\lek+1))

Nit1)k+1

Propagating the PHD of the multi-target RF'Ss = using proposition 1.2 then extract-
ing the information on targets using proposition 1.3 is the essence of the PHD-based
filter in detection and tracking problems.

Figure 1.6 Illustration of proposition (1.3)
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Note that the PHD filter is designed for the single-sensor case only. Recent papers
of Mahler [Mahl 09a, Mahl 09b]| provide a generalization to the two-sensor case, but
to the author’s knowledge no extension to the multi-sensor case has been established
yet.

1.2.3 A brief comparison of multi-target filtering techniques

The topic of this section is not a practical comparison of filtering techniques based
on performance results, but rather the description of the different techniques on
a theoretical level in order to help the reader grasping the philosphy behind the
RFS-based filter with respect to more traditional approaches.
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Classical track-based multi-target filters

The common point in the classical track-based tracking techniques is that the filtered
state is a collection of tracks, i.e. random objects whose behavior are as close as
possible to the real targets’ ones, such that each track is associated to an eventual real
target. A track is usually composed of an estimation of the associated target’s state,
defined on the same space X', and another object that quantifies the uncertainty
regarding the estimation, usually a covariance matrix. Any track-based filter must
deal with the three following issues:

e the creation of new tracks;
e the data association and the update of existing tracks;
e the deletion of existing tracks.

Arguably, the main difficulty arises in the data association process which deals with
the association between living tracks and new measurements, especially in a multi-
target and/or cluttered environment where the track-to-measurement step may be
tedious. The methods mainly differ through their data association process.

The multiple hypothesis tracker (MHT) is a differed decision approach to the data
association problem which focuses on updating the tracks according to the most prob-
able measurement-to-track association [Blai 00, Vo 08]. Whenever a new collection
of measurements is available, all measurement-to-track hypotheses are considered
(with living targets as well as new ones) and associated to a probability denoting its
likelihood among other hypotheses. Previous hypotheses are also considered, their
probilities being updated with the Bayes rule. Thus, at each time step, a full tree
of possible hypothesis is maintained, and the tracks are updated using a standard
Kalman filter with the most probable association hypothesis. Keeping trace of the
tree of all hypothesis allows the tracker to “change opinion” and to consider an associ-
ation that was previously discarded if its associated hypothesis’probability increases.
The main drawback of this method is its computational cost, which increases dra-
matically with the number of targets and/or the number of measurements. It can
be reduced by introducing a gating process [Blai 00|, in which associations between
an estimated target state and any measurement whose distance with the target falls
above a given treshold is immediately discarded. On a more practical side, the dif-
fered decision approach may be a source of “discontinuity” in the display of track
states [Blai 00]: if the tracker changes the chain of previous associations due to a
recent update of the associated probabilities, the track number and track states may
change dramatically from one time step to the next, inducing a “discontinuous” dis-
play that may appear erratic to the operator.
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The joint probabilistic data association (JPDA) is another, more “continuous” ap-
proach [Blai 00]. Similarly to the MHT approach, association between existing tracks
and new measurements are given probabilities according to their likelihood; then,
each track is updated with a Kalman update using an average of all the new mea-
surements weighted with their association probabilities. In contrast to the MHT
approach, there is no “going back” since every possible association is considered in
the track update; therefore, there is no need to maintain a full tree of hypotheses.
Note that some gating may be used as well in order to discard unlikely hypotheses in
the averaging process. Not surprisingly, the JPDA approach is significantly lighter
that the MHT [Blai 00], but has poorer performances in close targets environments
because the averaging step tends to merge nearby tracks. Besides, the JPDA is
designed to work with a known number of targets since each association hypothesis
considers that a measurement either originates from one of the existing tracks or is
a false alarm. Note also that, unlike the MHT approach which incorporates target
birth and target death processes in the tree of possible hypotheses, the JPDA focuses
on the update on living tracks with new measurements and requires additionnal me-
chanics for track creation and deletion. In its most simplified form, only the nearest
measurement is taken into account in the track update and this method is known as
the nearest neighbor (NN-JPDA or NN) approach.

The joint multi-target probability density filter

A more recent approach, the joint multi-target probability density (JMPD), aims at
avoiding the costly data association procedures by propagating joint multi-target
densities of the form p(X,T|Z), where X = {x1,...,x7} is a collection of partitions,
T is the estimated target number and each partition corresponds to an estimated
target’s state [Kreu 05]. This formulation seems quite close to the RFS formulation;
indeed, Kreucher et al. explain in [Kreu 05| that the JMPD method can be expressed
in the FISST framework. This claim was actually made made in earlier papers but
was contested by Mahler [Mahl 03b]. The JMPD framework looks promising because
it allows the representation of a broader range of multi-target configuration than the
RFS does, since X = {x,...,xr} is a collection in which several partitions may share
the same state. However, the particle implementation proposed by Kreucher et al.
[Kreu 04, Kreu 05] remains unclear to the author. The principle is to propagate
weighted particles X, = {1, ..., T 1) }, each particle carrying its own estimation
of the target number and the target states. The number of partitions in a particle
can vary in the time update step to account for the birth and/or death of the targets,
the weight of each particle is updated in the data update step using an extended
Bayes rule for joint densities. The problem lies in the joint estimation of the target
number and the target states. The estimated target number is the partition number
which is shared by the largest number of particles, their weight being taken into
account. Then, each estimated target state is computed as the weighted average
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of partitions associated to this target among all the particles. But, since there is
not labeling among the partitions in a given particle, one must be sure that the
j-th partition in each particle is the estimation of the same target. A K-means
algorithm is proposed in order to ensure that the partitions are properly reordered
before the estimation step [Kreu 05], but it is unclear if this work properly among
particles with different size or among particles with the same size but with partitions
representing different targets. For example, consider two true targets x; and xo at
time k, two particles X{ = {2} 2§ ,} with weight w} and X} = {z§,25,} with

weight w. Further assume that 2%, and 2%, are estimations from target z, 2%,

and x’2‘“72 estimations from target x5. In the time update step, x’il evolves to xlfjl,

2%, evolves to 25! and 2% | evolves to 51! according to the target motion model,

but #% , is deleted (to account for the death of targets) and another partition z5%'
is created (to account for the birth of targets). Then, according to the author’s

understanding of the JMPD mechanisms, the K-means algorithm is likely to keep

the partition order identical in both particles and conclude that partitions azlﬁl and
x’ﬁl are estimations of the same target - which is correct - and partitions xﬁl and

251 as well - which is incorrect.

Comparison with the RFS-based filter

Compared to the track-based filters and the JMPD filter (although to a lesser ex-
tent), the greatest asset of the RFS-based filter 1.1 seems to be its “completedness”.
Because it is a well-built extension of the Bayes rule to rigorously defined random
objects, the propagation of multi-target densities with the time and data update
equations (1.55) and (1.56) requires no heuristics inherent to the data association
step in the MHT and/or the JPDA, or the track creation and deletion processes
in the JPDA. The RFS representation allows - at least in theory - the rigorous
description of complicated multi-target configurations, for example strong pairwise
interaction between targets, whether in birth, motion, spawning or death processes.
In other words, the RFS approach may appear more “rigorous” and “complete” than
other methods since it is based on rigorously defined random objects and mathe-
matical concepts that allows for the representation of a broad range of detection
and tracking problems. Arguably, the PHD is more adapted than other methods for
representing the uncertainty in the estimation of the target number. For example,
if the integral of the PHD in a given subset 7' € X yields 1.5 (see figure 1.6 for
an illustration of the PHD), then it means that the presence of one or two targets
inside T is likely, thereby “enticing” the sensor manager to focus some resources in
this region in order to refine the estimation of the target number.

This main asset of the RFS method is perhaps also its greatest weakness: the
complexity of the RFS theory makes the equations (1.55) and (1.56) intractable,
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except in special cases - e.g. if the target number is fixed. The PHD approximation
(see previous section 1.2.2) enjoyed a wide popularity in the last years, notably be-
cause the filtering equations (1.58) and (1.59) can be implemented with well-known
methods such as Gaussian mixtures [Vo 06] or SMC methods [Vo 05]. Moreover,
the construction of the PHD filter being rigorously derived from the RFS filter as
shown in the next chapter, the required assumptions in the PHD framework are
clearly stated. Some of these assumptions are fairly common, as the independence
of targets, others are more difficult to grasp, such as the Poisson assumption on
the predicted and posterior multi-target RFS. The consequence is that it is perhaps
more difficult to define the class of multi-target tracking problems for which the
PHD filter is well-adapted than in the MHT or JPDA cases. A common difficulty
faced with a PHD-based tracker is the unstability of the target number estimation
[Erdi 05]. Another approximation of the RFS filter has been recently proposed, the
cardinalized probability hypothesis density (CPHD) [Mahl 07a, Mahl 07¢|. Some of
the assumptions of the PHD are relaxed, allowing a broader range of RFSs to fit for
the predicted and posterior RFS. Consequently, these multi-target RFSs cannot be
characterized by their sole PHD (that is, the assumptions given in proposition 1.3
do not hold anymore), and their cardinality distributions, in addition to their PHD,
must be propagated. A rigorous construction of the CPHD can be found in Vo’s the-
sis [Vo 08| and a practical implementation in [Vo 07]. The CPHD filter propagates
more information than the PHD filter at the cost of an increased computational cost,
but Mahler’s recent work [Mahl 10b] focuses on an more tractable approximation of
the CPHD.

It should also be noted that the RFS filter (as well as the PHD or the CPHD filters),
by construction, suffers some limitations that are not shared by the track-based
filtering methods. Unlike track-based methods that directly provide a collection
of tracks, RFS-based filters provide probability densities (RFS filter) or intensities
(PHD filter) from which tracks must be extracted, if only for display purposes. Figure
1.6 illustrates the highest peak extraction method for the PHD filter. Recall from
proposition 1.3 that the expected target number N of the multi-target RFS is given
by the integral of the PHD over the whole state space (the grey area in picture 1.6),
the extracted target number N is chosen as the closest integer to N, and the target
states are extracted at the N highest peaks of the PHD. Another method, based on
the extraction of “parts” of the PHD that are worth 1 in “target weight”, is given
in [Tobi 08]; the extraction method used in this thesis will be based on the latter
and presented in the chapter related to sensor management (see chapter 3). In any
case the extraction step, although fairly independent from the filtering process, is
an important part of the whole process which can shape the overall performance of
the tracker.
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Another limitation of the RFS-based methods, on a more fundamental level, is the
absence of track history. In track-based methods, keeping previous filtered states
naturally provides an history for each track (see black dotted lines on figure 1.4).
The equivalent concept in RFS-based methods is a set history but, since the element
order in sets is arbitrary, one cannot extract histories for individual tracks from the
collection of previous filtered states (whether probability densities in the RFS filter
or intensities in the PHD filter). Of course, track histories may be inferred from
successives sets in some cases. For example, given the sets )A(k‘k and Xk+1|k in the
situation illustrated in figure 1.4, one may safely assume that Z;;9 1% is a new-
born track and that ;1 x1k (resp. a?i,kﬂw) denotes the same target as Tk
(resp. ;%) because the targets are away from each other, but retracing histories
in the case of closed tracks may become increasingly complicated. One must keep in
mind that, unlike track-based methods, RFS-based methods do not propagate track
histories. Provided that the partitions could be correctly labeled in each partition,
the JMPD technique should be able to propagate track histories as well, but as ex-
plained before this seems to be hardly the case. A labelisation technique adapted to
the PHD is proposed in [Lin 06].

An interesting field of study is the design of hybrid filters gathering the strengths of
different multi-target filtering techniques. For example, recent work of Pollard et al.

[Poll 09, Poll 10] focuses on an hybrid filter combining the CPHD filter for its effi-
cency in target detection with the MHT filter for its accuracy in target localization.

1.3 Performance metrics

1.3.1 Kullback-Leibler divergence

The Kullback-Leibler divergence is a measure of difference between two distributions
[Aoki 11]:

p(x)
Dgr(pllg :/px log —=dx 1.60
1lolle) = [ o) 1o 52 (1.60)
where per convention log % = 0 if p(x) = ¢(x) = 0 and log % = oo if p(x) > 0
and ¢(z) = 0.

The KL divergence is closely linked to the information theory and has been used
as a way to estimate an information gain prior to real observations in sensor man-
agement problems. Typically, if ¢(.) denotes the current knowledge of the observed
system, pi(.) (resp. pa(.)) the estimation of the future knowledge should sensor 1
(resp. sensor 2) be used, Dgr(p1]lq) < Dxr(p2]|q) could indicate that using sensor 2
is likely to be the more informative. Exploiting the KL divergence as a discriminat-
ing criteria in sensor management is not a recent idea; notably, a discretized version
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appears in Kastella’s work [Kast 97|. In more recent works [Kreu 05, Rist 11a|, the
attention seems to have shifted to its generalized version, the Rényi divergence, even
though Aoki et al. [Aoki 11| argued that its proper parametrization requires a solid
knowledge of its theoretical properties.

In any case, the KL. divergence in this thesis is not used as a sensor management
tool, but solely as an offline metric in order to check a posteriori the equality between
two PHDs (see chapter 4).

1.3.2 OSPA distance

The Optimal Subpattern Assignment (OSPA) is a distance which aims at quantifying
the distance between two finite sets. It was specifically created by Vo for multi-object
estimation purposes as an improvement of an previous distance on finite sets, the
Wasserstein metric [Hoff 04|, which suffers from several inconsistencies (see Vo's
thesis [Vo 08] for more details). For any p < 1 and ¢ > 0, the OPSA distance
of order p with cut-off ¢ is the function defined, for any subsets X = {z1,..., 2},

Y ={y1,..., yn} of X, by:

0 (m=n=0)
1 m 1/p
d9(X,Y)=1{ | = mi © (2 gy P 4+ P (1 — -
p ( ) ) (n (7{211_12 — d (xzayw(l)) +C (TL m))) mxn
Jﬁf)(Y, X) m>n
(1.61)

where dg?(.,.) = min(dy(.,.),c) is the distance in X that is cut off at c¢. The
construction of the OSPA distance is quite intuitive:

1. Match each point of the smallest set to those of the largest set so that the total
distance is minimized (minger, > o1, 49 (24, Yr(i)));

2. Penalize the difference in cardinality between the two sets (¢?(n —m)).

In other words, the OSPA metric finds the best match between the smallest set and
the same number of points in the largest set, and considers that the remaining points
are “far away” - that is, their distance to any other point exceeds c.

Example 1.3. Consider two finite subsets of X, X = {x1,x2} and Y = {y1,v2,ys}
with the following configuration.:
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Figure 1.7 Example of OSPA distance

y2" R

Suppose that one is interested in the OSPA distance of order one. From the config-
uration of points it seems clear that:

® 1y is the isolated point;

o dx(z2,y3) +dx(z1,91) > da(w1,y3) + da (22, 91).

Thus, if the cut-off parameter c is large enough:
dg\f) (z2,y3) + dgi)(%ayl) > d()?(llfla y3) + d(;?(llf% Y1) (1.62)

That is, the OSPA matches x1 with y3 and xo with y, (black dotted lines on figure
1.7) and the distance is:

Cc 1 Cc C
AXY) = 5 (49 (1 0) + A (@2,9) + ) (1.63)

However, depending on the distance values, there may exist cut-off values dy(x1,ys) <
d < dx(x2,ys) such that:

d+dY) (@, ) < dY (@, ys) + dS (22, 01) (1.64)

That is, the OSPA parametrized as such matches x1 with y; but considers xo and ys
too far away to be matched (red dotted line on figure 1.7). The distance is then:

ny 1/
a5 (X,Y) =3 (@, 01) +2¢) (1.65)

The OSPA metric is obviously appealing in the detection and tracking problems be-
cause it take into account both localization and cardinality errors, thus encapsulating
the differences between, say, the set of true targets and the set of estimated targets
into a single parameter. However, exploiting this metric raises several questions:

e What are the “proper values” for the order p and the cut-off distance c?;
e How should be interpreted the value of the OSPA distance?

Vo [Vo 08| provides leads for the proper parametrization of the metric. The p-th
order average is usual in the construction of distance and plays a similar role in
the OSPA distance: as p increases, J},c) becomes increasingly sensitive to isolated
points and thus penalizes more and more the “absurd” estimates. The value of the
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cut-off parameter ¢ is more difficult to grasp. As explained by Vo, smaller values of
¢ emphasize on the distance between associated points, while larger values focus on
the difference in the number of points. That is, the cut-off parameter ¢ balances the
penalization between localization and cardinality errors. In order to keep a balanced
metric, Vo advises to set the cut-off parameter significantly larger than a localization
error, but significantly smaller than the maximum distance between objects. In this
thesis, the typical OSPA parameters would be p = 2 and ¢ = 100.

Because the OSPA metric aggregates all the differences between two sets in a single
value, it is somewhat difficult to analyze the OSPA distance without a reference.
Moreover, it can be easily shown that:

VX, VY, Vp,  0<dY(X,Y)<c (1.66)

That is, unlike usual metrics, the OSPA distance is capped by the cut-off parameter.
Thus, as suggested by Vo, the OSPA distance might as well be evaluated with its
maximum value as a reference (“the closer to the cut-off parameter ¢, the worst the
estimation is”) rather than its minimum value (“the closer to zero, the better the
estimation is”). In any case, the author found it safer to exploit the OSPA distance
solely as a comparison between different estimations and not as an objective evalu-
ation of a single estimation.

Although the OSPA distance is a powerful metric, Vo et al. [Vo 05] argued that
it has an undesirable effect when used in the PHD framework. Indeed, one must ex-
tract targets from the PHD prior to its evaluation with the OSPA (or the Wassertein)
distance since a density cannot be used as input. Thus, the evaluation of the PHD
through the OSPA distance depends on the target extraction process, and this de-
pendence is generally seen as undesirable. Another limit of the OSPA distance is
its inadequacy for the evaluation of labeled set (i.e. set of tracks where each track
is associated to an eventual true target). That is, the OSPA will not penalize the
fact that the i-th track is matched with the j-th true target at iteration k, but
is later matched with a different true target. The extension of the OSPA so that
it penalizes labelisation errors has been the focus of recent papers by Ristic et al.
[Rist 10c, Rist 11b].

1.4 Conclusion

In this chapter, the main features of the RFS theory were presented, followed by the
construction of the general RFS-based filter. This filter being usually intractable,
the PHD filter, a well-known approximation, was briefly described. Designing a
tracking filter within the PHD framework has some advantages compared to more
traditional approaches, but the RFS framework suffers from some theoretical and
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practical limitations that should be kept in mind. Finally, two useful metrics that
will be applied to evaluate the performance of PHD-based trackers were described.



CHAPTER

The multi-sensor PHD filter

His chapter deals with the rigorous construction of the PHD filter as an approxi-
mation of the RFS filter, first in the single-sensor case (section 2.2), then in the
multi-sensor case (section 2.3). The single-sensor case is an adaptation of Mahler’s
early work on the PHD [Mahl 03a, Mahl 03b] introducing the author’s own nota-
tions; rewriting the single-sensor case seemed necessary in order to understand the
proposed extension to the multi-sensor case, which is the main contribution of this
chapter. To the author’s knowledge, this is the first attempt to build the exact
multi-sensor PHD filter in the general case, although the two-sensor case has al-
ready been covered by Mahler in recent works [Mahl 09a, Mahl 09b] but came later
to the author’s attention. Mahler’s first attempts to design a tractable approxima-
tion of the multi-sensor case for practical purposes almost followed the discovery of
the single-sensor case [Mahl 03b], several of these approximations will be presented
in section 2.4. In a very recent paper [Liu 11|, another multi-sensor extension was
proposed, altough limited to linear sensor systems. Note that this chapter is in most
part a clarified version of an earlier report [Dela 10].

2.1 Some useful RFSs

Since the RF'S filter (proposition 1.1) is intractable in the general case, some assump-
tions on the targets and sensors must be made - that is, on the multi-object RFS
involved in the RF'S filter (definition 1.11 - in order to reduce to the RFS equations
to tractable approximations. These definitions are adapted from [Vo 08].

73
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2.1.1 Poisson RFS
Definition 2.1. A Poisson RFS = is described by:

1. its cardinality distribution p=(.), Poisson with parameter A=: p=

2. its spatial intensity I=(.)

E=IDY Aziz(.), such that [, iz(x)dz =1 and the points
are i.i.d. according to i=(.).

This definition is given by Vo in [Vo 08]. The Poisson RFS is one of the simplest
classes of RFSs and is characterized by its spatial intensity Iz(.), even though it
is more conveniently described with the 2-tuple (Az, I=(.)). It accurately describes
clouds of points with no particular spatial correlation between the different points.
Note that the parameter \z is not required to be an integer. The following property
is adapted from [Vo 08]:

Property 2.1. Let = be a Poisson RFEFS with spatial intensity Iz and parameter
Az. Then it admits Janossy and product densities such that, for any set X =
{z1, .. x,} C X:

3 @y, 1) = e = [ I2(20) (2.1)

v @y, 1) = [[ I2(20) (2.2)

Gz[] = efzll—= (2.3)

where Iz].] is the functional Iz[h = L3 M x)dz.

The proof is given in appendix A. Note that the PHD (or intensity) vz of a Poisson
RF'S exists and equals its spatial intensity /=, that is, a Poisson RFS is completely
described by its PHD.

2.1.2 Independent Identically Distributed Cluster RFS
Definition 2.2. A (i.i.d) cluster RFS = is described by:

1. its cardinality distribution p=(.) with mean A\=: Az = Yoo onp=(n);

2. its spatial intensity I= = Aziz(.), such that fX x)dx =1 and the points are
i.i.d. according to iz(.).
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This definition is given by Vo in [Vo 08]. The cluster RFS is a generalization of
the Poisson RFS which allows a broader range of cardinality distributions. It is
characterized by its spatial intensity I=(.) and its cardinality distribution p=(.), even
though it is more conveniently described by the 3-tuple (p=(.), A=, I=(.)). It is well-
adapted to the description of a false alarm process, since its spatial distribution
is “evenly distributed” as the Poisson RFS, but allows a greater flexibility on the
number of false alarms per scan. The following property is adapted from [Vo 08]:

Property 2.2. Let = be a cluster RFS with cardinality distribution p=(.), mean A=
and spatial intensity I=. Then it admits Janossy densities such that, for any set
X ={x1,..,x,} CX:

11, m) = " ] () (2.4)

Besides, its PGFl Gz is given by:

Gel] = G (Ii]) (2.5)

where I=[.] is the functional Iz[h] «f [y M) Iz(x)dx, and Gz is the PGF of random
variable |Z] : w — |=(w)].

The proof is given in appendix A. Note that, unlike the Poisson RFS (proposition
2.1), there is no easy expression of the factorial moments, and in the general case a
cluster RF'S is not completely described by its PHD.

2.1.3 Bernoulli RFS

Definition 2.3. A Bernoulli RFS = is characterized by:

1. its cardinality distribution p=(.) with parameter bz such that p=(0) = 1 — bz,
p=(1) = bz, p=(n) =0 otherwise;

2. its spatial distribution i=(.), such that the eventual point is distributed according

This definition is given by Vo in [Vo 08]. The Bernoulli RFS is completely described
by its spatial distribution i=(.) and its parameter b=. Clearly, it is well adapted to the
modelization of the evolution of a target with state x: either it dies with probability
1 — bg(y) or it moves to a new state according to probability distribution iz(.).
Likewise, it naturally describes a single-sensor/single-target detection process: a
target in x is either undetected with probability 1 — b=(,), or it is detected and the
sensor produces a new measurement according to probability distribution iz)(.).
Note that it can be seen as a particular case of cluster RF'S. The following property
is adapted from [Vo 08]:
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Property 2.3. Let = be a Bernoulli RFS with spatial distribution iz and parameter
b=. Then it admits Janossy densities such that, for any set X = {x1,...,x,} C X

1-— bg n=>0
0 otherwise
Besides, its PGFl Gz is given by:
Gz[.] =1— bz + bziz[/] (2.7)

where iz].| is the functional iz [h] = [y h(x)iz(x)dz.

The proof is given in appendix A. Because the Bernoulli RF'Ss are designed for the
description of single-object behaviors (either new target or new measurement), it is
interesting to define the notion of multi-Bernoulli RFS [Vo 08]:

Definition 2.4. A multi-Bernoulli RFS is the union RF'S of statistically independent
Bernoulli RFSs .

A multi-Bernoulli RFS is naturally characterized by the spatial intensities and pa-
rameters of the Bernoulli RFS it is built upon and its PGFI1 can be written as follows
(adapted from [Vo 08]):

Property 2.4. Let {=,},cpn n) be a family of independent Bernoulli RFS with spatial
distributions {iz, fnen Ny and parameters {bz, tnepn Ny, and Z the resulting multi-
Bernoulli RFS. Then, its PGFl Gz is given by:

Gzl = H (1= bz, +bz,iz,[]) (2.8)

where iz, [.] is the functional iz, [h] = [y h(x)iz, (x)dx.

The proof is straightforward using property 1.3.

2.2 Single-sensor PHD filter

2.2.1 Time update equation

The challenge is to find a tractable form of the Bayes time update equation (1.55):

“k,k+1

P (1 Z1s) = /f PR PP (X120 (0X) (2.9)

where:
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Egjk is the posterior (multi-target) RFS at time ;
Zi k41 is the transition (multi-target) RFS at time & + 1;

Eg+1k is the predicted (multi-target) RFS at time k + 1;

In this general form, the transition RF'S may cover a broad range of targets’ behav-
iors; however the PHD construction requires some restrictions through the following
assumptions (adatpted from [Mahl 03al):

Proposition 2.1. Assuming that, at time k:

a living target with state x;y dies with probability 1 — pj . (Tik);

a surviving target with state x;; evolves according to probability distribution
fli,k+1<'|'ri,k‘>;

from a living target with state x;5, a set of spawned targets kaH 15 born
according to probability distribution py 1 (.|zik);

a set of targets X,fﬂ 18 born spontaneously according to probability distribution

pl?,kJrl(');

the evolution, spawning and birth processes are statistically independent con-
ditionally on the set X, of living targets.

then the transition RFS =\, is the union RFS:

—_ def —_ —_ —_
:Z,kﬂ(X) = (U :kE,k+1(37)> U (U :g,k+1<x)> U :E,kﬂ (2.10)

reX reX

Ekr(X) ER k1 (X)

where:

Bk ky1(x) is the (single-target) evolution Bernoulli RFS in state x with spatial
distribution f .. ,(.|z) and parameter pj ., (x);

Eeri1(X) = Usex Ehpga(x) is the (multi-target) evolution Multi-Bernoulli
RFS in set X;

Eikﬂ(a:) is the (single-target) spawning RFS in state x with probability distri-
bution. pf 1 (.|2);

b1 (X) = Uyex i par () ds the (multi-target) spawning RFS in set X ;

B ket G5 the (multi-target) birth RFS with probability distribution py,.,,(.).
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Besides, the PGFI of the transition RFS Ef’kﬂ s given by:

colhl = (1 =1 ka () + P O Fi i [h1 D (G, o [R) G=p, | [R] (2.11)

=T
“k,k+1

where:

. . def
i fii,k+1[h‘x] is the functional f};kﬂ[h\x] = f;\{ h<y)fl€7k+1<y‘x)dy;

o GEf,kH(I) is the PGFI of the spawning RFS Ef,kﬂ(:c);
° GEkB,Ic+1 s the PGFI of the birth RFS EEJCH.

The proof is given in appendix A. Note that no assumption on the spawning and
birth models are required so far but their mutual independence. Pay attention to
the fact that probability distributions p . (.|z) and pf,(.) are dimensionless and
set-based (i.e. defined on F(X)), while ff, (.]x) has unit K3' and is state-based
(i.e. defined on X).

Figure 2.1 Example of transition RFS (evolution in red, spontaneous birth in green,
spawning in blue)

e
VAT
et 1, FY ~ES L (@)()
Xk — {x,y’z} 7 //Cfl/’{ i k,k+1 ( |
i .y {a,d, £} ~ Eu (X))
// Ty , ’f/ 3 %y kb1
/ / / I' \/,/ s
S S el W~ om0 |
/ / -
X A /f/Z).\' ';/ —T
d 9 gl {9} ~ 2 () | Xrr11e ~ B ora (Xi) ()
/ , ~,.. / :l /
) // ! /’/"I //
- Ly A ~ B )0 ‘
g, | ,I = // / fe,e} ~ Ez\b‘,kH(Xk)(-)
I,é‘;// {e} NEE,HJ(Z)(-)
0\’//

Figure 2.1 shows an example of transition RFS based on a given set Xj. Note that
target = dies but spawns two new targets (e.g. a convoy splits in two parts), target
y evolves and spawns a new target (e.g. a target leaves a convoy), while target z
evolves without spawning any new target. Besides, two targets are born indepen-
dently of z, y or z.

Once the transition RFS is explicitly stated, the PHD equivalent of the time up-
date equation (2.9) can be built as follows (adatpted from [Mahl 03al):
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Theorem 2.1. Under assumptions given in proposition 2.1, the time update equation
of the PHD filter is given by:

UE,C+1‘,€(-|Z1:1¢)

- /X (Praen @) sa () + 05z, () vz (el 2+ ezp, () (212)

|k

Besides, the estimated target number Ny, is given by:

Nit1jk

= /X Kp;,kﬂ(xw /X vagﬂk(@(y)dy) vgkk(aﬂZl:k)] da + /X Vg, (@) (2)dT
(2.13)

The proof is given in appendix A. Since no assumptions on the spawning and birth
models are made, equations (2.12) and (2.13) are still intractable if PHD vzs (1)

k+1|k

and vgfﬂ‘k(.) cannot be constructed explicitly. It is therefore common practice to

consider the spawning and birth RFSs to be Poisson, which gives the much more
useful result (adatpted from [Mahl 03al):

Corollary 2.1. Under the same assumptions as theorem 2.1 and the additionnal
assumptions that:

e spawning RFSs 2%, (x) are Poisson with intensities X; . (x)skp1(-]2);
e the birth RFS Z}}, . is Poisson with intensity X}, ;1 bg rs1(.).
the time update equation of the PHD filter is given by:

UE,C+1‘,€(-|Z1:1¢)

= /X (pikﬂ(ﬂf)fzikﬂ(kﬁ) + )\Z,k+1<5€)5k,k+1(-|x)) Usk‘k(l’|Z1;k)d:L’ + )‘Z,kﬂbk,kH(-)
(2.14)

Besides, the predicted target number Ny is given by:

Niy1jk

= /X (pi,m(af) + Ai,m(ﬂf)) ka\k(x|Z15k)dx + >‘27k+1 (2.15)
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Table 2.1: PHD filter: assumptions for the time update equation

Object modelization

RFS construction

Evolution process

Evolution of target x:
1. dies with prob. 1 —pj ., (2);
2. if alive, moves acc. to fy ., (.|z).

Single-target evolutions: independent

Ek k41(2): Bernoulli with:
1. parameter pj ;. (7);
2. spatial distribution ff ;,,(.|2).

= o1 (X): multi-Bernoulli

Spawning process

Spawning from target x:
1. target #: Poisson, param. A} ;. (7);
2. targets i.i.d. acc. to sy p41(.]2).

Single-target spawnings: independent

ER k1 (): Poisson with:
L. parameter \j . (z);
2. spatial intensity A} ;. (2)skr1(:]7).

= w1 (X): union of independent RFSs

Spontaneous birth process

Spontaneous birth:
1. target #: Poisson, param. )\z’kﬂ;

2. targets i.i.d. acc. to by i1(.).

=B . ; ith-
Ek st Poisson with:
1. parameter A} . ;

2. spatial intensity A} sk es1(0)-

Transition process

Evolution, spawning and birth: independent

=} p+1(X): union of independent RFSs

2.2.2 Data update equation

Construction

The challenge is to find a tractable form of the Bayes data update equation (1.56)

in the single-sensor case:

p2k+1 (Zk+1|')p3k+1\k('|zlik)

= 1Z. —
p~k+l\k+1< | 1.k+1) f}‘(X) DSy (Zk+1|X)pEk+1\k (X|lek)u(dX)

where:

(2.16)

® Zii1k is the predicted (multi-target) REFS at time k + 1;

e Y, is the observation (multi-measurement) RFS at time k + 1;

® Zii1jk+1 is the posterior (multi-target) REFS at time & + 1;
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e /i1 is the multi-measurement set produced by the only sensor available at
time k + 1.

In this general form, the observation RFS may cover a broad range of sensors’ behay-
iors; however the PHD construction requires some restrictions through the following
assumptions (adatpted from [Mahl 03al):

Proposition 2.2. Assuming that, at time k + 1:
o a lwing target with state x; 41 is detected with probability pﬁﬂ(azi,kﬂ);

o a detected target with state x; 41 15 the origin of a single true measurement
according to probability distribution g, \(.|Tikr1) = Ly (Tigs1)s

e a set of false alarm measurements (or false alarms) Z¢ w1 are created according
to a false alarm (or clutter) process, assumed Poisson with parameter Aj,,, and
intensity A, Cri(.);

e the detection and false alarm processes are statistically independent condition-
ally on the set X1 of living targets.

then the observation RFS Y1 is the union RFS:

S (X (U Sin(@ ) U (2.17)

zeX

J/

k+1(X )
where:

o 3. () is the (single-measurement) detection Bernoulli RFS in state x with
spatial distribution f{.,(.|x) and parameter p},,(x);

o 3P0 (X) = U, ex S0y () is the (multi-measurement) detection Multi-Bernoulli
RFS in set X;

o X, is the (multi-measurement) false alarm Poisson RES with parameter X5,
and intensity Aj,, 1Cr41(.).

Besides, the PGFI of the observation RFS Yy is given by:

Gypoolg]l = (1= pL () + 0l () fea gl ]) K etinesnld =X (2.18)

where:

o f2.1lglx] is the functional fg. g|:p fz 2) fo1(z]x)dz
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e cp.1]g] is the functional cyq|g] = [z 9(2)cria(2)dz.

The proof is given in appendix A. Pay attention to the fact that spatial distribution
f2.1(|z) and intensity A¢, cx11(.) have unit K;' and are state-based (i.e. defined
on Z).

Figure 2.2 Example of observation RFS (true measurements in green, false alarms
in red)

[ ]
7 i
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/ / Z | //
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/
JY Ry / / Zit1 ~ D1 (Xpet1) ()
/ / e I !
’. < ///"I ’
g '//E,,’ /A~ B0 D
1,,- ,/ / {a,c} ~ B¢ 1 (Xi11)()
e, {ah~TRa()0)
Wy

Figure 2.2 shows an example of observation RFS based on a given set X;,;. Note
that targets y and z are detected and the origin of one true measurement each, while
target x remains undetected. Besides, three false alarms are produced independently
of z, y and z.

The next step is the definition of cross-term functionals (or cross-terms) f3[.], whose
extension to the multi-sensor case will be most useful for the construction of data
update equation. Nonetheless, they are introduced here since they provide an in-
tuitive representation of the data update equation in the single-sensor as well as
the multi-sensor case. The notion of cross-term was introduced by the author in
[Dela 10].

Definition 2.5. Under the same assumptions as proposition 2.2, the single-sensor
cross-term Pk @8 the functional defined, for any real-valued functions h (resp. g)
defined on X (resp. Z) in [0 1], by:

def ¢ c o
5k+1|k[9> h] = )‘k—l—lck-i-l[g] - )‘k-i-l + L= [h(l - Pz+1 + pZ+1fk+1[g|-])} - UEHM[I]

where v=, . [h] is the functional U5k+l‘k[h] = I h(z)vs,,,, (@|Z11)dz.

Ek+1]k
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For simplicity’s sake, the time subscripts on cross-terms will be omitted when there
is no ambiguity. The cross-term is a joint functional whose functional derivative (see
definition 1.10) can be computed in functions defined on X or Z. The following
notations will be used from now on:

Notation 2.1. For any x € X and z € Z:

61,602 2 gl (2.20)
505..1%2 £ lg, ) (2.21)

The derivated cross-terms can be expressed as follows:

Proposition 2.3. For any x € X and z € Z:

Blg. da] = (1 = pheya (2) + P (@) [ lgl2)vz, py (2] Z1a) K (2.22)
Blo=, bl = X acr (2) Kz + UEkH\k[hngLiH]KZ (2.23)
Bl0:. 2] = Pisa (2) Li 1 (2)vz, (2] Z10) K Kz (2.24)

Besides, setting g = 0,h =1 gives:

Bl0,8,] = (1 = piy(2))v=, (2] Z14) K (2.25)
B[5Z7 1] - )\2+1ck+1(2)KZ + U5k+1\k[pz+l Z—FI]KZ (226)

The proof is given in appendix A. As for the PGFI, the functions g (resp. h) can be
seen as a “fuzzy” membership function on measurement space Z (resp. target space
X). Derivated cross-terms can therefore be seen as “likelihoods”, conditonnally on
the predicted PHD wv= that:

k+1]k?

e [3[0,0,]: a target is in state x and is undetected,;
e [3[).,1]: a measurement, whose origin is unknown, is produced in point z;

e [).,0,]: atarget is in state z, is detected and the origin of true measurement
2.

The term “likelihood” in the intepretation of the derivated cross-terms is an abuse
of notation; more accurately they weight events associating points in target and
observation spaces based on the information known on the system so far, hence their
name (see figure 2.3 for an illustration).
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Figure 2.3 Illustration of the single-sensor cross-term

6Z7 1 5,27 5:5
300.6.) et Plos, bl
X Z X zZ X zZ

a) x is undetected b) z stems from an c) z stems from

unkown origin

Note that 3[d., 1] covers both possible origins for measurement z, either a false alarm
- Aip16r41(2) Kz - or a true measurement - vz, ||, [p¢.1 L7, 1] Kz, which can be seen as
an “expectation” over target space X’ considering every possible state x as the poten-
tial origin of z. Note also that a cross-term derivated in several measurements (e.g.
52 52
5225019, Wl = 52 B102,, h]) and/or in several targets (e.g. 5;25.-Blg, h] = 6@ 19, 0.,])
vanishes. This i 1s conswtent with the observation model (proposition 2.2) since a sin-
gle true measurement cannot stem from several targets, nor can several true mea-

surements stem from a single target.

Once the observation RFS is explicitly stated and the cross-term properly defined,
the PHD equivalent of the date update equation (2.16) - in the single-sensor case
only - can be built as follows:

Theorem 2.2. Under the assumptions given in proposition 2.2 and the additional
assumption that the predicted RFS =y 1, 1s Poisson, the data update equation of the
single-sensor PHD filter is given by:

[i ( cBla.h })}
5:)3 5Zk+1 9:07}1:1

U:k+1\k+1( |lek+1) = 5 Blo] K)_(l (2.27)
[5Zk+16 7 ]go,hl
Bl6-, b:) _
= | Bldo, 0a] + > ] K3t (2.28)
ZeZk+1 z
d z
Ploy1(#) Ly (2)
= | 1-pa@+ > 5 e | vs, (1 Z0) (229)

ZGZk+1 z+1ck+1< ) + ,U‘:'kJrl\k [pk+1Lk+1]

where Zyy1 is the set of current measurements.
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The proof is given in appendix A. This last result (2.29) is the well-known tractable
expression of the single-sensor PHD data equation [Mahl 03a, Mahl 03b].

Table 2.2: PHD filter: assumptions for the data update equation (single-sensor)

Object modelization RFS construction

Detection process

Observation of target z: 371 (z): Bernoulli with:

1. detected with prob. p{,(z); 1. parameter p{,,(z);

2. if detected, meas. acc. to fg,,(.|z). 2. spatial distribution f7 ,(.|z).
Single-target observations: independent >, 1(X): multi-Bernoulli

False alarm process

False alarm: 3¢ ,: Poisson with:
1. measurement 7#/: Poisson, param. Af_ ;| 1. parameter Af_ ;

2. measurements i.i.d. acc. to cgiq(.). 2. spatial intensity Aj,  cpi1(.).

Observation process

Detection and false alarm: independent Yk+1(X): union of independent RFSs

Target model

Predicted configuration: Ek41jx: Poisson with:

1. target #: Poisson, param. ’ng_mk[l]; 1. parameter UEHM[I];

2. targets i.i.d. acc. to vi“i”km 2. spatial intensity vz, (.):
“k+1lk

Qualitative analysis

The key to theorem 2.2 is the critical assumption that the predicted RES Zj
is Poisson, which greatly simplifies the derivation of the PGFI (see the proof for
more details). Tt is somewhat difficult to evaluate its validity in practical detection
and tracking problems, because the Poisson characterization of an RFS is not eas-
ily linked to single-object behavioral patterns. However, pay attention to the fact
that the principle of RFS filtering is not to find a static multi-target RF'S whose se-
quential realizations matches best the successive target configurations, but rather to
modify dynamically a multi-target RFS so that each sequential realization matches
best the current target configuration. In that sense, a great variability in the target
number between two successive time steps can be “accepted” by the PHD filter and
the Poisson assumption might be less restrictive than it seems offhand.
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Theorem 2.2 provides an insight on the shape of the posterior PHD. An important
fact is that each measurement contributes “linearly” to the value of the posterior
PHD. The ratio 2%l embodies the local contribution of measurement z to the

Bloz1]
shape of the posterior PHD in point x, while Jx 5 éz’(i”]c]dgﬁ is the global contribution of

measurement z to the PHD, i.e. its contributlon to the posterior estimated number
of targets. It is easy to see the influence of the false alarm term on the contribution
by considering the two following extreme cases:

L If z is “clearly” a false alarm, i.e. Aj, cpi1(2) > v, [pf 1 Liy), then
by construction (proposition 2.3) 5[d., 1] ~ A, ci1(2)Kz, thus the global contri-

. - [y BlO=bclde [y Blo=,0u)dx
bution of measurement z tends to be negligible ( B0 e (@Ks < 1).

2. Conversely, if z is “clearly” a true measurement, i.e.
)\erlck—l—l( ) < 'U:k-u\k [Pz+1LZ+1], then 5[52" 1] - v:k+1\k k+1LZ+1 KZ - f;\{ 5z> 5x]dx

L B8z 8alde 1>‘

thus the global contribution of measurement z tends to one < 56 1]

More generally, the global contribution IXL(SI] is a real number between 0 and
1, increasing with the “credit” that can be granted to the measurement. If z is likely
to be a false alarm measurement, its global contribution is modest; the more the
measurement can be “trusted”, the higher its contribution is. In other words, the
higher A, cp41(2) is, the more measurement z is implicitely considered as a false
alarm.

The influence of the detection probability on the contribution is clear in the extreme
case where a target lies outside the FOV, ie. pf  (z) = 0. In this case, propo-
sition 2.2 reduces to v:kﬂ‘kﬂ( | Z1541) = ~k+1\k< |Z1.1). This is expected: since a
target in x cannot be detected, no measurements can possibly stem from this tar-
get and the data update step does not provide new information in x; thus, the
posterior PHD equals the predicted PHD. In any other case, though, the influence
of the probability detection p¢ 41 on the posterior PHD is less obvious. The gen-
d (x)L7,,(x

>\2+1ck+ff;):_(1);ki:;([p%+l i+1}v:k+1‘k( |Z1:k) SuggeStS
that a measurement in z will sharpen the PHD around the highest probable origin
T, = argmax;, p{, ,(z)L; (z), provided that the likelihood function is discriminat-
ing enough (which is the case in practical situations, see chapter 4). It may be safely
assumed that the detection probability function is much less discriminating than
the likelihood function for usual sensors: that is, the local variation of the detection
probability, aside from the edges of the FOV, is likely to be much slower than the
variation of the likelihood function. In that sense, the influence of pif ;(.) on the
local contribution is likely to be modest.

eral form of the local contribution
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The influence of the detection probability on the global contribution should be stud-
ied in parallel with the contribution of the predicted PHD - that is, the past infor-
mation on the target configuration. Consider a current measurement z, appearing
in an region R of the state space. If z is inconsistent with past information on the
targets (vz,,,, is close to zero in R) and/or with the current FOV configuration
(piy, is close to zero in R), then vs, ., [pf,,Lf,,] =~ 0 and thus the global con-
tribution of z is likely to be negligible. Conversely, if 2z is consistent with known
information regarding the targets and the sensors (typically, z is close to a “large
amount of PHD”), then v, . [p{,,Lf,,] is likely do be dominant, compared to the

false alarm term, and the global contribution of z tends to one (% a 1).
Consequently, measurements appearing “out of nowhere” are likely to be discarded
before measurements appearing in the vicinity of previously detected targets. This
“self-gating property” [Mahl 07b| is somewhat reassuring, although it has undesirable

consequences for the exploration of unkown region of the state space.

2.3 Multi-sensor PHD filter

This section deals with the extension of the PHD filter data update equation to
the multi-sensor case (theorem 2.2). Note that the time update equation does not
involve any new measurements and therefore remains unchanged in the multi-sensor
case. Note that the sensor order is arbitrary and need not be the same at each time
step, nor does the sensor number. For clarity’s sake, however, the sensor number is
from now on assumed constant and equal to S.

2.3.1 Data update equation
Construction

The challenge is to find a tractable form of the Bayes data update equation (1.56)
in the multi-sensor case:

p= ( ‘Z ) Py (Zk+1| )p:k+1‘k( |Z1/€)
St 1)kt 1 Lik+1 f]—' | DSy Zk+1|X)p~k+l\k(X|Z1 k) (dX)

(2.30)

where:
® Zii1)k is the (multi-target) predicted RFS at time &k + 1;
e Y1 is the (multi-measurement) observation RFS at time k + 1;

® Zii1jkt1 is the (multi-target) posterior RE'S at time &k + 1;
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® i1 = |_|;.9:1 Z,zﬂ is the (multi-sensor) measurement set produced by all the
sensors at time k + 1.

Figure 2.4 Example of multi-sensor observation RFS
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The construction of the single-sensor observation RFS can be naturally extended to
the multi-sensor case:

Proposition 2.4. Assuming that, at time k + 1:
e the observation process of each sensor is as described in proposition 2.2;

e the observation processes are statistically independent conditionally on the set
Xii1 of living targets.

then the observation RFS Y1 is the joint RFS:
def 5
e () |52, (X) (2.31)
j=1

where Zf;H(X) are the independent single-target observation RFSs. Besides, the
probability distribution of the multi-sensor observation RFS exists and, for any multi-
sensor measurement set Z = |_|;.9:1 AR

S
Pra)(Z) = ][ psy )(Z) (2.32)
j=1

k+1
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The proof is straightforward by combining the equivalent result in the single-sensor
case (proposition 2.2) and the property of joint RFSs (1.8).

Figure 2.4 shows an example of observation RF'S based on a given set X;,;. Note
that target z is missed by sensor 1 but detected by sensor S. Besides, three false
alarms are produced by sensor 1 and two by sensor S.

The next step is the extension of the cross-term defintion to the multi-sensor case:
Definition 2.6. Under the same assumptions as proposition 2.4, the multi-sensor

cross-term P41 8 the functional defined, for any real-valued functions h (resp. ¢7,
j €[18]) defined on X (resp. Z7, 5 €[15]) in [0 1], by:

S
de c, j c
Brialg', - g, b = Z )‘kil 119 )‘kJ]d)

s

+v=k+1\k [h (H( pk—i—l _'_pk—i—l k+1[ H)) U=k+1\k[1] (233)
j=1

de
where v:kﬂ‘k[h] is the functional UHHM h] & fx h(a:)vgkﬂ‘k(:le;k)dx

For simplicity’s sake, the time subscripts on cross-terms will be omitted when there
is no ambiguity. The cross-term is a joint functional whose functional derivative (see
definition 1.10) can be computed in functions defined on X or any Z7. In addition to
the still valid notations (2.20) and (2.21) provided for the single-sensor cross-term,
the following notations will be used from now on:

Notation 2.2. For any x € X, any family of measurements {ZJ} ., 2 € 27 any
subset Z C {27 }5_,

not 5

bloz,9,1 = 5 AU %] (2.34)

Bloz, 1™ maz, g, .Hglmszo (2.35)
And, by convention:

Bl60. 3, Blg", . 9%, ] (2.36)

816, ] B[O, ..,0, ] (2.37)
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Example 2.1. Suppose that there are S = 3 sensors. For j € [1 3], let 27 € ZJ
be any measurement from sensor s/, and let v € X be any target state. Then, for
example:

Bl0(1,251, G, B] = Bloz1, g%, 6.5, B
6[5{z2}7 51] = ﬁ[O, 0.2,0, 51]
B169,9.1] = Blg", 9%, 9%, 1]
Proposition 2.5. For any x € X, any family of measurements {ZJ}S L, e 2,
any subset Z C {ZJ}S

s
860, 9,6.] = [ [(1 = pila (@) + oy () i [0 [ vmy e (] Z0) K (2.38)
j=1
( Aiflczill( jO)KZJ'o
+U:k+1\k[hpgi()1sz+01]0KZfo H (1 _p%ﬂ iil k+1[ 7))
29 #2790
/8[527g7h']: (Z:{ZJO})
5k+1\k h H g-{-lej—f—JlKZJ> H (1 pk+1 _'_pk—i—l k+1[ ‘ ])]
zieZ 2I¢Z
\ (12 > 2)
(2.39)
B0z2.3.0:) = [ 0hly (@) L7 (2) K 2)
2ieZ
X H pk+1 Jrpk+1( ) k+1[9 |z])w ~k+1\k(x|Z1:k)KX (2.40)
2I¢7Z
Besides, setting g =0, ...,¢° = 0,h =1 gives:
S .
8160, 6.] = [ [(1 = pit s (@)vm, oy, (2] Z1a) K (2.41)
j=1
( )\Z,—Jl;olcli()—l—l(zjo)KZJO + U=k+1\k[ e Li]-i(jljoKZjO H (1 - p%—{—l)]
Zj;ézj()
Bloz,1] = (Z ={z"})
vz, L [T GEL 2 Kz) TT (= pid)) (1] = 2)
\ ZieZ 2I¢7
2.42)

B02,0.) = [T iy @) Ly F (@) Kzo) TT (1 = bt (@))vs, (@] Z0) Kx - (243)

P4 21¢7Z
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The proof is given in appendix A. Similarly to the single-sensor cross case, the
functions ¢’ (resp. h) can be seen as a “fuzzy” membership function on measurement
space Z7 (resp. target space X). Multi-sensor derivated cross-terms can be seen as
“likelihoods” as well, conditonally on the predicted PHD vz that:

K41k

e [y, d,]: a target is in state x and is undetected;

e ([0, 1]: a collection of measurements, whose single origin is unknown, are
produced in points given by Z;

e ([0z,0,]: a target is in state x, is the origin of measurements in Z and is
undetected by the remaining sensors;

As in the single-sensor case, pay attention to the fact that the term “likelihood” is
an abuse of notation here.

Note that the false alarm terms vanish in [0z, h] if Z contains at least two mea-
surements. This is consistent with the observation model (proposition 2.4): the
single-sensor observation processes being independent conditionally on the states of
the true targets, there is no statistical link between the occurence of a false alarm in
2* by sensor i and the occurence of a false alarm in 2/ by sensor j. For example:

1. B[d4.iy,1] can be seen as the “likelihood” that a source, whether a target in an
unknown state or a false alarm produced by sensor 4, is the origin of measurement z'.

2. B[04si .1, 1] can be seen as the “likelihood” that a single source, necessar-
ily a target in an unknown state, is the origin of both measurements 2z and 27.

3. Bldyziy,1]B[6(25y, 1] can be seen as the “likelihood” that a source, whether
a target in an unknown state or a false alarm produced by sensor i, is the origin of
measurement z*, while another source, whether a target in an unknown state or a
false alarm produced by sensor j, is the origin of measurement 7.

As in the single-sensor case, a cross-term derivated in several measurements from

the same sensor (e.g. 5;;2'5[91’ ...,g°,h]) and/or in several targets
2771
§2

(e.g. 6m26$16[gl’ ...,g%,h]) vanishes. This is also consistent with the observation
model (prop. 2.4) since a single true measurement cannot stem from several tar-
gets, nor can several true measurements from the same sensor stem from a single
target.
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Figure 2.5 Illustration of the multi-sensor cross-term
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c) z! and 23 stem from x

Once the observation RF'S and the cross-term are properly extended, the PHD equiv-

alent of the date update equation (2.16) in the multi-sensor case can be built as
follows:

Theorem 2.3. Under the assumptions given in proposition 2.4 and the additional
assumption that the predicted RFS Zy ) is Poisson, the PHD filter data update

equation is given by:
[51 (626 eﬁ[%@ﬁ])]
z k+1 1..5=0,h=1 -
U5k+1\k+1(x|zlzk+1) = [ J le (2.44)

Leﬁ[‘;@gvh}
0 Zk41 gl-S=0,h=1

[1 (L( ( 5 emgl,m,gs,h}) ))}
1 e S e
ox \ 6Z; 4y 075 glS=0,h=1

_ Kb (245
o (- (o) ] v (245)
5Z}i+1 5Zl§+1 gt-S=0,h=1

where:
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o 7., is the single-sensor set of current measurements produced by sensor j;

S ; . .
o /1= |_|j:1 Zj.1 is the multi-sensor set of current measurements.

The proof is given in appendix A. Unfortunately, unlike the single-sensor case, there
is no elegant analytical expression equivalent to the derivative forms (2.44) or (2.45).
The exponential terms in (2.44) can be expanded by resolving the functional deriva-
tives, but the resulting formula is of increasing complexity with the sensor number
and/or the number of current measurements per sensor.

Example 2.2. Suppose that there are S = 3 sensors. At current time - time sub-
scripts are omitted for simplicity’s sake - sensor 1 produces one measurement zi,
sensor 2 does not produce any measurement, sensor 3 produces two measurements
23 and z3. Applying theorem 2.3 gives:

[i (i( eBlo gQ,g?’ﬁ]))}
bz \ 621 \ 6{z3,23} g7=0,h=1

U=k+1\k+1<x|zlzk+l) = 5 N
[ Z% <5{Z1732}€6[g o h}):|

Kyt

g7=0,h=1

A closer look at the denominator gives:

5 5 1 3 5 5 1 .2 .3
_ ePlatsg7.g%:h] Y (SYCIT R Rt AtU) T P 2
621 (5{21, T ) ozt (525’ (6 Plgg ’522’h]>)

J

= = (MGl g, 6.0, W)Blg" g% 6., 1)))
1

= ¢Plo'o"o% M (ﬁ[az%,g% 0.3, hBlg", g% 0.3, h] + Blg*, 4%, 6.3, B BlS.1, g%, 0.3, h]
+ Bl0.1,9% ¢ hBlg', 9% 0.3, W Blg*, 9, 0.3, h])

Thus:

[i ( 0 6[917927937/1})}
021 \ {2}, 23} gI=0.h=1

= eﬁ[%’ (6[5{z11,z§’}7 1]5[525’7 1] + 6[52’?7 1]5[5{,2},,2%}7 1] + 6[52’}7 1]5[5z§’7 1]6[52’%7 1])
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Likewise, the numerator equals:

{i (i ( 0 5[91,92793,’1]))]
dx \ 021 \0{z}, 25} §i=0,h=1

— Bloes1] (5[5{Z%723 ,53&]&[523, 1]+ 5[5{2}%?}, 1]5[@:2%, 0] + 5[52§, 575]6[5{2%723}’ 1]
o+ B16.0, Bl00 31, 8] + 6101, 0218103, 11803, 1]
+ Bl0-y, 818103, 8218103, 1] + Bloy, 818103, 1180, 0.1 )

) ) 1.2 .3
eBlat.g%.9° b
+ B[d0, 0] [ (5{21, } )L;’oﬁl

Thus:

U:k+1‘k+1($|Z1:k+1) = 5[5(% 59&]K2_51
ﬁ[é{zl =3} ;0 ]B[azg’a 1] +..+ ﬁ[ 15 1]5[5z:1)’a l]ﬁ[ézga 5x]

-1
T Bl oty 1804, 1] & Blo, 1B oz, 1] + By, 5., 1Al 1] ¥

(2.46)

Example 2.2 clearly shows how tedious the computation of the data update can be
when the number of sensors and/or measurements is large enough. It also provides
a more intuitive interpretation of the data update mechanism. The first cross-term
“B[dg, 0.]” weighs the event that a target lies in  but is currently undetected, while
the ratio accounts for the fact that a target lies in = and is detected, that is, the origin
of at least one current measurement. The numerators explores all the possible associ-
ations between x and the current measurements; for example, “3[d.1 .3y, 0,]8[0.3, 1]
weighs the event that a target lies in x, whose detection by both sensors 1 and 3
produces the measurements z{ and 27, while the last measurement 23 stems from
another source (whether a target or a false alarm). The denominator is a normaliz-

ing term and weighs the joint occurence of these three measurements.

Moreover, equation (2.46) provides an insight of the expanded expression of equa-
tion (2.44) - or, equivalently, (2.45) - in the general case. Similarly to the JPDA
technique, a state point x € X is updated as a weighted average of every possi-
ble measurement-to-target association, each derivated cross-term denoting one such
association. The next paragraph focuses on the construction of the expanded expres-
sion - or combinational form - of the derivative form (2.44), because it is easier to
manipulate for practical purposes and for the comparison with usual approximations
of the multi-sensor PHD (see section 2.4).
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Combinational form

First of all, one must characterize the combination of measurement sets Z on which
the cross-terms (3[0z, .| appearing in the combinational form are derivated:

Definition 2.7. For any subset J C [1 S|, any family {Z7};c; of finite subsets
ZIC ZI:

1. The (multi-measurement) term set M(Z7€7) C P <|_|j€J Zj) is given by:

Mz =y (H Zi> (2.47)

IcJ il

That is, a (multi-measurement) term M € M(ZI<7) is a set containing at most one
measurement from each Z7.

2. The signature @ zjes(.) is the function given by:

o lye) -

P = 1] (Z 1pi(z)> (2.48)

ZGUJ’EJ Zi P,eP

Besides, @zies(() o by convention. That is, @zies(P) = 1 if and only if each
measurement in |_|j€J 77 appears once and only once among all the sets P, in P.

8. The combinational term set C(Z7<7) is given by:

C(Z7<) Y {0 C M(Z7¥) | pses(C) =1} (2.49)

That is, a combinational term C € C(Z¢”) is a set of terms C; such that each mea-
surement in |_|j€J 77 appears once and only once among all the terms C;.

Besides, if Z = | |,c, 27, M(Z) (resp. ¢z(.), C(Z)) will denote M(Z", .., Z7) (resp.
op .20, C(Z", ..., Z7)) without ambiguity.
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Example 2.3. Continuing ezxample 2.2, in which S = 3, Z' = {21}, Z?> = 0 and
73 = {2}, 23}, gives:

ZYUZPU 7P =, 5, 2
P(Zl U Z2 U ZS) = {@, {Z%}’ {2515}7 {Z;’}, {Z%’Zig}’ {217 } {21’22} {21’217 }}
M(2%,2%,2°) = {1} A= () {2 a2

C(Z, 7%, 2°) = {{{a } =} A=)} {{en A b { ) ) (e 21 {49 )
Note that, in the ratio in (2.46):
e cach cross-term is derivated in a multi-measurement term of M(Z', 72, Z3);

e the cross-terms of a given product are derivated in the sets of a given combi-
national term of C(Z', Z%, Z3).

that 1s:

> > | Blde ol TT Bloc,. 1]

CeC(Zpy1) CieC C;#C; 1

KX
> 11 8léc.. 1]

CEC(Zisr) CieC
(2.50)

V21 (1 Z141) = Blow, 0] K" +

The proof of result (2.50) in the general case requires the following lemma:

s+1

;11 of finite subsets

Lemma 2.1. For any sensor index s < S, any family {Z7}%
Zi C 21, with Z5t" = {1y

min(|C|,msT1)

cz= = J U U U vzt 0 (2.51)

CeC(z1:#) n=0 IC[1 m*te€Bij(1,J)
JCI1 |C1]
]=[J]=n

where Bij(I,J) is the set of bijective functions from I in J and U7 ;(Z°%',C) €
C(Z¥**1) is the combinational term given by:

Uz, (z+t, o) e (U{Q}) U (U{{Zf“}UCa(z‘)}) U (U{{Zf+1}}> (2.52)

jeJ icl igl
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The proof is given in appendix A. Note that this lemma is useful for practical pur-
poses because it shows that the combinational terms can be built recursively.

Example 2.4. Continuing example 2.8 with s = 1, since m' = |Z'| =1, C(Z') is
reduced to a single combinational term:

C(z") ={C} = {{{=1}}}

Now with s = 2, since m? = |Z* =0, min(|C|, m*) = 0 and thus:

C(Z",2%) = Ug(0,C) = {C1} = {{{=1}}}
Now with s = 3, since m® = | Z%| = 2, min(|C|, m®) = 1 and thus:
C(z',2*,7°) = Us§(2°,C) U Uy (2%,0) U U, (2°,0)
with:
Up(Z° —{Cl}U{{Zi’}}U{{zg}} {1} A= =)}

U{lﬁ”{l} ={H{au A u{{a}) = {z 4 {21
Uty (2°.0) = {{C1u {3} ) U {{z1} ) = {{a1 2. {4} )
Theorem 2.4. Under the assumptions given in proposition 2.4 and the additional

assumption that the predicted RFS Zy 1 s Poisson, the PHD filter data update
equation is given by:

S Y 86e. 60 T Bloc,. 1

CEC(Z]H_l)CiGC Cj;ﬁCj

KX

CeC(Zpyq) Ciel

VBky1jhs1 (x‘Zlik‘H) = 6[5@7 51][(/’;1 +

(2.53)
where:

o [y = |_|f:1 ZZH 15 the multi-sensor set of current measurements;
o C(Zyy1) is the set of combinational terms given by (2.49).

The proof is given in appendix A.
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Qualitative analysis

As for the single-sensor case, equation (2.53) provides some insight on the contri-
bution of the current measurements in Z;,.; to the posterior PHD. The notable
difference with the single-sensor is that the contribution cannot be decoupled by in-
dividual measurements nor by individual sensors, keeping track of the contributions
of the different measurements is therefore much more difficult. The influence of the
false alarm terms can still be studied through the expression of the cross-terms since,
according to proposition 2.5:

/ Blogainy, Ky do + N il (27) K zio = Blogziny, 1] (Ci={="})
| e 0K e = gl (i1 >2)
X
(2.54)

With the results above, it is easy to see that the global contribution of a measurement
zjolterllds to zero if it is a false alarm, exactly as in the single-sensor case. Indeed
A, (27°) > 1 and thus, according to the results above:

| 8160y 8K o < B3y 1]
X
Bloc, 1] < By, 11 ({2} € G, |Gl > 2)

Thus, by dividing both numerator and denominator of the ratio in equation (2.53)
by B[é{zjo}, 1] and integrating the result over X', all the combinational terms tend
to zero but those where measurement 270 is isolated, i.e. the combinational terms

C € C(Zy41) of the form C' = {{z%°}} UC’" where C" € C(Zj11 \ 2°). And thus:

> > | Ble, 6 T Bloc,. 1]

(2.55)

CEC(Z}C-H) c;eC C #C 1
K, | dx
/X > 11 sloe. 1]
CeC(Zpyq) CieC
Z Z /8[505 H B 50 5
2/ CEC(Zpy1\290) Ci€C C;#C; Kot | da
x > I 8lbe. 1]

CEC(Zp+1\270) Ci€C

This result is consistent with the observation model. If sensor j produces a clear
false alarm measurement z, then the influence of z on the posterior PHD must be
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minimal, but this must not preclude measurements from other sensors, even if they
stem from a close point in state space, to be taken into account. In other words, if
2t and 2?2 fall in a region of the state space where 1 is known to produce a lot of false
alarms, then the global contribution of z! on the posterior PHD should be discarded
without compromising the contribution of z2.

Intuitively, one may expect the opposite in case of true measurements. If z' and
2% fall in a region of the state space where sensors 1 and 2 do not produce false
measurements and do no miss detections, then the joint contribution of 2! and 22
should be around one, because z! and z? are almost surely two measurements from
the same target. That is, the contribution of both 2! and z? should be % rather than
1, otherwise the target number would be overestimated. Results (2.54) yield:

> > | Bloe,. 6] T Bloc,. 1)

/ CeC(Zyqr) Ci€C C;#C;
X

CEC(Zyi1) Ci€C

Kt | dx

> Y| [ socusinitan TT s, 1

CEC(Zy41) CiEC Ci#C

2. 11 sbe.1

CeC(Zpyq) CieC

> o I Blée,.1]

C’eC(Zk_H) cjeC

S Y I 8]

CEC(Zis1) CiEC
< max |C]

< |2k

As in the single-sensor case, the global contribution of a measurement z never ex-

ceeds one. Now, consider the extreme case where there are no false alarms - )\k’fl =

- and there are no missed detections - pk , = 1 inside the FOV F,gH. Then the first
inequality above is an equality since [, B[dc,, 0,] K Ky'dz = B[éc,, 1]. Moreover:

1. If the FOVs are pairwise disjoint, according to the expression of the cross-
terms (proposition 2.5) and provided that the likelihood functions are strictly posi-
tive, B[0c;, 0. = 0 if |C;| > 2. Thus, the only remaining combinational term in the
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global contribution is C° = |J;.5 U {{zf}} and therefore:

j
(S

> > Bl T Bl 1]

/ CEC(Ziyr) Ci€C C#C;
X

CEC(Ziy1) CieC

] TT Bloc,, 1]

C;eCt

1T sl 1]

C;eCo
=|C"]
= |Zk+1|

Kt | dx

2. Conversely, if the FOVs are all equal, then every true target is detected by each
sensor, i.e. \Z,ZH] = N where N is the number of true targets. Besides, according to
the expression of the cross-terms (proposition 2.5), 8[d¢,,d.] = 0 if |C;| < S. Thus,
the only remaining combinational terms in the global contribution are those with N
multi-measurement terms C; with S measurements each - recall from definition 2.7
that each one of the |Zy 1] = NS measurements appears once and only once in each
combinational term C'. Thus:

> > | 86c.a] T 8le,. 1]

/ CEC(Zpyr) Ci€C C#C;
X

CEC(Ziy1) CieC

> o I Blée, 1]

CeC(Zk_H) Cjec
C|=N

CeC(Zyy1) CieC
|IC|=N

=N
_ 1 Zkn]
S

Kt | dx

These results were expected and are consistent with the observation model. If the
FOV are pairwise disjoints, the |Z;;1| true measurements necessarily stem from
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| Zy41] true different targets, and the global contribution of Z,; to the posterior
PHD is |Zy44|, describing accurately the number of true targets. Conversely, if the
FOVs are identical, each true target is the origin of S true measurements - one per
sensor - and the global contribution of Z;,; to the posterior PHD is once more the
accurate number of true targets, i.e. % In conclusion, the global contribution of

a measurement z to the posterior PHD can be summarized as follows:

e if 2 tends to be a false alarm, its global contribution tends to 0 regardless of
the FOV configuration;

e if 2 tends to be a true measurement, its global contribution tends to an upper
bound equal to % if the FOVs are identical and increasing up to 1 with the
seperation of the FOVs.

There is not much to add regarding the influence of the detection probability on
the posterior PHD that was not already discussed in the single-sensor case. If x
is outside all the FOVs, theorem 2.4 reduces to v5k+1‘k+1(.|th+1) = v5k+1‘k(.|lek),
as expected. As in the single-sensor case, the posterior is likely to sharpen around
the measurement if the likelihood functions are discriminating enough. Two close
measurements from two different sensors will “mutualize” their [ocal contribution to
a certain extent - i.e. the joint “sharpening effect” of the two measurement is likely
to be more acute than the individual “sharpening effect” of each measurement - but
with a limited effect on the global contribution as explained before.

2.3.2 Simplification by joint partitioning

Clearly, the computational cost of the data update equation (2.53) stems from
the generation of the combinational terms C(Z;,1). Indeed, once these terms are
known, computing each derivated cross-term is simple enough since they are explic-
itly constructed with common functions such as detection probabilities or single-
target /single-measurement likelihood functions (see proposition 2.3). Is is also clear
from lemma 2.1 that the computational cost of C(Zy1) increases dramatically with
the sensor number S and/or the number of current measurements. This section
proposes a partitioning method in order to simplify the data update equation (2.53)
without approrimation, in fact a simple rewriting of the data update equation such
that the number of required combinational terms is significantly reduced.

The partitioning method is based on the FOVs configuration and is efficient in practi-
cal situations where the overlapping among the different FOVs is limited, for example
when cameras are widely spread in the surveillance space such that the overlapping
of more than three FOVs in a single point of the state space is unlikely at any time.
It is based on the fact that many derivated cross-terms in C(Zx;1) are bound to
vanish based on the FOV configuration, and therefore should not be computed.
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The FOVs are properly defined as follows:

Definition 2.8. For any sensor j, j € [1 .S], its field of view at time k is the subset
F} C X defined as:
Vee X,z e Fl < ph(z)>0 (2.56)

From now, it is assumed that F,g # () for any sensor j, at any time k. In the unlikely
case that a sensor j is to be “shut down” during a time step k (F,g = (), this sensor
is simply ignored for the time being and the remaining S — 1 sensors are relabeled
accordingly. Since the sensor number and the sensor order are arbitrary, there is no
loss of generality.

Consider the following example:

Example 2.5. Assuming that there are S = 3 sensors with current FOV configura-
tion illustrated as follows (time subscripts are omitted for clarity’s sake):

Figure 2.6 Simplification of some cross-terms based on the FOV configuration

/////—-—N\\
3 . —
F//// s /I o 5[5{;;1},5:“] =07
4 /
/ / —
/ —
S | a0
( \ />’<\ // . //
\\\;_—/// \\ // T / /3[5{,21,,22}7 ]_] = O ?
\\\\ y \\ // ///
};1\\\31_/} ( ZQX //1;2 ﬁ[é{zl,z3}7 1] = ﬁ[é{zl,zs}a 1FlﬂF3] ?
"

then some cross-terms are likely to simplify, for example:

Since x1 ¢ F', a target in state x1 cannot be detected by sensor 1, and thus
Bl0g:1y, 05,] should vanish.

Since o ¢ F?, a target in state xo cannot be detected by sensor 2, and thus
B10122y, 0zy) should vanish. More generally, any cross-term derivated in x5 but B[0p, 64,)
should vanish.

Since F' N F? = 0, no target may be detected by both sensors 1 and 2 and
therefore no single source may be the origin of z' and 2, thus Bl0g21 22y, 1] should
vanish.
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Any single source at the origin of z' and z* must be detected by both sensors
st and s°, thus B0 .5y, 1] should equal B0, .5y, Lpiqps].

This leads to the joint partitioning of sensor indices [1 S| and state space X

Definition 2.9. Let the cross relation Ry be the reflexive, symmetric binary relation
on sensors indices [1 S| defined by:

Vi,j € [1S],iRej < (Fin Fl #0) (2.57)
and let R} be its transitive closure.

Then, let (Sk(p))ﬁil be the sensor partition at time k, where Sg(i) are the equiv-

alence classes of Ry, and (Tk(p))gio be the target space partition at time k defined
by:

S
) UF »=0
Tip) < = (2.58)
U A 0#0
J€Sk(p)

Note that the element order in (Sk(p))fil is arbitrary but identical to the element

order in (Tk(p))ﬁio. For simplicity’s sake, (Sk(p))fil (resp. (Tk(p))ﬁio) will be con-
sidered a partition of [1 S] (resp. X’), which is an abuse of notation since the elements
are ordered and 7j(0) may be empty if all points in the state space are covered by

at least one FOV.

Example 2.6. Continuing with example 2.5 leads to the following partitioning:

Figure 2.7 Illustration of the joint partitioning

Fg//// \’ P=2:
/// /
/ =,
; //___\\\ // > \\, T(0) =X\ U§:1 Fi
( ( \y// /// /I
T 5
N \\\ // y/ S(1)={2}y T()=rp>
\. \ / //
N \ / %
= / 4 S(2)={1,3} T(2) = F? 3
) (4| SO-0nT@=PUF
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The reduced cross-term functionals [3, are defined as follows:

Definition 2.10. Let (Skﬂ(p))fi*ll, (Tk+1(p))§igl be the joint partitioning at time
k + 1 according to definition 2.9. Then, under the the same assumptions of propo-
sition 2.4, the reduced cross-term Bry1,, 1 < p < Py @8 the functional defined,
for any real-valued functions h (resp. g7, j € Spy1(p)) defined on X (resp. Z7,

Jj € Skt1(p)) in [0 1], by:

. L def e . . . e .
5k+1,p[g]esk+ (p)> h] = Z ()‘kifiﬂ[g]] - )‘kil)

7€Sk+1(p)
d,j dj roj [ j
+ v5k+1\k h 1Tk+1(1?) H (1 - pkil +pki1fk—i1[g]|']> - UEk+1\k[1Tk+1(p)]
JESk41(p)
(2.59)
where vz, [h] is the functional vz, [h] =l [ h(z)vs, ., (2| Z11)dz.

In other words, the reduced cross-term [;4, is the usual cross-term [, where
only sensors in Si.1(p) and target states in Ty, 1(p) are considered. Clearly, all the
expressions given in notation 2.2 and in proposition 2.5 are valid for S, once
reduced to sensors in Sy, 1(p) and target states in Ty,q(p). Likewise, definition 2.7
on combinational terms and the construction lemma 2.1 are valid when restricted
to sensors in Ski1(p). As usual, time subscripts in the reduced cross-term will be
omitted when there is no ambiguity.

The following proposition formalizes what was suggested in example 2.5:
Proposition 2.6. Let (Sk+1(p))§i?, (Tk+1(p))§§]1 be the joint partitioning at time
k+ 1. For any x € X, any family of measurements {zj}jszl, 2 € 29, any subset
JC[1S):

_ Bp[éwugu(sz] (Elp € [1 Pk-f—l])'I S Tk+1(p))
6[5@7 g7 533] =
v5k+1\k(x)KX (SL’ € Tk+1(0))
(2.60)
_ Bp[a{zj jGJ}aga h] (Elp S [1 Pk—l—l]a JC S/H-l(p))
J,q ) ah - , .
Bl jery 9,1 { 0 (otherwise)
(2.61)
o Boldijen 9,02 (Fp €1 Pryal, J € Skia(p), x € Trra(p))
6[5{Zj,j€J}7g7 533] - .
0 (otherwise)

(2.62)
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The proof is given in appendix A. The results of proposition 2.6 are quite intuitive
and already illustrated in examples 2.5 and 2.6.

Equation (2.60): if a target = belongs to the partition element Ty.(p), p # 0,
then only (some) sensors in Ty (p) may detect x. Thus, the “likelihood” that x
is undetected by all sensors - “3[dg, d,]” is the “likelihood” that = is undetected by
sensors from Tj1(p) - “Bpldp, 02" If = is in Ty11(0) (the red area in figure 2.7),
then the target is undetected with probability one and the cross-term reduces to the
predicted PHD in x - vz, (2)Kx".

Equation (2.61): since the cross-term 3[dy.; jcy, 1] weighs the association of mea-
surements 27, 7 € J to an unknown single source, it vanishes if sensors 7 € J do
not all belong to the same partition element Sy ;(p). If this is the case, then the
single source either either lies in the combined FOV of these sensors, i.e. T;11(p), or
may eventually be a false alarm if there is only measurement, this joint event being
weighted by 3,[01. jes, 1] by construction.

Equation (2.62): since the cross-term ([0 jes},0,] weighs the association of
measurements 2/, 7 € J to a single target, it vanishes if sensors j € J do not all
belong to the same partition element Sy,1(p) - i.e. no single source is “candidate”
for this association, or if this the case but = does not belong to the corresponding
partition element Ty (p) - i.e. there are “candidates” for this association, but x is
not. If x does belong to Tj1(p), since all other “candidates” necessarily belong to

Trv1(p) as well, 801, ey, 0z reduces to B,[04.5 jesy, Ox)-
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Considering the results of proposition 2.6, theorem 2.4 can then be simplified as
follows:

Theorem 2.5. Under the assumptions given in proposition 2.4 and the additional
assumption that the predicted RFS Zjq is Poisson, the PHD filter data update
equation s given by:

VBt 1)kt (2] Z1:041)
(U= <.§L’|Zlk)

Sk+1lk

(z € Tj1(0))

Z Z Bp[(;Cmax] H Bp[écj’l]

cec(z®)) Ci€C Ci#C;
E H ﬁp [5@'7 1]
cec(z”),) i€l

\ (z € Tey1(p),p #0)
(2.63)

Byl00, 0] K ' + Ky'

where:

o (Sk+1(p))§i+11, (Tk+1(p))§igl is the current joint partitioning given by definition
2.9;

o .Zg’gl = Ujeskﬂ(p) Zgﬂ is the set of current measurements produced by sensors
in Se41(p);

o C(Z,gi)l) is the set of combinational terms given by (2.49).

The proof is given in appendix A. From theorem 2.5 immediately follows the equiv-
alent derivative form:

Corollary 2.2. Under the assumptions given in proposition 2.4 and the additional
assumption that the predicted RFS Zy . is Poisson, the PHD filter data update
equation s given by:

(V2,40 (2] Z1:1) (x € Tk41(0))
i (L ﬁp[(s‘ﬂ?gvh}
|f§m 6Z/(cz-7k)1€ ):| JE€ESK11(P)
—0,h=1
V=) 1jkt1 <x|lek+1> = g KXl
|: ((S) eﬁp[5®797h]:|
6215_1 G ES k1) p—1
\ (z € Tiy1(p),p #0)

(2.64)

where:
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° (Skﬂ(p));i*ll, (Tk+1(p))figl is the current joint partitioning given by definition
2.9;

° Zli’jr)l = |_|jesk+1(p) ZI]%+1 is the set of current measurements produced by sensors

in Sk+1(p).-

Even though the simplified data update equation (2.63) looks similar to the general
case (2.53), it is considerably more practical when the FOV configuration is favor-
able enough for a partitioning. The following example shows that the gain can be
significant, even in simple situations:

Example 2.7. Assuming that the sensor number is S = 3 and that the current
FOVs configuration and current measurements are as follows:

Figure 2.8 A FOV configuration favorable for partitioning

————C
3 )
e 3x /
e <1 /
// // ///“\\
Y SN e e |
! >~ / /
S S s 2%
\ A,_,l - N / 5 /
\\ / /
N \ // //
~ X
F\l\\\ %/} [ 23 //2
| 1// P F

then the sensor partition is ({1,3},{2}) and the combinational terms are:
o 0(2",2%) = {{{=11 A=) =001 (et 280 b b (et (b )
o c(2%) = {12 80}

That is, the simplified data update equation (2.63) requires the computation of
IC(ZY, Z3)| + |C(Z?)| = 4 combinational terms.

On the other hand, without partitioning, the combinational terms are C(Z*, 72, Z3) =

[AY ) A1 (30 1) L 1 (0 (B0 ) ) Tt s, the gen-
eral data update equation (2.53) requires the computation of |C(Z', Z* Z3)| = 27
combinational terms.

In the worst case, that is if the partitioning method described in definition 2.9 fails
to split the sensors in more that one partition element, the computational cost of
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(2.63) is actually slightly worse than (2.53) because it requires the computation of
the partitioning itself in any case. However, as it will be shown later in chapter 4,
the computational cost of the partitioning is light enough.

Regardless ot the computational gain given by the partitioning method, theorem 2.5
shows that the PHD can be updated independently on subparts of the state space -
namely, the state partition elements Ty, 1(p). This is an important result, because it
provides grounds for the design of hybrid PHD filters as trade-off between the costly
but exact filter based on the combinational form (2.63) and usual approximations,
such as the well-known iterated-corrector approximation (see section 2.4.2). Rather
than using the iterated-corrector approximation on X with all the sensors, one can
compute the joint partitioning and then decide, independently on each partition el-
ement, whether to use the exact data update equation or the iterated-corrector. It
can be shown that the resulting hybrid filter performs at least as well as the iterated
corrector; and the tweaking of the criteria allows a dynamical optimization of the
filter’s performance under the constraint of available computational power. This
method, however, requires that one is able to estimate a priori the computational
cost of the exact data update on a given partition element, presumably based on
the element “size” (number of sensors and/or measurements). This will be discussed
further in conclusion.

2.4 Common multi-sensor approximations

This section briefly describes several approximations of the multi-sensor PHD. The
aim is not to compare of the filters on simulated data but rather to expose their
strengths and weaknesses on a more theoretical level. Because the iterated corrector
(see subsection 2.4.2 has already been implemented and seems to have good per-
formances in detection and tracking problems |[Mahl 10al, it will be compared on
simulated data with the exact filter in chapter 4, while the other approximations
are presented in this section for information purposes only and will not be studied
further. An interesting study comparing the exact PHD filter - in the two-sensor
case - and several approximation techniques on simulated data can be found in two
recent papers (see [Naga 11b, Naga 11a| for more details).

2.4.1 Pseudo-sensor approximation

Arguably, the simplest way to face the multi-sensor issue is the pseudo-sensor ap-
proximation, in which all the sensors are encapsulated in a single “pseudo-sensor”.
That is, at every time step k, the single-sensor data update equation (2.28) is used
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with the whole set of measurements 7, = |_|f:1 Z,zﬂ as input:

6Ek+1‘k+1 ("Zlk+1)

~d7j z _]
=4 E § ( Piia (2 >Lk+1( z)
= pk+1 _'_ c ~- > V=, 1\’“( |Zl k)
j=1 ZJGZJ )\k‘-ij-l k:-l—l( ) + U:k+1\k [pk+1Lkil] +

(2.65)

where pf |, pk+1, )\Zilé,iﬂ LkJrl are the pseudo-functions describing the mechanisms
of the pseudo-sensor. Mahler [Mahl 03b, Mahl 03c| proposed such an approximation
where the pseudo-functions are defined as follows:

o ()Y 1T, (1 -, ();

~d,j dif d,j Pk+1()
4 pk+1( ) pk+1( )ZJS lpk+1()

def c j
A1 (O

o )‘Zil&/iH()
jdef
i Lkil Lki1( ).

Another pseudo-sensor approximation leads from the exact data update equation
(2.44) with the additional assumption that a target z is the source of at most one
measurement among all the measurement sets Zj ., i.e. floz,.] = 0if |[Z] > 1.
Indeed, with this new assumption:

[i ( 5 emsmvgvh})]
ox \ 0Z)41 glS=0,h=1
_0  .Bl6y,3.h
|:6Zk+1€ [ 09 ]] glA“S:07h:1
— S —
[ £ <€B[5@,97h} - ez, (Bl0g), 3, h]))}
_ S _
[N T TLesy,, (50601.9:1)
S
B 5189, 6”001 Hj:l Hzez,{+1 (5[5{2}’ 1])
S
ePlo.1] Hj:l HZ€Z£+1 (6[5{2}’ 1])
66[60’1] HS H ] (6[5 1]) Z Z B[Mz}ﬁx]
j=11llzez] | {=}s Jj=1 ZEZk+1 Blogzy,1] Kt

v:k+1\k+1(x|Z1:k+1) = K;c‘l (6[527 ] - 07 |Z| > 1)

glA“S:O’hzl 1
KX

g1~~S=O,,h=1

-1
X

+

X
eBlo0,1] Hffl HzEZj ( 0723, ])
5{2}7 1
5@7 K +Z Z ﬁé{z} K
=1 yezd 7

k+1
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Which gives, using proposition 2.5:

17E,c+1‘k+1 (2] Z1:041)

- (Ha (@)

J=1

Vs (x| Z1.x)

Sk+1lk

>y (I (0 = 1)) L @) L3 () )

_'_
cj J d,i d,j 2,

i=1 zez] Aet1Ger (2) + U=k i1k [(Hi;ﬁj(l - pk+1)> kajrlqu]Ll}

This leads to another pseudo-sensor approximation, quite similar to Mahler’s:

- def S JJ
b pg+1(-) =1- Hj:l(]' —piil(-));

~d,j def d.j d,i .
o Dpia() = ppli() Hi;ﬁj(l — P ();

e def \ej .
o NG () = A ()

Ljodef o
o L, = LiZ, ().

The obvious advantage of pseudo-sensor approximations are their simplicity. How-
ever, whether it is by construction in Mahler’s approximation or explicity stated
by the additional assumption in the approximation above, the independence of the
single-sensor processes is violated since it implies that a target may not be the origin
of more than one measurement. Thus, while the exact multi-sensor PHD correctly
associates up to S measurements per target - one per sensor - at any time step, the
limited pseudo-sensor framework fails to do so and considers only single measure-
ment to single target associations, any additional measurements being considered as
false alarms [Mahl 03b, Mahl 03c|. Clearly, pseudo-sensor approximations are quite
constraining and are likely to perform poorly in areas where FOVs are overlapping.

2.4.2 Sequential approximation

The aim of the sequential approximation is to bypass the multi-sensor issue by
dealing with each sensor separately at each time step; that is, using a sequence of
S single-sensor data update steps (2.27), namely once per sensor, rather than using
the multi-sensor data update step (2.44) once. More precisely, the iterated-corrector
approzimation (ICA) is given by (adapted from [Mahl 03a, Mahl 10al):



2.4 Common multi-sensor approximations 111

Definition 2.11. For any permutation o : [1 S] — [1 S], any current measurement
sels (Z],1);-1, Z7 C 2, any positive function v(.) on X, the corrector C7ly (., v),
where j € [1 S], is the function on X given by:

d,o(7) z,0(J

79 (0) 1 ey 3 et (L ()

k+1\» V) = Drgr (- A&o0) a(j)< ) + 0] d,o(5) Lz,om]
2ez7 @kt Crt1\Z) T U Dpyy Loy

(2.66)

Then, the sequence of iterated approximations (U/Zﬁl\k)fzo is the sequence of positive
functions on X given by:

() F vz, (1 20) (2.67)

Sk+1lk

. 0,7 def 0,] o,j—
Vi€ [1S), vid ()= Ol (o) (2.68)

The iterated approximation of the multi-sensor data update equation, respective to
sensor order o(1),..,0(S), is given by:

~0

def o,
,UEk+1‘k+1('|Z15k+1) - ,Uk;fllk(’) (2-69)

In other words, the ICA proceeds with each sensor in a given order, applying the
single-sensor data udpate equation (2.29) with the density from the previous iteration
as input. Although slightly more complicated to implement than pseudo-sensor
approximations, the ICA is more faithful to the multi-sensor model assumptions
and, as it will be shown later on simulated data (see chapter 4), it seems to be
fairly accurate (when compared to the exact multi-sensor data update) in detection
and tracking problems with a limited number of sensors. However, the ICA suffers
some flaws in its design [Mahl 09a|. First, the validity of the approximated posterior
PHD 9z, ,,,(:|Z11+1) in (2.69) is, by construction, based on the validity of the
sequence of the S single-sensor data update steps which, according to theorem 2.2,
requires that every intermediate approximation v,‘;ﬁ” .(-) can be seen as the PHD of a
Poisson RF'S, which can be difficult to ascertain in practical situations. The second
issue, more obvious, is the asymmetry of the sensors in the ICA: in the general case,
@g;+l‘k+l(.|Z1:k+1) =+ 6gi+l‘k+1(.|Z1:k+1) if 01 # 05. This can be easily illustrated a
simple example:

Example 2.8. Assuuming that the sensor number is S = 2 and that the current
FOV configuration and current measurements are as follows:
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Figure 2.9 The ICA on a simple example
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Then, the exact posterior PHD given by theorem 2.4 is:

UEHH,CH(Q?\ZLICH)
652175:Bﬁ5z271 +ﬁ5z171ﬁ5z2751 _'_6521,22751
:5[507%“[{} 18[0¢z2y, 1] + Bl0g=1y, 1]B0¢z2y, 8o] + B0g21 22, 0a]

2.70
ﬁ[é{;ﬂ}, 1]6[5{%}7 1] + ﬁ[é{zl,g}, 1] ( )

The approzimation given by the ICA with sensor order 1 — 2 (0 = 1d) is:

51 [6{21}7 61‘] 61[5{21}7 1]6[5{2:2}7 51‘] + 5[5{21722}, 51‘]

51[(5{21}7 1] 51[(5{21}7 1]5[5{32}, 1] + 5[5{31732}, 1]
(2.71)

while the approximation given by the ICA with sensor order 2 — 1 (0 = 112) is:

32022y, 05)  BlOgary, 02)8%[0 a2y, 1] 4 Bl 22y, 0a]
52[(5{22}7 1] 6[5{21}, 1]52[(5{22}, 1] + 5[5{31732}, 1]
(2.72)

d,j ro,j i
LA 1D —vm, 1]

~1d
Sk+1|k+1

(2| Z1:k11) = Blp, 02 +

~T12
Sk+1|k+1

(2| Z1:k11) = Blo, 05 +

L def \c,j ; : ¢j d,j
where 37[g’, h] = )‘kilc;c+1[gj]_>‘k—]|—j+v5k+l\k h(1 - pkil -

is the cross-term restricted to sensor s’.

Example 2.8 illustrates the approximation behind the ICA. With the sensor order
1 — 2, the corrrector updates the predicted PHD with measurements from sensor 1
- namely, 2! - without considering the fact that another sensor 2 produced measure-
61[5{21}7511
ignores the second sensor - recall that 5'[0(,1y,0,] = pZL(x)LzE(@UEHW(x|Z1:k)
. 21 . .
while 86,1}, 0,] = piil(:c)Lkﬁ(x)(l —pZ’_’Q_l(I))UEkH‘k(SL’|ZU€). As shown in equation
(2.71), the initial error propagates in the future ratios.

ments in the same time. Thus, the first ratio in equation (2.71) completely
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Clearly, the ICA’s quality is likely to decrease with the number of sensors and/or
measurements involved in the data update step, but quantifying the approximation
with respect to the exact multi-sensor data seems quite challenging. Besides, there
is no easy way to select, to the author’s knowledge, the optimal sensor order for
the ICA. We detailed in [Dela 10| a more explicit recursive expression of the ICA;
it seems that the quality of the approximation increases with the sensor order, i.e.
measurements from the last sensors are generally “better considered” than those from
the first sensors. This suggests that a sound choice for the sensor order is to order
them by increasing “productivity” (i.e. increasing number of current measurements),
but no systematic rule could be derived. This will be illustrated on simulated data
in chapter 4.

2.4.3 Product approximation

The product approzimation (PA) aim at bypassing the asymmetry issue in the ICA by
approximating the multi-sensor data update as a product of single-sensor correctors
(adapted from |[Mahl 09al):

K z5 def 5
vakfl-\kkl-o-l k+l('|Z1:k+1) KZ;LLI, wZ H Clijrl |le:+1 ) ~k+1\k('|Z11k) (273)
=1

where:
d,j z,
pkil( )Lkil( )

Y > v is the cor-
AtiCrha (2 )JFU:HIW[PJJ L]

: ; def
o Clallzl) @ 1-pl@+ Y
2€2] 4,
rector from sensor j;

L8 is a constant, symmetric with respect to the sensors.

In other words, the principle of PAs is to encapsulate all the coupling effects between
sensors in a single term. Clearly, the quality of a PA is based on the proper choice
of the coupling term. In [Mahl 09a] Mahler explains that this method is not well
adapted to the PHD yet. In the construction of the coupling term he had to make
an assumption on the densities p5k+l‘k(.|Z,z+1) and came to the conclusion that:

e if they are assumed to be PHDs from cluster RFSs, the resulting coupling
constant is intractable;

e if they are assumed to be PHDs from Poisson RFSs, the resulting coupling

constant is 1, but v k+1\k+1( |Z1.141) is a poor approximation.

The PA with the coupling term equal to one (that we mentioned as product approz-
imation in [Dela 10]) can be compared with the ICA in the following example:
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Example 2.9. With the same configuration and notations as example 2.8, the prod-

uct approximation with KZ;L zs =1 1s given by:

1yt

$U|Z1:k+1)
6[5{z1}7 51]62[5{22}7 1] + Bl [5{21}7 1]6[5{z2}7 51] =+ 6[5{z1,z2}7 5:1:]
B0y, 1520422y, 1]

Example 2.9 shows the PA with K = 1 fails at considering cross-sensor measurement,
associations (the cross-term 3[d;.1 .2y, ;] is actually a calculus “side-effect”, what is
important here is that the cross-term 3[;.1 .2y, 1] does not appear in the denomi-
nator). Mahler remarked [Mahl 09a] that the PA with K = 1 does not reduce to
the multi-sensor /single-target Bayes filter in the trivial case where there are no false
alarm, no missed detections and a single true target, while the ICA does. Indeed:

oL (
Sk41k41

= Bldo, 0z] + (2.74)

Example 2.10. Continuing examples 2.8 and 2.9 with the additional assumptions
¢l c,2 d,1 d,2 .
that Ny = Agi =0, pii () = o (1) = 1

. . 6[5{21 22}751]
e the exact posterior is U5k+1‘k+1<.§l]|zlzk+1) = By 1]
6[5{21’22}751} .

o the ICAs give vL? (| Z1py1) = 022 (2| Z1ps1) = B

kt1lkd1 Ekt1kt1

. o . ~1 o 6[5{21722}7511
e the PA with K =1 gives v5k+1\k+1(x‘Zl:k+1) = BB bl

It is not clear how worse this PA is compared to the ICA but, based on a more
explicit expression of the PA we built in [Dela 10|, it seems that the ICA is generally
better, although comparisons on simulated data should be quite useful to answer
this question.

2.5 Conclusion

In this chapter, some simple RFSs were presented. The multi-target and multi-
observation RFSs involved in the RFS filter equations must be reduced to these
simple RFFs (Poisson, cluster, Bernouilli) in order to produce tractable approxima-
tions and be able to design the PHD filter. The construction of the exact PHD filter
- in the single-sensor as well as the multi-sensor case - was thoroughly described, and
the data update equations were analyzed qualitatively. The data update equation
of the multi-sensor case being exceedingly difficult to compute in the general case, a
joint partitioning method of the state space and the sensors was presented in order
to simplify the data update without approximation. Finally, the usual multi-sensor
approximations were compared to the exact solution on a theoretical level. The ICA
looked promising and should be studied further on simulated data.



CHAPTER

Multi-sensor management within the PHD
framework

Revious work on the sensor management problem within the PHD framework
P remains, to the author’s knowledge, scarce. To be sure, Mahler introduced in
[Mahl 04| the PENT manager but, according to the author’s opinion, it seems to
be ill-adapted to a broad range of surveillance activities. Quite recently, Ristic et
al. [Rist 10b, Rist 11a] worked on a more general RFS-based sensor manager, and
their simulation results seem to reinforce the author’s opinion regarding the PENT
manager. In this chapter, the goal is to design a multi-sensor manager within the
PHD framework whose data flow can be depicted as follows:

Figure 3.1 Data flow of the sensor management process
u € Uy
|

J/ Sensor manager

predictive objective
— | update | — 7| function

k+1|k — | argmaxy | Uk+1

(v5z+1‘k+1)ueU’€+1 (Rk+1(u))U€Uk+1

As illustrated in figure 3.1, the structure of the sensor manager is based on three
distinctive features:

1. the predictive update: compute the predictive PHD v& i.e. the PHD of the

k+1|k’
posterior RF'S should the sensors be controlled according to some u € Uy ;
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2. the objective function: determine a reward R}, for each predictive posterior
V¥
:k+1\k’

3. the selection step: select the control with the highest reward.

The first part of this chapter (section 3.1) focuses on the target extraction process
which will be necessary for the predictive update step (see figure 3.1). Since the
PHD is a density, the PHD filter does not directly provides tracks as in more clas-
sical track-based filters; thus, one must eztract information about eventual targets
from the propagated density. Usual extraction processes seem to be mainly based on
clustering techniques such as the k-mean algorithm [Clar 06]. However, Tobias et al.
argued [Tobi 08| that better extraction techniques could be designed by removing a
target’s worth of weight from the PHD N times, where N is the extracted number
of targets. Notably, this method is bound to produce better results in the extraction
of close targets, where the k-means algorithm would typically extract a single target
averaging the two true targets. The target extractor presented in this thesis follows
closely the solution Tobias et al. proposed. It should be noted that Tang et al.
described [Tang 11| an improved extraction method, combining traditional cluster-
ing techniques such as the k-means algorithm with the solution proposed by Tobias
et al., but this came too late to the author’s attention to be considered in this thesis.

The second part (section 3.2) deals with the predictive update step, built as an
extension of Mahler’s work on the PIMS [Mahl 04] to the multi-sensor case.

The last part (section 3.3) focuses on the design of a sensor manager. It covers
the description of Mahler’s PENT manager and its inadequacy to some scenarri in
surveillance activities. Consequently, the last part of section 3.3 is devoted to the
construction of another sensor manager.

3.1 Target extraction

Since RFSs are random variables on “large” spaces F(X) where no sum operator is
defined, the traditional expectation:

E[E(w)] = /F PR (3.1)

has no mathemical sense even if the probability density pz is properly defined. Thus,
usual estimators such as the Maximum A Posteriori cannnot be applied on RFS.
Rather, one should exploit the fact that, aside from its probability density, a RFS
can be descr1bed by its cardinality distribution p= and its family of spatial distribu-
tions {P )}neN
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In this thesis, a target extractor is defined as an estimator on RFSs that:

1. estimates an extracted target number N - an integer - based on the cardinality
distribution pz;

2. estimates the target configuration X = {z1, ..., x5}, a finite family on X, based
on the spatial distribution P

Note that X is built as a family and not a set, because the extracted targets are (gen-
erally) ordered. Target extractors are considerably easier to design when restricted
to Poisson RFSs, since they are characterized by their intensity or PHD (definition
2.1). In this case, a target extractor is an estimator on Poisson RFSs that:

1. estimates an extracted target number N - an integer - based on the Poisson
parameter v=[1];

2. estimates the target configuration X = (21,...,xy5), a finite family on X, based
on the PHD v=(.).

In the scope of this thesis, targets need to be extracted from PHDs of Poisson RFSs
only, namely:

o predicted PHDs vz, ([ Z11);

o predictive PHDs v (.| Zy4);

Sk+1k

e posterior PHDs ka+1‘k+1(.|Z1:k+1).

For simplicity’s sake, time subscripts and dependence on past measurements will be
omitted in this section and v= will denote indifferently one of the PHDs above. It
will also be assumed that v= is continuous on X.

3.1.1 Highest peaks extractor
Recall from proposition 1.3 that, given the multi-target PHD vz:
e the estimated target number is N = v=[1] = [, v=(z)dz;

e the targets are i.i.d. according to the normalized PHD, i.e. the probability

distribution ”ET()

Thus, a “naive” highest peaks extractor could be defined as follows:
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Definition 3.1. For any PHD vz on X, the set of extracted targets from vs, if it
exists, is the collection XHPF(vz) € X defined by:

XHPE () € (3 ) (3.2)
where:

o NY [V=[1]]nearest integer @S the extracted number of targets;

o Vn €[l NJ, &, is the n-th highest local extremum of the PHD v=.

Figure 3.2 Illustration of the HPE

N:/vg(x)da:z3.2:>]\7:3
x

3.1.2 Weighted peaks extractor

Although the HPE is remarkable by its simplicity, problems may arise in specific
situations such as shown in the following example:

Example 3.1. Consider the following situations:

Figure 3.3 Improper target extraction by the HPE

V= V=
N\ N~2 N=1 N=1
F1 3a7 X 71 P27 X

On the left hand side, it seems that two targets are close enough in the state space.
HPFE extracts target &1 at the first peak, but cannot extract a second target because
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there are no more peaks. However, a second target is probably in the vicinity of 1.

On the right hand side, the HPE extracts the correct target number but the sec-
ond target is extracted in the vicinity of 1 while the shape of the PHD suggests that
the second target should be extracted around the third highest peak.

Example 3.1 shows situations were the HPE does not performs as might be expected
when target are getting closer (left figure) or when there are more than one peak
that are likely to account for the same target (right figure). It seems that the HPE
may fail because it does not really exploit the local distribution of the PHD. The
following weight-based approach closely follows the solution proposed by Tobias et
al. [Tobi 08] in which targets are extracted in regions whose weight (i.e., the integral
of the PHD) reaches a given target weight:

Definition 3.2. For any PHD v= on X, define:

e the extracted target number as N el [V=[1]]nearest integers

~

0 (N =0)

=1 :
“A[ ] (otherwise)
N

e the target weight as W, =

Besides, for any positive function f(.) on X, any (strictly) positive real number r,
any state point xo € X, defined as:

o B,(xg) & {z € X | dx(xo,x) < 1} the closed ball centered on xog with radius
r;

o W(.,d,f) =l de(_) f(z)dz the neighborhood weight function.

Initialize the weight function with the PHD, i.e. w) = vz, and proceed as follows:

e Find new global mazimum: z(™) = arg max, w™ (r);

o Find new neighborhood span: d™ = argming W (2™, d, U(E")) > Wy;

o Set new neighborhood: N™ = By (x™);

e Set new neighborhood weight: W™ = W (2™ d™ w™);

o Compute new target state: T, = Inew S (2)d :

o Compute new weight function w(”“)(,) — w(n)(.) _ 1N(n)(.)%_

The resulting family XWE(UE) = (Z1,...,Zx), if it exists, is the family of extracted
targets.
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For simplicity’s sake, X"WF(vz) will be shortened to X" when there is no ambiguity.
Intuitively, the WE computes the smallest neighborhood around the highest point
of the PHD with weight W, extracts the first target as the weighted average of
the neighborhood, removes the neighborhood weight from the PHD and proceeds
with the next extraction. Note that the target weight accounts for the common
discrepancy between the expected number of targets v=|1], which is not an integer
in general, and the expected number of targets N, an integer by construction. For
example, if vz|1] = 2.2, then N = 2 and the target weight is W, = % = 1.1, such
that N W, = ve|l]. Since the WE removes exactly W; of weight at each iteration
(see definition 3.2), [, w™(z)dz > 0, W > 0 and thus the new target states 2,

are well-defined.

Example 3.2. Continuing example 3.1, the WE can be illustrated as follows:

Figure 3.4 Target extraction by the WE (1)

w) w?

X X
Figure 3.5 Target extraction by the WE (2)
() e
! S
| S R
S
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AR
X w X

It is important to note that the WE has its own issues. While the finite family
XWE(yz) = (#n),—p xp is well-defined, the finite set XWE(vz) = UN_| &, may not
if some states are identical. However, this event being highly unlikely, it will be
assumed from now on that the set of extracted targets exists, regardless of the
initial weight distribution. Another issue is the dermination of the neighorhood
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span, particularly for the last extracted target. By construction, fx w®™ (x)dw = W,
which means that the last neighborhood may span to the entire state space, in which
case setting the last target as the the weighted average may be a poor choice. In the
practical implementation of the WE (see chapter 4), the span of the neighborhoods
will be capped by a parameter.

3.2 Multi-sensor predictive PHD

In the scope of the thesis, multi-sensor controls have limited influence on the obser-
vation process. A control u € Uy aims at shaping the FOVs configuration, but has
no effect on the measurement and false alarm process. That is, a control only shapes
the detection probabilities (pg’j(.))je[l SE

Notation 3.1. If the sensors are under control u € Uy, the following notations are
used:

i not i
(Fjen 51 = (F)jen s) (3.3)

j not i
P (Nsen 512 (077 ())jen s (3.4)

3.2.1 Predictive update equation

The aim of the predictive update step for control u is to guess, without new measure-
ments 71, the shape of the predictive RFS Ezﬂ‘kﬂ, that is the expected posterior
PHD should the sensors be under control u. In the PHD framework, the challenge
is to compute the predictive PHD Ve based on the predicted PHD vz

1|k+ Sk+1lk "

Definition 3.3. At any time step k+ 1 and for any control u € Uy, the predictive
PHD v=u s given by:

“k+1]k+1

def
vzp e C120) = Elosy e ({200 U B0 (W) (3.5)

where:
e X, is a predictive multi-sensor observation RFS (yet to be defined);

° U= (| Z1.,US,(w)) is the posterior multi-target RFS given by theorem 2.5.

Skt1|k+1

In definition 3.3, X, describes the multi-sensor observation process based on the
known information about the current living targets Xy, i.e. based on the predicted
PHD vz, ,. Because the multi-sensor data update equation - either exact ((2.44)

or (2.53)) or approximated ((2.65), (2.69) or (2.73)) - requires a multi-sensor mea-
surement set in input, definition 3.3 is unexploitable unless the number of possible
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realizations of RFS ¥, is finite - and, if possible, small enough - and its probabil-
ity distribution py, (.) is known ezplicitly. In the RFS framework, this probability
distribution is given by:

ps. () =:jﬁ(x)pak+lk()()pzucx><>u<d)<> (3.6)

where ¥, (X) is the predictive observation RFS conditionally on target set X. Of
course, equation (3.6) is widely impractical since:

e according to the multi-sensor observation model (see proposition 2.4), for a
given set X, ¥,(X) is a complicated RFS involving missed detections, false
alarms and noise measurement processes;

e the set integral precludes a tractable implementation of py,,.

First of all, one must “discretize” RFS ¥,(X), i.e. provide an approximation with a
finite number of realizations. In the general case, the single-sensor observation spaces
Z7 are uncountable and thus the single-sensor observation RFSs Zi +1(X) have values
in uncountable spaces F(Z7). The first step is to discretize the observation spaces
(adapted from [Mahl 04]):

Definition 3.4. At any time step k, for any sensor j, the (ideal) measurement
function p(.) is the mapping defined as:
phoX = 2
r = z=pl(2) (3.7)

where z s the noiseless measurement produced by sensor j from a detected target
with state x.

For any finite set X = {xy,...,an} C X, assuming that the functions pi() are
injective, the multi-sensor ideal measurement set Zl% is the disjoint union:

S S
2k = || 7)) = [ s (38)

where Z1 (X)) = pl (X) is the single-sensor ideal measurement set of sensor j.

Note that the injectivity of the measurement functions is required for the ideal
measurement sets to be well-defined, even though this will not be the case in practical
implementations (see chapter 4). In this chapter, the measurement functions will be
considered bijective. The (multi-sensor) predictive observation RFS X}, ,(X) can
then be constructed as follows:
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Proposition 3.1. For any finite set X = {z1,...,xx} C X, any sensor j, any control
u € Uyyq, the (single-sensor) predictive observation RFS of sensor j, conditionally

on target set X, is the RFS Y7 (X) with values in .F(Z,ﬁ’{(X)) characterized by its
probability density:

poico2) T 05 () =) [T (=05 (o) (=) (3.9)

2€2 22y (X)\Z

where Zﬁr’{ (X) is the ideal measurement set given by definition 3.4.

The predictive observation RFS, conditionally on target set X, is the joint RFS:
o (S
2u(X) < || (x) (3.10)
j=1

Then, the probability distribution of the predictive observation RFS exists and, for
any set 7 = |_|f:1 ANS |_|f:1 F(ZEH(X):

S
) (Z) = [ [ Psi (%) (3.11)
=1

The proof is straightforward using the property of joint RFSs (1.8).

Example 3.3. Consider the multi-target set X = {x1,x9, 23} and the ideal mea-
surement sets illustrated as follows:

Figure 3.6 Example of ideal measurement sets

In addition, let u be an available multi-sensor control such that:
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1

i p?[l('xl) =0, pfl/l@z) = %) by (l’g) =3
o piP(x1) = 5, piP(a2) = 3

Then, the probability distribution of the predictive RFS X1 (X) is given by:

' prio () =
P {z}) = pouo({z)) = (3.12)

peio ({2, 2}) =

Noj IS NNaN I Vi) I

\
Likewise, the probability distribution of the predictive RFS ¥2(X) is given by:
(

ng(x)({zf}) = Pzg(x)({zfazg}) =

ng(x)(@) = pzi(x)({zg}) =
(3.13)

pszc0({z5}) = peaoo ({2, 231) =

Ol ROl NO| R
oo|’_‘

\ ng(x)({zf, %)) = ng(X)({Zf, 243,23}) =

As illustrated by example 3.3, the predictive RFS ¥,(X) covers all the possible
measurements configuration - conditionally on the target set X - provided that, for
each sensor:

e the measurement process is noiseless;
e there are no false alarms.

However, the predictive RFS does take into account the missed detections.

Now that the predictive RFS ¥, (X) is properly defined and that its probability
distribution is known explicitly thanks to proposition 3.1, the set integral in (3.6) is
bypassed by considering a unique target set (inspired by [Mahl 04)):

Definition 3.5. At any time step k + 1, Z,Zﬁj 1s the particular ideal measurement
set Z[1,(X) given by:
def 5
285 7l (X)) (3.14)
Likewise, for any control u € Uy, the PIMS XV is the particular predictive RFS
Y. (X) given by:

u

swe el 5 (X(XWE)> (3.15)
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that is, V¥ is an approzimation of 3, characterized by the probability distribution:
sy () = e () = [ P PO ORd) = () (@16)

Note that definition 3.5 could be easily extended to other target extractors, leading
to different PIMSs - e.g. LHPE,

Thanks to proposition 3.1 and definition 3.5, the computation of the predictive
PHD (3.5) is tractable and, combined with previous result (2.53), yields:

Proposition 3.2. Under the assumptions given in theorem 2.4, for any control
u € U1, the predictive PHD v= |Z1.1) is given by:

k+1\k+1(

V=u (
“k+1|k+1

$|Z1;k)

> > (8.6 T] Bloc,. 1

cec(z) CieC C;£C;
— B0, 8K+ Y peye(2) T

K
ey > 11 8le. 1l i

Ccec(z) CieC

(3.17)

or, equivalently:

[5 (577" 1o g e
ngﬂ\kﬂ Z pEWE [55Z [507_@,}1]] - =

WE
A2

Ky! (3.18)

glAAAS:()’h:l

where the ideal measurement set Z}"Y and the PIMS X}'F are given by definition
3.9.

The proof is given in appendix A. Note that the cross-terms in equations (3.17) and
(3.18) implictly depend on the control u through the detection probability functions
p®I(.) (see notation (3.4)).

As expected, proposition 3.2 is simplified in the single-sensor case and yields Mahler’s
result [Mahl 04]:
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Corollary 3.1. Under the assumptions given in theorem 2.2, for any control u €
Ugi1, the predictive PHD v= |Z1.1) is given by:

k+1\k+1(
vEZ+1\k+1('|Z1:k)

Pa()Liia ()
2+1ck+1( ) + VEki1k

= [1-P0+ D Pillon) (D)5

WE
ZeZk:+1

[dek—i—l] 5k+1\k( ‘Zl k‘)

(3.19)

where the ideal measurement set Z,?ff is given by definition 3.5.

The proof is given in appendix A.

3.2.2 Simplification by joint partitioning

Result (3.19) is instructive because it shows that in the single-sensor case, the costs
for the computation of the predictive PHD VS and the posterior PHD Vg i1kt

(equation (2.29)) are similar - linear respective to the measurement number. The
construction of the predictive single-sensor PHD is quite intuitive. The current mea-
surements being decoupled in the single-sensor case, the sum in equation (2.29) can
be seen as the unweighted sum of the inlfuence of each produced measurement on
the posterior PHD. The construction of the predictive PHD is similar, except that
no current measurements have been produced yet and one must weight the influence
of each ideal measurement with its probability of occurence, which is exactly the
probability of detection of the associated target.

Unfortunately, this interpretation does not hold in the general case, because the ef-
fect of each current measurement cannot be isolated in (2.53). Thus, the predictive
PHD equation (3.17) requires the computation of an exact multi-sensor data update
step (2.53) for every possible subset Z of the ideal measurement set 2} 7. However,
proposition 3.2 can be significantly simplified without approximation by using the
previous joint partitioning (see chapter 2). More precisely, the ideal measurement

set Z\ % can be partitioned as follows:

Definition 3.6. For any control uw € Uy, let (Su(p))f:;l, (Tu(p));:;o be the joint

partition as given by definition 2.9. Then, the set of extracted targets XWE can be
partitioned as follows:

Vp € [0 B, XVFE XWEAT,(p) (3.20)

Then, the ideal measurement set Z\} can be reduced as follows:

vpe[l B, ZVEE || ZVFi= || pl (XVF) (3.21)

JESu(p) JESu(p)
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Finally, for any p € [1 P,], ©)V/F is the reduction of the PIMS X)'" to partition ele-
ment p, i.e. the RFS with values in F(Z,"F) such that, for any set Z = | | ANS

Usesu F(Zay?):

jESy (p)

pews(Z)E T | I] () ) TI (=2 ((0hn) " (2)
7€Su(p) \2€27 2€ZyyIN\Zi

(3.22)

Example 3.4. Consider the set of extracted targets XWE = {&1,Z2, %2} and the
FOVs E!, F?, F? illustrated as follows:

Figure 3.7 Joint partitioning of XWE and Z,LT{J (p = 0 in blue, p = 1 in green, p
= 2 in red)

First of all, since F> N EF3 # (), the joint partitioning is, according to definition 2.9:
o sensors: S,(1) = {1} and S,(2) = {2,3};
e state space: T,(1) = F}, T,(2) = F?U F? and T,(0) = X \ (F} UF? U F?).

Then, the extracted targets XWE are partitioned and the ideal measurements A
are reduced according to definition 3.6:

o crtracted targets: XZVOE = {i2}, XKE = {21} and XXVQE ={i3};

e ideal measurements: ZWE = {21}, and ZVE = {22, 23}.
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Note that ideal measurement =} is discarded because, under controlu, p?((p,,) (1)) =

p®2(21) = 0 since &1 ¢ F?. Likewise, measurements 23, z3, 23, 23 and z3 are dis-

carded.
With this joint partitioning, proposition 3.2 is simplified in a similar manner as
theorem 2.4:

Proposition 3.3. Under the assumptions given in proposition 3.2, for any control

u € Uyy1, the predictive PHD v= k+1\k+1( |Z1.1) is given by:
UE}:HU@H (l‘|lek)
v:k+1‘k(x|Z1:k)
(z € T.(0))
Z Z Bp[(scm H Bp 507
= CeC(Z) C;eC C;#C; _
Bp[éﬂa K + Z pEup KXl

sEawr > T siloe,. 1l

u,p
Ccec(z) CieC

(z € Tu(p),p #0)
(3.23)
where (Z)E)) and (S ), are given by definition 3.6.

The proof is given in appendix A.

Example 3.5. Continuing with example 3./, assuming that the predictive PHD must
be computed in three target states a, b, ¢ as shown in the followwing picture:

Figure 3.8 Computation of the predictive PHDs in points a, b, ¢

23
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Since a € T, (2), using proposition 3.3 gives:

A 6 Y 22 75a
(0l714) = Baldo 1K + () (1 — i () 2t 0 ey
Pal0z3y, 1]

252:3’
+ (1= pl*(23))py” (2 >%

. /82[5{,22}7 50,]62[5{,23}7 1] + 62[5{2 }7 ]62[5{;;3}7 ] + /82[(5{,227;;3}, 5a] _
d,2 d:3( 5 3 3 — Ky

VU=u
“k4+1|k+1

Then, since b € T,(0):

Zl.k) = U:;ﬁq\k (b‘Zlk‘)

sz+1\k+1<b|
Finally, since c € T,(1):

B1[621y, 0]
o -1 d,1( 1
Zl:k?) - 61[5@7 5C]KX +pu (xl) /81[5{211}, 1]

UEZ+1\1€+1(C|

Note that, without the joint partitioning, using proposition 3.2 requires the compu-
WE
tation of 21¥k+il = 29 = 512 ratios for each point a, b, c.

As usual, from proposition 3.3 immediately follows the equivalent derivative form:

Corollary 3.2. Under the assumptions given in proposition 3.3, for any control
u € Ugya, the predictive PHD v~k+1‘k+1( |Z1.1) is given by:
v5z+1\k+1 ('T‘Zl:k)

vz, (@] Z1) (z € T.,(0))

Zkt1]k
[ > (spelrloosh)] §IESu(P) =0, h=1

> poyp(Z [ efsldn.ah]

ZCZWE

Ky (z € Tu(p),p #0)

gI€Su(P)=0,h=1

(3.24)

where (ZWE)P“1 and (ZWE)P“1 are given by definition 3.6.

3.2.3 A few leads for approximations

Arguably, using proposition 3.3 is still computationally intensive if the FOVs con-
figuration is unfavorable. There are at least two leads, which can eventually be
combined, mayt provide approximations with lighter computation costs.
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First, since the construction of the predictive PHD is based on the data update
equation (2.53), the approximations described in section 2.4 are still valid in this
context. Of course, the resulting predictive PHDs will share the same limitations
as the posterior PHD - e.g. the dependence on the sensor order if the ICA is used,
although it may have less consequences in this case since the predictive PHD is used
to evaluate a multi-sensor control rather than propagate the filtered state. Presum-
ably, using an approximation such as the ICA would sometimes produce errors in
the evaluation of the predictive PHDs large enough for the sensor manager to select
a suboptimal control.

Another possible approximation of proposition 3.3 is to simplify the predictive RFSs
(BWE) . Recall from proposition 3.1 that $!V¥ is built as an approximation of the
multi-sensor observation RF'S in which the false alarms process and the noise in the
measurement process of each sensor is discarded, but the missed detections are still
considered. Thus, an easy way to further approximate the multi-observation RFS is

to reduce the predictive RFS ZWZ to the following:
WE
def | 1 zZ=2,,)
Vp e |l P, Z) = ’ 3.25
pE LR, pryp(2) { 0 (otherwise) (3.25)
that is, to assume a full detection of the extracted targets. In this situation, the sum

in proposition 3.3 and the predictive step reduces to a single data update step with
the ideal measurement set ZE;E as input.

3.3 Sensor manager

This section focuses on the design of a sensor manager and is divided in two parts.
First, the PENT manager developed by Mahler is described and its inconsistency is
shown on simple examples. Based on the flaws of the PENT, another approach is
proposed for the first time - the BET manager.

3.3.1 The PENT manager

The PENT(-based) objective function was developed by Mahler following the PIMS
construction, it is indeed a very simple objective function that naturally flows from
the PIMS (adapted from [Mahl 04]):

Definition 3.7. At any time k + 1, the posterior expected target number (PENT)
objective function is defined by:

Riv1 1 Upyr — R*

u = Rpy(u)=v (3.26)

EZ-HU@-H [1]
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The data flow of the PENT manager is thus very simple and follows closely the
generic flow given in figure 3.1:

Figure 3.9 Data flow of the PENT manager

u € Uk+1
|
l PENT manager
V= target X predictive
TR extractor | — | update |~ J — | B ARy | o Ukt
T sz+1\k+1 UE}:+1|1¢+1 [ ]

In other words, the PENT(-based) manager computes the predictive PHD for each
possible control, and selects the control with the highest PENT. Definition 3.7,
however, gives no insight on the shape of the FOVs configuration provided by the
selected control. Proposition 3.3 does help a little on this point. Considering a con-
trol v € Uy with partitions (7,(p))pejo p,) and (Su(p))pep pu:

1. If x € T,(0), then vzu

k+1|k+1

Uz, 11 the expected target number in areas without any sensor coverage will

remain identical.

(.T‘Zl:k) = v;kﬂ‘k(az\ZM). Thus, UEZ-H\k-H[lTu(O)] =

2. If x € Ty(p), p # 0, such that Z}"” = (), then vy (@1 Z0) = Bol0p, 0, K" =

s, (1= (2)) vz, (2] Z0s). Thus, v=y | (L] < vz, [l the ex-
pected target number in areas covered by at least one FOV but without any extracted
target will decrease.

3. In partition elements p with at least one associated ideal measurement (27" # ()

or, equivalently, at least one extracted target (XK;E # (), the analysis on the contri-
bution of each measurement on the posterior PHD in section 2.3.1 suggests that the
expected target number will evolve toward the number of extracted targets [ X" "|.

This quick analysis suggests that the PENT manager is unlikely to dissipate the
sensors’ effort in unezrplored areas of the state space, but rather to focus on previ-
ously detected targets. Yet the PENT objective function is not entirely satisfying
because it shares the same default as the HPE: the PENT being a global criteria
which is based on the cardinality distribution of the predictive RF'Ss =}/ ket only,
the information given by the predictive PHDs on the target distribution is completely
discarded. For this reason, Ristic et al. [Rist 11a| argued that the PENT manager
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is expected to perform poorly in target localization problems and illustrated their
point on simulated data. The following example shows some situations in which the
PENT manager may appear ill-adapted for tracking purposes:

Example 3.6. Consider the two following predictive PHDs, for available controls
ur, Uz € Upgr:

Figure 3.10 Comparison of predictive PHDs (1)

UEul /UEUQ

Ny = Ny

X X

Controls uy and uy are equivalent regarding the PENT (N,, = N,,), thus neither u,
nor us 18 favored by the PENT manager. However, control u; provides more infor-
mation than uy regarding the localization of the estimated targets.

Then, consider the two following predictive PHDs, for available controls uz,us €
Ukg1:

Figure 3.11 Comparison of predictive PHDs (2)

VU=us =uq
vgus () — Vg )
Noug Nuy
Ny, = 2 N, =20
X X

Controls uz and uy are equivalent regarding the localization of expected targets (- U:]G—S() =
u3

UEJ\”}—“(')), but control uy is favored over control ug since its PENT is higher (N,, >
uy

N, ). However, either the WE or the HPE would extract the same information from
the two predictive PHDs.

The examples above are instructive because they illustrate a situation in which the
PENT objective function does not discriminate two controls while one may want to
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do so (figure 3.10) and, conversely, a situation in which the PENT manager makes
a decision that may appear irrelevant (figure 3.11). The next example is perhaps
more suggestive, because it shows a simple situation in which the PENT manager
makes the wrong decision:

Example 3.7. Consider the following predicted PHD vz at time k4 1:

k+1lk

Figure 3.12 Predicted PHD vz

k+1[k

VEkt1k

Ngpie = 1.1

That is, there is probably one target in the state space, whose state is estimated at
1 by the WPE. Assume that there is currently only one available sensor, producing
true measurements only (A\;,, = 0) and with no missed detection (p},, =1 inside
the FOV). Further assume that two controls are available:

e control ui: the FOV covers all the state space, i.e. p? (.) =1;
e control uy: the sensor is “shut down”, i.e. pl (.) = 0.

The ideal measurement set ZILTIE being reduced to a single element z; = pri1(Z1),
computing the predictive PHD is straightforward in both cases with corollary 3.1:

UEZ}ﬁl\k+l<.|ZLk>
=1
s ()L ()
N pu . Lzl-f-l .
= [ 1=, () + 98, (81) — S = e (- Z1:00)
\1,1_/ Hl,l_/ k+1ck‘+1('z1> —I—UEHl‘k[le Lkl+1] kt1|k
= — ————— ——
=0 =1

_ LZI-H (')UEkﬂ\k (1 Z1x)

VZky1k [L?H]

(3.27)
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Since pl (&1) =0, 'U'—Z_QH“H_I( |Z1.1) has an even simpler expression.:
st (1720

Py ()L ()

= | 1= pi, () +p0, () 7 | Vme (1 Z1)
jo 270 )‘k+1ck+1(21) Vi [pd Lk1+1] S
- v:k+1\k( | Z1:1) (3.28)
Then, the PENT objective function gives:
= L7
Rii1(uy) = vgm | = %’:ﬂ] -1
Tk+1|k+1 EHM[L,CJFI] (3_29)
Rk+1(u2) = Vzu2 [1] == v:k+1\k[1] - Nk+1|k =1.1

“k+1|k+1

Thus, regardless of the sensor measurement accuracy (that is, the shape of the like-
lihood function L, ), the PENT manager selects control uy, and shuts down the
sensor for the current time step.

Let Xyi1 = {z1,...,xn} be the true multi-target set. Since there is no false alarm
and no missed detections, should w, be selected, the current measurement set Zj.,
would nessarily have the same size N and equation (2.29) yields:

v:‘k+1\k+1( |Z1:k+1)
=1
20 ()
Dy, (- Lzﬂ .
= | 1—pf (2)+ - ! ve (1 Z0n)
—— ZE;MMHCM( )+v=k+1‘k[pil Ly | "

=0 :1

=1

Z LZ-H() Ek+1\k< |Zlik>

2€Zk11 ~k+1\k[Lz+1]

Thus:

U=k+1\k [LZ-H]

=2kl =N
2€Zk11 ~k+1\k[Lz+1]

Nitijkr1 = V5,0 1] =

Likewise, should uy be selected, the current measurement set Zy 1 would necessarily
be empty and thus:

U5k+1\k+1("Zl:k‘+1> = |1 _pgg (SL’) ~k+1\k( ‘Zl k) 5k+1\k<'|Zlik>
—0
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Thus:

Nitijp41 = vy, 1] = vs

1] = Nejae = 1.1

k+1\k[

That s, control u; will necessarily provide a better estimation of the target number
than us. Moreover, depending on the likelihood function, uy is likely to provide a
better estimation of the target distribution as well, as illustrated in the following

figures:

Figure 3.13 Posterior PHDs v= (single true target)

k+1|k+1

VEkt1 k41 VEkt1(k41

Nk+1|k+1 =1 Nk+1|k—|—1 =11

X

a) Control u; b) Control us

In conclusion, the PENT manager will select control us even if control uy provides:
e a better estimation of the target number, with certainty;
e a better estimation of the target distribution, with high probability.

To be sure, these examples do not prove that the PENT is unfit in every situations;
actually, it has been used in previous works. Wei et al. [Wei 08a, Wei 08b| designed
an interesting two-level sensors architecture in which the date update step is syn-
chronised for the sensors belonging to a given cluster, but sequential between each
cluster. The main filter is track-based, but the PHD formulation and the PENT
objective function are implemented in a predictive step designed to select the order
in which the clusters are to be processed at each data update step. In other works
[El F 08, Zate 08|, a PHD-based filter is implemented for a space object tracker and
the sensor manager is built on the posterior expected number of targets of inter-
est (PENTI), an extension of the PENT [Mahl 07¢| in which the state points are
weighted according to an interest function (i.e. the value of the PHD in all the state
space does not contribute equally to the PENT).

Note that the PENT manager is specifically designed for controls shaping the FOV
configuration, because the value of the PENT is much more sensible to the varia-
tion of the number of ideal measurements than, say, the variation in the shape of
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the likelihood functions (see the analysis on the contribution of measurements on
the posterior PHD in section 2.3.1). This point was addressed and illustrated in
simulated date in a recent paper by Ristic et al. [Rist 10b].

3.3.2 A new approach: the BET manager
Principle

The construction of the objective function based on the sole PENT seems to have
two major flaws:

e Conceptually, the PENT is difficult to translate in an “operational” objective;
e Theoretically, its model suffers from several inconsistencies (see section 3.3.1).

In consequence, the PENT manager performs poorly in certain situations as illus-
trated on simulated data in chapter 4.

The BET manager embodies a different approach than the PENT and aims at pro-
viding an efficient sensor management in situations where the sensor coverage is
lacking, i.e. the combined FOVs cannot cover the whole state space simultaneously.
The idea is to focus the sensors on a few points of the state space called tracks. The
term “track” should not be interpreted in the classical sense since the PHD filter
does not maintain such tracks, but rather as the presence of a target based on the
local value of the PHD. The tracks are extracted in areas of the state space where
the local weight exceeds a given threshold in a similar way as the weighted extractor
does (see section 3.1.2). More precisely, three kind of tracks may be extracted in a
PHD:

1. First, high tracks are extracted when at least Wy worth of weight can be
extracted in a region centered around a peak with a radius smaller than Ay;

2. Then, medium tracks are extracted when at least Wj; worth of weight can be
extracted in a region centered around a peak with a radius smaller than Aj;;

3. Finally, low tracks are extracted when at least W, worth of weight can be
extracted in a region centered around a peak with a radius smaller than Aj.

Since the local value of the PHD provides information on the target number and
localization (if any), the tracks can be exploited just the same way. A low track
indicates the existence of a target with low probability and with uncertain localiza-
tion, both the probability of existence and the precision of the localization increas-
ing with the track level. The values of the weight Wy > W, > W, and distance
Ay < Ay < Ay parameters are, of course, critical to the proper design of the sensor
manager. This point will be discussed later in this section.
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Figure 3.14 High, medium and low tracks
N > Wy

2
(11

X

Ay,

All the tracks are not necessarily worth being focused on. Depending on the context
of the surveillance activity and the geographical features of the ground, it is assumed
that the state space can be decomposed in exploration and tracking zones, in which
the main objective is respectively target detection and target localization. Thus, the
focus tracks are defined as follows:

Table 3.1: Focus tracks

Track level
Zone
Low Medium High
Exploration Yes No No
Tracking Yes Yes No

The qualitative analysis in section 2.3.1 suggests that, if a focus track is covered by
at least one sensor:

e [f there is a true target behind the track, the weight of the track will eventually
increase and the local shape of the PHD will sharpen; thus, the level of the
track will increase as well;

e Conversely, if the track is a false alarm, its weight will eventually decrease and
the track will disappear.

Thus, a first objective of the surveillance can be stated as follows:

Principle 1: in exploration as well as tracking zones, the sensors should cover as
many focus tracks as possible, until they either disappear or become non-focus tracks.

The difference between the exploration and tracking zones being, as indicated by
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table 3.1, the threshold between “uncertain targets” (focus tracks) and “certain tar-
gets” (non-focus tracks). Besides, if a non-focus track is not covered by any sensors,
the local shape of the PHD should “flatten” during the successive time update steps
as the uncertainty about the localization of the target grows. That is, the level of
the track should eventually decrease and the track should be granted the “focus”
status again.

Yet this principle is not sufficient, because it does not priorize the actions of the
sensors if the number of focus tracks exceeds the covering capacities of the sensors.
In order to avoid the sensors from wasting their resources on too many tracks, it was
decided that the sensors should focus on the “most promising” tracks, that is, those
whose level should increase were they covered by at least on sensor. This leads to
the second general objective:

Principle 2: the best controls are those which are likely to promote the highest
number of focus tracks to the non-focus status.

Depending on the quality of the sensors, though, a focus track could require a sensor
coverage during several successive iterations before being promoted to the non-focus
status. Hence the last principle:

Principle 3: among the controls that are likely to promote the same number
of focus tracks to the non-focus status, the best ones are those covering the highest
number of focus tracks.

Figure 3.15 Data flow of the BET manager

u €U k41
BET manager
sensor | 1+,
coverage f lexical
Tf F T
L u order on I
T ™, |TS
(=N N track predictive track (T2 1)
extractor update extractor
TS s
| “ ol “
¥ :%+1|k+1
Ektilk

The data flow of the BET manager can be summarized as follows:

1. The non-focus tracks are extracted from the time udpated PHD Vg4 1 and
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the corresponding weight is removed from the PHD. The resulting PHD vl has

Skt1)k
thus been removed from “certain targets”.

f

Er

2. The focus tracks T/ are extracted from v
is kept in the PHD.

e but the corresponding weight

3. For each available control u € Uy 1, the tracks among 7/ that are covered by
the sensors under control u are stored in 7.

4. For each available control u € Ugyq, the PIMS is constructed according to
definition 3.5 with T as input. Then, the predictive PHD is computed according to
proposition 3.3, with the reduced vékﬂ , as input. The resulting PHD is véu

\ E+1lk+1

5. For each available control u € Uy, the non-focus tracks are extracted from

ok, and stored in T/,

Sk1]k+1
6. The control with the highest number of non-focus tracks |77/ is selected.
If there are ties, the control which covered the highest number of focus tracks |T/|
is selected. If there are still ties, the control is chosen at random.

The BET manager share the same basic features as the PENT manager (see fig-
ures 3.9 and 3.15) by following the pattern “object extraction — predictive update
— evaluation of the predictive PHD”. The key difference lies in the nature of the
extracted objects. While the PENT considers the estimated targets that can be
extracted from the time updated PHD, the BET ignores the well-extracted targets
and directs the sensors toward unknown regions by artificially creating tracks which
can be seen as “weaker” versions of targets.

Computational cost: qualitative analysis

In the PENT as well as in the BET manager, the computational cost lies mainly
in the predictive update. Clearly, the computational cost of the exact predictive
multi-sensor PHD (proposition 3.3) increases dramatically with the number of ideal
measurements, thus with the number of extracted targets/tracks and the overlap-
ping of the FOV configuration (recall that a target/track will produce one ideal
measurement per sensor whose FOV covers its position). Thus, it is almost always
“safer” to approximate the predictive update with the much lighter ICA (corollary
3.1).

In any case, the computational cost of the BET manager can be significantly re-
duced by discarding some controls u € Uiy before the predictive update. Indeed,
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recall from the second principle before and the data flow (figure 3.15) that the first

selection criteria is the number of non-focus tracks in the predictive update vl

These non-focus tracks must necessarily stem from some increase in the valuekg%‘iﬁe
PHD during the predictive step, since by construction the input PHD vékﬂ‘k has
been removed from its non-focus tracks. Consider an available control u € Uy, that
covers no focus tracks (T = (). Then, the ideal measurement set will be empty as

well and proposition 3.2 with Z}%% = () gives:

vl (2| Z1:1) = B0p, 6] K 3!

“k+1]k+1
s
d,j
=TI - P @, (o] Zu)
j=1
< U£k+1\k<x|zlzk)
Thus, no non-focus tracks will be extracted from the predictive PHD viz e that
Zk+1)k+

is, |T"/| = 0 with probability one. Consequently, the available controls that covers
no focus tracks can be discarded without loss of performance for the BET manager.
Arguably, the control that is likely to produce the highest number of non-focus tracks
is among the controls that covers a large number of focus tracks. Thus, the computa-
tional cost of the BET manager could be further reduced by processing the available
controls by decreasing number of covered focus tracks, and stop whenever the com-
puting time or the number of processed controls exceeds a given limit. However,
there is no guarantee that the control producing the highest number of non-focus
tracks will eventually be processed and therefore be selected.

Design challenges

The BET manager is a first approach in sensor management and was mainly designed
upon the author’s understanding of the mechanics and flaws of the PENT manager.
Arguably, the conception of the BET manager brings two major issues:

e the predictive update equation depends on some extraction process that falls
outside the PHD framework;

e the values of weight Wy, Wy, Wy, and distance Ay, Ay, A parameters are
critical to the BET peformance.

The first issue is shared with the PENT manager and does actually exceed the sen-
sor management framework. As discussed previously, the predictive PHD is built
as an expectation (definition 3.3) that requires an extreme simplification to become
tractable (see section 3.2 for a detailed explanation). An interesting lead for further
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work could be the design of a predictive PHD in an entirely different manner, but
this point is beyond the scope in this thesis.

The second issue, however, is specific to the BET manager. The problem lies in
the fact that the track thresholds depend on many parameters of the system, no-
tably the target motion model and the sensor parameters. Consider, for example,
the task of setting the parameters (Wy, Ay). Suppose that a high track lies in a
tracking zone with no geographical elements. Since the track is high, it is a non-focus
track; thus it will be ignored by the sensors. The track motion is relatively free of
constraints, thus the local shape of the PHD should flatten significantly during the
successive iterations when the track is not covered. Thus, one may think of setting
restrictive values for the high level (say, Wy = 0.9, Ay = 10) to ensure that an un-
observed high track is quickly demoted to the medium level and therefore becomes a
focus track again. Consider now a medium track moving along a road in a tracking
zone. With the values above, the sensors will waste resources trying to raise the
level of this focus track, even if, the motion of the track being relatively constrained,
excessive use of sensors in this region may be superfluous. This particular situation
would require a lower thereshold for high level tracks (say, Wy = 0.8, Ay = 30).
Not surprisingly, the parametrization of the threshold for the medium track is even
more critical, since it influences the sensor management in both exploration and
tracking zones. A solution may be to make the thresholds dependent on the track
position in the surveillance region (or, more generally, on the track state), but this
has not been explored yet.

3.4 Conclusion

This chapter covered all the elements pertaining to the design of a simple sensor
manager within the PHD framework. First of all, the target extraction process
was discussed and a solution based on the extraction of weight in the PHD was
implemented. Then followed the rigorous construction of the predictive PHD, based
on the PIMS proposed by Mahler. Similarly to the data update step in chapter 2, the
predictive step was simplified without approximation thanks to a joint partitioning
method. The last part was devoted to a discussion about Mahler’s PENT manager
and its inconsistencies on simple examples, followed by the proposition of a new
sensor manager - the BET manager - based on a different and more “operational”
approach to the sensor management problem.
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CHAPTER

Implementation and results

His chapter deals with the practical implementation of a multi-sensor PHD filter
T (chapter 2) and a BET manager (chapter 3) in a detection and tracking prob-
lem. The algorithms were implemented in Matlab for the most part, some routines
were written in embedded C code. The first section deals with the modelization
of a surveillance scenario. The next section describes the SMC implementation of
the PHD filter and the BET manager. Finally, the last section provides the main
simulation results.

4.1 Scenario modelization

In this chapter, the sensors are assumed to be fast enough compared to the targets
so that the time step in the filtering flow (see figure 1) is driven by the target motion
model. The duration between two time steps is arbitrarily set at A; =1 s.

4.1.1 Target modelization
State space

A target state x € X has two position variables and two velocity variables. The
state space X C R* is the bounded subset such that z = [2¢, y¢, 2¢, 7|7 € X if and
only if:

c ,c def [ ¢ c c c
(SL’ Y ) S R = [xmln xmax] X [ymln ymam] (4 1)
()2 + (9°)* < Vimaa
where x¢.  x¢

C ins Loy Yo Y Umae are given boundaries. Their values should be
adapted to the underlying physical problem. In this thesis, (z¢ y¢) are coordi-
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nates in meters and R is arbitrarily set as an area of 1 square kilometer, i.e.
R = [0 1000] x [0 1000] m?). Besides, since the targets are ground-based and
A; =1 s, one may safely assume that a target will not move more than 10 meters
between successive time steps, thus the maximum velocity is set at v,nq, = 10 m.s~ L.

Note that a true target has an implicit fifth state variable, namely its label. A
label is uniquely attributed to each target when it is created for the whole duration
of the simulation - i.e. a label is unavailable if it has already been granted to a
previous target, even if this target has already died. The true targets at time step
x are gathered in the set Xy = {} };c;) where I(k) C N* is the set of current true
target indices.

Free model

This first target model is “generic” in the sense that the target motion is not in-
fluenced by the local topography of the surveillance region. This simple model
was specifically designed for comparison purpose between filtering techniques and is
based on the following assumptions:

e the number of newborn targets at each time step is Poisson;

e the newborn targets are uniformly distributed in the state space;

e the target motion model is the near-constant velocity (NCV) model [Li R 03];
e a living targets die when (and only when) it leaves the surveillance region.

The pseudo-code of the free model is given in algorithm 1.

Note that the parameters of the model, the birth intensity A}_,, and the stan-
dard deviations o}, o7, are independent of the target state but may depend on the
time step. It is interesting to have a large variation in the target number during the
simulation, one way to achieve this is to set a periodic birth intensity as follows:

k
A = Acos (2#—) (4.2)
s T)\

Typical values of the parameters are A = %, T\ = &0.
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Algorithm 1 Free target model (time k)

input: Target set from previous iteration: {z;}icr—1)
output: Target set from current iteration: {z;}icr)

Target evolution
forie I(k—1) do
Target motion

212
Compute white noise acceleration: a ~ N ({O] , [U’;] )

Compute new target state:

10 A 0 (A)2/2 0
o1 oo oA 0 (A2
T < 00 1 0 ZL‘Z7]§_1+ At 0 a

00 0 1 0 Ay

Velocity normalization

if /(é5,)2 + (35)° > Voo then

GBS, 4 S, e

ik ik /(xf,k)QJr(yf,k)Q

el e V.

C <_ ¢ max

Yok S Yok TG
end if

Target survival

if xf,k ¢ ["L‘fmn x%mm] and yzc,k ¢ [yﬁmn yﬁnam] then

Discard target i: I(k—1) <« I(k—1)\4
end if
end for

Target birth
Compute newborn target number: N, ~ Poisson(\,_; ;)
Select next N, available labels: I,(k)
for i € [,(k) do
Compute new position coordinates:
@i g ~ U@ Tnaz))s Uik ~ UYiin Yrmazl)
Compute new velocity coordinates:
0 ~U([—7 7]), v ~ U([0 Vynaz])
@y <= veos(0), yiy < vsin(0)
end for
Update set of living target labels: (k) <— I(k — 1) U I,(k)
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For simplicity’s sake, the standard deviations o} and o} are fixed, the typical values
are of = oy = 1. A free scenario of 400 time steps looks as follows:

Figure 4.1 Example of free scenario

Target number

(m)
T

50 100 150 200 250 300 350 400 0 100 200 300
Time step

Ground-based model

This second target model was designed for the specific purpose of sensor management
evaluation on more “realistic” scenarii than those based on the free model above. The
structure of the ground-based model is similar to the free model, but the birth and
evolution of the targets are influenced by geographical elements in the surveillance
region.

The influence of nearby elements on the target evolution is encapsulated in the
influence vector and influence parameter:

(a[,()q) X —)RQ X [0 1]
x> (ar(z), ar(x)) (4.3)

The influence vector a;(z) has the same unit as a acceleration and indicates the
“favored motion” of a target in state x given the nearby elements such as:

e roads: targets getting closer to a road tend to follow the road as a general
direction;

e obstacles: targets cannot reach these “forbidden zones”.

A target xy, evolves according to the NCV model in algorithm 1 except that the accel-

eration is drawn with mean a;(xx) and with reduced variance [af(x)of,, oy(2)of 4]
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Figure 4.2 Groud-based influence on target x

b, = |k
(@5, Yk) S s

0, 4+ Agdr(zr)

Y

I
g1 ~ Uk + AN (C_i](l'k)v [Zl(mk)al'f/“} )

1(Tr)oy

al(xk)

The influence parameter is tuned such that it decreases when the target becomes
close to geographical elements, that is, a target is less likely to “wander around” in
the vicinity of roads or obstacles.

Besides, after a target has moved or has been created, one must check that the
target is not inside an obstacle. In this case, its position is moved to the nearest
point outside the obstacle, and its velocity vector is modified so that the target
moves along the obstacle rather than bump into it in the next iterations.

The number of newborn targets is still Poisson, but the targets are not necessar-
ily drawn uniformly in the state space. For example, the newborn targets may be
created along the edges of the surveillance region, with a velocity vector pointing
inward. In the following scenario (figure 4.3) the newborn targets are distributed
according to:

Tjpp =0

yli—f—l ~ N(8007 100) (y;nn < yli—f—l < yfnax)
i 1 = v eos(d)

e . T
yi,k—l—l = USIH(G) (9 ~ Z/{ ([_5 5]) , U Z/{ ([0 Uma:v]))

that is, the targets are coming from the left and presumably from the road. The
other parameters A, T\, o}, and o} 41 have the same values as in the free scenario
presented before.
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Figure 4.3 Example of ground-based scenario (roads in black, obstacles in gray)
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The main interest of this model is its ability to simulate a broad range of ground-
based target behaviors with a limited computational cost. Compared to the free
model, the ground-based model requires the additional computation of the influence
vector for each target. This step, however, can have a significant cost in regions
with several elements (e.g. road crossings). The field of influence vectors being
static, it can be approximated by an offline evaluation of the field on a grid-based
discretization of the state space. A relatively coarse grid is sufficient for a proper
implementation of the model (respectively 200 and 10 knots in the position and
velocity dimensions).

4.1.2 Sensor modelization

In this thesis, the sensors are ground-based and their position in the surveillance
region is fixed. The FOV F7 C X is determined by the direction of focus u:

Figure 4.4 Shape of sensor FOV FY in the surveillance region (gray area)
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where ¢, r7 and R’ are constant parameters of sensor j. Note that the FOV shape
may be significantly truncated in examples such as the following:

Figure 4.5 Example of truncated FOVs
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It is important to note that the FOVs are defined in the position subspace only, i.e.
the detection probability for a target = does not depend of its velocity (¢, ¢¢). The
detection probability is considered uniform inside the FOV and, for any available
direction u{c

PHI() = P14 () (4.4)

where p®J is a constant parameter of sensor j, typically around 0.9.

The dimension of the observation space Z7 depends on the class of the sensor,
the ideal measurement (see definition 3.4) is built as follows:

Figure 4.6 Ideal measurement p (2, )

If sensor j is 1%¢ class:

pr(xig) = [r] 1, 07 01"

(mf,kv yic,k)

znd

If sensor j is class:

\9 P(ige) = [ 0 s Tk
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Clearly, the measurement functions are not bijective. Recall from chapter 3 that
the injectivity is needed for the theoretical construction of ideal measurement sets
(equation (3.8)), while the bijectivity is needed for the construction of the predic-
tive observation RFSs (equation (3.9)). However, these issues are hardly relevant
in practical implementations. First, an ideal measurement set would be ill-defined
if two different targets x;, x5 shared the same ideal measurement (pl(z1) = pi(22))
this would imply (figure 4.6) that they shared the same position coordinates in the
surveillance region (z§ = 25 and y$ = y5) which is unlikely since there is no spawn-
ing and the targets evolve independently from each other. Then, the construction
of predictive RF'Ss requires only that, for any ideal measurement z, the quantity
pﬁvj((p,iﬂ)_l(z)) is properly defined. On the one hand the measurement functions
restricted to the position coordinates in X and corestricted to the polar coordinates
in Z7 are clearly bijective, on the other hand the detection probability p®/(z) does
not depend on the velocity coordinates (i€, y¢), thus p®/((p},,) " (2)) is well-defined.

The noise in the measurement process is assumed to be additive white Gaussian

noise on each dimension. If measurement 2 , = [ffnk,éfnk,ffnk]T stems from x;
then: A A -
P ~ N (174 (07)7)
ein,k ~ N(ez]',lm (Ué)Q) (4.5)
Hm,k ~ N(ﬁ,ka (Uﬁ)Q)

where parameters o7, o) and o7 (if 2"¢ class sensor) are assumed constant. Note that
there is no correspondance between measurement subscripts m and target subscripts
7 since the mapping between measurements and true targets is unknown.

The special case where the drawn measurement falls “outside the FOV” (i.e. 2 ¢
pr.(F7)) must be addressed in order to avoid inconsistencies in the measurement
process. Two leads were followed:

e resample the measurement;
e “move” the measurement to the closest point in pJ (F7).

The first method is very simple since it does not require any additional algorithm,
yet it may never converge if the FOV is very small (typically when the whole FOV is
heavily truncated, see figure 4.5). The second method brings a stronger bias in the
distribution of the sampled measurement, especially when the origin target is close
to the FOV’s edges. However, it is computationally safer and therefore was selected.
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The likelihood function L;7(.) is given by:

( S 2 S 2
[ (T 0] 1Ok
2 7 + 7
j ) e I i
zm,k7j _ st
L, () = — (1% class)
2royo
Lt (4.6)
[ (e n 01 kO k " e Tk
A e " o " J
L, (2y) = —— (2™ class)
\ (m)ololo]

The false alarm process is a classical model for radar sensors. The reduction of the
FOV to the position subspace (the gray area in figure 4.4) is partitioned in elementary
cells (one degree of arc wide and one meter long) such that the occurence of a false
alarm in each cell is an independent Bernouilli process with the probability of false
alarm pga’j as parameter. Since the number of cells is very large and the probability
of false alarm very low (usually around 10~°), the number of false alarms is accurately
approximated as Poisson with intensity:

(R7 —17) (4.7)

and each false alarm is drawn uniformly in p/ (F/). The easiest way to deal with the
truncated FOVs is to ignore them in the drawing process (i.e. draw the false alarm
number according to (4.7) and distribute the false alarm measurements uniformly
in the FOV shape), then discard the false alarms that falls outside the surveillance
region. Note that the false alarm term in the expression of the cross-terms (see
proposition 2.5) is independent of the measurement itself thanks to the uniform
draw:

V2 € pp(F), N (2) Kz = " (4.8)
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Algorithm 2 Measurement process from 2"? class sensor j (time k)

input: Target set from current iteration: {;}icr)
output: Measurement set from sensor j: Z; = {zfﬁ}me[l mi]
k

True measurements
Initialize measurement counter: m <« 0
for i € I(k) do
Draw random variable: p ~ U([0 1])
if 7, € FJ and p < p%/ then
Computation of a true measurement
Increment measurement counter: m <— m + 1
Compute ideal measurement: p (z;;)  [r fk, 07 Tk
Compute noisy polar coordinates:
e N(Tz{kv (Ug)z)a 0~ N(@ik, <0g>2)
Compute noisy radial velocity: I~ /\/’(7’“?716, (a7)?)
T

]T

A A

Store true measurement: 2z, K 7,0, 7]

Validity check of the true measurement
if =1, ¢ pi(F)) then
Move to closest valid measurement: z]mk argmin, i) dzi(z, zﬁnk)
end if
end if
Update measurement number: mf; —m
end for

False alarms
Compute false alarm parameter: (7 < pka’J 180.67 (Rj — )
Compute false alarm number: m/® ~ Pozsson()\k )
for m =1 to m/® do
Computation of a false alarm measurement
Compute random polar coordinates:
P U R, 6~ U — % o] + %))
Compute random radial velocity: r ~ U ([ Umaz Umaz))
Store temporary measurement: z < [7, 6, 7|7

Validity check of the false alarm measurement
if 2 € p/(FJ) then
Update measurement number: mi — mf% +1
Store false alarm measurement: zfn P
end if :
end for
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4.2 Implementation of the multi-sensor PHD filter

4.2.1 GM vs. SMC methods

The equations of the PHD filter (2.14), (2.53), (2.63) and the predictive PHD (3.17),
(3.23) have no closed-form expression in the general case, notably because of the pres-
ence of integrals over the state space X. The integral appears explicitely in (2.14), in
other equations through the cross-terms that are not derivated in a state point (e.g.
B0, 1] or B[dg.1 .2y, 1]). Since the beginning of the PHD filter, two different imple-
mentation techniques have been enjoying a wide popularity: the Gaussian mizture
PHD (GMPHD) and the sequential Monte Carlo PHD (SMCPHD) .

The GMPHD filter is a closed form expression of the PHD equations in the par-
ticular case where the target dynamics and measurement model are linear Gaussian,
although it can be adapted to a broader range of situations by replacing the Kalman
filter equations in the GMPHD by their linearization as in the extended Kalmal fil-
ter, or their approximation as in the unscented Kalman filter [Pace 11|. This model
assumes that the intensities of the birth and spawning RFS are Gaussian mixtures,
and that the probabilities of target detection and target survival do not depend on
the target state. Then, it can be shown that the time and data updated PHDs are
also Gaussian mixtures with a closed form expression. The GMPHD has been used
in numerous recent tracking algorithms [Pant 09, Lee 10, Lund 11] and an imple-
mentation of the GMCPHD, the extension of the GMPHD to the CPHD filter, is
given in [Ulmk 10].

The SMCPHD filter has been first implemented by Vo et al. in [Vo 03, Vo 05].
As its name suggests, this method aims to apply SMC methods for Bayesian filter-
ing [Douc 00] to PHDs rather than usual probability densities. Since the PHD is
a first-order moment density, it is unnormalized and do not follow the usual Bayes
recursion; Johansen et al. [Joha 05] studied and proved the convergence of the SMC
implementation of the PHD under reasonable assumptions. The SMC implementa-
tion is specifically designed for highly nonlinear systems, but requires fine-tuning to
be efficient. In the SMCPHD framework, the choice of importance functions for the
prediction and the birth of particles is known to be a difficult task and an active
research topic |Rist 10al. Besides, the accuracy and the computational cost of the
SMC implementation both increasing with the number of particles, its tuning is also
critical to the quality of the SMC implementation.

Pace [Pace 11] compared the GMPHD and SMCPHD filters on scenarii with a
constant number of targets evolving according to an interacting multiple model
composed by a constant velocity model and a constant-turn model perturbed with
random accelerations. The results show that the GMPHD filter outperforms the
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SMCPHD filter in both estimate quality and computational cost. To be sure, the
quality of the SMCPHD filter increases with the number of particles, but the compu-
tational cost also increases (linearly) and is not adapted to a large number of targets.
In the scope of this thesis, however, the SMC implementation seemed more natural
since the ground-based evolution model (see section 4.1.1) is highly nonlinear and the
independence of the survival and detection probabilities with the target state seems
incompatible with the FOV-oriented sensor management. The SMC implementation
presented in the next section is largely based on the SMCPHD filter given in [Vo 05].

4.2.2 SMC implementation

The principle of the SMCPHD is to propagate a set of weighted particles approxi-

mating the successive predicted V4 1k and posterior Uy 15y, PHDs rather than the
full PHDs. At each time k:
Ltk
vz (1 Z1n) Z w10, 0.0 (4.9)
Lk+1
0]
v:k+1\k+1 |Zl k+1 Z wk+15 I(cl~)ﬁ»1 . (4.10)

This section describes the successive operations of the SMCPHD at time k+1, whose
goal is to modify the set of weighted particles as follows:

o !
{xlg)>wl(c)}l€[1 Ly — {xl(cJ)rl’ k+1}16 1 Lyyi] (4.11)

The different operations can be summarized as follows:

O] O]

1. Evolution: {xk ,wk)}lel L) = AT Wi hen s

. l l 1 1
2. Model-based birth: {x,(cil|k,w,(§il‘k}l€[1 L] — {x,(cil|k,w,(§il‘k}le[1 Ly Teas

3. Selection of control uzzjfl € U1 and production of measurement set 7, 1;

4. Measurement based birth:

O] .
{karl\k’ k+1|k}l€ 1 Lj+Jega] =7 {xk+1\k7wk+1|k}le[1 Ly jx)s

: . O] O] 0] ~ (1) .
5. Weight update: {xk+1|k>wk+1\k}l€[1 Lysas] = {xkﬂ\k’wkﬂ\k}le[l Ly ix)s

. 1 (1 1 1
6. Resampling: {x,(ﬁ)qlk, w,(ciuk}lep Lipax) — {$;g)+1>w1(c}r1}le[1 Lk
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Note the presence of two particle birth steps. The first step follows the target cre-
ation model and adds the appropriate weight in the filter. It should be sufficient
in theory, but the filter was impractical as too few newborn particles appeared in
the vicinity ot the measurements. Thus, additional particles are created around the
measurements to ensure that at least a few particles remain around after the re-
sampling. This solution is somewhat unsatisfying and should be corrected in future
improvements of the filter.

For simplicity’s sake, the operations are described assuming that the targets follow
the free motion model. Should the opposite occur, one must modify the prediction
and birth steps to account for the influence parameters and the obstacles as ex-
plained in section 4.1.1.

Particle evolution

This operation aims to approximate the evolution process described by the integral
part in the time update equation (2.14), that is, the evolution of surviving targets
from the previous iteration. Assuming that there is no spawning, the new particles
should be drawn as follows [Vo 05]:

Vi€ [1 Lic), 2}y ~ quna (e Ze) (412)
s l l l
o pk,k+1(xl(c))fli,k+1(xl(g-)|-1\k|xl(g)) )

VI €1 L], wpyyy, = wy, (4.13)

l !
Qe (@)l Zian)

where qk+1(.|x,(j), Zy.+1) is an appropriate importance function (see appendix B for a
general description of importance sampling). The target motion model (especially
the ground-based one) proved to be too challenging to design a proper importance
function; besides, the current measurement set 7 is not available since the sensor
manager has not chosen the multi-control yet. Thus the particles are drawn accord-
ing to the target motion model itself.
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Algorithm 3 Particle evolution (time k + 1)

input: Particle set from previous iteration: {xl(f), w,(j)}le[l il
output: Evolved particle set from current iteration: {xg)H'k, wl(cljrl\k}lé A

Particle evolution
for[=1to L; do

Particle motion

Compute white noise acceleration

o~ (o] [&])

Compute new particle state:

10 A 0 (A)2/2 0
0 01 0 A 0 (A)?/2
T g 0 1 0 | TR T A, o |
00 0 1 0 Ay

Velocity normalization

0), l),c
if \/ xéll‘k 2 yli}rllk)Q > Upmae then

(l)7 (l)7 U
T — oz
k+1lk k+1lk \/('x(clif\k) HZ)&TW)Q
( ) ( ) Umazx
Uritle < Urrip e
| V(IR iR
end if

Particle survival
if xk-l—l\k ¢ [ Linin mam] and yk.;_l‘]g ¢ [yﬁmn yﬁnam] then
Discard particle [
end if
end for
Reorder remaining particle labels: [1 L] — [1 L}]

Model-based birth

This operation aims to approximate the birth process described by the non-integral
part in the time update equation (2.14). The newborn particles should be drawn as
follows [Vo 05]:

V€ [Ly+ 1 Ly + Jual 7)1 ~ it (1 Zisr) (4.14)

!
1 )‘Z,k+1bk,k+1<x/(§i1\k)

(4.15)
Jk-i—l Pk+1 (xl(cl—)f—l|k|Zk+1)

VielL,+1L, + Jkﬂ],wgnk —
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where pri1(.|Zky1) is an appropriate importance function. The current measure-
ment set Zp.1 is not available since the sensor manager has not chosen the multi-
control yet. Thus, the particles are drawn according to the normalized birth intensity
bi x+1(.). A sound choice in the particle number is to keep the ratio of particles per
target as constant as possible [Vo 05|, thus the number of newborn particles is set
as proportional to the expected number of newborn targets:

Jpr1 = round(pT)\kaH) (4.16)

where pp is the desired particle-per-target ratio. Note that the total weight brought
by the newborn particles is the expected number of newborn targets:

L+ J, b 0 L\ +J
k +1 kTYk+1 yb
1 )‘k,k+1bk7k+1(‘rk+1\k) k41 b
= =\ (4.17)
Jk L b 0) Jk L k,k+1
I=r, 41 “FF bk 1 (T 4qp,) = +1 “FTF

Algorithm 4 Model-based particle birth (time &k + 1)
input: None
: ! !
output: Newborn particle set: {xélllk,wé}rl‘k}le[%ﬂ Lyt Tep]

Target birth
Compute newborn particle number: J;,q < round(pT)\zvkﬂ)
for | =L, +1to L, + Jy1 do
Compute particle position:
T~ U T 7))y Ui~ U(Win Ynas))
Compute particle velocity:
9(’7 U([= 7]), v~ U([0 vimaz])
l),c

. (1),c .
ki1 < veos(f), y()”k < vsin(h)

Z k+

1 i O Ai,kﬂ
Set particle weight: Tiba < T
end for

Sensor management

As illustrated in the PENT (figure 3.9) and BET (figure 3.15) data flows, these
sensor managers are composed of the following processes:

e a predictive update step;
e a target extractor (PENT only);

e a track extractor (BET only).
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The predictive equation (proposition 3.3) is essentially the combination of the con-
struction of ideal measurements (see algorithm 2) with a data update step, described
by algorithms 8 and 9 below. Thus, its implementation need not be detailed here.

The SMC implementation of the weighted peaks extractor (definition 3.2) is straight-
forward, the only real issue lies in the research of a global maximum at the beginning
of an extraction. Indeed, if the particles have just been resampled, all the weights
are equal. In this case, the extraction of a new target should be started in areas with
the highest concentration of particles. This problem was solved with a grid-based
approach: the state state is discretized in knots and the weight of each particle
contributes to the weight of the closest knot. Because the particle from which the
extraction is started is not critical, a relatively coarse grid is sufficient (respectively
200 and 10 knots in the position and velocity dimensions). Note that the target
extractor may be used at any moment during an iteration, thus the time subscripts
have been omitted in the pseudo-code (algorithm 5).

Note that the peak enlargement process has been discretized. The incremental step
0 must be properly tuned: a smaller value increases the computational cost of the
extraction process, while a larger value decreases the accuracy of the extraction (the
neighborhood weight W,, may significantly exceed the target weight W;). Besides,
the radius of the peak upon which the target extraction is based is capped by A,qz
in order to avoid extracted targets with excessive covariances. In the simulations
presented in this chapter, these parameters are set at values § = 2, A,,.. = 200.

The track extractor is very close to the weighted peak extractor but for the fact
that:

e the former extracts as many tracks as possible while the latter extracts a
number of targets fixed beforehand;

e the former provides a reduced PHD as output (see section 3.3.2).

As for algorithm 5, time subscripts are omitted for clarity’s sake in algorithm 6.
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Algorithm 5 Target extractor

input: Copy of the current particle set: {20 O}
output: Set of extracted targets: X"W¥

Target number and target weight

Compute estimated target number: N « 5 w®

Compute extracted target number: N < round(N)
Compute target weight: W, « %

Grid initialization

Get grid knots: {z,, w, < 0}gec

for [=1to L do
Find closest knot: g. + argmin, dxy(x,, ")
Update knot weight: w,, + w,, + w®

end for

Target extraction

for n=1to N do
Peak extraction
Compute heaviest knot: g, < arg max, w,
Compute peak: [, = arg min; dx(zg,, x®)
for /=1to L do
Initialize distance-to-peak vector: D(I) ¢+ dy(z®, z()
end for

Target extraction

Initialize distance: A < 0

Initialize neighborhood weight: W, <— 0

Initialize neighborhood set: L,, < ()

while W,, < W, and A < A,,,.. do
Update neighborhood set: L, < {l € L | D(l) < A}
Update neighborhood weight: W, <>, w®
Update distance: A < A+ 4§

end while "

Extract new target: Z,, <= » ., vz

Weight removal

Compute reduction factor: a <— min(1, m;)

forl € L, do
Find closest knot: g, + argmin, dx(z,, ®)
Update knot weight: w,, + w,, — aw®
Update particle weight: w® < (1 — a)w®
end for
end for
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Algorithm 6 Track extractor

input: Copy of the current particle set: {z(® w®},cp
input: Exploration zone: X C X

input: Tracking zone: Xr C X

output: Set of focus tracks: T/

output: Set of non-focus tracks: T/

output: Reduced particle set: {2 &0},

Initialization
for/=1to L do
Initialize reduced weight: w® < w®
end for
Initialize grid (alg. 5)
Initialize track sets: 77 < 0, T™ < ()

Track extraction
Initialize extraction flag: f. < 0
while f, =0 do

Peak extraction

See alg. 5: [,, D(:)

Target extraction
Initialize distance: A < 0
Initialize neighborhood weight: W, < 0
Initialize neighborhood set: L, < ()
Initialize enlargement flag: f; + 0
while f; =0 do
Update neighborhood set: L, <~ {l € L | D, < A}
Update neighborhood weight: W, < >, ., w®
if A <Ay then
if W,, > Wy then
Extract track from input particle set {z(®,w®} (alg. 5): &
Compute reduction factor: o + %
forl € L, do !
Update reduced weight: @@ « (1 — a)w®
end for
if € Xp U Xy then
Update non-focus track set: T < 7™ U {%}
end if
Weight removal (alg. 5)
Update enlargement flag: f; < 1
end if
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else if A > A,,; then
if W,, > W), then
Extract track from input particle set {z(, w®} (alg. 5): 2
Compute reduction factor: a < %
if i € X7 then '
Update focus track set: TV «+ T/ U {7}
else
for € L, do
Update reduced weight: ©® < (1 — a)w®
end for
if £ € X then
Update non-focus track set: T « T U {3}
end if
end if
Weight removal (alg. 5)
Update enlargement flag: f; <1
end if
else if A > A then
if W,, > W, then
Extract track from input particle set {z, w®} (alg. 5): 2
Compute reduction factor: a < %
if & € Xp U Xy then '
Update focus track set: T/ + T/ U {1}
else
for € L, do
Update reduced weight: @@ < (1 — a)w®
end for
end if
Weight removal (alg. 5)
Update enlargement flag: f; < 1
end if
else
Update enlargement flag: f; < 1
Update extraction flag: f. < 1
end if
Update distance: A <~ A+ 9
end while
end while
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Measurement-based birth

The birth of particles according to the target creation model only proved to be in-
efficent, because the number of particles around new measurement was usually too
small to maintain a presence to the next iteration. Thus, it seemed necessary to add
particles around the new measurements. These particles must be granted an initial
weight large enough so that they do not disappear in the first resampling step follow-
ing their creation, but small enough to limit the bias. The undesired consequence is
that false alarm measurement will more often than not be seen as true targets, but
these particles usally disappear after a few iterations if they are not confirmed by
a new measurement. This solution is obviously unsatisfying and suggests that the
filter is likely to fail in low SNR scenarii.

A fixed number of particles are assigned to each new measurement, this number
pyv may be chosen somewhat smaller than the number of particles per target pr.
This reduces the computational load of each measurement, and the number of parti-
cle will increase in future iterations if new measurements increase the weight in the
vicinity. The new particles are spread around the new measurement in the position
subspace according to the sensor parameters, and spread uniformly in the velocity
subspace.

It was decided that, since only targets inside the FOV FJ may be detected by
sensor j, all the newborn particles created following new measurements by sensor
j must fall inside 7 or be moved to the closest point inside. One may simplify
the implementation, supposedly with little effect, by either discarding any particle
created outside the FOV, or even ignoring the validity check. In this latter case,
though, one must still check that the newborn particles belong to the state space.

Weight update

This operation aims to approximate the data update step given by equation (2.63)
with the current measurement set Z;,; as input. The first step is to implement
the joint partitioning (definition 2.9). Note that, in the SMC framework, the cross
relation (2.57) between two sensors must be adapted. Assuming that the selected
control is u € Uy y:

Vi, j € 18], iRuj < (A €1 Liyipl, 2, € FiNFI) (4.18)
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Algorithm 7 Measurement-based particle birth (time k + 1)
input: Current measurement set: Zj,

. ! !
output: Newborn particle set: {xéi”k,wéll‘k}le[LHJkHH Ly 1je]

Particle birth
Initialize particle counter: L < Lj + Jy4q
for j =1to S do
for m =1 to mi*" do
Get polar coordinates of measurement: z;7k+1: (7,0)
for|=L+1to L+ py do
Computation of new particle state

Compute noisy polar coordinates: r ~ N (7, (67)2), 8 ~ N (0, (03)?)

l),c c l),c c 3
,(F)rl‘k —ai+r cos(0), y,(ﬁ)Ll'k —yitr sin(0)

Compute particle position: x
Compute particle velocity:

0 ~U([—7 7)), v ~ U0 Vnaz))

. (D),c . (I),c .
éil‘k « vcos(h), yéll‘k — vsin(h)

Set particle weight: a:,(ﬂ” B %

Validity check of the particle

if 2, , ¢ FJ then

@

O]
k+1]k )

Move to closest valid state point: x 1]k

end if
end for
Update particle counter: L <— L+ pys
end for
end for
Update total number of particle number: Ly, < L), + Jpp1 + L

< argmin, s dy (7,

Likewise, the target state partition (2.58) is instead a particle label partition:

;

S
l .
lell Lk-i-l\k]uxl(c\)k—f—l = U F (p=0)
j=1
T.(p) = (4.19)
Lel Lyl o€ | Fip 0#0)
\ JESK(P)

This result is interesting, because it shows that the SMC partitions are actually finer
than the theoretical partitions. This suggests that the joint partitioning method is
at least as efficient in the SMCPHD as in the theoretical PHD filter.
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Algorithm 8 Joint partitioning (time k + 1)
input: Current multi-sensor control:
input: Current measurement set: Zyq
. ) l l
input: Current particle set: {xiil‘k,wii”k}le[l Loy 1ja]
k41

output: Association matrix: m"**" X Ly, real matrix A,
output: Missed detection matrix: S X Ly, real matrix D,
output: Sensor partition matrix: P x S binary matrix S,
output: Particle partition matrix: P X Ly, binary matrix 7T,

Computation of association and detection matrices
for m =1 to m*! do '

Get origin sensor of measurement z,_,: j

for [ =1to L do

A ] TIRONRY'S £ SN0
u(m, )%Pi(xmuk) k+1 (xk-i-l\k)

. (.
Du(j,1) 4 1= pl(ai) )
end for
end for

Computation of adjacency matrix
Initialize S x S adjacency matrix: A < ((1— D,)(1 — D,)" > 0)
Initialize S x S temporary matrix: T < (A% > 0)
while A # T do
AT
T+ (A2 >0)
end while

Joint partitioning
Initialize partition number: p < 0
Initialize sensor partition matrix: S, < 0
for j =1to S do
if A(j,:) #0and S(:,j) =0 then
Update partition number: p <—p+ 1
Update sensor partition matrix: S,(p,:) < A(J,:)
end if
end for
Compute particle partition matrix: T, < (S,(1 — D,) > 0)

The computational cost of the partitioning is reasonable enough. The costly part is
the computation of the association and detection matrices, yet these variables are
required for the weight update regardless of the joint partitioning. The adjacency
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matrix is a S x S binary matrix whose processing is independent of the particle
number, and the only operations depending on the particle number are the products
(1-D,)(1—-D,)* >0and S,(1—-D,) > 0.

The next step is the weight update using equation (2.63). The cross-terms need
to be derivated in particle states xgluk only and can be easily built with the as-
sociation A, and detection D, matrices already computed with algorithm 8. More
precisely, for any multi-measurement term C; = UjeJ{ziﬂ}, where J C S,(p) (see
definition 2.7) and any particle [ € T,,(p):

_ : O]
5[5@7 5x1(cl-)+1\k] - je]b:_[(p) Du(]a l) wk+1\k (420)
_ j . 0]
ﬁ[éc“axl(clil\k] - HAu(mjal) ‘ H Du(]al) wk+1|k (421)
jeJ JESu(p)\J
L1k . .
Bl o 1] =~ Z Bl 0w |+p""° (Ci={2}) (422)
mJo = mio  Tkiilk
Ly
Bloc, 1]~ Y Bloc,, 8,0 | ([Cil >1)  (4.23)
k+1]k

=1

Clearly, the computational cost comes mainly from the recursive computation of the
combinational terms according to lemma 2.1, but it is quite challenging to evaluate
in the general case. This will be discussed further in conclusion.

Resampling

This operation is common in SMC methods in order to limit [Vo 05]:

e particle degeneracy, i.e. the concentration of the total weight in a small number
of particles;

e a growing number of particles regardless of the estimated target number.

The resampling implemented in this thesis is very simple. It is systematic (i.e.
processed at each time step) and the number of representatives (in the resampled
set) of each particle follows a multinomial distribution with parameters proportional
to the particle weights [Joha 05].
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Algorithm 9 Weight update (time &k + 1)
input: Current measurement set: Zyq

input: Time updated particle set: {xgluk,wg}rl‘k}le[l Lios1/s]
input: Association matrix: A,

input: Detection matrix: D,

input: Sensor partition matrix: S,

output: Particle partition matrix: T,

output: Reweighted particle set: {xgil‘k,wkl}r”k}le[l Lios1/s]

for p=1to P do
Get sensors from current partition: S,(p) <= {j € S| Su(p,j) = 1}
Get particles from current partition: T, (p) < {l € [1 Ly | Tu(p,1) = 1}

Computation of 3[dy, ]
for 1 € T, (p) do

. O]
6[50’590221\;@] — <Hj€Su(p) Du(Jvl)> Wik
end for

Computation of remaining cross-terms

Compute combinational terms according to lemma 2.1: C(Zlg’jr)l)
for C € C(Z,i’jr)l) do
for Cl € C do .
Get measurements in C;: (2] ;)jes
for [ € T,,(p) do

Bloc;, 593,(;11\,@] «— <Hj€J Ay(m? 1) Hjesu(p)\J Du(5, l>) w’(“il‘k
end for
6[501'7 1] — ZleTu(P) 6[50” 511(921\’6]
if J = jo then :
6[501'7 1] — 6[501'7 1] +pka7j
end if
end for
end for

Weight update
for 1 € T, (p) do
Update weight wg}rllk using equation (2.63)
end for
end for
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()

That is, the number of representatives Clglll of particle Ty in the resampled set is

random and follows the conditions [Vo 05]:

Lk+1\k
Ck;+1 L iajkv1s

O
[CkJrl] Lk+1|k+1%
E:Vitnkqugﬁuk
The number of particles in the resampled set is deterministic and chosen such that

the ratio of particles per target is as close as possible to the desired ratio pr:

L1k

Lyt1jk1 = round(pr Z w,(fl”k) (4.24)

Algorithm 10 Resampling (time k + 1)

input: Reweighted particle set: {x,(ji”k, w/(c+1\k}16 [ Liape]

(@)

) !
output: Resampled particle set: {:c,(gjrl‘kﬂ, wk+1\k+1}l€ 1 Lyt psd]

Computation of the new particle number

Compute expected target number: Ny < ZL“M ~,(€lll|k

Compute new particle number: Ly 1541 < round(prNyi1)

Resampling
for [ =1to Ly do
=)
Compute multinomial parameter: p) U;ka;j‘lk
end for
Liy1ie Lk+uk

Sample Liy1jk+1 particles from {SL’]H_WC} with parameters {p®)

{ }Lk+1\k+1

k+1|k+1

fOI' [=1to Lk+1‘k+1 do

1

SRR
Set Welght. wk+1|k+1 <— m

end for




168 Chapter 4. Implementation and results

4.3 Simulation results

This section provides the main simulation results illustrating the concepts devel-
oped in the chapters before. The different sensors in the simulations have been
parametrized with various values. Their position in the surveillance region, their
FOV shape and their (eventual) control constraints are critical and will be stated
explicitely. The class of sensor will be also depicted with a color (green squares are
1%¢ class, blue squares are 2"?). The standard deviation parameters o7, ag and aﬁ
are widely distributed among the sensors, spanning respectively from 2 m to 10 m,
2° to 7° and 1 m.s~! to 5 m.s~!. The detection probabilities p’¢ and the false alarm
probabilities p?/® are distributed as well, spanning respectively from 0.8 to 0.98 and
from 0.5 x 107% to 1 x 1075. The ratios pr, py are fixed and equal to 100 and 50
respectively. The scenarii beginning with no targets, the filters are also initialized
with no particles.

Unless otherwise stated, the figures depicting the simulation results are based on
the average of several Monte Carlo runs. The target displacement patterns are de-
terministic and identical, each run differs from others through the random processes
involved in the simulation (target detections, false alarms, true measurements, par-
ticle evolution, etc.). Whenever several methods are compared on a same scenario,
the seed of the random functions in the i-th run of each method are initialized at
the same value in order to limit bias.

4.3.1 Brute Force vs. Partition

The aim of this simulation is to illustrate the advantage of using the joint parti-
tioning (theorem 2.5) rather than the “brute force” approach (theorem 2.4) for the
computation of the data update step. The following results are an updated version
of those in the conference paper [Dela 11b].

The surveillance region is free of geographical elements and the targets behave ac-
cording to the free model (see section 4.1.1). Since this simulation emphasizes on
the data update step there is no sensor management and the FOVs are fixed in the
surveillance region. The target trajectories and the FOV configuration are illustrated
in figure 4.7.Note that the FOV configuration is favorable for a partitioning, since
the sensor partition should not be coarser than {1,2,3,4} — {5} —{6,7,8} —{9,10}
at any time during the simulation.

At every iteration, the data update step is computed in parallel with the brute
force approach and the partition method. Then the two posterior PHDs are com-
pared, and finally the “brute force” posterior is kept as input for the next iteration.
The results were averaged on 5 Monte Carlo runs.
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Figure 4.7 Target trajectories and FOV configuration
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Figure 4.8 Target trajectories (detail)
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Figure 4.10 Computing time and Kullback-Leibler divergence

Computing time (data update) x107® Kullback-Leibler divergence (Partition || Brute Force)

i

50 100 150 200 250 300 350 400 450 500 o 50 100 150 200 250 300 350 400 450 500
Time step Time step

Figure 4.10 (left) shows that the computational cost of the brute force approach
increases dramatically around time steps 250 and 480. Clearly, the first peak is
explained by the relatively large number of targets in the surveillance region at this
time (figure 4.9). The trajectories (figure 4.8) show that target 12 is in the FOV
of sensors 2, 3 and 4 around time step 480. This situation is likely to produce
an relatively large number of measurements, thus increasing the complexity of the
data update step. As expected, the computational cost of the data update step
with partitioning is significantly reduced, while the updated PHDs with the two
methods remain identical (figure 4.10). Note also that the computational cost of
the partition method sometimes exceeds the brute force’s, typically when the target
number is very low and the cost of the partitioning itself does not compensate the
computational gain in the data update step. Even in these situations, however, the
computational cost of the partition method remains reasonable enough.

4.3.2 Partition method vs. ICA

It is well known that the approximation produced by the ICA (definition 2.11) de-
pends on the sensor order, even though simulations seem to show that it does not
result in noticeable differences in performance [Mahl 10a]. To the author’s knowl-
edge, the partition method (theorem 2.5) provides the first opportunity to evaluate
the performance of the ICA with respect to the exact multi-sensor PHD. The fol-
lowing results are an updated version of those in the conference paper [Dela 11a].

The surveillance region is free of geographical elements and the targets behave ac-
cording to the free model (see section 4.1.1). Since this simulation emphasizes on
the data update step there is no sensor management and the FOVs are fixed in the
surveillance region. As explained in the analysis of the ICA (section 2.4.2), the dis-
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crepancies between the exact multi-sensor PHD and the approximation given by the
ICA are likely to increase with the number of sensors. To illustrate this, the same
scenario has been tested with two different sets of sensors:

Figure 4.11 Target trajectories and FOV configuration
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The first FOV configuration (figure 4.11, left) is identical to section 4.3.1, that is,
the sensor partition should not be coarser than {1,2,3,4} — {5} —{6,7,8} —{9,10}
at any time during the simulation. Ten sensors have been added in the second FOV
configuration (figure 4.11, right) in which the coarsest sensor partition should be

{1,2,3,4,11,12,13} — {5,14,15} — {6,7,8,16,17} — {9, 10, 18, 19, 20}.

Figure 4.12 Target trajectories (detail)
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In order to illustrate the dependence of the ICA to the sensor order, the sensor
orders that were likely to produce the best and worst estimations were estimated -
the criteria being the OSPA distance between the sets of true and extracted targets
averaged over the whole simulation (400 iterations) and over 20 Monte Carlo runs.
Simulating the scenario with each possible sensor order was clearly out of reach in the
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10-sensor configuration, let alone in the 20-sensor configuration. It is easy to prove
that, provided that the sensors are partitioned according to the method explained in
chapter 2, the ICA is sensitive to the sensor order within its partition element only.
Consider for example a 4-sensor system such that, at time k, the sensor partition is
{1,2} — {3,4}. Then, using the ICA with orders 1 -2 —3 —-4,3 54— 1— 2,
3 —1— 2 — 4, etc. would produce the exact same posterior PHD. Thus, since
the 10-sensor configuration has a coarsest partition by construction, it is sufficient
to consider the permutations inside these four elements.

The resulting process being still exceedingly difficult to solve, it was approximated
by decoupling the four elements from the coarset partition. First, all the permuta-
tions of {1,2,3,4} were combined to a fixed order for the other sensors (typically
5 — --- — 10). The 24 permutations were tested and the order that provided the
best ICA was stored, and so on for the partition elements {6,7,8} and {9,10}. The
worst ICA has been approximated with the same method. This research of the best
and worst ICA in the 20-sensor configuration was further simplified by keeping the
best and worst order that were found in the 10-sensor configuration.

The best and worst ICA were then compared with the exact PHD (provided by
the partition method) over the same 20 Monte Carlo runs.

Figure 4.13 Target number
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Figure 4.13 shows that, regardless of the configuration, the estimation of the target
number is fairly similar with the partition method and both ICAs. The estimation
of the worst ICA seems a bit more spikier than the best ICA’s in the 10-sensor con-
figuration, and the discrepancies grow larger in the 20-sensor configuration. Note
that the estimation of both ICAs deteriorate in the last quarter of the simulation.
The target trajectories (figure 4.12) show that this period roughly matches the life
span of target 8, which is evolving in the “critical spot” of the surveillance region
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where a large number of sensors are present. As expected, the quality of the ICA
decreases in areas where the sensor FOVs are overlapping.

Figure 4.14 OSPA distance (¢ = 100, p = 2)
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The OSPA distances (figure 4.14) are more suggestive and clearly shows the discrep-
ancies between the two ICAs, clearly growing in the 20-sensor case. The partition
method provides a better estimation overall, especially during the last quarter of
the simulation (confirmed by table 4.1). It also shows that, during the first half of
the simulation, the ICAs are sometimes better than the partition method. This is a
clear reminder that, even though the partition method is by construction the best
possible method “PHD-wise”, it does not necessarily implies that the estimation is
better than those provided by approximation methods.

Table 4.1: Partition vs. ICA: average OSPA

10-sensor configuration

Partition | Best ICA (est.) | Worst ICA (est.)
Avg. OSPA (overall) 35.4 36.3 40.1
Avg. OSPA (last quarter) 40.0 42.0 44.8

20-sensor configuration

Partition | Best ICA (est.) | Worst ICA (est.)
Avg. OSPA (overall) 20.8 26.2 36.0
Avg. OSPA (last quarter) 20.7 31.4 40.3
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These results are hardly sufficient to draw any general conclusion on the advantage of
the partition method compared to the ICA. However, they are sufficient to conclude
that, on some scenarii and with some FOV configurations, the performance of the
ICA depends significantly on the sensor order. This effect is obviously undesirable,
all the more because there is no easy way, to the author’s knowledge, to determine
a priori the “best” sensor order. It was suggested in section 2.4.2 that ordering
the sensor by increasing number of current measurements could be a sound choice.
The average number of measurements per sensor and per iteration was computed
in this scenario, but table 4.2 shows that there is no clear correlation between the
“productivity” rank of the sensors and the orders estimated as “best” and “worst™

Table 4.2: ICA orders and average number of measurements

10-sensor configuration

Sensor rank

Criteria | 15 part. elem. | 2" 3rd 4th
1 2 3 4|56 7 &8[9 10
Avg.meas.| 2 4 3 1 |1 ]2 1 3|1 2
ICA(best)| 4 1 3 2|1 |2 1 3|1 2
ICA(worst) | 2 4 1 3|1 |2 3 1/[2 1

Pay attention to the fact that the sensors are ranked in table 4.2 with respect to the
order in their element of the coarsest partition. This hypothesis could be further
tested by designing an ICA-based filter whose sensor order is changed dynamically
according to the rank in productivity given by the current number of measurements.

Figure 4.15 Computing time (data update)
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As expected, the computational cost of the partition method increases dramatically
with the additional sensors. The cost is light enough in the 10-sensor configuration
to consider an online implementation on a real-time tracker, but this is hardly the
case in the 20-sensor configuration (figure 4.15). This result shows that, to the very
least, a criteria based on the FOV configuration that would help decide a prior:
whether the partition method is tractable enough would be quite valuable. This will
be discussed further in the conclusion.

4.3.3 PENT vs. BET

The last simulation aims at comparing the PENT and BET managers on a typical
surveillance scenario. These results are presented for the first time.

The surveillance region and the target model are identical to the examples provided
in the description of the ground-based model in section 4.1.1. The surveillance zone
is partially covered by six sensors, some management is thus needed in order to focus
the sensors on the valuable regions of the state space. The available controls are fixed
for the simulation; at every time step, each sensor may be controlled according to 5
fixed directions of focus. Figure 4.16 depicts in black lines one of the five possible
FOVs for each sensor, and in black dotted lines the areas that can be eventually
covered by each sensor - a.k.a. the “total FOVs”.

Figure 4.16 Target trajectories and FOV configuration
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Since the targets are bound to come from the left side of the surveillance region,
presumably on the road, the exploration zone was set as the left part of the surveil-
lance region (figure 4.20). Sensors 1 and 2 (figure 4.16) are mainly devoted to the
exploration along the road, sensor 3 to the exploration on the lower road, sensor 4
to the tracking in the area between the obstacles, and sensor 5 and 6 to the fork in
the upper road.
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Note that the “total FOV” configuration is favorable to partitioning. Because the
combined “total FOVs” of sensors 1 and 2, sensors 3 and 4, and sensor 5 and 6 do not
overlap, the coarsest partition of the sensors should be {1,2} —{3,4} —{5,6} at any
time during the simulation. The specific configuration of the “total FOVs” simplifies
the task of the sensor manager as well. Indeed, since each sensor has five possible
controls, the number of available multi-sensor controls is 5% = 15625. But, the total
FOVs being partitioned into three elements, the independent management of parti-
tion elements {1, 2}, {3,4}, {5,6} is bound to have little effect on the management
but shrinks the number of available controls to 3 x 52 = 75. This is still a lot to
process for the PENT manager which requires a predictive step for every possible
control (figure 3.9); thus, the predictive update equation (3.23) was approximated
by six sequential updates through the single-sensor ICA (3.19) with an arbitrary
sensor order. For comparison purposes, the BET manager was implemented with
the ICA too. The data update step of the PHD filter (figure 1), on the other hand,
was easily implemented with the exact partition method (2.63).

Figure 4.17 Target trajectories (detail)
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This scenario is quite challenging for the sensor managers. Figures 4.16 and 4.17
show that six targets are crossing the surveillance region during the simulation.
Target 1 should be quite easy to follow because it stays in the vicinity of the roads.
Target 2 should be more difficult to follow, notably because it changes direction in
an area uncovered by the sensors. Moreover, it closely follows target 4 in the last
time steps. Target 5 changes direction in an uncovered area as well, but then joins
target 6 along the lower road where it should be easy to spot. Target 3 has a similar
behavior as target 1 and should be quite easy to follow as well. The effet of the
“indecisive” targets that enter and leave the surveillance region almost immediately
should not be neglected as they are prone to disperse the focus of sensors 1, 2 and
3 at various moments during the simulation.
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The critical parameters of the track extraction process (figure 3.14) are set as follows:

Table 4.3: Track parameters

Track level
Parameter
Low Medium High
Weight 0.3 0.5 0.95
Radius (m) 160 120 40

The following results are averaged over 10 Monte Carlo runs. A sensor manager with

a purely random strategy is added for comparison purposes.

Figure 4.18 Target number and OSPA distance (¢ = 100, p = 2)
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Figure 4.19 Computing time (sensor manager)
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Figure 4.18 clearly shows the failure of the PENT manager on this scenario, no-
tably because the target number is overestimated. This result is consistent with
the analysis of the PENT provided in section 3.3.1 and, more precisely, in example
3.7: the sensors tend to “flee” regions with a significant amount of weight but no
extracted targets in order to avoid a weight reduction in the data update. This
behavior is expected and consistent with the PENT objective - increasing as much
as possible the estimated number of targets, thus the total weight of the particles.
Presumably, the failure of the PENT is deepened in the SMC framework. Indeed,
the PENT manager leaves the regions with the highest concentration of particles
unchecked where things grow out of control, especially if the particle cloud moves
in an uncovered area of the state space - for example, the center of the surveillance
zone in figure 4.16. Arguably, the main conclusion that can be drawn from thius
failure is not the performance of the PENT itself, but the fact that the particles
must be checked periodically by the sensors in order to avoid an explosion of the
target number estimation.

Table 4.4: PENT vs. BET: average OSPA
PENT Random BET
Avg. OSPA (overall) 90.8 66.3 61.2

The performance of the random strategy is unexpectedly good compared to the BET
manager. The estimation of the target number is fairly accurate in both cases (fig-
ure 4.18) and the OSPA error seems only slightly larger with the random method
(confirmed by table 4.4). The two following points may be possible explanations of
these results:

1. The first explanation pertains to the structure of this particular scenario. The
FOV configuration (figure 4.16) shows that the sensors are “cramped” in a “small”
surveillance region and, during the simulation, only a few directions of focus could
be qualified as “bad decisions”. To be sure, the performance of the PENT shows
that a string of bad decisions could lead to a poor estimation; the critical advantage
of the random strategy is that it guarantees at least a periodic exploration of the
area covered by the “total FOVs”, thus preventing the particles from growing out
of control. Presumably, the difference between the random strategy and the BET
manager would grow if the surveillance region were larger and contained “useless”
areas never reached by the targets.

2. The second explanation is more practical and closely related to the SMC
implementation. Recall from section 3.3.2 that the BET manager was designed on
the principle of a periodic check of the tracks based on their level. When covered
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by a sensor, a track is indeed prone to disappear if there is no new mesurements
supporting the presence of a true target, and to have its level increased otherwise.
Conversely, a track should “flatten” over time if unchecked and its level should de-
crease until it becomes a object of interest - i.e. a focus track - for the sensors.
This latter principle hardly survives in the SMC implementation because unchecked
particles quickly disappear in the resampling step, even if the high track level is very
restrictive (see table 4.3). This phenomenon is clearly visible in the tracking zone
(figure 4.20) where the presence of a non-focus track - indicating that the sensors
have followed the underlying target long enough and should focus on other objects
- is usually followed by an absence of extracted targets - indicating that the sensors
have just stopped focusing on this point and that the particles disappeared almost
immediately. This undesirable effect does not compensate a posteriori the long-term
tracking of targets; to the contrary, it may overcompensate pure exploration-based
strategies such as the random method. Other resampling methods are currently ex-
plored [Douc 00, Douc 05| and a modified resampling based on the effective sample
size [Arul 02| has been implemented, so far to no avail.

Figure 4.20 Tllustration of the BET manager on a single run (true targets in blue,
extracted targets in red, focus tracks in magenta, non-focus tracks in green)

Surveillance region (exploration zones in dark gray, tracking zones in light gray)
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Finally, as confirmed by figure 4.19, the BET manager is significantly lighter than the
PENT, notably because it discards many superfluous predictive updates as explained
in 3.3.2. An online implementation of the BET, however, is somewhat restricted to
modest scenarii with a limited number of targets and, above all, a limited number
of sensors.

4.4 Conclusion

This chapter covered the description of a few sensor and target models that allow
the simulation of simple yet various surveillance scenarii. A SMC implementation
of the exact multi-sensor PHD filter provided by chapter 2 and the BET manager
given in chapter 3 was then proposed and thoroughly described. The advantage of
the partition method was clearly shown on a first scenario, leading to the conclu-
sion that the partitioning should always be favored over the “brute force” approach.
A second scenario highlighted the influence of the sensor order on the ICA perfor-
mance. The best and worst sensor orders were estimated, and the results showed
that the discrepancies between the two ICAs can grow significantly with the number
of sensors if the overlapping in the FOV configuration is strong enough. Besides,
the approximation of both ICAs deteriorated with the increasing number of sensors
compared to the exact multi-PHD fitler provided by the partition method. Finally,
a third scenario showed that the BET manager can significantly outperform the
PENT when the sensor coverage is limited , but also pointed out the fragility of the
proposed SMC implementation.



Conclusion and further work

Summary

His thesis addressed the exciting field of multi-object filtering within the PHD
framework.

The first part focused on the extension of the PHD filter to the multi-sensor case.
Based on previous works on the RFS theory and the single-sensor PHD, a rigorous
construction of the exact multi-sensor PHD was proposed. The result was a com-
binatorial expression that did not provide grounds for a practical implementation.
Based on the FOV configuration, a joint partitioning of the target state space and
sensor indices was then proposed in order to simplify the expression of the exact
multi-sensor PHD without approximation. The exact PHD was then used as a ref-
erence to compare and discuss the usual multi-sensor approximations of the PHD
filter on a theoretical level.

The second part was devoted to the sensor management problem in PHD filter-
ing. First, a rigorous extension of Mahler’s PIMS to the multi-sensor case allowed
the construction of the exact multi-sensor predictive PHD. Thanks to an adaptated
version of the joint partitioning method, the expression of the exact predictive PHD
was simplified without approximation. Then, the sensor manager introduced by
Mabhler - the PENT - was analyzed and its theoretical inconsistencies were shown on
simple examples. Finally, the BET manager was proposed as an alternative to the
PENT, but designed on more operational principles related to surveillance activities.

The last part focused on the practical implementation of the multi-sensor PHD filter
and the BET manager. First, a simulation framework was built upon simple target
and sensor models in order to generate various surveillance scenarii. Then, a SMC
implementation of the PHD filter and the sensor manager was proposed. Finally, the
main results of this thesis were illustrated on three scenarii. As expected, the first
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scenario showed that the partition method reduces significantly the computational
cost of the exact multi-sensor PHD, thus allowing the tractable propagation of a
valuable reference PHD in scenarii with a limited number of sensors. The second
scenario tested the performance of the ICA method, a well-known multi-sensor ap-
proximation. As expected, the results showed that the discrepancies between ICAs
with a different sensor order in input increase with the number of sensors and are
significant when the sensor number is large enough. Besides, they showed that the
approximation given by the ICA detoriates, compared to the exact multi-sensor
PHD, when the number of sensors increases. The third scenario aimed at comparing
the PENT and BET managers on a typical surveillance scenario where the sensor
coverage is limited. The BET clearly outperformed the PENT, in accuracy as well
as in computational load. However, the results also pointed out the flaws of the
proposed SMC implementation.

Future work

In the scope of this thesis, the first lead that could be followed is a quantitative anal-
ysis of the computational cost of the exact multi-sensor PHD filter. It is well known
that the single-sensor PHD filter has computational complexity O(m), where m is
the number of measurements, although Mahler argued [Mahl 07b] that the computa-
tional complexity of a PHD-based tracker is more accurately O(mn), where n is the
number of targets. In any case, an similar result for the exact multi-sensor PHD fil-
ter would be quite valuable because it could provide grounds for the design of hybrid
filters where, for each element of the joint partitioning, one could evaluate a prior:
the computational cost of the exact data update and decide whether it is worth
the trouble. The central issue in the implementation the exact data update is the
computation of the combinational terms with lemma 2.1. Clearly, its computational
complexity depends on the number of sensors and the number of measurements, but
it also depends on the measurement distribution among the sensors - for example
IC({z1}, {23, 23, 22})| = 4, while |C({z],24},{z2},23})] = 7. The relation between
the measurement distribution and the computational complexity is, to the author’s
knowledge, unknown.

Another natural lead could be the improvement of the practical implementation
presented in this thesis. Arguably, the proposed SMC implementation could be en-
riched with an importance sampling step well-adapted to the target model. The
author’s understanding of the particle filtering mechanisms suggests that the critical
point is the sampling of newborn particles, which must be somewhat driven by both
the target birth model and the measurements. For sensor management purposes, it
is indeed important to create particles in areas where targets are prone to enter in
order to focus the exploration and, on the other hand, newborn particles are needed
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in the vicinity of isolated measurements for the data update step to work properly
[Rist 10a]. The systematic resampling step, too, would need improvement and could
be replaced by other approaches [Douc 05]. Aside from the SMC framework, other
implementations based on Gaussian mixtures could be envisaged. The assumption
on the independence of the target detection an target survival probabilities with the
target state |[Pace 11| seems to preclude a direct implementation of the GMPHD in
FOV-oriented sensor management problems, but this point could be further explored.

The BET manager was a first approach that leaves room for improvement, and the
refinement of the track management could be the topic of future studies. Notably, in
order to prevent excessively frequent changes in track levels - leading sometimes to
excessively frequent changes in sensor direction of focus - a new mechanism, based
on ascending and descending thresholds for each track level, could be envisaged. A
track history must be maintained for this purpose, yet it is unavailable within the
strict PHD framework. Consequently, labelisation techniques [Lin 06] must be ex-
plored beforehand. Another field of study that could be promising is the extension
of the predictive PHD so that it can provides predictions several step ahead in the
future, thus leading to more potent sensor managers based on lookahead policies
[Bert 05]. A first solution could be built upon a sequential use of the simple predic-
tive step, whose cost is reasonable when approximated by the ICA.

On a more theoretical level, another exciting lead for future work would be the
extension of the PHD filtering principle within the RFS framework. The well-known
CPHD is one such extension in which the cardinality distribution of the multi-target
RFES - no longer assumed Poisson - is propagated in addition to the PHD. Another
extension could be envisaged, where the second order product density would be
propagated in addition to the first order product density- namely the PHD. Indeed,
it seems that the factorial moments encapsulate the notion of simultaneity in the
distribution of points, and thus the propagation of the first and the second order
product densities could provide grounds for the design of a more complicated filter,
yet able to describe pairwise interaction between targets while the PHD is limited
to independent targets.

In his book [Mahl 07b] p. 595, Mahler makes an insightful remark concerning the
PHD when speaking about the limited sensitivity of the ICA to the sensor order:

“This may be because the PHD approximation itself loses so much information
that any information loss due to heuristic multisensor fusion is essentially irrelevant”

Aside from the fact that this thesis tried to emphasize some situations in which
this information loss could hardly be qualified as irrelevant, this remark is a clear
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reminder that the PHD - although a formidable tool for multi-object filtering - is
first and last an approximation within the RFS framework. Arguably, the key of the
PHD approximation is the Poisson assumption but, to the author’s knowledge, its
consequences on the validity of the PHD filter for various tracking problems is still
unclear. Studying this relation is perhaps the most fundamental and challenging
prospect that remains to be explored.
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Appendix A: Mathematical proofs

Chapter 1: Background

Property 1.1
This proof is straightforward using the measure theoretic formulation given in [Vo 05].

Proof. For any n € [1 N, let T,, be any subset of F(X,). Using equation (1.2) gives
immediately:

N N N

n=1 n=1 nel

Since the RFSs =,, are independent:

e (U) - 11 ({200 U

N
=[] P=.(T)
n=1
O
Equation (1.19)
This proof is drawn from the measure theoretic formulation given in [Vo 05].
Proof. Let T be any subset of F(X'). Using equation (1.17) then (1.15) gives:
P(T) = [r p=(X)p(dX)
_ Z ' / pe({1, oy 2 VA (das ..y (25)
TL 1(7’ an
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On the other hand, using equation (1.2) gives:

Which gives, using the definition of Janossy measures (1.18):

o )/, -1 n

n!

Assuming that the Janossy measures admit densities:

1
P=(T)=> = i (s o })dan . da,
n—0 7’L' X*l(’T)an
>/ JE L, s 2 KRN (.. ) (26)
" n! x—YT)nxn

Using results (25) and (26) yields:

pe({r, s 2n}) = 18 (@1, ooy 1) K

Property 1.2

This proof is straightforward using the definition of PGFls provided in [Vo 08]. Note
that the same result is given in Moyal’s earlier work on stochastic population pro-
cesses (see [Moya 62| for more details).
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Proof. Let = be a RFS. We have immediately:

Lemma 1.1

Even though the following proof was produced by the author based on the definitions
and notations given in [Vo 08], a much more elegant proof is provided by Moyal in
[Moya 62]. An earlier version of this result may be found in Volterra’s work (see
[Volt 59], p.29, for more details).

Proof. Let = be a RFS. First, let us prove by induction on N that, for all N € N:

G(EN) [+ ex 19511 915 - 98] — GEhs g1, .o ]

Z IZ( ) EN+1 v?.qNJrlagNu y g1
n=1 n e T

Definition 1.10 of functional derivatives gives the result for step 0. Assuming that
(27) is true for step N and using definition 1.10 again gives:

G(EN+1) [h + ENt29N+25 15 -y 9N+1] - G(EN+1) [h§ g1y - 9N+1]
1
= li%h - (G(EN) [P+ ent2gnt2 + €GNL1; 91y s N — G(EN) [P+ ens2gn 12 915 s 9N]>
-~
~tim 2 (6D : — GWn;
1 [ +€gN+lvgla"'7gN] = [ 7g17"'7gN]
e~>0+ €

J/

-~

=B
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Using (27) at step N gives:

— lim = (”JFN h
6#1(1)1 . Z Z( ) [ —|—€N+29N+279N+179N7 7g1]

n—p p
= 1*1{([]1 élJr )[gNJrh' 791 +ZTL' ( ) (nJFN [h+€N+2gN+27gN+17gN7"'7g1]
€ — ——

n—1

o0 1 .
E — E ( ) P 1J( ) h+€N+29N+279N+179N,---791]
77, S~~~

f b= n—p P J
—0(e)
o 1 "
- JéHN) [gn+15 - 1] + Z (n Je (W + ent29N12, N+1, INs -5 G1]
— ———
n=2 n—1
Likewise:
B = JélJrN)[gNJrh'“ 2 n+N)L h’ /7gN+17gN7"'7g1]
n= n—1
Thus
G(EN+1)[h + EN+20N+25 915 o 9N+1] - G H)[h g1y -ees 9N+1]

= § n 1),Jé ’ )[h+ EN42IN+25 IN+15 -5 01
—1)! N———

n—1

1 n+N
o Z (77, _ 1)|Jé " )L h YN +1, "'7g1]

)Jén+N)[\ h L EN+2N+2, GN+1, 91]

- 1 n+N
_ZQWJé ' )L h_, gn1s s 1]

n—1

00 n—1
1 n—1\ (nw
= Jz h , yeeny
Z (n—1)! Z ( ) = [v EN+20N+25 N+15 -+, J1]

n=2 p=1 p e -
Ly (n (n+N+1)

= — Eniod=z h_, ; e
; n! — <p) N+2 [?;p, IN+25 N+415 -, G1]

p
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Thus, (27) is true for all N. Now, using definition 1.10 and (27) gives, for any N € N:

G(EN) [h; g1, -, QN]

. 1~ (n n+N-1)
= lim € — ( )EPJL * [P, gN S gN—1s s 1]
=0+ ;n! ; p) = —~ el

n—p

L (N JntN=1)
—el_l)%’l7L (J gN,- 791 +Z ( ) [\ h ,7gN7"'7gl]

n—1

1 =0\ N
=+ Zm — <p>€p 1Jé o 1)[\ h » N 7gN717"'7gl]

n=2 p n—p p
=0(e)
_ ) L e
_JE [gN77gl]+Zn|‘]E L h ,7gN7"'7gl]
oo 1 .
Z_ _+N 7gN7"'7gl]

Property 1.4

This proof is adapted from Moyal’s early work on stochastic population processes
(see [Moya 62] for more details).

Proof. Using lemma 1.1 and setting h = 0 yields immediately:

Then, using lemma 1.1 and setting h = 1 gives:

G(EN)H?ghugN Z J(NJF” gla"ngh 1 /]

n

00 1 .

_ Z_'/.../gl(xl)...gN(:L’N)1(xN+1)...1(:UN+n)JéN+ N(day, oo, ATy )

0 n!
N+n

00 1 .
://gl(xl)gN(xN) Zg/‘/JéNJF )(de‘l,,de'N+n)
T n=0 .H/—’
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Which gives, using equation (1.24):

G 11 g1, gy = / = / g1(@1)-gn (@) VA (day x .. x day)
N—_——

N
= V2" g1, s 9]

Property 1.5
This proof is given by Mahler in [Mahl 03a].

Proof. Assuming G[h] = h(x() and using the definition 1.10 of a functional derivative
gives immediately:

ox e—0+ €
i h(xg) + €0, (20) Kx — h(xg)
e—0Tt €
= 51(370)[(2\?

Likewise, assuming G[h] = [ h(z)p(x)dz and using the definition 1.10 of a functional
derivative gives immediately:

oG  Glh + 6, Kx] = GI]
pral :
iy J2(0y) + 0o () Kx)ply)dy — [ h(y)p(y)dy
iy Ja O () Kap(y) A (dy)
= p(x)KX

Property 1.6

This proof is given by Mahler in [Mahl 03a]. Note that the equivalent result with
the point process formulation was given earlier in [Vere 88| (see “Campbell theorem”,
eq. (6.4.11) p. 188).
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Proof. We have immediately:

/ e X)nax) = > /

n=1 =
=1
— Z:l ] z; /Xn h(x;)jz )(ajl, , T )dxy...dxy,

- Z (n _ 1)| / h(xl)]é )<x1, ...,xn)dl’l...dxn

:/Xh(:cl) (gﬁ/mljé")(:cl,...,:cn)da:Q...dxn> da

h(z (1) oy p)dy..dx, | d
/X (Zn'/n (x, 21, .y ) day :c)a:

= /X h(z)v=(x)dx

Property 1.7

This proof is given by Mahler in [Mahl 03a].

Proof. Let xy be an arbitrary point in X. Using equation (1.44), we can write:
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That is, using equation (1.44) again:

vz (T0) Ky = /

F(X)

-/ (thm) p=(X)pu(dX)
F(X) reX

where h,, : x> vz, (20) Kx. Then, equation (1.49) yields:

( Vzg, (SUO)KX> p=(X)p(dX)

vz (o) K = /X By ()0 ()
_ /X vey . (20) K xva(z)da
Thus:

vzy(a0) = [ vz 0)os(a)da
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Chapter 2: The multi-sensor PHD

Property 2.1
This proof is drawn from Mahler’s study of the Poisson RFS in [Mahl 03a].

Proof. Let Y = {yi,...,y,} be any set of points in X, and {7}}ic;i » a family of
subsets of X. Then, using the definition of Janossy measures (1.18):

YT x T) = nlpz(n) PE(Ty x .. x T,)

Since = is Poisson with parameter A= and spatial intensity I=:

Jé")(Tl X ... xTy,) :n!e_AEE/ / H E<xi)dx1...dxn
T T,

—¢s /T/T ] =) das...dx, (28)
Thus:

(n)

G (Y1 ey Yn) = €72 Hfa(yi)

Then, using (1.24) gives:

U(E )<y17 sy yn) = Z _/ jé i )<y17 < Yns Tn41y ey $n+?ﬂ>dxn+1---d$n+m
X

I
(]
2|~
T
3
VN
=
o
<
~_
[F.
3
—
s
3
+
-
IS
3
+
3
=
3
3
+
-
<Y
3
3
+
3

($n+1, ey $n+m)dxn+1 .. .d$n+m

[
Y
E:
(7
<
~_
WE
3|~
T
o
7

J/

-~

=1
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That is, using (28):

Property 2.2
This proof is an adaptation of Mahler’s study of the Poisson RFS in [Mahl 03a].

Proof. Let Y = {y1,...,yn} be any set of points in X, and {T;},cq ») a family of
subsets of X'. Then, using the definition of Janossy measures (1.18):

JENTy % ox T) = nlp=(n) PY(Ty x ... x T,)

Since Z is i.i.d cluster with mean Az and spatial intensity I=:

n

I=
J(T % ... x Ty) = nlps / / ) 4, -,
T n =1 )\E

_ / / n H1 Iz(2:)dzy...dx, (29)

(2

Thus:

G (Y1 oo Yn) = n!pi(n) Hfa(yi)

Besides, the characterization of the PGF1 (1.33) gives:

=1
=2

m=0

[I] /\

[I]
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That is, using (29):

Il
(e
s
(1
—~
g
~
S| m
=
~__
3

Property 2.3

This proof is drawn from Mahler’s construction of the single-sensor PHD filter in
[Mahl 03al.

Proof. Let Y = {y1,...,y,} be any set of points in X, and {7} }ic;1 ») a family of
subsets of X. Then, using the definition of Janossy measures (1.18):

JETy x oo x T) = nlpz(n) PE(T} x oo x T,)

Since = is Bernoulli with parameter b= and spatial dsitribution I=:

1—b= n=>0
JENT % o X Ty) = bE/ Iz(zy)dx n=1
T1
0 otherwise
Thus:

1—b= n=>0

jén)(yla sy yn) - bE[E(yl) n=1

0 otherwise

Besides, the characterization of the PGF1 (1.33) gives:

(=

G

(1]

=3 %J ™1h, ..., b

m=0
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Thus:

Gel[h] = 1— be + be / h(z) I () da

X
=1- bE + bE[EH

Proposition 2.1

This proof is drawn from Mahler’s construction of the single-sensor PHD filter in
[Mahl 03al.

Proof. Let Z,,,(X) be the Multi-Bernoulli RFS |J, .y Z¢;.1(z). Then, using
proposition 2.4 on Multi-Bernoulli RFS gives:

GEEHI(X)[}L] = H ((1 — Pi g1 () +p2,k+1(w)p2,k+1[h\x]))

rzeX
= (1= pf i) +pi,k+1(-)p2,k+1[hl-])x

Let 2 441 (X) be the union RFS (J, .y Ef ;1 (2). Since the spawning RFS are inde-
pendent, using property 1.3 on union RF'S yields:

GEgHI(X)[h] - H ngwl(m) [h]

= (Gzs, )™

Ek,k+l
By construction, the transition RFS Zf , ;(X) is the union RFS of independent RFS
Bt e (X), BL 1 (X) and B, ;. Thus, using property 1.3 gives:

olhGzp,  [h]
=(1— pz,kﬂ(-) + Pi,k+1(-)p2,k+1[h|-])X(G=S

“k,k+1

Olh)*Gzp,  [h]

=B
“k,k+1

Theorem 2.1

This is proof is a key element from Mahler’s construction of the single-sensor PHD
filter (see [Mahl 03a]). An earlier account of a similar construction may be found in
Moyal’s work (see [Moya 62| for more details).
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Proof. Let h be any real-valued function in [0 1]. Using the definition of the PGFI
(1.29) on predicted RFS Zj 1) gives:

Goroilll = [ Wp (Y| Zuutay)
F(X)

That is, thanks to the RFS filter equation (1.55):

Geronltl = [0 ([ by 07P0p2 (X|Zua)utdX) ) )
F(X) Fx) 7

[ (] W re PO ) (X Zuadu(a)

F(X) \JF(x) ’

Using the definition of the PGF1 (1.29) again gives:

G5k+1\k [h] = [F(X) GEg’k_H(X) [h]pgk‘k (X|Z1k):u(dX)

With the assumptions of proposition 2.1:

Gz

Zk+1lk

— /J-'(/‘-’)(l = D1 () + PR (O kA1) (Gzs oIR) Gz, [Blp=,, (X[ Z1a)u(dX)

Sl k+1

1]

Sk k41

= Gep, 1 | o (PO + L O PG O oy (X2 (0X)

Let ® : h — ®[h] be such that ®[A](.) = (1—pz7k+1(.)+pz7k+1(.)f£7k+1[h\.])GE?HI(_)[}L].
Then:

Gl = Gep,, 1] | @O P (X1 Z)uax)

Using the definition of the PGF1 (1.29) again gives:

Gz, [h] = Gas

=k+1|k Ekkt+1

[h]Gs,, [®[R]

Eklk

Then, using the derivation property of the PGFI (1.44) yields, for any z € X

dGs, .,
Uak+1‘k($€|21;k)Kx = [ﬁ[h]]
h=1

ox
oG

EkBk+[]
,lh

ox

5GEk\k
G, (001 + Gy, , 1] | 52 foln]
h:lJ%’_/ —

~ c N~
A D

h=1




206 Appendiz A: Mathematical proofs

Using the derivation property of the PGFI (1.44) again gives:

5GEI<:B,I€+1 [h]
ox -

= 'UEICB_’_IUC(.Z‘)KX

A:

One can note that, for all x € X:

O[1)(x) = (1 = Pras(®) + D peya () frpa L)) Gas 1]

k,k

Using the definition of the PGFI (1.29) again gives:

Of1](x)

= | 1= phpa(@) + Pl (@) /X 1) fL g (yl)dy /F (Y )

N 2
. 2
N~ ~~

=1—= (@) +pisa (@)
=1

Then, since ®[1] = 1:

B = GEk\k[(b[]‘H
— G

1]

i

Using the definition of the PGFI1 (1.29) again gives:

B= [ b, (X|Zu)n(ax)
F(X)

=1
Using the definition of the PGFI (1.29) once more gives:

C=Ge 1]

“k,k+1

| (Ou@x)
F(X)

1
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Next, using the definition of the PGFI (1.29) on D yields:

D= S22 p0in)]

0
= vz, (1) Kx

where =g denotes the RFS with the PGF1 Gz, , [®[.]]. Denote by =g, the RFS with
PGF1 Gz, [.] = ®[](y). Then, since ®[1] = 1, property 1.7 applies and thus:

._.(1)1/

D = / '—'<I>y Hk\k y|Zl k)dy KX

N /X@:@y( JKx)vz,, (Y| Z1x)dy

Using the definition of the PGF1 (1.29) again gives:

D= / 2] ey

5G:¢y _ 0®[A|(y)
5:% (] = ox

= = (1= Dhia ) + Phicer ) B G5, [1]]
~ haial0) (5w l11) Gy, ol
0
+ (1=} 1 (V) + 2t (D) e [P (@Gaimw W)

Since ff [yl = [ h(2) ff i1 (2|y)dz, using calculus property (1.48) gives:

0Gz,, s
or [h] = kaﬁ—l(?/) (flz7k+1(x|y)KX) GEf’kH(y) (]

)
F = a0+ P st (5655, ol

Therefore, by setting h = 1:

5G:<1> T =Ry s t
or [h] = pk,k+1(y)fk,k+1(x|y) ngkﬁ(y) [1] Kx
h=1 ———

=1

S S 5
+ (1 - pk,k+1(y> + pk,kJrl(y) flﬁk+1[1|y]> {5 GE? k+1(Y) [h]}
— — X ’

=1

h=1
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That is, using the definition of the PGF1 (1.29):
0G=

—5 M = Pl ) frpn (@ly) K + (1= Plpa (W) + Pl (0))v=g, ) (2) K
= P (¥ ) fi w1 (2y) Kx + V=8 @) () Kx
Hence:
D= [ (Phan@fhanlely) + vsg, () v, 01 Z00)dy Ko
Thus:
UEHM(:U\Zl:k)KX = AB+CD
=i, @)K [ (Phaa s (oly) +osg, 0 (2)) 05, 012100y K
Finally:

e 0lZ00) = 15, @)+ [ (P 0 aaal) + 0, 0(0)) 054 (012100

O

Proposition 2.2

This proof is drawn from Mahler’s construction of the single-sensor PHD filter in
[Mahl 03al.

Proof. Let ¥, ,(X) be the Multi-Bernoulli RFS (J, .y ©¢, (). Then, using propo-
sition 2.4 on Multi-Bernoulli RFS gives:

GEkD+1(X) l9] = H (1 - ngrl(x) +pZ+1(x)f£+1[glx])

= (1 _pi-',-l(') +pi+1(-)f/?+1[gl-])X

Let 3¢ | be the false alarm RFS. Since is its assumed Poisson with parameter \{_,
and intensity A7, cp+1(.), using equation (2.3) yields:
[g] = eMerrcrrlal =Rk

Gee |

By construction, the observation RFS ¥, (X) is the union RFS of independent
RFSs X7, (X) and Xf, . Thus, using property 1.3 gives:

ng(X)H GED []GZC 9]

k+1 k+1

- (1 - karl(') +pk+1(-)flg+1[g|.])Xe)‘iﬂckﬂ[g}—)\iﬂ
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Proposition 2.3

Proof. Let x € X be any target state and z € Z any measurement state.

o

)

=< <)\2+1ck+1[9] — App1 0z, [P - Pho +Pifllel )] — UEHMM)

B % (/X h(y)(1 - Pﬁﬂ(y) +pz+1(y)f/?+1[g|y])7)5k+1k(y|Zl;k)dy)

Using property (1.48) gives:

ﬁ[gv 51] = (1 - pZ+1(~T) + pi+1<x)f/§+1[g‘x])7)5k+uk<x|lek)KX
Likewise:

J

o

== (A2+1Ck+1[9] — Nep1 + V5 [h(l — pz+1)} + Vg [pz+1f,§+1[g|.]] — kaerc[l])

— )\EH% (/Zg(u)ck+1(u)du)
R § T R P

Using property (1.48) gives:

Bloz, h] = Nepier(2) Kz +/ hW)pi () fazly) ve, (9l Zik)dy Kz
—_——

X
:Li.ﬂ(y)
= )\2+1Ck+1(z)Kz+v5k+”k [hpiHLZH]Kz
Finally:
)

Bl9-, 8] = =—PB[d-, A

0 /.. )
=5 (Akﬂckﬂ(z)f(z + Vg, [hngLkH]KZ)

-2 ( / h<y>pz+l<y>Lz+l<y>vEMk<y|zlzk>dy) K

Using property (1.48) gives:

5[5m 51] = pZJrl('r)Lerl(x)UEkJrl\k (x‘Zlik)KXKZ
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Theorem 2.2

This proof is adapted from one of Mahler’s key theorems in the construction of the
single-sensor PHD filter (see [Mahl 03a]).

Proof. Let Zy.1 be the is the set my,, current measurements, h (resp. g) be a real-
valued function defined on X (resp. Z) in [0 1], and zy any point in X'. Then, let
Flg, h] be the joint PGFI of PGFls

Gs,..(x)lg) and Gz, [h]. Then:

k+1]k

Flgil= [ [ Wm0 s, (X1 Bap(@On(a2)
F(2) JF(X)

[0 ([ oo D)) s (XN Zul)

F(X) F(2)

Which gives, using the definition of the PGF1 (1.29):

Flahl = [ 05Gs, . oolalpz o, (X Zuu(@X) (30)
F(X)

On the first hand, proposition 2.2 yields:

F[g7 h’] = /]-'(X) hX<1 - ngrl() + szrl(')flqul[g|'])XeAi_HCkJrl[g]i)\z-’_lpﬁqu\k(X‘Zl:k):u(dX>

c c 1 _)\¢ ) X
= Mol X /f - (h(1 =P 1 () + i (O F2 91 D)™ P (X Zir) p(dX)
= exzﬂckﬂ[g]fxzﬂggﬁm[h(l — pg+1(.) +pg+1(.)f,§+1[g\.])]

Since Zjiq; is assumed Poisson, using (2.3) further simplifies the expression of
Flg, hl:

Flg,h| = e>‘2+1ck+1[g}*>‘i+1ekaH\k[h(l_pz+1+pg+1ffg+1[g|'m_v5k+1\k[1]
— 6)‘2+1Ck+1[g]_)‘i+1+7}5k+1‘k [h(l—P‘;fﬂ-f'P}fﬂf;?H[9\-})]—UE,€+1‘,€m
That is, using the definition of the cross-term (2.19):
Flg, ] = ¢l 1)

On the other hand, derivating (30) in the current measurement set Z;; gives:

0 5
Flg,nj| = W | e (X|Zu)p(dX
{5Zk+1 9. ]] /}'(A’) {5Zk+1G2'““(X)[g] P2y (X Z14) p(d X)

g=0 g=0
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Which gives, using the derivative property of PGFI (1.43):

F[g,h]] = [ W (i X (X1 Z1dX) (32)
g=0 F(X)

But, the PGFI Gz

Sk41]k+1

of the posterior RFS = 11541 is by definition (1.29):

G5k+1\k+1[h] - / th5k+1\k+1 (X|Z1k+1)u(dX)
F(X)

Which gives, according to the data update equation of the RFS filter (1.55):

GEIc 1k 1[h] :/ X pz’““(Zk‘Ll‘X)pEkH\k(X‘Zl:k)
+1lk+ F(X) f}‘(/\() pzk“<Zk+1|Y>p5k+1\k(Y‘Zl:k)),u(dY)

) n(dX)
Using previous result (32) then (31) yields:

5 Blg.h]
[6Zk+1 € :| g=0

|:5Z5 eﬁ[gyh]i|

k+1

G

[h] =

Ert1lkt1

g=0,h=1

Thus, using the derivative property of PGFI (1.44) gives:

5 5 h
£ (o)

=0,h=1 ;7 -—1
v5k+1\k+1(x0) = . KX (33)
Zit1 g=0,h=1
Thus, the posterior PHD vz, . (.) can be computed ezclusively with derivatives

of the cross-term [3[g, h|. Equation (33) can be further simplified as follows:

s P h
[E (5Zk+1 eﬁ[g ]>]

kaJrl\kJrl('rO) = 5 _plgh
e

g=0,h=1 -1
Ky

g=0,h=1
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Recall that cross-terms vanish when derivated in more than one measurement. Thus:

[ﬁ (e M T B0z, s h])] g=0.h=1 -1
[eﬁ[gvh] H?lkfl B[azi,k-kl’ h]] g=0,h=1 '
g [/B[gu 51’]66[97]1} H?lkfﬁl /8[5zivk+1’ hHQ:OJL:l Kil (34)
[eﬁ[gvh} H?;kfl 6[5Z¢,k+1’ h]:| 9=0,h=1 "

[65 looh (5 [0z 0ol [0 Bl0ziss h]> ]

VB 1)kt1 ("EO) -

. - g=0,h=1 K—l
[eﬁ[gﬁ] Hi:kl-H B[azi,k'Fl’ h]] 9=0,h=1 ’
6[527 5JI] -1
— | 80,5, + K
[ 0 ] ze%:,cﬂ 6[5z> 1] X

That is, using the definition of the cross-term (2.19):

VBt 1)kt1 ("EO)

- ((1 - pZJrl(l‘))UEkH‘k($|Z1:k)KX (35)

" P%H(J?)Liﬂ(fﬂ)vawk(SCIZM)KXKZ P
2€ i1 )‘z+1ck+1('z)KZ + U5 [szLZH]KZ &
d z
Prpa () L34 (7)
= 1=pla@+ > SR Vzpor (2] Z1t)

c _ d z
2€ 2511 )‘k+1ck+1(z) + U=k i1k k+1Lk+1]
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Proposition 2.5

Proof. Let 1y € X be any target state, {2’ ]5:1 be any measurement family where
2l € 27, and Z any subset of {2/}7_,. First:

1)
/8[5@,,_(?, 5:130] - 5—370/8[g17 "'7gS7 h]
s (& S .
= 5—% (Z(/\Z’ilcfm[gj] - )‘Zil)
j=1

—i—v:kﬂk[ <H pk+1 Z+1 k+1[ H))] U:k+1k[1]>

S
= 5%0 </ H Pk+1 +pk+1( ) kﬂ[g '|2]) ~k+1k($|Z1:k)dx>

Using calculus property (1.48) gives:

S
ﬁ[5@7g7 5330] = H(l - pz,—{—l@jO) +pz,j—l('ro)flgil[gj|x]>v5k+1\k(xO‘Zlik‘)KX

J=1

Then:

Bl0z,g,h] = iﬁ[ Lg% h)
S
-5 (Soetata-a
. S
+v:k+1\k [h <H(1 pk+1 +karl k+1[ | ]))] v:k+lk[]‘]>

j=1

= (] Az’i°1cz°+1<z>dz) + [ 155 ([ sbwnsio)a:)

X H pk-i—l pzj&( ) k+1[g |.T}]) ~k+1\k<x|Zlik>dx

T 7= ("))
LT (55 ([ @misine)
o TL0 ) 4 s () Sl e (1)
2i¢Z

\ (12] = 2)
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Using calculus property (1.48) gives:

6[5Z7§7 h’]
4 . . . .
X o () K i + / B2 () 290 (29]2) K 5
X N————
LY (@)
k+1
< [ =it (@) +pidy (o) f kﬂ[ Ia))vz, 1y (@] Z1)da
23 #290
_ (Z = {z"})
[ 1) TL @) g1 Kz
x 2ieZz W
_LZ+1(5’3)
X H pk+1 +pk+1( ) k+1[9 |37]) ~k+1\k<1’|Z1;k)dSC
29¢7
\ (1Z] = 2

( C,jO jo _] .
)‘k-i-lcl]c—f—l('z ) K zio

29 #2790

dijo 729 d,j d,j
+ U:Huk[hpkﬁLmofosz H (1 =ppl + o k+1[ 1]

- (Z={=))

5k+1\k h H pk-{-lLZJ—f—JlKZj) H (1 —PZ’H Z-ﬁj—l k+1[ ‘ ])]

ZieZ 29¢7Z

\ (1Z] = 2
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Finally:

4]

5[527g75$0] = 5—.'170

6[5Z7 ga h]
( 0 d,jo 290 5o )
S h’('r)pk-i-l( )Lk+1 (2) K zio
0 X

X H pk-i-l +pk+1( ) k+1[g |~T]> _k+1k<l’|Zl;k)d5L’>

23290
(7= (="}

5i< [ ) TL w1 @R

2ieZ

X H pk+1 +pk+1( ) k+1[ | ]) _k+1k(l‘|Z1:k)dl‘>

2I¢Z

\ (121 > 2)
- g( [ 1) Tt 120120

e’

X H pk+1 _'_pk-i-l( )fl:ﬁl[gj‘x])UEk+1k<x|Zlik)dx>

21¢7

Using calculus property (1.48) gives:

B162,9.020) = [ WL (w0) L2 (w0) K 25)

zieZ

X H pk+1 Lo +pk+1(370)fk+1[9 |o])v U=y (To| Z1ik) K
29¢7

Theorem 2.3

This proof is an extension of Mahler’s proof in the single-sensor case (see [Mahl 03a]).
Note that a construction of the two-sensor case is also provided by Mahler in
[Mahl 09al.

Proof. Let Zj,1 = |_|f:1 Z,zﬂ be the set of my, = Zle miﬂ current measure-
ments, i (resp. g7) be a real-valued function defined on X (resp. Z7) in [0 1], and
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any point in X. Then, let F[g',...g%, h] be the joint PGFI of PGFls G2i+1(X)[g]""’
Gys_ (x) lg] and Gz, [h]. Then:

k+1[k

Flg"...g°

. h)
[ ] / (07 Ps () P24 (X | Zua(dX) (27, u(d2%)
Fizy  JFEs) i

— hX
[nn

J=1

(/F(Zj)gzpzf (X)(Z)M(dz)) Pzpsape (X Z1a) p(dX)

k+1

Which gives, using the definition of the PGF1 (1.29):

S
Flg'seg® )= [ 9DP2, s (X| 20 () (30
) H +1(X +1] 1

j=1

On the first hand, proposition 2.4 yields:
Flg*,...g%, 1]

S o
:/ ( >hXH(<1—piil<.>+pZil<> FEL DX A Al TN ) pe, (X Zra)p(dX)
F(x —
-1 (exz’ilcm[gfl—xzil)
j=1
X
X /J-'(X) (h’H( pk-i—l Zil() k+1[ H)) p5k+1\k(X‘Zlik‘):u(dX>

nTT (= PO + oL (sl |])]

)\CJ cj [gj]_)\CJ
= k+1"k+1 k+1 —_
| | (6 F1%+ T G:k+1\k
. =1

J=1

Since Zjyqp is assumed Poisson, using (2.3) further simplifies the expression of
Flg,...g°%, hl:

S ) . o
Flg H< Xt el (7] k+1>63k+uk[h S (pd O OS] =vm, 1
7=1
]-

_ 62 (>‘2+1ck+1[9 k+1)+v:k+1‘k[h1—[] 1(1 pk+1()+pk+1()fk+1[ H)] U:kﬂ‘k[l]

That is, using the definition of the cross-term (2.33):

Flg*,..g° h] = ePlg’ g% h] (37)
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On the other hand, derivating (36) in the current measurement set Zj, | gives:
o
Flg*,..q°, h]
|:5Zk+1 [g g ] g1mS:0

S
= hx
/]-'(X) ]1_[1

Which gives, using the derivative property of PGFI (1.43):

) )

) L s 5 .
[5Zk+1F[g g ’h]} L5 =0 / 1;[ el (Z 1| X))pz 0 (X 21 (A X))

That is, using the independence of the single-sensor observation processes (2.32):

)
Pl = W (B0, (X Zuan(aX) (39
k+1 gl--5=0 F(X)
But, the PGF1 Gz, ,,, of the posterior RFS =y 14, is by definition (1.29):

GEk+1\k+1 [h] - / thEk-H\k-H (X|Z1k+1)u(dX)
F(X)

Which gives, according to the data update equation of the RFS filter (1.55):

Z| X)pz, 0 (X Z
GEkH\kﬂ[h] :/ B p2k+1( k+1| )p~k+1\k( | 1k) (dX)
F(x) f.r ) Pokia Zk+1|Y)p_k+1‘k(Y|Z1 ) (dY)

Using previous result (38) then (37) yields:

Gz

k+1]k+1 [

VBky1jhs1 (xO) = [ ] KXl
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Lemma 2.1

Proof. Let s be any integer s < S, {Z7}7£] be any family of finite subsets Z/ C 2/
with Z5t1 = {z5F1Vm° " First, let us show that:

i i=1 -

C(Z, ..., z5
= {CUM(2)|ZzCz,CeC(Z,...,Z25, 27\ Z2),Cn M(Z5) =0} (39)

That is, any combinational term based on all the measurements in Z**! can be
uniquely decomposed as the union of:

e all the singletons of measurements from some Z C Z*! (“M(Z)");

e a combinational term based on the remaining terms in Z**!

(“Cec(Z..,Z2°, 2"\ Z),Cn M(Z°H) = ).

Let A € C(Z',...,Z*") be any combinational term. Denote by Z4 C Z*! the
subset Z4 = {2z € Z*1 | {2} € A}. Using the definition of the term set (2.47) gives
M(Z4) = x(Za) = {{z2} | z € Za} and thus A = M(Z,) UCy where Cy = A\
M(Z4). By construction, Cy C M(ZY, ..., 7% Zt 1\ Z 1) and CxNM(Z*F1) = (). Be-
sides, w71, zs+1(A) = 1 and @z (M(Z4)) = 1 imply that @z zs zst1\z,(Ca) = 1,
that is, Cy € C(Z%, ..., Z%, Z**1\ Z4). By construction, the decomposition Z4, C4 is
unique: if A =C4UM(Z4) = CgUM(Zp), the conditions Cy N M(Z5T!) = () and
CB QM(ZSJ’_l) = @ irnply that M(ZA) = M(ZB), thus ZA = ZB and CA = CB.

Conversely, let Z C Z**! be any subset of Z5*1 and C € C(Z, ..., Z¢, Z5T1\ Z) any
combinational term such that CNM(Z*t') = (. Then, C C M(Z', ..., Z*, Z*t1\ Z)
and therefore (C'U M(Z)) C M(Z',...,Z% Z5*1). Besides, pz(M(Z)) = 1 and
Yz, ZS7ZS+1\Z(C) = 1, thus Y71 ZS7ZS+1<C UM(Z)) =1.

-----

Therefore, equality (39) is true. Thus we can write:

C<les+1)
={CUM(2)|ZzC 2zt ,CeC(z"* 2T\ 2Z),CnM(Z*) =0}
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- U {CUM(Z)| CCM(Z"*, ZN\ Z),pg1s gy 2(C) = 1}

Z§Z3+1

= mU U {C“U (U{{zs‘“} ucf}> U (U{{Zf“}}>

n=0 IC[1 ms+1] i€l i¢l
[I|=ns

| C%,C C M(Z),[CY) = .7 (C U CY) = 1}

s+1

-y U u U

n=0 CCM(ZV%) IC[1 msT1]oeBij(I,J)
|C \>n JC[l |C1]
‘lezs(c):l |I|:‘J|:n

(U{c;}) ' (U () uczm}) ' (U{{zsﬂ}})
i¢J iel i¢l

That is, using the definition of combinational terms (2.49):

C(zl:erl)
ms+1

-U U U U meo

n=0 CeC(Z%*) IC[1 m**t])oeBij(I,J)
[Clzn  JC[L |C]
[1|=]J]|=n

min(|C|;m*+1)

_ U U U U Uy, (2°7,0)

CeC(Z1:s) n=0 IC[1 m*t1] o€Bij(I,J)
JCIL |C]
|[T]=|]|=n

Theorem 2.4

Proof. Let Zjq = |_|]S:1 7.1 be the set of myy = Zle miﬂ current measure-
ments, h (resp. ¢7) be a real-valued function defined on X (resp. Z7) in [0 1], and
Zo any point in X'. First, let us prove by induction on 1 < s < S that:

J el a® ) = Fooatl N TT Bloc,, g, h] (40)

0L . ..0Z¢
k+1 k+1 CEC(Zé_HS) c;eC
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Let us consider the basis case s = 1. Recall from proposition 2.5 that a cross-terms
vanishes when derivated in two points from the same observation space. Thus:

5 _ —
52—165[60797]7'} = eﬁ[ém,g,h} H 6[5{2’}7 g, h]
k+1 Zezkﬂ
= eMoal TT  Bloz, g0
ZEM(Zk+1)

Ploo.g:hl Z H/B52797

cec(z},,) 2eC

Therefore, the case holds for s = 1. Assuming that the case holds for s, s < .5, let
us prove that it holds for s + 1. We can write:

o+ Bloaah] — 0 6 Blg" g )
B 3 16 0:9 — ] 1 . e 9 -9,
0241028 1025, 0Zii1 \0Zp 11025,

Thus, by using the case at step s:

58+1 _ ) _
Bléo,ghl — _~ | .Bld9.9:h] 5
s s 16 s+1 € B[azvga h]
5Z;+1"'5Zk+152k11 5Zkil Cec(zzk+1 ) 2115
s+1
AN 0 B(59,3,h] 0
=2 2 We[”’g’ e > 186z
n=0 I1C[1 mit]] Fik1 Sigl ik Siel \ pegq ZL.5) Z€C

M4
[I|=n

s+1

3 5 (e (M) X (g I o)
| ,

Z; i
— ; k1Jiel
n=0 1C[1 m*] i¢l cec(zlyy ik+ zeC
[I|l=n =A

Recall from proposition 2.5 that a cross-term vanishes when derivated in two points
from the same observation space. Thus, A can be expanded as follows:

(n>|CY)

A= Z > 1I86c.a. 0 11861 yuc,, 9.0 (n<ICh)

JC[1 |C|leeBij(I1,J) j¢J icl
|J\
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And therefore:

o+ _ S0
5Z;+1...5Z,§+152,j:[1
s+1
k+1
DD D>
n=0 1C[1 mj1}] CeC(Zy) JC[L |Cl] o€ Bij(I,])
[I|=n IClzn I=n
(H B[é{zf}gil}agv h]) (Hﬁ[aCjaga ) (Hﬁ 5{Zsti1}UCo(i)’g’ h])
i¢1 Jj¢J i€l
min(|C], mZill)
5 b
AP VD DI DI
CeC(Zl:}) IC[1 myt ] o€Bij(1,J])
JC[l ICH
|1]=|7]=n
(H B[é{zf’}til}agv h]) (Hﬁ[(SCJaga ) (Hﬁ 5{2 k+1}UCa(i)’g’ h])
¢l Jj¢J i€l

That is, using lemma 2.1:

55—}—1 B .
6[5@79717’] — 66[5@’g’h] 5 =z h
5Z,§H...5Z,g+1528+1 > 1] slc.g. 4]

k+1 CGC(Z;;'F‘ISH) C;eC

Therefore, the case holds true for each s < S and for s = S equation (40) becomes:

J eBlo0:g:h] — Bl60,9,h] Z H Bloc,, g, h]
07kt .
€C(Zx11) Ci€C
Using the derivative form (2.44), we can finally write:

o (5 Bleeahl
0z \ 0Zk41 gl-S=0,h=1

v= (20| Z1:k41) =
k+1|k+1 |: 66[5@7g7h]]

Kyt

Zr+1 glAAAS:()’h:l

55)0 Blba.gh Z H B 501797

- Cec(Zk-H) Ciel 914.43:07]1:1 K_l

eBlon,1] Z H Bloc;, 1

CeC(Zyy1) Ci€C
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Recall from proposition 2.5 that a cross-term vanishes when derivated in two points
from the target space. Thus:

UEk+1‘k+1 ('TO ‘ ZlkJrl)

0ot g5y, g,6.) > ] Bloc. g, k)

CeC(Zyy1) Ciel

Mool " T Bléc,, 1]

CeC(Zp41) CieC

ool N~ N 816y, 5. 6a) [T Bloc,. 3.1

1.4.5:0’;1:1 Kfl

CEC(Zy41) CieC C#C; gl S=0h=1 ;-_1
+ — Ky
Bl50.1] Z H Bléc,, 1]
CeC(Zyy1) Ci€C
> X (#acooul TT #00,
1 CEC(Zy41) CieC Ci#C; -
= 6[50)7 5960]KX1 + - Kﬁfl

CEC(Zyi1) CiC

Proposition 2.6
Proof. Let g € X be any target state, {2/ }J . 2 € ZJ be any family of measure-

ments, J C [1 S]. Let (Sgi1(p ))52*11, (Thes1(p)) = ’““ be the joint partitioning at time

k + 1. Then, using equation (2.38) gives:

S
B00. 9. 6] = [ [(1 = piZy (w0) + Pty (o) £, 97 |wo) ) v, 11 (0] Z1) K

Jj=1
Py

=11 TT (= pli o) + pidy (o) £221 107 |w0)) | vzpys (0] Z1k) Ko

=1 \j€Sk+1(q)
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If 3p € [1 P],z9 € Tj4+1(p) then:

B10p, G, O]

i i it
= H (1= pyta (o) + vyt (o) fith g o)
J€Sk+1(p)

dj dj 04 i
<TT1 TI (= peli(o) +pili(xo) £ 197 1x0)) | vz, (0] Zik) K

q#p \J€Sk+1(q) -0 =0
i i o 1
- H (1- Pki1(4’70) _'_pk—ij—1<x0)fk—i1[g]|x0])UEk+1\k<x0‘Zl:k)KX
JESk+1(p)

= Bpl00, 9, 0]

Otherwise, g € Ty4+1(0) and therefore:

5109, G, O]
Py

= H (1 _pZ’-{l(ﬂfo) +PZ’-{1<5€0) Feiilg o)) Ve (o] Z1w) K
=1 \j€Sk+1(q) -0 =0

= vz, (T0] Z1k) Kx

Likewise, using equation (2.39) gives:

B[a{zj,jGJ}a g, h]
/ C,‘ . . d,' Zj,‘ d,' d,' 07. .
AtaCg (7°) Kz + U5k+1\k[hpkj-()1Lk+OljoKZj0 H (1 =iy +pel fitale’ L))

J#Jo
(J = {Jo})

i e i 4 it
VBky1)k I H(pkilLk-i-]lKZj) H(l =it el fihle’ L))
jeJ j¢J

(171 =2)
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p

Prta
e+ (3 [ ot R

q:(] k+1 (q)

X H pk+1 +pk+1( ) k+1[g |l‘])]> ~k+1\k(x|erk)dx

J#jo
(J ={jo})

(Z/T h(x>H<pZ’-{1( )LZJH( VK zi)

q=0 7 Tk+1(a) jed

X H pk+1 +karl( ) k+1[ | ])) ~k+1\k(x|Z11k)dx

Jj¢J

\ (1] > 2)
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If 3p €[l Pewa],J € Spta(p) then:

810123 jesys 9. ]
( )‘2’-{01617&1<2j0)K2jo
d i dj i 0 i
+ </T ()h< )ka]rOl( )Lkifo( VK zio H (1= ppli (@) + pla (@) fih [97]2])
k+1(P

J€Sk+1(p)
J#jo

 TI (1 o)+ % () 125 m>) e (0l 2
—_——— N —

J¢Sk41(p) =0 =0

d, 290 5
> / h(x) p (2) L2 (@) K
qp Tr+1(q) T

X H pk+1 +pk+1< z) k+1[g M)) —'k+1\k<x‘Zlik>dx

J#jo

_ (/= {jo})
(/T ()h@)H(pZil( )LZJ+1< )Kzi) H (1 —Piﬁl(if)JrPZﬁl( ) k+1[9 |z])

JjeJ JE€SK11(p)
JgJ

o TT (1 o)+ o ) 525, m>) ey (0l 2
—_——— N —

J¢Sk41(p) =0 =0

d,j . .
' (;lerH(Q) h(x)H(pkH( )Lk+1( 7)Kz;5)

jeJ -0

X H pk+1 Jrpk+1( ) k+1[9 |x])> ~k+1\k(‘”|Zl:k)d$

JEJ

\ (171 =2)
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p

d7j0

() K 250 + (/ h(z)py S
Tiq1(p)

[T =pili@) + il @) R a])]

J€Sk+1(p)
J#jo

A () Ly i (@) K 250

X

JE€SK11(p)

=2
i¢T

\

Bpldzi jesr G, 1]

d,j 295
JRRIE) ) (CEACTZEEr o
Trv1(p) jeJ
dj dj 0 i
x H (1 = pla () + ppla (@) fililo’ |2])
JE€Sk+1(p)
J¢d
\
( AZiOlCIQ(:Ll(Z]O)KZJO
d.jo 7290 j dj
+ kaH\k[thkﬂ(P)ka]rolLkJrljoKZjO H (1- pkil +
JESk+1(p)
J#Jo

>v5k+lk(x|Z1:k)dx

(J ={jo})

) VS <x|Zlk>dx
([J]>2)
d.j

pk+1fl§ﬁl [QJH)]

(J = {jo})

TRy 0 0 ot
v5k+1\k[h1Tk+1(p)H(pk‘-{-lLk‘-i-JlKZj) H (1 =iy + Pl fihle’1))]

(1] = 2)
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Otherwise 3py, p2 € [1 Pigi], p1 # p2, Fj1,J2 € J,J1 # Jo. j1 € Sk1(p1), J2 € Sk+1(p2)
and therefore:

B[a{zj,jGJ}a g, h]

- </Tk+1(p1) h( )@L;ﬁih(;p) H (pzil(x)l’ij—i-jl( ))

Y jeJ
=0 J#J2

H <1 —pZi1<l’) +pii1< ) k-‘,—l[g M)) ~k+1\k('r‘Zl:k>dx

it
d, 201§ d,j 295
o h@ @ 1250 [T (P ) L)
Ty+1(q) —_—— ,
q#p1 -0 JjeJ

J#n
dj d,j
H (1 —Pki1($) +kajr1( ) k+1[ | ])) k+1\k(x|Z11k)d:p
2
=0
Likewise, using equation (2.40) gives:
6[5{zj,j€J}a g, 53[:()]

- (H (P (o) L2 ) ) TT (2 = pit (o) + pid (o) 2, [0 o] )

jeJ Jj¢J

U= xo\Z1:k)Kx

k+1\k(

If Elp € [1 Pk—f—l]a J C Sk+1(p),xo € Tk+1(p) then:

6[5{zj,j6J}v g, 59[30]

=(H(pZ:{1<xo>L;ﬁ<xo>) IT (1= o (o) + P (o) 22,197 o]

jed J€Sk+1(p)
j¢J
" .y
11 (1_1’1#1(950) 0+ ity (20) = Ofkil[g”xo]))ka+1k(x0|lek)KX
) ——— ——
J€Sk+1(p)
J¢J
y "y "y "y i
:<H(pkil<xo>Lk+a<xo>) I1 (1—pkmo)+pkil<xo>fki1[gf|xo]))
jed J€Sk+1(p)
j¢J

Uz, (Tol Z1r) Ky

Sk+1k

= Bp[é{zj,jeJ}a g, 51‘0]
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Otherwise, either 29 € Ti41(0) or Ip1,p2 € [1 Py, p1 # p2, 3jo € J, 2 € Tigr(p1), Jo €
Sk+1(p2) and in both cases piiol(xo) so that:

ﬁ[a{zj,jEJ}7 g7 5330]

(Piﬁ(l’o)Liﬂ (20) E <Pii1(5€0)Li+1( ))

=0 J#jo

H <1 - PZil(%) +PZi1($o)fig7+j1 [9j|$o]> )Uak+1k($o|21:k)Kx

2

Theorem 2.5

Proof. Let (Ski1(p ))5 i (Tkﬂ(p))P’““ be the current joint partitioning given by
definition 2.9, and = € X any target state. The first case to cover is when = €

Tr11(0), i.e. z is outside every FOV. Using theorem 2.4 and proposition 2.6 gives
immediately:

v:‘k+l‘k+l ('Z‘|Z1k‘+1)

> 3 |, TT st

CeC(Zyy1) CieC C #C

= Bl0,0.] Kyt Ky'
— > H Bldc.: 1]
vy, (@1 Z1R) K o
€C(Ziy1) CieC
= U5k+1\k<x|zlik)
Now, assume that x € Ty, 1(p),p # 0. We must show that:
Z Z Bp 5017 H /Bp 50 )
( |Z ) /8 [5 5 ]K,1 + CEC( )C eC C #C K,l
U= T\41:k) = 0,9z
k+1|k D X Z H /Bp 507 X
cec(z?),) CieC
(41)

Note that we need to prove equation (41) for P,y = 1 and Py = 2 only. In-
deed, results from proposition 2.6 clearly hold for any sensor partition coarser than
(Sk+1(p))§i+11. Thus, if Pyy1 > 2, applying result (41) to any coarser partition of
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(Sk+1<p))Pi+1 with two elements, namely (S;,,(1),5%,,(2)), and using (41) twice,
once on the restriction of X' to Tk+1(1) with a two-element partition of St (1) and

once on the restriction of X' to T)¢, ;(2) with a two-element partition of S, (2), and

proceeding with finer and finer partitions up to (Sky1(p)),= Pyt

any partition size Pjq.

yields the result for

The case Py = 1 is straightforward using theorem 2.4. Assume that P, = 2, ei-
ther z € Ty41(1) or x € Ty, 1(2). Without loss of generality, assume that x € Ty, 1(1).
For any C' € C(Zk41) and any C; € C, according to proposition 2.6:

Bilde,, 3.k (Ci e M(Z{))))
Bloc., 9.0 = § Boldc,, 3.0 (Ci € M(ZE)

0 (otherwise)

Therefore we can write:

Z HB[(stl]: Z H ﬁl 56'27 ] H /825027

CeC(Zp41) CieC CeC(Zy+1) Ciec CieC2
c=cMyc®?
chem(zy))

cdcmzl))

Since Zyyy = 200, U 27

i1, using equation (2.49) gives:

Z H 6[5@'7 1] = Z H 61[5017 1] H 62[5017 1]

CeC(Zy41) Ciel c=cWuc® \c;ec® CieC®
cWec(z))
)

(
c®ec(z?),

= Z H ﬁl [5Ci7 1] 50 ’ (42)

cec(zl),) Ci€C cec(z?),) Ci€C
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Likewise, the numerator in data update equation (2.53) can be simplified:

> > | Bloe,. 6] T Bloc,. 1)

CEC(Zyy1) CieC C;#C;

= Z Z 6[5@, 51;] H B [5Cj7 1] H Ba [5Ck7 1]

CeC(Zyy1) Ciec) cjec® CreCc®
c=cWuc® Cj#Ci Cr#Ci
COCM(ZL,)
WMzl

= > > sl I] silde,. 1 I1 6:lsc.. 1]

c=cMuc® c;ec® cyec® CreCc®
cWec(z)) Cj#C;
c@ec(z?)

- Z Z H ﬁ1[50k,1] 62 5017 H 52 507

c=cMuc® c;ec® \crec® -0 C;eC®
C(I)EC(Z(I) ) Cj;ﬁci
2
c(2>eC(z]§+)l)
= > > | silc.dl I] ilde,. 1] Y 1 Beldc, 1| (43)
CEC(ZIEQI) CieC Ci7C CEC(Z,E?F)I) Cie0

Thus, substituting the simplified expressions of the numerator (43) and denominator
(42) in equation (2.53) yields:

v‘:‘k+1‘k+1 ('Z‘|Zlk‘+1)

_6[5@7 m]Kﬁ
S N | Bilden o) TT Bilde,. 1] S 1 Aol
cec(zl),) Ci€C C;#Cs cec(z®,) CieC

Kyt

Z H 61[5017 1] Z H 62[502'7 1]

cec(z),) Ci€C cec(z?))) Ci€C
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According to equation (2.60), since x € Ty1(1), B[dg, 0.] = B1[dg, 0] and therefore:

Yo > | Bilbendld [T Bilde, 1]

cec(z)) Ci€C Ci#Ci

Z H 61 [5Civ 1]

cec(z),) Ci€C

U:k+1\k+1 (x‘Zl:k‘Jrl) = Bl [5(7)7 51][(/;1 + K/;l



232 Appendiz A: Mathematical proofs

Chapter 3: Multi-sensor management within PHD
framework

Proposition 3.2
This proof is an extension of Mahler’s in the single-sensor case (see [Mahl 04]).

Proof. Let u € U, be any available control and x € X any target state. Using
the definition of the predictive PHD (definition 3.3) with the PIMS as the predictive
observation RFS gives:

Ve @l Z00) = Buloz e, (120 UEY P ()]

Which simplifies, by construction of the PIMS (proposition 3.1 and definition 3.5):

| 1k Z pZWE ~k+1\k+1('|ZlikUZ)

WE
2CZWE

VU=u
“k+1|k+1

Which gives, using the data update equation (2.53):

UEZH\kH(x‘Zl:k)
> Y | Ble,da T Blc, 1]
- 2(2) | Bloy, 8, Kt + S5 4EC a7 K
ZC;KHPEEV( ) 5[(2) ] X Z H55CN X

ceC(z) CieC

= X e (2) | B0, 0K

ZCZ,Z‘er?
N ~ .
> > [ Blc..6] T Bl 1
CeC(Z) c;eC C;#C; 1
+ P K
Zczzk;z'f el > I sloc,. 1] *
cec(z) C;eC
> > | Blea] T 86, 1]
— B150. 0. K21 + 7 Ccec(z) CieC C;#£C; P
[0g, 0] K 3 Zg:mpzxw( ) SRIETE ¥
cec(z) CieC
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Corollary 3.1

Proof. Let u € Ugy1 be any available control and z € X any target state. In the
same way as in the proof of theorem 2.2, the data update equation (3.17) is simplified
in the single-sensor as follows:

B0y,
U5z+l\k+1('r‘zl:k) = ﬁ[é(’)’ K T Z pEWE Z ﬁ 5{{ }} 1 (44)
Z2C7E €z .

Let {z1,....,2m} = Z% be the ideal measurements. For any 1 < m < M, let p™

be the restriction of pswe to the first m measurements in Z%%. That is, p™ is the

function defined on any subset Z C {2y, ..., z,,} by:

=i @) TT (1= pi(ors) (2)))

z2€Z z€{z1,.c,z2m}\Z
Then, let us prove by induction on m that:
Blorar, 1, B0y 64
> (2)) 55{ no > p(pre) 1(@)% (45)
ZC{ 21, 2m } z2€Z {Z}’ z€{z1,...,2M } {z}

Let us consider the base case m = 1:

Blo(2y, s — (0 x g, M:d Ly,
Zg{z:l} Z 65{2}, p (0)x0+p ({ 1})5[(5{2},1] P4 ((prg1) M (21))

Assuming that case m < M is true, let us prove that case m + 1 is true:

P Blzy), 0
Z Z B 5{,2},

6[5{z}7 590]
Blo¢y, 1]

Zg{zl ..... Zm+1} z€Z
Blo Blo
_ Z m+1 Z {Z}> Z m+1 Z' Z {z}>
ZC 21,0 Zm} 2€Z ﬁ 5{Z}’ Z’:ZU{zm+1} zeZ’ ﬁ 5{Z}’
ZC{z1,.2m }
B0y,
= Z p"(Z) (1 — (1) (Zms1)) Z 55{ b0
Zg{zl ..... Zm} 27 {2}7
5{2}7 6[5{2 1}751]
+ P™(Z2)ps((prs1) " (Zmr1)) -
Zg{;7zm} ; p 5{2}’ 5[5{zm+1}, 1]
_ B0,
= > D) (= Piler) " ) + P ()™ G Z 5 ; 10
Z{z1,.2m } T P4 {Z}’

=1

B0z} Oa]

2 @ | o) ) Gt




234 Appendiz A: Mathematical proofs

Which gives, using (45) at step m:

m+1 5{z}’
>y e

0
Z2C{a,s zm+1} ‘7 Blogy, 1

_ d “1g, B[é{z},éx] a 1, 120ty Ol
= Z Pu((prr1) " (2)) Blogy, 1] + po((prs1) ™ (2my1)) By, 1]

B0z, 6]

B d 1z
= Z Pul(pri1)” (2)) 5[5{Z},1]

2€{z1,e,Zm+1}

Therefore, the case holds at step m + 1 and the induction is true for any m < M.
Combining the case at final step M and expression (44) above yields:

. B Blora, 0]
UE}:+1\k+1<x|lek) = B[0g, 0] K3 + Z Pe((pria) 1(2))ﬁk}(1
ZeZ"C/I_/FIf z}

That is, using the expressions of the derivated cross-terms given in proposition 2.3:

V=u (
k+1]k+1

:L‘|Z1:k)

d z
- Pu() Liyy ()
= | 1=pi@) + D pillorn) () Vs (%] Z1:1)
2eZ)VE ' )\k+lck+1( ) + VSk 1k [dekJrl] s
F1

Proposition 3.3

Proof. Let u € Ug,q be any available control and = € X any target state. Using
the definition of the predictive PHD (definition 3.3) with the PIMS as the predictive
observation RFS gives:

UEZ_H“H_I ('r‘Zlk‘) =E, [U=k+1\k+1( ‘Zlik‘ U EuWE(w))]

Which simplifies, by construction of the PIMS (proposition 3.1 and definition 3.5):

UEz+l\k+1 ‘ L: k Z pEWE “k+1\k+1("Zl:k U Z)

WE
A
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Which gives, using the data update equation (2.53):

UEZ+1\1€+1($|Z”“)

v:k+1\k(x|21:k>
(z € To(0))
, S > | Bloe,. 6] T Boloe,, 1]
Z pewe(2) | Cec(zw) CieC Ci#4C; .
Z2CZWE Bplop, 0| K™ + K
> 11 albc.1]
cec(z?),) Ci€C
\ (z € Tu(p).p #0)
Z pEWE UEk+1\k<x‘Zlik)

WE
A

.

(x € T,(0))

Z pZWE Z [5@75] v

WE
A AR

> > Bl b T Boloc,. 1)
n Z prE( CeC Z(@))CEC Ci#C; K)_fl

AV AR ’ Z H Bpldc;, 1]

cec(z®)) Ci€C

(. J
~~

:f(va)

(. J

\ (x € Tulp),p #0)

Let Z be any subset of the ideal measurement set 2 ,‘i’f Then, according to definition
3.6:

20 (285N 29F) 0

Py
= ZnN (Zm\ U ZWE>

=dzeZ|3e[19] jES (q), zer,(p};H)’l(z)ETu(T),Q?é'f’
=3z€ 2|3 el 8],p((phy) "(2) =0
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Which implies, according to the construction of the PIMS (proposition 3.1):
= prVE(Z) =0
Therefore, we can write:

= Y pe(2)(Zp)

Py WE
28U, 23]

ACZ)

Bg—lq#p ZX‘qu

Since C(Z)) is the set of combinational terms based on measurements produced by
sensors from partition element S,(p) only, f(Z,p) equals f(A,p) and thus:

T= > pswe(2)f(Ap)
Z=AUB
ACZYP

Bg—'q#p ZX‘qu

That is, according to the construction of the PIMS (proposition 3.1) with A =
Ujes.w 4 and B = Ly Ljes, @) Ba:

T= > f(Ap

Z=AUB
ACZY?
BCUgpZiYy
< T | I] & (o)) TT (0 =p2 (o) (2)))
j€Sulp) \z€A FYMESAV:Y
—pop ()

<TTt II ( II ¥ (pl) ™)) TT (=22 ((pler) ' (2))
q#p \J€Su(q) \z€B’ 2€Zy 4 I\Bi

=popp (Bo)

= > pewr @A) | [T Y. pewe(B)
ACZF a#p \BgCZWF

=1

= Z pZyIF(A)f<A7p)

ACTYE



237

Substituting the new expression of 7" in vzu (x) gives:

k+1|k+1

(| Z1.x)
x| Z1.g)

V=u
“k4+1]k+1

;

UEk+1\k(

(z € T.(0))

Z Z /Bp[écméa‘] H Bp[éijl]
Bp[éw’(sf][(§l + Z pzWE(Z)CEC(Z) ciee Ci#C;j

ASVALES “’P Z Hﬁp[écwl]

Cec(z) CieC

Kyt

\ (x € Tulp),p #0)

O
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Appendix B: Importance sampling

THis appendix focuses on the SMC implementation of a single-target tracking
problem in a Bayesian framework. It is mainly based on two papers [Gewe 89,
Douc 00| on sequential Monte Carlo sampling techniques.

General description of the tracking problem

Assume that there is a single target evolving through time in the state space X', whose
state (position, velocity, etc.) is of interest. The sequence of target states {xy, k €
N}, xp € X, is assumed to be an hidden Markov process with an initial distribution
t(zg) (or t(xo|lr_1) for notational convenience). The sequential observation of the
target produces a sequence of measurements {z;, k € N}, 2z, € Z, assumed to be
conditionally independent given the sequence of target states {xy, k € N}. The target
and measurement processes are completely described by the sequences of probability
densities:

{t(l‘k|l‘k_1), ke N} (46)
{9(zk|zr), k € N} (47)

The observation process is encapsulated in a single pseudo-sensor producing a sin-
gle measurement z, at each time step. Likewise, any false alarm, detection or
measurement-to-data issue is encapsulated in the likelihood function g.

Denote by xq.., (resp. zo..) the sequence of target states (resp. measurements) up to
a given time step k, also called the the target (resp. measurement) trajectory up to
k. In its most general form, the filtering problem aims at estimating quantities such
as:

e the posterior density p(zo.x|z0.x);
e expectations of integrable functions I(f;) = ka fr(xo.k)p(T0.k | 20k ) A0k

given the collection of measurement 2., usually under the assumptions that, at each
time step k, one can:

239
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e sample from transition density ¢(.|zx_1);

e evaluate transition density ¢(xy|zx_1) a posteriori;
e sample from likelihood g(.|zy);

e evaluate likelihood g(zx|zx) a posteriori.

The Bayes rule provides another expression of the quantities to be estimated:

p(To:x|20:%) o< P(wos) = p(zo k| Zo:k)P(Tour)
I(f) = Soor Je(zoe) P20k ) dous (48)
: S D(wor)dour

The practical implementation of an estimator based on (48) may arise several well-
known difficulties:

e one cannot sample from the posterior density p(.|zo.x);
e the posterior density p(.|zox) cannot be evaluated a posteriori;

e the integral in the expectation I(fy) cannot be evaluated.

Importance sampling (IS)

The IS method is based on the practical assumption that, even if one cannot sam-
ple directly from the posterior density p(.|zo.x), one can still design an importance
sampling density 7(.|zo.x) which is “close enough” to the posterior density p(zo.x|zo.x)
and yet easier to sample from. The principle of the method is based on the following
theorem [Gewe 89]:

Theorem 1. Under the following assumptions:
1. p(.) is proportional to a proper density on X*;

2. {:Eg >, s a collection of sequences of k target states, i.i.d. according to

(.| Z0:);
3. The support of m(.|20.) includes X*;
4. 1(fx) exists and is finite.

then:
Zz 1fk<550k) (%k)/”(%ﬂ%k) D,

In(fr
o= vaﬂ?(xo k)/”(% k|ZO k)

(f&) (49)
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The theoretical assumptions in theorem 1 are quite mild, thus one can expect to
approximate I( f) properly provided that the particle number N is large enough. In
its algorithmic version, theorem 1 is often written with the more convenient impor-
tance weights notation:

Algorithm 11 Importance Sampling (time k)

input: Measurement sequence up to current time: zg.
output: Weighted particles: {x&,w&}ie[l N

Sampling
fori=1to N do '
Sample target state sequence: a:(()l)k ~ 7(.|z0x)

‘ @)\ (0)
Compute weight: u?é%,),g X p—(zo”“‘f?;’“)p (@03)
: 7|'(m();1€|z():lc)

end for

Normalization
fori=1to N do

(4)

- (i)
1 1 . Wok
Normalize weight: w,.; < SO
j=1 "0:k
end for
Estimation

Approximate posterior distribution: p(.|zg.) ~ S0, wé?gégﬁ(i) (\)
0:k

Approximate expectation: I(fy) ~ vazl w(()ll),C k(xg)k)

An important remark concerning algorithm 11 is that, besides the theoretical as-
sumptions given in theorem 1, it requires the following practical assumptions:

e one can sample from the importance density 7(.|zo.x);

p(xO:k:‘ZO:k)

e one can evaluate the ratio
ﬂ(xO:k‘ZO:k)

a posteriori.

In other words, the importance sampling bypasses the sampling from the posterior
density p(.|zo.x) by considering an “nicer” importance density.
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Sequential Importance Sampling (SIS)

The IS method suffers from a major drawback that may hinder both its tractability

and/or its computational efficency. By construction, the IS method (algorithm 11)

is mot recursive. At every time step k, newly drawn samples :cék belongs to the

"enlarged" state space X* and are independent from the previous samples x(():)k_l

conditionally on the sequence of measurements zy.,. Likewise, the new weights wélgC

are independent from the previous weights wé&q- That is, one must “start from
scratch” at each iteration. Besides, the design of the importance sampling is quite
challenging without additional assumptions. Indeed, being able to sample from and
evaluate a posteriori the one-step transition ¢(.|x;_1) and the likelihood g(.|x)) seems

hardly sufficient to be able to:
e draw a target trajectory from 7(.|zo.);

e evaluate the probability of occurence of any k-step trajectory xg., through
7(xo.k|20.1), let alone p(zo.x|zo.x)-

Design of the iterative method

The salient feature of the SIS method is to propose a recursive sampling and weight-
ing of the target trajectories by considering importance densities such that [Douc 00]:

Ea

7(zo.k|20.6) = q(0]|20) Hq k| Tok—1, Z0:%) (50)
J=1

where ¢(.|zo.x—1, z0.k) is the importance function. Thus, the importance weight wélgC

can be built recursively as follows:

o p(zorlzSL)p(ai)
wO:k X (z)
(20| 20:k)
p(zméibp(xé%)

m(@zon1)a(@P el | 20)
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=p(20:k—1 \:véfi,l) :g(zk\x,(:)) =t($§:) \l“;(:ll)

A

CRNSRRGINRCING (i
w((]zgc o p(ZO:k—1|$o;k>AZk)p(zk|$o;k)pt($k '|x0:k71)p(x0:k71)
(@51 Fon-0)a(@) |25k 1 20)
p(eon-1lal_ )y ) galz) e 2f))
T(@oh1] 20k-1) q(@ |21, o)
gz (=) )

(a1, o)

(@)
X Wy 1

Algorithm 12 Sequential Importance Sampling (time k)

input: Measurement sequence up to current time: 2.y
output: Previous weighted particles: {z\}_, wi}_ Vien

output: Current weighted particles: {xéﬁi,wé&}ie[l N]

Sampling

for=1to N do A _
Sample new target state: 2\ ~ q(.|z\” |, z0.)
Update target sequence: x(()z)k — (x&fl, xfj))

, . ONROING!
sohte o7 (1) 9(zklz Dty 2 2,)
Compute weight: w,” oc w,”, ——5—m
a(x), |20, _1,%0:k)

end for

Normalization
fori=1to N do o
Normalize weight: w,(f) — %

end for

Estimation
Approximate posterior distribution: p(.|2z0.x) =~ Zf\il w,(;)éx(i) ()
0:k

Approximate expectation: I(f,) ~ SN, w,(;)fk(xél)k)

The practical assumptions of the SIS algorithm are the following:
e one can sample from the importance function q(.|x§£1, 20);

9zl 2 )

e one can evaluate the ratio a posteriori.

)
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Clearly these assumptions are weaker that those required for the IS algorithm (see
algorithm 11) as only one-step densities are involved, all the more since transition
t(. |xk 1) and likelihood g¢(. |x,(j)) densities are supposed to be easy to sample from
and evaluate a posteriori. Understandably, the design of the importance function
q(. |xk 1» Z0:) 1s critical to the quality of the approximation.
Note that the trajectory samples a:(()l)k are no longer drawn "from scratch" as in the
IS algorithm, but rather updated from the previous trajectory sample with the same
label (i.e. the tail of xo . 18 precisely xé’z)kfl). Therefore, to the author’s knowledge,
it is unclear if the second assumption from the fundamental theorem (see theorem 1)

still hold in this case, and thus if the convergence in distribution is still guaranteed.

Choice of the importance function

An excessive variance in the distribution of the importance weights (known as "par-
ticle degeneracy") is often considered unsatisfying because it means that computing
resources are likely to be wasted on the update of particles with negligible weight
and thus negligible effect in the approximation (see algorithm 12). Therefore, the
optimal importance function is defined as the one that minimizes the variance among
the importance weights [Douc 00]:

Theorem .1. The optimal importance function is defined as:

Qopt (|11 20:) = axg min Vg [i5)] (51)

and we have:
Gopt (- |x0k 1 20:k) = D |$k 1> 2k) (52)

Proof.
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g(zr|a)t(z |m<'> )|

Thus, with q(x|x0k 1 20k) = (x|xk 1 2K) = SEREON
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With the optimal importance function, the importance weights update in algorithm
12 is simplified:

() () g(ala)t(z 2 )
Wk X W GING)
‘Jopt( Ty |x0k azOk)
o 9zl <xk ) p(ala? )
k—1 7
gzl ) )
(4)

oc w) plazy ) (53)

The optimal solution is often impractical because the optimal importance function
(52) cannot be sampled from and/or the quantity p(zk|x,(21) in the weight update
(53) cannot be evaluated a posteriori - recall from the general description that the
only densities that can be easily handled are the one-step transition ¢(.|zx_1) and
likelihood ¢(.|zx). The simplest solution is to use the one-step transition as impor-
tance function, in this case the importance weights update in algorithm 12 is further
simplified:

o @ 9@l )
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Using the one-step transition as importance function requires being able to:
e sample from transition density (.|zg_1);
e sample from likelihood g(.|zy);
e evaluate likelihood g(zx|zx) a posteriori.

The key aspect of this solution is that it does not need to evaluate the transition
density a posteriori but only to sample from it, which makes this solution tractable
in almost every situation. By construction, one must be able to sample from the
transition density to simulate the evolution of true targets; using the same method
for the evolution of the particles is usually possible provided that the computational
cost of the transition and/or the partition number is not too large. The evaluation
a posteriori, however, is usually much more difficult. The is rather clear for the
free target model (algorithm 1), and even clearer for the ground-based target model
(algorithm 1 and figure 4.2). The assumptions on the likelihood function are not so
restrictive in the single-sensor case. Indeed, the noise on the measurement process
is typically Gaussian with zero mean and known variance, thus it is quite easy to
sample from ¢(.|xx) and to evaluate g(zp|ry) a posteriori (recall the closed-form
expression of the likelihood L7(.) in section 4.1.2).
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Filtrage PHD multicapteur avec application a la gestion de capteur

Résumé

Le filtrage multiobjet est une technique de résolution du probléme de détection et/ou
suivi dans un contexte multicible. Cette thése s’intéresse au filtre PHD (Probability
Hypothesis Density), une célébre approximation du filtre RFS (Random Finite Set)
adaptée au cas ou les observations sont le fruit d’un seul capteur. La premiére partie
propose une construction rigoureuse du filtre PHD multicapteur exact et son ex-
pression simplifiée, sans approximation, grace a un partitionnement joint de I'espace
d’état des cibles et des capteurs. Avec cette nouvelle méthode, la solution exacte
du filtre PHD multicapteur peut étre propagée dans des scénarios de surveillance
simples. La deuxiéme partie aborde le probléme de gestion des capteurs dans le
cadre du PHD. A chaque itération, le BET (Balanced Explorer and Tracker) con-
struit une prédiction du PHD multicapteur a posteriori grace au PIMS (Predicted
Ideal Measurement Set) et définit un controle multicapteur en respectant quelques
critéres opérationnels simples adaptés aux missions de surveillance.

Mots-clés : filtrage multiobjet, PHD multicapteur, gestion de capteurs

Multi-sensor PHD filtering with application to sensor management

Abstract

The aim of multi-object filtering is to address the multiple target detection and/or
tracking problem. This thesis focuses on the Probability Hypothesis Density (PHD)
filter, a well-known tractable approximation of the Random Finite Set (RFS) filter
when the observation process is realized by a single sensor. The first part proposes
the rigorous construction of the exact multi-sensor PHD filter and its simplified ex-
pression, without approximation, through a joint partitioning of the target state
space and the sensors. With this new method, the exact multi-sensor PHD can
be propagated in simple surveillance scenarii. The second part deals with the sen-
sor management problem in the PHD framework. At each iteration, the Balanced
Explorer and Tracker (BET) builds a prediction of the posterior multi-sensor PHD
thanks to the Predicted Ideal Measurement Set (PIMS) and produces a multi-sensor
control according to a few simple operational principles adapted to surveillance ac-
tivities.

Keywords: multi-object filtering, multi-sensor PHD, sensor management



